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ABSTRACT

Inversion of transient electromagnetic (TEM) data arisirggn galvanic types of sources
is approached by two different methods. Both methods reénmeisthe subsurface three—
dimensional (3D) electrical conductivity properties ditg in the time—domain. A principal
difference is given by the scale of the inversion problentsstsolved. The first approach rep-
resents a small-scale 3D inversion and is based upon wellkiools. It uses a stabilized
unconstrained least—squares inversion algorithm in coation with an existing 3D forward
modeling solver and is customized to invert for 3D earth ni@dadth a limited model com-
plexity. The limitation to only as many model unknowns asagpfor classical least—squares
problems involves arbitrary and rather unconventionad$ypf model parameters.

The inversion scheme has mainly been developed for the perpiorefining a priori known
3D underground structures by means of an inversion. Thexreéopriori information is an
important requirement to design a model such that its lidhdegrees of freedom describe
the structures of interest. The inversion is successfuyljyliad to data from a long—offset
TEM survey at the active volcano Merapi in Central Java (irehia). Despite the restriction
of a low model complexity, the scheme offers some versatig it can be adapted easily to
various kinds of model structures. The interpretation efrésistivity images obtained by the
inversion have substantially advanced the structural kedge about the volcano.

The second part of this work presents a theoretically mabaehte scheme. It employs
imaging techniques originally developed for seismic waldf. Large—scale 3D problems
arising from the inversion for finely parameterized and taabily complicated earth mod-

els are addressed by the method. The algorithm uses a ctepggadient search for the
minimum of an error functional, where the gradient inforimats obtained via migration or

backpropagation of the differences between the data odseng and predictions back into
the model in reverse time. Treatment for electric field ancktderivative of the magnetic field
data is given for the specification of the cost functionabliggats. The inversion algorithm is
successfully applied to a synthetic TEM data set over a coinsianomaly embedded in a
half-space. The example involves a total number of more 37&00 model unknowns.

The realization of migration techniques for diffusive EMdinvolves the backpropagation
of a residual field. The residual field excitation originaftesn the actual receiver positions
and is continued during the simulated time range of the nreasents. An explicit finite—
difference time—stepping scheme is developed in advanteeamaging scheme in order to
accomplish both the forward simulation and backpropagaifD EM fields. The solution
uses a staggered grid and a modified version of the DuFortk&ratabilization method and
is capable of simulating non—causal fields due to galvarmpesyof sources. Its parallel im-
plementation allows for reasonable computation timesgivare inherently high for explicit
time—stepping schemes.






ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit werden zwei Verfahren fur die Isi@r von transient—elektro-
magnetischen (TEM) Daten von galvanisch gekoppelten @uelbrgestellt. Beide Meth-
oden rekonstruieren die dreidimensionale (3D) Leitf&hitgstruktur des Untergrundes im
Zeitbereich. Ein wesentlicher Unterschied ist durch diéf&nordnung des jeweiligen Inver-
sionsproblems gegeben. Der erste Ansatz 10st kleingk#étigersionsprobleme und basiert
auf bekannten Methoden. Die Rekonstruktion von 3D Modeitethbeschrankter Kom-
plexitat wird durch die Kombination des Marquardt—Invensverfahrens mit einem existier-
enden 3D Simulationsalgorithmus fur EM Felder verwirkticDas Verfahren ist auf solche
Anzahlen von Modellparametern beschrankt, die typischkiEssische “least—squares” Prob-
leme sind. Daher werden eher untypische Arten von Modellpatern eingesetzt, um 3D
Strukturen zu beschreiben.

Das Verfahren ist hauptsachlich dafiir geeignet, das Med®er im Vorfeld grob bekan-
nten Untergrundstruktur durch eine Inversion zu verfeinddaher sind Vorinformationen
eine wesentliche Voraussetzung. Sie werden herangezdgenmt die in ihrer Anzahl be-
schrankten Modellparameter so gewahlt werden konress die interessierenden Strukturen
abgedeckt werden. Die Inversionsmethode wird erfolgraeichDaten einer LOTEM Mes-
sung am aktiven Vulkan Merapi (Zentral-Java, Indonesiemgjewandt. Trotz der einge-
schrankten Modellkomplexitat in der Inversion bietegé dilethode ein gewisses Mal3 an
Flexibilitat. Die Modellparametrisierung kann leicht aerschiedene Untergrundstrukturen
angepasst werden. Die Interpretation der Inversionsarged hat wesentlich zum Wissen
uber die Verteilung der Leitfahigkeit am Merapi beiggea.

Der zweite Teil dieser Arbeit stellt ein aus theoretischehSanspruchsvolles Verfahren
vor. Es benutzt Techniken, die urspringlich zur Migratgmsmischer Daten verwendet
wurden. Die Methode ist geeignet zur Losung grof3skaligeensionsprobleme, die durch
komplizierte Modelle mit grof3er Parameteranzahl entsteH2er Algorithmus verwendet
das Verfahren der konjugierten Gradienten zur Minimiereimges Fehlerfunktionals. Die
Gradienten ergeben sich durch Migration der Residuen vamegsenen und durch Model-
lannahme berechneten Datékhnlich wie bei der seismischen Migration bewegen sich die
Residuenfelder zeitlich rickwarts. Ihre erste Anregarfiglgt zum Zeitpunkt der spatesten
Daten und wird bis zum fruhesten Mel3punkt simuliert. Daten elekrischen Feldern und
zeitlicher Ableitung von Magnetfeldern werden in der Heedeg der Gradienten behandelt.
Das Verfahren wird erfolgreich auf einen synthetischeneDsatz angewandt. Dabei wird
eine blockformige Leitfahigkeitsanomalie in einem hayanen Halbraum rekonstruiert. Das
Beispiel beinhaltet die Losung eines Inversionsproblentsnehr als 376000 Unbekannten.

Die Anregung der Residuenfelder erfolgt an den Empfang#en und setzt sich wahrend
ihrer Simulation fort. Fur die Felder der Vorwartssimuda und der Migration wird ein
explizites Zeitschrittverfahren speziell fur galvariecSendertypen entwickelt. Die 3D Sim-
ulation beruht auf einer raumlichen Diskretisierung dendwell Gleichungen, die unter dem
Namen "staggered grid” bekannt ist. Auf3erdem wird die sagate DuFort—Frankel Sta-
bilisierungsmethode benutzt. Explizite Zeitschrittednfen zeichnen sich durch einen hohen
Rechenzeitbedarf aus. Daher wird der Simulationsalgonghfur Parallelrechner entwickelt.
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CHAPTER 1

INTRODUCTION

Transient electromagnetic (TEM) methods are made to détertine electrical and properties
of the earth. The methods have a well-established placepiomtion geophysics, because
they have the potential to provide very useful addition&drimation for problems associated
for example with mineral exploratiosprma et al.1976;Palacky 1983;Helwig et al, 1994],

oil exploration Bpies 1983;Strack et al. 1989], volcanological hazardsfquahikaua et al.
1986;Lienert, 1991;Jones and Dumad.993] and hydrological investigatiorStewart 1982;
Mills et al., 1988]. An excellent review of the TEM method and its usesvsmgbyNabighian
and Macnad1991]. A collection of related publications can be foundhe special TEM
issue ofGeophysicsvol. 49 (7), 1984.

In the field of environmental geophysics, with shallow exatmn depths, TEM methods
have become increasingly popul&rischknecht et a).1991]. Shallow exploration typically
involves systems that employ loops as transmitting antewita an inductive coupling to the
ground. A fundamental description of the physical basislier TEM sounding technique,
with particular attention paid to a configuration where a n&ig receiver coil is located at
the center of the transmitter loop (in—loop array), is gibgritterman and StewaitL986].
Loop transmitters can be deployed rapidly and more easdly tirounded wires. Although
the grounded wire is a more complex source, it is often usel@@p soundings, because the
field falls off less rapidly at large distances and generadibadequate field levels is difficult
with loop sources$pies and Frischknecht991]. The presented work focuses on grounded—
wire transmitters, which have a galvanic coupling to theugband involve the presence of
non—causal source fields. The long—offset TEM (LOTEM) téghe [Petry, 1987; Strack
1992] typically uses a long grounded wire for deep crustadliss de Beer et al. 1991,
Thern et al, 1996;Hordt et al, 200(] and has been continuously developed at the Institute
for Geophysics and Meteorology of the University of Cologne

In general, data quality and quantity arising from TEM sys/Bave tended to increase to-



2 INTRODUCTION

gether with computational capabilities. Therefore, nogtinterpretation is likely to become
multi-dimensional in character. This is important in ortteenable multi—disciplinary in-
terpretation approaches as a means to achieve earth matelmwimum ambiguity in the
future. However, the interpretation of TEM data containgfigects from multi—-dimensional
conductivity structures is still non—trivial. First, TEM/Stems employ artificial sources,
which is rather complicated to simulate due to finite souizessand generation of fields
that vary in three dimensions. Second, the solution of mdithensional inverse problems is
usually large in scale. If arbitrarily complex earth modmie taken into account, the number
of model unknowns may amount to as much as several tens orddsdf thousands in real
exploration problems.

Therefore, the routine interpretation of TEM data is sébd on one—dimensional (1D) earth
models (e.gMacnae and Lamontagr{@987]; Nekut[1987]; Eaton and Hohman{iL989]).

In a 1D inversion (e.gAnderson1982]; Raiche et al[1985]; Huang and Palacky1991]),

a least—squares problem is solved for a conductivity—gedepth profile of a layered earth
model. Different ways of parameterizing a 1D earth existr the interpretation of data
generated by loop sourcéslllagar and Oldenburg1984] andFarquarson and Oldenburg
[1993] use many more layers (with fixed thicknesses) tharmiasons and thus solve an
under—determined inverse problem. This greatly incretseaon—uniqueness of the mathe-
matical solution and thus requires imposing model smogtbonstraints in order to generate
a model that contains only as much structure as required toefilata. The inversion for
smooth models is also known as the Occam sch&neagtable et a).1987] and was applied
to LOTEM data byComme[1999]. If, on the other hand, an unconstrained over—deteth
least—squares problem is solved, one typically allows #mation of both resistivity and
thickness of a very limited number of layers, perhaps halflezen. This approach has the
potential for generating a plausible representation ofuth@erground, yet the result shows
more dependence on the number of free parameters and tiregstaodel. On the other hand,
in contrast to smoothing constraints, an unconstrainedamsdnore adequate to incorporate
a priori information that may indicate a rich model struetur

In addition to the large—scale difficulties and the compéda3D source fields, the lack of
a sufficient amount of observations may also be a reason $triatng the variation of a
model to one dimension. Although the high non—uniquenesblpm of a large—scale 3D
solution can be addressed by regularization, using smagttonstraints, it still requires an
area—wide distribution of detectors above the target taaguae a reasonable resolution.
However, in many cases, only profiles of observations e®isth situations suggest to image
the lateral variation of the conductivity along the profileedtion, in addition to the vertical
variation, by means of 2D inversion schemes. At present 2@rgions of direct current
(DC) and magnetotelluric (MT) data are common tools and adehly used, whereas the
multi—-dimensional inversion of TEM data has been develgb@der, mainly due to the more
difficult simulation of artificial sources. Because of theation of a 3D source field in a 2D
subsurface structure, such inversions for controlledregomethods are often referred to as
2.5D problemsiiohmann 1988].

Recently, some progress in the solution of the 2.5D EM irevpreblem for controlled source
data has been mad&orres-Verdin and HabasHy}994] used the extended Born approxima-



tion for EM tomography. A 2.5D subspace inversion technigased on a finite—element
(FE) forward modeling scheme was presentedngworth and Oldenburfl995]. Its effec-
tiveness was demonstrated by an application to sea—floorlExés. Using a fast integral
equation (IE) forward modeling methoH]lis [1998] andChen et al[1998] demonstrated
the advantage of 2.5D inversions in the interpretation ddfcane EM datalu et al.[1999]
developed a rapid relaxation inversion of controlled—sewudio frequency magnetotelluric
(CSAMT) data including the transition—field and near—fieddad andJnsworth et al[2000]
applied this inversion to CSAMT data from a potential radidae waste disposal sitéit-
suhata et al[2002] transformed time—domain LOTEM data into the fregryedomain and
carried out a 2.5D linearized least—squares inversionawmoothness constraint based upon
Bayesian statistics.

The most realistic image of the Earth can be obtained if a inaatetion in all three Carte-
sian dimensions is allowed in an inversion. The developmE2D and 3D inversion schemes
for controlled sources has been almost simultaneouslgusecboth types employ 3D source
fields. Eaton[1989] formulated an inversion procedure based on frequetamain, volume
integral equations and a pulse—basis representation éantarnal electrical field. Using a
Born approximation to the 3D IERellerin and Hohman1993] iteratively refine a piece—
wise 1D interpretation at a receiver using the data from hlt®gring receivers. The EM
inverse scattering problem associated with recovering ac@mluctivity model from air-
borne TEM data was solved Illis [1999], employing a fast IE forward modeling algorithm
embedded in a regularized Gauss—Newton optimization drkee and Li[1999] proposed
an algorithm for 3D EM inversion that works with the magnetfield IE, where both forward
and inverse IE systems are discretized by the finite—elei&tjt method. Zhdanov et al.
[2002] introduced an adaption of the thin sheet method,dasean approximation of the
conductivity cross—section by a set of conductive thin sheth local inclusions.

This work presents two different 3D inversion approachestifte—domain EM data in a
comparative study. The first scheme developed in Chapted&sses the large—scale dif-
ficulty of full 3D inversion methods. Furthermore, it is apized for the case when only a
limited amount of field data is available for an inversion eTitiea of the scheme is to apply
an unconstrained least—squares inversion algorithm|lysmaployed for small-scale uncon-
strained 1D problems, to 3D problems. This implies a linotato only as many model un-
knowns as typical for classical least—squares problemtheréan defining a numerous set
of cell-based unknowns given by a simulation grid’s spalis¢retization, as is the common
approach in large—scale 3D inversions, the shape of lamjames of constant conductivity
is controlled by the model variables. Several differenetypf untypical model parameters
will be shown in the course of Chapter 2. To allow a quick refiee, the inversion scheme
will also be referred to as SINV

The constrained inversion scheme SINV has mainly been dpedlfor the purpose of refin-
ing a priori known 3D underground structures by means of aergion. Therefore, a priori
information is an important requirement to design a modehdhat its limited degrees of
freedom describe the structures of interest. Such priorimnétion is often given by geologi-

The strong constraints on the model complexity and thedidétmount of field data to be inverted suggested
to call the method a “Sparse INVersion”.
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cal studies, borehole or other geophysical measurementex&mple will be given by a case
history from a LOTEM survey at a volcano. Both the mountapoigraphy and lateral con-

ductivity variations in the underground require to take 3fi&ures into account. Because
of the mountainous terrain, the survey was made difficultdgystical problems. Therefore,

a full large—scale approach is prohibited due to only a spdrstribution of the observa-

tions above the target. However, the inversion for “low-goagterized” models involves an
over—determined problem and thus makes SINV a practicablddr the data analysis.

The scheme is based on a stabilized iterative inversionnseleambined with an existing
solution for the 3D forward simulation of EM fields. The wigalsed 3D modeling code
developed byDruskin and KnizhnermafiL988] is employed. It has been used a number of
times for the 3D simulation of LOTEM responsé#drdt, 1992;Hordt et al, 200Qa;b; Hordt
and Muiller, 2000]. The modeling algorithm is based on the spectral tamaecomposi-
tion method (SLDM) Pruskin and Knizhnermari988; 1994]. The Maxwell equations are
solved using Krylov subspace techniques which providea fast explicit 3D solver for the
diffusion of EM fields in arbitrarily heterogeneous medideimodeling code will be referred
to as SLDM code. Its implementation of a material averagoigeme supports the design of
arbitrary model parameters. Both the fast 3D forward sitmuteand the small scale of the
inversion problem lead to a relatively low computationdbdaf The computation time for
an inversion is further minimized by distributing the mplé forward simulations during an
iteration to several processors of a parallel computer.

In contrast to the constrained inversion scheme, the squanaf this work presents a large—
scale inversion approach. The scheme adapts an imagingdetlginally developed for
seismic wavefieldsGlaerbout 1971;Loewenthal et a).1976;Tarantola 1984] and known
as seismic migration to diffusive EM fields. An inversionrfarlation that applies migration
techniques to EM data is not entirely ned#éhdanov and FrenkdlL983] have advanced the
idea of migrating or backpropagating the scattered EM figiol @ homogeneous background
medium in order to image the source of the scatterireg and Xig1993] transformed low—
frequency EM fields by an integral transformation into waslel in order to apply seismic
imaging methods. It was along these lind&ng et al[1994] developed the theory for solv-
ing the full non—linear 3D TEM inverse problem in the timentn by an efficient way of
a conjugate—gradient search for the minimum of an errortfanal. Zhdanov and Portni-
aguine[1997] introduced a new formulation of the time—domain gl@magnetic migration
technique, based on the minimization of the residual—fiaketgy flow through a profile of
observations.

The inversion algorithm presented in this work uses a naeali conjugate—gradient search
for the minimum of an error functional. Whil&/ang et al.[1994] made much progress
in proposing a tractable approach to 3D TEM imaging, they @pplied their solution to
2D synthetic examples from causal sources. This involvedstiiution of the scalar wave
equation for electric fields and neglected crucial detaitshplementing the technique for
general 3D imaging. Here, the specifications of the costtfanal gradients are formulated
for the full 3D treatment of non—causal source fields arigimogn galvanic sources. It will
become evident that the problem related to causal souras fielcontained in the more
general non—causal case.



The actual solution formulation of the inverse problem byamse of migration techniques
for diffusive EM fields is outlined in Chapter 4 and involvestl forward simulation and
backpropagation of the EM field. Therefore, the precedingp@dr 3 develops an adequate
explicit finite—difference (FD) time—stepping scheme idarto enable the migration of EM
fields, which cannot be realized by the SLDM code. It is in pipite based on the FD time—
domain solution for 3D modeling presented\dang and Hohmanfi993]. However, mainly
due to the involvement of 3D non—causal source fields, theralifferences in several key
aspects as will be outlined in more detail in Chapter 3. Meegothe solution has been
developed for parallel computing platforms.

Preliminary notes

For brevity, followingGoldman et al[1994], in all chapters the word voltage shall be used
instead of both “magnetic field time derivative” or “magmdtiduction time derivative”. Al-
though it may be argued that electric field measurementsefilsctively involve voltages, it
will become clear from the context which kind of field is calesied. Vectors and matrices
will be represented by bold characters. Lower case chaszate used for vectors, upper case
letters are used for matrices.

This work treats EM fields generated by sources with a gatvemupling to the underground.

Such sources and its generated EM fields are also referresdntora-causal. This expression
is chosen due to the presence of a DC electric and magnetdri¢he underground before

the source signal is generated by a shut—off. Inductivecgoiypes without comparable DC

fields will be referred to as causal.






CHAPTER 2

A 3D CONSTRAINED INVERSION APPROACH
AND ITS APPLICATION TO LOTEM DATA FROM
MOUNTAINOUS TERRAIN

In the geophysical literature, a large number of examplaesfound for data interpretation
situations, which are characterized as follows:

1. The collected data are insufficient, in terms of the spatxering of the target, in order
to determine a numerous set of model unknowns in a larges-goadrsion approach.
This may have several reasons, where logistic and/or ecgnomitations might be
dominant. In other cases, a survey may have the aim of a pnaigninvestigation of
a target and thus involves only a limited amount of measun¢sne

2. There exists prior knowledge about the target. This cagiven by other geophysical
disciplines, geological information or borehole measwets. In many cases, TEM
surveys are carried out on the basis of a priori informatoarder to refine the model
of an a priori known target (e.Jaylor et al.[1992]; Hordt et al.[20000]).

3. Simplified 1D inversion approaches fail to take multi—-dimional effects contained in
the data into account. Even if a data fit can be achievedalitdriased interpretations
can be expected when 1D methods are applied to the responsa®itomplex struc-
tures. Examples where 1D inversions do not accurately sxc@® or 3D resistivtiy
distributions are shown bjewman et al[1987] andBlohm et al[1991].

Without regard to the complexity of the underground, 1D msu@n routines are often em-
ployed, because of the computational expense of a full 3Brgiwn and the current lack of
available inversion codes for TEM measurements. Even Wwétcapability of inverting for a
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large parameter set, the poor resolution due to insufficdatd remains. Multi-dimensional
forward modeling is often used alternatively (erdt et al.[1992]; Helwig et al.[1994]).
Starting from an initial guess, a model refinement can besaekliby a trial-and—error proce-
dure. However, this method is likely to be more time—consigribecause of erroneous model
guesses. Second, such an approach automatically limitothelexity of the earth model,
because the manual control of a large set of unknowns isyhtedsible. Finally, a certain
amount of experience with the EM responses of multidimeraistructures is required.

2.1 Methodology

The inversion method presented in this chapter, also edfeiw as SINV, is optimized for
problems characterized by the above listed aspects. Th®fdbe scheme is the combination
of a Marquardt—Levenberdg.gvenberg1944;Marquardt 1963] method as a stable inversion
scheme with the 3D forward modeling code fr@nuskin and KnizhnermafiL988]. The
approach addresses the large—scale difficulty by limitmgriumber of model unkowns to
as many unknowns as typical for Marquardt inversions. limvegrfor a low—parameterized
model involves an over—determined system to be solved. groides for the capability of
resolving multi-dimensional structures even if only a tiediamount of field data is available.

The large—scale character of full 3D inversions originétes) the usual practice of treating
the discrete cells of a finite—difference or finite—elemelesimas model unknowns. Such a
fine model parameterization quickly leads to a huge set @rpaters, but offers a maximum
of degrees of freedom during an inversion. Here, the mod&tian is constrained in a way
that a resistivity structure, given by the parameters ofstaeting model, cannot be changed
to a completely new structure. To describe a 3D earth, thidwes alternative types of model
unknowns, which need to be adapted to the structures oestteFherefore, it is crucial that
sufficient a priori information exists to define proper moplatameters. If not present at all,
a trial-and—error forward modeling may be the only prattternative to find a suitable
parameterization of the underground. Examples for ratheomventional parameterizations
are shown in the course of this chapter. It will be seen thahdéow—parameterized models
can lead to relatively complex 3D structures.

2.1.1 The forward modeling code

The forward modeling code is based on the spectral Lanczmswgosition method (SLDM).
The theory of this solution method is describednyskin and Knizhnermaf1988; 1994];
Druskin et al[1999]; a brief summary is also given bjordt et al.[1992]. The solution of the
3D diffusive Maxwell equations by SLDM involves Krylov sytece techniques. Traditional
Krylov subspace techniques include the conjugate—gradiethod, biconjugate—gradient
method, and quasiminimal residual methobafiden and Mackiel989; Alumbaugh et a.
1996;Smith 1996]. These techniques are very efficient for the solufdarge linear systems
with a sparse matrix. The application of SLDM for solving M&dl’s equations involves
approximating the equations on a spatial FD, thus yieldisgstem of ordinary differential
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equations. The system’s solution is written as the prodifttractions of its stiffness matrix
and the vector describing the initial conditions. The dolubn a Krylov subspace can be
thought of as a natural extension of the conjugate—gradiethod to the computation of
arbitrary matrix funtionalsPruskin and Knizhnermari994].

It is crucial that the convergence characterisics of SLDkI taken into account when de-
signing a FD discretization for a given earth model. Here, rtiost important aspects are
outlined. A detailed and more theoretical description \&gibyDruskin and Knizhnerman
[1994]. The convergence of SLDM depends on the differeiigplation system’s condition
number, that is the ratio between largest and smallest\eaigs The condition number de-
pends on the aspect ratio of a FD grid. lll-conditioning due targe condition number is
introduced by high conductivity contrasts. This resulsrirthe requirement that for the ap-
plication of SLDM the grid discretization should be fine imcuctive regions and coarse in
more resistive regions in order to achieve a proper sinanaif the attenuation characteristics
of EM fields. Hence, convergence problems may occur in thegoee of high contrasts if a
compromising grid discretization cannot be found. Furtiane, a fine grid should be used to
ensure accurate results at early times, whereas low fregueids need coarse spacings for
a quick convergence. Therefore, the simulation of late $imlso decrease the convergence
due to large FD grid aspect ratios.

The forward simulation code allows to define the materiapprties of the earth, i.e. electric
conductivity and magnetic permeability, by means of regtdar blocks. Both conductivity

and magnetic permeability do not vary over the block voluriiee corners of the blocks
are not required to be confined to the cells of the FD grid. H@reconductivity contrasts
between adjacent blocks should be taken into account wheigrdeg the FD grid. The

inverse interpolation of the distribution of material peofes onto the FD grid is realized
by a material averaging scheme describedMggkow et al. 1999]. This scheme allows to
define arbitrary model parameters by the composition of armaare blocks such that they
form volumes of constant resistivity.

2.1.2 The Marquardt—Levenberg inversion scheme

The Marquardt—Levenberg inversion scheme (&ugpp and Vozoffl975]; Lines and Treitel
[1984]; Hordt [1989]) represents a stable iterative method in the presehitl—-posed inver-
sion problems, where small changes in the data can leadg® ¢tianges in both the solution
and in the process that finds the solution. First considecldmssical least—squares approach
for inverting a set of observed data for a given earth modedrpaterizatiorm [Jackson
1972]. Basically, this involves minimizing the cost furmstal @, quantified as the difference
between the vectors of the observed and predicted measoieifi@nddP, respectively,

®(m) = (d°—dP)T(d°~dP), (2.1)

which is also called the Gauss—Newton approddhds and Treitel1984]. The cost func-
tional is connected with a model guess by the implicit depeid of the predicted data on
m. In order to treat the non-linearity of minimization pramie related to TEM inversion
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problems, the model response
f(m) =dP

is typically assumed to be a linear function of the paransetach that a perturbation of the
model response about a given starting madeglcan be represented by a first—order Taylor
expansion

f(m) = f(mg) +Jdm,

with dm = m — mg defining the model perturbation. The matdxrepresents the partial
derivatives of the predicted data with respect to the modedmpeters,

Jij = , i=1..,N; j=1..,M, (2.2)

om; m=mg

and is also referred to as parameter sensitivity matrix coldian. The size ad is N x M,
given by the number of observed data points and the numberdehunknowns, respec-
tively. For the solution of Equation (2.1) it follows&ines and Treitel1984]

dm=(J7J) 1375d, (2.3)

wheredm now represents the parameter change vector that has to bedafgpa model
guessmg in order to decrease the data misiit = d° — dP. The linear approximation of
the non-linear forward functiohinvolves a step—wise minimum search by evaluating the
Gauss—Newton solution (2.3) in an iterative manner, stgiftiom the initial model guess.

The unconstrained least—squares solution (2.3) has tresiratlle property of being unstable
in the presence of a singular or nearly singular matfid. Therefore, the basic strategy of
the Marquardt—Levenberg scheme consists of adding a furtimstraint to the least—squares
problem (2.1). To reduce the difficulties with a singular rxaf'J, a Lagrange multiplier
problem is solved subject to the constraint of a boundedggnef the parameter change,
specifically

@(m) = &d" 8d + B(dmT dm — dmp), (2.4)

wheredn? is a finite quantity. The minimization of this functional tsato the so—called
damped least—squares solution for the model updaigpand Vozoffl975]

dm=(JTJ+pI1) 1aTad, (2.5)

where the matriX denotes the identity matrix. The potential singularitydd@ is thus re-
lieved by adding a constant to its main diagdnalhe degree of damping is controlled by
the paramete. As common practice in Marquardt schemes, for the invessstiown in this
work a threshold level is raised by the damping parametehnerfitst iteration so that only
the basic features of the model will be resolved. A gradualesse ofd accounts for less
resolved model parameters at later iterations. To definepgpstg criteria for an inversion, a
lower treshold for the relative error functional decreag# respect to the previous iteration,
Is chosen in advance.

1This can also be understood as adding a DC level to the eilyers/afJ™ J such that none of the eigenvalues
can vanish.
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The presence of data errors assigned to the observatfossaddressed by incorporating a
weighting matrixW into the minimization problem (2.4). Usually is a diagonal matrix,
where its entries are the reciprocal values of the standewiiions ofd® [Jackson 1972].
Incorporating the data weighting changes the solution is) (@ [Hordt, 1989]

dm = (3TW2J + 1)~ 1aTw?2ad. (2.6)

The types of model parameters and its small humber do noireequfurther regulariza-
tion using smoothing constraints (elgkhonov and Arsenifl977]; Constable et al[1987];
DeGroot-Hedlin and Constabld@990]). However, bounding only the energy of the parame-
ter change may still lead to physically unreasonable pate@mnsentrasts. This becomes more
severe with the presence of parameters that are poorlywessbly the data. Therefore, the
model parameters have to be chosen such that an ill-posetthnesgh irrelevant parameters
is avoided. Generally, there is a limit to the number of welfited or important parameters
that may be resolved from the datlupp and Vozoffl975].

Information about the resolution of a model parameter caolbained from the spectral de-
composition of the Jacobiaddckson1972;Jupp and Vozoffl975]. Hordt [1989] andPetrat
[1996] describe the derivation of the so—called importaratees from the inversion statistics
resulting from the Singular Value Decompositidrahczos 1958] of the Jacobian. Impor-
tances represent a means of estimating a model parameggrsedof resolution and thus
help to find the optimal number of parameters. Such impoeastimations are employed
for the later presented data analysis. Here, it shall onhgbapitulated that importances vary
between 0 and 1, which means a minimal and maximal resolafiaparameter, respectively.

The calculation of the sensitivity matrix is usually the most time—consuming part of an
inversion procedure, because this requires calculatiagdniation in the data produced by
a change in the model parameters at each iteration. If arpattan method is employed,
each model parameter requires a separate forward simufatids perturbed quantity. More
efficient possibilities exist to calculate parameter ganses. McGillivray et al.[1994] cal-
culate sensitivities for inversion of frequency—domaitedssing an adjoint equation method.
A time—domain equivalent for LOTEM data is presentedHiydt [1998]. The principles of
the adjoint method will be described in detail in Chapter 4e Thethod is appropriate for
a numerous set of unknowns in the form of cell-based grid efdsn Here, both the lim-
ited number and the types of model parameters suggest $&aabperturbation method for
calculating the sensitivities.

