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Abstract

Different bacterial subspecies live in close proximity in soil. Horizontal gene transfer enables them to
exchange genetic information. Little is known about the efficiency of gene transfer and whether it occurs
randomly across the genome.

In the first part of this thesis, we designed an evolution experiment and analysis algorithm to character-
ize genome dynamics in the presence of a different subspecies. Bacillus subtilis is naturally competent
for transformation: it takes up DNA from its environment and integrates segments into its chromosome
by recombination. Eight clonal populations of B. subtilis 168 (Bsu168) were evolved with genomic DNA
from B. subtilis W23 (BsuW23) for 21 cycles. To minimize variability in transformation rates as a func-
tion of time, we generated a strain with inducible competence, and competence was induced once per
cycle. Evolved cultures had more than 100 homologous recombination events, per replicate, and the
length of recombined segments was exponentially distributed with a characteristic length of 3500 bp−1.
Average recipient genome replacement occurred at a constant rate over the course of the experiment,
averaging 0.47% replacement every cycle. In addition to homologous recombined-segments, de novo
segments from the BsuW23 auxiliary genome and de novo variants were also detected. The de novo
segments from the auxiliary genome had a mean length of 2.2 kbp. Bacteria evolving in the presence of
BsuW23 DNA showed five times as many de novo variants in regions upstream of genes and five times as
many missense indels, compared to control samples receiving either no DNA or self (Bsu168) DNA. Of
those upstream mutations, 75% were inside a recombined segment. This hinted at the possibility of those
mutations being compensatory mutations, as upstream and missense mutations are likely to affect gene
expression levels. We conclude that the recipient genome was replaced by donor genome at a constant
rate and constant segment-length distribution, up to a total of 10% genome replacement. Introduction of
de novo variants is likely to affect the levels of gene expression.

The probability of replacing a specific gene was in good agreement with a binomial distribution,
suggesting that replacement occurred close to random across the genome. However, we found important
deviations from random integration. At both the single-cell level and the population level, we obtained
evidence that homologous recombination does not occur stochastically. At the single-cell level, imported
segments had a higher average identity, 93.6 %, than the Bsu168 and BsuW23 inter-subspecies identity
of 92.4%. Interestingly, recombined segments had one end of integration with a significantly higher
identity than expected from simulations using the same length distribution. We found that the increased
sequence identity extends to roughly 500 bp. The bias towards higher than average sequence identity is
most likely caused by the recombination process. At the population level, we found further evidence
that recombination did not occur randomly. On one hand, several genes, such as leu and eps, were
presumptively selected for, as they were replaced in nearly all replicates. On the other hand, recombined
donor segments were underrepresented in prophages and mobile-elements genes, most likely because
they correspond to auxiliary genes in each subspecies. Essential genes were overrepresented, plausibly
because essential genes have a higher average identity compared to nonessential genes. There was a
preference to replace genes and operons fully. Two-thirds of all affected genes and operons were fully
replaced. Full gene replacement is explained, in part, by the average import length being 1.9 kbp, ∼2
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genes. The average operon length is also comparable, 3.2 kbp. To summarize, homologous replacement
is biased to higher than average sequence-identity. Given the length distribution of recombined segments,
the generation of hybrid genes is less likely than the replacement of full genes. Only for a few genes is
there evidence of selection.

In the second part of this thesis, we investigated the cost of competence for transformation in the
stationary growth phase. We characterized the competition dynamics of strains with various probabilities
of entering the K-state, to quantify the effect the K-state has on fitness in B. subtilis. Relative fitness was
found to decrease with increasing probability of entering the K-state, during both the exponential and
stationary growth phases. Using a microfluidic chamber, we were able to characterize generation times
in the stationary phase for both K-state and non-K-state cells. We found a strong cost of competence due
to growth inhibition, even in the stationary state. These findings emphasized that the stationary phase is
dynamic.

We conclude that gene transfer between subspecies of B. subtilis is highly efficient, with 10% of
the chromosome being replaced in a total of 42 h of competence during the evolution experiment.
DNA uptake in B. subtilis 168 from donor strain B. subtilis W23 occurred at a constant rate and fairly
random. Recombined segments had higher identities than the between-subspecies average, pointing to
the importance of sequence divergence in recombination. Several alleles were replaced in the majority of
the replicates, indicative of a selection advantage. It has been proposed that recombination is beneficial
because it can cure the recipient from prophages. In contrast, here we observed that replacement of
essential genes was overrepresented, while prophage genes were hardly affected. This suggested that gene
transfer between subspecies functions as genome maintenance. The appearance of variants, including
indels, in possible regulatory regions calls for studies of the effects of recombination on transcription. We
speculate that recombination may be suppressed between subspecies by other factors, such as quorum
sensing.

viii



Zusammenfassung

Verschiedene bakterielle Unterarten leben im Erdreich in unmittelbarer Nähe zueinander. Horizontaler
Gentransfer ermöglicht es ihnen, genetische Informationen auszutauschen. Über die Effizienz des Gen-
transfers und darüber, ob er zufällig im Genom auftritt, ist wenig bekannt.

Im ersten Teil dieser Arbeit wurde ein Evolutionsexperiment mit den benötigten Analysealgorithmen
entwickelt, um die Genomdynamik in Anwesenheit einer anderen Subspezies zu charakterisieren. Bacillus
subtilis zeigt natürliche Kompetenz: B. subtilis kann DNA aus seiner Umgebung aufnehmen und durch
Rekombination Abschnitte in sein Genom integrieren. Acht klonale B. subtilis 168 (Bsu168) Populationen
wurden für 21 Zyklen mit genomischer DNA aus B. subtilis W23 (BsuW23) evolviert. Um die Variabilität
der Transformationsrate zu minimieren, wurde ein Stamm mit induzierbarer Kompetenz generiert.
Die Kompetenz wurde einmal pro Zyklus induziert. Die evolvierten Kulturen wiesen mehr als 100
homologe Rekombinationsereignisse je Replikat auf. Die Länge der rekombinierten Segmente war
exponentiell verteilt mit einer charakteristischen Länge von 3500 bp−1. Der durchschnittliche Austausch
des Empfängergenoms trat über den Verlauf des Experiments mit einer konstanten Rate auf, wobei pro
Zyklus durchschnittlich 0,47% ausgetauscht wurden. Zusätzlich zu den durch homologe Rekombination
eingefügten Segmenten wurden neue Abschnitte aus den nur im Genom von BsuW23 vorkommenden
Genen sowie völlig neue Varianten des Ausgangsgenmaterials detektiert. Die neuen Segmente aus
spenderspezifischen Genen besaßen eine mittlere Länge von 2,2 kbp. Bakterien, die in Gegenwart von
BsuW23 DNA evolviert wurden, zeigten im Vergleich zu Kontrollproben, welchen entweder keine
DNA oder eigene (Bsu168) DNA zugegebene wurde, fünfmal so viele neue Varianten in von Genen
aus gesehen strangaufwärts gelegenen Regionen sowie fünfmal so viele nicht synonyme Insertionen
oder Deletionen. Von den Mutationen in strangaufwärts gelegenen Regionen befanden sich 75% in
rekombinierten Abschnitten. Dies legte die Vermutung nahe, dass es sich hierbei um kompensatorische
Mutationen handelt, da strangaufwärts gelegene und nicht synonyme Mutationen wahrscheinlich einen
Einfluss auf das Genexpressionsniveau haben. Zusammenfassend konnten wir zeigen, dass bis zu 10% des
Empfängergenoms durch das Spendergenom ausgetauscht wurde. Die Austauschrate und die Verteilung
der Segmentlänge sind dabei konstant. Die Entstehung neuer Varianten hat mit hoher Wahrscheinlichkeit
Einfluss auf das Genexpressionsniveau.

Die Wahrscheinlichkeit, dass ein spezifisches Gen ausgetauscht wurde, stimmt mit einer Binomial-
verteilung überein, was nahelegt, dass der Ort an dem Genmaterial ausgetauscht wird zufällig über das
Genom verteilt ist. Dennoch fanden wir sowohl auf Einzelzellniveau als auch auf der Populationsebene
wichtige Hinweise auf Abweichungen von einer rein zufälligen Integration. Auf Einzelzellniveau als
auch auf der Populationsebene haben wir Hinweise darauf gefunden, dass homologe Rekombination
nicht stochastisch auftritt. Auf dem Einzelzellniveau ist die mittlere Übereinstimmung zwischen dem
importierten Abschnitt und der Ausganssequenz mit 93,6% höher als die zwischen den beiden Spezies
Bsu168 und BsuW23 von 92,4%. Interessanterweise hatten rekombinierte Segmente ein Ende mit einer
signifikant höheren Übereinstimmung, als es anhand von Simulationen auf Grundlage derselben Längen-
verteilung zu erwarten wäre. Die erhöhte Sequenzübereinstimmung erstreckt sich über eine Länge von
ungefähr 500 bp. Die Tendenz zu einer erhöhten mittleren Übereinstimmung wird vermutlich durch den
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Prozess der Rekombination hervorgerufen. Auch auf der Populationsebene haben wir Hinweise darauf
gefunden, dass die Rekombination nicht zufällig auftritt. Einerseits wurde vermutlich auf einige Gene
wie leu und eps selektiert, da diese in nahezu allen Replikaten ersetzt wurden. Andererseits wurden in
Prophagengenen und mobilen Genelementen vergleichsweise wenig Spenderabschnitte integriert, ver-
mutlich da es sich bei diesen häufig um Gene handelt, welche ausschliesslich in der Spendersequenz zu
finden sind. Essentielle Gene wurden hingegen besonders häufig ausgetauscht, da diese im Vergleich zu
nicht essentiellen Genen eine besonders hohe Übereinstimmung zwischen den Subspezies aufweisen. Es
konnte eine Präferenz zum vollständigen Austausch von Genen und Operons festgestellt werden. Zwei
Drittel aller betroffenen Gene und Operons wurden vollständig ersetzt. Der vollständige Austausch der
Gene kann zumindest teilweise durch die durchschnittliche Importlänge von 1,9 kbp erklärt werden, wel-
che ungefähr der Länge von zwei Genen entspricht. Auch die mittlere Operonlänge ist mit 3,2 kbp mit
der mittleren Importlänge vergleichbar. Zusammenfassend wurde ein Trend der homologen Rekombinati-
on zu höheren Sequenzähnlichkeiten festgestellt. Ausgehend von der Längenverteilung der integrierten
Abschnitte ist die Erzeugung von Hybridgenen weniger wahrscheinlich, als der vollständige Austausch.
Hinweise auf Selektion konnten für einige wenige Gene beobachtet werden.

Im zweiten Teil der Arbeit wurden die Kosten der Kompetenz in der stationären Wachstumsphase
untersucht. Dabei wurde die Konkurrenzdynamik verschiedener Stämme, mit unterschiedlichen
Wahrscheinlichkeiten in den K-Zustand zu wechseln, charakterisiert, um den Effekt des K-Zustandes auf
die Fitness in B. subtilis zu quantifizieren. Es wurde festgestellt, dass sowohl während der exponentiellen
als auch der stationären Wachstumsphase die relative Fitness mit steigender Wahrscheinlichkeit sich im
K-Zustand zu befinden abnahm. Unter Verwendung einer Mikrofluidikkammer wurden für Zellen in der
stationären Phase, die sich jeweils entweder im K-Zustand oder nicht im K-Zustand befanden, die
Generationszeiten bestimmt. Wir konnten zeigen, dass Kompetenz sogar im stationären Zustand durch
Wachstumsverminderung starke Kosten aufweist. Dies zeigt, dass die stationäre Phase dynamisch ist.

Insgesamt schlussfolgern wir, dass der Gentransfer zwischen B. subtilis Subspezies hocheffizient
abläuft, da während der 42 stündigen Kompetenz während des Evolutionsexperiments insgesamt 10% des
Chromosoms ausgetauscht wurden. Die Aufnahme der DNA des Spenderstammes B. subtilis W23 durch
den Empfänger B. subtilis 168 erfolgte nahezu zufällig und mit einer konstanten Rate. Die rekombinierten
Abschnitte hatten eine höhere genetische Übereinstimmung, als die mittlere Übereinstimmung zwischen
den Subspezies, was die Bedeutung der Sequenzdivergenz hervorhebt. Der Austausch mehrerer Allele in
der Mehrzahl der Replikate weist auf einen selektiven Vorteil hin. Im Allgemeinen wurde angenommen,
dass Rekombination von Vorteil sein kann, da es den Empfänger von Prophagen heilen kann. Im
Gegensatz dazu zeigen unsere Ergebnisse, dass sich der Austausch genetischen Materials hauptsächlich
auf essentielle Gene beschränkt, während Prophagengene kaum betroffen waren. Dies legt die Vermutung
nahe, dass Gentransfer zwischen Subspezies hauptsächlich der Erhaltung genetischen Materials dient.
Möglicherweise kann die Rekombination zwischen Subspezies auch durch andere Faktoren unterdrückt
werden, wie beispielsweise durch die Wahrnehmung der Zelldichte. Das Auftreten von genetischen
Variationen, einschließlich Insertionen und Deletionen, in möglichen regulatorischen Regionen zeigt die
Notwendigkeit von Studien zum Effekt der Rekombination auf die Transkription.
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Introduction

“We are tied together into a single processing system, made up of many different
individuals. You are me, and I am you. Together, we are an amazing, superior”

—Superorganism

1.1 Horizontal Gene Transfer

Life in microbial communities is diverse, with social interactions between strains and species. These
social interactions include, cooperation, competition, toxins, quorum sensing, and horizontal gene transfer
[1]. Untangling the influence of each interaction is key to understanding how these communities respond
to external stresses.

Microbes spend the majority of their time in dense communities with various strains and species
[2]–[4]. Phenotypes have evolved which affect other cells, and have both positive and negative effects on
their recipients and actors [5]. Cooperation is a phenotype that increases the fitness of another cell. In
some microbes, cooperation is mutualistic, such as the production of siderophores to aid in the uptake
and metabolism of iron. The majority of bacteria excrete siderophores, which can sequester iron; the
iron-siderophore complex can then be recognized by cell receptors on most bacteria [6], [7]. Other
microbes have altruistic cooperation such as some cyanobacteria in their division of labor. A fraction
of the population differentiates into heterocysts under nitrogen limitation, making them biochemically
specialized for nitrogen fixation. This, in turn, causes the heterocysts to lose the ability to reproduce [8].

Bacteria in communities also compete. Competition can take the form of toxins, such as antimicrobial
producer Burkholderia thailandensis [9]; others take the form of nutrient limitation, such as overproduc-
tion of extracellular polysaccharides in Pseudomonas fluorescens – which position the bacteria at the
air-liquid interface where more oxygen is available [10].

In both cooperative and competitive interactions, bacteria frequently make use of quorum sensing.
Quorum sensing is the secretion of signaling molecules to allow neighboring cells to measure population
density [2], [11]. Examples of quorum sensing include sporulation and competence in Bacillus subtilis
[12]–[14] and virulence in Staphylococcus aureus [15].

Finally, horizontal gene transfer (HGT) is the transfer of genetic material between individuals that
are not linked by inheritance. It is essential to microbial evolution, as it enables genetic information to
spread horizontally through diverse communities [16]–[18]. Evidence of HGT has been found not only
between bacteria species [19] but also between bacteria and eukaryotes [20]. Here, we explain different
mechanisms for HGT and highlight their significance in evolution.

1.1.1 The Role of Recombination in Evolution

In bacteria, there are three mechanisms of HGT: conjugation, transduction, and transformation (Figure 1.1)
[21]. Conjugation is the transfer of DNA between two connected cells via nanotubes or membrane fusion
[22]–[24]. Transduction is the exchange of genetic information via phages. Bacteriophages can package
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bacterial DNA in two ways, specialized or generalized. In specialized transduction, bacterial DNA is
intentionally integrated into the bacteriophage by imprecise splicing of its own phage DNA from the
bacterial genome. Generalized transduction is the random incorporation of bacterial DNA during cell
lysis [25]. Finally, transformation is the uptake of extracellular DNA [26], [27].

The general hypothesis is that HGT is a key agent for adaptation in bacteria [18]. It is thought to speed
up adaptation by preventing clonal interference [28], the competition between two beneficial mutations in
a population (Figure 1.2). In the absence of horizontal gene transfer, beneficial mutations have to occur
on top of previously existing mutations in order to remain in the population. Beneficial mutations can
even die out, if another mutation appears that has a greater fitness [29]–[33].

HGT can acquire novel alleles from other strains or species, such as resistance to antibiotics [16] or
adaptation to new environmental niches [34]. In Galdieria sulphuraria, horizontally transferred genes
are thought to make up 5% of the protein-coding genes. Those genes are also involved in important
processes such as metabolism, detoxification, and glycerol uptake [20]. The transfer of genetic material

von Wintersdorff et al. Dissemination of Antimicrobial Resistance

FIGURE 1 | Mechanisms of horizontal gene transfer. Each quadrant represents one different method of gene transfer. (A) Conjugation is a process requiring cell

to cell contact via cell surface pili or adhesins, through which DNA is transferred from the donor cell to the recipient cell. (B) Transformation is the uptake, integration,

and functional expression of naked fragments of extracellular DNA. (C) Through specialized or generalized transduction, bacteriophages may transfer bacterial DNA

from a previously infected donor cell to the recipient cell. During generalized transduction, bacterial DNA may be accidentally loaded into the phage head (shown as a

phage with a red DNA strand). During specialized transduction, genomic DNA neighboring the prophage DNA is co-excised and loaded into a new phage (not shown).

(D) Gene transfer agents (GTAs) are bacteriophage-like particles that carry random pieces of the producing cell’s genome. GTA particles may be released through cell

lysis and spread to a recipient cell.

1951, Hotchkiss induced penicillin and streptomycin resistance
in previously sensitive strains of S. pneumoniae by exposing
them to DNA from resistant strains (Hotchkiss, 1951). Alexander
et al. furthered this work by demonstrating intra- and inter-
species transfer of streptomycin resistance betweenH. influenzae,
H. parainfluenzae, and H. suis (Alexander and Leidy, 1953;
Alexander et al., 1956).

In order for transformation to take place, several conditions
have to be met. There must be DNA present in the extracellular
environment; the recipient bacteria must be in a state of
competence; and the translocated DNAmust be stabilized, either
by integration into the recipient genome, or by recircularisation
(in the case of plasmid DNA) (Thomas and Nielsen, 2005).
Whereas Neisseria spp. are considered to be constitutively
competent (Sparling, 1966; Johnston et al., 2014), other
bacterial species capable of natural transformation may develop

competence only under certain conditions, such as the presence
of peptides or autoinducers, nutritional status, or other stressful
conditions, as reviewed in more detail by Johnston et al. (2014).
Importantly, studies have shown that exposure to antibiotics can
induce competence in many species of bacteria, meaning that
antibiotics would not only select for resistant strains, but also
stimulate transformation of their ARGs (Prudhomme et al., 2006;
Charpentier et al., 2011, 2012).

In vitro experiments have done much to elucidate
transformation of ARGs. Early work proved that ARGs
could be transformed; to this end, streptomycin, rifampicin,
erythromycin, nalidixic acid, and kanamycin resistance have
variously been transformed into Neisseria gonorrhoeae (Sparling,
1966), Bacillus spp. (Harford andMergeay, 1973),Gallibacterium
anatis (Kristensen et al., 2012), and S. pneumoniae (Prudhomme
et al., 2006). The introduction of molecular techniques allowed

Frontiers in Microbiology | www.frontiersin.org 4 February 2016 | Volume 7 | Article 173

Figure 1.1: Horizontal gene transfer mechanisms in bacteria. (upper left) Conjugation – DNA is transferred through
cell to cell contact. (upper right) Transformation – extracellular DNA is taken up from the environment. (lower
panels) Transduction – bacterial DNA is loaded into and transferred by phages, both stochastically (lower left) and
intentionally (lower right). Image adapted from [27] and under CC-BY license.
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Figure 1.2: Müller diagram showing clonal interference. In a homogeneous population (vertical axis, initially gray)
mutations in individuals occur as the population evolves (horizontal axis, generations). Mutations A – F are marked
in different colors and grow in height as they outcompete concurrent genotypes. Clonal interference is seen as
mutant B outcompetes mutant A, and later as mutant BC is out competed by mutant BDE. Mutant BC is initially
fitter than mutant BD, until the latter accumulates the E mutation.

from prophages has also been shown to be beneficial, at times. Cryptic prophages in Escherichia coli
contributed to antibiotic resistance, withstood osmotic, oxidative and acidic stresses, influenced biofilm
formation, and increased growth [35]. Alternatively, it has recently been proposed that HGT expels DNA
regions, in particular prophage elements [36], [37]. Theoretically, models have shown that HGT initially
helps a population reach higher fitness in a rugged fitness landscape, However, at longer time scales HGT
is less effective than the “trapping” of recombining populations on local fitness peaks [38].

In this study, we will focus on one type of horizontal gene transfer, transformation. In bacteria, many
organisms can naturally transform by entering a state known as competence.

1.1.2 Bacterial Transformation and DNA Uptake Mechanisms

Competence is the ability to import extracellular DNA. Successful transformation through competence
consists of the import of external DNA, and its integration into the host’s chromosome (Figure 1.3). In
order to uptake external DNA, cells first have to become competent and build up the necessary machinery
for transformation [39]–[41]. Often “competent for transformation" is spoken of, to articulate that
cells are in a competent state but are not necessarily undergoing transformation. Competence is found
naturally in many bacterial species, both Gram-positive species—e.g., B. subtilis and S. pneumoniae—and
Gram-negative species—e.g., Neisseria gonorrhoeae and Haemophilus influenzae [26].

In Gram-positives, extracellular DNA binds to the cell surface. In B. subtilis ComEA is responsible
for DNA binding [42], in S. pneumoniae additional proteins seem to be involved [43]. DNA is then
transported into the cytoplasm linearly [44]. Uptake is increased in B. subtilis by surface endonuclease
NucA which introduces double-strand breaks [45] or preceded by single-strand nicks and then double
strand breaks in S. pneumoniae [46], [47].

In Gram-negatives, DNA uptake begins, for some species such as Neisseria [48] and H. influenzae [49],
with a specific motif (DNA uptake sequence, DUS). These sequence motifs allow the bacteria to favor
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Figure 1.3: Cartoon schematic of competence for transformation. After entering the competent state (K-state), cells
import extracellular DNA into the cytoplasm as single-stranded DNA (ssDNA). Once in the cell, single-stranded
DNA can integrate into the host’s chromosome.

homo-specific DNA uptake [26]. In N. gonorrhoeae, DUS binding depends on the major pilin (PilE),
which is modified by expression of different minor pilins (e.g., ComP) [50], [51]. Recognition of the DUS
triggers uptake across the outer membrane into the periplasmic space, driven by a translocation ratchet
where ComE reversibly binds [52]. Finally, DNA is transported through the cytoplasmic membrane via
ComA [53].

In both Gram-positives and negatives, only single stranded DNA (ssDNA) reaches the cytoplasm. The
ssDNA is bound by single-stranded binding protein SsbB and DNA processing protein DprA [41]. The
latter recruits recombinase RecA, which polymerizes on the ssDNA and initiates a homology search
along chromosomal DNA. In successful transformation, strand exchange occurs and the foreign DNA
is integrated into the host’s genome [54]. The other DNA strain is degraded in the extracellular space
(Gram-positives) or putatively the periplasmic space (Gram-negatives) [26].

1.1.3 Competence for Transformation in Bacillus subtilis

Focusing on the Gram-positive B. subtilis, competence genes are expressed in the late exponential
phase of growth [55] and regulated by the competence transcription factor ComK (Figure 1.4) [56],
[57]. During exponential growth, comK expression is inhibited by three repressor proteins: Rok, CodY,
and AbrB. Rok is the most important of the three, which is reflected in its name “repressor of comK"
[58]–[60]. Concurrently, basal levels of ComK are sequestered by MecA, and thereby degraded by the
protease ClpCP [61]. During the late exponential growth phase, as the population becomes dense and
nutrients scarce, quorum sensing is activated by ComX and Phr peptides [62], [63]. ComX is sensed in
the extracellular space by the membrane-spanning protein ComP, which in turn phosphorylates ComA,
leading to the regulation of sfr [64]. sfr, in turn, encodes for the small protein ComS, which competes
with ComK for the binding site with the MecA/ClpCP complex. Freed ComK binds to its own promoter
as a tetramer [65], creating an auto-catalytic feedback loop [66], [67].

Owing to the auto-catalytic feedback loop, competence is a bistable system in B. subtilis [66], [67]. A
basal concentration of ComK is maintained just below the threshold needed to activate the auto-catalytic
loop. Low copy numbers of comK mRNA lead to intrinsic noise in the ComK copy number [57], [68],
[69] between cells. Stochastically, some cells will express enough ComK to get over the threshold for
activation, and will become competent (enter the K-state). K-state cells escape from competence as
ComS levels drop, leaving the MecA/ClpCP complex free to rapidly degrade ComK [70]. Figure 1.5.
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in individual cells. We have shown that comK expression

was measurable before switching initiation in individual

cells and expression levels showed a large cell-to-cell

variation (Figure 1) [28��]. Furthermore, it has been

shown that competence can occur with a low probability

even under conditions where cells do not normally

become competent, indicating that the system is noisy

[29].

