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A INTRODUCTION

The immune system employs complex strategies in the fight against

invading pathogens. While the innate immune response is an evolutionary ancient

arm of the immune system, vertebrates have also acquired the ability to respond to

pathogens in an adaptive fashion. Adaptive immune responses are provided by T

and B cells. The central molecules in B cell-mediated immunity are the

immunoglobulin (Ig) chains. They form the antigen-recognizing unit of the B cell

receptor (BCR) and contribute effector function as secreted antibodies. The

generation of a broad repertoire of BCR specificities is essential for the effective

humoral immune response. In both human and mouse, this is achieved by two

mechanisms: V(D)J recombination and somatic hypermutation (SHM). The

hallmark of B cell development is the rearrangement of functional Ig genes from a

pool of germline variable (V), diversity (D), and joining (J) gene segments. In T

cell-dependent immune responses, B cells further diversify their BCR repertoire

through the introduction of somatic mutations into the variable region of the Ig

genes, a process called somatic hypermutation (SHM)

A1 V(D)J Recombination

The BCR consists of pairs of identical covalently-linked immunoglobulin

heavy (IgH) and light (IgL) chains that form a complex with the signaling

component of the BCR, the Ig-a/b  heterodimer. Both heavy and light chains

comprise a variable (V) region that confers antigen specificity and a constant

region that mediates effector function in the case of the IgH chain.

The IgH chain is encoded by one gene locus, while there are two loci,

kappa and lambda, that encode the IgL (Honjo and Alt, 1995). Through the

process of V(D)J recombination, the V region of IgH chains is assembled by

joining a variable (VH), diversity (DH), and joining (JH) gene segment (for the

organization of the IgH locus, see Figure 1). The V region of IgL chains is

rearranged similarly. However, IgL loci lack D elements and recombination occurs

only between V and J gene segments (Bassing et al., 2002; Schlissel, 2003).
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Figure 1. Organization and V(D)J recombination of the murine IgH locus.

Variable (VH), diversity (DH) and joining (JH) gene segments are located in the 5’

part of the locus. The exons of the constant region comprise the 3’ part of the

locus. B cells undergo first DH to JH rearrangements (1), followed by VH to DHJH

rearrangements (2). DH to JH rearrangements occur on both alleles, whereas a

productive VH to DHJH rearrangement prevents further rearrangements on the

other allele (allelic exclusion). The reaction is initiated by the enzymes lymphoid-

specific genes RAG-1 and RAG-2 that cleave the DNA within recognition signal

sequences (RSS). Subsequently, ubiquitously expressed non-homologous end-

joining (NHEJ) enzymes resolve the DNA lesions and juxtapose the gene

segments. Rectangles represent gene segments and triangles represent RSSs.

The intronic enhancer (Em) is shown as a circle and switch (S) regions in front of

the constant regions are depicted as ovals. N indicates the number of particular

gene segments in the locus.
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V(D)J recombination is initiated by the lymphoid-specific enzymes recombination-

activating genes 1 and 2 (RAG-1 and RAG-2) (Oettinger et al., 1990; Schatz et al.,

1989). The RAG proteins recognize recognition signal sequences (RSS) flanking

the V, D, and J elements, where they introduce double-strand breaks into the DNA

(McBlane et al., 1995; Oettinger et al., 1990; Schatz et al., 1989; van Gent et al.,

1995). Resolution of the double strand breaks is then mediated by ubiquitously

expressed non-homologous end joining (NHEJ) enzymes and leads to the

juxtaposition of a V, D, and J gene segments (Barnes et al., 1998; Blunt et al.,

1995; Critchlow et al., 1997; Frank et al., 1998; Grawunder et al., 1997;

Kirchgessner et al., 1995; Nussenzweig et al., 1996; Zhu et al., 1996). V(D)J

recombination is not precise. In adult mice, the DNA joints are trimmed and the

lymphoid-specific terminal desoxynucleotidyl transferase (TdT) (Alt and Baltimore,

1982; Gilfillan et al., 1993; Komori et al., 1993) inserts randomly non-templated

nucleotides (N-nucleotides). Recently, the related DNA polymerase m (Bertocci et

al., 2003) has also been implicated in the processing of the DNA joints. Thus,

these processes contribute additional antibody diversification.

V(D)J recombination is an ordered process, whose regulation is thought to

involve chromatin modifications in the Ig loci, which render the loci accessible for

the RAG proteins (Mostoslavsky et al., 2003; Schlissel, 2003). In the majority of B

cells, rearrangement of the IgH locus precedes the rearrangement of the IgL loci.

Expression of a productive (functional) IgH chain terminates further recombination

of the IgH loci, a process termed “allelic exclusion”, which induces the onset of IgL

rearrangements. Allelic exclusion and light chain isotype exclusion of the IgH and

IgL loci confines B cells to the expression of a single BCR specificity.

A2 B Cell Development

 Murine B cell development occurs in the fetal liver during embryogenesis

and continues in the bone marrow after birth (Owen et al., 1977). Based on the

expression of surface antigens, B cell development can be separated into several

distinct stages (Figure 2) (Hardy et al., 1991; Rolink et al., 1994; Rolink and

Melchers, 1996) that correlate with the progression of V(D)J recombination

(Rajewsky, 1996).
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Figure 2. B cell development. Pro-B cells are the earliest B cell progenitors. In most

cases, V(D)J recombination commences at the IgH loci. DH and JH gene segments are

rearranged first, followed by VH to DHJH rearrangements. Cells carrying a productive

(functional) V(D)J rearrangement progress to become pre-B cells. The IgH chain pairs

with the surrogate light chain to form the pre-B cell receptor (pre-BCR). Signaling through

the pre-BCR terminates further rearrangements at the IgH loci and allows pre-B cells to

continue with IgL chain rearrangements. Productive VL to JL rearrangements result in the

expression of a functional BCR. Signaling through the BCR terminates V(D)J

recombination and allows pre-B cells to differentiate into immature B cells, which  mature

in the secondary lymphoid organs. Figure is adapted from Rajewsky, 1996 (Rajewsky,

1996).

B cell progenitors develop into pro-B cells (B220+CD43+IgM-IgD-), with DH to JH

rearrangements occurring first, followed by VH to DHJH rearrangements (Alt et al.,

1984). Cells carrying a productive IgH rearrangement become pre-B cells

(B220+CD43-IgM-IgD-). In pre-B cells, IgH chains pair with a surrogate light chain,

consisting of the VpreB and l5 molecules, to form the pre-BCR (Karasuyama et

al., 1990; Tsubata and Reth, 1990). Signaling through the pre-BCR is thought to
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terminate further IgH rearrangements and enables the cell to progress to IgL chain

rearrangement (Kitamura et al., 1992; Löffert et al., 1996). Successful completion

of the IgL rearrangement allows the expression of a functional BCR, which

terminates further IgL chain rearrangements (Grawunder et al., 1995; Li et al.,

1993). B cells that recognize auto-antigens through their BCR either alter their

BCR specificity by receptor editing of the IgL or are negatively selected (Gay et al.,

1993; Nemazee and Burki, 1989; Retter and Nemazee, 1998; Tiegs et al., 1993).

Only those cells with “innocent” (non-autoreactive) receptors differentiate into

immature B cells (B220+CD43-IgM+IgD-). Further maturation occurs then in the

secondary lymphoid organs (Allman et al., 1993).

Mature B cells fall into three subsets that can be distinguished by the

differential expression of surface antigen markers and their distinct homing and

functional properties. B-1 cells (IgMbrightIgDlowB220lowCD23lowCD43+) are self-

renewing cells derived from fetal precursors. They are found mainly in the

peritoneal and pleural cavities and provide most of the “natural” IgM antibodies,

thus contributing to innate immune responses (Hardy and Hayakawa, 2001;

Hayakawa et al., 1983; Herzenberg et al., 1986; Kocks and Rajewsky, 1989; Su

a n d  Tarakhovsky,  2000) .  Marg ina l  zone (MZ) B ce l ls

(IgMhighIgDlowCD21highCD23low) are self-renewing cells that appear in the spleen

shortly after birth. They are non-circulating and are recruited into humoral

responses raised against blood-borne antigens (Martin and Kearney, 2002).  Most

B cells in adult mice differentiate into follicular B cell (also called B-2 cells).

Follicular B cells are IgMhighIgDlowCD21lowCD23high. They are re-circulating cells

that home to B cell follicles in the secondary lymphoid organs and are the major B

cell subset recruited into antibody responses against T cell-dependent antigens

(Rajewsky, 1996). The molecular mechanism that governs the differentiation into

the distinct subsets of mature B cells is not fully understood. However, current

understanding suggests that the strength of the BCR-mediated signal is the critical

determinant for the differentiation into the mature B cell subsets (Cariappa and

Pillai, 2002).
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A3 The Germinal Center Reaction

In T cell-dependent (TD) antibody responses, follicular B cells are activated

in the T cell zone of the secondary lymphoid organs by BCR-mediated antigen

recognition and T cell help. Upon activation, most B cells differentiate into short-

lived antibody-secreting plasma cells (Ho et al., 1986). The latter cells retain their

unmutated Ig genes and provide an initial wave of low-affinity antibodies. A fraction

of the activated B cells migrate to the B cell follicles, where they undergo a phase

of rapid proliferation and form distinct histological structures in secondary lymphoid

organs, the germinal centers (GCs) (MacLennan, 1994; Tarlinton, 1998).

Germinal centers are the sites of secondary antibody diversification.

Somatic hypermutation (SHM) introduces mutations into the pre-rearranged Ig

genes, thus generating novel mutated BCRs. A second process, called class

switch recombination (CSR), modifies the IgH constant region by replacing the

constant region of IgM with that of another isotype to modify effector function.

Murine GC B cells can be distinguished from follicular B cells by their ability to bind

to the plant lectin peanut agglutinin (PNA), the increased surface expression of

GL-7 and the Fas receptor, and the reduced surface levels of IgD. Germinal

centers at the peak of the GC reaction have a polarized appearance (Figure 3).

The dark zone adjacent to the T cell zone contains proliferating B cells (called

centroblasts), whereas the light zone comprises non-dividing B cells (called

centrocytes) interacting with a network of follicular dendritic cells (FDCs)

(Schriever and Nadler, 1992). Centroblasts divide every 7 hours, and undergo

SHM (MacLennan, 1994). After the proliferative burst, centroblasts exit the cell

cycle and become centrocytes. Centrocytes compete with each other for access to

antigens held in the form of immune complexes on the FDCs (Mandel et al., 1980).

