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Abstract
The wind and solar energy sector relies on skillful Numerical Weather Prediction
(NWPs) models to operate the power transmission grid resiliently. Moreover, accurate
weather predictions are important for scheduling industrial power plants, but also
for price fixing the energy stock market. One of the decisive factors for forecast skills
is the quality of the initial state of the model, which may help to avoid or mitigate
gross prediction failures repeatedly occurring during specific weather situations.
Through data assimilation, the best estimate of the atmospheric state is given by
a combination of the forecasting model with observations, where the selection of
measurements by type, location, and time in terms of their information value is
essential. A monitoring tool, capable to quantitatively measure the capabilities of the
observation network on the short-term forecast error is implemented and evaluated
in this study for energy-meteorology applications.

The focus is placed on cases with exceptionally large prediction errors of solar
and wind power, that challenge the weather centers and the Transmission System
Operators (TSOs). To fulfill this request, a fortnight 01.-15.08.2014 that includes
an exceptionally large error event on 09.08.2014 was selected. A satellite versus
ground-based observation network configuration was chosen and a ranking list of the
most beneficial observations was calculated. The Infrared Atmospheric Sounding
Interferometer (IASI) onboard the Meteorological Operational Satellite (MetOp), as
a precursor of a future sensor in a geostationary orbit, was evaluated against the
classical Surface Synoptic Observations (SYNOP).

In terms of number of radiance channels per pixel, the bulk IASI data were found
to contribute twice as much to the value of the forecasts in the case study compared
to the SYNOP observations. Despite this, the normalized by number of observations
results showed the SYNOP observations to be qualitatively superior. Especially the
assimilation of the wind components were dominating the intraday forecast error
reduction. The introduction in the assimilation of nine IASI water vapor channels
added value to the model’s forecasts, in contrast to synoptic humidity observations.
The evaluation of the impact results per synoptic station location and IASI channel
revealed both the most and least beneficial stations and channels.

With this method potentially all the observations for which data assimilation
is prepared to assimilate, can be evaluated and models can be configured with the
most favorable observations.





Kurzzusammenfassung
Die Wind und Solarenergieindustrie ist auf verlässliche Wettervorhersagemodelle
angewiesen, um Übertragungsnetze sicher zu betreiben. Ferner sind genaue Wetter-
vorhersagen wichtig, um Kraftwerkseinsätze effizient zu planen und am Energiemarkt
realistische Preisbildung zu gewährleisten. Eine der entscheidenden Vorbedingun-
gen guter Wettervorhersagen ist die Güte der Anfangswerte des Modells, die dazu
beiträgt, Fälle schwerer Fehlvorhersagen zu vermeiden, die bei schwierigen Wetter-
lagen auftreten können. Durch Datenassimilation ist eine optimale Schätzung des
atmosphärischen Zustandes möglich, indem eine geeignete Kombination des Modells
mit Beobachtungen vorgenommen wird. Das Verfahren, der Ort und die Zeit der
Beobachtungen sind dabei wesentlich für die Güte.

In dieser Studie wird ein Auswerteverfahren eingerichtet und angewandt, welches
in der Lage ist, die Güte von Beobachtungsnetzwerken und ihrer Messungen für
energiemeteorologische Anwendungen quantitativ zu bewerten. Der Schwerpunkt
liegt hierbei auf einer Analyse von größeren Fehlvorhersagen von Solar- und Winden-
ergie, die Übertragungsnetzbetreiber aus einer Kombination von Wettervorhersagen
ermittelt hatten. Dabei wurde eine zweiwöchige Episode vom 01. bis 15.8.2014
ausgewertet, die eine außergewöhnlich grobe Fehlvorhersage am 9.8.2014 enthält.
Hierzu wurde eine Kombination von Satellitendaten mit Bodenstationen ausgewertet
und eine Bewertung der Beobachtungstypen nach ihrem Wert für eine Vorhersage-
verbesserung durchgeführt. Das Infrared Atmospheric Sounding Interferometer (IASI)
auf die Meteorologischer Operationssatellit (MetOp) wurde gegen klassische Boden-
beobachtungen evaluiert.

Es wurde festgestellt, dass die IASI-Massendaten in Bezug auf die Anzahl der
Strahlungskanäle pro Pixel doppelt so viel zum Wert der Prognosen in der Fallstudie
beitragen wie die SYNOP-Beobachtungen. Trotzdem zeigten die nach Anzahl der
Beobachtungen normalisierten Ergebnisse, dass die SYNOP-Beobachtungen qualitativ
überlegen waren. Insbesondere erwies sich die Assimilation von Windkomponenten-
daten als besonders wertvoll, die Vorhersagefehler innerhalb einer Tagesvorhersage
zu reduzieren. Die zusätzliche Nutzung von neun IASI-Wasserdampfkanälen für die
Assimilation erwies sich den synoptischen Feuchtebeobachtungen überlegen.

Die Auswertung der Beobachtungswirkung individueller Messungen oder Kanäle
kann mit dem hier entwickelten Verfahren besonders günstige oder ungünstige Beo-
bachtungskonfigurationen ermitteln, und zu möglichst effizienten Beobachtungsnetzen
insbesondere auch für energiemeteorologische Awendungen führen.
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Chapter 1

Introduction

With a target of supplying 27% share of energy consumption from renewable sources
by 2030 (European Parliament [2014]), the research field of energy meteorology,
comprising wind and solar energy, is flourishing. Accurate short-term wind and solar
power forecasts are vital for maintaining power grid stability, scheduling the power
plants but also for the energy stock market (Kleissl [2013]). The day-ahead solar and
wind power forecasts are typically provided by NWPs, which simulate the physical
processes of the atmosphere based on the primitive equations.

The key to the accurate day-ahead solar and wind power forecasts lies in the
performance of the NWPs. Some of the main drivers of the performance are the
measurements availability for the initial state, the physical parameterizations and
the computational resources to compute with high spatial resolutions (Kleissl [2013]).
Finding the optimal way to initialize a model brings into focus the research field of
data assimilation. Data assimilation is the technique that combines observations
and NWPs along with their corresponding errors to provide the best estimate of the
atmospheric state, called the analysis (Kalnay [2003]). The analysis can be used
in various ways, including initialization, studying the climate through reanalyses,
examining individual components of the existing observation network by conducting
Observation System Experiments (OSEs), and predicting the potential impact of
new components of the observation network via Observation System Simulation
Experiments (OSSEs) (Barker et al. [2003]).

Energy meteorology and data assimilation can be combined in an fruitful way
for optimal observation network configuration, in terms of wind and solar power
generated energy prediction. In particular, the information gain by the different
types of assimilated observations can be assessed and monitored with the help of
well defined properties of the assimilation system. The relative impact of the ob-
servation network on the short-term forecast can then be investigated in terms of
spatio-temporal configuration.

In the frame of data assimilation, the impact of observation data sets on the
quality of the forecast is traditionally estimated by the OSEs. These experiments
demand the removal of subsets of observations from a data assimilation system and
the resulting forecast is compared against a control set that includes all observations
(Daley [1993]). But, because of their computational expense, they usually involve
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only a small number of independent experiments (Gelaro and Zhu [2009]). In recent
years a new algorithm relying on the adjoint (i.e. mathematical transpose) properties
of the data assimilation system has been developed and measures the response of
the forecast error to all perturbations, including all available observations in the
experiment. This algorithm does not only include all the observations in the system,
leaving the gain matrix untouched (Cardinali [2009]) but is also computationally
cheap, allowing a monitoring aspect of the performance of the observation network
relative to weather conditions. This advanced and sophisticated tool for estimating
the data impact on the forecasting system is called Forecast Sensitivity to Obser-
vations (FSO)(Langland and Baker [2004]). FSO answers the question where and
which observations should be placed (by the sensitivity gradients) and how much
each observation (by variable or by instrument) has contributed to improve the
forecast. The latter can be viewed as complementing the OSEs and the answer to
the former falls in the targeted observations research.

The concept of targeted observations addresses the question of identifying in
advance, regions where additional observations would improve the forecast. For
instance, Langland et al. [1999] assessed the impact of observations placed in real
time in regions identified apriori, as target regions, by the most rapidly growing
singular vectors (SVs) of the linearized model in the context of the Fronts and
Atlantic Storm-Track EXperiment (FASTEX) during January and February of 1997.
They employed dropsonde and satellite wind data on the sensitive locations and
demonstrated improved 24 hour forecast skill with this technique. More specific,
the SV method defines a matrix problem, consisting of the tangent and the adjoint
model (transpose of the linearized forecast model) along with a scaling matrix, which
is usually an energy norm (Baker and Daley [2000]). The SVs of the adjoint model
maximize the growth of the perturbation energy. Studies of Gelaro et al. [1998] and
Palmer et al. [1998] supported the applicability of the total energy norm for studying
the atmospheric predictability within the time scales of NWPs. They demonstrated
this by showing that the spectra of singular values are dominant in the wavenumber
band for which the analysis error variance is relative small (Palmer et al. [1998]).
The SVs approach for the targeted observations is based on the fact that corrections
to initial conditions of the forecasts, result in improved forecast skills (Rabier et al.
[1996]). The success of the SVs is attributed to the fraction of the analysis error that
projects into the leading SVs. The growth of this component of the analysis error
can dominate the forecast error (Gelaro et al. [1999]). Both the SV and the adjoint
sensitivity method are related in a mathematical sense. Analyzing the FASTEX
campaign they pinpointed to similar sensitive areas.

Following the introduction of the FSO tool, many weather centers have extended
their data assimilation systems by FSO to estimate the distinct value of various data
sets on the short term forecast. For example, the Naval Research Laboratory and
National Aeronautics and Space Administration/Global Modeling and assimilation
Office (NASA/GMAO) have adopted the scheme on an operational basis to monitor
the observation network assimilated in their models (Kalnay et al. [2012]).
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Langland and Baker [2004], calculated the 24 hour global forecast error of the
Navy Operational Global Atmospheric Prediction System (NOGAPS) during June
and December 2002. They used the Naval Research Laboratory (NRL) Atmospheric
Variational Data Assimilation (NAVDAS) system to perform the 3 Dimensional
Variational Assimilation (3DVAR) of space borne observations (e.g. from the Geo-
stationary Operational Environmental Satellite (GOES) and the Advanced TIROS
Operational Vertical Sounder (ATOVS)) as well as surface data from ships, buoys
and other in-situ devices. It was found that 60% of the global error reduction was
due to observations below 500 hPa and they revealed a strong correlation between
observation impact and cloud cover at observation location. For instance, in locations
with 80 % cloud cover the impact of rawinsonde temperature observation was found
to be 1,5 times larger than in locations with 20 % cloud cover. Two explanations
were given for this finding, the first one referring to the study of McNally [2002]
claiming cloudy regions to be more sensitive to analysis errors and the second one
arguing that in cloudy regions fewer observation are available for assimilation (e.q
due to quality control) and thus are given more weight in the assimilation procedure.
These findings support the concept of adding information (i.e observations) into
cloudy regions could be a means to improve the forecast skill.

Joo et al. [2013], studied the value of space borne observations on the 24 hour
forecast using the FSO scheme, adapted for the Met Office global NWP model
and the 4 Dimensional Variational Assimilation (4DVAR) assimilation system. The
experiment was conducted from 22.08. to 29.09 2010. Compared to ground based
observations, satellite data were found to account for 64 % of the forecast error
reduction. Moreover microwave and hyperspectral infrared soundings had the largest
total impacts. For satellite platforms, MetOp-A had the largest impact. This was
attributed to four sensors: IASI (Infrared Atmospheric Sounding Interferometer),
GNSS (Global Navigation Satellite System), Global Receiver for Atmospheric Sound-
ing (GRAS) and the Advanced Scatterometer (ASCAT). A major source of forecast
improvement from a ground based observations type were the assimilated Meteoro-
logical Aerodrome Reports (METAR) (Joo et al. [2013]). The study did not account
for varying atmospheric conditions but concluded that FSO can be exploited in this
manner.

Jung et al. [2013], applied the FSO scheme in East Asia and the western Pacific
for the 2008 typhoon season (16.08. - 01.10.2008). They were the first to examine the
capability of the scheme in the limited area Weather Research and Forecasting (WRF)
model and the sensitivity to the error covariance parameters. They used the 3DVAR
assimilation system with a 45 kilometer resolution, and calculated the 6-hour forecast
impact from different types of observations including ground based synoptic reports
and satellite observations like the Advanced Microwave Sounding Unit-A (AMSU-A),
but no infrared observations. They discovered that for this application the fraction
of beneficial observations was higher (60 % -70 % of observation were beneficial) than
reported in previous studies and that in the ranking list, the synoptic reports were
the most beneficial after the satellite AMSU-A observations. The impact of satellite
measured temperature brightness was found to be one order of magnitude greater
than the one from conventional observations, as the magnitude is also proportional
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to the observation number. As for the conventional observations, in agreement with
the World Meteorological Organization (WMO) Andersson [2008], the impact of
momentum variables was found to be greater than those of moisture and mass. Their
results were also evaluated successfully with OSEs.

This study aims to apply and evaluate the FSO algorithm for the specific needs
of energy meteorology, where skillful short-term forecasts are vital. Emphasis should
be placed for episodes of exceptionally poor predictability. That is for cases where
even weather centers collectively produced erroneous forecasts, which resulted in grid
management difficulties and ruined power trading revenues. A ranking list of the most
valuable assimilated observations for the short-term forecast should be identified,
indicating the values of observation types and individual measurements. For the
satellite data, particular attention should be given to sensors that are expected to
play a leading role in the future. This request leads to the evaluation of IASI, onboard
MetOp, serving as a precursor to the Infrared Sounder (IRS) on MeteoSat Third
Generation (MTG) (EUMETSAT [2019]). The classical in-situ synoptic reports,
should be evaluated against the prominent satellite data.

The formulation of the algorithm is described in Chapter 2. In Chapter 3, the
NWP model and the radiative transfer model utilized for this study are presented.
The configuration of the experiment, including experiment set-up and information on
the examined observations are given in Chapter 4. Next, the aggregated results for
the examined time span, the OSE experiments and the focus on low solar and wind
power predictability days are given in Chapter 5. The conclusions and discussion of
the results are presented in Chapter 6.



Chapter 2

Formulation of Forecast Sensitivity
to Observations

Forecast Sensitivity to Observations (FSO) is an adjoint based technique that allows
the calculation of the observations impact on the assimilation result, commonly
termed analysis, at each distinct assimilation cycle. Subsequently, an analysis
as defined in section (Section 3.1) is calculated first. The goal of FSO is then to
quantitatively measure the forecast error reduction caused by each distinct observation
or observation type. The configuration of FSO is depicted on Fig. 2.1, where a
3DVAR analysis is calculated at time t0. In the next paragraphs, FSO will be
formulated (Langland and Baker [2004]) by unraveling this configuration, to end up
with the core of the FSO equation.
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Figure 2.1: Schematic of FSO. Two forecasts, (xf (t(0−6),t(0+∆t)), xa
(t0,t(0+∆t))), are initiated

with a difference of six hours and evaluated at verification time after six hours (t0+∆t).
The error measure is defined upon verification time as the difference of the two forecasts
from the reference analysis xt(t0+∆t).
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After the assimilation is performed at t0, two forecasts are initiated: one starting
from the analysis time and an other one from a model run initiated at t0−6. Both
end at t0+∆t. The forecast starting at t0−6, serves as background information for
the assimilation at t0. This means that at t0+∆t, the only difference between the
two forecasts is the information gained from the observations, which are included in
the forecast initiated from the analysis.

At this time step (t0+∆t), an overall scalar forecast error e has to be defined for
which the impact of observations will be calculated. The dry total energy norm, in
units of J/Kg,

e = 1
2

∫∫∫
Σ

[u′2 + v′2 + ( g
N Θ

)2Θ′2 + ( 1
ρcs

)2p′2] dΣ (2.1)

is a suitable and commonly used choice as it consists of the most relevant model
variables (namely wind speed, temperature and pressure) (Rabier et al. [1996]). The
energy norm is used to calculate the forecast error cost function or forecast response.
It allows the comparison of different types of measurements and physical parameters
as wind and temperature by one scale. The first part of (Eq. (2.1)) specifies the
kinetic energy and the second the available potential energy. More specific, u′, v′,
Θ′, p′ are perturbations of zonal wind, meridional wind, potential temperature and
pressure, respectively. The coefficients are, Θ which is the potential temperature, ρ
is the density, cs is the speed of sound and N denotes the Brunt-Vaisala frequency.
The dΣ denotes the integration over the domain’s three dimensions x,y and z.

