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Abstract

Research on pedestrian dynamics is always an interplay between empirical and ex-
perimental observations and theoretical modelling and simulations. Thereby, ped-
estrian models are not only used for theoretically reproducing empirical data, but
also to better analyse and understand the mechanisms and behavioural aspects that
underlie pedestrian dynamics. The model approach that is presented in this work
assumes pedestrian motion to result from cognitive and decision-based processes.
The model is set in continuous space, but discrete time and therefore belongs to
a model class whose potential has been rarely investigated yet. However, com-
pared to other model classes that are widely used in pedestrian dynamics, this
approach is highly advantageous considering fidelity and simplicity in its structure.
A pedestrian is considered as an autonomous entity that gains information on the
surrounding by visual perception and anticipation. On this basis, the agent takes
a decision on its movement for the next time step.
The main focus during the development of the approach was on modelling the in-
teraction and collision avoidance with other agents. Particularly for the collision
avoidance, stochastic procedures are used in order to consider uncertainties of hu-
man decisions explicitly which makes the modelling approach more realistic.
As simulation results show, the new approach is able to reproduce characteristic
effects of pedestrian motion very well. For typical scenarios that have been used
as test cases the simulated results fit well, at least qualitatively but often even
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quantitatively, to experimental data. Especially, important macroscopic effects,
particularly collective phenomena, are observed in the results that are reproduced
by modelling individual interaction of a single pedestrian with others. During the
development of the model its parameters were specifically adjusted for the single
scenarios, considering the empirical data basis. In addition, several cognitive mech-
anisms were supplemented. By this means, it is possible to identify and understand
the important intrinsic properties and motivations of a pedestrian. Furthermore,
this provides the opportunity to gain insight into how cognitive and decision-based
approaches can model pedestrian behaviour as realistically as possible.
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Kurzzusammenfassung

Die Erforschung von Fußgängerdynamik ist stets ein Zusammenspiel aus empi-
rischen und experimentellen Beobachtungen und theoretischer Modellierung und
Simulationen. Dabei sind Modelle nicht nur eine theoretische Reproduktion em-
pirischer Daten, sondern eine wichtige Informationsquelle, um die Mechanismen
und Verhaltensweisen, die der Fußgängerdynamik zugrunde liegen, zu analysieren
und zu verstehen. In dieser Arbeit wird ein neuer Modellansatz vorgestellt, der die
Bewegungen von Fußgängern als Resultat kognitiver und entscheidungsbasierter
Prozesse auffasst.
Das Modell ist raumkontinuierlich, aber zeitdiskret und gehört damit zu einer Mo-
dellklasse, deren Potential bisher wenig untersucht wurde, die aber im Vergleich mit
den üblicherweise verwendeten Klassen große Vorteile in Bezug auf Genauigkeit und
strukturelle Einfachheit hat. Ein Fußgänger wird als eine autonome Einheit betrach-
tet, die mittels visueller Wahrnehmung und Antizipation Informationen über ihre
unmittelbare Umgebung sammelt, und auf dieser Grundlage über ihre Bewegung
im nächsten Zeitschritt entscheidet.
Ein Hauptaugenmerk in der Modellentwicklung lag auf der Modellierung der Inter-
aktion und Kollisionsvermeidung mit anderen Agenten. Unter anderem an dieser
Stelle wird insbesondere auf stochastische Prozeduren zurückgegriffen, die die Unsi-
cherheiten und Unwägbarkeiten menschlicher Entscheidungen berücksichtigen und
dabei helfen, den Modellansatz realistischer zu machen.
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Wie die Simulationsergebnisse zeigen, ist der neue Ansatz in der Lage, charakte-
ristische Effekte der Fußgängerbewegungen mindestens qualitativ, oft sogar auch
quantitativ sehr gut zu modellieren. Im Besonderen können wichtige makrosko-
pische Effekte, speziell kollektive Phänomene, durch die Modellierung von indivi-
dueller Wechselwirkung eines Einzelnen mit anderen Fußgängern gut reproduziert
werden. Während der Modellentwicklung wurden die verwendeten Parameter im
Hinblick auf die empirische Datengrundlage situationsspezifisch angepasst und wei-
tere kognitive Prozeduren ergänzt. Damit können zum einen die ausschlaggeben-
den intrinsischen Eigenschaften und Motive eines Fußgängers besser identifiziert
und verstanden werden, zum anderen Erkenntnisse darüber gewonnen werden, wie
kognitive und entscheidungsbasierte Modelle realistisches Verhalten für Fußgänger
bestmöglich wiedergeben können.
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CHAPTER 1
Introduction

‘Pedestrian dynamics’: basically everybody has at least a general idea what is
meant by this expression. On the one hand, walking is the most natural form of
human locomotion and a vast majority of us is part of road traffic as a pedestrian
routinely. On the other hand, crowd disasters are also part of the public awareness.
Research on pedestrian dynamics therefore often focuses not on the investigation
of the motion of single individuals, but pedestrians in large groups and their inter-
action with others and the environment.
But, is this physics? In physical systems, particles are often considered as passive
entities, exposed to extrinsic impacts, described by observables. In contrast, a ped-
estrian his- / herself would probably claim decision-making independence for his /
her walking behaviour. Large pedestrian groups, especially in the light of crowd
disasters, are often publicly referred to as ‘panicking’ masses showing irrational and
asocial behaviour (see Sec. 2.1). In fact, it is often claimed that including behavi-
oural aspects in pedestrian models makes them realistic [1–5].
Physics-based models are nevertheless able to reproduce pedestrian motion realist-
ically for different situations. From a physicist’s point of view, a pedestrian crowd
can be considered as interacting particles that can be described e.g. in analogy
to classical fluid or gas mechanics [6–8]. Other approaches use statistical phys-
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Chapter 1 Introduction

ics to represent crowds as many-body systems in non-equilibrium states exposed
to stochastic processes [9–11]. Pedestrians can be regarded as driven by external
forces similar to Newtonian mechanics [12] or by minimising potentials [13]. An
important characteristic feature of crowds is the emergence of self-ordering or col-
lective phenomena. Due to microscopic interactions, the system spontaneously
shows macroscopic effects, like stop-and-go waves or lane formation in counterflow.
Some of these phenomena are also observed in totally different systems: intermit-
tent egress flows at bottlenecks were observed for pedestrians, sheep or granular
material [14, 15]. Lane formation could also be found for self-driven particles and
colloids, see e.g. [16–18]. In a simple model for self-driven particles, Vicsek et
al. found cooperative motion and self-ordering [19]. They predicted a continuous
phase transition from a homogeneous to an ordered state, which is also assumed in
models for pedestrian lane formation [9, 20]. Since these systems involve particles
that are not naturally assigned with psychological mechanisms, it is still reasonable
to describe pedestrians (also) as a physical system, especially at high densities. It
might be necessary to combine both aspects, physics and psychology, in order to
yield an understanding of the underlying principles of pedestrian motion.
In this thesis, a new modelling approach for pedestrian dynamics is presented that
is physics-based and captures a pedestrian as an actively deciding agent. It tries
to gain insight into coherencies of pedestrian motion by reproducing realistic dy-
namics. A pedestrian’s decision on its velocity, both direction and absolute value,
is modelled using a simply structured set of rules. An agent has cognitive abil-
ities like perception or decision-making which are used to navigate through the
surrounding infrastructure and to respond to other pedestrians. The approach
belongs to a model class that combines aspects of different approaches and that
has been sparsely investigated yet. It shows realistic behaviour that fits well to
empirical data for collision avoidance, single-file motion, evacuation scenarios and
bidirectional flow. It reproduces collective phenomena like stop-and-go waves, lane
formation or clogging at bottlenecks. During the optimisation process, the model
provides insight into a pedestrian’s intrinsic prioritisation and decision behaviour.
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CHAPTER 2
Pedestrian Dynamics

A pedestrian is ‘a person moving on foot in a publicly accessible area’ [21]. As simple
as this seems to be, research on pedestrian dynamics comprises not only many
different approaches, methods and models, but is also influenced by a wide variety
of research fields like physics, psychology, sociology, mathematics, engineering or
computer game development. Each of these can only consider certain aspects of
all coherences that influence pedestrian walking behaviour (yet). In this chapter,
a short overview over central aspects of pedestrian dynamics is given, followed by
a more detailed description of mechanisms with particular importance for the new
model approach presented in this thesis. If not stated otherwise, the overview is
based mainly on [22–24].

2.1 Empirical and Experimental Observations

Much insight into pedestrian dynamics is gained by either controlled experiments or
empirical observations. Beneath qualitative results, pedestrian walking behaviour
can be described quantitatively. In this context, three quantities are of major
importance: the pedestrian density ρ, velocity v and flow J . There are multiple
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Chapter 2 Pedestrian Dynamics

approaches how to define and measure pedestrian density and velocity which are
more or less suitable for different scenarios. The pedestrian flow is given by the
number of agents passing a fixed measurement area of width b [21, 24],

J = ρvb [1/time] , (2.1)

and is usually considered as a scalar quantity since the normal component of the
velocity with respect to the measurement line is used. The hydrodynamic re-
lation describes the specific pedestrian flow as the number of pedestrians passing
the measurement area per unit time and width:

Js = ρv [1/(width · time)] . (2.2)

The correlation between these three basic quantities is expressed via the fun-
damental diagram. It describes the relationship between flow or velocity and
density and is, as its name implies, one of the most important observables in pedes-
trian dynamics. In modelling, it is often used for calibration or validation purposes
or as input parameter [25]. Measured fundamental diagrams in part differ signific-
antly [26], in addition their shape can depend on the specific scenario [21, 25, 26]
or the measurement method [25, 27, 28]. However, all diagrams consistently show
a decrease in the velocity for an increasing pedestrian density [26].
In general, the capacity of a system is given by the maximum number of pedes-
trians which is able to sustain a certain action (e.g. walking, standing, crossing)
within the facility [21]. In fundamental diagrams, the capacity is given by the max-
imum flow, and the corresponding system state is referred to as ‘capacity state’,
the respective density as ‘critical density’1. For density values below the critical
density, the system is in the free-flow phase, where the pedestrians can move with
their preferred velocities without congestion; for densities above the critical density,
the system is in the congested state and the flow decreases with increasing density
[29].

1In this case ‘critical’ does not necessarily refer to criticality in the physical sense.
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2.1 Empirical and Experimental Observations

One of the most interesting characteristics of pedestrian dynamics is the emergence
of collective phenomena or behaviours which is also referred to as ‘self-organisation’
[25, 29, 30]. These phenomena are macroscopically observable behaviours caused by
individual, microscopic dynamics. As distinguished from aggregate behaviour, col-
lective motion arises from spatial or temporal synchronisation of the crowd members
[21]. There are several typical collective behaviours that are repeatedly observed
for walking pedestrians.

Jamming, Clogging and Arching

Jamming and clogging are phenomena observed at high densities. Jamming usually
occurs if the inflow or the number of pedestrians in a system exceeds the system’s
capacity, for example at narrowings or in counterflow scenarios, such a scenario is
shown in Fig. 2.1(a) for an evacuation through a narrow door. Clogging can occur
in pedestrian groups with a high urge to enter a facility of limited capacity, e.g.
exits. The pedestrians form short-lived structures around the exit which often have
a semi-circular shape. Due to these arches the participants block each other and
the flow is decreased or interrupted [21–24].

Bottleneck Flow and Evacuations

Bottlenecks, in general, are spatial structures with limited capacity, e.g. the door in
an evacuation scenario or a narrowing in a corridor [22]. For high densities, they can
cause the reduction of flow and emergence of jamming [21]. In bidirectional motion,
oscillations of the direction of motion through a narrow bottleneck occur. To reduce
the number of interactions, several pedestrians of the same direction of motion pass
the bottleneck consecutively before the situation changes and a person with opposite
direction is able to pass. This person is again followed by other pedestrians with
the same direction so that the direction of motion within the bottleneck changes
in an oscillatory way [22, 24, 25]. At narrowings in corridors several collective
phenomena can be observed. If the inflow is large enough, jamming occurs and
the pedestrians wait in a cluster in front of the bottleneck [33] (see Fig. 2.1(a)).
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Chapter 2 Pedestrian Dynamics

(a) Jamming in front of an exit (screenshot
from [31])

(b) Scheme of the zipper effect in corridors
(from [32])

Figure 2.1: (a) Jamming in an evacuation scenario, the pedestrians wait in a dense
group in front of the exit. (b) With an increasing width of a corridor
the pedestrians increasingly walk in a zipper-like configuration and the
flow increases approximately linearly.

Thereby, the density within the cluster usually does not depend on the width
of the bottleneck, but decreases significantly within it [34]. The flow within the
narrowing depends on its width. With increasing corridor width the pedestrians
use the available space most efficiently by decreasing the interpersonal distance
along the direction of motion while increasing the lateral distance. This behaviour
is called ‘zipper effect’ (see Fig. 2.1(b)). It causes an almost linear increase of
the maximum flow within the bottleneck with increasing corridor width [27]. At
sufficiently high densities and desired velocities, clogging is observed at bottlenecks.
The blockages lead to intermittent flows which show large time gaps between single
pedestrians alternating with larger groups of pedestrians passing in a short space
of time, so-called ‘bursts’ [15, 35, 36]. This is particularly important for evacuation
scenarios in which the exit acts as a bottleneck for the egressing pedestrians. Muir
et al. [37] showed for evacuations in airplanes that competitive behaviour can
cause blockages of the exit and increase the egress times. The negative impact of
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2.1 Empirical and Experimental Observations

competitive behaviour on the total evacuation time is sometimes also referred to as
‘faster-is-slower’ effect [38]. Here, the competitiveness and higher urge to leave the
room is interpreted as a higher desired velocity of the pedestrians (‘faster’) that
causes increased evacuation times (‘is slower’).

Lane Formation

Lane formation in general describes the emergence of elongated clusters (‘lanes’) of
pedestrians with the same walking direction along the direction of motion [21]. This
self-ordering is often observed in bidirectional flow [25, 39–41] as shown in Fig. 2.2.
By following other pedestrians with the same direction of motion, the number of
interactions and collisions with oppositely walking agents is reduced [41]. This
enhances comfort and smooth motion [25, 30]. As a result, the pedestrian flow is
stabilised compared to the unordered system and the velocity of the agents increases
[39, 40]. Lanes in bidirectional motion can be either stable, separating the system
into, mostly two, regimes of opposite walking directions, or so-called dynamic multi-
lanes [41]. Dynamic lanes can arise, decay or merge with other lanes, so that the
number of lanes in the system varies in time. Lane formation requires a sufficiently
high density and may depend on external components like boundary conditions or
additional instructions, e.g. which side should be preferably chosen when evading
an oppositely walking pedestrian [29].

Patterns in Intersecting Streams

At crossings and intersections, pedestrians show routes deviating from the supposed
optimal or shortest route, e.g. short-lived roundabouts [22–24] or diagonal stripe
formations [43]. They enhance the efficiency of the walking behaviour.

Density and Stop-and-Go Waves

Density waves are quasi-periodic changes of the density in space and time that are
mostly observed in high-density scenarios. A typical example in pedestrian dynam-
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Chapter 2 Pedestrian Dynamics

Figure 2.2: Lane formation in bidirectional flow in a corridor. Pedestrians with
black shirts are walking from left to right, participants with red shirts
from right to left (screenshot from [42]).

ics are stop-and-go waves similar to those of vehicular traffic [22–24]. They can
be observed in both empirical observations [44] and controlled experiments. Stop-
and-go waves in pedestrian dynamics occur especially in one-dimensional single-file
motion [27, 45–49]. Above a certain critical density, the formation of jams can be
observed that separate the system into standing and moving pedestrians, whereby
the density within the jams is increased compared to the rest of the system. This
fluctuation in the density propagates in the opposite direction than the walking dir-
ection of the pedestrians. In vehicular traffic, the system separates into a jammed
phase with standing cars and a free-flow phase with fast moving vehicles [23, 50]. In
contrast, stop-and-go waves in pedestrian dynamics show separation into a standing
and a slowly moving phase.

Collision Avoidance

Collision avoidance with static and moving obstacles is one of the basic interac-
tion mechanisms of pedestrians and can, for example, be particularly observed at
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2.1 Empirical and Experimental Observations

intersections. It comprises adjustments of the walking speed and the direction of
motion. Whether an agent slows down or evades the collision, can depend on mul-
tiple factors.
In laboratory experiments on crossing scenarios of two pedestrians (approaching
each other at an angle of 90◦), most collisions (∼ 94%) are avoided because at least
one of the agents changes its velocity [51]. In the majority of cases (∼ 65%), one
of the agents increases its speed, whereas the other one slows down. In other cases,
both pedestrians either increase or decrease their speeds, or only one of the agents
accelerates, whereas the opponent keeps its velocity. In contrast, Parisi et al. [52]
observed that at crossings at 90◦ and 180◦ collisions in low-density situations were
mainly avoided by adjusting the direction of motion. For higher densities, steering
in encounters with 180◦ was less often and less distinct compared to crossings at
90◦. Overall, the authors found that pedestrians are three times more likely to
change their direction of motion than stop. Similar to that, the experimental res-
ults from Huber et al. [53] showed that adjustments of the speed were only used if
the angle with the groups of participants and a crossing interferer was 45◦ or 90◦,
whereas changes in the walking directions were also observed for 130◦ and 180◦. It
is assumed that collision avoidance by adjusting the speed is used if the available
space or time is restricted, while evading manoeuvres are applied more generally.

Psychology in Pedestrian Dynamics

In contrast to passive, non-autonomous particles, pedestrians can be considered as
intelligent humans with a certain awareness about themselves. In terms of physics,
a ‘crowd’ is mostly understood as a group of people who are on the same place at
the same time. However, in the framework of the social identity theory a ‘physical’
crowd can involve one or more ‘psychological’ crowds [21]. Pedestrians within a
psychological crowd understand themselves as part of a group and can distinguish
between group members and others, while physical crowds describe pure aggreg-
ations of people. This self-categorisation can have an influence on the behaviour
and interaction of the pedestrians [2–4].
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Chapter 2 Pedestrian Dynamics

There are several contributions which recommend the explicit incorporation of so-
cial and psychological aspects in pedestrian models in order to describe walking
behaviour realistically [1, 3, 5, 54]. However, reliable experimental or empirical
data are rare. Von Sivers et al. [2, 3] implemented previously observed social
identity and helping behaviour in an terroristic incident which affected the overall
evacuation time. In evacuation experiments, Garcimartin et al. [38] observed a
negative influence of competitive behaviour on egress times, while Muir et al. [37]
observed that competitiveness was disadvantageous in terms of evacuation times
for small bottlenecks, but decreased the egress times for larger widths. Sieben et
al. [5] aimed at capturing the influence of social norms and social psychology on
the waiting behaviour of pedestrians in front of bottlenecks.
The public perception of pedestrian dynamics is probably highly connected to ideas
of ‘panic’ or ‘mass panic’. Thereby, one should consider that there is no consensus
on the definition of the term ‘panic’. In most cases it is understood as an irrational,
asocial response to a potential threat or danger [55, 56]. However, panic in this
view does not occur as often in pedestrian crowd incidents as assumed [55]. In
fact, it has been observed that in states of fear, humans rather look for familiar
persons and places than flee blindly [56, 57]. Showing this ‘affiliate behaviour’ [56],
help and cooperation dominate in critical situations (see also [2, 3] and references
therein).

2.2 Modelling Pedestrian Dynamics

As experiments and empirical studies on pedestrian dynamics are often difficult
and for some situations even not possible for practical, ethical or financial reasons,
simulation and modelling of pedestrian walking are two very important aspects of
this research field. Over the years, lots of different model approaches have been
developed and improved. Only in a recently developed glossary for pedestrian dy-
namics [21], 17 different sub-categories for pedestrian models were found. Therefore,
the overview given in this section only describes a small subset in greater detail.
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2.2 Modelling Pedestrian Dynamics

Classification of Pedestrian Models

Based on the modelled time scale, pedestrian models can focus on different levels of
walking behaviours [22, 24, 58]. On a strategic level, a pedestrian decides on
actions in the longer run, considering the superordinate goal. In contrast, decisions
on the tactical level are on short-term planning of the actions based on the
current situations and comprises for example route choice behaviours. On the third,
operational level, the actual walking dynamics is determined. These level dis-
tinguish themselves also by the degree of cognition and autonomy of the agents:
whereas operational level models are often physics-based approaches and can rep-
resent pedestrians as simple particles, decisions on the tactical and strategical level
require higher cognitive abilities and are therefore related to psychological and so-
ciological effects. Models dealing with ‘intelligence’ often combine operational with
tactical or even strategical decisions.
The majority of pedestrian models consider the operational level which is mainly de-
termined by physics. They can be further classified based on the agents’ autonomy
[25] or underlying structure [22, 24] as described in the following.
Relying to the simulated length scale, pedestrian models can be macro-, meso- or
microscopic. Macroscopic models describe the state of the system by global,
averaged quantities like density or flow using conservation laws or continuity equa-
tions. Individual agents are indistinguishable [59]. Typical examples for macro-
scopic models are fluid or gas-kinetic models that treat the crowd of pedestrians
analogously to a gas or fluid [6, 7, 60–63]. The crowd is considered as a continuum
[8, 64, 65]. Models on a mesoscopic scale consider the agents as individuals, but
describe the system globally by probability distributions [21]. They are often also
referred to as ‘kinetic models’ and can be used as intermediate step when deriv-
ing a macro- from a microscopic model [8, 43, 65, 66]. In microscopic models,
pedestrians are described as distinguishable particles or agents whose state is char-
acterised by microscopic variables like velocity or position. They can be further
categorised [22, 24]: microscopic models can be heuristic, if the dynamics is
mainly determined by pedestrian interaction, or first-principle models where
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Chapter 2 Pedestrian Dynamics

the dynamics is characterised by pre-defined principles. With respect to the nature
of the variables used in the models, they can either be discrete or continuous,
depending on whether the values of the parameters are integers or arbitrary real
numbers, respectively. In general, each combination of discrete and continuous
quantities is possible. Moreover, model approaches can use stochastic elements
which add uncertainties to the system. Whether it is used as probabilities for
decision-making processes or as noise signals added to the system, the stochasticity
can be regarded as ‘intrinsic’ or ‘extrinsic’. In contrast, in deterministic models
the system state at a future time is fully pre-determined by the present state. With
same initial conditions the time evolution of a deterministically modelled system
will always be the same. These models neglect a lack of knowledge of underlying
mechanisms in pedestrian dynamics which make the motion more unpredictable.
Therefore, they are often regarded as less realistic than stochastic models.
Based on how the dynamics of the model is formulated, microscopic models can be
categorised as acceleration-, velocity- or decision-based. Acceleration-based,
also called force-based or second-order models, use analogies to Newtonian mechan-
ics to describe the movement of the particles as determined by forces. In contrast, in
velocity-based models, the pedestrian’s velocity (absolute value and direction)
is directly determined based on the current state of the agents and the environ-
ment. They often use visual perception of the pedestrians to gain the information
and rely on optimisation problems for interaction. Rule-based models are also
called ‘position-based’ as they do not use any velocity- or acceleration-based for-
mulation. In fact, the state of a pedestrian is determined by decisions which are
modelled using a fixed set of rules. Two commonly used model classes are described
hereinafter.

Social Force Models

In force- or acceleration-based models, the pedestrian is exposed to external and
internal forces that determine its dynamics. In doing so, they rely on an analogy to
Newtonian mechanics. These models are often fully continuous and deterministic
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2.2 Modelling Pedestrian Dynamics

[67–69]. One of the most known acceleration-based models is the Social Force
Model by Helbing and Molnár [12]. The dynamics of a pedestrian i is given by
the equation of motion,

dvvvi(t)
dt = FFF i(t) = FFF

(driv)
i +FFF

(soc)
i +FFF

(phys)
i . (2.3)

Here, the forces acting on the pedestrian can be summarised as the driving force
FFF

(driv)
i , social forces FFF (soc)

i and physical forces FFF (phys)
i . The driving force displays

the pedestrian’s aim to move with its desired velocity vvv(des)i and to reach it within
the relaxation time τi:

FFF
(driv)
i = vvv

(des)
i − vvvi
τi

(2.4)

The social force FFF (soc)
i is the sum of all forces ‘felt’ by the agents exerted by oth-

ers or elements of the environment like walls or obstacles. In terms of personal
space and safety distance, social forces are usually repulsive, but can also include
attractive components than depend on the relative distance or are used to model
group cohesion [22, 24]. In centrifugal force models [70, 71], the repulsive force by
other pedestrians additionally depends on the relative velocities of two interacting
agents. Physical forces FFF (phys)

i are included for physical interactions like collisions,
e.g. to prevent excessive overlapping.
Although social force models are commonly used for pedestrian dynamics, they
show two inherent problems, first, with the underlying mechanical approach, second
with the numerical calculation of the equation of motion.
While being related to Newtonian mechanics, social forces do not obey Newton’s
Third Law ‘actio = reactio’ [72, 73]. For example, an agent could exert a social
force to another pedestrian which does not lie within the agent’s vision and there-
fore cannot exert an opposite force of the same magnitude. In addition, the total
force acting on a pedestrian is given by the superposition of driving, social and
physical forces, see Eq. (2.3). Especially at high densities or for an increasing range
of the forces, this can lead to unwanted backwards motion or unrealistically high
velocities which exceed the desired speed [72, 73], or the occurrence of collisions
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instead of stable jam formation [74]. Another characteristic for systems in Newto-
nian mechanics is the usage of inertia which is modelled as the mass of a pedestrian
in force-based models (in Eq. (2.3), the mass mi is not neglected, but set to 1). It
is indicated, however, that inertia only plays a minor role in pedestrian dynamics
since pedestrians are able to stop and accelerate almost immediately [75]. Inertia
related ‘overreactions’ of the pedestrians lead to oscillations in the movement and
collisions with others [73].
Köster et al. [76, 77] give a detailed description of the numerical problems of the
social force model when solving the equation of motion which are mainly caused by
discontinuities of the forces in Eq. (2.3). For example, the driving force FFF (driv)

i is
determined by the preferred velocity vvv(des)i which always points towards the agent’s
target,

vvv
(des)
i = v0

i

rrrtar − rrri
|rrrtar − rrri|

(2.5)

with the position of the target rrrtar, the current position of pedestrian i, rrri, and
the desired absolute value of the speed, v0

i . As can be seen from Eq. (2.5), the
driving force has a singularity at the target position. When solving the equation
of motion computationally, numerical schemes as the commonly used Euler scheme
lose their accuracy and cannot converge. In order to solve the equation of motion, it
is rewritten as difference equation discretising the time. This difference equations,
however, result in oscillating solutions for trajectories in the vicinity of the target.
Therefore the agent is not able to approach its goal but stays on a stable orbit
around it with a constant speed. Decreasing the time step weakens this effect,
but increases the computation time. Therefore, discontinuities in the equation of
motion must be approached explicitly by mollification in order to obtain realistic
results [76, 77].

