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VORGELEGT VON

M ICHAEL COMMER

AUS BONN
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ABSTRACT

Inversion of transient electromagnetic (TEM) data arisingfrom galvanic types of sources
is approached by two different methods. Both methods reconstruct the subsurface three–
dimensional (3D) electrical conductivity properties directly in the time–domain. A principal
difference is given by the scale of the inversion problems tobe solved. The first approach rep-
resents a small–scale 3D inversion and is based upon well–known tools. It uses a stabilized
unconstrained least–squares inversion algorithm in combination with an existing 3D forward
modeling solver and is customized to invert for 3D earth models with a limited model com-
plexity. The limitation to only as many model unknowns as typical for classical least–squares
problems involves arbitrary and rather unconventional types of model parameters.

The inversion scheme has mainly been developed for the purpose of refining a priori known
3D underground structures by means of an inversion. Therefore, a priori information is an
important requirement to design a model such that its limited degrees of freedom describe
the structures of interest. The inversion is successfully applied to data from a long–offset
TEM survey at the active volcano Merapi in Central Java (Indonesia). Despite the restriction
of a low model complexity, the scheme offers some versatility as it can be adapted easily to
various kinds of model structures. The interpretation of the resistivity images obtained by the
inversion have substantially advanced the structural knowledge about the volcano.

The second part of this work presents a theoretically more elaborate scheme. It employs
imaging techniques originally developed for seismic wavefields. Large–scale 3D problems
arising from the inversion for finely parameterized and arbitrarily complicated earth mod-
els are addressed by the method. The algorithm uses a conjugate–gradient search for the
minimum of an error functional, where the gradient information is obtained via migration or
backpropagation of the differences between the data observations and predictions back into
the model in reverse time. Treatment for electric field and time derivative of the magnetic field
data is given for the specification of the cost functional gradients. The inversion algorithm is
successfully applied to a synthetic TEM data set over a conductive anomaly embedded in a
half–space. The example involves a total number of more than376000 model unknowns.

The realization of migration techniques for diffusive EM fields involves the backpropagation
of a residual field. The residual field excitation originatesfrom the actual receiver positions
and is continued during the simulated time range of the measurements. An explicit finite–
difference time–stepping scheme is developed in advance ofthe imaging scheme in order to
accomplish both the forward simulation and backpropagation of 3D EM fields. The solution
uses a staggered grid and a modified version of the DuFort–Frankel stabilization method and
is capable of simulating non–causal fields due to galvanic types of sources. Its parallel im-
plementation allows for reasonable computation times, which are inherently high for explicit
time–stepping schemes.





ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit werden zwei Verfahren für die Inversion von transient–elektro-
magnetischen (TEM) Daten von galvanisch gekoppelten Quellen vorgestellt. Beide Meth-
oden rekonstruieren die dreidimensionale (3D) Leitfähigkeitsstruktur des Untergrundes im
Zeitbereich. Ein wesentlicher Unterschied ist durch die Größenordnung des jeweiligen Inver-
sionsproblems gegeben. Der erste Ansatz löst kleinskalige Inversionsprobleme und basiert
auf bekannten Methoden. Die Rekonstruktion von 3D Modellenmit beschränkter Kom-
plexität wird durch die Kombination des Marquardt–Inversionsverfahrens mit einem existier-
enden 3D Simulationsalgorithmus für EM Felder verwirklicht. Das Verfahren ist auf solche
Anzahlen von Modellparametern beschränkt, die typisch f¨ur klassische “least–squares” Prob-
leme sind. Daher werden eher untypische Arten von Modellparametern eingesetzt, um 3D
Strukturen zu beschreiben.

Das Verfahren ist hauptsächlich dafür geeignet, das Modell einer im Vorfeld grob bekan-
nten Untergrundstruktur durch eine Inversion zu verfeinern. Daher sind Vorinformationen
eine wesentliche Voraussetzung. Sie werden herangezogen,damit die in ihrer Anzahl be-
schränkten Modellparameter so gewählt werden können, dass die interessierenden Strukturen
abgedeckt werden. Die Inversionsmethode wird erfolgreichauf Daten einer LOTEM Mes-
sung am aktiven Vulkan Merapi (Zentral–Java, Indonesien) angewandt. Trotz der einge-
schränkten Modellkomplexität in der Inversion bietet die Methode ein gewisses Maß an
Flexibilität. Die Modellparametrisierung kann leicht anverschiedene Untergrundstrukturen
angepasst werden. Die Interpretation der Inversionsergebnisse hat wesentlich zum Wissen
über die Verteilung der Leitfähigkeit am Merapi beigetragen.

Der zweite Teil dieser Arbeit stellt ein aus theoretischer Sicht anspruchsvolles Verfahren
vor. Es benutzt Techniken, die ursprünglich zur Migrationseismischer Daten verwendet
wurden. Die Methode ist geeignet zur Lösung großskaliger Inversionsprobleme, die durch
komplizierte Modelle mit großer Parameteranzahl entstehen. Der Algorithmus verwendet
das Verfahren der konjugierten Gradienten zur Minimierungeines Fehlerfunktionals. Die
Gradienten ergeben sich durch Migration der Residuen von gemessenen und durch Model-
lannahme berechneten Daten.Ähnlich wie bei der seismischen Migration bewegen sich die
Residuenfelder zeitlich rückwärts. Ihre erste Anregungerfolgt zum Zeitpunkt der spätesten
Daten und wird bis zum frühesten Meßpunkt simuliert. Datenvon elekrischen Feldern und
zeitlicher Ableitung von Magnetfeldern werden in der Herleitung der Gradienten behandelt.
Das Verfahren wird erfolgreich auf einen synthetischen Datensatz angewandt. Dabei wird
eine blockförmige Leitfähigkeitsanomalie in einem homogenen Halbraum rekonstruiert. Das
Beispiel beinhaltet die Lösung eines Inversionsproblemsmit mehr als 376000 Unbekannten.

Die Anregung der Residuenfelder erfolgt an den Empfängerpunkten und setzt sich während
ihrer Simulation fort. Für die Felder der Vorwärtssimulation und der Migration wird ein
explizites Zeitschrittverfahren speziell für galvanische Sendertypen entwickelt. Die 3D Sim-
ulation beruht auf einer räumlichen Diskretisierung der Maxwell Gleichungen, die unter dem
Namen ”staggered grid” bekannt ist. Außerdem wird die sogenannte DuFort–Frankel Sta-
bilisierungsmethode benutzt. Explizite Zeitschrittverfahren zeichnen sich durch einen hohen
Rechenzeitbedarf aus. Daher wird der Simulationsalgorithmus für Parallelrechner entwickelt.
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CHAPTER 1

I NTRODUCTION

Transient electromagnetic (TEM) methods are made to determine the electrical and properties
of the earth. The methods have a well–established place in exploration geophysics, because
they have the potential to provide very useful additional information for problems associated
for example with mineral exploration [Sarma et al., 1976;Palacky, 1983;Helwig et al., 1994],
oil exploration [Spies, 1983;Strack et al., 1989], volcanological hazards [Kauahikaua et al.,
1986;Lienert, 1991;Jones and Dumas, 1993] and hydrological investigations [Stewart, 1982;
Mills et al., 1988]. An excellent review of the TEM method and its uses is given byNabighian
and Macnae[1991]. A collection of related publications can be found inthe special TEM
issue ofGeophysics, Vol. 49 (7), 1984.

In the field of environmental geophysics, with shallow exploration depths, TEM methods
have become increasingly popular [Frischknecht et al., 1991]. Shallow exploration typically
involves systems that employ loops as transmitting antennas with an inductive coupling to the
ground. A fundamental description of the physical basis forthe TEM sounding technique,
with particular attention paid to a configuration where a magnetic receiver coil is located at
the center of the transmitter loop (in–loop array), is givenby Fitterman and Stewart[1986].
Loop transmitters can be deployed rapidly and more easily than grounded wires. Although
the grounded wire is a more complex source, it is often used indeep soundings, because the
field falls off less rapidly at large distances and generation of adequate field levels is difficult
with loop sources [Spies and Frischknecht, 1991]. The presented work focuses on grounded–
wire transmitters, which have a galvanic coupling to the ground and involve the presence of
non–causal source fields. The long–offset TEM (LOTEM) technique [Petry, 1987;Strack,
1992] typically uses a long grounded wire for deep crustal studies [de Beer et al., 1991;
Thern et al., 1996;Hördt et al., 2000b] and has been continuously developed at the Institute
for Geophysics and Meteorology of the University of Cologne.

In general, data quality and quantity arising from TEM surveys have tended to increase to-



2 INTRODUCTION

gether with computational capabilities. Therefore, routine interpretation is likely to become
multi–dimensional in character. This is important in orderto enable multi–disciplinary in-
terpretation approaches as a means to achieve earth models with minimum ambiguity in the
future. However, the interpretation of TEM data containingeffects from multi–dimensional
conductivity structures is still non–trivial. First, TEM systems employ artificial sources,
which is rather complicated to simulate due to finite source sizes and generation of fields
that vary in three dimensions. Second, the solution of multi–dimensional inverse problems is
usually large in scale. If arbitrarily complex earth modelsare taken into account, the number
of model unknowns may amount to as much as several tens or hundreds of thousands in real
exploration problems.

Therefore, the routine interpretation of TEM data is still based on one–dimensional (1D) earth
models (e.g.Macnae and Lamontagne[1987]; Nekut[1987]; Eaton and Hohmann[1989]).
In a 1D inversion (e.g.Anderson[1982]; Raiche et al.[1985]; Huang and Palacky[1991]),
a least–squares problem is solved for a conductivity–versus–depth profile of a layered earth
model. Different ways of parameterizing a 1D earth exist. For the interpretation of data
generated by loop sourcesFullagar and Oldenburg[1984] andFarquarson and Oldenburg
[1993] use many more layers (with fixed thicknesses) than observations and thus solve an
under–determined inverse problem. This greatly increasesthe non–uniqueness of the mathe-
matical solution and thus requires imposing model smoothing constraints in order to generate
a model that contains only as much structure as required to fitthe data. The inversion for
smooth models is also known as the Occam scheme [Constable et al., 1987] and was applied
to LOTEM data byCommer[1999]. If, on the other hand, an unconstrained over–determined
least–squares problem is solved, one typically allows the variation of both resistivity and
thickness of a very limited number of layers, perhaps half–a–dozen. This approach has the
potential for generating a plausible representation of theunderground, yet the result shows
more dependence on the number of free parameters and the starting model. On the other hand,
in contrast to smoothing constraints, an unconstrained model is more adequate to incorporate
a priori information that may indicate a rich model structure.

In addition to the large–scale difficulties and the complicated 3D source fields, the lack of
a sufficient amount of observations may also be a reason for restricting the variation of a
model to one dimension. Although the high non–uniqueness problem of a large–scale 3D
solution can be addressed by regularization, using smoothing constraints, it still requires an
area–wide distribution of detectors above the target to guarantee a reasonable resolution.
However, in many cases, only profiles of observations exist.Such situations suggest to image
the lateral variation of the conductivity along the profile direction, in addition to the vertical
variation, by means of 2D inversion schemes. At present 2D inversions of direct current
(DC) and magnetotelluric (MT) data are common tools and are widely used, whereas the
multi–dimensional inversion of TEM data has been developedslower, mainly due to the more
difficult simulation of artificial sources. Because of the situation of a 3D source field in a 2D
subsurface structure, such inversions for controlled–source methods are often referred to as
2.5D problems [Hohmann, 1988].

Recently, some progress in the solution of the 2.5D EM inverse problem for controlled source
data has been made.Torres-Verdin and Habashy[1994] used the extended Born approxima-
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tion for EM tomography. A 2.5D subspace inversion techniquebased on a finite–element
(FE) forward modeling scheme was presented byUnsworth and Oldenburg[1995]. Its effec-
tiveness was demonstrated by an application to sea–floor EM surveys. Using a fast integral
equation (IE) forward modeling method,Ellis [1998] andChen et al.[1998] demonstrated
the advantage of 2.5D inversions in the interpretation of airborne EM data.Lu et al. [1999]
developed a rapid relaxation inversion of controlled–source audio frequency magnetotelluric
(CSAMT) data including the transition–field and near–field data, andUnsworth et al.[2000]
applied this inversion to CSAMT data from a potential radioactive waste disposal site.Mit-
suhata et al.[2002] transformed time–domain LOTEM data into the frequency domain and
carried out a 2.5D linearized least–squares inversion witha smoothness constraint based upon
Bayesian statistics.

The most realistic image of the Earth can be obtained if a model variation in all three Carte-
sian dimensions is allowed in an inversion. The developmentof 2D and 3D inversion schemes
for controlled sources has been almost simultaneously, because both types employ 3D source
fields.Eaton[1989] formulated an inversion procedure based on frequency–domain, volume
integral equations and a pulse–basis representation for the internal electrical field. Using a
Born approximation to the 3D IE,Pellerin and Hohmann[1993] iteratively refine a piece–
wise 1D interpretation at a receiver using the data from neighbouring receivers. The EM
inverse scattering problem associated with recovering a 3Dconductivity model from air-
borne TEM data was solved byEllis [1999], employing a fast IE forward modeling algorithm
embedded in a regularized Gauss–Newton optimization driver. Xie and Li [1999] proposed
an algorithm for 3D EM inversion that works with the magnetic–field IE, where both forward
and inverse IE systems are discretized by the finite–element(FE) method.Zhdanov et al.
[2002] introduced an adaption of the thin sheet method, based on an approximation of the
conductivity cross–section by a set of conductive thin sheets with local inclusions.

This work presents two different 3D inversion approaches for time–domain EM data in a
comparative study. The first scheme developed in Chapter 2 addresses the large–scale dif-
ficulty of full 3D inversion methods. Furthermore, it is optimized for the case when only a
limited amount of field data is available for an inversion. The idea of the scheme is to apply
an unconstrained least–squares inversion algorithm, usually employed for small–scale uncon-
strained 1D problems, to 3D problems. This implies a limitation to only as many model un-
knowns as typical for classical least–squares problems. Rather than defining a numerous set
of cell–based unknowns given by a simulation grid’s spatialdiscretization, as is the common
approach in large–scale 3D inversions, the shape of larger volumes of constant conductivity
is controlled by the model variables. Several different types of untypical model parameters
will be shown in the course of Chapter 2. To allow a quick reference, the inversion scheme
will also be referred to as SINV1.

The constrained inversion scheme SINV has mainly been developed for the purpose of refin-
ing a priori known 3D underground structures by means of an inversion. Therefore, a priori
information is an important requirement to design a model such that its limited degrees of
freedom describe the structures of interest. Such prior information is often given by geologi-

1The strong constraints on the model complexity and the limited amount of field data to be inverted suggested
to call the method a “Sparse INVersion”.
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cal studies, borehole or other geophysical measurements. An example will be given by a case
history from a LOTEM survey at a volcano. Both the mountain topography and lateral con-
ductivity variations in the underground require to take 3D structures into account. Because
of the mountainous terrain, the survey was made difficult by logistical problems. Therefore,
a full large–scale approach is prohibited due to only a sparse distribution of the observa-
tions above the target. However, the inversion for “low–parameterized” models involves an
over–determined problem and thus makes SINV a practicable tool for the data analysis.

The scheme is based on a stabilized iterative inversion scheme combined with an existing
solution for the 3D forward simulation of EM fields. The widely used 3D modeling code
developed byDruskin and Knizhnerman[1988] is employed. It has been used a number of
times for the 3D simulation of LOTEM responses [Hördt, 1992;Hördt et al., 2000a;b; Hördt
and Müller, 2000]. The modeling algorithm is based on the spectral Lanczos decomposi-
tion method (SLDM) [Druskin and Knizhnerman, 1988; 1994]. The Maxwell equations are
solved using Krylov subspace techniques which provides fora fast explicit 3D solver for the
diffusion of EM fields in arbitrarily heterogeneous media. The modeling code will be referred
to as SLDM code. Its implementation of a material averaging scheme supports the design of
arbitrary model parameters. Both the fast 3D forward simulation and the small scale of the
inversion problem lead to a relatively low computational effort. The computation time for
an inversion is further minimized by distributing the multiple forward simulations during an
iteration to several processors of a parallel computer.

In contrast to the constrained inversion scheme, the secondpart of this work presents a large–
scale inversion approach. The scheme adapts an imaging method originally developed for
seismic wavefields [Claerbout, 1971;Loewenthal et al., 1976;Tarantola, 1984] and known
as seismic migration to diffusive EM fields. An inversion formulation that applies migration
techniques to EM data is not entirely new.Zhdanov and Frenkel[1983] have advanced the
idea of migrating or backpropagating the scattered EM field into a homogeneous background
medium in order to image the source of the scattering.Lee and Xie[1993] transformed low–
frequency EM fields by an integral transformation into wavefields in order to apply seismic
imaging methods. It was along these lines,Wang et al.[1994] developed the theory for solv-
ing the full non–linear 3D TEM inverse problem in the time–domain by an efficient way of
a conjugate–gradient search for the minimum of an error functional. Zhdanov and Portni-
aguine[1997] introduced a new formulation of the time–domain electromagnetic migration
technique, based on the minimization of the residual–field energy flow through a profile of
observations.

The inversion algorithm presented in this work uses a non–linear conjugate–gradient search
for the minimum of an error functional. WhileWang et al.[1994] made much progress
in proposing a tractable approach to 3D TEM imaging, they only applied their solution to
2D synthetic examples from causal sources. This involved the solution of the scalar wave
equation for electric fields and neglected crucial details for implementing the technique for
general 3D imaging. Here, the specifications of the cost functional gradients are formulated
for the full 3D treatment of non–causal source fields arisingfrom galvanic sources. It will
become evident that the problem related to causal source fields is contained in the more
general non–causal case.
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The actual solution formulation of the inverse problem by means of migration techniques
for diffusive EM fields is outlined in Chapter 4 and involves both forward simulation and
backpropagation of the EM field. Therefore, the preceding Chapter 3 develops an adequate
explicit finite–difference (FD) time–stepping scheme in order to enable the migration of EM
fields, which cannot be realized by the SLDM code. It is in principle based on the FD time–
domain solution for 3D modeling presented byWang and Hohmann[1993]. However, mainly
due to the involvement of 3D non–causal source fields, there are differences in several key
aspects as will be outlined in more detail in Chapter 3. Moreover, the solution has been
developed for parallel computing platforms.

Preliminary notes

For brevity, followingGoldman et al.[1994], in all chapters the word voltage shall be used
instead of both “magnetic field time derivative” or “magnetic induction time derivative”. Al-
though it may be argued that electric field measurements alsoeffectively involve voltages, it
will become clear from the context which kind of field is considered. Vectors and matrices
will be represented by bold characters. Lower case characters are used for vectors, upper case
letters are used for matrices.

This work treats EM fields generated by sources with a galvanic coupling to the underground.
Such sources and its generated EM fields are also referred to as non–causal. This expression
is chosen due to the presence of a DC electric and magnetic field in the underground before
the source signal is generated by a shut–off. Inductive source types without comparable DC
fields will be referred to as causal.





CHAPTER 2

A 3D CONSTRAINED INVERSION APPROACH

AND ITS APPLICATION TO LOTEM DATA FROM

MOUNTAINOUS TERRAIN

In the geophysical literature, a large number of examples can be found for data interpretation
situations, which are characterized as follows:

1. The collected data are insufficient, in terms of the spatial covering of the target, in order
to determine a numerous set of model unknowns in a large–scale inversion approach.
This may have several reasons, where logistic and/or economic limitations might be
dominant. In other cases, a survey may have the aim of a preliminary investigation of
a target and thus involves only a limited amount of measurements.

2. There exists prior knowledge about the target. This can begiven by other geophysical
disciplines, geological information or borehole measurements. In many cases, TEM
surveys are carried out on the basis of a priori information in order to refine the model
of an a priori known target (e.g.Taylor et al.[1992];Hördt et al.[2000b]).

3. Simplified 1D inversion approaches fail to take multi–dimensional effects contained in
the data into account. Even if a data fit can be achieved, laterally biased interpretations
can be expected when 1D methods are applied to the response ofmore complex struc-
tures. Examples where 1D inversions do not accurately recover 2D or 3D resistivtiy
distributions are shown byNewman et al.[1987] andBlohm et al.[1991].

Without regard to the complexity of the underground, 1D inversion routines are often em-
ployed, because of the computational expense of a full 3D inversion and the current lack of
available inversion codes for TEM measurements. Even with the capability of inverting for a
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large parameter set, the poor resolution due to insufficientdata remains. Multi–dimensional
forward modeling is often used alternatively (e.g.Hördt et al.[1992]; Helwig et al.[1994]).
Starting from an initial guess, a model refinement can be achieved by a trial–and–error proce-
dure. However, this method is likely to be more time–consuming, because of erroneous model
guesses. Second, such an approach automatically limits thecomplexity of the earth model,
because the manual control of a large set of unknowns is hardly feasible. Finally, a certain
amount of experience with the EM responses of multidimensional structures is required.

2.1 Methodology

The inversion method presented in this chapter, also referred to as SINV, is optimized for
problems characterized by the above listed aspects. The idea of the scheme is the combination
of a Marquardt–Levenberg [Levenberg, 1944;Marquardt, 1963] method as a stable inversion
scheme with the 3D forward modeling code fromDruskin and Knizhnerman[1988]. The
approach addresses the large–scale difficulty by limiting the number of model unkowns to
as many unknowns as typical for Marquardt inversions. Inverting for a low–parameterized
model involves an over–determined system to be solved. Thisprovides for the capability of
resolving multi–dimensional structures even if only a limited amount of field data is available.

The large–scale character of full 3D inversions originatesfrom the usual practice of treating
the discrete cells of a finite–difference or finite–element mesh as model unknowns. Such a
fine model parameterization quickly leads to a huge set of parameters, but offers a maximum
of degrees of freedom during an inversion. Here, the model variation is constrained in a way
that a resistivity structure, given by the parameters of thestarting model, cannot be changed
to a completely new structure. To describe a 3D earth, this involves alternative types of model
unknowns, which need to be adapted to the structures of interest. Therefore, it is crucial that
sufficient a priori information exists to define proper modelparameters. If not present at all,
a trial–and–error forward modeling may be the only practical alternative to find a suitable
parameterization of the underground. Examples for rather unconventional parameterizations
are shown in the course of this chapter. It will be seen that even low–parameterized models
can lead to relatively complex 3D structures.

2.1.1 The forward modeling code

The forward modeling code is based on the spectral Lanczos decomposition method (SLDM).
The theory of this solution method is described byDruskin and Knizhnerman[1988; 1994];
Druskin et al.[1999]; a brief summary is also given byHördt et al.[1992]. The solution of the
3D diffusive Maxwell equations by SLDM involves Krylov subspace techniques. Traditional
Krylov subspace techniques include the conjugate–gradient method, biconjugate–gradient
method, and quasiminimal residual methods [Madden and Mackie, 1989;Alumbaugh et al.,
1996;Smith, 1996]. These techniques are very efficient for the solutionof large linear systems
with a sparse matrix. The application of SLDM for solving Maxwell’s equations involves
approximating the equations on a spatial FD, thus yielding asystem of ordinary differential
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equations. The system’s solution is written as the product of functions of its stiffness matrix
and the vector describing the initial conditions. The solution on a Krylov subspace can be
thought of as a natural extension of the conjugate–gradientmethod to the computation of
arbitrary matrix funtionals [Druskin and Knizhnerman, 1994].

It is crucial that the convergence characterisics of SLDM are taken into account when de-
signing a FD discretization for a given earth model. Here, the most important aspects are
outlined. A detailed and more theoretical description is given byDruskin and Knizhnerman
[1994]. The convergence of SLDM depends on the differentialequation system’s condition
number, that is the ratio between largest and smallest eigenvalue. The condition number de-
pends on the aspect ratio of a FD grid. Ill–conditioning due to a large condition number is
introduced by high conductivity contrasts. This results from the requirement that for the ap-
plication of SLDM the grid discretization should be fine in conductive regions and coarse in
more resistive regions in order to achieve a proper simulation of the attenuation characteristics
of EM fields. Hence, convergence problems may occur in the presence of high contrasts if a
compromising grid discretization cannot be found. Furthermore, a fine grid should be used to
ensure accurate results at early times, whereas low frequency fields need coarse spacings for
a quick convergence. Therefore, the simulation of late times also decrease the convergence
due to large FD grid aspect ratios.

The forward simulation code allows to define the material properties of the earth, i.e. electric
conductivity and magnetic permeability, by means of rectangular blocks. Both conductivity
and magnetic permeability do not vary over the block volume.The corners of the blocks
are not required to be confined to the cells of the FD grid. However, conductivity contrasts
between adjacent blocks should be taken into account when designing the FD grid. The
inverse interpolation of the distribution of material properties onto the FD grid is realized
by a material averaging scheme described by [Moskow et al., 1999]. This scheme allows to
define arbitrary model parameters by the composition of one or more blocks such that they
form volumes of constant resistivity.

2.1.2 The Marquardt–Levenberg inversion scheme

The Marquardt–Levenberg inversion scheme (e.g.Jupp and Vozoff[1975]; Lines and Treitel
[1984]; Hördt [1989]) represents a stable iterative method in the presence of ill–posed inver-
sion problems, where small changes in the data can lead to large changes in both the solution
and in the process that finds the solution. First consider theclassical least–squares approach
for inverting a set of observed data for a given earth model parameterizationm [Jackson,
1972]. Basically, this involves minimizing the cost functionalφ, quantified as the difference
between the vectors of the observed and predicted measurementsdo anddp, respectively,

φ
�
m� � �

do �dp�T �do �dp�� (2.1)

which is also called the Gauss–Newton approach [Lines and Treitel, 1984]. The cost func-
tional is connected with a model guess by the implicit dependence of the predicted data on
m. In order to treat the non–linearity of minimization problems related to TEM inversion
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problems, the model response

f
�
m� � dp

is typically assumed to be a linear function of the parameters such that a perturbation of the
model response about a given starting modelm0 can be represented by a first–order Taylor
expansion

f
�
m�� f

�
m0��Jδm�

with δm � m �m0 defining the model perturbation. The matrixJ represents the partial
derivatives of the predicted data with respect to the model parameters,

Ji j � ∂ fi
∂mj

�
�
�
�
m�m0

� i � 1� ����N; j � 1� ����M � (2.2)

and is also referred to as parameter sensitivity matrix or Jacobian. The size ofJ is N �M,
given by the number of observed data points and the number of model unknowns, respec-
tively. For the solution of Equation (2.1) it follows [Lines and Treitel, 1984]

δm � �
JTJ��1JTδd� (2.3)

whereδm now represents the parameter change vector that has to be applied to a model
guessm0 in order to decrease the data misfitδd � do �dp. The linear approximation of
the non–linear forward functionf involves a step–wise minimum search by evaluating the
Gauss–Newton solution (2.3) in an iterative manner, starting from the initial model guess.

The unconstrained least–squares solution (2.3) has the undesirable property of being unstable
in the presence of a singular or nearly singular matrixJTJ. Therefore, the basic strategy of
the Marquardt–Levenberg scheme consists of adding a further constraint to the least–squares
problem (2.1). To reduce the difficulties with a singular matrix JTJ, a Lagrange multiplier
problem is solved subject to the constraint of a bounded energy of the parameter change,
specifically

φ
�
m� � δdTδd

�β
�
δmTδm �δm2

0�� (2.4)

whereδm2
0 is a finite quantity. The minimization of this functional leads to the so–called

damped least–squares solution for the model update [Jupp and Vozoff, 1975]

δm � �
JTJ

�βI ��1JTδd� (2.5)

where the matrixI denotes the identity matrix. The potential singularity ofJTJ is thus re-
lieved by adding a constant to its main diagonal1. The degree of damping is controlled by
the parameterβ. As common practice in Marquardt schemes, for the inversions shown in this
work a threshold level is raised by the damping parameter in the first iteration so that only
the basic features of the model will be resolved. A gradual decrease ofβ accounts for less
resolved model parameters at later iterations. To define a stopping criteria for an inversion, a
lower treshold for the relative error functional decrease,with respect to the previous iteration,
is chosen in advance.

1This can also be understood as adding a DC level to the eigenvalues ofJTJ such that none of the eigenvalues
can vanish.
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The presence of data errors assigned to the observationsdo is addressed by incorporating a
weighting matrixW into the minimization problem (2.4). Usually,W is a diagonal matrix,
where its entries are the reciprocal values of the standard deviations ofdo [Jackson, 1972].
Incorporating the data weighting changes the solution in (2.5) to [Hördt, 1989]

δm � �
JTW2J

�βI ��1JTW2δd� (2.6)

The types of model parameters and its small number do not require a further regulariza-
tion using smoothing constraints (e.g.Tikhonov and Arsenin[1977];Constable et al.[1987];
DeGroot-Hedlin and Constable[1990]). However, bounding only the energy of the parame-
ter change may still lead to physically unreasonable parameter contrasts. This becomes more
severe with the presence of parameters that are poorly resolved by the data. Therefore, the
model parameters have to be chosen such that an ill–posedness through irrelevant parameters
is avoided. Generally, there is a limit to the number of well defined or important parameters
that may be resolved from the data [Jupp and Vozoff, 1975].

Information about the resolution of a model parameter can beobtained from the spectral de-
composition of the Jacobian [Jackson, 1972;Jupp and Vozoff, 1975].Hördt [1989] andPetrat
[1996] describe the derivation of the so–called importancevalues from the inversion statistics
resulting from the Singular Value Decomposition [Lanczos, 1958] of the Jacobian. Impor-
tances represent a means of estimating a model parameter’s degree of resolution and thus
help to find the optimal number of parameters. Such importance estimations are employed
for the later presented data analysis. Here, it shall only berecapitulated that importances vary
between 0 and 1, which means a minimal and maximal resolutionof a parameter, respectively.

The calculation of the sensitivity matrixJ is usually the most time–consuming part of an
inversion procedure, because this requires calculating the variation in the data produced by
a change in the model parameters at each iteration. If a perturbation method is employed,
each model parameter requires a separate forward simulation for its perturbed quantity. More
efficient possibilities exist to calculate parameter sensitivities. McGillivray et al. [1994] cal-
culate sensitivities for inversion of frequency–domain data using an adjoint equation method.
A time–domain equivalent for LOTEM data is presented byHördt [1998]. The principles of
the adjoint method will be described in detail in Chapter 4. The method is appropriate for
a numerous set of unknowns in the form of cell–based grid elements. Here, both the lim-
ited number and the types of model parameters suggest the classical perturbation method for
calculating the sensitivities.

