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Deutsche Zusammenfassung

Sei ϕ : M → N eine isometrische Immersion einer vollständigen Mannigfaltigkeit
M in eine vollständige Mannigfaltigkeit N . Diese Arbeit beschäftigt sich mit der
Frage, wann es eine Zerlegung des umgebenden Raumes N durch parallele Unter-
mannigfaltigkeiten und Fokalmannigfaltigkeiten von ϕ gibt. Um den Begriff der pa-
rallelen Untermannigfaltigkeit zu definieren, müssen wir zusätzlich fordern, dass M
ein flaches Normalenbündel hat. Jeder Normalenvektor v ∈ νM läßt sich zu einem
parallelen Normalenfeld v̄ auf der universellen Überlagerung M̃ von M fortsetzen.
Wir fordern, dass die Abbildung exp⊥ ◦ v̄ konstanten Rang für jedes v ∈ νM hat; das
Bild der Abbildung ist die parallele Mannigfaltigkeit bzw. die Fokalmannigfaltigkeit
Mv. Dies sind die Minimalvoraussetzungen für unsere Fragestellung. Zusätzlich
verlangen wir, dass exp⊥(νxM) eine totalgeodätische Untermannigfaltigkeit ist, ein
sogenannter Schnitt durch x, und dass jeder reguläre Punkt der normalen Exponen-
tialabbildung in genau einem Schnitt liegt. Wir sagen, dass eine isometrische Im-
mersion mit den genannten Eigenschaften parallele Fokalstruktur hat. Nach [HLO]
heißt F = {Mv | v ∈ νM} eine globale Partition, falls

⋃
F = N und falls Mv∩Mw 6=

∅ =⇒Mv = Mw. Wir zeigen:

Satz Eine eigentliche Immersion mit paralleler Fokalstruktur und endlicher nor-
maler Holonomie induziert eine globale Partition F . Diese Partition ist eine sin-
guläre Riemannsche Blätterung im Sinn von [Mo].

Umgekehrt hat ein reguläres Blatt einer singulären Riemannschen Blätterung mit
Schnitten einer vollständigen Riemannschen Mannigfaltigkeit parallele Fokalstruktur
nach [A]. Wir geben hierfür einen anderen Beweis.

Satz Jede parallele Untermannigfaltigkeit einer eigentlichen Immersion mit pa-
ralleler Fokalstruktur und endlicher normaler Holonomie ist eine eingebettete und
abgeschlossene Untermannigfaltigkeit mit paralleler Fokalstruktur und endlicher nor-
maler Holonomie.

Boualem definiert in [Bou] für eine singuläre Riemannsche Blätterung F mit Schnit-
ten einer vollständigen Riemannschen Mannigfaltigkeit die Teilmenge

N̂ := {TpΣ | p ∈ N,Σ ist ein Schnitt von F durch p}

des Grassmannbündels Gk(TN). Sei π̂ : N̂ → N die Einschränkung der kanonischen
Projektion Gk(TN) → N auf N̂ . Er definiert eine differenzierbare Struktur auf N̂
und zeigt, dass F̂ = {π̂−1(M) | M ∈ F}, die Aufblasung von F , eine Riemannsche
Blätterung von N̂ für eine geeignete Metrik ist. Wie wir sehen werden, gelten
seine Resultate auch für eine natürliche differenzierbare Struktur und eine natürliche
Metrik. Mit Hilfe der Aufblasung und der Theorie der Riemannschen Blätterungen
definieren wir für eine singuläre Riemannsche Blätterung mit Schnitten ein Pendant
zur Weylgruppe einer polaren Wirkung. Abschließend zeigen wir:

Satz Sei F eine singuläre Riemannsche Blätterung mit Schnitten in einem einfach
zusammenhängenden symmetrischen Raum, deren reguläre Blätter eingebettet und
abgeschlossen sind. Dann hat jedes reguläre Blatt triviale normale Holonomie.
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1 Introduction

One of the main topics of submanifold geometry is to study how the local invari-
ants of a submanifold, like the first fundamental form, the shape operator and the
normal connection, affect the global geometry. The functional dependence of the
eigenvalues and their multiplicities of the shape operator to the focal distances and
the focal multiplicities in space forms is a simple and well-known example for this.
An isoparametric submanifold M is defined only by two conditions on its local in-
variants:

(1) νM is flat, and

(2) the eigenvalues of the shape operator Aξ are constant for a locally defined
parallel normal field ξ.

A rich theory has been developed for this class of submanifolds in Rn (see [PaTe]).
Their structure is very similar to that of the regular orbits of an s-representation,
which is the linear isotropy action of a symmetric space by definition; indeed,
every homogeneous isoparametric submanifold of Rn is a regular orbit of an s-
representation. An example for the special structure of an isoparametric submanifold
M is, that it induces an orbit-like foliation of Rn by parallel submanifolds. The set
of focal points in the affine plane P = x+νxM in Rn is a union of hyperplanes. The
reflections of P in these hyperplanes generate a Coxeter group, in analogy to the
Weyl group associated to a symmetric space. (For a detailed survey on isoparametric
submanifolds and their relatives, see [Th2].)

Isoparametric submanifolds of Sn are also isoparametric submanifolds of Rn+1; a
theory for isoparametric submanifolds in the hyperbolic space Hn was developed
in [Wu]. It is natural to ask whether one can obtain similar results as above for
isoparametric submanifolds in a larger class of ambient spaces than space forms. It
turns out that a definition of a submanifold like above that is only based on local
invariants will not lead to similar results. Indeed, in a general ambient space there is
no correspondence between the principal curvature and the focal distance. We can
see this by perturbing the metric of the ambient space outside a tube of M which
will affect the focal distances, but not the local invariants. Instead of demanding
constant principal curvature, Terng and Thorbergsson considered in [TeTh] the focal
structure. They found out that it carries the relevant information for a generaliza-
tion of isoparametric submanifolds in a larger class of ambient spaces. They call a
submanifold M of a simply connected, compact symmetric space N equifocal, if

(1) M has a globally flat normal bundle,

(2) the focal distances and multiplicities are constant along any parallel normal
field, and in addition,

(3) exp(νpM) is contained in a flat for every p ∈M .
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Later Ewert introduced the notion of a submanifold with parallel focal structure in
[Ew], which is defined to satisfy (1), (2) and in addition the condition (3’) that
exp(νxM) is a closed submanifold for every x ∈ M , called section, and meets all
parallel submanifolds orthogonally. In our work we accept in the definition of a
submanifold with parallel focal structure that νM is flat, possibly with non-trivial
normal holonomy, but instead of (3’), we demand (3”), that the sections are totally
geodesic submanifolds; we also change the first condition slightly (see section 3).
Terng and Thorbergsson showed many properties similar to that for isoparametric
submanifolds in Rn for an equifocal submanifold M in a simply connected, compact
symmetric space N , among them the existence of an orbit-like foliation of N by par-
allel and focal submanifolds and the existence of a Weyl group acting on exp(νpM),
which turns out to be a flat submanifold. Their proofs rely heavily on the structure
of symmetric spaces. Let N = G/K for a symmetric pair (G,K) of compact type.
Terng and Thorbergsson considered a submersion π : V → G, where V is a cer-
tain Hilbert space. They derived geometric aspects on M from the analysis of the
isoparametric submanifold π−1(M) in V . Later this technique was axiomatized in
[HLO]. Of course, one cannot expect the existence of such a submersion for general
N . Therefore it is desirable to implement appropriate conditions into the definition
of a submanifold that will imply similar results as for equifocal submanifolds. We
will focus on the following question: When is the set of all parallel and focal sub-
manifolds of a given submanifold M in N a partition of N into submanifolds? More
precisely, for v ∈ νM we define

Mv =

{
exp

(
(
1

‖
0

c)v
) ∣∣∣∣ c is a curve in M

}
,

where ‖ c denotes normal parallel translation along c. In [HLO] F = {Mv | v ∈ νM}
is called a global foliation if

⋃
F = N and Mv ∩Mw 6= ∅ implies Mv = Mw. We

reformulate our question with these notions: Under which conditions on M is F a
global foliation of N? Conditions (1) and (2) of a submanifold with parallel focal
structure are necessary in order to guarantee that Mv is an immersed submanifold
for every v ∈ νM . But these conditions are not sufficient. Let us consider two
examples. First we take N = S2 and M a parallel of the equator. Obviously
M fulfills condition (1) and (2), and the parallel submanifolds of M are the other
parallels of the equator, the focal submanifolds are the poles of S2. Clearly M
induces a partition by parallel and focal submanifolds. Next we consider the flat
torus N = T 2 and a small distance circle M centered at a point p in N . Again
M satisfies (1) and (2), but this time M does not induce a global foliation of N .
For a unit vector ξ ∈ νM we define a positive real σ(ξ) as the maximal value t for
which the geodesic γξ|[0, t] is the shortest connection between M and γξ(t). While
σ is constant along a unit normal field of M in the first example, it is not in the
second. This motivates us to introduce the cut locus of a submanifold, which is a
generalization of the cut locus of a point (see 2.1). The constancy of σ along unit
parallel normal fields is a necessary condition for M to induce a global foliation (see
Proposition 3.12). Note that already Bolton has realized the relevance of the cut
locus for transnormal partitions (see 2.2) with codimension 1 in [Bol]. In a way,
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he assumes the contrary point of view by considering the cut locus of one of the
at most two singular leaves, while we consider the cut locus of a regular leaf in
arbitrary codimension. We have seen above a necessary condition for M to induce a
global foliation. Assuming (3”), the existence of sections, we found a necessary and
sufficient condition:

Theorem A Let ϕ : M → N be a proper immersion of a submanifold with parallel
focal structure and finite normal holonomy. Then F is a global foliation of the
ambient space N , if and only if there is only one section through each regular point
of the normal exponential map of M . In this case F is a singular Riemannian
foliation.

Ewert states in [Ew] that the set of parallel submanifolds of a submanifold with
parallel structure (according to his definition) is a foliation, which follows directly
from condition (3’). Theorem A handles in addition the focal set. Moreover, it gives
a link to the theory of singular Riemannian foliations ([Mo],[Bou],[A]), on which
the theory of submanifolds with parallel focal structure now can capitalize. But the
converse is true as well by a result of Marcos Alexandrino ([A]): A regular leaf of a
singular Riemannian foliation admitting sections (for the definition see section 2.2)
has parallel focal structure (we give a different proof in section 4.1). This means
that these two theories are in general equivalent. From now on we will include
the necessary and sufficient condition given in Theorem A into the definition of a
submanifold with parallel focal structure.

Theorem B Is M a closed and embedded submanifold with parallel focal structure
and finite normal holonomy in a complete Riemannian manifold, so is every parallel
submanifold.

Ewert states this result for the case of trivial normal holonomy as Proposition 2.9
in [Ew]. His proof is not correct; we will explain his mistake later.

For a singular Riemannian foliation F admitting sections (for the definition see 2.2)
of a Riemannian manifold N , Boualem defines the subset

N̂ := {TpΣ | p ∈ N,Σ is a section of F through p}

of the Grassmann bundle Gk(TN) in [Bou]. Let π̂ : N̂ → N be the restriction of the
canonical projection Gk(TN) → N to N̂ . He constructs a differentiable structure
on N̂ and shows that F̂ = {π̂−1(M) | M ∈ F} is a regular Riemannian foliation of
N̂ , the blow-up of F , for some metric ĝ. We reprove his results with our theory and
give the following extension:

Theorem C The set N̂ carries the unique differentiable structure with respect to
which the inclusion into Gk(TN) is an immersion. Let ĝ be the pull-back of a natural
metric on Gk(TN) to N̂ . Then (F̂ , F̂⊥) is a bifoliation of N̂ with respect to ĝ, where
F is a Riemannian foliation and the orthogonal foliation F̂⊥ is totally-geodesic.

Using a result of Blumenthal and Hebda we can then describe the singular Rieman-
nian foliation F from Theorem A by a map M̃ × Σ̃ → N , where M̃ respectively Σ̃
is the universal cover of a regular leaf M of F respectively of a section Σ. With this
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map we define the transversal holonomy group Γ acting by isometries on Σ. This is
the analogue of the Weyl group for polar actions.

Theorem D A singular Riemannian foliation admitting sections and whose leaves
are properly embedded in a simply connected symmetric space has no exceptional
leaves, i.e., every regular leaf has a trivial normal holonomy.

Compare this to Lemma 1A.3 of [PoTh].

In section 2.1 we define and study the cut locus of a submanifold. In section 2.2 we
introduce the necessary notions and tools of the theory of Riemannian foliations.

In section 3 we define the blow-up F̂ outgoing from a submanifold with parallel
focal structure and prove Theorem C (3.7). We can then easily conclude Theorem
A (3.10) and Theorem B (3.11).

In section 4.1 give an alternative proof of the converse of Theorem A (3.13). In
section 4.2 we introduce the transversal holonomy group Γ, and we study the relation
of the cut locus of M with the fundamental domains of Γ, and with the exceptional
leaves. Then we will prove Theorem D (4.19).

I would like to thank my teacher Professor Thorbergsson for his long-term guidance
and support of my work.
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2 Preliminaries

2.1 Cut Locus of a Proper Immersion

Let N be a complete and connected Riemannian manifold and M a manifold. By
ϕ : M → N we will always denote an isometric immersion. Let νM = (ϕ∗(TM))⊥

and let ι : νM → TN be the canonical immersion. We write η := exp⊥ = exp ◦ ι :
νM → N and ηr : Br(νM) → N for the restriction of η to the normal ball bundle
of M of radius r and we write ϕr∗ : Br(TM) for the restriction of the derivative of ϕ
to the tangential ball bundle of M of radius r.

Lemma 2.1 The following conditions are equivalent:

(1) ϕ is proper.

(2) ηr is proper for all r ≥ 0.

(3) ϕr∗ is proper for all r ≥ 0.

Proof The proof is clear. ut
Definition A point x ∈ M is called tangential, if for every y ∈ M with the same
image ϕ∗(TyM) = ϕ∗(TxM), otherwise x is an intersection point.

Let ϕ be proper. Then the preimage of a point is compact and discrete and therefore
finite. Let x ∈ M a tangential point. We call x a contact point if there is a
y ∈ ϕ−1(ϕx) and a positive number ε such that ϕ(Bε′(x)) 6= ϕ(Bε′(y)) for any ε′

with 0 < ε′ < ε.

By transversality the set of tangential points is dense in M . The next proposition
shows that this set is also open in M , if M is embedded. This is not true for general
immersions. Let us consider the immersion ϕ : R → R2/∼, x 7→ [(x, sin x)], where
(x, y) ∼ (x+ 1, y). Since the periodicity of the sine-function is irrational, the set of
intersection points of ϕ is dense in R.

Proposition 2.2 A proper immersion ϕ : M → N factorizes over an embedding if
and only if it has neither intersection nor contact points.

Proof We assume that ϕ has neither intersection nor contact points. Let p be
an arbitrary point in ϕ(M) and ϕ−1(p) = {x1, . . . , xl}. We choose ε > 0 such
that ϕ|Bε(xi) are diffeomorphisms onto their images for all i and that the Bε(xi)
are pairwise disjoint and that ϕ(Bε′(xi)) is the same for all i. We will now show
that the function k(x) := |ϕ−1(ϕx)| is locally constant. This will finish the proof.
We see that k(y) ≥ k(x) for all y ∈ Bε(x). Assume there exists a sequence (yn)
converging to x with k(yn) > k(x) for all n ∈ N. For every n we find a point zn with
ϕ(zn) = ϕ(yn) and (zn) /∈ Bε(xi) for all i. By properness (zn) converges to a point
z 6= xi, i = 1, . . . , l. So k(z) > k(x) in spite of ϕ(z) = ϕ(x). The converse is clear.ut

Now we will introduce a generalization of the cut locus of a point that is defined for
instance in [Kl]. Let ϕ : M → N be a proper immersion. Let γv denote the geodesic
with initial vector v ∈ TN .
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Definition We define σ : ν1M → [0,∞] by

σ(v) = sup{t ∈ R | d(γι(v)(t), ϕ(M)) = t}.

We call σ(v) the cut distance of M in direction v. The normal cut locus CνM of ϕ
is defined by CνM := {σ(v)v | σ(v) < ∞, v ∈ ν1M} and the cut locus Cϕ or C(M,N)

by exp⊥ CνM .

Definition A vector v ∈ νM is called a normal or normal vector and the geodesic
γι(v) a normal geodesic. If ‖v‖ ≤ σ(v/‖v‖) for v ∈ νM , we call v minimal and
γv|[0, 1], and any reparametrization of constant speed, a minimal geodesic (segment).
This terminology is justified by the fact that, in the set η−1(p), the minimal vectors
have the least length. We call a normal vector v a focal vector and η(v) a focal point,
if v is singular with respect to η. We call a minimal vector v a cut vector and η(v) a
cut point, if there is a minimal w ∈ νM with ι(w) 6= ι(v) having the same endpoint
as v. In this case ‖v‖ = σ(v/‖v‖) = σ(w/‖w‖) = ‖w‖. If in addition there is no
focal geodesic among the set of minimal geodesics to p, we call p of pure cutting
type.

It is easy to see that the limit of a converging sequence of minimal vectors is minimal.
In the sequel we will use the known fact that tv for t > 1 is not minimal if v is a
focal vector or a cut vector. Also note that for every p ∈ N there is a shortest curve
from ϕ(M) to p since ϕ(M) is closed and N complete; this is a normal geodesic.
This implies that η is surjective.

In contrast to the cut locus of a point the cut distance function is in general not
continuous. The next lemma describes this situation.

Lemma 2.3 The cut distance function σ is upper semi-continuous and it is discon-
tinuous at a vector v ∈ ν1M if and only if σ(v) > 0 and lim infw→v σ(w) = 0.

Proof Note that a function is continuous at a point if and only if it is upper and
lower semi-continuous at this point. We will prove the upper semi-continuity of σ,
i.e. lim supw→v σ(w) ≤ σ(v) for every v ∈ ν1M . Assume the existence of v ∈ ν1M
such that σ∗ := lim supw→v σ(w) > σ(v). Choose a ∈ R with σ(v) < a < σ∗. We
find a sequence (vn) in ν1M converging to v such that avn is minimal for large n.
Then av is also a minimal geodesic segment, which contradicts σ(v) < a.