Data and model parameter transformation

Diffusive EM fields have widely different amplitudes at @ifent times and receiver locations.
To reduce the dynamic range of the data, transformationgraferable in order to equalize
the influence of each datum. Otherwise, the error functioh&lquation (2.4) may be domi-
nated by high amplitude data points, thus deterioratingdimeergence in an inversioNgju,
1994]. A simple logarithmic transformatiodypp and Vozoff1975] can be used if all data
points possess the same sign. However, TEM measurememt3@egéructures often involve
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sign reversals over the measurement time range, thus iregjtor distinguish between pos-
itive and negative data. Different methods exist to také batge amplitude variations and
different signs into account. For exampléang et al[1994] use a logarithmic transformation
with a linear scale straddling amplitudes near zero andaithgation between positive and
negative logarithms of data values. The transformatioesehrealized in SINV is described
by Scholl[2001] and is based upon the Area—Sinus—Hyperbolicus iflmmcT he funtion has

a logarithmic behaviour for arguments 1 or < —1 and a linear one for arguments close
to zero. This transformation has proven to be suitable ferlth inversion of LOTEM data
containing sign reversal$gholl 2001]. Depending on the LOTEM transmitter—receiver ge-
ometry and the type of the field component, sign reversal®caar over a 1D eartPetry,
1987].

An important constraint on model parameters such as etatttonductivity or layer thick-
ness is that they must be positive quantities. To enforsecthmstraint on the inverse solution,
a logarithmic transformation is applied to the parametersafl inversions presented in this
chapter. A discussion about alternative transformationpérameters describing model fea-
tures that can involve negative values will be given at a Isii@ge.

It needs to be taken into account that both data and modeinedea transformations carry
over to the calculation of the Jacobian in Equation (2.2)tlfarmore, the data transformation
affects the data errors and thus the weighting matfixScholl[2001] outlines these aspects
in great detail for different types of transformations.

Parallel implementation

To update the Jacobian at each iteration makes up the nyagbthe computational effort for
an inversion. It needs one forward simulation for each peett model parameter plus one
extra simulation for the unperturbed model. The case histoBection 2.3 will show that the
forward modeling procedure with the SLDM code may involverenihhan one FD simulation
grid. In this case, the number of forward computations ferriodel perturbation has to be
carried out for each grid.

Calculating the Jacobian can be highly accelerated if alphcamputing platform is used.
As the forward simulations for the perturbed model paramsedee carried out independently
from each other, they can be distributed among several psoce The optimum number of
processors would therefore equal the number of forward Isitions required for one itera-
tion. This would reduce the computation time by a factor af thumber in an ideal case. No
inter—processor communication is needed and thus a sensibw of the forward modeling
code can be used. Communication between the forward siomledde and the inversion
algorithm is done via temporary disk files. This way of paiating SINV represents not
an optimally coded program, because a parallelized verdittmee SLDM code may be more
efficient. However, the implementation is simple achievangjgnificant gain in computation
time. Moreover, as shown Icholl et al[2002], this parallelization scheme is also suitable
for several stand—alone computers connected by a network.

In a test inversion run, altogether 264 forward simulatiese required. A single simulation



2.2 SYNTHETIC DATA EXAMPLES 13

needed an average of 2.5 minutes real computation time argéesiode of a SUNV Fire
6800 compute server which would sum up to a total time of agprately 11 hours. Using
8 processors this time could be decreased to 2.5 hours.

2.2 Synthetic data examples

In the following SINV is tested on different model parametations. Concerning the aspects
related to the convergence of SLDM, a stable FD grid for th®8Lcode could easily be
found, because no excessively high resistivity contrasts®olved in the shown examples.
A more thorough discussion about the preliminary procedirgnding a proper FD grid
discretization will be given in Section 2.3. There, designa stable grid becomes far more
difficult due to higher resistivity contrasts. All synthetiata to be inverted for the tests is
created by another 3D code presented later in Chapter 3. tificial noise is added to the
data, because here only the case of an optimal data quaditlylshtreated. The stopping
criteria is fulfilled in the case of a relative data misfit dssge dropping below 1 %, relative
to the previous iteration. In order to avoid that the invensiinishes too early due to a low
relative misfit decrease, a minimum of 4 iterations is erédrc
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Figure 2.1: Model of a 3D conductive body embedded in a two—layered raed to invert for
different examples of model parameterizations. (a) Plawy{b) vertical section.

Consider the 3D model in Figure 2.1. The model representQumn tonductive cube embed-
ded in a two—layered half—-space. The horizontal dimensbtize body are 200 m on a side
with a vertical size of 140 m and its depth starting at 60 m. ffekness and resistivity of
the upper layer are 100 m and 80n, respectively, above a X®@m basement. A horizontal
grounded—wire source of length 80 m is located at 200 m distémthe block. The example
shall demonstrate that SINV is suitable for problems witlaben dimensions of the field—
setup than exemplified in the later shown case history. The slenulated at the receivers
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comprises the electric field component in a direction par#dl the source orientation and the
time derivative of the vertical magnetic inducti§irbZ (voltage).

2.2.1 Inverting for layered background and block resistivty

The model parameterization of the first series of inversessumes the true position and
geometry of the block as known in advance and as fixed. Als®ettistence of a two—
layered background without its exact structure shall bemias a priori information. The
free parameters are thus given by the layer parameterg, éheshe resistivitieg; andp, of

both layers and the thicknegsof the top layer. The fourth parameter is represented by the
block’s resistivitypy. Altogether 6 inversions are carried out, each one usinfferent input
data set in terms of the receiver position and the data typerevboth separate and combined
sets are involved.

For each inversion, the input data originates from only glsimeceiver location in order to
simulate the case of a sparse data covering of the target.inVhesion results numbered
by 1-6 are summarized in Table 2.1. The first and the secoedlfithe table contain the
parameters describing the true case and the chosen inibidélmrespectively. For these
examples, all resistivities are initialized to a value of®@ and the top layer’s thickness is
set to a starting value of 50 m. Two different receiver possiare chosen (Figure 2.1), the
first one (Rx1) located at a distancexof= 500 m from the source without offset along the
source axis, the second one (Rx2xat 300 m andy = 200 m. According tdPetrat[1996]
andSchneidef2000] these receiver positions do not provide for an opti@solution of the
block anomaly. Thus, the example will also demonstrateithatldition to the sparse amount
of inverted data, a reconstruction is still possible witlessl optimal receiver configuration.

With the receiver placed at Rx1 and the inversion fed by taetat field data, the true model
can be reproduced closely within 12 iterations. The dewmftiom the true model amounts to
only a few percent for each parameter. The voltage datatmesglals a worse reproduction of
the top layer’s parameters, whereas the basement registsimatched. Starting from a value
of 50 Qm, the conductive block is well approximated by a resultiaye ofp, = 1.7 Qm.
The combined data inversion leads to the most exact final mo#lpart from a relative
difference of approximately 10 % between the true and therrgicucted top layer resistivity,
all other parameters show relative errors below 1 %.

In general, inverting the data originating from receive2Rkiows larger deviations from the
true model. This follows from a worse resolution of the antwua block, compared to the
receiver placed at Rx1. Still a satisfying reproductionted true underground is achieved
by inverting the electric field data during 17 iterationsamhalso the block resistivity is ap-
proximated. However, the voltage data inversion fails td fimost of the real model features,
with the exception of the basement resistivity. Compare@ésalt 4, the combination of both
data types (result 6) produces a similarly good layer mdu@ijever with a more erroneous
block resistivity.

The electric field data sets of both receivers are sufficienafreasonable resolution of the
true parameters and are now used in order to exemplify theesindle of an erroneous model
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Result Rec. pos. Datatype Iterationp1 (Qm) z; (M) p2(QmM) pp (QM)

True model 50 100 10 1

Initial model 50 50 50 50
1 Rx1 =3 12 50.8  104.0 9.4 1.1
2 Rx1 B, 7 63.9 79.1 10.1 1.7
3 Rx1 B+ B, 10 54.5  100.8 9.9 1.0
4 Rx2 E 17 49.0 103.1 8.5 2.4
5 Rx2 B, 4 2436  56.1 12.2 39.1
6 Rx2 E+B, 8 53.2 96.6 9.3 8.7
7 Rx1 E 5 175 1011 326 13.8
8 Rx2 E 10 35.7 55.9 31.1 29.2

Table2.1: Inversion results for different data receiver positionglatata types. The model param-
eterization involves the layer unknowps z; and p, and the block resistivitp,. Results 1-6 involve
a conforming block geometry, results 7 and 8 a nonconforrgemmetry.

Result Iterations p; (QmM) z (m) p2(Qm) 2z (M) p3(Qm) pp(Qm)

Initial model 50 100 50 100 50 50
1 6 61.8 35.6 39.6 74.3 9.4 1.0
Initial model 100 100 100 100 100 50
2 14 56.7 85.1 59.2 11.9 9.8 1.2

Table 2.2:  Inversion results for the data computed at Rx1 from the mskelvn in Figure 2.1. In
addition to the block parametepy, three layer unknowns are allowed to describe the two—kgyer
background.

parameterization. Using the input data produced by theraignodel shown in Figure 2.1,
the model guess is now characterized by a nonconformingkldeometry. Instead of a
volume of 200x 200x 140 n?, the block is assumed to have a fixed volume of 3BDOx
200 n?, where its center position is kept. Due to the larger voluatepneous results are
obtained for each inversion as shown in the results 7 and 8hteT2.1. However, except for
the top layer’s final resistivity of each result, all paraerstshow a trend towards the correct
solution, with respect to the starting model. Even the thiekness of the overburden is
found by inverting the data of Rx1. Compared to the real \gltige larger block volume
causes increased values for the resulting block resigtivit

Another test for a less conforming model parameterizatiolves the assumption of a
three—layered background, thus inverting for 5 layer patans. An additional unknown
is again represented by the cube’s resistivity with the ge@metry given. The joint data set
of Station Rx1 generated by the two—layered model in Figuteiused for this test. All
initial resistivities are set to a value of 8dm. Both layer thicknesses start with values of
100 m. First, it can be seen from Table 2.2 (result 1), thatolbek resistivity is matched
exactly. However, both final layer resistivitipg andp, differ by approximately 1@m from
the true case, despite correct initial values. Nevertsetee two—layered background can be
recognized. The sum of both thicknesgeandz, shows the original vertical location of the
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basement’s beginning with a deviation of 10 %. Its true tesig of p3 = 10 Qm is closely
matched.

A similar inversion (result 2) uses the initial resistieti of 200Qm for p1, p2 andps. In
general, the final model result is better than given by theipuos inversion. However, both
resistivity valuegp; andpa still show differences of 13 % and 18 %, respectively, from th
true value of 5@2m. The overburden thickness is reconstructed by the sumaridz, with

an error of only 3 %. The resistivitgs of the layer below the overburden and the block’s
resistivitypy are reproduced to a satisfying degree as well.

2.2.2 Inverting for block position and resistivity

The following two inversions involve a model parameteii@athat is different from the more
common types of parameters given by layers or blocks. Theébowad data of electric field
and voltage at Station Rx1 is inverted. It is generated fré&ad@m homogeneous half—space
with an embedded anomalous block as the one shown in FiglireNb layer parameters
are defined for these inversions, thus a fixed(a@ background shall be assumed in the
inversion. In addition to the block’s resistivipy, the model parameters are now represented
by its center coordinates y andz along each cartesian axis, thus four unknowns exist. The
starting model for the first inversion example assumes 2&0block with its true size also
known.

As shown by the plan view and vertical section of Figure 2iBa, initial model (dashed
rectangles) is characterized by a 100 m offset from the taséipn for both horizontal coor-
dinatesx andy and a 40 m offset from the true depth. The solid lines markebkalting block
location after 8 iterations. The inversion moves the ihlilack towards the original location
(shaded rectangle) such that a good agreement along boxrattie and the vertical axis is
achieved. The only significant deviation of approximatedyn2 from the true position occurs
along they axis. The block’s resistivity of 2m is reproduced exactly in this example. For
both data components Figure 2.2b shows the synthetic dat&aed by the original model
in comparison with both the initial response and the respaadculated from the solution.
Apart from slight deviations at the latest times of the eledield data, both predicted data
curves show a good agreement with the original data.

In order to exemplify another inversion with a less conforgiparameterization, the block’s
geometry is now assumed to be 50 m larger along each dimesidtustrated by the dashed
rectangle in Figure 2.2c. Also, the starting position igteldi farther away from the true po-
sition, such that its center coordinates differ by valuedwt= 225 m, Ay = 225 m and
Az = 265 m from the true center point coordinates. The final moeglilt reveals a suc-
cessful inversion, because the real block is enclosed bipdhgers of the larger block after
9 iterations. Similar to the previous example involving acanforming block geometry (re-
sults 7 and 8 in Table 2.1), the larger block volume causesralttowards the resistivity of
the background. The initial block resistivity of 8Im is decreased to a value of Z2n. To
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Figure2.2:  Synthetic data inversion for the resistivity and positida dlock embedded in a homo-
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lines) and final (solid lines) block position of an inversiaith conforming block geometry. (b) Syn-
thetic data at Station Rx1 in comparison with initial and finzodel response for both inverted data
sets. (c) Initial and final model results for an inversionwitonconforming block geometry and (d)
corresponding data fits.
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compare, this yields a conductance (product of condugtavid volume) of 165- 10° Sn,
whereas the true block’s conductance 8-3.0° Sn?. Figure 2.2d shows a good agreement
between the synthetic data and the response of the inveesaht. In contrast to Figure 2.2b,
one observes a slight misfit in the early time range of both tigies.

2.2.3 Conclusions

The synthetic data examples show the versatility of the mehm terms of the model pa-
rameterization. The restriction to a very limited numbenaidel parameters is somewhat
compensated by the capability of defining arbitrary kindsrdénowns. It may be argued that
the structural information contained in the parametensagenting given a priori informa-
tion, is quite detailed for the shown examples. Nevertlseliéshall be emphasized that cases,
where other geophysical measurements provide such kngejlede not rare. An example
is given by the following case history. Moreover, the invens involving nonconforming
parameterizations show that a trend towards the real mitugt likely to be indicated. By
scrutinizing the kind of data misfits and checking the questf how realistic a solution
appears, less satisfying model results can still be used frarameter refinement. This is
also exemplified in the case history. Other a priori inforiomatif available, also represents
a valuable help in order to judge an inversion result. In @aoidi varying starting models are
suggested to investigate the uniqueness of a solution.

If no prior knowledge about 3D structures is available far #malysis of real field data, 1D
inversions can be used in order to obtain information abmeibiackground structure, as for
example accomplished [yordt et al. [200Q0]. This requires the existence of data without
distortions due to multidimensional structures. Also, 8Bwfard modeling can be carried out
until a satisfying model is found which can be further refineén inversion, requiring, how-
ever, a certain amount of expertise with multi—-dimensionatieling. The more favorable
approach is enabled by the inversion scheme’s given fl&yilmf defining arbitrary model
parameters. Although this may still be regarded as a tnial—arror procedure, inverting for
different types of unkowns represents a more efficient wapalstigating multi—-dimensional
structures.

A question to be further investigated is the kind of modebpagter transformations used for
such unconventional parameters as the position of an agoiate, a logarithmic transfor-
mation was kept for all parameters and led to satisfyingltestiherefore, in order to avoid
negative numbers for the position parameters of the movimgkl{Section 2.2.2), the model
domain was internally shifted to the positive FD grid axedingar treatment$choll 2001]
can be expected to be more adequate for position parambeayse they do not involve
such large ranges as usually covered by resistivities.
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2.3 Case history: Inversion of LOTEM data from Mount
Merapi, Indonesia

The case history shows the inversion of LOTEM data from aeyuoonducted at the active
volcano Merapi. Both lateral resistivity variations in tbhaderground and effects caused
by the mountain topography allow the employment of 1D invgrschemes only to some
limited extent. A priori information from other discipliseand an earlier LOTEM survey
[Muller, 200(] exist about the 3D target. The information allows to defingable model
parameters which are then further refined by the inversiahoade

Mount Merapi is a basalt to basaltic andesite volcanic cemplith a maximum altitude of
2911 m. ltis located in the eastern part of Central Java,riadi@a. Merapi’s topography is
characteristically bell-shaped with a mean dip angle°aifto 1300 m, 15up to 1700 m
and 26 up to the summitBerthommier 1990]. Formation and stratigraphy of the present
cone is characterized by a succession of pyroclastic dispasd several violent and partial
collapsesiNewhall et al, 2000]. According ta&Camus et al[2000], the growth of the volcano
was interrupted several times by violent magmatic to plereagmatic eruptions and a Mount
St. Helens type edifice collapse in the south—western seclioe base of Merapi consists of
a sequence of basaltic andesite lavas and intercalatedlpstic deposits of an eroded older
volcanic edifice Newhall et al, 2000]. This so—called Old Merapi is overlain by the deposit
of the modern Merapi which is presently characterized bgtretly moderate pyroclastic
flows and lahars accompanying growth and collapse of theeastimmit lava dome.

The LOTEM project at Merapi is a part of a multidisciplinargaperation of the German
Science Foundation (DFG) and the Volcanological Surveyndbhesia (VSIl)Zschau et al.
[1998] presented an overview of all activities. Since theTEM technique covers the range
between shallow TEM soundings and deeply penetrating Mifpaortant gap in volcanolog-
ical investigations is filledNiuller et al, 2002]. Measurements were made during surveys
in the years 1998, 2000 and 2001 and are describedildier [2000b] and Commer et al.
[2003] in more detail. The steep topography of the surveg aras the main reason for lo-
gistical difficulties, thereby prohibiting a fast builduptbe receiver stations. Hence, instead
of an area—wide covering of the target, measurements wede ataingle stations and along
a limited number of profiles, where an access was possiblehémore, the data quality
suffered from a high portion of noise at some stations, tegsiring long recording times in
order to obtain satisfying signals by a sufficient numbertatks. Other problems, such as
frequent rainfall, also led to a deteriorated data quatigoae stations. These difficulties are
the reason for a limited amount of available data with swdficquality for a 3D inversion.

2.3.1 The inverted LOTEM data

The transmitter and receiver positions of the data commiseabset of all three LOTEM

surveys and are shown in Figure 2.3. The receivers weredda@at the northern, western and
southern flanks and at the summit region. All inverted tramisi are the time derivatives of
the magnetic induction and will again be referred to as galtdata. The surveys at Merapi
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Height (m)

Figure2.3:  Digital elevation model and contour map of the survey arg@mrifles mark the trans-
mitter electrode points, circles mark receiver positions.

also involved the measurement of electric fields. Unfortelyamost of the electric fields
recorded at the stations shown in Figure 2.3 were charaeteby a poor quality. Electric
fields are very susceptible to a poor galvanic coupling oltresor electrode pairki€lwig,
pers. comm.). This caused significant distortions, becags of the stations in the summit
region and along the upper flanks were located on a dry ang grckind.

The transmitter Tx1 used for Stations 1-6 has a bipole lenfjipproximately 1 km and

is located in the North at approximately 4 km distance from shmmit at an elevation of
1500 m above sea level. Station 7 was measured at the santi@pasi Station 1 using a
different transmitter (Tx2) of 2 km length located at 530 revaltion and 12.8 km distance
south from the summit region. The data of the Stations m2&-omthe southern flank
was generated by the transmitter Tx3. This is a 800 m longléilecated at an altitude of
approximately 1000 m.
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Vertical voltage components are available at all shownivecgositions. In addition, hori-
zontal components with sufficient data quality were recomteStations 4—6. By convention,
horizontal components are named according to the orientatith respect to the transmitter,
wherex andy will denote a parallel and perpendicular direction of thegmetic field, respec-
tively. Two different types of sensors were employed foording the voltages. The summit
region with a relatively large plateau allowed recording Wertical field with wires arranged
in a horizontal square loop of 4040 n? at Station 1. Second, smaller ferrite core magnetic
induction coils (type Zonge TEM-3) were used for the hortaboomponents. These sensors
were also used for the vertical components in the more rutggeain on the flanks, although
a wire loop is preferable due to a larger effective coil arAadetailed study about the ap-
plication of the TEM-3 sensors for recording the time ddiweaof the horizontal magnetic
induction at Merapi was given bytahl[1999].

The usage of different sensors requires that each simuiaesient needs to be processed
individually in order to compare it with the measured one.isTiesults from the effect of
the so—called system response, which is a combination oéffieets caused by analogue
low—pass filters in the recording units, deviations of tlmsmitter input waveform from an
ideal step and sensor characteristid®idt et al, 200M]. It causes a distortion of the early
times and is measured in the field by placing a receiver se®dlmshe transmitter that the
earth response can be considered as an imp8tsadk 1992]. Deconvolution of the system
effects in the time domain is numerically unstabtapstein 1992]. Hence, to avoid the
loss of early time information by truncating distorted ddtee 3D model responses of the
SLDM algorithm are convolved with the corresponding systesponse of each simulated
transmitter—receiver setup.

The field setup in Figure 2.3 clearly shows that topographs/tbabe considered in order
to account for the high altitude differences of some fieldiget Moreover, depending on
the transmitter-receiver geometry, the electromagnetiplkng between the mountain and
deeper-lying structure causes effects, which would notiserwed over a flat surfackelrdt
and Muller, 2000]. For example, such effects could be clearly idewtifighe vertical voltage
responses at Stations 5 and 6, as will be shown below.

2.3.2 A priori information

Among many geophysical disciplines, results from the fil&TEM survey, DC resistivity
imaging and magnetotelluric (MT) measurements were useatder to define a suitable
model parameterization for the inversion attempts inelgdstations 1-7 and transmitters
Tx1 and Tx2 (see Figure 2.3)uller et al.[2002] merged 1D LOTEM inversion results into
a 2D pseudo-section originating from measurements alangdithern and southern flank,
including a single summit station. A predominant featurehiis section was the presence
of a conductor with downwards decreasing resistivitiesniMum values range from @m
below the summit to approximately ZBm below the flanks. The upper edge of the conductor
was located in a roughly constant depth of 500—-1000 m fronstinace. The results also
suggested a southward extension of the conductor beyorsbtiieern flank.
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Friedel et al.[2000] found that the isoresistivity lines from DC resigvmeasurements
along the south and west flanks nearly follow the topographgradual resistivity decrease
with depth is observed, where resistivities below(a@ occured below 500-1000 m from the
surface. MT measurementdgffmann-Rothe et g11998] suggested a 1D resistivity model
of 2-10Qm at a depth of 1 km below a location on the western flank (130(aveasea
level) and indicated that the conductor is not confined tactrdral part of the volcano. This
was in accordance with results from a regional MT profile asrGentral JaveRitter et al,
1998] where similar conductors were fountuller [2000a] mentioned that a rise of the
conducting layer below Merapi’s summit was confirmed by thegmtude of the induction
vectors from MT sites located at the altitude range of 170062m. Their 3D MT forward
modeling results including topography are shown in Figude 2 major conclusion is that
the best fit to the observed induction vectors with periodmf0.1-10 seconds is achieved
by a model with a rising 1@m conductor located in the volcano’s center (letter D). This
structure is shaped roughly following the terrain struetwith its upper boundary between
1-1.6 km below the surface. However, it might be a simplifozabf a gradual resistivity
decrease with depthMuller, 200@]. To explain the induction vectors for periods above
10 seconds, the good conductor is extended downwards weth legher conductivities of
0.1-1Qm (letters B,C,F).

L
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Figure 2.4: Final 3D resistivity model obtained from MT measurementi&efaMuller, A.,
pers. comm.). Here, Merapi is viewed from a SW point. Eadkrléhdicates a region of differ-
ent resistivity: (A) upper layer, 100m, (B) intermediate conducting layer, Im, (C) conducting
layer, 1Qm, (D) central conductor, 1@m, (E) SW—anomaly, @m, (F) two 2D extended conductors,
0.10m.

Although mainly the flanks were covered by the describeda@iptata, the results supported
the hypothesis of a conductive system in the volcano’s imteaccording toZimmer and
Erzinger[1998] probably caused by hydrothermal activity. For thstftO00 m below the
surface of the volcanic edifice, the a priori information gests a somewhat layered resis-
tivity structure, where the layer boundaries follow the mi@in topography. Furthermore, a
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monotonous resistivity decrease was observed by all medidisciplines. At depths below
1000 m, low resistivities with values around2m seem to dominate. In this work the inver-
sions of Stations 1-7 will hence involve a layered volcadifiee. The model parameters are
represented by both layer thicknesses and resistivities.

The inversion of the southern flank profile data (Stations-a242) involves a different earth
model parameterization. This profile comprises 7 statiwhgre vertical voltages were mea-
sured. Each transient is characterized by multiple sigereals, indicating strong effects by
3D structures. A first interpretation approach by means ofgideling has been carried out
by Muller [2000b]. Although no quantitative fit of these stations was achigeeconductive
block close to the surface at the northern end of this proéiéas to be the most likely ex-
planation in order to obtain a qualitative fit of the sign m=as. This result will be used as a
starting basis for an inversion attempt, where the vertiadl lateral position of a conductive
block serve as variable model parameters.

2.3.3 Constrained mountain model and FD discretization

As mentioned before, designing the mountain model by reetan blocks is in principle
not confined to the given FD griddordt and Miller [2000] use this flexibility to simulate
mountainous terrain by piling up conductive blocks in a hrghesistive fullspace, which
approximates the surrounding air space. However, in oaeombine the modeling of to-
pography with varying model parameters, a more versatilerse is needed. The approach
presented here approximates the terrain by vertical coduasnllustrated in Figure 2.5a. Ev-
ery column represents a rectangular block overlaying thg# which is not shown here.
The material property of a block is inversely interpolatedoothe FD grid by a material av-
eraging schemeéjoskow et al.1999]. To understand the practical realization of the icwiu
model, the illustration has to be viewed in a somewhat rexbngy: in practice, each column
extends from the upper vertical end of the model domainthe air space border, down to
the actual air—earth interface and is assigned to a ragysti@lue approximating air. Aver-
aged data from a given digital elevation model (DEN&gfstenecker et g11998] is used to
determine the vertical position of each column’s lower elmdthe vicinity of the receivers,
small-diameter columns are used in order to approximateathgh terrain of the volcanic
cone. At greater distances the column model becomes coarser

A variety of possibilities exists to further structure thederground. For example, arbitrary
shapes can be designed by including single or multiple éttreks that form volumes of
constant resistivity. The column model is particularlyfusé vertical conductivity changes
dominate over lateral ones, as is the case for layered stasct Such is indicated by the
given a priori information. Therefore, the columns are el downwards (into the earth)
and sectioned according to vertical parameter variatiSmailar to 1D inversions, the model
parameters are represented by thicknesses and resstvita layered structure. The follow-
ing inversion attempts will involve two kinds of layering4. first mountain model will be
characterized by horizontal layers. Apart from lateralstesty changes due to the topog-
raphy, this model type only allows for vertical variationsdw the surface. The second tin
Figure 2.3ype is constrained by using the DEM data such tiesliatyers follow the topogra-
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Figure 2.5: (a) Modeling of the terrain structure of Mount Merapi with antical column model.
(b) Design of horizontal layering. (c) Design of a layeringiah follows the topography.

phy. This model type shall also be referred to as “dome—giiape

When inserting the mountain model into the simulation gheé,only fixed parameter of each
column is its topographic height; here itis chosen relatvbe transmitter height. In order to
model topography with a horizontally layered undergrowath column is constrained such
that its division according to the given thickness paramses¢arts from a vertically fixed
reference position. This is illustrated in Figure 2.5b fama—layered earth. The reference
height represents the top of the layering and is equal toitfieekt topographic elevation of
the mountain. The second type of layering is realized by traimng every column such that
the division starts from the vertical position of its airranterface. As illustrated in Figure
2.5c, this constraint reproduces the shape of the surfacereat each layer interface, thus
leading to a layered structure that follows the topography.

The later shown inversion attempts with real field data vimllalve other model features in
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addition to the layered background. The realization maybercomplicated, because the
SLDM code does not allow the overlap of the rectangular dabéscribing a model. There
exist two ways for including additional block structuresoirthe column model. First, the
space filled by an additional block can be kept free duringtowa of the column model.
This involves scanning the geometry and position of eachsolsection in order to omit the
volumes reserved for other shapes. Then the volume can lgmedgo an extra parameter,
which describes a conductivity and is independent from dlyered background. Another
approach chosen here is to further split up the columns thatsect a predefined volume
such that it is built by a group of adjacent column piecesgaesi to the same resistivity of
the additional structure. Arbitrary additional shapes loamlescribed by both methods.

a) b)

Angle of inclination o

>— — s

Transformed §
Original DEM point| e
DEM point & oY y
» x N x
> —>
Figure 2.6: lllustration of the approximation scheme used to simulaieconforming (to the FD

grid) and elongated sources (see Druskin and Knizhnerm&94lL for further details). (a) Small
inclination angles require appropriately small grid spags in order to simulate the correct source
orientation with respect to given geographical data in@ddn the FD grid. (b) With an appropriate
transformation of the geographical data, this can be avdide

As mentioned earlier, large FD grid aspect ratios may caps®aconvergence of the SLDM
code and thus wrong late time responses. Although thereower limit imposed by the re-
sistivity contrasts in a model, the aspect ratio can be aptidto some level by avoiding that
a grid becomes more dense than required by both the ressigdigtribution and the simu-
lated measurement time interval. The first thing to achiéigis the careful discretization
of the transmitter bipole. Consider the case of a bipolentatgon with an inclination to
one of the horizontal FD grid axes. The SLDM code allows tec@itogether an extended
transmitter bipole by several dipole elements, where the af these elements is defined by
the grid spacings; see alstbrdt [1992] for practical examples of transmitters rotated in a
FD grid. Figure 2.6a illustrates how a transmitter with a Bam&lination to the FD grid’s

x axis is composed by three bipole elements along this axssgie additional perpendicular
element. The vector sum of all elements represents bothHeargl orientation of the true
transmitter to be simulated. The smaller the inclinatiorihaf transmitter to the grid axis,
the smaller the perpendicular dipole element has to be,laadntturn requires a small grid
spacing. This way of simulating a given field setup is usuellgsen in order to orient the
borders of extended 2D or 3D bodies along a grid axis. Ottserva rectangular block ro-
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tated with respect to the transmitter needs to be apprognnay a possibly large number of
smaller blocks.

The capability of simulating sources not conforming to th dtid becomes useful if geo-
graphical information is incorporated into the earth matisdign. For a 3D forward modeling
of Merapi’s topographyMiuller [2000b] aligns the axes of the Cartesian mesh defined by the
FD grid parallel to the axes given by the Universal Transyéigrcator (UTM) coordinate
system. This has the advantage that DEM information, nefmietie modeling of topogra-
phy, can be used without further transformation. On therdtlaad, a needlessly small grid
spacing would be required in order to simulate the oriemtadif the transmitters shown in
Figure 2.3, because they are all characterized by a sméhation to the WE—direction. To
avoid this, it is preferable to carry out a transformationtted complete DEM such that one
of its horizontal axes conforms to the transmitter origotat For the example given in Fig-
ure 2.6a, this involves a rotation of each DEM point arourelléft source electrode point,
where the rotation angle is given by the inclinatmmo thex axis. Afterwards, the axis of
the transformed DEM is parallel to the transmitter origotat Creating the column model
from the DEM now allows for a coarser FD grid as shown by FigliGb.