Stochastic switching to competence Leisner et al. 555

Figure 2

Simplified regulatory circuit controlling competence development. Transcriptional control of comK in green, proteolytic control of ComK in red. Filled

arrows and T-bars indicate positive and negative regulation, respectively. Kinked arrows illustrate promoter regions, open arrows expression. K,

ComK; �P, phosphorylated.

Figure 3

Mechanism for temporal regulation of noise-driven genetic switching. In the exponential growth phase (T < T0) basal ComK levels (blue and orange)

are far below the threshold that triggers the autocatalytic feedback for comK transcription. Due to quorum sensing and stationary phase sensing

mechanisms basal ComK levels increase and fluctuate right below the threshold. Eventually, the ComK level in one or the other cell (blue) exceeds the

threshold and the positive feedback is triggered. In the remaining cells, the ComK threshold triggering the positive feedback is not reached (orange).

The period in which basal comK expression is elevated is denoted as the switching window. Individual cells switch with an intrinsically defined

switching period to a state with high level of ComK. After a certain period, individual cells escape the competent state.

www.sciencedirect.com Current Opinion in Microbiology 2008, 11:553–559

Figure 1.4: Core of the B. subtilis competence network. Transcriptional control (green) and proteolytic control
(red) of comK (blue). Positive and negative regulation are denoted by arrows or t-bars, respectively. Bent arrows
represent promoters. Image adapted from [57] and reproduced with permission.
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Figure 1.5: ComK levels in B. subtilis as a function of time. Cartoon drawing shows how basal ComK levels rise
(orange curves), as the end of the exponential phase is reached. Within the switching window (beige, 1.5 h in
length), ComK copy number fluctuations, in individual cells, can jump over the threshold needed to activate the
auto-catalytic feedback loop (purple curves). Once over the threshold, the feedback loop ensures that those cells
immediately enter the K-state. About 2 h later, K-state cells escape from competence, as the MecA/ClpCP complex
degrades ComK. After the switching window, the basal level of ComK decreases and thereby the probability of
cells (re)entering the K-state, too. Image adapted from [57] and reproduced with permission.
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Bistability

Bistability is the phenomenon where cells with identical genotypes express different phenotypes at the
same time. Non-uniform expression of genes is not all that uncommon in the bacteria world, and can
be seen across many microbe species including E. coli (persister cells [71]), Pseudomonas aeruginosa
(mucoidy and toxicity [72], [73]), and B. subtilis (competence [74]). These bistable systems can have
increased fitness compared to homogeneous populations, and they allude to a division of labor [75] or
bet-hedging strategies to maximize fitness [76].

The bistability of the K-state leads to two phenotypes in wild type strains: K-state and non K-state
cells. In a lab wild type strain, 15% of the population will enter the K-state at the late exponential phase
[77]. This number can be increased by knocking out rok (leading to nearly the entire population entering
the K-state) or muted by deleting comK, and thereby the competence machinery. Studies playing with
ComK and ComS, copy number and basal levels found that the competence system could be tweaked
into an excitable, monostable, or bistable system, depending on those four aforementioned variables [78].

Cost and Benefits of the K-state

The cellular machinery for competence is robust, in that it has survived years of evolution. Nevertheless,
a bistable system hints at costs and benefits of entering the K-state. K-state cells are competent for
transformation – they are capable of taking up extracellular DNA. While there are several hypothesis as
to what evolutionary function competence serves (including DNA as a food source [79]), the consensus
is that competence evolved to facilitate horizontal gene transfer [80]–[82], and to a more minor degree,
repair damaged DNA [83]–[85].

Competence bears the costs of generating machinery for DNA uptake, acquiring deleterious alleles, and
reduced fitness in the presence of strong epistasis and persistence [38], [86], [87]. The most significant of
these costs is growth arrest; K-state cells are growth arrested for about 2 h after re-inoculation [88], [89].
All of these costs come with the trade-off of acquiring novel functions [80], avoiding antibiotics [87],
[90], and faster adaptation due to gene transfer [77].

1.1.4 Rates of Transformation Depend on Phylogenetic Distance

Up until this point, horizontal gene transfer, and in particular competence, has been examined without
regard to how likely it is that foreign genes are integrated, at all. Work by Zawadzki et al. found that
the transformation rate varied with sequence divergence between recipient B. subtilis strains and donor
B. mojavensis [91]. Varying transformation rates, depending on recipient and donor, have also been
measured in other species, such as E. coli where researchers found the amount of DNA uptake in E. coli
K12 depended on the donor E. coli strain [92].

A more recent study broadened the scope of transformation efficiency between species, by looking at
recombination rates of the rpoB gene from B. subtilis 168 into several Bacillus species. The rpoB gene
is known to confer resistance to rifampicin (rifR) with a single point mutation. In addition to the point
mutation needed to confer resistance, the related Bacillus species had additional mismatches, varying
from 74 – 624. The authors found that DNA uptake decreased exponentially as a function of sequence
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Figure 1. Average chromosomal transformation frequencies as a function of sequence divergence (in %) from recipient. (A) The rpoB482 DNA was derived
from B. subtilis 168 (Bsu 168, 99.96% identity), B. subtilis W23 (Bsu W23, 97.53%), B. atrophaeus 1942 (Bat 1942, 91.65%), B. amyloliquefaciens DSM7
(Bam DSM7, 89.88%), B. licheniformis DSM13 (Bli DSM13, 85.48%) and B. thuringiensis MC28 (Bth MC28, 79.17%). The rpoB482 mutation, which
confers resistance to rifampicin (RifR) is framed by dotted lines. Mismatches between RifR donor and the corresponding rpoB in the RifS recipient strain
are indicated by vertical red bars and an insertion/deletions by vertical black bars. If two mismatches are located below the MEPS distance they count as
a single red bar, the thickness of the bar represent the number of mismatches in the neighbourhood. (B) The undigested rpoB482 DNA (empty or filled
squares) or linear SpeI-cleaved rpoB482 DNA (empty circle) was used to transform BG1359 (�rok) (empty circles and squares) and its isogenic parental
strain BG214 (filled squares) competent cells with selection for RifR. All values are means from 3 to 5 independent experiments. In the upper and lower
inserts the black lines represent the recipient chromosomal DNA (a supercoiled molecule), and the grey line the homologous donor linear ssDNA. If the
ssDNA was randomly linearized by the uptake machinery the transformation heteroduplex would form a double-ended D-loop structure (upper insert),
but a one-ended D-loop would be observed if the DNA was in vitro linearized within the rpoB482 DNA (lower insert). The pointing triangles indicate the
simultaneous incision (upper insert) or asynchronous incision (bottom insert) by a putative D-loop resolvase.

plementary Figure S1B, step e). The resection of this poorly
understood event was not further analysed.

Sequence divergence decrease the frequency of chromosomal
transformation

To investigate the effect of nucleotide sequence divergence
on B. subtilis chromosomal transformation a 2997 bp
rpoB482 DNA, derived from different Bacilli species, was
used to transform BG1359 (�rok) or BG214 (rok+) com-
petent cells (see Material and methods). The sequence di-
vergence, mainly to synonymous substitution, derived from
B. subtilis 168 (Bsu 168, 1 mismatch, the rpoB482 mu-
tation); B. subtilis subsp. spizizenii str. W23 (Bsu W23,
74 mismatches); B. atrophaeus 1942 (Bat 1942, 250 mis-
matches); B. amyloliquefaciens DSM7 (Bam DSM7, 303
mismatches); B. licheniformis DSM13 (Bli DSM13, 435
mismatches) and B. thuringiensis MC28 (Bth MC28, 624
mismatches/insertion/deletion) (Figure 1A). Except Bth
MC28, which shares 90% sequence identity at the amino
acid level, the remaining RpoB proteins share 98–99% se-
quence identity.

To determine the extent to which randomly distributed
sequence divergence (Figure 1A) decreased heterogamic

transformation, rpoB482 DNA was used to transform �rok
or rok+ competent cells. As revealed in Figure 1B, the
transformation frequency of �rok (empty symbols) or rok+

(filled symbol) competent cells for the RifR phenotype de-
creased exponentially with a log linear increase in sequence
divergence. The transformation efficiency of rok+ (Figure
1B, filled symbol) was low because the proportion of to-
tal competent cells was lower. Thus, the �rok strain signifi-
cantly increases the limit of detection of the transformation
frequency, and was used in our experiments.

The transformation efficiency of undigested rpoB482
DNA (RifR) with a sequence divergence of 2.4% (Bsu W23)
and of 8.3% (Bat 1942) decreased ≈5-fold and ≈50-fold, re-
spectively (Figure 1B, empty squares). Sequence divergence
of 10.1% (Bam DSM7), 14.5% (Bli DSM13) and 20.8% (Bth
MC28) decreased transformation efficiency from ≈150-,
≈1500- and ≈45 000-fold, respectively (Figure 1B, empty
squares). A similar decrease in transformation frequency
with SpeI-linearized rpoB482 DNA was observed (Figure
1B, empty circles), but here transformation efficiency was
lower. It is likely that: i) the genetic exchange barrier was
sensitive to sequence divergence higher than 8%, and it was
not saturated using the �rok strain (see above); and ii) the
transformation frequency with linear or undigested DNA

Downloaded from https://academic.oup.com/nar/article-abstract/44/6/2754/2499447
by USB Koeln user
on 28 July 2018

Figure 1.6: DNA uptake as a function of sequence divergence. (A) Similarity between the rpoB–rifR gene from
donor Bacillus species compared to the recipient (Bsu168) non-resistant rpoB gene. Red lines denote mismatches
and black lines inserts/deletions. (B) Transformation efficiency (number of resistant cells, log scale), as a function
of donor sequence divergence. For both recipient strains used (open and filled shapes), an exponential (log-linear)
relationship can been seen. Squares and circles differ in how the donor DNA was prepared: (squares) random at
both ends, (circles) cut at one end, random at the other. Image adapted from [93] and under CC-BY-NC license.

divergence (Figure 1.6). They also noted that RecA, a key protein in DNA recombination, did not have a
preference to recombine on the forward or reverse strain [93].

In numerous species, transformation efficiency decreases exponentially with sequence divergence.
Nevertheless, transformation has been shown to have positive effects, in addition to those negative, on
fitness. We introduce some of those positive effects in the next section.

1.1.5 Fitness Effects of Recombination

Various studies have been carried out to measure the fitness effects of recombination. A study by Sorek
et al. passed over the question of how effectively foreign genes are taken up, and instead, investigated
the functionality of novel genes when spliced into the E. coli genome. They found a fraction of the novel
genes, (∼0.5% of 250,000) could not be cloned into E. coli. When those unclonable genes were put under
control of an inducible promoter, growth inhibition was already visible at low induction levels. They
concluded, horizontal gene transfer not only has to overcome barriers to transform the foreign DNA but
also potential toxicity barriers due to increased gene expression [94].

Additional studies have integrated random segments from foreign species into a host genome and
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found, yet, additional barriers to horizontal gene transfer. Knöppel et al. study with Salmonella
typhimurium included integrated segments as large as 5 kbp in length and found that a small fraction
of the cloned foreign genes had a negative fitness effect, in agreement with the findings by Sorek et al.
More importantly, they found the majority of the cloned foreign genes (92% of 98) had no significant
fitness effects. They concluded that gene transfer may not immediately confer a fitness benefit, as often
assumed, but rather presents itself as a starting point for novel cellular functions [95]. Adding to the
complexity, Tuller et al. found that codon usage of the donor and recipient strains was a contributing
factor to the success of horizontal gene transfer. They found a positive correlation between the number of
transferred genes and the similarity of their codon pools [96].

Focusing on competence and its role in evolution, Utnes et al. carried out a 175 day evolution
experiment with transformation-proficient and deficient Acinetobacter baylyi strains. They found it was
unclear if there was an overall fitness advantage for transformation. Transformation-proficient cultures
showed a fitness advantage in the exponential and early stationary growth phases, but those cultures
performed more poorly in the late stationary growth and death phases. The concluded, being competent
for transformation does not yield a universal fitness advantage in an evolutionary setting. Transformation,
alone, does not make up for the fitness costs of maintaining competence [97].

Baltrus et al. performed an experiment over a similar length of time using Helicobacter pylori, also
looking at the putative benefit of competence in evolving populations. They found that competent
populations had higher selection rates than noncompetent populations, when compared to their ancestors.
They also found fitness variance was greater in noncompetent populations than competent populations,
at early time points. They concluded that greater variance and smaller relative selection rates of the
noncompetent population are best explained by clonal interference [98].

These experiments show the wide range of fitness effects recombination can have on transforming
populations. Recombination can lead to fitness increases, but often requires recipient strains to adapt
their genomes. Other novel genes show no fitness effects or are toxic in the recipient cell. Research
remains to be done to form a complete picutre of effects HGT.

Horizontal gene transfer is crucial to microbial evolution. One mechanism of HGT, transformation,
is found naturally in many bacterial species, and is hypothesized to aid in the acquisition of beneficial
alleles and repair of genomic DNA. In the particular case of B. subtilis, competent for transformation, the
K-state, is a bistable state, where only ∼15% of a wild type population enters the K-state in the stationary
phase. The bistability of the K-state alludes that a division of labor or bet-hedging strategy is at play,
particularly as K-state cells are growth arrested. Transformation has been seen to have positive, neutral,
and negative effects, depending on the similarity of recipient and donor species. Additional experiments
have shown that the probability of recombination decreases exponentially with sequence divergence.
In the next section of this chapter, we explore all of these aspects of horizontal gene transfer, in the
important framework of experimental evolution.
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1.2 Experimental Evolution

Experimental evolution is the study of evolutionary dynamics and processes, through controlled laboratory
experiments, commonly making use of and manipulating organisms with short generation times and
small physical size—i.e., microbes. It allows researchers to track evolutionary processes in real time,
addressing questions such as: how species adapt to an environment, what trade-offs are inherent in
adaptation – and in particular transformation, how mutation rates and load affect populations, and how to
test an evolutionary theory. [99]

In general, there are three types of evolution experiments: single-cell bottlenecks, continuous culture,
and serial transfer (Figure 1.7). Single-cell bottlenecks allow for the accumulation of mutations [100].
Continuous culture [101]–[103] and serial transfer [104] allow cultures to adapt to experimental con-
ditions. Experiments do not have to be explicitly one type or the other, and can be mixed and matched
according to the experimental question at hand. In addition to a wide range of freedom concerning exper-
imental design, the organism involved in a study can practically be chosen as a matter of convenience;
many evolutionary questions apply to a broad range of organisms. This design freedom has resulted in
numerous studies being performed on multicellular organisms such as Daphnia [105] and Drosophila
[106], [107] along with countless microbes such as B. subtilis [108], E. coli [104], [109], and Saccha-
romyces cerevisiae [110]. Microbes are favored organisms for evolution experiments as large populations
can be maintained with ease, and samples can be frozen and later reanimated. The length of evolution
experiments vary, from one day (for recombination experiments [111]–[113]) to decades (for a serial
transfer experiments [106], [107], some of which are still ongoing [114]), depending upon the questions
being addressed [115]–[118].

Regardless of the exact question being posed, experimental evolution, combined with fitness character-
ization and whole genome sequencing (WGS), allows one to better understand the mutational pathways
underlying adaptation.
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Chapter 1 Introduction

Population bottlenecks
Reductions in population size 
that typically also reduce 
genetic diversity. Bottlenecks 
can be deliberately imposed, 
such as in a mutation 
accumulation experiment. 
Cryptic bottlenecks also arise 
as a consequence of selective 
sweeps, especially in asexual 
populations, that drive out 
competing lineages and thus 
reduce genetic diversity.

Mutation rate
The rate at which new genetic 
mutations spontaneously occur 
during the replication and 
transmission of genetic 
information from parent to 
offspring.

some variants6 (FIG. 1a). Under these specific conditions, 
one can simply count the number of genetic changes that 
are present in independently evolved genomes after a 
known number of generations to estimate the sponta‑
neous mutation rate (BOX 1). Recently, classic long‑term 
mutation accumulation studies with model organisms 
— including Saccharomyces cerevisiae7, Arabidopsis 
thaliana8, Drosophila melanogaster9 and Caenorhabditis  
elegans10 — have been revisited using whole‑genome 
sequencing to measure mutation rates. New mutation 
accumulation studies of microorganisms have also 
been carried out with the specific aim of estimating  
mutation rates11–13.

The overarching conclusion of these experiments is 
that spontaneous mutation rates are usually very low. 
Mutation accumulation experiments with bacteria11–13 
and single‑celled eukaryotes7,13 typically find that the rate 
of single base mutations is of the order of 10−10–10−9 per 
base pair per replication. Given that the typical genome 
sizes in these organisms are of the order of 106–107 base 
pairs, these rates correspond to only one point mutation 
in every few hundred to several thousand cell divisions, 

which is in reasonable agreement with earlier esti‑
mates for DNA‑based microorganisms from reporter‑
gene assays14. Rates of point mutations in multicellular 
eukaryotes8–10 are of the order of 0.05–1.0 per genera‑
tion across the entire protein‑coding portions of these 
genomes13,15, which is still fairly low given the much 
longer generation times and the multiple cell divisions 
in the germ line between generations in these organisms. 
Some types of mutations, such as insertions and dele‑
tions of one or a few bases, typically occur at a lower rate 
than single base changes but vary more between species 
and with sequence context7. Other types of mutations, 
such as insertions of mobile DNA elements and large‑
scale chromosomal rearrangements, are more difficult 
to identify from short‑read DNA sequencing data and 
have not yet been systematically examined in mutation 
accumulation experiments.

Mutation rates can change over evolutionary time, 
so it is instructive to understand how both genetic and 
environmental factors affect these rates. In particular, 
hypermutator lineages that have increased mutation 
rates and highly biased mutational spectra may arise 

Figure 1 | Types of evolution experiments. There are three main ways that populations are propagated in evolution 
experiments, and they all lead to different types of genetic dynamics. The mechanics of how populations are maintained 
in each set-up are illustrated for microorganisms (top panels), and representative changes in population sizes over time 
are also shown for each procedure (bottom panels). Analogous procedures exist for multicellular organisms, although 
population sizes are generally much smaller. a | In mutation accumulation experiments, frequent and deliberate population 
bottlenecks through one or a few randomly chosen breeding individuals are accomplished by picking colonies of 
microorganisms that grow from single cells on agar plates. These bottlenecks purge genetic diversity and lead to the 
fixation of arbitrary mutations without respect to their effects on fitness. b | In experiments using continuous culture, 
populations are maintained in conditions that consist of a constant inflow of nutrients and an outflow of random 
individuals and waste in a chemostat, which leads to adaptive evolution and genetic diversity in populations that 
typically maintain a nearly constant size. c | In serial transfer experiments, a proportion of the population is periodically 
transferred to fresh media and allowed to regrow until the limiting nutrient is exhausted. Such batch growth also leads 
to adaptive evolution because ample genetic diversity is maintained through each transfer. Alternatively, transfers can 
be made before nutrient depletion, thereby allowing perpetual population growth. A second, cryptic type of population 
bottleneck occurs during adaptive evolution experiments (parts b and c) as a consequence of selective sweeps, 
especially in asexual populations, that drive out competing lineages and thereby reduce genetic diversity.
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Figure 1.7: Types of evolution experiments. There are three main types of evolution experiments: (a) single-cell
bottlenecks, (b) continuous culture, and (c) serial transfer. The top panel shows a graphic representation of each
experiment and the bottom panel shows how the population size varies in time, in that particular experimental type.
Image adapted from [116] and reproduced with permission.

1.2.1 Bacterial Fitness

The experimental warhorse of quantitative measurements and a corner stone of evolutionary theory is
fitness. In evolution, fitness is the ability of organisms to survive and reproduce in their environment
[119]–[122]. The following mathematical descriptions for fitness are derived from Nowak and Lässig
[123], [124].

Deterministic Fitness

Mathematically, fitness is most easily described beginning with reproduction and large populations. A
bacterium growing in a nutrient rich environment will divide to produce two daughter cells. Those
daughter cells will, in turn, divide and the population will grow exponentially. For a constant division
rate, R, one can write the differential equation

dN
dt

= RN (1.1)

and its solution
N(t) = N0eRt, (1.2)

where N is the number of cells in the population, N0 is the initial number of cells, and t is time. The
obvious flaw with Equation 1.2 is a bacterial population would grow unstopped and the population size
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1.2 Experimental Evolution

approaches infinity. One key piece that is missing, is an outcome that catches us all, death1.

Most simplistically, death can be described in the same way growth was; we assume cells die at a
constant rate over the entire experiment. This leads to the following differential equation

dN
dt

= (R − d)N (1.3)

with solution
N(t) = N0e(R−d)t, (1.4)

where d is the death rate. Often, R − d is redefined as r, an effective growth rate, also referred to as a
Malthusian parameter [125]. Positive Malthusian parameters reflect population growth, and negative
values population death.

The other key piece that is missing before we have a functioning description of bacterial growth is a
carrying capacity. As resources, or in this case nutrients, are not endless, a maximum carrying capacity,
K, must be introduced with the logistic equation

dN
dt

= rN(1 − N/K) (1.5)

and solution

N(t) =
KN0ert

K + N0(ert
− 1)

. (1.6)

When N is much smaller than K, growth is exponential. As N increases, growth slows until N = K where
growth stops.

Populations are rarely homogeneous, and often one wants to characterize subpopulations competing
for the same space and nutrients. Starting with a population with only two subpopulations, A and B, one
can write the following set of differential equations

dx
dt

= x(a − φ)

dy
dt

= y(b − φ),
(1.7)

where a and b are the growth rates of A and B, x and y are the relative abundance of A and B at time t,
and φ = ax + by. Because we force x + y = 1, φ is the average fitness of the population. Those equations
can be combined to give

x = λest/(1 + λest), (1.8)

where λ = x(0)/y(0), s = a − b, and s is assumed to be constant. This equation is the two subpopulation
solution to the replicator equation and s is a selection coefficient (see Equation 1.17 for a formal definition).
It has two equilibrium points, x = 0 or x = 1, reflective of the deterministic nature of two subpopulations
with different growth rates. More generally, the replicator equation for many subpopulations takes the

1 “It is the secret of the world that all things subsist and do not die, but retire a little from sight and afterwards return again.” –
Ralph Waldo Emerson
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Chapter 1 Introduction

form
dxi

dt
= xi

(
ri − r

)
(1.9)

where r =
∑n

j=1 x jr j.

Stochastic Fitness

More realistically, one can take into account that growth rates fluctuate stochastically over time. These
fluctuations are called genetic drift. By adding a noise term, σ, to Equation 1.3, we arrive at

dN
dt

= rN(t) + σ(t). (1.10)

Due to the law of large numbers, the noise term is a Gaussian random variable with mean equal to zero
[124]. For the simple two subpopulation model, with noise the population fraction of A becomes the
Langevin equation

dx
dt

= ∆rabx(1 − x) + σx(t), (1.11)

where ∆rab = ra − rb and

〈σx(t)σx(t′)〉 =
x(1 − x)

N
δ(t − t′). (1.12)

Finally, Equation 1.11 is converted into a Fokker-Planck equation to capture the statistics of the evolu-
tionary trajectories [124]. The probability distribution of the genotype composition is

dP(x, t)
dt

=
1

2N
d2

dx2 x(1 − x)P(x, t) − ∆Rab
d
dx

x(1 − x)P(x, t). (1.13)

Here, again, x = 0 and x = 1 are equilibrium points, fixed points of the stochastic dynamics.

Measuring Fitness

When measuring fitness, one generally speaks of two types of fitness: absolute fitness and relative fitness.
Absolute fitness, W, is the proportional change in abundance of one genotype over one generation:

n(t + 1) = Wn(t), (1.14)

where n(t) is the abundance of genotype n. Values larger than one correspond to a growth in abundance,
whereas negative values indicate a decline [126]. Relative fitness, w, measures changes in genotype
frequency and is defined as

p(t + 1) =
w

w
p(t), (1.15)

where p(t) = n(t)/N(t) (the frequency of the genotype n in the population), and w is the mean relative
fitness. Because relative fitness only indicates a change in prevalence of a genotype, only relative values
are important. For convenience, the relative fitness of the wild type or reference genome is set to one
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1.2 Experimental Evolution

[126]. Absolute fitness can be measured from relative fitness as

p(t + 1) =
n(t + 1)
N(t + 1)

=
W

W
p(t), (1.16)

where W is the mean absolute fitness. This, in turn, implies that relative and absolute fitness are
proportional to each other by w/w = W/W.