Assume σ is not continuous at a vector v ∈ ν1M . This implies that the lower semi-
continuity at v fails. Thus σ(v) > 0 and σ∗ := lim infZ→v σ(Z) < σ(v). We will show
σ∗ = 0. Let (vn) be a sequence in ν1M converging to v with limn→∞ σ(vn) = σ∗. We
choose a ∈ R such that σ∗ < a < σ(v). Let (wn) be a sequence in ν1M such that
γι(wn)|[0, tn] are minimal geodesic segments to η(avn) for some tn. By the properness
of ησ(v) we can assume that tnwn converges to some t0w, where w ∈ ν1M . It follows
γι(w)|[0, t0] is also a minimal geodesic segment to η(av), thus ι(w) = ι(v) and a = t0.
Since av is not focal η is injective on a neighborhood of av. Thus v 6= w. Choose
ε with 0 < ε < σ∗ and a neighborhood U of εv not containing εw, such that η|U
is a diffeomorphism onto its image. Let snṽn ∈ U , where sn > 0 and ṽn ∈ ν1M ,
be the unique vector in U such that γι(ṽn)|[0, sn] is a minimal geodesic segment to
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η(εwn). It follows that ṽn converges to v. We have limn→∞ σ(ṽn) ≤ ε < σ∗, which
is a contradiction. ut
In Corollary 2.6 we will give a geometric description of those points at which only
discontinuity can occur.

Proposition 2.4 The cut locus only consists of focal and cut points.

Proof We consider an v ∈ ν1M with σ(v) < ∞ such that σ(v)v is not a focal
normal. We have to show that η(σ(v)v) is a cut point. We construct sequences
(ṽn) in ν1M and tn > 0 such that tnṽn is minimal with η(tnṽn) = η((σ(v) + 1/n)v).
As ηr is proper for all r ≥ 0 we can assume that tnṽn converges to, say t0ṽ, where
ṽ ∈ ν1M . Then σ(v)v and t0ṽ are minimal and have the same endpoint. This implies
t0 = σ(v). Since η is injective on a neighborhood of σ(v)v we have ι(ṽ) 6= ι(v) and
η(σ(v)ṽ) = η(σ(v)v). ut
The next proposition characterizes intersection and contact points in terms of the
cut locus.

Proposition 2.5 A point x ∈M is an intersection point if and only if σ(v) = 0 for
some v ∈ ν1

xM . An intersection point x is also characterized by the property that
ϕ(x) is in the cut locus; in this case ϕ(x) is of pure cutting type. This implies that
M has no self-intersections if and only if the cut locus has no common points with
ϕ(M). A point x ∈ M is a contact point if and only if x is tangential and there is
some v ∈ ν1

xM with σ(v) > 0 and lim infw→v σ(w) = 0.

Proof Assume 0 /∈ σ(ν1
xM). Take an arbitrary v ∈ ν1

xM and choose t with
0 < t < σ(v). Then the geodesic γι(v)|[0, t] is the unique shortest connection between
η(tv) and ϕ(M). By the variation principle ι(v) is orthogonal to ϕ∗(TyM) for all
y ∈ ϕ−1(ϕx). Since v is arbitrary, x is a tangential point. Now we consider a
tangential point x1 ∈ M with image p and ϕ−1(p) = {x1, . . . , xl}. We take ε > 0
and a neighborhood Ui = Bε(xi) of xi for all i. If we assume σ(v) = 0 for some
v ∈ ν1

x1
M we find for each n ∈ N a point yn ∈M for any i, with d(ϕ(yn), γι(v)(1/n)) =

d(ϕ(M), γι(v)(1/n)) < 1/n. It follows d(ϕ(yn), p) < 2/n and the sequence (ϕ(yn))
converges to p. By eventually choosing a smaller ε we can assume that yn /∈ Ui for
all i using that x is tangential, v ∈ (ϕ∗(Txi

M))⊥ and the linear approximation of
ϕ. Properness of ϕ implies the convergence of a subsequence of (yn) to some point
y 6= xi, contradiction. The image of an intersection point is clearly of pure cutting
type. If ϕ(x) is in the cut locus for a point x ∈M then 0 ∈ σ(ν1

xM).

We are now going to show the last statement. Let x ∈M be a tangential point, such
that there is some v ∈ ν1

xM with σ(v) > 0 and a sequence (wn) in ν1M converging
to v with limn→∞ σ(wn) = 0. Choose ε > 0 such that ϕ|Bε(x) is a diffeomorphism.
For large n we find yn ∈ M, yn /∈ Bε(x) with d(ϕ(yn), ϕ(πwn) ≤ 2σ(wn). So ϕ(yn)
converges to ϕ(x). By properness of ϕ there is a subsequence of (yn) converging
to some point y 6= x with ϕ(y) = ϕ(x). We deduce that the images of Bε′(x) and
Bε′(y) do not coincide for any ε′ < ε.
The converse follows from similar arguments. ut

Corollary 2.6 Discontinuity of the cut distance function can only occur over in-
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tersection or contact points. Let ϕ be a proper embedding. Then its cut distance
function is continuous and its cut locus is closed.

Proof The first statement follows form 2.5. The second statement follows from
the first together with Proposition 2.2. The proof of the last statement is analogous
to that of Corollary 2.10, chapter 13, [dC]. ut

Proposition 2.7 Let M be properly embedded in N . Then M is compact and its
cut distance function is bounded from above if and only if N is compact.

Proof Can be proven by similar arguments as employed in the proof of Corollary
2.10, chapter 13, [dC]. ut
Later we will frequently us the following notion. If r = inf{σ(v) | v ∈ ν1M} > 0
we call r injectivity radius of ϕ and Ts = tube(M, s) = expBs(νM) an injectivity
tube of M with radius s for any s with 0 < s ≤ r. By definition for each p ∈ T
there is exactly one minimal normal v with endpoint p up to foot point. The map ϕ
has neither intersection nor contact points and thus factorizes over an embedding.
Therefore η : Bs(νM) → Ts is a covering, and it is a diffeomorphism, if ϕ is injective,
i.e. an embedding.

Remark As in the case of the cut locus of a point, we can give a similar connection
between the homology and the cut locus of a submanifold.
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2.2 Foliations

Let F be a partition of a manifold Nn+k into connected, injectively immersed sub-
manifolds with maximal dimension n. For a point p ∈ N we denote the element
of F containing p by Mp. We define TF =

⋃
p∈N TpMp. Let Ξ(F) be the module

of differentiable vector fields X tangential to F , i.e., with Xp ∈ TpMp for every
p ∈ N . If the values of Ξ(F) exhaust TpMp for every p ∈ N , we say that Ξ(F) acts
transitively (on TF).

Definition A partition F as above is called a singular foliation of N of dimension
n/codimension k, if Ξ(F) acts transitively on TF .

If all the elements of a singular foliation F have the same dimension n, then F is a
foliation as we will see. First we give some other definitions. We call the elements of
F leaves. A leaf is regular if it has dimension n otherwise singular. A point belonging
to a regular leaf is regular, otherwise singular. The set N ′ of regular points in N is
called the regular stratum. Let p be a point in N and Mp be a leaf of dimension q.
By [St] there is a neighborhood U of p, ball neighborhoods Bq and Bn+k−q of the
origin in Rq respectively Rn+k−q and a chart ψ : U → Bq×Bn+k−q with ψ(p) = (0, 0)
such that ψ(Mp ∩ U) = Bq × A for a subset A of Bn+k−q. The intersection of Mp

with the slice ψ−1({0} × Bn+k−q) is transversal. Therefore it is a submanifold and
as a consequence also A. We call ψ a foliated chart and U a simple neighborhood of
p. For q ∈ U we call the connected component Mq ∩ U containing q the plaque in
U through q ∈ U . The property of a foliated chart shows that the function dimMp

in dependence of p is lower semi-continuous, hence the regular stratum N ′ is an
open subset of N . We can see that that a singular foliation F restricted to the
regular stratum N ′ is a foliation: Let X, Y ∈ Ξ(F), let p be a regular point and
i : Mp → N the inclusion map of the leaf through p. We denote by X ′ and Y ′ the
i-related vector fields on Mp of X and Y . Then [X, Y ](i(p)) = i∗[X

′, Y ′]p ∈ TpMp, so
([X, Y ])|N ′ ∈ Ξ(F|N ′). This shows that Ξ(F) and Ξ(F|N ′) are Liealgebras acting
transitively, thus the (differentiable) distribution T (F|N ′) is involutive and F|N ′ is
a foliation by the Theorem of Frobenius. In particular, a singular foliation having
only leaves of the same dimension is a foliation.

The morphisms between singular foliations are defined below.

Definition Let Fi be a singular foliation/partition of Ni for i = 1, 2. A map
f : (N1,F1) → (N2,F2) is a foliated map or f-map, if f maps each element of F1

onto an element of F2.

We now consider a foliation F of dimension n. The foliated chart ψ of a singular
foliation specializes to a foliated chart ψ : U → Bn×Bk in foliation theory: For ψ =
(x1, . . . , xn, y1, . . . , yk) = (x, y) the connected component of ψ(Mq ∩ U) containing
ψ(q) (the plaque) is equal to Bn × {y(q)} for all q ∈ U .

A vector field X of N is foliated if [X, Y ] ∈ Ξ(F) for all Y ∈ Ξ(F). In other words,
the vector space of foliated fields is the normalizer of Ξ(F) in the Lie algebra Ξ(N)
of differentiable vector fields of N .

Lemma 2.8 For X ∈ Ξ(N) the following conditions are equivalent:
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(1) X is foliated.

(2) The local one parameter group (φt)−ε<t<ε associated to X on a neighborhood
of an arbitrary point of N leaves the distribution D invariant.

(3) In every simple open set U with local coordinates (x1, . . . , xn, y1, . . . , yk) as
above, the last k components of X only depend on the variables y1, . . . , yk.

Proof See [Mo], Proposition 2.2. ut
Let U be simple. Then the quotient manifold Ū = U/(F|U) carries a unique differ-
entiable structure for which the projection π : U → Ū becomes a submersion. The
fibers of π are the plaques of U and the foliated fields are exactly the projectable
fields on U . We see that the vector space of foliated vector fields on U modulo
Ξ(F|U) is isomorphic to Ξ(Ū) as vector spaces.

Now let (N, g) be a not necessarily complete Riemannian manifold and F be a
foliation of N . Let D⊥ be the distribution orthogonal to D. We call D⊥ horizontal
and D vertical. We set g⊥ to be the restriction of g to the horizontal distribution.
Then g is called bundle-like, if LXg⊥ = 0 for any vertical vector X. This is equivalent
to the condition that g(X, Y ) is constant along the plaques of any simple set U for
all horizontal foliated fields X and Y on U . If g is bundle-like we call F Riemannian
foliation. A foliation F of (N, g) is obviously Riemannian if and only if we can cover
N with simple sets Ui such that we can endow Ūi = U/FUi

with a metric for which
the canonical projection πi : Ui → Ūi becomes a Riemannian submersion.

Definition A partition F of a Riemannian manifold (N, g) into connected, in-
jectively immersed submanifolds is called transnormal if for every p ∈ N every
geodesic in N starting orthogonally to TpMp intersects every element of F it meets
orthogonally.

Proposition 2.9 A foliation F is a Riemannian foliation if and only if it is trans-
normal.

Proof See [Rei]. ut
This proposition justifies the following definition introduced in [Mo].

Definition A transnormal singular foliation F of a Riemannian manifold N is
called a singular Riemannian foliation.

F is proper if every leaf of F is properly embedded.

Definition We say F admits sections, there is a complete, totally-geodesic sub-
manifold Σp (called section) through every regular point p ∈ N that meets every
leaf and always orthogonally.

Example The set of orbits of an isometric Lie group action on a Riemannian
manifold N is a singular Riemannian foliation. The set of orbits of a polar action is
a singular Riemannian foliation admitting sections.

Proposition 2.10 Let (F ,F⊥) be a bifoliation of a Riemannian manifold (N, g).
Then F is a Riemannian foliation if and only if the leaves of F⊥ are totally geodesic.
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Proof This is the well-known duality between Riemannian and totally geodesic
foliations: Following [BH3] we have for all vector fields V tangential to F (vertical)
and H1, H2 tangential to F⊥ (horizontal):

(LV g)(H1, H2) = V g(H1, H2)− g([V,H1], H2)− g(H1, [V,H2])

= g(∇VH1 − [V,H1], H2) + g(H1,∇VH2 − [V,H2])

= g(∇H1V,H2) + g(H1,∇H2V )

= −2g(V,∇H1H2)

= −2g(V, α(H1, H2)),

where α is the second fundamental form of leaves of F⊥ and ∇ is the Levi-Civita
connection of N . This means that g is bundle-like if and only if F⊥ is a totally
geodesic foliation. ut
Later we will need the following lemma.

Lemma 2.11 Let (F ,F⊥) be a bifoliation of (N, g), where F is Riemannian. Let U
be simple. Then the Lie algebra of horizontal F-foliated fields on U acts transitively
on the normal space νpP for every p ∈ U , where P is the F-plaque of F through p,
and is isomorphic to the Lie algebra of vector fields on the quotient manifold Ū by
projection π∗. The restriction of such a foliated field to an F-plaque P is a parallel
normal field of P . It is then obvious that a leaf of F must have a flat normal bundle.

Proof The first part is clear. Now let P be an F -plaque of U . We want to show
that the restriction of a horizontal foliated field to P is a parallel normal field of P .
Let V be a vertical and H1, H2 be horizontal foliated vector fields. Then

g(∇VH1, H2) = g(∇H1V + [V,H1], H2)

= g(∇H1V,H2)

= −g(V,∇H1H2)

= 0

since [V,H1] is vertical and ∇H1H2 is horizontal, because F⊥ is a totally geodesic
foliation. Now take a point p in U and let P ∈ F|U be the plaque through p. The
above calculation showed that a horizontal foliated vector field in U is a parallel
normal field of P . Since the vector space of values of horizontal foliated vector fields
in p spans νpP , each parallel normal field along P is the restriction of a foliated
horizontal vector field to P . Now it is clear that the normal bundle of a leaf of F is
flat. ut
Remark Along a curve in a leaf, normal parallel translation is the same as sliding
along the leaves. For the definition of the latter, see [Mo].

Let (F ,F⊥) be a Riemannian/totally-geodesic foliation of a Riemannian manifold
(N, g) such that the leaves of F⊥ are complete with the induced metric. Note that
if N is complete so are the leaves of F and F⊥ with respect to the induced metric.
A curve in an element of F respectively F⊥ is called vertical respectively horizontal.
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Lemma 2.12 (Blumenthal-Hebda) Let τ : [0, 1] → N be a vertical and σ :
[0, 1] → N be a horizontal curve with τ(0) = σ(0). Then there is a unique map
H = H(τ,σ) : [0, 1]× [0, 1] → N with

(1) H( · , 0) = τ ,

(2) H(0, · ) = σ,

(3) H( · , t) is vertical,

(4) H(s, · ) is horizontal.

Proof See [BH1], Corollary 2.7 which is based on Lemma 2.6. Note that for the
proof of the latter one can drop completeness of N and assume completeness of the
horizontal leaves instead. ut
We write Tστ = H(τ,σ)( · , 1) and Tτσ = H(τ,σ)(1, · ). For a vertical curve τ in a leaf
M ∈ F respectively a horizontal curve σ in a leaf Σ ∈ F⊥ we write [τ ] respectively
[σ] for the equivalence class of curves under homotopy in M respectively Σ fixing
endpoints. Then [Tστ ] and [Tτσ] only depend on [τ ] and [σ]. A continuous map
H : [0, 1]×[0, 1] → N , such that H( · , t) is vertical for any t and H(s, · ) is horizontal
for any s, is called rectangle with initial vertical/horizontal curve H( · , 0)/H(0, · ),
terminal vertical/horizontal curve H( · , 1)/H(1, · ) and diagonal t 7→ H(t, t). The
following lemma is easy to prove.

Lemma 2.13 For any curve µ : [0, 1] → N we find a unique rectangle H : [0, 1] ×
[0, 1] → N with diagonal µ.

Let µ and H be as above. We write µv respectively µh for the initial vertical
respectively horizontal curve of H and µv respectively µh for the terminal vertical
respectively horizontal curve of H.

We recall that the universal cover M̃ of a manifold M is equal to the set of equiva-
lence classes of curves starting from a fixed point x0, where the equivalence is given

by homotopy fixing endpoints; in some cases we write more precisely ˜(M,x0). The
covering map M̃ → M is given by [σ] 7→ σ(1). Let x0 be arbitrary and let M
respectively Σ be the element of F respectively F⊥ through x0. Then

M̃ = {[τ ] | τ is vertical and τ(0) = x0}
Σ̃ = {[σ] | σ is horizontal and σ(0) = x0}
Ñ = {[µ] | µ is a curve in N and µ(0) = x0}

Here [ ] means in each case an equivalence class under a different homotopy.

Theorem 2.14 (Blumenthal-Hebda) The map

Φ : M̃ × Σ̃ ∼= Ñ

([τ ], [σ]) 7→ [σTστ ]
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is a diffeomorphism with Φ−1([µ]) = ([µv], [µh]). Both maps are foliated with respect
to the product foliation on M̃×Σ̃ and the lift of the bifoliation of Ñ via the universal
covering map Ñ → N .

Below we will work out the sketch of the proof given in [BH2] thereby introducing
a little technique that will give us a new insight into the fundamental group of N .
First we state the following result:

Theorem 2.15 (Blumenthal-Hebda) The map

Ψ : M̃ × Σ̃ → N

([τ ], [σ]) 7→ Tτσ(1)

is the universal covering map, and it is foliated with respect to the product foliation
of M̃ × Σ̃ and the bifoliation (F ,F⊥). Moreover, given [τ ] ∈ M̃ the map

Tτ : (̃Σ, x0) → (̃Σx, x); [σ] 7→ [Tτσ]

is an isometry, where y = τ(1). In particular, the horizontal leaves have the same
Riemannian universal cover. Similarly the vertical leaves have the same universal
cover.

