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Abstract

A new 3D time domain CSEM forward modeling code TDcustEM built upon the recently
published open-source frequency domain code custEM and the open-source finite element
toolbox FEniCS is presented. The transformation of the frequency domain data provided
by custEM is performed by a Fast Hankel Transform using 80 digital filter coefficients.
3D edge-based tetrahedral meshes generated by TetGen facilitate the calculation of syn-
thetic data using topography, arbitrary loop and dipole source geometries and complex
subsurface structures. To ensure precision and reliability of the new algorithm, calculated
results of different CSEM setups and electromagnetic field components are cross-validated
against analytic solutions and well-established 1D (EMUPLUS) and 3D (SLDMEM) time
domain modeling codes.

Certain modeling studies are conducted regarding possible interpolation and extrapola-
tion techniques to reduce the number of necessary frequencies and therefore the compu-
tational runtime, which is still an issue of convolutional time domain CSEM approaches.
Additional modeling studies showed the importance of precise receiver positioning for
measuring the horizontal components of the time derivative of the magnetic field. The
performance of the implemented 80 filter coefficients for the Fast Hankel Transform was
successfully compared with two recently published sets of 101 and 201 filter coefficients
for loop and dipole source transmitters.

As the present thesis is embedded in the Collaborative Research Centre 806 – Our Way to
Europe, three sedimentary deposits in the East African Rift Valley were subject to mul-
tidimensional TEM surveys in the framework of this project. Geophysical measurements
assist with the identification and definition of possible paleoenvironmental archives which
serve as potential coring locations for paleoclimatic reconstructions.

Common 1D (EMUPLUS) as well as laterally and spatially constrained (AarhusInv) in-
version techniques were applied to the TEM field data. Sediment thicknesses as well as
stratigraphic sequences of the investigated sedimentary basins were derived. An extensive
3D modeling study of one of the target areas representing a volcanically-formed basin
including topography was performed using the newly developed TDcustEM code.
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Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde das Programm TDcustEM zur 3D CSEM
Modellierung im Zeitbereich unter Verwendung des kürzlich veröffentlichten open-source
Frequenzbereichcodes custEM und der finiten Elemente Bibliothek FEniCS entwickelt.
Die Transformation der custEM Frequenzbereichsdaten in den Zeitbereich erfolgt mittels
einer Schnellen Hankel Transformation mit 80 digitalen Filterkoeffizienten. Die simulierten
dreidimensionalen Domänen bestehenen aus kantenbasierten Tetraederelementen und wer-
den von TetGen erzeugt. Dies ermöglicht die Berechnung synthetischer elektrischer und
magnetischer Daten mit Topographie, beliebig geformten Stromquellen und komplexen
Untergrundstrukturen. Um die Funktionalität des neuen Algorithmus unter Beweis zu
stellen, wurden dessen Ergebnisse mit analytischen Lösungen sowie bewährten 1D (EMU-
PLUS) und 3D (SLDMEM) Vorwärtsalgorithmen im Zeitbereich erfolgreich verglichen.

Um die große Anzahl Frequenzen und die damit verbundenen Laufzeiten, die für eine Vor-
wärtsrechnung im Zeitbereich benötigt werden, zu reduzieren, wurden diverse Extrapola-
tions- und Interpolationsstudien durchgeführt. Darüber hinaus wurde in Modellstudien
gezeigt, dass präzise Positionierungen der Empfänger wichtig sind wenn die zeitliche
Ableitung der horizontalen Magnetfelder gemessen wird. Die Leistungsfähigkeit der im-
plementierten 80 Filterkoeffizienten für die Transformation in den Zeitbereich wurde erfol-
greich mit zwei kürzlich veröffentlichten 101 und 201 Koeffizienten umfassende Filtersets
für galvanisch und induktiv angekoppelte Sendergeometrien verglichen.

Die vorliegende Arbeit ist Teil des Sonderforschungsbereiches 806 – Our Way to Eu-
rope. Im Rahmen dieser Arbeit wurden drei multidimensionale TEM Messkampagnen auf
Sedimentationsbecken im ostafrikanischen Graben durchgeführt. Die geophysikalischen
Messungen ermöglichen die Untersuchung und Charakterisierung der Sedimentbecken im
Sinne paläoklimatologischer Archive als potentielle Bohrlokationen und einer anschließen-
den Rekonstruktion des lokal vorherrschenden Paläoklimas.

Die TEM Felddaten wurden mit herkömmlichen 1D (EMUPLUS) und sogenannten “lat-
erally und spatially constrained” (AarhusInv) Inversionstechniken interpretiert. Darauf
beruhend wurden Sedimentmächtigkeiten bzw. stratigrafische Schichtungen der unter-
suchten Sedimentbecken abgeleitet. Mit dem neu entwickelten Code wurde abschließend
eine umfangreiche 3D Modellstudie inklusive Topografie durchgeführt, die eines der un-
tersuchten Gebiete - einen vulkanischer Krater mit einem See in der Mitte - abbildet.
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loop transmitter model A for nine separate-loop receiver locations . . . . . 45
3.12. 3D subsurface model B for a dipole transmitter LOTEM setup . . . . . . . 47
3.13. TDcustEM and SLDMEM comparison (switch-on component Ex) of the

3D LOTEM dipole transmitter model B for twelve receiver locations . . . . 48

ix



x List of Figures

3.14. Simplified versions of the separate-loop TEMmodel A and the dipole source
LOTEM model B for SLDMEM grid check comparisons with EMUPLUS . 50
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5.8. ZeroTEM transient (Ḃz) and noise floor of station D3 at Bisare River . . . 85
5.9. 1D inversion results and ρa,lt conversions for selected soundings of profile

D at Bisare River . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.10. Interpolated and smoothed SCI results of Bisare River profiles 4 and D . . 86
5.11. 3D view of the SCI results from the Bisare River survey . . . . . . . . . . . 87
5.12. Survey area of the Dendi Lakes and profile P1 containing 23 TEM stations 88
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compared to Ḃx field data from Lake Dendi stations P1-21 and P1-23 . . . 102

5.29. 2D Sketch of the dipping layer model consisting of a resistive lower layer
with 1000 Ωm and a more conductive overburden with 20 Ωm . . . . . . . 103
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CHAPTER 1

Introduction

Within the broad field of exploration techniques in geophysics, electromagnetic (EM)
methods have become a well established tool over the last decades. Possible fields of EM
research cover hydrocarbon and mineral exploration, groundwater and geothermal investi-
gations, CO2 storage characterization, environmental studies, geological and sedimentary
formations and many others. Aside from potential methods and ground-penetrating radar,
EM methods usually focus on investigating the physical parameter of the electrical re-
sistivity (respectively its reciprocal, the electrical conductivity) and deriving reasonable
resistivity models of the subsurface. Controlled-source electromagnetic (CSEM) surveys
are set to detect subsurface structures from depths of a few meters up to several kilometers
and are nowadays commonly conducted air-borne, marine and land-based.

In order to predict the electromagnetic signature of complex geological subsurface struc-
tures, advanced 3D modeling algorithms are essential. To create accurate synthetical data
and, in a second step, to produce inversion results of real field data, the speed, quality and
reliability of these algorithms are vital. In applied geophysics, electromagnetic forward
modeling techniques are usually incorporated in the frequency domain and afterwards
transformed to the time domain if desired. The minority of 3D algorithms published to
this day solve the governing physical equations directly in the time domain.

The Finite Difference (FD) and the Finite Element (FE) method have been widely ac-
cepted as numerical methods for the spatial discretization of the modeled domain, the
latter becoming more and more prevalent as the performance of modern computers per-
manently increases. Although the implementation of the FD method is straightforward,
its major drawback is the limitation to regular meshes with staggered grids. Modeling
complex geological anomalies and realistic topographies in 3D requires the incorporation
of irregular and unstructured meshes built from non-rectangular elements like tetrahedra
for example.

Rochlitz et al. (2019) developed and published an open-source toolbox custEM (customiz-
able Electromagnetic Modeling) for the simulation of 3D CSEM data in the frequency
domain. The toolbox is based on the open-source finite element library FEniCS, a com-
puting framework for solving partial differential equations (Logg et al., 2012). FEniCS

1
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supports tetrahedral meshes, high-order finite element polynomials, parallel computing
and provides Python and C++ interfaces.

In the framework of the present thesis, a 3D time domain CSEM forward modeling algo-
rithm TDcustEM (Time Domain custEM) was developed in collaboration with R. Rochlitz
from the Leibniz Institute for Applied Geophysics in Hanover, Germany. The TDcustEM
algorithm utilizes the custEM toolbox and transforms the calculated frequency domain
data into the time domain by performing a Fast Hankel Transform (FHT).

Within custEM and TDcustEM, different approaches of solving Maxwell’s equations are
implemented including the commonly applied E-field approach in form of the total and
secondary field approach. Both algorithms are written in Python and the particular PDEs
are solved in parallel (MPI) with the direct solver MUMPS. For the generation of high-
quality tetrahedral meshes, TetGen (Si , 2015) and the pyGIMLi library (Rücker et al.,
2017) are used. Nodal (Lagrange), edge-based (Nédélec) and mixed tetrahedral elements
are implemented.

To ensure reliability and accuracy of the TDcustEM algorithm, the calculated results are
cross-validated against analytic solutions and well-established 1D and 3D algorithms.

After the successful cross-validation of the code, the TDcustEM software is utilized to
assist in the interpretation of real time domain field data. The present PhD project was
embedded in the Collaborative Research Centre 806 (CRC 806) – Our Way to Europe.
Combining geoscientific and archeological methods, the CRC 806 is designed to recon-
struct the passageway of homo sapiens from eastern Africa to central Europe over the last
200,000 years. Geophysical measurements assist with the identification and definition of
possible paleoenvironmental archives such as sedimental deposits. These deposits serve
as coring locations for a subsequent reconstruction of the paleoclimate.

In 2014 and 2015, two multidimensional transient CSEM field surveys have been con-
ducted on three sedimental basins in the East-African rift valley. On each location, the
vertical and one horizontal component of the time derivate of the magnetic field have
been recorded. These time domain CSEM field data are subject to a modeling study with
TDcustEM within this thesis.

The present thesis is composed of the following chapters:

• In Chapter 1, the state of research regarding 3D CSEM modeling is summarized
with the main focus lying on recent advances of the different numerical approaches.
Following this, the motivation of this thesis is presented.

• Chapter 2 contains the basic theoretical background for 3D electromagnetic model-
ing. An introduction of the finite element method and of the Fast Hankel Transform
is given and different time domain modeling approaches are discussed.

• The developed algorithm TDcustEM is described in Chapter 3. Here, the time
domain results of the algorithm are cross-validated against analytic solutions for
uniform half-spaces, for 1D layered subsurfaces against the software EMUPLUS
and for 3D models against the finite differences code SLDMEM. The chapter closes
with a brief study about the runtimes of the TDcustEM.
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• In Chapter 4, various modeling studies are presented. First, the implemented FHT
filter coefficient set is assessed and a possible reduction of the necessary number of
frequencies by extrapolation and interpolation techniques is discussed. Following
this, modeling studies regarding precise receiver positioning, reasonable domain sizes
and resistivity contrasts are presented.

• An application of the TDcustEM algorithm to real field data from a TEM survey in
the East-African rift valley is presented in Chapter 5. Additionally, this chapter
contains conventional and laterally or spatially constrained 1D inversion results of
data from the three TEM surveys conducted in Ethiopia within the framework of
the CRC 806.

• Chapter 6 concludes the thesis with a summary and an outlook.
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1.1. State of Research

With permanent advances in computer technology and processing speed over the last
decades, 3D controlled-source electromagnetic forward modeling further increases its im-
portance in all fields of ground-based, airborne and marine exploration geophysics. Avdeev
(2005) and Börner (2010) reviewed the development of CSEM forward modeling until 10
years ago. Since then, significant progresses have been made especially in time domain
simulations. Apart from numerous publications regarding 1D and 2D CSEM modelings,
this chapter concentrates only on 3D CSEM simulations. For a brief overview of recent
publications regarding 1D forward modelings, see for example Werthmüller (2017).

Integral equations

One of the first attempts of 3D CSEM forward modeling was the integral equation (IE)
method which dates back to the 1970s when Raiche (1974), Hohmann (1975) and Weidelt
(1975) almost simultaneously presented their results for the solution of Maxwell’s equa-
tions in the frequency domain. Weidelt (1975) converts Maxwells’s equations to a linear
inhomogeneous vector integral equation and applies it to a 3D anomalous body in which
the electrical conductivity deviates from a horizontally layered 1D background structure.
The resulting total field is then calculated by superposition of the anomalous 3D field and
the background 1D field. All integral equations are basically of the form

E(r) = E0(r) +

∫
V s

G(r, r′)E(r′)∆σ(r′)d3r′ (1.1)

which is also known as the scattering equation (Avdeev , 2005). Here, the electric field at
position r is composed of the known background field E0 and an anomalous field caused
by a volume V s with a different conductivity ∆σ(r′) with respect to the background.
To solve the volume integral over the anomalous scattering volume V s, Green’s function
G(r, r′) needs to be computed. The main advantage of the integral equation method
is that only the scattering volume V s needs to be discretized which reduces the system
matrix considerably for simple model geometries. The major drawback of the integral
equation method is, however, the complex formulation of the problem and the tedious
computation of the system matrix (Avdeev , 2005).

The first application of the IE method for 3D time domain modeling was presented by
Newman et al. (1986) who transform the calculated frequency domain data into the time
domain by applying a Fourier transform with sine and cosine digital filters.

Finite Differences

One of the standard tools and most commonly implemented approaches of 3D CSEM
forward modeling is the Finite Difference (FD) method (Wang and Hohmann, 1993;
Mackie et al., 1993; Commer and Newman, 2004). One advantage of the FD method and
therefore one reason for its extensive use is the comparably low implementational effort.
On the other hand, FD approaches can become computationally expensive for regular
meshes on complex geometries.

Druskin and Knizhnerman (1988, 1994, 1999) presented a 3D finite difference algorithm
based on the spectral Lanczos decomposition method (SLDM) using Krylov subspaces.
In Chapter 3, their algorithm will be used to cross-validate the results of the algorithm
developed in the framework of this thesis. Most FD algorithms are implemented on
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staggered grids, which have been introduced by Yee (1966). Within a Yee cell, the electric
field components are edge-averaged while the associated ∂tB components are face-averaged
and calculated by taking the curl of E (Börner , 2010). Rätz (2000) points out that
generating an adequate FD grid for a complex 3D model can become quite challenging
which is a drawback of the FD approach.

Another issue for Finite Differences in the time domain (FDTD) is that explicit time step-
ping approaches require very small time step sizes to satisfy stability conditions especially
when large conductivity contrasts are modeled (Um et al., 2012).

However, the major disadvantage of the FD method is its inability to work on unstructured
grids. Complex model geometries can only be satisfyingly represented with the FD method
when the subsurface consists of rectangular shaped structures. Otherwise, staircasing on
curved boundaries may lead to imprecise results and misinterpretations.

Finite Elements

The aforementioned issue concerning rectangular grids can be overcome by the Finite El-
ement Method (FEM), which turned out to have the greatest flexibility regarding model
geometries using tetrahedral meshes (Schwarzbach et al., 2011). Additionally, it offers a
good trade-off between accuracy, number of degrees of freedom (dofs) and spatial distri-
bution of physical parameters.

Although the history of FEM in electromagnetic modeling goes back a long way (Coggon,
1971; Pridmore et al., 1981; Livelybrooks , 1993; Sugeng , 1998; Badea et al., 2001) only
in recent years, with a permanent increase of computational power, the FE method has
become the standard discretization technique in 3D CSEM modeling. An introduction
into the FE technique and a condensed theory of the FEM is given in Chapter 2.2.

One early challenge of CSEM modeling using the FEM was the possible jump of normal
components across material interfaces (Börner , 2010). Standard nodal (Langrange) ele-
ments which force all field components to be continuous across element boundaries can not
reproduce the physical behavior of field discontinuities and may lead to spurious solutions
(Börner , 2010). This issue was resolved by the introduction of curl-conforming Nédélec
elements (Nédélec, 1980, 1986), also known as edge elements. This family of elements uses
vector basis functions which assign the degrees of freedom to the element edges and can
therefore perfectly treat the discontinuities of electric and magnetic fields across inter-
faces. Adaptive mesh refinement (h-refinement) and the refinement of polynomial degrees
(p-refinements, i.e. increasing the dofs per element) can drastically improve the solution
accuracy.

Considering FEM CSEM frequency domain modeling, there have been numerous publica-
tions over the last decade. Schwarzbach et al. (2011) presented a 3D vector FE simulation
for marine CSEM scenarios applying a primary/secondary field approach and higher-
order finite elements with an adaptive mesh refinement. Puzyrev et al. (2013) published
results of a nodal finite element parallel algorithm for anisotropic media implementing
a secondary field formulation on unstructured tetrahedral meshes. Further publications
of electromagnetic frequency domain algorithms using the FEM have been presented by
Ansari and Farquharson (2014); Grayver and Kolev (2015); Li et al. (2017).

Castillo-Reyes et al. (2018) published their Parallel Edge-based Tool for Geophysical Elec-
tromagnetic Modeling (PETGEM), an open-source parallel algorithm for modeling 3D
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CSEM problems. PETGEM solves the frequency domain Maxwell’s equations applying
the secondary electric field approach on Nédélec edge finite elements. Furthermore, an
automatic mesh adaptation strategy for a specific source position is presented.

Most recently, Rochlitz et al. (2019) developed and published the open-source toolbox
custEM (customizable electromagnetic modeling) which is based on the open-source fi-
nite element library FEniCS (Finite Elements in Computer Sciences). FEniCS supports
tetrahedral meshes, multiprocessing, higher order polynomials and anisotropy. In custEM,
multiple finite element approaches to solve the time-harmonic Maxwell equations using
total or secondary electric field and gauged potential formulations, are implemented. In
addition, Rochlitz et al. (2019) developed a secondary magnetic field formulation which
showed superior performance if only magnetic fields are required. Using vector basis func-
tions, the current density is incorporated on the edges of the elements for the total field
formulations which facilitates modeling of CSEM problems with topography.

Frequency domain calculations with a subsequent transform into the time domain have
been presented by e.g. Gupta et al. (1989); Sugeng (1998) and Börner et al. (2015). The
number of publications presenting pure time domain FEM 3D CSEM modeling algorithms
using time-stepping methods is rather short. Um et al. (2010) were the first to present
a CSEM finite element approach in the time domain by applying time-stepping with the
E-field approach (see Chapter 2.1.3). The algorithm simulates transient electric fields
and the time derivate of the magnetic field using direct time-stepping with an implicit
backward Euler scheme. Um et al. (2012) extended this approach by an adaptive time
step doubling (ATSD), an algorithm which reduces CPU runtime by allowing large time
steps at late times when high-frequency field components are increasingly attenuated. The
ATSD was also implemented by Cai et al. (2017) who as well presented an edge-based
finite element time domain modeling algorithm using a backward Euler scheme.

Another FEM time domain forward solver was presented by Li et al. (2018) who imple-
mented a total-field algorithm on unstructured tetrahedral meshes applying the backward
Euler method. Unstructured tetrahedral grids combined with a local refinement technique
was used to model complex-shaped loop sources.

Finite Volumes

Haber et al. (2007) solved the time domain forward problem using the Finite Volume
(FV) method, which is related to the FD method, using an implicit backward Euler
time discretization scheme. According to Rochlitz et al. (2019), the FV method combines
the advantages of a straightforward implementation, similar to the FD method, with
unstructured meshes like the FE method. But Jahandari et al. (2017) showed that the
accuracy of FV simulations is inferior to the FEM when they compared two FE and three
FV schemes which use unstructured tetrahedral grids. Moreover, Rylander et al. (2013)
state two more drawbacks of the FV method in the time domain using time-stepping.
First, weak numerical instabilities may appear at late times and second, the FV method
needs very small time steps when the cells are not uniform in size.
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1.2. Thesis Motivation

As highlighted in the previous section, the most reasonable numerical method for the
forward calculation of 3D CSEM data is the finite element method because of its flexibility
regarding unstructured meshes while offering satisfying accuracy with an adequate number
of degrees of freedom per cell. There are different ways of modeling time domain data
(direct time-stepping, Fourier-like transforms, see Chapter 2.4). Within the course of
the present thesis, it was decided to calculate the desired data in the frequency domain
and afterwards transform it into the time domain via a Fast Hankel Transform. This
procedure is fast, precise and well-proven.
The open-source toolbox custEM (Rochlitz et al., 2019) is used as the fundamental fre-
quency domain code. Till this day, custEM is the only known and established 3D CSEM
forward modeling open-source code that unites the usage of unstructured tetrahedral
meshes with Nédélec basis functions, arbitrary source and subsurface geometries, parallel
processing, higher-order polynomials, topography, anisotropy and multiple approaches to
solve the time-harmonic Maxwell equations.
The ambition and purpose of the present thesis consist of three major goals:

• Develop an algorithm that provides all the aforementioned benefits from custEM and
transfers them to a 3D time domain CSEM forward modeling software TDcustEM.

• Investigate TDcustEM’s capabilities regarding precision, reliability, computational
speed and hardware requirements.

• Create a 3D model with topography and apply the developed time domain forward
code to a two-dimensional field data set from a TEM survey on a sedimentary basin.

As the present thesis is part of the CRC 806 and three geophysical surveys have been
conducted in Ethiopia in the framework of this project, an additional separate goal is:

• Determine the sediment thicknesses and subsurface structures of the investigated
sedimentary basins in Eastern Africa with common 1D inversion techniques of the
recorded TEM data to assist in finding possible future drilling locations.

1.3. Preliminary Notes

Throughout this thesis, vectors are presented in lower bold letters and matrices in capital
bold letters. Exceptions are the electromagnetic fields B, H, E and D which are as well
displayed in capital bold letters.
When comparing magnetic field results to analytic solutions, they are given as the time
derivative of the magnetic field strength ∂tH, in all other cases the time derivative of the
magnetic flux density ∂tB is given.
In many figures of this thesis, TEM transients showing ∂tB results are labelled transient
response and are source current and receiver area normalized to 1 Am2. The transmitter
loop areas or dipole lengths are not included in this normalization.
The simplified expressions resistivity and conductivity denote the specific electrical resis-
tivity ρ and the specific electrical conductivity σ, respectively.





CHAPTER 2

Computational Electromagnetics

Faraday’s law of induction
The law of all sea and all land
No lies, no deceit, no corruption
In this law so complete and so grand!

A Physics Utopia (Folk Song)
Dr. Walter Fox Smith, 2001

The following chapter portrays the fundamentals of computational electromagnetic for-
ward modeling and the underlying electromagnetic theory. Computational electromag-
netics is an interdisciplinary subject, a combination of physics, computer sciences and
mathematics. Generally spoken, electromagnetic problems are described mathematically
by defining an equivalent boundary value problem consisting of the governing PDEs (i.e.
Maxwell’s equations or some derivative), boundary conditions and, for time-dependent
problems, initial conditions. Once the problem is described, an effective numerical method
to solve the problem needs to be set up and implemented into efficient computer code.

Computational methods for EM simulations can be divided into two groups: time domain
and frequency domain methods. They are related to each other by Fourier-like transforms
and their inverse transforms, respectively. Time-dependent problems are mathematically
represented in four dimensions: three spatial dimensions plus the time dimension. In
the frequency domain only three dimensions are required. Fourier transform techniques
detach the time dimension from the problem formulation and therefore reduce the problem
complexity – the higher the number of dimensions the greater the problem complexity.
Calculating the data in the frequency domain allows for a subsequent transform to the time
domain. However, many frequencies need to be calculated to reach a solution precision of
an acceptable degree.

9
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2.1. Electromagnetic Fundamentals

In applied geophysics, electromagnetic methods are based on the principle of electromag-
netic induction. Its general idea is sketched in Figure 2.1.

Figure 2.1.: The principle of electromagnetic induction in applied geophysics (Figure from
Kearey et al., 2002).

In controlled-source electromagnetics (CSEM), an actively controlled transmitter gener-
ates a time-dependent primary electromagnetic signal which induces electric eddy currents
in the conductive subsurface. These currents in turn generate a secondary electromagnetic
field whose electric and magnetic components can be measured at a given receiver posi-
tion. The objective then is to derive the conductivity distribution of the subsurface from
the characteristics of the measured signals. The behavior of electric and magnetic fields,
varying in time and space, is described by Maxwell’s equations which will be introduced
in the following subsection.

2.1.1. Maxwell’s Equations

The electromagnetic field theory has been an essential component in many areas of science
and engineering since James Clark Maxwell presented his electromagnetic theory in 1873
(Maxwell , 1873). His theory describes the interaction between moving electric charges by
Maxwell’s equations (Eq. 2.1 - 2.4 in the differential form), a system of coupled partial
differential equations (PDE) that relate sources (electric charges and electric currents) to
time varying electromagnetic fields and fluxes. All field quantities are functions of space
and time.

∇ ·D = ρ (2.1)
∇ ·B = 0 (2.2)
∇× E = −∂tB (Faraday’s law) (2.3)
∇×H = ∂tD + j (Ampère’s law) (2.4)

In this set, the number of equations is less than the number of unknowns. The consti-
tutive equations (Eq. 2.5 - 2.7) specify the relation between the field quantities causing
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Maxwell’s equations to become definite. The constitutive relations describe the macro-
scopic properties of the medium being considered. For an isotropic, homogeneous medium
they read:

B = µH (2.5)
D = εE (2.6)
j = σE (2.7)

with the constitutive parameters µ (the magnetic permeability), ε (the electric permittiv-
ity) and σ (the electric conductivity). These parameters are scalars for isotropic media
and tensors for anisotropic media. Equation (2.7) is called Ohm’s law which states that
in conducting media the electric field induces a conduction current with the density j.
Together with the equation of continuity

∇ · j + ∂tρ = 0 (2.8)

which describes the conservation of charges, all aforementioned equations together form
the fundamental base of the classical theory of electromagnetism.

When considering harmonically oscillating electromagnetic fields with a single frequency,
the fields are called time-harmonic and (2.3, 2.4) can be transformed into the frequency
domain. This transform yields complex-valued fields but has the advantage that the time
derivate ∂t can be substituted by a multiplication operator iω for a given function f(r, t)

∂

∂t
f(r, t)→ iωf(r, ω) (2.9)

where i is the imaginary unit and ω the angular frequency. Equations (2.3) and (2.4) can
now be written as:

∇× E = −iωB (2.10)
∇×H = iωD + j (2.11)

The transformation from time domain to frequency domain and back can be done by a
Fourier transform (2.12) and the inverse Fourier transform (2.13), respectively:

E(ω) =
1

2π

∫ ∞
−∞

E(t)e−iωtdt (2.12)

E(t) =

∫ ∞
−∞

E(ω)eiωtdω (2.13)

The use of time-harmonic fields is not as restrictive as it seems. By using Fourier anal-
ysis, any time-varying field can be expressed in terms of time-harmonic components via
Eq. 2.12. Therefore, if the time-harmonic expression of a field is known for any ω, its
counterpart in the time domain can be calculated by Eq. (2.13) (Jin, 2014).

