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Machine Learning in Adaptive FETI-DP -
Reducing the Effort in Sampling

Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

Domain decomposition methods are highly scalable iterative solvers for large lin-
ear systems of equations, e.g., arising from the discretization of partial differential
equations. While scalability results from a decomposition of the computational do-
main into local subdomains, i.e., from a divide and conquer principle, robustness
is obtained by enforcing certain constraints, e.g., continuity in certain variables or
averages over variables on the interface between neighboring subdomains. These con-
straints build a global coarse problem or second level. Nevertheless, the convergence
rate of classic domain decomposition approaches deteriorates or even stagnates for
large discontinuities in the coefficients of the partial differential equation considered.
As a remedy, to retrieve a robust algorithm, several adaptive approaches to enrich the
coarse space with additional constraints obtained from the solution of generalized
eigenvalue problems have been developed, e.g., [8, 7, 11, 12, 3, 2]. The eigenvalue
problems are in general localized to parts of the interface, e.g., edges or faces. In the
present paper, we only consider two-dimensional problems for simplicity and thus
only eigenvalue problems on edges. Let us remark that for many realistic coefficient
distributions, only a few adaptive constraints on a few edges are necessary to obtain
a robust algorithm and thus many expensive solutions of eigenvalue problems can
be omitted. Although some heuristic approaches [8, 7] exist to reduce the number
of eigenvalue problems, in general, it is difficult to predict a priori which eigenvalue
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problems are necessary for robustness. In [5], we successfully used a neural network
to predict the geometric location of necessary constraints in a preprocessing step,
i.e., to automatically make the decision whether or not we have to solve a specific
eigenvalue problem. Additionally, we discussed the feasibility of randomly, and thus
automatically generated training data in [4]. In the present paper, we extend the
results given in [4] by providing also results for linear elasticity problems.

Both in [5] and [4], we use samples of the coefficient function as input data for
the neural network. In particular, in case of regular decompositions, the resulting
sampling points cover the complete neighboring subdomains for a specific edge.
Even though the training of the neural network as well as the generation of the
training data can be performed in an offline-phase, we aim to further optimize the
complexity of our approach by reducing the size of the input data by using fewer
sampling points; see also Fig. 1 for an illustration. In particular, for the first time,
we only compute sampling points for slabs of varying width around a specific edge
between two subdomains. Since our machine learning problem, in principle, is an
image classification task, this corresponds to the idea of using only a fraction of pixels
of the original image as input data for the neural network. We show numerical results
for linear elasticity problems in two dimensions. As in [5], we focus on a certain
adaptive coarse space for the FETI-DP (Finite Element Tearing and Interconnecting
- Dual Primal) algorithm [11, 12].

2 Linear Elasticity and an Adaptive FETI-DP Algorithm

In our numerical experiments, we exclusively consider linear elasticity problems.
We denote by u : Ω → R2 the displacement of an elastic body, which occupies the
domain Ω in its undeformed state. We further denote by f a given volume force
and by g a given surface force onto the body. The problem of linear elasticity then
consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD), such that∫
Ω

G ε(u) : ε(v) dx +
∫
Ω

Gβ divu divv dx = 〈F,v〉

for all v ∈ H1
0(Ω, ∂ΩD) for given material functions G : Ω→ R and β : Ω→ R and

the right-hand side

〈F,v〉 =
∫
Ω

fTv dx +
∫
∂ΩN

gTv dσ.

The material parameters G and β depend on the Young modulus E > 0 and the
Poisson ratio ν ∈ (0,1/2) given by G = E/(1 + ν) and β = ν/(1 − 2ν). Here,
we restrict ourselves to compressible linear elasticity; hence, the Poisson ratio ν is
bounded away from 1/2.

In the present article, we apply the proposed machine learning based strategy
to an adaptive FETI-DP method, which is based on a nonoverlapping domain de-
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composition of the computational domain Ω. Here, we decompose Ω into N regular
subdomains of width H and discretize each subdomain by finite elements of width
h. For simplicity, we assume matching nodes on the interface between subdomains.
Due to space limitations, we do not explain the standard FETI-DP algorithm in detail.
For a detailed description, see, e.g., [10]. Let us just note that we enforce continuity
in all vertices of all subdomains to define an initial coarse space.