Proof The first part follows from Theorem 2.14. For the second, see [BH2],
Proposition 3.1. This proof makes only use of Lemma 2.12. Thus completeness of
N can be replaced by completeness of the horizontal leaves. ut
Now we will prove 2.14. The map Φ : M̃× Σ̃ → Ñ ; ([σ], [τ ]) 7→ [σTστ ] is clearly well-
defined, because Tστ only depends on [σ], and [Tστ ] only on [σ] and [τ ]. To prove
that Φ−1 defined by [µ] 7→ ([µv], [µh]) is well-defined, let [µ1] = [µ2] ∈ Ñ . Then x0 =
µ1(0) = µ2(0) and µ1(0) = µ2(0) which we denote by x. Let G : [0, 1]× [0, 1] → N be
a homotopy in N fixing endpoints with G( · , 0) = µ1 and G( · , 1) = µ2. We define
C : [0, 1]3 → N such that C( · , · , t) is the unique rectangle with diagonal G( · , t) for
each t. We have C(0, 0, · ) = cx0 and C(1, 1, · ) = cx, where c is a constant curve.
Then C(1, 0, · ) is a curve in M ∩ Σx. Since C(1, 0, · ) is continuous and M ∩ Σx is
an at most countable set of points (M is second countable), it follows that C(1, 0, · )
is the constant map. Similarly C(0, 1, · ) is the constant map. Then

(1) C( · , 0, · ) is a homotopy in M between (µ1)v and (µ2)v fixing endpoints,

(2) C( · , 1, · ) is a homotopy in Mx between (µ1)
v and (µ2)

v fixing endpoints,

(3) C(0, · , · ) is a homotopy in Σ between (µ1)h and (µ2)h fixing endpoints,

(4) C(1, · , · ) is a homotopy in Σx between (µ1)
h and (µ2)

h fixing endpoints.

Therefore [(µ1)v] = [(µ2)v] in M̃ and [(µ1)h] = [(µ2)h] in Σ̃, so Φ−1 is also well-
defined.

We have

Φ−1 ◦ Φ([σ], [τ ]) = Φ−1([σTστ ]) = ([σcσ(1)], [cx0τ ]) = ([σ], [τ ])
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Φ ◦ Φ−1([µ]) = Φ([µv], [µh]) = [µvµ
h] = [µ].

Thus Φ is a diffeomorphism. If p : Ñ → N ; [µ] 7→ µ(1) denotes the universal covering
map, we have π1(N, x0) = p−1(x0).

Note that the action of π1(N, x0) on Ñ ∼= M̃ ×Σ preserves the bifoliation. Consider
[µ] ∈ π1(N, x0). There is a vertical curve σ and a horizontal curve τ with σ(0) =
τ(1) = x0 and τ(0) = σ(1) such that [µ] = [στ ]; we can choose σ = µv and
τ = µh. By the previous discussion σ and τ are unique up to homotopy in the
corresponding leaf fixing endpoints, i.e., up to [σ] and [τ ]. The map I : π1(N, x0) →
M∩Σ; [µ] 7→ µv(1) is well-defined and surjective. The action of π1(M,x0)×π1(Σ, x0)
on π1(N, x0) by ([σ], [τ ]) · [µ] := [σµτ−1] is free: Assume [µ] ∈ π1(N ;x0) is fixed by
([σ], [τ ]) ∈ π1(M,x0)× π1(Σ, x0) then [µ] = [σµτ−1] = [σµvµ

hτ−1] and therefore, by
applying Φ−1, [µv] = [σµv] and [µh] = [τµh], so [σ] and [τ ] are trivial. So the action
is free. We observe that I maps all points of an orbit to a single value. Then we
have

π1(N, x0)//(π1(M,x0)× π1(Σ, x0)) ∼= M ∩ Σ.

This implies:

Proposition 2.16 Let N be bifoliated as above. Then

|π1(N, x0)| = |π1(M,x0)| · |π1(Σ, x0)| · |M ∩ Σ|.

In the case of infinity, the interpretation of this equation is that the left value is
infinity if and only if at least one of the factors on the right side is infinity.
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3 Submanifolds with Parallel Focal Structure

Let M and N be complete and connected Riemannian manifolds and ϕ : M → N
an isometric immersion. The aim of this section is to find minimal conditions for M
to foliate the ambient space N with parallel submanifolds.

We take a look at the geometry of the tangent bundle and then at Jacobi fields.
Let v ∈ TxN . We define the vertical space V N

v = dπ(v)−1(0) ⊂ TvTN , where
π : TN → N is the bundle projection. Since TxN is a submanifold of TN , TvTxN is
a subspace of TvTN and coincides with V N

v . The horizontal space HN
v in TvTN is

defined to be the space of derivatives ẇ(0) of parallel vector fields w with respect to
the Levi-Civita connection ∇ along curves in N through x with w(0) = v. One can
see TvTN = HN

v ⊕ V N
v . The linear map dπ(v)|HN

v : HN
v → TxN is an isomorphism.

Let ιv : TvTxN → TxN be the canonical identification. We define the connection
map K : TTN → TN by K(ξ) = ιv ◦ τ(ξ), where ξ ∈ TvTN and τ is the projection
of TvTN onto V N

v = TvTxN along HN
v . The linear map K|V N

v : V N
v → TxN is an

isomorphism. Then π∗ × K : TvTN = HM
v ⊕ V N

v → TxN × TxN is isomorphic.
Summing up, the Levi-Civita connection ∇ gives us

TvTN = HM
v ⊕ V N

v
∼= TxN × TxN.

Pulling back the metric on N by π∗ ×K we obtain the so-called Sasaki metric on
TN . For an element ξ ∈ TvTN we write ξ = (ξh, ξv). If dX

dt

∣∣
t=0

= ξ for a vector field
X along a curve c with c(0) = x and X(0) = v then ξh = ċ(0) and ξv = (∇dtX)(0).

We consider a submanifold M of N . For v ∈ νxM we have the decomposition

TvνM = HM
v ⊕ V M

v
∼= TxM ⊕ νxM

with respect to the Levi-Civita connection ∇⊥ on the normal bundle. Obviously
V M ⊂ V N but in general we do not have HM ⊂ HN . Indeed, an element ξ =
(ξh, ξv) ∈ TvνM is equal to (ξh, ξv − Avξh) as an element of TvTN , where A is the
shape operator of M .

We have the isomorphism between TvTN and the vector space of Jacobi fields of N
along γv mapping an element ξ ∈ TvTN to the Jacobi field J given by (J(t), J ′(t)) =
φt∗(ξh, ξv), where φt is the time t map of the geodesic flow φ : R× TN → TN . The
inverse map is given by J 7→ (J(0), J ′(0)). The restriction of the first map to TvνM
is an isomorphism onto the vector space JM(v) of M -Jacobi fields along γv

TvνM → JM(v); ξ 7→ Jξ with (Jξ(t), J
′
ξ(t)) = φt∗(ξh, ξv − Avξh).

The inverse map is given by J 7→ (J(0), J ′(0)⊥). The decomposition TvνM =
HM
v ⊕ V M

v carries over to the decomposition of JM(v) into a horizontal and a ver-
tical subspace. We can describe a vertical/horizontal M -Jacobi field J with initial
condition ξ ∈ TvνM by a variational vector field. Define V (s, t) = η(tX(s)), where
X is a vector field along the constant curve c ≡ x with dX

dt
|t=0 = ξv if J is vertical,

and a parallel normal field along c in M with ċ(0) = ξh if J is horizontal. Then
J(t) = ∂sV (0, t).
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Definition Let ϕ : M → N be an immersion. For x ∈ M we call an isometric
immersion ix : Σx → N with (ix)∗(TxΣx) = ι(νxM) (or shorter Σx) a section, if it is
totally geodesic in N and if Σx is complete. Since we want ix to be unambiguous,
we also demand ix(y) = ix(z) whenever (ix)∗(TyΣx) = (ix)∗(TzΣx). The immersion
ϕ : M → N is said to admit sections if Σx is a section for every x ∈M and if there is
exactly one section of ϕ through every regular point of the normal exponential map,
i.e. if p ∈ ix(Σx)∩ iy(Σy) is regular then ix ∼= iy ◦ α for some isometry α : Σx → Σy.

In order to avoid a cumbersome notation, we use Σx and the term section in two
different ways. When it comes to point sets, for instance, if we write p ∈ Σx, we
actually mean by Σx the image of the immersion ix. If we talk about tangent vectors
or curves of Σx, i.e., if the context is a topological or differentiable one, we are of
course referring to the underlying manifold structure of the section. This distinction
is particularly important here, since we allow Σx to have self-intersections.

Remark If ϕ admits sections then η : νM → N is surjective. Also note that there
is a section through every point in N , if ϕ is proper.

Lemma 3.1 Let γ be a geodesic in a section Σ = Σx with γ(0) = p = ϕ(x). Then
any Jacobi field in N along γ can be decomposed into J = J1+J2, where J1 is a Jacobi
field of Σ and J2 is Jacobi field with J2(t) ∈ Tγ(t)Σ

⊥ for every t. For an M-Jacobi
field J this decomposition is exactly the one into vertical and horizontal M-Jacobi
fields along γ. In particular we have J(t) ⊥ Tγ(t)Σ for a horizontal M-Jacobi field
J .

Proof We write J1 for the TΣ-part of J and J2 for the orthogonal part. Since Σ is
totally geodesic, the curvature operator Rγ̇(t) leaves Tγ(t)Σ invariant and therefore,
as a self-adjoint operator, also the orthogonal complement Tγ(t)Σ

⊥, so Rγ̇(t)J1(t) ∈
Tγ(t)Σ and Rγ̇(t)J2(t) ∈ Tγ(t)Σ⊥ . On the other hand we have J ′′1 (t) ∈ Tγ(t)Σ, since Σ

is totally geodesic, and J ′′2 (t) ∈ Tγ(t)Σ⊥ for all t, because of 0 = d2

dt2
g(J2(t), X(t)) =

g(J ′′2 (t), X(t)) for any parallel field X of Σ along γ. The Jacobi identity for J gives

0 = Rγ̇(t)J(t) + J ′′(t) = (Rγ̇(t)J1(t) + J ′′1 (t)) + (Rγ̇(t)J2(t) + J ′′2 (t)).

Since the term in the first bracket lies in Tγ(t)Σ and the term in the second in Tγ(t)Σ
⊥,

the vector fields J1 and J2 are also Jacobi fields. The second statement follows from
the initial conditions (Ji(0), J ′i(0)⊥) of Ji for i = 1, 2. ut
The kernel of dη(v) consists of (J(0), J ′(0)⊥), where J is an M -Jacobi field along
γv with J(1) = 0. The decomposition J = J1 + J2 as in the lemma then implies
that ker dη(v) is a direct sum of a horizontal and a vertical subspace of TvνM and
that the kernel of dη(v) only has a non-trivial vertical component if and only if η(v)
is a conjugate point of x along γv in Σx. Summing up, the decomposition of an
M -Jacobi field J into J = J1 + J2 means that

d exp⊥(v) : HM
v ⊕ V M

v → Tη(v)Σ
⊥ ⊕ Tη(v)Σ(1)

(J(0), J ′(0)⊥) 7→ J1(1) + J2(1)

splits as an orthogonal direct sum of linear maps HM
v → Tη(v)Σ

⊥ and V M
v → Tη(v)Σ.
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Definition We call a focal normal v of horizontal/vertical type if ker dη(v) has a
non-trivial horizontal/vertical component. If a normal vector v is not a focal normal
of horizontal type we call v f-regular. A point p ∈ N is called f-regular if there is
an f-regular normal v such that η(v) = p. For a normal vector v ∈ νxM we call the
dimension of the horizontal factor of ker dη(v) the horizontal multiplicity of v.

Compare these definitions with [Ew].

We assume that ϕ admits sections and that νM is flat. We define two distributions
D and D⊥ on the set of f-regular points in N by D⊥(p) = TpΣ, where Σ is a section
through p; let D be the orthogonal distribution. The distribution D⊥ and therefore
D are well-defined on the set of regular points, since M admits sections, but a
priori not on the set of f-regular points. It is easy to see that both distributions are
integrable on the regular set: Let p be a regular point and v ∈ νM with η(v) = p.
Recall that νM carries the horizontal foliation P given by normal parallelity, and
the vertical foliation given by the fibers of the projection νM →M . Now let Uv be
an open neighborhood of v ∈ νM such that η|Uv : Uv → V from Uv onto its image
V is a diffeomorphism. The map η|Uv maps vertical leaves diffeomorphically onto
the connected components of the sections intersected with V . Because of (1), dη
maps the horizontal distribution on νM to D, i.e. dη(v)(TxM) = D(η(v)). Since
Uv is bifoliated and η|Uv is a diffeomorphism, V is also bifoliated with respect to
D and D⊥. We want to show that both distributions are also differentiable and
well-defined on the set Nr of f-regular points in N . Integrability is clear.

Lemma 3.2 There is exactly one section Σ through a given f-regular point p and
η−1(p) only consists of f-regular vectors that are tangential to Σ. Moreover, Nr is
open and dense in N and there is a unique differentiable extension of D⊥ on Nr.

Proof Existence follows by surjectivity of η. We show uniqueness. Let v0 ∈
νxM be an f-regular vector with η(v0) = p. Then there is a simply connected
neighborhood U of x in M such that (η◦v)|U : U → Pv0 = η(U) is a diffeomorphism,
where v is a parallel normal field on U with vx = v0. We define T = tube(Pv0 , ε) =
{exp(ξ) | ξ ∈ Bε(νPv0)}. By shrinking U we can assume that T is an injectivity
tube around Pv0 for small ε > 0. Let ρ : T → Pv0 be the projection. We have
Tη(vz)Σz ⊥ Tη(vz)Pv0 for every z ∈ U by (1). Therefore

• a slice of the tube T through η(vz) ∈ Pv0 coincides with the component of
Σz ∩ T containing η(vz).

We can therefore extend D⊥ differentiably to T as the kernel of the differential of
the submersion ρ. Since D⊥ is defined on the open and dense set of regular points
of N ,

• this extension is the unique differentiable extension of D⊥.

Let w0 ∈ νyM be another f-regular vector with η(w0) ∈ T . The same process as
for v0 gives us a simply connected neighborhood U ′ of y, a parallel normal field
w extending w0, Pw0 and its tube T ′ with the same properties. By eventually
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shrinking U ′ and the radius of T ′ we can assume T ′ ⊂ T . By the uniqueness of a
differentiable extension of D⊥ we conclude that the slices of T ′ are equal to the slices
of T intersected with the open set T ′. In particular, if η(w0) = p this implies that v0

and w0 are tangent to the same section Σx = Σy. Again by (1) Pw0 intersects these
slices orthogonally. Since w0 is f-regular, η ◦w has maximal rank on a neighborhood
of y. We can assume this neighborhood to be U ′. Then Pw0 intersects the slices
transversally, i.e.

• ρ ◦ η ◦ w : U ′ → Pv0 is a diffeomorphism onto its image.

We have seen above that the f-regular vectors in η−1(p) are tangential to the same
section. Now we are going to show that any w0 ∈ νM with η(w0) ∈ T is f-regular.
Then T ∩Σ is an open neighborhood of p in Σ only containing f-regular points. This
implies that the set of f-regular points is open in N and that η−1(p) only consists
of f-regular vectors. We remark that this even shows that the f-regular points in a
section Σ are open in Σ (see Remark(3)). Assume there is a focal normal w ∈ νyM
of horizontal type with η(w0) ∈ T and U ′ a neighborhood of w0 in νM such that
η(U ′) ⊂ T . We can locally define a parallel normal field w extending w0. Then there
is a simply connected neighborhood U of y in M and an ε > 0 such that the image
of U under (1+ t)w lies in U ′ for all t ∈ (0, ε) and such that w′z is f-regular for every
z ∈ U , where w′ = (1 + ε)w. The geodesic γw(z) intersects P(1+ε)w0 , the image of
η ◦w′, orthogonally in γw(z)(1 + ε) for all z ∈ U by (1) or the Gauss Lemma for the
normal exponential map. Then the image of γw|[1, 1 + ε] lies in a slice of the tube
T . Therefore

ρ ◦ η ◦ w = ρ ◦ η ◦ w′

on U . Since the right side is a diffeomorphism this implies that also η ◦ w has
maximal rank, i.e. w0 is f-regular. ut
Remark

(1) The lemma says that the preimage of a focal point η(v), where v is a focal
normal of horizontal type, only consists of focal normals of horizontal type.

(2) The sections intersect the images of ϕ and η ◦ v̄ for f-regular v always or-
thogonally and transversally. This implies that ϕ and η ◦ v̄ factorize through
injective immersions, the first even through an injective isometric immersion.
A proper immersion ϕ factorizes finitely over an embedding (Proposition 2.2).
We will furtheron assume that ϕ is injective and there is no loss of generality
if we assume ϕ to be the inclusion map of M into N .

(3) By the Theorem of Sard the set of regular points of η is open and dense in
N . Obviously the intersection of the set of regular points with Σ is open in
Σ. But since a section Σ is a null-set in N , it is a priori not clear that the
set of regular points in Σ is dense in Σ. The lemma can be applied to prove:
The subset of (almost) regular points in a section Σ is open and dense in Σ.
We will show that the complement C of the set of regular points in Σ is a
null-set. C is the union of the set A of endpoints of focal normals of horizontal
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type and the set B of f-regular focal points. We define S := M ∩ Σ. Take
an arbitrary point x ∈ S. Then A is contained in the null set of endpoints of
singular vectors in νxM of η; if p is such an endpoint, there is a v ∈ νxM with
η(v) = p by completeness of Σ, and v is a focal normal of horizontal type by
the lemma. B is the union of conjugate points of expΣ

x for every x ∈ S (normal
vectors v ∈ νM such that η(v) is f-regular are tangential to Σ by the lemma
and therefore have their foot point contained in S ). Since M intersects Σ
orthogonally, the set S is at most countable. Thus B is a null set, too. This
means that the set of regular points in Σ is open and dense in Σ. We remarked
in the proof of the previous lemma that the subset of almost regular points in
Σ is open in Σ. As the set of regular points is contained in the set of f-regular
points, we have proved our claim.

Definition An immersion ϕ : M → N is said to have parallel focal structure, if

(1) νM is flat,

(2) dim(ker dη(v) ∩HM
v ) = dim ker d(η ◦ v) is constant for any local parallel nor-

mal field v, i.e. the horizontal focal data is invariant under normal parallel
translation, and

(3) ϕ admits sections.

Note that this definition of a parallel focal structure differs from that in [Ew]; we
do not demand the invariance of the vertical data. We will show in Proposition 3.12
that this second invariance is an implication.

