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Zusammenfassung 

Um ihre Funktionen in der Verarbeitung und Weiterleitung von Informationen 

wahrnehmen zu können, sind Neurone auf die adäquate Ausstattung mit Ionen-leitenden 

Kanälen angewiesen. Zu diesen Kanälen gehören, unter anderem, auch die 

hyperpolarisationsaktivierten und zyklisch Nukleotid-gesteuerten (HCN) Kanäle. Sie 

leiten den in seinen biophysikalischen Eigenschaften einzigartigen Ih-Strom, der 

maßgeblich an verschiedenen zellulären elektrischen Prozessen beteiligt ist. 

 

Um den spezifischen Einfluss der HCN-Kanäle auf die elektrischen Eigenschaften von 

Neuronen zu untersuchen, wurden zwei Werkzeuge (CRISPRi und RNAi) zur 

Beeinflussung der HCN-Kanal-Genexpression etabliert und analysiert. Durch die 

Verwendung rekombinanter Adeno-assoziierter Viren (rAAV) als Genfähren wurden 

diese Werkzeuge in post-mitotische Neuronen eingebracht. Die Validierung beider 

Knock-Down-Techniken zeigte, dass CRISPRi und RNAi die hcn Expression spezifisch 

reduzierten. Dabei erwies sich jedoch die RNAi-vermittelte Reduktion der 

hcn-Transkripte als robuster und effizienter als die der CRISPRi-vermittelte Strategie. 

Bei Säugetieren entstanden, im Laufe der phylogenetischen Entwicklung, vier 

verschiedene HCN-Kanal-Isoformen (HCN1-4). Um den Beitrag einzelner 

HCN-Kanal-Untereinheiten zu neuronalen Funktionen zu untersuchen, wurde der 

Untereinheiten-spezifische RNAi-vermittelte Knock-down in Primärkulturen 

hippocampaler Neurone angewandt. Elektrophysiologische Experimente zeigten, dass die 

Isoform-spezifische Reduktion zu Subtyp-spezifischen Veränderungen der Ih-Strom-

Eigenschaften führte. Dies zeigt, dass die einzelnen HCN-Kanal-Isoformen aufgrund 

ihrer unterschiedlichen molekularen und biophysikalischen Beschaffenheit letztlich die 

Eigenschaften des Ih-Stroms auf unterschiedliche Art und Weise prägen. Somit haben 

Neurone die Möglichkeit, sich durch regulierte Expression der einzelnen 

HCN-Kanal-Untereinheiten an ständig wechselnde Anforderungen, sowohl während der 

Entwicklung als auch in der Aufrechterhaltung neuronaler Funktionen, anzupassen. 

Neurone funktionieren jedoch nicht als eigenständige Einheiten, sondern sind in 

neuronale Netzwerke eingebunden. Um die Folgen der Reduktion der HCN2-Isoform für 

die neuronale Übertragung und Integration von Informationen zu untersuchen, wurden 

exzitatorische synaptische Ereignisse in Primärkulturen hippocampaler Neurone 

gemessen. Diese Experimente implizierten, dass die HCN2-Untereinheit sowohl an der 
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präsynaptischen Freisetzung von Neurotransmittern als auch an der postsynaptischen 

Integration des Signals beteiligt ist. Um die Rolle der HCN2-Untereinheit in der 

Gestaltung der Netzwerkeigenschaften des Hippocampus zu untersuchen, wurden 

stereotaktische rAAV-Injektionen durchgeführt. Die Injektion in den dorsalen 

Hippocampus erwachsener Mäuse führte unerwarteterweise zu einer Degeneration der 

CA1-Pyramidalzellschicht. Ob für diese Degeneration der Verlust der 

HCN2-Untereinheit ursächlich ist oder aber durch Nebeneffekte hervorgerufen wurde, 

kann nicht abschließend beantwortet werden.  
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Abstract 

To fulfill their functions in processing and transmitting information by electrical 

potentials, neurons heavily rely on proper equipment with membrane-bound 

ion-conducting channels. Among these, the unique properties of hyperpolarization-

activated and cyclic nucleotide-gated (HCN) channels and the corresponding Ih-current 

contribute to various electrical properties of neurons.  

 

To elaborate on the specific role of HCN channels in shaping electrical properties of 

neurons, two gene-expression interfering tools, i.e. RNAi and CRISPRi, were established 

and evaluated. By using Adeno-associated viruses (AAVs) as gene ferries, these tools 

were delivered to post-mitotic neurons. Validation of both knock-down techniques 

showed that RNAi and CRISPRi were capable to reduce hcn-transcript levels. However, 

RNAi-mediated HCN-channel knock-down was more robust and efficient than 

CRISPRi-mediated knock-down. 

During phylogenetic development, four different HCN channel isoforms (HCN1-4) 

emerged in mammals. In order to elaborate on the contribution of the individual HCN 

channel subunits to neuronal functions, the subunit-specific RNAi-mediated knock-down 

was utilized in primary hippocampal neurons. Electrophysiological experiments showed 

that the isoform-specific knock-downs were capable of inducing subtype-specific 

changes in Ih-current properties. Thus, due to their different biophysical identities, the 

differential expression pattern of the individual HCN channel isoforms ultimately shapes 

the Ih-current properties to adapt to the requirements of neurons. 

Because neurons are incorporated into neural networks in vivo they do not function as 

individual units. To examine the consequences of HCN2 isoform knock-down on 

neuronal transmission and information integration, excitatory synaptic events were 

measured in primary hippocampal neurons. These experiments indicated that the HCN2 

subunit might participate in both, presynaptic neurotransmitter release and postsynaptic 

signal integration. Furthermore, stereotaxic AAV injections and subsequent behavioral 

and biochemical analyses were performed to investigate the role of HCN2 in influencing 

hippocampal network properties. Unexpectedly, injection of AAVs in the dorsal 

hippocampus of adult mice resulted in severe degeneration of the CA1 pyramidal cell 

layer. It is unclear whether this degeneration can be attributed to the loss of HCN2 or by 

unacknowledged side effects. 
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Chapter 1 

Introduction 
 
 

 

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are known to 

control important electrical properties of neurons, for example by determining and 

stabilizing the resting membrane potential (Kase and Imoto, 2012). Due to their unique 

activation and gating properties, these channels play crucial roles in generating rhythmic 

activities and thus participate, e.g. in cardiac pacemaking (DiFrancesco, 1986), as well as 

in modulating the sleep and wake cycle in the thalamocortical system (McCormick and 

Pape, 1990). In contrast to these well characterized properties, the roles of HCN channels 

in other brain regions are still elusive. Thus, the aim of this thesis was to investigate the 

consequences of specific HCN channel knock-down in hippocampal neurons both, 

in vitro and in vivo. 
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1.1 Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels  

HCN channel currents have been first described in motoneurons (Araki et al., 1961) and 

later in sinoatrial node cells (Noma and Irisawa, 1976) and photoreceptors (Fain et al., 

1978). Because of its unique and unusual physiological appearance, the current was 

initially named funny-current (If) (Brown et al., 1979) or queer-current (Iq) (Halliwell and 

Adams, 1982). In this thesis, the term ‘inward current activated by hyperpolarization’ (Ih) 

(Yanagihara and Irisawa, 1980) will be used to describe this current.  

 

 
Figure 1.1: Structure and topology of HCN channels 

Top: Schematic representation of the tetrameric structure of HCN channels. Bottom: Transmembrane and 
cytoplasmic arrangements of a single HCN channel monomer. One monomer is composed of six 
transmembrane segments including the voltage sensor (S4), the selectivity filter harboring the GYG motif, 
the pore forming helices (S5 and S6), and the C-terminal domain harboring the cyclic nucleotide binding 
domain (CNBD) attached via a C-linker to the S6 helix.  
 

1.1.1 Structure of HCN channels  

Molecular cloning of HCN channel subunits finally led to the identification of the 

molecular basis for the previously described currents (Santoro et al., 1997, Gauss et al., 

1998, Ludwig et al., 1998, Santoro et al., 1998, Ludwig et al., 1999). In mammals, the 

family of HCN channel genes comprises four different isoforms (HCN1-4) (Sunkara et 

al., 2018). These channels, together with cyclic nucleotide-gated (CNG) (Biel and 

Michalakis, 2007) and ether-à-go-go-like (EAG-like) channels (Meyer and Heinemann, 

1998), form the subgroup of cyclic nucleotide-regulated channels within the large 

superfamily of pore-loop cation channels (Yu et al., 2005). The four HCN channel genes 
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encode for polypeptides of ~800 – 1200 amino acids. Each isoform contains six highly 

conserved (80 – 90 %) α-helical segments (S1-S6) with an ion-conducting pore between 

S5 and S6 (Biel et al., 2009). Similar to all voltage-dependent pore-loop cation channels, 

a positively charged S4 helix forms the voltage sensor of HCN channels (Fig. 1.1) (Vaca 

et al., 2000).  

In contrast to other voltage gated channels, inward movement of S4 triggers opening of 

HCN channels, while it leads to the closure of depolarization activated voltage-dependent 

potassium channels (Männikkö et al., 2002). A recent study based on cryo-EM structures 

of the human HCN1 channel, showed that the reversed voltage-dependent gating might 

be explained by several unique structural features of these channels. First, HCN1 channels 

harbor an unusually long S4 helix, which contacts the C-linker in the cytoplasm. Second, 

the S4, S5 and S6 helices are in a packing arrangement. Third, an HCN channel specific 

domain was described. These structural features altogether might stabilize a closed ion 

channel gate when the S4 voltage sensor is in a ‘depolarized’ state. The authors suggested, 

that a voltage-driven inward displacement of the S4 helix upon membrane 

hyperpolarization might disrupt these stabilizing interactions, thus allowing the ion 

conducting pore to open (Lee and MacKinnon, 2017).  

Notably, the amino acid sequences of the pore region of all HCN channel isoforms, which 

are located between the S5 and S6 helices, contain the selectivity filter motif GYG 

(Glycine-Tyrosine-Glycine), which is a hallmark of K+-selective voltage gated channels 

(Fig. 1.1) (Doyle et al., 1998). Thus, based on primary structure comparisons, HCN 

channels were thought to exclusively conduct K+ ions and to exclude Na+ ions or divalent 

ions from being conducted through the pore. However, HCN channels conduct both, Na+-

and K+-ions with permeability ratios of about 1:4, leading to a depolarizing Na+-driven 

current at physiological conditions (Gauss et al., 1998, Ludwig et al., 1998, Santoro et al., 

1998, Robinson and Siegelbaum, 2003). Additionally, they also display a small but 

physiological relevant permeability for Ca2+ ions (Yu et al., 2004). Attempts to solve 

these rather surprising observations at the molecular level by site-directed mutagenesis 

approaches were quite unsuccessful in identifying residues in the pore region of HCN 

channels that may confer the permeation properties (Macri et al., 2002, Azene et al., 2003, 

Macri et al., 2012). Again, cryo-EM structures of the human HCN1 channel provided a 

structure-based explanation for these unique HCN channel properties. Potassium 

selectivity in K+-selective voltage gated channels originates from the precise geometry of 

the selectivity filter, in which bound K+ ions are coordinated by backbone (=carbonyl) 
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oxygen atoms of certain amino acid residues located in the selectivity filter (Lee and 

MacKinnon, 2017). While for K+-selective channels binding of 2 K+-ions in the pore 

region is essential to increase the probability that a Na+ ion is hindered to pass through 

the conduction pathway (Doyle et al., 1998), HCN channels bind only a single K+-ion, 

leading to an increased probability that an entering Na+ ion can exit on either side and 

thus might permeate the channel pore. This mechanism of nonselective ion conduction in 

HCN channels is thought to originate from surrounding amino acids, leading to a 

reorientation of the selectivity filter compared to K+-selective channels (Lee and 

MacKinnon, 2017).  

In addition to the voltage dependence of HCN channel gating, the open state probability 

and activation kinetics of these channels are modulated by cyclic nucleotides 

(DiFrancesco and Tortora, 1991). Responsible for the direct modulatory effect of cyclic 

AMP (cAMP) or cyclig GMP (cGMP) is their binding to the highly conserved cyclic 

nucleotide binding domain (CNBD) (Fig. 1.1) (Kaupp and Seifert, 2001). In contrast to 

CNG channels, binding of cyclic nucleotides is not required to open HCN channels 

(Kaupp and Seifert, 2002, Craven and Zagotta, 2006). Instead, cAMP or cGMP binding 

induces local conformational changes at the CNBD that are propagated to the ion 

conducting pore via the C-linker. However, these binding events induce only small 

displacements of the S6 helix, consistent with the observation that cyclic nucleotide 

binding alone is insufficient for channel opening (Lee and MacKinnon, 2017).  

 

1.1.2 Function and properties of HCN channels  

Although the four HCN channel isoforms found in mammals (HCN1-4) show a high 

degree of sequence similarity (Tanguay et al., 2019), basic biophysical features of the 

different HCN channel subtypes differ remarkably from each other, especially when 

homomeric channels are examined in heterologous expression systems. Within the HCN 

channel family, the HCN1 subtype activates at the most positive membrane potentials, 

with half maximal activation voltages (V1/2) of -70 to -90 mV (Altomare et al., 2003). In 

addition, HCN1 shows the fastest activation kinetics with τ values ranging from 30 to 

300 ms (Ishii et al., 2001). However, compared to the other members, HCN1 steady-state 

activation curves show only weak depolarizing shifts in the presence of saturating cAMP 

concentration (+2 to +7 mV) (Altomare et al., 2003, Stieber et al., 2005). While HCN1 is 

the fastest activating HCN channel subtype, HCN4 activates the slowest, with τ values 

ranging from a few hundred milliseconds to seconds (Ludwig et al., 1999, Stieber et al., 



1. Introduction 
 

11 
 

2005). Furthermore, HCN4 activates at the most hyperpolarized membrane potentials 

with V1/2 of around -100 mV (Ludwig et al., 1999, Altomare et al., 2003, Stieber et al., 

2005) and its steady-state activation curves are very sensitive to the presence of cAMP, 

inducing a depolarizing shift of about 20 mV (Stieber et al., 2005). HCN2 and HCN3 

adopt intermediate biophysical current properties with V1/2 values of -70 and -80 

to -95 mV, respectively (Altomare et al., 2003, Mistrik et al., 2005, Stieber et al., 2005). 

Moreover, HCN2 activation kinetics range from 150 ms to 1s (Ludwig et al., 1999, 

Stieber et al., 2005), while HCN3 activation kinetics range from 250 to 400 ms (Mistrik 

et al., 2005, Stieber et al., 2005). Remarkably, the human HCN2 subtype was found to be 

very sensitive for cAMP, leading to a depolarizing shift in V1/2 values of around -25 mV, 

cyclic nucleotides did not induce a shift of V1/2 of the hHCN3 subtype (Stieber et al., 

2005) which might be explained by structural difference in the HCN3 channel domains 

(Biel et al., 2009).  

The biophysical properties of the different HCN channel subtypes make them favorable 

in participating in oscillatory electrical processes, extensively studied in pacemaker cells 

of the sinoatrial node, responsible for generating the heart beat (Brown et al., 1979, 

DiFrancesco, 1981, DiFrancesco and Tortora, 1991).  

 

 
Figure 1.2: Role of HCN channels and Ih-currents in cardiac automaticity 

Idealized pacemaker potentials of the sinoatrial node in the absence (black trace) and presence (red trace) 
of adrenergic stimulation. Modified from (Biel et al., 2009). 
 

Action potentials of pacemaker cells are characterized by a pacemaker depolarization, 

occurring after the repolarization phase. This depolarization drives the membrane 

potential back toward the threshold of voltage-gated Ca2+ ion channels, thereby 

maintaining action potential firing of the sinoatrial node cells (Figure. 1.2) (Mangoni and 
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Nargeot, 2008). Among others, Ih-currents are thought to participate in the pacemaker 

depolarization, since they are activated at hyperpolarized membrane potentials. 

Furthermore, the direct modulatory effect of cAMP on Ih-current properties might account 

for the regulation of the heart beat by sympathetic stimulation. An increased cAMP 

production due to β-adrenergic stimulation facilitates Ih-current activation. In contrast, 

vagal stimulation lowers cAMP levels thus preventing HCN modulation (Brown et al., 

1979, DiFrancesco, 1981, DiFrancesco and Tortora, 1991, DiFrancesco, 2019). However, 

HCN channel currents are not solely responsible for generating the pacemaker 

depolarization, but might serve as its initiators (Biel et al., 2009). 

In addition to the central contribution of HCN channels in heart physiology, Ih-current 

contributions were also reported in oscillatory processes of the thalamocortical network 

during sleep (McCormick and Pape, 1990, Pape, 1996). Due to channel activation close 

to resting membrane potentials around -70 mV and its non-inactivating properties, HCN 

channels are thought to exert a depolarizing effect on resting membrane potentials in 

many cell types (Pape, 1996). Thus, HCN channels might serve to stabilize resting 

membrane properties against both, hyperpolarizing and depolarizing inputs (Kase and 

Imoto, 2012). This function of Ih-currents is thought to influence dendritic integration 

properties in hippocampal CA1 pyramidal neurons by modulating the kinetics of 

excitatory and inhibitory postsynaptic potentials (Wahl-Schott and Biel, 2009).  

Since the biophysical properties of HCN channel isoforms are strikingly different, the 

individual subtypes might be expressed differentially and/or complementary. 

Strengthening this hypothesis, hetero-oligomerization of HCN subunits to 

heterotetrameric ion channels was observed in various tissues (Bender et al., 2001, 

Brewster et al., 2007). With exception of HCN2-HCN3 oligomers, all dual combinations 

of HCN subunits form heteromeric complexes in the plasma membrane (Much et al., 

2003). Because the various combinations of heterotetrameric channels result in a 

multitude of biophysical Ih-current properties, neurons possess a powerful mechanism to 

generate specific Ih-currents to fulfill their physiological requirements. The existence of 

a plethora of β-subunits, scaffolding proteins, and regulatory proteins, i.e. TRIP8b, 

Caveolin-3 or MiRP1, even increases the variability of functional HCN channels and may 

add further variability to their biophysical properties (Sartiani et al., 2017). 

 



1. Introduction 
 

13 
 

1.1.3 HCN channels and the Hippocampus 

HCN channel expression has been described in numerous cell types throughout the 

mammalian central nervous system (CNS) (Monteggia et al., 2000). Especially in the 

hippocampus, a region known to play a critical role in learning and memory (Jarrard, 

1993), HCN channels are highly expressed in developing and adult animals (Seo et al., 

2015). The hippocampus, together with the adjacent amygdala, forms the central axis of 

the limbic system of mammals.  

 

 

Figure 1.3: Anatomy of the hippocampal formation 

The hippocampal formation forms a unidirectional network with input from the entorhinal cortex (EC) 
forming connections with the dentate gyrus (DG) and cornu ammonis (CA) CA3 pyramidal neurons via the 
perforant path (PP) (layer II). DG neurons send axons to CA3 pyramidal cells via the Mossy fiber pathway 
(MF), whereas CA3 neurons send axons to CA1 pyramidal cells via the Schaffer collateral pathway (SC). 
CA1 neurons also receive direct input from the PP (layer III) and from the medial septum-diagonal band of 
Broca connecting the midbrain to the hippocampus. Modified from (Wahl-Schott and Biel, 2009). 
 

The hippocampal formation is composed of the cornu ammonis (CA) subfields CA1, CA2 

and CA3 together with the dentate gyrus (DG). The synaptic transmission within the 

hippocampal formation resembles a trisynaptic circuit organization. (1) The information 

enters the hippocampus from superficial layers (mostly layer II and III) of entorhinal 

cortex (EC) neurons. Axons originating from layer II neurons project to granule cells of 

the DG and pyramidal neurons of CA3. This pathway is called the perforant path (PP). 

(2) Additionally, granule cells of the DG send descending axons, forming the so-called 

mossy fiber, to the pyramidal neurons of CA3. (3) Axons of CA3 pyramidal cells form 

both, recurrent connections onto other pyramidal cells in CA3, and projections to 

pyramidal cells located in CA1. This pathway is called the Schaffer collateral (SC). 

Subsequently, pyramidal cells in CA1 project to the subiculum and to deep layers of the 

entorhinal cortex (Fröhlich, 2016). 
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Notably, both electrophysiological and immunohistochemical studies revealed that the 

HCN-current Ih and the HCN1 and HCN2 subunits are enriched in the distal dendrites of 

hippocampal pyramidal neurons (Magee, 1998, Lörincz et al., 2002, Notomi and 

Shigemoto, 2004, Huang et al., 2009). Although at lower densities, HCN channels are 

also located in the soma of some pyramidal neurons (Robinson and Siegelbaum, 2003). 

Impairing the Ih-current by pharmacological blockade or genetic ablation results in 

augmented dendritic excitability due to an increase in membrane resistance (Magee, 1998, 

Magee, 1999, Robinson and Siegelbaum, 2003, Huang et al., 2009). These changes in 

membrane resistance ultimately affect synaptic potential shapes and thus also the 

dendritic integration properties of the pyramidal neurons (Shah, 2014). Furthermore, 

especially HCN1 subunits are also localized in hippocampal axons and synaptic terminals 

of inhibitory and excitatory neurons (Notomi and Shigemoto, 2004, Boyes et al., 2007, 

Brewster et al., 2007). By regulating calcium entry through T-type voltage gated Ca2+ 

channels, HCN channels participate thereby also in synaptic transmission within the 

hippocampal network (Huang et al., 2011). Moreover, HCN channel gene-expression 

undergoes developmental changes during aging (Seo et al., 2015). Hence, native HCN 

channels are differently expressed and diversely regulated and thus, the biophysical 

properties of the Ih-current contribute to various cellular and network functions within the 

hippocampal formation. To elucidate the specific role of an individual HCN channel 

subunit, manipulation of the subunit´s expression pattern in a temporally and spatially 

controlled manner is required.  
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1.2. Gene-expression interfering techniques 

Despite the success to uncover the functional properties of individual proteins, gaining 

knowledge on how proteins modulate multicellular networks or animal behavior is still a 

challenging task. Thus, a central question of this thesis was to examine the biological role 

of individual HCN channel subtypes and how quantitative differences in their expression 

levels contribute to mono- and multicellular functions.  

The generation and usage of transgenic animals emerged as a key approach for elucidating 

gene regulation and function. The technology of gene transfer into early developing 

embryos paved the way for establishing transgenic animals and thus enabled the 

generation of HCN channel knock-out mouse models (Cho et al., 2009). Although these 

models provided valuable insights into HCN channel physiology and function, the 

consequences of altered HCN channel expression were often difficult to interpret as HCN 

channels are involved in various processes within a single organism. Knock-out of some 

genes, among them the hcn4 gene, lead to embryonic lethality (Stieber et al., 2003). The 

lack of adult mice therefore makes it difficult to determine variable gene functions during 

certain phases of the life-cycle. Furthermore, most HCN knock-out mouse models result 

in a global loss of HCN channel subtype expression (Ludwig et al., 2003, Nolan et al., 

2004, Stieglitz et al., 2017). These models might be insufficient for evaluating the details 

of how HCN channels behave in certain tissues and to study the consequences of HCN 

channel impairment for local cellular or network functions. 

 

1.2.1 RNA interference (RNAi) 

In addition to transgenic approaches, gene expression can be manipulated by impairment 

of the mRNA level using a mechanism called RNA interference (RNAi) (Chang et al., 

2006, Shan, 2010, Boettcher and McManus, 2015).  

By combining RNAi with viral vector systems, a temporally and spatially controlled 

knock-down of a gene of interest can be achieved. Among these viral vector systems, 

AAVs have proven their potential to deliver genomic material into target cells, both 

in vitro and in vivo (Hermonat and Muzyczka, 1984, Lipkowitz et al., 1999, Günther et 

al., 2019). Until now, AAVs have not been associated with any human disease, even 

though most of the human population (>70%) are seropositive for one or more AAV 

serotypes (Calcedo et al., 2011). Due to their broad tissue tropism, non-pathogenic nature 
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and low immunogenicity, an AAV-based vector approach has been used for the first 

human gene therapy approved in western nations (Kotterman and Schaffer, 2014).  

 

 
Figure 1.4: Mechanism of AAV-mediated RNAi induced gene silencing 

Upon transduction of cells with shRNA encoding rAAVs, pre-short hairpin RNA (shRNA) is processed in 
the nucleus, followed by Exportin-5 (Exp5) dependent export of shRNA to the cytoplasm. After removal 
of the loop structure, double stranded short-interfering RNA (siRNA) is incorporated into the RNA induced 
silencing complex (RISC) and one of the RNA strands is removed. The mature shRNA hybridizes to the 
target mRNA which subsequently becomes cleaved and thereby degraded. 
 

The principle of RNAi is based on a double-stranded RNA (dsRNA)-mediated homology 

mechanism leading to degradation of targeted mRNA. The cell autonomous RNAi 

mechanism evolved to regulate eukaryotic gene expression and largely contributes to host 

immunity against foreign, e.g. viral, gene expression (Unniyampurath et al., 2016). The 

core component of this mechanism is the expression of small interfering RNAs (siRNAs). 

These molecules are complementary to the target RNA which shall be attacked. Under 

(normal) cellular conditions siRNAs are generated by processing long double-stranded 

RNAs to 21 nt double-stranded RNA molecules. One strand of the siRNA then hybridizes 

to the mRNA of the target gene. This process is mediated by several proteins that 

assemble to a complex called “RNA induced silencing complex” (RISC) by which finally 

the mRNA of the target gene is cleaved. 

This mechanism has been adapted and implemented for the use of RNAi as an 

experimental tool. Vector based systems have been developed, allowing to constitutively 

express short hairpin RNAs (shRNAs). ShRNA molecules consist of two 19-22 nt long 
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complementary parts, connected by a loop structure, thus protecting them from 

degradation by endonucleases. They are processed by the ribonuclease III (RNaseIII)-like 

enzyme Dicer, to produce siRNAs (Yu et al., 2002, Rao et al., 2009). When processed by 

Dicer into linear 19-22 nt double stranded siRNA molecules, a characteristic two 

nucleotide overhang at each 3´ end remains (Elbashir et al., 2001). Incorporation of the 

siRNA into RISC forms the activated RISC complex, which is guided to the 

complementary target mRNA (Meister and Tuschl, 2004, Leung and Whittaker, 2005). 

Upon binding to the target mRNA, the RNAse H-like endonuclease Argonaut 2 (AGO2) 

is activated, cleaves the phosphodiester bonds of the target mRNA molecule and thereby 

induces subsequent degradation of the molecule by other cellular mechanisms 

(Unniyampurath et al., 2016). Finally, the still activated RISC reliefs the cleaved mRNA, 

and enters the degradation cycle again. Thus, substantial amounts of mRNA are degraded. 

Consequently, the protein level will be decreased due to the impaired de novo protein 

biosynthesis (Hommel et al., 2003, Siolas et al., 2005, McCaffrey et al., 2008). Although 

it is widely used, RNAi is prone for induction of inflammatory immune responses as a 

result of siRNA expression (Meng and Lu, 2017) and also for binding non-targeted 

mRNA leading to unspecific off-target effects (Qiu et al., 2005).  

 

1.2.2 CRISPR interference (CRISPRi) 

As alternative strategies, programmable genome engineering techniques such as zinc 

finger and transcription activator-like effector (TALE) nucleases emerged, allowing to 

impair the expression of target genes at the DNA level (Klug, 2010, Gaj et al., 2013, 

Joung and Sander, 2013). Unfortunately, all these techniques suffer from off-target effects 

as well as from technically demanding and sophisticated requirements, resulting in low 

throughput and limited specificity. 

In the last few years the ´Clustered Regularly Interspaced Short Palindromic Repeat´ 

(CRISPR) technique emerged as an extremely successful and efficient tool for 

introducing targeted mutations into the genome in a variety of cell lines (Jinek et al., 2012, 

Cong et al., 2013, Liang et al., 2015) and model organisms (Friedland et al., 2013, Jiang 

et al., 2013, Mali et al., 2013). The CRISPR/Cas9 technique consists of two components: 

(1) the protein Cas9, an RNA-guided endonuclease naturally integrated in type II 

CRISPR-Cas bacterial adaptive immune system acting as a helicase and a nuclease to 

unwind and cut the target DNA; (2) a single-chimeric short guide RNA (sgRNA) which 

specifies binding of Cas9 to a target sequence (Jinek et al., 2012, Doudna and Charpentier, 



1. Introduction 
 

18 
 

2014). This system attracted much attention due to the ease of use, its versatility and 

reduced off-target effects.  