Another type of difficulty is related to the vertical grid distization at the receiver side,
because the SLDM code allows the sampling of fields only ooahatertical grid levels.
In the vicinity of the summit, the modeling of the resistive gpace requires a coarse grid
interval. It is actually much coarser than the vertical spggiven by the altitude differences
of the summit stations and thus cannot be matched with tlevegpositions. Nevertheless,
importance was attached to sampling the fields at the exeatalaeceiver positions in order
to simulate the topography effects correctly. To achievg the fields at the true receivers
are calculated by trilinear interpolatioPress et al. 1992], incorporating a cube of eight
surrounding grid nodes in which the desired position falsdrawback may be seen in the
interpolation errors caused by a linear assumption for #d fiariation inside of the cube.
However, tests showed that the interpolation errors aresigoiificant, compared to errors
caused by an otherwise wrong vertical sampling.

2.3.4 Stability checks

Although SLDM allows for very fast solution times, the cornyence characteristics de-
scribed in Section 2.1.1 have to be taken into account, Isecan inversion scheme without
smoothing constraints may produce models with high cotstraloreover, high contrasts

are introduced by modeling the air layer. Hence, the gridgteseeds to come along with

stability checks to provide accurate simulation resultsviarying models during an inver-

sion. As will be shown below, the vertical voltage data meadwat Station 1 (Figure 2.3)

contains the largest measurement time range of approXyritatee decades. Therefore, this
station turned out to be the most critical, because no comismbetween the grid require-
ments imposed by the convergence characteristics of SLDMidze found. The solution of

this problem involves joining the FD responses of two défergrids, i.e. a fine one for the
early part of the time range and a coarser one for the latesstirAll other stations could be

simulated using a single FD grid.
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Figure 2.7  North—south oriented section of a homogeneous mountairehtimdugh the summit.
In order to verify FD grid stability, the 3D responses forfdient mountain resistivities are calculated
at Stations 1 and 6 and are compared with the correspondiradytinal solutions without topography
at the positions Rx1 and Rx6, respectively.

The stability checks described in this section comprisegams and shall be demonstrated at
the field setup of Stations 1 and 6. Together with Stationégelstations show the strongest
influence due to topography. First, it is tested for Statiomhether the SLDM results con-
verge in the presence of progressively higher contrastsdtr of the employed FD grids. A
homogeneous mountain model proved to be sufficient sinceigfiest contrast occurs at the
air—earth interface. The air resistivity is approximatgdabvalue of 5000@m. Figure 2.7
shows a north—south oriented vertical section of the maaritaough the summit. First,
the figure illustrates once more the model concept of vérticlumns for the topography.
To model a homogeneous mountain, every column section bislevair—earth interface is
assigned to the same resistivity. The vertical FD grid usedsimulating the earlier mea-
surement time range is represented by dotted lines in FRyudreNote the fine spacing inside
of the volcano (belowz = 0 km), designed to account for the high conductivities etgubc
from a priori information, in comparison with a coarser gpgdor the air space above the
transmitter. The corresponding grid spacing for the lataetinterval (not shown here) is
approximately twice as large. Also shown is one side of theeaf nodes, indicated by the
four plus signs, that contribute to the interpolation of fie&s at the receiver positions.

Figure 2.8a contains the 3D model responses at Station Zeifotim of early time appar-
ent resistivities Petry, 1987], represented by solid lines (for now, ignore the dddimes).
The three simulated transients correspond to differemgtreisies for the mountain, 50@m,
100Qm and 50Qm and thus the resistivity contrasts between air and earil®@f1, 500:1
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Figure2.8:  Grid verification results of the 3D volcano model for differeesistivity contrasts be-
tween a homogeneous mountain and the air spacgdt Qm) for (a) station 1 and (b) station 6. Solid
lines are SLDM solutions, dashed lines are analytical sohd over a flat surface. The three curve
pairs in each plot correspond to a mountain resistivityp0b Qm (contrast 100:1)100Qm (contrast
500:1) and50 Qm (contrast 1000:1).

and 1000:1, respectively. Each curve is obtained by joitiregresponses of both employed
FD grids, where the vertical line at 0.08 seconds marks theecting time point. For each

contrast, convergence of the SLDM code is achieved. Otlservane would observe a sig-
nificant deviation from the constant decay rate at the Iaiestilated times for one or both of

the employed grids, which would probably occur shortly bef®.1 s or before 3 s.

For the second part of the grid test, the results are coatrath make sure that topographic
effects are correctly modeled. In Figure 2.8a each 3D respforms a pair with a dashed
curve, which belongs to an analytical half-space responike.half—space resistivity is the
same as used for the homogeneous mountain of the corresgdsidiresult. The analytical
responses are computed at the receiver position Rx1 (FRydyever a flat surface at an offset
corresponding to the horizontal offset of Station 1. Acaogdo Petry[1987] the late time
decay rate of the 1D response shows a time dependencé/éf At Station 1 the 3D effect
due to topography is an amplitude increase at early timeapaced to the 1D curve. This
is a combination of the station elevation effect with theomesse of the conductive mountain
[Hordt and Muller, 2000]. At later times the amplitude of the 3D curve is desegiecompared
to the response over a flat surface with a convergence towsedD decay rate. Both these
effects at early and late times can be observed for eachastnindicating that both grids
model the topography correctly.

This procedure of verifying responses has to be carriedoo@fFD grids contributing to the
forward calculations during an inversion. In the preserfdaéigh contrasts it is actually dif-
ficult to find a single grid that produces accurate respormasdiltiple spaciously separated
receivers. Thus, in order to maintain stability and accpra@n inversion of data including
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multiple separated stations, a separate grid is assigneddo region of the mountain. In
practice, in addition to the two grids for the summit stasiptihree more grids are optimized
for the northern, southern and western flanks. The field sebagesponding to Station 7,
with its data generated by transmitter Tx2, needs anothparaee grid. This is due to both
the separate transmitter and a different column model wiherstress on the approximation
of the southern flank’s topography, compared to the onestldrofs 1-6. Note that the ad-
ditional computation time caused by multiple grids repnés@o major obstacle if a parallel
platform is employed in the way described in Section 2.1.2.

As a matter of course, when verifying the grid responsessttb be taken into account that
the topography effects vary between the different recestagions. In fact, in addition to the
summit stations, only Stations 5 and 6 show a significantémite due to topography. For
these stations, the mountain is located between transraitte receiver. The vertical volt-
age measurements of such a field configuration are usualtgdiieazed by a sign reversal
as shown byHordt and Miller [2000]. The mountain acts as a conductive anomaly in the
air space between the northern transmitter and the souflaek) thereby causing a current
concentration with an antisymmetric magnetic field on eigiée of the anomalyNewman
1989]. Such signal types cannot be simulated with 1D modéismning the inevitable mod-
eling of topography.

In Figure 2.8b the grid verification results for Station 6 ammpared with the analytical
solutions without topography calculated at the locatio® RxFigure 2.7. Again, the first
criterion is fulfilled for each 3D response (solid lines)chase no erroneous decay rate can
be observed at late times. For a 3Dt resistive mountain (contrast 100:1), the sign reversal
occurs at the earliest time, compared to the other contrastter the reversal, the curve
converges to the corresponding analytical solution andyieequally. This is in accordance
with the analysis oHordt and Miller [2000] for such a field geometry. The convergence at
late times between both 3D and analytical result can alsdberged for a 10@m resistive
mountain (contrast 500:1), whereas for @fn (contrast 1000:1) it is only indicated due to
the late sign reversal. For this example, the highest ceinff@00:1 thus also represents a
border for verifying the 3D response by comparison with theesponding 1D response.

It can be concluded that the FD grids for the different regiohthe mountain yield stable

and reasonable responses. In particular the regions wetlhatest topography effects are
crucial for a correct simulation of combined 3D effects daéoth the surface terrain and
underground structures. The verification of the resultafoontrast up to 1000:1 ascertains
that stability is maintained for varying models during aversion.

2.3.5 Results

The inversion scheme’s versatility to define arbitrary mquleameters led to a variety of
inversion attempts in terms of the model parameterizatimhthe number of input data com-
ponents. The data analysis includes inversions of a singhsient measured at the summit
(Station 1) and inversions of combined data sets comprisiegsurements from spaciously
separated locations (Stations 1-7). The combined invessball be referred to as joint in-
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version$, because different magnetic field components are involdiée last inversion is
applied to a combined data set, including vertical voltaggsnrements from the southern
flank profile (Stations m28—-m42). The goodness of fit of the euhqndedictionsdip to the
actual data valued? is assessed with the usual weighted least—squares anitdackson

1972]
_ 18 w-dpp
X= Ni; of '

whereg; is the standard deviation of thi datum.

Single inversion for horizontal and dome—shaped type of lagring

Among the summit measurements, the vertical voltage teahsecorded at Station 1 reveals
the best data quality together with the longest measuretimeatrange. The transient is char-
acterized by a slow decay in the late—time data, indicatiegoresence of a good conductor
in the underground. The inversion has the main purpose d¥ireg the existence of a dome—
shaped kind of layering with downwards decreasing resigtias indicated by the a priori
information. For this station, good data fits were achievéti & 1D model Muller et al,
2002], which also showed the main feature of a resistivityrel@se with depth. Hence, the
first 3D inversion was carried out under the assumption ofrazbotally layered model in-
cluding topography, as described in Section 2.3.3. Thesieathwas inverted for four layers,
thus 7 parameters are involved and define the resistiviidgtacknesses of the upper three
layers and the basement resistivity. From several testsioes and importance estimations,
which are not shown here, it could be concluded that thisasgts an optimum in terms of
data fit and number of important parameters. More layersdioice less resolved parameters;
less layers produce a worse data fit.

Figure 2.9a shows the resulting model in a NS—-orientedcadrsiection through the summit.
All starting layer resistivities were set to values of XDt and the initial thicknesses were set
to values of 300 m, 600 m and 500 m for the top, middle and loasgzr, respectively. Unlike
the referenced 1D model, the resulting structure shows nwitoaous downwards decrease
of the layer resistivities. A low basement resistivity 08 2m results from the inversion.
Although the initial model response can be improved by tvernsion, the final data fit in
Figure 2.9b does not reach a satisfying degree. Differeloegafor the starting parameters
were used in order to reduce the chance that the result eepises local minimum. However,
no further improvements could be achieved. This indicdtas the parameterization in the
form of a horizontally layered model is not appropriate fpagraphy is taken into account.

The same initial model parameters as for the previous irue@re kept in the second of
the above described types of layering, where the layers fodome—shaped structure. For
this and all subsequent inversions, the word layering weiiér to such a curved structure.
Again, it turned out that four layers are adequate in ordevtmd unimportant parameters.
Figures 2.9c and d show the resulting model and data fit, césply. In comparison with
Figure 2.9b, the superior data fit indicates that this modedmeterization is more adequate

2The term joint inversion has originally been shaped/byoff and Juppl975] and is typically used for the
inversion of data originating from different methods, sastfor example MT and DC resistivity soundings.
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for the underground structure in the vicinity of the sumnhit.accordance with the a priori
information, the resistivity structure is characterizgdabstrong decrease with depth. The

good conductor starts at approximately 950 m depth belovstince with a resistivity of
8 Qm and a further decrease to @4n at 1380 m.
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Joint inversion for a layered structure

With a dome—shaped conductivity structure favored by thevipus inversion results, the
same parameterization is now used to invert a combined datdt sncludes 9 voltage tran-
sients distributed over the receiver positions 1-6. An waeer of the involved stations is
given by Figure 2.10a. Vertical voltages were recordedlgiaditions. In addition, horizon-
tal voltage components parallel to the transmitter exisStation 4 and perpendicular to the
transmitter for Stations 5 and 6. Figures 2.10b and ¢ showethidting model and the data
fit, respectively. In spite of the small number of model pagtars and the large area covered
by the receivers, a good data fit is obtained. The verticalpmrants at Stations 1 and 2
and the horizontal component at station 4 are reproducedhighadegree, whereas the other
stations are fit in a more qualitative sense. An outstandsglt is the reproduction of the
sign reversal in the vertical component data of Stationstbéamarked with plus and minus
signs in Figure 2.10c. The early time solution for the vaiticomponent at Station 6 is in
good agreement with the observed data. However, rather larg time misfits exist for both
components of Station 6 and the vertical voltage of Station 5

For the starting model, each layer thickness is set to ailinélue of 500 m, and a homo-
geneous mountain (1QQm) is assumed. The total errgrof the combined data set can be
decreased from a value of 53.8 down to 10.3 during 9 iteratigfterwards, no further rela-
tive misfit decrease can be achieved. To generate prediatadat all stations, five different
FD grids are employed in order to account for the spacialivecseparation and the late
recorded times of Station 1.

From the data fit, it can be concluded that the simple modelagxgthe most important
features of the data and represents a good approximatiomeofesistivity structure over
a rough scale outlined by Stations 1-6. The resulting modelvs the beginning of the
conductive zone at approximately 940 m below the surfaces Jéry interesting, that both
the integrated conductivity of the first two beds and the patar values below the second
layer are in very good agreement with the single inversisalten Figure 2.9c. By means of
model variations, involving an extra fictitious layer at theesement, it can be estimated that
the highly—conductive zone of 0@m is resolved to a depth of approximately 500 m below
the beginning of the basement. Because no local deviatrons the layered structure are
taken into account by this parameterization, the fact tbagumantitative data fit is achieved
for all transients shows that more information is contaimgtie data. In particular the slower
decay of the observed late time vertical voltages at Stattoand 6 indicates a locally more
complex conducting underground. Hence, the following isi@ attempts assume a layered
background with additional model features added.
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Figure 2.10:  Joint inversion of the combined data set including Statibngé for a dome—shaped
four-layered mountain model. (a) Transmitter and recepesitions of the combined data set. (b)
Resulting mountain model. (c) Final data fits. The transieare named by the station location and
the magnetic component.
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Joint inversion for a layered structure and an additional canductive block

In addition to the parameters describing the four—layesadkground of the mountain, a rect-
angular block below the summit is defined in each of the falhgaunversions. The block’s
position and geometry is kept fixed and its resistivity isiteel as another model parameter.
Again, the combination of 9 transients is used as input data.

The first inversion attempt is carried out under the asswnuti a vertical conduit below the
summit. The presence of such a pipe—like structure withtendisished resistivity is justified
by the volcano’s permanent activity with a present effusite of about 1@ m?3 per month
[Siswowidjoyo et al.1995]. The conduit is represented by a column—shaped bldtka
fixed geometry, embedded in the four-layered backgrounceatehds downwards beyond
the estimated border of resolution. Its horizontal extems 1x 1 k. The layer parameters
are neither initialized to the values of the previous ink@arsesult nor kept fixed, because the
additional structure is likely to influence the layered kgckind during the inversion. For
the layers, the same starting parameters as in the previeaision are used. The additional
model parameter, the block’s resistivity, is initializegldvalue of 102m in order to account
for an assumed higher conductivity due to (partial) meltse Tinal model is shown in both
a NS—oriented and a WE-oriented section in Figure 2.11a.shtreity of 52 Qm results
for the additional pipe. The layered background below aliebtapproximately 1000 m
under the surface is similar to the result in Figure 2.10b.ifdoeased data fit compared to
the combined inversion without an additional block can H@eed. The result produces an
error ofx = 117, where no visible differences to Figure 2.10c for each sgpaomponent
exist. The relative misfit decrease converges to zero aifter&ions.

The second inversion attempt of this kind involves a blogkesenting a superficial magma
chamber at approximately 500 m below the summit. Its excaemnsuggested by the seismo-
logical investigations oRatdomopurbo and Poupingt995], who show a zone with anoma-
lously high attenuation of seismic waves 1-2 km below themaiim Also, according to
Camus et al[2000], the eruption history of the period starting at the ef the 18th cen-
tury suggests such a reservoir. First, the more or lessraamis growth of summit domes
interrupted by collapses and phases of quiescence woulchnifa idea of a continuously
depleted and refilled magma reservoir at a small depth. $edba absence of large ign-
imbrite® eruptions renders the alternative of a large deep resensizad of a shallow one
less possibleGamus et a].2000]. The block geometry is chosen to be 2 x 2 km® and

is initialized to a value of 1@m. The resulting model in Figure 2.11b reveals a rather re-
sistive reservoir. Similarly to the previous result, nol iegprovement of the data fit can be
achieved by this approach. Here, a final errox ef 11.5 results after 10 iterations, using the
same starting parameters as before. Another attempt natnshere placed the block 1 km
southwards from the position shown in Figure 2.11b, yet mth&r misfit decrease could be
achieved as well.

3The rock formed by the widespread deposition and consaidatf ash flows and Nuees Ardentes. It is
characterized by an inhomogeneous compaosition in termseajtain size of its constituentsiptthes 1990].
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In the lastinversion, a2 2 x 2 km? extended block is placed at a depth of approximately 2 km
below the summit. Such a deep structure is likely to be hidethe conductive basement of
the volcano, which has been confirmed by all previous invessiNevertheless, this attempt
is carried out in order to investigate, if a deep reservothwonductivities different to the
basement can improve the data fit. This could be interpreteal deep magma reservoir.
However, like in the preceding attempts, the inversionitesfwwn in Figure 2.11c, obtained
after 6 iterations, does not provide an improved data fit. firked block resistivity of 332m
contrasts with the ©m basement. Compared to all previous joint inversion restlie error

of x = 12.2 reveals a slightly worse fit, yet again with no significaffiestence to Figure 2.10c
for the misfit of each separate transient.

All three inversions confirm the monotonous decrease of ¢ésestivity with depth. How-
ever, there exist rather large differences between thengeas for the upper two layers. In
contrast, the third layer’s thickness and resistivity arelliasement resistivity are similar for
each inversion result. This indicates a higher resoluticdhese layer parameters, compared
to the upper two layers. Further, it can be concluded thaadaional blocks are not relevant
for an enhancement of the data fit, although this does noti@¢ige existence of a shallow
or deep reservoir. Due to the constant activity of Meraps likely that regions of (partial)
melts exist below the summit. However, the block resigg@sgitesulting from all three inver-
sions appear too large for molten material, because thisldhiavolve values known to be
in the range of approximately 1-Zdm [Lénat 1995]. Either the assumed reservoirs cannot
be distinguished by resistivities contrasting with thekmgound or the spatial distribution of
melts inside of the volcano is far more complicated thaneeg@nted by such simple block
models.

Joint inversion for a layered structure with fault

The following inversion involves an additional verticaltage transient measured at Station 1
yet produced by the southern transmitter (Tx2 in Figure,2l3)s the joint data set now
includes 10 transients. The additional data componengrned to as Station 7, expands
the resolution of the inversion domain into the southeredation. Its inclusion in the joint
data set is motivated by the question whether data from thtéhem transmitter can also
be reproduced by a four—layered model. The inversion ire®k separate FD grid for the
simulation of Station 7, in addition to the five grids used$tations 1-6, in order to account
for the different transmitter and the proper modeling ofsbethern topography. Figure 2.12a
shows the model of the inversion result. Figures 2.12b amdw $he observed and predicted
data for Station 7 and Stations 1-6. Comparing the ey éos each separate data component
with the corresponding data fits resulting from the invarsiathout Station 7 (Figure 2.10c),
one observes a slightly worse data fit for the majority of iBtet 1-6. In particular the
horizontal component of Station 4 shows a much worse fit iretiréy time part. Moreover,
the data of Station 7 cannot be reproduced to a satisfyingede@ther attempts with varying
starting model parameters also failed to achieve a bettarfdas shown in Figure 2.12. It
is obvious that the number of parameters is too small for tierged inversion domain. The
poor data fit of Station 7 suggests a more complicated reityssiructure below the southern
flank.
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In order to define appropriate additional model parametEDs nversion results of both
LOTEM and in—loop measurements on a profile on the southenk #i@e employed. A
2D pseudo—section obtained from 1D LOTEM joint inversiosules [Kalscheuey 2003] is
shown in Figure 2.13. It reveals a clear transition betwéenUTM coordinates 9159 km
and 9160 km to a more shallow good conductor on the southetrop#he profile. Evi-
dence for such a strong lateral resistivity change closké¢dJTM coordinate 9159 km was
also given by the more shallow 1D resistivity sections ot#difrom in—loop dataoch
2003]. However, it can be expected that the 1D inversionsigeoonly poor a resolution
of the lateral structure. Nevertheless, the layer paranseteis extended by introducing a
WE-oriented fault plane below the southern flank. The plaviees the inversion domain
into two separate layered sections and is chosen to be tbattiee northern UTM coordinate
9159 km (Figure 2.13). This is approximately 7.5 km south ardpi’'s summit. North of
the plane, the four—layered structure is kept, whereag tlangers are used for the southern
model section. The combination of 10 voltage transientsfars inverted for altogether 12
layer parameters.
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Figure2.13: 2D pseudo section from 1D inversion results of a southerrkffaofile [Kalscheuer,
2003]. The 1D Occam inversion results are shown for eachostatith respect to its elevation on the
profile.

Figure 2.14a both illustrates the parameterization andshioe inversion result. First, a very
distinct difference between the resulting model secti@rsime observed, indicating the ne-
cessity of the additional parameters. Comparing the nortbection with the inversion result
in Figure 2.10b, one observes only minor differences belmsecond layer, whereas larger
deviations can be seen for the upper two layers. Neverthellee monotonous resistivity
decrease with depth down to a value of 0.7 is in good agreemiémall previous inversion
results. A minor decrease in the goodness of fit can be rey&alm comparing the separate
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Figure 2.14:  Model results from a joint inversion of the combined dataiseluding Stations 1-7
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data fits and its errorg in Figure 2.14c with the corresponding fits in Figure 2.10erd{ a
total error ofy = 12.0 (previouslyx = 10.3) results for the entirety of data belonging to Sta-
tions 1-6. This is mainly caused by a worse early time datarfistation 3 and the horizontal
component of Station 4. Due to its distance, the direct infteeof the fault can be expected
to be very small on both Stations 3 and 4. The poorer fit is tlawsed by the altered upper
layers of the northern section. The poor vertical compdsadatie time data fit of Stations 5
and 6 is not improved by the additional model parameters.

Compared to the previous approach without a fault strugiigrre 2.12), the inversion result
represents a high improvement due to the superior data fitadio8 7 (Figure 2.14b). The
only significant misfit can be observed at the earliest tirfesbably, the early time fit could
be improved by a more resistive overburden, similar to thesitown in Figure 2.10b. This
is suggested by comparing the horizontal component’s datd 8tation 4 in Figure 2.10c
with the corresponding fit in Figure 2.14c, where a similatyeime misfit can be observed
due to the less resistive overburden.

The inversion result includes two important aspeMgsuhata et al[2002] showed that the
joint use of synthetic data generated by a left—side sourd@aight—side source significantly
improves the resolution of the underground between bothcesu This could also be con-
firmed by comparing 2.5D joint inversion results of field dgémerated by such a transmitter
setup with the results from a single source. A better agreémih a model obtained by a
MT survey could be observed when inverting the data from Botirces. In the case of the
presented inversion, the two transmitters are locatedaiywith respect to the inversion
domain below the volcanic edifice. Hence, an increasedusnlof the four—layered part
of the model is given compared to the joint inversions inugdva single transmitter. This
makes the result in Figure 2.14a more important. The preseha highly conductive zone
(< 1Qm) below a layer of intermediate conductivity, here it isQ#8, is confirmed because
of the good agreement with the inversion result from Figul®B, where only the northern
transmitter is involved.

Another outstanding result is the very good agreement cfdlighern model section with the
resistivity structure derived from 1D joint inversions. élbouthern section of the inversion
result is characterized by a more shallow conductive lagéovio an approximately 250 m
thick overburden. The small difference between the rediss of the intermediate layer and
the basement indicate a two—layered structure in the sousieetion. This is in accordance
with the pseudo section in Figure 2.13, where the two—laystricture south of the UTM
coordinate 9159 km is dominated by a shallow conductor wesistivities mainly below
10Qm.
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Inversion for the position of a conductive block in a homogerous half-space

The data inverted in the following originate from the south8ank profile given by Sta-
tions m28—m42 and the transmitter Tx3 (see Figure 2.3),clied the “Kaliadent* profile.

A closer view of the field setup is shown in Figure 2.15. Fiisheeds to be emphasized
that the following inversion is a rather experimental aggio without the primary aim of
achieving a realistic earth model. This has several reagtar$ier interpretation attempts for
these measurements were madeMiytler [2000b] using 3D forward modeling. His results
indicate a far more complicated resistivity structure tisan be taken into account by the
limited model complexity allowed by SINV.
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Figure 2.15: Transmitter and receiver positions of the stations m28—rot¢ated on Merapi's
southern flank.

Another reason which makes the inversion of the Kaliadem dathallenging task is the
data quality. Unfortunately, the profile was located in aoegvith a very high noise influ-
ence due to the local power supply. Therefore, even aftdygprather sophisticated filter
techniques $choll 2001] to the recorded transients, the processed data fismegion is
still characterized by a significant portion of noidéiller, 200(; Kalscheuer2003]. The
measurements are vertical voltages and are shown by thesyools in Figure 2.16. It can
be seen that the noise influence appears in the form of shaigtidas of single data points
from an otherwise smooth transient.

All stations are characterized by double sign changes, thighexception of Station m28,
where a single reversal exists. The sign of the measurenseinidicated by either '+’ or -’

above the data curves in Figure 2.16. The determinationeo€tinrect sign of the data can
become difficult if this is not correctly taken into accountrihg the survey. Unfortunately,

4The transmitter Tx3 (see Figure 2.3) was located in the svile of Kaliadem on the southern flank.
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the axis orientation (upwards or downwards) of the wire laspd for measuring the vertical
voltage was not considered during the measurements. Hémeeorrect sign of the data
cannot be determined. Followinduller et al.[2002], each transient is assigned to the same
sign at early times, because the reversals show a condigtleaviour in the sense that there
are no rapid variations in shape along the profile.

One notices that no data errors are shown in Figure 2.16.u8eaz the poor data quality, the
data processing reveals a high average value for the sthddaiations. The errors are even
above the average for the data points belonging to the sigmges. Weighting the data by the
original standard deviations leads to inversion resulisdio not reproduce the sign reversals,
because of a too small influence of the corresponding datdgor herefore, the presented
inversion involves an equal weighting by assuming a retag¢irror of 1 % for each datum.
As mentioned in Section 2.1.2, a data transformation ugiegArea—Sinus—Hyperbolicus
function is employed in order to account for the changing sigefer toScholl[2001] for a
description about the corresponding transformation ofitita errors.

The consistent sign reversals at all stations indicatengteffects due to 3D structures. The
first 3D modeling attempts tried to explain the reversalshg/topographyNiuller, 2000].
The local terrain is dominated by approximately 50—-100 mpdesnyons located roughly
parallel on either side of the profilduller [20000] investigated the influence of the canyons
by approximating them with 3D blocks. However, neither ayvesistive canyon due to
the air space nor a conductive canyon, based on the assungbtftuid concentrations in
the valleys, could reproduce any sign changes. Approxigdhe profile’s topography with
the more accurate vertical column approach could also mbdeice any sign reversals.
Moreover, including the topography showed only a margintiience on the predicted data.
Hence, the following analysis involves an earth model witttopography.

The starting model used for the inversion is based on the 3Betimg results fronMuller
[200(0]. Although no quantitative fit to the data could be achievexiconcluded that a®@m
conductive WE striking block close to the surface in the Inem part of the profile seems to
be the most likely explanation for the observed reversas &savitller et al.[2002]). The
anomaly is located between Stations m30 and m32 which isostggpby MT measurements
[Haak 1998] on this profile. The induction arrows for a period & §econds point northward
north of Station m30 and southward south of Station m30¢attg a good conductor below
the station. The anomalous block reaches the surface wignteal extent of 100 m and a
width along the profile of 1 km and a lateral extent of 4 km. T8 &m background has
an additional conductive layer of Z0m with a thickness of 1000 m at 500 m depth. With
that model, a single and a double sign reversal can be sieauétStations m36 and m40,
respectively.

The presented inversion attempt starts from a similar mgdess. Here, importance is at-
tached to the question whether a single 3D structure caredaesconsistent sign reversals
over the profile. Therefore, without intending to model theetbackground resistivity struc-
ture, a homogeneous 5@m background is assumed. According to the 1D joint inversion
results fromKalscheuef2003] shown earlier in Figure 2.13, the southern flank risvea
such resistive background below the Kaliadem profile. Faurtiore, the inversion result of
Figure 2.14a is in contrast to a homogeneous background.
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Figures 2.17a and b show the block’s geometry and positi@pilan view and in a profile—
versus—depth section, respectively. For simplicity, taegmitter’s angle of inclination (ap-
proximately 10) to the WE direction is neglected. The dashed lines reptebeninitial
model and the solid lines represent the block’s positioaraih inversion, where both resis-
tivity and geometry remain fixed, yet the position is varablhe size of the ©m conductive
block is chosen to be 4 0.5 x 4.8 km? for the WE, NS and vertical extension, respectively.
The vertical extension is much larger than assumetiiler [2000b] and is based on the
observations of the mentioned MT study. Sign reversals @anitnulated at each station
by the initial block position, although the time of occurceris not matched for most of the
stations.

Two free position parameters are allowed. The first parandetnes the position on the axis
parallel to the NS direction, and the second one descrilgegdttical position. In the initial
model the block starts at a depth of 150 m below the surfaakfl@northern edge is at a
distance of 500 m south from the transmitter. Compared tanitial position, the inversion
shifts the block 50 m closer to the surface and approxima@0/m closer to the transmitter.
Due to the strong constraints on the model complexity, a fitatecrease could be achieved
within only two iterations.