Then, two cost functions Jt0+∆t
a and Jt0+∆t

f that measure the contribution to the
forecast errors et0+∆t

a and et0+∆t
f from the two forecasts xa

(t0,t(0+∆t)), xf
(t(0−6),t(0+∆t))

are defined as,
Jt0+∆t

a = 1
2

et0+∆t
a (2.2)

Jt0+∆t
f = 1

2
et0+∆t

f (2.3)

where,
et0+∆t

a = (x(t0,t0+∆t)
a − xt0+∆t

t )TC(x(t0,t0+∆t)
a − xt0+∆t

t ), (2.4)

and
et0+∆t

f = (x(t0−6,t0+∆t)
f − xt0+∆t

t )TC(x(t0−6,t0+∆t)
f − xt0+∆t

t ). (2.5)

The forecast errors et0+∆t
a and et0+∆t

f are quadratic error measures of the forecasts
initiated from the analysis x(t0,t0+∆t)

a and the earlier forecast x(t0−6,t0+∆t)
f with respect

to the reference state xt
(t0+∆t). The reference state is usually an analysis provided

at the verification time t0+∆t by the same model that provides the forward runs.
The superscripts in the equations refer to the corresponding times as illustrated in
Fig. 2.1 and C is a diagonal matrix containing the weights according to the total
dry energy norm.

The non-linear forecast error reduction can then be defined as the difference of
the two quadratic error measures ∆ef

a = ea − ef and can be exactly calculated using
(Eq. (2.4)) and (2.5). This formulation provides a simple plus/minus configuration,
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where negative values would imply forecast improvement due to assimilation as the
forecast from the analysis would be closer to the reference than the simple forecast.
Similarly positive values of the non- linear forecast error would imply degradation of
the forecast due to assimilation. In order to establish a relation between forecast error
at forecast and assimilation time, the adjoint model (transposed of the linearized
version of the forecast model) is utilized. An approximation of ∆ef

a is sought with
the use of adjoint sensitivity gradients. To achieve this, ∆ef

a can be expressed
with the use of equations (Eq. (2.2)) and (2.3). The gradients of the cost function
∂J

t0+∆t
a /∂xt0+∆t

a and∂J t0+∆t

f /∂xt0+∆t
f are given by:

∂Jt0+∆t
a /∂xt0+∆t

a = C(x(t0,t0+∆t)
a − xt0+∆t

t ) (2.6)

∂Jt0+∆t
f /∂xt0+∆t

f = C(x(t0−6,t0+∆t)
f − xt0+∆t

t ) (2.7)
These gradients serve as input information to the adjoint model, starting from time
t0+∆t back to the assimilation time at t0. Two adjoint model runs are performed,
from the forecast time t0+∆t to assimilation time t0.

The adjoint model maps the sensitivity of the forecast response with respect to the
forecast control vector, ∂Jt0+∆t

a /∂xt0+∆t
a and ∂Jt0+∆t

f /∂xt0+∆t
f , into the sensitivity of

the forecast response with respect to the initial conditions, ∂Jt0
a /∂xt0

a and ∂Jt0
f /∂xt0

f ,
linearized along the forecast trajectories. The resulting gradients, show locations,
where changes to the initial conditions have the largest impact on the forecast error.
The sensitivity of the forecast error to initial humidity conditions are obtained by
the adjoint of the linearized moist physical processes as a secondary effect (Janisková
and Cardinali [2017]).
The sensitivity of the forecast response to the observations, ∂J/∂yt0 , can be derived
from the sensitivity of the forecast response to the initial conditions by using the
rule of chain,

∂J
∂yt0

= ∂J
∂xt0a

∂xt0
a

∂yt0
(2.8)

where the gradient ∂xt0
a /∂yt0 = KT, provides the sensitivity of the analysis system

to the observations. The calculation of the adjoint of the data assimilation system is
a computationally demanding task, as the inverse of the analysis error covariance
matrix, A−1, has to be approximated (Daley [1993]).

KT = R−1HA−1, (2.9)

where H is the observation or forward operator that maps from model to observation
space and R is the observation error covariance matrix. The Lanczos algorithm that
calculates the converged eigenvalues lying in the Krylov subspace (Van der Vorst
[2003]) is used to approximate the inverse of A. To accomplish this, the minimization
algorithm is switched from Conjugate Gradient (CG) to Lanczos and it can be proven
that the error associated with the variation solution is given by the inverse of the
Hessian matrix (second derivative of the 3DVAR cost function):

A−1 = (∂
2J
∂2x

) = B−1 + HTR−1H. (2.10)
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Eq. (2.10) states that the precision of the analysis error covariance is equal to the
sum of the precision of the background information and the observations passed
through the observation operator (Zou et al. [1997]). Now, Eq. (2.8) becomes:

∂Jt0
a

∂yt0
= KT∂Jt0

a
∂xt0a

(2.11)

for the sensitivity stemming from the analysis xa and

∂Jt0
f

∂yt0
= KT∂Jt0

a

∂xt0
f

(2.12)

for the sensitivity stemming from the forecast xf . Similarly to the sensitivity of the
response function to the initial conditions, the sensitivity of the response function to
the observations indicates locations where small changes to the observations have the
greatest impact on the forecast error. Baker and Daley [2000] derived the sensitivity
of the forecast response to initial conditions at time t0 as:

∂J
∂xt0

= ∂Jt0
a

∂xt0a
+ ∂Jt0

f

∂xt0
f

(2.13)

The non-linear error can then be expressed in terms of gradients at forecast time.

∆ef
a = 〈(xa − xf )(t0+∆t), ( ∂J(t0+∆t)

a

∂x(t0,t0+∆t)
a

+ ∂J(t0+∆t)
f

∂x(t0−6,t0+∆t)
f

)〉 (2.14)

The connection between the forecast error at forecast time with the error at as-
similation time can now be made. The approximation of ∆ea

f can be written
as:

δef
a = 〈δxa, (

∂J
∂xt0a

+ ∂J
∂xt0

f
)〉 (2.15)

where δxa is the analysis increment and δef
a becomes:

δef
a = 〈K(y−Hxt0

f ), ( ∂J
∂xt0a

+ ∂J
∂xt0

f
)〉 (2.16)

δef
a is not an exact calculation as ∆ea

f , because the sensitivity gradients are
calculated with the use of the adjoint model. Using the adjoint property,

δef
a = 〈(y−Hxt0

f ),KT( ∂J
∂xt0a

+ ∂J
∂xt0

f
)〉 (2.17)

the approximation can be written as

δef
a = 〈(y−Hxt0

f ), ∂J
∂yt0

〉 (2.18)

The final step to quantitatively estimate the observation impact in the forecast
error is to calculate the inner product of the sensitivity of the response function to
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observation and the innovation vector d (see Eq. (3.2)). This means the greater the
innovation vector, the greater the impact. The Forecast Error Contribution (FEC)
by the assimilation of observations or observation impact is defined as:

δef
a = 〈d, ∂J

∂yt0
〉. (2.19)

According to Gelaro et al. [2007], various orders of approximation of observation
impact can be derived with the use of Taylor expansion. More specific, the acquired
variations are presented in Table 2.1.

Table 2.1: The first (δe1), second (δe2) and third (δe3) order Taylor approximations.
δe4 and δe5 are augmented versions of the third order approximation.

Measure Formula

∆e (x(t0,t0+∆t)
a − xt0+∆t

t )TC(x(t0,t0+∆t)
a − xt0+∆t

t )− (x(t0−6,t0+∆t)
f − xt0+∆t

t )TC(x(t0−6,t0+∆t)
f − xt0+∆t

t )
δe1 2(xt0

a − xt0
f )TKTMT

f C(x∆t+t0
a − x∆t+t0

t )
δe2 (xt0

a − xt0
f )T[MT

f C(x∆t+t0
a − x∆t+t0

t ) + MT
a C(x∆t+t0

f − x∆t+t0
t )]

δe3 (xt0
a + xt0

f )T[MT
f C(x∆t+t0

f − x∆t+t0
t ) + MT

a C(x∆t+t0
a − x∆t+t0

t )]
δe4 (xt0

a − xt0
f )T[MT

a C(x∆t+t0
f − x∆t+t0

t ) + MT
a C(x∆t+t0

a − x∆t+t0
t )]

δe5 (xt0
a − xt0

f )T[MT
f C(x∆t+t0

f − x∆t+t0
t ) + MT

f C(x∆t+t0
a − x∆t+t0

t )]

Here, Ma = ∂x
t0+∆t
a

∂x
t0
a

& Mf = ∂x
t0+∆t
f

∂x
t0
f

are the resolvent matrices of the tangent
linear version of the WRF model and MT

a , MT
f are the adjoint WRF matrices,

that transfer the sensitivity gradients from forecast time to assimilation time. For
example, δe5 differs from δe4 only by the choice of the adjoint matrix MT

f which
replaces the adjoint matrix MT

a . This means that for δe5 the linearization is done
along the trajectory of the simple forecast x∆t+t0

f instead of the forecast initiated
from the analysis x∆t+t0

a .
The augmented version of the error approximation was adopted for this study,

δe4 = (xt0
a − xt0

f )T[MT
a C(xt0+∆t

f − xt0+∆t
t ) + MT

a C(xt0+∆t
a − xt0+∆t

t )]. (2.20)

This version was found by Gelaro et al. [2007] to be a better approximation to
the non-linear error ∆e compared to the other approximations (δe1, δe2, δe3, δe5).
This was achieved by exactly calculating the values of the non-linear error ∆e and
its approximations according to the formulas in Table 2.1. This result was also
confirmed in this study, where for some selected days the relative error between ∆e
and its approximations was exactly calculated for the European domain.

In order to verify the results qualitatively, the traditional but rather computational
expensive OSEs experiments were performed for the targeted domain, time span,
and observations. The details of how the experiments were conducted and the results
can be found in Section 5.2.1.





Chapter 3

Weather and Research Forecasting
Model

The WRF model is a state of the art numerical weather prediction system for
atmospheric research (Skamarock et al. [2008]). The development of WRF was
a collective effort from a number of institutions, namely the National Center for
Atmospheric Research (NCAR), the National Centers for Environmental Prediction
(NCEP), Forecast Systems Laboratory (FSL), Air Force Weather Agency (AFWA),
Federal Aviation Administration (FAA) at the late 90′s. In this work the WRF-ARW
model (Advanced Research WRF) is utilized, developed from NCAR’s Mesoscale
and Microscale Meteorology Laboratory.

The system consists of the dynamical solver, dynamic/numeric options, physics
schemes and the data assimilation component. Specifically the ARW solves fully
compressible, non-hydrostatic Euler equations (advection, Coriolis, buoyancy etc)
and the prognostic variables include velocity components in Cartesian coordinates,
perturbation temperature, perturbation geopotential and perturbation surface of
dry air. Optionally, TKE (Turbulent Kinetic Energy) and scalars such as cloud
water/ice mixing ratio, water vapor mixing ratio and chemical species and traces
can be also prognosed. The used grid is the Arakawa-C grid staggering stensil as
shown in Fig. 3.1.
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Figure 3.1: On the left, the horizontal and on the right the vertical Arakawa C-grid
configuration is depicted. At the center of the left face are the zonal velocities in X direction
and at the center of the front face are the meridional velocities in Y direction. At the
center of the bottom face are the vertical W points in Z direction and at the center are the
Θ points (Skamarock et al. [2008]).

Scalar state variables (thermodynamical variables such as potential temperature
and pressure) are calculated at Θ points and the horizontal wind components are
stored in X stagger (u) and Y stagger (v) dynamics. The vertical wind component
w is stored in the Z stagger dynamics at half levels. As can be seen in Fig. 3.2,
the vertical coordinate is not evenly spaced because it is a terrain following, dry
hydrostatic pressure with a constant pressure pηt at the top of the model.

Figure 3.2: The equations in ARW are formulated using the terrain following hydrostatic-
pressure defined as η = (pη−pηt)/(pηs−pηt) (Skamarock et al. [2008]). pη is the hydrostatic
pressure at the level of interest and pηs, pηt are the surface and top of model hydrostatic
pressure, respectively.

The temporal discretization is achieved by the Runge-Kutta time integration
scheme, where a set of ordinary differential equations are integrated in three time
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steps using a predictor-corrector formulation (Skamarock et al. [2008]).
For the real-data simulations, the WRF Preprocessing System (WPS) is utilized.

Its main tasks include defining the simulation domain, interpolating terrestrial data
to the simulation domain and interpolating the meteorological data from another
model to the specified simulation grid. Here, the analyses from the Global Forecasting
System (GFS) are used to initialize WRF. GFS is operated by NCEP and is run
with a 0.5◦ resolution with an analysis available every, 00, 06, 12 and 18 UTC. The
work flow of the preprocessing system is shown in the following Fig. 3.3.

 

        External Data 
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WRF Preprocessing System 

  geogrid 

  ungrib 

  metgrid namelist.wps   real.exe 

Static 
Geographical          

Data 

Gridded Data: 
GFS 

Figure 3.3: WPS work-flow. The interpolated data from another model (e.g. GFS)
into the simulation domain are passed to the real.exe program responsible for vertically
interpolating the meteorological data to the simulation model levels (Skamarock et al.
[2008]).

3.1 Variational data assimilation in WRF model
The WRF Data Assimilation System (WRFDA) with 3DVAR, are utilized in this
work. 3DVAR provides the maximum likelihood (minimum variance) estimate of
the true atmospheric state, the analysis, given a previous forecast xb, often termed
“background”, and observations y. This is accomplished by the iterative minimization
of the following predefined cost function:

J(x) = Jb + Jo = 1
2

(x− xb)TB−1(x− xb) + 1
2

(y−Hx)TR−1(y−Hx). (3.1)

The 3DVAR procedure is applied in order to provide the analysis for the FSO
scheme, which then calculates the contribution of the assimilated observations on
the short-term forecasts (see Chapter 2, Fig. 2.1). In Eq. (3.1), H is the observation
operator that interpolates from model space to observation space. The distance of
the observations from the first guess model equivalent is called the innovation vector:

d = y−Hxb, (3.2)
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where y is a vector containing the observations one wishes to assimilate and xb
contains the model quantities. R and B are the observation and background error
covariance matrices, respectively. The quadratic cost function assumes that both
the observation error covariance matrix R and the background error covariance B
are described using Gaussian probability density functions with zero mean error and
correlations between observation and background errors are neglected (Barker et al.
[2003]).

Moreover to calculate the background J b component of the cost function, a
preconditioning through a control variable ν transform is taking place. Taking into
consideration that the degrees of freedom involved in the calculations for a NWP
model is of n ' 107 magnitude, the J b term of the cost function demands ' O(n2)
calculations (Barker et al. [2003]). To reduce the number of calculations, a variable
transform is chosen as x′ = Uν, where x′ = x− xb. U is chosen so that B = UUT

holds true. With this transformation the background error covariance matrix is
diagonalized and the number of calculations can be reduced to O(n) (Barker et al.
[2003]).
The configuration of the 3DVAR assimilation system in WRF is depicted in Fig. 3.4.
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Figure 3.4: Flow-chart of WRFDA configuration where : xb is the first model guess,
initiated either from WRF forecast or from WPS output. xlbc are the lateral boundary
conditions calculated from WPS. xa is the analysis and xf is the forecast. y are the
observations, B is background error covariance matrix and R is the observation error
covariance matrix (Skamarock et al. [2008]).

The domain specific background error covariance matrix, B, is generated for the
simulations in this work with the National Meteorological Center (NMC) method,
with the help of the program gen_be (Fig. 3.4). More specific, in the NMC method
(Parrish and Derber [1992]) the background error εb is approximated by averaged
differences between forecasts with the same verification time but different initiation
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time (Skamarock et al. [2008]). This means two forecasts are initiated, x(−12,+12)
and x(0,+12), with a time difference of 12 hours. Then the background error can be
written as,

B = (xb − xt)(xb − xt)T = εbεTb ≈ (x(−12,+12) − x(0,+12))(x(−12,+12) − x(0,+12))T .
(3.3)

The over-bars in Eq. (3.3) denote an average over time. Input data were WRF
forecasts and a month long dataset was used to determine the background error
covariance tailored to the desired domain (Skamarock et al. [2008]).

The ingestion of observations into WRFDA is shown in Fig. 3.5. A user-defined
time slot (1 hour in this study) is used. This means, that observations of ±1 are all
assimilated together, after having passed the quality control procedures successfully.

Figure 3.5: Observations are ingested into WRFDA within time slots. If analysis time is
at 3h, then a slot of 1 hour is defined and all available observations within that period are
assimilated.