 

 

Figure 1.5: Mechanism of AAV-mediated CRISPRi induced gene silencing 
Mechanism of ´Clustered Regularly Interspaced Short Palindromic Repeats´ interference (CRISPRi) 
induced gene silencing. The simultaneous rAAV-mediated expression of enzymatically inactive 
Cas9+KRAB and a sequence specific sgRNA causes a ´physical´ block of the promoter region of a target 
gene. Thereby, transcription and subsequently de novo protein biosynthesis are inhibited.  
 

Depending on the experimental design, a complete knock-out mediated by the 

CRISPR/Cas9 technique may still have some disadvantages, especially when interfering 

with essential genes participating in cell cycle regulation, metabolism, or cellular 

signaling in general. To overcome these drawbacks, Qi and colleagues implemented the 

benefits of RNAi into the methodology of CRISPR and presented a technique called 

CRISPR interference (CRISPRi) (Gilbert et al., 2013, Larson et al., 2013, Qi et al., 2013). 

CRISPRi is based on a mutation in the Cas9 gene, leading to a loss of the nuclease activity 

in the Cas9 protein. The enzymatically inactive molecule is called dead Cas9 (dCas9). 

Moreover, dCas9 was fused to the Krüppel-associated box (KRAB) repression domain, 

to produce an efficient transcriptional interference protein complex (Gilbert et al., 2013). 

In the nucleus, the dCas9-KRAB fusion protein binds to the endogenous DNA and 

interferes with the transcription machinery without cutting the DNA sequence. Because 

CRISPRi is designed to prevent transcription by binding to the gene’s promoter, the 

dCas9-KRAB protein is targeted to the transcriptional start site (TSS) of a gene of interest 

by a sgRNA. Typically, CRISPRi is effective in a gene’s promoter encompassing residues 
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-50 to +300 bps of the TSS (Gilbert et al., 2014). This strategy almost abolishes the 

likelihood of off-target effects (Mandegar et al., 2016). 

Beside the enormous potential of CRISPR and CRISPRi in controlling and regulating 

gene expression, these tools are challenging to deliver into postnatal cells or animals. 

Again, rAAVs have the potential to overcome these limitations. Nevertheless, rAAVs 

possess a restricted cargo size of 4.5 kb (excluding the inverted terminal repeats) (Grieger 

and Samulski, 2005, Wu et al., 2010), which limits the success of packaging the 

commonly used Streptococcus pyogenes Cas9 (SpCas9, 4.2 kb) (Jinek et al., 2013) and 

its sgRNA with suitable control elements. To overcome this drawback, Ran and 

colleagues characterized smaller Cas9 orthologs from different species and identified the 

3.2 kb large Cas9 enzyme from Staphylococcus aureus (SaCas9) as a potential candidate 

to substitute for SpCas9 (Ran et al., 2015). Finally, an enzymatically inactive (dSaCas9-

KRAB) fusion construct was generated that can be expressed together with specific 

sgRNAs and suitable control elements by rAAVs in vitro and in vivo (Thakore et al., 

2018). 
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1.3 Aim of the Thesis 

The main focus of this thesis is to contribute to the understanding of HCN channel 

function in neurons in general and in hippocampal neuronal signal processing in particular. 

In order to elaborate on the functions of individual HCN channel subunits to neuronal and 

systemic functions, strategies are required to specifically interfere with HCN channel 

subunit expression in a temporally and spatially controlled fashion. Consequently, one 

goal of this thesis is to establish an AAV-delivered form of CRISPRi and comparing it 

with the previously established AAV-delivered form of RNAi, to identify the most 

suitable technique for HCN subunit-specific knock-down in vivo and in vitro.  

With a suitable technique on hand, the consequences of HCN subunit-specific 

knock down in primary hippocampal neuron cultures will be determined. By 

incorporating electrophysiological and Calcium imaging experiments, the function of 

individual HCN channel subtypes in controlling electrical neuronal properties will be 

examined. To elaborate on the participation of the HCN2 subunit in neuronal signaling, 

excitatory synaptic events will be measured in neurons where the HCN2 subunit is 

specifically downregulated. 

In a recent study, the group of Arnd Baumann could show that HCN4 in the dorsal 

hippocampal network contributes to emotion-related memory formation (Günther et al., 

2019). By choosing a similar experimental approach, hence, stereotaxic viral injections 

and subsequent behavioral and biochemical analysis, the role of HCN2 in influencing 

hippocampal network properties will be examined. 
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Chapter 2 

Material and Methods 
 
 

 

2.1 Chemicals, kits and consumables 

Chemicals were purchased from: AppliChem (Darmstadt, Germany), Merck Millipore 

(Hohenbrunn, Germany), Serva (Heidelberg, Germany) and Sigma-Aldrich (Taufkirchen, 

Germany). Consumables were purchased from: BD Biosciences (Franklin Lakes, NJ, 

USA), Greiner (Frickenhausen, Germany), Ibidi (Martinsried, Germany), Menzel 

(Braunschweig, Germany), Millipore (Hohenbrunn, Germany), Eppendorf (Hamburg, 

Germany) and VWR (Langenfeld, Germany). 

 

2.2 Cloning of constructs  

All molecular biological techniques were performed, if not stated otherwise, according to 

(Green, 2012). For targeting hcn genes by RNAi, several shRNA-encoding recombinant 

plasmids were purchased from Merck Millipore (Darmstadt, Germany). Individual 

fragments were cloned into pENN-CaMKIIeGFP vector provided by the University of 

Pennsylvania Vector Core (Philadelphia, PA, USA) containing the human U6 (hU6) 

promoter 5’ upstream to the shRNA-encoding fragment (see Table 2). For 

calcium-imaging in primary hippocampal neurons, the eGFP reporter gene was replaced 

by a GCaMP6f-WPRE encoding cassette, isolated from Addgene (Watertown, MA, 

USA) plasmid #100834 (pENN.AAV.CamKII.GCaMP6f.WPRE.SV40), which was a 

gift from James M. Wilson. For generating a CRISPRi vector, a custom designed 

backbone including Adeno-associated virus (AAV) serotype 2 wildtype (wt) inverted 

terminal repeats (ITRs), a human influenza hemagglutinin (HA)-tag, and a KRAB 

(Krüppel-associated box motif) element was purchased from Thermo Fisher Scientific. 

The sgRNA scaffold including the hU6 promoter and a dSaCas9-encoding construct were 
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gifts from Feng Zhang (Addgene plasmid #61591 for the sgRNA scaffold and the SaCas9; 

and plasmid #61594 for the dSaCas9) (Ran et al., 2015). For subcellular localization 

experiments, the sgRNA scaffold was replaced by an eGFP reporter gene, or the HA-tag 

was replaced by a miniSOG fluorescent reporter (Shu et al., 2011). Hcn-gene specific 

sgRNA sequences (see Table 3) were designed using E-CRISP, a CRISPR target-site 

identification online tool (Heigwer et al., 2014). Complementary single-stranded 

oligonucleotides were purchased from Eurofins (Ebersberg, Germany). Complementary 

pairs of oligonucleotides were incubated at 95°C for 5 min in 50 mM NaCl, 1 mM EDTA, 

10 mM Tris/HCl, pH 7.5, and annealed while cooling the samples to RT. Double-stranded 

fragments were cloned into the sgRNA scaffold of the vector backbone by restriction 

digest (BsaI) followed by ligation. For analyzing specificity and efficacy of CRISPRi 

mediated gene knock-down in HEK293 cells, human dopamine D1 receptor 

(NM_000794) promoter was purchased from GeneCopoeia (HPRM30728) (Rockville, 

MD, USA) and cloned into a pcDNA3.1 expression vector, thereby substituting for the 

CMV promoter to drive expression of a mCherry fluorescent reporter in cells 

constitutively expressing dopamine D1 receptors. 

 

2.3 Validation of knock-down efficiencies for shRNAs/sgRNAs 

For validation of RNAi mediated knock-down in HEK293 cell lines constitutively 

expressing individual HCN channel subunits (HCN1, 2, 4), hU6-shRNA+CMV-eGFP 

encoding constructs were transfected by the calcium phosphate co-precipitation method 

described by Chen and Okayama (Chen and Okayama, 1987). For each target gene, up to 

five different shRNA sequences (see Table 2) were examined independently. For 

validation of CRISPRi mediated knock-down in HEK293 cells, hU6-sgRNA and 

CMV-dSaCas9-KRAB encoding constructs were transfected by calcium phosphate 

co-precipitation in a cell line constitutively expressing mCherry reporter under the control 

of the human dopamine D1 (hDop1) receptor promoter. Five different sgRNA sequences 

(see Table 3) were examined independently. For validation of RNAi in primary 

hippocampal neurons (PHNs), hU6-shRNA+ CKII-eGFP encoding recombinant 

Adeno-associated viral particles (rAAVs) were produced (see Chapter 2.4). PHNs were 

transduced with a multiplicity of infection (MOI) of 2x104 viral particles per neuron. For 

validation of CRISPRi in PHNs, hU6-sgRNA+ CKII-dSaCas9-KRAB encoding 

constructs were packaged into viral particles of serotype 2 and 9 and PHNs were 
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transduced with a MOI of 2x104 viral particles per neuron. For each target gene, up to 4 

different sgRNA sequences were examined independently (see Table 3). Total RNA was 

isolated from HEK293 cells and PHNs using the RNeasy Mini Kit (Qiagen) according to 

the supplier´s protocol. Quantification of knock-down efficiencies was done as described 

in chapter 2.13. Those constructs which induced a robust and reproducible knock-down 

were chosen for further analysis (Table 4).  

 

2.4 Production and purification of recombinant Adeno-associated viruses (rAAVs) 

Recombinant Adeno-associated viral (rAAV) particles were prepared by triple-

transfection of HEK293 cells (ATCC; #CRL-1573), using a modified calcium phosphate 

coprecipitation method (Chen and Okayama, 1987) or PEI transfection (Longo et al., 

2013). HEK293 cells were cultivated in DH10 medium (DMEM + GlutamaxTM, 10 % 

(v/v) FBS, 1 % (v/v) antibiotics/antimycotics (all from Gibco/Thermo Fisher Scientific)) 

at 37°C, 5 % CO2, and 95 % relative humidity. After 24 h, cells were triple transfected 

with vectors flanked by AAV2 (wt) inverted terminal repeats (ITRs) containing the 

transgenic viral genome and the helper plasmids pXX6-80 and pRC2 or pRC9 (R.J. 

Samulski, University of Florida, Gainesville, USA) providing the proteins for DNA 

replication and capsid assembly of rAAVs (see Table 5). 24 h after transfection the 

medium was exchanged for hunger medium (DH10, 2 % (v/v) FBS, and 1% (v/v) 

antibiotics/antimycotics (all from Gibco/Thermo Fisher Scientific)). 72 h after 

transfection cells were harvested in PBS-M/K (130 mM NaCl, 2.5 mM KCl, 1 mM 

MgCl2, 70 mM Na2HPO4, 30 mM NaH2PO4, pH 7.4) and centrifuged (200xg, 4°C, 5min). 

Cell pellets were re-suspended in lysis buffer (150 mM NaCl, 50 mM Tris/HCl, pH 8.5) 

and cells were lyzed by five freeze/thaw-cycles. Free nucleic acids were digested with 

benzonase (50 U/ml; Merck Millipore, Darmstadt, Germany) for 30 min at 37°C. After a 

centrifugation step (5000xg, 4°C, 30 min) the rAAV suspension was sub-layered with 

iodixanol solutions (for details see Table 6) and centrifuged (rotor Ti 70; 264,000xg, 4°C, 

2 h). Viral particles were collected in the 40 % iodixanol phase, sterile filtered (0.2 µm 

pore size) and further purified using Amicon Ultra Centrifugal Filters (Ultracel-100k, 

15 ml; Merck Millipore). For determination of genomic titers, viral genomes were 

isolated using the DNeasy Blood & Tissue Kit (Qiagen) according to the supplier’s 

protocol and quantitative PCR (see Chapter 2.13) was performed using primers framing 
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either a segment of the eGFP-encoding sequence or the dSaCas9-encoding sequence 

(Table 12). 

2.5 Heterologous expression of proteins in HEK293 cells 

Human embryonic kidney cells (HEK293; #85120602) were obtained from 

ECACC/Sigma Aldrich (Taufkirchen, Germany) and grown in a low glucose containing 

medium (M10, MEM+GlutamaxTM, 10% (v/v) fetal calf serum (FCS), 1% 

antibiotics/antimycotics, and 1% (v/v) non-essential amino acids (all from Gibco/Thermo 

Fisher Scientific)). Cells were propagated in 9 cm petri dishes at 37°C, 5% CO2 and 

~ 95% relative humidity. Twice a week, when cells reached approximately 90% 

confluency, they were trypsinized and seeded at densities of 10 - 14 x 105 cells onto new 

petri dishes. To establish cell lines constitutively expressing individual HCN channel 

subunits (HCN1, 2, 4) or the human dopamine D1 receptor promoter-mCherry construct, 

transfections were performed with a modified calcium phosphate co-precipitation method. 

Cell clones were selected in the presence of Geneticin (G418; 0.8 – 1 mg/mL in M10 

medium). Functional expression of HCN channels or mCherry and homogeneity of cell 

clones was examined by immunological staining.  

 

2.6 Primary hippocampal neuron (PHN) cultures  

Hippocampi were prepared from 1 - 3 days-old wildtype mice (C57BL/6 strain obtained 

from an in-house animal facility) or a transgenic 129/Sv-based mouse line that does not 

express functional HCN1 channel proteins (Nolan et al., 2003). Animals of the transgenic 

strain were kindly provided by Dr. E. R. Kandel (Center for Neurobiology and Behavior, 

Columbia University, USA). Brains were dissected in ice-cold Hanks´ balanced salt 

solution (HBSS; Gibco/Thermo Fisher Scientific). Hippocampi were incubated in papain 

solution (DMEM (Gibco/Thermo Fisher Scientific), 25 U/mL papain, 1.6 mM L-cysteine, 

1 mM CaCl2, 0.5 mM EDTA) at 37°C for 20 min and subsequently transferred to 

inactivating solution (2.5% (w/v) trypsin inhibitor, 2.5% (w/v) albumin in FCS solution 

consisting of DMEM, 100 U/mL penicillin, 100 μg/mL streptomycin, 10% (v/v) FCS; all 

from Gibco/Thermo Fisher Scientific), and 0.1% (v/v) MITO+ serum extender 

(Corning/Thermo Fisher Scientific, Darmstadt, Germany)) at 37°C for 5 min. Cells were 

then triturated in FCS solution. PHNs were counted and plated on coverslips in 4-well 

plates (Ibidi, Martinsried, Germany) pre-coated with poly-D-lysine (0.2 mg/mL 
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poly-D-lysine, 50 mM H3BO3, 25 mM Na2B4O7, pH 8.5). PHNs were plated with a 

density of 300 cells/mm-2 and maintained in 500 µL NBA medium (Neurobasal A 

Medium (Gibco/Thermo Fisher Scientific), 100 U/ml penicillin, 100 µg/ml streptomycin, 

2% (v/v) B27-supplement (Invitrogen/Thermo Fisher Scientific, Darmstadt, Germany) 

and 1% (v/v) Glutamax (Gibco/Thermo Fisher Scientific)) at 37°C, 5% CO2 and 95% 

relative humidity for 15 days. Medium was partially exchanged every 2 - 3 days. For 

transduction, rAAVs were added with a MOI of 2 × 104 per neuron, 2 - 3 days after plating 

(days in vitro, d.i.v.).  

 

2.7 Organotypic hippocampal slice culture (OHSC) 

Hippocampi from 2 - 3 days-old mice (C57BL/6 strain from an in-house animal facility) 

were dissected in ice-cold oxygenated dissection buffer (aCSF: 124 mM NaCl, 2.5 mM 

KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 5 mM MgSO4, 0.5 mM CaCl2, 25 mM 

D-glucose). Hippocampi were placed on a PTFE membrane (Merck, Darmstadt, 

Germany) and cut into 300 µm coronal slices using a custom-made tissue chopper. Slices 

were washed three times in pre-warmed HBSS without Ca2+- and Mg2+-ions 

(Gibco/Thermo Fisher Scientific). Three slices were collected and positioned on Millicell 

cell culture inserts (30 mm, hydrophilic PTFE, 0.4 µm; Merck, Darmstadt, Germany) in 

6 well culture plates (Corning/Merck, Darmstadt, Germany) containing 1 mL of a well-

established slice culture medium according to Stoppini et al. (Stoppini et al., 1991) with 

slight modifications (80% (v/v) MEM, 20% (v/v) heat inactivated horse serum 

(Gibco/Thermo Fisher Scientific) containing (in final concentrations) 20 mM HEPES, 

14.5 mM NaCl, 2 mM MgSO4, 1 mM CaCl2, 1 mM L-glutamine, 80 µM ascorbic acid, 

13 mM D-glucose, 0.033 % (v/v) insulin, 50 U/mL penicillin, 50 µg/mL streptomycin). 

Plates were kept in a humidified CO2 incubator (5% CO2, 95 % relative humidity) at 37°C 

and cultures were maintained for a maximum of 15 days. Medium was partially 

exchanged every 2 - 3 days. For transduction, a total of 1 × 108 rAAVs were added on top 

of a slice at d.i.v. 1 - 2.  

 

2.8 Immunocytochemistry 

Primary and secondary antibodies used for immunocytochemistry (ICC) are listed in 

Table 7 and 8. HEK293 cells, PHNs, or OHSCs were rinsed with PBS (NaCl 140.3 mM; 
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KCl 3.68 mM; Na2HPO4 9.89 mM; KH2PO4 1.76 mM; pH 7.3) and fixed in PFA (4% 

(w/v) paraformaldehyde in PBS) for 10 min at room temperature (RT). After several 

rinses with PBS, unspecific binding sites were blocked for 1 h at RT in blocking solution 

(CT: ChemiBLOCKER (Merck, Darmstadt, Germany) 5 % (v/v), Triton X-100 0.5% 

(v/v) in PBS). Subsequently, samples were incubated with primary antibodies (Table 7) 

in CT at 4 °C over night or at RT for 4 h, rinsed for several times with PBS and then 

incubated with secondary antibodies (Table 8) in CT at RT for 1 h. Finally, samples were 

washed with PBS, before mounting the coverslips containing cells or PTFE membranes 

containing slices in Aqua-Poly/Mount (Polysciences, Eppelheim, Germany) on 

microscopy slides. Fluorescent images were obtained with an inverted confocal laser 

scanning microscope (TCS SP5II; Leica, Wetzlar, Germany).  

 

2.8.1 Colocalization analysis 

HEK293 cell lines constitutively expressing individual HCN channel subunits (HCN1, 2, 

4) were transfected with shRNA encoding plasmids using PEI transfection (Longo et al., 

2013). Cells were plated on coverslips in 24-well plates (Greiner) pre-coated with 

poly-L-lysine (0.1 mg/mL) with a density of 300 cells/mm-2. Plates were kept in a 

humidified CO2 incubator (5% CO2, 95% relative humidity) at 37°C and cultures were 

maintained for two days before fixation. After immunocytochemistry and image 

acquisition using an inverse confocal laser scanning fluorescence microscope (TCS SP5II, 

Leica), images were analyzed using the ImageJ Coloc 2 analysis plugin (Schindelin et al., 

2012).  

 

2.9 Stereotaxic injections of rAAV vectors 

All experimental procedures were approved by the LANUV (Landesamt für Natur, 

Umwelt und Verbraucherschutz Nordrhein-Westfalen, Germany), TVA 

#81-02.04.2018.A309. Animals (4 weeks old male mice, Mus musculus, C57BL/6J 

(Charles River, MA, USA)) were kept in groups of 4 animals in greenline cages 

(Tecniplast, Germany) under an inverted 12:12 light:dark cycle at 21 ± 2 °C, 50‐70% 

relative humidity, food and water ad libitum, and nesting material available. For 

stereotaxic injection, the stereotaxic setup from World Precision Instruments, Inc. 

(Sarasota, FL, USA) was used. The setup included a Stereotaxic Frame with 45° 

zygomatic bars for fixation of the cranium on two axes, an UltraMicroPump III (UMP3) 
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with SYS-Micro4 MicroSyringe pump controller for controlled microinjection, and a 

NanoFil 10 μl syringe with a 33G beveled replacement NanoFil needle for minimal 

intrusion (see Figure 2.1 A). Animals were kept for 4 weeks for habituation before they 

underwent stereotaxic injection of rAAV suspensions. Animals were deeply anesthetized 

with 2.5 % isoflurane prior to and during surgery. Additionally, animals received 

analgetic treatment with an intraperitoneal injection of 200 mg/kg Novalgin and local 

injection of Bupivacain (80 µL, 2.5 mg/ml). During surgery an animal temperature 

controller with a heating plate and a temperature probe (World Precision Instruments, 

Inc.) was used to keep the body temperature of the anesthetized animals constant. The fur 

at the surgical site was removed, skin was cleaned and finally prepared with Kodan 

Tinktur forte (Schülke, Hamburg, Germany). An incision was made to expose the top of 

the cranium. Bilateral holes were drilled into the cranium according to the injection 

coordinates with a micro driller (Ideal Micro Drill, Stoelting, Wood Dale, IL, USA). 

Injections were performed bilaterally in the CA1 region of the dorsal hippocampus at 

stereotaxic coordinates ˗1.9 mm anteroposterior (AP) relative to the bregma, ±1.5 mm 

mediolateral (ML), and ˗1.4 mm dorsoventral (DV) (see Fig 2.1 B). Wildtype mice were 

randomly assigned to receive suspensions of rAAV9 (pENN-hU6-shScr-CaMKII-eGFP) 

or rAAV9 (pENN-hU6-sh2-CaMKII-eGFP). Animals were injected with 1 μL viral 

suspension (2.5 x 109 virus particles in total) per hippocampus with a rate of 0.2 μL/min. 

After injection of both hippocampi, the incision was sutured with Ethilon Monofil 

(Ethicon, Somerville, NJ, USA). The skin was cleaned and treated with Octenisept 

(Schülke). Four hours, 24 hours, and 48 hours post injection, mice received analgetic 

treatment with intraperitoneal injections of Carprofen (5 mg/kg) and were scored 

according to the experimental procedures approved by the LANUV. Animals were kept 

for 4 weeks before behavioral experiments were performed. One week before starting 

behavioral experiments mice were single housed and control (shScr injected) or knock-

down (sh2 injected) mice were handled for 2 min per day for 3 consecutive days, before 

the first behavioral experiments were performed. 

 

2.10 Behavioral animal experiments  

Behavioral testing and tissue collection were performed during the morning of the light 

phase. Data collection and analysis of behavioral experiments were performed 

automatically using the ANY-maze (Stoelting) video tracking system. 
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2.10.1 Elevated zero maze test  

At day one, naive single housed control (shScr injected) or knock-down (sh2 injected) 

mice were exposed to a custom made zero maze with a height of 70 cm, a boardwalk 

width of 5 cm and an outside circumference of 200 cm. It consisted of two open quadrants 

and two closed quadrants. In this test each mouse was allowed to investigate the apparatus 

for 5 min. Sessions were scored for the time spent in open and closed quadrants, distance 

moved, velocity of movement, as well as the number of transitions between quadrants. 

Transitions were scored when the center point of the body left the former quadrant. Time 

spent in the open quadrants vs. the closed quadrants was calculated.  

 

2.10.2 Open field test  

At day two, control (shScr injected) or knock-down (sh2 injected) mice were exposed to 

a custom-made open field arena consisting of a rectangular open field (30.5 cm x 38.5 cm) 

for 6 min. Quadrants were defined as central (inner area more than 5 cm distant from 

apparatus wall) and peripheral (within 5 cm distance of apparatus wall) zones. Sessions 

were scored for the time spent in the central and peripheral zones, the number of 

transitions between central and peripheral zones, as well as distance moved, and velocity 

of movement. Transitions were scored when the center point of the body left the former 

zone. Time spent in the central zone vs. time spent in the peripheral zone was calculated.  

 

2.10.3 Spatial object recognition  

On day three, control (shScr injected) or knock-down (sh2 injected) mice were exposed 

to a custom-made open field arena consisting of the rectangular open field (30.5 cm x 

38.5 cm). The experimental apparatus now included an internal visual cue placed on one 

of the four arena walls and three distinct objects, i.e. a glass bottle, a rectangular metal 

column, and a half round shaped plastic cylinder, which were placed in the arena at 

specified locations. During three training sessions on the same day, mice were allowed to 

freely explore the environment and objects for 6 min in each session. Mice were placed 

back to their home cage for 3 minutes between the training sessions. After 24 h, mice 

were placed back in this arena for the testing phase. The same three objects were present 

in the arena, but one of the three objects (the half round shaped plastic cylinder) was 

displaced to a novel spatial location. Mice were allowed to freely explore the environment 
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and the objects for 6 min. The third training sessions and the testing sessions were scored 

for exploratory behavior in which the animal’s snout was within approximately 1 cm 

distance of an object. Discrimination between the objects was calculated using a 

discrimination ratio (DR), calculated as the absolute difference in the time spent exploring 

the novel and familiar objects divided by the total time spent exploring the objects, which 

takes into account individual differences in the total amount of exploration (Barker and 

Warburton, 2011). Test sessions were additionally scored for the distance moved and 

velocity of movement. 

 

2.10.4 Fear conditioning  

Contextual fear conditioning was performed using the ugo basile fear conditioning system 

(Stoelting). On the eighth day, animals received three training sessions in enclosed 

rectangular conditioning chambers. Control (shScr injected) or knock-down (sh2 

injected) animals were exposed to the conditioning context for 148 s, followed by a 2 s 

0.75 mA footshock. Animals were removed from the chambers 30 s after receiving a 

footshock and were placed back to their home cage for 3 minutes between the training 

sessions. After 24 h, animals were tested for memory retention by returning them to the 

conditioning chamber for a single 5 min context test. Training and testing sessions were 

recorded and freezing behavior as well as distance moved, and velocity of movement was 

measured using automated scoring software (ANY-maze).  

 

2.11 Preparation of tissue 

For tissue preparation, newborn animals were cooled on ice and decapitated. Adult 

animals were anesthetized with 5% isoflurane and decapitated. Fur, muscle, and the lower 

jaw were removed. The cranium was opened along the main fissure using scissors and 

forceps, and the brain was removed. For western blotting or RNA isolation, the 

hippocampi were isolated in ice-cold Hanks´ balanced salt solution (HBSS; 

Gibco/Thermo Fisher Scientific) and stored at -80 °C. For immunohistochemistry, the 

whole brain was fixed in 4% (w/v) paraformaldehyde (PA) for 30 min. Subsequently, the 

tissue was washed in PBS for 30 min at RT. 
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2.12 Immunohistochemistry 

For immersion fixation, whole brains were fixed in 4% (w/v) PA for 30 min and washed 

for 30 min in PBS. For cryo-protection, tissue was incubated in 10% (w/v) sucrose (in 

PBS) for 1 h at RT and subsequently in 30% (w/v) sucrose (in PBS) for 2 d at 4 °C. For 

cryo-sectioning, brains were trimmed by removing the olfactory bulbs and the cerebellum. 

Tissue was embedded in freezing medium (Tissue Tek, Sakura Finetek, Zouterwoude, 

NL) and frozen at -20 °C. Tissue was cut in 18 – 22 μm thick sections at -22 °C using a 

cryostat (Microm HM550, Thermo Fisher Scientific). After transfer onto microscope 

slides (SuperForst Plus, Menzel), slices were air-dried and subsequently stored at -20 °C. 

For immunohistochemistry, samples were thawed, dried at RT, and encircled with a 

hydrophobic marker (ImmEdge™ Pen, Vector Laboratories, CA, USA). Immunological 

staining was performed in a damp chamber to avoid drying of samples. After several 

rinses with PBS, unspecific binding sites were blocked for 1 h at RT in CT blocking 

solution. Subsequently, samples were incubated with primary antibodies (Table 9) in CT 

and 0.75% (v/v) Triton X-100 at 4 °C over night, rinsed for several times with PBS and 

then incubated with secondary antibodies (Table 10) in CT and 0.75% (v/v) Triton X-100 

at RT for 1 h. Finally, samples were washed with PBS, before embedding samples on 

mounting slides with Aqua-Poly/Mount (Polysciences, Eppelheim, Germany) under 

coverslips. Fluorescent images were obtained with an inverted confocal laser scanning 

microscope (TCS SP5II; Leica, Wetzlar, Germany).  

