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Abstract 

The green algal genus Microthamnion (Microthamniales, Trebouxiophyceae) has been 

extensively studied, but the question of species delimitation remained a matter of 

controversy. The morphological traits used to discriminate species in Microthamnion 

have shown to be quite polymorphic, and the restriction enzyme analysis performed in 

a first molecular attempt does no longer meet modern standards. 

The present study used a detailed molecular approach and combined several methods 

to clarify the matter of species delimitation on a molecular level. A multi-gene 

alignment comprising the nuclear-encoded 18S, and 28S rRNA genes, and the ITS2 

molecule, as well as the plastid-encoded rbcL gene was assembled and used for 

concatenated phylogenetic analyses. The 74 Microthamnion strains investigated in this 

study fell into four monophyletic clades (one with a distinct subdivision) and nine long-

branched lineages, which are assumed to correspond to species level. An apomorphy 

analysis was performed in order to find non-homoplasious synapomorphies (NHSs), 

and thus unique molecular signatures, for the clades and lineages inferred from the 

phylogeny. In a novel approach that interpreted molecular data in an alternative way, 

these NHSs and other ‘phenotypic molecular characters’ were compiled in a data 

matrix and used for a parsimony tree reconstruction. The clade boundaries and 

lineages inferred from the Microthamnion phylogeny were confirmed by both, unique 

molecular signatures and the tree based on all phenotypic molecular characters, 

resulting in 14 putative species delineated by molecular methods.
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Zusammenfassung 

Die Grünalgengattung Microthamnion (Microthamniales, Trebouxiophyceae) war 

Gegenstand zahlreicher Untersuchungen, jedoch blieb die Frage der Artabgrenzung 

umstritten. Die morphologischen Merkmale, die zur Artunterscheidung herangezogen 

wurden, erwiesen sich im Nachhinein als polymorph und eine Restriktionsanalyse, die 

im Mittelpunkt eines ersten molekularen Ansatzes stand, wird heutigen Standards 

nicht mehr gerecht.  

Die vorliegende Studie verfolgte nun einen detaillierten molekularen Ansatz, der 

mehrere Methoden kombinierte, um die Problematik der Artabgrenzung auf 

molekularer Ebene zu klären. Ein Multigen-Alignment, welches die kernkodierten 18S- 

und 28S-rRNA-Gene und das ITS2-Molekül sowie das plastidär kodierte rbcL-Gen 

umfasste, wurde aufgebaut und für kombinierte phylogenetische Analysen genutzt. Die 

in dieser Arbeit untersuchten 74 Microthamnion-Stämme gliederten sich in vier 

monophyletische Kladen (eine mit zwei klar abgegrenzten Untergruppen) und neun 

langästige Linien, von denen angenommen wird, dass sie dem Artlevel entsprechen. 

Eine Apomorphie-Analyse diente der Identifizierung nicht-homoplasischer 

Synapomorphien (NHSs), und damit einzigartiger molekularer Signaturen, für die aus 

der Phylogenie abgeleiteten Kladen und Linien. In einem neuartigen Ansatz, welcher 

molekulare Daten auf alternative Weise interpretierte, sind diese NHSs und weitere 

„phänotypische molekulare Merkmale“ in einer Datenmatrix zusammengefasst und für 

die Rekonstruktion eines Parsimonie-basierten Stammbaumes verwendet worden. Die 

Abgrenzungen der Kladen und Linien, die sich aus der Microthamnion-Phylogenie 

ergaben, wurden sowohl durch eindeutige molekulare Signaturen, als auch durch den 

auf allen phänotypischen molekularen Merkmalen basierenden Baum bestätigt. 

Insgesamt ließen sich so 14 Arten auf molekularer Ebene unterscheiden.
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1. Introduction 

A major difficulty regarding species delimitation in (micro) algae is that there is a great 

abundance of organisms where sexual reproduction is either absent or unknown, and 

thus the biological species concept (Dobzhansky, 1937; Mayr, 1942) cannot be applied. 

Instead, classifications were traditionally erected based on morphological characters, 

which could easily be identified via light microscopy. This approach was later refined 

as also vegetative stages of complete life cycles were observed. With the development 

of scanning and transmission electron microscopy, a broad spectrum of ultrastructural 

features became available which lead to major rearrangements, especially at higher 

levels of the taxonomic system. Here, the organization of the basal bodies in the 

flagellar apparatus was of particular interest, but also modes of cell division were 

brought into focus (Mattox & Stewart, 1984; Melkonian, 1984). Besides, detailed 

investigations of cell wall structures or biochemical characters, such as pigment 

compositions, were used for taxonomic purposes. 

The introduction of phylogenetic systematics by Willi Hennig (1950) revolutionized 

the classification system, as it proposed a hierarchic descent approach based on the 

evolution of heritable traits which are shared by a derived group of organisms. A 

prerequisite for this phylogeny-based system was the monophyly of taxonomic units 

consisting of a common ancestor and all of its descendants. With increased feasibility 

of DNA sequencing, starting in the 1990ies, molecular phylogeny became the state of 

the art tool for resolving relationships among organisms. Especially the impact on 

species level was severe, and the need for revision of the previous approaches became 

evident. Although morphology-based concepts were always in a flux and individual 

species boundaries a matter of controversial discussions, the full extent of 

misidentifications and erroneous numbers of species was now revealed. Not only were 

characters previously used for species delimitation shown to be para- or polyphyletic, 

but also other peculiarities were discovered. Phenotypic plasticity as a response to 

different environmental conditions had, of course, been discussed before, but now 

there was proof that organisms with at times a great range of morphological variety 

were genetically identical (e.g. Otsuka et al., 1999; Logares et al., 2007; Belton et al., 

2014). On the other hand, the existence of cryptic species complexes was detected 

where organisms formed individual lineages in the phylogenetic tree but were either 

morphologically indistinguishable or very similar with discriminative features only 

subsequently recognized (e.g. van der Strate et al., 2002; Lewis & Flechtner, 2004; 

Šlapeta et al., 2006; Fučíková et al., 2011). 

Next to molecular phylogeny, increased availability of molecular data also led to the 

development of new concepts to address the matter of species delineation, some of 

which will be described in more detail in the following chapters.  
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1.1. Molecular Approaches for Species Delimitation 

1.1.1. Phylogenetic Tree Reconstructions 
From the 1990ies on, molecular phylogenetics skyrocketed due to the introduction of 

a thermostable DNA polymerase by Saiki and coworkers (Saiki et al., 1988) in the late 

1980ies, which facilitated DNA amplification tremendously.  

One of the first markers used for molecular phylogenetic tree reconstructions was the 

18S rRNA gene, which codes for the small subunit (SSU) of the eukaryotic ribosome 

and is thus absolutely essential. It is still widely used and a valid marker for higher level 

phylogenies (e.g. Marin et al., 2003). On species level though, it does often not provide 

enough phylogenetic resolution (e.g. Bass et al., 2007; Rindi et al., 2007). Instead, the 

internal transcribed spacer 2 (ITS2) of the nuclear-encoded rRNA operon and the 

plastid rbcL gene, which codes for the large subunit of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO), have been proposed as suitable candidates for 

species delimitation in many algal groups (Coleman, 2001; Lewis & Flechtner, 2004; 

Heesch et al., 2009; Škaloud & Rindi, 2013). However, next to differing resolution 

capacities, the use of only a single marker in phylogenetic studies may be problematic, 

since genes from different loci can have conflicting signals (Soltis & Kuzoff, 1995; 

Huelsenbeck & Bull, 1996; Sang et al., 1997; Okuyama et al., 2005; Gonçalves et al., 

2007). Therefore, nowadays usually two or more genes are combined in concatenated 

analyses both, on higher taxonomic (Marin & Melkonian, 2010; Marin, 2012) as well as 

species level (Šlapeta et al., 2006; Dupuis et al., 2012), which in turn also has a positive 

effect on the resolution. 

In molecular phylogeny-based species delimitations, the species boundaries are 

usually determined in regards to the topology. A species is then defined as a 

monophyletic group of several individuals that is distinguished from its sister species 

by branch lengths and support values (Leliaert et al., 2014). Ideally, a species can be 

distinguished by short intraspecific branches and a longer, well supported preceding 

branch. These results are reckoned to be even more dependable when several markers 

come to the same conclusion (Dettman et al., 2003). 

1.1.2. Barcoding System 
Since the assembly of an alignment and the aligning process according to secondary 

structure information (in rRNA genes) as well as the computation of phylogenetic trees 

is quite laborious, it was also sought for methods that allowed for a faster and more 

practical way to distinguish species on a molecular level. The idea of establishing a 

barcode system where a single, ideally short and variable marker could be used for 

species identification quickly gained popularity. 

The initial barcode proposed for animals (Hebert et al., 2003) was subunit I of the 

mitochondrial gene cytochrome c oxidase (coxI or COI) of the respiratory chain, which 

had, for example, been used successfully to discriminate between species in butterflies 
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(Brown et al., 1999), copepods (Bucklin et al., 1999) and velvet worms (Trewick, 2000). 

The idea was to compile a COI database that linked DNA sequences to known species 

which could then be used to identify unknown specimens relative to these described 

taxa – an approach that could ultimately be used for a global bioidentification system 

in animals (Hebert et al., 2003). Another proposed application was the discovery of 

new species. A prerequisite for both implementations is a low intra- and high 

interspecific variation that allows for the definition of a clear threshold. This ‘barcode 

gap’ is however not reliably predictable for every group of organisms (e.g. Meyer & 

Paulay, 2005; Wiemers & Fiedler, 2007; Hendrich et al., 2010). 

In plants and green algae, coxI was less favorable as a barcode marker due to the 

presence of introns in several taxa (e.g. Cho et al., 1998; Palmer et al., 2000; Turmel et 

al., 2002a,b, 2003). Instead, the nuclear-encoded 18S rRNA gene as well as both ITS 

regions or the plastid-encoded rbcL and tufA genes were proposed as suitable 

candidates in green algae (Hall et al., 2010; Hadi et al., 2016). However, none of the 

suggested markers was universally applicable since their ability to distinguish species 

differed between lineages. 

Although DNA barcoding can be reliably used for species delimitation in some groups 

(e.g. (Hebert et al., 2003, 2004) it has, next to the above mentioned, also shown 

limitations, for example, in the inability to detect recent speciation events, 

introgressive hybridization, polyploidization or different mutation rates. It was 

therefore proposed by several authors that a barcode be used rather as a guideline for 

assessing variability than an actual link to species level and was recommended to be 

complemented with other methods (Wiemers & Fiedler, 2007; Hoef-Emden, 2012; Zou 

et al., 2016). 

1.1.3. CBC Species Concept and Unique Molecular Signatures 
Apart from its use as a marker for molecular phylogenetic tree reconstructions at genus 

and species levels, and being a putative barcode candidate, the ITS2 molecule was 

introduced as a tool for species delimitation based on certain features of its secondary 

structure. 

The ITS2 is part of the nuclear-encoded rRNA operon, positioned between the 5.8S and 

28S rRNA genes. The operon is transcribed as a whole, and the ITS2 excised from this 

precursor RNA during ribosome maturation. For this excision process the ITS2 folds 

into a clover-leave-like structure with typically four paired helices, which are 

connected by single-stranded spacers – a motif which has been proven to be quite 

conserved among eukaryotes (Mai & Coleman, 1997; Joseph et al., 1999; Coleman, 

2007). The formation of the correct secondary structure is crucial for the excision 

process and the maintenance of base-pairings in the helices indispensable.  

There are two scenarios in which nucleotide changes during evolutionary processes do 

not disrupt a base pair. A hemi compensatory base change (hemi CBC) refers to a 

single-sided substitution in a G-C pair to the thermodynamically stable wobble base 
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pair G-U or vice versa. The other is a compensatory base change (CBC), which refers to 

a mutation on both sides of the helix which preserves pairing at that position (e.g. C-G 

to A-U). Coleman (2000) discovered in the green algal order Volvocales a correlation 

between the presence of CBCs, especially in conserved regions of the helices two (H2) 

and three (H3) of the ITS2 molecule, and sexual barriers between organisms. A single 

CBC in such a conserved region was shown to go along with the inability to cross, and 

consequently two organisms which differed by a CBC in these regions belonged to 

different biological species. This CBC species concept was further refined as a large-

scale analysis on plants and fungi by Müller et al. (2007) showed that any CBC in the 

paired helix regions of the ITS2 molecule in organisms belonging to the same genus 

corresponded to distinct species with a probability of 93.11%. A percentage that 

sufficed for them to conclude that the presence of a single CBC was a sufficient 

identifier for species delimitation. However, in both studies the reverse conclusion did 

not apply: the absence of a CBC was no proof for organisms to belong to only a single 

species (Coleman, 2000; Müller et al., 2007). Caisová and collegues (2011a), on the 

other hand, who mapped CBCs on a phylogenetic tree, showed for the Ulvales 

(Ulvophyceae, Chlorophyta) that CBCs did not necessarily correspond to species level 

but were rather found in deeper nodes corresponding to genus, family or even higher 

taxonomic levels. These findings were later also reported for the orders 

Chaetophorales, Chaetopeltidales, Oedogoniales and Sphaeropleales in the 

Chlorophyceae (Caisová et al., 2013). 

Another method using secondary structure information for diagnostic purposes, is the 

identification of non-homoplasious synapomorphies (NHSs) sensu Marin et al. (2003, 

2005; Marin & Melkonian, 2010). This a posteriori approach screens the secondary 

structure of rRNA genes (nuclear- or plastid-encoded rRNA operons and spacer 

regions), or the sequence of a protein coding gene at the amino acid level (e.g. the 

plastid-encoded rbcL gene), for unique molecular signatures for clades in a well-

resolved phylogenetic tree with the prerequisite that all members of the investigated 

group share the derived character state and convergent evolution does not occur 

outside the investigated clade. These unique features include hemi CBCs, CBCs or 

disrupted base-pairings in otherwise paired helix regions, nucleotide changes in single-

stranded spacers or deviating loop motifs in the rRNA genes as well as deviating 

residues in protein coding genes.  

1.1.4. Recommendation of Holistic Approaches 
There is however no universal method that is equally suitable to discriminate between 

species in all green algal groups. In fact, results can vary rather tremendously and it is 

not a priori predictable which approach will work best for the organisms of interest. 

Therefore, more and more authors advocate integrated approaches which combine 

several methods for a more robust prediction of species boundaries (Pröschold & 

Leliaert, 2007; Saunders, 2008; Marin & Melkonian, 2010; Hoef-Emden, 2012; 

Neustupa et al., 2013a; Darienko & Pröschold, 2015; Škaloud et al., 2015; Liu et al., 

2017). This is explicitly not limited to DNA-based methods but includes, for example, 
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morphological and ultrastructural data, information on life cycles or ecology and 

biochemical characteristics. There is no panacea as to which combination works best; 

the tendency is however that the more methods are used, with ideally congruent 

outcomes, the more reliable is the allocation on species level. 

 

1.2. History of the Genus Microthamnion 

The green algal genus Microthamnion is a prime example for difficulties arising in 

morphology-based classifications as both, infrageneric divisions, and its position in a 

higher taxonomic context, were a matter of controversy since its first description.  

Established in 1849 by Nägeli in Species algarum (Kützing, 1849), the genus was 

introduced with the type species Microthamnion kuetzingianum Nägeli, a minuscule 

green alga forming branched filaments which end in obtuse cells. Cell dimensions in 

Microthamnion are quite variable and range from 1.5 to 5 µm in diameter and can be 

2-15 times longer than broad (John & Johnson, 1987). The thin-walled cells are 

uninucleate (e.g. Greger, 1915) and contain a single parietal chloroplast that contains 

small starch granules (Prauser, 1957; Watson & Arnott, 1973; Tupa, 1974; Bakker, 

1995), but lacks a pyrenoid. Oil droplets have been found in the cytoplasm as an 

assimilation product (Prauser, 1957; Printz, 1964; Tupa, 1974). The ‘plant’ is usually 

attached to a substrate with a basal cell, but also occurs free floating in plankton. 

Microthamnion reproduces through bottle shaped, biflagellate zoospores which are 

developed in vegetative cells that have undergone differentiation into zoosporangia. 

Although this differentiation usually starts with the terminal cells, every cell except the 

basal attachment cell has been shown to be capable of zoospore formation  (Greger, 

1915; Tupa, 1974; John & Johnson, 1987). Zoospore formation and their ultrastructural 

features have been extensively studied (Greger, 1915; Watson & Arnott, 1973; Watson, 

1975; John & Johnson, 1987), but sexual reproduction is unknown. Microthamnion 

occurs in a wide range of lentic and lotic freshwater habitats, such as rivers, streams, 

canals, lakes, ponds or peat bogs. But it has also been found in temporary habitats, such 

as water filled boot prints or smaller puddles, in soil when covered by a water film, in 

extreme water qualities as present in waste water facilities, or highly acidic mine 

drainage water (Hargreaves et al., 1975; Foster, 1982). It is globally distributed and 

does not seem to be restricted to certain degrees of latitude. 

Although Microthamnion was recognized as a distinct genus right from the beginning, 

its place in the taxonomic system was frequently discussed and changed repeatedly 

over time. This was, for one, due to more detailed investigations in Microthamnion 

itself, but was also owed to general taxonomic rearrangements, renamings or the 

erection of new classes and orders in the Chlorophyta, which were a natural result from 

advances in laboratory techniques, such as electron microscopy and later, of course, 

molecular methods. 
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When first introduced, Microthamnion was listed as a genus in the family Ulotrichaceae 

(Kützing, 1849), an assessment that was only supported by a brief entry in another 

algal compendium (Reinsch, 1867). Also Hansgirg’s (1886) suggestion that 

Microthamnion belonged to the Trentepohliaceae could not persist due to the lack of 

astaxanthin and zoosporangia not being restricted to terminal cells (Greger, 1915). 

Instead, an affiliation with the Chaetophoraceae (Chlorophyceae, Chaetophorales), 

which had been proposed earlier by Rabenhorst (1863), was acknowledged by various 

members of the research community (e.g. Cooke, 1884; Greger, 1915; Prauser, 1957). 

In West & West (1907), Microthamnion was listed in the Microthamniaceae, a family 

that was earlier introduced by Heering (1914) as a family in the Ulotrichales, but 

according to them, formed a sister family to the Chaetophoraceae in the 

Chaetophorales. Watson & Arnott (1973) also leaned towards the idea to assign 

Microthamnion to the Microthamniaceae, albeit without a distinct position in the 

systematic system, since Microthamnion zoospores possessed unique features among 

the Chlorophyceae. Another argument they formulated against its  integration in the  

Chaetophoraceae, was the presence of siphonaxanthin (Weber & Czygan, 1972) which 

other chaetophoralean algae lacked. In 1984, Mattox & Stewart established the new 

family Pleurastraceae and placed Microthamnion in the order Pleurastrales (class 

Pleurastrophyceae). Melkonian (1990), on the other hand, proposed the erection of a 

new order, the Microthamniales, yet with uncertain affinities to accommodate 

chlorophycean algae which shared a distinctive ultrastructure in their zoospores as 

well as a common type of mitosis and cytokinesis (i. e. closed metacentric spindle/ 

centripetal furrow with phycoplast). Bakker (1995) saw Microthamnion as an 

intermediate between Pleurastrophyceae and Chlorophyceae due to cell division 

showing aspects of either groups. Recent molecular phylogenetic studies however 

clearly confirm the affiliation with the now called Trebouxiophyceae (Friedl, 1995), 

which cover the former Pleurastrophyceae to the exclusion of the Tetraselmidales, 

Pleurastrum and a few other taxa, and acknowledge the order Microthamniales, albeit 

now with less members than initially described (e.g. Neustupa et al., 2013a,b; Fučíková 

et al., 2014; Lemieux et al., 2014; Sanders et al., 2016). 

Subgeneric divisions in Microthamnion were however even more vividly discussed 

than its position in the taxonomic system. A recent search of Index Nominum Algarum 

(INA; Silva, 2019) and AlgaeBase (Guiry & Guiry, 2019), conducted in June 2019, 

revealed 20 entries on Microthamnion species, subspecies and variations in INA, some 

of them overlapping. AlgaeBase however listed eight species in the genus of which only 

five had been flagged as accepted taxonomically: the type species M. kuetzingianum 

(Kützing, 1849), M. strictissimum (Rabenhorst, 1863), M. curvatum (West & West, 

1907), M. exiguum (Reinsch, 1878) and M. vexator (Cooke, 1884). These results give a 

first insight in how divisive the debate on species delimitation in Microthamnion has 

been since its introduction in the mid-19th century. 
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Being ubiquitously available, the alga quickly gained popularity in the research 

community and was subject for multiple studies. The initial species descriptions, based 

on natural samples or enrichment cultures, were rather simplistic compared to 

modern standards and consisted mainly of a brief outline of the thallus, some 

measurements, such as cell diameter and length to breadth ratio of single cells, and 

modes of branching (Kützing, 1849; Rabenhorst, 1863; Reinsch, 1878; Cooke, 1884; 

West & West, 1907). However, more detailed studies followed, which went along with 

revisions and vivid discussions on species boundaries. Especially the two best known 

species, M. kuetzingianum and M. strictissimum, were a subject of controversy.  

Schmidle (1899) still listed them as two separate species, since he found their habitus 

to be quite distinct and transient growth forms were unbeknown to him. Besides, he 

stated that he always found them separately, although it does not become entirely clear 

whether he referred to the formol material and exsiccated type material (M. 

strictissimum) he investigated in that study, or general observations made on natural 

samples. But when culture-based investigations, which allowed for more detailed 

studies and observations over a longer period of time, gained popularity also first 

doubts on these clear boundaries arose. Greger (1915), for example, who worked with 

unialgal cultures and gave a detailed description of development and zoospore 

formation in Microthamnion, advised caution regarding species delimitations. He was, 

for instance, sure that M. vexator was identical to M. strictissimum and generally 

suggested that environmental factors, such as nutrient concentrations, could have an 

effect on the morphology and thus on subgeneric distinctions. This notion was later 

strongly supported by Prauser (1957), who clearly stated that M. kuetzingianum and 

M. strictissimum were mere growth forms of the same species since in his own 

experiments, which were based on unialgal, axenic (through antibiotic treatment) 

cultures grown in different media, they were easily transformed into one another. Tupa 

(1974), who documented the progressive development of Microthamnion in axenic 

culture via photomicrography, agreed with Prauser’s findings. She reported plants 

under favorable growth conditions to resemble the descriptions of M. strictissimum 

with a considerably higher length to breadth ratio, whereas plants in older cultures 

displayed shorter cells like in M. kuetzingianum. She also found curved terminal cells 

in some plants under less favorable conditions, which resembled those of M. curvatum, 

albeit with a broader cell diameter than described in West & West (1907). She 

concluded that M. strictissimum was a growth form of M. kuetzingianum and that 

M. curvatum/M. exiguum could be distinct species, but would have to be studied in 

more detail to confirm this assumption. The work of John & Johnson (1987) further 

substantiated these findings. Besides giving a detailed review on species erected in the 

genus so far, they also reported on their own experiments with several monoclonal, yet 

xenic Microthamnion cultures grown under different light and temperature settings. 

They confirmed the morphological plasticity of M. kuetzingianum and M. strictissimum 

in response to more or less favorable conditions. “Optimal” temperatures of 10 to 28°C 

and light intensities of 3-20 kilolux lead to rapid growth which resulted in longer cells 
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(i.e. strictissimum form), whereas lower temperatures and light intensities at the lower 

end of the spectrum went along with slower growth and smaller cells (= kuetzingianum 

form). From their observations the authors concluded that Microthamnion was either 

a single, very polymorphic species or consisted of two species complexes. One species 

complex summarized the type species M. kuetzingianum with M. strictissimum, M. 

vexator and all previously described variations of foresaid species, and the other 

consisted of M. exiguum and M. curvatum, whose sole distinctive feature was a cell 

diameter below 3 µm.  

A first molecular approach by the same authors some years later, seemed to finally end 

discussions on subgeneric distinctions in Microthamnion (John et al., 1993). Amplified 

nuclear-encoded 18S rDNA of several Microthamnion isolates was digested with a set 

of restriction enzymes and the fragment patterns subsequently analyzed via gel 

electrophoresis – an approach which at that point had been successfully used to 

discriminate between closely related species in the red algal genus Gymnogongrus 

(Parsons et al., 1990; Maggs et al., 1992). Since no deviating pattern among the 

different strains could be detected, the authors assumed a close genetic relationship 

and saw their previous hypothesis of Microthamnion being monospecific confirmed. 

 

1.3. Current Situation and Aims of this Study 

Observations on axenic Microthamnion cultures in the workgroup Melkonian 

(Dorothee Langenbach and Veronica Zilz, AG Melkonian, University of Cologne, 

personal communication) did however question the monospecificy of Microthamnion 

again. Although all cultures were kept under the same laboratory conditions, i.e. 

culture medium, temperature, light intensities, culture vessels and inoculation date 

(= same age), the morphology among some of them differed quite remarkably. Initial 

ITS2 sequencing for three strains also revealed major differences on the molecular 

level. These findings inspired a Master thesis (Reder, 2015) which was conducted 

based on 63 Microthamnion strains in culture. In that work, a consensus secondary 

ITS2 structure for 44 Microthamnion strains was developed and phylogenetic analyses 

based on 18S rDNA and ITS2 (inclusive of the flanking regions of 5.8S rDNA and 28S 

rDNA which were covered by the ITS2 primers) sequences were conducted to address 

the question of intrageneric variability and putative species number. Also CBCs in the 

ITS2 were determined and restriction fragment length polymorphism (RFLP) analyses 

were performed in silico on all 26 SSU sequences obtained during that study. Although 

intrageneric variability could be depicted with combined analyses of those two 

markers, the phylogeny was not resolved and species numbers could only be estimated 

by branch lengths and groupings via CBC clades and identical restriction fragment 

patterns. 
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A challenge all attempts of species identification in asexual organisms have to face, 

besides providing criteria for grouping specimens together, is the definition of a clear 

boundary that discriminates characteristics of a species from inter- and intraspecific 

variability. Although the individual methods clearly specify their prerequisites, the 

exact threshold remains somewhat arbitrary as its ‘correctness’ cannot be proven by 

mating experiments. 

This work used the genus Microthamnion for a case study on employing molecular 

methods for species delimitation. Several approaches were combined to come to a 

most substantiated conclusion on species boundaries. Other approaches, although 

undoubtedly important, like investigations on morphology or life cycles et cetera 

would have exceeded the frame of this study and were thus left for future works. 

One aim of this study was the establishment of a well-resolved Microthamnion 

phylogeny, using several molecular markers. The latter were chosen to unite multiple 

properties. For one, a combination of conserved and variable markers was selected and 

second, both the nuclear and plastid genomes were covered. The nuclear-encoded 

rRNA operon offered several useful traits as it unites conserved genes and extremely 

variable spacer regions which can be used for different phylogenetic purposes. Where 

the most conserved 18S gene as well as the 3’ end of the 28S gene, which codes for the 

large subunit (LSU) of the eukaryotic ribosome, increase resolution, the spacer regions 

can give enough variability to discriminate species. Therefore the ITS2 was chosen for 

its putative power to differentiate on species level and the complete SSU for more 

stability and increased resolution. The 5’ end of the LSU (domains A to D) was included 

as it unites the variable C-domain with conserved parts and thus holds an intermediate 

position. The 5.8S gene was not targeted as a whole, but the 3’ end was covered by the 

ITS2 primers and also used for phylogenetic purposes. As described before, the plastid-

encoded rbcL has been deemed equally suitable as a marker on species level like the 

ITS2 and as a protein coding gene it offered the possibility to analyze the data on both, 

DNA and protein level. Single-gene as well as combined analyses were performed to 

(i) distinguish the marker combination best suitable for the identification of 

monophyletic, well supported clades and thus putative species and (ii) to find out 

which marker could best be used for a quick estimation of the intrageneric variability 

and, in the future, serve as a barcode to assign new Microthamnion isolates to existing 

clades or to reveal new ones. 

