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A process cannot be understood by stopping it.  
Understanding must move with the flow of the process,  
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2.1 Abstract 

The quest for in-depth knowledge of the formation and early evolution of 
the Earth-Moon system is a cornerstone of the planetary sciences. Virtually all 
chemical studies that address these key questions rely on the availability of 
extremely ancient rock samples (>4 billion years ago). On Earth's surface, active 
plate tectonics, weathering, and volcanism have destroyed nearly all ancient 
samples. Samples from the Moon are sufficiently old but strongly limited in 
quantity and cover only a small portion of the lunar surface.  

The Moon is thought to have formed from the residue of an impact (or 
impacts) into the proto-Earth. There are two schools of thought as to when this 
occurred, one advocating an "old Moon" forming prior to 100 million years after 
solar system formation (SSF) and one supporting a "young Moon" forming later 
than 100 million years after SSF. This debate and the clear definition of the 
processes involved have continued unabated for the 50 years since lunar samples 
were first returned by the Apollo missions. A key to deepening our knowledge of 
these issues resides in understanding the extinct 182Hf-182W decay system in lunar 
and terrestrial rocks. 
 To address this question, we analyzed a suite of 29 lunar samples from the 
Apollo missions to better understand the elemental Hf and W budgets of the 
moon. We used new high-precision, high field strength element (HFSE) analyses, 
combined with isotopic and experimental partitioning data in line with the lunar 
magma ocean (LMO) model. Through these methods it is possible to observe 
lunar mantle-wide heterogeneities in ratios of highly incompatible elements such 
as U/W, which are traditionally assumed to be invariant. This observation, in 
conjunction with 182W isotope data for lunar rocks, supports the hypothesis of a 
Moon covered by a magma ocean after its formation. Crystallization and mixing 
of this LMO produced different hybrid cumulate sources; thus forming the 
sources of the distinct rock types found in the lunar sample suite. 
 Under the low oxygen fugacity conditions during lunar mantle partial 
melting, the low-Ti mare basalt source preferentially retains tungsten (W) over 
hafnium (Hf). The measured Hf/W values of low-Ti mare basalts thus provide a 
minimum for the Hf/W of the low-Ti source and by extension of the silicate 
Moon. We find that the Hf/W of the silicate Moon should lie between 30 to 50, 
significantly higher than the silicate Earth's modeled Hf/W of 25.8. Combined 
with a recently reported “global, uniform” 182W excess in lunar samples, we find 
that in-situ decay of 182Hf, in the time range between 40 to 60 million years after 
SSF is a superior explanation of the lunar 182W excess instead of a previously 
suggested disproportionate “late accretion” of extraterrestrial material to the 
Moon and the Earth. Our finding lends clear support for an "old Moon." 
 We expanded our work on lunar samples to include the KREEP-rich 
gabbroic meteorite Northwest Africa (NWA) 6950. This meteorite yields new 
insight into the history of the KREEP reservoir which formed as the final residual 
melt of the LMO. A previous study had dated the meteorite to 3100 million years 
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ago through Pb-Pb dating of baddeleyite grains. This marks the NWA 6950 
meteorite to be the youngest KREEP-like sample available and thus decisive for 
constraining lunar evolution. We obtained Lu-Hf, Sm-Nd, and Rb-Sr mineral 
isochrons for this meteorite. Through Lu-Hf dating we found an age of 3103 ± 39 
million years ago, perfectly overlapping the Pb-Pb age and underpinning the 
significance of this meteorite’s isotope systematics to anchor the evolution of 
KREEP. A Sm-Nd isochron of clean, hand-picked minerals yielded a compatible 
age of 3052 ± 57 million years ago. Inclusion of all mineral fractions that might 
have suffered later disturbance yields a young Sm-Nd isochron age of 2900 ± 200 
million years ago that is closely akin to previous ages found via Ar-Ar (2800), Rb-
Sr (2900), and Sm-Nd (2900) which dates younger resetting. In addition, the Rb-
Sr isochron provides an even younger age of ca. 1450 million years ago, although 
this may bear no geological relevance. The significance of finding these young 
ages becomes clear considering that several Sm-Nd and Rb-Sr studies aimed to 
date related meteorites whose history might thus have been characterized 
incorrectly. The initial εHf of NWA 6950 is the youngest anchor of the KREEP 
evolution line, from which we determined a time of KREEP formation at 4514 
million years ago, or ca. 55 million years after SSF. We therefore found, through 
an entirely different line of research, independent support for an "old Moon" 
formation. 
 To calibrate this methodology, we investigated multiple peridotites from 
the West Eifel volcanic field of Germany that exhibit similarly low abundances of 
Lu, Hf, Sm, Nd, Rb, and Sr. For this project, three different ion exchange 
separation techniques were investigated as part of the calibration. Mineral 
isochrons of Lu-Hf, Sm-Nd, and Rb-Sr all provided a functionally modern age, 
indicative of a resetting event during the Quaternary. We also found that whole 
rock, host rock, and mineral compositions argue against equilibration of the host 
magma and the peridotite xenoliths. The observation that whole rock samples 
plot off the horizontal isochrons, in contrast, is explained by melt infiltration and 
grain boundary entrainment which likely postdated the resetting of the 
isochrons. One peridotite examined in a companion study supervised by myself 
(M.M. Thiemens) yielded four distinct ages. The Lu-Hf system was reset by a 
Quaternary age event, while the Hf isotope signature was highly radiogenic, 
indicative of differentiation from a modern mantle source between 1.22 and 1.76 
Ga. Rb-Sr isochron data yielded an age of ca. 635 Ma, and a Sm-Nd age of 235 Ma 
corresponds with regional uplift. Our findings reveal that fine scaled isotope 
investigations are potent tools to unravel evolutionary complexities. The wealth 
of fine scaled information gained from the Eifel peridotite xenoliths once again 
underlines the stark contrast between the extremely dynamic evolution of the 
Earth’s lithosphere and mantle when compared to the largely static lunar 
evolution following LMO crystallization. 
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2.2 Zussamenfassung 

 Ein tiefgreifendes Verständnis der Geschichte und Entwicklung des Erde-
Mond Systems ist eine wesentliche Grundlage der Planetenwissenschaften. Die 
Verfügbarkeit von sehr alten Gesteinsproben (> 4 Milliarden Jahre) ist eine 
wichtige Voraussetzung für alle chemischen Studien, die sich dieser Thematik 
zuwenden. Verwitterung, Vulkanismus, sowie Plattentektonik zerstörten nahezu 
all solche alten Proben auf der Erdoberfläche. Proben vom Mond sind zwar 
ausreichend alt, jedoch stark limitiert und nur von wenigen Probenlokalitäten 
der Mondoberfläche verfügbar. Es wird angenommen, dass sich der Mond aus 
den Resten eines oder mehrerer Impakte mit der frühen Erde gebildet hat. Es 
koexistieren zwei Lehrmeinungen darüber wann dieses Ereignis stattfand. Die 
Denkschule der „old moon“ Fraktion vertritt die Ansicht, dass sich der Mond ca. 
50 Millionen Jahre nach Entstehung des Sonnensystems bildete, wohingegen 
Verfechter der „young moon“ Fraktion 100 Millionen Jahre für realistischer 
halten. Die Diskussion über den Zeitpunkt der Mondentstehung sowie über die 
dabei beteiligten Prozesse dauern unvermindert an, seit vor ca. 50 Jahren die 
ersten Mondproben zur Erde gebracht wurden. Ein Zugang zu mehr 
Erkenntnissen bzgl. beider Prozesse liegt im Verständnis des ausgestorbenen 
182Hf – 182W Isotopensystems in lunaren sowie terrestrischen Gesteinen.  

 Um dieser Frage nachzugehen, analysierten wir eine Suite von 29 
Mondproben der Apollo Missionen auf ihren Gehalt an den Elementen Hf und 
W. Unsere hoch-präzisen Messungen der HFSE Elemente (high field strength 
elements – Elemente hoher Feldstärke) in Kombination mit Isotopendaten sowie 
experimentell ermittelten Verteilungskoeffizienten ist in Einklang mit dem lunar 
magma ocean (LMO) Modell. Unsere Untersuchungen offenbaren, dass 
Elementverhältnisse inkompatibler Elemente, wie etwa U/W, im Mantel des 
Mondes variieren. Diese Elementverhältnisse werden traditionellerweise als 
invariant erachtet. Diese Beobachtung, zusammen mit Isotopendaten für 182W 
an Mondgesteinen, unterstützen die These eines Mondes, der nach seiner 
Entstehung von einem Magmaozean bedeckt war. Durch Kristallisation sowie 
Mischungsprozesse innerhalb dieses Magmaozeans entstanden unterschiedliche 
Kumulate; diese stellten die Quelle der verschiedenen Gesteinstypen dar, welche 
uns heute vorliegen.  

 Für die Quelle von low-Ti Basalten zeigt sich, dass aufgrund der 
reduzierten Bedingungen, welche auf dem Mond vorherrschen, beim partiellen 
Aufschmelzen W gegenüber Hf zurückgehalten wird. Die gemessenen Hf/W 
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Verhältnisse der low-Ti Basalte ermöglichen daher Minimalabschätzungen über 
das Hf/W Verhältnis der Mantelquelle, sowie das des Gesamtsilikat – Monds. 
Unseren Berechnungen zufolge liegt das Hf/W Verhältnis des Gesamtsilikat – 
Monds zwischen 30 und 50, und damit signifikant über dem modellierten Hf/W 
Verhältnis von 25.8 für die Gesamtsilikat – Erde. Unter Annahme eines 
einheitlichen 182W Exzesses des Mondes, wie in jüngsten Publikationen 
postuliert, ist der in-situ Zerfall von 182Hf im Zeitraum zwischen 40 und 60 
Millionen Jahre nach Entstehung des Sonnensystems eine bessere Erklärung für 
die 182W Exzesse, als die zuvor proklamierte ungleichmäßige Akkretion 
extraterrestrischen Materials für Erde und Mond. Unsere Erkenntnisse sind 
daher ein eindeutiger Beleg für einen „alten Mond“.    

 Wir erweiterten unsere Studien an Mondgesteinen um einen gabbroiden 
Mondmeteoriten vom Typ KREEP-rich aus der Gruppe northwest Africa (NWA) 
6950. Dieser Meteorit ermöglicht neue Erkenntnisse über das KREEP Reservoir 
welches sich während der finalen Phase des LMO gebildet hat. Eine vorherige 
Studie bestimmte das Alter unter Anwendung der Pb-Pb Datierung an Baddeleyit 
auf 3100 Millionen Jahre. Dieses Alter belegt, dass es sich beim NWA 6950 
Meteoriten um die jüngste verfügbare KREEP ähnliche Probe handelt und 
impliziert, dass sie für das Verständnis der Mondentwicklung von besonderer 
Bedeutung ist. Wir erstellten Lu-Hf, Sm-Nd, sowie Rb-Sr Mineralisochronen für 
diesen Meteoriten. Mittels Lu-Hf Datierung erhielten wir ein Alter von 3103 ± 39 
Millionen Jahren, welches perfekt mit den Pb-Pb Altern übereinstimmt und die 
große Bedeutung der Isotopensystematik dieses Meteoriten herausstellt, da er als 
Ankerpunkt für die Entwicklung des KREEP Reservoirs dient. Eine Sm – Nd 
Isochrone von handgepickten einschlussfreien Mineralseparaten ergab ein 
konsistentes Alter von 3052 ± 57 Millionen Jahren. Unter Berücksichtigung aller 
Mineralfraktionen, welche sekundärer Alteration ausgesetzt worden sein 
könnten, ergibt ein jüngeres Sm – Nd Isochronen Alter von 2900 ± 200 Millionen 
Jahren, welches Altern ähnelt die zuvor durch Ar-Ar (2800), Rb-Sr (2900), sowie 
Sm-Nd (2900) erhoben wurden und ein resetting Ereignis datieren. Alter für Rb-
Sr ergaben in dieser Studie sogar ein noch jüngeres Alter von ca. 1450 Millionen 
Jahren, welches sehr unwahrscheinlich ist. Die Bestimmung dieser jungen Alter 
ist von weitreichender Bedeutung, da viele Sm-Nd sowie Rb-Sr Studien an 
Meteoriten die Absicht hatten diese zu datieren und zu korrelieren, die 
Geschichte aber falsch rekonstruiert worden sein könnte. Das initiale εHf von 
NWA 6950 ist der jüngste Ankerpunkt der KREEP Entwicklungslinie , durch die 
wir den Zeitpunkt der KREEP – Bildung auf 4514 Millionen Jahre beziffern, bzw. 
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auf 55 Millionen Jahre nach Entstehung des Sonnensystems. Durch diesen 
anderen analytischen Ansatz fanden wir einen weiteren unabhängigen Beleg für 
einen „alten Mond“.    

 Um die Methode der Isotopen – Altersdatierung zu überprüfen, führten 
wir Messungen an mehreren Peridotiten aus dem Vulkanfeld der West Eifel 
durch, welche ähnlich geringe Häufigkeiten an Lu, Hf, Sm, Nd, Rb sowie Sr 
aufweisen. Für die Separation dieser Elemente benutzten wir drei 
unterschiedliche chromatographische Abtrennverfahren. Mineral – Isochronen 
für Lu – Hf, Sm – Nd, sowie Rb – Sr ergaben moderne Alter, welche eine 
vulkanische Aktivität bzw. ein resetting der Isotopensysteme im Quartär 
bezeugen. Weiterhin zeigt die Zusammensetzungen der Minerale, des Gesamt- 
sowie Umgebungsgesteins, dass sich zwischen Peridotit Xenolithen und dem 
Umgebungsgestein kein chemisches Gleichgewicht einstellte. Dass das 
Gesamtgestein nicht auf der horizontalen Mineralisochrone liegt, deutet darauf 
hin, dass es zu einem späteren Zeitpunkt zur Infiltration von Schmelze sowie zu 
Bildung von Schmelzeinschlüssen an Korngrenzen kam. Ein Peridotit, welcher in 
einer von mir (M.M. Thiemens) betreuten Begleitstudie untersucht wurde, ergab 
vier voneinander abweichende Alter. Durch ein quartäres Ereignis wurde das 
176Lu – 176Hf System zurückgesetzt, wohingegen eine besonders radiogene Hf 
Isotopensignatur eine Differentiation vom Mantel bezeugt, die sich zwischen 1.22 
und 1.76 Milliarden Jahren vollzog. Isochronen für Rb – Sr ergeben ein Alter von 
ca. 635 Ma. Das Isochronenalter von 235 Ma für Sm – Nd fällt zeitlich mit 
regionalen Hebungsprozessen zusammen. Die Ergebnisse dieser Studie zeigen 
auf, dass durch hochauflösende Isotopenstudien komplexe Entwicklungen 
nachgezeichnet werden können. Das Vermögen der kleinräumigen Erkenntnisse, 
welche in unserer Studie zu den Peridotit Xenolithen der Eifel gewonnen 
wurden, verdeutlicht einmal mehr den großen Unterschied zwischen dem 
dynamischen System Lithosphäre – Mantel der Erde, und der vergleichsweise 
statischen Entwicklung des Mondes nach Kristallisation des Magmaozeans. 
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3.1 Early Solar System Evolution 

 Knowledge grows from small pieces, bits and parcels which grow into 

general understanding (Herbert, 1976). Planetary formation follows a similar 

process (Kant, 1755). The solar system originated in a 65 light year across 

interstellar molecular cloud of dust and gas (Montmerle et al., 2006). Part of this 

cloud collapsed in on itself, likely the consequence of nearby supernovae (Looney 

et al., 2006), a theory supported by the abundance of short lived radionuclides 

(Cameron and Truran, 1977; Davies et al., 2014 and references therein). The cloud 

collapsed into a dense disk of between 103-104 AU in the protostellar stage, with 

a bipolar outflow (e.g. Shu et al., 1987; Montmerle et al., 2006). By ca. 105 years 

the surrounding envelope collapsed even further, the disk stretching between 

500 – 1000 Au in radius, with the three primary components at this stage being 

the outer envelope, collapsed disk, and the ejecting matter (Shang et al., 2002; 

Matzner and McKee, 2000; Matsumoto et al., 2000; Montmerle et al., 2006).  

This early disk evolved further, and by 0.1 Ga, the Sun had almost finished 

reaching its final mass, had created a 0.1 Au magnetosphere, and the ejection of 

material perpendicular to the Sun had depleted the majority of its angular 

momentum (e.g. Adams, 2010; Montmerle et al., 2006 and references therein). 

The disk and envelope were originally composed of submicron-sized dust 

particles. These particles began to stick together, forming larger dust aggregates, 

which formed pebbles, which formed larger rocky bodies (planetesimals).  

 The earliest ages measured from solar system materials are found in Ca-Al 

rich inclusions (CAIs) found in carbonaceous chondrite meteorites. The youngest 

age measured was 4.568 Ga via Pb-Pb dating of a CAI from the meteorite 

northwest Africa 2364, which defines the timing of the formation of the solar 

system, hereafter referred to as T0 (Bouvier and Wadhwa, 2010). This was later 
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suggested to be an artifact, with a revised aggregate age being 

 

Figure 3.1: An aesthetic summary of the solar system’s formation and evolution 
(image source: NASA.gov) 

proposed instead at 4.567 Ga (Connelly et al., 2017). The use of decay systems 

which went extinct in the early solar system such as 129I (half-life 15.7 Ma, 

Reynolds, 1960), 10Be (half-life 1.388 Ma, Korschinek et al., 2009) and 41Ca (half-

life 0.103 Ma, Mabuchi et al., 1974) constrain this timing further. CAIs also have 

the highest inferred initial 26Al/27Al ratio of any material formed in the solar 

system, the parent of the 26Al-26Mg decay system (half-life .72Ma) (MacPherson 

et al., 1995). The decay of 26Al is thought to have acted as the principle heat source 

in planetesimals, leading to the differentiation of iron meteorites, as will be 

discussed later (e.g. Urey, 1955; Greenwood et al., 2006; Gaidos et al., 2009)  

Following the formation of the CAIs, the more volatile compounds 

condensed, and chondrules formed by shock waves or flash heating (Palme et al., 

2015). Chondrules are typically sub-centimeter sized spherical igneous objects 
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which comprise chondritic meteorites (e.g. Connolly and Desch, 2004). While 

timing these events is difficult, it is generally thought that during the first 2-4 

million years of the solar system chondrules and larger, undifferentiated bodies 

began to form (e.g. Bizzarro et al., 2005; Connelly et al., 2012). Perhaps even 

closer to T0 is the formation of the parent bodies for igneous iron meteorites, 

which are modelled to have formed in the first 500 ky of the solar system, while 

igneous iron meteorites themselves then formed in the first 2 million years as 

metal cores of these bodies (e.g., Kruijer et al., 2013, Wittig et al., 2013). This 

would be contemporary with the accretion ages of achondrite groups and non-

magmatic iron meteorites, which would subsequently differentiate between 3 

and 5 million years after solar system formation (Schulz et al., 2009), with further 

heating after 5 Ma (Schulz et al., 2010). Recent studies have found this 

differentiation to have occurred ca. 6 million years after T0 (Hunt et al., 2018). 

These time intervals date the formation of planetesimals. 

 Although small materials have formed early in the solar system, the larger 

planetary bodies would take a commensurately longer time. While the gas giants 

formed in the first 0.1 Ma, the terrestrial planets took longer (Walsh et al., 2011). 

Dating when the formation of terrestrial planets happened can be difficult with, 

for example, estimates for Mars ranging between 2 – 10 Ma (Nimmo and Kleine, 

2007; Dauphas and Pourmand, 2011). The suggestion is that Mars stopped 

growing early, as Jupiter appropriated the material past 1 AU, leading to a starved 

planet (Walsh et al., 2011). While this will be discussed in further detail, the 

partitioning between Hf and W allows for dating of planetary core formations. 

This has been used to suggest an age of Earth formation in the first 30 million 

years of the solar system (Kleine et al., 2002), with 2/3 of Earth’s mass having 

accreted in the first 10 million years (Rudge et al., 2010). The latter study, 

however, leaves the termination of accretion as late as 100 million years after SSF. 

The study by König et al. (2011) found an age of 38 million years after solar system 

formation for the Earth itself through a 182Hf-182W single stage model age for the 



 19 

formation of the Earth’s core based on high accuracy constraints of the Hf-W 

ratio for the silicate Earth.  

The abundance of siderophile elements in the Earth’s and other silicate 

mantles in the solar system is elevated compared to what they would be following 

core formation (Ringwood, 1966). The later suggestion was that a late (some 107-

108 years after t0) delivery of carbonaceous chondrite type material could explain 

the abundances of volatiles and siderophiles (Chou, 1978). Arguments have been 

made for when this occurred, but most modern studies find an age closer to 100 

± 50 My after SSF (Albarède, 2009; Ballhaus et al., 2013; Schönbächler et al., 

2010). The later delivery of materials has consequences for dating core formation, 

as the addition of material following core formation would reset the bulk silicate 

inventory of siderophile elements. These signatures can be difficult to trace given 

the Earth’s continual renewal and alteration of its surface by processes such as 

plate tectonics and weathering (e.g. Sobolev et al., 2011). Fortunately, the Moon’s 

surface has remained mostly unchanged, providing an analogue of what the Earth 

and its proto-crust could have looked like following its formation, and even 

harbor some early Earth material (e.g. Ozima et al., 2008). 

 

3.2 Lunar Genesis 

Human study of the Moon is documented as far back as 5,000 years ago 

(Brennan, 1983). For many ancient cultures, the Moon represented a god such as 

Sin (Mesopotamian), Khonsu (Egyptian), Máni (Norse) or goddesses such as 

Selene (Greek) or Luna (Roman). These anthropomorphisms evolved as a way of 

trying to understand the Moon, and even as worship of the deities themselves 

has atrophied, it has continued to mark the vernacular used regarding the Moon. 

The adjective selenic, referring to things of or related to the Moon, derives from 

the goddess Selene. Similarly, the poetic name Luna and the commonly used 

adjective lunar both derive from the Roman goddess.  
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More modern explanations for the Moon’s origin include lunar capture, 

fission, co-formation, and the big impact. Lunar capture holds that, rather than 

having formed near the Earth, the Moon formed elsewhere and was captured by 

the Earth (Urey, 1952). This process is one we have seen elsewhere in the solar 

system, such as Neptune’s capture of its moon Triton (Agnor and Hamilton, 

2006). The Kona conference in 1984 on the origin of the Moon found this to be 

unlikely based on the dynamics of the capture event (Hartmann et al., 1986). As 

further evidence of the compositional similarities between the Earth and Moon 

were discovered, the extreme degree of coincidence required for the Moon to 

resemble the Earth so closely put to rest the lunar capture model (e.g. Dauphas 

et al., 2014; Young et al., 2016, references therein).  

 The fission model has the Earth forming alone. The Earth had a rapid spin, 

ca. 2.5 hours per rotation, causing centrifugal force to eject material which forms 

the Moon (Darwin, 1879, Jeans, 1929). This accounts for the density difference 

between the two bodies, as Earth’s core has already formed while the residual 

molten material forms the Earth (Darwin, 1879). The scar on Earth’s surface from 

this event was thought to be the Pacific Ocean (Fisher 1889). This was also 

suggested as the cause for continental drift in pre-plate tectonic models 

(Ampferer 1925). The formation of Earth’s core was thought to have caused 

angular acceleration causing the detachment of the Moon (Ringwood, 1960). 