 

2.13 Quantification of gene expression by real-time PCR 

The transcript numbers of individual target genes expressed in cells and/or tissue were 

determined using quantitative PCR (qPCR). 

 

2.13.1 RNA isolation and cDNA synthesis 

Total RNA from PHNs or OHSCs was isolated after 14 - 15 d.i.v.. Total RNA from 

HEK293 cells was isolated 2 – 3 days after transfection using the RNeasy Mini Kit 

(Qiagen) according to the supplier´s protocol. Total RNA from whole hippocampi was 

isolated by grinding the frozen tissue to a powder using a Teflon bar, followed by adding 

200 µL of RLT+ Buffer (Qiagen) to the frozen powder. Further homogenization was 

achieved by passing the lysate 5 – 10 times through a 25-gauge needle attached to a 1 ml 
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syringe until a homogeneous lysate was achieved. To minimize RNA loss, the syringe 

was washed with 150 µL of RLT+ Buffer (Qiagen). First-strand cDNA synthesis was 

performed using Oligo-dT primers (Qiagen) and Moloney Murine Leukemia Virus 

reverse transcriptase (M-MLV-RT, Life Technologies/Thermo Fisher Scientific) 

according to the supplier’s protocol. Briefly, cDNA synthesis was performed in a final 

volume of 25 μl. 1 µg of RNA was mixed with 0.5 μg Oligo-dT Primers and denatured at 

65 °C for 10 min. Samples were transferred quickly to 4 °C for 2 min for hybridization 

of Oligo-dT primers to mRNA. Synthesis of cDNA was performed in First-Strand Buffer 

(1x), 1 mM dNTPs, 40 U RNaseOUT™ (Invitrogen), 10 mM DTT, 400 U M-MLV-RT 

at 37 °C for 1 h. The enzyme was inactivated at 65 °C for 10 min and cDNA samples 

were aliquoted and stored at -80 °C. 

 

2.13.2 Standard fragment generation for qPCR 

Specific primer pairs targeting the genes of interest were designed to amplify standard 

fragments (see Table 11). Specificity of primer pairs was confirmed by BLAST analysis. 

For quantification, defined molecule numbers of standard fragments were used as PCR 

templates in the light cycler reaction to establish calibration curves. The concentration of 

purified standard fragments was determined and molecule numbers were calculated based 

on equation 1. An ubiquitously expressed gene (housekeeping gene), here a component 

of the glycolysis cascade, the glyceraldehyde-3-phosphate dehydrogenase (gapdh), 

served as control and to normalize data. Amplicon sizes of gapdh fragments are 150 bp 

for amplification on cDNA and 284 bp for amplification on genomic DNA. 

 

Equation 1: 

݈݁݉ܽݏ ݊݅ ݏ݈݁ݑ݈ܿ݁݉ ܣܰܦ =
amount of DNA ቂng

µLቃ  10ଶଷ ݔ 6.022 ݔ

fragment length (bp) 10 ݔଽ ݈݉/݃ 660 ݔ
 

 

2.13.3 Real-time PCR 

Thermocycling was performed in a LightCycler 1.5 (Roche, Mannheim, Germany) using 

the QuantiTect SYBR Green PCR Kit (Qiagen). QPCR reactions were performed in a 

final volume of 20 µL in 1x SYBR green reaction buffer on 2 µL aliquots of first-strand 

cDNA samples and 100 nM of each primer (see Table 11). Melting curves were assessed 

at the end of each experiment to test for the specificity of the generated DNA fragments. 
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During each qPCR run (for details see Table 12), three standard fragment probes 

containing fragment numbers covering at least five orders of magnitude were amplified 

in duplicate. QPCR reactions of samples were performed in duplicate on first-strand 

cDNA samples and a water control was run in parallel. Data were analyzed using the 

second derivative maximum of the exponential amplification reaction to determine the 

crossing point (CP) of each sample. CP values of the standard probes were assigned to 

defined fragment numbers and thus could be used to calculate a calibration curve. 

The amplification efficiency (E) was calculated from the slope (m) of the calibration 

curve using equation 2. To analyze the expression of a target gene in comparison to gapdh, 

different methods were used: (1) for relative expression levels the delta-delta Ct-method 

(Equation 3) was used. (2) If necessary, efficiency-corrected relative expression values 

of the target gene in treated and non-treated samples was determined, as qPCR runs may 

deviate from optimal, i.e. 2-fold, amplification efficiency (Equation 4). 

 

Equation 2: 

ܧ = 10ିଵ/ 

 

Equation 3: 

= ݊݅ݏݏ݁ݎݔ݁ ݁ݒ݅ݐ݈ܽ݁ݎ 2ି(ெ   ௧௧ )ି(ெ    ) 

 

Equation 4: 

= ݊݅ݏݏ݁ݎݔ݁ ݀݁ݐܿ݁ݎݎܿ ܧ  
(௧௧ )∆(݁݊݁݃ ݐ݁݃ݎܽݐ)ܧ

 ( )∆(݁݊݁݃ ݁ܿ݊݁ݎ݂݁݁ݎ)ܧ

 

2.13.4 Agarose gel electrophoresis  

Size separation of DNA fragments was performed by gel electrophoresis in horizontal 

agarose gels. Visualization of DNA fragments was achieved by staining with SYBR Safe 

(Invitrogen). This dye can be excited at 509 nm and emits fluorescence at 534 nm. For 

agarose gel electrophoresis a TAE-based buffer (40 mM Tris, 1 mM EDTA, 10 mM acetic 

acid, pH 8.0) system was used. Depending on the DNA fragment sizes agarose 

concentrations ranged from 0.75 % to 2 % (w/v). Agarose was heat-dissolved in TAE 

buffer prior to addition of SYBR safe (1:10,000). Samples were mixed with 1/10 volume 

sample buffer (50 % (v/v) glycerol, 0.1 % (w/v) xylene cyanole, 10 x TAE). 
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Electrophoresis was performed at 90 mV. A DNA ladder was run in parallel for 

identification of DNA fragment sizes.  

 

2.14 Protein analysis 

Protein expression in hippocampal tissue was examined by western blotting. 

 

2.14.1 Protein preparation from tissue  

Protein preparation was done according to S. Baghirova et al., (Baghirova et al., 2015) 

unless specified otherwise. To study protein expression in tissue, 100 µL ice-cold buffer 

A (150 mM NaCl, 50 mM HEPES, 25 µg/ml Digitonin (Sigma-Aldrich), 1 M Hexylene 

glycol (Sigma-Aldrich) and 1% (v/v) Protease inhibitor cocktail (Sigma-Aldrich)), was 

added to 5 mg of tissue. Samples were homogenized with a pestle on ice and additionally 

passed 5 – 10 times through a 25-gauge needle attached to a 1 ml syringe until a 

homogeneous lysate was obtained. The lysate was incubated for 10 min at 4 °C in a shaker, 

before it was centrifuged at 4000xg for 10 min at 4 °C. The supernatant containing the 

cytosolic proteins was collected and stored at -80 °C for further analysis. The pellet was 

resuspended in 200 µL of ice-cold buffer B (150 mM NaCl, 50 mM HEPES, 15% (v/v) 

Igepal (Sigma-Aldirch), 1 M Hexylene glycol, 1% (v/v) Protease inhibitor cocktail). The 

suspension was incubated for 30 min at 4 °C in a shaker, before it was centrifuged at 

6000xg for 10 min at 4 °C. The supernatant, containing membrane proteins, was collected 

and stored at -80 °C for further analysis. 

 

2.14.2 Electrophoretic protein separation and western blotting 

Electrophoretic separation of proteins was performed based on a protocol described by 

Laemmli (Laemmli, 1970). Sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed in ‘Minigel Twin’ chambers (Biometra). Protein 

concentrations were determined with the amido-black assay. Proteins (25 µg) were 

separated in 10% polyacrylamide gels. Electrophoresis was performed with 25 mA/gel 

for approx. 60 min in running buffer (0.1% (w/v) SDS, 192 mM glycine, 25 mM 

Tris/HCl). Proteins were transferred for 45 min at 2.5 mA/cm2 onto PVDF membranes 

(polyvinylidene fluoride; Immobilon P, Millipore) in transfer buffer (20% (v/v) methanol, 
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25 mM Tris, pH 10.4). Membranes were stored at 4°C in PBS-Tween (PBS, 0.05% (v/v) 

Tween) before protein detection. 

 

2.14.3 Protein detection on western blots 

For antibody staining, western blot membranes were blocked with blocking solution (5% 

(w/v) milk powder in PBS-Tween) for 1 hour at room temperature. Afterwards, primary 

antibodies (see Table 13) were applied in incubation solution (1% (w/v) milk powder in 

PBS-Tween) and incubated overnight at 4 °C. After washing the membranes in 

PBS-Tween once shortly and 3 x 5 min at room temperature, HRP-coupled secondary 

antibodies (see Table 14) were applied in incubation solution. The membrane was washed 

3 x 5 min in PBS-Tween and once with PBS, followed by application of ECL (enhanced 

chemiluminescence)-based detection. The Chemiluminescence Detection Kit for HRP 

(AppliChem) was used according to the supplier’s protocol. Detection of specifically 

bound antibodies was performed by exposing the membranes to X-ray film (Amersham 

Hyperfilm™ ECL™, GE Healthcare) for 30 s to 1 h. 

For re-probing of western blots, membranes were incubated in stripping buffer (200 mM 

glycine, 0.1% (w/v) SDS, 1% (v/v) Tween-20, pH 2.2) twice for 10 min at RT. Buffer 

was discarded and membranes were washed with PBS-Tween twice for 10 min. 

Afterwards, membranes were washed with PBS-Tween twice for 5 min before they were 

used for additional immunostaining experiments. 

 

2.15 Calcium-imaging 

To monitor intracellular Ca2+-fluctuations in PHNs, Ca2+-responses in rAAV9 (pENN-

hU6-shRNA-CaMKII-GCaMP6f-WPRE) transduced neurons were triggered by voltage 

step stimulations of varying intensities. Therefore, coverslips carrying PHNs were placed 

in a custom-made recording chamber, surrounded by platinum wires (diameter of 0.5 mm) 

attached to an external stimulation unit (NIHON Electronic Stimulator 1001, NIHON 

KOHDEN, Rosbach, Germany). Cells were superfused constantly with extracellular 

saline solution containing 150 mM NaCl, 4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM 

HEPES, pH 7.4. Live cell imaging was performed using an Olympus BX50WI 

microscope body (Olympus, Tokio, Japan) and an ANDOR-TM camera (iXONEM+ DU-

897D-CS0BV, Andor Solis, Oxford Instruments, Abingdon, UK) for signal detection. For 

excitation, a 470 nm LED (THORLABS, M00462613) was used. The light was guided 
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through a dichroic mirror reflecting wavelengths ≤ 498 nm onto the sample. The 

excitation light was focused on the sample via the objective and the emitted light was 

guided through the dichroic mirror which passed wavelengths ≥ 498 nm. Photons were 

collected by the camera. The system was operated with an ANDOR SOLIS software 

(Andor Solis X-2747). During measurements, exposure time and acquisition rate was 

automatically adjusted. The time units were recalculated to seconds based on the number 

of frames taken per second. 

 

2.16 Whole-cell patch-clamp recordings 

Whole-cell patch-clamp recordings were performed at RT following the methods 

described by Hamill et al. (Hamill et al., 1981). Patch pipettes with tip resistances between 

2.5 and 4 MΩ were fashioned from borosilicate glass with an inner diameter of 0.86 mm 

and an outer diameter of 1.5 mm (Harvard Apparatus, Holliston, MA, USA) using a 

temperature-controlled pipette puller (P1000, Sutter Instrument, Novato, CA, USA). For 

HEK293 cells and PHNs, the pipettes were filled with intracellular saline solution 

containing 10 mM KCl, 10 mM NaCl, 120 mM KGluconate, 10 mM EGTA, 10 mM 

HEPES, 4 mM MgATP and 0.3 mM NaGTP, adjusted to pH 7.3 with KOH and an 

osmolality of ~310 mOsm/L. During the experiments, the cells were superfused 

constantly with extracellular saline solution containing 150 mM NaCl, 4 mM KCl, 2 mM 

CaCl2, 2 mM MgCl2 and 10 mM HEPES, adjusted to pH 7.4 with NaOH and adjusted to 

330 mOsm/L with glucose. To isolate HCN-mediated Ih-currents in primary hippocampal 

neurons, glutamate receptor (AMPA/kainate receptor) mediated currents were blocked by 

10 µM CNQX (Tocris Bioscience, Ellisville, MI, USA) and NMDA-mediated currents 

were blocked by 50 µM D-APV (Tocris Bioscience), GABAA receptor-mediated currents 

were blocked by 25 µM Bicuculline (Tocris Bioscience), inwardly rectifying potassium 

currents were blocked by 0.5 mM BaCl2 (Sigma-Aldrich, Schnelldorf, Germany), 

voltage-dependent potassium channels were blocked by 3 mM 4-AP (Tocris Bioscience), 

and voltage-dependent sodium channels were blocked by 2 µM TTX (Tocris Bioscience). 

To isolate action potentials in primary hippocampal neurons, AMPA/kainate receptor-

mediated currents were blocked by 10 µM CNQX, NMDA-mediated currents were 

blocked by 50 µM D-APV, and GABAA receptor-mediated currents were blocked by 

25 µM Bicuculline. To isolate miniature EPSCs, voltage-dependent sodium channels 

were blocked by 2 µM TTX, and GABAA receptor-mediated currents were blocked by 
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25 µM Bicuculline. To isolate spontaneous and evoked EPSCs, GABAA receptor-

mediated currents were blocked by 25 µM Bicuculline. To determine mEPSC properties 

with reasonable fidelity and to prevent detection of “false events” (due to random noise 

fluctuations), spontaneous mEPSCs with peak amplitudes of >15 pA and a charge 

criterion of >25 fC (Guzman et al., 2010) were analyzed using a commercial software 

(Mini Analysis, Synaptosoft, Version 6.0.3). Evoked EPSCs were triggered by 

0.5 mA/1 ms current injection at a frequency of 0.2 Hz via a bipolar electrode (PI2CEA3 

concentric bipolar electrode, tip diameter 2–3 μm, platinum/iridium, Hofheim, Germany) 

placed at a distance of 200–250 μm from the patched cell. Peak current amplitudes were 

measured from baseline current amplitudes determined before the stimulation (Guzman 

et al., 2014). Whole-cell voltage-clamp and current-clamp recordings were performed 

using an EPC10 patch-clamp amplifier (HEKA-Elektronik, Lambrecht, Germany) that 

was controlled by the program Patch Master (version 2.5; HEKA-Elektronik). 

Electrophysiological data were sampled at 20 kHz and low pass filtered at 2.9 kHz with 

a four-pole Bessel-filter. Offset potentials, electrode capacity and membrane capacity 

were compensated manually. PHNs were voltage-clamped at -70 mV. The liquid junction 

potential between intracellular and extracellular solutions was calculated and also 

compensated by adjusting the offset potential. Series resistance was compensated 

between 60 and 80 % with a time constant () of 100 μs.  

 

2.17 Data analysis 

The software used for data recording and analysis is listed in Table 1. Data are represented 

as mean ± s.d. (standard deviation) or as box and whisker plots. The two-tailed unpaired 

Student’s t test was applied for calculation of p values using GraphPad Prism (version 5; 

Graphpad Software Inc., La Jolla, CA, USA). A p value of <0.05 was considered 

significant (*p<0.05, **p<0.01, ***p<0.001).  
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2.18 Figures and Tables of Materials and Methods  

Figure 2.1: Equipment for stereotaxic rAAV delivery into the mouse hippocampus 

(A) Picture showing the isofluorane vaporizer, the stereotaxic frame with micro pump, NanoFil syringe, 
zygomatic bars and a mounted subject. (B) Picture showing the mounted head of a subject. The skin was 
removed and two bilateral holes were drilled, according to positions determined via the bregma, into the 
cranium to facilitate access for the Nanofil injection needle.  
 
Table 1: Software used in this study 

Software Task  Developer 
Adobe Illustrator image/data processing Adobe 
Andor Solis X-2747 data acquisition Oxford Instruments 
ANZ-maze data acquisition/ data analysis Stoelting 
EndNote  reference management  Clarivate Analytics 
Excel data analysis  Microsoft  
Fitmaster data analysis HEKA 

GENtle  data analysis  Magnus Manske, University of 
Cologne, DE  

IGOR Pro  image processing  Wavemetrics 
ImageJ image processing  Wayne Rasband, NIH, USA  
ImageLab  data acquisition  Bio-Rad Laboratories  
LAS-AF  data acquisition  Leica Microsystems  
MiniAnalsysis data analysis Synaptosoft 
NanoDrop 2000  data acquisition  Thermo Fisher Scientific  
Origin data analysis OriginLab 
Patchmaster data acquisition  HEKA 
pClamp 10 data acquisition/ data analysis Molecular Devices 
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Prism 5.0 data analysis GraphPad Software 
Windows XP, NT, and 7  operating system  Microsoft  
Word text processing  Microsoft  

 
Table 2: Sequences and binding positions of examined shRNAs  

Sequences of individual shRNAs and their target positions relative to the ATG start codon are summarized 
in Table 2. Target sequences for shRNAs are based on the murine mRNA sequences NM_010408.3 for 
HCN1, NM_008226.2 for HCN2, and NM_001081192.1 for HCN4. 

Target gene Name Sequence Position (bp) 

 shScr F: CAACAAGATGAAGAGCACCAA 
R: TTGGTGCTCTTCATCTTGTTG 

 

HCN1 sh1.1 F: GTGGCCTACATGCAAATGTAA 
R: TTACATTTGCATGTAGGCCAC 2862 – 2882 

HCN1 sh1.2 F: GCTGGGTTTCTCTGAATGAAA 
R: TTTCATTCAGAGAAACCCAGC 957 – 977 

HCN1 sh1.3 F: CCTCCAATCAACTATCCTCAA 
R: TTGAGGATAGTTGATTGGAGG 1876 – 1896 

HCN1 sh1.4 F: GCGCCAGAAGATACATGATTA 
R: TAATCATGTATCTTCTGGCGC 1252 – 1272 

HCN1 sh1.5 F: GCACTTCGTATCGTGAGGTTT 
R: AAACCTCACGATACGAAGTGC 728 – 748 

HCN2 sh2.1 F: CCATGCTGACAAAGCTCAAAT 
R: TTTGAGCTTTGTCAGCATGG 1583 – 1603 

HCN2 sh2.2 F: CTGTTGTTCATGGTGGGAAAT 
R: ATTTCCCACCATGAACAACAG 574 - 594 

HCN2 sh2.3 F: GCATTGTTATTGAGGACAACA 
R: TGTTGTCCTCAATAACAATGC 713 – 733 

HCN2 sh2.4 F: CCGGCATTGTTATTGAGGACA 
R: TGTCCTCAATAACAATGCCGG 716 – 736 

HCN4 sh4.1 F: GAGAGGAGATCATCAACTTTA 
R: TAAAGTTGATGATCTCCTCTC 1733 – 1753 

HCN4 sh4.2 F: CTCCAAACTGCCGTCTAATTT 
R: AAATTAGACGGCAGTTTGGAG 3582 – 3602 

HCN4 sh4.3 F: AGCGCATCCATGACTACTATG 
R: CATAGTAGTCATGGATGCGCT 1646 – 1666 

HCN4 sh4.4 F: AGCGTCAGAGCGGATACTTAT 
R: ATAAGTATCCGCTCTGACGCT 2014 – 2034 

HCN4 sh4.5 F: GAAGACATCCTCAGGTTCTTT 
R: AAAGAACCTGAGGATGTCTTC 3453 – 3473 

 
Table 3: Sequences and binding positions of examined sgRNAs  

Sequences of individual sgRNAs and their target positions relative to the transcriptional start site (TSS). 
Target sequences of sgRNAs were chosen according to the predicted TSS listed in the Eukaryotic Promoter 
Database (EPD) (Dreos et al., 2015), or the promoter nucleotide sequence provided by GeneCopoeia for 
the hDOP1 receptor promoter. 

Target gene Name Sequence Position (bp) 

 sgScr F: CAACAAGATGAAGAGCACCAA 
R: TTGGTGCTCTTCATCTTGTTG  

HCN1 sg1.1 F: CGTCCAACAGCCGCGACGATGC 
R: GCATCGTCGCGGCTGTTGGACG 

232 – 252 
 

HCN1 sg1.2 F: CTCCGCGTCCAACAGCCGCGAC 
R: GTCGCGGCTGTTGGACGCGGAG 227 – 248 

HCN1 sg1.3 F: GCTCCTTGGCTTCGAGCCCCCGGCGAGT 139 – 166 
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R: ACTCGCCGGGGGCTCGAAGCCAAGGAGC 

HCN2 sg2.1 F: TCGCACCCGGAGTCGGCGGAC 
R: GTCCGCCGACTCCGGGTGCGA 

162 – 182 
 

HCN2 sg2.2 F: GACTGCCCGGCGCCGCCTCGCCATGGAT 
R: ATCCATGGCGAGGCGGCGCCGGGCAGTC 0 – 27 

HCN2 sg2.3 F: GCGGCCAAGGGCGGCGCGAATG 
R: CATTCGCGCCGCCCTTGGCCGC 238 - 259 

HCN2 sg2.4 F: AGTCGGCGGACGAGCCCGGCC 
R: GGCCGGGCTCGTCCGCCGACT 173 - 193 

HCN4 sg4.1 F: GTAGAGGAGGCAAAGCGAGAAC 
R: GTTCTCGCTTTGCCTCCTCTAC 

139 – 1159 
 

HCN4 sg4.2 F: GAGCTGCGGCGGCTTCATGAAT 
R: ATTCATGAAGCCGCCGCAGCTC -17 – 4 

HCN4 sg4.3 F: CGGCTGGGCTCAGCTAGAGGC 
R: GCCTCTAGCTGAGCCCAGCCG 125 – 144 

hDop1 sgDop1.1 F: GACCAGCAAGCGCACAGGCCGGCGGGGT 
R: CCCCGCCGGCCTGTGCGCTTGCTGGTC 

-45 – -18 
 

hDop1 sgDop1.2 F: GCTGCCCAGGTGACCAGTCCTGGGAGT 
R: CTCCCAGGACTGGTCACCTGGGCAGC 

133 – 159 
 

hDop1 sgDop1.3 F: CTGATGTGCTTTCTCTTAGGAAGAT 
R: TCTTCCTAAGAGAAAGCACATCAGG 

-24 – 1 
 

hDop1 sgDop1.4 F: GTCTGCCATGGACGGGACTGGGCTGGT 
R: CCAGCCCAGTCCCGTCCATGGCAGAC 

18 – 44 
 

hDop1 sgDop1.5 F: AGCGCCCAGGAGCCCTTAGCCGGGGT 
R: CCCCGGCTAAGGGCTCCTGGGCGCT 

182 – 208 
 

 
Table 4: Sequences and binding positions of functional sgRNAs and shRNAs 

Sequences of individual sgRNAs and their target positions relative to the transcriptional start site (TSS) 
and sequences of individual shRNAs and their target positions relative to the ATG start codon. Target 
sequences of sgRNAs were chosen according to the predicted TSS listed in the Eukaryotic Promoter 
Database (EPD). Target sequences for shRNAs are based on murine mRNA sequences NM_010408.3 
(HCN1), NM_008226.2 (HCN2), and NM_001081192.1 (HCN4). 

Target gene Name Sequence  Position (bp) 

HCN1 sg1 F: CTCCGCGTCCAACAGCCGCGAC 
R: GTCGCGGCTGTTGGACGCGGAG 227 – 248 

HCN2 sg2 F: TCGCACCCGGAGTCGGCGGAC 
R: GTCCGCCGACTCCGGGTGCGA 

162 – 182 
 

HCN4 sg4 F: GTAGAGGAGGCAAAGCGAGAAC 
R: GTTCTCGCTTTGCCTCCTCTAC 

135 – 159 
 

 sgScr F: CAACAAGATGAAGAGCACCAA 
R: TTGGTGCTCTTCATCTTGTTG   

HCN1 sh1 F: CCTCCAATCAACTATCCTCAA 
R: TTGAGGATAGTTGATTGGAGG 1876 – 1896 

HCN2 sh2 F: CCATGCTGACAAAGCTCAAAT 
R: TTTGAGCTTTGTCAGCATGG 1583 – 1603 

HCN4 sh4 F: CTCCAAACTGCCGTCTAATTT 
R: AAATTAGACGGCAGTTTGGAG 3582 – 3602 

 shScr F: CAACAAGATGAAGAGCACCAA 
R: TTGGTGCTCTTCATCTTGTTG  
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Table 5: Plasmids to generate rAAVs used in this study 

Plasmid Application 
pCKII-dSaCas9KRAB-eGFP Visualization of dSaCas9 expression 
pCKII-dSaCas9KRAB-hU6-
sgScr/1.1/1.2/1.3/2.1/2.2/2.3/2.4/4.1/4.2/4.3/4.4 CRISPRi mediated knockdown 

pENN-hU6-shScr/1/2/4-CKII-eGFP RNAi mediated knockdown 
pENN-hU6-shScr/2-CKII-GCaMP6f-WPRE RNAi mediated knockdown/calcium imaging 
pRC2 Generation of rAAV serotype2 
pRC9 Generation of rAAV serotype9 
pXX6-80 Helper plasmid for generation of rAAVs 

 

Table 6: Iodixanol gradient-solutions for rAAV purification: (for 50 ml solution) 

10 x PBS/K is composed of KCl (50 mM), KH2PO4 (14 mM), NaCl (1379.3 mM), Na2HPO4 (80.6 mM); 
pH 7.4 

 15 % 25% 40% 60% 
10 x PBS / K (50 mM) 5 ml 5 ml 5 ml  
MgCl2 (50 mM) 1 ml 1 ml 1 ml 1 ml 
NaCl (5 M) 10 ml    
Optiprep (60 % iodixanol) 12.5 ml 20.83 ml 33.33 ml 49 ml 
H2O 22.5 ml 24.17 ml 11.67 ml  
Phenolred 375 µL 500 µL  125 µL 

 
Table 7: Primary antibodies used for immunocytochemistry 

List of primary antibodies applied for immunocytochemistry. Abbreviations: gp, guinea pig; rb, rabbit; rt, 
rat; ms, mouse; ch, chicken.  

Antigen Source Dilution Supplier 
GFP ch  1:1000 Chemicon (ab16901)  
HA rt 1:100 Roche/Merck  
HCN1 gp 1:500 in house 
HCN2 rb 1:500 in house 
HCN4 rb 1:500 in house 
IB4  1:1000 ThermoFisher (I21414) 
LAMP-1 ms 1:1000 Santa Cruz (sc-20011) 
MAP2 rb 1:1000 Synaptic Systems (188 002) 
mCherry ms 1:500 Clontech (632543) 
TOPRO-3  1:1000 Invitrogen (T3605)  

 
Table 8: Secondary antibodies used for immunocytochemistry 

List of secondary antibodies applied for immunocytochemistry. Abbreviations: gp, guinea pig; rb, rabbit; 
ms, mouse; rt, rat; ch, chicken; dk, donkey. 

Antibody Source Dilution Supplier 

α ch Cy2 dk 1:200 Dianova (703-225-155) 

α gp Cy3 dk 1:500 Dianova (706-165-148) 

α ms Cy3 dk 1:200 Dianova (715-165-150) 

α rb Cy3 dk 1:500 Dianova (711-165-152) 

α rb Dy488 dk 1:500 Dianova (711-485-152) 
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α rt Cy5 dk 1:500 Dianova (712-175-153) 

α rt Dy488 gt 1:500 Invitrogen (A11006) 

α ms Cy5 dk 1:400 Dianova (715-175-151) 

Streptavidin-Cy3  1:1000 Dianova (016-160-084) 

 
Table 9: Primary antibodies used for immunohistochemistry of tissue sections 

List of primary antibodies applied for immunocytochemistry. Abbreviations: rb, rabbit; rt, rat; ms, mouse; 
ch, chicken.  