One problem that presented itself in the beginning of this study was that, besides 

Characium perforatum (also referred to as Fusochloris perforata, strain SAG 28.85/ 

UTEX 2104), no closely related taxa to Microthamnion were known. Recent 

phylogenetic studies covering the Trebouxiophyceae only ever worked with those two 

taxa, and even the next more distantly related organisms were not unequivocally 

identified, since the relationship among trebouxiophycean lineages was not resolved 

(Pröschold et al., 2011; Fučíková et al., 2014; Darienko & Pröschold, 2015; Sanders et 

al., 2016) or in conflict with previously published phylogenies at positions crucial for 

the present study (Lemieux et al., 2014; Suzuki et al., 2018). 
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For sound phylogenetic analyses however, the availability of (preferably closely 

related) outgroup sequences is essential (Graham et al., 2002). Thus, another aim of 

this study was to identify additional outgroup candidates. This was achieved by 

compiling an extensive multi-gene alignment covering the known trebouxiophycean 

diversity, which was used for a phylogenetic tree reconstruction that allowed for the 

identification of the best outgroup sequences for phylogenetic analyses in 

Microthamnion. The assembly of the trebouxiophycean alignment included both, 

exhaustive BLAST (Basic Local Alignment Search Tool; Altschul et al., 1990) searches 

with Microthamnion and Characium query sequences, as well as a thorough literature 

search for trebouxiophycean taxa which could be incorporated in the alignment and 

also be starting points for continued BLAST searches. Apart from the identification of 

suitable outgroup candidates, a trebouxiophycean phylogeny with reference strains 

depicting the Microthamnion diversity was needed to confirm the monophyly of the 

genus. 

Another challenge was the lack of secondary structure information for the ITS2 

molecule applicable on all trebouxiophycean lineages. Since sound phylogenetic tree 

reconstructions depend on the comparison of homologous bases, their identification is 

absolutely essential and can only be achieved by aligning sequences according to 

secondary structure motifs. Thus, the objective was to establish such a universal 

secondary structure for the Trebouxiophyceae and descry those positions that could 

be homologized among all taxa and enable their use in phylogenetic analyses. 

Apart from the phylogenetic tree reconstructions, also other methods were applied on 

the Microthamnion sequence data in order to confirm monophyletic clades from the 

phylogeny and thus reinforce support for species boundaries. In a first step, the ITS2 

secondary structure model from Reder (2015) was augmented by sequences of new 

strains, revised where necessary and searched for putative CBC positions which could 

then be checked in the alignment file. Besides, the secondary structures of the amplified 

operon genes as well as the protein alignment of the rbcL sequences were screened for 

NHSs sensu Marin et al. (2003) that were in accordance with the monophyletic groups 

in the previously established phylogeny.  Also the fingerprinting method as used in 

John et al. (1993) was applied in silico on the now much enlarged SSU dataset to retrace 

whether the authors would have come to the same conclusion had they had the same 

strains at their disposal.  

The results from the secondary structure approaches, the restriction fragment length 

polymorphisms and other ‘phenetic’ molecular characters (e.g. sequence length of the 

individual ITS2 helices) were then compiled in a data matrix, similar to those used 

when calculating trees based on morphological characters, in order to compute a 

parsimony-based tree that was then compared with the phylogeny inferred from the 

regular likelihood analyses with an evolutionary model. 
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It should be noted that own results (mainly sequence data) and templates (e.g. 

alignment files and figures to be revised) from the above mentioned previous work 

(Reder, 2015) were incorporated in the present study and labelled accordingly. 
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2. Material and Methods 

2.1. Cultures and Culturing Conditions 

The present study was based on 74 Microthamnion strains in culture which were all 

previously identified as Microthamnion via light microscopy. Detailed information 

regarding origins, strain numbers, supposed species name and sample locality are 

given in Table 1. They were made available through the Culture Collection of Algae at 

the University of Cologne (CCAC) and were either own isolates (CCAC- and M-numbers) 

or obtained from the following algal culture collections: ACOI, CAUP, CCALA, CCAP, 

NIES, SAG and UTEX (for unabridged form consult abbreviations listed on page IX). 

The cultures were grown in 100 ml Erlenmeyer flasks with modified Bold’s Basal 

Medium (BBM) which contained the threefold amount of vitamins compared to regular 

BBM (as of the CCAC homepage; see Supplementary Table 1, p. 91, for recipe). For 

maintenance, the cultures were kept in a culture chamber by Johnson Controls at 16°C 

with a photon fluence rate of 10-45 µmol m-2 s-1 in a light/dark cycle of 14/10 hours. 

 

 

 

 

 

 

 

 

 
Table 1. List of strains 
Strain numbers in bold refer to axenic cultures; one culture marked with an asterisk (*) is no longer available. 
The species name is given as listed on the respective culture collection’s homepage. Strains with CCAC- or M-
numbers not yet publicly available are given with the internal labeling. ACOI = Coimbra Collection of Algae, 
Portugal (http://acoi.ci.uc.pt); CAUP = Culture Collection of Algae of Charles University in Prague, Czech 
Republic (http://botany.natur.cuni.cz/algo/caup-list.html); CCAC = Culture Collection of Algae at the 
University of Cologne, Germany (http://www.ccac.uni-koeln.de); CCALA = Culture Collection of Autotrophic 
Organisms, Třeboň, Czech Republic (http://ccala.butbn.cas.cz); CCAP = Culture Collection of Algae and 
Protozoa, UK (http://www.ccap.ac.uk); M = Culture Collection Melkonian, Botanical Institute, University of 
Cologne, Germany; NIES = Microbial Culture Collection at National Institute for Environmental Studies, 
Tsukuba, Japan (http://mcc.nies.go.jp); SAG = Sammlung von Algenkulturen, University of Göttingen, 
Germany (http://www.epsag.uni-goettingen.de); UTEX = Culture Collection of Algae at The University of 
Texas, Austin, USA (http://www.utex.org).  
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Strain number cf. Species Locality Isolator Year 

ACOI 140 M. kuetzingianum  Portugal, Amieiro, pond near Arazede. M. F. Santos 1979 
ACOI 1447 M. kuetzingianum Portugal, Mina do Vale das Gatas. P. Ávila 2001 

ACOI 1620 M. kuetzingianum  Portugal, Abrantes, Campo Militar de Sta Margarida, 
Barragem do Carvalhoso, canal, plankton. 

M. F. Santos 2003 

ACOI 1621 M. strictissimum Portugal, Abrantes, Campo Militar de Sta Margarida, 
lake north of Lagoa da Murta, plankton. 

M. F. Santos 2003 

ACOI 1817 M. kuetzingianum  Portugal, Serra da Peneda. J. Paiva 2005 

ACOI 248 M. strictissimum  Portugal, Serra da Estrela, pond near Lagoa Comprida, 
plankton. 

M. F. Santos 1986 

ACOI 2656 Microthamnion sp. Portugal, Serra da Estrela, pond near Lagoa Comprida. O. Lourenço 1991 

ACOI 2660 Microthamnion sp. Portugal, Mata Nacional de Foja, canal. G. Carvalho 2003 

ACOI 398 M. strictissimum  Portugal, Serra da Estrela, pond near Lagoa Comprida. O. Lourenço 1990 

CAUP J 1201 M. kuetzingianum  Czech Republic, Central Bohemia, near Třtice, peat-bog 
"V Bahnách", soil. 

Neustupa 1998 

CCAC 0054 M. kuetzingianum  England, Cornwall, ford near Bowithick, freshwater. M. Melkonian 1978 

CCAC 0087 M. kuetzingianum  Germany, Lohmar near Cologne, Jexmühle, freshwater.  M. Melkonian 2002 

CCAC 0539 B Microthamnion sp. Germany, Harz, freshwater. M. Melkonian 1979 

CCAC 2011 M. cf. strictissimum Germany, Cologne, Wahner Heide, location 1, freshwater. M. Melkonian 2002 

CCAC 2081 Microthamnion sp. Germany, Harz, Brunnenbachweg near Braunlage, 
temporary puddle, freshwater. 

M. Melkonian 2002 

CCAC 2182 Microthamnion sp. Germany, Cologne, Wahner Heide, freshwater. M. Melkonian 2003 

CCAC 2197 B Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 

CCAC 2198  Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 

CCAC 2199 B Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 

CCAC 2223 B M. kuetzingianum Germany, near Grande, swampy area beside River Bille, 
freshwater. 

L. Kies 1970 

CCAC 2224 M. kuetzingianum  Germany, near Grande, swampy area beside River Bille, 
freshwater. 

L. Kies 1970 

CCAC 2279 Microthamnion sp. Germany, Eifel, Kall, industrial area 1, freshwater. M. Melkonian 2003 

CCAC 2764 B Microthamnion sp. Austria, Waldviertel. Fuchsteich (near Gmünd), 
freshwater. 

M. Melkonian 2005 

CCAC 2771 Microthamnion sp. Austria, Waldviertel, Fuchsteich (near Gmünd), 
freshwater. 

M. Melkonian 2005 

CCAC 2804 B Microthamnion sp. Austria, Waldviertel, peat bog (near Heidenreichstein), 
freshwater. 

M. Melkonian 2006 

CCAC 2916 Microthamnion sp. Germany, Cologne, Wahner Heide, Fuchskaule, 
freshwater. 

M. Melkonian 2006 

CCAC 2942 B Microthamnion sp. Austria, Waldviertel, Blockheide, freshwater.  M. Melkonian 2007 

CCAC 2943 B Microthamnion sp. Germany, Cologne, Lindenthal, Stadtwald, freshwater. M. Melkonian 2006 

CCAC 3546 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410), 
freshwater. 

M. Melkonian 2012 

CCAC 3547 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410), 
freshwater. 

M. Melkonian 2012 

CCAC 3664 B Microthamnion sp. Germany, Eifel, Oberer Marmagener Stauteich, near shore, 
plankton. 

M. Melkonian 2012 

CCAC 3676 B Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 3677 Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 3710 Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 3838  Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 3842 B Microthamnion sp. Germany, Stallberger Teiche, Lohmar, squeezed Sphagnum, 
freshwater. 

M. Melkonian 2013 

CCAC 3843 B Microthamnion sp. Germany, Stallberger Teiche, Lohmar, squeezed Sphagnum, 
freshwater. 

M. Melkonian 2013 

CCAC 4161 Microthamnion sp. Scotland, Longhowe Loch, freshwater. M. Melkonian 2013 

CCAC 4234 Microthamnion sp. Italy, Sardinia, inland pond "Pauli Trottas", near Stagno di 
Cabras, pipette probe from stone and sediment, freshwater. 

S. Wittek 2013 

CCAC 4544 B Microthamnion sp.  Austria, Waldviertel (sample 19a), Schremser Hochmoor, 
Prügelsteg (GPS: 48°47.913' N 15°6.01' E), squeezed 
Utricularia, freshwater. 

M. Melkonian 2014 
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Strain number cf. Species Locality Isolator Year 

CCAC 4549 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' E), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4558 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' E), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4559 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' E), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4717 B Microthamnion sp.  Austria, Waldviertel, Schremser Hochmoor, Prügelsteg (GPS: 
48°47.913' N 15°6.01' E), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4818 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410, 
enrichment SFM), freshwater. 

L. Caisová 2012 

CCAC 4819 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410, 
enrichment 3N BBM), freshwater. 

L. Caisová 2012 

CCAC 4820 Microthamnion sp. Germany, Eifel, Nettersheim (enrichment M7), leaf collected 
from a shaded pond. 

L. Caisová 2012 

CCAC 4821 Microthamnion sp. Germany, Eifel, (sample 031, enrichment M7) Dahlemer 
Binz, Schlenke II (footmark), conductivity: 26,9 µS, 
temperature: 23,4°C, pH 4-5 

L. Caisová 2012 

CCAC 4822 Microthamnion sp. Germany, Schwarzwald (sample 031, enrichment M7, clone 
2), freshwater. 

L. Caisová 2012 

CCAC 4853 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 

CCAC 4854 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 

CCAC 4855 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 

CCAC 4856 Microthamnion sp.  Germany, Eifel, Dahlemer Binz, freshwater. S. Wittek 2014 

CCAC 4857 Microthamnion sp.  Germany, Eifel, Dahlemer Binz, freshwater. S. Wittek 2014 

CCAC 5520 B M. cf. kuetzingianum Germany, Frechen, waste water plant, Bio-P tank, water-
body-sample, freshwater. 

V. Zilz 2013 

CCAC 5521  M. cf. kuetzingianum Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5530 B M. cf. kuetzingianum Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5545 M. cf. strictissimum Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5547 B M. cf. curvatum Germany, Glessen, waste water plant, aeration tank, 
scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5561  M. cf. kuetzingianum Germany, Glessen, waste water plant, aeration tank, 
scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5585 M. cf. strictissimum Germany, Villau, waste water plant, aeration tank, water-
body-sample, freshwater. 

V. Zilz 2013 

CCAC 8001 B Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410, 
enrichment SFM), freshwater. 

L. Caisová 2012 

CCAC 8002 B Microthamnion sp. Germany, Schwarzwald (sample 031, enrichment M7, clone 
1), freshwater. 

L. Caisová 2012 

CCALA 368 M. kuetzingianum  Slovakia, Orava, peat bog. Kovacik 1983 

CCAP 450/2 M. kuetzingianum  Antarctica, South Orkney Islands, Signy Island, freshwater.  Broady 1974 

CCAP 450/3 M. kuetzingianum  England, Cornwall, River Gannel, freshwater. Foster 1975 

CCAP 450/4 M. kuetzingianum  England, Cornwall, by River Hayle, freshwater. Foster 1976 
M 2196/1 A Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/ 

Ahekapelle, freshwater. 
M. Melkonian 2002 

M 2412/1 A Microthamnion sp. Germany, Eifel, Strohner Maarchen, freshwater. M. Melkonian 2003 

M 4555* Microthamnion sp.  Austria, Waldviertel, Schremser Hochmoor, Prügelsteg (GPS: 
48°47.913' N 15°6.01' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

NIES 479 M. kuetzingianum  Japan, Hokkaido, Sapporo, Toyohira River, freshwater. F. Kasai 1987 

SAG 114.80  M. kuetzingianum 
(form.  M. curvatum) 

Origin unknown, freshwater. F. Ambard 1968 

SAG 115.80 M. kuetzingianum 
(formerly  M. 
strictissimum) 

Germany, near Hamburg, coordinates: 53.535411/ 
10.007172 (Lat./Long.), freshwater. 

A. Weber 1969 

UTEX LB 237 Microthamnion sp. USA, Indiana, Bloomington, pond, freshwater. R. C. Starr 1953 

 
 
 

    



Material and Methods 

- 16 - 
 

2.2. DNA Extraction/Preparations for Colony PCR 

Prior to amplification, the DNA was either extracted or the cultures pretreated for 

colony PCR. 

DNA extraction was performed using an E.Z.N.A® Plant DNA Kit by OMEGA according 

to the manufacturer’s instructions for fresh/frozen plant samples. To harvest the cells, 

1.5 - 2 ml algal culture were transferred to a 2 ml microcentrifuge tube and, depending 

on the condition of the culture, either concentrated via sedimentation (older cultures 

with larger individuals) or centrifuged for 10 minutes at 10,000 x g (younger cultures 

with smaller specimen/zoospores). The supernatant was discarded afterwards. For 

mechanical disruption of the cells, they were first frozen in liquid nitrogen with a 

stainless steel bead (∅ 5 mm) added to the microcentrifuge tube and subsequently 

disrupted in a tissue lyser (Tissue Lyser II, Qiagen). The tissue lyser adapter set was 

pre-frozen at -80°C for 15-20 minutes to prevent the pellet from thawing during the 

first run. The tissue lyser was operated twice for 1.5 minutes at 25 Hz, with the samples 

thawed before the second run. Lysis buffer was provided with the kit and added 

immediately after disruption of the cells. All further steps were performed according 

to the manufacturer’s protocol. To achieve higher concentrations, the DNA was eluted 

in two times 25 µl heated elution buffer (65°C) instead of the recommended 50 µl. 

Afterwards the DNA concentration was quantified via NanoDrop 2000 

spectrophotometer (Thermo Scientific). For long-term storage, the DNA was 

transferred to -21°C. 

When colony PCR was performed, the cells were harvested as described above. After 

removal of the supernatant, 100 µl of TE buffer (see Table 2 for recipe) were added and 

the cells disrupted as described earlier. The obtained crude lysate then served directly 

as a template for PCR. The excess lysate was stored at 21°C. 

 
Table 2. TE Buffer 

Amount per 100 ml Reagent 

1 ml  1 M Tris-HCL (pH 8) 
400 µl 0.25 M EDTA Titriplex III 
98.6 ml bidistilled water 

 

2.3. Polymerase Chain Reaction 

DNA amplification was performed via Polymerase Chain Reaction (PCR) as described 

by Saiki et al. (1988). In the present study, plastid-encoded as well as nuclear-encoded 

genes were investigated. The DNA was amplified with either a Taq (Thermus aquaticus) 

polymerase or, in cases of ITS2, the Phusion® High-Fidelity DNA Polymerase by NEB. 

The primers used for amplification of 18S rDNA, ITS2 and partial 28S rDNA, and the 

plastid-encoded rbcL gene can be retrieved from Table 3. 
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Table 3. PCR and sequencing primers 
PCR and sequencing primers used for amplification of the nuclear-encoded 18S rRNA gene, the ITS2 molecule 

with flanking regions of 5.8S and 28S rRNA genes (including the D-domain) and the plastid-encoded rbcL gene.  

PCR/sequencing primer Sequence (5' to 3') Published in  

EAF3 TCGACAATCTGGTTGATCCTGCCAG Marin et al. 2003 

SSU_BR_49_50 CCTACGGAAACCTTGTTA unpublished 

5.8S_ITS03_forw CGATGAAGAACGYAGCGA Marin 2012 

LSU_29_forw TGAACTTAAGCATATCAATAAGCGG unpublished 

28S_ITS055_rev CTCCTTGGTCCGTGTTTCAAGACGGG Marin 2012 

28S_1491_rev TGCTGTTCACATGGAACC Marin 2012 

28S_1495_rev CCAYGTCCAAYTGCTGTTCACRTGG Marin 2012 

BM_rbcL_1a_F ATGKYWCCACAAACWGARAC unpublished 

BM_rbcL_3R TCTTTCCAWACTTCACAHGCWGCWG unpublished 

 

The amount of chemicals used per PCR reaction is given in Table 4 (Taq polymerase) 

and Table 5 (Phusion® High-Fidelity DNA Polymerase). The volume of DNA 

template/crude lysate used with Taq polymerase varied between 0.5 and 5 µl, 

depending on the concentrations achieved during DNA extraction. PCR reactions with 

Phusion® High-Fidelity DNA Polymerase were prepared with either 1 µl DNA template 

(concentrations ≥ 50 ng/µl) or 1.5 µl (concentrations < 50 ng/µl). In all reactions the 

amount of nuclease-free water was adjusted accordingly. DNA was amplified using a 

Primus 96 plus thermocycler (MWG Biotech) with the program shown in Table 6 and 

Table 7 respectively. When a low yield of PCR product made reamplification necessary, 

a nested primer combination was applied and 0.5 µl of the primary PCR product served 

as a template for secondary PCR. 

 
Table 4. Amount of chemicals per PCR reaction using Taq Polymerase 

Amount  Reagent 

18.875 µl   Nuclease-free water 

2.5 µl  10x DreamTaqTM Buffer 

2.5 µl  dNTPs (2 mM) 

0.25 µl  Forward Primer (10 mM) 

0.25 µl  Reverse Primer (10 mM) 

0,5 µl  Template DNA 

0.125 µl  DreamTaqTM DNA Polymerase (5 units/µl) 

25 µl  Total Volume 

 

Table 5. Amount of chemicals per PCR reaction using Phusion® High-Fidelity DNA Polymerase 

Amount  Reagent 

10.2 µl   Nuclease-free water 
4 µl  5x Phusion GC Buffer 
2 µl  dNTPs (2 mM) 
1 µl  Forward Primer (10 mM) 
1 µl  Reverse Primer (10 mM) 
1 µl  Template DNA 

0.6 µl  DMSO 
0.2 µl  Phusion® High-Fidelity DNA Polymerase (2,000 U/ml) 

20 µl  Total Volume 
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Table 6. Thermo-cycling conditions PCR (Taq Polymerase) 

Step Temperature [°C] Time [Min.] 

Initial Denaturation 95 03:00 

30 cycles à   
Denaturation 95 00:45 

Annealing 55 01:00 

Elongation 72 03:00 

Final Elongation 72 05:00 

Hold 10 ∞ 

 
Table 7. Thermo-cycling conditions PCR with Phusion® High-Fidelity DNA Polymerase  
The annealing temperature of 67°C refers to the primer combination 5.8S_ITS03_forw + 28S_ITS055_rev.  

Step Temperature [°C] Time [Min.] 

Initial Denaturation 98 00:30 

30 cycles à   
Denaturation 98 00:10 

Annealing 67 00:30 

Elongation 72 00:30 

Final Elongation 72 05:00 

Hold 10 ∞ 

 

 

2.4. Agarose Gel Electrophoresis 

The success of DNA amplification was evaluated via agarose gel electrophoresis. 3 µl of 

the PCR probes were mixed with a drop of loading dye (5 x Green GoTaq® Reaction 

Buffer, Promega) and loaded on an ethidium bromide stained (2.5 µl EtBr/50 ml gel) 

1% agarose gel based on TAE-buffer (see Table 8 for recipe of 50-fold stock solution). 

For size comparison, 1.5 µl GeneRuler 1 kb DNA ladder (Thermo Scientific) were 

applied in the outermost slots. Gels were run for 20-30 minutes at 120 V in a VARIA 1 

Electrophoresis Unit (Roth), with DNA fragments being visualized afterwards using an 

ultraviolet transilluminator (INTAS).  

 
Table 8. 50 x TAE-Buffer 

Amount Chemical 

242 g  Tris 

16.615 g  Na2 EDTA 

57.1 ml  Glacial acetic acid 

Up to 1 l final volume bidistilled water 

Adjust pH to 8.0 with glacial acetic acid 
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2.5. Sequencing Reaction 

The PCR products were sequenced commercially by Eurofins Genomics GmbH, 

Ebersberg, Germany, with the Sanger method (Sanger et al., 1977). Prior to sequencing, 

the PCR probes were purified via isopropanol precipitation (for protocol see 

Supplementary Table 2, p. 91) and eluted in 20 µl of nuclease-free water. The DNA 

concentration was measured with the NanoDrop 2000 spectrophotometer. The 

sequencing reactions were prepared with the purified PCR product (adjusted to the 

right concentrations with nuclease-free water) and a primer, according to the 

requirements of the “PlateSeq Kit Mix for premixed samples” (Eurofins). 

 

2.6. Sequence Assembly and Correction  

The results were provided as shell command files (scf), each containing the data for 

one single reading. All readings belonging to one algal strain were assembled with 

AlignIR V2.0.48 (Li-COR) in a project file. They were carefully checked and corrected 

manually where necessary. The consensus sequence of all corrected reads was 

exported into an alignment file. SeaView 4.4 (Gouy et al., 2010) was used as alignment 

editor.  

 

2.7. Taxon Sampling and Alignments 

2.7.1. Microthamnion 
A multi-gene alignment template consisting of Microthamnion 18S, partial 5.8S, ITS2 

and partial 28S rDNA sequences was obtained from a previous work (Reder, 2015) and 

extended by the C- and D-domain of the nuclear-encoded 28S rRNA and the complete 

plastid-encoded rbcL gene. A total of 17 (18S), 18 (ITS2 with flanking regions of 5.8S 

and 28S), 29 (28S) and 75 (rbcL) sequences were newly generated in this study and 

incorporated in said alignment (see Supplementary Table 3, p. 92, for details). 

18S, 5.8S and 28S sequences were aligned according to conserved secondary structure 

motifs which were originally obtained from the European Ribosomal RNA Database 

(Wuyts et al., 2004). Incongruences with other sequences or the secondary structure 

were rechecked in the alignment files and corrected when necessary. New ITS2 

sequences were pre-aligned among each other which allowed an easy recognition of 

the conserved spacer regions introduced by Caisová et al. (2013). The single helices 

were then aligned according to the secondary structure information obtained from 

Reder (2015). Whenever aligning proved difficult or ambiguous versions were 

possible, the helices were folded via Mfold (http://mfold.rna.albany.edu/?q=mfold). 

The obtained foldings ran through a manual pairwise comparison of all strains and the 

secondary structure model was updated where it deemed reasonable. 
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The rbcL gene was aligned manually against the database sequence of Microthamnion 

kuetzingianum UTEX 318 (accession number: KM462876). 

In addition to the above mentioned sequences, also database sequences were 

incorporated in the Microthamnion alignment. Therefore, extensive BLAST searches 

were performed with Microthamnion 18S, ITS2, 28S and rbcL query sequences. 

Datasets for phylogenetic analyses were cleared of all hypervariable regions and those 

positions which could not be unambiguously aligned.  

2.7.2. Trebouxiophyceae 
Several publications served as starting points for the set-up of a trebouxiophycean 

alignment that was meant to cover all known lineages of said class. RbcL data from 

representatives of the core Trebouxiophyceae and the Chlorellales, based on the work 

of Lemieux et al. (2014), were obtained from the NCBI (National Center for 

Biotechnology Information) DNA nucleotide database (https://www.ncbi.nlm.nih.gov) 

and incorporated in the alignment. The nucleotide sequences of those taxa were also 

used as query for an extensive BLAST search for additional closely related 

trebouxiophycean taxa. 

Other phylogenetic markers (i.e. 18S, ITS2 and 28S) of the same taxa were targeted 

with BLAST searches by strain number and, in cases where no hits were found, species 

name. Since the goal was to sample a congruent multi-gene alignment, only those 

sequences were summarized, which originated from the same taxon and strain. As an 

additional precaution to prevent the formation of a chimera in cases of eventually 

erroneous database information regarding strain numbers and sequence identity, 

preliminary single-gene phylogenetic analyses (not shown) were performed to confirm 

the same positioning in the individual marker’s phylogeny. 

In addition, more publications were screened for representatives of the 

Trebouxiophyceae (Ueno et al., 2005; Darienko and Pröschold, 2015; Hallmann et al., 

2016; Liu et al., 2017; Suzuki et al., 2018) and the data of eligible taxa obtained from 

the NCBI database. 