Table 2.1 shows all electromagnetic symbols, their quantities name and their SI unit to
be in use throughout this thesis.
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Symbol Quantity SI Unit

E Electric field strength V/m

D Displacement field strength C/m2

H Magnetic field strength A/m

B Magnetic flux T = Vs/m2

j Electric current density A/m2

ρ Electric charge density C/m3

ε Electric permittivity As/Vm

µ Magnetic permeability Vs/Am

σ Electric conductivity S/m

ρ Electric resitivity Ωm
t Time s
ω Angular frequency rad/s

Table 2.1.: List of symbols in electromagnetics.

2.1.2. Interface Conditions

Interface conditions describe the behavior of the tangential and the normal components of
the electromagnetic fields across an interface of two materials with different values for the
electrical permittivity ε and the magnetic permeability µ. The conditions can be derived
from the integral form of Maxwell’s equations (Jin, 2010). With n12 denoting the normal
vector from medium 1 to medium 2, they read:

n12 × (E2 − E1) = 0 (2.14)
n12 · (D2 −D1) = ρs (2.15)
n12 · (B2 −B1) = 0 (2.16)

n12 × (H2 −H1) = js (2.17)

where ρs is the surface charge density on the interface and js is the surface current on
the interface between the two media. Therefore, the tangential component of the electric
field E is continuous across the interface while the normal component of the electric
displacement field D is discontinuous. The normal component of B is continuous and the
tangential component of H is discontinuous across the interface.

2.1.3. The E-Field Equation

The curl-curl E-field equation (or vector-wave E-field equation) can be obtained by elimi-
nating the magnetic flux B from Faraday’s law of induction (Eq. 2.3) by using Ampère’s
law (Eq. 2.4) and the constitutive equations. The electric current density j in Faraday’s
law can be split up into a source and induction part as

j = jind + js (2.18)
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with the electric source current density js and the induced current density jind = σE.
This yields for the time domain:

∇× µ−1∇× E + ∂2
t εE + ∂tσE = −∂tjs (2.19)

(2.20)

After a Fourier transform (2.12), the same equation reads in the frequency domain:

∇× µ−1∇× E− ω2εE + iωσE = −iωjs (2.21)

For most electromagnetic methods in applied geophysics, the displacement current −ω2εE
is much smaller then the induction current iωσE and can therefore be neglected. This
approximation is called the quasi-static approximation

ω2ε << iωσ (2.22)

and it yields the quasi-static total E-field formulation in the frequency domain:

∇× µ−1∇× E + iωσE = −iωjs. (2.23)

Note that this approximation is not suitable for highly resistive regions where σ ≈ 0
because in that case the term ∂tσE approaches zero. To complete the boundary value
problem, a Dirichlet boundary condition can be applied on the boundary Γ:

n× E = ED (2.24)

with ED = 0 (Zero–Dirichlet) in case of a perfect conductor boundary condition.

By applying the secondary (or scattered) E-field approach E = E0 + Es (Newman and
Alumbaugh, 1995), Equation (2.23) can be written as

∇× µ−1∇× Es + iωσEs = −iω∆σE0 (2.25)

with the primary background field E0 and the secondary (anomalous) field Es. The
conductivity σ can be split up accordingly into σ = σ0 + ∆σ. Here, σ0 is a background
model conductivity represented by a horizontally layered medium (Grayver and Kolev ,
2015).

In the course of this thesis, the focus will be on the total E-field approach because the
secondary E-field approach was not fully implemented for dipole sources in custEM by
the time of writing these lines. The calculation of the magnetic field H is commonly of
great interest as well, it can in a second step be obtained by

H = − 1

iωµ
∇× E (2.26)

in the frequency domain.
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2.2. The Finite Element Method

The Finite Element Method (FEM) is a standard numerical method for solving Partial
Differential Equations (PDEs) in various disciplines of science and engineering. To be
more precise, it is a numerical procedure to convert PDEs into a set of linear algebraic
equations and then to obtain an approximate solution to a boundary value problem by
solving this set of equations subject to given boundary conditions.

The extent of the FEM including all forms and variations is far-reaching and too complex
to be presented here. A detailed introduction into the FEM and specifically its applica-
tion to electromagnetics can be found in Jin (2014) or Monk (2003). A comprehensive
description of a general implementation of the FEM is provided by Gockenbach (2006).
The following section will give a brief summary of the basic principles of the FEM and
the discretization of the E-field equation (2.23 and 2.25).

The FEM can be formulated using either theMethod of Weighted Residuals (MWR) or the
variational method. In the variational or ’Ritz’ method, a given boundary-value problem
is formulated in terms of a functional and an approximate solution is then obtained by
minimizing this functional. Variational principles are best suited for mechanics of solids
and structures due to their connection to energy principles. The MWR is a more general
mathematical construct for solving all kinds of PDEs. Within this introduction into the
FEM, the MWR is chosen because of its simplicity and popularity.

2.2.1. The Method of Weighted Residuals

The general form of a (partial) differential equation in a domain Ω enclosed by the bound-
ary Γ and given boundary conditions can be written in abstract form as

L[u] = s (2.27)

with an arbitrary differential operator L, a source excitation function s and the unknown
function u to be found. The basic idea of the FEM now is to convert this differential
equation into a system of linear equations of the form Ax = b and solve for x by inverting
the matrix A and multiplying it with the known vector b.

The unknown function u = u(x, y, z) in (2.27) can be approximated as

û(x, y, z) ≈
N∑
i=1

ui φi(x, y, z) (2.28)

with φi being a set of linear or polynomial basis functions and ui being the elements of
the vector of the degrees of freedom to be computed. Or in other words, the ui’s are the
values of the unknown function u on the nodes i (i = 1, . . . , N) of the discretization grid
of the domain Ω. The differential equation can now be written as

L

[
N∑
i=1

ui φi(x, y, z)

]
= s . (2.29)
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The expanded approximation of u (2.28) does usually not exactly solve the PDE, instead,
a value called the residual R is ”left over”:

R = L

[
N∑
i=1

ui φi(x, y, z)

]
− s 6= 0 (2.30)

Assuming the given functions φi to be known, all values ui need to be chosen in the way to
minimize R. In the next step, N independent weighting or test functions wj are multiplied
to (2.30) and a subsequent integration over the complete domain Ω of both sides yields:∫

Ω

Rwj dΩ =

∫
Ω

L

[
N∑
i=1

ui φi − s
]
wj dΩ

!
= 0 (2.31)

with φi = φi(x, y, z).

Of all MWR used in the scientific and engineering community, one particular method,
the Galerkin method of weighted residuals is by far the most widely used, and has shown
to provide the most accurate solutions on a wide variety of problems (Zohdi , 2015). In
Galerkin’s MWR, the weighting functions wj are selected to be the same as the basis
functions φi used for the approximation solution û in (2.28)

wj = φj (2.32)

in the sense that the unknown functions ui make the approximate solution û become zero
in the space spanned by the basis functions φi, i.e. ui ⊥ φi:∫

Ω

φj L

[
N∑
i=1

uiφi − s
]
dΩ = 0 (2.33)

This is the so-called weak formulation of the original PDE (the original form is called the
strong formulation). Weak formulations are often an integral form and require a weaker
continuity of the corresponding field variables. A strong form, in contrast to a weak form,
requires strong continuity on the dependent field variables which means that the functions
defining these field variables have to be differentiable up to the order of the original PDE.
Weak forms usually require equality in an average or inner product sense only. The inner
product of two complex-valued vector fields u and v is

〈u,v〉 =

∫
Ω

u · v dΩ (2.34)

where v is the complex conjugate of v.

All steps so far lead to N equations for N unknowns. Assuming L to be linear, the initial
differential equation can now be expressed as:

N∑
i=1

ui︸ ︷︷ ︸
x

∫
Ω

L[φi]φj dΩ︸ ︷︷ ︸
A

=

∫
Ω

s φj dΩ︸ ︷︷ ︸
b

. (2.35)

The term marked asA has the form of a matrix. A can be calculated because the functions
φi, φj and the differential operator L are known. The right hand side vector b can also
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be calculated and therefore this system of linear equations of the form Ax = b can be
computationally solved with x containing the unknown values ui of interest. Obtaining the
sought solution can be achieved using either direct or iterative solvers. If the differential
operator L is self-adjoint, Galerkin’s MWR results in the same system of equations as
those obtained by the variational method (Jin, 2014).

The major challenge in the process described above is to find test functions that approxi-
mate the true solution the best way and at the same time satisfy the boundary conditions.
For simple 1D problems, it is sometimes possible to find such functions for the entire so-
lution domain. But for 2D and 3D problems this is almost impossible (Jin, 2014). This
problem is solved by dividing the entire domain Ω into smaller subdomains and define
test functions that are continuous over each element. Such subdomain test functions are
usually much simpler than domain-wide test functions because they only have to approx-
imate the solution on much smaller subdomains. In the FEM, the test functions are a
combination of basis functions defined over small subdomains, so-called finite elements,
which constitute the entire domain. These elements have a finite size in which the physical
parameters (e.g. the electrical conductivity σ) are constant. The behavior of the fields
inside each cell is described by so-called shape functions (also called basis or interpolation
functions) which guarantee continuous field forms across element boundaries.

The general recipe of applying the FEM to a boundary-value problem consists of the
following steps:

1. Discretization of Ω into smaller subdomains

2. Selection of local shape functions

3. Assembling of the global system of equations

4. Solution of the global system of equations

5. Computation of derived variables

Depending on the problem to be solved, a large variety of different finite elements in 1D,
2D and 3D is available for the discretization of the computational domain Ω, cf. Logg et al.
(2012). Here, only two basic kinds of tetrahedral finite elements are presented because
for the simulation of arbitrary and complex subsurface geometries, tetrahedral elements
are best suited. Other 3D finite elements are for example hexahedra, prisms, pyramids or
any kind of cuboids.

The nodal-based or Lagrange element (Figure 2.2a for polynomial degree 1 and Figure 2.2b
for polynomial degree 2) is probably the most widely used finite element. The degrees
of freedom are located on the nodes of the tetrahedron for p = 1. For higher-order
polynomials, additional dofs are distributed on the element edges. The calculated values
of the investigated function are scalars on Lagrange elements. This may lead to spurious
solutions when dealing with vector field problems (Börner , 2010) and nodal elements are
therefore not well suited for three-dimensional electromagnetics.

The problem of spurious solutions can be solved by using curl-conforming edge-based or
Nédélec vector elements (Figure 2.2c and 2.2d) on which the degrees of freedom are as-
signed to the edges of the elements. Nédélec elements perfectly capture the discontinuities
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(a) Lagrange, p=1 (b) Lagrange, p=2 (c) Nédélec, p=1 (d) Nédélec, p=2

Figure 2.2.: Two basic kinds of finite elements. a) and b) show nodal (Lagrange) elements,
c) and d) show edge-based (Nédélec) elements, each for polynomial degrees 1 and 2. Edge-based
elements (or vector-valued elements) model the behavior of electromagnetic fields more accurately
than nodal elements.

of the electric and magnetic fields along material interfaces (Börner , 2010). Within this
thesis, edge-based finite elements are used for the calculation of the electromagnetic fields
up to a polynomial order of p = 2. Using polynomials of the order p = 3 or higher would
in fact increase the solution accuracy but the computation time for solving the system
matrix would disproportionally increase as well (Rochlitz et al., 2019).

In addition to element nodes and edges, 3D scalar and vectorial degrees of freedom can
also be calculated on element facets or inside the element volume.

2.2.2. Discretization of the E-Field Equation

The spatial discretization of the E-field equation in this section and the derivation of
the linear system of equations to be solved follow generally the steps of Börner (2010).
The boundary value problem (2.23) imposed by a perfect conductor boundary condition
(n × E = 0) can be expressed in the weak form by taking the inner product of (2.23)
together with a test function φ. After an integration by parts, the E-field equation reads:∫

Ω

[
(µ−1∇× E) · (∇× φ) + iωσE · φ

]
dΩ

−
∫

Γ

(n× φ) · (µ−1∇× E) dΓ = −iω
∫

Ω

js · φ dΩ

(2.36)

Regarding the integral over the boundary Γ, the perfect conductor boundary condition
provides no information about the term (µ−1∇× E). This integral can be eliminated by
choosing φ such that n× φ = 0 on Γ.

Next, the Nédélec function space

ξ := {v ∈ H(curl; Ω) : n× v = 0 on Γ} (2.37)

with the Sobolov function space whose curl is in L2

H(curl; Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3} (2.38)
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is introduced. L2(Ω)3 is a space of square-integrable 3D vector fields defined on Ω.
H(curl; Ω) is also a Hilbertian space with respect to the inner product defined as

〈u,v〉H(curl;Ω) =

∫
Ω

(u · v + (∇× u) · (∇× v)) dΩ. (2.39)

The weak form of the boundary value problem can now be expressed as follows. Find
E ∈ ξ such that:∫

Ω

[
(µ−1∇× E) · (∇× v) + iωσE · v

]
dΩ = −iω

∫
Ω

js · v dΩ (2.40)

for all v ∈ ξ. Discretizing the simulation domain Ω into n subdomains (e.g. tetrahedra in
3D) and replacing the electric field E by an approximate solution Ê as a linear combination
of n basis functions φi (i = 1, . . . , n)

Ê(r) =
n∑
i=1

Eiφi(r), (2.41)

the matrix form of (2.40) with the unknown complex-valued coefficients Ei = ui (i =
1, . . . , N) can be written as:

(K + iωM)u = −iωf (2.42)

with

[K]j,i =

∫
Ω

(µ−1∇× φi) · (∇× φj) dΩ (2.43)

[M]j,i =

∫
Ω

σφi · φj dΩ (2.44)

[f ]j =

∫
Ω

js · φj dΩ (2.45)

Following Galerkin’s MWR, in (2.40) the j-th basis functions has been chosen as the
test functions v = φj. The symmetric matrices K and M contain the basis and test
functions, defined on the function space ξ. In the FEM, they are commonly known as
stiffness matrix (K) and mass matrix (M), respectively, and both are large and sparse.
The vector f on the right-hand side of (2.42) contains the source excitation term of the
PDE, in this case the source current density js. With K, M, and f being computable, the
unknown vector u, which contains the approximated values Êi for all degrees of freedom,
can now be calculated. The system matrix (K + iωM) is identical for the total (2.23)
and secondary (2.25) field approach. In case of the secondary E-field approach, the source
term on right-hand side of (2.42) reads

[f ]j =

∫
Ω

∆σE0 · φj dΩ. (2.46)

After the calculation of the electric field E, the magnetic field H can be derived according
to (2.26) on the same Nédélec function space ξ by solving the FE problem (Rochlitz et al.,
2019) ∫

Ω

φi · φj dΩ ·H = − 1

iω

∫
Ω

(µ−1∇× E) · φj dΩ. (2.47)
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Figure 2.3.: Tetrahedral edge element with 4 nodes (blue) and 6 edges (transparent).

When using edge-based elements, the tangential components of the electric field E are
assigned to the edges of each element. Any desired value inside an element can therefore
be interpolated using a set of vector basis functions. The electric field E in an arbitrary
tetrahedral element e (e = 1, . . . , n) can be interpolated at position r as (Jin, 2010):

Ee(r) =
6∑
j=1

Nj(r)Ej = Ne
12(r)Ee

12 + Ne
13(r)Ee

13 + Ne
14(r)Ee

14

+Ne
23(r)Ee

23 + Ne
24(r)Ee

24 + Ne
34(r)Ee

34

(2.48)

where Ee
lk is the tangential electric field component at the j− th edge between the nodes l

and k of element e (Figure 2.3). Ne
lk is the corresponding interpolation or basis function.

Let N e
l and N e

k be the linear scalar interpolation function of nodes l and k as:

N e
l (x, y, z) =

1

6V e
(ael + belx+ cel y + del z) (2.49)

N e
k(x, y, z) =

1

6V e
(aek + bekx+ ceky + dekz) (2.50)

where V e denotes the volume of the e-th element and r = (x, y, z)T . The derivation
of the coefficients ai, bi, ci and di (i ∈ {l, k}) can be found for example in Jin (2014).
Considering a specific edge j between the element nodes l and k with length `jk, the
interpolation functions Ne

j in (2.48) can then be written as:

Ne
j(r) = `j(N

e
l ∇N e

k −N e
k∇N e

l ) l < k (2.51)

with `j being the length of the element edge between nodes l and k.
The vector plot of the vector basis function Ne

lk is illustrated in Figure 2.4, for simplifi-
cation reasons only for a two-dimensional triangular element. Such vector basis functions
have a tangential component only on the respective element edge and therefore maintain
tangential continuity of the interpolated field across element boundaries. The normal com-
ponent, on the other hand, is allowed to be discontinuous. These vector basis functions
are called curl-conforming because they have zero divergence but a nonzero curl.

2.3. The Fast Hankel Transform

The transformation of the calculated frequency domain data into the time domain through-
out all simulations within this thesis is performed by a Fast Hankel Transform (FHT) using
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Figure 2.4.: The vector basis function Ne
lk for the edge between nodes l and k for a linear

triangular element (Jin, 2010).

digital filter coefficients which is a common procedure in CSEM time domain modeling,
as described in Chapter 2.4. The FHT comes into operation when integrals of the form

g(r) =

∫ ∞
0

f(k) Jν(kr) dk, ν > −1 (2.52)

have to be evaluated. Equation (2.52) is generally denoted as a Hankel Transform with
the function f(k) to be transformed and Jν(kr) being the Bessel function of the first
kind and order ν > −1. The evaluation of this kind of integral is numerically expensive
for huge arguments kr. Because of the oscillatory behavior of the Bessel function, very
small sampling rates for the numerical integration would be necessary (Weidelt , 1986).
These numerical costs can be significantly reduced by the FHT, which uses digital linear
filters for a fast computation of the Hankel integral by simplifying it to the form of a
convolutional integral. The numerical evaluation of Hankel transforms using digital linear
filters was firstly presented by Ghosh (1971) who originally computed type curves for
Schlumberger and Wenner resistivity soundings. In the following years, the method was
further developed by various authors (Johansen and Sørensen, 1979; Andersen, 1989;
Christensen, 1990; Mohsen and Hashish, 1994).

In a first step, k and r are transformed into logarithmic space according to:

x = log

(
r

r0

)
(2.53)

y = −log (k r0) (2.54)

with an arbitrary scaling length r0 > 0. Then, with

G(x) := r g(r) (2.55)
F (y) := f(k) (2.56)
H(x) := ex Jν(e

x) (2.57)

the Hankel transform (2.52) integral can be expressed in terms of a convolution integral:

G(x) =

∫ ∞
−∞

F (y)H(x− y) dy. (2.58)
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Figure 2.5.: Convolution kernel H(x) for J1/2 (blue) and a low-pass filtered version (orange)
with filter coefficients by Weidelt (1986) using 10 samples per decade.

Yet, no advantage can be taken from (2.58) because the kernel function H(x− y) is still
highly oscillating for huge arguments x, see the blue curve in Figure 2.5. An integration
of such a function is still demanding. The idea behind the Fast Hankel Transform now is
to replace the fastly oscillating kernel function H(x) with a low-pass filtered version H̃(x)
(orange curve in Figure 2.5). To create a low-pass filtered version H̃(x), first the function
F (y) is replaced by an interpolated version F̃ (y) as:

F̃ (y) =
∞∑

n=−∞

Fn P (y − n∆) (2.59)

with an interpolation function P (y) and Fn = F (yn) denoting known function val-
ues of equidistant samples yn = n∆. The sampling length ∆ has to comply with the
Nyquist–Shannon sampling theorem with a maximum angular frequency ωmax:

∆ > 2 fmax =
ωmax
π

(2.60)

For higher frequencies ω > ωmax, F (y) ≡ 0. According to Weidelt (1986), an obvious
choice for the interpolation function P (y) is the cardinal sine function in its normalized
version

P (y) = sinc(πy/∆) =
sin(πy/∆)

πy/∆
, y 6= 0 (2.61)

because in this case the values of F̃ (y) are exactly reproduced by the values of Fn. Each
sample in the sequence is replaced by a sinc function. The sinc function (Figure 2.6) serves
as a mathematically ideal low-pass filter that removes all frequency components above
a particular cutoff frequency. Using the interpolated function F̃ (y), the convolutional
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Figure 2.6.: Normalized cardinal sine function sinc.

integral G(x) in (2.58) can now be approximated by Ĝ(x) as:

Ĝ(x) =
+∞∑

n=−∞

Fn

∫ +∞

−∞
P (y − n∆)H(x− y) dy (2.62)

=
+∞∑

n=−∞

FnĤ(x− n∆) (2.63)

which was achieved by using

Ĥ(x) :=

∫ +∞

−∞
P (y)H(x− y) dy. (2.64)

The discrete version of the convolutional integral (2.58) can be expressed as (Weidelt ,
1986):

Ĝm =
+∞∑

n=−∞

Fn Ĥm−n (2.65)

with

Ĝm := G(m∆) and Ĥm := Ĥ(m∆) (2.66)

on all sampling points m∆. The coefficients Ĥ in (2.65) are independent of the initial
function f(k) which is subject to the transformation. The coefficients need to be calculated
only once for numerically fast transformations. In case of transforming frequency domain
data to the time domain, the transformed variables in (2.53) and (2.54) are the time t
instead of r and the frequency ω instead of k. The eventual form of the Fast Hankel
Transform finally reads:

g(r) =

∫ ∞
0

f(k) Jν(kr) dk → g(rm) =
1

rm

n2∑
n=n1

f(kn) Ĥν(m− n) , ν ∈ (0, 1)

(2.67)
Here, the infinite negative and positive limits of the sum have been replaced by finite
values n1 and n2, which depend on the chosen digital filter coefficients.
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2.4. Time Domain CSEM Modeling

The following section discusses different approaches for CSEM modeling in the time do-
main and presents the procedure of transforming frequency domain data into the time
domain by using the Fast Hankel Transform.

2.4.1. General Remarks

3D ground-based and marine EM measurements can technically record all six components
of the EM field: three magnetic and three electric components. Air-borne receivers are
limited to magnetic measurements due to an almost impossible electric coupling for E-field
receivers surrounded by air. For ground-based field surveys, commonly the time derivate
of the magnetic fields are derived which are proportional to an induced voltage Vind of a
receiving induction coil which is set up perpendicular to the direction of interest. This
proportionality is depending on the area of the coil loop A, the number of windings N
and µ as

Vind = −N Aµ∂tHi , i ∈ (x, y, z). (2.68)

In time domain methods, the magnetic flux density B can be recorded as well. Rochlitz
et al. (2018) investigated the capabilities of low-temperature SQUID1-based magnetic field
receivers in an urban area and compared the results to induction coil results. In their
study, SQUID-based B-field data exhibits a superior data quality especially at late times.
Nonetheless, coil measurements and a subsequent derivation of ∂tH, i.e. the partial time
derivative of H, are still the standard receiving method in ground-based time domain EM
surveys along with the electric field E. Therefore, this thesis concentrates on forward
modeling studies of ∂tH and E.

There are four common techniques for solving Maxwell’s equations in the time domain
(Börner , 2010).

• Explicit time-stepping

• Implicit time-stepping

• Matrix exponentials / Lanczos reduction

• Fourier transform based methods

The simplest method for discretizing partial differential equations in time is the explicit
time-stepping method using the forward Euler algorithm where the state of a system
is calculated at a later time explictly from the state of the system at the current time.
Explicit methods are comparably easy to implement but require usually very small time
steps. They are computationally expensive and only stable if the time step ∆t ≤ ch2,
where c is a material constant containing the conductivity, and h denotes the smallest
grid spacing (Mulder et al., 2008). The DuFort-Frankel method helps getting around the
strict stability condition by adding an artificial light-speed term that allows the time step

1Superconducting Quantum Interference Device
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to grow with the square root of time without losing too much accuracy (Mulder et al.,
2008).

On the other hand, implicit methods like the backward Euler or the Crank-Nicolson
method calculate the desired solution of a function involving the current system’s state
and the one at a later time. Implicit methods can be computationally more expensive
than explicit methods but they can significantly increase the accuracy of the solution
(Börner et al., 2015). Examples for the application of the Euler backward method in
CSEM time domain modeling are Haber et al. (2007) using finite volumes and Um et al.
(2010) using finite elements.

Druskin and Knizhnerman (1988) proposed an alternative technique to time-stepping with
their so-called Spectral Lanczos Decomposition Method (SLDM) on finite difference grids
using Krylov subspaces. Here, the Lanczos method reduces the original sparse matrix into
a smaller and denser matrix which is then used to calculate time evolution using matrix
exponentials. According to Börner et al. (2008), the convergence of the SLDM depends
mainly on the conductivity contrasts of the subsurface model. To improve convergence,
the finite difference grids have to be very fine near jumps of electrical conductivity within
the discretized region. No time discretization is necessary, therefore the size of time steps
can be chosen arbitrarily (Börner , 2010). One drawback is that SLD methods cannot be
used with adaptive mesh refinements (Mulder et al., 2008).

Fourier transform based methods, or, to be more precise, their inverse transforms, convert
frequency domain data into the time domain. This implementation approach is very
common in time domain CSEM modeling, see Chapter 1.1. The group of Fourier-based
transforms include sine/cosine, Laplace and Hankel transforms. Over the last decades,
the greatest challenge of these approaches in 3D CSEM modeling was that for a solution,
a large number of logarithmically equidistant frequencies has to be calculated. But with
todays available parallel computational power this issue is more and more downsized. The
transforms themselves are of negligible computational effort compared to the calculation
of a certain number of frequency domain solutions.

Mulder et al. (2008) have analysed and compared the computational complexity of the
different aforementioned numerical methods of modeling time domain CSEM diffusion
problems. The authors state that a Fourier transform based conversion of frequency do-
main data may be an attractive approach depending on the required number of frequencies
and discuss an adaptive frequency reduction technique.

A comparison of different Hankel and Fourier transform methods was presented by Werth-
müller (2017) who proposed that the Fast Hankel Transform using digital filters is the best
approach in terms of speed and precision for frequencies in the range of CSEM modeling.