During affinity maturation, centrocytes with high-affinity BCRs are positively

selected and differentiate into long-lived plasma cells or memory B cells, while

those cells with a non-functional or low-affinity BCR fail to get selected and die by

apoptosis.

Terminal differentiation of plasma cells alters the gene expression required

for BCR signaling and GC function (Shaffer et al., 2002). Guided by chemokines,

long-lived plasma cells migrate preferentially to the bone marrow, where they
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Figure 3. Structure of germinal centers in humans (A) and mice (B). GC B cells can

be divided into centroblasts and centrocytes. Centroblast proliferate in the dark zone (DZ)

adjacent to the T cell zone and undergo SHM. Centroblasts give rise to centrocytes. The

latter cells interact in the light zone (LZ) with follicular dendritic cells (FDCs). A. Germinal

center in a human tonsil. Centroblasts are stained for the proliferation marker Ki-67 in

green, T cells are stained in blue, and FDCs are stained in red. B. Germinal center in the

spleen of an immunized mouse.  PNA-binding GC B cells are stained in red, FDCs in

purple, and CD19-positive B cells in green. FM indicates the follicular mantle zone, which

consists of resting B cells. Figure 3A is adapted from the homepage of the MacLennan

laboratory (http://www.bham.ac.uk/mrcbcir/research.htm#reg%20imm%20responses).

secrete large amounts of antigen-specific antibodies (Benner et al., 1981; Cyster,

2003; Manz et al., 1997; McMillan et al., 1972). Memory B cells persist in

secondary lymphoid organs after the termination of the TD immune response in

the absence of further contact with antigen (Maruyama et al., 2000) and represent

the first B cell subset recruited into secondary antibody responses.

A4 Class Switch Recombination (CSR)

The nature of the IgH constant region defines the antibody isotype. The

activation with cognate antigen, the presence of cytokines, and to some degree T-

FM

LZ

DZ

TZ

A. B.
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cell help, induce IgM and IgD-expressing follicular B cells to undergo CSR in order

to express other isotypes (Manis et al., 2002; Stavnezer, 1996).

The IgH constant region gene segments (CH) cluster at the 3’ end of the

locus, starting in the mouse with the VH-proximal Cm encoding IgM followed by Cd,

Cg3. Cg1, Cg2b, Cg2a, Ce and Ca  (Figure 4). Upon CSR, B cells express a

different isotype by replacing Cm with a downstream CH and concurrent excision of

the intervening DNA (Iwasato et al., 1990; Matsuoka et al., 1990). Each CH gene

segment represents a discrete transcriptional unit that comprises its own promoter,

a GC-rich repetitive sequence (switch (S) region) and the exons of the constant

region. CSR occurs between the S regions located up-stream of each constant

region and is dependent on CH
 promoter-driven germline transcription through the

S regions (Bottaro et al., 1994; Harriman et al., 1996; Jung et al., 1993; Zhang et

al., 1993). Transcription leads to the formation of stable RNA-DNA structures

(termed R-loops) that displace the non-coding DNA strand (Reaban and Griffin,

1990; Reaban et al., 1994; Yu et al., 2003; Yu and Lieber, 2003). The R-loops are

thought to assist in the targeting of the recombination machinery. The DNA breaks

occur within the S regions and the resulting DNA ends are joined by the NHEJ

pathway (Casellas et al., 1998; Manis et al., 1998; Rolink et al., 1996). As a result

of CSR, the intervening DNA fragment is excised as a circle and the 3’ and 5’ ends

of the IgH locus are juxtaposed.

A5 Somatic Hypermutation (SHM)

During SHM, the pre-rearranged Ig genes acquire point mutations at a very

high rate (around 10-3/bp/generation) (Kocks and Rajewsky, 1988; McKean et al.,

1984). Transcription of the Ig genes is essential for SHM and the transcription rate

correlates with the mutation frequency (Fukita et al., 1998; Storb et al., 1998b).

Mutations accumulate in a 2 kb window downstream of the promoter (Neuberger et

al., 1998; Rada and Milstein, 2001; Storb et al., 1998a), thus covering the V gene

region but not the constant regions. The presence of Ig enhancers is required for

SHM and the targeting of the SHM machinery to the Ig genes is thought to involve

changes in the chromatin structure of the Ig V region (Jolly and Neuberger, 2001;

Woo et al., 2003). The mutations do not occur entirely randomly (Jolly et al., 1996).
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Transitions (purine to purine or pyrimidine to pyrimidine mutations) dominate over

transversions (purine to pyrimidine or pyrimidine to purine mutations) and guanine

mutations often accumulate in the context of the RGYW motif (R = A or G, G, Y =

C or T, W = A or T) (Betz et al., 1993; Rogozin and Kolchanov, 1992). These sites

are therefore also called hot spots of mutations. Within the V genes, adenine

mutations are favored over thymidine mutations, indicating a strand bias for A-T

but not G-C mutations. Finally, the occurrence of small deletions and duplications

within the Ig genes has led to the suggestion that SHM involves the generation of

DNA strand breaks (Goossens et al., 1998; Sale and Neuberger, 1998).

 While many cis-acting elements required for SHM have been identified

(Neuberger et al., 1998; Storb et al., 1998a), less is known about the molecular

components necessary for this process. Many models of the mechanism for SHM

postulated the introduction of single-strand or double-strand breaks into the DNA

with subsequent error-prone short-patch synthesis by one or more DNA

polymerases (Bertocci et al., 1998; Brenner and Milstein, 1966; Diaz et al., 1999).

The presence of DNA double strand breaks within the RGYW motif in rearranged

Ig genes of cells undergoing SHM has indeed been demonstrated (Bross et al.,

2000; Papavasiliou and Schatz, 2000). They may occur preferentially during S/G2

phase, suggesting a resolution of the lesion via template-directed homologous

recombination. However, the molecular origin of the double-strand breaks and

their significance for the SHM process remain unclear (Bross et al., 2002;

Papavasiliou and Schatz, 2002).

A6 The Deamination Model

Although SHM and CSR differ in many aspects, they both depend on the

function of the GC B cell-specific activation-induced cytidine deaminase (AID)

(Muramatsu et al., 2000; Revy et al., 2000). This indicates shared features

between the two mechanisms, which is further illustrated by the observation of

somatic mutations within the S regions (Nagaoka et al., 2002; Reina-San-Martin et

al., 2003). Humans and mice that lack AID are unable to undergo CSR or SHM.

Since AID appears to be the only B cell-specific factor required for both CSR and

SHM (Okazaki et al., 2002; Yoshikawa et al., 2002), a common initiation event
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Figure 4. Somatic hypermutation (SHM) and class switch recombination (CSR). SHM

(1) introduces mainly point mutations into the rearranged V region of the Ig genes to

generate novel mutant BCRs for the immunizing antigen. CSR (2) alters the IgH constant

region to modulate the type of antibody response. CSR occurs between two switch (S)

regions, thus replacing the Cm region with the constant region of another isotype.

Mutations are depicted as red ‘X’, exons are represented as rectangles, and S regions are

shown as ovals.

likely exists for both reactions, which are then resolved in different ways.

AID shares homologies with the RNA-editing enzyme Apobec-1, a cytidine

deaminase that converts a cytidine residue into a uracil residue in the mRNA of

apolipoprotein B.  Consequently, AID could act on an unknown mRNA to modify

one or several factors required for CSR or SHM. Further supporting this

assumption, CSR does indeed require the de novo protein synthesis. (Doi et al.,

2003). Most evidence suggests, however, that AID acts directly on DNA. Over-

expression of AID in E.coli results in DNA deamination and increased cytidine

mutatagenesis (Petersen-Mahrt et al., 2002). Furthermore, AID has a low affinity

for RNA but a high affinity for single-stranded DNA and during transcription also for

double-stranded DNA (Bransteitter et al., 2003; Chaudhuri et al., 2003; Dickerson
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et al., 2003; Ramiro et al., 2003).

Accordingly, the DNA deamination model of SHM (Neuberger et al., 2003;

Petersen-Mahrt et al., 2002) proposes that the localized deamination of cytidine

residues by AID at the Ig V loci leads to U-G mismatches, which can be resolved

in three ways (Figure 5). First, replication across the uracil templates results in G-

C to A-T transitions. Second, excision of the uracil residues by uracil-DNA-

glycosylases creates an abasic site, and subsequent error-prone replication of the

damaged DNA strand introduces a spectrum of mutations. Alternatively, the abasic

site is nicked and further processed by a combination of nucleases and error-

prone DNA polymerases. Third, the mismatch-repair enzymes MSH2 and MSH6

recognize the U-G mismatch and the lesion is resolved by nucleases and error-

prone short-patch DNA replication. Similar to SHM, AID may initiate the events

leading to CSR after association with the non-transcribed DNA strand and

subsequent deamination of cytidines. The resulting uracil lesions are then further

processed, leading ultimately to the generation of DNA breaks. It is important to

note, however, that the C-terminus of AID is required for CSR, but not for SHM

(Barreto et al., 2003), suggesting a role for AID in the recruitment of NHEJ or other

proteins that are dispensable for SHM. Several aspects of the DNA deamination

model are supported by experimental evidence. E. coli over-expressing AID

display an increased number of transitions when the uracil glycosylase UNG is

inhibited (Di Noia and Neuberger, 2002) and UNG-deficient mice display a

significant increase in the number of transition mutations in GC B cells (Rada et

al., 2002). Such mice are also impaired in CSR, demonstrating the importance of

uracil deglycosylation in the CSR mechanism (Rada et al., 2002). Moreover, AID

targets hotspots on single stranded DNA in vitro (Pham et al., 2003). Finally, mice

that lack enzymes involved in MSH2-mediated DNA repair display a shift towards

G-C mutations in their mutational pattern (Ehrenstein et al., 2001; Jacobs et al.,

1998; Phung et al., 1998; Rada et al., 1998).
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Figure 5. The deamination model. AID deaminates cytidines within the Ig genes. The

resulting U-G mismatches are then resolved in three ways. 1) Replication across uracil

templates results in G-C to A-T transitions. 2) Excision of the uracil residues by UNG

creates an abasic site. Subsequent error-prone replication across the abasic site

introduces mutations. 3) MSH2 and MSH6 recognize the U-G mismatch and the lesion is

resolved by nucleases and error-prone short-patch DNA synthesis. Cytidine deamination,

followed by the removal of the uracil residues and introduction of DNA-strand breaks may

also initiate CSR. Adapted from Petersen-Mahrt et al., 2002.
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A7 The Role of error-prone DNA Polymerases in SHM

While cytidine deamination by AID may explain the presence of G-C to A-T

transitions, SHM encompasses the whole spectrum of both transitions and

transversions, suggesting that the mutations are at least in part caused by error-

prone DNA polymerases. Besides the proof-reading error-free DNA polymerases

required for genome replication, humans and mice express many non-replicative

error-prone DNA polymerases that are able to bypass DNA adducts and extend

from mismatched termini (Friedberg et al., 2002; Goodman, 2002; Jansen and de

Wind, 2003). The specialized function of trans-lesion synthesis marked error-prone

DNA polymerases as potential contributors to SHM (Reynaud et al., 2003).