This theory has been discarded for multiple reasons, such as the dissimilarities 

between the Moon and Earth’s oceanic crust, ages of lunar materials, and the 

acceptance of plate tectonics. 

The co-formation theory holds that the Earth and Moon formed as a 

simultaneously accreting binary planetary system (Thomson 1864). While this 

explains chemical similarities between the Earth and Moon, the difference in 

density between the two stands in contrast to this theory. This theory would later 

evolve to be an external incentive to fission, wherein the Earth and Moon 
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accreting from a residual cloud of proto-Earth material following a large impact 

(Daly 1946, Canup 2012). 

The current, most accepted model synthesizes the fission and co-

formation theories. In this, the early Earth is struck by another planetary body, 

creating a cloud of ejecta from which the Moon condenses (Daly 1946). Later 

reinvented as the giant impact theory, the primary version of this has a Mars-

sized body (Canup and Asphaug 2001) striking the proto-Earth (Hartmann and 

Davis, 1975; Cameron and Ward, 1976). It explains the chemical similarities found 

between the Earth and Moon, while also explaining differences, such as the 

stronger depletion of volatiles on the Moon. It also explains the lunar orbit and 

angular momentum, the depletion of volatile and highly siderophile elements, 

and the enrichment in refractory elements in the Moon compared to the Earth. 

Refinements of this idea include having a rapidly spinning proto-Earth be struck, 

with the ensuing angular momentum of the post impact disk bleeding off by 

evection resonance between the Earth, Moon, and Sun (Cúk and Stewart, 2012; 

Canup 2014). 

The Earth and Moon share chemical similarities in many things, 

particularly oxygen isotopes (Wiechert et al., 2001, Young et al., 2016). The Δ17O 

signatures of both bodies is almost identical, indicating either a shared origin for 

the two or an impactor of identical composition to the Earth. Small differences 

between the two have been measured, though the origin of these may be the 

result of larger degrees of impactor melting, impactor and proto-Earth 

similarities, or later additions of material to the Earth (Herwatz et al., 2014; 

Greenwood et al., 2018). Earth-Moon isotopic similarities have also been found 

with near homogeneity of Ti isotopes (Zhang et al., 2012) and Cr isotopes (Qin et 

al., 2010; Mougel et al., 2018). Given the extreme improbability of these isotopic 

similarities being the consequence of an impactor with an identical isotopic 
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signature to the proto-Earth, the consensus holds that the Earth and Moon share 

an origin (e.g. Dauphas et al., 2014).  

An issue with the similarity of the Earth and Moon signatures is that only 

75% of the ejecta which formed the Moon would have originated from the Earth, 

given a Mars-sized impactor (Canup et al., 2013). This has been, amongst many 

other ideas, explained by the impactor having been primarily composed of ice, 

meaning significant portions of it volatilized (Wolbeck and Connolly, 2010). It 

has also been suggested that, following the impact, a disk of material took 102-

103 years before accreting into the Moon and back onto Earth, giving time for 

equilibration between the two (Pahlevan and Stevenson, 2007). Potassium 

isotope evidence indicates a high-energy, high-angular-momentum giant 

impactor as lunar rocks are enriched in the heavy isotopes of K compared to the 

Earth and chondrites (Wang and Jacobsen, 2016). Reufer et al., (2012) explained 

the lunar formation as the consequence of multiple, rapid, indirect impactors, 

which could explain up to 73% of the Moon being composed of terrestrial 

material. More recently Rufu et al., (2017) proposed a new model in which the 

Earth was struck with multiple impactors, creating multiple Moons which 

subsequently merged.  

 

Figure 3.2: Stages of lunar formation with multiple impactors. A body strikes the 
early Earth (a), forming a disk of material (b). Over time, this accretes into a 
moonlet. A subsequent impact (d), repeats the process, forming another disk of 
material (e). As this material accretes into a new moonlet, the two eventually 
combine, forming the Moon (from Rufu et al., 2017). 
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3.3 The Lunar Magma Ocean 

While every planet has undergone a magma ocean stage, the Moon is the 

body in which this is best preserved. Following the return of lunar samples via 

the Apollo missions, it was clear that the Moon had undergone silicate 

differentiation (Smith et al., 1970; Wood et al., 1970). Petrologic, geochemical, 

and geophysical data all support a theory which holds that following the 

impact(s) which formed the Moon, the outer portion of the Moon was molten. 

As this lunar magma ocean (LMO) cooled, olivine, followed by pyroxene, 

crystallized and sank out (e.g. Snyder et al., 1992). As olivine and pyroxene sank 

out of the melt, the residual magma became enriched in incompatible elements 

(e.g. Shearer et al., 2006). At 78% LMO crystallization, low-density plagioclase 

began to crystallize, rising to the surface of the LMO and cooling into an 

anorthositic crust (Snyder et al., 1992). The formation of plagioclase removed Eu 

from the residual melt, creating the widespread Eu anomaly in many lunar rocks 

(e.g. Taylor 1975).  

This primary feldspathic crust is composed of anorthositic rock with a Mg# 

between 40 and 70, and an An# in plagioclase between 94-98 (Warren et al., 

1985; Nyquist et al., 2006). These samples are known as the ferroan anorthosite 

suite, or FANs.  
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Table 3.1: Stages of equilibrium (through 78%) and fractional crystallization 
(78%-100%) of the lunar magma ocean (from Snyder et al., 1992) 

% Crystallized Mineral Composition 

0-40 Olivine 

40-78 Orthopyroxene (with some olivine resorption) 

78-86 53% plagioclase, 25% olivine, 22% pigeonite 

86-95 38% clinopyroxene, 36% plagioclase, 26% pigeonite 

95%+ 34% pigeonite, 31% plagioclase, 24% clinopyroxene, 11% 
ilmenite 

  

Figure 3.3: Rare Earth element abundances of KREEP and plagioclase, 
showing the Eu anomaly. The depletion of Eu in KREEP is accounted for 
by a gain in the plagioclase-rich highland crust.  This captures a change 
in the redox/chemistry of the samples. Plot from O'hara and Niu (2015). 



 25 

  

 

 

 

 

 

 

Figure 3.4: Crystallization sequences of Snyder et al., 1992, expanded by 
Rapp and Draper (2018). This figure compares experimental 
crystallization sequences and cumulate products with previous results. 
The equilibrium and fractional data of the lunar primitive upper mantle 
(LPUM) and Taylor Whole Moon (TWM) are from Elardo et al., 2011. 
The fractional crystallization results for the TWM are from Rapp and 
Draper (2012, 2013, 2014, 2016), and the LPUM data from Rapp and 
Draper (2018). The study by Lin et al., (2017) is a geophysically 
constrained bulk composition model derived from Khan et al., (2007). 
From Rapp and Draper, 2018 
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The remaining fluid had a thermal blanket in the form of the anorthosite 

crust, slowing the rate of cooling in the remaining LMO (Shearer et al., 2006). 

This layer became increasingly dense, highly enriched in Fe-O, Th, K, rare earth 

elements (REE), and P (Warren 1990; Snyder 1992). This unique composition in 

the residual melt is termed KREEP (Hubbard et al., 1971). This was later modified 

with the Germanic prefix “ur,” meaning original, as urKREEP to refer to the 

primary formation of KREEP (Warren and Wasson 1979). Amongst the final 

crystallization products from this melt was a dense ilmenite-rich (FeTiO3) 

cumulate. Apollo 15 and 16 gamma ray spectrometry found a concentration of 

KREEP on the lunar nearside (Metzger et al., 1973), which was expanded upon 

with global elemental mapping of the Moon (Lawrence et al., 1998). 

 

Figure 3.4: Th distribution on the Moon. The highest abundance of Th is found 
in the Procellarum KREEP Terrane (PKT), while the Feldspathic Highlands 
Terrane (FHT) is anorthosite rich. South Pole Aitken Terrane (SPA) has an 
enrichment in Th as well, though not to the degree of the PKT (figure from Joliff 
et al., 2000). 

At this stage, the Moon had formed an outer crust of FAN, with a stratum 

of a very dense ilmenite-bearing KREEP rich cumulate, atop the less dense olivine 

and pyroxene layers. Ilmenite would crystalize between 150 and 100 km depth 
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(Hess and Parmentier, 1995; Van Ormann and Grove, 2000), until KREEP began 

to crystalize as well. The high-Ti cumulates would have a density between 3700 

– 3800 kg/m3, atop mantle cumulates with a mantle density of 3300 kg/m3 

(Elkins-Tanton et al., 2002). The density instability led to an overturn, mixing 

the LMO cumulates into the sources of the surface rocks we now have access to 

(Kesson and Ringwood, 1976; Beard et al., 1998). The composition of these source 

cumulates has been modeled based on Lu, Hf, Sm, and Nd isotopic analyses 

(Unruh et al., 1984; Sprung et al., 2013) and elemental partitioning (Snyder et al., 

1992; Fonseca et al., 2014; Leitzke et al., 2016). 

Following the formation of the anorthositic crust, the intrusion of partial 

melts from the lunar interior created secondary crustal rocks, known as the Mg-

suite. The intrusion of the Mg-suite has been shown by their being petrogenetic 

history which is unrelated to that of the FAN crust (Shearer and Papike 2005). 

The Mg-suite rocks assimilated portions of the KREEP component, giving them 

a KREEP-like geochemical signature indicative of their formation following the 

closure of KREEP formation (Gross and Joy, 2016). Geochemical models also 

show the Mg-suite as being the mixture of early LMO crystallization products 

which assimilated KREEP during mantle overturn (Hess 1994; Longhi 2003).  

The timing of LMO crystallization is a major subject of debate in the lunar 

community, as it provides a maximum age on lunar formation. The two primary 

camps hold that the Moon formed “old,” that is, prior to 100 Ma after t0, typically 

ca. 50 Ma (Barboni et al., 2017; Bottke et al., 2015; Jacobson et al., 2014; Yin et al., 

2014) or “young,” over 100 Ma after t0 (Borg et al., 2011; Carlson et al., 2014; 

Connely and Bizarro, 2016; Snape et al., 2016). Much of this debate centers on 

the isotope signature of the Moon, and is the crux of two chapters of this thesis.                    
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Figure 3.6: Lunar magma ocean differentiation and evolution. A) The post-impact 

Moon bears an LMO. At this point, and hereafter, the core may exist. Similarly, a 

degree of unmelted primitive material may be within the lunar interior, the depth 

and quantity thereof is subject to debate (e.g. Warren and Taylor, 2014). (B) Olivine 

and pyroxene sink out of the LMO, while plagioclase floats, forming a crust. (C) 

The final stage, prior to overturn, has the olivine and pyroxene rich mantle, with 

ilmenite bearing cumulates atop the mantle. Here, the final residue of the LMO, 

the urKREEP, is also left, under a layer of crust. (D) The density driven mantle 

overturn begins, and magmatism and impacts alter the visible crust. Figure by R. 

Fonseca. 

While being shorter lived than terrestrial magmatism, lunar magmatism 

continued beyond the crystallization and later overturn of the LMO. This early 

volcanism, prior to 4.0 Ga, lead to the deposition of basalt flows which were 

subsequently covered and obscured by impact craters and their ejecta, known as 

cryptomare (Head and Wilson, 1992). After 4.0 Ga, effusive volcanism became 

the primary source of new crust, creating the mare basalts. Around 15% of the 

lunar surface is covered by partial melts, infilling older impact basins (e.g. 

Hiesinger and Head 2006). These mare basalts primarily exist on the lunar 

nearside. Trace element analysis has yielded negative Eu-anomalies in the mare 

basalts, in contrast to the positive Eu-anomalies of the FAN (Warren 1985; 

Delano 2009). This would indicate that the mare basalts have formed from a 
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source which had already formed FAN, leaving the correlative Eu-depletion 

found in the mare basalts (Warren 1985; Shearer et al. 2006; Delano 2009). 

Lunar basalts have two main lithologies; mare basalts and picritic glasses 

(Papike et al., 1998; Shearer and Papike, 1999; Shearer et al., 2006). The mare 

basalts are classified by their TiO2 contents, which vary greatly (e.g. Delano, 1986; 

Papike et al., 1998; Meyer, 2012). These are classified by their weight (wt%) TiO2: 

the very-low Ti (< 1 wt%), low-Ti (1 – 6 wt%), and high-Ti (> 6 wt%) (Binder, 1982; 

Crawford, 2014; Warren and Taylor, 2014 and references therein). The primary 

Ti-bearing phase is ilmenite, and the ilmenite-bearing high-Ti basalts are 

primarily confined to Oceanus Procellarum and Mare Tranquillitatis (e.g. 

Crawford, 2015). Low-Ti basalts are found throughout the nearside Mare, as well 

as the South Pole Aitken Basin on the farside (Crawford, 2015). 

Understanding the history of the Moon via samples is fortunately not 

limited to the returned samples from the Luna and Apollo missions. The 

collected samples are all from the lunar near side, and dominated by ejecta from 

the Imbrium forming impact (e.g. Lawrence et al., 2000). Fortunately, 348 lunar 

meteorites have been registered to date (Meteorite Bulletin). These meteorites 

sample portions of the Moon unvisited by scientific missions, providing new 

geochemical and geographical insights (e.g. Korotev et al., 2003). The majority 

(ca. 60%) have 3-6% FeO, with high (>20 weight %) Al2O3 content and low 

KREEP compositions, indicating that they are likely sourced from the lunar 

feldspathic highlands (Calzada-Diaz et al., 2015 and references therein). These 

lunar meteorites can be further split into three groups based on their Mg# (the 

molar ratio of magnesium to iron in an igneous rock, Allaby 2008), Magnesian 

anorthosites (Mg% 65-90), ferroan anorthosites (Mg# 50-68), and the remaining 

anorthositic lithologies (Gross et al., 2014). These span a range from hyperferroan 

to highly magnesian. 
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3.4 Lunar Isotopic Composition 

 What we know now is that the Earth and Moon are the most closely related 

bodies in the solar system with regards to Δ17O (Wiechert et al., 2001). This is 

particularly strong evidence for a shared origin of the Earth and Moon given the 

Δ17O between objects of the solar system and their similarities, which are now 

agreed to be chemical rather than nucleosynthetic in origin (Thiemens and 

Heidenreich, 1983). The details of what chemical process creates these Δ17O is 

still the subject of debate (e.g. Chakraborty et al., 2013). Higher precision analysis 

of lunar samples found a ca. 12 ppm difference in Δ17O between the Earth and 

Moon (Herwatz et al., 2014). This was explained as a signature of the Moon 

forming impactor(s), or the result of material accreted during a late veneer. 

Similarities between the Earth and Moon extend to other isotopic systems as well. 

These include K isotopes (Humayun and Clayton, 1995; Wang and Jacobsen 

2016), Cr isotopes (Lugmair and Shukolyukov, 1998), Si (Georg et al., 2007), and 

Ti isotopes (Zhang et al., 2012). 

 Reconstructing the Moon’s history is primarily the subject of radiometric 

dating. The earliest crustal samples which should be accessible are FANs, but the 

impact cratering of the lunar surface may reset some of the isotope decay systems 

one would use. The Sm-Nd decay system is proposed to be the least mobile 

system in shock metamorphism, and thus most likely to provide accurate dates 

(Gaffney et al., 2011; Borg et al., 2015). The oldest recorded age from the Sm-Nd 

decay system was 4.562 ± 0.068 Ga, measured in a FAN clast of lunar sample 

67016 (Alibert et al., 1994). Ar-Ar measurements on a different clast from the 

same sample yield an age of 3.95 ± 0.07 Ga, indicating a post-crystallization 

thermal event (Turner and Cadogen 1975) that arises from gas loss and associated 

isotope fractionation. The lack of correlation of old ages in these samples is 

considered evidence that only the most robust ages are accurate for lunar 

formation (Borg et al., 2015), inherently biasing arguments on the Moon’s age. 
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 The story of W isotopes has proven more contentious, but the 182Hf-182W 

short-lived decay system is a key system to understand and calculate the time of 

lunar formation. The decay of 182Hf to 182W has a half-life 8.9 My (Vockenhuber 

et al., 2004), making it an ideal dating system for the early solar system. The 

system is even more ideal, as Hf is a lithophile, while W is moderately-

siderophile, allowing the decay system to be used to trace planetary 

differentiation. The neutron capture of 181Ta creates 182Ta, which through β-decay 

turns into 182W, but in lunar samples the amount of this cosmogenic 182W is 

negligible (Leya et al., 2000). Originally measured as being heterogeneous (Lee 

and Halliday, 1996, Lee et al., 1997), 182W isotope abundances were later 

suggested to be identical between the Earth and Moon (Touboul et al., 2007). 

Since then, the precision of W isotope measurements has dramatically improved, 

allowing for the resolution of a supposedly uniform excess of 182W on the Moon 

compared to the Earth (Touboul et al., 2015; Kruijer et al., 2015; Kruijer and 

Kleine, 2017). The proposed homogeneity of the lunar 182W is taken as evidence 

of lunar differentiation after the extinction of 182Hf (Kruijer and Kleine, 2017), i.e., 

a so called late-forming Moon scenario. Alternatively, partitioning of the lunar 

core very early in the solar system's history, while the system is still extant, 

requires the Moon to have formed within the first ca. 60 million years after solar 

system formation (Jacobsen 2005), i.e., a so called early-forming Moon scenario. 

A synthesis of multiple studies, and a new explanation for excess 182W is the 

subject of chapter 6 of this thesis, in which we provide evidence in favor of an 

early formation of the Moon within the first ca 60 million years after solar system 

formation. 

 The use of 182W is highly dependent on high field strength element (HFSE) 

abundances in the Earth and Moon. Previous studies (e.g., Touboul et al., 2009; 

Kruijer et al., 2015) have assumed that the elemental ratios of W, U, and Th are 

incompatible during igneous processes, and have assumed a Hf/U value (Rocholl 

and Jochum, 1993) as well as U/W values of the bulk silicate Earth (BSE) 



 32 

(Newsom et al., 1996) and for the silicate Moon (Palme and Rammensee, 1981) to 

that effect. However, W behaves more incompatibly than U and Th during 

terrestrial mantle melting, and to this effect the Hf/W value of the BSE has been 

revised to 25.8 (König et al., 2011), close to the estimate of 24.9 for Hf/W of the 

BSE (Münker, 2010). While the incompatible behavior of W during lunar silicate 

differentiation is well known (e.g. Palme and Rammensee, 1981; Wänke et al., 

1974, 1975) the ratio of other incompatible elements with W vary greatly 

(Münker, 2010). This is due to the less incompatible behavior of W during lunar 

silicate differentiation (Fonseca et al., 2014; Palme and Rammensee, 1981; Palme 

and Wänke, 1975). The lunar reducing conditions render W much less 

incompatible than on Earth (Fonseca et al., 2014), where U and W are both highly 

incompatible elements. Therefore, the assumption of constant U/W in the Moon 

is wrong, and leading to previous incorrect estimates of the Hf/W of the silicate 

Moon (e.g., Touboul et al., 2009; Kruijer et al., 2015; Kruijer and Kleine, 2017). 

In this dissertation we have used multiple decay systems (Hf-W-Lu-Hf, 

Sm-Nd, and Rb-Sr) in order to constrain timing of lunar formation and 

crystallization of the lunar magma ocean. Radioactive decay systems can be 

broadly categorized as being “short lived” (< 105 years) or “long lived (>105 years).” 

A short lived system, such as 14C (half-life 5.73 ± .04 ky, Godwin, 1962) is useful 

in tracing processes in recent history, or while they were still extent, as with the 

previously discussed 26Al. The Hf-W system (decay of 182Hf to 182W, half-life of 

8.9 Ma, Vockenhuber et al., 2004) is a long lived system, though used to 

constrain events in the early solar system, as it is functionally extinct in the first 

60 Ma after SSF. The decay of 176Lu to 176Hf has a half-life of 37.1 Ga (Scherer et 

al., 2001), allowing for dating of events long after 182Hf is extinct. The decay of 
87Rb to 87Sr has a half-life of ca. 49 Ga (e.g., Nebel et al., 2011), and the 

incompatible nature of Rb means that 87Sr can be used to date the time of closure 

for a given sample. The decay of 147Sm to 143Nd is particularly slow with a half-life 

of 106 Ga (Lugmair and Marti, 1978). These systems can all be combined, 
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however, with mineral isochron dating of natural rocks. For this method, 

different minerals are separated from a given sample and analyzed for their 

daughter-element isotope compositions as well as for their mother-to-daughter 

element ratio. Over time, the initially uniform radiogenic daughter-element 

isotope compositions increased by an amount governed by the mother-to-

daughter element ratio of the respective mineral. The radiogenic isotope 

compositions of all mineral fractions form a straight line with a positive slope 

whose value uniquely defines the time that has elapsed since crystallization of 

the rock. 

 

3.5 From Earth’s formation to mantle rocks from the Eifel 

 Following the formation of the Moon, the Earth also began to cool. A 

complete history of global differentiation processes on Earth, including the 

advent of its oceans and the creation of its atmosphere is beyond the scope of 

this dissertation. More relevant, and field sampling approachable, is the history 

of the Earth's mantle. The evolution of a terrestrial magma ocean is harder to 

constrain, with multiple crystallization scenarios leading to the present-day 

Earth (e.g. Ballmer et al., 2017). Following the magma ocean period, different 

models hold this age between 4 and 3 billion years (O´Neil, 2016; Condie and 

Kröner, 2013), plate tectonics began on Earth. While the Moon formed its 

anorthositic crust and had a mantle overturn, a version of this process is still 

underway on the Earth. The Earth's crust and the upper mantle are referred to as 

the lithosphere. The lithosphere is composed of a rigid mass that makes up the 

outer layer of the Earth and is divided into tectonic plates (Meier, 2016). These 

plates are in continual motion, leading to subduction beneath one another at 

active continental margins and island arcs, and the generation of new material 

along spreading ridges when the plates move apart. 
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Figure 3.7: The motion process of tectonic plates. The new crustal material is 
generated at the mid-ocean ridge, while the plate subducts beneath another plate, 
here continental, at the subduction zone. source: 
heritage.nf.ca/articles/environment/geology.php 

 The movement of the tectonic plates has created and broken up multiple 

“supercontinents,” in which most continental crust combines to make a single 

landmass (e.g. Bedard, 2018; Wegener, 1912; Kroner and Romer, 2013). The most 

recent supercontinent was Pangaea (Wegener, 1912). It was formed during the 

collision of two previous continents, Gondwana (Suess, 1892) and Laurasia, in an 

event known as the Variscan orogeny (Kossmat et al., 1927; Kroner and Romer, 

2013). This collision was the major mountain forming event in central Europe, 

lasting from the late Devonian (360 Ma) to the late Carboniferous (300 Ma) 

(Suess, 1885; Kossmat, 1927). This means that central Europe is one of the places 

with the best record of Pangaea’s formation, as well as intra-plate volcanism. 

This collision was also the event which formed the Rhenish Massif, an 

uplifted plateau in what is now central Europe (Kroner and Romer, 2013; Garcia-

Castellanos et al., 2000; Wegener, 1912; Suess, 1885; Kossmat, 1927), which makes 

central Europe a unique/suitable location to study Earth’s geological history. The 

Rhenish Massif has undergone multiple compressional and decompressional 

stress and strain events since its origin, as well as continual erosion (Kroner and 
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Romer, 2013; Illies et al., 1979; Königshof et al., 2016). The compressional tectonic 

activity was replaced by extensional tectonics during the Permian (300-250 Ma) 

(van Wees et al., 2000; Meier et al., 2016 and references therein). In the 

Mesozoic, peaking in the Eocene (50-30 Ma), a new rift system along the main 

strike directions NW-SE and SSW-NNE caused volcanic activity (Ziegler et al., 

1992).  