In Figure 2.16 the solid curves show the data calculated filaninversion result and the
dashed curves show the initial model response. Both iratidl final model response fail to
reproduce the correct amplitudes for most of the data. BHikely to be caused by a wrong
assumption about the background resistivity. Another @dpebe considered are amplitude
shifts due to possible local near—surface conductors b#tewgrounded—wire source. As
described in detail byjNewman[1989], a conductor close to the transmitter causes a shift
from the voltage amplitude level arising from the host. Deperg on the location of the
transmitter with respect to the near—surface conducterresponse that is observed can be
shifted above or shifted below the host respomsmymar{1989] shows that such effects can
be removed to a large degree by scaling the amplitude of #digied data by an adequate
constant. Therefore, if an erroneous amplitude is assumbked taused by a conductor close
to the transmitter, the amplitude deviations are lescatiti

More crucial is the question whether the times of the sigensals are matched by the pre-
dicted curves, because this is influenced by the conductoek bbetween transmitter and
profile. In Figure 2.16 the lower signs in each plot mark tlggf the predicted data. The
small parameter change between initial and final model haktwely strong impact on the
simulated data. At Station m28 the inversion moves the sigange of the initial model
towards earlier times. This might be enforced by the obskealy time data. It is charac-
terized by a strong amplitude decrease during the first daitag yet without changing the
sign. The double sign reversal at Stations m30 and m32, withrew intermediate nega-
tive data part, cannot be reproduced. However, for botiosigthe simulated single reversal
occurs at a time that is in more agreement with the observiedtdan the reversal time of
the initial response. The occurrence of the predicted dosigin changes at Stations m36,
m38 and m40 are in much better agreement, compared to tre regponse. However, for
Station m42 the two sign reversals, already reproduced @ynitial model, vanish for the
new position of the block. In general, the inversion resudjoices an improved data fit. The
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Figure 2.17: Initial and final model producing the corresponding respemén Figure 2.16. The
model parameters are represented by both the lateral antice¢position of the WE-oriented con-
ductive block. The initial and final model are shown in (a) arpliew and (b) a vertical section along

the profile.

total error is decreased from an initial valuexp& 73.7 to a final value ofy = 21.7 during
the inversion. This mainly results from the shift of the poteld sign changes towards the
observed reversal times.
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To draw a conclusion, the inversion attempt successfullyatestrated the versatility of SINV
by the capability of adapting the model parameterizatiogiffacult inversion problems. The
simplified model of a complex structure can be enhanced ipancgoriate parameterization is
chosen. However, the inversion result fails to reprodudh tiee correct number of reversals
for Stations m30, m32 and m42 and the exact shape of the clanvals stations. This shows
that the real resistivity structure is much more complidaperhaps a more complex system
of several conductors interacting with each other. Inagrfor such a model would require a
much larger number of parameters.

More complications might arise from the presence of pigdim the survey area, used for
the local water supply. Their existence had been confirmeth&yocal inhabitants during
the measurements. However, mapping the true positionedusnt to be too difficult due
to the lack of sufficient information. Most pipelines areemted in a NS direction and a
few are oriented in a WE direction. To study pipeline effestdh EM forward modeling
codes, one usually uses blocks or thin sheets such thataddegirof conductivity and area
of the block’s cross section approximates the correspagnpliaduct for a highly conductive
pipe [Kriegshauser 1991; Hordt, 1992; Tezkan 1993]. Here, no sign reversals could be
reproduced for any station by placing an elongated condriblock, representing a pipe, in
a direction perpendicular to the transmitter. Differemidtions on the WE—oriented axis were
tried for such a pipe modeKriegshauser{1991] showed that strong distortions in the form of
sign reversals are due to pipelines with an orientationlighta the transmitter and located
close to the receiver. Such could also be the case on thede€atigrofile, although two
reasons negate the assumption that the data is dominategdiye effects. First, the above
mentioned MT study, employing a period of 0.2 seconds, até€ a conductive anomaly in
a much larger depth than typical for pipelines. Second, sagersals usually occur if the
receiver is located very close to a pipe, as also showHdrgt [1992], which is unlikely to
be the case for each receiver of the profile.

2.3.6 Interpretation and conclusions

In comparison with both MTNller, 200@&] and DC geoelectrical measuremerfsi¢del

et al, 2000], the LOTEM data provides a greater insight into thdeuground below the
volcanic edifice due to a better data covering of the summgiore Also, the exploration
depth fills the gap between large—scale MT and shallow DGtregy soundings. The general
structural resistivity image of the volcanic edifice, obhtd from the presented inversions, is
in good agreement with the trends indicated by both mentiaisciplines.

The most important result is the confirmation of the existeatan extensive conductive
zone below the volcanic edifice. The volcano models weretcangd such that the lay-
ered beds closely follow the topography. Probably therst@eviations from this simplified
structure, because some data components show significafitsnor can only be explained
to a qualitative degree. However, an upwards—directedature in the resistivity structure
can be regarded as confirmed. In particular the superiorfldatathe summit Station 1 that
is obtained with a dome—shaped layer structure, comparie tit given by horizontal beds,
affirms an upwelling of conductivity sources below the sutnrm order to obtain a rough
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error estimation of the parameters characterizing the wcineg zone, the presented inver-
sion results involving a curved layered background are @metgh This reveals a constant
image for the lower conductive zone below the volcano. Tangifia mean values and its
standard deviations are used. The bed of intermediateivégigthe third layer) starts at
a depth of 918+50 m with a thickness of 4023 m and a resistivity of 3 Qm. The
basement resistivity has a mean value of 8(h1 Qm. The upper layer parameters reveal
the largest differences between each other, because thENMQ@Gta does not provide mea-
surements at times which are early enough to resolve théshsiructure. Nevertheless,
a strong monotonous resistivity decrease, starting froatleer resistive overburden, can be
concluded with some ambiguity from the different inversapproaches. This is also a ma-
jor conclusion drawn from DC resistivity imaging along th@cano’s flanks [friedel et al,
2000].Muller et al.[2002] propose a 100Qm resistive basement below the good conductor,
based on 1D inversions of data measured during the first LOS&Mey in 1998. However,
the monotonous resistivity decrease affirmed by the predeesults rather indicates a con-
nection with a local anomaly of low conductivity below Merappserved on a regional scale
by a MT survey across Central Jawitter et al, 1998].

The results support the existence of a large hydrothernstésyinside of the volcano, be-
cause fluids seem to be the main cause for the extensive regingh conductivity. The
alternative explanation by a large magma reservoir is ehflik one takes the measurements
of other disciplines into account. First, tilt and DGP&ata give no evidence for a large
magma chamber in altitudes higher than 1000 m below Merapitace Rebscher et al.
2000]. Also, large amounts of magma would not match denstiynations obtained from
gravimetric measurement&ersteneckerpers. comm]. The other possibility of sea water
intruding from the ocean is not supported by the regional Mdfije across Central Java
[Ritter et al, 1998]. Moreover, the isotopic analysis of the fumarolidevat the summit
shows that the main water component is rainwater with a smad¢jmatic fractionZimmer
and Erzingey 1998].

Muller et al.[2002] assume fluid resistivities of 0.29Im in order to obtain estimated poros-
ity values ranging from 10 to 20 % for the conductive zone Welbe flanks. Such high
porosities are indeed supported by gravity observati@ssigwan 2002]. However, they
cannot be the cause for the high conductivities below depti®0 m, because this would
require even higher porosities. Actually, the contrargeffiof a downwards increased resis-
tivity should occur due to the bulk porosity decreasing wdépth by compression of cracks
and poresiRyan 1987]. Lénat[1995] mentions departures from Archie’s law in connection
with experiments on Hawaiian and Icelandic basalts, whaset than expected resistivities
are explained by the presence of hydrated minerals sucltagsrcherals or zeolites. Even
if not clearly identified by geophysical observations, (@) melts must be present due to
Merapi's constant activity. Hence, the heat is likely to gete a circulation of hydrother-
mally altered fluids with concentration processes in theab’s central part. The significant
upwelling of conductivity sources derived from the inversresults supports the idea of a
vertical fluid transport.

There exist contrary views about the existence of a shallegma reservoir. As mentioned

SDifferential GPS (Geo Positioning System).
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before,Camus et al[2000] relate the quasi—steady magma output to the presdracemall
superficial reservoir. Also, the seismological observatiof Ratdomopurbo and Poupinet
[1995] support an aseismic zone related to a shallow magmaaisér. On the other hand,
other seismic dataWfassermann et al1998] and deformation measuremenf¢egterhaus
et al, 1998; Beauducel and Corngfl999] do not show a clear indication of an aseismic
zone. The presented LOTEM data analysis neither supporéstecally extended conduit
nor a shallow or deep reservoir distinguished by a very losistirity. However, since the
resistivity of molten lava is known to range from about ldsat 1 to 20Qm [Lénat 1995], a
reservoir below the zone of high conductivities, approxeha900 m, might well be hidden
in the layered host. This however would be beyond the reisolgapabilities of the LOTEM
method. Apart from the presented block—like model ideasttier structure of a possible
reservoir, a more complicated distribution of the meltsraveystem of dykes may exist in
reality.

The clear transition to a different resistivity structueddw the foothills of the southern flank
indicates that conductivity sources may be different camhpathe summit area. At greater
distances from the summit, fluids that must not be directbteel to the hydrothermal system
and thus not enriched by hydrated minerals may be the mady ldause for the shallow
conductivities. The mentioned regional MT study revealdwpshallow conductors of this
kind at several places in Central Java. The shown inversnmos/e an approximation of the
transition by a vertical fault. The question about its trtracure is especially worth further
investigation in conjunction with the known southern coctility anomaly observed over
the Kaliadem profile. This anomaly has been observed by LOTEdsurementduller

et al, 2002], CSAM™ data Bupriadi et al, 2000] and Central-Loop dat&dch 2003] and
coincides spatially with the assumed position of the valtigult in Figure 2.14a.

The analysis of the Kaliadem profile demonstrates that TEMsuements with strong dis-
tortions in the form of sign reversals represent a highly glcated inversion problem. Be-

cause of the limitation of the spatial data distribution tprafile instead of an area, a 2D
inversion capable of inverting for a finely parameterizedanmground is a more appropriate
approach for this kind of data. The further analysis of théd<eem profile is the subject of

ongoing researchalscheuer2003]. A final clarification about the anomaly’s geometrgan
interaction with the background resistivity structure \ebloe possible with an area—wide dis-
tribution of measurements available, thus enabling théiGgin of a large—scale inversion
as presented in Chapter 4.

6Controlled Source Audio Magnetotellurics.



CHAPTER 3

A PARALLEL FD SCHEME FOR 3D TEM
MODELING WITH NON —CAUSAL SOURCES

The previous chapter demonstrated how an efficient datysiealan be realized using 3D
earth models with a low degree of complexity. A great advgeia given by the fact that no
large amounts of data distributed over the target are requi©n the other hand, sufficient
prior knowledge about the target is needed in order to defopeopriate parameters of a
model such that its main structural features can be refineahbipversion. In many cases,
no such prior knowledge might be present. As a consequenaxtansive data acquisition
with an area—wide distribution of sensors cannot be avoidedder to provide a sufficient
resolution of the underground. Such cases are typical irerairexploration [Nabighian
and Macnae 1991], hydrological and hazardous waste site charaetesiz [Pellerin and
Alumbaugh1997] or general geological mapping.

The inversion of large data sets collected over a 3D earth antunknown and extremely
complicated structure leads to the necessity of adequiatelynodel parameterizations. Such
an imaging scheme will be developed in the course of theatig two chapters. It will be
outlined in more detail in Chapter 4 how the scheme is basetth@mprinciples of seismic
wavefield imaging methods, also known as migration. For rioghall only be emphasized
that migration techniques involve the evolution of causatse fields induced simultaneously
by multiple spatially distributed sources, where bothgleand/or magnetic source types are
considered. Furthermore, the source excitation contidugag propagation of the EM fields
over the whole simulation time range. These fields will l&tereferred to as residual fields
and cannot be simulated by the SLDM coddbotiskin and Knizhnermaji988].

Therefore, an explicit finite—difference (FD) 3D time—gigm scheme for the simulation of
EM fields is developed in this chapter. FD schemes have besth eidensively, for their
great simplicity in solving multidimensional time—domanodeling problems for controlled
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sources. Among the first approaches for EM modeli@gJdman and Stoye1983] ad-
dressed the simulation of time—domain responses in a diatphaxially symmetric media
with an implicit and 2D FD formulation. Later a quasi—3D apgch, where 3D shapes were
realized by a straight circular cylinder embedded in a 2Dkgesund, was presented by
Tabarovsky and Rabinovi¢h988]. A simulation of TEM surveys over thin vertical coradu
tors embedded in a half-space with overburden was desdoypé&tistaglio and Hohmann
[1984]. Their numerical method for solving the 2D transeeesectric mode of Maxwell’s
equations is based on an explicit FD scheme originally pgeddoyDuFort and Frankel
[1953] and generalized to inhomogeneous models and ieguids. Adhidjaja and Hoh-
mann[1989] attempted to develop a direct time—domain, FD soiufor the EM response
of 3D models. Their solution is formulated in terms of se@mydnagnetic fields to avoid
dealing with a discontinuous normal component of the aletigld, yet faces problems with
discontinuous conductivity gradients at interfacéf@ang and HohmanfL993] presented an
explicit 3D FD scheme for loop sources that employs a modwiexdion of the DuFort—
Frankel method. The solution incorporates analytical ilpuesponses from an assumed
homogeneous earth model as initial conditions. Their sehemploys a staggered grid,
which was originally described byee[1966] and represents a suitable method for the spatial
discretization of Maxwell’s equations.

The development of the presented FD algorithm involvesxewig the theory of Maxwell’s
equations for 3D heterogeneous media and the time—stepgitame of the equations by us-
ing a staggered—grid in conjunction with a modified versibthe DuFort—Frankel method.
The time—stepping scheme and stability criteria are baget the solution presented by
Wang and Hohmanf1993]. However, there are differences in several key @spé&arst, the
algorithm is extended to provide the capability of simuigthon—causal source fields. Fur-
thermore, the capability of simulating field responses dumrdltiple electric and/or magnetic
sources is provided by the algorithm. This is required byrtigration techniques involved
in the inversion presented in Chapter 4. Second, the im@atitions are computed for an
arbitrarily complex geological media. This involves théusion of a 3D Poisson problem
prior to the time—stepping process in order to account ferpgtesence of a non—causal DC
electric field arising from the galvanic source. The thirdenalifference is also related to
the initial conditions. Because this work focuses on dap@sygiven by the time derivative
of the magnetic induction (voltage) instead of the magrfetid, the explicit computation of
the initial DC magnetic field can be avoided. This is accosi@d by advancing voltages
instead of magnetic fields in the time—stepping algorithrhe Todifications to the time—
stepping scheme involve a divergence—free condition ol that electric current density and
the voltage to ensure accurate results at late times. Atttestlgorithm is designed to per-
form on parallel computing platforms in order to addresshigé computational demand of
an explicit time—stepping scheme.

3.1 Methodology

In order to simulate the propagation of the total electrid avagnetic field intensitiex(r,t)
andh(r,t), respectively, as a function of the position veater (x,y,z) and timet in a 3D



3.1 METHODOLOGY 51

earth, the governing Maxwell’s equatidria the time domain are reviewed,

Dxe+p% = —m5 (3.1a)

—th+oe+yg—? = - (3.1b)

whereg is the conductivity ang is the magnetic permeability of the earth. In Equation (B.1b
y represents a fictitious displacement, which is explainethén below. Equations (3.1) are
inhomogeneous, because regions containing externalesoare taken into account, where
j*> andms are the impressed electric and magnetic current sources fiddpectively. The
magnetic currentn® can be described by means of a magnetic polarization vedtqiwWard
and Hohmann1988], p. 144)

0
m(r.t) = u(r) ZmP(r.). (3:2)
This way of representing magnetic types of sources assumide be an integrated surface
current. While being an useful artifice, Equation (3.2) isuaety theoretical construct as it
demands the existence of magnetic monopoles in order gfystie continuity condition for
magnetic charged§ard and Hohmanni988].

The source field generated by the primary galvanic tranemgtfurther defined by

j3(r.t) = 18(r)u(t),

wherel denotes the electric currestis Dirac’s delta function, and the functiait) describes
the source waveform after switching off the constant trattemsignal. Further needed are
the conditions

O-b = 0, (3.33)

O.j = 0, (3.3b)
and the identities

. oh

b = UE’ (3.4a)

] = oe, (3.4b)

whereb will be referred to as voltage afdepresents the total conduction current density.

The proper field simulation requires an adequate schemadadiscretization of the spatial
differences given by the curl and divergence terms in Equat{3.1) and (3.3). The actual
propagation of the EM field with progressing time is inheliarihe discretization of the time
derivatives in Equations (3.1). Both is accomplished by msez the staggered grid outlined
in the following sections.

1In MKS system of units.
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3.1.1 The staggered grid

The staggered gridyee 1966] for discretizing Maxwell's equations in three dins@ms is
illustrated in Figure 3.1. The indicesj andk are used to number the grid point locations
in the X, y and z directions, respectively. Electric fields are sampled adénter of cell
edges and magnetic fields on the center of cell faces. For@raito specify the sampling
of the horizontal electric field in the direction for a given grid nodéi, j, k), the notation
ex(i+ 3, j,k) will be used. The corresponding magnetic field in the samezton is specified
by hy(i, j + 3, k+3).

The staggered grid is useful for the discretization of thi operations in Maxwell’s equa-
tions by means of elementary electric and magnetic lodfspg and Hohmanri993]. Fig-
ure 3.1a illustrates how each electric field component isosunded by an elementary loop
of four magnetic components. As exemplified by the dashedmgte aroundy(i + 3, j, k),
the axis of the magnetic loop is given by the edge where tharaldield is sampled. The
electric field components are assumed to be constant alereptes. For example, the field
ex(i+ 3, j,K) is constant along the edge between the nddgsk) and(i + 1, j,k). The ele-
mentary electric loops intertwine with magnetic loops,dwese a loop of four electric com-
ponents on the borders of a cell face curls around each coenpoi the magnetic field as
shown in Figure 3.1b. The magnetic fields are oriented pelipalar to the face where they
are sampled and are assumed to be constant over its area.

Each FD grid cell represents an element of the earth modeldifferent material properties
andy, which are assumed to be constant over the cell. FolloWifagg and Hohmanfi993],
each electric and magnetic field component is assigned teeatidinal electric conductivity
and magnetic permeability, respectively. A directionalauctivity is evaluated by averaging
the weighted conductivities of the four prisms connectethleycorresponding magnetic loop.
This accounts for the continuity of conductivity acrosd edges. For examplex(i + 3, j, k)

is the average of the four cell conductivitie§, j,k), o(i, j — 1,k), o(i, j,k— 1) ando(i, j —
1,k—1). Each cell conductivity is weighted by the ratio of the faceasacut by the magnetic
loop to the total area of the loop. Instead of the arithmeteraging scheme for magnetic
permeabilities used bwang and Hohmanfi1993], geometric averaging is used as will be
specified below.

3.1.2 Time-stepping of the EM field for causal sources

With the concept of the spatial sampling of the EM field in plagow the implementation of
the space and time derivatives of Maxwell's equations ibreed. Wang and Hohmanji993]
describe a leap—frog scheme for advancing Equations (3.tlne for causal source fields,
arising from loop sources with an inductive coupling to theund. It shall be recapitulated
here in order to understand the modifications that will beerfadthe treatment of fields with
a hon—causal source excitation. Also, the time—steppingme for causal fields will be used
for the propagation of the residual fields mentioned in theoduction of this chapter. The
principle difference in both schemes is that time—steppimg-causal fields will be based on
the time derivative of the magnetic induction (voltagef&asl of magnetic fields.
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Figure3.1: The 3D staggered grid as used for discretizing Maxwell'sadiqus. The electric field
is sampled at the centers of the prism edges, and the madiadticis sampled at the centers of
the prism faces. (a) Elementary magnetic loops curl arouedtec fields, (b) elementary electric
current loops curl around magnetic fields. (c) Realizatidrithe discrete divergence for magnetic
fields or voltages for a given cell (i,j,k) using the six comgats of the surrounding cell faces. The
corresponding divergence of the current density incorpesahe six components of the surrounding
cell edges. (a)—(c) also illustrate the communication sohdor the parallel implementation of the
field update explained in detail in Section 3.1.6.
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Approximating Equations (3.1) involves the discretizatad the derivatives in space and time
by finite differences. This introduces the spatial lendtks Ay; andAz of a given grid cell
(i, j,k), where for exampléx; denotes the distance from nogej,k) to (i + 1, j,k). These
quantities will be needed for discretizing elementary tiedoops. Elementary magnetic
loops run across cell edges and thus its sizes along eadbst@artdirection are given by

_— AX_1 + DX
AXi _ |12‘|‘ |’
— Ayj_1+ Ay;
— Az 1+ A

Azk — Zk]'#_'_zk.

The time derivatives involve the discrete time sf#p where the indices,@,....n—1,n,n+1
are used to represent the time instapis, ..., th_1,th, thr1 With th1 = t, + Aty The timetg

is defined to be the time of the current switch—off in the traitter. Similar to the spatial
sampling of the fields on the staggered grid, the electriddi@re sampled at integer time
indicest, + At,, and the magnetic quantities are sampled at intermedrate iidicest,, +
%. This way of sampling the fields indicates the leap—frog ifaslof the time—staggering
scheme.

The FD representations of Equations (3.1) are exemplifietthéoc component of the different
fields. No magnetic sources are considered for now, becausgtarnal loop or grounded—
wire transmitter only involves an electric current soureddfi First, Equation (3.1a) is dis-
cretized, starting with the component form

ob,  de; e

ot 9y 9z
The approximation of the left—hand side at an integer timelleinvolves a central difference

NI
NI

ob\" b t-by ?
at )~ At '

Then it follows for the updated magnetic inductiofep 1966]

N3 n-3. .
2, i+ 3, k+3) =bx 2(i,j+3.k+3)
i, j+rLk+) -, j.k+1) i i+1k+1)—€)i,j+3K
A Ay; N Az, ) (3.5)

whereAy; andAz are the extensions of the grid céil j, k) in they andz direction, respec-
tively. The next step involves the computation of the maigrfetld by

1 1
he 20+ k1) = by 2(0, j+ 3K+ 1)/, j+ 3K+ 3).

Following Alumbaugh et al[1996], the permeability®¥? is computed using a geometric
average of the two neighbouring cell permeabilities cotewby the magnetic field, thus for
thex component

(AXi71+AXi)H(i -1 J;k)p‘(lv J?k)

avg(i i1 k4 1) — — . —
L e ) = T LK) T - 1,1.K
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This accounts for the continuity of the magnetic inductibattis normal to a cell face and
connects the two cells involved in the average. After cotnmbeof the magnetic field update
for all components, the electric fields are advanced. Agaiart with the component form of
the electric field in thex direction, derived from (3.1b),

oey oh, ohy

EJFGQ(:()—y_E_JX'

To sample both terms on the left-hand side at the same tint@nins+ 1 of the updated
magnetic field, a central difference for the time—derivatszagain used,

a%( n+% eQ+l_eQ
<E> M,

and a simple average for the other term,
n+3 eQ-l-eQ""l
& AT

This leads to the following expression for the updated dleteld:

- DO+ 10K 214,
. . i+, 5,k . -
2+ Do+ 4,10 T B S e A L 1K

1 1
hy 2(i+3,j+3,K—hy 2(i+3,j—3,k
+ 1 . +1 . .
gk )ty it gik=d) (3.6)
- n .
Z

S i+1,j,k) =

WhereA_yj andAz, specify the size of the elementary magnetic loop arogind he electric
current source field impressed by the transmitter is givejlby

3.1.3 Numerical stability

A FD scheme is said to be stable if the difference betweerhgénarétical and numerical solu-
tions of the difference equation remains bounded for all gndeq(i, j,k) as the simulation
time increasesAlford et al, 1974]. Unstable solutions are characterized by numedisal
persion, that is the improper simulation of high—frequehelds. Therefore, the first thing
to ensure is the adaption of the spatial samplintp the highest frequencies of the field.
An estimation of the smallest number of gridpoihtper wavelength is given bywang and
Hohmann1993]

)\min
N < A
whereAnmin is the minimum wavelength. The approximation of the spditede differences
in Section 3.1.2 by incorporating the fields of two adjacetgms represents a second—order
schemeAlford et al.[1974] conclude that a number Nf= 10 is adequate for a second—-order
scheme and that this number can be decreased by using a bigeescheme. In the course
of this work, a fourth—order scheme has also been realizethéopresented FD algorithm.
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In principle, the approximation of the diﬁeren%é at a given grid node+ 3 involves four
adjacent grid nodes such that
of
X ~cC_qfi_1+cofi+cifipr+cofiso,
X/ i+l
wherec_1,...,Cp are functions of the grid geometr\wang and Hohmanri993]. However, it

turned out that the additional computation time due to thgelanumber of multiplication and
division operations during time—stepping outruns the bienef the fourth—order scheme.

Adaptive time—stepping

Another risk causing numerical dispersion occurs with aproper choice of the time steps.
In principle, for a given spatial cell size of a FD grid, theesof the time step must be limited
such that over one time increment the EM field does not chaiggéfisantly. Yee[1966]
derives a restriction for a constant time step in order tainetomputational stability for an
equidistant FD grid. For the presented algorithm, a graddaption of the time step to the
rate of diffusion of the EM field is employed, because it aboler higher computational
efficiency.

For the treatment of TEM fields, the diffusive approximatidiMaxwell’s equations, i.e. with-
out displacement currents, needs to be considered. Hére&grim involving the variablg

in Equations (3.1) represents a fictitious displacementeatr It is artificial and changes the
equation from a diffusive form into a damped wave form, whiepresents a modified ver-
sion of the DuFort-Frankel metho@{iFort and Frankel 1953;Oristaglio and Hohmann
1984;Adhidjaja and Hohmannl989;Wang and Hohmanri993]. In fact, the variablgis
much larger than the true displacement current, but stidlsenough to allow an accurate
simulation in the diffusive approximation. It is outlined detail in Appendix A.1 that its
incorporation allows the use of larger time steps than witbraventional Euler type scheme
applied to the diffusive forms of Equations (3.1). Therefat allows to address the attenu-
ation of high frequency components of the EM field with timeabgradual increase of the
time stepAt, in Equations (3.5) and (3.6) with progressing simulationeti This reduces
the computation time to some extent, where the benefit isfgignt for very late time field
simulations. However, both the initial and subsequent 8tegs are limited by the condition
(see also Appendix A.1)

Aty < %Amin; (3.7)

where tmin, Omin and Amin are the minimum values of magnetic permeability, conditgtiv
and FD grid spacing, respectively. This ensures the dommaif diffusion after the ear-
liest measured timg otherwise spurious wave—like modes dominate the behawibthe
simulated fields. In practice, a maximum time step of

 MminOmint
Atmax: 0.1 lJmmfcmmAmin

has proven to be adequate for the presented algorithm.
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Both the time step and the minimum grid spacing control thigibas permittivityy by the
Courant—Friedrichs—Levy criterion for the wave veloatyf a wave-like equatiorfichtmeyr
and Morton 1967;0Oristaglio and Hohmann1984]

C:i< Amin
VY T V34,

From that condition, one obtains

ys 384
B umi”Aﬁﬂn
which needs to be updated if the time step is increased.

: (3.8)

Divergence—free condition

Another important issue for stability is the explicit erdement of a vanishing divergence
for the magnetic inductiob. Even with the benefits of a staggered grid, which implicitly
preserves the flux conditions on current density and magmetuction fields, it is necessary
to explicitly enforce the divergence—free condition. @t in more detail byang and
Hohmann[1993] andSmith[1996], the enforcement can be regarded as gauge condition t
avoid distorting arbitrary gradient fields that can credp the EM field simulation at later
times. This can be seen by taking the divergence of Equa8dra), which implies the
divergence—free condition for the time derivative of thegmetic inductiorb. By assuming
that no magnetic charges exidatkson1975], p. 294), Equation (3.3a) follows. However,
in the static case Equation (3.1a) reduces to

Oxe=0.

The uniqueness of the magnetic field, previously given byctingpling of Equations (3.1)
does not exist anymore, because arbitrary gradient fieldshow be added td without
violating Equation (3.1b). Thus, in the DC limit the diverge—free condition ob is not
implied and the presence of numerical noise can cause eusrgradient fields. In practice,
one typically would observe a wrong late time response irfdha of a reduced decay rate.
In a test simulation, without explicit enforcement of (3,3acould be observed that very late
time responses approached a DC level.

The enforcement of the divergence—free conditiontfon the time—stepping algorithm in-
volves computing two field components in a way representeduation (3.5). From these
two components, the remaining one is then updated usingtibgu@.3a). Its FD approxi-

mation is obtained at the center of a prism using the six corapts of the surrounding cell
faces as shown in Figure 3.1c. Then the discrete form

3 1
b;(]+2(|+1’]+%’k+%)_b;(]+2(laj+%7k+%)
DX
3 1
P ES NS el N (RS ST
ij
3 1
LB (4 kD) b4+ 3K
Az

=0 (3.9)
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is obtained and is rearranged to

n+3

1
i+ 1, i+ 1K =by Z(i+1,j+3k+1)
1 1

be Z(i+1,j+3,k+3) — by (i, ]+ 1,k+3)

JAVS
1
LB Lk y) -
Ay

+ Az

1
2

[ 1
(|+27]7k+2) . (310)

It can be seen that this way of updating the vertical figldmvolves a recursive procedure.
For this example, it starts at the lower mesh boundary wiete0 and is carried out upwards,
I.e. towards the surface boundary.

In order to treat non—causal source fields, the modified tstegping scheme presented be-
low will be based upon the time derivative of the magnetiaicttonb (voltage) instead db.
Thus, in contrast to the time—stepping algorithm for cagsalces, the condition

0-b=0 (3.11)
is enforced. Because voltages are sampled on the sameopess the magnetic fields, the
divergence—free condition is realized in the same way as\phkied by (3.10).

Numerical experiments have shown that the explicit enfoea of
O-(Oxh)y=0-j=0

is needed in addition to the condition given by (3.11), whiak not yet been fully understood.
A possible explanation might be, that time—stepping vasigstead of magnetic fields leads
to a lower degree of coupling between Equations (3.1) in aarigal sense. This could be
due to the fact that both voltages and electric fields are kgt the same (integer) time
instants.

Like electric fields, the components joare sampled on cell edges, thus

JQ(i+%,J,k)—JQ(i—%7i,k)+J;‘(LH%, ) — y(i, i —3.k)
DX ij

+J£‘(i,jvk+%)_—19(i,1,k— )
Az

Nl=

=0 (3.12)

represents the divergence approximation for a given(ggllk) as illustrated in Figure 3.1c.
Note that for example the index— %, j. k) denotes the componef(i + %, j,k) of the cell
(i—1,j,k).

3.1.4 Boundary conditions
For computational efficiency, the spacings between thergyates are enlarged with increas-

ing offset from the source position. This is allowed as tHaudive EM field smoothes grad-
ually with distance from the sourc®fistaglio and Hohmann1984]. The continuity at the
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subsurface boundaries of the mesh is ensured by simplydirtgthe borders to a sufficient
distance from the source and setting its tangential eteatrdl normal magnetic field compo-
nents to zero. The distance of the mesh boundaries from tireesmay have to be adapted
to the underlying earth model. If the boundaries are tooectoghe transmitter or receiver
positions, one can observe erroneous results due to grettiefh at late times. This prob-
lem becomes more severe for very resistive backgroundsgewhe diffusing fields face less
attenuation than in a more conductive earth.