The error spectrum of Polh in vitro correlates with hotspot mutations at the

RGYW motif in SHM (Pavlov et al., 2002; Rogozin et al., 2001). Polh is defective in

patients with the variant form of xeroderma pigmentosum (XP-V), a disease that

predisposes to skin cancer due to a increased sensitivity to UV radiation (Masutani

et al., 1999). SHM occurs at normal frequencies in XP-V patients but displays a

bias towards G-C mutations and a decrease in mutations at A-T base pairs,

demonstrating a contribution of Polh to SHM (Zeng et al., 2001).

Polymerase i is characterized by its very low fidelity and mRNA expression

of Poli has been demonstrated in a cell line undergoing SHM (Johnson et al.,

2000b; Poltoratsky et al., 2001; Tissier et al., 2000). The inactivation of Poli in the

hypermutating cell line resulted in a substantial decrease in the mutation frequency

(Faili, 2002). Surprisingly, Poli-deficient mice mutate their Ig genes in GC B cells

efficiently and without changes in their mutational pattern (McDonald et al., 2003).

Polymerase z is responsible for most of the UV-radiation-induced and

spontaneous mutagenesis. It is very efficient in extending DNA from mismatched

termini (Lawrence and Hinkle, 1996). Polymerase z may introduce mutations in

vivo by extending from mismatches formed by Poli, a mechanism that has been

shown to occur in vitro using recombinant yeast rev3 (the catalytic subunit of Polz)

and recombinant human Poli (Johnson et al., 2000b). Expression of Polz mRNA is

upregulated in GC B cells. Lack of Polz causes embryonic lethality in mice

(Bemark et al., 2000; Esposito et al., 2000a; Wittschieben et al., 2000). However,
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RNA antisense inhibition of Rev3 (the catalytic subunit of mammalian Polz) in a

hypermutating cell line reduced the frequency of SHM (Zan et al., 2001) and

transgenic mice expressing Rev3l antisense RNA exhibited a decreased level of Ig

mutations (Diaz et al., 2001). In both experiments, the pattern of the mutations was

still normal.

Polymerase m is the only error-prone DNA polymerase that displays a

lymphoid-specific expression pattern (Dominguez et al., 2000; Reynaud et al.,

2001). It shares homologies with TdT, acts in a template-dependent but sequence-

independent manner (Dominguez et al., 2000; Reynaud et al., 2001), and is

involved in the processing of the junctions of IgL genes (Bertocci et al., 2003).

Because of its expression in peripheral B cells, it was also considered to play a

role in SHM. However, Polm-deficient mice show normal SHM (Bertocci et al.,

2002). Likewise, the analysis of mouse strains deficient of Polb (Esposito et al.,

2000b), Pold (Longacre et al., 2003), or Poll (Bertocci et al., 2002) also failed to

detect a contribution of these DNA polymerases to SHM. However, the example of

Poli-deficient mice (required for SHM in a hypermutating human B cell line but

dispensable in mice) raises the possibility of overlapping functions of error-prone

DNA polymerases in SHM.

A8 DNA Polymerase Kappa

Polymerase k (DinB1) is expressed in high levels in mouse testis, but

also at lower levels in a wide variety of other tissues, including the spleen (Gerlach

et al., 1999; Johnson et al., 2000a). Like Polh and Poli, it is a member of the Y

family of DNA polymerases (Ohmori et al., 2001) and shares extensive amino-acid

homology with the SOS-induced error-prone DNA polymerase PolIV, the product

of the E. coli dinB gene (Gerlach et al., 1999). Polymerase k lacks detectable 3’-5’

proofreading exonuclease activity and replicates undamaged DNA in vitro at a

single-base substitution error rate of ≈ 6x10-3 (Gerlach et al., 2001; Ohashi et al.,

2000; Zhang et al., 2000b). Polymerase k can act as mismatch extender during

translesion synthesis (Haracska et al., 2002; Washington et al., 2002) and abasic

sites similar to those created by UNG can serve substrates for Polk (Zhang et al.,

2000a). Over-expression of murine Polk in a mouse cell line results in about a 10-
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Figure 6. Phylogenetic tree of Y-family error-prone DNA polymerases. Pol k (DinB1),

Polh (Rad30A) and Poli (Rad30B) are members of the the Y-family of DNA polymerases,

while TdT, Polm, and Poll belong to the X-family of DNA polymerases. Polb and Polz

(Rev3/Rev7) are members of the B-family of DNA polymerases. Adapted from Ohmori

et al., 2001.

fold increase of spontaneous mutagenesis (Ogi et al., 1999). Moreover, a

comparison between the mutational patterns of SHM and Polk in vitro suggested a

possible contribution of Polk to SHM (Rogozin et al., 2001). These features mark

Polk as a potential candidate for a specialized DNA polymerase required for SHM.
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A9 M17

GCs are the origin of several B cell malignancies due to aberrant SHM or

CSR (Klein, 1999; Kuppers et al., 1999; Pasqualucci et al., 2001). Diffuse large B

cell lymphomas (DLBCL) represent a heterogeneous group of GC-derived tumors,

which often harbor mutations characteristic of SHM in proto-oncogenes like BCL6

and M Y C  (Pasqualucci et al., 2001). Human germinal center-associated

lymphoma (HGAL) is a cytosolic protein that is expressed at high levels in GCs

and at moderate levels in the thymus (Lossos et al., 2003; Pan et al., 2003).

Expression of HGAL mRNA is also found in a subset of DLBCL, where it can serve

as a marker for the clinical prognosis of patients with DLBCL (Lossos et al., 2003;

Rosenwald et al., 2002). High expression of the HGAL gene correlates with a

better prognosis and longer survival.

In an attempt to identify genes that govern the GC reaction, the cDNA

encoding the murine counterpart of HGAL, M17, was previously isolated in our

laboratory by cDNA subtraction between GC B cells and LPS-stimulated

splenocytes. M17 is a putative cytosolic 25 kD protein, which is predominantly

expressed in GC B cells (Christoph et al., 1994) Within the GCs, M17 mRNA

expression appears stronger in centroblasts than in centrocytes (Christoph, 1993).

The M17 and HGAL genes share a similar exon-intron structure. At the protein

level, they contain several potential phosphorylation sites that also include a non-

canonical immune tyrosine activation motive (ITAM), indicating a role in cell

signaling (Christoph et al., 1994). The function of M17 is unknown. However, its

site of expression is suggestive of a role of M17 in the GC reaction, where it may

contribute to CSR, SHM or to the proper selection and differentiation of GC B cells

to the memory B cell or plasma cell compartments.

A10 Objectives of This Study

When I started my thesis, a plethora of novel error-prone DNA polymerase

had just been discovered, some of which had been implicated to play a role in

SHM mechanism. Polymerase k showed features in vitro that were compatible with

such a role. Consequently, I sought to study its contribution to the SHM

mechanism in vivo. I first inactivated the Polk gene by conditional gene targeting
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and subsequently probed Polk-deficient mice for SHM. I then extended the initial

study and asked whether Polk acts in concert with other DNA polymerases in

SHM. In addition to its role in SHM, Polk may also affect DNA repair, survival, or

reproduction. I briefly addressed these aspects in the context of this thesis.

In a quest to identify gene that are specifically expressed in GCs, our

laboratory had previously identified the novel M17 gene and also generated a

mouse strain, in which M17 had been inactivated. Because of my interest in

mechanisms regulating the GC reaction, I started to characterize the function of

M17 in vivo and the findings of this investigation are presented here.
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B MATERIAL AND METHODS

B1 Molecular Biology Experiments

All molecular biology techniques were based on standard protocols (Sambrook et

al., 1989). Enzymes were obtained from Roche, GIBCO-BRL, New England Biolabs,

Stratagene, Takara, Invitrogen, Promega, Eppendorf, and USB.

B1.1  Competent Cells and Isolation of Plasmid DNA

Escherichia coli XL-1 Blue cells were made chemically competent according to the

protocol of Inoue et al. (Inoue et al., 1990). Plasmid DNA was isolated from transformed

Escherichia coli XL-1 Blue bacteria by alkaline lysis (Birnboim, 1983). For higher quality

plasmid DNA purification, QIAGEN spin columns (QIAGEN) were used according to

manufacturer’s instructions.

B1.2 Isolation of Genomic DNA from Mammalian Cells

Cells were lysed in lysis buffer (10 mM Tris-HCl, pH 8; 10 mM EDTA; 150 mM

NaCl; 0.2% SDS; 400 mg/ml Proteinase K) over night at 56°C. DNA was precipitated from

the solution by the addition of an equal volume of isopropanol and pelleted by

centrifugation. The pallet was washed in 70% ethanol and resuspended in TE-buffer (10

mM Tris-HCl, pH 8; 1 mM EDTA). For ES cell clones that were grown in 96-well tissue

culture dishes, a modified protocol was used (Pasparakis and Kollias, 1995).

Mouse tissues were incubated in lysis buffer (0.1 M Tris-HCl, pH 8.5; 5 mM EDTA;

0.2% SDS; 0.2 M NaCl; 600 mg/ml Proteinase K) over night at 56°C. The solution was

freed of undissolved debris by centrifugation and the supernatant was mixed with an equal

volume of isopropanol to precipitate the DNA. The DNA was washed in 70% ethanol,

dried, and resuspended in TE buffer.

B1.3 Agarose Gel Electrophoresis and DNA Gel Extraction

Separation of DNA fragments by size was achieved by electrophoresis in agarose gels

(0.7% - 2.5%; TAE buffer (Sambrook et al., 1989); 0.5 mg/ml ethidiumbromide). DNA

fragments were recovered from agarose gel slices with either the QIAEX II or the

QIAquick Gel Extraction Kits (QIAGEN) according to the supplied protocols.
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B1.4 DNA Sequencing

DNA fragments were sequenced using the Taq DyeDeoxyTerminator Cycle

Sequencing Kit (Applied Biosystems) The fluorescently labeled DNA pieces were

separated and analyzed on ABI373A and ABI377 systems (Applied Biosystems) with the

help of S. Wilms. Alternatively, the sequencing was performed by the Harvard Cancer

Center High Throughput Facility, Boston, USA. The Polk locus was sequenced by the

Friedberg laboratory at the Southwestern Medical Center, Dallas, USA.