Antigen Source Dilution Supplier 
Caspase-3 rb 1:50 Abcam (ab2302) 
GFAP ms 1:500 Sigma (G3893) 
GFP ch  1:1000 Chemicon (ab16901)  
HCN1 7C3 rt 1:5 in house 
HCN2 3G7 rt 1:10 in house 
HCN4 PG2-1A4 rt 1:2 in house 
NeuN rb 1:500 Abcam (ab104225) 
TOPRO-3  1:1000 Invitrogen (T3605)  

 
Table 10: Secondary antibodies used for immunohistochemistry of tissue sections 

List of secondary antibodies applied for immunocytochemistry. Abbreviations: rb, rabbit; ms, mouse; rt, 
rat; ch, chicken; dk, donkey. 

Antibody Source Dilution Supplier 
α ch Cy2 dk 1:200 Dianova (703-225-155)  
α ms Cy3 dk 1:400 Dianova (715-165-150) 
α rb Cy3 dk 1:400 Dianova (711-165-152) 
α rt Cy3 dk 1:400 Dianova (712-165-153) 

 
Table 11: Sequences of qPCR primer pairs 

Primer sequences, accession numbers, melting temperatures, and amplicon sizes for target and reference 
genes used in qPCR experiments. 

Target gene Sequence Tm (°C) Fragment length (bp) 

BDNF 
NM_001048139.1 

F: TGCAGGGGCATAGACAAAAGG 
R: CTTATGAATCGCCAGCCAATTCTC 62 110 

c-fos 
NM_010234 

F: CTGTCAACACACAGGACTTTT 
R: AGGAGATAGCTGCTCTACTTTG 62 274 

GFP 
JQ064510.1 

F: GACGTAAACGGCCACAAGTTC 
R: GAAGTCGTGCTGCTTCATGTG 60 189 

hDop1 
NM_000794.3 

F: GACCTTGTCTGTACTCATCTCCT 
R: GTCACAGTTGTCTATGGTCTCAG 60 118 

hGAPDH  
NM_002046.5 

F: GGTATCGTGGAAGGACTCATG 
R: GCCCACAGCCTTGGCAGC 63 150 

mCherry 
KJ567138 

F: GAACGGCCACGAGTTCGAGA 
R: CTTGGAGCCGTACATGAACTGAGG 63 145 

mGAPDH 
NM_008084.2 

F: GGCATTGTGGAAGGGCTCATG 
R: GCCCACAGCCTTGGCAGC 62 150 

mHCN1 F: CTCAGTCTCTTGCGGTTATTACG 62 91 
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NM_010408.3 R: TGGCGAGGTCATAGGTCATG 

mHCN2 
NM_008226.2 

F: ATCGCATAGGCAAGAAGAACTC 
R: CAATCTCCTGGATGATGGCATT 60 102 

mHCN4 
NM_001081192.1 

F: GCATGATGCTTCTGCTGTGT 
R: GCTTCCCCCAGGAGTTATTC 60 123 

mTOR 
NM_020009.2 

F: CTCCGATTGTGAAATTGTTTGA 
R: TGCTGGTAAATCAAAGGGTCTT 60 355 

SaCas9 
HE980450.1 

F: CAGATTCAAGACCAGCGACTAC 
R: GTCGATGTAGGTGTCGATGAAG 62 103 

TrkB 
NM_001025074.2 

F: TGACGCAGTCGCAGATGCTG 
R: TTTCCTGTACATGATGCTCTCTGG 62 274 

 

Table 12: qPCR program sequence 

Program Process Temperature (°C) Duration Iteration Detection 

Pre-incubation Denaturation 95 10 min 1 - 

Amplification 
Denaturation 
Annealing 
Elongation 

95 
Tm of primer 
72 

20 s 
20 s 
20 s 

40-50 
- 
- 
single 

Melting 
Denaturation 
Annealing 
Melting 

95 
60 
65 to 95 

1 s 
15 s 
0.1 °C/s 

1 
- 
- 
continuously 

Cooling Cooling 40 30 s 1 - 

 
Table 13: Primary antibodies used for western blot analyses. 

List of various primary antibodies applied for specific detection of proteins on western blots: [rb] rabbit; 
[ms] mouse; 

Antigen  Name  Source  Dilution  Supplier  
β-tubulin  tubulin  ms  1:5000  Sigma-Aldrich (T4026)  
green fluorescent protein  GFP  rb  1:5000 Abcam (ab290)  
HCN2  HCN2 3G7 rb  1:50 In-house 

 
Table 14: Secondary antibodies used for western blot analyses. 

List of various secondary antibodies applied for specific detection of proteins on western blots: [HRP] horse 
radish peroxidase; [rb] rabbit; [ms] mouse; [gt] goat; [dk] donkey; 

Antibody  Characteristics  Source  Dilution  Supplier  
α-rb  HRP-coupled  gt  1:10,000  Sigma-Aldrich (A6154)  
α-ms  HRP-coupled  dk  1:1000  Santa Cruz (sc-2318)  
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Chapter 3 

Results 
 
 

 

3.1 Knock-down of HCN channel expression in vitro 

To examine the functional role of proteins, transgenic strategies, e.g., knock-in or 

knock-out approaches emerged as frequently used and extremely powerful tools. 

Typically, these strategies aim to achieve a complete loss-of-function phenotype by 

modification of the genomic DNA. 

 

3.1.1 Generation of AAV-based gene-interfering tools 

A recently developed method to manipulate gene expression is the “Clustered Regularly 

Interspaced Short Palindromic Repeats” (CRISPR) technique. CRISPR typically 

introduces targeted mutations into the genomic DNA that further cause a loss of function 

phenotype by generating deletions or insertions into a gene´s coding sequence. The core 

component of this technique is an enzymatically active Cas9 protein, which has the 

inherent ability to cut the genomic DNA. The DNA double strand break triggers cellular 

repair mechanisms, which eventually cause gain or loss of nucleotides that ultimately 

disturb a genes’ open reading frame (Jinek et al., 2012, Wiedenheft et al., 2012, Cong et 

al., 2013, Wang et al., 2013, Doudna and Charpentier, 2014).  

To broaden the versatility of the CRISPR toolbox, CRISPR interference (CRISPRi) has 

been developed recently. With CRISPRi, the genomic DNA is no longer affected, instead, 

RNA synthesis is blocked by occupation of the target gene’s promoter. Thereby protein 

de novo biosynthesis is impaired (Gilbert et al., 2013, Larson et al., 2013, Dominguez et 

al., 2016). The main component of CRISPRi is a nuclease-deficient version of 

Staphylococcus aureus Cas9 (dSaCas9). Additionally, to increase the efficiency of 
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CRISPRi, the dSaCas9 protein is fused to the Krüppel-associated box (KRAB) repression 

domain, resulting in a transcriptional interference protein complex (dSaCas9-KRAB; see 

Figure 3.1 B) (Gilbert et al., 2013, Gilbert et al., 2014), which is guided to the promoter 

region of a gene of interest. 

To make use of this technique in different model systems and to examine the experimental 

potential of the method, a modular all-in-one vector was designed providing the core 

components necessary to induce CRISPRi-mediated knock-down (Fig. 3.1 BI).  

 

Figure 3.1: Cloning strategy for constructs mediating gene knock-down by CRISPRi 

Schematic representation of plasmids used for generating the vector-backbone to mediate CRISPRi. (AI) 
Schematic representation of Addgene plasmid #61594 (pX603) containing elements encoding nuclease 
deficient Staphylococcus aureus Cas9 (dSaCas9) flanked by nuclear localization signals (NLS). The 
dSaCas9 is expressed under the control of a cytomegalovirus promoter (CMV). (AII) Schematic 
representation of Addgene plasmid #61591 (pX601) containing the gene encoding nuclease active 
Staphylococcus aureus Cas9 (SaCas9) flanked by NLS. The construct is expressed under the control of a 
CMV promoter. In addition, the plasmid encodes a short guidance RNA (sgRNA) expression cassette 
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controlled by the human U6 (hU6) promoter. (BI) Schematic representation of the vector backbone used to 
incorporate the CMV-NLS-dSaCas9-NLS or CMV-NLS-SaCas9-NLS cassette in multiple cloning site #1 
(MCS 1) and the hU6-sgRNA cassette in MCS #2. For visualization of expression, an HA-tag (human 
influenza hemagglutinin A) is fused in frame and 5´ to the Krüppel associated box motif (KRAB). For 
production of recombinant Adeno-associated viruses (rAAVs), inverted terminal repeats (ITRs) were 
incorporated into the vector backbone. (BII) Schematic representation of the dSaCas9 and sgRNA 
expression plasmid. The modulatory design of the vector also allows to exchange the CMV promoter for, 
e.g., a CaM kinase II promoter (CKII) and the dSaCas9 for SaCas9. For localization experiments, variants 
with dSaCas9 fused to eGFP or miniSOG were generated.  
 

Initially, the dSaCas9 gene, flanked by nuclear localization sites (NLS) and the CMV 

promoter, were isolated by restriction digest (BamHI/AgeI) from the pX603 plasmid 

(Figure 3.1 AI) (Ran et al., 2015) and cloned into the multiple cloning site #1 (MCS 1) of 

the custom designed pMK-RQ_CV vector backbone. Thereby, the dSaCas9 gene was 

directly fused to a human influenza hemagglutinin (HA) tag necessary for localization 

experiments and to the KRAB transcriptional repression motif. To retain the possibility 

for performing classical CRISPR knock-out experiments, the NLS-flanked, 

enzymatically active form of SaCas9 and the corresponding CMV promoter were isolated 

by restriction digest (BamHI/AgeI) from the pX601 plasmid (Fig. 3.1 AII) (Ran et al., 

2015) and alternatively cloned into the multiple cloning site #1 (MCS 1) of pMK-RQ_CV. 

Expression of these fusion proteins can be driven either by the ubiquitously active CMV 

promoter or by tissue-specific promoters, like the neuron specific CKII promoter. Due to 

the NLS, the dSaCas9-KRAB protein complex translocates into the nucleus where, 

targeted by short guidance RNAs (sgRNAs), it binds to the transcriptional start site (TSS) 

of the target gene to interferes with the transcription machinery. To co-express sgRNAs 

from the same vector backbone, an sgRNA expression cassette comprising the human U6 

(hU6) promoter and the insertion site for sgRNAs was isolated by restriction digest 

(EcoRI/NotI) from the pX601 plasmid (Fig. 3.1 AII) (Ran et al., 2015) and cloned into 

the MCS #2 (Fig. 3.1 BI) of pMK-RQ_CV. To achieve more flexibility and to allow direct 

proof of SaCas9-/dSaCas9-expression without performing immunostaining, the HA-tag 

was exchanged by a miniSOG fluorescent reporter (Shu et al., 2011). If another 

fluorescent label is required the sgRNA expression scaffold, the HA-tag, and the KRAB 

motif were exchanged for an eGFP-encoding cassette that was directly fused to the 

Cas9-encoding element (Fig. 3.1 BII). For delivering the CRISPRi core components to a 

variety of cell-types, the vector allows production of recombinant Adeno-associated 

viruses (rAAVs) due to the flanking inverted terminal repeats (ITRs). 
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In addition to the CRISPRi strategy, the widely used cell-autonomous defense mechanism 

of RNA inhibition (RNAi) (Shan, 2010) was used to knock-down the expression of target 

genes. By formation of complementary RNA double strands, cellular defense processes 

are initiated, leading to a degradation of the targeted mRNA. Consequently, the protein 

level decreases due to impairment of de novo protein biosynthesis. The core component 

necessary for RNAi is a short hairpin RNA (shRNA) expressed, e.g., under the control of 

a constitutively active hU6 promoter. For identification of transduced cells, an 

eGFP-reporter was expressed either under the control of the ubiquitously active CMV 

promoter or the neuron-specific CKII promoter (Fig. 3.2 A). For delivering the RNAi 

components to a variety of cell-types, the vector is also suited to produce rAAVs due to 

the flanking inverted terminal repeats (ITRs).  

 

3.1.2 Functional expression of knock-down constructs in HEK293 cells 

To examine the functionality of the different knock-down constructs (Fig. 3.2 A and B), 

HEK293 cells were transfected and the expression of reporter genes was monitored (Fig 

3.2 C). Figure 3.2 CI shows CMV-mediated expression of the eGFP reporter. From the 

same construct, shRNAs were co-expressed driven by the hU6 promoter. Notably, 

localization of eGFP was not restricted to specific cellular compartments. Figure 3.2 CII, 

CIII, and CIV show the expression of dSaCas9 either fused to an HA-tag (CII), to an 

eGFP (CIII) or to a miniSOG fluorescent reporter (CIV). The protein was preferentially 

located in the nucleus, as expected due to the NLS flanking the dSaCas9 cassette. 

However, the miniSOG fusion protein was preferentially localized in sub-compartments 

of the nucleus, thus resulting in spot-like fluorescence signals.  
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Figure 3.2: Expression of RNAi- and CRISPRi-mediating constructs in HEK293 cells 

(A) Schematic representation of the RNAi-mediating plasmid for expression in HEK293 cells. Expression 
of the short-hairpin RNA (shRNA) is controlled by the hU6 promoter. Expression of eGFP is controlled by 
the CMV promoter. (B) Schematic representation of CRISPRi-mediating plasmid for expression in 
HEK293 cells. (C) Representative immunofluorescence images showing the expression of the (CI) eGFP 
reporter of the RNAi construct, (CII) HA-tagged dSaCas9 protein including the KRAB domain and the 
sgRNA expression scaffold, (CIII) eGFP-tagged dSaCas9 and, (CIV) miniSOG-tagged dSaCas9 protein 
including the KRAB domain and the sgRNA expression scaffold in HEK293 cells constitutively expressing 
HCN-channel subunit 1 (HCN1). Schematic representation of constructs is shown above the images. 
Staining was performed with specific anti (α)-eGFP, α-HA-tag, and α-HCN1 antibodies combined with 
fluorescently labeled secondary antibodies (green and red). MiniSOG was detected by autofluorescence 
(green). Nuclei were labeled with TOPRO (blue). 
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3.1.3 Validation of knock-down in HEK293 cells 

To validate the specificity of CRISPRi in HEK293 cells, a cell-line was generated which 

constitutively expressed a mCherry fluorescent reporter under the control of the human 

dopamine D1 receptor (hDop1) promoter (Fig. 3.3 A and B). Because HEK293 cells 

endogenously express hDop1 receptors (Huang and Li, 2009), expression of the 

mCherry-construct also occurred in these cells. To knock-down the expression of 

mCherry in this cell-line, sgRNAs were designed to guide dSaCas9 to a region ranging 

from -50 to +300 bps relative to the predicted transcriptional-start site (TSS) of the hDop1 

receptor promoter. Individual sgRNAs were cloned into the CRISPRi-vector backbone 

by restriction digest (BsaI). The CRISPRi vector and an eGFP fluorescent reporter 

encoding vector were co-expressed in the HEK293 cell-line. Subsequently, confocal 

images of mCherry fluorescence and eGFP fluorescence were captured and Pearson R 

values were calculated for colocalization of mCherry and eGFP signals. The mCherry 

signal should decrease in those cells in which mCherry expression is downregulated by 

CRISPRi. In contrast, the eGFP fluorescence signal should remain rather constant. 

Consequently, the Pearson R value decreases as a measure for colocalization of both 

signals.  
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Figure 3.3: CRISPRi-mediated knock-down of hDop1-promoter driven mCherry expression in 

HEK293 cells 

(A) Schematic representation of the construct for generating HEK293 cells constitutively expressing 
mCherry under control of the human dopamine D1 (hDop1) receptor promoter. (B) Representative bright-
field and immunofluorescence images showing (BI) HEK293 cells in bright field, (BII) nuclei stained with 
TOPRO, and (BIII) expression of mCherry. (C) Schematic representation of constructs used for mCherry 
knock-down, as well as colocalization analysis of mCherry and eGFP expression. (D) Representative 
immunofluorescent images showing (DI) the merged image of (DII) expression of mCherry under the 
control of hDop1 promoter and (DIII) eGFP reporter expression in HEK293 cells. (E) Colocalization 
analysis by comparison of Pearson’s R values for HEK293 cells expressing mCherry, co-transfected with 
the eGFP reporter and different CRISPRi constructs targeting dSaCas9 to the hDop1 promoter by sgRNAs 
(sgScr = control, sghDop1.1, 1.2, 1.3; and 1.4). Data were obtained from indicated numbers of fluorescent 
images from at least 3 independent transfections. Pearson’s R values were normalized to sgScr values and 
depicted as mean ± standard deviation. (F) qRT-PCR analysis of mCherry expression levels in HEK293 
cells expressing mCherry under the control of hDop1 promoter and different CRISPRi constructs targeting 
dSaCas9 to the hDop1 promoter by sgRNAs (sgScr, sghDop1.1, 1.2, 1.3; and 1.4). cDNA was prepared 
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from indicated numbers of coverslips from 3 independent transfections. Results are depicted as mean ± 
standard deviation. 
 

Normalized colocalization analyses are shown in Figure 3.3 E. The knock-down 

efficacies of the sgRNAs were compared to a scrambled sgRNA (sgScr), which was 

designed not to bind to the hDop1 promoter or any other endogenous promoter. Some of 

the CRISPRi-sgRNA constructs showed a moderate reduction in the Pearson R value 

(sgScr: 1.0  0.268; sghDop1.1: 0.72  0.22; sghDop1.2: 0.641  0.193; sghDop1.3 

0.74  0.43). Notably, sghDop1.4 even showed an increase of the Pearson R value 

(1.725  0.25). To corroborate these changes in mCherry expression levels, quantitative 

reversed transcription PCR (qRT-PCR) experiments were performed. The qRT-PCR 

experiments revealed no changes in mCherry transcript levels, independent of the sgRNA 

construct tested (sgScr: 1.0  0.061; sghDop1.1: 1.07  0.133; sghDop1.2: 1.01  0.128; 

sghDop1.3 1.05  0.246; sghDop1.4: 1.01  0.039). Possible explanations for the 

insufficient knock-down of mCherry might arise from the experimental design. On the 

one hand, expression of mCherry under control of the hDop1 receptor promoter competed 

with the endogenous hDop1 receptor expression in HEK293 cells. Thus, dSaCas9 

proteins most likely were targeted to both, the introduced promoter from the mCherry 

construct and the endogenous hDop1 receptor promoter, which may have led to a low 

knock-down efficiency when targeting the reporter construct. On the other hand, 

expression of eGFP, which was used for the colocalization analysis, originated from 

co-transfected eGFP-encoding construct and not from the dSaCas9-encoding construct. 

Thus, the colocalization experiment might suffer from an overestimation of eGFP signals.  

 

In an independent series of experiments, the specificity and efficacy of RNAi-mediated 

knock-down for hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels 

was tested. Therefore, shRNA-encoding constructs targeting individual HCN channel 

isoforms were transfected in HEK293 cells constitutively expressing homomeric HCN 

channels 1, 2 or 4. The RNAi-inducing constructs and the corresponding shRNAs were 

previously designed and tested in our group (Günther, 2016). Two days after transfecting 

HEK293 cells with RNAi-inducing constructs, cells were fixed and stained with specific 

antibodies (Fig. 3.4 A). Capturing confocal images of immunolabeled HCN channels and 

eGFP fluorescence was used to calculate Pearson R values for colocalization of 

fluorescence signals. Similar to the experiment described above, HCN 

immunofluorescence signals should decrease in those cells, in which HCN channel 
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expression was downregulated, whereas the eGFP fluorescence signal should remain 

almost constant. Consequently, the Pearson R value decreases as a measure for 

colocalization of both signals.  

 

Figure 3.4: RNAi-mediated HCN-channel knock-down in HEK293 cells 

(AI) Representative immunofluorescence images showing the expression of (AI) the eGFP reporter of 
shScr-expressing, (AII) sh1-expressing, (AIII) sh2-expressing, or (AIV) sh4-expressing variants in 
HEK293 cells constitutively expressing HCN channel isoforms 1, 2 or 4, respectively. Schematic 
representation of constructs is shown above the images. Stainings were performed with specific anti (α)-
eGFP, α-HA-tag, and α-HCN antibodies combined with fluorescently labeled secondary antibodies (green 
and red). Nuclei were labeled with TOPRO (blue). (B) Colocalization analysis by comparison of Pearson’s 
R values for HEK293 cells (BI) constitutively expressing HCN1 channels and transfected with different 
shRNA-encoding constructs (shScr = control, sh1, sh2 and sh4), (BII) constitutively expressing HCN2 
channels and the same series of constructs, and (BIII) constitutively expressing HCN4 channels and the 
same series of constructs. Data were obtained from indicated numbers of fluorescence images from at least 
five independent transfections. Pearson’s R values were normalized to shScr controls and results are 
depicted as mean ± standard deviation.  
 

Normalized colocalization analyses are shown in Figure 3.4 B. Only shRNA1 (sh1), 

which binds to hcn1 mRNA, downregulated HCN1 channel protein expression (Fig. 3.4 

BI). In contrast, a control shRNA (shScr), which was designed not to bind to endogenous 
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mRNA, and shRNAs binding to hcn2 (sh2) or hcn4 (sh4) mRNAs did not interfere with 

HCN1 channel expression (shScr: 1.0  0.159; sh1: 0.149  0.115). Similarly, only 

shRNA2 (sh2) which binds to hcn2 mRNA (shScr: 1.0  0.189; sh2: 0.122  0.042) (Fig. 

3.4 BII) and shRNA4 (sh4), which binds to hcn4 mRNA (shScr: 1.0  0.361; sh4: 

0.152  0.062) (Fig. 3.4 BIII), induced specific downregulation of either HCN2 or HCN4 

channel proteins, respectively.  

 

3.1.4 Functional expression of knock-down constructs in PHNs 

To assess the functional role of individual HCN channel subunits in their physiological 

environment, RNAi- and CRISPRi-inducing constructs were expressed in primary 

hippocampal neurons (PHNs). Recombinant Adeno-associated viruses (rAAVs) were 

generated and served as gene ferries to deliver the constructs (Fig. 3.5 A and B) to these 

neurons (Fig. 3.5 C and D).  
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Figure 3.5: Expression of RNAi- and CRISPRi-mediating constructs in primary hippocampal 

neurons 

(A) Schematic representation of the RNAi-mediating plasmid for expression in neurons. Expression of the 
short-hairpin RNA (shRNA) is controlled by the hU6 promoter. Expression of eGFP is controlled by a CKII 
promoter. (B) Schematic representation of CRISPRi-mediating plasmid for expression in neurons. 
Expression of dSaCas9-HA or dSaCas9-eGFP is controlled by a CKII promoter. (C) Schematic 
representation of the preparation and transduction procedure of primary hippocampal neurons (PHNs). For 
details see Material and Methods section 2.6. (D) Representative immunofluorescent images of 
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rAAV9-transduced PHNs expressing the (DI) eGFP reporter of the RNAi-inducing construct, (DII) 
HA-tagged dSaCas9, and (DIII) eGFP-tagged dSaCas9 of CRISPRi-inducing constructs. The eGFP, HA-
tag, and the neuron-specific microtubule-associated protein 2 (MAP2) were immunostained with specific 
anti (α)-GFP, α-HA, and α-MAP2 antibodies combined with fluorescently labeled secondary antibodies 
(eGFP and HA-tag, green; MAP2, red). Nuclei were labeled with TOPRO (blue). Cartoons of the AAV-
delivered constructs are displayed above the merged immunofluorescent images. 
 

PHNs were prepared from C57BL/6J mice (see Chapter 2.6) and subsequently incubated 

with rAAVs encoding shRNA and eGFP (Fig. 3.5 DI), dSaCas9-HA (Fig. 3.5 DII), or 

dSaCas9-eGFP (Fig. 3.5 DIII). Twelve days after transduction, neurons were fixed and 

expression of reporter proteins was studied by immunocytochemistry. Figure 3.5 DI 

shows a single PHN in which expression of the eGFP fluorescent reporter was mediated 

by the neuron specific CKII promoter. Distribution of eGFP was not restricted to specific 

cellular compartments. The fluorescent signal was visible in the soma of the neuron as 

well as in the cellular extensions. Figure 3.5 DII and DIII shows detection of the HA-tag 

(DII) and of the eGFP reporter (DIII) directly fused to the dSaCas9 protein. Both fusion 

proteins were preferentially located in the nuclei of the neurons, due to the NLS flanking 

the dSaCas9 cassette (Fig. 3.5 DII and DIII). 

 

3.1.5 Validation of knock-down in PHNs 

Cultured PHNs express at least three HCN channel isoforms which can be detected by 

immunohistochemistry. Notably, even individual neurons express all three of these 

isoforms (Fig. 3.6 A). A central goal of this thesis was to downregulate channel isoforms 

specifically and independently by RNAi or CRISPRi, in order to identify the best suited 

strategy for HCN-channel knock-down in postmitotic cells. For RNAi-mediated 

knock-down, shRNA sequences were chosen, which demonstrated high specificity and 

efficacy in previous, cell-culture based experiments (Kaschuba, 2010, Günther, 2016). 

Recombinant AAVs were generated and the knock-down efficacies of individual shRNAs 

were compared to a scrambled shRNA (shScr) control construct. For CRISPRi-mediated 

knock-down, sgRNAs were designed binding in regions between -50 and +300 bps 

relative to the predicted TSS of the different HCN channel genes. The knock-down 

efficacies of these sgRNAs were again compared to a scrambled control sgRNA (sgScr), 

which was designed not to bind to any endogenous promoters. For delivering the 

constructs, recombinant rAAVs representing serotype 2 and 9 were generated. While 

rAAV2 is considered to transduce a broad range of cell-types and tissues, rAAV9 is more 

likely in transducing neurons (Aschauer et al., 2013).  
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Figure 3.6: RNAi and CRISPRi reduce the amount of HCN channel transcripts in primary 

hippocampal neurons  

(A) Representative immunofluorescent images showing expression of HCN-channel isoforms 1 (green), 2 
(blue) and 4 (red) in wildtype, i.e. non-treated, hippocampal neurons. Isoforms were stained using 
subunit-specific antibodies combined with fluorescently labeled secondary antibodies. (BI) Schematic 
representation of constructs delivered by rAAV2 to PHNs. (BII to BIV) qRT-PCR analysis of hcn1, hcn2 
and hcn4 mRNA levels in hippocampal neurons after transduction with shRNA or sgRNA/dSaCas9 
expressing rAAV2s. (CI) Schematic representation of constructs delivered by rAAV9 to PHNs. (CII to 
CIV) qRT-PCR analysis of hcn1, hcn2 and hcn4 mRNA levels in hippocampal neurons after transduction 
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with shRNA or sgRNA/dSaCas9 expressing rAAV9s. Complementary DNA was obtained from indicated 
numbers of transduced coverslips. Results are depicted as mean ± standard deviation. Statistical 
significance was assessed using the unpaired two-tailed Student´s t test, *p<0.05, **p<0.01, ***p<0.001. 
 

In neurons transduced with rAAV2 virions (Fig. 3.6 B), each of the previously identified 

shRNAs reduced the mRNA levels of the target gene in comparison to untreated wildtype 

and shScr-treated controls (Fig. 3.6 BII-BIV). Sh1, designed to knock-down the 

expression level of the HCN1 channel subunit, reduced hcn1 transcripts to 58.3  11.2% 

of the shScr control. Similarly, sh2, designed to knock-down the expression level of the 

HCN2 channel subunit, reduced hcn2 transcripts to 42.3  18.3% of the shScr control and 

sh4, designed to knock-down the expression level of the HCN4 channel subunit, reduced 

hcn4 transcripts to 60.1  32.9% of the shScr control. Neither of the shRNA constructs 

affected expression of the other HCN channel subunits (Günther, 2016). Notably, in 

CRISPRi experiments, only sg1.2, designed to knock-down the expression level of the 

HCN1 channel subunit, caused a robust reduction of hcn1 mRNA to 51.8  23.6% of the 

sgScr control (Fig. 3.6 BII). Using rAAV9 virions for transduction (Fig. 3.6 C), knock-

down efficiencies of shRNAs were similar to the values obtained with rAAV2 virions 

(sh1: 65.2  13% of the shScr control; sh2: 24  15.5% of the shScr control; sh4 

25.2  8.1 % of the shScr control). Interestingly, the knock-down efficiencies of sg1.2 

targeting the HCN1 gene promoter (Fig. 3.6 CII), sg2.1 targeting the HCN2 gene 

promoter (Fig. 3.6 CIII), and sg4.1 targeting the HCN4 gene promoter (Fig. 3.6 CIII), 

were markedly improved when delivered by rAAV9 virions (sg1: 71.1  21.5% of the 

sgScr control; sg2: 66.3  6.6% of the sgScr control; sg4: 83.9  4.1% of the sgScr 

control). In comparison to RNAi, however, CRISPRi-mediated knock-down inhibited the 

expression of hcn1, 2, and 4 mRNA less efficiently.  