A critical aspect is the treatment of the earth—air intexfaghere the tangential electric fields
do not vanish. A straightforward approach is realized bypdyrextending the mesh above the
surface grid layer far enough such that the upper mesh boysdasfies the same conditions
as the subsurface boundaries. The grid space above theesndads to be made very resistive
in order to approximate air. However, Equation (3.7) intheahat the air resistivity would
require very small time steps to simulate the rapid decap®fields in air. Both handling a
larger mesh and the small time step lead to an increased ¢atiguutime.

The more efficient alternative involves an upward—contiimmeboundary conditionlacnae
1984;Oristaglio and Hohmannl1984;Wang and Hohmanri993] for the air—earth interface.
It is based on the validity of the vector Laplacian equation

0%b = 0, (3.13)

which can be obtained from the vector Helmholtz equatiomiagnetic fields by assuming
the quasi—static case and a vanishing conductivity free space. Equation (3.13) is also
valid for voltages and allows to apply the methods for theticoration of potential fields
(Grant and Wes[1965], p. 216—-220) that are typically used in connectiothwravity and
magnetic methoddMilitzer and Weber1984]. This involves a 2D spatial Fourier transform
of the vertical voltage fields at the surface into the wavelneindomain. The horizontal
fields above the surface can then be obtained by continuatithre vertical fields, using the
following wavenumber domain equation&ang and Hohmanri993]

. iu

Bluvz=-h) = - e M B 1 vz 0), (3.142)
u V

Buvz=—h) = ————e TP uz=0), (3.14b)
us 4 v:

whereB,, B, andB, are the Fourier transforms of the voltagigsby andb,. Equations (3.14)
also hold for the magnetic induction. The wavenumber domairablesu andv correspond
to the spatial variablex andy, respectively, andh is the height above the surface. This
boundary condition only requires a single additional waitgrid level for the air space.

Implementation of the upward—continuation procedureasized in the following manner. A
2D spatial Fast Fourier Transform (FFT) is used for the fiansation of the vertical fields
at the surface into the wavenumber domain. The FFT is prelceda spline interpolation
[Press et al. 1992] in order to cast the nonuniform grid spanned by therdis surface
values ofb, onto an equidistant grid. After the Fourier transformatite air layer horizontal
fields in the wavenumber domain are obtained by Equatiodgl(3Next, an inverse FFT is
performed on bothB,(u,v,z= —h) and QSy(u,v,z: —h). Finally, the resulting horizontal
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fields in the space domain are interpolated back to the @ligiesh, now sampled at the air
grid level. The parallel implementation of this scheme Wwéldescribed in Section 3.1.6.

3.1.5 Time—stepping of the EM field for non—causal sources

The updating scheme described in Section 3.1.2 could alsoipdoyed for the treatment of
fields generated by a galvanic grounded—wire source. Suchraescauses the presence of a
DC electric and magnetic field in the earth before the ste@hgmitter signal is switched off.
The DC electric field can be computed with little computadileffort as will be shown below.
However, the initialization of the magnetic field would ifve a numerically more elaborate
solution of a magnetometric resistivity probleidwards and Nabighiarl991]. This work
focuses on TEM systems that measure the time derivativeeahtignetic induction (voltage)
instead of magnetic fields. Voltages represent causal fie&dsare zero beforg, Therefore,
the presented updating scheme is based on voltages in ardeoid calculating the DC
magnetic fields. The modifications made for the time—steppiocedure are straightforward
and shall be given in vector form.

Field initialization

To initialize the fields, first the DC electric fielP in the model and the induced electric
field €' inside the wire source need to be computed. The latter onleténed by inverse
interpolation of the source distributiphimpressed by the transmitter onto the FD grid. Then
the fielde" for the grid nodes that are comprised by the source is olatdinm (3.4b), which
automatically accounts for arbitrary distributionsmobver the mesh.

Because the DC electric fielPC is curl free, it is determined by applying the divergence
operator to the static form of (3.1b),

0. (o0¢) = —0-jS, (3.15)

whereeP© can be expressed as the gradient of a potentialdiethus, a 3D Poisson problem
which is common in 3D resistivity modeling is solved. Herestiaightforward seven—point
discrete approximation to the Poisson operator is used.atcommon way of discretization
and involves a center grid cell and its six direct neighbalwag the main coordinate axes as
outlined in detail in Appendix A.2. This represents a sirfigt form of the scheme described
by Dey and Morrisor{1979]. A variety of more elaborate schemes exists; for gdamefer

to Spitzer and Wurmsticf1999], who give a comprehensible overview and comparidon o
five different seven—point operators.

Equation (3.15) represents a sparse, diagonally domiimaedrl system, which is positive
definite due to the positivity of. Hence, the solution fop can be obtained by an efficient
preconditioned conjugate—gradient solver. The paratehtive package AZTECHutchin-
son et al, 1995] is used for this purpose. After computiglf from the gradient of, the
curl of the magnetic field is computed from the static form21.p),

0 x hP€ = gePC + .
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Both the DC fields given bg”® and 0 x hP¢ represent the initial fields for the following
time—stepping scheme.

Advance of the EM field

First, the voltages are updated from
b"=—Oxeé. (3.16)

They originate from the decay of the induced electric f&lfl in the source after switch—off.
Note that voltages are sampled at the same time instants@s@fields. First, the horizontal
componentsb” andby are computed from (3.16). In order to enforce the divergefiee
condition forb", the vertical componertln is then calculated using (3.11) with its discrete
form similar to (3.9). The recursive update starts from tvedr mesh boundary, whebe=0
applies, and is proceeded upwards. Then the horlzontaﬂgﬂaﬂn” andby above the surface
are calculated by upward—continuation of the fieddlsit the surface. Now" is given by

h"=b"/u

Instead of the magnetic field, its curl is used as an intermediate quantity in order to up-
date the electric fields. Therefore, the curlidfis formed by the components defining the
elementary loop around the respective electric field. Afgeds, the central difference ap-
proximation

Oxh™3 - [Oxh"3

Ox h" =
Atn,

is rearranged to . .
Oxh™2=0xh"24+At,-Oxh" (3.17)

to update the curl df at the timetn+%. Note that during the first time step at tirfpe

Oxh~2 = [ x hPC,
Again, only the horizontal components are updated from/(3.1Io enforce the condition
O-(Oxh)y=0-j=0,

the vertical components ¢fare updated from the horizontal components using (3.12) in a
similar way as exemplified by (3.9) and (3.10). In contrasthe voltages, the recursive
update starts from the top of the mesh, becgys@nishes at the air grid layer. Finally, the
electric field is advanced by

1 2y—obty 21ty

1
— Ox h™32 —jot2), 3.18
2y+ o/t +2y+0Atn( X is™?) (3.18)

Afterwards, the updating procedure loops back to the calimn of the voltages for the next
time step.
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3.1.6 Parallel implementation

The realistic simulation of complex 3D structures may regailarge number of grid nodes
and can quickly lead to the limits of a single processor caepin terms of memory needs
and processor speed. To achieve acceptable computaties,tiime FD scheme has been
designed to run on massively parallel machines using thesdgsPassing Interface (MPI)
Standard $kjellum et al.1993]. To realize parallelization, the 3D model is subdidd with
every individual processor in charge of a 3D subset of thenm€&kerefore, a given number
of processors is arranged into a Cartesian topology. Thidiés that the total number of
processors is separable in a way that it amounts tony x n; processors, according to the
distribution of processors in the y andz direction of the global mesh, respectively. Each
processor carries out the field update in its own subset. s&ditee boundaries of the subsets
interprocessor communication is needed as outlined befsirong as the communication
is minimal relative to the computation times for the field afes, the solution time can be
reduced by a factor that is approximately equal to the nurobgrocessors employed. How-
ever, this requires that the Cartesian processor topolomyges for a load balance. This is
realized by creating the mesh subsets such that they araiakiegize as possible. With an
unbalanced load, long idle times would otherwise detetgoifze performance of the parallel
scheme.

Following Alumbaugh et al[1996], the input data needed by each processor prior to the
actual field calculations is split up into local and globaladd ocal data comprise the model
properties, that are assigned to each cell of a 3D mesh subsetave both memory and
disk space, each processor stores only the propertiesafiiisubset. Global data are those
variables that each processor needs to know, for exampiefatmation about the source
and receiver setup. For the later presented inversion based this forward simulation
algorithm, additional information of that kind needs to lieled to the global data set, such
as the observed data to be inverted. Global data is read innbgster processor and then
distributed, local data is read in individually by each mesor.

Parallel time—stepping algorithm

The fact that the elementary electric and magnetic loop$erstaggered grid described in
Section 3.1.1 are intertwined with each other, indicatasecbmmunication between adjacent
processors is required during time—stepping. The messaggny across processor bound-
aries introduces the expression 'ghost’ for a grid node. giust nodes of a processor contain
the fields that are needed in order to complete the update o fields, yet are calculated
by an adjacent processor. This is illustrated in FigureBtiere it is assumed for simplifica-
tion that each processor is assigned to only one grid nodeeoB8D mesh. During a single
time step of the field update, the processor at nodek) needs to communicate with all six
neighbours. The communication scheme is now outlined is&nee order as the field update
in Section 3.1.5.

One starts with the update of horizontal voltages from the cfielectric fields (Equa-
tion 3.16). Figure 3.1b shows that this requires a prior comication with nodesi + 1, j, k),
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(i, j+1,k) and(i, j,k+ 1) in order to complete the two elementary electric loops adidyn
andby at node(i, j,k). Each procedure that is referred to as communication oragegsass-
ing involves a pair of send and receive operations with anctjt node. For example, in
Figure 3.1b consider the electric loop assigneby(d)+ 1. ],k+ %) and the field component
e(i+1,]j,k+3) assigned to nodg + 1, j, k). Node(i, j, k) needs to submit a receive signal to
(i+1,]j,k) in order to get the ghost valeg(i + 1, j, k+3). Atthe same time, nodg+1, j. k)
submits a send operation ta j,k), because it is in charge ef(i + 1, j,k+ %). A similar
communication with(i, j,k+ 1) is necessary in order to complete the electric loop around
by(i +1,j,k+1). Likewise, the completion of the electric loop aroubgi, j + 1, k+ 1)
involves message passing with nodes + 1,k) and(i, j,k+1).

The recursive update of the vertical voltage at néid¢ k) to enforce the divergence—free
correction first needs the previously computed horizontétages from nodesi + 1, j,k)
and (i, j + 1,k) (Figure 3.1c). For the actual calculation lnf{i + , j + 1,k), the “lower”
by(i+ 1, j + 1,k+ 1) also has to be obtained by a communication with nadgk+ 1). Note
that the performance of the parallel divergence—free esfoent is limited to some extent.
Because of the recursive procedure, only the nodes in the sartical layer given bk can
computebZ at the same time.

Afterwards, the upward continuation procedure of the gattvoltage components at the sur-
face layer follows. Its parallel implementation is expkdnin an extra section below. The
following electric field update at nodg j, k) is preceded by forming the curl of the voltages
around the horizontal edges whesgi + 3, j.k) andey(i, j + 1,k) are sampled. Therefore,
message passing according to the stencil shown in Figueei8darried out. The required
voltage values belong to the ghost no@ies1, j, k), (i, j — 1,k) and(i, j,k—1). Then the hor-
izontal components of the magnetic field curl are updatediguSguation 3.17. Afterwards,
node(i — 1, j, k) passes th& component and nodg, j — 1. k) passes thg component of the
magnetic field curl to nodé, j,k). This is required for the enforcement of the divergence—
free condition for the current densigyas illustrated by Figure 3.1c. Again, it is carried out
recursively, now starting from the upper mesh boundary.il&irto the divergence—free cor-
rection for voltages, the ghost valyg(i, j,k— 3) updated previously by the “upper” node
(i, j,k—1) needs to be received before nddlg, k) can computg(i, j,k+ ).

The recursive procedure of the divergence—free corressoiggests that the partitioning of
the vertical mesh by, processors should not be too fine. Otherwise, the messagmgas
overhead due to the communication of the vertical ghostegafnight be too large. One can
choose the extreme of a pencil structure for the domain dposition, with no partitioning
of the mesh in the vertical direction. However, the optimatamposition strongly depends
on the type of the parallel architecture employed. It is neceended to be evaluated by
adequate prior tests.

Parallel upward—continuation

The parallel implementation of the 2D FFT, required by thevaigl—continuation boundary
condition for the vertical voltage values, involves a ratt@mplicated message passing pro-
cedure. This is caused by the fact that both the interpaiatcan equidistant grid and the
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FFT perform on a processor topology that is different to the given by the domain decom-
position into 3D subcubes. Moreover, the topology changesd the upward—continuation
process. Therefore, rather than a communication across fpeeessor boundaries, several
rearrangements of the field distribution among the procesa@ carried out, which is also
referred to as remapping.

The scheme developed here is illustrated in Figure 3.2 ferettample of four processors
sharing the surface layer, where (a) represents the indgradition. The 2D interpolation to an
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Figure 3.2:  Parallel field upward continuation scheme for a distributiof the surface grid layer

among four processors. The upward—continuation procethwuelves remapping, interpolation, for-
ward and inverse 2D FFT steps carried out along both horiabdimensions x and y of the surface
grid layer. The sequence of steps: (a) Initial distributiofb) Remap, y—interpolation. (¢) Remap,
x—interpolation. (d) FFT(x). (€) Remap, FFT(y), upward tounation, FFT-1(y), remap, FFT1(x).

(f) x—interpolation, (g) Remap, y—interpolation. (h) Rgnta initial distribution.
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equidistant grid spacing is carried out consecutively g@looth horizontal grid axes. Because
of accuracy, all field values along the extension of a gri¢ aded to be incorporated into
the interpolation. For example, at a given point onyttaxis, the corresponding processor in
charge of casting the non—uniform grid sampling onxfais into an equidistant sampling
needs to know all values on the globadixis. Therefore, the 2D spline interpolation of the
surface field valuel, to an equidistant FFT grid requires two data remapping stépst, the
original chessboard-like field distribution among the pssors is remapped into a striped
pattern that allows the equi—sampling in the grigdirection as shown in (b). Afterwards,
the processor topology is changed such that the interpalatn be completed along tlke
axis (c).

The following 2D FFT from the spatial into the wavenumber @minvolves another remap
since it is first done in the& direction and afterwards in thedirection (d and e). Now the
actual continuation of the wavenumber domain horizontédgiénto the air layer is carried
out using Equations 3.14. It belongs to the characteristfies2D FFT, that its output has a
transposed ordeFfigo and Johnson1998]. As a consequence, the horizontal grid axes are
interchanged for the fields in the wave—domain. One can tdkardage of that by precalcu-
lating the grid’s wavenumber domain variables from a trasspl horizontal grid. Otherwise

a further remapping step would be required in order to reteemon—transposed order in the
wave—domain.

After calculation of the horizontal fields, the inverse FHTilee horizontal fields is carried
out first in they direction and then in the direction, thereby again transposing the order of
the output and hence restoring the original order. The dtapthe interpolation from the
equidistant grid back to the original one now proceed in res@ order to the steps (a)—(c).
This involves two more remaps as shown by (f)—(h).

Unfortunately, the parallelization of the procedure dofféttle opportunity to be accelerated
due to the deficient scalability of the FFT and a high messagsipg overhead. Since the
FFT dominates the computation time of the upward—contioogirocedure, the only signif-
icant acceleration can be achieved by using the fact thattEné field is smoothed gradually
in space with increasing time. With a smooth field, the nunmddezquidistant grid nodes
and hence the computation time for both FFT and interpolatemn be reduced. With the
employed FFT algorithm optimized for a number of data poaiterder 2!, an appropriate
initial regular grid spacing is chosen such that no undepsiaign occurs. After a predefined
time, the spacing is doubled. Based on a series of empinpareanents, it could be found
that the time after which the constant grid can be widene@idép on the decay rate of the
fields. For example, a resistive overburden allows for ahezarthange to a coarser FFT grid
than a more conductive overburden. For the simulation exesrghown in this chapter, the
change to a coarser FFT grid was carried out after 2—3 timadidesg starting from the initial
time step.
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3.2 Synthetic data examples

A citation fromHohmann(1988) reads as follows: 'The numerous possibilities feoitetical
and programming errors make it necessary to compare resumtguted by different methods
before a numerical solution can be considered valid.

This section demonstrates the accuracy of the numericatisolby a variety of models
incorporating different complexities, field configuratsoand simulation time ranges. The
models include horizontal layers, 3D structures and a coatiwin of both. The solutions are
referred to as FD solutions and are compared with differgrdsof other algorithms. These
include both analytical and integral—equation methddsyman et a).1986] and the spectral
Lanczos decomposition method (SLDM)ruskin and Knizhnermari988]. The latter one
is the forward modeling code used by the inversion schensepted in Chapter 2.

All simulated electric field measurements correspond tactmponent parallel to the trans-
mitter orientation. The voltages are shown in the form otigal components. In addition,
the first example shows the voltages from the horizontal ratgcomponent in a direction
perpendicular to the transmitter. The employed FD meshes agapted in size to the dif-
ferent purposes, ranging from a largest grid size of 2323 x 71 to a size of 9% 82x 46
nodes. The smallest modeled cell size is 10 m on each eddrl time steps are predeter-
mined according to Equation (3.7). A summary of the employed sizes and initial time
steps will be given at the end of this section.

1) Layered half—space

The first example is typical for the LOTEM method. The horiwd@and vertical voltage re-
sponses over a four—layered half-space with downwardedsiag resistivities as shown in
Figure 3.3a are simulated. Figures 3.3b,c and d show th&iel&eld and vertical and hor-
izontal voltage responses, respectively, in comparisah amalytical responses. The fields
are generated by a 1 km long grounded wire and are extracididtahces of 500-5000 m
broadside to the transmitter. The two solutions demorestraery good agreement with each
other. In this example, the reflections off the mesh bouedaeach a critical level at times
later than 1 s, thereby causing a slight DC offset that canbserved for the electric field
solutions at the latest simulated time of 1 s. However, sudesirable effects can be delayed
to later times by further expanding the outer mesh bounslaiiibe solution for the horizon-
tal voltage also shows a very good agreement for the occerehthe sign reversals. The
diffusing fields are clearly indicated by a move out in thengigversal.

2To be read in the preface of 'Three—dimensional Electroratigsi, SEG, Tulsa.
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2) Homogeneous half—space with permeable layer

Next, the solution for a layered half-space with homogeseaesistivity (10Qm) and a
permeable layer at a depth of 100 m is calculated. The relatiggnetic permeability of
this layer is 10 and its thickness is 100 m. Similar to the jmey example, responses are
calculated broadside to the transmitter, which in this exarns a 10 m long grounded wire.
Figures 3.4a and b show the vertical voltage at an offset 6friGand 400 m, respectively.
The FD solution (solid curves) is compared with an analytiesult for the permeable layer
(Hanstein pers. comm.) and shows a very good agreement for the snoéfibet. For the
larger distance an agreement with the analytical solusarached after 0.7 ms. In addition
to the analytical response of the permeable model, the fieddn@mn—permeable half-space
(dashed curves) is shown. It demonstrates that the verynhégimetic permeability contrast of
10is necessary in order to obtain a significant influenceeptrmeable layer. In comparison
with real permeabilities measured in the field, this contisasather unrealistic.

The early time sign reversal in the FD response in Figure 3.4t realistic for this config-
uration. It is a numerical effect caused by the upward coatilon boundary condition. Its
occurrence can be explained by the fact that during tratesnatirrent switch—off the FFT
carries the rapid field changes in the source simultanedoshard to the receiver. Using
a grid with adequately high resistivities to simulate thé&d8en air, instead of the FFT ap-
proach, would not have such an effect.
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Figure 3.4: Comparison of the FD vertical voltage (cross symbols) andhaalytical (Hanstein,

2003, pers. comm.) solution (solid lines) for a half—spadi Wwomogeneous resistivity and a per-
meable layer (see text for details). Dashed lines show tlagytical response over a non—permeable
half-space. The transients are calculated for a sourceetfif (a) 100 m and (b) 400 m.
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3) Conductive 3D block in a homogeneous half-space

The next example compares the electric field FD responsesadv@m conductive block in
a 200 times more resistive half—space with an IE solutioguifé 3.5a shows a plan view of
the field setup and the anomaly that has a size of 100 m alorgesiye. The upper edge
of the block starts at a depth of 100 m. The fields are genetgted100 m long grounded
wire at 150 m distance from the block’s center. Results aevehin Figures 3.5b,c and
d and correspond to the three receiver positions shown iar&ig§.5a. For all positions,
the FD solutions yield an excellent agreement with the IEtsmhs. Figure 3.5 also shows
analytical half-space solutions (dashed lines) to ilatstthe effect of the conductive block.
The comparison with the 3D response shows that the blockesaars amplitude increase at
early times and a decrease at later times. This effect id fon#the receiver position between
transmitter and block(= 75 m), whereas a clearer effect occurs for the other receivar
this simulation the resistive background required anahitime step ofAtg ~ 10~/ s in order
to avoid a distorting wave-like influence of the fictitiousplacement current at early times.
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Figure 3.5: FD solution (solid curve) over a homogeneous host with anestlidbd 3D block in

comparison with an IE solution (cross symbols). The bloelfsct is made visible by the analytical
response (dashed curve) over a half-space without blogkegeth model with transmitter—receiver
setup. Electric field responses are calculated at the x doatds (b) 75 m, (c) 150 m and (d) 225 m.
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4) Complex 3D conductor at a vertical contact

The next synthetic data are calculated for a 3D model sinlaan example presented by
Wang and Hohman[1993], yet with a higher model complexity. The model sectio Fig-
ure 3.6a consists of a 50 m thin conductive layer Q1) at the surface and an underlying
laterally divided resistive earth. At the contact of the IDf and 30QQm resistors, a m
conductive 3D anomaly varies in steps along the profile dwac This structure, which is
400 m in strike length, reaches a depth of 550 m. Figures hélcashow the electric and
vertical voltage field responses, respectively, at antiyrahosen locations. For a compar-
ison, the FD responses are shown together with the SLDMiealubecause the simulated
model complexity would not allow to obtain a solution by wgihe IE method. In general,
the solutions compare well for each receiver location witing discrepancies at the earliest
delay times. As observed for both types of responses, aarg/deviations are largest close
to the transmitter. The sign reversal in the electric fiekpomse above the right edge of the
anomaly k= 500 m) occurs slightly earlier for the SLDM solution, butlsiood agreement
is given at delay times after 1 ms. For this field—setup, astear in the voltage only occurs
between transmitter and anomaly. Apart from the early timerdpancies at = 200 m, an
excellent agreement for the voltages, including the ralatx = 200 m, is achieved over the
whole time range.
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5) Resistive reservoir structure in a layered host

In contrast to the previous 3D models, this example involvemre complex resistive anoma-
ly in a layered background. The earth model shown in Figura @as initially designed by
Hordt et al.[2000a] from a priori well log information and represents a natunadlerground
gas storage site at St. llliers (near Paris, France). At 14epth the 5@2m sedimentary
overburden is interrupted by a 20 m thick @n—layer. The 1d2m conductive basement,
starting at 310 m depth, encompasses the dome-shapedoieséti the upper and lower
edges at 490 m and 602 m depth, respectively. The reserwem@&x2000 m in the direction
perpendicular to the drawing plane, and the shown secties dot vary in this direction.
A resistivity of 200Qm is assigned to the 25 m thick gas—bearing layer. In a seitgiti
study,Hordt et al.[20008] simulated LOTEM responses over a profile covering the xeser
structure in order to investigate if resistivity variatgoat the reservoir margins are detectable.
With magnetic fields less sensitive to thin resistive stites, the study was based on electric
fields in an axial configuration. The 50 m long transmitterisated over the left reservoir
edge and points in the profile direction. The receivers kthe transmitter—parallel field
component.

First, the FD responses shall be compared with the SLDM isolwtf Druskin and Knizhn-
erman[1988], which is also employed yordt et al.[2000a]. Figure 3.7b shows the inline
electric field solutions for four different receiver posits. Although the curve pairs agree
qualitatively, some quantitative differences exist. Hehe mesh employed for the SLDM
solution consists of 43 43 x 27 nodes, which is a rather coarse grid discretization coetpa
to the 127x 90 x 83 nodes used for the FD solution. Therefore, a better agreewould be
achieved using a finer mesh for SLDM. However, it could be pleskthat a grid refinement
in both horizontal dimensions and the more crucial vertigaension quickly leads to wrong
SLDM results at late times. This can be explained by the dspetated to the convergence
of SLDM as outlined in Section 2.1.1. The SLDM solution hasoavsconvergence, because
the long time interval ranging from 0.1 ms to 0.3 s causesgelgrid aspect ratio and intro-
duces ill-conditioning to the system of equations to beedruskin et al, 1999]. A grid
refinement provides for more accurate results, yet inceseeFD grid aspect ratio and thus
further slows the convergence. Therefore, finding a comm®metween the requirements
for a stable convergence of SLDM takes place at the expersecafacy.

For the mentioned sensitivity study, it is important thatadgorithm is capable of resolving
the effects of small model variations. For simulating a loasmount of gas fillHordt et al.
[2000a] changed the resistivities of both left and right resenasiges to the value of the
surrounding layer. In Figure 3.7a the reservoir edges arkedas white blocks. Figure 3.7c
shows the FD responses of both original and downsized r@sdor the same transmitter
position as before and two different receiver distances140 m distance, no significant
difference in the results occurs, since transmitter andivec are located above the anomaly
in such a way that its edges hardly cause an influence on ths.fidbwever, at 2000 m one
observes an altered response, indicating the influencesafght reservoir margin.
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Figure 3.7.  FD simulation of the 3D model from the underground gas steraije at St. llliers
(France) as derived from a priori information [btdt et al., 2000a]. (a) Section view of the earth
model. The transmitter is inline with the receiver profild) Comparison of the electric field FD
response (solid lines) with the SLDM solution (dashed )i¢she receiver positions 500 m, 1000 m,
1500 m and 2000 m. (c) Electric field FD response comparisoig@0 m and 2000 m distance from
the transmitter for a downsized reservoir (solid lines) d@he full reservoir (dashed lines). To realize
the downsized reservoir, the resistivity of the left andrigdges (white blocks) is set equal to the
resistivity of the surrounding layer.
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3.3 Discussion

A versatile time—stepping scheme to solve the diffusive Wielk equations for galvanic
source configurations has been presented. The parallel sioudates electric field and
magnetic induction time derivative responses for 3D moddisre both conductivity and
magnetic permeability are functions of space. Comparisatisanalytical, IE and SLDM
solutions show that accurate results are obtained over locatgd earth models. The gas
reservoir example in particular demonstrates the schehigfs degree of accuracy, which
Is necessary to simulate response differences caused bglbnsatel variation. Compared
to the SLDM solution technique, the scheme has the advankeget provides for better
stability in the presence of large resistivity contrastthie model and late simulation times.

The scheme’s accuracy is achieved at the expense of a highutational time demand.
This problem is inherent to an explicit time—stepping mdthod becomes more severe with
the simulation of later times. The computation times regpiipy all presented examples are
shown in Table 3.1 and exemplify the influence of grid sizéiahtime step size and latest
simulated time on the computational requirements of a golutAll presented simulations
were carried out on a SUN Fire 6800 machine, where sometimes not the full processor
capacity was available due to heavy machine load. The smalber of processors employed
for all examples indicates that on larger massively pdrpleforms the computation times
can be greatly reduced.

FD Processors Initial time  Latest simu- Estimated compu-
Result gridsize  nyxnyxn, stepAtp(s) lationtime (s) tationtime (hrs)
1 129x111x61 3x3x1 1076 1 14
2  123x123x65 3x3x1 1076 0.1 8
3 97x82x46  3x3x1 107 0.1 4
4  159x123x71 4x3x1 107 0.03 6
5 127x90x 83 3x3x1 1076 1 15

Table 3.1:  Summary of the estimated computation times required byrdsepted solutions. The
factors that govern the computational effort shared betwtbe rx x ny x n, processors are FD grid
size, initial time step and latest simulation time.

Other strategies worth investigating for improving the panational efficiency existAlum-
baugh et al[1996] mention that a thorough study of the outer grid dessgnecessary in
order to avoid slow convergence of their implicit frequedoymain scheme due to large cell
aspect ratios. Although not crucial for the stability of gesented method, an adequate
grid—stretching scheme could help to minimize the numberidf nodes required for an ex-
act solution. In addition, a material averaging scheMedkow et al. 1999] would allow a
model parameterization that is in principle independeninfthe underlying FD grid, thus
further relaxing the meshing constraints.



CHAPTER 4

A LARGE —SCALE INVERSION APPROACH USING
NON—LINEAR CONJUGATE —GRADIENTS

The solution for the inversion problems presented in Chdptepresents a constrained least—
squares or Gauss—Newton solution arising by solving a lregranultiplier problem in which
the error cost functional is minimized subject of a boundagmeter change. This solution
belongs to the class of direct methods, which obtain an es@ation (except for roundoff
errors) in a finite number of iterations and are adequatem@illsscale problems. The inver-
sion problems treated in this chapter, however, are cleraet by large data sets, typically
needed in order to resolve a finely discretized earth modelamumerous set of unknowns.
The number of unknowns may reach as many as several thousatelss of thousands in
real exploration problems. For the solution of such largalesproblems, the Gauss—Newton
approach becomes less efficient or even unfeasible, depgodi the size of the problem.
This owes largely to the fact that for each step of a Gausstdeieration two computation-
ally intensive tasks need to be performed. First, the fulbb&n (sensitivity) matrix of the
forward modeling operator needs to be calculated. Secondimplete solution of a linear
system on the model space, involving matrix inversion tegs, is required.

More direct and feasible in terms of computational aspemtshfe minimization of a given
cost functional are gradient methods, which belong to thescof iterative methods. In con-
trast to direct methods, an approximation to the exact goius carried out successively
by a repeated evaluation of the forward modeling operatereby not requiring both stor-
age and inversion of the Jacobian. For a given point in theaingghce, gradient methods
only require functional and derivative information in orde evaluate both direction and
step length of a model enhancement. The method of steepsstrdeDennis and Schn-
abel 1996] is the easiest understood and simplest to implenoenhis purpose. However,
it is usually characterized by a poor convergence in thegmes of ill-conditioned inverse
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problems. Described more mathematicallyMgister[1999], the method often finds itself
taking steps towards a minimum of the cost functional in #rae direction as earlier steps.
A more efficient approach employed here is the method of moeat conjugate—gradients
(NLCG), first proposed b¥letcher and Reevg4964] for non—linear optimization problems
and later improved byrolyak and Ril@re [1969]. The method is related to the method of
linear conjugate—gradients (CG)ldéstenes and Stiefll952], yet with the framework of an
iterated, linearized minimum search abandoned. The li@&method was employed in a
pioneering work oMackie and Maddefl993] in order to solve the 3D MT inversion prob-
lem. Later,Rodi and Mackig2001] implemented a NLCG scheme for a 2D MT inversion
algorithm andNewman and AlumbaudB000] formulated a 3D MT inverse solution using
NLCG.