To assimilate the satellite radiances (see Section 4.1.1 for information on the
examined satellite observations and Section 4.2.1 for radiance assimilation), the
Community Radiative Transfer Model (CRTM), which is embedded in WRFDA is
utilized. CRTM is developed at the Joint Center for Satellite Data Assimilation
(JCSDA) and it is a sensor-based radiative transfer model. It supports more than
100 sensors and has 4 basic modules (JCSDA [2017]):

• Radiative transfer solver

• Surface emission and reflection

• Cloud and aerosol absorption and scattering

• Gaseous transmittance

In the core of the model lies the radiative transfer equation (RTE), which describes the
attenuation of the electromagnetic radiation as it propagates through the atmosphere
due to absorption, emission and scattering. The radiance observations used in this
work are in the thermal IR (Infrared) spectrum from 3.63 to 15.5 µm. The available
data for this study are cloud-cleared (see Section 4.1), thus the solution for the
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monochromatic intensity I(µ) for the non-scattering RTE is (Han [2006]):

I(µ) =

[r
∫ τN

0
B(T )dTd(τ ′, µd) + r⊗

F⊗
π
Td(0, µ⊗) + εB(Ts)]Tu(τN , µ)

−
∫ τN

0
B(T )dTu(τ ′, µ) (3.4)

In Eq. (3.4), τN stands for the optical depth of the atmosphere and µ = cos(θ), where
θ is the zenith angle. Td(τ ′, µd) and Tu(τ, µ) are the downwelling and upwelling
transmittances, respectively. F⊗ is the solar irradiance, r and r⊗ is the surface
reflectivity and ε is the surface emissivity. B i the Planck function. For simplicity,
the wavelength subscript is omitted. On the right hand of Eq. (3.4) the four terms
correspond to:

1. Downwelling atmospheric radiation, reflected by Earth’s surface.

2. Surface reflected solar radiation.

3. Surface emission at skin temperature Ts.

4. Contribution by the atmospheric upwelling radiation.

The solution for each radiance channel can be found by integrating both sides of
Eq. (3.4) with the channel’s Spectral Response Function (SFR). This is done under
the assumption that ε, r, r⊗ and B do not fluctuate significantly within the spectral
band of the sensor channel. A discrete form of Eq. (3.4) is then obtained. More
details can be found in Han [2006]. Moreover, instead of the intensity I(µ), it is
common to work with brightness temperatures (Tb) in units of Kelvin (K). Tb, refers
to the equivalent blackbody temperature of the monochromatic intensity I(µ) and
can be derived as :

Tb = B−1(I(µ)) (3.5)

where B−1 is the inverse of the Planck function and is applied to the observed by
the sensor radiance I(µ).
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To calculate the first guess or model equivalent observations for the 3DVAR cost
function (Eq. (3.1)), the forward model of the CRTM calculates the corresponding
Tb as seen by a satellite sensor, given as input temperature (T), absorber profiles (q)
and surface temperature (Ts) (JCSDA [2017]). Then by minimization of the cost
function, the minimum is sought where :

dJ

dx
= 0,

1
2B
−12(x− xb) + 1

2R
−12(y −Hx)d(y −Hx)

dx
= 0,

B−1(x− xb)−HTR−1(y −Hx) = 0,
where,

HT = {hi,j}T = { ∂yi
∂xj
}T (3.6)

is the transpose of the Jacobian matrix or adjoint operator. H is a linearisation
of the forward model about the state variables xj(T,q,Ts, ..). Given as input,
perturbations of the state variables it outputs the expected perturbations to the
different channels yi(TB, I(µ)). HT is the transpose of the tangent linear operator
H mapping input perturbations yi to output perturbations of state variables xj.





Chapter 4

Experiment set-up
With priority given to exceptionally poor predictability days of wind and solar power,
a two weeks period (01.-15.08.2014) was selected to perform the simulations for
this study. This time frame includes the extreme wind error event on 09.08.2014,
as identified by Good [2017]. Each day, four assimilation runs by WRFDA were
performed for 06, 12, 18 and 00 UTC. This makes a total of 60 assimilation processes
performed, a satisfying number to verify the FSO algorithm against the OSEs. To
serve the needs of energy-meteorology, 6-hour forecasts (intraday forecasts -up to
6-hour forecast horizon-) were performed. The impact of the assimilated observations
on the 6-hour forecasts was then calculated. The experiment was run in a cycling
mode, meaning the WRF forecasts initialized from the analysis on time t were used
first for computing the adjoint forcing at verification time t + 6 and as background
for the assimilation in the next cycle (Fig. 4.1).

00  06  12 18

Analysis  Verification

Hour (UTC)

Analysis  Verification

00

00   06   12  18 00

CYCLE 1

CYCLE 2

Figure 4.1: The cycling mode of the experiment set-up. The forecast at verification time
12 UTC (CYCLE 1) that was initiated from the analysis (blue dashed lines) becomes the
background information for the analysis in CYCLE 2.
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The scheme was set-up in the Jülich Research on Exascale Cluster Architectures
(JURECA, Jülich Supercomputing Centre [2018]). The different Message Passing
Interface (MPI) tasks were managed through a shell script. Within one cycle of
observation impact calculation, the data assimilation algorithm was run for the
minimization of the 3DVAR cost function and for the calculation of the analysis
error covariance matrix (needed for the impact calculation as described in Chapter 2,
Eq. (2.10)). Two forward and two adjoint runs followed. In total, 60 impact cycles
between 01-15.08.2014 were performed. The configuration of the model can be found
in Table 4.1 and the domain is depicted in Fig. 4.2. The parameterizations (physics,
boundary layer, etc) for the runs can be found in Appendix A.3, where the complete
namelist options for the forward, assimilation and adjoint runs are listed.

Table 4.1: WRF model configuration

Model Version 3.8
Map Projection Lambert Conformal
Central Point 54◦N, 12.5◦W
Horizontal resolution 15 km
Number of horizontal grid points 250 x 250
Vertical layers 41

Figure 4.2: WRF domain used in the study. The terrain height is depicted in meters
(m).

The computational needs are summarized in the following Table 4.2. The compu-
tational demands for the adjoint runs stand out, both in time and cores needed for
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their execution. The number of core hours per FSO experiment cycle is the time
needed for the execution of all programs of the scheme, multiplied by the used cores.
The total core hours consumed is the product of the core hours per FSO cycle with
the number of FSO cycles performed in the fortnight.

Table 4.2: Computational resources on JURECA. One FSO cycle demands the execution
of WRF forward model, assimilation and adjoint model. The calculation of the impact is
done with the help of the WRF assimilation model.

domain 15km×15km
number of FSO runs 60
(15 days x 4 assimilation runs per day)
number of cores/nodes per FSO experiment cycle 768/16
number of cores/nodes per WRF forward runs (two runs for FSO) 192/4
number of cores/nodes per WRF assimilation run 96/2
number of cores/nodes per WRF impact run 96/2
number of cores/nodes per WRF adjoint runs (two runs for FSO) 384/8
number of core-hours per FSO experiment run 2688
percentage of total time needed for the execution of the forward runs 19,05%
percentage of total time needed for the execution of the assimilation run 7,14%
percentage of total time needed for the execution of the impact run 21,43%
percentage of total time needed for the execution of the adjoint runs 52,38%
total number of core-hours needed for the case study period 161,280
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4.1 Observation configuration
Setting the focus on a discussion of space borne versus ground based observation con-
figuration, the spatially dense ground based Surface Synoptic (SYNOP) observations
(temperature (T), wind speed (U,V), pressure (P) and humidity (Q)- seeFig. 4.11) are
evaluated against the profiles of temperature and humidity provided by the measure-
ments of the radiance channels of the Infrared Atmospheric Sounding Interferometer
(IASI), onboard MetOp. For convenience, as seen later on, IASI radiance channels
are grouped into three parts:

• IASI_T , for channels which are used to derive temperature at a level of the
atmosphere,

• IASI_W , for channels positioned at the window region of the infrared spectrum
and give information like surface temperature,

• IASI_Q for channels in the infrared from which humidity is derived.

A description of the IASI and SYNOP data follows in section Section 4.1.1 and
Section 4.1.2. Details on the observations that were assimilated in order to provide
the reference state (alongside IASI and SYNOP) for FSO are then given in Section 4.2.
Focus is then placed on the assimilation of IASI radiance channels and SYNOP in
Section 4.2.1 and Section 4.2.2, respectively.
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4.1.1 Infrared Atmospheric Sounding Interferometer
The IASI sensor is onboard the polar orbiting MetOp satellites which are operated by
the European Organization for the Exploitation of Meteorological Satellites (EUMET-
SAT). MetOp is presently operating a series of three polar orbiting meteorological
satellites that form the EUMETSAT Polar System (EPS). It carries a set of ’heritage’
instruments provided by the United States and a new generation of European instru-
ments that offer improved remote sensing capabilities to both meteorologists and
climatologists (Metop [2017]). Metop-A (launched on 2006) and Metop-B (launched
on 2012) are in a low orbit altitude of 817 kilometers, providing observations of the
global atmosphere, continents and oceans. They are sun-synchronous, mid-morning
orbiting (9:30 Local Solar Time equator crossing, descending node) and provide
global observations twice a day.

IASI consists of an across-track scanning system of a symmetrically scan range
of ±48◦20′. A scan line covers 30 scan positions towards the Earth and 2 calibration
views, the one pointing into deep space and the other on an internal black body
(EUMETSAT [2017]). The elementary (or effective) field of view (EFOV) is the
useful field of view at each scan position. Each EFOV consists of a 2x2 matrix of the
so-called instantaneous fields of view (IFOV). Each IFOV corresponds to a ground
resolution of 12 km at nadir and a satellite altitude of 819 km (EUMETSAT [2017]).
The swath width is approximately 2.2000 km (Fig. 4.3(a)).
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(a)

(b)

Figure 4.3: (a): IASI on-board MetOp. The trace of the satellite and the Field of View
(FOV) is depicted. (b) : First IASI/METOP-B spectrum on 24.10.2012 at 03:04 pm
Reference:
(a)://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/MetopDesign/IASI/index.html
(b)://www.eumetsat.int/website/home/Data/RegionalDataServiceEARS/EARSIASI/index.html?lang=EN

The main objective of IASI is to provide atmospheric emission spectra of the
infrared part of the electromagnetic spectrum, from which the temperature and
humidity profiles can be derived in high vertical resolution and accuracy. In order to
retrieve the atmospheric state that produces the measured spectrum, the forward
model (CRTM in this study) that describes the radiative transfer through the
atmosphere is inverted. The atmospheric components and surface information
retrieved from IASI measurements can be seen in Fig. 4.3b and are listed in Table 4.3
(Chalon et al. [2001]).

The measured spectral range extends from 645 to 2740 cm−1 (or 15.5 to 3.62
µm) with sampling every 0.25 cm−1 that leads to a total of 8461 radiance channels.
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Table 4.3: Spectral range given in units of cm−1 and µm along with the corresponding
IASI application (Chalon et al. [2001]).

Spectral range Absorption band IASI application

650 to 770 cm−1 or 15.4 to 12.9 µm CO2 Temperature

790 to 980 cm−1 or 12.6 to 10.2 µm Atmospheric Window Surface and Cloud properties

1000 to 1070 cm−1 or 10.0 to 9.3 µm O3 O3 sounding

1080 to 1150 cm−1 or 9.2 to 8.7 µm Atmospheric Window Surface and Cloud properties

1210 to 1650 cm−1 or 8.3 to 6.0 µm H2O Humidity profile and N2O column amount

2100 to 2150 cm−1 or 4.8 to 4.7 µm CO CO column amount

2150 to 2250 cm−1 or 4.7 to 4.4 µm N2O and CO2 Temperature profile, N2O column amount

2350 to 2420 cm−1 or 4.2 to 4.1 µm CO2 Temperature profile

2420 to 2700 cm−1 or 4.1 to 3.7 µm Atmospheric Window Surface and cloud properties

2700 to 2760 cm−1 or 3.7 to 3.6 µm CH4 CH4 column amount

This range includes the CO2 absorption band at 15µm from which the temperature
profiles are derived, the strong water vapor ν2 (bending mode of water molecule)
absorption band and the 9.6µm Ozone band (Clerbaux et al. [2009]). Generally,
the derivation of geophysical parameters of the L2 products, such as trace gases
concentrations, temperature and water vapor profiles from radiance measurements
is performed in collaboration with the Advanced Very High Resolution Radiometer
(AVHRR), ATOVS and data from NWP’s (Metop [2017]).

The IASI data used for this study are from NCAR’s Research Data Archive
(data set ds099.0, NCEP [2015]). Through e-mail communication with the curator
of this data base, it was found that the satellite data assimilated by the Global
Data Assimilation System (GDAS) had been archived. Thus, the data had been
quality-controlled and thinned by NCEP for their data assimilation system. The
provided data set consists of a subset of 616 channels out of the 8461 available
channels, originally distributed by the National Environmental Satellite, Data, and
Information Service (NESDIS) (Hilton et al. [2012]). The distributed data are
thinned by sub-sampling FOVs and channels using the same method developed
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for the Atmospheric Infrared Sounder (AIRS) in Goldberg et al. [2003]. The data
are cloud cleared according to Eyre and Menzel [1989], which results in less than
120 IFOVs per scan line in case of cloud presence. To do so, according to their
methodology, they seek to find the pressure and cloud fraction, for which the deviation
of the calculated cloud from model (over a number of channels) and the observation
is minimized. It is assumed that the cloud cover has only a single layer, with unit
emissivity within the FOV of the instrument. The affected IFOVs are assigned
with a cloud flag and are dismissed by WRFDA. The reduced number of radiance
channels were selected based on the spectral properties of the channels, by preserving
those with the highest spectral purity and those whose sensitivity function structure
provide the best vertical coverage (Gambacorta and Barnet [2013]). For example,
channels with a sharper sensitivity function were preferred over broadly structured
ones, as they provide better vertical resolution.

Operationally, GDAS (operated by NCEP) assimilates and monitors 167, out of
the 616 radiance channels. The majority of these radiance channels lies around the
long wave CO2 band (near 15µm), providing information on temperature. These 167
channels are also a subset of the 300 channels proposed by Collard [2007] and used by
a number of NWP centers (Hilton et al. [2012]), with the exception of 2 temperature
channels (index: 300 and 326) and in the ozone band (index:1666). These 167
channels, along with the provided observation errors (to be used in the observation
covariance matrix R-see Eq. (3.1)) were the initial basis of IASI assimilation with
WRF in this study. As a result of WRF not predicting O3 but only using it as
climatology, channels situated around this absorption band were eventually omitted
in the assimilation. Channels in the range of 2000 cm−1 - 2760 cm−1 or 3.62 µm-5.00
µm are not selected because of high instrument noise and influence by solar reflection
during the day, making them difficult to process (Hilton et al. [2012]). The original
167 channels provided by NCEP are depicted in Fig. 4.4 along with the 158 channels
finally used in this study. In Fig. 4.5 the observation errors of the 158 channels used
for the assimilation procedure is shown. As can be noticed in Fig. 4.4, the same
channels as NCEP are used for temperature (102 IASI_T channels) and surface
(47 IASI_W channels) information. Moreover it is deduced from Fig. 4.5, where
the assigned by NCEP observation errors of the radiance channels are plotted, that
temperature radiance channels have lower observation errors compared to the other
two categories.

In addition to the IASI_T and IASI_W channels, nine water vapor channels
(IASI_Q, ≈ 5 to 8 µm, with the water vapor band centered at 6.3 µm) were added
in the assimilation in contrast to the NCEP list of channels (no water vapor channels).
Although NCEP has researched the impact of water vapor channels (Jung et al.
[2009]), the operationally assimilated channels do not include water vapor. The
absence of the water vapor channels in NCEP is due to the difficulties that accompany
the assimilation, such as the non-linearity of their Jacobians, their multivariance
(solve for both T and Q) and their non-Gaussian distribution (Jung et al. [2009]).
The nine water vapor channels (see Fig. 4.6), included for the experiments of this
thesis, are selected by Météo-France (Guidard et al. [2011]) and they have been found
to improve the French global model and their limited area model on the forecast
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range longer than T+60 over Europe. Although more water vapor channels are
assimilated and investigated by various NWP centers, the specific ones where selected
for testing with the FSO algorithm as their exact wavenumber was available. It is
within the scope of this research to use the FSO algorithm and quantitatively assess
their impact. The emission weighting functions of the nine water vapor channels,
which describe the contribution of the distinct atmospheric levels to the emitted
radiation observed from space (Petty [2004]) are plotted in Fig. 4.6.

Figure 4.4: The 616 radiance channels as measured by IASI (dark pink crossed circle)
and simulated by WRF’s CRTM (dark gray asterisk). Black dots represent the position of
the 167 channels, assimilated by NCEP and light blue dots are the 158 channels used in
this study. The pixel depicted here is located over the Atlantic Ocean.
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Figure 4.5: Observation errors in Kelvin, as used in the observation covariance matrix
R, of the assimilated channels. The observation errors of the 102 IASI_T are shown in
blue colors, the 47 IASI_W in yellow and the 9 IASI_Q in red.

Figure 4.6: The emission weighting functions of the 9 water vapor channels introduced
in the assimilation is plotted, as calculated for a pixel over sea by CRTM on 11.08.2014 at
00 UTC.