There are many methods to measure fitness experimentally. The most readily accessible method to
measure fitness is growth rates using optical density. With this method, the optical density (OD) of a
population is monitored throughout the exponential growth phase [104], [127], [128]. Because OD is
proportional to number of cells, a linear equation can be fit to the data, in logarithmic space, where the
slope is the Malthusian parameter—i.e., growth rate [125]. Because Malthusian parameters are used,
experiments need to begin and end within the exponential growth phase, where nutrients are not limited.
This measurement of fitness is simple and fast, but it neglects other components of fitness even in simple
systems [129].

If two subpopulations are competing in the same culture, fitness can be measured using a competition
assay. This allows one to focus on relative fitness, which is more important when considering the
evolutionary fate of a subpopulation [130]. The individual growth rates for the two subpopulations are
measured, usually by placing a fluorescent marker in the reference strain. Growth rates can then be
monitored using OD and fluorescence, fluorescence microscopy, or flow cytometry [129], [131], [132]. A
selection coefficient, s, is formally defined as

s =
d
dt

ln
( p
1 − p

)
=

dlnN
dt
−

dlnN
dt

, (1.17)

where p and (1− p) are the frequencies of the two genotypes M, mutant, and N, wild type, in a population.
Assuming there are no interactions between the genotypes

s = rm − rn, (1.18)

where r is the respective Malthusian parameters for M and N [123], [133]. Here, again, if Malthusian
parameters are used, experiments need to occur within the exponential growth phase. For competitions
assays in the stationary growth phase, where one assumes the difference between the effective growth
rates is constant, the replicator equation can be used (Equation 1.9).

Depending on the phenotype being examined, single-cell microscopy is often the method of choice to
measure fitness. Population size can be monitored over time, to determine growth rates, or subpopulations
(one marked with a fluorescence marker) can be monitored to determine growth rates and selections
coefficients [134], [135]. For bistable phenotypes, lineages can be tracked to determine cell doubling
times [136]–[138]. In more complex microfluidic chambers, cell length as a function of time can be
measured [139]–[141]. One such famous microfluidic chamber is the mother machine [142], where
multiple long channels, with the width of one bacterium, are filled with single cells. The seed, or “mother”
cell continuously divides, pushing daughter cells up and eventually out of the channel.

Up until now we have discussed fitness from the perspective of how organisms reproduce. From an
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Chapter 1 Introduction

evolutionary perspective, this is not the only factor determines an organism’s ability to survive. A map,
linking genotype to fitness, provides additional details on the course of evolution and is explained in the
next section.

1.2.2 Fitness Landscapes and Epistasis

Fitness landscapes—i.e., a genotype-fitness map—have crucial effects on the course of evolution including
sex, divergence and speciation, genetic robustness, and evolvability [143]–[145]. The most well-known
image of a fitness landscape, also known as an adaptive landscape, was introduced by Wright [146], [147].
His fitness landscape was a three-dimensional mountainous landscape, with genotypes forming the floor
of the graph and fitness on the vertical axis (Figure 1.8(left)). The landscapes lead to the interpretation of
increasing mean fitness as a hill-climbing process. As landscapes often have local maxima, in addition to
the global maximum, populations can “get stuck” on a local maximum, because further evolution towards
the global maximum would require first going down in fitness.

Wright’s fitness landscapes quickly becomes complex and high-dimensional when more than two
alleles, forming the floor of the landscape, are taken into account [147]. The concept of fitness landscapes
underwent further development as protein mutational pathways were used instead of genotype space
[148]. In protein space, one considers a relevant subset of the protein’s amino acid or nucleotide sequence,
say four amino acids, and calculates the fitness of each permutation of the four amino acids, wild type or
mutant. Lines can then be drawn showing the mutations that lead to higher fitness, and the quickest route
to the highest fitness (Figure 1.8(right)).

Both Wrightian and empirical landscapes make it evident that fitness it not a linear process from lowest
to highest fitness but a complex path. This dependence of mutational effects on genetic background, due
to genetic interaction, is known as epistasis [145].
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Ruggedness
A measure of the complexity  
of fitness landscapes due to 
multidimensional epistasis. 
However, it is often used in a 
more restricted way to reflect 
the presence of multiple peaks.

Magnitude epistasis
Epistatic interactions that 
affect the magnitude but not 
the sign of mutational effects 
on fitness.

“with 10 allelomorphs in each of 1000 loci, the number 
of possible combinations is 101000 which is a very large 
number” (REF. 8). Given these vast possibilities, he imag-
ined that “it may be taken as certain that there will be an 
enormous number of widely separated harmonious com-
binations” (REF. 8). Consequently, in Wright’s view, fitness  
landscapes have ruggedness owing to the presence of  
multiple fitness peaks that are separated by ‘valleys’  
of low-fitness genotypes. He pictured this “field of gene 
combinations” in two dimensions (FIG. 1b), although 
he was aware that such low-dimensional pictures “are 
a very inadequate representation of such a field”. In 
fact, in the same publication, Wright provided a more 
appropriate graphical rendering of the high-dimensional 
discrete genotypic space, which had been concurrently  
identified by J. B. S. Haldane12 as a hypercube (BOX 1).

For many years, the fitness landscape concept under-
went little further development. One reason was the 
general lack of understanding of the molecular basis of 
adaptation and hence of the relevant ‘genetic units’ of the 
genotypic space. This changed when John Maynard Smith 
introduced the notion of mutational pathways in protein 
space13. He used the analogy of a word game, in which a 
word must be converted into another word of the same 
length with the requirement that one letter is changed at a 
time and that all intermediates are meaningful words (for 
example, from ‘word’ via ‘wore’, ‘gore’ and ‘gone’ to ‘gene’). 
Given the low per-base-pair mutation rate, he argued 
that proteins also adapt by a series of single amino acid 
changes, in which all intermediate states must be func-
tional for a trajectory to be accessible by natural selection. 
Two decades later, on the basis of the notion of a discrete 
protein space, Stuart Kauffman and co-workers14,15 devel-
oped their NK model for studying evolution in a fitness 
landscape with ‘tunable’ ruggedness (BOX 2).

By the start of the twenty-first century, still little 
was known about the topography of fitness landscapes 
in real organisms. Two initially independent develop-
ments changed the situation and paved the road towards 
empirical studies of fitness landscapes (FIG. 1c). First, 
growing genomic information allowed the prediction 
of ancestral genotypes, which stimulated studies that 
‘resurrected’ and functionally analysed these ancestors 
to infer evolutionary explanations16. An early example 
was the analysis of lysozymes in game birds by synthe-
sizing all combinations of ancestral and derived amino 
acids at three positions17. As all trajectories included at 
least one enzyme with thermodynamic stability outside  
the range of the extant proteins, it was concluded that the  
evolution of lysozymes must have been non-neutral. 
Recently, the construction and analysis of intermediates 
have become a regular procedure for testing scenarios in 
microbial evolution experiments18.

Second, a popular model of the evolution of sex, 
which requires weak negative magnitude epistasis among 
deleterious mutations19, motivated empirical work on 
epistasis among deleterious mutations. Although most 
studies analysed pairwise mutational interactions or the 
dependence of mean fitness on the number of muta-
tions20, a few studies systematically constructed all pos-
sible combinations of a handful of mutations21,22. Despite 

Figure 1 | Development of the fitness landscape 
concept. A fitness landscape can be visualized as a 
‘mountainous’ landscape in three dimensions with 
genotypes arranged in the x–y plane and fitness on the 
z axis (part a). The landscape shown is rugged with three 
fitness peaks separated by fitness ‘valleys’, and two 
imaginary evolutionary trajectories are shown by white 
dots and arrows. Wright’s two-dimensional “field of gene 
combinations” (REF. 8) is shown (part b). Fitness maximum 
and minimum are represented as “+” and “–”, respectively; 
dotted lines are contours of equal fitness. A recent example 
of an empirical fitness landscape involves four mutations in 
the antibiotic resistance enzyme β‑lactamase TEM1, which 
cause increased resistance to cefotaxime44 (part c). Nodes 
represent the 24 (that is, 16) genotypes; 0 and 1 indicate 
wild-type and mutant amino acids, respectively. Arrows 
connect genotypes that differ by a single mutation and 
point towards genotypes with higher resistance. Bold black 
arrows indicate the ‘greedy’ walk (which substitutes the 
existing genotype with the largest-benefit mutation 
among the mutations available at each step) from 
wild-type (0000) to the global maximum (1010).
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Figure 1.8: Fitness landscapes. (left) Wrightian fitness landscape. The x-y plane is genotype space and the vertical
axis fitness. Local maxima “trap” evolving populations, keeping them from reaching the global fitness maximum.
(right) Empirical fitness landscape. Each node represents one of 16 genotypes; 0 and 1 for wild type and mutant
amino acids, respectively. Fitness (relative resistance conferred by the mutation(s)) are color coded. Gray arrows
point towards higher resistance between single mutations. Black arrows show the quickest route to the global
maximum. Image (right) adapted from [145] and reproduced with permission.
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Epistasis

Epistasis is deviations from independent effects of alleles (genes) on a phenotype. In layman’s terms,
epistasis is the interaction between genes leading to positive (or negative) interaction at levels higher
than expected if the genes were accounted for separately [143], [149]–[151]. Epistasis has been seen in
numerous experiments including those on E. coli TEM-1 β-lactamase [152], E. coli and S. cerevisiae
metabolic networks [153], and resistance in malaria parasites [154]. Experiments measuring epistasis
require exploration and quantification of entire genotypic spaces. This can be quite painstaking, depending
on the scope of experiment, as theories have not yet been able to completely or universally predict all
epistatic interactions.

The two most generic classes of epistasis are sign and magnitude. Sign epistasis is a mutation that
is beneficial on one genotypic background but deleterious on another (Figure 1.9(a,b)). Magnitude
epistasis is a mutation that is unconditionally beneficial or deleterious, only the magnitude of that effect
is dependent on genotypic background (Figure 1.9(c)) [155]. One can imagine, as genotype space is
allowed to become more complex (more alleles), more complex epistasis patterns can be recognized. Of
those, the most common in evolutionary studies are diminishing-returns epistasis and all-or-none epistasis.
Diminishing-returns epistasis: the combined effect of mutations on fitness is less than expected for the
mutations individually. This is often a characteristic of long-term evolution experiments (Figure 1.10)
[156]. All-or-none epistasis: as the name implies, a complete set of mutations has to be present to confer
a fitness advantage. Any fraction thereof, yields no fitness advantage [157].
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Figure 1.9: Sign and magnitude epistasis. The bottom x-y plane shows genotype space for two alleles (genes) a/A
and b/B. Each gene can either be in a native state (a/b) or a mutated state (A/B). In the vertical axis the fitness of
each mutation is shown. (A) Sign epistasis: The mutation a→ A has a negative fitness effect in the "b background"
(when gene b/B is not mutated) but positive effect in the B background. (B) Sign epistasis with multiple peaks:
The mutation a→ A still has a negative fitness effect in the b background and positive in the B background, but
ab is fitter than either partial mutant (aB or Ab). (C) Magnitude epistasis: The a→ A mutation is favorable in all
backgrounds.

1.2.3 Characterizing Fitness Experimentally

Advances in WGS technology have made the prospect of correlating WGS to fitness enticing. As most
evolutionary studies begin with clonal populations, one can link changes in phenotype and response to
external stresses directly to genomic mutations. A homogeneous ancestral strain (starting point) also

15



Chapter 1 Introduction

whereN is population size, and it confers a selective advantage S over
its progenitor. Nevertheless, there is some probability that the
mutant is lost by drift while it is rare. Given large N, small S and a
Poisson distribution of offspring24, a beneficial mutant has a prob-
ability of escaping extinction of,2S. If the mutant survives, it takes
t< log2(0.5N)/S cell generations to increase to 50% frequency. These
dynamics thus have two phases. In the first, a population waits for the
appearance of a beneficial mutation that avoids extinction by drift
with an expected waiting time of v< 1/(2SNn), where n is the bene-
ficial mutation rate. In the second phase, the mutant spreads by
selection, becoming the new majority type after t generations.

We can explore the relationship between rates of adaptation and
genomic evolution under three scenarios. In the first, the substitution
of any beneficial mutation has no effect on either the selection coef-
ficient, S, or the beneficial mutation rate, n. The rates of fitness
improvement and genome evolution should therefore be constant
over the long term. Under the second scenario, the number of pos-
sible sites for beneficial mutations is finite, so that n declines with
increasing prior substitutions. The expected wait for a beneficial
mutation becomes progressively longer, and the trajectories for
adaptation and genomic evolution should decelerate in parallel. In
the third scenario, the advantage of new beneficial mutations declines
as fitness increases. The waiting and sweep times are both inversely
proportional to S, so the total expected time between substitutions is
also inversely proportional to S. The rate of fitness gain will decelerate
with the reduced rate of beneficial substitutions as well as their
declining effects, although the trajectories may not be parallel.
Under all three scenarios, this model thus predicts declining rates
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Figure 1 | Mutations found by sequencing genomes sampled between
2,000 and 20,000 generations from an evolution experiment with E. coli.
The outermost ring represents the genome sampled at 20,000 generations,
and labels all genes with SNP mutations in coding (black) and intergenic
(purple) regions, and those with DIP mutations including deletions (red),
insertions (green), insertion sequence (IS) element insertions (blue), and an
inversion between citC and gatZ (orange). Insertion sequences are
transposable elements present in bacterial genomes. The next four rings,

from outer to inner, showmutations present in genomes sampled at 15,000,
10,000, 5,000, and 2,000 generations. The innermost circle shows the
genome position and scale in megabase pairs (Mb). Mutations that are off
the line of descent to a genome sampled at 40,000 generations are capped
with a circle. Only one mutation (kup/insJ-5), a 1-base-pair (bp) insertion
near an IS150 element, shows an aberrant homoplastic distribution, being
present in clones 10K and 20K but not 15K. Precise molecular details for all
mutations are shown in Supplementary Tables 1 and 2.
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Figure 1.10: Fitness and mutation rates from the Lenski E. coli evolution experiment through 40,000 generations.
Left axis, blue: (dots) average number of mutations at given time points, (lines) modeled mutation rate assuming it
is constant, (steps) 95% confidence interval. Right axis, green: (dots) relative fitness, (line) hyperbolic-linear fit to
the data. Inset shows the appearance of a mutator strain, as the mutation rate explodes after ∼25,000 generations.
Image adapted from [156] and reproduced with permission.

allows for the calculation of mutation rates, genetic diversity, and DNA uptake rates, all of which can be
tied back to fitness [115], [116].

One of the longest running, long-term evolution experiments is the E. coli adaptation from the Lenski
lab. Since 1988, their lab has evolved twelve clonal E. coli populations for more than 50,000 generations
[158]. Early findings, by generation 2000, already showed that while mean fitness had increased, it
increased at a slower rate in later generations [104]. By 10,000 generations, fitness had seemingly
plateaued and the twelve replicate populations had diverged from one another, in both fitness and
morphology. The initial conclusions from the experiment were based namely on fitness measurements,
but decades later, frozen cultures were revived and sequenced. This sequencing brought new insights to
“old" data in an ongoing experiment. With WGS, they were able to see that although the rate of increase
of relative fitness had dropped, the mutation rate was constant over the 20,000 generations (Figure 1.10).
This confirmed that diminishing-returns epistasis was at hand [116].

At 50,000 generations, core genes (defined as single copy orthologous genes shared across 60 E. coli
strains) were found to have accumulated more non-synonymous mutations than their non-core counter-
parts [159]. Non-synonymous mutations occurred three times more frequently than synonymous muta-
tions and seventeen times more frequently in the first 500 generations; similar findings were found for
point mutations in intergenic regions. At the genomic level, the mutation rate had remained constant
(excluding strains that became mutators), and yet still, after 50,000 generations, a high frequency of ben-
eficial non-synonymous mutations was detected. They concluded, even after being in a constant environ-
ment for 50,000 generations, most non-synonymous mutations that reached high frequency were benefi-
cial [160].

Looking at the protein functionality of genes having undergone recombination, Bershtein et al. replaced
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the chromosomal folA gene with 35 interspecies orthologs. They found that all replacements caused a
reduction in growth rate, despite the orthologous proteins being as stable as the native E. coli protein.
Orthologous strains were evolved for ∼600 generations and sent for sequencing. WGS revealed the
accumulation of mutations the Lon protease which caused an increase in abundance of the orthologously
replaced protein, and the evolved strains with the highest fitness had accumulated these Lon protease
mutations. Their study showed that horizontal gene transfer does necessarily confer fitness benefits
immediately. Their work builds on the findings of Sorek et al., who concluded that foreign genes can be
toxic in a recipient cell and even recombination is non-toxic, non-self proteins are less functional than
their native equivalent [94], [161].

Fitness can be characterized in evolution experiments, even over long time scales. Experiments have
been able to correlate WGS results with fitness. Next we will examine how evolution experiments take
both fitness and WGS to better understand HGT.

1.2.4 Horizontal Gene Transfer in Experimental Evolution

Having seen the importance of HGT and the ability to correlate WGS with fitness, experimental evolution
became an essential method to study those attributes.

One of the first experiments to analyze competence in an evolution experiment was by Engelmoer et
al. By transforming wild type and competence deficient S. pneumoniae strains for 1000 generations, they
found that non-competent strains had higher fitness in benign conditions, but the competent populations
had fewer mutations and inhibited the emergence of mutators. Under periodic stress, the relative fitness
of the non-competent strains was reduced. They concluded that competence was costly, particularly in
benign conditions, but helps maintain genome stability [162].

A study using naturally competent H. pylori fed cultures DNA from H. pylori derivative strains
for 28 – 52 days. Donor DNA contained a resistance cassette for chloramphenicol in the rdxA locus.
Authors found that genomic elements other than the resistance cassette at the rdxA locus were imported.
The additional genomic elements, secondary elements, had a similar length distribution to colonies
evolving on nonselective plates, ranging from 1 - 13,400 bp. Additionally, without selection, 3.3% of the
genome was replaced consisting of ∼40 individual segments, on average. They drew the conclusion that
restriction-modification systems inhibit novel sequences from being integrated [163].

Experiments in S. pneumoniae looked specifically into what secondary elements of a donor DNA
molecule were imported, independent of a selected antibiotic resistance. They found the amount of
secondary elements depended on the concentration of DNA supplied and was independent of the mismatch
repair system. A mosaic pattern of the secondary elements, imported independently from the selected
antibiotic resistance, was also seen (Figure 1.11). Researchers concluded that unselected recombination
events have a fixed per base probability [111].

Transformation of a lab strain of H. influenzae with donor DNA from a clinical isolate, without
selection, found a similar mosaic recombination pattern. One to three percent of the host chromosome
had been replaced, including novel genes and deletions from the donor. There, only 3 – 6 recombined
segments were identified, 8.1 kbp in length [164].

Finally, evolution experiments using E. coli strains with different carbon sources concluded that the
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Figure 2. Distribution of recombination events across the genome. (A) Cartoon describing the structure of RSSs as discussed in the text. (B) A
detailed view of the RSSs spanning and surrounding the cps locus. The annotation of the region is shown at the top, with the cps locus and flanking
pbp genes marked. The red line denotes the extent of the ‘primary locus’ (see text). Underneath, in the panel indicated by the dashed boundary, the
RSSs affecting this locus are indicated on the rows by black and grey blocks, as displayed in panel (A). There is a row for each of the 84 transformants,
segregated according to the amount of DNA with which they were transformed. (C) Wider view of recombination across the genome. A simplified
annotation of the 2,182,009 bp S. pneumoniae 23F-R genome is displayed across the top, with the site of the selected recombination (the cps locus)
labelled along with other major chromosomal loci. The RSSs are displayed as indicated in panel (A), with the strains in the same order as in panel (B).
doi:10.1371/journal.ppat.1002745.g002
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Figure 1.11: Mosaic pattern of recombination events in S. pneumoniae 23F-R from S. pneumoniae TIGR4Dcps.
Transformation occurs in the presence of kanamycin, as the donor DNA had a cps allele carrying resistance.
Recombination was seen across the genome, outside of the cps area of selection. The genome is displayed across
the top, denoting key genes in S. pneumoniae, and individual replicates are show on the vertical axis. Recombination
events are represented as black blocks with lengths proportional to recombination length. Image adapted from
[111] and under CC-BY license.

carbon source in question played the central role in how effective recombination was. Recombination
proficient strains grown on one carbon source (4-hydroxyphenylacetic acid, HPA), where a gene in
the donor was identified to help mediate the metabolism process in the recipient, showed a benefit for
recombination. Contrarily, recombination proficient strains grown on a second carbon source (butyric
acid), where no metabolism mediating gene was found, showed no benefit from recombination. This
was despite the fact that recombining populations went extinct less frequently then a non-recombining
counterparts [92].

Evolution experiments have made significant strides in understanding the role of recombination in
evolution. Experiments have compatible recombined-DNA-length distributions and consistently seen non-
selected (secondary) import recombination events, regardless of homology. Nevertheless, experiments
are inconclusive regarding fitness effects and linking them to WGS. Also, in many experiments, temporal
resolution is missing.
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1.3 Aims of This Study

1.3 Aims of This Study

Evolution experiments have been successful at chipping away at open questions in evolutionary biology.
In combination with whole genome sequencing (WGS), they have become a powerful method to
understand genotype changes, mutation rates, and adaptation. Significant work has been done examining
competence in an evolutionary setting. Previous studies have shown that, under benign and selective
conditions, DNA uptake from related subspecies occurs randomly, producing mosaic uptake patterns.
The length of imported segments follows a log-linear relationship, where smaller sized segments were
favored. By examining the efficiency of uptake, researchers found that efficiency decreased exponentially
with increasing divergence.

When the uptake machinery was bypassed and foreign genes were cloned into a host genome, the
recipient showed one of two effects: (1) No change in fitness if the novel genes were completely foreign,
although some novel genes were toxic to their host. (2) The proteins from the replaced gene were less
functional if the genes were homologs, and replaced a native gene. This drop in functionally caused the
recipient clones to have a lower fitness. Reduced fitness could be reversed when the orthologous clones
were evolved for many generations. WGS revealed that clones had become fitter by increasing the copy
number of the less functional proteins, or in some cases, increasing the activity of gene’s promoter.

Notwithstanding these contributing results, the role competence for transformation plays in horizontal
gene transfer, remains unanswered. Of particular interest is the effect competence has on genome
dynamics and interactions between subspecies in mixed communities.

In the first part of this study, we designed and executed evolution experiments with B. subtilis 168
(Bsu168), periodically supplying evolving strains with DNA from the related subspecies B. subtilis W23
(BsuW23). We characterized the genome dynamics over 21 cycles and examined if gene transfer was
limited mechanistically (due to recombination probabilities), or by selection and epistasis. We looked for
evidence of gene transfer saturation, and examined any patterns in de novo variants, such as compensatory
mutations. Our experimental design uses two novel approaches: parallel evolution and time-resolved
WGS.

In the second part of this study, we measured the cost of growth arrest during competence to determine
its relevance in the stationary phase. By tracking the population dynamics of B. subtilis strains (with
various probabilities of entering the competent state) in head-to-head competition assays, we were able
to quantify the cost of the competence machinery in a benign environment. Using microfluidic chambers,
we measured generation times of K-state and non K-state cells in the stationary growth phase. We used
the novel approach of creating cell lineages to track competence, growth, and stationary phase dynamics
at the single-cell level.
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Methods – Evolution Experiment

“Working in the lab late one night, his eyes beheld an eerie sight. His monster began to rise
from his slab, and suddenly to his surprise – it did the mash.”

—Bobby Pickett

In order to characterize genome dynamics in the presence of different subspecies, we designed an
experiment and analysis method with parallel evolution and time-resolved WGS. Cells were evolved
over 21 two-day cycles. A cycle consisted of six steps: dilution, radiation, plating, colony selection
and regrowth, competence induction and addition of extracellular DNA, washing and overnight growth
(Scheme 2.1). Samples were frozen every second cycle. All replicates were sequenced at three time
points and four replicates were sequenced over all time points. Here we detail our experimental and
computational methods.

Scheme 2.1: Evolution experiment design
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Chapter 2 Methods – Evolution Experiment

2.1 Experimental Methods

2.1.1 Strains, Media, and Growth

The bacterial strains used in the evolution experiment are derivatives of BD630 (B. subtilis subsp. subtilis
str. 168, referred to in this text as Bsu168 or recipient) and the related subspecies B. subtilis subsp.
spizizenii str. W23 (referred to as BsuW23 or donor). A description of each strain, including aliases used
in this text, is listed in Table 2.1.

Bs166 (∆comK, comK-IPTG) was generated by transforming BD3836 (comK-IPTG) [66] with genomic
DNA from Bs075 (∆comK) [165]. This strain was chosen as the ancestral/recipient strain for the evolution
experiment for three reasons: (1) Deleting comK removed the problematic of the comK-operon acquiring
deleterious mutations in the experiment and thereby an immediate fitness advantage – competent cells
are growth arrested. (2) Inducible comK forced all cells to become competent (not only the ∼15% in the
wild type) reducing the time the evolution experiment needed to run to obtain results (3) Inducible comK
decreased the day to day length of the experiment; cells could be induced in the exponential phase. This
construct was transformed and characterized by M. Yüksel and G. Schneider.