Data and model parameter transformation

Diffusive EM fields have widely different amplitudes at different times and receiver locations.
To reduce the dynamic range of the data, transformations arepreferable in order to equalize
the influence of each datum. Otherwise, the error functionalof Equation (2.4) may be domi-
nated by high amplitude data points, thus deteriorating theconvergence in an inversion [Meju,
1994]. A simple logarithmic transformation [Jupp and Vozoff, 1975] can be used if all data
points possess the same sign. However, TEM measurements over 3D structures often involve
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sign reversals over the measurement time range, thus requiring to distinguish between pos-
itive and negative data. Different methods exist to take both large amplitude variations and
different signs into account. For example,Wang et al.[1994] use a logarithmic transformation
with a linear scale straddling amplitudes near zero and a discrimination between positive and
negative logarithms of data values. The transformation scheme realized in SINV is described
by Scholl[2001] and is based upon the Area–Sinus–Hyperbolicus function. The funtion has
a logarithmic behaviour for arguments� 1 or� �1 and a linear one for arguments close
to zero. This transformation has proven to be suitable for the 1D inversion of LOTEM data
containing sign reversals [Scholl, 2001]. Depending on the LOTEM transmitter–receiver ge-
ometry and the type of the field component, sign reversals canoccur over a 1D earth [Petry,
1987].

An important constraint on model parameters such as electrical conductivity or layer thick-
ness is that they must be positive quantities. To enforce this constraint on the inverse solution,
a logarithmic transformation is applied to the parameters for all inversions presented in this
chapter. A discussion about alternative transformations for parameters describing model fea-
tures that can involve negative values will be given at a later stage.

It needs to be taken into account that both data and model parameter transformations carry
over to the calculation of the Jacobian in Equation (2.2). Furthermore, the data transformation
affects the data errors and thus the weighting matrixW. Scholl[2001] outlines these aspects
in great detail for different types of transformations.

Parallel implementation

To update the Jacobian at each iteration makes up the majority of the computational effort for
an inversion. It needs one forward simulation for each perturbed model parameter plus one
extra simulation for the unperturbed model. The case history in Section 2.3 will show that the
forward modeling procedure with the SLDM code may involve more than one FD simulation
grid. In this case, the number of forward computations for the model perturbation has to be
carried out for each grid.

Calculating the Jacobian can be highly accelerated if a parallel computing platform is used.
As the forward simulations for the perturbed model parameters are carried out independently
from each other, they can be distributed among several processors. The optimum number of
processors would therefore equal the number of forward simulations required for one itera-
tion. This would reduce the computation time by a factor of that number in an ideal case. No
inter–processor communication is needed and thus a serial version of the forward modeling
code can be used. Communication between the forward simulation code and the inversion
algorithm is done via temporary disk files. This way of parallelizing SINV represents not
an optimally coded program, because a parallelized versionof the SLDM code may be more
efficient. However, the implementation is simple achievinga significant gain in computation
time. Moreover, as shown byScholl et al.[2002], this parallelization scheme is also suitable
for several stand–alone computers connected by a network.

In a test inversion run, altogether 264 forward simulationswere required. A single simulation
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needed an average of 2.5 minutes real computation time on a single node of a SUNTM Fire
6800 compute server which would sum up to a total time of approximately 11 hours. Using
8 processors this time could be decreased to 2.5 hours.

2.2 Synthetic data examples

In the following SINV is tested on different model parameterizations. Concerning the aspects
related to the convergence of SLDM, a stable FD grid for the SLDM code could easily be
found, because no excessively high resistivity contrasts are involved in the shown examples.
A more thorough discussion about the preliminary procedureof finding a proper FD grid
discretization will be given in Section 2.3. There, designing a stable grid becomes far more
difficult due to higher resistivity contrasts. All synthetic data to be inverted for the tests is
created by another 3D code presented later in Chapter 3. No artificial noise is added to the
data, because here only the case of an optimal data quality shall be treated. The stopping
criteria is fulfilled in the case of a relative data misfit decrease dropping below 1 %, relative
to the previous iteration. In order to avoid that the inversion finishes too early due to a low
relative misfit decrease, a minimum of 4 iterations is enforced.
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Figure 2.1: Model of a 3D conductive body embedded in a two–layered host used to invert for
different examples of model parameterizations. (a) Plan view, (b) vertical section.

Consider the 3D model in Figure 2.1. The model represents a 1Ωm conductive cube embed-
ded in a two–layered half–space. The horizontal dimensionsof the body are 200 m on a side
with a vertical size of 140 m and its depth starting at 60 m. Thethickness and resistivity of
the upper layer are 100 m and 50Ωm, respectively, above a 10Ωm basement. A horizontal
grounded–wire source of length 80 m is located at 200 m distance to the block. The example
shall demonstrate that SINV is suitable for problems with smaller dimensions of the field–
setup than exemplified in the later shown case history. The data simulated at the receivers
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comprises the electric field component in a direction parallel to the source orientation and the
time derivative of the vertical magnetic induction∂

∂t bz (voltage).

2.2.1 Inverting for layered background and block resistivity

The model parameterization of the first series of inversionsassumes the true position and
geometry of the block as known in advance and as fixed. Also, the existence of a two–
layered background without its exact structure shall be given as a priori information. The
free parameters are thus given by the layer parameters, these are the resistivitiesρ1 andρ2 of
both layers and the thicknessz1 of the top layer. The fourth parameter is represented by the
block’s resistivityρb. Altogether 6 inversions are carried out, each one using a different input
data set in terms of the receiver position and the data type, where both separate and combined
sets are involved.

For each inversion, the input data originates from only a single receiver location in order to
simulate the case of a sparse data covering of the target. Theinversion results numbered
by 1–6 are summarized in Table 2.1. The first and the second line of the table contain the
parameters describing the true case and the chosen initial model, respectively. For these
examples, all resistivities are initialized to a value of 50Ωm and the top layer’s thickness is
set to a starting value of 50 m. Two different receiver positions are chosen (Figure 2.1), the
first one (Rx1) located at a distance ofx � 500 m from the source without offset along the
source axis, the second one (Rx2) atx � 300 m andy � 200 m. According toPetrat [1996]
andSchneider[2000] these receiver positions do not provide for an optimal resolution of the
block anomaly. Thus, the example will also demonstrate thatin addition to the sparse amount
of inverted data, a reconstruction is still possible with a less optimal receiver configuration.

With the receiver placed at Rx1 and the inversion fed by the electric field data, the true model
can be reproduced closely within 12 iterations. The deviation from the true model amounts to
only a few percent for each parameter. The voltage data result reveals a worse reproduction of
the top layer’s parameters, whereas the basement resistivity is matched. Starting from a value
of 50 Ωm, the conductive block is well approximated by a resulting value ofρb � 1�7 Ωm.
The combined data inversion leads to the most exact final model. Apart from a relative
difference of approximately 10 % between the true and the reconstructed top layer resistivity,
all other parameters show relative errors below 1 %.

In general, inverting the data originating from receiver Rx2 shows larger deviations from the
true model. This follows from a worse resolution of the anomalous block, compared to the
receiver placed at Rx1. Still a satisfying reproduction of the true underground is achieved
by inverting the electric field data during 17 iterations, where also the block resistivity is ap-
proximated. However, the voltage data inversion fails to find most of the real model features,
with the exception of the basement resistivity. Compared toresult 4, the combination of both
data types (result 6) produces a similarly good layer model,however with a more erroneous
block resistivity.

The electric field data sets of both receivers are sufficient for a reasonable resolution of the
true parameters and are now used in order to exemplify the influence of an erroneous model
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Result Rec. pos. Data type Iterationsρ1 (Ωm) z1 (m) ρ2 (Ωm) ρb (Ωm)
True model 50 100 10 1
Initial model 50 50 50 50

1 Rx1 Ex 12 50.8 104.0 9.4 1.1
2 Rx1 Ḃz 7 63.9 79.1 10.1 1.7
3 Rx1 Ex

�
Ḃz 10 54.5 100.8 9.9 1.0

4 Rx2 Ex 17 49.0 103.1 8.5 2.4
5 Rx2 Ḃz 4 243.6 56.1 12.2 39.1
6 Rx2 Ex

�
Ḃz 8 53.2 96.6 9.3 8.7

7 Rx1 Ex 5 175 101.1 32.6 13.8
8 Rx2 Ex 10 35.7 55.9 31.1 29.2

Table 2.1: Inversion results for different data receiver positions and data types. The model param-
eterization involves the layer unknownsρ1 �z1 andρ2 and the block resistivityρb. Results 1–6 involve
a conforming block geometry, results 7 and 8 a nonconforminggeometry.

Result Iterations ρ1 (Ωm) z1 (m) ρ2 (Ωm) z2 (m) ρ3 (Ωm) ρb (Ωm)
Initial model 50 100 50 100 50 50
1 6 61.8 35.6 39.6 74.3 9.4 1.0
Initial model 100 100 100 100 100 50
2 14 56.7 85.1 59.2 11.9 9.8 1.2

Table 2.2: Inversion results for the data computed at Rx1 from the modelshown in Figure 2.1. In
addition to the block parameterρb, three layer unknowns are allowed to describe the two–layered
background.

parameterization. Using the input data produced by the original model shown in Figure 2.1,
the model guess is now characterized by a nonconforming block geometry. Instead of a
volume of 200�200�140 m3, the block is assumed to have a fixed volume of 300�300�

200 m3, where its center position is kept. Due to the larger volume,erroneous results are
obtained for each inversion as shown in the results 7 and 8 in Table 2.1. However, except for
the top layer’s final resistivity of each result, all parameters show a trend towards the correct
solution, with respect to the starting model. Even the true thickness of the overburden is
found by inverting the data of Rx1. Compared to the real values, the larger block volume
causes increased values for the resulting block resistivity.

Another test for a less conforming model parameterization involves the assumption of a
three–layered background, thus inverting for 5 layer parameters. An additional unknown
is again represented by the cube’s resistivity with the truegeometry given. The joint data set
of Station Rx1 generated by the two–layered model in Figure 2.1 is used for this test. All
initial resistivities are set to a value of 50Ωm. Both layer thicknesses start with values of
100 m. First, it can be seen from Table 2.2 (result 1), that theblock resistivity is matched
exactly. However, both final layer resistivitiesρ1 andρ2 differ by approximately 10Ωm from
the true case, despite correct initial values. Nevertheless, the two–layered background can be
recognized. The sum of both thicknessesz1 andz2 shows the original vertical location of the
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basement’s beginning with a deviation of 10 %. Its true resistivity of ρ3 � 10 Ωm is closely
matched.

A similar inversion (result 2) uses the initial resistivities of 100Ωm for ρ1, ρ2 andρ3. In
general, the final model result is better than given by the previous inversion. However, both
resistivity valuesρ1 andρ2 still show differences of 13 % and 18 %, respectively, from the
true value of 50Ωm. The overburden thickness is reconstructed by the sum ofz1 andz2 with
an error of only 3 %. The resistivityρ3 of the layer below the overburden and the block’s
resistivityρb are reproduced to a satisfying degree as well.

2.2.2 Inverting for block position and resistivity

The following two inversions involve a model parameterization that is different from the more
common types of parameters given by layers or blocks. The combined data of electric field
and voltage at Station Rx1 is inverted. It is generated from a50Ωm homogeneous half–space
with an embedded anomalous block as the one shown in Figure 2.1. No layer parameters
are defined for these inversions, thus a fixed 50Ωm background shall be assumed in the
inversion. In addition to the block’s resistivityρb, the model parameters are now represented
by its center coordinatesx�y andz along each cartesian axis, thus four unknowns exist. The
starting model for the first inversion example assumes a 50Ωm block with its true size also
known.

As shown by the plan view and vertical section of Figure 2.2a,the initial model (dashed
rectangles) is characterized by a 100 m offset from the true position for both horizontal coor-
dinatesx andy and a 40 m offset from the true depth. The solid lines mark the resulting block
location after 8 iterations. The inversion moves the initial block towards the original location
(shaded rectangle) such that a good agreement along both thex axis and the vertical axis is
achieved. The only significant deviation of approximately 20 m from the true position occurs
along they axis. The block’s resistivity of 1Ωm is reproduced exactly in this example. For
both data components Figure 2.2b shows the synthetic data generated by the original model
in comparison with both the initial response and the response calculated from the solution.
Apart from slight deviations at the latest times of the electric field data, both predicted data
curves show a good agreement with the original data.

In order to exemplify another inversion with a less conforming parameterization, the block’s
geometry is now assumed to be 50 m larger along each dimension, as illustrated by the dashed
rectangle in Figure 2.2c. Also, the starting position is shifted farther away from the true po-
sition, such that its center coordinates differ by values of∆x � 225 m, ∆y � 225 m and
∆z � 265 m from the true center point coordinates. The final model result reveals a suc-
cessful inversion, because the real block is enclosed by theborders of the larger block after
9 iterations. Similar to the previous example involving a nonconforming block geometry (re-
sults 7 and 8 in Table 2.1), the larger block volume causes a trend towards the resistivity of
the background. The initial block resistivity of 50Ωm is decreased to a value of 7.2Ωm. To
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Figure 2.2: Synthetic data inversion for the resistivity and position of a block embedded in a homo-
geneous half–space. (a) Plan view and vertical section of the true (shaded rectangle), initial (dashed
lines) and final (solid lines) block position of an inversionwith conforming block geometry. (b) Syn-
thetic data at Station Rx1 in comparison with initial and final model response for both inverted data
sets. (c) Initial and final model results for an inversion with nonconforming block geometry and (d)
corresponding data fits.
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compare, this yields a conductance (product of conductivity and volume) of 1�65 �106 Sm2,
whereas the true block’s conductance is 5�6 �106 Sm2. Figure 2.2d shows a good agreement
between the synthetic data and the response of the inversionresult. In contrast to Figure 2.2b,
one observes a slight misfit in the early time range of both data types.

2.2.3 Conclusions

The synthetic data examples show the versatility of the scheme in terms of the model pa-
rameterization. The restriction to a very limited number ofmodel parameters is somewhat
compensated by the capability of defining arbitrary kinds ofunknowns. It may be argued that
the structural information contained in the parameters, representing given a priori informa-
tion, is quite detailed for the shown examples. Nevertheless, it shall be emphasized that cases,
where other geophysical measurements provide such knowledge, are not rare. An example
is given by the following case history. Moreover, the inversions involving nonconforming
parameterizations show that a trend towards the real situation is likely to be indicated. By
scrutinizing the kind of data misfits and checking the question of how realistic a solution
appears, less satisfying model results can still be used fora parameter refinement. This is
also exemplified in the case history. Other a priori information, if available, also represents
a valuable help in order to judge an inversion result. In addition, varying starting models are
suggested to investigate the uniqueness of a solution.

If no prior knowledge about 3D structures is available for the analysis of real field data, 1D
inversions can be used in order to obtain information about the background structure, as for
example accomplished byHördt et al. [2000b]. This requires the existence of data without
distortions due to multidimensional structures. Also, 3D forward modeling can be carried out
until a satisfying model is found which can be further refinedin an inversion, requiring, how-
ever, a certain amount of expertise with multi–dimensionalmodeling. The more favorable
approach is enabled by the inversion scheme’s given flexibility of defining arbitrary model
parameters. Although this may still be regarded as a trial–and–error procedure, inverting for
different types of unkowns represents a more efficient way ofinvestigating multi–dimensional
structures.

A question to be further investigated is the kind of model parameter transformations used for
such unconventional parameters as the position of an anomaly. Here, a logarithmic transfor-
mation was kept for all parameters and led to satisfying results. Therefore, in order to avoid
negative numbers for the position parameters of the moving block (Section 2.2.2), the model
domain was internally shifted to the positive FD grid axes. Alinear treatment [Scholl, 2001]
can be expected to be more adequate for position parameters,because they do not involve
such large ranges as usually covered by resistivities.
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2.3 Case history: Inversion of LOTEM data from Mount
Merapi, Indonesia

The case history shows the inversion of LOTEM data from a survey conducted at the active
volcano Merapi. Both lateral resistivity variations in theunderground and effects caused
by the mountain topography allow the employment of 1D inversion schemes only to some
limited extent. A priori information from other disciplines and an earlier LOTEM survey
[Müller, 2000b] exist about the 3D target. The information allows to define suitable model
parameters which are then further refined by the inversion method.

Mount Merapi is a basalt to basaltic andesite volcanic complex with a maximum altitude of
2911 m. It is located in the eastern part of Central Java, Indonesia. Merapi’s topography is
characteristically bell–shaped with a mean dip angle of 5

�

up to 1300 m, 15
�

up to 1700 m
and 26

�

up to the summit [Berthommier, 1990]. Formation and stratigraphy of the present
cone is characterized by a succession of pyroclastic deposits and several violent and partial
collapses [Newhall et al., 2000]. According toCamus et al.[2000], the growth of the volcano
was interrupted several times by violent magmatic to phreatomagmatic eruptions and a Mount
St. Helens type edifice collapse in the south–western section. The base of Merapi consists of
a sequence of basaltic andesite lavas and intercalated pyroclastic deposits of an eroded older
volcanic edifice [Newhall et al., 2000]. This so–called Old Merapi is overlain by the deposits
of the modern Merapi which is presently characterized by relatively moderate pyroclastic
flows and lahars accompanying growth and collapse of the active summit lava dome.

The LOTEM project at Merapi is a part of a multidisciplinary cooperation of the German
Science Foundation (DFG) and the Volcanological Survey of Indonesia (VSI).Zschau et al.
[1998] presented an overview of all activities. Since the LOTEM technique covers the range
between shallow TEM soundings and deeply penetrating MT, animportant gap in volcanolog-
ical investigations is filled [Müller et al., 2002]. Measurements were made during surveys
in the years 1998, 2000 and 2001 and are described byMüller [2000b] and Commer et al.
[2003] in more detail. The steep topography of the survey area was the main reason for lo-
gistical difficulties, thereby prohibiting a fast buildup of the receiver stations. Hence, instead
of an area–wide covering of the target, measurements were made at single stations and along
a limited number of profiles, where an access was possible. Furthermore, the data quality
suffered from a high portion of noise at some stations, thus requiring long recording times in
order to obtain satisfying signals by a sufficient number of stacks. Other problems, such as
frequent rainfall, also led to a deteriorated data quality at some stations. These difficulties are
the reason for a limited amount of available data with sufficient quality for a 3D inversion.

2.3.1 The inverted LOTEM data

The transmitter and receiver positions of the data comprisea subset of all three LOTEM
surveys and are shown in Figure 2.3. The receivers were located on the northern, western and
southern flanks and at the summit region. All inverted transients are the time derivatives of
the magnetic induction and will again be referred to as voltage data. The surveys at Merapi
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Figure 2.3: Digital elevation model and contour map of the survey area. Triangles mark the trans-
mitter electrode points, circles mark receiver positions.

also involved the measurement of electric fields. Unfortunately, most of the electric fields
recorded at the stations shown in Figure 2.3 were characterized by a poor quality. Electric
fields are very susceptible to a poor galvanic coupling of thesensor electrode pairs (Helwig,
pers. comm.). This caused significant distortions, becausemost of the stations in the summit
region and along the upper flanks were located on a dry and rocky ground.

The transmitter Tx1 used for Stations 1–6 has a bipole lengthof approximately 1 km and
is located in the North at approximately 4 km distance from the summit at an elevation of
1500 m above sea level. Station 7 was measured at the same position as Station 1 using a
different transmitter (Tx2) of 2 km length located at 530 m elevation and 12.8 km distance
south from the summit region. The data of the Stations m28–m42 on the southern flank
was generated by the transmitter Tx3. This is a 800 m long bipole located at an altitude of
approximately 1000 m.
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Vertical voltage components are available at all shown receiver positions. In addition, hori-
zontal components with sufficient data quality were recorded at Stations 4–6. By convention,
horizontal components are named according to the orientation with respect to the transmitter,
wherex andy will denote a parallel and perpendicular direction of the magnetic field, respec-
tively. Two different types of sensors were employed for recording the voltages. The summit
region with a relatively large plateau allowed recording the vertical field with wires arranged
in a horizontal square loop of 40�40 m2 at Station 1. Second, smaller ferrite core magnetic
induction coils (type Zonge TEM–3) were used for the horizontal components. These sensors
were also used for the vertical components in the more ruggedterrain on the flanks, although
a wire loop is preferable due to a larger effective coil area.A detailed study about the ap-
plication of the TEM–3 sensors for recording the time derivative of the horizontal magnetic
induction at Merapi was given byStahl[1999].

The usage of different sensors requires that each simulatedtransient needs to be processed
individually in order to compare it with the measured one. This results from the effect of
the so–called system response, which is a combination of theeffects caused by analogue
low–pass filters in the recording units, deviations of the transmitter input waveform from an
ideal step and sensor characteristics [Hördt et al., 2000b]. It causes a distortion of the early
times and is measured in the field by placing a receiver so close to the transmitter that the
earth response can be considered as an impulse [Strack, 1992]. Deconvolution of the system
effects in the time domain is numerically unstable [Hanstein, 1992]. Hence, to avoid the
loss of early time information by truncating distorted data, the 3D model responses of the
SLDM algorithm are convolved with the corresponding systemresponse of each simulated
transmitter–receiver setup.

The field setup in Figure 2.3 clearly shows that topography has to be considered in order
to account for the high altitude differences of some field setups. Moreover, depending on
the transmitter–receiver geometry, the electromagnetic coupling between the mountain and
deeper–lying structure causes effects, which would not be observed over a flat surface [Hördt
and Müller, 2000]. For example, such effects could be clearly identified in the vertical voltage
responses at Stations 5 and 6, as will be shown below.

2.3.2 A priori information

Among many geophysical disciplines, results from the first LOTEM survey, DC resistivity
imaging and magnetotelluric (MT) measurements were used inorder to define a suitable
model parameterization for the inversion attempts including Stations 1–7 and transmitters
Tx1 and Tx2 (see Figure 2.3).Müller et al. [2002] merged 1D LOTEM inversion results into
a 2D pseudo–section originating from measurements along the northern and southern flank,
including a single summit station. A predominant feature inthis section was the presence
of a conductor with downwards decreasing resistivities. Minimum values range from 6Ωm
below the summit to approximately 20Ωm below the flanks. The upper edge of the conductor
was located in a roughly constant depth of 500–1000 m from thesurface. The results also
suggested a southward extension of the conductor beyond thesouthern flank.
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Friedel et al. [2000] found that the isoresistivity lines from DC resistivity measurements
along the south and west flanks nearly follow the topography.A gradual resistivity decrease
with depth is observed, where resistivities below 30Ωm occured below 500–1000 m from the
surface. MT measurements [Hoffmann-Rothe et al., 1998] suggested a 1D resistivity model
of 2–10Ωm at a depth of 1 km below a location on the western flank (1300 m above sea
level) and indicated that the conductor is not confined to thecentral part of the volcano. This
was in accordance with results from a regional MT profile across Central Java [Ritter et al.,
1998] where similar conductors were found.Müller [2000a] mentioned that a rise of the
conducting layer below Merapi’s summit was confirmed by the magnitude of the induction
vectors from MT sites located at the altitude range of 1700–2000 m. Their 3D MT forward
modeling results including topography are shown in Figure 2.4. A major conclusion is that
the best fit to the observed induction vectors with periods from 0.1–10 seconds is achieved
by a model with a rising 10Ωm conductor located in the volcano’s center (letter D). This
structure is shaped roughly following the terrain structure with its upper boundary between
1–1.6 km below the surface. However, it might be a simplification of a gradual resistivity
decrease with depth [Müller, 2000a]. To explain the induction vectors for periods above
10 seconds, the good conductor is extended downwards with even higher conductivities of
0.1–1Ωm (letters B,C,F).

Figure 2.4: Final 3D resistivity model obtained from MT measurements (after Müller, A.,
pers. comm.). Here, Merapi is viewed from a SW point. Each letter indicates a region of differ-
ent resistivity: (A) upper layer, 100Ωm, (B) intermediate conducting layer, 10Ωm, (C) conducting
layer, 1Ωm, (D) central conductor, 10Ωm, (E) SW–anomaly, 1Ωm, (F) two 2D extended conductors,
0.1Ωm.

Although mainly the flanks were covered by the described a priori data, the results supported
the hypothesis of a conductive system in the volcano’s interior, according toZimmer and
Erzinger [1998] probably caused by hydrothermal activity. For the first 1000 m below the
surface of the volcanic edifice, the a priori information suggests a somewhat layered resis-
tivity structure, where the layer boundaries follow the mountain topography. Furthermore, a
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monotonous resistivity decrease was observed by all mentioned disciplines. At depths below
1000 m, low resistivities with values around 1Ωm seem to dominate. In this work the inver-
sions of Stations 1–7 will hence involve a layered volcanic edifice. The model parameters are
represented by both layer thicknesses and resistivities.

The inversion of the southern flank profile data (Stations m28–m42) involves a different earth
model parameterization. This profile comprises 7 stations,where vertical voltages were mea-
sured. Each transient is characterized by multiple sign reversals, indicating strong effects by
3D structures. A first interpretation approach by means of 3Dmodeling has been carried out
by Müller [2000b]. Although no quantitative fit of these stations was achieved, a conductive
block close to the surface at the northern end of this profile seems to be the most likely ex-
planation in order to obtain a qualitative fit of the sign reversals. This result will be used as a
starting basis for an inversion attempt, where the verticaland lateral position of a conductive
block serve as variable model parameters.

2.3.3 Constrained mountain model and FD discretization

As mentioned before, designing the mountain model by rectangular blocks is in principle
not confined to the given FD grid.Hördt and M̈uller [2000] use this flexibility to simulate
mountainous terrain by piling up conductive blocks in a highly–resistive fullspace, which
approximates the surrounding air space. However, in order to combine the modeling of to-
pography with varying model parameters, a more versatile scheme is needed. The approach
presented here approximates the terrain by vertical columns as illustrated in Figure 2.5a. Ev-
ery column represents a rectangular block overlaying the FDgrid, which is not shown here.
The material property of a block is inversely interpolated onto the FD grid by a material av-
eraging scheme [Moskow et al., 1999]. To understand the practical realization of the column
model, the illustration has to be viewed in a somewhat reversed way: in practice, each column
extends from the upper vertical end of the model domain, i.e.the air space border, down to
the actual air–earth interface and is assigned to a resistivity value approximating air. Aver-
aged data from a given digital elevation model (DEM) [Gerstenecker et al., 1998] is used to
determine the vertical position of each column’s lower end.In the vicinity of the receivers,
small–diameter columns are used in order to approximate therough terrain of the volcanic
cone. At greater distances the column model becomes coarser.

A variety of possibilities exists to further structure the underground. For example, arbitrary
shapes can be designed by including single or multiple extrablocks that form volumes of
constant resistivity. The column model is particularly useful if vertical conductivity changes
dominate over lateral ones, as is the case for layered structures. Such is indicated by the
given a priori information. Therefore, the columns are extended downwards (into the earth)
and sectioned according to vertical parameter variations.Similar to 1D inversions, the model
parameters are represented by thicknesses and resistivities of a layered structure. The follow-
ing inversion attempts will involve two kinds of layerings.A first mountain model will be
characterized by horizontal layers. Apart from lateral resistivity changes due to the topog-
raphy, this model type only allows for vertical variations below the surface. The second tin
Figure 2.3ype is constrained by using the DEM data such that the layers follow the topogra-
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Figure 2.5: (a) Modeling of the terrain structure of Mount Merapi with a vertical column model.
(b) Design of horizontal layering. (c) Design of a layering which follows the topography.

phy. This model type shall also be referred to as “dome–shaped”.

When inserting the mountain model into the simulation grid,the only fixed parameter of each
column is its topographic height; here it is chosen relativeto the transmitter height. In order to
model topography with a horizontally layered underground,each column is constrained such
that its division according to the given thickness parameters starts from a vertically fixed
reference position. This is illustrated in Figure 2.5b for atwo–layered earth. The reference
height represents the top of the layering and is equal to the highest topographic elevation of
the mountain. The second type of layering is realized by constraining every column such that
the division starts from the vertical position of its air–earth interface. As illustrated in Figure
2.5c, this constraint reproduces the shape of the surface terrain at each layer interface, thus
leading to a layered structure that follows the topography.

The later shown inversion attempts with real field data will involve other model features in
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addition to the layered background. The realization may become complicated, because the
SLDM code does not allow the overlap of the rectangular blocks describing a model. There
exist two ways for including additional block structures into the column model. First, the
space filled by an additional block can be kept free during creation of the column model.
This involves scanning the geometry and position of each column section in order to omit the
volumes reserved for other shapes. Then the volume can be assigned to an extra parameter,
which describes a conductivity and is independent from the layered background. Another
approach chosen here is to further split up the columns that intersect a predefined volume
such that it is built by a group of adjacent column pieces assigned to the same resistivity of
the additional structure. Arbitrary additional shapes canbe described by both methods.

Figure 2.6: Illustration of the approximation scheme used to simulate nonconforming (to the FD
grid) and elongated sources (see Druskin and Knizhnerman [1994] for further details). (a) Small
inclination angles require appropriately small grid spacings in order to simulate the correct source
orientation with respect to given geographical data included in the FD grid. (b) With an appropriate
transformation of the geographical data, this can be avoided.

As mentioned earlier, large FD grid aspect ratios may cause apoor convergence of the SLDM
code and thus wrong late time responses. Although there is a lower limit imposed by the re-
sistivity contrasts in a model, the aspect ratio can be optimized to some level by avoiding that
a grid becomes more dense than required by both the resistivity distribution and the simu-
lated measurement time interval. The first thing to achieve this is the careful discretization
of the transmitter bipole. Consider the case of a bipole orientation with an inclination to
one of the horizontal FD grid axes. The SLDM code allows to piece together an extended
transmitter bipole by several dipole elements, where the size of these elements is defined by
the grid spacings; see alsoHördt [1992] for practical examples of transmitters rotated in a
FD grid. Figure 2.6a illustrates how a transmitter with a small inclination to the FD grid’s
x axis is composed by three bipole elements along this axis plus one additional perpendicular
element. The vector sum of all elements represents both length and orientation of the true
transmitter to be simulated. The smaller the inclination ofthe transmitter to the grid axis,
the smaller the perpendicular dipole element has to be, and this in turn requires a small grid
spacing. This way of simulating a given field setup is usuallychosen in order to orient the
borders of extended 2D or 3D bodies along a grid axis. Otherwise, a rectangular block ro-
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tated with respect to the transmitter needs to be approximated by a possibly large number of
smaller blocks.

