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Chapter 1

Introduction

Transition-metal oxides exhibit a vast panopticum of remarkable phenomena such as
ordered states of spin, charge, and orbitals. These states along with the corresponding
low-energy excitations are particularly interesting in low dimensions. For instance the
unconventional superconductivity in the two-dimensional (2D) cuprates gave a special
boost to the field of low-dimensional quantum magnets. The undoped parent compounds
contain stacked layers of CuO2, which are supposed to be the best representations of
2D square-lattice Heisenberg antiferromagnets (AF) discovered so far. Since the spin
of the involved Cu2+ ions is just 1/2 and since the number of neighbors on the square
lattice is rather small, strong quantum fluctuations emerge that hinder long-range order.
These fluctuations most likely play an important role in explaining high-temperature
superconductivity, that arises upon doping with charge carriers. Up to now, numerous
ideas have been published but still no single theory can explain all the strange findings
such as the linear temperature dependence of the resistivity in the normal state, the
pseudo gap, or the origin of the pairing mechanism itself. Not even the exact ground
state of the undoped 2D square-lattice Heisenberg AF with spin S = 1/2 is known so
far.1 However, analytical, semianalytical, and numerical techniques suggest AF long-
range order with reduced staggered magnetization compared to the classical value. A
comprehensive review on corresponding calculations is given in reference [1].

As a consequence of the difficulties in 2D, the quest for other materials containing
one- and two-dimensional copper-oxide structures yielded a whole bunch of new magnetic
features. 1D systems, for instance, provide a good testing ground to verify theoretical
models that are exactly solvable. Moreover, numerical calculations on clusters with many
sites can be counterchecked. To name but two examples, the spin-1/2 chain compound
Sr2CuO3 or the first inorganic spin-Peierls substance CuGeO3 inspired much research ac-
tivity. Even a step closer to the two-dimensional problem are spin ladders with a topology
somewhere in-between 1D and 2D. By adding more and more chains to each ladder, the
dimensional crossover can be approached. To stay within the ladder terminology, each
chain gets labelled as a leg, accordingly with perpendicular rungs in-between (see fig-
ure 1.1). Early calculations demonstrated that this crossover does not evolve smoothly.
Instead, the physics strongly depends on if there is an even or an odd number of legs
involved [2].

1The finite inter-layer coupling in the real materials induces long-range Néel order below an ordering
temperature of typically 300 to 400 K.
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4 Chapter 1 Introduction

The theoretical study by Dagotto et al. published in 1992 predicted superconductivity
in two-leg ladders upon doping with holes [3]. Two holes that are close-by show a tendency
to occupy the same rung, which means that there is an attractive interaction. Sigrist et
al. found that the order parameter exhibits d-wave-like symmetry, which resembles the
high-Tc cuprates [4]. After all, superconductivity was finally discovered in the doped two-
leg ladder system Sr0.4Ca13.6Cu24O41.84 by Uehara et al. in 1996 [5]. They applied high
pressures of 3 and 4.5 GPa and found superconducting onset temperatures of 12 and 9 K,
respectively. Yet it is not clear if the predicted mechanism is indeed responsible for the
observed superconductivity. An alternative explanation is that the couplings simply get
more two-dimensional under pressure.

Two-leg ladders with S = 1/2 exhibit a spin-liquid ground state with triplets as the
elementary excitations. The triplet dispersion shows a gap [3], which is contrary to both
1D Heisenberg chains and odd-leg ladders that have gapless excitation spectra. The so-
called telephone-number compounds (Sr,La,Ca)14Cu24O41 provide excellent realizations of
two-leg spin ladders, which are composed of the same corner-sharing plaquettes as the 2D
cuprates. High-quality single crystals of various compositions are available, which were
grown in mirror furnaces using the travelling-solvent-floating-zone method [6–8]. Apart
from the ladder subcell, there is a second incommensurate subcell of spin chains. Holes
doped into the compounds are expected to reside mainly in the chains [9], and charge
ordering occurs within the chains of Sr14−xCaxCu24O41 for x ≤ 5 [10].

In general, infrared spectroscopy is one of the most popular spectroscopic techniques
in solid-state physics. The breakthrough was the development of Fourier spectrometers,
which provide many advantages over conventional dispersive spectrometers in the infrared
range. By now, sophisticated devices are commercially available and can be found in many
physics and chemistry labs. The use of infrared spectroscopy to study magnetic excitations
proved already successful for the undoped 2D cuprates. The concept of phonon-assisted
bimagnon absorption in combination with spin-wave theory [11, 12] is able to explain
the sharp peak measured around 0.4 eV [13] in terms of an almost bound state of two
magnons, which here is called a “bimagnon”. Yet there are additional sidebands at higher
energies, which still cause a lot of discussion [14, 15]. In spin ladders we observe similar
infrared spectra, i.e. two sharp peaks and a further high-energy contribution. Thus it is
interesting to ask if there could be a real bound state in spin-ladder compounds.

For this quest of bound states in spin ladders, infrared spectroscopy is particularly
suitable compared to other standard spectroscopic techniques. For instance the bound-
state energies are quite high in cuprate ladders, which renders the quest for this state
quite challenging by means of neutrons. Raman scattering is sensitive to excitations with
vanishing total momentum, but the bound state only emerges at higher momenta. Infrared
absorption is also restricted to ktot = 0 excitations, but since the phonon participating
in the phonon-assisted magnetic absorption provides momentum according to 0 = ktot =
kph+kmag , it rather measures a weighted average of the magnetic spectrum over the whole
Brillouin zone.

In fact, the complete magnetic infrared spectrum could unambiguously be explained
in cooperation with the theoretical groups of Uhrig et al. from the University of Cologne
and Kopp et al. from the University of Augsburg. The double peaks are indeed due to
a bound state of two triplets, whereas the sidebands could be identified with the multi-
triplet continuum. Such bound states in spin ladders have already been predicted before
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Figure 1.1: Example of a small cluster
of a two-leg ladder with 10 rungs. Con-
trary to our experimental setup, this lad-
der is illuminated by two separate light
sources [28].

[16–23], but we were able to report the first experimental verification [24]. In addition
to this remarkable result, the comparison of theory and experiment also yields the set of
coupling constants along the legs and along the rungs. We could demonstrate that the
inclusion of a four-spin cyclic exchange into the Hamiltonian is necessary to accurately
reproduce the measured spectra and the spin-gap value determined by neutron scattering
[25] at the same time [26].

The concept of binding is fundamental in physics [27]. Here, we discuss 1D quantum
antiferromagnets, in which there are elementary excitations that carry a fractional spin
of S = 1/2, the so called spinons. In most systems, spinons are not free but confined and
form bound states with S = 1, i.e. triplets. The two-triplet bound state that we have
identified in the infrared spectra thus can be viewed as a bound state of bound states.
To illustrate the phenomenon of binding one can draw a parallel to, for instance, the
Coulomb interaction that binds electrons and atomic nuclei to form atoms.2 Afterwards
the interaction is mainly saturated, but there might still be some contribution left, that
e.g. leads to the formation of higher-order bound states, namely molecules tied together
by covalent bonds. The next hierarchy is then the formation of a solid by means of the
van-der-Waals interaction. Other examples are for instance electrons and holes that bind
to excitons and further on to biexcitons, or in the field of high-energy physics: quarks,
hadrons, and nuclei.

Scope of this Thesis

The excitement surrounding ladder compounds was originally triggered by theoretical
predictions of (i) the existence of a spin gap in the undoped phase and (ii) a transition
to a superconducting state upon hole doping [3]. Both predictions have been sufficiently

2Actually, the spin-spin interaction that leads to the formation of these magnetic bound states can be
traced back to the Coulomb interaction as well.



6 Chapter 1 Introduction

confirmed, and since 1992 a large amount of maybe 1000 papers on spin ladders has been
published. However, many aspects are still not clear. In particular, no other analysis of
the magnetic infrared spectra incorporating the mandatory transmittance measurements
on thin samples has been reported so far to our knowledge.

In chapter 2 some basics on low-dimensional quantum magnets and their elementary
excitations are discussed. After treating uniform and alternating Heisenberg chains, the
Heisenberg ladders as a bridge between 1D and 2D are introduced. Afterwards the read-
ers attention is turned to the telephone-number compounds (Sr,La,Ca)14Cu24O41, which
represent the most widely studied series of spin ladders.

In optical spectroscopy we probe the linear response of solids to an applied electric
field. This as well as the concept of phonon-assisted two-magnon absorption are briefly
summarized in chapter 3, before in chapter 4 details on the experimental setup are pre-
sented, which was put into operation within the framework of this thesis.

The infrared spectra of undoped telephone-number compounds are the subject of chap-
ter 5. In comparison with theoretical results it is possible to unambiguously identify the
signature of a bound state of two triplets and a multi-triplet continuum. The inclusion of
a cyclic exchange in the analysis enhances the agreement between theory and experiment
and reproduces the spin gap measured by neutron scattering. Thus the importance of this
exchange term for a minimal model to describe spin ladders is verified. The analysis yields
the complete set of the three relevant exchange couplings. The temperature dependence
of the phonon-assisted magnetic absorption is discussed, and the relationship between the
S = 1/2 two-leg ladder and the S = 1 chain is analyzed.

Chapter 6 deals with the effect of charge-carrier doping on the optical spectra. In
Sr14Cu24O41, charge ordering in the chain subsystem modulates the exchange coupling
along the ladders and thus leads to additional superstructure. Further mechanisms are
discussed that may explain some of the features in the doped compounds which are absent
in the undoped compounds of chapter 5.



Chapter 2

Low-Dimensional Quantum Magnets

In the following, low-dimensional antiferromagnets (AF) and their elementary excitations
are discussed. At first some basics are given, and then the attention is focussed on the 1D
chain. Afterwards more detail on the current state of spin-ladder research is presented.
Finally, the “telephone-number” compounds are introduced, which take the center stage
in this thesis.

2.1 Some Basics

The dimensionality of magnetic systems plays a crucial role when it comes to long-range
ordering, phase transitions, spin gaps or low-energy excitations. At first there is the
conventional dimension of the magnetic lattice d = 1, 2, 3, that corresponds to chains,
planes, and 3D models. Below, notations like d = 2 and 2D are used as a synonym. But
also the number n of spin components (x, y, z) has to be considered. The parameter n is
called the spin dimensionality and is always to be distinguished from d. It is e.g. possible
to have a 3D model with spin operators that just have one component along the z axis.
This would be the 3D Ising model with d = 3 and n = 1. For a given spin dimensionality
n > 1 one may in addition vary the number of interacting spin components described by

Spin Dimensionality Interacting Components Name of Model

Jx = Jy = Jz Isotropic Heisenberg
n = 3

Jx = Jy ; Jz = 0 XY
S 2 = S2

x + S2
y + S2

z Jz ; Jx = Jy = 0 Z

n = 2 Jx = Jy Planar
S 2 = S2

x + S2
y Jy ; Jx = 0 Planar Ising

n = 1
S 2 = S2

z

Jz Ising

Table 2.1: Classification of model systems. The different S 2 spin operators are given in
the left column. Note that the magnetic lattice dimension is not specified. In fact, all the
models may occur in 1, 2, or 3D. Based on references [29, 30].
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8 Chapter 2 Low-Dimensional Quantum Magnets

Figure 2.1: Inverse correlation length
along the chain axis for different d = 1
chain models versus a reduced tempera-
ture T ∗. At high temperatures, all n = 3
models approach the isotropic Heisenberg
limit. The calculations were performed
within the classical spin formalism. Note
that the classical Ising results are equal
to the quantum-mechanical S = 1/2 case.
Reproduced from reference [30].

the exchange constants Jx, Jy, and Jz, as illustrated in table 2.1. Of these models, the
Ising, Heisenberg, and XY models are probably the most popular ones. But of course
there are more possible combinations not listed in the table. For instance in three spin
dimensions and for Jx 6= Jy 6= Jz one gets the anisotropic Heisenberg or XYZ model.

To further illuminate this classification, one can e.g. have a look at the inverse corre-
lation length (see figure 2.1) and discuss the difference between the XY and the planar
model in 1D. In the XY model the interaction between the spins only has components
within the xy plane, whereas the spins themselves are free to rotate in all three directions.
In the planar model, however, the spins are confined to the xy plane. At low temperatures
the difference between the two models is not that significant. In the high-temperature
limit the XY model approaches the 1D isotropic Heisenberg model. This is due to the
thermal motion of the spins, which introduces a nonzero expectation value of the spin
component along the z axis, even though Jz = 0.

The isotropic Heisenberg model is often applicable to metal ions with open 3d shells.
In particular, it frequently describes systems with Cu2+ (S=1/2) or Mn2+ (S=5/2) ions
rather well.1 In all the models next-nearest-neighbor interactions are often neglected.
The reason is that in most considered materials the coupling is predominantly caused
by superexchange, which is of extremely short range (J ∝ r−n, n > 12) [32]. But the
superexchange is also very sensitive to the actual bond angle. 180◦ bonds lead to strong
AF exchange, whereas the exchange across 90◦ bonds is typically weak and ferromagnetic
according to the Goodenough-Kanamori-Anderson (GKA) rules [33].

In three spatial dimensions (d = 3) most magnetic systems develop long-range order if
only the temperature is sufficiently low. And this holds true independently from the spin

1However, on the basis of ESR data it has recently been demonstrated that the exchange within 1D
CuO2 chains is strongly anisotropic [31].
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dimensionality. The case of n=3 with just nearest-neighbor interactions can be described
by the general Heisenberg Hamiltonian

H =
∑

i

JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1 . (2.1)

Here again, Sx, Sy, and Sz denote the components of the spin operator S = (Sx, Sy, Sz),
whereas Jx, Jy, and Jz are the interactions for the different spin components, respectively.
In this convention, positive values of J are used for antiparallel coupling of neighboring
spins, i.e. antiferromagnetic coupling, whereas J < 0 means ferromagnetic coupling. Prob-
ably one of the best representations of a 3D Heisenberg antiferromagnet with spin S = 1/2
is KNiF3. This is a prototype system with 180◦ superexchange paths and a perovskite
structure [34].

The spin itself is another crucial quantity that determines the system. Quantum-
mechanically the spin is represented by operators with quantum numbers S = 1/2, 1,
3/2, 2, and so on. The crossover towards “classical” spin vectors is equal to S → ∞.
In this case the eigenvalue of the operator S 2 = S2

x + S2
y + S2

z , which is S(S + 1)~2,
can be replaced by S2~2. Quantum fluctuations disappear and the so-called Néel state
becomes the ground state (see figure 2.2). In a bipartite lattice there are two sublattices A
and B with, for instance, just spin-up and spin-down sites, respectively. In the absence of
frustration there is AF interaction only between A and B spins. If there is any interaction
within a sublattice, it is supposed to be ferromagnetic. Every deviation from this scenario
is then called frustration. MnO is an example of Néel order in three dimensions with
TN = 122 K [35]. As already mentioned above, the spin of the magnetic Mn2+ ion is
S = 5/2 and thus substantially larger than the quantum limit of S = 1/2.

More generally, all states that show finite sublattice magnetizations 〈SA〉 − 〈SB〉 6= 0
are labelled Néel states [36]. Therefore this definition also includes ferrimagnets. Above
the critical Néel temperature TN the order breaks down, and the system becomes para-
magnetic. However, below TN one axis gets singled out even if there is no intrinsically
favored direction within the crystal, which would be called an easy axis. This singled-out
direction is not imposed externally, and such a phenomenon is called spontaneous symme-
try breaking [27]. The Goldstone theorem states that in all cases with broken continuous
symmetries there are excitations with arbitrarily low energy [37]. These excitations are
called massless Goldstone bosons.

Figure 2.2: Classical Néel state in three di-
mensions of the magnetic lattice (d = 3). The
AF lattice of the magnetic ions is face-centered
cubic (fcc), whereas the corresponding paramag-
netic lattice is simple cubic (sc).



10 Chapter 2 Low-Dimensional Quantum Magnets

In 1D chains, on the other hand, there is no long range order above T = 0, regardless
of the spin dimension. Only the Ising chain exhibits order right at zero temperature.
Whether there is an ordered state in two lattice dimensions depends on the symmetry
of the Hamiltonian. The planar Ising model, for instance, orders at finite temperatures
[38], whereas Mermin and Wagner proved in their classical letter [39] that for isotropic
Heisenberg chains and planes with finite-range exchange interactions there cannot be
spontaneous ordering at any finite temperature.2 Thermal excitations disorder the spins
already at infinitesimally low temperatures. Yet at T = 0 in the 2D square lattice the
effect of zero-point quantum fluctuations is not strong enough [41], and thus the phase
transition occurs exactly at zero temperature. Another example is the XY model in 2D.
Kosterlitz and Thouless showed that no long-range order of the conventional type exists
[42]. Nevertheless, there is a state below a critical temperature TKT that is characterized
by a so-called topological order of spin vortices. Pairs of metastable vortices and antivor-
tices are closely bound and eventually become free above the phase transition at TKT . The
mean magnetization is zero for all temperatures [43]. However, such a Kosterlitz-Thouless
phase transition does not occur in the isotropic 2D Heisenberg model [42]. To sum up the
occurrences of phase transitions at finite temperatures depending on the different spin and
lattice dimensions, table 2.2 gives an overview of exemplary models for all combinations
of d and n.

d = 1 d = 2 d = 3

Ising (n = 1) ◦ X X
XY (n = 2) ◦ KT X
Heisenberg (n = 3) ◦ ◦ X

Table 2.2: Presence (X) or absence (◦) of a transition to conventional long-range order of
exemplary models at finite temperatures. The Kosterlitz-Thouless transition to topological
order is denoted by (KT). Based on reference [29].

The thermodynamic behavior of magnets can be treated with mean-field (MF) theory,
which is the simplest way to describe collective phenomena [44]. Nevertheless it has
been successful to qualitatively describe magnetic phase transitions in 3D systems. For
lower lattice dimensions, though, it appears to be inadequate since e.g. it predicts states
of long-range order regardless of d. MF theory rather applies to classical magnets, and
the actual critical temperatures Tc always lack behind the calculated MF values of θ =
zJS(S+1)/3kB [29]. The parameter z is called magnetic coordination number and denotes
the amount of nearest-neighbor spins. The discrepancy between Tc and θ increases when
spin fluctuations get more important. As a rule of thumb, these fluctuations become more
important upon

(i) lowering the lattice dimension d,

(ii) increasing the spin dimension n,

(iii) reducing the involved spin values,

2Essentially the same approach was used one year later by Hohenberg to exclude superfluidity at T > 0
in one and two dimensions [40].
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(iv) decreasing the number of nearest-neighbor spins z, or finally

(v) enhancing frustration.

The last point is particularly obvious in a triangular plaquette as sketched in figure 2.3a.
There is no possible solution for the three neighboring spins to get aligned antiferromag-
netically. However, the 2D triangular lattice indeed does exhibit long-range order. In the
classical limit the ground state is a Néel state with the spins arranged at 120◦ to each
other in three ferromagnetic sublattices (see figure 2.3b). But even in the quantum limit
of S = 1/2 there probably exists an ordered Néel ground state with a sublattice magne-
tization of as much as 50 to 60% of the classical value [45, 46]. The quite large magnetic
coordination number of z = 6 helps to stabilize the system against extra fluctuations due
to frustration. The situation is different for the Kagomé lattice with a lower value of z = 4
(figure 2.3c). Calculations indicate that there is no planar AF long-range order down to
zero temperature [46, 47]. In general, such systems with no extensive magnetic order at
T = 0 are called spin liquids. In analogy to real liquids there is, at the most, short-range
order. The Kagomé system shows rather unusual properties, but the frustrated S=1/2
chain with antiferromagnetic exchange is an exemplary spin liquid. In AF chains frus-
tration always emerges as soon as a further AF coupling between next-nearest-neighbor
spins is present.

The notion of spin liquids was first proposed by Anderson. He also introduced the
corresponding resonating valence bond (RVB) state that is contrary to the classical Néel
state [48, 49]. In zeroth order the RVB model assumes a ground state consisting of nearest-
neighbor singlet pairs. Higher-order corrections then allow the singlet pairs to move or
“resonate”, which makes this insulating singlet state more stable [49]. The actual state
of the system is a linear superposition of such valence-bond singlets, corresponding to
all possible pairings of sites into singlets with appropriate weight factors [50]. At this
juncture it is sufficient to consider only bonds from one sublattice to the other. A simple
visualization of such a product state in 1D is attempted in figure 2.4.

One of the main characteristics of RVB states is the absence of long-range order.
Therefore it is not surprising that the above mentioned factors that enhance spin fluctua-
tions just as much favor the RVB state. For instance, rough estimates of the energies yield
for the Néel case ENéel = −S2zJ/2 per spin and accordingly ERVB = −S(S+1)J/2 for the

??
(a) (b) (c)

Figure 2.3: (a) Illustration of the no-win situation on a triangular plaquette with anti-
ferromagnetic coupling. This frustrated arrangement enhances spin fluctuations. (b) Nev-
ertheless, the triangular lattice does exhibit a Néel ground state with three ferromagnetic
sublattices. (c) An example of a spin liquid without long-range order is the Kagomé lattice.
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Figure 2.4: Sketch of a possible RVB prod-
uct state in 1D. The spin arrows might be mis-
leading since in fact the singlets do not favor
any direction.

RVB case [36]. Hence larger values of the spin coordination number z swiftly promote the
classical limit. Increasing the spin has the same effect, though not as drastically. When
the size of the superposed singlets in the RVB state stays finite, there will be a spin gap
in the excitation spectrum. The gap energy then corresponds to the energy required to
break up the “cheapest” singlet. However, in the case of infinitely large bonds also the
Néel state can be described as a superposition of appropriate RVB states. With increasing
bond length Monte Carlo simulations on the square lattice in reference [50] indicate disor-
dered RVB states of very low energy. That shows that the RVB state gets competitive to
a gapless Néel state with Goldstone excitations. Thus the difference between both types
of states vanishes as soon as infinite-range singlets are included.

2.2 Antiferromagnetic Heisenberg Chains

From the above it becomes clear that the ground state of an antiferromagnetic 1D spin
system is of exotic nature with quantum fluctuations impeding magnetic order. Theo-
retical physics dealt with such systems since the early days of quantum mechanics as a
simple model for many-body effects. The Hamiltonian of the Heisenberg spin chain can
be written as

H = J
∑

i

(SiSi+1 + αSiSi+2) . (2.2)

The second term accounts for next-nearest-neighbor interactions. Therefore, with increas-
ing the parameter α frustration gets enhanced. In the following, at first the frustration is
switched off, i.e. α = 0. The classical ground state of the ferromagnetic case (J < 0) is
simply the parallel alignment of all spins. However, in the AF case it is easy to demon-
strate that the classical Néel state cannot be the ground state. With the help of raising
and lowering operators

S± = Sx ± iSy (2.3)

the Hamiltonian 2.2 (still with α = 0) can be rewritten as

H = J
∑

i

[
1

2
(S+

i S
−
i+1 + S−i S

+
i+1) + Sz

i S
z
i+1

]
. (2.4)

The mentioned classical ground state |ψ> would very well satisfy the spin-test relation

Sz
i |ψ> = ±S|ψ> , (2.5)
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but it is obvious that the inner bracket of Hamiltonian 2.4, applied to the Néel version of
|ψ>, transposes the spins of neighboring sites. Therefore the Néel state is not an exact
eigenstate of the AF Hamiltonian.

Without frustration the model is exactly solvable, and the ground-state wave function
of the Heisenberg chain with S = 1/2 was already determined by Bethe back in 1931
[51, 52]. Using Bethe’s solution it was Hulthén [53] who first calculated the exact ground-
state energy eight years later for the AF case as

EG = −N (ln 2− 1/4) . (2.6)

Explicit results for other physical quantities emerged slowly at first and only faster since
around 1960. Of course interest in this model began to spread as soon as the first AF chain
compounds became available. The total spin of the ground state is zero. Yet this state is
somewhere in-between the Néel and the RVB state. The missing sublattice magnetization
and the pronounced local singlet character of the wave function place it close to the RVB
description. But as in the Néel state there is no excitation gap, and there are strong AF
correlations since the decay follows a power-law [36].

As soon as frustration is allowed in the AF chain by increasing α, the RVB state gains
ground in this contest. Many calculations were carried out for S = 1/2: In the case
of α = 1/2, which is known as the Majumdar-Gosh point, the ground state is a dimer
state consisting of a product of merely nearest-neighbor singlets [54–57]. It is two-fold
degenerate and characterized by an excitation gap as well as the exponential decay of the
spin correlation. In particular, the two-point correlation function < S i · Sj > vanishes
whenever |i − j| = 2, i.e. there is no correlation between adjacent singlets. The ground
state energy amounts to E0 = −3/8J per spin as proven by van den Broek for infinite
chains [58]. But there has to be a transition somewhere on the way from the gapless
state at α = 0 to the pure RVB state with gap at α = 1/2. Numerical calculations yield
rather precise values [59, 60]. At first, the excitation spectrum stays continuous but at
the critical point of α = 0.24116(7) the energy gap finally emerges [60]. In section 5.3.3
more detail on the phase diagram of the chain is presented.

2.2.1 Elementary Excitations

Now the attention is turned to the excitations themselves. Before 1981, the excitations
of S = 1/2 chains were generally assumed to be triplet spin-wave states with momentum
k and spin S = 1 [61]. At least this was expected because of the situation in three-
dimensional AF systems, where excitations are equal to delocalized spin flips with ∆S =
±1. However, Faddeev and Takhtajan introduced the spinon with spin S = 1/2 as the true
elementary excitation in 1D [62].3 Later, Haldane spoke of topological soliton excitations
[64], since a spinon can be pictured as a movable domain wall within the chain, that
separates two degenerate ground-state configurations. This image even works for Néel
and RVB types of ground states. The Néel case is depicted in the top panel of figure 2.5.

3It was already in 1979 that Andrei and Lowenstein discovered the spinon in a different context. They
diagonalized the Hamiltonian of the Gross-Neveu model and found excitations with spin 1/2 that only get
excited in pairs, and they called these excitations spinors [63]. The Heisenberg model was not mentioned,
but they used a modified Bethe ansatz which also holds true for the Heisenberg AF. All the spinon credit
is usually booked to Faddeev’s and Takhtajan’s account, though.
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a)

b)

Figure 2.5: Representation of spinons as domain walls. The momentum of the sketched
excitations is “k = π”. Panel (a) represents the Néel case, and panel (b) the RVB case. In
contrast to figure 2.4 on page 12, here the misleading spin arrows within the RVB singlets
are omitted. Note that spinons can only be excited in pairs.

The spin of 1/2 can be recognized especially in the RVB representation (figure 2.5b) due
to the single unpaired spin. Both pictures are to be understood as oversimplifications,
though. The RVB state for instance consists of singlets of different range, whereas the
idealized Néel state does not exist anyway because of the fluctuations. Moreover, the
spinon is not only the simple domain wall of figure 2.5, but it polarizes the environment.
This leads to some sort of polarization cloud [27].

Depending on if there is an even or odd number of spins, the total spin of the chain
is either integer or half-odd integer. In chains with an odd number of sites there always
has to exist at least one spinon. Actually, whether the total spin is integer or half-odd
integer is a fundamental property of the system and cannot be changed by any excitation.
Although the spinon indeed is the elementary excitation, a single spinon would change
the total spin by 1/2, and thus the excitation of a single spinon is not allowed. Instead,
always two spinons are created simultaneously. In the Néel case it is easier to excite two
spinons close to each other because all the spins in-between have to be flipped around.
And in the RVB state a singlet gets excited to a triplet, which directly yields two adjacent
spinons.4 Afterwards there is almost no confinement anymore that would tend to keep
the spinons close-by. In fact, there is an interaction due to the polarization clouds, but
the larger the distance between the spinons gets, the smaller the interaction is. This is
meant by speaking of asymptotically free spinons.

Also important to note is that spinons cannot be gapless excitations in dimensions
higher than one.5 Domain walls are always objects of dimension d − 1 when the lattice
dimension is d. But this means that the energy gets proportional to Ld−1 with L being
the linear size of the system. Always when d ≥ 2, the energy exceeds all limits with
increasing system size. This is not reasonable for elementary excitations [36].

The next step is to calculate the momentum or wave vector k of the spinons. For each
eigenfunction |ψ> the quantum number k is defined by the relation

T |ψ> = eik |ψ> , (2.7)

where T is the operator that translates the entire chain by one lattice spacing [61]. To
gain the dispersion of a single spinon one could for instance test the varying “ground-state

4Of course this is only true for the pure RVB state. In case of long-range bonds the two spinons are
separated right away.

5Actually, this point is still under discussion. For instance Moessner and Sondhi claim that there are
gapped spinons in the 2D triangular lattice [65].
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energies” of an odd-number chain with respect to different momenta. At this point, the
naive picture of figure 2.5 for spinons as local domain walls breaks down. For values of k
smaller than π the domain wall gets delocalized and sort of smears out. The corresponding
wavelength of the spinon is λ = 2π/k. Therefore a state with vanishing momentum will
occupy the whole length of the chain and the notion of a domain wall is obsolete. The
first dispersion relation for the AF S = 1/2 chain was calculated by des Cloizeaux and
Pearson [61], long before the spinons were invented. Their result was

EL(k)

J
=
π

2
| sin(k)| . (2.8)

These spin-wave states are now understood to be a superposition of two spinons. The
wave vector of two spinons is equal to the sum of both the single values k = k1 + k2.
Thus there is always one free parameter when a double spinon with total momentum
k is excited, and the real excitation spectrum will actually be a two-spinon continuum.
The lower boundary is given by the equation from above whereas the upper boundary
corresponds to two spinons with:

EU(k)

J
= π | sin(k/2)| . (2.9)

The continuum between lower boundary EL and upper boundary EU is marked as shaded
area in the left panel of figure 2.6. By now, there are nice experimental verifications
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Figure 2.6: Left panel: Two-spinon continuum as shaded area between the boundaries
of equations 2.8 and 2.9. The unit of the wave vector is in fact π/a, where a is the lattice
constant. But as usual, a is set to unity. Right panel: Exact result of the dynamical
structure factor S(k, ω) at T = 0 reproduced from reference [66]. Here ω denotes the
energy as is common in spectroscopy (see section 3.2). Again the continuum is marked as
shaded area. But contrary to the left panel only momenta up to k = π are shown. The
intensity plotted along the upright axis diverges at the lower boundary of the continuum
and approaches zero without any discontinuity at the upper boundary.
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by means of inelastic neutron scattering, which is the experiment of choice to check
dispersions. KCuF3 for instance turned out to be an appropriate candidate for the S = 1/2
AF Heisenberg chain [67]. This compound shows 3D long-range order below TN ≈ 39 K
but exhibits almost ideal 1D chains above this temperature [68].

Measured scattering intensities are always weighted by the dynamical structure factor
S(k,E), and especially in the case of continua it is not clear where to expect neutrons
without model calculations.6 Finally, Tennant et al. measured KCuF3 [68, 70] and com-
pared their intensities with calculations in the low-energy and zero-temperature limit by
Schulz [71]. They measured along a line in the energy-momentum plane, as indicated in
figure 2.7a, and found excellent agreement of their spectrum with the model data (figure
2.7b). As theoretical tools evolved further, the approximate structure factor used so far
got replaced by exact results in 1997. The data of Karbach et al. [66] is shown in the
right panel of figure 2.6. Again drawn as shaded area is the two-spinon continuum from
the left panel, and the upright axis represents the dynamical structure factor. At the
lower boundary the intensity diverges, whereas it approaches zero continuously at the
upper boundary. The latter point actually marks the main difference compared to the
older approximation which reveals a discontinuity at the upper boundary. But there is
yet another interesting statement in the paper of Karbach et al. [66]. With the aid of sum
rules it is possible to calculate that the two-spinon excitations account for approximately
73% of the total intensity in S(k,E). The rest of the overall spectral weight is due to
excitations of more than two spinons. In the next section about spin-Peierls systems a
nice experimental mapping of a complete spinon continuum is presented.

What happens in AF chains when the spin is larger than 1/2? One of the first points
to clarify is the occurrence of a spin gap between the ground state and the first excited
state. It was Haldane who used a semiclassical approach and predicted that Heisenberg
chains with integer spins do exhibit energy gaps and thus are significantly different from
half-odd-integer chains that show gapless excitation spectra [64]. The latter was already

6In the case of inelastic neutron scattering the momentum and the energy of the incident neutrons are
changed. The intensity I of neutrons with energy dE′ that is scattered into the solid angle dΩ is directly
proportional to the scattering cross section: I ∝ d2σ

dΩ dE′ . This cross section again is proportional to the
dynamical structure factor Sαβ(k, E). Here, k and E mean the changes of momentum and energy in
the scattering process and thus are equivalent to momentum and energy of the observed excitation. The
parameters α and β denote the x, y and z components of the spin operator. In Heisenberg systems with
no spin anisotropy the structure factor vanishes for all α 6= β. Often the structure factor is also called
spectral density or scattering function. Finally, the intensity is related to the Fourier transform of the
spin-spin correlation function <Sα

0 (t = 0) ·Sβ
R(t)>. The stronger the correlation the more peak intensity

can be expected. This can be deduced from the van Hove scattering function [69]. For simplicity, just
contributions parallel to the z direction are considered, i.e. α = β = z

I ∝ d2σ

dΩ dE′ ∝ Szz(k, E) ∝
∑
R

∫ ∞

−∞
eikR−iEt/~ <Sz

0 (0) · Sz
R(t)> dt . (2.10)

Neutron scattering hence measures directly the space-time Fourier transform of the (time-dependent) two-
spin correlation function. Following the fluctuation-dissipation theorem, the structure factor furthermore
is proportional to the imaginary part of the dynamical susceptibility χ′′(k, E) times the Bose distribution

Sαβ(k, E) ∝ χ′′(k, E)
1

1− e−E/kBT
. (2.11)
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Figure 2.7: Neutron scattering data of KCuF3 re-
produced from reference [70]. (a) This continuum is
equivalent to the one in the left panel of figure 2.6,
though turned by 90◦. The measurement was per-
formed along the given line. Scattering intensity is
observed when this line intersects with the continuum
states as indicated by bold lines. (b) The result-
ing three features at the corresponding energies can
clearly be seen in the spectrum. The dashed line de-
notes the fit to the background. The line shape is
reproduced very well by the model fit using the cal-
culated dynamical structure factor. The temperature
was 20 K and thus it is interesting to note that the
1D quantum effects are dominant well below the 3D
ordering temperature of TN ≈ 39 K. Yet there is no
drastic change up to 200 K except for the usual weak-
ening and broadening of the features.

proven in reference [72]. Rigorous evidence for the meanwhile called Haldane gap was
given later by Affleck et al. in reference [73]. As a consequence of a topological term
in the field-theoretical formulation of the problem, the spinons are bound when the spin
is integer. This leads to well defined, spin-wave-like modes that are separated from the
ground state by the Haldane gap [70].

2.2.2 Alternating Chains and Spin-Peierls Transition

The model of the alternating Heisenberg chain is a straightforward generalization of the
so far discussed uniform chain. Now the spin-spin interaction alternates between the two
values J1 and J2 from bond to bond along the chain. In real systems this may be the
consequence of the crystallographic structure such as different superexchange paths or
just alternating distances between neighboring spin sites (see figure 2.8). The insulating
magnetic salt (VO)2P2O7 (VOPO) is an example [74, 75] although there was some con-
fusion in early papers, where VOPO was mistaken for a spin-ladder compound.7 Further
candidates are CsV2O5 [80] and the organic compounds (CH3)2CHNH3CuCl3 [81] as well
as Cu2(C5H12N2)2Cl4 [82]. But again, it is difficult to extract the correct magnetic config-
uration from the available data. For example, the calculated susceptibilities of different

7VOPO (vanadyl pyrophosphate) has been widely considered to be a candidate for a two-leg AF
Heisenberg spin ladder with legs running along the a axis [76–78]. However, more recent results from
inelastic neutron scattering on powder samples [79] were inconsistent with the ladder model. Finally,
neutron data on single crystals published somewhat later [74] verified that VOPO is instead an AF
Heisenberg chain system with alternating couplings along the b axis. Thus the chains run perpendicular
to the assumed ladders. The magnetic V4+ ions have spin 1/2, and there is weak ferromagnetic interchain
coupling. In general, it is difficult to distinguish between the two models from static susceptibility or
neutron data of powder samples.
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J1 J2

Figure 2.8: Example of an alternat-
ing chain. The interaction J1 within a
dimer is stronger than the interaction J2

between the dimers. The lattice spac-
ing is doubled compared to the uniform
chain.

spin models often agree that much that all of them reproduce the experimental data
better than the agreement between different measurements of the same compound [82].
Accurate calculations of the magnetic susceptibility and of the specific heat for different
systems were given by Johnston et al. [83].

The new magnetic Hamiltonian has reduced translational symmetry due to the dimer-
ization, and just including nearest-neighbor interactions it reads as follows

H =

N/2∑
i=1

(J1 S2i−1S2i + J2 S2iS2i+1) . (2.12)

It is common to define an inter-dimer coupling parameter λ = J2/J1 with 0 ≤ λ ≤ 1.
In the case of unity one simply gets the isotropic chain with gapless excitations, and
for vanishing λ the system is reduced to uncoupled dimers. Then a gap occurs which is
equivalent to the breakup of a single dimer8 and thus Egap = J1. In-between there is the
regime of coupled AF dimers in a singlet S = 0 ground state with a gap to the lowest
S = 1 triplet excitation. A continuum of excitations sets in at 2Egap. Both the triplet
gap and the continuum edge were observed in CuGeO3 by means of inelastic neutron
scattering [84] (see below). Analytical results can be derived using perturbation theory
about the isolated dimer limit, i.e. λ = 0. But real systems often are closer to the critical
point of the uniform chain. VOPO for instance has a value of λ = 0.8 [74]. And copper
germanate (CuGeO3), which is discussed below, exhibits an λ around 0.95 [85, 86].

Another approach is to distort the uniform chain in terms of the distortion parameter
δ = 1−λ

1+λ
. With the average value of J̃ = J1+J2

2
the alternating couplings become

J1 = J̃(1 + δ) and J2 = J̃(1− δ) . (2.13)

Finally, the Hamiltonian 2.12 can be rewritten as

H = J̃
∑

i

(1 + (−1)i δ)SiSi+1 . (2.14)

Cross et al. [87] as well as Black et al. [88] discuss such weak dimerization and following
their approach, which involves a Jordan-Wigner transformation9, the gap energy is

lim
δ→0

Egap

J̃
∝ δ2/3√

| ln δ|
. (2.15)

8The Hamiltonian of a single dimer reads H = J S1S2 = J
2 (S1 + S2)2 − 3J

4 . Therefore one finds a
singlet energy of ES = −3J/4 and a triplet energy of ET = ES + J = 1/4J .

9The Jordan-Wigner transformation [89] allows to map a one-dimensional S = 1/2 system exactly
onto interacting fermions without spin.
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Figure 2.9: Spinon dispersion of
an alternating chain for different inter-
dimer couplings λ = J2/J1 [91]. Note
that in the figure α is equal to λ. When
comparing the result of the uniform
chain at λ = 1 with the former spinon
dispersion on page 15, one has to keep
in mind that here the lattice spacing b
is doubled. Therefore the dispersion for
the uniform chain given here is equal
to the first arc of the lower boundary
of figure 2.6(left). Again, the energy is
denoted by E = ~ω with ~ set to unity.

Contrary to the intrinsically dimerized compounds described so far, alternating chains
may also arise as a result of the spin-Peierls effect. In this case the spin chains are not
isolated anymore but instead a coupling to the phonons of the complete lattice has to be
included. A spatial dimerization of the ionic positions along the chain yields alternating
interaction strengths and results in the lowering of the magnetic ground state energy.
But as usual this advantage has to be paid for by an increase of lattice energy. The
corresponding phonon contribution to the energy dominates at large distortions. An
equilibrium will be reached at the lowest possible ground state energy. The spontaneous
dimerization that occurs with decreasing temperature at TSP is known as the spin-Peierls
effect. In fact, a second-order phase transition occurs at TSP . And since the lattice
instability is driven by magnetic interactions, this transition is called magneto-elastic.
The resulting magnetic Hamiltonian is equal to the given alternating chain Hamiltonian
(equation 2.12 or 2.14). But when the temperature is decreased even further, a new
equilibrium will be adopted and the dimerization gets stronger. Therefore λ becomes
inherently temperature dependent.

The first inorganic example of a spin-Peierls compound is CuGeO3, which was discov-
ered in 1993 [90]. The crystals are light blue, similar to “Wick Blau” r, the German
brand of Vicks cough drops. So far no other inorganic system has been proven to exhibit a
spontaneous dimerization. The transition occurs at TSP = 14 K, and below this tempera-
ture the magnetic susceptibility rapidly drops for all three directions to small constant
values. However, the role of competing next-nearest-neighbor (NNN) interactions was
discussed as an extension of the model in order to explain the susceptibility data. The
frustration has the effect of increasing the transition temperature [85]. The admixture of
NNN coupling was estimated to be somewhere between 0.24 and 0.36 [85, 86] and thus
possibly beyond the critical value of 0.2412 at which a gap would occur even without
dimerization (see page 13).

Dispersion relations of the magnetic excitations were presented in reference [91, 92].
The calculations were based on a combination of the Lanczos algorithm and multiple-
precision numerical diagonalization to determine perturbation series to high order. In
figure 2.9 the result is shown for a number of different inter-dimer couplings λ = J2/J1.
Of course, the λ = 1 dispersion has to be equivalent to the uniform-chain result. The
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(d)

(c)

(b)

(a)

Figure 2.10: Spinon confinement. (a) Excitation of a local triplet. (b) The two spins
can move away from each other at the cost of building weakly coupled dimers in-between.
Two spinons are formed. (c) The potential energy rises further the more weak dimers
are formed. (d) For large distances it is energetically favorable to create another pair of
spinons compared to a situation with a large number of weak dimers. The total spin of the
excitation is still S = 1. Based on reference [27].

dimer limit of λ = 0 yields just a straight line with an energy gap of J1. Without
dispersion the excitation cannot move along the chain, and thus the excited triplet stays
localized. By switching on the coupling between the dimers, which means increasing λ,
the gap energy gets smaller. At the same time the excitation can hop as a whole from
dimer to dimer, and the bandwidth of the dispersion increases. Both the spins that form
the triplet can also separate, and we get two spinons. But there is an important difference
to the asymptotically free spinons of the uniform chain. The corresponding mechanism
is illustrated in figure 2.10: As soon as the spinons move away from each other, new
singlet dimers are formed in-between. But the coupling is weaker because the spin sites
are further apart compared to the initial dimers. In terms of energy this configuration
is unfavorable, and the situation gets worse the more weak dimers are formed. Hence
the energy increases with distance d, and there is a potential V (d) that tries to keep the
spinons nearby. The spinons are bound, and their movement is hampered by this new
confinement. From a certain distance on it gets “cheaper” to excite a new pair of spinons
than to build further weak dimers. Energetically this corresponds to 2Egap, where the
energy is sufficient to excite two triplets.