B. subtilis W23 was chosen for the evolution experiment due to its phylogenetic proximity to B. subtilis
168. The two strains shared 3.6 Mbp of their genomic content with an average identity of 92.4 %, making
orthologus recombination events not only possible, but also visible via sequencing. In addition to the
common genome, both subspecies had auxiliary genomes, 567 kbp in Bsu168 and 386 kbp in BsuW23.
The auxiliary content allowed for the detection of de novo insertions. A comparison of the two genomes
is summarized in Table 2.2 and Figure 2.1 [166].

Table 2.1: Bacterial strains used in the evolution experiment.

Strain Alias Relevant genotype Source/reference

BD630 Bsu168 hist leu met –
BD3836 – hist leu met, amyE::PhscomK (spca) [66]
Bs075 – hist leu met, comK::kana This study, [165]

Bs166 –
hist leu met, amyE::PhscomK (spca),

comK::kana This study

2A9 BsuW23 type strain –
a spc, kan stand for resistance to spectinomycin and kanamycin, respectively

Table 2.2: Key B. subtilis 168 and B. subtilis W23 statistics

B. subtilis 168 B. subtilis W23

Genome length (kbp) 4.2 Mbp 4.0 Mbp
No. of genes 4421 4116

No. of auxiliary genes 141 157
Length of auxiliary genome 567 kbp 386 kbp

Interspecies identity (ex. auxiliary regions) 92.4%
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2.1 Experimental Methods

Figure 2.1: Comparison of Bsu168 and BsuW23 genomes. Auxiliary regions are shown in black above (Bsu168)
or below (BsuW23) the shared common genome shown in gray. Image adapted from [166] and reproduced with
permission.
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Media

The composition of all media used in this experiment is listed in Table 2.3. All media were filled with
Milli-Q Type 1 water (MQ) to a volume of 1 L, autoclaved, and stored at 4°C, unless otherwise noted.
Filtering was done using 0.2 µm pore sterile syringe filters (Whatman).

Table 2.3: Composition of media used in the evolution experiment

Medium Composition Manufacturer

LB medium 25 g LB 1

LB agar (1.5%) 25 g LB 1
15 g Bacto agar 2

Spizizen’s salts (10x) 60 g KH2PO4 1
140 g K2HPO4 1
20 g (NH4)2SO4 1
10 g Trisodium citrate dihydrate 3

set to pH 7.0

CM medium 1x Spizizens salts –
0.2 g Casamino acids 1

1 g Yeast extract 1
0.2 g MgCl2 · 6H2O 1

added after autoclaving, via filtration:
5 g Glucose 1

0.05 g Histidine 1
0.05 g Leucine 1
0.05 g Methionine 1

TAE Buffer 0.8 mM Tris 3
0.04 mM EDTA 1
0.4 mM acetic acid in H2O, pH 8.5 3

1 Carl Roth, 2 BD, 3 Sigma Aldrich

Growth Conditions

All cultures were grown either in liquid medium at 37°C, 250 rpm in lysogeny broth (LB) or competence
medium (CM), or on LB agar plates (1.5%) at 37°C, 250 rpm. Cultures grown overnight in liquid media
were grown for 18 – 22 h. Optical density (OD) measurements were performed at 600 nm on an Infinite
M200 plate reader (Tecan).

Transformation

Cells competent for transformation were prepared according to the standard protocol developed by
Albano, Hahn, and Dubnau. An overnight culture grown in LB medium was diluted in CM to OD = 0.1
and grown at 37°C, 250 rpm. Growth was monitored on an Infinite M200 plate reader (Tecan). Two
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hours after the transition from the exponential to the stationary growth phase, a 0.5 mL aliquot of the
culture was mixed with 500 ng DNA in a 50 mL centrifuge tube. After shaking for 45 min, 37°C, 1 mL
LB was added and the culture was mixed for an additional 60 min. Next, the culture was plated on LB
agar plates containing antibiotics and incubated at 37°C, 5% CO2 overnight. On the next day, several
clones were selected and inoculated in LB with antibiotics, overnight. Clones were tested using colony
PCR and positive clones were mixed with DMSO (dimethyl sulphoxide, 10% v/v; Sigma Aldrich) and
stored at -80°C.

2.1.2 Whole Genome Sequencing

Clonal genomes of ancestral and evolved populations were obtained using next generation sequencing
(NGS) methods, in particular Illumina HiSeq. Samples were prepared by growing a frozen culture
overnight on an LB Agar plate at 37° C, 5% CO2. The subsequent day, an individual colony was selected
and grown overnight in CM. A 2 mL aliquot of that culture was pelleted at 16.7 xg for 3 min, decanted,
and then frozen at -20° C. Additionally, a 1 mL aliquot of the overnight CM culture was mixed with
DMSO (10% v/v)and stored for reference at -80° C.

Genomic DNA was isolated from the frozen pellet using the Qiagen Dneasey Blood & Tissue Kit
(Hilden, Germany) according to the manufacturer’s instructions. A small aliquot of the Isolated DNA was
run on a 1% agarose gel with a 1 kb plus DNA Ladder (Thermo Scientific) to check for degradation. The
gel was prepared by dissolving 1% agarose (w/v) in 1x TAE buffer, by heating. Once partially cooled,
Midori Green Advance DNA stain (Nippon Genetics Europe, Düren, Germany) was added to achieve a
final concentration of 4 × 10−5 v/v, and the gel was allowed to harden. Due to dye light sensitivity, gels
were covered while hardening and running.

Non-degraded samples were sent to GATC Biotech (Konstanz, Germany) for NGS. Sequencing was
performed on an Illumina HiSeq 3000/4000 system with 150 bp paired reads and an average depth of
>500.

2.1.3 Evolution Experiment Design

The evolution experiment was composed of continuous repetitions of a two day cycle, consisting of six
steps: dilution, radiation, plating, colony selection and regrowth, competence induction and addition
of extracellular DNA, washing and overnight growth (Scheme 2.1). Three different extracellular DNA
sources were used: no DNA, self DNA (Bsu168) and BsuW23 DNA. Eight replicate ancestral clones of
the ∆comK strain, with inducible comK (Bs166), were used for each DNA source. Initially, all strains
were grown overnight in 1 mL LB medium at 37°C, 250 rpm.

Overnight cultures were diluted 1:103 in fresh CM medium and grown for 4.5 h (37°C, 250 rpm) in
a 24-well microtiter plate (1 mL, final OD ≈ 0.25; Greiner Bio-one). Microtiter plates were covered
with rayon film adhesive covers (VWR). Cultures were radiated in the microtiter plate (without cover)
in a 600 J cm−2 UV-C light chamber (Bio-Link BLX-E crosslinker). A 100 mL aliquot of each radiated
culture was diluted 1:104, plated onto a 10 cm LB-agar plate, and incubated overnight at 37°C, 5% CO2.
A random colony was picked from each plate using a 200 µL pipette tip, mixed into 1 mL fresh CM,
and grown for 2.5 h (OD ≈ 0.25). IPTG [600 µM] was added to each culture along with genomic
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Table 2.4: Competence induction conditions for various evolution experiment growth conditions

Condition [IPTG] for induction External genomic DNA UV-C Radiation

Ø 600 µM none 600 J/cm2

B 600 µM 0.91 µg/mL Bsu168 600 J/cm2

W 600 µM 0.87 µg/mL BsuW23 600 J/cm2

DNA equivalent to two genomes per cell (depending on the culture condition, see Table 2.4). Genome
equivalents were calculated assuming 1 bp = 650 Da and a culture density of 108 CFU/mL. After
growing induced cultures for an additional 2 h (37°C), each culture was washed twice (16,800 xg, 1 mL
CM) and grown overnight (37°C, 250 rpm). This completed one cycle and was repeated, starting again
with dilution.

Samples were frozen for later analysis every second cycle, starting with cycle 3. For each culture, a
500 µL mixture with DMSO (10% v/v) was stored at -80°C.

2.2 Computational and Analysis Methods

Raw reads from NGS were sent through several analysis pipelines to identify variants and coverage.
Those outputs were then sent through one of two analysis algorithms to detect various types of gene
transfer. Orthologous recombination was detected using a method adapted from [163] and de novo
insertions were detected knowing BsuW23 auxiliary genes and the evolved sample’s per base coverage.
The sequencing pipelines can be found in Section 2.2.1 and the details of the analysis algorithms,
including robustness, can be found in Sections 2.2.2 – 2.2.5.

2.2.1 Sequencing pipelines

A schematic outline of the sequencing pipelines used to detect orthologous recombination (cluster of
nucleotide polymorphisms – CNPs), de novo variants, and de novo insertions is shown in Scheme 2.2.
The corresponding code can be found in Code Snippets 2.1, 2.2, and 2.3. First, the quality of the raw
sequenced genomic DNA files (fastq.gz, fq.gz) were analyzed using FastQC (v0.11.5, [168]). Raw reads
were then trimmed using Trimmomatic (v0.36,[169]) to remove adapters and low quality reads. Illumina
adapters were removed using the adapter file TruSeq3-PE-2.fa, and the following settings, 2:30:10:4,
for seed mismatches, palindrome clip threshold, simple clip threshold, and minimum adapter length,
respectively. The minimum quality to retain a base at the beginning or end of a read was set to 3, with
leading and trailing, respectively. The sliding window was set to 4, with a minimum average quality
of 15. The minimum length required for a read to be retained was 36 bp. Trimmed reads were sorted
into four files, forward and reverse reads for pairs that survived processing (P) and those where only one
partner read survived (U).

Paired reads (P) were, again, checked for quality using FastQC before being passed onto Burrows-
Wheeler Aligner (BWA), specifically BWA-MEM (v0.7.12-r1039, [170]). Hard or loose mapping (Code
Snip 2.2 or 2.3) was performed using BWA-MEM, depending on the desired analysis routine. Loose
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Scheme 2.2: Alignment pipeline for hard and loose filtering. In parenthesis the programs for each step are listed,
followed by that step’s output format.

Raw data
(.fastq/.fq)

Quality control (FastQC, .html)

Read trimming
(Trimmomatic, P/U.fq)

Quality control (FastQC, .html)

Read mapping
(BWA-MEM, .sam)

Read formatting
(SAMtools, .bam)

Read formatting
(SAMtools, .bam)

Post processing
(Picard, SAM-

tools, .bam)

Post processing
(Picard, SAM-

tools, .bam)

Genotype likelihoods
(bcftools/SAMtools,

.bcf)

Variant calling
(bcftools, .vcf)

Variant filtering
(grep, awk, .txt)

Variant annotations
(SnpEff, .vcf)

CNP & de novo
mutation detection

(MATLAB)

Genome coverage
(bedtools, .txt)

De-novo-insertions
detection

(MATLAB)

LooseHard

mapping was used to determine mutations between the evolved strain and the reference B. subtilis 168
genome; reads with a large number of SNPs due to orthologous replacement would still be mapped to the
reference genome. A mismatch penalty (-B) and gap open penalty (-O) of 1 were used. Hard mapping
was used to map the evolved strains’ reads onto B. subtilis W23, in search of de novo insertions from
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Code Snippet 2.1: Code snippet of initial steps for sequencing pipeline (hard and loose mapping)

%Quality control
./fastqc -o out_folder fwd_reads.fastq.gz
./fastqc -o out_folder rev_reads.fastq.gz
%Trimming
java -Xmx30G -Xms24G -jar trimmomatic-0.36.jar PE -threads 8 -trimlog

↪→ TrimLog fwd_reads.fastq.gz rev_reads.fastq.gz out_fwd_PAIRED.fq.gz
↪→ out_fwd_UNpaired.fq.gz out_rev_PAIRED.fq.gz out_rev_UNpaired.fq.gz
↪→ ILLUMINACLIP:adapters/TruSeq3-PE-2.fa:2:30:10:4 LEADING:3 TRAILING
↪→ :3 SLIDINGWINDOW:4:15 MINLEN:36

%Quality control
./fastqc -o out_folder fwd_reads_P.fastq.gz
./fastqc -o out_folder rev_reads_P.fastq.gz

Code Snippet 2.2: Code snippet for sequencing pipeline with hard mapping (following Code Snippet 2.1)

%Mapping
./bwa mem -t 8 -B 100 -O 100 dictionary fwd_reads_P.fq rev_reads_P.fq >

↪→ output_hard.sam
%Formatting
./samtools view -b input_hard.sam --threads 8 -T dictionary.fasta -o

↪→ output_hard.bam
%Post processing
java -Xms1g -Xmx3g -jar picard.jar AddOrReplaceReadGroups I=input_hard.

↪→ bam O=output_hardRG.bam RGID=4 RGLB=lib1 RGPL=illumina RGPU=unit1
↪→ RGSM=20

./samtools sort input_hardRG.bam --threads 8 --reference dictionary.fasta
↪→ -o output_hard_sort.bam

./samtools index -b input_hard_sort.bam > output_hard_sort.bam.bai
%Genome coverage
./genomeCoverageBed -d -ibam input_hard_sort.bam -g genome_description.

↪→ txt > output_coverage_per_bp.txt

BsuW23 DNA in the evolved species. Only segments with strong similarity to BsuW23 could be mapped,
ensuring that only BsuW23 auxiliary regions would be detected. A mismatch penalty (-B) and gap open
penalty (-O) of 100 were used.

Following both hard and loose mapping, reads were formatted using SAMtools (v1.3.1, [171]) to
produce a binary .bam file. The dictionary (reference genome used for mapping) was assembled using
BWA to index the reference genome sequence in fasta format, Picard (v2.6.0, [172]) to create a dictionary,
and SAMtools to index the fasta file (Code Snippet 2.4). A complete dictionary (with indexed files) only
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Code Snippet 2.3: Code snippet for sequencing pipeline with loose mapping (following Code Snippet 2.1)

%Mapping
./bwa mem -t 8 -B 1 -O 1 dictionary fwd_reads_P.fq rev_reads_P.fq >

↪→ output.sam
%Formatting
./samtools view -b input.sam --threads 8 -T dictionary.fasta -o output.

↪→ bam
%Post processing
java -Xms1g -Xmx3g -jar picard.jar AddOrReplaceReadGroups I=input.bam O=

↪→ output_RG.bam RGID=4 RGLB=lib1 RGPL=illumina RGPU=unit1 RGSM=20
./samtools sort input_RG.bam --threads 8 --reference dictionary.fasta -o

↪→ output_sort.bam
./samtools index -b input_sort.bam > output_sort.bam.bai
%Genotype likelihoods
./samtools mpileup -e 10 -t AD -F 0.00001 -h 80 -L 10000 -o 20 -f

↪→ dictionary.fasta -uv input_sort.bam > output.bcf
%Variant calling
./bcftools call -vc output.bcf > output_bcfcall.vcf
%Variant filtering
grep -v "^#" output_bcfcall.vcf | awk ’{split($10,R,":")split(R[1],r,"/")}

↪→ r[2]==1 && r[1]==1 {print $2,$5}’ > output_IndvMutList.txt
awk ’{split($10,R,":")split(R[1],r,"/")} r[2]==1 && r[1]==1 {print $0}’

↪→ input_bcfcall.vcf > output_bcfcall_SNPscleaned.vcf
java -Xms1g -Xmx4g -jar snpEff.jar -noStats -ud 3000 dictionary

↪→ input_bcfcall_SNPscleaned.vcf > output_snpEff.vcf

Code Snippet 2.4: Code snippet of dictionary assembly

./bwa index -p dictionary_name dictionary_name.fasta
java -Xms1g -Xmx3g -jar picard.jar CreateSequenceDictionary R=

↪→ dictionary_name.fasta O=dictionary_name.dict
./samtools faidx dictionary_name.fasta

needed to be created once for each reference genome. All dictionary files (.amb, .ann, .bwt, .dict, .fasta,
.fasta.fai, .pac, and .sa) needed to have the same file name.

Next, post processing was carried out using Picard and SAMtools. First, Picard’s AddOrReplaceRead-
Groups was used to combine all the read groups (sets of reads created by single sequencing runs) into
one read group (4, lib1, illumina, unit1, 20, for ID, LB, PL, PU, and SM, respectively). Then, SAMtools
was used to sort the reads by genomic position and, finally, index that file for fast random access.

For hard mapping, genome coverage per base was calculated using bedtools (v2.26.0, [173]). The
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per base pair depth setting (-d) was used along with a genome description as a tab separated text file,
containing chromosome name(s) and length(s). The chromosome name used in the genome description
file matched that used as the dictionary name. Genome coverages were analyzed with a MATLAB script
to detect de novo insertions.

For loose mapping, genotype likelihoods were calculated from the sorted (and indexed) bam file using
SAMtools mpileup. The binary call format (bcf) file was generated with a gap extension sequencing
error probability (-e) of 10, minimum fraction of gapped reads (-F) of 0.00001, coefficient for modeling
homopolymer errors (-h) of 80, maximum indel calling file depth (-L) of 10,000, and gap open sequencing
error probability (-o) of 20. Additionally, the output tags were written in allelic depth (AD) format (-t).
Genotype likelihoods were converted to variant calling using BCFtools (v1.5, maintained by SAMtools
<http://samtools.github.io/bcftools/>) using the original calling model (-c) and requesting only variant
sites in the output file (-v).

Variants were filtered to include only alternate allele homozygous variants (GT = 1/1). Filtered variants
were saved in a vcf file, including the complete call records, and an abbreviated version including only
the variant position and alternate allele as a text file. The text file was used with various MATLAB scripts
to detect CNPs and plot import and mutations events.

To obtain additional information about the mutated genes and their functional affects, the filtered vcf
file could additionally be fed into SnpEff (v4.2, [174]). The B. subtilis reference database NC_000964
was used to annotate the called variants and predicted their functional affects. The upstream/downstream
interval length (-ud) was reduced from the default value (5000 bp) to 3000 bp, because of B. subtilis’
smaller genome size (compared to eurakyotics) and lack of exons and introns. Enhancer-like elements
have been reported to be 1500 bp downstream of the gene’s promoter for B. subtilis [175] and a study
with E. coli found promoter activation was not diminished if binding sites were moved more than 1000 bp
away from their respective gene [176]. Based on these findings, a safe overestimate of the effective
upstream/downstream length was set to 3000 bp. The annonated vcf file would, then, be fed into the
MATLAB scripts along with the aforementioned text file.

2.2.2 Orthologous Recombination (CNP) Algorithm

Large recombination events were detected by searching for single nucleotide polymorphisms (SNPs)
that matched those found in the donor genome (matched SNPs), but not the host genome. Based upon
the proximity of the matched SNP to each other, they were clustered into groups which represented one
import event (CNPs, cluster of nucleotide polymorphisms). An overview of how the algorithm works is
shown in Figure 2.3 and outlined below; the subsequent subsections detail the algorithm’s robustness.

1. The donor genome is aligned to the host genome, and a “master list” of all the SNP differences is
created (m`SNPs). (Indels are ignored.)

2. Experimental samples are aligned loosely to the host genome and the list of SNPs is recorded.

3. The list of SNPs from (2) is compared to the master list from (1). SNPs with a position and
nucleotide that do not match the master list are removed.
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4. Remaining SNPs are combed through to find clusters of SNPs that are within 200 bp of each other
(a cluster of nucleotide polymorphisms, CNP).

5. Remaining SNPs with no neighbor within 200 bp are ignored in this algorithm

6. CNPs are allowed to be missing no more than 30% of the excepted SNPs, as per the master list.

For each CNP, a minimum length (from first to last matched-SNP in a CNP), maximum length (from the
SNP before the first matched-SNP to the SNP after the last matched-SNP in a CNP), and average length
(the mean of the minimum and maximum lengths) are measured.

Scheme 2.3: CNP algorithm to detect orthologous recombination.

Host genome

Donor genome

Master list SNPs (donor mapped onto host)

Pos. Alt. bp

17 A

Evolved strain

Master List

Matching SNPs

Cluster Window

One recombination event (CNP)

(1)

(2)

(3)

(4)

680

1989

T

G

Single SNPs(5)

Missing SNPs(6)

Not a cluster

*

*

*

*

*

One recombination event (CNP)

(1) Donor genome (purple) is aligned to the host genome (gray) and a “master list” (m`SNPs) is created. (2)
Experimental samples are aligned to the host genome and genotype variants are recorded. (3) SNPs in the evolved
strains that do not match a m`SNP (position and nucleotide) are removed. (4) SNPs are combed through with
a 200 bp cluster window (red) starting with the first SNP (gold). If the neighboring SNP (starred) is inside this
window, it is added to the cluster (black bar becomes red). The window moves to this new position and the query
continues (new starred SNP). If the neighboring SNP is not within 200 bp, the query is closed (one recombination
event). A new query opens on the last unsuccessful SNP query (last starred SNP). (5) SNPs with no neighbor
within 200 bp are not considered CNPs. (6) Missing SNPs in a CNP are allowed if the percentage of missing SNPs,
when including the query position (starred), is below 30%.
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Test Genome

The CNP algorithm was tested using a mock genome of Bsu168 with inserted genomic segments from
BsuW23. These two subspecies have a 92.4% average sequence identity, evenly distributed between
intra- and intergenic regions. Replacement segments from BsuW23 of various size and position were
randomly selected, avoiding only auxiliary regions from Bsu168 or BsuW23 [166]. (Auxiliary genes
have no orthologous recombination site in the opposite species’ genome.) The list of segments taken from
BsuW23, their location in Bsu168, and the final length of the replaced segment (in the mock genome)
can be see in Table 2.5. The segments had between 87 and 90% identity.

Using the mock genome outlined above, 10,900,000 mock paired reads were created using wgsim
(SAMtools), with an in silico read error rate of 0.02 and constant base call quality (Phred score = 30,
base read quality in fq file = 9). (Code Snippet 2.5) The reads were aligned using the pipeline outlined in
Section 2.2.1.

Code Snippet 2.5: Code snippet to create in silico reads

./wgsim -1 150 -2 150 -N 10900000 genome.fasta fwd_reads.fq rev_reads.fq
for f in $(ls *_reads.fq)
do; sed -i ’s/2.../9.../g’ "$f" ; done

In the CNP algorithm, only homozygous SNP variants were analyzed. The measured length for each
replacement segment is listed in Table 2.5 and shown in Figure 2.2. The detected segment length is
smaller than the actual segment size, because replacement segments from BsuW23 were not necessarily
bookended by SNPs. The algorithm detected and accurately measured all of the replacement segments
down to 60 bp. Below 60 bp the algorithms percent error becomes significant—the location of the SNPs
in the replacement segment limit the algorithms ability to accurately detect the replacement segment
length [(90 − 100) bp/100 bp = −10% error, (990 − 1000) bp/1000 bp = −1% error]. The algorithm,
including the in silico 0.02 read error rate, produced no false positives.
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Table 2.5: Mock genome segments to test CNP algorithm.

Extracted seg. (BsuW23) Ident. with Replacement location (Bsu168) Recov. seg.
Start pos. End pos. Size (bp) Bsu168 seg. Start pos. End pos. Size (bp) size (bp)

240,601 265,622 25,021 92% 252,317 277,339 25,022 24,934
224,448 231,129 6681 91% 233,023 239,697 6674 6513
299,999 304,890 4891 94% 314,071 318,962 4891 4828

1,000,000 1,000,719 719 ∼92% 1,038,844 1,039,563 719 695
1,093,197 1,093,616 419 ∼92% 1,130,919 1,131,337 418 373
2,069,034 2,069,213 179 ∼91% 2,080,863 2,081,042 179 160
2,000,535 2,000,603 68 ∼93% 2,010,534 2,010,602 68 66
2,022,740 2,022,859 119 ∼87% 2,028,205 2,028,324 119 103
3,052,497 3,052,556 59 ∼92% 3,269,067 3,269,126 59 30
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Figure 2.2: Replacement lengths
and measured lengths for mock
genome Bsubmany2W23 mea-
sured using the CNP algorithm.
The dashed line (red) denotes a
perfect algorithm, replacements
are measured as their exact size.
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Sensitivity and False Positives

After confirming that the algorithm could correctly identify orthologous recombination of BsuW23
segments in Bsu168, the sensitivity of the algorithm to de novo mutations was analyzed. (Errors in
the reads, such as those in silico read errors mentioned above, are removed during variant calling.) To
rigorously test the algorithm’s sensitivity, a list of SNP locations was made by randomly selecting base
pair positions in Bsu168, without duplication. That list of random locations was compared to the master
list and if a position matched, it was assumed that the base pair change also matched. (This assumption
was done to make the computation easier. It results in a three-fold overestimation of the effect of de novo
mutations, because the base pair change at these random locations could be one of three de novo base
pairs–e.g., A could mutate into T, C, or G. [A to A is ignored because it is not a mutation.])

Up to 4000 random de novo mutations were created in silico and run through the CNP algorithm
(Figure 2.3). It is first at 4000 random de novo mutations that several false positives are consistently
detected in every simulation. These false positives are an artifact of the 200 bp cluster window size
(Section 2.2.2) and are further scrutinized by the addition of a “missing SNP” filter (See Interrupted
CNPs and Cluster Window Size).