Cellular Automaton Floor Field Models

Whereas social force models are mostly fully continuous, acceleration-based and
deterministic, cellular automaton (CA) approaches are categorised on the other side
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of the spectrum as fully discrete, stochastic and rule-based models. In CA models,
time, space and state variables like the velocity are discrete [10, 11, 78]. The two-
dimensional space is divided into, mostly square cells, whose size represents the
space requirement of a pedestrian in a dense crowd, approximately 0.4 m× 0.4 m
[26]. The dynamics is performed in discrete time steps whose size is often associated
with a pedestrian’s reaction time between 0.1 − 0.3 s. If a particle can move in
every time step, ∆t = 0.3 s leads for this cell size to a velocity of 1.3 m/s which
is consistent with a pedestrian’s free flow speed [10]. Pedestrians are represented
as particles which obey the exclusion principle: a cell can only be occupied by one
particle at the same time. The dynamics is determined by probabilities for the
transition of a particle towards a cell within its neighbourhood. In most cases, the
velocity of the particles is restricted to one cell per time step. Usually, two different
neighbourhood concepts are used: the von Neumann neighbourhood comprises the
four cells to the front, back, left and right, whereas the Moore neighbourhood
additionally includes the diagonal cells.
After few simple approaches to apply CA models on pedestrian dynamics, e.g.
[9, 79], Burstedde et al. [11] proposed an extended version of a CA model which is
now commonly used in pedestrian research, the Floor Field Model.
In order to approach the long-ranged interactions between pedestrians, the authors
resort to a concept of chemotaxis as observed e.g. for ants. By means of floor fields,
these long-ranged interactions can be transformed to short-ranged, local ones, which
decreases the computational effort significantly. A pedestrian that moves away from
a specific cell (i, j) leaves some kind of ‘markers’ which can be felt and traced by
other agents. The information on these markers is stored in the so-called dynamic
floor field Dij. The dynamic floor field is influenced by the pedestrians and
determines the transition probabilities of the cells. It can be understood as a
virtual trace left by the agents. Additional to the influence of the particles, the
dynamic floor field changes in time by decay and diffusion and therefore has its
own dynamics. Besides the interaction with other pedestrians, the agent tries to
walk into its preferred direction. This information is provided by the matrix of
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preference which gives the transition probabilities for the neighbouring cells of
an agent considering e.g. the desired direction or the average velocity of the system.
Thereby, each particle has its own 3×3 matrix of preference for each time step. This
approach can be improved when considering an additional floor field, the static
floor field Sij, which represents information on the environment and preferred
direction [10]. It is usually equal for all agents and constant in time and gives the
shortest way from the cell to the destination. Using this floor field, the matrix
of preference can be omitted. Considering both floor fields, the final transition
probability pij for a cell (i, j) is given by

pij = N exp (kSSij) exp (kDDij) (1− nij) ζij. (2.6)

N is the normalisation constant, Sij and Dij the values for the static and dynamic
floor field, respectively, which are considered for the probability by a respective
coupling constant kS and kD. The obstacle number ζij is zero for cells that are
forbidden due to the environmental components like walls, and otherwise equal to
one. The occupation number is nij = 1 for occupied cells, and nij = 0 for empty
ones.
Based on the discrete time, the system update is usually performed in parallel. In
this case, conflicts can occur whenever two or more particles have the same target
cell. They can be solved in each time step [11] or approached more complexly using a
friction parameter µ which gives the probability that none of the particles is allowed
to move to the target cell and the conflict remains unsolved [80]. Accordingly, with
probability 1 − µ one of the agents is chosen randomly and moves to the target.
It can be shown that friction helps at the description of clogging at bottlenecks.
Beneath a single parameter, also friction functions can be used which also consider
the number of particles involved in the conflict [81].
The spatial discretisation of CA models leads to some internal problems. More
complex geometries with structures incommensurate with the size of a cell may
not be representable in full detail, and microscopic assessment of trajectories or
other locally measured quantities is not easily possible [10]. When using a Moore
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neighbourhood, where diagonal motion is allowed, the total distance covered in one
time step can be higher compared to straight motion to the front / back or to the
left / right [82–84]. Therefore, the effective velocities vary depending on the chosen
direction. This can be diminished when using the matrix of preference or smaller
cells. Smaller cells, however, lead to new problems considering the resolution of
conflicts.

Application of Models

In general, reproducing collective phenomena in pedestrian motion is a commonly
used way to assess the performance of a model. Over the years, different types of
collective motion were observed in simulated results. Pedestrian models are able
to reproduce oscillatory changes of the direction of motion at bottlenecks [85–87]
as well as intermittent flows in evacuation and bottleneck scenarios by clogs and
bursts [15, 35, 88–92]. Also the empirically observed detours at intersections and
crossings are found in simulation results [8, 43, 87].
The fundamental diagram is one of the most essential quantities in pedestrian mo-
tion and often used for calibration purposes [78]. However, it is a non-trivial prob-
lem to obtain realistic fundamental diagrams in pedestrian models. For example,
the original social force model [12] seems not to be able to reproduce a fundamental
diagram either in unidirectional flow in a corridor [93], or in one-dimensional single-
file motion [94, 95]. Realistic results are only obtained with additional concepts and
adjustments [93, 96]. Even for a simple CA floor field model, a good fit of the fun-
damental diagram to experimental data requires velocities larger than one cell per
time step or an additional ‘politeness factor’ [78]. How well it fits often also de-
pends on the measurement method [13, 78]. Velocity-based and heuristic models
can reproduce fundamental diagrams mainly qualitatively [97–102].
Stop-and-go waves, especially for one-dimensional motion can also not be simulated
by classical social force models [103, 104]. They were observed only in models that
explicitly adjust the agent’s velocity [45, 47, 102] or that add additional noise or
small inhomogeneities to the modelled system [105, 106].
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When simulating bidirectional flow in corridors, several model approaches repro-
duce stable lanes that cause a separation of the system or dynamically varying
lanes. In either case, the walking behaviour of the agents is improved [107–112].
However, many model approaches have to cope with total blockages of the corridor,
also referred to as ‘gridlock’, ‘jamming’ or ‘freezing’ state, these states are usually
very stable and persist until the end of the simulation [9, 11, 29, 112–118]. As no
such behaviour is found in reality, it must be an artefact of the model approaches.

2.3 Concepts Included in the Model

Social force models and CA floor field models are ‘extremal examples’ of model
classes. Both approaches have advantages and drawbacks, which can significantly
influence the simulation results. Therefore, the model presented in this work aims
at a hybrid approach which includes aspects from several model classes in order to
obtain optimal results. Characteristic features of this approach are:

• Continuous space and discrete time: there are no spatial artefacts as in CA ap-
proaches and no numerical artefacts as in force-based models. The approach
uses the time-discrete and space-continuous Stochastic Headway Dependent
Velocity model [102, 119, 120] as a basis.

• Introduction of cognitive abilities: the pedestrian has visual perception, an-
ticipation, decision-making and navigation.

• Velocity adaptation based on the perceived environment: the agent decides
actively on its speed by recognising and assessing the current situation. The
concept of a ‘distance-to-collision’ is used as basis of decision-making.

• Stochasticity instead of optimisation problems: the pedestrians are not as-
sumed to decide optimally for every time step, the behaviour is more uncer-
tain.
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Many of these concepts are also applied in different models. They mostly consider
cognitive or perceptual abilities of the agents.

The SHDV Model

The Stochastic Headway Dependent Velocity (SHDV) model was developed in 2014
by C. Eilhardt and A. Schadschneider and acts as a basis for this new approach.
Extended into two dimensions in this thesis, the SHDV model was originally de-
veloped in order to reproduce and analyse phase separation at high densities in
pedestrian single-file motion. The following description relies on [102, 119, 120].
Combining aspects from acceleration-, velocity and rule-based models, the SHDV
model is defined in discrete time and continuous, one-dimensional space. The length
of the time steps, ∆t = 0.3 s, represents a pedestrian’s reaction time. Pedestrians
are represented by point-like agents whose velocity vi (for pedestrian i) is determ-
ined in each time step as a function of their distance headway hi, vi = v(hi) with

v(h) =


0 m/s : h ≤ d,

α(h− d) + vmin : d < h < dc,

vmax : dc ≤ h.

(2.7)

If the headway h is below a certain lower threshold d, the pedestrian does not
move in the next time step. Above this threshold, the velocity v increases linearly
with the headway, where α gives the slope of the function, and vmin is the agents’
minimum velocity. When reaching a second threshold dc, the velocity is cut and set
to the free-flow velocity vmax. The parameters are calibrated and validated and set
to α = 0.5 1/s, d = 0.4 m, vmin = 0.1 m/s and vmax = 1.2 m/s. The fifth parameter
is given by dc = d + 1

α
(vmax − vmin) = 2.6 m. The values for d and ∆t were chosen

accordingly to comparable values in floor field CA models, whereas α is drawn as
a linear approximation from the optimal velocity function given by [121, 122].
In addition, the SHDV model involves a slow-to-start rule which states that agents
who have had zero speed in the previous time step stand still in the next step with
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a stopping probability p0 = 0.5. This concept is adopted from vehicular traffic. It
is crucial for reproducing stop-and-go waves as it reduces the outflow out of a jam
significantly and stabilises it thereby.

Continuous Space and Discrete Time

As combination of the advantages of CA and social force models, continuous space
and discrete time provide a framework that is simple to implement while preventing
spatial artefacts. However, only few models rely on this concept. For the SHDV
model, Eilhardt and Schadschneider use continuous, one-dimensional space and
discrete time as described above [102, 119, 120]. In two dimensions, Teknomo
et al. [123] draw on ‘difference equations’ instead of differential equations while
using continuous space, and Baglietto et al. [124] describe an automaton model
in which the agents move in continuous space while the dynamics is updated in
time steps of ∆t = 0.5 s. Fang et al. [125] model the step length and frequency of
an agent continuously, but with discrete time. In a real-coded CA model, velocity
and position for the next time step can be arbitrarily chosen, and the agents are
repositioned afterwards on an underlying grid [83].
Other models that, in principle, use continuous space with discrete time steps,
provide an individual discretisation for each pedestrian according either to step
length [13] or a discrete choice set of possible directions and velocities, mostly
within a visual field [89, 100, 126]. In doing so, the entire room is regarded as
being continuous, whereas a single pedestrian cannot have arbitrary positions and
velocities in one time step.

Visual Field

Visual fields as spatial representation of an agent’s visual perception are mostly
used in models that rely on cognitive abilities of pedestrians. In almost every case,
a visual field is given as a circular segment centred at the pedestrian’s position
providing a certain range and extent. Values found for visual angles are 120◦
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[97, 127, 128], 135◦ [129], 150◦ [130–132], 170◦ [100, 130]2, 200◦ [114] and 360◦

[134]. Accordingly, the maximum visual distance ranges from 2 m [135] to 10 m
[131]. Sometimes, the visual field is distributed into different angular or radial
segments in order to represent the decision-process of the agents and bounds all
possible positions [100, 130].

Decision-Making

Decision-making is a crucial aspect of the simulation of autonomous agents. Until
now, few different approaches are used. First, decisions are represented by discrete
choice models [101, 136, 137]. The dynamics of a pedestrian is modelled as sequence
of single decisions. Out of discrete alternatives the agent chooses the one which
optimises a certain cost, discomfort or utility function. Second, fuzzy logic tools are
used in order to describe pedestrian decisions [100, 138]. They reduce the decision
base to several elementary quantities which are itself assessed using discrete, ‘fuzzy’
categories. According to these input factors, an optimised output describes the
pedestrian’s next decision while walking. Rahmati and Talebpour [129] use game
theory in order to simulate a pedestrian’s decision and its strategies for decision-
making according to the current situation. Another mathematical approach is
presented by Hrabák et al. [139] who model a Markov decision process describing
the probability for a certain sequence of decisions based on conditional probabilities
of actions and system responses.

Collision Avoidance

Collision avoidance procedures differ significantly between several agent-based mod-
els. However, some concepts rely on the same basic idea. Similar to the social force
approach, collision avoidance can be implemented by repulsive mechanisms apply-
ing when physical contacts occur [101, 124, 131]. Especially for decision-based
models, pedestrians avoid collisions by optimising certain quantities like walking

2If this value is used, the work of Costella [133] is often cited, which itself states a span of the
visual field of 150◦-160◦.
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distance or number of speed changes [127], kinetic energy [126] or potentials [13],
headway [140] or some specific cost function [100]. The optimised values are drawn
from discrete sets for possible directions and / or velocities.

Time-to-Collision and Distance-to-Collision

Especially the time-to-collision (TTC) is an often used concept in the investigation
of the environment in pedestrian models. Generally, the TTC is used in either of
two ways: first, the time until a potential collision with another agent is estimated
based on a linear interpolation of the current motion of both agents and then used
to rank the imminence and importance of single collisions [111, 126, 132, 141].
Second, a fixed value for the TTC is used in order to maintain a certain safety
distance to other agents while walking [101, 131, 142].
In [97], the perceived TTC is transferred into a ‘mental distance-to-collision’ which
is then used in the further course. However, compared to the TTC, the distance-
to-collision (DTC) is not as frequently used.

Anticipation

Many of the anticipation concepts are highly connected with the time-to-collision.
Here, anticipation means determining future positions of itself and another pedes-
trian assuming straight motion of both participants, which can be used to assess
the TTC or DTC [126, 127, 130, 135]. Other models use anticipation floor fields in
order to assess which cells in a CA model might be occupied in the next time steps
[109, 113, 143]. The transition probabilities are then decreased accordingly to the
anticipated occupation.

Velocity Adaptation

In terms of collision avoidance, it is often necessary for a pedestrian to adjust
its velocity according to the surrounding situation. A first example was given
at the beginning of this section. Similar to the SHDV model, the velocity is often
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determined as function of the (interpersonal) distance or headway [47, 70, 124, 144],
especially in so-called optimal velocity models for pedestrian and vehicular traffic
[86, 99, 112, 121, 122]. Similarly, the speed can also be given in dependence of the
surrounding density [82, 88]. The specific value of the speed is either determined
continuously by given equations or drawn from a discrete set of choice in order to
optimise the walking behaviour by this decision.

Route Choice and Wayfinding

If a pedestrian is assigned a certain degree of cognition and decision-making abil-
ities, the navigation through more complex geometries becomes important. Then,
models must include certain aspects of the tactical level, mainly route choice or way-
finding behaviour. There are several approaches how to model a pedestrian’s way
through its environment, most of them aim at large buildings and more complex
geometries. They include a wide variety of factors as efficiency, personal abilities
and preferences, external stimuli (signage, illumination, instructions) and environ-
mental conditions (smoke, heat, fire) [145, 146]. In most of these cases, networks
are used in order to parametrise the actual room. Pedestrians are lead from node
to node via network edges. Visibility graphs [134, 136, 147] try to capture the
regions of the environment which are visible from a certain position and lead the
agents by connecting these areas consecutively, see Fig. 2.3(a). Another common
concept is cognitive maps that are mental representations of the spatial conditions
of a pedestrian that represent global and local knowledge about the environment
[148–152]. Other networks are directly connected to the geometry and surrounding
paths [153–156].
Besides the global route choice for entire complex geometries, navigation can be
crucial even on a much shorter scale. Leading pedestrians around a corner requires
consideration on route choice and wayfinding in order to prevent unrealistic tra-
jectories or large jams at the corners. This problem can occur in all situations
with corners, like evacuation or bottleneck scenarios. To solve it, either the desired
velocity can be adjusted not to lead directly to the shortest path but to provide
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(a) Visibility graph approach (from [134]) (b) Guiding line approach (from [73])

Figure 2.3: Route choice and wayfinding: (a) In the visibility graph approach, space
is represented as a grid. Only ‘visible’ grid points are possible to be
chosen by the agent as next position [134]; (b) Guiding line segments
are used in [72, 73] to determine an agent’s preferred velocity. The
pedestrian targets the closest point on one of the lines (blue, red) con-
secutively to ‘steer’ around the corner.

a smooth motion [72] (shown in Fig. 2.3(b)), or the underlying static or dynamic
floor field has to be changed accordingly [157, 158]. Tsai et al. [159] even change
their vision-based navigation field manually in order to prevent unrealistic motion.
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CHAPTER 3
The Model

In the light of the wide variety of models for pedestrian dynamics careful consider-
ation must be given to how a new model approach fits into the wide spectrum of
pedestrian models and where it distinguishes itself. The development of the model
in this work focused on the formulation of an approach that is as simple as possible
but able to reproduce a pedestrian’s decision process as realistically as possible. In
this chapter, the basic principles and components of the model are described.

3.1 Concept, Classification and Structure

The approach presented in this work combines aspects from different model classes
in order to obtain realistic results while using a simple structure. It aims at gaining
insight into pedestrian walking behaviour during the model development process.
Therefore, a pedestrian is modelled not as a passive particle whose motion is fully
determined externally by forces or potentials, but as an autonomous, self-acting
agent that uses cognitive abilities. In doing so, the model approach is intended to
capture intrinsic properties and motivations of a pedestrian.
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3.1.1 Concept of the Model

One of the key points of this model is that the system is set in continuous space
and discrete time. While most other models are either fully discrete or continuous,
this approach combines both. Despite of cellular automaton approaches, which are
discrete in time and space, discrete time steps are not often used in pedestrian
models. This approach therefore belongs to a model class which has been imple-
mented rarely so far and whose potential has not been fully investigated yet. It
unites advantages of decision- and force-based approaches: because of the discrete
time like in cellular automaton models, the model can be formulated in a simple,
discrete structure instead of differential equations whose solving would cause nu-
merical artefacts. Moreover, the approach uses continuous space like many velocity-
or force-based models in order to prevent artefacts that come along with spatial
discretisation. In doing so, the walking behaviour of pedestrians can be represented
as a sequence of single actions described by rules which every agent performs in
each time step while keeping a high fidelity in terms of position and velocity.
The basic idea of this model approach is to reproduce a pedestrian’s decision on its
velocity for the next time step. Thereby, it explicitly uses cognitive abilities like
perception, cognition or anticipation. A pedestrian is regarded as an agent that
proactively decides based on information on the environment. Thus, it is intended
to gain more insight into the priorities and components influencing a pedestrian’s
walking behaviour.
This approach uses the SHDV model [102, 119, 120] as a basis. It is also formu-
lated in continuous space and discrete time and was developed for one-dimensional
single-file motion. It models the one-dimensional velocity of pedestrians as a func-
tion of their headway and is used to determine the absolute value of the pedestrians’
speed. The new model extends the SHDV model into two dimensions by adding
an angular component. The determination of the direction of motion is the main
part of the model and includes motion within the environment and mechanisms for
collision avoidance.
Stochasticity is another essential aspect of this model approach. Used in all stages
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of the decision process, it shall help at reproducing pedestrian walking behaviour in
a realistic way. Stochastic elements represent uncertainties of human decisions and
underlying psychological mechanisms one might not be able to simulate explicitly.

3.1.2 Classification of the Model

The criteria to describe and classify the model approach are taken from [22, 24]
and presented in Sec. 2.2.
Since the model combines different aspects from several model classes it cannot
always be clearly assigned to a specific model category. It mainly simulates ped-
estrian behaviour at the operational level as it models the concrete decision on
the velocity for the next time step. However, because of the explicitly used cog-
nitive mechanisms, it partially requires planning on a tactical level, e.g. by using
intermediate targets for way finding. Hence, the approach can be regarded as an
agent-based-model or multi-agent system.
The focus during the determination of the direction of motion is on the interaction
with the environment. Therefore, the model fits in the class of heuristic models.
It is a microscopic approach and includes features of velocity-based models as it
simulates the determination of the pedestrian’s velocity with collision avoidance
behaviour and visual perception. However, one of the main aspects of the model
is its rule-based structure realised by discrete time steps which is a pivotal prop-
erty of decision- or rule-based models. In terms of mathematical formulation, the
presented model belongs to the latter class. Its dual nature using both continuous
space and discrete time combines benefits from both first- and zeroth-order models.
Moreover, the model has a high fidelity as it approaches the decision process of a
walking pedestrian as realistic as possible.

3.1.3 The Structure

Discretisation in time is one of the basic characteristics of this model approach.
Time progresses in constant steps, t→ t+ ∆t, which is realised by using a parallel
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update procedure. Each pedestrian’s state is updated simultaneously, which means
that all agents act and move at the same time.
The model describes the process a pedestrian runs through in every time step in
order to determine its velocity for the next step. Starting from the pedestrian’s cur-
rent situation, this process consists of three phases: perception, decision-making
and movement (see Fig. 3.1). Moreover, the decision process relies on two main
components: motion within the environment and the interaction with other ped-
estrians. They are considered separately at first and combined at a later stage in
the decision phase. In this section, the model structure is described for the overall
context. A more detailed explanation is given in the subsequent sections.
In each time step, the initial situation for the process is the current state of a ped-
estrian i who has an individual target and a visual field. During the perception
phase, the agent uses the visual field to detect the infrastructure, represented by
walls, and other pedestrians. Walls are basically one-dimensional objects in space
that a pedestrian is not allowed to cross. They confine the geometry the agents
move in by separating accessible from non-accessible areas. The information on
walls is combined with the individual target to orientate within the room, whereas
the information on other agents is used to find the own position within the group
of pedestrians. In the decision phase the agent, based on what has been perceived,
determines two directions for reaching the target and avoiding collisions with other
pedestrians, respectively. In a second step, one of these angles is chosen as direc-
tion of motion. Third, the pedestrian calculates the corresponding speed. During
the last phase, the new position of the pedestrian is determined according to the
velocity determined before.
This procedure is undergone by every pedestrian for each time step. The parallel
update requires that the perception phase and the determination of the direction of
motion is finalised for every pedestrian before the positions (and all other charac-
teristics) are updated. In general, perception, decision and movement phase build
on one another and must be performed in this order. During the decision phase,
the determination of the target and the interaction angle are done independently
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Figure 3.1: An update step is based on the pedestrians’ current position and con-
sists of three phases: perception of the environment and other pedes-
trians, decision-making on the direction of motion and the velocity and
movement.
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from each other and can be performed in an arbitrary order. In case the agent does
not perceive any other pedestrians, the decision of the interaction angle and the
final direction of motion can be omitted, and the motion is fully determined by the
target direction.

3.2 The Model Components

The system that is described by the model consists of the environment or infra-
structure and the agents moving therein. Both elements are the foundation for
the entire dynamics. They are described by specific characteristics that are always
constant in time for the infrastructure1, but can be time-dependent for pedestrians.
These characteristics are described in the following.

3.2.1 The Environment

In this model, the environment is solely build by walls representing areas that are
not accessible and confining the available space for the pedestrians. A wall is as a
one-dimensional object characterised by its orientation oW = ωπ, ω ∈ [0, 1), posi-
tion pW and length lW (see Fig. 3.2). For simplicity reasons, the orientation is, for
the time being, either oW = 0 (horizontal, case ‘0’) or oW = π

2 (vertical, ‘1’). Being
extended in y-direction, the position of a vertical wall is then given by a coordinate
in x-direction and vice versa for the horizontal case. The length of a wall results
from the difference between a maximum and minimum value along the other dir-
ection, i.e. l0W = xmax − xmin for a horizontal, l1W = ymax − ymin for a vertical wall.
Complex geometries are constructed by aligning several walls. An exit is represen-
ted by a gap between two walls, supplemented with respective target coordinates
of the pedestrians. Some kinds of geometries necessitate further orientation aids,
e.g. if the exit cannot directly be seen from some positions in the room. In this
case the set of walls is complemented by intermediate targets. These targets are

1In general, also walls with time-dependent properties could be possible, e.g. including a door
that opens or closes.

30



3.2 The Model Components

oW = π
2 :

pW

xmaxxmin

pW

ymax

ymin

y

x
oW = 0 :

lW
lW

Figure 3.2: Definition of wall parameters: depending on the wall’s orientation oW
the position pW is a coordinate in x- or y-direction. ymin, ymax and xmin,
xmax determine the length of a vertical or horizontal wall, respectively.

fixed positions in the room that are globally set and used to guide the pedestrians
through complex geometries. How to place them depends strongly on the respective
scenario and belongs to the research field of route choice or wayfinding behaviour.

3.2.2 The Agent

In pedestrian modelling, a pedestrian is often also referred to as ‘particle’ or ‘agent’.
While sometimes meaning the same, both terms could imply different conceptions
of a pedestrian and the level of cognition. A particle may move passively respond-
ing to external forces or potentials, whereas an agent may decide on the movement
in a more autonomous way. Since this model explicitly uses the cognition and
perception of a pedestrian to determine the dynamics, the latter approach is more
suitable and the terms ‘pedestrian’ and ‘agent’ are used synonymously.
A pedestrian is represented by a circle of radius r and characterised by a set of
parameters as defined in Fig. 3.3(a). The identification number i is fixed and
helps at identifying individual agents. The position of a pedestrian is described
by the coordinates xi(t) and yi(t) which give the centre of the circle. Each pedes-
trian is assigned an individual goal represented by the target position (xt,i(t, xi, yi),
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hi

αi

vvvi

xi, yii

ri

si

(a) Definition of the parameters of a
pedestrian

vvvi

i

dvf

φ

(b) The visual field of a pedestrian with
range dvf and total expanse 2φ

Figure 3.3: (a) A pedestrian is described by its radius ri, coordinates xi, yi, velocity
vivivi (speed si and direction αi) and headway hi. (b) The visual field is
centred around the agent’s velocity.

yt,i(t, xi, yi)) which may depend on time and the current position of the pedestrian.
The headway hi(t) denotes the free path or distance-to-collision in walking direc-
tion. A pedestrian’s velocity vvvi(t) is described by its absolute value si(t), which is
also referred to as ‘speed’ hereinafter, and the direction of motion αi(t). The angle
αi(t) is defined in the mathematical direction of rotation with respect to the x-axis.
Moreover, each agent has a visual field as outlined in Fig. 3.3(b). It expands in a
shape of a circular segment with an opening angle 2φ and radius dvf and is sym-
metrically set around the pedestrian’s current direction of motion. In general, the
number of pedestrians in the scenario is represented as N .

3.3 The Perception Phase

In the first phase, a pedestrian uses the visual field to gather information on the
environment. At that stage, the infrastructure and the presence of other pedestrians
are processed separately. Only walls or pedestrians that lie within the field are

32



3.3 The Perception Phase

detected and considered in the further course. Similar to the approach used in the
work of Zhou et al. [100], objects within the visual field cover a certain angular
range which depends on the relative distance and orientation to the perceiving
pedestrian. During the perception phase this range is determined. Therewith, it
can be assessed whether a given direction leads towards an obstacle by examining
if it lies within a range of the visual field that is covered by a wall or another
pedestrian.