2.4.2. Transformation into the Time Domain

In time domain (or transient) CSEM, two different current modes are usually distin-
guished: The switch-on and switch-off function. These two current functions are related
with each other and with the direct current (DC) level as

foff = fDC − fon (2.69)
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In case of a step-off signal, the current injected by the transmitter is assumed to be
constant at times t < 0 and switched off at t = 0. On the other hand, in case of a step-on
signal the current is switched off at times t < 0 and switched on at t = 0. In practice,
both switching modes do not act instantaneously, they need a finite amount of time to
reach their destination current level (zero or the DC level). During this specific time span,
time-varying EM signales are being recorded. When a transmitter is operated in 100 %
duty cycle, i.e. switching polarities without to pause transmitting, only step-on signals
are instantiated. For other duty cycles like the very common 50 % duty cycle, both, the
step-on signal and the step-off signal, are realized. The advantage of the switch-off mode
is that no measured signal at a receiver position is superimposed by the primary EM field.
Additionally, as stated by Lippert (2015), step-off functions of modern transmitters are
usually faster and cleaner than step-on functions.

In case of linear equidistant sampled frequency data, a classical Fourier Transform (FT,
see Eq. 2.12 and 2.13) or a Fast Fourier transform (FFT) would serve as a procedure
of choice to transform the frequency data into the time domain. However, in transient
or time domain CSEM, the time series usually consists of logarithmically equidistant
time channels. In that case, the Fast Hankel Transform is superior to the FT. The
reason behind is that the data points of the time series at late times are controlled by
the lower frequencies of the source data. And to describe the frequency data for small
abscissa values, a rather small sampling rate is required. In case of a FT or FFT, the
small sampling rate needs to be kept constant throughout the entire frequency domain
which would lead to a huge number of samplings in logarithmic scales. The FHT needs
significantly less data points to provide comparable results (Hönig , 2002).

The switch-on excitation function of a current dipole source can be described by a Heav-
iside function in time domain by:

Fon(t) =

{
0 t < 0

F0 t > 0
. (2.70)

If the frequency domain function F (ω) is sufficiently smooth, it can be expressed by an
inverse Fourier-transformed version (Rätz , 2000):

f(t) =
1

2π

∫ +∞

−∞

F (ω)

iω
e−iωt dω (2.71)

with 1/iω denoting the Laplace Transformation of the excitation function (2.70). Applying
Euler’s formula eix = cos(x) + i sin(x) yields:

f(t) =
2

π

∫ ∞
0

<
(
F (ω)

ω

)
sin(ωt)dω (2.72)

f(t) =
2

π

∫ ∞
0

=
(
F (ω)

ω

)
cos(ωt)dω (2.73)

for t > 0. The time series can therefore by described by using either sine or cosine
functions with the real part <(F (ω)) and the imaginary part =(F (ω)) of the complex-
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valued function F (ω). By using

J−1/2(x) =

√
2

πx
cos(x) (2.74)

J1/2(x) =

√
2

πx
sin(x), (2.75)

the real and imaginary part of f(t) can be expressed by Bessel integrals of the form:

f(t) =

√
2t

π

∫ ∞
0

<
(
F (ω)√
ω

)
J1/2(ωt) dω (2.76)

f(t) =

√
2t

π

∫ ∞
0

=
(
F (ω)√
ω

)
J−1/2(ωt) dω. (2.77)

By replacing F (ω) with

F̂ (ω) =

√
π

2ωt
F (ω) (2.78)

both equations have the form of a Hankel transform

f(t) =

∫ ∞
0

<
(
F̂ (ω)

)
J1/2(ωt) dω (2.79)

f(t) =

∫ ∞
0

=
(
F̂ (ω)

)
J−1/2(ωt) dω (2.80)

and can now be used for an efficient calculation of f(t) by applying the Fast Hankel
Transform using digital filters as described in Chapter 2.3. According to Key (2012) and
Janser (2017), Equation (2.79) is to be preferred due to aspects of numerical stability.

Using <
(
F̂ (ω)

)
= −=

(
i−1F̂ (ω)

)
yields

f(t) = −
∫ ∞

0

=
(
i−1F̂ (ω)

)
J1/2(ωt) dω. (2.81)

Equation (2.81) is finally used for the calculation of f(t).

The switch-off function foff (ω) can be calculated in the frequency domain as:

foff (ω) = fon(ω0)− fon(ω) (2.82)

where ω0 is the lowest available frequency near the static or DC case. Modeling time
domain EM fields using the switch-off current mode needs a previously calculated constant
(DC) field as described in Um et al. (2010).

In the course of this thesis, 80 filter coefficients provided by Tilman Hanstein are used
for the numerical transformation from frequency to time domain using the FHT. For the
calculation of 10 samples per decade and NT denoting the total number of time channels
to be calculated then rm and kn used in (2.67) have the following discrete values:

rm = r0 · 10
m−1
10 , m ∈ {1, 2, . . . , NT} (2.83)

kn =
1

r0

· 10
NT−n

10 , n ∈ {1, 2, . . . , NT + 79} (2.84)
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Here, r0 is the first time channel to be calculated. If, for example, 4 decades of time domain
data and 10 time channels per decade are desired, a total of 79+41 = 120 frequencies have
to be calculated for a single forward modeling. In Chapter 4.2, the potential of reducing
this number of frequencies by interpolation and extrapolation techniques without losing
time domain data quality is examined.





CHAPTER 3

The TDcustEM Algorithm

In this chapter, the TDcustEM algorithm and the required third-party software is in-
troduced. The functionality of the algorithm is proved by comparing its results against
analytic solutions for uniform half-spaces and against well-established 1D and 3D forward
modeling codes EMUPLUS and SLDMEM for more complex models. The chapter closes
with an examination of the algorithms runtime and memory demand. Like custEM, the
TDcustEM software package is written in Python 3.

3.1. Overview

To get a first idea about how the algorithm works, Figure 3.1 shows a flowchart containing
the main steps of the TDcustEM algorithm. In practice, every TDcustEM forward mod-
eling starts with the definition of a set of preferences and parameters. The red ellipses
in Figure 3.1 denote user input data which need to be provided in form of a predefined
formatted text file. The user is required to set the meshing parameters like layers, anoma-
lies, topography, and also the configuration parameters for a specific forward modeling like
transmitter type (e.g. a rectangular loop or a dipole) and size, receiver type and position,
minimum and maximum time channels, etc. Moreover, the custEM-specific parameters
like the solution approach, the polynomial degree and boundary conditions need to be
given. On top of that, the parameter file contains placeholders for miscellaneous infor-
mation for each specific run like a descriptive name or the number of CPUs to be used
for parallel computing. If the desired Earth model is made of 2D or 3D geometries, an
individual mesh generation script needs to be created and executed. For a more detailed
description of the mandatory and optional parameters to be provided in the input file,
please refer to the TDcustEM and the custEM manual.

The blue nodes in Figure 3.1 represent actual operational steps of the algorithm. After the
generation of the 3D mesh according to the input parameters, the particular frequencies for
the computation are determined. The total number of frequencies depends on the number
of digital filter coefficients (usually 80 in the course of this thesis) and the minimum and
maximum time channels. Assuming to calculate 10 time channels per decade, this results

29
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Create 3D world
(Layers, anomalies, topography)

Create survey setup
(Tx/Rx types + locations, times)

Generate mesh
(custEM, pyGIMLi, TetGen)

Calculate frequencies

Run custEM for all frequencies
(FEniCS, MUMPS)

Interpolation of E and ∂tH

Collect Rx FD data

Transformation into time domain

Post-processing (e.g. plotting)
of time domain data

e.g. 80 filter coefficients
+ 3 time decades
= 110 frequencies

Parallel phase (MPI)
custEM / FD

Fast Hankel Transform

Figure 3.1.: The TDcustEM algorithm flowchart: Red nodes denote user input, blue nodes
automatic steps by the algorithm, comments are displayed in yellow nodes and an eventual post-
processing in green. The gray-shaded area represents the parallel part of calculations processed by
custEM.

for example in 31 time channels when calculating transient data from tmin = 10−5 s to
tmax = 10−2 s. In this case, a total of 110 (Number of filter coefficients + the number of
time channels - 1) frequencies needs to be computed.

In the next step, the custEM software is executed for each particular frequency. Here, the
FEniCS framework and the MUMPS solver take action in the finite element calculation
and solution. The custEM calculations are accomplished in the frequency domain for a
predefined approach, e.g. the total E-field approach (see Chapter 2.1.3), other approaches
that are implemented in custEM are not in the focus of this thesis. This step is the most
expensive part of the entire procedure in terms of computational costs and therefore it is
usually accomplished on a multiple number of CPUs using the common MPI interface.
If requested by the user, after each custEM run the calculated E and the derived Ḣ
frequency domain data can optionally be interpolated. Interpolations are possible for
arbitrary lines and planes within the entire 3D simulation domain.
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After each custEM run, an FD dataset for the respective frequency is written to disk.
These datasets contain the FD data for all tetrahedral elements of the 3D mesh and are
therefore huge in terms of disk space. For all given receiver positions, the TDcustEM
algorithms now collects the relevant data by crawling through the FD datasets.

In the final step, the algorithm transforms the modeled data from the frequency to the
time domain by a Fast Hankel Transform (see Chapter 2.3). The resulting output of one
forward modeling is written to a plain text file. For each receiver position, one text file
is created. Each output file contains a header with meta information followed by seven
columns of data: The first column contains the time vector with time channels from tmin
to tmax and 10 time channels per decade. The following six columns contain three spatial
components (x, y and z) of the electric field and three spatial components of the time
derivative of the magnetic field.

Following Um et al. (2012), the magnetic permeability µ is kept constant and set to that
of free space for all TDcustEM calculations within this thesis:

µ = µ0 = 4π · 10−7 V s

Am
(3.1)

The electric conductivity σ = σ(r) is implemented as a scalar function of space and
therefore treated as isotropic. Implementing anisotropic conductivities in custEM, i.e.
defining σ as a tensor, can be realized with little effort. But the investigation of anisotropic
effects in 3D CSEM time domain modeling is not a subject of this thesis.

While most real-world problems in applied geophysics do not have natural boundaries,
numerical simulations require a domain of finite volume Ω ( R3 with boundary Γ = ∂Ω.
On the boundary Γ, the perfect conductor boundary condition

n× e = 0 (3.2)

is imposed by default for the calculations throughout this thesis – if not stated otherwise.
For each forward modeling, the domain size has to be chosen in the sense that the bound-
ary is of sufficient distance to the source and receiver locations. If this is the case, the
effects of the boundary conditions will be negligible.

The custEM toolbox offers an option to add a so called bigger world to the primary model-
ing domain. This additional domain is wrapped around the primary computation domain
and consists of significantly larger tetrahedral elements, thus keeping the additional num-
ber of degrees of freedom and tetrahedra marginal. The bigger domain increases the entire
3D computing domain to greater sizes of for example two orders without increasing the
corresponding total number of tetrahedra significantly. As an example, assuming that
the “core” mesh has extents of 104 m in all directions, the bigger world domain would
have extents of 106 m. The composition of a perfect conductor boundary condition (3.2)
and huge domain extents due to this bigger world is assumed to be sufficient to disregard
boundary effects at the modeled receiver positions. The effects of different domain sizes
and boundary conditions on the data quality are investigated in Chapter 4.4.

3.2. Third-party Software

To enable TDcustEM (and custEM) to be executable on a computer system, a set of third-
party programs (including FEniCS, TetGen, PyGIMLi, mpi4py and sympy) needs to be
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installed. For more information on the installation process and software dependencies,
please refer to the TDcustEM and the custEM manuals.

The fundament of the finite element calculations of the TDcustEM algorithm is FEniCS2,
a free and open-source computing platform. FEniCS provides a set of software tools,
that allows for a rapid implementation and solution of PDEs using the finite element
method. It was created in 2003 and developed in collaboration between researchers from
universities and institutes around the world. For CSEM modeling, the most important
interface of FEniCS is DOLFIN which provides an extensive library of Lagrange and
curl-conforming Nédélec finite elements. FEniCS has built-in tools for the generation of
different kinds of 3D meshes but also supports the usage of external mesh generators like
gmsh or TetGen. FEniCS can be used with Python and C++ and it runs on all major
operating systems.

TetGen (Si , 2015) is a state-of-the-art program to generate 3D tetrahedral meshes of any
predefined domains consisting of so called Piecewise Linear Complexes (PLCs). PLCs
are usually a set of vertices and non-intersecting segments and facets. TetGen has imple-
mented methods for constructing Delaunay tetrahedralizations and quality tetrahedral
meshes suitable for solving PDEs by the finite element or the finite volume method.
Meshes generated with TetGen are subject to certain quality constraints for the size and
shape of the mesh elements, e.g. aspect ratios (maximum edge length to minimum element
height ratio) and radius-edge ratios (circumsphere radius compared to the length of the
shortest edge) to avoid sliver tetrahedra. The source code of TetGen is freely available3.
For the implementation of differently shaped electromagnetic transmitters and adding
the according geometries to the generated meshes, custEM uses methods of pyGIMLi4
(Rücker et al., 2017) for the mesh generation with TetGen.

For the solution of a system of discrete equations like the discretized E-field equation
system (2.42), FEniCS has built-in a number of direct and iterative solvers. In the course
of this thesis, the parallel direct solver MUMPS5 was used for all calculations.

The Python library mpi4py (MPI for Python) is necessary for parallel computing. MPI
for Python provides bindings of the Message Passing Interface (MPI) standard for the
Python programming language, allowing the usage of multiple processors at the same
time. The Python library sympy serves as a library for symbolic mathematics which is
utilized by custEM.

The time domain results calculated by the TDcustEM algorithm will be printed out
as simple formatted text files. These files are only of small extent compared to the
frequency domain data of custEM. The TDcustEM time domain results showed in this

2The FEniCS project (http://www.fenicsproject.org). FEniCS is an acronym where “FE” means
Finite Elements and “CS” represents Computational Software. According to Anders Logg,
one of the research scientists of the project, “the ’ni’ sits nicely in the middle“ (source.:
https://answers.launchpad.net/fenics/+question/204935).

3TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator
(http://www.tetgen.org) by Hang Si of the Weierstrass Institute for Applied Analysis and
Stochastics (WIAS).

4pyGIMLi: An open-source library for modelling and inversion in geophysics (http://www.pygimli.org).
5MUMPS: MUltifrontal Massively Parallel sparse direct Solver (http://mumps.enseeiht.fr/).
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thesis have mainly been plotted using the Matplotlib Python 2D plotting library. For the
optional visualization of the frequency domain data of custEM, it is recommended to use
ParaView 6 which allows for an easy visualization of huge 3D datasets.

3.3. Cross-Validation

When Rochlitz et al. (2019) presented their first results calculated by the custEM algo-
rithm, they proved the capabilities and the accuracy of custEM in the frequency domain
by cross-validations of all implemented approaches against each other.

To ensure the reliability and accuracy of the developed time domain code TDcustEM, its
results are cross-validated against analytic solutions and two different and well-established
1D and 3D time domain codes. A cross-validation of 2D subsurface models was omitted.
The reason behind is that if the results of the 3D calculations are satisfactory, a cross-
validation of 2D modelings is dispensable. Considering 1D forward modelings, the results
are compared to the semi-analytic algorithm EMUPLUS (Scholl , 2005), a 1D modeling
and inversion software package for different geophysical methods developed at the Uni-
versity of Cologne. The 3D results are compared to the code SLDMEM (Druskin and
Knizhnerman, 1988, 1994, 1999), a 3D finite difference time domain code using a Krylov
subspace projection technique and the Spectral Lanczos Decomposition Method (SLDM).
Both, EMUPLUS and SLDMEM, are written in FORTRAN.

The figures presented on the following pages are usually made of the same design pattern:
The results calculated by TDcustEM are displayed as dots of different colors while the
corresponding validation results are displayed as gray solid lines in the upper part of the
Figures. In the lower part of the figures, the relative differences between TDcustEM and
the compared results are displayed in percent (see for example Figure 3.2).

3.3.1. 1D Cross-Validation with Analytic Solutions

As an initial validation, the TDcustEM results are compared to analytic solutions of Ḣz

given by Ward and Hohmann (1991). The time derivate of the vertical magnetic field
of an inductive loop transmitter on top of a homogeneous half-space in the center of the
loop reads as

∂

∂t
Hz

∣∣
TxLoop

= − I

µ0σa3

[
3 erf(θa)− 2√

π
θa(3 + 2 θ2a2)e−θ

2a2
]
. (3.3)

The time derivate of the vertical magnetic field of an electric dipole source on top of a
homogeneous half-space at distance y in the broadside7 configuration reads

∂

∂t
Hz

∣∣
TxDipole

=
Ids

2πµ0σ

y

r5

[
3 erf(θr)− 2√

π
θr(3 + 2 θ2r2)e−θ

2r2
]
. (3.4)

6Paraview: an open-source, multi-platform data analysis and visualization application
(http://www.paraview.org/).

7Broadside in this context means perpendicular to the transmitter dipole while inline means along the
direction in that the transmitter dipole points.
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Figure 3.2.: Comparison of TDcustEM forward calculations with analytic solutions after Ward
and Hohmann (1991) for a homogeneous half-space of 10 Ωm. Left-hand side: An inductively
coupled transmitter consisting of a 100 × 100 m2 loop and a receiver in the central-loop config-
uration. Right-hand side: An electric dipole source of 1000 m length and a receiver in 2000 m
distance (broadside). The injected current of both transmitters is 1 A. The upper images show
the transient responses (Ḣz) of the numerical and analytic solutions. The lower images show
their relative differences in percent.

where
θ(σ, t) =

[µ0 σ

4 t

]1/2

. (3.5)

I is the injected current, σ the homogeneous subsurface conductivity, a the equal circular
transmitter radius of the rectangular loop transmitter, ds the length of the dipole trans-
mitter in m, r =

√
x2 + y2 the receiver distance to the center of the dipole transmitter

and t the time channels of interest. The error function erf is defined as

erf(x) =
2√
π

∫ x

0

e−τ
2

dτ. (3.6)

Figure 3.2a shows the analytic solution (gray solid line) and the TDcustEM forward
modeled solution (blue dots) for a loop source transmitter and for times from 10−5 s to
10−1 s in the upper image. The lower image shows the relative difference between both
time series in percent. The Root Mean Square (RMS) error between both time series is
2.07 % and is calculated after Jupp and Vozoff (1975) as:

RMS =

[
1

N

N∑
i=1

(fi − di)2

d2
i

]1/2

. (3.7)

Here, fi are the forward modeled values from TDcustEM and di the values from the
analytic solution. N is the total number of values for each time series. Both time series
agree to a satisfying degree, only for early times the solutions differ more than 1 %.
Figure 3.2b shows the analytic solution (gray solid line) and the TDcustEM forward
modeled solution (blue dots) for a dipole source transmitter and for times from 10−4 s to
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Figure 3.3: Switch-on responses of a
HED over a homogeneous half-space of
100 Ωm. The displayed component is
the broadside Ex component for receiver
distances of 100 (blue), 500 (orange)
and 2000 m (green). The TDcustEM re-
sults were calculated using the total field
approach and a polynomial degree of 1.

1 s. Here, the RMS error between the numerical and analytic solution is slightly higher
with 3.74 %.

Equations (3.3) and (3.4) are approximations of a vertical magnetic dipole (VMD) and
a horizontal electric dipole (HED), respectively. Therefore, the results of the analytic
solutions can only be confidently compared to modeled data (which is based on expanded
transmitter geometries in 3D) in the far field. This explains the early time misfits between
both simulations and the according analytic solutions in Figures 3.2 a and b.

For models more complex than the homogeneous half-space (even 1D layered subsurfaces),
no analytic solution is known and their time domain responses need to be computed
numerically. In the remaining part of this thesis, the time derivative of the magnetic
flux density Ḃ is displayed instead of the corresponding field strength Ḣ because Ḃ is
the actually measured quantity in time domain CSEM field surveys. The time series in
Figure 3.2 are an exception because the analytic solution of Equation (3.3) embodies the
time derivative (impulse response) of the magnetic field strength Ḣ.

3.3.2. 1D Cross-Validation with EMUPLUS

In time domain electromagnetics, EMUPLUS can simulate transient responses for two
different transmitter configurations: A VMD, approximated by a horizontal loop source
and a HED, approximated by an extended horizontal bipole. During field surveys, VMDs
are usually realized by a rectangular loop. In the forward modeling routine of EMUPLUS,
they are replaced by circular loops of equal area. According to Schaumann (2001), this
approximation is valid for times t > 1 µs and earlier times are not considered in this
thesis.

The TDcustEM algorithm uses the E-field approach (Chapter 2.1.3) and therefore only the
electric field quantities E are calculated directly. The values for Ḣ (and Ḃ respectively)
are derived according to Equation (2.26). Hence, it is sufficient to cross-validate only the
Ḣ (or Ḃ) components because they are computed from the electric field.
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Figure 3.3 is the only exception in the present chapter to validate the transformed electric
field values. In this example, the transmitter is a 500 m long grounded dipole in x-direction
centered around the origin with a current of 1 A. The subsurface model is a 100 Ωm
homogeneous half-space and the displayed receivers are located broadside in distances of
100, 500 and 2000 m. The investigated component Ex is the switch-on response of the
electric field parallel to the transmitter.

The transients of all three modelings have RMS errors between 3 and 5 % which is in an
acceptable range. The TDcustEM results were calculated using the total field approach
and a polynomial degree of 1. The underlying mesh was rather coarse with approximately
only 30 k cells.

For the rest of this chapter, the time derivatives of the magnetic flux density B are
investigated. Two different types of transmitters are modeled: A 500 m long grounded
dipole (HED) acting as a galvanic coupled source and a 100 × 100 m2 horizontal loop
(VMD) acting as an inductively coupled source. Both transmitters are simulated with
normalized currents of 1 A. The grounded dipole is located along the x-axis while both
transmitter configurations are centered around the origin of the simulation domain. The
air layer has a specific resistivity of 107 Ωmwhich is a sufficiently high value (Rochlitz et al.,
2019). If not stated otherwise, the total field approach was chosen and the polynomial
degree was set to p = 1. The time range for the calculations was set to 10−5 s to 10−1 s
(10 logarithmically equidistant time channels per decade) which is a typical range for time
domain CSEM surveys of the chosen configurations. Regarding the plots, no attention
was paid to sign reversals at this stage of the thesis and only the absolute values of the
transients are displayed.

Homogeneous half-space

It is convenient to start the investigation of 1D layered subsurfaces with the homogeneous
half-space because this is the most simple case to simulate. Figure 3.4 shows the transient
response of a loop transmitter over a homogeneous half-space of 10 Ωm. The receiver is
located in the center of the transmitter loop (central-loop configuration) and the displayed
component is Ḃz. For the chosen setup, the components Ḃx and Ḃy are supposed to be
zero in the center of the transmitter loop. In 1D layered subsurfaces and using a horizontal
transmitter loop, the induced currents inside the earth flow only horizontally. Hence, there
is no vertical component of the electric field: Ez = 0 (everywhere) and Ḃx = Ḃy = 0 at
the center of the loop. The RMS error between the TDcustEM results and EMUPLUS is
only 0.47 % indicating a very good agreement between both algorithms. This RMS error
is much smaller than the RMS value for the comparison of TDcustEM and the according
analytic solution for a homogeneous half-space (Figure 3.2a) because in EMUPLUS the
extended geometry of the source loop is represented as well.

The next step is to investigate laterally shifted receiver locations using an inductive source
loop. Within this thesis, receiver positions inside the transmitter loop, but off-center, are
denoted in-loop positions while receiver positions outside the transmitter loop are denoted
separate-loop positions. Figure 3.5 shows the TDcustEM and EMUPLUS results for in-
loop and separate-loop modelings. The left image shows the Ḃz transients of three different
in-loop receiver offsets of 10 (blue), 20 (orange) and 40 m (green). All three transients
look similar and they differ only at early times. The RMS errors are well below 1 % for
all three in-loop offsets.
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Figure 3.4: Transient response (ver-
tical component Ḃz) of a central-loop
setup on top of a homogeneous half-
space of 10 Ωm. The TDcustEM result
is displayed as blue dots while the EMU-
PLUS result is displayed as a solid gray
line. The RMS error between both time
series is 0.47 %.

The right-hand side of Figure 3.5 shows the transient responses (Ḃz) of three different
separate-loop receiver offsets of 70 (blue), 100 (orange) and 200 m (green). Note that due
to the geometry of the separate-loop setup, a sign reversal occurs within each transient.
The closer the receiver is located to the transmitter loop, the earlier the sign reversal oc-
curs. Sign reversals can usually be identified through a change of the transient’s monotony
when displaying only the absolute values in logarithmic scales. As stated before, the trans-
mitter size was set to 100 × 100 m2. Hence, every receiver offset > 50 m is located outside
of the transmitter loop.

On average, the RMS errors for the separate-loop transients are larger than those for the
in-loop transients, although the values for 70 m (RMS = 0.81 %) and 100 m (RMS =
1.22 %) are still satisfying. The large RMS error of the 200 m receiver can be attributed
to the highly dynamical ranges around the sign reversal. This is confirmed by the relative
differences of the TDcustEM transient compared to the EMUPLUS result (lower right part
of Figure 3.5) where the relative difference is most prominent around the sign reversal
with more than 10 %.

The impulse responses of the magnetic field for an exemplary LOTEM (Long-Offset Tran-
sient ElectroMagnetics) setup are displayed in Figure 3.6. Here, the TDcustEM results of
a 500 m grounded dipole over a homogeneous half-space of 10 Ωm are compared to the 1D
solution of EMUPLUS. The receivers are located broadside relative to the transmitter in
distances of 100 (blue), 300 (orange) and 1000 m (green). On the left-hand side of Figure
3.6, the horizontal Ḃy component is shown while the right-hand side shows the vertical
Ḃz component. The third component, Ḃx parallel to the transmitter dipole, is supposed
to be zero for 1D subsurfaces at the investigated receiver locations.

The transients of the horizontal component Ḃy feature sign reversals for all three receiver
locations and the TDcustEM results have RMS errors around 2 - 4 % compared to the
EMUPLUS results. The transients of the vertical component Ḃz have straight forward
shapes and the RMS errors are below 3 % for the modeled receivers. Therefore, both
calculated components match the EMUPLUS results to a satisfying degree.
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Figure 3.5.: Transient responses (vertical component Ḃz) of different receiver offsets for an in-
loop (left-hand side) and a separate-loop (right-hand side) configuration on top of a homogeneous
half-space of 10 Ωm using an inductive source loop (VMD). In the upper images, the TDcustEM
results are displayed as colored dots while the corresponding results are displayed as solid gray
lines. In the lower images, the relative differences of both results are displayed in percent.