All significant hits were incorporated in the alignment (for details of the aligning 

process see above) and preliminary phylogenetic analyses performed (not shown) to 

find redundant sequences as well as those not belonging to the core-Trebouxiophyceae 

and Chlorellales and to eliminate those from the alignment. When one group was 

overrepresented, a selection of taxa was made in order to achieve a well-balanced 

taxon sampling. Prior to phylogenetic analyses, all hypervariable regions that could not 

be unambiguously aligned as well as intron sequences were excluded from the 

alignment. 
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2.8. Phylogenetic Tree Reconstructions 

All tree topologies were calculated on CHEOPS, a mainframe computer of the RRZK 

(Regionales Rechenzentrum der Universität zu Köln), using RAxML (Randomized 

Accelerated Maximum Likelihood) version 8.2.9 (Stamatakis, 2014). A total of 100 

trees was calculated based on 100 distinct randomized starting MP trees, and the tree 

with the best topology automatically determined by the program. All multi-gene 

datasets for ML and Bayesian analyses were partitioned, thus allowing the independent 

estimation of the evolutionary model parameters (GTR+I+Γ) for each partition 

separately. When rbcL protein data was incorporated, the LG substitution model was 

chosen after checking with AliView version 1.18 (Larsson, 2014) that there was no 

translational deviation from the standard code. 

The robustness of the trees’ branches was tested by bootstrap (Felsenstein, 1985) and 

Bayesian posterior probabilities analyses. Bootstraps were calculated with maximum 

likelihood (ML), neighbor joining (NJ) and maximum parsimony (MP) methods. NJ 

calculations were performed with both, the GTR and the LogDet (Lockhart et al., 1994) 

model. Bootstrap analyses were performed with 1000 replicates each. ML bootstraps 

were calculated with RAxML, where the parameters for the evolutionary model 

(GTR+I+Γ) were automatically determined by the program. NJ and MP bootstraps were 

calculated with PAUP* 4b10 (Swofford, 2002) with the evolutionary model parameters 

for NJ (GTR+I+Γ/LogDet) obtained from modeltest. MP bootstrap analyses were 

performed with 10 heuristic searches per replicate. When gapped alignments were 

used, the MP analyses had to be constrained towards 1000 rearrangements per 

replicate, all other analyses were unrestrained. Bayesian posterior probabilities were 

calculated with MrBayes 3.2.6 (Ronquist et al., 2012). Two parallel Markov chain Monte 

Carlo (MCMC) runs with four chains each and ten million generations were performed. 

The covarion option was only used for the congruent dataset since the two MCMC runs 

did not converge in the gapped alignments with covarion active. Every hundredth tree 

was sampled and a burn-in between one and five million generations discarded 

depending on when the two runs converged (i.e. the standard deviation between the 

two MCMC chains was below 0.10). The remaining trees were summarized in a 

consensus tree. Support values of bootstrap analyses and posterior probabilities above 

50%/0.8 were mapped on the best ML topology tree. 
 

2.9. Identification of Phenetic Molecular Characters for Alternate 

Phylogenetic Tree Reconstructions 

All molecular data was screened for ‘phenetic’ characters whose information content 

exceeded that of the mere succession of nucleotides in a linear sequence. This 

considered, for example, secondary structure information or the results of RFLP 

analyses (for detailed information see chapters 2.9.1 - 2.9.3). This information was then 

used for the composition of a data matrix which served as source material for a 

parsimony tree reconstruction. 
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2.9.1. In silico Restriction Fragment Length Polymorphism Analysis 

in 18S rDNA Sequences 
An in silico search for cutting sites in all 43 Microthamnion 18S rDNA sequences was 

performed with a set of restriction enzymes (Table 9) in congruence with those used 

in John et al. (1993). The sequence data was loaded in the online tool 

RestrictionMapper Version 3 (http://www.restrictionmapper.org/) and “digested” 

with each of the enzymes separately.  

 

Table 9. Restriction enzymes used for in silico RFLP analysis on 18S rDNA data. 
Listed are the recognition- and cutting sites (indicated by three minus signs) of the nine restriction enzymes 

used for RFLP analysis of Microthamnion SSU data. 

Restriction enzyme Recognition site (5’ to 3') Cutting site 

CfoI GCGC GCG --- C 

HinfI GANTC G --- ANTC 

MspI CCGG C --- CGG 

RsaI GTAC GT --- AC 

Sau3AI GATC  --- GATC 

TaqI TCGA T --- CGA 

BamHI  GGATCC G --- GATCC 

EcoRI GAATTC G --- AATTC 

HindIII AAGCTT A --- AGCTT 

 

 

2.9.2.  Apomorphy Analysis and Non-Homoplasious Synapomorphies  
To find further molecular support for the different Microthamnion groups/branches, 

an extensive apomorphy search on 18S, 5.8S, ITS2 and 28S sequence data was 

performed with PAUP. An alignment file including an ML tree of all Microthamnion 

strains (gapped alignment, all markers) was imported into PAUP and a search for 

apomorphies was performed under the parsimony criterion. The rbcL protein 

alignment was screened manually for amino acid changes.  

The resulting list of apomorphies was checked for non-homoplasious synapomorphies 

(NHSs) (i.e. no convergent evolution outside and strict conservation within the 

investigated group) for previously defined clades and branches in the phylogenetic 

tree. Besides, positions with 100% sequence conservation within Microthamnion and 

positions 100% conserved in the Microthamniales were checked manually in the 

alignment against all trebouxiophycean taxa to find unique molecular signatures on 

genus and order levels.  

  

http://www.restrictionmapper.org/
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2.9.3.  Tree Reconstruction Based on Phenetic Molecular Characters 
A great variety of ‘phenetic’ molecular characters, that exceeded the mere succession 

of nucleotides in sequence data, was summarized in a data matrix (Supplementary 

Table 4, p. 93). This matrix contained 112 characters (93 parsimony-informative, 19 

parsimony-uninformative) available for phylogenetic tree reconstructions. 

A maximum parsimony topology was calculated with PAUP, using the heuristic search 

option with a branch swapping algorithm (tree-bisection-reconnection). 

A total of 100 replicates was computed with starting trees obtained via stepwise 

sequence addition (‘MaxTrees' constrained to 10000). 3800 ‘best’ trees with a score of 

315 were found and a 50% majority rule consensus of all ‘best’ trees calculated. 
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3. Results 

3.1. Phylogenetic Analyses 

3.1.1. Datasets 
A multi-gene dataset was assembled for Microthamnion, which comprised 18S rDNA 

(1588 unambiguously aligned positions), partial 5.8S rDNA (82), ITS2 (214), partial 

28S rDNA (1446) and rbcL (1275 DNA, 425 AA) data. Those analyses containing the 

ITS2 plus flanking regions, operated with the 411 aligned characters of the 28S which 

were covered with the ITS2 primers. Thus, the combined analyses of all markers 

consisted of maximal 4605 aligned positions when the rbcL was included as DNA and 

3755 when included based on the protein alignment. 

Preliminary analyses showed that the topology within Microthamnion was not 

resolved in the basal part of the trees, thus the outgroup’s impact on the topology was 

tested by calculating all analyses both, with and without Characium perforatum. Since 

there was no significant difference in the outcome, only those results with 

Ch. perforatum are shown. 

The large trebouxiophycean dataset had a reduced number of unambiguously alignable 

characters in 18S (1570) and, especially, ITS2 (122). Due to the primer combinations 

apparently used for the database sequences, the flanking 28S region of ITS2 comprised 

only 22 aligned positions. All other markers had the same numbers as described above, 

resulting in 4495 available characters for the combined analysis (rbcL included as 

DNA). 

3.1.2. Single-Gene Analyses 
Single-gene analyses were performed with all Microthamnion sequences available for 

each marker (Supplementary Figure 7, pp. 97-103) to obtain a first overview of the 

individual markers’ impact on the phylogeny as well as their resolution capacities, and 

to determine the one best suited for a quick assessment of subdivisions within the 

genus.  

The 18S analysis featured 42 own sequences and was complemented by five 

Microthamnion database sequences (one culture, four environmental) and five 

environmental sequences forming a hitherto unknown sister group to Characium 

perforatum. ITS2 and ‘28S short’ (i.e. the 411 positions covered with the ITS2 primers) 

analyses were performed with 56 and ‘28S long’ (i.e. 1446 positions) with 27 own 

Microthamnion sequences. The rbcL data were completed for all 74 Microthamnion 

strains, and were augmented by one database sequence (UTEX 318, KM462876). The 

analyses of the rbcL were calculated based on both, the DNA and the protein alignment. 

Additional analyses discriminating between the different codon positions offered no 

exceeding information compared to the DNA results and are thus not shown. 
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The rbcL topology based on the DNA alignment (Supplementary Figure 7, p. 103) 

offered the best results from all single-gene analyses: several groups could be clearly 

distinguished based on branch lengths and support values, albeit the topology in the 

basal part of the tree was not resolved. Based on this tree, 27 strains (Supplementary 

Figure 7, written in bold) were selected for a congruent dataset, where sequence data 

were available for all markers. A well-balanced taxon sampling was ensured by 

covering all detected groups and long branches. This dataset was used to compare a 

great variety of single-gene as well as combined analyses and thus to determine the 

best combination of markers to resolve the Microthamnion phylogeny. 

3.1.3. Congruent Phylogenies 
Figure 1 and Figure 2 give the single-gene analyses with the congruent dataset. ‘ITS2 

short’ refers to only the ITS2 molecule, whereas in ‘ITS2 long’ also the flanking regions 

of the 5.8S and 28S rRNA genes were included. These flanking regions were computed 

separately in ‘28S short’; ‘28S long’ covered the 5’ end of the 28S, starting with the 

reverse strand of helix B9 up until the beginning of the E-domain (Helix E2 forward). 

The rbcL gene was analyzed both, based on the DNA and the protein alignment, and the 

18S analysis spanned the complete SSU. The topologies of several gene combinations 

were compiled in Figure 3 and Figure 4. In the analyses with two genes, the 

combination of a conserved with a variable marker (Figure 3 A+B) and the combination 

of two variable markers was tested (Figure 3 C). The ‘w/o’ (i.e. without) topologies 

were based on datasets where only one gene was excluded. For example, the tree in 

Figure 3 D was calculated with all markers except the 18S rRNA gene. In the tree 

reconstructions excluding ITS2 (Figure 4 A and B) or 28S (Figure 4 C+D), two variants 

were calculated each. One included the rbcL based on the nucleotide sequence and the 

other based on the amino acid sequence. Figure 4 E shows the concatenated analysis 

of all markers with the rbcL protein alignment. The ‘best’ phylogeny, i.e. the one based 

on all markers with rbcL included as DNA (for details see below), was highlighted in 

Figure 5. In addition to the ML bootstrap percentages, also NJ (GTR+I+Γ and LogDet) 

and MP support values as well as Bayesian posterior probabilities were given.  

The single-gene analyses with the congruent dataset were naturally in accordance with 

the results of the single-gene analyses with all available sequences. They did however 

have the advantage of a maximized validity regarding comparability, since the same 

strains could be observed throughout all analyses. Although all markers showed the 

same evolutionary direction, i.e. did not contradict each other, there were significant 

differences between their ability to resolve the topology within Microthamnion. As 

expected, the most conserved markers 18S (Figure 2 C) and ‘28S short’ (Figure 1 C) 

were not variable enough to resolve the topology. A bit more variability as in the ‘28S 

long’ (Figure 1 D) and the rbcL protein dataset (Figure 2 B) allowed for a better 

delimitation of different groups within Microthamnion although they were generally 

low supported. Exceptions were two groups in the basal part of the trees: CCAC 

2279/4234 and CCAC 4161/3677 which were well resolved with all markers except 

‘28S short’. The comparison of both ITS2 datasets (Figure 1 A+B) indicated, that the 
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topology was determined by the ITS2 molecule, not the flanking regions of 5.8S and 

28S. The support values remained quite similar between both sets, there was however 

a significant improvement of the blue strains’ support from 64 to 80. The ITS2 worked 

out a fine distinction between the individual strains and also grouped some of them 

together in the tip of the tree. In the basal part, groups were clearly distinguishable by 

branch length but the relationship among the individual groups were largely 

unresolved in the whole tree. As in the single-gene analysis with all available strains, 

the rbcL based on the DNA alignment (Figure 2 A) offered the best result concerning 

distinction of different groups as well as support of the topology in the tip of the tree. 

The basal part however remained unresolved. 

A combination of several genes (Figure 3 and Figure 4) though, improved the support 

values and also clarified the topology in the tip of the tree. A closer look at the multi-

gene phylogenies revealed a generally inferior result in those without rbcL (Figure 3 

A+E) compared to those containing rbcL data. The combination of rbcL, ITS2 and 18S 

data was necessary to work out a monophyly of the purple strains, albeit with a very 

short branch (Figure 4 C+D), which was not achieved with any other two- or three-

marker-combination (compare Figure 3 B to E and Figure 4 A+B). The addition of 28S 

to this three-marker-combination (Figure 4 E and Figure 5) did not give any new 

insights regarding the topology, but increased the support values of the purple strain 

node and the branch indicating a sister relationship of strain CCAC 4857 to the colored 

strains significantly. Whenever the rbcL was included based on the protein alignment 

(Figure 4 B, D and E), the topology among the red, purple and blue groups was either 

disrupted or support values decreased significantly compared to the same analyses 

using the nucleotide sequences (Figure 4, A+C and Figure 5). 

Figure 5 highlights the tree inferred from all markers with the rbcL included with the 

nucleotide sequence. In the tip of the tree, the topology was well-resolved with most 

branches displaying high support values. Four monophyletic groups could be 

distinguished which were highlighted in red, purple, blue and green font (in accordance 

with the clades introduced in Figure 6, p. 34). The purple group was only moderately 

supported, whereas the other three received high support with all methods. The node 

establishing a sister relationship between the colored groups and CCAC 4857, was 

almost maximally supported and the next descending node also had high support 

values. The topology in the basal part of the tree was not resolved, although two 

internal branches received maximal support with all methods.  

None of the single-gene or combined analyses were able to clarify the relationship 

among the basal strains. There were however phylogenies that held statistical support 

with values between 70 and 80 (Figure 1 A+B, Figure 3 A, Figure 4 D+E) for the 

assignment of strain CCAC 4855 to the most basal position. 

The colors in all congruent phylogenies refer to the clades defined in Figure 6. They 

were subsequently applied to facilitate better tracking of both, individual sequences 

and clades throughout different marker combinations.  
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Figure 1. Comparison of congruent single-gene phylogenies (ITS2 and 28S) 
ML topologies based on a congruent dataset of 27 Microthamnion strains with Characium perforatum used 

as outgroup. A ITS2 molecule (214 aligned positions), B ITS2 with flanking regions of 5.8S and 28S (707 pos.), 

C flanking regions of 5.8S and 28S without ITS2 (493 pos.), D 28S (1446 pos.). Bootstrap percentages: ML 

(maximal support indicated by bold branches). Very long branches were graphically reduced to 50% (50%//). 

Colors refer to the clades defined in Figure 6. 
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Figure 2. Comparison of congruent single-gene phylogenies (rbcL and 18S) 
ML topologies based on a congruent dataset of 27 Microthamnion strains with Characium perforatum used 

as outgroup. A rbcL based on the DNA alignment (1275 aligned positions), B rbcL based on the protein 

alignment (425 pos.), C 18S (1588 pos.). Bootstrap percentages: ML (maximal support indicated by bold 

branches). Very long branches were graphically reduced to 50% (50%//). Colors refer to the clades defined in 

Figure 6. 

 

Ch. perforatum SAG 28.85
CCAC 5561

CCAC 3677
CCAC 4161

CCAC 4855
ACOI 1621

CCAC 4234
CCAC 2279

CCAC 2916
CCAC 5545

CCAC 5521
CCAC 4857

ACOI 1620
CCAC 4822
CAUP J 1201

CCAP 450/2
ACOI 248
UTEX LB 237

CCAC 4820
CCAC 2224

ACOI 140
CCAC 5530 B
CCAC 3546 B
SAG 114.80
M 2412/1 A

CCAC 2942 B
CCAP 450/3
ACOI 398

97

89

98

95

91

50

50

50

93

99

75

81

72

0.01

A) rbcL (DNA)

//50%

substitutions/site

Ch. perforatum SAG 28.85
CCAC 4234
CCAC 2279

CCAC 4855
ACOI 1621

ACOI 1620
M 2412/1 A
CCAC 3546 B
SAG 114.80
CCAC 4822
ACOI 140
CCAC 5530 B
CCAP 450/2
CAUP J 1201

CCAC 5561
UTEX LB 237
CCAC 4857
CCAC 2224
CCAC 4820

CCAC 3677
CCAC 4161

CCAC 5521
ACOI 248
ACOI 398
CCAP 450/3
CCAC 5545
CCAC 2916
CCAC 2942 B

64

96

55

99

57

0.002

C) 18S

//50%

substitutions/site

B) rbcL (AA)

substitutions/site

Ch. perforatum SAG 28.85
CAUP J 1201
CCAP 450/2

CCAC 4822
ACOI 1620

CCAC 3677
CCAC 4161

CCAC 4855
CCAC 5561

CCAC 4234
CCAC 2279

ACOI 1621
CCAC 4857

CCAC 2916
CCAC 5545

CCAC 5521
CCAC 2224
CCAC 4820

ACOI 248
UTEX LB 237

ACOI 140
M 2412/1 A
SAG 114.80
CCAC 5530 B
CCAC 3546 B

CCAC 2942 B
ACOI 398
CCAP 450/3

98

55

57

58

55

55

59

0.01



Results 

- 30 - 
 

 

Ch. perforatum SAG 28.85
CCAC 4855

CCAC 5561
CCAC 5521

CCAC 4234
CCAC 2279

CCAC 3677
CCAC 4161

CCAC 5545
CCAC 4857

ACOI 1621
CCAC 2916

CCAP 450/2
CCAC 4822
CAUP J 1201

ACOI 1620
M 2412/1 A

CCAC 5530 B
CCAC 3546 B
SAG 114.80
ACOI 140

ACOI 248
UTEX LB 237
CCAC 2224
CCAC 4820
CCAC 2942 B

ACOI 398
CCAP 450/3

96

58

63

79

59

70

60
67

76

66

70

0.01

A) 18S + ITS2 short

//50%

substitutions/site

Ch. perforatum SAG 28.85
CCAC 5561

CCAC 3677
CCAC 4161

CCAC 4234
CCAC 2279

CCAC 4855
ACOI 1621

CCAC 2916
CCAC 5521
CCAC 5545

CCAC 4857
ACOI 1620

CCAP 450/2
CAUP J 1201
CCAC 4822

ACOI 248
UTEX LB 237

CCAC 2224
CCAC 4820

ACOI 140
CCAC 3546 B
CCAC 5530 B
SAG 114.80
M 2412/1 A

CCAC 2942 B
CCAP 450/3
ACOI 398

98

94

72

98

97

90

68

94

99

53

73

83

74

55

0.01

B) 18S + rbcL

//50%

substitutions/site

Ch. perforatum SAG 28.85
CCAC 4855

CCAC 5561
CCAC 5545
CCAC 5521
CCAC 2916

ACOI 1621
CCAC 4234

CCAC 2279
CCAC 4161
CCAC 3677

CCAC 4857
ACOI 248
UTEX LB 237
CCAC 4820
CCAC 2224

M 2412/1 A
CAUP J 1201
CCAC 4822
CCAP 450/2
CCAC 3546 B
SAG 114.80
ACOI 140

CCAC 5530 B
ACOI 1620

CCAC 2942 B
ACOI 398

CCAP 450/3

99

70

58

65

83

64
74

59

86
74

74

51

68

51

0.01

E) w/o rbcL

//50%

substitutions/site

Ch. perforatum SAG 28.85
CCAC 4855

CCAC 4161
CCAC 3677

CCAC 2279
CCAC 4234

CCAC 5561
ACOI 1621

CCAC 2916
CCAC 5545
CCAC 5521

CCAC 4857
ACOI 1620

CCAP 450/2
CCAC 4822
CAUP J 1201

ACOI 248
CCAC 2224
CCAC 4820

UTEX LB 237
CCAC 5530 B

SAG 114.80
CCAC 3546 B
ACOI 140

M 2412/1 A
CCAC 2942 B

ACOI 398
CCAP 450/3

98

96

51

52

58

97

76

79

82

99

76

67

80

84

54

56

0.02

C) ITS2 short + rbcL

//50%

substitutions/site

Ch. perforatum SAG 28.85
CCAC 4855

CCAC 2279
CCAC 4234

CCAC 3677
CCAC 4161

CCAC 55616
ACOI 1621

CCAC 2916
CCAC 5521

CCAC 5545
CCAC 4857

ACOI 1620
CCAP 450/2
CCAC 4822
CAUP J 1201

ACOI 248
CCAC 2224
CCAC 4820

UTEX LB 237
ACOI 140
CCAC 3546 B
SAG 114.80

CCAC 5530 B
M 2412/1 A
CCAC 2942 B

CCAP 450/3
ACOI 398

98

95
50

55

57

99

80

79

83

99

79

68

97

88

56

0.01

D) w/o 18S

//50%

substitutions/site

Figure 3. Comparison of congruent multi-gene 
phylogenies 1 
ML topologies based on a congruent dataset of 
27 Microthamnion strains with Characium 
perforatum used as outgroup. A 18S and ITS2 
(1802 aligned positions), B 18S and rbcL (2863 
pos.), C ITS2 and rbcL (1489 pos.), D all markers 
except 18S (3017 pos.), E all markers except 

rbcL (3330 pos.). Analyses containing rbcL data 
were conducted based on the DNA alignment. 
Bootstrap percentages: ML (maximal support 
indicated by bold branches). Very long 
branches were graphically reduced to 50% 
(50%//). Colors refer to the clades defined in 
Figure 6. 
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Figure 4. Comparison of congruent multi-gene 
phylogenies 2 
ML topologies based on a congruent dataset of 
27 Microthamnion strains with Characium 
perforatum used as outgroup. A all markers 
except ITS2 (4391 aligned positions), B all 
markers except ITS2 with rbcL based on the 
protein alignment (3541 pos.), C all markers 
except 28S (3159 pos.), D all markers except 28S 
with rbcL based on the protein alignment (2309 
pos.), E all markers with rbcL based on the 

protein alignment (3755 pos.). Analyses 
containing rbcL data were conducted based on 
the DNA alignment unless stated otherwise. 
Bootstrap percentages: ML (maximal support 
indicated by bold branches). Very long branches 
were graphically reduced to 50% (50%//). Colors 
refer to the clades defined in Figure 6. 
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Figure 5. Molecular phylogeny of all markers based on a congruent dataset 
ML topology based on a congruent dataset of 27 Microthamnion strains with Characium perforatum used as 

outgroup. Combined analyses of all markers with the rbcL included as DNA, i.e. 4605 analyzed positions. 

Support values are given in the following order: ML/NJ(GTR+I+Γ)/NJ(LogDet)/MP/MrBayes. Branches in bold 

received maximal support with all methods. ). A very long branch was graphically reduced to 50% (50%//). 

Colors refer to the clades defined in Figure 6. 
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3.1.4. Microthamnion Phylogeny 
Figure 6 shows the phylogeny of all obtained Microthamnion sequence data (i.e. gapped 

alignment). Characium perforatum and five environmental sequences served as 

outgroup. Before the final analysis, the alignment was however cleared of those 

Microthamnion sequences where only 18S data was available (= some database 

sequences). Due to the overall sequence similarity in the Microthamnion SSU these 

sequences were positioned randomly throughout the upper part of the tree (clade 1-4 

and grade 1) in preliminary analyses (not shown), thus decreasing the support values 

tremendously. 

Four monophyletic clades could be defined (highlighted in red, purple, blue and green) 

with a subdivision in clade 4 (light and dark green), and the remaining strains were 

summarized in two grades (different shades of grey). The phylogeny was generally well 

resolved in the tip; in the basal part however, although internal branches received high 

support, the topology remained unclear. 

Clade 1 showed a high support with all methods except NJ, whereas clade 2 yielded 

only low support at the short ‘clade branch’. Through the well-supported node defining 

the sister relationship of clades 1 and 2 and the clear distinction of clade 1, it was 

nonetheless readily identified. Clade 3 was moderately supported and formed the 

sister group to clades 1 and 2. The branch separating clades 1-3 from the remaining 

strains, received quite high support values throughout all methods. For clade 4, ML 

bootstraps and Bayesian posterior probabilities achieved high values, yet NJ methods 

were below the 50% threshold. The clade could be divided in two subclades (one 

consisting only of one single strain), depicted in light and dark green, the latter being 

maximally supported. The node corresponding to the divergence of clades 1-4 from the 

remaining Microthamnion strains (thus defining a sister relationship of clade 4 to 

clades 1-3) received low support with ML and MP methods, but was almost maximally 

supported by Bayesian posterior probabilities. 

The basal part of the tree was characterized by very long branches with individual high 

support, but an unresolved topology. Some branches referred to only a single strain or 

strains originating from the same natural sample. A subdivision in two grades was 

performed based on a well-supported node that grouped the strains of grade 1 with 

clades 1-4. The remaining strains were summarized to grade 2. 

A peculiarity revealed by this phylogeny, was the high abundance of strains allocated 

to clades 1-3 with at times large clusters of identical or highly similar genotypes. This 

circumstance, although interesting for conclusions regarding habitat preferences and 

especially sampling methods (more details in the Discussion chapter), is also 

tantamount to an uneven taxon sampling.  
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A comparison of this tree, which is based on a gapped alignment, with the phylogeny 

inferred from the congruent alignment with a well-balanced taxon sampling (Figure 5) 

revealed a generally lower statistical support in the tip of the tree, the overall topology 

was however not affected. 

The most dramatic effect was perhaps at the node of clade 2, where ML bootstrap 

values decreased by 24 points compared with those in Figure 5. Clade 3 also received 

significantly lower support with ML, distance and parsimony methods. The node 

defining a sister relationship between clades 1+2 and clade 3 was almost maximally 

supported in the congruent phylogeny, whereas here the values of ML and MP 

bootstraps were 10 and 15 points lower respectively. The branch separating clades 1-

4 from the remaining strains received almost maximal support with both distance 

methods in Figure 5, which were below the 50% threshold in the present phylogeny. 

Also ML and MP bootstraps were significantly lower here. Statistical support for both 

next descendant nodes deteriorated considerably too. With the transition to grade 2, 

support was generally weak in both trees with the exceptions of two internal branches 

(i.e. CCAC 3677/CCAC 4161 and CCAC 2279/CCAC 4234) that received maximum 

support with the congruent dataset. In Figure 6 on the other hand, distance methods 

either failed or indicated low support. The relationship among the groups of grade 2 

however remained unresolved in both trees. 

 

 

 

 

 

 

 

 

Figure 6. Molecular phylogeny of Microthamnion 
Phylogeny of all available Microthamnion data, except solely 18S environmental and database sequences, 

highlighting four monophyletic clades depicted in red, purple, blue and green, with a subdivision in clade four 

(light and dark green) and two grades (light and dark grey). Characium perforatum and five hitherto 

unidentified environmental sequences used as outgroup. Gapped alignment based on 4605 aligned positions, 

markers available for each strain are indicated by the following symbols: ‡=18S (1588 pos.), ∆=ITS2 (∑ 707 

pos.: 82/214/411), ƍ=28S (1446 pos.) and ¥=rbcL (DNA: 1275 pos.). Strains in bold were used for the 

congruent analyses (Figure 1 to Figure 5). Topology obtained by ML analysis. Support values are given in the 

following order: ML/NJ (GTR+I+Γ)/NJ (LogDet)/MP/MrBayes. The branch in bold was maximally supported 

with all methods, a very long branch was graphically reduced to 50% (50%//). Encircled numbers refer to 

those branches where CBCs occurred (for details see Table 12. P. 56). 
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3.1.5. Trebouxiophycean Phylogeny 
The phylogeny in Figure 7 covers all hitherto known lineages of the Trebouxiophyceae 

(as of Marin 2012) which are also referred to as ‘Core Trebouxiophyceae and 

Chlorellales’ in the literature (for example Lemieux et al., 2014; Suzuki et al., 2018). 