B1.5 Polymerase Chain Reaction (PCR)

PCR (Mullis and Faloona, 1987; Saiki et al., 1985) was employed for the amplification of

DNA fragments used for cloning, the generation of Southern probes, and the screening of

mice for the presence of targeted alleles. Reactions were performed with either Taq

polymerase (Eppendorf) or the High Fidelity Expand kit (Roche) following manufacturer’s

instructions. The primers are listed in Tables 1a-c.

Table 1a: Primers used for cloning and generation of Southern probes

NAME SEQUENCE (5’-3’) LOCATION
TAnn

[°C]

SABamFor CGGGATCCCGTGGGGGAGGGGCAGCGG Polk 57

SANotBack ATTTGCGGCCGCTTTAACAGTGTGAGTCTTAG Polk 57

LANotFor AACATGCTCGAGTACTCTAGAGTAGTTGCAGAGC Polk 57

LANotBack CCGCTCGAGCGGAGTGTTTTTGCTGTTTGTC Polk 57

ExSalForII ACGCGTGACGTCGACGTTTCGTGTGATAACGC Polk 57

ExSalBack ACGCGTCGACGTGGCACAGCAAGGTCTATGGTG Polk 57

DinProbeA-F2 CAATGGCTACTCTTGCCTTGTG Polk 57

DinProbeA-Re CTTGAAAGATCCACCAATCACCTG Polk 57

M26 CTACTTATTCTGCTTGGATGC M17 58

M57 CCACCAGGCACTGCAAATGGC M17 58
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Table 1b: Primers used for the typing of mice

NAME SEQUENCE (5’-3’) LOCATION TAnn

[°C]

DinB1Seq6 CTGATGTGACCGCTGTTAAATGTT Polk 57

DinB1Seq8 CTGTGGAGATGCCTTAGCGG Polk 57

DinB1Seq10 GATCCTGCAATCAATAGCTCACGG Polk 57

PT26 GTGCTGATCACAGAAATGGAAGGACCTGGA Poll 65

PT29 GGTCAAGGACACTAAGCTACATGGCTGTTC Poll 65

Seq9new CTGGTCTCTGGGAACCAAAGGAC Poll 65

ScNeoR1 GGGGCCACCAAAGAACGGAGC neo 65

MuexIInew ACCAATGGAGAGGTGCTCTCCC Polm 65

T2.14OAs GGCAGGGCAGGGACTTGAGCA Polm 65

mRad30X2F CAGTTTGCAGTCAAGGGCC Poli 57

mRad30X2R TCGACCTGGGCATAAAAGC Poli 57

M17-FLS#87 CTACTTATTCTGCTTGGATGC M17 58

M17-FLA#88 AGGCTAGACAGAGAACATACG M17 58

M17-SAS#74 TGTGGAGAGAAAGGCAAAGTG M17 58

MP 57 CCACCAGGCACTGCAAATGGC M17 58

MP 26 CTACTTATTCTGCTTGGATGC M17 58

5’Del CGCATAACCAGTGAAACAGCAT Del-Cre 58

Mx-CreR GAAAGTCGAGTAGGCGTGTACG Del-Cre 58

Table 1c: Primer combinations and expected sizes of PCR products for the typing of mice

PRIMERS MOUSE STRAIN ALLELE PRODUCT [bp]

DinB1Seq6, DinB1Seq10 Polk WT 685

DinB1Seq6, DinB1Seq10 Polk FL 731

DinB1Seq6, DinB1Seq8 Polk WT 1655

DinB1Seq6, DinB1Seq8 Polk DEL 413
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PT29, Seq9new Poll WT 500

PT26, ScNeoRI Poll DEL 600

MuexIInew, T2.14OAs Polm WT 780

MuexIInew, ScNeoRI Polm DEL 600

mRad30X2F, mRad30X2R * Poli WT 87

mRad30X2F, mRad30X2R * Poli DEL 47, 40

M17-FLS#87, M17-FLA#88 M17 WT 256

M17-FLS#87, M17-FLA#88 M17 FL 300

M17-FLS#87, M17-SAS#74 M17 DEL 500

5’Del, Mx-CreR Deleter-Cre Cre 600

* plus digestion of PCR product with TaqI

B1.6 Southern Blot Analysis

5-15 mg DNA were digested with 50 to 100 U of the appropriate restriction enzyme

over night. Subsequently, the DNA fragments were resolved by agarose gel

electrophoresis and transferred onto HybondTM-N+ (Amersham) by an alkaline capillary

transfer according to the method of Chomczynski and Qasba (Chomczynski and Qasba,

1984). Membranes were baked at 80°C for 2 hours to fix the DNA, equilibrated in 2x SSC

(Sambrook et al., 1989) and then prehybridized in hybridization solution (1M NaCl, 1%

SDS, 10% dextran sulfate, 50 mM Tris-HCl pH 7.5, 500 mg/ml sonicated salmon sperm

DNA) over night at 65 °C.

25 to 60 ng of probe DNA were radioactively labeled with 2.5 mC [a32P]-dATP

(Amersham) using the LaddermanTM Labeling Kit (Takara) Unincorporated radiolabeled

nucleotides were removed with MicroSpinTM S-200HR columns (Pharmacia). The probe

was denatured for 5 min at 95 °C before it was added to the hybridization solution.

Washes were performed twice in 1 x SSC/0.1 % SDS and then followed by washes in

0.5 x SSC/0.1 % SDS and 0.25 x SSC/0.1 % SDS, if necessary. All washes were done at

65 °C under gentle agitation for 15 min to 1 hour. After each wash, the filter was monitored

with a Geiger-counter. The washes were stopped when specific signals of no more than

100 cps were detectable. The membrane was sealed in a plastic bag and exposed to X-

ray film (Kodak XAR-5 or BioMAX MR; Eastman Kodak) at –70 °C.
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B1.7 Construction of the Polk Targeting Vector

A phage library containing 129/Sv mouse genomic DNA (a gift from Pila Estess

and Mark Siegelman, Department of Pathology, UT Southwestern, USA) cloned into the

phage l 2001 vector was screened by plaque hybridization according to published

protocols (Sambrook and Russell, 2001). Two different mouse PolK (DinB1) probes were

used to screen the library: the 550 bp-Xba I/EcoN I fragment from pMDPH5'-0.7

(corresponding to mouse Polk  5' UTR and amino acids 1-138) and the 700 bp-

MDPH1C/4NC PCR product (corresponding to mouse Polk amino acids 110 to 332). DNA

Figure 7. Drawing of the pEasyFLox vector. LoxP sites are represented as black

triangles. neor, neomycin resistance gene; tk, thymine kinase gene; ampr, ampicillin

resistance gene.

from positively hybridizing plaques was isolated, cloned into pBlueScript, and

subsequently sequenced. The sequences were assembled into contigs using the

assembly software DNASTAR (the genomic clone was cloned in collaboration with Valerie

Gerlach and Errol Friedberg, UT Southwestern Medical Center, Dallas, TX, USA).
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A genomic subclone, p129Xh9, spanning exons 4-6 was used for the construction

of the targeting vector. The targeting vector is based on the pEasyFlox(Pac) vector

(Figure 7, M. Alimzhanov, unpublished), which contains a neomycin resistance  gene

under the control of the phosphoglycerol kinase promoter flanked by two loxP sites. An

additional loxP site is placed downstream of the neomycin resistance cassette. An 800 bp

fragment of genomic DNA located downstream of exon 6 was used as short arm of

homology (SA). It was generated by PCR amplification with the Expand High Fidelity Kit

(Roche), using the primers SABamFor1 and SANotBack, which introduced the restriction

sites Not I and BamH I. Similarly, the primers LAXhoFor and LAXhoBack were used to

amplify a 4.3 kb fragment including exon 5 for the long arm of homology (LA). A 1.3 kb

fragment containing exon 6 was inserted into a Sal I site separating the second and third

loxP site of pEasyFlox(Pac). The required Sal I sites in the PCR fragment were introduced

with the primer pair Ex6SalForII and ExSalBack. All PCR products were first cloned into

the T/A cloning vector pGEM-T easy (Promega) (plasmids pGEM-SA, pGEM-LA, and

pGEM-Ex6) and then subcloned into the targeting vector. The exons and exon/intron

boundaries were sequenced to confirm the absence of PCR-introduced errors.

B1.8 Construction of the M17 Targeting Vector

DNA fragments containing parts of the M17 locus were obtained by screening a

phage library containing C57BL/6 mouse genomic DNA. Two EcoR I-fragments were

subcloned into the pBluescript II KS vector (pBS-IIKS). The first vector, designated

pDS#9, contained a fragment of 6.9 kb encoding M17 exons 3, 4 and a part of exon 5 and

the second vector, termed pDS#10, contained a fragment of 7.8 kb encoding M17 exon 5.

A Sca I-EcoR I fragment was cut out of pDS#9 and a EcoR I-EcoR V fragment was cut out

of pDS#10 and both fragments were cloned together into pBS-IIKS using the EcoR V

restriction site. The new plasmid was termed pBS-M17LA1. Next, a EcoR V-fragment

derived from pDS#9 was cloned into the EcoR V restriction site of pBS-IIKS, which

contained a destroyed Xba I restriction site, and the new vector was named pBS-M17-

EcoRV. To clone the frt-flanked SAS-IRIS-EGFP cassette, a 900bp-long Sca I-Sma I

fragment containing a SAS internal ribosome entry site (IRES) was cut out from vector

pCIN4(5257) and ligated into the Sma I restriction site of pGEM.FRTOR1. The correct

orientation was confirmed by digestion with Xba I. Next, pGEM.FRTOR1 was digested

with BamH I, filled in and relegated to generate plasmid p31HR123-EGFPII. The latter

plasmid was digested with EcoR I and Sma I to obtain the first part of the EGFP cassette.

The second part of the EGFP gene was cut out with Sma I and Age I from p31HR123-
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EGFPII, which contained a second Sma I site downstream of the EcoR I site, and cloned

into the Sma I and BamH I sites of the pGEM.FRTOR1 to generate the new plasmid

pGEM-FRT-IRIS-EGFP. The second frt site was derived from pGEM-FRT. An EcoR I-

BamH I fragment was cloned into pBSIIKS to create pBS-FRT.  Next, the XhoI-fragment

derived from pGEM-FRT-IRIS-EGFP was inserted into pBS-FRT using the EcoR V site.