A dimerization of the chain thus binds spinons to pairs [17, 93]. The total spin of such
a bound spinon is either S = 0 for a singlet or S = 1 for a triplet. These two types of
excitations both yield a well defined excitation branch. The energy of the triplet is lower
than the singlet energy. Strictly speaking, the spinons are not the elementary excitations
anymore due to the binding. Instead the triplet spinon pairs get labelled to be the new
elementary excitations. This appears naturally from the point of view of isolated dimers
discussed above.

Both branches are located below the continuum, that still is present in the dimerized
chain. The continuum has to emerge from two unbound excitations, which can be regarded
as either two triplets, two spinons, or two pairs of spinons. Due to spin-rotation symmetry
the gap of the continuum is twice the elementary triplet gap [17]. But there is also another
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Figure 2.11: Sketch of the dispersion and the spectral density of the dimerized chain,
reproduced from reference [27]. (a) The bottom curve shows the elementary branch of
the triplet. Just above is the singlet branch. The shape of the continuum can be derived
from the spinon continuum of the uniform chain (see page 15) or by taking all possible
combinations of two triplets. The dashed line is a guide to the eye to indicate the “uniform”
continuum (right area), although now with a gap. Due to the doubling of the unit cell the
Brillouin zone is cut in half at k = π/2. Hence the “right” continuum is mirrored or folded
back along the k = π/2 line, and the “left” area emerges. The complete continuum is the
combined area of both contributions. When the dimerization is weak there won’t be much
intensity from the “left” area. ∆ and 2∆ denote the gaps to the elementary triplet and to
the continuum, respectively. (b) Structure factor or spectral density at momentum k = π.
Of course, with neutrons only S = 1 excitations are accessible.

way of interpreting the singlet branch. If one prefers to choose the triplet picture without
the concept of spinons, at least two triplets have to be excited to yield a singlet state.
This would be a bound state of two triplets with antiparallel alignment.

The excitation spectrum of the alternating chain with the two branches of bound states
and the continuum is sketched in the left panel of figure 2.11. The right panel illustrates
the spectral densities at momentum k = π with two sharp peaks stemming from the bound
states. The triplet peak and the continuum of CuGeO3 were measured with neutrons [84],
as discussed above. The continuum had already been mapped before by Arai et al. [94].
Their impressive plot is presented in figure 2.12. However, the resolution had not yet been
high enough to see the triplet bound state. And since dimerization is low in CuGeO3 the
continuum resembles the one of the uniform chain, but of course the spin gap is present.
With neutrons it is not possible to measure S = 0 singlet excitations. Such excitations
at momentum k = 0 are accessible by inelastic Raman scattering [95–97]. In Figure 2.13
the Raman spectrum of CuGeO3 is plotted. The sharp peak is clearly visible but not
separated from the weak continuum that follows.

2.2.3 Doping of Chains

So far, no doping of charge carriers or magnetic impurities has been discussed. The
simplest possibility is to replace some spins by spinless impurities, such as it occurs by
doping with Zn2+ ions. The effect is quite similar for a variety of different spin models
and is caused mainly by short-distance physics. A small percentage of vacancies rapidly
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Figure 2.12: Map of the dynamical struc-
ture factor of CuGeO3, measured with inelastic
neutron scattering at 10 K by Arai et al. [94].
The dimerization in CuGeO3 is quite small and
thus the left “mirror” intensity of figure 2.11 is
not present. Therefore the continuum resem-
bles the spinon continuum of the uniform chain.
The arcs of the lower boundary are very dis-
tinct. Since these arcs do not reach all the way
down to zero energy the gap is verified. Also
the upper boundary of the continuum is accord-
ing to expectations. Due to the resolution of
the measurement the triplet bound state is not
separated from the continuum but was verified
later in reference [84].

destroys spin gaps, and their presence induces enhanced AF correlations nearby [98, 99].
Again, CuGeO3 is a fruitful example [100–103]. The explanation acts on the assumption
of localized spinons near the doped vacancies that interact with each other through weak
effective AF couplings. This interaction will get stronger the more Zn is doped into the
system. Calculations demonstrated that these localized states form a low energy band in
the spectrum, which appears inside the original spin gap of dimerized chains and also of
the spin ladders discussed in the next section [104].

Charge-Carrier Doping

Much effort has been spent to describe the copper-oxide planes of superconducting
cuprates which are doped with holes. Fortunately, the concepts can often be applied
to other Cu-O systems as well. Let us start from the undoped case. The Cu2+ ion pos-
sesses nine electrons in the 3d shell. The degeneracy of the 3d orbitals is lifted by the
crystal field, resulting in a single hole in the dx2−y2 orbital. This leads to a half-filled band

Figure 2.13: Raman spectrum of CuGeO3 repro-
duced from figure 1 of reference [97], yet simplified and
rearranged. Inelastic photon scattering is sensitive to
S = 0 excitations. Thus the sharp peak arises from
the singlet bound state. The subsequent continuum is
not separated from this peak, though.
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of dx2−y2 orbitals within the crystal. Accordingly, band structure calculations predicted
a non-magnetic metallic state [105], which is in clear contrast to the insulating gap of
the order of 1.5 eV observed in optical spectra [106–108]. This failure of band theory is
due to the large on-site Coulomb repulsion U that forces the electrons to avoid double
occupancy of a single orbital. In this situation the electrons are strongly correlated.

When further holes get doped into copper-oxide spin systems, effective Cu3+ ions are
created with spin S = 0. In fact, no real Cu3+ ions occur but instead hybridization be-
tween copper and oxygen strongly binds a hole to a central Cu2+ ion and its surrounding
oxygen ions. This leads to the formation of a local singlet which is well-known as the
Zhang-Rice singlet [109]. Overlap between neighboring sites allows for hopping of elec-
trons and thus the singlet can move. The Zhang-Rice singlet corresponds to a spinless
fermion moving in the background of Cu spins without doubly occupied sites. It repre-
sents an empty site or hole, respectively, in the copper lattice. The kinetics of holes in the
background of an S = 1/2 Heisenberg AF can be described by the t–J model, which is
an effective low-energy model for single or multi-band Hubbard models. The parameter t
denotes the site-hopping matrix element. The AF exchange is then given by

J = 4t2/U (2.16)

with U being the already mentioned on-site Coulomb repulsion. In the t–J approach this
repulsion is assumed to be larger than the hopping: U � t. At exactly half filling of the
band the charge excitations are gapped, and the low-energy degrees of freedom are purely
magnetic. In this case the t–J model reduces to the standard Heisenberg model.

In 2D the Hubbard model as well as the t–J model have not been solved exactly, and
not even the ground states are entirely known so far. A lot of numerical calculations on
finite clusters were performed, but the complexity grows outrageously with cluster size.
The computation of a 32-site cluster within the t–J model already requires to handle ma-
trices with dimensions of up to 3×108 [110]. That is the reason why the probing question
whether there is superconductivity in these models has not been answered satisfactorily
to date.

In 1D, however, the low-energy properties of many gapless quantum systems can be
described by the exactly solvable Luttinger model [111]. The class of models that can
be mapped onto so-called Luttinger liquids includes the 1D Hubbard model away from
half-filling and thus also the 1D t–J model. One of the key properties is the spin-charge
separation: instead of quasiparticles like in Fermi liquids, collective excitations of charge
(with no spin) and spin (with no charge) are formed, that move independently and even
at different velocities. Just recently our group found evidence for this phenomenon in the
Bechgaard salts by measuring the electrical and thermal conductivity [112].

Another interesting effect is the occurrence of charge ordering in doped chains.
Sr14Cu24O41 for instance is inherently doped with charge carriers. The nominal hole count
yields six holes per formula unit, and the holes are expected to reside mainly within the
sublattice of the CuO2 chains. Nücker et al. estimated the distribution of holes at room
temperature via x-ray absorption spectroscopy [9]. They found approximately 5.2 holes in
the chains, whereas 0.8 holes are located within the other sublattice, which includes layers
of spin ladders. This telephone-number compound will be discussed in greater detail later
on. Below the temperature of approximately 200 K a superstructure occurs due to charge
ordering in the chains. Regnault et al. used inelastic neutron scattering and proposed a
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Figure 2.14: The charge ordering in the chains of Sr14Cu24O41 produces a superstructure
with the periodicity of five lattice spacings. The squares denote Zhang-Rice singlets.

model of interacting AF dimers with intra- and interdimer distances equal to 2 and ≈ 3
times the distance between neighboring copper ions [113]. This implies that almost no
charge carriers are left within the ladders at low temperatures. A possible illustration
of such an arrangement is sketched in figure 2.14. The holes are drawn as squares to
symbolize Zhang-Rice singlets. AF dimers are formed between spins that are separated
by a single hole. The dimers are separated by two holes from each other, which leads to
only weak magnetic exchange. The charge order in Sr14Cu24O41 is discussed in greater
detail in chapter 6.

2.3 Ladders: Bridge between 1D and 2D

The humble survey of 1D chains demonstrated that a great deal of the rich phenomena
are understood after a long period of research. The important models are solved and
experiments support the theoretical results. The 2D square-lattice Heisenberg AF is far
from this state. Some hope is associated with the ladders that topologically are situated
between one and two dimensions. One can start with a single chain, or leg, and successively
couple further chains to it, until finally the square lattice is approached. Neither in
Heisenberg chains, nor in the 2D square-lattice there is a spin gap for S = 1/2. The
corresponding ground states are of spin-liquid and AF type, respectively. And of course it
is very instructive to examine what happens in-between, both in theory and experiment.
This section is chiefly based on the comprehensive reviews on ladders presented in reference
[2] by Dagotto and Rice, and in reference [114] by Dagotto.

AF Heisenberg ladders with two and three legs, respectively, are sketched in figure
2.15. The exchange coupling along the legs is labelled as J‖, and J⊥ denotes the rung
coupling. The Hamiltonian of the simplest case with just two legs reads

H =
∑

i

{ J‖ (S1,iS1,i+1 + S2,iS2,i+1) + J⊥ S1,iS2,i } . (2.17)

The first two terms represent the interaction between neighboring spins along the two
legs, and the last term takes care of the interaction within each rung. The first index of
each spin operator denotes the leg number, whereas the second index counts the rungs
(confer top panel of figure 2.15). Reference [3] might be regarded as the starting point
of the recent interest in ladder physics. The early calculations on two-leg ladders with
J⊥ � J‖, usually called the strong-coupling limit, found a finite spin gap. This came as
a surprise since the limiting cases of 1D chains and 2D planes are both gapless, yet it
is easy to comprehend in the strong-coupling limit. Here the rungs interact only weakly
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n=2

rung: i i+1 i+2 i+3  ...

leg:

1

2

J||

J||

J⊥

J⊥
n=3

Figure 2.15: Sketch of AF Heisenberg ladders with n = 2 and 3 legs. The coupling along
the legs is J‖, whereas the rung exchange is J⊥. Compared to the former pictures the spin
arrows are tilted for readability. But in the Heisenberg model the spin is isotropic anyway,
and thus no quantization axis is favored. Moreover, the spin-liquid ground states do not
favor any orientation.

with each other and the dominant configuration is a product state of independent singlets
on each rung. Thus the total spin is zero and the elementary excitation is the breakup
of one singlet to a spin-1 triplet. The ground-state energy of an isolated rung singlet is
−3/4 J⊥, the corresponding value of the triplet state is +J⊥/4. Therefore the spin gap,
which is the energy needed to excite the first triplet, is simply J⊥. The small coupling
along the chains allows for hopping of the triplet along the ladder. As a consequence,
dispersion arises and a triplet band is formed with the dispersion relation [115]

E(k) = J⊥ + J‖ cos k +
3

4

J2
‖

J⊥
for J⊥ � J‖ (2.18)

and a downsized spin gap of

Egap = J⊥ − J‖ +
3

4

J2
‖

J⊥
. (2.19)

This implies that in the strong-coupling limit the gap is primarily a measure of the rung
interaction J⊥, whereas the triplet bandwidth W = 2J‖ is determined by the leg coupling.
The question is of course whether the gap survives when the leg coupling gets stronger. In
reference [115] evidence was found that indeed there is a nonzero gap in two-leg spin-1/2
ladders for any finite rung coupling J⊥ > 0. A crosscheck indicated that spin-wave theory
is less appropriate for ladder systems, since it incorrectly predicts a gapless dispersion for
all non-vanishing rung couplings.

The other extreme to treat ladders is the limit with J⊥ � J‖. Here the properties are
mainly determined by the legs, and one gets a system of weakly interacting Heisenberg
chains. In particular, asymptotically free spinons become the elementary excitations again
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Figure 2.16: Spin-gap energy (here: ∆spin) ver-
sus rung coupling (J ′ = J⊥) of S = 1/2 two-leg
ladders with both axes in units of the leg coupling
(J = J‖). At zero rung coupling (J ′=0) the chain
limit with vanishing gap is approached. For all fi-
nite rung couplings there is a spin gap. Numerical
data on small clusters was extrapolated to the bulk
limit in reference [115]. The figure itself is copied
from reference [114], though. Basically the same
values were calculated later by Greven et al. using
a refined Monte Carlo algorithm [116].

upon vanishing rung coupling. Also in this limit, there is no spin gap and excitations of
arbitrarily low energy are possible. However, chains are critical systems. In this situation
even small perturbations may qualitatively change the properties of the ground state.
Therefore it is not astonishing that a spin gap immediately opens as soon as J⊥ becomes
nonzero [16]. Numerical results based on Lanczos and Monte-Carlo techniques support
this result, and in the isotropic limit of J‖ = J⊥ the gap energy reaches Egap ≈ 0.5 J⊥
[115]. The corresponding values of Egap over a wide range of coupling ratios are plotted in
figure 2.16. A further confirmation is given in reference [117] and also in reference [118],
where DMRG calculations10 in the isotropic limit provide Egap = 0.504 J⊥. In the ladder
compounds discussed in this thesis, one may expect J‖ and J⊥ to be of similar size since
the Cu–O bond lengths are comparable (see section 2.4.1).11 Thus it is not sufficient to
study weak- and strong-coupling limits alone. Unfortunately, perturbative methods in
the isotropic regime of J‖ = J⊥ are quite challenging because there is no small parameter
to guide expansions. Nevertheless, since the spin gap is present for all coupling ratios
except for J⊥ = 0, the physics of the two-leg ladder is said to be dominated by the strong-
coupling limit with nearly decoupled rungs. Hence calculations are frequently carried out
in the strong-coupling limit with the hope that the results won’t change qualitatively in
the isotropic limit.

2.3.1 Even- and Odd-Leg Ladders

Increasing the number of legs is not just an academic issue, for there actually are ma-
terials with more than two legs. For instance the compounds of the homologous series
SrnCun+1O2n+1, discovered in 1991 by Hiroi et al. [120], contain ladder structures with n+1
legs each [121].12 Figure 2.17 shows the copper-oxide sheets of SrCu2O3 and Sr2Cu3O5

10DMRG is short for density matrix renormalization group, see section 5.3.2.
11Deviations from J‖ = J⊥ may arise because the Madelung potentials of the O ions on the rungs and

on the legs are different.
12In most cases the notation Srm−1Cum+1O2m with m = 3, 5, 7, ... is used, which yields doubled indices.

Accordingly, the number of legs is then equal to m+1
2 .
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Figure 2.17: Schematic view of the two-leg ladder compound SrCu2O3 (left) and the
three-leg counterpart Sr2Cu3O5 (right). Black circles represent the copper ions and the
oxygen ions are located at the corners of the tilted squares. Within the ladders there
is strong AF coupling, whereas between adjacent ladders the coupling Jtrellis is weakly
ferromagnetic and frustrated. The two-leg configuration is usually denoted as a trellis
layer. Within the ladders the CuO4 squares are in corner-sharing arrangement, whereas
they share edges in-between adjacent ladders. Reproduced from reference [119].

with two-leg and three-leg ladders, respectively. The two-leg configuration is called a trel-
lis layer. The exchange between adjacent ladders is ferromagnetic and rather weak due to
the 90◦ Cu–O–Cu bonds. Moreover, the triangular arrangement of the Cu ions between
the ladders leads to frustration. Therefore the corresponding coupling constant Jtrellis is
usually negligible, and the ladders in the trellis structure can be considered as magneti-
cally decoupled. The difficult synthesis of this series of compounds is only possible at high
pressures, though. So far only reasonable samples for n = 1 and 2 have been produced
but at least “contaminations” of phases with more legs have been reported [120]. More
recently, Sekar et al. reported the fabrication of the four-leg ladder compound La2Cu2O5

[122] and of the five-leg ladder La8Cu7O19 [123].

As long as the number of legs stays even, the physics of two-leg ladders should quali-
tatively be preserved. In particular the gap is expected to survive in all even-leg ladders.
This behavior can easily be explained in the strong-coupling limit. As before, the decou-
pled rungs form singlets since the ground state of an even number of S = 1/2 spins has
zero total spin. The first possible excitation again is to promote a rung singlet to a triplet
state. The gap has to decrease with n such that the limit of a gapless 2D plane can be
achieved. However, the magnitude will remain nonzero for any finite and even number of
legs, which is supported by several calculations [117, 118, 124, 125]. And at least for the
case of four-leg ladders the existence of a gap of approximately half the two-leg value is
well established.
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The situation changes completely when the number of legs becomes odd. Then the
behavior at low energies rather resembles that of a single chain. Namely there is no
spin gap, and the spin-spin correlations decay slowly following a power law. Again the
strong-coupling picture is helpful. In this limit it is possible to map the three-leg ladder
onto a single chain, since both systems are in the same universality class [126]. Each
rung can be diagonalized exactly, which leads to an S = 1/2 doublet ground state as
well as doublet and quadruplet excited states. Thus the ground state now consists of
spin-1/2 states on each rung. A small leg coupling J‖ will generate an effective interaction
Jeff between these states. As a consequence the ground-state properties of the three-leg
ladder in the strong-coupling limit are essentially equal to a spin-1/2 Heisenberg chain
with renormalized exchange Jeff . In particular, the spin gap vanishes. This argument can
easily be generalized to any odd-leg ladder. Since there is just as well no spin gap in the
other limit of decoupled legs with J⊥/J‖ = 0, it is reasonable to expect a vanishing gap
at any intermediate coupling ratio. A rigorous proof of this conjecture was presented by
Rojo in 1996 [127]. His arguments hold not only for spin-1/2 but for any half-odd-integer
spin.

The fundamental difference between even- and odd-leg ladders can also be discussed
on the basis of an argument used by Haldane for the 2D square lattice [128]. A topological
term governs the long-wavelength (= small k) dynamics of the 2D Heisenberg model. This
term is similar to the one that is responsible for the already mentioned difference between
integer and half-odd integer spin chains. The former exhibit the Haldane gap, the latter
don’t. However, when this expression is applied to n-leg ladders, one can find that for odd
n the topological term does not vanish. The system becomes effectively one-dimensional
and remains gapless. In contrast, the term exactly cancels out in the case of even n. The
gap survives and scales as Egap ∝ e−n [129].

Apart from the quest for gaps, there should as well be a distinct difference in the spin-
spin correlation functions. White et al. used a DMRG approach and calculated <S i ·S j>
correlations for n = 2, 3 and 4-leg ladders [118]. The corresponding results are presented in
figure 2.18. The spin-spin correlations of a two-leg ladder (left panel) decline fast following
an exponential decay. In the case of four legs the decay is still exponential but not as fast.
The n = 3 ladder clearly shows a much slower power-law decay (right panel). Moreover,
the behavior resembles the 1D-chain decay quite well. Based on these findings, a RVB
picture is developed in reference [118]. Accordingly, even-leg ladders are spin liquids that
exhibit a short-range RVB ground state with exponentially decaying correlations and a
spin gap. Odd-leg ladders, however, exhibit long-range RVB ground states, power-law
correlations and no gap. A further study based on the RVB concept is given by Sierra et
al. in reference [130]. They find that the RVB description of two-leg ladders even survives
upon hole doping up to a certain critical value. Away from the strong-coupling limit, the
short-range singlets have to be accompanied by some longer-range singlets to account for
correlation lengths of about three lattice spacings [118, 131].

One possible probe for the occurrence of magnetic ordering is muon spin relaxation
(µSR). Actually, µSR is the most sensitive technique to investigate the absence of static
magnetic order in the ground state of two-leg ladders. Kojima et al. performed mea-
surements on SrCu2O3 and Sr2Cu3O5 and indeed found no magnetic order in the two-leg
system down to 20 mK. Instead, field fluctuations did not vanish, which is in good agree-
ment with the nonmagnetic ground state of a spin liquid [132]. The three-leg ladder
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Figure 2.18: Spin-spin correlations <S i · S j > versus distance |i − j|, with sites i and
j located on the top leg. (a) Correlations of the two-leg ladder. The semilog plot in the
inset clearly shows the exponential decay for n = 2 and 4 legs. (b) Three-leg ladder. Here
the log-log inset demonstrates the similar power-law decays of the chain and the three-leg
ladder. The deviation from pure power-law behavior at large distances is due to finite-size
artefacts. Reprinted from reference [118].

compound, however, does exhibit magnetic ordering below approximately 52 K. Kojima
et al. deduced a random freezing of moments rather than true Néel order, which might
be the sign of a spin-glass type of ordering [133]. A spin-liquid state can definitely be
excluded for this compound on grounds of the data. Similar phenomena were observed in
compounds with quasi-1D chains where the small inter-chain interactions give rise to 3D
ordering at sufficiently low temperatures.

2.3.2 Interpretation of Susceptibility Data

Whether there is a spin gap or not has to have an effect on the susceptibility, too.
Frischmuth et al. performed a Monte Carlo loop algorithm [134] and were able to calculate
susceptibilities for ladders of up to six legs (figure 2.19). In the limit of low temperatures
the susceptibility χ per rung of odd-leg ladders remains approximately constant as in the
single chain. Ladders with an even number of legs show an exponential drop of χ, which
indicates a gap in the excitation spectrum. The gap energy decreases substantially with
increasing n (see right panel of figure 2.19).

Measurements are available from Azuma et al. [119] as shown in figure 2.20. In the
left panel one can easily recognize the signature of a spin gap in SrCu2O3. A small Curie
contribution has been subtracted as is common for such measurements. This component
might be assigned to a contribution from 0.26% of free Cu2+ spins due to imperfections
or impurity phases. After subtraction there is a continuous decrease of χ over a wide
temperature range. The thin solid line represents a fit to the data using the equation

χ(T ) =
α√
T
e−Egap/T , (2.20)
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Figure 2.19: Magnetic susceptibility χ per rung as a function of temperature for a single
chain and Heisenberg ladders of up to six legs. Frischmuth et al. used a Monte Carlo loop
algorithm for the isotropic case of J‖ = J⊥. To distinguish the curves some data points are
marked by symbols. In the right panel the low-temperature regime is magnified. Here, the
different character of odd- and even-leg systems is obvious. The latter exhibit a spin gap
whereas odd-leg ladders are gapless. Reproduced from reference [134].

which was calculated by Troyer et al. for the strong-coupling limit [135]. The constant
α depends on the dispersion of the first excitation and the fit yielded the gap value of
Egap = 420 K. This is in rough agreement with the expectation of Egap ≈ J⊥/2 if it is
assumed that the coupling is similar in magnitude to its 2D copper-oxide counterpart with
J ≈ 1200 K [114]. However, an investigation by means of nuclear magnetic resonance
(NMR) revealed a larger spin gap of 680 K [136]. The right panel of figure 2.20 shows
the corresponding susceptibility of Sr2Cu3O5. Again, a small Curie contribution has been
subtracted. The corrected susceptibility steadily decreases upon reducing the temperature
but remains at a large finite value at low temperatures. This is in unambiguous contrast
to SrCu2O3 and supports the assumption that this three-leg compound indeed exhibits
no spin gap.

An extensive analysis of the very susceptibility data of SrCu2O3 measured by Azuma
et al. [119] was undertaken by Johnston in reference [137]. He challenges the usually
assumed isotropic coupling ratio of J⊥ = J‖ and also the magnitude of approximately
1200 K inferred from 2D cuprates. He used calculations from Barnes and Riera [78] and
stated that, instead, the experimental data from reference [119] can accurately be fitted
with a leg coupling twice as large as the rung coupling (J‖/J⊥ & 2). Accordingly, the
fit yields a value of J‖ & 2000 K, which is considerably larger than in 2D cuprates like
La2CuO4.

Susceptibility measurements on 1D cuprate chains like Sr2CuO3 and SrCuO2 [138]
support the conjecture that the lower dimensionality promotes a larger coupling. A quite
accurate determination of the coupling constant in Sr2CuO3 was performed by means
of optical spectroscopy. At first, Suzuura at al. measured the infrared absorption [139].
Later, Lorenzana and Eder were able to explain the spectrum by means of phonon-assisted



2.3 Ladders: Bridge between 1D and 2D 31

Figure 2.20: Susceptibility χ versus temperature of SrCu2O3 (left) and Sr2Cu3O5

(right) as measured by Azuma et al. [119]. Open circles represent the raw data, while
the data after subtraction of the Curie component is plotted as closed circles. The solid
line in the left panel indicates the fit to the data according to equation 2.20 with an assumed
spin gap of 420 K for SrCu2O3.

two-spinon absorption [140] (see figure 3.3 on page 59).13 The analysis of Sr2CuO3 yielded
a considerably large value of J = 2850 K. The occurrence of large couplings in low dimen-
sions even seems to hold when the different Cu–O bond lengths are taken into account.
A theoretical investigation by Mizuno et al. involving Madelung potentials [141] explains
this difference by increased hopping elements in 1D and moreover proposes anisotropic
couplings in these cuprate ladders. For systems like SrCu2O3 and Sr14Cu24O41 they pre-
dict J‖ greater than J⊥ by approximately 10%. But this small difference is not sufficient
to explain the unexpectedly strong anisotropy proposed by Johnston (see also reference
[133]).

J||

Jdiag

J⊥ Jcyc

Jtrellis

}
}

Figure 2.21: Sketch of exchange couplings
within two-leg ladder systems. The cyclic ex-
change Jcyc is around basic plaquettes of the
ladder. Next-nearest-neighbor spins on adja-
cent legs are coupled across the diagonal by
Jdiag, and the coupling between neighboring
ladders is denoted as Jtrellis.

13The approach of phonon-assisted multimagnon absorption by Lorenzana and Sawatzky [11, 12] is
also one of the foundations of this thesis as discussed in section 3.3.
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To make the observed data compatible with the rather expected isotropic coupling ra-
tio, Brehmer et al. suggested the inclusion of a four-spin cyclic exchange in 1999 [142] (see
also reference [143]). This type of interaction is sketched in figure 2.21. The corresponding
four-spin term is known to be relevant for the 2D cuprates. A cyclic coupling emerges
as a correction to the Heisenberg Hamiltonian in order t4/U3 from a t/U expansion of
the one-band Hubbard model [144]. It is expected to be the dominant correction within
the more realistic three-band description of the 2D CuO2 planes since in this case the
cyclic permutation of four spins on a plaquette can take place without double occupancy
[26, 145]. To illustrate this, one might for instance think of the cyclic permutation of
four atoms in solid 3He [146, 147]. In a naive approach, this process obviously takes less
energy than exchanging only two neighboring atoms. This is because just in the latter
case the surrounding atoms have to be displaced considerably.

High-resolution neutron scattering experiments on the 2D cuprate La2CuO4 exhibit
a magnon dispersion at the zone boundary that cannot be described within a nearest-
neighbor Heisenberg model [148]. It has been argued that the inclusion of a cyclic spin
exchange of about 20% would reproduce this dispersion [149]. In the case of two-leg
ladders, even a moderate amount of Jcyc substantially reduces the spin gap (see section
5.3.2). It always influences the determination of the major two-spin couplings. The value
of J‖/J⊥ deduced e.g. from the susceptibility data is reduced if Jcyc 6= 0 is considered in
the analysis. One may think of Jcyc disturbing the singlet states on the rungs, which leads
to some sort of frustration. Consequently, the effect of J⊥ gets smaller. Thus the value of
J⊥ has to be scaled up in order to get reasonable fits of χ [150]. Or the other way round,
increasing Jcyc has a somehow similar effect on a fit of χ as increasing J‖.

Mizuno et al. refined their analysis of SrCu2O3 mainly based on Madelung potentials
[141] by means of exact diagonalization of small clusters. They also included terms with
cyclic and diagonal exchange (see figure 2.21) into their Hamiltonian [150, 151]. The
outcome was a slightly larger value of J‖/J⊥ ≈ 1.3 than before (1.1 in reference [141])
with a nonzero Jcyc ≈ 0.1J‖.

14 The effect of Jdiag accounts for less than one percent and
hence is not important. These values are in good agreement with the parameters that we
have determined from the optical conductivity of (La,Ca)14Cu24O41 [26], as presented in
chapter 5.3.2.

Matsuda et al. took up this suggestion and fitted their neutron data of the ladder com-
pound La6Ca8Cu24O41 both ways [25]. First, they fitted their measured spectra in the
same conventional way with Jcyc = 0 as already done in reference [152] for Sr14Cu24O41.
In this way they gained several points of the dispersion relation of the lowest-energy exci-
tation. Afterwards, they applied a Lanczos method to fit these points without inclusion
of Jcyc. This analysis again yielded an anisotropic ratio of J‖/J⊥ = 2. A corresponding
analysis including a nonzero cyclic exchange, yet with fixed ratio of J‖/J⊥ := 1, also
yielded a fit of the dispersion of essentially the same quality as before. The according
cyclic exchange constant is J̃cyc ≈ 0.15J⊥ ≈ 190 K with the main two-spin couplings

14Note that the ratio of J‖/J⊥ ≈ 1.1 calculated by Mizuno et al. without Jcyc is close to unity [141],
but this almost isotropic ratio does not yield reasonable fits of the susceptibility data. However, the
slightly larger value of 1.3 [150, 151], calculated upon inclusion of a nonzero Jcyc ≈ 0.1J‖, indeed does
yield excellent fits of χ(T ) [151], and the ratio is still considerably smaller than the value of J‖/J⊥ ≈ 2
by Johnston in reference [137].
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J‖ = J⊥ ≈ 1300 K.15

Many different model Hamiltonians can fit the same experimental χ(T ) data of ladder
compounds exhibiting a gap. Apart from the cyclic exchange, also the diagonal coupling
Jdiag and the coupling Jtrellis between different ladders in the trellis lattice stand to reason
(see figure 2.21). Both couplings are expected to be weak and ferromagnetic. However,
the susceptibility calculated by Johnston et al. [133] is quite insensitive to both parameters
and an inclusion is not needed to get persuasive fits to the measured χ(T ) of SrCu2O3

from Azuma et al. [119, 133]. Another exchange path is between one ladder and the other
two ladders located directly above and below. This stacked configuration leads to a Jstack

and in contrast to the former two couplings, the fits of Johnston et al. are quite sensitive
to the value of Jstack. Yet only small contributions of approximately 0.01J‖ can fit the
data, and thus Jstack may as well be neglected.

The cyclic exchange survives as the most important candidate to improve the modelling
of spin ladders. Optical spectroscopy offers a quite powerful tool to contribute to the
quest for the proper set of couplings. Our results deduced from measurements on undoped
telephone-number compounds in comparison with calculations will be presented in section
5.3. By including a cyclic exchange into the analysis, we find J‖/J⊥ ≈ 1.25 − 1.35,
J⊥ ≈ 1370− 1580 K, and Jcyc/J⊥ = 0.20− 0.27 [26].

2.3.3 Elementary Excitations: Triplets vs. Spinons

To get a better idea of the elementary excitation of the two-leg ladder, again it is helpful
to have a look at the two limits, which has already been broached above. In the strong-
coupling limit, as depicted in the top panel of figure 2.22, the ladder exhibits a spin-liquid
ground state of independent singlets. In this RVB state the first possible excitation is the
breakup of a single rung singlet at the expense of Egap = J⊥. This type of isolated triplet
excitation has no dispersion but a finite value of J‖ will allow for hopping to other rungs.
The excitation gets spread out and becomes a so-called dressed triplet. The dispersion
gets finite, and the gap decreases. In the other limit of uncoupled chains (bottom panel
of figure 2.22) there is no gap, and the spinons are asymptotically free. Yet as soon as a
rung coupling is switched on, the spinons get bound. The reason might be illustrated as
follows: The further away the spinons are from each other, the more rungs in-between are
occupied by parallel spins (bottom panel of figure 2.22). This arrangement is unfavorable
and potential energy increases with the distance between the spinons. Since the realistic
coupling regime is located somewhere between these two extremes, it is not clear right
from the start which concept is suited better. Either dressed triplets or two bound spinons
are reasonable entry points, and as usual the truth might be somewhere in-between. From
now on, mostly the term triplet will be used. Sometimes the elementary excitation is also
labelled as magnon in the literature.

The dispersion relation in the strong-coupling limit [115, 126],

E(k) ≈ J⊥ + J‖ cos k for J⊥ � J‖ , (2.21)

15There are several ways of defining the actual cyclic-exchange term. To compare values of Jcyc from
different groups, it is important to pay attention to scaling factors. For instance values of Matsuda et al.
in reference [25] have to be multiplied by a factor of two, i.e. Jcyc = 2J̃cyc ≈ 0.30J⊥, before comparing
with the results of Nunner et al. [26] (see chapter 5.3.2).
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J|| J⊥<<
Strong-Coupling Limit

Rung
Triplet

Bound Spinons

J|| J⊥>>

Chain Limit

Figure 2.22: Illustration of the elementary excitation of a two-leg ladder. The top panel
demonstrates the strong coupling or dimer limit, which yields an RVB ground state. The
spins within each rung singlet are dashed. When a single rung singlet gets promoted to
a triplet, it can hop to neighboring rungs due to the small J‖. In the chain limit of the
bottom panel, though, we are back to the spinon picture. Each of the two spinons (or
domain walls) is indicated by a blotch. As soon as a small interchain or rung coupling
is introduced, the spinons get bound together. The above illustration offers an intuitive
explanation: The larger the distance between the spinons the more parallel spins are created
on the rungs in-between. Similar but less intuitive arguments can be found within the RVB
picture. After all, the elementary excitation of a ladder can be visualized either as a dressed
triplet or as two bound spinons.

has already been given in equation 2.18. The minimum of the triplet band is hence lo-
cated at k = π. This just means that the gap energy is to be found at the boundary
of the Brillouin zone. Using quantum Monte Carlo simulations, Barnes and Riera pre-
sented dispersion relations for several coupling ratios already in 1994 [78]. Johnston et al.
reproduced their calculations on slightly larger clusters [133], and figure 2.23 shows the
corresponding data. Also included in the plot are the strong-coupling result from Barnes
et al. [78] as well as the lower boundary of the spinon continuum of the isolated chain for
comparison. For all the ladder couplings the band minimum is located at k = π, and also
the maximum survives at k ≈ π/2 at least up to isotropic coupling. It is quite remarkable
that the ratio of maximum and minimum energy Emax/Egap of the triplet band is strongly
related to the coupling ratio J⊥/J‖. This function, which is shown in figure 2.24, enables
estimates of coupling ratios for instance from neutron scattering data. A similar analysis
was used by Eccleston et al. to deduce a value of J⊥/J‖ = 0.55 from neutron data of
Sr14Cu24O41 [152]. However, there is no cyclic exchange included here, and a nonzero Jcyc

would yield different dispersions and hence different sets of coupling constants. Experi-
mentally, Egap can be determined rather accurately with neutron scattering, but in the
cuprate ladders Emax is of the order of 200 meV and therefore difficult to measure even
with spallation sources.
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The triplet branch is not the only feature of the excitation spectrum. There is also a
continuum of excitations at higher energies. Since the nature of the elementary excitations
is not unambiguous, the continuum can be interpreted either as stemming from two or
more triplets or stemming from four or more spinons. The corresponding intensity at
high energies is not to be neglected in the discussion of e.g. neutron data. Since counts
are low at the upper band edge of the triplet dispersion, which is close to or within the
continuum, the deduction of coupling ratios as described above might be misleading. But
there is even more. As in the alternating chain, an attractive potential exists in two-
leg ladders between the elementary excitations that leads to bound states. Usually such
bound states yield distinct features in different kinds of spectra. However, the dispersion
of bound states and the continuum as well as their implications for infrared spectra is
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left for detailed discussion in chapter 5. Afterwards chapter 6 deals with the effect of
charge-carrier doping on spin ladders.

2.4 Telephone-Number Compounds

In the early days of ladder research, (VO)2P2O7 was one of the best candidates for an
actual ladder compound. However, VOPO was proven to be a Heisenberg chain instead
[74] as stated above. The series of SrnCun+1O2n+1 in fact does supply spin ladders, even
with more than two legs. The growth of these compounds is quite challenging, though,
since high pressure is necessary. In addition, hole doping has not been achieved so far, and
hence no superconductivity could be found. In this thesis measurements of the so-called
telephone-number compounds are presented. The series (Sr,La,Ca)14Cu24O41 provides
excellent samples of two-leg ladders in a trellis configuration of spin-1/2 copper ions.
One of the major advantages of the telephone-number compounds is that they can be
grown under ambient pressure. Moreover, the use of the travelling-solvent-floating-zone
(TSFZ) method in image furnaces provided large rods of single crystals [6–8], even large
enough for neutron measurements. The crystals are black and typically insulating with
semiconducting temperature dependence of the dc resistivity. With increasing Ca content
an insulator-to-metal transition occurs [153]. The overall amount of charge carriers can
be adjusted by doping, although it is not straightforward to judge where exactly the holes
are located within the structure. The predicted superconductivity was in fact verified in
Ca doped systems under high pressure [5, 154].

2.4.1 Crystal Structure of (Sr,La,Ca)14Cu24O41

The initial synthesis was reported by McCarron et al. in 1988 [155]. At first, needles
of Sr14−xCaxCu24O41 were unintentionally produced as some sort of contamination of
the actually wanted high-Tc cuprates. Yet x-ray measurements on these needles yielded
two incommensurate sublattices, which penetrate each other. Compounds of this kind
are referred to as composite crystals. This configuration aroused the authors’ curiosity
and prompted them to eliminate the superconducting phase instead. Two weeks later,
Siegrist et al. submitted their report on a different range of substitutions including lan-
thanum and yttrium [156]. In all cases the telephone-number compounds contain stacked
layers of two-leg Cu2O3 ladders as well as 1D CuO2 chains, which both run along the
crystallographic c axis. In both layers, each copper ion is centered within four oxygen
ions. These CuO4 plaquettes are oriented in different manners, though, as described be-
low. Between these alternating layers there always is a sheet of Sr, La or Ca. Figure
2.25 shows the corresponding 3D plot of the entire structure, which illustrates the overall
layered configuration. But the chain and the ladder layers do not belong to the same
structural unit since the orthorhombic sublattices are incommensurate along the c axis.
The lattice parameters of these structures are equal along a and b axis, respectively, and
they read a ≈ 11.3 Å and b ≈ 12.6 Å. Along the c direction, the chain system exhibits
a smaller unit cell with c chain ≈ 2.75 Å, whereas the ladder value is c ladder ≈ 3.9 Å [8].
This means that 7c ladder ≈ 10c chain as demonstrated in figure 2.26. Since the intermediate
layers of (Sr,La,Ca) belong to the ladder sublattice, it makes sense to rewrite the struc-
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Figure 2.25: 3D visualization of the crystal structure of (Sr,La,Ca)14Cu24O41 [158]. The
two-leg ladders and the 1D chains are both oriented parallel to the c axis, yet located in
different layers. These layers are stacked along the b axis and separated by sheets consisting
of Sr, Ca, or La. Different ions within this third type of layers are statistically distributed
among the sites.

ture as [(Sr,Ca,La)2Cu2O3]7 (CuO2)10. But this large unit cell is just an approximation
because there still is a slight mismatch between the two sublattices. The superconducting
compound Sr0.4Ca13.6Cu24O41+δ for instance exhibits a mismatch of approximately 0.18%
[157].

Within the Cu2O3 layers, adjacent ladders are close to each other, but magnetically
the ladders are effectively decoupled just as in SrnCun+1O2n+1 (see discussion in section
2.3.2). Along the zigzag boundary between neighboring ladders, the CuO4 plaquettes
share edges as already shown in figure 2.17. Within the ladders themselves, the CuO4

plaquettes are corner-sharing, and thus the copper ions are coupled via 180◦ Cu–O–
Cu bonds. According to the Goodenough-Kanamori-Anderson (GKA) rules [33], this
configuration produces strong AF couplings along the legs and along the rungs. The
CuO2 chains in the other sublattice consist of edge-sharing CuO4 plaquettes, and the
90◦ Cu–O–Cu bonds produce weak ferromagnetic couplings within the chains. Carter et
al. fitted the susceptibility of La4Sr2Ca8Cu24O41 and indeed found a ferromagnetic chain
coupling of J chain = −20 K [159]. However, the sign of the coupling is not that clear
just from the configuration since, for instance, CuGeO3 contains the same type of 1D
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Figure 2.26: CuO2 chains and Cu2O3 ladders in the ac planes of (Sr,La,Ca)14Cu24O41

[158] are incommensurate. 10 chain units in the left panel approximately sum up to 7
ladder units in the right panel, i.e. 10 c chain ≈ 7 c ladder. For Ca content x ≥ 5, the
standard displacement between neighboring chains is η = c chain/2.

chains and exhibits AF coupling instead.16 Telephone-number compounds with a smaller
La concentration show AF exchange in the chains, yet in company with hole doping,
Zhang-Rice singlets, and charge ordering in the chain subsystem. More detail is given
later on.