4.1 Observation configuration 29

To understand the vertical coverage of all the selected channels, their emission
weighting functions are plotted in Fig. 4.7. More specific, the emission weighting
functions for the case of a pixel over sea and a pixel over land are plotted. Two plots
are generated for each case, one for the temperature channels between ≈ 10 and
15 µm and the other for the 9 water vapor channels defined above. The simulation
was done by CRTM for the date 11.08.2014 at 00 UTC. The dense vertical coverage
of the troposphere is obvious in Fig. 4.7b, d. From Fig. 4.7e, it is noticed how the
water vapor channels are peaking in the lower troposphere, in contrast to the same
channels over the sea (Fig. 4.7c). This is an indicator of a dry atmosphere in this
case, as water vapor is not well mixed and highly variable. This means that the
weighting functions will also vary, peaking in low altitudes in a very dry atmosphere
and in the upper troposphere when high altitude clouds are present, or in a humid
atmosphere (Petty [2004]).
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(a) Location of pixels over sea and land

(b) Sea, Temp. channels (c) Sea, Water vapor channels

(d) Land, Temp. channels (e) Land, Water vapor channels

Figure 4.7: The emission weighting functions of the temperature and water vapor channels
as simulated on 11.08.2014 at 00 UTC by CRTM. In panels (b) and (c), the emission
weighting functions of a pixel above sea are plotted and on plots (e) and (f) for a pixel
over land. The location of the pixels is shown in plot (a).
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4.1.2 Surface Synoptic Observations
SYNOPs are weather reports, made by manned and automated weather stations.
They are available in the GTS via the national meteorological organizations in the
WMO-based format BUFR. NCEP receives the GTS data and encodes them in a
binary format called PREPBUFR that has quality controlled and error assigned
observations (Dennis [2018]). In the archived data set, used in this study, observations
are grouped around the four synoptic hours (06, 12, 18, 00 UTC) with a time span
of ± 3 hours. In the assimilation performed by WRFDA, a time slot of an hour
centered around the synoptic times is defined.
There are approximately 2000 SYNOP stations covering Europe. In Fig. 4.8, the
station locations that measured temperature (T), humidity (Q), wind (U & V) and
pressure (P) at 06 UTC for the period 01.-15.08.2014 are plotted. The number of
data from stations varies over the day, indicating the fluctuation of measuring time
among the stations but also the possible quality control failure as recognized by
NCEP. The maximum number of reporing stations, was found on 06 UTC (2026
stations) and the minimum at 00 UTC (1890 stations).

Figure 4.8: Station locations (in total 2026) providing measurements at 06 UTC for the
period 01.-15.08.2014.
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4.2 Assimilation of observations
Looking back at Chapter 2 and Fig. 2.1, it is clear that a reference state must be
provided for the conduction of the experiments. As explained in Chapter 2, the
reference state is typically an analysis provided by the same model used to conduct
FSO. This analysis is the outcome of the 3DVAR procedure, in which different types
of observations are included (along with SYNOP and IASI). Although WRFDA can
assimilate a wide range of observation types, a compromise was made to keep the
computation limits, resulting in the observation configuration in Table 4.4. FSO
calculates then the contribution of the assimilated observations on the 6-hour forecast
error. Here, the evaluation of IASI and SYNOP is of interest and FSO is examined on
those two observation types. It must be understood, that one assimilation takes place
in each FSO cycle and includes all the observations. The analysis serves as reference
state in one cycle and on the following cycle it is evaluated by the FSO scheme (see
Fig. 4.1). This is considered an advantage of the algorithm, as observations do not
need to be removed from the configuration in order to calculate the observation
impact of different types on the short-term forecast error.

Table 4.4: Observation types used in the assimilation to produce the reference (true state)
analysis. T, RH, P, U and V stand for temperature, relative humidity, pressure and the U,
V wind components, respectively.

Data Type Description Variables

SYNOP Surface observations from land and ship stations U, V, T, P, RH
TEMP Radiosondes from land and ship U, V, T, P, RH
METAR Meteorological Aerodrome Report U, V, T, P, RH
SHIPS Measurements onboard ships U, V, T, P, RH
PILOT Sondes and wind profiler U, V
BUOY Ocean Data Acquisition Systems U, V, T, P, RH
QSCAT Scatterometer oceanic surface winds U, V
IASI Infrared Atmosperic Sounding Interferometer radiance assimilation related to T, RH

All observations, with the exception of IASI data, are provided by the ’NCEP
ADP Global Upper Air and Surface Weather Observations’ and are publicly available
(NCEP [2008]). The data set includes land surface, marine surface, radiosonde, and
aircraft reports from the Global Telecommunications System (GTS), profiler and US
radar derived winds, the Special Sensor Microwave Image (SSM/I) oceanic winds,
Total Cloud Water (TCW) retrievals and satellite wind data from the NESDIS. Each
data type can be set on/off via the namelist input file of WRFDA. The format of the
data is the Prepared Binary Universal Form for the Representation of meteorological
data (PREPBUFR), a binary format file that passes through quality control at
NCEP making the observations suitable for assimilation.

The data set ds099.0, from NCAR’s Research Data Archive (NCEP [2015])
provides the IASI radiance observations (Level 1). A detailed description of the IASI
data and how they are processed by NCEP before they are available for public use is
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given in Section 4.1.1.
In Fig. 4.9, the different types of assimilated observations, at each assimilation

hour (00, 06, 12 and 18 UTC) are plotted as percentage (%) of the total number of
assimilated observations for each hour during the case study period 01.-15.08.2014
and the European domain. This means that the bars in Fig. 4.9 at each hour add
up to 100%. The observations of interest, SYNOP and IASI have fluctuations of
assimilated data over time, with maximum IASI data (compared to other observation
types) assimilated at 18 UTC and maximum SYNOP data assimilated at 06 UTC.
The absolute numbers of assimilated IASI and SYNOP data for the case study period
can be found in Section 5.2, Fig. 5.4.

Figure 4.9: Percentage of the assimilated observation types, at each assimilation hour,
for the period 01.-15.08.2014 is plotted. The “sfc” observations compose a subcategory of
sounding data, that WRFDA defines to include data close to the surface (i.e 10m wind
speed, 2m temperature)

Concerning the spatial coverage of IASI data, the spatial fluctuation is a geo-
metrical side-effect when performing simulations with a limited area model. For
example, in Fig. 4.10 the spatial fluctuation at 00, 06, 12 and 18 UTC on 11.08.2014 is
demonstrated. The label bars refer to the amount of observations (radiance channels)
that are assimilated per pixel. A maximum of 158 wavelength channels can be
assimilated per pixel and if this is not the case, it means the observation failed to
pass the quality control within WRFDA. A detailed description of the quality control
is given in Section 4.2.1.

For the same date as for IASI, the SYNOP observation spatial coverage is plotted
in Fig. 4.11. The number of data from stations varies with time, as some stations may
not provide regularly data or due to quality control failures. Five SYNOP variables
(T, U, V, P, Q) per station can be assimilated. The consistently not assimilated area
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over the Alps (Fig. 4.11) can be explained by the difficulty of WRF -or any limited
area model- to model accurately the terrain and the circulation in the boundary layer.
For that specific date, clearly either all variables were assimilated or three of them.
Out of the five measured variables, mostly the two wind components were rejected.
The quality control procedure of WRFDA for SYNOP is described in Section 4.2.2.
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(a) IASI coverage at 06 UTC (b) IASI coverage at 12 UTC

(c) IASI coverage at 18 UTC (d) IASI coverage at 00 UTC

Figure 4.10: IASI spatial coverage at the four assimilation hours, for 11.08.2014. The
colored label bar ranges from 0 to 158. This means at each pixel on the map, maximal 158
radiance channels can be assimilated. The data are plotted on the Lambert Conformal
projection (not all IFOVs are selected by NCEP (see Section 4.1.1), each dot representing
a 12 km horizontal resolution.
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(a) SYNOP coverage at 06 UTC (b) SYNOP coverage at 12 UTC

(c) SYNOP coverage at 18 UTC (d) SYNOP coverage at 00 UTC

Figure 4.11: SYNOP spatial coverage at the four assimilation hours, for 11.08.2014.
The colored label bar ranges from 0 to 5 indicating the number of assimilated variables:
temperature, the two wind components, pressure and specific humidity (converted from
measured relative humidity). The range refers to the number of variables that passed the
quality control and were assimilated.
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4.2.1 IASI assimilation
The preference to directly assimilate Tb rather than profiles of water vapor and
temperature lies in the fact that no control of consistency of a priori data is given
for the retrieval. Consequently, the observation error covariance of the retrieval is
difficult to determine in contrast to the radiance error covariance (Kalnay [2003]).
This is also underlined by the choice of most of the European NWPs Centers to
assimilate brightness temperature rather than the retrieved profiles (Hilton et al.
[2012]), which also provides model consistency as the same NWP will be used for
the assimilation.

Radiance measurements can be prone to biases. These systematic errors between
modeled and actual data can be due to non-modeled effects in the CRTM and the
satellite instrument itself (e.g poor calibration) (Auligné et al. [2007]). NWP centers
use their assimilation system to correct for these biases, which are not fixed but
vary with geographical location, time and scan position(Auligné et al. [2007]). In
WRFDA, the Variational Bias Correction (VarBC) module is used to apply bias
correction (McNally and Watts [2003]) before the assimilation takes place. The
modified observation operator (Liu et al. [2012])

H̃(x, β) = H(x) + β0 +
Ip∑
i=1

βipi(x) (4.1)

is used. The model simulated brightness temperature H(x) is corrected based on β0
(constant part of total bias) and the potentially state-dependent predictors pi and
their coefficients βi which are estimated within a variational minimization process by
inclusion in the control variables. The seven parameters included in the predictors
pi are:

1) scan position
2) square of scan position
3) cube of scan position
4) 1.000− 300 hPa layer thicknesses
5) 200− 50 hPa layer thicknesses
6) surface skin temperature
7) total column water vapor
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The effect of this bias correction can be observed in Fig. 4.12, where the scatter
plot of the model simulated temperature brightness Tb (BAK) versus the observed
Tb (OBS) is plotted. The shift of the distribution around the diagonal is notable in
Fig. 4.12b, where the bias correction is applied, along with the reduced root mean
square error. The VarBC module is used in every cycle of the FSO algorithm (for
the four assimilation runs per day) for the examined fortnight and the European
domain.

(a) (b)

Figure 4.12: Scatter plots of simulated Tb (BAK) and observed Tb (OBS) with (a) no
bias correction and (b) with bias correction. The simulation took place on 08.08.2014 at
18 UTC and the 820 observations of the channel 74 of IASI are plotted.

Part of the quality control in WRFDA is then to reject any observation, if the
observation minus the bias-corrected radiance exceeds either 15 K or 3σ0. The σ0
stands for the brightness temperature specified observation error standard deviation.
Other quality control checks, include dismissing channels over mixed surface type,
limb observations ( 48◦20′ ≤ scan positions ≤ 5◦) and channels of wavenumber greater
then 2400 cm−1. Even though the data are cloud cleared, an extra elimination of
channels is done if the cloud water liquid path is greater than 0.2 kg/m2, as computed
for each layer by the first guess run.

Fig. 4.13a, shows the percentage (%) of IASI data before (left of the crossed
column bar) and after (right of the crossed column bar) quality control at each
assimilation hour for the period 01.-15.08.2014. There is a distinction of the data
in terms of the surface types including sea, land and snow. The total amount of
data assimilated (purple column) makes less than 20% of the available data. It is
also noticeable that at 12 UTC the majority of the assimilated data is over sea and
at 18 UTC over land. Fig. 4.13b is a zoom in the quality controlled assimilated
data. There is an increasing percentage of assimilated IASI information from 06 to
18 UTC, with a minimum at 00 UTC. A small percentage (≤ 2 %) of snow surface
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type is also assimilated at 12 UTC.

(a) (b)

Figure 4.13: (a) The percentage of IASI observations in the period 01.-15.08.2014, before
(pale colors, left of the crossed column bar) and after (dark colors, right of the crossed
column bar) quality control. With dark purple color are the amount of observations
assimilated out of the total number of available observations. A distinction according to
surface type (sea, land, snow) is also made. (b) A zoom in plot on the quality controlled
observations per assimilation hour.
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4.2.2 SYNOP assimilation

During the quality control within WRFDA, a location and time check is performed
along with a conversion of the geographical grid to model grid, and a conversion from
relative to specific humidity, accompanied by some physical constrains (i.e. negative
values of humidity, irrational wind directions). In Fig. 4.14, the total SYNOP data
of the two weeks assessment is plotted per synoptic hour. On the right side is the
amount of data actually assimilated (after quality control). Approximately 60% of
the data is assimilated with an almost equal share between the five SYNOP variables.

Figure 4.14: Amount of SYNOP data before (pale colors, on the left side of the crossed
column bar) and after ( dark colors, on the right side of the crossed column bar) quality
control.

The observation errors of the SYNOP data are assigned by NCEP and distributed
along with the measurements. The mean observation error, of the assimilated
variables from SYNOP stations is 1.1 m/s for the two wind components, 2 K for
temperature, 100 Pa for pressure and 0.0026 kg/kg for specific humidity. To check
how representative the assigned errors are, the mean assigned error per variable and
per station is calculated, as a percentage of the actual observation values. In Fig. 4.15,
the mean observation error (%) is plotted for the SYNOP variables, assimilated at 06
UTC in the examined two weeks period. On average, the temperature and pressure
errors (Fig. 4.15c,d) are in the range of 10% of the measurements. Specific humidity
observation errors are in between 20-30 % of the actual measurements. The mean
observation error for the wind components of 1.1 m/s, attributes a mean percentage
of more then 80%. This means the SYNOP measurements were mostly well below
1.1 m/s on average at 06 UTC. A similar qualitative picture is given also for the
other analysis hours (12, 18 and 00 UTC).
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(a) U mean error (%) (b) V mean error (%)

(c) T mean error (%) (d) P mean error (%)

(e) Q mean error (%)

Figure 4.15: The mean observation errors expressed as percentage (%) of the actual
observations of (a) the U wind component, (b) the V wind component, (c) the temperature
T, (d) the pressure P, (e) the specific humidity Q. The average was calculated for the
observations assimilated at 06 UTC for the period 01.-15.08.2014.





Chapter 5

Observation impact results

In this chapter the aggregated FSO results over the defined two weeks period are
analyzed. First, the 6-hour non-linear forecast errors and their linear approximations
as described in Chapter 2 are examined in Section 5.1 as they indicate the accuracy
and performance of the algorithm. The evaluation, for the fortnight, of IASI and
SYNOP impact on the 6-hour forecast errors is presented and analyzed in Section 5.2.
The identification of cases of poor predictability are then presented in Section 5.3
and evaluated in Section 5.4.

5.1 Non-linear and linear forecast errors

The non-linear 6-hour forecast errors (Eq. (2.14)) and their linearized approximations
(Eq. (2.15)) were calculated for the European model domain and for the fortnight
01.-15.08.2014. For the non-linear error, first the differences of the two forecasts from
the reference analysis weighted by the energy norm were calculated (gradients at the
forecast time). Then the inner product of the gradients with the analysis increment
(at forecast time) followed, resulting in one number for the European domain at each
assimilation run. The same procedure was followed for the linearized version, with
the difference that the gradients were calculated by the runs of the adjoint model
from forecast time back to assimilation time. The time series for the two weeks
period are presented in Fig. 5.1, where larger absolute negative values indicate larger
forecast error reduction. Although the augmented version of the error approximation
is adopted (see Chapter 2), Eq. (2.20)), an average of ≈ 60% under-estimation of the
non-linear error reduction is found in contrast to other studies that used the same
error norm as Gelaro and Zhu [2009] who found an underestimation of 7%. This
percentage is calculated by averaging over time the relative error of the non-linear
error and its approximation, the linearized error.
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Figure 5.1: Time series of the non-linear and the approximated linear error for 01.-
15.08.2014. Every day consists of four assimilation runs, thus four calculations of errors.
Red asterisks denote failure of the adjoint approximation.

This difference might be due to the different model configuration used (e.g. dif-
ferent moist physics and their linearized versions), the global versus limited area
configuration, the amount of data used to define the reference and the different
length of forecasts examined. A relative error well below 60 % was also found in
Jung et al. [2013] with the WRF model. The forecast length in that case was 6
hours and the grid spacing was 45 km. In comparison to this study, a different
parameterization was used for cumulus and land-surface parameterization and this
alters also the adjoint results. The chosen parameterization for this thesis follows the
manual of the model (Skamarock et al. [2008]) and a finer horizontal resolution of
15km is chosen, where small scale non-linear effects may well have a larger influence.
Additionally, the selected period was subject to large baroclinic developments, which
might have contributed to the general poor forecast of weather centers. Nonetheless,
experiments with varying forecast error approximations (see Table 2.1 in Chapter 2)
do not improve the results.

It is clear that the assimilation of this observation configuration improved the
forecasts. This is deduced by the negative values of the time series, meaning the
forecast from the analysis is closer to the reference state than the forecast with no
observations included (see Fig. 2.1). The linearized approximation follows the linear
time series with the exception of 6 times, all occurring at 18 UTC on different days
(days: 3, 4, 6, 11, 13 & 14). The four adjoint failure occurrences are denoted by
red asterisks (days: 3, 4, 13 & 14). On days 6 & 11, big jumps to positive values
are noticed (Fig. 5.1). Interestingly, when performing the same experiments for
a forecast length of 12 hours, no adjoint failure is noticed but the positive spikes
persisted also there.

A closer look at the experiment for the assimilation runs at 18 UTC, where the
algorithm leads to inconclusive results, can be found in Appendix A. The dominant
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influence of the abundant IASI data is evident in the FSO results. Especially if
the reference analysis contains too little IASI data, the calculated forecast errors
Eq. (2.15) and Eq. (2.16) have too small differences, which causes the failure of
the algorithm. The solution would be to increase the amount of data used for the
analysis. In our case, a sensor in a geostationary orbit, providing consistently data
would dissolve this issue.