 

3.1.6 Functional expression and validation of knock-down constructs in OHSCs 

While primary hippocampal neurons are perfectly suited to study a neurons’ physiology 

on the single cell level, organotypic hippocampal slice cultures (OHSCs) are widely used 

to study network properties. Therefore, the effects of HCN-channel knock-down in 

OHSCs prepared from C57BL/6J mice (Fig. 3.7) was examined.  
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Figure 3.7: RNAi and CRISPRi reduce the amount of HCN2 channel transcripts in organotypic 

hippocampal slice cultures.  

(AI) Schematic representation of the preparation and transduction procedure for organotypic hippocampal 
slice cultures (OHSCs). For details see Material and Methods section 2.7. (B) Representative 
immunofluorescent images showing rAAV9-transduced OHSCs expressing the (BI and BII) eGFP (green) 
reporter of the RNAi-inducing construct, or (BIII) eGFP-tagged dSaCas9 of the CRISPRi-inducing 
construct. The eGFP and the neuron-specific MAP2 protein (red) were immunostained with specific anti 
(α)-GFP and α-MAP2 antibodies combined with fluorescently labeled secondary antibodies (eGFP green; 
MAP2, red). Nuclei were labeled with TOPRO (blue). Cartoons of the AAV-delivered constructs are 
displayed above the merged immunofluorescent images. (C) qRT-PCR analysis of transcript levels of HCN 
isoforms 1, 2 and 4 in OHSCs. Transcript levels were normalized to gapdh and values shown are calculated 
to the sum of all hcn transcripts. cDNA was prepared from 5 culture inserts, each containing 3 individual 
slices. In total, slices were obtained from 3 different animals. (DI and DII) Representative 
immunofluorescent images showing expression of HCN-channel isoforms 1 (green), and 2 (blue). Isoforms 
were stained using specific antibodies and fluorescently labeled secondary antibodies. Enlargements show 
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HCN-isoform expression in hippocampal cornu ammonis (CA) regions CA1 (1) and CA3 (2) subfields. (E) 
qRT-PCR analysis of hcn2 mRNA levels in organotypic slices after transduction with shRNA or 
sgRNA/dSaCas9 expressing rAAV9. Complementary DNA was obtained from indicated numbers of 
culture inserts, each containing 3 individual slices. In total, slices were obtained from at least 3 different 
animals. Results are depicted as mean ± standard deviation. Statistical significance was assessed using the 
unpaired two-tailed Student´s t-test, **p<0.01, ***p<0.001. 
 

After two weeks of cultivation and 12-13 days after transduction with rAAV9 expressing 

shRNA constructs (Fig. 3.7 BI and BII) or CRISPRi-inducing dSaCas9-eGFP constructs 

(Fig. 3.7 BIII), samples were fixated and expression of reporter proteins was examined 

immunohistochemically. In agreement with the previous experiments performed on 

HEK293 cells and PHNs, transduction with rAAV9 virions of OHSCs yielded a high 

number of transduced neurons, especially for rAAVs encoding shRNAs. Furthermore, 

rAAVs inducing RNAi and rAAVs inducing CRISPRi both reproduced the localization 

pattern of reporter proteins previously observed in HEK293 cells and PHNs. The eGFP 

reporter encoded by shRNA containing constructs was homogenously distributed in the 

cell soma and cellular extensions, whereas dSaCas9-eGFP fluorescence was restricted to 

the nucleus (Fig. 3.7 BII and BIII). 

Expression of hcn1, hcn2 and hcn4 transcripts (Fig. 3.7 C) as well as the corresponding 

proteins (Fig. 3.7 DI and DII) was examined in OHSCs. Both, qRT-PCR and 

immunohistochemistry indicated that HCN2 is the most abundant channel isoform in 

OHSCs (qRT-PCR quantification: hcn1 5.3  2.5 %; hcn2 92.1  28.4 %; hcn4 

5.5  1.3 %). Based on this finding, further RNAi and CRISPRi experiments were 

intended to only manipulate HCN2 channel expression in OHSCs. Both, sh2 and sg2 

(sg2.1) reduced hcn2 mRNA levels compared to untreated wildtype and shScr- or 

sgScr-treated controls (sh2: 52.1  18.9 %; sg2: 62.7  21.9 %) (Fig. 3.7 F). Taken 

together, these experiments strongly suggest that both techniques are suitable to 

manipulate expression levels of HCN-encoding transcripts and channel proteins in a 

variety of culture systems. 
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The results of construction, functional expression, and validation of both knock-down 

techniques showed that both techniques, i.e. CRISPRi and RNAi, specifically reduced 

hcn transcript levels in transgenic cell-lines, primary hippocampal neurons (PHNs), and 

organotypic hippocampal slice cultures (OHSCs) for each of the three targeted HCN 

isoforms.  

However, RNAi-mediated HCN-channel knock-down was more robust and efficient, 

compared to CRISPRi-mediated knock-down in recombinant cell-lines, PHNs as well as 

OHSCs  

In addition, rAAV9 virions were better suited than rAAV2 virions for delivering the cargo 

into PHNs or OHSCs. 
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3.2 Electrophysiological characterization of HCN channels 

To gain insight into the basic biophysical properties of the different HCN-channel 

subtypes expressed in PHNs, the cation currents through HCN channels, known as 

Ih-currents, were examined by whole-cell patch-clamp electrophysiology.  

 

3.2.1 Electrophysiological characterization of HCN channels in HEK293 cells 

By recording current-voltage relationships and extracting the half-maximal activation 

voltages from HEK293 cells constitutively expressing HCN channel subtypes (HCN1, 

HCN2 and HCN4; see Fig. 3.8 A), differences in activation potentials of HCN channel 

subtypes were confirmed (Altomare et al., 2003, Baruscotti et al., 2005). 

 

Figure 3.8: Whole-cell patch-clamp recordings of Ih-currents in HEK293 cell-lines constitutively 

expressing HCN channel subunits 1, 2 or 4. 

(A) Upper panel: Representative immunofluorescent images showing HEK293 cell-lines constitutively 
expressing HCN channel subunit 1 (AI), 2 (AII), and 4 (AIII). Stainings were performed with subunit 
specific HCN channel antibodies combined with fluorescently labeled secondary antibodies (red). Nuclei 
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were labeled with TOPRO (blue). Lower panel: Representative voltage stimulation protocols and 
corresponding current traces of whole-cell patch-clamp recordings derived from HEK293 cell-lines 
constitutively expressing HCN channel subunit 1 (AI), 2 (AII), and 4 (AIII). (BI) Current-voltage 
relationships recorded from HEK293 cell-lines constitutively expressing HCN channel subunits 1, 2 or 4. 
Currents were calculated from the difference of the instantaneous current and the steady-state current. The 
continuous lines represent fitted Boltzmann functions of the data. (BII) Half-maximal activation voltages 
of the different homomeric HCN-channels were calculated from the fitted Boltzmann functions of the 
whole-cell currents. Results are depicted as boxplots.  
 

Homomeric HCN1 channels activate at more positive membrane potentials in comparison 

to HCN2 and HCN4 homomeric channels which activate at more negative membrane 

potentials (HCN1: -96.14  1.63 mV; HCN2: -108.5  1.3 mV; HCN4: -119.3  5.86 

mV). This results in an activation sequence of HCN1 > HCN2 > HCN4 from more 

depolarized to very hyperpolarized potentials (Fig. 3.8 B). 

 

3.2.2 Electrophysiological characterization of HCN channels in PHNs of wildtype 

and HCN1-/- mice 

To examine the effects of a complete loss of the HCN1-channel protein on basic neuronal 

properties and Ih-channel current properties, recordings from wildtype (untreated) PHNs 

(Fig. 3.9) served as controls for recordings from PHNs derived from HCN1-channel 

knock-out (HCN1-/-) mice (Nolan et al., 2003). Cultured wildtype PHNs expressed at least 

three HCN channel isoforms which were quantified by qRT-PCR (Fig. 3.9 B).  
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Figure 3.9: Whole-cell patch-clamp recordings of pharmacologically isolated Ih-currents in PHNs 

(A) Representative immunofluorescent images of cultured wildtype primary hippocampal neurons (PHNs). 
Neurons were stained using a MAP2 antibody and glia cells were stained using an antibody against glial 
fibrillary acidic protein (GFAP). Primary antibodies were combined with fluorescently labeled secondary 
antibodies (MAP2 green; GFAP, red). Nuclei were labeled with TOPRO (blue). (B) qRT-PCR analysis of 
transcript expression levels for HCN isoforms 1, 2 and 4 in PHNs. Transcript levels were normalized to 
gapdh and values shown are calculated to 1 as the sum of all hcn transcripts. cDNA was prepared from 5 
coverslips with PHNs from at least 3 different animals. (CI) Representative image showing the patch-clamp 
analysis of a PHN. (CII) Representative voltage stimulation protocol and corresponding current traces of 
whole-cell patch-clamp recordings derived from a PHN after 15 days in vitro (d.i.v.). Results are depicted 
mean ± standard deviation.  
 

Examination of transcript numbers showed, that hcn2 transcripts were most abundant 

(72  12.3 %), followed by hcn1 and hcn4 transcripts (hcn1: 22  2.6 %; hcn4: 6  0.9 %) 

(Fig. 3.9 B).  

To check for compensatory changes of HCN channel expression levels upon ablation of 

the HCN1 channel subtype, HCN channel transcript numbers were also quantified in 

PHNs derived from HCN1-/- mice (Fig. 3.10 BI).  
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Figure 3.10: Whole-cell patch-clamp recordings of pharmacologically isolated Ih-currents in PHNs 

derived from HCN1 knock-out (HCN1-/-) mice 

(A) Representative immunofluorescent images of PHNs derived from a HCN1 channel knock-out mouse 
(HCN1-/-). Neurons were stained using a MAP2 antibody and glia cells were stained using an antibody 
against GFAP. Primary antibodies were combined with fluorescently labeled secondary antibodies (MAP2 
green; GFAP, red). Nuclei were labeled with TOPRO (blue). (BI) qRT-PCR analysis of transcript levels 
for HCN isoforms 1, 2 and 4 in PHNs derived from HCN1-/- mice. Transcript levels were normalized to 
gapdh and values shown were calculated to 1 as the sum of all hcn transcripts. cDNA was prepared from 6 
coverslips with PHNs from at least 3 different animals. (BII) Transcript structure encoding the HCN1 
channel subunit in wt and HCN1-/- mice. The black primer pair was used for qRT-PCR analysis and the 
green primer pair was used for the PCR reaction shown in BIII. (BIII) Agarose gel showing fragments of a 



3. Results 
 

64 
 

PCR reaction using the primer pair (green) binding in the deleted genomic region of HCN1-/- mice. (CI) 
Representative voltage stimulation protocol and corresponding current traces of whole-cell patch-clamp 
recordings derived from HCN1-/- PHN after 15 days in vitro (d.i.v.). (CII) Representative 
immunofluorescent images showing expression of HCN-channel isoforms 1 (green), 2 (blue) and 4 (red) in 
PHNs derived from HCN1-/- mice. Isoforms were stained using subunit-specific antibodies combined with 
fluorescently labeled secondary antibodies. (DI) Current-voltage relationships recorded from PHNs of 
wildtype and HCN1-/- mice. Currents were calculated from the difference of the instantaneous current and 
the steady-state current. The continuous lines represent fitted Boltzmann functions of the data. (DII) 
Half-maximal activation voltages of recordings from PHNs of wildtype and HCN1-/- mice, calculated from 
the fitted Boltzmann functions of the whole-cell currents. Results are depicted as boxplots. Statistical 
significance was assessed using the unpaired two-tailed Student´s t-test, , ***p<0.001. 
 

The quantification showed that, similar to wildtype neurons, HCN2-encoding transcripts 

were most abundant (67  10.4 %), followed by HCN1- and HCN4-encoding transcripts 

(hcn1: 30  4.4 %; hcn4: 3  0.6 %) in PHNs derived from HCN1-/- mice. Because the 

knock-out of the HCN1 channel subtype was generated by a deletion of exons coding for 

the pore and S6 transmembrane domain (Fig. 3.10 BII), the mRNA fragment of HCN1 

was still detectable using a primer pair targeting more 5´ located exons of the gene. When 

using a primer pair targeting the deleted genomic region, no amplification products were 

detectable in HCN1-/- animals, but in wildtype controls (Fig. 3.10 BIII). To confirm the 

loss of HCN1 channel proteins in HCN1-/- mice, immunofluorescent stainings were 

performed. The immunofluorescence images showed that the HCN1 protein was 

completely absent in PHNs from HCN1-/- mice (Fig. 3.10 CII). In addition, patch-clamp 

recordings revealed a shift in the half-maximal activation voltages of the isolated 

Ih-channel currents from -113.2  4.24 mV in wildtype PHNs to -128.8  4.47 mV in 

HCN1-/- PHNs (Fig. 3.10 D). Thus, a loss of HCN1 lead to a shift of the half-maximal 

activation voltages from more depolarized potentials to more hyperpolarized potentials. 

 

3.2.3 Electrophysiological characterization of HCN-channel function in RNAi treated 

PHNs  

Because RNAi robustly reduced HCN-channel transcript and protein levels in HEK293 

cells, PHNs, and OHSCs more efficiently than CRISPRi, RNAi-mediated knock-down 

was used to examine the effects of hcn gene knock-down on passive neuronal properties 

and Ih-current properties.  
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Figure 3.11: Whole-cell patch-clamp recordings of pharmacologically isolated Ih-currents in PHNs 

transduced with RNAi-mediating constructs 

(A) Representative immunofluorescent images showing rAAV9-transduced PHNs expressing the eGFP 
reporter. EGFP reporter (cyan), HCN-channel isoforms 1 (green), 2 (blue) and 4 (red) were stained using 
specific antibodies combined with fluorescently labeled secondary antibodies. (B) Representative voltage 
stimulation protocols and corresponding current traces of whole-cell patch-clamp recordings derived from 
rAAV9-transduced PHNs expressing shScr (control), sh1 (HCN1 channel knock-down), sh2 (HCN2-
channel knock-down), or sh4 (HCN4 channel knock-down) after 15 days in vitro (d.i.v.). (BI) Current-
voltage relationships recorded from rAAV9-transduced, shRNA expressing PHNs. Currents were 
calculated from the difference of the instantaneous current and the steady-state current. The continuous 
lines represent fitted Boltzmann functions of the data. (BII) Half-maximal activation voltages from rAAV9-
transduced, shRNA expressing PHNs, calculated from the fitted Boltzmann functions of the whole-cell 
currents. Results are depicted as boxplots. Statistical significance was assessed using the unpaired two-
tailed Student´s t test, *p<0.05, **p<0.01. 
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For recording current-voltage relationships, PHNs were transduced with rAAV9 coding 

for shScr (control), sh1 (knock-down of HCN1), sh2 (knock-down of HCN2) or sh4 

(knock-down of HCN4). In sh1-treated neurons, the half-maximal activation potential 

(V1/2) was shifted to a more hyperpolarized potential of -117.1  6.9 mV compared to 

shScr-treated neurons (shScr: -111.4  5.22 mV). In contrast, V1/2 of sh4-treated neurons 

shifted to more depolarized potentials of -106.8  3.61 mV. However, V1/2 of sh2-treated 

neurons (-108.9  6.55 mV) was similar to the value obtained for shScr-treated neurons. 

Thus, a knock-down of HCN1 channels partially reproduced the effect observed in PHNs 

from HCN1-/- mice. Furthermore, a knock-down of HCN4 channels had a strong influence 

on the activation potential, while a knock-down of HCN2 channels did not influence the 

activation potential of native Ih-currents in PHNs. 

 

3.2.4 Consequences of HCN channel reduction on basic properties of PHNs 

To validate if the HCN1 knock-out or the knock-down of individual HCN channel 

subtypes is causative for changes in cellular electrophysiological characteristics, basic 

properties of rAAV-untreated and rAAV-treated neurons were assessed (Fig. 3.12).  

 

Figure 3.12: Effects of HCN channel knock-out and knock-down on basic parameters of primary 

hippocampal neurons 
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Results of whole-cell patch-clamp recordings from wildtype (non-transduced), HCN1 channel knock-out 
(HCN1-/-), or AAV9-shRNA transduced eGFP positive PHNs. (A) Influence of HCN1-/-, shScr (control), 
sh1 (HCN1 channel knock-down), sh2 (HCN2-channel knock-down), or sh4 (HCN4 channel knock-down) 
on input resistances in PHNs. Input resistances were measured with a single 10 mV hyperpolarizing voltage 
pulse. (B) Influence of HCN1-/-, shScr, sh1, sh2, or sh4 expression on the resting membrane potential of 
PHNs. Resting membrane potentials were measured approx. 30 s after establishing the whole-cell 
configuration. (C) Influence of HCN1-/-, shScr, sh1, sh2, or sh4 on the membrane capacitance as a measure 
for the cell sizes of PHNs. Membrane capacitance was measured by the membrane capacitance 
compensation of the amplifier. Results are depicted as boxplots. Statistical significance was assessed using 
the unpaired two-tailed Student´s t test, *p<0.05, ***p<0.001. 
 

As a measure for the ability of a neuron to conduct current across the membrane at resting 

conditions, the input resistance was measured. In HCN1-/- neurons, the input resistance at 

the resting potential of -70 mV was strongly increased compared to neurons from 

wildtype mice (wt: 398.1  129.6 MΩ; HCN1-/-: 538.6  115.0 MΩ) (Fig. 3.12 AI). 

Similarly, when PHNs were transduced with rAAV9 encoding sh1, the input resistance 

was also increased compared to the controls (shScr: 389.9  95.6 MΩ; sh1: 

457.5  125.1 MΩ). However, knock-down of HCN2 by sh2 or HCN4 by sh4 did not 

change input resistance of the neurons (sh2: 447.4  120.8 MΩ; sh4: 423.5  135.6 MΩ) 

(Fig. 3.12 AII). These results indicated that manipulation of HCN1 channel expression 

decreased the proportion of open ion channels at the resting membrane potential, and thus, 

restricted the amount of current crossing the membrane. Moreover, in HCN1-/- neurons, 

the resting membrane potential was more negative compared to neurons from wildtype 

mice (wt: -68.34  3.23 mV; HCN1-/-: -71.67  2.9 mV) (Fig. 3.12 AII). This decrease 

was also observed when neurons were transduced with rAAV9 encoding for sh1 

(-71.0  3.29 mV) compared to neurons transduced with rAAV9 encoding for shScr 

(-69.19  3.52 mV) (Fig. 3.12 BII). This observation is in accordance with previous 

reports (Matsumoto-Makidono et al., 2016) and is accompanied by the finding that HCN1 

channels are partially activated at the resting membrane potential (Fig. 3.8 BI). Thus, it 

was not surprising that a knock-down of HCN2 and HCN4 (sh2 and sh4), which were 

almost not activated at the resting membrane potential (Fig. 3.8 BI), did not change the 

resting membrane potential of the neurons (sh2: -69.42  2.52 mV; 

sh4: -69.04  2.44 mV) compared to control neurons (shScr; Fig. 3.12 BII). To rule out 

that different neuron sizes were causative for the observed effects, the membrane 

capacitance was measured. Neither in PHNs from HCN1-/- mice, nor in PHNs treated with 

sh1 or sh2 constructs changes occurred in the membrane capacitance compared to control 

conditions (wt: 22.27  3.27 pF; HCN1-/-: 21.83  5.95 pF; shScr: 30.17  6.69 pF; sh1: 
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30.81  5.3 pF; sh2: 29.3  6.84 pF). However, the knock-down of HCN4 (sh4) caused a 

decrease of the membrane capacitance (25.37  4.38 pF) compared to the control 

condition (shScr). Taken together, these data suggest that HCN1 is the main contributors 

to basic cellular properties like the input resistance and the resting membrane potential. 

 

3.2.5 Consequences of HCN channel reduction on Ih-current properties  

In addition to the effects of HCN channel knock-down on passive electrical properties of 

neurons, effects of HCN-channel knock-out and knock-down on the Ih-current properties 

were examined. Therefore, amplitudes of isolated Ih-currents in HEK293 cell-lines and 

PHNs were measured (Fig. 3.13). 
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Figure 3.13: Effects of HCN-channel knock-out and knock-down on current amplitudes of isolated 

Ih-currents in HEK293 cell-lines and primary hippocampal neurons  

(A) Representative voltage stimulation and corresponding current traces of whole-cell patch-clamp 
recordings derived from (AI) HEK293 cell-lines constitutively expressing HCN channel subunit 1 (HCN1), 
HCN channel subunit 2 (HCN2), or HCN channel subunit 4 (HCN4); (AII) primary hippocampal neurons 
(PHNs) from wildtype (wt) or HCN1-/- mice, and (AIII) of PHNs treated with shScr (control), sh1 (HCN1 
channel knock-down), sh2 (HCN2-channel knock-down), or sh4 (HCN4 channel knock-down) expressing 
rAAVs after 15 days in vitro (d.i.v.). (B) Current amplitudes of (BI) HEK293 cell-lines expressing HCN1, 
HCN2 or HCN4, (BII) PHNs from wt and HCN1-/- mice, and of (BIII) rAAV9-shScr, -sh1, -sh2, or -sh4 
transduced eGFP-positive PHNs. Current amplitudes were measured from the difference of the 
instantaneous current and the steady-state current to the current response of a hyperpolarizing pulse (from 
-70 mV to -130 mV). (C) Current densities of (CI) HEK293 cell-lines expressing homomeric HCN1, HCN2 
or HCN4 channels, (CII) PHNs from wt and HCN1-/- mice, and of (CIII) rAAV9-shScr, -sh1, -sh2, or -sh4 
transduced eGFP-positive PHNs. Current densities were calculated by dividing the current amplitude by 
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the corresponding membrane capacitance of the cell (Fig. 3.12 C). Results are depicted as boxplots. 
Statistical significance was assessed using the unpaired two-tailed Student´s t test, *p<0.05, ***p<0.001. 
 

Ih-currents in HEK293 cells were recorded in extracellular solution without addition of 

blocking substances. Current amplitudes were calculated by the difference of the 

instantaneous current at the beginning of the test pulse and the steady-state current at the 

end of each test pulse (from -70 mV to -130 mV) (Fig. 3.13 B). Comparison of the Ih-

current amplitudes recorded in HEK293 cells either expressing HCN1, HCN2, or HCN4 

channel subtypes showed that homomeric HCN2 channels produced the highest current 

amplitudes (-2370  1265 pA) in comparison to homomeric HCN1 channels 

(-725.7  491.9 pA) or homomeric HCN4 channels (-341.7  216.5 pA) (Fig. 3.13 BI). 

By dividing the current amplitudes by the corresponding membrane capacitance of the 

cell (Fig. 3.12 C), current densities were determined to diminish the effects of changes in 

cell sizes on the current amplitudes (Fig. 3.13 C). Comparison of the Ih-current densities 

showed that homomeric HCN2 channels had higher current densities 

(-101.8  47.81 pA/pF), while homomeric HCN4 channels (-32.27  20.07 pA/pF) and 

homomeric HCN1 channels (-31.61  16.76 pA/pF) (Fig. 3.13 CI) had lower current 

densities, respectively. These results are in agreement with a study showing that 

single-channel parameters of homomeric HCN channels differ from each other. While 

HCN2 homomeric channels had the highest conductance, HCN1 and HCN4 homomeric 

channels had lower conductances (Michels et al., 2005). Thus, HCN2 homomeric 

channels can produce the highest current amplitudes.  

 

To analyze Ih-current amplitudes and densities in PHNs, currents were recorded in 

extracellular solution containing blocking substances to isolate the Ih-current from non-

HCN channel currents (see Chapter 2.16). Both, Ih-current amplitudes and Ih-current 

densities in HCN1-/- neurons were smaller in comparison to wt neurons 

(wt: -123.5  112.8 pA; -5.56  5.22 pA/pF; HCN1-/-: -34.28  38.23 

pA; -1.64  1.56 pA/pF) (Fig. 3.13 BII and CII). In addition, a knock-down of HCN1 and 

HCN2 subunits, but not of HCN4 subunits, decreased Ih-current amplitudes compared to 

the control (shScr -173.5 157.7 pA; sh1: -107.0  74.09 pA; sh2: -89.25  74.08 pA; 

sh4: -244.5  208.1 pA) (Fig. 3.13 BIII). However, while a knock-down of HCN1 and 

HCN2 subunits also decreased Ih-current densities compared to the control 

(shScr -6.28  6.49 pA/pF; sh1: -3.69  2.43 pA/pF; sh2: -3.64  2.97 pA/pF), a 
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knock-down of the HCN4 subunit even increased Ih-current densities 

(sh4: -9.92  8.92 pA/pF). This increase in Ih-current density might arise from the 

knock-down of the subunit with the lowest single-channel amplitude (Michels et al., 

2005). Thus, hetero-tetrameric HCN channels present in the neuron´s membrane most 

likely are mainly composed of HCN1 and HCN2 subunits, thus resulting in higher single-

channel amplitudes. 

 

To examine effects of HCN-channel knock-out and knock-down on activation kinetics of 

native Ih-currents, isolated Ih-currents in HEK293 cell-lines and PHNs were measured. 

By recording Ih-currents at a membrane potential of -130 mV and fitting the data to a 

mono-exponential function, time constants of activation (τ) were determined.  

 

Figure 3.14: Effects of HCN channel knock-out and knock-down on activation kinetics of isolated Ih-

currents in HEK293 cell-lines and primary hippocampal neurons 

(A) Representative voltage stimulation protocols and corresponding current traces of whole-cell patch-
clamp recordings derived from (AI) HEK293 cell-lines constitutively expressing HCN channel subunit 1 
(HCN1), HCN channel subunit 2 (HCN2), or HCN channel subunit 4 (HCN4); (AII) primary hippocampal 
neurons (PHNs) from wildtype (wt) and HCN1-/- mice, and (AIII) of PHNs treated with shScr (control), 
sh1 (HCN1 channel knock-down), sh2 (HCN2-channel knock-down), or sh4 (HCN4 channel knock-down) 
expressing rAAVs after 15 days in vitro (d.i.v.). (B) Activation time constants (τ) of (BI) HEK293 cell-
lines expressing HCN1, HCN2 or HCN4, (BII) PHNs from wt and HCN1-/- mice, and of (BIII) rAAV9-
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shScr, -sh1, -sh2, or -sh4 transduced eGFP-positive PHNs. Activation time constants were calculated by 
fitting the current response of a hyperpolarizing pulse (from -70 mV to -130 mV) to a mono-exponential 
function. Results are depicted as boxplots. Statistical significance was assessed using the unpaired two-
tailed Student´s t test, *p<0.05, **p<0.01, ***p<0.001. 
 

Similar to the observed differences in activation potentials of HCN-channel subtypes (Fig. 

3.8), also the activation kinetics differed among these subtypes (Fig. 3.14 AI and BI). 

While homomeric HCN1 channels activated relatively fast with a τ value of 

0.072  0.044 s, HCN2 and HCN4 homomeric channels activated slower with τ values of 

0.27  0.097 s and 1.078  0.359 s, respectively. This observation is in line with previous 

studies, describing differences in activation kinetics of HCN1, HCN2 and HCN4 (Biel et 

al., 2009). When the fast activating HCN1 subtype was absent in HCN1-/- neurons, 

Ih-current activation was slowed down compared to native currents in wildtype neurons 

(HCN1-/-: 1.341  0.428 s; wt: 0.612  0.284 s) (Fig. 3.14 AII and BII). Again, this finding 

is in line with previous reports, demonstrating the strong contribution of HCN1 to the 

activation kinetics of native Ih-currents in neurons (Kopp-Scheinpflug et al., 2015). 

