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Abstract

The solid earth as a basic component of the climate system profoundly influences the
development of the atmospheric boundary layer, in particular through processes at the in-
terface. As land-surface properties are heterogeneous over a broad range of length-scales,
surface-induced fluxes are heterogeneous too. Representing land-surface heterogeneity
and the corresponding fluxes is a challenging task in numerical prediction of weather and
projection of climate. Earlier studies separate the role of heterogeneity into flux aggrega-
tion and dynamic effects.

In this work, we introduce the approach of ’para-real’ ensemble modelling to investigate
the dynamic effect of land-surface heterogeneity. We perform a large ensemble of high-
resolution simulations using the Weather research and forecast model (WRF) in its ad-
vanced research mode (WRF-ARW) together with the Noah-MP land surface model (LSM).
The para-real simulation ensembles are externally forced by a reanalysis of a real case in
spring 2013, but become exposed to different synthesized surface patterns (SP) generated
as quasi-fractal Brownian surfaces (quasi-fBs) with exact control of the dominant wave
length and fractal persistence to satisfy a tailored randomized-spectrum.

The focus of this study is on the three inter-related land-surface and atmosphere cou-
pling mechanisms–the thermodynamic coupling, aerodynamic coupling, and hydrological
coupling. For each mechanism, a corresponding surface property is identified, namely
surface albedo (α) for thermodynamic coupling, roughness length (z0) for aerodynamic
coupling, and soil type (st) for hydrological coupling. For each surface property, we gener-
ate a set of quasi-fBs with different dominant length scale and fractal persistence. In our
para-real ensembles, the original fields of the surface properties are–in a first step–derived
from satellite data (for α) and/or in-situ estimates (for z0 and st). In a second step, these
are replaced by the quasi-fBs, for which we estimate the control parameters from the orig-
inal data, i.e., the probability density distribution of the original data matches that of the
quasi-fBs which eliminates the flux aggregation effect and allows us to focus on the dy-
namic effect. In total, 480 simulations, i.e., ensembles of 48 physical cases each containing
10 random realizations, are analyzed using Analysis of Variance (ANOVA); this allows for
an isolated analysis of the signal contained in particular dimensional combinations, for
instance the horizontal plane.

We find, first, a strong impact of the length scale of the surface forcing on the inten-
sity of coupling: while the dynamic effect of surface heterogeneity significantly impacts
the state of the atmospheric boundary layer for all cases investigated, the impact of the
surface signal on the atmospheric state grows with the length-scale of the surface hetero-
geneity. Second, we demonstrate that larger fractal persistence of the surface signal also
strengthens the atmosphere–surface coupling. Third, the qualitative impact of the surface
forcing is shown to depend on time, which eliminates the possibility of a simple linear
forward propagation of the surface signal; there is strong sensitivity to the diurnal cycle,



Z. Parsakhoo Contents

in particular with respect to the horizontal wind components: The maximum intensity of
atmosphere–surface coupling (measured in terms of correlation) is found around noon
for the atmospheric temperature, and some hours later (in the early afternoon) for water
vapor. Fourth, among the different surface forcing investigated, we find that the hetero-
geneity of soil type is the most important to the atmospheric state–surface exchanges and
its signal are detected in the atmospheric water-vapor up to 2 km height; in particular, the
soil-type pattern with the smallest length-scale causes a doubling of cloud-water above
500 m height whereas no impact on the bulk atmospheric state is found for patterns with
other length-scales and fractal persistence or forcing of other surface variables. This illus-
trates the key part that hydrological coupling plays in connecting the atmosphere to the
surface, and it underlines the relevance of improved hydrological process-level represen-
tation for improved parameterization of the coupled land–atmosphere system.

V





Zusammenfassung

Die fest Erde hat als wesentlicher Bestandteil des Klimasystems einen maßgeblichen Ein-
fluss auf die Entwicklung der planetaren Grrenzschicht, insbesondere durch Prozesse an
der Grenzfläche. Da die Eigenschaften der Landoberfläche auf vielen Längenskalen vari-
ieren, sind auch die dadurch hervorgerufenen Flüsse an der Oberfläche heterogen. Die
Wiedergabe der Oberflächenheterogenität und der daraus resultierenden Flüsse ist daher
eine Herausforderung der numerischen Wettervorhersage und Klimaprojektion. Frühere
Untersuchungen unterteilen die Wirkung der Heterogenität in die Aggregation von Ober-
flächenflüssen und dynamische Effekte der Oberflächenflüsse.

In dieser Arbeit führen wir den Ansatz der para-reallen Ensemblemodellierung ein, um den
dynamischen Effekt der Oberflächenheterogenität zu untersuchen. Wir untersuchen ein
großes Ensembles von hochaufgelösten Simulationen mit dem Weather Research and Fore-
cast Model (WRF) in der Forschungsversion (WRF-ARW) und mit dem Noah-MP Land-
oberflächenmodell (LSM). Die para-reallen Simulationsensemble werden extern durch
die Reanalyse eines Falls im Frühling 2013 angetrieben, dabei jedoch unterschiedlichen
synthetischen Randbedingungen für die Landoberfläche ausgesetzt, welche mittels einer
maßgeschneiderten spektralbasierten Zufallsmethode als quasi-fraktale Brown’sche Ober-
flächen (qfBO) erstellt werden. Dabei wird die dominante Wellenlänge und die fraktale
Persistenz kontrolliert variiert.

Wir fokussieren uns auf drei Mechanismen der Land–Atmosphärenkopplung: thermody-
namische, aerodynamische und hydrologische Kopplung. Für jeden dieser Mechanismen
identifizieren wir eine atmosphärische Variable, die direkt Änderungen in lediglich dem
jeweiligen Mechanismus hervorrufen soll; das ist die Oberflächenalbedo (α) für die ther-
modynamische Kopplung, die Rauigkeitslänge (z0) für die aerodynamische Kopplung und
der Oberflächentyp (st) für die hydrologische Kopplung. Für jede Oberflächeneigenschaft,
werden qfBO mit unterschiedlicher dominanter Längenskala und fraktaler Persistenz er-
stellt. In unseren para-realen Modellensembles werden in einem ersten Schritt die Ur-
sprungsfelder aus den reallen Oberflächendaten aus Satellitenbeobachtungen für die Albedo
und/oder in-situ Abschätzungen für Rauigkeit und Bodentyp abgeleitet. In einem weit-
eren Schritt werden diese ursprünglichen Felder durch eine große Anzahl an qfBO er-
setzt, wobei wir die Parameter der qfBO basierend auf den ursprünglichen Geodaten ab-
schätzen, d.h. die ursprüngliche Wahrscheinlichkeitsdichteverteilung bleibt erhalten um
Effekte der Flussaggregation zu eliminieren und so den dynamischen Effekt zu isolieren.
Insgesamt untersuchen wir 480 Simulationen – das sind 48 Ensemble unterschiedlicher
physikalischer Fälle mit je 10 unterschiedlichen Zufallsrealisationen – mittels Varianzanal-
yse (ANOVA); dies ermöglicht die isolierte Untersuchung des Signals in einer bestimmten
Kombination von Dimensionen, zum Beispiel in der horizontalen Ebene.

Wir zeigen, erstens, einen starken Einfluss der Längenskala des Oberflächenantriebes
auf die Intensität der Land–Atmosphärenkopplung: Während der dynamische Effekt der
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Oberflächenheterogenität für alle untersuchten Fälle einen maßgeblichen, statistisch sig-
nifikanten Einfluss auf den Zustand der atmosphärischen Grenzschicht hat, ist der Einfluss
bei größeren Längenskalen des Oberflächenantriebes größer. Zweitens zeigen wir, dass
auch zunehmende fraktale Persistenz die Kopplung zwischen Atmosphäre und Landober-
fläche verstärkt. Drittens ist selbst der qualitative Einfluss des Oberflächenantriebes zeitab-
hängig, was die Möglichkeit linearer Vorwärtsoperatoren für die Kopplung ausschließt; wir
finden eine starke Abhängigkeit des Vorzeichens der Kopplung vom Tageszyklus, insbeson-
dere im Hinblick auf den Horizontalwind: Die intensivste Kopplung zwischen Oberfläche
und Atmosphäre (gemessen anhand der Korrelation) finden wir in den Mittagsstunden für
die Temperatur und einige Stunden später (am frühen Nachmittag) für den Wasserdampf.
Viertens finden wir – im Vergleich der verschiedenen Antriebe –, dass die Heterogenität
des Bodentyps den größten Einfluss auf die Atmosphäre hat. Der Einfluss der Oberfläche
ist bis in eine Höhe von 2 km nachweisbar; insbesondere führt das Bodentypmuster mit
der kleinsten Längenskala zu einer Verdopplung des Wolkenwassergehalt oberhalb von
500 m, wohingegen Änderungen in den mittleren Profilen für Oberflächenmuster mit an-
deren Längenskalen, anderer Persistenz bzw. für Oberflächenmuster anderer Parameter
nicht nachweisbar sind. Dies illustriert die Schlüsselrolle, die die hydrologische Kopplung
für die Verbindung der Atmosphäre mit der Oberfläche spielt, und es unterstreicht die
Relevanz einer verbesserten Prozesswiedergabe der hydrologischen Kopplung für bessere
Parameterisierungen des gekoppelten Land–Atmosphäre Systems.

VIII
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1. Introduction

The land-surface plays an important role in weather and climate systems through energy,

mass, and momentum exchanges with the atmosphere [AVISSAR AND PIELKE, 1989]. It is

naturally heterogeneous over a wide range of length scales [GIORGI AND AVISSAR, 1997],

with the spatially and temporally varying thermal, optical, aerodynamic and hydrological

surface properties. As a result, land-surface fluxes are also heterogeneous. While the hori-

zontal resolution of the numerical weather-prediction and climate models has been rapidly

increasing in recent years, it remains an unsolved problem how to deal with sub-grid scale

land-surface heterogeneity. It is, however, known that a misrepresentation of surface het-

erogeneity may lead to substantial inaccuracy of model outcomes (e.g., HECHTEL ET AL.

[1990]; MAHRT [2000]). In the present study, we use a high-resolution numerical weather

prediction model to quantify the effects of surface heterogeneity on atmosphere and land-

surface interactions.

1.1. Representation of land-surface heterogeneity in numerical

models

The exchanges between the land-surface and the atmosphere constitute the lower bound-

ary condition for the atmosphere [GIORGI AND AVISSAR, 1997]. These exchanges are

schematically illustrated in Fig. 1.1. The shortwave solar energy (Snet) is partially re-

flected by the surface and partially absorbed, as with the longwave radiation (Lnet). The

net radiation is either transferred to the atmosphere as sensible heat flux (H) and latent

heat flux (LE) or conducted to the soil (G).

The surface energy balance is a key to the quantitative description of land-surface pro-

cesses, which takes the form of

Rnet +LE +H +G = 0, (1.1)

where Rnet is the net radiation (Rnet = Snet + Lnet). Besides mass and energy exchanges,

momentum flux (M) is another key quantity in land-surface and atmosphere interactions

as a result of friction.
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Lnet Snet 

H LE 

H LE 

G 

M 

Snet : Net shortwave radiation 

Lnet : Net longwave radiation 

H   : Sensible heat flux 

LE : Latent heat flux 

G   : Ground heat flux 

M   : Momentum flux 

 

CO2 - H2O 

Figure 1.1.: Illustration of the surface–atmosphere interactions within the planetary boundary
layer (PBL) including the exchange of energy, namely as the net shortwave radiation at the
surface, Snet , the net longwave radiation at the surface, Lnet , the surface sensible heat flux, H,
the surface latent heat flux, LE, the ground heat flux, G; the exchange of the momentum flux
at the surface (friction), M; the exchange of water; and the exchange of trace constituents
(CO2, CH4, N2O,...).

Land-surface and atmosphere interactions are commonly represented using a land sur-

face model (LSM). The first generation of LSMs, initiated by MANABE [1969], estimated

the surface sensible and latent heat fluxes in climate models at minimal complexity. The

complexity of the second generation LSMs increased by considering the diurnal cycle of

the fluxes using the force-restore model for soil temperature and soil moisture (BHUM-

RALKAR [1975] and DEARDORFF [1978]). More recent versions also take into account

plant canopy and more sophisticated surface soil hydrology [DICKINSON ET AL., 1993].

The third generation LSMs contemplate the plant physiology and photosynthesis. More

recent implementations involve the carbon and other gaseous components of the earth

system carbon cycle (e.g., OLESON ET AL. [2007]).

To explicitly consider the multi-scale heterogeneity over model grid boxes, model repre-

sentation of the coupled land-atmosphere system must resort to high resolution. However,

this approach is computationally expensive and hence, methods have been proposed in

previous studies to parameterize heterogeneity at scales smaller than the grid, known as

the subgrid-scale heterogeneity.

Earlier studies (e.g., GIORGI AND AVISSAR [1997] and SHAO ET AL. [2001]) explained the

effect of subgrid-scale heterogeneous processes and divide it into two main effects: (1)

the aggregation effect; and (2) the dynamic effect.
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Semi-Tile  

Figure 1.2.: Schematic representation of mosaic, tile (adapted from AMENT AND SIMMER

[2006]), and semi-tile (adapted from NIU ET AL. [2011]) approaches. Symbols in semi-tile
panel are the same as Fig. 1.1. Subscripts ’b’ and ’v’ denote the ’bare’ and ’vegetated’ area,
respectively.

Aggregation effect. Since land-surface properties vary on a continuum of horizontal

scales and the interactions between land-surface and atmosphere is non-linear, neglect-

ing subgrid-scale land-surface heterogeneity or calculations with averaged, or effective

parameters does not necessarily result in correct flux-estimations (e.g., LHOMME ET AL.

[1994]). This effect is called the aggregation effect. The MOSAIC, TILE and semi-TILE

approaches are employed to address the aggregation effect (Fig. 1.2):

The mosaic approach is proposed by AVISSAR AND PIELKE [1989]: the land-surface is

subdivided into N subgrid cells smaller than the overlaid atmospheric grid (first right panel

in Fig. 1.2). Each surface-subgrid is assumed to be homogeneous and the corresponding

surface fluxes are calculated separately. Then, the average of the N subgrid fluxes at the

lowest atmospheric vertical level is used as a surface-forcing for the atmospheric model.

In the tile approach, the land surface is subdivided into several tiles, e.g. according to

the land-use type (second right panel in Fig. 1.2). As for a mosaic approach, all surface

processes are calculated separately for each tile. The weighted average of the tiles fluxes

is determined as the forcing for the atmosphere aloft, i.e., the weight is a portion of the

land-use classes [AMENT AND SIMMER, 2006]. In comparison to the mosaic approach,

the tile approach is less computationally demanding because usually the number of tiles

is smaller than the number of subgrids in the mosaic approach. On the other hand, the

approach lacks the effect of some surfaces type, that are not defined as a tile.

The semi-tile subgrid scheme has been proposed by NIU ET AL. [2011] (left two panels

in Fig. 1.2). In that approach, the net shortwave solar radiation is first calculated over

the whole surface grid, taking into account the gap probabilities (Sav and Sag in Fig. 1.2).

Then, other components of the surface energy balance are computed for two tiles: a

vegetated tile and a bare tile (subscripts v and b in Fig. 1.2, respectively). The semi-

tile approach has benefit over the conventional tile or "mosaic" approaches because it
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calculates solar radiation independent of the solar zenith angle (SZA).

Dynamic effect. Dynamic effect occurs because land-surface heterogeneity induces cir-

culations on various spatial scales, i.e., from mesoscale circulations to small eddies. AVIS-

SAR AND SCHMIDT [1998] and ROY ET AL. [2003] explained that, in order to simulate the

dynamic effect of the mesoscale circulations, the land-surface heterogeneity must be on

scales of 5-10 km. These mesoscale circulations are resolved by most modern numerical

weather prediction (NWP) models [AMENT AND SIMMER, 2006] and many studies have

already investigated the dynamic effects on them, e.g., MAHFOUF ET AL. [1987] and SETH

AND GIORGI [1987] among many others. However, some small eddies remain unresolved

depending on the model resolution.

Eddies smaller than grid cell length are named ’subgrid-scale’ circulations and a range

of eddies which are close to the model resolution, is defined by WYNGAARD [2004] as

a gray-zone of turbulence. In fine-resolution large eddy simulation (LES) or in coarse-

resolution meso-scale modeling, subgrid-scale circulations are either resolved or parame-

terized. However, eddies in the gray-zone [WYNGAARD [2004]; HONNERT [2019]] or on

the edge of the gray-zone, i.e., low-resolution LES simulation or high-resolution meso-

scale modelling, are not.

These eddies also contribute to land-atmosphere fluxes that are not accounted for in land-

surface parameterizations. As a result, the organization of the convective events is often

poorly represented or the estimation of surface fluxes is incorrect due to the unresolved

secondary circulations. Therefore, the parameterization of the dynamic effect of subgrid-

scale motion induced by land-surface heterogeneity is crucial for proper representation

of land-surface–atmosphere interaction, in particular for formation and maintenance of

shallow convection. The principal object of this work is these gray-zone eddies. The work

covers the dynamic effect of these eddies with high resolution meso-scale modeling that is

dedicated to studying interactions between land-surface heterogeneity and atmosphere.

1.2. Representation of land-surface–atmosphere interactions in

numerical models

Studying the multi-scale interactions between the land-surface and the atmosphere re-

quires four-dimensional (4D) atmospheric and land-surface data. It is difficult or even

unachievable to acquire such data via field measurements for a large study area. Thus,

atmospheric models coupled with the LSM come into use. The atmospheric models can

be run for either an idealized (or LES) or a real case. And the LSMs can have real land-

surfaces (e.g., AMENT AND SIMMER [2006]; HUANG AND MARGULIS [2010]; SHAO ET AL.
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[2013]) or synthetic land-surfaces (e.g., PATTON ET AL. [2005]; HUANG AND MARGULIS

[2009] ; RIECK ET AL. [2014]).

Traditionally, simplified and idealized studies are performed to understand the effects of

the surface heterogeneity. For instance, HADFIELD ET AL. [1991] used one-dimensional

(1D) sinusoidal heat flux as small-scale surface forcing (1.5 and 4.5 km wavelength) for

free convective conditions and found that the surface heterogeneity induces organized

motions into the planetary boundary layer (PBL). SHEN AND LECLERC [1995] and RAASCH

AND HARBUSCH [2001] applied two-dimensional (2D) chessboard-like surface heterogene-

ity and found that the intensity of secondary circulations enhances when the length-

scale of the land-surface inhomogeneity reaches the PBL height. In none of the above-

mentioned studies is the atmospheric model component dynamically coupled to a LSM,

i.e., the surface cannot respond to changes in the atmospheric state.

PATTON ET AL. [2005] were the first to study the impact of soil heterogeneity on a range of

2 to 30 km on the wet and dry PBL with dynamically coupled a LSM. They used strip-like

heterogeneity and found the strongest patch-induced atmospheric motion in the range

of 4-9 times the boundary layer depth. HUANG AND MARGULIS [2009] used a series of

realizations replicating the mean and covariance of surface properties such as roughness

length, sensible and latent heat flux and found that the sensitivity of potential temper-

ature to surface heterogeneity is larger than that of the specific humidity. Additionally

the variability of horizontal and vertical velocity clearly shows the impact of the surface

inhomogeneity. RIECK ET AL. [2014] studied the impact of artificial patch-like leaf area

index (LAI) surface patterns on cloud size development and found that the transition from

shallow to deep convection in a simulation with heterogeneous surface is faster than the

simulation with homogeneous surface and the fastest transition occurs with a patch size of

12.8 km. SHAO ET AL. [2013] modelled atmosphere–land-surface interactions over a het-

erogeneous surface with 60 m horizontal resolution using LES simulation. They found that

there is a significant correlation between the land-SP and surface–atmosphere fluxes near

the surface and the signal from the land-surface properties is detectable on the average

flux up to about 650 m.

To provide new insight into the topic, the present study investigates the impact of many

surface heterogeneities on the surface–atmosphere fluxes with a real case meso-scale at-

mospheric simulation, which allows the full complexity of real boundary conditions to be

considered. As another aspect of the present work different from those cited earlier, the

applied surface heterogeneities replicate the probability density function (PDF) of a real

surface heterogeneity of an area under study from satellite data, but they exhibit different

heterogeneity (structure), i.e., they are organized by a different pattern.