A quite precise crystal-structure analysis of a strongly Ca-doped system was performed
by Ohta et al. by means of neutron and x-ray measurements [162]. The studied compound
Sr0.4Ca13.6Cu24O41 is of special interest because superconductivity was first reported for
this member of the series. The most remarkable unveiled feature is an interplay between
the two subsystems, which modulates the structure incommensurably. Some of the copper
ions on the ladders are coordinated to neighboring oxygen ions of the chain system,
forming tetragonal CuO5 pyramids. This new “apical” oxygen leads to reduced equatorial
bonds compared to the other ladder bonds. The left panel of figure 2.27 shows a ladder
layer of the ac plane. Also included are those oxygen ions from the chain subsystem which
act as apical ones. They are plotted as large shaded circles. The right panel contains a
corresponding view of the bc plane. Here the dashed lines indicate the long bonds between
the two subsystems. It is also shown that the deflection of the oxygen ions in the chains
due to this interplay is larger than the structural effect on the ladders. This difference
might be owing to the fact that the chains are isolated from each other, whereas the zigzag

16Magnitude and sign of the 90◦ exchange are quite sensitive to small deviations from 90◦ [160] because
then the two involved oxygen-2p orbitals are not orthogonal anymore. In CuGeO3 the angle is ≈ 98◦

[90] and also neighboring Ge ions have a significant influence [161]. These so-called side groups allow
“detours” for the holes, and both effects finally lead to AF instead of ferromagnetic exchange.
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Figure 2.27: Modulated structure
of Sr0.4Ca13.6Cu24O41. The left panel
shows the projection of the ladder
layer within the ac plane. Black dots
denote the copper ions, small shaded
circles stand for Ca or Sr, and large
open circles are the oxygen ions of
the ladders. The large shaded cir-
cles represent those oxygen ions from
the chain subsystem that lead to the
formation of tetragonal CuO5 pyra-
mids. One part of these ions belongs
to the neighboring chain layer from
above, the other part is from the chain
layer below. The right panel provides
a projection of the bc plane. Black
solid lines are the short bonds within
the ladders and chains, whereas the
dashed bonds run between these two
subsystems. The Cu ions of the lad-
ders are entirely hidden by the oxygen
ions. Based on reference [162].

geometry of the ladders is rather rigid [162]. Nevertheless this modulation may have a
drastic effect on the magnetic excitation spectrum [163], as discussed in chapter 6.

The overall modulation of distances in this Ca-rich phase is more pronounced than
in the Sr-rich phase [162]. Moreover, when the Ca doping x in Sr14−xCaxCu24O41 is
less than five, new superstructure reflections occur, which can be attributed to a slight
shift of the chains against each other [8, 164]. This means that the displacement η
between neighboring chains deviates from the value c chain/2 (see figure 2.26). Another
effect stems from the smaller size of the Ca ions compared to Sr. The unit-cell volume
decreases by 9.5% upon increasing the Ca content from x = 0 up to x = 12 [6, 8]. The
corresponding reduction of the lattice parameters is moderate along the a and c direction
with no more than 2%. However, the b axis is considerably compressed by 6.6%, which
meets expectations because of the stacked structure along the b direction. This explains
the stronger modulation in the Ca-rich phase. It is also the reason why the single crystals
of the Ca series, and of the x = 0 compound as well, cleave easily perpendicular to the
b axis. Another comprehensive x-ray analysis of Sr13.44Bi0.56Cu24O41 was presented by
Frost-Jensen et al. [165].
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2.4.2 Charge Carriers

The approach of parts of the oxygen ions from the chains to the ladders supports the
idea that holes move from the charge reservoir of the chains to the conductive ladders
with increasing Ca content (see also the corresponding calculations by Mizuno et al. in
reference [166]). This is supported by the slight shrinking of the bond lengths within the
ladder when pyramids are formed with apical oxygens from the chains. Such reduction of
Cu–O bond lengths is a general feature of increased hole concentration [162]. A similar
change of bond lengths was observed in YBa2Cu3O6+z (0 ≤ z ≤ 1), where apical oxygen
ions move towards Cu ions on the CuO2 sheet with increasing oxygen content [167].

Although the dc resistivity of Sr14Cu24O41 is semiconducting up to room temperature
[153], the average formal oxidation state of the copper ions is +2.25. This compound
is therefore “self-doped” with holes, and there is a total of six holes per formula unit,
equivalent to six holes per 24 copper ions. However, the holes are assumed to reside
mainly within the chains [9, 159]. Bond-valence-sum calculations by Kato et al. also
propose such an unequal hole distribution [153]. Substituting Ca2+ for Sr2+ does not
change the average formal valence at all, yet the resistivity decreases accompanied by a
gradual disappearance of semiconducting behavior [153]. Osafune et al. observed a transfer
of spectral weight from the high- to the low-energy region in the optical conductivity upon
Ca substitution [168]. Based on this result they as well suggest a redistribution of charges
from the chains to the ladders with increasing Ca content. More details on this study
is given below. At room temperature Nücker et al. measured polarized x-ray absorption
spectra and estimated approximately 5.2 holes in the chains and accordingly 0.8 holes
in the ladders per formula unit [9], as noted already in section 2.2.3. In figure 2.28 the
numbers of holes per subcell are plotted for Sr14−xCaxCu24O41 versus the Ca content x. It
can be seen that the actual redistribution of holes is rather small since for x = 12 there are
still no more than 1.1 holes in the ladders. The polarized x-ray absorption yields one of
the most direct views on the hole distribution between ladders and chains. Unfortunately,
so far no data is available for low temperatures.
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Figure 2.28: Hole count per formula
unit for Sr14−xCaxCu24O41 derived from
polarized x-ray absorption [9]. Contri-
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Each hole located in the chains is expected to create a non-magnetic Zhang-Rice
singlet [109]. Since Sr14Cu24O41 is insulating, the charge carriers are not only confined
to the chains but presumably they are also localized and thus do not contribute to the
dc conductivity. But as soon as the holes get released into the ladders by Ca doping,
they are assumed to become more mobile. Hence the ladders are expected to provide the
charge transport. The decreased mobility in the chains can be visualized by mainly two
effects. First, in the pure 1D case already a single impurity renders the chain insulating.
In addition, the exchange constants are smaller in the chains, which implies that the
hopping matrix elements are substantially larger in the ladders.

Carter et al. found a crossover to more insulating behavior in the dc resistivity of
Sr14Cu24O41 below T ≈ 250 K and interpreted this as an onset of charge ordering [159].
The charge-ordering temperature TCO, as well as the overall resistivity, decrease with
increasing Ca doping. The occurrence of charge ordering was also reported by other
groups using neutron diffraction [113, 169], x-ray scattering [170], and thermal expansion
[171]. Further support was presented by Kataev et al. who studied single crystals with Ca
contents from x = 0 to 12 by means of electron spin resonance (ESR) [10]. They found
the onset of charge order in the chains at TCO = 200 K for x = 0, 170 K (x = 2), and
80 K (x = 5). There was no signature of charge ordering anymore for larger Ca contents.
A recent x-ray diffraction measurement by Fukuda et al. provided clear evidence that the
charge order in the chains of Sr14Cu24O41 exhibits a periodicity of five chain units [172]
(see also figures 2.30 and 6.2). The effect of charge ordering on the magnetic excitation
spectrum is discussed in section 6.1.

Another important dopant is La3+, which indeed does change the average valence of the
copper ions. The series LayCa14−yCu24O41, for instance, supplies an excellent possibility
to study the effect of charge carriers. A La content of y = 6 would yield a system without
any holes at all.17 Unfortunately, it seems that single-phase crystals of this very interesting
compound have not been synthesized so far, although several publications claim this very
composition. Ammerahl et al. were able to grow high-quality crystals with y = 5 [7]
and y = 5.2 [173], but it was not possible for them to obtain single-phase crystals with
y > 5.6. Hence they speculate that the real solubility limit of La is somewhere between
y ≈ 5.6 and 6 [7]. The lattice parameters slightly increase by no more than roughly 1%
with increasing the La content from y = 2 to 5.6. Yet there is another distinct feature in
the x-ray patterns. Above the La concentration of y ≈ 5 the sharp reflections from the
chain subcell vanish. Instead new superstructure reflections occur, which are diffuse with
streaks along the a direction. This gives strong evidence for one-dimensional disorder in
the chain subcell. All the chains get slightly displaced along the c axis, each chain with a
different magnitude. Yet to explain the superstructure, neighboring chains probably are,
on average, displaced similarly [8].

2.4.3 Spin Gaps

An NMR study of polycrystalline Sr14−xCaxCu24O41 by Kumagai et al. claimed that
the spin gap of the ladder system gets smaller with increasing Ca content x and finally
disappears around x = 13 [174]. The reduction of the spin gap is not directly related to

17Of course this is only true when there are indeed 41 oxygen ions per formula unit. What is more,
the formula X14Cu24O41 does not represent the true stoichiometry of the incommensurate compounds.
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Figure 2.29: Dependence of the spin
gaps of chains and ladders on doping in
Sr14−xAxCu24O41 as deduced from NMR.
Black symbols represent the ladder values,
whereas open symbols stand for the chain
gaps. Reproduced from reference [174].

the geometrical changes since this would produce the opposite effect. The reason is that
mainly the Cu–O bonds along the c axis get distorted after the formation of pyramids [162].
The bond angle thus deviates slightly from 180◦, which should considerably reduce the leg
coupling J‖. Yet an increased ratio of J⊥/J‖ would lead to a larger gap (see figure 2.16).
The instead deduced reduction is hence not attributed to structural changes with growing
Ca content, but Kumagai et al. claim that it is rather due to the actual hole doping into
the ladders. The spin gap of Sr14Cu24O41 measured by NMR has the value of 470 K [174],
which is considerably higher than e.g. the value of 380 K by Eccleston et al. measured
via neutron scattering [152]. The determination of the spin gap is more direct by means
of neutron scattering. This method e.g. allows to measure the gap at low temperatures,
whereas in NMR the gap is deduced from the temperature dependence of the nuclear
spin relaxation rate or the Knight shift measured over a large temperature range. But for
instance the hole distribution between chains and ladders might be temperature dependent
and thus also the gap energy. Opposite to the effect of Ca substitution, the spin gap
increases with La3+ and Y3+ substitutions for Sr2+. This makes sense since the trivalent
substitution reduces the hole concentration of the whole system.

Due to the large spin gap, the ladders are magnetically inert below room temperature,
and the magnetism is basically dominated by the chains. Yet with NMR Kumagai et
al. also found a spin gap of 140 K for the chains [174], which is in agreement with the
susceptibility results of Carter et al. [159]. Eccleston et al. as well detected magnetic
excitations at the slightly lower energy of approximately 120 K, again by means of inelastic
neutron scattering [175]. These authors assigned this feature to a spin gap of the chains,
too. The complete dependence of the gaps upon substitution measured via NMR is shown
in figure 2.29. The chain gap is almost unaffected, whereas the ladder gap strongly depends
on the effective doping of the ladder. Similar results were reported by Magishi et al., who
performed NMR measurements on single crystals of Sr14−xCaxCu24O41 [176]. They as
well find a reduction of the ladder gap upon Ca substitution, yet with the difference
of a flattened decrease at high Ca levels. The gap also persists up to x = 11.5, for
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Figure 2.30: Schematic rep-
resentation of a chain array in
Sr14Cu24O41. η is the relative
displacement between neighbor-
ing chains. The black dots with-
out spin in the right panel rep-
resent nonmagnetic Zhang-Rice
singlets. The dimer size d is
two chain lattice spacings, while
the interdimer distance d′ is three
spacings. Reproduced from refer-
ence [113].

which superconductivity was reported (see below). On the other hand, Mayaffre et al.
argued that for x = 12 the spin gap collapses under high pressure of 3.1 GPa, where
superconductivity sets in at 5 K [177]. High-pressure NMR measurements by Mito et al.
found a robust spin gap up to 1.7 GPa for the same Ca content, though [178]. Inelastic
neutron scattering yields a different scenario. Katano et al. found no dependence of the
ladder spin gap between Ca contents of x = 0 and 11.5 [179]. But they do find that the
gap energy decreases with temperature.

A gap in 1D chains that are expected to exhibit weak ferromagnetic coupling seems
surprising. But this gap might be interpreted on the assumption that dimers are formed
as soon as a sufficient amount of holes is present. In this case the holes lead to a non-
magnetic ground state of the chains, and Egap is the energy to break up a single spin
dimer, i.e. to excite one local singlet to a triplet. After all, the ferromagnetic exchange
found by Carter et al. [159] was measured on La-substituted compounds with just a few
holes. In the (Sr,Ca) series, though, the Zhang-Rice singlets due to the holes render about
half of the copper sites non-magnetic in the chains.

A possible resulting configuration with AF couplings and localized holes has already
been illustrated in figure 2.14 on page 24. In this scenario the dimers are formed by
next-nearest-neighbor spins, which are separated by a localized Zhang-Rice singlet, and
neighboring dimers are separated by two Zhang-Rice singlets. The exchange between next-
nearest neighbors proceeds via non-orthogonal orbitals and is antiferromagnetic, which
explains the formation of singlets. The coupling is of course smaller than for a 180◦ Cu–
O–Cu bond, which is the reason why the gap in the chains is smaller than in the ladders.
Experimentally, the value for Sr14Cu24O41 was determined to be Jintra ≈ 120 K [113] or
≈ 130 K [169]. It is not settled so far whether the interdimer coupling Jinter is AF or
ferromagnetic. Regnault et al. for instance claim a ferromagnetic Jinter of approximately
-13 K [113] as sketched in figure 2.30. Matsuda et al. state an AF Jinter of ≈ +9 K
[169]. However, both neutron studies yielded in addition a considerable AF exchange
between neighboring chains of Jbetween ≈ 20 K (Regnault) as well as ≈ 9 K (Matsuda).
This interchain coupling explains the appearance of long-range magnetic order below
TN = 2.5 K for x = 12 [10].
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Figure 2.31: Superconductivity in Sr0.4Ca13.6Cu24O41+δ. The left panel shows ρ(T ) at
various pressures. There is a low-pressure hump around 100 K that was found for any Ca
content of x ≥ 13. This hump disappears above 5 GPa. Superconductivity sets in at a
pressure of 3 GPa. In the right panel the onset transition temperature T onset

c is plotted as
a function of pressure. Reproduced from reference [157].

2.4.4 Superconductivity

The first report on superconductivity in the Ca-rich compound Sr0.4Ca13.6Cu24O41.84 by
Uehara et al. in 1996 [5] marked the vital breakthrough of ladder physics and also of
the telephone-number compounds. This series provides the only copper-oxide supercon-
ductors without 2D planes known so far. This theoretically expected yet long-awaited
discovery was confirmed two years later by Isobe et al. [157]. High pressures of several
GPa are necessary to induce the crossover from semiconducting resistivity ρ(T ) to metal-
lic behavior. The optimal pressure of around 5 GPa leads to a superconducting transition
temperature of Tc ≈ 13 K. The ρ(T ) data from Isobe et al. is presented in the left panel
of figure 2.31. The typical drop at Tc is clearly visible in the high-pressure curves. The
right panel demonstrates the dependence of Tc on the pressure. The shape of the curve
resembles the well known equivalent of the high-Tc cuprates, if only the pressure is re-
placed by the hole concentration. It is of course very important to verify that the state of
the crystal remains unchanged under pressure and at low temperatures. Therefore Isobe
et al. also measured the crystal structure by x-ray diffraction. There were no significant
changes in the peak profile except for peak shifts due to lattice compression and the usual
slight broadening. They found a single weak extra peak above 3 GPa, though, and an
anisotropy of the compression. The b axis shrinks by a respectable 0.7% per GPa, while
the c and especially the a axis remain almost constant over the entire range of applied
pressures. This again indicates hard binding within the layers and soft one in-between
the layers. But there is no phase transition at least up to 9 GPa and down to 7 K.
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It is still not clear why such high pressures and Ca contents are necessary for the
emergence of superconductivity. Ca produces additional “chemical” pressure comparable
to real pressure and both criteria enhance the redistribution of holes from the chains
to the ladders (see also reference [180]). However, if only enough holes were the key for
superconductivity, less Ca and higher pressure should do as well. But Isobe et al. found no
onset of superconductivity in Sr4Ca10Cu24O41 up to 8.5 GPa. They conclude that the Ca
doping enhances the 2D character of the ladder layers since both the a and the c axis shrink
by nearly the same percentage, while pressure essentially leaves the a axis unchanged. Ca
doping hence increases the interaction between neighboring ladders and superconductivity
appears only after the system acquired more 2D character. Strictly speaking, a single
ladder cannot support superconductivity for T > 0, i.e. higher-dimensional interactions
are always a necessary ingredient [40].

Soon after the first discovery of superconductivity at Ca content x = 13.6, for x = 11.5
a lower transition temperature of 6.5 K at an optimal pressure of 4.5 GPa was reported by
Nagata et al. [154]. Resistivity measurements on a single crystal revealed that the ratio
of ρa/ρc decreases from approximately 85 at ambient pressure to as low as approximately
15 at 4.5 GPa. This result supports an increasing 2D character and thus a dimensional
crossover upon applied pressure [181]. This is in contrast to the arguments given above
regarding the lattice constants. The already mentioned high-pressure NMR measurements
by Mayaffre et al. on Sr2Ca12Cu24O41 demonstrated that the spin gap existing at ambient
pressure collapses under 3.1 GPa, where superconductivity sets in. But Mito et al. found
a robust spin gap by means of NMR up to 1.7 GPa [178]. And Katano et al. performed
inelastic neutron scattering on a single crystal with x = 11.5 and found no significant
change of the gap at all compared to Sr14Cu24O41 [179]. This result did not even change
significantly under a pressure of 2.1 GPa [182].

Thus several open questions remain. First of all, the discussion is still open whether
their is “real” ladder superconductivity, which just occurs when there are enough carri-
ers in the ladders via increasing Ca content and pressure. The alternative would be a
mechanism close to the 2D type since under pressure a crossover to 2D character with
increased interladder (and presumably inter-chain) hopping occurs. In addition, it is still
controversial whether superconductivity occurs in the presence of a spin gap in the ladders
or not.

2.4.5 Optical Studies

Osafune et al. measured the reflectivity of Sr14−xCaxCu24O41 for x = 0 to 11 at room
temperature [168]. The optical conductivity σ1(ω) was calculated using a Kramers-Kronig
analysis (see section 3.1). The result is plotted in figure 2.32, showing a remarkable
dependence on x for polarization of the electric field parallel to the legs. Osafune et
al. analyzed the data under the assumption that metallic properties have to be ascribed
to holes in the ladders, whereas holes in the chains have to be localized. Under this
assumption, the low-frequency Drude-like contribution allows to estimate the number of
“free” carriers in the ladders.

As with La3+, also Y3+ reduces the total amount of holes in the system, and thus the
spectrum for Y content x = 3 is typical of an insulator. At low frequencies there are just
phonon peaks and the electronic excitations show a gap. At around 2 eV a characteris-
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Figure 2.32: Left panel: Optical conductivity σc(ω) along the c axis for various com-
positions of Sr14−xAxCu24O41. The data was obtained via Kramers-Kronig transformation
of the reflectance spectra. With increasing Ca content spectral weight is transferred form
the charge-transfer peak to energies below 1.2 eV. In addition, a distinct peak at 3 eV is
present for Sr14−xCaxCu24O41. The inset illustrates the highly anisotropic conductivities
along a- and c-axis, respectively. The right panel shows the effective number of electrons
versus energy. The deduced copper valence in both subsystems is plotted in the inset. This
is based on the assumption that the low-frequency metallic contribution is solely due to the
ladders. Reproduced from reference [168].

tic peak occurs, that is most probably due to charge-transfer (CT) excitations between
copper-3d and oxygen-2p states. This is commonly observed in undoped high-Tc cuprates.
On moving to Sr14Cu24O41 and further to Sr14−xCaxCu24O41, the conductivity in the low-
energy region increases, whereas the CT spectral weight at 2 eV decreases. Obviously
there is already a small density of free carriers showing up in Sr14Cu24O41. Osafune et
al. ascribe the low-energy contribution to the ladders since the carriers are expected to
be more mobile in the ladders than in the chains. In (quasi) 1D systems like the ladders,
localization of carriers is easily possible in case of disorder. However, the energy scale of
this localization would be low, and the material can recover metallic features at optical
frequencies [168]. But there is yet another feature arising in Sr14Cu24O41, namely a pro-
nounced peak is formed at approximately 3 eV. In this system there has to be an average
of six charge carriers per unit cell. This contribution was assigned by Osafune et al. to
the holes in the chains, which are supposed to be strongly localized (see also reference
[166]). The peak is then due to excitations of these charges, and less weight of this peak
with increasing Ca content thus means less holes in the chains. But in this scenario the
remaining holes in the chains stay localized for all x up to 11.

A sum-rule analysis yielded the effective number of electrons that contribute to the
conductivity up to the energy E = ~ω. The results are reproduced in the right panel
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of figure 2.32. Above approximately 2.5 eV there is no strong dependence on doping,
and thus the redistribution of spectral weight mainly takes place below this energy. This
implies that it is mostly the CT weight that is shifted to the low-energy region. This is
essentially the same as seen when 2D cuprates get doped [106]. It follows that holes are
doped into that structural unit that is a CT insulator in Sr11Y3Cu24O41 with CT energy
gap of 2 eV, and that the doped hole density increases with Ca content. As Ca does not
change the average valence, a redistribution of holes from the chains to the ladders should
be induced under the assumption that the chains are insulating. Therefore the increased
low-energy conductivity is a consequence of increased carrier density in the ladders and
not a consequence of originally localized carriers becoming mobile within the chains.
Osafune et al. also determine the Cu valence, which directly yields the hole density, for
both ladders and chains separately. The inset of the right panel suggests a hole transfer
upon doping. Mizuno et al. studied the optical conductivity by exact diagonalization of
small clusters [166] and provided a consistent explanation of the optical spectra measured
by Osafune et al. [168]. However, to study the actual hole distribution, the technique of
polarized x-ray absorption is more direct and does not rely on that many assumptions.
The data of Nücker et al. shows that there is only a marginal redistribution of holes upon
increasing the Ca content [9] (see figure 2.28).

Two years later Osafune et al. reported low-temperature results for x = 8 and 11 [183].
At first they measured the dc resistivity as shown in figure 2.33a. The crystal with Ca
content of x = 8 is semiconducting between 10 and 300 K, and the ratio ρa/ρc is almost
constant (see inset). The situation for x = 11 is different, though. The low-temperature
resistivity is still semiconducting, yet ρc exhibits metallic temperature dependence above
T0 ≈ 100 K. Along the a axis, the slope of the resistivity shows a gradual change of sign
at T ∗ ≈ 250 K. As a consequence there exists a region between 100 and 250 K where
ρc is metallic (dρc/dT > 0) but ρa is semiconducting (dρa/dT < 0). Accordingly, the
anisotropy ρa/ρc is enhanced in this regime.

Panel (b) of figure 2.33 presents the a-axis optical conductivity for x = 11. σa is dom-
inated by several optical phonons below 700 cm−1, which are superposed on an electronic
background. Upon lowering the temperature, spectral weight at low frequencies is trans-
ferred to the higher energy region. This behavior is reminiscent of the pseudogap of un-
derdoped high-Tc cuprates, which has been seen in the interplane conductivity [110, 184].
The energy scale of approximately 600 cm−1 (≈ 860 K) is quite large as well, and the
other specimen with x = 8 exhibits an even larger pseudogap of 1100 cm−1 (≈ 1600 K).
The opening of the pseudogap with lowering the temperature causes a reduction of σDC,
which matches the semiconducting behavior of ρa(T ). Osafune et al. speculate that the
pseudogap signals the pair formation of doped holes in the ladder [183].

On the other hand, the spectrum along the c axis is dominated by a low-frequency
peak that rapidly grows upon lowering the temperature (figure 2.33c). It is not a metallic
Drude peak since it is both too narrow and centered at a finite frequency of ≈ 50 cm−1.
Osafune et al. interpret this peak as a result of spatially ordered hole pairs or even a pinned
charge-density wave (CDW) of hole pairs. The deepening of the pseudogap in σa appears
to correlate with the peak in σc. Therefore it is reasonable to suppose that hole pairs
are formed, which produces the pseudogap, and at the same time a collective oscillation
of an ordered array of such hole pairs forms a peak in σc. In this scenario the number
of hole pairs within the ladder increases with decreasing temperature. The pairs readily
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Figure 2.33: (a) T dependence of the dc resistivities along a and c axis, respectively, of
Sr14−xCaxCu24O41 with x = 8 and 11. The characteristic temperatures T0 and T ∗, where
dρ/dT changes sign, are indicated by arrows for x = 11. The anisotropy ρa/ρc is plotted
in the inset. (b) Optical conductivity of the a axis for x = 11. At low temperatures there
is a suppression of conductivity below approximately 600 cm−1 similar to the pseudogap
of underdoped high-Tc cuprates. The sharp peaks stem from optical phonons. (c) Optical
conductivity of the c axis for x = 11. With lowering the temperature a sharp peak grows
rapidly. It is located at the finite frequency of probably 50 cm−1 and might be due to a
pinned charge-density wave (CDW). Reproduced from reference [183], yet simplified.

form a short-range charge ordering which is locally pinned by impurities or other lattice
imperfections. The charge order in the ladder then becomes longer ranged with lower
temperature as indicated by the narrowing of the peak and its growing spectral weight.
But there is no phase transition to true long-range order [183]. At low temperatures the
pinned charge carriers do not contribute to the dc resistivity. At higher temperature the
hole pairs can dissociate into single holes by thermal excitations. For Ca content x = 11
also the CDW itself may be depinned by thermal fluctuations. In this case both the CDW
and dissociated holes contribute to the “metallic” ρc.

The independent optical study of samples with x = 0, 5, and 12 by Ruzicka et al. led
to a similar proposal of a CDW of paired holes at low temperatures [185, 186]. They
report a pseudogap-like behavior along the c direction for x = 12. In general, a CDW
of hole pairs is not surprising at all since it is well known from theoretical calculations
that superconductivity and charge ordering are competing states in doped two-leg ladders
[2, 3, 187].
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Summary: Telephone-number compounds still offer a great deal of interesting questions.
However, all the basic expectations for a two-leg ladder were in fact verified. This includes
the spin gap as well as the triplet dispersion. Large high-quality crystals are available,
and the ladders can be doped with charge carries. Superconductivity was found, and
so far no other copper oxide is known to become superconducting that does not contain
2D square planes. The interplay between the ladders and the incommensurate chains is
still not completely understood, though. The proper set of exchange couplings is still
lacking, including the value of the cyclic exchange. The magnetic and charge ordering in
the chains is challenging, and the superconductivity is rather difficult to probe due to the
necessary high pressure. Especially the issue of the coupling constants in connection with
the first proof of bound states will be addressed in this thesis. A further topic will be the
impact of incommensurability and charge ordering on the spin dynamics of the ladders.
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Chapter 3

Optical Spectroscopy

3.1 Dielectric Function and its Determination

The main task in optical spectroscopy is to determine the dielectric function ε(k, ω) of
a system since it is closely related to the microscopic electronic properties of solids.1 In
general, this function depends on the frequency ω as well as on the wave vector k, and
it is a complex tensor of second rank. One can determine ε by probing the response
of the present charges by applying a weak disturbance in form of an external electric
field. When light hits the sample, the wavelength of the applied electric field is very large
compared to typical lattice spacings. Since the wave vector is inversely proportional to
the wavelength, only k ≈ 0 phenomena can be studied with optical spectroscopy. For
instance, visible light exhibits wave vectors of the order of 105 cm−1, whereas typical
Brillouin zones extend to the order of 108 cm−1. This fact is of fundamental importance
for solid-state spectroscopy and plays a dominant role in the selection rules of optical
transitions. Thus in the following, the momentum dependence of the considered quantities
may be neglected. Often other functions are used instead of ε(ω), namely the refractive
index n(ω) along with the extinction coefficient k(ω), or the optical conductivity σ(ω).
Yet all these functions are directly related to the dielectric function as shown below.

With the advance of efficient lasers it is now quite common to observe nonlinear optical
effects. We are rather interested in the linear response to a weak disturbance, though.
One of the most fundamental response functions is the dielectric function that connects
the displacement field D to the incident electric field by2

D(ω) = ε(ω)E(ω) . (3.1)

Actually, linear response theory is formulated in time and space. But since the response
is generally frequency and momentum dependent, it is more appropriate to consider the
Fourier transforms. More precisely, ε(k, ω) is the Fourier transform of the general response
function ε(r, r ′, t, t′) that connects D(r, t) with the field E(r ′, t′) existing at all other
positions and all earlier times.

1Comprehensive introductions to the wide field of optical spectroscopy can be found for instance in
references [188–190].

2The cgs system will be used as is common in many textbooks on spectroscopy.

51



52 Chapter 3 Optical Spectroscopy

The next fundamental response function is the dielectric susceptibility χe(ω), which
can be expressed as

χe(ω) =
ε(ω)− 1

4π
. (3.2)

Then the polarization P(ω) as response to the electric field reads

P(ω) = χe(ω)E(ω) . (3.3)

The third important response function is the optical conductivity σ(ω), which occurs in
the frequency-dependent version of Ohm’s law

j(ω) = σ(ω)E(ω) (3.4)

connecting the induced current density j to the electric field E. It is important to note,
though, that here E denotes the total electric field. Thus it includes not only the applied
external field but also the induced local fields. The relation between the dielectric function
and the optical conductivity is

4πi

ω
σ(ω) = ε(ω)− 1 . (3.5)

From this equation it becomes obvious that all the relevant functions presented here are
indeed complex, as for instance

ε(ω) = ε1(ω) + iε2(ω) and σ(ω) = σ1(ω) + iσ2(ω) . (3.6)

Using this convention, equation 3.5 splits into

σ1(ω) =
ω

4π
ε2(ω) and σ2(ω) =

ω

4π
[1− ε1(ω)] . (3.7)

The distinction between real and complex parts of each quantity is easy in the DC case
of vanishing frequency. Then σ1, for instance, describes free charges that can move over
arbitrary distances in response to the DC field, whereas σ2 (or ε1) describes bound charges.
These charges are bound to equilibrium positions and only get deflected to new equilibrium
positions by the DC field, which is the reason for the polarization. In the case of an AC
field this distinction blurs. The free charges do not move arbitrarily far any more but
oscillate back and forth with the frequency of the field. And the bound charges no longer
come to rest but also oscillate at the field frequency. If the frequency is sufficiently low, i.e.
lower than typical scattering rates 1/τ , plasma and oscillator frequencies, the distinction
can still be preserved, yet on rather different grounds. The free charges respond in phase
with the field, i.e. σ(ω) is predominantly real. On the contrary, the bound charges oscillate
rather out of phase, i.e. ε(ω) is now predominantly real. At higher frequencies even this
difference does not hold any more. Thus at optical frequencies of up to 1015 Hz the
distinction between free and bound charges is entirely a conventional one [35]. But it still
holds true that σ1 describes dissipative losses, which means the absorption of the system.
Since we want to probe low-energy excitations, σ1(ω) is the quantity we will be most
interested in.

Both ε(ω) and σ(ω) are not only complex but, in general, also tensors of second rank.
Nevertheless, the real part of the dielectric tensor is symmetric even for an anisotropic



3.1 Dielectric Function and its Determination 53

medium. Hence it is always possible to find a set of axes, the so-called principal dielectric
axes, such that the real dielectric tensor can be put into diagonal form. The conductivity
tensor, that is proportional to the imaginary dielectric tensor, is also symmetric and
can be diagonalized. However, the directions of the principal axes of the real dielectric
and conductivity tensors are not generally the same. But the two sets of principal axes
do coincide for crystals with symmetry at least as high as orthorhombic [190]. In the
following, only such systems are considered. In this case the three remaining diagonal
elements can be measured independently by using polarized light. Hence we will neglect
the tensor nature of ε and σ from now on and consider just scalars.

There is a further set of variables commonly used to describe the response of a system,
namely the complex refractive index

N(ω) = n(ω) + ik(ω) (3.8)

consisting of the usual refractive index n(ω) and the extinction coefficient k(ω). The
relation to the dielectric function is given by

ε1(ω) = n2(ω)− k2(ω) and ε2(ω) = 2n(ω)k(ω) . (3.9)

Due to the requirement of causality, the real and imaginary parts of a response function
are not independent. Instead they are related by Kramers-Kronig relations. The one
linking ε1 and ε2 reads [190]

ε1(ω)− 1 =
2

π
P

∫ ∞

0

ω′ ε2(ω
′)

ω′2 − ω2
dω′ . (3.10)

Since there is a divergence for ω′ = ω, P refers to the principal value of the integral.
But the most important question is not answered so far. It is how one can actually

extract the real part of the optical conductivity from the measured quantities, namely
the transmittance T (ω) and the reflectance R(ω). In many cases only R(ω) is available.
For instance metals exhibit such high absorptions, that already thicknesses of 0.1 µm are
sufficient to block any measurable transmittance. But R(ω) yields only one parameter for
each frequency, which is not sufficient to determine the two components of any response
function. In fact, there is indeed a second information stemming from the reflectance at
normal incidence. This is the phase shift φr(ω) that the light experiences during reflection
from the sample surface. The so-called complex reflectance directly yields ε(ω) according
to √

R(ω) eiφr(ω) =
1−

√
ε(ω)

1 +
√
ε(ω)

. (3.11)

With standard spectrometers this phase shift cannot be measured directly, though. There
are several cures for this under-determined equation. One possibility is to use ellipsome-
try. This technique uses elliptically polarized light and its reflectance at a finite angle of
incidence. A measurement yields two components and thus allows to directly determine
the response function for any measured frequency. Although ellipsometers are quite com-
mon to probe thin films on a surface, there are several problems. One is that we usually
measure sample surfaces smaller than 1 mm2. Therefore it is difficult to obtain reasonable
signal-to-noise ratios at the necessary large angles of incidence. In addition, the actual
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alignment is very challenging when a cryostat has to be used for low temperatures. The
commonly used technique is rather the standard reflectance measurement at normal in-
cidence over a wide range of frequencies with a subsequent Kramers-Kronig analysis to
gain the missing phase shift. The according transform reads [190]

φr(ω) = − 2ω

π
P

∫ ∞

0

ln
√
R(ω′)

ω′2 − ω2
dω′ . (3.12)

A Kramers-Kronig analysis requires the knowledge of R(ω) for all frequencies from zero
to ∞. Therefore it is always necessary to extrapolate the data to both low and high
frequencies. Errors may in particular arise close to the borders of the measured frequency
range.

But there is another way to determine the second quantity and thus to circumvent the
problems of a Kramers-Kronig analysis. Since we measure insulators in a frequency regime
above the phonons and below the band gap (see section 5.2.1), the overall absorption is
quite low. This allows us to measure not only the reflectance but also the transmittance
T (ω). We still need to prepare thin samples of thicknesses from several 100 µm down to
less than 10 µm, but we can directly calculate any response function once R and T are
known for a certain frequency. The only remaining parameter we have to determine is the
exact thickness d of the transmittance sample. The according equations read [191, 192]

T (ω) =
(1−R(ω))2 Φ

1− (R(ω) Φ)2
, (3.13)

R(ω) =
(n(ω)− 1)2 + k2(ω)

(n(ω) + 1)2 + k2(ω)
(3.14)

Φ(ω) = e−2 ω k(ω) d / c = e−α(ω) d (3.15)

where α(ω) denotes the absorption coefficient, and c the vacuum velocity of light. Note
that R(ω) means the single bounce reflectance and hence needs to be measured on samples
thick enough so that there is no contribution from light reflected from the back face of
the sample. Equation 3.13 is obtained for a sample with parallel faces by adding up the
intensities of all multiply reflected beams incoherently, i.e. by neglecting interference ef-
fects. Experimentally, this condition is realized either if the sample faces are not perfectly
parallel or by smoothing out the Fabry-Perot interference fringes by means of Fourier
filtering (see page 72). In practice there is usually no choice between a Kramers-Kronig
analysis of R(ω) data or the combined R and T measurements. When the absorption
is high, the large α(ω) together with the exponential function in equation 3.15 will lead
to vanishing transmittances in equation 3.13.3 However, when the absorption is low it
is almost impossible to extract these small values of α(ω) from the reflectance data with
subsequent Kramers-Kronig analysis.

3Actually, this equation is a generalization of the well known Lambert’s law

I(d) = Ioe−αd , (3.16)

that completely neglects any reflectance effects. Io is the initial intensity and I(d) is its reduced value
after traversing a thickness d within the sample.
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Figure 3.1: Drude-Lorentz simulation of an exemplary system with five different contri-
butions. First there is a weak metallic Drude part at zero frequency, then a weak phonon
at 500 cm−1, and finally three further very weak excitations at 600, 700, and 900 cm−1.
For the transmittance sample a thickness of 100 µm was assumed. The inset in the upper
panel shows the very weak features in R(ω) on a larger scale. In the T and σ1 panels the
dashed lines show the data multiplied by the given factors. ε′ denotes the real part of the
dielectric function. Reproduced from reference [110].

In order to illustrate this point, simulations of R(ω), T (ω), σ1(ω), and ε1(ω) are
plotted in figure 3.1. The underlying model system includes a weak metallic contribution
at ω = 0, a weak phonon at 500 cm−1, and three very weak features4 at 600, 700,
and 900 cm−1. For the transmittance sample a thickness of 100 µm was assumed. The
metallic excitation and the phonon can easily be determined from R(ω), whereas T (ω)

4The units of cm−1 are defined in the next section.
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is so small that a measurement is almost hopeless. Exactly the opposite is true for the
weaker absorptions. Their fingerprint in R(ω) is rather vague and will be lost in the noise
of a real experiment. Yet in the transmittance spectrum they are clearly visible. The
high-frequency region with larger values of T is dominated by Fabry-Perot fringes, which
are due to multiple reflections within the sample. These fringes can be smoothed away,
but then of course the resolution of the experiment is reduced. Obviously, the exponential
dependence on d and α requires a delicate choice of the proper sample thickness.

The simulation uses the so-called Drude-Lorentz model, which is the classical theory of
absorption and dispersion. It assumes a set of several oscillators that cause the response
to light. One can for instance consider an atom with electrons bound to the nucleus in
much the same way as a small mass can be bound to a large mass by a spring. The motion
of the electron is then described by a typical equation of motion

m
d2r

dt2
+mΓ

dr

dt
+mω2

or = −eElocal (3.17)

where m is the electron mass, −e is the electron charge, Γ denotes damping, and ωo is
the oscillator frequency. The field Elocal is the local electric field that acts on the electron
as a driving force. Here the small force stemming from the interaction with the magnetic
field of the light is neglected. The Lorentz force −ev×H/c is indeed negligible since the
velocity of the electrons is small compared with c. To describe the conduction electrons
of a metal, one simply has to omit the restoring force mω2

or because the electrons are not
bound anymore. This is the Drude part of the model. It is surprising how many properties
of real crystals can actually be described by such a simple idea. For more details on the
Drude-Lorentz model and its derived response functions the reader is referred to references
[189, 190, 193].

3.2 Typical Units

At this point, some general remarks are necessary on the units that occur in the following.
In optical spectroscopy, it is common to use a rather sloppy terminology. Namely the
angular frequency ω is not given in s−1 but instead in wave numbers ν with the unit cm−1.
To avoid confusion, the conventional frequency in Hz will be labelled as f . With Planck’s
constant ~ = h/2π, the energy is directly proportional to the frequency: E = ~ω = hf .
Hence the frequency is basically an effective energy scale. The definition of the wave
number ν is quite simple as it is the reciprocal value of the wavelength λ. Then the wave
number is just the frequency f divided by the speed of light c:

ν =
1

λ
=
f

c
. (3.18)

This is very convenient because it avoids huge numbers. For instance, mid-infrared light
with λ = 4 µm has a frequency of f = 75 THz but a wave number of just 2500 cm−1.
The other common energy scale is given in units of eV. The energy is related to ν via

E = hf = h c ν . (3.19)

The most important conversion is directly from cm−1 to eV and vice versa. For practical
use it is helpful to remember that
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• 1 eV corresponds to 8066 cm−1.

The last major energy unit is the temperature in K. Since E = kBT , where kB is
Boltzmann’s constant, one gets that

• 1 cm−1 corresponds to 1.439 K, and

• 1 meV corresponds to 11.60 K.

Note that in the following the wave-number symbol ν usually does not emerge any more.
Instead, it is common to use the angular-frequency symbol ω along with units of cm−1 to
describe an effective energy scale. Finally, table 3.1 gives an overview of typical frequency
ranges.

ω (cm−1) λ (µm) E (eV)

ultraviolet (UV) 25 000 - 100 000 0.4 - 0.01 3.1 - 12

visible (VIS) 12 500 - 25 000 0.8 - 0.4 1.5 - 3.1

near infrared (NIR) 4000 - 12 500 2.5 - 0.8 0.5 - 1.5

mid infrared (MIR) 400 - 4000 25 - 2.5 0.05 - 0.5

far infrared (FIR) 4 - 400 2500 - 25 0.5× 10−3 - 0.05

Table 3.1: Comparison of different frequency ranges. The boundaries are not standard-
ized, though.

3.3 Bimagnon-Plus-Phonon Absorption

3.3.1 Experimental Evidence

The mid-infrared absorption of undoped 2D cuprates exhibits interesting features that
are still not completely understood. Measurements by Perkins et al. on La2CuO4 and
three other single-layer cuprates revealed a sharp peak at around 0.4 eV (≈ 3200 cm−1)
in all the systems [13]. Associated with this main peak, further high-energy sidebands
occur. The upper left panel of figure 3.2 shows the absorption data of La2CuO4. Note
that a linear background was subtracted from the initial data. Perkins et al. initially
ascribed the main peak to an exciton, but Lorenzana and Sawatzky provided a mean-
while accepted interpretation in terms of bimagnon-plus-phonon (BIMP) absorption in
the frame of conventional spin-wave theory [11, 12]. The corresponding fit is included as
a dashed line in the figure. Obviously, the sidebands cannot be explained within conven-
tional spin-wave theory. Similar features were reported by Grüninger et al. in the bilayer
system YBa2Cu3O6 [14, 196] as shown in the right panel of figure 3.2. At 4 K there is
again a sharp peak followed by other high-frequency contributions. Also in this system
the main peak is well described by BIMP absorption and spin-wave theory.