The new plasmid was named pGEM-FRT-IRIS-EGFP-FRT. The FRT-IRIS-EGFP-FRT

cassette was cut out with Cla I and cloned into filled-in EcoR I site of pGEMloxP to

introduce the 3rd loxP site. Next, the Not I/Aat II-digested pGEM-loxP-FRT-IRIS-EGFP-

FRT insert was cloned into pBS-M17-EcoR V using a Xba I restriction site. An EcoR V-

Sal I fragment from pDS#10 was ligated into the EcoR V/Sal I-digested vector pBS-

M17LA1 to generate pBS-M17LA2. The plasmid pMMneoFlox8 was opened with Not I

filled with a Xba I/Sca I insert derived from pDS#9. The new plasmid was called pMMneo-

flox-SA-M17. The latter plasmid was cut with Cla I and Xba I and the insert was ligated

into the Sma I restriction site of pBS- M17-LA2, thus generating pBS-M17-SA-neo-LA2.

Next, the pGEM-loxP-FRT-IRIS-EGFP-FRT was digested with EcoR V and the resulting

fragment was ligated into the EcoR V site of pBS-M17-SA-neo-LA2. Finally, a fragment

containing a thymindine kinase gene under the control of a phosphoglycerol kinase

promoter was cut out with EcoR I and Hind III from plasmid pNT and was ligated into the

BamHI restriction site of pBS-M17-SA-neo-LA2. The final targeting vector was named

pBS-M17-TV. Plasmid pBS-M17-TV was linearized with in a Sal I for the transfection of

embryonic stem cells.  Construction of the M17 targeting vector was done by Angela Egert

and Manolis Pasparakis.

B1.9 RNA isolation and RT-PCR

RNA was isolated from homogenized organs or single cell suspensions with Trizol

(Invitrogen/Gibco) according to manufacturer’s instructions. First strand synthesis was

performed with the Thermoscript RT-PCR System (Invitrogen/Gibco) using the primer P2R

annealing downstream of exon 6 between nt 1427 and 1453 of the published mouse Polk

cDNA sequence for analysis of Polk. An oligoT primer was used for the first-strand

synthesis of mRNA for the analysis of M17 expression. PCR amplification was performed

on 1/20 of the reverse-transcribed products.
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Table 2a: Primers used for RT-PCR

NAME SEQUENCE (5’-3’) LOCATION TAnn [°C]

DinBfor GCTAAGAGGCTCTGCCCACAAC Polk, exon 5 58

DinB-P2R CACTGAATGTCCTTTCAACACTCATGC Polk, exon 7 58

M17Seq1 ATGGGGAACTGTTTGCAGAGGACAACCAG M17, exon 1 57

M17Seq2 GGGAGCTGAAGTCATCCCTTCA M17, exon 3 57

M17Seq3 CTTTGGAGACTCTTGTCTGGC M17, exon 4 57

M17Seq4 GCTGTTGAAAGGCATGTGAGG M17, exon 5 57

m-b-actinB TCTTCATGGTGCTAGGAGCCA b-actin 57

m-b-actinT CCTAAGGCCAACCGTGAAAAG b-actin 57

Table 2b: Primer combinations and expected sizes of PCR products obtained by RT-PCR

GENE FIRST STRAND SYNTHESIS PRIMERS PRODUCT [bp]

Polk DinB-P2R DinBfor, DinBP2R 800

M17 oligo·dT M17Seq1, M17Seq2 156

M17 oligo·dT M17Seq1, M17Seq3 109

M17 oligo·dT M17Seq1, M17Seq4 431

B2 Cell Biology Experiments

B2.1 Embryonic Stem Cell Culture and Generation of Mice

Embryonic stem (ES) cells were cultured described by Pasparakis and Kollias or

Torres and Kuehn (Pasparakis and Kollias, 1995; Torres and Kuehn, 1997). ES cells were

grown in ES cell medium (DMEM supplemented with 15 % FCS, 1 mM sodium pyruvate, 2

mM L-glutamine, non-essential amino acids, 1:1000 diluted LIF containing supernatant,

and 0.1 mM 2-b-mercaptoethanol) on a layer of neomycin-resistant embryonic feeder (EF)

cells. The FCS had been tested previously for the promotion of ES cell growth and

maintenance of pluripotency. LIF was obtained from conditioned medium of the LIF-

secreting cell line L929. EF cells were cultured in EF medium (DMEM supplemented with

10% FCS, 1 mM sodium pyruvate, 2 mM L-glutamine, and non-essential amino acids) for
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a maximum of three passages. EF cells were mitotically inactivated with mitomycin-C (10

mg/ml for 2 h) 1 day before co-culture of ES and EF cells. ES cells were split before

reaching confluence using trypsin (0.05 % trypsin, 0.02 % EDTA; GIBCO-BRL),

supplemented the with 1% chicken serum.

For the generation of Polk-targeted ES cell clones, 1x107 129-derived IB10 ES

cells (Torres and Kühn, 1997) were transfected with 30 µg of Not I-linearized targeting

vector by electroporation (500 mF, 230 V) in RPMI1640 without Phenolred (Gibco). 24 h

post transfection, cells were subjected to selection with G418 (200µg/ml). Five days post

transfection, cells were additionally subjected to selection with Gancyclovir (2 µM).

Genomic DNA samples from double-resistant colonies were screened for homologous

recombination by BamH I digestion and subsequent Southern blot analysis using an

external 3’ probe. The probe was obtained by PCR amplification with the primers

DinProbeA-F2 and DinProbeA-Re using p129Xh9 as template. Co-integration of the third

loxP site was confirmed using the internal probe B by digesting the genomic DNA of the

targeted clones with Hind III. Probe B was excised from the plasmid pGEM-Ex6 using a

Taq I/Sal I double restriction digest. The absence of random integrantion of the targeting

vector was confirmed with a neomycin resistance gene-specific probe after digestion of

genomic DNA with BamH I. Two correctly targeted ES cell clones were injected into

blastocysts derived from CB.20 mice and transplanted into the uteri of CB.20 foster

mothers.

C57BL/6-derived Bruce 4 ES cells were used for the targeting of the M17 locus.

Cells were transfected with 30 mg of Sal I-linearized targeting vector and subsequently

subjected to G418 (170mg/ml) and Gancyclovir selection as described before.

Homologous recombinants were identified by Southern hybridization of an EcoRI genomic

restriction digest with the 5’ probe A. Probe A was derived from plasmid pDS10 by double

digestion with the Hinc II and Xba restriction enzymes. Co-integration of the third loxP site

was confirmed by EcoR I digestion of genomic DNA using probe B. To obtain the 3’ probe

B, plasmid pDS9 was cut with Sal I, and the new religated plasmid was cut again with

HinD III and subsequently Pst I to obtain a 1.3 kb fragment, which was used as probe.

Finally, Cre-mediated deletion was confirmed with the internal probe C. The latter probe

was generated by PCR with the primer pair MP57 and MP26 using plasmid pDS10 as

template. Chimeric mice were derived from two correctly target ES cell clones that had

been injected into blastocysts from CB.20 mice and transplanted into the uteri of CB.20

mice. M17 mice were generated by Angela Egert and Manolis Pasparakis.



Material and Methods34

B2.2 Preparation of Cell Suspensions from Lymphoid Organs

Isolated spleens, lymph nodes, Peyer’s patches were kept in RPMI medium

containing 3% FCS and squashed between frosted sides of two microscope slides to

obtain single cell suspensions. Bones were flushed with medium to extract bone marrow

cells and the peritoneal cavity was flushed with 10 ml of medium to recover cells.

Erythrocytes were lysed from spleen and bone marrow preparations by incubation in lysis

buffer for 3 min on ice (140 mM NH4Cl, 17 mM Tris-HCl pH7.65). Ex vivo isolated cells

were resuspended in B cell medium (DMEM, 5% FCS, 2 mM L-glutamine) and kept on

ice.

B2.3 Flow Cytometry

106 cells per sample were surface stained in 50 ml PBS, 1 % BSA, 0.01 % N3 with

combinations of fluorescein isothiocyanate (FITC), phycoerythrin (PE), Cy-Chrome (Cyc),

PERCP, or APC conjugated monoclonal antibodies (mAbs) for 15 min on ice. Stainings

involving biotinylated mAbs were followed by a second staining step with streptavidin

coupled to one of the fluorescent dyes. Subsequently, cells were washed and

resuspended with PBS/BSA/N3. Samples contained propidium iodide or Topro-3 for the

exclusion of dead cells. Flow cytometry was performed on a FACScan or FACSCalibur

and data were analyzed using CellQuest software (Becton Dickinson). All mAbs used in

this study were either commercially available or prepared in our laboratory by C. Uthoff-

Hachenberg, B. Hampel, and S. Willms. MAbs are listed in Table 3. Peanut agglutinin

(PNA) coupled to either FITC or biotin was purchased from Vector Laboraties (USA).

Table 3. List of antibodies used for flow cytometry

Specificity Clone Reference and Manufacturer

IgM R33-24.12 (Gruetzman, 1981), lab-made

IgD 1.3-5 (Roes et al., 1995), lab-made

IgMb MB86 (Nishikawa et al., 1986), lab-made

IgG2ab G12-47/30 (Seemann, 1981), lab-made

IgG2b R14-50 (Müller, 1983), lab-made

IgE 95.3 (Baniyash and Eshhar, 1984), lab-made

B220/ CD45R RA3-6B2 (Coffman, 1982), lab-made/Pharmingen

CD3e 145-211 (Leo et al., 1987), Pharmingen

CD4 GK.1.5/4 (Dialynas et al., 1983), Pharmingen
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CD5 53-7.3 (Ledbet ter  and Herzenberg, 1979),

Pharmingen

CD8 53-6.7 (Ledbet ter  and Herzenberg, 1979),

Pharmingen

CD19 1D3 (Krop et al., 1996), Pharmingen

CD21/CD35 7G6 (Kinoshita et al., 1988), Pharmingen

CD23 B3B4 (Rao et al., 1987), Pharmingen

CD24/HSA M1/69 Springer et al. 1978, Pharmingen

CD43 S7 (Gulley et al., 1988), Pharmingen

CD45Rb 16A (Bottomly et al., 1989), Pharmingen

CD69 H1.2F3 (Yokoyama et al., 1988), Pharmingen

CD95 (Fas) Jo2 Pharmingen

MHC class II M5/114 (Bhattacharya et al., 1981), Pharmingen

HSA 30F1 (Ledbetter and Herzenberg, 1979), lab-made

B2.4 Magnetic Cell Sorting

Specific cell populations were either enriched or depleted from a heterogeneous

cell suspension by magnetic cell sorting (MACS; Miltenyi Biotec, Bergisch Gladbach). The

cells were incubated with antibody-coupled microbeads (10 ml beads, 90 ml PBS/BSA/N3

per 107 cells) at 4 °C for 15 min and washed once in PBS/BSA/N3. Next, the cells were

applied to LD columns in a magnetic field (Miltenyi et al., 1990) and the columns were

washed 3 times with 3 ml of PBS/BSA/N3. MACS-purified cell populations were stained for

specific surface markers to assess the purity of the populations. MACS-purification

achieved typically a purity of 85%.