1D layered half-spaces

The next scope of 1D subsurfaces to be investigated are 1D layered half-spaces. In this
chapter, the TDcustEM results for four different three-layer cases are cross-validated
against 1D solutions from EMUPLUS. In Table 3.1, four different generic three-layer
cases (H, K, A, Q) are listed. These kinds of 1D layered cases are commonly examined
in applied geophysics.

The H model consists of a relatively conductive (10 Ωm) second layer in comparison to a
more resistive first and third layer (both 100 Ωm). In contrast, the K model consists two
conductive layers (10 Ωm each) surrounding a resistive second layer with 100 Ωm.

Model Layer Resist. [Ωm] Thickn. [m]
H 1 100 40

2 10 40
3 100

Model Layer Resist. [Ωm] Thickn. [m]
K 1 10 40

2 100 40
3 10

Model Layer Resist. [Ωm] Thickn. [m]
A 1 1 40

2 10 40
3 100

Model Layer Resist. [Ωm] Thickn. [m]
Q 1 100 40

2 10 40
3 1

Table 3.1.: Resistivities and thicknesses of four different 1D three-layer models (H, K, A and
Q).
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Figure 3.6.: Transient responses of different broadside receiver offsets for a dipole transmit-
ter configuration on top of a homogeneous half-space of 10 Ωm. On the left-hand side the Ḃy
component is displayed and the right-hand side shows the Ḃz component. In the upper images,
the TDcustEM results are displayed as colored dots while the corresponding EMUPLUS results
are displayed as solid gray lines. In the lower images, the relative differences of both results are
displayed in percent.

The A model has a very conductive first layer (1 Ωm) and the resistivities increase with
depth (10 and 100 Ωm for the second and third layer). On the other hand, the Q model
is made up from layers where the resistivity is decreasing with depth (100, 10 and 1 Ωm).
Within all four models, the thicknesses of the first layer and the second layer is 40 m each.

The choice of values for the resistivities and thicknesses of these models was a tradeoff
between universality and comparability on the one hand, and, taking into account that
the models produce examinable transient data in the investigated time range on the other
hand.

Figure 3.7 shows the comparison of the TDcustEM and EMUPLUS modelings (Ḃz com-
ponent) for each of the four 1D models using a 100 × 100 m2 loop source. Each image
in Figure 3.7 shows two results: one transient represents a central-loop setup (blue) in
the center of the transmitter and one transient represents a separate-loop setup (orange)
with a receiver offset of 100 m.

The central-loop transients have solid RMS errors of around 1 % or less. The separate-
loop transients of all four models show sign reversals from early to intermediate times but
nonetheless their RMS errors are satisfactory with values below 1.5 %.

Figure 3.8 shows the results for the horizontal component Ḃy, perpendicular to the trans-
mitter which is a 500 m grounded dipole with an injected current of 1 A. Each image
shows transients for three different broadside offsets of 100, 300 and 1000 m. All tran-
sients provide the expected geometrical sign reversals except the green transient (1000 m
offset) of the Q model (bottom right image of Figure 3.8). Here, the sign reversal happens
after the modeled time range due to the very conductive third layer of 1 Ωm.
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Figure 3.7.: Transient responses (vertical component Ḃz) of four generic three-layer subsurfaces
(H, K, A, Q) using an inductive source loop. Each image shows the results of a central-loop setup
(blue) and a separate-loop setup (orange) with a 100 m receiver offset. The TDcustEM results
are displayed as colored dots while the corresponding EMUPLUS results are displayed as solid
gray lines.

The values of the RMS errors provide satisfying values of 1 - 5 % on average. Only the
100 m offset transients of the H and Q model have misfits between the TDcustEM and
EMUPLUS results of more than 10 %. The reason behind is that both models consist of
a relatively resistive first layer of 100 Ωm which leads to an earlier sign reversal, a steeper
decaying slope and therefore to a higher dynamic of the transient compared to less resistive
top layers. Generally, the numerical precision deteriorates when the computed physical
parameter changes more rapidly in time.

The last setup for the cross-validation of 1D layered subsurfaces is a grounded dipole
source (HED) as the transmitter and a broadside Ḃz as the receiver component. Figure
3.9 shows the corresponding results of three different receiver offsets for each of the four
generic three-layer models as introduced in Table 3.1. The RMS errors between the
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Figure 3.8.: Transient responses (horizontal component Ḃy) of four generic three-layer subsur-
faces (H, K, A, Q) using a grounded dipole. The figure shows the results of the broadside Ḃy
component with offsets of 100 (blue), 300 (orange) and 1000 m (green). The TDcustEM results
are displayed as colored dots while the corresponding EMUPLUS results are displayed as solid
gray lines.

3D TDcustEM and the 1D EMUPLUS algorithms are in the range of 1 - 3 % which is
a satisfactory outcome. The biggest contributions to these RMS errors between both
algorithms comes from the relative differences at early times (see lower parts of each
figure).

All in all, the presented 1D cross-validations between the 3D TDcustEM and 1D EMU-
PLUS algorithms show good results for the discussed models, setups and time ranges.
While the results of the inductive loop transmitter modelings are accurate to a very sat-
isfying degree, the comparisons of the grounded dipole source modelings lead to slightly
higher RMS errors. The largest displayed RMS errors can usually be explained by the
occurence of sign reversals. As stated before, it is numerically more demanding to provide
accurate results for data points next to or in the vicinity of sign reversals.
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Figure 3.9.: Transient responses (vertical component Ḃz) of four generic three-layer subsurfaces
(H, K, A, Q) using a grounded dipole. The figure shows the results of the broadside Ḃz component
with offsets of 100 (blue), 300 (orange) and 1000 m (green). The TDcustEM results are displayed
as colored dots while the corresponding EMUPLUS results are displayed as solid gray lines.

One peculiar pattern of the modelings is that the 300 m receiver offset calculations using
a HED transmitter provide generally larger RMS errors than the adjacent offsets of 100 m
and 1000 m. Additionally, the relative difference plots of the grounded dipole modelings
for the homogeneous half-space (Figure 3.6) and the 1D layered models (Figures 3.8 and
3.9) indicate larger differences between both algorithms mainly for the 300 m offset. This
observation is possibly random but it may also be related to the chosen 3D mesh.

Using the RMS error (Equation 3.7) is one of several possible criterions to evaluate the
quality of TDcustEM’s results but it has some drawbacks. Grayver et al. (2013) presented
the deficiencies of evaluations using the RMS error and concluded that RMS errors are
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Conductive cuboid (Model A) x [m] y [m] z [m]
Start -25 50 -25
End 200 150 -75

Table 3.2.: Start and end coordinates of the 3D conductive cuboid (1 Ωm) inside a homogeneous
half-space (10 Ωm) for the 3D model A (separate-loop TEM).

not the best choice when residuals8 do not obey a standard normal distribution – which
is the case in the vicinity of sign reversals.

One possible alternative to bypass large RMS errors caused by sign reversals is to use an
error-weighted RMS-like criterion. In this case, data points adjacent or close to a sign
reversal can be furnished with an additional relative error, see for example Seidel and
Tezkan (2017) for such an approach.

3.3.3. 3D Cross-Validation with SLDMEM

In the following section, the 3D capabilities of the new algorithm are proved by com-
paring the TDcustEM results with the 3D finite difference time domain code SLDMEM9

(Druskin and Knizhnerman, 1988, 1994, 1999). SLDMEM allows the computation of time
domain CSEM data using a Krylov subspace projection technique. The algorithm is well
established and has been used in many case studies over the last couple of years (Hördt
et al., 1992, 2000; Yogeshwar and Tezkan, 2017).

To get the most accurate early time results from the SLDMEM code, a grid needs to be
dense around the transmitter. To allow for an additional good coverage of the late times,
the grid needs also to be as large as possible. The generated meshes for the calculations
in this chapter are therefore a tradeoff between both.

3D Model A: Separate-Loop TEM

The first investigated model A resembles a typical separate-loop TEM setup with several
receiver locations outside of a squared transmitter loop. The subsurface consists of a
conductive anomaly in form of a cuboid with a resistivity of 1 Ωm embedded inside a
homogeneous half-space of 10 Ωm. The resistivities of both domains, the background
half-space and the conductive anomaly, have been chosen to be relatively low to allow
reasonable comparisons of the synthetic data also at late times. The conductive anomaly
extends from a depth of 25 m to a depth of 75 m. The exact coordinates of the cuboid are
given in Table 3.2. Although the chosen model and setup seem to be arbitrary, they are
suitable for a cross-comparison of the two 3D algorithms. Because SLDMEM is a finite
difference code and to avoid staircasing shapes, the subsurface model was chosen to have
a regular, blocky structure. TDcustEM alone is not bound to these kind of limitations.

8In this case, the residual is the difference between the TDcustEM and the EMUPLUS results.
9The SLDMEM software suite can do forward calculations in the time domain and in the frequency
domain. The corresponding codes are actually called SDLMEM3t and SLDMEM3f, respectively.
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Figure 3.10.: 3D subsurface model A for a separate-loop TEM setup. The 100 × 100 m2

transmitter is depicted as a green square in the x-y-plane (plan view, left image) and as a green
line in the x-z-plane (cross-section, right image). The blue rectangle represents the position of
the conductive anomaly, projected to the corresponding plane. The conductive cuboid is located
25 m underneath the surface, is 50 m thick and has a resistivity of 1 Ωm. It is embedded in a
homogeneous half-space of 10 Ωm. The 3 × 3 Ḃz receiver locations are shown as green circles
“north” of the source loop. They are partially covering the conductive anomaly.

The chosen transmitter source is a 100 × 100 m2 inductively coupled loop centered around
the domain origin with an injected current of 1 A. The receivers are located along in a
3 × 3 separate-loop receiver grid at x = -100 m, x = 0 m and x = 100 m and y = 75 m,
y = 125 m and y = 175 m. The receiver grid is partially covering the conductive anomaly.
The modeled time range is 10−5 to 10−1 s and the investigated electromagnetic field
component is the impulse response of the vertical magnetic field (Ḃz).

Figure 3.10 (left-hand side) shows the described model A in the x-y-plane. The projected
location of the conductive cuboid to the surface is displayed as a blue rectangle and the
transmitter as a green square. The 3 × 3 receiver grid is shown as green circles. An
x-z-plane view of the 3D separate-loop TEM model A is shown on the right-hand side of
Figure 3.10. The projected location of the conductive cuboid is displayed again as a blue
rectangle and the transmitter loop as a green line.

SLDMEM uses staggered grid Yee cells (Yee, 1966) on which the electric fields are edge-
averaged while the magnetic fields are face-averaged. The size of the cells around the Ḃz

receiver positions was 5 × 5 m2 (in x and y directions). The grid was designed rather
coarse around the magnetic receivers because the total number of gridlines is limited
within SLDMEM and the grid had to support calculations in time over four decades.
The size of the SLDMEM modeling domain was 5 × 5 × 5 km3. Within the TDcustEM
mesh, the tetrahedra adjacent to each receiver position has edge lengths of 1 m which
leads to a much better resolution compared to the finite difference grid of SLDMEM.



Chapter 3. The TDcustEM Algorithm 45

1e-11

1e-09

1e-07

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

a) Rx1 | x=-100m | y=175m | Bz

(no Target)
TDcustEM (RMS=2.05%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

b) Rx2 | x=0m | y=175m | Bz

(no Target)
TDcustEM (RMS=3.75%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00
1e+01

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

c) Rx3 | x=100m | y=175m | Bz

(no Target)
TDcustEM (RMS=2.69%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00
1e+01

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

d) Rx4 | x=-100m | y=125m | Bz

(no Target)
TDcustEM (RMS=5.05%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00
1e+01

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

1e-05

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

e) Rx5 | x=0m | y=125m | Bz

(no Target)
TDcustEM (RMS=4.84%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e+00
1e+01

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

f) Rx6 | x=100m | y=125m | Bz

(no Target)
TDcustEM (RMS=1.84%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

1e-05

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

g) Rx7 | x=-100m | y=75m | Bz

(no Target)
TDcustEM (RMS=1.54%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

1e-05

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

h) Rx8 | x=0m | y=75m | Bz

(no Target)
TDcustEM (RMS=5.71%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e+00
1e+01

Re
l. 

di
ff.

 (%
)

1e-11

1e-09

1e-07

1e-05

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

i) Rx9 | x=100m | y=75m | Bz

(no Target)
TDcustEM (RMS=2.02%)
SLDMEM

1e-05 1e-04 1e-03 1e-02 1e-01
Time (s)

1e-01
1e+00
1e+01

Re
l. 

di
ff.

 (%
)

Figure 3.11.: TDcustEM and SLDMEM comparison (vertical component Ḃz) of the 3D loop
transmitter model A for nine separate-loop receiver locations. The receiver grid is arranged
as shown in the left-hand side image in Figure 3.10. The TDcustEM results are displayed as
green dots and the SLDMEM data as gray solid lines. Transient curves for the homogeneous
background (“no Target”) case are displayed as gray dotted lines.

The TDcustEM mesh used for the calculations consisted of ∼ 34 k tetrahedra and the
modeling domain extents were 50 × 50 × 50 km3. The polynomial degree was set to
p = 2 using the total E-field approach.

The nine subfigures a - i in Figure 3.11 show the computed Ḃz transients of TDcustEM
(green dots) and SLDMEM (solid gray lines) for each receiver position. The subfigures
have been arranged in the same order than shown in the SLDMEM grid view of Figure
3.10. The corresponding RMS errors between TDcustEM’s and SLDMEM’s forward cal-
culations are given in each subfigure’s legend. Underneath the transients, the relative
difference between both modelings is plotted.
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To illustrate how much the transients are affected by the 3D geometry of the model, each
subfigure contains an additional transient curve that shows the Ḃz data that would have
been measured if no conductive cuboid was present (i.e. a transient decay curve for a
homogeneous half-space of 10 Ωm). These additional transients have been calculated by
TDcustEM and are plotted as gray dotted lines. The most prominent difference between
the transients of the homogeneous case and the transients of the anomaly case are usually
shifts in time of the geometrical sign reversal. As expected, receivers Rx4, Rx7 and Rx8
are least affected by the anomaly. The greatest impact can be seen at receiver location
Rx3 where the sign reversal is shifted in time for almost half a decade. Additionally,
the curve of Rx3 shows the most striking shape alteration compared to the homogeneous
curve.

The RMS errors between both algorithms are below 6 % and sometimes only around
2 % which is a decent outcome taking into account that all transients provide a sign
reversal. Looking at the relative difference plots underneath the curves reveals that the
largest portions of the RMS errors again originate from the time channels around the sign
reversals. On top of that, the very late times (the last or the last two time channels)
contribute to higher RMS errors to a similar grade. These late time differences can
probably be explained by a slightly poorer quality of the SLDMEM data because the
SLDMEM domain is of much smaller extents and has a coarser resolution around the
receivers. However, the calculated induced voltages at these very late times are often
below the ambient noise level.

Model B: LOTEM dipole source

The investigated model for a typical LOTEM setup has a similar structure. Again, a
conductive anomaly in form of a cuboid with a resistivity of 1 Ωm is embedded inside a
homogeneous half-space of 10 Ωm. The conductive anomaly extends from a depth of 200
m to a depth of 400 m. The exact coordinates of the cuboid are given in Table 3.3.

The transmitter source is a 1 km long x-directed dipole centered at the domain origin
with an injected current of 1 A. The receivers are located along in a 3 × 4 receiver
grid at x = -0.5 km, x = 0 m and x = 0.5 km and y = 1 km, y = 1.5 km, y = 2 km and
y = 2.5 km. The receiver grid is partially covering the conductive anomaly. The modeled
time range is 10−4 to 1 s and the investigated electromagnetic field component is the
broadside switch-on Ex component. SLDMEM is actually modeling only the switch-off
response. The switch-on response was calculated using Eq. 2.69.

Figure 3.12 (left-hand side) shows the described model B in the x-y-plane. The projected
location of the conductive cuboid is displayed as a blue rectangle and the transmitter as
an orange line. The 3 × 4 receiver grid is represented by orange circles. An x-z-plane view
of the 3D dipole source LOTEM model B is shown on the right-hand side of Figure 3.12.

Conductive cuboid (Model B) x [km] y [km] z [km]
Start 0 0.5 -0.2
End 2 1.5 -0.4

Table 3.3.: Start and end coordinates of the 3D conductive cuboid (1 Ωm) inside a homogeneous
half-space (10 Ωm) for the 3D model B (LOTEM dipole source).
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Figure 3.12.: 3D subsurface model B for a dipole transmitter LOTEM setup. The 1 km long
x-directed source dipole is depicted as an orange line in the x-y-plane (plan view, left image)
and in the x-z-plane (cross section, right image). The blue rectangle represents the position of
the conductive anomaly, projected to the corresponding plane. The conductive cuboid is located
200 m underneath the surface, is 200 m thick and has a resistivity of 1 Ωm. It is embedded in
a homogeneous half-space of 10 Ωm. The 3 × 4 broadside Ex receiver locations are shown as
orange circles “north” of the source dipole. They are partially covering the conductive anomaly.

The projected location of the conductive cuboid is displayed again as a blue rectangle and
the transmitter dipole as an orange line.

The size of the SLDMEM modeling domain was 120 × 120 × 120 km3. Within the
TDcustEM mesh, the tetrahedra adjacent to each receiver position had edge lengths of 1
m. The TDcustEM mesh used for the calculations consisted of ∼ 100 k tetrahedra and
the modeling domain extents were 750 × 750 × 750 km3. The polynomial degree was set
to p = 2 using the total E-field approach.

The subfigures in Figure 3.13 a - l show the computed switch-on Ex transients of TD-
custEM (orange dots) and SLDMEM (solid gray lines) for each receiver position. The
subfigures have been arranged in the same order than shown in the left image of Fig-
ure 3.12. The corresponding RMS errors between TDcustEM’s and SLDMEM’s forward
calculations are given in each subfigure’s legend. Underneath the transients, the relative
difference between both modelings is plotted.

Like for the results for the separate-loop TEM model A, each subfigure contains an addi-
tional transient curve that shows the switch-on Ex data that would have been measured
if no conductive cuboid was present (i.e. a transient switch-on curve for a homogeneous
half-space of 10 Ωm). These additional transients have been calculated by TDcustEM
and are plotted as gray dotted lines. The greatest impact of the anomaly can be seen at
the receiver locations right on top of the conductive cuboid (Rx9 and Rx12). Addition-
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Figure 3.13.: TDcustEM and SLDMEM comparison (switch-on broadside component Ex) of
the 3D LOTEM dipole transmitter model B for twelve receiver locations. The receiver grid is
arranged as shown in the left-hand side image in Figure 3.12. The TDcustEM results are dis-
played as orange dots and the SLDMEM data as gray solid lines. The relative differences of both
forward modelings are plotted underneath every subfigure. Additional switch-on curves for the
homogeneous background (“no Target”) case are displayed as gray dotted lines for each receiver.
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ally, the transient curves of receiver locations Rx6 and Rx9 show the most striking shape
alteration compared to the homogeneous curve.

The RMS errors in Figure 3.13 have values between 1.7 and 3.5 % which is satisfactory.
A closer look to the relative differences in Figure 3.13 reveals that the RMS error comes
mostly from the early times between 10−4 to 10−3 s. At these times, the TDcustEM values
show a gentle oszillation at all receiver stations. The amplitudes of these oszillations
depend primarily on the chosen mesh resolution. The finer the mesh is generated, the
less is the degree of early time oszillations. Leaving out the first time decade for the
calculation of the RMS errors, they would be reduced to 1.5 - 3 %.

For both comparisons of TDcustEM with SLDMEM (TEM model A and LOTEM model
B), there seems to be room for a further improvement of the results by increasing the
resolution of the underlying meshes or for example splitting up the forward calculation
and mesh generation into two separate modelings: One for the first two time decades with
an appropriate finer mesh and one for the last two time decades deploying a coarser but
bigger mesh (multi-grid approach).

All in all, Figures 3.11 and 3.13 show decent results when comparing the TDcustEM
results to those of SLDMEM. They prove that the TDcustEM algorithm is capable of
computing forward modelings also for 3D subsurface models to a more than satisfactory
degree. Together with the 1D results of Chapter 3.3.2 and the comparison to the analytic
solution, it can be concluded that the TDcustEM algorithm delivers accurate and reliable
multi-dimensional CSEM forward modeling data.

SLDMEM grid checks

As stated by Yogeshwar (2014), the finite differences grids used my SLDMEM have to be
generated carefully to match a set of criteria like appropriate extents and local resolution
to adapt to the chosen transmitter/receiver setup, the target time ranges and the given
resistivity distributions.

To verify the applicability of the aforementioned grids and the SLDMEM numerical so-
lution accuracy, the grids for the models A and B are tested in the way that the results
of SLDMEM are compared to solutions of the semi-analytic algorithm EMUPLUS. As
EMUPLUS is a 1D code, the comparisons are conducted for homogeneous half-spaces
which are created omitting the conductive cuboids and have a resistivity of 10 Ωm (i.e.
the background resistivity of both subsurface models).

For both models, the separate-loop TEM model A and the dipole transmitter LOTEM
model B, the “western-most” receiver profiles with x = -100 m (model A, Rx1, Rx4 and
Rx7) and x = -500 m, (model B, Rx1, Rx4, Rx7 and Rx10) have been chosen for this veri-
fication (see Figure 3.14). Due to the symmetry of the setup, the receivers of the “eastern”
profiles have the same values as the receivers of the corresponding “western” profiles when
forward modeling values for a uniform half-space (except for the sign, depending on the
component). Investigating the results of a side profile seems to be more interesting than
showing the results of the central profile due to the more complex geometry.

Figure 3.15 shows the Ḃz comparisons of three receiver locations (x = -100 m, y = 75,
125 and 175 m, loop model A) between the EMUPLUS and SLDMEM forward modelings
for the 10 Ωm uniform half-space. The SLDMEM transients are displayed using colored
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Figure 3.14.: Simplified versions of the separate-loop TEM model A (left side) and the dipole
source LOTEM model B (right side) for SLDMEM grid check comparisons with EMUPLUS.
Only the “western-most” profiles are evaluated on a uniform half-space of 10 Ωm without the
conductive anomalies.

markers and the EMUPLUS transients as gray solid lines. The calculated RMS errors of
each transient are given in the legend. The first value denotes the regular RMS error,
taking into account every value of both particular time series. The second value denotes
a reassessed RMS error for which the two adjacent values left and the two adjacent
values right of each sign reversal have been excluded from the RMS calculation. This
reassessment of the RMS error is a simple approach to increase its overall comparability.

Surprisingly, the RMS error of Rx1 at location y = 75 m increases from 1.25 to 1.3 % when
leaving out the four values near the sign reversal. But the RMS values of the remaining
two transients experience an expected improvement from 2.82 to 2.41 % (Rx2, y = 125 m)
and from 5.09 to 2.39 % (Rx3, y = 175 m), respectively.

Selected switch-on Ex comparisons between SLDMEM and EMUPLUS for the dipole
source LOTEM model B on top of a 10 Ωm uniform half-space are presented in Figure
3.16. The RMS errors between both algorithms for the receiver positions y = 1.5, 2 amd
2.5 km are 0.43, 0.66 and 0.88 %. Only the RMS error of the closest receiver location
at y = 1 km has an increased value of 2.22 %. EMUPLUS is only capable of calculating
electric fields for the switch-on case while SLDMEM is only capable of creating switch-off
responses. Therefore, the SLDMEM results had to be transformed from a switch-off to a
switch-on response to allow for a quantitative comparison.

Overall, the chosen SLDMEM grids for both models seem to be applicable for the cross-
validations with TDcustEM, as shown in Chapter 3.3.3. The RMS errors for the loop
model A are slighty higher than those of model B, which can partly be explained through
the sign reversals, but they are still in a satisfactory range. The results for model B are
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Figure 3.15.: Grid check comparison (Ḃz)
between SLDMEM (colored marks) and EMU-
PLUS (grey solid lines) for the separate-loop
TEM model A. The transients for three dif-
ferent receiver positions (Rx1, Rx4 and Rx7)
of the “western-most” profile are plotted. The
first RMS error is the regularly calculated
value, the second RMS error is a reassessed
version leaving out the four time channels next
to the sign reversal.
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Figure 3.16.: Grid check comparison (Ex)
between SLDMEM (colored marks) and EMU-
PLUS (grey solid lines) for the dipole source
LOTEM model B. The transients for four dif-
ferent receiver positions (Rx1, Rx4, Rx7 and
Rx10) of the “western-most” profile are plot-
ted. The presented time series do not provide
any sign reversal. Therefore, in contrast to the
RMS errors in Figure 3.15, only the regular
RMS error is shown.

much better with values below 1 % except for Rx10 at y = 1000 m with an RMS above
2 %. Here, the SLDMEM mesh could probably be optimized to reduce any discrepancy
between the two algorithms. Yet, the results of the grid check comparisons show that the
utilized SLDMEM grids are applicable to the chosen models and setups.

3.4. About Runtimes

The TDcustEM algorithm transforms 3D CSEM frequency domain data into the time
domain using a Fast Hankel Transform. For this purpose, the custEM software has to be
executed for a considerably large number of frequencies which can turn out to be time
consuming depending on the size of the utilized 3D mesh and the number and speed of
the parallel used CPUs. The relation between runtime and factors like the mesh size is
examined below.

The presented benchmark results have been acquired on a Ubuntu 16.04.4 (Linux kernel
release: 4.4.0-139-generic) server with 128 GB RAM using an Intel R© Xeon R© E5-2687W
v3 CPU with 10 cores in parallel. Open MPI was used for parallel computations and the
system equation set was solved by the direct solver MUMPS.
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Figure 3.17.: Single custEM runtimes depending on the frequency for polynomial degrees of p
= 1 (left) and p = 2 (right) for a mesh with ∼ 100 k tetrahedra.

First, the dependency of the runtime on a specific input frequency is investigated. Figure
3.17 shows the runtime in seconds for frequencies from 10−4 to 108 Hz. The mesh used for
these calculations consisted of ∼ 100 k cells. The image on the left-hand side of Figure
3.17 shows the result for p = 1. Here, the tendency that smaller frequencies need a longer
runtime can be identified. For the polynomial degree of p = 2 this upward tendency is
obvious. The reason is that for very small frequency values the condition of the system
matrix deteriorates which complicates the numerical solution process.