But there are further confirmations of this concept. For instance in the 2D S = 1
system La2NiO4, the complete line shape can be reproduced [12, 194] because there is no
additional high-frequency weight. This compound is isostructural to La2CuO4 yet with a
larger spin. In the lower left panel of figure 3.2 the absorption is plotted together with the
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Figure 3.2: Infrared absorption spectra of different systems. Upper left panel: 2D
S = 1/2 single-layer compound La2CuO4 (solid line) at 10 K as measured by Perkins et
al. [13, 194, 195]. Dashed lines indicate the theoretical results by Lorenzana and Sawatzky
[11, 12]. Lower left panel: 2D S = 1 compound La2NiO4 at 10 K, as well measured by
Perkins et al. [194, 195] along with the according BIMP results. Note that in both panels
a linear background was subtracted. Right panel: Optical conductivity σ1 of YBa2Cu3O6

at 4 and 300 K measured by Grüninger et al. [14]. The inset shows the experimental
temperature dependence of the spectral weights of the 2800 and 3800 cm−1 peaks.

theoretical results. The same holds true for the 1D S = 1/2 chain Sr2CuO3 [139, 140], as
shown in the left panel of figure 3.3. Good agreement between observed and calculated
spectra was achieved in 1D because the according two-spinon treatment already takes
care of the quantum fluctuations. In the case of La2NiO4 the agreement is excellent since
quantum fluctuations beyond spin-wave theory obviously are small enough already for
S = 1. In the intermediate case of the 2D cuprates with S = 1/2, only the main peak is
well described (upper left panel of figure 3.2). The considerable weight of the sidebands
above this peak is beyond conventional spin-wave theory. In YBa2Cu3O6 this weight even
grows with temperature as well as with doping [14]. Above 200 K, the line shape shows
a remarkable change, as can be seen in the right panel of figure 3.2. The main peak
broadens although its total weight is unaffected. Yet the sidebands dramatically increase,
and at 300 K the peak around 3800 cm−1 already doubles its weight. The weights of both
the peaks versus temperature are plotted in the inset. A similar temperature dependence
was also reported for La2CuO4 [195] and Sr2CuO2Cl2 [191, 195]. In the right panel of
figure 3.3, the comparison of these three 2D cuprates with the theoretical BIMP result
reveals that the infrared features are indeed intrinsic to the 2D Cu–O planes. Note that
all data sets were adjusted so that the main peaks match.
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Figure 3.3: Left panel: Absorption of the 1D S = 1/2 chain Sr2CuO3 at T=32 K as
reported by Suzuura et al. [139]. The dashed line is the theoretical curve of phonon-assisted
two-spinon absorption as given by Lorenzana and Eder [140]. Right panel: Intensities of
experimental absorptions for three different 2D cuprates. The data sets were scaled so that
the main peaks coincide. Sr2CuO2Cl2 (solid) and La2CuO4 (dot-dashed) were measured by
Perkins et al. [13]. The YBa2Cu3O6 data (solid) is from Grüninger et al. [196]. The dashed
line was calculated by Lorenzana et al. using spin-wave theory and reproduces the main
peaks of all measurements [15]. The thin line denotes results of the exact diagonalization
of a 32-site cluster. Reproduced from reference [15].

But an explanation of the sidebands still remains elusive. Several interpretations in
terms of multi-magnon-plus-phonon absorption [11, 12], d–d transitions [194], and charge-
transfer excitons [197] were proposed. Grüninger et al. challenge these approaches and
suggest that a full account of the infrared data in the undoped cuprates has to include
quantum fluctuations beyond spin-wave theory [14]. The magnetic origin of the high-
energy features was demonstrated by means of infrared and Raman measurements under
high pressure by Struzhkin et al. [198]. In this context it is surprising that the exact
diagonalization result of Lorenzana et al. (thin solid line in the right panel of figure 3.3)
does not show a strong high-energy contribution [15]. This might be related to the cluster
size of 32 sites, or to a missing term in the Hamiltonian. Lorenzana et al. claimed [15]
that a cyclic spin-exchange term might increase the high-energy weight (see also section
5.3.2). However, their result for the so-called first moment, which is the “center of mass”
frequency of the spectral weight, is smaller than observed experimentally. Hence there
is still high-energy weight missing. S = 1/2 ladders exhibit many similarities to the
2D cuprates, yet calculations are a lot easier. The hope to shine some light upon this
challenging high-energy contribution provided the first intention for us to investigate the
telephone-number compounds, which are described in section 2.4.1. In chapter 5 it is
shown that we indeed found a large high-energy weight in the ladders, which as well
exhibits a strong temperature dependence.
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Figure 3.4: Breathing phonon mode that
breaks the inversion symmetry of the copper
sites. This phonon stretches the bonds be-
tween the copper (small spheres) and the oxy-
gen ions (large spheres). Other examples for
the spin ladder are given in figure 5.32 on page
131.

3.3.2 Basic Idea

How is it possible to measure magnetic excitations with light at all? The magnetic part of
the electromagnetic wave is usually not responsible for the interaction with solids. There-
fore magnetic dipole transitions will be neglected in the following. Considering electric
dipole transitions only, it is not possible to excite any state that would lead to a change of
the total spin. Hence it is not allowed to excite just a single spin wave, magnon, or triplet.
From spin conservation alone, the lowest order process would be to excite two magnons
with a total spin of zero. But infrared absorption of two magnons is still not allowed
in the tetragonal structure of the 2D cuprates. This is because in a typical two-magnon
excitation the presence of a center of inversion inhibits any asymmetric displacement of
charge, and hence the associated electric dipole moment vanishes. The situation changes
if phonons are taken into account. In a process in which one phonon and two magnons
are absorbed, the symmetry of the lattice is effectively lower. In this case the process
becomes weakly allowed.5 Lorenzana and Sawatzky presented the first calculations on
the actual line shape stemming from this kind of absorption [11, 12]. They considered
the 2D copper-oxide layers, but the generalization of the results to other magnetically
ordered insulators is not difficult.

An example of a very effective symmetry-breaking phonon is sketched in figure 3.4.
This Cu–O bond-stretching mode is also called a breathing mode. But phonons do not
only break the symmetry, they also contribute momentum. Only the combined momentum
ktotal = kph + k2magnon has to be zero in order to be infrared active. Hence the infrared
bimagnon-plus-phonon absorption is a weighted average over magnetic excitations from
the entire Brillouin zone, and the phonons provide some sort of “momentum bath”. Due
to energy conservation, the energy scale of the observed magneto-elastic peaks will be
shifted by the energy ~ωph of the phonon. Neglecting a possible dispersion of the phonon
mode is usually justified because only optical phonons come into question and because in
the cuprates the exchange constants are large compared to ~ωph. Typically, just Einstein
phonons without any dispersion are assumed.

The first step for determining the line shape and the spectral weight of the absorption

5The early roots of this ansatz date back to optical measurements of Newman and Chrenko on NiO in
1959 [199]. The observed absorption band at 0.24 eV was interpreted in terms of the combined absorption
of two magnons and one phonon by Mizuno and Koide five years later [200].
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Figure 3.5: Line shape of the BIMP absorption in a 2D square-lattice Heisenberg AF for
different values of the spin. The dashed line denotes a particular approximation in the case
of S = 1/2. The second peak at lower frequencies is an artefact. The energy scale is given
in units of the magnon energy Em at the zone boundary. Reproduced from reference [12].

is to consider the dependence of the exchange constants both on the external electric field
E of the photon and on the displacements u of the oxygen ions. Thus J ≡ J(E,u)
[11, 12, 14]. The phonons modulate the inter-site hopping and the on-site energies on
both Cu and O sites. Expanding J(E,u) to order d2J/dE du entails the coupling of a
photon to a phonon and two neighboring spins. This determines how to integrate the spin
response in the Brillouin zone, and a weight factor has to be considered that describes
the efficiency of the phonon-magnon coupling for each momentum. The result might be
for instance that most of the absorption weight stems from bimagnons at the boundary of
the Brillouin zone. The exact form factor depends on the actual structure of the system
and the involved phonon. In the case of the 2-leg spin ladders in a trellis configuration,
the weight factor is a mixture of

F = ω sin4(k/2) (3.20)

and of a k-independent term [201]. The sin4 term renders the infrared absorption to be
more sensitive to k = π excitations of the two magnons. Further details on the relevant
phonon modes and the according weight factors are presented by Nunner et al. in reference
[201] (see also section 5.3.2).

The theoretical line shapes for different spin values in a 2D square-lattice Heisenberg
AF are reproduced from reference [12] in figure 3.5. This plot offers a first understanding
of the according spectra. In the classical case of S → ∞, the two-magnon absorption
reproduces the density of states and diverges at the upper cutoff at 2Em, where Em is the
maximum magnon energy located at the zone boundary. Attractive quantum interactions
between the two magnons are switched on by reducing the spin value. The spectral weight
is shifted to lower frequencies, and a resonance peak is formed. Since the peak is located
within the two-magnon continuum, there is no real bound state of magnons. Increasing the
interaction strength, i.e. reducing the spin value further, pulls the resonance to frequencies
where the continuum background is small. Thereby the resonance peak sharpens, and for
the limiting case of S = 1/2 it can be viewed as an almost bound state of two magnons,
which here is called a “bimagnon”.
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In chapter 5 we discuss the infrared absorption of undoped spin ladders. The appro-
priate description of the magnetic excitations is rather given in terms of triplets than in
terms of magnons. Thus technically one has to deal with two-triplet-plus-phonon absorp-
tion. It will be shown that undoped spin ladders indeed exhibit a real bound state of two
triplets, which produces even two separate peaks in the optical conductivity. There are
as well high-energy sidebands, that can unambiguously be attributed to the two-triplet
continuum.



Chapter 4

Experimental Setup

The basic principle of optical spectroscopy as illustrated in figure 4.1 is quite easy. The
question to start with is always the same: how much light is transmitted through the
sample and / or how much light gets reflected back within a certain range of frequencies.
The knowledge of R(ω) and T (ω) directly yields the important response functions (see
section 3.1) like the optical conductivity σ(ω) or the dielectric function ε(ω).

4.1 Fourier Spectroscopy

Dispersive spectrometers used to be the standard tool for optical spectroscopy. They em-
ploy fixed slits and rotating gratings (or prisms) to scan the different frequencies one by
one. But in the infrared and particularly in the far-infrared range Fourier spectrometers
took over since computers got fast enough to perform the necessary Fourier transform.
An important advantage compared to dispersive methods is speed. All available frequen-
cies get measured within one run that usually takes no longer than a second. This is
known as the multiplex or Fellget advantage: Compared to dispersive spectrometers, the
signal-to-noise ratio improves proportional to

√
m, where m is the number of measured

frequency intervals in a complete spectrum. In addition, more intensity hits the detector,
which can cause the difference between “measurable” and “non-measurable”. Dispersive

Light Source

Sample

Detector

b) Reflectance Setup

Light
Source

Sample

Detector

a) Transmittance Setup

Figure 4.1: Rudimentary experiments in optical spectroscopy.
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Figure 4.2: Sketch of the Bruker IFS 66v spectrometer. Dashed lines indicate alterna-
tive optical paths. An insert with six additional mirrors can be placed into the sample
compartment to enable reflectance measurements.

spectrometers have to use narrow linear slits in order to reach a reasonable resolution.
Fourier spectrometers can use circular entrance apertures, which waste less area of the
incoming beam. This is known as the throughput or Jacquinot advantage. It is also an-
other reason for larger light intensities yielding a better signal-to-noise ratio, that further
reduces the overall measurement time. Sufficient signal is particularly important in the
far-infrared regime where intensities of thermal sources are always low. This is due to
the spectral shape of the black-body radiation that parabolically reaches zero intensity as
the frequency approaches zero. It is also worthwhile to mention the very high available
resolution and the almost perfect frequency calibration1.

Good descriptions of Fourier spectrometers are available in references [188, 202–205]
and just the basic principle is presented here. This summary is followed by a more
detailed description of the main measurement problems, which are usually not covered by
the standard sources.

Figure 4.2 shows a sketch of our spectrometer in transmission configuration. Light
from the source gets focussed onto the entrance aperture. The next mirror is parabolic
and produces a parallel beam that enters the Michelson interferometer. The light hits the
beam splitter that ideally reflects one half of the light whereas the other half can pass
through (see figure 4.3). The reflected part of the beam is completely reflected back by
the fixed flat mirror M1 and reaches the beam splitter again. The same happens to the
transmitted part of the original beam. Since the corresponding mirror M2 can be moved
back and forth with high precision, the travelling distance of the two partial beams can

1Usually about 0.01 cm−1, also known as Connes advantage.



4.1 Fourier Spectroscopy 65

be chosen to differ by a path difference of δ. When the mirror displacement is equal to x
the corresponding optical retardation would accordingly be δ = 2x. Again, ideally half of
each beam gets reflected and the other one passes through the beam splitter. This means
that finally two partial beams run back to the light source and unfortunately are lost.
The other two partial beams leave the interferometer, and as long as coherence is given
they will interfere with each other. This is an important point since thermal light sources
emit incoherent light. That means that the phase relation of different wave packets is
statistical. Substantial interference can only take place when every wave packet is split
up and finally superposes a retarded part of the very same packet. Accordingly, δ may
not exceed the total length of an average wave train by too far. The common meaning
of the coherence length is misleading in this context because it only measures the length
over which the main interferences occur. This length is by orders of magnitude smaller
than the usable path difference (see figure 4.4c).

Real beam splitters provide transmittances T and reflectances R that differ from the
ideal value of 1/2. But R + T = 1 is always true as long as the absorption is negligible.
When the mirror moves back and forth, the average intensity that reaches the sample
is proportional to 2RT because both partial rays get transmitted and reflected once (see
figure 4.3). The maximum value of 1/2 is only attainable when R = T = 1/2. The average
value of the lost intensity is proportional to R2 + T 2 since one partial ray is transmitted

E r0 

E t0 

iδE tr e0 

2 2iδ I ∝ E (tr e + rt)0  

E rt0 

Fixed Mirror M1

Moving
Mirror M2

Beam
Splitter

Interference

(with retard- 
ation δ=2x)

Light
Source

x=-5mm to 
+80mm

2E r0 

2 iδE t e0 
E0 

Figure 4.3: Sketch of the Michelson interferometer unit. The primary intensity from the
light source (thick line) is proportional to E2

0 , where E0 is the amplitude of the electric
field. This intensity is split into two parts that strike the mirrors M1 and M2, respectively.
Both the beams hit the beam splitter again, and finally there are four beams that leave the
interferometer. Two of these run towards the sample. The other two beams are lost. Here,
r and t denote the Fresnel coefficients of the beam splitter (r = Ei/Er, where Ei and Er are
the amplitudes of the incident and reflected field, respectively), in contrast to R = Ii/Ir.
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twice whereas the other one gets reflected twice. Of course the total intensity leaving the
interferometer is proportional to unity, which simply means that no light vanishes. For
every given position of the mirror, i.e. without averaging over time, the intensities depend
on the optical retardation between the partial beams. For monochromatic light there will
subsequently occur constructive and destructive interference.

Afterwards the light traverses a linear polarizer followed by a vacuum window and
gets focussed onto the sample inside the cryostat2. The sample is glued to a circular
copper aperture with silver paste and can be cooled down to 4 K as well as heated up
to 800 K. Next there is a second window and after several mirrors the light finally gets
focussed onto the detector. It is important that the pressure inside the cryostat is at least
below 10−5 mbar before cooling down the sample. Then the cryo-pump effect reduces the
pressure further down to less than 10−6 mbar. If the pressure before cooling was poor,
a layer of dirt would soon cover the sample surface, since it is one of the coldest spots
inside the cryostat. Usually this is not a problem for transmittance measurements, but
a layer of ice produces characteristic absorption artefacts above 3000 cm−1 that ruin the
spectra. The spectrometer itself also is evacuated down to a rough vacuum to get rid of
absorption lines of for example carbon dioxide and water vapor.

Within a measurement it is possible to switch between different optical components
without breaking the vacuum. This comes in quite handy since any changes are reliably
reversible. Computer controlled stepping motors operate mirrors to choose one of three
different detectors and also one of two light sources. Upon rotating the aperture wheel
several entrance diameters are possible. Finally, the polarizer is computer operated as
well. This allows us to automate the search for the orientation of a sample with e.g.
tetragonal or orthorhombic symmetry, and within one run both the accessible crystal
axes can be measured. To cover the complete possible frequency range, at least five
different measurements are necessary. The reason is that for instance the exchange of the
beam splitter or the cryostat windows is not possible without breaking the vacuum and
realigning the optics. The resulting span reaches from the far infrared of 10 cm−1 all the
way up to the ultraviolet of 55 000 cm−1. In terms of wavelengths this is approximately
λ = 1 mm down to λ = 180 nm. And to make this small compilation complete, the
corresponding energies are 1.2 meV and 6.8 eV.

4.1.1 Calculating the Spectra

The detector doesn’t measure the spectrum directly but the so-called interferogram in-
stead. To gain the transmittance and the reflectance of the sample, respectively, further
processing is required. The most simple example starts with a laser as a monochromatic
light source. The spectrum S(ω), as illustrated in figure 4.4a (left), consists of a delta
function at the frequency ω0 of the laser. Now let the movable mirror glide with constant
velocity from the position of zero optical retardation (i.e. δ = 0) by a distance x. The
two beams that leave the interferometer superpose, and constructive as well as destruc-
tive interference emerges successively. The resulting signal (right panel of figure 4.4a) is
proportional to the cosine function [188]

I(x) ∝ [1 + cos(4πx/λ0)] . (4.1)

2Model “Konti - Kryostat Typ Spektro A” by CryoVac, modified to meet our specifications.
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Figure 4.4: Examples of spectra (left) and their corresponding interferograms (right).
(a) Spectrum consisting of a single frequency (e.g. laser). The Fourier transform yields
a cosine. (b) Two frequencies. The Fourier transform consists of a sum of two cosines.
(c) Measured single-channel spectrum of La5.2Ca8.8Cu24O41 (E||c at 4 K). The interfero-
gram peaks at the position of zero path difference. Just the width of the main fringes is
commonly referred to as the coherence length.

This scenario has a practical use because fringes like this indicate the exact position of the
moving mirror. Therefore our spectrometer is equipped with a He-Ne laser as additional
light source that serves as an accurate sampling clock. In fact, the interferogram I(x)
contains all the spectral information and is the cosine Fourier transform of the spectrum
S(ω). In this case that is equivalent to the general Fourier transform because I(x) is an
even function. That means that the interferometer performed a physical Fourier transform
and just the inverse transform is needed to yield the wanted original spectrum S(ω).

The next step is to add a second laser frequency as shown in the middle panel of figure
4.4. The interferogram gets more complicated because two cosine functions with similar
frequencies contribute. If the distance of the laser frequencies scales with ∆ω, the resulting
beats in the interferogram scale as 1/∆ω. But normal light sources provide continuous
spectra. In figure 4.4c a measured transmission spectrum of La5.2Ca8.8Cu24O41 with the
electric field parallel to the c axis (E||c) is displayed. This is a so-called single-channel (or
single-beam) spectrum that, apart from the sample, still depends on the characteristics of
the light source, the detector, and all the other optical components within the light path.
The corresponding interferogram is dominated by the main maximum Imax at the white-
light position where the optical retardation is zero. This is the only position at which all
frequencies interfere constructively. The main fringes get suppressed after a rather short
displacement of the mirror, and the signal oscillates slightly around the average value of
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Imax/2. For x→∞ the coherence eventually is lost and the oscillations vanish yielding a
constant I(x) = Imax/2.

In real measurements the maximum displacement ∆xmax is always limited. This is
equivalent to a multiplication of the real interferogram by a boxcar function. In case of
a monochromatic laser line the inverse Fourier transform doesn’t yield a delta function
anymore but a (sin x/x) function instead. This leads to side maxima in the calculated
spectra and thus produces artefacts. The achievable resolution increases on extending
∆xmax, and as a general estimate the minimum resolvable frequency δω is given by

δω ≈ 1/∆xmax (4.2)

with δω in cm−1. In order to resolve ω0 from ω1 = ω0 + ∆ω, one needs to know the
interferogram at least for xmax ≥ 1/∆ω (see figure 4.4b). The side maxima can be
significantly reduced by avoiding an abrupt cutoff. This can be achieved by multiplying
the chopped interferogram with an appropriate function that damps the edges. In this
way the artefacts vanish at the expense of a slightly broadened instrumental line shape.
The whole process is called apodization. One of the best performing functions is the three-
term Blackmann-Harris function [202]. These efforts yield a highest nominal resolution
of δω = 0.114 cm−1 for our spectrometer, but in most cases a value of 5 cm−1 in the mid-
infrared regime is entirely sufficient. The temporal coherence may reduce the maximum
resolution since the total coherence length of thermal light sources is limited. This causes
a so-called self-apodization of interferograms when the optical retardation is greater than
the overall length of the average wave packet.

After applying all necessary calculations, the result is the already mentioned single-
beam spectrum. But it is quite easy to get the real transmittance and reflectance, respec-
tively. The spectrometer is equipped with a cryostat that can move up and down very
accurately over a distance of 3 cm with a stepping motor. A single step is equivalent to a
displacement of 70 nm.3 Usually the sample is positioned to within 500 steps (=35 µm).
In a transmittance setup this allows us to replace the sample with an empty aperture as a
reference during the measurement. If the light spot is smaller than the sample aperture,
the latter does not influence the spectra, and the ratio of the two single-beam spectra
directly yields the transmittance T (ω):

T (ω) =
Ssample(ω)

Sref(ω)
. (4.3)

In case of a reflectance measurement, a gold or aluminum mirror acts as a reference. It is
important to correct the spectrum by multiplying it with the known Rref(ω) of the mirror:

R(ω) =
Ssample(ω)

Sref(ω)
Rref(ω) . (4.4)

Another important advantage of the movable cryostat shall not remain unmentioned: The
cold finger on which the sample is mounted shrinks upon cooling down. Therefore the
sample does not reside at the focal point any more and the intensity drops. By moving
down the cryostat a bit this can easily be readjusted. In practice, one can move the
cryostat and record the intensity for different positions. If the light spot is smaller than
the sample aperture, there exists a plateau where the spectrum is not influenced by the
sample aperture. The center of this plateau is then chosen for the measurement.

3Of course the slackness is way bigger.
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4.1.2 Problems to Take Care of

With Fourier spectroscopy as with any other experimental setup there are numerous
sources of errors. Permanent verification of the data consistency is crucial to obtain
reliable results.

Polarizers

Since the samples presented in this thesis show orthorhombic symmetry, a polarizer is
needed to measure the different crystal axes separately. It is typical for all optical com-
ponents that the frequency range is limited, and to cover a wide region several polarizers
are necessary. Most measurements were carried out with a BaF2 polarizer. It consists
of a BaF2 substrate and thin aluminum stripes evaporated on one of the surfaces with a
grid spacing of 250 nm. In general, the performance is characterized by the two principal
transmittances k1 and k2. They are defined as the maximum and minimum transmit-
tance of a single polarizer when it is rotated in a perfectly polarized beam. The general
transmittance in perfectly polarized light is

Tsingle(α) = k1 cos2 α+ k2 sin2 α , (4.5)

where α is the angle between the polarization direction of the incident light and the
direction of highest polarizer transmittance. The latter is also referred to as the principal
axis. An ideal polarizer would have values of k1 = 1 and k2 = 0. To measure k1 and
k2, usually two identical polarizers are placed into an unpolarized beam. In this case the
total transmittance in unpolarized light is [206]

Tdouble(θ) = k1k2 sin2(θ) +
1

2
(k2

1 + k2
2) cos2(θ) . (4.6)

Here, θ denotes the angle between the principal axes of the two polarizers. Of course
both the parameters k1 and k2 depend on the frequency, and there is always just a certain
frequency window in which k1 is reasonably high and k2 small enough at the same time.

The correction of the error that arises from the wrong, or unwanted polarization due
to k2 is particulary important when the sample is transparent in one direction and almost
opaque in the orthogonal direction. In this case most of the intensity measured in the latter
direction is just an artefact. Fortunately, this can be corrected if the extinction ratio k2/k1

of the polarizer is known. For that purpose the standard measurement as described above
was not applicable since we own just one BaF2 polarizer. However, the strong anisotropy
of our samples also implies a possibility to measure the extinction ratio directly. In
the telephone-number compounds the onset of electronic excitations is observed at lower
frequencies for polarization parallel to the ladders than for the perpendicular directions
(see chapter 5.2). Therefore there is a window at high frequencies in which the sample
acts as a perfect polarizer.

In figure 4.5 three sets of single-beam ratios are presented. For each sample and each
temperature the c-axis spectrum has been divided by the corresponding a-axis data. One
can see clearly that starting from a certain frequency the ratios fall on top of each other.
When the ratios become temperature independent, it is straightforward to conclude that
all the measured c-axis intensity stems from leakage from the a axis due to the BaF2
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Figure 4.5: Extinction ratio k2/k1 of the BaF2 polarizer (black line). Three sets of
exemplary single-beam ratios of the telephone-number compounds are also shown. For
several temperatures the c-axis spectra have been divided by the a-axis data. As soon as
the c axis is opaque for the respective thickness at high frequencies, the entire intensity
for “E||c” stems from the unwanted polarization, and the ratios fall on top of each other.
Finally lots of measurements for different thicknesses build up the complete extinction ratio.
Below ω = 1700 cm−1 the ratio is extrapolated.

polarizer. With increasing temperature the onset of charge excitations is observed at
lower frequencies, which then allows to determine k2/k1 as well down to lower frequencies.
Instead of increasing the temperature even higher, a thicker sample also does the job.
Accordingly, a very thin sample is needed to cover the high frequency regime. At last,
the black curve is the result of seven different measurements including different samples,
sample thicknesses, detectors, lamps and beam splitters. It is obvious that the extinction
ratio gets worse at higher frequencies, and 12 000 cm−1 is the upper limit of reasonable
operation for the BaF2 polarizer.

To understand why the black curve indeed is identical to the extinction ratio one has
to recall the definitions of k1 and k2. k2 is the minimum transmittance of the polarizer in
a perfectly polarized beam (see equation 4.5). When the c axis of the sample is completely
opaque, we get exactly this situation. Actually, the polarizer is located in front of the
sample, yet the order with respect to the beam does not matter. This arrangement is
sketched in figure 4.6. Thus the ratio k2/k1 of the polarizer is equivalent to the ratio of
the minimum and maximum intensity, i.e.

k2/k1 = Ssample,c/Ssample,a . (4.7)
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The knowledge of the absolute value of the transmittance is only necessary if one wants
to determine k1 and/or k2 separately but not for the ratio k2/k1. Note that this equation
is only true as long as the sample acts as a perfect polarizer and that the c-axis spectrum
is non-zero just because of the imperfect BaF2 polarizer.

Now since the extinction ratio is known, it is possible to correct all measured spectra
in order to get rid of the polarizer error. When c and a are the real c-axis and a-axis
single-beam spectra, respectively, and the index “meas” denotes the measured spectra,
then

cmeas = k1 c+ k2 a and ameas = k1 a+ k2 c (4.8)

in analogy with equation 4.5. The same holds true for the reference spectra refc as well
as for refa. It might be surprising that even the reference spectra show a polarization
dependence. The reason is that most of the mirrors inside the spectrometer reflect at
non-normal incidence. Therefore a certain polarization direction is preferred, according
to the Fresnel equations. Simple rearrangement of equation 4.8 yields e.g. for the c-axis
single beams

c =
cmeas − (k2/k1) ameas

k1 (1− k2
2/k

2
1)

and refc =
refc,meas − (k2/k1) refa,meas

k1 (1− k2
2/k

2
1)

.

To calculate the final c-axis transmittance as shown in equation 4.3, c has to be divided
by refc and the denominator drops out:

Tc =
cmeas − (k2/k1) ameas

refc,meas − (k2/k1) refa,meas

. (4.9)

The impact of the correction on the transmittance is demonstrated in figure 4.7. The
left panel shows T of the a- and c-axis polarization of La5.2Ca8.8Cu24O41. Dashed lines
indicate the uncorrected spectra whereas solid lines represent the corrected data. The
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Figure 4.7: The effect of correcting the polarizer error. The left panel shows the trans-
mittance of a d = 28 µm thick La5.2Ca8.8Cu24O41 sample at 4 K. Dashed lines indicate
the uncorrected spectra whereas solid lines denote the corrected ones. Above 6000 cm−1

there is a large impact on the c-axis spectrum, which in fact becomes opaque. The correc-
tion gets even more obvious on comparing the calculated conductivities shown in the right
panel. Black dotted lines show the final conductivities calculated using four sets of different
measurements. The high-frequency data above 4600 cm−1 stems from a thinner sample of
d = 6 µm. The excellent agreement between the corrected data of the 28 µm sample and
of the 6 µm sample shows that it is very well possible to correct for the polarizer leakage.

first impression tells that mainly the a axis benefits. Yet the c-axis correction is more
dramatic. Above 6000 cm−1 the c axis is almost opaque, which is not obvious at all from
the uncorrected spectrum. The consequences on the conductivity presented in the right
panel hopefully convince the reader. The a-axis data is almost unchanged but the shape of
the corrected c-axis spectrum is completely different from the uncorrected one. The right
panel also shows the final data sets as dotted black lines. These were calculated using
four different measurements including a thinner sample of d = 6 µm and a completely
different polarizer. The employed Glan-Taylor polarizing prism has a substantially lower
extinction ratio of approximately 1% at frequencies above 5000 cm−1. Since the corrected
spectra resemble the final data sets very well, we can conclude that the polarizer problem
is greatly reduced.

Interference Fringes

In a transmittance measurement, the surface roughness of the sample has to be smaller
than the shortest wavelength of the incident light. Otherwise, scattering might disturb
the spectrum particularly at high frequencies. Therefore all the samples presented in
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d

Sample

Figure 4.8: Fabry-Perot fringes. Multi-
ple reflections at both the faces of the thin
sample lead to interference fringes that
overlay the spectrum. The path difference
between adjacent beams is approximately
2nd.

this thesis were polished (see section 4.2). But shiny parallel faces also produce multiple
reflections inside the sample, which lead to Fabry-Perot interferences (figure 4.8). The
resulting fringes reduce the resolution of the measurement. The width ∆ω of these fringes
broadens by reducing the sample thickness d:

∆ω =
1

2nd
(4.10)

with ∆ω in cm−1, d in cm, and n being the refractive index. Figure 4.9 demonstrates
the problem: In the left panel the thin line denotes a high-resolution measurement of
the already mentioned 28 µm thick sample of La5.2Ca8.8Cu24O41. The period of the
fringes is ∆ω = 75 cm−1. The amplitude becomes smaller when the transmittance gets
lower, because the increased absorption inside the sample reduces the effect of multiple
reflections. Upon lowering the resolution, the fringes finally disappear (red line). The
inset shows a measurement of a 6 µm specimen of the same material. Here, ∆ω already
reaches 380 cm−1 and thus all the fine structure of the spectrum is lost.

The right panel contains the interferogram of the single-beam spectrum that was used
to calculate the high-resolution transmittance of the 28 µm sample. Since the fringes
mainly consist of a single frequency, characteristic peaks show up in the interferogram.
To avoid the fringes upon reducing the resolution just means cutting the interferogram
at the black brackets (see equation 4.2). But the fringes also disappear by exceeding this
border by a bit. Because of the used apodization function the peaks still get sufficiently
suppressed. This is the reason why a nominal resolution of 60 cm−1 already suppresses
fringes with a period of 75 cm−1. We got even better results, though, by smoothing the
high-resolution spectrum with the use of a fast-Fourier transform. The corresponding
thick black curve in the left panel resembles the 60 cm−1 data pretty good, but it shows
no artefacts as the latter does.

Already at this point the outline of how to accurately determine a complete spectrum
becomes clear. To measure the frequencies at which the conductivity is large, a thin sample
is necessary. Since at these frequencies the transmittance is low, the fringes are absent.
To measure the missing parts of the spectrum with low conductivity a thicker sample
has to be prepared. Then the high transmittance is lowered, and again the amplitude of
the fringes is low. In addition, the period of the fringes is small due to equation 4.10,
and therefore the resolution is higher. Section 6.2 for instance describes how the a-axis
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Figure 4.9: Left panel: High-resolution transmittance of a 28 µm thick sample of
La5.2Ca8.8Cu24O41 (thin line). The period of the fringes is ∆ω = 75 µm. The low-resolution
spectrum shows no fringes anymore. Smoothing the first spectrum with a fast-Fourier trans-
form yields a slightly better result (thick black line). The inset shows the transmittance of
a 6 µm thick specimen with quite large fringes of 380 cm−1. Right panel: Measured in-
terferogram of the corresponding high-resolution single-beam spectrum (d = 28 µm). The
signatures of the fringes are quite characteristic, and by cutting the interferogram the fringes
disappear.

spectrum of Sr14Cu24O41 is built up of measurements using three samples with different
thicknesses of d = 20, 52, and 368 µm. After all, there also is an advantage of the whole
fringe phenomenon. If transmittance and reflectance are known, the fringes act as a very
accurate probe for the sample thickness. Especially for thin samples of less than 50 µm
this determination is more reliable than the measurement with a microscope.

Frequency Doubling

The absolute effect of ghost spectra at the double frequency on the transmittance is rather
small. But as with the polarizer problem the conductivity is strongly affected. This effect
is not to be mistaken for the so-called aliasing [202, 203], which is well taken care of and
not described here.

The left panel of figure 4.10 again shows transmittance data of the 28 µm sample of
La5.2Ca8.8Cu24O41. The fringes are smoothed away, and the polarizer error is corrected.
The c-axis data at 4 and 400 K measured with an infrared globar and a near-infrared
tungsten lamp overlap very well at low frequencies. The resemblance of the 4 K data even
extends to higher frequencies. The 400 K spectra, though, disagree above 3000 cm−1. The
globar spectrum shows additional intensity with clearly visible fringes. This is surprising
since the main fringes already got filtered. Strictly speaking, the period of the new fringes
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is exactly doubled compared to the main fringes. This is the reason why the additional
fringes survived the smoothing procedure and there is a strong hint towards a frequency-
doubling problem.

To go one step further, the right panel of figure 4.10 shows the uncorrected single-beam
spectrum of the 400 K transmittance measured with the globar (black line). Only the
interesting part is plotted. Also presented is the same spectrum but with all frequencies
multiplied by two. Afterwards the result got scaled down to match the excess intensity
of the original data. One can see quite clearly that above approximately 3200 cm−1 the
shapes of the two spectra are very similar. In particular the fringes are identical. Thus
the original spectrum contains a small contribution of the erroneous frequency-doubled
data.

It is obvious that this erroneous contribution is only observable when there is lots
of intensity that is mirrored into a region of low intensity. This is the case for the
400 K globar data. The inset of the right panel shows the complete corresponding single-
beam spectrum (solid line) with high intensity around 1500 cm−1 and low intensity above
3000 cm−1. The tungsten spectrum (dotted line) has considerably less intensity below
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Figure 4.10: The problem of frequency doubling. Left panel: Smoothed transmittance
of La5.2Ca8.8Cu24O41 (c axis, d = 28 µm) at 4 and 400 K. In particular at 400 K the high-
frequency parts measured with globar (solid) and tungsten lamp (dashed) disagree. The
globar data shows additional intensity and fringes twice as broad as the filtered main fringes.
Right panel: Corresponding 400 K single-beam spectrum measured with the globar. The
data is unsmoothed, and just the interesting region is plotted. Also shown is the same data
but stretched via frequency doubling with subsequent down-scaling. The fringes in the two
spectra match. The inset shows the complete globar single-beam spectrum along with the
tungsten spectrum (dotted). Due to the overall shape the latter doesn’t entail erroneous
contributions.
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2000 cm−1. This explains why the tungsten data in the left panel is almost unaffected
by the frequency-doubling problem, whereas in the case of the globar data the frequency-
doubled contribution at ω ≥ 2 × 1500 cm−1 is comparable to the real intensity at ω ≥
3000 cm−1. The shapes of the 4 K spectra are less critical for both lamps since the real
intensity at ≈ 3000 − 5000 cm−1 is much larger than the erroneous frequency-doubled
contribution. Fortunately, there is no need to correct the globar spectra, which actually
would be a difficult task. Below 3000 cm−1 the agreement of the data sets is excellent,
and above this frequency the globar data is sort of dispensable. But the problem is always
very likely to occur when there is a sharp drop of intensity in any spectrum. This may
lead to serious artefacts in the optical conductivity.

The only remaining task is to explain why frequency doubling occurs at all. Basically,
this is a common problem with grating spectrometers due to second-order reflections.
Yet here the reason is a completely different one. As described in section 4.1 and in
the corresponding figure 4.3, the two partial beams that leave the interferometer have
a path difference of δ. Afterwards, these beams hit several faces like the polarizer, the
first cryostat window, the sample aperture, and of course the sample itself. Every face
reflects back a small part of the intensity. Thus each time we get two new partial beams
that enter the interferometer for a second time at its actual output. The scene inside the
interferometer is equivalent to the already described first passing through of the original
beam. That means that one part of the additional intensity runs towards the lamp and
causes no trouble. However, the other part leaves the interferometer, again targeted at
the sample. Since two separate beams entered, there are four ghost beams that leave the
interferometer towards the sample. These ghost beams have a retardation with respect
to the main beams which is larger than the coherence length. Therefore we only need to
consider the interference within the four ghost beams. The second and third one of these
rays both have a path difference of δ compared to the first new ray. These beams cause
no trouble but just add to the overall intensity that reaches the sample.4 But the optical
retardation of the forth additional beam with respect to the first one is 2δ. This is exactly
equal to a doubled frequency in the interferogram and yields the ghost spectrum described
above. This becomes clear after recalling, for example, the oscillations due to a unique
laser frequency in the interferogram. A single period of a ghost laser oscillation would
already be completed at half the mirror displacement compared to the main oscillation.
And this is equivalent to a second weak laser operating at the double frequency.

As mentioned above, there is a further retardation between the two original beams
and the additional ones. Even worse, there are retardations between the different sets of
additional beams that originate from the different reflecting faces. But fortunately these
path differences are way bigger than δ and by far exceed the coherence length. Therefore
the phase information is lost, and no additional interference occurs. This just means that
at the time when the additional beams from a certain wave packet reach the detector the
original beams from the same wave packet are long gone. Accordingly, just the amplitudes
of the original spectrum and the broadened ghost spectrum add up. Nevertheless it is
basically impossible to correct for the ghost spectrum since its line shape is different from
the shape of the original spectrum. This is due to the fact that the intensity of the original

4The contribution which stems from the reflection of the sample is not present in the reference mea-
surement on an empty aperture, and therefore contributes to a slightly too large transmittance signal.
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spectrum is proportional to (tr eiδ + rt)2, whereas the ghost spectrum is proportional to
(rt3 + tr3 ei2δ)2 (confer figure 4.3).

Black-Body Radiation

As mentioned above, our cryostat allows us to heat the samples up to 800 K. But at
this temperature the sample itself acts as a considerable light source. The globar for
example, being our standard infrared lamp, also is just a thermal source that operates
at a temperature of approximately 1700 K. A fraction of the black-body radiation from
the sample directly reaches the detector. Fortunately, this light contribution does not
produce an ac detector signal as the beams from the interferometer do and therefore
produces no harm. The only effect is to reduce the sensitivity of the detector since the
main ac signal is superposed by a dc background. In the worst case the detector may
get overloaded. But there also is a contribution that takes the opposite direction and
enters the interferometer. The situation then is sort of similar to the frequency-doubling
problem described in the previous section. However, now there is no frequency doubling
because the extra beams traverse the Michelson unit only once. And beyond all question
the extra black-body radiation is completely incoherent with respect to the light from the
lamp.

Yet very surprising phenomena may occur. The left panel of figure 4.11 shows several
single-beam spectra of a 40 µm thick LaMnO3 sample in transmission setup at a tem-
perature of 500 K [207]. With decreasing input-aperture size the intensity diminishes.
Note that the 1 mm data (dash-dotted line) is divided by 2. But the spectrum measured
with the smallest aperture of 0.25 mm shows a very different shape. At frequencies be-
low approximately 1500 cm−1 almost all the spectral weight is missing, which is not the
case at lower temperatures. During the experiment it is possible to close the input aper-
ture completely. The lamp get’s blocked and ideally no oscillating intensity should reach
the detector. This is not the case, and the left panel of figure 4.11 shows the measured
black-body spectrum with the hot sample as the actual light source. Interestingly, the
maximum intensity is located at approximately 1000 cm−1 and seems to coincide with
the region of maximum suppression in the 0.25 mm spectrum. The first idea may be that
destructive interference causes the loss of intensity but, as mentioned above, the sources
are completely incoherent.

The corresponding interferograms are plotted in the right panel of figure 4.11. It is not
that unusual that the absolute value of the main minimum is larger than that of the main
maximum. The reasons are equal to the origin of asymmetrical interferograms in general.
For instance none of the sampling positions matches the proper position of zero path
difference. On the other hand there are always frequency-dependent phase delays of the
optical components. These are e.g. due to the ω dependence of the refractive index n(ω),
which gives rise to frequency-dependent optical path lengths. When the spectrometer
is not aligned perfectly, the interfering beams experience different phase delays. That
means that for every frequency the position of zero path difference is slightly shifted.
Both effects are usually unavoidable and after the Fourier transform they yield a complex
spectrum rather than a real one. Each value can be represented either by a sum of real
and imaginary part or by the product of modulus (or amplitude) and a phase factor.
The so-called Mertz method [208] calculates the phase spectrum and finally the modulus,
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which is equal to the proper intensity. When noise is involved, this procedure is superior
to computing the amplitude directly. Yet the amplitude of the complex spectrum is only
equal to the proper spectrum when there is a single phase error for every frequency.

At this point the problem becomes evident. The intruding beams from the hot sample
take a completely different path through the interferometer than the main beams. Again,
figure 4.3 helps to demonstrate the situation. The two main beams both traverse the
beam splitter once. But the two extra beams differ because one of them traverses the
beam splitter twice whereas the other one gets reflected twice without traversing the beam
splitter at all. Thus there is an additional phase shift between the two rays of 2nd with
respect to the phase shift of the original beams. Here n and d are the refractive index
and the thickness of the beam splitter, respectively. The given example of figure 4.11 is
kind of extreme since the difference of the phases is almost equal to π. This means that
the interferogram of the black-body spectrum has the opposite sign compared to the ones
with open input aperture. Since summing up interferograms of different sign is equivalent
to a subtraction of spectra it is comprehensible that adding the hot sample as a second
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Figure 4.11: Effect of black-body radiation at 500 K [207]. Left panel: Single-beam
spectra of a 40 µm LaMnO3 sample in transmittance setup. Note that the 1 mm spectrum is
divided by 2. The spectral shape measured with the smallest aperture size of 0.25 mm is very
different compared to the other spectra. The measured black-body spectrum of the sample
with blocked lamp is also included. Its intensity seems to be identical to the missing weight
of the 0.25 mm spectrum. Right panel: Corresponding interferograms. The illuminated
sample shows minima as main extremal values. The black-body interferogram is more
symmetrical and the main extremal value is a maximum. It seems as if this interferogram
got multiplied by -1 which is equivalent to an additional phase shift of π between the two
interfering beams. But this is just an approximation since the position of the maximum is
shifted slightly compared to the main minima of the “illuminated” interferograms.
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light source in this case yields less intensity in the final spectrum. The intensity of the
erroneous contribution is independent of the chosen entrance aperture. Therefore the
error becomes negligible at large entrance apertures. The rule of thumb is: The lower the
frequency or the higher the temperature of the sample, the larger the entrance aperture
has to be.

The last remaining question concerning the ghost-intensity problems is: Why is
this phase-shift problem not relevant for the discussion of the frequency-doubling phe-
nomenon? The corresponding extra beams take the same way through the Michelson
unit as the black-body beams. However, the difference is that the former beams are so
weak that they have only very little influence on the main spectrum. The effect is only
visible in frequency ranges where the main spectrum is almost zero.