To understand the definition of surface heterogeneity and to quantify distinctions between

5



Z. Parsakhoo 1. Research objectives

patterns, different tools are used, e.g., fractal analysis [RODRIGUEZ-ITURBE ET AL., 1995],

the variogram method [GARRIGUES ET AL., 2006], the wavelet transform [BRUNSELL AND

ANDERSON, 2011], the entropy spectrum [HINTZ ET AL., 2014], and the cluster analysis

through a weighted average [LIU ET AL., 2017]. For the purpose of this study, a method is

needed that generates many surface heterogeneities with the desired properties. The the-

oretical link between the fractal approach and the spectral properties of multi-dimensional

fields allows a randomized-phase approach to be used to generate artificial surface pat-

terns with controlled fractal properties (use of efficient fast Fourier transforms for the

generation of artificial patterns). This approach can be tuned to yield surface patterns

that resemble the multi-variate surface properties of the real surface patterns. The gen-

erated para-real surface heterogeneity is used as a lower boundary condition in a large

ensemble of mesoscale atmospheric simulations, forced with lateral and upper boundary

condition from a real case, and coupled with a LSM.

1.3. Research objectives

The overall goal of this thesis is to improve the understanding of the interaction be-

tween land-surface heterogeneity and the atmosphere. While the aggregation effect of

the subgrid-scale heterogeneous processes is investigated by several studies, the dynamic

effect is not yet properly addressed by the numerical models. Parameterizing the dynamic

effect requires a better understanding of its role on surface–atmosphere exchanges. There-

fore, this research aims to quantify the dynamic effect’s impact on surface–atmosphere

interactions through three main inter-related coupling mechanisms between the land-

surface and the atmosphere:

• thermodynamic coupling, i.e., energy exchange via absorption or reflection by the

surface or through sensible heat flux,

• aerodynamic coupling, i.e., momentum exchange via friction at the surface,

• hydrological coupling, i.e., mass and energy exchange via water or heat transfer at

the surface, namely latent and sensible heat fluxes,

A land surface has many properties, e.g., surface-albedo, surface-emissivity, LAI, surface-

moisture availability, and soil-type. It is difficult to distinguish the impact of each surface

property on the above mechanisms if the heterogeneity of all surface properties is consid-

ered simultaneously in the analysis.

In the face of this difficulty, a compromising approach is to choose three surface properties

each of which drives a single exchange mechanism. This study focuses on the impact of

these three specified properties of heterogeneity on the atmosphere. The criteria used to
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select the surface properties are, first, it has to be representative of the three main surface-

atmosphere exchanges (i.e., radiative, momentum and sensible/latent heat fluxes), and

second, it has to be a static property. Among the surface properties that meet the above

criteria, we select the following ones:

• Surface-albedo (α) as a representative of thermodynamic properties,

• Roughness-length (z0) as a representative of mechanical properties,

• Soil-type (st) as a representative of hydrological properties.

Studying the impact of the heterogeneity of these surface properties on the atmosphere

required running numerous simulations that are forced by a new surface heterogeneity

of a single surface property; all other boundary conditions remain unchanged. The focus

is on the effect of different scales of the surface heterogeneity on the atmosphere via the

three main coupling mechanisms individually.

A multi-scale random fractal approach (inspired by a quasi-fractional Brownian surface)

is employed to model the synthesized surface pattern with specific parameters under con-

trol. This fractal approach can model the surface pattern (SP) across all spatial scales,

not only exhibiting the dominant scale but also simulating the persistency of the spatial

heterogeneity. In addition, this approach can retrieve the dominant scale of surface hetero-

geneity holding the maximum information content and find a characteristic length scale

within the entire domain that represents the spatial structure.

This study seeks to answer the following research questions under real atmospheric con-

ditions coupled with the synthesized SP:

1) If land-surface heterogeneity is to be parameterized, which heterogeneity should be

considered as an important surface property?

2) Which land-surface pattern is most important for the boundary-layer development,

in particular for the formation of shallow convection?

We introduce a novel approach to address (1) and (2) as follows:

I developing a multi-scale random fractal approach for generating the land-surface

heterogeneity based on the real length-scales,

I running a large ensemble of simulations forced by the heterogeneous synthesized

SPs of selected surface properties,

I applying an ANalysis of VAriance (ANOVA) approach to this large ensemble and

handling an ultra-large data with high performance computing (HPC),

A description of the model used, the synoptic situation, the final model setup and its

validation against observations are given in Chapter 3. To attain a proper representation of
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the main coupling mechanisms in the para-real ensemble runs, Section 4.1 is designed to

set the stage for a case study of the para-real framework. The emphasis in Section 4.2 is on

the convergence of random realizations (rr). Finally, the results of ∼500 simulations are

provided with the focus on the impact of the key coupling mechanisms on the atmospheric

states (Chapter 5) and on the propagation of land-surface signal (Chapter 6). Chapter 7

presents some conclusions and directions for future work.
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2. Definition of a simulation and analysis
framework for surface–atmosphere
interaction

In this chapter, first the concept of the para-real simulation–which is the core of this

study– is illustrated. To study the impact of different length-scales of land-surface hetero-

geneity, hundreds of synthesized SPs with different spatial characteristics are generated

by the fractal approach (Section 2.2). These synthesized SPs are mapped on to the real SP

through some surface parameters estimated from real geodata (Section 2.3). In the last

section, ANOVA method used to analyze the results is given.

2.1. Para-real simulation

The main intent in this study is to demonstrate how the land-surface heterogeneity af-

fect the triggering surface–atmosphere coupling mechanisms (cf. Section 1.3). We aim at

more firmly establishing the influence of albedo (α), soil-type (st), and roughness-length

(z0) on the thermodynamic, hydrological, and aerodynamic mechanisms, respectively. We

would expect that albedo impacts a loss of energy from the solar irradiance, soil-type in-

fluences the availability of moisture at the surface, and roughness-length contributes to

the momentum exchanges at the surface through friction. Here, the relationship between

an individual selected surface property and the corresponding fluxes is more closely ex-

amined, with the aid of para-real simulation.

2.1.1. Simulation framework

We propose the term “para-real” for the simulations of this study because they have the

full complexity of a real boundary condition except one SP at a lower boundary condition

(Fig. 2.1). To isolate and eventually attribute coupling effects to physical mechanisms, we

simulate individually the impact of the heterogeneity of a single surface property on the

atmosphere aloft. Thus, in each simulation, the SP of only one of the considered surface
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.1.: Illustration of SPs of the specified surface properties for a real case (left column)
versus a para-real case (right column). The left column shows the original SPs of two model
domains. The first row (a,b) is for land-used index, the second (c,d) for albedo, third (e,f) for
roughness-length, and bottom row (g,h) for soil-type. The right column shows the original SP
of the outer domain (d01) and an example of the synthesized SPs of the inner domain (d02).
The SPs of LU is not changed in any para-real run, and only the SP of the single specific surface
property of the d02 is replaced individually by the synthesized one.
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properties –albedo, soil-type, and roughness-length– is replaced by a synthesized one. All

remaining surface-properties, in particular, the land-use index (LU) does not change in

any simulation.

The synthesized SP is generated by the quasi-fractional Brownian surface (quasi-fBs)

method (cf. Section (2.2.2)). The generated SP is governed by fractal parameters, known

as the dominant scale of the pattern (kmax) and the persistency of the pattern (s2). These

two fractal parameters are tunned according to the real land-surface heterogeneity on a

wide range of length-scales to generate an arbitrary number of synthesized SPs from a

large-scale SP to a small-scale SP. Furthermore, as this study is focused on the quantifica-

tion of the subgrid-scale dynamic effects, the generated synthesized SP replicates the PDF

of the real SP of the surface property in order not to change the flux aggregation. Indeed,

only the spatial arrangement of the surface properties is reshuffled.

An intermediate pattern generated by the quasi-fBs is a random 2D fractal (Fig. 2.2-c). It

is converted to the synthesized SP of a selected surface property (Fig. 2.2-d) through the

PDF of the real SP (Fig. 2.2-b). Thus, the synthesized SP of a specific surface property

(Fig. 2.2-d) resembles the PDF of the real SP of the considered surface property (Fig.

2.2-a) but the spatial arrangement is synthetically relocated (Fig. 2.2-d).

2.1.2. Analysis framework

All analyses are provided for the three surface properties individually to show the impact

of the new spatial arrangement of them on above-mentioned coupling mechanisms and

consequently on corresponding atmospheric states. Since albedo and soil-type proper-

ties affect the surface energy balance through the changes of temperature and moisture,

we select some atmospheric states from model output which are linked to the changes

of temperature and moisture including temperature (T ), water-vapor mixing ratio (QV ),

and cloud-water mixing ratio (QC). As wind velocity and roughness-length are inversely

linked, we select wind velocity components to study the effect of the changes of the

roughness-length SP on them (U , V , and W). In this way, we perceive any subgrid-scale

dynamic effect of heterogeneity of a single surface property on the coupling mechanisms

individually.

2.2. Synthesized surface pattern generation

Land-surface heterogeneity has been observed on a continuum and variety of horizontal

scales. It can be characterized as multi-scale spatial structures with randomness features.
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(a) real SP of z0 (b) PDF of the real SP of z0 

(d) synthesized SP of z0 (c) intermediate pattern 

Figure 2.2.: (a) The real SP of roughness-length for a model domain under this study. (b)
The PDF of (a). (c) An intermediate pattern is generated by the quasi-fBs approach. The SP
of subfigure-a exhibits continuous values which are normalized between +1 and -1. (d) A
synthesized SP for roughness-length. The SP of subfigure-d indicates categorical values. The
intermediate pattern is converted to the synthesized SP of z0 through the PDF of a real SP.
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Since sometimes the patchiness of scales are very small (less than a kilometer), the de-

termination of dominant scale which holds the maximum information of heterogeneity

becomes problematic. Therefore, a suitable approach which is able to detect the range

of scales and their correlation is required to attain a more thorough understanding of the

surface spatial variations. With fractal approach, it is possible to determine the dominant

length-scale, and to model a large number of heterogeneous SPs with controlled fractal

properties.

2.2.1. Fractal approach

Surface heterogeneity can be characterized as 2D multi-scale random fractals. In the early

1960s, Mandelbrot worked on the fractal geometry of nature and proposed his notion of

fractional Brownian motion (fBm) in his ground-breaking paper, [MANDELBROT AND VAN

NESS, 1968]. He proposed to model the irregular earth surface by an extension of fBm

to three dimensions. Indeed, Euclidean geometry fails to explain the complex geometric

arrangement of many geophysical observables from earth topography via land-surface

heterogeneity, rivers and coastlines up to clouds shapes and star clusters. Hence, the idea

of fractal representation is widely used (e.g., MANDELBROT [1977]; PEITGEN AND SAUPE

[1988]; BUNDE AND SHLOMO [1994]; GRAVES ET AL. [2017]). In particular, RODRIGUEZ-

ITURBE ET AL. [1995] found fractal behavior in the spatial variability of soil moisture

fields.

There are two categories of fractals: deterministic fractals and random fractals; most frac-

tals in nature belong to the latter category [BUNDE AND SHLOMO, 1994]. While the dimen-

sion of deterministic fractals can be estimated by analytical methods, the dimensionality

of random fractals can only be found by numerical methods [PEITGEN AND SAUPE, 1988;

ABEDINI AND SHAGHAGHIAN, 2009]. Several numerical methods have been developed to

estimate fractal dimension either directly, such as box counting [BLACKMORET AND ZHOU,

1998] and variogram estimation [BURROUGH, 2008], or indirectly, such as spectral anal-

ysis (e.g., MUNIANDY AND LIM [2001]; GARCÍA-SERRANA ET AL. [2018]), or detrended

fluctuation analysis [GU AND ZHOU, 2006].

When using indirect methods, one assumes that the signal under study is a realization

of fBm (or in 2D cases of a fractional Brownian surface (fBs)). It means the surface

under consideration has a single fractal dimension (D f ). Despite a lot of success when

using this assumption, some phenomena possess local fractionality which is overlooked in

these methods (e.g., MUNIANDY AND LIM [2001]; ABEDINI AND SHAGHAGHIAN [2009]).

Nevertheless, the basic concept of all indirect methodologies is fBm and depending on

the application, fBm has been extended to higher dimensions (multifractional Brownian

motions). Therefore, it is appropriate to present here some basic theories about fBm and
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its properties relevant to our study according to MANDELBROT AND VAN NESS [1968].

Fractional Brownian motion (fBm)

MANDELBROT AND VAN NESS [1968] assumed B(t) is an ordinary Brownian motion which

has uncorrelated and independent increments, and the mean square increments have

a variance proportional to the time difference, < |B(t + τ)− B(t)|2 >∝ τ [BUNDE AND

SHLOMO, 1994]. They defined a fractional Brownian motion of exponent H, BH(t) as

BH(t) =
1

Γ(H + 1
2)
{
∫ 0

−∞

[(t− s)H−1/2− (−s)H−1/2]dB(s)+
∫ t

0
(t− s)H−1/2dB(s)}, (2.1)

where Γ is a gamma function and dB(s) is a Wiener process. Both integrals on the right

hand side of equation (2.1) are a stochastic integral due to the fact that dB(s) is a stochastic

process and it evolves probabilistically in time [GARDINER, 2004].

The parameter H satisfies 0 < H < 1, and it is called Hurst exponent1. In the one dimen-

sional case, it is restricted into three classes: H < 1/2 for relatively rough times series,

H = 1/2 for ordinary Brownian motions and H > 1/2 for relatively smooth time series.

The increments of fBm have two main properties: (1) The stochastic differential dBH is a

stationary and isotropic Gaussian process with the mean of < BH(t + τ)−BH(t)>= 0 and

the variance of < |BH(t +τ)−BH(t)|2>∝ τ2H . (2) dBH is statistically self-similar, i.e., if τ is

rescaled by a factor of b, dBH is changed by a factor of bH . In other words, BH(t+τ)−BH(t)

and b−H [BH(t +bτ)−BH(t)] are statistically similar.

By extending self-similarity to E ∈ N dimensions, the general scaling relation is

< |BH(~r2)−BH(~r1)|2>∝ |~r2−~r1|2H (2.2)

where~r = (r1, ...,rE) and E indicates the dimension of the fractional Brownian signal, e.g.

at time-series (E=1), a landscape (E=2), or a cloud (E=3). For E = 2,~r can be replaced

by the xy-plane, then BH(x,y) can be considered as the surface property (for example

altitude) and equation (2.2) simplifies to < |BH(x2,y2)−BH(x1,y1)|2>∝ ∆r2H where ∆r =√
∆x2 +∆y2. This means BH(x,y) is scale invariant along the x and y dimensions, and it

is isotropic. The resulting surface is indistinguishable by zooming in or out. If BH(x,y)

varies anisotropically along x and y by rescaling, it is known as self-affinity. Indeed, many

fractals in nature are self-affine [MANDELBROT, 1977; PEITGEN AND SAUPE, 1988; BUNDE

AND SHLOMO, 1994].

1In the literatures H is referred to various expressions: the ’self-similarity parameter’, the ’long memory
parameter’, the ’Hurst coefficient’, the ’Hurst parameter’ and the ’fractional Brownian motion parameter’.
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The seemingly complex form of the irregular manifolds that result from fractal Brownian

process, is characterized by a fractal dimension D f which relates to the Hurst exponent H

via

D f = E +1−H (2.3)

there, E < D f < E + 1. D f is a measure of the irregularity in a fractal. For instance, in

case of a mountainous area E = 2 and its D f is limited to 2 < D f < 3. When D f = 2,

the area is extremely smooth. As D f increases, the area becomes increasingly corrugated

[MANDELBROT, 1977]. The area of high Earth mountains can be resembled with 2.5 <

D f < 3. Ultimately, when D f = 3, the whole 3D space is filled as a consequence of dense

point to point jumps in altitude covering the entire 2D space on which the process is

defined.

Spectral densities for fBm

We consider now the generation of a Brownian process through a Fourier-Spectral ap-

proach. For illustrative purpose, we resort to the 1D case, i.e., fractional Brownian motion,

BH(t). The Fourier transform of BH(t) is defined as

B̂H( f ) =
∫

∞

−∞

BH(t)e−i2π f tdt, (2.4)

where, f ∈ R+ is the frequency. According to Parseval’s theorem [BUTTKUS, 2000], the

total energy ξS obeys

ξS =
∫

∞

−∞

|BH(t)|2dt =
∫

∞

−∞

|B̂H( f )|2d f . (2.5)

We hence can associate the magnitude of the Fourier transform to the amount of energy

located at a particular discrete frequency with the power spectral density |B̂H( f )|2. B̂H( f )

is given as B̂H( f ) = |B̂H( f )|(cosΘ+ isinΘ) = |B̂H( f )|eiΘ( f ). A power spectrum of the form

1/ f β corresponds to the fBm with H = (β − 1)/2 [PEITGEN AND SAUPE, 1988]. As H is

restricted between 0 and 1 for the fBm, 1 < β < 3 is for 1D problems. Accordingly the

fractal dimension of the corresponding process is linked to β by

D f = E +1−H = E +
3−β

2
. (2.6)

For isotropic problems of higher dimensions, we consider radial wave numbers, fr =

∑
E
i=1 f 2

i , and the spectral slope, β , is linked to the Hurst exponent and dimensionality

of the problem as

B̂H( f1, f2, ..., fE) ∝
1

(
√

f 2
1 + f 2

2 + ...+ f 2
E)

2H+E
=

1

(∑E
i=1 f 2

i )
β+E−1

2

(2.7)
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kmax 

s1 s2 

1 

log(k) 

log(S(k)) 

Figure 2.3.: Schematic of equation (2.9) in loglog scale with s1 = 4 and s2 = 1.5 which is
normalized at the maximum of k.

then B̂H of fractional Brownian surface (fBs) is proportional to ( f 2
x + f 2

y )
−(β+1)/2.

2.2.2. Quasi fractional Brownian surface (quasi-fBs)

We describe now, how these general properties of Brownian processes can be inverted to

obtain a random surface with defined fractal properties as a realization of a Brownian

process. We start from equation (2.7) and mimic the fBs power spectrum by imposing a

slope s2 ∈ R+ in the limit of k→ ∞. This yields

lim(|B̂H |)k→∞ =
1

ks2
(2.8)

where k ∈ R+ is the wave number. The slope s2 indicates long term memory of the signal

and shows how far patterns are correlated in the domain, or in other words, how persistent

a variance signal is across the spectral space. Small s2 indicates a high persistence and

a large s2 means that the small features of the pattern vanish and patterns look more

clustered.

The relation (2.8), however, implies |B̂H(k)|→ ∞ as k→ 0 which is not desired. To control

the variance of the fractals at large scales, we impose a second slope s1 ∈ R+ as k→ 0 by

letting

|B̂H(k)|= N
ks1

(1+ k)s1+s2
. (2.9)

The slope s1 now indicates the decay of the signal in the frequency space as large wave-

length is approached. N ∈ R is a normalization factor and k is shifted with respect to

reference wave number k = k′/k0. The power spectrum then acquires the shape shown

schematically in Fig. 2.3. This approach is named quasi-fBs to reflect the fact that its
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power spectrum diverts from a pure fractal shape as k→ 0. Further, the slope s2 which is

analogous to β , is not strictly limited to the same interval as β . Consequently, many 2D

fractals with a wide range of D f can be generated by this approach.

It is crucial to know on which length scale the maximum of the power spectrum occurs.

kmax is the wave number that corresponds to the dominant scale which holds the maximum

energy of the power spectrum d|B̂H(k)|/dk = 0. We define a reference wave number as

k0 = (s2/s1)kmax and use it for normalizing the spectrum with respect to the kmax. Besides,

N is defined as2

N−1 = |B̂H |(kmax) =−
(

s2

s1 + s2

)s1+s2
(

s1

s2

)s1

. (2.10)

The maximum of the spectral density is always unity by this normalization. Further, kmax

is the scale parameter determining the number of structures per dimension.

By approximating equation (2.9), |B̂H(k)|∝ 1/(k2
x + k2

y)
s2 is analogous to |B̂H( f )|∝ 1/( f 2

x +

f 2
y )

β+1
2 according to the expression 2.7. If 1 < β < 3, fBs is generated. Correspondingly,

if 1 < s2 < 2, fBs is obtained. Out of this range, the generated fractals are not fractional

Brownian surfaces rather multi-scale 2D fractals.

Equation (2.9) has three parameters (i.e., s1, s2 and kmax) characterizing the spectrum of

the quasi-fBs. For the sake of simplicity, we keep s1 constant and vary s2 and kmax in a

reasonable range according to the original geodata from WRF (more detail is given in

Section 2.3). Arbitrary synthesized SPs can be generated for each power spectrum defined

by s2 and kmax through phase randomization as explained below.