Obviously, the observation suite for FSO has to be carefully selected to avoid such
draw-backs. In order to provide the best possible reference, as much observations as
possible must be taken into account. Although some failed approximations of the
linear error occur in the case study, the linearized forecast errors at 12 UTC and 18
UTC (Fig. 5.2) follow quite well the non-linear errors but always underestimating
them, with the exception of 09.08 at 12 UTC.

(a) Forecast error at 12 UTC (b) Forecast error at 18 UTC

Figure 5.2: Time series of linear versus non-linear forecast error at (a) 12 UTC and (b)
18 UTC of all days between 01.-15.08.2014
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5.2 IASI and SYNOP observation impact
The SYNOP and IASI observation impact on the 6-hour forecasts are calculated
according to the methodology introduced in Chapter 2, Eq. (2.19). The time averaged
contributions (called FECs or observation impacts) to the 6-hour forecast error
reduction by assimilation of IASI and SYNOP observations are plotted in Fig. 5.3a
and Fig. 5.3b, respectively. Taking into consideration the spatial distribution of
observations, the time average is calculated by the summation over the domain for
each assimilation time, by observation type, and then divided by the frequency of
the assimilation runs. In this case, four assimilation runs per day that add up to a
maximum of sixty assimilation runs in the examined time span.

(a) (b)

Figure 5.3: Time averaged error reduction by (a) IASI and (b) SYNOP observations:
IASI_T , IASI_W and IASI_Q stand for impact of the channels in the Temperature,
Window and Water Vapor regions of the infrared spectrum, respectively. Q, P, T, V, U
describe the impact of relative humidity (converted to specific humidity for the assimilation),
pressure, temperature, and the two wind components. The error bars show the mean error,
defined as σx = σ

N , where σ is the standard deviation of the forecast error contributions by
the IASI and SYNOP observations for the fortnight and N is the assimilation frequency.
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In agreement with the previously presented error approximation (see Fig. 5.1),
the negative averaged errors presented in Fig. 5.3 illustrate a reduction of the 6-hour
forecast error due to assimilation. The total error reduction induced by IASI is almost
twice of the total error reduction caused by SYNOP. This is related to the bulk
amount of observations for this case study from IASI (around 600.000) in comparison
to SYNOP (around 350.000). The numbers of all assimilated observations can be
seen in Fig. 5.4. The relation of observation number and impact is obvious: especially
for IASI, where more observations in the temperature region of the infrared spectrum
(i.e IASI_T ) result in larger error reduction. This finding, is not trivial for the data
assimilation since more information does not guaranty optimal initial values due to
the complexity of the data assimilation systems. On the other hand, the number of
observations of SYNOP measurements is approximately equally distributed between
the five measured variables ( Q, P, T, U, V). However, wind measurements seem to
be the most valuable for the assimilation system. This is deduced by adding up the
FEC by the two wind components in Fig. 5.3(b), resulting in the largest absolute
number compared to the FECs by the rest of SYNOP measured variables.

Figure 5.4: Number of observations assimilated between 01.-15.08.2014, separately
depicted as IASI and SYNOP total number of observations and number of observations
per measured variable and observation type.

Taking into account the number of observations for each instrument and each
variable, the average forecast reduction normalized by observation number, is plotted
in Fig. 5.5. Compared to the not normalized results, the qualitative contribution of
SYNOP measurements is superior to IASI. It is of interest that the extra nine water
vapor channels (IASI_Q) added in the assimilation for this study seem to impose
more error reduction compared to the 109 channels in the temperature region of the
infrared spectrum (IASI_T).
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Figure 5.5: Average error reduction, normalized by observation number, of (a) IASI,
where IASI_T , IASI_W and IASI_Q denote the impact of the channels in Temperature,
Window and Water Vapor regions of the infrared spectrum, respectively and (b) SYNOP,
where Q, P, T, V, U describe the impact of relative humidity, pressure, temperature, and
the two wind components.

(a)

(b)

In Fig. 5.7, the contribution of each instrument relative to the combined forecast
error reduction is plotted by percentage.

Figure 5.7: Relative forecast error reduction per instrument and variable in (%).

The percentage is calculated from the average error reduction, normalized by
observation number and shown in Fig. 5.5. Almost 70% of the relative error reduction
are attributed to synoptic measurements, while the remaining 30% are achieved
by assimilation of IASI measurements. As underlined previously, the assimilation
of nine water vapor channels had twice as much impact (≈ 14%) on the forecast



5.2 IASI and SYNOP observation impact 49

error reduction compared to the temperature channels (≈ 7%). The forecasts benefit
more from synoptic wind measurements and not that much from synoptic relative
humidity (converted to specific humidity for the assimilation) measurements.

Although the assimilation of satellite and ground based observations reduced
the forecast error on average, the time series of forecast error contributions indicate
days, when the forecast error increases (Fig. 5.8). More specific, positive values
appear in the time series where larger positive values imply larger forecast errors by
assimilation of observations. Likewise, larger absolute values on the negative range
imply larger forecast error reduction by assimilation of observations.

(a) (b)

Figure 5.8: Time series of contributions to forecast error normalized by observation
number, of (a) IASI and (b) SYNOP. FEC stands for “Forecast Error Contribution” (see
Eq. (2.19)). Each day 4 assimilation runs take place, thus 4 columns per day are plotted
(00, 06, 12, 18 UTC). The black crossed columns indicate that data where missing or failed
the quality control. The error bars show the mean error defined as σx = σ

N , where σ is the
standard deviation and N are the number of observations.

Despite the positive columns, varying negative values per assimilation cycle
dominate the time series. SYNOP data, which are more straightforward to assimi-
late, seem to be qualitatively more important for forecast improvement than IASI.
Interestingly, both induce the largest forecast error reduction on 09.08., a day that is
subject to the case of low predictability of wind and solar power forecasts, as will be
seen later. The error bars show larger variability for IASI data and they are caused
by the large error bars of the water vapor channels (not shown here).

Positive values appear in both time series most often on assimilation cycles at
18 UTC. In total, ten assimilation cycles are found deteriorating the forecasts and
three dates out of ten coincide for IASI and SYNOP data (namely 02., 06. and
11.08, at 18 UTC). The largest degradation of the forecasts due to assimilation is
found on 06.08 at 18 UTC for SYNOP data and on 11.08 at 18 UTC for IASI data.
These are also the dates with unexpected positive spikes in the time series of linear
versus non-linear forecast error. With the exception of these two dates, the largest
degradation from SYNOP assimilation is found on 14.08 at 12 UTC. On this day, the
assimilation of the pressure measurements caused the largest forecast deterioration
in comparison to the other measurements by SYNOP stations. The positions of the
stations with the largest positive values can be tracked down as plotted in Fig. 5.9.
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It shows the forecast error contribution for each SYNOP station providing pressure
observations for the assimilation on 14.08 12 UTC. A large number of stations that
cause forecast degradation is placed in the region 45◦N to 60◦N and 20◦E to 30◦E.
In total, more than 50% of the stations in the domain degrade the forecast due
to assimilation of their measured pressure components. This worst performance of
SYNOP pressure measurements in the fortnight simply states that the forecasted
pressures, initiated from the analysis, had the largest difference from the reference run
pressures, compared to the rest of assimilation cycles in the fortnight. Subsequently
the corrections applied to the analysis on 14.08 at 06 UTC by SYNOP were not
lost but they rather declined the quality of the forecast. It is unclear whether this
degradation is due to bad observations, false forecast or even untrustworthy reference
state. Unfortunately FSO can not identify the reason but rather alarm that this
set-up, with this assimilation and forecast model and these observations is degrading
the 6-hour weather forecast.

Figure 5.9: Impact of SYNOP pressure observations assimilated on 14.08, 12 UTC on
the 6 hour forecast.“FEC”stands for Forecast Error Contribution and “qc & impact” refers
to the number of stations across the simulation domain that successfully passed the quality
control and had an impact on the forecast.
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The worst performance of IASI on 05.08 at 18 UTC (excluding 11.08, at 18
UTC) is illustratively demonstrated in Fig. 5.10, which shows the impact of IASI
observations on the forecast errors at this assimilation time. Positive values, thus
forecast deterioration, dominate the simulation domain over Europe (Fig. 5.10a). The
pixels beneficial to the forecast are not sufficient to compensate the overall bad results.
This becomes evident in Fig. 5.10b, where the impact of the individual channels is
plotted, normalized per pixel number. Out of the 158 channels, 53% degrade the
forecast, whereof 28% are caused by assimilation of temperature channels.

(a) (b)

Figure 5.10: (a) Impact of assimilation of IASI pixels on the 6-hour forecast on 05.08, at
18 UTC. For each pixel maximal 158 channels are assimilated. Black pixels correspond to
quality control failure, which in this case is mostly due to observations retrieved from large
scan angles. Positive values, indicated in red, describe forecast degradation (Fig. 5.10).
Pixels improving the 6-hour forecast are in the blue range of colors. (b) Impact of IASI
channels normalized by pixel number.

The monitoring aspect of FSO is emphasized in the presentation of the aggregated
results. Observations that potentially degrade the forecast can be excluded from the
assimilation procedure and locations can be classified to be characterized by high
or low impact. Furthermore, potential applications of FSO become apparent like
tracking systematic errors related either to weather conditions or to the model’s
ability to properly assimilate or even persistent technical malfunctions of instruments.
This can be realized if FSO is set-up on an operational basis, as a computationally
cheap alarm. Consequently, with a specific model and observation set-up, a value of
FEC can be defined indicating even extreme forecast error events. In those cases, the
observation data set and assimilation system can be examined, in terms of observation
error tuning for the observations case or the model set-up for the assimilation case.
Of course it is of interest to track the weather circulation on those situations, in
case a specific pattern arises that is ill-represented by the model or a more dense
observation network should be considered.
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5.2.1 Observation System Experiments

For the verification of the results, OSEs are utilized. These experiments, include
assimilation and forecast cycles under observation denial scenarios (Dumelow [2003]).
The reference run includes the ’all data’ scenario and statistical scores such as the
root mean square error are usually calculated. To make the OSEs results comparable
to FSO results, the forecast error is defined in terms of energy norm (see Eq. (2.1)).
The reference scenario is defined as,

et0+∆t
ref = (x(t0,t0+∆t)

a − xt0+∆t
t )TC(x(t0,t0+∆t)

a − xt0+∆t
t ) (5.1)

where x(t0,t0+∆t)
a , is a forecast initiated from an analysis at time t0 that includes all

observations. To be consistent with the FSO configuration, the “all data” scenario
includes the same observation suite as defined in table (Table 4.4). As in FSO, xt is
an analysis at verification time t0 + ∆t that includes all observations. The forecast
errors from the IASI and SYNOP observation denial experiments,

et0+∆t
iasi = (x(t0,t0+∆t)

a,no iasi − xt0+∆t
t )TC(x(t0,t0+∆t)

a,no iasi − xt0+∆t
t ) (5.2)

et0+∆t
synop = (x(t0,t0+∆t)

a,no synop − xt0+∆t
t )TC(x(t0,t0+∆t)

a,no synop − xt0+∆t
t ) (5.3)

are then compared to the reference forecast error.
In Fig. 5.11 the temporally averaged 6-hour forecast errors for each assimilation

time (at 00, 06, 12, 18 UTC) are plotted. When both data sets are included in the
assimilation cycles, the forecast error is on average reduced as is seen in the ’All Data’
columns. The total forecast error appears to increase with the forecast hour up to
18 UTC, with the absence of IASI data increasing the forecast error more than the
absence of SYNOP data. The bulk number of IASI data available for assimilation
at 18 UTC have a drastic impact on error reduction. This is deduced by the large
forecast error measured when they are absent.
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Figure 5.11: The averaged forecast error in terms of the energy norm is calculated for the
four assimilation hours over the time span 01.-15.08.2014. The forecast error is calculated
for the reference (Ref-gray column bar) that includes all observations, the No IASI (light
blue column bar) and the No Synop (dark blue column bar) experiments.

Qualitatively the OSE results support the findings with FSO. This applies to the
non-normalized results, where the bulk IASI data have the largest contribution to
the forecast error reduction in the fortnight. In support of this, OSE results show
that the absence of IASI data increases more the forecast error than the absence
of SYNOP data. One exception to the relation of observation impact with the
number of observations does exist at 06 UTC. According to Fig. 4.9, the percentage
of assimilated SYNOP observations at 06 UTC is higher than the percentage of IASI
assimilated observations at 06 UTC. The OSE results, in contrast, show a larger
increase of forecast errors when the IASI data are absent at 06 UTC compared to
the forecast error when SYNOP data are absent (Fig. 5.11). Despite this, the time
series of the FEC normalized by observation number showed larger forecast error
reduction by SYNOP data on all assimilation runs, including 06 UTC.
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5.3 Poor predictability cases
To apply FSO for energy meteorology, erroneous solar and wind power events are
sought for which the weather pattern is examined and the contribution of the
observation network is evaluated through the applied algorithm. In this chapter
those days are identified based on forecasted and actual total power values produced
from German power plants. The accurate prediction of large fluctuations (ramp
events) of solar and wind power is very important for the integration of renewable
energies in the electrical power grid (Bueno et al. [2017]). Ramp events can take place
at different space and time scales and in both positive and negative directions (Florita
et al. [2013]). Wind power ramp events are caused by atmospheric phenomena like
wind gusts, thunderstorms, cyclones and low-level-jets (Freedman et al. [2008]). Solar
power ramp events, occur due to diurnal variability by clouds, mineral dust outbreaks,
biomass burning plumes or PV panes blurred by deposited snow or dust layers (Cui
et al. [2017]).

In order to identify these prediction error events, data available by Germany’s
Transmission System Operators (TSOs) are examined. The data set of measured and
forecasted power values (obtained by TSO-50hertz [2014]) has a temporal resolution
of 15 minutes and the day-ahead power forecasts are weighted averages of various
NWP models. The examined time frame is the first fortnight of August 2014 and
includes the extreme wind power forecast error event on 09.08., as identified by Good
[2017]. A power output model using meteorological input from WRF would have
been a better choice to identify the erroneous days and use FSO to improve the
observation network but unfortunately it was not available for this study.

The time series of the first fortnight of August 2014 of the forecasted versus the
real power feed-in for the wind and solar power (in GW) for Germany is plotted in
Fig. 5.12. For the wind power time series (Fig. 5.12a), the second half of the fortnight
is apparently of more interest with the notable under-prediction of wind power on
09.08.. In contrast to this error event, almost 65% of the wind power forecasts were
overestimating the actual power output. In the solar power time series, a persisting
under-prediction of the daily maximum actual solar power output can be noticed
(Fig. 5.12b).

(a) (b)
Figure 5.12: Time series (01.-15.08.2014) of day-ahead forecasts and actual total power
values for (a) wind and (b) solar from German power plants. The bias is depicted by the
black solid line.
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Keeping in mind that the configuration of the FSO experiment consists of
assimilation and 6-hour forecast cycles at 00, 06, 12 and 18 UTC, it is of interest to
examine the time series at these hours during the fifteen days experiment (Fig. 5.13).
It was found that the largest differences between forecasted and actual power values
for both wind and solar occurred at 06 and 12 UTC.

(a) (b)

(c) (d)

Figure 5.13: Time series (01.-15.08.2014) of day-ahead forecasts and actual total power
values for wind and solar power for Germany at (a) 00 UTC, (b) 06 UTC, (c) 12 and (d)
18 UTC. All plots share the same legend.

To identify the erroneous forecast days, statistical measures such as the RMSE
and the Mean Absolute Error (MAE) are employed separately for solar and wind
power. The RMSE, aggregates the magnitude of the daily error of the predictions in
one value for each day. It is calculated according to Eq. (5.4), where xf and xt refer
to forecasted and measured power values, respectively. MAE (Eq. (5.5)) provides
the average absolute values of the errors. In contrast to RMSE, it is proportionally
influenced by each error.

RMSE=
√∑N

n=1(xf − xt)2

N
(5.4)

MAE=
∑N

n=1 |xf − xt|
N

(5.5)

The time series of both measures are plotted in Section 5.3. The large wind power
errors stand out in the second half of the fortnight, with maximum error occurring
on 09.08.2014. No extreme forecast error is noticed for solar power, although the
largest error occurs also on 09.08.. In Table 5.1 the most erroneous dates for wind
and solar power according to the statistical measures are listed. In the the study
period the largest error events in terms of power discrepancies between actual and
foretasted power (GW) are found for wind power.
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(a) (b)

Figure 5.14: Time series (01.-15.08.2014) of daily (a) RMSE and (b) MAE for wind and
solar power for Germany.

Table 5.1: Dates with highest RMSE and MAE scores for wind and solar power.

Solar
Dates (MM.DD) RMSE (GW) Dates (MM.DD) MAE (GW)

09.08 1.37 09.08 0.91
04.08 1.23 04.08 0.78
03.08 1.11 11.08 0.70

Wind
09.08 4.03 09.08 3.24
11.08 1.55 11.08 1.22
10.08 1.10 13.08 0.84

The hourly RMSE for solar and wind power in the examined fifteen days is
plotted in Fig. 5.15. As was already noticed in Fig. 5.13 and confirmed in the next
plot (Fig. 5.15), 06 and 12 UTC have the largest RMSE for both wind and solar
power. Higher wind error scores persist over several hours in contrast to solar power
prediction errors.