3.3.1 Perception of Walls

The situation of an agent perceiving a wall is exemplarily shown in Fig. 3.4. A wall
is detected by a pedestrian if it is in the visual range. Therefore, two criteria have
to be met. First, the minimal distance d between the pedestrian’s position and the
wall has to be less or equal to the maximum visual range dvf under consideration of
the agent’s body extension. Second, the wall has to cover a certain area of the visual
field. For that, one determines the two angles β1 and β2 under which the edge of the
visual field cuts the wall assuming it to be infinitely long. The actual finite length
of the wall is not of importance at this stage, but is considered when determining
the distance between a pedestrian and a wall in an arbitrary direction. Once one
of these viewing angles lies within the visual field, the wall is detected. If both
angles are outside of the visual range, the wall is not seen by the agent. It should
be noted that the angles are given with respect to the x-axis. Therefore, their
derivation relies on simple trigonometric considerations. The detailed calculations
are shown in Sec. B.1.1 in the Appendix. If d ≤ dvf, the final results for the viewing
angles for a horizontal (case 0) and a vertical (case 1) wall, respectively, are given
by

β0
1 = arcsin

(
pW − yi
dvf

)
, β0

2 = π − arcsin
(
pW − yi
dvf

)
; (3.1)

β1
1 = arccos

(
pW − xi
dvf

)
, β1

2 = 2π − arccos
(
pW − xi
dvf

)
.
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pW xi
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dvf
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Figure 3.4: Perceiving a wall means to determine the angular range that is covered
by the wall (green area), if the minimal distance d to the wall is less or
equal than the maximum visual range dvf. This range is bonded by the
angles β1 and β2 which are calculated during the perception phase.

3.3.2 Perception of Pedestrians

For the perception of other pedestrians similar criteria as for the perception of walls
are applied. An agent can detect another pedestrian if the latter is ‘in sight’, that
means that the distance between the pedestrian and the perceiving agent is less or
equal to the maximum visual range, and if it covers a certain range of the visual
field. Therefore, the distance between the agents, the angle under which the other
pedestrian is perceived (‘perception angle’) and the corresponding coverage of the
visual field are determined during the perception phase.
Different from the perception of the environment, an agent uses anticipation while
perceiving other pedestrians. They are assumed to walk linearly based on the
direction of motion and speed of the previous time step. Thereby, the relative
velocity of two agents becomes more important. The anticipated position of an
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arbitrary pedestrian i at time t+ ∆t is given by

xai (t+ ∆t) = xi(t) + si(t) cos (αi(t)) ∆t, (3.2)

yai (t+ ∆t) = yi(t) + si(t) sin (αi(t)) ∆t. (3.3)

In a first step the distance dn between a perceiving agent i and another pedestrian
n (n = 1, . . . , N ;n 6= i) is calculated under consideration of the body extension
of both pedestrians. In order to assess the relative movement of both agents the
anticipated position of the perceived pedestrian is used:

dn =
√

(xi − xan)2 + (yi − yan)2 − 2r. (3.4)

If the pedestrian n is in sight, dn ≤ dvf, the perception angle αn is determined in
a second step. It is defined as the angle that is enclosed by the connecting line
between both agents and the x-axis (see Fig. 3.5(a)). For that, the expression for
an angle enclosed by the connecting line between two arbitrary points in space and
the x-axis is used as it is derived in Section B.1.2. In this case, the anticipated
position is used for the perceived pedestrian. By doing so, the perceiving agent is
able to determine its new state based on its anticipation of the current situation.
Therefore it follows for the perception angle:

αn (xi, xan, yi, yan) =



0 : xi < xan, yi = yn

π : xi > xan, yi = yn

π
2 : xi = xan, yi < yn

3π
2 : xi = xan, yi > yn

arctan
(
yan−yi
xan−xi

)
: xi < xan, yi < yan

π − arctan
(
yan−yi
xi−xan

)
: xi > xan, yi < yan

π + arctan
(
yi−yan
xi−xan

)
: xi > xan, yi > yan

2π − arctan
(
yi−yan
xan−xi

)
: xi < xan, yi > yan

(3.5)
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(a) Definition of the absolute and relat-
ive angle α and αrel and the distance d.

i

n

αrel
n

2∆αn

αn

dn

(b) The covered range depends on the
distance and considers the body exten-
sion of both agents.

Figure 3.5: When perceiving another pedestrian the agent determines the distance,
both absolute and relative angle and the covered area of the visual field.

For calculations in the further course it is needed that the perception angle αn is
given relatively to the direction of motion αi of the perceiving agent. This relative
angle αrel

n (see Fig. 3.5(a)) is a signed quantity, representing the relative position of
the other pedestrian by the sign of the angle. According to the mathematical dir-
ection of rotation, pedestrians with a negative relative perception angle are located
to the right of the perceiving agent, whereas the relative perception angle towards
pedestrians on the left is positive. Hence, its absolute value satisfies |αrel

n | ∈ [0, π].
The transformation between the absolute angle αn and the relative perception angle
αrel
n with respect to the direction of motion αi is given by

αrel
n =


αn − αi + 2π : |αn − αi| > π, αn − αi < 0,

αn − αi − 2π : |αn − αi| > π, αn − αi > 0,

αn − αi : else.

(3.6)

The complete derivation can be found in the Appendix, Sec. B.1.3.
As described above, a pedestrian is detected if it covers a certain range of the visual

36



3.4 The Decision Phase

field. For that, the body extension of the perceived pedestrian as well as the per-
ceiving agent has to be considered explicitly as schematically shown in Fig. 3.5(b):
the angular range that would lead to a collision of the agent’s body with the other
pedestrian is shown by the green-coloured area. Neglecting the curvature of the
circle that represents the pedestrian, it is determined as

2∆αn = 2 arctan
(2r
dn

)
, (3.7)

for a full derivation, see Sec. B.1.4 in the Appendix. A pedestrian n is perceived if
the angle under which it is detected lies within the visual field or if the area which
is covered by its presence extends into the visual field, i.e., if one of the following
conditions is fulfilled:

|αrel
n | ≤ φ,

∨
[
αrel
n < −φ ∧ (αn + ∆αn) > −φ

]
, (3.8)

∨
[
αrel
n > φ ∧ (αn −∆αn) < φ

]
.

In conclusion, an agent determines the distance d, the angle under which the other
pedestrian is perceived absolutely, αn, as well as relatively, αrel

n , and the covered
angular range αrel

n ± ∆αn during the perception phase. All quantities are used in
the further course for collision avoidance.

3.4 The Decision Phase

In the second phase the decision on the velocity is taken which can be regarded as
the main part of the modelled process. Based on the information gathered in the
previous perception phase, four single decisions are made: the decision on the pre-
ferred target direction, on the angle used for collision avoidance, the choice which
of these two angles is used as final direction of motion and the determination of
the speed. All decisions are based on the distance-to-collision which is the head-
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way or free path into a given direction. It represents a pedestrian’s desire to reach
the individual goals in an undisturbed way. Therefore, directions providing larger
distances-to-collisions are preferred. The speed is determined by the SHDV model
using the distance-to-collision into the direction of motion as an input parameter.
In contrast to other decision-based models, the distance-to-collision is used instead
of the time-to-collision. The time-to-collision focusses more on the relative motion
of two agents. However, for low or zero speeds of two pedestrians, the time-to-
collision diverges. In contrast, the distance-to-collision is finite even for low velocit-
ies and ‘uncouples’ the own motion from the movement of the others. It enables the
agent to gain an overview of the current overall situation. The relative motion of
the agents is easily considered using anticipation of their future movement during
the perception phase. Therefore, using the distance- instead of the time-to-collision
facilitates the transition from the SHDV model to the new approach and reduces
the basis of decision-making to one quantity.

3.4.1 Motion within the Environment: Decision on Target
Angle

In the first instance, the pedestrian decides which direction should be chosen in
order to reach the target. The agent uses its current position (xi(t), yi(t)), its
assigned target coordinates (xt,i(t, xi, yi), yt,i(t, xi, yi)) and the information on the
infrastructure that was gathered during the perception phase to orientate within
the room and to determine the final target angle αfin

t .
First, the pedestrian determines the current target angle αt which gives the angle
towards the target with respect to the current position of the pedestrian. As shown
in Fig. 3.6, it is defined as the angle enclosed by the connecting line between the
agent’s current and the target position and the x-axis. Therefore, it is given by the
same expressions as used before when calculating the absolute perception angle of
a pedestrian, Eq. (3.5), replacing the perceived pedestrian’s coordinates (xan, yan) by
the target coordinates (xt,i, yt,i) (for a derivation see Sec. B.1.2).
Having determined the target direction αt, the pedestrian refers to the information
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α′t

i

αt

αfin
t

d

Intermediate target

Target

Figure 3.6: Definition of the target direction αt, the direction towards an interme-
diate target α′t and the final target angle αfin

t .

on the infrastructure that was gathered during the perception phase. The agent
determines the distance-to-collision d to any perceived wall in the room in target
direction which is simply given by the minimum distance comparing all walls. The
distance between a pedestrian and a wall in an arbitrary direction depends on the
relative position and orientation of the pedestrian and the chosen direction with re-
spect to the wall. For every particular situation it has to be determined whether the
target angle αt points towards the wall and would lead to a collision (under consid-
eration of the agent’s body extension) before it is possible to calculate the minimal
distance. For reasons of clarity the derivation of the distance-to-collision towards
walls is omitted at this point and it is referred to the corresponding Sec. B.2.1 in
the Appendix.
As mentioned above, the distance-to-collision is the quantity the pedestrian’s de-
cision relies on. In case of the movement within the room, the distance-to-collision
is used to assess whether the target could be directly reached or if it is screened
by a wall. If d is smaller than a certain threshold, the target is not in direct sight
with respect to the agent’s current situation, as indicated in Fig. 3.6. In this case,
the pedestrian has to use intermediate targets in order to navigate through the
room. These additional target positions are globally set and constant in time and
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can be used by all pedestrians. They should act as a tool for steering as long as
the actual individual target is not in sight. Hence, if the distance-to-collision in
target direction shows that it is hidden, the pedestrian uses the intermediate target
that is closest to its current position instead. Analogously to the actual target, the
agent determines a new direction α′t towards the intermediate target.
Independently of the usage of intermediate targets, the further process is the same.
The final target angle αfin

t is calculated using a Gaussian distribution with the (in-
termediate) target direction αt (α′t) as mean. This additional step is done since a
pedestrian is not assumed to always take the optimal route. The stochastic element
allows for modelling an uncertainty that covers non-optimal or unclear decisions.
In addition, the normally distributed deviation of the pedestrian from the perfect
route may also represent the effects of body swaying which arise from the changing
strain on the two legs.
Overall, the probability for an arbitrary angle a to be chosen as the final target
direction is given by

p (a) = 1√
2πσ2

exp
[
−(a− αt)

2σ2

]
, (3.9)

where the variance σ represents how large the uncertainty of the pedestrian’s de-
cision is. After this first decision in this phase, the pedestrian has obtained a target
direction which is normally distributed around the optimal (intermediate) target
angle αt (α′t). If there is no other pedestrian within the visual field, the collision
avoidance decision is omitted and the target angle is set as final direction of motion
for the next time step. The distance-to-collision in this direction (regarding walls)
is then used as the new headway of pedestrian i:

αi (t+ ∆t) = αfin
t , (3.10)

hi (t+ ∆t) = d
(
αfin
t

)
. (3.11)
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3.4.2 Collision Avoidance: Interaction Angle

Unaffected by the first decision, the pedestrian determines the direction for collision
avoidance in a second step. The concept is based on a simple idea: angles within the
visual field that are covered due to the presence of other agents are less preferable to
be chosen as direction of motion than uncovered angles. Furthermore, the likelihood
for an agent to walk into a certain direction decreases all the more the closer a
pedestrian stands in this direction. The distance-to-collision towards pedestrians
into an arbitrary direction therefore acts as a measure for the imminence of a
collision and probability of this direction (see Fig. 3.7). Based on this information
the angle for collision avoidance, also called ‘interaction angle’, can be calculated.
The distance-to-collision d(a) of an arbitrary angle a to all pedestrians is given by

d(a) =


min
n
dn : αrel

n −∆αn ≤ a ≤ αrel
n + ∆αn,

dvf : else.
(3.12)

In this case, the direction a is given relatively to the direction of motion αi of the
acting agent. If it points towards an area covered by another agent n, the respective
distance-to-collision is equal to the relative distance to this agent as defined in
Eq. (3.4). In case this area is covered by multiple agents, the final distance-to-
collision is set as the minimum of the relative distances to all these agents. In turn,
if a points at an angular range where no pedestrian has been perceived before, the
distance-to-collision is only limited by the maximum visual range dvf. A detailed
description on how the distance-to-collision towards pedestrians for arbitrary angles
is obtained can be found in the Appendix, Sec. B.2.2.
The distance-to-collision dn to a pedestrian n is, excluding overlaps, a positive
quantity. In addition, for all perceived pedestrians their relative distance to the
perceiving agent is less or equal the maximum visual range, dn ≤ dvf. Therefore, it
holds that

dn
dvf
∈ [0, 1]. (3.13)
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Figure 3.7: The distance-to-collision is used to describe the likelihood of a given
direction to be chosen as direction of motion: angles within free regions
(green-shaded areas) are preferred over covered ranges (blue-shaded).
The smaller the distance-to-collision for a given direction is, the less
likely an agent will decide to go there.

This can be taken as a measure for the likelihood of a given direction a. Based on
this, a probability distribution p(a) for the angle a can be defined as

p(a) =


1
c
d(a)
dvf

: |a| ≤ φ,

0 : else
(3.14)

with normalisation constant
c =

∫ φ

−φ
p(a) da. (3.15)

For angular ranges that are covered by another agent, the probability is reduced
correspondingly to the respective distance-to-collision dn while it is maximum for
all not-covered areas. Free areas and ranges where other pedestrians only stand
far off are favoured over directions that would lead to more imminent collisions. It
should be noted that p(a) is only finite for directions within the visual field since
the pedestrians outside are not perceived. The distribution displays the angular
distribution of distances-to-collisions and can be used for calculating the final inter-
action angle αia. How to determine the normalisation constant c and to calculate
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the angle from the probability distribution is described in the Appendix, Sec. B.3.
The stochasticity that is inherent in this procedure represents again the uncertainty
of human decisions. Even if it is unlikely, it is not impossible for a pedestrian
to choose a disadvantageous direction during the collision avoidance process for
whatever reasons. This is covered by modelling the decision process in this way.
At the end of the second decision process the pedestrian has determined a direction
that may help to avoid collisions with other agents in the next time step, according
to the distribution and relative position of the pedestrians in the visual field.

3.4.3 Choice of the Direction of Motion

In the third decision, the agent combines the motion within the environment and
within the crowd. The decisions so far have led to two independent angles αfin

t , αia

for reaching the target and avoiding collisions. In this step, the agent decides which
one of these is chosen as final direction of motion. Again, the distance-to-collision d
into both directions acts as the basis for this decision and is given as the minimum
distance considering both walls and pedestrians:

d (αt, ia) =

d
w (αt, ia) : dw < dp,

dp (αt, ia) : else.
(3.16)

with d (αt, ia) the final distance-to-collision in target and interaction direction, re-
spectively, dw the distance-to-collision regarding walls and dp the distance to any
pedestrian in this direction. A more detailed description on how to calculate the
distance towards a pedestrian for arbitrary angles is given in the Appendix, B.2.2.
In order to model a pedestrian’s urge to walk in an undisturbed way, the final direc-
tion of motion for the next time step is chosen to be the angle whose corresponding
distance-to-collision is larger,

αi (t+ ∆t) =

α
fin
t : d

(
αfin
t

)
> d (αia) ,

αia : else.
(3.17)
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The headway hi (t+ ∆t) for the next time step is then the corresponding distance-
to-collision of the final direction of motion,

hi (t+ ∆t) = d (αi (t+ ∆t)) . (3.18)

3.4.4 Determination of Speed

Having determined the direction of motion for the next time step, the agent i has
to calculate the speed si, the absolute value of the velocity, to complete the decision
process. Here, the SHDV model [102, 119, 120] is used (see also Sec. 2.3). It defines
a pedestrian’s speed as a linear function of its headway. In this model, the distance-
to-collision hi = hi (t+ ∆t) for the chosen direction of motion is used as the input
parameter:

si (t+ ∆t) =


0 m/s : hi ≤ dS,

αS (hi − dS) + vmin : dS < hi < dc,

vmax : dc ≤ hi.

(3.19)

As in the original model, the speed is zero below a lower threshold dS, increases
linearly with hi above this threshold and reaches the free-flow velocity vmax if hi is
equal to or greater than an upper threshold dc. Additionally, the slow-to-start rule
is included: if a pedestrian has had speed zero in the previous time step, it keeps
this velocity with a probability p0, otherwise the speed determined by Eq. (3.19) is
accepted. This mechanism is crucial for the emergence of stop-and-go waves as it
stabilises spontaneous jams by reducing the outflow of the pedestrians.
The determination of the speed is the fourth decision and terminates the decision
phase.

3.5 The Movement Phase

The movement phase ends the modelled process which is now collision-free. Based
on the direction of motion αi (t+ ∆t) and the corresponding speed si (t+ ∆t), the
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position of pedestrian i for the next time step t+ ∆t is calculated:

xi (t+ ∆t) = xi(t) + cos (ai (t+ ∆t)) si (t+ ∆t) ∆t

yi (t+ ∆t) = yi(t) + sin (ai (t+ ∆t)) si (t+ ∆t) ∆t. (3.20)

In addition, if the situation requires, e.g. for motion in systems with periodic
boundary conditions, the target coordinates are updated correspondingly to the
new positions or orientations.

The procedure presented above describes the basic idea of the model. As it will
be shown in Ch. 4, the decision process and the model parameters have to be
adjusted for the particular scenario in order to obtain realistic results. In particular,
the decision on the final direction of motion depends on the simulated situation.
Moreover, additional concepts like body rotation must be included especially for
evacuation (Sec. 4.3) and bidirectional flow (Sec. 4.4).
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CHAPTER 4
Modelling Results

In this chapter, the new model approach is applied to typical scenarios of pedestrian
dynamics in order to validate the model dynamics and calibrate the model paramet-
ers. By comparison to experimental data, it should be assessed whether the model
is able to reproduce realistic pedestrian behaviour qualitatively and quantitatively.
Optimising the parameters and the dynamics of the model may give insight into the
cognitive and decision-making mechanisms of walking pedestrians. The considered
scenarios include simple collision avoidance in one-on-one situations, single-file mo-
tion, evacuations and bidirectional motion in a corridor.
Several model parameters are set globally and valid for every scenario that is
simulated. This involves the radius of a pedestrian, r = 0.15 m, and the range
dvf = 8.0 m and expanse 2φ = 170◦ of the visual field. These parameters are equal
for all agents and constant in time.

4.1 Collision Avoidance Behaviour

In order to assess the mechanisms for collision avoidance implemented in the model
different one-on-one situations were considered. Here, up to two pedestrians act
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and react to each other without any influence by the environment or another group
of agents. In this section four scenarios are described: a pedestrian heading up to a
standing agent (‘Standing’), two pedestrians approaching one another (‘Walking’),
two agents that cross each other’s path while walking diagonally through the room
(‘Diagonal’) and, finally, two agents that walk next to each other in opposite direc-
tions (‘Next’). All scenarios are set in a square room of 20 m× 20 m in which the
pedestrians are placed in such that the main encounter of the agents occurs in the
middle of the room. Therefore, any influence of the walls on the agents’ collision
avoidance behaviour should be excluded. The main direction of motion of the ped-
estrians in the different scenarios is preset by the choice of target coordinates for
every agent.
At the beginning, the remaining parameters in the model are set to the values
used in the original SHDV model [102, 119, 120], i.e. ∆t = 0.3 s, αS = 0.5 1/s,
vmin = 0.1 m/s, vmax = 1.2 m/s and p0 = 0.5. However, since the SHDV model con-
siders point-like particles rather than extended circular pedestrians like this model,
the lower threshold ds of the SHDV model is reduced according to the pedestrians’
radius: d′s = ds− 2r = 0.4 m− 2 · 0.15 m = 0.1 m. In doing so, the distance between
the centres of two pedestrians corresponds to the distance as it is measured in the
original SHDV model.
Fig. 4.1(a) shows three realisations of the first scenario, ‘Standing’, in which an
agent encounters a pedestrian standing in the middle of the room (lilac-coloured
circle). The agent walks bottom up from the starting point (10.0 m, 1.0 m) to-
wards the target at (10.0 m, 19.0 m). The resulting trajectories for the different
runs are shown by the blue and green lines. For all three runs, they partially
display large fluctuations in the direction of motion. In this regime the walking
pedestrian has detected its opponent and uses the collision avoidance procedure.
Due to the stochastic nature of this mechanism, the trajectories show many changes
in the direction of motion. Some fluctuations are so distinct that the walking agent
does not stay on one side with respect to the standing pedestrian, see e.g. the
bright-blue trajectory. In contrast, there are also two segments of the trajectories
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Figure 4.1: Trajectories of the collision avoidance behaviour for different scenarios
(the general direction of motion is indicated by the arrows). Due to the
underlying stochasticity, fluctuations occur during the interaction that
are reduced using a smaller time step. Nevertheless, for the ‘Walking’
scenario, a larger time step leads to more realistic results.

that seem to be smoother: the very short segment at the beginning of the motion
represents the time steps in which the standing opponent has not been detected yet,
the segments starting at the level of the standing pedestrian display the phase in
which the standing agent has already been passed and does no longer lie within the
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visual field. In both stages, the walking agent is able to focus on reaching its tar-
get. Stochastic fluctuations due to the Gaussian distribution are not as significant
as in the interaction regime due to the comparatively small variance σ = 0.05 m.
Taken together, it is shown that the walking agent, as soon as it has registered the
presence of another pedestrian, starts to react and change its direction of motion.
In doing so, it passes the pedestrian at a lateral distance of approximately 1-2 m
and focuses then again on its target.
As for the modelling of more complex situations in the further course a smaller time
step ∆t = 0.1 s is used, the two-person interaction as described above is also re-
garded in this case. The result for ‘Standing’ is shown in Fig. 4.1(b). In comparison
to the result for ∆t = 0.3 s, it can be seen that the fluctuations of the trajectories
are smaller, simply because the agent does not have enough time to walk a larger
distance before the next change of the direction of motion occurs. However, the
overall progress of the curves does not differ significantly in both cases. This is
different when considering two walking pedestrians that approach one another. In
Fig. 4.1(c) the green trajectory represents an agent walking from the bottom up,
whereas the blue trajectory displays the path of the other pedestrian walking from
the top down. The starting points and the targets of both agents lie at one level.
Here, the time step is 0.3 s. It can be seen that the pedestrian coming from the top
(blue) changes its direction of motion significantly in order to elude the opponent
agent. In contrast, this pedestrian merely deviates from the ideal route. After a
short phase of orientation, represented by the segment with larger fluctuations, the
agent coming from the bottom (green) is able to walk with little interference since
the other pedestrian has already made way. However, the collision avoidance is
different when reducing the time step ∆t (see Fig. 4.1(d)). Because the pedestrians
change their direction of motion more often during the interaction, they are not able
to create sufficient space between each other and almost collide. During one time
step, the distance covered by an agent is not that large that the current situation
changes significantly. Therefore, the stochastic process of the interaction leads to
a trajectory fluctuating around the direct route towards the target, but not to a
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4.1 Collision Avoidance Behaviour

realistic avoidance behaviour. In contrast to the case of one of the agents standing
still, both agents have to react on the current dynamics of the opponent. As the
current position and direction of motion permanently change, the pedestrians are
not able to recognise a clear preference of the opposite agent and therefore cannot
decide which side to choose for collision avoidance. For the larger time step, the
pedestrians travel a sufficiently large distance in one step to react appropriately. It
can be followed that dynamics using ∆t = 0.3 s produces more realistic results.
Nevertheless, even the simulations with ∆t = 0.3 s may obtain unrealistic results
due to the underlying stochastic process, see e.g. Fig. 4.2(a). Here, the agents start
to evade, but the pedestrian coming from the top (blue) takes a ‘wrong’ decision
and starts to walk again towards the middle of the room. This changes the situation
for both agents since they now have to solve the conflict over a shorter distance. As
the pedestrians try to avoid the collision, they misjudge the motion of the oppos-
ite agent, cannot react appropriately and almost collide. This behaviour is again
caused by the stochastic interaction mechanism where unlikely and disadvantage-
ous choices of the direction of motion are not excluded. Nonetheless, near collisions
when two pedestrians have to avoid each other in limited space thoroughly occur
also in the real world. Therefore, occasional, non-perfect collision avoidance is not
fully unrealistic.
For two pedestrians crossing the room diagonally, the modelling results show mostly
realistic collision avoidance behaviour, but also occasional unrealistic trajectories.
In Fig. 4.2(b), the agent coming from the bottom left and walking towards the up-
per right corner of the room (green trajectory), eludes its opponent which is able to
walk in an almost undisturbed way. This behaviour is consistent with the expect-
ations. In contrast, the trajectories shown in Fig. 4.2(c)) display a detour of one
of the agents which clearly is not an appropriate representation of a pedestrian’s
walking behaviour. It is probably a consequence of a series of ‘wrong’ decisions on
the interaction angle that leads to the reacting pedestrian having the opponent on
its right side instead of its left side as before. In seeking to avoid a collision with
its opponent, the pedestrian is in a self-enhancing situation: the more to the right
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Figure 4.2: The collision avoidance mechanism is able to reproduce realistic beha-
viour also for a diagonal crossing of two agents (see (b)). However, the
underlying stochasticity also causes near collisions (as in (a)) or unreal-
istic avoidance manoeuvres as in (c). In (d), the agents react on each
other’s presence without need.

the other agent is perceived the more likely it is for the agent to turn to the left.
Not until the other pedestrian is out of sight the agent is able to focus again on
its goal and to move in target direction. In this case, the stochasticity leads to an
unrealistic choice of the direction of motion.
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4.1 Collision Avoidance Behaviour