Detector Non-Linearity

Some detectors generate a non-linear response with respect to the incident light intensity.
Most of the data presented in this thesis was measured with an MCT detector5. Unfortu-
nately, of all available detectors the MCT detector is quite prone to this complication. As
shown before, the typical interferogram consists of a few main fringes that soon fade, and
the details of the spectrum are determined by the small wiggles that follow. These wiggles
are not affected by the non-linear response, but the main maximum will be sampled with
a too small value. Thus, this error is restricted to a small regime of the interferogram
around the position of zero path difference. As a general guideline, narrow features in
the interferogram cause broad effects in the corresponding spectrum. The most obvious
symptom is a non-zero intensity in a frequency region of the spectrum where actually
none is expected. There are two options to make use of such a detector. The first would
be not to exceed a certain incident intensity so that the maximum intensity is still within
the linear range. Obviously this option yields a poor signal-to-noise ratio. Otherwise the
interferogram has to be corrected before executing the Fourier transform.

In figure 4.12 the black solid line represents a corrected single-beam spectrum. The
very same interferogram leads to a different spectrum when no linearity correction is
carried out. The overall intensity is reduced and there is lots of signal below 1000 cm−1,
where there is no weight at all in the corrected spectrum. Even worse, the whole spectral
shape below 2100 cm−1 is completely wrong. The uncorrected interferogram actually
produces negative intensities below this certain frequency that is folded upwards by the
phase correction. This becomes clear when the phase correction is also omitted. The
dashed line depicts the pure real part of the complex spectrum and in fact, at 2100 cm−1

it crosses the x axis. Likewise, the pure imaginary part of the complex spectrum is plotted
as dotted line.

The correction for non-linearity is always calculated prior to the Fourier transform of
any MCT interferogram. High signal values get amplified insofar that there is no false
intensity below 600 cm−1 anymore, which is the low-frequency limit of our specific MCT
detector.

5MCT is short for the narrow-gap semiconductor mercury cadmium telluride: Hg1−xCdxTe with
x ≈ 0.2. The detector has to be cooled down to 77 K.
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Figure 4.12: Non-linearity of the MCT detector. The left panel shows a blow-up of
the indicated low-frequency regime. The corrected standard spectrum is plotted as black
solid line. The uncorrected spectrum calculated from the identical interferogram is quite
different. Also included are the real part (dashed line) and the imaginary part (dotted line)
of the complex spectrum without any correction for non-linearity and phase errors. The
positive values of the real-part spectrum (dashed) agree completely with the corresponding
phase-corrected values.

4.2 Sample Preparation

The samples of the spin-ladder compounds discussed in this thesis were grown by U.
Ammerahl [6, 7] and M. Hücker (La5.2Ca8.8Cu24O41) with the group of A. Revcolevschi
at the Laboratoire de Chimie des Solides, Université Paris-Sud. The single crystals are
of very high quality and great detail is given in the PhD thesis of U. Ammerahl [8]. The
applied travelling-solvent-floating-zone (TSFZ) method using image furnaces has the ad-
vantage that no crucibles are necessary, which tend to contaminate the samples. Also, it
is possible to adjust the parameters immediately to prevent anomalies during the crys-
tallization process. The general applicability of the TSFZ method to successfully grow
low-dimensional cuprates is discussed in reference [209].

All the used specimens are single crystals as verified with an optical microscope using
polarized light. This method serves as a very important test because parasitic phases
can be pinpointed down to micrometer dimensions. Moreover, misaligned crystallites are
visible in optically anisotropic systems such as spin-ladder compounds. Selected specimens
were checked by neutron scattering. Rocking curves, for instance, reproduced the minimal
line width of the used triple-axis spectrometer [6]. One of the advantages of neutrons is
the small absorption, which allows to probe real bulk properties. Further tests included
x-ray powder diffraction, electron microscopy, energy-dispersive x-ray analysis (EDX),
and Laue x-ray back-reflection. All these checkups verified the excellent quality of the
single crystals.
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The oxygen stoichiometry is always a critical parameter with transition-metal oxides.
YBa2Cu3O6+x probably is one of the most prominent examples since the phase diagram
is very sensitive to the precise oxygen content. The maximum superconducting transition
temperature Tc of approximately 91 K is only reached close to the optimal doping level
of x = 6.93. Therefore a verification of the oxygen content of the spin ladders is obvious.
But the determination is quite difficult. X-ray and EDX analyses are usually not accurate
enough. In reference [8] the results of thermo-gravimetric measurements are presented.
Highly sensitive scales weighed powdered samples while the temperature was increased up
to 950◦C and afterwards lowered to room temperature again. In an H2/N2 atmosphere the
powder reacted with the hydrogen and the products where analyzed with x-ray scattering.
When all products and the loss of mass are known, the oxygen content can be calculated.
Figure 4.13 shows that all the examined samples contain a slight amount of excess oxygen.
The actual stoichiometry of the samples thus rather corresponds to A14Cu24O42. The
excess oxygen binds electrons and hence introduces holes. A nominally undoped sample,
for instance, corresponds to A14 =La8Ca6, in contrast to A14 =La6Ca8 for an oxygen
content of 41. However, the limit of La solubility is reached already close to a La content
of five (see page 41). Already at temperatures below 200◦C in an atmosphere of 1 bar
O2, the excess oxygen starts to leave the pulverized samples [8]. But this does not seem
to be a problem for our optical measurements. During a transmittance run a sample of
La4Ca10Cu24O41 was measured at a temperature of 230◦C in a vacuum of 3× 10−5 mbar.
A cross-check after cooling down again to room temperature revealed no changes of the
transmittance. The reason might be that the diffusion is slower in single crystals than in
powders.

The grown single-domain rods typically have an elliptical cross-section and a length
of 40 - 70 mm. The semi-major axis of usually 5 mm corresponds to the crystallographic
a axis whereas the semi-minor axis (usually 4 mm) is parallel to the b axis. The c axis
typically does not deviate by more than 10◦ from the direction of growth. One can
conclude that the formation of new atomic layers is easiest along the c axis, which is the

Figure 4.13: Oxygen content of
telephone-number compounds grown
by Ammerahl et al. with Sr, Ca, and
La substitution. All the crystals con-
tain a small amount of excess oxygen.
Reproduced from reference [8].
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Figure 4.14: Top: Setup of the
Laue camera in back-reflection mode.
The lines indicate the cuts that were
carried out with a wire saw after the
alignment. Left: Laue picture of
La5.2Ca8.8Cu24O41. The lines help to
guide the eye since the reflexes are
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the symmetry point. Here, the b axis
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chain and ladder direction. The planar high-Tc cuprates as well grow slowly along the
comparable axis perpendicular to the CuO2 planes.

Exact cutting and polishing of the samples is simplified quite a bit since the rough
orientation of small slices of the original rod is clear just from looking at it. The precise
orientation prior to cutting was done by the use of Laue x-ray pictures. The samples were
mounted on a goniometer and the only task was to align the main symmetry axis so that
it was parallel to the x-ray beam. Figure 4.14 shows a typical Laue picture after successful
alignment, i.e. the beam is parallel to the b axis. Also presented is a sketch of the basic
setup of the Laue camera. Afterwards, the samples were cut into slices perpendicular to
the b axis by a wire saw. Thus the resulting faces are parallel to the ac plane. Only the
Sr14Cu24O41 crystals made an exception because it is possible to cleave them with a razor
blade along the ac plane due to their pronounced anisotropy. Therefore no x-ray aligning
and no extra sawing was necessary for Sr14Cu24O41.

After cutting, all samples were polished to gain shiny faces. For reflectance samples it
is sufficient to treat one surface, but transmittance samples have to be polished on both
parallel faces. This is very important to avoid light scattering effects that might disturb
the spectra in particular at higher frequencies. Moreover, the polishing process allows
us to prepare each sample with the optimal thickness. It was even possible to polish a
sample of La5.2Ca8.8Cu24O41 down to a final thickness of 6 µm. The used Logitech PM2
machine resembles an old-fashioned record player since the main unit is a heavy rotating
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plate with a diameter of 30 cm. It was upgraded with state-of-the-art components to
provide high-grade samples. The first step is always to abrade at least 20 µm of the
sample to gain a flat homogenous surface. To get a thinner sample, further grinding can
be achieved rather fast. This fine-grinding process is called lapping and we typically use
an abrasive suspension of 3 µm seized Al2O3 particles in water. The lapping plate is
made of cast iron because this material is relatively soft. The sample gets gently pressed
against the rotating plate by a spring inside the sample holder. The resulting surface is
rather coarsely grained. However, no scratches and cracks should be visible at the end
of the lapping process because the subsequent polishing provides a very slow removal of
material.

The next step is the actual polishing process. Another plate has to be used, which is
covered by a polyurethane foam. This material has holes of up to mm sizes. Of course,
another suspension with finer particles has to be used, too. A base with a pH value of 10.3
and with suspended quartz crystals of 125 nm diameter provides very good results. In
labs for thin-film growth the same setup often comes across to re-polish old substrates. As
for thin transmittance samples, both surfaces have to be polished. After the treatment of
the first surface the sample is detached and re-glued again to deal with the second surface.

Every material and even every single sample has to be treated in a different way. Es-
pecially the contact pressure and the revolution speed are critical parameters. In general,
hard materials provide better results than soft and brittle samples. Sr14Cu24O41 for in-
stance was not easy to polish because whole layers parallel to the ac plane tended to break
off. And sometimes the polishing didn’t work out at all for no obvious reason. Maybe the
most mysterious case was a specimen of La4Ca10Cu24O41, that was designated to become

Figure 4.15: Strange bumps on the surface of a La4Ca10Cu24O41 sample. The picture
was taken with a scanning electron microscope [210]. In-between the bumps the area is well
polished.
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Figure 4.16: Picture of the 6 µm thick transmittance sample of La5.2Ca8.8Cu24O41.
Three patches of silver paste hold the specimen in place. The hidden circular aperture hole
is located under the left part of the sample and has a diameter of 0.5 mm. The sample itself
is of black color. But to make the picture more vivid a second light source was targeted at
the sample so that a lot of intensity directly got reflected back.

a transmittance sample. The first surface was easy to polish, and the usual result was
achieved. But the second surface withstood all the polishing efforts. Strange bumps of
approximately 10 µm height appeared. These bumps reappeared even after completely
lapping away the top layer. A second specimen that was cut right next to the former one
from the same crystal suffered the same problem. Figure 4.15 shows a picture taken with
a scanning electron microscope [210]. The whole area of the sample was covered with
comparable structures. An EDX analysis [211] yielded that the bumps basically have the
same stoichiometry as the sample. It is quite surprising, though, that the area between the
bumps was quite flat. The situation didn’t change even by removing more material than
the total height of the bumps. These two specimens were beyond remedy but fortunately
no other sample was lost due to this strange problem.

After polishing, the samples have to be glued onto an aperture. The rather thick
reflectance samples are easy to handle but the situation gets quite difficult when ex-
tremely thin transmittance samples have to be fastened. The 6 µm thick sample of
La5.2Ca8.8Cu24O41 that has already been mentioned above surely was the biggest chal-
lenge since it would break immediately by wrong handling. Figure 4.16 illustrates how
this sample is glued to a transmittance aperture of 0.5 mm with silver paste. This adhe-
sive provides good thermal contact and works even for our highest possible temperature
of 800 K. Great care is necessary because the paste tends to creep underneath the sample
when the consistency is too fluid. The apertures for transmittance measurements are just
slices of copper with circular holes. Aligning the spectrometer in a transmittance setup is
not too difficult. Yet for reflectance measurements a simple circular aperture won’t work.
Copper flats parallel to the sample surface would add some false intensity. Therefore we
use 4 mm thick copper slices and conical holes instead, so that the surface right next to
the sample is tilted. This works very well for large samples, where the light spot can be
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chosen to be smaller than the sample aperture. It is extremely important that the refer-
ence mirror is perfectly parallel to the sample. Otherwise, sample and reference signal are
not at maximum for the same spectrometer alignment, and at least the absolute value of
the spectrum is wrong. Currently an evaporator is set up which will allow to evaporate
a thin film of gold in-situ onto the sample surface. This film acts as a reference mirror
that perfectly matches the sample area and the sample alignment. For this technique the
sample itself is typically glued to a cone to avoid any parallel surfaces nearby.

Summary: Fourier spectrometers are powerful tools to measure optical transmittance
and reflectance data accurately from the far infrared all the way up to ultraviolet fre-
quencies. However, some caution is necessary to avoid the many problems successfully
that like to cloud the results. We are lucky to have access to high-quality single crystals.
Aligning, cutting, and polishing are by now well established procedures in our lab. It
was even possible to prepare a 6 µm thick transmittance sample with both sides brightly
polished.
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Chapter 5

Bound States and Continuum in
Undoped Ladders

This chapter picks up the discussion started in section 2.3.3, where the triplet dispersion
of two-leg spin-1/2 ladders has been introduced. But the excitation spectrum provides
further contributions since, for instance, the simultaneous excitation of two triplets yields
a continuum of states. Due to the gap in the elementary triplet dispersion, also the
continuum exhibits a gap. In such spin systems with gapped excitation spectra it is
particularly tempting to look for bound states. Without continua that span the energy
range down to zero, one may expect to find sharp features stemming from bound states.
An example discussed already in section 2.2.2 is the alternating Heisenberg chain in which
bound states indeed are present [17]. Therefore it does not come as a surprise that
bound states in gapped two-leg ladders were in fact predicted theoretically by several
groups [16–23]. In general, suitable techniques to probe bound-state peaks include, for
instance, inelastic neutron scattering, Raman scattering, and infrared absorption, the
tool of choice presented in this thesis. In this chapter, the first observation of a bound
state in spin ladders is presented [24, 212, 213]. The measurements were performed on
the system LayCa14−yCu24O41, which permits to reduce the amount of charge carriers
and thus provides essentially undoped spin ladders. The spectra are compared with
several recent theoretical calculations, and the excellent agreement between experiment
and theory allows us to extract a unique set of coupling constants. In this context, strong
evidence for the importance of the cyclic exchange Jcyc is given [26].

5.1 First Predictions

The bottom of a two-magnon continuum was already discussed in 1994 by Barnes et al.
[78]. Johnston et al. calculated not only the elementary triplet dispersion for different
coupling ratios, as presented in figure 2.23 on page 35, but they also presented the ac-
cording lower boundary of the two-triplet continuum [133]. The plot is reproduced in
figure 5.1 and shows data from isotropic coupling up to J‖/J⊥ = 2. One can see that
the elementary triplet branch is lying within the two-triplet continuum over much of the
Brillouin zone. However, more striking was the forecast of bound states of two triplets.
Such an excitation is sketched in figure 5.2 for the strong-coupling limit. The illustration
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lated using the Lanczos algorithm. Solid
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J‖ as well as J ′ = J⊥ is used. The wave
vector ky is parallel to the legs. Repro-
duced from reference [133].

in the dimer scenario is more instructive than the corresponding spinon counterpart of
the chain limit. Two triplets are excited on adjacent rungs and form a bound two-particle
state. As a reason for the actual attraction one might visualize that one triplet may take
advantage of the perturbation of the spin background by the other one. Moreover, in the
depicted case the triplets have antiparallel spins, which cures the AF exchange between
the rungs. One has to keep in mind, though, that naive pictures like this should not be
strained too much and just give a rough idea of the underlying mechanism.

Like in the alternating Heisenberg chain, again two different excitations of bound
states are possible, namely a singlet branch with spin zero and also a triplet branch
that is slightly higher in energy. There exists no actual bound state with S = 2 since
the interaction is repulsive in this channel. Nevertheless a solution exists, yet only with
energies above the upper edge of the two-triplet continuum. Thus the binding energy is
negative, and this state is called “anti-bound”.

J|| J⊥<
Strong-Coupling Limit

Figure 5.2: Rough sketch of a two-triplet bound state in the strong-coupling limit. Two
triplets excited on neighboring rungs are bound together. In the drawn case, the spins of
the triplets are antiparallel (Stot = 0), and therefore AF interaction between the triplets
leads to a positive binding energy.
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Damle and Sachdev found both types of bound states in the strong-coupling limit by
expansion in powers of J‖/J⊥ for the ladder Hamiltonian [18]. The S = 1 channel can
in principle be observed with inelastic neutron scattering. They present a bound-state
dispersion that only exists for a limited range of wave vectors k. Beyond this range the
binding energy vanishes. Since this energy is the distance between the bound-state branch
and the continuum located above, this means that the bound-state dispersion “enters”
the continuum. But within the continuum the two triplets can simply dissociate. Due to
the attractive interaction there still might appear a resonance within the continuum.

Sushkov and Kotov also studied the strong-coupling limit but extended the parameter
range by calculating both bound states for the coupling ratio J‖/J⊥ = 0.5 [19]. The
excitation spectrum is reproduced in the left panel of figure 5.3. The solid lines are the
elementary triplet branch and the lower edge of the continuum. The dot-dashed curve
represents the singlet bound state that leaves the continuum above k ≈ 2π/5. As stated
above, the binding energy in the triplet channel is weaker than in the singlet channel.
Therefore the triplet bound state, which is drawn as dashed line, is located closer to the

1

2

3

4

5

0

1

2

3

4

5

Figure 5.3: Left: Excitation spectrum of the ladder for J‖/J⊥ = 0.5. Here the leg
coupling is denoted as J . The lower solid line is the elementary triplet branch. For
comparison, it is accompanied by data points from reference [214]. The upper solid
line stands for the lower edge of the two-triplet continuum. At higher wave vectors the
two types of bound states emerge. The bound state with S = 0 (dot-dashed) exhibits
a larger binding energy than the corresponding S = 1 state (dashed) located above.
Right: Solid lines represent the sizes, or coherence lengths, of the singlet and triplet
bound states. Also included are the dynamical structure factors (dashed). The upper
line corresponds to the elementary triplet (“ungerade”), the lower one to the S = 1
bound state (“gerade”). Note the different scaling factors of 2 and 4. Reproduced from
reference [19].
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continuum boundary and emerges later, i.e. above k ≈ π/2.1 Further interesting results
calculated by Sushkov and Kotov are the size of the bound state and the expected neutron
intensities [19]. Both quantities are reproduced in the right panel of figure 5.3. Here the
solid lines denote the sizes for both types of bound states in units of the lattice spacing,
again for J‖/J⊥ = 0.5. The extensions increase with decreasing binding energy, which is to
be expected since the states gradually become unbound. Moreover, the triplet excitations
are “larger” than the singlet ones at the same value of k. Except for wave vectors very
close to the threshold, the bound states in both channels have typical sizes of just a few
lattice spacings.

The neutron intensity is directly proportional to the dynamical structure factor (see
footnote on page 16), which is drawn as dashed lines in the right panel of figure 5.3. The
upper line represents the intensity of the elementary triplet (Su, “ungerade”), whereas the
lower line stands for the S = 1 bound state (Sg, “gerade”). The experimental signal of the
S = 1 bound state is about 20 times weaker than for the elementary triplet [19]. What is
more, the bound-state energies are quite high in cuprate ladders, which renders the quest
for this state quite challenging by means of neutrons. The structure factor of the S = 0
bound state is zero in the considered neutron channel of S = 1. This simply means that
for its detection other techniques like e.g. Raman scattering or infrared absorption have
to be applied. Raman is sensitive just to k = 0 excitations at the zone center, though,
while the bound state only emerges at higher momenta. By the simultaneous excitation
of a phonon, infrared absorption can very well access this region. Therefore this probe has
been the best candidate to actually verify bound states in ladders, as presented below.

A further study of the excitation spectrum was undertaken by Trebst et al. in 2000
[22] and continued by Zheng et al. in reference [23]. For the first time, bound-state prop-
erties of spin ladders were obtained from strong-coupling expansions up to higher order.
The presented method uses orthogonal transformations to map the original Hamiltonian
onto an effective Hamiltonian.2 Starting from the dimerized ground state, the authors
calculated series in J‖/J⊥ up to order 7 for the singlet bound state, and up to order 12 for
the S = 1 and S = 2 channels. The reason why the singlet series is computed to lower or-
der than the other bound states is that the singlet has the same quantum numbers as the
ground state, which leads to a more elaborate procedure. The dispersions for the coupling
ratio of J‖/J⊥ = 0.2 are reproduced in the left panel of figure 5.4. The qualitative features
are comparable to the former results of figure 5.3 (see also figure 5.5). The three types of
bound states, namely the singlet, triplet, and the antibound quintuplet, evolve at some
critical wave vectors below and above the continuum, respectively. It is useful to define
an antibinding energy as the energy difference between the upper edge of the continuum
and the S = 2 quintuplet. Both binding and antibinding energies show a maximum at
k = π. Thus it is interesting to see how these energies evolve at this very wave vector

1In a subsequent paper of Kotov et al. an AF diagonal exchange was included [20]. The additional
frustration apparently leads to many-particle bound states at low energies. These new excitations become
more and more favorable as Jdiag increases and might, at some point, completely dominate the excitation
spectrum. However, without frustration Kotov et al. speculate that not even a three-particle bound state
exists in the strong-coupling limit.

2This approach is distinct but similar to the flow-equation method that uses continuous unitary
transformations. The latter technique was refined by Knetter and Uhrig to investigate the dimerized
chain [92] and the Shastry-Sutherland model [215]. In the next sections our data of the telephone-number
compounds will be interpreted on grounds of new flow-equation results of the same group.
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Figure 5.4: Left: Excitation spectrum for J‖/J⊥ = 0.2 based on high-order expansions.
Note that the leg coupling again is denoted as J and that the elementary triplet is omitted
in the plot. S and T are the singlet and triplet bound states, respectively. The quintu-
plet antibound state above the dotted continuum is labelled as Q. Right: Binding and
antibinding energies Eb/J‖ at k = π versus the coupling ratio J‖/J⊥. Several different
approximations to the expansion series are included. Reproduced from reference [23].

upon increasing the coupling ratio J‖/J⊥. The corresponding plot is shown in the right
panel of figure 5.4. Several different extrapolations are included that demonstrate the
uncertainty away from the strong-coupling limit. The binding energy of the singlet (S) in
units of J‖ increases up to J‖/J⊥ ≈ 0.4, whereas otherwise all the energies decrease with
increasing coupling ratio. Note that for the quintuplet (Q) actually a negative binding
energy is plotted.

The first calculations of the impact of bound states on the infrared absorption of
ladder compounds were reported by Jurecka and Brenig in 2000 [21]. They used first-
order strong-coupling expansions and employed the phonon-assisted bimagnon absorption
developed by Lorenzana and Sawatzky [11, 12] (see section 3.3). Yet the term “two-triplet”
absorption would be better suited in this case since magnons usually refer to spin-wave
excitations. At first, Jurecka and Brenig calculated the dispersion relations and again
find the continuum as well as bound states with S = 0, 1 and 2. But the latter two
bound states are not optically active, and only the continuum and the singlet bound state
can contribute to the infrared absorption. The dispersions are shown in the left panel
of figure 5.5. Note the scaling of the energy axis with λ being the coupling ratio J‖/J⊥.
This kind of rescaling was necessary to gain expressions that just depend on the wave
vector k. Apart from that, the main features are again comparable to the other results
of Sushkov et al. [19] (figure 5.3) and Zheng et al. (figure 5.4). The binding energy is
largest at k = π, and the S = 1 bound state is located in-between the singlet dispersion
and the lower edge of the continuum. Moreover, the antibound state with S = 2 emerges
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Figure 5.5: Left: Two-triplet continuum and the dispersion of the three types of bound
states with S = 0, 1, and 2 for the strong coupling limit. λ is equal to the ratio J‖/J⊥. Note
the scaling of the energy axis. The local maximum in the S = 0 channel at k = π leads to
a van Hove singularity in the density of states at the energy λ − 2. This is the reason for
the strong peak in the infrared absorption plotted in the right panel. The inset illustrates
the small continuum contribution on a magnified scale. Based on reference [21].

above the continuum. Jurecka and Brenig state that their treatment is exact in the limit
of J‖/J⊥ � 1, yet beyond this limit they expect deviations in particular regarding the
positions of the bound states [21].

The next step is to calculate the actual infrared absorption, which is reproduced in
the right panel of figure 5.5. Note again the required rescaling of the energy on the x
axis. The according choice of the frequency variable implies that zero incoming photon
energy corresponds to the point −2/λ on the x axis. This point is off the plotted range
as soon as λ < 1, which is necessary in the considered strong-coupling regime. Therefore
the plotted range just represents the frequency window in which absorption occurs. The
figure demonstrates that the singlet bound state in fact does have a profound impact on
the spectrum that is dominated by a sharp bound-state peak. In general, for dispersive
excitations the spectral intensity is proportional to the integrated density of states. Con-
sequently, when there is a singularity in the density of states, such as at a band minimum
or maximum, one expects a peak in the intensity. This kind of pole is called van Hove
singularity, and here the bound state exhibits a local maximum exactly at the boundary
of the Brillouin zone, i.e. at k = π, with the corresponding energy of 2 − λ. The added
arrows in figure 5.5 are supposed to demonstrate that the peak in the absorption spectrum
occurs exactly at the energy of the band maximum. The inset in the right panel focuses
on the remaining spectral weight. It shows a maximum at the center of the two-triplet
continuum, but the intensity is very small compared to the main peak. Actually, the
largest part of the spectral weight is lying within the bound state only for J‖ � J⊥, the
continuum is much stronger if J‖ and J⊥ are comparable. In order to describe our exper-
imental data on the telephone-number compounds, the theory had to be pushed to the
latter regime and to the inclusion of Jcyc. This has been achieved by the groups of Uhrig
from the University of Cologne and Kopp from the University of Augsburg (see below).
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5.2 Experimental Results

Our primary intention to study spin ladders was actually not to look out for bound states.
At first, we were rather interested to find features similar to the challenging mid-infrared
spectra of the undoped 2D cuprates in a comparable but easier system. The absorption of
undoped YBa2Cu3O6 (YBCO), for instance, exhibits a main resonance peak, that is well
understood in terms of phonon-assisted bimagnon absorption within spin-wave theory. Yet
there is a further broad contribution with significant spectral weight at higher frequencies.
Spin-wave theory fails to describe these additional features [14], that e.g. are not apparent
in the 2D S = 1 system La2NiO4 [194]. This suggests that the additional intensity in the
S = 1/2 2D cuprates may have its origin in quantum fluctuations which go beyond spin-
wave theory (for more details, see discussion in section 3.3). Indeed we found a similar
high-frequency contribution in the ladders, that we can attribute unambiguously to the
two-triplet continuum. What is more, we found two distinct peaks below the continuum.
Initially, this double peak contradicted the single sharp peak stemming from a bound state
as predicted by Jurecka and Brenig [21]. Not until new calculations by the theoretical
groups of Uhrig et al. in Cologne as well as Kopp et al. in Augsburg were accomplished,
we were finally able to describe the double peak as due to a single bound state.

First we wanted to study nominally undoped samples of LayCa14−yCu24O41, which
corresponds to a La content of y = 6. Single-phase crystals of this composition could
not be synthesized, though. Ammerahl et al. speculated that the solubility limit of La is
somewhere between y = 5.6 and 6 [7], as pointed out on page 41. However, high-quality
samples with y = 5.2, 5, and 4 were available, that on average contain merely 0.8, 1, and
2 holes per formula unit. Our results for the magnetic contribution to σ(ω) stemming
from the ladders (see below) is almost unaffected by the three different La contents. Thus
we consider the ladders to be undoped for the systems at hand. This assumption is well
supported by the x-ray absorption data from Nücker et al., which shows that for these
low doping levels all holes are located within the chain subsystem [9].

In order to determine the optical conductivity σ(ω), we measured both transmittance
and reflectance data between 500 and 12 000 cm−1 on our Fourier spectrometer. With
the use of polarizers and since the samples were cut accordingly, we were able to mea-
sure with the electric field parallel to the legs (c axis) and parallel to the rungs (a axis),
respectively. The spectra show an electronic background at high frequencies. To gain
the pure magnetic contribution to σ(ω), we had to subtract this background for both
polarizations. Afterwards, the results were compared with the mentioned new calcula-
tions to identify the excitations and to extract, for instance, the proper set of exchange
couplings. It turned out that inclusion of a cyclic exchange into the model Hamiltonian
solves most of the remaining inconsistencies. The measurement of the b-axis transmit-
tance of La1Sr13Cu24O41 meets expectations and demonstrates that perpendicular to the
ladder sheets the conductivity is very low and almost featureless. Thus we saw no sign of
magnetic absorption along this crystallographic direction.

5.2.1 Reflectance

Unlike in other optical studies on, for instance, phonons or the electronic structure, it is
not sufficient to measure reflectance spectra alone to gain insight into infrared absorption
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Figure 5.6: Mid-infrared reflectance of a 0.8 mm thick sample of La4Ca10Cu24O41, show-
ing the range between the phonons and the charge-transfer gap (confer figure 2.32). Solid
lines denote the c-axis polarization of the electric field, and dashed lines stand for the
perpendicular polarization E||a. Apart from the strong phonon feature at about 600 to
700 cm−1, the spectra are almost flat. The little spikes at 1220 cm−1 are measurement
artefacts. There is no appreciable temperature dependence up to room temperature.

of magnetic excitations. The spectral intensity is so weak that the only chance is to study
systems in which the magnetic contribution is located in a frequency window without other
sources of absorption. The large exchange couplings in the studied Cu2+ ladders shift the
magnetic peaks well above the highest phonons. In addition, the undoped compounds are
highly insulating so that there is no Drude peak that hides the small magnetic features.
And finally, the apparent charge-transfer excitations are located at higher energies. Hence
we deal with a frequency range of very small optical conductivity, i.e. small values of the
extinction coefficient k(ω) (order of 10−3). Since the reflectance R(ω) is given by

R(ω) =
(n(ω)− 1)2 + k2(ω)

(n(ω) + 1)2 + k2(ω)
, (5.1)

with n being the index of refraction (n ≈ 2.5), R(ω) is almost completely insensitive
to small absorption features. Accordingly, a subsequent Kramers-Kronig transformation
does not reveal such small features. This is the reason why we have to study the trans-
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mittance of thin samples. Together with the reflectance we directly get σ(ω) without any
Kramers-Kronig transform, as pointed out in section 3.1.

The measured R(ω) spectra of a 0.8 mm thick sample of La4Ca10Cu24O41 are plotted
in figure 5.6 for several temperatures between 4 and 400 K. The data sets were calibrated
against a gold mirror. A total of two different detectors, two beam splitters, and two
lamps was used in three different runs. The high-frequency part above ≈ 6000 cm−1 was
measured just at room temperature but was merged also to the low temperature data.
This procedure is reasonable, though, since above ≈ 4000 cm−1 there is no temperature
dependence in R(ω) up to 300 K. This is not the case for T = 400 K anymore, and
therefore just the low-frequency data up to ≈ 8000 cm−1 was used. As expected, the
shape is quite featureless and characteristic for the weak absorption regime below the gap
of an insulator. At about 600 to 700 cm−1 one can see the Cu–O bond-stretching phonon
mode. The pronounced dip in R(ω) denotes the longitudinal eigenfrequency ωL of this
phonon mode, which is about 85 cm−1 lower in frequency along the c axis than along the a
axis (at T=4 K: ωa

dip ≈ 750 cm−1, ωc
dip ≈ 665 cm−1). At higher frequencies, the reflectance

is more or less flat. The different absolute values of the two polarization directions reflect
the difference in n, namely na ≈ 2.3 and nc ≈ 2.6 above the phonon. It is obvious that
a Kramers-Kronig analysis would not reveal any small magnetic contribution in this very
frequency window.

5.2.2 Transmittance

A completely different picture emerges from the corresponding transmittance data within
the same frequency range. Figure 5.7 shows T (ω) for two different doping levels. The
data of La4Ca10Cu24O41 is plotted in the top panel. A d = 60 µm thick slice was mea-
sured, which had been cut parallel to the ac plane, and both faces had been thoroughly
polished. The MIR transmittance spectrum3 was calibrated against an empty aperture.
Fringes with a small amplitude occurred, which nonetheless were smoothed away.4 The
upper and slightly thicker lines represent the a-axis polarization. Since in general the
conductivity along the rungs is lower than along the legs, Ta(ω) is larger than Tc(ω)
(thin lines). It is quite obvious that these spectra reveal by far more detail than the
reflectance. In particular the temperature dependence is quite large. The steep drop
below 1000 cm−1 is due to the same bond-stretching phonon that was already apparent
in R(ω). Accordingly, along the c axis the phonon feature again appears approximately
90 cm−1 lower in frequency than along the a axis. The drop at high frequencies is quite
different for both polarizations. The onset of electronic absorption suppresses the c-axis
transmittance quite effectively above ≈ 4000 cm−1. Above 5000 cm−1, there is basically
no intensity left after the correction of the polarizer error (see page 69). Along the a axis
the suppression sets in less drastically, and there is still some transmittance left at the
highest measured frequency of 8000 cm−1. In particular, at 5000 cm−1 Ta(ω) > 50% at
4 K, and Tc(ω) = 0 within experimental accuracy. This is a very nice verification of the
single-crystalline nature of the sample.

At this point, a note on the absolute values of T (ω) is necessary. Using the trans-
mittances along with R(ω) to calculate the optical conductivity, there sometimes occurs

3Globar as light source, KBr beam splitter, BaF2 polarizer, and MCT detector.
4The unsmoothed data is shown in the left panel of figure 5.8.
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Figure 5.7: Mid-infrared transmittance of a 60 µm thick sample of La4Ca10Cu24O41(top;
multiplied by 0.96 to avoid negative values of σ1(ω), see text) and a d = 43 µm sample of
La5Ca9Cu24O41 (bottom; multiplied by 0.95) for various temperatures. Thick lines denote a-
axis polarization, c-axis data is plotted as thin lines. The 500 K spectra are not as accurate as
the other temperatures since black-body-radiation problems cannot be ruled out (see page 77).
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the problem of nonphysical negative values of σ1(ω). The problem is most likely when
T (ω) is large, i.e. σ1(ω) is very small. Thus especially the high values of Ta(ω) at low
temperatures are prone to produce a negative σ1. A reasonable remedy is to scale down
all the transmittances of a data set by a few percent, acknowledging that our absolute
values are typically a bit too high. This small inaccuracy is systematic, and we suspect
the non-linearity of the MCT detector to be the reason (see page 79). Another possible
explanation is that some of the light which initially is reflected on the sample surface tra-
verses through the interferometer a second time and then contributes to the transmittance
signal (see page 76). This contribution is absent in the reference measurement. The data
of La4Ca10Cu24O41 had to be multiplied by 0.96 to avoid negative optical conductivities.
Note that this does not affect our interpretation and the conclusions we draw from the
data, since this small correction does not affect the peak frequencies and has only a small
effect on the line shape. Even the spectral weight is changing by only a few percent, since
this multiplication has the strongest effect for very small values of σ1.

Already from these spectra some remarkable features are obvious between the phonon
and the electronic background. In the c axis there are two distinct dips located at around
2200 and 2800 cm−1, respectively. It makes sense to discuss dips in T (ω) since they indi-
cate absorption. Therefore in the optical conductivity the dips will reappear as peaks. In
Ta(ω) there are also some striking dips. A double dent appears at almost the same fre-
quencies as the c-axis counterparts, and there is a further broad feature at ≈ 4100 cm−1.
It is rather difficult to tell if such a peak also shows up in Tc(ω) because the electronic
background already damps the transmittance at the relevant frequencies. But two reme-
dies are possible to answer this question. First, one could measure a thinner sample that
yields an overall higher T (ω), or one could measure a different sample doped with less
holes.

In the bottom panel of figure 5.7 we tried both. In La5Ca9Cu24O41 the nominal
amount of holes is cut in half, leaving just one hole per unit cell. Moreover, the sample
with d = 43 µm is about 30% thinner than the former one. Note that T (ω) depends
exponentially on d (see equations 3.13 to 3.15). The transmittance at 8000 cm−1 remains
still large along the a axis for low temperatures. Therefore we did not only measure
with the MIR setup but in addition replaced the lamp and the beam splitter5 to measure
up to 10 000 cm−1. The fringes were smoothed away (see right panel of figure 5.8), and
both data sets were merged together. Afterwards, all spectra were multiplied by 0.95
to prevent nonphysical negative values of σ1(ω). Note that the measured temperatures
differ for both samples. The qualitative shapes of the spectra are almost identical to the
former ones. The characteristic dips are shifted to lower frequencies. This softening can
be attributed to increased lattice constants since La3+ is larger than Ca2+, resulting in
reduced exchange coupling parameters. The total transmittance is higher, which is quite
obvious from comparing the 500 K spectra. Most of the increase certainly stems from the
smaller thickness, though. The doping effect on the electronic background is not as big
as expected. This will become clearer in the discussion of the optical conductivity in the
next section because the dependence on the sample thickness drops out.

Usually, the spectra were measured with a resolution of 5 cm−1. At this high reso-
lution, though, interference fringes emerge that can exhibit quite large amplitudes. All

5Tungsten lamp and CaF2 beam splitter; also referred to as VIS setup in the following.
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Figure 5.8: Comparison of the interference fringes at 4 K of both specimens from Fig. 5.7.
Left panel: La4Ca10Cu24O41 measured with a resolution of 5 cm−1. The unusually small
amplitudes of the fringes are most probably caused by slightly misaligned surfaces. The
smaller fringe period along the c axis is due to the higher index of refraction. The cor-
responding smoothed spectra are included in both panels. Right panel: La5Ca9Cu24O41

exhibits typical fringes with huge amplitudes. The plotted 4 K data was measured with a
high resolution of 2 cm−1 (other temperatures: 5 cm−1). Merging of different data sets is
usually difficult before smoothing because typically the fringe amplitudes are very sensitive
to the spectrometer alignment.

the presented spectra were smoothed to get rid of these fringes. This is very important
because otherwise the calculation of the optical conductivity would yield non-physical
results. The fringes stem from multiple reflections within the sample and strongly depend
on the thickness, showing a period of ∆ω = (2nd)−1. Thus the only important benefit
for us is actually to determine the proper thickness with higher accuracy compared to
the microscope. But there is a considerable difference between both samples. While the
fringes of the La4Ca10Cu24O41 specimen are more or less negligible, the La5Ca9Cu24O41

sample exhibits fringes with huge amplitudes. In figure 5.8 the unsmoothed data sets of
both samples at 4 K are plotted next to each other. As pointed out before (see page
72), interference effects due to multiple reflections are always present in samples with flat
and parallel faces. As annoying as the fringes are at frequencies where the transmittance
is high, they are a sign of high-quality samples. Since the polishing process turned out
equally good for both samples, the low-amplitude fringes of La4Ca10Cu24O41 arose most
probably because the surfaces were not perfectly parallel. The smoothing process with
a Fourier filter turns out unproblematic, but of course the resolution gets reduced. The
smoothed data sets are also included in figure 5.8. Fortunately, the width of the features
we are interested in (above ≈ 1500 cm−1) is large compared to the fringe period, so that
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we do not lose any relevant information here. In cases where we were interested in sharp
features, we measured thick samples, which both reduces the amplitude and the period
of the fringes (see section 6.2).

After completion of the described measurements, we received a large single crystal of
La5.2Ca8.8Cu24O41. In this system the nominal amount of holes is reduced even further
to 0.8 per unit cell, and so far no single-phase crystals with less doping are available
to us.6 As this system was the most promising one to reveal the complete magnetic
absorption even along the c axis, we measured not just one sample but two distinct ones
with different thicknesses. The first one with d = 28 µm was already thinner than the
former samples. Our d = 6 µm thin sample, though, extended the frequency range to
approximately 9000 cm−1 for the c axis and even up to 12 000 cm−1 for the a axis. The
transmittance of the 28 µm specimen is plotted in the upper panel of figure 5.9. Two data
sets were measured with the globar and the tungsten lamp within a single run.7 At first,
the polarizer error got corrected. Here also the a-axis spectra were treated, although the
effect on σa is rather small (see figure 4.7). Afterwards, the fringes were smoothed out
in both data sets. For the subsequent merging procedure, it is often necessary to adjust
the higher-frequency measurement by a few percent to get good overlap between the data
sets. However, the a-axis data of the tungsten lamp had to be scaled down by no more
than 1.3%. The c-axis data sets fitted even right away and were as well merged between
2000 and 3000 cm−1. Afterwards, all merged spectra were multiplied by 0.97 to avoid
negative values of σ1(ω) later on.

The second sample of La5.2Ca8.8Cu24O41 could be polished down to 6 µm and was
measured without any kind of substrate (see figure 4.16 on page 84). The sample was cut
from the same rod as the former one and measured with the NIR setup, i.e. tungsten lamp,
CaF2 beam splitter, BaF2 polarizer, and the MCT detector. Like usual, the polarizer error
was corrected and the fringes were smoothed out. The results are shown in the bottom
panel of figure 5.9, and the differences in T (ω) compared to the thicker sample are quite
striking. The overall transmittance is of course higher, which is particularly obvious along
the c axis. As expected, the σ1(ω) spectra match quite well (see below). The characteristic
dips discussed above, which are ascribed to the magnetic absorption, are less pronounced.
This shows that small absorptions are not easy to observe when the sample is very thin.
Also the effective resolution suffers as the fringes, which were again smoothed, exhibit a
huge period of 380 cm−1 (see figure 4.9 on page 74). But the intention of this measurement
was to get information at those frequencies where the electronic background is already
rather strong. For instance, the dip along the c axis at 3500 cm−1 gets very pronounced
at high temperatures. This reveals the continuum contribution, which is hard to see in
the 28 µm data.

6Of course, the determination of the real doping level is not that easy. First, the oxygen amount
influences the doping, and our samples typically do show some excess oxygen of δ < 0.9 (see figure 4.13
on page 81). In the second place, the formula X14Cu24O41 does not represent the true stoichiometry of
the incommensurate compounds. What is more, the real ratio of the two incommensurate subcells will
change for different La contents. And to complicate things further, in the considered range about y = 5
some disorder in the chains occurs, as pointed out on page 41. But since all specimens were grown under
similar conditions, the oxygen contents are comparable. And we still expect, on average, less holes for
y = 5.2 than for y = 5 and 4.

7Other components: MCT detector and KBr beam splitter. Confer also figure 4.10 on page 75, where
the same data is shown in the context of the frequency-doubling effect.
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Figure 5.9: Infrared transmittance of La5.2Ca8.8Cu24O41. Top panel: d = 28 µm sample.
Two data sets measured with globar and tungsten lamp were corrected for the polarizer error,
smoothed, merged together, and afterwards multiplied by 0.97 to avoid σ1(ω) < 0. Bottom
panel: d = 6 µm sample. Note that the plotted spectra are not scaled down. This was done
later in order to merge the σ(ω) data of both panels for each available temperature separately.
Exemplary, four spectra measured with the prism polarizer are included (dash-dotted). The
300 K spectra demonstrate the excellent agreement of the data obtained with the Glan-Taylor
polarizer and the corrected data measured with the BaF2 polarizer.
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Figure 5.10: Infrared transmittance of La1Sr13Cu24O41 with E||b (thick lines) and E||c
(thin lines). The b-axis transmittance perpendicular to the ladder planes is large and rather
featureless. Moreover, the temperature dependence is small compared to the c-axis data.

