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1 Introduction

Computational Fluid Dynamics (CFD) simulations are a numerical tool to model and
analyze the behavior of fluid flow. They are used in a wide range of application areas,
such as, e.g., civil and mechanical engineering, meteorology or medical science, a
wide range of different fluids and settings. In CFD simulations, the input parameters
are classically the material parameters of the fluid, such as density and viscosity,
the geometry of the computational domain, and the boundary conditions as well as
volume forces. Transient simulations, additionally depend on the initial condition.
Depending on the underlying model for the fluid flow, the resulting flow field may
depend on all these input parameters in a highly nonlinear way. Furthermore, CFD
simulations often require a high spatial and temporal resolution in order to obtain
accurate results. Therefore, CFD simulations are generally very compute intensive.

The complexity of CFD simulations may be reduced using, e.g., Proper Orthog-
onal Decomposition (POD), Reduced Basis (RB), or simplified physics methods;
these techniques are all Model Order Reduction (MOR) techniques. In this work, we
propose a different approach, which can also be regarded as a MOR technique. In
particular, we propose to use appropriate neural networks as surrogate models for
CFD simulations; cf. Figure 1. As for MOR techniques, we will have to perform
many CFD simulations in advance in a very expensive offline phase. However, the
evaluation of the trained model will then be much faster compared to a CFD simu-
lation. Here, we focus on predicting the fluid flow with respect to variations in the
geometry of the computational domain. Therefore, we consider a steady flow prob-
lem in order to eliminate the time-dependence of the flow field and the dependence
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Fig. 1 Our approach is to train a neural network as a surrogate model for CFD simulations. Here,
we do not consider varying initial conditions, material parameters, boundary conditions, or volume
forces but focus on varying geometries for the computational domain.

of the solution on an initial condition. Furthermore, we keep the material parameters,
as well as boundary conditions and volume forces constant.

A different approach for the prediction of fluid flow using neural networks for
fixed geometries can be found in, e.g., [9, 10].

Our approach is inspired by the work of Guo, Li, and Iorio [6], where the authors
used a Convolutional Neural Network (CNN) to predict the steady flow around
obstacles in a channel. In our work, we further extend this approach by using the
more complex network architecture of the U-Net, which was introduced in [11], and
considering different types of loss functions. In particular, we will compute synthetic
training data from CFD simulations using OpenFOAM 5.0 [5] and train CNNs using
Keras 2.2.4 [2] with Tensorflow 1.12 [1] backend to approximate the resulting flow
fields.

This paper is organized as follows: in section 2, we describe our model problem
and the computation of the reference data using CFD simulations. Next, we describe
the CNN architectures and the training settings used for our surrogate model in
section 3. Section 4 shows the performance of our models on training and validation
data as well as the generalization properties for some types of unseen data. Finally,
we present a short conclusion and outlook.

2 CFD simulations

Let us consider computational domains ΩP := [0,6] × [0,3] \ P, where P ⊂ [0,6] ×
[0,3] is a polygonal star-shaped domain; see Figure 2.

The stationary flowof an incompressibleNewtonian fluidwith kinematic viscosity
ν > 0 within the computational domain ΩP is modeled by the steady Navier-Stokes
equations,

−ν∆u + (u · ∇) u + ∇p = f in Ω,
∇ · u = 0 in Ω,

(1)
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Fig. 2 Left: the computational domain is a channel of length 6 and width 3 with a polygonal
obstacle. Right: type I obstacles are connected with the bottom wall, type II obstacles have a
distance of 0.75 to each part of the boundary (yellow). Both types of obstacles have a distance of
1.5 to the inlet and the outlet (red) and may not cover more than 50 % of the cross section of the
channel.

with velocity u and pressure p. Now, let ∂Ωin := 0× [0,3] and ∂Ωout := 6× [0,3] be
the inlet and outlet, respectively, and ∂Ωwall := ([0,6] × 0) ∪ ([0,6] × 3) ∪ δP be the
remainder of the boundary of Ω. We prescribe

u = 3 on ∂Ωin,

∂u
∂n
− pn = 0 on ∂Ωout, and

u = 0 on ∂Ωwall

as boundary conditions; cf. Figure 2 for an exemplary resulting flow field. Here, n is
the outward pointing normal vector.

In order to perform the CFD simulations, we employ the CFD software Open-
FOAM 5.0 [5], which is based on the FVM (Finite Volume Method). In particular,
we first use SnappyHexMesh to generate compute meshes from STL (Standard Tri-
angle Language) files that describe the polygonal obstacles. Secondly, we compute
corresponding stationary flow fields using the SimpleFoam solver.

Since we fix all parameters and boundary conditions, the resulting flow field only
depends on the shape and location of the polygonal obstacle P. As shown in Figure 2,
we only consider two different types of obstacles here: obstacles that are connected
with the bottom wall and obstacles that are not connected with any part of the
boundary of the channel.