Similar to the effects in HCN1-/- neurons, Ih-current activation was also slowed down in 

PHNs expressing sh1 shRNA. Compared to controls (shScr: 0.416  0.176 s), τ in sh1 

transduced neurons was 0.503  0.156 s (Fig. 3.14 AIII and BIII). Conversely, Ih-current 

activation was accelerated in PHNs expressing sh4 (τ value of 0.289  0.212 s) due to the 

loss of HCN4, which is known to activate slowly. A knock-down of the HCN2 subtype 

displaying intermediate activation kinetics, however, almost had no effect on Ih-current 

activation (τ: 0.412  0.211 s) compared to Ih-currents of control neurons. 

 

Because the Ih-current is responsible for a prominent inward rectification in the voltage 

response to a steady hyperpolarizing current pulse called “sag" (Banks et al., 1993), sag 

half-widths were assessed to monitor effects of changes in HCN subtype expression on 

these voltage responses (Fig. 3.15).  
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Figure 3.15: Effects of HCN-channel knock-out and knock-down on the inward rectification (sag) of 

primary hippocampal neurons 

(A) Representative current stimulation and corresponding voltage traces of whole-cell patch-clamp 
recordings derived from (AI) HEK293 cell-lines constitutively expressing HCN channel subunit 1 (HCN1), 
HCN channel subunit 2 (HCN2), or HCN channel subunit 4 (HCN4); (AII) primary hippocampal neurons 
(PHNs) from wildtype (wt) and HCN1-/- mice, and (AIII) of PHNs treated with shScr (control), sh1 (HCN1 
channel knock-down), sh2 (HCN2-channel knock-down), or sh4 (HCN4 channel knock-down) expressing 
rAAVs after 15 days in vitro (d.i.v.). (B) Sag half-widths of (BI) HEK293 cell-lines expressing HCN1, 
HCN2 or HCN4, (BII) PHNs from wt and HCN1-/- mice, and of (BIII) rAAV9-shScr, -sh1, -sh2, or -sh4 
transduced eGFP-positive PHNs. Sag potentials were evoked by current pulses which hyperpolarize the 
membrane potential to -130 mV. Results are depicted as boxplots. Statistical significance was assessed 
using the unpaired two-tailed Student´s t test, *p<0.05, **p<0.01, ***p<0.001. 
 

Strikingly, sag half-widths recorded in HEK293 cells expressing HCN1, HCN2 or HCN4 

homomeric channels were reminiscent of the differences in activation kinetics shown in 

figure 3.13 AI and BI. Sag potentials recorded in cells expressing HCN1 channels were 

faster (sag half width: 0.038  0.021 s) in comparison to cells expressing homomeric 

HCN2 (sag half width: 0.083  0.039 s) or HCN4 channels (sag half width: 

0.299  0.056 s), respectively (Fig. 3.14 AI and BI). When the fast activating HCN1 

subtype was absent in PHNs obtained from HCN1-/--mice, the sag potential half-width 

increased compared to wildtype neurons (wt: 0.235  0.086 s; HCN1-/-: 0.778  0.126 s) 

(Fig. 3.15 AII and BII). Similar to the effect of HCN1 knock-out, the knock-down of 
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HCN1 by sh1 lead to increased sag potential half-widths compared to controls (sh1: 0.229 

 0.038 s; shScr: 0.143  0.059 s). Conversely, sag potential half-width decreased when 

HCN4 expression was reduced by sh4 expression (0.092  0.024 s). Since a knock-down 

of the HCN2 subtype did not influence Ih-current activation, the sag potential half-width 

was not altered in neurons expressing sh2 (0.137  0.045 s) as well. These results suggest, 

that a knock-out or knock-down of the fast activating HCN1 subtype in PHNs was 

responsible for a deceleration in Ih-current activation, accompanied by an increase in sag 

potential half-width. Conversely, a knock-down of the slow activating HCN4 subtype 

was causative for accelerating Ih-current activation, which was accompanied by a 

decrease in sag potential half-widths. However, a knock-down of the intermediate 

activating HCN2 subtype did neither cause a change in Ih-current activation nor in sag 

potential half-widths.  

 

3.2.6 Effects of HCN channel blocker ZD7288 on PHNs  

In a variety of studies it was shown that 4-Ethylphenylamino-1,2-dimethyl-6-

methylaminopyrimidinium (ZD7288) specifically blocks HCN channels in various 

configurations (Harris and Constanti, 1995, Green et al., 1996, Gasparini and 

DiFrancesco, 1997). To analyze effects of ZD7288 on passive electrical properties and 

Ih-current-specific properties, wildtype PHNs were perfused with 100 µM ZD7288 for at 

least 5 min prior to electrophysiological recordings (Fig. 3.16 A).  
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Figure 3.16: Effects of the HCN channel blocker ZD7288 on HCN channel dependent properties of 

primary hippocampal neurons  

(A) Representative current traces of the current response to a hyperpolarizing pulse (from -70 mV to -130 
mV) of whole-cell patch-clamp recordings obtained from primary hippocampal neurons (PHNs) treated 
with 100 µM ZD7288. Current trances were measured at various timepoints after ZD7288 perfusion. (B) 
Results of whole-cell patch-clamp recordings from wildtype PHNs treated with 100 µM ZD7288. (BI) 
Influence of ZD7288 on input resistances in PHNs. Input resistances were measured with a single 10 mV 
hyperpolarizing voltage pulse. (BII) Influence of ZD7288 on the resting membrane potential of PHNs. 
Resting membrane potentials were measured approx. 30 s after establishing whole-cell configuration or 5 
min after ZD7288 perfusion, respectively. (BIII) Influence of ZD7288 on Ih-current amplitudes of PHNs. 
Current amplitudes were measured from the difference of the instantaneous current and the steady-state 
current to the current response of a hyperpolarizing pulse (from -70 mV to -130 mV). (BIV) Influence of 
ZD7288 on Ih-current densities of PHNs. Current densities were calculated by dividing the current 
amplitude by the corresponding membrane capacitance of the cell (Fig. 3.15 C). Results are depicted as 
boxplots. Statistical significance was assessed using the unpaired two-tailed Student´s t-test, ***p<0.001. 
 

In comparison to untreated wildtype control neurons, ZD7288 treated neurons showed an 

increase in input resistance (wt: 417.2  88.61 MΩ; ZD7288: 560.2  134.4 MΩ), similar 

to the increase observed in HCN1 knock-out or HCN1 knock-down neurons. Surprisingly, 

ZD7288 treated neurons had depolarized membrane potentials compared to untreated 

control neurons (wt: -67.37  3.83 mV; ZD7288: -58.09  4.76 mV). As reported 
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previously (Green et al., 1996), both, the Ih-current amplitude and density were strongly 

decreased by treating the neurons with ZD7288 (wt: -89.78  45.28 pA / -3.67  2.27 

pA/pF; ZD7288: -8.92  8.52 pA / -0.35  0.36 pA/pF). 

To analyze effects of Ih-currents on action potential (AP) properties of PHNs, neurons 

were treated with 100 µM ZD7288 and clamped to -70 mV. Initial APs were evoked by 

injecting depolarizing currents in 10 pA increments until AP threshold was reached (Fig. 

3.17).  

 

Figure 3.17: Effects of the HCN channel blocker ZD7288 on action potential properties of primary 

hippocampal neurons  

(A) Representative voltage traces showing initial action potentials (APs) of whole-cell patch-clamp 
recordings derived from wildtype (wt) PHNs and PHNs treated with 100 µM ZD7288. The initial APs were 
evoked by injecting depolarizing currents in 10 pA increments until threshold was reached. (BI) Influence 
of ZD7288 on the AP threshold, (BII) on the AP amplitude, (BIII) on the AP half-width, and (BIV) on the 
after-hyperpolarization (AHP) of the AP in PHNs. Results are depicted as boxplots. Statistical significance 
was assessed using the unpaired two-tailed Student´s t-test, *p<0.05, ***p<0.001. 
 

Application of 100 µM ZD7288 shifted the AP activation threshold to more depolarized 

potentials compared to APs of wildtype neurons (wt: -49.78  2.69 mV; 

ZD7288: -47.77  0.37 mV). While the application of ZD7288 did not change AP 

amplitudes (wt: 73.41  14.49 mV; ZD7288: 64.63  20.0 mV), AP half-widths were 

strongly increased upon application of 100 µM ZD7288 (wt: 2.175  0.543 ms; ZD7288: 

3.81  1.257 ms). However, ZD7288 had no effect on the amplitude of the 

afterhyperpolarization, which occurs after an AP (wt: 9.623  3.064 mV; ZD7288: 

8.589  1.803 mV).  

Because the effects of ZD7288 on the resting membrane potential were in contrast to what 

was expected from analysis of HCN1-/- animals and HCN1 knock-down experiments 

shown before (Fig. 3.12), inward and outward currents of PHNs were analyzed (Fig. 3.18). 
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Figure 3.18: Effects of the HCN channel blocker ZD7288 on inward and outward currents of primary 

hippocampal neurons  

(AI) Representative current traces of whole-cell patch-clamp recordings showing inward currents of 
wildtype (wt) PHNs and PHNs treated with 100 µM ZD7288. (AII) Current-voltage relationships recorded 
from wt PHNs and PHNs treated with 100 µM ZD7288. Current amplitudes were obtained from the 
instantaneous inward current indicated with the asterisks. (BI) Representative current traces of whole-cell 
patch-clamp recordings showing inward and outward currents of wildtype (wt) PHNs and PHNs treated 
with 100 µM ZD7288. (BII) Current-voltage relationships recorded from wt PHNs and PHNs treated with 
100 µM ZD7288. Current amplitudes were obtained from the instantaneous outward current indicated with 
the asterisks.  
 

Surprisingly, in addition to the blocking effect on Ih-currents, the application of 100 µM 

ZD7288 had a strong blocking effect on PHN inward currents (Fig. 3.18 A) and a strong 

blocking effect on PHN outward currents (Fig. 3.18 B). Previous studies already reported 

that ZD7288 can inhibit calcium channels (Felix et al., 2003, Sanchez-Alonso et al., 2008) 

and even sodium channels with high sensitivity (Wu et al., 2012). However, until now 

there was no report of blocking effects of ZD7288 on potassium currents, which might 

explain the reduction in outward currents observed in PHNs treated with ZD7288. 

Nonetheless, interpretations of HCN channel related properties based on experiments 

incorporating ZD7288 should be taken with care, since potential side-effects cannot be 

ruled out. 
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3.2.7 Consequences of HCN2-channel knock-down for neuronal signaling 

Since the HCN2-channel subtype showed the highest transcript expression levels in 

wildtype PHNs (Fig. 3.9), action potential properties of PHNs with a reduced expression 

of the HCN2 isoform were analyzed (Fig. 3.19 A).  

 

Figure 3.19: Effects of HCN2-channel knock-down on action potential properties of primary 

hippocampal neurons  

(A) Representative voltage traces showing initial action potentials (APs) of whole-cell patch-clamp 
recordings derived from PHNs treated with shScr (control) or sh2 (HCN2-channel knock-down) encoding 
rAAV9. The initial APs were evoked by injecting depolarizing currents in 10 pA increments until threshold 
was reached. (BI) Influence of HCN2-isoform knock-down on the AP threshold, (BII) on the AP amplitude, 
(BIII) on the AP half-width, and (BIV) on the after-hyperpolarization (AHP) of the AP in PHNs. Results 
are depicted as boxplots. Statistical significance was assessed using the unpaired two-tailed Student´s t-test. 
 

In contrast to the effects observed upon treatment of PHNs with ZD7288, the knock-down 

of HCN2 had no effect on AP properties in comparison to APs of shScr control-treated 

neurons. There was neither a difference in AP threshold (shScr: -49.27  2.34 mV; 

sh2: -50.57  3.92 mV), nor in AP amplitude (shScr: 78.77  10.04 mV; sh2: 

79.42  17.54 mV), in AP half-width (shScr: 23.82  3.10 ms; sh2: 23.71  6.22 ms) or 

in AHP amplitude (shScr: -7.27  1.82 mV; sh2: -8.02  2.79 mV) (Fi. 3.19 B).  

 

Because HCN channels are known to conduct calcium ions and thereby actively 

participate in calcium signaling (Yu et al., 2004), calcium-imaging experiments were 

performed using the genetically-encoded calcium indicator GCaMP6f (Chen et al., 2013).  
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Figure 3.20: Effects of HCN2-channel knock-down on intracellular calcium responses of primary 

hippocampal neurons  

(A) Representative immunofluorescent images of wildtype primary hippocampal neurons (PHNs) 
transduced with rAAV9 encoding GCaMP6f and shScr (AI) or GCaMP6f and sh2 (AII). GCaMP6f was 
labeled using an anti-GFP antibody and neurons were stained using a microtubule-associated protein 2 
(MAP2) antibody. Primary antibodies were combined with fluorescently labeled secondary antibodies 
(GFP green; MAP2 red). Nuclei were labeled with TOPRO (blue). Cartoons of the AAV-delivered 
constructs are displayed below the merged immunofluorescent images. (BI) Stimulation protocol and 
representative fluorescent responses of GCaMP6f in PHNs either transduced with GCaMP6f+shScr or 
GCaMP6f+sh2 virions. (BII) Stimulus intensity was plotted against the normalized fluorescence change. 
The continuous lines represent fitted Boltzmann functions of the data. Half-maximal activation voltages 



3. Results 
 

80 
 

were calculated from the fitted Boltzmann functions. (CI) Enlargements showing fluorescence response of 
PHNs transduced with GCaMP6f+shScr or GCaMP6f+sh2 virions to a stimulus intensity of 10 V for 
200 ms. (CII) The rising phase of the fluorescence responses were fitted by an exponential growth equation 
to determine the rise time, while the decay phase (CIII) was fitted by a one phase decay equation to 
determine the decay time. Results are depicted as boxplots. Statistical significance was assessed using the 
unpaired two-tailed Student´s t test. 
 

In order to express GCaMP6f in control neurons and HCN2 knock-down neurons, rAAV9 

virions were generated expressing GCaMP6f under control of the neuron specific CKII 

promoter and additionally shScr or sh2 under control of the hU6 promoter (Schilling, 

2019). Neurons transduced with shScr-GCaMP6f or sh2-GCaMP6f (Fig. 3.20 A) were 

stimulated with voltage pulses of varying intensities to evoke changes in the intracellular 

calcium concentration. By measuring the change in fluorescence intensity of GCaMP6f, 

which is a result of calcium binding to the calcium-binding domains of calmodulin, 

calcium influx into the cytoplasm was visualized. Comparison of calcium signals from 

control neurons (shScr) and HCN2 knock-down neurons (sh2) showed that a knock-down 

of HCN2 had no influence on the responsiveness of the cells to increasing stimulus 

intensities (Fig. 3.20 B). No differences were detectable when comparing EC50 values of 

control and HCN2 knock-down neurons (shScr: 6.69  0.88 V; sh2: 6.16  1.06 V), 

obtained by fitting the fluorescence changes of GCaMP6f to increasing stimulus 

intensities to Boltzmann functions. In addition, neither the rise time (shScr: 

0.97  0.29 ms; sh2: 0.98  0.24 ms) obtained by fitting the rising phase of a calcium 

signal to a stimulus of 10 V for 200 ms, nor the decay time (shScr: 22.43  10.54 ms; sh2: 

22.18  6.63 ms) obtained by fitting the decay phase of the same signal, varied between 

the two groups (Fig. 3.20 C).  

 

To examine the consequences of HCN2-isoform knock-down on neuronal transmission, 

excitatory synaptic currents were recorded in control neurons and HCN2 knock-down 

neurons. For measuring spontaneous excitatory postsynaptic currents (sEPSCs) neurons 

were clamped to -70 mV and EPSCs were recorded in the presence of the GABAA 

receptor blocker Bicuculline (25 µM) (Fig. 3.21).  
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Figure 3.21: Effects of HCN2-channel knock-down on sEPSCs of primary hippocampal neurons  
(A) Schematic showing spontaneous and action potential induced release of neurotransmitters, evoking 
spontaneous excitatory postsynaptic currents (sEPSCs). (B) Representative current traces showing sEPSCs 
in primary hippocampal neurons (PHNs) treated with shScr (control) or sh2 (HCN2-channel knock-down) 
encoding rAAV9. (C) Influence of HCN2-channel knock-down on (CI) sEPSC amplitude, (CII) sEPSC 
frequency, (CIII) sEPSC decay time, calculated by fitting the decay phase by a mono-exponential decay 
equation, and (CIV) on sEPSC charge, calculated by the integral of the synaptic events. Data are depicted 
as boxplots. Statistical significance was assessed using the unpaired two-tailed Student´s t test, **p<0.01, 
***p<0.001. 
 

While the knock-down of HCN2 did not affect parameters which might point to a 

presynaptic role of HCN channels, e.g., sEPSC amplitude (shScr: -26.16  3.25 pA; sh2: 

-23.42  3.96 pA) or sEPSC frequency (shScr: 1.29  0.66 Hz; sh2: 1.0  0.59 Hz), it 

affected sEPSC decay time (shScr: 9.56  1.8 ms; sh2: 7.81  1.32 ms) and consequently 

also sEPSC charge transfer (shScr: -119.0  13.78 fC; sh2: -85.47  21.74 mV), 
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suggesting a postsynaptic role of HCN channels. This indicated, that a loss of HCN2 

channels might change the dendritic integration processes without affecting presynaptic 

mechanisms. 

 

In order to eliminate spontaneous activity emerging from the network, action potentials 

were blocked by application of 2 µM tetrodotoxin (TTX) in addition to the GABAA 

receptor blocker Bicuculline (25 µM). Neurons were clamped to -70 mV and miniature 

EPSCs (mEPSCs) were measured, induced by the probabilistic spontaneous release of 

neurotransmitters form the presynapse (Fig. 3.22).  

 

Figure 3.22: Effects of HCN2-channel knock-down on mEPSCs of primary hippocampal neurons  

(A) Schematic showing action potential independent release of presynaptic neurotransmitters resulting in 
miniature excitatory postsynaptic currents (mEPSCs). (B) Representative current traces showing mEPSCs 
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in primary hippocampal neurons (PHNs) treated with shScr (control) or sh2 (HCN2-channel knock-down) 
encoding rAAV9. (C) Influence of HCN2-channel knock-down on (CI) mEPSC amplitude, (CII) mEPSC 
frequency, (CIII) mEPSC decay time, calculated by fitting the decay phase by a mono-exponential decay 
equation, and (CIV) on mEPSC charge, calculated by the integral of the synaptic events. Data are depicted 
as boxplots. Statistical significance was assessed using the unpaired two-tailed Student´s t test, **p<0.01. 
 

As action potential properties of control PHNs were not altered compared to HCN2 

knock-down PHNs (Fig. 3.19), it was not surprising that a loss of HCN2 channels induced 

similar effects on mEPSCs as previously described for sEPSCs. Thus, the knock-down of 

HCN2 did not affect mEPSC amplitude (shScr: -13.84  1.35 pA; sh2: -13.06  1.35 pA) 

or mEPSC frequency (shScr: 0.96  0.66 Hz; sh2: 0.72  0.44 Hz). But the knock-down 

affected mEPSC decay time (shScr: 10.68  0.87 ms; sh2: 9.37  1.35 ms) and 

consequently also mEPSC charge transfer (shScr: -72.28  10.76 fC; 

sh2: -58.53  11.0 fC). Again, this indicates a role of the HCN2 channel isoform in 

dendritic integration processes of PHNs. 

 

To test whether the knock-down of HCN2 also affects evoked synaptic responses, 

(eEPSCs) postsynaptic currents were recorded after local extracellular stimulation using 

a concentric bipolar electrode. Neurons were clamped to a holding potential of -70 mV 

and synaptic responses were recorded upon electrical stimulation in the presence of 

GABAA receptor blocker Bicuculline (25 µM) (Fig. 3.23).  
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Figure 3.23: Effects of HCN2-channel knock-down on eEPSCs of primary hippocampal neurons  

(A) Schematic showing stimulated release of presynaptic neurotransmitters evoking excitatory postsynaptic 
currents (eEPSCs). (B) Representative current traces showing eEPSCs in primary hippocampal neurons 
(PHNs) treated with shScr (control) or sh2 (HCN2-channel knock-down) encoding rAAV9. (C) Influence 
of HCN2-channel knock-down on (CI) eEPSC amplitude, (CII) eEPSC decay time, calculated by fitting 
the decay phase by a mono-exponential decay equation, and (CIII) paired-pulse ratio, evoked with an inter-
pulse-interval of 20 ms. Data are depicted as boxplots. Statistical significance was assessed using the 
unpaired two-tailed Student´s t test, *p<0.05. 
 

In agreement with the previous results of HCN2-channel knock-down, sh2-treated PHNs 

showed no changes in the amplitudes of evoked EPSCs (eEPSCs) compared to shScr-

treated PHNs (shScr: -0.90  0.33 nA; sh2: -1.02  0.42 nA). Furthermore, the knock-

down of HCN2 induced a decrease in the decay time constant (shScr: 5.18  1.05 ms; 

sh2: 4.34  1.01 ms), and additionally induced a depression of the paired-pulse ratio with 

an inter-pulse interval of 20 ms (shScr: 1.01  0.35 PPR; sh2: 0.76  0.14 PPR). Taken 

together, these results suggest, that a knock-down of HCN2 most likely influenced the 

dendritic integration properties of excitatory synaptic inputs of PHNs. 
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The results of the electrophysiological experiments showed that the isoform-specific 

knock-down by rAAV9-mediated RNAi was capable to induce subtype-specific changes 

in Ih-current properties.  

The unspecific effects of ZD7288 on additional ion channels indicate, that a knock-out or 

knock-down of individual HCN channel isoforms is a more reliable strategy to investigate 

HCN-channel properties in neurons.  

However, while the knock-down of the HCN2 channel isoform did not change action 

potential properties or calcium responses, it altered dendritic integration properties of 

excitatory synaptic inputs in PHNs. 
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3.3 In vivo HCN2-channel knock-down by stereotaxic intrahippocampal rAAV 

injections 

To investigate consequences of a loss of the HCN2 channel isoform on animal behavior, 

C57BL/6J mice (8 weeks old) were injected with rAAV9 virions encoding shScr (control) 

or sh2 (HCN2 knock-down) constructs (Fig. 3.24 A). The spatially restricted delivery of 

the virions was achieved by bilateral stereotaxic injections targeting the dorsal part of the 

hippocampus (Fig. 3.24 B). Behavioral experiments were chosen to cover some of the 

most important functions of the hippocampal formation in controlling murine behavior. 

 

Figure 3.24: Stereotaxic injection of rAAVs into the hippocampal formation and timeline of 

behavioral experiments 

(AI) Schematic showing bilateral injections of rAAV9 virions coding for shScr or sh2 into the brain of 
living mice. Cartoons of the AAV-delivered constructs are displayed. (AII) Picture showing the mounted 
head of a subject. The skin was removed and two bilateral holes were drilled according to positions 
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determined via the bregma into the cranium to facilitate access for the Nanofil injection needle. (B) 
Stereotaxic coordinates for injection of rAAVs into the mouse hippocampus. The coordinates for injecting 
into 8 weeks old, male C57BL/6J mice were: ˗1.9 mm anteroposterior (AP), ±1.5 mm mediolateral (ML), 
and ̠ 1.4 mm dorsoventral (DV) relative to the bregma. (C) Timeline of stereotaxic injections and behavioral 
experiments. After surgery, mice recovered for 4 weeks, before the elevated zero maze (EZM) test was 
performed. On three consecutive days after the EZM, the open field (OF) test, and spatial object recognition 
(SOR) training and test sessions were performed. 7 days after the EZM, fear conditioning (FC) training 
sessions, and 8 days after the EZM, FC test sessions were performed. 
 

3.3.1 Analysis of behavioral changes upon stereotaxic intrahippocampal rAAV 

injections 

Since the hippocampal-hypothalamic circuit is known to influence innate anxiety 

behavior (Jimenez et al., 2018), the elevated zero maze (EZM) was used to test for 

anxiety-related behavioral changes upon HCN2-channel knock-down. During the EZM 

test, mice were placed onto an elevated arena. The apparatus consisted of a circular 

boardwalk which contained two non-enclosed, thus open quadrants and two wall-

enclosed, thus closed quadrants (Fig. 3.25 A). Usually, mice prefer closed areas over open 

areas, while their innate curiosity prompts at least partial exploration of the open areas. 

The EZM test allows analyzing the interplay of these two behaviors by scoring the time 

spent in open and closed quadrants. Additionally, the overall activity can be quantified 

by measuring the total distance traveled, the velocity of movement, and the total number 

of crossings between both areas.  
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Figure 3.25: Analysis of elevated zero maze test (EZM) 

(A) Schematic showing the elevated zero maze (EZM) arena and tracks of mice bilaterally injected with 
rAAV9-shScr (grey) (AI) or rAAV9-sh2 (blue) (AII). The white areas represent the open quadrants of the 
maze, while the black areas represent the closed quadrants of the maze. (B) Animals were placed for 5 min 
in the EZM arena and were scored for (BI) distance traveled, (BII) velocity of movement, (BIII) number of 
zone transitions between open quadrants and closed quadrants of the maze, and (BIV) time spent in the 
open arm of the maze. Data are depicted as boxplots. Statistical significance was assessed using the 
unpaired two-tailed Student´s t test, *p<0.05; **p<0.01. 
 

The analysis of the EZM test (Fig.3.25 B) indicated, that mice injected with 

sh2-expressing virions showed an increase in the distance traveled (shScr: 1737  396.2 

cm; sh2: 2048  439.0 cm), in the velocity of movement (shScr: 5.8  1.2 cm/s; sh2: 

6.9  1.4 cm/s), and in the number of crossings between open and closed quadrants 

(shScr: 36.5  15.3; sh2: 47.1  14.9). Notably, the treatment did not influence the time 

animals spent in the open arms (shScr: 18.2  9.6 %; sh2: 18.1  9.7 %).  

In addition to the EZM test, the open field (OF) test was used to monitor the basal 

exploratory behavior upon HCN2-channel knock-down. During the OF test, mice freely 

explored a rectangular enclosed arena (Fig. 3.26 A). Similar to the EZM test, mice prefer 

the peripheral areas over the central area, while their innate curiosity prompts at least 
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partial exploration of the central area. This allows analyzing the interplay of these two 

behaviors by scoring the time spent in peripheral and central areas. Additionally, the 

overall activity was analyzed by measuring the total distance traveled, the velocity of 

movement and the number of zone transitions.  

 

Figure 3.26: Analysis of open field test (OF) 

(A) Schematic showing the open field (OF) arena and tracks of mice bilaterally injected with rAAV9-shScr 
(grey) (AI) or rAAV9-sh2 (blue) (AII). For analysis, the arena is separated into a peripheral and a central 
area (inner square). (B) Animals were placed for 6 min in the OF arena and their behavior was scored for 
(BI) distance traveled, (BII) velocity of movement, (BIII) time spent in the central area of the arena, and 
(BIV) number of zone transitions between peripheral and central areas of the arena. Data are depicted as 
boxplots. Statistical significance was assessed using the unpaired two-tailed Student´s t test, **p<0.01. 
 

In contrast to the behavioral changes observed in the EZM test, mice injected with sh2-

encoding virions showed no changes in the distance traveled (shScr: 4407  914.5 cm; 

sh2: 4687  1143 cm) or in the velocity of movement (shScr: 7.4  1.7 cm/s; sh2: 

8.0  1.8 cm/s) compared to control mice (Fig.3.26 BI and BII). However, mice injected 

with sh2-encoding virions showed an increase in the number of zone transitions compared 
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to control animals (shScr: 93.9  21.2; sh2: 112.4  24.6), but there was no change in the 

time spent in the center of the OF arena (shScr: 24.2  7.3 %; sh2: 25.4  8.2 %) (Fig.3.26 

BIII and BIV). Thus, the treatment with sh2-encoding rAAV9s partially affected the 

overall locomotor activity as seen by an increase in the number of zone transitions, 

without affecting anxiety-related behavior. 

 

To investigate the interplay of emotions like anxiety or fear with hippocampal-dependent 

context learning and memory, contextual fear conditioning (FC) was performed in which 

animals are tested for generating an association between a specific context and an aversive 

stimulus (Fig. 3.27).  