The cause of volcanic activity in central Europe is a central research theme 

(Regenauer-Lieb, 1998). Researchers have found evidence, particularly through 

the Mesozoic and Cenozoic, for episodes of lithospheric thinning leading to 

surface uplift and volcanism (Ziegler et al., 1992; Regenauer-Lieb, 1998; Meier et 

al., 2016 and references therein). The uplift brought the Rhenish Massif to an 

average height of 300m above sea level, similar to other central European 

Paleozoic blocks (Illies et al. 1979; Schmincke et al., 2007). Volcanism has also 

been suggested as the consequence of major plume activity beneath central 

Europe (Ritter et al., 2001; Hoernle et al., 1995, Duncan et al., 1972), though later 

studies have suggested that the plume is a modeling artifact (Meier et al., 2016). 
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Figure 3.8 Low velocity zones beneath the Eifel volcanic field (red), showing a 
columnar low P-velocity anomaly in the upper mantle. This was suggested as 
evidence of a plume, but was later suggested to be a measurement of partial melting 
(Meier et al., 2016). Illustrated by Ritter et al., 2001 

Research into mantle evolution has heretofore been mostly limited to 

geophysical investigations such as seismic refraction profiles (e.g. Meier et al., 

2016; Ritter et al., 2001). However, geochemical approaches have been made by 

several authors (e.g. Mertes and Schmincke, 1985; Schmincke and Mertes, 1979; 

Schmincke et al., 1999; Witt-Eickschen et al., 1993; Witt-Eickschen and O’Neill, 

2005; Meier et al., 2015). As the lithosphere beneath the Rhenish Massif has 

undergone multiple metasomatic events, the Eifel, the most recently active 
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volcanic area on top of the Rhenish Massif is a major focus of this study. Together 

with the Massif Central, the Eifel volcanic field is central Europe’s youngest 

volcanic field, lying at the west end of a 350 km long volcanic belt, west of the 

Rhine River and north of the Mosel River (Schmincke et al., 2014; Wilson and 

Downes, 2006). The Eifel volcanic fields are divided into the Quarternary West 

Eifel Volcanic Field (WEVF) and East Eifel Volcanic Field (EEVF) and the Tertiary 

Hocheifel Volcanic Field.  

The Rieden complex (430-360 ka), the Wehr volcano (>215 ka), and the 

Laacher See (12.9 ka), are the three largest volcanic complexes of the EEVF 

(Schmitt et al., 2010). Evidence for high pressure magma fractionation near the 

crust/mantle boundary, high temperature overprinting of basement rocks, as 

well as mantle metasomatism are typical features found in EEVF rocks 

(Schmincke et al., 2007). The WEVF covers an area of about 500-600 km² 

(Schmincke et al., 2014). Volcanic activity initiated less than 700 ka, and has 

increased in the last <100ka (Schmincke et al., 2014). The magmas of the 

Quaternary Eifel volcanism are mostly SiO2 undersaturated, mafic with a high 

abundance of MgO and FeO (Mertes and Schmincke 1983) and foiditic, K-rich 

with K2O > Na2O. Typical lavas contain about 30% phenocrysts of clinopyroxene, 

olivine, phlogopite or titanomagnetite (Schmincke et al., 2007). 

 The continued renewal of Earth's surface by plate tectonics and active 

volcanism makes determining its primordial history difficult. The advantage of 

plate tectonics, however, is that it allows for direct analysis of mantle rocks 

because of intraplate volcanic activity that causes deep mantle material to rise 

and accumulate within magma chambers. Volcanic eruptions then cause the 

material to be exposed to the surface. Peridotites are igneous rocks composed of 

pyroxene and olivine, and are the dominant rocks of Earth's upper mantle (above 

400 km depth). Nodules of peridotite can be found as xenoliths in basalts, 

therefore allowing direct analysis of rocks from the Earth's mantle. Peridotites 
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are divided into four types by composition. Lherzolites are the most common 

form, and are dominated by olivine, clinopyroxene, and orthopyroxene. 

Harzburgite and Wehrlite are peridotites composed primarily of olivine plus 

orthopyroxene and clinopyroxene, respectively. Dunite, the fourth type, is 

composed almost exclusively by olivine. Peridotite xenoliths provide evidence for 

the evolution of the lithospheric mantle beneath the Eifel. Several authors have 

published isotope studies (e.g. Witt-Eickschen et al., 1993, 2003, 2005; Stosch 

and Lugmair, 1986), but the geologic history of the xenoliths and in particular 

the timing of metasomatic events remain unclear. Recently developed methods 

for isotope measurements can provide a more precise chronology. The analysis 

of peridotites related to the Variscan orogeny and its subsequent volcanism will 

be discussed in chapter 4. 
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Figure 3.9 The location and distribution of volcanic centers in the Eifel volcanic 
field. Xenolith bearing localities (triangles) and towns (squares) are delineated 
(from Denis et al., 2013) 

 

3.6 Motivation and Objectives 

 As discussed, the Earth-Moon system and its evolution is an exceedingly 

complex system to unravel. Even a planetary body as “simple” as the Moon has 

had a complex history, with multi-disciplinary studies helping to create the 

image of the Moon as it stands today. There still stand large gaps in our 

knowledge with major points of contention amongst cosmochemists related to 

how one approaches the formation, timing, and evolution of the Moon and how 

to interpret the experimental data. Many cosmochemical studies on the Moon 

assume terrestrial behavior for element partitioning, so the combination of 

partitioning data with chemical would offer a fresh look. As the number of studies 
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on the Moon are fundamentally limited by the available samples, the small 

amount needed for our high precision methods made the Moon an excellent 

target for analysis. 

 Our overall goal was to study planetary formation and evolution using a 

diverse range of methods, including element partitioning and isochrons. Mineral 

isochron dating of ultramafic samples is challenging, because the concentrations 

of the elements of interests are all very low in mafic minerals such as olivine or 

orthopyroxene. We tested this method on terrestrial samples, i.e., on mantle 

xenoliths from the Eifel, in order to ensure analytical fidelity. Results are 

presented in chapter 4. The initial goal was to test the boundaries of what we 

could measure in terms of reproducibility, blank propagation, and minimum 

sample size.  

Our scientific aim here was to see if we could learn anything new about 

the chemical signature of the Mantle underlying Europe. We measured peridotite 

xenoliths from Meerfelder Maar and Dreiser Weiher multiple times, each time 

using a different ion exchange recipe to produce pure analytes of the involved 

elements for mass spectrometric measurements. These samples had been 

deposited in Olivine Nepheline Basalt-suite host basalts (one of two suites in the 

WEVF) in the quarternary (< 0.7 Ma). We separated each mineral from the 

peridotites (ol, opx, cpx) for the purpose of isochron dating, and each aliquot was 

analyzed for all 6 parent and daughter elements from the 3 long-lived radiogenic 

isotope systems. Here, the robustness and intrinsic pitfalls of the systems in 

question are all on display, as we see the ease with which they can be thermally 

reset, as well as their capacities to provide information about multiple stages of 

the geological evolution of the same sample. While the peridotites all yielded 

ages correlating with quarternary volcanism (functionally modern ages), of 

interest is that the whole rock fraction often did not plot on the isochron line. 

This implies melt infiltration of the whole rock, which is excluded by the process 
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of mineral picking. The whole rock fraction did not form a mixing line between 

host rock and mineral separates, indicating that the infiltrating agent was not 

sourced from the host rock. 

The data are supplemented by work conducted for a BSc thesis (Gerritzen, 

2018) which was supervised by the author of this thesis. Data by Gerritzen (2018) 

are incorporated into the broader framework of this thesis, and these individual 

data are highlighted in chapter 4. The key result of the mineral isochron dating 

of Eifel xenoliths is that most measured peridotites are reset by most recent 

geological events that presumably predate the eruption of their quaternary 

basaltic host lavas. One specific peridotite sample from Dreiser Weiher, however, 

provides a far more compelling history, as each isotope decay system records a 

different age pattern. While Lu-Hf yields a modern age, possibly indicative of the 

sample deposition, the highly radiogenic Hf signature (εHf of 37.0) allowed for 

the calculation of depletion model ages. Using depleted mantle (Vervoort and 

Blichert-Toft, 1999) and CHUR (Bouvier et al., 2008) as the minimum and 

maximum values, we found a source age for the xenolith between 1.22 – 1.76 Ga, 

in agreement with the 1.6 Ga model age found with Re-Os analysis (Schmitt and 

Snow, 2002). The Sm-Nd dating gave an age of 236 ± 110 Ma, which overlaps with 

the Variscan orogeny (e.g. Kroner and Romer, 2013). Rb-Sr yielded an age of 635 

± 110 Ma, which does not necessarily bear geological significance, but correlates 

with a mantle heating event which had been previously suggested by Sm-Nd 

studies at 560 Ma (Stosch et al., 1980; Paul et al., 1971). 

 We extended this method to the lunar meteorite NWA 6950 with the aim 

of learning more about the evolution of the Moon. The NWA 6950 meteorite is 

part of the so called NWA 773 clan (coupled meteorite finds), a group of mafic-

ultramafic cumulates from the lower lunar crust. Meteorites of the NWA 773 clan 

are the youngest set of KREEP rich lunar samples, but Sm-Nd and Rb-Sr dating 

studies (ca. 2.9 Ga, Borg et al., 2009) have given different age information than 
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obtained by the Ar-Ar (2.8 Ga, Fernandes et al., 2003) and Pb-Pb methods (3.1 

Ga, Shaulis et al., 2017). We prepared mineral separates of the meteorite NWA 

6950, and combined Lu-Hf with Rb-Sr and Sm-Nd measurements in order to 

constrain the formation of this meteorite clan, with the broader goal of 

developing greater insights into KREEP evolution and formation. Our results, 

presented in chapter 5, found the Lu-Hf system (3.103 ± .045 Ga) to corroborate 

Pb-Pb ages (average 3.180 Ga), while the other systems (Rb-Sr and Sm-Nd) yield 

a more complicated picture. We used the initial Hf isotope composition of NWA 

6950 (εHf -12.5 ± 0.6) to expand the Hf isotope evolution line of KREEP to 

unprecedentedly young ages. The result show that, unlike the assumption of 

previous studies (e.g., Borg et al., 2009; Gaffney and Borg, 2014), rocks of the Mg 

suite cannot be used to estimate the Hf evolution line of KREEP which evolved 

along more unradiogenic values. Using the revised Hf isotope evolution line for 

KREEP, formation of the KREEP reservoir and by inference crystallization of the 

Moon can now be dated back to 4.514 Ga, ca. 50 Ma after solar system formation. 

 Our final goal was to learn about the earliest history of the Moon. To 

achieve this goal, we mapped the elemental behavior of lunar samples to 

constrain the lunar magma ocean time scale and mechanism, as presented in 

chapter 6. This is, in part, to help settle the ongoing strife between the two camps 

on lunar formation. We measured 29 samples from the Apollo missions for the 

concentration of high field strength elements HFSEs by isotope dilution. The 

work by Leitzke et al., (2016) enables us to address further compositional 

dependencies relevant for the partitioning behavior of trace elements during 

lunar silicate differentiation. Key to this study is the Ti content of the melt. We 

combined our high accuracy analyses with these novel experimental data to 

constrain HFSE behavior in the early Moon. The HFSE, such as Hf, W, U, and Th, 

are used to constrain timescales for the differentiation of planetary bodies, as the 

difference in behavior between siderophile and lithophile elements combined 

with a decay system (as previously described with the 182Hf-182W decay system) 
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allow tracing of a planet’s evolution. Our results found strong support for 

cumulate source melt models, with most sample group showing astonishing 

intra-group homogeneity for Hf/W and U/W (e.g., low-Ti mare basalts from 

Apollo 12 varied by ±3 and ± 0.1, respectively. Amongst the Apollo 17 high-Ti mare 

basalts we found a larger range of Hf/W (from 125 to 145). We modeled a source 

mineral assemblage based on Hf and Nd isotope systematics from previous 

studies (Fonseca et al., 2014; Leitzke et al., 2016; Sprung et al., 2013). We found 

that partial melting of this source explained the range we measured in the high-

Ti basalts. Our data also showed the independence of the KREEP forming source 

from other cumulate sources, as the KREEP-rich sample have a large range of 

U/W values (from 0.5 to 3.5) at sub-terrestrial Hf/W (< 25). Our high accuracy 

Hf and W analyses were combined with literature 182W data (Kruijer et al., 2015; 

Kruijer and Kleine, 2015) to provide a range of dates for lunar formation between 

44 and 60 Ma after SSF, finding further support for an old Moon formation. In 

this thesis we have found evidence for an old Moon from two independent 

isotopic approaches.  
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4.0 Isotopic investigations of peridotites from the West 
Eifel Volcanic Field 
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4.1.0 Introduction 

4.1.1 Background 

The configuration of the Eurasian plates during the Variscan orogeny 

forms the fundament on which the Central European lithosphere evolved (e.g. 

Ziegler and Dézes, 2006; Schulmann et al., 2014). As such, areas of central to 

western European intraplate volcanism during the Cenozoic are intimately 

linked to extensive structures within and regional uplift of the Variscan 

basement. These tectonic movements are the result of the collision of Africa and 

Eurasia during the Alpine orogeny (Kossmat et al., 1927; Kroner and Romer, 2013; 

Wilson & Downes, 1991; Wilson & Patterson, 2001) causing decompressional 

melting in the mantle that might have been added to by a possible mantle plume 

activity (e.g. Granet et al., 1995; Hoernle et al., 1995; Regenauer-Lieb et al., 1998). 

Central Europe’s topography is dominated by uplifted blocks of Variscan 

basement, including the Rhenish Massif, a massive block of mainly Devonian to 

lower Carboniferous rocks in Central West Germany. The Massif formed during 

the Variscan Orogeny of the late Devonian to Early Carboniferous (ca. 360-320 

Ma), during the collision of Gondwana and Laurussia (Kossmat et al., 1927; 

Kroner and Romer, 2013; Ziegler et al., 2006). The compressional tectonic 

activity was followed by extensional tectonics and basin evolution during the 

Permian (300-250 Ma) (Meier et al., 2016 and references therein; van Wees et 

al., 2000).  

A new rift system along the main strike directions NW-SE and SSW-NNE 

formed during the Mesozoic (Regenauer-Lieb et al., 1998; Ziegler et al., 1992). 

The oceanic lithosphere subducted during the Alpine orogeny disengaged from 

the continental lithosphere and sank into the asthenosphere. Rising hot 

asthenospheric material heated the continental lithosphere, which thinned out 

as a thermal process, triggering volcanism in Central Europe north of the Alps 

(Wilson and Downes 1992; Ziegler et al., 1992). The Cenozoic volcanic activity 
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along the Mesozoic extension lines is often collectively called the Central 

European Volcanic Province (e.g. Meyer and Fougler, 2007). It covers areas in 

Lower Silesia, within the Bohemian and Rhenish Massif, in the vicinity of the 

Black Forest and the Vosges as well as in the Massif Central (Lustrino & Wilson, 

2007; Regenauer-Lieb et al., 1998; Wilson & Downes, 1991; Ziegler et al., 1992). 

Within southern Germany, several centers of volcanic activity between ca.45 Ma 

and sub-recent times comprising the Eifel, the Upper Palatinate, Heldburg, 

Westerwald, Siebengebirge, Rhön, Vogelsberg, the Hessian Depression, the 

Kaiserstuhl, and Hegau in order of the oldest occurrences (see compilation in 

Jung et al., 2012). Noteworthy, many of these fields show long-lasting or 

intermittent activity, with two primary phases dating from the Oligocene to 

Miocene, and Pliocene to modern age (Lustrino and Wilson, 2007). 

The focus of this study is on peridotite xenoliths from the West Eifel 

volcanic field (WEVF). In the greater vicinity of this field, the Hocheifel formed 

within the Rhenish Massif over two periods of volcanic activity during the 

Eocene, from 44-30 Ma and 37-35 Ma (Fekiacova et al., 2007; Fuchs et al., 1983; 

Schmincke et al., 2014; Wilson and Downes 2006). The younger, Quarternary 

Eifel volcanic fields can be broadly divided into the West Eifel volcanic field 

(WEVF) and the East Eifel volcanic field (EEVF) which formed since ca. 0.7 Ma. 

Following its formation, the WEVF has undergone multiple volcanic events, up 

to as recently as 11 ka ago (Ulmener Maar: Zolitschka et al., 1995) the most 

prominent of which is the Laacher See eruption which produced an almost 

Europe-wide tuff horizon (Schmincke 2008; 2013). West and East Eifel volcanism 

comprised very primitive to highly differentiated varieties (Mertes and 

Schmincke, 1985), a good summary of which can be found in Schmincke (2007). 

Within the rocks of the western WEVF clinopyroxenite and mantle peridotite 

xenoliths frequently occur (e.g., Shaw et al., 2005). Of the latter, hydrous and 

anhydrous varieties are known and both groups encompass dunites, lherzolites, 

harzburgites, and wehrlites (e.g., Stosch and Seck, 1980). In contrast to most 
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previous studies that investigated the evolution of the lithospheric mantle 

beneath the Eifel by means of peridotite xenoliths (e.g., Stosch and Seck, 1980; 

Witt-Eickschen et al., 1993; 1998; 2003; Witt-Eickschen and Kramm, 1998; to 

name a few) we here exclusively focus on samples that visually appear vein-free. 

These previous studies found evidence for several heating events in the mantle 

at ca. 560 Ma (Stosch et al., 1980; Paul et al., 1971), 100-150 Ma (Witt-Eickschen 

et al., 2003), as well as due to Quaternary volcanism (Ritter et al., 2001). 

Within the WEVF are the Dreiser Weiher and Meerfeldar Maar localities. 

Dreiser Weiher is a young (ca. 11.7 ka) Pleistocene maar-type volcano, located at 

the east-central part of the WEVF (Stosch et al., 1980). Meerfelder Maar is located 

to the southwest of the WEVF, 18 km south of Dreiser Weiher (Witt-Eickschen 

et al., 1998). Meerfelder Maar is a maar-type volcano with an eruption age of ca. 

45 ka (Schmincke et al., 2014). 

Here, we aim to discern evolutionary episodes within the lithospheric 

mantle beneath the West Eifel via a multi-system, isochron approach utilizing 

the Rb-Sr, the Sm-Nd, and the Lu-Hf system. Vein-free xenolithic peridotite 

samples from two renowned and well-studied locations of Quarternary volcanic 

activity – Dreiser Weiher and Meerfelder Maar – are investigated. With vein-free 

samples promising to be the least complex, metasomatic overprint, 

recrystallization, or diffusional resetting might not have obliterated all primary 

depletion information. A particular focus is given to which constituents of the 

peridotites, i.e., minerals or grain boundaries, might hold distinct information. 
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Figure 4.5: The eruptive centers of the Eifel volcanic fields (WEVF, EEVF). The 

youngest centers (215 ka) are shown in triangles (from Schmincke 2007). 

 

4.1.2 Geological Setting 

Whether as the consequence of a mantle plume or crustal thinning, the 

past 700 ka have seen volcanism throughout the Eifel. The WEVF itself is 

dominated by 240 volcanoes comprising ca. 2% pyroclastic vents, 2% scoria 

rings, 30% maars and tuff rings, and 66% scoria cones (Mertes 1983; Büchel and 

Mertes 1982; Schmincke 2014). Within the WEVF, magmatic activity begetting 

lava flows focused on the north-west section of the WEVF beginning ca. 700 ka 

(Mertz et al., 2015). Magmatic activity originated in the north-west of the WEVF 

and migrated southeast (Schmincke, 2014). There are two major episodes in the 

past 700 ka: one at 480 ka, the other 80 ka, which are characterized distinctly by 

their different chemical compositions. The older of these bears higher radiogenic 
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Sr and H2O/Na2O than the more recent events. Typical basalts bear 30% 

phenocrysts of clinopyroxene (CPX), olivine (Ol), phlogopite, or titanomagnetite 

(Schmincke, 2007).  

A highly enriched leucitite- (melilite) – nephelinite suite (F) dominates in 

the older part of the WEVF, and two ol-rich very mafic sodic suites are restricted 

to the younger WEVF (basanite (B) and olivine nephelinite (ON)), collectively 

referred to as the ONB-suite (Frechen and Thiele, 1979; Mertes and Schmincke, 

1985; Mertz et al., 2015; Schmincke et al., 2007). These suites cover compositions 

ranging from very primitive to highly differentiated (Mertes and Schmincke, 

1985). The basalts of the region are mafic, with high MgO and FeO contents. The 

F-suite is K enriched (bearing a K2O/Na2O ratio > 1), while the ONB-suites are 

sodic lavas (K2O/Na2O ratio < 1) (Mertes and Schmincke, 1985). The F-suite has 

high CaO and K2O, as well as Rb, Ba, and LREE contents but lower concentrations 

of Al2O3, Na2O, Sr, and Ni than the ONB-suite. The ONB suite represent the most 

primitive suite of the Quaternary Eifel magmas. Isotopically, the ONB-suite 

exhibits typical 87Sr/86Sr of ca. 0.7o39 and 143Nd/144Nd between 0.5128 and 

0.51285, while the F-suite lavas have 87Sr/86Sr > 0.7041 and 143Nd/144Nd below 

0.51285 (Wörner et al., 1986). 

Of note are the basalts of Dreiser Weiher and Meerfelder Maar, the sample 

sites for this study, which have been previously suggested to be members of the 

ONB-suite (Witt-Eickschen et al., 1998; Stosch and Lugmair, 1986). Specifically, 

Dreiser Weiher has been identified as a basanite (Stosch and Lugmair, 1986) 

while Meerfelder Maar is olivine-nephelinite (Witt-Eickschen et al., 1998). As 

these samples have 87Sr/86Sr > 0.703920 and 143Nd/144Nd > 0.512800, they clearly 

fall within the range of the ONB suite. 

It has been suggested that the magmas formed in the garnet-spinel 

peridotite field (>70km depth) (Mertz et al., 2015). The magmas are thought to 

have sourced from a depleted asthenospheric and enriched lithospheric sources 
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(Schmincke, 2007; Mertz, 2014; Witt Eickschen 2003; Wörner and Wright, 1984; 

Wörner et al., 1986). The enriched lithospheric source is less agreed upon, and is 

thought to be either phlogopite or amphibole-bearing lithospheric mantle 

metasomatized by multi-stage magmatic processes prior to the eruption (e.g. 

Witt-Eickschen et al., 2003; Mertz et al., 2015). Alternatively, it has been 

suggested that the lithospheric source is part of an uprising mantle plume 

consisting of asthenospherically derived phlogopite-garnet-spinel peridotite (e.g. 

Witt-Eickschen et al., 2003; Shaw et al., 2005; Shaw and Woodland, 2012). 