Figure 2.3: Random de novo point mutations in silico. A list of 250, 500, 1000 (yellow), 2000 (purple), 3000
(green), 4000 (blue) random de novo mutations were created in silico and passed through the CNP algorithm (in 5x
replicate). Starting around 4,000 de novo mutations, several < 200 bp false positive CNPs are detected.
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m`SNP Distributions

The distribution of SNPs from the master list (m`SNPs) were analyzed to determine if the 200 bp cluster
window size should be adjusted for these two species. The histogram of the flank lengths (the distance
from one m`SNP to the next, running in ascending position) shows that the majority of the m`SNPs lie
quite close to each other (Figure 2.4). This is more evident when the cumulative probability of the flank
lengths is plotted, as in Figure 2.5 (top, blue curve). Looking closely at the asymptotic portion of the
curve (Figure 2.5, lower left), one sees that at a length of ∼80 bp, there is already a 99% probability that
from any given m`SNP, a neighboring m`SNP will be found. This value increases to nearly 100% by
200 bp. This argues in favor of a cluster window size of at least 80 bp.

While the distribution of flank lengths describes how probable it is to find a neighboring m`SNP
within x bp, it does not account for the size of the genome and the possibility of large stretches with
no m`SNPs (either due to 100% identity or auxiliary regions). To account for these, the distribution
in Figure 2.4, D, was weighted by flank length and normalized by genome size—explicitly, (D ×
f lank length)/genome length. This weighted and normalized distribution, in layman’s terms, describes
how much of the genome has been accounted for (in bp) when all m`SNPs with a flank distance of < x are
accounted for (Figure 2.4 top, orange curve). Here it is clear, that while a cluster window size of 200 bp
accounts for virtually all m`SNPs, 15% of the genome still remains “untouched”, because these regions
have extremely low m`SNPs densities. From 100 – 1000 bp, this distribution asymptotically approaches
87%. After 1000 bp, the cumulative probability jumps stepwise, as large segments of auxiliary regions
are incorporated.
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Figure 2.4: BsuW23 flank length distribution (distance between m`SNPs). Flank lengths are grouped into 5 bp
bins.
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Figure 2.5: Cumulative probability of BsuW23 flank lengths (blue) and weighted flank lengths (orange). Ninety-
nine percent of all m`SNPs have flank lengths less than 80 bp. At the same length of 80 bp, 20% of the genome
has yet to be accounted for, due to auxiliary regions. The two bottom plots are zoomed-in sections of the top plot.
The x-axis of the lower right plot is logarithmic.

Interrupted CNPs and Cluster Window Size

Analyzing sequencing data from several evolved samples made it evident that a substantial handful of
detected CNPs were missing the majority of their m`SNPs,—i.e., two SNPs were found that matched the
master list and were within 200 bp of each other, but the expected m`SNPs in between were not present.
It is likely that these “missing” m`SNPs were caused by the mismatch repair system [177]. Bubendorfer
et al. mentions the presence of a low frequency of interrupted CNPs, but do not exclude any from their
analysis. To determine if we could, also, overlook the presence of these interrupted CNPs, we created
four quality checks to quantize the accuracy of the CNP algorithm on our species and experimental setup.

The first two quality checks focus on SNPs within detected clusters: Cpos, the total number of matching
SNPs over all clusters and Cneg, the total number of m`SNPs in a cluster which were not found in the
sample (Figure 2.6(a)). These checks are a direct measure of accuracy of the detected clusters. The
remaining two quality checks focus on the non-cluster sections of the genome: nCneg, the total number
of matching SNPs not assigned to a cluster and nCpos, the total number of m`SNPs not detected in the
sample and not assigned to a cluster (Figure 2.6(b)). The quality checks were performed on four BsuW23
replicates from cycle 9 (Figure 2.7).

A maximum number of interruptions (m`SNPs missing from clusters), or in other words, an interruption
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(a)

Cpos Cneg

(b)

nCpos nCneg

Figure 2.6: Graphical description of four quality check measurements. Segments of the genome are labeled as
clustered (purple) and non-clustered (grey) sections. Black columns are SNPs present in the sample; white colums
with a dashed outline are SNPs not present in the sample but listed in the master list. (a) SNPs contributing to Cpos
(black) and Cneg (white). (b) SNPs contributing to nCpos (white) and nCneg (black).
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Figure 2.7: Stacked bar plots showing quality checks for various cluster interruption thresholds on cycle 9 samples
evolved with BsuW23 DNA (clones 1). (a, c, e) Cluster and (b, d, f) non-cluster quality checks. (a, b) No cluster
interruption threshold. (c, d) Cluster interruption threshold of < 30% missing SNPs per cluster. (e, f) Cluster
interruption threshold of < 10% missing SNPs per cluster.

threshold, was set to see its effect on the quality check measurements. The upper threshold was defined
as missing m`SNPs/total expected m`SNPs and was calculated dynamically as a cluster was detected
and then grew in size (until no matching SNPs were found within 200 bp, or sooner if the threshold was
exceeded). Initially, a loose threshold of <30% missing SNPs was applied (thint = 0.3), because the cycle
9 BsuW23 replicates showed a gap in the number of interrupted CNPs there (Figure 2.8). The results of
thint = 0.3 on the quality checks can be seen in Figure 2.7(c, d), along with thint = 0.1 in Figure 2.7(e, f).

The implementation of thint = 0.3 reduced the number of false positives within clusters, Cneg, by an
order of magnitude, on average. It dropped the fraction of false positives from 20 to < 1%. Further
decreasing thint to 0.1 only reduced the number of false positives by a minimal amount. Looking at the
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Figure 2.8: Percentage of missing SNPs as a function of cluster length for cycle 9 samples evolved with BsuW23
DNA (clones 1). A gap is visible below 30% missing SNPs.

regions outside of the clusters, thint = 0.3 caused the number of false negatives, nCneg to double. This
was expected as splitting or eliminating clusters results in a larger number of lone matched SNPs. The
fraction of false negatives remained below 0.1% with thint = 0.3. Increasing thint further to 0.1 had no
effect on the fraction of false negatives.

Because of the sharp decrease in the number of false positives (Cneg) and no significant change in
the number of false negatives (nCneg), thint = 0.3 was incorporated into the CNP algorithm. Further
decreasing thint to 0.1 yielded negligible changes in C and nC.

To better understand the influence the cluster window size had on CNPs, the quality checks were also
measured keeping thint = 0.3 but using three different cluster window sizes: 150, 200, and 300 bp. The
results showed varying the cluster window size had a negligible effect on the quality measurements.
The percentage of false positives and negatives (Cneg and nCneg, respectively) remained below 1% for
all three cluster window sizes (Figure 2.9). We chose a cluster window size of 200 bp because of the
> 99.9% probability of finding a second m`SNP within that distance, and for consistency with previous
publications [163].
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Figure 2.9: Stacked bar plots showing quality checks for various cluster window sizes on cycle 9 samples evolved
with BsuW23 DNA. (a, c, e) Cluster and (b, d, f) non-cluster quality checks using thint = 0.3. (a, b) 150 bp, (c, d)
200 bp, and (e, f) 300 bp cluster window size.

2.2.3 SNP Flank Length Bias

Origin of Flank Length Bias

Initially, the flank length of m`SNPs was measured to determine an appropriate cluster window size
for the CNP algorithm (Section 2.2.2). Upon closer inspection, it became clear that there was a bias to
multiple-of-three lengths—i.e., 3, 6, 9, etc. (Figure 2.10). To ensure that this module three bias was not
an artifact of the alignment pipeline, several mock genomes with known m`SNP distributions were fed
through the process.

To create the mock genomes, one of two distributions were used: (1) An exponential decay distribution,
obtained by fitting and exponential function to the BsuW23 flank lengths distribution or (2) An exponential
distribution with a bias to multiples of three, obtained by adding a constant multiple of three bias to the
distribution from (1). (See Figure 2.11(a)) From each of those distributions, 254,531 values (equivalent
to the number of m`SNPs) were randomly selected and rounded up to the nearest integer. The cumulative
sum of those values were taken as point mutation locations, starting with the first mutation occurring at
genome position 1. Positions were saved in a text file and those larger than the length of the reference
genome were ignored. Next, the Bsu168 fasta file was modified to have a cytosine base at every position
listed in the positions file (-mc C) using bedtools (Code Snippet 2.6). Cytosine was chosen as the
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Figure 2.10: Flank length distribution for BsuW23 m`SNPs with 1 bp bins. A bias to flank lengths of multiples of
three is evident.

Code Snippet 2.6: Code Snippet to create a modified fasta file, replacing given positions with the alternate allele C.

maskFastaFromBed -fi wildtype.fasta -fo modified.fasta -bed
↪→ list_of_all_cumulative_sum_positions.txt -mc C

replacement base pair for all the positions in the cumulative sum for simplicity. Hard masking, replacing
all positions with N (unknown base pair), was not performed because N positions always negatively
impact the aligning score when using BWA. Replacing all the cumulative sum positions instead with C,
allowed for the possibility that the original base pair would be replaced by itself—i.e., not replaced. No
correction was made for those positions. As distribution of A, C, G, T base pairs over the genome was
roughly constant, the effective number of mutations present in the mock genomes was reduced by 1/4.
Mock reads were made out of the modified fasta file, now including the C base pair replacements, and
run through BWA-MEM, SAMtools, and bcftools, as outlined in Section 2.2.2.

The two distributions, exponential decay and exponential decay with three-bias, were used to test the
alignment pipeline. After aligning the mock reads to the Bsu168 reference genome, the flank length
distributions were once again measured (Figure 2.11(a)). The input and output for each distribution set
were identical in shape. Reads representing a non-bias distribution of SNPs were aligned through the
pipeline to yielded a non-bias distribution of flank lengths, and reads with a bias distribution of SNPs
yielded a matching bias distribution of flank lengths. This confirmed that the alignment pipeline does not
introduce positional SNP artifacts.
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Figure 2.11: (top) Mutation distributions used to create mock genomes to check for artifacts of the alignment
pipeline. Exponential distribution with (orange) and without (blue) a bias to multiple of three flank lengths.
(bottom) Distributions obtained after aligning the reads from the mock genomes. The legend, here, is identical.

2.2.4 Orthologous Recombination (SPI) Algorithm

Initially, all SNPs that could not be grouped together into CNPs were assumed to be de novo variants.
Cycle 9 samples which received no DNA or Bsu168 DNA had on the order of 40 de novo variants per
replicate, where as those which received BsuW23 DNA had on the order of 70 mutations (removing
those counted in CNPs and indels which matched BsuW23). Our original hypothesis was the addition of
external DNA had either no influence on the number of de novo variants or a negative effect, as imported
genomic DNA segments replace damaged DNA sections. The two-fold increase in de novo variants, in
BsuW23 replicates, hinted that a significant portion of those mutations could actually have been SPIs
(single-polymorphism imports, import events that only included only one m`SNP). SPIs would have
had DNA segments, possibly on both sides of the m`SNP, that were identical in both the host and donor
strains.

Of the odd 70 de novo variants found in each of the BsuW23 cycle 9 replicates, several could have been
SPIs because the mutation position and alternate base pair matched those in the master list (regardless of
the surrounding length of identical sequence). This did not completely account for the overwhelming
increase in de novo variants found in the BsuW23 samples. Furthermore, it could not be ruled out that
those alleged SPIs were not simply de novo mutations. In cycle 9, replicates which received no DNA or
self-DNA, 5 – 15 de novo mutations fell on a master list position with the corresponding base pair – i.e.,
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false positives. The small fraction of possible SPIs out of all de novo variants, and the number of SPI
false-positives being comparable to the total number of potential SPIs led us to not consider SPIs in our
analysis. We assumed all mutations which could not be grouped into CNPs were de novo variants.

2.2.5 De novo Insertions Algorithm (Auxiliary Genes Algorithm)

Auxiliary BsuW23 segments (Section 2.1.1) cannot be found using the CNP algorithm, because they
have no orthologous segments in Bsu168. A separate algorithm was designed, to detect the integration of
these BsuW23 specific genes in the evolved replicates. Start and end positions of the auxiliary BsuW23
genes were taken from Supplementary Table S1 of [166]. The algorithm works as follows:

1. Experimental samples are aligned to the donor genome using hard mapping.

2. The non-zero coverage for the entire genome and the moving-average coverage at each base
position for each donor auxiliary-region are calculated.

3. The number of positions within each donor auxiliary-region with a moving-average coverage above
the genome average are counted to determine the fraction of gene transfer. Transfers with a percent
error greater than 20% are ignored, corresponding to a minimum measured length of 200 bp.

Test Genome

To test the detection limit of the algorithm, a mock genome was created by inserting segments of various
BsuW23 auxiliary genes into the Bsu168 genome at their "native" position from the BsuW23 genome.
The auxiliary segments taken from BsuW23, along with their import location in the mock genomes,
is listed in Table 2.6. Using the mock genome outlined above, mock paired reads were created using
wgsim and set to a constant base call quality (Phred score = 30, base read quality in fq file = 9), see Code
Snippet 2.5. The reads were, then, aligned to the BsuW23 genome following the hard mapping pipeline
outlined in Section 2.2.1.

The gene lengths measured using the novel gene algorithm are listed in Table 2.6 and shown in
Figure 2.12. One sees that measured gene length begins to vary significantly from the inserted gene
length, starting around 500 bp. We choose to set the upper threshold for percent error at 20%, which
corresponds to 200 bp, to allow for the detection of smaller accessory genes. Of the 157 accessory
BsuW23 genes, two are less than 200 bp in length and, therefore, not detectable using this algorithm.
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Table 2.6: Mock genome segments to test auxiliary genes algorithm.

Extracted seg. (BsuW23) Replacement loc. Recov. seg.
Start pos. End pos. Size (bp) start pos. (Bsu168) size (bp)

1,955,075 1,994,276 39,201 1,955,075 39,177
1,955,075 1,974,675 19,623 1,955,075 19,564
2,527,713 2,532,586 4874 2,527,713 4842
1,955,075 1,959,018 3943 1,955,075 3887

573,231 574,430 1199 573,231 1162
1,955,075 1,955,575 500 1,955,075 458
3,294,677 3,295,000 323 3,294,677 311
1,235,641 1,235,913 273 1,235,641 237
3,886,616 3,886,877 262 3,886,616 225
1,955,075 1,955,300 225 1,955,075 190
1,955,075 1,955,274 199 1,955,075 159
1,955,075 1,955,246 171 1,955,075 131
1,955,075 1,955,224 149 1,955,075 106
1,955,075 1,955,199 124 1,955,075 80
1,955,075 1,955,175 100 1,955,075 39
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Figure 2.12: Novel gene algorithm test. Percent error of the measured gene length (for BsuW23 auxiliary gene
segments in Bsu168) as a function of insert length (logarithmic). (inset) Measured gene length as a function of
inserted length (both logarithmic). The dashed line (red) marks x = y.
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2.2.6 Contaminated or Mislabeled Samples

Due to the extreme detail of the information one receives from WGS and its ability to fingerprint exactly
which conditions or samples were used, contaminated or mislabeled samples could easily be removed
from the analysis.

Samples which had de novo insertions from species other than that from which they had received
DNA throughout the course of the experiment were removed due to mislabeling. The sensitivity and
false-positive testing for the CNP algorithm showed that several < 200 bp false positives first appear
when at least 4000 SNPs are represent in a sample (see Section 2.2.2). This ruled out the possibility of
the Bsu168 recombination events being due to false-positives, because all of our no DNA and Bsu168
DNA replicates had only 40 variants. Furthermore, one-time pipetting errors could be ruled out when a
similar number and range of import events were seen in BuW23 samples as in samples receiving Bsu168
DNA or no DNA.

In addition to detecting mislabeled samples, contaminated samples could be detected as they were
sequenced at multiple time points, and multiple replicates were sequenced at each time point. The first
was detected when, between two consecutive time points, the majority of gene replacements at the later
time point were new and those from the prior time point lost. The second was detected when one of eight
replicates showed an import or de novo variant pattern that did not match other replicates, and was no
longer detected at later time points.
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“Un granito de arroz, una micra, un neutrón, un paramecio, un micro-chip nipón; sin
microscopio ya no te veo.... Tan superguay.”

—La Casa Azul

3.1 Experimental Methods

3.1.1 Strains and Media

The bacteria used in the population dynamics experiment were derivatives of B. subtilis subsp. subtilis str.
168 (referred to as Bsu168) and are listed in Table 3.1. Detailed descriptions of how the derived strains
were genetically engineered can be found in [165]. All cultures were grown either in liquid medium
at 37° C, 250 rpm in lysogeny broth (LB) or competence medium (CM), or on polyacrylamide gels.
Cultures grown overnight in liquid media were grown for 18 – 22 h. Optical density (OD) measurements
were performed at 600 nm.

Table 3.1: Bacterial strains used in the population dynamics experiment

Strain Alias Relevant genotype Source/reference

BD630 Bsu168 hist leu met –
BD2711 comK-gfp hist leu met, PcomK-gfp-cata,b [88]
Bs056 ∆rok hist leu met, rok::kana This study, [165]
Bs075 ∆comK hist leu met, comK::kana This study, [165]
Bs139 wt-gfp hist leu met, amyE::PrrnE-gfpmut2 This study, [165]
a cat, spc, kan stand for resistance to chloramphenicol, spectinomycin, and

kanamycin, respectively
b Inserted by Campbell-like integration

Media compositions used in this experiment are described in Table 3.1.1, or in the case of LB and CM
in Table 2.1.1. All media were filled with Milli-Q Type 1 water (MQ) to a volume of 1 L, autoclaved,
and stored at 4° C, unless otherwise noted.

Conditioned medium was obtained by diluting an overnight culture of Bsu168 to OD=0.1 in fresh CM
and re-growing the culture to the stationary growth phase T0. T0 denotes entry into the stationary phase
and is defined as the time point at which the OD switches from exponential increase to a nearly constant
value. The T0 culture was then be centrifuged (17,600 xg, 3 min) and filtered (0.2 µm pore sterile filters).

Structured polydimethylsiloxane (PDMS) pads were made by pouring the PDMS mixture, devolatizied,
onto negatives of the PDMS structure made out of polyoxymethylene, and heating them overnight at
60°C.

Polyacrylamide gels were made my mixing TEMED and ammonium persulfate to a
MQ–acrylamide/bis-acrylamide mixture, in a volume of 10 mL. The solution was quickly pipetted
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Table 3.2: Composition of the various media used in the population dynamics experiment

Medium Composition Manufacturer

Phosphate buffered solution (PBS) 2 Tablets 3

Polydimethylsiloxane gel (PDMS) 10 parts PDMS 4

1 part
Sylgard 184 curing agent
(cross linker)

4

for preparation see text

Polyacrylamide gel 20% (v/v)
Acrylamide/bis-acrylamide
(29:1 ratio)

2

0.1% (v/v) Ammonium persulfate 1
0.1% (v/v) TEMED 1

for preparation see text
1 Carl Roth, 2 Sigma Aldrich, 3 Thermo Scientific, 4 Dow Corning

between two glass cover slides with 1.5 mm spacers. After waiting several hours to ensure the gel had
completely solidified, spacers were removed and the gel (with microscope slides) was soaked in MQ for
several minutes. This short soaking phase prevented the gel from tearing when the microscope slides
were removed. The gel was cut to the appropriate dimensions and soaked twice in MQ for at least 5 h to
ensure diffusion of any remnant acrylamide, out of the gel. The cut gels were stored in fresh MQ until
use [178].

3.1.2 Population Dynamics – Experiment Design

Population dynamics were measured collectively and individually. Collectively, two strains were mixed
in solution and the dynamics of that mixed population were tracked. The experimental conditions for that
part of the experiment are detailed in “Stationary Phase Dynamics, Experiment Design”. Individually,
cells were grown in a flow chamber for up to 24 h to track individual growth rates and cell linages.
“Those experimental conditions are below in Single Cell Microscopy, Experiment Design”.

Stationary Phase Dynamics, Experiment Design

Overnight cultures of both strains (competitors) were diluted to OD=0.1 in fresh CM and grown separately
to the stationary growth phase T0. Cells were then diluted 10-fold into conditioned medium and mixed
in a 1:1 ratio, where one competitor strain carried a gfp reporter. Conditioned medium was made as
describing in Section 3.1.1 and was always fresh for each experiment. Cells were incubated for 24 h.
Cell suspensions of 10 µL were taken at several time points and mixed with 1 mL PBS. In all competition
experiments, one of the strains was labeled fluorescently with amyE::PrrnE-gfpmut2. The fraction of the
fluorescent reporter strain was measured using a BD Canto II flow cytometer (BD Bioscience, Franklin
Lakes, USA) equipped with three solid-state lasers at 405, 488, and 561 nm. For detection of GFP
fluorescence, a 530/30 filter was used. The photomultiplier voltage for forward scatter (FSC), side scatter
(SSC), and GFP was set at 100, 351, and 450, respectively. To exclude particles smaller than B. subtilis,
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the threshold for FSC was set at 250. At least 10,000 cells/sample were analyzed using BD FACSDiva 6
software (BD Bioscience, Franklin Lakes, USA).

During exponential growth, B. subtilis forms chains. FSC and SSC signals of chains observed in the
flow cytometer were slightly increased compared to single cells. All events were counted as single cells
because flow cytometry measures events and cannot distinguish between single cells and groups of cells
forming a chain. Since only non-competent, exponentially growing cells form chains, the ratio between
cells with a higher probability of entering the K-state and those with a lower probability of entering the
K-state, may be overestimated. This overestimation of the fraction of K-state leads to an underestimation
of the fitness cost—i.e., the fitness cost of competence may even be larger.

Single Cell Microscopy, Experiment Design

An overnight culture of BD2711 was diluted to OD=0.1 in fresh CM and grown to T0. Cells were diluted
20-fold into fresh pre-warmed CM and sandwiched between a glass cover slide and a 1.5 mm-thick
polyacrylamide gel (see Section 3.1.1. The glass cover slide, with polyacrylamide gel and diluted sample,
was sealed onto the flow chamber using picodent twinsil (Picodent), confining the polyacrylamide gel
between the cover slide and the structured PDMS pad (Figure 3.1) [179], [180].

The in-house flow chamber was mounted onto an inverted microscope (Nikon Eclipse TE2000-E). The
flow chamber was made of polyoxymethylene with a 6 × 56 × 1 mm channel where a 6 × 26 mm hole
was cut into the center. The hole was sealed using PDMS which formed a structured pad with an array of
0.5 µm tall pillars spaced 1 µm apart from each other. The channel was sealed with the glass cover slide
and gel, as described above. Medium was flushed through the chamber at a rate of 10 µL/min during
image acquisition and at speeds of up to 500 µL/min to initially fill the chamber. A peristaltic pump was
used to control flow rates and batch culture as medium. (the unfiltered batch culture which had been used
to create the conditioned medium, kept at 40° C – to obtain 37° C when the culture reached the chamber,
constantly stirred).

Differential interference contrast (DIC) images were taken at 10 min intervals for up to 24 h. Images

Figure 3.1: The sample (yellow) is sandwiched between a glass cover slide (light gray) and a porous gel (dark gray,
here polyacrylamide). The porous gel allows signaling molecules and nutrients from the medium (cream) to diffuse
through to the sample, but not bacteria. The porous gel rests on an array of PDMS pillars (blue) to hold the gel
fixed on the cover slide. The PDMS pillars are attached to the chamber lid (black) which contains two outlets,
allowing for flow injections. The cover slide is sealed to the chamber lid using picodent twinsil silicone (orange).
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were taken following the “correlation images” method (Section 3.2.2) [181]. A z-stack height of ±3 µm,
vertical step of 250 nm, and standard deviation of 700 nm were used.

3.2 Computational and Analysis Methods

3.2.1 Stationary Phase Dynamics – Selection Coefficients

Collective population dynamics were quantized using selection coefficients. Classic Malthasian parame-
ters could not be calculated because growth was explicitly in the stationary phase. Instead, the replicator
equation was used to determine selection coefficients si j by fitting the fraction in the population as a
function of time with Equation 1.8, where xi(t) is the frequency of type i at time t, and λ is the ratio of
initial frequencies of both competitors [123]. It was assumed that the difference si j = ri − r j, between the
effective growth rates ri and r j of the competitors, was constant. (See Section 1.2.1.)

3.2.2 Single Cell Microscopy – Image Analysis

In order to extract growth rates and cell genealogy, z-stack images were converted into a correlation
image for each time point, correlation images were filtered to remove background debris, and analyzed
using Schnitzcells [138] and an in-house Matlab script.

First, correlation images were calculated for a set of z-stack images taken in 250 nm steps over a
range of 3 µm above and below the focal plane. This resulted in one final image for each time point,
where the cells had a low grayscale intensity and were surrounded by a high grayscale intensity contour
(Figure 3.2a,b). The correlation image was defined as the kernel weighted sum of the pixel intensities
for each z-stack image, where the kernel was the first derivative of a Gaussian centered around the focal
plane (zo = 0) with variance σ = 700 nm (Equations 3.1 and 3.2).