Next, the parallel performance of custEM is investigated. For one fixed frequency of 1
Hz, the runtime in seconds depending on the parallel used cores from 2 to 20 is displayed
in Figure 3.18 for the polynomial degrees of p = 1 (left image) and p = 2 (right image).
The left-hand side of Figure 3.18 shows the runtime for three different mesh sizes from ∼
50 k to ∼ 200 k tetrahedra. For the smallest mesh with 50 k cells, a runtime reduction of
about 30 % using 4 cores can be observed. Using more cores does not lead to a significant
speedup for this problem size. The same can be concluded for the double sized mesh with
100 k cells. Only for bigger meshes, like the 200 k cells mesh, a further speedup of the
runtime is achieved by increasing the cores to approximately 10.
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Figure 3.18.: Single custEM runtime depending on the parallel used cores for polynomial degrees
of p = 1 (left) and p = 2 (right) for different mesh sizes.
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Figure 3.19.: Runtime (left), memory usage (center) and size of the system matrix (right)
displayed for different numbers of tetrahedra (in thousands) for polynomial degrees of p = 1
(black) and p = 2 (red). 10 CPU cores have been used for the parallel computation of one single
frequency.

For the polynomial degree of p = 2, two meshes have been investigated (right-hand side of
Figure 3.18). For the 50 k cells mesh, a runtime speedup can be observed until increasing
the number of cores to 7. For the 100 k cell mesh, a speedup is achieved until using
10 cores. A 200 k cell mesh was not investigated because its demand of memory would
have been close to or greater than the total available memory of the utilized hardware.
Demanding more memory than available would lead to a swapping of data to disk and
eventually to an inconclusive evaluation of the runtime.

Achieving a runtime speedup by increasing the number of parallel used cores up to 10 is a
satisfactory result. In some cases, an increasing number of cores leads to an unintentional
increase of runtime. The driving factors of these limitations are the percentage of custEM’s
parallel portion, the overhead on communication between the MPI processes and the huge
amount of frequency domain data which is written to disk. In the case of the present
scenario, the underlying file system is the networked-based distributed file system “AFS”
which may act as a bottleneck in terms of parallel computation speed.

The main outcome of the results displayed in Figure 3.18 is that a total number of 10
parallel used cores for a forward calculation seems to be enough on the utilized hardware.
With this, an overall speedup factor of ∼ 2 could be achieved.

Eventually, simple homogeneous half-space models have been created to investigate the
impact of different mesh sizes with tetrahedral numbers from 10, 000 to 1, 000, 000 on the
runtime. The benchmarks have been generated for the polynomial degrees of p = 1 and
p = 2.

Figure 3.19 shows the benchmark results for the measured runtimes (left), maximum
memory usage (center) and the size of the system matrix (right). The values for the
runtimes and the maximum memory usage are slightly fluctuating because they depend
on unpredictable10 factors like sparsity of the system matrix, the MPI handling, etc.

10“Unpredictable” in the sense that little changes of the input parameters may lead to significant changes
in terms of runtime and memory usage
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In qualitative regards, the results are sufficient to understand the memory needs and
expected solving runtimes for meshes of different sizes.

The following example illustrates that one forward modeling in the time domain using
TDcustEM may be computationally quite expensive: Assuming 80 filter coefficients and
four time decades to simulate leads to a needed calculation of 120 frequencies. Using a
100 k cell mesh with a polynomial degree of p = 1 and 10 cores of the formerly men-
tioned CPU, one forward modeling would approximately take 40 minutes. For the same
setup, and using the more precise polynomial degree of p = 2, the algorithm would need
approximately six and a half hours to calculate solutions for 120 frequencies.

Even if the computing capabilities will increase within the next years, there is definitely
the need of a runtime reduction. In this sense, the most obvious parameter to work on,
despite reducing the size of the mesh, is reducing the necessary number of frequencies to
simulate. Chapter 4.2 is discussing possible approaches.



CHAPTER 4

Synthetic Data Studies

This chapter shows various modeling studies regarding the evaluation of the implemented
FHT filter coefficients and a possible reduction of the necessary number of frequencies by
extrapolation and interpolation techniques is discussed. Following this, modeling studies
regarding precise receiver positioning, reasonable domain sizes and resistivity contrasts
are presented.

4.1. Testing different Filters

When using the digital filter algorithm of a Hankel Transform (Chapter 2.3), two factors
determine the choice of the set of digital filters: The speed and the accuracy of forward
modelings. The more coefficients a set of filters provides, the higher is the assumed
accuracy. And on the other hand, the more time-consuming the forward modelings get.
The calculations in the present thesis are usually using 80 filter coefficients provided by
Tilman Hanstein11. Nowadays, typical filter set lengths contain a minimum of 50 to 100,
on average 100 to 200 and in some cases up to a several hundred coefficients (Key , 2012;
Werthmüller , 2017).

Zhao et al. (2018) investigated the performance of their newly developed 101- and 201-
point sine and cosine filter sets. A comparison of their filters to the 101- and 201-point
filters of Key (2012) showed that the new filters by Zhao et al. (2018) are superior when
comparing transformed Ḣz data to the analytic solution of a horizontal electric dipole
over a homogeneous half-space (Equation 3.4).

To evaluate the performance of the 80 filter coefficients by T. Hanstein, acting as the
standard filter set in TDcustEM, they are compared to the two before mentioned filter sets
by Zhao et al. (2018) containing 101 and 201 coefficients. For a quantitative comparison,
the two analytic solutions for Ḣz presented in Chapter 3.3.1 (Eq. 3.3 and 3.4) for a loop
and a dipole source are consulted. Zhao et al. (2018) published coefficients for the sine and

11Formerly working at the Institute of Geophysics and Meteorology, University of Cologne, now employed
at KMS Technologies, Houston, Texas.
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Figure 4.1.: Comparing the performance of three filter sets for a loop and a dipole transmitter
by calculating the relative difference between the transformed Ḣz data to an analytic solution
for a homogeneous half-space of 10 Ωm. Left-hand side: Central-Loop TEM setup with a 100
× 100 m2 loop source with an injected current of 1 A. Right-hand side: LOTEM setup with a
1000 m x-directed dipole transmitter and the receiver positioned 2000 m broadside. Each filter
set produces time series of different lengths due to varying sampling intervals.

the cosine transform, see Eq. (2.79) and (2.80), but in this Chapter only the coefficients
of the sine transform are considered.

The 80 standard coefficients by T. Hanstein have been obtained to facilitate a computation
of 10 time channels per decade, yielding an time increasing factor Q = exp(s) of

QH80 = 10
1/10 ≈ 1.2589254 (4.1)

in the time domain with s = the sampling interval in logarithmic space. However, the coef-
ficients from Zhao et al. (2018) are designed for different sampling intervals sZ101 = 0.235
and sZ201 = 0.149. The resulting time increasing factors Q are:

QZ101 ≈ 1.2649088 (4.2)
QZ201 ≈ 1.1606730. (4.3)

The sampling interval for the Hanstein filter is sH80 = log(101/10) ≈ 0.2302585. These
unequal sampling intervals implicate different time channels for the comparing forward
modelings. Thus, for each filter set a different kernel function needs to be computed and
an appropriate analytic solution had to be obtained to ensure an accurate comparison. For
all TDcustEM modelings, the same mesh was taken and the polynomial degree was p = 2.
For the 80-point Hanstein (H80 ) and the 101-point Zhao (Z101 ) filters, 41 sampling points
have been computed. For the 201-point Zhao (Z201 ), 63 samples were required.

Figure 4.1 shows the performance of three filter sets as a relative difference of each filter
set and the corresponding analytic solution in percent. The receiver for the loop source
is located in the center of the transmitting loop (x = 0 m, y = 0 m) and the associated
results are shown in Figure 4.1a. The receiver of the 1000 m long x-directed dipole source
is located 2000 m broadside of the transmitter, the results for this setup are shown in



Chapter 4. Synthetic Data Studies 57

Figure 4.1b. Both setups have been calculated for a 10 Ωm uniform half-space. Additional
to the relative difference per time channel, the RMS errors between the transformed data
and the analytic solution are presented in the legends of Figure 4.1. The corresponding
transients of both configurations can be found in Figure 3.2. Due to the different spatial
scales of a central-loop TEM and a LOTEM setup, the time ranges have been chosen
differently. The loop source data was computed from 10−5 to 10−1 s and the dipole source
data from 10−4 to 1 s.

The loop source comparison (Figure 4.1a) shows a good agreement between the results of
all three filters. Only at early times around 30 µs and at late times around 800 ms, the
201-point Zhao filter shows a marginal better performance. The differences of the RMS
errors are neglectable with values from 2.99 to 3.01 %. The results of the dipole source
comparison (Figure 4.1b) show a similar good agreement between the three filters. There
are no significant differences in the performance of a filter at any time. Again, the RMS
errors are on a comparable level with values between 3.70 and 3.74 %. For both setups,
the RMS values can be treated as being approximately the same, taking into account that
they are computed using different sampling points.

It can be concluded, that the default Hanstein filter with 80 coefficients provides as
accurate results as the two Zhao filters with 101 and 201 coefficients, at least for the
homogeneous half-space. But taking into account that a larger set of coefficients yields a
longer computation time, the default Hanstein filter set is to be preferred. Eventually, all
three filters are implemented in TDcustEM and can be used for the transformation into
the time domain if desired. Moreover, additional sets of DLF coefficients can easily be
implemented in TDcustEM.

4.2. An adequate Quantity of Frequencies

The following section is dealing with the possible reduction of the total number of fre-
quencies to be calculated with TDcustEM without losing too much solution accuracy.
Reducing the total number of frequencies would directly result in a significant speedup of
a single time domain forward calculation. By default, TDcustEM is working with 10 fre-
quencies per decade, which yields up to 130 mandatory frequencies on average - depending
on the desired number of resulting time channels and when using 80 filter coefficients.

As stated in Section 2.4.2, it is numerically more stable to use the imaginary part of the
frequency domain data for the Fast Hankel Transform. Therefore, an obvious question on
how to reduce the necessary frequencies is: What is the impact on the transformed time
domain result of modifying or entirely omitting individual frequency domain values?

One possible approach is to calculate only every second or every third frequency for
example and interpolate the values in between. Rätz (2000) stated that 4 frequencies per
decade are sufficient for an FHT of frequency domain data into the time domain.

Another approach is to omit for example the first or the last decade of frequencies and use
extrapolation techniques to estimate these values. Within TDcustEM, typical FD data
covers frequency ranges from 10−4 to 108 Hz, which is a huge span and should intuitively
comprise space for improvements.
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The first investigation in the present chapter is to find out the weight of every frequency
sample in the convolution for an exemplary frequency domain data set. Figure 4.2 shows
the imaginary part of theHz component of three FD data sets for different loop transmitter
setups with a loop source of 100 × 100 m2 and a current of 1 A.

The blue curve in Figure 4.2 shows the data for a central-loop configuration (x = 0 m,
y = 0 m) on top of a homogeneous half-space of 100 Ωm. The data is monotonously
rising for the first ∼ 8 decades and is then monotonously decreasing. The amplitudes
cover values from approximately 10−11 to 10−2 A/m.

The FD data for a separate-loop setup (x = 0 m, y = 100 m) on top of a uniform half-space
of 100 Ωm is displayed as an orange curve containing a sign reversal at approximately 30
kHz. Apart from that, the shape of the curve looks similar to that of the central-loop
calculation (blue curve). The maximum amplitude is located at a similar frequency.

The last curve in Figure 4.2 is the green curve which belongs to receiver location Rx9
from the 3D subsurface TEM model A (see Figure 3.10). The shape of this curve is more
complex than the previous two. It provides two sign reversals near 10 Hz and near 10 MHz
and the global maximum amplitude is shifted more than 2 decades to lower frequencies.

To find out the convolutional weight of each frequency sample, every value from the
original data series is multiplied one after another with a so-called Modification Factor
(MF) of for example 10 % and then an FHT is conducted on this modified frequency
domain data set. A more precise example: First, the data point of the lowest frequency
is modified by for example 10 % and then the FHT is conducted. Afterwards, the time
domain result is compared to the FHT time domain result of the original, unaltered
frequency data set. The outcome of this comparison is quantified in terms of an RMS
error. In a second step, the corresponding value of the next frequency is modified by the
MF and again an RMS between the modified data and the original data is computed, and
so on. All RMS errors of these single variations are eventually plotted as a function of
the frequency.

For each curve in Figure 4.2, the above mentioned RMS errors per frequency are shown in
Figure 4.3 a-c. The blue curves in Subfigure 4.3a correspond to the blue curve of Figure
4.2, the orange curves in 4.3b correspond to the orange curve in 4.2, etc. The RMS errors
have been computed for modification factors of 10 % (dotted lines), 100 % (dashed lines)
and 1000 % (solid lines). A horizontal black line represents the RMS error = 1 % level in
each subfigure.

An important outcome of the results in Figure 4.3 is that modifying single frequency
values higher than 107 Hz and lower than 10−2 Hz even by 1000 % has almost no impact
(RMS errors < 10−7 %) on the time domain result after the FHT. The frequencies with
the greatest impact for these kinds of loop source modelings are in the range of 10 Hz to
1 MHz.

The next investigation is to find out the importances of frequencies for different 1 km
long x-directed dipole transmitter (LOTEM) setups with a 1 A current. Figure 4.4 shows
the imaginary part of the Hz and Ex components of three exemplary FD data sets for
different dipole transmitter configurations. The blue (Hz) and orange (Ex) curves belong
the broadside receiver locations at x = 0 m and y = 1000 m for a homogeneous half-space
of 100 Ωm. The green curve corresponds to data from receiver location Rx12 (x = 500
m, y = 1000 m) of the LOTEM model B (Figure 3.12).
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Figure 4.2.: Frequency domain data (imaginary part of the Hz component) of three different
loop source setups. Blue: Homogeneous half-space of 100 Ωm in the central-loop configuration.
Orange: Homogeneous half-space of 100 Ωm in the separate-loop configuration with an offset of
y = 100 m. Green: Rx9 from the 3D TEM model A (see Figure 3.10).
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Figure 4.3.: Single variation RMS errors of three different loop source setups. Displayed are the
RMS errors between time domain transformations with each value in the frequency domain being
solely varied by a modification factor (MF) of 10, 100 and 1000 % and the unmodified (original)
transformation; a) corresponding to the data of the blue curve in Figure 4.2, b) corresponding to
the orange curve in Figure 4.2 and c) corresponding to the green curve in Figure 4.2.
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Figure 4.4.: Frequency domain data (imaginary part of the Ex and Hz component) of three
different dipole source setups. Blue: Hz of a 100 Ωm homogeneous half-space at y = 1000 m
broadside. Orange: Ex of a 100 Ωm homogeneous half-space at y = 1000 m broadside. Green:
Rx12 from the 3D LOTEM model B (see Figure 3.12).
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Figure 4.5.: Single variation RMS errors of three different dipole source setups. Displayed are
the RMS errors between time domain transformations with each value in the frequency domain
being solely varied by a modification factor (MF) of 10, 100 and 1000 % and the unmodified
(original) transformation; a) corresponding to the data of the blue curve in Figure 4.2, b) cor-
responding to the orange curve in Figure 4.2 and c) corresponding to the green curve in Figure
4.2.
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The first observation is that all three data series seem to be “noisy” at frequencies be-
low 10−3 Hz. The blue curve (Hz of the homogeneous half-space) resembles the blue
curve of Figure 4.2 (Hz in the central-loop configuration) but with lower amplitudes of
approximately two orders. Additionally, it contains a sign reversal slightly above 1 MHz.
The imaginary parts of the electric field components Ex (orange and green curve), the
Ex component of the homogeneous half-space comprises three sign reversals (knowingly
ignoring several sign reversals in the noisy region below 10−3 Hz) while the green curve
representing the 3D model only provides one sign reversal. All three data series behave
monotonously increasing between frequencies from ∼ 10−3 to 1 Hz. The data at these fre-
quency ranges and below can possibly be calculated by extrapolation techniques without
losing too much accuracy.

Like for the loop source frequency data, all values from the dipole source data series are
multiplied one after another with Modification Factors of 10, 100 and 1000 % and the
differences to the unmodified FHT result in terms of an RMS error are presented in Figure
4.5 a-c. The colors of figures 4.5 a-c match the colors of the corresponding curves in Figure
4.4.

The RMS errors of the modified Ḣz component behave similar to the loop source Ḣz errors
and individual frequencies below 10−2 Hz have almost no impact on the time domain
result. In contrast, both Ex results of the dipole transmitter study (Figures 4.5 b and
c) show that the influence of low frequency modifications is stronger compared the Hz

results. This can probably be explained by the fact that electrical field components are
divided by iω prior to the actual FHT convolution for switch-on or switch-off modes (see
Chapter 2.4.2).

The results in this chapter suggest that extrapolation techniques for low frequencies and
interpolation techniques for the entire spectrum can assist in obtaining FD data without
the need of computing costly custEM solutions and therefore significantly save overall
computation time. An extrapolation of data on the high frequency end of the spectrum
seems to be unfeasible because all six investigated frequency data sets in Figures 4.2 and
4.4 exhibit an observable curvature within the highest frequency decade in the double-
logarithmic presentation. A reliable prediction of these non-linear structures in terms of
a linear extrapolation to higher frequencies is not possible. Here, a quadratic or cubic
spline extrapolation could be useful. A more profound study of the behavior and different
shapes of FD data at these high frequencies could gain better insights about possible
extrapolation methods.

One task beyond the scope of this thesis is to find out what is causing the “noisy” region
for the dipole source at frequencies below 10−3 Hz which come directly from custEM.

4.2.1. Extrapolation

In the present section, the potential of saving computation time by applying extrap-
olation methods to the low frequency end of the spectrum is investigated. The ex-
trapolation of data below a given cutoff frequency is computed by applying the class
scipy.interpolate.interp1d of the open-source scientific Python library scipy. Prior to the
extrapolation, the data needs to be transformed to logarithmic space to allow for a linear
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extrapolation. Subsequently, the data is transformed back from logarithmic space and
the FHT is conducted on the extrapolated data set.

Two simple CSEM setups are presented: First, a 100 × 100 m2 inductively coupled loop
source in the central-loop configuration on top of uniform half-space of 100 Ωm. Second,
a 1 km x-directed dipole source on top of uniform half-space of 100 Ωm with a broadside
receiver location at y = 1000 m. Both transmitters are operating at 1 A. The investigated
component is Hz in the frequency domain and Ḣz in the time domain. In each case, only
the imaginary parts of the complex values are discussed.

The complete and “original” (non-extrapolated) frequency data series of the two mentioned
setups calculated by custEM are shown as the blue curves in Figure 4.2 (loop source) and
Figure 4.4 (dipole source), respectively. Both frequency series are increasing linearly
up to approximately 1 kHz for the loop source and approximately 10 Hz for the dipole
source. Figures 4.3a (loop source) and 4.5a (dipole source) provide information about
which individual frequencies have a significant impact on the time domain result and
which do not. A frequency of 1 Hz was chosen for both setups as the cutoff frequency
because near 1 Hz, the presented RMS errors of individual value modifications start to
drop below 1 %. In the following, the data points for frequencies below 1 Hz have been
extrapolated.

Figure 4.6 shows the original and the extrapolated frequency domain data of both pre-
sented setups. The loop source data is depicted in green and the dipole source data in
orange. Here, only the frequencies of interest below 1 Hz are shown, because the com-
pared data sets are identical for higher frequencies. The relative differences in percent
between the original and the extrapolated data sets are shown in the lower parts of each
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Figure 4.6.: Original and the extrapolated frequency domain data (imaginary part of the Hz

component) of a loop source and a dipole source setup on top of a homogeneous half-space of
100 Ωm. a) Central-loop transmitter with an area of 100 × 100 m2 and an injected current of
1 A, b) x-directed dipole source with a length of 1 km and an injected current of 1 A. Only the
frequency data and the relative difference in percent below a certain cutoff frequency of 1 Hz are
displayed.
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Figure 4.7.: Time domain data (Ḣz component) after an FHT of the original and the extrap-
olated data of a loop source and a dipole source setup on top of a homogeneous half-space of
100 Ωm. a) Central-loop transmitter with an area of 100 × 100 m2 and an injected current of 1
A, b) x-directed dipole source with a length of 1 km and an injected current of 1 A.

subfigure. The loop source data in Figure 4.6a has an RMS error of 0.41 % and only the
extrapolation value of the lowest frequency has a relative difference of more than 1 %.
The dipole source data of Figure 4.6b again shows the original “noisy” area at the lower
frequency end and in comparison to that, a smooth extrapolated data series. Accordingly,
the overall RMS error is much greater with 43.72 % due to the noisy region.

Note that the starting frequency of the loop source setup is two orders greater than the
dipole setup which leads to an extrapolated dipole source data set of two more decades.
The reason behind is that the target time range of the dipole source forward modeling
starts from two decades later in the time domain. Instead of tmin = 10−6 s for the loop
source modeling, the dipole source modeling starts at tmin = 10−4 s which immediately
influences the minimum frequency to be calculated.

In the next step, the extrapolated data is transformed into the time domain by TD-
custEM’s default FHT and the results are compared to the FHT transformed results of
the non-extrapolated data sets. Figures 4.7a and 4.7b show these comparisons for both
setups. The target time range for the loop source setup is 10−6 to 10−2 s and for the
dipole source 10−4 to 1 s. The RMS errors of both comparisons between the original and
the extrapolated data are below 1 % which is a decent result (0.83 % for the loop source
data and 0.57 % for the dipole source data).

The relative difference plots of Figure 4.7 indicate that the largest deviations between the
original and the extrapolated data occur at late times, which reflects the fact that the
extrapolations have been made on the low frequency end of the spectrum. This means
that an extrapolation of the low frequencies in the FD do have an impact in the time
domain result at late times. The question now is: Which time domain result is more
trustworthy, the result of the original FD data or the result of the extrapolated data?
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Figure 4.8.: Comparison of late time extrapolated and original data (Ḣz component) with the
analytic solution of a loop source and a dipole source setup on top of a homogeneous half-space
of 100 Ωm. a) Central-loop transmitter with an area of 100 × 100 m2 and an injected current
of 1 A, b) x-directed dipole source with a length of 1 km and an injected current of 1 A.

To answer this question, the analytic solutions for the given setups (Equations 3.3 for the
loop source and Equation 3.4 for the dipole source) can be consulted. Figure 4.8 shows
the relative differences between the original transformed data and the analytic solution
as well as the relative differences between the extrapolated transformed data and the
analytic solution only for the respective last decade of the loop and the dipole source
CSEM setup.

The RMS errors mentioned in the legends of Figure 4.8a and 4.8b indicate that the original
FD data is to be preferred. For the loop source setup the RMS error of the original data set
is 1.17 % and for the extrapolated data set 2.08 %. For the dipole source setup the RMS
error of the original data set is 0.13 % and for the extrapolated data set 1.08 %. But the
shape of the curves in both subfigures show that the RMS errors of both extrapolated-vs-
analytic curves are predominantly caused by outliers while the both original-vs-analytic
curves are much smoother and their RMS errors are more conclusive.

At this stage, a conclusion about the quality of the two examined extrapolated data sets
in comparison to the original data is difficult to make. But taking into account that
applying an extrapolation can save significant amounts of runtime, it is worth to pursue
this approach. To get quantitative numbers: for the loop source setup, 38 of 130 frequency
samples have been obtained by extrapolation which would have decreased the TDcustEM
total runtime by 29.2 %. For the dipole setup the total runtime would have been decreased
by 44.6 %.

The present investigation of applying extrapolation techniques is of course just a simple
approach to find out if there are possible ways to save computation time without losing too
much accuracy. Just two CSEM cases have been studied without testing more complex
subsurface models or greater transmitter/receiver offsets, etc. The larger the receiver
distance and the longer the modeling times are, the more important the low frequency
values of the FD data sets get. Further investigations on the shapes of the FD curves
for low frequencies are necessary to improve the reliability of the extrapolated data. But
if the FD data is sufficiently smooth for low (or high) frequencies, obtaining data by
extrapolation has a significant potential of saving computation times.
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Figure 4.9: Exemplary sketch of
two cubic spline interpolations on
a data set G(f) (black crosses) that
provides a sign reversal.

4.2.2. Interpolation

The second approach on speeding up computational runtime is a partly interpolation
of the frequency data set. Again, the class scipy.interpolate.interp1d of the open-source
scientific Python library scipy is utilized for cubic spline interpolations within this chapter.
As well as for the extrapolation, the data needs to be transformed to logarithmic space
prior to a spline interpolation. After the interpolation, the data is transformed back from
logarithmic space and the FHT is conducted on the interpolated data set.

Data sets that contain one or more sign reversals are in the need of a special treatment,
i.e. each block of the same sign needs its own spline interpolation. Figure 4.9 shows a
sketch of two cubic spline interpolations for an exemplary data set G(f) that contains
one sign reversal. The green curve denotes an interpolation on the first data block with
a positive sign and the purple curve a second interpolation on the data with a negative
sign. When trying to conduct a cubic spline interpolation on the entire data set at once,
the interpolated values in the vicinity of the sign reversal would change significantly.

Prior to any interpolation of CSEM FD data, it is therefore important to know if the
considered data set provides sign reversals and where they occur. Approaches on how
to find this out for a given FD data set is not in the scope of this chapter. For the
present case, the positions of possible sign reversals are assumed to be known. The
subject of interest instead is: How many original data points can be omitted at the stage
of calculation and later be obtained by interpolation without losing accuracy in the time
domain solution? In the following, two frequency domain data sets are investigated using
cubic spline interpolations. Note that only the imaginary part of the vertical magnetic
component Hz is displayed and discussed.

Firstly, every 2nd value of the original FD data set was omitted and replaced by an
interpolated value. In the following steps, the same was done with every 4th and 6th
value of the original FD data set. This would infer a reduction of approximately 50,
25 and 16 % respectively of the total number of necessary frequencies. The according
calculations are abbreviated E2, E4 and E6 for replacing every 2nd, 4th and 6th value in
an FD data set.

To prevent inaccuracies due to an unintentional “interpolation” of the first or last frequency
(which would actually be an extrapolation), all maximum and minimum frequency values
have been safeguarded against the interpolation. Then, an FHT of the interpolated data
sets was conducted and the time domain results were compared to the transformed results
of the original data sets.
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Figure 4.10.: Comparison of interpolated (E2) and original data for a central-loop TEM setup
in the a) frequency and b) time domain. In the frequency domain the imaginary part of Hz is
displayed, in the time domain the impulse response Ḣz after conducting an FHT.

The first investigated set corresponds to the blue curve of Figure 4.2 which belongs to
a central-loop TEM setup above a 100 Ωm uniform half-space and has no sign reversal.
The second investigated data set is that of a separate-loop TEM setup above the same
half-space with an offset of 100 m and corresponds to the orange curve in Figure 4.2. The
second data set contains a sign reversal.

Figure 4.10 shows the frequency domain (a) and the time domain (b) data of the central-
loop TEM interpolation E2, in which every 2nd value of the FD data set was omitted
and replaced by an interpolated value. In the frequency domain, the RMS error between
the interpolated and the original version is 0.07 % which makes the blue curve of the
original data set almost invisible. The largest portions of this error is coming from values
at frequencies below 10−2 Hz and from frequencies between 106 and 107 Hz where the
FD curve is slightly oscillating, as can be seen in the relative difference plot. The spline
interpolation seems to work very well in the immediate vicinity of the global maximum
where the relative differences are below 0.01 %.