The relative computational effort for the derivative infaation required for an iterative re-
duction of the cost functional can be equated to the calcuatf the sensitivity matrix in a
Gauss—Newton type solution. Because of the high computéitites needed by the explicit
time—stepping algorithm for a single forward simulatiorpeaturbation method as used by
SINV becomes not feasible within reasonable computatiordi Instead, the gradient infor-
mation is obtained by a method strongly related to seismgraion techniques, therefore
sometimes also referred to as EM migratidhfdanov et a).1988].

Classical least—squares methods in principle investigaigy significant change in the pa-
rameters substantially alters a significant part of the adde data in order to quantify a
model enhancement. Migration techniques attack the pmofrlem a reversed point of view.
A given difference between observed and predicted dat&(rals) is treated as a source
field, also called residual field, and propagated backwardsegerse time) into the earth
model. The field propagated forwards in time is the one prioduthe predicted data from
the current earth model and is referred to as the incident fi@dr the purpose of inversion of
seismic reflection datdarantola[1984] outlined that correlating incident and residualdiel
at each point of the model space enables one to quantify ncodelctions that minimize the
residuals if applied to the current model. In other wordaf & point in the model space there
is a model parameter perturbation, there will be an anonsdield which at that point will
be correlated with the incident field. In seismic migratiba anomalous field is also referred
to as diffracted pressure field, and in the context of EM imgghe anomalous field will
represent the field due to an anomalous current distribufibe following section will first
outline the principles of EM migration in a rather heurisigproach. Important aspects, that
is the description of fields excited by point—sources in geohGreen functions and related
symmetry properties, will as well be introduced before aanmayorous theoretical treatment
is given in the subsequent sections.

4.1 Principles of EM migration

The imaging methods for seismic wavefields are sometimexited by an exploding re-
flector concept and basically involve the propagation of ll fimckwards in time and its
cross correlation with an incident fiel€@laerbout 1971;Loewenthal et a).1976;Tarantolg



4.1 PRINCIPLES OFEM MIGRATION 77

1984]. Similar to seismic migration, the migrated EM fieldgymate from that part of the
field which is not taken into account by the current earth rhoge an assumed model guess.
This introduces the data residuals as the difference batweeincident or primary field for
some given model, where the model is described by a disimitvof the conductivities over
the 3D space, and the actual observed field produced by theanth model. The data resid-
uals are treated as the source of a residual field. The floweofesidual field, originating
from the surfaces of the observation points, i.e. the regsjthrough the earth can be treated
as a functional of an anomalous conductivity distributiothe model. To get a further un-
derstanding of how the residual field and the incident fielceiated to such an anomalous
conductivity distribution, consider the time—domain gr& equationfHohmann 1988],

e(r,t) = ep(r,t) +/v/ot G(r.t|r' tja(r',t)dt'dr’. (4.1)

lllustrated in Figure 4.1, the equation describes the w&ltdtric fielde(r,t) at an observation
pointr in the 3D space as the sum of a scattered electric field gedebgtthe anomalous
currentgz in the volumeV plus a primary background fiekg(r,t). Boerner and Weg1.989]
indicate that the anomalous conductivdty, is proportional to a somewhat equivalent electric
dipole source distribution. It is parallel to and propon@bwith the current density created

in the earth at’ by the external source field, thus

ja(r',t) = d04(r')e(r',t").

Describing the scattered electric fieldratlue to a conductivity perturbation by means of a
“point—source excitation” at introduces5 (r,t|r’,t’) as the tensor or dyadic Green’s function
[Felsen and MarcuvitZ1973]. In the case of electric fields (magnetic fields wiltbasidered
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Figure4.1: lllustration of the geometry for the reciprocal relationigtbetween a point at’ in the

model space and a receiver at Both the external source (Tx) and the receiver (Rx) aretedec
dipoles.

further below), it represents the electric field impulsepmsse atr,t arising from a unit
vector force densityacting in the direction of the unit vector dtt’ [Felsen and Marcuvitz
1973]. In practice, the elements of this tensor are obtanyechlculating all three cartesian
components of the electric field’s impulse response for eactesian orientation of the unit

LA unit vector force density at,t’ has the space—time foraid(r —r')8(t —t’), whereu' is a unit vector.
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dipole source at’,t’. For example, written in a dyadic formay - G(r,t|r’,t’) - e  represents
the electric field impulse response in thdirection atr,t produced by an unit electric dipole
source at’,t’ in thex direction? Here, the reciprocity theorem can be appliebhmann
1988;Ward and Hohman988]. Formally written as

G(rv r/) = G(rla r)a

it says that if both the source/receiver positions and thecgdreceiver components are in-
terchanged, the calculated fields will be the same. Expddsgéhe example, instead of cal-
culating they—directed electric field impulse response alue to ax—directed electric dipole
source at’, one can reverse the process such that the transmittetepasaa receiver. Thus,
the x—directed electric field at’ caused by an impulsivwe-directed electric dipole source at
r is identical.

From Equation (4.1) it can be seen that the primary electid &,(r’,t’) would equal the
total field in the case of a vanishing anomalous conductivitye equation can be used to
derive the time—domain electromagnetic sensitivitlésrflt, 1998], which can be basically
identified by the difference between the total and the prynedectric field with respect to a
model perturbatio®o,. Assuming a very small perturbati@wo, allows to replace the total
electric field atr’ with the primary or unperturbed fieleh(r’,t") [Hordt, 1998]. Using this
approximation together with the reciprocity relation, Btan (4.1) is rewritten to

e(r,t)—ep(r7t)_ ' I3l 1 s\ A 4!
50a(r") = /\//0 G(r',t'|r,t)ep(r’,t")dt'dr". (4.2)

From a classical point of view, the left—hand side represamheasure for the field variation
atr produced by a change in the model parametef,ahus it is the parameter sensitivity.
The integral on the right—hand side represents an efficiagtaf’calculating the sensitivities
for the whole model domain. It is realized by carrying out avaution of the background
(primary) electric fielde,(r’) with the electric field impulse responserasourced at by an
unit electric dipole. The method is efficient, because meay implies that the sensitivity
atr for each image point’ over the model is obtained by a single convolution.

Viewed from a somewhat reversed point, the convolutiongirstealso represents a way to
quantify, for a given earth model, the parameter pertuobnadir’ that has to be performed in
order to let the difference between total and background ¥i@hish. If now in Equation (4.2)
the total electric fielce is replaced by an observed field measured, abver an unknown
model, and the background fiedg is replaced by a forward solution of a model guess, one
can identify the basic principle of EM migration. In the lindo,; — 0, the equation’s left—
hand side represents the gradient of the data residual @sftect to the perturbation of the
model conductivity and thus a means to find a model pertwbdhat minimizes the data
residual.

In the following section it will be shown that the field proedgd byG(r’,t'|r,t) becomes a
migrated residual field, because it is sourced by the acttal siduals calculated from an
assumed earth model instead of a single impulse signal. T¢ratad field is also referred to

2Formally, the tensog is dot product multiplied from the right by the unit vectosaged toe.
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as backpropagated field. It is propagated backwards in begguse its excitation starts with
the latest data residuals and continues towards the onesgied) to time zero. This follows
from the reciprocity relationship and might clarify a pddsiconfusion arising from the fact
that seismic migration is usually addressed by a cross latioe between incident and mi-
grated wavefield, sometimes also referred to as 'downgaind"upgoing’ Claerbout 1971;
Tarantola 1984] field, respectively. To be correct, the cross cotiidbetween two fields
propagated forwards and backwards in time can be regardadasvolution of two fields
that are both stepped forwards in time, yet with one difigioy a time—reversed feeding
with its respective source field. For the time—steppingdtigm developed in Chapter 3 there
actually exists no major difference between a classicadod simulation or a backpropaga-
tion of the EM field. Both kinds of fields employ the same tintepping scheme. Only the
implementation of the source is different.

It can be concluded that the gradients of the data residdathwill be related to an error
functional further below, with respect to the model condiitbes o(r’) can be efficiently
calculated by means of only two field simulations. The catreh of the backpropagated
field with the incident field is carried out over the whole irsien domain, thus yielding the
gradients at each point The combination with an iterative algorithm for a minimueasch
of an error functional makes EM migration a powerful imagiaghnique. Compared to the
seismic counterpart, the major difference is that it isiedrout on the basis of Maxwell’s
equations. This will be treated thouroughly in the follog/section.

4.2 Background: Diffusive Maxwell’s equations,
Green dyadics and adjoints

The first order Maxwell’s equations given previously by Eiias (3.1) are first rewritten in
the diffusive approximation,

Ox e+ u%—? = ™M (4.3a)
_Oxhtoe = —j¢ (4.3b)

where the electric and magnetic current source fields aregn@m byj € andj™, respectively.
Both types of current source fields will describe the souafélhe migrated fields at a later
stage. Solution to Equations (4.3) are formally writtenemts of the electric and magnetic
excitation currents by the integral representatidtedden and MarcuvitzZ1973]

er.t) = /V,/otgll(r,t|r’,t’)-je(r’,t’)dt’dr’

/V, /Ot —glz(;(’:,')r 1) M’ t)dt'dr’, (4.4a)
h(r,t) = /V,/ot921(r,t|r’,t’)-je(r’,t’)dt’dr’

/V, /Ot —922(;(’:,'; 1) M’ t)dt'dr’. (4.4b)
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For the Green dyadics;; (r.t|r’,t'), causality implies that
Gi(rtr,t) =0, t<t. (4.5)

The Green dyadic componegh(r,t|r’,t") -u’ and Gz1(r,t|r',t’) - U’ represent the vector
electric and magnetic fields, respectivelyy &t produced by a unit electric current density
atr’,t’. The excitation acts in the direction of the unit veatar Similarly, Gio(r,t|r',t") - u’
and Goo(r,t|r',t’) - U’ propagate the electric and magnetic response, respgctdfed unit
magnetic current density at t’ in the directionu’ [Felsen and MarcuvitzZ1973]. The four
dyadics in Equations (4.4) satisfy the following first—ardquations

Ux Gr1+ U% = 0, (4.6a)
—Ux Go1+0G11 = —I6(r — r')6(t —t/), (4.6b)
Ux Gio+ u% = —Iu(r)d(r —r")d(t—t), (4.6c)
—UX Go+0G12 = 0, (4.6d)

where! denotes the identity dyadic.

The backpropagation of the data residuals involves an mtdjeeld problem McGillivray
and Oldenburg 1990;McGillivray et al, 1994]. The adjoint field differs from the original
field defined by Equations (4.3) in that it is reversed in bgiace and time, because an
ingoing wave solution rather than the characteristic outg@vave solution is admitted. As
mentioned in the previous section, the excitation of thekpexpagated fields takes place at
the locations where data errors originate from, these &redteiver positions. Adjoint and
original fields are connected by the reciprocity relationtfansient EM fields Hohmann
1988], formally written as

Giy (r.t'rt) = Gii(r.tr'.t), (4.7)

where gﬁjf propagates an adjoint field a@ﬁi represents the transpose of a dyadManhg
et al, 1994]. The time—reversed field propagation indicates thie-eausality of the adjoint
Green dyadics, specifically

Gi(rtrt)=0, t>t" (4.8)

The adjoint fields are representable in a form similar to ith&quations (4.4),

t
) = [ [ Ghrur.t) e yatar
VvV JO

t ~+ ! 3/
+ /V/o—glz(prl(’:,')r’t)'Jm(r’,t')dt’dr’, (4.9a)
t
ht(rt) = // Gy (r I ) - jE(r t)dtdr’
VJO
t ~+ ! 3/
L —%2(;(’:,'; L) jmie vyt (4.9b)

The reversal of the space—time coordinates for the adja@llsfileads to the following rela-
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tions corresponding to Equations (4.6),

_|_
—OxGii - % =0 (4.10a)
Ox GH+0Gy; = —18(r—r")d(t—t'), (4.10b)
+
0 G092 = (-, (4.100
Ox Gp+0G, = O (4.10d)

These equations indicate the principal difference betvgegsmic and EM migration. The
migration of seismic wavefields employs the same wave eguas for forward propagation
[Tarantola 1984], whereas the backpropagation of diffusive EM fietd®lves the adjoint
Maxwell’s equations, where both space and time coordiratesign—reversed.

Reciprocal connection of the Green dyadics

At this point, it needs to be emphasized that bgtland G* always propagate the impulse
response of a field. Complications with reciprocity ariseewh= j, that is the electric
field response due to a magnetic dipole source or vice versansidered. The reason can
be found in the time—domain reciprocity relationship venittin terms of the electric and
magnetic source momenbsandM, respectively Ward and HohmanrL988],

D= —uMg. (4.12)

ot

Its practical meaning is that the magnetic field impulse oasp for an electric source is
equivalent to the electric field step response for a magmseticce Hordt, 1998]. This is
a critical point not taken into account Bang et al.[1994], when deriving the gradient
specifications that involve the reciprocal relationshipwsen electric/magnetic responses
for magnetic/electric sources. The aspect was not disdusge¢he authors, because their
presented synthetic data inversions required only theidyadan electric response due to
an electric source type, where no such complications aff®esummarize the reciprocal
connection between the four dyadics and its adjoints,

G tlrt) = Gu(r.tlr',t), (4.12a)
9 ~
GL(r' tr,t) = —p(r)agﬂ(r,ﬂr’,t’), (4.12b)
0 ~
U(r/)@ngi(r/ﬂﬂt) = Guo(r,t|r',t), (4.12¢)
M) Goo(r UIr,t) = u(r) Gao(r tlr',t). (4.12d)

To gain a deeper understanding of these reciprocity lawssider first Equation (4.12a).
Each component of this tensor equation describes an egomabetween two electric field
components at’,t’ andr,t that arise from two electric dipole sources located andr’
with an impulse excitation atandt’, respectively. A similar explanation for magnetic source
and receiver types holds for (4.12d), where the responsss toebe scaled by the magnetic
permeability at the respective location. Equation (4.1&ip)ates the time derivative of the
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magnetic field impulse response that arises from an elatipae source to the electric field
impulse response that arises from a magnetic dipole sobxg®anation of Equation (4.12c)
is similar to (4.12b), except for a sign change, which is neglbecause the field evolves in
reverse time, starting at timileWhen (4.12b) is integrated over tihand (4.12c) is integrated
over timet’, it follows

PGl t) = p(r) Gaa(r.tlr',t), (4.13a)
—U(r) G (r]r,t) = SPGry(r tr,t), (4.13b)
where
tl
TERGLITINY = | GhLr I tdt

- t
SRGa(r ) = [ Gualr Ut
tl

The derivation of (4.13a) from (4.12b) is exemplified in Apde< A.3 in order to clarify the
change of the sign.

4.3 Specification of the gradients

As mentioned in the introduction of this chapter, the présgiterative imaging technique is
based on information about the gradient of an error funelicather than on direct solutions
obtained by matrix inversion methods. With both the idea W iBigration and the formal
representation of the EM field by means of Green functionsinddjoints in place, the
specifications for an efficient gradient calculation are ni@nved.

The inverse problem introduced earlier in Section 2.1.2r$ feformulated in terms of an-
other form of the error function?l

®m) = 222/ °(ri,t;5) — dP(ri, t; 5)]°dt
- 52.2/0 5d°(ri,t;5;) - 5A°(ri, t; ) di. (4.14)

The differencedd® between a set of observed an predicted ddtanddP, respectively, is
matched in a least—squares sense, which corresponds togfimainodem that minimizesyp.
The summation is carried out for all source positispand its respective receiver positions
ri. For now, it shall be assumed that all receivers are assigmadsingle transmitter. The
measurements and its respective predictions are sampédim/ time rangé =0 tot =

T, wheret = 0 denotes the shut—off time of a source at steady state. Tbefentional

is connected with a model guess by the implicit dependendbdeopredicted data om,
which may represent a conductivity or magnetic permegtaigtribution. In this thesis, only
electrical conductivities are considered as variable rpaeameters, thus = o.

3For simplicity the formal notation of a vector dot prodaéb is neglected.
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To obtain the gradient of the error funtiorgalwith respect to the model conductivities, de-
noted byyg, consider a small perturbatidw at the point’ in model space. The relationship
between the gradient and the perturbed quantities is giy&hdng et al[1994],

5= @(0+30) — §(0) ~ /V Yo(r')Bo(r')dr’ (4.15)

and can be explained as follows. The gradigntepresents a vector, where each component
is assigned to a model cllwith k= 1,...,M andM the total number of model elements
belonging to the inversion domaifi. It represents a differential quantity, because there is
no cell volume associated with all points\éf where it is calculated. To obtain the change
in the error functionabg with respect to conductivity changée in a cell, it has to be
integrated over the volume of that cell. Equation (4.15hides the assumption that the error
functional is Fréchet differentiable, that is the negéelatemainder term of the approximation
is of second order iBo [Chave 1984;Boerner and WestL989;Wang et al. 1994].

In Equation (4.14), the change in the error functional orages from the change in the pre-
dicted datadd, hence the perturbed quantiigis

5 = %z/OT [(d° — (dP+3d))? - (d°— dP)?]dit

T 1
= — od®-dd — =&d - dd) dt
A 56d-5)

Q

;
-y / 5d°- &d dit (4.16)
0
|

Note that the second order terdd - &d is also of second order ido and thus has been
neglected. Now the perturbed quantitdesanddo will be related to the field solutions given
by Equations (4.4). As indicated by Equation (4.1), a scattéelddd can be connected with
a model perturbatiodo. In order to obtain the scattered field solution, considepérturbed
guantities

0+ &0,
M+ OH,
e+ de,
— h+0h.

> o = Q
L 44

By rewriting Maxwell’'s Equations (4.3) using these pereaotlguantities and then subtracting
the corresponding equations for the non—perturbed stdtdlaws [Wang et al. 1994]

ode—[xdh = -—doe, (4.17a)
0 0
0 x de+ uaéh = —6uah, (4.17b)

where second order terms (products of two perturbed qies)tare neglected.

At this point, it has to be distinguished between differeatiadypes contained ibd® anddd.
These can be electric fields, magnetic fields or the time deévey of magnetic fields (volt-
ages). For causal source fieltlgang et al[1994] show that different gradient specifications
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result for electric and magnetic fields. In this work, thedyeats for electric fields and volt-
ages are derived for the more general case of non—causakstypes. It will become clear
that the resulting gradients comprise the gradient spatifics for causal sources.

4.3.1 Gradient specification for electric field data

A comparison of Equations (4.17) for perturbed fields witfibrmal field solutions in terms
of Green dyadics (Equation 4.4a) yields

t
Se(r,t) — / / Gu(r I, t) - e(r',t)da(r')dtdr’
V' J—o0

t ! 4/
+ /V /oo % - %h(r’,t’)ép(r’)dt’dr’. (4.18)
From here, the second integral is not taken into accoungusecit only needs to be consid-
ered when perturbations of the magnetic permeability @atéd. By settindu(r’) = 0 the
second integral vanishes. Note that the existence of nogataource fields implies that the
lower bound of the time integral is replaced by a valué-ef—~ instead ot = 0. Substitut-
ing Equation (4.18) into Equation (4.16), where the genemehblesdd® anddd for the data
residuals and the scattered field, respectively, are reglag its electric field representations,
one obtains

T t
dp=— Z/ Se°(ri,t) / / Gua(ri,t|r’,t") - e(r’,t")do(r')dt'dr’dt. (4.19)
/0 V'J—oo
By a comparison of Equation (4.19) with (4.15) it can be séanthe gradient is given by
T t
Vo(r)=—3 / 8e(ri,t) - / Guu(ri.t)r'.t') -e(r',t)dtdt, (4.20)
/0 —®

whereys indicates that this specification belongs to electric fielthd Reverting back to the
basic outline of EM migration (Section 4.1), it can be seeat Equation (4.20) in principle
contains the convolution that would yield differential sgvities (with no volume associated
with each point) over the model domaih Hence, the gradient can simply be evaluated by
integrating the product of the data differen@&S at r; and the corresponding sensitivities
over the time interval of the observed data. The differendée integral in Equation (4.2) is
that the reciprocal relationship has not yet been applidd.20). Therefore, the realization
of Equation (4.20) would require one forward solution to gane the fields in the current
model and as many solutions as there are image points in theldomain in order to get the
sensitivities. This is impractical with a large number otige points. Instead, (4.20) is now
turned into a form that establishes the relationship to atign techniques. This involves the
treatment of the residuat&® as sources of a residual or backpropagated field as can be seen
in the following derivation.

First, as clarified in detail in Appendix A.4, the order of @nmtegrations in (4.20) can be
reversed to

T T
Ve(r') = —z/m/tl 56 (1, 1) Gua(ri, r',t)) - e(r’ t')dt dt’ (4.21)
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Now the reciprocity relationship as given by Equation (4)1i8 applied,
T T
- z/ / e(r,t') G (r','|ri ) - 5°(r;, t)dt dt. (4.22)
T~ Jt

This already indicates that the residual field propagatetheyadjoint Green function origi-
nates from the receiver positionswhich now act as sources with the source excitation given
by 6€°. In order to avoid confusion between the sources of the uasiield at the receivers
and the source given by the grounded—wire transmitter,atterlone will be referred to as
external or primary source in the following. The incidergattic fielde(r’,t') can be placed
outside the time integration overA further rearrangement of the summation over the source
positions of the residual field yields

T t!
ve(r) :/ooe(r’,t’)-Z/T G (r' tri.t) - 5°(ri, t)dt dt. (4.23)

The inner integral and the summation over the receivergiaced by

ep(r',t'|3e°) Z/ Gl (r' t'|ri,t) - 8€°(ri, t)dt (4.24)

which represents the residual or backpropagated eleatitdir’,t’ due to a source excita-
tion quantified by the data residude’ at the receiver positions. The data residualde”
can be regarded as electric current sources, radiatingtiierasensor positions in reverse
time, as indicated by the lower integration boundarfthe time of the latest measurements).
The reversal of the time order of propagation égiis also inherent in the anticausal defini-
tion of the adjoint Green dyadic in Equation (4.24). The Fgoaithm described in Chapter 3
is capable of simulating the field response arising from plglisources distributed over the
model. Thus, only a single simulation is needed for the cdatmn of g,. Finally, the
gradient is specified in the compact form

:
Ve(r') = / e(r’t) - ep(r',t'|5e%)dt’. (4.25)

In practice, the gradient vector is computed by extractimegncident and the backpropagated
field at each of thé/ cells comprising an inversion domain and carrying out threetation
of the fields at each cell.

A closer view of the backpropagated fields

To further understand the formal specification of the baggpgated field in (4.24), consider
Equations (4.9). In fact, the formal adjoint electric field is directly related to the fiele,

in (4.24). Apart from the volume integration, the only diface is that the electric current
source field € is given by the data residuals® distributed over the receiver points Now

the Green dyadig;, in (4.9a) indicates thag, also has a magnetic part. The magnetic current
source field™ can be given by either magnetic field or voltage residualshénpresence of
voltage data, the corresponding backpropagated eleathit fi

ep(r',t'|ov°) Z/ Go(r' t[ri,t) - vO(ri, t)dt (4.26)
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is sourced by the voltage residudl®. Similarly, in the presence of magnetic field data, with
the residuals given bdh®, it follows

t’ step,~+ r/ t/|l’ t)
step, r/.t/ 6ho — / 612( ) 1y

-8h°(ri, t)dt. (4.27)

It turns out that the two types of fields in (4.26) and (4.2°@ malated to each other through
a simple time differentiation. This crucial detail resuitem the reciprocity relationship

between electric and magnetic fields discussed in conmewatith Equations (4.13). Equa-
tion (4.27) is involved in the conductivity gradient spezfiion for magnetic field residuals
(Newmanpers. comm.). For the sake of completeness the backprigubigeld types related

to the adjoint magnetic field™ are specified:

tl
ho(r',t|5€°) — Z/ G (r' tri.t) - 8°(ri ), (4.284)
T
|
tl
ho(r' t[3v) = 5 / G (r' t)ri,t) - &vO(ri.t)dt, (4.28b)
T
|
U GL(r! ], t)
hp(r’,t'|3h°) = Z220 2 U0 5hO(ry,t)dt. 4.28¢
b( | ) Iz T I—l(ri) (l ) ( )

These fields are involved in the derivation of the gradieatsriagnetic permeability. This
Is not further outlined in this work.

Treatment of the non—causal gradient part

In practice, the actual computation of Equation (4.25) wiaelquire a backpropagation be-
yond timet = O in order to account for the correlation with the non—capsat of the inci-
dent field. This would need to be performed until the contrdsuto the correlation integral
vanishes due to a sufficient decay of the backpropagated Tielavoid this significant disad-
vantage, it is computationally convenient to formally spp the gradient in Equation (4.25)
such that

T 0
ve(r') = / e(r,t') - e (r',t'|5€%)dt + / ePC(1') - ep(r',t'|56°)dt (4.29)
0 —o00

wheree(r’,t') = eP(r’) for t’ < 0. The second integral is further split up in order to obtain
the correct forms for a backpropagation starting at thestateeasurement time,

_
() = [ e ) e vioe)dt
0

T T
(/). / e (1, t/|56°)dt + (1) - / & (r, |5 dt.  (4.30)
0 —o00
The constant DC electric fiel@™©(r’) could be brought outside the integration. This field
can be determined by solving Maxwells’s equations in thadstestate limit as described in
Section 3.1.5. For reasons mentioned soon, the integrakdast term in Equation (4.30) is
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related to a backpropagated DC electric field. First, cardite adjoint Maxwell equations,
which are satisfied by the backpropagated fields for elestricces,

oep+0Oxhy = —Z6e°(ri,t)6(r—ri), (4.31a)
|

0 x ep+ ua(; = 0. (4.31b)

These equations follow directly from Equations (4.10a($#)24) and (4.28a) and are now
integrated from the time range= —o tot =T,

T T T
0/ eodt+D></ hodt — —2/ 5, )3(r—r)dt  (4.32a)
1 — 00

;
Dx/ eodt+u/ bdt - 0 (4.32b)

Note that the integral frorh= —oo tot = 0 vanishes for the source term in Equation (4.32a),
becaus®e®(ri,t) = 0 fort < 0. Also,hp(T) = 0 andhp(—c) = 0 and introducing the back-
propagated DC electric and magnetic field by

T
egc - / eodta

.
hDC — / hy dit.

one can simplify Equations (4.32) to
T
oedC+0OxhPC = — Z/ 8€°(ri,t)3(r —r;)dt (4.33a)
0
|

Oxe® = o (4.33b)

To avoid confusion, it shall be emphasized that the fiefffs and hP© are causal fields,

in contrast to the non—causal DC fields arising from the eslesource. However, the fact
that they are formally backpropagated beyond time zerod®i@ state of the incident fields
suggests to name them after the incident DC fields.

Similar to the incident DC electric field, the integrated k@opagated electric field can be
written as the gradient of a scalar potentjg becausé] x e2© = 0. ThuseD is obtained
by solving

;
0. (60¢p) = —D-Z/O 5€°(ri,)8(r — ry)dt.

The equation represents a 3D Poisson problem similar torteéar the incident DC electric
field (Equation 3.15), yet with a different source field, giv®y the data differences integrated
over the time interval from O t@. It can be solved by the same algorithm employed for the
forward case, as outlined in detail in Appendix A.2.

Now the gradient for electric field data is rewritten in thenfioin which it is actually imple-
mented,

]
V) = [ elrt)-ey(r' jae)t
0

]
—ePC(r). / & (r',t/|36%)dt’ + P (r') - €2 (1'|5¢°). (4.34)
0
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Note that this representation reverts back to the causal,furat is only the first integral
given byWang et al[1994], whene® vanishes. In addition to the solution of the Poisson
problem in order to evaluate the third term, it is also ne@gs® integrate the backpropagated
electric field for the second term. This is not difficult to ilament, because the integral
fOT ey(r’,1'|6e°)dt’ can be calculated as a by—product during backpropagatidrecglectric
field. Nevertheless, this integration could also be elin@ddy expressing Equation (4.34)
as

]
ve(r') = —/ €N(r' ) - en(r','|36%)dt’ + P (r") - (1’| 3°),
0

wheree®(r’,t") = PC(r') — e(r’,t') represents a causal field generated by a turn—on wave-
form of the transmitter. However, this way of implementatis less favorable, because
subtractive cancellation can lead to a loss of accura@lr’,t’) at late times Klewman
pers. comm.).

4.3.2 Gradient specifications for voltage and combined data

A derivation of the gradienf; for voltage data is similar to the gradient for electric feelthd
is given in detailed form in Appendix A.5. Here, its final forsgiven,

T T
W) = / e(r',t') - en(r', t'|3v0)dt’ — ePS(r') / & (1, t/|v0)dY (4.35)
0 0

where the corresponding backpropagated electric field heady been defined by (4.26).
Compared to the derivation of the gradient for electric faddla, the major difference results
from using Equation (4.12b) instead of (4.12a) when applyire reciprocity relation. By
comparing (4.35) with (4.34), one further notices that nokipaopagated DC electric field is
required forys. As also outlined in Appendix A.5, this owes to the fact thre voltages are
causal, i.e. vanish in the DC state of the primary source.

Consider a TEM measurement, where both electric field atdgeldata is recorded. The in-
spection of (4.34) and (4.35) shows that both can be compoiteity. This is realized by the
capability of the FD time—stepping scheme presented in &€h&oto superimpose multiple
electric and magnetic types of sources. It allows for adddl computational efficiencies in
the case of both data types present. At this point, the exters the gradient specification
to include multiple primary transmitters shall also be giv€he required additional summa-
tion over all primary source positioss is straightforward. Finally, the combined gradient is
specified as

;
B = 3 [ e s aulr i) o+ av)a
0
J
;
- s [ el tisi|ae+ ave)at
0
J
+ ZeDC(r’;sj)-eEC(r’;sj|6e°). (4.36)
J

For each source positiorsg, the computation of the combined gradient still involvegyon
two simulations, one forward simulation to compute the 8aldthe current model and one
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simulation for the backpropagation. However, this procedweeds to be carried out as often
as there are primary sources.

4.4 Time-stepping backpropagated fields

The adjoint Maxwell equations for time—stepping the baokpgated fields arising from both
electric and voltage data residuals follow from Equatich4 @), (4.24), (4.26), (4.28a) and
(4.28Db),

ohp, A 3O(r .
SOx @G = = 3 MRS ) (4.37a)
thb+ceo—yaa;°t° = —Z6e°(ri,t)6(r—ri). (4.37Db)
|

Note that the displacement term has also been taken intaatao order to realize the
DuFort—Frankel scheme explained in Section 3.1.3. As dyr@adicated, the FD algorithm
developed in Chapter 3 is employed for both propagationeirtbident field forwards in time
and backpropagation of the residual field. The incident fegity involves electric current
source fields impressed by the transmitter, whereas thduaddields arise from both electric
field and voltage data residuals sourced at the receivetibmsa The length of the source
excitation is governed by the time interval covered by thia dasiduals.