Ic(z = 0) =

∫
I(z′)Ker(z − z′, zo = 0, σ = 700 nm)dz′ (3.1)

Ker(z − z′) =
d
dx

(
1

σ
√

2π
e
−(z−z′)2

2σ2

)
=
−(z − z′)

σ3 √2π
e
−(z−z′)2

2σ2 (3.2)

In addition to uniformly sharpening the contrast around cells, correlation images had the added benefit
of creating a constant and uniform background intensity. This is seen in Figure 3.2(d), where the relative
grayscale intensities for the same slice of the focal plane (a) and correlation (b) image are shown. In
comparison to the DIC intensities (dashed line, blue), the correlated intensities (solid line, orange) have a
constant background and clear peaks and valleys for cell boundaries and interiors, respectively.

Next, a threshold was applied to all correlation images of a given time lapse using a script developed in
conjunction with Stephen Anthony [182]. The script makes use of Otsu’s thresholding method [183], in
particular, four-thresholding. The interior of the cells corresponded to values below the second threshold.
Objects below the second threshold were further filtered by removing noise (objects less than five pixels
in size) and cells not fulling contained within the image (Figure 3.2(c)).
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(a) Focal plane DIC image (b) Correlation image (c) Post-threshold binary image
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Figure 3.2: Image processing of z-
stack DIC images. (a) Raw DIC im-
age in the focal plane. (b) Correla-
tion image for the image z-stack cor-
responding to (a). (c) Binary image
of putative cells after Otsu threshold-
ing. (d) Relative intensities of the
slices shown in (a) and (b) (dashed
line, blue and solid line, orange – re-
spectively).

After applying the threshold and filtering, images were imported into Schnitzcells [138] for tracking,
and lineages were analyzed using an in-house Matlab script. Genealogy trees were drawn for each image
set and generation time for every dividing cell was calculated, taking note of when a cell had become
competent prior to division. Competence was monitored using BD2711. Cells which did not divide
during the time frame of the experiment were not included in the mean generation time calculations.
As such cells included those with particularly long generation times—i.e., competent cells, the mean
generation time of cells that run through a competence period was underestimated.
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“Some figures are bigger than others; some figures are bigger than other figure’s mothers.”

—The Smiths

We aimed to characterize the effect of competence on genome dynamics and interactions between
different subspecies of B. subtilis. This first chapter focuses on the findings from the evolution experiment
with B. subtilis 168 (Bsu168) clones which periodically received B. subtilis W23 DNA for ∼210
generations. In this experiment, the genomic effects of the evolved cultures were measured via whole
genome sequencing (WGS), and cataloged by a variety of analysis pipelines and scripts – with the goal of
identifying orthologous recombination events, detecting de novo variants, and predicting the effectiveness
of interspecies gene transfer.

First, orthologous recombination events are described in full—for the three time points over which
all replicates were sequenced and the four replicates sequenced at every second cycle. Next, the
recombination events are characterized based on identity, composition, and function. Afterwards,
statistical analyses are done to determine if there was any bias in recombination events to specific genes,
identity, or partial gene or operon replacement. Finally, de novo variants, occurring in addition to the
recombination events, are characterized.

Throughout this chapter, standard deviation was used to report measurement error (µ ± σ), unless
otherwise noted.

4.1 Orthologous Recombination and De novo Insertions Occur in
Multitude

The evolution experiment consisted of 21 two-day cycles. Each cycle consisted of six steps: dilution,
radiation, plating, colony selection and regrowth, competence induction and addition of extracellular
DNA, and washing and overnight growth (Section 2.1.3). Replicates received either no DNA, DNA from
Bsu168, or DNA from BsuW23. For simplicity, replicates receiving BsuW23 donor DNA are referred to
as “BsuW23 replicates”, often shortened to W#, when talking about specific replicate #.

WGS was carried out for all eight ancestral clones and the evolved strains from various time points
and experimental conditions. All eight replicates evolved with BsuW23 DNA were sequenced at cycles
9, 15, and 21 (cy9, 15, 21). Controls with and without self DNA were sequenced at cy9 (four replicates
each) and cy15 (two replicates each). Time course sequencing (every second cycle) was carried out for
replicates W1, W3, W4, and W5. Replicate W3 was discarded after cycle 9 and replicate W7 was not
considered in that cycle, due to contamination (detected as outlined in Section 2.2.6). Replicate W1 was
not sequenced at cycles 17 or 19.

All control samples, receiving either self or no DNA showed no false-positive orthologous recombi-
nation events. The total number of SNPs and INDELs for self and no DNA replicates at cycle 9 were
on the order of 101, while that of BsuW23 samples was 104. Further information regarding the de novo
mutations in both self and no DNA replicates, along with BsuW23 samples, can be found in Section 4.4.
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The CNP (cluster of nucleotide polymorphisms) algorithm outlined in Section 2.2.2 was used to
identify orthologous recombination events in the evolved samples. The novel genes algorithm from
Section 2.2.5 was used to identify transformed auxiliary BsuW23 genes in the evolved samples receiving
BsuW23 DNA.

4.1.1 Cycles 9, 15, and 21

Orthologous recombination events were detected in all BsuW23 replicates for cycles 9, 15, and 21. The
mean and median import lengths (CNP lengths) decreased slightly throughout the experiment, along with
the variation in those values (Table 4.1).

Table 4.1: Cycles 9, 15, and 21 CNP segment statistics

Mean import
length (bp)

Median import
length (bp)

Replaced
genome

Exponential constant
(bp−1)

Cycle 9 3700 ± 900 2260 ± 960 5.3 ± 1.0% 3660 ± 170
Cycle 15 3500 ± 630 1960 ± 600 6.9 ± 2.3% 3480 ± 140
Cycle 21 3400 ± 560 1900 ± 390 9.8 ± 2.6% 3500 ± 120

A wide distribution of CNP lengths were found at cycles 9, 15, and 21 (Figure 4.1). Mean and median
CNP lengths remained relatively constant, and percent genome replacement varied greatly between
replicates at the same cycle – with variance increasing at later cycles. The mean percentage of replaced
genome increased in a linear fashion (Table 4.1) and a linear regression calculated a rate of 0.47 %
genome replacement, per cycle (Figure 4.2).

The average mean and median import lengths were more clearly seen in probability distributions
(Figure 4.3). Due to the breath of import lengths, the distributions were shown on a log scale. The
distributions strongly resemble an exponential decay and have similar decay constants of 3660, 3480,
and 3500 bp−1 for cycles 9, 15 and 21, respectively (Table 4.1).

Inserts from auxiliary regions of BsuW23 were also detected in the evolved strains but at a much lower
frequency than the homologous regions, 5 ± 6 insertions per replicate at cycle 21 (Figure 4.4). The mean
insert length grew from 1480 to 1710 to 2240 ± 2900 bp for cycles 9, 15, and 21, respectively. Too few
events had occurred by cycle 21 to determine if the length distribution fit an exponential decay function.

Import events had a mosaic pattern for all replicates over all cycles (Figure 4.5). It was evident that
each replicate took a different evolutionary path over the 21 cycles, as the pattern of import events were
not identical. There were some similarities between replicates, which are further examined in Section 4.3.
(Mosaic import patterns for cycles 9 and 15 can be found in the appendix, Figures A.1 and A.2.)
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(c) Cycle 21

Figure 4.1: Orthologous recombination for all replicates
from cycle 9 (a), 15 (b), and 21 (c). (left axis) Box plot
of all CNPs for each sample. Black circles represent
the mean length of individual import events. (right
axis) Green stars denote the percentage of the ancestral
genome that has been replaced by BsuW23 segments.
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Figure 4.2: Rate of genome replacement. (circles,
black) Mean genome replacement for seven BsuW23
replicates. Error bars are the standard deviation. (solid
line, black) Best fit linear regression with y = 0.47x.
(dashed lines, red) 95% confidence interval.
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Figure 4.3: Mean CNP import lengths for cycle 9 (a), 15
(b), and 21 (c), plotted logarithmically. The probability
of a specific transfer event occurring is given on the left
axis, while the total number of events (over all repli-
cates) is given on the right axis. Insets show the same
distribution with length on a linear scale and number
of events plotted logarithmically. (inset, red line) Expo-
nential decay y = e−αx (red line) with α = 3660, 3480,
and 3500 bp−1 for cycles 9, 15 and 21, respectively.
The probability of a specific transfer event occurring is
given on the left axis, while the total number of events
(over all replicates) is given on the right axis.

54



4.1 Orthologous Recombination and De novo Insertions Occur in Multitude

10
0

10
1

10
2

10
3

10
4

Mean imported sequence length (bp)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Tr
a
n
s
fe

r 
le

n
g
th

 p
ro

b
a
b
il
it

y

0

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

(a) Cycle 9

10
0

10
1

10
2

10
3

10
4

Mean imported sequence length (bp)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Tr
a
n
s
fe

r 
le

n
g
th

 p
ro

b
a
b
il
it

y

0

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

(b) Cycle 15

10
0

10
1

10
2

10
3

10
4

Mean imported sequence length (bp)

0

0.05

0.1

0.15

0.2

0.25

Tr
a
n
s
fe

r 
le

n
g
th

 p
ro

b
a
b
il
it

y

0

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

(c) Cycle 21

Figure 4.4: Mean lengths of imported segments from
auxiliary regions for cycle 9 (a), 15 (b), and 21 (c),
plotted logarithmically. The probability of a specific
transfer event occurring is given on the left axis, while
the total number of events (over all replicates) is given
on the right axis.
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Figure 4.5: Orthologous recombination for various replicates from cycle 21, as a function of chromosome position.
The start and end position of an orthologous recombination event (CNP) is denoted using filled boxes. The start
of a de novo insertion is marked with an open triangle. All events are color coded to describe the average import
length. Sample “Bsu168” denotes Bsu168 auxiliary regions (black).
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4.1.2 Time Lapse Replicates, W1, 3, 4, and 5

Replicates W1, 3, 4, and 5 were sequenced at odd cycles, beginning with cycle 3.1 The mean and median
import lengths stayed relatively constant, although different for each replicate, as the number of import
events increased (Table A.1). The percentage of replaced genome increased over all cycles, for all four
replicates (Figure 4.6). This implied that the genes responsible for competence were still functional.
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Figure 4.6: Orthologous recombination over multiple time points for replicates W1, 3, 4, and 5. (left axis) Box
plot of all CNPs for each sample. Black circles represent the mean length of individual import events. (right axis)
Green stars denote the percentage of the ancestral genome that has been replaced by BsuW23 segments.

For replicate W5, we see the construction of a mosaic import pattern over time (Figure 4.7, replicates
W1, 3, and 4 can be found in the appendix, Figures A.3-A.5). All four replicates had initial import events
that grew in length over all cycles ∼20% of the time. Such recombinations added onto a preexisting

1 As explained at the start of Chapter 4, replicate W3 was removed after cycle 9 due to contamination. Replicate W1 was not
sequenced at cycles 17 or 19.
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segment, thereby changing the length of the original segment from the previous time point—e.g.,
Figure 4.7, position 0.95 × 106. Occasionally segments were imported next to existing imports—e.g.,
Figure 4.7, position 1.65 × 106. Most frequently, ∼80% of all import events, segments remained the
same size. In < 5% of all import events did segments decrease in length.

The majority of import events did not increase in size after recombination. There was little evidence
that higher segment identity increased the probability of orthologous recombination in an affected region.
More on this and segment identity is discussed in Section 4.3. Between several time points it appears as if
acquired CNPs were lost—e.g., Figure 4.7, cycle 7, position 1.21 × 106 (light blue). This was an artifact
of the experimental setup, where cultures were frozen after being transformed and growing overnight.
The frozen cultures have bacteria which differ amongst themselves in their most recently integrated
segments. The clone, that survived the bottleneck and made it to the next cycle of the experiment, was
not necessarily the clone that was sent for sequencing.

58



4.1 Orthologous Recombination and De novo Insertions Occur in Multitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 6

Bsu168
cy21
cy19
cy17
cy15
cy13
cy11

cy9
cy7
cy5
cy3

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

10 6

Bsu168
cy21
cy19
cy17
cy15
cy13
cy11

cy9
cy7
cy5
cy3

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

10 6

Bsu168
cy21
cy19
cy17
cy15
cy13
cy11

cy9
cy7
cy5
cy3

R
e

p
lic

a
te

 W
5

, 
c
y
c
le

s
 3

 -
 2

1

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

10 6

Bsu168
cy21
cy19
cy17
cy15
cy13
cy11

cy9
cy7
cy5
cy3

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

Chromosome position in Bsu168 10 6

Bsu168
cy21
cy19
cy17
cy15
cy13
cy11

cy9
cy7
cy5
cy3

0

5

10

15

20

25

30x10
3

Figure 4.7: Orthologous recombination for replicate W5 from various cycles as a function of chromosome position.
The start and end position of an orthologous recombination event (CNP) is denoted using filled boxes. The start
of a de novo insertion is marked with an open triangle. All events are color coded to describe the average import
length. Sample “Bsu168” denotes Bsu168 auxiliary regions (black).
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4.2 CNP Properties: Identity, Composition, and Gene Function

To look for biases in recombination, we calculated the identity of each CNP. We looked at the gene and
operon composition of CNPs to see if either of the two were preferentially fully-replaced. Finally, we
looked at the individual CNP gene-functions for potential favoritism to replace a particular class of gene.

4.2.1 CNPs Recombine on Sections of Higher Identity

The average sequence identity between donor and recipient for each orthologous recombination event
was measured as a function of the integrated segment’s length (Figure 4.8). For all cycle 9, 15, and
21 replicates, CNP identity approached the subspecies average-identity (92.4%, between Bsu168 and
BsuW23) as segment length increased. Short CNPs had a larger variance in their identity values than long
CNPs, as one would expect for evenly distributed m`SNPs following an exponential-like distribution
(Section 2.2.2). The majority of the segments had an identity above the subspecies average-identity, and
segment identity approached the subspecies average-identity at larger segment lengths.

The fraction of CNPs with lengths ≤ 100 bp increased slightly from 12.7 to 12.9 to 14.5% in cycles 9,
15, and 21, respectively. At the same time, the mean identity of those short CNPs dramatically decreased
from 94.0% in cycle 9 to 77.0% in cycle 21 – notably below the subspecies average-identity. Because the
identity of short CNPs varied so greatly, they were handled separately from CNPs > 100 bp, for all cycles.
The average identity was found to be greater than the subspecies average-identity for all cycles, with
p < 0.001 using a one sample t-test for the mean. The distributions were assumed to be unimodal and
symmetric, as our sample sizes were larger than 50 and the data was not extremely skewed [184]. For
CNPs ≤ 100 bp, cycles 9 and 15 still showed that the identities were larger than the subspecies average,
with p < 0.001. Small CNPs at cycle 21 did not have an identity greater than the subspecies average and
had 2 – 3 times the variance compared to cycles 9 and 15. (Table 4.2)

The sequence identities calculated here were cross checked against potentially missing m`SNPs,
allowed due to the 30% threshold outlined in Section 2.2.2. While missing SNPs did exist in the
detected CNPs (below the aforementioned threshold), they did not change the average CNP identities nor
uncertainties for small or long CNPs.

Table 4.2: Mean identities and significance values for cycles 9, 15, and 21, averaged over seven replicates receiving
BsuW23 DNA

Segment length Mean identity Significance level

Cycle 9
≤100 bp 94.0 ± 2.5 <0.001
>100 bp 93.4 ± 0.6 <0.001

Cycle 15
≤100 bp 93.5 ± 1.5 <0.001
>100 bp 93.9 ± 0.7 <0.001

Cycle 21
≤100 bp 77.0 ± 6.0 –
>100 bp 93.6 ± 0.5 <0.001
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Figure 4.8: Identity of orthologous recombination seg-
ments as a function of segment length for BsuW23
cycle 9 (a), 15 (b), and 21 (c) samples. The histogram
of identities and segment lengths are shown beside the
y- and x-axis, respectively. Open circles (red) mark
the average identity for all import events grouped into
1000 bp bins; error bars are the standard deviation.
The dashed line (black) denotes the 92.4% subspecies
average-identity between Bsu168 and BsuW23.
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4.2.2 CNP Composition

No Bias towards Purine or Pyrimidine Enrichment

In addition to identity, the purine/pyrimidine enrichment of each CNP was calculated. We calculated
difference between the number of additional purines or pyrimidines in a CNP and normalized that value
by CNP length (Figure 4.9). Positive values denoted pyrimidine enrichment and negative values purine
enrichment. At cycle 21, replicates had small changes in normalized enrichment values, centered around
zero. The average ratio of pyrimidine enriched CNPs to purine enriched CNPs, over all seven replicates,
were comparable: 1.02 ± 0.15 , with an average of ∼110 non-zero enrichment values per replicate. We
did not conclude that there was a bias towards purine or pyrimidine enrichment due to BsuW23 donor
DNA.
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Figure 4.9: Relative purine/pyrimidine enrichment in
CNPs from BsuW23 replicates, cycle 21. Histogram
counts of the normalized net change in purine or pyrim-
idine enrichment. The difference in number of pyrim-
idine and purine changes for each CNP was calcu-
lated. The net change then was normalized by CNP
length. Negative values denote a normalized net change
towards purine enrichment, positive values towards
pyrimidine enrichment. Bins were spaced at interval of
0.05, excluding zero, which is plotted separately. (open
circles, black) The mean of all seven replicates.

Majority of CNPs Replace Full Genes and Operons

We hypothesized that replacement of partial genes or operons was selected against due to maladaptation
of hybrid genes and operons. If hybrid genes and operons conferred a fitness cost, we would expect
subsequent DNA imports to tend to complete the gene or operon replacement. Therefore, we investigated
to what extent percentage, genes or operons were affected by a CNP replacement.

The annotated genome file for Bsu168 was obtained from the National Center for Biotechnology
Information (NCBI, Reference Sequence: NC_000964 [185]) and the list of Bsu168 operons was taken
from [186]. Percent replacement was calculated for all genes in W5 replicates, all time points. The
median gene replacement percentage was 100% and the mean averaged 86 ± 4 %, and the fraction of
completely replaced genes hovered between 60 – 80% (Figure 4.10(a,c)).

The majority of the genes that were replaced remained the same percent replaced throughout all 21
cycles. About 20% of CNPs grew in size, thereby replacing more of a given gene, and < 5% of CNPs
shrank in size, thereby replacing less of given gene (Figure 4.11(a)). CNPs replaced complete genes
in the majority of recombination events. A small fraction of all CNPs grew in length—i.e., built upon
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existing CNPs from a previous cycle to yield a larger CNP at the same location.
Results at the operon level were similar to those at the gene level (Figure 4.10(b,d), 4.11). Median

percent replacement was 50% until cycle 7, after which the median replacement remained 100% through
cycle 21. The mean percent replacement averaged 78 ± 10 %, with that value jumping dramatically from
56% to 81% by cycle 7 and then slowing climbing to 83% by cycle 21. Again, the majority of operons
were completely replaced, but there was a second population of operons that were half replaced. Of those
operons that were replaced, 19% of them grew and 8% shrank in percent replacement over 21 cycles.
In this analysis, operons with only one gene were excluded and all operons were analyzed at the gene
level—i.e., if a gene was affected or not, regardless of fully or partially. The latter simplification slightly
over estimated the percentage of operon replacement, as the partially replaced genes remained around
∼15%, over all cycles.

Looking at all replicates from cycle 21, individual genes were fully replaced twice as often as partially
(337 ± 115 and 160 ± 22 , respectively). Operons, similarly, were replaced fully (168 ± 53 ) more often
than partially (90 ± 10 ). The average operon size was 3.2 kbp, comparable to the average CNP length.
This could partially explain why we see favoritism towards full operon replacement.
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Figure 4.10: Gene and operon replacement distributions for W5, all time points. (a,b) Normalized histograms of
gene (a) and operon (b) replacement. (c,d) Raw counts thereof. All operons were characterized at the gene level
and single gene operons were omitted.
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Figure 4.11: Change in CNP lengths over time at the gene and operon level, replicate W5. (a,b) Pie charts of gene
(a) and operon (b) replacement over 21 cycles. Individual gene/operon replacements either grew (blue), remained
the same size (orange), or shrank (yellow). The number of times each event occurred (relative percentage thereof)
is listed next to each wedge. All operons were characterized at the gene level and single gene operons were omitted.
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4.2.3 Essential Genes are Overrepresented and Prophages are Underrepresented
in CNPs

Returning to the gene level, CNPs were analyzed to determine if there was a replacement preference for
genes of a particular function. First, the oversweeping categories of essential and non-essential genes
were applied to CNPs. Genes were categorized based on the SubtiWiki, University of Gottingen ([187],
accessed 1 Mar. 2018) classifications. An affected gene was only counted once, even if multiple functions
were indicated in the database.

The fraction of affected essential genes was 8.9 ± 4.0 %, averaged over all seven replicates from cycles
9, 15, and 21 (Figure A.6). Assuming that replacement was equally likely for all genes, the probability
of replacing an essential gene was 3% more than expected. The deviation from the expectation value is
significant at the p < 0.01 level only for cycle 21, using the one sample t-test for the mean. However,
the average sequence identity of essential genes was also higher than the Bsu168/BsuW23 subspecies
average, at 95.1%, in agreement with their high replacement probability.

Orthologously replaced genes were further classified using the extensive list of gene categories on
the SubtiWiki. The “prophages and mobile genetic elements” class were underrepresented at cycles 9,
15, and 21 (Figure 4.12). This is most likely because the majority of these regions have no homolog
in BsuW23—i.e., these are auxiliary regions. (More on recombination probability can be found in
Section 4.3.) Gene classifications for cycles 9 and 15 can be found in the appendix, Figure A.7.

The names of all genes affected by CNPs at cycle 21 can be found in the appendix, Figures A.8-A.12.
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Figure 4.12: CNP gene types, cycle 21. Counts have been normalized by the number of times each gene type
occurs in the genome.
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4.3 CNP Recombination Probability

Having seen that the average CNP identity was higher than the average subspecies identity between
Bsu168 and BsuW23, we further examined CNPs to determine if recombination was happening randomly,
or if selection was responsible for the recombination patterns we had seen. Based on previous studies,
we expected the segments to have a higher identity, namely because transformation rates are higher for
smaller sequence divergences. We looked for evidence of recombination hot spots, calculated the role
sequence plays in hypothetical recombination locations, and computed if recombination was biased to
replace full genes. The models needed to determine the aforementioned parameters and the simulations
necessary to support them were developed in collaboration with Fernanda Pinheiro. Pinheiro drew up the
necessary models to compare our null hypotheses to the experimental results and performed the statistical
analyses to determine if we could reject said null hypotheses.

4.3.1 Several Putative Hot/Cold Spots Detected in Overall Fairly-Random Gene
Replacement

Evolved genomes were analyzed at the gene level to see how often genes were affected, whether fully or
partially, by a CNP. We compared the number of times a gene was affected in 0, 1, 2, ..., 7 (all) BsuW23
replicates, for cycles 9, 15, and 21 (normalized to the total number events detected at each cycle), to
a binomial distribution to see if gene replacement was random (Figure 4.13). Here, we assume that
the probability of replacing a gene is equal for all genes. The rationale behind this assumption was
that variation in gene sequence-identity showed only a few outliers (Figure 4.14). For the binomial
distribution, the average genome replacement (Table 4.1) was used for the probability of success, p.
The experimental data did not significantly differ from the binomial distribution and the null hypothesis
was not rejected using the two-sample Kolmogorov-Smirnov test (KS2). We concluded that genes were
replaced randomly over the whole genome.

Although our data (Figure 4.13) was consistent with random replacement, the histogram cannot
exclude a small number of outliers, potentially selected genes. We looked to see if there were putative
recombination hot spots. Again at the level of affected genes, we recorded the number of times a gene
was affected across all replicates (Figure 4.14). Several genes were replaced in four or more replicates
(Table 4.3), with no obvious relationship between more frequently replaced genes and their identity. leu
genes were likely hot spots because the recipient strain is a leu auxotroph. eps genes produce extracellular
polysaccharides which are crucial in biofilm formation. Biofilm formation may be advantageous for
evolved strains because of their repeated time spent in the stationary phase. Putative recombination-cold-
spots, regions with no recombination in any replicate, often corresponded to Bsu168 auxiliary regions.
(Putative recombination-hot/cold-spots for cycle 15 can be found in the appendix, Figure A.13.)

To conclude, recombination occurred randomly over the genome. This did not mean that no putative
selection was measured. Several genes, in particular leuABC and epsABCDEF, were replaced in five of
the seven replicates, making it likely that they were selected for. Additionally, putative recombination-
cold-spots included the auxiliary regions of Bsu168, likely because they have no homolog in BsuW23.
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Figure 4.14: Probability of replacement of a specific gene by cycle 21. (blue, left axis) Genes affected by CNPs as a
function of gene number and normalized to the number of replicates (seven). (orange, right axis) Average sequence
identity per gene. (gray dots) Bsu168 auxiliary regions. (These regions are displayed as having an identity of one.)
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4.3 CNP Recombination Probability

Table 4.3: Genes affected in the majority of cycle 21 replicates.