The alignment was constricted to photoautotrophic organisms, so the non-

photosynthetic representatives of the ‘AHP-lineage’, as described in Suzuki et al. 

(2018), were excluded. Extensive BLAST searches and preliminary phylogenetic 

analyses (not shown) were performed to ensure both, the complete coverage of 

trebouxiophycean data available as well as a balanced taxon sampling with no group 

being overrepresented. 

The tree covered 127 trebouxiophycean strains, 14 of which were representatives of 

Microthamnion selected to cover clades 1-4 and both grades evenly. Five 

environmental sequences were found to form a sister group to Characium perforatum 

and were summarized with the latter to the newly defined Characium clade. The 

monophyly of Microthamnion as well as the Characium clade was confirmed with high 

support values except the NJ bootstraps, and the Microthamniales were almost 

maximally supported with all methods. The branch separating the Microthamniales 

from the remaining Trebouxiophyceae was very long and also the discriminating 

branch between Microthamnion and the Characium clade was quite distinct. The next 

relatives to the Microthamniales could not be unequivocally identified, as two Ettlia 

and one Parietochloris strains, though placed in proximity by the topology, were not 

confirmed by statistical support except with Bayesian posterior probabilities.  

Most of the trebouxiophycean lineages, and also internal branches, were well 

supported to the exclusion of the distance methods which were mainly below the 50% 

threshold. Some groups, like the Chlorellales, could be well-sampled and had shorter 

internal branches than other groups where sequences for only few members were 

available (e.g. the ‘upper’ part of the Watanabea clade comprising Kalinella, 

Heveochlorella and Heterochlorella). As the relationship among the trebouxiophycean 

lineages remained unclear, midpoint rooting was chosen. 

 

 

 

Figure 7. Molecular phylogeny of the Trebouxiophyceae 
Molecular phylogeny of 127 Trebouxiophyceae (Microthamnion: 14 strains, Characium clade: 6) confirming 

the monophyly of Microthamnion and resolving the Microthamniales as a monophyletic clade. Analysis based 

on 4495 aligned positions, using 18S, ITS2 (with flanking regions of 5.8S and 28S), 28S and rbcL (DNA) data. 

Gapped alignment; markers available for each taxon/strain are indicated by the following symbols: ‡=18S 

(1570 pos.), ∆=ITS2 (82/122/22 pos.), ƍ=28S (1446 pos.) and ¥=rbcL (DNA, 1275 pos.). ML topology, midpoint 

rooting; order of support values is ML/NJ(GTR+I+Γ)/NJ(LogDet)/MP/MrBayes. Taxonomic designations refer 

to recent phylogenetic studies: Lemieux et al. (2014), Marin (2012), Liu et al. (2017), Ueno et al. (2005), 

Darienko & Pröschold (2015), Hallmann et al. (2016), Neustupa et al. (2013) and Suzuki et al. (2018). 
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3.2. Phenetic Character Identification and Parsimony Tree 

Reconstruction 

3.2.1. In Silico Analysis of Restriction Enzyme Sites in 18S rDNA 

Sequences 
Table 10 presents the total number of cutting sites per enzyme when applied on 

Microthamnion 18S rDNA sequences. The database sequence of Microthamnion 

kuetzingianum UTEX 1914 (accession number Z28974) was given as reference for the 

majority of Microthamnion strains. Strains with divergent sequences that resulted in 

differing numbers of cuts were listed separately. There was a total of six strains with 

divergent numbers of cutting sites, in which strains CCAC 2279/4234, CCAC 

3677/4161 and CCAC 5561/5547 B had identical sequences and such the same 

number of cuts each. Enzymes with six-base-pair recognition sites (BamHI, EcoRI, 

HindIII) had no hits at all in Microthamnion 18S sequences. Digests with HinfI and 

Sau3AI resulted in 12 and four cuts respectively across all Microthamnion strains.  

 
Table 10. Total number of restriction enzyme cuts in 18S for all Microthamnion strains 
The total number of cuts per enzyme in the 18S molecule is given for the majority of Microthamnion strains 

(represented by Z28974) as well as the divergent strains CCAC 5561/5547 B, CCAC 2279/4234 and 

CCAC 3677/4161. 

  Total number of cutting sites 

Restriction 
enzyme 

Z28974 CCAC 5561/ 
CCAC 5547 B 

CCAC 2279/ 
CCAC 4234 

CCAC 3677/ 
CCAC 4161 

CfoI 10 9 7 10 

HinfI 12 12 12 12 

MspI 7 7 6 7 

RsaI 4 4 4 3 

Sau3AI 4 4 4 4 

TaqI 5 5 6 4 

BamHI  0 0 0 0 

EcoRI 0 0 0 0 

HindIII 0 0 0 0 

 

 

Figure 8 gives an overview of the cutting sites’ positions within the 18S rRNA molecule. 

A template of this figure was obtained from a previous work of Reder (2015) 

and updated with new information now available due to new sequence data. A 

schematic drawing of the 18S molecule, based on database information for 

Chlamydomonas reinhardtii (originally obtained from The European Ribosomal RNA 

database homepage: http://bioinformatics.psb.ugent.be/webtools/rRNA/secmodel/ 

Crei_SSU.html), depicts the arrangement and positions of the different helices.  
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Figure 8. Position of restriction enzyme cutting sites mapped on a schematic of the 18S rRNA molecule 
According to Reder (2015), modified. Overview sketch of the 18S molecule based on a Chlamydomonas 
reinhardtii sequence (green background), giving the positions of the different helices within the 18S molecule. 
Regions with sequence variability in Microthamnion are highlighted in different shades of green and yellow 
which are given in detail (for Microthamnion kuetzingianum Z28974) in boxes encircled in the same color. 
Grey nts in helix 49 were not analyzed (outside the amplified region), helix E23-2 is distinguished from helix 
E23-1 by a light green background, additional U in loop of helix E23-7 is solely present in Z28974 (purple 
circle). Helices are numbered according to Van de Peer et al. (1999) and Wuyts et al. (2000). Restriction 
enzyme sites are given in grey (cuts in all strains), red (prevented cut) or green (additional cut). For the latter 
two, recognition sites are highlighted in purple, with nt changes given in large blue font. Strains to which 
changes apply are given in black boxes for each position. Nt changes without effect on number of cuts are 
marked with encircled numbers that refer to the following strains: 1, 2, 10: ACOI 1620 (i.e. clade 4 light green); 
3, 11: CCAC 2279/CCAC 4234; 4, 6: CCAC 4854/CCAC 4855; 5: clades 2 and 4; 7: A in ACOI 1620, U in CCAC 
5521/CCAC 5585 and CCAC 3677/CCAC 4161; 8: clade 3 (except ACOI 248), CCAC 4857, CCAC 5561/CCAC 5547 
B; 9: ACOI 1621, CCAC 4854/CCAC 4855, CCAC 2279/CCAC 4234. 

 

 

 

The four regions with sequence variability within Microthamnion were highlighted in 

different shades of green and yellow. They were given in detail in the other boxes of 

the figure outlined with the same color. The database sequence of Microthamnion 

kuetzingianum Z28974 served, again, as reference for the majority of the 

Microthamnion strains. Helices were labelled according to Van de Peer et al. (1999) and 

Wuyts et al. (2000). The regions with sequence variability found in Microthamnion 

were in congruence with the variable regions V2, V3, V4 and V9 according to Lee & 

Gutell (2012). 

All restriction enzyme sites within the variable regions were marked in the figure: 

those with cuts in all Microthamnion strains in grey, those that lead to an additional cut 

in green, and those resulting in a cut prevented in red. The recognition sites of the latter 

two were highlighted by a purple background. The nucleotide positions in which 

different character states occurred were depicted in larger blue font. 

There was a total of seven positions in the Microthamnion 18S molecule, where 

sequence variability among strains lead to altered recognition sites and thus to 

additional or prevented cuts: three in V2 (helix E23-2) and V4 (helices E10_1 and 11) 

each, and one in V3 (helix 17). The consequent effect on fragment lengths, and thus the 

pattern of DNA fragments after in silico gel electrophoresis, is given in Figure 9. All 

other positions with changes in character states without effect on the number of cuts 

were marked by encircled numbers (details of strain information are given in the 

legend of Figure 8). 
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Figure 9. In silico gel electrophoresis analysis of digested Microthamnion 18S data 
Hypothetical gel showing RFLP-patterns of strains CCAC 2279/CCAC 4234, CCAC 3677/CCAC 4161 and CCAC 
5561/CCAC 5547 B, when digested in silico with enzymes CfoI, MspI, RsaI and TaqI. The database sequence 
of Microthamnion kuetzingianum Z28974 is given as reference for all other Microthamnion strains. The total 
number of cutting sites per enzyme follows the strain names in squared brackets. Fragment size is given on 
the left axis in black (exact numbers for each fragment in small grey font). The lower dark grey bar indicates 
the resolution limit of the acrylamide gels shown in John et al. (1993) (for RsaI and TaqI only assumed and 
transferred in the background since gels were not shown in the publication). The upper dark grey bar in CfoI 
indicates an unreadable region in the gel published in John et al. (1993).   
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3.2.2. ITS2 Secondary Structure Models 
In a total number of 56 Microthamnion strains, the ITS2 molecule was sequenced as 

described above. 37 of these strains featured a unique ITS2 sequence and were 

incorporated in the general ITS2 secondary structure model for Microthamnion given 

in Figure 10. A figure template was obtained from Reder (2015), updated and 

reworked according to new information gained in the present study. 

For comparison, the secondary structure model with conservation levels adjusted to 

all 56 Microthamnion strains as well as one adjusted to a reduced number of 45 strains 

(i.e. two identical sequences were only allowed when the strains originated from 

different natural samples) are given in Supplementary Figure 8 and Supplementary 

Figure 9 on pages 104 and 105. 

A variability map was constructed to depict the conservation levels of the nucleotides 

within the ITS2 molecule as well as the B9 helix, which is formed by the 3’ end of the 

5.8S and the 5’ end of the 28S rRNA molecules. A position without any change was 

represented by a black letter, those positions with a conservation at the 95% level were 

depicted in blue. Nucleotides conserved at the 85% level were given in purple and 

those conserved at the 70% level in orange. Positions not conserved at the 70% level 

were displayed as red filled circles. An additional framing thick green line was applied 

where length variabilities occurred. Insertions were given as encircled letters, 

deletions as letters surrounded by a box. Here, the color of the surrounding circle/box 

referred to the conservation of the position, whereas the color of the letter reflected 

the character state of the inserted/deleted nucleotide. For example, a purple U with a 

blue circle corresponded to a position where a maximum of 15% of all strains had an 

inserted nucleotide (= position conserved at 85% level) which was a U in 95% of these 

cases. A base pairing was indicated by a connecting line in either black (= base pairing 

in all strains) or brown (= base pairing in > 50% of the sequences). In the variable parts 

of the helices, the base-connecting green line stood for nucleotides that occurred either 

paired or unpaired. The eight positions where CBCs occurred were highlighted by black 

boxes. 

 

 

Figure 10. Consensus secondary structure model of 37 unique ITS2 Microthamnion sequences 
The figure spans the ITS2 molecule, consisting of four paired helices (labelled Helix 1 – Helix 4) connected by 
single-stranded spacers and the B9 helix (site of interaction between 5.8S and 28S). The processing sites C1 
and C3/E according to Côté et al. (2002), Granneman et al. (2011) and Schillewaert et al. (2012) are depicted 
in grey. An alternate, very short Helix 1, unique for strains CCAC 2279 and CCAC 4234 is displayed separately. 
Different colors of nucleotides and boxes/circles refer to levels of conservation (details are given under 
“Categories” in the figure). Variable parts that differed in character states and length (range in no. of nts. 
given for each region, indicated by black brackets) are given as red dots with a framing green line. CBC 
positions are highlighted by a black box. A dark grey background highlights the positions used for the 
trebouxiophycean phylogeny. The characteristic U-U mismatch in H2 is accentuated in larger font and set 
apart from the helix outline. Positions of nucleotides are numbered according to Caisová et al. (2011a, 2013). 
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A dark grey background highlighted those positions which could be unambiguously 

aligned in all trebouxiophycean taxa investigated in this study, and were thus 

incorporated in the phylogenetic analysis for the tree given in Figure 7 (p. 36). 

The numbering system in Microthamnion followed the universal numbering system 

introduced in Caisová et al. (2011a, 2013). Those characters which could be 

unambiguously identified as homologous to those in the Ulvales were given the 

‘universal’ Arabic numeral. Positions non-homologous to the Ulvales but homologous 

within Microthamnion were indicated by additional Roman numerals. Insertions and 

positions with variability in sequence length were labelled with subscript numbers. Of 

the 129 ‘universal’ positions proposed for the Ulvales, 87 could be applied in 

Microthamnion. 

The ITS2 secondary structure model of Microthamnion showed an overall high degree 

of conservation in the basal part of the helices. This included the first six base pairs in 

helix 1 (H1), the first 11 base pairs and the pyrimidine-pyrimidine mismatch 

(pos. 25/36) in helix 2 (H2), and the basal part of helix 4 (H4). Helix 3 (H3) showed a 

high level of conservation throughout the complete paired helix region up until 

position 91-I/91-VI. Spacers and single-stranded regions between the processing sites 

and H1/H4 respectively were also quite conserved in character states and 100% 

conserved in length. 

Variations in length as well as character states did however occur in the apical loops of 

each helix as well as the adjacent paired regions in some of them. An internal loop 

(5’ 9-II1 to 9-II5, 3’ 9-XV1 to 9-XV6) in H1 varied not only in length, but in character 

states as well. There were also several other positions in this helix without 

conservation at the 70% level as well as some insertions and deletions. In H2 the apical 

loop region consisted of 3-10 nucleotides, of which up to 6 could be paired and thus 

extended the paired helix region. H4 was the least conserved helix regarding sequence 

length, with the apical part of the helix as well as the apical loop being extremely 

variable (4-29 nts). 

The overall sequence length of the ITS2 molecule in Microthamnion ranged between 

233 (CCAC 5561) and 257 (ACOI 1621) nucleotides. Helix 1 spanned between 40 (CCAC 

4855) and 57 (ACOI 1620) nucleotides with an exception of two strains which 

displayed a very short H1 (CCAC 4234: 30 nts, CCAC 2279: 31 nts) which was depicted 

separately in Figure 10 (labelled “Helix 1 CCAC 2279 + CCAC 4234”, highlighted with 

grey background). 

Helix two had 38 (CCAC 3677/CCAC 4161 and ACOI 1621) up to 48 (SAG 114.80) 

nucleotides. The reduction in length in strains CCAC 3677/CCAC 4161 and ACOI 1621 

was located in the helix’ apical part: the base pair at position 29-VII/29-VIII was 

already part of the loop in these strains (thus the positions were marked as ‘deletion’). 

The pyrimidine-pyrimidine mismatch at position 25/36 was a U-U in all 

Microthamnion strains except CCAC 3677/CCAC 4161 which had a C-C. 
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Helix three was the longest helix in all Microthamnion strains as well as the one most 

conserved in length. It comprised 88 or 89 nucleotides in all strains except 

CCAC 3677/CCAC 4161 which had 94 nucleotides each. The additional nucleotides in 

those two strains were an additional base pair at position 55-XIX1/108-I1 and one 

before the terminal loop (positions 91-III1 and 91-III8), followed by an additional single 

nucleotide within the terminal loop. Most of the 88/89 nucleotide strains had the 

length variation in the terminal loop. There were however small variations: ACOI 1621 

had an insertion at position 551 and a deletion at position 108; strains CCAC 

2279/CCAC 4234 had a deletion in the internal loop (position 55-XIII) and an insertion 

at position 95-VII1; CCAC 4855 an insertion at position 1211.  

Helix four was the shortest helix in all Microthamnion strains. The majority of strains 

consisted of 27-30 nucleotides (stem of the helix: 23 nts) with length variation only in 

the terminal loop (4-7 nts). Strains CCAC 2279/CCAC 4234 had 47 nts, the additional 

nucleotides being located either paired at the apical part of the helix or unpaired in a 

larger terminal loop compared to the majority of strains. The longest sequence 

appeared in ACOI 1621 with 53 nucleotides. The additional bases were also located at 

the apical part of the helix, where they were either paired or unpaired, and in an 

enlarged terminal loop. Strain CCAC 4855 however comprised 36 nucleotides with the 

additional paired bases located in the apical part of the helix. In addition this was the 

only strain with an insertion in the basal part of the helix’ 5’-end (position 126-II1).  

3.2.3. Unique Molecular Signatures for Microthamnion and the 

Microthamniales 
The thorough search for non-homoplasious synapomorphies and autapomorphies (for 

important single-strain branches) within Microthamnion revealed unique characters 

for the four clades inferred from phylogenetic analyses, as well as the topology among 

them and most lineages in grade 2 (Table 11). Besides, the subdivision in clade 4 was 

acknowledged by several unique molecular signatures, and also in clades 1 and 2 

internal branches gained NHS support. Also on genus and order levels, Microthamnion 

and the Microthamniales featured unique characters among the Trebouxiophyceae. 

This uniqueness could be tested against 93 trebouxiophycean taxa outside the 

Microthamniales in 18S, 77 in 5.8S and ITS2, and 62 in the rbcL. For the beginning of 

28S only 23 taxa were available which even decreased to three available strains from 

Helix C1_E1 on. Consequently, unique 28S characters detected within Microthamnion, 

especially from Helix C1_E1 on, labelled ‘NHS in Trebouxiophyceae’, should thus only 

be regarded as confirmed within the Microthamniales, but a mere indication for 

possible unique features within the Trebouxiophyceae. Accordingly, the two NHSs in 

28S found on genus level have to be seen with great caution, since they could only be 

compared with three other trebouxiophycean taxa. The two positions detected for the 

Microthamniales however were found in Helix B18 where 23 sequences were available 

and were thus more likely to effectively display unique features within the 

Trebouxiophyceae. 
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Non-homoplasious synapomorphies had to meet the following criteria: the character 

change for an examined group or branch in Microthamnion had to be conserved within, 

and the same change was not allowed to occur in any other Microthamnion 

group/branch. When NHSs were even unique within the order or class, they were 

labelled “NHS in Microthamniales” or “NHS in Trebouxiophyceae” respectively. On the 

genus level, character states had to be consistent within Microthamnion and were not 

permitted to occur in any other member of the Microthamniales, and consequently 

NHSs listed for the Microthamniales did not appear in any other trebouxiophycean 

taxa. Uniqueness for higher taxonomic levels were labelled accordingly. 

Besides, only those NHSs were listed, which occurred in unambiguously alignable 

regions. RbcL amino acid changes were given regardless of the specificity of side chain 

properties as long as they met the NHS criteria. To distinguish the latter, conservative 

residue changes were given with their number only, whereas changes resulting in 

different side chain properties were highlighted with an asterisk. Since also single 

strain branches in the basal part of the Microthamnion phylogeny were investigated, 

they were consequently referred to as autapomorphies (AUTs).  

A single exception regarding the NHS criteria was made for residue 54 in the rbcL 

which was a hundred percent conserved among all investigated Trebouxiophyceae 

(glycine) and uniquely distinguished Microthamnion by an alanine except the dark 

green group of clade 4 which reversed to the original character state. It was highlighted 

as ‘almost unique’ in Table 11 (bold print). Clades and branches were given in the order 

of the phylogeny of Figure 6, starting from top to bottom. Also the subdivisions in clade 

1 followed this system: “Strains CCAP 450/4 to CCAC 3664 B”, for example, referred to 

the node that summarized the 12 strains from CCAP 450/4, ACOI 2656, ACOI 1447 

down to strain CCAC 3664 B. 

As before mentioned, all clades were defined by unique molecular characters and also 

the subdivision in clade 4 offered many unique features. Clades 1-3, although showing 

quite remarkable differences regarding their support values in the phylogenetic 

analyses, did not differ in number or kind of NHS. In fact, they were characterized by 

the exact same amino acid (residue 282) in different character states. The substitution 

at residue 282 was conservative for clades 1 and 2, exchanging one basic residue for 

another (H for R and K respectively). In clade 3 the residue substitution resulted in 

different amino acid properties as glutamine is uncharged polar. Residue 282 was 

apparently not fixed to certain properties since it also displayed hydrophobic 

(isoleucine in branch of strains CCAC 3677/3838/4161) and acidic (asparagine in 

CCAC 5561/5547 B and CCAC 4853/4854/4855) variants. 

NHSs for subdivisions did however occur in clades 1 and 2 which were exclusively 

positioned in the ITS2 molecule. In clade 1 the branch summarizing strains CCAP 450/4 

to CCAP 450/3 (highlighted in Figure 6 by an encircled 1) was characterized by a CBC 

in H4, and also the next ascending (hemi CBC in H3) as well as the next descending 

node (unique mismatch pattern in H2) offered unique features. The single strain 
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CCAC 2942 B was also characterized by a distinctive spacer motif between H1 and H2. 

In clade 2 NHSs only occurred at two terminal branches, one encompassing the 

genetically identical strains CCAC 2764 B/CCAC 2804 B which originated from 

different sampling locations. The other was the node of strains M 2412/1 A and UTEX 

318, but as no ITS2 sequence data for UTEX 318 was available, unique signatures could 

only be documented for strain 2412/1 A and are thus termed ‘AUT’ in Table 11. 

The branch summarizing clades 1-3 together was again characterized by a residue 

substitution (Cys-284 to Ser-284) in the rbcL, resulting in different side chain 

properties (hydrophobic to uncharged polar). Clade 4, being further apart from clades 

1-3, offered a single residue substitution (no. 248) which had no impact on amino acid 

properties. The subclades however, and here especially the dark green group, 

displayed several NHSs each. Interestingly, for ACOI 1620 (light green) they were 

positioned in the conserved SSU and Helix B8 of 5.8S, albeit in variable regions (i.e. a 

CBC in V4 of 18S and a loop motif in B8), whereas unique characters for the dark green 

group were found exclusively in the ITS2 molecule (mismatch) and the rbcL (two 

conservative residue changes and two with different properties). 

There were no NHSs found for the individual lineages in grade 1. All branches displayed 

synapomorphies grouping their individual strains though, but these were shared with 

other lineages of grades 1 and 2 and thus not unique (and not listed). Although the 

branch for strains CCAC 4856/4857 offered no NHS in itself, two unique features in 

28S, one CBC and one distinct mismatch pattern, characterized the node establishing 

their sister relationship with clades 1 to 4. 

All branches in grade 2 except that of CCAC 2916, which was assigned to grade 1 in the 

tree inferred from phenetic molecular characters (see Figure 11, p. 57), displayed an 

astonishing number of unique characters for their members. NHSs to group branches 

together were albeit rarely found: only one hemi CBC in H3 of ITS2 supported the sister 

relationship between groups CCAC 2279/4234 and CCAC 3677/4161. With the 

topology unresolved, this result did not come as a surprise. That is why also the 

alternate topology for grades 1 and 2, as proposed in the tree based on phenotypic 

characters (Figure 11), was checked for unique synapomorphies in order to clarify the 

relationship among groups. But also this alternative evolutionary scenario had no hits 

regarding synapomorphy support.  
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Table 11. Unique molecular signatures within Microthamnion and the Microthamniales 
Listed are all unique synapomorphies detected in the nuclear-encoded rRNA operon and rbcL protein data 
which refer to ingroup branches in the Microthamnion phylogeny of Figure 6 (marked as ‘NHS’ = non-
homoplasious synapomorphies or ‘AUT’ = autapomorphies). Besides, also unique signatures on genus 
(Microthamnion) and order (Microthamniales) levels are given. A single exception regarding NHS criteria was 
made for residue 54 in the rbcL which defined Microthamnion except for the dark green group of clade 4 
(‘almost unique’ in bold fond). Clades (incl. branches in subdivisions) and branches of grades 1 and 2 are 
given in order of their appearance in the phylogeny of Figure 6, starting from top to bottom. The subdivision 
in Clade 1 marked with two asterisks (**) refers to branch ① in the Microthamnion phylogeny. Positions in 
18S, 5.8S and 28S are labelled according to Van de Peer et al. (1999) and Wuyts et al. (2000), positions in ITS2 
according to Caisová et al. (2011a, 2013). Amino acid positions (IUPAC code used) are given in reference to 
the database sequence of UTEX 318 (accession number KM462876). In AAs labelled with an asterisk (*) the 
change resulted in different side chain properties. The number of investigated trebouxiophycean outgroup 
sequences for the different markers are as follows: 18S ⇒ 93 plus Characium clade (6 sequences), 5.8S/ITS2 
⇒ 77+ Ch. perforatum, 28S ⇒ 23 + Ch. perforatum. (only 3 from C1_E1 on), rbcL ⇒ 62 + Ch. perforatum. 