The peridotite xenolith suites of the WEVF contain spinel peridotites with 

modal CPX between 2-20% (Seck and Wedepohl 1983; Schmincke 2007; Witt-

Eickschen et al., 2003). These are found throughout the mafic alkaline magmas 

of the quarternary WEVF, particularly Dreiser Weiher and Meerfelder Maar 

(Witt-Eickschen, 2007 and references therein). CPX-poor lherzolites and 

harzburgites are the dominant forms of peridotite. The peridotites of the WEVF 

have been suggested to represent ancient (1.6 – 2.0 Ga old) depleted mantle 

(Schmidt and Snow, 2002; Stosch et al., 1986). These are high temperature 

peridotites, with equilibrium temperatures between 1100-1160°C. The peridotites 

from Dreiser Weiher can also contain Ol-CPX as veins, thought to be the result 

of Quaternary volcanism, given the compositional similarities between them and 

WEVF lavas (Witt-Eickschen and Kramm, 1998). Mantle metasomatism which 

can cause chemical alterations to xenoliths, beginning with transport processes 

(Rudnick, 1993) or their carrier fluids during transport (Ehrenberg and Griffin, 

1979; Emery et al., 1985; Griffin et al., 1979; Padovani et al., 1982; Rogers, 1977; 

Rudnick and Taylor, 1987; Ruckers and Hawkesworth, 1982). Partial melting 

along grain boundaries can also occur (Garvey and Robinson 1984; Jones et al 

1983; Padovani and Carter 1977).  

The xenoliths (peridotites) in the Dreiser Weiher xenolith suite were 

previously reported to represent possibly ancient (1.6 – 2.0 Ga) depleted mantle 
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(Schmidt and Snow, 2002; Stosch et al., 1986). These xenoliths were later 

modified by multiple metasomatic processes which may have occurred between 

ca. 560-550 Ma (Paul et al., 1971; Stosch et al., 1980), in the early Cretaceous (150 

– 100 Ma) (Witt-Eickschen et al., 2003), or up to the Quaternary (Stosch et al., 

1980), possibly associated with the Quaternary eruption of lavas in the WEVF. 

 

4.2.1 Methods and Samples 

The analyzed peridotites originated from the Dreiser Weiher and 

Meerfelder Maar localities in the WEVF. The peridotites from each site were 

mechanically separated into their constituents, i.e., chromium diopside (CPX), 

olivine, spinel (Sp), and pyroxene. We also analyzed the host rock basalt (HR) 

and whole rocks (WR) alongside the mineral separates, performing both low 

pressure hotplate digestions in Savillex vials at 120°C for 24h and high pressure 

digestions in Savillex vials inside Parr autoclaves at 180°C for 5 days on them. 

Acid amounts for digestion were varied to accommodate different weighted in 

mineral masses. Generally, cHNO3 and cHF were used in a proportion 1:1. 

Samples were spiked with mixed 149Sm-150Nd, 87Rb-84Sr, and 176Lu-180Hf tracers 

prior to digestion. Sample digestions and ion exchange chromatography were 

performed in the clean labs at Cologne.  

For this study we used three different separation protocols, withthe goal 

of ensuring that we would be able to analyze our elements of interest in samples 

similar to those found on the Moon (chapters 5 and 6). The first separation 

protocol was based on Münker 2010, the second on Sprung et al. (2013), and the 

final is based on Bast et al., 2015. The most important modification compared to 

the Bast et al. method is the use of HCl-H2O2 instead of HCl-HF as a loading 

agent on the first (Ag50Wx8) exchange column. This modification enables direct 

loading of the HFSE-Ti-cut onto the subsequent ln resin column on which Ti and 

Zr are separated from Hf without any previous drydown. The chemically pure 
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samples were analyzed on the Cologne/Bonn Thermo Fisher Scientific Neptune 

MC-ICP-MS. Rock standards AGV-2 and BHVO-2 were analyzed alongside the 

samples, and agreement with literature values provided evidence of method 

fidelity. Thin section analyses for visual evaluation of element distributions 

within the peridotites were performed on the University of Bonn JEOL 

Superprobe JXA 8200. Distribution maps for Mg, Al, Fe, Ca, Mn, Na, Si, Ti, Cr, 

were obtained with a beam current of 80 nA and an acceleration voltage of 15 kV. 

  

4.3.0 Results 

4.3.1 Microprobe Analysis 

 Results of microprobe element distributions maps across typical grain 

boundaries in the central areas of the samples are given in Figure 4.2. A general 

trend towards enrichments of incompatible elements along grain boundaries can 

be observed for instance from the distribution of Na with mineral grains generally 

showing a homogenous appearance with respect to incompatible element 

distributions. 
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4.2 a) Dreiser Weiher 

4.2 b) Dreiser Weiher 
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Figure 4.2: Dreiser Weiher elemental map of Na (a) and Ca (b); Meerfelder Maar map of Na (c) and Ca (d). In both localities, 

we see an enrichment along grain edges, which is not readily apparent to the naked eye. 

4.2 c) Meerfelder  
Maar 

4.2 d) Meerfelder  
Maar 



 55 

4.3.2 Isotope Analyses 

The Lu-Hf data is shown in table 4.1.1. Sm-Nd and Rb-Sr data are shown in 

table 4.1.2. Supplemental work done in the Gerritzen 2018 study are shown in 

table 4.1.3. Data from previous studies can be found in table 4.1.4. The host rock 

basalt of Dreiser Weiher has an εHf of ca. 3.5 and 176Lu/177Hf of 0.0082. This value 

falls below several measurements of WR which on average yielded an εHf of 4.9. 

A second WR digestion at high pressure yielded εHf values around 2.0 which 

overlap with those of the most radiogenic mineral separates: one analysis each of 

Ol (εHf of 2.0), OPX (εHf of 3.1), and CPX (εHf of 2.1). The 176Lu/177Hf values range 

is from 0.0270 (CPX) to 0.0953 (OPX). The Dreiser Weiher mineral isochron 

yields an age of -37 ± 23 Ma (2 s.d.) with an initial 176Lu/177Hf of 0.282835 ± 

0.000046 (εHf of 1.9) and an MSWD of 0.58 (figure 4.3). In 143Nd/144Nd HR 

(143Nd/144Nd, 0.512799 ± 0.000035, εNd of 3.1) is the most radiogenic, followed 

by Ol (0.512690 ± 0.000015, εNd 1.1 ± 0.2), and OPX, CPX, and WR (ca. 0.516700 

± 0.000200, εNd of 0.8). In contrast to the host rock, whose 147Sm/144Nd is 0.1003 

± 0.0001, all mineral separates and WR yielded 147Sm/144Nd below ca. 0.1, ranging 

from 0.0894 (whole rock) to 0.03483 (OPX). This creates an isochron with an 

age of -76 ± 110 Ma, an initial 143Nd/144Nd of 0.282842±0.000030, and an MSWD 

of 1.2 (figure 4.4). The host rock has an 87Rb/86Sr of 0.28 and overlaps with CPX, 

OPX, and WR in its 87Sr/86Sr of 0.70422. The host rock thus isotopically overlaps 

typical ONB basalts (figure 4.8). Despite a range of 87Rb/86Sr from 0.0022 ± 

0.0001 (CPX) to 0.0550 (Ol), CPX, OPX, and WR all share the same 87Sr/86Sr, 

forming a Rb-Sr isochron with an age of 101 ± 580 Ma, an initial 87Sr/86Sr of 

0.703430 ± 0.000330 and an MSWD of 2489 (figure 4.5). 

The host rock of the Meerfelder Maar xenolith bears an extremely low 
176Lu/177Hf (0.007623 ± 0.000004), the consequence of its strong enrichment in 

Hf (23.7 ppm). In Lu-Hf-isochron space, all samples straddle a horizontal line at 

a 176Hf/177Hf value of ca. 0.28285 (εHf of ca. 2.5) and 176Lu/177Hf ranging from 



 56 

0.040194 to 0.044125 for the whole rock replicates. The Lu-Hf isotopic analysis 

failed for the mineral separates from Meerfelder Maar due to extremely low Hf 

 

Figure 4.3. Dreiser Weiher mineral isochron. The minerals marked by an * are 

replicates which had some issues in run. The negative age we round to zero, 

implying this is a modern age. Note that no mixing line can connect host basalt, 

whole rock, and any mineral fraction. The mineral fractions are Olivine (Ol), 

Orthopyroxene (OPX), Clinopyroxene (CPX), Whole Rock (WR), and the host 

basalt. 

abundances that could not be analyzed. The host rock has a 143Nd/144Nd of 

0.512777, while the minerals range from 0.512419 to 0.512557. The host rock also 

has a slightly higher 147Sm/144Nd of ca. 0.10 when compared to minerals and 

whole rock (147Sm/144Nd between ca. 0.08 and 0.09). Of note, the WR analyses 
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from Meerfelder Maar do have some variations associated with it, and the WR 

digested in autoclaves has a lower 143Nd/144Nd. The Meerfelder Maar Sm-Nd 

isochron yields an age of -103 ± 350 Ma, an initial 143Nd/144Nd of 0.51259 ± 

0.00020, and an MSWD of 0.98 (figure 4.6). For 87Sr/86Sr, the Meerfelder Maar 

mineral separates range from 0.704240 (Ol) to 0.704430 (OPX) in 87Sr/86Sr. The 

host rock yields an 87Sr/86Sr of 0.704222 and an 87Rb/86Sr of 0.2801. which 

contrasts those of the mineral separates and WR which all are around 0.05.  

 

 

Figure 4.4: Dreiser Weiher mineral separates and Sm-Nd analysis. Note that the 

negative age is preclude, particularly given the error, with an effective age of 0 – 34 

Ma. A mixing line between whole rock, CPX 
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Figure 4.5: Dreiser Weiher mineral isochron. While this yields a non-zero age, the 

extremely high MSWD makes the data yielded by this suspect, and the age still 

overlaps with a modern age. 
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Figure 4.6: Meerfelder Maar mineral isochron. The effect age is from 0 to 247 Ma. 

While it is possible to draw a mixing line through clinopyroxene, and one portion 

of the whole rock, and host rock, the range displayed in whole rock precludes this 

being the case with both whole rock samples, meaning that if a relationship exists, 

it is present heterogeneously.  

Further samples from both localities were investigated for the same 

properties as in this study in the BSc thesis of C. Gerritzen (figure 4.7), which was 

conducted under the supervision of M.M. Thiemens. The following discussion 

will include data from this thesis which in brief summarizes as follows: The data 

from a Meerfelder Maar peridotite including a Lu-Hf mineral isochron (Age: 8 ± 

72 Ma, Initial isotope composition: 0.282868 ± 0.000085, MSWD: 1.5), a Rb-Sr 

mineral isochron (Age: -20 ± 49, initial isotope composition:  
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Figure 4.7: Mineral isochrones from Gerritzen, 2018. Lu-Hf, and all three Meerfelder Maar give modern ages within error. 
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Figure 4.8: A compilation of data (Stosch et al., 1986, grey) (Gerritzen, 2018: triangles, colors matching this study). The minerals 

all plot closer to CHUR (black line) than the host rocks, which fall within the range of the WE and EE basalt. 
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0.704192 ± 0.000040, MSWD: 5.5), and a Sm-Nd mineral isochron (Age: 137 ± 

2600 Ma, Initial isotope composition: 0.512490 ± 0.000990, MSWD: 73). We 

will also discuss data from mineral isochrons from a Dreiser Weiher peridotite, 

including a Lu-Hf mineral isochron (Age: -53 ± 1100 Ma, Initial isotope 

composition: 0.284000 ± 0.001400, MSWD: 3.6), a Rb-Sr mineral isochron (Age: 

635 ± 110 Ma, initial isotope composition: 0.703702 ± 0.000067, MSWD: 1.6), 

and a Sm-Nd mineral isochron (Age: 236 ± 110 Ma, Initial isotope composition: 

0.512515 ± 0.000086, MSWD: 1.2). In plotting the isotope data against 

1/concentration she found that the Sm-Nd and Rb-Sr were mixing lines. 

 

4.4.0 Discussion 

4.4.1 Direct chronological information - mineral isochrons and model 
ages  

 The mineral isochron (excluding the whole rock fraction) for our Dreiser 

Weiher xenolith yields an age of 0 – 5 Ma via Lu-Hf (figure 4.3), with an initial 

isotope composition of 176Lu/177Hf of 0.282835 ± 0.000046 (εHf of 1.9). A likewise 

recent resetting age is implied by the Sm-Nd systematics of the peridotites from 

Dreiser Weiher and Meerfelder Maar from this study (figure 4.4, 4.6). This age 

further coincides with recent resetting of Lu-Hf systematics in both the Dreiser 

Weiher and Meerfelder Maar peridotite as well as that of the Rb-Sr systematics 

in the former as found in the BSc thesis of C. Gerritzen.  

The recent resetting in these peridotites is in accord with previous findings 

for Meerfelder Maar and Dreiser Weiher peridotites (e.g. Witt-Eickschen, 2007 

and references therein). We find, however, that even some vein-free peridotites, 

which have been suggested to be pristine (Witt-Eickschen et al., 2003), have 

been thermally reset and – as will be discussed further in the next paragraph – 

metasomatically overprinted. A classification on the basis of visible veins in 
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"vein-free" or "veined" might thus lacks the needed resolution to be translated 

directly into "geochemically unaltered" or "altered”. 

Of note is the extremely radiogenic Hf isotope composition of the Dreiser 

Weiher peridotite whole rock from Gerritzen (2018) which yielded an εHf of 

+37.0. Using this value, chondritic (Bouvier et al., 2008) or depleted mantle 

(Vervoort and Blichert-Toft, 1999) model ages were calculated according to: 

𝑡 = 1
𝜆

[
  
 
 ( 𝐻𝑓176

𝐻𝑓177 )
𝑖

− ( 𝐻𝑓176

𝐻𝑓177 )
𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐿𝑢176

𝐻𝑓177 )
𝑖

− ( 𝐿𝑢176

𝐻𝑓1776 )
𝑠𝑎𝑚𝑝𝑙𝑒]

  
 
 
, wherein t= time of crystallization, λ=decay 

constant, i = the initial values for the mantle from which the peridotite is sourced. 

These yielded model ages of 1.76 and 1.22 Ga, respectively. These ages concur 

with Re-Os isotope data which reported a WEVF RE-Os model age of ca. 1.6 Ga 

(Schmitt and Snow 2002), as well as a Sm-Nd depleted mantle model age of ca. 

1.6 Ga found from Eifel xenoliths (Stosch and Lugmair, 1984; Stosch et al., 1986). 

The Sm-Nd mineral isochron of this same samples provided an age of 236 

± 110 Ma. Given that the same fraction do not yield a straight line in 143Nd/144Nd 

vs. a 1/ppm Nd space, the Sm-Nd isochron was not produced by binary mixing 

and thus likely has age relevance (e.g., Langmuir et al., 1978). The relatively large 

uncertainty on this age datum prevents a clear association with a single geologic 

event. A general relation to the Variscan orogeny or the following Permian 

extensional regime appears likely, however. 

Interstingly, the Rb-Sr isochron of the same sample yields an even older 

age of 635 ± 110 Ma. While a plot of the same data in 87Sr/86Sr vs. 1/ppm Sr reveals 

that binary mixing could have formed this isochron, age relevance cannot a priori 

be rejected. It should therefore be noted that a similar age has previously been 

reported for an anhydrous ultramafic nodule (560 Ma, Stosch et al., 1980). 

Careful observation shows that the Rb/Sr isochron is dominated by the extremely 
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high Rb/Sr (0.3010) of olivine with its associated radiogenic 87Sr/86Sr of 0.706478 

± 0.000051. Considering recently found evidence for the capability of host olivine 

to lock in the isotope composition of melt inclusions (e.g., Reinhard et al., 2018) 

and the generally high Rb/Sr of melt, a similar sheltering mechanism of olivine 

and to a lesser degree opx might have played a role in this peridotite. 

 

4.4.2 Indirect chronological information from recently reset peridotites 

 In order to understand the nature of imprints in our studied samples, it is 

of primary importance to discern the distinct signatures imparted in different 

episodes. The whole rock compositions not falling on the horizontal isochrons 

indicates an additional component which is not hosted within the main mineral 

constituents of the samples. The enrichment of incompatible elements on grain 

boundaries (figure 4.2), suggest that this additional component is hosted on the 

grain boundaries, which favors a metasomatic overprint by fluid or melt as the 

cause of the WR – mineral discrepancy. A similar observation has previously been 

made for instance in peridotites from the Rio grande rift and the Colorado 

Plateau (Byerly and Lassiter, 2015). Clinopyroxene is the main host for most 

incompatible elements in peridotite (e.g., Stracke et al., 2011, Byerly and Lassiter 

2015), so an overprint by the host rock magma should express itself as a linear 

array formed by CPX, WR, and HR. As we do not observe this linear array in any 

isochrons (see Figures 3-7), we preclude the host magma as the impregnating 

agent. The general isotopic difference between minerals, WR, and HR also speaks 

against the peridotites being the source of the host basalts. As a final line of 

evidence, the heterogeneous Hf and Nd isotope signatures obtained from 

different WR digestions in peridotites from both locations further attests to a 

heterogeneity that is most compatible with the uneven distribution of a grain 

boundary component. We thus conclude that the young metasomatic overprint 

hosted on the grain boundaries of the peridotites is older than the eruption. This 
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finding is in accord with the observations of Witt-Eickschen et al., (2003), who 

proposed metasomatic overprints associated to the Cenozoic volcanism for 

Dreiser Weiher peridotites. The relative chronological order of mineral resetting 

and overprint cannot be defined with absolute certainty. A resetting of the 

mineral isochrons before the metasomatic overprint appears more likely, 

however, given that thermal resetting would most likely incorporate grain 

boundary material. Given the recurrent regional volcanic activity since ca. 700 

ka (Schmincke, 2014), abundant possibility for thermal excesses within the 

lithospheric mantle was given that might have reset the mineral isochrons of 

most of our peridotite samples. The same is obviously true for the episode of 

metasomatism that likely postdates the mineral isochron resetting episode. 

Possibly, future leaching studies such as for instance conducted by Ionov et al. 

(1993) on peridotite samples from Spitzbergen might help reconstruct the 

geochemical and isotope geochemical signature of the impregnating agents and 

thus allow a more detailed comparison with signatures of regional volcanic rocks 

(e.g., Stosch and Lugmair, 1986; Wörner et al., 1986). 
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4.5.0 Conclusions 

 We analyzed peridotites from the West Eifel volcanic field in these studies. 

We analyzed two peridotites from Meerfelder Maar and two peridotites from 

Dreiser Weiher. We report largely overprinted, modern ages found, with ages of 

0 + 15 Ma (DW, Lu-Hf), 101 ± 580 Ma (DW, Rb-Sr), and 0 + 34 Ma (DW, Sm-Nd). 

From Meerfelder Maar we found an age of 0 – 247 Ma with Sm-Nd, while the 

other methods did not yield enough data for isochrons. In one peridotites from 

Dreiser Weiher, we found a better preserved chronology, with evidence for an 

overprint by the Variscan orogeny, a heating event ca. 635 Ma, and an origin of 

the peridotite at 1.5 ± 0.3 Ga, overlapping previously reported Re-Os model ages. 

Overall, both studies found evidence for metasomatic infiltration as whole rock 

did not plot on a line consisting of mineral separates. This was supported by the 

lack of a linear relationship between host rock, whole rock, and minerals 

(particularly CPX) indicating that the infiltrating agent was not composed of host 

rock material. Notably, all analyzed peridotites were classified as vein-free 

anhydrous peridotites. It thus appears that classifications as "vein-free" or 

"veined" should be treated with care and should not be identified with 

"geochemically unaltered" or "altered." Nevertheless, interesting and robust 

information about episodes of metasomatism or melt extraction can be extracted 

even from suites of such complex samples. This shows the promise of studies 

such as the one presented here and others performing in-situ analysis of melt 

fractions trapped within sheltering minerals.  
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DW WR 0.0344 0.0162 0.06705 335 0.282924 124 +5.1

DW WR 0.0677 0.0148 0.03103 155 0.282837 37 +2.0

DW WR 0.0344 0.0162 0.06705 335 0.282944 144 +5.8

DW WR 0.0404 0.0103 0.03616 181 0.282856 56 +2.7

DW HR 5.0669 0.291 0.008160 41 0.282878 78 +3.5

DW Ol 0.00719 0.00346 0.06834 342 0.282777 23 -0.1

DW Ol 0.00719 0.00346 0.06834 342 0.282791 9 +0.4

DW Ol 0.00921 0.00455 0.03103 155 0.282837 37 +2.0

DW CPX 0.537 0.123 0.03245 162 0.282841 41 +2.1

DW CPX 0.588 0.112 0.02697 135 0.282828 28 +1.7

DW CPX 0.588 0.112 0.02697 135 0.282815 15 +1.2

DW OPX 0.0281 0.0180 0.09062 453 0.282798 2 +0.6

DW OPX 0.0281 0.0180 0.09062 453 0.282790 10 +0.4

DW OPX 0.0466 0.0313 0.09534 477 0.282867 67 +3.1

DW Spinel 1.000 215.737 101.5455 5.1E+05 12.918755 1.3E+07 n.d.