We performed a further measurement on the thin sample with a different polarizer.
We are confident to have the correction of the BaF2 polarizer under good control, but
at high ω we get large extinction ratios of more than 6% (cf. figure 4.5 on page 70).
The analysis is very sensitive to this correction when it comes to the subtraction of the
electronic background. Therefore we used a Glan-Taylor polarizing prism with a specified
extinction ratio of 10−5 to check the highest frequencies. The agreement between the
Glan-Taylor data and the corrected BaF2 data is convincing (see the 300 K spectra). To
maintain clarity just four exemplary spectra are included in the bottom panel of figure
5.9 as dash-dotted lines.

For comparison, figure 5.10 presents the b-axis transmittance of La1Sr13Cu24O41, i.e.
the electric field is polarized perpendicular to the ladder planes. Note that this compound
is intrinsically doped with nominally five holes per unit cell. The effects of charge-carrier
doping on the infrared spectra are discussed in more detail later on in section 6.2. Along
the b direction the magnetic coupling constants are negligible. Hence one does not expect
any noticeable magnetic features in contrast to the c-axis spectra, which are also plot-
ted in figure 5.10. Even though this sample contains more holes and even though this
d = 20 µm sample is more than three times thicker than the d = 6 µm sample of undoped
La5.2Ca8.8Cu24O41, the b-axis transmittance is larger than the already high a-axis trans-
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mittance in the bottom panel of figure 5.9. Along with the small temperature dependence,
this clearly demonstrates that a magnetic contribution to the optical conductivity can be
neglected for polarization perpendicular to the ladders.

5.2.3 Optical Conductivity

The next step is to take the measured transmittance and reflectance spectra to calculate
the real part σ1(ω) of the optical conductivity. For all of the three different systems (y=4,
5, and 5.2) we used the same R(ω) measured on the d = 800 µm La4Ca10Cu24O41 sample.
We expect just negligible effects on σ1 since the reflectance is rather featureless and does
not even depend much on the temperature. The spectrum is that of an insulator and we
assume basically no changes by going from y = 4 to y = 5.2, at least not beyond our
experimental accuracy.8 All the magnetic features that we are interested in arise solely
from the transmittance spectra and are quite insensitive to a possible slight shift of R(ω).
In addition, not for all the needed temperatures R(ω) was measured. But again, there
is no error arising from using e.g. the T = 4 K reflectance along with the T = 100 K
transmittance as there is essentially no change in R(ω) below 200 K (see figure 5.6). We
measured no reliable 500 K reflectance, which is the reason why we refrain from presenting
σ1 data for this temperature.

The calculated spectra for y = 4 and 5 are plotted in figure 5.11. Note that both
panels are scaled identically to simplify the comparison. Below 1000 cm−1 there is the
steep increase in σ1 due to the phonon in each spectrum. The values along the a axis
around 1500 cm−1 never become negative, which had to be ensured by the discussed
scaling down of T (ω) by 4 to 5%. At the high-frequency limit of the measurements, the
electronic background increases strongly with temperature. The overall weight of this
background is larger in the higher-doped La4Ca10Cu24O41, and the onset is shifted to
lower frequencies. This can be most easily observed by comparing the 400 K spectra. It
is important to take a look at the absolute values of σ1. Within the measured frequency
window, the conductivity is < 10 (Ωcm)−1. This is by orders of magnitude smaller than
the Kramers-Kronig data of, e.g., Osafune et al. in figures 2.32 and 2.33. Hence the high
sensitivity of our approach is corroborated, and an electronic background of 10 (Ωcm)−1

is still to be considered as very small. In the next section we describe how we subtract
this contribution in order to gain the magnetic absorption. It is obvious that this task will
be a lot easier for the a axis than for the c axis since the available fitting range is larger.
In fact, especially for La4Ca10Cu24O41 the magnetic peak at about 4000 cm−1 along the
c axis cannot be discriminated unambiguously from the background.

As mentioned before, the dips in T (ω) are now clearly visible as absorption peaks.
Both samples exhibit quite similar spectra. Most distinct are the double peaks between
2000 and 3000 cm−1 along the c axis (thin lines), which do not exceed 2.5 (Ωcm)−1 below
300 K. The upper peak vanishes rapidly upon increasing temperature. The lower peak is
still visible at 400 K, but the amplitude is strongly reduced. The third peak at about 3500-
4000 cm−1 for E||c is hard to see in the data of La4Ca10Cu24O41 (upper panel) because
reliable data is only available up to ≈ 7 (Ωcm)−1, which corresponds to 4000 cm−1 at 4 K.

8This is supported by the reflectance of Sr14Cu24O41 as shown in figure 6.5 on page 145. At tem-
peratures below the melting of the charge order in the chains, the spectrum is very similar to that of
La4Ca10Cu24O41.
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Figure 5.11: Optical conductivity σ1(ω) of La4Ca10Cu24O41 (top) and La5Ca9Cu24O41

(bottom). For both samples the reflectance of La4Ca10Cu24O41 has been used (figure 5.6).
Thick lines denote the a-axis polarization, and thin lines mark the c axis. Both panels are
equally scaled to simplify the comparison.
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This cutoff is directly correlated with the vanishing transmittance in the upper panel of
figure 5.7. Yet in the La5Ca9Cu24O41 data one can see a bump at about 3500-4000 cm−1

that obviously gains weight with temperature. A more detailed view will be possible in
the isolated magnetic absorption of La5.2Ca8.8Cu24O41 as presented below. Along the a
axis, the magnetic peaks have less intensity, but the third peak at around 4000 cm−1 is
clearly visible due to the smaller background.

There are two more features to mention. First, the small peak for E||c at approx-
imately 1050 cm−1. We attribute it to a two-phonon excitation since the two-phonon
regime ranges up to 2×ωc

dip ≈ 1330 cm−1 (see section 5.2.1). In principle, the two-triplet
continuum starts at two times the gap energy of 280 cm−1 [25, 216] plus the necessary
phonon energy, which is approximately 2 × 280 cm−1 + 600 cm−1 = 1160 cm−1. This is
close to the peak, but the magnetic intensity at this boundary is very low as discussed
below. Thus for a magnetic origin, the weight would be to high at this low frequency.

The second feature is the small step around 1400-1600 cm−1. This step is more in-
teresting since it might very well have a magnetic origin. It is definitely located at a
frequency that is too high for a two-phonon excitation. A three-phonon excitation cannot
be excluded, though. The weight would be an order of magnitude smaller than for a
typical two-phonon excitation, which is consistent with the data. However, also another
scenario is possible since we as well expect a contribution from the three-triplet contin-
uum (Stot = 0). The candidate with lowest energy is the excitation of three triplets with
280 cm−1 each, along with the symmetry breaking phonon of ωphonon ≈ 600 cm−1, yield-
ing ≈ 1440 cm−1 as a lower boundary. The lowest-lying triplet is located at wave vector
k = π. Thus the excitation of three triplets again corresponds to a k = π excitation,
which is the momentum we are most sensitive to by means of phonon-assisted bimagnon
absorption (see below).

With the samples of La4Ca10Cu24O41 and La5Ca9Cu24O41 no higher conductivities
than 10 (Ωcm)−1 could be measured. This range was expanded by the measurements
of La5.2Ca8.8Cu24O41. In particular the thin sample of 6 µm allowed us to measure as
high as 60 (Ωcm)−1. The top panel of figure 5.12 shows the complete data sets that
were calculated from four different T (ω) measurements. Of course it was necessary to do
some fine tuning to get consistent spectra without artefacts in the corresponding merging
intervals. Our standard procedure is to take the low-frequency data measured with the
MIR setup and subsequently merge the other spectra until we get to the high-frequency
measurements. Typically, the only adjustment of the MIR data is some down-scaling to
avoid negative σ1. The thickness of each sample is another parameter that enters the
calculation of σ1. Nevertheless, the thickness d was never adjusted to get better overlaps,
and always the correct value calculated from the fringes was used. The only adjustments
were multiplications of the transmittance data. Apart from a few exceptions above 300 K,
the necessary factors did not exceed a few percent, which certainly is in the range of our
experimental precision in the MIR and above. If the overlap was still not satisfactory, the
only other adjustment we allowed us to perform was the multiplication of the calculated
conductivities by a few percent. The complete list of all the used factors and merging
ranges is not presented here but can of course be provided upon request.

Apart from the increased range of frequencies and hence better access to the electronic
contribution, the La5.2Ca8.8Cu24O41 data is very similar to the previously presented data.
Due to the enlarged scale of the plot, the magnetic peaks are difficult to make out in the
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Figure 5.12: Optical conductivity of La5.2Ca8.8Cu24O41. Top panel: Data on a linear scale
that reaches up to 60 (Ωcm)−1. Note that the measurements were not performed over the entire
frequency range for T = 50 and 100 K. Bottom panel: Same data on a logarithmic scale to
emphasize the magnetic features.
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Figure 5.13: Comparison of the optical conductivity of LayCa14−yCu24O41 for y = 4, 5
(dashed), and 5.2 at T = 4 and 300 K. Again, thin lines denote the polarization E||c, and
spectra for E||a are drawn as thick lines. With increasing La content there is a decrease
and blueshift of the background, whereas the magnetic peaks between 2000 and 3000 cm−1

exhibit a small redshift. Apart from that, the spectra are essentially unchanged. Bimagnon-
plus-phonon absorption of YBa2Cu3O6 [14] is presented for comparison.

top panel of figure 5.12. Therefore the same data is plotted on a logarithmic scale in the
bottom panel. Another important information from this type of display is that a simple
exponential function does not fit the background reliably.

At last, figure 5.13 enables a direct comparison between the three differently doped
systems. Just two exemplary temperatures are included, namely 4 and 300 K. The main
information from this plot is that for all doping levels the spectra are more or less equal.
This demonstrates the reproducibility of cutting and polishing, and the reliability of the
actual measurements and of the data analysis. The main difference between the data
sets is the weight of the background. In La4Ca10Cu24O41 this contribution is obviously
enhanced, which is consistent with the doubled average hole concentration compared to
La5Ca9Cu24O41. The differences between La5Ca9Cu24O41 and La5.2Ca8.8Cu24O41 are only
marginal as expected from the little change in doping. But still, at high frequencies
the background is indeed larger in La5Ca9Cu24O41 than in La5.2Ca8.8Cu24O41. Thus it
is verified that in the studied doping regime the background correlates with the average
amount of holes in the system.
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Increasing the La content from y = 4 to 5 causes a blueshift of the background, but
at the same time the magnetic peaks between 2000 and 3000 cm−1 show a redshift. We
attribute this redshift to a decrease of the exchange constants caused by an increase of
the lattice parameters since La is larger than Ca. The redshift is most obvious for the
peak at ≈ 2100 cm−1 within the double feature for polarization E||c. We will demonstrate
below how the position of these two peaks can be used to determine the actual exchange
couplings. The little bump at around 1400-1600 cm−1 along the c axis, that was discussed
above, is most pronounced for y = 4 but nonetheless visible in the other samples as well.
The position seems to be basically unaffected. The reason why in La4Ca10Cu24O41 the
structure is more pronounced is most likely that the dominating double peak is slightly
shifted to higher frequencies. Thus the small peak is better separated from the main peaks.
In figure 5.13 also the optical conductivity of undoped YBa2Cu3O6 is plotted. The data
is from reference [14] and represents a typical example of the phonon-assisted bimagnon
absorption spectrum of undoped 2D cuprates [11, 12]. In fact, the resemblance to our data
provided a first motivation to interpret the MIR absorption peaks in LayCa14−yCu24O41

as magnetic excitations. Note that in the studied ladders both the exchange constants
and the relevant Cu–O bond-stretching phonon frequencies are comparable to those found
in the 2D cuprates [24].

5.2.4 Subtraction of the Electronic Background

To be able to discuss the actual magnetic absorption, we first have to subtract the elec-
tronic background. The origin of the background is not really clarified so far. An obvious
assumption would be interband excitations of charge-transfer type. Osafune et al. [168]
found a charge-transfer gap of around 2 eV (≈ 16 000 cm−1) at room temperature as pre-
sented in figure 2.32 on page 46. It is not obvious, though, why there should be an onset
of absorption already at such low frequencies as 6000 cm−1 for E||a and even 3000 cm−1

for E||c. One possible explanation is that the system is actually not undoped (i.e. not
half-filled), but that there is a small amount of doped holes which are localized by e.g. im-
purities. These holes might result from oxygen non-stoichiometry, which simultaneously
may play the role of the localizing impurities. The binding energy along the legs may be
lower since the gain in kinetic energy is larger.

Predictions of the actual shape of σ1 in the vicinity of an excitation gap are quite
challenging. The case of conventional band insulators, for instance, is well understood
[189]. The most simple type of excitations occurs if the maximum of the valence band and
the minimum of the conduction band of a semiconductor have the same wave vector. Then
a so-called direct gap is present, and in the absence of interactions, lattice imperfections,
and at vanishing temperature there is no absorption for energies smaller than the gap
energy Egap. In order to calculate the absorption just above this energy, one has to
consider the dimension of the actual system.9 In the three-dimensional case one gets a
square-root dependence of the imaginary part of the dielectric function [189], i.e.

ε2 ∝
1

ω2

√
~ω − Egap . (5.2)

9Here and in the following we neglect a possible dependence of the matrix element on the energy or
on the momentum.
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Figure 5.14: Frequency dependence of ε1 and ε2 of a semiconductor near the band gap
Eg with direct transition for 1, 2, and 3 dimensions. Reproduced from reference [189] and
rearranged.

The factor of 1/ω2 may be considered to be mainly constant in the direct vicinity of the
gap. Thus it is indeed the square-root behavior that dominates ε2(ω) close to Egap. This
does not change for the real part of the optical conductivity, which is directly related to
ε2 according to

σ1(ω) =
ω

4π
ε2(ω) . (5.3)

Again, the additional factor of ω does not change the overall shape near Egap. Therefore
both σ1 and ε2 will exhibit a square-root onset. For systems in which the energy depends
only on two components of the wave vector, ε2 exhibits a step from zero to a constant
value at the energy Egap. Finally, in one dimension a singularity in the density of states
leads as well to a singularity of the absorption,

ε2 ∝
1

ω2

1√
~ω − Egap

. (5.4)

All three cases are depicted in figure 5.14.

In a large number of semiconductors, the energy maximum of the valence band and
the minimum of the conduction band are not located at the same momentum. In this case
the gap is called indirect. Due to momentum conservation, indirect optical transitions are
only possible when the excitation of a phonon is involved. At finite temperatures the
phonon states are already populated and annihilation processes are also possible. In 3D,
the energy dependence of an indirect optical transition is different from the square-root
behavior found for a direct transition. In fact one gets

ε2(ω) ∝ Np (~ω − Egap ∓ Eph)
2 (5.5)

for ~ω ≥ Egap ± Eph [189]. Now the absorption is strongly temperature dependent,
reflecting the phonon population factor Np. The scenario gets more complicated when the
Coulomb interaction between the excited electron and the remaining hole leads to exciton
states. These bound electron-hole pairs have an energy smaller than Egap. Transitions to
these levels may lead to a series of well defined absorption peaks below the absorption
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Figure 5.15: Optical conductivity of La4Ca10Cu24O41 and La5Ca9Cu24O41 at 4 K along
with exponential fits (dashed lines). The fitting range was ω > 6500 cm−1 for E||a and
ω > 4500 cm−1 for E||c. The data is identical to the one presented in reference [24].

onset discussed so far. But especially when Egap is small it is also possible that the
different energy levels merge into a continuum.

The correct shape of a realistic absorption onset is already very difficult for conven-
tional semiconductors. However, the case we have to deal with in the ladder compounds
is rather described by a Mott-Hubbard insulator with considerable on-site Coulomb re-
pulsion. First calculations for the 1D case of a (half-filled) Mott-Hubbard chain were
recently published [217–219]. At half filling, the absorption exhibits a square-root depen-
dence [217, 218]

σ1(ω) ∝
√

~ω − Egap . (5.6)

Reference [219] focusses on the influence of Mott-Hubbard excitons on σ1, which are also
called holon-antiholon pairs.

But there are many effects that can significantly change the absorption spectrum in
real crystals, for instance long-range parts of the Coulomb interaction, the actual lattice
structure, interchain couplings, and disorder [218]. That means for us that there is no
guideline to choose a proper function to fit the background, in particular since it is not
clear whether the background is indeed the onset of interband excitations or rather due
to e.g. localized carriers. Our first attempt was to use exponential functions as presented
in reference [24]. The corresponding data is reproduced in figure 5.15. Dashed lines
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indicate the exponential fits for ω > 6500 cm−1 (a axis) and ω > 4500 cm−1 (c axis). At
that time the measurements on La5.2Ca8.8Cu24O41 had not been performed, and hence
we were lacking reliable high-conductivity data above ≈ 8 (Ωcm)−1. The fits of the a-
axis spectra are already convincing, and after subtraction of the background, σa(ω) is
nearly identical for La contents y = 4 and 5. This corroborates the assumption that
the ladders are basically undoped. The background subtraction for E||c was difficult,
though, and we refrain from presenting fits for La4Ca10Cu24O41. Due to the uncertainty
in La5Ca9Cu24O41, the precise shape and spectral weight of the third magnetic peak at
≈ 4000 cm−1 could not be determined unambiguously. In addition, below 1600 cm−1

the fit intersects the measured data. Nevertheless, the quality of these initial fits for
both polarizations was clearly sufficient to verify the singlet bound state in the undoped
telephone-number compounds in reference [24].

Afterwards, the La5.2Ca8.8Cu24O41 data allowed us to refine the fitting. It turned
out that for E||a Gaussian fits to the background provide even better results than the
exponential ones, and this kind of fits was presented in reference [213]. We used the
equation

σback(ω) = Ae−(ω − ωc)
2/2ω2

o . (5.7)

The center of the Gaussian peak is given by ωc. This position of the maximum is always
beyond our measured frequency range. We just use the initial rise of this function. The
amplitude is denoted by A, and ω0 describes the width. From what was said above, we
cannot provide an explanation why exactly this function provides excellent fits. Figure
5.16 shows the spectra of the a-axis polarization. In the top panel the data is plotted on a
large scale along with the according Gaussian fits. The fit range was 8000 to 10 500 cm−1,
where the magnetic contribution is definitely negligible (8000 cm−1 ≈ 8J , see below). The
fits are drawn as thin black lines, and above≈ 7000 cm−1 the agreement with the measured
data is excellent. The actual magnetic regime below this frequency is better visible in the
middle panel, where the same data is plotted on a smaller scale. To calculate the actual
magnetic contribution, we subtracted these fits from the spectra. In the bottom panel of
figure 5.16 the results are presented. Note the small scale of this plot. The main peak
at around 4000 cm−1 does not exceed 0.6 (Ωcm)−1, which is a remarkable demonstration
of the sensitivity of our measurements. And what is more, between 7000 cm−1 and
10 000 cm−1 the calculated spectra do not exceed ±0.05 (Ωcm)−1. This nicely verifies
that there is no magnetic absorption above 7000 cm−1 and that the Gaussian fits entirely
describe the background for E||a in this frequency range.

At 4 K, there are basically three magnetic peaks. Within the double-peak structure,
the lower peak at ≈ 2300 cm−1 is less pronounced than the upper peak at ≈ 2850 cm−1.
At around 4000 cm−1, a broad peak with large amplitude is centered. This peak surely
dominates the spectra and gains weight upon increasing temperature. The maximum
shifts slightly to lower frequencies and is located below 3700 cm−1 at 400 K. The lowest
peak smears out soon at higher temperatures, and already at room temperature it is
almost absent. The upper one of the double peak is still visible at 400 K. We will show
below that the broad peak stems from the two-triplet continuum, whereas the double peak
is a signature of the bound state. Note that the onset of absorption is located between
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Figure 5.16: Subtraction of the electronic background of σ1 in La5.2Ca8.8Cu24O41 for polar-
ization E||a. Top panel: σ1 on a large scale with Gaussian fits (thin black lines, fit range 8000
to 10 500 cm−1). Middle panel: Same data on a smaller scale. Bottom panel: The fits were
subtracted from the spectra to obtain the magnetic contribution. Note the extremely small σ1

scale and the vanishing magnitude above 7000 cm−1.
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Figure 5.17: Optical conductivity of the d = 28 µm sample of La5.2Ca8.8Cu24O41 at
4 K. In the top panel the data is plotted on a linear scale while in the bottom panel the
same data is shown on a logarithmic scale. Thin lines denote the Gaussian fits for both
polarizations. For E||c we could not find unambiguous fits and thus showed two different
curves to demonstrate the uncertainty. Already presented in reference [213].

1400 and 1600 cm−1, similar to the above discussed case of the c axis data, where this
feature was tentatively ascribed to the onset of phonon-assisted three-triplet absorption.

The extraction of the magnetic features for E||c was more difficult. The exponential
fits presented in reference [24] were not appropriate any more as soon as the d = 28 µm
data of La5.2Ca8.8Cu24O41 was available. Then we used Gaussian fits just like for E||a.
We presented such Gaussian fits for both polarizations in reference [213]. However, for
E||c we still could not provide unambiguous fits and showed two different Gaussian fits to
demonstrate the uncertainty. The corresponding plot of reference [213] is reproduced in
figure 5.17. After the 6 µm data was available, we found another way to achieve better fits,
which was necessary to describe an additional broad bump located at about 6000 cm−1

(see figures 5.18 and 5.19). We used a fit function consisting of a quadratic part for the
high frequencies and an additional small Gaussian term, i.e.

σback(ω) = A1 e
−(ω − ωc1)

2/2ω2
o + A2 (ω − ωc2)

2 . (5.8)

The frequency ωc2 describes where the parabola sets in, and the strength is given by A2.
The part of the parabola below the minimum for ω < ωc2 was omitted. In the top and
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Figure 5.18: Subtraction of the electronic background of La5.2Ca8.8Cu24O41 for E||c. Top
panel: σ1 on a large scale along with the fits (thin black lines). Dashed lines denote the two
components of the 4 K fit. Middle panel: Same data on a smaller scale to visualize the magnetic
features. Bottom panel: The fits were subtracted from the spectra to obtain the magnetic
contribution. Note the small σ1 scale and the vanishing magnitude above 5500 cm−1, which
demonstrates the quality of the fits.
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Figure 5.19: Subtraction of the electronic background of La5.2Ca8.8Cu24O41 for E||c. This
plot is equivalent to figure 5.18, but just the 4 K data is included for clarity.
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middle panel of figure 5.18 the c axis spectra of La5.2Ca8.8Cu24O41 are plotted together
with the combined fits. As an example, for T = 4 K the two terms of the fit are included
separately as dashed lines. For clarity, the same plot is shown again with just the 4 K
data in figure 5.19. The Gaussian term is used to fit the additional broad bump located
at around 6000 cm−1, that does not occur for E||a. We don’t expect this contribution to
have any magnetic origin since the frequency and the strength are too large. It is true
that La5.2Ca8.8Cu24O41 is mainly undoped but there are still nominally 0.8 holes per unit
cell, which presumably reside in the chains. What is more, the excess oxygen provides
further holes. We can only speculate about the influence of these charge carriers. The
dc resistivity is very high and thus one might conjecture that e.g. some sort of trapping
mechanism is responsible for the broad peak. Anyhow, our primary aim at this point is
to deduce the magnetic contribution to σ1, and the fits work well.

Apart from the Gaussian contribution at lower frequencies, the main part of these
fits at higher frequencies consists of the parabola, especially above 6500 cm−1. We could
have also used a second large Gaussian peak like for E||a. But in fact, from all the
possible theoretical candidates to describe the onset of a charge-transfer gap, a parabola
seems to be more likely than the rising part of a large Gaussian peak. What is more,
just two parameters are needed for the parabola, which is one less compared to a further
Gaussian peak. In the bottom panels of figures 5.18 and 5.19, the magnetic spectra are
presented, again calculated by subtracting the fits from the original σ1 data. Like for the
a axis, the high frequency parts of these calculated spectra provide a direct probe for the
fitting quality. Here, between 5500 and 8900 cm−1 the difference between original data
and the fits does never exceed 0.1 (Ωcm)−1 although the original values reach as high as
55 (Ωcm)−1. All the according fitting parameters are given in table 5.1.10

The magnetic contribution to σ1 (σmag) shows some similarities to the according a-
axis spectra of figure 5.16. At 4 K, there are again the two lower peaks which are slightly

A1 (Ωcm)−1 ωc1 (cm−1) ωo (cm−1) A2 (Ωcm)−1 ωc2 (cm−1)

4 K 8.8842 5804.17 1181.78 2.2027× 10−6 4254.10

100 K 10.041 5785.60 1183.97 2.7383× 10−6 4652.80

200 K 9.6706 5638.46 1247.78 2.4917× 10−6 4385.86

300 K 8.8280 5260.08 1409.73 1.9358× 10−6 3586.96

Table 5.1: Complete set of parameters, according to equation 5.8, for the fits shown in
figures 5.18 and 5.19.

10Actually, we also used the later presented DMRG data (figure 5.31) to obtain the presented fits. This
was very useful since the two peaks of the continuum (bottom panels of figures 5.18 and 5.19) overlap with
the broad Gaussian contribution (middle panel). Hence it is not possible to fit the background separately,
unlike the case of E||a. With the help of the DMRG data we obtained the position and the width of two
additional Gaussian peaks that describe the continuum. These four parameters were afterwards used as
fixed values for the complete fitting function. Hence this function included a total of three Gaussians and
the parabola. But there were only two new fitting parameters since just the amplitudes of the continuum
peaks were allowed to vary. The complete function was then fitted to the spectra above 3300 cm−1 where
the contribution of the bound-state peaks is negligible. Afterwards, only the described broad Gaussian
and the parabola of equation 5.8 were used for the subtraction of the background.
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Figure 5.20: Optical conductivity of La5.2Ca8.8Cu24O41 at 4 K for E||c. The fit includes
a square-root onset together with a parabola. The data above 5500 cm−1 is well described,
but the actual onset is poorly fitted, resulting in an unrealistic cusp after subtraction of
the fit.

redshifted to ≈ 2140 and 2770 cm−1. The broad upper peak shows more structure than for
E||a and in fact rather consists of two separate peaks. Upon increasing the temperature,
also for E||c the lowest peak at 2140 cm−1 loses weight, whereas the broad upper peaks
gain weight and lose the fine structure at 300 K. At 2670 cm−1 there is a so-called
isosbestic point where all spectra of the different temperatures cross. In general, such a
feature suggests that there is a transfer of spectral weight from one component to another
without an attendant change in the line shape of either component [220]. But the upper
peaks obviously gain more weight than the lower ones lose.

As pointed out above, there is a resemblance to the in-plane spectra of undoped
YBa2Cu3O6 [14, 110]. Upon heating from 4 to 300 K, the main resonance peak at lower
frequencies broadens, and at the same time the weight of the high-frequency sideband
increases (see figure 3.2 on page 58). The sideband contribution is beyond the scope of
conventional spin-wave theory and most likely due to strong quantum fluctuations [14].

The presented fitting procedure is certainly not unique. For instance, we tried to
replace the broad Gaussian by a square-root contribution. This was motivated by the
expected square-root onset in 1D Mott-Hubbard insulators as discussed above. In figure
5.20 the 4 K data of La5.2Ca8.8Cu24O41 is shown for E||c together with the corresponding
fit (dashed line). Thus in principle it is possible to replace the Gaussian by a square-root
function. But the actual onset below 5000 cm−1 is not described realistically. One might
still think of other mechanisms that may lead to some sort of smearing out of the onset.
However, this path does not promise to yield better fits of the electronic background than
the procedure presented above.
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Summary: The electronic background hampers our search for the magnetic spectra
especially for E||c. But we are confident to provide a reasonable way to extract σmag from
the original spectra. For E||a, a single Gaussian fit yields very good results. For E||c the
situation is more complicated, and we had to use a combined fitting function consisting
of a parabola and an additional broad Gaussian peak. The origin of the background at
such low frequencies is not understood so far. One possible explanation is that it stems
from localized carriers.

5.3 Comparison with Calculations

At this stage we are well prepared to compare σmag with theoretical calculations. In the
following, we present results of the fruitful collaborations with two different theory groups,
namely the group of Uhrig from the University of Cologne and the group of Kopp from the
University of Augsburg. Spectral densities could be computed in unprecedented detail.
In total, three different methods to describe the magnetic excitations of an S = 1/2 two-
leg ladder were applied. One approach makes use of the Jordan-Wigner transformation
[89] to rewrite the spins as fermions with a long-ranged phase factor. Expanding this
phase factor yields new interaction terms between the fermions. The resulting interacting
fermion problem is then solved diagrammatically with standard perturbation theory. The
same formalism works very well for the case of an 1D spin chain, where the fairly good
agreement with the spinon evaluation provided a verification of the validity of the approach
[221]. The basic Jordan-Wigner transformation is one-dimensional, and as a generalization
for the ladder case a meander path was chosen (see figure 5.21). The calculations were
carried out by Nunner and Kopp and were already presented in references [24, 212, 213].
Recently, greater detail of this Jordan-Wigner study has been given in reference [221].11

The second approach uses a continuous unitary transformation (CUT), which maps
the ladder Hamiltonian of equation 2.17 on page 24 onto an effective Hamiltonian Heff

conserving the number of rung triplets. The ground state of Heff is the rung-triplet vac-
uum. In this way a very complex many-body problem is reduced to a few-body problem
that is a lot easier to handle. The Hamiltonian Heff is evaluated by perturbation theory
in J‖/J⊥ up to 14th order. The order determines the maximum distance along the legs
between two excited triplets. Afterwards, standard extrapolations are applied to the per-
turbation series. These calculations were performed by Knetter, Schmidt, and Uhrig and

Figure 5.21: Chosen path configuration for the 1D Jordan-Wigner transformation on
the ladder. For this meander path, the spin coupling along the dashed lines corresponds
to next-next-nearest-neighbor fermion interactions, giving rise to a long-range phase factor.
Reprinted from reference [221].

11Actually, there are previous applications of the Jordan-Wigner formalism to spin ladders [222, 223].
But the way the phase factor was treated differs substantially from the new study [221].
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were also presented in references [24, 212, 213]. More detail on the actual computations
was given by Knetter et al. in reference [224]. The technique itself is described extensively
in reference [92].

A third approach by Nunner et al. [26] is based on the density-matrix renormalization
group method (DMRG), which was developed by White in 1992 [225, 226]. A general
introduction is given in reference [227]. This method allows to treat fairly large 1D
systems with high accuracy and has thus substantially accelerated the progress in the
numerical treatment of low-dimensional quantum systems. One shortcoming is that it is
mainly applicable to one-dimensional systems, or equivalently systems with short-range
interactions. Another point worth mentioning is the limited frequency resolution. The
calculation of dynamic correlation functions such as the optical conductivity has become
possible only recently by the development of the dynamical DMRG [218, 228]. The DMRG
is a refined numerical real-space renormalization-group method.12 Renormalization-group
techniques make use of an iterative truncation of the Hilbert space and try to progressively
eliminate unimportant degrees of freedom (usually high-energy eigenstates). They start
from a small system which can be handled rigorously, then renormalize the Hamiltonian
by projecting onto an effective Hamiltonian, keeping only a truncated Hilbert space, and
then increase the system size and reiterate the procedure. The DMRG uses an optimal
projection by selecting a reduced set of basis states via density matrices and truncates
the Hilbert space by keeping only the eigenstates of the density matrix with the largest
weight, i.e. not the high-energy eigenstates are projected out, but the unlikely ones.

For our purpose, which is the comparison of experiment and theory, the major advan-
tage of the DMRG is that it incorporates 100% of the spectral weight of σ1(ω), and not
only the two-triplet contribution. Moreover, Nunner et al. additionally investigated the
influence of a cyclic exchange Jcyc [26] (see section 2.3.2). These results will be presented
in section 5.3.2, for the time being Jcyc is omitted. Very recently, the influence of Jcyc has
also been studied within the CUT approach [163].

5.3.1 Jordan-Wigner Fermions and Continuous Unitary Trans-
formations

We first concentrate on the two techniques using Jordan-Wigner fermions and continuous
unitary transformations.13 Both methods are controlled in the sense that they become
exact on J‖/J⊥ → 0. The strong-coupling limit with triplets as elementary excitations is
the appropriate starting point. For instance, the excitations of the ladder cannot be con-
structed perturbatively from free spinons in the uncoupled limit since the rung coupling is
a relevant perturbation [16, 221]. This is illustrated by the fact that the excitation spec-
trum remains gapped for any non-zero J⊥. Very important is the intermediate coupling
regime for J‖ ≈ J⊥ because we expect such ratio in the telephone-number compounds.
But this isotropic regime is difficult to reach and requires elaborate calculations. In fact,
comparing the results for the dispersion of the elementary triplet, the agreement between
both approaches is excellent for J‖/J⊥ ≤ 0.6. In figure 5.22 the triplet dispersion is

12A momentum space DMRG was recently set up [229], but it converges reasonably only in weak-
coupling regimes.

13This section is largely based on references [24, 213].
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Figure 5.22: Comparison of the elementary triplet dispersion of the Jordan-Wigner
(left) and of the CUT approach (right). Different curves are plotted for coupling ratios
0 ≤ J‖/J⊥ ≤ 1.2. The agreement is excellent for J‖/J⊥ ≤ 0.6. Thick lines denote the ratio
that provided the best fits to our La5.2Ca8.8Cu24O41 data. Already presented in reference
[213].

shown for different coupling ratios. For each theory, the thick line denotes the coupling
ratio that offers the best description of our La5.2Ca8.8Cu24O41 data. One can see that
with increasing J‖/J⊥ the bandwidth of the dispersion strongly increases. In addition, a
maximum emerges at momentum k . 0.4π.

The two-triplet excitation energies for the isotropic case J‖ = J⊥ are plotted in figure
5.23. The data of the left panel is identical to the CUT results of reference [224]. Shown
are the dispersion of the elementary triplet and the two-triplet continuum. The triplet
branch reproduces previous results very well [133, 230]. Also included are the two different
two-triplet bound states with S = 0 and 1. The overall shape qualitatively resembles the
spectra presented earlier (figures 5.3, 5.4, 5.5). However, the continuum and especially
the S = 0 bound state exhibit more structure. In fact, after leaving the continuum above
k ≈ 0.3π, there is a maximum near π/2. Also there is a considerable dip at k = π.
This has been unnoted so far because it occurs only for J‖/J⊥ & 0.5. Hence there will
clearly be two separate van Hove singularities in the density of states, corresponding to the
maximum and the minimum of the dispersion of the S = 0 bound state. We can reckon
on two absorption peaks stemming from the S = 0 bound state. The right panel of figure
5.23 shows the according excitation spectrum based on the Jordan-Wigner transformation
(solid lines). The agreement between both techniques is good although there are some
deviations in the absolute values. The symbols connected by dashed and dotted lines in
the right panel denote the results of dynamical DMRG for a ladder with N = 80 sites
[26]. This third approach is discussed in section 5.3.2, but it is obvious that the agreement
with the CUT data is excellent.
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Figure 5.23: Band edges of the two-triplet continuum and S = 0 bound-state energies
for an isotropic coupling ratio J‖/J⊥ = 1. In both panels there is a considerable dip
in the bound-state dispersion at k = π. Left panel: Results of the perturbative CUT
computations. Also included are the elementary triplet and the S = 1 bound state (dash-
dotted). The data is from reference [224]. Right panel: Jordan-Wigner results (solid);
here J means J‖. Symbols connected by dashed and dotted lines represent DMRG data (see
section 5.3.2) for J‖ = J⊥. Here, Jcyc = 0 in all calculations. Reproduced from reference
[221].

In order to determine the optical conductivity, one needs to calculate the momentum-
resolved spectral densities of the Stot = 0 channel. The evolution of the two-triplet
contribution to these spectral densities from J‖/J⊥ = 0.2 to 1 is plotted for both theories
in figure 5.24 for E||c. Afterwards, the optical conductivity as given in figure 5.25 is
obtained by integrating these k-resolved curves. A weight factor of

F = sin4(k/2) (5.9)

is needed to account for the proper coupling to the involved phonon.14 To compare the
spectra with experimental data, one has to add the energy of the involved symmetry-
breaking phonon as a constant shift of the energy scale. Afterwards, it is also necessary
to multiply the densities by the frequency ω [213].

In the following, the k-resolved spectra of figure 5.24 and their implications on the
derived conductivity spectra of figure 5.25 are described. For the smallest ratio of

14In general, one has to consider the dependence of the exchange constants both on the external electric
field E of the photon and on the displacements u of the oxygen atoms, as discussed in section 3.3. Thus
J‖,⊥ ≡ J‖,⊥(E,u) [11, 12, 14]. The phonons modulate the inter-site hopping and the on-site energies on
both Cu and O sites. A momentum-dependent weight factor emerges that influences the line shape of
the spectrum. Here, the weight factor is a mixture of the mentioned sin4 term [140] and a k-independent
term. For simplicity, we consider only the dominant sin4 term and Einstein phonons with a typical
frequency of ωph = 600 cm−1, as is common for the cuprates. Our findings depend only very weakly on
the precise phonon energy [24]. Further details on the relevant phonon modes and the according weight
factors are presented by Nunner et al. in reference [201], see also section 5.3.2.
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Figure 5.24: Momentum dependence of the two-triplet spectral densities with Stot = 0 for
E||c. Calculations were performed with continuous unitary transformations (left) and Jordan-
Wigner fermions (right) for 0.2 ≤ J‖/J⊥ ≤ 1. The k-resolved weights of both theories agree
within 25% (note the different scalings). Light curves represent the bound state (divided by 16
and artificially broadened by J⊥/100 in the left panels). Black curves denote the continuum.
Inset: enlarged view of the continuum, the bound state is not shown here. Already presented in
reference [213].



122 Chapter 5 Bound States and Continuum in Undoped Ladders

0

10

20

30

1 2
0

10

20

30

0

1

2

3

4

1 2 3 4 5
0

1

2

3

0.6
1.0

σ l
eg

 (ω
)

 0.4
 0.8
1.15

J|| /J⊥ = 0.2

 

 

0.6
1.0

 0.4
 0.8
1.15

J|| /J⊥ = 0.2

σ l
eg

 (ω
)

 

 

ω ( J⊥ ) 

Jordan-Wigner

CUT

 

ω ( J⊥ ) 

Figure 5.25: Comparison of the opti-
cal conductivity for E||c calculated with
Jordan-Wigner fermions (top panels)
and with continuous unitary transfor-
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tio that offers the best description of the
bound state in σ1 of La5.2Ca8.8Cu24O41.
For comparison with experiment, the
phonon frequency still has to be added
(here: 600 cm−1). Already presented in
reference [213].

J‖/J⊥ = 0.2, the elementary triplet shows only little dispersion (confer figure 5.22).
Hence the two-particle continuum is rather narrow and the spectral weight is piled up
at the bottom of the continuum (black lines in figure 5.24) for small momenta k. With
increasing k, the width of the continuum is further reduced due to the cosine-like shape
of the elementary triplet dispersion. Thus the interaction between two triplets is strong
enough to form a bound state (light lines) below the continuum. For small coupling ratios
of J‖/J⊥ the bound state reaches its maximum energy at the Brillouin zone boundary.
This produces a single sharp peak in σ1 that will dominate the absorption spectrum as
shown in the left panels of figure 5.25. With increasing coupling ratio the bound state
acquires a strong dispersion, and for J‖/J⊥ & 0.5 it shows a maximum in the middle of
the Brillouin zone at k ≈ π/2 as well as a minimum at k = π (compare also figure 5.23).
Since both features give rise to van Hove singularities in the density of states, there are
now two peaks in σ1. This means that the dominant peak observed for J‖/J⊥ = 0.2 splits
into two with increasing J‖ (left panels of figure 5.25).

Now the evolution of the continuum with increasing J‖/J⊥ in figure 5.24 is discussed.
At small k, the spectra are broadened strongly by the increase of the continuum width.
Therefore, the k = 0 Raman response shows a sharp peak for small J‖/J⊥ and a broad
band for isotropic couplings (see reference [231] for more details). For large momenta one
can observe the opposite, i.e., the features within the continuum become stronger and
more pronounced with increasing coupling ratio. For J‖/J⊥ = 1 the CUT result (top left
panel of figure 5.24) shows additional pronounced features within the high-energy part of
the continuum [224]. The appearance of these features is related to the existence of the
dip in the dispersion of the elementary triplet at small k (figure 5.22). Precursors of these
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Figure 5.26: Comparison of experiment and theory. The magnetic contribution to the
optical conductivity of La5.2Ca8.8Cu24O41 at 4 K is plotted with solid lines. The top panel
shows the spectrum for polarization E||c; bottom panel: E||a. The Jordan-Wigner spectra
(dash-dotted) were calculated using J‖/J⊥ = 1.0 and J‖ = 1100 cm−1. Dotted lines denote
the CUT results for J‖/J⊥ = 1.15 and J‖ = 1080 cm−1. For both calculations a phonon
frequency of 600 cm−1 was used.

features are present in the CUT spectra for J‖/J⊥ = 0.8 where the dip in the dispersion
is only small. The Jordan-Wigner data does not show such features.

Now the calculated spectra are compared with our data of La5.2Ca8.8Cu24O41 at 4 K in
figure 5.26. The electronic background has been subtracted as discussed in the previous
section. The two peaks at 2140 and 2770 cm−1 for E||c as well as the corresponding two
peaks for E||a can unambiguously be identified with the two van Hove singularities in
the density of states stemming from the S = 0 bound state. The lower peak corresponds
to the bound-state energy at the boundary of the Brillouin zone, i.e. E(k = π). The
other peak at higher energy is due to the maximum of the bound-state dispersion Emax

at about k ≈ π/2 (see figure 5.27). These two energies determine the two free magnetic
parameters J‖ and J⊥. In principle, the experimental σ1 is well described by both theories
for J‖/J⊥ = 1 and J‖ ≈ 1020 − 1100 cm−1 as presented in reference [24]. At that time
there were no CUT spectra available for coupling ratios J‖/J⊥ > 1. The quantitative
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analysis could already be pushed a step further, though, based on the values of Emax

and E(k = π) computed by extrapolated perturbation within the CUT formalism. In
general, energies can be extrapolated much more accurately than spectral densities. The
according evolution of both energies with respect to J‖/J⊥ is plotted in the right panel of
figure 5.27. The lower peak shows only little dependence on the coupling ratio within the
relevant regime. The upper peak strongly depends on the actual coupling ratio, though.
This allowed us to pinpoint J‖ and J⊥, yielding J‖ ≈ 1080 cm−1 and a slightly larger ratio
of J‖/J⊥ ≈ 1.15. In figure 5.26 the more recent CUT results for exactly these predicted
couplings are plotted. Jordan-Wigner calculations for different coupling ratios did not
improve the agreement further, and thus the optimal parameters are still J‖/J⊥ = 1.0
and J‖ = 1100 cm−1. This 15% discrepancy reflects the differences between the two
theories that were already present in the dispersion of the elementary triplet (see figures
5.22 and 5.23).