The according time domain results of the original and interpolated FD data sets are
displayed on the right-hand side of Figure 4.10 with an RMS error of 0.41 %. This result
is already satisfying so the calculations of the interpolations E4 and E6 are not further
investigated.

The interpolation of the second investigated data set (the separate-loop receiver TEM
configuration) is more challenging due to the sign reversal in the imaginary part of the Hz

component. Figure 4.11 shows the according frequency domain (left-hand side) and time
domain (right-hand side) data of investigations E2, E4 and E6 (from top to bottom). The
RMS values in the frequency domain are 21.50 (E2), 4.28 (E4) and 2.24 % (E6) already
indicating that the E2 approach is probably not working well and that the E4 an E6
approaches might provide satisfying results. In the FD, the largest portions of the RMS
come from very low frequencies, where the original data set is a little noisy, and from the
vicinity of the sign reversal. Regarding the E2 approach, the cubic spline interpolation is
obviously not able to reconstruct the original values to a satisfying degree.
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Figure 4.11.: Comparison of interpolated (E2, E4 and E6) and original data for a separate-
loop TEM setup with a receiver offset of 100 m in the frequency domain (left-hand sides) and
in the time domain (right-hand sides). The sign reversal in the frequency domain is highlighted
by using different colors. Red circles denote positive values, black circles denote negative values.
In the frequency domain, the imaginary part of Hz is displayed, in the time domain the impulse
response Ḣz after conducting an FHT is shown.
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Correspondingly, the transformed time domain result of the E2 approach (Figure 4.11b)
has an RMS error of 16.64 % compared to the original transformed data set. The devia-
tions between both time domain series can easily be seen at intermediate times. The E4
approach closes with a time domain RMS error of 1.55 % which can neither be seen as
a satisfactory outcome nor can it be treated as failed. Instead, it should be treated as
somewhere in the gray zone between both evaluations. With an RMS error of 0.19 % in
the time domain, the E6 approach can finally be called successful.

Conclusively, an interpolation of every 2nd value in the frequency domain failed, a rating
of the E4 approach is difficult but may be called effective and the E6 approach was
successful regarding the investigated FD data set.

Applying an approach like the aforementioned on a data set with one or more sign re-
versals, i.e. stepping through the data and picking every n-th value for an interpolation,
can be successful or it can fail in terms of an subsequent time domain transformation.
Sometimes it’s just a matter of luck if an important sample near a sign reversal is hit or
missed by this procedure.

If the shape of the frequency domain data set and the number of enclosed sign reversals is
unknown to a transformation algorithm, extrapolation and interpolation techniques might
fail. A more sophisticated approach would be to firstly examine the frequency domain
data with a small sampling rate and secondly, upon that, determine frequency ranges that
can probably be obtained by interpolation / extrapolation purely on evaluating the coarse
and approximated shape of frequency domain data. In other words: In frequency areas
where the data series behaves smoothly (i.e. a straight line in the double logarithmic
space), a smaller sampling rate would be sufficient. But in areas with strong curvature or
a sign reversal, calculating the default 10 samples per decade is inevitable.

Therefore, it is impossible to conclude that a particular amount of frequencies per decade is
generally sufficient for a CSEM 3D forward modeling using a convolutional transformation
from frequency to time domain.

4.3. Precise Receiver Positioning

In CSEM field surveys, the precision and reliability of the recording instruments are
fundamental to obtain trustworthy results. Another maybe not less important issue is the
accuracy of the receiver location with respect to the transmitter location. What are the
effects of small deviations of these transmitter/receiver distances on the recorded signals?
This question is going to be answered in this chapter.

The focus will be on common TEM central and separate-loop constellations with trans-
mitter/receiver offsets of not more than 100 m and a squared inductively coupled loop
transmitter with an area of 100 × 100 m2 and an injected current of 1 A. The investi-
gated subsurface is a homogeneous half-space of 10 Ωm. With rising distances between the
transmitter and the receiver, like for a typical LOTEM setup with offsets of several km,
the effects of small deviations of the receiver location can be more and more neglected.
Therefore, long-offset TEM modelings are not included in this study.

In the following, the transmitter locations are assumed to be fixed and the receiver lo-
cations are slighty varied in horizontal directions. Two typical TEM receiver positions
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a) Central-Loop Rx Variation b) Separate-Loop Rx Variation
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Figure 4.12.: Variation of the receiver position for a) a central-loop setup with the receiver
located in the center of the transmitter at x = 0 m, y = 0 m and b) a separate-loop setup with a
receiver location of x = 0 m, y = 100 m. The white dots denote the reference positions for each
setup, the purple dots denote the investigated displacements.

are considered: A central-loop setup (x = 0 m, y = 0 m) and a separate-loop receiver
(x = 0 m, y = 100 m). The investigated components are the vertical magnetic compo-
nent Ḃz and the horizontal magnetic component which is facing into the same direction
like the transmitter/receiver offset, in the present case, the y-direction (Ḃy). The third
magnetic component Ḃx is disregarded because it is supposed to be zero when modeling
loop sources in the present setup on a uniform half-space or on 1D layered subsurfaces.

Figure 4.12 illustrates the modeled deviations from the receiver location for a) a central-
loop receiver position in the center of the transmitter and b) a separate-loop receiver
position with an offset of 100 m. For the central-loop setup, it is sufficient to investigate
only one direction because the electromagnetic fields are expected to have a radial sym-
metry around the center. The modeled deviations in y-direction are y = 0.5, 1, 2, and
4 m.

At the separate-loop receiver position, the deviations are modeled in positive and negative
x- and y-directions, again with offsets of 0.5, 1, 2 and 4 m in all directions. Due to sym-
metry reasons, the results of the positive and negative x-directed deviations are expected
to be equal. Hence, the displacements into the negative x-direction are not modeled.

The results of displacing the receiver position in the central-loop setup for the components
Ḃy and Ḃz are shown in Figure 4.13. The horizontal Ḃy component is supposed to be
zero at the reference location (x = 0 m , y = 0 m) for uniform or layered half-spaces and
no reference transient or relative difference can be computed. The results of Figure 4.13a
indicate that for recording a horizontal magnetic component with a central-loop setup
in case of an non 1D layered or homogeneous half-space, a precise receiver positioning is
tremendously important. Even small displacements of 0.5 m generate horizontal magnetic
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Figure 4.13.: Ḃy and Ḃz components of small receiver displacements in the central-loop con-
figuration. For the horizontal Ḃy component, no reference transient and therefore no relative
differences are available.

components that are purely based on the geometry of the magnetic dipole field and can
not exclusively be contributed to resistivity contrasts in the subsurface. Moreover, the
signal difference of the horizontal component between the 0.5 m dislocation and the 4 m
dislocation is almost of the order of 1 magnitude. Interestingly, the time channel of the
sign reversals is the same for all simulated receiver dislocations.

The importance of these consequences is illustrated by the following comparison. As
presented later in Chapter 5.1.1, vertical and horizontal Ḃ-field components have been
measured during a field a campaign on a very open and flat area in Ethiopia. During the
field work, the positions of the central-loop receivers and the corners of the 100 × 100 m2

transmitter loop have been determined using a common handheld GPS receiver with an
estimated lateral accuracy of a few meters. Figure 4.14 shows synthetic data for a 0.3 Ωm
uniform half-space (which - in a rough estimate - was the case in survey area) and synthetic
Ḃy data modeling different receiver dislocations of 0.5, 1 and 2 m together with field data
of the horizontal component of one exemplary survey station.

The measured field data resembles the modeled dislocation data to a striking degree. A
false assumption that the receiver is perfectly positioned might therefore lead to misin-
terpretations of the data because it is uncertain what causes the recorded signals. This
example emphasizes the importance of precise receiver positioning when horizontal com-
ponents are being measured. In the displayed case, the shape of the recorded signal is
probably due to a receiver dislocation.

In comparison to Figure 4.13a, the sign reversal occurs several time channels later which is
attributed to the lower background resistivity of 0.3 Ωm in the synthetic results of Figure
4.14.

Figure 4.13b shows the corresponding displacement results for the Ḃz component. Here,
a precise positioning of the receiver seems less strict than for the horizontal component.
A displacement of 0.5 m yields a transient with an RMS error of 0.02 % with respect to
the reference station in the exact center of the transmitter loop. Even a displacement of
1 or 2 m can be neglected with RMS errors of 0.06 and 0.25 %. A receiver displacement
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Direction Rx Coordinate [m] Ḃy [%] Ḃz [%]

+y 100.5 6.71 5.26
101 13.2 10.5
102 25.7 20.7
104 48.3 40.3

-y 99.5 6.90 5.32
99 14.0 10.7
98 28.8 21.7
96 60.8 44.3

+x 0.5 0.02 0.01
1 0.05 0.05
2 0.15 0.19
4 0.53 0.78

Table 4.1.: Maximum relative differences (Ḃy and Ḃz) in percent for selected receiver location
displacements of a separate-loop TEM setup (see Figure 4.12b). The reference receiver location
is x = 0 m and y = 100 m. Due to symmetry aspects, the negative x direction has been omitted.

of 4 m yields an RMS of 1.01 % which means that a significant deviation from the desired
signal can be expected.

The corresponding figures of the separate-loop calculations are not displayed because there
are rarely any visible differences between the computed displacement transients except
near the sign reversals. The plots of the relative differences with respect to the transient of
the reference location are only shifted (similar to the relative differences in Figure 4.13b)
and are also omitted.

Instead, the maximum relative differences in percent for the Ḃy and Ḃz component be-
tween each calculated displacement transient and the reference transient are given in Table
4.1. For the calculation of these maximum differences, the values next to a sign reversal
have been ignored. Due to the sign reversals in all of the separate-loop transients, no
RMS errors are considered as a tool of evaluation.

1e-04 1e-03 1e-02 1e-01
Time (s)

1e-13

1e-11

1e-09

1e-07

1e-05

1e-03

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

 HH with 0.3 m vs CB P1-04  | Central Loop | By

Dislocation 0.5 m
Dislocation 1 m
Dislocation 2 m
CB P1-04

Figure 4.14: Comparison of syn-
thetic Ḃy data of a homogeneous
half-space of 0.3 Ωm modeling dif-
ferent receiver dislocations of 0.5,
1 and 2 m and exemplary Ḃy field
data.
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Firstly, the results in Table 4.1 show a huge discrepancy between displacing a separate-loop
receiver into the direction of the transmitter/receiver offset (y-direction) and displacing
it into the perpendicular direction (x-direction). That difference is of approximately two
orders. Secondly, the results indicate that a displacement in the positive y direction (i.e.
away from the transmitter) yields a smaller misfit than a displacement into the negative
y-direction (i.e. to the transmitter). A final result from Table 4.1 is that receivers of
the vertical magnetic component Ḃz are more sensitive to x-directed dislocations and less
sensitive to y-directed dislocations than the horizontal Ḃy component.

4.4. About Domain Sizes

Other factors of the solution’s accuracy are the size of the computational domain and the
imposed boundary conditions. Chosing the domain to be too small can generate erroneous
data at late times. Choosing the mesh to be too coarse around the transmitter and the
receiver results in early time inaccuracies. Moreover, the larger the mesh is, the longer
the computation runtimes will be. Creating a mesh is always a tradeoff between solution
accuracy and runtime.

During the calculations for Chapter 3 and 4, two things turned out regarding the dis-
cretization of transmitters and receivers. For transmitters, an average segmentation length
of 10 m per segment is sufficient (i.e. subdivide a 1 km dipole source in 100 segments with
10 m per segment). For the receiver discretization lengths, values of 1 to 10 m for LOTEM
setups (dipole sources) and 0.1 to 1 m for TEM (loop sources) on average seemed to be
appropriate. Receiver discretization lengths define the minimum edge length of tetrahedra
adjacent to the receiver location.

As mentioned in Chapter 3.1, custEM provides a technique to extent the primary com-
putation domain by a so-called bigger world. This technique simply wraps a secondary,
much coarser cube around the primary domain increasing the size of the computation
domain by for example the factor 10 or 100 without adding significantly more cells to the
mesh. This boundary technique is also known as a tetrahedron boundary. The cell sizes of
this extension are of course much larger than the cell sizes of the primary mesh. Typical
primary mesh dimensions12 for TEM setups are a few kilometers, for LOTEM setups the
primary mesh can have a few tens of kilometers. For example, wrapping a secondary mesh
with a factor of 100 around a primary mesh with a dimension of 10 km would yield total
domain extents of 1000 km × 1000 km × 1000 km = 109 km3. In the following, wrapping
a secondary mesh around the primary is defined as multiplying the primary mesh extents
with an Extension Factor (EF). An EF of 1 denotes no extension.

Table 4.2 shows the total number of cells used for the conducted calculations in thou-
sands. The 1 km sized primary mesh without a bigger world extension is made of ∼ 17 k
tetrahedra. Applying an EF of 10 to this primary mesh increases the total mesh size to
10 km × 10 km × 10 km but the total number of cells only to ∼ 24 k. An extension by
the factor 100 yields only ∼ 25 k cells.

12A dimension of 1 km means that the entire simulation box has extents of 1000 m × 1000 m × 1000 m
= 1 km3.
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EF 1 km Dim. 2 km Dim. 5 km Dim. 10 km Dim.

1 (no extension) 17 k 18 k 21 k 28 k
10 24 k 25 k 26 k 37 k
100 25 k 27 k 28 k 40 k

Table 4.2.: Total number of cells per mesh for differently sized primary uniform half-space
meshes and extension factors.

In this section, the solution accuracy of different half-space mesh sizes and secondary mesh
extensions are compared against an analytic solution (Equation 3.3). The scenario is a
central-loop TEM configuration on top of a 100 Ωm uniform half-space and the transmitter
is a 100 × 100 m2 loop source with 1 A. The investigated component is Ḃz. The modeled
time range is from 10−6 to 10−1 s which is a very late time regarding the chosen TEM
setup. But to investigate possible boundary effects, this late time seems to be reasonable.
The performance of Zero-Dirichlet (ZD) boundary conditions are investigated as well
as the performance of the code when omitting the boundary conditions entirely. The
following results and implications are also valid for dipole source transmitters in LOTEM
setups by simply multiplying the dimensions of the primary mesh by a factor of 10.

Figure 4.15 shows the relative differences between the modeled transient data and the
according analytic solution. Four different primary mesh dimensions from 1, 2, 5 and 10
km have been calculated with EF of 1, 10 and 100. Additional to the relative difference
plots, each subfigure shows the according RMS error between the modeled transient and
the analytic solution in each subfigure’s legend. The left-hand side of Figure 4.15 shows
the results without imposing any boundary condition and on the right-hand side the
results for imposing ZD boundary conditions are shown.

There seems to be no significant difference between the ZD boundary conditions and
omitting the boundary conditions entirely. Actually, when comparing all RMS errors of
the left and the right side of Figure 4.15, the results of imposing ZD boundary conditions
are slighty higher. EFs of 1 yield inaccurate results at late times in all cases. This implies
that a mesh extension by the factor 10 is always recommended. Although the times after
10−2 s are usually too late and signals are too weak for the given TEM setup. A primary
mesh size of 2 km × 2 km × 2 km with an EF of 10 seems to be sufficient for the given
central-loop setup. An EF of 100 is only useful for the smallest primary mesh dimension
of 1 km and does not improve the solution accuracy in the other cases.

The persistent relative differences of more than 1 % at early times before 10−5 s in all
the results of Figure 4.15 are probably related to the coarseness of the mesh around the
transmitter. The transmitter segment length was set to 10 m. However, these early
times and the corresponding shallow penetration depths are usually not of interest when
conducting TEM field surveys with a 100 × 100 m2 transmitter loop.

4.5. About Resistivity Contrasts

Within 3D CSEM, modeling huge resistivity contrasts in the subsurface can be numeri-
cally challenging. To test the capabilities of TDcustEM regarding the range of resitivity
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Figure 4.15.: Relative differences in percent between Ḃz TEM transients of differently sized
primary meshes / Extension Factors and the according analytic solution. Primary domain di-
mensions are from top to bottom: 1, 2, 5 and 10 km. The Extension Factors are 1, 10 and 100 in
each subfigure. On the left-hand side, the forward calculations without boundary conditions are
shown and on the right-hand side, the results for imposing Zero-Dirichlet boundary conditions
are displayed. The black dashed lines denote the 1 % relative difference threshold.
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Figure 4.16.: Transient data and relative differences between TDcustEM and EMUPLUS for
modeling resistivity contrasts from 1:100 to 1:10. The transmitter is a 100 × 100 m2 loop source
and the receivers are positioned in a central-loop location (a) and a separate-loop location (b)
with an offset of 100 m.

contrasts that the code can handle, a synthetic study simulating a central- and separate-
loop TEM setup has been performed. The transmitter again was a 100 × 100 m2 loop
source with 1 A and two Ḃz receiver position are investigated. One in the center of the
transmitter loop and one in the separate-loop configuration with an offset of 100 m. The
subsurface was a 2-layer case where the top layer had a resistivity of 100 Ωm and the
resistivity of the second layer had variable resistivities of 10, 5, 2 and 1 Ωm. The modeled
ratios are therefore 1:10, 1:20, 1:50 and 1:100. The thickness of the first layer was fixed
at 50 m.

The TDcustEM results are compared to the semi-analytic results computed by EMU-
PLUS. Figure 4.16 shows the transients of the modeled resistivity contrasts for both
receiver locations. The TDcustEM transients are marked as colored dots and the corre-
sponding EMUPLUS data as black solid lines. Underneath the transients, the relative
difference between both results are shown in percent. The RMS errors are given in the
legends of Figure 4.16.

Regarding the central-loop simulation (Figure 4.16a), RMS errors < 2 % indicate that
resistivity contrasts of 1:20 and below are easily handeled by TDcustEM. A contrast of
1:50 yields an RMS error of ∼ 3 % which is not satisfying, yet tolerable. However a
contrast of 1:100 yields an RMS error of > 4 % which is a rather poor outcome. For
the data points at intermediate times from 30 to 100 µs, the relative difference between
TDcustEM and EMUPLUS is more than 10 %.

For the separate-loop calculations (Figure 4.16b), the RMS errors are even greater than for
the central-loop calculations which can be explained for the most parts by the geometrical
sign reversal. But beside the sign reversal, the relative differences of the contrasts 1:50 and
1:100 are again > 10 % for some data points at intermediate times. One reason behind
these relatively large differences might be the fact that due to the chosen geometry of the
subsurface and the transmitter/receiver offset in the separate-loop setup, the effects of
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the very conductive second layer appear almost immediately after the sign reversal in the
transients.

Obviously, there is need of improvement regarding the calculations of huge resistivity
contrasts. In general, the mesh resolution should be high in conductive regions and can
be lower in resistive regions. Maybe a higher mesh resolution should be provided to the
boundaries of large resistivity contrasts.

.



CHAPTER 5

Application - CSEM Field Data from Ethiopia

The practical part of the present thesis consisted of two field surveys in Eastern Africa
where several sedimentary basins have been investigated with two-dimensional transient
electromagnetics. Following this introduction, the survey details, the survey areas and
1D inversion results are shown and discussed. Subsequently, the recorded data was sub-
ject to laterally and spatially constrained inversion using the software AarhusInv from
the Hydrogeophysics Group of Aarhus, Denmark. After that, to assess the detectability
of possible bedrock layers underneath the investigated basins, an extensive 3D CSEM
forward modeling study of synthetic data using TDcustEM has been performed.

5.1. Survey Areas and 1D Inversion Results

In the framework of the Collaborative Research Centre 806 (CRC 806) Our way to Eu-
rope13, two multidimensional CSEM surveys have been conducted on sedimentary basins
in southern and central Ethiopia. Combining geoscientific and archeological methods, the
CRC 806 is designed to reconstruct the passageway of Modern Man from eastern Africa
to central Europe (“Out of africa” theory) covering a period of the last 190,000 years.

Climate and environment have been the driving factors for the migration times and routes
of Homo sapiens. Hence, the reconstruction of the paleoclimate is a crucial factor in
understanding prehistoric migration and settlements in the arid regions of North-East
Africa.

The role of geophysics within this project is to assist with the identification and defi-
nition of possible paleoenvironmental archives such as sedimentary deposits. Exploring
the basement morphology and the sedimentary structure is a prerequisite to derive suit-
able borehole locations for core drillings. The geological and geochemical analysis of these
sample cores allows for a subsequent reconstruction of the paleoclimate. The East African
Rift Valley (EARV) and the Ethiopian Highlands are suitable places that provide several

13http://www.sfb806.uni-koeln.de/
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Bisare River

Dendi Lakes

Chew Bahir

Figure 5.1.: Map of Ethiopia and the three survey areas Chew Bahir, Bisare River and the
Dendi Lakes located inside or close by the main trench of the East African Rift Valley (Modified
version of http://commons.wikimedia.org/wiki/File:Ethiopia.png. License: public domain).

of these sedimentary basins. The obtained geophysical data is analysed by conventional
1D as well as laterally and spatially constrained inversion techniques.

The first survey took place in November and December, 2014, with the destination Chew
Bahir, a saline mudflat in southern Ethiopia near the border to Kenya. In February
and March, 2015, the second survey was conducted with two target locations: Bisare
River and the Dendi Lakes in southern and central Ethiopia. While Chew Bahir is
a purely tectonically-formed basin, Bisare River and the Dendi Lakes are volcanically-
formed basins.

Figure 5.1 shows a map of Ethiopia and the three survey locations inside or near to the
main trench of the EARV. On each location, two-dimensional transient electromagnetic
measurements have been conducted. All TEM measurements have been performed in
the central loop configuration using a Zonge International system consisting of an NT-20
transmitter unit and an GDP-32II receiver unit. If applicable, TEM/3 induction coils
from Zonge served as receiver loops for measuring the time derivative of the vertical and
one horizontal component of the magnetic field. Apart from that, single loop wires served
as receivers.

The Zonge NT-20 transmitter operates in two different modes that address different inves-
tigation depths. The NanoTEM (NT) mode is working with relatively short acquisition
times and shallow investigation depths. In contrast, the ZeroTEM (ZT) mode uses higher
induced currents, longer acquisition times and facilitates greater investigation depths.
The TEM/3 induction coils have a ferrite core, an own pre-amplifier and effective receiver
areas of 10,000 m2. They are only applicable for ZT measurements due to a quite long
antenna delay of 15 µs (Zonge, 2002).
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In a first step, the recorded Ḃz data were inverted individually by means of 1D interpre-
tations, utilizing different inversion techniques such as Occam and Marquardt. The 1D
inversions were conducted using the Software EMUPLUS. Additionally, equivalent models
are shown together with the inversion results. When using error weighted data, several
models can explain the data likewise within the error bounds. Scholl (2005) implemented
an approach into EMUPLUS that creates equivalent models using a Monte-Carlo concept
by perturbating the model parameters randomly.

For details on data processing steps and the theoretical background of the applied inversion
techniques like Occam or Marquardt, see Yogeshwar (2014). Along with the 1D inversion
results, ρa,lt transformations are shown which qualitatively represent the distribution of
the apparent resistivity at late times. The transformation after Spies and Frischknecht
(1991) reads:

ρa,lt =
I2/3 µ a4/3

202/3 π1/3 t5/3
·
(
−∂tH lt

z

)−2/3 (5.1)

with a = the equal circular transmitter radius for a rectangular loop transmitter, I = the
injected current and µ = µ0 (the magnetic permeability of free space). According to Spies
(1989), the maximum depth of investigation (doi) for a central loop TEM setup is

δdoi ≈ 0.55

(
IATx
σ ην

)1/5

(5.2)

with the transmitter area ATx, the mean subsurface conductivity σ and the ambient noise
level ην . Typical noise levels after stacking are 0.5 nV/m2 (Spies , 1989). The diffusion
depth, i.e. the depth when a particular layer is detectable for a fixed time t reads: (Ward
and Hohmann, 1991):

δTD =

√
2 t

µ σ
(5.3)

An alternative approach to estimate an effective maximum exploration depth for TEM
soundings depending on (5.3) is given by Meju (1995):

δeff =
δTD
2.3

(5.4)

This equation approximates the maximum depth of investigation much more conservative
than Spies (1989).

Secondly, the recorded TEM data sets were inverted using the software AarhusInv 14 from
the Hydrogeophysics Group of the University of Aarhus, Denmark. Here, all data and
models are inverted as one system, producing layered solutions with laterally smooth
transitions. The models are regularized through lateral constraints that tie interface
depths or thicknesses and resistivities of adjacent layers (Auken and Christiansen, 2004).

When the data is recorded along a single profile, the method is referred to as Laterally
Constrained Inversion (LCI). When deploying a 2D surface grid of measurements, the
method is called Spatially Constrained Inversion, or SCI (Viezzoli et al., 2008). According

14Formerly known and distributed under the name em1dinv.
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Figure 5.2.: Survey area and location of TEM profiles at the western border of Chew Bahir.
Profiles P2 and P3 have only been measured in parts (background image: Google Earth).

to the Hydrogeophysics Group of Aarhus, these inversion techniques are well suited for
data recorded within sedimentary environments.

The AarhusInv software writes out a summary file containing a DOI range for every sta-
tion which is calculated from the model parameter sensitivities (Christiansen and Auken,
2012). The major limit of these DOI ranges is plotted together with the LCI/SCI results
when constrained inversion results are shown in this chapter.

5.1.1. Chew Bahir

The Chew Bahir (amharic: “salty lake”, E 36.84, N 4.684) basin is a 30 × 70 km2 saline
mudflat that only episodically fills to a shallow lake during rainy season in spring and
summer. Chew Bahir is located in the Broadly Rifted Zone between the mountains of the
Hammar Range in the west and the Teltele Plateau in the east. According to airborne
gravity and seismic reflection data, the thickness of its sedimentary deposits is assumed
to be of up to 5 km (Foerster et al., 2012) in the center. Therefore, the basin potentially
provides sedimentary archives that extend far beyond the Quaternary.

Along 6 profiles, a total of 60 two-dimensional TEM soundings were taken. Five profiles
were east-west oriented, only profile P4 was north-south oriented, see Figure 5.2. The
station distance was 100 m for all profiles. The transmitter consisted of a 100 x 100 m2

loop and two Zonge TEM/3 coils served as receivers for the vertical and for one horizontal
component of the time derivative of the secondary magnetic field. The TEM devices were
only operated in ZeroTEM mode to allow for an investigation as deep as possible.