The capability of simulating sources not conforming to the FD grid becomes useful if geo-
graphical information is incorporated into the earth modeldesign. For a 3D forward modeling
of Merapi’s topography,Müller [2000b] aligns the axes of the Cartesian mesh defined by the
FD grid parallel to the axes given by the Universal Transverse Mercator (UTM) coordinate
system. This has the advantage that DEM information, neededfor the modeling of topogra-
phy, can be used without further transformation. On the other hand, a needlessly small grid
spacing would be required in order to simulate the orientation of the transmitters shown in
Figure 2.3, because they are all characterized by a small inclination to the WE–direction. To
avoid this, it is preferable to carry out a transformation ofthe complete DEM such that one
of its horizontal axes conforms to the transmitter orientation. For the example given in Fig-
ure 2.6a, this involves a rotation of each DEM point around the left source electrode point,
where the rotation angle is given by the inclinationα to thex axis. Afterwards, thex axis of
the transformed DEM is parallel to the transmitter orientation. Creating the column model
from the DEM now allows for a coarser FD grid as shown by Figure2.6b.

Another type of difficulty is related to the vertical grid discretization at the receiver side,
because the SLDM code allows the sampling of fields only on actual vertical grid levels.
In the vicinity of the summit, the modeling of the resistive air space requires a coarse grid
interval. It is actually much coarser than the vertical spacing given by the altitude differences
of the summit stations and thus cannot be matched with the receiver positions. Nevertheless,
importance was attached to sampling the fields at the exact vertical receiver positions in order
to simulate the topography effects correctly. To achieve this, the fields at the true receivers
are calculated by trilinear interpolation [Press et al., 1992], incorporating a cube of eight
surrounding grid nodes in which the desired position falls.A drawback may be seen in the
interpolation errors caused by a linear assumption for the field variation inside of the cube.
However, tests showed that the interpolation errors are notsignificant, compared to errors
caused by an otherwise wrong vertical sampling.

2.3.4 Stability checks

Although SLDM allows for very fast solution times, the convergence characteristics de-
scribed in Section 2.1.1 have to be taken into account, because an inversion scheme without
smoothing constraints may produce models with high contrasts. Moreover, high contrasts
are introduced by modeling the air layer. Hence, the grid design needs to come along with
stability checks to provide accurate simulation results for varying models during an inver-
sion. As will be shown below, the vertical voltage data measured at Station 1 (Figure 2.3)
contains the largest measurement time range of approximately three decades. Therefore, this
station turned out to be the most critical, because no compromise between the grid require-
ments imposed by the convergence characteristics of SLDM could be found. The solution of
this problem involves joining the FD responses of two different grids, i.e. a fine one for the
early part of the time range and a coarser one for the later times. All other stations could be
simulated using a single FD grid.
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Figure 2.7: North–south oriented section of a homogeneous mountain model through the summit.
In order to verify FD grid stability, the 3D responses for different mountain resistivities are calculated
at Stations 1 and 6 and are compared with the corresponding analytical solutions without topography
at the positions Rx1 and Rx6, respectively.

The stability checks described in this section comprise twoparts and shall be demonstrated at
the field setup of Stations 1 and 6. Together with Station 5, these stations show the strongest
influence due to topography. First, it is tested for Station 1whether the SLDM results con-
verge in the presence of progressively higher contrasts forboth of the employed FD grids. A
homogeneous mountain model proved to be sufficient since thehighest contrast occurs at the
air–earth interface. The air resistivity is approximated by a value of 50000Ωm. Figure 2.7
shows a north–south oriented vertical section of the mountain through the summit. First,
the figure illustrates once more the model concept of vertical columns for the topography.
To model a homogeneous mountain, every column section belowthe air–earth interface is
assigned to the same resistivity. The vertical FD grid used for simulating the earlier mea-
surement time range is represented by dotted lines in Figure2.7. Note the fine spacing inside
of the volcano (belowz� 0 km), designed to account for the high conductivities expected
from a priori information, in comparison with a coarser spacing for the air space above the
transmitter. The corresponding grid spacing for the later time interval (not shown here) is
approximately twice as large. Also shown is one side of the cube of nodes, indicated by the
four plus signs, that contribute to the interpolation of thefields at the receiver positions.

Figure 2.8a contains the 3D model responses at Station 1 in the form of early time appar-
ent resistivities [Petry, 1987], represented by solid lines (for now, ignore the dashed lines).
The three simulated transients correspond to different resistivities for the mountain, 500Ωm,
100Ωm and 50Ωm and thus the resistivity contrasts between air and earth of100:1, 500:1
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Figure 2.8: Grid verification results of the 3D volcano model for different resistivity contrasts be-
tween a homogeneous mountain and the air space (5 �104 Ωm) for (a) station 1 and (b) station 6. Solid
lines are SLDM solutions, dashed lines are analytical solutions over a flat surface. The three curve
pairs in each plot correspond to a mountain resistivity of500Ωm (contrast 100:1),100Ωm (contrast
500:1) and50Ωm (contrast 1000:1).

and 1000:1, respectively. Each curve is obtained by joiningthe responses of both employed
FD grids, where the vertical line at 0.08 seconds marks the connecting time point. For each
contrast, convergence of the SLDM code is achieved. Otherwise, one would observe a sig-
nificant deviation from the constant decay rate at the latestsimulated times for one or both of
the employed grids, which would probably occur shortly before 0.1 s or before 3 s.

For the second part of the grid test, the results are controlled to make sure that topographic
effects are correctly modeled. In Figure 2.8a each 3D response forms a pair with a dashed
curve, which belongs to an analytical half–space response.The half–space resistivity is the
same as used for the homogeneous mountain of the corresponding 3D result. The analytical
responses are computed at the receiver position Rx1 (Figure2.7) over a flat surface at an offset
corresponding to the horizontal offset of Station 1. According to Petry [1987] the late time
decay rate of the 1D response shows a time dependence oft

�5
�
2. At Station 1 the 3D effect

due to topography is an amplitude increase at early times, compared to the 1D curve. This
is a combination of the station elevation effect with the response of the conductive mountain
[Hördt and M̈uller, 2000]. At later times the amplitude of the 3D curve is decreased compared
to the response over a flat surface with a convergence towardsthe 1D decay rate. Both these
effects at early and late times can be observed for each contrast, indicating that both grids
model the topography correctly.

This procedure of verifying responses has to be carried out for all FD grids contributing to the
forward calculations during an inversion. In the presence of high contrasts it is actually dif-
ficult to find a single grid that produces accurate responses for multiple spaciously separated
receivers. Thus, in order to maintain stability and accuracy in an inversion of data including
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multiple separated stations, a separate grid is assigned toeach region of the mountain. In
practice, in addition to the two grids for the summit stations, three more grids are optimized
for the northern, southern and western flanks. The field setupcorresponding to Station 7,
with its data generated by transmitter Tx2, needs another separate grid. This is due to both
the separate transmitter and a different column model with more stress on the approximation
of the southern flank’s topography, compared to the ones for Stations 1–6. Note that the ad-
ditional computation time caused by multiple grids represents no major obstacle if a parallel
platform is employed in the way described in Section 2.1.2.

As a matter of course, when verifying the grid responses, it has to be taken into account that
the topography effects vary between the different receiverstations. In fact, in addition to the
summit stations, only Stations 5 and 6 show a significant influence due to topography. For
these stations, the mountain is located between transmitter and receiver. The vertical volt-
age measurements of such a field configuration are usually characterized by a sign reversal
as shown byHördt and M̈uller [2000]. The mountain acts as a conductive anomaly in the
air space between the northern transmitter and the southernflank, thereby causing a current
concentration with an antisymmetric magnetic field on either side of the anomaly [Newman,
1989]. Such signal types cannot be simulated with 1D models,affirming the inevitable mod-
eling of topography.

In Figure 2.8b the grid verification results for Station 6 arecompared with the analytical
solutions without topography calculated at the location Rx6 in Figure 2.7. Again, the first
criterion is fulfilled for each 3D response (solid lines), because no erroneous decay rate can
be observed at late times. For a 500Ωm resistive mountain (contrast 100:1), the sign reversal
occurs at the earliest time, compared to the other contrasts. After the reversal, the curve
converges to the corresponding analytical solution and decays equally. This is in accordance
with the analysis ofHördt and M̈uller [2000] for such a field geometry. The convergence at
late times between both 3D and analytical result can also be observed for a 100Ωm resistive
mountain (contrast 500:1), whereas for 50Ωm (contrast 1000:1) it is only indicated due to
the late sign reversal. For this example, the highest contrast 1000:1 thus also represents a
border for verifying the 3D response by comparison with the corresponding 1D response.

It can be concluded that the FD grids for the different regions of the mountain yield stable
and reasonable responses. In particular the regions with the largest topography effects are
crucial for a correct simulation of combined 3D effects due to both the surface terrain and
underground structures. The verification of the results fora contrast up to 1000:1 ascertains
that stability is maintained for varying models during an inversion.

2.3.5 Results

The inversion scheme’s versatility to define arbitrary model parameters led to a variety of
inversion attempts in terms of the model parameterization and the number of input data com-
ponents. The data analysis includes inversions of a single transient measured at the summit
(Station 1) and inversions of combined data sets comprisingmeasurements from spaciously
separated locations (Stations 1–7). The combined inversions shall be referred to as joint in-
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versions2, because different magnetic field components are involved.The last inversion is
applied to a combined data set, including vertical voltage measurements from the southern
flank profile (Stations m28–m42). The goodness of fit of the model predictionsdp

i to the
actual data valuesdo

i is assessed with the usual weighted least–squares criterion [Jackson,
1972]

χ �
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∑
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�
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i �2
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i
�

whereσi is the standard deviation of theith datum.

Single inversion for horizontal and dome–shaped type of layering

Among the summit measurements, the vertical voltage transient recorded at Station 1 reveals
the best data quality together with the longest measurementtime range. The transient is char-
acterized by a slow decay in the late–time data, indicating the presence of a good conductor
in the underground. The inversion has the main purpose of verifying the existence of a dome–
shaped kind of layering with downwards decreasing resistivity, as indicated by the a priori
information. For this station, good data fits were achieved with a 1D model [Müller et al.,
2002], which also showed the main feature of a resistivity decrease with depth. Hence, the
first 3D inversion was carried out under the assumption of a horizontally layered model in-
cluding topography, as described in Section 2.3.3. The transient was inverted for four layers,
thus 7 parameters are involved and define the resistivities and thicknesses of the upper three
layers and the basement resistivity. From several test inversions and importance estimations,
which are not shown here, it could be concluded that this represents an optimum in terms of
data fit and number of important parameters. More layers introduce less resolved parameters;
less layers produce a worse data fit.

Figure 2.9a shows the resulting model in a NS–oriented vertical section through the summit.
All starting layer resistivities were set to values of 100Ωm and the initial thicknesses were set
to values of 300 m, 600 m and 500 m for the top, middle and lower layer, respectively. Unlike
the referenced 1D model, the resulting structure shows no monotonous downwards decrease
of the layer resistivities. A low basement resistivity of 1.3 Ωm results from the inversion.
Although the initial model response can be improved by the inversion, the final data fit in
Figure 2.9b does not reach a satisfying degree. Different values for the starting parameters
were used in order to reduce the chance that the result represents a local minimum. However,
no further improvements could be achieved. This indicates that the parameterization in the
form of a horizontally layered model is not appropriate if topography is taken into account.

The same initial model parameters as for the previous inversion are kept in the second of
the above described types of layering, where the layers forma dome–shaped structure. For
this and all subsequent inversions, the word layering will refer to such a curved structure.
Again, it turned out that four layers are adequate in order toavoid unimportant parameters.
Figures 2.9c and d show the resulting model and data fit, respectively. In comparison with
Figure 2.9b, the superior data fit indicates that this model parameterization is more adequate

2The term joint inversion has originally been shaped byVozoff and Jupp[1975] and is typically used for the
inversion of data originating from different methods, suchas for example MT and DC resistivity soundings.
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Figure 2.9: Inversion of a single vertical voltage transient recorded at Station 1. (a) and (b) Re-
sulting model and data fit for a horizontally four–layered mountain, respectively. (c) and (d) Resulting
model and data fit for four layers which follow the terrain shape.

for the underground structure in the vicinity of the summit.In accordance with the a priori
information, the resistivity structure is characterized by a strong decrease with depth. The
good conductor starts at approximately 950 m depth below thesurface with a resistivity of
8 Ωm and a further decrease to 0.4Ωm at 1380 m.
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Joint inversion for a layered structure

With a dome–shaped conductivity structure favored by the previous inversion results, the
same parameterization is now used to invert a combined data set. It includes 9 voltage tran-
sients distributed over the receiver positions 1–6. An overview of the involved stations is
given by Figure 2.10a. Vertical voltages were recorded at all positions. In addition, horizon-
tal voltage components parallel to the transmitter exist for Station 4 and perpendicular to the
transmitter for Stations 5 and 6. Figures 2.10b and c show theresulting model and the data
fit, respectively. In spite of the small number of model parameters and the large area covered
by the receivers, a good data fit is obtained. The vertical components at Stations 1 and 2
and the horizontal component at station 4 are reproduced to ahigh degree, whereas the other
stations are fit in a more qualitative sense. An outstanding result is the reproduction of the
sign reversal in the vertical component data of Stations 5 and 6, marked with plus and minus
signs in Figure 2.10c. The early time solution for the vertical component at Station 6 is in
good agreement with the observed data. However, rather large late time misfits exist for both
components of Station 6 and the vertical voltage of Station 5.

For the starting model, each layer thickness is set to an initial value of 500 m, and a homo-
geneous mountain (100Ωm) is assumed. The total errorχ of the combined data set can be
decreased from a value of 53.8 down to 10.3 during 9 iterations. Afterwards, no further rela-
tive misfit decrease can be achieved. To generate predicted data for all stations, five different
FD grids are employed in order to account for the spacial receiver separation and the late
recorded times of Station 1.

From the data fit, it can be concluded that the simple model explains the most important
features of the data and represents a good approximation of the resistivity structure over
a rough scale outlined by Stations 1–6. The resulting model shows the beginning of the
conductive zone at approximately 940 m below the surface. Itis very interesting, that both
the integrated conductivity of the first two beds and the parameter values below the second
layer are in very good agreement with the single inversion result in Figure 2.9c. By means of
model variations, involving an extra fictitious layer at thebasement, it can be estimated that
the highly–conductive zone of 0.4Ωm is resolved to a depth of approximately 500 m below
the beginning of the basement. Because no local deviations from the layered structure are
taken into account by this parameterization, the fact that no quantitative data fit is achieved
for all transients shows that more information is containedin the data. In particular the slower
decay of the observed late time vertical voltages at Stations 5 and 6 indicates a locally more
complex conducting underground. Hence, the following inversion attempts assume a layered
background with additional model features added.
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Figure 2.10: Joint inversion of the combined data set including Stations1–6 for a dome–shaped
four–layered mountain model. (a) Transmitter and receiverpositions of the combined data set. (b)
Resulting mountain model. (c) Final data fits. The transients are named by the station location and
the magnetic component.
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Joint inversion for a layered structure and an additional conductive block

In addition to the parameters describing the four–layered background of the mountain, a rect-
angular block below the summit is defined in each of the following inversions. The block’s
position and geometry is kept fixed and its resistivity is treated as another model parameter.
Again, the combination of 9 transients is used as input data.

The first inversion attempt is carried out under the assumption of a vertical conduit below the
summit. The presence of such a pipe–like structure with a distinguished resistivity is justified
by the volcano’s permanent activity with a present effusionrate of about 105 m3 per month
[Siswowidjoyo et al., 1995]. The conduit is represented by a column–shaped blockwith a
fixed geometry, embedded in the four–layered background andextends downwards beyond
the estimated border of resolution. Its horizontal extension is 1�1 km2. The layer parameters
are neither initialized to the values of the previous inversion result nor kept fixed, because the
additional structure is likely to influence the layered background during the inversion. For
the layers, the same starting parameters as in the previous inversion are used. The additional
model parameter, the block’s resistivity, is initialized by a value of 10Ωm in order to account
for an assumed higher conductivity due to (partial) melts. The final model is shown in both
a NS–oriented and a WE–oriented section in Figure 2.11a. A resistivity of 52 Ωm results
for the additional pipe. The layered background below a depth of approximately 1000 m
under the surface is similar to the result in Figure 2.10b. Noincreased data fit compared to
the combined inversion without an additional block can be achieved. The result produces an
error ofχ � 11�7, where no visible differences to Figure 2.10c for each separate component
exist. The relative misfit decrease converges to zero after 6iterations.

The second inversion attempt of this kind involves a block representing a superficial magma
chamber at approximately 500 m below the summit. Its existence is suggested by the seismo-
logical investigations ofRatdomopurbo and Poupinet[1995], who show a zone with anoma-
lously high attenuation of seismic waves 1–2 km below the summit. Also, according to
Camus et al.[2000], the eruption history of the period starting at the end of the 18th cen-
tury suggests such a reservoir. First, the more or less continuous growth of summit domes
interrupted by collapses and phases of quiescence would match the idea of a continuously
depleted and refilled magma reservoir at a small depth. Second, the absence of large ign-
imbrite3 eruptions renders the alternative of a large deep reservoirinstead of a shallow one
less possible [Camus et al., 2000]. The block geometry is chosen to be 2�2 �2 km3 and
is initialized to a value of 10Ωm. The resulting model in Figure 2.11b reveals a rather re-
sistive reservoir. Similarly to the previous result, no real improvement of the data fit can be
achieved by this approach. Here, a final error ofχ �11�5 results after 10 iterations, using the
same starting parameters as before. Another attempt not shown here placed the block 1 km
southwards from the position shown in Figure 2.11b, yet no further misfit decrease could be
achieved as well.

3The rock formed by the widespread deposition and consolidation of ash flows and Nuees Ardentes. It is
characterized by an inhomogeneous composition in terms of the grain size of its constituents [Matthes, 1990].
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Figure 2.11: Model results from joint inversions of the combined data set(Stations 1–6) for a dome–
shaped four–layered mountain model and an additional blockbelow the summit. The block represents
(a) a vertical conduit, (b) a shallow magma reservoir and (c)a deep magma reservoir. Note the larger
vertical scale in (c).
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In the last inversion, a 2�2�2 km3 extended block is placed at a depth of approximately 2 km
below the summit. Such a deep structure is likely to be hiddenby the conductive basement of
the volcano, which has been confirmed by all previous inversions. Nevertheless, this attempt
is carried out in order to investigate, if a deep reservoir with conductivities different to the
basement can improve the data fit. This could be interpreted as a deep magma reservoir.
However, like in the preceding attempts, the inversion result shown in Figure 2.11c, obtained
after 6 iterations, does not provide an improved data fit. Thefinal block resistivity of 33Ωm
contrasts with the 1Ωm basement. Compared to all previous joint inversion results, the error
of χ �12�2 reveals a slightly worse fit, yet again with no significant difference to Figure 2.10c
for the misfit of each separate transient.

All three inversions confirm the monotonous decrease of the resistivity with depth. How-
ever, there exist rather large differences between the parameters for the upper two layers. In
contrast, the third layer’s thickness and resistivity and the basement resistivity are similar for
each inversion result. This indicates a higher resolution of these layer parameters, compared
to the upper two layers. Further, it can be concluded that theadditional blocks are not relevant
for an enhancement of the data fit, although this does not negate the existence of a shallow
or deep reservoir. Due to the constant activity of Merapi, itis likely that regions of (partial)
melts exist below the summit. However, the block resistivities resulting from all three inver-
sions appear too large for molten material, because this should involve values known to be
in the range of approximately 1–20Ωm [Lénat, 1995]. Either the assumed reservoirs cannot
be distinguished by resistivities contrasting with the background or the spatial distribution of
melts inside of the volcano is far more complicated than represented by such simple block
models.

Joint inversion for a layered structure with fault

The following inversion involves an additional vertical voltage transient measured at Station 1
yet produced by the southern transmitter (Tx2 in Figure 2.3), thus the joint data set now
includes 10 transients. The additional data component, referred to as Station 7, expands
the resolution of the inversion domain into the southern direction. Its inclusion in the joint
data set is motivated by the question whether data from the southern transmitter can also
be reproduced by a four–layered model. The inversion involves a separate FD grid for the
simulation of Station 7, in addition to the five grids used forStations 1–6, in order to account
for the different transmitter and the proper modeling of thesouthern topography. Figure 2.12a
shows the model of the inversion result. Figures 2.12b and c show the observed and predicted
data for Station 7 and Stations 1–6. Comparing the errorsχ for each separate data component
with the corresponding data fits resulting from the inversion without Station 7 (Figure 2.10c),
one observes a slightly worse data fit for the majority of Stations 1–6. In particular the
horizontal component of Station 4 shows a much worse fit in theearly time part. Moreover,
the data of Station 7 cannot be reproduced to a satisfying degree. Other attempts with varying
starting model parameters also failed to achieve a better data fit as shown in Figure 2.12. It
is obvious that the number of parameters is too small for the enlarged inversion domain. The
poor data fit of Station 7 suggests a more complicated resistivity structure below the southern
flank.
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Figure 2.12: Model results from a joint inversion of the combined data setincluding Stations 1–7
for a dome–shaped layered mountain model with four layers. (a) Final model result. (b) Final data fit
for Station 7. (c) Final data fit for Stations 1–6.
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In order to define appropriate additional model parameters,1D inversion results of both
LOTEM and in–loop measurements on a profile on the southern flank are employed. A
2D pseudo–section obtained from 1D LOTEM joint inversion results [Kalscheuer, 2003] is
shown in Figure 2.13. It reveals a clear transition between the UTM coordinates 9159 km
and 9160 km to a more shallow good conductor on the southern part of the profile. Evi-
dence for such a strong lateral resistivity change close to the UTM coordinate 9159 km was
also given by the more shallow 1D resistivity sections obtained from in–loop data [Koch,
2003]. However, it can be expected that the 1D inversions provide only poor a resolution
of the lateral structure. Nevertheless, the layer parameter set is extended by introducing a
WE–oriented fault plane below the southern flank. The plane divides the inversion domain
into two separate layered sections and is chosen to be located at the northern UTM coordinate
9159 km (Figure 2.13). This is approximately 7.5 km south of Merapi’s summit. North of
the plane, the four–layered structure is kept, whereas three layers are used for the southern
model section. The combination of 10 voltage transients arethus inverted for altogether 12
layer parameters.

Figure 2.13: 2D pseudo section from 1D inversion results of a southern flank profile [Kalscheuer,
2003]. The 1D Occam inversion results are shown for each station with respect to its elevation on the
profile.

Figure 2.14a both illustrates the parameterization and shows the inversion result. First, a very
distinct difference between the resulting model sections can be observed, indicating the ne-
cessity of the additional parameters. Comparing the northern section with the inversion result
in Figure 2.10b, one observes only minor differences below the second layer, whereas larger
deviations can be seen for the upper two layers. Nevertheless, the monotonous resistivity
decrease with depth down to a value of 0.7 is in good agreementwith all previous inversion
results. A minor decrease in the goodness of fit can be revealed from comparing the separate
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Figure 2.14: Model results from a joint inversion of the combined data setincluding Stations 1–7
for a dome–shaped layered mountain model with a fault plane below the southern flank. (a) Final
model result. (b) Final data fit for Station 7. (c) Final data fit for Stations 1–6.
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data fits and its errorsχ in Figure 2.14c with the corresponding fits in Figure 2.10c. Here, a
total error ofχ � 12�0 (previouslyχ � 10�3) results for the entirety of data belonging to Sta-
tions 1–6. This is mainly caused by a worse early time data fit for Station 3 and the horizontal
component of Station 4. Due to its distance, the direct influence of the fault can be expected
to be very small on both Stations 3 and 4. The poorer fit is thus caused by the altered upper
layers of the northern section. The poor vertical component’s late time data fit of Stations 5
and 6 is not improved by the additional model parameters.

Compared to the previous approach without a fault structure(Figure 2.12), the inversion result
represents a high improvement due to the superior data fit of Station 7 (Figure 2.14b). The
only significant misfit can be observed at the earliest times.Probably, the early time fit could
be improved by a more resistive overburden, similar to the one shown in Figure 2.10b. This
is suggested by comparing the horizontal component’s data fit of Station 4 in Figure 2.10c
with the corresponding fit in Figure 2.14c, where a similar early time misfit can be observed
due to the less resistive overburden.

The inversion result includes two important aspects.Mitsuhata et al.[2002] showed that the
joint use of synthetic data generated by a left–side source and a right–side source significantly
improves the resolution of the underground between both sources. This could also be con-
firmed by comparing 2.5D joint inversion results of field datagenerated by such a transmitter
setup with the results from a single source. A better agreement with a model obtained by a
MT survey could be observed when inverting the data from bothsources. In the case of the
presented inversion, the two transmitters are located similarly with respect to the inversion
domain below the volcanic edifice. Hence, an increased resolution of the four–layered part
of the model is given compared to the joint inversions involving a single transmitter. This
makes the result in Figure 2.14a more important. The presence of a highly conductive zone
(� 1 Ωm) below a layer of intermediate conductivity, here it is 15Ωm, is confirmed because
of the good agreement with the inversion result from Figure 2.10b, where only the northern
transmitter is involved.

Another outstanding result is the very good agreement of thesouthern model section with the
resistivity structure derived from 1D joint inversions. The southern section of the inversion
result is characterized by a more shallow conductive layer below an approximately 250 m
thick overburden. The small difference between the resistivities of the intermediate layer and
the basement indicate a two–layered structure in the southern section. This is in accordance
with the pseudo section in Figure 2.13, where the two–layered structure south of the UTM
coordinate 9159 km is dominated by a shallow conductor with resistivities mainly below
10 Ωm.
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Inversion for the position of a conductive block in a homogeneous half–space

The data inverted in the following originate from the southern flank profile given by Sta-
tions m28–m42 and the transmitter Tx3 (see Figure 2.3), alsocalled the “Kaliadem”4 profile.
A closer view of the field setup is shown in Figure 2.15. First,it needs to be emphasized
that the following inversion is a rather experimental approach without the primary aim of
achieving a realistic earth model. This has several reasons. Earlier interpretation attempts for
these measurements were made byMüller [2000b] using 3D forward modeling. His results
indicate a far more complicated resistivity structure thancan be taken into account by the
limited model complexity allowed by SINV.

Figure 2.15: Transmitter and receiver positions of the stations m28–m42located on Merapi’s
southern flank.

Another reason which makes the inversion of the Kaliadem data a challenging task is the
data quality. Unfortunately, the profile was located in a region with a very high noise influ-
ence due to the local power supply. Therefore, even after applying rather sophisticated filter
techniques [Scholl, 2001] to the recorded transients, the processed data from this region is
still characterized by a significant portion of noise [Müller, 2000b; Kalscheuer, 2003]. The
measurements are vertical voltages and are shown by the cross symbols in Figure 2.16. It can
be seen that the noise influence appears in the form of sharp deviations of single data points
from an otherwise smooth transient.

All stations are characterized by double sign changes, withthe exception of Station m28,
where a single reversal exists. The sign of the measurementsis indicated by either ’+’ or ’-’
above the data curves in Figure 2.16. The determination of the correct sign of the data can
become difficult if this is not correctly taken into account during the survey. Unfortunately,

4The transmitter Tx3 (see Figure 2.3) was located in the smallvillage of Kaliadem on the southern flank.



42 THREE–DIMENSIONAL CONSTRAINED INVERSION

the axis orientation (upwards or downwards) of the wire loopused for measuring the vertical
voltage was not considered during the measurements. Hence,the correct sign of the data
cannot be determined. FollowingMüller et al. [2002], each transient is assigned to the same
sign at early times, because the reversals show a consistentbehaviour in the sense that there
are no rapid variations in shape along the profile.

One notices that no data errors are shown in Figure 2.16. Because of the poor data quality, the
data processing reveals a high average value for the standard deviations. The errors are even
above the average for the data points belonging to the sign changes. Weighting the data by the
original standard deviations leads to inversion results that do not reproduce the sign reversals,
because of a too small influence of the corresponding data points. Therefore, the presented
inversion involves an equal weighting by assuming a relative error of 1 % for each datum.
As mentioned in Section 2.1.2, a data transformation using the Area–Sinus–Hyperbolicus
function is employed in order to account for the changing sign. Refer toScholl[2001] for a
description about the corresponding transformation of thedata errors.

The consistent sign reversals at all stations indicate strong effects due to 3D structures. The
first 3D modeling attempts tried to explain the reversals by the topography [Müller, 2000b].
The local terrain is dominated by approximately 50–100 m deep canyons located roughly
parallel on either side of the profile.Müller [2000b] investigated the influence of the canyons
by approximating them with 3D blocks. However, neither a very resistive canyon due to
the air space nor a conductive canyon, based on the assumption of fluid concentrations in
the valleys, could reproduce any sign changes. Approximating the profile’s topography with
the more accurate vertical column approach could also not reproduce any sign reversals.
Moreover, including the topography showed only a marginal influence on the predicted data.
Hence, the following analysis involves an earth model without topography.

The starting model used for the inversion is based on the 3D modeling results fromMüller
[2000b]. Although no quantitative fit to the data could be achieved,he concluded that a 1Ωm
conductive WE striking block close to the surface in the northern part of the profile seems to
be the most likely explanation for the observed reversals (see alsoMüller et al. [2002]). The
anomaly is located between Stations m30 and m32 which is supported by MT measurements
[Haak, 1998] on this profile. The induction arrows for a period of 0.2 seconds point northward
north of Station m30 and southward south of Station m30, indicating a good conductor below
the station. The anomalous block reaches the surface with a vertical extent of 100 m and a
width along the profile of 1 km and a lateral extent of 4 km. The 500 Ωm background has
an additional conductive layer of 20Ωm with a thickness of 1000 m at 500 m depth. With
that model, a single and a double sign reversal can be simulated at Stations m36 and m40,
respectively.

The presented inversion attempt starts from a similar modelguess. Here, importance is at-
tached to the question whether a single 3D structure can cause the consistent sign reversals
over the profile. Therefore, without intending to model the true background resistivity struc-
ture, a homogeneous 500Ωm background is assumed. According to the 1D joint inversion
results fromKalscheuer[2003] shown earlier in Figure 2.13, the southern flank reveals no
such resistive background below the Kaliadem profile. Furthermore, the inversion result of
Figure 2.14a is in contrast to a homogeneous background.
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Figure 2.16: Combined inversion of Stations m28–m42. Observed data withboth initial and result-
ing model response. The upper and lower signs correspond to the signs of the observed and predicted
data, respectively.
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Figures 2.17a and b show the block’s geometry and position ina plan view and in a profile–
versus–depth section, respectively. For simplicity, the transmitter’s angle of inclination (ap-
proximately 10

�

) to the WE direction is neglected. The dashed lines represent the initial
model and the solid lines represent the block’s position after an inversion, where both resis-
tivity and geometry remain fixed, yet the position is variable. The size of the 1Ωm conductive
block is chosen to be 4�0�5

�4�8 km3 for the WE, NS and vertical extension, respectively.
The vertical extension is much larger than assumed byMüller [2000b] and is based on the
observations of the mentioned MT study. Sign reversals can be simulated at each station
by the initial block position, although the time of occurrence is not matched for most of the
stations.