Example Regular orbits of polar actions have parallel focal structure. Isoparamet-
ric submanifolds in Rn+k and equifocal submanifolds in simply connected, compact
symmetric spaces obviously fulfill conditions (1) and (2) of a submanifold. The ex-
istence of sections is clear for the first class of submanifolds and a consequence for
the second class. Theorem 3.10 will show, that they admit sections if and only if
the set of parallel manifolds builds a foliation on the regular set, which is known for
both classes.

Let M̄ be the normal holonomy principal bundle over M equipped with the metric
such that the projection M̄ → M becomes a Riemannian covering. Its normal
bundle is globally flat and M̄ →M has the lowest degree among all coverings of M
with this property. Each normal vector v of M canonically defines a global parallel
normal field on M̄ , denoted by v̄. We will denote the normal exponential map of M̄
also by η.

Remark If ϕ is in addition proper and v is f-regular and has finite normal holonomy
degree then ηv = η ◦ v̄ : M̄ → N is also a proper immersion, since ηr is proper.

Definition Let ϕ : M → N have parallel focal structure. We call η ◦ v̄ : M̄ → N
a focal submanifold of M if v ∈ νM is a focal normal of horizontal type, a parallel
submanifold, if v is f-regular. In any case we denote the image by Mv.
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Let v be a focal normal of horizontal type. Since the map η ◦ v̄ has constant rank,
the set of connected components of preimages of η ◦ v̄ defines a foliation (the focal
foliation) by the rank theorem which gives us simple sets for this foliation. The leaf
through x is called the focal leaf Fv̄x through x associated to v (or to v̄x).

Proposition 3.3 The set Mv is the image of an immersed submanifold for any
v ∈ νM .

Proof See [Ew], Proposition 2.7. The statement is clear by definition for f-regular
v. Let v be a focal normal of horizontal type. The focal foliation G given by η ◦ v̄ is
regular in the sense of [Pa] because of the rank theorem. Then Theorem VIII of [Pa]
implies that the quotient M̄/G is a differentiable manifold such that the quotient
map is a submersion. Note that it is not necessarily Hausdorff or second countable.
The map η ◦ v̄ : M̄ →Mv now induces an immersion M/G →Mv. ut
A priori parallel or focal manifolds can have intersections with themselves or with
other parallel or focal submanifolds. According to [HLO], we say that M gives rise
to a global foliation or F = {Mv | v ∈ νpM} of N , if

⋃
F = N , and Mv ∩Mw 6= ∅

implies Mv = Mw. The aim of this section is to show that the parallel foliation
induced by M is a global foliation of N . We will see that the normal exponential
map exp⊥ of M becomes a foliated map, mapping the horizontal foliation on νM to
the parallel foliation F on N ; moreover exp⊥ respects the vertical foliation, mapping
the vertical spaces νxM onto the totally geodesic ”leaves”, the sections.

Our aim is to show that there is a bifoliation (Nr,F ,F⊥), where F is a regular
Riemannian foliation of parallel submanifolds of M and F⊥ a foliation with totally
geodesic submanifolds, the sections restricted to Nr. Properness of ϕ is not assumed.

Proposition 3.4 The two distributions from above give rise to a bifoliation (F ,F⊥)
on Nr, where F is a Riemannian foliation and F⊥ a totally geodesic foliation. The
leaves of F respectively of F⊥ are the parallel submanifolds respectively the connected
components of the sections restricted to Nr. Therefore the parallel submanifolds have
a flat normal bundle.

Proof By Lemma 3.2, D⊥ is differentiable. Thus D as the orthogonal distribution
is differentiable, too. Obviously both distributions are integrable. F⊥ restricted to
Nr is a totally geodesic foliation. Then Proposition 2.10 implies that F restricted
to Nr is a Riemannian foliation.

Now we want to show that the parallel submanifolds Mv for f-regular v are exactly
the leaves of F . We first prove that M is a leaf, where we consider M to be included
in N (see Remark(2)). Choose a point p in M . Since the bundle TM is equal to
the distribution D of F restricted to M , we have M ⊂ Mp, where Mp is the leaf of
F through p. We endow Mp with the induced metric. As M is a connected, open
and complete subset of Mp it follows M = Mp: Let q be a border point of M in
Mp, so q ∈ N\M . Let B be an injectivity ball of Mp around q. Then there is a
point q′ of M in B. Let γ : [0, 1] → B be a geodesic of N from q to q′. We have
w = −γ̇(1) ∈ Tq′M since q′ has an open neighborhood in M . As M is complete, the
geodesic γ−1 from q′ to q with initial vector w is a geodesic of M , so q = γ−1(1) lies
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in M , contradiction.

Now let v ∈ νpM be an f-regular vector and q = η(v). Mp and Mq are the leaves
through p respectively q. We want to show Mv = Mq. The regular leaves have a flat
normal bundle by Lemma 2.11. Let w = φ1(v). Let Lv and Lw be the horizontal
leaves of νMp respectively νMq through v respectively w. We are going to show that
the restriction of the time 1 map φ1 of the geodesic flow of N to Lv, φ

1|Lv : Lv → Lw,
is a diffeomorphism. It suffices to show φ1(Lv) = Lw. Since M = Mp and since η ◦ v̄
has constant rank, we have

d(π ◦ φ1) = D ◦ (π ◦ φ1)

on Lv by (1), where D is the distribution of F and π : TN → N the foot point
map. Thus π ◦ φ1(Lv) ⊂ Mq, because F is a foliation. We claim that φ1(Lv) is
horizontal in νMq. It suffices to verify this locally. Let x ∈ M be arbitrary and
v′ ∈ Lv with foot point x. There is a neighborhood U of x in Σx and a vector
field X on U with X(x) = v′ and such that π ◦ φ1 ◦ X is a diffeomorphism to a
neighborhood V of y := η(v′) in Σx. We extend X to a simple neighborhood U ′

of x with U ′ ∩ Σx = U such that the restriction of X to the plaques in U ′ are
parallel normal fields. Then X is a foliated field on U ′ by Lemma 2.11. As above
we see that π ◦ φ1 ◦ X : U ′ → V ′ is a diffeomorphism onto its image V ′, mapping
plaques to plaques. Then the unique vector field X ′ on V ′ with X ′ ◦ π ◦φ1 = φ1 ◦X
is foliated by Lemma 2.8. Thus the restriction of X ′ to a plaque P ′ of V ′ is a
normal parallel field of P ′ by Lemma 2.11. In particular, this proves our claim
that φ1(Lv) is horizontal in νMq and φ1(Lv) ⊂ Lw. By the same argument as
above we have φ1(−Lw) ⊂ L−v = −Lv. Since φ−1(w′) = −φ1(−w′), this implies
φ1(Lv) = Lw and φ1|Lv : Lv → Lw is a diffeomorphism. Since M = Mp we have
Mv = η ◦ v̄(M̄) = π ◦ φ1(Lv) = π(Lw) = Mq.

Lemma 2.11 implies that every parallel submanifold has a flat normal bundle. ut
In Proposition 2.2 in [HLO] it is shown that each parallel normal field of M is
transported to a parallel normal field of Mv by the parallel transport in the sections.

Let ϕ : M → N be an immersion with parallel focal structure. The map ϕ factorizes
over an injective isometric immersion, so we can assume M ⊂ N and that ϕ is
the inclusion. Then we have a bifoliation on Nr given by parallel submanifolds
and restrictions of sections to Nr. The last proposition says that each parallel
submanifold Mv has a flat normal bundle. Any parallel manifold has the same set of
sections as M ; in fact, if p = η(vx) is an arbitrary point in Mv, then exp(νpMv) = Σx.
By a similar argument as in Lemma 3.2, we can show that each parallel submanifold
has the same set of f-regular points in N , namely Nr, and therefore admits sections.
This means that in order to show that Mv has parallel focal structure it remains to
prove property (2). We will see this in Theorem 3.11.

Let η′ be the normal exponential map of a parallel manifoldM ′ and L be a horizontal
leaf of νM ′ containing an f-regular vector. Then η′(L) lies in a parallel manifold
M ′′ by (1). A similar argument as in Proposition 3.4 shows that η′|L : L → M ′′ is
a covering. Note that η′|L has (constant) maximal rank. In other words η′−1(Nr) is
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saturated with horizontal leaves and η′ : η′−1(Nr) : η′−1(Nr) → Nr is foliated with
respect to the horizontal foliation of η′−1(Nr) and the foliation of Nr by parallel
manifolds. Note that in order to prove that M ′ has parallel focal structure, it now
suffices to prove that η′ has maximal rank when restricted to a horizontal leaf in
νM ′ through a focal normal of horizontal type. We will handle this problem by
considering a map, where these focal points of horizontal type are dissolved.

Our main goal in this section is to show first that F = {Mv | v ∈ νM} is a global
foliation and then a singular Riemannian foliation. We will associate to (N,F) a
certain foliated manifold (N̂ , F̂). An analysis of this foliation will yield the results.
Boualem defines this Riemannian foliation F̂ in [Bou] from a singular Riemannian
foliation F . Thus we cannot use his construction. Instead we build up F̂ with the
normal exponential map.

For an f-regular point x ∈ N let ηx : νMx → N be the normal exponential map of
the leaf Mx. We define

η̂x : νMx → Gk(TN); v 7→ Tηx(v)Σπ(v).

Let
N̂ = {TqΣ | Σ is a section, q ∈ Σ}.

and let π̂ : N̂ → N be the footpoint map of Gk(TN) restricted to N̂ . Then we have
N̂ = η̂x(νMx) for any f-regular point x ∈ N since the set of sections of two different
parallel manifolds coincide. Our next aim is to give a bifoliated manifold structure
to N̂ . The idea is to model N̂ on the normal bundles of the parallel submanifolds.
The normal bundle νM has two natural, complemetary foliations, one given by the
flat horizontal structure, the other by the fibers of the projection νM →M .

Let p ∈ N be arbitrary. We fix r > 0 and take ε′ > 0 to be smaller than the
injectivity radius of any point q ∈ B̄r(p) in N . There is an f-regular point x and a
vector v ∈ νxMx with ηx(v) = p that is not a focal normal of vertical type. One can
see that dη̂x(w)|HM

w is injective for any w ∈ νMx. Therefore η̂x has maximal rank
on a neighborhood of v, even if v is a focal normal of horizontal type (this is what
we meant before by dissolving focal points). This means there is a neighborhood
U of v in νMx such that η̂x|U : U → Gk(TN) is an embedding into Gk(TN) and
such that the footpoint set V of V̂ := η̂x(U) is contained in B̄ε′(p). We take a
ball neighborhood P of x in Mx and a neighborhood U0 of v in νxMx such that
φ : P × U0 → U ; (y, w) → wy is an injective immersion into U , where wy is the
normal parallel displacement of w to y. We reduce U to the image of φ so that
φ becomes a diffeomorphism onto U . We choose an f-regular point p′ in BΣx

ε′ (p),
such that p ∈ BΣx

ε (p′) for some ε with 0 < ε < ε′. The map ηx|φ({y} × U0) is a
diffeomorphism onto its image Vy for any y ∈ L by choice of U (note that U does
not contain any focal normals of vertical type). We shrink U0 such that this map is
a diffeomorphism onto Vx = BΣx

ε (p′) for y = x.

Lemma 3.5 The map αy : Vx → Vy; ηx(vx) 7→ ηx(vy) is an isometry, where vx ∈ U0

and vy is the normal parallel displacement of vx to y ∈ P .
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Proof The set Vr = V ∩Nr is open and dense in V and Ur = η−1
x (Vr), saturated

by leaves of the shape P × {w}, w ∈ U0, is open and dense in U . We consider the
diffeomorphism η : Ur → Vr. A horizontal foliated field on Ur maps to a foliated
field von Vr that is a parallel normal field when restricted to the plaques of parallel
manifolds in Vr by Lemma 2.11. Moreover, any such parallel normal field along a
regular plaque is given this way. If w ∈ U0 is f-regular, Pw = η(φ(P × {w})) and X
is a parallel normal field on Pw, then ‖(αy)∗X(η(w))‖ = ‖X(αy(η(w)))‖. It follows
that αy : Vx ∩ Nr → Vy is a local isometry. As Vx ∩ Nr is open and dense in Vx,
αy : Vx → Vy is an isometry. ut
There is exactly one v′ ∈ U0 with η(v′) = p′. Let P ′ := ηx(φ(P × {v′})). We define
the diffeomorphism h : P → P ′; y 7→ ηp(φ(y, v′)). Similarly as for U we have a

natural diffeomorphism φ′ : P ′ × U ′0 → Bε(νP
′). The map ηp′ : Bε(νqP

′) → B
Σq
ε (q)

is a diffeomorphism for any q ∈ P ′. Obviously B
Σh(y)
ε (h(y)) = Vy for any y ∈ P .

Then η̂p′ ◦ (φ′({h(y)} × U ′0)) is equal to the transversal plaque V̂y for any y ∈ P by
choice of ε (∗). Moreover, the map k : U0 → U ′0 defined by k(w) = (ηp′|φ′({p′} ×
U ′0))

−1 ◦ (ηx|φ(x,w)) is diffeomorphism. Now let w ∈ U0 be an arbitrary f-regular
vector and u = k(w) ∈ U ′0. We extend w and u to parallel normal fields on P
respectively P ′. The images of ηx ◦ w and ηp′ ◦ u lie in the same plaque in V . As

π̂ is injective over Nr, the image of η̂p′ ◦ u lies in the plaque η̂x(φ(P × {w})) in V̂ .
Together with (∗) we have η̂ ◦ w = η̂p′ ◦ u ◦ h on P . By continuity we have

η̂ ◦ φ(y, w) = η̂p′ ◦ φ(h(y), k(w))

for any y ∈ P and w ∈ U0.

So far we have the following. Given any k-plane ξ ∈ N̂ , any normal vector v of a
parallel manifold Mx (where x is the footpoint of v) that is not a focal normal of
vertical type, defines as above a neighborhood V̂ of ξ. A chart is given by η̂x : U →
V̂ . The discussion above implies that any two chart domains V intersect in open
subsets of each other. So the union of topologies on the various neighborhoods V
forms a basis for the topology on N̂ , and N̂ is a topological manifold. In addition we
see that the change of coordinates (h, k) is differentiable, so N̂ carries a differentiable
structure. Since η̂x is also differentiable as a map into Gk(TN), the differentiable
structure is the unique one for which the inclusion N̂ → Gk(TN) is an immersion.
Moreover, the chart η̂x : U → V̂ induces two foliations on V̂ that are complementary
to each other. The leaves of the first are given by η̂x(φ(P × {∗})), the second by
η̂x(φ({∗} × U0)). A look at the change of coordinates (h, k) reveals that these local
foliations coincide on intersections. This gives us a (vertical) foliation F̂ and a
complementary (horizontal) foliation F̂⊥ on N̂ .

Proposition 3.6 N̂ carries a natural differentiable structure, for which the inclu-
sion into Gk(TN) is an immersion. Moreover N̂ has a natural bifoliation (F̂ , F̂⊥).

Since we have not yet defined a metric on N̂ , the denotation of F̂⊥ has to be justified.
The Grassmann bundle carries a canonical metric (see appendix) for which the
projection Gk(TN) → N is a Riemannian submersion. The horizontal distribution
of this bundle is given as follows. Let ξ ∈ Gk(TN) be a k-plane through a point

24



p ∈ N spanned by an orthonormal k-frame (v1, . . . , vk). Then the horizontal lift c̃
of a curve c in N with c(0) = p to ξ is given by

c̃(t) = span
{

(
t

‖
0

c)v1, . . . , (
t

‖
0

c)vk

}
.

In particular, the tangent bundle TΣ of a totally geodesic submanifold Σ of N is
horizontal with respect to Gk(TN) → N . We denote the pullback of this metric
under ι by ĝ.

Proposition 3.7 The foliation F̂⊥ is orthogonal to F̂ and we have

F̂⊥ = {TΣ | Σ is a section of M}.

In particular F̂⊥ has complete totally geodesic leaves. Therefore (F̂ , F̂⊥) is a Rie-
mannian/totally-geodesic bifoliation of (N̂ , ĝ).

Boualem says in [Bou] that this is true for some metric on N̂ . We prove it for the
natural metric ĝ.

Proof For a k-plane ξ ∈ N̂ through a point p in N there is a section Σ such that
TpΣ = ξ. Let η̂x : U → V̂ be a chart with ξ ∈ V̂ . Then there is a u ∈ U with
η̂x(u) = ξ and Vy is an open neighborhood of ξ in Σy. Thus the distribution TΣ

is open in the leaf Lξ ∈ F̂⊥ through ξ. By the definition of ĝ, the submanifold
TΣ is horizontal for Gk(TN) → N . Since the horizontal lift of a geodesic along
the Riemannian submersion Gk(TN) → N is a geodesic, TΣ is a complete, totally
geodesic submanifold of Gk(TN) and of N̂ . Then TΣ = Lξ since TΣ is open in Lξ,
connected and complete.

We consider a chart η̂x : U → V̂ . For v ∈ U with footpoint x and a horizontal vector
X ∈ TvU and a vertical vector Y ∈ TvU . We have

ĝ
(
dη̂(v)X, dη̂(v)Y )

)
= g

(
dη(v)X, dη(v)Y )

)
= 0.

The first equality is valid because dη̂(v)Y ∈ Tη̂(v)TΣ is horizontal for π : Gk(TN) →
N and π is a Riemannian submersion. The second equality follows from dη(v)Y ∈
Tη(v)Σx and dη(v)X ⊥ Tη(v)Σx by (1). This implies that F̂⊥ is the orthogonal

foliation to F̂ with respect to ĝ. ut
We define M̂x = π̂−1(Mx) for f-regular x ∈ N .

Lemma 3.8 Let x be an f-regular point in N . Then the leaves of F̂ are the parallel
submanifolds of M̂x which have the shape η̂x ◦ v̄(M̄x) and the map η̂x : νMx → N̂ is
foliated with respect to the natural bifoliation on νMx and (F̂ , F̂⊥).

Proof For any f-regular x the restriction of η̂x to the set of f-regular vectors in νMx

respects the foliations by definition, i.e., it maps leaves into leaves. By continuity
η̂x : νMx → N̂ respects the foliations on the whole domain. At the end of the proof
we see that this map is an f-map, which means that it sends leaves onto leaves.