3 Surrogate Convolutional Neural Network

Topredict fluid flowusing neural networks,we fix the structure of the input and output
data of our models. Whereas, in numerical CFD simulations, the structure and size
of the compute mesh and the solution vector may differ significantly for different
configurations, neural network rely on structured data. Therefore, our approach is to
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Fig. 3 Generation of structured input data (left) and output data (right) for training the neural
networks. As input, we generate a 256 × 128 pixel image with a binary or SDF representation of
the obstacle. As output, we interpolate the components ux and uy of the flow field on a 256 × 128
pixel image.

convert both the input, i.e., the description of the obstacle geometry, and the output,
i.e., the flow field, to 256 × 128 pixel images; cf. Figure 3. As input, we either use
a binary representation of the geometry, i.e., 0 if the center of a pixel is covered by
the obstacle and 1 otherwise, or a Signed Distance Function (SDF) representation,
i.e., the value in each pixel is the smallest distance of its center to the boundary of
the obstacle multiplied with −1 if the center lies within the obstacle. As output, we
interpolate the x and y components of the flow field to 256 × 128 pixel images.

Due to their good performance on image data, we apply CNNs in order to ap-
proximate the nonlinear relation between out input and output data. In particular, we
consider the CNN used in [6] as well as the U-Net [11] with both one and two de-
coder paths and Rectified Linear Unit (ReLU) activation; for more details on neural
network, see, e.g., [4, 12].

Furthermore, we consider a total of 100 000 data sets (50 000 type I and 50 000
type II obstacles) consisting of an equally many polygons with 3, 4, 5, 6, and 12
edges, respectively; the shapes and sizes of the polygons are randomly chosen under
the conditions described in Figure 2. Out of the 100 000 data sets, we randomly
select 90 000 as training data and 10 000 as validation data. We optimize applying a
Stochastic Gradient Descent (SGD) method with a batch size of 64 and an adaptive
scaling of the learning rate using the Adam (Adaptive moments) [8] algorithm with
an initial learning rate λ = 0.001. We use a maximum of 300 epochs for the training
and reduce the learning rate by 20 % in case of stagnation for more than 50 epochs.
In case of SDF input data, we apply Z-normalization, and in case of binary input
data, we use batch normalization [7]. Our implementation uses Keras 2.2.4 [2] with
Tensorflow 1.12 [1] backend.

Even though, our neural networks may be very complex with approximately 50
million parameters on average, their evaluation is still much cheaper compared to
corresponding CFD simulations; on a single core of an AMDThreadripper 2950X (8
× 3.8Ghz), the evaluation of our neural network models (less than 0.01 s) was more
than two orders of magnitude faster than the average CFD simulation (approximately
50 s). On GPU (Graphics Processing Unit) architectures, the speedup will be even
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Fig. 4 Comparison of the ground truth flowfield (left) computed in aCFD simulation, the prediction
by a neural network (middle), and the pointwise error (right) for an example with low averaged
relative error (2) is 2 %.

ux CFD ux NN ux error

uy CFD uy NN uy error

Fig. 5 Comparison of the ground truth flowfield (left) computed in aCFD simulation, the prediction
by a neural network (middle), and the pointwise error (right) for an example with higher averaged
relative error (2) is 31 %.

larger. However, the training of the neural networks, which includes the computation
of the training data using CFD simulations, may take hours or even days.

We refer to [3] for a detailed discussion of the employed models, our software
framework, as well as a more detailed discussion the different types of obstacles and
a discussion of techniques for efficient generalization to other types of obstacles.
In [3], we will also discuss the speedup of our neural networks compared to the CFD
simulations in more detail.
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CNN [6] U-Net [11]
Input # Dec. Loss Total Type I Type II Total Type I Type II

SDF

1

MSE 61.16% 110.46% 11.86% 17.04% 29.42% 4.66%
MSE+(2) 3.97% 3.31% 4.63% 2.67% 2.11% 3.23%
MAE 25.19% 41.52% 8.86% 9.10% 13.89% 4.32%
MAE+(2) 4.45% 3.84% 5.05% 2.48% 1.87% 3.10%

2

MSE 49.82% 89.12% 10.51% 13.01% 21.59% 4.42%
MSE+(2) 3.85% 3.05% 4.64% 2.43% 1.78% 3.23%
MAE 45.23% 81.38% 9.08% 5.47% 7.06% 3.89%
MAE+(2) 4.33% 3.74% 4.91% 2.57% 1.98% 3.17%

Binary

1

MSE 49.78% 88.28% 11.28% 27.15% 49.15% 5.15%
MSE+(2) 10.12% 11.44% 8.80% 5.49% 6.25% 4.74%
MAE 39.16% 64.77% 13.54% 15.69% 26.36% 5.02%
MAE+RE 10.61% 12.34% 8.87% 4.48% 5.05% 3.90%

2

MSE 51.34% 91.20% 11.48% 24.00% 43.14% 4.85%
MSE+(2) 10.03% 11.37% 8.69% 5.56% 6.79% 4.33%
MAE 37.16% 62.01% 12.32% 21.54% 38.12% 4.96%
MAE+(2) 9.53% 10.91% 8.15% 6.04% 7.88% 4.20%

Table 1 Comparison of the performance of different CNN models based on the error (2). The best
error rates for a given CNN architecture and input type are marked in bold face.