The residual fields are initialized to zero at the titne T and stepped backwards in time
until time zero is reached. Therefore, these fields are tamshthe time—stepping scheme
described in Section 3.1.2 is employed as no initial DC fiaeldsinvolved. Consider the FD
discretization exemplified by Equation (3.5) for the magnietductionb. The discretization
of (4.37a) yields similar expressions for the components,pyet the additional source term
needs to be taken into account. In contrast to the forwargggation, the time-reversed
propagation of the fields now involves rearranging the eéisoed form of (4.37a) such that
b" 3 is updated fronb™ 3, thus

by 2 :bg+%+Atn(DXGB—ZH(fi)fSVO(fi)n)v (4.38)

where the data differena®° at the required timé, is obtained by interpolation. Similarly,
discretizing (4.37b) using the same approximation for ages and central differences as
explained in Section 3.1.2 yields

_ 2y—olt, 2At,

_ =08y At O(r)2). 4.
% 2y+0Atneg 2y+0Atn( a +,26e(r') ?) (4.39)

Equations (4.38) and (4.39) also clarify how the data dtifiees are fed in as magnetic and/or
electric source terms at the FD grid positions given by tleeixers at;. As carried out for
the primary source, the distribution of the data differenoger the receivers is inversely
interpolated onto the FD grid.

Comparing Equation (4.39) with (3.18) shows that the onlp@pal difference is given by
the sign of the second term on the right—hand side. EquaBd8) describes a diffusing
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field that is decaying in forward time and growing in reveigget[Wang et al. 1994], where

a gradually increasing time step can be employed as outlim&sction 3.1.3. Numerical
experiments have shown that for backpropagation a deagetisie step is adequate, because
the fields revealed more rapid variations towards time z&wmbe more specific, the initial
time step is chosen such that the EM field retains its difisigture at the latest observed
timeT and the variable time step decreases according to Equ&tioyas the simulation time
decreases, until time zero is reached. The reason is ppskiblto the fact that the adjoint
Maxwell equations solved by the backpropagated fields destine concentration of fields,
in contrast to the diffusive nature of the fields propagateavérds in time. However, this
aspect has not yet been sufficiently investigated.

4.5 Numerical gradient checks

For a numerical verification of the gradients a crosswell sneament configuration is con-
sidered. The FD grid used to simulate the underground hasnd@uof 51x 39 x 53 nodes
in thex, y andz direction, respectively. An electric dipole source of Uartgth is located at
the horizontal positioox= 0 m,y = 0 m and the vertical positioa= 0 m and points into
they direction. The observed data is computed from@rb homogeneous fullspace repre-
senting the true model. A single receiver is placed at théipasx = 100 m,y =0 m and
z= 0 m. The predicted data and thus the data differedd€sare produced by assuming a
10 Qm homogeneous fullspace. The data is generated over theange of 10°sto 103 s
after the transmitter current switch—off, which is suffiti¢o cover the decay of the field at
the receiver.

The gradient computed by backpropagation of the data diffegs is compared with the
one obtained by a simple perturbation method. From Equétidi®) it follows for a single
componenty, of the gradient vectoys

_ % Mo od(r,t)
yck—a——/() od®(r,t) - 50, dt,

wheredok with k= 1,...,M denotes the conductivity perturbation of a single &etif the
model domain. As mentioned before, this involves the calouh of sensitivities. Therefore,
each cell conductivity of the 1Qm homogeneous fullspace is perturbed by a value of 10 % in
order to get the differencésl at the receiver positionwith respect to the model perturbation
o0ok. The grid domain considered for the check comprisesxthez plane throughy = 0
between source and receiver with a vertical extent of 95 nis ifkiolves 360 grid cells, each
one with a size of 5 5x 5 m®, and thus 360 gradient vector components to be verified.

The first gradient check involves only electric field datar this check the backpropagation
gradient is computed using Equation (4.34). The field corepbparallel to the transmit-
ter is considered for the data residuals. The result is showthe percentage difference
plot in Figure 4.2a. Only absolute differences of the backpgation gradient with respect
to the perturbation gradient are shown. Away from the tratismand receiver the differ-
ences are mainly below 1 %, thus showing a very good agreenhemie vicinity of both
transmitter and receiver one observes the largest dengatith a maximum of 9 % reached
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near the transmitter. However, this still represents aable difference. Larger deviations
are observed when the backpropagated fields are sourcedthgeraata as shown in Fig-
ure 4.2b. The result compares the gradient computed fronatieou(4.35) with the pertur-
bation method. The data residuals are computed from thag®itomponent that is parallel
to thez direction. Differences up to 47 % occur in the vicinity of ttezeiver, whereas the
space betweer = 30 m andx = 70 m is dominated by deviations of only a few percent.
The last gradient check involves sourcing the backprogadetlds by a combination of both
electric field and voltage data, using Equation (4.36). Canmg the resulting differences in
Figure 4.2c with the previous results, the combined datmnsde produce an average of the
results originating from the separate data sets. Here, anmiax difference of 26 % occurs,
again near the receiver.

Better agreement between both types of gradients can bmdliba all data types by refining
the mesh near the receiver. The grid used for the shown sasuharacterized by a coarsen-
ing of the mesh starting beyond the receiver position-atL00 m. Other gradient checks not
shown here involved a refinement of the mesh in the vicinitthefreceiver. For example,
by refining the mesh near the receiver using 5 additional sigdéhex direction, the maxi-
mum difference in the gradients for vertical voltage dataldde reduced by approximately
a factor of two.

Here, the perturbation method was used for obtaining reéereralues for the backpropa-
gation gradients. As indicated by Equation (4.2), otheisfimlties exist for computing the
sensitivities for each cell and thus the reference valughégradient. For another way to get
the electric field sensitivity at the receiver positiofor a given cell at’, one can implement
Equation (4.2) by placing an electric dipole source of ueitgth with a source excitation
given by the background electric fiegd(r’,t’) at the cell positionr’. Here, the background
electric field corresponds to the field generated by the eateource in a 1@m fullspace.
Alternatively, using reciprocity, the electric dipole che placed at the receiver gt now
emitting an impulse signal. By convolution of the impulsspense at’ with the back-
ground electric field, the sensitivity aiis again obtained. It turned out that the latter method
yields better comparisons with the backpropagation grasithan the perturbation method.
A reason is given by the fact that the perturbation of a cetidewtivity always involves a
finite quantity for both cell volume and parameter changeiclvins not the case with the
convolution method. In other words, there exists more sirtjt between convolution and
backpropagation method for computing gradients.
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Figure4.2:  Checks on the gradients by comparison with a perturbatiothate The contour plots

show the absolute differences in % between gradients caddum perturbation and backprop-
agation. Panel (a) shows comparisons for electric field datanel (b) shows the corresponding
comparisons for vertical voltage data and panel (c) for a bamation of both data types.
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To conclude, although different ways of calculating refee values for the gradients ex-
ist, the perturbation method is preferable for verificatiomcomparison with the described
ways of obtaining the gradient by other ways of calculatimggensitivities, the perturbation
method is more different to the backpropagation method @metda provides for more inde-
pendent reference values. Although relatively large thifiees exist locally for the shown
examples involving voltage data, the gradients reveal a ggoeement over most of the in-
spected area. The largest deviations occur close to thentitter and receiver, where the
sensitivities are large as well. This indicates that theypkation method is probably less
exact due to finite volumes associated with the sensits/¢@mputed by cell perturbations.
The later shown inversion examples will demonstrate thatatcuracy of the gradients is
sufficient for a successful minimum search.

4.6 Solution of the inverse problem by a NLCG scheme

So far, an efficient scheme has been constructed that alelstain the derivative informa-
tion needed for a minimum search in the model space. Now aquadie iterative algorithm
has to be found that employs the gradient information asiefiily as possible. Although
the computational effort for obtaining the gradients isimized by the migration technique,
it will still dominate the inversion algorithm due to the cpuater—intensive time—stepping
of both forward simulation and backpropagation of the fiel@kerefore, iterations that do
not significantly minimize the error functional need to beided. If the method of steepest
descent is used for a minimum search and the problem to beds@uvll-conditioned, an
unnecessarily high number of gradient computations isfikecause the method of steepest
descent does not “remember” the direction of previous stefige model space. The idea is
to construct the search directions such that each direiitaken only once, which leads to
the method of conjugate directions.

The principle that makes CG or NLCG superior to the methoded#sest descent is that the
search directions are constructed by conjugation of thdigméaor steepest descent directions.
In other words, the iterative search for a minimum@m) takes place in the course of
building a vector set of search directions that are mutualhjugate. In principle, this implies
that the vectors of search directions can be transfofrteedn orthogonal basis of the model
space. It would be beyond the scope of this work to furthelireithe details of CG or
NLCG. A more mathematical treatment is given Hgstenes and Stief§1952], Fletcher
and Reevefl964] andPolyak and Rikre[1969]. In comparison to the method of steepest
descent, the conjugation of the gradients accounts for terbednvergence since repeated
model updating steps along the same direction do not occur.

The following algorithm flowchart for the iterative NLCG e is given byNewman and
Alumbaugh2000]. Iteration numbers are denoted (). The vectorm represents a point
in the model space, here it is the model space defined by thauctwity distribution. The
matricesM ;) andM (i, 1) are related to a preconditioner. The findingsRafdi and Mackie

4The transformation is for example represented by the matyiwhich describes the linear system to be
solved by CG. Two vectong andv, are conjugate or A—orthogonahifAv, = 0.
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[2001] showed that convergence rates for the 2D MT inverseélpm using NLCG can be
significantly improved with preconditioning. However, theesented inversion does not yet
involve preconditioning. For the purpose of a NLCG schemghevit preconditioning, one
can defineM as the identity matrix.

At the first iteration the initial step (1) selects a modelraate and computes the residual
r i), which is represented by the steepest descent vector otiveegeadient of the error func-
tional @ at the starting model. Note that the gradient is given by Eqnd4.34), (4.35) or
(4.36), depending on the data type to be inverted. The fiestbedirectioru;, is then set to
the residuat (; in step (2). Step (3) represents a minimum search by a limetspaocedure,
that is finding the value ofi that minimizes the error functional for a given model and a
search directionj,. This is an important procedure for a successful and efficneplemen-
tation of NLCG and is described in detail Bennis and Schnab§l996]. The non-linear
line search makes the main difference to the linear CG metiibd scheme used here was
employed earlier bjNewman and AlumbaudR000]. Basically, the line search algorithm
finds a minimum ofg by using functional and derivative information at one pamg, in
the model space and functional information at another palong the search directiany).
The additional computational effort required by the linarsé is thus mainly represented by
evaluatingg at the second point along the search direction, becausafibreniation related
tom; is saved from the previous iteration. A quadratic curve fsdithrough both points in
order to estimate the step to the minimum. With the line deaompleted, the model update
is performed and the new residual is evaluated at the newt pgjny) in the model space
(step 4). Step (5) serves as a stopping criteria; if not fetfjla new search direction, which
is conjugate to all previous ones, is determined by stepr{@)@). Both these steps perform
the actual conjugation of the search directions. Basictlly procedure can be reduced to
a Gram-Schmidt conjugation procedure as outlined morelel@tfar example byShewchuk
[1994] or Meister[1999]. With a new conjugate search direction evaluated allgorithm
loops back to the line search procedure in step (3).

(1) seti =1, choose initial modeh;, and compute ;, = —Oe(m;) ).
(2) setu) = M(*i)lr(i).

(3) find o) that minimizesp(m;) + 0 Ug) ) -

(4) setmi 1) = Mg -+ 0y Uy andr gy = —0@mip)).

(5) stop Wherir(i+1)| is sufficiently small, otherwise go to step (6).
(6) setBiq) = (rEH)M (*iil)r(iﬂ) - r5+1)M (*i)lr(i))/rg) M (*i)lr(i).

(7) setui ) =M (Llrl)f(m) +Bi+1)U(i)-

(8) seti=1i+1 and go to step (3).

NLCG algorithm flowchart after Newman and Alumbaugh [2000]
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Fortunately, parallel implementation of the NLCG schemstraightforward. All that is
required is global communication amongst the processaesrplete the dot products that
occur during steps (3) and (6).

4.7 Solution stabilization

4.7.1 Regularization

In contrast to the strongly limited number of model unknowaoasidered in Chapter 2, the
presented large—scale inversion scheme imposes a fine pardeheterization, because only
reconstructions that do not underparameterize the urmlengrare considered. This may re-
sult in many more model parameters than data values andsftre&D inverse problem to be
underdetermined and thus unstable and ill-posed. In aeragtcase, the least—squares best—
fitting model may possess structure which is rougher thamysipally possible. Reliable
model estimates are still possible if the inversion is s$itzdad with regularization. Originally,
the general procedure of regularization was introducetikiyonov and Arsenifl977] in or-
der to overcome mathematical difficulities in the theoryllefiosed problems. In the context
of conductivity imaging, regularization can be seen as @ complexity, where exces-
sively complex models are characterized by sharp condtyctiariations between neighbour-
ing model elementJonstable et a).1987;DeGroot-Hedlin and Constabl&é990;Newman
1995;Commey 1999]. Regularization thus suppresses solutions thabanmeugh by impos-
ing an additional constraint on the data fit.

To implement regularization, the error functional of Eqoiat(4.14) is augmented such that
1 T o . 0 . AT
®(c) = 522/0 3°(ri,t;s;) - 34°(ry.t;;)dt-+ Sm W W, (4.40)
[

whereW is a regularization matrix. Followinjewman and Alumbaudh997], the regular-
ization is chosen such th¢ consists of a FD approximation to the Laplacian operator
The tradeoff paramet@rcontrols the amount of smoothing to be incorporated intaribdel.
Smoothing a solution usually takes place at the expense wicagased data misfit. There-
fore, the selection ok requires special care in order to avoid an unacceptabléi@oluf it

is too small, the resulting model can reveal a physicallyeasonable structure despite good
data fits. A very smooth model due to a laigen the other hand shows poor dependence on
the data.

In an ideal case, the tradeoff parameter should be decrgaaddally after each iteration in
order to account for less—resolved model structures atitatations. However, for a variation
of A during an inversion, it would be necessary to discard theipus search directions and
re—initialize the algorithm starting with the steepestages direction at the current model
[Newman and Alumbaugh997]. This would annihilate the beneftits of the NLCG sulee
by reducing the convergence. Instead, a cooling approacessibed byNewman and
Hoversten2000] can be chosen. For optimiziig one carries out multiple solutions to the
inverse problem, starting with a large fixed value. s reduced, the data error, quantified
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by the first term in Equation (4.40), will decrease. This sx of reducing the tradeoff
parameter is to be continued until the data error agreesanittiget misfit based upon the
assumed noise content of the data.

4.7.2 Logarithmic model parameters

In order to constrain the electrical conductivities of thedal such that they are positive
quantities, a logarithmic transformation as describedNbywman and Alumbaudt997] is
employed. It is realized by defining a new model paramageat cell k using the natural
logarithm,

Uk = In(mg — My).

The relation allows for the incorporation of a lower bourglaonstraint given byng such that

my > My with M > 0. The selection oy for the cells comprising the inversion domain also
represents a means of incorporating a priori model infolonan an inversion. The effect of
this transformation on the component of the gradient, sgado the data errors, is to scale it
by a factor ofm, — M. Onceuy is updated in the NLCG iteration, the parameter components
that are of interest follow from the expression

mg = e+ M.

4.8 Synthetic data inversion example

The inversion algorithm is now applied to the same model ggomand transmitter con-
figuration as exemplified earlier in Section 2.2 (Figure 2.Epr this example, the ©m
conductive block is embedded in a @n half—-space. In contrast to the sparse data covering
simulated in Section 2.2, a receiver array of 99 detectorsvs simulated at the surface.
The spatial distribution of the sensors is shown by FiguBe Zhe SLDM code employed in
Chapter 2 is used for data generation. The simulated measuts are noise—free and com-
prise the transmitter—parallel component of the electaldfand the vertical voltage. The
transmitter waveform is a shut—off in a step—wise fashiortotdl number of 198 transients

is inverted, where each one is sampled at 90 delay times bgdmhe range ofp = 0.5 ms

toT =70ms

No transformation of the inverted data is carried out fos #ample. However, the different
information density at different measurement time stag@st@mnsient is taken into account.
A decreasing information density with later times resuttsf the simple fact, that after
source switch—off the spatial maximum of the induced fields@s outward from the trans-
mitter location and thus contains the information of anéasingly larger volume. Following
Wang et al[1994], a weighting oftlL is introduced into the error functional to compensate for
different information density, thus Equation (4.40) chesitp

]
00) =2 [ T8P(rGs)-S(r LS MWW, (4.41)
0
|
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Figure4.3: Transmitter and receiver (R) setup of the synthetic ineersixample. Also shown is the
reconstructed conductivity model at the earth surfacer &feiterations. The white rectangle shows
the profile of the conductive block buried in a depth of 60 m.

Note that no summation over the external sourgés carried out, because only a single
transmitter is considered. The weighting by the reciproicaé also carries over to the ac-
tual source termév®(ri,t) andde®(r;,t) on the right-hand side of Equations (4.37) for the
backpropagated fields. The weighting is equivalent to matiégg over logarithmic time.

In order to more easily quantify the data misfit, each compbda®(t) of a data difference
vector in Equation (4.41) is weighted by a value of 5 % of theregponding original data
valued®(t). It was further found to be advantageous to normalize Eqnd#i.41) by the sum
of the integrations over the logarithmic time interval o€leaource—receiver paiNewmarn
pers. comm.). Therefore, the goodness of fit of the modeligiedsdP(t) to the actual data
valuesd®(t) is assessed with the following normalized error functional

ST (de(t) — dP(t))*d(Int)
Qata= 5, ﬁlan(h‘l 0

nto

, (4.42)

where the earliest measurable delay tighes always above zero. This way of normalizing
the error functional originates from the general assumptiloat the information content of
a transient is determined by the time at which the signalyietanoise level. Over fitting
data in the presence of noise can thus be avoided; for exdittplg the normalized data
error @yata to one implies that the observations of this example are meatto about 5 %, on
average, assuming that the error is Gaussian and normathybdited. However, this type of
noise assumption does not consider late time noise, whigfually non—-Gaussian.
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Because of the premature implementation state of the #igos backpropagation part, the
treatment of the air—earth interface is carried out by syneptending the mesh upwards in-
stead of using a 2D FFT for field—continuation. The inversiorolves a 3D grid of size
95x 88 x 64 nodes, where 19 out of the 64 vertical nodes cover the agespAlthough com-
putation times become larger without the FFT approach &ating the air—earth interface,
this way of describing the air space would also allow to ipooate topography in the model-
ing. The extension of the model space is from -5000 m to 5000 afi Cartesian directions,
where the air—earth interface isat= 0 m. The inversion domain is limited to the whole
subsurface space of the grid, thus comprising a total numb876200 model unknowns.
The starting conductivity of 1@m is assigned to each grid cell. Using an initial time step
of Atg = 106 s, the air layer can be approximated by a 5000 resistive half-space above
the surface. Itis essential that this approximation isdedkd before an inversion. It has been
carried out by means of comparisons with analytical hakkesresponses.

100.0
———  Data error functional

,,,,,,,,,,,, Total error functional

10.0

Error functional

0 20 40 60 80 100
lteration number

Figure 4.4:  The total normalized (dashed line) error functional is pdot against the inversion
iterations. The solid curve corresponds to the data erranponent of the normalized error functional.

A total number of 87 iterations was carried out using 336 essors on the supercomputer
“ASCI Red™ operated by the Sandia National Laboratory (New Mexico, YJ@Pewman
pers. comm.). Each iteration required approximately 5 fioficomputation time. As shown
by the solid line in Figure 4.4, the data pawt:, Of the normalized error functional could be
decreased from an initial value of 38 to 0.2. The dashed liogvs the total error functional,
which also includes the regularization part. During theension the tradeoff parametar
(Equation 4.41) was fixed to a value of one. The data erroiallyitdrops rapidly. After
approximately 20 iterations the rate of decrease in the stows considerably.

SAccelerated Strategic Computing Initiative, see httpsmiwsandia.gov/ASCI/Red/ for further information
about the parallel architecture.
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Figure 4.5 shows the evolution of the model after 10, 30, 50 &hiterations. The left side
shows the corresponding images ixay section at a depth of 100 m below the surface.
Note, that the white rectangle indicates the true edgesechtiomaly. It can be seen that the
rapid error decrease during the first 10 iterations comasgalath rather small changes of
the starting model. After 30 iterations, where the errorcfional is already below a value
of one, the anomaly starts to appear in the form of a few cetls @onductivity values close
to one. The following iterations involve more significantadiges towards the true model,
whereas the error of the data fit reaches convergence. Adtgerations both predicted data
curves are in very good agreement with the synthetic d&ftang et al[1994] also observed
the contrasting pattern of an initially rapid data misfit &se and an increasing model en-
hancement starting at later iterations. They concludedhiobservation can be ascribed to
the dominating response of the background medium. The $iteeadeconstructed conduc-
tive anomaly, exceeding the dimensions of the true bloclkacheof the shown intermediate
results, indicates the non—uniqueness of the solution.

The final result after 87 iterations is shown by Figure 4.6thBbex — z cross section (a),
which bisects the point= 0, and they— z cross section (b) through= 300 clearly indicate
the top of the conductive anomaly. Moreover, the reconstticonductivity within the top
part of the imaged body approaches the true value of 1 S/m.eMenyvthe images estimate
the block’s vertical extent to be smaller than the true cad@ch is shown by the white
rectangles. Similarly, the horizontal cross section (@haracterized by a concentration of
cells that show the true conductivities of 1 S/m in the ceatehe rectangle outlined by the
original block. Across the edges of the true model, the @ggdtion drives the inversion to
a smoothed out image. In Figure 4.3, which shows the invergsult at the surface & 0),

a resistive artefact can be observed to the right of the bbdyyhowever spatially limited to
the first grid layer.
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Reconstructed models in a horizontal plane view at z=100efh ¢lde) and data fit for

both electric field and vertical voltage data (right side)eaf10, 30, 50 and 70 iterations. The shown
data corresponds to the receiver position at x=500 m and y=0'he true location of the conductive
block is indicated by the white rectangle.
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Figure4.6: Reconstructed model after 87 iterations. In each plot thaeadocation of the conduc-
tive block is indicated by a white rectangle. (a) The x—z€&ection bisects the transmitter at y=0 m.
(b) The y—z cross section is located at x=300 m. (c) The x—+yepddithe reconstructed model at 100 m
depth.
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4.9 Discussion

A theory for the inversion of 3D TEM fields arising from nondeal sources is provided.
The scheme employs the concept of migration or backprojwagtat efficiently evaluate the

gradients of the error functional in model space. Electetdfiand voltage data types are
treated. An attractive feature of the algorithm used forfibld simulation is that the number
of receivers assigned to a transmitter does not make an tropathe time needed for the
gradient computation. However, the total computation tisngroportional to the number of
external sources generating a data set to be inverted.

A successful demonstration of the EM migration scheme isrgfer a 3D exploration prob-
lem. The 3D images obtained after 87 iterations are geyagatbd, because the conductive
anomaly can be reconstructed to a satisfying degree. Davsafrom the true model shape
result from a smoothed out image, caused by the regulasizafi the solution. However, a
regularized solution is preferable. Without stabilizirmnditions, the solution of an ill-posed
inverse problem may be characterized by large oscillatamusthus unrealistic models. Al-
though smooth models are not necessarily closer to thettrathany other model which fits
the data, they give at least lower bounds on the amount aftsteirequired. Furthermore, a
smooth reconstruction, obtained from a homogeneousrggariodel, gives an indication of
the resolving power of the TEM method, because the gengpally resolution of diffusive
fields does not allow to distinguish between sharp or smomtitrasts.

The use of more powerful optimization strategies are likelpe beneficial in the 3D TEM
inverse problem. The gradient search method used for tfaiite solution process limits the
amount of forward modeling overhead, but this comes at tpemse of a slow convergence.
While direct Newton methods will converge in far fewer itgoas, the time required per
inversion iteration can be prohibitively expensive. A m@remising approach would be
reducing the number of iterations needed for the gradiestche Such improvements in
the efficiency of the NLCG algorithm can be made by precoaditig (e.g.Newman and
Alumbaugh2000]; Rodi and Mackig2001]). The effectiveness of a preconditioner arises
from “steering” the gradient vector into a more productiearsh direction, which in fact is
the Newton direction, thereby reducing the total numbeteshitions in an inversion.



CHAPTER 5

COMPARATIVE CONCLUSIONS

This work has presented two approaches for the inversiorEM Tields. The first approach
presented in Chapter 2, referred to as SINV in the follows@yes small-scale inversion
problems. It provides solutions for as many model unknovwasypical for unconstrained
least—squares inversions. The main field of applicationaséfinement of an a priori known
model by means of an inversion. Both the Marquardt inversiod the employed SLDM

forward modeling code are fully developed and well provesigghat were combined to a
stable inversion for simple 3D models. Therefore, the s&he&ra rather methodical than
theoretical innovation in the field of EM inversion. Becaw$éts low computational needs,
SINV represents a reasonable alternative to a large—sbailev@rsion. With a parallel com-

puting platform available, the computation times for thewh inversions ranged from only
2 to 4 hours.

The large—scale approach presented in Chapter 4 is cagableding for finely discretized
3D models including several hundred thousand unknowns.thus capable of imaging the
underground without prior information needed. For brevibe inversion method shall be
referred to as TEMINY in the following. The scheme uses techniques known from the m
gration of seismic wavefields and adapted to diffusive TENbH§e This innovative way of
taking advantage of the reciprocal relationships of EM &attinimizes the computational
effort for obtaining the gradient information for a minimwearch. The propagation of both
original and adjoint fields is accomplished by means of allghmxplicit time—stepping al-
gorithm. For the case of real exploration problems the higimputation times needed for
time—stepping the fields cause the imaging scheme still wnkihe verge of feasability. To
become a routinely used tool for the analysis of TEM data,mamation times still have to be
decreased significantly. Nevertheless, the theoreticadldpment of the gradient specifica-
tions provides a deep insight into the adjoint field formiglatand its reciprocal connection

1The code name of the algorithm stands for “Transient Elétaignetic INVersion”.
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with the original EM field.

With regard to the number of model unknowns, TEMINV allows &obitrarily complicated
models, although some limitation is also given by the regzdgéion of the solution using
smoothing constraints. Apart from the computational ogad) the method is much easier
to handle in practice than SINV, because there is no reqgeineif defining adequate model
parameters prior to an inversion. It was demonstrated bgyhthetic data example in Chap-
ter 4 that an earth model can be reconstructed from a homogsmeodel. On the other hand,
the limitation of SINV to invert for models with a lower degref complexity is somewhat
compensated by the capability that the scheme can be edsipteal to different inversion
problems. This requires that the underground structur@st@fest are known in advance to
such an extent that definition of the model parameters isilplessin surveys where TEM
methods are employed to refine the image of a target, whichaappo be the majority of
cases, there usually exist different kinds of prior strradtbinowledge. Hence, the constraint
of a low complexity becomes a significant disadvantage nolt no a priori information is
available and a model turns out to be too rich in structure.eRample has been given by
the inversion of the Kaliadem data in the case history (8ac®.3.5). Here, the model of
a conductive block in a homogeneous host seems to be noblsuiiacause of a too great
simplification of the real situation.

The limited number of model unknowns is critical in a way thfa solutions are highly
dependent upon the model parameterization and the priamg®ns about the geology.
Finding a model based on an assumed geological structurehwhoduces an adequate fit
to the data, may tempt one to believe that features appearitige model are necessary
rather than consistent with the data. Fitting simple 3D ni®ietherefore a delicate balance
between suppressing significant structure by allowing émodegrees of freedom and intro-
ducing spurious structure by excessive or umimportantpatars. While it cannot be proven
that a solution represents a global minimum, its signifieacen at least be substantiated by
testing if convergence to the same solution is reached friffierent starting models. This
might involve several inversion attempts, yet can be easibpmplished due to the low com-
putational requirements of SINV. After all, it holds for hoinversion methods as a matter
of course that it is important to pay attention to the questd how physically realistic a
solution appears.

An outstanding difference between the methods is the faiagiin the presence of insuffi-
cient field data. In the shown synthetic data inversion examiChapter 4 the dense array of
receivers over the conductive anomaly is nhecessary in todaovide a sufficient resolution
of the large inversion domain. Here, the limitation to onlyecor a few profiles of mea-
surements would strongly increase the non—uniquenessepnolnverting field data from
a sparse sensor distribution using TEMINV would only be itdasby adequately limiting
the spatial extent of the inversion domain. The low—paranetd model approach of SINV
addresses this problem, however at the expense of priamafiton to be known.

The case history in Chapter 2 represents a typical exampla TtEM survey, where the
sparse distribution of the measurements would prohibitélselution of a finely parameter-
ized model due to excessive ambiguity. Numerous other ebegxist in the geophysical
literature. Often only one or a few profiles crossing an arpkisown target are measured in
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order to refine or complement the model of the structure. kamgple,Taylor et al.[1992]
characterize a local groundwater system in an arid allus@ironment in Nevada (USA)
by a TEM survey with an in—-loop configuration. The survey wasducted in order to de-
fine the location of faults and clay rich areas. Its existemae been known by structural
geologic mapping and previous drilling. Rapid lateral amswere identified by apparent
resistivity pseudo-sections derived from 1D modeling ItssiThe results show that a multi—
dimensional inversion approach would be appropriate fata dnalysis without the possible
errors caused by the 1D interpretation. Similar to the fandtel of Merapi’s southern flank
shown in the case history, a 2D model parameterization wivgllayered sections separated
by faults is suggested by the known structural and straglgcainformation. In addition to
the layer parameters, one could imagine the location ofabks as being variable as well.

Another example was shown biprdt et al.[2000], where 2D forward modeling was carried
out in order to interpret data of a LOTEM survey in the Odemaea (Germany). Among
several attempts, one model includes a conductive dyke @édeloein a homogeneous half—
space and placed under the receiver spread to explain sigrsads in the voltage transients.
The data fit achieved by such a simple 2D earth model couldgglbe improved to some
extent by the SINV method as has been demonstrated by thsion®f the Kaliadem profile
data.

A 2D inversion approach using SINV has recently been camwigdoy Scholl et al.[2002]

in order to conduct a preliminary resolution study for a LOTBurvey over the Dead Sea
transform fault (Jordan). Here, the method was succegsiplplied to invert synthetic data
for a 2D fault model with a local anomaly included. The propgres of model parameters
were created using a 2D resistivity model of the fault stiteetlerived from MT interpretation
results DPESERT Group2000].