MM WR 0.103 0.0292 0.04019 2.0E-04 0.282858 58 +2.8

MM WR 0.0787 0.0245 0.04413 2.2E-04 0.282866 66 +3.0

MM WR 0.0801 0.0248 0.04389 2.2E-04 0.282976 176 +6.9

MM WR 0.0801 0.0248 0.04389 2.2E-04 0.282962 162 +6.4

MM HR 23.739 1.275 0.007623 3.8E-05 0.282856 56 +2.7

Table 4.1.1: Dreiser Weiher (DW) and Meerfelder Maar (MM) Lu-Hf data
2s.e. on 

6th digit ε Hf

WR (Whole Rock), HR (Host Rock), Ol (Olivine), CPX (Clinopyroxene)

Locali
ty Type Hf (ppm) Lu (ppm) 176Lu/177Hf

2s.e. on 
6th digit 

176Hf/177Hf
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Sm (ppm) Nd (ppm)
147Sm/144N

d
εNd 143Nd/144Nd Rb (ppm) Sr(ppm) 87Rb/86Sr 87Sr/86Sr

MM WR 0.250 0.988 0.08942 +1.4 0.512712 0.322 27.783 0.0335 0.703538

MM WR 0.206 0.835 0.08810 +0.4 0.512657 0.304 28.272 0.0311 0.703651

MM WR 0.206 0.835 0.08811 +0.3 0.512655 n.d n.d n.d 0.703651

MM HR 10.697 38.049 0.1003 +3.0 0.512793 n.d n.d n.d 0.704000

MM HR 10.698 38.053 0.1003 +3.1 0.512799 n.d n.d n.d 0.704000

MM Ol 0.0180 0.0694 0.09271 +1.3 0.512703 n.d n.d n.d 0.703527

MM Ol 0.0403 0.0694 0.2072 +1.3 0.512703 n.d n.d n.d 0.703527

MM Ol 0.0403 0.185 0.07780 +0.9 0.512686 0.0794 4.179 0.0550 0.703527

MM Ol 0.0612 0.275 0.07916 +0.6 0.512667 n.d n.d n.d 0.703527

MM CPX 4.726 19.534 0.08625 +0.8 0.512679 0.294 393.658 0.00216 0.703441

MM OPX 0.135 1.387 0.03483 +0.9 0.512686 n.d n.d n.d 0.703473

MM OPX 0.135 0.521 0.09277 +1.3 0.512702 0.123 8.517 0.0418 0.703473

MM OPX 0.0826 0.251 0.1160 +0.4 0.512658 n.d n.d n.d 0.703473

MM OPX 0.303 1.387 0.07783 +0.9 0.512686 n.d n.d n.d 0.703473

DW CPX 0.399 1.656 0.08597 -4.3 0.512419 n.d n.d n.d 0.704000

DW CPX 0.399 1.656 0.08594 -2.6 0.512504 n.d n.d n.d 0.704000

DW OPX 0.0496 0.217 0.08124 -2.0 0.512537 0.176 8.218 0.0620 0.704240

DW OPX 0.109 0.404 0.0961 -2.2 0.512525 0.488 22.967 0.0615 0.704430

DW HR 10.078 35.407 0.1016 +2.7 0.512777 89.0105 919.281 0.280 0.704222

DW WR 10.081 35.417 0.1016 +3.0 0.512789 n.d n.d n.d 0.704220

DW WR 0.271 1.071 0.09015 -2.4 0.512513 n.d n.d n.d 0.704310

DW WR 0.306 1.223 0.08883 -1.6 0.512557 0.513 23.802 0.0623 0.704357

DW WR 0.306 1.224 0.08877 -1.3 0.512569 0.513 38.0491 0.0390 0.704264

Table 4.1.2: Dreiser Weiher (DW) and Meerfelder Maar (MM) Sm-Nd-Rb-Sr

WR (Whole Rock), HR (Host Rock), Ol (Olivine), CPX (Clinopyroxene)
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MM-Ol 0.0701 0.704163 8 0.06 0.512563 749 -1,3 0.07401 0.283160 333 +13.7

MM-OPX 0.0849 0.704179 12 0.09 0.512550 115 -1.6 0.1091 0.282874 85 +3.6

MM-CPX 0.00185 0.704199 17 0.05 0.512517 5619 -1.2 0.03267 0.282867 63 +3.4

0.00185 0.704190 9  

MM-WR 0.0382 0.704177 13 0.07 0.512564 412 -1.3 0.05067 0.282877 66 +3.4

0.0463 0.704186 9

MM-HR 0.629 0.704216 12 0.04 0.512778 783 +2.9 0.008199 0.282829 34 +4.6

0.631 0.704230 7 0.04 0.512793 840 +3.2 0.008199 0.282903 34 +4.7

DW-1174-Ol 0.301 0.706478 51 0.1 0.512640 638 +0.2 0.2254 0.283096 2699 +11.5

DW-1174-
OPX

0.158 0.704530 69 0.2 0.512813 548 +3.6 0.1215 0.283881 102 +39.2

DW-1174-
CPX

0.00265 0.703745 9 0.12 0.512704 561 +1.4 0.05704 0.283945 39 +41.5

0.00861 0.703756 11  
DW-1174-

WR
0.0147 0.703778 15 0.11 0.512773 115 +2.8 0.06442 0.283813 125 +37.0

DW-1174-HR 0.295 0.704068 8 0.03 0.512801 678 +3.3 0.008109 0.282875 30 +4.0

0.297 0.704100 8 0.03 0.512806 958 +3.4 0.008106 0.282884 31 +3.7

DW-1174-Sp 0.223 0.704694 177 n.d. n.d. n.d. n.d. 0.00514 0.259465 106887 0.0

WR (Whole Rock), HR (Host Rock), Ol (Olivine), CPX (Clinopyroxene)

Table 4.1.3: Meerfelder Maar (MM) and Dreiser Weiher (DW) data from Gerritzen, 2018 

Description
  87Rb  
86Sr

87Sr / 86Sr
147Sm  
144Nd

  143Nd  
144Nd

2s.e. on 
6th digit 

  176Hf  
177Hf

2s.e. on 
6th digit ԑHf

2s.e. on 
6th digit ԑNd

    176Lu   
177Hf
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Table(s) 4.1.4 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

E 41 Rothenberg B 0.704640 0.512620 -0.4

E 420 Rothenberg B 0.704610 n.d. n.d.

E 216 Roter Berg B 0.704590 0.512710 +1.4

E 204
Nickenichter 

Sattel B 0.704650 0.512710 +1.4

E 392 Hohe Buche B 0.704670 0.512690 +1.0

E 428 Wannen B 0.704630 0.512660 +0.4

E 520 Lorenzfelsen L 0.704590 0.512730 +1.8

E 189 Wingertsberg HT 0.704700 n.d. n.d.

E 289 An der Ahl L 0.704720 n.d. n.d.
E 292 Hochstein LN 0.704660 0.512700 +1.2

E 308 Herchenberg HN 0.704350 0.512640 +0.0

E 306 Perler Kopf L 0.704660 0.512630 -0.2

LV1505 Dom in Rott P 0.704590 n.d. n.d.

LV2803 Brauning ON 0.704420 0.512770 +2.6

LV 3429 Bell Grube L 0.704560 0.512690 +1.0

LV 3511 Tiefenstein L 0.704620 0.512660 +0.4

E 382 Larchenkopf AOB 0.703420 0.512880 +4.7

E 393 Steinbergskopf AOB 0.704090 0.512770 +2.6

E 350 Arensberg AOB 0.703460 0.512870 +4.5

Hornblendit
e veins

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

MM214 Meerfelder 
Maar

am 0.703760 0.512770 +2.6

MM262 Meerfelder 
Maar

am 0.703730 0.512782 +2.8

MM313 Meerfelder 
Maar

am 0.703760 0.512795 +3.1

Wall rocks 
adjacent to 

hornblendit
e veins

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

MM271 Meerfelder 
Maar

cpx 0.703790 0.512690 +1.0

East Eifel

B- basanite L=leucitite HT=hauyne tephrite LN=leucite nephelinite HN=hauyne nephelinite P=phonolite
ON=olivine nephelinite MN=melilite nephelinite M=melilitite NL=nepheline leucitite AOB=alkali olivine basalt OM=olivine melilitite

Sample Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

Me 9 Steffelner 
Kopf

LN 0.704540 0.512670 +0.6

ME 41 Beuel, 
Kirchw.

MN 0.704380 n.d. n.d.

ME 74 Pulvermaar MN 0.704410 n.d. n.d.

ME 92 Buerberg MN 0.704180 n.d. n.d.

ME 108 Walsdorf MN 0.704180 0.512710 +1.4

ME 357 Rockesk. Kopf LN 0.704230 0.512800 +3.2

ME 358 Hohenfels MN 0.704430 0.512670 +0.6

NM 359 Kalem MN 0.704130 0.512850 +4.1

E 368 Ernstberg NL 0.704410 0.512700 +1.2

West Eifel 
ONB group

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

ME 76 Wartsgesberg 0.703910 0.512810 +3.4

ME 77 Mosenberg ON 0.703870 0.512850 +4.1

ME 90 Bad Bertrich B 0.703920 0.512800 +3.2

Siebengebirge Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

SG 1 Mehrberg B 0.703610 0.512800 +3.2

SG 4 Rottbitze ONB 0.703680 n.d. n.d.

Westerwald Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

WW 1 Ahlbach ONB 0.703500 n.d. n.d.

WW 6 Wilsenroth AOB 0.703880 n.d. n.d.

275781 Mühlenberg AOB 0.703400 n.d. n.d.

275782 Pfahlberg AOB 0.703930 n.d. n.d.

275783 Tongrube 
Bong

AOB 0.704160 n.d. n.d.

Vogelsberg Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

VOG 2 Hutten TH 0.703700 n.d. n.d.

VOG 7 Ober Lais B 0.703290 n.d. n.d.

VOG 15 Nied-
Otleiden

AOB 0.703980 n.d. n.d.

VB 27 Gelnhausen AOB 0.703610 0.512800 +3.2
Niederhessisch

e Senke
Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

NHS 3 Hinerberg OM 0.703540 n.d. n.d.
NHS 4 Elbenberg OM 0.703560 n.d. n.d.
NHS 5 Grossenritte B 0.703630 n.d. n.d.
NHS 6 Hirzheim B 0.703520 n.d. n.d.
NHS 9 Westberg OM 0.703600 0.512840 +3.9

West Eifel F group

West Eifel ONB group
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Rhön Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

RHO 3 Bauersberg AOB 0.703540 n.d. n.d.
RHO 5 Ginolfs AOB 0.703960 0.512790 +3.0
RHO 7 Rother Berg B 0.703280 n.d. n.d.

RHO 8a Leubach B 0.703410 n.d. n.d.
RHO 11a Suhl ON 0.703320 0.512810 +3.4
RHO 14 Kellerstein B 0.703490 n.d. n.d.

Heldburger 
Gangschar

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

HBG 1a Bramberg AOB 0.703480 n.d. n.d.
HBG 2a Zeilberg B 0.704370 0.512810 +3.4

Oberpfalz
OPF 12 Rauher Kulm AOB 0.703410 0.512800 +3.2

OPF 14 Wünschenber
g

B 0.703510 n.d. n.d.

Rhinegraben: 
Pfalz (PF) and 

Kaiserstuhl 
(KS)

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

PF 211 Forst ON 0.703940 n.d. n.d.
KS L2 Lützelberg ON 0.703310 n.d. n.d.

Urach (UR) Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

XKU 189a Owen OM 0.703750 n.d. n.d.
XKU 190 Hochbohl OM 0.704020 0.512830 +3.7

Hegau (SG) Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

XKH 177 Hohenlöwen OM 0.703760 0.512810 +3.4

XKH 209 Blauer Stein OM 0.703690 n.d. n.d.

Anhydrous, 
LREE depleted, 

high-
temperature 
peridotites

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

DWD58 Dreiser 
Weiher

cpx 0.702300 0.513346 +13.8

DWK1 Dreiser 
Weiher

cpx 0.701850 0.513243 +11.8

Modally 
metasomatized
, equigranular 
recrystallized 

peridotites

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

MM262 Meerfelder 
Maar

cpx 0.704090 0.512511 -2.5

MM278 Meerfelder 
Maar

cpx 0.704450 0.512561 -1.5

MM766 Meerfelder 
Maar

cpx 0.703800 0.512601 -0.7

MM766 Meerfelder 
Maar

am 0.703820 0.512597 -0.8

DW194 Dreiser 
Weiher

cpx 0.703400 0.512664 +0.5

DW211 Dreiser 
Weiher

cpx 0.703380 0.512617 -0.4

DW284 Dreiser 
Weiher

cpx 0.703450 0.512616 -0.4

DW582 Dreiser 
Weiher

cpx 0.703570 0.512636 -0.0

Modally 
metasomatized

, 
porphyroclasti
c peridotites

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

EE158 East Eifel am 0.704940 0.512482 -3.0
Pyroxenite 

veins
Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

DW327 Dreiser 
Weiher

cpx 0.703610 0.512803 +3.2

DW328 Dreiser 
Weiher

cpx 0.703610 0.512827 +3.7

DW906 Dreiser 
Weiher

cpx 0.703730 0.512820 +3.6

DW918 Dreiser 
Weiher

cpx 0.704390 0.512687 +1.0

Wall rock 
adjacent to 
pyroxenite 

vein

Locality Rock type 87Sr/86Sr 143Nd/144Nd εNd

DW328 Dreiser 
Weiher

cpx 0.703780 0.512782 +2.8

B- basanite L=leucitite HT=hauyne tephrite LN=leucite nephelinite HN=hauyne nephelinite P=phonolite
ON=olivine nephelinite MN=melilite nephelinite M=melilitite NL=nepheline leucitite AOB=alkali olivine basalt OM=olivine melilitite
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5.0 Isotope dating of lunar meteorite NWA 6950  
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5.1.0 Introduction 

The early history of the Earth-Moon system is shrouded by the dearth of 

samples linking compositional features with defined ages. Prevalent theory 

holds that the Moon accreted from the cloud of debris following one giant 

impact (e.g. Canup and Asphaug, 2001) or several impacts (Rufu et al., 2017) 

with the proto-Earth. Following its accretion, the Moon was covered with a 

thick molten layer, the Lunar Magma Ocean (LMO) (Shearer et al., 2006). As 

the LMO cooled, olivine- and pyroxene-rich cumulates formed and sank, while 

a floating anorthositic crust formed on the surface (Shearer and Papike, 1999). 

These cumulates began to mix within the lunar mantle, perhaps as a density 

driven overturn (Hess and Parmentier, 1995; Papike et al., 1998; Ringwood and 

Kesson, 1976). The mixing of these primary cumulates created mantle domains 

within the lunar mantle which subsequently gave rise to suites such as the low-

Ti and high-Ti mare basalts (Elkins-Tanton et al., 2011; Sprung et al., 2013; 

Snyder et al., 1992). 

The existence of lunar samples rich in incompatible elements such as 

potassium (K), the rare earth elements (REE), and phosphorous (P) was one of 

the major puzzle pieces which led to the LMO hypothesis and the definition of 

a KREEP reservoir in the lunar mantle (Hubbard et al., 1971). The hypothesis 

holds that these samples formed from residual liquid from the LMO, forming 

primarily between the lunar mantle and the anorthosite crust (Snyder, 1992; 

Warren, 1990). The subsequent lunar mantle overturn could lead to KREEP 

being retained in the mantle (Laneuville et al., 2013). KREEP occurs as a 

component in multiple rock types on the Moon, primarily amongst breccias, in 

the form of KREEP-basalts and possibly in Mg-suite rocks. Its occurrence has 

been documented in return samples from all Apollo missions (Meyer 1977). 

Gamma ray spectroscopy from Apollos 15 and 16 suggested a concentration of 

KREEP in Mare Imbrium and Oceanus Procellarum (Metzger et al., 1973), which 

was confirmed already by the first global element maps of the Moon (Lawrence 
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et al., 1998). The cause of this massive KREEP concentration has been suggested 

to be the result of the Imbrium impact (Haskin, 1998). 

The germanically inspired term urKREEP (Warren and Wasson, 1979) 

refers to the KREEP rich material generated from LMO crystallization. urKREEP 

is thought to have been one of the products of the initial lunar differentiation 

whose formation marks the termination of magma ocean crystallization. This 

component is critical for any thermal and tectonic model of lunar evolution, as 

nearly all heat-liberating radioactive elements in the Moon are concentrated 

within it. A complete understanding of lunar evolution is thus inescapably 

bound to depicting and understanding the history of the urKREEP component 

which is highly enriched in incompatible elements. 

KREEP magmatism may have been the result of large impacts (Hiesinger 

et al., 2003; Gaffney and Borg 2014) or radiogenic heat build-up from the 

urKREEP reservoir leading to KREEP basalt eruption (Nemchin et al., 2012). The 

lunar crust continued to accrete material up to ca. 1.2 Ga (e.g. Hiesinger et al., 

2011), with impact related magmatism extending until 3.4 Ga (Culler et al., 

2000; Glikson 2014) and basalt magmatism to 3.2 Ga (Glikson, 2014). Early 

basalt magmatism, dubbed crypto-mare magmatism, began as early as 4.35 Ga 

(Joy et al., 2011; Sokol et al., 2008; Terada et al., 2007). Voluminous basalt 

magmatism continued from 3.9 to 3.1 Ga (e.g. Hiesinger et al., 2003). 

Often counted amongst the KREEP-related rocks are specimens of the 

Mg-suite, so called due to their high Mg number (the ratio of Mg to Fe) (e.g., 

Gaffney & Borg, 2014; Shearer et al., 2015). The Mg-suite rocks are crustal rocks 

located in or near the Procellarum KREEP terrane, with an age range of 4.5 to 

4.1 Ga (Shearer et al., 2015 and references therein). These samples are thought 

to have formed during the interaction between urKREEP and rising Mg-rich 

cumulates during lunar mantle overturn, creating a Mg-rich KREEP hybrid 

(Elardo et al., 2011; Nemchin et al., 2012; Taylor, 2009). The Mg-suite thus 

stands separate from KREEP-rich basalts, as the former are plutonic in origin. 
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Furthermore, several studies of Mg-spinels have argued that KREEP is not 

required for Mg-suite petrogenesis (Pieters et al., 2014; Prissel et al., 2014) 

Attempts to understand the origin and evolution of the lunar magma 

ocean are fueled by geochemical and petrological modeling to reproduce the 

distinct isotopic and trace element features of actual lunar samples (Borg et al., 

2009; Shearer et al., 2006; Sprung et al., 2013). Of note, recent careful 

experimental work (Elardo et al., 2011; Rapp and Draper, 2018) lends great 

support to these mostly theoretical models (e.g., Elkins-Tanton et al., 2011; 

Snyder et al., 1992). Most sample suites we observe on the Moon can be 

explained by being generated from distinct cumulate sources within the lunar 

mantle by melting, where degrees of melting and source characteristics 

determine the chemical composition of the different lunar sample suites 

(Leitzke et al., 2016; Snyder et al., 2000; Sprung et al., 2013; Thiemens et al., 

Under Review). As the Moon has been subjected to heavy bombardment and 

associated heating, meaningful chronological studies require addressing the 

distinct susceptibility of minerals or isotopic systems to heating and shock 

events. Many studies have thus used minerals such as zircon that are highly 

resistant to alteration (e.g. Barboni et al., 2017; Nemchin et al., 2009) or 

baddeleyite (Shaulis et al., 2017). Lunar zircon grains are thought to primarily 

originate from KREEP-rich magmas (Dickinson and Hess, 1982), providing an 

age limit for latest residual melts that places time constraints on KREEP 

evolution throughout LMO cooling and differentiation.  

The suite of lunar samples available from the Apollo missions is 

supplemented by lunar meteorites. Amongst these are the Northwest Africa 

(NWA) 773 clan of meteorites, which includes 773, 2700, 2727, 2977, 3160, 3170, 

3333, 6950, 7007, 8127, 10656, 10985, 11616, 11703, and 11767. This clan of lunar 

meteorites is considered related based on their common ages (Shaulis et al., 

2017), similar petrology, and shared brecciation histories (Fagan et al., 2003, 

2014; Jolliff et al., 2003; North-Valencia et al., 2014). The 773 meteorite clan is 
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notable for being enriched in incompatible elements (i.e., are KREEP-rich). The 

samples are composed of multiple lithological types, and of particular relevance 

to this study is the magnesian gabbro NWA 6950. This sample has recently been 

dated to 3100 ± 16 Ga via Pb-Pb dating of baddeleyite (Shaulis et al., 2017), 

putting it amongst the youngest dated lunar igneous rocks.  

 

5.2.0 Methods 

 An aliquot of 159 mg was taken from 765 mg of NWA 6950 for isotope 

composition measurements including neutron dosimetry utilizing the 178Hf-
180Hf neutron dosimeter of Sprung et al. (2010; 2013). A whole rock (WR) sample 

was chosen which appeared as vein free as possible. The remaining material was 

split into fine (<125µm) and coarse (>125µm) fractions. The samples were 

density separated in diiodomethane (methylene iodide, density 3.32 g/cm³). 

The fine grain fraction was separated as two fractions, with densities greater or 

less than 3.32 g/cm³, with the material which stayed in suspension combined 

with the floating material. The coarse grained fraction was subdivided threefold, 

as 73.5 mg had a density of 3.32 g/cm³. We split these samples into the material 

which sank (density > 3.32 g/cm³), stayed in suspension (density ≈ 3.32 g/cm³), 

and material which floated atop (density < 3.32 g/cm³). These three fractions 

were handpicked to remove grains with shocked material, leading to 10 

fractions being analyzed from the meteorite. 

 Mixed isotope tracers of 149Sm-150Nd, 180Hf-176Lu, and 87Rb-84Sr, were 

added to each sample prior to overnight digestion at 120°C in 1:1 cHf-cHNO3. 

Ion-exchange chromatography was performed to purify the samples. All 

samples first underwent a chemical separation on Biorad AG 50W x8 200-400 

mesh resin, where Rb, Sr, a REE fraction and a Hf-rich fraction were separated. 

Hafnium was further purified on Triskem Ln Resin, and then in a third column 

on Biorad AG 1 x8. Lutetium was further purified on AG 50W x8 200-400. The 
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Rb and Sr cuts from column 1 were purified on Triskem Sr spec, and were 

subsequently ready for analysis. Samarium and Nd were further separated from 

a REE-rich fraction on Triskem Ln Resin. The element separations are 

performed from a chemistry based on an aggregate of the methods used in 

Sprung et al. (2013) and Bast et al. (2015), detailed in Tusch et al. (in prep). 

 
Figure 5.1: Lu-Hf mineral isochron of NWA 6950. The fine grained, low density 
component appears to be dominated by the shock-melt fraction, given its 
discordance with the remaining mineral fractions. The initial Hf correlates to ε-
Hf 12.46 ± 0.64 

Samples were analyzed on the Thermo Scientific Neptune Plus MC-ICP-

MS at Universität zu Köln. Analytical protocols, typical uncertainties, and 

further details can be found in Münker et al. (2001). Procedural blank 

contributed uncertainties were negligible, with typically measured blanks of 10 
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pg (Hf), 5 pg (Lu), less than 200 pg (Sr), 50 pg (Rb), and less than 1 pg for Sm 

and Nd. 

 

5.3.0 Results 

The mineral fractions are mainly distinguished by density because 

obtaining pure mineral fractions was impossible due to the friable nature of the 

rock. The density > 3.3 g/cm³ is subsequently referred to as “Ol” for its high 

olivine contents. The density fraction at ca. 3.3 g/cm³ is further labelled “Pi” (for 

pigeonite). The density fraction < 3.3 g/cm³ is henceforth addressed as “Pl” for 

its enrichment in plagioclase. The fine grained separates are identified via a “-

fn” suffix. The picked fractions of the mineral separates are identified with a “-

pkd” suffix. Note that purified (i.e., hand-picked) fractions are the least prone 

to be affected by pieces of shock melt that were easily discernible by their black 

colour. 

The fraction analyzed for neutron dosimetry yielded no non-radiogenic 

Hf isotope compositions outside of terrestrial values. The radiogenic 176Hf/177Hf 

measurements for NWA 6950 thus are free of resolvable neutron capture effects 

(see Sprung et al., 2010;2013; Gaffney and Borg, 2014) 

Values are all reported in tables 5.2a, 5.2b, 5.2c. The purified Ol fraction 

has the highest 176Hf/177Hf and 176Lu/177Hf (0.0380 ± 0.0056, 0.282699 ± 

0.000015, respectively), and forms the upper end of a linear array including (in 

order of decreasing isotope and parent-to-daughter ratios) Pl-pure, Ol-fn, bulk 

rock, and Pl-pkd (0.0232 ± 0.0081, 0.2818 ± 0.000015). The remaining, non-

purified fractions plot off the array towards higher 176Hf/177Hf (figure 5.1). 

Plotting the isotope ratio of fractions that correlate well in Lu-Hf isochron space 

against 1/Hf (figure 5.2) forms a well-correlated linear trend, though this does 

not exclude binary mixing as the cause of linearity in Lu-Hf isochron space. 

Plotting the the 176Hf/177Hf vs. 176Lu/177Hf trend as a true isochron, we obtain an  
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Figure 5.2: A plot of 176Lu/177Hf yields a linear correlation. We do not preclude 
the data, however, given the good agreement between the age found via the Lu-
Hf isochron and previous Pb-Pb studies. 

associated age of 3.103 ± 0.039 Ga (2. S.D.) with an initial isotope composition 

of 0.280433 ± 0.000018 (2. S.D., equivalent to an εHft of -12.5 ± 0.6) and an 

MSWD of 1.1 (figure 5.1). This age is in perfect agreement with the recently 

published Pb-Pb age of 3.100 ± 0.016 for baddeleyite from the same meteorite 

(Shaulis et al., 2017). Excluding the whole rock fraction gives an age of 3.087 ± 

0.044, and decreases the MSWD to 0.113, giving an initial isotope composition 

of 0.280443 ± 0.000023 (εHft of -12.1 ± 0.6). 