As already mentioned in section 1, for arbitrary and complex material distribu-
tions, e.g., a highly varying Young modulus E , using solely primal vertex constraints
is not sufficient to guarantee a robust condition number bound. Thus, additional adap-
tive constraints, typically obtained from the solution of local generalized eigenvalue
problems, are used to enrich the coarse space and retrieve robustness.

The central idea of the adaptive FETI-DP algorithm [11, 12] is to solve local
generalized eigenvalue problems for all edges between two neighboring subdomains.
For a description of the local edge eigenvalue problems and the resulting enforced
coarse constraints, see [11, 12]. In a parallel implementation, the set-up, e.g., the
computation of local Schur complements, and the solution of the local eigenvalue
problems take up a significant amount of the total time to solution. To reduce the
set-up cost without losing robustness, a precise a priori prediction of all edges,
where an eigenvalue problem is useful, is necessary; see section 3 for a description
of our machine learning based approach. Let us remark, that the additional adaptive
constraints are implemented in FETI-DP using a balancing preconditioner. For a
detailed description of projector or balancing preconditioning, see [9, 6].

3 Machine Learning for Adaptive FETI-DP

Our approach (ML-FETI-DP) is to train a neural network to automatically make the
decision whether an adaptive constraint needs to be enforced or not on a specific
edge to retain the robustness of the adaptive FETI-DP algorithm. This corresponds
to a supervised machine learning technique.

Sampling strategy and neural network:More precisely, we use a dense feedfor-
ward neural network, i.e., a multilayer perceptron, to make this decision. For more
details on multilayer perceptrons, see, e.g., [13, 1, 14]. As in [5], we use samples,
i.e., function evaluations of Young’s modulus within the two subdomains adjacent
to an edge, as input data for our neural network. Note that our sampling approach
is independent of the finite element discretization. In particular, we assume that the
sampling grid resolves all geometrical details of the coefficient function or the ma-
terial distribution. The output of our neural network is the classification whether an
adaptive constraint has to be included for a specific edge or not. Our neural network
consists of three hidden layers with 30 neurons for each hidden layer. We use the
ReLU activation function for all hidden layers and a dropout rate of 20%. See [5] for
more details on the machine learning techniques and the preparation of data.

Training data sets: For the numerical results presented here, we train on two
regular subdomains sharing a straight edge. In general, also irregular domain decom-
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positions can be considered; see [5]. As in [4], we use different sets of coefficient
distributions to generate different sets of training data for the neural network. For
the first set of training data, we use a total of 4,500 configurations varying the co-
efficient distributions as presented in Fig. 2. We set the Poisson ratio ν constantly
and just vary the Young modulus E . The coefficient distributions in Fig. 2 are varied
in size, orientation and location to obtain the full set of training data. We refer to
this set of training data as smart data; see also [4]. We further consider a randomly
generated training data set. In particular, we use the same training sets as in [4] but
now additionally provide results for linear elasticity problems. Note that completely
randomized coefficient distributions lead to insufficient accuracies and too many
false negatives; see [4] for details. Instead, we explicitly control the ratio of high
coefficients as well as the distributions of the coefficients to a certain degree by ran-
domly generating either horizontal or vertical stripes of a maximum length of four
or eight pixels, respectively; see Fig. 3. We refer to this second set of training data as
random data and we also consider combinations of both, the smart and random data
sets. For more technical details on the construction of the data sets, we refer to [4].
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Fig. 1 Sampling of the coefficient function; white color corresponds to a low coefficient and red
color to a high coefficient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Only sampling points from slabs around the edge are chosen.