B2.5 Immunohistochemistry.

Immunostaining was performed on a BioTek Solutions TechMate 1000 automated

immunostainer (Ventana BioTek Systems, USA). Buffers, blocking solutions,

streptavidin/biotin complex reagents and chromogen were used as supplied in the Level 2

USA UltraStreptavidin Detection System purchased from Signet Laboratories (Dedham,

MA). Biotinylated secondary antibody was purchased from Vector Laboratories

(Burlingame, USA) Heat-induced epitope retrieval (HIER) buffer was obtained from

BioPath (Oklahoma City, USA). Paraffin sections were cut at 3 micron a rotary microtome,

mounted on positively charged glass slides (POP100 capillary gap slides, Ventana BioTek

Systems), and air dried overnight. Sections were deparaffinized and quenched with fresh
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3% hydrogen peroxide to inhibit endogenous tissue peroxidase activity. HEIR was then

performed using HIER buffer, pH 6.8 followed by incubation in unlabeled blocking serum

solution to block non-specific binding of secondary antibody. Sections were incubated for

4 hours either with a primary monoclonal antibody to mouse Polk protein at a 1:10 dilution

in antibody diluent, or with antibody diluent alone as a negative reagent control. Sections

were incubated with biotinylated goat antibodies to hamster immunoglobulin, with

horseradish peroxidase-conjugated Streptavidin-biotin complex, followed by

diaminobenzidine (DAB) and H2O2 in substrate buffer. Sections were counterstained with

Mayer's hematoxylin and examined by light microscopy. Immunohistochemistry was done

in collaboration with the Friedberg laboratory at the Southwestern Medical Center, Dallas,

USA.

B2.6 Immunofluoresence

 Mice were immunized with 50 µg NP-CG. 14 days post immunization, spleens or

Peyer’s patches were embedded in OTC and frozen in methyl butane that was cooled in

liquid nitrogen. The frozen organs were cut by the Pathology Core Facility of the

Brigham’s and Women Hospital, Boston, USA. Frozen sections were fixed in cold

acetone, air-dried and rehydrated in PBS and subsequently incubated with blocking buffer

(PBS containing 1% BSA and 5% goat serum) for 30 min. Next, the sections were

incubated with a mixture of either rat anti-mouse CD19 (Pharmingen) and biotinylated

PNA (Biosearch) or rat anti-mouse FDCM1 (Pharmingen) and biotinylated PNA for 30 min.

Following 3 washes in PBS, the sections were stained with a mixture of goat anti-mouse

IgG1-FITC and streptavidin-PE for 30 min. Sections were washed again in PBS, mounted

with Fluorotec medium, and examined by fluorescence microscopy.

B2.7 Sensitivity of Mouse Embryonic Fibroblasts to UV Radiation.

Mouse embryonic fibroblasts (MEFs) were isolated from day 13.5 embryos as

described in Meira et al. (Meira et al., 2001). Survival following exposure to UV radiation

was measured essentially as described by McWhir et al. (McWhir et al., 1993). Briefly,

cells at passage 6 were plated at a density of 3 x 105 cells/60-mm dish. The following day

the medium was aspirated and cells were irradiated with 0, 1.6, 3.2, 4.8 and 6.4 J/m2 of

UVC radiation at a fluence of 0.8 J m/2 s-1. Medium was replaced and the dishes were

incubated for 4 days. Cells were washed with PBS, fixed and stained with crystal violet.

The extent of cell growth and survival in individual dishes was determined by measuring

the incorporation of crystal violet in viable cells. Fixed cells were treated with 70% ethanol
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and the percentage of incorporation was determined by measuring optical density at 575

nm. Each dose point was performed in triplicate and results were confirmed in multiple

independent experiments. Survival relative to unirradiated controls at each dose was

calculated as the ratio of the mean OD575 of each dose/mean OD575 of unirradiated

controls, expressed as a percentage. Xpc-/- homozygous mutant MEFs were used as a

control (Cheo et al., 1997). The experiments were done in collaboration with Friedberg

laboratory at the Southwestern Medical Center, Dallas, USA.

B2.8 CFSE Labeling

Splenic B cells were enriched by the depletion of CD43+ cells using the MACS

system (CD43 magnetic beads, LD columns, Miltenyi). Cells in the flow-trough were spun

down, washed 3 times with PBS, and resuspended in 1 ml/107 cells of 2.5 µM CFSE (5

mM stock in DMSO, Molecular Probes) in PBS at 37 °C for 10 min (Lyons and Parish,

1994). The labeling reaction was stopped by addition of 10 ml ice-cold DMEM medium

containing 10% FCS. The cells were washed once in medium, plated in B cell medium at

2 x 106 cells per well in 12-well plates, and stimulated with 10 mg/ml aIgM mAb

(Pharmingen), 10 mg/ml aIgM mAb and 25 ng/ml IL-4 (R&D Systems), 20 µg/ml LPS, 20

µg/ml LPS and 25 ng/ml IL-4, 0.5µg/ml anti-CD40 mAb (clone HM40-3, Pharmingen), or

0.5µg/ml anti-CD40 mAb and 25 ng/ml IL-4. The cells were harvested three days after

stimulation and analyzed by flow cytometry.

B2.9 ELISA - Serum Analysis

Ig serum concentrations were determined by enzyme-linked immunosorbent

assays (ELISA) as described in Roes and Rajewsky (Roes and Rajewsky, 1993).

Microtiter plates (Costar) were coated with NP-BSA or antibodies of known isotype (see

table 4) in PBS at 4 °C over night, and subsequently blocked at room temperature for 30

min with PBS, 0.5 % BSA, 0.01 % N3, pH 7.2. Serially diluted sera samples were applied

to the wells and incubated at 4 °C over night. Next, the plates were incubated with a

secondary biotinylated anti-Ig antibody at 37 °C for 1 hour, followed by the incubation with

SA-conjugated alkaline phosphatase (AP, Roche) at room temperature for 30 min. The

amount of bound AP was detected by incubation with p-nitrophenylphosphate as substrate

(Roche). Following each incubation step, unbound antibodies or SA-conjugated AP were

removed by 3 washes with tapwater. The OD405 was measured with an ELISA-photometer

(Spectramax 340, Molecular Devices) and the relative antibody concentrations were

determined by comparison to a standard curve. Affinities of NP-specific IgG1 and Igl



Material and Methods38

antibodies were determined by calculating the association constant as described by

Cumano and Rajewsky (Cumano and Rajewsky, 1986), following a method developed by

Herzenberg et al. (Herzenberg and Black, 1980).

Table 4. Reagents used to determine serum antibody isotypes.

Coating Biotin-Conjugate Specificity Standard

R33-24.12 goat anti-mouse IgM (SBA) IgM B1-8m

goat anti-mouse IgG1

(Sigma)

goat anti-mouse IgG1 (SBA) IgG1 N1G9

rat anti-mouse IgG2a

(Nordic)

goat anti-mouse IgG2a (SBA) IgG2aa 41.2-3

G12-47/30 G12-47/30 IgG2ab S43-10

R14-50 goat anti-mouse IgG2b (SBA) IgG2b D3-13F1

2E.6 goat anti-mouse IgG3 (SBA) IgG3 S24/63/63

goat anti-mouse IgA

(Sigma)

goat anti-mouse IgA (SBA) IgA IgA 233.1.3

95.3 rat anti-mouse IgE

(Pharmingen)

IgE B1-8e

187.1 R33-18-10.1 Igk S8

NP-BSA goat anti-mouse IgM (SBA) NP-IgM B1-8m

NP-BSA goat anti-mouse IgG1 (SBA) NP-IgG1 N1G9

NP-BSA goat anti-mouse l (SBA) -

LS136

NP-Igl N1G9

NP-BSA goat anti-mouse k (SBA) NP-Igk S8

B2.10 Analysis of Class Switch Recombination

B cells were purified from splenic single cell suspensions by MACS-depletion using

anti-CD43 microbeads (Miltenyi Biotech). Subsequently, the cells were cultured at a

concentration of 106 cells/ml and stimulated with either 20 µg/ml LPS alone, 20µg/ml LPS

and 2ng/ml IFN-g (R&D Systems), 20µg/ml LPS and 2ng/ml TGFg (R&D Systems), or

0.5µg/ml anti-CD40 mAb (clone HM40-3, Pharmingen) and 25 ng/ml IL-4 (R&D Systems).

Cells were cultured for 5 days during which the cell numbers were kept constant by

addition of fresh medium. The percentage of class switched cells was determined on day

4 or day 5 by flow cytometry.
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B2.11 Somatic Hypermutation Analysis

14 days post immunization with 100 mg NP-CG, splenic GC B cells were enriched

by magnetic cell seperation using the MACS system (Miltenyi Biotech). After erythocyte

lysis, splenocytes were first incubated with an anti-IgD-biotin mAb (clone 1.3-5, ref.),

followed by a combination of streptavidin- and anti-CD43-microbeads (Miltenyi Biotech).

The cells were then subjected to an LD separation column (Miltenyi Biotech). GC B cells

(B220+PNAhigh) were purified from the flow through by fluorescence-assisted cell sorting

(FACS) using an anti-B220-fluorecein isothiocyanate (FITC) mAb (clone R33-24.12, ref.)

and peanut agglutinin (PNA) coupled to phycoerythrin (PE). Likewise, naïve B cells

(B220+IgD+) were isolated from the eluate with anti-IgD-FITC (clone 1.3-5) and anti-B220-

PE (clone R33.24-12) mAbs. Cells were sorted on a FACS 440 cell sorter (Becton

Dieckinson). Alternatively, GC B cells from spleen or Peyer’s patches were purified

directly after incubation with PNA-FITC, anti-Fas-PE mAb and anti-B220-Cyc mAb on a

FACSVantage cell sorter (Becton Dickinson) into a naïve fraction (B200+PNAlowFaslow) and

a GC fraction (B220+PNAhighFashigh).