Taxon/character Evolutionary 
change 

Characterization 

Clade 1 
rbcL - AA 282* H ⇒ R - NHS in Microthamniales 

- R also in Prasiolopsis sp. 
- H in clade 4 + CCAC 4856/4857 + CCAC 5545/5520 B + CCAC 
5521/5585 + CCAC 2916 + ACOI 1621 + CCAC 2279/4234 and majority of 
Trebouxiophyceae  
- N in CCAC 5561/5547 B + CCAC 4853/4854/4855 + Characium 
perforatum; also in one branch of the Oocystaceae (Planctonemopsis 
distans, Amphikrikos nanus, Oocystis sp. KMMCC 356, Oocystidium sp. 
SAG 81.80, Oocystidium planoconvexum) and Botryococcus braunii 
- K in Planctonema lauterbornii and Tetrastrum staurogeniaeforme 
- Q in Dictyochloropsis asterochloroides and Xylochloris irregularis 
- I in Parachloroidium lobatum 

Subdivisions in Clade 1 

Strains CCAP 450/4 to CCAC 3664 B 
ITS2 - H3 
bp 23 (78-II/95-VII) 

A-U ⇒ G-U - NHS in Microthamniales 
- AxC in CCAC 2916 and ACOI 1620 
- C-G in majority of Trebouxiophyceae 

Strains CCAP 450/4 to CCAP 450/3** 
ITS2 - H4 
3rd bp before term. 
Loop (126-VI/126-XI) 

G-C ⇒ A-U - NHS in Microthamniales 
- G-U in ACOI 1621 
- AxC in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

Strains CCAP 450/4 to CCAC 3843 B 
ITS2 - H2 
bp 6 (24/37) 

U-G ⇒ UxU - NHS in Microthamniales 
- CxU in CCAC 2764 B and CCAC 2804 B 
- UxC in CCAC 3677/3838/4161 and Characium perforatum 
- G-C in CCAC 4853/4854/4855 and majority of Trebouxiophyceae 

CCAC 2942 B 
ITS2 - Spacer H1-H2 AGC ⇒ AUC - AUT in Microthamniales 

- AAC in M 2412/1 A 
- position variable in other Trebouxiophyceae 

Clade 2 
rbcL - AA 282* H ⇒ K - NHS in Microthamniales 

- K also in Planctonema lauterbornii and Tetrastrum staurogeniaeforme 
- H in clade 4 + CCAC 4856/4857 + CCAC 5545/5520 B + CCAC 521/5585 
+ CCAC 2916 + ACOI 1621 + CCAC 2279/4234 and majority of 
Trebouxiophyceae  
- N in CCAC 5561/5547 B + CCAC 4853/4854/4855 + Characium 
perforatum; also in one branch of the Oocystaceae (Planctonemopsis 
distans, Amphikrikos nanus, Oocystis sp. KMMCC 356, Oocystidium sp. 
SAG 81.80, Oocystidium planoconvexum) and Botryococcus braunii 
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Taxon/character Evolutionary 
change 

Characterization 

rbcL - AA 282* 
(continued) 

H ⇒ K - R in Prasiolopsis sp. 
- Q in Dictyochloropsis asterochloroides amd Xylochloris irregularis 
- I in Parachloroidium lobatum 

Subdivisions in Clade 2 

CCAC 2764 B/CCAC 2804 B 
ITS2 - H2 
bp 6 (24/37) 

U-G ⇒ CxU - NHS in Microthamniales 
- UxU in strains CCAP 450/4 to CCAC 3843 B 
- UxC in CCAC 3677/3838/4161 and Characium perforatum 
- G-C in CCAC 4853/4854/4855 and majority of Trebouxiophyceae 

ITS2 - H4 
bp 3 (126/128) 

G-C ⇒ G-U - NHS in Microthamniales 
- GxG in CCAC 5561/CCAC 5547 B 
- A-U in most other Trebouxiophyceae 

ITS2 - H4 
2nd bp before term. 
Loop (126-VII/126-X) 

G-C ⇒ G-U - NHS in Microthamniales 
- U-G in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

M 2412/1 A 
ITS2 - Spacer H1-H2 AGC ⇒ AAC - AUT in Microthamniales 

- AUC in CCAC 2942 B 
- position variable in other Trebouxiophyceae 

ITS2 - H3 
bp 27(86/95-III) 

A-U ⇒ G-U - AUT in Microthamniales 
- A is conserved in almost all Trebouxiophyceae. Exceptions: both 
Symbiochloris symbiontica strains (⇒ C), Symbiochloris sp. and 
Lobosphaera incisa SAG 2466 (both ⇒ G) 

Clade 3 
rbcL - AA 282* H ⇒ Q - NHS in Microthamniales 

- Q also in Dictyochloropsis asterochloroides and Xylochloris irregularis 
- H in clade 4 + CCAC 4856/4857 + CCAC 5545/5520 B + CCAC 
5521/5585 + CCAC 2916 + ACOI 1621 + CCAC 2279/4234 and majority 
of Trebouxiophyceae 
- R in Prasiolopsis sp. 
- K in Planctonema lauterbornii and Tetrastrum staurogeniaeforme 
- N in CCAC 5561/5547 B + CCAC 4853/4854/4855 + Characium 
perforatum; also in one branch of the Oocystaceae (Planctonemopsis 
distans, Amphikrikos nanus, Oocystis sp. KMMCC 356, Oocystidium sp. 
SAG 81.80, Oocystidium planoconvexum) and Botryococcus braunii 
- I in Parachloroidium lobatum 

Clade 1-3 
rbcL - AA 284* C ⇒ S - NHS in Trebouxiophyceae 

- C in Characium perforatum and all other Trebouxiophyceae 

Clade 4 
rbcL - AA 248 E ⇒ D - NHS in Microthamniales 

- D also in Planctonema lauterbornii, Stichococcus bacillaris UTEX 176, 
Koliella corcontica, Lobosphaera incisa CAUP H 4301 and SAG 2007, 
Leptochlorella corticola, Trebouxiophyceae sp. MX-AZ01, Kalinella 
apyrenoidosa, Phyllosiphon arisari, Viridiella fridericiana, 
Dictyochloropsis splendida UTEX LB 2599, Symbiochloris handae, 
Symbiochloris sp. 
- E in all other Trebouxiophyceae 

Clade 4 (light green) 
18S - Helix E10_1 
last bp before 
terminal loop 

G-C ⇒ A-U - AUT in Microthamniales 
- G-C in majority of Trebouxiophyceae 
- A-U also in Coccomyxa galuniae, Coccomyxa onubensis, Coccomyxa 
viridis, Elliptochloris bilobata SAG 245.80, Hemichloris antarctica, 
Chloroidium ellipsoideum, Chloroidium angustoellipsoideum, 
Chlorocloster engadinensis, Chloroidium saccharophilum 
- C-G in Quadricoccus ellipticus, Amphikrikos nanus, Oocystis sp., 
Oocystidium planoconvexum, Franceia amphitricha, Oocystella oogama 
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Taxon/character Evolutionary 
change 

Characterization 

5.8S - Loop of Helix 
B8 
1st nt 

C ⇒ U 
(CUCG ⇒ UUCG) 

- AUT in Microthamniales 
- U also in majority of Trebouxiophyceae 
- C in Oocystella oogama, Auxenochlorella protothecoides var. acidicola, 
the Prasiola-clade, Neocystis brevis, Lunachloris lukesovae, the 
Geminella clade, Koliella corcontica, the Trebouxiales, Dictyosphaerium 
minutum, Dictyochloropsis asterochloroides, Dictyochloropsis splendida 
SAG 2097, Choricystis sp. TP-2009, Coccomyxa viridis, Hemichloris 
antarctica, Heveochlorella roystonensis, Heveochlorella hainangensis, 
Heterochlorella luteoviridis, Viridiella fridericiana, Symbiochloris 
handae, Symbiochloris symbiontica SAG 27.81, Apatococcus sp. 

Clade 4 (dark green) 
ITS2 - H3 
bp 5 (55-I/108-XIV) 

U-G ⇒ XxX 
(UxC/UxU) 

- mismatch NHS in Microthamniales 
- UxC in CCAP 450/2 
- UxU in CAUP J 1201, CCAC 8002 B, CCAC 4822 
- C-G in CCAC 4853/4854/4855 and Characium perforatum 
- U-A in CCAC 3677/3838/4161 and CCAC 2279/4234 
- mismatches also in other Trebouxiophyceae 

rbcL - AA 54 A ⇒ G - NHS in Microthamnion 
- G also in Characium perforatum and all other Trebouxiophyceae 

rbcL - AA 235 I ⇒ V - NHS in Microthamniales 
- V also in Watanabea-clade, one branch in Choricystis/Botryococcus 
clade (Coccomyxa subellipsoidea, Trebouxiophyceae sp. MX-AZ01, 
Paradoxia multiseta, Coccomyxa simplex SAG 216-6, Pseudococcomyxa 
simplex CAUP H 102), one branch in the Oocystaceae (Planctonemopsis 
distans, Amphikrikos nanus, Oocystis sp. KMMCC 356, Oocystidium sp. 
SAG 81.80, Oocystidium planoconvexum) and Tetrastrum 
staurogeniaeforme 
- I in all other Trebouxiophyceae 

rbcL - AA 287* N ⇒ H - NHS in Microthamnion 
- H also in Characium perforatum and Ettlia pseudoalveolaris 
- N, H or E in other Trebouxiophyceae 

rbcL - AA 428* T ⇒ I - NHS in Microthamniales 
- V in Characium perforatum 
- I also in Neocystis brevis, Lobosphaera incisa SAG 2007, Paradoxia 
multiseta, Kalinella apyrenoidosa 
- T or V in all other Trebouxiophyceae 

Clade 1-4 and CCAC 4856/4857 
28S - Helix C1_E3 
bp 9 

X-X ⇒ GxG - NHS in Trebouxiophyceae 
- C-G in CCAC 5545/5520 B, CCAC 5521/5585, CCAC 2916, ACOI 1621, 
CCAC 5561, CCAC 3677/4161 
- T-G in CCAC 2279/4234 
- T-A in CCAC 4853/4854/4855 
- G-T in Characium perforatum 
- G-C in other Trebouxiophyceae 

28S - Helix C1_E3 
bp 10 

G-C ⇒ C-G - NHS in Trebouxiophyceae 
- G-C in Caharacium perforatum and Eremosphaera viridis 
- G-U in Leptosira terrestris, Stichococcus bacillaris 

ACOI 1621 
5.8S - Spacer Helix 
B9-ITS2 H1 
nt 5 

C ⇒ U 
(UACCCC ⇒ 
(UACCUC) 

- AUT in Trebouxiophyceae 
- UACUCC in Characium perforatum 
- UACCCC also in Trebouxiales 

ITS2 - H3 
bp 3 (54/121) 

C-G ⇒ U-G - AUT in Microthamniales 
- CxA in CCAC 3677/3838/4161 and NIES-479 
- U-G also in Oocystidium sp., Franceia amphitricha, Oocystella oogama, 
Marvania geminata, Asterochloris phycobiontica, Asterochloris 
gaertneri 
- C-G in majority of Trebouxiophyceae 

ITS2 - H3  
4th bp before 
terminal loop (91/92) 

G-C ⇒ U-G - AUT in Microthamniales 
- UxU in CCAC 2279/4234 
- position not unambiguously alignable in other Trebouxiophyceae 
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ITS2 - H4 
H4 3rd bp before 
terminal loop (126-
VI/126-XI) 

G-C ⇒ G-U - AUT in Microthamniales 
- A-U in strains CCAP 450/4 to CCAP 450/3 
- AxC in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

28S - Helix C1_E1 
6th bp before 
terminal loop 

U-G ⇒ C-G - AUT in Trebouxiophyceae 
- U-G in all other taxa 

CCAC 5561/5547 B  
ITS2 - H1 
bp 8 (8/11) 

C-G ⇒ G-C - NHS in Microthamnion 
- position not present in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

ITS2 - H4 
bp 3 (126/128) 

G-C ⇒ GxG - NHS in Microthamniales 
- G-U in CCAC 2764 B and CCAC 2804 B 
- position paired in most Trebouxiophyceae  

28S - Spacer Helices 
B12'-B13 
nt 3 

U ⇒ C 
(AGU ⇒ AGC) 

- NHS in Trebouxiophyceae 
- U in Characium perforatum 
- A in all other Trebouxiophyceae 

28S - Helix C1_E3 
bp 8 

G-C ⇒ GxG - NHS in Microthamniales 
- C-G in CCAC 2279/4234, Characium perforatum and Leptosira 
terrestris SAG 463-3 
- G-C in Eremosphaera viridis and Stichococcus bacillaris SAG 379-2 

rbcL - AA 50* P ⇒ A - NHS in Microthamniales 
- S in CCAC 2279/4234 
- P majority of Trebouxiophyceae 

CCAC 3677/3838/4161 
18S - Loop of Helix 
17 
nts 3 and 4 

UUUC ⇒ UUAU - NHS in Trebouxiophyceae 
- UUUC in majority of Trebouxiophyceae 

5.8S - Spacer Helix 
B9-ITS2 H1 
nts 1+2 

UA ⇒ AC 
(UACCCC) ⇒ 
(ACCCCC) 

- NHS in Trebouxiophyceae 
- UACUCC in Characium perforatum 
- UACCCC also in Trebouxiales 

ITS2 - H2 
bp 6 (24/37) 

U-G ⇒ UxC - NHS in Microthamnion 
- UxC also in Characium perforatum 
- UxU in strains CCAP 450/4 to CCAC 3843 B 
- CxU in CCAC 2764 B and CCAC 2804 B 
- G-C in CCAC 4853/4854/4855 and in majority of Trebouxiophyceae 

ITS2 - H2 
"bp 6.1" (pyrimidine-
pyrimidine-
mismatch) 

UxU ⇒ CxC - NHS in Microthamniales 
- CxC also in one branch of the Chlorellales (Parachlorella kessleri, 
Compactochlorella kochii, Mucidosphaerium palustre, Dicloster acuatus, 
Kalenjinia gelatinosa), both Symbiochloris symbiontica strains and 
Chloropyrula uraliensis 

ITS2 - H2 
4th bp before 
terminal loop (29-
III/29-XII) 

C-G ⇒ U-A - NHS in Microthamniales 
- G-C in CCAC 2279/4234, Characium perforatum and Edaphochlorella 
mirabilis 
- U-A also in Didymogenes palatina, Meyerella planktonica, Dicloster 
acuatus, Kalenjinia gelatinosa, Gloeotila scopulina SAG 335-8, 
Stichococcus bacillaris SAG 379-2, Neocystis brevis, Coccomyxa dispar 

ITS2 - H3  
5th bp before 
terminal loop (90/93) 

U-A ⇒ U-G - NHS in Microthamnion 
- U-G also in Characium perforatum 
- C-G in CCAC 2279/4234, CCAC 2916 and ACOI 1621 
- position not unambiguously alignable in other Trebouxiophyceae 

ITS2 - Spacer H3-H4 
nts 1, 3, 4, 5 

UGGAACGC ⇒  
CGUCCCGC 

- NHS in Microthamniales 
- GACCUGC in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

28S - Helix D14 
last bp 

GxG ⇒ G-U - NHS in Microthamnion 
- U also in Characium perforatum 
- other Trebouxiophyceae unpaired 

rbcL - AA 270 L ⇒ I - NHS in Microthamniales 
- I also in Oocystaceae 
- L in all other Trebouxiophyceae 
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rbcL - AA 282* H ⇒ I - NHS in Microthamniales 
- I also in Parachloroidium lobatum 
- H in clade 4 + CCAC 4856/4857 + CCAC 5545/5520 B + CCAC 
5521/5585 + CCAC 2916 + ACOI 1621 + CCAC 2279/4234 and majority 
of Trebouxiophyceae 
- N in CCAC 5561/5547 B + CCAC 4853/4854/4855 + Characium 
perforatum; also in one branch of the Oocystaceae (Planctonemopsis 
distans, Amphikrikos nanus, Oocystis sp. KMMCC 356, Oocystidium sp. 
SAG 81.80, Oocystidium planoconvexum) and Botryococcus braunii 
- R in Prasiolopsis sp. 
- K in Planctonema lauterbornii and Tetrastrum staurogeniaeforme 
- Q in Dictyochloropsis asterochloroides amd Xylochloris irregularis 

CCAC 2279/CCAC 4234 
18S - Helix E10_1 
2nd bp before 
terminal loop 

G-C ⇒ A-U - NHS in Microthamniales 
- G-C in majority of Trebouxiophyceae 
- A-U also in Coccomyxa dispar and one branch of the Watanabea-clade 
(Chloroidium ellipsoideum, Chloroidium angustoellipsoideum, 
Chlorocloster engadinensis) 
- C-G in Symbiochloris handae and Symbiochloris sp. 
- U-A in Dictyochloropsis splendida UTEX 2612 

18S - Helix E23_2 
bp 1 

C-G ⇒ UxU - NHS in Microthamnion 
- A-U in Characium clade 
- paired in almost all Trebouxiophyceae (C-G or U-A; A-U only in both 
Symbiochloris symbiontica strains) 
- UxU also in Dictyosphaerium minutum, Uncultured Trebouxiophyceae 
clone QE17, Dictyochloropsis asterochloroides, Dictyochloropsis 
splendida SAG 2097, Apatococcus sp. 

18S - Spacer Helices 
E10_1-11 
nt 3 

C ⇒ U 
(CUCC-CUUC) 

- NHS in Microthamnion 
- U also in Characium clade and most other Trebouxiophyceae  
- C in one branch of Choricystis/Botryococcus clade (Coccomyxa simplex, 
Pseudococcomyxa simplex, Coccomyxa galuniae, Coccomyxa dispar, 
Coccomyxa onubensis, Coccomyxa viridis) and Symbiochloris handae 

ITS2 - H2 
4th bp before 
terminal loop (29-
III/29-XII) 

C-G ⇒ G-C - NHS in Microthamnion 
- G-C also in Characium perforatum and Edaphochlorella mirabilis 
- U-A in CCAC 3677/3838/4161, Didymogenes palatina, Meyerella 
planktonica, Dicloster acuatus, Kalenjinia gelatinosa, Gloeotila 
scopulina SAG 335-8, Stichococcus bacillaris SAG 379-2, Neocystis 
brevis, Coccomyxa dispar 

ITS2 - H3 
bp 2 (53/122) 

C-G ⇒ CxA - NHS in Microthamniales 
- G-C in majority of Trebouxiophyceae 
- mismatch only in Heveochlorella roystonensis [U-U] 

ITS2 - H3  
4th bp before 
terminal loop (91/92) 

G-C ⇒ UxU - NHS in Microthamniales 
- U-G in ACOI 1621 
- position not unambiguously alignable in other Trebouxiophyceae 

28S - Helix C1_E3 
3rd bp before 
terminal loop 

C-G ⇒ U-G - NHS in Microthamniales 
- U-G also in Eremosphaera viridis 
- G-C in CCAC 3677/4161 and CCAC 5561,  Leptosira terrestris 
- G-U in Stichococcus bacillaris 

28S - Helix C1_E3 
bp 6 

U-G ⇒ G-U - NHS in Trebouxiophyceae 
- U-G in Characium perforatum 
- C-G in CCAC 5545/5520 B, CCAC 5521/5585, CCAC 2916, ACOI 1621 
- G-C in Leptosira terrestris, Stichococcus bacillaris and Eremosphaera 
viridis 

28S - Helix C1_E3 
bp 8 

G-C ⇒ C-G - NHS in Microthamnion 
- GxG in CCAC 5561/5547 B 
- C-G also in Characium perforatum and Leptosira terrestris SAG 463-3 
- G-C also in Eremosphaera viridis and Stichococcus bacillaris SAG 379-2 

28S - Helix D22 
bp 6 

G-C ⇒ A-U - NHS in Microthamniales 

rbcL - AA 46 P ⇒ A - NHS in Microthamniales 
- P in Characium perforatum and Ettlia pseudoalveolaris 
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rbcL - AA 50* P ⇒ S - NHS in Microthamniales 
- A in CCAC 5561/5547 B 
- P majority of Trebouxiophyceae 

rbcL - AA 87 L ⇒ I - NHS in Microthamniales 
- I also in majority of Trebouxiophyceae 
- L in Tetrastrum staurogeniaeforme, Planctonema lauterbornii, 
Neocystis brevis, Lobosphaera incisa CAUP H 4301 and SAG 2007, 
Pseudococcomyxa simplex 

rbcL - AA 259 D ⇒ E - NHS in Microthamniales 
- variable in Trebouxiophyceae 

CCAC 3677/3838/4161 + CCAC 2279/CCAC 4234 
ITS2 - H3 
bp 5 (55-I/108-XIV) 

U-G ⇒ U-A - NHS in Microthamniales 
- C-G in CCAC 4853/4854/4855 
- UxC in CCAP 450/2 
- UxU CAUP J 1201, CCAC 8002 B, CCAC 4822 
- U-A also in Eremosphaera viridis, Chlorella vulgaris, Didymogenes 
palatina, Auxenochlorella protothecoides var. acidicola, Micractinium 
pusillum SAG 8.93, Auxenochlorella protothecoides CCAP 211/11I, Pabia 
signiensis, Koliella sempervirens, Neocystis brevis, Lunachloris lukesovae 

CCAC 4853/4854/4855 
18S - Helix E23_1 
bp 4 

U-A ⇒ U-G - NHS in Microthamniales 
- U-G also in Eremosphaera viridis, Oocystis solitaria, Tetrastrum 
staurogeniaeforme and Xylochloris irregularis 
- U-A or C-G in majority of Trebouxiophyceae 

ITS2 - H2 
bp 6 (24/37) 

U-G ⇒ G-C - NHS in Microthamniales 
- UxU in strains CCAP 450/4 to CCAC 3843 B 
- CxU in CCAC 2764 B and CCAC 2804 B 
- UxC in CCAC 3677/3838/4161 and Characium perforatum 
- G-C also in majority of Trebouxiophyceae 

ITS2 - H3 
bp 5 (55-I/108-XIV) 

U-G ⇒ C-G NHS in Microthamnion 
- UxC in CCAP 450/2 
- UxU in CAUP J 1201, CCAC 8002 B, CCAC 4822 
- U-A in CCAC 3677/3838/4161 and CCAC 2279/4234 
- C-G also in Characium perforatum, Franceia amphitricha, Oocystella 
oogama, Asterochloris phycobiontica, Asterochloris gaertneri, 
Coccomyxa dispar, Coccomyxa onubensis, Hemichloris antarctica, 
Parachloroidium lobatum, Watanabea reniformis, Symbiochloris 
handae, Symbiochloris sp., Symbiochloris symbiontica SAG 27.81 and 
SAG 2070 

ITS2 - H4 
bp 1 (124-II/129-I) 

A-U ⇒ AxA - NHS in Microthamniales 
- AxC in CCAC 4819, CCAC 3546, CCAC 4818, ACOI 140 
- G-C or G-U in majority of Trebouxiophyceae 

ITS2 - H4 
bp 2 (125/129) 

G-U ⇒ G-C - NHS in Microthamniales 
- majority of other Trebouxiophyceae G-U or G-C 

ITS2 - H4 
6th bp before 
terminal loop (126-
III/126-XIV) 

C-G ⇒ A-U - NHS in Microthamniales 
- G-C in Characium perforatum 
- position not unambiguously alignable in other Trebouxiophyceae 

ITS2 - H4 
5th bp before term. 
Loop (126-IV/126-
XIII) 

U-A ⇒ G-C - NHS in Microthamniales 
- C-G in clade 2 (except CCALA 368 [U-G] and M 2412 1 A [U-A]) and 
Characium perforatum 
- U-G in CCALA 368  
- position not unambiguously alignable in other Trebouxiophyceae 

28S - Helix B14 
last bp before 
terminal loop 

C-G ⇒ U-A - NHS in Microthamnion 
- U-A also in Characium perforatum 
- C-G in all other Trebouxiophyceae 

28S - Helix B17 
bp 6 

A-U ⇒ G-C - NHS in Microthamniales 
- variable in other Trebouxiophyceae 

28S - Helix B17 
bp 7 

G-U ⇒ G-C - NHS in Microthamniales 
- variable in other Trebouxiophyceae 
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28S - Helix C1_E1 
bp 4 

GxG ⇒ C-G - NHS in Microthamniales 
- C-G also in all other Trebouxiophyceae 

28S - Helix C1_E1 
bp 5 

U-A ⇒ C-G - NHS in Microthamniales 
- C-G also in all other Trebouxiophyceae 

28S - Loop Helix 
C1_E1 
nt 3 

C ⇒ G 
(GCCA ⇒ GCGA) 

- NHS in Microthamniales 
- G also in Eremosphaera viridis 
- A in Leptosira terrestris 

28S - Helix C1_E3 
bp 7 

U-A ⇒ CxU - NHS in Trebouxiophyceae 
- U-G in CCAC 2916 and Characium perforatum 
- GxG in CCAC 2279/4234 
- G-C in CCAC 5561 
- paired in Trebouxiophyceae 

28S - Helix C1_E3 
bp 12 

C-G ⇒ A-U - NHS in Microthamniales 
- A-U also in Leptosira terrestris 

rbcL - AA 230* A ⇒ S - NHS in Microthamniales 
- S also in Edaphochlorella mirabilis, Lunachloris lukesovae, 
Dictyochloropsis asterochloroides, Dictyochloropsis splendida, 
Chlorocloster engadinensis, Parachloroidium lobatum, Symbiochloris sp. 
SAG 244.80 
- A in majority of Trebouxiophyceae 

Microthamnion 
18S - Helix 46 
bp 6 

G-U ⇒ A-U - NHS in Microthamniales 
- G-U or G-C in most Trebouxiophyceae 
- A-U also in Quadricoccus ellipticus, Franceia amphitricha, 
Micractinium pusillum SAG 8.93, Gloeotila scopulina SAG 335-8, 
Stichococcus bacillaris SAG 379-2 and CCAP 379/7, Pabia signiensis, 
Koliella sempervirens, Edaphochlorella mirabilis, Lunachloris lukesovae, 
Lobosphaera incisa SAG 2466, Dictyosphaerium minutum, 
Leptochlorella corticola, Trebouxiophyceae sp. SC2-2, Uncultured 
Trebouxiophyceae clone QE17, Botryococcus braunii, Heterochlorella 
luteoviridis, Leptosira terrestris 

28S - Helix C1_E1 
2nd bp before 
terminal loop 

G-C ⇒ A-U - NHS in Trebouxiophyceae 
- G-C in Characium perforatum 
- C-G in Eremosphaera viridis 
- U-G in Stichococcus bacillaris SAG 379-2, Leptosira terrestris SAG 463-3 

28S - Helix D15 
3rd bp before 
terminal loop 

G-U ⇒ C-G - NHS in Trebouxiophyceae 
- G-U in Characium perforatum 
- A-U in other Trebouxiophyceae 

rbcL - AA 54 G ⇒ A - A almost unique (exception: reversion to G in clade 4, dark green 
group) 
- G in all other Trebouxiophyceae 

Microthamniales 
18S - Helix 16 
3rd bp before 
terminal loop 

C-G ⇒ A-U - NHS in Trebouxiophyceae 
- C-G in all other Trebouxiophyceae 

18S - Spacer Helix 4'-
Helix 17 
last nt 

UAAAUAA ⇒  

AAAAUAU 

- NHS in Trebouxiophyceae 
- AAAAUAA in Parachloroidium lobatum, Dictyochloropsis 
asterochloroides, Dictyochloropsis splendida SAG 2097 
- GAAAUAA in Oocystacea (except Eremosphaera viridis) and one 
branch in the Watanabea clade (Kalinella apyrenoidosa, Kalinella 
bambusicola, Heveochlorella roystonensis, Heterochlorella luteoviridis 
SAG 2133, SAG 2213 and SAG 211-2a, Heveochlorella hainangensis) 

18S - Helix 17 
2nd bp 

A-U ⇒ G-U - NHS in Trebouxiophyceae 
- U-A in Ettlia pseudoalveolaris and both Symbiochloris symbiontica 
strains 

18S - Helix 17 
bp 6 

C-G ⇒ G-C - NHS in Trebouxiophyceae 
- U-A in Botryococcus braunii 

18S - Helix E23_2 
bp 6 

G-C ⇒ A-U - NHS in Trebouxiophyceae 
- U-A in Oocystella oogama 
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18S - Helix E23_7 
bp 3 

G-C/U ⇒ C-G - NHS in Trebouxiophyceae 
- U-A in Quadricoccus ellipticus, Planctonemopsis distans, Amphikrikos 
nanus 
- A-U in Chloropyrula uraliensis and Apatococcus sp. 
- UxU in Prototheca wickerhamii 

18S - Spacer Helix 
E23_12'-Helix E23_9' 
2nd nt 

GAA ⇒  GCA - NHS in Trebouxiophyceae 
- GAA conserved in all other Trebouxiophyceae 

18S - Helix E23_13 
last bp 

U-A ⇒ GxA - NHS in Trebouxiophyceae 
- U-A conserved in all other Trebouxiophyceae 

18S - Spacer Helix 
45-Helix 46 
1st nt 

CCUAG ⇒ 
UCUAU 

- NHS in Trebouxiophyceae (first U unique in Microthamniales) 
- last position variable in Trebouxiophyceae (majority G) 

18S - Spacer Helix 
45'-Helix 47 
nt 5 

U ⇒ C - NHS in Trebouxiophyceae 
- U conserved in all other Trebouxiophyceae 

28S - Helix B18 
1st bp 

G-C ⇒ G-U - NHS in Trebouxiophyceae 

28S - Helix B18 
last bp before 
terminal loop 

C-G ⇒ U-A - NHS in Trebouxiophyceae 
- U-G in Pabia signiensis and Koliella sempervirens 

 

 

 

 

3.2.4. Compensatory Base Changes in the ITS2 Molecule 
Due to their significance regarding species delimitations, the CBCs in the ITS2 molecule 

were highlighted separately (Table 12), although some of the information is redundant 

as it was already listed in the NHS table of the previous chapter, when a character 

change was unique for a certain group or branch. Homoplasious CBCs and those unique 

only for a subdivision of a clade however give new information as they were not listed 

before. 