Several important steps are taken in the analysis of the INDTi&ld data from Merapi vol-
cano and contribute significantly to the further developnantechniques for the multi—
dimensional interpretation of TEM data. First, as the authaot aware of successful 3D
inversion attempts with real LOTEM field data in the geopbgkliterature, it shall be em-
phasized that for the first time a combined LOTEM data setatbalinverted for a 3D model.
Regarding the simple model parameterization, good datadite achieved. Another innova-
tion represents the inclusion of horizontal magnetic fiettetderivative data in the inverted
data sets. It is still typical for TEM measurements to focustlwe time derivative of the
vertical magnetic field component, because it is easy to uneas the field.

A challenging task was given by the topographic conditiohthe survey terrain, causing
strong effects on some components of the combined data det. fabt forward solution
provided by SLDM allowed to incorporate topography into thedel without significant
influence on the computation time. Modeling topography gisive FD solution presented in
Chapter 3 is feasible, yet requires appropriately smak tsteps due to the high resistivities
needed to approximate air. Unfortunately, this leads tanewere increased computation
times when employing TEMINV. On the other hand, finding a gligtretization that causes
no instabilities due to high resistivity contrasts doesrequire such an elaborate preparatory
work as has been carried out in order to ensure convergeriell.
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This work has put an emphasis on the treatment of non—caosatesfields arising from
galvanic types of transmitters. Nevertheless, the adagtahe inversion of causal TEM
fields using SINV is straightforward, because the employieldNd code is also capable of
simulating loop sources. Furthermore, the scheme couldkpaneled for the capacity of
inverting for unknowns involving magnetic permeabilityhd SLDM code offers the pos-
sibility of modeling varying magnetic permeabilities, radtigh it is not optimized for this
purpose Hordt, pers. comm.). Other codes capable of modeling magnetepties could

instead be combined with the SINV scheme.

Chapter 4 revealed that the treatment of causal source feeldmtained in the more gen-
eral non—causal case. The current implementation stat&bfINV is actually capable of
recognizing the type of a source and switch to the computatiaghe DC part of the gradi-
ent if required. Imaging magnetic permeability distrilomis has not yet been realized, but
the theory of the magnetic permeability gradient specibicat has been given Hyjewman
(pers. comm.).

As afinal conclusion, it can be stated that SINV is currentty@practicable for the inversion
of field data, because of its modest computational requinesneHowever, the migration
technique used by TEMINV is more state—of-the—art. Migrathas become a routinely
used technique for the analysis of seismic data. It has alen gise to tomography methods
as for example applied in medical imaging (eDpvaney[1989]). With the development
of faster computers, a stronger trend towards EM forwardetieg and inversion schemes
capable of treating large sets of parameters is likely tovol
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VERGLEICHENDESCHLUSSFOLGERUNGEN

In dieser Arbeit wurden zwei Inversionsverfahren fur diedrsion von TEM Daten vorge-
stellt. Die erste Methode, im folgenden SINV genannt, kbsinskalige Inversionsprobleme,
die sich durch eine fur klassische “least—squares”-Rrobltypische Modellparameteranzahl
auszeichnen. Das stabile Marquardt—\Verfahren wurde mgneibewahrten 3D Simulation-
scode zu einer 3D Inversion fur einfache Modellstruktukembiniert. Das Verfahren stellt
eher eine methodische als eine theoretische Neuerung auGabiet der EM Inversion dar.
Es bietet ein Werkzeug, womit ein im Vorfeld bekanntes Mbdalch Inversion verfein-
ert werden kann. Aufgrund des geringen Rechenzeitbedaifs SINV eine Alternative zu
aufwendigeren grof3skaligen Verfahren dar. Fur die inatidgbeit gezeigten Inversionen
genugten dank der Verwendung eines ParallelrechnerseReeten von 2 bis 4 Stunden.

Das in Kapitel 4 vorgestellte Verfahren fur gro3skaligel#eme, im folgenden mit TEM-
INV bezeichnet, ist fur Modellansatze geeignet, die reetid 00000 Unbekannte beinhalten.
Es ist dazu geeignet, ohne Einbezug von VorinformationerEeimodell zu erstellen. Hier
werden Techniken, die von der Migration seismischer Wédlieler bekannt sind, auf diffu-
sive EM Felder angewandt, was die Losung der adjungiertaxmiéll Gleichungen beinhal-
tet. Ahnlich wie bei seismischer Migration, lassen sich die Graten des Fehlerfunktion-
als der Datenanpasssung effizient durch Korrelation dendfelder mit den adjungierten
Feldern errechnen. Die Berechnung beider Felder durchxghzges Finite—Differenzen
Zeitschrittverfahren ist sehr zeitaufwendig. Fur eineatinemalfigen Einsatz missen da-
her die durch das Verfahren beanspruchten Rechenzeiteningart werden. Dennoch bi-
etet die hier vorgestellte Theorie des Verfahrens eindarti€inblick in den Formalismus
der Adjungierten Feldgleichungen, sowie ihre Verknugfumt den Primarfeldern Gber das
Reziprozitatsgesetz.

Im Hinblick auf die Zahl der Unbekannten erlaubt TEMINV h&oimplexe Modelle, ob-
wohl eine gewisse Einschrankung durch die Glattungsigeotig vorhanden ist. Abgesehen
vom Rechenzeitbedarf ist TEMINV insofern benutzerfreioidr als SINV, da die Modell-
parameter nicht auf das Inversionsproblem abgestimmtewvenaiissen. In Kapitel 4 wurde
demonstriert, dass eine Anomalie von einem homogenem&tdeil ausgehend rekonstruiert
werden kann. Die fur SINV geltende Modellbeschrankungivgilweise dadurch kompen-
siert, dass die Methode leicht an ein Inversionsproblenepagst werden kann. Das erfordert
allerdings ausreichende Vorinformationen, um eine ges@mModellparametrisierung zu
finden. Ich bin davon uUberzeugt, dass das kein wesentlidaehteil ist, wenn eine TEM
Messung Uber einer bereits bekannten Struktur mit demdéieModellverbesserung durch-
gefuhrt wird. Nur fur den Fall ohne Vorinformationen undmw sich die Leitfahigkeitsvertei-
lung des Untergrundes als zu komplex herausstellt, ist defaMen ungeeignet. Ein Beispiel
zeigte die Inversion der Kaliadem Daten. Hier scheint daddll@ines leitfahigen Blocks in
einem homogenen Halbraum eine zu starke Vereinfachungdban Situation zu sein.

Die eingeschrankte Parameteranzahl ist insofern kitidass eine Losung stark von der Art
der Modellparametrisierung und den damit zusammenha@egefinnahmen uber die zugrun-
deliegende Geologie abhangt. Eine geeignete Datenanmakann zu einedberbewertung

von Modellstrukturen, die auf Vorinformationen basieregrleiten. Hier mul} stets beachtet
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werden, wieviel Struktur fur eine Datenanpassung taig&t vonnoten ist. Die Definition
der Art der Unbekannten bedarf daher besonderer AufmellesianEinerseits unterdrickt
eine zu geringe Zahl von Freiheitsgraden signifikante Stirek, im anderen Falle enste-
hen unechte Modellstrukturen durch unwichtige Parameisr.kann zwar nicht bewiesen
werden, ob eine Losung ein globales Minimum darstellty alemnoch kann zumindest ihre
Aussagekraft untermauert werden. Das geschieht durcleresb verschiedene Startmod-
elle zu dieser Losung fuhren. Mehrere Inversionsamssitzd dazu erforderlich, was aber
aufgrund des geringen Rechenzeitbedarfs von SINV keinétimd darstellt. Vor allem soll
nicht unerwahnt bleiben, dass es fir beide Inversiofiakiezn selbstverstandlich wichtig ist,
zu Uberprufen wie realistisch eine Losung generelllessd.

Ein wesentlicher Unterschied zwischen beiden Verfahrghris Einsatzmoglichkeit bei einer
geringen Zahl von Messdaten. Fur die Inversion der syisitleen Daten in Kapitel 4 war
das dichte Netz von Empfangern notwendig, um eine ausseddh Auflosung der Anoma-
lie zu gewahrleisten. Hier wirde die Beschrankung anfagler wenige Profile das Prob-
lem der Nichteindeutigkeit der Losung stark erhohen. ielwirde hier lediglich eine
entsprechende Verkleinerung des durch die Inversiomderdaren Modellraums schaffen.
Der Ansatz mit wenigen aber flexiblen Modellparametern m&INV in diesem Punkt
geeigneter, allerdings erfordert er Vorinformationen.

Das Fallbeispiel in Kapitel 2 prasentiert ein typischesBel einer TEM Messung mit einer
geringen Anzahl von Stationen. Die Datenabdeckung wireleviegen des Problems der
Nichteindeutigkeit die Auflosung eines durch sehr vielebbkannte diskretisierten Mod-
ells verbieten. Eine Vielzahl weiterer Beispiele findethsiic der geophysikalischen Liter-
atur. Oft werden nur wenige Profile Uber einer bereits beteamStruktur gemessen, um eine
Modellverfeinerung zu erreichen. Ein Beispiel findet sieh Taylor et al.[1992]. Hier di-
enten TEM Messungen mit einer Central-Loop Konfiguratian@@indwassererkundung in
einem durch trockene vulkanische Ablagerungen charakteten Gebiet in Nevada (USA).
Die Messung hatte das Ziel der Lokalisierung von Verweremgnd lehmreichen Struk-
turen, woruiber Vorinformationen durch geologische Karthgen und Bohrungen existierten.
Starke laterale Widerstandsanderungen konnten duretiBsektionen von 1D Modellergeb-
nissen ausgemacht werden. Die Ergebnisse zeigen, dassirsecinehrdimensionale Inver-
sion fur eine Datenanalyse anbieten wirde, um FehlerhdLlilc Annahmen zu vermeiden.
Ahnlich zu dem in Abschnitt 2.3.5 gezeigten Verwerfungseibder Sudflanke des Mer-
api scheint ein 2D Modell mit durch Verwerfungen getrenngamichtfolgen naheliegend.
Zusatzlich zu den Schichtparametern bieten sich als meReeiheitsgrade die Positionen
der Verwerfungen an.

Ein weiteres Beispiel ergibt sich bei der vdirdt et al.[2000b] beschriebenen Datenauswer-
tung einer LOTEM Messung im Odenwald (Suiddeutschland)tetJmehreren 2D Model-
lansatzen wurde ein leitfahiger Block in einem homogedatbraum modelliert, um Vorze-
ichenwechsel in der zeitlichen Ableitung der magnetisctetikalfelder zu erklarenAhn-

lich wie es bei der Inversion der Daten des Kaliadem Profileatestriert wurde, bietet sich
hier SINV fur eine eventuelle Modellverbesserung im Siemeer besseren Datenanpassung
an.

Die Methode SINV wurde bereits vdbcholl et al.[2002] fur eine 2D Inversion eingesetzt.
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Die Rechnungen dienten einer Auflosungsstudie fur LOTEEsMIngen Uiber einem Spal-
tensystem am Toten Meer (Jordanien) im Rahmen des DESERSKEB{DESERT Group
2000]. Dabei wurden synthetische Daten eines geschichgeModells mit Verwerfung
und zusatzlicher Anomalie erfolgreich invertiert. Didsgrechenden Modellparameter wur-
den anhand von Vorinformationen durch 2D MT Modellergebaisrzeugt.

Mehrere wichtige Schritte zur Weiterentwicklung mehrdirsienaler Interpretationsverfah-
ren fur TEM Daten werden im Rahmen des Fallbeispiels in @i ausgefuhrt. Zunachst
soll betont werden, dass zum erstem Mal eine erfolgreichén@&rsion von LOTEM Daten
durchgefuhrt wurde. Unter Berticksichtigung der eingesckten Modellparametrisierung
konnte eine relativ gute Datenanpassung erreicht werdere ieitere Neuerung stellt das
Einbeziehen der Daten von horizontalen Magnetfeldern @gpischerweise liegt bei TEM
Messungen ein Schwerpunkt auf der Aufzeichnung vertikdiagnetfelder bzw. ihrer zeit-
lichen Ableitung, da diese im Feld einfacher zu messen sind.

Eine Herausforderung bestand aus der Beriicksichtigunigppegraphischen Gegebenheiten
des Messgebiets am Merapi. Einige Daten zeigten dadurckeskEdfekte. Der benutzte
SLDM Simulationscode erlaubt die Modellierung von Topquinia ohne bedeutenden zusatz-
lichen Rechenaufwand. Die in Kapitel 3 vorgestellte FD Satiansmethode erlaubt eben-
falls die Modellierung von Gelandestrukturen. Allerdsngrfordert die Approximation des
Luftraums mit einem entsprechend hohen Widerstand seimeeitschritte. Das wirde zur
weiteren Steigerung des ohnehin grol3en RechenzeitbedsrfEEMINV fur eine Datenin-
version beitragen. Ein Vorteil gegeniiber SINV ist jedatdss sich das explizite Zeitschritt-
verfahren zur Feldsimulation bei Vorhandensein grofRetfal@igkeitskontraste stabiler ver-
halt. Die im Vorfeld einer Inversion mit SINV durchgefiibn Stabilitatstests fur die Gitter-
diskretisierung, wie im Fallbeispiel gezeigt, erubrigéch fur das Verfahren TEMINV.

Diese Arbeit behandelt schwerpunktmallig die durch gadeargekoppelte Quellen erzeug-
ten akausalen EM Felder. Die Methode SINV kann ohne weitauésdie Inversion kausaler
Felder angepasst werden, da der SLDM Code auch induktivppetie Sender simulieren
kann. Daruiberhinaus kann die Methode fur die Auflosung$tukturen mit variablen mag-
netischen Permeabilitaten erweitert werden. Der SLDMeCaaterstitzt die Modellierung
von Permeabilitatsvariationen, ist dafur allerdingshnioptimiert @ordt, pers. Komm.).
Zu diesem Zweck konnten jedoch andere Modellierungspragre mit dieser Fahigkeit
herangezogen werden.

Im Kapitel 4 wurde gezeigt, dass die Behandlung kausaler EMdf bei der Gradien-
tenberechnung im allgemeineren akausalen Fall enthaterDie gegenwartige Program-
mversion von TEMINV erlaubt die automatische Erkennung Sesdertyps und berechnet
gegebenenfalls die durch die Gleichstromkomponente sachaten Anteile der Gradienten.
Die Beriuicksichtigung von Permeabilitatsvariatione@n Inversion wurde noch nicht real-
isiert. Die dafur notwendige Theorie mit einer Spezifikatder entsprechenden Gradienten
zeigenNewman und Commé¢2003].

Abschlie3end ist zu bemerken, dass sich das Verfahren Sidg¢érgvartig durch grolRere
Praktikabilitat auszeichnet, was im geringen Rechenanéinbegriindet ist. Allerdings stellt
TEMINV mit dem EM Migrationsverfahren die modernere Metkathr. Migration ist eine
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routinemassig eingesetzte Technik zur Analyse seisraisbaten. Ebenso basieren darauf
tomographische Techniken, die z.B. in der Medizin angewarmdden (siehe z.BDevaney
[1989]). Mit der Entwicklung leistungsfahigerer Computeird sich der Trend weiter in
Richtung von gro3skaligen Simulationen und Inversiorfsvgen bewegen.



APPENDIX A

ADDITIONAL NOTES AND DERIVATIONS

A.1 Stability condition for the DuFort—Frankel method

The application of the DuFort—Frankel method in the timepping algorithm is carried out
by introducing a hyperbolic displacement term into the pala diffusion equation. This
term (see Equation 3.1b) is artificial, because it is appleethe quasistatic case, where
displacement currents can be neglected. Its magnitude eanuth larger than the real
displacement current in a medium without polarizationafeFor example, consider a min-
imum grid spacing of 25 m, a time step ofu$é and the magnetic permeability in vacuum.
According to Equation (3.8), a value pf- 3.8- 10 ° results which is 430 times larger than
the real permittivity in vacuum. In fact, this does not mate long as the velocity of the
fictitious wavefield is kept slower than the diffusive fieldsalated in the FD grid. This
is achieved by restricting the size of the time steps suchttieadomination of diffusion is
retained. Following the analysis given Byistaglio and HohmanfiL984] andAdhidjaja and
Hohmann1989], itis demonstrated here that the DuFort—Frankehigtts unconditionally
stable. Furthermore, a derivation of Equation (3.7) is give

Because a wavefield is considered, one starts with the waxagieq for the electric field in a
source—free whole—space. For simplicity, its scalar fagiven, approximating the situation
in a FD grid along one of the Cartesian coordinates,

9% de

2 — _— —_— =
% posoatz pooat 0, (A1)

where permittivity and permeability of vacuum are assuniduls equation is easily obtained
from Equations (3.1). The wave equation is satisfied by theegg Green function in a
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whole—space given byard and Hohmanfi1988],
1 ( _ar r. ate™ r2 r
) =-—{e%d(t——)+——xI 2— — Ju(t—- A.2
G(rt) = z—{e%a(t— )+ " a/t—5 Jut-0). (A2
C
=,

first kind, andu(t — {) is the Heavyside step function. In the case of low frequencidate
times, where displacement currents can be neglected, iBgyat1) changes to

wherea = -2, § is a delta functiong? = ﬁ, 11(2) is the modified Bessel function of the

0
e pooe = 0. (A.3)
ot
The corresponding Green function associated with the sldfu equation is also given by
Ward and HohmanfiL988],
/H00 _—Hgor®

G(rt)=r=5=e 4« u(t). (A.4)
8mat2

From setting the derivative of (A.4) with respect to time &, it follows that the maximum
of the signal propagated ly at a given distanceoccurs at the time

‘ HooT?2
==
The time interval for diffusion on a 3D numerical grid with@agingA is thus given by
AZ
mzm:, (A.5)

which is called the grid diffusion time. Now consider the ¢instaggering of the electric field
e=€"(i, j,k) at a timet, and a grid celli, j, k) of a uniform mesh with the grid spaciny
To realize Equation (A.3) using a classical Euler schemeluas approximating the time
derivative by the simple forward difference

de\" i_¢g
(E)N At

It can be shown that the maximum time si&pof the Euler scheme is given by the grid
diffusion time [Oristaglio and Hohmann1984]. This, however, is too restrictive because it
does not allow to address the smoothing of fields due to thedfssay of high frequency
modes in a field. For example, if an earth model includes lowdaativities for the host rock
of a conductive target, the time step has to be set accoytwitihout being able to account
for the larger time steps allowed by the conductive targéitat times.

The DuFort—Frankel method represents an improvementubedaallows to take into ac-

count the slowing down of the diffusion rate at larger dis&sfrom the source by gradually
increasing the time step with progressing time. To relagediffusion rate to the time of the

advancing field, the case when (A.2) and (A.4) agree asyoptlytis first considered, given

by Oristaglio and Hohmanijfl984],

r2 2€0

t2
c? o

bl
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or 5
€
t> =9 (A.6)
(0)

which is always satisfied in the TEM case.

The actual implementation of the DuFort—Frankel methodhentime—stepping scheme is in
principle realized by using central differences insteatboard differences, specifically

11, a1
en:¥

for the electric field at, and

ot At

for its time derivative. The usage of central differencestfe time—stepping scheme leads
to the leap—frog method. Note that in Section 3.1.2 the lrag-scheme is realized by using
intermediate time instances for sampling the magneticdib&tween the integer instances of
electric fields. Now the separate terms of the diffusion EQugA.3) are discretized to

<6e)” gl

Pe— |+L1.K)+€i -1 1.0+ i j+ 1K)+ &1~ 1K

.. L. erH‘l_*_eﬂ*l 1

+en(lal,k+1)+e”(|,1,k—1)—6# =
e, gt
HoO5 = Ho At

wheree = €'(i, j,k) ande™?! = &*1(i, j,k). Using the Taylor series expansion for the time

coordinates

de At?d%
el et At— + ——
a2 e

and a similar one for space coordinates, for example

. . de N?0%
e(it1,j,k ~ eiAa—X+ > 52
yields [Adhidjaja and Hohmannl989]
At? 0%e de
2

This equation is hyperbolic and its stability is governedtbg Courant—Friedrichs—Levy
(CFL) criterion for the wave velocitg (e.g.Richtmeyr and Mortoiil 967]),

cc B
~ V3At

Equation (A.7) approximates a wave equation in which theenspeed is exactly\/%,
thereby automatically satisfying the CFL condition. Thageéferred to as the unconditional
stability of the DuFort—Frankel method. Changing the titep®r the grid spacing translates
into approximating a field with a different wave velocity. 8rkefore, care must be taken to
avoid that the wave—like solutions dominate the diffusigbdwviour by limiting the time step.
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A limiting condition can now be found by rearranging the CFKlterion to
(A.8)

where the permittivityeg was replaced by the artificigl Substituting (A.8) into (A.6), one
obtains the condition which insures both the CFL criterienweell as the domination of
diffusion of the time—staggered fields,

/ Hoot
At < %A.

For the case of a non—homogeneous model and a non—uniforfm omeshas to take into
account the minimum values for magnetic permeability, catiglity and grid spacing.

A.2 Numerical solution of the 3D Poisson problem

The numerical procedure of solving for the 3D potentialrilisition ¢ originating from a
current distributiorj® inside or at the surface of an arbitrary conductivity dizition o is
presented. This 3D Poisson problem is given by

0-(c0¢) = —0-jS.

The boundary conditions of this problem are given by assgrairnanishing total potential
at the outer mesh boundaries (Dirichlet condition). In theecof a half-space, Neumann
boundary conditions are applied at the air—earth interfgcsetting

g% = jz = 0.

Consider a FD grid with a number dfx J x K grid cells in thex, y andz direction, respec-
tively. lllustrated in Figure A.1, for a given nodg j,k) the discrete approximation of the
left—hand side of the Poisson equation leads to a seven—gcheme, because the center
cell and its six direct neighbours along the main coordimatss are involved. The potential
¢(i, j,k) is constant over the cell. The multiplication of its spatiarivative with the cell
conductivity requires the incorporation of directionahdactivities, which are obtained by
the averaging scheme described in Section 3.1.1. For readaimplification, the direc-
tional conductivities are indexed by integer numbers, f@mepleoy(i + 1, j,k) = ox(i, . K)
andoy(i — 3, j,k) = ox(i—1, j,k).

o

Discretizing the left—hand side of the Poisson equatior,gets

0-(ol¢) =
:Ox(i7j7k)¢(i+1,qu—(b(i,j,k)_Ox<i_17j7k)¢(i,j,k);):)(il—l,j,k)}A_iXi
+_Oy(i7j7k)¢(i,j+1,2/j—¢(i,j,k)_Gy(ijj_Lk)q)(i,j,k)A—yT(il,j_1,k)]A_iyj
+:OZ(Lj7k)¢(i,j,k+i)2k—¢(i,j,k)_OZ(LJ.?k_l)cb(i,j,k);zia(il,j,k—l)}&7
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FigureA.l: Discretization of the Poisson operator by a seven—poinésahfor a grid node (i,j,k) of
the 3D mesh. A potential is assigned to each of the seven.nbdesrrows illustrate the discretization
of the right-hand side of the Poisson equation, involving ¢hrrent density components of the six
surrounding edges.

which can be rearranged to

0-(ol¢) =
ox(i, j,K) , . .. ox(i—1j.K, . . . oy(i,j, k), . .
- — I_'_:I_7 7l( +—_ |_17 7k +7_ I, +17k
oAU B vy vt AU B pyiDY, (i, j+1.k)
oy(i,j—1k), . . oz(i,j,K) . . . o.(i,j,k=1), . .
+—_¢ I7J_17k _'_7_4) I7J7k+1 _'_—_q) I,J,k_l
Ayj_14y; ( ) Az Az ( ) Az 107 ( )

. O-X(iv J)k) + O-X(i B 17 J?k) + GY(i7 Jak) + GY(i7 J B 17 k) + O-Z(ia Jak) + O-Z(ia J?k_ l)
DX AX; DX 10X AyjAy; Ayj_14y; Az Az Az 107
In the case of a half-space, the terms involwang, j,k— 1) vanish at the air—earth interface.

Now the discrete form of the left—hand side is rewritten bgigising coefficients to each of
the seven cell potentials, keeping the same order of thesterm

0- (00¢) =Cright$ (i + 1, j,K) + Clettd (i — 1, j,K) + Crrontd (i,  + 1,K)

+Coackd (i, ] — 1,K) + Coottonth (i, j. K+ 1) 4+ Copd (i, j.k— 1)

—[Cright + Cleft -+ Cfront + Cback+ Cbottom+ Ctop] - (i, . K), (A.9)
where the coefficients are named according to the positibtieeacorresponding cell poten-
tials in Figure A.1. The difference representation in EcqurafA.9) is obtained for each node
of the 3D mesh, once the appropriate coefficients are cordpugimg the proper boundary

conditions. Together with the right—hand side of the Paissguation, the sets of difference
equations for each node are then assembled into a matrix form

Co=b, (A.10)
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where$ now denotes the unknown solution vector of the total poatatiall nodes. Thus, the
size of¢ is given by the total number of cell§K. The matrixC has the siz€JK x IJK and is
called the capacitance matriR¢y and Morrison1979]. It is a function only of the geometry
and the physical property distribution in the grid. The tigtand side vectob in (A.10)
is given by the divergence of the external source currensitejt. Its FD discretization is
straightforward as shown by Equation (3.12).

According toDey and Morrisor{1979], C has the properties that it is symmetric, diagonally
dominant, sparse and banded with only six nonzero codidgjoRarthermore, it is positive
definite. The system of equations given by (A.10) can thusobeed easily by a CG solver.
The parallel iterative library AZTECHutchinson et al. 1995] has been employed for the
solution. It provides for preconditioning and efficientrstge schemes in order to address the
sparse nature of the capacitance matrix.

A.3 Reciprocity relationship for electric and magnetic fietls

Integration of Equation (4.12b) involving the timgields
tl

t/ B
[ Gl tirtydt= ) [ 2 Gttt
t t

Due to the time integration, the left—hand side of this eigmatan be identified as the electric
field step response arising from a magnetic dipole sourceyi@ig out the integration of the
right—hand side, it can be written

SERGL(I It = =) Galr tr )
= —u(r)621(r,t’|r’,t’)+u(r)é21(r,t|r’,t'),

where the first term on the right—hand side vanishes due tceathgality of the Green dyadic,
given by Equation (4.5). The remaining term leads to theimahip

StePG L (r I, t) = W(r) Gaa(r tr'.t),

given before by Equation (4.13a). The same steps are caueth order to obtain Equa-
tion (4.13b) from (4.12c). Here, the time integration neamlde done with respect t
instead ot, leading to the different sign in (4.13b).

A.4 Integration order of the gradient

The reversal of the order of time integration in Equatio2{4is clarified. If Equation (4.20)
is rewritten such that it is emphasized that the integratemmblesdt anddt’ belong to the
outer and inner integral, respectively, one gets

T t
yg(r'):—/ dt6e°(ri,t)-/ dvG(ri,tr',t)-e(r',t),
0 —0
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where the summation ovehas been neglected. Because of the causility of the Green fun
tion,
Grtr',t)y=0, t<t)

the upper integration boundary of the inner integral cantanged front to T, thus
T T
Vo) = [ dt [ atse(n Giritirt) e t),
0 —®

wherede®(ri,t) could be brought into the inner integral, because it is zerthfe timet = —oo
tot = 0. This is also the reason why one can exchange the orderegfration to

T T
yg(r'):—/ dt’/ dte(ri, 1) G (ri,t)r' ) - e(r’, ).
o 0

Again, due to the causality @, the inner integration frorh= 0 tot = t’ vanishes, hence one
can write

T T
yg(r'):—/ dt’/ dtSe(ri,t) G (ri | t) - e(r',t),
P t/
which leads to Equation (4.21).

A.5 Gradient specification for voltage type data

For the derivation of the gradients for voltage type data starts with Maxwell’'s Equa-
tions (4.17) for the perturbed state of the fields. These iffierenhtiated with respect to time,

0 0 0
06 oe— Dxaéh = —6oate

0 92 92
xaéeJruﬁéh = 6uat2h

Now a formal expression for the magnetic field time derivaiiv obtained from the time
derivative form of Equation (4.4b),

//921rt|r t) (r ,t)da(r’)dt'dr’

2o(r, |, t) 02
/VI/ Gzl /| Wh(r A du(r’)dt'dr’. (A.12)

Only conductivity variations are considered, hence theséterm vanishes by settidg(r’)

to zero. The time integration starts from time 0, because of the vanishing time derivative
of the constant DC electric field before that time. In cortttashe non—causal electric fields,
the magnetic field time derivative and thus the voltage isusakfield. In order to obtain the
correct expression for the voltage, i.e. the negative ofhtagnetic induction time derivative,
Equation (A.12) is scaled accordingly by the magnetic patriigy of the model point where
the voltages are sampled, thus

a ! ¢/ / / /
v(r,t) /v'/ ) Goa(r,t|r'.t') - 5 e(r’,t")do(r’)dt'dr".
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For better readability the volume integration shall now batted. An integration by parts
yields

ov(r,t) = —p(r )G21(f tr',t’) - e(r’,t")8a(r')[
+ / 6t,g21r 1) - e(r',t)3o(r’)dt.

Causality implies that the Green function of the first terradrees zero for the integration
boundarnyt, thus

S(rt) — —u(r)/ot%gﬂ(r,ﬂr’,t’)-eDC(r’)ZSO(r’)dt’
+ /Otu(r)%gm(r,ur’,t’)-e(r’,t’)éo(r’)dt’
- /otu< 1) Ga(rtlr ') - {e(r’.t) — () 3o (r)dt
Using the identitya% Go1= —%Gzl and inserting the volume integration again, it follows

v(r,t) /v'/ Gzl r.tr’,t') - {e(r’,t") — ePC(r')} 8o (r)dt'dr’. (A.13)

Now a similar development as discussed in Section 4.3.lhioetectric field gradients can
be made. From Equations (4.16) and (A.13), one can expreggdlient for voltage data as

W) = 3 [ e fun >at9'21<“ {r'.t) - {e(r”.t) — () oa
_ Z/ i v (r ) = Gaalri Al 1) - {e(r',t) — ()t
=3 [ ) - o Gt Vi b -8
_ / (e(r'.t') — ePS(r')} Z/ Gio(r t)ri,t) - 8vO(r, t)dtdt
_ /0 e(r',t) - e(r’ t’|6v°)dt’—eDC(r’)/OTeo(r’,t’|6v°)dt’

Note the application of the reciprocity relationship (b} this derivation. The backpropa-
gated electric field arising from voltage data has previphsken defined by Equation (4.26),

r t|6V Z/ GIZ r t|r|7t 6\/ (rla )
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