Let x be f-regular. Then there is exactly one section through x, so π̂−1(x) = {TxΣx}.
Let L be the leaf of F̂ through V , where V = TxΣx. We want to show that the map
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π̂ : L→Mx is a diffeomorphism and L = M̂x. The set Z of points y in L such that
π̂(y) ∈ Nr is clearly open. Let y ∈ L\Z be arbitrary, i.e., there is a focal normal
v ∈ νM of horizontal type with η(v) = π̂(y). We find a neighborhood W of v in the
horizontal leaf of νM through v such that η̂|W is a diffeomorphism onto its image.
Then η(W ) is an open neighborhood of y in L. Then π̂(η̂(W )) = η(W ) has no
intersection with Nr. Thus Z closed in L and Z = L by connectivity. Therefore π̂|L
is injective. Now ηxi

= π̂◦ η̂xi
implies π̂(L) ⊂Mx. Let s : Mx → N̂ , y 7→ TyΣy. Then

s(Mx) ⊂ L because s(y) = η̂x(0y) and 0y is f-regular for ηx. Therefore π̂ : L→Mx is

a diffeomorphism with inverse map s and L = M̂x. Using that the horizontal leaves
are complete we can argue as in the proof of Proposition 3.4 to show that the leaves
of F̂ are exactly the parallel submanifolds of M̂x.

Now let x be an f-regular point. If we identify νMx and νM̂x then η̂x : νMx → N̂
is the normal exponential map of M̂x in N̂ . Since we know that the image of a
horizontal leaf under η̂x is a parallel manifold of M̂x, thus a leaf of F , we conclude
that η̂x is an f-map for F̂ . It is an f-map for F⊥ since the horizontal leaves of N̂ are
complete. ut
Note that π̂|π̂−1(Nr) : π̂−1(Nr) → Nr is an f-isomorphism. If we already knew that
F = {Mv | v ∈ νM} is a global foliation we would have that π̂ : (N̂ , F̂) → (N,F)
is foliated.

Later we prove that M̂x is connected also for a focal point x of horizontal type. This
will show that F is a global foliation.

Up to now we have not assumed properness of ϕ. Now let ϕ : M → N be a
proper immersion with parallel focal structure and finite normal holonomy. We
know that the parallel submanifolds are injectively immersed and orthogonal to
the sections in each point of intersection. So far this is not clear for the focal
submanifolds. Please note that the fact d(η ◦ v̄)(TxM̄) ⊥ Tη(v)Σx for v ∈ νxM̄ (see
(1)) does not imply that Mv is orthogonal to Σx in η(v). So far we do not know that
d(η ◦ v̄)(TxM̄) = d(η ◦ v̄)(TyM̄) for an arbitrary y ∈ M̄ with (η ◦ v̄)(y) = (η ◦ v̄)(x).
We will be able to show this if v̄(y) is tangential to the same section as v̄(x) is. The
next lemma will enable us to reduce our problem to this case and we will finally
show that the focal submanifolds are embedded in Theorem 3.10. We need some
preparations. Let v ∈ νxM̄ be a focal normal of horizontal type and p = η(v).
Let F = Fv̄x be the focal leaf associated to v containing x. Define F 1

v = v̄(F ) and
V = (d(η◦ v̄)(x)(TxM̄))⊥. The rank theorem states that we can write η◦ v̄ : M̄ → N
locally in coordinates as (x1, . . . , xn) 7→ (x1, . . . , xn−µ(v), 0, . . . , 0), where µ(v) is the
horizontal multiplicity of v. This implies that for arbitrary y1, y2 ∈ F we find
neighborhoods U1, U2 such that images of (η ◦ v̄)|U1 and (η ◦ v̄)|U2 coincide. In
particular, we have (d(η ◦ v̄)(y)(TyM̄))⊥ = V for every y ∈ F . By (1) TpΣy ⊂ V for
every y ∈ F .

Lemma 3.9 Let ϕ : M → N be a proper immersion with parallel focal structure
and finite normal holonomy. Let v ∈ νxM be a focal normal of horizontal type,
p = η(v). Then the set of sections Σ containing p is J = {Σy | y ∈ F}, where F is
the focal leaf associated to v through x. Moreover, we have

⋃
Σ∈J TpΣ = V .

26



Proof We first prove the second statement. The inclusion from left to right was
already shown before the lemma. Now let w ∈ V be arbitrary. F 1

v = v̄(F ) is compact
since ηr is proper and ϕ has finite normal holonomy. φ1 maps F 1

v diffeomorphically
onto a compact submanifold F ′ of V . Therefore we find a shortest ray γ in V from
F ′ to w. Then γ is orthogonal to F ′ in some point v′ := φ1(u), where u ∈ F 1

v with
foot point y ∈ F . As we will soon see Tv′TpΣy = νv′F

′ in V (we have TpΣy ⊂ V ),
which implies that γ and therefore w lies in TpΣy. We want to show Tv′TpΣy = νv′F

′.
First we prove Tv′TpΣy ⊂ νv′F

′. We have

Tv′F
′ = {(0, J ′ξ(1)) | ξ ∈ TuF 1

v },

because Tv′F
′ consists of elements dφ1(u)ξ = (Jξ(1), J ′ξ(1)) = (0, J ′ξ(1)) for ξ ∈ TuF 1

v .
This implies Tv′F

′ ⊂ Tv′TpN = V N
v′ . Since ξ is horizontal, J ′ξ(t) is orthogonal to

Tγu(t)Σy by (1). So Tv′TpΣy ⊥ Tv′F
′ also in Tv′TpN = V N

v′ for the Sasaki metric,
hence Tv′TpΣy ⊂ νv′F

′, where we consider F ′ as a submanifold of V . Since dimF ′ =
dimF = µ(v) and dimV = µ(v) + k, where µ(v) is the horizontal multiplicity of v
and k the codimension of M , we have Tv′TpΣy = νv′F

′ by equality of dimensions.

We will now prove the first statement of the lemma. Assume Σ is an arbitrary
section containing p. Then by completeness of Σ there is a u ∈ νM tangential to Σ
with η(v) = p. Then φ1(u) ∈ V . We have seen above that φ1(u) is tangential to a
section Σ of J . Then the same is true for u. By Lemma 3.2 there is only one section
containing the geodesic γu. Thus Σ ∈ J . ut
Compare the following statement with the weaker result of Corollary 2.14 in [Ew].
That corollary is based on Lemma 2.13, [Ew] which is not proved correctly (see the
first sentence of the proof).

Theorem 3.10 If ϕ : M → N is a proper immersion with parallel focal structure
and finite normal holonomy, then F = {Mv | v ∈ νM} is a transnormal global
foliation and the leaves of F are closed, embedded and orthogonal to each section
they meet.

Proof Assume η(v) = η(w) =: p. We have to show Mv = Mw. If p is f-regular,
then v and w are tangential to the same section by Lemma 3.2, so η̂(v) = η̂(w). By
Proposition 3.8 it follows η̂ ◦ v̄(M̄) = η̂ ◦ w̄(M̄) and therefore Mv = Mw because
π̂ ◦ η̂ = η. Now let p be a focal point of horizontal type and let Σ be the section to
which v is tangential. The focal leaf F associated to w induces the set of sections
Jw as above. Because of Σ ∈ Jw, there is a normal parallel translation w′ ∈ F 1

w of w
that is tangential to Σ. Because of η̂(v) = η̂(w′), we conclude Mv = Mw′ = Mw as
above, so F is a global foliation.

We already know that the parallel submanifolds are closed and embedded. We
will use a similar argument as above to show that the same is true for the focal
submanifolds. Let v ∈ νxM̄ be a focal normal of horizontal type with endpoint p.
Assume there is a y ∈ M̄ such that η(v̄y) = p. As above we find a point y′ in the
focal leaf associated to v through y such that v̄y′ is tangential to the same section as
v̄x, so η̂(v̄x) = η̂(v̄y′). Since η̂ is foliated and dη̂(w)|HM

w has rank n for any w ∈ νM
there are neighborhoods U1 and U2 of x and y′ in M̄ such that (η◦v̄)|U1 and (η◦v̄)|U2
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are diffeomorphisms onto the same image. As a consequence of the rank theorem
applied to η ◦ v̄ : M̄ → N and the compactness of focal leaves we can replace U1 and
U2 by neighborhoods of x and y′ that are saturated with focal leaves associated to v
such that (η ◦ v̄)|Ui is a submersion onto its image in Mv. Since y was arbitrary, this
means that Mv has neither intersection points nor contact points. As η ◦ v̄ : M̄ → N
is proper, Mv is closed and embedded by Proposition 2.2. Now νMp is well-defined
for p ∈ Mv. Lemma 3.9 now states that νpMv is the union of all TpΣ, where Σ is a
section through p. This implies that also a focal submanifold intersects each section
it meets orthogonally. Moreover, this shows that F is transnormal: If γ is a geodesic
with initial vector v ∈ νpMp, then v is tangential to a section Σ through p and γ is
contained in Σ. Therefore γ is orthogonal to every leaf of F it meets. ut
The starting point of our work was the question, under which conditions a subman-
ifold M in N induces a global foliation through parallel submanifolds. In order to
define parallel submanifolds we have to demand flatness of νM and that the maps
η ◦ v̄ have constant rank. These are conditions (1) and (2) of a submanifold with
parallel focal structure. The existence of sections is a common condition in related
theories, like in the theory of polar actions for instance, which is one part of condi-
tion (3). The theorem now states that M with the above properties induces a global
foliation if and only if M admits sections. (Necessity is clear. Otherwise there is
a regular point p and two sections Σ1 and Σ2 with TpΣ1 6= TpΣ2. Then there are
two parallel manifolds Mvi

with TpMvi
⊥ TpΣi (i = 1, 2), thus TpMv1 6= TpMv2 ,

contradicting that M induces a global foliation.)

We call the elements of F leaves. A leaf is called regular if its dimension is maximal
in F , otherwise singular. A regular leaf with non-trivial normal holonomy is called
exceptional.

A point in N is f-regular if and only if it is contained in a regular leaf of F . This
justifies the denotation: the ”f” in f-regular stands for foliation.

Remark Let M be a regular leaf and let P be the horizontal foliation on νM .
Then η : (νM,P) → (N,F) is foliated.

In Theorem 4.3 we will show that F is a singular Riemannian foliation admitting
sections. Then we can apply the Slice Theorem of Alexandrino, Theorem 4.4, and
derive Corollary 4.5, which states that there is a neighborhood of a given leaf Mv

containing no leaf of lower dimension. But this result can also be obtained easily by
using the lower semi-continuity of the rank of η̃ : M̄ × νxM → N ; (y, w) 7→ η(w̄(y)).
For this purpose we have to assume that v is not a focal normal of vertical type,
otherwise we replace M appropriately.

Theorem 3.11 If ϕ is a proper immersion with parallel focal structure and finite
normal holonomy, then also every parallel manifold Mv is embedded, has parallel
focal structure and finite normal holonomy.

Moreover, a focal point of horizontal type of M is also a focal point with the same
horizontal multiplicity of any other parallel submanifold of M and vice versa. In
other words, each parallel submanifold has the same focal submanifolds.
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Proof We have already seen that a parallel submanifold is embedded and has a flat
normal bundle. Let Mv, v ∈ νxM be a parallel submanifold and p = η(v). Let Mu

be a focal submanifold of M and let L be the leaf of F̂ over Mu, i.e., L = π̂−1(Mu).
We recall that dη̂(u′)|HM

u′ : HM
u′ → Tη̂(u′)L is an isomorphism for any u′ parallel to u

in νM . Since M has parallel focal structure, µ(u′) = rank dη(u′)|HM
u′ , the horizontal

multiplicity, is constant for all u′ which are parallel to u in νM . Now η = π̂ ◦ η̂
implies that c := rank dπ̂|TVL, V ∈ L is constant. Let w ∈ νMp be an arbitrary
vector with endpoint in Mu. Again by ηp = π̂ ◦ η̂p we can now conclude that the
horizontal multiplicity dηp(w

′)|HMv

w′ is equal to c for any w′ parallel to w in νMp. In
particular, f-regular points of Mv and of M coincide. Since Mv has the same sections
as M , there is exactly one section of Mv through a given f-regular point of Mv, i.e.
parallel submanifolds also admit sections. Thus Mv has parallel focal structure.

It remains to show that every parallel submanifold of M has finite normal holonomy.
Let Mx be the parallel submanifold through a point x, Σ = Σx and Γx the normal
holonomy group of Mx in x, acting on νxMx = TxΣ. Since Mx has parallel focal
structure, the focal points of horizontal type of Mx are bounded away from 0 by
a number ε′ > 0. Let ε be the minimum of ε′ and the injectivity radius of Σ in
x. Then Γx acts on BΣ

ε (x), such that both actions of Γx, restricted to the balls of
radius ε, are equivariant with respect to expΣ

x . The orbit Γx(q) of an arbitrary point
q ∈ BΣ

ε (x) is contained in Mq ∩ Σ, where Mq is the parallel submanifold through q.
Since Mq is closed and embedded, Mq ∩ Σ is closed and discrete, so Γx(q) is finite.
Therefore each orbit of the action of Γx on νxMx is finite. As this action is linear
and effective, Γx is finite and Mx has finite normal holonomy. ut
Ewert states this result in Proposition 2.9 in [Ew], but his proof is not correct.
In the fourth last line of p. 20 he writes that V∗∂t(1, ·, t) is a parallel normal field
along the focal submanifold through V (1, 0, t). This is not true. Indeed, he refers
to Proposition 2.4, [Ew], which is not correct if Mz is a focal submanifold; take
x := z ◦ c for instance.

The theorem shows that every vector in η−1(p) has the same horizontal multiplicity.
Since a normal vector is f-regular if and only if its horizontal mulitplicity is zero,
this is a generalization of Lemma 3.2.

Proposition 3.12 Let M be a closed and embedded submanifold with parallel focal
structure and finite normal holonomy. If v ∈ νM is a multiplicity k focal normal of
vertical type so are its normal parallel translations. In other words the vertical focal
data is also invariant under normal parallel translation. If v is a cut normal, so are
its normal parallel translations. In particular, the cut distance function is constant
along the parallel normal fields.

The proposition can be easily proved with Theorem 4.7, whose assumption is that
F is a singular Riemannian foliation admitting sections, but which is also valid in
our situation. We will introduce the theorem in the context of singular Riemannian
foliations, section 4 in order not to disturb the current development in this section.
Therefore we postpone the proof until the next section.

This proposition says that the cut locus of M is already determined by its intersec-
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tion with a section and that we can easily distinguish a submanifold with parallel
focal structure from other submanifolds by its cut locus. Our next aim is to show
the following theorem.

Theorem 3.13 If ϕ : M → N is a proper immersion with parallel focal structure
and finite normal holonomy, then F = {Mv | v ∈ νM} is a singular Riemannian
foliation of N that admits sections.

We need some preparations.

Lemma 3.14 Let v ∈ νxM̄ be a focal normal of horizontal type that is not of vertical
type. Then there is a neighborhood U of x that is saturated by focal leaves of v, an
open relatively compact neighborhood P of η(v) ∈ Mv, ε > 0, a neighborhood V of
v̄x ∈ νxM̄ such that

(1) η ◦ v̄ : U → P is a surjective fibration whose fibers are the focal leaves. This
gives a local trivialization U ∼= Fv × P .

(2) η̃ : U × V → T (P, ε); (y, w̄x) 7→ η(w̄y) is surjective.

(3) Fw̄y ⊂ Fv̄y for any (y, w̄x) ∈ U × V . That means that the focal foliation given
by η ◦ w̄ is finer than the focal foliation given by η ◦ v̄.

(4) Each section through a point q ∈ T also contains the unique point p′ in P that
is in the same slice as q, i.e., Jq ⊂ Jp′.

(5) Let p ∈ P and Sp be the slice in T through p. Then Sq ⊂ Sp for any q ∈ Sp.

Proof Let v ∈ νxM̄ be a focal normal of horizontal type. The focal foliation given
by the submersion η ◦ v̄ is regular in the sense of [Pa] and the leaves are compact.
This implies that η ◦ v̄ is locally a fibration by Corollary 2 of Theorem X of [Pa], i.e.,
there exist local trivializations of η ◦ v̄. Therefore we find a saturated neighborhood
U of the focal leaf Fv through x such that (ρ, η◦ v̄) : U → Fv×P is a diffeomorphism
for some projection ρ : U → Fv and P = η ◦ v̄(U).

Now let v ∈ νxM̄ be not a focal normal of vertical type. We can choose U such that
P is relatively compact. There is a number ε > 0 such that T (P, ε) is an injectivity
tube of P with radius ε. By Proposition 3.12 every normal parallel translation of v
is not a focal normal of vertical type either. Then there is a neighborhood V of v in
νxM̄ such that η̃(y, · ) : V → Σy is a diffeomorphism onto its image for every y ∈ U ,

where η̃ : U × V → N ; (y, w̄x) 7→ η(w̄y). We can assume η̃(y, · ) : V → B
Σy
ε (p) is

a diffeomorphism, eventually shrinking ε and V . By Lemma 3.5 and the remark
following it αy : BΣx

ε (p) → B
Σy
ε (η(v̄y)) is an isometry. As η̃(y, · ) = αy ◦ η̃(x, · ) we

have η̃({y} × V ) = B
Σy
ε (η(v̄y)). Then η̃ : U × V → T is surjective because the slice

Sq of P in T through q ∈ P is equal to

Sq =
⋃
{BΣy

ε (q) | y is in the focal leaf associated to v through y}

for any q ∈ P by Lemma 3.9.