For every station, the horizontal component was measured in east-west direction, perpen-
dicular to the nearby western mountain ridges of the Hammar Range. This alignment
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Figure 5.3.: Listing of stations per profile of the Chew Bahir survey. Only the mentioned
stations with a green background have been measured. Stations 1 to 6 of profile P3 were operated
with a transmitter size of 50 × 50 m2, instead of the default 100 × 100 m2. At station P1-16,
two deep ICDP-HSPDP drillings have been conducted.

was chosen to study possible 2D effects of either the mountains and their underlying
crystalline bedrock or alluvial fans intruding from the basins western boundaries.

Shortly before the TEM measurements at Chew Bahir, two deep drillings were conducted
in the framework of the ICDP-HSPDP (International Continental scientific Drilling Pro-
gram - Hominin Sites and Paleolakes Drilling Project) in collaboration with colleagues of
the CRC 806. The drillings reached depths of approximately 280 m each and the cores
bases could be dated back 620,000 years (Prof. Dr. Frank Schäbitz, personal communi-
cation, Aug. 21st, 2019). The junction of profiles P1 and P4, TEM sounding P1-16, is
located at the position of these drillings.

Figure 5.3 shows an overview of the recorded stations per profile. Only the actually
mentioned stations (with green backgrounds) have been recorded. The numbering starts
either in the west or in the north (only profile P4). Profiles P1, P4, P5 and P6 have been
measured station-to-station, i.e. the center positions of the 100 × 100 m2 transmitter
loops are in a distance of 100 m.

Profiles P2 and P3 have been measured only in parts. The six western-most stations of
P2 have been measured station-to-station, after that, only every 6th station was recorded.
Due to increasing vegetation and rough terrain, the western-most six stations of profile
P3 have been operated using a smaller transmitter size of 50 × 50 m2. Stations 7, 8 and
9 have been operated regularly and east of that only every second station was recorded.
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Figure 5.4: ZeroTEM transient (Ḃz) and
noise floor of station P1-16 at Chew Bahir.
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Figure 5.5.: 1D inversion results and ρa,lt conversions (data and fittings) for selected soundings
08, 12 and 16 of profile P1 at Chew Bahir.

On profiles P4, P5 and P6, the fourth stations were omitted because they coincided with
measurements already taken on other profiles. Profile P5 was positioned 100 m north of
profile P1 and profile P6 100 m south of P1. Missing station numbers at the start of
profile P1 and P2 in Figure 5.3 indicate that these stations were planned in advance but
their realization was skipped due to vegetation or rough terrain.

Exemplarily for the collected Ḃz data set at Chew Bahir, Figure 5.4 shows a ZT transient
of station P1-16 along with a noise measurement of the same location. The noise floor
was quite low with values around 10−10 V/Am2 and even lower for late times.

1D inversion results and ρa,lt conversions of selected stations 08, 12 and 16 of profile P1
are shown in Figure 5.5. In purple and green, the Occam R1 and Occam R2 inversion
results are shown, the black line marks the results of the Marquardt inversions. These are
visually accompanied in gray by results of equivalent models. Both, the Occam and the
Marquardt inversion results indicate a very conductive subsurface with resistivities below
1 Ωm for the most part. The starting model for the Marquardt inversions was a 2-layer
model with a 20 m thick first layer. The resistivity was 1 Ωm for both layers.

The resistivities are increasing only slightly with greater depths, as can be seen from the
Occam results and from the ρa,lt conversions of Figure 5.5. The 1D inversion results of the
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Figure 5.6.: Interpolated and smoothed LCI 2D result of Chew Bahir profile P1. The position
of stations 08, 12 and 16 shown in Figure 5.5 are marked with black arrows for comparison. The
dashed line denotes the DOI provided by the AarhusInv software.

remaining stations of profile P1 as well as the results of the other profiles at Chew Bahir
look similar. Plots of all 1D inversion results from Chew Bahir are shown in Appendix A.

The maximum depth of investigation after Spies (1989), Equation 5.2, yields unreal-
istic values of ∼ 550 m using typical values of the Chew Bahir survey of I = 10 A,
ATx = 10,000 m2, σ = 1 S/m and ην = 0.1 nV/m2. The diffusion depth (5.3) for a very
late time of t = 0.1 s and σ = 1 S/m yields δTD ∼ 400 m. The effective depth of inves-
tigation after Meju (1995), Equation 5.4, yields a depth of ∼ 170 m. The latter seems
to be the most trustworthy estimation taking the low resistivity of the subsurface into
account. This value corresponds approximately to the DOI provided by the LCI result,
which is printed as a dashed line in Figure 5.6.

Figure 5.6 shows an interpolated and smoothed, two-dimensional LCI result of profile P1.
The starting models for the constrained inversion were the same that were used for the
1D Marquardt inversions. The linear 2D interpolation was computed using the interp2d
routine of scipy and for the smoothing, a 2D Gaussian filter was applied. The total profile
length is 1.7 km.

Only slight resistivity contrasts can be seen at depths of 20 to 40 m where the resistivity
is increasing from 0.3 to 0.6 Ωm. This contrast is dipping from west to east but fades
out east of profile meter 1200. To simplify a comparison with Figure 5.5 the locations of
stations 08, 12 and 16 have been marked with black arrows.

Eventually, the recorded data of all profiles from Lake Chew Bahir turned out to be
barely challenging from a scientific point of view. The electrical resistivity of the Earth
underneath lake Chew Bahir lacks conductivity contrasts for the uppermost ∼ 200 m of
sediments and electrical resistivities are very low, mainly between 0.3 and 1 Ωm. These
low resistivities, which probably originate from highly saline contents in the subsurface,
impede great investigation depths.

The first conclusion is that even at the western-most stations of the investigated profiles
that are closest to the mountains, no signature of an underlying bedrock could be found
in the results. The LCI results of the remaining profiles look similar monotonous and are



84 Chapter 5. Application - CSEM Field Data from Ethiopia

A B C D E F

0

1

2

3

4

5

6

7

Gully erosion

Badlands and 
swamp

Figure 5.7.: Survey area and grid of 35 TEM stations at Bisare River. Stations 3 - 7 of profile
F had to be shifted 25 m west due to the gully erosion ridge.

not shown. The second conclusion is that the Occam R1 and R2 inversion results indicate
a slight increase of resistivity with depth for all profiles. But resistivities do not exceed
2 Ωm.

5.1.2. Bisare River

The source area of the Bisare River (E 37.854, N 6.847) is located within the caldera of
the Hobitcha volcano 10 km east of Wolaita Sodo in southern Ethiopia. The volcanically-
formed basin north of Lake Abaya serves as a sedimentary trap due to its natural geomor-
phologic shape. The Hobitcha caldera has an approximate maximum diameter of 6 km
but only a small area in the center of the caldera was flat, unsettled and therefore suitable
for TEM measurements.

At Bisare River, a 2D grid of 35 TEM stations was measured covering an area of ap-
proximately 300 × 500 m2, see Figure 5.7. The station distance was 50 m in both lateral
dimensions. For each sounding, the vertical and one horizontal Ḃ component was recorded
but this time, a 50 × 50 m2 square loop was used as a transmitter. For the receivers,
we utilized a 20 × 20 m2 single square loop for the NT mode and a Zonge TEM/3 coil
for the ZT mode. The direction of the Zonge TEM/3 coil for the horizontal component
again was east-west aligned and therefore quasi perpendicular to the surrounding caldera.
However, the position of the survey area inside the caldera was probably too central to
expect identifiable 2D patterns in the recorded data.

The survey area was restricted to the east by gully erosions with heigths of approximately
5 m. In the west, badlands and swamps from the Bisare River limited the area. Figure 5.7
shows the locations of 35 TEM soundings and their grid positions from A - F in east-west
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Figure 5.8: ZeroTEM transient (Ḃz) and
noise floor of station D3 at Bisare River.

and 0 - 7 in north-south direction. Stations 3 to 7 of profile F needed to be shifted 25 m
to the west because of the erosion ridge. The acquisition time of the receiver was shorter
than in the Chew Bahir survey because the main goal was not only to investigate the
subsurface as deep as possible but also to record as many soundings as possible and cover
a large area.

Figure 5.8 shows exemplary ZeroTEM field data (Ḃz) and a noise measurement of station
D3 from the center of the survey area. The noise level was in the order of 10−10 V/Am2

and below for late times.

1D inversion results and ρa,lt conversions of selected stations D2, D4 and D6 of profile D
are shown in Figure 5.9. The inversion results indicate that, in general, the resistivity is
increasing with depth below the first layer which is usually just a couple of meters thick.
Moreover, the Occam inversion results (green and purple lines) show clear indications
that at depths around 100 m, the resistivity is again increasing which is interpretated
as a possible signature of the crystalline bedrock. This assumption is supported by an
increase of resistivity in the ρa,lt conversions in Figure 5.9.

The starting model for the Marquardt inversions and for the subsequent constrained
inversion was a 4 layer model derived from the Occam inversion results. The thicknesses
of the first three layers in the starting model have been set to 5, 10 and 80 m, the
resistivities of all four layers have been 20, 10, 20 and 100 Ωm, respectively (from top to
bottom).

Qualitatively, the inversion results of the other stations look similar and they are shown
in Appendix A. Only the depth of the resistive bottom layer is slightly changing from
north to south.

On the data set of Bisare River, a spatially constrained inversion was performed that gen-
erates a quasi-3D resistivity distribution of the subsurface. In contrast to the LCI where
the constraints are set between adjacent stations along a single profile, the constraints of
an SCI are horizontally defined between model parameters of neighboring soundings in
two dimensions. The constraints are generated using a Delaunay triangulation which en-
sures an automatic adaption to data density variations. An SCI produces laterally smooth
inversion results with sharp layer boundaries reflecting the geology of sedimentary settings
(Viezzoli et al., 2008).

Figure 5.10 shows linearly-interpolated and Gaussian-smoothed SCI results of two cen-
trally located profiles: the north-south oriented profile D and the east-west oriented profile
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Figure 5.9.: 1D inversion results and ρa,lt conversions (data and fittings) for selected soundings
D2, D4 and D6 of profile D at Bisare River.

4. In both images, the formerly mentioned four layers can clearly be distinguished. The
top layer consists of a ∼ 5 m thick overburden with resistivities of about 10 to 20 Ωm.
The second layer is more conductive with resistivities of 5 to 10 Ωm and a thickness of 10
to 15 m. The third layer has a resistivity of 20 Ωm and reaches down to approximately 80

Figure 5.10.: Interpolated and smoothed SCI results of Bisare River profiles 4 and D. The
position of stations D2, D4 and D6 shown in Figure 5.9 are marked with black arrows for
comparison. The dashed line denotes the DOI provided by the AarhusInv software.
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Figure 5.11.: 3D view of the SCI results from the Bisare River survey. The colors denote the
depths of the boundary layers.

- 100 m. Assumed to be the underlying bedrock, a fourth layer follows with resistivities
of ∼ 100 Ωm. The SCI results of all profiles from the survey at Bisare River are shown
in Appendix B.

To what extents these results can be trusted may be answered by looking at the exploration
depths. The DOI after Meju (1995) yields values of approximately 150 m for tmax = 7 ms,
I = 10 A, and a conservative choice of σ = 0.1 S/m. The DOI from the AarhusInv software
provides values between 100 and 150 m, these DOIs are plotted as black dashed lines
in Figure 5.10. Therefore, a resistive fourth layer is assumed to be existent. If it is the
underlying crystalline bedrock or just a resistive layer - maybe of volcanic origin - remains
to be clarified.

Nevertheless, Figure 5.11 shows an SCI generated 3D view of the three layer boundaries.
The colors denote only depths, not the electrical resistivity. For a more realistic perception
of the result, the depths axis is plotted linearly. The blue layer represents the first layer
boundary at depths of approximately 5 m followd by the second layer boundary in green
denoting depths of about 20 m. In the southern region of the survey area, the boundary
between the third and the fourth layer is 80 to 100 m deep (red). The layer is dipping
towards the north where it is reaching depths of about 150 m. Regardless of the nature
or composition of the resistive bottom layer, sediment thicknesses are therefore assumed
to be of up to 150 m.

5.1.3. Dendi Lakes

The double crater system of the Dendi Lakes is located at Mount Dendi (3270 m asl,
E 38.02, N 8.836) 80 km west of Addis Ababa on the West Central Ethiopian Plateau.
The oval shaped caldera of Mount Dendi has an approximate diameter of 6.5 to 8.5
km and it contains two round lakes in the center of the crater’s depression. Each lake
has a diameter of approximately 2.5 km and nowadays they are connected via a relatively
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Figure 5.12.: Survey area of the Dendi Lakes and profile P1 containing 23 TEM stations.

shallow sill (Wagner et al., 2018). The maximum altitude difference between the caldera’s
peaks and the surface of the lakes is 440 m.

At the shore of the eastern lake, one TEM profile containing 23 TEM stations was
recorded. The length of the profile was 1,150 m and it was aligned approximately east-
west. To the west, the profile was starting near the shore and in the east it was reaching
as close as possible to the beginning slopes of the caldera. Again, 50 × 50 m2 square loops
were deployed as a transmitter. For the receivers, a 20 × 20 m2 square loop was used for
the NT mode and a Zonge TEM/3 coil for the ZT mode. The horizontal component was
measured along the profile direction, perpendicular to the sea shore and the surrounding
caldera in the east.

Figure 5.13 shows an exemplary ZeroTEM transient (Ḃz) and a noise measurement of sta-
tion P1-01. The noise floor can be determined to be around 10−10 V/Am2 for intermediate
times and 10−11 V/Am2 for the very late times.

1e-04 1e-03 1e-02
Time (s)

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

Tr
an

sie
nt

 re
sp

on
se

 (V
/A

m
²)

Dendi | P1-01 | Bz

ZT
ZT Noise

Figure 5.13: ZeroTEM transient (Ḃz) and
noise floor of station P1-01 at the Dendi
Lakes.
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Figure 5.14.: 1D inversion results and ρa,lt conversions (data and fittings) for selected sound-
ings 01, 11 and 21 from Lake Dendi.

1D inversion results and ρa,lt conversions of selected stations 01, 11 and 21 of the Lake
Dendi profile are shown in Figure 5.9. For station P1-01, the Occam R1 and R2 inversion
results insinuate a 4 or a 5 layer subsurface, depending on how trustworthy the increase of
resistivity at a depth below 100 m is assumed to be. This increase of resistivity at depths
below 100 m can be observed at many stations throughout the profile. 1D inversion results
of the remaining stations are shown in Appendix A.

From the images showing the ρa,lt transformations in Figure 5.9, an increase of the ap-
parent resistivity at very late times can be observed, but these values provide large error
bounds. Regarding the conventional 1D inversion results, the existence of a resistive 5th
layer is uncertain. The Monte Carlo inversions of stations 01 and 11 indicate that the
measured data can be explained by a many 5-layer equivalent models that comprise a
resistive 5th layer. However, a resistive 3rd layer with resistivities of up to 100 Ωm and
from depths of minimum 20 m to a maximum of 100 m can clearly be seen in the results.

The starting model of the Marquardt and Monte Carlo inversions was a five layer model
consisting of the following model parameters. The thicknesses have been set to 5, 25, 40
and 40 m and the resistivities to 30, 10, 50, 10 and 50 Ωm, respectively (from top to
bottom).
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Figure 5.15.: Interpolated and smoothed LCI result of profile P1 from the Dendi Lakes. The
position of stations 01, 11 and 21 shown in Figure 5.14 are marked with black arrows for com-
parison. The black dashed line denotes the DOI provided by the AarhusInv software.

On the data set from the Dendi Lakes, a laterally constrained inversion was performed
as well. An interpolated and smoothed image of the LCI result is shown in Figure 5.15
together with the DOI value of the AarhusInv software between 140 and 190 m (black
dashed line). The DOI after Meju (1995) yields values of 170 m with tmax = 5 ms,
I = 10 A and a mean conductivity of 0.05 S/m (= 20 Ωm). As a first approximation,
the exploration depth coincides with the depth of the boundary between the 4th and the
5th layer from the inversion result. Thus, the existence of this resistive bottom layer is
questionable from the viewpoint of the TEM results.

The recorded data of station P1-22 turned out to be defective and could not be used for
an inversion afterwards. Unfortunately, this was not noticed during field work. To include
it nonetheless into the LCI inversion, data for station 22 was generated synthetically by
building average thickness and resistivity values from adjacent stations 21 and 23.

Conclusively, conventional 1D Marquardt and Occam inversions as well as the laterally
and spatially constrained inversion yielded the following results:

• At Chew Bahir, no bedrock or any other sharp resistivity contrast could be detected
with exploration depths of about 150 to 200 m on all profiles. The very conductive,
saline subsurface hindered greater investigation depths. From the ICDP drillings, it
can be concluded that the thickness of the sedimentary deposits underneath station
P1-16 is at least 280 m. On the western shore of Chew Bahir, the TEM results show
minimum sediment thicknesses of 150 - 200 m.

• At Bisare River, a sedimentary layering and a resistive bottom layer with resistivities
of approximately 100 Ωm could probably be detected. The composition of this
resistive layer remains to be clarified. Sediment thicknesses are assumed to be about
100 m in the southern region of the survey area and up to 150 m in the northern
part of the investigated area.

• The survey at Lake Dendi provided no reliable evidence about reaching a resistive
bedrock. Instead, only indications of an increasing resistivity at very late times
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Figure 5.16.: Simplified geological model of the Dendi Lakes after Zinaye (2014). The cross-
section is north-south oriented and cuts through the eastern lake.

could have been detected. Further research is necessary to clarify the existence of
such a layer. At depths between 20 and 100 m, a comparably resistive layer with
resistivities of 100 Ωm was detected in the conventional 1D inversion results as well
as in the constrained inversion results. The sediments at Lake Dendi are assumed
to be at least 150 m thick underneath the survey profile.

Comparing all results of the 1D Marquardt and LCI/SCI inversion results qualitatively
leads to the conclusion that both techniques provide more or less comparable results, at
least for the field data examined in this chapter. A quantitative comparison between both
approaches was not performed.

In the appendices of this thesis, all 1D inversion results and the remaining SCI cross-
sections from Bisare River are shown as well as impressions and pictures of the three field
trips to Ethiopia.

5.2. 1D Modeling of Data from Lake Dendi

In the preceding chapter, the 1D and LCI inversion results of the Ḃz component from
the TEM profile at Lake Dendi produced no reliable evidence of a resistive bedrock layer
in the depth. Only indications of an increasing resistivity at late times could be derived
from the data. The calculated exploration depths were approximately the same than the
depth of the boundary between the 4th and a possible 5th (resistive) layer. Thus, an
interpretation of a possibly detected bedrock at depths around 150 - 200 m is uncertain.

Zinaye (2014) presented a simplified geological model of the Dendi caldera. Figure 5.16
shows a revised version of this model as a north-south oriented cross-section cutting
through the eastern lake. The model consists of the surrounding crater made up from
lava flows and igneous rocks sitting on top of the trachyte and rhyolite bedrock. Inside the
caldera, a layer of sedimentary deposits (yellow area in Figure 5.16) is found. According
to Zinaye (2014), these deposits are made of a 10 m thick overburden of alluvial sediments
followed by pyroclastic deposits (volcanic ashes, lapilli tuff and ignimbrite).

The eastern lake has nowadays a water depth of 56 m and it is located 2836 meters above
sea level (Wagner et al., 2018). In 2012, two corings were carried out from floating plat-
forms on the eastern lake penetrating the lake sediments 10 and 8.5 meters, respectively.
Stiff sediments prevented the drillings from further penetration into the lake sediments
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Layer No Resistivity [Ωm] Thickness [m]

1 20 10
2 10 10
3 100 80
4 10 variable (20 - 200)
5 variable (10 - 10000)

Table 5.1.: 5-layer model of the sedimentary deposits at Lake Dendi. The thickness of layer 4
was varied from 20 to 200 m and the resistivity of layer 5 was varied from 10 to 10,000 Ωm to
assess the detectibility of a resistive bedrock layer.

(Wagner et al., 2018). During the field work, banks of tephra outcropping in the vicinity
of the western end of the TEM profile could be found. However, only sparse information
about the bedrock geology and the soils surrounding the lakes is available (Wagner et al.,
2018).

The deposits layer in the geological cross-section (Figure 5.16) is supposed to have a
thickness of approximately 200 m. From the TEMmeasurements, the depth of the bedrock
was estimated to be ∼ 150 m. To investigate until what depth a possible resistive 5th layer
could have been detected reliably with the utilized TEM configuration, several 1D forward
calculations with the 1D code EMUPLUS have been performed. EMUPLUS was chosen
instead of TDcustEM as a forward routine because 1D modelings using a semi-analytic
solution are much faster and more accurate than calculating a 5-layer model using 3D
finite elements.

The underlying synthetic model for this study is presented in Table 5.1, it has been
derived as an estimation from the TEM LCI results shown in Figure 5.15. For the forward
calculations, the transmitter was a 50× 50 m2 inductively coupled loop and the Ḃz receiver
was placed in the center of the transmitter. All data were normalized to 1 A and to 1 m2.
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Figure 5.17.: Selected 1D forward calculated
transients of varying the 4th layer thickness of
the Lake Dendi sediments model (Table 5.1).
In grey, the transient for the reference model
without a 5th layer is plotted.
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Figure 5.19: Polarity effect of ZT
data from Lake Dendi. After 3 ms,
the transients of both measured re-
ceiver polarities are diverging.

First, the thickness of the fourth layer, and therefore the starting depth of a possible 5th
layer, has been varied from 20 to 200 meters (implying that the depth of the 5th layer
was varied from 120 to 300 m, because the cumulated thickness of the first three layers
is 100 m). The reference model is a 4-layer model without a resistive bedrock, i.e. the
thickness of layer 4 is infinite.

Figure 5.17 shows the modeled transients of selected layer 4 thicknesses of 20 (blue), 60
(orange) and 100 (green) m together with the transient of the reference model (grey line).
The noise level was set to 0.1 nV/Am2 and the treshold for the last “trusted” time point,
i.e. the time until that the raw ZT transient seems to have a clean progression, was set
to 3 ms. Both values have been derived from Figure 5.13. A 4th layer thickness of 20 and
60 m can be visually distinguished in Figure 5.17, for a 4th layer thickness of 100 m it is
difficult.

To assess a possible detectability of a 5th layer depending on the thickness of the 4th
layer quantitatively, Figure 5.18 shows the times when the relative difference between
the forward calculated data of one specific 4th layer thickness and the reference transient
reaches 5 % (black line) and 10 % (red line). Assuming a 10 % difference between the
reference transient and a 4th-layer thickness varied transient is sufficient to detect the
bedrock layer, a 270 m deep 5th layer would still be detectable (equal to a 4th layer
thickness of 170 m). Assuming a 5 % difference to be sufficient, even a 300 m deep 5th
layer would be detectable (equal to a 4th layer thickness of 200 m).

The last “trusted” time point was confirmed by an additional assessment of raw ZT data.
The GDP-32II receiver device is affected by a so called polarity effect which leads to
different receiver signals at very late times when interchanging the polarity of the physical
receiver loop or coil (Yogeshwar , 2014). The ZT data is treated as being trustworthy only
for the time channels when the recorded signals of both polarities are the same (within a
reasonable error margin). The data from time channels where both polarities are diverging
are not used for inversion. Figure 5.19 shows the polarity effect for ZT data from station
P1-01 from the Dendi Lake data set. Not only do the transients start to diverge after 3
ms, but also the error bars start to become significant.

Second, the resistivity of a possible 5th layer is varied to examine a potential detectability.
Forward modelings with 5th layer resistivities of 10 to 10,000 Ωm have been calculated
for 5th layer depths of 150 and 200 m (see Figure 5.20). The black lines for ρ5 = 10 Ωm is
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Figure 5.20.: Variation of the 5th layer resistivity of the Lake Dendi sediments 1D model
(Table 5.1) for a 5th layer depth of a) 150 m and b) 200 m.

equal to a 4-layer model without a resistive 5th layer. Assuming the 4th layer to be only
50 m thick (Figure 5.20a), a detection of the 5th layer seems realistic. For a 4th layer
thickness of 100 m (Figure 5.20b), a discrimination of the transients before 3 ms is hardly
possible.

Conclusively, the 1D forward modelings showed that bedrock depths of 150 m underneath
the deposits, as indicated by the inversion results, should be detectable in the data -
although only marginally. However, detecting a bedrock at depths of 200 m, as proposed
by the simplified geological model in Figure 5.16, is difficult and unlikely when applying
the utilized TEM configuration. The question, if signatures of a resistive 5th layer can be
found in the Ḃz field data from Dendi and if a resistive bedrock layer was detected during
the survey, can not be finally clarified.

5.3. 3D Modeling of Data from Lake Dendi

Two components of the electromagnetic field have been measured during the field cam-
paign at the Dendi Lakes. The vertical Ḃz component and the horizontal Ḃx component,
facing south-east into the profile direction. While in the previous section, a 1D modeling
of the vertical component has been conducted, this section concentrates on the investiga-
tion of Ḃx and Ḃz using 3D forward modelings of the Dendi crater including topography
with TDcustEM.

The applied digital elevation model (DEM) was generated from topographic data of
NASA’s Shuttle Radar Topography Mission (SRTM)15 with a resolution of 1 arc-second
(approximately 30 meters). The 3D model consists of an igneous bedrock, the volcanic
crater, sedimentary deposits and the eastern lake. The dimension of the primary model
is 3.5 × 3.5 × 3.5 km3, a tetrahedron boundary extents the entire domain by a factor of
10. The x-direction of the domain is pointing eastwards, the y-direction towards north.
The depth is defined by the negative z-direction.

15https://www.jpl.nasa.gov/srtm/
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Figure 5.22: 2D Sketch of the dip-
ping subsurface crater rim at the east-
ern Lake Dendi. The angle α is varied
from 20 to 70 degrees simulating differ-
ently inclined slopes. When changing
the angle, the foot of the slope is moved
towards or away from the basin center.

The artificial geometry of the sedimentary basin and the eastern Dendi lake is designed
to resemble the setting of the survey area. The basin and the lake are approximated by
32 segments to form an oval and therefore not shaped perfectly round. Figure 5.21 shows
a clipped view of the 3D mesh where the air layer is masked out and the depth is only
shown until z = -350 m. The z = 0 m level is set to the surface of the lake (blue area in
Figure 5.21), which in reality is 2833 m asl. The water depth of the lake is 50 m. In grey,
the surrounding volcanic crater is displayed and in green the sedimentary basin. For a
clearer visibility of the 3D domain, the tetrahedral mesh of the lake is not shown and the
sedimentary basin is displayed transparent.