Sorted cell populations were lysed in 50 µl/105 cells of 10 mM Tris•HCl and 0 .5

mg/ml proteinase K (Roche) for 2.5 h at 50∞C, followed by the denaturation of proteinase

K at 95∞C for 10 min. For the analysis of somatic mutations, PCR fragments were

obtained using primer pair J558Fr3 5’-CAGCCTGACATCTGAGGACTCTGC and JHCHint

5’-CTCCACCAGACCTCTCTAGACAGC. Primer J558Fr3 anneals in the framework 3

region of most J558 V genes and primer JHCHint hybridizes in the intron 3’ of exon JH4

(Jolly et al., 1997). PCR amplification was done with a 60/1 mixture of Taq and Pfu DNA

polymerase from 20 µl of cell lysate in a total volume of 50 µl (30 s at 95∞C, 30 s at 65∞C

and 2 min at 72∞C, 32 cycles). Alternatively, the Expand High Fidelity Kit (Roche) was

used. Subsequently, the PCR products were purified with a QiaEx II Kit (Qiagen) and

incubated for 15 min at 72°C with Taq polymerase to produce A-overhangs. PCR products

were ligated into the A/T-cloning vector pGEM-T easy (Promega). Plasmids were isolated

using the GFX Micro Plasmid Prep Kit (Pharmacia) and sequenced by dye-terminated

automatic sequencing (Applied Biosystems) using primers JHCHint and JHCHj.2 (5'-

ACTATCCCTCCAGCCATAGG). A 500 nt stretch of intron sequence was analyzed with

the GeneJockey II software (Biosoft). Mutation frequencies were calculated as the total

number of mutations devided by the number of sequenced nucleotides in mutated

sequences.
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B3 Mouse Experiments

Mouse experimental procedures like vasectomy of males, tail bleeding as well as

breeding of foster mothers and the general handling, marking of mice were performed

according to Hogan (Hogan et al., 1987) and Silver (Silver, 1995). Blastocyst injection of

ES cells was performed by Angela Egert and Anke Leinhaas.

B3.1 Mice

C57BL/6 and 129/Sv mice were obtained from Bomholtgard, Charles River, Harlan

Winkelmann, or Jackson Laboratories. CB20 mice were taken from breedings in our

animal facility. Deleter mice (Schwenk et al., 1995) were intercrossed with chimeras

harboring the loxP-flanked Polk allele to generate a mouse strain deficient of Polk. Polk-/-

mice were kept on a mixed genetic background of 129/Ola and C57BL/6. Polm-/-and Poll-/-

mice were generated in our laboratory by Gloria Esposito in collaboration with Luis Blanco

(Universidad Autonoma de Madrid, Madrid, Spain). Polm-/- mice were kept on a C57BL/6

genetic background, while Poll-/- mice were kept on 129/Ola genetic background. To

generate compound mutants of DNA polymerase-deficient mice, Polk-/- mice were crossed

with either Polm-/- or Poll-/- mice to generate Polk-/-Polm-/- and Polk-/-Poll-/-Poli-/- strains. The

latter two strains were intercrossed to produce compound mutants deficient of Polk, Polm,

Poll, and Poli. M17-/- mice were generated in our laboratory by Angela Egert and Manolis

Pasperakis. Mice containing the floxed M17 allele were intercrossed with Deleter-Cre

mice. Mice carrying a deleted M17 allele were crossed to homozygosity and kept on a

pure C57BL/6 genetic background.

All mice used in this study were derived from single ES cell clones. Mice were at

an age of 8 to 14 weeks at the time of analysis. One analysis of SHM in Polk-/- mice was

performed with 8 month-old mice derived from an independent ES cell clone (referred to

as Polk-/-*).

B3.2 Immunizations

Primary T-dependent antigen responses were induced with alum-precipitated NP-

CG (4-hydroxy-3-nitrophenylacetyl coupled to chicken g-globulin) (Weiss and Rajewsky,

1990). The immunogen was prepared by mixing of NP-CG (1 mg/ml in PBS) and 10 %

KAl(SO4)2 in a volume of 1:1. The solution was adjusted to pH 6.5 with 5N NaOH and kept

on ice for 30 min. After the incubation, the precipitate was washed three times in PBS and

resuspended in PBS. Mice were immunized by intra-peritoneal injections with 10, 50 or
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100 mg NP16-36-CG in a volume of 200 m l. For secondary immunizations, mice were

injected intra-peritoneally with 10 mg NP-CG without alum in 200 ml PBS.
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C. RESULTS

C1 The Function of DNA Polymerase k

C1.1 Generation of Polk-Deficient Mice

To investigate the role Polk in the mouse, I generated a conditional Polk

allele by gene targeting. I flanked exon 6 of the Polk (DinB1) gene with loxP sites

rendering it susceptible to Cre recombinase-mediated deletion. Additionally, I

introduced a loxP-flanked neomycin resistance (neor) gene as selection marker.

Exon 6 was chosen for two reasons. First, it contains two essential catalytic

residues: Aspartate 197 and Glutamate 198. Replacement of these two amino

acids by alanine residues results in a complete loss of the DNA polymerase

function in vitro (Ogi et al., 1999; Ohashi et al., 2000). Second, mRNA splicing

from exon 5 to exon 7 leads to a frame-shift mutation. The wild-type Polk  locus,

the modified locus after homologous recombination with the targeting vector and

the locus after Cre-mediated recombination are depicted in Figure 8A. Two

independent embryonic stem (ES) cell clones containing the loxP-flanked exon 6

and the neor gene were used to generate chimeric mice; both transmitted the

targeted allele into the germline. Conventional Polk knock-out mice were

generated by crossing the chimeras to a deleter mouse (Figure 8B). Mice

homozygous for the deletion of exon 6 are viable, present at the expected

Mendelian ratio and do not exhibit obvious abnormalities. In contrast to Polz

(Bemark et al., 2000; Esposito et al., 2000a; Wittschieben et al., 2000) and Polb

(Gu et al., 1994b; Sugo et al., 2000), lack of Polk protein does not interfere with

embryonic development. To create a conditional allele for Polk, I deleted the neor

gene in the two targeted ES cell clones in vitro by transfection of a Cre-expressing

plasmid. Two ES cell clones deficient of the neor gene but retaining the loxP-

flanked (floxed) exon were used to generate chimeras, which both transmitted the

floxed Polk  (Polk fl) allele into the germline (not shown).
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Figure 8. Generation of Polk-/- mice. (A) Schematic representation of the gene targeting

in the Polk locus by homologous recombination. 129/Ola-derived ES cells were targeted

with a vector containing the loxP-flanked exon 6 and a neomycyin resistance cassette for

positive selection. A thymidine kinase gene was used to select against random integration

of the vector. ES cells were screened by Southern blot of BamH I-digested DNA with the

external  probe A located at the 5’ end. Rectangles represent coding DNA, filled triangles

indicate loxP sites, and bold lines show regions of homology. E, exon; B, BamH I site; tk,

thymidine kinase gene; neor, neomycin resistance gene. Only exons 5 and 6 of the wild-

type locus are shown. (B) Cre-mediated deletion of exon 6 and the neomycin resistance

cassette. A Southern blot of BamH I-digested tail DNA from wild-type, heterozygous and

homozygous mice, respectively, is shown. Probe B containing exon 5 of the Polk locus

was used. The wild-type fragment migrates at 9.9 kb and the fragment from the targeted

locus migrates at 5.2 kb.
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To confirm the inactivation of the Polk   gene, I amplified Polk  transcripts

from testis by RT-PCR using primers spanning exon 6. As shown in Figure 9A,

cDNA from Polk+/+ mice gave rise to two alternative splice-products. In contrast,

cDNA from Polk -/- mice gave rise to one PCR product only, which was shorter than

the larger wild-type product and consistent with the lack 153 basepairs

corresponding to exon 6 in the mRNA (Figure 9A), as confirmed by sequencing

(not shown). Additionally, Northern blot analysis using equal amounts of mRNA

from wild-type and mutant mice revealed that the intensity of the band from the

latter was 5 times less than the band from the wild-type sample (Figure 9B). The

presence of a frameshift mutation leading to premature stop codons presumably

renders mRNA lacking exon 6 less stable than wild-type mRNA.

In collaboration with Errol Friedberg and Valerie Gerlach (E. C. F. and V.

G., Southwestern Medical Center, Dallas, TX, USA), I analyzed histological

sections of mouse testis by immunohistochemistry to confirm the absence of Polk

protein in the mutant mice. Frozen sections of testis from either wild-type or Polk-

deficient mice were incubated with a monoclonal antibody against human Polk

protein. Polk protein was mainly localized in the nuclei of spermatocytes and round

spermatids of the seminiferous tubules in wild-type animals (Figure 9C). In

contrast, no signal could be detected in mice homozygous for the deletion of exon

6 (Figure 9C).

C1.2 Polk-Deficient Mice are Fertile

As shown in Figure 7C, the overall histological structure of the testis from

Polk-deficient mice is indistinguishable from that of wild-type controls. I also failed

to detect abnormalities in the shape and mobility of sperm cells from mice lacking

Polk. Furthermore, both male and female Polk mutants are fertile and the litter size

does not differ from wild-type mice (data not shown). At the present time, the

functional significance of the high levels of tissue-specific expression of Polk in the
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Figure 9. Polk-/- mice are unable to express Polk. (A) RT-PCR of Polk+/+,   Polk+/-, and

Polk-/- mice with primers annealing in exon 5 and downstream of exon 6, respectively. (B)

Northern hybridization of equal amounts of RNA from Polk+/+ and Polk-/-, mice with a Polk-

specific probe spanning nucleotide 483 to nucleotide 1493 of the cDNA sequence. (C)

Immunohistology of sections from testis with a monoclonal antibody against human Polk.

Shown are sections from a wild-type mouse (left panel) and from a Polk-deficient mouse

(right panel). Figure 9B and C was done in collaboration with E. C. F. and V. G.
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mouse testis is not clear. Several other error-prone DNA polymerases are also

highly expressed in the testis. In particular, Poll  and Poli share a similar

expression pattern with Polk (Garcia-Diaz et al., 2000; McDonald et al., 1999). It

was therefore conceivable that Polk, Poll and Poli serve overlapping functions in

the testis and in Polk-/- mice the other two polymerases may compensate for the

loss of Polk activity. However, compound mutants deficient of Polk, Poll, and Poli

are fertile and produce litters of normal size (data not shown).