Generation of quasi-fBs by phase randomization

Step 1. Create the spectrum B̂H(kxy) according to equation (2.9).

First, a set of 2D wave number kxy is generated as kxy =
√

kx
2 + ky

2 where kx = ky =

0,1,2, ...,n/2. n is the size of the multi-scale fractal field. Then, we impose equation

(2.9) to the amplitude of spectrum together with Gaussian random perturbation across

the radial wavenumber. For this random perturbation, we use a particular implementa-

tion of Gaussian noise that forces exact conservation of mean and variance for every 2

consecutive numbers. We also perturb the phase of the spectrum by a set of random num-

bers between 0 and 2π (0 < Θxy < 2π). As a result of this step, we obtain the randomized

spectrum of multi-scale 2D fractal, B̂H(kx,ky) = |B̂H(kxy)|eiΘxy .

Step 2. Compute the inverse Fourier transform of B̂H(kx,ky).

2Or it is defined as N−1 =
∫

∞

0 ||B̂H(k)||2dk = n Γ(s1)
Γ(1+s1)Γ(s2−(1+s1))

to govern the total variance, and it exists
under following condition 1+ s1 > 0 and s2 > 1+ s1.
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Figures 2.4 illustrates the quasi-fBs method. The 2D patterns contain the 2D quasi-fBs

realization and the corresponding power spectrum. In subfigures (a), (b), and (c), s1 and

kmax are kept constant and s2 varies from 3 to 0.5. By decreasing slope (|s2|) from left to

right, the pattern becomes less and less persistent (more randomized). In subfigures (d),

(e), and (f), s1 and s2 are kept constant and kmax varies from 10 to 1. By decreasing kmax

from left to right, the pattern is less randomized and more clustered.

18
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(a) s2 = 3, kmax = 3 (b) s2 = 1.5, kmax = 3 (c) s2 = 0.5, kmax = 3

(d) s2 = 1.5, kmax = 10 (e) s2 = 1.5, kmax = 5 (f) s2 = 1.5, kmax = 1

(g) Power spectra

10 -2 10 -1

k

10 -1

10 0

S
(k

)

a
b
c
d
e
f

Figure 2.4.: Plots (a)-(f) illustrate fields generated by quasi-fBs approach in xy-plane with
n = 150 points and s1 = 4. Plot (g) shows the corresponding power spectra.
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2.3. Estimation of scales from original geo-SPs

To acquire an estimate of the parameters s2 and kmax of the spectrum used for generating

the quasi-fBs, we consider the SP of the original geo-data of WRF input files. We use the

original SPs of three surface properties (α, z0, st) from USGS WPS geo-data. In order to

make sure that we arrive at a representative estimate and also to reduce noise in spectral

estimates from a single sample, we use 25 domains arranged as shown in table 2.1. In

terms of the radial power spectra, we find that overall slope among different domains is

quite similar (Fig. 2.5). Figure 2.5 indicates the power spectra of the original SP of α for

25 domains and the best linear fit to them.

Table 2.1.: Location of the center of 25 domains.

Longitude (◦E) 5.0 5.5 6.4 7.0 7.5

Latitude (◦N) 49.5 50.0 50.9 51.5 52.0

10 -2 10 -1 10 0

k[km -1 ]

10 -1

10 0

10 1

10 2

10 3

S
(k

)

Figure 2.5.: Power spectrum of α for the 25 domains given in table 2.1 (colored curves) with
the best linear fit curve (solid black curve).

The same calculation is done for the original SPs of z0 and st . From the power spectra of

original SPs, s2 is estimated for α, z0, and st at 1.3, 0.8, and 1.5, respectively. And based on
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that, a logical range of s2 and kmax is proposed in table 2.2 for generating 16 intermediate

SPs (Fig. 2.6). These intermediate SPs are the basis of the final synthesized SPs for each

of the surface properties of interest (cf. Section 2.1).

Table 2.2.: Proposed range of s2 and kmax based on the estimation from original SPs.

s2 1.3 1.8 2.4 3

kmax [km−1] 0.1 0.5 1 3

kmax 

s2 

0.1 0.5 1 3 

1.3 

1.8 

2.4 

3 

rr 

α 

st 

① 

② 

③ 

④ 

⑤ 

⑥ 

⑦ 

⑧ 

⑨ 

⑩ 

⑪ 

⑫ 

⑬ 

⑭ 

⑮ 

⑯ 

Figure 2.6.: Intermediate SPs according to estimations in table 2.2. Numbers assigned to each
SP are used in chapter 4, 5, and 6 for the sake of easier discussions.

2.4. Analysis approach

Analysis of Variance (ANOVA) has historically been applied in different research areas to

study the deviation of data from its mean [RUTHERFORD, 2011]. ANOVA decomposition

was revealed as far back 1948 by HOEFFDING and is widely used in determining what por-

tion of total variation is explained by lower-order variations [HOOKER, 2007]. A common
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formulation for ANOVA-decomposition is that by SOBOL [1993].

In high dimensional models, quite often a small group of input variables can represent

the main effects on independent-multivariate outputs [SOBOL, 1993]. ANOVA decompo-

sition renders a family of subsets of multivariate functions that each subsets contains the

information about the variations along the dimensions of corresponding subset. Thus, this

family of subsets can approximate the model outputs.

Since we want to inquire to what extent atmospheric data depends on land-surface prop-

erties and in particular on the spatial arrangement (e.g. cloud distribution is influenced

by land-surface induced flows [GARCIA-CARRERAS ET AL., 2011].), ANOVA method is ap-

plied. Our hypothesis is that the decomposed ANOVA components can elucidate the signal

from the SP in the atmospheric state variables at different heights.

2.4.1. The classic ANOVA method

Let F(x) : In→ R : x 7→ F(x) be a multivariate function and suppose F is square integrable

in Hilbert space where In indicates the unit hypercube in n dimensions:

F(x) = f /0 +
n

∑
i=1

fi(xi)+∑
i 6= j

fi j(xi,x j)+ ..., (2.11)

where f /0 is a constant mean and the summand terms denote the first order effects on total

variations, the second order effects, and so on [HOOKER, 2007]. For the sake of notational

brevity, let u denote a subset of indices with u⊆D where D := {1, ...,n}, then the expression

(2.11) reads as

F(x) = ∑
u⊆{1,...,n}

fu(xu). (2.12)

The decomposed components fu(xu) are defined as

fu(xu) := Pu(xu)−∑
v⊂u

fv(xv), (2.13)

where, v are subsets within the u-subspace that account for lower-order effects. Pu(xu) is

the projection of F(x) in the subspace excluding u-subspace and defined as:

Pu(xu) :=
∫

x−u

F(x)dx−u, (2.14)

x−u indicates variables with indices not in u-subspace.

Since all variation in the subspace with dimension v are removed from the multivariate

function F , each ANOVA component indicates the pure contribution of the subspace con-

taining the dimension u to the total variance. The total number of decomposed ANOVA

22



Z. Parsakhoo 2. Analysis approach

x 

y z 

𝒇𝒚 
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residual 

Figure 2.7.: Schematic of ANOVA decompositions for a 3D-multivariate function.

components is 2n.

Representation 2.11 is called ’classic’ ANOVA 3 and it implies the following fundamental

properties:

- zero means:
∫

fu(xu)dxu = 0 for each u 6= /0,

- orthogonality:
∫

fu(xu) fv(xv)dx = 0 for u 6= v,

- variance decomposition: Du := σ2
u :=

∫
fu(xu)

2dxu and ∑Du = σ2 :=
∫

F2(x)dx− f 2
/0

The last property implies the Global Sensitivity Index (Su)

Su := Du/D, (2.15)

which gives the contribution of the variance in subspace u to the total variance. As the

variance is additive, the two equalities ∑u⊆D Du = D and ∑u⊆D Su = 1 can be obtained.

Figure 2.7 schematically describes how a 3D-multivariate function is decomposed into its

lower-order variances by ANOVA.

2.4.2. Application

Most model outputs under this study are 4D-multivariate functions. Thus, a 4D-ANOVA

decomposition is demonstrated here. Let F ≡ F(x,y,z, t) be a function of longitude (x),

latitude (y), altitude (z) and time (t), the corresponding ANOVA decomposition is obtained

by two steps:

Step 1. calculate the projections Pu(xu):

Pxyzt(x,y,z, t) := F(x,y,z, t),

3alternatively it is called ’functional’ ANOVA [HOOKER, 2007].
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Pxyz(x,y,z) :=
∫

F(x,y,z, t)dt,

Pxyt(x,y, t) :=
∫

F(x,y,z, t)dz,

Pyzt(y,z, t) :=
∫

F(x,y,z, t)dx,

Pxzt(x,z, t) :=
∫

F(x,y,z, t)dy,

Pxy(x,y) :=
∫∫

F(x,y,z, t)dzdt,

Pxz(x,z) :=
∫∫

F(x,y,z, t)dydt,

Pxt(x, t) :=
∫∫

F(x,y,z, t)dydz,

Pyz(y,z) :=
∫∫

F(x,y,z, t)dxdt,

Pyt(y, t) :=
∫∫

F(x,y,z, t)dxdz,

Pzt(z, t) :=
∫∫

F(x,y,z, t)dxdy,

Px(x) :=
∫∫∫

F(x,y,z, t)dydzdt,

Py(y) :=
∫∫∫

F(x,y,z, t)dxdzdt,

Pz(z) :=
∫∫∫

F(x,y,z, t)dxdydt,

Pt(t) :=
∫∫∫

F(x,y,z, t)dxdydz,

P/0( /0) :=
∫∫∫∫

F(x,y,z, t)dxdydzdt. (2.16)

Step 2. calculate ANOVA decompositions fu(xu):

f /0( /0) := P/0( /0),

fx(x) := Px(x)− f /0( /0) = Px(x)−P/0( /0),

fy(y) := Py(y)− f /0( /0) = Py(y)−P/0( /0),

fz(z) := Pz(z)− f /0( /0) = Pz(z)−P/0( /0),

ft(t) := Pt(t)− f /0( /0) = Pt(t)−P/0( /0),

fxy(x,y) := Pxy(x,y)− fx(x)− fy(y)− f /0( /0)

= Pxy(x,y)−Px(x)−Py(y)+P/0( /0),

fxz(x,z) := Pxz(x,z)− fx(x)− fz(z)− f /0( /0)

= Pxz(x,z)−Px(x)−Pz(z)+P/0( /0),

fxt(x, t) := Pxt(x, t)− fx(x)− ft(t)− f /0( /0)

= Pxt(x, t)−Px(x)−Pt(t)+P/0( /0),
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fyz(y,z) := Pyz(y,z)− fy(y)− fz(z)− f /0( /0)

= Pyz(y,z)−Py(y)−Pz(z)+P/0( /0),

fyt(y, t) := Pyt(y, t)− fy(y)− ft(t)− f /0( /0)

= Pyt(y, t)−Py(y)−Pt(t)+P/0( /0),

fzt(z, t) := Pzt(z, t)− fz(z)− ft(t)− f /0( /0)

= Pzt(z, t)−Pz(z)−Pt(t)+P/0( /0),

fxyz(x,y,z) := Pxyz(x,y,z)− fxy(x,y)− fyz(y,z)− fxz(x,z)− fx(x)− fy(y)− fz(z)− f /0( /0)

= Pxyz(x,y,z)−Pxy(x,y)−Pyz(y,z)−Pxz(x,z)+Px(x)+Py(y)+Pz(z)−P/0( /0),

fxyt(x,y, t) := Pxyt(x,y, t)− fxy(x,y)− fyt(y, t)− fxt(x, t)− fx(x)− fy(y)− ft(t)− f /0( /0)

= Pxyt(x,y, t)−Pxy(x,y)−Pyt(y, t)−Pxt(x, t)+Px(x)+Py(y)+Pt(t)−P/0( /0),

fxzt(x,z, t) := Pxzt(x,z, t)− fxz(x,z)− fzt(z, t)− fxt(x, t)− fx(x)− fz(z)− ft(t)− f /0( /0)

= Pxzt(x,z, t)−Pxz(x,z)−Pzt(z, t)−Pxt(x, t)+Px(x)+Pz(z)+Pt(t)−P/0( /0),

fyzt(y,z, t) := Pyzt(y,z, t)− fyz(y,z)− fyt(y, t)− fzt(z, t)− fy(y)− fz(z)− ft(t)− f /0( /0)

= Pyzt(y,z, t)−Pyz(y,z)−Pyt(y, t)−Pzt(z, t)+Py(y)+Pz(z)+Pt(t)−P/0( /0),

fxyzt(x,y,z, t) := Pxyzt(x,y,z, t)− fxyz(x,y,z)− fxyt(x,y, t)− fxzt(x,z, t)− fyzt(y,z, t)

− fxy(x,y)− fxz(x,z)− fxt(x, t)− fyz(y,z)− fyt(y, t)− fzt(z, t)

− fx(x)− fy(y)− fz(z)− ft(t)

− f /0( /0)

= F(x,y,z, t)−Pxyz(x,y,z)−Pxyt(x,y, t)−Pxzt(x,z, t)−Pyzt(y,z, t)

+Pxy(x,y)+Pxz(x,z)+Pxt(x, t)+Pyz(y,z)+Pyt(y, t)+Pzt(z, t)

−Px(x)−Py(y)−Pz(z)−Pt(t)

+P/0( /0).

(2.17)
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3. Model setup and case description

To better understand the propagation of the land-surface pattern into the atmosphere on

various scales, we use a real case forced by a real lateral atmospheric situation (i.e., high-

resolution reanalysis atmospheric data) coupled with LSM. The boundary conditions of

the LSM in a reference run are real and all SPs are original from geo-data. In para-real en-

semble runs, one single SP of three identified surface properties is replaced by a synthetic

one and the rest SPs are real from original geo-data. To resolve the aggregation effect of

land-surface heterogeneity, the LSM of the current model uses the semi-tile scheme.

We commence by describing the numerical simulation framework, namely WRF in its Ad-

vance Research WRF (ARW) version. Second, the synoptic situation for the studied days

April 24-26, 2013 is described. Third, the reference model setup including all imple-

mented modifications to achieve a high-resolution representation of shallow convection

and to detect short and long-term soil responses are provided. The last section validates

the model setup against observation and reanalysis data.

3.1. The Weather Research and Forecasting (WRF) model

The Weather Research and Forecasting model (WRF) version 3.7.1 is used for this study to

produce simulations based on real atmospheric conditions. A detailed description of the

WRF model can be found in [SKAMAROCK ET AL., 2008].

WRF consists of several components designed for both research and operational applica-

tions. Figure 3.1 shows the procedure for a real case. Each real forecast starts with the

WRF Preprocessing System (WPS) preparing the WRF input files and WRF boundary files.

In WPS, the static terrestrial data is extracted from different sources of geo-data according

to defined model domains within geogrid.exe, and the gridded meteorological data is en-

coded within ungrib.exe. In geogrid, geodata is extracted, projected according to chosen

coordinate system and horizontally interpolated. The last step in WPS is to horizontally

merge the output from geogrid and ungrib programs by metgrid.exe. The vertical interpo-

lation is done by real.exe where the vertical levels can be changed depending on the model

resolution. After real.exe, WRF initial input files and WRF boundary files are ready to be

given to the dynamic solver WRF (here ARW is used).
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Terrestrial Data 
geogrid.exe 

Meteorological Data 
ungrib.exe 

merged by 
metgrid.exe 

real.exe 

WRF input files 

WRF boundary files 

dynamic ARW solver 
wrf.exe 

Physics  

options 

WRF 

Preprocessing  

System 

WRF output 

files 
WRF 

Software  
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albedo 
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length 

Figure 3.1.: WRF system flowchart for a real simulation including the WPS and the ARW
solver. The green rectangle indicates an extra step in this study to replace the original SP with
a synthesized SP.

3.1.1. Model discretization

Temporal discretization. The ARW solver uses a third-order Runge-Kutta (RK3) time

integration scheme for low-frequency (or meteorologically significant) modes [WICKER

AND SKAMAROCK, 2002] and applies a time-split integration scheme for high-frequency

(acoustic waves and meteorologically insignificant) modes [KLEMP ET AL., 2007], since

high-frequency acoustic modes severely limit the model time step in RK3 scheme.

Spatial discretization. The ARW dynamical core solves the compressible, non-hydrostatic

Euler equations using a terrain-following hydrostatic pressure vertical coordinate system
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Figure 3.2.: Horizontal and vertical grids of the WRF ARW. Red circle at the center of grid
indicates mass point.

represented by η and proposed by LAPRISE [1992] as

η =
ph− pht

µ
, (3.1)

where µ = phs− pht . ph is the hydrostatic component of the pressure. µ is the difference

between the pressure at the surface (phs) and the pressure at the top boundary (pht). This

vertical coordinate definition is commonly known as σ -coordinate. η varies between 1 at

the surface and 0 at the top boundary.

Spatial discretization is shown in Fig. 3.2 and obtained by the finite difference scheme

using the Arakawa C-grid staggering [ARAKAWA AND LAMB, 1977]. Diagnostic variables,

pressure and inverse density are computed at mass points (the location of θ in Fig. 3.2)

and the wind vector components are staggered and computed at half-levels. w is staggered

only in k and u and v components of wind are staggered horizontally. ∆x and ∆y are

constant whereas ∆η can change with height and horizontally.

Stability constraint. The model time step in RK3 scheme is limited by the advective

Courant1 number. WICKER AND SKAMAROCK [2002] provide a table for the maximum

stable Courant number (Crmax) for 1D linear advection in the RK3 scheme depending on

1The Courant-Friedrichs-Lewy (CFL) condition: this condition is essential to obtain numerically stable solu-
tions of partial differential equations. The general form of CFL condition is Cr = ∆t ∑

n
i=1 uxi/∆xi ≤Crmax,

where u is the magnitude of the velocity, ∆x and ∆t are the length interval and the time step, respectively.
The Crmax value depends on the time integration scheme solver.
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the order of spatial discretization. Based on that, the physical time step of 3D application

must satisfy the following condition

∆tmax <
Crmax√

3
∆x

umax
, (3.2)

where Crmax=1.61 for the 3rd-order RK3 scheme from WICKER AND SKAMAROCK [2002]’s

table and umax is the maximum velocity which might occur during the simulation. It is

recommended by WRF developers to choose a time step about 25% less than that given

by (3.2) that is approximately 6 times the grid distance in kilometers, as a rule of thumb.

From ARW solver version 3, there is a capability to apply an adaptive time step, since the

maximum stable time step is possibly larger than the fixed time step implied by the relation

(3.2) at any time during integration. This speeds up the computation considerably.

3.1.2. Nesting

WRF-ARW provides the capability to introduce additional grids for higher horizontal reso-

lution across a domain of particular interest. The coarser resolution grid (parent domain)

acts as lateral boundary condition for the higher resolved grid. The finer domains have a

relaxation zone on the outer most edges where the model is nudged towards the parent

domain.

There are two options for nested grid simulations: 1-way and 2-way grid nesting. In the 1-

way nest integration, the information is only exchanged from the coarser grid to the finer

one. In the 2-way nesting option, the information from the finer integration is replaced

for the coarser domain.

3.1.3. Physics options

In WRF-ARW, different physical options are available. Table 3.1 shows physical schemes

used in this study, where we follow the WRF-ARW recommendations. Since the computa-

tion of land-surface–atmosphere fluxes in WRF depends on both the surface layer physics

and the LSM, a summary of major features of them is given in the following sections.

3.1.4. Surface layer parameterization

The surface layer scheme in this study is based on the fifth-generation Pennsylvania State

University- National Center for Atmospheric Research Mesoscale Model (MM5) parame-

terization. In the revised MM5 scheme, the surface fluxes are parameterized as follows:
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Table 3.1.: WRF model physics options used in this study.