Sampling strategy on slabs: We now describe how we reduce the number of
sampling points used as input data for the neural network. In [5], the computed
sampling grid covers both neighboring subdomains of an edge entirely - at least
in case of a regular domain decomposition. Let us remark that in case of irregular
domain decompositions, our sampling strategy might miss small areas further away
from the edge; see, e.g., [5, Fig. 4]. However, this does not affect the performance of
our algorithm. Although the preparation of the training data as well as the training
of the neural network can be performed in an offline-phase, we try to generate the
training data as efficient and fast as possible. For all sampling points, we need to
determine the corresponding finite element as well as to evaluate the coefficient
function for the respective finite element. Therefore, there is clearly potential to save
resources and compute time in the training as well as in the evaluation phase by
reducing the number of sampling points used as input data for the neural network.
In general, the coefficient variations close to the edge are the most relevant, i.e., the
most critical for the condition number bound of FETI-DP. Therefore, to reduce the
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Fig. 2 Nine different types of coefficient functions used for training and validation of the neural
network. The inclusions, channels, boxes, and combs with high coefficient are displaced, modified
in sized, and mirrored with respect to the edge in order to generate the complete smart data set.

Fig. 3 Examples of three different coefficient functions taken from the random data set obtained
by using the same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe
of a maximum length of four finite element pixels, as well as by pairwise superimposing (right).

total number of sampling points in the sampling grid, reducing the density of the grid
points with increasing distance to the edge is a natural approach. More drastically,
one could exclusively consider sampling points in a neighborhood of the edge, i.e.,
on slabs next to the edge. We consider the latter approach here; see also Fig. 1 for an
illustration of the sampling points inside slabs.

To generate the output data necessary to train the neural network, we solve the
eigenvalue problems as described in [11, 12] for all the aforementioned training and
validation configurations. Concerning the classification of the edges, we use both a
two-class and a three-class classification approach. For the two-class classification,
we only distinguish between edges of class 0 and class 1. By class 0 we denote edges
for which no additional constraints are necessary for a robust algorithm, and by class
1 edges where at least one constraint is required. For the three-class classification,
we further differentiate between class 1 and class 2. In this case, we assign only
edges to class 1, where exactly one additional constraint is necessary, and assign all
other edges, for which more than one constraint is necessary, to class 2.

4 Numerical Results

We first provide results for some microsection problems, i.e., linear elasticity prob-
lemswith amaterial distribution as shown in Fig. 4 (left).We considered the different
training sets smart data, random data, and a combination of both; see Table 1. Here,
we exclusively use the approach of sampling on the complete subdomains. Since
training with the smart data set seems to be the best choice for this specific example,
we exclusively use this data set in the following investigations with slabs of different
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Fig. 4 Left: Subsection of amicrosection of a dual-phase steel obtained from the image on the right.
We consider E = 1e3 in the black part and E = 1 elsewhere. Right: Complete microsection of a
dual-phase steel. Right image: Courtesy of Jörg Schröder, University of Duisburg-Essen, Germany,
orginating from a cooperation with ThyssenKruppSteel.

width. Additionally, using the ML threshold τ = 0.45 for the two-class classification
or τ = 0.4 for the three-class classification, respectively, leads to the most robust
results when sampling on the complete subdomains. We therefore focus on these
thresholds in the following discussion.

We compare the performance of the original sampling approach introduced in [5]
to sampling in parts of each subdomain of width H, i.e., in one half and in one
quarter (see also Fig. 1). We also consider the extreme case, i.e., sampling only
inside minimal slabs of the width of a single finite element. For the training data,
both sampling in H/2 and H/4 leads to accuracy values which are only slightly lower
than for the full sampling approach (see Table 2). In particular, we get slightly higher
false positive values, especially for the three-class classification. For the extreme
case of sampling only in slabs of width h, i.e., using slabs with the minimal possible
width in terms of finite elements, the accuracy value drops from 92.8% for the three-
class model to only 68.4% for the threshold τ = 0.4. Note that we did not observe
a significant improvement for this sampling strategy for more complex network
architectures. Thus, it is questionable if the latter sampling approach still provides a
reliable machine learning model. For the microsection problem, sampling in slabs
of width H/2 and H/4 results in robust algorithms for both the two-class and the
three-class model when using the ML threshold τ = 0.45 or τ = 0.4, respectively;
see Tables 3 and 4. For all these approaches, we obtain no false negative edges,
which are critical for the convergence of the algorithm. However, the use of fewer
sampling points results in more false positive edges and therefore in a larger number
of computed eigenvalue problems. When sampling only in slabs of width h, we do
not obtain a robust algorithm for the microsection problem for neither the two-class
nor the three-class classification. This is caused by the existence of a relatively high
number of false negative edges.