Our interpretation of the experimental features is confirmed by the good agreement
between theory and experiment concerning the line shape of the bound states. Excellent
justification for this interpretation is also provided by the selection rule stemming from
reflection symmetry about the a axis (RSa). Both theories show that the bound singlet
at k = π is even under RSa. But the excitations at k = π are odd under RSa for E||a and
even for E||c. It can be shown that the weight of the bound state varies as (k − π)2 for
E||a, whereas it is prevailing for E||c. This means that near the zone boundary at k = π
there is a strong reduction of weight for E||a [24]. This can be seen in figure 5.28, where
the k-resolved spectra for both polarizations are compared. In the top panel for E||a,
there is indeed no weight left at k = π. That is not the case for the opposite polarization
in the bottom panel. Since the van Hove singularity at k = π produces the lower peak in
σ1, this explains why the lower peak for E||a is reduced to a weak shoulder.



5.3 Comparison with Calculations 125

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ω/J
perp

0.0

0.2

0.4

0.6

0.8

1.0

k
(π

)

0.0

0.2

0.4

0.6

0.8

1.0

k
(π

)

(a)

(b) −1

−1

0.6J⊥

0.6J⊥

Figure 5.28: Comparison of the
k-resolved spectra for both polariza-
tions. This CUT data was computed
for J‖/J⊥ = 1. In the top panel
(E||a) there is a strong reduction of
the bound-state weight at k = π.
The other polarization (bottom panel,
E||c) does not show such a decrease.
The data of the bottom panel corre-
sponds to the upper left panel of figure
5.24. Note that here the continuum in
(b) is multiplied by 4. In both panels,
the bound state is not scaled down, but
an increased broadening of J⊥/20 was
used. Reproduced from reference [224].

Shortcomings of the theory are the overestimation of the spectral weight of the
2800 cm−1 peak for E||a and that the onset of σ1 around 2000 cm−1 is sharper than
observed experimentally. However, the agreement is better than one may have expected
since we neglected both the frustrated coupling between neighboring ladders and in par-
ticular the cyclic exchange. A finite inter-ladder coupling produces a dispersion of the
bound state along ka and thereby broadens the features in σ1. This may also explain the
smearing out of the onset at 2000 cm−1. Moreover, both theories describe only the two-
triplet contribution, i.e. processes with more than two triplets are missing. This explains
in particular the discrepancy in the continuum range. The three-triplet contribution with
Stot = 0 may also explain the low-frequency onset, as discussed above (each of the three
triplets with k = π and an energy corresponding to the spin gap).

A ratio of J‖/J⊥ ≈ 1 seems to be in conflict with several former results of other
techniques, proposing J‖/J⊥ & 1.5 (see section 2.3.2 and the discussion in reference [133]).
Such a rather small value of J⊥ is suggested by the small spin gap of 280 cm−1, observed
by means of neutron scattering [25, 216]. The according gap energies stemming from our
results are considerably larger by a factor of around 1.5 (see figure 5.22). We can clearly
exclude J‖/J⊥ > 1.2 from our presented analysis.15 But recently it was pointed out that
the neutron data is as well consistent with an isotropic exchange J‖/J⊥ ≈ 1 − 1.1 and
J‖ ≈ 900 cm−1, if a cyclic exchange of Jcyc ≈ 0.15J⊥ is taken into account [25, 216].16

15This is valid for Jcyc = 0.
16Note that there are several different definitions of Jcyc in the literature. In particular it is important

whether a factor of 2 is included in the definition or not (see also reference 22 in reference [163]).
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Adding a finite cyclic exchange term reduces the gap at k = π and washes out the
dip in the triplet dispersion at small momenta [25, 26, 231]. Furthermore, Jcyc weakens
the attractive interaction between two rung triplets. These two changes, reduction of
the dip and of the attractive interaction, render the theoretical predictions closer to the
experimental findings of optical spectroscopy [26, 231]. In the next section, the DMRG
study with included Jcyc clearly verifies these expectations.

Now the broad peak at around 4000 cm−1 in figure 5.26 is addressed, which is iden-
tified unambiguously as the continuum of two and more triplets by comparison with the
theoretical results. The main discrepancies are the underestimation of the spectral weight
by both calculations for E||c and the line shape of the CUT result for the a axis. The
underestimation of the weight is explained by the fact that both theories include only
the two-triplet contribution, whereas higher-order contributions are missing. These corre-
spond to ≈ 20 - 30% of the total spectral weight [224]. In the calculated spectra of figure
5.25 for E||c, the CUT results for J‖/J⊥ ≥ 0.8 display a second peak above ω ≈ 3J⊥ in
the high-energy continuum. The experimental data (figure 5.26) also shows two peaks
in the continuum for the same polarization, independent of the precise background cor-
rection. Yet the experimental peaks are located at higher energies, and they are further
apart from each other. On inclusion of Jcyc the calculated peaks will be shifted to higher
energies since the attractive interaction is weakened. So we identify the two experimental
peaks with the two theoretical ones even though their shape and mutual distance are
not in perfect agreement. The DMRG study presented in the next section supports this
interpretation.

At last, we want to note that the position, spectral weight, and the shape of the
continuum shows a striking similarity with the high-energy band observed in undoped
2D cuprates like YBa2Cu3O6 (see figure 5.13). As discussed in section 3.3, the main
resonance peak is due to an almost bound state and well described in terms of phonon-
assisted bimagnon absorption in the frame of spin-wave theory [11, 12]. However, the
high-energy peak at 3800 cm−1 is absent in this approach. It has been suggested that the
high-energy weight in 2D S=1/2 compounds is due to strong quantum fluctuations that
go beyond spin-wave theory [14]. The intriguing similarity of the high-energy continuum
of the S=1/2 quasi-1D ladder (La,Ca)14Cu24O41 to the 3800 cm−1 peak of YBCO strongly
indicates that the high-energy weight of YBCO is indeed a signature of strong quantum
fluctuations.

5.3.2 DMRG Results: Continuum and the Influence of a Cyclic
Exchange

The agreement of our data with the discussed two theoretical studies is excellent and
clearly proves the existence of a bound state in the undoped telephone-number compounds.
But there remain some discrepancies. A consistent description of both peaks of the bound
state in σ1(ω) and of the spin gap could not be obtained with a model that contains
only the couplings J‖ and J⊥. This will be resolved in the following by inclusion of the
cyclic exchange Jcyc into the model Hamiltonian. Moreover, the DMRG results largely
improve the description of the high-energy continuum since the coupling of the photon to



5.3 Comparison with Calculations 127

excitations of more than two triplets is taken into account as well.17 Actually, only the
inclusion of Jcyc allows to obtain an almost perfect agreement with the experimentally
determined line shape.18

A cyclic coupling emerges as a correction to the Heisenberg Hamiltonian in order
t4/U3 from a t/U expansion of the one-band Hubbard model [144]. It is expected to
be the dominant correction within the more realistic three-band description of the CuO2

planes of the 2D cuprates because in this case the cyclic permutation of four spins on
a plaquette can take place without double occupancy [145] (see also section 2.3.2). The
similarity of the CuO2 plaquettes in the 2D planes and the spin ladders suggests an
equal relevance of Jcyc for our analysis of the ladders. The actual calculations to study
the influence of Jcyc on σ1 were performed by Nunner et al. [26] using the dynamical
density-matrix renormalization group (dynamical DMRG).

The complete Hamiltonian including the cyclic exchange reads

H = J⊥
∑

i

Si,lSi,r + J‖
∑

i

(Si,lSi+1,l + Si,rSi+1,r)

+Jcyc

∑
i

1

4
(P(i,l)(i,r)(i+1,r)(i+1,l) + P−1

(i,l)(i,r)(i+1,r)(i+1,l)) (5.10)

where the index i refers to the rungs, and (l, r) label the two legs. The cyclic permutation
operator P1234 is given by

P1234 + P−1
1234 = 4 (S1S2)(S3S4) + 4 (S1S4)(S2S3)− 4 (S1S3)(S2S4)

+S1S2 + S3S4 + S1S4 + S2S3 + S1S3 + S2S4 . (5.11)

The consideration of Jcyc primarily renormalizes the coupling strengths J‖ and J⊥
in the Hamiltonian. The only new contribution is a repulsive interaction between local
triplets on neighboring rungs. The strongest effect on the excitation spectrum is a reduc-
tion of the binding energy of the bound state, i.e. the energy difference between the bound
state and the lower edge of the continuum. The energy of the entire elementary triplet
dispersion is reduced, including the spin-gap energy at k = π. In figure 5.29a the ele-
mentary triplet dispersion is shown for an 80-site ladder with isotropic coupling J‖ = J⊥
and different values of Jcyc. The shape of this excitation branch remains qualitatively
unchanged. The strongest suppression affects the spin gap at k = π and the maximum
near k ≈ 0.3π. Even for Jcyc/J⊥ = 0.3 the local minimum at k = 0 is still present. The
inset shows the rapid decrease of the spin gap for a larger range of Jcyc. Figure 5.29b
demonstrates the effect on the lower edge of the two-triplet continuum (open symbols) and
on the bound state (full symbols). Corresponding to the one-triplet dispersion, the lower
edge of the continuum shifts down on increasing Jcyc. Due to the mentioned additional

17The photon couples to two spins on neighboring sites. Locally, at maximum two triplets can be
annihilated and two can be generated. By Bogoliubov transformations the local triplets can be expressed
in terms of the true excitations, i.e. dressed triplets, the true excited eigenstates. The annihilation and
creation operators mix so that also three or four dressed triplets can be generated. Higher-order vertex
corrections lead to the generation of even more than four triplets, which however do not yield an important
contribution.

18This section is largely based on reference [26] by Nunner, Brune, Kopp, Windt and Grüninger. We
are much obliged to the fruitful collaboration with the Augsburg theory group.
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infinite ladder. Right panel: Lower edge of the two-triplet continuum (open symbols) and
the S = 0 bound state (full symbols). Reproduced from reference [26].

repulsion between neighboring triplets, the binding energy is reduced. As a consequence,
the width of the bound-state dispersion decreases dramatically. This width is obviously
very sensitive to the magnitude of Jcyc and hence provides a suitable probe to check for
the actual size of Jcyc once the ratio J‖/J⊥ is known.

In order to determine the proper set of exchange couplings for La5.2Ca8.8Cu24O41,
the frequencies of the two bound-state peaks in σ1 were calculated. In figure 5.30a the
according values of ωmax (full symbols) and ωmin (open symbols) are plotted for different
sets of couplings. The corresponding values of the spin gap ∆s are shown in figure 5.30b.
In the range depicted in the figure, these values may be approximated within 5% by [26]

ωmin ≈ 1.64 J⊥ − 0.54 Jcyc , (5.12)

ωmax ≈ 0.61 J⊥ − 1.87 Jcyc + 1.53 J‖ , and (5.13)

∆s ≈ 0.48 J⊥ − 0.84 Jcyc . (5.14)

One can also rewrite the equations as

J⊥ ≈ 0.75ωmin − 0.48 ∆s , (5.15)

J‖ ≈ 0.23ωmin + 0.65ωmax − 1.60 ∆s , and (5.16)

Jcyc ≈ 0.57 J⊥ − 1.19 ∆s ≈ 0.43ωmin − 1.46 ∆s . (5.17)

Thus in principle, the three experimental values of ω1 and ω2 from our infrared spectra
and ∆s ≈ 280 cm−1 from neutron scattering [25, 216] are sufficient to determine the three
exchange couplings J‖, J⊥ and Jcyc . But ω1 and ω2 also depend on the actual phonon
frequency ωph of the involved symmetry-breaking phonon. That means that

ω1 = ωmin + ω p=π
ph and (5.18)

ω2 = ωmax + ω
p≈π/2
ph . (5.19)



5.3 Comparison with Calculations 129

1.0 1.1 1.2 1.3

J/J
⊥

1.2

1.6

2.0

2.4

2.8

ω
m

a
x
,m

in
 /J

⊥
 

1.0 1.1 1.2 1.3

J/J
⊥

0.0

0.2

0.4

0.6

0.8

∆
s  /J

⊥  
Jcyc/J

 ⊥
 = 0

Jcyc/J
 ⊥
 = 0.1

Jcyc/J
 ⊥
 = 0.2 

Jcyc/J
 ⊥
 = 0.3 

(a) (b)

J
cyc

J
cyc

J
cyc

Figure 5.30: Left panel: Frequencies ωmax (full symbols) and ωmin (open symbols) of
the two peaks stemming from the two local extremals of the bound-state dispersion (see
figure 5.29b). The values are plotted as a function of J‖/J⊥ for different ratios Jcyc/J⊥. All
results have been extrapolated to an infinite ladder. Right panel: Corresponding values of
the spin gap ∆s. Reproduced from reference [26].

The very momenta of the excited phonons are necessary to ensure a total momentum of
zero since infrared light provides only negligible momenta. Thus we have to know not only
the phonon frequency but also the phonon dispersion for an accurate analysis. Fortunately
it is possible to make use of the relative insensitivities of ∆s and ωmin on the coupling
ratio J‖/J⊥. This allows us to determine the value of Jcyc without the consideration of
ω2 and thus omits any effect of a possible dispersion of the optical phonon. A cautious
estimate of the Cu–O bond-stretching phonon frequency at the zone boundary yields
ω p=π

ph = (600± 100) cm−1. The according results presented in reference [26] are

J‖/J⊥ ≈ 1.25− 1.35 ,

J⊥ ≈ 950− 1100 cm−1 , and

Jcyc/J⊥ = 0.20− 0.27 . (5.20)

For the determination of the ratio J‖/J⊥, a reasonable phonon dispersion of ±50 cm−1

was allowed.
So far, just the position of the bound-state peaks and the size of the spin gap entered

the analysis. But even the overall line shape of σ1(ω) can be reproduced with the given set
of parameters. This is demonstrated in figure 5.31 where our data of La5.2Ca8.8Cu24O41

is compared to DMRG results for J‖/J⊥ = 1.30, J⊥ = 1000 cm−1 and Jcyc/J⊥ = 0.20.
Note that for the polarization E||c in the top panel there are two contributions to the
DMRG spectrum, where the legs are excited in-phase (py = 0) or out-of-phase (py = π).
The in-phase mode (squares) contains the coupling to two and four bare triplets and
thus includes the bound state. The out-of-phase mode reflects the coupling to three bare
triplets and hence contributes only to the high-frequency continuum. Note that in the
notation used in reference [26], where the spin operators are represented by rung singlets
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Figure 5.31: Comparison of the La5.2Ca8.8Cu24O41 data at 4 K (solid line) with the
results of dynamical DMRG (full symbols) for an 80-site ladder. The parameters are
J‖/J⊥ = 1.30, J⊥ = 1000 cm−1, Jcyc/J⊥ = 0.20, and a finite broadening of 0.1J⊥. In
the top panel for E||c a phonon frequency of ωc = 570 cm−1 was used, whereas for E||a in
the bottom panel ωa = 620 cm−1 (see text). In the top panel there are two contributions to
the calculated σ1 (open symbols), where the two legs are excited in-phase and out-of-phase
with each other. The subtraction of the electronic background from the experimental spec-
tra is discussed in section 5.2.4. The inset shows the dispersion of the elementary triplet,
the lower edge of the two-triplet continuum, and the S = 0 bound state for the above
mentioned exchange parameters. Reproduced from reference [26].

and rung triplets, light does not couple to excitations of more than four bare triplets. The
DMRG results thus correspond to 100% of the spectral weight. For E||a in the bottom
panel of figure 5.31, σ1 only contains the coupling to two-triplet excitations19, and the
lower bound-state peak is reduced by the selection rule as discussed above. For E||a there
is almost perfect agreement, in particular concerning the line shape of the continuum,
whereas for E||c there are some minor deviations at the highest frequencies. However, as
discussed in the previous section the experimental uncertainty due to the subtraction of
the electronic background certainly exceeds these deviations. Also within the bound-state
regime at lower frequencies, the agreement with our data is better than before. Actually,
the position of both peaks has been used to gain the proper exchange couplings in the
first place. The upper bound-state peak for E||c is more pronounced in the measured

19On a single rung, the photon may annihilate a bare triplet and create another one, which can amount
to the creation of two (or an even number) of dressed triplets (see also footnote on page 127).
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Figure 5.32: Displacement patterns and energies of the optical phonons in the ladder
subcell of LayCa14−yCu24O41 at k = 0. Black dots are the Cu atoms, whereas large open
circles denote the O atoms. Reproduced from reference [201]. Note that in reference [201]
the sketches of the bending modes at 568 and 509 cm−1 were erroneously exchanged.

data, which is similar to the situation of the lower peak for the rung polarization. Nunner
et al. [26] propose that both effects are related to the actual form factors of the relevant
optical phonons.

A more detailed discussion of the corresponding phonon characteristics is given by
Nunner et al. in reference [201]. Based on a shell model the calculations yield the dis-
persion and the form factor of each phonon mode. The results also explain the 50 cm−1

difference in the assumed phonon frequencies ωph
a and ωph

c (figure 5.31). For E||a the
640 cm−1 mode depicted in figure 5.32 provides the strongest contribution to σ1. For
the other polarization, the modes with 601 and 568 cm−1 are dominant. The according
mean value of these two modes is 585 cm−1. The actual frequencies used to calculate
σ1 of figure 5.31 were ωa = 620 cm−1 and ωc = 570 cm−1, which are hence convincingly
verified. Experimentally, the frequency of the upper bound state is ≈ 60 cm−1 higher in
σa than in σc.

Any spectrum calculated with vanishing cyclic coupling did not reach the agreement
with experiment as the presented data with Jcyc/J⊥ = 0.2. This demonstrates the impor-
tance of this exchange term. Actually, the line shape calculated on the basis of the model
Hamiltonian 5.10 does agree so convincingly with our data, that Nunner et al. [26] can
claim to have identified the minimal model that yields the relevant magnetic properties
of undoped S = 1/2 cuprate ladders. This is corroborated by the recent CUT results of
Schmidt et al. [163], who found an excellent description of the two-triplet Raman data of
La6Ca8Cu24O41 for the parameters given by Nunner et al. in reference [26]. Note that in
this CUT calculation a slightly different definition of the exchange parameters has been
used. Very similar values of Jcyc have been reported for the 2D cuprates [148], which
demonstrates the fundamental role of this term. One might speculate that such a sizable
cyclic spin-exchange term will have significant consequences for superconductivity in the
doped spin ladders [5], since magnetic and pairing correlations are considered as closely
related phenomena [2].

Summary: The magnetic contribution to the optical conductivity of the undoped
telephone-number compounds LayCa14−yCu24O41 was clearly reproduced by three differ-
ent approaches. The three main peaks could be unambiguously attributed to the S = 0
bound state and to the multi-triplet continuum. Thus we provide the first experimental
verification of a bound state in spin ladders, and the coupling constants could be derived.
The actual line shape of σ1 is nicely reproduced as well as the spin gap measured with
neutron scattering by incorporating Jcyc/J⊥ = 0.2. Therefore the minimal model was
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identified which captures all relevant magnetic properties. Table 5.2 summarizes the ex-
change couplings from the three presented theoretical studies that provided best fits to
our data at 4 K.

J‖/J⊥ J⊥ (cm−1) Jcyc/J⊥ ωph (cm−1)

Jordan-Wigner Fermions (no Jcyc) 1.0 1100 - 600

CUT (no Jcyc) 1.15 940 - 600

Dynamical DMRG (with Jcyc) 1.30 1000 0.20 570 (c), 620 (a)

Table 5.2: Summary of the coupling ratios stemming from the comparison of our data
with the three theoretical results. In the case of DMRG, different phonon frequencies were
used for the two polarizations. In the first two rows, Jcyc = 0 was assumed. However, a
consistent description of σ(ω) and the spin gap requires a finite value of Jcyc.

5.3.3 Resemblance to the S=1 Chain

In this section a further way of describing the S = 1/2 two-leg ladder is presented.20

The starting point was our empirical result that with increasing temperature the line
shape and the weight of the continuum contribution for polarization along the legs are
changing drastically. This can be clearly seen in the bottom panel of figure 5.18, where
the magnetic part of σ1 for E||c is shown. At 300 K the weight of the double-peak
structure of the bound state is reduced considerably. The continuum weight is strongly
increased, and only a single broad peak remains in contrast to the two continuum peaks
at 4 K. Unfortunately, calculations of the temperature dependence of the phonon-assisted
magnetic absorption are available only for the S = 1/2 chain [233].

Empirically we find that the 300 K spectrum of the two-leg ladder La5.2Ca8.8Cu24O41

resembles the expectations for an S = 1 chain at T = 0 (see below). As a first idea that
supports such resemblance, one might think of thermally excited triplets in the strong
coupling limit of J⊥ � J‖. The triplets are located next to each other on the rungs
of the ladder and thus form a “chain” of spin-1 entities (see figure 5.33).21 For a rough

J|| J⊥<<
Strong-Coupling Limit

S=0 S=1

Figure 5.33: Naive picture of the similarity of a thermally excited S = 1/2 ladder to a
S = 1 Haldane chain.

20This section is largely based on discussions with Tamara Nunner from the University of Augsburg
[232] and with Kai Schmidt from the Cologne theory group.

21Antiferromagnetic chains with integer spin exhibit a so-called Haldane gap as discussed on page 16.



5.3 Comparison with Calculations 133

1+
γ

1

λ

λ

Figure 5.34: The generalized spin-1/2 ladder with an additional diagonal coupling 1+γ.
The arrows denote the succession of the sites in order to map this system onto a single
chain with nearest- and next-nearest-neighbor interactions. The latter exchange is denoted
by λ and causes frustration for λ > 0. The nearest-neighbor interaction alternates between
1 and 1 + γ. Reproduced from reference [234].

estimate we consider a set of isolated singlets with a triplet energy gap of ∆ = 400 K, which
corresponds to the ladder spin gap of 280 cm−1. At T = 300 K the Boltzmann distribution
n(T ) = 3 exp(−∆/kBT )/[1+3 exp(−∆/kBT )] results in an occupation probability of 44%
for a triplet state.

Nevertheless, even at zero temperature there is a real similarity between both model
systems as pointed out by White in reference [235]. White introduced continuous trans-
formations between the S = 1 Heisenberg chain and the S = 1/2 Heisenberg ladder in
such way that there is no phase transition along the mapping path. The actual mapping
can be demonstrated by means of the generalized ladder as depicted in figure 5.34. The
arrows indicate the zigzag path that represents a chain. In this picture of a chain, the
coupling denoted by λ is equivalent to a next-nearest-neighbor coupling that causes frus-
tration. The nearest-neighbor coupling alternates between 1 and 1 + γ. The case of the
isotropic Heisenberg ladder is obtained for λ = 1 and γ = −1. Then there is no diagonal
exchange, and the rung and leg couplings are equal. The phase diagram for this kind
of generalized ladder was analyzed by Brehmer et al. in reference [234]. The according
phase diagram is reproduced in figure 5.35. The line with γ = 0 describes the uniform
chain with frustration due to the next-nearest-neighbor interaction λ. Within the interval
from λ = 0 (no frustration) up to the critical frustration of λc ≈ 0.2412, the chain is
gapless (see section 2.2). Above this point, the chain exhibits an RVB ground state with
a spin gap to the first excited state. The Majumdar-Gosh point is reached at λ = 0.5,
where the ground state is a product of nearest-neighbor singlets without any long-range
bonds. Apart from the gapless line for γ = 0 and λ < λc, all other systems within the
phase diagram are gapped. The dashed lines indicate at which momentum the spin gap is
located. Above the upper line this is at k = 0, and below the lower line the gap is present
at the zone boundary. The Heisenberg ladder belongs to this region. Both boundaries are
accompanied by a disorder line where the spin-spin correlations become incommensurate
in real space. Just the upper line belonging to the k = 0 boundary is plotted. Hence the
lower disorder line is missing in figure 5.35 since its exact position could not be calculated.

Interesting to us is the case of γ → −∞. This means that an infinite ferromagnetic
coupling along the diagonals forces the diagonal spins to be parallel and to form effective
S = 1 units (see figure 5.36). Thus the system is equivalent to an S = 1 Haldane chain
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Figure 5.35: Phase diagram of the generalized ladder with the couplings depicted in
figure 5.34. The interval of the line γ = 0 for 0 < λ < λc ≈ 0.2412 is gapless, and the
remaining part of the diagram is gapped. Above the dashed line labelled as k = 0 the
gap is located at momentum zero, below the lower dashed line it is at k = π, just as
for the isotropic ladder at λ = 1 and γ = −1. Below the disorder line the region starts
where the correlations become incommensurate in real space. The lower boundary of this
incommensurate region is not included since the exact position could not be determined.
For γ → −∞ one approaches the S = 1 Haldane chain. Reproduced from reference [234].

along the leg axis with an effective coupling constant [234, 235] of

Jeff =
1 + 2λ

4
, (5.21)

where 1 + 2λ sums up the three exchange paths between neighboring triplets on the
diagonals, namely twice along the legs and once across a rung. The factor 1/4 is due

1+
γ

λ
+

+

− − −

− −

+

+ +

1

Figure 5.36: A strong ferromagnetic diagonal coupling (γ → −∞) drives the generalized
ladder to the limit of the S = 1 Haldane chain with S = 1 units on the diagonals. The “+”
and “-” signs illustrate the phase on each site for an excitation with (kx, ky) = (π, π).
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Figure 5.37: Comparison of the magnetic contribution to σ1 of La5.2Ca8.8Cu24O41 at
300 K for polarization E||c (solid line) with two different calculations. Full squares represent
DMRG data for the S = 1 chain with effective coupling Jeff = (J⊥ + 2J‖)/4 by Nunner et
al. [236]. The used values are J‖/J⊥ = 1.15, J⊥ = 950 cm−1, and ωph = 570 cm, hence
Jeff ≈ 784 cm−1. Open symbols stand for the DMRG data of the ladder as presented in
the previous section. The relative weight of the py = π contribution (open triangles) has
been increased by a factor of 10.5 compared to the py = 0 contribution (open circles). The
sum (full circles) reproduces the measured line shape well.

to the effective spin of 1 compared to the original S = 1/2.22 The important result of
White was that this picture even holds for vanishing diagonal coupling, i.e. γ = −1.
The probability of finding a pair of spins along a diagonal that forms a triplet state is
still 96.2% in an isotropic ladder with γ = −1 and λ = 1. This surprisingly high number
reflects the strong AF short-range correlations and indicates that even the isotropic ladder
is “not too far” from the S = 1 chain [235]. In fact, both systems are in the same gapped
phase.

In figure 5.37 the magnetic contribution to σ1 of La5.2Ca8.8Cu24O41 at 300 K is plotted
for E||c (solid line). The dominating feature is the strong peak at 3500 cm−1. This peak
evolved from the double-peak continuum, which is present at 4 K (see figure 5.18). At
the same time, the relative weight of the bound-state peaks decreases upon heating. The

22The Hamiltonian contains products of two spin operators, hence the effective coupling Jeff incorpo-
rates the factor (1/2)2 = 1/4× 12.
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upper peak originally located around 2770 cm−1 is almost unrecognizable, and also the
lower peak at 2140 cm−1 becomes weaker. The squares in figure 5.37 denote DMRG
results calculated by Nunner et al. [236] for an S = 1 chain. For comparison with the
data of La5.2Ca8.8Cu24O41 we evaluate the effective coupling constant Jeff using equation
5.21, which in our case reads

Jeff =
J⊥ + 2J‖

4
. (5.22)

Here we neglect the cyclic exchange for the sake of simplicity. The actual parameters used
in figure 5.37 were thus chosen according to our results for Jcyc = 0, i.e. J‖/J⊥ = 1.15
and the proper c-axis phonon frequency of 570 cm−1. However, we reduced the absolute
values of both couplings by 5%, and thus set J⊥ = 950 cm−1. This slight reduction of
the exchange parameters can be interpreted as a softening of the magnetic system due to
the thermal expansion of the lattice. We obtain Jeff = 3.3J⊥/4 ≈ 784 cm−1. The good
agreement with the measured line shape is indeed surprising and supports the picture of
the resemblance of the S = 1 chain and the S = 1/2 two-leg ladder at high temperatures.
Nevertheless we do not want to stretch this analogy too far. For instance, the remnant of
the bound-state structure at around 2100 cm−1 can certainly not be captured by such a
mapping. In the following we try to shed some light on the similarity of the spectra.

The DMRG calculations for the S = 1/2 two-leg ladder presented in the previous
section yield two contributions to the total intensity. The in-phase part (py = 0) contains
the coupling to two and four bare triplets (see footnote on page 127). Therefore it includes
the bound-state intensity and also the two-triplet continuum. The out-of-phase part (py =
π), though, reflects the broad three-triplet continuum [26] (once again, see footnote on
page 127). Interestingly, we found that it is possible to describe the 300 K data rather well
if the relative weight of the py = π contribution (open triangles) is increased by a factor
of 10.5 compared to the py = 0 part. The corresponding sum is denoted by full circles in
figure 5.37, where we have used J‖/J⊥ = 1.3, Jcyc/J⊥ = 0.2, and a reduced absolute value
of J⊥ = 950 cm−1 (see above). This suppression of the py = 0 channel (open circles) is
necessary in order to reproduce the strongly reduced relative weight of the bound state.
We certainly have overestimated this suppression since a finite-temperature calculation
will probably show a transfer of spectral weight from the bound state into the continuum,
in particular from the upper peak which shows a smaller binding energy. Nevertheless we
are confident that the out-of-phase contribution dominates at high temperatures. This
can be explained by the specific form of this three-triplet process, which annihilates one
bare triplet and creates two other ones.23 The weight of this contribution thus vanishes
when no bare triplets are present in the ground state, and it is expected to grow when
the number of triplets increases at higher temperatures [232].

The resemblance of the S = 1/2 two-leg ladder and the S = 1 chain thus boils down
to the similarity of the py = π contribution and the spectrum of the S = 1 chain. At
py = π, the two legs of the ladder are excited out-of-phase. Considering the generalized
ladder depicted in figure 5.36, a scenario in terms of an S = 1 chain certainly requires
that the bonds which connect neighboring triplets are excited in-phase. This is the case at
(px, py) = (π, π), where px denotes the momentum along the legs. Note that the spectra
of phonon-assisted magnetic absorption are dominated by the contribution from px = π,

23These triplets account mainly for the creation of three dressed triplets.
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which finally may explain the similarity between the py = π part and the spectrum of the
S = 1 chain.

Summary: In La5.2Ca8.8Cu24O41 we find a growth of spectral weight of the continuum
with increasing temperature. This effect is more pronounced for polarization E||c, where
also the line shape is strongly affected. At 300 K, the line shape for E||c resembles the
DMRG result for an S = 1 Haldane chain, illustrating the close relationship between the
two model systems. Good agreement with the experimental data is also obtained if the
relative weight of the py = π contribution to σ1(ω) of the S = 1/2 ladder is increased.
The relationship between this py = π contribution and the spectrum of the S = 1 chain
has been discussed.
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Chapter 6

Doped Ladders

The successful study of the undoped ladders in the previous chapter directly leads to
the question of what happens upon hole doping. In Sr14Cu24O41, for instance, there are
nominally six holes per formula unit, but most of them are expected to reside within
the chains [9] (see also section 2.4.2). Therefore this compound offers the interesting
opportunity to investigate the interplay of spin and charge degrees of freedom in the two
subcells.

The optical spectra of Sr14Cu24O41 are similar to the undoped telephone-number com-
pounds with respect to the bound state. Again we find the double-peak structure that
has been identified to stem from the bound state. Yet there are additional features, which
are not present in the undoped crystals. Certainly the most striking difference is that
the lower bound-state peak is split into a sharp double-peak structure. In general, we
find more features over most of the frequency range. The evolution of these features is
studied by comparing the spectra with the data of less-doped La1Sr13Cu24O41 and with
Sr11Ca3Cu24O41. Although the latter compound also exhibits six holes per unit cell, pre-
sumably more holes are present in the ladders than in those of Sr14Cu24O41. Also in the
case of Raman spectroscopy a remarkable change of the line shape was reported from
La6Ca8Cu24O41 to Sr14Cu24O41 [237, 238].

Based on these interesting features in both the infrared and the Raman spectra of
Sr14Cu24O41, we have developed an explanation in terms of a modulation of the exchange
coupling in the ladder by the charge order in the chains. We worked on this interpretation
in close collaboration with Götz Uhrig and Kai Schmidt from the theory department of the
University of Cologne. The sharpening of the two-triplet Raman peak has been described
recently by Schmidt et al. within this scenario [163]. Preliminary results for the infrared
absorption will be presented here. This scenario assumes that the ladders of Sr14Cu24O41

are still undoped at low temperatures.

However, it cannot be excluded that some holes indeed are located within the ladder
subcell. Troyer et al. studied this lightly doped ladder by means of exact diagonalization
and found bound pairs of holes even in the limit of isotropic coupling [239]. They also
find a new kind of triplet excitation at lower energies that is not present in the undoped
ladder. We speculate that some features in the infrared spectra might arise from this new
kind of excitation.

139
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Figure 6.1: Raman spectra of La6Ca8Cu24O41 (left) and Sr14Cu24O41 (right) for polar-
izations E||c and E||a of both the incident and scattered light at 20 K. Reproduced from
reference [237].

6.1 Sharp Raman Peak in Sr14Cu24O41

Sugai and Suzuki measured the Raman scattering of Sr14Cu24O41 and La6Ca8Cu24O41

with polarizations E||c and E||a for both incident and scattered light [237].1 At around
3000 cm−1 there are strong peaks caused by two-triplet excitations. In the undoped
compound La6Ca8Cu24O41, this Raman line is rather broad with slightly different posi-
tions for both polarizations, as can be seen in the left panel of figure 6.1. Schmidt et al.
found good agreement with theoretical results using continuous unitary transformations
[163, 231]. Evidence was found that the Heisenberg model is not sufficient to describe the
data. But the inclusion of a cyclic exchange term with Jcyc ≈ 0.2J⊥ remedies most of the
deviations between experiment and theory [163]. A very different line shape was found
in Sr14Cu24O41, though. In this compound the two-triplet peak is notably sharper, and it
occurs at the same frequency for both polarizations (right panel of figure 6.1) [237, 238].

The sharp Raman peak in Sr14Cu24O41 is surprising compared to the rather broad
two-magnon peak observed in the 2D cuprates [240], which still causes controversial dis-
cussions. Gozar et al. question that quantum fluctuations are responsible for the broad
feature in the 2D cuprates since in the quasi-1D ladders even stronger fluctuations should
produce a by far broader line shape than measured in Sr14Cu24O41 [238]. Schmidt et al.
challenge this interpretation by providing a clear explanation for the sharp Raman peak
[163]. The main idea is that the charge order in the chains has an influence on the ex-
change coupling within the ladder. Usually, the different periodicity of ladders and chains
as well as their mutual influence are not considered.

What is more, charge ordering in the chains of Sr14−xCaxCu24O41 occurs as long as
the Ca content is not too high. This effect was reported by several groups using neutron
diffraction [113, 169], x-ray scattering [170], thermal expansion [171], and dc resistivity
measurements [159] (see also section 2.4.3). Further support was presented by Kataev et

1Ammerahl et al. speculate that a La content of y = 6 is already beyond the solubility limit [7]. See
also pages 41 and 81.
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Figure 6.2: Sketch of the superstructure in the chains and ladders along the c axis. 10
chain units in the top row approximately match 7 ladder units in the bottom row. This
induces a structural modulation in the ladders with a wave vector QS = cladder/cchain =
10/7 = 3/7+1 in reciprocal lattice units of the ladder. The charge ordering in Sr14Cu24O41

produces an additional superstructure with QCO = 2/7, corresponding to a periodicity of
5 · cchain. A possible visualization of such an ordering is shown in the middle row (cf. figure
2.14 on page 24). Filled squares represent Zhang-Rice singlets. Reproduced from reference
[163].

al. who studied single crystals with Ca contents from x = 0 to 12 by means of electron spin
resonance (ESR) [10]. They found the onset of charge order in the chains at TCO = 200 K
for x = 0, 170 K (x = 2), and 80 K (x = 5). There was no signature of charge ordering
for larger Ca contents. A recent x-ray diffraction measurement by Fukuda et al. provides
evidence that the charge order in the chains of Sr14Cu24O41 exhibits a periodicity of
five chain units [172]. Thus one may expect an additional modulation of the exchange
coupling in the ladders of Sr14Cu24O41 below TCO = 200 K. Due to this modulation the
ladders show the same superstructure as the chains, which produces a back-folding of
the dispersion of the elementary triplet. New gaps arise at the crossing points, which
drastically influences the Raman line shape. Schmidt et al. again use continuous unitary
transformations to calculate the according spectra with the necessary high resolution
[163]. A cyclic spin exchange was included since its relevance for the telephone-number
compounds is by now clearly established.

The presence of the chains produces seven inequivalent ladder rungs per formula unit
of the composite structure, as sketched in figure 6.2. The corresponding modulation of
the ladders is characterized by the wave vector QS = 10/7 = 3/7 + 1 in reciprocal lattice
units of the ladder. In the magnetic subsystem of the ladders, wave vectors are only
meaningful modulo unity. Therefore the wave vectors QS = 10/7 and QS = 3/7 are
equivalent. The main effect is a slight shift of the oxygen ions within the chains, which
induces a modulation of the Madelung potentials within the ladders and thus also of the
exchange couplings. An estimate of the amplitude of the modulation yields that also
the second harmonic 2QS = 6/7 has to be considered [163]. The additional modulation
stemming from the charge ordering on the chains below TCO ≈ 200 K is described by the
wave vector QCO = cladder/5 · cchain = 2/7.
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Figure 6.3: Dispersion of the elementary triplet with (thick black lines) and without (thin
line) a charge-order modulation of 15%. The corresponding wave vector of QCO = 2/7 is
denoted by the arrows. Dashed arrows indicate higher-order contributions. Reproduced
from reference [163].

For the actual calculation of the Raman spectra Schmidt et al. use the set of coupling
constants found by the DMRG analysis of Nunner et al., which has been described in
section 5.3.2 [26]. The couplings have to be scaled to match the definition of Schmidt et
al. since the definition of the cyclic exchange term slightly differs from the one in equation
5.10. The values for undoped La5.2Ca8.8Cu24O41 in the new notation read J̃‖/J̃⊥ = 1.2,

J̃cyc/J̃⊥ = 0.2, and J̃⊥ = 1150 cm−1 [163]. Figure 6.3 shows the dispersion of the el-
ementary triplet with and without a 15% modulation due to the charge ordering, i.e.
with the wave vector QCO = 2/7. Notable gaps open wherever QCO links equal ener-
gies E(k) = E(k +QCO) of the unmodulated ladder. Smaller gaps open for higher-order
processes, e.g. for E(k) = E(k + 2QCO). Thus the energies at which gaps open depend
decisively on the wave vector of the modulation.

In figure 6.4 the calculated Raman spectra are compared with the experimental data of
Sugai and Suzuki [237]. The calculated broad Raman response of the unmodulated ladder
(bottom panel) is in good agreement with the measured data of La6Ca8Cu24O41 (middle
panel). In particular, the large width of the Raman line reflects the width of the two-
triplet continuum at k = 0 as depicted in figure 5.28 on page 125. Note that the excellent
description of the peak position obtained for the parameter set of section 5.3.2 [26] clearly
verifies these parameters. The next step is to examine the effect of a modulation on
the line shape. The occurrence of gaps produces van Hove singularities in the density of
states that produce new peaks in the Raman spectra. Raman scattering only measures
excitations with total momentum ktot = 0. Thus the spectra reflect the excitation of two
triplets with opposite momenta k1 = −k2 and equal energies E(k1) = E(−k2). Therefore
a gap at Egap leads to a corresponding feature in the spectrum at 2Egap. For the structural
modulations with wave vectors QS = 3/7 and 6/7 these effects are rather small, as can be
seen in the middle panel of figure 6.4. However, a drastic effect occurs if 2Egap coincides
with the broad peak of the unmodulated ladder. In this case the opening of the gap
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Figure 6.4: Theoretical (thick lines) and experimental (thin lines, T = 20 K) Raman
spectra of spin ladders for cc polarization. For the calculations the exchange couplings of
J̃‖/J̃⊥ = 1.2, J̃cyc/J̃⊥ = 0.2, and J̃⊥ = 1150 cm−1 were used. The bottom panel shows
the theoretical spectrum without any modulation. In the middle panel the structural
modulations with QS = 3/7 and 6/7 are included. The thin line denotes the measured
La6Ca8Cu24O41 data [237]. Finally, in the top panel also the charge-order modulation
with QCO = 2/7 is included in the calculated spectrum. Here the thin line represents the
Sr14Cu24O41 data [237]. Reproduced from reference [163].

leads to a redistribution of a large part of the spectral weight. For the used exchange
couplings a gap opens at approximately 3100 cm−1, which is slightly above the Raman
peak of the unmodulated ladder. Hence the charge-order modulation piles up a large part
of the high-frequency weight on top of the peak. A sharp feature arises, that agrees very
well with the experimental line shape of Sr14Cu24O41 [237, 238] (upper panel of figure
6.4). The exact position can be reproduced by a 2% increase of J⊥. But for a conclusive
determination an independent, precise result of J‖ and Jcyc in Sr14Cu24O41 is necessary
[163]. This can be provided by an analysis of our infrared data.

Note that the couplings used for the calculations were determined independently,
namely from our infrared spectra of the undoped ladder. Thus the agreement with the
measured Raman spectra in terms of the line shape and the position of the main peak pro-
vides strong evidence for the underlying concept of modulations. In particular, a charge
order with a periodicity of 5 · cchain supports the view that at low temperatures almost all
six charge carriers per formula unit are located in the chains (see figure 6.2). A further
argument arises from the polarization dependence. According to reference [231], the peak
positions for the two polarizations should be different as soon as a cyclic exchange is
involved. This is the case in La6Ca8Cu24O41 [237], but the sharp peak in Sr14Cu24O41 is
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found at ≈ 3000 cm−1 for both polarizations [237, 238]. But in the scenario of modulated
couplings the peak position is determined by the position and the size of the gap. Hence
the coincidence of the peak position for both polarizations despite Jcyc > 0 supports the
proposed modulation scenario. Moreover, it becomes clear why the sharp peaks in the
measured spectra are only visible below ≈ 200 K, since at this temperature the charge
ordering sets in.