 

Figure 3.27: Analysis of fear conditioning test (FC) 

(A) Schematic showing the timeline and arena for the fear conditioning (FC) test. At day eight after mice 
performed the EZM test (Fig. 3.25) mice were trained to the conditioning context for 148 s, followed by a 
2 s 0.75 mA footshock. Animals were removed from the chamber 30 s after receiving a footshock and were 
placed back to their home cage for 3 minutes between the three consecutive training sessions. After 24 h, 
animals were tested for memory retention by returning them to the conditioning chamber for a single 5 min 
context test. (B) Tracks of mice bilaterally injected with rAAV9-shScr (grey) or rAAV9-sh2 (blue) are 
shown. (C) In the testing sessions, animals were placed for 5 min in the FC arena and scored for (CI) 
distance traveled, (CII) velocity of movement, (CIII) freezing time. Data are depicted as boxplots. Statistical 
significance was assessed using the unpaired two-tailed Student´s t-test. 
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Mice were trained three times in a cage with a metal grid ground floor. During the training 

sessions, mice habituated in the cage before they received a mild aversive stimulus 

(electrical footshock). Between the training sessions, mice recovered from the treatment 

in their home-cages for three minutes. One day after training, mice were tested for 

associative memory retrieval by exposing them to the conditioning context without the 

aversive stimulus. Freezing behavior, defined as intervals of complete immobility except 

for breathing, was analyzed as an indicator of fear behavior. Usually, fear memory 

retrieval results in increased freezing time of the animal. However, injection of sh2-

encoding virions did not change the freezing time compared to animals that had received 

shScr-encoding viruses (shScr: 83.8  10.7 %; sh2: 86.5  8.1 %). The overall activity of 

sh2-treated animals did not differ from control animals, neither in the distance traveled 

during the training session (shScr: 638.7  289.8 cm; sh2: 576.6  236.6 cm), nor in the 

velocity of movement during the training session (shScr: 2.27  0.97 cm/s; sh2: 

2.02  0.85 cm/s) (Fig. 3.27 C).  

 

Finally, the spatial object recognition (SOR) test was used to assess changes in 

hippocampus-related spatial memory and discrimination abilities in mice injected with 

sh2-encoding virions. The SOR is based on the spontaneous tendency of mice to spend 

more time exploring an object which has been relocated compared to already known, non-

displaced objects. Testing occurred in an open field arena, to which the animals were 

habituated during the OF test. On the next day, three objects of similar material but 

different shapes were introduced to the arena. During three training sessions, the animals 

were allowed to explore the arena and the objects. In order to test the spatial memory 

reconsolidation after 24h, one of the objects was displaced to a novel position, and mice 

were allowed to explore the arena again. The object discrimination behavior was recorded 

during the last training session and the testing session. The overall locomotor activity was 

recorded solely during the testing session (Fig. 3.28). 
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Figure 3.28: Analysis of spatial object recognition test (SOR) 

(A) Schematic showing the timeline and arena for the spatial object recognition (SOR) test. At day two 
after mice performed the EZM test (Fig. 3.25), mice were habituated for 5 min to the OF arena (Fig. 3.26). 
One day later, mice were trained 3 times for 5 min each with a rectangular metal column (square), a half-
moon shaped plastic cylinder (half-moon), and a glass bottle (circle) introduced as objects in a defined 
spatial organization in the OF arena. For the testing session 24h later, the half-moon shaped plastic cylinder 
was displaced in the arena. Tracks of mice bilaterally injected with rAAV9-shScr (grey) (BI) or rAAV9-
sh2 (blue) (BII) are shown for the testing session. (C) In the testing session, animals were placed for 6 min 
in the SOR arena and scored for (CI) distance traveled, (CII) velocity of movement, (CIII) discrimination 
ratio between displaced and non-displaced objects during training session, and (CIV) discrimination ratio 
between displaced and non-displaced objects during testing session. Data are depicted as boxplots. 
Statistical significance was assessed using the unpaired two-tailed Student´s t test, *p<0.05; **p<0.01. 
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Mice injected with sh2-encoding virions showed an increase in overall locomotor activity 

compared to mice injected with shScr-encoding virions, resulting in an increase in the 

distance traveled (shScr: 2483  444.4 cm; sh2: 2791  369.8 cm) and velocity of 

movement (shScr: 6.9  1.2 cm/s; sh2: 7.8  1.0 cm/s) (Fig. 3.28 CI and CII). Notably, 

both groups showed no preference for any of the objects during the training session, 

resulting in a rather low discrimination ratio (shScr: 0.058  0.083; sh2: 0.063  0.051). 

However, shScr-treated mice showed an increased discrimination ratio during the testing 

session (shScr: 0.11  0.13), whereas the sh2-treated mice were even worse in 

discriminating the objects compared to the training session (sh2: 0.02  0.16). This 

suggests, that sh2-treated mice had difficulties to discriminate between familiar, non-

displaced objects and the same but displaced objects.  

Taken together, the results of the behavioral experiments indicated that the injection of 

sh2-encoding virions neither influenced anxiety-related behavior, nor fear-related 

memory retrieval. However, it induced a robust increase in locomotor activity and 

additionally caused a deficiency in object spatial memory and discrimination abilities. 

 

3.3.2 Biochemical and molecular-biological analyses of injected animals 

In order to analyze changes in transcript expression levels of different target proteins in 

mice injected with sh2-encoding virions, qRT-PCR was performed on cDNA from shScr- 

or sh2-injected dorsal hippocampal tissue (Fig 3.29 A and B).  
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Figure 3.29: Validation of HCN2-channel knock-down in vivo 

(A) Quantitative PCR analysis of hcn1, hcn2 and hcn4 transcript levels in dorsal hippocampal tissue 5 
weeks post injection of shScr (AI). Transcript levels of hcn genes were normalized to gapdh transcript 
levels. (AII, BI and BII) Mice were injected either with rAAV9-shScr (control, grey dots) or rAAV9-sh2 
(HCN2-channel knock-down, blue dots). First-strand cDNA was synthesized on 1 µg total RNA isolated 
from shScr-treated or sh2-treated dorsal hippocampal tissue. Expression levels were calculated and 
normalized to the shScr-injected control. Quantitative PCR analysis of hcn1, hcn2 and hcn4 transcript levels 
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(AII), of transcript levels of different neuronal expressed genes, e.g., brain-derived neurotrophic factor 
(BDNF), tropomyosin receptor kinase B (TrkB) receptor, and mechanistic Target of Rapamycin (mTOR) 
(BI), and of the cellular oncogene Fos (c-Fos) (BII) in dorsal hippocampal tissue 5 weeks post injection of 
rAAV9-shScr or rAAV9-sh2. C-fos transcript levels were measured in animals sacrificed 30 min or 24h 
after performing the fear conditioning task. (C) Quantitative WB analysis of HCN2-channel knock-down 
in dorsal hippocampal tissue 5 weeks post injection of rAAV9-shScr or rAAV9-sh2. After staining with 
HCN2 and actin specific antibodies, signals were detected using enhanced chemiluminescence and 
quantified by densitometry. Data were obtained from indicated numbers of animals. Results are depicted 
as mean ± standard deviation. Statistical significance was assessed using the unpaired two-tailed Student´s 
t test, ***p<0.001. 
 

To assess HCN-channel isoform expression under control conditions, HCN-channel 

transcripts were quantified by qRT-PCR (Fig. 3.29 AI). Examination of transcript 

numbers showed that hcn1 and hcn2 transcripts were almost equally abundant (hcn1: 

52.9  5.4 %; hcn2: 44.5  5.3 %), while hcn4 transcript expression was lower (hcn4: 

2.6  0.6 %). Notably, this expression pattern was different to that previously determined 

in PHNs (Fig. 3.9) and OHSCs (Fig. 3.7). 

Because the injection of rAAV9-sh2 was performed to knock-down the expression of the 

HCN2 channel subtype, transcript levels of hcn1, hcn2, and hcn4 in rAAV9-sh2 injected 

hippocampi and in rAAV9-shScr injected hippocampi were compared (Fig. 3.29 AII). 

Notably, in sh2-treated animals the hcn2 transcript level was reduced to 53.2  8.0 % of 

shScr-treated controls. However, sh2-treatment also reduced hcn1 and hcn4 transcript 

levels to 64.8  12.8 % and 82.6  9.3 % of shScr-treated controls, respectively. To check 

if this´unspecific´ knock-down effect also occurred in other neuronally expressed genes, 

transcript levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor 

kinase B (TrkB) receptor, and mechanistic Target of Rapamycin (mTOR) were assessed 

and analyzed (Fig. 3.29 BI). Notably, also the transcript levels of these target genes were 

also reduced in hippocampi of mice injected with rAAV9-sh2 compared to control mice 

injected with rAAV9-shScr (BDNF: 65.3  13.0 %; TrkB: 78.3  10.7 %; mTOR: 

76.5  7.5 %). Since learning and memory mediated by hippocampal neurons is 

associated with increased neuronal activity, expression of the transcription factor c-fos in 

the hippocampal cornu amonis (CA)1 region has been shown to be increased in animals 

exposed to associative learning tasks (Mahringer et al., 2019). To validate if changes in 

neuronal activity might account for the reduction in neuronally expressed genes, c-fos 

transcript levels were analyzed in hippocampi of sh2- and shScr-treated mice. C-fos 

transcript levels were measured in animals sacrificed 0.5 h or 24h after performing the 

FC task (Fig. 3.29 BII). In sh2-injected animals sacrificed 0.5 h after performing the FC 

test less c-fos transcripts were present compared to control animals (shScr: 
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0.0086  0.0018 c-fos/gapdh; sh2: 0.0023  0.0004 c-fos/gapdh). However, while shScr-

treated animals showed a clear time dependent reduction of the c-fos transcript numbers 

(0.5 h: 0.0086  0.0018 c-fos/gapdh; 24h: 0.0041  0.0010 c-fos/gapdh), c-fos transcript 

numbers in sh2-treated animals did not change (0.5 h: 0.0024  0.0001 c-fos/gapdh; 24h: 

0.0020  0.0008 c-fos/gapdh). This suggests, that sh2-treated animals had lower neural 

activity compared to shScr-treated animals and thus expressed less amounts of the 

transcription factor c-fos. 

To further validate the HCN2-channel knock-down, western blots of membrane proteins 

(see Chapter 2.14) from dorsal hippocampal tissue of mice injected with rAAV9-shScr or 

rAAV9-sh2 were performed (Fig. 3.29 C). The chemiluminescence signal corresponding 

to the HCN2-subunit specific staining consisted of two bands (Figure 3.29 CI), 

corresponding to glycosylated and non-glycosylated HCN2 proteins (Much et al., 2003). 

However, compared to shScr-treated control samples, the intensities of the HCN2 bands 

were unaffected in sh2-treated samples. This finding was supported by a densitometric 

analysis and calculation of the HCN2/actin ratio, showing that the relative HCN2-channel 

expression was similar between both groups (shScr: 1.48  0.98 HCN2/actin; sh2: 

1.31  0.56 HCN2/actin) (Fig. 3.29 CII). Taken together, these results indicated that the 

injection of rAAV9-sh2 induced a general reduction in transcript levels of neuronally 

expressed genes. Despite a reduction of HCN2-channel transcripts, the HCN2-channel 

protein level was unaltered. 

To verify if the reduction of hcn1- and hcn4-transcripts observed in sh2-treated animals 

was due to unspecific binding of the sh2 shRNA to hcn1 or hcn4 mRNA, the 

cross-reactivity of sh2 was re-evaluated in PHNs (Fig. 3.30).  
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Figure 3.30: Quantification of HCN2-channel knock-down specificity in PHNs 

(A) Quantitative PCR analysis of hcn1, hcn2, and hcn4 transcript levels, and (B) c-fos transcript levels in 
primary hippocampal neurons (PHNs) 2 weeks after transduction either with rAAV9-shScr (control, grey 
dots) or rAAV9-sh2 (HCN2-channel knock-down, blue dots). First-strand cDNA was synthesized on 
500 ng total RNA isolated from shScr-treated or sh2-treated PHNs. Expression levels were calculated and 
normalized to the shScr-treated control neurons. Data were obtained from indicated numbers of cultures 
obtained from at least 3 different animals. Results are depicted as mean ± standard deviation. Statistical 
significance was assessed using the unpaired two-tailed Student´s t test, ***p<0.001. 
 

Notably, the sh2-encoding construct reduced hcn2 transcript levels in PHNs to 

22.8  7.4 % of shScr-treated control neurons. In contrast to the results obtained from 

injected animals, sh2 did not caused a reduction in hcn1 or hcn4 mRNA levels (hcn1: 

98.5  13.9 % and hcn4: 95.8  32.3 % of the shScr-treated control neurons) (Fig. 3.30 

A). Furthermore, c-fos transcript levels were analyzed in PHNs treated with sh2 or shScr 

to validate the cross-reactivity of sh2 to other neuronally expressed genes. Again, 

sh2-treated neurons expressed similar c-fos transcript numbers compared to shScr-treated 

neurons (shScr: 0.0026  0.0015 c-fos/gapdh; sh2: 0.0030  0.0014 c-fos/gapdh). These 

results suggest that the reduction in transcript expression levels of non-HCN2 channel 

genes is not evoked by unspecific binding of sh2 RNA to non-target mRNAs. 

 

3.3.3 Immunohistochemical analysis of changes upon stereotaxic intrahippocampal 

rAAV injections 

To visualize the localization of HCN isoforms 1, 2, and 4 in the hippocampus, 

immunohistochemical stainings of tissue sections from animals injected with 

rAAV9-shScr or rAAV9-sh2 were performed (Fig. 3.31).  
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Figure 3.31: HCN-channel isoform localization in the hippocampus 

(A) Representative immunofluorescent images showing expression of HCN-channel isoforms 1 (upper 
lane) and 2 (lower lane) in rAAV9-shScr (control) injected hippocampi. Isoforms were stained using 
subunit-specific antibodies combined with fluorescently labeled secondary antibodies (red). Nuclei were 
stained with TOPRO (blue). Merged images are shown on the right. sp: stratum pyramidale; slm: stratum 
lacunosum-moleculare (BI) Representative immunofluorescent images showing expression of HCN-
channel isoforms 1 (green), 2 (blue) and 4 (red) in rAAV9-shScr (control, upper lane) or rAAV9-sh2 
(HCN2-channel knock-down, lower lane) injected hippocampi. Isoforms were stained using subunit-
specific antibodies combined with fluorescently labeled secondary antibodies. Grey bars indicate region for 
(BII) quantification of immunofluorescence intensities of HCN1-, HCN2-, and HCN4-specific 
immunofluorescent stainings. Intensities were measured from the stratum oriens of the cornu amonis 1 
(CA1) region to the dorsal part of the dentate gyrus (DG) granule cell layer.  
 

Both, expression of HCN1 and HCN2 channel proteins in rAAV9-shScr injected animals 

was locally restricted to the conu ammonis (CA) subfield 1 (Fig. 3.31 A). Consistent with 
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previous reports (Magee, 1998, Lörincz et al., 2002), expression of HCN1 and HCN2 is 

organized as a gradient of increasing intensity along the dendrites of CA1 pyramidal 

neurons, with a maximum of expression intensity in the stratum lacunosum-moleculare 

(slm). Expression of HCN4 in rAAV9-shScr injected animals was detected in the granule 

cell layer of the dentate gyrus (DG) and also in the stratum pyramidale of the CA subfields 

(Fig. 3.31 B, right panel). However, injection of rAAV9-sh2 dramatically changed the 

expression patterns of each of the HCN channel subtypes expressed in the hippocampus 

(Fig. 3.31 B). Both, HCN1 and HCN2 expression was not organized in a gradient 5 weeks 

after injection of rAAV9-sh2, and HCN4 expression was no longer restricted to the 

pyramidal cell layer of the CA1 subfield. 

Additional immunohistochemical stainings of the fluorescent marker GFP, which was 

co-expressed with the shRNAs, the neuronal marker NeuN, and the nuclear marker 

TOPRO were performed to visualize changes in the overall architecture of the 

hippocampal formation (Fig. 3.32).  

 

Figure 3.32: Immunohistochemical analysis of bilateral stereotaxic injections  

(A and B) Representative immunofluorescent images showing expression of the fluorescent reporter eGFP 
(green), the neuronal marker protein NeuN (red), and the nuclear marker TOPRO (blue) in (A) rAAV9-
shScr (control) or (B) rAAV9-sh2 (HCN2-channel knock-down) bilaterally injected hippocampi. Proteins 
were stained using specific primary antibodies combined with fluorescently labeled secondary antibodies. 
Cartoons of the AAV-delivered constructs are displayed above the immunofluorescent images. 
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While rAAV9-shScr injected hippocampi showed a distinct fluorescent signal of GFP in 

the CA1 subfield, rAAV9-sh2 injected hippocampi showed a diffuse expression of GFP 

in various regions, including the medial part of the DG (Fig. 3.32 A and B, upper panel). 

Notably, fluorescent signals of both, the neuronal marker NeuN and the nuclear marker 

TOPRO, indicated a loss of the neurons in the CA1 subfield of rAAV9-sh2 injected 

hippocampi compared to rAAV9-shScr injected hippocampi (Fig. 3.32 A and B, lower 

panels). Enlargements of the fluorescent images of rAAV9-shScr and rAAV9-sh2 

injected animals, sacrificed 5 weeks post injection (Fig. 3.33) corroborate the loss of the 

CA1 pyramidal cell layer. 
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Figure 3.33: Loss of hippocampal CA1 pyramidal cell layer 5 weeks post injection of sh2-encoding 

rAAV9 

(A and B) Representative immunofluorescent images showing expression of the fluorescent reporter eGFP 
(green), the neuronal marker protein NeuN (red), and the nuclear marker TOPRO (blue) in (A) rAAV9-
shScr (control) or (B) rAAV9-sh2 (HCN2-channel knock-down) bilaterally injected hippocampi. Animals 
were sacrificed 5 weeks post injection. Proteins were stained using specific primary antibodies combined 
with fluorescently labeled secondary antibodies. Enlargements and arrows show the cornu amonis 1 (CA1) 
pyramidal cell layer and the dorsal part of the dentate gyrus granule (DG) cell layer of the hippocampus. 
Cartoons of the AAV-delivered constructs are displayed above the immunofluorescent images. so: stratum 
oriens; sp: stratum pyramidale; slm: stratum lacunosum-moleculare 
 

Injection of rAAV9-shScr into the hippocampus resulted in eGFP fluorescent signals 

especially in the stratum pyramidale (sp), harboring somata of CA1 pyramidal neurons, 

in the stratum lacunosum-moleculare (slm), harboring dendrites of CA1 pyramidal 



3. Results 
 

102 
 

neurons, and in the stratum oriens (so), harboring local branches of the axons of CA1 

pyramidal neurons. In contrast, injection of rAAV9-sh2 into the hippocampus resulted in 

eGFP fluorescent signals completely lacking the stratum pyramidale of the CA1 subfield 

(Fig. 3.33 A and B, upper panel). In addition, the prominent fluorescent signals showing 

somata (NeuN) and nuclei (TOPRO) in the stratum pyramidale were completely absent 

in mice injected with rAAV9-sh2 (Fig. 3.33 A and B). However, rAAV9-sh2 injection 

had no obvious effects on the gross architecture of the DG. 

To verify if the loss of the CA1 pyramidal cell layer in rAAV9-sh2 injected mice is a 

transient or a permanent effect, fluorescent images of rAAV9-shScr and rAAV9-sh2 

injected animals sacrificed 9 weeks post injection were analyzed (Fig. 3.34).  
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Figure 3.34: Loss of hippocampal CA1 pyramidal cell layer 9 weeks post injection of sh2-encoding 

rAAV9 

(A and B) Representative immunofluorescent images showing expression of the fluorescent reporter eGFP 
(green), the neuronal marker protein NeuN (red), and the nuclear marker TOPRO (blue) in (A) rAAV9-
shScr (control) or (B) rAAV9-sh2 (HCN2-channel knock-down) bilaterally injected hippocampi. Animals 
were sacrificed 9 weeks post injection. Proteins were stained using specific primary antibodies combined 
with fluorescently labeled secondary antibodies. Enlargements and arrows show the cornu amonis 1 (CA1) 
pyramidal cell layer and the dorsal part of the dentate gyrus granule (DG) cell layer of the hippocampus. 
Cartoons of the AAV-delivered constructs are displayed above the immunofluorescent images. so: stratum 
oriens; sp: stratum pyramidale; slm: stratum lacunosum-moleculare 
 

Similar to the effects observed 5 weeks post injection, fluorescent signals of soma (NeuN) 

and nuclei (TOPRO) were absent in mice 9 weeks after injection of rAAV9-sh2 (Fig. 3.34 
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A and B). The loss of CA1 pyramidal neurons, however, did not expand to the granule 

cells of the DG.  

To gain more insight into the mechanism accompanying the loss of the CA1 pyramidal 

cell layer in rAAV9-sh2 injected mice, active caspase-3 (Caspase) and glial fibrillary 

acidic protein (GFAP) were used as indicators for the adverse tissue response (Günther 

et al., 2017) (Fig. 3.35).  

 

igure 3.35: Markers of rAAV9-sh2 -induced tissue degeneration in the hippocampal CA1 region  

(A) Representative immunofluorescent images showing expression of the apoptosis marker active 
caspase-3 (Caspase, grey) and astrogliosis enriched glial fibrillary acidic protein (GFAP, cyan). Animals 
were injected with (A and C) rAAV9-shScr virions (control) or (B and D) rAAV9-sh2 virions (HCN2-
channel knock-down). Animals were sacrificed 5 weeks (A and B) or 9 weeks (C and D) post injection. 
Proteins were stained using specific antibodies combined with fluorescently labeled secondary antibodies. 
Nuclei were stained with TOPRO (blue). Cartoons of the AAV-delivered constructs are displayed above 
the immunofluorescent images. 
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Fluorescent signals of cleaved (active) Caspase-3, a main component of apoptosis in 

eukaryotic cells, was higher especially in the CA1 subfield of rAAV9-sh2 injected 

hippocampi compared to rAAV9-shScr injected hippocampi, 5 weeks post injection (Fig. 

3.35 A, upper panel). Notably, Caspase-3 signals of rAAV9-sh2 injected hippocampi 

were almost indistinguishable from those of rAAV9-shScr injected hippocampi 9 weeks 

post injection (Fig. 3.35 B, upper panel). Moreover, the GFAP fluorescent signal, a 

marker for glial scars after injury, increased in the CA1 subfield of rAAV9-sh2 injected 

hippocampi compared to rAAV9-shScr injected hippocampi, 5 weeks post injection (Fig. 

3.35 A, lower panel). The GFAP signals did not decline in rAAV9-sh2 injected animals 

9 weeks post injection. However, also rAAV9-shScr injected animals showed similar 

elevated levels of GFAP expression in the CA1 subfield and in the DG, 9 weeks post 

injection. This indicates that GFAP expression might increase with aging, independent of 

the molecular identity of the injected virus.  

Taken together, the results of the biochemical analysis of the in vivo knock-down 

experiments indicated, that injection of rAAV9-sh2 caused a degeneration of the CA1 

pyramidal neurons. Injection of rAAV9-shScr control virions, however, resulted neither 

in changes of gene expression levels, protein marker localization, nor overall 

hippocampal architecture.  
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The results of the stereotaxic bilateral hippocampal injections of rAAVs to achieve in vivo 

HCN2-channel knock-down showed, that the sh2-encoding rAAVs caused a severe but 

specific loss of the CA1 pyramidal cell layer, without changing the overall hippocampal 

architecture.  

The behavioral experiments showed that rAAV9-sh2 injection did not alter hippocampal 

functions related to emotional responses. However, rAAV9-sh2 injection altered 

hippocampus-related spatial memory and discrimination abilities in the SOR test and also 

increased the overall locomotor activity of the animals. 
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Chapter 4 

Discussion 
 
 

 

The goal of this thesis was to characterize the consequences of hyperpolarization-

activated and cyclic nucleotide-gated (HCN) channel knock-down in vitro and in vivo. 

The mammalian genome encodes four HCN subunit isoforms (HCN1 – 4) (Ludwig et al., 

1998) which are known to control electrical properties of neurons, for example by 

determining and stabilizing the resting membrane potential (Kase and Imoto, 2012). In 

addition, HCN channels play crucial roles in generating rhythmic activity and thereby 

participate in cardiac pacemaking (DiFrancesco, 1986), as well as in modulating the sleep 

and wake cycle in the thalamocortical system (McCormick and Pape, 1990). 

  



4. Discussion 
 

108 
 

4.1 Knock-down of HCN-channel isoforms in vitro 

To uncover the most suitable approach for HCN-channel knock-down in vitro and in vivo, 

the specificity and efficacy of two mechanistically independent strategies, i.e. RNA 

interference (RNAi) (Fire et al., 1998) and “Clustered Regularly Interspaced Short 

Palindromic Repeats interference” (CRISPRi) (Larson et al., 2013), were evaluated and 

compared. Because suitable CRISPRi constructs were not available, a modular all-in-one 

vector was designed providing the core components necessary to induce 

CRISPRi-mediated knock-down in neuronal and non-neuronal target cells. To induce 

RNAi- or CRISPRi-mediated knock-down in neurons, recombinant Adeno-associated 

viruses (rAAVs) were used. Notably, these viruses are known to be non-immunogenic 

and have been approved for therapeutic applications (Mendell et al., 2017, Russell et al., 

2017).  

Evaluation and comparison of both approaches in different cell culture systems resulted 

in three fundamental findings: [1] both strategies induced a gene-specific reduction on 

the transcript level [2], the knock-down efficiency of RNAi exceeded the efficiency of 

CRISPRi, and [3] rAAV9 virions were better suited than rAAV2 virions for delivering 

the cargo into primary hippocampal neurons (PHNs), as well as organotypic hippocampal 

slice cultures (OHSCs). In recent publications, efficient and specific CRISPRi-based gene 

inactivation has been described in, e.g., HEK293 cells (Qi et al., 2013), induced 

pluripotent stemcells (Mandegar et al., 2016), and in neurons in vivo and in vitro (Zheng 

et al., 2018). Application of CRISPRi described in this thesis, however, resulted in only 

moderate reductions (~20 – 40 %) of hcn transcript levels in neurons (Fig. 3.6). An 

explanation for this moderate efficiency at hcn gene loci might arise from an imprecise 

assignment of the transcriptional start site (TSS) regions. The most challenging part in 

designing CRISPRi experiments is to identify a gene’s TSS and 5’ upstream promoter 

region to which sgRNA molecules can bind (Radzisheuskaya et al., 2016). Upon binding 

of the dSaCas9-KRAB-sgRNA complex to the target sequence, KRAB induces 

heterochromatin formation (Groner et al., 2010) and finally prevents RNA polymerase 

from initiating transcription. Several online tools are currently available to assist in 

identifying gene promoters (Radzisheuskaya et al., 2016). It has been shown that sgRNAs 

should bind in a region covering -50 to + 300 bp around the TSS (Gilbert et al., 2014). 

To improve the CRISPRi efficacy for hcn transcript knock-down, one could re-examine 

the current TSS annotations with independent prediction algorithms to uncover additional 

and potentially more favorable sgRNA target sites (Radzisheuskaya et al., 2016). 
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Alternatively, the TSS could be exactly determined by molecular biological tools, like 5’ 

primer-extension or 5’ rapid extension of cDNA ends (RACE) (Frohman, 1994, 

Beischlag, 1995). These experiments, however, were beyond the scope of the current 

investigation. Nevertheless, the CRISPRi approach demonstrated its strength in 

displaying high specificity in transcript knock-down and overcomes potential drawbacks 

concerning off-target effects, frequently observed in classical CRISPR/Cas approaches 

(Zhang et al., 2015). Because the sgRNAs applied in CRISPRi exclusively bind to the 

non-coding promoter regions of target genes, unspecific off-target effects are very 

unlikely to occur (Gilbert et al., 2014). 

In contrast to the results obtained with CRISPRi, RNAi knock-down resulted in robust 

reduction of hcn transcripts in recombinant cell-lines, PHNs as well as OHSCs. Thus, 

RNAi facilitated a 40 - 80% reduction of hcn1, hcn2 and hcn4 transcript levels in PHNs 

(Fig. 3.6). Interfering with transcript levels by RNAi strategies has the advantage that the 

target site(s) to which shRNA molecules can bind are less restricted. In principle, the 

entire primary transcript of a gene might serve as a template for shRNA binding (Shan, 

2010). However, this makes RNAi, similar to the CRISPR/Cas technique more vulnerable 

to produce unexpected off-target effects.  