WRF model physics options Option # Scheme Name

Micro physics
(mp_physics)

d01: 1
d02: 2

d01: Kessler scheme
[KESSLER, 1995]

d02: Purdue Lin Scheme
[CHEN AND SUN, 2002]

Land surface
(sf_surface_physics)

4
Noah-MP Land surface model

[NIU ET AL., 2011], [YANG ET AL., 2011]

PBL
(bl_pbl_physics)

1
Yonsei university scheme

[HONG ET AL., 2006]

Surface layer
(sf_sfclay_physics)

1
Revised MM5 scheme

[JIMÉNEZ ET AL., 2012]

Shortwave radiation
(ra_sw_physics)

1
RRTMG shortwave scheme

[IACONO ET AL., 2008]

Longwave radiation
(ra_lw_physics)

1
RRTMG longwave scheme

[IACONO ET AL., 2008]

Momentum flux parameterization. The parameterization of momentum flux solves for

the surface momentum flux u′w′|z = z0 in terms of the friction velocity u∗:

τ =−ρu′w′ = ρu2
∗, (3.3a)

u∗ =
κ(u−u0)

ln
(

z
z0

)
−ψm(RiB)

, (3.3b)

RiB =
gz(θ −θ0)

θu2 , (3.3c)

where u∗ is the friction velocity, ρ is the air density, κ=0.4 in MM5 is von Kármán constant,

z0 is the aerodynamic roughness length, u is the wind speed at the level z, u0 is the wind

speed at the surface (assumed u0 = 0) and ψm is a stability parameter which is determined

by the Bulk Richardson number (RiB). θ0 is the temperature near the surface at z = z0 (For

more detail see JIMÉNEZ ET AL. [2012]).

Sensible heat flux parameterization. The surface heat flux is similarly parameterized:

H = ρcpθ ′w′ =−ρcpu∗θ∗, (3.4a)

θ∗ =
κ(θ −θ0)

Pr
[
ln
(

z
z0

)
−ψh(RiB)

] , (3.4b)

31



Z. Parsakhoo 3. The Weather Research and Forecasting (WRF) model

where θ∗ is the characteristic temperature; cp is the specific heat capacity at constant pres-

sure; Pr=1 in MM5 is the turbulent Prandtl number; and ψh is also a stability parameter

as a function of RiB .

Latent heat flux parameterization. The parameterization for latent heat flux follows

LE =−leρq′w′ = leρu∗q∗, (3.5a)

q∗ =
κ(q−q0)

Pr
[
ln
(

z
z0

)
−ψh(RiB)

] , (3.5b)

where q∗ is the moisture scale; q0 is the moisture near the surface at z = z0; and le is the

latent heat of evaporization.

3.1.5. Land-surface model

We use here the Noah land surface model with multiparameterization options (Noah-MP

LSM) developed from Noah LSM. The Noah MP LSM is the version 3 of the Noah LSM

augmented through community effort [NIU ET AL., 2011].

The model incorporates snow with a maximum of three possible layers, soil with four lay-

ers and an unconfined aquifer. The total soil depth is set to 2 m. There is free gravitational

drainage of soil moisture at the lower boundary. Therefore, extra water which is drained

off at 2 m soil depth, accumulates in the aquifer.

Horizontally, NOAH-MP LSM uses a semitile subgrid scheme to realize heterogeneity (Fig.

1.2-right panel). The semi-tile approach has benefit over the conventional tile or "mosaic"

approaches because it calculates solar radiation independent of the solar zenith angle

(SZA). Here the surface energy balance over a grid cell used in this scheme is:

Sav +Sag = La +LE +H +G, (3.6)

where Sav and Sag are canopy-absorbed and ground-absorbed solar radiation over a grid

cell, respectively. La, LE, H, and G are the net longwave radiation, latent heat, sensible

heat, and ground heat, respectively. First, the shortwave radiation is calculated over the

entire grid cell considering the gap probabilities (left side of equation (3.6)). Then, La,

LE, H, and G fluxes are obtained separately over vegetated and non-vegetated tiles (right

32



Z. Parsakhoo 3. Synoptic situation

side of equation (3.6)) as:

La = (1−Fveg)Lag,b +Fveg(Lav +Lag,v)

LE = (1−Fveg)LEg,b +Fveg(LEv +LEg,v)

H = (1−Fveg)Hg,b +Fveg(Hv +Hg,v)

G = (1−Fveg)Gg,b +Fveg(Gv +Gg,v) (3.7)

where Fveg is the fractional vegetated area.

There are two gap probabilities used in this scheme: between-canopy and within-canopy

gap probabilities. By using these gap probabilities, shadows resulting from crown-canopies

are estimated better in comparison with conventional tile schemes, especially when the

sun is not overhead of canopies. Besides, this scheme can consider radius and thickness

of the canopy, tree density and SZA through gap probabilities.

3.2. Synoptic situation

In this section, the large-scale weather pattern in Central Europe during the study period,

24-26 of April 2013, is discussed based on ERA-Interim reanalysis by the ECMWF. Figures

(3.3) and (3.4) show a map of equivalent potential temperature (θe) overlaid by mean sea

level pressure (mslp) contour lines, and cloud cover (cc) overlaid by horizontal wind at

500 hPa, respectively.

The study period is characterized by zonal flow in mid and western Europe with the jet

stream and a very pronounced polar front located at about 60◦N. Throughout 24th and

25th of April, a low-pressure system in a very wide area (North Atlantic and Scandinavia)

can be seen. Thus, the weather is almost stationary and a geopotential trough extends

from Greenland to Fenno-Scandia. There are very weak gradients of the geopotential over

central Europe with calm winds and stationary weather.

During the study period, the center of the low-pressure system is located over Iceland

and it strengthens and activates the western part of the wide trough. It steepens up

and eventually merges with the cold-air mass over north-west Africa/Morocco. While on

April 25, Germany is on the front side of the trough experiencing fair weather with some

convection (the suppression of convection is very weak due to the weak anti-cyclonality in

the geopotential ridge over central Europe), the narrower geopotential trough begins to

travel eastward on April 25 and its front side reaches West Germany on April 26 causing

an eastward frontal passage over West Germany on April 26. Eventually, the trough again

splits off the polar low on April 26 and builds up cold-air mass over the Iberian peninsula,

i.e., the large-scale zonal flow pattern is recovered.
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Figure 3.3.: Equivalent potential temperature at 900 hPa pressure UTC 12:00 on a) 24th, b)
25th, and c) 26th of April 2013. White contour lines indicate mean sea level (msl) pressure
in hPa. Dashed white contour lines show msl below 1013 hPa and solid white contour lines
show msl above 1013 hPa. Contours interval is 2 hPa.
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Figure 3.4.: Low cloud cover (lcc) at UTC 12:00 on a) 24th, b) 25th, and c) 26th of April
2013. Red arrows indicate horizontal wind velocity at 500 hPa. The reference wind velocity
vector equals to 40 ms−1.
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d02 

d01 

Jülich 

Figure 3.5.: Map of model domains in Europe region. d01 is parent domain. d02 is inner
domain which is under study. It shows the topography of the model domains: Eifel mountain
area is indicated by brown color and almost flat area is shown by green color.

Figure (3.4) indicates that clouds exist all along the polar jet stream. On 24th and 25th

of April, almost no cloud exists over continental Europe whereas east of Iceland, eastern

Russia, England and mid of Atlantic ocean are cloudy. On 26th of April, clouds are found

over western Europe and Scandinavia whereas no clouds are visible Eastern and South-

ern Europe. The polar front is located over Germany allowing for the development of

precipitation and the jet stream meanders over the Atlantic ocean.

3.3. Reference run

3.3.1. Setup

WRF-ARW is tun with two model domains centered around Jülich (Fig. 3.5). The inner

domain has 1 km horizontal resolution and the parent domain has 3 km horizontal reso-

lution and is forced by the ECMWF operational atmospheric data with a spatial resolution

of 10 km and temporal resolution of 6 hours [DEE ET AL., 2011].

One-way nesting is used to couple the inner and outer domains (cf. section 3.1.2). We

choose this nesting option as only for d02 the original land-SP is replaced by synthesized

SP. Hence, a back-transfer of information from d02 to d01 is not desired. Consequently, it

is ensured that d02 is forced by real data from d01 and the information from d01 is not

mixed by artificial information from d02. For the same reason, a larger relaxation zone
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Figure 3.6.: Original SPs of albedo (left), roughness-length (center) and soil-type (right) (up-
per row) and their corresponding PDF (bottom row).

between the two domains is applied. In this work, the relaxation zone on the fringe of

d02 is extended from 4 grid points (default) to 8 grid points to damp artificial modes

originating from inconsistency between the outer and inner domain.

The period 24-26 of April 2013 is chosen because there exist high resolution observational

data from the HOPE campaign [MACKE ET AL., 2017]. This period incorporates different

atmospheric cases: 24th was clear sky, 25th was cloudy and 26th was rainy day.

For a reference run, the original geodata from USGS 2 24-category data is used. Figure 3.6

shows the original SP of the three surface properties of interest and their corresponding

PDFs.

Vertical levels. Since the soil layer configuration has a fundamental impact on atmo-

sphere land-surface interactions [LIU AND SHAO, 2013], the number of soil layers is ad-

justed according to the relation given by

∆s∼
√

νG.tA, (3.8)

2USGS stands for the United States Geological Survey. The built-in USGS 24-category land-use data is one of
the WRF geodata source which is based on Advanced Very High Resolution Radiometer (AVHRR) satellite
data with about 1 km spatial resolution.
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where ∆s is the thickness of the soil layer in meters, νG is the soil thermal diffusivity

(ν ' 10−6[m2s−1]), and tA is the time scale in seconds. Based on the smallest and largest

time scales in this study (from less than 1 hour to 72 hour), the soil layers are defined as

shown in Fig. 3.7. The number of soil layers is also changed from 4 (default number in

Noah-MP LSM scheme) to 8 to allow the land surface properties to respond to atmospheric

variables.

We also change the number of atmospheric η-levels in this study from 30 levels (default)

to 52 levels to have higher resolution within the boundary layer and to allow vertical

resolution of shallow convection (Fig. 3.7-left side) .

Adaptive time step. Due to the high resolution in both the horizontal and vertical direc-

tion, the CFL-error is very likely to occur throughout the simulations, in particular as they

are repeated many times with different boundary conditions. Thus, the model time step

and the acoustic time step have to be chosen very small (∆t = 6∆x = 6(1[km]) = 6[s]). The

computing time would become prohibitive for the case study we intend. To circumvent

this limitation, we apply an adaptive time step during the simulations and as a result the

computation time is reduced by approximately a factor of two. Microphysics and land-

surface schemes are called every time step. The time interval for calling the radiation

scheme is every 2 s.

Summary of implemented changes

The synthetic generation mechanism for the lower SP (cf. Section 2.1) allows for a study

varying particular aspects of the surface boundary, where each simulation carries one sin-

gle specific lower boundary condition. Similar to an operational setup, we adapt the model

setup to be applicable for any of ∼500 para-real simulations. To fulfill this condition, sev-

eral adjustments to the WRF model and associated tools are performed including

• increase the number of soil layers,

• change the thickness of soil layers,

• increase the number of η levels,

• use an adaptive time step,

• use a larger buffer zone on the fringe of the inner model domain.

38



Z. Parsakhoo 3. Reference run

∆𝑧1 = 0.2  𝑐𝑚 
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Figure 3.7.: Illustration of soil layers/thicknesses and η-levels used in this study (left) versus
default soil layers/thicknesses in Noah-MP LSM and default η-levels in WRF.
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3.3.2. Evaluation

The time period of this study is chosen based on the availability of high-resolution obser-

vational data in order to validate the model simulation. MACKE ET AL. [2017] carried out

a field campaign called the HD(CP)2 Observational Prototype Experiment (HOPE) in and

around Jülich, which took place between April 3, 2013 and May 31, 2013. They reported

three different atmospheric situations on April 24-26: clear sky for 24th, PBL clouds for

25th, and frontal clouds, precipitation for 26th, of April 2013. Since the boundary layer

development and particularly shallow convection is our research interest, we focus on

these three days in April 2013.

We use two sets of data to evaluate the reference run (i.e., the simulation with origi-

nal surface boundary conditions): (1) observation data from HOPE campaign [MACKE

ET AL., 2017], and (2) forcing data from ERA-Interim European Centre for Medium Range

Weather Forecasts (ECMWF) [DEE ET AL., 2011]. The model validation is constrained to

Jülich location (50.909 ◦N, 6.4139 ◦E) and at 12 UTC for each day of the study.

The model evaluation concentrates on the vertical profile of the two main atmospheric

bulk parameters, potential temperature (θ [K]), and specific humidity (Q[kg/kg]). The ob-

served profiles are obtained from surface to 10 km altitude, whereas in ECMWF reanalysis

data, the vertical levels are defined from ∼150 m to ∼48 km height. In WRF output, the

vertical levels are provided from ∼91 m to ∼16 km height. Hence, the black and blue

curves in Fig. 3.8 do not extend all the way down to the surface.

In general, the vertical profile of potential temperature shows better consistency among

different resources than the vertical profile of the specific humidity, particularly above

1 km height. This may be an indicator of unresolved subgrid motions close to surface. On

26th of April, all three θ -profiles are very close even below 1 km. This illustrates that WRF

becomes numerically more stable after three days.

The variability of specific humidity profile in model and forcing data is quite significant in

the first two days but they become smoother on the third day. However, the magnitude

still differs from the observational profiles. On 26th above 1 km altitude, the Q-profile

from ECMWF has larger values than observation one and Q-profile from WRF has smaller

values, whereas, below 1 km, this relation is opposite: Although in the first two days the

WRF and ECMWF Q-profiles reveal large variability against observational Q-profile, their

magnitudes are relatively similar to each other, except at around 1 km height and below,

i.e., in the boundary layer.

These results reveal a relatively good agreement among the reference WRF run, HOPE

observations and ECMWF reanalysis data. But still it is required to ascertain whether

the above model setup works properly with para-real boundary conditions or not and
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Figure 3.8.: Vertical profile of potential temperature (left column) and specific humidity (right
column) at UTC: 12:00. Red, black and blue curves correspond to observation, reference
model run, and ERA-Interim ECMWF forcing data at Jülich location. Rows show the days of
study starting on 24.04.2013 to 26.04.2013.
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what would be the impact of a synthetic surface boundary condition on land-surface–

atmosphere interactions? This leads us to the analyses of the next chapter.
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4. Illustration of the simulation and
analysis framework

This study is aimed to investigate the dynamic effect of well-controlled properties of the

land-surface on the atmosphere with the aid of the para-real simulation (cf. Section 2.1)

retaining the complexity of the realistic geometry and external forcing. This chapter is

designed to first ascertain the adequacy of the study design of a para-real simulation

for atmosphere and land-surface processes (Section 4.1), and second, to ensure the con-

vergence of statistics of the model outcome due to different realizations of the random

processes incurred in generation of new SPs (Section 4.2).

4.1. Synthesized surface pattern as a lower boundary condition

As mentioned in section 3.3.1, we introduce several modifications to the land surface

scheme to replace the SP of only one surface property to resemble or even improve the

skill with respect to a real case. In addition, we arrange the WRF-options and its associated

tools in a way that the model-setup is adaptable to any para-real simulation either forced

by the synthesized SP of albedo, roughness-length, or soil-type. Here, we investigate

the adequacy of the para-real model setup –which has the synthesized (SP) as a lower

boundary condition– for a simulation of multi-scale interaction between atmosphere and

land-surface heterogeneity.

The replacement of the real SP by a synthesized one (cf. Section 2.1) requires careful

consideration of the aggregation effect so as to preserve the energetic and material forcing

of the PBL from the surface. With due regard of this constraint, the real SP of a selected

synthesized SP, is to preserve the aggregation effect of the land-surface heterogeneity. The

real SP of a selected surface property (α, z0, and st) is replaced by a synthetic one with

identical PDF but different spatial arrangement. Thus, the bulk surface energy balance is

not changed by flux aggregation. Instead, the partitioning of the locally-conserved surface

energy balance is changed.

The purpose of this section is to, first, ascertain whether the model is numerically stable

and produces physically meaningful results in a para-real setup, despite the fact that the
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partitioning of the surface energy balance changes considerably. Second, we investigate,

to what extent the new SP is propagated into the atmosphere by the coupling mechanisms

we identified above.

To assess these issues, a synthesized SP containing large patches is used, because pre-

liminary studies show stronger signals from large patterns. Specifically, a synthesized SP

generated by the quasi-fBs approach (cf. Section 2.2.2) with s2=3 and kmax=0.1 is chosen,

i.e., case #4 according to Fig. (2.6).

For the purpose of this section, we look at the atmospheric state close to the surface

because it is expected that –if there is an effect from the surface heterogeneity on the

atmospheric states– it is more significant in vicinity of the surface than higher up. As

stated in the analysis framework (cf. Section 2.1.2), to delve into the impact of albedo and

soil-type surface properties on atmosphere aloft, we look at temperature and water-vapor

at 2 m height (T 2, Q2). To understand the propagation of roughness-length structure into

the atmosphere, we analyze aerodynamic coupling mechanism via wind components at

10 m height (U10, V10, W ; Fig. 4.1).

It is of our interest to find the major changes in atmospheric states which are due to

new spatial arrangements of considered land-surface properties. Hence, we compare the

outputs of the para-real run with the output of the reference run at 15 UTC of the first

day of the simulations. We pick 15 UTC because first, the spatial mean of temperature at

2 m height reveals the maximum value at this time step, second, it is late enough after the

spin-up time of the model. Thus, the atmospheric states are not affected by the sudden

changes due to the sunrise and there is a quite stable PBL.

The model is numerically stable, and the para-real setup produces physically meaning-

ful results with all adjustments we performed on the WRF model. The synthesized SP

of surface-albedo is only marginally reflected in T 2 and Q2, that is, its pattern does not

emerge therein (Fig. 4.1d and 4.1g). In comparison, the simulations forced by a synthe-

sized roughness-length (Fig. 4.1f and 4.1i) and soil-type pattern (Fig. 4.1e and 4.1h),

clearly exhibit the coherent signal from the surface in the atmospheric states.

When the soil-type is changed to the synthetic pattern, temperature and humidity signals

show opposite sign of changes, i.e., temperature is higher and the moisture is lower than

the reference run (Middle column in Fig. 4.1). To keep the surface energy balance, an in-

crease in atmospheric temperature induces a decrease in atmospheric moisture. Thus, the

Bowen ratio in the atmosphere remains unchanged. Moreover, this para-real simulation,

which has a synthesized SP of soil-type as a lower forcing, indicates that the hydraulic

mechanism carries the signal from the synthesized SP of soil-type to the atmosphere.

The opposite changes in temperature and water-vapor can be weakly seen in the para-

real run forced by the synthesized SP of albedo (Left column in Fig. 4.1). However,
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Figure 4.1.: Influence of the individual synthesized SP on atmospheric bulk parameters. Sub-
figures (a), (b), and (c) show the synthesized SP of α, st , and z0, respectively; generated
by s2=3 and kmax=0.1. The remaining subfigures indicate the differences of the atmospheric

states –T 2 [K] (d,e), Q2 [kgkg−1] (g,h), UV =
√

U2
10 +V 2

10 [ms−1] (f), and W [ms−1] at the first
vertical level (i)– between the reference run and the para-real run with a specified synthesized
SP shown on top of each column at 15 UTC.
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the dominant structures in simulations with the synthesized SP of α, is not as visible as

simulations with the synthesized SP of st . Generally the temperature in the reference

run is higher than the simulation with the synthesized SP of α. It indicates that the

dynamic effects can potentially have an impact on the mean. The only visible structure

in temperature is the structure of the minimum surface albedo at the top-left corner of

the domain which is hardly seen (Fig. 4.1d). The minimum albedo belongs to the ’water’

surface-type. It shows that the model significantly differentiate between water and land

surface-type.

In the para-real simulation with the synthesized SP of z0 (Right column in Fig. 4.1), the

signal from the roughness-length structures is pronounced on the horizontal velocities of

the atmosphere aloft (Fig. 4.1f). However, the new heterogeneity of z0 is not showed

up in the vertical velocity component of the wind (Fig. 4.1i). In addition, the new SP of

z0 enhances the mean horizontal wind velocity in the para-real simulation except at the

largest structure of the synthesized SP at the bottom-right corner of the domain.

In conclusion, although the model is forced by a synthesized SP, the setup of the para-real

simulations is adequate for the study of the land-surface–atmosphere exchanges. The new

arrangement of a single surface property affects the corresponding surface–atmosphere

fluxes. The signature of the synthesized SP is propagated into the atmosphere and the

new SP is reflected in the identified atmospheric states close to the surface. However, the

effect of the new SP of the surface albedo on T 2 is less than what we expected at this

height. It may have a larger effect on the atmosphere at another height, as we will see in

Chapter 6, where the propagation of the surface signal to the atmosphere (vertically and

temporally), is studied.