The minerals form a well-defined line in 143Sm/144Nd vs 147Sm/144Nd space 

whose slope is equivalent to an age of 3.104 ± 0.45 Ga (MSWD = 1.1, 143Nd/144Ndt 

= 0.50828 ± 0.00051, εNdt = -6.3 ± 0.2) barring Pl-pure (143Nd/144Nd 0.512004 

± 0.000007, 147Sm/144Nd 0.1573) (figure 5.3). The Pi-pkd has the highest 
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143Nd/144Nd (0.512461 ± 0.000008) and 147Sm/144Nd (0.2038), with the Ol-pure 

fraction plotting just below it on the trendline. The Ol-fine and remaining 

fractions then form a trend, with the Pl-pkd at the lowest ratios. The whole rock 

plots beneath the isochron formed by the minerals, though overlapping within  

 

Figure 5.3: A Sm-Nd isochron using whole rock (WR), both fine grain fractions, 
Ol-fine, Ol-pure, and Pi-Pure. The initial isotope composition correlates to an 
εNd of -4.94. 

error. 143Nd/144Nd vs 1/Nd does not form a well-defined mixing line, but plots 

along a general linear array (figure 5.4). We thus assign age relevance to the 

isochron that is formed by picked fractions. The age and initial isotope 

composition associated with this isochron are fully consistent with our Lu-Hf 

findings and the Pb-Pb age for baddeleyite (Shaulis et al., 2017). The Ol-pure 

fraction is the most depleted in Nd (4.3 ppm), while the remaining fractions 
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range between 8 and 27 ppm. The Pl-pkd, WR, and Ol-pure all form one 

isochron. Including all fractions, including shock melt compromised fractions, 

create anisochron. Pi-pure does not plot on either line. 

 

 

Figure 5.4: A plot of Nd isotope composition against 1/Nd. Most of the samples 
fall on a general linear array, although the purified pigeonite portion is clearly 
not part of a mixing relationship. 

 

The 87Sr/86Sr vs. 87Rb/86Sr bear a linear relationship between Pl-fn, Pl-

pure, and Pl-pkd, with Pl-fn having an 87Sr/86Sr of ca. 0.712. The remaining 

separates all plot together, in an 87Sr/86Sr representative of terrestrial values 

(above average lunar, from 0.70900 to 0.71100) (figure 5.5). A plot of 87Sr/86Sr 

vs 1/Sr does not yield a mixing line, but the samples besides Pl-pure and Pl-pkd 

(which have an 87Sr/86Sr between 0.707 and 0.708) all follow a general trend, 

from Ol-pkd at the lowest end (87Sr/86Sr = 0.7095, 1/Sr = 0.032) to Pl-fine at the 

highest (87Sr/86Sr = 0.712, 1/Sr = 0.011) (figure 5.6). 
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Figure 5.5:  Plot of 87Sr/86Sr vs 87Rb/86Sr of all mineral fractions shows the 
separation of the Pl fractions from the remaining material; that is, all samples 
plot together, while the Pl fractions form an independent array. Of note is that 
samples fall into the field of terrestrial crustal rocks, perhaps indicative of later 
alteration.  

5.4.0 Discussion 

5.4.1 The age of NWA 6950 

 The age obtained from our Lu-Hf mineral isochron of 3.101 ± 0.039 Ga 

(figure 5.1) is in excellent agreement with the previously reported Pb-Pb age for 

baddeleyite (Shaulis et al., 2017) of 3.100 ± 0.016 Ga. This perfect overlap and 

the scatter displayed by other fraction demonstrates that our careful avoiding 

of fractions that might possibly be influenced by the presence of shock melt 
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paid out. Note, that the influence of (trace element-rich) shock melt in the 

excluded fractions is very likely given their exceedingly high Hf contents, i.e., 

1.5 to 13.5 times that of the vein-free whole rock sample. We concur with Shaulis 

et al. (2017) that the ca. 3.1 Ga age found in their and our data is the pristine 

crystallization age of NWA 6950. Despite being less precise, the Sm-Nd 

isochron formed by pure mineral fractions yields a consistent age of 3.052 ± 

0.057 Ga thus further corroborating our conclusion. 

 

Figure 5.6: While 87Sr/86Sr against 1/Sr does not yield a mixing line, there is a 
general trend for all samples excluding the low density, coarse grained samples. 
This seems to represent a general migration of the samples from lunar values 
(<87Sr/86Sr 0.7090) towards terrestrial compositions (> 87Sr/86Sr 0.709) 
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Figure 5.7: NWA 773 Clan dates. NWA 032 has the youngest suite of ages, 
though these have all been through more easily reset systems (Ar-Ar, Sm-Nd, 
and Rb-Sr). NWA 773 has been dated with the Sm-Nd, Rb-Sr, and Pb-Pb 
methods. The remaining samples have been dated with Pb-Pb. Our study (in red) 
agrees with previous data. Data taken from Fernandes et al., 2003; Borg et al., 
2009; Shaulis et al., 2017; Zhang et al., 2010; Nyquist et al., 2009). 

 

5.4.2 Age spectra within the NWA 773 clan 

 The other ages found for the NWA 773 meteorite clan are reported in 

figure 5.7. Possibly, NWA 6950 might be slightly younger than the majority of 

previously dated meteorites, although the uncertainties of all these ages 

significantly overlap at an average age of 3.118 Ga (Pb-Pb: Shaulis et al., 2017; 

Zhang et al., 2010; Sm-Nd: Nyquist et al., 2009) Exceptions to this can be found 
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in age data from systems which are more susceptible to resetting such as Ar-Ar 

or Rb-Sr (e.g. Borg et al., 2014 with the possible exception of Sm-Nd, e.g. 

McCulloch and Black, 1984). The age of NWA 773 has been measured as 2.91 ± 

0.010 Ga (40Ar-39Ar dating, Fernandes et al., 2003) and 2.865 ± 0.031 Ga (Sm-

Nd dating, Borg et al., 2004, later revised to 2.993 ± 0.033 Ga in Borg et al., 

2009), while the more robust Pb-Pb dating of baddeleyite in NWA 773 yielded 

an age of 3.129 ± 0.011 Ga (Shaulis et al., 2017). The related meteorite NWA 032 

yielded an Ar-Ar age of 2.779 ± 0.014 (Fernandes et al., 2003), and Rb-Sr and 

Sm-Nd ages of 2.947 ± 0.016, and 2.931 ± 0.092 Ga (Borg et al., 2009), 

respectively. Altogether, these age data therefore imply that the NWA 773 

family precursor rocks formed at ca. 3.1 Ga, but experienced some form of 

heating event at ca. 2.9 Ga or even later (Fernandes et al., 2003). Note that the 

Sm-Nd systematics of NWA 6950 including all mineral fractions irrespective of 

their possible contamination with shock melt also yields an errorchron age of 

2.915 ± 0.200 Ga. The typical ca. 2.9 Ga disturbance of Sm-Nd systematics in 

the NWA 773 clan is thus also a feature in NWA 6950. Considering that this 

datum is strongly affected by the presence of shock melt, it appears likely that 

the ca. 2.9 Ga event represents an impact on the lunar surface. The Rb-Sr 

mineral isochron gives an age of 1.462 ± 0.083 Ga, although it requires excluding 

the picked low-density fraction. In general, the Rb-Sr systematics of NWA 6950 

exhibite surprisingly radiogenic 87Sr/86Sr for lunar rocks. Most likely, this 

finding reflects hot-desert weathering of the sample, possibly associated with 

incorporation of terrestrial Sr via capillary fluids (see for instance Crozaz et al., 

2003). Thus, if the Rb-Sr age bears any relevance, it is of a resetting event long 

after sample crystallization. 
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Figure 5.8: εHfi of KREEP-rich whole rocks, with our study. Of note is that Mg-
suite samples do not fall on the KREEP evolution line, indicating that they do 
not represent primary KREEP samples. The intercept of this line at CHUR (εHfi 

0) is at 4.51 Ga ± 0.02, defining a minimum age of LMO crystallization. 

 

5.4.3 NWA 6950 and the evolution of (ur)KREEP 

 As discussed above, the overlap of baddeleyite Pb-Pb age data (Shaulis et 

al., 2017) with the Lu-Hf and Sm-Nd isochron age data for the most pristine 

minerals as well as the preponderance of 3.1 Ga age data within the NWA 773 

clan strongly suggests that our NWA 6950 sample provides pristine isotope 

information with respect to the Lu-Hf and the Sm-Nd systems. A strong kinship 
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to KREEP has previously been suggested for samples of the NWA 773 clan (e.g., 

Borg et al., 2009), anchoring the Sm-Nd evolution of KREEP at ca. 2.9 Ga. In an 

analogous manner, NWA 6950 provides a perfect anchor for the Lu-Hf 

evolution of KREEP at ca. 3.1 Ga. Our data, in conjunction with data for older 

pristine KREEP basalts (Gaffney and Borg, 2014) and KREEP-rich breccias 

(Sprung et al., 2013) (figure 5.8) thus depict a perfectly defined evolution of the 

KREEP reservoir over 1.4 Ga (MSWD = 1.2), departing from a chondritic 

evolution at 4.51 ± 0.04 Ga, or 50 my after solar system formation. As a model 

age for the crystallization of the LMO, this age signifies a minimum age estimate 

for the formation of the Moon. This finding concurs with recent studies (e.g. 

Barboni et al., 2017) which find a model age of 4.51 Ga and our own results for 

the Hf-W model age of the moon (Thiemens et al., under review). Notably, and 

in contrast to earlier suggestions (Gaffney and Borg, 2014), Mg-suite samples 

77215 and 78238 plot off this evolution line and are displaced towards more 

radiogenic Hf isotope compositions. Interestingly, this offset vanishes assuming 

the Lu-Hf isochron age of norite 77215 of Carlson et al. (2014) to represent the 

true age of both samples. Hence, a) (ur)KREEP components are either do not 

dominating the isotopic inventory of Mg-suite rocks or b) these rocks formed 

from an entirely different source, or c) the Lu-Hf isochron age of these samples 

represents their crystallization age and formation from a source whose isotopic 

inventory was dominated by KREEP and their Sm-Nd isochron ages do not 

reflect Lu-Hf closure but merely that of the Sm-Nd system after protracted 

cooling.  

 An analogous treatment of the Sm-Nd isochron initial and age using 

KREEP rich rocks yields a KREEP formation model age of 4.344 ± 0.095 Ga and 

a 147Sm/144Nd of (ur)KREEP of 0.168 ± 0.001, in good agreement with the 146Sm–
142Nd lunar mantle isochron age of 4.397 ± 0.015 Ga (Boyet and Carlson, 2007; 

Brandon et al., 2009; Nyquist et al., 1995) as well as previous Sm-Nd model ages 

for KREEP-rich samples (e.g., 4.360 ± 0.060 Ga, Lugmair and Carlson, 1978) or 
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combinations of KREEP-rich (including NWA 773) and other crustal samples 

(4.398 ± 0.045 Ga, Borg et al., 2015). The obtained 147Sm/144Nd of (ur)KREEP is 

strikingly similar to actually measured compositions of KREEP-rich breccias 

(e.g., Sprung et al., 2013; 2014) and somewhat lower than a previously suggested 

value for (ur)KREEP (e.g., Gaffney & Borg, 2014). 

 

Figure 5.9: 176Lu/177Hf vs 1/Hf. The two trendlines represent mixing of KREEP 
with a REE-rich (possibly phosphate, sub-vertical) and an ilmenite-rich 
component. The intercept of the two lines provides a new estimate for the 
176Lu/177Hf of KREEP. The Mg-suite samples do not plot on either line, and 
similarly do not correspond with either mixing line. NWA 6950 bears an 
identical 176Lu/177Hf signature to KREEP, while being depleted in Hf. Data from 
Carlson et al., 2014; Gaffney et al., 2014; Münker, 2010; Sprung et al., 2014; 
Unruh and Tatsumoto, 1984. 
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5.4.4 NWA 6950 representing KREEP evolution 

 It has been recognized that KREEP-rich breccias from Apollo 16 and 17 

which are mixtures of a KREEP-component with other lunar rock types, form a 

rough trend 176Lu/177Hf vs. 1/Hf space which was used to estimate the 176Lu/177Hf 

of KREEP (Sprung et al., 2013; 2014). Interestingly, KREEP-rich samples from 

Apollo 12, 14, and 15 provide a distinct line from that of Apollo 16 and 17 samples 

(figure 5.9). The sub-vertical trend defined by Apollo 12, 14, 15 samples in part 

is made up of several analyses of the same sample (e.g., 14310) likely indicating 

that it might be caused by sample heterogeneity possibly in conjunction with 

having analyzed too small, not representative sample amounts. Obviously, the 

intersection of these two lines at a 176Lu/177Hf of ca. 0.0181 provides a reasonable 

estimate for the 176Lu/177Hf composition of the KREEP end member in that it is 

close to the actually measured 176Lu/177Hf of KREEP rich rocks. Note that this 

value is near identical to that proposed by Sprung et al. (2013; 2014), which is 

higher than a previous estimate (0.0154, Gaffney and Borg, 2013).  

NWA 6950 does not plot on either line, but at a virtually identical 
176Lu/177Hf while being depleted in Hf. NWA 6950 possesses a coarse grained 

cumulate texture (Shaulis et al., 2017). A plausible petrogenetic scenario for 

NWA 6950 could thus involve its formation as a cumulate from a KREEP-basalt-

liquid whose trace element composition is dominated by a portion of trapped, 

coexisting liquid in a similar fashion to the likely dominance of trapped 

coexisting LMO liquid in LMO cumulates (e.g., Fonseca et al., 2014; Snyder et 

al., 1992; Sprung et al., 2013). Considering the virtually identical 176Lu/177Hf of 

NWA 6950 and the inferred (ur)KREEP, it is likely that NWA 6950 is also 

representative of KREEP isotopically. 

Applying the same principles to the Mg suite samples (Carlson et al., 

2o14) implies that their trace element compositions are not KREEP-dominated 

as their loose trend does not converge on a 176Lu/177Hf reasonable for KREEP. 

While their trace element compositions differs strongly from KREEP, their 
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formation from an isotopically KREEP-like source at the 4421 Ma Lu-Hf age 

datum of norite 77215 (Carlson et al., 2014) remains possible. 

 

5.4.5 Differing model ages 

Taken at face value, the Sm-Nd and Lu-Hf model ages for KREEP differ 

outside their statistical uncertainties. It has long been recognized for the Earth’s 

mantle, that secular evolution curves of initial isotope compositions rather 

depict apparent, less extreme daughter-to-mother element ratios than for 

instance mantle or the crustal rocks display. The reason for this systematic are 

interactions between imperfectly closed systems, i.e., isotopic exchange and 

mixing between recycled components in the mantle or juvenile crust with 

preexisting crust (Albarede, 1989). Even though the actively convecting 

terrestrial mantle obviously is prone to blend enriched and depleted 

components (e.g., Stracke, 2012) far better than the early stagnating lunar 

mantle (e.g., Zhang et al., 2013), some degree of interaction between lunar 

mantle components might be possible. Further, increasingly extreme radiogenic 

isotope disparities such as for instance between the strongly depleted sources 

of low-Ti mare basalts and KREEP-like, enriched portions in the lunar mantle, 

to name two extremes, imply that the amount of one component that is needed 

to change the isotope composition of the other decreases over time. The 

dominance, that the initial εHf of NWA 6950 has, being a singular sample that 

is at least ca. 700 Myr younger than all others is striking: A one ε-unit lower 

initial isotope composition for this sample would cause the Lu-Hf model age to 

decrease by 75 Myr and to overlap the Sm-Nd model age within the larger 

uncertainties of the latter. Further, prolonged isotopic exchange of the residual 

LMO liquid with late-stage ilmenite cumulates perhaps due to tidal heating 

beneath an insulating anorthositic crust (e.g., Meyer et al., 2010; Elkins-Tanton 

et al., 2o11) would have differing effects on the Lu-Hf and the Sm-Nd systems. 
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While these late-stage cumulates can reach Sm/Nd that are >40% higher than 

chondritic, their Lu/Hf exceeds that of CHUR by less than 10% (see 

supplementary files of Sprung et al., 2013). In concert with the much slower 

radiogenic ingrowths in the Sm-Nd systems compared to those in the Lu-Hf 

system, a seemingly delayed departure of 143Nd/144Nd from chondritic may 

simply be mimicked by the inferior resolution and a stronger buffering of late-

stage cumulates in the case of the Sm-Nd system. 

Future Lu-Hf work on other meteorites of the NWA 773 clan might prove 

critical in deciding if the 176Hf/177Hf signature of NWA 6950 was rendered more 

radiogenic than pure KREEP, despite all indications to the contrary. Given the 

geochemical uncertainties inherent to the model age comparison discussed 

above, interpreting the presently observed disparity in light of a true geologic 

or rather selenologic relevance appears premature. 

One issue is the extended time scale of solidification required to rectify 

the old ages for crystallization found (e.g., this study, chapter 6, and Barboni et 

al., 2017) and the younger ages found in previously mentioned sources, 

particularly for Sm-Nd (e.g. Borg et al., 2014). The > 100 million year timescale 

is considerable, and maintaining a liquid LMO for so long does not work with 

most traditional models (see summary in Elkins-Tanton et al., 2011). One 

potential method is tidal heating of the Moon by the Earth (Meyer et al., 2010). 

This would act to slow LMO crystallization, hold portions of the lunar crust 

above their closure temperatures, and even remelt portions of the crust (Meyer 

et al., 2010). Therefore, LMO solidification could be decoupled from mineral 

closure temperatures, and the ages found via isotope systems could represent 

tidal heating resetting systems (Elkins-Tanton et al., 2011). This would be more 

than sufficient to extend crystallization for 200 Ma (Elkins-Tanton et al., 2011). 

Of note, given heterogeneities amongst the Mg-suite rocks, tidal heating could 

explain the overlapping ages of FANs and Mg-suite, as well as their secondary 

signature (Edmunson et al., 2009; Elkins-Tanton et al., 2011; Nyquist et al., 1995) 
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5.5.0 Conclusions 

 This study finds ages for NWA 6950 which concur with previous studies. 

We found ages of 3.103 ± 0.045 Ga (Lu-Hf) and 3.104 ± 0.45 Ga (Sm-Nd), in 

good agreement with the Pb-Pb age of 3.100 ± 0.016 found by Shaulis et al., 

(2017) as well as the weighted average age found for the NWA 773 clan of 3.115 

± 0.007 Ga. The Sm-Nd age of 4.344 ± 0.095 Ga is in good agreement with other 

literature values, which we explain as a consequence of long lasting volcanism. 

We used the Lu-Hf composition of the sample to extend an urKREEP evolution 

line, and find a lunar crystallization age of 4.51 ± 0.2 Ga, in perfect agreement 

with the age we find via a completely different method in the next chapter. This 

is strong evidence for an old Moon. 

 

 

Sample 
Type

176Lu 
177Hf

2 SD error 176Hf  
177Hf

2s.e. on 
6th digit

ppm Hf εHf

WR 0.01770 0.0009 0.281483 15 3.798 +24.9

Ol-fine 0.02030 0.0006 0.281650 15 2.444 +30.9

Pl-pure 0.02320 0.0008 0.281822 15 1.993 +37.0
Ol-pure 0.03800 0.0006 0.282699 15 1.379 +68.3
Pi-pure 0.02730 0.0011 0.282037 15 2.436 +44.7
Ol--fine 0.02030 0.0006 0.281655 15 3.798 +31.1
Ol-fine 0.02030 0.0006 0.281644 15 3.798 +30.7
Pl-fine 0.001300 0.0006 0.281629 470 51.085 +30.1
Pi-pkd 0.008000 0.0006 0.281999 720 11.163 +43.3
Pl-pkd 0.01150 0.0012 0.281075 30 6.0197 +10.4

Table 5.2a: Lu-Hf isotope data for NWA 6950

WR: Whole Rock Ol: Olivine, Pl: Plagioclase, Pi: Pigeonite
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ppm Sm ppm Nd 147Sm 
144Nd

2 s.d. on 
4th digit

143Nd 
144Nd

2 s.d. on 
6th digit

WR 4.615 16.688 0.1671 2.0 0.511623 8.0

Pl-fine 4.816 17.240 0.1689 2.0 0.511765 11.0

Ol-fine 2.356 7.818 0.1822 2.0 0.511998 11.0
Pi-pure 2.945 8.736 0.2038 2.0 0.512461 7.0
Ol-pure 1.410 4.303 0.1981 2.0 0.512353 26.0
Pl-pure 2.461 8.866 0.1678 2.0 0.512004 7.0
Pi-pkd 7.578 27.297 0.1678 2.0 0.511691 8.0
Pl-pkd 6.787 26.084 0.1573 2.0 0.511555 8.0
Pi-pkd 7.578 27.297 0.1678 2.0 0.511691 8.0
Pi-pkd 7.578 27.297 0.1678 2.0 0.511691 8.0
Ol-pkd 6.218 22.964 0.1636 2.0 0.511688 8.0

Table 5.2b: Sm-Nd isotope data for NWA 6950

WR: Whole Rock Ol: Olivine, Pl: Plagioclase, Pi: Pigeonite

Rb ppm Sr ppm 87Rb 86Sr 2 s.d. on 
4th digit

 87Sr  
86Sr

2 s.d. on 
6th digit

Whole 
Rock

1.756 53.559 0.0949 8.4 0.710427 6.2

Whole 
Rock

1.763 53.575 0.0952 8.8 0.710417 5.7

Pl-fine 4.295 83.809 0.148 8.1 0.711940 7.6
Ol-fine 0.690 33.237 0.0601 10.8 0.710674 5.7
Ol-fine 0.690 33.228 0.0601 8.0 0.710667 5.8
Pl-pkd 2.819 111.203 0.0734 8.2 0.707792 6.7
Pl-pkd 2.819 111.211 0.0733 9.5 0.707780 7.3
Pl-pure 1.976 98.447 0.0581 10.3 0.706989 8.8
Pi-pkd 1.530 63.812 0.0694 12.5 0.710092 5.7
Pi-pure 0.682 44.569 0.0443 8.1 0.709364 7.0
Ol-pkd 1.040 42.300 0.0711 9.9 0.711524 7.6
Ol-pure 0.575 31.324 0.0532 10.8 0.709648 6.3
Ol-pure 0.575 31.320 0.0532 8.9 0.709656 7.3
Ol-pure 0.366 31.323 0.0338 10.3 0.709598 8.6
Ol-pure 0.366 31.321 0.0338 12.2 0.709591 6.3

Table 5.2c: Rb-Sr isotope data for NWA 6950

WR: Whole Rock Ol: Olivine, Pl: Plagioclase, Pi: Pigeonite
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6.0 New Evidence for an Old Moon  
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6.1.0 Introduction 

 The Moon likely formed in the aftermath of a giant impact between the 

proto-Earth and an erstwhile planetary body (Canup, 2012). Extreme chemical 

and isotopic similarities between the Earth and the Moon (Melosh, 2014) have 

led to a growing consensus that Earth and Moon share a common chemical 

ancestry. This similarity in chemical signatures imply either that the bulk 

silicate Earth (BSE) is the major source of Moon-forming impact debris 

(Armytage et al., 2012; Dauphas et al., 2014; Weyer et al., 2005; Zhang et al., 

2012) or that proto-Earth and the impactor had virtually identical chemical 

compositions (Dauphas et al., 2014). Beyond chemical constraints on the Moon 

forming giant impact event, there is an ongoing controversy regarding its exact 

timing, with some researchers arguing that the Moon formed early (i.e., 30 to 

100 Myrs after Solar System formation – SSF) (Barboni et al., 2017, Bottke et al., 

2015; Jacobson et al., 2014; Yin et al., 2014), whereas others contend the Moon 

formed up to 200 Myrs after SSF (Borg et al., 2011; Carlson et al., 2014; Connelly 

and Bizzarro, 2016; Snape et al., 2016).  