30



Let y ∈ U and u ∈ V be arbitrary. Let F ′ be the focal leaf associated to u through
y. Let q = η(ūy) and p′ = η(v̄y) ∈ P . We want to show that F ′ is contained in the
focal leaf F associated to v through y. This is clear if u is f-regular. We assume
that u is a focal normal of horizontal type. The section Σ := Σy contains p′ and q.
There is a vector w ∈ Tp′Σ ⊂ νp′Mv of length smaller than ε with endpoint q. For

z ∈ U we define wz = dαz(p
′)w, where αz : B

Σy
ε (p′) → BΣz

ε (η(v̄z)) as above but with
central point p′ instead of p. The endpoint αz(q) of wz is still in T (P, ε) because
‖wz‖ = ‖w‖ < ε for all z ∈ U . For all z ∈ F ′ ⊂ U we have q = η(ūz) = αz(q), thus
wz = w since w is unique among the vectors of νP of length smaller than ε with
endpoint q ∈ T . Therefore η(v̄z) = αz(p

′) = p′ for all z ∈ F ′, so F ′ ⊂ Fv̄y . (In other
words, the foliation of focal leaves given by η ◦ ū is finer than the foliation of focal
leaves given by η ◦ v̄.) By Lemma 3.9 we obtain that the set Jp′ of sections through
p′ contains the set Jq of sections through q. Therefore

Sq ⊂
⋃

Σ∈Jq

(Σ ∩ T )q ⊂
⋃

Σ∈Jp′

(Σ ∩ T )q = Sp′ ,

where (Σ ∩ T )q denotes the connected component of Σ ∩ T containing q. ut
Proof of Theorem 3.13. By Theorem 3.11, it remains to show that Ξ(F) acts
transitively at a given point p. This is clear for f-regular p ∈ N , since the set of
f-regular points Nr is foliated by Proposition 3.4. Therefore we assume that p is
a focal point of horizontal type of M and v ∈ νxM̄ with η(v) = p. We assume
that v is not a focal normal of vertical type, otherwise we replace M by a parallel
manifold. Now we use the same objects as in the previous lemma. We want to define
a distribution D′ of dimension dimP on T such that D′(q) ⊂ TqMq. Let q ∈ T be
arbitrary. Let Sq be a slice of Mq through q. Then there is a uniqe point p′ ∈ P
such that the slice Sp′ of T through p′ contains q. We define D′(q) = TqS

⊥
p′ . Since

the distribution tangential to the slices is differentiable so is D′. Since Sq ⊂ Sp′ we
have D′(q) ⊂ TqMq. Thus, for any p ∈ P and X0 ∈ TpP there is a vector field X
of D′ in T extending X0. If f : N → R is a bump function with support in U and
f(p) = 1 then fX ∈ Ξ(F) with (fX)p = X0. Since p and X0 were arbitrary, Ξ(F)
acts transitively. ut
We can now exploit the theory of singular Riemannian foliations for submanifolds
with parallel focal structure. Implications will be given in the next section. The
converse was proven in [A]. We give a different proof in the next section.
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4 Singular Riemannian Foliations

4.1 Parallel Focal Structure of Regular Leaves

Let F be a singular Riemannian foliation admitting sections of a complete Rie-
mannian manifold N . Let M be a regular leaf and η : νM → N be its normal
exponential map. We have seen in Lemma 2.11 that νM is flat. Therefore νM is
endowed with a natural foliation of horizontal leaves.

Lemma 4.1 A point of N is F-regular if and only if it is f-regular. In particular
the subset of F-regular points in a section is open and dense.

Proof Let p be F -regular and v ∈ η−1(p) with footpoint y. We have to show
that v is f-regular. Let Pp be a relativey compact of p in Mp, the leaf of F through
p, let T be an injectivity tube of Pp and ρ : T → Pp be the orthogonal projection
which is the projection along the sections. We will now use an argument similiar
to one in Lemma 3.2. We extend v to normal parallel field on a simply connected
neighborhood of y in My. By the Morse Index Theorem η ◦ ((1 + t)v) has maximal
rank on a small neighborhood U of y for small t, therefore ρ ◦ η ◦ ((1 + t)v) is a
submersion onto its image in Pp by (1). We have

ρ ◦ η ◦ ((1 + t)v) = ρ ◦ η ◦ v,

so η ◦ v has maximal rank on U , so v is f-regular.

Now let p be f-regular, i.e. there is a vector v ∈ νM with endpoint p. We denote the
footpoint of v by x. For a small simply connected relatively compact neighborhood
U of x in M , η ◦ v′|U is a diffeomorphism onto its image Pv where v′ is the parallel
normal field on U extending v. Then there is an injectivity tube T ′ of Pv with
radius ε′. The tube T ′ is open in N and is foliated by its slices. The slice through
η(v′y) is the connected component in T ′ of the section Σy containing y for y ∈ U .
Now assume that p is singular with respect to F . Let T be an injectivity tube
of a small open subset Pp of the singular leaf Mp containing p with radius ε < ε′

and T ⊂ T ′. Note that T is a distinguished neighborhood of Pp in the sense of
Molino (see [Mo]). Since the set of F -regular points is open and dense in N by
[Mo] there is an F -regular point q′ in T . The plaque Pq′ of the regular leaf Mq′ in
T ′ intersects the slices of T ′ transversally and orthogonally. Indeed the slices are
exactly the connected components of the sections of Pq′ in T ′. Since T is open in
N there is a slice S of Pp of T whose subset R of F -regular points is non-empty;
otherwise we would obtain a contradiction to the density of F -regular points in N .
Since R is open in S and the dimension k of a section is smaller than the dimension
of S there are at least two vectors w1, w2 ∈ νpPp = TpS with exp(wi) ∈ R such
that TpΣ1 6= TpΣ2, where Σi is the unique section to which wi is tangential (namely
Σi = exp(νMη(wi)). But this is a contradiction to the fact that T ′ is foliated by the
restriction of the sections of Pq′ to T ′. ut
Remark The set of singular points on a bounded segment of a geodesic γv for a
vector v ∈ νM is finite by the lemma and the Morse Index Theorem.
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The lemma implies that a regular leaf M admits sections in the sense of section 4.

Proposition 4.2 The map η : νM → N is foliated and the restriction of η to a
horizontal leaf in νM has constant rank.

Proof Let v ∈ νM with endpoint p and footpoint x. We define

Z = {w ∈ Lv | η(w) ∈Mp},

where Lv is the horizontal leaf of νM through v. We want to show that Z is open
and closed in Lv and therefore equal to Lv by connectivity. Let w ∈ Z with footpoint
y and q = η(w). Let Pq be a relatively compact open neighborhood of q in Mq and
let T be a distinguished neighborhood of Pq. Since Ξ(F) acts transitively we can
assume that each plaque in T intersects each slice of T and always transversally.
Thus the restriction of the projection ρ : T → Pq to an arbitrary plaque in T is a
surjective submersion. We choose a positive number t < 1 such that tv is f-regular
and γw|[t, 1] lies in T . We see that γw intersects Pq orthogonally for t = 1 since F is
transnormal and γw|[t, 1] lies in the slice of T through q. The leaf Mtv is regular by
the previous lemma. Let L′ = L(1−t)φt(v) be the horizontal leaf in νMtv containing
(1−t)φt(v). Observe that the map α : Lv → L′; ξ 7→ (1−t)φt(ξ) is a diffeomorphism
and that ηx|Lv = (ηη(tv) ◦ α)|Lv. This means that we can replace M by Mtv for our
considerations and assume that γw|[0, 1] is contained in a slice of T , so in particular
y ∈ T . Let Py be the connected component of My in T containing y. We define
the function r : T\Pq → R measuring the distance to Pq and let X = − grad r
be the negative of the radial vector field. Then w = ‖w‖Xy. Note that X|Py is a
normal vector field of Py. The flow of X is a family of homotheties in T centered at
Pq which respects the singular Riemannian foliation by the Homothety Lemma (see
[Mo]). Lemma 2.8 now implies that X is a foliated vector field on a neighborhood
of Py in T . Thus X|Py is a normal parallel field of Py by Lemma 2.11 and the image
of Py under X is an open subset of the horizontal leaf Lv in νMx containing w. We
want to show that (η ◦ (‖w‖X))|Py = ρ|Py which implies that Z is open in Lv. But
this follows from the observation that φX(t, z) = γXz(t) for t ∈ [0, ‖w‖) and z ∈ Px
where φX is the flow of X; note that ‖w‖ is the distance of Py and Pq. We remark
that this implies that η|Lv has constant rank and its image is open in Mp. Now let
w /∈ Z with footpoint y and endpoint q. By assumption q /∈Mp. As above we show
that an open neighborhood of w in Lv is mapped to Mq which is disjoint to Mp by
definition of F . Therefore the complement of Z is also open. Thus η(Lv) ⊂Mp.

We will now show η(Lv) = Mp. We have seen above that η(Lv) is open in Mp. It
suffices to show that η(Lv) is also closed in Mp. Let q be an arbitrary point on the
boundary of η(Lv) in Mp. We have to show q ∈ η(Lv). There is an injectivity tube T
of some open neighborhood Pq of q in Mq. As Ξ(F) acts transitively, we can assume
that any plaque in T meets any slice of Pq, and always transversally. Now there is
a w ∈ Lv such that η(w) ∈ Pq. As above we can assume that the footpoint y of w
is contained in T . Then we define X = − grad r on T\Pq and we have w = ‖w‖Xy.
The endpoint of ‖w‖Xy′ for y′ ∈ Py is the unique point in the intersection of Pq and
the slice of Pq containing y′. Since Py′ meets any slice of Pq, in particular the slice
through q, we have q ∈ η(Lv) and η(Lv) = Mp. ut

33



As a direct consequence we obtain the following theorem of Marcos Alexandrino.

Theorem 4.3 (Alexandrino) A regular leaf of a singular Riemannian foliation
admitting sections of a complete Riemannian manifold has parallel focal structure.

Remark We need the following discussion for Theorem 4.19. Let p be a singular, P
a relatively compact neighborhood of p in Mp, T an injecitivity tube of P and S the
slice through p. Let M be a regular leaf that intersects S in a point x. Then there
is a geodesic γv : [0, 1] → N in S from x to p. Let ρ : M̄ → M and ρ′ : νM̄ → νM
be the canonical projections. We choose a point x̄ with ρ(x̄) = x. Let F be the
focal leaf in M̄ associated to v̄(x̄). Then F 1 = v̄(F ) is the connected component of
(η ◦ ρ′)−1(p) containing v̄(x̄). It is clear that the connected component A of M ∩ S
through x contains ρ(F ). From the proof above we know that X = −‖v‖ grad r is a
parallel normal field when restricted to M ∩T . We see that ρ′ : F 1 → X(M ∩S) and
ρ : F →M ∩ S are coverings. We can push down the focal leaf F to a submanifold
in M and the focal parallel normal field on F to one on that submanifold. We have
done this for M intersecting S. But this is true for any regular leaf M with Mv = Mp

using the technique introduced in the proof of the Proposition 4.2.

The following is a slice theorem for singular Riemannian foliations admitting sec-
tions.

Theorem 4.4 (Alexandrino) Let F be a singular Riemannian foliation admitting
sections of a complete Riemannian manifold N . Let p ∈ N , B⊥ε (0p) be the ball of
0p in νpMp for a small radius ε and Sp = exp⊥(B⊥ε (0p)). Then the restriction
F|Sp is a singular Riemannian foliation admitting sections that is isomorphic to
an isoparametric partition F ′ of Rm, where m is the codimension of Mp. This
isomorphism is given by exp⊥ : B⊥ε (0p) → Sp, and it maps flat sections of F ′ to
sections of F restricted to Sp.

An isoparametric family of submanifolds of Rm is given as the level sets of a transnor-
mal map. Therefore the isoparametric family in Rm and F|Sq are proper singular
Riemannian foliations, i.e., its leaves are closed and embedded.

Corollary 4.5 Let F be as above and let M be a leaf of F . Then there is a neigh-
borhood of M that contains no leaf of lower dimension than dimM .

Proof The proof is clear. ut
We already know this result. It follows from the existence of foliated charts for
singular foliations, see 2.2.
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4.2 Transversal Holonomy

Let (N,F) be as in the previous subsection. Then by Theorem 4.3 and section 3

N̂ := {TpΣ | p ∈ N,Σ is a section of F through p}

carries the unique differentiable structure for which the inclusion N̂ → Gk(TN)
is an immersion (see Proposition 3.6). Moreover, N̂ , endowed with the pull-back
metric, carries a Riemannian/totally-geodesic bifoliation (F̂ , F̂⊥), where

F̂⊥ = {TΣ | Σ is a section of F}.

The footpoint map π̂ : (N̂ , F̂) → (N,F) is foliated and it maps a horizontal leaf TΣ
isometrically onto the section Σ. Thus we know that the image of a leaf of F̂ is a leaf
of π̂. We want to see that π̂−1(M) is a leaf, where M ∈ F . This is clear for regular
M . Let M be singular and p ∈M . By defintion π̂−1(p) is the set of sections through
p. It suffices to show that this set is contained in one leaf of F̂ . Let Sp be a slice
through p. The corresponding isoparametric partition of νpMp given by Theorem
4.4 has closed and embedded regular leaves with parallel focal structure and finite
normal holonomy. Now Proposition 3.9 describes the set of sections through p as
the image of a focal leaf associated to v under η̂ ◦ v̄ for some v ∈ νM , so π̂−1(p) is
contained in one leaf. This means M̂p := π̂−1(Mp) is a leaf. Therefore

F̂ = {π̂−1(M) | M ∈ F}.

For a curve τ : [0, 1] → N in a regular leaf of F and a curve σ : [0, 1] → N
in a section, both starting in an F -regular point, we define τ̂(t) := Tτ(t)Στ(t) and
σ̂(t) := Tσ(t)Σσ(0). Obviously π̂ ◦ τ̂ = τ and π̂ ◦ σ̂ = σ.

Lemma 4.6 Let x0 be F-regular, let τ : [0, 1] → N be a curve in Mx0 and σ :
[0, 1] → N be a curve in Σx0 with τ(0) = σ(0) = x0. Then there is a unique map
H = H(τ,σ) : [0, 1]× [0, 1] → N with

(1) H( · , 0) = τ ,

(2) H(0, · ) = σ,

(3) H( · , t) is contained in a leaf of F ,

(4) H(s, · ) is contained in a section.

Moreover we have H(τ,σ) = π̂ ◦ Ĥ(τ̂ ,σ̂), where Ĥ(τ̂ ,σ̂) is the homotopy given in Lemma

2.12 for (N̂ ; F̂ , F̂⊥).

Proof Existence follows byH(τ,σ) = π̂◦H(τ̂ ,σ̂), whereH(τ̂ ,σ̂) is the homotopy defined

in Lemma 2.12 for the bifoliation (F̂ , F̂⊥) of N̂ . We want to show uniqueness of
H(τ,σ). Let H be an arbitrary homotopy with the four properties in the lemma. We

define Ĥ(s, t) := TH(s,t)Στ(s). Obviously Ĥ(s, · ) lies in the horizontal leaf TΣτ(s).
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The curveH( · , t) = π̂◦Ĥ( · , t) lies in the leafMσ(t) by assumption. By the discussion

at the beginning of this subsection, π̂−1(Mσ(t)) is a leaf of F̂ . Therefore Ĥ( · , t) is

contained in a vertical leaf. By Lemma 2.12 we have Ĥ = Ĥ(τ̂ ,σ̂) and therefore
H = π̂ ◦H(τ̂ ,σ̂). ut
Let x0 be F -regular, M = Mx0 and Σ = Σx0 . In the sequel we think of the universal
cover M̃ respectively Σ̃ as the set of equivalence classes of vertical respectively
horizontal curves starting from x0, where the equivalence is given by homotopy
fixing endpoints. We define

ψ : M̃ × Σ̃ → N

([τ ], [σ]) 7→ H(τ,σ)(1, 1)

and

Ψ : M̃ × Σ̃ → N̂

([τ ], [σ]) 7→ Tψ(τ,σ)Στ(1) = Ĥ(τ̂ ,σ̂)(1, 1).

Obviously
π̂ ◦Ψ = ψ.

We could have defined ψ by the above formula. The reason that we did not is that
we wanted to emphasize that the definition of ψ only depends on F , namely on
the property of Lemma 4.6, and not primarily on its blow-up. For the proof of this
property we have used the blow-up nevertheless.

Theorem 4.7 The map Ψ is the universal covering map, and it is foliated with
respect to the product foliation of M̃ × Σ̃ and to (N̂ ; F̂ , F̂⊥). The footpoint map
π̂ : (N̂ , F̂) → (N,F) is foliated and it maps a horizontal leaf TΣ isometrically onto
the section Σ. The map ψ is foliated with respect to the vertical foliation on M̃ × Σ̃
and (N,F). Given [τ ] ∈ M̃ the map ψ : {[τ ]}× Σ̃ → Στ(1) is a Riemannian covering
and

Tτ : (̃Σ, x0) → ˜(Σ, τ(1)); [σ] 7→ H(τ,σ)(1, · )

is an isometry. In particular, the sections have the same Riemannian universal
cover. Similarly the regular leaves of F have the same universal cover.

Proof Identifying M respectively Σ with M̂ respectively Σ̂ by π̂ and then their
universal covers with each other, the map Ψ is a foliated universal covering by
Theorem 2.15. The results about π̂ are clear and have been stated before. Then
ψ = π̂ ◦ Ψ is foliated. The map Tτ is the isometry Tτ in Theorem 2.15 up to
isometric identification of Σ̃x and T̃Σx for x = τ(0), τ(1). Then the remaining
statements follow. ut
Remark The map ψ completely describes the singular Riemannian foliation F of
N . The singular values of ψ are exactly the singularities of F . It is a covering when
restricted to the regular set.

This theorem describes a topological difference between a singular Riemannian fo-
liation admitting sections and a polar action, namely the normal holonomy of a
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section. While the sections of a polar action are isometric to each other, the sec-
tions of a singular Riemannian foliation only have the same Riemannian universal
cover. We want to explain this in more detail. We can define a local isometry along
a vertical curve τ starting in Σ similarly as in Verweisl 3.5. It is important to know
that in general such a map cannot be extended to an isometry that is defined on all
of Σ. For instance consider the Klein bottle N = [0, 1]2/ ∼, where we identify the
two vertical edges in opposite direction and the horizontal ones in common direc-
tion. The two partitions, the one into vertical, the other into horizontal lines, build
a bifoliation, so in particular a singular Riemannian foliation admitting sections.
Take M to be a vertical line and Σ to be the exceptional horizontal line. Let τ be
a curve in M from a point in Σ to a point that is not in Σ. Obviously we cannot
extend a local isometry defined as above to a map defined on Σ that respects the
foliation. But we can develop these maps on the Riemannian universal cover Σ̃

and this is T[τ ] : ˜(Σ, τ(0)) → ˜(Σ, τ(1)). The set of the above local isometries along
vertical curves τ that start and end in Σ becomes a pseudogroup of local isometries
on Σ while the set of its developments T[τ ] becomes a group acting on Σ̃ that we

will later denote by Γ̃. It is more convenient to work with this group than with
the corresponding pseudogroup. On the other hand we have to handle additional
elements, namely the deck transformations of πΣ : Σ̃ → Σ, which are contained in
Γ̃, but do not contribute to the geometry of F . Therefore we will divide them out
and obtain a group Γ acting on Σ, that completely describes the holonomy of F .