After establishing the adequacy of the para-real setup for our study, it is required to under-

stand the impact of the random realizations on the outcome of the para-real simulations

in the following section, since the generated synthesized SP are random fractals.

4.2. Impact of random realizations (rr) on surface–atmosphere

interactions

The synthesized SPs result from a random process (quasi-fBs Section 2.2.2). We quantify

here the noise incurred by the randomness of the individual synthesized SP realizations.

In other words, we do expect that the individual realization of the random processes

used to generate the synthesized SP has an influence on the outcome not only on the

specific realization of a simulation but also on its statistics. While the former is a common

and anticipated issue in the numerical simulation of dynamical systems, the latter would
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Figure 4.2.: Random realization for the four synthesized SPs at the corners of Fig. 2.6. Five
different sets of random realization (columns) for each case (rows). Patterns are normalized
between -1 and +1.

potentially prevent us from drawing general conclusions. We thus assess here, (a) whether

the random realizations (rr) impact on the quantities that we want to consider, and (b) if

it has an impact, how many realizations we have to consider until we achieve acceptable

statistical convergence of any kind of property that we look at.

To answer the question (a), we consider random realizations for the synthesized SPs of

some extreme cases, i.e., a small-scales SP (#13), an organized SP (#4) and two cases in

between (#16, #1 cf. Fig. 2.6). Figure 4.2 shows five rr for the four cases. We name the

four cases "families of synthesized SPs". Each family has five children (5 rr). Children of

each family of synthesized SPs have the same parents, i.e., they exhibit the same fractal

properties as governed by the parameters s2 and kmax. They look different along each of

the rows in Fig. 4.2. The differences are particularly large for case #1 and case #4, i.e.,

those cases with large-scale patches.

As the patterns differ significantly among the 5 rr, we obtained statistics from 5, 10, and

15 rr for the 12 physical cases (4 above-mentioned cases × 3 surface properties) to find

out how many realizations are required to obtain reliable statistics. Here, the result of the

impact of the 10 realizations on the main mechanisms is given and in total 120 simulations
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are analyzed.

As it is explained in the chapter 2, the main tool for our analyses is ANOVA method.

We apply it to decompose the total variance of some key atmospheric states (cf. Section

2.1) into the different subspace components. While the variance of the synthesized SPs

remains unchanged across different rr, the variance of the atmospheric states might change

due to the nonlinear relation between the surface properties and the surface–atmosphere

exchanges.

We focus on the full horizontal variance normalized by the total variance, Sxy = Sxy+Sx+Sy

(cf. equation (2.15)), i.e., the variance along longitude and latitude dimensions and the

changes from the beneath surface pattern are mainly appeared in it. Besides, it excludes

all other effects from other dimensions of the variance. The sensitivity index of the full

horizontal variance for the considered atmospheric variables is analyzed for families of

synthesized SPs as a box-and-whisker plot (Fig. 4.3 and 4.4).

In general, the large-scales organized pattern (case #4) is more sensitive to the different

realizations than other patterns as we infer from the large variation of Sxy for all consid-

ered atmospheric variables and for all 12 physical cases. This is because in large-scale

patterns, the orientation of patches differs significantly in different realizations and this

yield so large differences because the geometry of the pattern relative to the forcing is

important. In comparison, the small-scales patterns, i.e., cases #13 and #16, show very

small variations in Sxy of 10 rr for all considered atmospheric states.

The Sxy of all considered atmospheric variables in the simulations forced by the synthe-

sized SP of soil-type exhibits the largest variation over 10 rr. However, the smallest varia-

tion of Sxy among 10 rr is found in the simulations forced by the synthesized SP of α. There

is an exception that the sensitivity index of cloud-water (QC) shows the largest range in

the simulation with the synthesized SP of z0. The range of variability of the sensitivity

index over 10 rr for QC differs significantly among three simulations with three different

forced surface properties at each case.

The analyses of this section reveal that the key atmospheric variables are affected by the

realization of the random process used for generating the synthesized SP. In particular,

the simulations which are forced by the synthesized SP with large-scale patches exhibit

the considerable sensitivity to the random realization.

In our preliminary study, we investigated 5 rr versus 15 rr. By comparing the result, we find

that 5 realizations are relatively little to obtain statistical convergence. The 15 rr, in turn,

would be better than the 5 rr, but not much better than 10 random realization. Therefore,

we keep on with 10 random realizations which are used for all 16 synthesized SPs and

each surface property, separately. In each of 480 para-real simulations (16 (synthesized

SPs) × 10 (random realization) × 3 (surface properties)), the same meteorological initial
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Figure 4.3.: The sensitivity index of the full horizontal variance (Sxy) of temperature (a),
water-vapor (b), and cloud-water (c) is shown. The horizontal axis indicates the four cases
of study which are forced by the synthesized SP. Numbering of the cases is according to the
numbering of the synthesized SP in the Fig. 2.6. Each box indicates Sxy variations over the 10
rr. The color of boxes refers to a simulation which is forced by a synthesized SP of a specific
surface property: α (orange), z0 (green) and st (blue). The bottom and top edges of the box
shows the 25th and 75th percentiles of Sxy data, respectively. The mark inside the box shows
the median and the whiskers are extended to the most extreme values. The outliers are plotted
with the red ’+’ symbol individually.
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Figure 4.4.: Same as Fig. 4.3, but for wind components: horizontal wind (a), and W (b).

conditions based on ERA-Interim ECMWF reanalysis data are applied and the SP of only

one surface property is replaced with a synthesized one.

In this chapter, two main aspects of this study are tested, i.e., para-real setup and random

realization. Section 4.1 proofs that the current para-real setup is adequate for the investi-

gation of the land-surface–atmosphere interactions. Section 4.2 establishes the necessity

of having random realization for obtaining reliable statistic from final analyses. And we

conclude that ten realizations are sufficient for this purpose. We continue with the in-

vestigated setup for running 480 para-real simulations (48 physical cases times 10 rr) to

focus on the dynamics effect of the land-surface heterogeneity and to answer the research

questions.
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5. Quantifying the impact of land-surface
heterogeneity on the atmosphere

Land-surface heterogeneity impacts land-surface–atmosphere interactions through the ag-

gregation effect and the dynamic effect (cf. Section 1.1). Here, we focus on the dynamic

effect of land-surface heterogeneity. There is a non-linear relationship between surface

properties and corresponding surface fluxes. Hence, the quantification of the effect of

this non-linearity on atmospheric variables is demanding, in particular, on their variance.

Since the atmospheric state is a function of longitude (lon), latitude (lat), height (lev), and

time (t), we first decompose its variance into components of different dimensionality. In

section 5.1, we study the impact of different spatial arrangement of three surface proper-

ties on multi-dimensional variance components of some atmospheric variables, which are

identified in Section 2.1. Secondly, we investigate the impact of spatial changes of surface

properties on these components. Section 5.2 investigates the correlation between the syn-

thesized SP and the horizontally decomposed components of the considered atmospheric

state variables.

The present analyses focus on the first two days of simulation (24-25 of April 2013, ex-

cluding the first 2 hours of the simulations as a spin-up time). The 24-25 of April 2013

are characterized by fair weather, i.e., shallow convection (cf. MACKE ET AL. [2017] and

Section 3.2). In such conditions, small-scale changes of the surface properties matter to

the development of convective motion in the PBL and may trigger changes to the spatio-

temporal organization of shallow convection. The 26th of April 2013, on the contrary,

was characterized by the passage of a large-scale frontal system. With such prevalent

large-scale forcing, small-scale changes at the surface do not significantly affect large-scale

frontal system with precipitation.

While not the focus of this study, our simulation exhibits small-scale numerical noise of

the domain boundary during the passage of the frontal system. A possible reason is the

inconsistency in chosen microphysics schemes between the two model domains, and the

effect of it shows up as a consequence of the strong forcing during passage of the frontal

system. Thus, the microphysical scheme becomes crucial. Even the choice of a larger

buffer zone can not reduce this effect.
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Z. Parsakhoo 5. Multi-dimensional variance decomposition

Since this thesis aims to study the multi-scale interactions between convection and land-

surface heterogeneity, and related processes mostly occur within the atmospheric bound-

ary layer, we focus on the lower 2 km of the atmosphere. When considering the entire

tropospheric column, changes within the PBL induced by the signal of the land-surface

heterogeneity might be hidden by the large-scale changes throughout the troposphere,

since the induced signals of the surface are relatively small in relation to the synoptic

signal. Moreover, most shallow convective motions occur within the first two kilometers

above the surface.

5.1. Multi-dimensional variance decomposition

In order to understand the impact of the land-surface heterogeneity on the PBL, our para-

real setup (cf. Section 2.1) is designed to unveil motions induced by the dynamic effect of

the multi-scale land-surface heterogeneity. As the PDF and consequently the total variance

of the surface properties remain unchanged in the para-real simulations, we can assess

whether the variance of atmospheric state variables remains unchanged, or if it is non-

linearly affected by dynamic effects. In addition, we inquire what would be the signature

of the land-surface heterogeneity on the possible change of variance in key atmospheric

state variables, i.e., temperature (T ), water-vapor (QV ), cloud-water (QC), and wind (UV ,

W).

Since we are specifically interested in the impacts of the new spatial surface arrangement

on the PBL, we compare the outcome of the para-real simulations with the outcome of the

real run. This allows us to focus on changes caused by the para-real boundary conditions

only. For a significance test, this implies the null hypothesis of no change in variance

partitioning by the surface:

H0 : S̄u = Su,re f , (5.1)

where u indicates subsets of the total variance of a specific atmosphere variable, S̄u is the

mean over 10 rr of the multi-dimensional sensitivity indices of the corresponding para-

real run, and Su,re f is the sensitivity index of the reference run with a real surface. If

a case meets the null hypothesis, the difference between S̄u and Su,re f is not significant.

Thereupon, the case is not considered in our analyses and displayed with gray in Fig. 5.1

and 5.2. Whenever H0 is rejected with 90% confidence level, the ratio of S̄u to Su,re f is

shown in Su-matrices (Fig. 5.1 and 5.2).

Comparing the outcome of all para-real simulations in Figs. 5.1 and 5.2 (where each row

stands for one combination of surface fractal parameters (kmax, s2) for which 10 rr are

realized, and each column shows the relative change of variance contribution in this con-

figuration), spatial rearrangement of the soil-type pattern (lower third of each matrix) and
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Figure 5.1.: Sensitivity indices, Su for: (a) Temperature, (b) Water-vapor, and (c) Cloud-water.
Columns show different decomposed variance components and rows indicate S̄u for different
para-real runs: albedo (α1, ..., α16), roughness-length (z1,...,z16), and soil-type (s1,...,s16). The
subscripts refer to numbering in Fig. 2.6 for different synthesized SPs. The colorbar indicates
the ratio of the variance components of the reference run to the mean over 10 rr of the variance
components of the para-real runs. Gray color exhibits insignificant difference between S̄u and
Su,re f with 90% confidence.
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Figure 5.2.: Same as 5.1, but for: (a) U, (b) V, and (c) W.
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thus the hydrological coupling affects the sensitivity indices more than the other surface

properties (α and z0). The thermodynamic coupling via α impacts least on the variance

partitioning among dimensions of atmospheric variables.

5.1.1. Thermodynamic coupling through surface albedo (α)

When the synthesized SP of the albedo is used to force a para-real run, the total variance

of all considered atmospheric variables except water-vapor exhibits tiny but significant

changes. The change of α corresponds to the change of Rnet in the equation 1.1. To keep

the surface energy balance, the sensible heat flux (H) and the latent heat flux (LE) also

change, such that the impact of theses changes is observed in the total variance of T and

QV .

We expected that changing the SP of albedo affects the thermodynamic coupling for its

immediate impact on the surface energy balance and, thus, surface temperature. This

expectation is, however, not met and Fig. 5.1a indicates only minor changes in the par-

titioning of temperature variance when the synthesized SP of α is used. This indicates

that, although the change of surface albedo might change temperature of overlaying at-

mosphere, it would not change considerably the subspace variance of T along its dimen-

sions, even not along the horizontal component (Slon−lat). Besides, the particular forcing

of albedo does not lead to accumulation of variance (at any combination of dimensions)

of water-vapor and cloud-water. (first third of Fig. 5.1b and 5.1c). Hence, the latent heat

flux is also not significantly affected by the thermodynamic coupling.

The role of the dynamic effect in the thermodynamic coupling is relatively prominent in

the variance partitioning of vertical component of wind (Fig. 5.2c). It indicates that when

a para-real simulation is forced by the synthesized SP of surface-albedo, changes in α

induces more variation in the vertical air motion than in horizontal wind to balance the

change of surface temperature. In other words, the synthesized SP of α generates buoyant

convection in the column of air.

5.1.2. Hydrological coupling through soil-type (st)

Hydrological coupling in the para-real simulations with the synthesized SP of soil-type

pronouncedly affects the total variance of water-vapor, cloud-water, and W component of

the wind (Last column in the last third of Fig. 5.1b, 5.1c, and 5.2c). Hence, the dynamic

effect can force the total variance of some atmospheric variables to be changed, despite

the aggregation effect is conserved in our para-real setup.
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Total variance of water-vapor decreases by 15% (Fig. 5.1b) and total variance of cloud-

water increases by 20% (Fig. 5.1c) as compared to the reference run. When the entire

domain-box is considered, the decrease in total variance of water-vapor and the increase

in total variance of cloud-water compensate each other and the total variance of avail-

able water in the atmosphere, either in vapor or cloud form, might remain approximately

unchanged.

The total variance of vertical velocity (W) in para-real simulations with the synthesized

SP of soil-type is significantly larger than the total variance of W in the reference run.

It indicates that there is more variation of vertical velocity when the partitioning of the

soil-moisture is changed. This is due to the convection.

The spatial rearrangement of the soil-type SP has significant influence on the variance

partitioning of all atmospheric state variables considered here. Soil is directly linked to

the availability of moisture in the atmosphere aloft. Moreover, it indirectly affects the at-

mospheric temperature through the surface energy balance: if LE in equation 1.1 changes

due to change of soil-moisture, H must adapt to preserve the surface energy balance.

A possible reason for the substantial impact of soil on the subspace variances of wind com-

ponents is that soil affects strongly the availability of humidity at the surface. To preserve

the surface energy balance, the change of humidity induces the change of temperature.

As a result, it may generate horizontal transport of air due to the advection. In addition,

it initiates lifting of the air parcel due to the change of the buoyancy force.

In brief, the hydrological coupling shows clearly its role for the partitioning of variance to

dimensional subspaces, because changes in partitioning of the soil-moisture at the surface

can directly affect the variation of the humidity in the atmosphere aloft and secondary

effect of hydrological coupling impacts indirectly other atmospheric variables. However,

the sign of the changes in the subspace variances are unclear and the length-scale of

different SP does not play a considerable role in the magnitude of the variances.

5.1.3. Aerodynamic coupling through surface roughness (z0)

The forcing from a synthesized SP of roughness-length affects significantly the aerody-

namic coupling because the new SP of z0 affects the friction velocity at the surface. Con-

sequently, the synthesized arrangement of z0 can affect wind components. Hence, the

largest change in subspaces of variance of atmospheric states is observed in wind com-

ponents, particularly in the vertical one (second third of Fig. 5.2). This is due to the

vertical velocity playing a major role for the mass conservation in the vertical column of

air. Thus, the variance of vertical velocity is more affected and the total variance of the

vertical velocity decreases by 5%.
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Our simulations reveal small changes in the variance partitioning of temperature (second

third of Fig. 5.1a), water-vapor (second third of Fig. 5.1b), and cloud-water (second third

of Fig. 5.1c). In the surface layer parameterization, temperature (eq. 3.4b) and moisture

(eq. 3.5b) scales are related to the roughness-length at the surface layer and z0 affects

the sensible heat flux (eq. 3.4a) and latent heat flux (eq. 3.5a). Thus, the new SP of z0

causes changes in the sensible and latent heat fluxes and the minor changes are detected

in the variance analyses of temperature and moisture of the atmosphere. In general, the

dynamic effect does not notably affect the total variance of considered atmospheric states

considered through aerodynamic coupling.

5.1.4. Remarks

The length scale of the synthesized SP as lower boundary condition does not significantly

impact on the subspace variance partitioning of the atmospheric states. There are a few

exceptions in simulations with the synthesized SP of soil-type for which the sign of the

changes in a column of a specific variance subspace differ among synthesized SPs with

different fractal characteristics. In most cases, the sign of s13, s14, s15, and s16, which are

more noisier-SP, is changed. This might be due to the fact that the dynamic effect of the

land-surface heterogeneity depends on the scale, while this is not clearly visible in the

variance analysis.

Although the flux aggregation due to surface heterogeneity is conserved by construction

of our para-real setup, the dynamic effect plays a major role and causes the total variance

of some atmospheric variables to change through different couplings. Nonetheless, the

sign of changes is not consistent among three surface properties.

The sensitivity indices (Su) appear to carry little information characterizing the SP, i.e., the

color does not change along each column of Figs. 5.1 and 5.2 for the individual surface

property. Besides, Su of atmospheric states is strongly affected by any synthesized forcing

at the surface, regardless of which coupling mechanisms is considered.

In summary, the dynamic effect of the land-surface heterogeneity significantly affects the

decomposed subspace variance components of the considered atmospheric state variables.

The total variance changes substantially, especially through hydrological coupling, e.g.,

QV , QC and W in para-real simulations with the synthesized SP of soil-type. The sign of the

changes is however not consistent among different atmospheric state variables or among

simulations with different SP of selected surface properties. In addition, the signature of

the length-scale of the synthesized SP on the changed variance components is not clear.

We commence with a correlation analysis to further pin down effects of the surface pattern

on the overlaying atmosphere.
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5.2. Correlation of synthesized SPs with full 2D standing eddy

The above analysis of variance partitioning identifies relevant coupling processes for the

coupled land-atmosphere system under consideration. A systematic signature of the ac-

tual properties of our synthesized SP could, however, not be identified for the variance

which does not carry local structural information even when decomposed to subspaces.

Here, we analyze the correlation between individual synthesized SP and the atmospheric

signal from ANOVA decomposed components to unveil the systematic localized linkages

between the forcing from the surface and the eventual signal in the atmosphere. ANOVA

decomposition carries information not only about the variance partitioning to subspaces,

but also the decomposed components that contribute to the total variance. And we aim to

understand whether these decomposed components are in any way systematically linked

to what is being forced by the surface.

Here, the correlation between the synthesized SP of the surface property and the full hor-

izontal decomposed component of ANOVA (fxy) is calculated. fxy represents a horizontal

field that explains the 2D full horizontal contributions to the total variance and it is in-

dependent of time and vertical level (fxy = fxy + fx + fy). The fxy includes the standing

horizontal signal:

fxy = fxy + fx + fy

(2.17)−−−→= Pxy(x,y)−Px(x)−Py(y)+P/0( /0)+Px(x)−P/0( /0)+Py(y)−P/0( /0)

= Pxy(x,y)−P/0( /0)
(2.16)−−−→=

∫∫
F(x,y,z, t)dzdt−

∫∫∫∫
F(x,y,z, t)dxdydzdt. (5.2)

Besides, the mean of correlation coefficients between the specific synthesized SP (SSP)

and fxy over 10 rr is calculated. In short, r2(SSPi
xy, f

i
xy) with i ∈ [1, ...,10], is calculated for

different atmospheric variables and is shown in matrices of Fig. 5.3.

In all para-real simulations regardless SP of which surface properties is replaced by the

synthesized one, the correlation increases as the persistency (s2) increases and the wave

number of dominant scale (kmax) decreases (or the dominant length-scale of SPs increases).

5.2.1. Thermodynamic coupling through α

Temperature (Txy). When the SP of albedo is replaced by a synthesized one, the synthe-

sized SP of α is up to 10% anti-correlated with the horizontal decomposed component of

temperature (Fig. 5.3a). When the surface albedo causes stronger reflection, the surface

gains less energy from the solar radiation. Consequently, the sensible heat flux and thus
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Figure 5.3.: Correlation between a synthesized SP and Txy (a, b, c), QVxy(d, e, f), QCxy (g, h,
i), and UVxy (j, k, l) and for 3 surface properties: α (left column), z0 (middle column), and st
(right column). Each matrix contains 16 cells indicating 16 synthesized SP of Fig. 2.6.
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temperature of the atmosphere aloft decreases. Therefore, the SP of α is anti-correlated

with Txy. As the synthesized SP has a larger length-scale (smaller kmax) or larger persis-

tency (larger s2), the anti-correlation is stronger. The thermodynamic coupling brings up

the strong signal from the synthesized SP of α to Txy. This finding is contrary to what we

found in variance partitioning analyses (cf. Section 5.1.1), i.e., tiny changes occur in the

variance subspaces of temperature due to the synthesized SP of α.