Figure 5.15: RMSE per hour (00, 06, 12, 18 UTC) for 01.-15.082014.

For the listed days in Table 5.1, the time series of forecasted and actual total
power values are plotted in Fig. 5.16 and Fig. 5.17. During the days with the largest
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wind error events, the TSOs’ day-ahead forecasts were able to identify the majority
of the ramps but failed to estimate the magnitude of the power fluctuations. On
the other side, the TSOs’ solar forecasts on the most erroneous days did not only
miss many ramp events but also misplaced them in time (Fig. 5.17a). This can be
understood, as the effect of transient clouds is typically difficult to predict by the
weather models.

(a) (b)

(c) (d)

Figure 5.16: Time series of days with large error events (see Table 5.1) for wind power
over Germany. The total power values are normalized by the installed capacity of 35 GW
for Germany on 2014.

(a) (b)

(c) (d)

Figure 5.17: Time series of days with large error events (see Table 5.1) for solar power
over Germany. The total power values are normalized by the installed capacity of 39 GW
for Germany on 2014.
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To comprehend the forecast errors quantitatively the total forecasted and mea-
sured energy of these days was calculated. The integrals over time of forecasted
and measured power were approximated numerically by applying the trapezoidal
rule (with a 15 minutes time interval). The relative error (in %) of the forecasts,
on the days with the largest errors, is presented in Table 5.2. It is calculated in
percent by ((xt − xf)/xt) ∗ 100 where xt and xf refer to the daily measured and
forecasted energy, respectively. Positive relative error values imply under-prediction
of the energy produced that day, by the TSOs’ day-ahead forecasts and negative
values imply over-prediction. The solar energy forecasts underestimated the actual
energy by a range of 10-16 % with an exception of over-prediction on 11.08.. Wind
energy forecasts, have a larger range of over/under prediction on the erroneous days,
with an astonishing relative error of 34% on the exceptional wind error event.

Table 5.2: Relative forecast error in percentage with respect to real energy production
for days with the largest RMSE and MAE scores.

Solar Wind
Dates (MM/DD) Relative error (%) Dates (MM/DD) Relative error (%)

09.08 16 09.08 34
04.08 14 11.08 -13
03.08 10 10.08 10
11.08 -13 13.08 -21

In the following Section 5.3.1, the weather situation on the poor solar and wind
power predictability days is examined in order to identify potential patterns that
might occur. Then, the described observation configuration is evaluated for these
days with the help of FSO in Section 5.4.
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5.3.1 Weather conditions
In this section the weather situation of the low solar and wind power predictability
days is analyzed. The geopotential height distribution at the 500hPa surface is
plotted together with the sea level pressure contours in Fig. 5.18. These snapshots
of the atmosphere were plotted from the 3DVAR analyses of the FSO experiment,
where the background information originates from model forecasts initiated 6-hours
before the analyses. The dates of plotted analyses are chosen according to the largest
discrepancies between predicted and actual solar and wind power (see Section 5.3,
Fig. 5.16 and Fig. 5.17).

Figure 5.18: Geopotential height in decametres at 500 hPa (color-scale) and sea level
pressure (black contours) for days with large wind (09., 10., 11., 13.08.2014) and solar
power (03., 04., 09. and 11.08.2014) errors.

Isobaric (constant pressure) maps of the upper atmosphere are valuable to illus-
trate the movement of surface pressure systems. For example, developing surface
storm systems are deep lows that intensify with height. Thereupon, a surface low-
pressure area can appear on an upper-level chart as either a closed low or a trough
(Ahrens [2011]). They steer the surface low-pressure systems and bring cold air
masses from the pole towards the European continent. This is especially prominent
in the low wind power predictability cases on 11.08., where a sharp pressure gradient
indicated strong southerly winds along the British Isles and on 09.08., at the cut-off
low, with prevailing southerly winds along the North Sea.
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To fully comprehend the weather associated with these lows, that vary in intensity
and extent, the surface analyses and the imagery of the cloud scenes over Europe is
given in Fig. 5.19 and Fig. 5.20. The surface analyses are provided by the DWD. The
imagery from SEVIRI at the thermal infrared band (10.8 µm) records the thermal
emission from surface and from the top of the clouds (Petty [2004]).

The frontal wave that gave birth to the cyclonic circulation on 03.08. over the
UK, formed on 02.08. around 06 UTC. On 03.08. at 12 UTC the system had already
build up to a fully developed open wave over Scotland (Fig. 5.19a), moving eastward.
On 04.08., 12 UTC the dissipation of the cyclone, positioned now north of Scotland,
had begun (Fig. 5.19b). Taking a look at Fig. 5.19d and Fig. 5.19e sharper differences
at the center of the low between the brightness temperatures of the clouds is noticed
in the first figure, whereas in the second more shallow clouds appear. Scattered
clouds appear in western Germany in both images and larger patches of high clouds
in eastern Germany. On those days, Germany’s TSOs under-predicted the total solar
energy production by ∼ 15% (Table 5.2).

Coldest brightness temperatures are highlighted with white and warmer bright-
ness temperatures with gray or black. The contrast between the deep thunderstorms
(depicted with white) and the surrounding lower and thus warmer cloud tops are
prominent over all examined days (Lower panels in Fig. 5.19 and Fig. 5.20). In the
following paragraphs, isobaric upper level maps, surface analyses and cloud imagery
will be used to describe the weather circulation on low predictability days of, first
solar, then wind, and last, both solar and wind power output.
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(a) 03.08.2014 (b) 04.08.2014 (c) 09.08.2014

(d) 03.08.2014 (e) 04.08.2014 (f) 09.08.2014

Figure 5.19: Upper panel: surface analyses by the German weather service for (a)
03.08.2014, 12 UTC (b) 04.08.2014, 12 UTC (c) 09.08.2014, 12 UTC. Black, thin contour
lines refer to the sea level pressure and black thick lines with triangles and half-circles
describe cold and warm frontal position, respectively. Lower panel: Meteosat Second
Generation satellite, imagery by the SEVIRI (UK Projection), channel 9 at 10.8 µm in the
thermal infrared band.
Source (a-c): http : //www1.wetter3.de/archiv_gfs_en.html
Source (d-f): http : //www.sat.dundee.ac.uk

The weather patterns on the low wind power predictability days on 10 and 13.08.
are depicted in Fig. 5.20a and Fig. 5.20c. Starting with 10.08., a cold front was
moving south-eastwards across France and Germany (Fig. 5.20a) and was steered by
the deep low-pressure system situated over the UK. This low was part of a family of
lows across the trough in Fig. 5.18 (10.08. at 12 UTC). The steep pressure gradient
that produced strong south-west surface winds along the UK is also clearly visible.
Germany was almost completely covered with clouds, with the exception of a clear
sky stripe in eastern Germany (Fig. 5.20d). On 13.08., an expanded cold air mass
in the upper atmosphere over Europe (Fig. 5.18 (13.08. at 06 UTC)) produced a
broad surface low-pressure system situated over the North Sea and secondary lows
over the central Europe (Fig. 5.20c). At the latter ones, high clouds indicating deep
thunderstorms can be identified by the bright white color in Fig. 5.20f. A 10 %
under-prediction of the total daily wind energy production by the forecasts was found
for 10.08. and an over-prediction by 21% on 13.08. (Table 5.2).
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(a) 10.08.2014 (b) 11.08.2014 (c) 13.08.2014

(d) 10.08.2014 (e) 11.08.2014 (f) 13.08.2014

Figure 5.20: Upper panel: surface analyses by the German weather service for (a)
10.08.2014, 12 UTC (b) 11.08.2014, 12 UTC (c) 13.08.2014, 06 UTC. Black, thin contour
lines refer to the sea level pressure and black thick lines with triangles and half-circles
describe cold and warm frontal position, respectively. Lower panel: Meteosat Second
Generation satellite, imagery by the SEVIRI (UK Projection), channel 9 at 10.8 µm in the
thermal infrared band.
Source (a-c): http : //www1.wetter3.de/archiv_gfs_en.html
Source (d-f): http : //www.sat.dundee.ac.uk

The last days examined are 09. and 11.08.. The highest daily RMSE of forecasted
total power values of Germany, over the examined period, was found for both solar
and wind power on 09.08. On the other hand 11.08 was the second most erroneous
wind power forecast day, whereas it was found on the fourth place (descending RMSE
order) for the solar power forecast cases in the examined two weeks. On both days,
a surface low-pressure system was situated between northern England and Norway.
On 11.08. (Fig. 5.20(b)), a cold front extended all the way down to south Europe in
a pronounced spiral cloud pattern and scattered clouds persisted in central Europe
(Fig. 5.20(e)). On 09.08., the cyclone over the North sea produced the familiar comma
shaped cloud pattern (Fig. 5.19(f)) as a result of the occluded front (Fig. 5.19(c))
that is accompanied by the most intense weather in a life of a cyclone. Eastern
Germany was affected by this surface low-pressure system and the western part was
affected by scattered clouds by the low-pressure system situated over North-western
France. On both days, steep pressure gradients visible in Fig. 5.18[09.08, 12 UTC],
indicate strong south-westerly winds over Germany. The over-prediction of wind
energy production for Germany on 11.08. was ∼ 13%. In contrast, on 09.08. the
TSOs under-predicted the wind power by ∼ 34%.

Clearly, the ability to precisely forecast the position of the surface low-pressure
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systems along with the magnitude of the baroclinic instability comes in question.
On 09.08., the NWPs under-predicted the magnitude of the instability as stronger
than expected winds occurred producing higher wind power feed in than forecasted.
This instability evolved in the development of a secondary low pressure system
(see Fig. 5.18, 09.08. at 12 UTC). The significantly mispredicted surface winds,
produced an extreme forecast error case (Berndt [2018]). In this case, the TSOs
were anticipating less power feed in for the grid than what was actually received
leading to one of the most significant losses of revenues in the year. The evaluation
of the configuration of the SYNOP and IASI observation network, based on the FSO
results, follows in Section 5.4.
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5.4 Evaluation of the results
In the following, the results of the FSO algorithm are examined on the days of
low wind and solar power prediction. First the effect of assimilation of the IASI
and SYNOP observations is examined (Section 5.4.1) in terms of distance of the
observations from the background model information and the analyses. Furthermore,
the most valuable SYNOP parameters and IASI group channels are identified in
section Section 5.4.2. The impact is then attributed to the individual SYNOP stations
and IASI pixels, revealing locations that improve or occasionally degrade the intraday
forecast error. The impact per IASI channel is examined and validated in terms of
effective improvements. In section Section 5.4.3, the range of the observation impact
is explained through the relationship to the innovation vector. Larger distance of
the observations from the model background is linked to larger observation impact.
The model’s over/under-prediction of the observations is examined with respect to
the observation impact.

5.4.1 Assimilation results
In order to perceive the effect of IASI and SYNOP observations in the assimilation
scheme from different perspectives the following graphs are presented. The examined
analyses are the ones for which the observation impact on the 6-hour forecast is
analyzed in Section 5.4.2. In Fig. 5.21, the daily mean and standard deviation of
Observation-Minus-Background (OMB) and Observation-Minus-Analysis (OMA)
for the five SYNOP variables are plotted. The two wind components are plotted
in Fig. 5.21a. The same plots are produced for the IASI channels on the same
dates, where the average for each channel is calculated according to the number of
pixels (Fig. 5.22, Fig. 5.23). The OMB, or innovation vector (Eq. (3.2)), reveals
whether the model over-predicts (negative OMB) or under-predicts (positive OMB)
the observations. The OMA reveals the tendency of the assimilation algorithm
to tend towards the background information or the observation. This preference
depends on the observation and forecast covariance matrix errors. Small OMA values,
mean a preference to observations and larger values indicate a preference to the
background model information.
Larger OMB values in comparison to OMA values, indicate that the analysis has
larger values than the backgound due to assimilation of observations. Smaller OMB
values in comparison to OMA values, imply that the analysis has smaller values than
the backgound, due to the assimilation of observations. When OMA and OMB are
very close, small corrections to the backgound are attributed to the observations.

Starting with the SYNOP wind variables in Fig. 5.21a, on all erroneous wind
power dates (09., 10., 11. and 13.08.) the model was over-predicting the wind
velocity. More specific, the departures (in absolute values) of the observations from
the model’s background are found to be larger for the meridional (V) than the zonal
(U) wind.

The smaller OMA in absolute values, implies that the algorithm, shifted the
analysis closer to the observation value. These corrections by the assimilation algo-
rithm brought the assimilation of meridional wind component on the highest impact
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ranking list, as will be shown later. The notable under-prediction of temperature
by the model on 09.08. and 11.08. at 06 UTC and the subsequent correction by
the assimilation system, brought the SYNOP temperatures on the highest ranking
position on those two days (Section 5.4.2). As seen in Section 5.3.1, a surface low
pressure system situated between northern England and Norway was the dominant
feature on those two days with cold fronts sweeping across Europe (Fig. 5.19(c) and
Fig. 5.20(b)). The changes of temperature that accompany cold fronts and the ability
of the model to predict them, indicated that the introduction of temperature infor-
mation in the model was the most beneficial information to improve the short-term
forecast related to this weather circulation.

For the IASI channels, the model is in majority overestimating the IASI_W
channel data and along with IASI_Q, they appear to have the largest standard
deviations. The IASI_T channels are constantly under-predicted by the model and
the smallest values of OMA and OMB are found in the temperature channel range
14.5 − 14.0µm. These channels were found to also have the smallest impact on
forecast error reduction on the examined low predictability days, as will be seen later.
The nine additionally included IASI_Q channels, are overestimated by the model
and brought closer to the observations, as seen by the smaller OMA compared to
the OMB.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.21: Time series of mean (left) and standard deviation (right) of the OMA and
OMB for the SYNOP (a,b) U and V wind components, (c,d) temperature (e,f) pressure
and (g,h) specific humidity. The dates on the x-axis are the analyses dates examined later
on for the low predictability cases.
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(a) 03.08., 12 UTC (b) 03.08., 12 UTC

(c) 04.08, 12 UTC (d) 04.08., 12 UTC

(e) 09.08., 06 UTC (f) 09.08., 06 UTC

(g) 09.08., 12 UTC (h) 09.08., 12 UTC

Figure 5.22: Analyses from 04.08., 12 UTC to 09.08., 12 UTC: Mean (left) and standard
deviation (right) OMA and OMB for the assimilated IASI channels. The average for each
channel is calculated according to the number of pixels.
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(a) 10.08., 12 UTC (b) 10.08., 12 UTC

(c) 11.08., 06 UTC (d) 11.08., 06 UTC

(e) 11.08., 12 UTC (f) 11.08., 12 UTC

(g) 13.08., 12 UTC (h) 13.08., 12 UTC

Figure 5.23: Analyses from 10.08., 12 UTC to 13.08., 12 UTC: Mean (left) and standard
deviation (right) OMA and OMB for the assimilated IASI channels. The average for each
channel is calculated according to the number of pixels.
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5.4.2 Impact results
The impact of assimilating IASI and SYNOP data on the 6-hour forecasts over the
European domain is investigated on the low solar (days 03, 04, 09 and 11) and wind
(days 09, 10, 11 and 13) power predictability days.

Fig. 5.24 shows the IASI and SYNOP observation impact for the European domain,
normalized by observation number, on the 6-hour forecast errors at assimilation
times, 00 (Fig. 5.24a), 06 (Fig. 5.24b), 12 (Fig. 5.24c) and 18 (Fig. 5.24d) UTC.
On the corresponding assimilation times, the impact of SYNOP and IASI data is
plotted for the six days of low wind and solar power predictability. Larger, absolute
values on the negative range imply larger improvement of the 6-hour forecast error
due to assimilation and larger positive values imply larger forecast degradation. The
spatial coverage of IASI data, in combination with the quality control failure (see
Section 4.2.1), result in the absence of IASI observation impact seen in Fig. 5.24a
and Fig. 5.24b. In Fig. 5.24d, the FSO results showed that the assimilation of IASI
and SYNOP on 11.08. at 18 UTC deteriorated the forecast at 00 UTC. This is
due to the miss-approximated linear error evolution on 11.08. thus the results are
not trustworthy. As described in section Section 5.1 the cause of this might be the
number and position of the assimilated observations for the reference run at 00 UTC.
In addition, the adjoint model runs failed to give results on 03.08. and 04.08. at 18
UTC. As can be understood the FSO runs at 18 UTC are problematic in contrast to
FSO runs at 06 UTC and 12 UTC.