For a vertical/horizontal curve c and a horizontal/vertical curve d starting in the
same point we denote by Tcd the terminal horizontal/vertical edge of the homotopy
H(c,d). Let [c] and [d] be the equivalence classes under homotopy in the corresponding
leaf or section fixing endpoints. Then Tcd depends only on [c] and [Tcd] only on [c]
and [d]; we write T[c][d] := [Tcd].

Lemma 4.8

Tc1c2 = Tc2 ◦ Tc1 and Tc(d1d2) = Tcd1 · TTd1
cd2.

Proof The proof is clear. ut
Let M ∩ Σ = {xi}i∈I . We define

Λ̃ =

{
[τ ]T[σ] : M̃ → M̃

∣∣∣∣ τ is vertical, σ is horizontal
τ(0) = σ(0) = x0, σ(1) = τ(1)

}
and

Γ̃ =

{
[σ]T[τ ] : Σ̃ → Σ̃

∣∣∣∣ τ is vertical, σ is horizontal
τ(0) = σ(0) = x0, σ(1) = τ(1)

}
.

Lemma 4.9 Γ̃ is a subgroup of I(Σ̃) and Λ̃ a subgroup of Diff(M̃).

Proof We only prove that Γ̃ is a subgroup of I(Σ̃), the proof for Λ̃ is similar. Let

[σ]T[τ ] ∈ Γ̃. Since T[τ ] : (̃Σ, x0) → ˜(Σ, τ(1)) is an isometry and left multiplication with

[σ] is an isometry from ˜(Σ, τ(1)) to (̃Σ, x0), the given element is clearly an isometry
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of (̃Σ, x0). We want to determine its inverse. Let τ ′ = Tσ−1τ−1 and σ′ = (Tτ ′σ)−1.
Then T[σ][τ

′] = (T[σ] ◦ T[σ]−1)[τ ]−1 = [τ ]−1. Now

[σ′]T[τ ′]([σ]T[τ ]) = [σ′]T[τ ′][σ]︸ ︷︷ ︸
[σ′]−1

·TT[σ][τ
′]︸ ︷︷ ︸

[τ ]−1

◦ T[τ ] = [cx0 ],

where cx0 is the constant curve with image x0. Thus any element of Γ̃ has a left
inverse. Now we want to show that the product of two elements [σ]T[τ ] and [σ′]T[τ ′]

of Γ̃ lies in Γ̃.

[σ]T[τ ]([σ
′]T[τ ′]) = [σ]T[τ ][σ

′] · TT[σ′][τ ]
◦ T[τ ′] = ([σ]T[τ ][σ

′])T[τ ′]T[σ′][τ ]

lies in Γ̃, because (σTτσ
′)(1) = (Tτσ

′)(1) = (Tσ′τ)(1) = (τ ′Tσ′τ)(1). Since Γ̃ ⊂ I(Σ̃)
it follows that Γ̃ is a group. ut
The next lemma shows how Γ̃ depends on the choice of the base point x0.

Lemma 4.10 Let Γ̃ respectively Γ̃′ be defined as above with respect to the base point
x respectively y, where x and y are F-regular points in the same section Σ. Then
Γ̃ = [γ]Γ̃′[γ]−1, where γ is an arbitrary horizontal curve from x to y.

Proof Let [σ]T[τ ] ∈ Γ̃. Then [γ−1σTτγ]T[Tγτ ] ∈ Γ̃′. Now we have for any horizontal
curve δ with δ(0) = x0

[γ] · [γ−1σTτγ]T[Tγτ ]([γ
−1][δ])

= [σ]T[τ ][γ]T[Tγτ ]([γ
−1][δ])

= [σ]T[τ ][γ]T[Tγτ ]([γ]
−1)T[Tγ−1Tγτ ][δ]

= [σ](T[τ ][γ]T[Tγτ ]([γ]
−1))T[τ ][δ]

= [σ]T[τ ][δ],

because [TTγτγ
−1] = [Tτγ]

−1 by Lemma 4.8. ut

There is a natural injective representation ρΣ : π1(Σ, x0) → Γ̃; [σ] 7→ [σ]. This means
that Γ̃ contains the deck transformations of πΣ : Σ̃ → Σ; [σ] 7→ σ(1). It is easy to
see that Γ̃ normalizes π1(Σ, x0). We call the group

Γ = Γ̃/π1(Σ, x0)

the transversal holonomy group of Σ. It is a subgroup of I(Σ). The transversal
holonomy group generalizes the Weyl group of an s-representation (or polar action)
and the fundamental domains of Γ generalize the Weyl chambers. Note that Γ is
independent of x0. But it depends on the choice of the section Σ, unlike Γ̃. Also let
Λ = Λ̃/π1(M,x0).

Moreover there is a representation ρM : π1(M,x0) → Γ̃; [τ ] 7→ T[τ ] that is in gen-
eral not injective. Let Kx0 be the kernel of ρM and Hx0 = π1(M,x0)/Kx0 . Since
the action of π1(M,x0) on Σ̃ by ρM is isometric, it is already determined by its
infinitesimal (orthogonal) action on Tx0Σ̃ = νx0M , which is

π1(M,x0)× νx0M → νx0M

([α], v) 7→ (
1

‖
0

α)v.
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This implies that Hx0 is isomorphic to the normal holonomy group of M . Thus we
can write M̄ = M̃/Kx0 for the normal holonomy principal bundle M̄ , and Hx0 is
the group of deck transformations of M̃ → M̄ .

We define [σ0] = [cx0 ] and [τ0] = [cx0 ]. For each i ∈ I, i 6= 0, we choose a horizontal
curve [σi] and a vertical curve [τi] from x0 to xi. We can write any element [σ]T[τ ] ∈ Γ̃
as

α(i, g, h) := g[σi]Th[τi],

where g ∈ π1(Σ, x0) and h ∈ π1(M,x0).

Lemma 4.11 α(i, g, h) = α(j, g′, h′) ⇐⇒ i = j, g = g′and h−1h′ ∈ Kx0.

Proof (⇐) follows from Thk[τi] = T[τi]◦Tk ◦Th = T[τi]◦Th = Th[τi] for k ∈ Kx0 , since
Tk = idΣ̃. For (⇒) apply [cx0 ] to both sides. We see that g[σi] = α(i, g, h)[cx0 ] =
α(j, g′, h′)[cx0 ] = g′[σj]. The endpoints xi and xj are equal, so i = j. Thus g = g′.
It follows Th = Th′ , or Th−1h′ = idΣ̃. Observe that h−1h′ ∈ π1(M,x0). Now we have
h−1h′ ∈ Kx0 . ut
We remark ρΣ(g) = α(0, g, [cx0 ]) for any g ∈ π1(Σ, x0) and ρM(h) = α(0, [cx0 ], h) for
any h ∈ π1(M,x0).

Lemma 4.12 The action of Γ respects the foliation. The set of leaves of F is
Σ/Γ = Σ̃/Γ̃. The set of sections is M̃/Λ̃.

Proof For this proof it is advisable to recall the precise definition of the section
i : Σ → N and to distinguish between the manifold Σ and the image Σ′ = i(Σ) since
Σ can have self-intersections. We can take Σ to be the appropriate leaf of F⊥ in N̂
and i to be the projection π̂|Σ̂ : Σ̂ → π̂(Σ) = Σ′. The set of leaves is N/F . We have
seen at the beginning of this subsection, that π̂ defines a bijection between the set
of leaves of F and that of F̂ . Therefore N/F = N̂/F̂ . For the bifoliated manifold
N̂ we can easily prove Γ̃[σ] = π−1

Σ (M̂σ(1) ∩ Σ) for any [σ] ∈ Σ̃ and Γ(x) = M̂x ∩ Σ

for any x ∈ Σ. Thus N̂/F̂ = Σ/Γ = Σ̃/Γ̃. ut
The description of a Γ̃-orbit in the proof implies in particular that each element
of Γ̃ permutes the set {g[σi] | i ∈ I, g ∈ π1(Σ, x0)}. In other words, this defines
a representation of Γ̃ as a permutation group. This representation is faithful if M
has trivial normal holonomy, because of Kx0 = 1 and Lemma 4.11. Now let F be a
proper singular Riemannian foliation admitting sections. Then each regular leaf M
has parallel focal structure and finite normal holonomy. The set {xi} is disrete and
closed. We call

Dxi
= {q ∈ Σ | d(xi, q) < d(xj, q) for all j 6= i}

a Dirichlet region of the set {xi}, where d is the distance function in Σ. These sets
are open and disjoint and we have

⋃
iDxi

= Σ. The set Dxi
is star-shaped and

therefore 1-connected; thus the universal covering πΣ : Σ̃ → Σ is trivial over Dxi

and we denote the connected component of π−1
Σ (D̃xi

) containing g[σi], g ∈ π1(Σ, x0)
by D̃g[σi]. Then {D̃g[σi] | g ∈ π1(Σ, x0), i ∈ I} is the set of Dirichlet regions for
π−1

Σ (M ∩ Σ).
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Proposition 4.13 Let F be a proper singular Riemannian foliation admitting sec-
tions. Then the action of Γ on Σ is properly discontinuous. It acts transitively on
the set of Dirichlet regions {Dxi

}i∈I , and simply transitive, if M has trivial normal
holonomy. The same holds for Γ̃, Σ̃ and {D̃g[σi] | g ∈ π1(Σ, x0), i ∈ I}. The set of
leaves Σ/Γ is an orbifold.

Proof The action of Γ̃ on Σ̃ is isometric and has discrete orbits, thus it is properly
discontinous, i.e., for any compact subset K of Σ̃ the intersection φ(K)∩K is non-
empty for only a finite number of φ ∈ Γ̃. This implies that the set of leaves is an
orbifold. The rest follows from Lemma 4.11. ut
Remark As we can see later, the singular leaves of F lift to exceptional leaves.
Therefore the nonregular points of the orbifold Σ/Γ correspond exactly to leaves of
F that are either exceptional or singular.

Lemma 4.14 The isotropy group Γ̃[cx0 ] = ρM(π1(M,x0)) ∼= Hx0 is characterized in

Γ̃ by mapping D̃[cx0 ] onto itself. Consequently Γ̃[σ] ⊂ Γ̃[cx0 ] for any [σ] ∈ D̃[cx0 ]. An
anlogous property holds for Γ.

Proof Clear. ut
Hx0

∼= Γx0 means that the normal holonomy of a leaf is just the isotropy group of
the larger action Γ.

Before we come to applications, we want to show a relation between π1(N̂ , x0), Γ̃ and
Λ̃. We identify the actions of Γ̃ and Λ̃ with the corresponding actions for (F̂ , F̂⊥).
For [µ] ∈ π1(N̂ , x0) we define γ̃[µ] := [(µh)]T[(µv)−1] ∈ Γ̃ and λ̃[µ] := [(µv)]T[(µh)−1] ∈ Λ̃

(for the notation see 2.2). One can show that γ̃ : π1(N̂ , x0) → Γ̃; [µ] 7→ γ̃[µ] and

λ̃ : π1(N̂ , x0) → Λ̃; [µ] 7→ λ̃[µ] are homomorphisms. π1(N̂ , x0) acts naturally from

the left on the universal cover of N̂ . We want to transfer this action to M̃ × Σ̃ via
the f-isomorphism Φ. Let [µ] ∈ π1(N̂ , x0) and Φ([τ ], [σ]) = [ν]. Then

Φ−1([µ][ν]) = ([(µh)]T[(µv)−1][τ ], [µv]T[(µh)−1][σ]) = (γ̃[µ]([τ ]), λ̃[µ]([σ])).

This shows that the action of π1(N̂ , x0) respects the product foliation on M̃ × Σ̃, so
π1(N̂ , x0) is a subgroup of Diff(M̃)× I(Σ̃). The projection of π1(N̂ , x0) on the first
component is Γ̃, the one on the second is Λ̃. The projection homomorphisms are γ̃
and λ̃. This describes a new view on the transversal holonomy group.

We will now give an application for the action of Γ. Reinhart showed in [Rei] that
the nearby leaves of a leaf M in a Riemannian foliation are coverings of M . The next
proposition describes the maximal neighborhood for which this is true. Compare
with the proof in [Rei].

Proposition 4.15 Let M be a regular leaf of a proper singular Riemannian foliation
F admitting sections and let x0 ∈M be arbitrary. Then any regular leaf M ′ through
Dx0 covers M and the degree is equal to the holonomy orbit Γ̃[cx0 ][γ] (or Γx0(γ(1))),
where γ is a shortest geodesic in Σ from x0 to a point in M ′.

Proof Let y0 ∈ Dx0 ∩M ′ and let γ0 be a shortest geodesic from x0 to y0 which
is contained in Dx0 . Moreover let Y := {[γj]}j∈J := Γ̃[cx0 ][γ0]. We define an action
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h · ([τ ], [γj]) = (h[τ ], T[h−1][γj]) of π1(M,x0) on M̃ × Y . Note that this group acts
from the left by Lemma 4.8, and the action is free and properly discontinuous. Let
M̃ ×π1(M,x0) Y := (M̃ × Y )/π1(M,x0) We want to show that

M̃ ×π1(M,x0) Y → M ′

([τ ], [γj]) 7→ (Tτγj)(1)

is a diffeomorphism. The map is clearly surjective. We show that it is well-defined.
Let h ∈ π1(M,x0) and ([τ ], [γj]) ∈ M̃ × Y . Then

(TTh−1γj
hτ)(1) = (TTh−1γj

h · TThTh−1γj
τ)(1) = (Tγj

τ)(1),

so the map is well-defined. We prove injectivity. Let (Tγj
τ)(1) = (Tγk

τ ′)(1) for
vertical curves τ, τ ′ starting at x0. Then τ(1) = τ ′(1), so there is exactly one
h ∈ π1(M,x0) such that h[τ ] = [τ ′]. We claim γk = Th−1γj. We have (Tτγj)(1) =
(Tγj

τ)(1) = (Tγk
τ ′)(1) = (Tτ ′γk)(1). Thus (Tτγj)(1) = (Thτγk)(1) = (Tτ (Thγk))(1).

Applying Tτ−1 shows γj(1) = (Thγk)(1), i.e., πΣ([γj]) = πΣ(Th[γk]). Since [γj] and
Th[γk] lie in D̃[cx0 ] this implies [γj] = Th[γk] and we proved our claim. Now the above

map is a diffeomorphism. Thus M ′ = M̃ ×π1(M,x0) Y covers M with typical fiber Y .
ut
Remark It is clear that Y = (πΣ|D̃[cx0 ])

−1(M ′ ∩ Dx0). The preimage of x0 under
the covering M ′ → M is M ′ ∩ Dx0 . Moreover we have T[γj ]K[γj ] = π1(M

′, y), where
K[γj ] is the subgroup of π1(M,x0) of elements k such that ρM(k) fixes [γj].

Proof of Proposition 3.12 The first statement, that we have already proved,
follows also directly from the fact that Tτ is an isometry. So the normal parallel
translation of a focal normal is a focal normal with the same horizontal and vertical
multiplicity. We will now prove the second statement. Let v ∈ νM with footpoint
x be arbitrary. We claim σ(v′/‖v′‖) ≤ σ(v/‖v‖) where v′ is an arbitrary normal
parallel translation of v and σ is the cut distance function. This is clear if v is
a focal normal by the first statement. We assume that v is a regular cut vector.
Then there is a point y ∈ M in the same section as x and let w be minimal with
η(w) = η(v). We define γ = γvγ

−1
w .

(̃M,x)
T[γ]−→ (̃M, y)∣∣ ↘ ↙

∣∣∣∣ N
∣∣y ↗ ↖
y

M̄ −→ M̄

The arrow (M̃, x) → N respectively (M̃, y) → N is the map [τ ] 7→ (Tτγv)(1)
respectively [τ ] 7→ (Tτγw)(1). Then the upper triangle commutes because

T[τ ][γv] = T[τ ][γγw] = (T[τ ][γ])TT[γ][τ ][γw].
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The two vertical arrows are the natural projections p1 : (M̃, x) → M/Kx = M̄ and
p2 : (M̃, y) → M/Ky = M̄ . We can push down the map p2 ◦ T[γ] along p1 to the
lower horizontal arrow, which we denote by α, because

p2(T[γ](k[τ ])) = p2(T[γ]k · T[γ][τ ]) = p2(T[γ][τ ])

for any k ∈ π1(M,x) since T[γ]k ∈ Ky, so the rectangle commutes. The left diagonal
arrow M̄ → N is η ◦ v̄, the right diagonal arrow is η ◦ w̄. The left and the right
triangles commute. By the commutativity of the three triangles and the rectangle

(η ◦ v̄) ◦ p1 = (η ◦ w̄) ◦ (p2 ◦ T[γ]) = (η ◦ w̄) ◦ (α ◦ p1).

Consequently η◦ v̄ = (η◦w̄)◦α (that means also the lower triangle commutes). This
proves our claim. By the same reason there cannot be a normal parallel translation
v′ of v with σ(v′/‖v′‖) < σ(v/‖v‖). It follows that the cut distance function of M is
constant under normal parallel translation and that the normal parallel translation
of a cut vector is a cut vector. ut
The next proposition shows the relation between {Dxi

} and the cut locus of a regular
leaf, which has parallel focal structure as we know. It also shows that a leaf M ′

through Dx0 is regular if M has a globally flat normal bundle.

Proposition 4.16
⋃
i∈I ∂Dxi

⊂ C(M,N) and C(M,N) ∩Dxi
are points of the cut locus

of expΣ
xi

. If M has a globally flat normal bundle, then the focal points of horizontal
type are contained in

⋃
i∈I ∂Dxi

.

Proof Take a point p ∈ ∂Dxi
. If p is a focal point of horizontal type, then

each minimal normal vector with endpoint p is a focal normal of horizontal type by
Lemma 3.2. Then p ∈ C(M,N). Now assume p ∈ ∂Dxi

is f-regular. Then there exists
a j 6= i such that d(p, xi) = d(p, xj). Thus there are vectors v ∈ Txi

Σ and w ∈ Txj
Σ

of length d(p, xi) with endpoint p. These vectors are contained in νM . Observe that
any other normal vector u with endpoint p is tangential to Σ in a point xk ∈M and
‖u‖ ≥ d(p, xk) ≥ d(p, xi). Thus v and w are minimal for η and p is a cut point of
M .