Water-vapor (QVxy) and Cloud-water (QCxy). Thermodynamic coupling is not reflected

substantially in the horizontal decomposed component of water-vapor (QVxy), i.e., the

synthesized SP of α and QVxy are less than 2% correlated (Fig. 5.3d). However, the hori-

zontal decomposed component of cloud-water QCxy is highly affected by thermodynamic

coupling. This difference can be explained as a consequence of the notable impact of the

synthesized SP of α on the variance subspaces of W. In section 5.1.1, we found that the

influence of α is relatively strong on the vertical component of wind. Thus, more variation

of W induces more buoyant convection and consequently more cloud-water. As a result, a

stronger correlation is seen between the synthesized SP of α and QCxy.

Up to 10% positive correlation reveals between QCxy and all length-scale of synthesized

SPs of albedo except the smallest length-scale (Fig. 5.3g). Thermodynamic coupling

does not transfer the signal of the noisy-pattern (kmax=3) of albedo to the atmospheric

cloud-water. This illustrates that the dynamic effect is scale-dependent and does not have

influence on thermodynamic coupling at this length-scale.

The sign of correlation between the synthesized SP of α and atmospheric humidity (water-

vapor and cloud-water) is expected to be opposite of the correlation between the SP of α

and Txy. This is dictated by the surface energy balance: any change in the sensible heat

flux has to be compensated for the latent heat flux. Hence, the synthesized SP of albedo

is positively correlated with QCxy (all cases) and QVxy (large-scale patterns: kmax=0.1).

There are some cases for which the correlation between the synthesized SP of α and QVxy

is negative. These SPs are small-scale patterns. A possible reason is that the signal of

the synthesized SP of albedo in water-vapor is vertically propagated and it is detectable

in higher up levels of the atmospheric water-vapor, not in the full horizontal decomposed

component of water-vapor (which is the subject of the analysis in the next chapter).

Wind components (UVxy and Wxy). Up to 10% positive correlation is exhibited between

the SP of albedo and horizontal velocity of wind (Fig. 5.3j): the larger the SP of albedo, the

stronger the correlation. As α increases, it induces more reflection than absorption from

solar radiation at the surface, atmospheric temperature at the surface (θ0 in equation 3.4b)
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is cooled down. Consequently, the friction temperature (θ∗) and thus the sensible heat flux

(H) enhances. Therefore, the buoyancy forces the atmospheric motion to increase.

However, there is almost zero correlation between the SP of α and vertical wind veloc-

ity (not shown here). It indicates that the thermodynamic coupling does not affect Wxy

although it affects considerably the variance partitioning of W (cf. Section 5.1.1).

5.2.2. Hydrological coupling through st

As the soil-type is a category, a standard regression analyses requires to convert the soil-

type to a specific soil property that carries a physical meaning. Relevant soil properties

are given in table 5.1. The most important signal from soil-type is moisture transport

Table 5.1.: A list of soil properties given by SOILPARM.TBL of WRF.

Property Definition

MAXSMC maximum soil-moisture content
DRYSMC dry soil-moisture threshold
SATDW saturation soil diffusivity
SATPSI saturation soil potential
SATDK saturation soil conductivity
QTZ soil quartz content
REFSMC reference soil-moisture
WLTSMC wilting point soil-moisture

and we choose the property that characterizes this signal most appropriately. MAXSMC

and DRYSMC show the maximum and minimum soil-moisture content. They are extreme

values and are not desired in this study. SATDW, SATPSI, and SATDK properties are rep-

resentative of saturated soil and, thus, not the suitable choice as well. QTZ shows the

amount of quartz and it is not relevant to the purpose of this study. REFSMC indicates

the capacity of soil to take up the water. WLTSMC shows the minimal amount of moisture

in the soil that the plant needs not to wilt. Hence, it is again a kind of extreme value,

which does not fit the purpose of analysis of this section. Finally, REFSMC is selected to

convert soil categories to a soil property and hereafter the synthesized SP of the soil-type

is converted to synthesized SP of the REFSMC. In the following, the correlation analysis

between the synthesized SP of REFSMC and the identified atmospheric state variables is

given.

The influence of the length-scale of SPs through hydrological coupling is consistent with

thermodynamic coupling: the larger the pattern, the stronger the correlation. The hydro-

logical mechanism also carries little information about SPs with kmax = 3 into atmosphere
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aloft and less than 2% correlation is found between the synthesized SP of soil and all

considered atmospheric states (regardless of sign).

Similar to the multi-dimensional variance analysis in which the hydrological coupling had

the largest impact on the variance subspace of all considered atmospheric state, it also

exhibits its notable role on the full horizontal decomposed component of all atmospheric

state variables. The largest correlation of atmospheric states with the SPs reveals when

the atmosphere is forced by the new arrangement of the soil property.

Temperature (Txy). The hydrological coupling significantly impacts on the horizontal

decomposed component of the atmospheric temperature, i.e., up to 10% positive corre-

lation exists between Txy and the synthesized SP of REFSMC (Fig. 5.3c). The positive

correlation can be verified as an indirect effect of soil-moisture capacity: larger REFSMC

indicates that less moisture is released by soil, therefore the sensible heat flux and, thus,

atmospheric temperature increases to hold the surface energy balance. As a result, we

find a positive correlation between soil-moisture capacity field and Txy.

Water-vapor (QVxy) and Cloud-water (QCxy). In para-real simulations with synthesized

SP of soil, the horizontal decomposed component of water-vapor and cloud-water are

both negatively correlated with the synthesized SP of REFSMC (Fig. 5.3f and 5.3i). In

particular, the hydrological coupling plays a dominant role in QCxy and there is a 10%

negative correlation between QCxy and the SP of REFSMC for all length-scale SPs except

the synthesized SPs with kmax=3 (-2% correlation). This negative correlation between

REFSMC and moisture in the atmosphere aloft (either as water-vapor or cloud-water form)

is due to the reverse relation between the soil capacity field and humidity in the air. As

soil has higher capacity to take up moisture (larger REFSMC), the latent heat flux within

the surface layer is smaller. Consequently the atmospheric moisture is reduced.

Wind components (UVxy and Wxy). The horizontal wind velocity is up to 8% anti-

correlated with the SP of soil (Fig. 5.3l). The new arrangement of soil impacts substan-

tially the latent heat flux in the surface layer due to the change of q0 (cf. equation 3.5a).

To accompany this change, u∗ is also changed accordingly and, thus, the soil capacity and

UVxy are anti-correlated.

In contrast, there is a 6% positive correlation between vertical wind velocity and the syn-

thesized SP of soil (not shown here). the different length-scale of the synthesized SPs has

no impact on Wxy, i.e., the correlation is uniformly red (+6% correlation). As the surface

layer humidity is increased by the soil-moisture, more vertical air motion is induced to

hold mass conservation in a column of air. This finding is consistent with what we found
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in section 5.1 about the impact of hydrological coupling on the total variance of W: there

was an increase in the total variance of W in the para-real simulations coupled with the

synthesized SP of soil compared to the reference run.

5.2.3. Aerodynamic coupling through z0

Similar to the thermodynamic and hydrological couplings, aerodynamic coupling also car-

ries an insignificant signal of noisy-SP with kmax=3 from the surface to the atmosphere

and the correlation between all considered atmospheric states and the synthesized SP of

z0 with small-scale patches (kmax=3) is around zero.

Temperature (Txy). The horizontal decomposed component of the atmospheric temper-

ature and the SP of z0 are up to 10% anti-correlated according to the equation 3.4b, i.e.,

the larger the pattern, the stronger the anti-correlation (Fig. 5.3b). In the WRF surface

layer parameterization, the sensible heat flux is linked to the characteristic temperature

(θ∗) which is inversely related to the roughness-length.

Water-vapor (QVxy) and Cloud-water (QCxy). Zero correlation of the horizontal decom-

posed component of water-vapor and the SP of z0 indicates that aerodynamic coupling has

insignificant impact on QVxy (Fig. 5.3e). Instead, it affects considerably cloud-water (Fig.

5.3h). When the surface has a larger-scale roughness pattern, more cloudiness might be

generated due to the larger buoyancy force. Thus, cloud and the SP of roughness-length

are up to 10% positively correlated.

Wind components (UVxy and Wxy). As the roughness-length has a larger-scale synthe-

sized SP, the correlation between the synthesized SP and wind components is stronger,

regardless of sign of the correlation coefficient (positive or negative). The positive corre-

lation between the synthesized SP of roughness-length and UVxy is due to the momentum

conservation along flow (Fig. 5.3k): An increase of the surface roughness-length causes

the flow to decelerate at the surface; thus, the higher-up flow is accelerated to preserve

the momentum conservation in a column of air.

There is a very weak correlation between vertical wind velocity and the SP of roughness-

length (less than 2%). Aerodynamic coupling affects insignificantly the vertical air move-

ment while it mainly affects the horizontal velocities according to the log-wind-profile (cf.

equation 3.3b). In contrast, the total variance of W is affected relatively more than the

horizontal components by the aerodynamic coupling (cf. Section 5.1).
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5.2.4. Remarks

All three couplings have relatively minor impact on Wxy in comparison to UVxy. Since

the synthesized forcing from the land-surface is in horizontal directions, it induces the

deviation from vertical mean velocity (impact on different dimensionality of its variance).

In other words, the buoyancy force which might be generated due to the new synthesized

SP through different mechanisms, does not affect the horizontal pattern of W. However, it

affects its magnitude.

In summary, the multi-scale surface signal on the horizontally decomposed component

of atmospheric variables is clear and almost consistent in all atmospheric variables: the

larger the pattern, the stronger the correlation (either negatively or positively). Even

the albedo pattern -for which only slight changes in the variance partitioning based on

sensitivity indices were found- exerts a coherent signal from the synthesized SP of the

albedo (α).
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6. Propagation of the land-surface pattern
into the atmosphere

In the previous chapter, we studied the impact of the dynamic effect on the main coupling

mechanisms through analysis of the sensitivity indices (Section 5.1) and the correlation

between the horizontally decomposed component of specific atmospheric variables and

the SP of selected surface properties (Section 5.2). We find that 10-20% of the variance

of atmospheric variables is governed by the synthesized SP of surface properties.

The coherent signal of multi-scale SP from analyses (Section 5.2) leads us to calculate the

correlation between the synthesized SP of the surface property and ANOVA decomposed

component as a function of height and time. In particular, it is of our interest to understand

whether those atmospheric variables, which exhibited no correlation between the SP and

their horizontally decomposed component, are to some extent correlated to the SP of

selected surface properties at a specific height or at a specific time. In other words, how

far does the signal of the synthesized SP of considered surface properties (α, z0, and st)

propagate vertically by the surface–atmosphere couplings (Section 6.1 and 6.2)? And does

the signal also propagate temporally (Section 6.3 and 6.4)?

To answer these two questions, we calculate the correlation between different ANOVA

decomposed components and the corresponding synthesized SP. For the sake of brevity,

this calculation is summarized in the mathematical notation as

RM
Nu
(χ), (6.1)

where R indicates the correlation between the synthesized SP of M and Nu as function

of χ. M represents the three surface properties ( M ∈ {α,z0,st}) , Nu stands for ANOVA

component of the atmospheric variables ( Nu ∈ {Tu,QVu,QCu,UVu,Wu}) , and u indicates

the dimensionality of ANOVA component ( u ∈ {xyz,hz,xyt,ht}) . The overbar indicates the

mean of 10 rr and RM
Nu
(χ) is a function of height or time ( χ ∈ {z, t}) .

In table 6.1, a list of the sensitivity indices is given to have an overview of the contribution

of Nu into the total variance. While the fraction of the variance in the single 3D compo-

nents, Sxyz and Sxyt is very small, the combined signal, Shz and Sht , carry relatively large

amount of variance (up to more than half of the total variance). This potentially warrants
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Table 6.1.: Contribution of subspace variance into the total variance [%] from the reference
run.

T QV QC UV

Sxyz 0.16 0.73 4.10 0.97 Section 6.1
Shz 51.61 61.25 11.87 27.26 Section 6.2
Sxyt 0.39 3.58 4.07 1.84 Section 6.3
Sht 36.84 27.26 10.34 54.38 Section 6.4

a large explanatory power of the components.

6.1. Vertical propagation of the surface signal into the 3D

standing eddy ( fxyz)

We study here the signal from the surface at different heights through the correlation

between the synthesized SP of a surface property and the 3D standing eddy of the corre-

sponding variable. The 3D standing eddy is represented by (cf. Section 2.4.2):

fxyz
(2.17)
===⇒ Pxyz(x,y,z)− fxy(x,y)− fyz(y,z)− fxz(x,z)− fx(x)− fy(y)− fz(z)− f /0( /0)

= Pxyz(x,y,z)−Pxy(x,y)−Pyz(y,z)−Pxz(x,z)+Px(x)+Py(y)+Pz(z)−P/0( /0)
(2.16)−−−→=

∫
F(x,y,z, t)dt

−
∫∫

F(x,y,z, t)dzdt−
∫∫

F(x,y,z, t)dxdt−
∫∫

F(x,y,z, t)dydt

+
∫∫∫

F(x,y,z, t)dydzdt +
∫∫∫

F(x,y,z, t)dxdzdt +
∫∫∫

F(x,y,z, t)dxdydt

−
∫∫∫∫

F(x,y,z, t)dxdydzdt.

According to equation (6.1), RM
Nu
(z) is calculated for M ∈{α,z0,st} and Nu ∈{Txyz,QVxyz,QCxyz,

UVxyz,Wxyz} (Fig. 6.1).

In general, the larger the length-scale of the SP, the stronger the correlation (either pos-

itively or negatively from red to black curves). The noisy-SPs with kmax=3 reveal almost

zero correlation (<2%) with fxyz|z=z′ of selected atmospheric states at any height (Black

curves in the figures of this chapter), except for two cases. The two exceptions at this

length-scale are: (1) hydrological coupling carries the signal from the noisy-SP of soil-

moisture into the atmospheric temperature (Fig. 6.1c) and water-vapor (Fig. 6.1f), (2)

aerodynamic coupling transports the signal of the roughness-length at this length-scale

to horizontal wind velocity (Fig. 6.1k). This illustrates that the hydrological and aero-

dynamic couplings are independent of the length-scale of the SPs when their immediate
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Figure 6.1.: Vertical profile of RM
Nxyz for α (left column), z0 (middle column), and st (right

column)) with Txyz (a,b,c), QVxyz (d, e, f), QCxyz (g, h, i), and UVxyz (j, k, l). The legend shows
16 synthesized SP according to numbering in Fig. 2.6.
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effect is considered, i.e., the soil-moisture impacts directly on the atmospheric water-

vapor and the roughness-length affects immediately on horizontal wind, regardless of the

length-scale of the signal. Therefore, any length-scale SP of st and z0 is transfered by the

latent heat flux (and, thus, sensible heat flux as a result of the surface energy balance) and

momentum flux respectively, and the signal from any SP is propagated to the atmosphere

by the corresponding couplings.

6.1.1. Thermodynamic coupling by α

Temperature (Txyz). Thermodynamic coupling carries information from the SP of α into

the atmospheric temperature up to 500 m height, where the maximum positive correlation

of α and Txyz occurs (Fig. 6.1a). Then, the signal from the SP of albedo vanishes in at-

mospheric temperature. The surface temperature (θ0 in the equation 3.4b) has an inverse

relation with the surface albedo and thus the characteristic temperature in the surface

layer parametrization (θ∗) reveals similar changes as α. Moreover, the sensible heat flux

is linearly related with the θ∗ (cf. equation 3.4a). Thus, it obeys the sign of the change of

the surface albedo and they are positively correlated.

Water-vapor (QVxyz). Any change in the sensible heat flux has to be adapted by the latent

heat flux to keep the surface energy balance. Therefore, water-vapor exhibits a negative

correlation between the SP of α and the QVxyz, however, not exactly at 500 m height (Fig.

6.1d). The large negative correlation is found at two vertical levels, i.e., closer to the

surface (at about 200 m) and 1500 m height. In fact, at 500 m, no signal from the SP

of albedo is detected in the atmospheric water-vapor. It is interesting to find that the

water-vapor response to the change of albedo occurs closer to the surface and stronger

than the temperature response to the change of α The positive correlation between the

synthesized SP of α and QVxyz at about 1000 m is explained as an opposite impact of α

on LE: with increasing albedo, less sensible heat is transferred into the atmosphere, thus

more latent heat is changed to preserve the surface energy balance. This 5% correlation

between the SP of a surface property (here α) and the atmospheric states at different

heights is intriguing because it indicates 5% of variability can be explained only by the SP

in either temperature or water-vapor at these heights, where other forcings and complex

atmospheric interactions exist.

Cloud-water (QCxyz). The Rα

QCxyz
(z) indicates that the change of partitioning of albedo

has a very weak signal on QCxyz (Fig. 6.1g). This is contrary to our finding in section

5.2: the role of new surface forcing through thermodynamic coupling is more dominant

on the full horizontal decomposed component (QCxy) than on the QVxy. Although the
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magnitude of Rα

QCxyz
(z) is relatively small, the feedback on the new SP of α is considerable.

Positive Rα

QCxyz
(z) close to the surface is found due to the surface energy balance: larger α

causes less H and consequently more LE. Above 500 m, the small anti-correlation can be

interpreted as a feedback on positive Rα

QCxyz
(z) at 500 m.

Wind components (UVxyz and Wxyz). The synthesized SP of albedo has no impact on the

vertical velocity, i.e., no correlation is found (not shown here). There is an anti-correlation

between the synthesized SP of α and horizontal wind component in the vicinity of the

surface which is encoded by the surface layer parametrization (cf. eq. 3.4a). Above

1 km, the correlation becomes positive as a result of the momentum conservation. This is

pronouncedly seen in the profile of the large-scale and high persistency SPs (kmax=0.1 and

0.5 (red and blue curves), s2=2.4 and 3 (solid and dashed-dotted curves)). It indicates

that the dynamic effect plays a dominant role in propagation of the signal from large-scale

patterns through thermodynamic coupling.

6.1.2. Hydrological coupling by st

Temperature (Txyz). The maximum positive correlation between the synthesized SP of

soil-type and Txyz occurs at the surface (5-10%). It shows that 10 percent of the variability

of temperature can be explained by the synthesized SP of the soil-moisture. As explained

in Section 6.1.1, in order to keep the local surface energy balance, while REFSMC is in-

creased, less moisture is released by soil into the atmosphere aloft and, thus, the latent

heat flux decreases. To locally preserve the surface energy balance, the sensible heat flux

increases, indicating that temperature increases as well. Thus, there is a positive corre-

lation between the synthesized SP of REFSMC and temperature at the surface. Besides,

there is -5% correlation at the top of the profile (1.5-2 km).

Water-vapor (QVxyz). The entire shape of the profile of the Rst
Txyz

(z) is reversely exhibited

by the profile of the Rst
QVxyz

(z) (Fig. 6.1f): at the surface, the synthesized SP of REFSMC

of all synthesized SPs with different characterizing fractal properties is significantly anti-

correlated with QVxyz (7-15%), and the signal from the surface is propagated upto 2 km

height (+10% positive correlation). This indicates the direct influence of released mois-

ture by soil and atmospheric humidity at the surface, i.e., as REFSMC decreases, more

moisture is released by soil which is carried by the latent heat flux into the atmosphere

aloft (anti-correlation between REFSMC and atmospheric water-vapor).

Cloud-water (QCxyz). In contrast to the water-vapor profile, the Rst
QCxyz

(z) shows small

values but its profile curve is similar to water-vapor profile (Fig. 6.1i), i.e., -5% at the
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surface and <+2% above 300 m. The hydrological coupling carries a very weak signal

of the SP of soil-moisture into QCxyz. In the previous chapter, however, the hydrological

coupling played a dominant role in the change of both QVxy and QCxy, with almost the

same order of magnitude.

Wind components (UVxyz and Wxyz). No correlation exists between the synthesized SP of

the soil-moisture and Wxyz (not shown here): the correlation coefficients fluctuate around

zero for all synthesized SPs with different fractal characteristics. However, the signal of the

SP of soil is seen in the Rst
UVxyz

(z) (Fig. 6.1l): at ∼300 m, the maximum positive correlation

between the SP of REFSMC and UVxyz is detected, while the maximum negative correlation

(-10%) occurs at 1300 m. The positive correlation is a consequence of the surface layer

parametrization (cf. equation 3.5a): as the soil moisture increases, the surface latent heat

flux increases to transfer the soil moisture into the atmosphere and wind is generated to

transport the moisture. The negative correlation at higher levels is due to the conservation

of mass in a column of air.