Two free position parameters are allowed. The first parameter defines the position on the axis
parallel to the NS direction, and the second one describes the vertical position. In the initial
model the block starts at a depth of 150 m below the surface, and the northern edge is at a
distance of 500 m south from the transmitter. Compared to theinitial position, the inversion
shifts the block 50 m closer to the surface and approximately200 m closer to the transmitter.
Due to the strong constraints on the model complexity, a datafit increase could be achieved
within only two iterations.

In Figure 2.16 the solid curves show the data calculated fromthe inversion result and the
dashed curves show the initial model response. Both initialand final model response fail to
reproduce the correct amplitudes for most of the data. This is likely to be caused by a wrong
assumption about the background resistivity. Another aspect to be considered are amplitude
shifts due to possible local near–surface conductors belowthe grounded–wire source. As
described in detail byNewman[1989], a conductor close to the transmitter causes a shift
from the voltage amplitude level arising from the host. Depending on the location of the
transmitter with respect to the near–surface conductor, the response that is observed can be
shifted above or shifted below the host response.Newman[1989] shows that such effects can
be removed to a large degree by scaling the amplitude of the predicted data by an adequate
constant. Therefore, if an erroneous amplitude is assumed to be caused by a conductor close
to the transmitter, the amplitude deviations are less critical.

More crucial is the question whether the times of the sign reversals are matched by the pre-
dicted curves, because this is influenced by the conductive block between transmitter and
profile. In Figure 2.16 the lower signs in each plot mark the sign of the predicted data. The
small parameter change between initial and final model has a relatively strong impact on the
simulated data. At Station m28 the inversion moves the sign change of the initial model
towards earlier times. This might be enforced by the observed early time data. It is charac-
terized by a strong amplitude decrease during the first data points, yet without changing the
sign. The double sign reversal at Stations m30 and m32, with anarrow intermediate nega-
tive data part, cannot be reproduced. However, for both stations the simulated single reversal
occurs at a time that is in more agreement with the observed data than the reversal time of
the initial response. The occurrence of the predicted double sign changes at Stations m36,
m38 and m40 are in much better agreement, compared to the initial response. However, for
Station m42 the two sign reversals, already reproduced by the initial model, vanish for the
new position of the block. In general, the inversion result produces an improved data fit. The
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Figure 2.17: Initial and final model producing the corresponding responses in Figure 2.16. The
model parameters are represented by both the lateral and vertical position of the WE–oriented con-
ductive block. The initial and final model are shown in (a) a plan view and (b) a vertical section along
the profile.

total error is decreased from an initial value ofχ � 73�7 to a final value ofχ � 21�7 during
the inversion. This mainly results from the shift of the predicted sign changes towards the
observed reversal times.
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To draw a conclusion, the inversion attempt successfully demonstrated the versatility of SINV
by the capability of adapting the model parameterization todifficult inversion problems. The
simplified model of a complex structure can be enhanced if an appropriate parameterization is
chosen. However, the inversion result fails to reproduce both the correct number of reversals
for Stations m30, m32 and m42 and the exact shape of the curvesfor all stations. This shows
that the real resistivity structure is much more complicated, perhaps a more complex system
of several conductors interacting with each other. Inverting for such a model would require a
much larger number of parameters.

More complications might arise from the presence of pipelines in the survey area, used for
the local water supply. Their existence had been confirmed bythe local inhabitants during
the measurements. However, mapping the true positions turned out to be too difficult due
to the lack of sufficient information. Most pipelines are oriented in a NS direction and a
few are oriented in a WE direction. To study pipeline effectswith EM forward modeling
codes, one usually uses blocks or thin sheets such that the product of conductivity and area
of the block’s cross section approximates the corresponding product for a highly conductive
pipe [Kriegsḧauser, 1991;Hördt, 1992;Tezkan, 1993]. Here, no sign reversals could be
reproduced for any station by placing an elongated conductive block, representing a pipe, in
a direction perpendicular to the transmitter. Different locations on the WE–oriented axis were
tried for such a pipe model.Kriegsḧauser[1991] showed that strong distortions in the form of
sign reversals are due to pipelines with an orientation parallel to the transmitter and located
close to the receiver. Such could also be the case on the Kaliadem profile, although two
reasons negate the assumption that the data is dominated by pipeline effects. First, the above
mentioned MT study, employing a period of 0.2 seconds, indicates a conductive anomaly in
a much larger depth than typical for pipelines. Second, signreversals usually occur if the
receiver is located very close to a pipe, as also shown byHördt [1992], which is unlikely to
be the case for each receiver of the profile.

2.3.6 Interpretation and conclusions

In comparison with both MT [Müller, 2000a] and DC geoelectrical measurements [Friedel
et al., 2000], the LOTEM data provides a greater insight into the underground below the
volcanic edifice due to a better data covering of the summit region. Also, the exploration
depth fills the gap between large–scale MT and shallow DC resistivity soundings. The general
structural resistivity image of the volcanic edifice, obtained from the presented inversions, is
in good agreement with the trends indicated by both mentioned disciplines.

The most important result is the confirmation of the existence of an extensive conductive
zone below the volcanic edifice. The volcano models were constrained such that the lay-
ered beds closely follow the topography. Probably there exist deviations from this simplified
structure, because some data components show significant misfits or can only be explained
to a qualitative degree. However, an upwards–directed curvature in the resistivity structure
can be regarded as confirmed. In particular the superior datafit of the summit Station 1 that
is obtained with a dome–shaped layer structure, compared tothe fit given by horizontal beds,
affirms an upwelling of conductivity sources below the summit. In order to obtain a rough
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error estimation of the parameters characterizing the conductive zone, the presented inver-
sion results involving a curved layered background are compared. This reveals a constant
image for the lower conductive zone below the volcano. To quantify, mean values and its
standard deviations are used. The bed of intermediate resistivity (the third layer) starts at
a depth of 918�50 m with a thickness of 407�23 m and a resistivity of 9�3 Ωm. The
basement resistivity has a mean value of 0.5�0.1 Ωm. The upper layer parameters reveal
the largest differences between each other, because the LOTEM data does not provide mea-
surements at times which are early enough to resolve the shallow structure. Nevertheless,
a strong monotonous resistivity decrease, starting from a rather resistive overburden, can be
concluded with some ambiguity from the different inversionapproaches. This is also a ma-
jor conclusion drawn from DC resistivity imaging along the volcano’s flanks [Friedel et al.,
2000].Müller et al.[2002] propose a 1000Ωm resistive basement below the good conductor,
based on 1D inversions of data measured during the first LOTEMsurvey in 1998. However,
the monotonous resistivity decrease affirmed by the presented results rather indicates a con-
nection with a local anomaly of low conductivity below Merapi observed on a regional scale
by a MT survey across Central Java [Ritter et al., 1998].

The results support the existence of a large hydrothermal system inside of the volcano, be-
cause fluids seem to be the main cause for the extensive regionof high conductivity. The
alternative explanation by a large magma reservoir is unlikely if one takes the measurements
of other disciplines into account. First, tilt and DGPS5 data give no evidence for a large
magma chamber in altitudes higher than 1000 m below Merapi’ssurface [Rebscher et al.,
2000]. Also, large amounts of magma would not match density estimations obtained from
gravimetric measurements [Gerstenecker, pers. comm]. The other possibility of sea water
intruding from the ocean is not supported by the regional MT profile across Central Java
[Ritter et al., 1998]. Moreover, the isotopic analysis of the fumarolic water at the summit
shows that the main water component is rainwater with a smallmagmatic fraction [Zimmer
and Erzinger, 1998].

Müller et al.[2002] assume fluid resistivities of 0.2–1Ωm in order to obtain estimated poros-
ity values ranging from 10 to 20 % for the conductive zone below the flanks. Such high
porosities are indeed supported by gravity observations [Setiawan, 2002]. However, they
cannot be the cause for the high conductivities below depthsof 900 m, because this would
require even higher porosities. Actually, the contrary effect of a downwards increased resis-
tivity should occur due to the bulk porosity decreasing withdepth by compression of cracks
and pores [Ryan, 1987]. Lénat[1995] mentions departures from Archie’s law in connection
with experiments on Hawaiian and Icelandic basalts, where lower than expected resistivities
are explained by the presence of hydrated minerals such as clay minerals or zeolites. Even
if not clearly identified by geophysical observations, (partial) melts must be present due to
Merapi’s constant activity. Hence, the heat is likely to generate a circulation of hydrother-
mally altered fluids with concentration processes in the volcano’s central part. The significant
upwelling of conductivity sources derived from the inversion results supports the idea of a
vertical fluid transport.

There exist contrary views about the existence of a shallow magma reservoir. As mentioned

5Differential GPS (Geo Positioning System).



48 THREE–DIMENSIONAL CONSTRAINED INVERSION

before,Camus et al.[2000] relate the quasi–steady magma output to the presenceof a small
superficial reservoir. Also, the seismological observations of Ratdomopurbo and Poupinet
[1995] support an aseismic zone related to a shallow magma chamber. On the other hand,
other seismic data [Wassermann et al., 1998] and deformation measurements [Westerhaus
et al., 1998;Beauducel and Cornet, 1999] do not show a clear indication of an aseismic
zone. The presented LOTEM data analysis neither supports a vertically extended conduit
nor a shallow or deep reservoir distinguished by a very low resistivity. However, since the
resistivity of molten lava is known to range from about less than 1 to 20Ωm [Lénat, 1995], a
reservoir below the zone of high conductivities, approximately 900 m, might well be hidden
in the layered host. This however would be beyond the resolution capabilities of the LOTEM
method. Apart from the presented block–like model ideas forthe structure of a possible
reservoir, a more complicated distribution of the melts over a system of dykes may exist in
reality.

The clear transition to a different resistivity structure below the foothills of the southern flank
indicates that conductivity sources may be different compard to the summit area. At greater
distances from the summit, fluids that must not be directly related to the hydrothermal system
and thus not enriched by hydrated minerals may be the most likely cause for the shallow
conductivities. The mentioned regional MT study revealed other shallow conductors of this
kind at several places in Central Java. The shown inversionsinvolve an approximation of the
transition by a vertical fault. The question about its true structure is especially worth further
investigation in conjunction with the known southern conductivity anomaly observed over
the Kaliadem profile. This anomaly has been observed by LOTEMmeasurements [Müller
et al., 2002], CSAMT6 data [Supriadi et al., 2000] and Central–Loop data [Koch, 2003] and
coincides spatially with the assumed position of the vertical fault in Figure 2.14a.

The analysis of the Kaliadem profile demonstrates that TEM measurements with strong dis-
tortions in the form of sign reversals represent a highly complicated inversion problem. Be-
cause of the limitation of the spatial data distribution to aprofile instead of an area, a 2D
inversion capable of inverting for a finely parameterized underground is a more appropriate
approach for this kind of data. The further analysis of the Kaliadem profile is the subject of
ongoing research [Kalscheuer, 2003]. A final clarification about the anomaly’s geometry and
interaction with the background resistivity structure would be possible with an area–wide dis-
tribution of measurements available, thus enabling the application of a large–scale inversion
as presented in Chapter 4.

6Controlled Source Audio Magnetotellurics.



CHAPTER 3

A PARALLEL FD SCHEME FOR 3D TEM
MODELING WITH NON –CAUSAL SOURCES

The previous chapter demonstrated how an efficient data analysis can be realized using 3D
earth models with a low degree of complexity. A great advantage is given by the fact that no
large amounts of data distributed over the target are required. On the other hand, sufficient
prior knowledge about the target is needed in order to define appropriate parameters of a
model such that its main structural features can be refined byan inversion. In many cases,
no such prior knowledge might be present. As a consequence, an extensive data acquisition
with an area–wide distribution of sensors cannot be avoidedin order to provide a sufficient
resolution of the underground. Such cases are typical in mineral exploration [Nabighian
and Macnae, 1991], hydrological and hazardous waste site characterization [Pellerin and
Alumbaugh, 1997] or general geological mapping.

The inversion of large data sets collected over a 3D earth with an unknown and extremely
complicated structure leads to the necessity of adequatelyfine model parameterizations. Such
an imaging scheme will be developed in the course of the following two chapters. It will be
outlined in more detail in Chapter 4 how the scheme is based onthe principles of seismic
wavefield imaging methods, also known as migration. For now,it shall only be emphasized
that migration techniques involve the evolution of causal source fields induced simultaneously
by multiple spatially distributed sources, where both electric and/or magnetic source types are
considered. Furthermore, the source excitation continuesduring propagation of the EM fields
over the whole simulation time range. These fields will laterbe referred to as residual fields
and cannot be simulated by the SLDM code ofDruskin and Knizhnerman[1988].

Therefore, an explicit finite–difference (FD) 3D time–stepping scheme for the simulation of
EM fields is developed in this chapter. FD schemes have been used extensively, for their
great simplicity in solving multidimensional time–domainmodeling problems for controlled
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sources. Among the first approaches for EM modeling,Goldman and Stoyer[1983] ad-
dressed the simulation of time–domain responses in a simplified axially symmetric media
with an implicit and 2D FD formulation. Later a quasi–3D approach, where 3D shapes were
realized by a straight circular cylinder embedded in a 2D background, was presented by
Tabarovsky and Rabinovich[1988]. A simulation of TEM surveys over thin vertical conduc-
tors embedded in a half–space with overburden was describedby Oristaglio and Hohmann
[1984]. Their numerical method for solving the 2D transverse electric mode of Maxwell’s
equations is based on an explicit FD scheme originally proposed byDuFort and Frankel
[1953] and generalized to inhomogeneous models and irregular grids. Adhidjaja and Hoh-
mann[1989] attempted to develop a direct time–domain, FD solution for the EM response
of 3D models. Their solution is formulated in terms of secondary magnetic fields to avoid
dealing with a discontinuous normal component of the electric field, yet faces problems with
discontinuous conductivity gradients at interfaces.Wang and Hohmann[1993] presented an
explicit 3D FD scheme for loop sources that employs a modifiedversion of the DuFort–
Frankel method. The solution incorporates analytical impulse responses from an assumed
homogeneous earth model as initial conditions. Their scheme employs a staggered grid,
which was originally described byYee[1966] and represents a suitable method for the spatial
discretization of Maxwell’s equations.

The development of the presented FD algorithm involves reviewing the theory of Maxwell’s
equations for 3D heterogeneous media and the time–steppingscheme of the equations by us-
ing a staggered–grid in conjunction with a modified version of the DuFort–Frankel method.
The time–stepping scheme and stability criteria are based upon the solution presented by
Wang and Hohmann[1993]. However, there are differences in several key aspects. First, the
algorithm is extended to provide the capability of simulating non–causal source fields. Fur-
thermore, the capability of simulating field responses due to multiple electric and/or magnetic
sources is provided by the algorithm. This is required by themigration techniques involved
in the inversion presented in Chapter 4. Second, the initialconditions are computed for an
arbitrarily complex geological media. This involves the solution of a 3D Poisson problem
prior to the time–stepping process in order to account for the presence of a non–causal DC
electric field arising from the galvanic source. The third major difference is also related to
the initial conditions. Because this work focuses on data types given by the time derivative
of the magnetic induction (voltage) instead of the magneticfield, the explicit computation of
the initial DC magnetic field can be avoided. This is accomplished by advancing voltages
instead of magnetic fields in the time–stepping algorithm. The modifications to the time–
stepping scheme involve a divergence–free condition on both the electric current density and
the voltage to ensure accurate results at late times. At last, the algorithm is designed to per-
form on parallel computing platforms in order to address thehigh computational demand of
an explicit time–stepping scheme.

3.1 Methodology

In order to simulate the propagation of the total electric and magnetic field intensitiese
�
r �t �

andh
�
r �t �, respectively, as a function of the position vectorr � �

x�y�z� and timet in a 3D
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earth, the governing Maxwell’s equations1 in the time domain are reviewed,

∇ �e
�

µ
∂h
∂t

� �ms
� (3.1a)

�∇ �h
�σe

�γ
∂e
∂t

� �js
� (3.1b)

whereσ is the conductivity andµ is the magnetic permeability of the earth. In Equation (3.1b)
γ represents a fictitious displacement, which is explained further below. Equations (3.1) are
inhomogeneous, because regions containing external sources are taken into account, where
js andms are the impressed electric and magnetic current source fields, respectively. The
magnetic currentms can be described by means of a magnetic polarization vectormp (Ward
and Hohmann[1988], p. 144)

ms�r �t � �µ
�
r � ∂

∂t
mp�r �t �� (3.2)

This way of representing magnetic types of sources assumesmp to be an integrated surface
current. While being an useful artifice, Equation (3.2) is a purely theoretical construct as it
demands the existence of magnetic monopoles in order to satisfy the continuity condition for
magnetic charges [Ward and Hohmann, 1988].

The source field generated by the primary galvanic transmitter is further defined by

js�r �t � � Iδ
�
r �u�t ��

whereI denotes the electric current,δ is Dirac’s delta function, and the functionu
�
t �describes

the source waveform after switching off the constant transmitter signal. Further needed are
the conditions

∇ �b � 0� (3.3a)

∇ �j � 0� (3.3b)

and the identities

ḃ � µ
∂h
∂t �

(3.4a)

j � σe� (3.4b)

whereḃ will be referred to as voltage andj represents the total conduction current density.

The proper field simulation requires an adequate scheme for the discretization of the spatial
differences given by the curl and divergence terms in Equations (3.1) and (3.3). The actual
propagation of the EM field with progressing time is inherentin the discretization of the time
derivatives in Equations (3.1). Both is accomplished by means of the staggered grid outlined
in the following sections.

1In MKS system of units.
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3.1.1 The staggered grid

The staggered grid [Yee, 1966] for discretizing Maxwell’s equations in three dimensions is
illustrated in Figure 3.1. The indicesi � j andk are used to number the grid point locations
in the x� y and z directions, respectively. Electric fields are sampled on the center of cell
edges and magnetic fields on the center of cell faces. For example, to specify the sampling
of the horizontal electric field in thex direction for a given grid node

�
i � j �k�, the notation

ex
�
i
� 1

2 � j �k�will be used. The corresponding magnetic field in the same direction is specified
by hx

�
i � j

� 1
2 �k

� 1
2�.

The staggered grid is useful for the discretization of the curl operations in Maxwell’s equa-
tions by means of elementary electric and magnetic loops [Wang and Hohmann, 1993]. Fig-
ure 3.1a illustrates how each electric field component is surrounded by an elementary loop
of four magnetic components. As exemplified by the dashed rectangle aroundex

�
i
� 1

2 � j �k�,
the axis of the magnetic loop is given by the edge where the electric field is sampled. The
electric field components are assumed to be constant along the edges. For example, the field
ex
�
i
� 1

2 � j �k� is constant along the edge between the nodes
�
i � j �k� and

�
i
�

1� j �k�. The ele-
mentary electric loops intertwine with magnetic loops, because a loop of four electric com-
ponents on the borders of a cell face curls around each component of the magnetic field as
shown in Figure 3.1b. The magnetic fields are oriented perpendicular to the face where they
are sampled and are assumed to be constant over its area.

Each FD grid cell represents an element of the earth model with different material propertiesσ
andµ, which are assumed to be constant over the cell. FollowingWang and Hohmann[1993],
each electric and magnetic field component is assigned to a directional electric conductivity
and magnetic permeability, respectively. A directional conductivity is evaluated by averaging
the weighted conductivities of the four prisms connected bythe corresponding magnetic loop.
This accounts for the continuity of conductivity across cell edges. For example,σx

�
i
� 1

2 � j �k�
is the average of the four cell conductivitiesσ

�
i � j �k��σ�i � j �1�k��σ�i � j �k�1� andσ

�
i � j

�
1�k

�1�. Each cell conductivity is weighted by the ratio of the face area cut by the magnetic
loop to the total area of the loop. Instead of the arithmetic averaging scheme for magnetic
permeabilities used byWang and Hohmann[1993], geometric averaging is used as will be
specified below.

3.1.2 Time–stepping of the EM field for causal sources

With the concept of the spatial sampling of the EM field in place, now the implementation of
the space and time derivatives of Maxwell’s equations is outlined.Wang and Hohmann[1993]
describe a leap–frog scheme for advancing Equations (3.1) in time for causal source fields,
arising from loop sources with an inductive coupling to the ground. It shall be recapitulated
here in order to understand the modifications that will be made for the treatment of fields with
a non–causal source excitation. Also, the time–stepping scheme for causal fields will be used
for the propagation of the residual fields mentioned in the introduction of this chapter. The
principle difference in both schemes is that time–steppingnon–causal fields will be based on
the time derivative of the magnetic induction (voltage) instead of magnetic fields.
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Figure 3.1: The 3D staggered grid as used for discretizing Maxwell’s equations. The electric field
is sampled at the centers of the prism edges, and the magneticfield is sampled at the centers of
the prism faces. (a) Elementary magnetic loops curl around electric fields, (b) elementary electric
current loops curl around magnetic fields. (c) Realization of the discrete divergence for magnetic
fields or voltages for a given cell (i,j,k) using the six components of the surrounding cell faces. The
corresponding divergence of the current density incorporates the six components of the surrounding
cell edges. (a)–(c) also illustrate the communication scheme for the parallel implementation of the
field update explained in detail in Section 3.1.6.
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Approximating Equations (3.1) involves the discretization of the derivatives in space and time
by finite differences. This introduces the spatial lengths∆xi , ∆y j and∆zk of a given grid cell�
i � j �k�, where for example∆xi denotes the distance from node

�
i � j �k� to

�
i
�

1� j �k�. These
quantities will be needed for discretizing elementary electric loops. Elementary magnetic
loops run across cell edges and thus its sizes along each Cartesian direction are given by

∆xi � ∆xi�1
�∆xi

2 �

∆y j � ∆y j�1
�∆y j

2 �

∆zk � ∆zk�1
�∆zk

2 �

The time derivatives involve the discrete time step∆tn, where the indices 0�1� ����n
�1�n�n

�
1

are used to represent the time instantst0�t1� ����tn�1�tn�tn�1 with tn�1 � tn
�∆tn. The timet0

is defined to be the time of the current switch–off in the transmitter. Similar to the spatial
sampling of the fields on the staggered grid, the electric fields are sampled at integer time
indicestn

�∆tn, and the magnetic quantities are sampled at intermediate time indicestn
�

∆tn
2 . This way of sampling the fields indicates the leap–frog fashion of the time–staggering

scheme.

The FD representations of Equations (3.1) are exemplified for thexcomponent of the different
fields. No magnetic sources are considered for now, because an external loop or grounded–
wire transmitter only involves an electric current source field. First, Equation (3.1a) is dis-
cretized, starting with the component form

∂bx
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∂y
� ∂ey

∂z �

The approximation of the left–hand side at an integer time leveln involves a central difference�
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�
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x
�b
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x
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Then it follows for the updated magnetic induction [Yee, 1966]
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where∆y j and∆zk are the extensions of the grid cell
�
i � j �k� in they andz direction, respec-

tively. The next step involves the computation of the magnetic field by
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Following Alumbaugh et al.[1996], the permeabilityµavg is computed using a geometric
average of the two neighbouring cell permeabilities connected by the magnetic field, thus for
thex component

µavg
x

�
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This accounts for the continuity of the magnetic induction that is normal to a cell face and
connects the two cells involved in the average. After completion of the magnetic field update
for all components, the electric fields are advanced. Again,start with the component form of
the electric field in thex direction, derived from (3.1b),

γ
∂ex

∂t
�σex � ∂hz

∂y
� ∂hy

∂z
� jsx�

To sample both terms on the left–hand side at the same time instant n
� 1

2 of the updated
magnetic field, a central difference for the time–derivative is again used,�

∂ex

∂t �n�1
2

�
en�1

x
�en
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∆tn
�

and a simple average for the other term,
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This leads to the following expression for the updated electric field:
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where∆y j and∆zk specify the size of the elementary magnetic loop aroundex. The electric
current source field impressed by the transmitter is given byjnx.

3.1.3 Numerical stability

A FD scheme is said to be stable if the difference between the theoretical and numerical solu-
tions of the difference equation remains bounded for all grid nodes

�
i � j �k� as the simulation

time increases [Alford et al., 1974]. Unstable solutions are characterized by numericaldis-
persion, that is the improper simulation of high–frequencyfields. Therefore, the first thing
to ensure is the adaption of the spatial sampling∆ to the highest frequencies of the field.
An estimation of the smallest number of gridpointsN per wavelength is given byWang and
Hohmann[1993]

N � λmin

∆ �

whereλmin is the minimum wavelength. The approximation of the spatialfinite differences
in Section 3.1.2 by incorporating the fields of two adjacent prisms represents a second–order
scheme.Alford et al.[1974] conclude that a number ofN �10 is adequate for a second–order
scheme and that this number can be decreased by using a higherorder scheme. In the course
of this work, a fourth–order scheme has also been realized for the presented FD algorithm.
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In principle, the approximation of the difference∂ f
∂x at a given grid nodei

� 1
2 involves four

adjacent grid nodes such that�
∂ f
∂x�i�1

2

� c�1 fi�1
�

c0 fi
�

c1 fi�1
�

c2 fi�2�

wherec�1 � ����c2 are functions of the grid geometry [Wang and Hohmann, 1993]. However, it
turned out that the additional computation time due to the larger number of multiplication and
division operations during time–stepping outruns the benefits of the fourth–order scheme.

Adaptive time–stepping

Another risk causing numerical dispersion occurs with an improper choice of the time steps.
In principle, for a given spatial cell size of a FD grid, the size of the time step must be limited
such that over one time increment the EM field does not change significantly. Yee[1966]
derives a restriction for a constant time step in order to retain computational stability for an
equidistant FD grid. For the presented algorithm, a gradualadaption of the time step to the
rate of diffusion of the EM field is employed, because it allows for higher computational
efficiency.

For the treatment of TEM fields, the diffusive approximationof Maxwell’s equations, i.e. with-
out displacement currents, needs to be considered. Hence, the term involving the variableγ
in Equations (3.1) represents a fictitious displacement current. It is artificial and changes the
equation from a diffusive form into a damped wave form, whichrepresents a modified ver-
sion of the DuFort–Frankel method [DuFort and Frankel, 1953;Oristaglio and Hohmann,
1984;Adhidjaja and Hohmann, 1989;Wang and Hohmann, 1993]. In fact, the variableγ is
much larger than the true displacement current, but still small enough to allow an accurate
simulation in the diffusive approximation. It is outlined in detail in Appendix A.1 that its
incorporation allows the use of larger time steps than with aconventional Euler type scheme
applied to the diffusive forms of Equations (3.1). Therefore, it allows to address the attenu-
ation of high frequency components of the EM field with time bya gradual increase of the
time step∆tn in Equations (3.5) and (3.6) with progressing simulation time. This reduces
the computation time to some extent, where the benefit is significant for very late time field
simulations. However, both the initial and subsequent timesteps are limited by the condition
(see also Appendix A.1)

∆tn�

�
µminσmint

6
∆min� (3.7)

whereµmin, σmin and∆min are the minimum values of magnetic permeability, conductivity
and FD grid spacing, respectively. This ensures the domination of diffusion after the ear-
liest measured timet, otherwise spurious wave–like modes dominate the behaviour of the
simulated fields. In practice, a maximum time step of

∆tmax� 0�1

�
µminσmint

6
∆min

has proven to be adequate for the presented algorithm.
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Both the time step and the minimum grid spacing control the fictitious permittivityγ by the
Courant–Friedrichs–Levy criterion for the wave velocityc of a wave-like equation [Richtmeyr
and Morton, 1967;Oristaglio and Hohmann, 1984]

c� 1�
µγ
� ∆min�

3∆tn
�

From that condition, one obtains

γ � 3
µmin

∆t2
n

∆2
min

� (3.8)

which needs to be updated if the time step is increased.

Divergence–free condition

Another important issue for stability is the explicit enforcement of a vanishing divergence
for the magnetic inductionb. Even with the benefits of a staggered grid, which implicitly
preserves the flux conditions on current density and magnetic induction fields, it is necessary
to explicitly enforce the divergence–free condition. Outlined in more detail byWang and
Hohmann[1993] andSmith[1996], the enforcement can be regarded as gauge condition to
avoid distorting arbitrary gradient fields that can creep into the EM field simulation at later
times. This can be seen by taking the divergence of Equation (3.1a), which implies the
divergence–free condition for the time derivative of the magnetic inductionb. By assuming
that no magnetic charges exist (Jackson[1975], p. 294), Equation (3.3a) follows. However,
in the static case Equation (3.1a) reduces to

∇ �e� 0�

The uniqueness of the magnetic field, previously given by thecoupling of Equations (3.1)
does not exist anymore, because arbitrary gradient fields can now be added tob without
violating Equation (3.1b). Thus, in the DC limit the divergence–free condition ofb is not
implied and the presence of numerical noise can cause erroneous gradient fields. In practice,
one typically would observe a wrong late time response in theform of a reduced decay rate.
In a test simulation, without explicit enforcement of (3.3a), it could be observed that very late
time responses approached a DC level.

The enforcement of the divergence–free condition forb in the time–stepping algorithm in-
volves computing two field components in a way represented byEquation (3.5). From these
two components, the remaining one is then updated using Equation (3.3a). Its FD approxi-
mation is obtained at the center of a prism using the six components of the surrounding cell
faces as shown in Figure 3.1c. Then the discrete form
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is obtained and is rearranged to
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It can be seen that this way of updating the vertical fieldsbz involves a recursive procedure.
For this example, it starts at the lower mesh boundary wherebz�0 and is carried out upwards,
i.e. towards the surface boundary.

In order to treat non–causal source fields, the modified time–stepping scheme presented be-
low will be based upon the time derivative of the magnetic inductionḃ (voltage) instead ofb.
Thus, in contrast to the time–stepping algorithm for causalsources, the condition

∇ �ḃ � 0 (3.11)

is enforced. Because voltages are sampled on the same positions as the magnetic fields, the
divergence–free condition is realized in the same way as exemplified by (3.10).