No. replicates with affected gene 7 6 5 4

Genes leuB leuC
epsABCDEF,

ilvC, leuA

BSU misc RNA 44,
epsGHIJKLMNO,
gamA, ganR, ilvH,
leuD, padC, pnbA,

yszA, ytxGHJ,
yveFG, yvfHI

Gene number 3059 3058
3710 – 3716,
3061, 3060

3040, 3701 – 3709,
288, 3696, 3062,
3057, 3718, 3717,
3041, 3214 – 3216,
3719 – 3720, 3697 –

3698

69
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4.3.2 CNPs Have Smaller SNP Density on One Side of the Segment

In Section 4.2, we reported that the identity of the CNPs had a significantly higher identity than the
subspecies average between Bsu168 and BsuW23. The CNPs were further analyzed to determine if there
was a higher than average sequence identity at one of the ends of the orthologously replaced segments.
This would suggest that high sequence identity is most important at the start of a recombination event.

First, import events were simulated to determine what one would expect if there was no bias. For
each of the 868 experimental recombination events, 500 in silico recombination simulations were
performed.For each simulation, two starting positions from the master list were chosen at random. Then,
the number of m`SNPs on the forward strand in the first 100 bp was recorded, for the first starting
position running in the sense direction and for the second starting position in the antisense direction. We
refer to recombination on the forward strand, running in the sense direction, as the “forward direction”,
and running in the antisense direction as the “reverse direction”. In layman’s term, one can picture the
genome as a number line running from left to right. “Forward” recombination occurred by picking a
position and counting the number of m`SNPs to the right, while “reverse” recombination counted to
the left. The SNP density distributions for the forward and reverse directions lay on top of each other.
This was expected as the m`SNPs are evenly distributed across the genome (Section 2.2.2). A KS2
test confirmed that one could not reject the null hypothesis; these two samples came from the same
distribution (Figure 4.15).

The same test was performed on the cycle 21 experimental data using the 5’ to 3’ and 3’ to 5’ ends
on the forward strand as the convention for forward and reverse directions. Again, using a KS2 test
the null hypothesis could not be rejected. When the two in silico distributions were compared to the
experimental distributions, the experimental distributions were significantly different from both of the in
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Figure 4.15: SNP density distribtion for the first 100 bp of the in silico and experimental CNPs. (a) Distributions
are split into in silico (simulated) CNPs, forward (gray) and reverse (blue) direction, and experimental CNPs,
forward (purple) and reverse (green) direction. Forward direction is sitting on the forward DNA strain and reading
5’ to 3’ direction. Reverse direction is sitting on the forward DNA strain and reading in the 3’ to 5’ direction. (b)
Cumulative sum of distributions in (a), used to determine if the samples come from the same distribution.
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4.3 CNP Recombination Probability
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Figure 4.16: First 100 bp SNP density for CNPs and simulations. For each CNP, the ends of each segment (first
and last 100 bp) are grouped into smaller (purple) or larger (green), depending on their SNP density with respect to
one another. The same is done for the simulated recombinations, smaller (blue) and larger (gray). (a) Normalized
distributions. (b) Cumulative sum of the distributions in (a). The null model that the smaller end distribution (blue)
came from either simulated distribution (blue or gray) is ruled out at the p << 0.01 level.

silico distributions at the p = 0.01 level using the KS2 test. This was easily explained as the mean of
the in silico and experimental distributions was different, reflective of the higher average identity for the
experimental CNPs (Figure 4.15).

Next, SNP density distributions were sorted into smaller and larger end, for both the experimental CNPs
and the in silico starting-position pairs. The experimental smaller-number distribution was significantly
different from the experimental larger-number and simulated distributions at the p << 0.01 level using
the KS2 test (Figure 4.16). Additionally, the experimental larger number distribution lay in between
the smaller and larger simulated-distributions. In fact, the experimental larger-number distribution was
not distinguishable from the non-sorted forward and reverse simulation distributions (Figure 4.15). In
layman’s terms, one side of each CNP had a higher identity; the lower identity side had a distribution
equal to that theoretically predicted for the Bsu168 and BsuW23.

After establishing that one end of each CNP had a significantly lower SNP density, we calculated how
far along the CNP one must travel to find the SNP density is no longer significantly different from the
expected density (forward and reverse simulations). In other words, how long was the patch of higher
identity on the one side of the CNP. First SNP density distributions were calculated for 100 bp segments
from the end with the lower SNP density to a length of up to 10,000 bp, for all cycle 21 CNPs. Next, the
SNP density distributions of the 100 bp sections (starting at the lower SNP density end) were compared
to the distribution of the larger SNP density end, using a KS2 test. The lower SNP density end was
used as the reference distribution because we had shown it was indistinguishable from the simulated
forward and reverse distributions. The D statistic (the maximum distance or supremum between the
cumulative density functions was significant at the α=0.05 level for the first 500 bp and from 500 –
2000 bp, significance hovered around the α=0.05 level (Figure 4.17).
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The smaller SNP density distribution was analyzed to see if the smaller end preferentially sat on the 5’
or 3’ end of each CNP (read off the forward strand). We detected no directional bias for recombination.
It was equally likely, for each CNP, that the smaller end sat on the 5’ or 3’ end of a CNP or the 3’ to 5’
end (with respect to the forward strand).

Our data showed a higher than average sequence identity at one end of the CNP. The higher sequence
identity remained significantly higher for the first 500 bp. It is reasonable to assume that recombination
started at this end. We did not measure a bias for the end with a higher identity to sit on the 5’ to 3’ or
3’ to 5’ end on the segment, when read off the forward strand. This is consistent with no bias in the
direction of recombination with respect to the origin of replication.

4.3.3 Genes are Most Likely Completely Replaced

The in silico CNPs from Section 4.3.2 were reanalyzed to see if genes were more often replaced
completely than expected with a length distribution corresponding to Figure 4.3(c). Deviations from
the expectations would indicate that replacement of full genes was selected for. We only used in silico
CNPs which recombined in the forward direction for this analysis. As described in Section 4.3.2, in silico
recombination occurring in the forward and reverse directions could not be distinguished from another,
and so taking only the forward direction more closely emulated the CNP detection algorithm.

The number genes a CNP partially covered (0, 1, or 22) in the experimental data was compared to the
in silico recombinations. Experimental recombination events more favorably affected one partial gene
than two (Figure 4.18(a)). As not all of the experimental CNPs replaced one gene partially as opposed to
two, it is unclear how strong this bias, to replace fewer genes partially, is.

The number of fully covered genes did not differ between the experimental and in silico CNPs. This
was reflective of the median CNP length being equal to ∼2 genes (1900 bp).

2 Cases with three partially covered genes, due to the possibility of overlapping genes where grouped into the two partially
covered genes category. It occurs 572 times (13%) across the genome.
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Figure 4.18: Frequency of partially and fully replaced genes from both in silico recombinations (simulations,
gray) and experimental CNPs (red) at cycle 21. (a) Number of partially covered genes due to CNP orthologous
recombination. (b) Number of genes fully covered by CNP orthologous recombination. Error bars are the standard
error of the mean.

4.4 The Presence of Donor DNA Increases the Number of De novo
Variants

Finally, we addressed the question whether transformation with DNA from different donors affected the
frequency at which de novo variants occurred. We grouped non-CNP variants according to SNP/INDEL
type to determine if recombination led to a particular type of SNP/INDEL being overrepresented.
Deviations from the SNP/INDEL type distribution could imply that recombination machinery induced
the variants. Affected gene types and genome position were analyzed to see if variants had a bias towards
either. Such a bias could allude to compensatory mutations in response to recombined segments, either in
a particular gene class or upstream of CNPs in promoter regions.

Non-CNP variants were grouped into one of eight SNP/INDEL types: synonymous mutations, non-
synonymous mutations, stop codon mutations (including the creation of new stop codons), start codon
mutations (again, including the creation of new start codons), missense insertions and deletions, in frame
insertions and deletions, upstream mutations (occurring up to 3000 bp in front of a gene, outside of
any coding region), and intragenic mutations (occurring outside of any coding region and more than
3000 bp upstream from any gene). The upstream- and intragenic-mutations categories include point
mutations, insertions, and deletions. For both no DNA and Bsu168 DNA, the number and distribution
of variants were similar. In total, both had replicates with ∼35 variants by cycle 9 and ∼60 by cycle 15,
with greater variance amongst the no DNA replicates. For DNA replicates, 60 ± 20 % of all variants
were synonymous or non-synonymous by cycle 15. By comparison, no DNA replicates had 71 ± 3 %.
The fraction of upstream mutations remained constant for no DNA replicates at ∼13% and doubled for
Bsu168 DNA replicates from 7.5% to 15% (Figure 4.19(a,b)).

For the BsuW23 replicates, potential de novo variants were first compared to INDELs expected
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from mapping BsuW23 onto Bsu168 (a “master list” of INDELs – ignored in the CNP algorithm, see
Section 2.2.2) and variants with exact matches were removed.

BsuW23 replicates had twice as many variants as no DNA and Bsu168 DNA replicates by cycle
9 (66 ± 13 variants) and by cycle 21 another doubling with (115 ± 42 variants), however with larger
variance (Figure 4.20). In contrast to no DNA and Bsu168 samples, replicates receiving BsuW23 DNA
showed a large number of upstream mutations (consistently ∼40% over all cycles). These upstream
mutations were namely inserts, 57 ± 8 %, and deletions 31 ± 9 %. The number of synonymous and non-
synonymous mutations averaged 10% over all cycles. (Variant types for the four time lapse replicates,
W1, 3, 4, and 5, can be found in the appendix, Figure A.14.)

The majority of de novo variants were found inside of CNP regions, 58 ± 5 % by cycle 21
(Figure 4.21). In particular, 83 ± 7 % of all the missense and in frame indels, and 75 ± 5 % of all
upstream mutations were within a CNP. The appearance of numerous de novo upstream mutations,
specifically the large majority of those being within CNPs, hinted that these mutations could have been
compensatory mutations.

To better determine if the upstream mutations were compensatory mutations, how often de novo
variants were found upstream of a CNP replaced gene (whether partially or fully) was calculated
(Figure 4.22). Nearly all upstream mutations were found surrounding CNP genes. Of all the affected
genes, 80 ± 5 % had no upstream mutation at any time point during the experiment. If an upstream
mutation occurred, it occurred at the same time as CNP integration 10 ± 1 % of the time, after CNP
integration 10 ± 5 %, and never before CNP integration. Both same and after events included events
where the upstream mutation was later lost. (A representative graphic presentation of CNPs and upstream
mutations can be found in the appendix, Figures A.15-A.18 (four parts).) When focusing only on variants
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Figure 4.19: De novo mutations for various replicates receiving (a) no DNA or (b) Bsu168 DNA, color coded
according to annotation. Upstream mutations are ≤ 3000 bp upstream of a gene’s protein coding region. Intragenic
mutations are not in a protein coding gene and >3000 bp upstream of a protein coding gene.
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Figure 4.20: De novo variants from cycle 9 (a), 15 (b), and 21 (c), BsuW23 replicates. Variants are color coded
according to annotation. Upstream mutations are ≤ 3000 bp upstream of a gene’s protein coding region. Intragenic
mutations are not in a protein coding gene and >3000 bp upstream of a protein coding gene.

which occurred upstream of a CNP during or after CNP integration, we found it was equally likely to
find an upstream mutation occur at the same time and CNP integration 52 ± 20 % as after 48 ± 20 %.
We could not draw any conclusive evidence of the upstream mutations being compensatory mutations.
Transcriptomics could be done using the frozen evolved strains to gain better insight into whether these
variants were compensatory.

We concluded that the presence of foreign DNA lead to an increase in the number of de novo variants.
The majority of de novo variants were missense indels or upstream mutation and slightly more than half
of those variants were found inside of CNPs. It was unclear if these mutations were introduced during
recombination or occurred afterwards. Additional studies looking at the transcriptomics of the evolved
strains could clarify that open question.
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Figure 4.21: De novo variants within CNPs
from cycle 21, color coded according to an-
notation. Upstream mutations are ≤ 3000 bp
upstream of a gene’s protein coding region.
Intragenic mutations are not in a protein cod-
ing gene and >3000 bp upstream of a protein
coding gene.
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Results – Population Dynamics Experiment

“I’ll be up in the gym, just working on my fitness. He’s my witness.”

—Bacteria GAT ATT GTG GCG

Competent B. subtilis are growth-arrested [88], and growth arrest is likely the main reason competence
development is tightly regulated. Roughly 15% of a lab strain population differentiates into the K-state
when entering the stationary phase, but natural isolates show even lower probabilities [80], which vary
between isolates. For example, plasmids have been shown to be responsible for competence-development
variation in natural isolates. The plasmids either interfered with competence development [188] or
encoded for the repressor of competence, rok [189]. At the same time, there is no net growth of the
population in the stationary phase. It is unclear if all cells are growth-arrested, or the rate of division
was comparable to the death rate. In the first case, growth arrest during competence should come at no
cost. In the second case, competence would result in a fitness cost. To address these points, population
dynamics and flow chamber experiments were constructed, which enabled us to monitor differentiation
into the K-state under stationary-state conditions.

5.1 The K-state Confers a Fitness Cost During the Stationary Phase

By immobilizing cells and feeding them a constant flow of conditioned medium (Section 3.1.1), the
generation times of K-state and non K-state cells were determined. Although net growth was observed in
this experimental setup, bacteria transiently differentiated into the K-state (Figure 5.1(a,b)), as observed
previously by Süel et al. Figure 5.1(a) shows an example where a K-state cell did not grow or divide
while its sibling (from the previous division event) continued to grow and divide. The average generation
time of cells that ran through a period of differentiation was considerably increased compared to cells
which never differentiated into the K-state (Table 5.1).

Next, the effect of differentiating into the K-state on the relative fitness, while in the stationary
phase, was determined. To this end, head-to-head competition experiments between strains with varying
differentiation probability were performed (Section 3.1.2). The fraction of wild type (BD630) K-state
cells in the early stationary phase was 15%. Differentiation into the K-state was fully inhibited in a comK
deletion strain (Bs075), whereas nearly 100% of the rok deletion strain (Bs056) differentiated into the
K-state. As a control, wild type was competed with the reporter strain wild type-gfp (Bs139), and the
fractions remained close to 0.5 during the time course of the experiment—i.e., the selection coefficient
was close to zero.

Table 5.1: Generation times of K-state and non K-state cells averaged over at least 100 cells

Generation time (min)

K-state cells 250 ± 40
Non K-state cells 116 ± 4
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Figure 5.1: (a) Typical time lapse of PcomK-gfp (BD2711) grown in conditioned stationary state medium (T0).
Bright-field and fluorescence images are merged showing differentiated bacteria in orange. (b) Typical genealogy
of cells after T0, grown in the flow chamber and supplied with conditioned medium. (blue) Non K-state cells.
(orange) Cells differentiating into the K-state. (c) Average generation times. Image adapted from [165] and under
CC-BY license.

When non-competent ∆comK competed with wt-gfp, the fraction of wild type cells continuously
decreased, and on the contrary, during competition between hyper-competent ∆rok and wt-gfp, the wild
type dominated. The competition dynamics can be seen in Figure 5.2 along with the replicator equation
fits used to determine the selection coefficients, Table 5.2.

Table 5.2: Selection coefficients in the stationary phase

Wild type-gfp competitor Selection coefficient (h−1)

Wild type 0.006 ± 0.004
∆comK 0.047 ± 0.005

∆rok −0.052 ± 0.007
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5.1 The K-state Confers a Fitness Cost During the Stationary Phase

T0, entry into stationary phase
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Figure 5.2: Competitors were grown separately to T0, diluted into fresh competence medium, and mixed in a 1:1
ratio, as outlined in Section 3.1.2. The fraction of wild type (BD630, black circle), hyper-competent ∆rok (Bs056,
green triangle), and non-competent ∆comK (Bs075, red diamond) competing against wild type-gfp (Bs139) cells
are plotted. Full lines: best fit to replicator equation. Data was obtained from at least three independent experiments
for each condition. Image adapted from [165] and under CC-BY license.

These experiments showed that even in the stationary phase where overall growth has plateaued,
competence development is associated with a strong cost. This cost is tuned gradually as a function of
the probability of differentiating into the K-state. The generation time of K-state cells is more than twice
as long as for non K-state cells.
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Discussion

“Every[thing] has to pass a series of rigorous tests: How many beats per minute? How
many drops? How dope were the drops?... to answer one simple question.”

—Is it a Banger?

The bistable K-state in B. subtilis has long been hypothesized to be an accelerator of adaptation. Studies
have shown that competence for transformation can facilitate HGT, but its effect on genome dynamics
and interactions between subspecies in mixed communities is unclear. In this study, we conducted an
evolution experiment for 21 cycles, periodically supplying extracellular DNA from B. subtilis W23, to
measure the beneficial effects of the K-state. We found that recombination occurred fairly randomly with
an exponential distribution of lengths. Recombination events were more likely to completely replace
genes, and essential genes were more often affected than expected. The largest fraction of de novo
variants were in upstream regions, and of those, the majority were within an integration event. This
hinted that they may be compensatory mutations.

In the second part of this thesis, K-state costs and dynamics were measured. It has been shown that
K-state cells are growth inhibited, which poses the question how competence for transformation has
been maintained, from a fitness perspective. Head-to-head competition experiments, between B. subtilis
strains with differing probabilities of entering the K-state, allowed us to quantify the cost of entering
and remaining in the K-state. Microfluidic experiments in the stationary phase allowed us to monitor the
dynamics of the stationary phase at the single cell level and determine stationary phase growth rates. We
found growth inhibition resulted in a strong cost of entering the K-state, even in the stationary phase.

6.1 Evolution Experiment

Our two-day cycle evolution experiment and the analysis methods adapted from [163] proved highly
successful at detecting orthologous recombination and de novo insertions. In a total of 42 h of competence,
we were able to see an average genome replacement of about 10%, with an exponential distribution of
recombination lengths. Each replicate followed an individual evolutionary path and all showed fairly
random gene replacement. There was a bias towards recombined segments with higher identity and,
likely, selection for several genes and gene classes. Genes were most likely to be replaced completely,
and subspecies donor DNA caused an increase in the number of de novo variants, possibly compensatory
mutations.

6.1.1 Homologous Recombination Occurs at a Constant Rate with an Exponential
Distribution

DNA uptake over the course of the 21 cycles occurred at a fixed rate with mean and median import lengths
remaining constant. Recombination lengths followed an exponential distribution with a well-defined
characteristic length, indicating that integration was random.

81



Chapter 6 Discussion

Our mean segment sizes were significantly smaller than the average 8.5 – 10 kbp measured by Dubnau
et al. while selecting for tryptophan prototrophs [39], [191], [192]. Our non-selective recombination
rate and segment sizes were different from those of similar evolution experiments. One-day experiments
with H. influenzae found much larger donor segment sizes, 6.9 kbp, but only up to 3.2% of the genome
had been replaced [112]. In another one-day experiment with H. pylori import lengths varied between
1.3 – 3.9 kbp [113]. Both of these experiments selected for recombination using antibiotics. In longer
experiments with H. pylori without selection, similar import lengths to our experimental values (1645 bp)
were found, with up to 8% genome replacement [163]. Our import lengths and genome replacement rates
broadly fell within all of those listed here and highlight how experimental design greatly affects the two
values.

In our integrated segments, we did not see a bimodal distribution of import lengths, as was seen in
natural transformation experiments with H. pylori [163], but rather an exponential distribution with a
decay constant of 3500 bp−1. This put our study seemingly at odds with previous studies by Morrison et
al., Weinrauch et al. (Figure 4.3). In their studies, transformation efficiency increased exponentially with
segment length, eventually saturating near 30 kbp. Denaturation tests, using gel electrophoresis, on the
genomic DNA supplied in our experiment showed that donor DNA had a tight length distribution around
20 kbp. The width of the distribution was estimated to not be more than several thousand base pairs.
This implied that other mechanisms were at play, resulting in integrated segments being much smaller
than the donor DNA distribution. We speculate that B. subtilis has a preference to import DNA up until
a certain length (possibly reflective of our constant mean recombination length), recombination was
selective (such that larger imports were broken up [Section 6.1.4]), or extracellular DNA was degraded
before uptake. The last two hypotheses were the least likely. Maier et al. found DNA of up to 20.5 kbp
was taken up at a nearly constant velocity and without considerable pausing in B. subtilis [195]; Zafra et
al. showed that extracellular DNA levels increase during exponential growth, negating the possibility of
DNase in the extracellular space [196].

6.1.2 A Constant Recombination Rate Implies Minor Fitness Changes and Small
Epistatic Costs

Up to and including cycle 21, orthologous replacement occurred at a constant linear rate of 0.47% of the
genome per cycle (Figure 4.2). This constant rate implied that the epistatic barrier to gene replacement
was low. This could be due to two primary causes. First, as only a small fraction of the genome had been
replaced, sufficient non-replaced regions of the genome were free to facilitate non-epistatic transfer. We
would expect this free replacement to level off at future cycles, as a significant portion of the genome
was replaced. Second, the fitness cost due to epistasis is nearly constant in orthologous replacement
between two subspecies. The cross-species fitness model of Pinheiro and Lässig [197] detects epistasis
as fitness valleys when transforming, gene by gene, from one species to another (Figure 6.1). In their
model, an evolved species’ fitness, F, is measured as function of fraction of the genome which has been
transformed q, the proportionality constants for epistatic costs and total number of genes J and g, and a
directional selection component d.

F = −2gJq(1 − q) + d (6.1)
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Figure 6.1: Cartoon scheme of cross-species fitness
model [197]. The larger the epistasis between two
species, the lower the fitness drops when replacing na-
tive genes with donor genes, one by one. Solid lines –
no directional selection. Dashed lines – constant direc-
tional selection.

With no directional selection, d = 0, small changes in F are directly proportional to J (solid yellow line,
Figure 6.1). We hypothesize that a constant genome replacement rate implies minor changes in fitness,
corresponding to a small epistatic cost J.

At cycle 21, there was an emergence of small segments (<100bp) with lower than average identities
(Table 4.2). These short, low identity segments could mark the onset of the non-linear regime of DNA
import. If the majority of high-identity, low-epistasis, synonymous-mutation-rich segments of the genome
have been replaced after ∼10% genome exchange, it is plausible that small replacement segments would
be favored over larger segments, because they have a lesser impact on gene function and smaller epistatic
effect.

6.1.3 Auxiliary Regions are Imported Randomly into the Genome

Auxiliary regions, are sections of a genome that are specific and particular to that species. Auxiliary
regions from BsuW23 were found in 6 of 7 replicates at cycle 21. On average, 5 ± 6 imports were found in
each replicate with mean lengths of 2200 ± 2900 bp. (The large standard deviation is a result of replicate
W6 having more than three times the average number of auxiliary gene imports, 19 imports.) These
mean lengths are in agreement with previous S. pneumoniae studies were it was found that unselected
recombinations without homologous flanking regions (de novo integrations) had a mean length of 2.3 kbp
[111].

If we, similarly, assume that recombination of novel DNA segments occurs randomly on the genome
and with a constant probability rate, our auxiliary-gene recombination rate-constant would be
4.5 ± 0.8 × 10−4 bp−1. This is in excellent agreement with Croucher et al. ’s 4.40 × 10−4 bp−1 from
S. pneumoniae and relative agreement with Mell et al. ’s 1.37 × 10−4 bp−1 in H. influenzae. Mell et al.
did not exclude integration events that were selected for in their measurement of the gene recombination
rate-constant, leading to a larger number of large segment sizes, and therefore a smaller recombination
rate-constant [111], [112].

The same basal recombination rate constant (for de novo insertions) in two different species might hint
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that there is a universal recombination rate for foreign DNA. RecA is responsible for matching imported
DNA to homologous regions, and a study on RecA pairing by Forget et al. found that RecA formed
unstable heterologous pairs 22% of the time [41], [198]. This recombination rate-constant would then be
reflective of the error rate of RecA, or in other words, the rate at which unstable heterologous pairing leads
to successful gene transformation. Additionally, this rate constant could imply that the recombination
probability of foreign DNA decreases exponentially with divergence (as shown by [93], [199]) but flattens
out at large sequence divergences. Past a certain sequence divergence, ∼20%, additional differences
between the donor DNA and recipient site could result in marginal changes in binding efficiency, site
detection through RecA, or mismatch repair detection.

6.1.4 Recombination is Biased towards Higher Identities

Donor segments that integrated into Bsu168 had a higher average sequence identity than the interspecies
average of 92.4%. This was significant at the p < 0.001 level, with the exception of segments <100 bp
in length at cycle 21. Our results contrast previous findings in H. influenzae and S. pneumoniae where
integrated segments showed no correlation with local identity [111], [112], [164]. Lack of correlation
between local identity and recombination is most probably due to the lower divergence between the donor
and recipient strains used in those experiments, on the order of 2 - 4% with one experiment reaching 6%
divergence. Lower sequence divergence makes it more difficult to detect a correlation between donor
sequence identity and recombination rate.