The CBCs listed in Table 12 represent those positions that were paired in all strains 

and had a double sided change that maintained the base pairing. Positions which 

offered CBCs but were not paired in every single strain, were refused. 

Since none of the Microthamnion phylogenies was resolved in the basal part, the 

evolutionary direction of changes could not be estimated. Thus, all character changes 

were given in reference to the character state in the majority of strains. Serial numbers 

were applied to keep track on homoplasious CBCs: they were given the same number 

and can thus be retraced to all branches where they occurred. Serial numbers 

appearing only once consequently represent unique character changes. The branch 

numbers in the first column refer to the phylogeny in Figure 6. 
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Table 12. Compensatory Base Changes (CBCs) in the ITS2 molecule 
Branch numbers refer to the phylogeny in Figure 6. ** ITS2 not sequenced in all members of the 

corresponding clade (confer with Supplementary Table 3, p. 92, for summary of available ITS2 sequence data 

and Supplementary Table 4, p. 93, for detailed information on character states at the given positions); strains 

listed as exceptions are representatives of certain branches in the phylogeny of Figure 6. Character changes 

are given in reference to the majority of strains. 

Branch - Strain(s) Compensatory Base Change (CBC) 
No - Helix (universal position) 

Character 
Change 

1 - Clade 1** except: CCAC 
     3843, CCAC 2942 B 

10 - H4 (126-VI/126-XI) G-C ⇒ A-U 

2 - Clade 2** except: CCAC 2081, 
 CALA 368, M 2412/1 A 

  8 - H4 (126-IV/126-XIII) U-A ⇒ C-G 

3 - CCAC 2916 + ACOI 1621   6 - H3 (90/93) U-A ⇒ C-G 

4 - ACOI 1621   5 - H3 (55-XVII/108-IV) A-U ⇒ G-C 
    8 - H4 (126-IV/126-XIII) U-A ⇒ C-G 

5 - CCAC 4547 B/5561   1 - H1 (8/11) C-G ⇒ G-C 

6 - CCAC 3677/4161*   2 - H1 (9-VII/9-X) G-C ⇒ U-A 

   3 - H2 (29-III/29-XII) C-G ⇒ U-A 
    5 - H3 (55-XVII/108-IV) A-U ⇒ G-C 

7 - CCAC 2279/4234   4 - H2 (29-III/29-XII) C-G ⇒ G-C 
    6 - H3 (90/93) U-A ⇒ C-G 

8 - CCAC 4853/4854/4855   2 - H1 (9-VII/9-X) G-C ⇒ U-A 

   7 - H4 (126-III/126-XIV) C-G ⇒ A-U 

   9 - H4 (126-IV/126-XIII) U-A ⇒ G-C 

 

3.2.5. Data Matrix for Alternate Tree Reconstructions 
Supplementary Table 4 (p. 93) gives the data matrix used for a tree reconstruction 

based on molecular characters that exceeded those of a mere succession of nucleotides 

in sequence data. Included were 100% sequence identity for each marker separately 

(thus also including those regions that could not be unambiguously aligned), the 

position of restriction enzyme cutting sites within the 18S rRNA molecule which lead 

to either an additional or prevented cut, the total number of cuts with each of the above 

mentioned enzymes, the length of the four ITS2 helices, and all apomorphies detected 

in the nuclear-encoded rRNA operon data as well as the rbcL protein alignment (NHSs 

of Table 11 and CBCs in ITS2 (Table 12) were integrated there). 

Apomorphies in the operon data were included with due consideration of the 

secondary structures of the individual markers, and were strictly confined to those 

positions which could be unambiguously aligned. This contained paired helix regions 

with single nucleotide changes as well as double-sided changes which lead to either the 

maintenance of a base pair (hemi CBCs and CBCs) or a mismatch. But also single-

stranded spacer- and loop-motifs were incorporated as long as they were 

unambiguously alignable. In the rbcL, only those apomorphies were taken into 

consideration where the amino acid change resulted in different side chain properties. 

  



Results 

- 57 - 
 

3.2.6. Phylogeny Based on Phenetic Molecular Characters 
From the 3800 ‘best’ trees (i.e. all variants with a score of 315) obtained from 

parsimony analysis, tree number 301 was selected for further graphical revision since 

it was one of the first which represented the topology of the majority rule consensus, 

and resembled the topology of the Microthamnion tree with all data (Figure 6, p. 34) 

most. Figure 11 gives the phylogeny of said tree. The clade and grade designations with 

the corresponding colors introduced in Figure 6 were adopted for the phenetic 

phylogeny. 

Here, clades 1, 3 and 4 were monophyletic and highly supported, whereas clade 2 was 

only ‘defined’ by the clear boundaries of clade 3, the branch establishing a sister 

relationship between clades 2 and 3 (which was not supported), and the clear 

distinction of clade 1. Clade 3 received maximum support and formed the tip of the 

tree, with clade 2 and clade 1 being the next descendent groups. Clade 4 was also 

maximally supported at the clade branch as well as the subdividing node of the dark 

green strains. The node corresponding to the divergence of clades 1-4 from the 

remaining strains was maximally supported. 

The topology in the basal part of the tree differed more from the grade definitions of 

the Microthamnion multi-gene phylogeny. Here, several branches were grouped 

together with moderate support and thus formed monophyletic groups. One occurred 

in grade 2 where strains CCAC 5547 B/5561 and CCAC 3677/3838/4161 were grouped 

together. The other summarized strains CCAC 5545/5520 and CCAC 5585/5521 of 

grade 1 with strain CCAC 2916 of grade 2. 

The most basal group was CCAC 2279/CCAC 4234 with the next emerging group being 

CCAC 4853/CCAC 4854/CCAC 4855, followed by strain ACOI 1621. All three branches 

only received moderate support for this topology.  

 

 

 

 

Figure 11. Maximum parsimony phylogeny based on phenetic molecular characters 
The tree was calculated with 112 characters, 93 of which were parsimony-informative and 19 parsimony-

uninformative. From 3800 ‘best’ trees, tree number 301 was selected for further graphic revision. Small 

numbers at branches: morphological character changes, large numbers in bold: MP bootstrap percentages. 

Branches in bold were maximally supported, very long branches were graphically reduced to 50% (50%//). 

Strains in bold are those used for the congruent analyses (compare figures 1-5). Sequences available for each 

strain are indicated by the following symbols: ‡=18S, ∆=ITS2, ƍ=28S and ¥=rbcL. Clade- and grade designations 

as well as color codes are given as introduced in Figure 6.  
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 Characium perforatum SAG 28.85‡∆ƍ¥
Uncultured eukaryote clone TE202D, KM870699‡

Uncultured eukaryote clone TE207E, KM870735‡
Uncultured eukaryote clone TE205F, KM870721‡

Uncultured eukaryote clone TE201H, KM870697‡
CCAC 2279‡∆ƍ¥

CCAC 4234‡∆ƍ¥
CCAC 4853∆¥
CCAC 4855‡∆ƍ¥
CCAC 4854‡∆¥

ACOI 1621‡∆ƍ¥
CCAC 4161‡∆ƍ¥
CCAC 3677‡∆ƍ¥

CCAC 3838¥
CCAC 5561‡∆ƍ¥

CCAC 5547 B‡∆¥
CCAC 2916‡∆ƍ¥

CCAC 5521‡∆ƍ¥
CCAC 5585‡∆ƍ¥

CCAC 5520¥
CCAC 5545‡∆ƍ¥

CCAC 4857‡∆ƍ¥
CCAC 4856∆¥

CAUP J 1201‡∆ƍ¥
CCAC 8002‡∆¥
CCAC 4822‡∆ƍ¥

CCAP 450/2‡∆ƍ¥
ACOI 1620‡∆ƍ¥

ACOI 248‡∆ƍ¥
CCAC 0054¥
CCAC 0539 B∆¥
CCAC 0087‡∆¥
CCAC 2011‡∆¥

CCAC 2182∆¥
M 2196/1 A∆¥
CCAC 2197∆¥
CCAC 2198∆¥
CCAC 2199 B¥
CCAC 2223 B∆¥
CCAC 2224‡∆ƍ¥
CCAC 4820‡∆ƍ¥
UTEX LB 237‡∆ƍ¥

M 4555¥
CCAC 4544 B¥
CCAC 4717 B¥

CCAC 4559 B¥
CCAC 8001 B¥
CCAC 2081∆¥
SAG 115.80¥
CCAC 4821¥

M. kuetzingianum
UTEX 318, KM462876¥

CCAC 3710¥
CCAC 4549 B¥
ACOI 1817¥
CCAC 4558 B¥
CCAC 3547¥

CCALA 368‡∆¥
M 2412/1 A‡∆ƍ¥

SAG 114.80‡∆ƍ¥
CCAC 2764 B‡∆¥
CCAC 2804 B‡∆¥

CCAC 2943 B∆¥
CCAC 3676 B‡∆¥

CCAC 5530 B‡∆ƍ¥
ACOI 140‡∆ƍ¥
CCAC 3546 B‡∆ƍ¥
CCAC 4818∆¥
CCAC 4819‡∆¥

CCAC 2942 B‡∆ƍ¥
CCAP 450/4¥
CCAC 3842 B¥

CCAC 3843 B∆¥
CCAP 450/3‡∆ƍ¥

ACOI 1447∆¥
ACOI 2656∆¥

ACOI 2660‡∆¥
ACOI 398‡∆ƍ¥
CCAC 2771‡∆¥
CCAC 3664 B‡∆¥

NIES-479‡∆¥

10

substitutions/site

79

79

78

60

60

60

60

60

60

93

78

88

93

8253

61

2

2

4

4

2

2

2
2

42

5

2
2

4

2

2

3

4

12

5

7
5

3

5

8

5

2

4

9

12

27

4

2

2

13

14

22

22

15

39

2

2

//
50%

//
50%

//
50%

clade 1

clade 2

clade 3

clade 4

grade 1

grade 2
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4. Discussion 

4.1. Phylogenetic Analyses 

4.1.1. ITS2 Secondary Structure 
The secondary structure of the ITS2 molecule has been extensively studied across 

eukaryotes (Mai & Coleman, 1997; Joseph et al., 1999; Schultz et al., 2005; Coleman, 

2007), where a common clover leave like structure with four helices, connected by 

single-stranded spacer regions, was revealed. Detailed studies in algae were performed 

for the order Ulvales, where a consensus secondary structure was established based 

on 86 taxa (Caisová et al., 2011a). This structure was later expanded to two classes, the 

Ulvophyceae and Chlorophyceae, represented by the orders Ulvales, Chaetophorales, 

Chaetopeltidales, Oedogoniales and Sphaeropleales (Caisová et al., 2013). 

The landmarks of ITS2 secondary structure prediction, specified by Caisová et al. 

(2013) for the Ulvophyceae and Chlorophyceae, could be reliably applied on 

Microthamnion as well (Reder, 2015). The spacer regions between helices and the first 

two base pairs in helices 1-3, although not completely identical, could be easily 

identified. Also the pyrimidine-pyrimidine mismatch in helix 2 and a GGUA motif at the 

5’side of helix 3 were highly conserved and thus readily determined. With the helix 

boundaries defined, it was possible to fold the single helices individually and compare 

them pairwise which ultimately lead to the erection of a consensus secondary structure 

model for the complete genus. In the present study, the dataset of Reder (2015) was 

augmented by several new strains which also represented different genotypes. These 

additional sequences, having been subjected to careful folding and manual pairwise 

comparison with the already existing structures, offered new insights and allowed for 

the optimization of the previous model. 

With the consensus secondary structure model established for Microthamnion, the 

transfer of this information to other trebouxiophycean taxa was smoothly pursued. 

Although the spacer between 5.8S and H1 showed minor length variations (one to 

three additional nucleotides compared to Microthamnion) and sequence variability, 

the first two base pairs of H1 were highly conserved among the Trebouxiophyceae. 

With the spacer between H1 and H2 being length-conserved and usually beginning 

with an adenine, the helix boundaries were reliably identified. The other landmarks for 

secondary structure prediction could also be easily determined: the pyrimidine-

pyrimidine mismatch in H2 (mainly U-U), a GGUA motif on the 5’ side of H3, the highly 

conserved spacer between H2 and H3, the first five base pairs in H2 and the first two 

in H3, plus the first three nucleotides on the 5’ side of H4.  

This approach enabled the buildup of a trebouxiophycean ITS2 alignment based on 

secondary structure information, which was crucial for the identification of 

homologous nucleotides and consequently unambiguously alignable positions 
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available for phylogenetic analyses (compare grey background in Figure 10, p. 42). It 

also facilitated the search for NHSs in these homologous regions across all 

trebouxiophycean taxa investigated in this study, and thus allowed to put the NHSs in 

Microthamnion in a broader context. A detailed graphic revision of a general 

trebouxiophycean secondary structure model as shown for Microthamnion, although 

certainly feasible, did however exceeded the purpose of this study. 

4.1.2. Identification of a Promising Barcode Candidate in 

Microthamnion 
The barcoding system was originally introduced as a tool for rapid species 

identification via a single variable DNA marker (Hebert et al., 2003). Although 

successfully applied in animals, where the ‘correct’ species boundaries can be tested 

against biological species (e.g. Hebert et al., 2004; Hajibabaei et al., 2006), there were 

also pitfalls uncovered. Incomplete lineage sorting (Wiemers & Fiedler, 2007), 

insufficient resolution capacities of the marker chosen (Hadi et al., 2016), or high error 

rates in recently diverged species (Hendrich et al., 2010) were only some of them. It 

has thus been proposed, to use a barcode only for a first estimation of intrageneric 

variability, and to corroborate species boundaries with other methods (e.g. Meyer & 

Paulay, 2005; Wiemers & Fiedler, 2007; Zou et al., 2016). 

In the present study, a barcode was sought for the latter application rather than a 

means for distinct species delineation. Here, one aim was the compilation of a 

congruent multi-gene alignment, which should be used for several concatenated 

analyses with varying marker compositions, to determine the best combination for a 

resolved phylogeny in Microthamnion. As the amplification and sequencing of all 

markers for each of the 74 Microthamnion strains would have been inefficient, both 

time and cost wise, it was searched for a suitable barcode marker that depicted the 

intrageneric variability. This, in turn, facilitated the selection of reference strains for 

each identified group which ensured both, a balanced taxon sampling and minimized 

expenses in DNA amplification and sequencing. With regard to future investigations on 

the genus, this barcode will also be ideal to assign new Microthamnion isolates and 

environmental sequences to already identified subgroups, or quickly identify yet 

unknown genotypes.  

From the single-gene phylogenies of all investigated markers, the rbcL was best suited 

for this task as the topology inferred from the DNA alignment revealed several well-

supported groups and long branches that allowed for the selection of representatives 

that could then be used for more detailed comparative analyses using a congruent 

dataset. The rbcL was also the marker that was easiest to amplify as the primers 

worked on all strains and usually yielded a strong PCR product which made 

reamplification unnecessary. Besides, the sequencing reads were very clear and did 

hardly need manual correction. An additional advantage, being a protein coding gene, 

was a much easier and faster aligning process compared to the rRNA genes and 

especially the ITS2 molecule, as sequences only had to be aligned according to reading 
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frame and not to secondary structure motifs. All these facts taken into account, the rbcL 

can be considered an ideal barcode marker for Microthamnion which also meets the 

criteria proposed by Hall and collegues (2010).  

4.1.3. Selection of the Best Marker Combination for a Resolved 

Microthamnion Phylogeny 
The impact of the single markers on the Microthamnion phylogeny was exhaustively 

tested and compared for both, the individual markers separately as well as various 

combinations, all based on a congruent dataset (Figure 1 to Figure 5, pp. 28-32). This 

dataset comprised representatives of the groups identified via rbcL (DNA) single-gene 

analyses, thus ensuring a well-balanced taxon sampling spanning the complete 

Microthamnion diversity investigated in this study. 

These analyses showed the advantages that concatenated analyses can have over 

phylogenies inferred from only a single marker, but also stressed the importance of a 

careful selection regarding the markers to be compiled (see below). When individually 

computed, none of the different loci was able to resolve the Microthamnion phylogeny, 

although the rbcL (DNA) was powerful enough to depict the intrageneric variability. 

The 18S and 28S rRNA genes proved to be too conserved to differentiate more than the 

basal lineages, a result that did not much surprise as the SSU is a marker usually better 

suited for higher taxonomic phylogenies (e.g. Marin et al., 2003; Guillou et al., 2004; 

Caisová et al., 2011b). In the LSU the variable C-domain apparently did not have enough 

phylogenetic signal to compensate for the remaining conserved parts.  

In the combined Microthamnion phylogenies, the rbcL nucleotide data dominated the 

topology. The other often suggested ‘species marker‘ ITS2 (e.g. Lewis & Flechtner, 

2004; Shao et al., 2004; Young & Coleman, 2004; Walton et al., 2007; Chen et al., 2010) 

had far less impact on the topology, but worked out a finer distinction of the strains, 

especially in  clades 1 and 2, and also lent support for the separation of clades 1 to 4 

from the grades in the basal part, when combined with the rbcL nucleotide data. 

Surprisingly, the addition of the 18S rRNA gene, which had not much significance when 

computed separately, was crucial to work out the monophyly of clade 2. Interestingly, 

it did not matter whether the rbcL was included based on the nucleotide or amino acid 

sequence as long as all three markers were combined. As expected, the 18S also 

increased the support values and thus stabilized the phylogeny. The partial 28S gene 

sequences did not give any new insights regarding the topology, but when combined 

with the other markers, it significantly increased the statistical support for clade 2 and 

the node confirming strain CCAC 4857 to be the next relative to clades 1 to 4.  

All combinations with rbcL nucleotide data were superior to the single-gene analyses 

with regard to significance and/or topology, with the exception of the tree inferred 

from only SSU and rbcL DNA data which had no altering effect. Those phylogenies 

without any rbcL data were however inferior to the rbcL (DNA) single-gene tree. It can 

thus be concluded that in Microthamnion the rbcL is the most crucial of the markers 

investigated and should be used in all phylogenies addressing intrageneric variability. 
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The best result in regard to topology and significance was achieved with all 

investigated markers when the rbcL was included with the nucleotide sequence 

(compare Figure 5, p. 32). The tip of the tree was well resolved with this combination, 

and also a closer relationship with the strains of grade 1 was worked out with at least 

moderate support. The basal part, i.e. the relationships among the strains of grade 2, 

however remained unresolved.  

There were however some combinations containing ITS2 data that confirmed the most 

basal position of strain CCAC 4855, as the next ascending node received relatively high 

bootstrap percentages (70 to 80). This was interestingly only the case in combinations 

where rbcL nucleotide data was absent. Apparently, this topology was strongly favored 

by the ITS2, but seemed to be silenced by the dominating phylogenetic signal of the 

rbcL nucleotide dataset. In those combinations with rbcL protein data though, the basal 

position of strain CCAC 4855 was again enforced with statistical support. Without the 

defining rbcL nucleotide signal in those phylogenies however, the individual clades in 

the tip of the trees were either not clearly distinguished or their relationship among 

each other was not resolved. There was no marker combination from those 

investigated in this study that could provide both characteristics, a well resolved tip 

and statistical support for the most basal strain.  As the latter finding, though 

interesting, did not contribute to the identification of species in the genus, the 

combination of all markers with the rbcL based on the DNA alignment was ultimately 

chosen for the phylogeny comprising all Microthamnion strains. 

4.1.4.  Comparison of the Congruent with the Gapped Microthamnion 

 Phylogeny 
The calculation of the phylogenies based on a congruent, well-balanced taxon sampling 

(Figure 5, p. 32) and on a gapped alignment with all available Microthamnion sequences 

(Figure 6, p. 34) served different purposes. Where the congruent dataset was required 

to approximate a best resolved phylogeny, the tree with all strains was needed to 

display the complete known Microthamnion diversity and allow for a phylogeny-based 

identification of species. 

The positive effects of a well-balanced taxon sampling and an alignment without gaps 

(Figure 5) on the support values has been described in detail in the results part 

(chapter 3.1.4, p. 33). Apparently, the overrepresentation by the large clusters of highly 

similar genotypes in clades 1-3, as present in the gapped phylogeny (Figure 6), blurred 

the phylogenetic signal and resulted in generally lower support at the clade nodes and 

internal branches. Besides, the gaps in the alignment caused troubles for the distance 

methods, which often failed to resolve branches which were otherwise well supported 

with the other methods. The topology however was not affected at all by the gapped 

alignment which validates the efficient approach only to generate rbcL sequences for 

all strains and allow for missing data in (some of) the other genes when depicting the 

complete Microthamnion diversity. For the optimal statistical support of clades and 
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internal nodes, the phylogeny with a reduced, well-balanced taxon sampling and 

complete sequence data (Figure 5) can be consulted as reference. 

In both phylogenies however, the relationship among the individual long branches in 

the basal part could not be clarified. In general, there have been two methods discussed 

to stabilize the topology and to increase the accuracy of phylogenetic trees. While some 

authors favor the increase in number of molecular markers as well as sequence length 

(Rosenberg & Kumar, 2001; Rokas et al., 2003), others advocate an increased taxon 

sampling (Graybeal, 1998; Hedtke et al., 2006). As the present phylogenies were 

already inferred from a combination of four markers from different loci with a wide 

range of conservation levels and a total length of 4605 aligned positions, which was in 

fact able to nicely resolve the tip of the tree, the addition of more genes seems hardly 

advantageous. Instead an increased taxon sampling for the basal part seems more 

likely to improve the phylogeny, especially, as the addition of linking taxa can also 

break up long branches. There were however all available strains in culture 

investigated and all available sequence data incorporated in this study, and also 

extensive BLAST searches did not reveal additional sequences. It seems, that in order 

to solve this problem, the collection of new samples is required, which will have to lay 

a special focus on habitat preferences and sampling strategies (more see below). 

Another, maybe even more important, aspect for the unresolved topology in the basal 

part is the absence of an adequate outgroup. Characium, although being the next known 

relative, is already quite distantly related and, apart from the newly found members of 

the Characium clade, no other relatives could be determined. When an outgroup is 

either chosen too distantly or the next living relatives simply are to distantly related, 

the long outgroup branches can lead to wrong rootings as they attract long ingroup 

branches and thus do not give their right position (Felsenstein, 1978; Huelsenbeck, 

1997; Graham et al., 2002). It is thus quite possible that with a better sampled outgroup 

(which includes more taxa), the position of the long branches might shift and the 

topology be better resolved. 

4.1.5. Trebouxiophycean Phylogeny 
The trebouxiophycean phylogeny calculated in this study was apparently the first to 

combine molecular data from the nuclear as well as the plastid genome and at the same 

time covering the complete known trebouxiophycean diversity. Other studies either 

conducted extensive studies confined to the plastid genome (Lemieux et al., 2014; 

Suzuki et al., 2018), were restricted to 18 rDNA (Eliáš et al., 2008; Darienko et al., 2010; 

Hallmann et al., 2016) or rbcL (Kulichová et al., 2014), or covered less diversity 

(Neustupa et al., 2013b; Fučíková et al., 2014). 

The tree inferred from a combined 18S rDNA, ITS2, 28S rDNA and rbcL (DNA) analysis 

(gapped alignment; Figure 7, p.36), clearly proofed the monophyly of Microthamnion. 

Besides, it confirmed Ch. perforatum to be (one of) the next relative(s) to 

Microthamnion, but also revealed the existence of a hitherto unknown sister group to 

Ch. perforatum. This sister group was unfortunately only represented by 
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environmental SSU sequences and cannot be linked to any known organism or even 

algal cultures. Without further investigations, it can only be speculated whether these 

new sequences form another Characium species or even represent a new genus within 

the Microthamniales, and thus the designation ‘Characium clade’ was chosen. 

Whatever the taxonomic classification might be, these sequences were extremely 

valuable for Microthamnion phylogenies as they increased the available outgroup for 

analyses containing 18S rDNA data. There were however no other (more distantly) 

related taxa to Microthamnion revealed as further clarification of relationships among 

trebouxiophycean lineages was not possible. A proposed sister relationship of the 

Microthamniales to Xylochloris and Leptosira (Lemieux et al., 2014; Suzuki et al., 2018) 

could not be confirmed. Also a closer relationship with Parietochloris, as suggested by 

18S rDNA phylogenies (Eliáš et al., 2008; Neustupa et al., 2009, 2013a,b; Darienko et 

al., 2010; Hallmann et al., 2016), was only indicated by topology, but lacked any 

statistical support except with Bayesian posterior probabilities. Besides, Parietochloris 

(and Ettlia) were too distantly related to benefit the outgroup of Microthamnion. 

Due to the limited amount of available sequence data, with lots of taxa only represented 

by sequence of a single gene in the NCBI database, the trebouxiophycean phylogeny 

was calculated based on a gapped alignment. As the comparison of the Microthamnion 

congruent and gapped phylogenies already showed, the use of such a gapped alignment 

has its disadvantages regarding the support values. Distance methods in particular are 

vulnerable to gaps and it is thus not surprising, that they failed to resolve most 

branches. However, when compiling the trebouxiophycean alignment, the information 

gained by the use of several markers and a maximized coverage of the 

trebouxiophycean diversity was deemed to outweigh the disadvantages of a gapped 

alignment. As simulations have shown, the correct phylogenetic tree can be 

reconstructed when taxa with missing data are included as long as the overall sequence 

length is high (i.e. 2000 characters as opposed to 100 characters in simulations where 

taxa where misplaced) (Wiens, 2006). Besides, when taxa with missing data were 

added to a given dataset, they were shown to be equally capable of breaking up long 

branches as taxa with complete sequences, as long as they covered 50% of the total 

examined sequence length (Wiens, 2005). The gapped alignment used for the 

trebouxiophycean phylogeny included only those taxa, where at least the complete 18S 

rRNA or rbcL genes were covered. Taxa with only ITS2 or partial SSU sequences 

available were not taken into consideration, thus ensuring a high coverage of total 

number of characters.  

Despite an extensive taxon sampling via literature and database searches, the branches 

separating the Microthamniales from the remaining Trebouxiophyceae and 

Microthamnion from the Characium clade remained very long, indicating that there 

either are no other living relatives, or relevant taxa are not available in databases yet. 

As most of the new members of the Characium clade were found in glacial debris 

(Schmidt & Darcy, 2015), and numerous other examples in the Trebouxiophyceae are 
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known, where sampling strategies considering more unusual habitats lead to the 

discovery of new lineages (e.g. Neustupa et al., 2011, 2013a,b; Gaysina et al., 2013), it 

is quite possible that more taxa will be revealed in the future.  