Numerical experiments have shown that the explicit enforcement of

∇ �

�
∇ �h� �∇ �j � 0

is needed in addition to the condition given by (3.11), whichhas not yet been fully understood.
A possible explanation might be, that time–stepping voltages instead of magnetic fields leads
to a lower degree of coupling between Equations (3.1) in a numerical sense. This could be
due to the fact that both voltages and electric fields are sampled at the same (integer) time
instants.

Like electric fields, the components ofj are sampled on cell edges, thus
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represents the divergence approximation for a given cell
�
i � j �k� as illustrated in Figure 3.1c.

Note that for example the index
�
i � 1

2 � j �k� denotes the componentjx
�
i
� 1

2 � j �k� of the cell�
i �1� j �k�.

3.1.4 Boundary conditions

For computational efficiency, the spacings between the gridnodes are enlarged with increas-
ing offset from the source position. This is allowed as the diffusive EM field smoothes grad-
ually with distance from the source [Oristaglio and Hohmann, 1984]. The continuity at the
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subsurface boundaries of the mesh is ensured by simply extending the borders to a sufficient
distance from the source and setting its tangential electric and normal magnetic field compo-
nents to zero. The distance of the mesh boundaries from the source may have to be adapted
to the underlying earth model. If the boundaries are too close to the transmitter or receiver
positions, one can observe erroneous results due to grid reflection at late times. This prob-
lem becomes more severe for very resistive backgrounds, where the diffusing fields face less
attenuation than in a more conductive earth.

A critical aspect is the treatment of the earth–air interface, where the tangential electric fields
do not vanish. A straightforward approach is realized by simply extending the mesh above the
surface grid layer far enough such that the upper mesh boundary satisfies the same conditions
as the subsurface boundaries. The grid space above the surface needs to be made very resistive
in order to approximate air. However, Equation (3.7) indicates that the air resistivity would
require very small time steps to simulate the rapid decay of the fields in air. Both handling a
larger mesh and the small time step lead to an increased computation time.

The more efficient alternative involves an upward–continuation boundary condition [Macnae,
1984;Oristaglio and Hohmann, 1984;Wang and Hohmann, 1993] for the air–earth interface.
It is based on the validity of the vector Laplacian equation

∇2b � 0� (3.13)

which can be obtained from the vector Helmholtz equation formagnetic fields by assuming
the quasi–static case and a vanishing conductivityσ in free space. Equation (3.13) is also
valid for voltages and allows to apply the methods for the continuation of potential fields
(Grant and West[1965], p. 216–220) that are typically used in connection with gravity and
magnetic methods [Militzer and Weber, 1984]. This involves a 2D spatial Fourier transform
of the vertical voltage fields at the surface into the wavenumber domain. The horizontal
fields above the surface can then be obtained by continuationof the vertical fields, using the
following wavenumber domain equations [Wang and Hohmann, 1993]

Ḃx
�
u�v�z� �h� � � iu�

u2�v2
e
�h�u2�v2

Ḃz
�
u�v�z� 0�� (3.14a)

Ḃy
�
u�v�z� �h� � � iv�

u2�v2
e
�h�u2�v2

Ḃz
�
u�v�z� 0�� (3.14b)

whereḂx, Ḃy andḂz are the Fourier transforms of the voltagesḃx, ḃy andḃz. Equations (3.14)
also hold for the magnetic induction. The wavenumber domainvariablesu andv correspond
to the spatial variablesx and y, respectively, andh is the height above the surface. This
boundary condition only requires a single additional vertical grid level for the air space.

Implementation of the upward–continuation procedure is realized in the following manner. A
2D spatial Fast Fourier Transform (FFT) is used for the transformation of the vertical fields
at the surface into the wavenumber domain. The FFT is preceded by a spline interpolation
[Press et al., 1992] in order to cast the nonuniform grid spanned by the discrete surface
values ofḃz onto an equidistant grid. After the Fourier transformation, the air layer horizontal
fields in the wavenumber domain are obtained by Equations (3.14). Next, an inverse FFT is
performed on botḣBx

�
u�v�z� �h� and Ḃy

�
u�v�z� �h�. Finally, the resulting horizontal
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fields in the space domain are interpolated back to the original mesh, now sampled at the air
grid level. The parallel implementation of this scheme willbe described in Section 3.1.6.

3.1.5 Time–stepping of the EM field for non–causal sources

The updating scheme described in Section 3.1.2 could also beemployed for the treatment of
fields generated by a galvanic grounded–wire source. Such a source causes the presence of a
DC electric and magnetic field in the earth before the steady transmitter signal is switched off.
The DC electric field can be computed with little computational effort as will be shown below.
However, the initialization of the magnetic field would involve a numerically more elaborate
solution of a magnetometric resistivity problem [Edwards and Nabighian, 1991]. This work
focuses on TEM systems that measure the time derivative of the magnetic induction (voltage)
instead of magnetic fields. Voltages represent causal fieldsthat are zero beforet0, Therefore,
the presented updating scheme is based on voltages in order to avoid calculating the DC
magnetic fields. The modifications made for the time–stepping procedure are straightforward
and shall be given in vector form.

Field initialization

To initialize the fields, first the DC electric fieldeDC in the model and the induced electric
field eind inside the wire source need to be computed. The latter one is obtained by inverse
interpolation of the source distributionjs impressed by the transmitter onto the FD grid. Then
the fieldeind for the grid nodes that are comprised by the source is obtained from (3.4b), which
automatically accounts for arbitrary distributions ofσ over the mesh.

Because the DC electric fieldeDC is curl free, it is determined by applying the divergence
operator to the static form of (3.1b),

∇ �

�
σ∇ϕ� � �∇ �js

� (3.15)

whereeDC can be expressed as the gradient of a potential fieldϕ. Thus, a 3D Poisson problem
which is common in 3D resistivity modeling is solved. Here, astraightforward seven–point
discrete approximation to the Poisson operator is used. It is a common way of discretization
and involves a center grid cell and its six direct neighboursalong the main coordinate axes as
outlined in detail in Appendix A.2. This represents a simplified form of the scheme described
by Dey and Morrison[1979]. A variety of more elaborate schemes exists; for example refer
to Spitzer and Wurmstich[1999], who give a comprehensible overview and comparison of
five different seven–point operators.

Equation (3.15) represents a sparse, diagonally dominant linear system, which is positive
definite due to the positivity ofσ. Hence, the solution forϕ can be obtained by an efficient
preconditioned conjugate–gradient solver. The parallel iterative package AZTEC [Hutchin-
son et al., 1995] is used for this purpose. After computingeDC from the gradient ofϕ, the
curl of the magnetic field is computed from the static form of (3.1b),

∇ �hDC �σeDC �
js�
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Both the DC fields given byeDC and∇ �hDC represent the initial fields for the following
time–stepping scheme.

Advance of the EM field

First, the voltages are updated from

ḃn � �∇ �en
� (3.16)

They originate from the decay of the induced electric fieldeind in the source after switch–off.
Note that voltages are sampled at the same time instants as electric fields. First, the horizontal
componentṡbn

x and ḃn
y are computed from (3.16). In order to enforce the divergence–free

condition for ḃn, the vertical componenṫbn
z is then calculated using (3.11) with its discrete

form similar to (3.9). The recursive update starts from the lower mesh boundary, whereḃz�0
applies, and is proceeded upwards. Then the horizontal voltagesḃn

x andḃn
y above the surface

are calculated by upward–continuation of the fieldsḃn
z at the surface. Noẇhn is given by

ḣn � ḃn�µ�
Instead of the magnetic fieldh, its curl is used as an intermediate quantity in order to up-
date the electric fields. Therefore, the curl ofḣn is formed by the components defining the
elementary loop around the respective electric field. Afterwards, the central difference ap-
proximation

∇ �ḣn � ∇ �hn�1
2 �∇ �hn�1

2

∆tn
is rearranged to

∇ �hn�1
2 �∇ �hn�1

2
�∆tn �∇ �ḣn (3.17)

to update the curl ofh at the timetn�1
2
. Note that during the first time step at timet0

∇ �h
�

1
2 �∇ �hDC

�

Again, only the horizontal components are updated from (3.17). To enforce the condition

∇ �

�
∇ �h� �∇ �j � 0�

the vertical components ofj are updated from the horizontal components using (3.12) in a
similar way as exemplified by (3.9) and (3.10). In contrast tothe voltages, the recursive
update starts from the top of the mesh, becausejz vanishes at the air grid layer. Finally, the
electric field is advanced by

en�1 � 2γ �σ∆tn
2γ�σ∆tn

en � 2∆tn
2γ�σ∆tn

�
∇ �hn�1

2 �j
n�1

2
s �� (3.18)

Afterwards, the updating procedure loops back to the calculation of the voltages for the next
time step.
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3.1.6 Parallel implementation

The realistic simulation of complex 3D structures may require a large number of grid nodes
and can quickly lead to the limits of a single processor computer in terms of memory needs
and processor speed. To achieve acceptable computation times, the FD scheme has been
designed to run on massively parallel machines using the Message Passing Interface (MPI)
Standard [Skjellum et al., 1993]. To realize parallelization, the 3D model is subdivided with
every individual processor in charge of a 3D subset of the mesh. Therefore, a given number
of processors is arranged into a Cartesian topology. This implies that the total number of
processors is separable in a way that it amounts tonx

�ny
�nz processors, according to the

distribution of processors in thex�y andz direction of the global mesh, respectively. Each
processor carries out the field update in its own subset. Across the boundaries of the subsets
interprocessor communication is needed as outlined below.As long as the communication
is minimal relative to the computation times for the field updates, the solution time can be
reduced by a factor that is approximately equal to the numberof processors employed. How-
ever, this requires that the Cartesian processor topology provides for a load balance. This is
realized by creating the mesh subsets such that they are as equal in size as possible. With an
unbalanced load, long idle times would otherwise deteriorate the performance of the parallel
scheme.

Following Alumbaugh et al.[1996], the input data needed by each processor prior to the
actual field calculations is split up into local and global data. Local data comprise the model
properties, that are assigned to each cell of a 3D mesh subset. To save both memory and
disk space, each processor stores only the properties of itsown subset. Global data are those
variables that each processor needs to know, for example allinformation about the source
and receiver setup. For the later presented inversion basedupon this forward simulation
algorithm, additional information of that kind needs to be added to the global data set, such
as the observed data to be inverted. Global data is read in by amaster processor and then
distributed, local data is read in individually by each processor.

Parallel time–stepping algorithm

The fact that the elementary electric and magnetic loops on the staggered grid described in
Section 3.1.1 are intertwined with each other, indicates that communication between adjacent
processors is required during time–stepping. The message passing across processor bound-
aries introduces the expression ’ghost’ for a grid node. Theghost nodes of a processor contain
the fields that are needed in order to complete the update of its own fields, yet are calculated
by an adjacent processor. This is illustrated in Figure 3.1,where it is assumed for simplifica-
tion that each processor is assigned to only one grid node of the 3D mesh. During a single
time step of the field update, the processor at node

�
i � j �k� needs to communicate with all six

neighbours. The communication scheme is now outlined in thesame order as the field update
in Section 3.1.5.

One starts with the update of horizontal voltages from the curl of electric fields (Equa-
tion 3.16). Figure 3.1b shows that this requires a prior communication with nodes

�
i
�

1� j �k�,
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The recursive update of the vertical voltage at node
�
i � j �k� to enforce the divergence–free

correction first needs the previously computed horizontal voltages from nodes
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and
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1�k� (Figure 3.1c). For the actual calculation ofḃz
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that the performance of the parallel divergence–free enforcement is limited to some extent.
Because of the recursive procedure, only the nodes in the same vertical layer given byk can
computeḃz at the same time.

Afterwards, the upward continuation procedure of the vertical voltage components at the sur-
face layer follows. Its parallel implementation is explained in an extra section below. The
following electric field update at node

�
i � j �k� is preceded by forming the curl of the voltages

around the horizontal edges whereex
�
i
� 1

2 � j �k� andey
�
i � j

� 1
2 �k� are sampled. Therefore,

message passing according to the stencil shown in Figure 3.1a is carried out. The required
voltage values belong to the ghost nodes

�
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�
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�1�. Then the hor-
izontal components of the magnetic field curl are updated using Equation 3.17. Afterwards,
node

�
i �1� j �k� passes thex component and node

�
i � j

�1�k� passes they component of the
magnetic field curl to node

�
i � j �k�. This is required for the enforcement of the divergence–

free condition for the current densityj as illustrated by Figure 3.1c. Again, it is carried out
recursively, now starting from the upper mesh boundary. Similar to the divergence–free cor-
rection for voltages, the ghost valuejz
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2� updated previously by the “upper” node�

i � j �k
�1� needs to be received before node
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�
i � j �k

� 1
2�.

The recursive procedure of the divergence–free corrections suggests that the partitioning of
the vertical mesh bynz processors should not be too fine. Otherwise, the message passing
overhead due to the communication of the vertical ghost values might be too large. One can
choose the extreme of a pencil structure for the domain decomposition, with no partitioning
of the mesh in the vertical direction. However, the optimal decomposition strongly depends
on the type of the parallel architecture employed. It is recommended to be evaluated by
adequate prior tests.

Parallel upward–continuation

The parallel implementation of the 2D FFT, required by the upward–continuation boundary
condition for the vertical voltage values, involves a rather complicated message passing pro-
cedure. This is caused by the fact that both the interpolation to an equidistant grid and the
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FFT perform on a processor topology that is different to the one given by the domain decom-
position into 3D subcubes. Moreover, the topology changes during the upward–continuation
process. Therefore, rather than a communication across fixed processor boundaries, several
rearrangements of the field distribution among the processors are carried out, which is also
referred to as remapping.

The scheme developed here is illustrated in Figure 3.2 for the example of four processors
sharing the surface layer, where (a) represents the initialcondition. The 2D interpolation to an

Figure 3.2: Parallel field upward continuation scheme for a distribution of the surface grid layer
among four processors. The upward–continuation procedureinvolves remapping, interpolation, for-
ward and inverse 2D FFT steps carried out along both horizontal dimensions x and y of the surface
grid layer. The sequence of steps: (a) Initial distribution. (b) Remap, y–interpolation. (c) Remap,
x–interpolation. (d) FFT(x). (e) Remap, FFT(y), upward continuation, FFT�1(y), remap, FFT�1(x).
(f) x–interpolation, (g) Remap, y–interpolation. (h) Remap to initial distribution.
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equidistant grid spacing is carried out consecutively along both horizontal grid axes. Because
of accuracy, all field values along the extension of a grid axis need to be incorporated into
the interpolation. For example, at a given point on they axis, the corresponding processor in
charge of casting the non–uniform grid sampling on thex axis into an equidistant sampling
needs to know all values on the globalx axis. Therefore, the 2D spline interpolation of the
surface field valueṡbz to an equidistant FFT grid requires two data remapping steps. First, the
original chessboard–like field distribution among the processors is remapped into a striped
pattern that allows the equi–sampling in the grid’sy direction as shown in (b). Afterwards,
the processor topology is changed such that the interpolation can be completed along thex
axis (c).

The following 2D FFT from the spatial into the wavenumber domain involves another remap
since it is first done in thex direction and afterwards in they direction (d and e). Now the
actual continuation of the wavenumber domain horizontal fields into the air layer is carried
out using Equations 3.14. It belongs to the characteristicsof a 2D FFT, that its output has a
transposed order [Frigo and Johnson, 1998]. As a consequence, the horizontal grid axes are
interchanged for the fields in the wave–domain. One can take advantage of that by precalcu-
lating the grid’s wavenumber domain variables from a transposed horizontal grid. Otherwise
a further remapping step would be required in order to retainthe non–transposed order in the
wave–domain.

After calculation of the horizontal fields, the inverse FFT of the horizontal fields is carried
out first in they direction and then in thex direction, thereby again transposing the order of
the output and hence restoring the original order. The stepsfor the interpolation from the
equidistant grid back to the original one now proceed in reversed order to the steps (a)–(c).
This involves two more remaps as shown by (f)–(h).

Unfortunately, the parallelization of the procedure offers little opportunity to be accelerated
due to the deficient scalability of the FFT and a high message passing overhead. Since the
FFT dominates the computation time of the upward–continuation procedure, the only signif-
icant acceleration can be achieved by using the fact that theTEM field is smoothed gradually
in space with increasing time. With a smooth field, the numberof equidistant grid nodes
and hence the computation time for both FFT and interpolation can be reduced. With the
employed FFT algorithm optimized for a number of data pointsof order 2n, an appropriate
initial regular grid spacing is chosen such that no undersampling occurs. After a predefined
time, the spacing is doubled. Based on a series of empirical experiments, it could be found
that the time after which the constant grid can be widened depends on the decay rate of the
fields. For example, a resistive overburden allows for an earlier change to a coarser FFT grid
than a more conductive overburden. For the simulation examples shown in this chapter, the
change to a coarser FFT grid was carried out after 2–3 time decades, starting from the initial
time step.
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3.2 Synthetic data examples

A citation fromHohmann(1988) reads as follows: ’The numerous possibilities for theoretical
and programming errors make it necessary to compare resultscomputed by different methods
before a numerical solution can be considered valid.’2

This section demonstrates the accuracy of the numerical solution by a variety of models
incorporating different complexities, field configurations and simulation time ranges. The
models include horizontal layers, 3D structures and a combination of both. The solutions are
referred to as FD solutions and are compared with different kinds of other algorithms. These
include both analytical and integral–equation methods [Newman et al., 1986] and the spectral
Lanczos decomposition method (SLDM) [Druskin and Knizhnerman, 1988]. The latter one
is the forward modeling code used by the inversion scheme presented in Chapter 2.

All simulated electric field measurements correspond to thecomponent parallel to the trans-
mitter orientation. The voltages are shown in the form of vertical components. In addition,
the first example shows the voltages from the horizontal magnetic component in a direction
perpendicular to the transmitter. The employed FD meshes were adapted in size to the dif-
ferent purposes, ranging from a largest grid size of 159�123�71 to a size of 97�82�46
nodes. The smallest modeled cell size is 10 m on each edge. Initial time steps are predeter-
mined according to Equation (3.7). A summary of the employedgrid sizes and initial time
steps will be given at the end of this section.

1) Layered half–space

The first example is typical for the LOTEM method. The horizontal and vertical voltage re-
sponses over a four–layered half–space with downwards decreasing resistivities as shown in
Figure 3.3a are simulated. Figures 3.3b,c and d show the electric field and vertical and hor-
izontal voltage responses, respectively, in comparison with analytical responses. The fields
are generated by a 1 km long grounded wire and are extracted atdistances of 500–5000 m
broadside to the transmitter. The two solutions demonstrate a very good agreement with each
other. In this example, the reflections off the mesh boundaries reach a critical level at times
later than 1 s, thereby causing a slight DC offset that can be observed for the electric field
solutions at the latest simulated time of 1 s. However, such undesirable effects can be delayed
to later times by further expanding the outer mesh boundaries. The solution for the horizon-
tal voltage also shows a very good agreement for the occurence of the sign reversals. The
diffusing fields are clearly indicated by a move out in the sign reversal.

2To be read in the preface of ’Three–dimensional Electromagnetics’, SEG, Tulsa.



3.2 SYNTHETIC DATA EXAMPLES 67

Figure 3.3: FD solution (solid lines) over a four–layered host in comparison with an analytical
solution (dashed lines). (a) Earth model with transmitter–receiver setup. The transmitter is perpen-
dicular to the receiver profile. (b) Electric field response.(c) Vertical voltage response. (d) Horizontal
voltage response.



68 A PARALLEL FD SCHEME FOR3D TEM MODELING

2) Homogeneous half–space with permeable layer

Next, the solution for a layered half–space with homogeneous resistivity (10Ωm) and a
permeable layer at a depth of 100 m is calculated. The relative magnetic permeability of
this layer is 10 and its thickness is 100 m. Similar to the previous example, responses are
calculated broadside to the transmitter, which in this example is a 10 m long grounded wire.
Figures 3.4a and b show the vertical voltage at an offset of 100 m and 400 m, respectively.
The FD solution (solid curves) is compared with an analytical result for the permeable layer
(Hanstein, pers. comm.) and shows a very good agreement for the smalleroffset. For the
larger distance an agreement with the analytical solution is reached after 0.7 ms. In addition
to the analytical response of the permeable model, the field of a non–permeable half–space
(dashed curves) is shown. It demonstrates that the very highmagnetic permeability contrast of
10 is necessary in order to obtain a significant influence of the permeable layer. In comparison
with real permeabilities measured in the field, this contrast is rather unrealistic.

The early time sign reversal in the FD response in Figure 3.4bis not realistic for this config-
uration. It is a numerical effect caused by the upward continuation boundary condition. Its
occurrence can be explained by the fact that during transmitter current switch–off the FFT
carries the rapid field changes in the source simultaneouslyforward to the receiver. Using
a grid with adequately high resistivities to simulate the fields in air, instead of the FFT ap-
proach, would not have such an effect.
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Figure 3.4: Comparison of the FD vertical voltage (cross symbols) and ananalytical (Hanstein,
2003, pers. comm.) solution (solid lines) for a half–space with homogeneous resistivity and a per-
meable layer (see text for details). Dashed lines show the analytical response over a non–permeable
half–space. The transients are calculated for a source–offset of (a) 100 m and (b) 400 m.
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3) Conductive 3D block in a homogeneous half–space

The next example compares the electric field FD responses over a 1Ωm conductive block in
a 200 times more resistive half–space with an IE solution. Figure 3.5a shows a plan view of
the field setup and the anomaly that has a size of 100 m along each edge. The upper edge
of the block starts at a depth of 100 m. The fields are generatedby a 100 m long grounded
wire at 150 m distance from the block’s center. Results are shown in Figures 3.5b,c and
d and correspond to the three receiver positions shown in Figure 3.5a. For all positions,
the FD solutions yield an excellent agreement with the IE solutions. Figure 3.5 also shows
analytical half–space solutions (dashed lines) to illustrate the effect of the conductive block.
The comparison with the 3D response shows that the block causes an amplitude increase at
early times and a decrease at later times. This effect is small for the receiver position between
transmitter and block (x � 75 m), whereas a clearer effect occurs for the other receivers. For
this simulation the resistive background required an initial time step of∆t0 � 10

�7 s in order
to avoid a distorting wave–like influence of the fictitious displacement current at early times.

Figure 3.5: FD solution (solid curve) over a homogeneous host with an embedded 3D block in
comparison with an IE solution (cross symbols). The block’seffect is made visible by the analytical
response (dashed curve) over a half–space without block. (a) Earth model with transmitter–receiver
setup. Electric field responses are calculated at the x coordinates (b) 75 m, (c) 150 m and (d) 225 m.
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4) Complex 3D conductor at a vertical contact

The next synthetic data are calculated for a 3D model similarto an example presented by
Wang and Hohmann[1993], yet with a higher model complexity. The model section in Fig-
ure 3.6a consists of a 50 m thin conductive layer (10Ωm) at the surface and an underlying
laterally divided resistive earth. At the contact of the 100Ωm and 300Ωm resistors, a 1Ωm
conductive 3D anomaly varies in steps along the profile direction. This structure, which is
400 m in strike length, reaches a depth of 550 m. Figures 3.6b and c show the electric and
vertical voltage field responses, respectively, at arbitrarily chosen locations. For a compar-
ison, the FD responses are shown together with the SLDM solution, because the simulated
model complexity would not allow to obtain a solution by using the IE method. In general,
the solutions compare well for each receiver location with some discrepancies at the earliest
delay times. As observed for both types of responses, early time deviations are largest close
to the transmitter. The sign reversal in the electric field response above the right edge of the
anomaly (x� 500 m) occurs slightly earlier for the SLDM solution, but still good agreement
is given at delay times after 1 ms. For this field–setup, a crossover in the voltage only occurs
between transmitter and anomaly. Apart from the early time discrepancies atx � 200 m, an
excellent agreement for the voltages, including the reversal atx�200 m, is achieved over the
whole time range.
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Figure 3.6: FD solution (solid lines) from a complex 3D anomaly at a vertical contact and a layered
overburden in comparison with a SLDM solution (dashed lines). (a) Earth model. The transmitter is
perpendicular to the receiver line. (b) Electric field responses at 100 m, 500 m and 900 m distance
from the transmitter. (c) Vertical voltage responses at 200m, 400 m and 1000 m distance from the
transmitter.
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5) Resistive reservoir structure in a layered host

In contrast to the previous 3D models, this example involvesa more complex resistive anoma-
ly in a layered background. The earth model shown in Figure 3.7a was initially designed by
Hördt et al.[2000a] from a priori well log information and represents a naturalunderground
gas storage site at St. Illiers (near Paris, France). At 140 mdepth the 50Ωm sedimentary
overburden is interrupted by a 20 m thick 15Ωm–layer. The 10Ωm conductive basement,
starting at 310 m depth, encompasses the dome–shaped reservoir with the upper and lower
edges at 490 m and 602 m depth, respectively. The reservoir extends 2000 m in the direction
perpendicular to the drawing plane, and the shown section does not vary in this direction.
A resistivity of 200Ωm is assigned to the 25 m thick gas–bearing layer. In a sensitivity
study,Hördt et al.[2000a] simulated LOTEM responses over a profile covering the reservoir
structure in order to investigate if resistivity variations at the reservoir margins are detectable.
With magnetic fields less sensitive to thin resistive structures, the study was based on electric
fields in an axial configuration. The 50 m long transmitter is located over the left reservoir
edge and points in the profile direction. The receivers record the transmitter–parallel field
component.

First, the FD responses shall be compared with the SLDM solution of Druskin and Knizhn-
erman[1988], which is also employed byHördt et al.[2000a]. Figure 3.7b shows the inline
electric field solutions for four different receiver positions. Although the curve pairs agree
qualitatively, some quantitative differences exist. Here, the mesh employed for the SLDM
solution consists of 43�43�27 nodes, which is a rather coarse grid discretization compared
to the 127�90�83 nodes used for the FD solution. Therefore, a better agreement would be
achieved using a finer mesh for SLDM. However, it could be observed that a grid refinement
in both horizontal dimensions and the more crucial verticaldimension quickly leads to wrong
SLDM results at late times. This can be explained by the aspects related to the convergence
of SLDM as outlined in Section 2.1.1. The SLDM solution has a slow convergence, because
the long time interval ranging from 0.1 ms to 0.3 s causes a large grid aspect ratio and intro-
duces ill–conditioning to the system of equations to be solved [Druskin et al., 1999]. A grid
refinement provides for more accurate results, yet increases the FD grid aspect ratio and thus
further slows the convergence. Therefore, finding a compromise between the requirements
for a stable convergence of SLDM takes place at the expense ofaccuracy.

For the mentioned sensitivity study, it is important that analgorithm is capable of resolving
the effects of small model variations. For simulating a lower amount of gas fill,Hördt et al.
[2000a] changed the resistivities of both left and right reservoiredges to the value of the
surrounding layer. In Figure 3.7a the reservoir edges are marked as white blocks. Figure 3.7c
shows the FD responses of both original and downsized reservoir for the same transmitter
position as before and two different receiver distances. At1400 m distance, no significant
difference in the results occurs, since transmitter and receiver are located above the anomaly
in such a way that its edges hardly cause an influence on the fields. However, at 2000 m one
observes an altered response, indicating the influence of the right reservoir margin.
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Figure 3.7: FD simulation of the 3D model from the underground gas storage site at St. Illiers
(France) as derived from a priori information [Ḧordt et al., 2000a]. (a) Section view of the earth
model. The transmitter is inline with the receiver profile. (b) Comparison of the electric field FD
response (solid lines) with the SLDM solution (dashed lines) at the receiver positions 500 m, 1000 m,
1500 m and 2000 m. (c) Electric field FD response comparisons at 1400 m and 2000 m distance from
the transmitter for a downsized reservoir (solid lines) andthe full reservoir (dashed lines). To realize
the downsized reservoir, the resistivity of the left and right edges (white blocks) is set equal to the
resistivity of the surrounding layer.
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3.3 Discussion

A versatile time–stepping scheme to solve the diffusive Maxwell equations for galvanic
source configurations has been presented. The parallel codesimulates electric field and
magnetic induction time derivative responses for 3D modelswhere both conductivity and
magnetic permeability are functions of space. Comparisonswith analytical, IE and SLDM
solutions show that accurate results are obtained over complicated earth models. The gas
reservoir example in particular demonstrates the scheme’shigh degree of accuracy, which
is necessary to simulate response differences caused by a small model variation. Compared
to the SLDM solution technique, the scheme has the advantagethat it provides for better
stability in the presence of large resistivity contrasts inthe model and late simulation times.

The scheme’s accuracy is achieved at the expense of a high computational time demand.
This problem is inherent to an explicit time–stepping method and becomes more severe with
the simulation of later times. The computation times required by all presented examples are
shown in Table 3.1 and exemplify the influence of grid size, initial time step size and latest
simulated time on the computational requirements of a solution. All presented simulations
were carried out on a SUNTM Fire 6800 machine, where sometimes not the full processor
capacity was available due to heavy machine load. The small number of processors employed
for all examples indicates that on larger massively parallel platforms the computation times
can be greatly reduced.

FD Processors Initial time Latest simu- Estimated compu-
Result grid size nx

�ny
�nz step∆t0 (s) lation time (s) tation time (hrs)

1 129�111�61 3�3 �1 10
�6 1 14

2 123�123�65 3�3 �1 10
�6 0.1 8

3 97�82�46 3�3 �1 10
�7 0.1 4

4 159�123�71 4�3 �1 10
�7 0.03 6

5 127�90�83 3�3 �1 10
�6 1 15

Table 3.1: Summary of the estimated computation times required by the presented solutions. The
factors that govern the computational effort shared between the nx

�ny
�nz processors are FD grid

size, initial time step and latest simulation time.

Other strategies worth investigating for improving the computational efficiency exist.Alum-
baugh et al.[1996] mention that a thorough study of the outer grid designis necessary in
order to avoid slow convergence of their implicit frequencydomain scheme due to large cell
aspect ratios. Although not crucial for the stability of thepresented method, an adequate
grid–stretching scheme could help to minimize the number ofgrid nodes required for an ex-
act solution. In addition, a material averaging scheme [Moskow et al., 1999] would allow a
model parameterization that is in principle independent from the underlying FD grid, thus
further relaxing the meshing constraints.