4 Results

In order to measure the performance of our neural networks, we first introduce our
error measure. Therefore, let V be the set of all polygons P in the set of validation
data and IP be the set of all non-obstacle pixels for one specific polygonal obstacle
P. As the error measure to evaluate our neural network models, we consider the
averaged relative error

1
|V |

∑
P∈V

1
|IP |

∑
p∈IP

‖up − ûp ‖2

‖up ‖2 + 10−4 , (2)

with up and ûp being the reference velocity, computed in a CFD simulation, and the
predicted velocity, computed by evaluating the neural networks, respectively. The
term 10−4 acts as a regularization in case of very low reference velocities up .

We compare the CNN from [6] to the U-Net [11] using one and two decoder paths
using binary and SDF input data. Furthermore, we will observe that the performance
depends significantly on the loss function used to train the neural network. As the loss
function, we compare four different choices, i.e., the Mean Squared Error (MSE),
the sum of the MSE and the averaged relative error (2), the Mean Absolute Error
(MAE), and the sum of the MAE and the averaged relative error (2).
Performance on the original data As can be seen in Figures 4 and 5, the predic-
tion may be very good but may also show qualitative and quantitative differences to
the reference solution. However, if a good combination of the network architecture,
the type of input data, the number of decoder paths, and the loss function is used,
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Fig. 6 Generalization properties for the U-Net with one decoder path, MAE+(2) loss function, and
SDF input data: comparison the ground truth flow field (left) computed in a CFD simulation, the
prediction by the neural network (middle), and the pointwise error (right). Circular obstacles were
not part of the training data of the CNN. The averaged relative error (2) is 3 %.

SDF Input Binary Input
Polygon # Edges Total Type I Type II Total Type I Type II
7 2.71% 1.89% 3.53% 4.39% 4.61% 4.16%
8 2.82% 1.98% 3.65% 4.67% 4.89% 4.44%
10 3.21% 2.32% 4.10% 5.23% 5.51% 4.94%
15 4.01% 3.16% 4.86% 7.76% 7.85% 6.66%
20 5.08% 4.22% 5.93% 9.70% 10.43% 8.97%

Table 2 Generalization properties of the U-Net with one decoder path, andMAE+(2) loss function.
Error (2) for polygon types which were not in the data set used for training: 1 000 polygons (500
type I and 500 type II) for each different number of edges.

the average performance of the CNN model over all data is very convincing; see
Table 1. Compared to the worst configuration with a total averaged error of 61.16 %,
the optimal configuration, using the U-Net [11], SDF input, two decoder paths, and
MSE+(2) loss function, the total averaged error can be reduced to 2.43 %. Using
only one decoder path and MAE+(2) loss function yields comparable results but
results in a reduction of the number of parameters of the CNN by more than 30 %.

The choice of the network architecture and the loss function have the greatest
influence on the performance of the model. In particular, the U-Net generally per-
forms much better than the other CNN, and a combination of MSE or MAE with (2)
improves then performance significantly compared to only using MSE or MAE.
Generalization properties In order to investigate the generalization properties,
we now only consider the U-Net architecture with one decoder path, and MAE+(2)
loss function and only vary the type of input data. This model performed very well
for the training and validation data but is more efficient compared to the models
with two decoder paths. In Figure 6, we present the flow field for a circular obstacle,
which was not part of the training and validation data. It can be observed that the
averaged relative error (2) for this example is only 3 %. The very good generalization
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properties of our model are also apparent in the results in Table 2, which shows the
results for several different types of polygonal obstacles which were not part of the
training and validation data. The maximum total averaged error is below 10 %.

These results confirm that the neural network is able to generalize to other types
of polygonal obstacles and is not overfitted to training data.

5 Conclusion

In this work, we have shown that CNNs may serve as efficient surrogate models
for CFD simulations. We have focussed on the dependence of the flow field on the
geometry of the computational domain, and the extension of this framework to, e.g.,
varying boundary conditions or material parameters will be future work.

Due to the limited available space, we are not able to discuss, e.g, further gen-
eralization techniques for our models or to compare computing times of the CFD
simulations and the CNNs in detail. We refer to [3] for a more detailed discussion.
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