6.2 Infrared Spectra of Sr14Cu24O41

Infrared absorption is also restricted to ktot = 0 excitations, but since the phonon par-
ticipating in the phonon-assisted magnetic absorption provides momentum according to
0 = ktot = kphonon +kmagnons , it rather measures a weighted average of the magnetic S = 0
spectrum over the whole Brillouin zone (see section 3.3). Thus the Raman calculations for
k = 0 presented above are just the first step to describe the infrared absorption spectra.
The according computations by Schmidt et al. are currently in progress, and therefore we
can only present preliminary results. But at first our infrared spectra of Sr14Cu24O41 are
presented.

Figure 6.5 shows the reflectance data for polarization E||c (top panel) and E||a
(bottom panel). Below TCO = 200 K the spectra are very similar to the spectra of
La4Ca10Cu24O41 in figure 5.6. But there is a considerable change above this temperature
in particular for E||c. Due to the melting of the charge order in the chains, the conductiv-
ity increases giving rise to a metallic Drude contribution. Therefore the reflectance in the
low-frequency part of the spectra strongly increases (confer figure 3.1 on page 55). The
data shows that, as expected, the increase of charge mobility is larger along the c axis
than along the a axis.

In addition, the transmittance was measured on a total of three different samples. In
figure 6.6 the results of the d = 52 µm sample are plotted in the top panel. At 4 K
the spectra are still similar to, for instance, the La4Ca10Cu24O41 transmittance data in
the top panel of figure 5.7. However, the absolute values of Sr14Cu24O41 are smaller al-
though the sample is approximately 15% thinner. At 4 K there is a reduction of Ta(ω)
below 2200 cm−1 compared to the higher temperatures. A similar reduction was reported
in very low-doped YBCO and attributed to a localization of polaronic charge carriers
at low temperatures [110]. The effect is very small in the present case. It is compa-
rable to what has been observed in those samples of YBCO which represent the lowest
hole doping that can actually be achieved. Such doping levels are usually considered as
“undoped” for all practical purposes. So far, Sr14Cu24O41 is the only telephone-number
compound measured by our group for which we could verify such a reduction of Ta(ω) at
low temperatures.

Note that for E||c the fringes were not smoothed away for d = 52 µm. This is
important to ensure the necessary resolution in order to resolve e.g. the new double dip
above 2000 cm−1. These unsmoothed spectra were used later on for the calculation of σc

in the low-frequency regime. The double-dip feature is less pronounced in the d = 20 µm
data as plotted in the bottom panel of figure 6.6 since here the fringes were smoothed
also for E||c. At least up to 150 K these spectra were used for the calculation of σc only
above 2500 cm−1.
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Figure 6.5: Mid-infrared reflectance of a 400 µm thick sample of Sr14Cu24O41. The top
panel shows the spectra for E||c, whereas the E||a data is plotted in the bottom panel.
Above TCO = 200 K a metallic contribution emerges in particular for E||c. The little spikes
at 1220 cm−1 and the 2900 cm−1 features at 400 K are measurement artefacts. See figure
5.6 on page 94 for a comparison with the reflectance data of La4Ca10Cu24O41.

For both samples there is a drastic difference to the spectra of the undoped compounds.
Upon increasing the temperature the transmittance gets strongly suppressed. Above
190 K for E||c and above 220 K for E||a it was not possible to measure any spectrum
because the samples became opaque. The mobile charge carriers above the charge-order
temperature of TCO ≈ 200 K cause too much absorption. Yet below this temperature
we are particulary interested in the apparent new fine structure of the spectra. Since
the fringe amplitudes of the presented a-axis data were too large to omit the smoothing
procedure, we measured a rather thick sample to gain high-resolution spectra. In figure
6.7 the transmittance of a d = 368 µm thick sample is plotted. The values for E||c
are very small and thus not used for the calculation of σc. For the other polarization,
though, there are interesting features around 2000 cm−1 that could not be resolved before.
Already above 4000 cm−1 the sample became opaque, and above 160 K no transmittance
could be measured at all. Since the absolute values of T (ω) are not higher than 20%,
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Figure 6.6: Mid-infrared transmittance of Sr14Cu24O41 with TCO = 200 K. All spectra were
corrected for the polarizer error (see page 69). Apart from the E||c data (thin lines) of the
d = 52 µm sample (top panel), all spectra were smoothed to get rid of the fringes. For the
d = 20 µm sample (bottom panel) it was possible to obtain spectra up to a slightly higher
temperature of 220 K. Only a-axis data (thick lines) could be determined for the highest
temperatures. Note that no down-scaling was necessary to ensure positive values of σ1.
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Figure 6.7: Transmittance of a d = 368 µm thick sample of Sr14Cu24O41. The c axis is
almost opaque even at 4 K. Since no fringes are present, no smoothing is necessary. The
resolution of the spectra is 2 cm−1. To demonstrate that there is no fine structure in the
undoped compounds, the inset shows T(ω) of a d = 168 µm sample of La5Ca9Cu24O41 for
E||a at 4 K. The data is also unsmoothed and measured with a resolution of 4 cm−1.

no fringes occurred in the spectra. Hence the presented data is completely unsmoothed
and measured with a high resolution of 2 cm−1. The above mentioned reduction of Ta(ω)
below ≈ 2200 cm−1 at low temperatures is clearly visible, in excellent agreement with the
data of the d = 52 µm sample.

The calculated optical conductivity is shown in figure 6.8. The c-axis data in the
top panel exhibits a prominent double-peak structure above 2000 cm−1 instead of the
rather broad lower bound-state peak of the undoped ladders (see also top panel of figure
6.9). Just the two thinner samples with d = 52 (unsmoothed) and 20 µm (smoothed)
were used. Already above 125 K, σ1 increases considerably, and 190 K was the highest
temperature for which a spectrum could be measured. This supports that the charge-
order temperature in Sr14Cu24O41 indeed is located at TCO ≈ 200 K. The spectra for
E||a are plotted in the bottom panel of figure 6.8. Here the unsmoothed data of the
368 µm sample was used for the lowest frequencies. Similar to the other polarization,
an increase of σ1 above 125 K can be observed. But on this scale it is not possible to
see any fine structure. Therefore the interesting regime is plotted on an enlarged scale
in the bottom panel of figure 6.9. The 4 K spectrum also reveals a double structure of
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Figure 6.8: Optical conductivity of Sr14Cu24O41 for polarization E||c (upper panel) and
E||a (bottom panel). The transmittance data of the samples with d = 20 and 52 µm were
used for both polarizations, whereas the d = 368 µm sample was used only for E||a.

the lower bound-state peak at ≈ 2100 cm−1, similar to the case of E||c. But there are
further small features, as for instance the peak at ≈ 1810 cm−1 below the bound-state
peaks and another one in-between the bound-state peaks at ≈ 2670 cm−1. Also the upper
bound-state peak at ≈ 3000 cm−1 is split in two peaks.

Now it is interesting to compare the fine structure in Sr14Cu24O41 with the results
of other telephone-number compounds. Figure 6.10 shows not only the almost un-
doped compounds La5.2Ca8.8Cu24O41 and La4Ca10Cu24O41 but also the doped2 compounds
La1Sr13Cu24O41 and Sr11Ca3Cu24O41. The latter two systems were measured by Puchalla
and will be presented shortly in reference [241]. The undoped samples show much broader
features compared to the doped ones. The presented spectra of the undoped samples ex-
hibit a reduced resolution since the fringes were smoothed. However, there is definitely no
such fine structure that was lost due to the smoothing. This can be easily seen in figure

2The term “doped” here means that there are nominally 5 (6) holes per formula unit in La1Sr13Cu24O41

(Sr11Ca3Cu24O41). Whether there are holes in the ladders is not clear a priori.
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Figure 6.9: Optical conductivity of Sr14Cu24O41 for E||c (top) and for E||a (bottom)
on enlarged scales to reveal the fine structure. In this regime the resolution for E||a is
2 cm−1. For E||c the resolution is 5 cm−1 only below ≈ 2500cm−1. Note the logarithmic
σ1 scale in the bottom panel.

5.8 on page 98 where smoothed and unsmoothed spectra are compared. In addition, the
inset of figure 6.7 shows T(ω) of a d = 168 µm sample of La5Ca9Cu24O41 for E||a at 4 K.
This spectrum does not show significant fringes due to the large thickness, and thus no
smoothing was necessary. The resolution of the presented spectrum is 4 cm−1, and there
is no fine structure.

The doped sample of La1Sr13Cu24O41 nominally exhibits already five holes per formula
unit. This clearly enhances the electronic background but the bound-state peaks for both
polarizations are almost as broad as in the undoped samples. But there are first precursors
of the sharpening that occurs for Sr14Cu24O41. For instance the lower bound-state peak
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Figure 6.10: Comparison of the magnetic fine structure in the spectra of different telephone-
number compounds at 4 K. The undoped La5.2Ca8.8Cu24O41 and La4Ca10Cu24O41 show broad
peaks, whereas the intermediate system La1Sr13Cu24O41 [241] exhibits first precursors. Finally,
in Sr14Cu24O41 and Sr11Ca3Cu24O41 [241] similar sharp peaks occur for E||c (upper panel),
and there is further fine structure for E||a (bottom panel).
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for E||c (upper panel of figure 6.10) is less rounded and clearly exhibits a slight shoulder
at the low-frequency side. And for the other polarization E||a (bottom panel) the upper
bound-state peak is slightly sharper and shifted up to 3000 cm−1. Also the feature in-
between the bound-state peaks can be seen at around 2630 cm−1. The strong double
feature in Sr14Cu24O41 for E||c is very similar to the sharpening observed in the Raman
data. Sr11Ca3Cu24O41 shows basically the same feature. The nominal doping is the
same as for Sr14Cu24O41, but substituting Ca for Sr is expected to move holes from the
chains to the ladders and to hinder charge order in the chains. In fact, the electronic
background is the highest of all presented compounds. The slight rounding compared to
Sr14Cu24O41 might be attributed to disorder induced by Ca. Also along the a axis the
magnetic features are very similar for Sr11Ca3Cu24O41 and Sr14Cu24O41. Even the small
peak below the bound state is present in both compounds. Almost all the features are
shifted up by around 60 cm−1 in Sr11Ca3Cu24O41. This has to be expected since Ca is
smaller than Sr, which causes an increase of the exchange couplings.

Apart from the modulation effects discussed below, another possible explanation for
the sharper features in the samples without La might simply be that La substitution
induces disorder into the crystal structure as described in section 2.4.2. In this scenario
the splitting of the lower bound-state peak for E||c might stem from the two relevant
phonons that are involved in the absorption process along this axis (see figure 5.32 on
page 131). But the distance between the peaks is ≈ 110 cm−1 in both Sr14Cu24O41 and
Sr11Ca3Cu24O41, which is considerably larger than the difference of 30 - 60 cm−1 between
the phonon modes as calculated by Nunner et al. [201].

By using equations 5.15 to 5.17 on page 128 derived from the DMRG analysis of
section 5.3.2, it is possible to deduce the exchange parameters from the positions of the
bound-state peaks. For La1Sr13Cu24O41 one can easily determine the frequency of the
lower bound-state peak for E||c. The upper bound-state peak is easier to determine
for E||a. For the other parameters we have used identical values as for the analysis of
La5.2Ca8.8Cu24O41, i.e. ωc

ph = 570 cm−1, ωa
ph = 620 cm−1 [201], and ∆s = 280 cm−1

[25, 216]. The same procedure can be applied to Sr14Cu24O41 and Sr11Ca3Cu24O41. As
long as the origin of the double peaks is not finally clarified, it is reasonable to use the
mean values of the two frequencies. The calculated couplings are summarized in table
6.1. Note that the used equations are only accurate within 5% as long as J‖/J⊥ ≤ 1.35.
But there still is a clear tendency that away from the undoped compounds the ratio
J‖/J⊥ increases. For a detailed statement on Jcyc a more accurate analysis is necessary.
Especially measurements of the gap energies for different dopings would be helpful.

To check if there are in fact modulation effects in the optical conductivity as there
are in the Raman spectra, one has to analyze the bound-state dispersion and the two-
triplet continuum. Just to give an idea, in figure 6.11 the DMRG result for the excitation
spectrum is plotted that was calculated by Nunner et al. [26]. Similar to figure 6.3,
some exemplary modulation vectors are included. Again gaps will open wherever the
modulation wave vectors link equal energies. Like before, Q = 2/7 denotes the effect of the
charge ordering in the chains, and the structural modulation is described byQ = 3/7 along
with the overtone Q = 6/7. The latter wave vector is equivalent to Q = |6/7− 1| = 1/7.
The according calculations by Schmidt et al. are currently in progress. Preliminary results
for the infrared spectra are available as plotted in figure 6.12. Again continuous unitary
transformations were used, but the cyclic exchange is not included so far. Thus the
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ωc
min (cm−1) ωa

max (cm−1) J‖/J⊥ J⊥ (cm−1) Jcyc/J⊥

La5.2Ca8.8Cu24O41 1570 2230 1.31 1040 0.26

La4Ca10Cu24O41 1635 2265 1.28 1090 0.27

La1Sr13Cu24O41 1510 2390 1.46 1000 0.24

Sr14Cu24O41 1480 2395 1.48 980 0.23

Sr11Ca3Cu24O41 1545 2410 1.44 1020 0.25

Table 6.1: Coupling constants of various telephone-number compounds determined via
equations 5.15 to 5.17 on page 128. ωc

min was determined for E||c and ωa
max for E||a. The

subtracted phonon frequencies are 570 and 620 cm−1, respectively [26, 201]. Note that there
are several sources of inaccuracies in this determination. First, the proper peak positions
are not easy to find in the spectra. Next, the phonon frequencies are not exactly known
and were assumed to be constant for all compounds. The dispersion of the phonons was
neglected, and the relative difference between a- and c-axis polarization is not known in
detail for every compound. The same holds true for the spin gap, which was assumed to
be constant: ∆s = 280 cm−1 [25, 216]. At last, the used equations are only valid within
5% below the ratio of J‖/J⊥ = 1.35 [26].

coupling ratio J‖/J⊥ = 1.15 was assumed according to our previous results (see table 5.2
on page 132). The bound-state peaks are shown for E||a (left panel) and E||c (right panel)
for 5% modulation of J‖ with the three different wave vectors. Note that the spectra are
shifted with respect to each other. One can see that indeed fine structure is introduced
by the modulations. However, the exact shape of the underlying dispersion is important.
And since the cyclic exchange is not included so far, the precise positions of the new peaks
are about to change. But a clear tendency can be seen. The higher the wave vector of
the modulation, the higher is the frequency of the induced structure, which is apparent
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Figure 6.11: S = 0 bound state and lower edge of
the two-triplet continuum, according to the unmodulated
DMRG results of Nunner et al. [26]. Some exemplary
modulation wave vectors are included. Wherever these
vectors link equal energies of the dispersion of the bound
state, gaps will open. Effects in which the continuum
participates are more complex. The wave vectors Q =
3/7 and 1/7 stem from the structural modulation of the
ladders, whereas Q = 2/7 is due to the additional charge
order in the chains.
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Figure 6.12: Preliminary results for the optical conductivity in the bound-state range
as calculated by Schmidt and Uhrig using CUT. A 5% modulation of J‖ with the three
different wave vectors is included for E||a (left) and E||c (right). The unmodulated spectra
are shown as thin black lines. For readability the spectra are shifted with respect to each
other. There is no Jcyc included so far.

from figure 6.11. Therefore the structural modulation with Q = 3/7 causes new features
only close to the upper bound-state peak. The charge-order modulation is responsible for
the peaks in-between the main peaks, and the overtone with Q = 1/7 of the structural
modulation produces features over the whole range of the main peaks.

However, there is no influence on the line shape below the lower main peak. But we
do observe a new peak within that region in Sr14Cu24O41 and in Sr11Ca3Cu24O41 (see
figures 6.9 and 6.10). So we are lead to search for further explanations. We cannot
rule out that a certain amount of holes is present in the ladders. Nücker et al. found
0.8 holes in the ladders per formula unit in Sr14Cu24O41 at room temperature [9] (see
figure 2.28). Low-temperature x-ray absorption data is unfortunately not available so
far. Thus it is interesting to ask what kind of impact doped holes have on the magnetic
excitations. Troyer et al. studied the properties of lightly doped ladders by means of exact
diagonalization of clusters with 20 sites [239]. They found evidence of hole pairing and a
modified d-wave RVB state in agreement with e.g. the mean-field study of Sigrist et al. [4].
This pairing is responsible for the theoretically predicted occurrence of superconductivity.
The basic mechanism of such pairing of holes can easily be visualized in the strong-coupling
limit. When a single hole is introduced into the ladder, it breaks up a singlet and leaves
an unpaired spin next to the hole on the same rung. If there are two holes nearby, they
can share a common rung and thus reduce the number of broken spin singlets.

Apart from the triplet dispersion that continuously evolves away from the undoped
spin liquid, Troyer et al. find a new type of triplet excitation that involves the breakup
of a hole pair. A possible sketch of such an excitation is attempted in figure 6.13. In
the upper panel the holes reside on neighboring rungs, which is expected for an isotropic
ladder [239]. This is in contrast to the limit of J⊥ � J‖, where both holes reside on the
same rung. A singlet is formed by the remaining spins. During the new excitation the
holes become unbound, and a triplet is excited. Interestingly, this excitation is lower in
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Bound
Holes

Unbound Holes
+ Triplet

Triplet

Figure 6.13: Possible sketch of the new low-energy excitation in lightly doped ladders.
The top panel shows a bound pair of holes on adjacent rungs, which is expected for the
isotropic ladder [239]. The other two spins on these rungs build a singlet. In the bottom
panel this singlet is excited to a triplet, and at the same time the holes become unbound.
For excitation with light it is necessary to create another triplet in order to obtain S = 0.

energy than a “purely magnetic” triplet excitation, where the holes are not involved [239].
This does not only hold in the strong coupling limit but also all the way up to isotropic
couplings J‖/J⊥ = 1. A second triplet is needed for infrared absorption in order to obtain
S = 0 (bottom panel).

The two types of triplet excitations have different contributions to the dynamical
structure factor. Most of the weight stems from the conventional triplet branch, and
there is very little weight in the low-energy excitation [239]. This scenario might explain
the spectra of Sr14Cu24O41 and Sr11Ca3Cu24O41 (figures 6.9 and 6.10). We mainly see
the same signature of the bound states as in the undoped ladders. The additional fine
structure might partially be explained by modulation effects. But at least the low-energy
peaks at ≈ 1810 cm−1 in Sr14Cu24O41 and ≈ 1870 cm−1 in Sr11Ca3Cu24O41 for E||a can
most likely not be attributed to the modulation. We speculate that the new low-energy
mode might be a candidate for this feature. Further calculations are necessary to verify
this idea.

Finally, also an interpretation in terms of phonons cannot be ruled out. If the splitting
of the lower bound-state peak is due to the contribution of different phonon modes, then
it is possible that contributions involving lower-energy phonons give rise to the weak
features below the main peaks. Note that a superposition of contributions from different
phonons will smear out features caused by modulation effects.

Summary: In the following the main findings in the mid-infrared spectra of doped
telephone-number compounds are outlined.

• The lower bound-state peak for E||c becomes a sharp double peak in Sr14Cu24O41

and Sr11Ca3Cu24O41. In La1Sr13Cu24O41 a precursor of such splitting is present.
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– This might be due to modulation effects stemming (i) from charge order in the
chains or (ii) from the incommensurate crystal structure. In the La-substituted
compounds there is no charge order, and the crystal structure is disordered.

– Another possible explanation is that the two relevant phonons for E||c produce
the two peaks. In the La-substituted compounds the disordered structure
broadens this double peak.

• The lower bound-state peak also splits in two for E||a in Sr14Cu24O41 and
Sr11Ca3Cu24O41, although not as spectacular as for E||c.

– Again modulation effects or a second relevant phonon might explain this fea-
ture.

• The additional fine structure below the bound state for E||a in Sr14Cu24O41 and
Sr11Ca3Cu24O41 might stem from the low-energy mode described by Troyer et al.
[239], but also a phononic origin cannot be ruled out.

• In Sr14Cu24O41 there is a small peak in-between the bound-state peaks, which can
possibly be explained by modulation effects.

• The low-temperature feature in Sr14Cu24O41 at ≈ 1600 cm−1 for E||a

– might be due to localized polaronic charge carriers as in very low-doped YBCO

– or to the low-energy mode described by Troyer et al. [239].

• The electronic background increases from LayCa14−yCu24O41 to Sr14Cu24O41 to
Sr11Ca3Cu24O41. Nevertheless, at 4 K there always remains a gap for electronic
excitations of ∆ ≥ 100 meV.

• From the positions of the bound-state peaks we estimated the coupling constants.
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Chapter 7

Conclusions

Within the scope of this thesis the mid- and near-infrared absorption of undoped and
doped telephone-number compounds (Sr,La,Ca)14Cu24O41 was measured in the range be-
tween 600 and 12 000 cm−1, which corresponds to wavelengths from 17 to 0.8 µm. This
study presents the first determination of the magnetic contribution to the optical conduc-
tivity of spin ladders. A comparison between experiment and new theoretical calculations
provides a comprehensive understanding of the magnetic spectrum of the undoped com-
pounds.

A Fourier spectrometer was put into operation. To be able to study the weak magnetic
contribution to the spectra, it was necessary to measure not only the reflectance but in
particular the transmittance of thin samples. When both quantities are available for a
given frequency, it is directly possible to calculate the optical conductivity without the
use of Kramers-Kronig transforms. Although the samples are highly insulating, sample
thicknesses of down to 6 µm had to be prepared. This was necessary in order to allow for
the subtraction of the electronic background, which becomes apparent in the mid-infrared
range.

The reflectance spectrum of the (almost) undoped sample of La4Ca10Cu24O41 is rather
featureless as is common for the weak-absorption regime below the gap of an insulator.
A strong phonon peak is apparent in the low-frequency part of the spectrum. But there
are no indications of any magnetic excitations, which demonstrates that reflectance mea-
surements with subsequent Kramers-Kronig analysis are not appropriate to reveal very
weak absorption features. In contrast, the transmittance data shows a lot of structure
and strongly depends on the temperature as well as on the polarization of the light.

The derived magnetic contribution to the optical conductivity of LayCa14−yCu24O41

at 4 K was clearly reproduced by three different theoretical approaches in the frame
of phonon-assisted two-triplet absorption. The group of Uhrig et al. from the Univer-
sity of Cologne used continuous unitary transformations (CUT), whereas the group of
Kopp et al. from the University of Augsburg performed both a Jordan-Wigner calculation
and a density-matrix-renormalization-group (DMRG) study. The excellent agreement be-
tween theory and experiment allows to attribute the two main peaks between 2000 and
3000 cm−1 to a bound state of two triplets. There is a resemblance to the undoped 2D
cuprates, which show a single sharp peak in the same frequency range that stems from
an almost bound state. In the spin ladders true bound states were already predicted by
several groups, but we were able to present the first experimental verification.

157



158 Chapter 7 Conclusions

In the 2D cuprates there is a high-frequency contribution which still causes discussion.
However, a similar feature in the undoped spin ladders could unambiguously be attributed
to a multi-triplet continuum by comparison with the mentioned theoretical calculations.
The DMRG study also incorporated a cyclic exchange, that proved to be important to
reproduce the complete line shape of the infrared absorption and the spin gap measured
by neutron scattering at the same time. We were also able to deduce the proper set of
coupling constants. The inclusion of the cyclic exchange into the CUT calculations by
Schmidt et al. from the Cologne theory group is currently in progress, and preliminary
results are quite similar to the DMRG data of Nunner et al. from the Augsburg group.

With increasing temperature the line shape of the spectra changes considerably. The
spectral weight of the continuum strongly increases with temperature, whereas the bound-
state peaks lose some weight. This effect is more pronounced for polarization of the light
along the leg direction. At 300 K the data resembles the DMRG result of Nunner et
al. for an S = 1 Haldane chain, which illustrates the close relation between the two
model systems. Good agreement with the experimental data at room temperature is also
obtained by increasing the relative weight of the out-of-phase contribution to the DMRG
results of the S = 1/2 ladder. A motivation of this resemblance has been discussed.

The other main part of this thesis was to examine the influence of doping on the
infrared spectra of the telephone-number compounds. Sr14Cu24O41 was measured, which
is intrinsically doped with nominally six holes per formula unit. Yet the holes are expected
to reside mainly within the chains of the composite crystals. The major features of the
undoped samples can still be observed, but there is an increased electronic background,
and additional peaks are present. For polarization along the legs, e.g. the lower bound-
state peak is split in two sharp peaks. The same holds for the polarization along the
rungs, but the splitting is not as pronounced. For this polarization, a new peak evolves
between the lower and the upper bound-state peak, and there are new features below the
bound-state peaks.

Several scenarios have been discussed to explain the additional structure. Modula-
tions of the exchange coupling in the ladders due to the incommensurate structure and
the charge ordering in the chains nicely explain the difference in the Raman spectra of
Sr14Cu24O41 and La6Ca8Cu24O41. The same mechanism might account for some of the
new peaks, namely the splitting of the lower bound-state peak and the structure between
both bound-state peaks. The features below the bound state cannot be attributed to
modulation effects, and we speculate that a predicted new kind of excitation in lightly-
doped ladders might be a candidate. This might also explain the broad absorption feature
around 1600 cm−1, which so far is only verified in Sr14Cu24O41 for polarization along the
rungs. A similar feature in lightly doped YBa2Cu3O6+δ has been attributed to local-
ized polaronic charge carriers. Also the influence of disorder in the crystal structure of
LayCa14−yCu24O41 and of the second phonon mode involved in the absorption process for
polarization along the legs has been discussed. However, a comprehensive understanding
of the phenomena observed in the doped ladders requires further investigations.

Outlook

Recent measurements of Sr11Ca3Cu24O41 performed in our group by Puchalla show struc-
tures very similar to those of Sr14Cu24O41. Precursors of the overall sharpening of the
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features as compared to the undoped compounds were found also in the intermediate
system La1Sr13Cu24O41. This compound was also measured by Puchalla, and the results
will soon be presented in his Diplomarbeit. A first analysis of the positions of the bound-
state peaks in the Sr-substituted compounds yields basically the same value of the cyclic
exchange as in the undoped compounds. Also the coupling along the rungs is unchanged,
but the leg coupling increases slightly.

Calculations by Schmidt et al. are currently in progress to incorporate the cyclic
exchange as well as the modulation of the exchange coupling into the CUT approach.
Preliminary results of the theoretical spectra are promising, but only the final results will
allow to verify which of the new peaks stem from modulation effects.

For the future, measurements are planned on the development of the continuum con-
tribution in the Sr-substituted telephone-number compounds. Since the background is
large, very thin samples with thicknesses of less than 10 µm have to be prepared. For
the study of samples of Sr14−xCaxCu24O41, the transmittance is probably not measurable
anymore since the absorption becomes too large. This is due to the vanishing charge or-
der in these samples. Other compounds currently under investigation are the spin-ladder
compound SrCu2O3 and the corrugated spin-ladder CaCu2O3.



160 Chapter 7 Conclusions



References

[]The numbers at the end of each entry refer to the corresponding pages of occurrence.

[1] E. Manousakis, “The spin-1/2 Heisenberg antiferromagnet on a square lattice and its
application to the cuprous oxides”, Rev. Mod. Phys. 63, 1 (1991). 3

[2] E. Dagotto, and T.M. Rice, “Surprises on the Way from One- to Two-Dimensional Quan-
tum Magnets: The Ladder Materials”, Science 271, 618 (1996). 3, 24, 48, 131

[3] E. Dagotto, J. Riera, and D. Scalapino, “Superconductivity in ladders and coupled planes”,
Phys. Rev. B 45, 5744 (1992). 4, 5, 24, 48

[4] M. Sigrist, T.M. Rice, and F.C. Zhang, “Superconductivity in a quasi-one-dimensional
spin liquid”, Phys. Rev. B 49, 12058 (1994). 4, 153

[5] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Môri, and K. Kinoshita, “Super-
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lattice”, Eur. Phys. J. B 2, 501 (1998). 11

[48] P.W. Anderson, “Resonating Valence Bonds: A New Kind of Insulator?”, Mat. Res. Bull.
8, 153 (1973). 11

[49] P.W. Anderson, “The Resonating Valence Bond State in La2CuO4 and Superconductiv-
ity”, Science 235, 1196 (1987). 11



164 References

[50] S. Liang, B. Doucot, and P.W. Anderson, “Some New Variational RVB-Type Wave Func-
tions for the Spin-1/2 Antiferromagnetic Heisenberg Model on a Square Lattice”, Phys.
Rev. Lett. 61, 365 (1988). 11, 12

[51] H. Bethe, “Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys. 71, 205
(1931). 13

[52] R. Orbach, “Linear Antiferromagnetic Chain with Anisotropic Coupling”, Phys. Rev. 112,
309 (1958). 13
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Panchula, and P.C. Canfield, “Thermodynamics of spin S = 1/2 antiferromagnetic uni-
form and alternating-exchange Heisenberg chains”, Phys. Rev. B 61, 9558 (2000). 18

[84] M. Aı̈n, J.E. Lorenzo, L.P. Regnault, G. Dhalenne, A. Revcolevschi, B. Hennion, and
T. Jolicoeur, “Double Gap and Solitonic Excitations in the Spin-Peierls Chain CuGeO3”,
Phys. Rev. Lett. 78, 1560 (1997). 18, 21, 22

[85] G. Castilla, S. Chakravarty, and V.J. Emery, “Quantum Magnetism of CuGeO3”, Phys.
Rev. Lett. 75, 1823 (1995). 18, 19

[86] J. Riera, and A. Dobry, “Magnetic susceptibility in the spin-Peierls system CuGeO3”,
Phys. Rev. B 51, 16098 (1995). 18, 19

[87] M.C. Cross, and D.S. Fisher, “A new theory of the spin-Peierls transition with special
relevance to the experiments on TTFCuBDT”, Phys. Rev. B 19, 402 (1979). 18



166 References

[88] J.L. Black, and V.J. Emery, “Critical properties of two-dimensional models”, Phys. Rev.
B 23, 429 (1981). 18
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[135] M. Troyer, H. Tsunetsugu, and D. Würtz, “Thermodynamics and spin gap of the Heisen-
berg ladder calculated by the look-ahead Lanczos algorithm”, Phys. Rev. B 50, 13515
(1994). 30

[136] K. Ishida, Y. Kitaoka, Y. Tokunaga, S. Matsumoto, K. Asayama, M. Azuma, Z. Hiroi,
and M. Takano, “Spin correlation and spin gap in quasi-1D spin-1/2 cuprate oxides: A
63Cu NMR study”, Phys. Rev. B 53, 2827 (1996). 30

[137] D.C. Johnston, “Antiferromagnetic exchange in two-leg spin-1/2 ladders”, Phys. Rev. B
54, 13009 (1996). 30, 32

[138] N. Motoyama, H. Eisaki, and S. Uchida, “Magnetic Susceptibility of Ideal Spin 1/2 Heisen-
berg Antiferromagnetic Chain Systems, Sr2CuO3 and SrCuO2”, Phys. Rev. Lett. 76, 3212
(1996). 30



References 169

[139] H. Suzuura, H. Yasuhara, A. Furusaki, N. Nagaosa, and Y. Tokura, “Singularities in
Optical Spectra of Quantum Spin Chains”, Phys. Rev. Lett. 76, 2579 (1996). 30, 58, 59

[140] J. Lorenzana, and R. Eder, “Dynamics of the one-dimensional Heisenberg model and
optical absorption of spinons in cuprate antiferromagnetic chains”, Phys. Rev. B 55, R3358
(1997). 31, 58, 59, 120

[141] Y. Mizuno, T. Tohyama, and S. Maekawa, “Superexchange interaction in cuprates”, Phys.
Rev. B 58, R14713 (1998). 31, 32

[142] S. Brehmer, H.-J. Mikeska, M. Müller, N. Nagaosa, and S. Uchida, “Effects of biquadratic
exchange on the spectrum of elementary excitations in spin ladders”, Phys. Rev. B 60,
329 (1999). 32

[143] H.J. Schmidt, and Y. Kuramoto, “Four-spin interaction as an effective interaction in high-
Tc copper oxides”, Physica C 167, 263 (1990). 32

[144] A.H. MacDonald, S.M. Girvin, and D. Yoshioka, “t/U expansion for the Hubbard model”,
Phys. Rev. B 37, 9753 (1988). 41, 2565 (1990). 32, 127

[145] E. Müller-Hartmann, and A. Reischl, “Derivation of effective spin models from a three
band model for CuO2-planes”, Eur. Phys. J. B 28, 173 (2002). 32, 127

[146] M. Roger, J.H. Hetherington, and J.M. Delrieu, “Magnetism in solid 3He”, Rev. Mod.
Phys. 55, 1 (1983). 32

[147] M. Roger, and J.M. Delrieu, “Cyclic four-spin exchange on a two-dimensional square
lattice: Possible applications in high-Tc superconductors”, Phys. Rev. B 39, 2299 (1989).
32

[148] R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason, S.-W. Cheong,
and Z. Fisk, “Spin Waves and Electronic Interactions in La2CuO4”, Phys. Rev. Lett. 86,
5377 (2001). 32, 131

[149] A.A. Katanin, and A.P. Kampf, “Spin excitations in La2CuO4: Consistent description by
inclusion of ring exchange”, Phys. Rev. B 66, 100403 (2002). 32

[150] Y. Mizuno, T. Tohyama, and S. Maekawa, “Magnetic Interaction in Insulating Cuprates”,
J. Low Temp. Phys. 117, 389 (1999). 32

[151] Y. Mizuno, T. Tohyama, and S. Maekawa, “Systematic Study of Magnetic Interactions in
Insulating Cuprates”, Physica C 341-348, 473 (2000). 32

[152] R.S. Eccleston, M. Uehara, J. Akimitsu, H. Eisaki, N. Motoyama, and S. Uchida, “Spin
Dynamics of the Spin-Ladder Dimer-Chain Material Sr14Cu24O41”, Phys. Rev. Lett. 81,
1702 (1998). 32, 34, 42

[153] M. Kato, K. Shiota, and Y. Koike, “Metal-insulator transition and spin gap in the spin-1/2
ladder system Sr14−xAxCu24O41 (A = Ba and Ca)”, Physica C 258, 284 (1996). 36, 40

[154] T. Nagata, M. Uehara, J. Goto, N. Komiya, J. Akimitsu, N. Motoyama, H. Eisaki,
S. Uchida, H. Takahashi, T. Nakanishi, and N. Môri, “Superconductivity in the ladder
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A. Freimuth, U. Ammerahl, B. Büchner, and A. Revcolevschi, “Magnetic excitations in
two-leg spin 1/2 ladders: experiment and theory”, J. Phys. Chem. Sol. 63, 2167 (2002).
87, 110, 112, 117, 118, 119, 120, 121, 122

[214] J. Oitmaa, R.R.P. Singh, and Z. Weihong, “Quantum spin ladders at T = 0 and at high
temperatures studied by series expansions”, Phys. Rev. B 54, 1009 (1996). 89

[215] C. Knetter, A. Bühler, E. Müller-Hartmann, and G.S. Uhrig, “Dispersion and Symmetry
of Bound States in the Shastry-Sutherland Model”, Phys. Rev. Lett. 85, 3958 (2000). 90

[216] M. Matsuda, K. Katsumata, R.S. Eccleston, S. Brehmer, and H.-J. Mikeska, “Magnetic
excitations from the S = 1/2 two-leg ladders in La6Ca8Cu24O41”, J. Appl. Phys. 87, 6271
(2000). 104, 125, 128, 151, 152

[217] J.M.P. Carmelo, N.M.R. Peres, and P.D. Sacramento, “Finite-Frequency Optical Absorp-
tion in 1D Conductors and Mott-Hubbard Insulators”, Phys. Rev. Lett. 84, 4673 (2000).
109

[218] E. Jeckelmann, F. Gebhard, and F.H.L. Essler, “Optical Conductivity of the Half-Filled
Hubbard Chain”, Phys. Rev. Lett. 85, 3910 (2000). 109, 118

[219] F.H.L. Essler, F. Gebhard, and E. Jeckelmann, “Excitons in one-dimensional Mott insu-
lators”, Phys. Rev. B 64, 125119 (2001). 109

[220] J.J. McGuire, M. Windt, T. Startseva, T. Timusk, D. Colson, and V. Viallet-Guillen,
“Gap in the infrared response of HgBa2Ca2Cu3O8+δ”, Phys. Rev. B 62, 8711 (2000). 116

[221] T.S. Nunner, and T. Kopp, “Jordan-Wigner approach to dynamic correlations in spin-
ladders”, cond-mat/0210103 (2002). 117, 118, 120

[222] M. Azzouz, L. Chen, and S. Moukouri, “Calculation of the singlet-triplet gap of the anti-
ferromagnetic Heisenberg model on a ladder”, Phys. Rev. B 50, 6233 (1994). 117

[223] X. Dai, and Z. Su, “Mean-field theory for the spin-ladder system”, Phys. Rev. B 57, 964
(1998). 117
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Abstract

In the framework of this thesis the infrared spectra of two-leg spin ladders were measured.
This study presents the first determination of the magnetic contribution to the optical
conductivity of spin ladders. A comparison between experiment and new theoretical
calculations provided a comprehensive understanding of the magnetic spectrum of the
undoped telephone-number compounds LayCa14−yCu24O41.

To be able to study the weak magnetic contribution to the spectra, it was necessary to
measure not only the reflectance but in particular the transmittance of thin single crystals.
When both quantities are known, one can directly calculate the optical conductivity.
The low-temperature spectra were compared with results of three different theoretical
approaches in close collaboration with the theory groups of Uhrig et al. from the University
of Cologne and of Kopp et al. from the University of Augsburg. The excellent agreement
between theory and experiment allowed us to identify the two sharp peaks in the mid-
infrared range unambiguously as the signature of a true bound state of two triplets.
The occurrence of bound states in spin ladders had been predicted already by several
groups, but we provided the first experimental verification. Again by comparison with
the theoretical spectra, further spectral weight at higher frequencies was attributed to the
multi-triplet continuum. The exchange couplings were derived, and the importance of a
four-spin cyclic exchange was demonstrated.

With increasing temperature especially the line shape for polarization along the legs
changes considerably. The spectral weight of the continuum strongly grows, whereas the
bound-state peaks lose weight. The resemblance between the measured room-temperature
data of the S = 1/2 ladder and theoretical results for the S = 1 Haldane chain was
discussed. The corresponding calculations were performed by Nunner et al. from the
Augsburg group.

Another main part of this thesis was to examine the influence of doping on the in-
frared spectra. In the telephone-number compounds the charge carriers are expected to
reside mainly within the chains rather than within the ladders. We still observed the
same bound-state features in Sr14Cu24O41 as in the undoped compounds, but there was
additional structure in the spectra. Several scenarios were discussed in order to explain
the additional features, including the modulation of the exchange coupling along the legs
due to the incommensurate structure and due to the charge order in the chains. Calcu-
lations by Schmidt et al. from the Cologne group are currently in progress to clarify the
relevance of this mechanism.
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Zusammenfassung

Im Rahmen dieser Arbeit wurden Infrarotspektren von Spinleitern gemessen und die
erste Bestimmung des magnetischen Beitrags zur optischen Leitfähigkeit präsentiert.
Ein Vergleich zwischen Experiment und neuen theoretischen Berechnungen lieferte ein
umfassendes Verständnis des magnetischen Spektrums der undotierten Telefonnummer-
Verbindungen LayCa14−yCu24O41.

Um den schwachen magnetischen Beitrag der Spektren bestimmen zu können ist es
notwendig, nicht nur die Reflexion, sondern insbesondere auch die Transmission von
dünnen Einkristallen zu messen. Wenn beide Größen bekannt sind, kann man die op-
tische Leitfähigkeit direkt berechnen. Die Spektren bei tiefen Temperaturen wurden mit
den Ergebnissen von drei verschiedenen theoretischen Ansätzen verglichen. Die Rech-
nungen wurden in den Theorie-Gruppen von Uhrig et al. an der Universität zu Köln
und von Kopp et al. an der Universität Augsburg durchgeführt. Die hervorragende
Übereinstimmung zwischen Theorie und Experiment ermöglichte uns, die zwei schar-
fen Peaks im mittleren Infrarot eindeutig einem gebundenen Zustand von zwei Tripletts
zuzuordnen. Das Auftreten von gebundenen Zuständen in Spinleitern wurde zwar schon
von mehreren Gruppen vorhergesagt, aber wir haben den ersten experimentellen Nachweis
erbracht. Wiederum im Vergleich mit den theoretischen Spektren konnte das spektrale
Gewicht bei höheren Frequenzen dem Vielteilchen-Kontinuum zugeordnet werden. Die
Austauschkonstanten wurden bestimmt, und die Bedeutung des zyklischen Vier-Spin-
Austausches konnte demonstriert werden.

Mit steigender Temperatur ändert sich die Linienform insbesondere für die Polari-
sation entlang der Holme. Das spektrale Gewicht des Kontinuums steigt stark an,
während die Peaks des gebundenen Zustands an Gewicht verlieren. Die Ähnlichkeit der
Raumtemperatur-Daten der S = 1/2 Leiter mit dem theoretischen Spektrum der S = 1
Haldane-Kette wurde diskutiert. Die entsprechenden Berechnungen wurden in der Augs-
burger Gruppe von Nunner et al. durchgeführt.

Ein weiterer wichtiger Teil dieser Arbeit war die Untersuchung des Einflusses von
Dotierung auf die Infrarotspektren. In den Telefonnummer-Verbindungen werden die
meisten Löcher innerhalb der Ketten und nicht in den Leitern vermutet. In Sr14Cu24O41

konnten wir die gleichen Merkmale des gebundenen Zustands messen wie in den un-
dotierten Leitern. Es traten allerdings weitere Strukturen in den Spektren auf. Ver-
schiedene Erklärungsansätze wurden diskutiert. Eines dieser Szenarien beinhaltet die
Modulation der Austauschkopplung entlang der Leiter durch die inkommensurable Struk-
tur der Verbindung und durch die Ladungsordnung in den Ketten. Entsprechende Rech-
nungen werden momentan von Schmidt et al. in der Kölner Theorie-Gruppe durchgeführt,
um die Bedeutung dieses Mechanismus klären.
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