CHAPTER 4

A LARGE –SCALE INVERSION APPROACH USING

NON–LINEAR CONJUGATE –GRADIENTS

The solution for the inversion problems presented in Chapter 2 represents a constrained least–
squares or Gauss–Newton solution arising by solving a Lagrange multiplier problem in which
the error cost functional is minimized subject of a bounded parameter change. This solution
belongs to the class of direct methods, which obtain an exactsolution (except for roundoff
errors) in a finite number of iterations and are adequate for small–scale problems. The inver-
sion problems treated in this chapter, however, are characterized by large data sets, typically
needed in order to resolve a finely discretized earth model with a numerous set of unknowns.
The number of unknowns may reach as many as several thousandsor tens of thousands in
real exploration problems. For the solution of such large–scale problems, the Gauss–Newton
approach becomes less efficient or even unfeasible, depending on the size of the problem.
This owes largely to the fact that for each step of a Gauss–Newton iteration two computation-
ally intensive tasks need to be performed. First, the full Jacobian (sensitivity) matrix of the
forward modeling operator needs to be calculated. Second, acomplete solution of a linear
system on the model space, involving matrix inversion techniques, is required.

More direct and feasible in terms of computational aspects for the minimization of a given
cost functional are gradient methods, which belong to the class of iterative methods. In con-
trast to direct methods, an approximation to the exact solution is carried out successively
by a repeated evaluation of the forward modeling operator, thereby not requiring both stor-
age and inversion of the Jacobian. For a given point in the model space, gradient methods
only require functional and derivative information in order to evaluate both direction and
step length of a model enhancement. The method of steepest descent [Dennis and Schn-
abel, 1996] is the easiest understood and simplest to implement for this purpose. However,
it is usually characterized by a poor convergence in the presence of ill–conditioned inverse



76 LARGE–SCALE TEM INVERSION

problems. Described more mathematically byMeister[1999], the method often finds itself
taking steps towards a minimum of the cost functional in the same direction as earlier steps.
A more efficient approach employed here is the method of non–linear conjugate–gradients
(NLCG), first proposed byFletcher and Reeves[1964] for non–linear optimization problems
and later improved byPolyak and Ribìere [1969]. The method is related to the method of
linear conjugate–gradients (CG) ofHestenes and Stiefel[1952], yet with the framework of an
iterated, linearized minimum search abandoned. The linearCG method was employed in a
pioneering work ofMackie and Madden[1993] in order to solve the 3D MT inversion prob-
lem. Later,Rodi and Mackie[2001] implemented a NLCG scheme for a 2D MT inversion
algorithm andNewman and Alumbaugh[2000] formulated a 3D MT inverse solution using
NLCG.

The relative computational effort for the derivative information required for an iterative re-
duction of the cost functional can be equated to the calculation of the sensitivity matrix in a
Gauss–Newton type solution. Because of the high computation times needed by the explicit
time–stepping algorithm for a single forward simulation, aperturbation method as used by
SINV becomes not feasible within reasonable computation times. Instead, the gradient infor-
mation is obtained by a method strongly related to seismic migration techniques, therefore
sometimes also referred to as EM migration [Zhadanov et al., 1988].

Classical least–squares methods in principle investigateif any significant change in the pa-
rameters substantially alters a significant part of the observable data in order to quantify a
model enhancement. Migration techniques attack the problem from a reversed point of view.
A given difference between observed and predicted data (residuals) is treated as a source
field, also called residual field, and propagated backwards (in reverse time) into the earth
model. The field propagated forwards in time is the one producing the predicted data from
the current earth model and is referred to as the incident field. For the purpose of inversion of
seismic reflection dataTarantola[1984] outlined that correlating incident and residual field
at each point of the model space enables one to quantify modelcorrections that minimize the
residuals if applied to the current model. In other words, ifat a point in the model space there
is a model parameter perturbation, there will be an anomalous field which at that point will
be correlated with the incident field. In seismic migration the anomalous field is also referred
to as diffracted pressure field, and in the context of EM imaging the anomalous field will
represent the field due to an anomalous current distribution. The following section will first
outline the principles of EM migration in a rather heuristicapproach. Important aspects, that
is the description of fields excited by point–sources in terms of Green functions and related
symmetry properties, will as well be introduced before a more rigorous theoretical treatment
is given in the subsequent sections.

4.1 Principles of EM migration

The imaging methods for seismic wavefields are sometimes described by an exploding re-
flector concept and basically involve the propagation of a field backwards in time and its
cross correlation with an incident field [Claerbout, 1971;Loewenthal et al., 1976;Tarantola,
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1984]. Similar to seismic migration, the migrated EM fields originate from that part of the
field which is not taken into account by the current earth model, i.e. an assumed model guess.
This introduces the data residuals as the difference between the incident or primary field for
some given model, where the model is described by a distribution of the conductivities over
the 3D space, and the actual observed field produced by the true earth model. The data resid-
uals are treated as the source of a residual field. The flow of the residual field, originating
from the surfaces of the observation points, i.e. the receivers, through the earth can be treated
as a functional of an anomalous conductivity distribution in the model. To get a further un-
derstanding of how the residual field and the incident field isrelated to such an anomalous
conductivity distribution, consider the time–domain integral equation [Hohmann, 1988],
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Illustrated in Figure 4.1, the equation describes the totalelectric fielde
�
r �t � at an observation

point r in the 3D space as the sum of a scattered electric field generated by the anomalous
currentsja in the volumeV plus a primary background fieldep
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r �t �. Boerner and West[1989]

indicate that the anomalous conductivityδσa is proportional to a somewhat equivalent electric
dipole source distribution. It is parallel to and proportional with the current densityja created
in the earth atr
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by the external source field, thus
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Describing the scattered electric field atr due to a conductivity perturbation by means of a
“point–source excitation” atr

�

introducesG
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�t
��as the tensor or dyadic Green’s function

[Felsen and Marcuvitz, 1973]. In the case of electric fields (magnetic fields will beconsidered

Figure 4.1: Illustration of the geometry for the reciprocal relationship between a point atr � in the
model space and a receiver atr . Both the external source (Tx) and the receiver (Rx) are electric
dipoles.

further below), it represents the electric field impulse response atr �t arising from a unit
vector force density1 acting in the direction of the unit vector atr

�

�t
�

[Felsen and Marcuvitz,
1973]. In practice, the elements of this tensor are obtainedby calculating all three cartesian
components of the electric field’s impulse response for eachcartesian orientation of the unit

1A unit vector force density atr � �t � has the space–time formu�δ�r �r ��δ�t �t ��, whereu� is a unit vector.
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dipole source atr
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. For example, written in a dyadic form,ey
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the electric field impulse response in they direction atr �t produced by an unit electric dipole
source atr
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in thex direction.2 Here, the reciprocity theorem can be applied [Hohmann,
1988;Ward and Hohmann, 1988]. Formally written as
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it says that if both the source/receiver positions and the source/receiver components are in-
terchanged, the calculated fields will be the same. Expressed by the example, instead of cal-
culating they–directed electric field impulse response atr due to ax–directed electric dipole
source atr

�

, one can reverse the process such that the transmitter operates as a receiver. Thus,
thex–directed electric field atr

�

caused by an impulsivey–directed electric dipole source at
r is identical.

From Equation (4.1) it can be seen that the primary electric field ep
�
r

�

�t
�� would equal the

total field in the case of a vanishing anomalous conductivity. The equation can be used to
derive the time–domain electromagnetic sensitivities [Hördt, 1998], which can be basically
identified by the difference between the total and the primary electric field with respect to a
model perturbationδσa. Assuming a very small perturbationδσa allows to replace the total
electric field atr

�

with the primary or unperturbed fieldep
�
r

�

�t
�� [Hördt, 1998]. Using this

approximation together with the reciprocity relation, Equation (4.1) is rewritten to
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From a classical point of view, the left–hand side represents a measure for the field variation
at r produced by a change in the model parameter atr

�

, thus it is the parameter sensitivity.
The integral on the right–hand side represents an efficient way of calculating the sensitivities
for the whole model domain. It is realized by carrying out a convolution of the background
(primary) electric fieldep

�
r

��with the electric field impulse response atr
�

sourced atr by an
unit electric dipole. The method is efficient, because reciprocity implies that the sensitivity
at r for each image pointr

�

over the model is obtained by a single convolution.

Viewed from a somewhat reversed point, the convolution integral also represents a way to
quantify, for a given earth model, the parameter perturbation atr

�

that has to be performed in
order to let the difference between total and background field vanish. If now in Equation (4.2)
the total electric fielde is replaced by an observed field measured atr �t over an unknown
model, and the background fieldep is replaced by a forward solution of a model guess, one
can identify the basic principle of EM migration. In the limit δσa � 0, the equation’s left–
hand side represents the gradient of the data residual with respect to the perturbation of the
model conductivity and thus a means to find a model perturbation that minimizes the data
residual.

In the following section it will be shown that the field propagated byG
�
r

�

�t
� �r �t � becomes a

migrated residual field, because it is sourced by the actual data residuals calculated from an
assumed earth model instead of a single impulse signal. The migrated field is also referred to

2Formally, the tensorG is dot product multiplied from the right by the unit vector assigned toex.
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as backpropagated field. It is propagated backwards in time,because its excitation starts with
the latest data residuals and continues towards the ones belonging to time zero. This follows
from the reciprocity relationship and might clarify a possible confusion arising from the fact
that seismic migration is usually addressed by a cross correlation between incident and mi-
grated wavefield, sometimes also referred to as ’downgoing’and ’upgoing’ [Claerbout, 1971;
Tarantola, 1984] field, respectively. To be correct, the cross correlation between two fields
propagated forwards and backwards in time can be regarded asa convolution of two fields
that are both stepped forwards in time, yet with one differing by a time–reversed feeding
with its respective source field. For the time–stepping algorithm developed in Chapter 3 there
actually exists no major difference between a classical forward simulation or a backpropaga-
tion of the EM field. Both kinds of fields employ the same time–stepping scheme. Only the
implementation of the source is different.

It can be concluded that the gradients of the data residual, which will be related to an error
functional further below, with respect to the model conductivities σ

�
r

�� can be efficiently
calculated by means of only two field simulations. The correlation of the backpropagated
field with the incident field is carried out over the whole inversion domain, thus yielding the
gradients at each pointr

�

. The combination with an iterative algorithm for a minimum search
of an error functional makes EM migration a powerful imagingtechnique. Compared to the
seismic counterpart, the major difference is that it is carried out on the basis of Maxwell’s
equations. This will be treated thouroughly in the following section.

4.2 Background: Diffusive Maxwell’s equations,
Green dyadics and adjoints

The first order Maxwell’s equations given previously by Equations (3.1) are first rewritten in
the diffusive approximation,
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where the electric and magnetic current source fields are nowgiven byje andjm, respectively.
Both types of current source fields will describe the sourcesof the migrated fields at a later
stage. Solution to Equations (4.3) are formally written in terms of the electric and magnetic
excitation currents by the integral representations [Felsen and Marcuvitz, 1973]
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For the Green dyadicsGi j
�
r �t �r �

�t
��, causality implies that

Gi j
�
r �t �r �

�t
��� 0� t � t

�

� (4.5)

The Green dyadic componentG11
�
r �t �r �

�t
�� �u

�

and G21
�
r �t �r �

�t
�� �u

�

represent the vector
electric and magnetic fields, respectively, atr �t, produced by a unit electric current density
at r

�

�t
�

. The excitation acts in the direction of the unit vectoru
�

. Similarly, G12
�
r �t �r �

�t
�� �u

�

and G22
�
r �t �r �

�t
�� �u

�

propagate the electric and magnetic response, respectively, of a unit
magnetic current density atr

�

�t
�

in the directionu
�

[Felsen and Marcuvitz, 1973]. The four
dyadics in Equations (4.4) satisfy the following first–order equations
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∂G21
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� 0� (4.6a)
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�∇ �
G22

�σG12 � 0� (4.6d)

whereI denotes the identity dyadic.

The backpropagation of the data residuals involves an adjoint–field problem [McGillivray
and Oldenburg, 1990;McGillivray et al., 1994]. The adjoint field differs from the original
field defined by Equations (4.3) in that it is reversed in both space and time, because an
ingoing wave solution rather than the characteristic outgoing wave solution is admitted. As
mentioned in the previous section, the excitation of the backpropagated fields takes place at
the locations where data errors originate from, these are the receiver positions. Adjoint and
original fields are connected by the reciprocity relation for transient EM fields [Hohmann,
1988], formally written as

G�
i j

�
r

�

�t
� �r �t �� G̃ ji

�
r �t �r �

�t
��� (4.7)

whereG�
i j propagates an adjoint field and̃G ji represents the transpose of a dyadic [Wang

et al., 1994]. The time–reversed field propagation indicates the anti–causality of the adjoint
Green dyadics, specifically

G�
i j

�
r �t �r �

�t
��� 0� t � t

�

� (4.8)

The adjoint fields are representable in a form similar to thatin Equations (4.4),
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The reversal of the space–time coordinates for the adjoint fields leads to the following rela-
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tions corresponding to Equations (4.6),

�∇ �
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11
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∂G�
21

∂t
� 0� (4.10a)
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∇ �
G�

22
�σG�

12 � 0� (4.10d)

These equations indicate the principal difference betweenseismic and EM migration. The
migration of seismic wavefields employs the same wave equation as for forward propagation
[Tarantola, 1984], whereas the backpropagation of diffusive EM fields involves the adjoint
Maxwell’s equations, where both space and time coordinatesare sign–reversed.

Reciprocal connection of the Green dyadics

At this point, it needs to be emphasized that bothG andG� always propagate the impulse
response of a field. Complications with reciprocity arise when i

�� j, that is the electric
field response due to a magnetic dipole source or vice versa isconsidered. The reason can
be found in the time–domain reciprocity relationship written in terms of the electric and
magnetic source momentsD andM, respectively [Ward and Hohmann, 1988],

D � �µM
∂
∂t �

(4.11)

Its practical meaning is that the magnetic field impulse response for an electric source is
equivalent to the electric field step response for a magneticsource [Hördt, 1998]. This is
a critical point not taken into account byWang et al.[1994], when deriving the gradient
specifications that involve the reciprocal relationship between electric/magnetic responses
for magnetic/electric sources. The aspect was not discussed by the authors, because their
presented synthetic data inversions required only the dyadic for an electric response due to
an electric source type, where no such complications arise.To summarize the reciprocal
connection between the four dyadics and its adjoints,
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To gain a deeper understanding of these reciprocity laws, consider first Equation (4.12a).
Each component of this tensor equation describes an equivalency between two electric field
components atr

�

�t
�

and r �t that arise from two electric dipole sources located atr and r
�

with an impulse excitation att andt
�

, respectively. A similar explanation for magnetic source
and receiver types holds for (4.12d), where the responses need to be scaled by the magnetic
permeability at the respective location. Equation (4.12b)equates the time derivative of the
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magnetic field impulse response that arises from an electricdipole source to the electric field
impulse response that arises from a magnetic dipole source.Explanation of Equation (4.12c)
is similar to (4.12b), except for a sign change, which is required because the field evolves in
reverse time, starting at timet. When (4.12b) is integrated over timet and (4.12c) is integrated
over timet

�

, it follows
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where
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The derivation of (4.13a) from (4.12b) is exemplified in Appendix A.3 in order to clarify the
change of the sign.

4.3 Specification of the gradients

As mentioned in the introduction of this chapter, the presented iterative imaging technique is
based on information about the gradient of an error functional rather than on direct solutions
obtained by matrix inversion methods. With both the idea of EM migration and the formal
representation of the EM field by means of Green functions andits adjoints in place, the
specifications for an efficient gradient calculation are nowderived.

The inverse problem introduced earlier in Section 2.1.2 is first reformulated in terms of an-
other form of the error functional3

φ
�
m� � 1

2∑
j
∑
i

� T

0

�
do�r i �t;sj ��dp�r i �t;sj ��2dt

� 1
2∑

j
∑
i

� T

0
δdo�r i �t;sj � �δdo�r i �t;sj �dt � (4.14)

The differenceδdo between a set of observed an predicted datado anddp, respectively, is
matched in a least–squares sense, which corresponds to finding a modelm that minimizesφ.
The summation is carried out for all source positionssj and its respective receiver positions
r i . For now, it shall be assumed that all receivers are assignedto a single transmitter. The
measurements and its respective predictions are sampled over the time ranget � 0 to t �
T, wheret � 0 denotes the shut–off time of a source at steady state. The error funtional
is connected with a model guess by the implicit dependence ofthe predicted data onm,
which may represent a conductivity or magnetic permeability distribution. In this thesis, only
electrical conductivities are considered as variable model parameters, thusm �σ.

3For simplicity the formal notation of a vector dot productaTb is neglected.
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To obtain the gradient of the error funtionalφ with respect to the model conductivities, de-
noted byγσ, consider a small perturbationδσ at the pointr

�

in model space. The relationship
between the gradient and the perturbed quantities is given by Wang et al.[1994],

δφ � φ
�
σ�δσ��φ

�
σ��

�
V �

γσ
�
r

��δσ
�
r

��dr
�

(4.15)

and can be explained as follows. The gradientγσ represents a vector, where each component
is assigned to a model cellk with k � 1� ����M andM the total number of model elements
belonging to the inversion domainV

�

. It represents a differential quantity, because there is
no cell volume associated with all points ofV

�

where it is calculated. To obtain the change
in the error functionalδφ with respect to conductivity changesδσ in a cell, it has to be
integrated over the volume of that cell. Equation (4.15) includes the assumption that the error
functional is Fréchet differentiable, that is the neglected remainder term of the approximation
is of second order inδσ [Chave, 1984;Boerner and West, 1989;Wang et al., 1994].

In Equation (4.14), the change in the error functional originates from the change in the pre-
dicted dataδd, hence the perturbed quantityδφ is

δφ � 1
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� T

0

��
do ��

dp �δd��2 � �
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δdo

�δd �1
2

δd �δd�dt

� �∑
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� T

0
δdo

�δd dt (4.16)

Note that the second order termδd �δd is also of second order inδσ and thus has been
neglected. Now the perturbed quantitiesδd andδσ will be related to the field solutions given
by Equations (4.4). As indicated by Equation (4.1), a scattered fieldδd can be connected with
a model perturbationδσ. In order to obtain the scattered field solution, consider the perturbed
quantities

σ � σ�δσ�
µ � µ

�δµ�

e � e
�δe�

h � h
�δh�

By rewriting Maxwell’s Equations (4.3) using these perturbed quantities and then subtracting
the corresponding equations for the non–perturbed state, it follows [Wang et al., 1994]

σδe�∇ �δh � �δσe� (4.17a)

∇ �δe
�

µ
∂
∂t

δh � �δµ
∂
∂t

h� (4.17b)

where second order terms (products of two perturbed quantities) are neglected.

At this point, it has to be distinguished between different data types contained inδdo andδd.
These can be electric fields, magnetic fields or the time derivative of magnetic fields (volt-
ages). For causal source fields,Wang et al.[1994] show that different gradient specifications
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result for electric and magnetic fields. In this work, the gradients for electric fields and volt-
ages are derived for the more general case of non–causal source types. It will become clear
that the resulting gradients comprise the gradient specifications for causal sources.

4.3.1 Gradient specification for electric field data

A comparison of Equations (4.17) for perturbed fields with the formal field solutions in terms
of Green dyadics (Equation 4.4a) yields
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From here, the second integral is not taken into account, because it only needs to be consid-
ered when perturbations of the magnetic permeability are treated. By settingδµ

�
r

�� � 0 the
second integral vanishes. Note that the existence of non–causal source fields implies that the
lower bound of the time integral is replaced by a value oft � �∞ instead oft � 0. Substitut-
ing Equation (4.18) into Equation (4.16), where the generalvariablesδdo andδd for the data
residuals and the scattered field, respectively, are replaced by its electric field representations,
one obtains
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By a comparison of Equation (4.19) with (4.15) it can be seen that the gradient is given by
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whereγe
σ indicates that this specification belongs to electric field data. Reverting back to the

basic outline of EM migration (Section 4.1), it can be seen that Equation (4.20) in principle
contains the convolution that would yield differential sensitivities (with no volume associated
with each point) over the model domainr

�

. Hence, the gradient can simply be evaluated by
integrating the product of the data differencesδeo at r i and the corresponding sensitivities
over the time interval of the observed data. The difference to the integral in Equation (4.2) is
that the reciprocal relationship has not yet been applied to(4.20). Therefore, the realization
of Equation (4.20) would require one forward solution to compute the fields in the current
model and as many solutions as there are image points in the model domain in order to get the
sensitivities. This is impractical with a large number of image points. Instead, (4.20) is now
turned into a form that establishes the relationship to migration techniques. This involves the
treatment of the residualsδeo as sources of a residual or backpropagated field as can be seen
in the following derivation.

First, as clarified in detail in Appendix A.4, the order of time integrations in (4.20) can be
reversed to
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Now the reciprocity relationship as given by Equation (4.12a) is applied,
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This already indicates that the residual field propagated bythe adjoint Green function origi-
nates from the receiver positionsr i , which now act as sources with the source excitation given
by δeo. In order to avoid confusion between the sources of the residual field at the receivers
and the source given by the grounded–wire transmitter, the latter one will be referred to as
external or primary source in the following. The incident electric fielde

�
r

�

�t
�� can be placed

outside the time integration overt. A further rearrangement of the summation over the source
positions of the residual field yields
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The inner integral and the summation over the receivers is replaced by
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which represents the residual or backpropagated electric field atr
�

�t
�

due to a source excita-
tion quantified by the data residualsδeo at the receiver positionsr i . The data residualsδeo

can be regarded as electric current sources, radiating fromthe sensor positionsr i in reverse
time, as indicated by the lower integration boundaryT (the time of the latest measurements).
The reversal of the time order of propagation foreb is also inherent in the anticausal defini-
tion of the adjoint Green dyadic in Equation (4.24). The FD algorithm described in Chapter 3
is capable of simulating the field response arising from multiple sources distributed over the
model. Thus, only a single simulation is needed for the computation of eb. Finally, the
gradient is specified in the compact form
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In practice, the gradient vector is computed by extracting the incident and the backpropagated
field at each of theM cells comprising an inversion domain and carrying out the correlation
of the fields at each cell.

A closer view of the backpropagated fields

To further understand the formal specification of the backpropagated field in (4.24), consider
Equations (4.9). In fact, the formal adjoint electric fielde� is directly related to the fieldeb

in (4.24). Apart from the volume integration, the only difference is that the electric current
source fieldje is given by the data residualsδeo distributed over the receiver pointsr i . Now
the Green dyadicG�

12 in (4.9a) indicates thateb also has a magnetic part. The magnetic current
source fieldjm can be given by either magnetic field or voltage residuals. Inthe presence of
voltage data, the corresponding backpropagated electric field
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is sourced by the voltage residualsδvo. Similarly, in the presence of magnetic field data, with
the residuals given byδho, it follows

estep
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stepG�
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�δho�r i �t �dt � (4.27)

It turns out that the two types of fields in (4.26) and (4.27) are related to each other through
a simple time differentiation. This crucial detail resultsfrom the reciprocity relationship
between electric and magnetic fields discussed in connection with Equations (4.13). Equa-
tion (4.27) is involved in the conductivity gradient specification for magnetic field residuals
(Newman, pers. comm.). For the sake of completeness the backpropagated field types related
to the adjoint magnetic fieldh� are specified:
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These fields are involved in the derivation of the gradients for magnetic permeability. This
is not further outlined in this work.

Treatment of the non–causal gradient part

In practice, the actual computation of Equation (4.25) would require a backpropagation be-
yond timet � 0 in order to account for the correlation with the non–causalpart of the inci-
dent field. This would need to be performed until the contribution to the correlation integral
vanishes due to a sufficient decay of the backpropagated field. To avoid this significant disad-
vantage, it is computationally convenient to formally split up the gradient in Equation (4.25)
such that
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wheree
�
r
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�t
�� � eDC �r �� for t

�

�0. The second integral is further split up in order to obtain
the correct forms for a backpropagation starting at the latest measurement timeT,
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The constant DC electric field,eDC �r �� could be brought outside the integration. This field
can be determined by solving Maxwells’s equations in the steady state limit as described in
Section 3.1.5. For reasons mentioned soon, the integral of the last term in Equation (4.30) is



4.3 SPECIFICATION OF THE GRADIENTS 87

related to a backpropagated DC electric field. First, consider the adjoint Maxwell equations,
which are satisfied by the backpropagated fields for electricsources,

σeb
�∇ �hb � �∑

i
δeo�r i �t �δ�r �r i �� (4.31a)
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µ
∂hb

∂t
� 0� (4.31b)

These equations follow directly from Equations (4.10a,b),(4.24) and (4.28a) and are now
integrated from the time ranget � �∞ to t �T,
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Note that the integral fromt � �∞ to t �0 vanishes for the source term in Equation (4.32a),
becauseδeo�r i �t � � 0 for t �0. Also,hb

�
T � � 0 andhb

��∞� � 0 and introducing the back-
propagated DC electric and magnetic field by
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one can simplify Equations (4.32) to
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To avoid confusion, it shall be emphasized that the fieldseDC
b and hDC

b are causal fields,
in contrast to the non–causal DC fields arising from the external source. However, the fact
that they are formally backpropagated beyond time zero to the DC state of the incident fields
suggests to name them after the incident DC fields.

Similar to the incident DC electric field, the integrated backpropagated electric field can be
written as the gradient of a scalar potentialϕb, because∇ �eDC

b � 0. ThuseDC
b is obtained

by solving
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�
σ∇ϕb� � �∇ �∑
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δeo�r i �t �δ�r �r i�dt �

The equation represents a 3D Poisson problem similar to the one for the incident DC electric
field (Equation 3.15), yet with a different source field, given by the data differences integrated
over the time interval from 0 toT. It can be solved by the same algorithm employed for the
forward case, as outlined in detail in Appendix A.2.

Now the gradient for electric field data is rewritten in the form in which it is actually imple-
mented,
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Note that this representation reverts back to the causal form, that is only the first integral
given byWang et al.[1994], wheneDC vanishes. In addition to the solution of the Poisson
problem in order to evaluate the third term, it is also necessary to integrate the backpropagated
electric field for the second term. This is not difficult to implement, because the integral
�T
0 eb

�
r

�

�t
� �δeo�dt

�

can be calculated as a by–product during backpropagation ofthe electric
field. Nevertheless, this integration could also be eliminated by expressing Equation (4.34)
as
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r
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�t
�� represents a causal field generated by a turn–on wave-

form of the transmitter. However, this way of implementation is less favorable, because
subtractive cancellation can lead to a loss of accuracy ineon�r �

�t
�� at late times (Newman,

pers. comm.).

4.3.2 Gradient specifications for voltage and combined data

A derivation of the gradientγv
σ for voltage data is similar to the gradient for electric fields and

is given in detailed form in Appendix A.5. Here, its final formis given,
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where the corresponding backpropagated electric field has already been defined by (4.26).
Compared to the derivation of the gradient for electric fielddata, the major difference results
from using Equation (4.12b) instead of (4.12a) when applying the reciprocity relation. By
comparing (4.35) with (4.34), one further notices that no backpropagated DC electric field is
required forγv

σ. As also outlined in Appendix A.5, this owes to the fact that the voltages are
causal, i.e. vanish in the DC state of the primary source.

Consider a TEM measurement, where both electric field and voltage data is recorded. The in-
spection of (4.34) and (4.35) shows that both can be computedjointly. This is realized by the
capability of the FD time–stepping scheme presented in Chapter 3 to superimpose multiple
electric and magnetic types of sources. It allows for additional computational efficiencies in
the case of both data types present. At this point, the extension of the gradient specification
to include multiple primary transmitters shall also be given. The required additional summa-
tion over all primary source positionssj is straightforward. Finally, the combined gradient is
specified as
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For each source positionssj , the computation of the combined gradient still involves only
two simulations, one forward simulation to compute the fields in the current model and one
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simulation for the backpropagation. However, this procedure needs to be carried out as often
as there are primary sources.

4.4 Time–stepping backpropagated fields

The adjoint Maxwell equations for time–stepping the backpropagated fields arising from both
electric and voltage data residuals follow from Equations (4.10), (4.24), (4.26), (4.28a) and
(4.28b),

�∇ �eb
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� �∑
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r i �δvo�r i �t �δ�r �r i �� (4.37a)
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δeo�r i �t �δ�r �r i �� (4.37b)

Note that the displacement term has also been taken into account in order to realize the
DuFort–Frankel scheme explained in Section 3.1.3. As already indicated, the FD algorithm
developed in Chapter 3 is employed for both propagation of the incident field forwards in time
and backpropagation of the residual field. The incident fieldonly involves electric current
source fields impressed by the transmitter, whereas the residual fields arise from both electric
field and voltage data residuals sourced at the receiver locations. The length of the source
excitation is governed by the time interval covered by the data residuals.

The residual fields are initialized to zero at the timet � T and stepped backwards in time
until time zero is reached. Therefore, these fields are causal and the time–stepping scheme
described in Section 3.1.2 is employed as no initial DC fieldsare involved. Consider the FD
discretization exemplified by Equation (3.5) for the magnetic inductionb. The discretization
of (4.37a) yields similar expressions for the components ofbb, yet the additional source term
needs to be taken into account. In contrast to the forward propagation, the time–reversed
propagation of the fields now involves rearranging the discretized form of (4.37a) such that
bn�1

2 is updated frombn�1
2 , thus
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where the data differenceδvo at the required timetn is obtained by interpolation. Similarly,
discretizing (4.37b) using the same approximation for averages and central differences as
explained in Section 3.1.2 yields
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δeo�r i �n�1

2 �� (4.39)

Equations (4.38) and (4.39) also clarify how the data differences are fed in as magnetic and/or
electric source terms at the FD grid positions given by the receivers atr i . As carried out for
the primary source, the distribution of the data differences over the receivers is inversely
interpolated onto the FD grid.

Comparing Equation (4.39) with (3.18) shows that the only principal difference is given by
the sign of the second term on the right–hand side. Equation (3.18) describes a diffusing
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field that is decaying in forward time and growing in reverse time [Wang et al., 1994], where
a gradually increasing time step can be employed as outlinedin Section 3.1.3. Numerical
experiments have shown that for backpropagation a decreasing time step is adequate, because
the fields revealed more rapid variations towards time zero.To be more specific, the initial
time step is chosen such that the EM field retains its diffusive nature at the latest observed
timeT and the variable time step decreases according to Equation (3.7) as the simulation time
decreases, until time zero is reached. The reason is possibly due to the fact that the adjoint
Maxwell equations solved by the backpropagated fields describe the concentration of fields,
in contrast to the diffusive nature of the fields propagated forwards in time. However, this
aspect has not yet been sufficiently investigated.