Although Mell et al. did not find that higher identity segments were favored during recombination,
they did find that integrated segments had a higher than average identity at their bookends. Our work went
further to show that the distribution of identities for the first and last 100 bp can be separated, at the 1%
significance level using the two-sample Kolmogorov-Smirnov test (KS2) test (Figure 4.16). Furthermore,
the distribution of the 100 bp with the lower identity matches the distribution of simulated random import
events. It implies that recombination favored a start position with higher sequence identity, regardless of
the identity of the end position. This finding differs from Majewski et al. ’s calculation that B. subtilis
requires a minimum flanking end on both sides of an import [200]–[202]. Finally, we did not detect a
bias for end with the higher sequence identity to sit on the 5’ to 3’ or 3’ to 5’ end on the segment, when
read off the forward strand. This is consistent with no bias in the direction of recombination with respect
to the origin of replication [93].

Using the KS2 test we found that in 100 bp steps, the distribution of local identities for the first 500 bp
of an integrated segment differed significantly (at the 5% level) from the distribution for the last 100 bp.
The significance level hovered around 5% until about 2000 bp, where the distribution of the 100 bp
groups and the last 100 bp could no longer be distinguished from another (Figure 4.17). This result
implies that RecA takes advantage of a 500 bp region, at least, of higher local identity to facilitate stable
pairing to genomic DNA between divergent subspecies. This higher identity region would affect the
stability of pairing, and therefore the transformation rate, up until ∼2000 bp, where it no longer plays a
significant role. It would be interesting to see if this length range is due to the number of RecA proteins
recruited to the ssDNA, in B. subtilis possibly due to DprA concentrations, or RecA’s inter-segmental
transfer pathway (three-dimensional homology search) [198].
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Figure 6.2: Distribution of maximum perfect identity lengths and normalized cumulative distribution. (left, blue)
Histogram of the distance from the last detected master list SNP (m`SNP) to the next possible m`SNP, the larger of
the two for each CNP. (right, orange) The cumulative sum of the distances, normalized. About 25% of the segments
had perfect identity lengths less than the RecA-dependent requirement, 41 bp [201].

We did not see evidence that a minimum length of perfect identity is required for RecA-dependent
recombination. A study by Majewski et al. found that B. subtilis required ∼41 identical base pairs for
RecA to recognize a homologous recombination size, and a previous study in E. coli estimated a similar
value of 40 – 50 bp [201], [203]. We calculated the distance from the last detected SNP (bookend of a
CNP) to the next possible (but not present) m`SNP (master list SNP); this distance was the maximum
length of identical sequence that could be considered part of a recombination event (Figure 6.2). It is
clearly visible that recombination occurred with fewer than 41 identical base pairs at the start. (The peak
at 200 bp is an artifact of the 200 bp sliding window to detect recombination events.) In this study ∼25%
of all recombinations had fewer than 41 identical base pairs. Our number is possibly underestimated, as
Figure 6.2 shows the larger of the two identical sequence distances.

Our CNP algorithm did not include structural variants (indels or rearrangements), and as such, we did
not find evidence of structural variants being more likely to terminate a recombination event. We did find
evidence that recombinations significantly favored replacing one gene partially over two, as shown in
Section 4.3, and discuss it in Section 6.1.7.

6.1.5 Recombination Hot Spots Putatively Correspond to Fitness Advantages

By cycle 21, 55% of the genome had never been replaced in any of the seven replicates. Our value is in
marked contrast to Mell et al. where 2/3 of the genome had never been replaced in one transformation
cycle over 88 replicates. The difference is most likely due to greater sequence divergence between
Bsu168 and BsuW23, in comparison to the two H. influenzae strains used in their study. At the gene
level (simplifying the homologously recombined segments to whether a gene was affected—i.e., replaced
either fully or partially, or not at all), a binomial distribution was fit to the number of times a gene

85



Chapter 6 Discussion

was affected at cycle 9, 15, and 21 (Figure 4.13). Here, we assumed that the likelihood of replacement
was equal for all genes. This assumption was reasonable, as the identity of individual genes did not
vary greatly. The average rate of genome replacement, over all replicates at a given cycle, was used
as the probability p, to calculate the binomial distribution. There were slight deviations between the
experimental data and the distribution, at 0 – 2 replicates per affected gene. Nevertheless, a chi-squared
test revealed that the null hypothesis, our experimental data came from the given binomial distribution,
could not be rejected. Our null model could be corrected for, using the knowledge that genes with a
higher identity have a higher probability of recombining. By weighting the original null model by an
exponential decay function related to the distribution of genes identities, we would have a clear sign of
selection if the weighted distribution matched our experimental data. It is also plausible that more of the
genome has to be replaced to see epistatic effects; by cycle 21 only 10% of the genome, on average, had
been replaced. Even if selection had been present in the experiment, without epistasis, we would have
expected deviations from the binomial distribution. We concluded that little selection and no epistasis, at
least at this point in the evolution experiment, were present.

Previous studies have found epistasis through the relative fitness of the evolved or mutated populations.
By measuring the fitness and mutation rate of evolved strains over time, they found that fitness increases
leveled off while the mutation rate remained constant; this type of negative epistasis is known as
diminishing-returns epistasis [204]–[206]. Diminishing-returns epistasis was seen in multiple evolution
experiments [116], [207], [208] and was shown by Schoustra et al. to be a pattern found not only in
unicellular microbes and single genes but also multicellular organisms [209].

We performed fitness tests on our evolved populations but saw no overarching trend towards higher
or lower fitness (G. Schneider and J. Power, unpublished data). This reflects our experimental design
which does not constantly select for fitter individuals, due to the random bottleneck (created by platting
UV-radiated cultures and selecting one colony at random the subsequent day). The lack of selection
for fitter individuals explains why we do not see a dropping rate of fitness increase over the course of
the experiment, and therefore, cannot confirm the presence of diminishing-returns epistasis. The lack
of epistasis by cycle 21 is most likely reflective of the limited number of replicates and recombined
segments.

Although no overarching fitness effects were detected, auxiliary regions were clear cold spots for gene
transfer, including phage regions in Bsu168. Figure 4.14 strongly suggests recombination hot spots were
present, in particular genes from the leu and eps operons. Our recipient strains are leucine auxotrophs,
giving evolved strains which can produce their own leucine a clear advantage. eps genes are responsible
for exopolysaccharide production and aid in biofilm formation [210]. It is plausible that biofilm formation
could be advantageous, as half of the experiment occurs in the stationary phase.

6.1.6 Essential Genes are Preferentially Replaced in Evolved Strains

Essential genes [187] were found to be affected more frequently than non-essential genes, at the p < 0.01
level by cycle 21, using a one-sided t-test. Essential genes were affected with an average frequency
of 8.9%, 3% more frequently than would be expected if all genes had an equal probability of being
affected (Figure A.6). Further investigation found that the essential genes have a higher average identity
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than non-essential genes, 95.1% to 93.7%, implying they were replaced by homologous recombination
because of their high identity, and not their function. The high level of similarly in essential genes is
expected for two subspecies. Subsequent experiments using more divergent species would give more
insight into whether the essential genes were being affected solely due to their high similarity.

In general, the essential genes in B. subtilis are related to DNA replication, repair, and coiling (dnaANX,
gyrAB, holB), ribosomal proteins (rpl, rps), chaperonins (groESEL), and aminotransferases (gatABC).
Even with a high level of genomic similarity between the two subspecies, it is improbable that essential
genes were replaced in Bsu168 because of better functionality. An extensive study by Bershtein et
al. replaced the folA gene in E. coli with orthologs from 35 other bacteria. Despite most ortholgous
being more catalytically active and at least as stable, growth rates immediately dropped 10 – 90% after
recombination. Furthermore, after ∼600 serial propagations of the orthologous strains, expression levels
of folA increased only after mutations accumulated in the lon gene, responsible for maintaining protein
homeostasis [211] and degrading misfolded or unstable proteins [212], [213]. It was concluded that
protein homeostasis imposed an immediate barrier to the functional integration of foreign genes [161].
Similar experiments in Salmonella typhimurium drew the same conclusion [95], [214].

Spatial proximity of the Bsu168 essential genes also contributes to them being more frequently affected.
The median integration length is ∼2 genes (1900 bp). If recombination starts on an essential gene, it will
most likely affect at least its neighboring gene because of the median two-gene segment length. Due to
the proximity of essential genes on the genome, the neighboring gene is likely an essential gene.

Other than essential/non-essential genes, no bias towards replacement of a particular type of gene
was seen. Overrepresentation of purines or pyrimidines was not found in the recombined segments
(Figure 4.9).

6.1.7 Genes are More Likely to be Completely Replaced

Recombination events resulting in partial genes are most likely unfavorable due to the possibility of
creating frame shifts or start/stop codon mutations. We found genes were completely replaced twice as
often as partially, and operons nearly twice as often. This favoritism to completely replace genes can be
explained by the mean recombination length, 1.9 kbp, which is about 2 genes. The average operon size is
3.2 kbp, which is also comparable to the mean recombination length. We asked the question if genes
were being replaced due to selection.

To determine if complete gene replacement was due to selection, we created a null model where
lengths from the experimental length distribution were taken and placed at random m`SNP positions in
the genome (Section 4.3.2). The simulations showed it was more likely that a recombination event would
only partially replace one gene (one side of the recombination event ending within a gene) as opposed
to two (using a KS2 test). We did not see the number of CNPs partially replacing zero genes—i.e., not
partially replacing genes—differ between the in silico and experimental CNPs.

Comparing the mean and standard deviation of the experimental data to in silico recombination events,
fewer CNPs partially replaced two genes and more replaced only one gene. Because of this, and our
findings that one of the two CNP ends had a significantly lower SNP density (Section 4.3.2), we speculate
that the initial binding of foreign DNA to a host’s genome favors binding genome sections with low SNP
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density and in an intergenic region. Orthologous recombination ends depending on the length of the
recombining template, and therefore, ends randomly in an intra or intergenic region.

Our findings are in relative agreement with Dilthey et al., who looked at an association between HGT
and distance between the horizontally transferred genes across γ-proteobacteria. They found that spatial
clustering was consistent with horizontally co-transferred genes, and probable if the transferred DNA
was long enough [215].

While the distribution of completely replaced genes was the same for the experimental data and
simulations, experimentally we saw that genes and operons were completely replaced twice as much as
partially. There was also moderate selection towards fewer partially replaced genes. Our findings are in
agreement with studies that demonstrate horizontally transferred genes are often spatially clustered. We
note that the bias towards fully replaced genes could simply be a fitness effect. After transformation, the
population grows overnight in liquid media. Cells with negative fitness effects due to partially replaced
genes or operons will die; recombinations with fitness benefits will fixate.

6.1.8 De Novo Variants in Intergenic Regions of CNPs Occur Simultaneously with
CNP Integration

Ten-fold more de novo variants were found in replicates evolved with BsuW23 DNA than with Bsu168
or no DNA (Figures 4.19 and 4.20). No and self DNA replicates had distributions with about three times
as many synonymous and nonsynoymous variants compared to BsuW23 replicates (25% to 70%), and
about 1/5 as many missense indels and intergenic mutations (15% to 70%). Of the intergenic mutations
in BsuW23 replicates, 57% of them were inserts and 30% were deletions. This contrasts Tenaillon et al.
’s findings looking at 50,000 generations of Lenski’s E. coli experiment. There they found the number
of nonsynonymous mutations was ∼3.4 times greater than synonymous mutations and similarly that
intergenic point mutations outnumbered synonymous mutations [160].

Focusing on the de novo variants that occurred within CNPs, 83% of all missense and in frame indels,
and 75% of all upstream mutations occurred within CNPs. We speculate that the upstream mutations
might be compensatory mutations or occur during recombination.

Assuming the mutations were compensatory and occurred after recombination, we calculated the
minimum mutation rate needed to see the experimental number of de novo mutations. Each cycle consisted
of ∼10 generations, split evenly between the first and second day, and samples were sequenced every
second cycle. Our wild type strain had a mutation rate of µ = 0.5 × 10−9 bp−1 gen−1, and Bsu168 had a
genome size of 4.2 × 106 bp. This gives a maximum of 4.2 × 10−2 mutations between recombination and
clonal selection for sequencing (assuming recombination happened on the first day and sequencing after
the second) – two orders of magnitude lower than needed to explain the upstream mutations. A mutator
strain, such as ∆mutSL, only yields a 40-fold increase in the mutation rate [216] and would not account
for the needed difference to claim the upstream mutations occurred post-recombination. Furthermore, no
mutator strains were detected in any of our replicates. We concluded that the upstream mutations were
not compensatory mutations fixing immediately after recombination.

It was plausible, that the upstream mutations were introduced through recombination. A study by
Shee et al. found that RecD was responsible for a local increase in mutations following RecBCD repair
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around a double strand break in E. coli [217]. Nevertheless, our recombination did not accompany double
strand breaks and furthermore, RecD has not been shown to participate in bacterial transformation [41].
Research focusing on the polymerases that are called for during D-loop formation (a recombination
intermediate), found that pol I and pol IV are both error-prone at D-loops. In particular, pol IV’s
mutagenic activity may be a direct result of RecA interacting with pol IV or the instability of the RecA
mediated D-loop [218].

The addition of BsuW23 donor DNA caused an increase in the number of de novo variants. The
majority of those de novo variants were missense indels or intergenic indels. We considered the possibility
that those mutations were compensatory mutations or occurred during recombination. We ruled out
compensatory mutations, as the minimum mutation rate would have been too high to explain all of
the missense indels and intergenic mutations; none of our replicates were mutator strains. It remained
possible that these variants were caused by errors in the recombination process. Additional studies would
needed to look at how the number of intergenic and missense indels varies with sequence divergence.

6.1.9 A Suitable Method for the Detection of Gene Transfer Across B. subtilis
Subspecies

The two-day cycle evolution experiment and the analysis methods adapted from [163] proved highly
successful at detecting orthologous recombination.

The ability to become competent was not lost or negatively affected during the course of the experiment.
Because competence has a large regulatory network [219] and K-state cells are growth arrested, it is
an easy target for mutations or recombination. Such variants would render the competence network
nonfunctional. To avoid that outcome, we placed competence under the control of an inducible promoter
and disabled the native promoter by inserting a resistance cassette. For all seven replicates, DNA uptake
continued to increase up through cycle 21. Further, DNA uptake was linear over the course of those 21
cycles, implying competence genes were functional and not negatively affected over the course of the
experiment.

There were large variances in the fractions of replaced genomes, even within the same replicate
between sequenced time points. Various replicates had recombination in genes that might have affected
DNA uptake rates including the competence network comACENP, DNA mismatch repair mutMSL, and
DNA recombination and repair recAFGNOQUX (Figures A.8-A.12). We speculate that variations in
DNA uptake probability or intracellular targeting could be present.

We used UV radiation once a cycle to induce genomic damage that would result in higher DNA
transformation rates, particularly of non-self DNA. Both no DNA and Bsu168 DNA samples showed
comparable numbers of de novo variants at cycles 9 and 15. If UV radiation had caused mutations,
we would have expected the mutations to accumulate in the no DNA replicates and be repaired every
cycle in the Bsu168 replicates. Previous studies on mutation rates and UV radiation in B. subtilis found
radiation dosages far below those used in this experiment were sufficient to produce mutation rates of
up to 10−3 mutations/bp [220]. It is unlikely that UV radiation introduced a considerable number of
mutations over this experiment.

Finally, the analysis algorithm was robust to the experimental results. Control replicates receiving
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either no DNA or Bsu168 DNA showed no orthologous recombination over the course of the experiment.
The overall number of SNPs found in individual no DNA and Bsu168 DNA replicates (on the order of
tens of SNPs) remained well below sensitivity saturation of 12,000 variants. The 200 bp cluster window
and 30% threshold for missing SNPs did not result in a large fraction of CNP-potential SNPs being
removed from the CNP algorithm. Missing SNPs amounted to only 0.7 ± 0.2 % of all SNPs linked to a
CNP, for seven replicates at cycle 21.

To summarize, the method of inducing competence is useful for maintaining competence in an
environment that putatively selects against it. It also had the fortunate byproduct of reducing the overall
man-hours needed to conduct the experiment. We speculate that UV radiation was not effective in
producing large numbers of mutations nor increasing DNA transformation rates. The analysis algorithm
was robust in detecting recombination events and against false positives.

6.2 Population Dynamics Experiment

Studies have shown that K-state cells are growth inhibited, brining into question how competence for
transformation has been maintained from a fitness perspective. We quantized those fitness costs in head-to-
head competition assays. With single-cell microscopy we found that there was a clear cost of competence,
even in the stationary phase. We purpose that the K-state is a fitness trade-off in varying environments
and can convey a fitness benefit in the presence of antibiotics by functioning as a persister-like state.

6.2.1 Stochastic Differentiation as a Fitness Trade-Off in Fluctuating Environments

Differentiation into the K-state is associated with growth-arrest [88], and under benign conditions this
growth arrest confers a fitness cost, even in the stationary phase. By characterizing the competition
dynamics between strains with different probabilities of switching into the K-state, we quantized fitness
trade-offs for differentiation into the K-state. Under benign conditions, the relative fitness of the
competitors decreased with increasing differentiation probability. In competitions between ∆rok and
wild type, the ∆rok frequency was reduced to 2% after 24 h. This comparison shows that phenotypic
heterogeneity strongly reduces the decline of relative fitness caused by differentiation into the K-state.

Considering the pair-wise competitions under benign conditions, the generation of phenotypic hetero-
geneity by means of the K-state was a useful strategy for exploiting the persister phenotype of the K-state
when under stress, while minimizing the cost under benign conditions. This strategy of dealing with
fluctuating levels of antibiotics is different for S. pneumoniae, which induces competence in response to
sub-MIC levels of antibiotics [40], [221] whereas B. subtilis does not [165].
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“And as the harvest moon rose over Cyberland, Elise whispered, ‘The only way out is up!’
They reared back, springing into a gallop, and leap out of orbit.”

—The Only Thing to do is Jump Over the Moon

This study focused on two aspects of competence in evolution: the direct cost and benefits of the
K-state and competence machinery, and the putative role of competence in gene acquisition between
subspecies.

We successfully measured the physiological cost of generating DNA uptake machinery in a benign
environment. The next step would be to use this experimental design to measure the cost of the K-state
under selection. There are several point mutations in B. subtilis that are known to confer antibiotic
resistance (nalidixic acid, novobiocin, and rifampicin) [222]–[224]; by growing wild type bacteria on
selective plates, we could clone resistant colonies and harvest their DNA. That DNA could then be used
in the stationary phase experiment, along with the corresponding antibiotics, giving K-state cells an
advantage when they integrate the resistance gene into their genome. Varying the antibiotic and DNA
concentration would yield a deeper understanding as to when the K-state begins to confer an evolutionary
advantage.

In addition to K-state costs, we were able to measure the division time of cells in the stationary state.
Advances in microfluidic chambers allow for much more extravagant and detailed mining of single cell
dynamics. Chambers such as the "mother machines" [142] or those where the height is no larger than a
cell diameter could be used to monitor growth in the stationary phase. The open question of how dynamic
the stationary phase actually is could be addressed.

The larger portion of this study involved supplying a growing population of B. subtilis 168 foreign
DNA from B. subtilis W23, and analyzing their genomes over numerous cycles. Our experiments proved
extremely successful at not only detecting homologous recombination events, but also seeing a large
and broad number of events within a short experimental time frame. At the time when this study was
published, epistasis had yet to be detected, namely due to a limited number of recombination events. The
most obvious first step forward is to continue the evolution experiment to look for signs of epistasis and
see when recombination becomes non-random.

Fitness measurements with the existing evolved samples and later experimental time points could be
carried out to highlight what recombinations lead to higher fitness. Genes thought to have conveyed a
benefit would be cloned directly into the wild type B. subtilis 168 strain to confirm if that particular gene
lead to the fitness increase. It would also be interesting to look at the transcriptomics of the evolved
samples, to see if recombination or putative compensatory mutations lead to different protein expression
rates, as seen in previous experiments [161].

A related experiment could be performed to see if mutations upstream of recombination events are
compensatory or a side effect of the recombination machinery. Clones conveying antibiotic resistance
through a single point mutation—e.g., nalidixic acid, novobiocin, and rifampicin—could be selected
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for in various Bacillius species. One of those resistant genes would then be transformed into B. subtilis
168, and clonal sequencing would reveal how frequently mutations arose as a result of the recombination
machinery. One could potentially analyze if the machinery is more error prone at particular bases or
motifs.

The experimental design could also be taken further to more divergent species or different external
stresses. Using DNA from more divergent species causes the recombination rate to drop, log-linear
with divergence, making recombination events more rare and, potentially, beneficial. Using alternate
external stress factors,—e.g., temperature—could allow for more efficient recombination from species
with larger genomic divergence. One could measure if competence actually speed up the evolutionary
process, allowing the recipient strain to grow in the new environment or if the accumulation of point
mutations, replication errors, and possibly mutator strains is sufficient to adapt to the same niche.

Our results implied that genes were preferentially replaced completely, and possibly operons, too. An
operon with multiple genes could be chosen and clones generated where each had a different percentage
of the operon replaced (with DNA from a related species). The fitness of those clones could then be
measured to see if operon replacement had strong epistasis: complete operons needed to be replaced,
weak epistasis: several elements of the operon needed to be replaced together, or no epistasis: individual
genes could be replaced at will with no negative outcome. A similar study could be carried out at the
gene level, but extreme care would need to be taken concerning potential reading frame shifts due to
inserts and deletions.

Finally, genotype tracking methods have recently been developed [225], [226] that allow one to track an
individual bacterium genomically, within a population. A random sequence, different for each bacterium,
would be integrated into the genome and functions as a bar code. Compared to the time-resolved
clonal whole genome sequencing performed in this study, a genotype tracking method allows for higher
beneficial-mutation sensitivity.
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Appendix

Table A.1: CNP segment statistics for replicates W1, 3, 4 and 5
at final cycle

Replicate Mean lengtha (bp) Median lengtha (bp)

W1 3800 ± 425 2000 ± 450
W3 4800 ± 475 3600 ± 425
W4 3000 ± 225 1700 ± 225
W5 4250 ± 625 3100 ± 500

a Averaged over eight (W1), four (W3), or ten (W4,
W5) time points
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Figure A.1: Orthologous recombination for all BsuW23 replicates from cycle 9, as a function of chromosome
position (replicate W7 has been removed). The start and end position of an orthologous recombination event (CNP)
is denoted using filled boxes. The start of a horizontal gene transfer event is marked with an open triangle. All
events are color coded to describe the average import length. Sample “Bsu168” shows Bsu168 auxiliary regions
(black).
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Figure A.2: Orthologous recombination for all BsuW23 replicates from cycle 15, as a function of chromosome
position (replicate W3 has been removed). The start and end position of an orthologous recombination event (CNP)
is denoted using filled boxes. The start of a horizontal gene transfer event is marked with an open triangle. All
events are color coded to describe the average import length. Sample “Bsu168” shows Bsu168 auxiliary regions
(black).
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Figure A.3: Orthologous recombination for replicate W1 from various cycles as a function of chromosome position.
The start and end position of an orthologous recombination event (CNP) is denoted using filled boxes. The start of
a horizontal gene transfer event is marked with an open triangle. All events are color coded to describe the average
import length. Sample “Bsu168” shows Bsu168 auxiliary regions (black).
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Figure A.4: Orthologous recombination for replicate W3 from various cycles as a function of chromosome position.
The start and end position of an orthologous recombination event (CNP) is denoted using filled boxes. The start of
a horizontal gene transfer event is marked with an open triangle. All events are color coded to describe the average
import length. Sample “Bsu168” shows Bsu168 auxiliary regions (black).
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Figure A.5: Orthologous recombination for replicate W4 from various cycles as a function of chromosome position.
The start and end position of an orthologous recombination event (CNP) is denoted using filled boxes. The start of
a horizontal gene transfer event is marked with an open triangle. All events are color coded to describe the average
import length. Sample “Bsu168” shows Bsu168 auxiliary regions (black).
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Figure A.6: Fraction of essential genes replaced at cycle 9, 15, and 21, normalized to the total number of genes
within a CNP. Circles (red) mark the mean value for seven replicates, and the error bars (blue) the standard deviation.
The dashed line (black) is the expected value. ∗p < 0.01
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each gene type occurs in the genome.
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Figure A.13: Probability of replacement of a specific gene by cycle 15. (blue, left axis) Genes affected by a CNPs
as a function of gene number and normalized to the number of replicates (seven). (orange, right axis) Gene identity.
(gray dots) Bsu168 auxiliary genes. (These genes are displayed as having an identity of one.)
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Figure A.14: De novo variants for replicates W1, 3, 4, and 5, color coded according to annotation. Upstream
mutations are ≤ 3000 bp upstream of a gene’s protein coding region. Intragenic mutations are not in a protein
coding gene and >3000 bp upstream of a protein coding gene.
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