To overcome constraints of construct delivery to neurons, rAAVs are widely used as 

cargo vehicles (Aschauer et al., 2013). AAV serotypes differ in their efficacy to transduce 

different cell types or tissues, a feature called tropism. While rAAV2 virions are often 

favored because they are known to have a broad spectrum of cell type infection, rAAV9 

virions have been found advantageous when neurons should be transduced.  
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Figure 4.1: Transduction of primary hippocampal cultures by AAV serotypes 2 and 9 

(A and B) Representative immunofluorescent images showing expression of eGFP fluorescent reporter in 
primary hippocampal cultures transduced with (A) AAV serotype 2 or (B) AAV serotype 9. Arrows in A 
indicate eGFP fluorescence in glial cells. Expression of eGFP was controlled by a CMV promoter. The 
eGFP reporter was immunostained with a specific anti-GFP antibody combined with a fluorescently labeled 
secondary antibody (green) Cartoons of the AAV-delivered constructs are displayed above the 
immunofluorescent images.  
 

Here, both serotypes were used to induce RNAi- or CRISPRi-mediated knock-down in 

neurons. Transduction experiments with AAV2 and AAV9 virions encoding an eGFP 

fluorescent reporter under the control of the ubiquitously active CMV promoter (Fig. 4.1) 

suggested that serotype 2 transduced both, neurons and glia cells in mouse primary 

hippocampal cultures (arrows in Fig. 4.1 A indicate glia cells). However, due to its 

neuronal tropism, serotype 9 preferably transduced neurons, corroborating its neuronal 

transduction efficiency (Fig. 4.1 B). In addition, a systematic analysis of AAV serotype 

abilities to drive transgene expression in different brain regions showed that AAV9 

virions also provide higher expression levels in all brain regions compared to AAV2 

virions (Aschauer et al., 2013). Because HCN channels are thought to be primarily 

expressed in neurons (Honsa, 2014), these features make AAV serotype 9 virions more 

favorable for both, in vitro and in vivo experiments, compared to AAV serotype 2. Thus, 

the increased knock-down potential of constructs delivered by rAAV9 might result from 

AAV serotype 9 being more efficient in transducing neurons compared with AAV 

serotype 2 (Fig. 3.6). 
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4.2 Electrophysiological characterization of HCN-channel knock-down in vitro 

Since the individual HCN subtypes are capable to form functional homo- and hetero-

tetrameric ion channels, they contribute significantly to the electrical properties of 

excitable cells. To investigate the effects of HCN-isoform specific knock-down on 

electrophysiological properties of hippocampal neurons, whole-cell patch-clamp 

recordings were utilized. To achieve HCN-channel knock-down, RNAi turned out to be 

advantageous over CRISPRi as discussed previously. Despite the strong reduction of 

hcn-transcript levels in neurons treated with rAAVs (Fig. 3.6), there was a remarkable 

discrepancy in Ih-current related properties obtained from AAV-treated neurons vs. 

neurons from HCN1 knock-out mice (HCN1-/-). While the knock-out of the HCN1 

subunit resulted in a hyperpolarizing shift in the half-maximal activation potential (V1/2) 

of approximately -15 mV (Fig. 3.10), HCN1 subunit knock-down shifted V1/2 only by 

approx. -6 mV (Fig. 3.11). Similarly, the knock-out of the HCN1 subunit resulted in a 

hyperpolarizing shift of the resting membrane potential (Vm) of approx. -3.5 mV, whereas 

HCN1 subunit knock-down shifted Vm only by approx. -1.8 mV (Fig. 3.12). Notably, the 

pronounced reduction in current amplitudes and densities observed in PHNs obtained 

from HCN1-/- mice suggested that the loss of the HCN1 isoform resulted in an almost 

complete loss of the total Ih-current conductance. These findings become even more 

surprising with regard to the hcn1 transcript expression levels of HCN1-/- PHNs. The 

qRT-PCR data showed that approx. 30 % of total hcn transcripts originated from hcn1 

gene expression (Fig. 3.9). An explanation for this discrepancy might be that truncated 

hcn1 transcripts could be amplified from cDNA samples of HCN1-/- mice (Fig. 3.10). 

Even though the HCN1 antibody did not detect any HCN1 protein in HCN1-/- PHNs, 

expression even of truncated hcn1 transcripts might lead to the biosynthesis of short 

versions of HCN1-channel proteins, that may assemble and alter the properties of 

heteromeric HCN channels. Notably, coimmunoprecipitation experiments of mouse brain 

lysates (Much et al., 2003) and co-expression experiments in Chinese hamster ovary 

(CHO) cells (Ulens and Tytgat, 2001), HEK293 cells (Altomare et al., 2003) and Xenopus 

laevis oocytes (Whitaker et al., 2007) confirmed the existence of HCN1/HCN2; 

HCN1/HCN4 and HCN2/HCN4 heteromeric channels. Especially the co-expression of 

HCN1 and HCN2 resulted in heteromeric HCN channels with current properties 

resembling native Ih-currents recorded in CA1 pyramidal neurons of mice (Santoro et al., 

2000, Chen et al., 2001). Thus, PHNs obtained from HCN1-/- mice might still form 

HCN1/HCN2 heteromeric ion channels, although lacking the pore region and the S6 
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transmembrane domain of the HCN1 subunits. This might lead to non-functional and/or 

non-conducting ion channels. Such channels would then resemble Ih-current amplitudes 

obtained by blocking total Ih-currents using ZD7288 or cesium chloride (Fig. 3.16). 

However, both, HCN-channels and the closely related cyclic nucleotide-gated- (CNG) 

channels oligomerize due to a conserved domain in the C-linker region of the individual 

subtypes (Zhou et al., 2004). The knock-out of the HCN1 subunit in HCN1-/- mice was 

achieved by a genomic deletion of the exon encoding the pore region and S6 

transmembrane domain (Nolan et al., 2003). Thus, it remains elusive, if a truncated HCN1 

protein still harbors the heteromerization domain allowing assembly of heteromeric HCN 

channels that contain truncated HCN1 subunits. 

Notably, basal transcript levels of the hcn1 and hcn4 genes in PHNs were rather low 

compared to hcn2 transcript levels (Fig. 3.9), suggesting that HCN1 and HCN4 isoforms 

might serve to diversify native Ih-current properties by forming heterotetrameric channels 

(Altomare et al., 2003). Electrophysiological recordings of PHNs showed that both, 

HCN1 and HCN4 had substantial influences on Ih-current activation potentials and 

kinetics. For example, while the knock-down of the fast activating HCN1 isoform led to 

a deceleration of Ih-current kinetics, knock-down of the slow activating HCN4 isoform 

led to an acceleration of Ih-current kinetics (Figs. 3.14 and 3.15). Similarly, the 

knock-down of HCN1, which is known to activate at depolarized membrane potentials 

(V1/2: -96.1 mV), led to a hyperpolarizing shift in Ih-current activation potential of approx. 

6 mV. Vice versa, the knock-down of HCN4, the subunit known to activate at rather 

hyperpolarized membrane potentials (V1/2: -119.3 mV), led to a depolarizing shift in 

Ih-current activation potential of approx. 4.6 mV (Fig. 3.11). In addition, only the 

knock-down of HCN1 induced a change in the resting membrane potential (Fig. 3.12). 

This observation is in accordance with previous reports (Matsumoto-Makidono et al., 

2016) and is accompanied by the finding that HCN1 channels are partially activated at 

the resting membrane potential and thus provide a resting conductance. Therefore, HCN1 

expression in PHNs influences both, passive HCN-channel related membrane properties 

and Ih-current properties by forming heteromeric functional ion channels with HCN2 

and/or HCN4 (Much et al., 2003). Furthermore, HCN4 expression might modulate 

Ih-current kinetics and activation potentials by incorporating this subunit into 

heterotetrameric ion channels. This would introduce the pronounced sensitivity of the 

HCN4 subunit for cyclic nucleotides, causing a shift of Ih-current activation to 

depolarized potentials (Ishii et al., 1999, Chen et al., 2001). Notably, in a previous study 
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it has been shown that a knock-down of HCN4 channel expression in the dorsal 

hippocampus of adult mice led to a pronounced anxiogenic effect, presumably due to 

altered HCN channel sensitivity for cyclic AMP (Günther et al., 2019).  

However, the knock-down of HCN2 in PHNs did neither change the resting membrane 

potential (Fig. 3.12), Ih-current activation kinetics (Fig. 3.14 and 3.15), nor Ih-current 

activation potentials (Fig. 3.11), as previously reported for the HCN2 knock-out mouse 

model in CA1 hippocampal neurons (Ludwig et al., 2003). At a first glance these 

observations were surprising since hcn2 transcript levels were relatively high in PHNs 

and accounted for approx. 70 % of all hcn transcripts (Fig. 3.9). But, HCN2 homomeric 

channels were reported to have a higher single channel conductance compared to 

homomeric HCN1 or HCN4 channels (Michels et al., 2005). Indeed, homomeric 

HCN2-channel currents recorded from transgenic HEK293 cell-lines had much higher 

Ih-current amplitudes and densities, compared to homomeric HCN1- or HCN2-channel 

currents (Fig. 3.13). Therefore, it was not surprising that a knock-down of HCN2 in PHNs 

led to the strongest reduction in Ih-current amplitudes and densities compared to the 

knock-down of HCN1- or HCN4-subunits (Fig. 3.13). Furthermore, the activation 

kinetics and potentials of native Ih-currents recorded in wildtype or shScr-transduced 

neurons were similar to the kinetics and activation potentials of homomeric 

HCN2-channel currents recorded in transgenic HEK293 cell-lines. Altogether, these 

observations suggest that HCN2 subunits were the main contributors for heteromeric 

Ih-currents in PHNs. Additionally, the formation of HCN2/HCN1 heteromers (Chen et al., 

2001, Ulens and Tytgat, 2001), HCN2/HCN4 heteromers (Whitaker et al., 2007), or even 

HCN1/HCN4 heteromers (Altomare et al., 2003) equip hippocampal neurons with a 

powerful mechanism to generate a variety of different HCN channels with distinct 

electrophysiological and biochemical characteristics based on a relatively small number 

of genes (Much et al., 2003). The existence of a plethora of β-subunits, scaffolding 

proteins, and regulatory proteins, i.e. TRIP8b, Caveolin-3 or MiRP1, even increase the 

variability of HCN channels and may further expand the functional properties of these 

proteins in vivo (Sartiani et al., 2017). 

For ion channels exerting their functions at sub-threshold membrane potentials, the 

remarkable plasticity regarding HCN channel´s properties raised the question for which 

processes this plasticity can be utilized. A prominent feature, especially of HCN1 

channels, is that they are partially open at the resting membrane potential (Fig. 3.8). Thus, 

expression of HCN channels induces a permanent depolarization of the resting membrane 
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potential, due to the inward current conducted by these non-inactivating channels (Doan 

and Kunze, 1999). In addition, HCN channels can counteract both, hyperpolarizing and 

depolarizing input, by either producing a depolarizing inward current due to Ih-current 

activation, or by inducing membrane hyperpolarization due to Ih-current deactivation 

(Biel et al., 2009). Therefore, rather than solely stabilizing the resting membrane potential, 

HCN channels are perfectly suited to fine-tune a neuron’s response to depolarizing or 

hyperpolarizing external stimuli (Bender and Baram, 2008). These integrating properties 

were very prominent and well-studied in CA1 hippocampal neurons (Magee, 1998) and 

neocortical layer 5 pyramidal cells (Berger et al., 2003). In general, integration of 

excitatory post-synaptic potentials (EPSPs) at the dendrites must be perfectly controlled, 

both in time and in space, to generate appropriate output at the soma. However, passive 

dendritic filtering properties cause a deceleration of distal EPSP time courses compared 

to proximal EPSPs (for review see (Magee, 2000)). Theoretically, this would lead to a 

localization dependence of EPSP waveforms, accompanied by a localization dependence 

of temporal summation properties. Repetitive EPSPs generated at distal dendrites would 

have higher chances to generate action potentials at the soma, compared to repetitive 

EPSPs generated at proximal dendrites (Biel et al., 2009). As CA1 pyramidal neurons are 

known to act as coincidence detectors, this would strongly influence their ability to 

integrate temporal, precisely timed input from different spatial locations (Pavlov et al., 

2011). However, in CA1 pyramidal neurons and neocortical layer 5 pyramidal neurons, 

this localization dependence is not observed (Magee, 1999). This discrepancy in theory 

compared to experiment is probably solved by the observation that the density of HCN 

channels in dendrites of these neurons increases with distance to the soma (Lörincz et al., 

2002, Harnett et al., 2015). Thus, HCN channels are organized in a gradient, facilitating 

EPSP time courses which are increasingly shortened with the distance from the soma 

(Magee, 1999). This prominent function of HCN channels is accompanied by the finding 

that the removal of HCN1 from entorhinal cortical neurons in HCN1-/- mice, led to a 

deceleration of EPSPs and thus to an increase in the summation ratio (Huang et al., 2009). 

Additionally, loss of HCN1 led to larger postsynaptic responses in CA1 neurons which 

further enhanced the induction of perforant path long term potentiation (LTP). A loss of 

HCN1 thereby enhanced hippocampal dependent learning and memory and thus 

emphasized a behavioral role for dendritic integration (Nolan et al., 2004). However, 

impairment of HCN2 subunit expression in CA1 pyramidal neurons did not change 

postsynaptic responses. In contrast to the HCN1 knock-out, the HCN2 knock-out did not 



4. Discussion 
 

115 
 

constrain LTP in the perforant path by modulating dendritic integration in CA1 pyramidal 

neurons. This is not surprising, since HCN2 channels are not activate at resting membrane 

potentials (Fig. 3.8). Therefore, HCN2 channels most likely regulate inhibitory inputs, 

rather than excitatory input and thereby might contribute to the excitation-inhibition 

balance in hippocampal CA1 neurons (Ludwig et al., 2003, Matt et al., 2011). In 

accordance with this finding, time courses of EPSCs were not decelerated in PHNs treated 

with sh2. However, decay time constants of spontaneous EPSCs, miniature EPSCs, and 

evoked EPSCs were increased compared to control conditions (Figs. 3.21, 3.22 and 3.23). 

Even though the electrophysiological recordings of sh2-treated PHNs did not show an 

increase in Ih-current kinetics, there might be a shift from heteromeric HCN1/HCN2 

channels to HCN1 dominating homomeric channels, as described for Ih-currents in HCN2 

knockout mice (Ludwig et al., 2003, Matt et al., 2011). This would lead to an increase in 

resting HCN1 channel conductance and to an acceleration of EPSPs. These observations 

might underpin the role of HCN1 and HCN2 heteromeric channels in balancing 

excitation-inhibition in neurons. Interestingly, knock-down of HCN2 additionally 

induced paired-pulse depression without altering the initial amplitude of evoked EPSCs 

(Fig. 3.23). This observation suggested also a presynaptic role of HCN2. Notably, both, 

HCN1 and HCN2 isoforms were identified in presynaptic locations (Boyes et al., 2007), 

and presynaptic HCN1 channels were described to regulate calcium channel activity 

(Huang et al., 2011). Thus, depression of synaptic responses might be explained by 

decreased calcium influx at the presynapse. Because neurotransmitter release is tightly 

regulated by calcium, even small activity-dependent changes in calcium influx might lead 

to presynaptic plasticity mechanisms (Fioravante and Regehr, 2011). Furthermore, HCN 

channels are known to control resting sodium concentrations in nerve termini. Thus a 

change in HCN channel activity might affect intracellular sodium concentrations and 

thereby eventually alters neurotransmitter release from the presynapse (Huang and 

Trussell, 2014). To what extend the properties of HCN2 channels regulate pre-synaptic 

neurotransmission and dendritic integration in vivo remains elusive. On the one hand, the 

dendritic distribution of HCN channels in PHNs does not resemble the distal/proximal 

gradient found in native hippocampal CA1 pyramidal neurons (Noam et al., 2010). This 

result is in accordance with a previous study showing that the gradient-like distribution 

of HCN channels is controlled by an activity-dependent mechanism (Shin and Chetkovich, 

2007). On the other hand, HCN-channel expression levels in CA1 pyramidal neurons are 

known to undergo developmental changes (Fig. 4.2).  
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Figure 4.2: Developmental changes in HCN-channel transcript levels 
(A and B) Quantitative PCR analysis of hcn1, hcn2 and hcn4 transcript levels in dorsal hippocampal tissue 
(A) of animals from postnatal day 1 and (B) of animals from postnatal day 90. First-strand cDNA was 
synthesized on 1 µg of total RNA. Data were obtained from at least 5 different of animals. Results are 
depicted as mean ± standard deviation. 
 

These quantitative changes in HCN1, HCN2 and HCN4 isoform expression levels might 

indicate a ́ molecular switch´ from an early-postnatal slow-activating, cAMP-sensitive Ih-

current (HCN2/HCN4 dominant) to a mature fast-activating, cAMP-insensitive Ih-current 

(HCN1 dominant) (Surges et al., 2006, Brewster et al., 2007). Notably, these changes in 

HCN isoform expression levels correlate with a developmental transition from slow 

network oscillations in the immature CA1 network towards theta frequency oscillation in 

the mature CA1 network. Thus, developmental regulation of HCN gene expression might 

modulate neuronal resonance behavior to shape pyramidal neuron firing frequencies 

(Bender and Baram, 2008). Since PHNs were prepared from newborn animals and grow 

for approx. 2 weeks, they might recapitulate the HCN expression level of immature 

neurons (Fig. 3.9). Based on these findings, PHNs and heterologous expression systems 

in general, might be limited in their ability to capture the full spectrum of HCN channel 

dynamics and physiological functions. 
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4.3. In vivo HCN2-channel knock-down 

To overcome some limitations of hippocampal neurons studied in vitro and to investigate 

the role of the HCN2 isoform in vivo, rAAV9 encoding sh2 or shScr were injected into 

the dorsal hippocampus of adult mice. Previous studies demonstrated that mice with 

reduced Ih-currents due to the loss of HCN1, HCN2 or the auxiliary scaffolding protein 

TRIP8b showed antidepressant-like behavior (Ludwig et al., 2003, Nolan et al., 2004, 

Lewis et al., 2011, Matt et al., 2011) along with subunit-specific behavioral changes like 

impaired motor-learning or improved short- and long-term spatial learning and memory 

(Nolan et al., 2003). Notably, the behavioral changes observed upon injection of 

AAV9-sh2 did not resemble previous reports. Instead, the injected animals showed no 

changes in anxiety- or fear-related behaviors. However, the injected animals had deficits 

in spatial memory and showed increased locomotor activity. Although a knock-down of 

the HCN2 isoform was detected in sh2 injected mice, this was accompanied by 

unexpected reductions in the transcript levels of several, even unrelated neuronally 

expressed genes (Fig. 3.29). These ´unspecific´ knock-down effects were not detected in 

sh2 treated PHNs (Fig. 3.30). The immunohistochemical analysis finally shed some light 

on these inconsistencies. Especially the stainings, including the neuronal marker NeuN, 

showed that the previously observed phenomena might be explained by 

neurodegenerative processes, ultimately leading to a loss of the hippocampal CA1 

pyramidal cell layer (Fig. 3.32). The loss of these neurons was accompanied by increased 

levels of active Caspase3 and GFAP expression compared to control conditions (Fig. 

3.35), indicating an apoptotic mechanism (Tzeng et al., 2013). Possible explanations for 

these findings might be unspecific off-target effects of sh2 RNA or a contamination of 

the sh2-encoding virus batch. However, previous in silico and in vitro experiments using 

the same virus batch were inconspicuous and the use of an appropriate scrambled control 

shRNA ruled out the possibility of cytotoxic effects emerging from the hU6 promoter as 

previously observed (Günther et al., 2017).  

Interestingly, the CA1 pyramidal cell layer was found to express high levels of HCN1 

and HCN2 channel isoforms (Fig. 3.31). However, despite the finding that GFP 

expression, originating from the injected virus, was also found in the dentate gyrus (DG), 

there were no indications for apoptotic mechanisms in the DG, which expresses only basal 

levels of HCN isoform genes (Fig. 3.33). Furthermore, even after 9 weeks post injection, 

there were no indications for further spreading of the neurodegenerative and apoptotic 

processes (Fig. 3.34). Thus, the degeneration of neurons in the CA1 region might be 
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attributed to the knock-down of HCN2. Supporting this idea, a recent publication showed 

that CA1 pyramidal neurons of the dorsal hippocampus (DHC) express more HCN2 

subunits compared to CA1 pyramidal neurons of the ventral hippocampus (VHC) 

(Dougherty et al., 2013). This indicates, that the physiological function of HCN2 might 

be more relevant to the DHC, than to the VHC. In accordance with this finding, the 

behavioral changes observed after injection of rAAV9-sh2 into the dorsal hippocampus 

were mainly attributed to DHC-related defects. While changes in anxiety- or fear-related 

behaviors were mainly attributed to VHC (Henke, 1990, Bannerman et al., 2003), changes 

in spatial memory were mainly attributed to DHC (Moser et al., 1995). Moreover, HCN 

channel expression is not only tightly regulated in space, but also in time (Fig. 4.2) 

(Bender et al., 2001, Surges et al., 2006, Bender and Baram, 2008). This further 

emphasizes that any interference with the exquisitely regulated protein expression could 

lead to dramatic changes in neuronal homeostasis. Even though there are no reports on 

compensatory up- or downregulations of gene expression in HCN1 or HCN2 knockout 

animals, the interference with gene expression at a certain timepoint during postnatal 

stages might cause severe functional implications. 

Mechanistically, a knock-down of HCN2 could lead to a disturbance of excitation-

inhibition balance. As previously mentioned, HCN channels are regulated by neuronal 

activity (Shin and Chetkovich, 2007). Thus, the magnitude of somatic Ih-current is 

dependent on excitatory synaptic activity, which has been proposed as a homeostatic 

mechanism for regulating neuronal excitability (van Welie et al., 2004). This mechanism 

may have an additional homeostatic role by narrowing the time window for coincidence 

detection during increased neuronal activity. Vice versa, the coincidence detection 

window would broaden with decreasing synaptic activity (Pavlov et al., 2011). Interfering 

with this mechanism might cause overexcitation and ultimately could lead to 

neurodegeneration due to the cytotoxic actions of excessive glutamate (Lewerenz and 

Maher, 2015). Supporting this idea, propofol, a commonly used anesthetic known to act 

on both, GABAA receptors and HCN channels at clinically relevant concentrations 

(Cacheaux et al., 2005), induces apoptosis of CA1 pyramidal neurons in mice (Yan et al., 

2017). If the neurodegenerative effect of propofol is caused by its direct actions on HCN 

channels has to be experimentally proven. Additionally, point mutations in the hcn2 gene 

were uncovered in patients suffering from febrile seizures (Dibbens et al., 2010) or 

epilepsy (Tang et al., 2008, DiFrancesco et al., 2011). These mutations were thought to 

lower the threshold of action potentials and thereby strongly increase excitability. 
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Another possibility which might seem unreasonable at a first glance, should not be 

overlooked. There might be other cell-types involved as potential contributors for 

neurodegeneration (Chang et al., 2019). Notably, HCN channels are not exclusively 

expressed in neurons. They have been additionally described in reactive astrocytes 

(Rusnakova et al., 2013, Honsa, 2014) and in microglia (Fig. 4.3). Interestingly, HCN 

channels in microglia are localized in intracellular compartments, rather than in the 

plasma membrane, and thus do not give rise to typically Ih-currents or sag-potentials, 

which can be measured by whole-cell patch-clamp recordings (Fig. 4.3 C). 

 

Figure 4.3: HCN expression in rat microglia 
(A and B) Representative immunofluorescent images showing the expression of (AI) HCN1, (AII) HCN2, 
and (B) colocalization of both proteins in lysosomes of microglia derived from rat cortex. HCN channel 
isoforms were stained with specific anti (α)HCN1 and αHCN2 antibodies. Microglia were stained using the 
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microglial marker isolectin IB4 (αIB4). Lysosomes were stained using a lysosomal-associated membrane 
protein 1 (LAMP-1) antibody (αLAMP-1). Primary antibodies were combined with fluorescently labeled 
secondary antibodies and nuclei were stained with TOPRO (blue). (CI) Representative voltage stimulation 
protocol and corresponding current traces and (CII) representative current stimulation protocol and 
corresponding voltage traces of whole-cell patch-clamp recordings derived from rat cortical microglia 
cultured cells.  
 

Both, HCN1 and HCN2 subunits were identified in lysosomes, as indicated by the 

colocalization of the lysosomal marker protein LAMP-1 (Fig. 4.3 A and B). This 

observation is supported by data showing that microglia express a splice variant of the 

auxiliary protein TRIP8b (TRIP8b-1b) (personal communication with Dr. Sabine Vay), 

targeting HCN channels to intracellular compartments and thereby decreasing the surface 

expression (Santoro et al., 2004, Santoro et al., 2009). However, the function of HCN 

channels in lysosomes was not investigated so far, even though there might be a 

physiological role for Ih-currents in intracellular vesicles (Calejo et al., 2014). Since AAV 

serotype 9 virions are known to transduce a proportion of astrocytes and microglia in the 

hippocampus (Aschauer et al., 2013), this raises the possibility that manipulation of HCN 

expression in glia cells might be additionally involved in the neurodegenerating processes 

observed in the CA1 region. However, the function of HCN channels in glial cells, as 

well as their potential contribution to neurodegenerative mechanisms remains elusive and 

thus should be experimentally examined.  

 

  



4. Discussion 
 

121 
 

4.4 Summary and Outlook  

In summary, the presented thesis demonstrated the capability of virus-mediated knock-

down for examining protein functions in cultured neurons in vitro and neuronal networks 

in vivo. This approach facilitated to elaborate on the differential functions of individual 

HCN channel subunits in contributing to basic electric properties of primary hippocampal 

neurons. Furthermore, the subunit-specific knock-down enabled to characterize the role 

of HCN2 in excitatory signal transduction. Unexpectedly, the injection of recombinants 

evoking a knock-down of HCN2 in the dorsal hippocampus of adult mice resulted in a 

severe degeneration of the CA1 pyramidal cell layer. If this degeneration is attributed and 

caused by the loss of HCN2, or provoked by difficult to grasp side-effects remains elusive 

and is worth for further investigation. 

To examine specifically the temporal implications of HCN2 channel functions in CA1 

pyramidal cells and to rule out the possibility that non-neuronal cells are engaged in the 

neurodegenerative mechanism observed upon rAAV9-sh2 injection, alternative 

experimental strategies may be necessary. A pyramidal neuron-specific temporal 

controllable deletion of the HCN2 isoform might be a reasonable strategy. Mice harboring 

a NEX-CreERT2 transgene (Agarwal et al., 2012) induce Cre expression exclusively in 

pyramidal neurons, which can be temporally controlled by injection of tamoxifen. In such 

mice, the neuronal helix-loop-helix protein-1 NEX gene promoter (Schwab et al., 2000) 

was used to drive Cre recombinase expression in pyramidal neurons, while the mutant 

estrogen receptor (ERT2) ligand binding domain fused with the Cre recombinase was 

used to temporally control the Cre recombinase activity. Crossing these mice to a strain 

harboring loxP-flanked exons 2 and 3 of the HCN2 channel gene, would lead to a loss of 

the HCN2 isoform in pyramidal neurons (Matt et al., 2011) which can be temporally 

controlled by application of tamoxifen. However, since pyramidal neurons are not 

exclusively located in the hippocampus, the injection of AAVs encoding the Cre 

recombinase under control of the NEX promoter into the hippocampus of mice carrying 

the loxP-flanked exons 2 and 3 of the HCN2 isoform gene, might be more closely related 

to the experimental conditions described in this thesis. Similar transgenic approaches 

could also be used to knock-out the HCN2 gene in glial cell-types to further investigate 

the physiological function of HCN channels in non-neuronal cells. However, because 

little is known about HCN channels in glial cells, additional in vitro experiments might 

be necessary to gain a basic knowledge of the physiological role of HCN channels in 

intracellular compartments of non-neuronal cells.  
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