4.5 Numerical gradient checks

For a numerical verification of the gradients a crosswell measurement configuration is con-
sidered. The FD grid used to simulate the underground has a number of 51�39�53 nodes
in thex� y andz direction, respectively. An electric dipole source of unitlength is located at
the horizontal positionx � 0 m, y � 0 m and the vertical positionz� 0 m and points into
they direction. The observed data is computed from a 5Ωm homogeneous fullspace repre-
senting the true model. A single receiver is placed at the position x � 100 m,y � 0 m and
z� 0 m. The predicted data and thus the data differencesδdo are produced by assuming a
10Ωm homogeneous fullspace. The data is generated over the timerange of 10

�5 s to 10
�3 s

after the transmitter current switch–off, which is sufficient to cover the decay of the field at
the receiver.

The gradient computed by backpropagation of the data differences is compared with the
one obtained by a simple perturbation method. From Equation(4.16) it follows for a single
componentγσk of the gradient vectorγσ

γσk �
δφ
δσk

� �� T

0
δdo�r �t � �

δd
�
r �t �

δσk
dt �

whereδσk with k � 1� ����M denotes the conductivity perturbation of a single cellk of the
model domain. As mentioned before, this involves the calculation of sensitivities. Therefore,
each cell conductivity of the 10Ωm homogeneous fullspace is perturbed by a value of 10 % in
order to get the differencesδd at the receiver positionr with respect to the model perturbation
δσk. The grid domain considered for the check comprises thex�z plane throughy � 0
between source and receiver with a vertical extent of 95 m. This involves 360 grid cells, each
one with a size of 5�5 �5 m3, and thus 360 gradient vector components to be verified.

The first gradient check involves only electric field data. For this check the backpropagation
gradient is computed using Equation (4.34). The field component parallel to the transmit-
ter is considered for the data residuals. The result is shownby the percentage difference
plot in Figure 4.2a. Only absolute differences of the backpropagation gradient with respect
to the perturbation gradient are shown. Away from the transmitter and receiver the differ-
ences are mainly below 1 %, thus showing a very good agreement. In the vicinity of both
transmitter and receiver one observes the largest deviations with a maximum of 9 % reached
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near the transmitter. However, this still represents a tolerable difference. Larger deviations
are observed when the backpropagated fields are sourced by voltage data as shown in Fig-
ure 4.2b. The result compares the gradient computed from Equation (4.35) with the pertur-
bation method. The data residuals are computed from the voltage component that is parallel
to thez direction. Differences up to 47 % occur in the vicinity of thereceiver, whereas the
space betweenx � 30 m andx � 70 m is dominated by deviations of only a few percent.
The last gradient check involves sourcing the backpropagated fields by a combination of both
electric field and voltage data, using Equation (4.36). Comparing the resulting differences in
Figure 4.2c with the previous results, the combined data seems to produce an average of the
results originating from the separate data sets. Here, a maximum difference of 26 % occurs,
again near the receiver.

Better agreement between both types of gradients can be obtaind for all data types by refining
the mesh near the receiver. The grid used for the shown results is characterized by a coarsen-
ing of the mesh starting beyond the receiver position atx�100 m. Other gradient checks not
shown here involved a refinement of the mesh in the vicinity ofthe receiver. For example,
by refining the mesh near the receiver using 5 additional nodes in thex direction, the maxi-
mum difference in the gradients for vertical voltage data could be reduced by approximately
a factor of two.

Here, the perturbation method was used for obtaining reference values for the backpropa-
gation gradients. As indicated by Equation (4.2), other possibilities exist for computing the
sensitivities for each cell and thus the reference values for the gradient. For another way to get
the electric field sensitivity at the receiver positionr for a given cell atr

�

, one can implement
Equation (4.2) by placing an electric dipole source of unit length with a source excitation
given by the background electric fieldep

�
r

�

�t
�� at the cell positionr

�

. Here, the background
electric field corresponds to the field generated by the external source in a 10Ωm fullspace.
Alternatively, using reciprocity, the electric dipole canbe placed at the receiver atr , now
emitting an impulse signal. By convolution of the impulse response atr

�

with the back-
ground electric field, the sensitivity atr is again obtained. It turned out that the latter method
yields better comparisons with the backpropagation gradients than the perturbation method.
A reason is given by the fact that the perturbation of a cell conductivity always involves a
finite quantity for both cell volume and parameter change, which is not the case with the
convolution method. In other words, there exists more similarity between convolution and
backpropagation method for computing gradients.
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Figure 4.2: Checks on the gradients by comparison with a perturbation method. The contour plots
show the absolute differences in % between gradients computed from perturbation and backprop-
agation. Panel (a) shows comparisons for electric field data, panel (b) shows the corresponding
comparisons for vertical voltage data and panel (c) for a combination of both data types.
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To conclude, although different ways of calculating reference values for the gradients ex-
ist, the perturbation method is preferable for verification. In comparison with the described
ways of obtaining the gradient by other ways of calculating the sensitivities, the perturbation
method is more different to the backpropagation method and hence provides for more inde-
pendent reference values. Although relatively large differences exist locally for the shown
examples involving voltage data, the gradients reveal a good agreement over most of the in-
spected area. The largest deviations occur close to the transmitter and receiver, where the
sensitivities are large as well. This indicates that the perturbation method is probably less
exact due to finite volumes associated with the sensitivities computed by cell perturbations.
The later shown inversion examples will demonstrate that the accuracy of the gradients is
sufficient for a successful minimum search.

4.6 Solution of the inverse problem by a NLCG scheme

So far, an efficient scheme has been constructed that allows to obtain the derivative informa-
tion needed for a minimum search in the model space. Now an adequate iterative algorithm
has to be found that employs the gradient information as efficiently as possible. Although
the computational effort for obtaining the gradients is minimized by the migration technique,
it will still dominate the inversion algorithm due to the computer–intensive time–stepping
of both forward simulation and backpropagation of the fields. Therefore, iterations that do
not significantly minimize the error functional need to be avoided. If the method of steepest
descent is used for a minimum search and the problem to be solved is ill–conditioned, an
unnecessarily high number of gradient computations is likely, because the method of steepest
descent does not “remember” the direction of previous stepsin the model space. The idea is
to construct the search directions such that each directionis taken only once, which leads to
the method of conjugate directions.

The principle that makes CG or NLCG superior to the method of steepest descent is that the
search directions are constructed by conjugation of the gradient or steepest descent directions.
In other words, the iterative search for a minimum ofφ

�
m� takes place in the course of

building a vector set of search directions that are mutuallyconjugate. In principle, this implies
that the vectors of search directions can be transformed4 to an orthogonal basis of the model
space. It would be beyond the scope of this work to further outline the details of CG or
NLCG. A more mathematical treatment is given byHestenes and Stiefel[1952], Fletcher
and Reeves[1964] andPolyak and Ribìere [1969]. In comparison to the method of steepest
descent, the conjugation of the gradients accounts for a better convergence since repeated
model updating steps along the same direction do not occur.

The following algorithm flowchart for the iterative NLCG scheme is given byNewman and
Alumbaugh[2000]. Iteration numbers are denoted by

�
i�. The vectorm represents a point

in the model space, here it is the model space defined by the conductivity distribution. The
matricesM �i� andM �i�1� are related to a preconditioner. The findings ofRodi and Mackie

4The transformation is for example represented by the matrixA, which describes the linear system to be
solved by CG. Two vectorsv1 andv2 are conjugate or A–orthogonal ifv1Av2 �0.



94 LARGE–SCALE TEM INVERSION

[2001] showed that convergence rates for the 2D MT inverse problem using NLCG can be
significantly improved with preconditioning. However, thepresented inversion does not yet
involve preconditioning. For the purpose of a NLCG scheme without preconditioning, one
can defineM as the identity matrix.

At the first iteration the initial step (1) selects a model estimate and computes the residual
r �i�, which is represented by the steepest descent vector or negative gradient of the error func-
tional φ at the starting model. Note that the gradient is given by Equation (4.34), (4.35) or
(4.36), depending on the data type to be inverted. The first search directionu�i� is then set to
the residualr �i� in step (2). Step (3) represents a minimum search by a line search procedure,
that is finding the value ofα that minimizes the error functional for a given model and a
search directionu�i�. This is an important procedure for a successful and efficient implemen-
tation of NLCG and is described in detail byDennis and Schnabel[1996]. The non–linear
line search makes the main difference to the linear CG method. The scheme used here was
employed earlier byNewman and Alumbaugh[2000]. Basically, the line search algorithm
finds a minimum ofφ by using functional and derivative information at one pointm�i� in
the model space and functional information at another pointalong the search directionu�i�.
The additional computational effort required by the line search is thus mainly represented by
evaluatingφ at the second point along the search direction, because the information related
to m�i� is saved from the previous iteration. A quadratic curve is fitted through both points in
order to estimate the step to the minimum. With the line search completed, the model update
is performed and the new residual is evaluated at the new point m�i�1� in the model space
(step 4). Step (5) serves as a stopping criteria; if not fulfilled, a new search direction, which
is conjugate to all previous ones, is determined by step (6) and (7). Both these steps perform
the actual conjugation of the search directions. Basically, the procedure can be reduced to
a Gram–Schmidt conjugation procedure as outlined more detailed for example byShewchuk
[1994] or Meister [1999]. With a new conjugate search direction evaluated, the algorithm
loops back to the line search procedure in step (3).

(1) seti � 1, choose initial modelm�i� and computer �i� � �∇φ
�
m�i��.

(2) setu�i� �M
�1�i� r �i�.

(3) find α�i� that minimizesφ
�
m�i�

�α�i�u�i��.
(4) setm�i�1� �m�i�

�α�i�u�i� andr �i�1� � �∇φ
�
m�i�1��.

(5) stop when�r �i�1� � is sufficiently small, otherwise go to step (6).

(6) setβ�i�1� �
�
rT�i�1�M

�1�i�1�r �i�1��rT�i�1�M
�1�i� r �i���rT�i�M

�1�i� r �i�.

(7) setu�i�1� �M
�1�i�1�r �i�1�

�β�i�1�u�i�.

(8) seti � i
�

1 and go to step (3).

NLCG algorithm flowchart after Newman and Alumbaugh [2000]
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Fortunately, parallel implementation of the NLCG scheme isstraightforward. All that is
required is global communication amongst the processors tocomplete the dot products that
occur during steps (3) and (6).

4.7 Solution stabilization

4.7.1 Regularization

In contrast to the strongly limited number of model unknownsconsidered in Chapter 2, the
presented large–scale inversion scheme imposes a fine modelparameterization, because only
reconstructions that do not underparameterize the underground are considered. This may re-
sult in many more model parameters than data values and forces the 3D inverse problem to be
underdetermined and thus unstable and ill–posed. In an extreme case, the least–squares best–
fitting model may possess structure which is rougher than is physically possible. Reliable
model estimates are still possible if the inversion is stabilized with regularization. Originally,
the general procedure of regularization was introduced byTikhonov and Arsenin[1977] in or-
der to overcome mathematical difficulities in the theory of ill–posed problems. In the context
of conductivity imaging, regularization can be seen as penalty for complexity, where exces-
sively complex models are characterized by sharp conductivity variations between neighbour-
ing model elements [Constable et al., 1987;DeGroot-Hedlin and Constable, 1990;Newman,
1995;Commer, 1999]. Regularization thus suppresses solutions that aretoo rough by impos-
ing an additional constraint on the data fit.

To implement regularization, the error functional of Equation (4.14) is augmented such that

φ
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2∑
j
∑
i

� T

0
δdo�r i �t;sj � �δdo�r i �t;sj �dt

� λ
2

mTWTWm � (4.40)

whereW is a regularization matrix. FollowingNewman and Alumbaugh[1997], the regular-
ization is chosen such thatW consists of a FD approximation to the Laplacian operator∇2.
The tradeoff parameterλ controls the amount of smoothing to be incorporated into themodel.
Smoothing a solution usually takes place at the expense of anincreased data misfit. There-
fore, the selection ofλ requires special care in order to avoid an unacceptable solution. If it
is too small, the resulting model can reveal a physically unreasonable structure despite good
data fits. A very smooth model due to a largeλ on the other hand shows poor dependence on
the data.

In an ideal case, the tradeoff parameter should be decreasedgradually after each iteration in
order to account for less–resolved model structures at later iterations. However, for a variation
of λ during an inversion, it would be necessary to discard the previous search directions and
re–initialize the algorithm starting with the steepest descent direction at the current model
[Newman and Alumbaugh, 1997]. This would annihilate the beneftits of the NLCG scheme
by reducing the convergence. Instead, a cooling approach asdescribed byNewman and
Hoversten[2000] can be chosen. For optimizingλ, one carries out multiple solutions to the
inverse problem, starting with a large fixed value. Asλ is reduced, the data error, quantified
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by the first term in Equation (4.40), will decrease. This process of reducing the tradeoff
parameter is to be continued until the data error agrees witha target misfit based upon the
assumed noise content of the data.

4.7.2 Logarithmic model parameters

In order to constrain the electrical conductivities of the model such that they are positive
quantities, a logarithmic transformation as described byNewman and Alumbaugh[1997] is
employed. It is realized by defining a new model parameteruk at cell k using the natural
logarithm,

uk � ln
�
mk

�m̃k��
The relation allows for the incorporation of a lower bounding constraint given by ˜mk such that
mk � m̃k with m̃k �0. The selection of ˜mk for the cells comprising the inversion domain also
represents a means of incorporating a priori model information in an inversion. The effect of
this transformation on the component of the gradient, sensitive to the data errors, is to scale it
by a factor ofmk

�m̃k. Onceuk is updated in the NLCG iteration, the parameter components
that are of interest follow from the expression

mk � euk �m̃k �

4.8 Synthetic data inversion example

The inversion algorithm is now applied to the same model geometry and transmitter con-
figuration as exemplified earlier in Section 2.2 (Figure 2.1). For this example, the 1Ωm
conductive block is embedded in a 10Ωm half–space. In contrast to the sparse data covering
simulated in Section 2.2, a receiver array of 99 detectors isnow simulated at the surface.
The spatial distribution of the sensors is shown by Figure 4.3. The SLDM code employed in
Chapter 2 is used for data generation. The simulated measurements are noise–free and com-
prise the transmitter–parallel component of the electric field and the vertical voltage. The
transmitter waveform is a shut–off in a step–wise fashion. Atotal number of 198 transients
is inverted, where each one is sampled at 90 delay times over the time range oft0 � 0�5 ms
to T � 70 ms

No transformation of the inverted data is carried out for this example. However, the different
information density at different measurement time stages of a transient is taken into account.
A decreasing information density with later times results from the simple fact, that after
source switch–off the spatial maximum of the induced fields moves outward from the trans-
mitter location and thus contains the information of an increasingly larger volume. Following
Wang et al.[1994], a weighting of1t is introduced into the error functional to compensate for
different information density, thus Equation (4.40) changes to

φ
�
σ� � 1

2∑
i

� T

0

1
t

δdo�r i �t;sj � �δdo�r i �t;sj �dt
� λ

2
mTWTWm � (4.41)
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Figure 4.3: Transmitter and receiver (R) setup of the synthetic inversion example. Also shown is the
reconstructed conductivity model at the earth surface after 87 iterations. The white rectangle shows
the profile of the conductive block buried in a depth of 60 m.

Note that no summation over the external sourcesj is carried out, because only a single
transmitter is considered. The weighting by the reciprocaltime also carries over to the ac-
tual source termsδvo�r i �t � andδeo�r i �t � on the right–hand side of Equations (4.37) for the
backpropagated fields. The weighting is equivalent to integrating over logarithmic time.

In order to more easily quantify the data misfit, each component δdo�t � of a data difference
vector in Equation (4.41) is weighted by a value of 5 % of the corresponding original data
valuedo�t �. It was further found to be advantageous to normalize Equation (4.41) by the sum
of the integrations over the logarithmic time interval of each source–receiver pair (Newman,
pers. comm.). Therefore, the goodness of fit of the model predictionsdp�t � to the actual data
valuesdo�t � is assessed with the following normalized error functional

φdata� ∑i
� lnT
lnt0

�
do�t ��dp�t ��2

d
�
ln t �

∑i
� lnT
ln t0

d
�
ln t � � (4.42)

where the earliest measurable delay timet0 is always above zero. This way of normalizing
the error functional originates from the general assumption, that the information content of
a transient is determined by the time at which the signal decays to noise level. Over fitting
data in the presence of noise can thus be avoided; for examplefitting the normalized data
errorφdata to one implies that the observations of this example are matched to about 5 %, on
average, assuming that the error is Gaussian and normally distributed. However, this type of
noise assumption does not consider late time noise, which isusually non–Gaussian.
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Because of the premature implementation state of the algorithm’s backpropagation part, the
treatment of the air–earth interface is carried out by simply extending the mesh upwards in-
stead of using a 2D FFT for field–continuation. The inversioninvolves a 3D grid of size
95�88�64 nodes, where 19 out of the 64 vertical nodes cover the air space. Although com-
putation times become larger without the FFT approach for treating the air–earth interface,
this way of describing the air space would also allow to incorporate topography in the model-
ing. The extension of the model space is from -5000 m to 5000 m in all Cartesian directions,
where the air–earth interface is atz� 0 m. The inversion domain is limited to the whole
subsurface space of the grid, thus comprising a total numberof 376200 model unknowns.
The starting conductivity of 10Ωm is assigned to each grid cell. Using an initial time step
of ∆t0 � 10

�6 s, the air layer can be approximated by a 5000Ωm resistive half–space above
the surface. It is essential that this approximation is validated before an inversion. It has been
carried out by means of comparisons with analytical half–space responses.

Figure 4.4: The total normalized (dashed line) error functional is plotted against the inversion
iterations. The solid curve corresponds to the data error component of the normalized error functional.

A total number of 87 iterations was carried out using 336 processors on the supercomputer
“ASCI Red”5 operated by the Sandia National Laboratory (New Mexico, USA) (Newman,
pers. comm.). Each iteration required approximately 5 hours of computation time. As shown
by the solid line in Figure 4.4, the data partφdata of the normalized error functional could be
decreased from an initial value of 38 to 0.2. The dashed line shows the total error functional,
which also includes the regularization part. During the inversion the tradeoff parameterλ
(Equation 4.41) was fixed to a value of one. The data error initially drops rapidly. After
approximately 20 iterations the rate of decrease in the error slows considerably.

5Accelerated Strategic Computing Initiative, see http://www.sandia.gov/ASCI/Red/ for further information
about the parallel architecture.
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Figure 4.5 shows the evolution of the model after 10, 30, 50 and 70 iterations. The left side
shows the corresponding images in ax�y section at a depth of 100 m below the surface.
Note, that the white rectangle indicates the true edges of the anomaly. It can be seen that the
rapid error decrease during the first 10 iterations comes along with rather small changes of
the starting model. After 30 iterations, where the error functional is already below a value
of one, the anomaly starts to appear in the form of a few cells with conductivity values close
to one. The following iterations involve more significant changes towards the true model,
whereas the error of the data fit reaches convergence. After 70 iterations both predicted data
curves are in very good agreement with the synthetic data.Wang et al.[1994] also observed
the contrasting pattern of an initially rapid data misfit decrease and an increasing model en-
hancement starting at later iterations. They concluded that this observation can be ascribed to
the dominating response of the background medium. The size of the reconstructed conduc-
tive anomaly, exceeding the dimensions of the true block in each of the shown intermediate
results, indicates the non–uniqueness of the solution.

The final result after 87 iterations is shown by Figure 4.6. Both thex�z cross section (a),
which bisects the pointy� 0, and they�z cross section (b) throughx� 300 clearly indicate
the top of the conductive anomaly. Moreover, the reconstructed conductivity within the top
part of the imaged body approaches the true value of 1 S/m. However, the images estimate
the block’s vertical extent to be smaller than the true case,which is shown by the white
rectangles. Similarly, the horizontal cross section (c) ischaracterized by a concentration of
cells that show the true conductivities of 1 S/m in the centerof the rectangle outlined by the
original block. Across the edges of the true model, the regularization drives the inversion to
a smoothed out image. In Figure 4.3, which shows the inversion result at the surface (z� 0),
a resistive artefact can be observed to the right of the body.It is however spatially limited to
the first grid layer.
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Figure 4.5: Reconstructed models in a horizontal plane view at z=100 m (left side) and data fit for
both electric field and vertical voltage data (right side) after 10, 30, 50 and 70 iterations. The shown
data corresponds to the receiver position at x=500 m and y=0 m. The true location of the conductive
block is indicated by the white rectangle.
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Figure 4.6: Reconstructed model after 87 iterations. In each plot the actual location of the conduc-
tive block is indicated by a white rectangle. (a) The x–z cross section bisects the transmitter at y=0 m.
(b) The y–z cross section is located at x=300 m. (c) The x–y plane of the reconstructed model at 100 m
depth.
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4.9 Discussion

A theory for the inversion of 3D TEM fields arising from non–causal sources is provided.
The scheme employs the concept of migration or backpropagation to efficiently evaluate the
gradients of the error functional in model space. Electric field and voltage data types are
treated. An attractive feature of the algorithm used for thefield simulation is that the number
of receivers assigned to a transmitter does not make an impact on the time needed for the
gradient computation. However, the total computation timeis proportional to the number of
external sources generating a data set to be inverted.

A successful demonstration of the EM migration scheme is given for a 3D exploration prob-
lem. The 3D images obtained after 87 iterations are generally good, because the conductive
anomaly can be reconstructed to a satisfying degree. Deviations from the true model shape
result from a smoothed out image, caused by the regularization of the solution. However, a
regularized solution is preferable. Without stabilizing conditions, the solution of an ill–posed
inverse problem may be characterized by large oscillationsand thus unrealistic models. Al-
though smooth models are not necessarily closer to the truththan any other model which fits
the data, they give at least lower bounds on the amount of structure required. Furthermore, a
smooth reconstruction, obtained from a homogeneous starting model, gives an indication of
the resolving power of the TEM method, because the generallypoor resolution of diffusive
fields does not allow to distinguish between sharp or smooth contrasts.

The use of more powerful optimization strategies are likelyto be beneficial in the 3D TEM
inverse problem. The gradient search method used for the iterative solution process limits the
amount of forward modeling overhead, but this comes at the expense of a slow convergence.
While direct Newton methods will converge in far fewer iterations, the time required per
inversion iteration can be prohibitively expensive. A morepromising approach would be
reducing the number of iterations needed for the gradient search. Such improvements in
the efficiency of the NLCG algorithm can be made by preconditioning (e.g.Newman and
Alumbaugh[2000]; Rodi and Mackie[2001]). The effectiveness of a preconditioner arises
from “steering” the gradient vector into a more productive search direction, which in fact is
the Newton direction, thereby reducing the total number of iterations in an inversion.



CHAPTER 5

COMPARATIVE CONCLUSIONS

This work has presented two approaches for the inversion of TEM fields. The first approach
presented in Chapter 2, referred to as SINV in the following,solves small–scale inversion
problems. It provides solutions for as many model unknowns as typical for unconstrained
least–squares inversions. The main field of application is the refinement of an a priori known
model by means of an inversion. Both the Marquardt inversionand the employed SLDM
forward modeling code are fully developed and well proven tools that were combined to a
stable inversion for simple 3D models. Therefore, the scheme is a rather methodical than
theoretical innovation in the field of EM inversion. Becauseof its low computational needs,
SINV represents a reasonable alternative to a large–scale 3D inversion. With a parallel com-
puting platform available, the computation times for the shown inversions ranged from only
2 to 4 hours.

The large–scale approach presented in Chapter 4 is capable of inverting for finely discretized
3D models including several hundred thousand unknowns. It is thus capable of imaging the
underground without prior information needed. For brevity, the inversion method shall be
referred to as TEMINV1 in the following. The scheme uses techniques known from the mi-
gration of seismic wavefields and adapted to diffusive TEM fields. This innovative way of
taking advantage of the reciprocal relationships of EM fields minimizes the computational
effort for obtaining the gradient information for a minimumsearch. The propagation of both
original and adjoint fields is accomplished by means of a parallel explicit time–stepping al-
gorithm. For the case of real exploration problems the high computation times needed for
time–stepping the fields cause the imaging scheme still to beon the verge of feasability. To
become a routinely used tool for the analysis of TEM data, computation times still have to be
decreased significantly. Nevertheless, the theoretical development of the gradient specifica-
tions provides a deep insight into the adjoint field formulation and its reciprocal connection

1The code name of the algorithm stands for “Transient ElectroMagnetic INVersion”.
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with the original EM field.

With regard to the number of model unknowns, TEMINV allows for arbitrarily complicated
models, although some limitation is also given by the regularization of the solution using
smoothing constraints. Apart from the computational overhead, the method is much easier
to handle in practice than SINV, because there is no requirement of defining adequate model
parameters prior to an inversion. It was demonstrated by thesynthetic data example in Chap-
ter 4 that an earth model can be reconstructed from a homogeneous model. On the other hand,
the limitation of SINV to invert for models with a lower degree of complexity is somewhat
compensated by the capability that the scheme can be easily adapted to different inversion
problems. This requires that the underground structures ofinterest are known in advance to
such an extent that definition of the model parameters is possible. In surveys where TEM
methods are employed to refine the image of a target, which appears to be the majority of
cases, there usually exist different kinds of prior structural knowledge. Hence, the constraint
of a low complexity becomes a significant disadvantage not until no a priori information is
available and a model turns out to be too rich in structure. Anexample has been given by
the inversion of the Kaliadem data in the case history (Section 2.3.5). Here, the model of
a conductive block in a homogeneous host seems to be not suitable because of a too great
simplification of the real situation.

The limited number of model unknowns is critical in a way thatthe solutions are highly
dependent upon the model parameterization and the prior assumptions about the geology.
Finding a model based on an assumed geological structure, which produces an adequate fit
to the data, may tempt one to believe that features appearingin the model are necessary
rather than consistent with the data. Fitting simple 3D models is therefore a delicate balance
between suppressing significant structure by allowing too few degrees of freedom and intro-
ducing spurious structure by excessive or umimportant parameters. While it cannot be proven
that a solution represents a global minimum, its significance can at least be substantiated by
testing if convergence to the same solution is reached from different starting models. This
might involve several inversion attempts, yet can be easilyaccomplished due to the low com-
putational requirements of SINV. After all, it holds for both inversion methods as a matter
of course that it is important to pay attention to the question of how physically realistic a
solution appears.

An outstanding difference between the methods is the feasibility in the presence of insuffi-
cient field data. In the shown synthetic data inversion example of Chapter 4 the dense array of
receivers over the conductive anomaly is necessary in orderto provide a sufficient resolution
of the large inversion domain. Here, the limitation to only one or a few profiles of mea-
surements would strongly increase the non–uniqueness problem. Inverting field data from
a sparse sensor distribution using TEMINV would only be feasible by adequately limiting
the spatial extent of the inversion domain. The low–parameterized model approach of SINV
addresses this problem, however at the expense of prior information to be known.

The case history in Chapter 2 represents a typical example for a TEM survey, where the
sparse distribution of the measurements would prohibit theresolution of a finely parameter-
ized model due to excessive ambiguity. Numerous other examples exist in the geophysical
literature. Often only one or a few profiles crossing an a priori known target are measured in
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order to refine or complement the model of the structure. For example,Taylor et al.[1992]
characterize a local groundwater system in an arid alluvialenvironment in Nevada (USA)
by a TEM survey with an in–loop configuration. The survey was conducted in order to de-
fine the location of faults and clay rich areas. Its existencehad been known by structural
geologic mapping and previous drilling. Rapid lateral changes were identified by apparent
resistivity pseudo–sections derived from 1D modeling results. The results show that a multi–
dimensional inversion approach would be appropriate for a data analysis without the possible
errors caused by the 1D interpretation. Similar to the faultmodel of Merapi’s southern flank
shown in the case history, a 2D model parameterization involving layered sections separated
by faults is suggested by the known structural and stratigraphic information. In addition to
the layer parameters, one could imagine the location of the faults as being variable as well.

Another example was shown byHördt et al.[2000b], where 2D forward modeling was carried
out in order to interpret data of a LOTEM survey in the Odenwald area (Germany). Among
several attempts, one model includes a conductive dyke embedded in a homogeneous half–
space and placed under the receiver spread to explain sign reversals in the voltage transients.
The data fit achieved by such a simple 2D earth model could probably be improved to some
extent by the SINV method as has been demonstrated by the inversion of the Kaliadem profile
data.

A 2D inversion approach using SINV has recently been carriedout by Scholl et al.[2002]
in order to conduct a preliminary resolution study for a LOTEM survey over the Dead Sea
transform fault (Jordan). Here, the method was successfully applied to invert synthetic data
for a 2D fault model with a local anomaly included. The propertypes of model parameters
were created using a 2D resistivity model of the fault structure derived from MT interpretation
results [DESERT Group, 2000].

Several important steps are taken in the analysis of the LOTEM field data from Merapi vol-
cano and contribute significantly to the further development of techniques for the multi–
dimensional interpretation of TEM data. First, as the author is not aware of successful 3D
inversion attempts with real LOTEM field data in the geophysical literature, it shall be em-
phasized that for the first time a combined LOTEM data set could be inverted for a 3D model.
Regarding the simple model parameterization, good data fitswere achieved. Another innova-
tion represents the inclusion of horizontal magnetic field time derivative data in the inverted
data sets. It is still typical for TEM measurements to focus on the time derivative of the
vertical magnetic field component, because it is easy to measure in the field.

A challenging task was given by the topographic conditions of the survey terrain, causing
strong effects on some components of the combined data set. The fast forward solution
provided by SLDM allowed to incorporate topography into themodel without significant
influence on the computation time. Modeling topography using the FD solution presented in
Chapter 3 is feasible, yet requires appropriately small time steps due to the high resistivities
needed to approximate air. Unfortunately, this leads to even more increased computation
times when employing TEMINV. On the other hand, finding a griddiscretization that causes
no instabilities due to high resistivity contrasts does notrequire such an elaborate preparatory
work as has been carried out in order to ensure convergence ofSLDM.
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This work has put an emphasis on the treatment of non–causal source fields arising from
galvanic types of transmitters. Nevertheless, the adaption to the inversion of causal TEM
fields using SINV is straightforward, because the employed SLDM code is also capable of
simulating loop sources. Furthermore, the scheme could be expanded for the capacity of
inverting for unknowns involving magnetic permeability. The SLDM code offers the pos-
sibility of modeling varying magnetic permeabilities, although it is not optimized for this
purpose (Hördt, pers. comm.). Other codes capable of modeling magnetic properties could
instead be combined with the SINV scheme.