 Constraining lunar formation requires knowing the crystallization age of 

the lunar magma ocean (LMO), the result of the Moon’s high-energy impact 

formation. Central to this controversy are small but resolvable excesses in the 
182W abundance in lunar basalts when compared to the Earth, which average a 

value of +0.25 ε182W units (Kruijer et al., 2015; Kruijer and Kleine, 2017; Touboul 

et al., 2015). The excess 182W in lunar samples stems from the decay of short-

lived 182Hf to 182W (8.9 Myrs half-life, Vockenhuber et al., 2004). This signature, 

if it evolved in-situ, places lunar formation between 30 and 60 Myrs after SSF 

when sufficient 182Hf was still present. However, this interpretation is at odds 

with the apparent observation that BSE and the silicate Moon have virtually 

overlapping ratios of Hf (mother) to W (daughter), with a Hf/W of 24.9 and 

25.8, respectively (König et al., 2011; Münker, 2010). These apparently identical 
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parent to daughter ratios imply that their different ε182W cannot be related to 

the in situ decay of 182Hf. An alternate explanation invoked for this dichotomy 

is that the Earth and Moon received a disproportionate and variable 

contribution of late accretion components with a chondritic Hf/W (~1) and 

lower 182W than BSE (Kruijer et al., 2015). Because the Moon is less massive than 

Earth, it received a commensurately smaller contribution from late accretion, 

and has thus retained a higher ε182W than BSE (Kruijer et al., 2015; Kruijer and 

Kleine, 2017; Touboul et al., 2015). The Moon therefore constitutes a suitable 

highly-siderophile element (HSE) poor end-member in such late accretion 

models and a possible analogue to a proto-Earth that was essentially devoid of 

late accretion components (König et al., 2011). In addition to this view, the 

apparent decrease in 182W values measured in terrestrial rocks over geologic 

time has been explained by the protracted mixing of late veneer material into 

the terrestrial mantle that lowered ε182W to its present-day value (Rizo et al., 

2016; Touboul et al., 2015; Willbold et al., 2011). This interpretation of lunar 
182W systematics implies that the Moon must have formed after the Hf-W 

system was extinct, i.e., it cannot have formed prior to 60 Myrs after solar 

system formation (SSF) (Kruijer et al., 2015; Kruijer and Kleine, 2017). 

 Any accurate interpretation of 182W data measured in lunar samples relies 

on a precise knowledge of the Hf/W value in lunar mantle reservoirs and by 

inference of the silicate Moon. Unfortunately, lunar Hf/W systematics are 

poorly constrained, as data of sufficient precision are scarce. This also extends 

to other highly incompatible elements (e.g., Th and U) that are commonly used 

as proxies for W behaviour during dry terrestrial mantle melting (König et al., 

2011). In previous lunar studies, W was treated as a perfectly incompatible 

element (i.e., having a similar behaviour as U or Th) during lunar 

differentiation. This treatment might be incorrect, as lunar mantle melting 

occurs at more reducing conditions than in the terrestrial mantle, implying that 

W may behave differently to incompatible elements like U and Th (Fonseca et 
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al., 2014; Leitzke et al., 2016; Leitzke et al., 2017). In fact, even previous 

observations that ratios of W with U or Th appear to be variable in lunar samples 

suggest that W may behave differently to highly incompatible elements like U 

or Th during lunar magmatism (Palme and Rammensee, 1981), in line with 

recent results of experimental studies (Fonseca et al., 2014; Leitzke et al., 2016; 

Leitzke et al., 2017). 

6.2.0 Methods and Results 

 To provide robust constraints on the Hf/W value of the silicate Moon, 

and ultimately understand the observed ε182W excess recorded in lunar samples, 

we performed high-precision concentration measurements of W, Th, U, and 

other high field strength elements (HFSE) by isotope-dilution on a 

representative sample suite covering most relevant lithological units on the 

nearside of the Moon. Our samples include low- and high-Ti basalts, ferroan-

anorthosites (FAN), and KREEP-rich rocks. Results are reported in table 6.1. 

 

6.2.1 Sample selection 

Lunar samples were provided by the Curation and Analysis Planning 

Team for Extraterrestrial Materials (CAPTEM), and selected to represent the 

major lithological units of the Moon as sampled by the NASA Apollo missions. 

Characterizing their chemical composition, our particular focus lay on the 

quantification of any inherent U/W, Th/W, and Hf/W variability as inferred 

from the few previous studies available. Some sample duplicity with previous 

studies allows for an additional quality assessment. In total, lunar samples from 

Apollo 11 (3), Apollo 12 (6), Apollo 14 (3), Apollo 15 (6), Apollo 16 (4), and Apollo 

17 (4) were analyzed. Of these, 7 were Apollo 11 or Apollo 17 high-Ti mare basalts 

and soils, 14 were low-Ti mare basalts from Apollo 12 and 15, 2 Apollo 16 ferroan-
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anorthosites (FAN), as well as 7 KREEP-rich samples including a meteorite and 

KREEP-rich breccias and KREEP-basalts from the Apollo 14, 16, and 17 missions. 

 

6.2.2 Sample Preparation 

To obtain high precision data, we measured all elements of interest by 

isotope dilution and added several isotope tracers to ca. 100 mg (250 mg for 

anorthosites) of each sample prior to digestion. The mixed isotope tracers 

included 229Th-233U-236U and 183W-180Ta-180Hf-176Lu-94Zr mixed solutions. 

Samples were digested in 3 ml of double distilled HF and 3 ml of distilled HNO3 

for 24 hours at 120 °C. Prior to drydown, 0.5 ml of perchloric acid were added 

to ensure sample-spike equilibrium for Th. Samples were re-dissolved with 

concentrated HNO3 and trace 0.5M HCl-0.5M HF to ensure re-dissolution of 

HFSE. These sample solutions were subsequently dried down again, and re-

dissolved in 6 ml 6 M HCl- 0.06 M HF to ensure sample-spike equilibrium for 

HFSE. These samples were then aliquoted, with 10% of the solution being used 

for conventional trace element analysis, 20% for W isotope dilution 

measurements, and 70% for high field strength and U-Th element analysis. For 

a first batch of samples, an additional aliquot of 10% for U-Th was taken. The 

anorthosite samples were aliquoted with 85% to a combined HFSE, W, and U-

Th aliquot, and 15% for trace element analysis. 

The trace element aliquot was dried down, dissolved in concentrated 

HNO3, and then dried down again. This residue was subsequently dissolved in 

1 ml concentrated HNO3, with 4 ml MQ H2O added, and then diluted with MQ 

H2O to 50 ml. Conventional trace elements on these aliquots were performed 

at the Quadrupole ICP-MS laboratory at the Institut für Geowissenschaften at 

CAU zu Kiel using the procedure of Garbe-Schönberg 1993. 
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Ion-exchange chromatography generally consists of a stationary and a 

mobile phase. Our stationary phase are commercially available ion exchange 

resins which separate inorganic anions and cations. Initially all samples are 

dissolved in a mobile phase, i.e., acids. By adding the mobile phase containing 

the sample to the stationary phase the sample interacts with both phases and 

according to the partition coefficient the different components of the sample 

solution partition into the different phases (Schönbächler et al., 2014). For 

isotope measurements we separated Lu, Hf, Rb, Sr, Sm, and Nd in a clean 

laboratory environment with columns specifically calibrated for this purpose. 

Separation of the elements of interest from their matrix is important for an 

interference free measurement of the isotopic and element abundance and 

composition. 

 For the separation we used 3 different types of columns: Biorad AG 

50 W x8 200 400 mesh (columns 1 and 4), Triskem Ln Resin (column 2), Biorad 

AG 1x8 (column 3). For a purer separation other columns were later used for 

separation of Rb, Sr, Sm, and Nd (Biorad AG 50W x8 and Triskem Ln Resin). 

 As the first step column 1 is cleaned with one full Reservoir of 6M 

HCl and rinsed twice with MQ (H2O) as a backwash. One full reservoir of 2M 

HF is used as a second cleaning step and two full reservoirs afterwards of 6M 

HCl. After the column cleaning 3 times 2ml MQ are added to backwash again. 

For conditioning we used 2ml 1M HCL-1-2vol% H2O2.The samples are loaded 

in 2ml 1M HCl-1-2% H2O2. 0.5ml and afterwards 2ml of 1M HCl 1-2% H2O2 is 

used to collect a Hf-bearing cut. Matrix-1 is eluted with 2 times 4ml 1.5M HCl. 

With 4ml 1.5M HCl we collected Rb. Matrix-2 eluted with 10ml 1.5M HCl was 

combined with Matrix1. Sr was then collected with 8ml 1.5M HCl. Matrix-3 

combined with one and two is eluted with 8ml 1.5M HCl. The second to last step 

is the collection of HREE, containing also the Lu-cut, in 8ml 2.5M HCl. The 

LREE are collected with 6ml HCl.  
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 The pre-cleaning of column 2 is performed sequentially with 1rv 

6M HCl, 1rv 2M HF, 1rv 6M HCl, 1rv 2M HF, and 2ml MQ (H2O). To condition 

we used two times 2ml of 1M HCl-2% H2O2. We loaded the columns directly 

with the Hf-cut from column 1. With 3 times 4.7ml, 7ml and two times 5ml 1M 

HCl-2vol% H2O2 we collected the Ti-cut. After the Ti-cut we rinsed the 

columns with two times 2ml 1M HCl and eluted the Hf afterwards with two 

times 2 ml, and 6ml 2M HF.  

 Column 3 is cleaned with 5ml 3M HNO3 and half a reservoir of 2M 

HF. The Hf cut from column 2 is loaded onto column 3. The Matrix is eluted in 

three times 2ml of 2M HF. The final Hf-cut is collected in two times 2ml and 

6ml of 6MHCl. This cut is then dried down and afterwards we added 0.56M 

HNO3–0.24M HF: H2O2 (9:1). The samples have been put on a HP at 90° for 

ca. 1 h before running on the mass spectrometer.  

 On column 4 we loaded the HREE cut from column 1 that 

contained Lu in 1ml of 1M HCl. The Matrix is collected into the LREE beaker 

from the column1 cut in 1ml, 10ml and 1ml of 1M HCl. Lu is eluted in 2ml and 

10ml of 6M HCl. The LREE cuts from column 1 and 4 contain Sm and Nd. These 

elements are separated with different columns.  

 The Rb and Sr cuts from column 1 were dried down. After the 

samples were completely dry we added 0.3 ml 3M nitric acid on each sample. 

For clean Rb and Sr cuts we used columns containing Triskem Sr spec that have 

been calibrated for this purpose. First the columns need to be cleaned 7 times 

with 300µl 3 N HNO3 and 7 times with 300µl 0.06 N HNO3. Seven times 300µl 

3N HNO3 has been used for conditioning of the columns. After conditioning 

the Rb-cut in 300µl 3N HNO3 is loaded onto the columns. Rb is then eluted 

again in 7 times 300µl 3N HNO3. Seven times 0.06 N HNO3 is used to rinse the 

Rb-Matrix. Before loading the Sr-cut we reconditioned the columns with 7 times 

0.06N HNO3. The Sr-cut from column 1 in 300µl 3 N HNO3 is loaded on to the 



 

 
101 

columns and collected in the Rb-cuts. The Sr-Matrix is also collected into the 

Rb-tubes and therefore rinsed in 7 times 300µl 0.06 N HNO3. Finally, the Sr-

cut is eluted in 7 times 300 µl 0.06 N HNO3. The columns were then cleaned 

again for future use as in the precleaning steps.  

 Both element cuts for each sample are then dried down and 

afterwards dissolved again in 0.5 ml of 0.14 HNO3:H2O2 (9:1). This mixture had 

to be dried down again and before measurement we added 0.14 N HNO3 on all 

Rb and Sr- samples.  

 For the Sm-Nd chemistry we dissolved the LREE-cut in 350 µl 0.25 

N calibrated HCl for one hour. The samples are then transferred into 1ml 

Eppendorf vials. For the ion exchange separation we only loaded the upper 300 

µl (0,3ml) of each sample in columns.  

 The columns were equilibrated with half a reservoir of density-

calibrated 0.25 N HCl, twice. A molarity of 0.25 N HCl yields about 75% Nd 

with < 10% Ce. The samples were loaded in 0.3 ml 0.25 N HCl (calibrated). They 

were then washed two times in 0.25 ml 0.25 N HCl to collect the Sm-cut. 

Subsequently the samples were rinsed in 3ml 0.25N HCl and afterwards the 

collection of Nd was done in 2 ml 0.25 N HCl. Samples that contain only a little 

Nd can be rinsed in 2.5 ml 0.25 N HCl and collected in 2.5 ml 0.75 N HCl to 

yield a 90% Nd cut with about 25 % Ce. After the final collection the Sm and 

Nd-cuts were dried down. Prior to measurement 0.14N HNO3-H2O2 (9:1) was 

added to each sample. 

Our protocol for separating individual HFSE and U-Th cuts from lunar 

samples is a modified protocol based on Münker et al. (2001), Kleine et al. 

(2004) and Münker (2010). During the protocol, individual cuts containing a 

matrix, HRRE, Zr-Nb, Ta, Hf and U-Th were separated from the HFSE aliquot. 
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Tungsten was separated from the W isotope dilution step via a separate set of 

anion exchange resin microcolumns (after Kleine et al. 2004, Table 4).  

In our HFSE protocol, the sample aliquots were dissolved in 3N HCl and 

loaded onto a Ln Spec resin column. Matrix and LREE were eluted in 3M HCl. 

An HREE fraction containing most Lu was eluted with 6N HCl, followed by 

elution of an HFSE cut containing Ti-Zr-Nb-Hf-Ta-U-Th in 2N HF. A 

quantitative Zr/Nb aliquot was taken from this fraction (see Münker et al. 2001). 

The remaining HFSE cut was loaded onto a Bio-Rad column containing AG 1 x8 

100-200 mesh resin. The U-Th fraction was collected in 2N HF, and a Ti-Zr-Hf 

fraction was collected in 6N HNO3/0.2N HF. A clean Ta fraction was 

subsequently collected in 6N HNO3/0.2N HF/1%H2O2. The Ti-Zr-Hf fraction 

was dried down overnight and loaded onto the stage I Ln Spec resin column in 

3 N HCl. After cleanup in 6N HCl and MQ H2O, Ti was eluted using a 1N HNO3 

2% - H2O2 mixture (Bast et al. 2015), and some Zr in 6N HCl -0.06N HF. Hf was 

finally eluted in 2N HF.  

U-Th separation was performed in two ways, following a modified 

protocol of Luo et al. (1997). For the first batch of samples, a full aliquot was 

used, whereas for the other batches the U-Th fraction from the 2N HF elution 

step above was taken. After drydown, the U and Th bearing cuts were dissolved 

in 1.5N HNO3, before being loaded onto columns containing Tru-Spec resin 

(200-400 mesh). Modifying the chemistry of Luo et al. (1997), all major 

elements were initially eluted in 1.5N HNO3. After removal of rare earth 

elements in HC3N HCl, Th was subsequently eluted in 0.2N HCl. Finally, U was 

eluted in 0.1N HCl/0.3N HF.  

Given the low concentrations of elements of interest in anorthosites, we 

performed a different separation protocol for these samples. Ca. 70% of the 85% 

HFSE aliquots of anorthosites were loaded on anion exchange resin in 1N 

HCl/0.5N HF solution. The eluted matrix cut and an additional fraction rinses 
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in 0.5N HCl/0.5NHF contained most of the Rb-Sr, Sm-Nd and U-Th. A fraction 

containing Ti/Zr/Hf was collected in 6NHCl/0.06NHF, from which Hf was 

further purified using Ln Spec resin (see above). A W fraction was subsequently 

eluted in 6N HNO3/0.2N HF, followed by Ta elution in 6 N HNO3 / 0.2N HF / 

1% H2O2. After drydown, the Ta cut was loaded on the same anion resin column 

for cleanup, and the Ta was again eluted in 6N HNO3/0.2N HF / 1% H2O2 after 

cleanup in 6N HNO3/0.2N HF. The remaining 15% of the anorthosite HFSE 

aliquots were loaded on Ln Spec resin in 3N HCl. Two fractions containing 

HREE and Zr/Nb werde eluted from the column in 6N HCl and 2N HF as 

described above. The advantage of this approach is that a larger W fraction is 

collected, thus avoiding low sample-to-blank ratios during W ID 

measurements. 

 

6.2.3 Analytical protocols 

All isotope dilution measurement were performed using the Neptune 

MC-ICP-MS at Cologne. Detailed descriptions of the analytical protocols for 

HFSE measurements, analytical uncertainties and further references are given 

in Münker (2010). For 229Th/232Th measurements, we used an SEM ion counter 

equipped with an RPQ system on mass 229Th. The Th cuts were doped with the 

NBL CRM 112A U standard for mass bias correction, and the ion counter was 

calibrated with concentration-matched IRM-035 and IRM 036 standards for ion 

counter yield corrections. For U measurements, mass bias was corrected using 

the measured 233U/236U of the spiked U cuts and the certified 233U/236U from 

Richter et al. (2010) for the doped IRM-3636 double spike that was used for 

preparation of the mixed U-Th tracer. Our external precision and accuracy for 

elemental ratios determined by isotope dilution involving U and Th typically is 

better than ±1% for both U/W and Th/W (2σ r.s.d.). Typical blanks during the 

course of the measurements were below 50 pg for W, 66 pg for U, 32 pg for Th, 
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and 30 pg for Hf. These blanks proved negligible, with total blank-uncertainty-

including propagated errors of less than ±1%. 

 

6.2.4 Results - modeling constraints 

Measured HFSE and HFSE/U-Th ratios are distinct for different sample 

groups and mineralogy, with only small variations in U/W and Hf/W between 

samples from the same lithology. High-Ti basalts are particularly 

heterogeneous, with samples from the three measured localities showing 

distinct Hf/W and U/W values. Apollo 17 High-Ti breccias both have similar 

values, with Hf/W ranging from 31 to 35, at a constant U/W of 1.9. This is distinct 

from Apollo 17 high-Ti mare basalts, where U/W correlates positively with 

Hf/W. The Apollo 11 high-Ti mare basalts both have Hf/W of 42 and U/W of 

2.2. Unique amongst all samples are the Apollo 17 high-Ti mare basalts, which 

bear exceptionally high Hf/W ratios, between 120 and 150. Likewise, the low-Ti 

basalts plot as particularly distinctive groups according to mission site. The 

Apollo 12 ilmenite basalts have similar U/W to the Apollo 12 olivine and 

pigeonite basalts, of 2.07 and 2.2, respectively. However, they are distinct in 

their Hf/W, with both pigeonite-bearing basalts near 30 and ilmenite-basalts of 

43-48. The Apollo 15 quartz-normative and olivine-normative low-Ti basalts 

have different U/W, ranging from an average of 2.45 in the former to 1.7 in the 

latter. The Hf/W of the two low-Ti basalt groups also vary from 45 (quartz-

normative) to 30 (olivine normative). Whereas the olivine-normative low-Ti 

basalts of both Apollo 15 and Apollo 12 have identical Hf/W, their U/W differ 

significantly, from amongst the lowest values (1.63) measured to the highest 

(2.53). The KREEP-rich samples have a very narrow range in Hf/W of ca. 20. 

The U/W of KREEP samples has the largest spread, with most samples ranging 

from of 1.6 to 2.7, and minimum and maximum values of 0.5 and 3.5, 

respectively. 
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6.2.5 Lunar Magma Ocean fractionation and partial melting modeling 

The Lunar Magma Ocean (LMO - Smith et al., 1970; Warren, 1985; Wood 

et al., 1970) crystallization model utilized in this study is based on the cumulate 

crystallization sequence of Snyder et al. (1992). It has been previously shown 

(Fonseca et al., 2014) that the results of this and other LMO crystallization 

models (e.g., Elardo et al., 2011; Elkins-Tanton et al., 2011) are in good 

agreement. The same starting composition used in Fonseca et al. (2014) after 

Münker (2010) was chosen to evaluate the general HFSE-W-U-Th systematics 

of a crystalizing LMO. For W, an additional mass balance between the estimate 

of its content in the bulk silicate Moon after core formation was done following 

Steenstra et al. (2016), considering different core mass fractions (1-3% of the 

total mass of the Moon). The LMO crystallization model is divided into four 

main steps: (i) equilibrium crystallization of olivine and orthopyroxene (until 

78% solidification), (ii) fractional crystallization of plagioclase, olivine, and 

pigeonite (until 86% solidification), (iii) fractional crystallization of 

clinopyroxene, plagioclase, and pigeonite (until 95% solidification), and (iv) 

crystallization of pigeonite, plagioclase, clinopyroxene, and ilmenite (until 

99.5% solidification). The remaining 0.5% after LMO crystallization is a liquid 

residue strongly enriched in incompatible trace elements and called urKREEP, 

which reflects its characteristic enrichments in K, REE, and P (Meyer et al., 1971; 

Warren and Wasson, 1979). The LMO crystallization model assumes that 

various amounts of trapped instantaneous residual liquid (TIRL, i.e. coexisting 

melt at the time of crystallization) are part of lunar mantle cumulates in order 

to take into account major element variation observed in lunar mare basalts 

(Snyder et al., 1992). The model also considers that at the moment plagioclase 

appears on the liquidus, 98% of the crystallizing plagioclase floated to the 

uppermost portion of the LMO to form the lunar crust with only 2% being 

entrained in the cumulates, in order to account for the Al content of lunar 

basaltic samples (Snyder et al., 1992). Following LMO crystallization, the 
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layered lunar mantle underwent a density driven mantle overturn which mixed 

the different cumulate layers, producing new hybrid mantle domains that 

served as the source for partial melts that crystallized to form the lunar mare 

basalts (e.g., Hess and Parmentier, 1995). To understand the implications of 

these processes for the trace element inventory of mare basalts thus involved 

aggregate modal fractional melting models of hybrid lunar mantle domains. The 

mixing proportions of different primary LMO cumulates in the hybridized lunar 

mantle sources, their mineral assemblages, as well as the amount of trapped 

instantaneous residual liquid (TIRL) were constrained from the Lu–Hf and Sm–

Nd isotope patterns of lunar basalts (Sprung et al., 2013). We have also assumed 

that a small proportion of residual metal may be required at the lunar mantle 

source to reproduce the values observed for high-Ti basalts, which is in 

agreement with the extremely reduced nature of the lunar mantle and the 

depletion in Ni observed for lunar olivine (e.g., Karner et al., 2000; Nicholis and 

Rutherford, 2009). A lunar magma ocean equilibrated at ca. IW −1 was assumed 

throughout the entire modelling, in agreement with the current estimates of 

oxygen fugacity for the lunar mantle (Papike 2005; Nicholis and Rutherford, 

2009). Trace element crystal/silicate melt partition coefficients for different 

pyroxenes, plagioclase, and olivine (Table 6.2) were selected taking into account 

the variation of TiO2 exhibited by lunar mare basalts and the changing 

composition of the LMO during crystallization (see Leitzke et al., 2016) as well 

as the effect of fO2 on the partitioning behavior of W (see Fonseca et al., 2014; 

Leitzke et al., 2017). Ilmenite/silicate melt trace element partition coefficients 

are an average of the high-Ti experiments listed in Dygert et al. (2013), and 

reported in table 6.2. Liquid metal/silicate melt W partition coefficients are 

from Righter et al. (2010) and Steenstra et al. (2016), which cover a wide range 

of values (15-100).  
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6.2.6 Results 

As shown in Figure 1, these groups of samples are compositionally 

distinct, as expected from radiogenic isotope evidence and geochemical 

modelling (Sprung et al., 2013). Low-Ti mare basalts display a narrow range in 

U/W and Hf/W between 1.5 and 2.5 and between 30 and 50, respectively. In 

contrast, high-Ti basalts have Hf/W as high as 150, and slightly more 

fractionated U/W, with values between 0.5 and 2.2. Finally, the KREEP-rich 

rocks and FAN samples exhibit the lowest Hf/W range of the studied sample 

suite, between ca. 5 (FAN) and 23 (KREEP-rich), while their U/W shows the 

largest range amongst all samples, with values approaching zero for FAN and as 

high as 3.5 for the KREEP-rich rocks. 