4.1.6. Putative Species Inferred from the Microthamnion Phylogeny 
The criteria based on which species are inferred from a molecular phylogenetic tree 

are in theory relatively simple. A species is usually defined as a monophyletic group 

comprising several organisms, which is clearly distinguishable from other such groups 

via both branch lengths and statistical support (Leliaert et al., 2014). The ideal topology 

would display long and well-supported inter- and short intraspecific branches, thus 

allowing for a clear identification of species boundaries. There are numerous examples 

in algae, where species have been considered to correspond to these monophyletic 

groups, regardless whether they were referred to as “clear-cut genotypic clusters” 

(Verbruggen et al., 2005), “evolutionary significant units” (Verbruggen et al., 2007; 

Tronholm et al., 2010) or simply “lineages” (Šlapeta et al., 2006; Belton et al., 2014) or 

“clades” (van der Strate et al., 2002). Boundaries are however not always that clear-

cut, especially in ongoing or very recent speciation events where the variation inside a 

clade can be quite high. In these cases also the surrounding topology has to be taken 

into consideration and the phylogeny-based approach ideally be complemented with 

other methods of species identification. 

In the tip of the Microthamnion phylogeny, comprising all strains with all available 

sequence data (Figure 6, p. 34), four monophyletic clades could be defined with a 

clearly distinguishable subdivision in clade 4. Whether these clades should be 

considered different species or where boundaries might be disputable, needs to be 

discussed in detail. 

From the branch lengths and the support values, the dark green group of clade 4 was 

the most readily identified distinct species when the above mentioned criteria were 

applied. This group was maximally supported and had clearly discriminative intra- 

versus interspecific branch lengths. As the other subdivision in clade 4 (light green) 

only consisted of one strain, the monophyly criterion could not be applied and also 

support values were not available. The branch length was however so significant, that 

considering it also a different species was not at all far-fetched. The only reason of 

choosing the terminology of ‘clade 4 dark green and light green’ over ‘clade 4 and clade 

5’ was, that a single strain per definition cannot be named a clade. Clade 1 was also 

clear cut with almost maximal support, except for the NJ methods. The latter likely 

being an artefact caused by the gapped alignment and an uneven taxon sampling, as in 

the congruent analysis (Figure 5, p. 32) the clade was resolved with all methods. In 

clade 3 and, especially, clade 2 the branch lengths within the clades exceeded that of 

the respective clade branch and also the support values were not that significant. The 

surrounding topology however clearly separated both clades. The strains of clade 2, 

although only grouped by an extremely short clade branch with low support (compare 

the congruent phylogeny of figure 5 for better significance), were nevertheless distinct 
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through the clear boundaries of clade 1 and the long and almost maximally supported 

node defining a sister relationship of clades 1 and 2. A more conservative possibility 

would, of course, have been to summarize clades 1 and 2 into a single clade and thus a 

single species. The clade branch in this case would have been strongly supported 

(maximum support in the congruent phylogeny) but the variability within this large 

clade would have been too high, especially, when considering the presence of a clear-

cut monophyletic group (i.e. clade 1) that implied a subdivision. Clade 2 was in fact so 

diverse that even a division in several subclades could have been considered, as 

multiple monophyletic clusters were present. This thought was however refused, 

because clear boundaries could not be unambiguously identified. Due to the absence of 

statistical support at most branches, it was not evident whether only the most terminal 

monophyletic groups should be considered or whether boundaries lay at more internal 

nodes, thus grouping several clusters together. It was thus opted for the division in the 

two clades earlier introduced (i.e. clade 1 and 2) with clade 2 likely depicting a very 

recent speciation event. For clade 3 the surrounding topology was even more 

distinctive than for clade 2 as both branches, the one separating clades 1-3 from the 

remaining strains as well as the one defining a sister relationship between clades 1 and 

2, were long and highly supported. 

It is thus quite reasonable to acknowledge the clade boundaries with the subdivision 

in clade 4, and consider them 5 different species. 

The basal part of the tree, i.e. grades 1 and 2, was characterized by individual long 

branches with high statistical support but an unresolved topology. A grouping 

into clades was in so far difficult as the phylogeny was clearly undersampled in 

this part and strains grouped together at terminal branches often originated from the 

same natural sample and should thus rather be considered identical clones than 

individual strains; which in turn made the statistical support at those nodes invalid. 

This referred to the branches grouping strains CCAC 4856/4857 in grade 1 and strains 

CCAC 5547 B/5561 and strains CCAC 4853/4854/4855 in grade 2. In those cases 

though, where strains from different localities were grouped, they could be termed 

clades albeit with only two members each (strains CCAC 3677/3838 originate from the 

same raw sample, thus only two members when grouped with CCAC 4161).  

There were three clearly distinguishable groups/individual strains in grade 1 and six 

with extremely long branches in grade 2. As both, branch lengths and statistical 

support, when applicable, were quite compelling, these nine groups/individual strains 

must at least be considered different species. But as they were so distantly related to 

the other Microthamnion clades, they could even be considered different genera, 

especially, when taking into consideration the comparable branch lengths of the 

groups/individual strains of grade 2 with those between Microthamnion and 

Characium, which are definitely different genera. This assumption is also consistent 

with the assessment of Šlapeta and collegues (Šlapeta et al., 2006), who performed a 

multi-locus phylogenetic study on 17 Micromonas pusilla isolates. The unrooted 
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phylogeny inferred from rDNA (SSU, both ITS regions and 5.8S), coxI and rbcL data had 

an astonishingly similar topology with equally divergent branch lengths among some 

lineages. They, too, concluded that the long branched lineages might rather belong to 

different genera than different species, a suggestion that was later backed up when 

brought into a larger phylogenetic context (Marin & Melkonian, 2010). 

 

4.2. Phenotypic Molecular Data 

4.2.1. NHS and CBC Support for Species and Genus Boundaries 
The concept of molecular NHSs was introduced by Marin et al. (2003), who drew 

parallels between these uniquely derived molecular signatures and the use of 

morphological characters in systematics. Due to the high degree of conservation in the 

ribosomal rRNA genes’ secondary and tertiary structures, it was assumed that NHSs 

found there displayed “morphological rRNA characters” which were similarly suitable 

for cladistics as phenotypic characters, albeit below the resolution of electron 

microscopy (Marin et al., 2003). This idea was later also exerted on the plastid-encoded 

rRNA operon and rbcL genes (Marin & Melkonian, 2010; Marin, 2012). In the present 

study, NHSs were sought to lend support for clades identified by phylogenetic analyses 

and thus to reinforce species boundaries. 

Unique Signatures in the RbcL and Nuclear-Encoded Operon Genes 
The NHSs found in the plastid-encoded rbcL gene were indeed in accord with the four 

clades defined in the Microthamnion phylogeny (Figure 6). Each of the individual clades 

gained NHS support, and in clade 4 the separation into the two subclades was 

acknowledged via multiple unique synapomorphies for the dark green group. Besides, 

unique synapomorphy residue substitutions did not occur on any internal clade 

branches (when clade 4 is considered two clades). 

As already discussed before, from the Microthamnion phylogeny it can be assumed that 

the clades correspond to species level and that clade 4 is defined very conservatively 

and the subdivision into the light- and dark green group is instead preferable to mark 

the species boundary. This assumption is supported by the rbcL NHSs and leads to the 

conclusion that in Microthamnion the smallest unit identified via rbcL NHSs 

corresponds to the species level. Besides, rbcL NHSs lent support to the topology and 

thus the relationship among clades, as clades 1 to 3 were united by a unique residue 

substitution. Following a gap after clade 4, where neither the individual lineages of 

grade 1 nor their relationship among each other or that with clades 1 to 4 gained NHS 

support, all lineages in grade 2, except the single-stranded strains CCAC 2916 and ACOI 

1621, were again defined by unique synapomorphies in the rbcL. These NHSs in grade 

2 were however corroborated by synapomorphy support from all other markers. The 

largest entity defined by a unique molecular signature in the rbcL was Microthamnion 

on genus level, albeit with the exception of the dark green group of clade 4. 
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The conserved operon genes however did not hold any NHS support for the clades 1 to 

3, or the dark green group of clade 4. Instead, molecular synapomorphies in the 18S, 

5.8S and 28S rRNA genes were found mainly for the lineages of grade 2 and then on 

genus and order level. The two only exceptions were the light green group of clade 4 

with a unique loop motif in 5.8S and a CBC in 18S, albeit in a variable region (V4), as 

well as the node summarizing strains CCAC 4856/4857 with clades 1 to 4 which was 

characterized by a CBC and a unique mismatch pattern in a variable helix of 28S. 

The unique molecular signatures for branches grouping clades together, as well as the 

NHS gap between the clades and the lineages of grade 2, also lent support to the 

assumption that the strains investigated in this study do not only form separate 

Microthamnion species, but might in part even represent different genera. Besides, the 

clear hierarchy of NHSs regarding the markers in which they were found, offered new 

insights as to where these alternative genus boundaries might lie. The most narrow 

definition for Microthamnion based on NHS support would then encompass clades 1 to 

3 as they were grouped together and were also individually characterized by NHSs in 

the rbcL, with subdivisions only supported by unique signatures in the most variable 

marker ITS2 (see below). The broadest genus border, on the other hand, would be all 

four clades plus strains CCAC 4856/4857 as this is the last node confirming 

relationships among groups with NHS support. Another logical and quite neat 

possibility would be to draw the line between the groups that were exclusively defined 

by NHSs in the rbcL or ITS2 and those with (additional) operon gene support. In that 

case Microthamnion would consist of clades 1 to 3 and the dark green group of clade 4. 

This arrangement would however be in conflict with the phylogeny which supports the 

monophyly of clade 4 and can thus not prevail.  

NHS and CBC Support from the ITS2 Molecule 
NHSs and CBCs in the ITS2 molecule did not draw as uniform a picture as the unique 

signatures from the rbcL and operon genes. In the ITS2 neither CBC nor NHS 

occurrence coincided with the clade boundaries inferred from the phylogeny, but 

rather clustered on opposite ends of the Microthamnion tree (Figure 6, p.34). In the tip, 

they were mainly concentrated to internal branches in clades 1 and 2, yet also 

identified the dark green group of clade 4 via a single unique mismatch pattern, 

whereas in the basal part they were constricted to lineages of grade 2. 

Interestingly, all strains in clade 1 were identified via at least one NHS whereas in clade 

2 only two terminal branches had NHS support. In clade 1, strain CCAC 2942 was 

characterized by a unique spacer motif, and the remaining strains were united by a 

distinct mismatch pattern in H2. Furthermore, also nested monophyletic groups 

obtained NHS support, one of which being the only CBC found in clade 1. In clade 2 

however, NHS support was only given for two terminal branches in which one perhaps 

referred to only a single strain (M 2412/1 A) as for the other strain (UTEX 318) ITS2 

data was not obtained, but these two nodes were even characterized by two and three 

unique signatures each. The other strains in clade 2 were not defined by any NHS, but 
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most of them were characterized by a CBC in H 4 (whose character state was shared 

with a CBC in ACOI 1621 and was thus not unique). This CBC did however not 

summarize the complete clade, but was shifted one node inwards thus leaving out 

strain CCAC 2081, and also strains M 2412/1 A and CCALA 368 were excluded as they 

either reversed to the original character state (M 2412/1 A) or displayed a hemi CBC 

(CCALA 368). Clade 3 was not defined by any ITS2 NHS or CBC, but in clade 4, the dark 

green group was identified via a mismatch position in a conserved region of H3 that 

was otherwise paired in the Microthamniales. 

In the basal part, on the other hand, each of the lineages in grade 2 offered at least one 

CBC (= CCAC 4547 B/5561 and CCAC 2916; all others were supported by two or three 

CBCs each) and all except strain CCAC 2916 were supported by multiple NHSs. Besides, 

for all branches except those of the single strains CCAC 2916 and ACOI 1621, one or 

two CBCs each were unique and thus concurrently NHSs. 

A reoccurring pattern in congruence with the rbcL and operon genes was however the 

presence of an NHS- (and CBC-) gap between the clades and the lineages of grade 2. If 

it were not for the unique mismatch pattern in the dark green group of H4, it would 

even be considerably larger than that observed in the rbcL. Also the origin and numbers 

of CBCs found for the lineages of grade 2 and the subdivisions in clade 1 and 2, followed 

a clear trend. While the subdivisions only offered a single CBC each, which were 

positioned in the extremely variable H4, the individual lineages in grade 2 were 

characterized by up to three CBCs each. For the single strain branches CCAC 2916 and 

ACOI 1621, and the lineages comprising strains CCAC 3677/3838/4161 and CCAC 

2279/4234, at least one CBC was found in the conserved regions of H2 and H3. The 

additional CBCs for those lineages as well as all CBCs for strains CCAC 

4853/4854/4855 and CCAC 4547 B/5561 were located in the variable helices 1 and 4.  

According to the CBC species concept sensu Coleman (2000), specimen differing by at 

least one CBC in the conserved regions of H2 and H3 belong to different biological 

species, whereas CBC occurrence in the variable helices 1 and 4 was not associated 

with the ability/inability to cross. However, the absence of a CBC in the conserved 

regions does not mean that all specimen belong to the same species, and also organisms 

united in one CBC clade can fall into more than one species (Coleman, 2000). It has also 

been shown that the CBCs in H2 and H3 do not necessarily correspond to species level, 

but can represent genera or higher classification ranks (Caisová et al., 2011a, 2013). If 

one considers the lineages of grades 1 and 2 to represent different genera instead of 

species, in Microthamnion, conserved CBCs would correspond to genus level as they 

were only found for lineages in grade 2. Considering the fact that in the frame of the 

CBC species concept only a minimum number of species (or in this case genera) can be 

approximated, the absence of (conserved) CBCs in the strains of grade 1 or some 

lineages in grade 2 does not contradict the conclusions drawn from the phylogeny and 

the NHSs in the rbcL or operon genes, which suggest the separation into even more 

putative genera. 



Discussion 

- 70 - 
 

What the NHSs on internal branches in clades 1 and 2 mean for species boundaries can 

at the moment only be speculated. Strains identified by such a unique signature could, 

of course, form separate species, especially when taking into consideration that for 

most of these nodes at least one NHS was found in the conserved helices 2 and 3. There 

are also several strains in clade 2 where the ITS2 was not sequenced and it is thus 

possible that clade 2 holds even more groups identifiable via NHSs. These putative 

species boundaries were however not supported by any of the other molecular 

methods applied in this study. Without further investigation, for example on the 

morphology, it is for the moment more fitting to assume these variations to correspond 

to subspecies/varieties or ecotypes rather than species. 

4.2.2. Tree Reconstructions Inferred from Phenotypic Molecular 

Characters 
The use of morphological data for phylogenetic tree reconstructions is a generally 

accepted and widely used method to assess relationships among organisms. In that 

framework, morphological characters are translated into a discrete numerical code 

and are assembled in a data matrix which is then used for phylogenetic tree 

reconstructions, mainly by maximum parsimony analysis (e.g. Ponder & Lindberg, 

1997; Mayr & Clarke, 2003; Reinert et al., 2004; Shultz, 2007). Lately, also likelihood 

and Bayesian approaches have been discussed (Lewis, 2001; Lee & Worthy, 2012; 

Wright & Hillis, 2014), but are still not as frequently applied. 

The calculation of a phylogeny based on phenotypic molecular characters, as 

introduced in the present study, is apparently a novel approach allowing for sequence 

data to be interpreted in a broader context. Although the source of the data is the same, 

i.e. a nucleotide sequence, the type of characters inferred from that raw data is quite 

different. While in sequence-based phylogenies of the rRNA genes, for example, the 

data is aligned according to secondary structure motifs in order to identify homologous 

bases that can be compared, the actual secondary structure is not reflected in the 

analysis. When interpreting the data in the frame of a phenotypic molecular approach 

though, a certain paired position in the stem of a helix can be defined as a character 

with character states such as CBCs, hemi CBCs or mismatches, thus including secondary 

structural information in the analysis. Also length variabilities, which are usually 

discarded due to the inability to homologize bases, may be taken into consideration as 

helix-, loop- or complete gene lengths are discrete entities that can be integrated in the 

data matrix. A protein sequence can be translated into phenotypic molecular 

characters by taking the nature of residue substitutions into consideration, i.e. 

conservative changes and those with different side chain properties. 

A frequently discussed difficulty of character coding in morphology is that every 

definition of character states in non-binary characters holds a certain level of 

subjectivity, as borders are often fluid and may be a matter of interpretation (Scotland 

et al., 2003 and references therein). With sequence data used in a phenotypical context, 

this problem does not arise as character states are unambiguous. There is however 



Discussion 

- 71 - 
 

always the difficulty as to how many character states should be allowed for a certain 

character. In the above mentioned example of a paired helix region, one possibility 

would be to distinguish between CBCs, hemi CBCs and mismatches. On the other hand, 

each nucleotide combination, paired or unpaired, could be defined as separate 

character states thus increasing their number and lessen the impact of the individual 

character on the phylogeny. In the present study the number of character states per 

character was not constrained in order to depict the complete variability and to avoid 

any interpretation biases.  

The maximum parsimony tree inferred from all phenotypic molecular characters 

(Figure 11, p. 57) was in remarkable congruence with that of the Microthamnion 

phylogeny (Figure 6, p. 34). Clade boundaries were reinforced as strains designated to 

one clade in Figure 6 also fell into a single clade here. However, only clades 1, 3 and 4 

were retrieved monophyletic. Clade 4 and interestingly clade 3, which gained only 

moderate statistical support in the phylogeny of Figure 6, were maximally supported. 

Clade 1, on the other hand, received only 79 points. The strains of clade 2, which 

already had a very short clade branch in the Microthamnion phylogeny based on 

aligned sequence data, were only distinguished through the surrounding topology. 

Within “clade 2” the strains with sequence data available for more than the rbcL 

however were grouped in a monophyletic cluster to the exclusion of strain CCAC 2081 

in which also the ITS2 was sequenced. The strains with only rbcL data analyzed, 

grouped with that strain at the same branch.  

The topology did however slightly differ from the tree calculated with aligned sequence 

data, as the phenotypic molecular data favored a closer relationship of the strains of 

clade 2 with clade 3 instead of clade 1. In the strains of grades 1 and 2 the topology was 

more divergent from that of Figure 6, which is not further surprising as it was not 

supported. The composition of individual strains grouped together by a long branch 

though, was consistent in both trees. 

The nodes referring to putative genus boundaries were however again congruent to 

those in Figure 6. Interestingly, with phenotypic molecular data, the node marking the 

smallest possible Microthamnion boundary, i.e. the one summarizing clades 1 to 3, 

received only moderate support whereas the branch for the widest border (clades 1 to 

4 plus strains CCAC 4856/4857) as well as the node summarizing clades 1 to 4 were 

maximally supported. 

4.2.3. In Silico RFLP Analysis on 18S rDNA Data 
Among the phenotypic molecular data collected for alternate tree reconstructions, the 

18S rDNA cutting sites held a special status as the in silico restriction digest on 

Microthamnion SSU data mirrored the first, and to date only, molecular approach of 

species delimitation in Microthamnion (John et al., 1993), which reduced the genus to 

(probable) monospecificy. The in silico experiment in this study was performed to 

retrace whether the authors would have come to the same conclusion had they had the 

same strains available.  
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Three of the Microthamnion strains investigated by John and coworkers are still 

available through algal culture collections: SAG 114.80, SAG 115.80 (both clade 2) and 

UTEX LB 237 (clade 3). The 18S was sequenced for strains SAG 114.80 and UTEX LB 

237 in the present study. SSU data for strain SAG 115.80 was not obtained because in 

strain CCAC 3676 the 18S was already sequenced and additional 18S data was not 

required for further analyses. Since the rbcL in both strains was completely identical it 

was deemed safe to assume that their sequences in the much more conserved SSU were 

also identical, and thus CCAC 3676 could serve as a substitute for SAG 115.80. All of the 

above mentioned 18S sequences showed the same RFLP pattern as the database 

sequence of Microthamnion kuetzingianum UTEX 1914 (accession number Z28974) 

when digested with the same enzymes as in the 1993 study. It was thus chosen as 

reference not only for the strains investigated by John et al. (1993), but also for the 

majority of the strains analyzed in the present study as they represented the same SSU 

genotype. 

The larger amount of strains available now went along with higher genetic diversity, 

as variations in the RFLP patterns were found with four of the above mentioned 

enzymes regarding strains CCAC 2279/4234, CCAC 5561/5547 B and CCAC 

3677/4161 of grade 2 (Figure 8, p. 40 and Figure 9, p. 41), which were significant 

enough that they would have been detected had the authors of the original study had 

the same strains available for their experiments. It might thus be speculated that, based 

on this result, a differentiation into four Microthamnion species would have been 

assumed. 

But as the present study shows, all strains with varying RFLP patterns fall into grade 2 

and form individual lineages there. As previously discussed, there is molecular support 

for the assumption that these lineages may have to be raised to genus status in the 

future, which would in turn prove the restriction digestion method only suitable to 

distinguish among (some) genera, but inept to discriminate between Microthamnion 

species as the SSU data were too conserved. 

 

4.3. Excursus to Habitats and Sampling Strategies 

The information available on sampling locations of the Microthamnion strains 

investigated in this study (Table 1, p. 13) was in part rather scant and did not allow for 

a detailed habitat discussion. Nevertheless, even from the limited information, there 

were some interesting findings and trends observable which will be explored in this 

chapter.  

4.3.1. Sampling Sites and Habitats 
Sampling sites were mainly distributed all over Europe, spanning a region from 

Scotland in the North, Slovakia in the East and the Canary Islands in the Southwest, but 

also included locations in the United States of America, Japan and the South Orkney 
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Islands in the Antarctic. When locality information was mapped on the Microthamnion 

phylogeny (see Supplementary Table 5, p. 106, for a list of strains ordered and colored 

according to the phylogeny of Figure 6), it became clear that strains belonging to one 

clade or even the exact same genotype (i.e. identical sequences in all obtained sequence 

data) were not restricted to a certain geographical region. For example, the strains 

forming the dark green group of clade 4 originated from the Antarctic, the Black Forest 

in Germany and the Czech Republic. The sequence-identical strains SAG 114.80, ACOI 

1817 and CCAC 4821 of clade 2 were sampled in Serra da Peneda in Portugal, the Eifel 

in Germany and an unknown locality and strains CCAC 2011, CCAC 0539 B and CCAC 

0054 of clade 3 originated from two German regions (Eifel and Harz) and Cornwall in 

England. 

But also within a certain geographical area, the genetic variability was quite diverse. 

The German Eifel and Wahner Heide as well as the Austrian Waldviertel were 

extensively sampled and revealed a great range of diversity among the Microthamnion 

strains. When compared with the phylogeny, strains found in the Eifel, for example, 

were allocated to clades 1 to 3 and both grades, those from Wahner Heide clustered in 

clade 3 and grade 2 and those from Waldviertel belonged to clades 1 to 3. 

The sampling sites within these geographical regions were however variegated in, for 

example, type of water body (lentic, lotic), size (e.g. lake, pond, puddle), nutrient 

concentration or conductivity, and also sampling strategies differed (e.g. bailed- or 

scratched samples, squeezed water plants). In the Eifel, for instance, samples were 

taken from a dam, a dry maar, a footmark, a leaf collected from a shaded pond, a gutter 

in a bog, an industrial area and other sites without further specification. Taking into 

account their diverse nature, these sampling sites may very well represent different 

habitats, but their exact specifications cannot be inferred from the information 

available. 

Within one natural sample, isolates were often genetically identical in the markers 

investigated (e.g. CCAC 3547/4819/3546/4818/8001 B from Barranco de Azuaje, 

Gran Canaria, Spain or strains CCAC 4853/4854/4855 from a roadside ditch in Wahner 

Heide, Germany). But there were also cases, where a single sample held two genotypes 

which were allocated to different clades or even grades in the Microthamnion 

phylogeny. This refers to strains CCAC 2771 (clade 1) and CCAC 2764 B (clade 2) which 

were both isolated from a sample collected in the Austrian Waldviertel (“Fuchsteich”) 

and also CCAC 3710/3676 B (clade 2) and CCAC 3677/3838 (grade 2), which 

originated from a sample taken from a gutter in a bog among Polytrichum commune 

(Mützenicher Venn, Eifel, Germany). Interestingly, in the latter case, the two strains 

allocated to one clade or grade had again identical sequences among each other. 

Whether that means that one habitat can hold more than one species or if one sample 

tapped several habitats, can at the moment not be concluded as more detailed 

information is needed to address such a question. 
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But also seemingly identical habitats from different localities could hold varying 

genotypes. In the Austrian Waldviertel, squeezed Utricularia probes were taken at 

two individual sampling sites. One held the genetically identical strains CCAC 4559 B/ 

4558 B/4549 B, which were positioned in clade 2 in the Microthamnion phylogeny, and 

the other harbored strains CCAC 4544 B/4717 B/M 4555 (also identical in sequence) 

from clade 3. 

Although there could be no concrete pattern of habitat preferences detected, there 

were nevertheless tendencies observed. In general, strains from ‘extremer’ habitats or 

more creative sampling sites seemed to cluster in grades 1 and 2 whereas strains 

isolated from more ordinary locations were rather distributed in the clades. For 

instance, most of the strains originating from waste water plants were allocated to 

grade 1 (CCAC 5585/5521 and CCAC 5545/5520 B) and grade 2 (CCAC 5547 B/5561). 

But also isolates from a sample collected in a roadside ditch (CCAC 4853/4854/4855) 

or an industrial area (CCAC 2279) were assigned a basal position in the Microthamnion 

tree. On the other hand, strains of clade 1 were isolated mainly from rivers, canals and 

ponds, for most of which the sampling method (e.g. bailed or scratched sample) was 

not available. Clade 2 comprised a lot of strains sampled from bogs, which were 

sometimes obtained from squeezed water plants, and for those strains of clade 3 where 

information was available, also ponds or bogs were the dominant sampling sites. There 

were however exceptions to these trends as, for example, clade 2 also held strains 

sampled in a waste water plant (CCAC 5530 B), a temporary puddle (CCAC 2081) or a 

footmark (CCAC 4821) and grade 2 also comprised strains from bog samples 

(CCAC 3677/CCAC 3838) or a Scottish loch (CCAC 4161). 

Some of the strains were listed with a species designation in the respective culture 

collections. There was however no correlation of these putative species to the 

phylogeny, as strains identified as M. kuetzingianum or M. strictissimum were 

distributed evenly over the different clades and grades. 

4.3.2. Sampling Strategies and Environmental Sequences 
A conspicuous finding was that BLAST searches with Microthamnion 18S, ITS2, 28S and 

rbcL query sequences had relatively few hits. There were only four environmental 18S 

sequences found, which were augmented by one 18S and one rbcL sequence referring 

to strains in culture. Considering the global distribution of Microthamnion, the wide 

range of habitats and its adaptability to extreme conditions (e.g. Hargreaves et al., 

1975; Foster, 1982 and waste water), the few number of environmental sequences was 

rather surprising. 