The forecast errors at 06 and 12 UTC, that are found to have the largest RMSE
for forecasted (by Germany’s TSOs) solar and wind power in the examined case
study, come in focus. The assimilation of IASI and SYNOP data at 06 and 12 UTC
improved the 6-hour forecast as seen in Fig. 5.24b and Fig. 5.24c. The forecasts
benefit more from the assimilation of the data at 06 UTC in comparison to 12 UTC
as can be deduced by the range of the negative values on the y-axis. The dramatic
error reduction by assimilation of SYNOP data at 06 UTC on 09.08., stands out
in Fig. 5.24b. This was also the largest error reduction of the case study period as
was found in Chapter 5, Fig. 5.8. The large values of the energy norm in this case,
along with the fact of the extreme wind error event on the same day, render FSO as
a potential alarm tool that could warn the grid managers of an upcoming extreme
error event. Moreover, the ability of the model to accurately predict the weather
circulation (see Section 5.3.1) associated with these large error norms can be further
investigated in terms of the model itself and the configuration of the observation
network.
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(a) (b)

(c) (d)

Figure 5.24: Impact of assimilating IASI and SYNOP data on the 6-hour forecasts on
03., 04., 09., 10., 11., and 13.08.2014, for the European domain. The plots aggregate the six
days of low solar and wind power predictability per assimilation hour (a) 00, (b) 06, (c) 12
and (d) 18 UTC. Dark blue and red columns indicate the SYNOP data impact and crossed
dark blue and red columns described the IASI data impact. The black crossed columns
indicate missing impact resluts. The error bars (thin lines) show the mean error defined as
σx = σ

N , where σ is the standard deviation and N are the number of observations.
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To perceive the magnitude of the contribution to forecast error reduction by IASI
and SYNOP data, the relative error reduction (in %) is plotted for assimilation
hours at 06 and 12 UTC, in Fig. 5.25. To calculate the percentage, the normalized
by observation number, observation impacts are used. At 06 UTC, the conspicuous
dominance of SYNOP data accounts for more than 70 % relative error reduction,
when both data types are assimilated. On 12 UTC this difference is reduced, with
the percentage being ≈ 60 and ≈ 40 % forecast error reduction by SYNOP and IASI
data, respectively.

(a) (b)

Figure 5.25: Relative error reduction, by assimilation of IASI and SYNOP data at (a)
06 UTC and (b) 12 UTC on the low wind and solar power predictability days.

In Fig. 5.26, the impact of SYNOP and IASI data on the 6-hour forecast error is
distributed to their corresponding physical parameters. The relative 6-hour forecast
error reduction by assimilation of SYNOP variables and IASI channels is plotted
for 06 UTC in Fig. 5.26a,c and for 12 UTC in Fig. 5.26b,d. The y-axis at the same
assimilation time for the two observation types, adds up to 100(%) by summing all
the SYNOP variables and IASI channels’ impact. At assimilation time 06 UTC,
the SYNOP temperatures are the most valuable observations (with the exception
on 13.08.), followed by the two wind components (Fig. 5.26a). The assimilation
of the two wind components dominated the impact results on both hours and it
was found that in most cases the assimilation of the meridional wind was more
beneficial. This implies larger corrections induced to the model’s meridional winds by
the assimilation algorithm, which was confirmed by the departure of the observations
from the background and the analysis. When IASI is assimilated at 06 UTC, the
channels at the water vapor (IASI_Q) and window (IASI_W) region of the infrared
spectrum are more important than the temperature channels (IASI_T). Looking at
the assimilation hour 12 UTC, the temperature synoptic in-situ observation is not as
important as the two wind components. Although IASI is constantly contributing
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less to the error reduction, it is interesting that the extra 9 water vapor channels,
tested for this study, have large contribution to error reduction as seen in Fig. 5.26d.

(a) SYNOP assimilation at 06 UTC (b) SYNOP assimilation at 12 UTC

(c) IASI assimilation at 06 UTC (d) IASI assimilation at 12 UTC

Figure 5.26: Relative error reduction by assimilation of the SYNOP type variables,
temperature (T), pressure (P), relative humidity (Q) and the two wind components (U,V)
on the 6-hour forecast at (a) 06 UTC and (b) 12 UTC. The relative error reduction by
assimilation of IASI is described at (c) 06 UTC and (d) 12 UTC, where IASI_T , IASI_W
and IASI_Q stand for impact of the channels in the Temperature, Window and Water
Vapor regions of the infrared spectrum, respectively.
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The forecast error contribution by SYNOP stations providing temperature ob-
servations, accounts for ≈ 25 % and ≈ 40 % relative error reduction on the 6-hour
forecasts by assimilation on 09.08., 06 UTC and 11.08., 06 UTC, respectively. The
position of the most beneficial stations can be located in the maps in Fig. 5.27a and
Fig. 5.28a. In the spatial distribution, the observation impact is categorized in bins to
create a blue and red contrast, where darker blue represent larger improvement and
darker red larger forecast degradation. A symmetric colorbar is chosen. The maximal
observation impact out of the six days can be spotted in 36.7◦N and 28.78◦E in
Fig. 5.27a. It must be noted that negative values smaller than -50x104J/Kg exist. In
both plots, the stations on the upper right part of the domain are the most valuable
whereas the ones in central Europe even degrade the 6-hour forecasts at assimilation
on 09.08.. From the total number of assimilated temperatures (one per station), 26
% and 11% are causing forecast degradation by assimilation on 09.08. and 11.08.,
06 UTC, respectively. This degradation is concealed in the previous figures by the
larger forecast improvement from assimilation of the remaining stations. The spatial
distribution for the impact of SYNOP measured winds on the 6-hour forecast, can
be found in Appendix A.2.

The impact per IASI pixel, as seen in Fig. 5.27b and Fig. 5.28b, is simply the
contribution of the assimilated channels to each pixel. Because of this, the colorbars
have one order of magnitude larger range. Even with few pixels (in each maximal
158 channels are assimilated), because of the limited spatial coverage at 06 UTC,
the forecasts benefit from IASI assimilation. The ranking list of the most beneficial
IASI channels, normalized by pixel number, can be seen in Fig. 5.27c and Fig. 5.28c.
Despite more temperature channels (15.4− 13.5µm) being assimilated, the channel
group is not as beneficial for assimilation as the other two channel groups. This
is also evident in Fig. 5.26c, with more than 15 % relative error reduction being
attributed to channels in the window region of the infrared spectrum on 09.08., 06
UTC and 11 % to the water vapor region on 11.08., 06 UTC. The error reduction
by the assimilation of temperature channels at 06 UTC, on the examined days, is
less than 5 %. From the 102 temperature channels assimilated on 09.08. at 06 UTC,
20 channels were mildly (compared to the forecast improvement range) degrading
the forecast. The assimilation of 12 channels on 11.08. at 06 UTC was found to be
deteriorating the forecast, with largest forecast errors imposed by three water vapor
channels. This is in contrast to the good results obtained by assimilating the water
vapor channels.
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(a) SYNOP, 09.08. (b) IASI, 09.08.

(c) IASI, 09.08.

Figure 5.27: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 09.08. 06 UTC on the 6-hour forecast. The impact per channel is
normalized by number of pixels. Black pixels describe quality control failure. The colorbars
are generated by taking the minimum and maximum impact for the six examined days
with an interval of ten. The left and right edges indicate values smaller than -50 (x103 for
SYNOP and x104 for IASI) and greater than 50 (x103J/Kg for SYNOP and x104J/Kg
for IASI), respectively.
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(a) SYNOP, 11.08. (b) IASI, 11.08.

(c) IASI, 11.08.

Figure 5.28: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 11.08. 06 UTC on the 6-hour forecast. The impact per channel is
normalized by number of pixels. Black pixels describe quality control failure.

In the following Section 5.4.2 to Fig. 5.34, the same plot types are utilized to
describe the FSO results on assimilation at 12 UTC on days of low wind and solar
power predictability. On all days, ≈ 50 % of the relative error reduction is attributed
to the assimilation of SYNOP wind components (Fig. 5.26b). For each date, the
observation impact of the largest contributing SYNOP variable is plotted on the map.
The mild forecast degradation and forecast improvement per station is a common
feature in all SYNOP stations, with individual stations compensating with large
absolute negative values. The percentage of stations declining the forecast varies from
24 % on 04.08. to 41 % on 10.08.. A cluster of stations located in northern-eastern
Germany, is found to constantly improve the forecast.
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Taking a closer look at the IASI impact per pixel, it is found that less than 2.5
% of the pixels have positive values on all days and that the prevailing impact range
is between 0 and -10 x104J/Kg with the exception on 11. and 13.08. On those days,
most of the pixels are binned between the larger forecast error reduction range, -20
to -10 x104J/Kg. When examining the contribution per group of channels, it is
found that the IASI_Q have a larger contribution to the relative error reduction
on days 03., 04., and 09.08., which reaches up to 20 % on 09.08. (Fig. 5.26d). This
can be explained, by the large forecast improvement imposed by them, relative to
their number (9 channels). The individual channel contribution of the IASI_T is
well noticed in all plots of channel impact, normalized by pixel number (Fig. 5.29c to
Fig. 5.34c). Especially the ones in the range 15.4 -14.5µm are consistently the most
valuable in the temperature channel range. On the other hand, insignificant forecast
improvement is found for all days by assimilation of channels of the temperature
group between 14.5 - 14.0 µm. On 09.08., 10 channels in the temperature region had
small positive values, mostly from that range.
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(a) SYNOP, 03.08. (b) IASI, 03.08.

(c) IASI, 03.08.

Figure 5.29: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 03.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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(a) SYNOP, 04.08. (b) IASI, 04.08.

(c) IASI, 04.08.

Figure 5.30: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 04.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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(a) SYNOP, 09.08. (b) IASI, 09.08.

(c) IASI, 09.08.

Figure 5.31: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 09.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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(a) SYNOP, 10.08. (b) IASI, 10.08.

(c) IASI, 10.08.

Figure 5.32: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 10.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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(a) SYNOP, 11.08. (b) IASI, 11.08.

(c) IASI, 11.08.

Figure 5.33: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 11.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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(a) SYNOP, 13.08. (b) IASI, 13.08.

(c) IASI, 13.08.

Figure 5.34: Impact of (a) SYNOP temperature (b) IASI pixels (c) IASI channels
assimilation on 13.08., 12 UTC on the 6-hour forecast. The impact per channel is normalized
by number of pixels. Black pixels describe quality control failure.
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5.4.3 Examination of observation impact
The scale at which each variable contributes to the observation impact can be
understood by the relationship of the observation impact and the innovation vector
d (see Eq. (3.2)). It is clear from the definition of the observation impact (or FEC)
in Eq. (2.19), that the greater the distance of the observation from the background
information, the greater the observation impact. The positive and negative sign of
the impact reveals if the 6-hour forecast originating from the analysis is farther or
closer to the reference state than the forecast without assimilation, respectively.

This relationship is examined through the following scatter plots of observation
impact and innovation vector. The focus lies on the six low predictability days and
the most important contributing SYNOP variables (Fig. 5.35) and the three IASI
channels groups (see Fig. 5.36). In the scatter plots, observations below the y-axis
zero reference line are the ones improving the 6-hour forecast and above the axis are
the ones deteriorating the forecast. Observations left of the x-axis zero reference
line have negative innovation, meaning the model over-predicts the value of the
observation.

At a first look at Fig. 5.35, the symmetry about the y-axis is noticed for the wind
components scatter plots (Fig. 5.35a, b, e and g). This means that, as the absolute
innovation increases, so does the absolute observation impact. In the temperature
scatter plots in Fig. 5.35c and Fig. 5.35f, a tendency of larger forecast improvement
by large model under-predicted observations is noticed in the lower right parts of the
graphs. In Fig. 5.35c, larger degradation due to temperature assimilation is noticed,
compared to Fig. 5.35f. In this case the model is under-predicting the observations
(upper right part on the graph). The opposite is true for Fig. 5.35f, as deduced by
comparing the upper right and left parts of the graph. In all figures, the y-axis range
has larger negative than positive range, which is expected as these are the variables
with the best performance.
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(a) V, 03.08., 12 UTC (b) U, 04.08., 12 UTC (c) T, 09.08., 06 UTC

(d) V, 09.08., 12 UTC (e) V, 10.08., 12 UTC (f) T, 11.08., 06 UTC

(g) U, 11.08., 12 UTC (h) V, 13.08., 12 UTC

Figure 5.35: Scatter plots of observation impact of SYNOP variables and their corre-
sponding innovation vector. The most valuable SYNOP variable, for the 6-hour forecast
on each low predictability day, is shown.
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The scatter plots of IASI channels and innovation vector are plotted in Fig. 5.36.
The number of observations in the plots, depends on the number of assimilated pixels.
Each channel group, IASI_T, IASI_W and IASI_Q, is plotted blue, yellow and red,
respectively. The smaller impact values on the y-axis compared to SYNOP scatter
plots is apparent. This confirms the qualitative superiority of synoptic measurements
in the forecast improvement. The three channels groups are plotted together on
each day in order to compare with the relative error reduction by each group shown
in Fig. 5.25b. For example the larger contribution of the IASI_Q channels in the
6-hour forecast error reduction by assimilation on 03 and 04.08. at 12 UTC can be
seen in Fig. 5.36a and Fig. 5.36b. Specifically, the large error reduction can be seen
in the lower left part on the graph, where the model over-predicts the observations
up to 6K. On Fig. 5.36f, few pixels are assimilated and the forecast degeneration by
the IASI_Q is seen in the upper left part of the graph, were the model over-predicts
the observations by ≈ 3K. The specific channels that caused the degradation are
identified in Fig. 5.28c. The IASI_T channels, have smaller innovation vectors
compared to the other groups. This can be understood, as the radiative transfer
model is well prepared for this range of infrared spectrum and does not involve the
non-linearities introduced by the water vapor channels (as discussed in Section 4.1.1).
The IASI_W, persistently cause the largest error degradation when the observations
are over-predicted up to 6K (lower left in all figures).
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(a) 03.08., 12 UTC (b) 04.08., 12 UTC (c) 09.08., 06 UTC

(d) 09.08., 12 UTC (e) 10.08., 12 UTC (f) 11.08., 06 UTC

(g) 11.08., 12 UTC (h) 13.08., 12 UTC

Figure 5.36: Scatter plots of the IASI channels observation impacts and their correspond-
ing innovation vector. All three IASI groups (IASI_T, IASI_W and IASI_Q) are plotted
in each low predictability day with blue, yellow and red, respectively. The number of
observations depends on the number of pixels assimilated on each day.
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The results obtained demonstrate the relation of the assimilation system and
the impact of observations on the short-term forecasts. Tendencies of over/under
prediction by the model can be identified and can be used for the benefits of accurate
predictions. This can be particularly important for extremely poor solar and wind
power forecasts. For example, the impact results showed that the degradation of
the 6-hour forecast due to assimilation of stations measuring temperature on 09.08.
at 06 UTC could be located in central Europe. The majority of those temperature
observations was over-predicted by the assimilation model. The assimilation of the
synoptic winds, was found to be the most beneficial component of the examined
observation network. On the days of low wind predictability, the assimilation model
was constantly over-predicting the winds. The assimilation of SYNOP humidity was
found to be negligible. This was not the case for the IASI water vapor channels,
peaking in the mid-upper troposphere. With the exception of assimilation on 11.08.
at 06 UTC, the nine water vapor channels were found to add substantial value
to forecast improvements. The largest improvements by assimilation of the water
channels coincided with the days of low solar power predictability (days 03., 04. and
09.08.).

Of course, the results apply for this observation network and model set-up. The
quantity and quality of observation types, the assimilation model set-up can alter
the results. Nonetheless, if the former are chosen then FSO can be set to monitor
the selected observation network and hint for preferences of the assimilation system
for over or under predicting the observations. This can be related then to weather
circulation patterns and the model’s ability to accurate predict it. The alarm mode
of FSO for extreme power error events is shown here as a computationally cheap
monitoring tool, that based on the selected observation network and one can define
an energy norm above which the grid managers can be warned.
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Conclusions

Data assimilation can serve energy-meteorology by improving forecasts in support
of resilient power grid management and realistic price fixing for electrical power
trading. On its part, data assimilation can be improved by evaluating the observation
network configuration. This is demonstrated in this work, where the FSO algorithm
is applied, on low solar and wind power predictability days and the information value
of IASI and SYNOP data is ranked for short term forecasts. A satellite sensor versus
ground-based configuration scheme was chosen and the 6-hour weather forecast error
reduction was calculated in a competing mode, for the European domain, and the case
study period 01.-15.08.2014. This competing mode, allows the creation of a ranking
list of the most beneficial observation types and measured variables, dependent
on weather situations. Most importantly, the impact of individual observations or
observation types can be isolated to particular stations or channels. Taking advantage
of this feature, the observation network configuration can be evaluated for days
of low wind and solar power predictability along with the associated atmospheric
circulation.

The length of two weeks for the experiment was selected in order to evaluate the
results with OSEs and the specific dates were selected to include the extreme wind
error event on 09.08.2014. The four most erroneously forecasted days were identified
for solar (days 03, 04, 09 and 11) and wind power (days 09, 10, 11 and 13) according
to data of Germany’s TSOs. The largest RMSE for both solar and wind power was
found on 09.08.2014. The RMSE, for this day, was found to reach 4.03 GW and
1.37 GW for wind and solar power, respectively. This translates into 34% and 16%
under-prediction of the actual energy production by the forecasts. The dominant
weather evolution on those days, were strong baroclinic developments with upper
level troughs.