6.1.3. Aerodynamic coupling by z0

Temperature (Txyz). There is a -5% negative correlation between the synthesized SP of

z0 and temperature close to the surface (Fig. 6.1b) which can be explained by an inverse

relation between the characteristic temperature (θ∗) and z0 (cf. equation 3.4b). As the

thermal energy is increased due to the friction at the surface, it has to be compensated

somewhere higher up. This happens above 1 km height in para-real simulations with

the synthesized SP of z0. There is a positive correlation between the synthesized SP of

roughness-length and Txyz above this height.

Water-vapor (QVxyz) and cloud-water (QCxyz). The opposite behaviors are observed in

the vertical profile of both water vapor (Figs. 6.1e) and cloud water (Fig. 6.1h): an up

to +5% correlation between cloud-water and the synthesized SP of z0 exists close to the

surface, and a negative one unveils at heights above ∼500 m. However, the maximum

positive correlation (+5%) between water-vapor and the synthesized SP of z0 appears

at about 500 m (more distance from the surface) while the maximum anti-correlation is

found at the same height as the maximum positive-correlation between temperature and

z0 . These opposite behaviors result from the surface energy balance. However, in the

previous section we found that its impact on the horizontally decomposed component of

water-vapor is not significant.
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Horizontal wind components (UVxyz). Simulations forced by the synthesized SP of

roughness-length clearly show the impact of the aerodynamic coupling on the vertical

propagation of the SP: at the ground, there is a strong negative correlation (up to 20%)

between the synthesized SP of roughness-length and UVxyz (Fig. 6.1k), due to the inverse

relation between the roughness-length and wind (cf. equation 3.3b). Because of the mo-

mentum conservation in a column of air, the large negative correlation close to the surface

is compensated by the positive correlation higher up, i.e., if flow slows down close to the

surface due to larger roughness-length, it has to speed up higher up (positive correlation

between the surface roughness-length and higher-up velocity).

Vertical wind component (Wxyz). Despite the significant correlation between the syn-

thesized SP of z0 and UVxyz|z=z′ , no signal from the synthesized SP of roughness-length is

carried by the aerodynamic coupling into Wxyz. There is nearly no correlation between the

synthesized SP of the roughness-length and the Wxyz|z=z′ (not shown here). It is interest-

ing to see that the different dimensionality of the vertical velocity variance is significantly

affected by the aerodynamic coupling, in particular its total variance (cf. Section 5.1).

But changing the roughness-length at the surface has no significant impact on the vertical

propagation of the signal from the surface through the vertical velocity of the wind. Be-

sides, the Wxyz|z=z′ does not reveal the signature of the the synthesized SP of z0. Any change

of the roughness-length at the surface only perturbs the total variance of W through the

wind shear stress.

6.1.4. Remarks

Based on the vertically anchored correlation analysis presented hereunto, patterns with

larger spatial structure and higher persistency have the maximum values of correlation,

regardless of the sign of the correlation. As the dominant scale (kmax) is kept constant,

the correlation becomes stronger as the persistency of the patterns (s2) is increased. Ad-

ditionally, as the persistency of the synthesized SPs remains unchanged but the dominant

length-scale increases (decrease of kmax), the correlation is enhanced.

The dynamic effect of the land-surface heterogeneity can carry the signal of the surface to

the atmosphere aloft via the coupling mechanisms. However, it is length-scale dependent

and it can not significantly impact on the propagation of the small-scale synthesized SP

(kmax=3).

In section 5.2 where the vertical integration of the atmospheric states is involved in the

analysis (cf. equation 5.2), the links between the surface signal and atmospheric states

are hidden. However, here we unveil the vertical propagation of the surface signal by the
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vertical anchoring of the correlation analysis. The 3D standing pattern of atmospheric

variables ( fxyz) contributes to small fraction of the total variance (0.1-5%) and here, we

find that, 5-20% of it is correlated with the synthesized SP. Therefore, this finding mo-

tivates the next section to study the correlation between the synthesized SP and the full

stationary signal of the atmospheric states, which contributes to 12-52% of the total vari-

ance.

6.2. Vertical propagation of SSP into the full stationary eddy

( fhz)

To achieve the full stationary eddy, all spatial decomposed components of ANOVA, which

are independent of time, are merged as

fhz = fxyz + fxz + fyz + fxy + fx + fy + fz

(2.17)−−−→= Pxyz(x,y,z)−Pxy(x,y)−Pyz(y,z)−Pxz(x,z)+Px(x)+Py(y)+Pz(z)−P/0( /0)

+Pxz(x,z)−Px(x)−Pz(z)+P/0( /0)

+Pyz(y,z)−Py(y)−Pz(z)+P/0( /0)

+Pxy(x,y)−Px(x)−Py(y)+P/0( /0)

+Px(x)−P/0( /0)

+Py(y)−P/0( /0)

+Pz(z)−P/0( /0)

= Pxyz(x,y,z)−P/0( /0)
(2.16)
===⇒

∫
F(x,y,z, t)dt−

∫∫∫∫
F(x,y,z, t)dxdydzdt. (6.2)

fhz(z = z′) indicates the eddy of a specific atmospheric state variable explaining the total

spatial effects on the total variance at a specific height. Then, the correlation between the

synthesized SP and fhz(z) of selected atmospheric state variables is calculated. To have

statistically stable results, the mean of correlation over 10 rr is also computed. According

to Ex. (6.1), RM
Nhz

(z) is given in Fig. 6.2. The correlation of the vertical velocity (Whz) and

the synthesized SP is very small (RM
Whz

(z)∼ 0) which is not shown here.

As already discussed in sections 5.2 and 6.1, the larger the pattern, the stronger the cou-

plings. Besides, the signal of the synthesized SPs with kmax=3 (length-scale=0.3 km) is not

propagated by the main couplings (black curves in Fig. 6.2), except the two cases men-

tioned in the section 6.1: (1) propagation of the noisy-SP in QV through the hydrological

coupling and (2) in UV through the aerodynamic coupling.

In addition, when the fhz is considered, the correlation between the full stationary com-
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Figure 6.2.: Vertical profile of the correlation between the synthesized SPs of three surface
properties (α (left column), z0 (center column), and st (right column)) and the Thz (a, b, c),
QVhz (d, e, f), QChz (g, h, i), and UVhz (j, k, l). The axes and colors are similar to Fig. (6.1).
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ponents of ANOVA and the synthesized SP exhibits less fluctuations around zero and the

correlation coefficients are relatively larger than section 6.1. This means that the sig-

nal from the surface is more coherent in fhz(z′) than in fxyz(z′). In other words, the new

arrangement of the considered surface properties affects all combination of the spatial

dimensions of the atmospheric state variables and not only the 3D standing ANOVA com-

ponent. In fact, fxyz deliberately excludes other spatial ANOVA decomposed components,

in particular fxy. We expect fxy to carry the largest effect of the surface compared to other

ANOVA components.

6.2.1. Thermodynamic coupling via α

Temperature (Thz). When the partitioning of the surface albedo is changed, the synthe-

sized SP of α and Thz are significantly anti-correlated (5-10%) (Fig. 6.2a) up to 2 km

height. This reflects the reduction of sensible heat flux into the atmosphere due to a

brighter surface. It is interesting to observe that the albedo signal is almost consistently

propagated in Thz up to 2 km height, in comparison with Txyz which does not include Txy.

Txy contains the main signal from the surface and here we observe its important role on

the vertical propagation of the signal from the surface.

Water-vapor (QVhz). A change of surface albedo has two main impacts on water-vapor

(Fig. 6.2d): (1) a direct impact through latent heat flux with its role mainly observable

at the surface, (2) an indirect impact via the surface energy balance which mainly plays

a role above 500 m. At the lowest vertical level, the negative correlation indicates less

evaporation, thus, less water-vapor, due to a large surface albedo (impact #1). This direct

impact of large albedo close to the surface is large enough to overcome the indirect impact

of change of α (impact #2). As the signal from the surface propagates upwards, the

first impact decreases and in turn, the second impact comes into account. Due to the

surface energy balance, a positive correlation appears above 500 m to compensate the

large change of sensible heat flux due to the change of α. The darker surface reflects an

increase of sensible heat flux and in turn, a reduction of the latent heat flux.

Cloud-water (QChz). The significant positive correlation between the synthesized SP of

α and QChz below 300 m is certainly not due to the convective cloud close to the surface.

The time series of domain integrated cloud-water below 500 m (Fig. 6.3) shows the night-

time fog which is the reason of this significant positive correlation at the lowest vertical

level. On the other hand, QC above 500 m is confined to the daytime convective clouds

(Fig. 6.3). However the strength of daytime QC is very small relative to nighttime QC.

Thus, almost zero correlation is seen above 500 m.
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Figure 6.3.: Time series of integrated cloud-water below 500 m (a), in an atmospheric layer
between 500 m and below 2 km (b), and below 2 km (c) for para-real simulations forced by
st . The color of curves is similar to Fig. 6.1.
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Horizontal wind (UVhz). The horizontal velocities are positively correlated with the syn-

thesized SP of albedo (Fig. 6.2j). This is due to a decrease of the daytime heat fluxes with

higher albedo that leads to less turbulent mixing and thus steeper gradients in the mean

velocity profiles.

6.2.2. Hydrological coupling via st

Water-vapor (QVhz) and cloud-water (QChz). The hydrological coupling is considerably

affected by the new arrangement of the soil-type, since soil directly alters the availability

of the moisture in the overlaying atmosphere. The synthesized SP of the REFSMC and

water content are strongly anti-correlated at the surface, i.e., -15% anti-correlation with

water-vapor which decreases to the zero-correlation up to 1 km (Fig. 6.2f). There is 10%

anti-correlation between the synthesized SP of st and QChz which decreases to the zero-

correlation up to 500 m (Fig. 6.2i). The QC below 500 m is the nighttime fog (cf. Fig.

6.3).

Temperature (Thz). When the latent heat flux (LE in eq. 1.1) is changed due to the

change of the atmospheric moisture, the sensible heat flux (H in eq. 1.1) is accordingly

changed to preserve the surface energy balance. Consequently, we see an opposite sign in

the correlation between the synthesized SP of REFSMC and temperature (Fig. 6.2c), i.e.,

+10% positive-correlation with the atmospheric temperature consistently up to 2 km.

Horizontal wind (UVhz). Based on the latent heat flux parametrization (cf. equation

3.5a), the friction velocity (u∗) exhibits an inverse relation with the moisture scale (q∗),

and a direct relation with q0. This can also be observed in the correlation analysis: a posi-

tive correlation between st and UVhz at the lowest vertical level (Fig. 6.2l), and a negative

correlation between soil-moisture and UVhz. In comparison to the same correlation analy-

ses but with UVxyz (Fig. 6.1l), the positive correlation signal propagates up to 500 m while

it is limited here to the lowest vertical level.

6.2.3. Aerodynamic coupling via z0

Temperature (Thz). The negative correlation between the synthesized SP of z0 and Thz

(Fig. 6.2b) can be explained through the sensible heat flux parametrization (cf. 3.4a). The

negative correlation up to 2 km without changing the sign of the correlation at different

levels is consistent with our finding in subsection 5.2.3. When Txy is included in the

analysis, the strong signal of the surface is transfered via aerodynamic coupling.
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Water-vapor (QVhz). A rougher surface causes more friction and, thus, reduction of wind

velocity (u∗ decreases). In the latent heat flux parametrization (cf. equation 3.5b), u∗ and

q∗ are reversely related and, thus, directly related to q0. Therefore, there is a negative

correlation between z0 and QVhz close to the surface (Fig. 6.2e). Above 500 m the positive

correlation between z0 and q∗ appears up to 2 km.

Cloud-water (QChz). The nighttime cloud-water below 500 m (nighttime fog) is con-

siderably larger than daytime cloud-water (daytime fog), due to the reduced mixing at

nighttime (cf. Fig. 6.3). Thus, a significant positive correlation exists between QChz and

z0 below 500 m (Fig. 6.2h) and an almost zero correlation is revealed above this height.

Horizontal wind (UVhz). UVhz is negatively correlated with the synthesized SP of z0 close

to the surface, because of an inverse relation between z0 and wind close to the surface (cf.

log-wind-profile in eq. 3.3b). The positive correlation is exhibited far above the surface

because the momentum conservation has to be kept (Figs. 6.2j). On the other hand, when

the sum of all spatial ANOVA components is considered (UVhz), the impact of length-scales

of SPs on the aerodynamic coupling is more distinguishable than UVxyz. Hence, the signal

from the surface is more coherent when UVxy is included in the analysis.

6.2.4. Remarks

The fluctuation around zero in Fig. 6.2 is less than Fig. 6.1. The reason is that fhz includes

all spatial components of ANOVA which are independent of time, especially fxy. We believe

that fxy contains the largest effects of the new surface forcing. Therefore, the signal is more

coherent and it is consistently propagated.

The less randomized the synthesized SPs, the larger the correlation. So in terms of fractal

surface parameters: the larger the dominant scale, the stronger the correlation, and, the

higher the persistency, the stronger the correlation (regardless of the sign of correlation

coefficients).

The correlation analyses reveal that the dynamic effect of land-surface heterogeneity can

substantially affect the atmospheric states variables through the thermodynamic, hydro-

logical, and aerodynamic coupling mechanisms. We change the partitioning of a single

forcing from the surface properties and all other forcings remain unchanged; we find that

the dynamic effect carries information about the new arrangement of the surface property

into the atmosphere aloft and 5-20% of variability of an atmospheric state variables at a

particular height can be explained only by the synthesized SP.
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The dynamic effect depends significantly on the length-scale of the imposed synthesized

SP: the larger the scale of the synthesized SP, the more effective the dynamic effect. While

the surface signal does not affect the bulk structure of atmospheric boundary layer, re-

gardless of which surface properties is used for forcing (cf. Fig. A.1), the impact of the

soil-moisture signal is significant on integrated cloud-water above 500 m on the second

day of the simulation (cf. Fig. 6.3). On the contrary, the smallest-length scale synthesized

SP of soil reveals the strongest signal on the bulk structure of cloud-water on the second

day of the simulation and it doubles the amount of cloud-water above 500 m.

These notable findings of the vertical propagation of the surface signal by the main cou-

plings motivate us to study the temporal propagation of the surface signal. Here, we want

to understand whether it is possible to explain the variability of a specific atmospheric

state variable at a particular time step only by knowing the SP.

6.3. Temporal propagation of the surface heterogeneity in a

horizontal/temporal decomposed component of

atmospheric states ( fxyt)

In this section, we consider fxyt of ANOVA decompositions of the selected atmospheric

state variables. Then, the correlation between the synthesized SP and fxyt at a particular

time step (t = t ′) is calculated. Besides, the mean of the correlation over 10 rr is calculated:

RM
Nxyt

(t = t ′) where M ∈ {α,z0,st} and Nu ∈ {Txyt ,QVxyt ,QCxyt ,UVxyt ,Wxyt} (Fig. 6.4).

6.3.1. Thermodynamic coupling through α

We find that the correlation between the synthesized SP of α and fxyt of all identified atmo-

spheric states is insignificant and very small ( |Rα

Nxyt
(t = t ′)|< 10−3 where Nxyt ∈ {Txyt ,QVxyt ,

QCxyt ,UVxyt ,Wxyt}) . Thus, Rα

Nxyt
(t = t ′) is not shown in this section. The diurnal cycle does

not show up in any of the para-real simulations forced by different length-scales of the

synthesized SP of surface albedo. Moreover, different fractal parameters (different s2 and

kmax) of the surface albedo heterogeneity do not play a role in the temporal propagation

of the albedo signal in fxyt of any atmospheric states.

6.3.2. Hydrological coupling through st

Hydrological coupling also does not transfer the signal of soil-moisture into QCxyt ,UVxyt

and Wxyt . However, the signal is relatively large and significant in Txyt (Fig. 6.4a) and
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Figure 6.4.: Time series of the correlation between the synthesized SPs of st and the Txyt (a),
and QVxyt (b), and between the synthesized SP of z0 and UVxyt (c). The colors are similar
to Fig. (6.1). The horizontal black dashed lines indicate noon time of the two days of the
simulations at UTC time scale.

QVxyt (Fig. 6.4b). A significant correlation between the synthesized SP of REFSMC and

the QVxyt (5-8%) is unveiled at two time steps (Fig. 6.4b): (1)at the beginning of the first

day (positive-correlation at 4th time step) and (2) 12 UTC on the second day (negative-

correlation at 34th time step) of the para-real simulations. It is interesting to observe

that the maximum anti-correlation shows up on the second day of the simulations. It

indicates a time-delay to get a strong signal from the soil-moisture in QVxyt . As mentioned

by LIU AND SHAO [2013], the soil response is highly time-scale dependent. The positive

correlation at the beginning of the simulation is due to nighttime fog. The surface signal in

water-vapor induces an inverse response in the atmospheric temperature but some hours

later, i.e., 5% anti-correlation of Txyt and soil-moisture at 12 UTC of first day. There is

also a significant positive correlation during the nighttime of the second day of para-real

simulations caused by a reduction of mixing during the night. However, by sunrise, the

mixing starts to grow until noontime of the second day when we see the maximum anti-

correlation of QVxyt and the synthesized SP of st .

At 12 local time (UTC+2) of the second day of the simulations, Txyt exhibits a feedback

on the change of the atmospheric moisture to preserve the surface energy balance (Fig.

6.4a). The 5-8% positive correlation reveals between Txyt and the SP of the REFSMC at

noon of 25th of April 2013.

The large scale SPs (kmax=0.1 and 0.5 (red and blue curves, respectively)), which in pre-

vious sections show the largest correlation, here at some time steps show an opposite

behavior, and the Rst
QVxyt

(t = t ′) for them are smaller than for the small scale SPs (kmax=1

and 3 (green and black curves, respectively)). It indicates that the more randomized SSPs

induce more mixing in Txyt and QVxyt at some time steps. This finding is similar to the

time-series of cloud-water on the second day of simulation, i.e., the smallest-length scale

SSP of soil doubles cloud-water of atmosphere above 500 m.
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6.3.3. Aerodynamic coupling through z0

The maximum anti-correlation (-5%) between the synthesized SP of z0 and UVxyt occurs

at 12 UTC of the first day (Fig. 6.4c) which is explained by an inverse relation between

the z0 and u∗ (cf. equation 3.3b). The diurnal cycle is weakly observed after this time

step (less than 5%), e.g. a positive correlation at nighttime due to a reduced mixing and,

again, a negative correlation by sunrise as a result of an increase of mixing during the day

until noon.

The impact of different length-scale of the synthesized SPs is not significant in this anal-

ysis and they affect almost similarly the UVxyt . Moreover, fxyt that of other atmospheric

states are not significantly affected by aerodynamic coupling and they exhibit very weak

correlation ( |Rz0
Nxyt

(t = t ′)|< 10−3 where Nxyt ∈ {Txyt ,QVxyt ,QCxyt ,Wxyt}) (not shown).

6.3.4. Remarks

On the second day of simulation, in particular, we find the maximum correlation (∼10%)

between this single horizontal/temporal and the synthesized SP of the surface properties.

The fxyt hold 0.4-5% of the total signal which is small in comparison with fhz. However,

the diurnal cycle is found in the three cases mentioned above. This promotes the correla-

tion analysis to look at a merged component which includes all temporal and horizontal

ANOVA decomposed components.