In the fourth scenario two pedestrians walk in opposite directions but their start-
ing points and targets have a distance of five metres. Therefore, the agents can
directly reach their targets and a collision is not expected to happen. As a con-
sequence, both pedestrians should walk in an undisturbed way. However, as it
can be seen in Fig. 4.2(d), the trajectories show fluctuations in certain segments
indicating that the agents have chosen the interaction angle instead of the target
angle as direction of motion. Both pedestrians reacted to the presence of the other
agent without any need since their motion towards their target would not have
been affected. Of course, this behaviour is totally unrealistic. It is caused by a
misjudgement during the model development process. As explained in Sec. 3.4.3,
as final direction of motion the angle for which the respective distance-to-collision
is larger is chosen. To be more precise, Eq. (3.17) states that αi (t+ ∆t) = αfin

t , if
d
(
αfin
t

)
> d (αia), that means that the agent chooses to walk into the target dir-

ection only if the distance-to-collision for the interaction angle is smaller. In case
of both distances to be equal, the interaction angle is taken as direction of motion.
This emphasises the interaction and collision avoidance behaviour which seemed to
be reasonable during the model development when thinking of dense crowds and
an urgent need to avoid collisions. However, in the scenario described above, the
distances-to-collision in interaction and target direction are also equal: since the
room is sufficiently large, the distances-to-collision considering walls is equal to the
maximum visual range for both angles. There is only one other agent in the room,
so it is highly likely to choose an interaction angle that leads towards free space.
In this case, the distances-to-collision considering pedestrians is also equal to the
maximum visual range. As a consequence, the distances for both interaction and
target angle are equal and the agent chooses to use the interaction angle. This
problem is solved if Eq. (3.17) is slightly rewritten, replacing ‘greater’ by ‘greater
or equal to’,

αi (t+ ∆t) =

α
fin
t : d

(
αfin
t

)
≥ d (αia) ,

αia : else.
(4.1)
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An agent now chooses to go also in target direction if the distance-to-collision for
the target and interaction angle is equal. This sets priorities for reaching the goal
instead of interacting and avoiding collisions.
Fig. 4.3 shows the simulation results for the one-on-one scenarios using Eq. (4.5).
It can be directly seen from Fig. 4.3(d), that in the ‘Next’ scenario, both traject-
ories do not show any fluctuations indicating an evasion manoeuvre, that means
that the pedestrians stay focussed on their respective target. This change in the
dynamics also has an impact on the results in the other three scenarios. In all
simulations, ∆t = 0.3 s was used. In comparison to the previous results a focus on
the agent’s target reduces the fluctuations of the trajectories. The agent chooses
less often to interact rather than to go towards the target. However, therefore the
collision avoidance can be seen less distinctly in the trajectories than in the previous
case because the agents pass each other with a smaller distance. For the diagonal
crossing, the agents react late and occasionally almost collide (see Fig. 4.3(c)). Of
course, reduced avoidance behaviour also leads to less unwanted, large changes of
the direction of motion as they were observed previously (see e.g. Fig. 4.1(a) or
4.2(c)). In total, shifting the focus towards the target direction has a similar impact
to introducing some kind of inertia in these special situations. The agents reach
their targets with minimal effort for interacting and collision avoidance and the
deviations from the ideal route are smaller compared to the case described above.
Once the pedestrians find themselves in a configuration in which every participant
is able to reach its personal target without further changes, they neglect the pres-
ence of the other agent.
Taking all four scenarios together, introducing the reworking in Eq. (4.5) leads to
more realistic results in terms of large fluctuations, turnarounds or unnecessary
interactions. Minor fluctuations can be observed nonetheless. It should be noted,
however, that the trajectories represent concrete realisations of a stochastic process
and therefore also show deviations from the optimal route that are inherent to this
mechanism. Usually, averaging is an appropriate and effective way to handle fluctu-
ating values. However, an ‘averaged trajectory’ would only state a path somewhere
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Figure 4.3: Focussing on the target direction reduces unnecessary changes of the
direction of motion and fluctuations. As soon as the agents have found
a configuration in which both can reach their goal in an undisturbed
way, they neglect the presence of the other.

in between the simulated trajectories that does not have any ‘real’ equivalent. This
would not be sufficient to assess the concrete interaction procedure and exclude
unrealistic movements or collisions so that the trajectories shown here answer the
purpose intended.
Despite the fluctuations there is another aspect shown in the trajectories that may
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not meet the expectations from the real scenario. Considering especially the ‘Stand-
ing’ situations, one can see that the agent’s interaction mechanism is restricted to
the visual field. As can be seen from Fig. 4.1(a), 4.1(b) and 4.3(a), the walking
agent first moves shortly towards its target before the other pedestrian is recognized
and the evasion starts, caused by the limited range of the visual field. This does
not need to be consistent with reality: on the one hand, in an empty room like this,
another pedestrian is probably perceived at a larger distance than 8 m. On the
other hand, it is not known whether the distance real pedestrians start to interact
is equal to the sight distance. If scenarios in free space like these are simulated
with this model, the coherence between visual perception and interaction should
be kept in mind.
All things considered, this model is able to produce a collision avoidance behaviour
that approximates the behaviour of real pedestrians appropriately.

4.2 Single-File Motion

As mentioned before, the SHDV model [102, 119, 120] was developed in order to
reproduce the characteristic pedestrian dynamics of one-dimensional single-file mo-
tion. Since the model acts as a basis for the approach presented in this work, the
new model should also be able to reproduce pedestrian single-file motion despite its
two-dimensional nature. Investigating this scenario allows for the measurement of
two basic quantities: the fundamental diagram which shows if the model dynamics
leads to a reasonable relation of velocity or flow and density, and the phase separa-
tion of the system into slowly walking and standing agents which is distinctive for
single-file motion of pedestrians.
The simulations are performed similarly to the investigations done with the ori-
ginal SHDV model. The system involves a corridor of length L = 26.0 m and width
B = 0.8 m. Using periodic boundary conditions, the pedestrians are assumed to
walk on a closed course and the number of agents in the system is conserved. The
general direction of motion is determined by the agents’ target coordinates which
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4.2 Single-File Motion

are given by xt,i(t+∆t) = xi(t)+5.0 m and yt,i(t+∆t) = 1
2B. The pedestrians walk

in positive x-direction while trying to stay in the middle of the corridor. In contrast
to the SHDV model which uses genuine one-dimensional motion, the corridor has
a finite width and allows two-dimensional movement. It is assumed, however, that
the main direction of motion of the agents is along the corridor.
The modelling results are compared to experimental single-file motion data from
laboratory experiments performed in 2005 and 2006 [160, 161]. Both sets contain
data from single-file motion in a circular set-up. In both cases, the number of
pedestrians was varied in order to investigate the influence of density on the dy-
namics. The experiments as well as their analysis are described in greater detail in
[45, 46, 95].
The experimental runs were started distributing the participants almost uniformly
in the experimental set-up [46]. In order to approximate the experiment, so-called
almost homogeneous initial conditions as described in [102, 120] were used. The
pedestrians are distributed homogeneously in the corridor. Then, every agent is
slightly shifted since a perfectly uniform distribution of the pedestrians is unreal-
istic and can lead to unwanted absorbing states during the simulation [120]. The
size of the shift is determined by a Gaussian distribution which is cut off for higher
values in order to prevent overlapping of the agents.

4.2.1 Fundamental Diagram

The fundamental diagram is one of the most important quantities of pedestrian
dynamics and can be used to describe the general walking behaviour of agents in
the respective situation. Therefore at this point it is used to calibrate the model
parameters for single-file motion. Here, the fundamental diagram is understood as
the relation of velocity and density in the stationary state of the system. Due to
the different concepts of determining these quantities for pedestrian motion, the
appearance of the fundamental diagram also depends on the choice of the measure-
ment methods for both velocity and density. In this chapter, it is resorted to two
different concepts. For the global fundamental diagram density and velocity are
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averaged over time and the number of pedestrians whereas individual densities and
velocities are included in the local diagram. While the global fundamental diagram
shows the general behaviour of the entire system, the relation of the local quantities
allows insight into the individual behaviour. Phase separation and the formation
of jams is represented by two branches of the velocity at high densities in the local
fundamental diagram. While one part of the pedestrians stands still (vi = 0 m/s),
the other pedestrians have a finite, small velocity. This effect cannot be observed
in the global diagram due to averaging. An elaboration of the determination of
velocity and density using the different concepts is given in the Appendix, Ch. C.
It should be noted that in the analysis of the simulated as well as the experimental
data density and velocity are calculated for one dimension, i.e. always along the
corridor (in x-direction), despite the two-dimensional nature of the model. It is as-
sumed that the main direction of motion in single-file motion is along the corridor
and that perpendicular movements can be neglected.
All simulations were performed for a total simulation time Tsim = 1100 s. In order to
ensure the system to be in a stationary state, fundamental diagrams were measured
for the last 100 s, this follows the analysis in [102, 120], where this value was chosen
comparable to the measurement times in the experimental data basis. The max-
imum number of agents used in the simulations was N = 70; global measurements
were done with 10 simulation runs for each density.

Fig. 4.4 shows the modelling results for the global and the local fundamental dia-
gram as well as the corresponding experimental data. The green curve in Fig. 4.4(a)
shows the global fundamental diagram obtained by using the original parameter
set as in the basic SHDV model or the two-person-interaction scenario described in
Sec. 4.1 (∆t = 0.3 s, vmin = 0.1 m/s, vmax = 1.2 m/s, αS = 0.5 1/s, dS = 0.1 m and
p0 = 0.5). In contrast, the blue curve in Fig. 4.4(a) and the blue points in 4.4(b)
show the simulation results for which some of the parameters and the modelled de-
cision processes were optimised in comparison to the experimental data considering
both the global and the local fundamental diagram. In doing so, the maximum
speed was increased to vmax = 1.4 m/s, the slope of the velocity-headway relation
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Figure 4.4: Global and local fundamental diagram for single-file motion comparing
simulated and experimental data. The green global curve represents the
result for the original parameter set, the blue one shows the results for
the optimised set which fits the experimental data better. The optim-
ised local diagram also shows good agreement with the experiments.
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was set to αS = 0.65 1/s and the stopping probability was also increased to p0 = 0.6.
In addition, the criterion for the third step in the decision-making phase, when the
agent has to choose between target and interaction angle, was adjusted. Additional
to using the direction providing the larger distance-to-collision, a pedestrian now
decides to walk also towards its target if the interaction angle would lead to a
deviation from the desired direction of motion greater than approximately 37◦.
Whereas the curve of the simulations with the original parameters shows large
deviations from the experimental result, the modelling results using the optimised
parameter set fit well to the experimental data and display the expected progress
which strongly resembles the behaviour of the SHDV model [102, 120]. For low
densities up to ρi = 0.5 1/m the velocity is constant and corresponds approximately
to the maximum velocity. In this density regime, the pedestrians’ motion is not
affected by the presence of other agents, and they can walk with their desired
free-flow speed. Considering intermediate densities, 0.5 1/m ≤ ρi ≤ 1.8 1/m, the
walking speed of the agents is influenced by the others. The pedestrians distribute
uniformly over the system, and the headway hi between the agents depends on
the global density ρi: hi = 1/ρi which gives the mean free space available for a
pedestrian. In this regime, the speed depends linearly on the headway and therefore
on the reciprocal global density:

vi(hi) = αS (hi − dS) + vmin = αShi + const. = αS
1
ρi

+ const. (4.2)

Therefore, the velocity-density curve shows a reciprocal relation in this intermediate
regime. At first, the headways are large enough to prevent the agents from stopping,
so the behaviour of the system is fully deterministic in terms of the determination
of the speed (i.e. neglecting stochastic elements newly added in this model like
the Gaussian distribution for the target angle). The global fundamental diagram
shows a very smooth progress, and even for the local diagram, there are only few
fluctuations in the individual velocity up to a density of 1.4 1/m. For 1.4 1/m ≤
ρi ≤ 1.8 1/m, there are first indications for jamming and a phase transition of
the system visible in the local fundamental diagram. Few of the pedestrian have
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already stopped (vi = 0 m/s), while the others are able to walk with a higher
velocity vi = 0.2 − 0.4 m/s. The fluctuations in the velocity become larger due
to the initiating influence of the slow-to-start-rule with the stopping probability
p0. Because of this stochastic influence by standing pedestrians, the headways are
not as uniform as before, and the agents have to adjust their speeds. However,
the effect is still not large enough to be significant even in the averaged global
fundamental digram. For densities larger than ρi = 1.8 1/m, the system is in a
‘congested state’ [120] where the motion of the agents is strongly influenced by
the other pedestrians. The stochastic process is dominant which leads to a point
cloud in the local fundamental diagram and a change in progress of the global
curve. Since the number of pedestrians with a velocity zero increases strongly, the
averaged velocity decreases now linearly with increasing density until it reaches
vi = 0 m/s at ρi ≈ 2.6 1/m.
In order to reach this agreement with the experimental data, adjustments of the
parameters vmax, αS and p0 as well as of the third decision were necessary. In
the following, each of these adjustments will be considered in greater detail and
assessed whether this can give insight into the walking behaviour and the way of
decision-making of pedestrians.

At high densities, the global fundamental diagram measured with the ‘original’
parameters deviates strongly from the experimental data. Instead of following
the general behaviour and reaching vi = 0 m/s at some point, the curve strongly
flattens and becomes almost constant for ρi ≈ 2.5 1/m despite minor fluctuations.
This behaviour is not realistic for single-file motion and also does not occur in
the results of the SHDV model. In fact, it is a consequence of the two-dimensional
nature of this new approach. For lower densities, an agent’s final direction of motion
is mostly given by the direction towards the target because the distance-to-collision
is significantly larger than the distance-to-collision of the interaction angle. In terms
of collision avoidance, a pedestrian tries to evade its predecessors, but due to the
narrow corridor the direction for avoidance always points directly towards a wall. As
a consequence, the distances-to-collision for interacting are always smaller than the

61



Chapter 4 Modelling Results

distances towards the target. However, with an increasing number of pedestrians in
the system, the distance-to-collision in target direction becomes smaller. At higher
densities the system reaches a point where this distance becomes even smaller than
the distance-to-collision of the interaction direction. Since a pedestrian chooses
the direction which provides the larger distance-to-collision, the agents start to
elude. This leads to a kind of zipper effect: the pedestrians start to shift their
position in y-direction perpendicular to the general direction of motion in order
to use the accessible space as optimally as possible. For the corridor width of
B = 0.8 m and the diameter of a pedestrian of 2r = 0.30 m it is even possible for
the agents to stand next to each other. In this case, the distance-to-collision into
the target direction increases again since the agent aims at the ‘free’ space next
to its predecessor. Especially considering the included anticipation, a balanced
configuration can appear which leads to low, but constant and finite velocities for
all pedestrians. Thereby, the decrease in velocity that would be expected is shifted
to even higher densities that do not allow for a more efficient use of the available
space. Such a zipper effect has been observed for example in bottlenecks whose
capacity increases linearly with the bottleneck width due to this effect [23, 27].
However, it is excluded in single-file motion by definition. In the experiments,
the participants were told not to pass [46]. Therefore, they obviously decided not
to use the space optimally, but to follow the instructions and keep the single-file
configuration. Such a global knowledge of the intention of the scenario or concious
decision not to optimise the personal motion is not included in the model so far.
Therefore, another criterion was added to the decision on the final direction of
motion: the agent decides to choose the target direction if the distance-to-collision
into this direction is greater or equal to the distance-to-collision for interaction
or if the interaction direction would lead to a deviation from the optimal desired
direction larger than 37◦. In this case, the optimal target direction is αideal

t = 0◦, and
the additional restriction can be rewritten as |αia−αideal

t | > 37◦ or cos (αia) < 0.81.

1In Fig. 4.5(a) this is stated the other way round for reasons of clarity, e.g. the bright-blue
curve represents a simulation for which the choice of the interaction angle was restricted to
cos (αia) ≥ 0.8.
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Therefore, it follows for the third decision that

αi (t+ ∆t) =

α
fin
t :

[
d
(
αfin
t

)
≥ d (αia)

]
∨ [cos (αia) < 0.8] ,

αia : else.
(4.3)

Fig. 4.5(a) shows the influence of different thresholds on the progress of the funda-
mental diagram. The measurement with no restriction strongly deviates from the
expectations and the experimental data. Even if the interaction angles are restric-
ted to cos (αia) ≥ 0.5, the zipper effect has a significant impact. For cos (αia) ≥ 0.8,
which was used for the final simulations, the fundamental diagram fits well to the
experimental data. Further restrictions do not lead to corresponding improvements
as can be seen from the lilac-coloured curve for cos (αia) ≥ 0.9. In order to maintain
as much freedom of choice as possible and to not infer with the model dynamics
too much, the threshold was set to 0.8 as described above. It represents global, ab-
stract knowledge of the pedestrians that overtaking and standing next to each other
should be omitted. The prioritisation of the agents shows that they accept lower
velocities and stand still in order to keep the requested single-file configuration. It
also indicates that the application of two-dimensional dynamics on one-dimensional
scenarios is a non-trivial problem and may require further restrictions. This should
be particularly considered for validation purposes.

The high-density regime of the fundamental diagrams is also influenced by the value
of the stopping probability p0 that is used for the slow-to-start rule in the decision
on the speed. This parameter determines the value of the densities at which some
pedestrians stand still and the congested phase starts. Its impact on the global
fundamental diagram is not as significant as in the local diagram due to the aver-
aging. In Fig. 4.5(b) it can be seen that an increasing stopping probability shifts
the change in the slope of the curve towards smaller densities and that the velocity
for a fixed density also decreases with an increasing p0. Whereas the curve for the
original parameter p0 = 0.5 lies at the upper edge of the experimental data, the
fit becomes better with larger p0 in terms of the relative position of the simulated
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Figure 4.5: Influence of the decision process and the stopping probability on the
global fundamental diagram at higher densities. The restriction of the
interaction angles prevents the occurrence of zipper effects and main-
tains the single-file configuration; with an increasing p0 jamming starts
at lower densities and the average velocity is decreased for a specific
density.

curve and the empirical data. Considering only the global fundamental diagram,
p0 = 0.65 provides the best results of all three curves that are shown. However,
when considering the local fundamental diagrams for p0 = 0.5 and p0 = 0.65 in
Fig. 4.6(a) and 4.6(b), respectively, it is shown that both results do not represent
these experimental data as well as the curve for p0 = 0.6 (see Fig. 4.4(b)). The
branch at vi = 0 m/s which represents the standing pedestrians in the jam, respect-
ively the phase transition into standing and walking agents of the system, starts at
too high densities for p0 = 0.5 and at too low values of ρi for p0 = 0.65. In contrast,
for p0 = 0.6 the jamming phase seems to start similarly in the simulations compared
to the experiments. Therefore, the value for the stopping probability seems to be
the best compromise in order to describe the global as well as the local fundamental
diagram. An increasing p0 also has an impact on when statistical fluctuations in
the velocity start to appear. However, even if the local fundamental diagram for
p0 = 0.65 shows significantly more outliers in the speed, all data points overlap
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Figure 4.6: Local fundamental diagrams for p0 = 0.5 and p0 = 0.65. The value of
the stopping probability influences the start of the congested state and
the phase transition. For p0 = 0.5, it starts at too high, for p0 = 0.65
at too low densities.

with the point cloud representing the experimental data. One can therefore not
draw any conclusions in terms of parameter optimisation based on this criterion
and has to stick to the phase separation and jamming phenomenon.

The second parameter that was adjusted during the calibration process is the slope
of the velocity-headway relation in the determination of speed, αS. For interme-
diate densities, the velocity is mainly determined by the relation Eq. (4.3) that
was already discussed above. Here, αS acts as proportionality constant between
the velocity vi and the reciprocal density 1/ρi. It therefore influences the slope of
the curve and represents the pedestrians’ urge to follow their predecessors and how
strongly they adjust their speed according to the distance to the agents walking in
front. The higher αS is, the faster an agent follows and reacts to velocity changes
of the others.
The impact of αS on the global fundamental diagram is shown in Fig. 4.7(a).
Whereas the curve for the original value αS = 0.5 1/s lies on the lower edges of
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Figure 4.7: (a) An increasing slope αS leads to a shift of the intermediate part of
the fundamental diagram towards higher densities / velocities and rep-
resents the strength of the adaptation of the agents. (b) The Gaussian
distribution used in the decision on the target angle leads to a small
deviation in the free-flow speed since the motion is influenced by the
confined space in the corridor.

the experimental data, it is shifted towards higher densities and velocities for an
increasing αS. Additionally, the point at which the system is dominated by the
stopping and jamming behaviour is shifted to lower densities for increasing slopes.
This seems to be reasonable since a larger αS leads to higher velocities for the same
density, and therefore headway. That means that the agents can pass more space
during one time step and come closer towards their predecessor than for lower val-
ues of αS. When they come closer for a smaller density they have to stop earlier
(vi = 0 m/s) compared to larger density values. Therefore, the influence of the
slow-to-start rule can start at lower densities.
Considering all three curves for αS = 0.5 1/s, 0.65 1/s and 0.8 1/s, the simulation
results fit to the experimental data best for αS = 0.65 1/s. This means that the
dynamics displays a larger urge to follow the other and a more imminent reaction
to changes of the headway. In the SHDV model, the relation between velocity
and headway was based on the dynamics of the optimal velocity model [121, 122]
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which was developed for vehicular traffic. This model describes the relation between
velocity and headway using a tanh-function which is approximated linearly with
αS = 0.5/m as used by Eilhardt [120]. If one reset the purely mathematical as-
pect and focused on the physical meaning, an increased αS for pedestrian dynamics
would indicate that pedestrians can react faster on changes of the headway and
therefore reach higher relative velocities than cars in the vehicular traffic. This
seems to be a reasonable assumption since pedestrians, for example, show less iner-
tia than vehicles and can de- and accelerate almost instantaneously. In [49], Jelić et
al. analysed single-file motion experiments with pedestrians and assumed a similar
concept for the meaning of αS. For the headway-velocity relation (reciprocal to
the velocity-headway relation used in the SHDV model) the authors determined
a proportionality constant (now in dimensions of time), as ‘adaptation time’ that
elapses until an agent reacts to changes in the headway in front. It can be under-
stood as the ‘sensitivity’ of the pedestrians to the distance towards their respective
predecessor. Based on this, a larger αS as used in the optimised global fundamental
diagram would imply that pedestrians have a smaller adaptation time than cars.
This would be consistent with the considerations made above.

For very low densities, the experiments do not provide many reliable data points. In
this regime, the simulation results are mainly influenced by the maximum free-flow
velocity vmax. Since the global fundamental diagram using the original free-flow
velocity vmax = 1.2 m/s misses some experimental data points at higher velocities,
vmax was increased for this model approach to vmax = 1.4 m/s. This choice seems
also reasonable as even higher free-flow velocities were measured in different exper-
iments [41].
However, if the fundamental diagram for the optimal parameter set is considered
in detail for low densities, a small difference can be observed between the measured
speed vi and the free-flow velocity vmax, see Fig. 4.7(b). This gap stems from the
stochasticity included in the model during the decision process. As described in
Sec. 3.4.1, the final target angle is drawn from a Gaussian distribution around the
optimal target direction in order to cover small uncertainties and fluctuations in
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the walking behaviour. In a narrow corridor as it is used for the single-file mo-
tion scenario, even slight deviations from the optimal direction lead to a target
direction pointing towards a wall. Therefore, the distance-to-collision becomes sig-
nificantly smaller; at least for some cases where the velocity of an agent is then
slightly decreased. When averaging over time and all agents, this results into a
small deviation. However, it seems likely that a confined space like a corridor with
a width of B = 0.8 m influences the walking behaviour of pedestrians even at low
densities. Since the effect is weak for the entire fundamental diagram, there were
no additional adjustments done during the calibration and optimisation process to
prevent this deviation.

4.2.2 Phase Separation

A characteristic of pedestrian single-file motion is the separation of the system in
a standing and a slowly moving phase at high densities. In contrast to vehicular
traffic the walking pedestrians do not move with free-flow velocity (see Sec. 2.1).
This collective phenomenon is therefore an important test for a model’s validation.
The SHDV model is one of the few models for pedestrian dynamics that is able to
reproduce this behaviour. Therefore, it should also be observed in the new model.
In Fig. 4.4(b) the local fundamental diagram is shown which is a first way to assess
whether the system shows phase separation. At densities around ρi = 1.4 1/m, a
second branch develops for vi = 0 m/s which indicates that first pedestrians are
standing while other agents are still moving. The number of agents with zero ve-
locity rises with increasing density, while the proportion of walking pedestrians is
reduced.
In [45, 95, 120] two other measurements of the phase separation were introduced
which are applied now. First, the velocity distribution for different local dens-
ity regimes is shown in Fig. 4.8 for both experimental and simulated data. The
locally measured velocities are distributed in bins of size 0.1 m/s. The exper-
imental data (from 2006 [161], shown in Fig. 4.8(a)) shows the different beha-
viours of the system for the different density regimes: at intermediate densities,
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Figure 4.8: Phase separation in single-file motion is represented by a double-peak
structure in the velocity distribution (green, orange curves). Compared
to the experiments (2006) [161], the simulated distributions are sharper,
and the second peak is slightly shifted towards higher densities.

1.6 1/m ≤ ρi < 1.8 1/m, the velocity distribution is rather broad with a small peak
at approximately vi = 0.2 m/s and another, much smaller peak at vi = 0 m/s. With
increasing density, the distribution becomes narrower. The peak at higher velocit-
ies becomes more apparent and is shifted towards smaller velocities. For densities
2.0 1/m ≤ ρi < 2.2 1/m and 2.2 1/m ≤ ρi < 2.4 1/m a significant double peak
structure appears: one of the peaks is at finite velocities around vi = 0.1 m/s while
the second peak is shown at vi = 0 m/s. This structure shows the phase separation
into standing and slowly walking pedestrians. If the density is increased further,
the peak at higher velocities disappears and the peak at vi = 0 m/s becomes very
distinct. At this point the system enters the fully congested state. The velocity
distributions for all densities are very broad. This is, at least partially, due to the
measurement method. For the experiments, the participants’ motion was measured
by tracking their heads [45, 95, 120]. Movements of the heads that are not related
to the general motion of the centre of mass, for example due to body swaying, can
cause even negative velocities as shown here.
In contrast, the velocity distributions of the simulated data are very sharp. Es-
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pecially the influence of the minimum velocity vmin = 0.1 is significant. Instead,
the single distributions show larger frequencies, probably because the speeds for
the same number of pedestrians are distributed over a smaller velocity regime. In
comparison to the experimental data, the peaks at finite velocities are slightly shif-
ted towards higher velocities but lie within the velocity regime that is observed in
the experimental data (for the same density). The double peak structure can be
clearly seen, especially for 2.0 1/m ≤ ρi < 2.2 1/m and 2.2 1/m ≤ ρi < 2.4 1/m, here
there are distinct contributions at vi = 0 m/s and vi = 0.1− 0.23 m/s and vi = 0.1
−0.27 m/s, respectively. The density regimes of this phase separation correspond to
those found in the experiments, albeit the second peak at finite velocities is shifted
towards higher values. Nevertheless, the measurements of the velocity distribution
show that the model is also able to reproduce phase separation in a reasonably
quantitative way.