Take p ∈ C(M,N) ∩ Dxi
. First we assume that p is a focal point of horizontal type.

Let v ∈ νM be minimal with η(v) = p. Using Lemma 3.9 we can assume that v is
tangential to Σ. Then v ∈ νxi

M by minimality. We now construct F, F 1
v , F

′ as in
the proof of Lemma 3.9. We have seen that F ′ is a compact submanifold of νpMv

intersecting TpΣ in φ1(v). Moving TpΣ homotopically beyond F ′ in νpMv shows that
the intersection index of TpΣ with F ′ modulo 2 is zero. Thus there is another point
w′ in the intersection of TpΣ and F ′. Then w := φ−1w′ ∈ F 1

v is tangential to Σ in
a point xj ∈ M ∩ Σ and we have η(w) = p. Since ‖w‖ = ‖v‖ = d(xi, p) < d(xk, p)
for every k 6= i, it follows j = i. Thus M has non-trivial normal holonomy, which
proves the third statement. As v is minimal and ‖w‖ = ‖v‖, p = η(v) = η(w) is a
cut point for η and expΣ

xi
.

Now assume that p ∈ C(M,N) ∩ Dxi
is an f-regular point. Let v ∈ νM be minimal

with η(v) = p. Lemma 3.2 implies that v is tangential to Σ and the foot point is
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xi by minimality. We know that p is a focal point (in this case it can only be of
vertical type) or a cut point by Proposition 2.4. Assume p is a cut point. Then
there is another minimal normal w ∈ νxj

M = Txj
Σ with η(w) = p for some j. Since

v is minimal for η, it follows j = i and that v is minimal for expΣ
xi

: Txi
Σ → Σ, so

p is also cut point of expΣ
xi

. Now assume that p is not a cut point. Then v is the
unique minimal vector in νM with endpoint p and v is a focal normal. Since p is
f-regular, v is singular and minimal for expΣ

xi
. ut

In the proof we have seen that F ′ intersects the given section at least twice. Together
with Lemma 3.8 this implies that the lift of a singular leaf is exceptional (see the
remark after Proposition 4.13).

Example We will give an example such that a Dirichlet region Dxi
contains a

focal point of horizontal type. Consider the image M of a geodesic in P 2R. This
is a submanifold with parallel focal structure with normal holonomy group Z2. M
intersects Σ = P 1R = S1 in exactly one point. The Dirichlet region is equal to Σ
and contains the unique focal point of M .

Now we express Proposition 4.15 as a corollary in terms of the cut locus.

Corollary 4.17 Let M be a closed and embedded submanifold with parallel focal
structure and finite normal holonomy. Then the parallel submanifolds that are not
contained in the cut locus of M are coverings of M .

The following result is a another corollary of Proposition 4.15.

Corollary 4.18 The regular leaves with a globally flat normal bundle are diffeomor-
phic to each other. They cover any other regular leaf, the exceptional leaves. These
exceptional leaves, if they exist, are contained in the cut locus of any regular leaf
with a globally flat normal bundle. The union of regular leaves with a globally flat
normal bundle is open and dense in N .

Proof The action of Γ on Σ is isometric and properly discontinuous. It therefore
has a set of fundamental domains on which Γ acts simply transitive. For any point
p in a fundamental domain we have therefore Hp

∼= Γp = 1. Since the union of the
set of fundamental domains is open and dense in Σ, so is its intersection with the
F -regular points, and the last statement of the corollary follows. Alternatively we
can see this by recalling that the subset of reguar points of an orbifold, in this case
Σ/Γ, is open and dense.

Let M = Mx0 be a regular leaf with a globally flat normal bundle, i.e. Γx0 = 1.
Then any regular leaf through a point y ∈ Dx0 is diffeomorphic to M by Proposition
4.15 and has a globally flat normal bundle because Γy ⊂ Γx0 = 1 by Lemma 4.14.
Now let M ′ be a regular leaf that does not intersect Dx0 . Then it intersects ∂Dx0 .
We know that it is covered by a nearby leaf M ′′, which intersects Dx0 and is thereby
diffeomorphic to M . So M covers M ′. Now we assume that M ′ has a globally flat
normal bundle. Then it is diffeomorphic to M ′′ and therefore to M . ut
Remark Let G be a Riemannian transformation group of (N, g) and let S be a
slice through a point x ∈ N of an orbit Gx. It is known that Gy ⊂ Gx for every
y ∈ S. If Gx is an orbit of maximal dimension, this means that the orbit type of
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Gx is smaller or equal to that of nearby orbits. This corresponds in our theory to
Γy ⊂ Γx and that My is covering of Mx.

Consider the trace of the cut locus of M in a section Σ. How does this trace differ
from that of the cut locus of a nearby parallel submanifold? Roughly speaking,
the focal points of the cut locus are fixed. But the cut points can move; this can
occur for instance, if the transversal holonomy group Γ contains translations. The
above corollary says that certain cut points, namely the points of exceptional leaves
intersected with Σ, are fixed as well.

Our next aim is to show that there are no exceptional leaves if N is a simply
connected symmetric space. For a point p ∈ N we define P = P(N,ϕ×p) as the set
of pairs (x, γ), where x ∈M and γ : [0, 1] → N is a H1-curve in N with γ(0) = ϕ(x)
and γ(1) = p. We write P(N,M × p) for the path space if ϕ : M → N is the
inclusion map. It is known that P is a Hilbert manifold. The smooth function

Ep : P → R

(x, γ) 7→
∫ 1

0

‖γ̇(t)‖2 dt

is called the energy functional (associated to p). The map Ep is a Morse function,
i.e., it has only non-degenerate critical points, if and only if p is not a focal point of
ϕ. We assume that p is not a focal point, i.e., p is regular for the normal exponential
map of M . The energy functional is bounded below by zero and it is known that
it satisfies the Palais-Smale condition. For s ∈ R we write Ps = E−1

p {[−∞, s]} and
Ps− = E−1

p {[−∞, s)}. Let F be a field and s be a regular value of Ep. The Morse
inequalities state bk(Ps,F) ≤ µk(Ep|Ps), where bk(Ps,F) is the k-th Betti number of
Ps with respect to F and µk(Ep|Ps) is the number of critical points of index k of Ep
below s. We call ϕ taut with respect to F, if, for every regular point p ∈ N and every
regular value s, Ep|Ps is perfect with respect to F, i.e., if bk(Ps,F) = µk(Ep|Ps) for
all k. If bi(Ps,F) = µi(Ep|Ps) for all i with i ≤ k, all regular points p and regular
values s, we say that ϕ is k-taut with respect to F.

The following paragraph is a brief summary of [PaTe] about critical points of linking
type with slight changes in the definitions. Let κ be a critical level of Ep. There is a
real number ε > 0 such that κ is the only critical level of Ep in [κ−ε, κ+ε]. One result
of Morse theory is, that by properly attaching a k-cell ek for each critical point of
index k on level κ to Pκ−ε in Pκ+ε, we obtain a deformation retract of Pκ+ε. Each k-
cell eki attached gives a generator [eki ] ofHk(Pκ,Pκ−) = Hk(Pκ+ε,Pκ−ε) = ⊕rk

i=1F[eki ],
where rk is the number of all critical points of index k on level κ. We consider the
following long exact homology sequence of the pair (Pκ+ε,Pκ−ε) with respect to F:

→ Hk+1(Pκ+ε,Pκ−ε)
∂k+1−→ Hk(Pκ−ε)

ik−→ Hk(Pκ+ε)
jk−→ Hk(Pκ+ε,Pκ−ε)→

We say that a critical point of index k on level κ is of linking type (with respect to
F), if each generator [eki ] of Hk(Pκ+ε,Pκ−ε) is in the image of jk, or equivalently, if
∂k([e

k
i ]) = 0. If every critical point of index k on level κ is of linking type, we call

any k-cycle z of Pκ+ε with jk([z]) = [eki ] for some i a linking cycle. If all critical
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points of index l for l ≤ k + 1 on level κ are of linking type, then we can read off
the exact sequence

0 → Hl(Pκ−ε)
il−→ Hl(Pκ+ε)

jl−→
rl⊕
i=1

F[eli] → 0

for all l ≤ k from the long exact homology sequence above. This sequence clearly
splits, so Hl(Pκ+ε) = Hl(Pκ−ε) ⊕ (⊕rl

i=1F[eli]) for l ≤ k. Now we assume that all
critical points of index l for l ≤ k + 1 are of linking type. Let s be a regular value
of Ep. By induction it follows that for each l ≤ k we have

Hl(Ps) = Fr,

where r is the number of all critical points of index l of level smaller than s. In
particular, ϕ is k-taut.

Thorbergsson proved in [Th1] that a compact proper Dupin hypersurface in Sn is
taut with respect to Z2 by constructing concrete linking cycles. Ewert states that a
proper immersion ϕ : M → N with parallel focal structure and a globally flat normal
bundle is taut ([Ew], Theorem 2.19). But his proof contains a gap as Thorbergsson
pointed out to me. If N contains no conjugate points, his construction of linking
cycles is correct. In this case he constructs like Thorbergsson a variation of a given
normal geodesic γ : [0, l] → N of length l to a regular point p. Then there are
ti ∈ R, i = 1, . . . k with 0 < t1 < · · · < tk < l, sucht that γ|[0, ti] is a focal geodesic
with multiplicity µi and any focal geodesic segment on γ is covered this way. The
desired variation λ : K → P is defined on an iterated fiber bundle K, one iteration
for every focal point γ(ti) (increasing the dimension by µi). Each λ(x) is a broken
geodesic of length l such that for a vertex λ(x)(t) we have t = ti for some i. In
the case that N has conjugate points, Ewert adds an iteration for any conjugate
point/focal point of vertical type on γ. But then a focal point of horizontal type can
cross a focal point of vertical type in this variation λ. Thus K is more complicated
than an iterated fiber bundle and it is not clear if K is a manifold at all. We restate
Ewert’s Theorem 2.19 below as Theorem 4.20.

For our considerations understanding 0-tautness is enough. The construction of link-
ing cycles is then much simpler. In the proof below, we follow Ewert’s construction
of these cycles. Please note the following: Ewert states that a proper immersion
ϕ : M → N with parallel focal structure and a globally flat normal bundle in a
simply connected symmetric space is 0-taut, thus embedded. This is not true. Con-
sider an example of ϕ : M → N , where M is not simply connected, meeting the
requirements of the statement. Then there is a covering map p : M ′ → M of finite
degree and ϕ ◦ p is not an embedding, contradiction. Indeed, the cycles constructed
in [Ew], Lemma 2.10, are only linking cycles for embeddings. Therefore the line of
argumentation must be reversed. First we show that ϕ factorizes finitely over an
embedding ϕ0; then we show that ϕ0 is 0-taut with the technique of linking cycles.
Moreover, we extend his result to non-trivial normal holonomy and relate it to the
cut locus and to exceptional leaves.
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Theorem 4.19 Let ϕ : M → N be a proper immersion with parallel focal structure
with finite normal holonomy into a simply connected symmetric space N . Then ϕ
factorizes finitely over a 0-taut (with respect to F) embedding that has a globally flat
normal bundle. There are no exceptional parallel submanifolds and the cut locus of
M only consists of focal points.

It is well-known that a closed hypersurface M of a simply connected manifold N is
orientable and thus has a globally flat normal bundle. If the codimension is greater
than one we have to argue differently.

Proof of Theorem 4.19 By remark (3) following Lemma 3.2, ϕ factorizes finitely
over an embedding. So we can assume that ϕ is this embedding. Let p be a regular
point in N with respect to the normal exponential map of M . Let γ ∈ P be an
arbitrary critical point of index 1 of Ep, i.e., γ is a normal geodesic of index 1,
with Ep(γ) = κ. Let e1 be the corresponding 1-cell in Pκ+ε attached to Pκ−ε. Let
v ∈ νxM,ϕ(x) = γ(0) with γv = γ, and let t0v, 0 < t0 < 1 be the focal normal with
multiplicity 1. First we assume that v is a focal normal of horizontal type. Let F
be the footpoint set of the associated focal leaf. By the remark after Theorem 4.3
this set is a submanifold on which we can extend v to a parallel normal field, also
denoted by v. Since F is 1-dimensional and compact we have F ∼= S1. We construct
a variation λ : F → P of γ by

λ(y)(t) :=

{
η(tvy) if t ∈ [0, t0]
γ(t) if t ∈ [t0, 1]

This smooth map is injective and Ewert deforms it under the negative gradient flow
of Ep to a map λ′ : F → P that has a unique non-degenerate maximum in x. If we
denote the generator ofH1(F ) = H1(S

1) by z′, then z := λ∗(z
′) = λ′∗(z

′) ∈ H1(Pκ+ε)
is a so-called Bott-Samelson cycle, a special kind of linking cycle (see [PaTe]), with
j1(z) = [e1]. Now we assume that v is a focal normal of vertical type, i.e., γ(t0)
is conjugate to x along γ in Σx with multiplicity 1. Since Σx is a symmetric space
as a totally geodesic submanifold of N , an S1-action fixing x and γ(t0) applied to
γ|[0, t0] gives an S1-familiy of geodesics from γ(0) to γ(t0). We extend this variation
as above to a map λ : S1 → P and Ewert proves that also z := λ∗(z

′) ∈ H1(Pκ+ε),
where z′ is the generator of H1(S

1), is a linking cycle with j1(z) = [e1]. Thus
every critical point of index 1 is of linking type, which implies that ϕ is 0-taut. As
N is simply connected, b0(P ,F) = 1 by the homotopy sequence for the fibration
P → M ; (x, γ) 7→ x, and Ep has only one local minimum. If there is a cut point
that is not a focal point we would have at least two local minima by the definition
of a cut point, contradicting 0-tautness. Assume now that there is an exceptional
parallel manifold M ′ of M . We choose ε > 0 smaller than the injectivity radius
of M ′, p ∈ M ′ and v ∈ νpM

′ with non-trivial holonomy degree and ‖v‖ < ε. Let
w 6= v in νpM

′ be a normal parallel translation of v. The endpoints of v and w are
contained in M ′

v ∩ Dp, where Dp is a Dirichlet region for M ′
v ∩ Σp. We know from

our previous observations that any two elements of M ′
v ∩Dp have the same distance

to p in Σp. Hence the geodesics γv|[0, 1] and γw|[0, 1], if parameterized in reverse
direction, are minimal for M ′

v. By the choice of ε they have index 0. Therefore there
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are at least two minima of Ep : P(N,M ′
v × p) → R. Since also M ′

v is 0-taut, this is
a contradiction. In particular, M has a globally flat normal bundle. ut
Remark The assumption that N is a symmetric space was necessary to construct
cycles if the focal point on γ is a conjugate point. Therefore, if Σ is a symmetric
space or if it has no conjugate points, e.g., if M is equifocal, we can drop the
symmetry of N .

Theorem 4.19 has the following converse. IfM is a closed and embedded submanifold
with parallel focal structure such that its cut locus only consists of focal points of
horizontal type, then b0(P ,F) = 1 for any regular point p ∈ N and M (but not
necessarily every parallel submanifold) is 0-taut with respect to F: Let p be an
arbitrary regular point. Since p is not in the cut locus, there is a unique minimal
normal geodesic from M to p. Any other normal geodesic from M to p thus has to
pass the cut locus and is therefore not of index 0 (note that here we use Remark(1)
after Lemma 3.2). So µ0(Ep) = 1 and therefore, by the first Morse inequality,
b0(P ,F) = µ0(Ep) = 1 (if P 6= ∅).
Theorem 4.20 (Ewert) A proper immersion ϕ : M → N with parallel focal struc-
ture in a symmetric space of noncompact type factorizes finitely over a taut embed-
ding.
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5 Appendix

We want to introduce a natural metric on the Grassmann bundle Gk(TN). Let
O(TN) → N be the principal bundle of all orthonormal m-frames on TN , where
m = dimN . An orthonormalm-frame z over TpN can be seen as a linear isometry z :
Rm → TpN , the identification being z 7→ (ze1, . . . , zem), where {ei} is the canonical
base of Rm. Then the orthogonal group O(m) acts naturally on O(TN) from the
right. For any X in the Lie algebra L(O(n)) of O(n) we define the fundamental
vector field X̃ on O(TN) by

X̃z =
d

dt

∣∣∣∣
t=0

z · exp(tX),

for z ∈ O(TN). Let L(O(n)) be endowed with the Ad-invariant scalar prod-
uct that is unique up to a factor. Let z ∈ O(TN) and let Fz = z · O(n) be
the fiber of O(TN) → N through z. We endow TzFz with the scalar product
such that z̄ : L(O(n)) → TzFz;X 7→ X̃z becomes a linear isometry. Because of

Rg∗X̃z = (Ãdg−1 X)zg we obtain an O(n)-invariant fiber metric on O(TN) → N .
The horizontal distribution on O(TN) → N induced by the connection on N is
invariant under O(n). Therefore O(TN) carries an O(n)-invariant metric such that
the bundle projection O(TN) → N is a Riemannian submersion.

The Grassmannian Gk(Rm) carries an O(n)-invariant metric that is unique up to a
constant factor. With the given metrics, O(n) acts isometrically on O(TN)×Gk(Rm)
from the left by g ·(z, V ) = (zg−1, gV ). We write O(TN)×O(n)Gk(Rm) = (O(TN)×
Gk(Rm))/O(n) for the quotient. This fiber bundle over N is the associated bundle to
O(TN) with typical fiber Gk(Rm), which is the Grassmann bundle Gk(TN). Since
O(n) acts by isometries on O(TN)×Gk(Rk), we can endow Gk(TN) with the unique
metric g′ such that O(TN)×Gk(Rm) → Gk(TN) is a Riemannian submersion. Also
note that, since the horizontal distribution on O(TN)×Gk(Rm) → N is preserved
under O(n), the projection of this distribution gives a horizonal distribution on
π′ : Gk(TN) → N . Let V ∈ Gk(TN) be a k-plane over a point p ∈ N spanned by
an orthonormal k-frame (v1, . . . , vk). Then the horizontal lift c̃ of a curve c in N
with c(0) = p to V is given by

c̃(t) = span
{

(
t

‖
0

c)v1, . . . , (
t

‖
0

c)vk

}
.

In particular, the tangent bundle TΣ of a totally geodesic submanifold Σ of N is
horizontal.
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