Let us summarize that reducing the effort in the training and evaluation of the
neural network by reducing the size of the sampling grid still leads to a robust
algorithm for our model problems. Nevertheless, the slab width cannot be chosen
too small and enough finite elements close to the edge have to be covered by the
sampling grid.
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Alg. T-Data τ cond it evp fp fn acc
standard - - - >300 0 - - -
adaptive - - 79.1 ( 92.8) 87.4 (91) 112.0 (112) - - -

ML S 0.5 9.3e4 (1.3e5) 92.2 (95) 44.0 ( 56) 2.2 ( 3) 2.4 (3) 0.96 (0.95)
S 0.45 79.1 ( 92.8) 87.4 (91) 48.2 ( 61) 4.8 ( 7) 0 (0) 0.95 (0.93)

R1 0.45 1.7e3 (2.1e4) 90.4 (91) 53.6 ( 57) 13.4 (16) 0.8 (1) 0.87 (0.86)
R2 0.45 79.1 ( 92.8) 87.4 (91) 52.8 ( 57) 11.6 (12) 0 (0) 0.90 (0.87)
SR 0.45 79.1 ( 92.8) 87.4 (91) 50.6 ( 61) 8.8 (10) 0 (0) 0.92 (0.90)

Table 1 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular
domain decomposition into 8 × 8 subdomains with H/h = 64, linear elasticity, the two-class
model, and 10 different subsections of the mircosection in Fig. 4 (right). We denote by ’S’ the
training set of 4,500 smart data, by ’R1’ and ’R2’ a set of 4,500 and 9,000 random data, respectively,
and by ’SR’ the combination of 4,500 smart and 4,500 random data. We show the ML-threshold
(τ), the condition number (cond), the number of CG iterations (it), the number of solved eigenvalue
problems (evp), the number of false positives (fp), the number of false negatives (fn), and the
accuracy in the classification (acc). We define the accuracy (acc) as the number of true positives
and true negatives divided by the total number of training configurations. We show the average
values as well as the maximum values (in brackets).

two-class three-class
training configuration τ fp fn acc τ fp fn acc
full sampling 0.45 8.9% 2.7% 88.4% 0.4 5.2% 2.0% 92.8%

0.5 5.5% 5.6% 88.9% 0.5 3.3% 3.3% 93.4%
sampling in H/2 0.45 8.0% 2.6% 89.4% 0.4 9.6% 4.3% 86.1%

0.5 5.9% 4.0% 90.1% 0.5 7.4% 5.0% 87.6%
sampling in H/4 0.45 8.2% 2.7% 89.1% 0.4 10.4% 3.9% 85.7%

0.5 5.7% 4.5% 89.8% 0.5 8.1% 4.8% 87.1%
sampling in h 0.45 20.8% 7.5% 71.7% 0.4 22.4% 9.2% 68.4%

0.5 15.4% 12.9% 72.3% 0.5 15.0% 15.3% 69.7%

Table 2 Results on the complete training data set for linear elasticity; the numbers are averages
over all training configurations. See Table 1 for the column labelling.

Model Problem Algorithm τ cond it evp fp fn acc
standard - - >300 0 - - -

Microsection adaptive - 84.72 89 112 - - -
Problem ML, full sampling 0.5 9.46e4 91 41 2 2 0.96

ML, full sampling 0.45 84.72 89 46 5 0 0.95
ML, sampling in H/2 0.45 84.72 89 47 6 0 0.95
ML, sampling in H/4 0.45 85.31 90 48 7 0 0.94

ML, sampling in h 0.45 10.9e5 137 50 19 10 0.74

Table 3 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular
domain decomposition into 8 × 8 subdomains with H/h = 64, linear elasticity, the two-class
model, and the microsection subsection in Fig. 4 (left). See Table 1 for the column labelling.
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