Another way to gain insight into the modelled behaviour is the analysis of the ped-
estrians’ trajectories as shown in Fig. 4.9. For that, the x-coordinate of a pedestrian
is plotted against time. This also helps at identifying congested states or how long
a pedestrian is in the jam.
In the experimental data (2006 [161], Fig. 4.9(a)) the agents walk into the negative
x-direction, whereas the general direction of motion in the simulated system was
in positive x-direction. The plots show a segment of the corridor which in both
cases corresponds to the length of the measurement area of the experiments. Both
experimental and simulated trajectories show segments that are almost parallel to
the t-axis whereas other parts are clearly diagonal. This is the graphical represent-
ation of the phase separation: in the congested phase, the pedestrian that has zero
speed spends more time at the same place, this is represented by the vertical parts
of the trajectories. When the pedestrian is walking, the trajectories show a diag-
onal progress. This effect is visible in both experiment and simulation although the
experimental data shows more fluctuations. Additionally, it can be seen that the
jam (the congested phase) moves in the opposite direction to the agents’ direction
of motion through the system, which is typical for a phase separated system.
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Figure 4.9: Both experimental (2006) [161] and simulated trajectories show the
phase separation in a jam (vertical segments) and a moving phase (di-
agonal segments). The experimental data shows more fluctuations due
to the measurement method.

Taken together, the new model approach is, with the aid of some parameter optim-
isations and adjustments in the decision process on the final direction of motion,
able to reproduce single-file motion of pedestrians qualitatively as well as quantit-
atively. The shape of both local and global fundamental diagrams fits well to the
experimental basis and phase transition can be detected. How the parameters are
changed can help to understand more about the prioritisation of pedestrians as well
as their general walking behaviour.

4.3 Evacuation

An evacuation scenario might be the basic pedestrian situation one intuitively
thinks of when considering the need for investigating and steering pedestrian walk-
ing behaviour, since the public awareness of safety and the threat of crowd disasters
has risen in recent years. Therefore, it seems natural to test and optimise the dy-
namics of the new model by simulating evacuations.
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The empirical basis in this section is given by data from two evacuation experi-
ments performed in schools in Wuppertal, Germany. One of this data sets, called
‘GymBay’2 [31] is used for calibrating the model parameters and dynamics, the
data of the other school, ‘WDG’2 [162] is then compared to the simulation results
in order to assess the model predictions. In both cases, the experimental set-up
was the same: the participants, students (aged 16 to 18 years) are placed in the
middle of a square room of 5 m× 5 m (Fig. 4.10). After a starting signal, they
were asked to leave the room using an exit that leads to a small corridor of 0.6 m
length. The width of the door and the corridor was 1.2 m. The pedestrians were
told to walk briskly but naturally without scrambling or pushing. The evacuations
considered here were part of a larger study and one of several runs, respectively.
They are representative for non-competitive, ordered evacuations under laboratory
conditions without any limitations considering sight, orientation or the composition
of the crowd.
In the simulation, the set-up of the experiments is reproduced, see Fig. 4.10. The
number of participants as well as their initial positions in the room are taken
from the experimental data. Since the geometry of this scenario is more complex,
wayfinding and route choice play an essential role for the results. The target co-
ordinates of an agent depend on the pedestrian’s position. The general target (dark
blue cross) is a single point far behind the end of the exit corridor. Whenever a
pedestrian is on the same level as the exit corridor (bright blue shaded area), the
target coordinates are adjusted so that the agent keeps its level and walks directly
towards the exit. Due to the corners build by the exit corridor and the other parts
of the room, the target might be screened by walls for some positions in the room.
Therefore, the use of intermediate targets is necessary to navigate the agents out
of the room. For these simulations, four intermediate targets (black crosses) were
placed on a straight line in the middle of the corridor around the actual exit. As a
first measure, their positions were chosen naively in order to find a good qualitative

2The labels are abbreviations for the schools’ names: ‘GymBay’= Gymnasium Bayreuther
Straße, ‘WDG’ = Wilhelm-Dörpfeld-Gymnasium.
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Figure 4.10: Experimental and simulated set-up for evacuation scenarios. The ped-
estrians (orange circles) leave the square room through an exit leading
into a small corridor. The general target (dark blue cross) is set behind
the exit, if an agent is on one level with the exit or within the corridor
(bright blue area), it keeps its y-coordinate and goes straight forward.
Four intermediate targets (black crosses) are set in the middle of the
corridor for route choice.

progress of the evacuations and do not rely on any elaborate route choice model.
One of the most important quantities investigating evacuation scenarios is the exit
or evacuation time. Here, Tevac is given as the time needed to leave the room,
plotted against the respective number of evacuated persons. Since the number of
pedestrians is relatively low and the total simulation time small, the simulated evac-
uation times are averaged over 100 runs in order to reduce stochastic fluctuations.
Fig. 4.11 shows the simulation results for the evacuations with the original para-
meter set of the two-person interaction (∆t = 0.3 s, vmin = 0.1 m/s, vmax = 1.2 m/s,
αS = 0.5 1/s, dS = 0.1 m and p0 = 0.5) and the optimised parameter set, respect-
ively, compared to the experimentally measured evacuation times. All three curves
show a linear progress. Whereas the experimental data show some fluctuations in
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the form of small plateaus and sharper inclines, the progress of the simulated curves
does not fluctuate due to the averaging process. In the experiments, the students
reacted to an acoustic signal and started with the evacuation whereas the simulated
group of agents is able to start instantaneously. This leads to a constant offset of
the evacuation time which could be compensated introducing a pre-movement time.
In general, the pre-movement time describes the time lapse between the alarm or
starting signal for an evacuation and the actual start of the evacuation movement.
It includes the time needed to detect and recognise the signal, decide and react to it
[22]. Pre-movement times have a significant influence on the evacuation behaviour
[163–165]. Therefore, it was introduced in the simulations as an additional time
lapse that had to be passed until the agents start moving. For the ‘GymBay’ data
set, the pre-movement time is tpre = 1.0 s.
It can be seen in Fig. 4.12 that single runs of the simulation result in a similar
progress than the experiment. A plateau in the evacuation time curve shows that
multiple pedestrians left the room at the same time, whereas steeper increases
represent phases in which the time between two exiting agents was larger. The
standard deviation of the averaged simulation results (Fig. 4.11) increases with an
increasing number of pedestrians for both parameter sets. Conflicts and clogging
at the exit can cause short delays in the evacuation process which are random and
not equal for each run, especially because the model approach is not deterministic
in the collision avoidance procedure. Since conflicts require a certain number of
pedestrians that are in front of the exit at the same time, their impact becomes
significant only with an increasing number of agents. The longer the evacuation
has progressed, the higher the probability for conflicts is.
Out of these reasons the standard deviation of the averaged curves in Fig. 4.11 in-
creases in the course of the process. Both simulated curves show a change in their
slope at the end of the evacuation that is more distinct for the simulation with the
original parameter set. In this regime, the evacuation time increases overpropor-
tionally indicating the impact of additional conflicts that slow down the evacuation.
While the evacuation times measured by using the original parameter set show sig-
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Figure 4.11: Evacuation times with final and original parameters: the slope of the
evacuation time curve with the original parameter set is too high com-
pared to the experimental results. In contrast, the simulations with
the final parameters is able to reproduce the experiments well.

nificant deviations from the experimental curve, the optimised results fit well to
the empirical data. Solely at the end of the evacuation the simulated curves do not
follow the experimental one as well as before, however, the experimental results still
lie within the standard deviation of the simulation results. In contrast, the slope
of the original parameter curve is much too high to reproduce the experiment. Ad-
ditionally, the standard deviation of the original curve is slightly larger compared
to the optimised result.
To achieve a good agreement of the model and the experimental results, the adjust-
ment of several parameters and of one part in the decision process was necessary.
Overall, the slope of the SHDV model is increased to αS = 1.3 1/s, and the size
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Figure 4.12: Single evacuation runs simulated with the final parameter set. Beneath
the general progress, the modelled curves as well as the experimental
one show small plateaus and fluctuations indicating several pedestrians
exiting at the same time or larger gaps between agents leaving the
room.

of the time step and the lower threshold of the SHDV model are decreased to
∆t = 0.1 s and dS = 0.03 m, respectively. Additionally, large deviations of the final
direction of motion from the desired direction are suppressed and a concept of body
rotation is introduced.

The most distinct difference between the results of the two parameter sets was
the difference in the slope of the evacuation time curve. Fitting the model results
to the experimental data required a strong increase of the slope of the velocity-
headway relation, αS. Fig. 4.13 shows the evacuation times for different values of
αS. It can clearly be seen that the slope of the curve decreases with increasing
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Figure 4.13: Increasing αS results in shorter evacuation times since the agents close
the lines in front of the exit and leave more efficiently.

αS. The best results are obtained for αS = 1.3 1/s. Therewith, this parameter
was adjusted towards larger values as in the single-file motion scenario. However,
the final value is far higher. That means that if the same distance-to-collision is
ahead, the speed of an agent in the evacuation is higher. The pedestrian covers a
greater distance and comes closer to other agents during one time step. Relating
to the interpretation given in Sec. 4.2.1, this indicates that the urge of an agent to
follow pedestrians walking in front is much more pronounced than in the single-file
scenario. Also, it leads to the conclusion that a pedestrian’s adaptation time is
significantly shorter, that means that it reacts faster to the perceived situation and
changes in the distance-to-collision. With regard to the scenario, this seems to be
reasonable: in evacuations the general aim is to leave the room as fast as possible.
Therefore, allowing large distances is disadvantageous because a single pedestrian
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has to wait longer before there is enough space to exit the room. An increased αS

causes the agents to close the lines, making the group of pedestrian more compact
and the use of space more efficient. Overall, this results in a shorter evacuation
time, especially for those agents who would have to wait very long because many
other agents exit before them. Therefore, the impact becomes even more significant
with an increasing number of pedestrians and mainly influences the slope of the
evacuation time curve. Of course, the personal space of an agent is much smaller
than e.g. in one-on-one situations. However, it might be assumed that a pedestrian
neglects its need for comfort and personal space over the urge to leave the room,
especially since it is known that it is only a temporary situation. That means that
changing the scenario can also shift the priorities of the agents.

Fig. 4.14 shows the impact of the size of the time step ∆t on the evacuation times.
The simulation results for a larger time step of ∆t = 0.3 s, as used in the single-file
scenario, show larger evacuation times whose standard deviations are also larger
compared to the curve for ∆t = 0.1 s. This behaviour could be explained by the
following reason: a larger time step means that an agent decides less often on its
next velocity and each decision is valid for a longer time. Therefore, directions that
would lead to a collision in 0.3 s, but provide enough space for walking for 0.1 s,
lead to a standstill in the first case, in the latter case they can help to close the lines
in front of the exit door. The agent is not flexible enough to react to free space in
front since it has to plan for a time that is too long. Using an anticipation time
which corresponds to one time step, the agent also does not consider that the other
pedestrians might adjust to the current situation, but assumes their motion to be
constant. Overall, decreasing the time step brings more flexibility that is obviously
needed to reproduce the evacuation behaviour appropriately. This indicates that
not only the adoption time a pedestrian needs to adjust its velocity, but also the
anticipation time that the agent takes for a single decision is shorter. In conclusion,
in evacuations a pedestrian reacts faster but projects shorter.

In contrast to the time step ∆t and the slope of the velocity-headway relation, αS,
the lower threshold dS used in this relation has only a minor influence on the evac-
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Figure 4.14: A change of the time step ∆t influences the evacuation times which
become shorter with a decreasing time step. This is probably due to
a higher flexibility since the decisions on the velocity are made more
often and do not hold for a longer time span.

uation time (see Fig. D.1 in the Appendix). The exit times for a larger number of
pedestrians are only slightly higher for the original parameter dS = 0.1 m than for
the reduced value dS = 0.03 m. Instead, the influence can be visualised using Voro-
noi diagrams3 within the set-up. In heat maps the Voronoi cells can be coloured
according to their (reciprocal) size, representing smaller or larger cells (densities),
respectively. In the figures shown below, large cells / small local densities are col-
oured in dark blue and become brighter with decreasing size / increasing density.
Small cells are coloured in yellow indicating a high local density.
In Fig. 4.15 the Voronoi diagrams at t = 12.0 s are compared for a simulation with

3For more information on Voronoi diagrams and their use for the determination of local densities,
see Sec. C.2
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(a) dS = 0.1 m (b) dS = 0.03 m (c) Experiment, ‘GymBay’

Figure 4.15: Comparison of different values of dS using Voronoi diagrams at t =
12.0 s. A smaller threshold dS results in a more dense configuration in
the simulations like it is observed in the experiments.

the original (Fig. 4.15(a)) and the final optimised parameter (Fig. 4.15(b)) and the
experimental run (Fig. 4.15(c)). It can be clearly seen that a smaller threshold dS
leads to higher local densities. Thereby, the pedestrians also spread over a smaller
area around the exit. The configuration of the participants in the experiment is, in
contrast, much more compact. Reducing the lower threshold allows the pedestrians
to move closer together because the speed that is determined in the last decision
is still finite even for smaller distances-to-collisions. As the difference between the
original result and the experimental one is such distinct, the threshold was set to
a minimal value of dS = 0.03 m to enable a dense packing of the agents while pre-
venting unwanted overlaps. It results in a more dense, semicircular configuration of
the pedestrians in front of the exit. In contrast to the parameters described above,
the threshold dS also causes smaller distances between agents, but has almost no
influence on the evacuation time. Whereas αS makes the agents walk faster for
the same headway and reproduces a brisk walking behaviour, the lower threshold
causes that a pedestrian can walk at very small distances. In doing so, the agents
are able to fill smaller gaps between agents with still very low speed, but not cover
large distances towards other agents in order to make the evacuation more efficient.
Summed up, αS ensures that people can come close enough to the others, while dS
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is needed so that they do not have to stop and wait in the next time step until the
headway is again large enough. A similar argumentation holds for the comparison
to ∆t, which influences the evacuation behaviour by making the agents more flex-
ible and therefore more efficient, while dS acts on a smaller length scale.

Similar to the single-file motion the third decision on the final direction of motion
has to be adjusted in order to get realistic results. As it can be seen from the Voronoi
diagram in Fig. 4.16(a), no restriction considering the choice of the direction of
motion results in a very broad configuration of the pedestrians. All agents distribute
almost uniformly causing low local densities. Compared to the general expectations
and the experimental run in Fig. 4.16(c) this behaviour is highly unrealistic. When
the first pedestrians start to jam in front of the door, the distance-to-collision into
the target direction becomes small for the agents behind. They therefore choose
the interaction angle as direction of motion. In terms of collision avoidance it is
reasonable to keep as much space as possible to other agents, so that the interaction
results in an unrealistically broad crowd. Therefore, the decision on the direction
of motion was adjusted to

αi (t+ ∆t) =

α
fin
t :

[
d
(
αfin
t

)
≥ d (αia)

]
∨ [|αia − αt| > 57◦] ,

αia : else.
(4.4)

Here, the target angle αt is chosen as final direction of motion if the headway to-
wards the interaction direction αfin

ia is smaller or if the deviation between interaction
and target angle becomes larger than 57◦ (1.0 rad). It restricts the interaction to
narrower angles and shifts the focus towards reaching the goal instead of avoid-
ing close proximity to others. Whereas the exact threshold for this restriction has
no significant impact on the evacuation times (see Fig. D.2 in the Appendix), the
Voronoi diagram of the simulated evacuation with |αia−αt| ≤ 57◦ still shows some
deviations from the experimental run. However, taking 57◦ as the threshold already
is a large intervention into the model and leads to a semicircular configuration of the
group and arching processes in front of the exit as they are known from evacuation
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(a) No restriction (b) |αia − αt| ≤ 57◦ (c) Experiment, ‘GymBay’

Figure 4.16: Voronoi diagrams for t = 4.0 s show that the restriction of the final dir-
ection of motion increases the local density. However, the experimental
run displays an even narrower and denser configuration.

and bottleneck scenarios (see e.g. [24] and references therein). It is still larger than
the value that was used in the single-file motion (37◦). One has to keep in mind
that the general direction of motion in evacuations is not as predetermined as it is
in single-file situations. Overall, it seems to be reasonable to take this threshold as
a compromise between a pedestrian’s freedom of choice and the comparison to the
experimental result.
In terms of pedestrian walking behaviour, this restriction represents a change in
the priorities of the agents as it has been indicated already when investigating the
influence of the slope αS. Instead of avoiding others and eluding, the agents accept
smaller distances and the invasion of other pedestrians into the own personal space
in order to reach their goal. They also do not optimise their velocity to a higher
one choosing the direction of the larger distance-to-collision. Instead, the agents
wait in front of the exit and therefore optimise their evacuation time.

The last measure to fit the simulation results to the expectations and experimental
results is the introduction of body rotations. In general, a pedestrian’s extent per-
pendicular to its walking direction is given by the width of its shoulders in addition
to some ‘safety distance’. In dense or narrow situations, a pedestrian is able to
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reduce this extent temporarily by rotating the upper body, bringing one of the
shoulders to the front. This behaviour was explicitly observed in experiments on
lane formation in corridors [39, 166] and should be represented also in the model.
If a pedestrian’s speed has been zero in the previous time step, it assumes its own
radius r to be reduced to r/3 for the decision in the next time step when the agent
has to determine the distance-to-collision for target and interaction angle. There-
fore, the space that is required to pass another agent or a wall is also reduced for a
short period of time. The introduction of body rotation has almost no impact on
the evacuation times (see Fig. D.3 in the Appendix, Ch. D), it minimally reduces
the evacuation times for larger numbers of pedestrians. In fact, the simulation
without body rotation seems to fit better to the data at the end of the evacuation
than the optimised run.
The benefit of body rotations cannot been proven quantitatively. They were intro-
duced to solve unrealistic conflicts in the region in front of the door.
Clogging and arching processes are well-known characteristics of pedestrian beha-
viour, however, they mostly include pedestrians directly in front of the door and
are solvable in a short time frame. In contrast, in the simulated evacuation runs,
conflicts occurred that could last for 9 or 15 time steps like in the two situations
shown in Fig. 4.17(a) and 4.17(b), respectively. In both scenarios, the distance-
to-collision in front of the two agents shaded in red is large enough to move, but
the pedestrians block each other and cannot solve the situation. The number of
these blockages is reduced when introducing body rotation. It increases the range
of possible directions that do not lead to a collision with other agents and therefore
improves the evacuation behaviour. Despite body rotation, arching still occurs in
the simulated evacuations as exemplarily shown in Fig. 4.17(c), where the agents
in red form an arch that encompasses the entire exit. Therefore, it is reasonable to
include body rotations even if the evacuation times at the end of the evacuations
can be better reproduced without them. It might be conceivable to assume that
the last participants who left the room in the experiment lacked motivation or did
not have the urge to follow their predecessors as fast as possible.
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(a) Without body rotation,
conflict lasts for 0.9 s

(b) Without body rotation,
conflict lasts for 1.5 s

(c) With body rotation

Figure 4.17: (a), (b) Without body rotation more unrealistic conflicts occur that are
solved more easily when introducing the reduction of an agent’s radius.
(c) Even with body rotation, arches are found in the simulations.

The model performance with the optimised parameter (‘GymBay’) set was tested
on a second data set of another school (‘WDG’) [162]. Here, the pre-movement
time was set to tpre = 3.7 s.
As it is shown in Fig. 4.18, the simulations using the ‘GymBay’ parameter set are
not able to reproduce the evacuation times of the ‘WDG’ experiment which signific-
antly differs from the ‘GymBay’ curve. To achieve a better agreement between simu-
lation and experimental results the slope has to be further increased to αS = 3.3 1/s
which is 2.5 times the slope of the calibration experiment and 6.6 times the original
value of the SHDV model. This means that in this run, the participants had an
even higher urge to follow others, used the available space more efficiently and, as
a result, showed a significantly shorter evacuation time.
In terms of model development this results may be disappointing since it is usu-
ally aimed at finding a general parameter set that can be used to simulate several
situations. Here, the set is not able to reproduce another experiment of the same
situation. However, it shows that the model is highly flexible and can be adjus-
ted easily for an arbitrary data set. Moreover, it is not clear whether there is
one unique, optimal parameter set for any model and if so, it may include other
quantities than considered here.
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Figure 4.18: The evacuation times of the second experiment, ‘WDG’ cannot be re-
produced with the optimised parameter set and αS = 1.3 1/s. Instead,
the slope αS has to be further increased, indicating a higher urge to
follow the predecessors.

4.4 Bidirectional Flow

For the investigation of pedestrian dynamics, bidirectional flow is a key scenario
since it is insightful as well as challenging to reproduce. Lane formation in bidirec-
tional motion is a paramount example for self-organisation in pedestrian dynamics
and can therefore provide useful information on the quality of a model.
In this scenario N = 50 agents are set in a corridor (parallel to the x-direction)
with length L = 12.5 m and width B = 3.0 m with periodic boundary conditions
(this leads to a global density of ρ = N

LB
= 1.33 1/m2). The pedestrians are equally

distributed into two groups, one group walks from the left to the right, the other
one vice versa. The desired direction of motion is determined by the target co-
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ordinates which, similar to the single-file motion scenario, depend on the current
position: xt,i(t+ ∆t) = xi(t)± 5.0 m and yt,i = yi(t), which means that the agents
aim at keeping their current height within the corridor and walk along the corridor
to the right (+5.0 m) or to the left (−5.0 m), respectively. At the beginning of the
scenario, the pedestrians are placed randomly within the system with prevented
overlaps with the walls, but not with other agents. The simulations ran in total for
Tsim = 180 s.
Out of all scenarios described so far, the bidirectional motion needed the most ad-
justments of the modelled mechanisms in order to obtain even qualitatively good
results. In particular, three aspects inhibited realistic motion in the simulations.
First, the occurrence of gridlocks is a common problem in simulating counterflow
in a corridor [9, 11, 29, 112–118] and is also observed for this model. At a certain
point of the simulation, the pedestrians are not able to elude others appropriately
any longer. They start to block each other until the entire corridor is clogged
by two groups facing each other. A gridlock is an absorbing state for simulated
lane formation, the agents are totally disabled. It is not observed in empirical
observations and an artefact of modelled systems (see also Sec. 2.1). Introducing
mechanisms to prevent gridlocks leads to the second problem: in real pedestrian
motion, lanes formed spontaneously can decay again, but they are stable enough
to improve the agent’s comfort while walking. Therefore, the model has to achieve
a balance between inhibiting gridlocks and forming metastable, identifiable lanes.
The third aspect is specific for this approach and caused by the stochasticity of
the collision avoidance procedure. In counterflow, the pedestrians are constantly
exposed to encounters, so they almost always choose to use the interaction direc-
tion. This, however, is drawn from a probability distribution for each time step and
therefore changes significantly every time a new direction is calculated. Therewith,
the motion of the agents shows large fluctuations (the pedestrians ‘jitter’ while
walking) which makes the simulation look unnaturally and unrealistically.
To tackle these problems, several adjustments of the parameters were made and
walking concepts introduced. In comparison to the original parameter set (∆t =

86



4.4 Bidirectional Flow

0.3 s, vmin = 0.1 m/s, vmax = 1.2 m/s, αS = 0.5 1/s, dS = 0.1 m and p0 = 0.5, see
Sec. 4.1) a few parameters were changed: similar to the single-file motion and the
evacuation scenario, the proportionality constant of the velocity-headway relation is
increased to αS = 1.5 1/s, while the size of the time step is decreased to ∆t = 0.1 s.
Moreover, the body rotation concept that was already introduced in the evacuation
scenario is included. Besides, two additional adjustments of the model were done.
The first change considers the pedestrians’ direction of view. Usually, the agents
are assumed to look into their walking direction as the visual field is symmetrically
set around it. Thereby, the line of view follows the direction of motion. For bidirec-
tional motion, the pedestrian keeps looking at its desired direction. That means
that the visual field spans around the final target direction αfin

t independently of
whether it is chosen as final direction of motion. Even if the agent avoids others and
walks into the direction of the interaction angle αia, the direction of view is equal
to the target direction. Of course, all relative angles during the perception phase
are then determined with respect to the direction of view instead of the direction
of motion. The second new concept considers the choice of the final direction of
motion. While in single-file motion and evacuation a simple restriction of the inter-
action angle to directions near the desired direction was sufficient to obtain realistic
results, the problem in bidirectional flow is more complex. On one hand, focussing
on reaching the target like in the other scenarios facilitates the development of
gridlocks because the pedestrians do not have enough freedom of choice to avoid
approaching agents. On the other hand, the interaction mechanism leads to many
fluctuations and changes in the direction of motion which inhibit the formation of
stable lanes. Overall, the new concept tries to balance both aspects. Depending on
different external and internal factors, the pedestrians have two strategies to decide
on their direction of motion. The first strategy (‘Interaction’ / Strategy 0) uses the
default choice of the direction of motion as used in the two-person interaction,