6.4. Temporal evolution of the SSP effect on the total

z-independent decomposed components of atmospheric

variables ( fht)

To keep the parallel with sections 6.1 and 6.2, all ANOVA decomposed components inde-

pendent of z are merged to include all variabilities in x, y, and t dimensions of considered

atmospheric variables:

fht = fxyt + fxt + fyt + ft + fxy + fx + fy

(2.17)−−−→= Pxyt(x,y, t)−Pxy(x,y)−Pyt(y, t)−Pxt(x, t)+Px(x)+Py(y)+Pt(t)−P/0( /0)

+Pxt(x, t)−Px(x)−Pt(t)+P/0( /0)

+Pyt(y, t)−Py(y)−Pt(t)+P/0( /0)

+Pt(t)−P/0( /0)

+Pxy(x,y)−Px(x)−Py(y)+P/0( /0)
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+Px(x)−P/0( /0)

+Py(y)−P/0( /0)

= Pxyt(x,y, t)−P/0( /0)
(2.16)
===⇒

∫
F(x,y,z, t)dz−

∫∫∫∫
F(x,y,z, t)dxdydzdt. (6.3)

Then, RM
Nht

(t) is computed and displayed in Fig. 6.5. The last three components, fxy, fx, and

fy, are in common with section 6.2. In all three couplings, RM
Nht

(t) for the smallest length

scale (kmax) is very small and fluctuates randomly around zero. However, other scales of

SSPs unveil a very large correlation between the SSP and fht of atmospheric states. The

RM
Nht

(t) is twice as large as RM
Nxyz,hz

(z) (|RM
Nht

(t)| '10-40% versus |RM
Nxyz,hz

(z)| '5-20%). Similar

to sections 6.1 and 6.2, the larger the length scale of the synthesized SP, the stronger the

correlation; regardless of the sign.

6.4.1. Thermodynamic coupling via α

Temperature (Tht). A negative correlation exists between Tht and the synthesized SP of

all length-scales at all time steps (Fig. 6.5a) due to the opposite behavior between the

surface albedo and the available energy at the surface: the brighter the surface (large α),

the lesser is the energy transfered as a sensible heat flux to the atmosphere aloft. There are

two peaks in the time-series of the correlation analyses: 12 UTC of the first and second day

of the para-real simulations, when the sun has its maximum effect on the surface energy

balance during the simulations. Besides, the diurnal cycle is unveiled in Rα

Tht
(t) and there

are two minima during nighttime due to sunset.

Water-vapor (QVht). In turn, the latent heat flux responses to the change of sensible

heat flux to keep the surface energy balance (Fig. 6.5d), however it has some time steps

delay. The maxima of Rα

QVht
(t) show up in the afternoon (not at noon time) of the para-real

simulations.

Cloud-water (QCht). The sudden change at the beginning of Rα

QCht
(t) might be due to

sunrise and the sudden change of surface energy (Fig. 6.5g). After 6 UTC of the first

day of the simulation, the correlation between α and QCht is always positive because

larger albedo leads to less sensible heat flux and in turn, more latent heat flux, thus, more

evaporation. There is another sudden increase again at 6 UTC, however on the second day

of the simulation. This is again because of sunrise and its subsequent increase of mixing.

Horizontal wind (UVht). Around noon time, when the maximum effect of surface albedo

plays a dominant role, there are two peaks of anti-correlation between the synthesized SP
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Figure 6.5.: Time series of the correlation between the synthesized SPs of three surface prop-
erties, α (left column), z0 (middle column), st (right column) and for Tht (a, b, c), QVht (d, e,
f), QCht (g, h, i), and UVht (j, k, l). The axes and colors are similar to Fig. (6.4).
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of α and UVht with the magnitude of 10-20% (Fig. 6.5j). Larger α leads to more reflection

and thus less energy from the sun at the surface. Consequently, the mixing close to the

surface is reduced which causes less wind. As the synthesized SPs are in xy direction, their

dominant effect is unveiled in horizontal wind (UVht) rather than vertical wind (Wht).

Therefore, we do not show Rα

Wht
(t) here. In the evening transitions, when the effect of

surface albedo goes to zero due to sunset, Rα

UVht
(t) also goes to zero. During nighttime,

it goes to positive coefficients. This indicates the development of the stable nighttime

boundary layer.

6.4.2. Hydrological coupling via st

Water-vapor (QVht). All synthesized SPs of soil-moisture with different fractal param-

eters exhibit the anti-correlation between the synthesized SP of st and QVht (Fig. 6.5f).

There is only an exception for the synthesized SPs with kmax=3 which Rst
QVht

(t) fluctuates

randomly around zero. The negative correlation is as a result of an inverse relation be-

tween the soil capacity to hold moisture and the amount of water vapor released into

the atmosphere aloft. The diurnal cycle of Rst
QVht

(t) is observed and, during nighttime, the

correlation decreases due to sunset and the resulting stable boundary layer. The minima

peaks occur at the end of each day (at 24 UTC), the maxima peaks, however, occur in the

afternoon (not noon time). This delay in detecting the largest Rst
QVht

(t) for each day is due

to the time-dependent soil response to the surface forcing.

By including 1D/2D horizontal and temporal ANOVA decomposed components in the cor-

relation analysis, the temporal signal is more coherent than Rst
QVxyt

(t) (cf. Fig. 6.4b). This

significant difference between QVxyt and QVht is as a result of excluding QVxy, QVx, and QVy

from QVxyt which is done deliberately by ANOVA method. Thus, the most important signal

of surface which is expected to exist in xy dimensions, is not considered in Rst
QVxyt

(t).

Temperature (Tht). In response to the change of water-vapor, Tht is changed accordingly

to preserve the surface energy balance (Fig. 6.5c). The positive correlation at the begin-

ning of the simulation starts to grow until noontime, because, by sunrise, more evapora-

tion occurs, thus more moisture is released by soil to the atmosphere. Hence, the sensible

heat flux and atmospheric temperature is reversely changed. The second maximum of

Rst
Tht
(t) on the second day appears around noontime of the second day of the para-real sim-

ulation with synthesized SP of soil. At the evening transitions on both days, the minima

of Rst
Tht
(t) occur due to sunset. Similar to Rst

QVht
(t), Rst

Tht
(t) is considerably larger than Rst

Txyt
(t)

(cf. Fig. 6.4a).
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Cloud-water (QCht). On the first day of the simulation, no clouds are observed. There-

fore, the sudden change from a positive to a negative correlation in the morning transition

of the first day of the para-real simulation is due to the nighttime fog (Fig. 6.5i). Until the

next morning transition, Rst
QVht

(t) is constant. Then, there is a sudden increase again at the

morning transition, due to nighttime fog.

Horizontal wind (UVht). Because of an increase of evaporation during the day, we see

positive Rst
UVht

(t) after the morning transition (Fig. 6.5l) and the peak of positive correlation

is around noon on both days. During nighttime, the zero or anti-correlation between

horizontal wind and st is unveiled as a result of the stable boundary layer developed at

night and causing less evaporation and, thus, less wind.

6.4.3. Aerodynamic coupling via z0

Temperature (Tht). Based on the surface layer parametrization (cf. equation 3.4b) show-

ing an inverse relation between the z0 and θ∗, negative Rz0
Tht
(t) is exhibited every time steps

(Fig. 6.5b). However, it decreases around evening transitions and again increases during

morning transitions. The peak of maxima of Rz0
Tht
(t) are observed at noon time of both

days. The rougher the surface, the smaller the u∗ which leads to less sensible heat transfer

(H) to the atmosphere aloft.

Water-vapor (QVht). On the other hand, the less H induces more latent heat flux to

preserve the surface energy balance. Hence, the positive Rz0
QVht

(t) is revealed in Fig. 6.5e.

Similar to Rα

QVht
(t) and Rst

QVht
(t), the response from latent heat flux has some hours delay

and the maxima of Rz0
QVht

(t) turn out in the afternoons.

Cloud-water (QCht). The positive Rz0
QCht

(t) for all time steps can be explained as a corre-

lation between fog and z0, in particular, a sudden peak at the morning transition on the

second day (Fig. 6.5h). The diurnal cycle in Rz0
QCht

(t) is not as clear as other atmospheric

states.

Horizontal wind (UVht). The two maxima of negative Rz0
UVht

(t) occur at noon time of both

days of the simulation, as a result of log wind profile which is similar to Fig. 6.4c. However,

the values of Rz0
UVht

(t) are significantly larger than Rz0
UVxyt

(t) and the impact of different

length scales of the synthesized SPs is clearer: the smaller the kmax of SSPs, the stronger

the Rz0
UVht

(t). Here, the inter-relation of the three couplings is unveiled: during night when

the boundary layer is stable, less mixing occurs, and flux-gradient relationship can be
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broken, as the pattern of a synthesized SP of roughness-length has a larger length-scale,

the reduction of horizontal wind due to friction is less dominant in the whole domain.

Therefore, positive Rz0
UVht

(t) is observed during nighttime of the para-real simulation forced

by synthesized SP of z0.

6.4.4. Remarks

For the analysis of this section, the full 2D horizontal eddy, fxy+ fx+ fy, is included and the

important fraction of the total signal exists in fht . We find that the sign of RM
Nht

(t) here is

consistent with our finding in section 5.2 (cf. Fig. 5.3), where we computed the correlation

between the synthesized SP and the full 2D standing atmospheric signal (r2(SSPi
xy, f

i
xy)).

The signal of fxy is strong enough that the day transitions can not significantly change its

temporal evolution. However, the sign of RM
UVht

(t) is consistent with r2(SSPi
xy,UVi

xy) only

during nighttime of the simulations, when the atmospheric boundary layer is stable. It

indicates that horizontal wind is highly sensitive to the external forcings.

Here, fht is explained up to a third of the total signal and this amount is relatively larger

than others considered ANOVA components (fxy, fxyz, fhz, and fxyt). It indicates that the

dependency of the surface-atmosphere couplings on time is as important as their depen-

dency on the full horizontal forcing. When these components (fxy and all time-dependent

components) are considered (as we did here), there is a chance up to 20% to explain an

atmospheric signal by the surface pattern (cf. Table 6.2).

Table 6.2.: Maximum chance to explain an atmospheric signal by a single couplings through
the corresponding surface property: EM

u = SM
u ×|R

M
Nu |max. Colors indicate different couplings:

thermodynamic (red), aerodynamic (green), and hydrological (blue) coupling.

T QV QC UV

Eα
xyz 0.01 0.03 0.12 0.05

Ez0
xyz 0.01 0.04 0.21 0.20

Est
xyz 0.02 0.12 0.21 0.06

Eα
hz 7.77 3.68 0.95 2.18

Ez0
hz 5.77 4.91 1.45 5.49

Est
hz 6.64 9.20 1.63 2.70

Eα
xyt 0 0 0 0

Ez0
xyt 0 0 0 0.09

Est
xyt 0.03 0.30 0 0

Eα
ht 18.40 16.32 3.10 12.95

Ez0
ht 14.70 11.40 3.14 13.32

Est
ht 14.90 16.64 3.33 12.92
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Table 6.2 provides the maximum chance to explain an atmospheric signal by a synthesized

SP of a single surface property for each considered atmosphere-surface coupling, sepa-

rately. EM
u is computed as a multiplication of the sensitivity index (SM

u ) and the maximum

absolute value of the correlation coefficient (|RM
Nu
|max), where u indicates the dimension

of ANOVA components, M shows the surface properties studied here, and Nu illustrates

the considered ANOVA components. The largest chance is found when fht is considered

and the maximum possibility for each considered atmospheric state is observed when the

direct impact of couplings is considered, e.g., the impact of thermodynamic coupling on

atmospheric temperature, the effect of hydrological coupling on atmospheric humidity,

and the influence of aerodynamic coupling on wind. After fht , it is verified that fhz shows

up 10% chance to explain the atmospheric states by the surface signal. However, the

atmosphere-surface couplings do not significantly affect the single ANOVA decomposed

components of atmospheric state variables ( fxyz and fxyt) and there is less than 1% chance

to explain these single components only by knowing the SP.
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7. Summary and discussion

In the present work, the dynamic effect of land-surface–atmosphere coupling mechanisms

is studied (Section 1.3) using the Weather Research and Forecasting (WRF) model in its

advanced research mode together with the Noah-MP land surface model (Chapter 3).

The focus is on the three inter-related surface–atmosphere coupling mechanisms namely,

thermodynamic, aerodynamic and hydrological coupling. For each coupling mechanism,

we select a corresponding surface property–albedo (α), roughness-length (z0), and soil-

type (st)– in order to study the impact of its heterogeneity with different length-scale

and persistency on the atmospheric boundary layer development. To do so, we introduce

a novel approach called a ’para-real’ ensemble modelling where each simulation uses the

same full complexity of real boundary conditions but is forced by a synthesized surface

pattern of the surface properties (Section 2.1).

7.1. Para-real ensemble modelling as a new approach to

coupled land–atmosphere modelling

The synthesized SPs (SSPs) are generated from a tailored randomized spectrum approach

termed quasi-fractional Brownian surface (quasi-fBs). The quasi-fBs is based on the esti-

mation of real heterogeneity parameters from original geo-data (Section 2.2.2). In fact,

the quasi-fBs is a random 2D surface generated through a Fourier-Spectral approach as a

realization of a Brownian process. The PDF of the SSPs match those of the original SP to

minimize effects on the bulk surface energy balance. Indeed, only the surface properties

are reshuffled in space such that the new spatial arrangement does not affect flux aggre-

gation. Since the synthesized SPs are random fractals, we generate a series of random

realizations (rr) with identical heterogeneity parameters to ascertain that the results are

independent of the particular realization of the underlying random process (Section 4.2).

An ensemble of 48×10 para-real simulations is used here to study the coupling mecha-

nisms (Section 2.3). That is, in total we analyze 480 simulations for 48 different physical

parameter configurations and use 10 different random realizations of the surface bound-

ary condition (ensemble members) for each case. The output is analyzed by conventional
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averaging (Section 4.1), ANOVA sensitivity index analysis (Section 5.1), ANOVA decom-

posed components and through a comprehensive correlation analysis (Section 5.2 and

Chapter 6). This allows us to investigate the impact of the length-scale and fractal persis-

tency at the surface exerted on the atmospheric state.

7.2. Insights from para-real ensemble modelling to individual

land–atmosphere coupling mechanisms

The thermodynamic coupling is found to be rather weak in general. When considered

in terms of ANOVA sensitivity indices, there is no significant impact of the thermodynamic

coupling through the surface-albedo (α) on the partitioning of subspace variances of the

atmospheric variables. That means, despite a pronounced structural reorganization of the

surface (that is in the horizontal direction), the variance partitioning accessible through a

classic ANOVA analysis is not affected in favor of the horizontal direction. A more detailed

analysis in terms of averages and combinations of decomposed ANOVA components, how-

ever, unveils that up to 10% of the full 2D standing eddy of temperature variance can be

explained through the sensible heat flux. In fact, the albedo signal consistently propa-

gates up to 2 km height. The maximum correlation between the SSP of albedo and the

atmospheric temperature is found at noontime. Furthermore, the albedo pattern affects

considerably the atmospheric humidity, in particular cloud-water. In fact, the largest-scale

albedo pattern explains up to 10% of nighttime fog.

Similar to that of thermodynamic coupling, the influence of the aerodynamic coupling

is not quantifiable through ANOVA sensitivity index analyses. Also, the expected impact

of the aerodynamic coupling on the wind component (a negative correlation due to slow-

down of near-surface wind with higher roughness) is not found in the full 2D standing

component of the wind, because height is integrated in this component, thus, hiding the

slow-down that is confined to a thin layer in vicinity of the surface. If, however, the height

dependence is included in the analysis, we find 20% anti-correlation of the roughness-

length with the horizontal wind close to the surface. Moreover, the aerodynamic coupling

is highly sensitive to the diurnal cycle due to the stable boundary-layer at night, where the

linearity of the flux-gradient relationship in only the aerodynamic components is broken

down as a consequence of temperature stratification.

The hydrological coupling is found to be most important for the atmospheric boundary

layer development (up to 2 km height studied here). It primarily acts through modification

of the moisture availability and a corresponding repartitioning of the energy surplus at

the surface to sensible and latent heat flux. When the SP of soil changes, the hydrological

coupling significantly affects the partitioning of variance to the dimensional subspaces
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considered through ANOVA sensitivity indices. Despite the statistical significance of the

change, the sign of change remains unclear, which prevents us from extracting physical

insight from ANOVA sensitivity indices (despite the statistical significance of changes). The

largest impact among the couplings investigated here is found on atmospheric water. The

maximum influence of soil-moisture on the atmospheric water vapor reveals a correlation

of about 20% at the first vertical level. This decreases monotonically to about 10% at 2 km

above surface. The SSP of soil significantly impacts the cloud water, but the impact of

length scale differs among the atmospheric layer below 500 m and the region in between

500 m and 2 km above surface. While the largest-scale pattern of soil has maximum impact

below 500 m (that is only for nighttime fog), it exhibits minor influence on the cloud water

above 500 m. Instead, the maximum effect on the cloud water above 500 m is found for

the smallest length scale pattern of soil where we in fact observe doubling of the bulk

cloud water. Such impact on the bulk profiles was not observed in other physical cases

(that is, for other variables, larger length scales or higher persistency) and indicates a

threshold for cloud formation that is triggered in this particular case.

7.3. The role of length scale and persistency on

surface–atmosphere couplings

Although we isolate the key coupling mechanisms by changing only one single surface

property in the para-real simulations, the inter-related and non-linear processes cause con-

siderable changes in all variables, i.e. those concerning the aerodynamic, thermodynamic

and the hydrodynamic coupling mechanism. For instance, up to 15% of the atmospheric

temperature variability can be explained through the surface pattern of roughness-length

and up to 13% of the horizontal wind variability is explained by the soil-moisture pattern.

We, however, find that the immediate impact of each surface property is largest in terms of

the directly corresponding variable, i.e. albedo for atmospheric temperature, roughness-

length for horizontal wind, and soil type for atmospheric water, where the large-scale

forcing might no longer be considered external but become part of the set-up. When

aiming at a quantification of the effect of the small-scale surface signal on large-scale phe-

nomena, a simulation with larger domains and over an extended period of time should be

considered.

Regarding the length-scale of the land-surface heterogeneity, the maximum surface signal

is found in the atmospheric boundary layer up to 2 km height when the para-real simula-

tion is forced by the SSP with the dominant length-scale about 10 km. At the smallest dom-

inant length-scale considered here (300 m), the surface signal propagates vertically only

when the immediate impact of land-surface heterogeneity is considered. That is, we only
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find an impact of the roughness-length on the horizontal wind and of the soil-moisture

on the water-vapor as it is explicitly encoded in the surface-layer similarity relations in

Noah-MP-LSM. Further, with larger persistency of the SSP (i.e., less randomized SSP), the

impact of the surface signal significantly strengthens.

While the signal on the bulk structure of the atmosphere is mostly negligible, for cloud-

water above 500 m, the smallest length-scale SSP of soil-moisture induces more cloud-

water. The SSP of soil with dominant length-scale about 10 km produces two times less

cloud-water than the SSP of soil with dominant length-scale of about 300 m. In this con-

text, the more noisy is the SSP, the more cloud-water is generated by convection. This

needs further investigation with full consideration about time and vertical levels, since

the scale-dependency of shallow convective clouds is found on the second day of simula-

tion and the atmospheric layer between 500 m and 2 km. This approves findings of LIU

AND SHAO [2013] about the time-scale dependence of atmosphere-soil coupling. The SSP

of albedo and roughness-length does not affect the development of shallow convection,

though we find that they are important in fog formation.

7.4. Synthesis

This work suggests that ANOVA method and its products, i.e., variance partitioning to di-

mensional subspaces and sensitivity indices, do not illustrate well the dynamic of atmosphere–

surface exchanges. Although it allows an isolated analysis of the signal contained in a par-

ticular dimension (or combination of dimensions) of the atmospheric state, the combined
ANOVA decomposed components demonstrate better the dynamic effect of the surface–

atmosphere interactions than individual ANOVA decomposed components. In fact, the

combined components are integration of the atmospheric state variables with respect

to time or height, which can be obtained without computationally sophisticated ANOVA

method.

To conclude, this work showed that there is a strong dependence of the length-scale of the

surface forcing and the strength of atmosphere–surface coupling: the larger the length-

scale of the surface pattern, the stronger the impact of the surface signal on the atmo-

spheric state. Furthermore, higher persistence of the surface signal also strengthens the

coupling mechanisms. It is verified that the dynamic effect of land-surface heterogeneity

plays a major role in propagating the surface signal into the atmospheric boundary layer

(both vertically and temporally). Atmosphere–land-surface couplings depend on the tem-

poral evolution of the surface signal and our results illustrate: there is no simple linear

forward propagation, but the impact of the local coupling significantly depends on ex-

ternal forcing. Finally, the results showed the key role that the hydrological mechanism
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plays in coupling the surface to the atmosphere, and it highlights the importance of im-

proving the representation of hydrological-processes in parameterization of the coupled

land–atmosphere system.
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Figure A.1.: Vertical mean profile of temperature (a), water-vapor (b), cloud-water(c), and
horizontal wind (d). The profiles are similar for all para-real simulations regardless of which
surface properties used for forcing.
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