This might be explained by an observation made in the CCAC and the workgroup 

Melkonian (Prof. Dr. Michael Melkonian, University of Cologne, personal 

communication). There were some natural samples, i.e. those from bogs, but also those 

from waste water facilities, where Microthamnion was immediately visible and quite 

abundant. On the other hand, there were often samples where Microthamnion was not 
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observed directly after sampling but was found only after some time in enrichment 

cultures, where it then thrived. As environmental probes are usually sequenced 

immediately after sampling, Microthamnion might not always be detected as its 

abundance might be too low compared with other organisms. The localities where 

Microthamnion is quite abundant though (see above), are not the ones that are usually 

sampled in environmental studies. 

All the more remarkable was the detection of the environmental clones TE204A and 

TE204B (accession numbers KM870711 and KM870712), which both represented new 

SSU sequence-types in the 18S single-gene analysis (Supplementary Figure 1, p. 97), 

but could unfortunately not be incorporated in the Microthamnion phylogeny 

(Figure 6). Due to the overall high degree of conservation in the SSU, strains where only 

18S data was available were positioned randomly in the multi-gene phylogeny and 

decreased the support values tremendously (preliminary analyses, not shown); they 

were thus excluded. 

The two above mentioned Microthamnion environmental clones were, together with 

most of the hitherto unidentified new members of the Characium clade, sampled and 

sequenced during a study of Schmidt and Darcy (2015). Although they were not 

highlighted in the phylogenies presented in that study (due to the restriction to the 

Ulotrichales), their sequences were made available through the NCBI database. The 

samples were taken from a terrestrial location, i.e. glacial debris on top of the Middle 

Fork Toklat Glacier in Alaska. This extreme environment, which was “above the highest 

extent of vascular and nonvascular plants but below the permanent ice line”, was 

however assumed not to be dry during the whole year, but rather to transition between 

wet periods during snow melt and extended dry periods (Schmidt & Darcy, 2015). It 

can only be speculated, whether Microthamnion has mechanisms to survive such 

extreme conditions over a longer period of time in a vegetative state, or whether it 

forms resting stages that are yet unknown. 

As already discussed above, most of the lineages in grades 1 and 2 originated from 

unusual locations with at times extremer conditions and, as the two environmental 

clones show, there is even more genetic diversity within Microthamnion, albeit not 

available in culture. In order to solve the problem of undersampling in that part of the 

phylogeny, and also to find even more Microthamnion variability as well as additional 

outgroup taxa, the focus should thus lie on exploring more unusual habitats and 

locations and to sample them extensively. 
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5. Conclusions and Outlook 

The present study delineated several Microthamnion species with molecular methods. 

Concatenated analyses of the nuclear-encoded 18S and 28S rRNA genes as well as the 

ITS2 molecule and the plastid-encoded rbcL gene, allowed for the identification of four 

monophyletic clades (with a subdivision in clade 4) and nine distinct lineages. The 

boundaries for these 14 putative species were reinforced with both, unique molecular 

signatures (NHSs and autapomorphies) and the phylogeny inferred from phenotypic 

molecular characters. 

The nine lineages of grades 1 and 2 were even so distantly related to the strains 

allocated to clades 1 to 4, that they might have to be raised to genus status in the future. 

Without further investigations though, especially detailed morphological studies, a 

diagnosis cannot be made. For the time being it should thus be refrained from arising 

new genus borders. 

The Microthamnion phylogeny in which all available sequence data was incorporated,  

revealed a high abundance of strains allocated to clades 1 to 3, whereas the lineages in 

grades 1 and 2 were represented by either very few, or only single strains. In order to 

clarify the topology in the basal part of the tree as well as to break up the individual 

long branches, an increased taxon sampling is recommended. As a thorough database 

search did not reveal any further sequences, future studies will have to include 

additional field work. The emphasis should lie on exploring unusual locations and 

sampling sites as strains of grades 1 and 2 seemed to be associated with extremer 

habitats. The rbcL is recommended as the molecular marker to be used to quickly 

screen new Microthamnion isolates for allocations to grades 1 and 2 or to identify new 

genetic varieties. 

The sampling strategy as described above, should also be pursued to increase the 

number of outgroup taxa for future Microthamnion tree reconstructions. Although a 

thorough database search and the subsequent calculation of a trebouxiophycean 

phylogeny revealed some additional candidates, the outgroup would still benefit from 

more taxa and also from more closely related organisms.  

Based on the present study, strains representing putative species can be selected for 

detailed morphological studies on axenic cultures under identical conditions, which 

will be needed in order to give species and perhaps even genus diagnoses.  
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7. Supplementary Material 

Supplementary Table 1. Bold's Basal Medium (BBM, modified) 
Recipe obtained from the CCAC homepage (http://www.ccac.uni-koeln.de/sidebar/growth-media/bbm/), 

modified. Amount of vitamins tripled and molarity in final culture medium added. 

 Components 
 

Stock Solution 
(1 liter)  

Addition per 1 Liter 
Culture Medium 

Concentration in 
final Medium 

1 NaNO3  25.00 g 10 ml 2.94 mM 

 K2HPO4 x 3 H2O 9.80 g  0.43 mM 

 KH2PO4 17.50 g  1.29 mM 

 NaCl 2.50 g  0.43 mM 

2 CaCl2 x 2 H2O 2.50 g 10 ml 0.17 mM 

3 MgSO4 x 7 H2O  7.50 g  10 ml 0.30 mM 

4 EDTA (Titriplex II)  50.00 g 1 ml 0.17 mM 

 KOH 31.00 g  0.55 mM 

5 FeSO4 x 7 H2O 4.98 g 1 ml 17.9 µM 

 H2SO4 conc. 1 ml   

6 H3BO3 11.42 g 1 ml 0.18 mM 

7 Trace metals (autoclave to dissolve)  1 ml  

 ZnSO4 x 7 H2O  8.82 g  30.67 µM 

 MoO3 0.71 g  4.93 µM 

 CuSO4 x 5 H2O 1.57 g  6.29 µM 

 Co(NO3 )2 x 6 H2O 0.49 g  1.68 µM 

 MnCl2 x 4 H2O  1.44 g  7.28 µM 

8 Vitamins  3 ml  

 Vitamin B12 0.20 mg  0.44 nM 

 Biotin 1.00 mg  12.30 nM 

 Thiamine-HCl 100.00 mg  0.89 µM 

 Niacinamide 0.10 mg  2.43 nM 

 pH of the vitamin solution should be around pH 7.0   

 Make up to 1 liter with bidistilled or Milli-Q water (pH should be around 6.6) 
and autoclave. 

 

 

Supplementary Table 2. Isopropanol precipitation protocol 

Step Instruction 

1. Maintain DNA extracts on ice & perpetuate this condition 

2. Add 2/3 volume of isopropanol (pre-cooled  at -20°C) and vortex 

3. Incubation at -20°C, at least 1 h 

4. Centrifuge (17,000 g, 15’, 4°C) & discard the supernatant carefully 

5. Wash pellet with 1 ml 75% ethanol (pre-cooled  at -20°C) and vortex 

6. Centrifuge (17,000 g, 5’, 4°C) and discard the supernatant carefully 

7. Repeat the washing step 

8. Air-dry the pellet (hood) & dissolve the pellet in 20 µl sterile nuclease-free water 

9. Store at -20°C 
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Supplementary Table 3. Sequence data (Overview) 
Sequence data available for further analysis is represented by a tick. Without brackets: generated in this 

study, with brackets: obtained from (Reder, 2015). Markers not sequenced are flagged with a dash. The 

number of sequenced nucleotides was as follows. 18S: 1661-1705, ITS2 (inclusive flanking regions of 5.8S and 

28S): 872-936, 28S: 1439-1446 and rbcL: 1284. 

Strain 18S ITS2 28S rbcL 

ACOI 140 ✓ ✓ ✓ ✓ 
ACOI 1447 — (✓) — ✓ 
ACOI 1620 ✓ (✓) ✓ ✓ 
ACOI 1621 ✓ ✓ ✓ ✓ 
ACOI 1817 — — — ✓ 
ACOI 248 ✓ (✓) ✓ ✓ 
ACOI 2656 — (✓) — ✓ 
ACOI 2660 (✓) (✓) — ✓ 
ACOI 398 (✓) (✓) ✓ ✓ 
CAUP J 1201 (✓) (✓) ✓ ✓ 
CCAC 0054 — — — ✓ 
CCAC 0087 (✓) (✓) — ✓ 
CCAC 0539 B — (✓) — ✓ 
CCAC 2011 (✓) (✓) — ✓ 
CCAC 2081 — (✓) — ✓ 
CCAC 2182 — (✓) — ✓ 
CCAC 2197 B — (✓) — ✓ 
CCAC 2198  — (✓) — ✓ 
CCAC 2199 B — — — ✓ 
CCAC 2223 B — (✓) — ✓ 
CCAC 2224 (✓) (✓) ✓ ✓ 
CCAC 2279 (✓) (✓) ✓ ✓ 
CCAC 2764 B ✓ ✓ — ✓ 
CCAC 2771 (✓) (✓) — ✓ 
CCAC 2804 B ✓ ✓ — ✓ 
CCAC 2916 ✓ ✓ ✓ ✓ 
CCAC 2942 B ✓ ✓ ✓ ✓ 
CCAC 2943 B — (✓) — ✓ 
CCAC 3546   (✓) (✓) ✓ ✓ 
CCAC 3547 — — — ✓ 
CCAC 3664 B (✓) (✓) — ✓ 

CCAC 3676 B (✓) ✓ — ✓ 

CCAC 3677 ✓ ✓ ✓ ✓ 
CCAC 3710 — — — ✓ 
CCAC 3838  — — — ✓ 
CCAC 3842 B — — — ✓ 
CCAC 3843 B — (✓) — ✓ 
CCAC 4161 ✓ ✓ ✓ ✓ 
CCAC 4234 (✓) (✓) ✓ ✓ 
CCAC 4544 B — — — ✓ 
CCAC 4549 B — — — ✓ 
CCAC 4558 B — — — ✓ 
CCAC 4559 B — — — ✓ 
CCAC 4717 B — — — ✓ 
CCAC 4818 — (✓) — ✓ 
CCAC 4819 (✓) (✓) — ✓ 
CCAC 4820 (✓) (✓) ✓ ✓ 
CCAC 4821 — — — ✓ 
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Strain 18S ITS2 28S rbcL 

CCAC 4822 ✓ (✓) ✓ ✓ 
CCAC 4853 — ✓ — ✓ 
CCAC 4854 ✓ ✓ — ✓ 
CCAC 4855 (✓) ✓ ✓ ✓ 
CCAC 4856 — ✓ — ✓ 
CCAC 4857 ✓ ✓ ✓ ✓ 
CCAC 5520 B — — — ✓ 
CCAC 5521  (✓) (✓) ✓ ✓ 
CCAC 5530 B (✓) ✓ ✓ ✓ 
CCAC 5545 (✓) (✓) ✓ ✓ 
CCAC 5547 B (✓) (✓) — ✓ 
CCAC 5561  ✓ ✓ ✓ ✓ 
CCAC 5585 ✓ (✓) ✓ ✓ 
CCAC 8001 B — — — ✓ 
CCAC 8002 B (✓) (✓) — ✓ 
CCALA 368 (✓) (✓) — ✓ 
CCAP 450/2 (✓) (✓) ✓ ✓ 
CCAP 450/3 (✓) (✓) ✓ ✓ 
CCAP 450/4 — — — ✓ 
M 2196/1 A — (✓) — ✓ 
M 2412/1 A (✓) (✓) ✓ ✓ 
M 4555 — — — ✓ 
NIES 479 (✓) (✓) — ✓ 
SAG 114.80  ✓ ✓ ✓ ✓ 
SAG 115.80 — — — ✓ 
UTEX LB 237 (✓) (✓) ✓ ✓ 
Ch. perforatum SAG 28.85 ✓ ✓ ✓ ✓ 

 

 

 

 

 

 

Supplementary Table 4. Data matrix of phenotypic molecular characters used for phylogenetic tree 
reconstructions. 
Listed are all Microthamnion and outgroup strains that were also analyzed for Figure 6, further ENV 

sequences were not taken into consideration. In column “Identical sequence” all strains with identical 

sequences in the respective molecular marker were given the same number. The identical sequence for ITS2 

is given in the matrix (grey font, marked with *) but was not analyzed in the tree reconstructions due to 

exceeding numbers of allowed character states. The length of ITS2 helices is given in total numbers of 

nucleotides for each strain. In all other columns the numbers refer to the character states given in the bottom 

line. A minus sign (-) is applied where no sequence data was available, a question mark (?) stands for single 

positions not present in the investigated strain. B.t.l. = before terminal loop. 
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Supplementary Figure 1. 18S single-gene phylogeny 
ML topology of 47 Microthamnion and six outgroup SSU sequences based on 1588 aligned positions. 

Bootstraps: ML; strains in bold were selected for a congruent dataset. 
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Supplementary Figure 2. ITS2 ‘short’ single-gene phylogeny 
ML topology of 56 Microthamnion ITS2 sequences (214 aligned positions within the processing sites C1 and 

C3/E) with Characium perforatum used as outgroup. Bootstraps: ML; branches in bold were maximally 

supported. A very long branch was graphically reduced to 50% (50%//). Strains in bold were selected for a 

congruent dataset. 
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Supplementary Figure 3. ITS2 ‘long’ single-gene phylogeny 
ML topology of 56 Microthamnion ITS2 sequences plus flanking regions of 5.8S and 28S (82/214/411 aligned 

positions) with Characium perforatum used as outgroup. Bootstraps: ML; branches in bold were maximally 

supported. A very long branch was graphically reduced to 50% (50%//). Strains in bold were selected for a 

congruent dataset. 
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Supplementary Figure 4. 28S ‘short’ single-gene phylogeny 
ML topology of 56 Microthamnion sequences covering the flanking regions of the ITS2 molecule, i.e. 82 

aligned positions of 5.8S and the first 411 aligned positions of 28S. Characium perforatum was used as 

outgroup. Bootstraps: ML; a very long branch was graphically reduced to 50% (50%//). Strains in bold were 

selected for a congruent dataset. 
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Supplementary Figure 5. 28S ‘long’ single-gene phylogeny 
ML topology of 28 Microthamnion sequences covering the first 1446 aligned positions of 28S. Characium 

perforatum was used as outgroup. Bootstraps: ML; branches in bold were maximally supported. A very long 

branch was graphically reduced to 50% (50%//). Strains in bold were selected for a congruent dataset. 
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Supplementary Figure 6. RbcL protein single-gene phylogeny 
ML topology of 75 Microthamnion rbcL sequences, based on the protein alignment (425 positions). Characium 

perforatum was used as outgroup. Bootstraps: ML; branches in bold were maximally supported. Strains in 

bold were selected for a congruent dataset. 
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Supplementary Figure 7. RbcL DNA single-gene phylogeny 
ML topology of 75 Microthamnion rbcL sequences, based on the DNA alignment (1275 positions). Characium 

perforatum was used as outgroup. Bootstraps: ML; branches in bold were maximally supported. Strains in 

bold were selected for a congruent dataset. 
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Supplementary Figure 8. Consensus secondary structure model of all 56 ITS2 Microthamnion sequences 
Conservation levels were adjusted to all obtained ITS2 data, including sequences from identical clones which 
originated from the same natural sample. The figure spans the ITS2 molecule, consisting of four paired helices 
(labelled Helix 1 – Helix 4) connected by single-stranded spacers and the B9 helix (site of interaction between 
5.8S and 28S). The processing sites C1 and C3/E according to Côté et al (2002), Granneman et al. (2011) and 
Schillewaert et al. (2012) are depicted in grey. An alternate, very short Helix 1, unique for strains CCAC 2279 
and CCAC 4234 is displayed separately (grey background, ambiguities in white font). Different colours of 
nucleotides and boxes/circles refer to levels of conservation (details are given under “Categories” in the 
figure). Variable parts that differed in character states and length (range in no. of nts. given for each region, 
indicated by black brackets) are given as red dots with a framing green line. CBC positions are highlighted by 
a black box.The characteristic U-U mismatch in H2 is accentuated in larger font and set apart from the helix 
outline. Positions of nucleotides are numbered according to Caisová et al. (2011a, 2013). 
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Supplementary Figure 9. Consensus secondary structure model of 45 ITS2 Microthamnion sequences 
Conservation levels were adjusted to a reduced ITS2 dataset where identical sequences were allowed, but 
only when strains originated from different natural samples. The figure spans the ITS2 molecule, consisting 
of four paired helices (labelled Helix 1 – Helix 4) connected by single-stranded spacers and the B9 helix (site 
of interaction between 5.8S and 28S). The processing sites C1 and C3/E according to Côté et al (2002), 
Granneman et al. (2011) and Schillewaert et al. (2012) are depicted in grey. An alternate, very short Helix 1, 
unique for strains CCAC 2279 and CCAC 4234 is displayed separately (grey background, ambiguities in white 
font). Different colours of nucleotides and boxes/circles refer to levels of conservation (details are given 
under “Categories” in the figure). Variable parts that differed in character states and length (range in no. of 
nts. given for each region, indicated by black brackets) are given as red dots with a framing green line. CBC 
positions are highlighted by a black box.The characteristic U-U mismatch in H2 is accentuated in larger font 
and set apart from the helix outline. Positions of nucleotides are numbered according to Caisová et al. (2011a, 
2013). 
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Supplementary Table 5. List of strains ordered according to the Microthamnion phylogeny 

Strain number cf. Species Locality Isolator Year   

CCAP 450/4 M. kuetzingianum  England, Cornwall, by River Hayle, freshwater. Foster 1976 

C
la

d
e 

1
 

ACOI 2656 Microthamnion sp. Portugal, Serra da Estrela, pond near Lagoa Comprida. O. Lourenço 1991 

ACOI 1447 M. kuetzingianum Portugal, Mina do Vale das Gatas. P. Ávila 2001 

ACOI 398 M. strictissimum  Portugal, Serra da Estrela, pond near Lagoa Comprida. O. Lourenço 1990 

CCAC 2771 Microthamnion sp. Austria, Waldviertel, Fuchsteich (near Gmünd), 
freshwater. 

M. Melkonian 2005 

NIES 479 M. kuetzingianum  Japan, Hokkaido, Sapporo, Toyohira River, freshwater. F. Kasai 1987 

ACOI 2660 Microthamnion sp. Portugal, Mata Nacional de Foja, canal. G. Carvalho 2003 

CCAC 3664 B Microthamnion sp. Germany, Eifel, Oberer Marmagener Stauteich, near shore, 
plankton. 

M. Melkonian 2012 

CCAP 450/3 M. kuetzingianum  England, Cornwall, River Gannel, freshwater. Foster 1975 

CCAC 3843 B Microthamnion sp. Germany, Stallberger Teiche, Lohmar, squeezed Sphagnum, 
freshwater. 

M. Melkonian 2013 

CCAC 3842 B Microthamnion sp. Germany, Stallberger Teiche, Lohmar, squeezed Sphagnum, 
freshwater. 

M. Melkonian 2013 

CCAC 2942 B Microthamnion sp. Austria, Waldviertel, Blockheide, freshwater.  M. Melkonian 2007 

CCAC 2081 Microthamnion sp. Germany, Harz, Brunnenbachweg near Braunlage, 
temporary puddle, freshwater. 

M. Melkonian 2002 

C
la

d
e 

2
 

CCAC 2764 B Microthamnion sp. Austria, Waldviertel. Fuchsteich (near Gmünd), freshwater. M. Melkonian 2005 

CCAC 2804 B Microthamnion sp. Austria, Waldviertel, peat bog (near Heidenreichstein), 
freshwater. 

M. Melkonian 2006 

CCALA 368 M. kuetzingianum  Slovakia, Orava, peat bog. Kovacik 1983 

M 2412/1 A Microthamnion sp. Germany, Eifel, Strohner Maarchen, freshwater. M. Melkonian 2003 

CCAC 3547 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410), 
freshwater. 

M. Melkonian 2012 

CCAC 4819 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410, isolated 
from enrichment; 3N BBM), freshwater. 

L. Caisová 2012 

CCAC 3546   Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410), 
freshwater. 

M. Melkonian 2012 

CCAC 4818 Microthamnion sp. Spain, Gran Canaria, Barranco de Azuaje (sample 410, isolated 
from enrichment; SFM), freshwater 

L. Caisová 2012 

CCAC 8001 B Microthamnion sp. Spain, Gran Canaria Barranco de Azuaje (sample 410, isolated 
from enrichment; SFM), freshwater. 

L. Caisová 2012 

CCAC 2943 B Microthamnion sp. Germany, Cologne, Lindenthal, Stadtwald, freshwater. M. Melkonian 2006 

ACOI 140 M. kuetzingianum  Portugal, Amieiro, pond near Arazede. M. F. Santos 1979 

SAG 114.80  M. kuetzingianum 
(form. M. curvatum) 

Origin unknown. Freshwater. F. Ambard 1968 

ACOI 1817 M. kuetzingianum  Portugal, Serra da Peneda. J. Paiva 2005 

CCAC 4821 Microthamnion sp. Germany, Eifel, (sample 031, isolated from the enrichment; 
M7) Dahlemer Binz, Schlenke II (footmark), conductivity: 
26,9 µS, temperature: 23,4°C, pH 4-5 

L. Caisová 2012 

CCAC 5530 B M. cf. 
kuetzingianum 

Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 4559 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 3710 Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

SAG 115.80 M. kuetzingianum 
(formerly  M. 
strictissimum) 

Germany, near Hamburg, coordinates: 53.535411 /10.007172 
(Lat/Long.), freshwater. 

A. Weber 1969 

CCAC 3676 B Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 4558 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4549 B Microthamnion sp.  Austria, Waldviertel, "Schwarzes Moos", near Brand (GPS: 
48°52.33' N 14°58.9' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4820 Microthamnion sp. Germany, Eifel, Nettersheim (isolated from the enrichment; 
M7), leaf collected from a shaded pond 

L. Caisová 2012 

C
la

d
e 

3
 CCAC 0087 M. kuetzingianum  Germany, Lohmar near Cologne, Jexmühle, freshwater.  M. Melkonian 2002 

CCAC 2199 B Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 

CCAC 2197 B Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 

CCAC 2198  Microthamnion sp. Germany, Eifel, Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002 
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Strain number cf. Species Locality Isolator Year   
      

M 2196/1 A Microthamnion sp. Germany, Eifel,  Genfbachtal near Engelgau/Ahekapelle, 
freshwater. 

M. Melkonian 2002  
CCAC 2223 B M. kuetzingianum Germany, near Grande, swampy area beside River Bille, 

freshwater. 
L. Kies 1970 

C
la

d
e 

3
 

CCAC 2224 M. kuetzingianum  Germany, near Grande, swampy area beside River Bille, 
freshwater. 

L. Kies 1970 

CCAC 2011 M. cf. strictissimum Germany, Cologne, Wahner Heide, location 1, freshwater. M. Melkonian 2002 

CCAC 0539 B Microthamnion sp. Germany, Harz, freshwater. M. Melkonian 1979 

CCAC 0054 M. kuetzingianum  England, Cornwall, ford near Bowithick, freshwater. M. Melkonian 1978 

CCAC 2182 Microthamnion sp. Germany, Cologne, Wahner Heide, freshwater. M. Melkonian 2003 

UTEX LB 237 Microthamnion sp. USA, Indiana, Bloomington, pond, freshwater R. C. Starr 1953 

CCAC 4544 B Microthamnion sp.  Austria, Waldviertel (sample 19a), Schremser Hochmoor, 
Prügelsteg (GPS: 48°47.913' N 15°6.01' O), squeezed 
Utricularia, freshwater. 

M. Melkonian 2014 

M 4555* Microthamnion sp.  Austria, Waldviertel, Schremser Hochmoor, Prügelsteg (GPS: 
48°47.913' N 15°6.01' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

CCAC 4717 B Microthamnion sp.  Austria, Waldviertel, Schremser Hochmoor, Prügelsteg (GPS: 
48°47.913' N 15°6.01' O), squeezed Utricularia, freshwater. 

M. Melkonian 2014 

ACOI 248 M. strictissimum  Portugal, Serra da Estrela, pond near Lagoa Comprida, 
plankton. 

M. F. Santos 1986 

ACOI 1620 M. kuetzingianum  Portugal, Abrantes, Campo Militar de Sta Margarida, 
Barragem do Carvalhoso, canal, plankton. 

M. F. Santos 2003 

  

CCAP 450/2 M. kuetzingianum  Antarctica, South Orkney Islands, Signy Island, freshwater.  Broady 1974 

  C
la

d
e 

4
 

CAUP J 1201 M. kuetzingianum  Czech Republic, Central Bohemia, near Třtice, peat-bog 
"V Bahnách", soil. 

Neustupa 1998 

CCAC 8002 B Microthamnion sp. Germany, Schwarzwald (sample 031, isolated from the 
enrichment M7) clone 1, freshwater. 

L. Caisová 2012 

CCAC 4822 Microthamnion sp. Germany, Schwarzwald (sample 031, isolated from the 
enrichment M7) clone 2, freshwater. 

L. Caisová 2012 

CCAC 4856 Microthamnion sp.  Germany, Eifel, Dahlemer Binz, freshwater. S. Wittek 2014 

G
ra

d
e 

1
 

CCAC 4857 Microthamnion sp.  Germany, Eifel, Dahlemer Binz, freshwater. S. Wittek 2014 

CCAC 5585 M. cf. strictissimum Germany, Villau, waste water plant, aeration tank, water-
body-sample, freshwater. 

V. Zilz 2013 

CCAC 5521  M. cf. 
kuetzingianum 

Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5545 M. cf. strictissimum Germany, Frechen, waste water plant, secondary settlement 
tank, scratch-sample, freshwater. 

V. Zilz 2013 

CCAC 5520 B M. cf. 
kuetzingianum 

Germany, Frechen, waste water plant, Bio-P tank, water-
body-sample, freshwater. 

V. Zilz 2013 

CCAC 2916 Microthamnion sp. Germany, Cologne, Wahner Heide, Fuchskaule,freshwater. M. Melkonian 2006 

G
ra

d
e 

2
 

ACOI 1621 M. strictissimum Portugal, Abrantes, Campo Militar de Sta Margarida, 
lake north of Lagoa da Murta, plankton. 

M. F. Santos 2003 

CCAC 5547 B M. cf. curvatum Germany, Glessen, waste water plant, aeration tank, scratch-
sample, freshwater. 

V. Zilz 2013 

CCAC 5561  M. cf. 
kuetzingianum 

Germany, Glessen, waste water plant, aeration tank, scratch-
sample, freshwater. 

V. Zilz 2013 

CCAC 3677 Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 3838  Microthamnion sp. Germany, Eifel, Mützenicher Venn, gutter in bog among 
Polytrichum commune, freshwater. 

M. Melkonian 2012 

CCAC 4161 Microthamnion sp. Scotland, Longhowe Loch, freshwater. M. Melkonian 2013 

CCAC 2279 Microthamnion sp. Germany, Eifel, Kall, industrial area 1, freshwater. M. Melkonian 2003 

CCAC 4234 Microthamnion sp. Italy, Sardinia, inland pond "Pauli Trottas", near Stagno di 
Cabras, pipette probe from stone and sediment, freshwater. 

S. Wittek 2013 

CCAC 4854 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 

CCAC 4855 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 

CCAC 4853 Microthamnion sp.  Germany, Köln, Wahnerheide, roadside ditch, freshwater. S. Wittek 2014 
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