α0
i (t+ ∆t) =

α
fin
t : d

(
αfin
t

)
≥ d (αia) ,

αia : else,
(4.5)
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and therefore focuses on the interaction and collision avoidance. This strategy is
used every time the measured distance-to-collision in either interaction or target
direction is very small, d (αt, ia) < 0.15 m, when the agent’s speed has been low
in the previous time step, si(t) < 0.3 m/s, or the pedestrian stands near a wall,
dW < 0.3 m. In addition, it is also randomly chosen with a probability p1 = 0.25.
In all other cases, the agent uses the other strategy (‘Target’ / Strategy 1) to decide
on its direction. This strategy shifts the focus towards reaching the goal. The final
target angle is chosen to be the direction of motion if the distance-to-collision in
the interaction direction is small, d (αia) < 0.5 d (αt), or stochastically with a prob-
ability that depends on the current speed, p2 = si(t)/1.5vmax. Using this strategy
means that going towards the target is preferred for higher velocities and when the
interaction would lead to much lower distances-to-collision.
The interplay of the adjustments described above are used to reproduce realistic
lane formation behaviour. Fig. 4.19 gives an overview of the simulation results of
different parameter combinations. It is shown which fraction of simulation runs
for different parameter configurations results in a gridlock (‘Gridlock’), in a loose
distribution of the pedestrians which still allows motion (‘No Gridlock’), or in a con-
figuration which indicates that a gridlock will develop shortly after the expiration of
the simulation time (‘Upcoming Gridlock’). In total, 50 simulation runs were done
for each parameter configuration with a total simulation time Tsim = 180 s each.
Beneath the optimised (‘Final’) interaction and the parameter set of the two-person
interaction (‘Original’), the simulation results for different values of the slope αS

and for a larger time step ∆t are investigated. Moreover, simulations without the
new concepts of body rotation, keeping the direction of view to the target direction
and restricting the choice of the direction of motion are considered.
Comparing the final and the original simulation set-up, it strikes the eye that the
simulation using the parameters of the two-person scenario is not able to reproduce
realistic motion since all runs result in a gridlock. Adjusting the parameters and
mechanisms decreases the number of gridlock runs by half. Considered qualitat-
ively, the simulation using the original parameters shows that the agents collide
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Figure 4.19: Frequency of simulation runs showing fully developed gridlocks, de-
veloping gridlocks and states where the agents are able to move for
different simulation configurations. The original parameter set and a
larger time step always result in gridlocks, whereas an increased αS and
three new concepts in the model can increase the number of successful
simulations.
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frequently and are not able to resolve conflicts of two agents facing each other,
especially near the walls of the corridor. Thereby, the agents tend to gather at the
corridor’s edge and continuously block the space needed by others to pass. The
reasons for this behaviour become more apparent when considering the single as-
pects that must be changed for lane formation.
If a simulation does not result in a gridlock, several patterns of lane formation
are observed for the final simulation set up. Since the pedestrians are distributed
randomly at the beginning of the simulation, the system needs a few seconds until
the agents are distributed uniformly. When the system is in an ordered state, the
ordering does not have to be permanent but can decay and redevelop during the
simulation. The observed lanes are also not stable but decay due to local fluc-
tuations of the chosen direction of motion. In addition, the system shows only a
few states where all pedestrians walk in line; there often are several ‘outliers’. In
Fig. 4.20 several lane formation situations are shown. The blue circles represent
pedestrians walking from the left to the right, red ones show agents walking from
right to left. In Fig. 4.20(a), the agents walk in three lanes. The outer ones have
the same walking direction, and the inner lane is used by pedestrians moving into
the other direction. Here, the entire region in which the blue circles are located is
interpreted as one single lane, although the agents are able to walk next to each
other. In this context, a lane is defined as a cohesive area in which the agents
have the same preferred walking direction. The system with two small and a third
larger lane can be interrupted by another lane as shown in 4.20(b) where four lanes
with alternating walking direction appear, even if the upper line with red circles is
small compared to the other ones. A third configuration is shown in 4.20(c), where
the system is split into two regions of opposite walking directions. In all these
situations, the lanes are spread parallel to the walls and the preferred walking dir-
ections. Moreover, following pedestrians that have the same preferred direction
were also observed in deviating directions, e.g. in Fig. 4.20(d). Here, two short
diagonal lanes are highlighted for pedestrians walking to the left and the right. It
can be assumed that, in terms of walking comfort and avoiding interaction, it also
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(a) Three lanes: red (r) - blue (b) - red (r) (b) Four lanes: b - r -b - r

(c) Two lanees: r - b (d) Diagonal lanes (highlighted)

Figure 4.20: Simulations with the ‘Final’ model configuration show different pat-
terns of lane formation. The lanes are metastable, decay and change
during the simulation.

is advantageous to deviate from the ideal walking angle and to follow others who
head into the same direction. These kind of lanes are often short and decay faster
or merge with other, larger lanes at the outer regions of the corridors.
For the optimised parameter set, the slope of the velocity-headway relation was
increased to αS = 1.5 1/s. The first, third and fourth bar in Fig. 4.19 show that a
decreased slope increases the number of gridlocks in the simulations significantly.
With αS = 1.5 1/s, 46% of all runs showed a gridlock after 180 s, while this value
increases to 66% and 84% for αS = 1.0 1/s and αS = 0.5 1/s, respectively. As de-
scribed in the sections before, the slope represents the urge of the pedestrians to
accelerate towards free space, and an increased value of αS means that the agents
walk more briskly at the same headway. In the case of bidirectional motion, a larger
value of αS enables the agents to move faster towards free space and therefore helps
at solving conflicts and small jams. Especially if the available space is additionally
limited because the pedestrians walk near a wall, it is crucial for the agents to
be able to use gaps in the pedestrian flow most efficiently. Decreasing αS causes
the agents to react slower to free space and miss the time at which it would have
been possible to resolve the conflicting situation more often. They have to stand
still while other pedestrians also arrive at the jam who cannot evade due to the
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counterflow and also stop. If this process carries on, a gridlock develops, starting
at the walls and growing into the middle of the corridor. Increasing αS reduced
the number of agents standing and waiting in the vicinity of the wall and therefore
decreases the number of possible beginnings of a gridlock.

One main reason why the simulations using the original dynamics always result in
gridlocks probably lies in the choice of the time step size. As it can be seen in
Fig. 4.19, all runs using the larger time step ∆t = 0.3 s are not able to reproduce
realistic behaviour. The pedestrians often collide and are not able to resolve con-
flicts even at larger distances. This could be explained by the same mechanism as
described for the evacuation scenario in Sec. 4.3. Decisions for a larger time step
force the agents to plan for a larger time and suppress directions that would be
advantageous only on a smaller time scale. The pedestrians stand still rather than
move because the gaps within the crowd do not provide enough space for them to
perform the entire motion. Using the smaller time step ∆t = 0.1 s results in more
decisions. The agents are again more flexible and can use the space around them
more efficiently. For the lane formation, this effect is crucial since the agents start
to block each other quickly within the confined space of the corridor. That shows
that solving conflicts and interacting with lots of other pedestrians requires fast
decisions and a distinct ability to close the lines and fill the gaps. The anticipa-
tion and planning time of pedestrians also seems to decrease in situations of higher
density.

Bidirectional movement naturally involves a lot of interactions and encounters. The
simulations show that especially one-on-one situations of two pedestrians walking in
opposite directions often occur. In contrast to the two-person interactions described
in Sec. 4.1, the available space for the two agents to solve the conflicts is severely
limited due to walls or other pedestrians walking besides. In the original simulation
set-up these conflicts are often the beginning of gridlocks when the agents are not
able to solve the conflict rapidly. At this point, the concept of body rotation can
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produce relief. The short-time reduction of the pedestrian’s space facilitates the
solution of conflicts as the agents need less space to pass each other. In fact, without
body rotations 72% of the simulation runs end up in gridlocks, whereas including
this concept reduces this value to 46%. The influence becomes even clearer if one
considers the emergence of a gridlock which is exemplarily shown in Fig. 4.21 for
a run without body rotation. As mentioned previously, a gridlock mostly starts to
develop if two agents face each other in the vicinity of a wall (see Fig. 4.21(a) at
the right-hand side near the lower wall). Here, the available space for the agents
to pass each other is almost halved because the wall blocks one whole side of the
agent. When other pedestrians pass the two agents standing at the wall, they do
not have any space to evade and it becomes increasingly difficult for them to solve
this conflict. Other pedestrians that want to pass mostly have to avoid collisions
with approaching agents so that they either turn towards the wall or try to go
around the two agents standing at the wall. In the first case, the agents start
to form ‘queues’ along the wall which cause other pedestrians to start with their
collision avoidance manoeuvre way before (Fig. 4.21(b)). In the second case, the
pedestrians walk towards the middle of the corridor. Due to the constant flow
of pedestrians they also might meet other opponent pedestrians besides the two
agents at the wall. Now the situation is similar to the initial conflict: the available
space is blocked by the standing agents at one side, and if the other side is also
occupied by walking pedestrians, the agents cannot elude and stand still. This sets
off a chain reaction: other pedestrians coming from behind the standing agents
walk again into the middle of the corridor in order to pass the second standing
pair of pedestrians. This results in a chain of standing pairs of pedestrians with
different desired walking directions growing from the edge of the corridor towards
the middle (see Fig. 4.21(c)). When on the other side of the corridor the remaining
space is not large enough to allow pedestrians to pass the standing group, either
because the chain has grown this far or because of similar procedures or other lanes
on the other side, a gridlock is formed (Fig. 4.21(d)). As soon as the standing
agents are distributed over the whole corridor width, the state cannot be changed
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(a) t = 22.0 s (b) t = 30.0 s

(c) t = 38.0 s (d) t = 46.0 s

Figure 4.21: Emergence of a gridlock: starting with two pedestrians with different
walking directions facing each other (at the lower wall on the right), the
agents start to queue behind them. Others stand besides and cannot
pass due to the counterflow. Thereby, the gridlock grows from the wall
towards the middle and eventually the other side of the corridor.

anymore. The more pedestrians arrive now, the worse the situation becomes until
the entire system is in a stable, respectively absorbing state of a total standstill. As
body rotation facilitates to solve these one-on-one conflicts, it reduces the number
of gridlocks.

Following Fig. 4.19, the introduction of the fixed direction of view worsens the
statistics for gridlocks in simulation scenarios. If the line of view is similar to the
direction of motion, the fraction of gridlock runs is 36%, with the direction of view
fixed to the target direction it is 10% higher. This seems reasonable: by forcing
the agents to look towards their goal they have less freedom of choice for their
directions, in particular for directions that deviate more from the target direction
but could help to solve local conflicts. Also, the restriction of the direction of mo-
tion improves the dynamics only a little, by 2%. Why these adjustments to the
model are reasonable nevertheless, can be seen when the ordering of the system is
considered.
Nowak and Schadschneider [113] introduced a global order parameter Φ for pedes-
trian lane formation that indicates which fraction of the pedestrians in the system
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is walking in a lane. For each pedestrian i the number of agents that walk in the
same lane is counted for the same and the opposite walking direction, respectively.
An agent n is assumed to walk in the same lane as a pedestrian i if their distance
perpendicular to the desired walking direction is below a certain threshold γ, i.e.

|yn(t)− yi(t)| ≤ γ. (4.6)

Since Nowak et al. used a cellular automaton model which is discrete in space,
they set a pedestrian’s diameter as the threshold. However, they adopted this
parameter from a concept for lane formation in colloidal suspensions [17]. In this
work the authors set the threshold to 3/4 of a particle’s diameter. Here, γ = 3r/2
with the pedestrian radius r is used as the threshold. With NL the number of
pedestrians that meet the criterion Eq. (4.6) and walk into the same direction as
the pedestrian i, and NO the number of agents moving into the opposite direction,
the order parameter for a single pedestrian i is given by

φi = (NL −NO)2

(NL +NO)2 . (4.7)

This parameter is zero for the same number of pedestrians walking in either direc-
tions and tends to one if there is almost only pedestrians with the same direction
direction of motion in the lane. The global parameter is then given as the average
over all N pedestrians,

Φ = 1
N

N∑
i=1

φi. (4.8)

Fig. 4.22 and 4.23 show the global parameter for single runs and the order parameter
averaged over all runs that showed lane formation but no gridlocks, respectively.
The final, optimised parameter set is compared to simulations without fixing the
direction of view and without the additional strategy for the direction of motion.
In both plots it is clearly shown that the optimised parameter set leads to a higher
value of Φ than the other two configurations. Especially the results for simulations

95



Chapter 4 Modelling Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

Φ

t [s]

Ideal
Direction of view

No restriction

Figure 4.22: The order parameter for single simulation runs shows lane formation
and self-organisation using the optimal parameter set, but reduced
values if the choice of the direction of motion and the direction of view
are not restricted.

without a fixed direction of view provide a much smaller order parameter. For the
single ‘ideal’ run, the system organises itself within 80 s during which the order
parameter increases in general. After this ordering phase, the order parameter
fluctuates around Φ = 0.7. The two other curves do not show this ordering phase
at the beginning but level off at Φ ≈ 0.4 for the scenario without restriction on the
direction of motion and Φ ≈ 0.2 for runs without the line-of-view concept. This
indicates that the motion without the fixed direction of view can inhibit gridlocks
well but does not provide distinct self-organisation in form of lane formation. Also,
the introduction of the second strategy in the decision on the direction of motion
enhances the ordering process.
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Similar results are found for the averaged curves (Fig. 4.23). Here, the fluctuations
are reduced and the general progress of the system becomes more apparent. For
the ‘ideal’ simulations the organisation phase endures for ∼ 60 s, then the curve
flattens at Φ ∼ 0.6. In contrast to the single runs, the averaged curves without
a restriction on the direction of motion show a short organisation phase at the
beginning of the simulation. After ∼ 40 s the order parameter lies between 0.4 and
0.5. The small incline at the beginning of the direction-of-view curve is probably
caused by the pedestrians that distribute uniformly from the randomly distributed
initial positions. Afterwards, the order parameter is rather constant around Φ =
0.20− 025. The comparison of these three curves confirms what could be assumed
considering the single runs. The formation of lanes can be described by the order
parameter for the optimised simulation set-up. The distinction of this process is
lowered when the direction of motion can be freely chosen. That means that the
second strategy focussing on reaching the target enhances the formation of distinct
lanes and stabilises them. Due to the velocity-dependent component it can also be
understood as some kind of inertia which helps at reducing the fluctuations of the
collision avoidance procedure. Despite the large number of imminent interactions,
pedestrians in bidirectional flow still seem to concentrate on their personal goal.
With a free direction of view the model is merely able to provide lanes and self-
organisation that can be found if the pedestrians are forced to keep their gaze
towards the goal. This indicates that the avoidance procedures in bidirectional
flow have no impact on the general orientation of the pedestrians and supports the
assumption that they keep focussing on the target while avoiding collisions with
others. Another impact of this concept can be found in the simulations. Without
restricting the pedestrians’ orientation to the target direction they show unrealistic
avoidance behaviours in one-on-one situations as shown in Fig. 4.24. The pedestrian
highlighted in green walks from left to right and encounters another agent, coloured
in orange, which is walking in the opposite direction. When they stand face to
face (Fig. 4.24(a)), they, following the collision avoidance procedure, try to evade
towards the upper wall, i.e. the green agent turns to the left, the orange one to
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Figure 4.23: The averaged order parameters for runs without gridlocks show that
the model is able to reproduced lane formation processes with the final
configuration, but not without restricting the direction of view. It is
slightly diminished if the agent does not focus on its goal.

the right. Instead of resolving this conflict in the next time step, the agents keep
this configuration (Fig. 4.24(b)) and start to drift towards the edge of the corridor
together until they have reached the wall (4.24(f)). Here, they are not able to
solve the conflicts for several time steps (Fig. 4.24(g)) until one agent can free
itself (Fig. 4.24(h)). This looks unrealistic and unusual, but is explainable when
considering the relative positions of the two agents. After encountering each other,
the agents decide to turn into the same direction. This is a consequence of the
probability distribution which does not always provide the best solution, in fact, if
the pedestrians stand directly in front of each other, evasions to either sides have
similar probabilities. While making the step in order to avoid the collision, the
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(a) t = 18.2 s (b) t = 18.6 s

(c) t = 19.0 s (d) t = 19.4 s

(e) t = 19.8 s (f) t = 20.2 s

(g) t = 20.6 s (h) t = 20.9 s

Figure 4.24: Without keeping orientated towards the target, the agents show un-
realistic interactions. They drift towards the wall because the relative
positions screen each other’s desired direction.

direction of view follows the direction of motion. Then, the relative situation has
changed: while the green pedestrian stood directly in front of the orange one, it is
now located on the left side, relatively. Vice versa, the orange agent moved to the
right in the system of the green agent. Now, it is more likely for the green agent to
walk straight forward or to the left instead of walking to the right which would lead
to the target but also to a collision with the orange pedestrian. In each time step
this configuration therefore stabilises itself, and the agents drift towards the wall
staying in the same relative positions. The pedestrians are not able to solve the
conflict until they have reached the wall where the possible directions are further
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restricted. This effect is diminished when the direction of view is restricted to the
target angle because the relative positions of the pedestrians change a little and
the probability to choose a direction that enables an agent to pass the other one
increases.

4.5 Summary
It has been shown that some of the model parameters have to be specifically adjus-
ted for the two-person-interaction (TPI), single-file motion (SFM), evacuation (E)
and bidirectional flow (BF). The parameter values and additional mechanisms that
could represent realistic behaviour best are summarised in Tab. 4.1 and Tab. 4.2, re-
spectively. For all situations, the minimal velocity vmin = 0.1 m/s was not changed.

∆t [s] vmax [m/s] αS [1/s] dS [m] p0

TPI 0.3 1.2 0.5 0.1 0.5
SFM 0.3 1.4 0.65 0.1 0.6

E-GymBay 0.1 1.2 1.3 0.03 0.5E-WDG 3.3
BF 0.1 1.2 1.5 0.1 0.5

Table 4.1: Final model parameters for the specific scenarios

αia Additional mechanisms

TPI - -
SFM |αia| ≤ 37◦ -

E-GymBay |αia − αt| ≤ 57◦ Body rotation, pre-movement timeE-WDG
BF Two strategies Body rotation, view on target

Table 4.2: Additional mechanisms included for the specific scenarios
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CHAPTER 5
Conclusion and Outlook

In the course of increasing urbanisation and rising numbers and sizes of mass events,
the understanding of pedestrian dynamics is not only important, but also neces-
sary. However, empirical and experimental observations can be difficult, e.g. for
practical or ethical reasons. In this instance, modelling and model development are
crucial and have become a mainstay for research on pedestrian dynamics.
It has been the aim of this work to develop a new model for pedestrian dynamics
that is based on continuous space and discrete time and therefore belongs to a model
class whose potential is promising, but poorly investigated. The approach can re-
produce pedestrian collective dynamics by modelling individual decision-making
processes in an easily structured way and with high fidelity. It was intended to
build the new approach on the SHDV model [102, 119, 120] which is set in dis-
crete time and continuous space and that is able, as one of just a few models, to
reproduce characteristic pedestrian movement in single-file motion (Sec. 2.3). The
SHDV model was specifically developed for purely one-dimensional motion and
therefore neglects the important aspects of real pedestrian motion. It is used as
one component in the new model approach which aimed at representing the more
general dynamics and interaction of pedestrians in two-dimensions, in particular, a
decision-based collision avoidance procedure.
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In many other models collision avoidance is based on the time-to-collision (TTC),
e.g. [111, 126, 131, 141]. The TTC seems to be an intuitive way to model the
perception and evaluation of imminent collisions by the agents. However, it has
been shown early in the model development that including the TTC into the SHDV
model is non-trivial. It cannot be used as an input parameter analogously to the
distance headway because it explicitly considers the relative velocities of two inter-
acting agents. Usually, a large TTC indicates that two pedestrians can walk freely
with high velocities. However, in jammed states especially for one-dimensional
single-file motion the TTC of two agents can also be large if both of them stand or
walk slowly. Used as input parameter for the SHDV model, the TTC then leads to
unrealistically high speeds in dense crowds. Instead, this model uses the distance-
to-collision (DTC) which does not diverge in high densities and therefore provides
more reliable information that can be easily used in the SHDV model. Especially
when combined with anticipation it represents the relative motion of two agents in
an intuitive way and helps at reducing the basis of decision-making in the model
to one single quantity.
In the first stages of the model development, collision avoidance was considered to
be solved by either the optimisation of a cost- or utility function or via stochastic
methods. While many other models use optimisation problems (see Sec. 2.3),
stochasticity is applied in this model that enables to explicitly capture the uncer-
tainty of human behaviour and heterogeneities within the group of decision-makers.
This is a key factor in order to describe pedestrian decisions while walking as real-
istically as possible.
Simulations of characteristic scenarios of pedestrian dynamics showed that the ba-
sic concept had to be adjusted. Thereby, insight into the relevant mechanisms
in decision-based models and information on decision processes and behaviours of
pedestrians was gained.
Besides route choice, more cognitive mechanisms and decisions had to be addition-
ally implemented, e.g. the restriction of the direction of motion (Ch. 4). It was also
not possible to find a single optimal parameter set that could be used to simulate
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all scenarios realistically. Two conclusions on model development in general can be
drawn from this. First, for cognitive agents an operational model only is not suffi-
cient and requires supplements in the behaviour from the tactical level to reproduce
realistic motion. Second, it is not known yet if there is one unique parameter set in
any model that allows to reproduce most different situations on a quantitative level
at all. This indicates that either the concept of such an ‘optimal’ parameter set
must be reconsidered or that the parameters of operational models are not the rel-
evant quantities to describe realistic behaviour of autonomous agents. Instead, still
unknown (optimal) parameters of a tactical or even strategic model could be the
key element for pedestrian models that determines which operational parameter set
is suitable for a specific situation. Global knowledge on the scenarios, experiences
and personal priorities seem to have a significant impact on pedestrian dynamics
and could also be explicitly implemented in models.
The model reproduces realistic pedestrian motion by means of the adjustment of
just a few parameters. Their physical interpretation enables to understand more
about the motives and priorities of pedestrian decisions. Separating the decision
process into several single decisions helps at considering the entire process more
sophisticatedly. Since the adjustments for the simulations have been done mainly
in the determination of the final direction of motion, this seems to be a point in a
pedestrian’s walking behaviour where psychology and sociology play an important
role, rather than pure physics. On the contrary, it can be shown that it is suffi-
cient to include psychological considerations occasionally and that physics-based
approaches in general do not lose their validity, especially if stochastic elements are
included. It is a particular advantage of this model that the decision process can be
considered in detail which facilitates the identification of physical and psychological
impacts on an agent’s decision.
Dynamic lane formation can be simulated with this model. However, the emer-
gence of gridlocks was also observed (Sec. 4.4). In contrast to single-file motion
and evacuation, collision avoidance in lane formation was crucial not only for a
correct adjustment of interpersonal distances, but also for the determination of
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the walking direction. In this view, single-file motion, one-on-one scenarios and
evacuations seem to be scenarios in which the agents are mainly goal-oriented, and
counterflow in a corridor requires dynamics which focusses more on the interaction.
This could help to identify the relevant mechanisms in pedestrian dynamics and to
understand human walking behaviour in the specific scenarios.
The presented model reproduces almost all characteristic effects of pedestrian mo-
tion. Especially for single-file motion, the good qualitative and quantitative agree-
ment with experimental data for global as well as local measurements are rarely
reached by other modelling approaches, including the original SHDV model. In
addition, the model is highly flexible and can be easily applied and extended due
to its modular structure. Until now, no model-based artefacts have been found, and
the hybrid approach obviates numerical schemes to solve the model. Compared to
acceleration- or other decision-based models, it provides an ‘intrinsic’ view on the
agent rather than a ‘bird’s eye perspective’ where the main influencing quantities
are given externally. A pedestrian’s decision is no longer considered as a ‘black
box’ that outputs optimal motion, but as interplay of single decisions that rely on
physical and psychological mechanisms.
For future work, the collision avoidance procedure can still be improved, especially
for high-density situations. Simulating other scenarios could help to refine the mod-
elled dynamics and give indications on the relevant quantities in these situations.
As yet, the model considers a fully homogeneous crowd of pedestrians. Heterogen-
eities could be included in many ways by varying model parameters for the agent
itself (radius, visual field, membership in a social group) or the dynamics. In the
determination of speed, stochasticity could lead to a more heterogeneous response
to a given distance-to-collision. Implementing this may lead to even more realistic
results.
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APPENDIX A

Parameters of the model

For reasons of clarity, following abbreviations are used: DTC - distance-to-collision,
LF - lane formation, SHDV model - Stochastic Headway Dependent Velocity model
[102, 119, 120], PT - probability transformation.

Parameter Description Value

α Absolute angle -
αi(t) Direction of motion of pedestrian i -
αk k-th angle in PT -
αia Interaction angle -
αn Absolute perception angle of pedestrian n -
αrel
n Relative perception angle of pedestrian n -
αS Incline of SHDV model 0.5− 3.3 1/s
αt Target direction -
α′t Intermediate target direction -
αfin
t Final target angle -
β1, β2 Viewing angle in wall perception -
γ Threshold of order parameter for LF 3r/2
δ, δ1, δ2 Auxiliary angle -
∆αn Angular expanse of pedestrian n at one side -
∆αtot

n Total angular expanse of pedestrian n -
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Parameter Description Value

∆ik Contribution of box k to the integral I -
∆t Time step 0.1 s, 0.3 s
ρi One-dimensional density of single-file motion -
σ Variance of Gaussian distribution 0.05 m
φ Range of the visual field 170◦
φi Order parameter of pedestrian i for LF -
Φ Global order parameter for LF -

a Arbitrary angle -
a? Interaction angle in PT -
amin, amax Bonding angles for wall distance -
B Width of a (simulated) corridor -
c Normalisation constant in PT -
d Minimal distance pedestrian - wall -
d, d(a) DTC (for angle a) -
dc Upper threshold of SHDV model -
dn Distance to pedestrian n -
dp DTC to pedestrians -
dS Lower threshold of SHDV model 0.03 m, 0.1 m
dvf Expanse of the visual field 8.0 m
dw DTC to walls -
F Area occupied by a pedestrian -
hi(t) Headway of pedestrian i -
i Identification number of pedestrian i 0, . . . , N − 1
I Integral in PT -
I ′ Reduced integral in PT -
K Number of angles in PT - 1 -
L Length of a (simulated) corridor -
lk, uk Lower, upper border of a box k -
lallmin Minimum lower border of boxes j > k -
ljmin Min. lower border of overlapping boxes j > k -
lW Length of a wall -
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Parameter Description Value

n Id number of a non-active pedestrian -
N Number of pedestrians -
NL Number of pedestrians with same walking dir-

ection
-

NO Number of pedestrians with opposite walking
direction

-

oW Orientation of a wall 0, π/2
p(a) Probability of angle a -
pk Probability / height of box k -
pW Position of a wall -
p0 Probability in slow-to-start rule of SHDV model 0.5, 0.6
p1 Probability for strategy 0 in LF 0.5
p2 Probability for strategy 1 in LF si(t)/(1.5vmax)
r Radius of a pedestrian 0.15 m
si(t) Speed of pedestrian i -
t Time -
tpre Pre-movement time -
Tevac Evacuation time -
Tsim Total simulation time -
uallmax Maximum upper border of boxes j < k -
ujmax Maximum upper border of overlapping boxes

j < k
-

vvvi(t) Velocity of pedestrian i -
vi Velocity of one-dimensional single-file motion -
vmax, vmin Maximum, minimum velocity of SHDV model -
x Uniform random deviate -
xmax, xmin Right, left end of a horizontal wall -
xi(t), yi(t) Current position of pedestrian i -
xai (t), yai (t) Anticipated position of pedestrian i -
xt,i(t, xi, yi),
yt,i(t, xi, yi)

Target coordinates of pedestrian i -

ymax, ymin Upper, lower end of a vertical wall -

Table A.1: Parameters of the model
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APPENDIX B

Determination of Angles and
Distances

B.1 Determination of Angles

In this section the calculation of two kinds of angles used in the model’s perception
phase is described in detail. First, the determination of the angles which border
the range of the visual field covered by a wall is explained. Second, the interaction
angle between the perceiving agent and another, detected pedestrian is introduced.
It is also explained how this angle is transformed into a relative angle and how the
angular range covered by the other pedestrian is calculated.