The aggregated results for the case study period, revealed that the assimilation
of these two observation types reduces on average the 6-hour forecast error. IASI
was found to contribute twice as much on the average error reduction comparing to
SYNOP. The results were supported by the conducted OSEs, which qualitatively
showed a reduction of the averaged forecast error (not normalized) when both
observation types were assimilated and increased forecast errors on absence of IASI
data, on all assimilation hours. The relation of observation number and impact
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was clear, with the bulk IASI data and especially the temperature channels being
identified as more beneficial. Upon normalisation by the number of observations the
impact results revealed the larger contribution to forecast error reduction by SYNOP.
The normalized values showed that 70% of the relative averaged error reduction is
attributed to SYNOP data, from which more than 40% is due to assimilation of the
wind components. The introduction of the nine water vapor channels, was found
to be double as beneficial for the averaged forecast error reduction compared to
the assimilation of the temperature channels, when examining the normalized by
observation number impact.

Shifting the focus to the low predictability days, the most valuable SYNOP
variables and IASI group channels were identified. Larger error reduction was
induced by assimilation of the two observation types at 06 UTC, compared to 12
UTC. The assimilation of IASI and SYNOP on 09.08. at 06 UTC had the largest
6-hour forecast error reduction of the examined period. This coincided with the day
of the extreme error of wind power forecast. The assimilation of the two synoptic
wind components dominated the impact results on both hours and it was found
that in most cases the assimilation of the meridional wind was more beneficial. For
the majority of the examined days, the model was on average over-predicting the
SYNOP wind observations. The water vapor channels were found to rank among
the most beneficial observations on the low solar power predictability days, reaching
20% relative error reduction on 09.08. at 12 UTC.

Next, the impact was spatially investigated, revealing locations of SYNOP stations
and IASI pixels that improve or degrade the forecast. The most prominent contrast of
synoptic stations that improved or degraded the forecast was found for the synoptic
temperature assimilation on 09.08., 06 UTC. A cluster of stations (26% of the
total number of stations) positioned in central Europe was degrading the 6-hour
forecast. This was concealed in the total temperature impact by the larger forecast
improvement from assimilation of the remaining stations. It is unclear whether this
degradation was due to poor observations, false forecasts or even untrustworthy
reference state. Unfortunately FSO can not distinct which of the above cases caused
the forecast deterioration but it can alarm that this set-up, with this assimilation
and forecast model and these observations is degrading the 6-hour weather forecast.
The mild forecast degradation and forecast improvement per station was a common
feature for the majority of SYNOP stations, with individual stations compensating
with large absolute negative values. The percentage of stations, declining the forecast
(calculated for the largest contributing SYNOP variable to the forecast error) varied
from 24% on 04.08. to 41 % on 10.08.. A cluster of stations located in North-East
Germany, was found to constantly improve the forecast on all examined days.

Even with few pixels, the forecasts benefit from IASI assimilation. It was found
that less than 2.5 % of the pixels had positive (= degradation) values on all examined
days. The impact per individual channel, normalized by number of pixels, disclosed
particular channels in the range of 15.4 − 14.5µm (part of the IASI_T channel
group) that had the largest contribution to forecast error reduction. On the other
hand, channels in the range of 14.5 − 14.0µm (also part of the IASI_T channel
group) had an insignificant impact. These channels were constantly under-predicted
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by the assimilation algorithm and had the smallest corrections (Obervation-Minus-
Background). The range of the impact values was linked to the distance of the
observations from the model background, where larger distances imposed larger
observation impact values.

Though some spatial patterns were identified for SYNOP stations, no conclusion
can be safely drawn for the optimal spatial configuration of the stations on the low
predictability days. This is especially hindered by the observation impact range.
Being in a competing mode error norm, where larger absolute values indicate larger
impact, it is difficult to set a limit or a range for which the impact is considered big
enough. What can be done is to define a threshold according to impact results, with
the same model and observation configuration, from extended experiments longer
than two weeks. This can be particular useful for extreme error events. It can be
used, to train the model with the best observation network possible to be ready for
these occasions. Of course more observation types, potentially everything that can
be assimilated should be included. This should also increase the accuracy of the
algorithm, that was found to be problematic when IASI was absent.

The under-prediction of the solar power on the poorest predicted days for solar
energy was accompanied with scattered clouds over Germany. The poor ability of the
NWPs to simulate the cloud fields, the non-linearities introduced in the assimilation
process and the cloud-cleared IASI data deter the effort towards accurate cloud
prediction. Despite this, the assimilation of nine water vapor channels, whose
weight functions peak in the upper troposphere, were found to be among the most
beneficial observation types. The impact of the water vapor channels, normalized by
observation number, on forecast error reduction was larger compared to the other
two channel groups on all low solar power predictability days. This can lead the
way for testing the assimilation of the IRS onboard the future MTG satellite. The
humidity, measured by the synoptic stations had negligible impact on the forecast
error. The amplitude by which these corrected by the assimilation fields can lead to
more accurate cloud representation by the model merits a separate study.

The potential of this algorithm to serve energy meteorology is clear. Despite the
limitations that come along, it can be a useful asset for monitoring the observation
network. Going one step further, the discrepancy measured in the forecast error
between forecast and reference state could be transferred from meteorological metrics
to actual power values. This of course would demand a module that relates the
forecasted 100 m height wind and solar irradiation with power output.
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Appendix

A.1 FSO configuration at 18 UTC

Taking a closer look at the experiment configuration for assimilation at 18 UTC
(Fig. A.1a), the non-linear forecast error at 00 UTC originating from the assimilation
at 18 UTC would be

ea = (xa − xt)TC(xa − xt). (A.1)

Likewise, the error at 00 UTC from the forecast originating 6 hours before assimilation
and used as background in the assimilation would be

ef = (xf − xt)TC(xf − xt). (A.2)

The time average for assimilation runs at 18 UTC and forecast errors at 00
UTC and vertically integrated forecast errors, ea and ef are plotted in Fig. A.1b.
The forecast errors are namely in the upper right corner of the domain for ef , as
this area was not affected by the assimilation of plentiful IASI data at 18 UTC
(Fig. A.1c). On the contrary, the correction on the top right corner is evident for
ea. However, because the reference analysis xt contains little information from IASI
data (Fig. A.1d) the quadratic difference in Eq. (A.1) has relatively small values.
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(a) Experiment configuration at 18 UTC (b) Average forecast error at 00 UTC

(c) IASI coverage at 18 UTC (d) IASI coverage at 00 UTC

Figure A.1: (a) Experiment configuration for assimilation at 18 UTC. (b) Timely averaged
non-linear forecast errors at 00 UTC from analyses at all days at 18 UTC (ea) and from
simple forecasts (ef ). The color-scale has the range of the minimal and maximal forecast
errors found for all examined analyses times in order to compare the magnitude of the
sensitivity of the adjoint procedure to the error range. (c) IASI spatial coverage at
assimilation time 18 UTC and (d) at forecast time at 00 UTC.

This is not the case for the configuration at assimilation at 12 UTC, where the
quadratic errors ea and ef differ, and the corrections by the assimilation are visible.
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Figure A.2: Timely averaged non-linear forecast errors at 18 UTC and assimilation at 12
UTC.
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A.2 Spatial distribution of observation impact for
SYNOP wind measurements
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As the wind measurements were the most beneficial for the short-term forecast
error reduction, all spatial distribution plots of wind impact on poor predictability
cases were created.

(a) SYNOP 03.08. (b) SYNOP 04.08.

(c) SYNOP 09.08. (d) SYNOP 10.08.

(e) SYNOP 11.08. (f) SYNOP 13.08.

Figure A.3: Impact of SYNOP stations measuring wind (assimilation of meridional V)
on the 6-hour forecast, for assimilation hour 06 UTC and for all poor predictability cases.
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(a) SYNOP 03.08. (b) SYNOP 04.08.

(c) SYNOP 09.08. (d) SYNOP 10.08.

(e) SYNOP 11.08. (f) SYNOP 13.08.

Figure A.4: Impact of SYNOP stations measuring wind (assimilation of meridional V)
on the 6-hour forecast, for assimilation hour 12 UTC and for all poor predictability cases.
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(a) SYNOP 03.08. (b) SYNOP 04.08.

(c) SYNOP 09.08. (d) SYNOP 10.08.

(e) SYNOP 11.08. (f) SYNOP 13.08.

Figure A.5: Impact of SYNOP stations measuring wind (assimilation of zonal U) on the
6-hour forecast, for assimilation hour 06 UTC and for all poor predictability cases.
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(a) SYNOP 03.08. (b) SYNOP 04.08.

(c) SYNOP 09.08. (d) SYNOP 10.08.

(e) SYNOP 11.08. (f) SYNOP 13.08.

Figure A.6: Impact of SYNOP stations measuring wind (assimilation of zonal U) on the
6-hour forecast, for assimilation hour 12 UTC and for all poor predictability cases.
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A.3 Model namelist configuration
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Table A.1: WRF namelist for the forward runs.
&time_control
run_hours = 06,
start_year = 2014,
start_month = 08,
start_day = 01,
start_hour = 00,
start_minute = 0,
start_second = 0,
end_year = 2014,
end_month = 08,
end_day = 01,
end_hour = 06,
end_minute = 0,
end_second = 0,
interval_seconds = 21600,
input_from_file = true,
input_outname = ”wrfinput_d < domain > _ < date > ”,
write_input = false,
history_interval = 360,
frames_per_outfile = 1,
debug_level = 0,
inputout_interval = 360,
inputout_begin_h = 0,
inputout_end_h = 06,
/
&domains
time_step = 90,
max_dom = 1,
e_we = 250,
e_sn = 250,
e_vert = 41,
num_metgrid_levels = 27,
p_top_requested = 1000,
dx = 15000,
dy = 15000,
parent_id = 1,
i_parent_start = 1,
j_parent_start = 1,
smooth_option = 1,
/
&physics
mp_physics = 4,
ra_lw_physics = 1,
ra_sw_physics = 1,



104 Appendix

radt = 15,
sf_sfclay_physics = 1,
sf_surface_physics = 1,
bl_pbl_physics = 1,
cu_physics = 5,
cudt = 5,
num_soil_layers = 4,
num_land_cat = 24,
mp_zero_out = 2,
/
&dynamics
dyn_opt = 2,
w_damping = 0,
diff_opt = 0,
km_opt = 1,
dampcoef = 0.2,
time_step_sound = 6,
base_temp = 290.0,
/
&bdy_control
specified = true,
/
&perturbation
trajectory_io = true

Table A.2: WRFVAR namelist for the assimilation runs.
&wrfvar1
var4d = false,
multi_inc = 0,
print_detail_obs = false,
/
&wrfvar3
ob_format = 1,
num_fgat_time = 1,
/
&wrfvar4
thin_rainobs = false,
use_synopobs = true,
use_shipsobs = true,
use_metarobs = true,
use_soundobs = true,
use_mtgirsobs = false,
use_tamdarobs = false,
use_pilotobs = true,
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use_airepobs = false,
use_geoamvobs = false,
use_polaramvobs = false,
use_bogusobs = false,
use_buoyobs = true,
use_profilerobs = false,
use_satemobs = false,
use_gpsztdobs = false,
use_gpspwobs = true,
use_gpsrefobs = false,
use_qscatobs = true,
use_mhsobs = false,
use_amsuaobs = false,
use_amsubobs = false,
use_airsobs = false,
use_airsretobs = false,
use_iasiobs = true,
/
&wrfvar5
check_max_iv = false,
put_rand_seed = false,
/
&wrfvar6
ntmax = 50,
orthonormgradient = true,
/
&wrfvar7
cv_options = 5,
/
&wrfvar11
cv_options_hum = 1,
check_rh = 2,
seed_array1 = 2003010100,
seed_array2 = 2003010100,
calculate_cg_cost_fn = true,
/
&wrfvar12
/
&wrfvar13
/
&wrfvar14
rtminit_nsensor = 1,
rtminit_platform = 10,
rtminit_satid = 2,
rtminit_sensor = 16,
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write_jacobian = false,
qc_rad = true,
write_iv_rad_ascii = false,
write_oa_rad_ascii = true,
rtm_option = 2,
use_crtm_kmatrix = true,
crtm_cloud = false,
only_sea_rad = false,
use_varbc = true,
varbc_factor = 2.0,
crtm_coef_path = ””./var/run/crtm_coeffs_2.1.3”,
crtm_irland_coef = ”USGS.IRland.EmisCoeff.bin”,
/
&wrfvar17
analysis_type = ”3D − V AR”,
adj_sens = false,
/
&wrfvar18
analysis_date = ”2014− 08− 01_00 : 00 : 00.0000”,
/
&wrfvar21
time_window_min = ”2014− 07− 31_23 : 00 : 00.0000”,
/
&wrfvar22
time_window_max = ”2014− 08− 01_01 : 00 : 00.0000”,
/
&perturbation jcdfi_use = false,
trajectory_io = true

Table A.3: WRFPLUS namelist for the adjoint runs.
&time_control
input_from_file = true,
write_input = false,
io_form_auxhist7 = 2,
restart = false,
debug_level = 0,
iofields_filename = ”./Build_WRF3.8/WRFDA/var/run/plus.io_config”,
ignore_iofields_warning = true,
/
&physics
mp_physics = 98,
ra_lw_physics = 0,
ra_sw_physics = 0,
radt = 15,
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sf_sfclay_physics = 0,
sf_surface_physics = 1,
bl_pbl_physics = 98,
cu_physics = 0,
cudt = 5,
num_soil_layers = 4,
num_land_cat = 24,
mp_zero_out = 2,
/
&dynamics
dyn_opt = 302,
w_damping = 0,
diff_opt = 0,
km_opt = 1,
dampcoef = 0.2,
time_step_sound = 6,
base_temp = 290.0,
/
&bdy_control
specified = true,
/
&perturbation
trajectory_io = true,
jcdfi_use = false

Table A.4: WRFVAR namelist for impact calculation runs.
&time_control
input_from_file = true,
input_outname = ”wrfinput_d < domain > _ < date > ”,
auxinput17_inname = ”./gr01”,
io_form_auxinput17 = 2,
history_interval = 720,
frames_per_outfile = 1,
debug_level = 0,
inputout_interval = 360,
inputout_begin_h = 06,
inputout_end_h = 12,
iofields_filename = ”./Build_WRF3.8/WRFDA/var/run/fso.io_config”,
/
&physics
mp_physics = 4,
ra_lw_physics = 1,
ra_sw_physics = 1,
radt = 15,
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sf_sfclay_physics = 1,
sf_surface_physics = 1,
bl_pbl_physics = 1,
cu_physics = 5,
cudt = 5,
num_soil_layers = 4,
num_land_cat = 24,
mp_zero_out = 2,
co2tf = 0,
/
&dynamics
w_damping = 0,
diff_opt = 0,
km_opt = 1,
dampcoef = 0.2,
time_step_sound = 6,
base_temp = 290,
/
&bdy_control,
specified = true,
real_data_init_type = 3,
/
&wrfvar1
var4d = false,
multi_inc = 0,
print_detail_obs = false,
/
&wrfvar2
/
&wrfvar3
ob_format = 1,
num_fgat_time = 1,
/
&wrfvar4
thin_rainobs = false,
use_synopobs = true,
use_shipsobs = true,
use_metarobs = true,
use_soundobs = true,
use_mtgirsobs = false,
use_tamdarobs = false,
use_pilotobs = true,
use_airepobs = false,
use_geoamvobs = false,
use_polaramvobs = false,
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use_bogusobs = false,
use_buoyobs = true,
use_profilerobs = false,
use_satemobs = false,
use_gpsztdobs = false,
use_gpspwobs = true,
use_gpsrefobs = false,
use_qscatobs = true,
use_mhsobs = false,
use_amsuaobs = false,
use_amsubobs = false,
use_airsobs = false,
use_airsretobs = false,
use_iasiobs = true,
/
&wrfvar5
check_max_iv = false,
put_rand_seed = false,
/
&wrfvar6
ntmax = 50,
eps = 1E − 5,
use_lanczos = true,
write_lanczos = false,
orthonorm_gradient = true,
/
&wrfvar7
cv_options = 5, /
&wrfvar11
cv_options_hum = 1,
check_rh = 2,
calculate_cg_cost_fn = true,
/
&wrfvar14
rtminit_nsensor = 1,
rtminit_platform = 10,
rtminit_satid = 2,
rtminit_sensor = 16,
thinning_mesh = 120.0,
thinning = true,
write_jacobian = false,
qc_rad = true,
write_iv_rad_ascii = false,
write_oa_rad_ascii = true,
rtm_option = 2,
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use_crtm_kmatrix = true,
only_sea_rad = false,
use_varbc = true,
varbc_factor = 2.0,
crtm_coef_path = ”./Build_WRF3.8/WRFDA/var/run/crtm_coeffs_2.1.3”,
crtm_irland_coef = ”USGS.IRland.EmisCoeff.bin”,
/
&wrfvar17
analysis_type = ”QC −OBS”,
sensitivity_option = 0,
adj_sens = true,
/
&wrfvar18
analysis_date = ”2014− 08− 01_00 : 00 : 00.0000”,
/
&wrfvar21
time_window_min = ”2014− 07− 31_23 : 00 : 00.0000”,
/
&wrfvar22
time_window_max = ”2014− 08− 01_01 : 00 : 00.0000”,
/
&perturbation
jcdfi_use = false,
trajectory_io = true
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