 

Figure 6.1 - New U/W vs. Hf/W data measured in lunar samples compared to 

crystallization and melting models for the LMO28. Measured compositions of 

lunar highland breccias straddle mixing lines between a KREEP-enriched end-

member24 and Ferroan anorthosite compositions as determined in this study. 
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Contamination with meteoritic components rich in W produces virtually identical 

trajectories and raises the absolute W content as evident in sample 65015. Apollo 

17 high-Ti mare basalts: The source mineral assemblage is defined by a mixture of 

LMO cumulates whose proportions provide a compositional match to the Hf and 

Nd isotope systematics of Apollo 17 mare basalts24-26,28. Low-Ti mare basalts: 

Melting models following the same principle would result in compositions 

identical to our data for degrees of melting >10% because residual source 

components that preferentially incorporate W over Hf or W are absent. 

 

6.4.0 Discussion 

 Several key observations can be derived from our high precision W-U-

Th-HFSE data. For example, when combined, the FAN and KREEP-rich rocks 

form a clear linear array in Hf/W vs. U/W space (Fig. 1). This array can directly 

be linked to early lunar crust formation, i.e., likely the result of mixing between 

a FAN end-member that has exceedingly low Hf/W and U/W, and a KREEP-like 

component having elevated U/W and a Hf/W of around 20 (i.e., lower than 

both bulk silicate Moon and Earth’s mantle (grey lines in Figure 1). Interestingly, 

our results for these KREEP-rich samples corroborate previously modelled U/W 

and Hf/W values for KREEP using a fO2-sensitive set of partition coefficients 

(Fonseca et al., 2014), which predicted that KREEP has an elevated U/W and a 

lower Hf/W value than the bulk silicate Moon depending on fO2. Our data thus 

show that the LMO crystallization model (Snyder et al., 1992), as well as the 

mineral/melt partitioning data (Rizo et al., 2016; Willbold et al., 2011) used here, 

are sufficiently robust for mass balancing these elements. 

 Our new results for lunar mare basalts have the best potential to 

constrain the Hf/W of the silicate Moon. In defining which lunar mantle 

reservoirs of LMO cumulates were involved in the genesis of mare basalts, 

radiogenic Hf-Nd isotope data are the most powerful proxies to constrain their 
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source mineral assemblages (Sprung et al., 2013). If applied to the mare basalt 

groups investigated in this study, these source mineral assemblages allow us to 

model the geochemical relation between basalt and mantle compositions for 

trace elements of interest. For example, Hf-Nd isotope data can clearly identify 

late-crystallizing mare basalt sources comprising Ti-rich oxide phases and 

clinopyroxene, a characteristic that is absent from low-Ti mare basalt source 

regions (Sprung et al., 2013). Even at the low fO2 of the lunar mantle, such oxide 

phases and clinopyroxene preferentially incorporate Hf over W and U (Leitzke 

et al., 2016; Dygert et al., 2013). Moreover, the mantle source of the Apollo 17 

high-Ti mare basalts is the most likely lunar mantle source to contain residual 

metal during partial melting, owing to its reduced nature (Fonseca et al., 2014; 

Leitzke et al., 2016). Residual metal in lunar mantle sources would undoubtedly 

retain W and not Hf, and thus generate higher Hf/W in co-existing mare basalts. 

When modelling high-Ti mare basalts with small fractions of residual metal, the 

high-Ti samples that exhibit the highest Hf/W in our sample suite are perfectly 

reproduced (see melting curves shown in red in Figure 1). The extreme Hf/W 

displayed by Apollo 17 high-Ti mare basalts, and their co-variation with U/W 

(Figure 1), and therefore directly reflect the combined effects of residual Ti-rich 

oxides, pyroxene, and metal in the mantle sources of Apollo 17 high-Ti basalts. 

An unfortunate consequence of this feature is that any inferred U-W-Hf 

systematics strongly depend on the degree of partial melting that is not well 

constrained for Apollo 17 basalts. Thus, Apollo 17 high-Ti mare basalts cannot 

be used to infer the Hf/W of the bulk silicate Moon, as done previously (Kruijer 

and Kleine, 2017).  

In contrast to the mantle sources of previously discussed sample types, those of 

low-Ti mare basalts are straightforward to model, as these are not overprinted 

by KREEP components and are essentially devoid of both Ti-rich oxides and 

metal (Sprung et al., 2013). Thus, incompatible element ratios in low-Ti basalts 

are far more likely to mirror their lunar mantle sources, as their sources lack 
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phases that fractionate W from U, Th, or HFSE significantly. Moreover, low-Ti 

basalts are thought to result from higher-degrees of partial melting compared 

to high-Ti basalts (Day et al., 2007; Day et al., 2008; Day and Walker, 2015; 

Wade and Wood, 2005), and the U/W and Hf/W measured in these basalts 

should be virtually identical to those in their respective sources. Interestingly, 

there are clearly resolvable differences between the different groups of low-Ti 

basalt samples (Figure 1). This heterogeneity in Hf/W and U/W values in 

distinct low-Ti mantle sources is in perfect agreement with the isotopic 

heterogeneity documented by previously published Hf-Nd isotope data (Sprung 

et al., 2013). Moreover, these variations in Hf/W and U/W observed in our lunar 

samples are consistent with previous experimental studies that predict that W 

is less incompatible than Hf during LMO crystallization and partial melting of 

lunar mantle cumulates (Fonseca et al., 2014; Leitzke et al., 2016). 

 Importantly, the mafic cumulates that comprise the mantle sources of 

low-Ti basalts are expected to retain W over Hf and U during LMO 

crystallization at reducing conditions (crystal/silicate melt partitioning values 

shown in ). Therefore, the LMO cumulates, and by inference, the measured 

Hf/W of low-Ti lunar mantle sources (30.2 to 48.7) record minimum estimates 

of the Hf/W in the bulk LMO as well as of the silicate Moon. Altogether, our 

data therefore clearly show that the Hf/W of the silicate Moon must lie between 

30 and 50, which is clearly higher than the value estimated for the BSE (25.8) 

(Münker, 2010).  

 In summary, low-Ti mare basalt have been shown above to allow the most 

reliable estimates of Hf/W in the lunar mantle, and the Hf/W of the lunar 

mantle can be clearly shown to be resolvably higher than that of Earth’s mantle. 

There are three scenarios illustrated in Figure 2 that can explain this feature:  
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Figure 6.2 - Possible scenarios to account for the higher Hf/W ratio of the Bulk 

Silicate Moon (BSM). (a) Conventional model, where a late veneer of chondritic 

material (Hf/W~1) lowers the Hf/W of silicate Earth from ca. 30-50 to 25.6 after 
182Hf became extinct, but the Moon is less affected and preserves its original 

Hf/W. (b) The Moon forming event takes place while Earth’s core is still forming 

and 182Hf is extant. Increasingly oxidised conditions in silicate Earth lowered its 
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Hf/W after Moon formation. (c) The formation of a small lunar core took place 

while 182Hf was still extant, and W was scavenged from the BSM increasing its 

Hf/W. In models (b) and (c), formation of the Moon must have occurred during 

the lifetime of 182Hf, i.e., within the first 60 Myrs after solar system formation. 

 A first, traditional scenario (Fig. 2a) explains the different Hf/W by 

variable proportions of added late veneer. It has been suggested by several 

studies (Kruijer et al., 2015; Kruijer and Kleine, 2017; Touboul et al., 2015) that 

the Moon received a considerably lower proportion of late veneer than the BSE. 

The lower ε182W and Hf/W of the BSE are then explained by the addition of a 

higher amount of unradiogenic W through late accretion to Earth than to the 

Moon. In a second scenario (Fig. 2b), the Moon forming event could have taken 

place amidst ongoing terrestrial core formation, when 182Hf was still present. If 

the Moon formed that early, core formation has certainly been taking place at 

more reducing conditions than during its final stages (Wade and Wood, 2005; 

Wood et al., 2006). Under such more reducing conditions, the Hf/W of BSE at 

the time of the giant impact would have been higher than at present, because 

W would have been more efficiently extracted into the growing core (Wade and 

Wood). This model obviates the need for late accretion to explain the lunar 

excess in ε182W, because the Moon preserved a higher Hf/W than the silicate 

Earth, leading to less radiogenic ε182W in the BSE and more radiogenic ε182W in 

the silicate Moon. In the third scenario (Fig. 2c), core formation in the Moon 

could have scavenged sufficient W into the lunar core to elevate the Hf/W of 

BSM to its higher present-day value. This process has been invoked previously, 

for example, to explain the depletion of Cr (Walter et al., 2000) as well as that 

of other siderophile elements in the lunar mantle (Steenstra et al., 2016). If the 

lunar core, and by inference the Moon, formed while the Hf-W system was 

extant, the silicate Moon would inevitably develop 182W higher than the present 

day terrestrial value. Collectively, the two last scenarios imply that late accretion 
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was either of no consequence to the W budget and isotope composition of the 

silicate Moon, or that it was contemporaneous to the Moon forming event. 

 A simple strategy to further evaluate the three models described above is 

to test the simplest hypothesis to explain why the Hf/W of the silicate Moon is 

higher than that of BSE, i.e., lunar core formation (model III). If lunar core 

formation will raise the Hf/W of the silicate Moon to values as high as those 

shown here (i.e., 30-50), then the first two hypotheses are potentially 

superfluous. While there is plenty of evidence that the Moon has a small core, 

its exact composition and formation conditions are not well understood. 

However, the mass of the lunar core is much better constrained. Based on a 

recent re-evaluation of lunar seismic data (Garcia et al., 2011, Khan et al., 2013, 

Weber et al., 2011) the lunar core comprises 1-3 % of the total mass of the Moon. 

The question remains whether such a small core could have scavenged sufficient 

W to shift the Hf/W of the silicate Moon to values as high as reported here. A 

simple mass balance (Rai and Van Westrenen, 2014) can be made to model the 

Hf/W of the silicate Moon after lunar core formation. This model assumes that 

Hf is perfectly lithophile, and that its abundance in the bulk Moon and the BSE 

are identical. The Hf-W contents of the modelled silicate Moon can be 

calculated assuming closed-system core formation, over a range of realistic 

𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 (15-100), initial Hf/W of BSE (25.8), and different core mass 

fractions (1-3 %). The results of the modelling are depicted in Figure 3, showing 

that that lunar core formation can indeed reproduce the range of Hf/W of the 

lunar mantle if one assumes 𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 higher than 60, and a core mass 

fraction of at least 1.5%, i.e., in line with recent estimates37-39. A more massive 

core (3% mass fraction), would permit smaller 𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 (ca. 30) to reproduce 

the Hf/W range of 30-50 reported here. It is thus clear from the results of this 

model that lunar core formation can viably generate the Hf/W of BSM using 
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realistic values of 𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 and core mass fractions (Rai and Van Westrenen, 

2014). 

 

Figure 6.3 - The effect of lunar core formation on the Hf/W of the Silicate Moon. 

The models assume different metal–silicate partition coefficients for W 

(𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 between 15–100), and different mass fractions of the lunar core (1–

3%). The initial Hf/W of the Bulk Moon is assumed to be the same as that of the 

Bulk Silicate Earth. The lunar Hf/W value is reached with 𝐷𝑊
𝑐𝑜𝑟𝑒/𝑚𝑎𝑛𝑡𝑙𝑒 values 

between 30 and 60, and core mass fractions between 1 to 3% of the mass of the 

Moon. 
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6.5.0 Conclusions 

 In conclusion, we prefer a simple model, wherein the difference in Hf/W 

between the silicate Moon and the silicate Earth is the result of lunar core 

formation. Figure 4 illustrates variations of lunar 182W systematics as a function 

of Hf/W and age. The range of Hf/W measured in our study, combined with 

recent estimates for the lunar ε182W requires lunar differentiation to have 

occurred between 40.5 and ca. 60 Myrs after solar system formation. We can 

thus unambiguously explain the 182W excess in lunar samples as being the 

consequence of in-situ decay of 182Hf to 182W. The combination of a robust set 

of experimental partitioning data with high precision HFSE analysis is thus in 

favour of an “old Moon,” while simultaneously diminishing the role of late 

accretion in creating the ε182W signature of the Moon. In addition to helping 

settle the ongoing strife between “old” and “new” Moon scenarios, this method 

can also be used to unravel formation timescales of other planetary bodies, 

being of key importance to future sample return missions. 
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Figure 6.4 - Tungsten isotope composition (as ε182W) of the silicate Moon, 

modelled as a function of its Hf/W and formation age in comparison to the range 

of Hf/W in low-Ti mare basalts. The intersection with the mean reported pre-

exposure ε182W of the BSM provides the age at which the Moon must have formed 

to explain its ε182W difference to Earth by in-situ decay of 182Hf. 
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Element Olivine Orthopyroxene Clinopyroxine Pigeonite Plagioclase Ilmenite

W 5.0E-03 5.9E-03 4.7E-02 5.9E-03 5.9E-04 7.5E-02
Nb 8.1E-05 1.3E-03 1.4E-03 1.3E-03 3.4E-04 5.9E-01
Ta 5.4E-05 7.6E-04 9.9E-04 7.6E-04 2.5E-04 9.9E-01
Zr 3.3E-04 1.6E-03 1.0E-02 1.6E-03 3.6E-04 3.0E-01
Hf 3.9E-04 5.0E-03 2.4E-02 5.0E-03 2.2E-04 4.1E-01
U 1.3E-05 5.1E-04 1.3E-03 5.0E-04 4.2E-04 3.9E-03
Th 4.0E-06 2.6E-05 1.3E-03 2.6E-05 1.9E-04 6.0E-04

The partition coefficients used for trace element modeling. Note that partition coefficients 
for W are always higher than Hf in the relevant mineral constituents of low-Ti mare basalt 

Table 6.2: Selected crystal/silicate melt partition coefficients
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Appendix 1.0 Lunar Samples Gallery 
 

 

 

 

 

 

 

 

Looking at these stars suddenly dwarfed my own troubles  

and all the gravities of terrestrial life.  

 

The Time Machine 

  

By H.G. Wells 

1895 
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A1.1 Apollo 11 

Sources for mineralogical percents listed with each sample. Each picture is 
scaled to 3cm as the size from first to last digit of the sample numbers (8 digits)

 

 

 

 

 

 

 

 

 

 

Sample 10017.395 

Type: Fine-grained, vesicular, 
ilmenite basalt. Grains vary from 
fine to medium sized.  

Minerals: clinopyroxene (51%), 
plagioclase (21.5%), and ilmenite 
(20.2%), Mesostasis (6.1%). 

Source: Kushiro & Nakamura, 1970 

 

 

Sample 10020.250:  

Type: Fine grained ilmenite basalt. 

Minerals: Pyroxene (54.8%), 
Olivine (4.8%), Plagioclase (21.4%), 
Ilmenite (17%), Glass Silicate (0.9%) 

Source: Haggerty et al. 1970 

 

 

Sample 10057.279 

Type: Fine grained imenite basalt 

Minerals: Pyroxene (50.8%), 
Plagioclase (24%), Opaques 
(15.5%), Cristobalite (1.05%), 
Mesostasis (8.04%) 

Source: Beaty & Albee 1978 
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A1.2 Apollo 12 

 

 

 

 

 

 

 

Sample 12004.163 

Type: Porphyritic olivine basalt. 

Minerals: Olivine (12.5%), 
Pyroxxene (63.6%), Plagioclase 
(14.4%, Ilmenite (9.1%), Mesostasis 
(3%) 

Source: Papike et al. 1976 

 

 

Sample 12022.333 

Type: Ilmenite basalt 

Minerals: Olivine (19.5%), 
Pyroxene (56%), Plagioclase 
(12.2%), Opaques (9%), Mesostasis 
(2.3%) 

Source: Neal et al. 1994 

 

 

Sample 12051.244 

Type: Medium-grained subophitic 
ilmenite basalt 

Minerals: Pyroxene (60.4%), 
Plagioclase (30.7%), Ilmenite 
(5.3%), Chrom+usp (1.4%), 
mesostasis (1.2%) 

Source: Neal et al. 1994 
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Sample 12053.285 

Type: Porphyritic pigeonite basalt 

Minerals: Pyroxene (67.1%), 
Plagioclase (21.1%), Ilmenite (3.9%), 
Chrom+usp (1.6%), mesostasis 
(4.6%) 

Source: Neal et al. 1994 

 

 

Sample 12054.143 

Type: Medium-grained ilmenite 
basalt 

Minerals: Olivine (10.8%), 
Pyroxene (62.1%), Plagioclase 
(27.9%), Ilmenite (5.2%), Chromite 
(2%), Mesostasis (2%) 

Source: Neal et al. 1994 

 

 

 

Sample 12063.337 

Type: Ilmenite bearing medium-
grained porphyritic olivine, 
pyroxene basalt 

Minerals: Olivine (2.8%), Pyroxene 
(64.6%), Plagioclase (21.6%), 
Ilmenite (4.6%), chrom+usp (3.4%), 
mesostasis (2.5%) 

Source: Neal et al. 1994 
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A1.3 Apollo 13 

No samples returned. 

A1.4 Apollo 14 

 

 

 

 

 

 

 

Sample 14163.945 

Type: Bulk soil sample 

Soil Content: Agglutinates 
(45.7%), Basalt (2.8%), Breccia 
(31%), Anorthosite (2.9%), 
Plagioclase (5.1%), Pyroxene (2.6%), 
Glass (10%) 

Source: Simon et al. 1981 

 

 

Sample 14305.674 

Type: Crystalline matrix breccia 

Composition: Seriate matrix with 
30% lithic clasts, including olivine 
gabbronorite, VHK basalt, 
ferrobasalt 

Source: Taylor et al. 1983 

 

Sample 14310.689 

Type: KREEP rich feldspathic basalt 

Minerals: Plagioclase (68%), 
Pyroxene (31%), Opaque (0.5%), 
Mesostasis (0.5%) 

Source: Carlson et al. 1978 
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A1.5 Apollo 15 

 

 

 

 

 

 

Sample 15058.302 

Type: Pigeonite basalt 

Minerals: Olivine (1.8%), Pyroxene 
(66.3%), Plagioclase (27.1%), 
Opaques (2.8%), Silica (2.1%) 

Source: Rhodes & Hubbar 1973 

 

 

 

Sample 15065.189 

Type: Coarse-grained gabbroic 
basalt 

Minerals: Olivine (1.3%), Pyroxene 
(63%), Plagioclase (31.6%), Opaques 
(2.2%), Silica (1.9%) 

Source: Longhi et al. 1972 

 

 

 

Sample 15495.209 

Type: Vuggy porphyritic pigeonite 
basalt 

Minerals: Pyroxene (60%), 
Plagioclase (40%) 

Source: Butler 1971 

 

 

 



 

 
125 

 

 

 

 

 

 

Sample 15545.103 

Type: Olivine-normative basalt 

Mineralogy: Olivine (8.2%), 
Pyroxene (61.4%), Plagioclase 
(23.5%), Ilmenite (6%), Silica 
(0.5%) 

Source: Papike et al. 1976 

 

 

 

Sample 15555.1070 

Type: Olivine-normative basalt 

Mineralogy: Olivine (12.1%), 
Pyroxene (52.4%), Plagioclase 
(30.4%), Opaques (2.7%), 
Mesostasis (2.3%) 

Source: Longhi et al. 1972 

 

 

Sample 15556.250 

Type: Vesicular olivine-normative 
basalt 

Mineralogy: Olivine (0.1%), 
Pyroxene (57%), Plagioclase (38%), 
Ilmenite (2%), Spinel (1%), 
Mesostasis (1%), Silica (1%) 

Source: McGee et al. 1979 
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A1.6 Apollo 16 

 

 

 

 

 

 

 

Sample 60025.917 

Type: Coarse-grained cataclastic 
anorthosite 

Mineralogy: Plagioclase (74%), 
Olivine (20%), Orthopyroxene 
(5%), Augite (1%), Chromite 
(0.05%), Ilmenite (0.02%) 

Source: James et al. 1991 

 

 

 

Sample 65015.295 

Type: KREEP rich poikilitic impact 
melt breccia 

Mineralogy: Plagioclase (61%), 
Low-Ca pyroxene (29%), High-Ca 
pyroxene (6%), Olivine (1%), 
Opaques (3%) 

Source: Simonds et al. 1973 

 

 

 

Sample 670175.31 

Type: Friable ferroan anorthosite 

Mineralogy: Plagioclase (99%), 
Pyroxene (1%) 

Source: Steele & Smith 1973 
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A1.7 Apollo 17 

 

 

 

Sample 68115.297 

Type: Polymict breccia 

Description: Sample is dominated 
by flow-banded glass. It is largely 
composed of impact melts, with 
large varieties of recrystallized 
textures. Inclusions are plagioclase 
dominated 

Source: Ryder & Norman 1980 

 

 

 

Sample 72275.629 

Type: Feldspathic breccia with 
aphanitic matrix 

Description: Sample is 
approximately 60% light porous 
matrix and 40% clasts. Clasts are 
primarily aphanitic microbreccia. 

Source: Lunar Sample 
compendium 

 

 

Sample 73275.93 

Type: Impact melt breccia  

Description: Sample is a 
micropoikilitic impact melt breccia 
with minor vesicularity 

Source: Lunar Sample 
compendium 
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Sample 74255.215 

Type: Vesicular porphyritic coarse-
grained ilmenite bearing basalt 

Mineralogy: Olivine (3.2%), 
Pyroxene (48.6%), Opaques 
(38.6%), Plagioclase (18%), 
Mesostasis (1.8%) 

Source: Brown et al. 1975 

 

 

Sample 74275.349 

Type: Fine-grained high-Ti mare 
basalt with significant armalcolite 

Mineralogy: Olivine (13%), 
Pyroxene (36%), Opaques (31%), 
Plagioclase (19%) 

Source: Brown et al. 1975 

 

 

 

Sample 75035.240 

Type: Ilmenite basalt, representing 
a lava flow 

Mineralogy: Pyroxene (45.4%), 
Plagioclase (32.7%), Ilmenite 
(13.8%), Silica (6.2%), Mesostasis 
(1.9%) 

Source: Brown et al. 1975 
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Sample 79035.190 

Type: Regolith breccia, potentially 
contaminated by terrestrial 
moisture 

Mineralogy: Agglutinate (33%), 
Breccia (2%), Mare lithics (14%), 
Highland lithics (10%), Mineral 
fragments (25%) 

Source: Simon et al. 1990 

 

 

Sample 79135.173 

Type: Regolith breccia 

Mineralogy: Agglutinate (14%), 
Breccia (2%), Mare lithics (4%), 
Highland lithics (8%), Mineral 
fragments (33%) 

Source: Simon et al. 1990 

 

 

 

 

 

 

 

 

 

 



 

 
130 
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