B.1.1 Viewing Angle in Wall Perception

When perceiving a wall a pedestrian determines the angular range of the visual field
that is covered by the wall. This mainly includes the calculation of the angles under
which the visual field intersects with the wall. This can only hold if the wall or
parts of it are ‘in sight’, which means that the minimal distance d between the wall
and the agent is equal or less the maximum visual range dvf. This distance depends
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on the pedestrian’s relative position considering the agent’s body extension: If the
pedestrian is located directly besides wall, i.e. if

ymin − r ≤ yi(t) ≤ ymax + r (B.1)

for a vertical and
xmin − r ≤ xi(t) ≤ xmax + r (B.2)

for a horizontal wall (see Fig. B.1), the distance d is given by the absolute value of
the difference of the wall’s position pW and the agent’s respective coordinate. If the
pedestrian is outside of the area where the wall is located, the minimal distance is
then given by the distance between the pedestrian’s position and the closest end of
the wall. In short, this leads to

d =



√
(xi − pW)2 + (yi − ymin)2 : yi < ymin − r

|xi − pW| : ymin − r ≤ yi ≤ ymax + r√
(xi − pW)2 + (yi − ymax)2 : yi > ymax + r

(B.3)

for a vertical wall with position pW, and an extension from ymin to ymax; to

d =



√
(xi − xmin)2 + (yi − pW)2 : xi < xmin − r

|yi − pW| : xmin − r ≤ xi ≤ xmax + r√
(xi − xmax)2 + (yi − pW)2 : xi > xmax + r

(B.4)

for a horizontal wall.
If (d−r) ≤ dvf holds, the viewing angles are calculated. This is done in a simplified
scenario: the wall is assumed to be infinitely long and the visual field to have a
range of 2π. Then, the problem reduces to the determination of the two angles of
intersection β1 and β2 of a line with a circle of radius dvf. These angles are calculated
absolutely with respect to the x-axis and depend on the relative position of the wall
and the center of the circle which is basically the position of the pedestrian. Fig. B.1
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ymax

ymin

pW xi
d

dvf

β1

β2

yi
δ1

δ2

(a) oW = π
2 , xi > pW

ymax

ymin

yi

pW xi
d

dvf

β1

β2

δ1

(b) oW = π
2 , xi < pW

xmin xmax

pW

yi

dvf

β1β2

d

δ1

d

δ2

xi

(c) oW = 0, yi > pW

xmin xmax

pW

yi

dvf

β1

β2

xi

d

δ1

d

(d) oW = 0, yi < pW

Figure B.1: The viewing angles β1, β2 depend on the wall’s orientation and the
relative position of the pedestrian.

shows the definition of the viewing angles β1, β2 for the different orientations of the
pedestrian towards the wall. For simplicity reasons, it only displays the case when
the agent stands by the wall, the calculation is the same for all other cases.
As can be seen from Fig. B.1(a), which represents a scenario with a vertical wall
(case 1) and a pedestrian standing on the right, the viewing angles follow from
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simple trigonometric considerations with the aid of auxiliary angles δ1 and δ2 = δ1:

β1,r
1 = π − δ1 = π − arccos

(
d

dvf

)
= π − arccos

(
xi − pW
dvf

)
, (B.5)

β1,r
2 = π + δ2 = π + arccos

(
d

dvf

)
= π + arccos

(
xi − pW
dvf

)
. (B.6)

In the case of the pedestrian standing on the left (Fig. B.1(b)), the viewing angles
can be determined by analogous trigonometric calculations using
β1 = δ1 = arccos

(
d
dvf

)
:

β1,l
1 = arccos

(
d

dvf

)
= arccos

(
pW − xi
dvf

)
, (B.7)

β1,l
2 = 2π − δ1 = 2π − arccos

(
d

dvf

)
= 2π − arccos

(
pW − xi
dvf

)
. (B.8)

Relying on the symmetry properties of the arc cosine, arccos(−x) = π− arccos(x),
one can show that the expressions for both scenarios are equivalent since the sign
of (xi − pW) changes. Therefore, it is sufficient to give one, as done in Sec. 3.3.1.
The calculations of the viewing angles for horizontal walls (0) run analogously. Us-
ing trigonometric considerations it follows for the situation depicted in Fig. B.1(c):

β0,a
1 = π + δ2 = π + arcsin

(
d

dvf

)
= π + arcsin

(
yi − pW
dvf

)
, (B.9)

β0,a
2 = 2π − δ1 = 2π − arcsin

(
d

dvf

)
= 2π − arcsin

(
yi − pW
dvf

)
. (B.10)

And analogously, one obtains for a pedestrian below a horizontal wall (Fig. B.1(d)):

β0,b
1 = arcsin

(
d

dvf

)
= arcsin

(
pW − yi
dvf

)
, (B.11)

β0,b
2 = π − δ1 = π − arcsin

(
d

dvf

)
= π − arcsin

(
pW − yi
dvf

)
. (B.12)
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Again, the expression for both cases can be transferred into each other with the aid
of the symmetry properties of the arc sine, arcsin(−x) = − arcsin(x).
If (d− r) ≤ dvf and at least one of the viewing angles β1, β2 calculated lies within
the angular range of the visual field, the wall is perceived by the pedestrian. Since
the angles are used later in the decision phase, they must be saved.

B.1.2 Angle Between x-axis and the Connecting Line Between
Arbitrary Points in Space

At different stages during the decision-process a pedestrian has to calculate an
absolute angle α towards a fixed, arbitrary point in space. This angle is basically
defined as the angle enclosed by the connecting line between the point (xi, yi),
which represents the position of pedestrian i, and the arbitrary point (xj, yj), and
the x-axis. It is used in the model for the angle towards another pedestrian and for
the angle towards the target (overall or intermediate). In order to facilitate later
calculations, the angle should be positive and |α| ∈ [0, 2π). Therefore, the relative
position must be considered.
Fig. B.2 shows the different orientations and the resulting angles α. Using again an
auxiliary angle δ, the expression for α follows from trigonometric considerations.
For the situations shown in Fig. B.2(a) and B.2(b) (the y-coordinates of the two
points are equal) and Fig. B.2(c) and B.2(d) (equal x-coordinate), the angle α is
easy to determine by reading out:

α (xi < xj, yi = yj) = 0 (B.13)

α (xi > xj, yi = yj) = π (B.14)

α (xi = xj, yi < yj) = π

2 (B.15)

α (xi = xj, yi > yj) = 3π
2 (B.16)
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Figure B.2: The angle between the connecting line of two points in space and the
x-axis depends on the relative position and follows from trigonometric
considerations.
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The angle for xi < xj and yi < yj is given by simple geometric considerations, see
Fig. B.2(e):

α (xi < xj, yi < yj) = arctan
(
yj − yi
xj − xi

)
(B.17)

As shown in Fig. B.2(f), for xi > xj the same considerations as above can be made
by using the auxiliary angle δ:

α (xi > xj, yi < yj) = π − δ = π − arctan
(
yj − yi
xi − xj

)
(B.18)

The expression for the situation shown in Fig. B.2(g) can either be derived by the
same trigonometric considerations using δ as in the upper case or just by using the
symmetry properties of the arc tangent, arctan(−x) = − arctan(x) with Eq. (B.18):

α (xi > xj, yi > yj) = π + δ = π + arctan
(
yi − yj
xi − xj

)
(B.19)

And it follows analogously for the situation shown in Fig. B.2(h):

α (xi < xj, yi > yj) = 2π − δ = 2π − arctan
(
yi − yj
xj − xi

)
(B.20)

B.1.3 Transformation from Absolute to Relative Perception
Angle

In case the angle α, as described in Sec. B.1.2, is used during the perception of
other pedestrians, it has to be transformed into a relative angle with respect to the
direction of motion αi of the perceiving pedestrian i. The relative angle αrel

n displays,
unlike the (absolute) angle αn, the relative orientation of the perceived agent n.
This is shown in Fig. B.3: the relative angle αrel

n is always defined to start from
the direction of motion of pedestrian i, αi, and to open towards the connecting line
under the angle αn. As a consequence, it opens into different directions according
to the relative positions of the two pedestrians (see Fig. B.3(a) and B.3(b)).
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(a) Pedestrian on the right, αrel < 0
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(b) Pedestrian on the left, αrel > 0
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(c) Inner relative angle, αrel > 0

αi

vvvi
αn

αrel
n

(d) Inner relative angle, αrel < 0

Figure B.3: The relative angle is defined by the difference of α and αi. Its sign
states the relative position of the agents.

Using the mathematical direction of rotation as a basis, the relative angle becomes
a signed quantity: an angle that opens along the direction of rotation should be
positive, an angle opening into the opposite direction negative. That means that
a pedestrian located on the left of the perceiving agent has a positive relative
perception angle, whereas seeing a pedestrian on the right results in a negative
relative perception angle. While the absolute angle lies between 0 and 2π, the
relative angle then satisfies αrel

n ∈ [−π, π], where αrel
n ∈ [−π, 0) describes the agent’s
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right-hand side, and αrel
n ∈ (0, π] the left-hand side. αrel

n = 0 represents that the
pedestrian is perceived straight ahead.
In most cases, the absolute value of the relative angle is given by the difference
between absolute perception angle and the direction of motion, which can be easily
seen in Fig. B.3(a) and B.3(b):

|αrel
n | = |αn − αi| (B.21)

In order to include the sign of the relative angle it can then be defined as

αrel
n = αn − αi (B.22)

which is positive if the pedestrian is on the left (αn > αi) and negative for a
pedestrian standing on the right (αn < αi). It should be noted, however, that the
relative angle is defined as the angle enclosed by the direction of motion and the
connecting line between the two pedestrians. Therefore, its absolute value should
not be larger than π, as it also follows from its definition as a signed quantity.
Then, the expressions given in Eq. (B.21) and (B.22) cannot hold for all situations,
see e.g. Fig. B.3(c) and B.3(d). Here, one of the angles is larger than 3π/2, while
the other is smaller than π/2. The difference |αn − αi| is hence larger than π and
the angle must be corrected by 2π:

αrel
n =

αn − αi + 2π > 0 : αn − αi < −π,

αn − αi − 2π < 0 : αn − αi > π.
(B.23)

Taken together, it follows for the relative perception angle:

αrel
n =


αn − αi + 2π : αn − αi < −π,

αn − αi − 2π : αn − αi > π

αn − αi : else.

(B.24)
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B.1.4 Angular Extension During Perception of Pedestrians

In the last step of the perception of another pedestrian n the angular range that
is covered by it has to be determined. The general idea is schematically shown in
Fig. B.4(a). Due to its body extension a pedestrian occupies a certain area within
the visual field. Combined with the relative distance towards the perceiving agent
this area can be described as a range of angles with respect to the pedestrian’s
position. Additionally, the perceiving agent also has a body extension that must
be considered: the set of all directions that would lead to a collision of the pedes-
trians’ bodies constitute the angular range that is covered by the presence of the
other pedestrian in the agent’s visual field (shaded in green in Fig. B.4(a)). It is
given by the interval [αrel

n −∆αn, αrel
n +∆αn] with ∆αn being the maximum angular

distance that would lead to a collision at one side. Since the relative angle αrel
n has

been determined previously, it remains to calculate the expanse ∆αn.
From Fig. B.4 it can be seen that ∆αn depends on the relative distance dn between
pedestrian i and n and the pedestrians’ radius r. In order to determine the covered
angular range one needs the spatial extension of pedestrian n perpendicular to the
connecting line between the two agents. Since a pedestrian is modelled as a circle
this extension varies along the connecting line. At the closest point the pedestrian
seems to be point-like, whereas it displays its maximum extension 2r at the centre.
In terms of perception and interaction it shall now be assumed that a pedestrian’s
diameter 2r holds for the entire body. This simplification is basically an approx-
imation of a pedestrian’s body area as a square whose edges are perpendicular to
the connecting line. It is shown in Fig. B.4(b): both pedestrians are approximated
as squares whose facing edges are parallel to each other and perpendicular to the
connecting line. The distance between both agents is determined by the distance
between the closest edges of the respective squares and is given by d as defined
above for the entire body extension. Of course this approximation leads to an
overestimation of the body extension F which amounts to just under 30%:

Fsquare − Fcircle

Fcircle
= (2r)2 − πr2

πr2 = 4r2 − πr2

πr2 = 4− π
π
≈ 27.32 %. (B.25)
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(a) General idea of the angular cov-
erage.
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n

∆αn
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(b) Simplified scenario for the deriv-
ation.

Figure B.4: The angular range covered by another pedestrian describes the set of
all directions that would lead to a collision of the pedestrians.

Nevertheless, there are several reasons that are indicative that this assumption
is reasonable and has no falsifying influence on the dynamic of the pedestrians:
the exact shape of a pedestrian is only roughly approximated when using a circle
and could be represented more exactly by more complex shapes like an ellipse
(see e.g. [70] and references therein). Temporarily representing the pedestrian
as a square therefore should not have a large impact on the general dynamics.
More importantly, it can be assumed that the most significant component of a
body’s extension during the perception of the angular coverage is the maximum
range. Thirdly, the angular coverage only considers the actual expanse of the body
without any need for personal space or ‘safety’ distance. It might be possible that
the additional space from the square approximation contributes to some kind of
private space that is unconsciously considered by the perceiving agent.
Fig. B.4(b) shows the simplified scenario. The perceiving agent i and the perceived
pedestrian n are approximated as squares with an edge length of 2r. The closest
edges are relevant for further considerations. Their distance is given by dn as defined

139



Appendix B Determination of Angles and Distances

in Eq. (3.4),
dn =

√
(xi − xn)2 + (yi − yn)2 − 2r. (B.26)

At first, the angular expanse of pedestrian n at one side is considered. It is given
by the set of all angles which would lead to a collision of the two bodies. It is
bounded by the maximum angle ∆αn, the angle under which a collision only just
occurs. This maximum angle is given when assuming that the corner of the squares
(the ends of the closest edges) touch. In Fig. B.4(b) this is indicated by the grey
‘passing’ line: the agents i and n would only just collide, if the upper left corner
of i touches the lower right corner of n while passing. Angles that are smaller
than ∆αn would therefore lead to a collision, chosing a larger angle would lead
to passing without contact. How to determine the maximum angular range ∆αn
becomes clearer if the grey passing line is shifted by r along the square’s edge: it
can then be seen that ∆αn is given by simple trigonometry:

∆αn = arctan
(2r
dn

)
. (B.27)

Since this is a symmetric problem, the same argumentation holds for the other side
and the total angular range of the visual field of pedestrian i that is covered by the
pedestrian n is given by

∆αtot
n = 2∆αn = 2 arctan

(2r
dn

)
, (B.28)

with the minimal distance dn between agent i and n.

B.2 Distance-to-Collision

The distance-to-collision appears at many stages during the decision phase. It is
determined either towards walls or other pedestrians in a given, arbitrary direction.
Both cases are described in the following sections.
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B.2.1 Distance-to-Collision to Walls

The distance-to-collision is one of the main quantities of the model. During the nav-
igation within the environment, it is necessary to determine the distance-to-collision
under an arbitrary angle to a wall. In order to get the minimum distance-to-collision
in a given scenario, a pedestrian calculates the distance to all perceived walls and
takes the smallest value as its headway. In the following the determination of the
distance-to-collision d(a) under a given angle a to an arbitrary wall is described in
detail.
During the perception phase, the agent has already determined the viewing angles
β1 and β2 (let β1 < β2 w.l.o.g.) that border the range of the visual field covered by
the wall. Only within this range a wall is detected. As a first rough presorting it
therefore has to be assessed whether the direction a lies within the covered range.
For most cases, the difference between the two viewing angles does not exceed π

except for the pedestrian standing on the left side of a vertical wall. As the viewing
angles are absolutely given with respect to the x-axis, it holds that β1 < π/2 and
β2 > 3π/2 in this case. Considering this, the first criterion if a wall is detected
sums up to β1 ≤ a ≤ β2 : β2 − β1 < π,

a ≤ β1 ∨ β2 ≤ a : β2 − β1 > π.
(B.29)

The next steps in the derivation are exemplarily made for the situation of a ped-
estrian i standing on the right of a vertical wall (oW = π/2, xi > pW) as shown in
Fig. B.5. The calculations for all other cases work analogously.
The distance-to-collision d(a) for a given wall has a finite value only if the direction
a directly points at that wall. In addition, the finite length of a wall that was
neglected during the perception phase has to be considered: if a points past the
wall, the distance-to-collision also diverges. In the model any infinite distance-to-
collision is set to the maximum visual range dvf. Therefore, in a second step the
angular range [amin, amax] has to be determined in which a headway would have
a finite value. The scenario is shown in Fig. B.5(a) to B.5(c). amin and amax are
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Figure B.5: The distance-to-collision d is finite, if amin ≤ a ≤ amax (see (a)-(c)),
and can be calculated using trigonometry (see (d)).

the two angles that bound, under consideration of the pedestrian’s body extension,
the area which would lead to a finite distance-to-collision. There are three possible
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relative positions of the agent with respect to the wall: the agent stands beside,
ymin− r ≤ yi ≤ ymax + r, above, yi > ymax + r, or below the wall, yi < ymin− r. For
each of these relative positions the bounding angles can be determined by geomet-
ric relations assuming that the closest point of the pedestrian touches the upper
or lower end of the wall, respectively. This point on the periphery of the circles
that represents the pedestrian is, however, not easily determined since it mostly
depends on the angle under which the agents passes the wall (except if the agent
goes by the wall without being right beside it at some time, e.g. if it is located
and stays above the wall). Therefore, the simplification of Sec. B.1.4 is again used
which approximates the agents temporarily as a square. In doing so the closest
point on the pedestrian’s circumference to the wall can be easily found and used
for the calculations. Fig. B.5(a) shows the scenario of the agent standing above.
It includes the geometrical considerations that help at determining the bounding
angles with the aid. From the figure it follows that

aamin = π+δ = π+arctan
(
yi − (ymax + r)

xi − pW

)
= π+arctan

(
yi − ymax − r
xi − pW

)
(B.30)

and, accordingly,

aamax = π+δ = π+arctan
(
yi − (ymin − r)
xi − pW − r

)
= π+arctan

(
yi − ymin + r

xi − pW − r

)
. (B.31)

The same considerations can be done for an agent standing beside or below, but
it can be shown that the results sum up to similar expressions as above using
the symmetry properties of the arc tangent if the differences yi − (ymax + r) or
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yi − (ymin − r) change the sign, see e.g.

abelmin = π − δ = π − arctan
(

(ymax + r)− yi
xi − pW − r

)

= π + arctan
(
yi − (ymax + r)
xi − pW − r

)

= π + arctan
(
yi − ymax − r
xi − pW − r

)
. (B.32)

If amin ≤ a ≤ amax holds, the headway hi(a) is finite and can be calculated. For
that, the scenario is exemplarily depicted in Fig. B.5(d) with a pedestrian that
stands beside the wall. The two cases shown here, a < π and a ≥ π, describe
the same situations as if the agent stood below and above the wall, respectively.
Later it can be shown that both results can be reduced to one single expression.
First, we consider a < π. Using the auxiliary angle δ1 = π− a, d(a) can be derived
by trigonometric considerations. It should be noted that the pedestrians’ body
extension has to be considered explicitly. Therefore, one does not regard the centre
of the circle as the starting point for h, but the point at the edge of the circle that
is closest to the wall, since this site would be the first point that collides with the
wall. In doing so, the respective coordinate has to be reduced by r:

cos(δ1) = (xi − r)− pW
d(a)

⇔ d(a) = xi − pW − r
cos(δ1) = xi − pW − r

cos(π − a)

⇔ d(a) = −xi − pW − rcos(a) (B.33)

where it was used that cos(π − x) = cos(π) cos(x) + sin(x) sin(π) = − cos(x).
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Accordingly, the derivation for the case a ≥ π follows as

cos(δ2) = (xi − r)− pW
d(a)

⇔ d(a) = xi − pW − r
cos(δ2) = xi − pW − r

cos(a− π)

⇔ d(a) = −xi − pW − rcos(a) (B.34)

using cos(a − π) = cos(π − a) = − cos(a). Because of arctan(x) ∈ (−π/2, π/2),
it must hold that amin, amax ∈ (π/2, 3π/2). It was required that amin ≤ a ≤ amax,
therefore it must also hold that a ∈ (π/2, 3π/2). From that it follows, that cos(a) <
0 and the expression for the distance-to-collision d can be rewritten as

d(a) =
∣∣∣∣∣xi − pW − rcos(a)

∣∣∣∣∣ . (B.35)

If a < π
2 or a > 3π/2, the angle does not point directly at the wall and d(a) is

infinite or set to dvf. For a = π/2, d(a) is finite only if the pedestrian stands in line
and below the wall, xi = pW and yi < (ymin − r). Then, the distance is given by

d
(
a = π

2

)
= ymin − y − r. (B.36)

Similar, for a = 3π/2 d is finite if xi = pW and yi > (ymax + r) and given by

d
(
a = 3π

2

)
= yi − ymax − r. (B.37)

The calculations for the other three cases work analogously, using the relations

cos(2π − x) = cos(2π) cos(x) + sin(x) sin(2π) = cos(x),

sin(π − x) = sin(π) cos(x)− cos(π) sin(x) = sin(x),

sin(x− π) = − sin(π − x) = − sin(x), (B.38)

sin(2π − x) = sin(2π) cos(x)− cos(2π) sin(x) = sin(x).
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For oW = π/2, but xi < pW (vertical wall with pedestrian standing on the left), the
two angles that bound the wall area are given by

aabmin = 2π − arctan
(
yi − ymin + r

pW − xi − r

)
,

aabmax = 2π − arctan
(
yi − ymax − r
pW − xi

)
(B.39)

for yi > (ymax + r), for yi < (ymin − r) it is

abelmin = arctan
(
ymin − yi − r
pW − xi

)
,

abelmax = arctan
(
ymax − yi + r

pW − xi − r

)
(B.40)

and for ymin ≤ yi ≤ ymax

abymin = arctan
(
ymax − yi + r

pW − xi − r

)
,

abymax = 2π − arctan
(
yi − ymin + r

pW − xi − r

)
. (B.41)

For all cases, the distance-to-collision is given by

d(a) = pW − x− r
cos(a) . (B.42)

It should be noted that in case of ymin ≤ yi ≤ ymax, d(a) is finite if

a ≤ amin ∨ amax ≤ a. (B.43)

For horizontal walls, oW = 0, the three possible relative positions of a pedestrian
are on the right (xi > xmax + r) or the left side of the wall (xi < xmin− r) and right
beside it (xmin − r ≤ xi ≤ xmax + r). If the agent stands, additionally, above the
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wall, yi > pW, the bounding angles are given by

armin = π + arctan
(
yi − pW − r
x− xmin + r

)
,

armax = π + arctan
(

yi − pW
xi − xmax − r

)
; (B.44)

almin = 2π − arctan
(

yi − pW
xmin − x− r

)
,

almax = 2π − arctan
(
yi − pW − r
xmax − x+ r

)
; (B.45)

abymin = π + arctan
(
yi − pW − r
xi − xmin + r

)
,

abymax = 2π − arctan
(
yi − pW − r
xmax − x+ r

)
, (B.46)

and correspondingly the distance-to-collision follows as

d(a) = −yi − pW − rsin(a) . (B.47)

The last case represents a pedestrian standing below a wall and the results are
given by

armin = π − arctan
(

pW − yi
xi − xmax − r

)
,

armax = π − arctan
(
pW − yi − r
xi − xmin + r

)
; (B.48)

almin = arctan
(
pW − yi − r
xmax − xi + r

)
,

almax = arctan
(

pW − yi
xmin − xi − r

)
; (B.49)

abymin = arctan
(
pW − yi − r
xmax − xi + r

)
,

abymax = π − arctan
(
pW − yi − r
xi − xmin + r

)
, (B.50)
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with the respective distance-to-collision

d(a) = pW − yi − r
sin(a) . (B.51)

For a = 0 and a = π, the distance-to-collision diverges except for the special case
that yi = pW. Then, for xi < xmin − r, the distance-to-collision is given by

d(a = 0) = xmin − xi − r, (B.52)

and for xi > xmax + r it is

d(a = π) = xi − xmax − r. (B.53)

B.2.2 Distance-to-Collision to Pedestrians

The distance-to-collision d(a) towards pedestrians in an arbitrary direction amainly
relies on the relative distance to any pedestrian as determined during the perception
phase and defined in Eq. (3.4). If a lies within an angular range that is covered by
an agent n, the respective distance-to-collision shall be given by the distance to this
agent, dn. On the other side, in free ranges the distance-to-collision is restricted by
the maximum visual range dvf. As a pedestrian n is perceived only if dn ≤ dvf, the
presence of agents standing farther afield would not be detected. Therefore, the
minimum distance-to-collision for these ranges can be set to dvf. Giving a relatively
to the direction of motion αi of the acting pedestrian i, the distance-to-collision is
then defined as the minimum distance towards pedestrians into this direction,

d(a) =


min
n
dn : αrel

n −∆αn ≤ a ≤ αrel
n + ∆αn,

dvf : else.
(B.54)

Here, the distance dn is used as distance-to-collision for the entire angular range
that is covered by the respective agent n. However, by definition, dn is the minimum
distance between the pedestrians n and i and was determined along the directly
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connecting line between the agents’ positions. As soon as a deviates from this
connecting line, the actual distance along this direction is given by

d̃(a) = dn
cos (|a− αrel

n |)
, (B.55)

so that d(a) as stated above is underestimated by the factor 1/ cos
(
|a− αrel

n |
)
. This

discrepancy is not significant for small deviations |a− αrel
n | → 0 or short distances,

dn → 0. That it is also negligible for large distances as can be seen when considering
the maximum deviation, |a− αrel

n | = ∆αn = arctan (2r/dn), and

d̃(a) = dn
cos (|a− αrel

n |)

= dn

cos
(
arctan

(
2r
dn

))
= dn

√
1 +

(2r
dn

)2
(B.56)

using cos (arctan(x)) = 1/
√

1 + x2. For dn � 2r it then holds that d̃n → dn. For
other distances dn, there is no formal justification for neglecting the deviation.
Nevertheless, there are reasons that may legitimise the assumption d̃ = dn with
regard to modelling pedestrian dynamics. Modelling-wise, this approximation fa-
cilitates the determination of the interaction angle significantly. As will be seen in
Sec. B.3, the calculation of the probability function P (a) and the respective interac-
tion angle highly benefits from d(a) being a piecewise constant function in a. Since
the model should be developed as realistic as possible while being as simple as pos-
sible, it might be reasonable to make this simplification as a first measure and assess
the results. Considering the nature of the particles modelled, one may take into ac-
count uncertainties of the human behaviour. At several points in the model it was
referred to the uncertainty of human decisions. Stochastic elements are explicitly
included to cover this, e.g. during the determination of the target or interaction
angle. Restricting an agent’s perception of a pedestrian to the minimal distance
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without further distinction over its extension may join the ranks of these consid-
erations. Neglecting that the distance-to-collision increases slightly towards the
‘edges’ of an opponent may cover an pedestrian’s inaccuracies and misjudgements
during its perception. Regarding the perceived pedestrian, the distance-to-collision
as above does not include any personal space or safety distance or other extensions
due to additional body rotation or arm movements. A more rough determination
could represent that the amount of occupied space may slightly change from time
to time.