The sediment layer thickness was set to 200 m based on the results and information of
the preceding sections. In the present study, the subsurface slope of the basin (the dark
green area in Figure 5.21) is varied. Simulations have been conducted for subsurface slope
angles of 20, 30, 45, and 70 degrees, where 70 degrees denote a steep inclination and 20
degrees a flat and gentle dipping, see Figure 5.22. When changing the slope angle, the
boundary of the sediment basin at the surface remains fixed and the subsurface boundary
at a depth of 200 m is moved towards the center of the basin.

The specific resistivity of the trachyte and rhyolite bedrock and the igneous crater are
assumed to be the same and set to 1000 Ωm. The resistivity of the sedimentary deposits
and the lake are set to 20 Ωm. The lake is assumed to have no impact on the results
because of the lateral distance to the closest modeled central-loop position. Moreover,
possible effects of the lake on the transients in 3D is not in the scope of this study.

Four transmitter/receiver positions in the central-loop configuration have been computed,
labeled TxA, TxB, TxC and TxD. The transmitter size was 50 × 50 m2 each as it was
during the survey. The induced current was 1 A. All four transmitter/receiver positions are
arranged along one profile facing into the positive x-direction towards east and therefore
perpendicular to the crater rim. TxA is located in a distance of approximately 200 m to
the lake at coordinates (-650,0). In a distance of 500 m each, TxB and TxC are located
at coordinates (-150,0) and (350,0). TxD, which is located another 200 m in eastern
direction, is closest to the caldera at coordinates (550,0). Due to the applied topography,
the z-coordinates of the transmitter/receiver locations are increased. TxA and TxB are
∼ 10 m above the zero-level, TxB is elevated by ∼ 40 m and TxD by ∼ 50 m. If not
reduced by the inclined crater slope, the sediment thicknesses underneath each location
is increased by these elevations. The modeled time range throughout this study is 10−6

to 10−2 s.
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Figure 5.23.: Comparison of polynomial degrees p = 1 and p = 2 for transmitter location
TxD and slope angles of 20 and 70 degrees. The left-hand side images (a) show the modeled
component Ḃz and on the right side, the results of Ḃx are dislayed (b). The relative differences
and RMS errors correspond to calculations of the same slope angle using p = 1 and p = 2.

Transmitter TxA serves as a reference station far away from any possible effects of the
modeled subsurface slope. TxB is located approximately above the foot of the flattest
slope. TxC and TxD are in the vicinity of the crater rim. TxD is 130 m away from to the
border of the sedimentary basin. For the flattest slope angle of 20 degrees, the thickness of
the sediment layer underneath TxC is ∼ 100 m and underneath TxD ∼ 40 m. Therefore,
the dipping volcanic layer is assumed to have a significant effect on the transients of
locations TxC and TxD.

Differently from the displayed mesh in Figure 5.21 where all four transmitter locations
are meshed, visible and marked, the meshes designed for the actual 3D computations
contained only the specific transmitter location of interest. The meshes consisted of 100 k
cells on average. Whether a fast computation using a polynomial degree of p = 1 is
sufficient or a more time consuming computation with a polynomial degree of p = 2 is
necessary is to be answered first.

Figure 5.23 shows the comparison of the p = 1 (p1) and p = 2 (p2) transients for the
vertical Ḃz (5.23a) and the profile-directed Ḃx component (5.23b). The chosen transmitter
location is TxD and the investigated slope angles are 20 and 70 degrees (i.e. the steepest
and the flattest modeled inclination). The 2D effects of the underlying dipping crater are
obvious in both components. The transients of the vertical component progress steeper at
late times, as expected, this effect appears earlier for the 20◦ inclination. The horizontal
in-profile component sees two sign reversals at intermediate to late times. Again, these
sign reversals appear earlier for the 20◦ inclination.

For the vertical component, the difference between p1 and p2 looks marginal but the RMS
errors are still 5.07 % for the 70◦ slope and 7.31 % for the 20◦ slope case. For a general
modeling study of field data, these differences might be acceptible. However, taking a look
at the horizontal component reveals that a computation with a more accurate polynomial
degree is necessary.
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Figure 5.24.: Vertical component Ḃz for transmitter/receiver locations a) TxA, b) TxB, c) TxC
and d) TxD for simulated inclinations of the subsurface slope from 20 to 70 degrees.

The RMS error between the p1 and p2 simulations are 27.4 % for the steep 70◦ slope and
an even higher 277.6 % for the flatter 20◦ slope for the Ḃx component. These high RMS
errors can only in parts be explained by the two sign reversals. For the majority of the
calculated time channels, the relative difference between p1 and p2 is more than 10 %.

The results in Figure 5.23 suggest the following: The closer the dipping subsurface to the
receiver location is (i.e. the more shallow the resistive bedrock is), the greater the impact
on the differences between the p1 and p2 calculations is. Finally, all forward calculations
for the 3D Dendi model have been performed using the polynomial degree of p = 2.

5.3.1. The Vertical Component Ḃz

The results for the vertical Ḃz component of all four transmitter/receiver locations TxA,
TxB, TxC and TxD are displayed in Figure 5.24 a-d. For each location, the transients
for the simulated subsurface slope angles of 20◦ to 70◦ are shown. TxA serves as a
quasi-reference station without being affected by any subsurface inclination. Except the
topography, the subsurface underneath TxA can be considered as 1D. The Ḃz transient
of the 70◦ slope calculation of TxA is plotted in the subfigures of TxB, TxC and TxD to
emphasize 2D/3D effects. For a finer view on the results, only the time range from 10−5

to 10−2 s is shown, the data of the first decade before 10−5 s exhibits no signatures of a
dipping subsurface.
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Figure 5.25: Synthetic Ḃz data
from location TxD for different
slope angles (colored transients)
and the reference station TxA (grey
transient) compared to Ḃz field
data from Lake Dendi station P1-
23 (dark grey dots).

The suitability of TxA being a quasi-reference station can be substantiated by Figure
5.24a. For all modeled slope angles, the transients look almost the same. At very late
times, the transients progress slightly steeper which is related to the resistive volcanic
bedrock layer at 200 m depth. For the 20◦ inclination model, the foot of the dipping slope
is located more than 600 m away. The diffusion depth (Equation 5.3) for the latest time
channel 10−2 s is only ∼ 560 m.

Regarding the location TxB, a prominent effect of the dipping crater is only visible for
the 20◦ case and only the last 5 time channels. The transients for the steeper slope
angles are hardly distinguishable visually. On the other hand, locations TxC and TxD
exhibit considerable signatures that can be attributed to the inclined subsurface. The
less the inclination is and the more shallow it is located under the surface, the greater
is the resulting impact on the Ḃz transient. If the transients of TxC and TxD would be
interpreted in a 1D inversion, the results for the flat angles would probably be a false
3-layer model.

Figure 5.25 shows the synthetic Ḃz transients from location TxD for all modeled slope
angles together with the reference station TxA and together with real Ḃz field data from
station P1-23 of the Dendi Lakes survey. The location of TxD within the 3D tetrahedral
model resembles the location of station P1-23, which is the eastern-most station of the
survey profile P1 (see Figure 5.12) closest to the caldera. If a possible slope effect can be
seen anywhere in the field data, station P1-23 is the most promising candidate. But the
modeled slope angles for location TxD (colored transients in Figure 5.25) differ consider-
ably from the field data of station 23. Even the transient of the relatively steep 70◦ model
deviates significantly from the field data. Instead, the measured P1-23 Ḃz transient fits
the reference station TxA to a very good degree.

Hence, no traces of a 2D/3D effect based on a possible dipping crater rim underneath
station P1-23 can be seen in the vertical component. The deviations of the field data to the
synthetic data around 10−5 and 10−4 s is related to the simplification of the sedimentary
basin in terms of resistivity. In the 3D model, the resistivity was set to a homogeneous
20 Ωm. As the 1D inversion results showed, this is not the case for the field data.
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Figure 5.26.: Horizontal component Ḃx for transmitter/receiver locations a) TxA, b) TxB, c)
TxC and d) TxD for simulated inclinations of the subsurface slope from 20 to 70 degrees.

5.3.2. The Horizontal Component Ḃx

The results of the horizontal Ḃx component facing into the positive x-direction are shown
in Figure 5.26 a-d, again for all four locations and all four slope angles. The first thing
that stands out is that the transients of TxA and TxB look similar for all inclinations
whereas the results of locations TxC and TxD show diverse transient shapes. Hence,
2D effects depending on the slope angles are evident in the data of TxC and TxD and
non-existing at locations TxA and TxB.

The next interesting observation from the data concerns the magnitudes of the horizontal
component. At a rough estimate, the magnitude of the horizontal component is between
one and two orders less than the magnitude of the vertical component. However, due to
the quasi-1D subsurface at transmitter location TxA (and for the steep inclination models
for TxB), the horizontal components in the center of the loop are supposed to be zero.
Moreover, the magnitude levels of locations TxA and TxD are similarly strong (around
10−4 V/Am2) and the magnitude levels of locations TxB and TxC are similarly strong
(less than 10−4 V/Am2).

So what causes these relatively strong magnitudes, and what is the explanation for the two
groups of magnitude levels? One possible explanation is the topography. Table 5.2 shows
the elevation (z-level) of the corner coordinates of the four transmitter loop locations with
topography being applied.
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Location SE [m] SW [m] NW [m] NE [m] ∆max [m]

TxA 12.1 9.3 15.1 16.9 7.6
TxB 16.2 18.3 16.8 17.5 2.1
TxC 40.1 40.6 41.0 41.7 1.6
TxD 44.9 49.0 50.1 47.7 5.2

Table 5.2.: Z-Coordinates of the four square loop transmitter vertices for locations TxA, TxB,
TxC and TxD of the 3D Dendi model with applied topography. ∆max is the maximum elevation
difference between the four vertices per location.

Here, SE, SW, etc. are the cardinal directions as seen from the loop center and ∆max

denotes the maximum elevation difference between all four corner vertices of one partic-
ular square loop. The highest ∆max values with 5.2 m and 7.6 m can indeed be found
for transmitters TxA and TxD, explaining the large horizontal magnitudes of these two
locations. For TxA, the maximum difference of 7.6 m is between two opposite loop corners
(SW and NE) therefore it corresponds to an inclination of approximately 10 %. The hor-
izontal component Ḃy perpendicular to the profile direction has magnitudes of the same
order than the Ḃx component for all locations. The lateral resolution of the applied DEM
was 30 m which might be too coarse for a 50 × 50 m2 transmitter loop.

In order to demonstrate the effect of the applied DEM model on the Ḃx transients, forward
modelings of the Dendi 3D model with an inclination of 70◦ without topography have been
conducted. Figure 5.27 shows a comparison of Ḃx data for stations TxA and TxD which
are the most affected stations according to Table 5.2. Approximately, the magnitudes of
the data without topography is of one order less for TxA. For TxD, this accounts only for
the first two time decades. When the effect of the nearby slope takes over, both transients
progress on a similar level.

Nevertheless, the horizontal component does not vanish - as expected at least for the
location TxA where no 2D or 3D subsurface geometry is to be found nearby. The re-
maining Ḃx components may therefore be related to numerical reasons or are due to an
insufficiently fine mesh. The magnitude of the vertical component is on average 10 times
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Figure 5.27.: Horizontal component Ḃx for transmitter/receiver locations TxA and TxD with
and without topography applied to the 3D Dendi model.
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Figure 5.28.: Synthetic Ḃx data from the 3D model location a) TxA and b) TxD for the 70
degree slope angle with applied topography compared to Ḃx field data from Lake Dendi stations
P1-21 and P1-23.

higher than the magnitude of the horizontal component when using the DEM. Without
topography, it is 100 times higher than the magnitude of the horizontal component.

Taking a closer look on the Ḃx transients of stations TxC and TxD in Figures 5.26c and
5.26d with regards to 2D effects reveals that all transients provide two sign reversals. One
at intermediate times and one at later times (excluding the very early times, i.e. the first
two or three time channels).

At location TxC, the first sign reversal occurs around 50 µs for all slopes, the exact times
are barely distinguishable in the chosen presentation and with a resolution of 10 samples
per decade. The second sign reversal occurs around 300 µs for the 20◦ inclination and
around 1.5 ms for the 70◦ inclination. Here, a clear dependency between the slope angle
and the time of the second sign reversal can be derived. At location TxD, the two sign
reversals are distinguishable for all slope angles and a dependency between subsurface
inclination and the times of both sign reversals is evident.

The horizontal Ḃx field data from the Lake Dendi survey did not contain any sign reversals
at all recording stations. Moreover, the Ḃx transients showed a similar shape and level
throughout the whole profile. As an example, Figure 5.28 shows Ḃx field data from
stations P1-21 and P1-23 (the eastern-most stations close to the caldera) together with
synthetic Ḃx data from locations TxA and TxD from the Dendi 3D model with applied
topography. As mentioned before, the field data of station P1-22 was defective and could
not be used. The transient of station P1-23 contains three more time channels than P1-21
which is related to a longer acquisition time that was chosen for this station during the
field work. The field data was gained in the ZeroTEM mode using a Zonge TEM/3 coil
therefore no data was acquired before 5.05E-05 s.

For location TxA, the data of station P1-21 matches the synthetic data well for times
between 50 µs and 500 µs. After that, the modeled data decreases faster than the field
data. For location TxD, the field data can not be fitted at all due to the sign reversal. To
conclude, no signature of a 2D effect based on a possible inclined subsurface crater can
be found the horizontal data of Lake Dendi.
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Figure 5.29: 2D Sketch of the dip-
ping layer model consisting of a re-
sistive lower layer with 1000 Ωm and
a more conductive overburden with
20 Ωm. The angle α is varied from 10
to 75 degrees.

5.4. Modeling a Dipping Layer

In order to investigate effects of a dipping layer on the vertical and one horizontal magnetic
field component, an additional simple setting was modeled with TDcustEM. Figure 5.29
shows a 2D sketch of the model consisting of a resistive dipping layer with a 1000 Ωm
resistivity and a more conductive overburden with 20 Ωm.

The angle α denotes the inclination of the dipping layer. Calculations have been made
for angles of α = 10, 20, 30, 45 and 75 degrees. The transmitter was a 100 × 100 m2

inductively coupled loop source with an injected current of 1 A.

Two central-loop locations are investigated: One with an x-direction offset of 100 m and
one with an x-direction offset of 200 m. At x = 0 m, the dipping layer appears on the
surface. The modeled time range was again 10−6 to 10−2 s. Although the modeling
domain is 3D, the resistivity is only depending on the x- and z-direction.

The results of this study are shown in Figure 5.30. The left-hand side images contain the
results of the vertical component Ḃz and the results of the Ḃx component are displayed
in the images on the right-hand side.

The transients of the vertical Ḃz component show a clear dependency on the modeled
values for α as well as an expected shift of these patterns in time when comparing the 100
m offset data to the 200 m offset data. The transients of the horizontal Ḃx component
provide one sign reversal each, except for the 100 m offset and 10◦ inclination. The
calculations of the Ḃx component suggest two things: First, the greater the inclination
angle α is, the later the sign reversal occurs. Second, the smaller the inclination angle is,
the greater is the magnitude of the horizontal component.

A comparison between the results of this simplified model and the results of the 3D model
of Lake Dendi discussed in the last chapter shows that the sign reversal occurs significantly
earlier in the present simple model and that only one sign reversal can be observed. In
contrast, the 3D model of Lake Dendi produced two sign reversals for the stations TxC
and TxD which are closest to the dipping subsurface layer (see Figure 5.26). The distance
of TxD to the crater rim was approximately 135 m. Therefore, the dipping layer alone can
not be responsible for the appearance of two sign reversals in the synthetic Ḃx components
of the 3D Lake Dendi model. The three-dimensionality and the topography of the Lake
Dendi model must account for shape and patterns of the horizontal Ḃx transients as well.
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Figure 5.30.: Vertical Ḃz and horizontal Ḃx component of the simplified dipping layer model
using a central-loop TEM setup for inclinations of 10 to 75 degrees. Two locations with distances
of 100 and 200 m from the outcropping resistive layer are modeled.



CHAPTER 6

Summary and Conclusion

In the framework of the present thesis, a 3D CSEM time domain code TDcustEM based
on the recently published open-source software custEM and the finite element toolbox
FEniCS was developed. The transformation of the frequency domain data provided by
custEM into the time domain is done by a Fast Hankel Transform using 80 digital filter
coefficients and 10 samples per decade. With TDcustEM, it is possible to generate syn-
thetic data using unstructured tetrahedral meshes with topography, arbitrary source and
subsurface geometries as well as anisotropy. The usage of higher-order polynomials and
parallel computing facilitates fast and accurate 3D time domain results. The 3D tetrahe-
dral meshes using edge-based Nédélec finite elements are generated by the well-established
mesh generator TetGen. While the present thesis concentrates on the common total E-
field approach, further electromagnetic field approaches are implemented in custEM and
could therefore be used with TDcustEM as well.

To ensure precision and reliability of the new algorithm, the results of several successful
cross-validations for the different electric and magnetic field components and CSEM con-
figurations were shown. These cross-validations were done for inductively coupled loop
transmitters and grounded dipole sources. For homogeneous half-spaces, the results were
compared to analytic solutions. For a various number of 1D layered subsurfaces, the
results were validated by comparing them to the semi-analytic 1D software EMUPLUS.
Subsequently, the 3D competence of TDcustEM was proven by successfully comparing
its results to the finite difference algorithm SLDMEM. The applicability of the utilized
SLDMEM grids and the numerical solution accuracy were proven by grid checks with
EMUPLUS. The runtime of the algorithm was investigated in dependency of several pa-
rameters like the input frequency, polynomial degree, number of parallel used cores and
different mesh refinements.

Long computational runtimes due to the large number of necessary frequency domain solu-
tions are still a considerable drawback of convolutional time domain techniques. Different
modeling studies regarding possible interpolation and extrapolation techniques applied
on the frequency domain data were conducted. It was shown that there is a huge poten-
tial of saving runtime by reducing the number of frequencies as long as the shape of the
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frequency data response is sufficiently smooth. But due to possible sign reversals in the
frequency domain, depending on the subsurface model and the chosen CSEM setup, it is
impossible to suggest that the computation of a certain number of samples per decade in
the frequency domain is generally sufficient. A more sophisticated investigation on the
behavior of the frequency data series, depending on the subsurface model and the CSEM
setup, is necessary to make use of these runtime saving potentials. Especially with regard
to a possible implementation of TDcustEM in a 3D inversion scheme in the future, faster
runtimes are inevitable.

Regarding the Fast Hankel Transform in TDcustEM, a default set of 80 filter coefficients
was implemented. The performance of this set was successfully assessed in comparison
with two recently published sets of 101 and 201 filter coefficients for a loop and a dipole
source transmitter. The subsurface model of this assessment was a uniform half-space
and only the Ḣz component was investigated. A comparison of more complex geological
models could provide better insights if a greater set of coefficients yields more precise
results. On the other hand, a greater number of coefficients yields a longer computation
time. A reduction of the utilized filter coefficients to less than 80 and therefore a smaller
number of total necessary frequency solutions is not advised.

The importance of a precise receiver positioning for magnetic components was investi-
gated. While the vertical magnetic component is quite stable regarding small deviations
of the receiver position, small deviations of the horizontal components generate signifi-
cant signals in the receivers. To corroborate this hypothesis, an exemplary transient of
a probably shifted horizontal Ḃx measurement showed the same structure than synthetic
Ḃx data with a small offset of 1 or 2 m. When horizontal magnetic components or their
time derivative are going to be measured during a field survey, handheld GPS receivers
with an assumed accuracy of a few meters are probably too imprecise. Horizontal B-field
components are not only sensitive to a precise receiver positioning, small deviations from
the transmitter loop planarity can trigger unwanted horizontal signals as well.

Synthetic studies showed that boundary conditions are not mandatory for the CSEM sim-
ulations with TDcustEM. Chosing a sufficiently large domain size with a possible exten-
sion of the mesh by a much coarser secondary tetrahedron mesh (a so-called tetrahedron
boundary) yields as good results as forward modelings with Zero-Dirichlet boundary con-
ditions. The coarse extension mesh usually increases the total number of tetrahedra by
a justifiable quantity. Modeling different resistivity contrasts for simple subsurface mod-
els with two layers revealed that TDcustEM is capable of managing resistivity contrasts
ratios of up to 1:50. However, further research is necessary on mesh properties when the
forward calculated models are subject to sharp resistivity contrasts of 1:100 or greater.

During the process of developing and verifying the code and running a huge number of
simulations, the following findings were made regarding TDcustEM. First, the usage of
the polynomial degree of 2 is advised for all regular simulations. For testing purposes and
for very simple models, running simulations with a polynomial degree of 1 is sufficient.
Second, meshing 1D layered half-spaces is easy and straightforward with custEM and
TetGen. Generating meshes with more complex 3D structures that resemble real world
settings, i.e. meshes beyond simple geometries like a cube or a sphere, is nontrivial.
A basic knowledge of the programming language Python and of the available meshing
routines provided by custEM is essential.
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As being a part of the CRC 806 - Our Way to Europe, the 1D and constrained inversion
results regarding the TEM loop source surveys in the East African Rift Valley suggest the
following: At Lake Chew Bahir, the data showed no signatures of an underlying bedrock.
With estimated exploration depths of approximately 150 - 200 m, the sediment thicknesses
of the basin seem to be at least 200 m, even at the western-most parts of the survey area
near the lake shore. The subsurface at Chew Bahir consists of very conductive, hyper-
saline sediments with resistivities around 1 Ωm and less, preventing deeper exploration
depths. With a significant likelihood, a sedimentary layering and a resistive bottom layer
could be detected during the survey at Bisare River. Sediment thicknesses are assumed to
be 100 - 150 m. The recorded data from the Dendi Lakes provided no evidence regarding
a resistive bedrock layer. Only indications of a bottom layer with an increasing resistivity
were detected. Sediment thicknesses in the area of the conducted survey at Lake Dendi
are assumed to be at least 150 m.

An extensive 3D modeling study of the eastern parts of Lake Dendi area was performed
including topography in form of a digital elevation model. A subsurface dipping crater
flank with four different simulated inclinations between 20◦ and 70◦ was investigated for
different loop source locations inside the sedimentary basin. The results indicate that
significant 3D patterns in the vertical and horizontal transients are generated even for
steep inclinations of 70◦ and locations adjacent to the crater rim. However, none of
these patterns can be found in the two-dimensional field data set from the Dendi Lakes.
Therefore, no sign of a dipping crater in the field data is evident.

Conclusively, the TEM surveys in Ethiopia provided new insights into the structure and
depths of the investigated sedimentary basins. Detailed images of the resistivity distri-
bution at Bisare River and at the Dendi Lakes were presented. At Lake Chew Bahir
and at the Dendi Lakes, further geophysical research is necessary to reliably estimate
sediment thicknesses. A LOTEM campaign deploying an extensive dipole transmitter
with adequate transmitter/receiver distances could possibly detect a crystalline bedrock.
Nevertheless, the presented geophysical results in this thesis provide valuable information
for possible future drillings.
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Appendix

A. 1D Inversion Results from Ethiopia

1D inversion results of the TEM surveys in Ethiopia.

A.1. Chew Bahir
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Figure A.1.: 1D inversion results of Chew Bahir profile P1 stations 4 - 7.
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Figure A.2.: 1D inversion results of Chew Bahir profile P1 stations 8 - 19.
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Figure A.3.: 1D inversion results of Chew Bahir profile P1 station 20.
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Figure A.4.: 1D inversion results of Chew Bahir profile P2 stations 10 - 51.



Appendix A. 1D Inversion Results from Ethiopia 121

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-01 | 2lay

EQUI
R1: χ=0.714
R2: χ=0.740

MQ: χ=1.124

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-02 | 2lay

EQUI
R1: χ=0.857
R2: χ=0.872

MQ: χ=1.079

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-03 | 2lay

EQUI
R1: χ=0.709
R2: χ=0.744

MQ: χ=0.938

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-04 | 2lay

EQUI
R1: χ=0.775
R2: χ=0.734

MQ: χ=1.226

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-05 | 2lay

EQUI
R1: χ=0.781
R2: χ=0.651

MQ: χ=0.892

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-06 | 2lay

EQUI
R1: χ=0.688
R2: χ=0.726

MQ: χ=0.795

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-07 | 2lay

EQUI
R1: χ=0.788
R2: χ=0.650

MQ: χ=1.193

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-08 | 2lay

EQUI
R1: χ=0.748
R2: χ=0.673

MQ: χ=1.118

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-09 | 2lay

EQUI
R1: χ=0.545
R2: χ=0.758

MQ: χ=0.845

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-11 | 2lay

EQUI
R1: χ=0.697
R2: χ=0.677

MQ: χ=1.016

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-13 | 2lay

EQUI
R1: χ=0.682
R2: χ=0.639

MQ: χ=2.509

 1

 10

 100

 0.1  1  10

z 
[m

]

ρ [Ωm]

Chew Bahir | P3-15 | 2lay

EQUI
R1: χ=0.647
R2: χ=0.624

MQ: χ=2.741

Figure A.5.: 1D inversion results of Chew Bahir profile P3 stations 1 - 15.
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Figure A.6.: 1D inversion results of Chew Bahir profile P3 station 17.
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Figure A.7.: 1D inversion results of Chew Bahir profile P4 stations 1 - 7.
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Figure A.8.: 1D inversion results of Chew Bahir profile P5 stations 1 - 7.
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Figure A.9.: 1D inversion results of Chew Bahir profile P6 stations 1 - 7.
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A.2. Bisare River
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Figure A.10.: 1D inversion results of Bisare River profile A stations 3 - 4.
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Figure A.11.: 1D inversion results of Bisare River profile B stations 2 - 4.
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Figure A.12.: 1D inversion results of Bisare River profile C stations 1 - 7.
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Figure A.13.: 1D inversion results of Bisare River profile D stations 1 - 7.
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Figure A.14.: 1D inversion results of Bisare River profile E stations 0 - 7.
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Figure A.15.: 1D inversion results of Bisare River profile F stations 0 - 7.
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A.3. Dendi Lakes
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Figure A.16.: 1D inversion results of Lake Dendi profile P1 stations 1 - 12.
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Figure A.17.: 1D inversion results of Lake Dendi profile P1 stations 13 - 23.
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B. SCI Inversion Results from Ethiopia

SCI inversion results from Bisare River.

Figure B.1.: SCI inversion results of all profiles at Bisare River.
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C. Survey Images from Ethiopia

C.1. Chew Bahir

Figure C.1.: Images from the survey at Chew Bahir.
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Figure C.2.: Images from the survey at Chew Bahir.
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C.2. Bisare River

Figure C.3.: Images from the survey at Bisare River.



136 Appendix C. Survey Images from Ethiopia

C.3. Dendi Lakes

Figure C.4.: Images from the survey at Lake Dendi.
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