Chapter 4 revealed that the treatment of causal source fieldsis contained in the more gen-
eral non–causal case. The current implementation state of TEMINV is actually capable of
recognizing the type of a source and switch to the computation of the DC part of the gradi-
ent if required. Imaging magnetic permeability distributions has not yet been realized, but
the theory of the magnetic permeability gradient specifications has been given byNewman
(pers. comm.).

As a final conclusion, it can be stated that SINV is currently more practicable for the inversion
of field data, because of its modest computational requirements. However, the migration
technique used by TEMINV is more state–of–the–art. Migration has become a routinely
used technique for the analysis of seismic data. It has also given rise to tomography methods
as for example applied in medical imaging (e.g.Devaney[1989]). With the development
of faster computers, a stronger trend towards EM forward modeling and inversion schemes
capable of treating large sets of parameters is likely to follow.
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VERGLEICHENDESCHLUSSFOLGERUNGEN

In dieser Arbeit wurden zwei Inversionsverfahren für die Inversion von TEM Daten vorge-
stellt. Die erste Methode, im folgenden SINV genannt, löstkleinskalige Inversionsprobleme,
die sich durch eine für klassische “least–squares”–Probleme typische Modellparameteranzahl
auszeichnen. Das stabile Marquardt–Verfahren wurde mit einem bewährten 3D Simulation-
scode zu einer 3D Inversion für einfache Modellstrukturenkombiniert. Das Verfahren stellt
eher eine methodische als eine theoretische Neuerung auf dem Gebiet der EM Inversion dar.
Es bietet ein Werkzeug, womit ein im Vorfeld bekanntes Modell durch Inversion verfein-
ert werden kann. Aufgrund des geringen Rechenzeitbedarfs stellt SINV eine Alternative zu
aufwendigeren großskaligen Verfahren dar. Für die in dieser Arbeit gezeigten Inversionen
genügten dank der Verwendung eines Parallelrechners Rechenzeiten von 2 bis 4 Stunden.

Das in Kapitel 4 vorgestellte Verfahren für großskalige Probleme, im folgenden mit TEM-
INV bezeichnet, ist für Modellansätze geeignet, die mehrere 100000 Unbekannte beinhalten.
Es ist dazu geeignet, ohne Einbezug von Vorinformationen ein Erdmodell zu erstellen. Hier
werden Techniken, die von der Migration seismischer Wellenfelder bekannt sind, auf diffu-
sive EM Felder angewandt, was die Lösung der adjungierten Maxwell Gleichungen beinhal-
tet. Ähnlich wie bei seismischer Migration, lassen sich die Gradienten des Fehlerfunktion-
als der Datenanpasssung effizient durch Korrelation der Primärfelder mit den adjungierten
Feldern errechnen. Die Berechnung beider Felder durch ein explizites Finite–Differenzen
Zeitschrittverfahren ist sehr zeitaufwendig. Für einen routinemäßigen Einsatz müssen da-
her die durch das Verfahren beanspruchten Rechenzeiten vermindert werden. Dennoch bi-
etet die hier vorgestellte Theorie des Verfahrens einen tiefen Einblick in den Formalismus
der Adjungierten Feldgleichungen, sowie ihre Verknüpfung mit den Primärfeldern über das
Reziprozitätsgesetz.

Im Hinblick auf die Zahl der Unbekannten erlaubt TEMINV hochkomplexe Modelle, ob-
wohl eine gewisse Einschränkung durch die Glättungsbedingung vorhanden ist. Abgesehen
vom Rechenzeitbedarf ist TEMINV insofern benutzerfreundlicher als SINV, da die Modell-
parameter nicht auf das Inversionsproblem abgestimmt werden müssen. In Kapitel 4 wurde
demonstriert, dass eine Anomalie von einem homogenen Startmodell ausgehend rekonstruiert
werden kann. Die für SINV geltende Modellbeschränkung wird teilweise dadurch kompen-
siert, dass die Methode leicht an ein Inversionsproblem angepasst werden kann. Das erfordert
allerdings ausreichende Vorinformationen, um eine geeignete Modellparametrisierung zu
finden. Ich bin davon überzeugt, dass das kein wesentlicherNachteil ist, wenn eine TEM
Messung über einer bereits bekannten Struktur mit dem Zielder Modellverbesserung durch-
geführt wird. Nur für den Fall ohne Vorinformationen und wenn sich die Leitfähigkeitsvertei-
lung des Untergrundes als zu komplex herausstellt, ist das Verfahren ungeeignet. Ein Beispiel
zeigte die Inversion der Kaliadem Daten. Hier scheint das Modell eines leitfähigen Blocks in
einem homogenen Halbraum eine zu starke Vereinfachung der realen Situation zu sein.

Die eingeschränkte Parameteranzahl ist insofern kritisch, dass eine Lösung stark von der Art
der Modellparametrisierung und den damit zusammenhängenden Annahmen über die zugrun-
deliegende Geologie abhängt. Eine geeignete Datenanpassung kann zu einer̈Uberbewertung
von Modellstrukturen, die auf Vorinformationen basieren,verleiten. Hier muß stets beachtet
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werden, wieviel Struktur für eine Datenanpassung tatsächlich vonnöten ist. Die Definition
der Art der Unbekannten bedarf daher besonderer Aufmerksamkeit. Einerseits unterdrückt
eine zu geringe Zahl von Freiheitsgraden signifikante Strukturen, im anderen Falle enste-
hen unechte Modellstrukturen durch unwichtige Parameter.Es kann zwar nicht bewiesen
werden, ob eine Lösung ein globales Minimum darstellt, aber dennoch kann zumindest ihre
Aussagekraft untermauert werden. Das geschieht durch Testen, ob verschiedene Startmod-
elle zu dieser Lösung führen. Mehrere Inversionsansätze sind dazu erforderlich, was aber
aufgrund des geringen Rechenzeitbedarfs von SINV kein Hindernis darstellt. Vor allem soll
nicht unerwähnt bleiben, dass es für beide Inversionsverfahren selbstverständlich wichtig ist,
zu überprüfen wie realistisch eine Lösung generell erscheint.

Ein wesentlicher Unterschied zwischen beiden Verfahren ist ihre Einsatzmöglichkeit bei einer
geringen Zahl von Messdaten. Für die Inversion der synthetischen Daten in Kapitel 4 war
das dichte Netz von Empfängern notwendig, um eine ausreichende Auflösung der Anoma-
lie zu gewährleisten. Hier würde die Beschränkung auf ein oder wenige Profile das Prob-
lem der Nichteindeutigkeit der Lösung stark erhöhen. Abhilfe würde hier lediglich eine
entsprechende Verkleinerung des durch die Inversion veränderbaren Modellraums schaffen.
Der Ansatz mit wenigen aber flexiblen Modellparametern macht SINV in diesem Punkt
geeigneter, allerdings erfordert er Vorinformationen.

Das Fallbeispiel in Kapitel 2 präsentiert ein typisches Beispiel einer TEM Messung mit einer
geringen Anzahl von Stationen. Die Datenabdeckung würde hier wegen des Problems der
Nichteindeutigkeit die Auflösung eines durch sehr viele Unbekannte diskretisierten Mod-
ells verbieten. Eine Vielzahl weiterer Beispiele findet sich in der geophysikalischen Liter-
atur. Oft werden nur wenige Profile über einer bereits bekannten Struktur gemessen, um eine
Modellverfeinerung zu erreichen. Ein Beispiel findet sich bei Taylor et al.[1992]. Hier di-
enten TEM Messungen mit einer Central–Loop Konfiguration der Grundwassererkundung in
einem durch trockene vulkanische Ablagerungen charakterisierten Gebiet in Nevada (USA).
Die Messung hatte das Ziel der Lokalisierung von Verwerfungen und lehmreichen Struk-
turen, worüber Vorinformationen durch geologische Kartierungen und Bohrungen existierten.
Starke laterale Widerstandsänderungen konnten durch Pseudosektionen von 1D Modellergeb-
nissen ausgemacht werden. Die Ergebnisse zeigen, dass sicheine mehrdimensionale Inver-
sion für eine Datenanalyse anbieten würde, um Fehler durch 1D Annahmen zu vermeiden.
Ähnlich zu dem in Abschnitt 2.3.5 gezeigten Verwerfungsmodell der Südflanke des Mer-
api scheint ein 2D Modell mit durch Verwerfungen getrenntenSchichtfolgen naheliegend.
Zusätzlich zu den Schichtparametern bieten sich als weitere Freiheitsgrade die Positionen
der Verwerfungen an.

Ein weiteres Beispiel ergibt sich bei der vonHördt et al.[2000b] beschriebenen Datenauswer-
tung einer LOTEM Messung im Odenwald (Süddeutschland). Unter mehreren 2D Model-
lansätzen wurde ein leitfähiger Block in einem homogenenHalbraum modelliert, um Vorze-
ichenwechsel in der zeitlichen Ableitung der magnetischenVertikalfelder zu erklären.̈Ahn-
lich wie es bei der Inversion der Daten des Kaliadem Profils demonstriert wurde, bietet sich
hier SINV für eine eventuelle Modellverbesserung im Sinneeiner besseren Datenanpassung
an.

Die Methode SINV wurde bereits vonScholl et al.[2002] für eine 2D Inversion eingesetzt.
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Die Rechnungen dienten einer Auflösungsstudie für LOTEM Messungen über einem Spal-
tensystem am Toten Meer (Jordanien) im Rahmen des DESERT Projekts [DESERT Group,
2000]. Dabei wurden synthetische Daten eines geschichteten 2D Modells mit Verwerfung
und zusätzlicher Anomalie erfolgreich invertiert. Die entsprechenden Modellparameter wur-
den anhand von Vorinformationen durch 2D MT Modellergebnisse erzeugt.

Mehrere wichtige Schritte zur Weiterentwicklung mehrdimensionaler Interpretationsverfah-
ren für TEM Daten werden im Rahmen des Fallbeispiels in Kapitel 2 ausgeführt. Zunächst
soll betont werden, dass zum erstem Mal eine erfolgreiche 3DInversion von LOTEM Daten
durchgeführt wurde. Unter Berücksichtigung der eingeschränkten Modellparametrisierung
konnte eine relativ gute Datenanpassung erreicht werden. Eine weitere Neuerung stellt das
Einbeziehen der Daten von horizontalen Magnetfeldern dar.Typischerweise liegt bei TEM
Messungen ein Schwerpunkt auf der Aufzeichnung vertikalerMagnetfelder bzw. ihrer zeit-
lichen Ableitung, da diese im Feld einfacher zu messen sind.

Eine Herausforderung bestand aus der Berücksichtigung der topographischen Gegebenheiten
des Messgebiets am Merapi. Einige Daten zeigten dadurch starke Effekte. Der benutzte
SLDM Simulationscode erlaubt die Modellierung von Topographie ohne bedeutenden zusätz-
lichen Rechenaufwand. Die in Kapitel 3 vorgestellte FD Simulationsmethode erlaubt eben-
falls die Modellierung von Geländestrukturen. Allerdings erfordert die Approximation des
Luftraums mit einem entsprechend hohen Widerstand sehr kleine Zeitschritte. Das würde zur
weiteren Steigerung des ohnehin großen Rechenzeitbedarfsvon TEMINV für eine Datenin-
version beitragen. Ein Vorteil gegenüber SINV ist jedoch,dass sich das explizite Zeitschritt-
verfahren zur Feldsimulation bei Vorhandensein großer Leitfähigkeitskontraste stabiler ver-
hält. Die im Vorfeld einer Inversion mit SINV durchgeführten Stabilitätstests für die Gitter-
diskretisierung, wie im Fallbeispiel gezeigt, erübrigensich für das Verfahren TEMINV.

Diese Arbeit behandelt schwerpunktmäßig die durch galvanisch gekoppelte Quellen erzeug-
ten akausalen EM Felder. Die Methode SINV kann ohne weiteresauf die Inversion kausaler
Felder angepasst werden, da der SLDM Code auch induktiv gekoppelte Sender simulieren
kann. Darüberhinaus kann die Methode für die Auflösung von Strukturen mit variablen mag-
netischen Permeabilitäten erweitert werden. Der SLDM Code unterstützt die Modellierung
von Permeabilitätsvariationen, ist dafür allerdings nicht optimiert (Hördt, pers. Komm.).
Zu diesem Zweck könnten jedoch andere Modellierungsprogramme mit dieser Fähigkeit
herangezogen werden.

Im Kapitel 4 wurde gezeigt, dass die Behandlung kausaler EM Felder bei der Gradien-
tenberechnung im allgemeineren akausalen Fall enthalten ist. Die gegenwärtige Program-
mversion von TEMINV erlaubt die automatische Erkennung desSendertyps und berechnet
gegebenenfalls die durch die Gleichstromkomponente verursachten Anteile der Gradienten.
Die Berücksichtigung von Permeabilitätsvariationen inder Inversion wurde noch nicht real-
isiert. Die dafür notwendige Theorie mit einer Spezifikation der entsprechenden Gradienten
zeigenNewman und Commer[2003].

Abschließend ist zu bemerken, dass sich das Verfahren SINV gegenwärtig durch größere
Praktikabilität auszeichnet, was im geringen Rechenaufwand begründet ist. Allerdings stellt
TEMINV mit dem EM Migrationsverfahren die modernere Methode dar. Migration ist eine
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routinemässig eingesetzte Technik zur Analyse seismischer Daten. Ebenso basieren darauf
tomographische Techniken, die z.B. in der Medizin angewandt werden (siehe z.B.Devaney
[1989]). Mit der Entwicklung leistungsfähigerer Computer wird sich der Trend weiter in
Richtung von großskaligen Simulationen und Inversionsverfahren bewegen.



APPENDIX A

ADDITIONAL NOTES AND DERIVATIONS

A.1 Stability condition for the DuFort–Frankel method

The application of the DuFort–Frankel method in the time–stepping algorithm is carried out
by introducing a hyperbolic displacement term into the parabolic diffusion equation. This
term (see Equation 3.1b) is artificial, because it is appliedto the quasistatic case, where
displacement currents can be neglected. Its magnitude can be much larger than the real
displacement current in a medium without polarization effects. For example, consider a min-
imum grid spacing of 25 m, a time step of 1µs and the magnetic permeability in vacuum.
According to Equation (3.8), a value ofγ � 3�8 �10

�9 results which is 430 times larger than
the real permittivity in vacuum. In fact, this does not matter as long as the velocity of the
fictitious wavefield is kept slower than the diffusive fields simulated in the FD grid. This
is achieved by restricting the size of the time steps such that the domination of diffusion is
retained. Following the analysis given byOristaglio and Hohmann[1984] andAdhidjaja and
Hohmann[1989], it is demonstrated here that the DuFort–Frankel method is unconditionally
stable. Furthermore, a derivation of Equation (3.7) is given.

Because a wavefield is considered, one starts with the wave equation for the electric field in a
source–free whole–space. For simplicity, its scalar form is given, approximating the situation
in a FD grid along one of the Cartesian coordinates,

∇2e�µ0ε0
∂2e
∂t2

�µ0σ
∂e
∂t

� 0� (A.1)

where permittivity and permeability of vacuum are assumed.This equation is easily obtained
from Equations (3.1). The wave equation is satisfied by the general Green function in a
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whole–space given byWard and Hohmann[1988],
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c� is the Heavyside step function. In the case of low frequencies or late
times, where displacement currents can be neglected, Equation (A.1) changes to

∇2e�µ0σ
∂e
∂t

� 0� (A.3)

The corresponding Green function associated with the diffusion equation is also given by
Ward and Hohmann[1988],

G
�
r�t � �

�
µ0σ

8π
3
2 t

3
2

e�µ0σr2

4t u
�
t �� (A.4)

From setting the derivative of (A.4) with respect to time to zero, it follows that the maximum
of the signal propagated byG at a given distancer occurs at the time

t � µ0σr2

6 �

The time interval for diffusion on a 3D numerical grid with a spacing∆ is thus given by

∆t � µ0σ∆2

6 � (A.5)

which is called the grid diffusion time. Now consider the time–staggering of the electric field
e� en�i � j �k� at a timetn and a grid cell

�
i � j �k� of a uniform mesh with the grid spacing∆.

To realize Equation (A.3) using a classical Euler scheme involves approximating the time
derivative by the simple forward difference�

∂e
∂t �n

�
en�1 �en

∆t �

It can be shown that the maximum time step∆t of the Euler scheme is given by the grid
diffusion time [Oristaglio and Hohmann, 1984]. This, however, is too restrictive because it
does not allow to address the smoothing of fields due to the fast decay of high frequency
modes in a field. For example, if an earth model includes low conductivities for the host rock
of a conductive target, the time step has to be set accordingly without being able to account
for the larger time steps allowed by the conductive target atlater times.

The DuFort–Frankel method represents an improvement, because it allows to take into ac-
count the slowing down of the diffusion rate at larger distances from the source by gradually
increasing the time step with progressing time. To relate the diffusion rate to the time of the
advancing field, the case when (A.2) and (A.4) agree asymptotically is first considered, given
by Oristaglio and Hohmann[1984],

�
t2 � r2

c2 �
2ε0

σ �
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or

t �
2ε0

σ � (A.6)

which is always satisfied in the TEM case.

The actual implementation of the DuFort–Frankel method in the time–stepping scheme is in
principle realized by using central differences instead offorward differences, specifically

en � en�1 �en�1

2

for the electric field attn and �
∂e
∂t �n

� en�1 �en�1

2∆t �

for its time derivative. The usage of central differences for the time–stepping scheme leads
to the leap–frog method. Note that in Section 3.1.2 the leap–frog scheme is realized by using
intermediate time instances for sampling the magnetic fields between the integer instances of
electric fields. Now the separate terms of the diffusion Equation (A.3) are discretized to

∇2e� �en�i �1� j �k��en�i �1� j �k��en�i � j �1�k��en�i � j �1�k�
�

en�i � j �k�1��en�i � j �k�1��6
en�1�en�1

2 � 1
∆2 �

µ0σ
∂e
∂t

� µ0σ
en�1 �en�1

2∆t �

wheree� en�i � j �k� anden�1 � en�1�i � j �k�. Using the Taylor series expansion for the time
coordinates

en�1 � e�∆t
∂e
∂t

� ∆t2

2
∂2e
∂t2 �

and a similar one for space coordinates, for example

e
�
i �1� j �k�� e�∆

∂e
∂x

� ∆2

2
∂2e
∂x2 �

yields [Adhidjaja and Hohmann, 1989]

∇2e�3
∆t2

∆2

∂2e
∂t2

�µ0σ
∂e
∂t

� 0� (A.7)

This equation is hyperbolic and its stability is governed bythe Courant–Friedrichs–Levy
(CFL) criterion for the wave velocityc (e.g.Richtmeyr and Morton[1967]),

c � ∆�
3∆t

�

Equation (A.7) approximates a wave equation in which the wave speed is exactly ∆
�3∆t

,
thereby automatically satisfying the CFL condition. This is referred to as the unconditional
stability of the DuFort–Frankel method. Changing the time step or the grid spacing translates
into approximating a field with a different wave velocity. Therefore, care must be taken to
avoid that the wave–like solutions dominate the diffusive behaviour by limiting the time step.
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A limiting condition can now be found by rearranging the CFL criterion to

γ � 3
µ0

∆t2

∆2 � (A.8)

where the permittivityε0 was replaced by the artificialγ. Substituting (A.8) into (A.6), one
obtains the condition which insures both the CFL criterion as well as the domination of
diffusion of the time–staggered fields,

∆t �

�
µ0σt

6
∆�

For the case of a non–homogeneous model and a non–uniform mesh one has to take into
account the minimum values for magnetic permeability, conductivity and grid spacing.

A.2 Numerical solution of the 3D Poisson problem

The numerical procedure of solving for the 3D potential distribution ϕ originating from a
current distributionjs inside or at the surface of an arbitrary conductivity distribution σ is
presented. This 3D Poisson problem is given by

∇ �

�
σ∇ϕ� � �∇ �js

�

The boundary conditions of this problem are given by assuming a vanishing total potential
at the outer mesh boundaries (Dirichlet condition). In the case of a half–space, Neumann
boundary conditions are applied at the air–earth interfaceby setting

σ
∂ϕ
∂z

� jz � 0�

Consider a FD grid with a number ofI �J �K grid cells in thex�y andz direction, respec-
tively. Illustrated in Figure A.1, for a given node

�
i � j �k� the discrete approximation of the

left–hand side of the Poisson equation leads to a seven–point scheme, because the center
cell and its six direct neighbours along the main coordinateaxes are involved. The potential
ϕ
�
i � j �k� is constant over the cell. The multiplication of its spatialderivative with the cell

conductivity requires the incorporation of directional conductivities, which are obtained by
the averaging scheme described in Section 3.1.1. For reasons of simplification, the direc-
tional conductivities are indexed by integer numbers, for exampleσx

�
i
� 1

2 � j �k� � σx
�
i � j �k�

andσx
�
i � 1

2 � j �k� �σx
�
i �1� j �k�.

Discretizing the left–hand side of the Poisson equation, one gets
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�
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�1�ϕ
�
i � j �k��ϕ

�
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�1�
∆zk�1 � 1
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Figure A.1: Discretization of the Poisson operator by a seven–point scheme for a grid node (i,j,k) of
the 3D mesh. A potential is assigned to each of the seven nodes. The arrows illustrate the discretization
of the right–hand side of the Poisson equation, involving the current density components of the six
surrounding edges.

which can be rearranged to

∇ �
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�
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�
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� σx
�
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� σy
�
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∆y j�1∆y j
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� σz
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i � j �k

�1�
∆zk�1∆zk �

�ϕ
�
i � j �k��

In the case of a half–space, the terms involvingσz
�
i � j �k

�1� vanish at the air–earth interface.
Now the discrete form of the left–hand side is rewritten by assigning coefficients to each of
the seven cell potentials, keeping the same order of the terms,

∇ �

�
σ∇ϕ� �crightϕ

�
i
�

1� j �k��cle f tϕ
�
i �1� j �k��cf rontϕ

�
i � j

�
1�k�

�
cbackϕ

�
i � j

�1�k��cbottomϕ
�
i � j �k

�
1��ctopϕ

�
i � j �k

�1�
��

cright
�

cle f t
�

cf ront
�

cback
�

cbottom
�

ctop
�
�ϕ
�
i � j �k�� (A.9)

where the coefficients are named according to the positions of the corresponding cell poten-
tials in Figure A.1. The difference representation in Equation (A.9) is obtained for each node
of the 3D mesh, once the appropriate coefficients are computed using the proper boundary
conditions. Together with the right–hand side of the Poisson equation, the sets of difference
equations for each node are then assembled into a matrix form

Cϕ � b� (A.10)
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whereϕ now denotes the unknown solution vector of the total potential at all nodes. Thus, the
size ofϕ is given by the total number of cellsIJK. The matrixC has the sizeIJK �IJK and is
called the capacitance matrix [Dey and Morrison, 1979]. It is a function only of the geometry
and the physical property distribution in the grid. The right–hand side vectorb in (A.10)
is given by the divergence of the external source current density js. Its FD discretization is
straightforward as shown by Equation (3.12).

According toDey and Morrison[1979],C has the properties that it is symmetric, diagonally
dominant, sparse and banded with only six nonzero codiagonals. Furthermore, it is positive
definite. The system of equations given by (A.10) can thus be solved easily by a CG solver.
The parallel iterative library AZTEC [Hutchinson et al., 1995] has been employed for the
solution. It provides for preconditioning and efficient storage schemes in order to address the
sparse nature of the capacitance matrix.

A.3 Reciprocity relationship for electric and magnetic fields

Integration of Equation (4.12b) involving the timet yields

� t �

t
G�

12

�
r

�

�t
� �r �t �dt � �µ

�
r �

� t �

t

∂
∂t

G̃21
�
r �t �r �

�t
��dt

Due to the time integration, the left–hand side of this equation can be identified as the electric
field step response arising from a magnetic dipole source. Carrying out the integration of the
right–hand side, it can be written

stepG�
12

�
r

�

�t
� �r �t � � �µ

�
r �G̃21

�
r �t �r �

�t
���t �

t

� �µ
�
r �G̃21

�
r �t

� �r �

�t
���µ

�
r �G̃21

�
r �t �r �

�t
���

where the first term on the right–hand side vanishes due to thecausality of the Green dyadic,
given by Equation (4.5). The remaining term leads to the relationship

stepG�
12

�
r

�

�t
� �r �t � �µ

�
r �G̃21

�
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�t
���

given before by Equation (4.13a). The same steps are carriedout in order to obtain Equa-
tion (4.13b) from (4.12c). Here, the time integration needsto be done with respect tot

�

instead oft, leading to the different sign in (4.13b).

A.4 Integration order of the gradient

The reversal of the order of time integration in Equation (4.21) is clarified. If Equation (4.20)
is rewritten such that it is emphasized that the integrationvariablesdt anddt

�

belong to the
outer and inner integral, respectively, one gets

γe
σ
�
r

�� � �� T

0
dtδeo�r i �t � �

� t

�∞
dt

�

G
�
r i �t �r �

�t
�� �e

�
r

�

�t
���
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where the summation overi has been neglected. Because of the causility of the Green func-
tion,

G
�
r �t �r �

�t
��� 0� t � t

�

�

the upper integration boundary of the inner integral can be changed fromt to T, thus

γe
σ
�
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0
dt
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dt

�
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�t
�� �e

�
r

�

�t
���

whereδeo�r i �t �could be brought into the inner integral, because it is zero for the timet ��∞
to t � 0. This is also the reason why one can exchange the order of integration to

γe
σ
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dt

�
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dtδeo�r i �t �G �
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�
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���

Again, due to the causality ofG , the inner integration fromt �0 to t � t
�

vanishes, hence one
can write

γe
σ
�
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�∞
dt

�
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t �
dtδeo�r i �t �G �

r i �t �r �
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�
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�

�t
���

which leads to Equation (4.21).

A.5 Gradient specification for voltage type data

For the derivation of the gradients for voltage type data, one starts with Maxwell’s Equa-
tions (4.17) for the perturbed state of the fields. These are differentiated with respect to time,

σ
∂
∂t

δe�∇ � ∂
∂t

δh � �δσ
∂
∂t

e�

∇ � ∂
∂t

δe
�

µ
∂2

∂t2δh � �δµ
∂2

∂t2h�

Now a formal expression for the magnetic field time derivative is obtained from the time
derivative form of Equation (4.4b),

∂
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� (A.12)

Only conductivity variations are considered, hence the second term vanishes by settingδµ
�
r

��
to zero. The time integration starts from timet � 0, because of the vanishing time derivative
of the constant DC electric field before that time. In contrast to the non–causal electric fields,
the magnetic field time derivative and thus the voltage is a causal field. In order to obtain the
correct expression for the voltage, i.e. the negative of themagnetic induction time derivative,
Equation (A.12) is scaled accordingly by the magnetic permeability of the model point where
the voltages are sampled, thus
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For better readability the volume integration shall now be omitted. An integration by parts
yields
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Causality implies that the Green function of the first term becomes zero for the integration
boundaryt, thus
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Using the identity∂
∂t � G21 � � ∂

∂t G21 and inserting the volume integration again, it follows
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Now a similar development as discussed in Section 4.3.1 for the electric field gradients can
be made. From Equations (4.16) and (A.13), one can express the gradient for voltage data as
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Note the application of the reciprocity relationship (4.12b) in this derivation. The backpropa-
gated electric field arising from voltage data has previously been defined by Equation (4.26),
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Müller, M., A. H ördt and F. M. Neubauer, Internal structure of Mount Merapi, Indonesia,
derived from long–offset transient electromagnetic data,J. Geophys. Res., 107, ECV 2–1
– ECV 2–14, 2002.

Nabighian, M. N. and J. C. Macnae, Time Domain Electromagnetic Prospecting Methods,
in Electromagnetic Methods in Applied Geophysics, edited by M. N. Nabighian, Vol. 2,
Chapter 6, Soc. Expl. Geophys., 1991.

Nekut, A. G., Direct inversion of time–domain electromagnetic data,Geophysics, 52, 1431–
1435, 1987.

Newhall, C. G., S. Bronto, B. Alloway, N. G. Banks, I. Bahar and M. A. D. Marmol ,
10000 years of explosive eruptions of Merapi Volcano, Central Java: Archaeological and
modern implications,J. Volc. Geother. Res., 100, 9–50, 2000.

Newman, G. A., Deep transient electromagnetic soundings with a groundedsource over
near-surface conductors,Geophys. J. Int., 98, 587–601, 1989.

Newman, G., Crosswell electromagnetic inversion using integral and differential equations,
Geophysics, 60, 899–911, 1995.

Newman, G. and D. L. Alumbaugh, Three–dimensional massively parallel electromagnetic
inversion – I. Theory,Geophys. J. Int., 128, 345–354, 1997.

Newman, G. A. and D. L. Alumbaugh, Three–dimensional magnetotelluric inversion using
non–linear conjugate gradients,Geophys. J. Int., 140, 410–424, 2000.

Newman, G. A. and G. M. Hoversten, Solution strategies for two- and three-dimensional
electromagnetic inverse problems,Inverse Problems, 16, 1357–1375, 2000.

Newman, G. A., G. W. Hohmann and W. L. Anderson, Transient electromagnetic response
of a three-dimensional body in a layered earth,Geophysics, 51, 1608–1627, 1986.

Newman, G. A., W. L. Anderson and G. W. Hohmann, Interpretation of transient electro-
magnetic soundings over three–dimensional structure for the central–loop configuration,
Geophys. J. R. astr. Soc., 89, 889–914, 1987.

Oristaglio, M. L. and G. W. Hohmann, Diffusion of electromagnetic fields into a two-
dimensional earth: A finite-difference approach,Geophysics, 49, 870–894, 1984.



126 BIBLIOGRAPHY

Palacky, G. J., Tutorial: Research, application and publications in electrical and electromag-
netic methods,Geophys. Prospect., 31, 861–872, 1983.

Pellerin, L. and D. L. Alumbaugh, Tools for electromagnetic investigation of the shallow
subsurface,The Leading Edge, 16, 1631–1638, 1997.

Pellerin, L. and G. W. Hohmann, Three–Dimensional Inversion of Electromagnetic Data,
in 63rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded abstracts, 360–363, Salt Lake
City, Utah, 1993.

Petrat, L., Zweidimensionale Inversion von Long Offset Transient Electromagnetics-Daten,
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1. Commer, M., A. Hördt and S. L. Helwig, 3–D inversion of LOTEM data under strong
boundary conditions, inProtokoll über das 19. Kolloquium elektromagnetische Tiefen-
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