B.3 Probability Distribution for Collision Avoidance
and Interaction Angle

During the decision phase, an agent has to determine a preferred direction in terms
of collision avoidance. As described in Sec. 3.4.2, this decision relies mainly on the
distances-to-collision that have been determined in the previous perception phase.
Each angle within the visual field a ∈ [−φ, φ] - a is given relatively to the agent’s
direction of motion - is assigned a probability p(a) that follows from the quotient of
the distance-to-collision into direction a, d(a), and the maximum visual range dvf,

p(a) =


1
c
d(a)
dvf

: |a| ≤ φ,

0 : else
(B.57)

with the normalisation constant

c =
∫ φ

−φ
p(a) da. (B.58)

and

d(a) =


min
n
dn : αrel

n −∆αn ≤ a ≤ αrel
n + ∆αn,

dvf : else.
(B.59)
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p(a) is maximum for all directions that point to an angular range that is not covered
by a pedestrian. In this case the minimum distance-to-collision is only restricted by
the maximum visual range and can therefore be set to dvf. On the other side, the
probability is decreased for angles that point towards one or more pedestrians cor-
respondingly to the distance-to-collision measured along the direction. If an angle
points towards multiple pedestrians, the minimum of all distances is taken as final
distance-to-collision. Based on this, p(a) is as an angular probability distribution
for collision avoidance. The decision of the pedestrian in terms of interaction is then
modelled by calculating the interaction angle αia as drawn from this distribution.

B.3.1 General Approach

Calculating the interaction angle αia based on the probability distribution p(a) ba-
sically means to draw a random number from an arbitrary probability function.
The explanation of the general numerical approach to this problem follows the de-
rivation in [167] (Chapter 7.3.1 and 7.3.2, pp. 361 - 363).
The determination of a random variable drawn from an arbitrary distribution cor-
responds numerically to the transformation of a uniformly distributed into an ar-
bitrarily distributed deviate. Let x be a uniform deviate between 0 and 1 with the
corresponding probability distribution

p(x)dx =

dx : 0 ≤ x < 1

0 : else.
(B.60)

Further, let y(x) be a given, arbitrary function of x. The transformation law
of probabilities then displays how to determine the probability distribution p(y)
subject to the distribution p(x):

|p(y)dy| = |p(x)dx|

⇒ p(y) = p(x)
∣∣∣∣∣dxdy

∣∣∣∣∣ . (B.61)
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In a second step, let p(y) = f(y) be an arbitrary, given probability distribution with
f(y) being a positive and normalised function. With the aid of this and Eq. (B.60),
the expression (B.61) then reduces to

f(y) = dx
dy . (B.62)

Using the antiderivative of f(y), F (y), and its inverse function F−1(y), it follows
that

x = F (y) (B.63)

and respectively
y(x) = F−1(x). (B.64)

That indicates that the arbitrarily distributed variable y(x) can be determined as
a function of x if the function F−1 is calculable.
As it can be seen from Fig. B.6, the relations B.63 and B.64 can be interpreted in
a geometric way. Knowing that

F (y) =
∫ y

0
f(y′)dy′ (B.65)

displays the area under the curve of f(y) = p(y) to the left of y, x = F (y) can be
understood as the fraction of the entire area under the curve that belongs to values
smaller than y. The total integral is, as stated in the assumption above, equal to
one. This can be used for the determination of y for a given x: having drawn a
uniform variable x ∈ [0, 1], y can be calculated by finding the value for which the
area under the curve corresponds to x.
This geometric approach is used in the model to determine the interaction angle.
The probability distribution p(a) is a positive and normalised function and there-
fore obeys the assumptions made above. In the model process, the normalisation
constant c is calculated and a uniform random deviate x generated. Afterwards,
the interaction angle αia is determined as the value of a for which the area under
the curve p(a) is equal to x.
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1

0

x

y

p(y)

F (y) =
∫ y

0 p(y)dy

Figure B.6: Given a uniform deviate x, the random variable y with probability
distribution p(y) can be calculated as the value of the inverse function
F−1 at x. It corresponds to the value for which the area under the
curve of p(y) is equal to x (after [167], pp. 363).

B.3.2 Calculation of the Normalisation Constant

The calculation of the normalisation constant is basically the determination of the
integral

c =
∫ φ

−φ
p(a) da, (B.66)

and relies on some specific properties of the probability function p(a) as it is shown
in Fig. B.7. The distribution is only defined for angles within the visual field that
are given relatively to the acting pedestrian’s direction of motion, a ∈ [−φ, φ].
In order to facilitate subsequent calculations, a shall be shifted for now by φ so
that the domain of definition changes to a ∈ [0, 2φ]. Following from its definition,
p(a) is equal to one for all angular ranges that are not covered by a pedestrian1.
For each agent that was perceived, the probability reduces to the respective value
p(αk) = dk/dvf for the entire angular range that is covered due to the agent’s body
extension, the interval [αk −∆αk, αk + ∆αk]. It should be noted that the index k

1Here, p(a) is not yet normalised.
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1

0

p(a)

aα0
α0 −∆α0 α0 + ∆α0 2φ

α1 α2 α3 α4 α5 α6

d0
dvf

Figure B.7: The function p(a) (dark blue) is a piecewise constant function. It is 1
for free areas and reduced to the corresponding probability in covered
ranges (see e.g. α0). Since the minimum distance is significant, some
pedestrians are totally (light green) or partially (dark green) covered
by others, and do not (fully) contribute to the function. During the
transformation the effective integral (shaded blue area) has to be de-
termined.

at this point does not represent the pedestrian’s id number. Here, the interaction
angles are numbered consecutively when arranged according to size.
For determining the effective (not normalised) probability distribution one has to
consider that multiple pedestrians may stand behind one another within the visual
field. In this case, the angular ranges covered by the agents overlap. In terms of
collision avoidance, the minimum distance for each angle is needed. In other words,
pedestrians that are screened from sight by other agents do not contribute to the
collision avoidance decision. For the time being, it will be distinguished between
total and partial screening. If two pedestrians overlap totally (see Fig. B.7, α1,
bright green), the agent standing farther afield is totally neglected for the prob-
ability distribution. For partial coverage (α3,4, dark green) the rear pedestrian
only contributes for the angular range that does not overlap with the other agent.
This effect is intensified by the reciprocal relation between angular extension and
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B.3 Probability Distribution for Collision Avoidance and Interaction Angle

distance-to-collision, 2∆αk = arctan (2r/dk) so that nearer pedestrians cover a lar-
ger angular range of the visual field.
Taking into account partial or total overlaps of some interaction angles, the prob-
ability function p(a) is constructed. For the determination of the normalisation
constant, the integral of p(a) over the entire visual field has to be calculated. As
it can be seen from Fig. B.7, the integral (shaded blue area) can be regarded as
composited by several rectangles or boxes. Each angle contributes a rectangle with
a lowered height corresponding to the probability, areas that are not covered are
represented by rectangles of height 1. Coverage of multiple pedestrians leads to
overlapping of different boxes that follow from the respective widths and relative
heights. As described above, rectangles with a smaller height always dominate when
overlapping. Parts of boxes that are screened do not contribute to the effective in-
tegral. This geometric approach can be used for the numerical calculation of the
integral by consecutively adding up the surface areas of all contributing rectangles.
Let {a0, . . . , αk, . . . , αK} be the set of all K + 1 interaction angles with α0 ≤ α1 ≤
. . . αK−1 ≤ αK . The range of extension assigned to each angle αk is given by
2∆αk = 2 arctan (2r/dk) and the respective probability by pk = dk/dvf. The lower
and upper border (in a) of the rectangle k around the interaction angle αk are,
regardless of any overlaps, then given by

lk = max (αk −∆αk, 0) , (B.67)

uk = min (αk + ∆αk, 2φ) , (B.68)

respectively, whereby the angles remain restricted to the visual field, a ∈ [0, 2φ].
In general, the box k can overlap with rectangles belonging to smaller angles αj,
j < k, or larger ones with j > k. Let

lallmin = min
j>k
{lj|uj > uk} (B.69)

be the minimum lower border of all boxes j on the right from box k (j > k)
whose upper border uj is larger than the upper border of box k, uk. If uj < uk,
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while keeping in mind that αj > αk, the width of box j must be so small that it
is fully covered by the rectangle k (see e.g. Fig. B.7, α1, bright green). In this
case it does not influence the contribution of the rectangle k and can be neglected.
Correspondingly, let

uallmax = max
j<k
{uj|lj < lk} (B.70)

be the maximum upper border of all rectangles on the left of box k. The rectangle
k is not overlapped if

uallmax < lk ∧ lallmin > uk, (B.71)

that means if neither boxes from ‘below’ / ‘left’ (j < k) nor from ‘above’ / ‘right’
(j > k) intersect with the rectangle representing αk. In contrast, it is completely
screened if

uallmax > uk ∨ lallmin < lk, (B.72)

i.e. if there is at least one rectangle for j < k whose upper border uj exceeds the
upper border of k, uk, or, for j > k, at least one box whose lower border lj is
smaller than the lower border lk. For e.g. uallmax only those rectangles are considered
whose lower border lies outside from box k. So, if uallmax > uk, the corresponding
rectangle must have a larger extension than the box k. Because of the reciprocal
relation between the extension 2∆αj and pj it must have a smaller probability
and is therefore dominant towards the rectangle k and screens it completely. The
analogous consideration holds for j > k.
Two rectangles k and j < k overlap partially, if lk < uj < uk. Whether the
box j influences the contributing surface area of k depends on the corresponding
probabilities pj and pk. Let

ujmax = max
j<k
{uj|lj < lk, pj ≤ pk} (B.73)

be the maximum upper border of all boxes j < k whose lower border lies outside
the box k and whose probability pj is equal to or less pk. Partial overlapping of
the rectangle k by a box corresponding to a smaller angle αj that influences the
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effective area of box k is then given if

lk < ujmax < uk. (B.74)

Analogously, using the minimum lower border of all rectangles j > k with the upper
border outside the box and a lower probability,

ljmin = min
j>k
{lj|uj > uk, pj < pk}, (B.75)

partial screening of the box k by a larger angle is given if

lk < ljmin < uk. (B.76)

Of course a box can be screened from both sides. In case that

ljmin ≤ ujmax (B.77)

holds, each overlapping again intersects, and as a result the rectangle of k is totally
covered.
Based on this, the integral of p(a) can be determined by consecutively adding up
the area of the box of each interaction angle. The overall integral I is composed of
the contributions of every angle k, ∆ik, plus contributions from the ‘left’ and ‘right
end’, for a < l0 and a > uK ,

I = ∆ileft +
K∑
k=0

(∆ik) + ∆iright. (B.78)

Rectangles of height 1, representing a free angular range, are co-considered with the
rectangle for the next smallest angle, that means that is directly attached on the left
of the considered box. Therefore, they are not explicitly displayed in Eq. (B.78).
For the first angle α0 screening ‘from the left’ is not possible. Fig. B.8 shows the
four remaining cases of screening for α0: in case of a total overlap (Fig. B.8(a)), the
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p(a)

lallmin
α0

(a) First angle, total overlap

1

0

p(a)

ljmin
α0

pk

l0

pjmin

(b) First angle, partial overlap

1

0

p(a)

ljmin
α0

pk

l0 u0

pjmin

(c) First angle, overlapping

1

0

p(a)

α0

pk

l0 u0 lallmin
(d) First angle, no overlap

1

0

p(a)

ujmaxljmin
αk

(e) k-th angle, total overlap

1

0

p(a)

ujmax
αk

pk

ljmin

(f) k-th angle, partial overlap

Figure B.8: The area contributing to the integral for each angle (blue) depends
on the screening of the respective rectangle. For the first angle, total
partial and no screening is shown. The two special cases for the k-th
angle due to screening on both sides are displayed in (e) and (f).

angle does not contribute to the integral. Partial overlapping as described above
is shown in Fig. B.8(b), where the effective area is represented by the blue-shaded
area. The contribution of α0 in the case of no overlapping (see Fig. B.8(d)) involves
the actual rectangle plus the following box of height 1. This additional area is not
included if the box 0 partially overlaps with another rectangle which has a larger
height, as shown in Fig. B.8(c). In sum, the contribution of the first angle α0 is
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given by

∆i0 =



0 : lallmin ≤ l0(
ljmin − l0

)
p0 : l0 < ljmin ≤ u0, p

j
min < p0

(u0 − l0) p0 : l0 < ljmin ≤ u0, p
j
min ≥ p0

(u0 − l0) p0 +
(
lallmin − u0

)
: lallmin > u0,

(B.79)

describing total and partial screening, overlapping without screening of box 0 and
no overlap, respectively.
The box of the last angle αK can only be screened ‘from the left’. The different cases
are shown in Fig. B.9(a) to B.9(c). Since the borders of the integral are considered
separately, there is no contribution of a potential box of height 1 in this case and
the area of the box of αK follows as

∆iK =


0 : uallmax ≥ uK

(uK − ujmax) pK : lK < ujmax ≤ uK , p
j
max < pK

(uK − lK) pK : uallmax < lK

(B.80)

for total, partial and no overlap, respectively.
Considering the angles αk with 0 < k < K, the effective area can be displayed by
the combination of the results for the first and the last angle plus the two cases of
partial overlapping from both sides. As described above, this kind of screening can
lead to no contribution from the rectangle k, see Fig. B.8(e), or a reduced area as
shown in Fig. B.8(f).
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The combined result for αk is then

∆ik =



0 : uallmax ≥ uk ∨ lallmin ≤ lk

(uk − lk) pk : uallmax < lk ∧ lk < lallmin ≤ uk
∧ pjmin ≥ pk

(uk − lk) pk +
(
lallmin − uk

)
: uallmax < lk ∧ lallmin > uk

(uk − ujmax) pk : lk < ujmax < uk ∧ pjmax < pk
∧ lk < lallmin ≤ uk ∧ pjmin ≥ pk

(uk − ujmax) pk +
(
lallmin − uk

)
: lk < ujmax < uk ∧ pjmax < pk
∧ lallmin > uk(

ljmin − lk
)
pk : uallmax < lk ∧ lk < ljmin ≤ uk

∧ pjmin < pk

0 : lk < ujmax < uk ∧ pjmax < pk
∧ lk < ljmin < uk ∧ pjmin < pk
∧ ujmax ≥ ljmin(

ljmin − ujmax

)
pk : lk < ujmax < uk ∧ pjmax < pk

∧ lk < ljmin ≤ uk ∧ pjmin < pk
∧ ujmax < ljmin

(B.81)

This describes total screening from either left or right, no overlap on the left but
partial overlap on the right with a smaller pk (leading to no contribution of a box of
height 1), no overlap right nor left, partial screening left and k overlaps on the right
with the smaller probability, partial overlap left and no overlap right, no overlap
left but partial overlap right, total overlap due to intersecting screening from both
sides and overlaps from both sides without intersection, respectively.
Last, the contribution of the rectangles at the end of the integral have to be con-
sidered. For the left marginal box as shown in Fig. B.9(d) and B.9(e) the definition
of lallmin is slightly changed to

lallmin = min
j
lj (B.82)
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Figure B.9: The last angle can also be totally, partially or not screened depending
on the probabilities and box widths. Contributions at the edges of the
integral are finite if none of the boxes exceed the bounds of the integral.

describing just the minimal lower border of all rectangles. There is a finite contri-
bution by the left margin to the integral if this minimum is not below the lower
bound of integration:

∆ileft =

l
all
min : lallmin > 0

0 : lallmin ≤ 0.
(B.83)

In particular, there is no left margin box if at least one of the interaction angles αk
is less than zero.
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Analogously, for a potential margin box it holds that

uallmax = max
j
uj. (B.84)

If this maximum of all upper borders exceeds the upper bound of integral 2φ, there
is no finite contribution by the right margin to the integral,

∆iright =

2φ− uallmax : uallmax < 2φ

0 : uallmax ≥ 2φ.
(B.85)

It should be noted that, if the box of the last angle αK is totally screened by an-
other rectangle, the right margin box is already included in the contribution of the
screening rectangle. Moreover, for K = 1 the entire integral is described by the
contribution of the left margin and the first angle. For K = 2 it is sufficient to
consider both margins, and the first and the last angle.

B.3.3 Calculation of the Interaction Angle

As previously described in Sec. B.3.1, the determination of the new interaction
angle requires the calculation of the value of a, referred to as a?, for which the
area under the curve p(a) to the left of a? corresponds to a given, uniform random
deviate x, providing that p(a) is normalised. This can be expressed as

x = 1
c

∫ a?

0
p(a)da (B.86)

with the normalisation constant c as defined in Eq. (B.66) and derived in Sec. B.3.2.
Using that c corresponds to the total integral I, Eq. (B.86) can be written as

I ′ ≡ cx =
∫ a?

0
p(a)da (B.87)
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and one has to derive the value a? for that the area under the curve p(a) is equal to
the reduced integral I ′. Following the integration method as described in Sec. B.3.2,
it is possible to sequentially calculate the integral until a? is found. In doing so,
it is crucial to start with the contribution of the left margin box and to consider
each angle according to size. Every contribution ∆i is individually added up to the
fraction ∆I of the entire integral that has been determined so far. If the sum of
both exceeds the given value of the integral, ∆I + ∆i ≤ I ′, a? must lie within the
rectangle described by ∆i. Then, using a simple conversion, the final value for a?

can be calculated.
Fig. B.10 exemplarily shows some of the possible values for a? within the different
rectangles. The integral that was already determined is shown by the area shaded
in light blue, the mid-blue area displays the contribution that is considered in this
particular iteration.
If the area of the left marginal box already exceeds the wanted value of the integral
(see Fig. B.10(a)),

∆ileft ≥ I ′, (B.88)

the new interaction angle is easily found:

I ′ = (a? − 0) · 1 = a?. (B.89)

The first angle only can be screened from the right, and the partial overlap does not
influence the determination of the interaction angle. However, the contribution of
the actual rectangle 0 and, if existing, a following box of height 1 must be considered
separately. Fig. B.10(b) and B.10(c) show the two different cases.
First, a? lies within the rectangle 0 if

∆I + (u0 − l0)po ≥ I ′ ∨ ∆I + (ljmin − l0)po ≥ I ′ (B.90)
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Figure B.10: For the determination of the interaction angle a? the sum of the contri-
bution of the considered box (mid-blue) and the previously calculated
area (light blue) must correspond to the reduced integral I ′ = xI.
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for either no or partial overlap. Then it follows that

I ′ = ∆I + (a? − l0) p0

⇔ a? = 1
p0

(I ′ −∆I) + l0 (B.91)

Second, if a? is within the following box of height 1,

∆I +
(
lallmin − uo

)
≥ I ′, (B.92)

the derivation changes to

I ′ = ∆I + (a? − u0)

⇔ a? = I ′ −∆I + u0. (B.93)

Here, ∆I already includes the contribution of box 0. The further derivations work
analogously. For the k-th angle, there are three different cases since overlapping
from the right can be neglected: the interaction angle lies within box k if

∆I + (uk − lk) pk ≥ I ′ ∨ ∆I +
(
ljmin − lk

)
pk ≥ I ′, (B.94)

in the following box with height 1 if

∆I +
(
lallmin − uk

)
≥ I ′, (B.95)

or in the box k under consideration of its partial screening if

∆I +
(
uk − ujmax

)
pk ≥ I ′ ∨ ∆I +

(
ljmin − ujmax

)
pk ≥ I ′. (B.96)
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Then the new interaction angle is

a? =


1
pk

(I ′ −∆I) + lk : a? in box k

I ′ −∆I + uk : a? in box k with height 1
1
pk

(I ′ −∆I) + ujmax : a? in box k with overlap

(B.97)

For the last angle αK the condition for a? being in the box K is given by

a? in box if

∆I + (uK − ujmax) pK ≥ I ′ : overlap

∆I + (uK − lK) pK ≥ I ′ : no overlap,
(B.98)

see Fig. B.10(g) and B.10(h). The corresponding interaction angle follows as

a? =


1
pK

(I ′ −∆I) + ujmax : overlap
1
pK

(I ′ −∆I) + lK : no overlap.
(B.99)

For the right margin box, if existing, the consideration is as easy as for the left
margin and the interaction angle is simply given by

a? = I ′ −∆I + uallmax. (B.100)

The final angle a? is limited to the bounds of the integration and therefore lies
within the visual field. However, all angles αk were shifted by φ at the beginning,
so the interaction angles must therefore be corrected by −φ so that a? ∈ [−φ, φ].
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APPENDIX C

Determination of Density and
Velocity

In pedestrian dynamics, density, velocity and flow are the main observables. Their
values, development in time and relation act as the basis for the description and un-
derstanding of pedestrian walking behaviours. However, the definition or measure-
ment method of these quantities severely influence the outcome (see e.g. [27, 168]).
This should be kept in mind when investigating pedestrian dynamics quantitat-
ively.
In Sec. 4.2, the fundamental diagram or velocity-density relation of pedestrian
single-file motion is determined for simulations and experiments. In doing so, two
different approaches are used: the global fundamental diagram describes the dy-
namics of the entire system by using averaged quantities. The local diagram con-
siders individual motion and local quantities. Hereby, several density and velocity
concepts are used that are explained in greater detail in the following.
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C.1 Global Fundamental Diagram

In the simulations, the global definitions of density and velocity are chosen in an
intuitive way. The global density is defined as the number of participants N divided
by the corridor length L,

ρsg = N

L
, (C.1)

whereas the global velocity is given as the speed parallel to the direction of the
corridor (in this case this is given by the x-component of the pedestrian’s speed)
averaged over time T , the number of runs R and the number of people N . This
results in

vsg = 1
R

R∑
run=1

1
T − T ′

T∑
t=T ′

1
N

N∑
i=1

sxi (t)

= 1
R(T − T ′)N

∑
runs,t,i

sxi (t), (C.2)

where T is the total simulation time, and T ′ the time at which the measurement
starts. Since the system has to be in a stationary state in order to obtain reliable
results, the measurement of the averaged velocity should not start until T ′. The
choice of T ′ depends on the system size.
For the experimental data these definitions have to be slightly adapted. In both
laboratory experiments, the data acquisition is not done within the entire system
but restricted to a certain measurement area. Because of that, the determination of
the global density as described above becomes problematic. Especially for a small
total number of pedestrians, the global density displays large fluctuations if an agent
is entering or exiting the measurement region [46]. Therefore, a reviewed concept
of the global density is used, the Θ-density. This density was first introduced by
Seyfried et al. [46] and used and extended in [45, 95, 120]. In the following, the
definition of the Θ-density as used in the work of Eilhardt [120] is applied.
The density Θi of a pedestrian i is defined as the fraction of the distance between
the agent i and its predecessor i + 1 that lies within the measurement area. It is
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therefore comparable to the fraction of the Voronoi cell of pedestrian i with the
measurement region1. Let xi,i+1 = xi+1 − xi be the distance between pedestrians i
and i + 1 (along the x direction) and Li,i+1 the space between i and i + 1 within
the measurement area, then the Θ-density is given by

Θi = Li,i+1

xi,i+1
(C.3)

Therewith, a ‘momentary density’ [46] can be defined as

ρ(t) =
∑N
i=1 Θi(t)
Lm

(C.4)

which gives the current global density within the measurement region of length Lm.
Each pedestrian can then be assigned an individual global density ρi by averaging
over the time the agent was walking within the measurement area,

ρi = 1
tiout − tiin

∫ tiout

tiin

ρ(t), (C.5)

where tiin is the time pedestrian i entered the measurement area, and tiout the time
the agent left it.
The corresponding global velocity is given by the average speed of the pedestrian i
within the measurement area,

vi = Lm
tiout − tiin

. (C.6)

Even for the experimental data, care has to be taken that the system is in an
almost stationary state and that additional influences and mechanisms at the start
and the end of the experimental runs are mainly excluded. Therefore, for a constant
number of pedestrians within the systems, the global density should also be nearly
constant during the measurement.

1For more information on the concept of Voronoi cells and the corresponding density, see C.2.
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Appendix C Determination of Density and Velocity

C.2 Local Fundamental Diagram
A commonly used concept for a local density in pedestrian dynamics is based on
Voronoi diagrams [169]. For a set of positions {ppp1, . . . , pppn} a Voronoi diagram can
be determined. It consists of cells ci each of which is assigned to one of the positions,
or pedestrians, respectively. A Voronoi cell ci of a pedestrian i contains the set of
all points in space that is closer to this agent than to any other. The size of all
cells Ai can be used to define a density distribution

ρ(xxx) =
∑
i

ρi(xxx) with ρi(xxx) =


1
Ai

: xxx ∈ ci
0 : else.

(C.7)

Descriptively, that means that the reciprocal of the size of a Voronoi cell ci, 1/Ai,
gives the local density for a pedestrian i.
Of course, the Voronoi density can be used in one-dimensional systems as well as
in two dimensions. For one-dimensional single-file motion (along x) as in Sec. 4.2,
the local density of a pedestrian i [45, 95, 120] is given by

ρi(t) = 2
di−1,1 + di,i+1

= 2
xi+1 − xi−1

(C.8)

where di−1,i = xi − xi−1 and di,i+1 = xi+1 − xi is the distance between pedestrian i
and the person walking behind, i−1, and the distance between i and its predecessor,
respectively.
The local (one-dimensional) velocity is defined as the current, individual speed in
x-direction

vi(t) =
xi
(
t+ ∆t

2

)
− xi

(
t− ∆t

2

)
∆t . (C.9)

For the analysis in this work ∆t was set to 0.32 s (corresponds to 8 frames at a
frame rate of 25 frames per second) in order to facilitate the comparison to the
simulated data.
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APPENDIX D

Evacuation

On the following pages the evacuation time plots investigating the influence of
the lower threshold dS that is used to determine the speed, the restriction of the
interaction angle and the introduction of body rotations are shown. For all three
adjustments of the model, the evacuation times do not differ significantly, their
influence is shown using Voronoi diagrams or screenshots from evacuation runs in
Sec. 4.3.
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Appendix D Evacuation
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Figure D.1: Decreasing the value for the lower threshold of the velocity-headway
relation slightly reduces the evacuation time for larger numbers of evac-
uated pedestrians.
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Figure D.2: The choice of the final direction of motion is restricted to directions
that do not deviate largely from the target angle in order to prevent
the agents from spreading over the room. The evacuation times do not
depend on the exact value of the restriction threshold.
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Figure D.3: Body rotations as short-time reductions of a pedestrian’s radius are
introduced to solve unrealistic conflicts in front of the door more easily
and faster. They merely influence the evacuation times.
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