C1.3 Polk-Deficient Embryonic Fibroblasts are Sensitive to Killing by UV

Radiation

Base damage can stall or arrest normal DNA replication. Polymerase k is

one of multiple specialized DNA polymerases that may be used in cells to bypass

such sites of DNA damage. Purified Polk is not able to bypass thymine dimers, [6-

4] photoproducts (quantitatively major photoproducts produced by UV radiation) or

cisplatin lesions in vitro (Gerlach et al., 2001). However, the purified enzyme is

able to extend from mismatched termini opposite of thymine dimers (Washington

et al., 2002) and can bypass thymine glycol lesions in vitro (Fischhaber et al.,

2002). Thymine glycols are a form of oxidized thymine that can be produced by

various treatments of cells, including exposure to UV radiation. Therefore, I

compared the sensitivity of embryonic fibroblasts (MEFs) from homozygous

mutant and wild-type Polk mice to UV light (in collaboration with E. C. F. and V.

G.). As shown in Figure 10, the Polk-deficient cells are moderately sensitive to UV

radiation as measured by crystal violet staining and are comparable to MEFs from

homozygous mutant Xpc-/- mice defective in genome-wide DNA repair but

proficient in transcription-coupled nucleotide excision repair (Cheo et al., 1997).

These results indicate that in the absence of Polk, some form of UV radiation

damage (possibly thymine glycol) results in cell death.
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Figure 10. Polk-deficient cells are abnormally sensitive to killing following exposure

to UV radiation. Mouse embryonic fibroblasts were irradiated with UV light. The survival

of the cells was scored four days later by crystal violet staining. Closed circles Polk+/+

MEFs; closed triangles, Polk-/- MEFs; open squares Xpc-/- MEFs.

C1.4 Polk-Deficient Mice Show Normal B and T Cell Compartments

Cellular proliferation or viability may be impaired by the absence of a DNA

polymerase. Hence, I investigated whether Polk-deficiency affects the size of B

and T cell compartments. B and T cell development occurs normally in Polk-

deficient mice (not shown). Likewise, B and T cells subsets are present at normal

numbers in the spleen (Figure 11A). T cells subsets are also present in normal

numbers in the spleen (data not shown).

GC B cells represent a highly proliferating cell population. They may be

particularly affected by the absence of Polk. Polk-deficient mice and wild-type

controls were immunized with NP-CG and monitored for the presence of GC B

UV dose (J/m2)
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Figure 11. B cell populations in spleen (A) and GC B cells in spleen, mesenteric

lymphnodes, and Peyer’s patches (B). (A) Splenocytes were stained with a-IgM and a-

IgD mAbs to visualize IgMhighIgDlow immature and mature IgMlowIgDhigh B cell populations.

CD21highCD23low MZ and follicular CD21lowCD23high B cells are shown by staining with a-

CD21 and a-CD23 mAbs. Only CD19+ cells are shown. (B) Mice were immunized with 50

mg NP-CG and analyzed for the presence of CD19+PNA+Fas+ GC B cells 14 days post

immunization. Only CD19+ cells are shown. SP, spleen; MLN, mesenteric lymph nodes;

PP, Peyer’s patches.
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cells 14 days later. However, I did not observe any significant variations between

the two cohorts with respect to CD19+Fas+PNAhigh GC B cells in spleen,

mesenteric lymph nodes, and Peyer’s patches (Figure 11B). Thus, Polk is not

required for B and T cell development and is unlikely to influence cell proliferation

during an immune response.

C1.5 Polk-Deficient Mice respond to the T Cell-Dependent Antigen NP-CG

and Display Normal Serum Ig Titers

 The mechanisms of SHM and CSR share common elements (Ehrenstein

and Neuberger, 1999; Muramatsu et al., 2000; Nagaoka et al., 2002; Reina-San-

Martin et al., 2003; Revy et al., 2000). Therefore, I measured the serum levels of

the different Ig isotypes of Polk-deficient mice and wild-type controls by ELISA to

investigate whether in Polk-deficient mice can undergo CSR and form antibody-

secreting plasma cells. As shown in Figure 12A, Polk-deficient mice are able to

generate antibodies of all isotypes at levels comparable to wild-type controls.

Hence, Polk-deficiency is unlikely to affect CSR and the generation of plasma

cells.

Next, I investigated whether Polk-/- B cells are able to mount an efficient T

cell-dependent immune response and differentiate into plasma cells secreting

antigen-specific IgG1. Groups of four age-matched mice were immunized with (4-

hydroxy-3-nitrophenyl) acetyl-chicken globulin (NP-CG) and the levels of NP-

specific IgG1 were determined 14 days later. The serum levels of NP-specific IgG1

are similar in Polk-/-, Polk+/-, Polk+/+ and Polkfl/fl mice (Figure 12A). Thus, Polk-

deficient B cells are able to participate in T-cell dependent immune responses

similarly to control B cells and efficiently secrete antigen-specific antibodies.

C1.6 Polk-Deficient GC B Cells Mutate Their Ig Genes Efficiently

To investigate whether Polk is involved in SHM of Ig genes, groups of 7-9

week (2 Polk-/-, 2 Polk+/-  and 1 Polkfl/fl animals) and 8 month (2 Polk-/- mice,

designated Polk-/-*) old mice were immunized with NP-CG. 14 days post

immunization, GC B cells were isolated and analyzed for the level and



Results 51

Figure 12. Antibody titers in serum (A) and antibody response to NP-CG (B) of Polk-

deficient mice. (A) Antibody titers in the serum of unimmunized wild-type (closed circle)

and Polk-deficient (open circle) mice as determined by ELISA. Black bars indicate the

geometric means. (B) Antibody response of Polk-deficient mice and control mice to NP-

GC. Mice were immunized with NP-CG and the serum concentrations of NP-specific IgG1

were measured 14 days post immunization in an ELISA assay. Each dot represents the

serum titer of an individual mouse. Polk genotypes are as indicated.
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pattern of somatic mutations. To study the intrinsic features of the hypermutation

process, I analyzed the accumulation of mutations in the intronic sequence

downstream of the rearranged V gene as previously described (Jolly et al., 1997).

GC B cells (B220+PNA+) and naïve B cells (B220+PNA-IgD+) were isolated by

FACS-purification from spleens of immunized Polk-/-, Polk+/-, and Polkfl/fl mice

(spleens from age matched mice with identical genotype were pooled). All mice

responded to the NP-CG immunization, as demonstrated by the elevated levels of

NP-specific IgG1 antibodies in the blood (data not shown).

Genomic DNA from the FACS-purified cells was PCR-amplified from 40,000

cell equivalents using primers annealing in the framework region 3 of most

members of the J558 V gene family (Jolly et al., 1997) and in the intron

downstream of the JH4 gene segment (see Materials and Methods), thus covering

a large fraction of rearranged V genes. PCR products were cloned and

sequenced. All sequences analyzed showed unique rearrangements.

In agreement with previous analyses (Esposito et al., 2000b; Gu et al.,

1991), the vast majority of the sequences derived from the naïve B cell population
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Figure 13. SHM patterns in Polk-deficient mice. Patterns of nucleotide exchanges in a

500 bp-long region in the intron downstream of the rearranged VHDHJH4 joints of GC B

cells derived from Polkfl/fl, Polk+/-, and Polk--/- mice, respectively. GC B cells were isolated

14 days post immunization with NP-CG. Following cell lysis, a 600 bp fragment was PCR-

amplified from 40.000 cell equivalents using a primer pair that anneals in the framework 3

region of most J558 V genes and in the intron downstream of JH4 gene segment. All

values are shown in %. n, the number of mutations; Ts., transitions; Tv., transversions;

Ts./Tv., the transions over transversions ratio. Polk-/-* mice: 8 months old.

were unmutated (Table 4). Somatic mutations were present in most sequences

derived from the Polk-/-, Polk+/-, and Polkfl/fl GC B cell populations. Sequences

bearing one or more mutations were included in the analysis of mutational

patterns. Both the number of mutations per sequence and the average mutation

frequency (≈ 1%) of the mutated clones were similar (Table 5). The mutational

patterns of the JH-CH introns derived from the Polk-/- mice did not reveal significant
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differences from the patterns derived from the control mice (Figure. 13). Excluding

respectively the Gs in the second position of the intrinsic hot spot motifs RGYW

(Rogozin and Kolchanov, 1992) or all mutations present at hotspots (I defined all

RGYW motifs in which at least 15% of the sequences presented 1 or more

mutations, as hot spots), the mutational patterns did not change significantly (data

not shown). Adenine was still the most frequently mutated base and the ratio of

transitions over transversions remained essentially the same. Likewise, I did not

observe any differences with respect to the frequency of frameshift or tandem

mutations (data not shown). I therefore conclude that the Polk-/- mice mutate their

Ig genes normally.

C1.7 SHM in DNA Polymerase Polk-/-Poll-/-Poli-/- Compound Mutants

SHM in mouse mutants deficient of Poll or Poli is normal (Bertocci et al.,

2002; McDonald et al., 2003). To investigate whether error-prone DNA

polymerases can substitute for each other’s function, I intercrossed Polk-/- mice

with Poll -/- and P o l i -/- to generate P o lk-/-Poll-/-Poli- / -  compound mutants.

Polk-/-Poll-/-Poli-/- mice are viable and show no obvious abnormalities. Moreover,

both male and female mice are fertile.
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Naïve and GC B cell populations were isolated by FACS-purification from the

Peyer’s patches of pairs of unimmunized wild-type and Polk-/-Poll-/-Poli-/- mice. As

expected, naïve B cells harbored very few mutations (0.02%) and reflected the

frequency of mutations introduced by PCR. In contrast, somatic mutations were

present in the majority of sequences derived from GC B cell populations of Polk-/-

Poll-/-Poli-/- mice and wild-type controls. Sequences bearing one or more mutations

were included in the analysis of mutational patterns. Both the number of mutations

per sequence and the average mutation frequency (1.1 and 0.9%, respectively) of

the mutated clones were similar (Table 6). The mutational patterns of the JH-CH

introns derived from the Polk -/-Poll-/-Poli-/- mice did not reveal significant

differences from the patterns derived from the control mice (Figure. 14). In

Figure 14. SHM patterns in Polk -/-Poll-/-Poli-/--deficient mice. Patterns of nucleotide

exchanges in a 500 bp-long region in the intron downstream of the rearranged VHDHJH4

joints of GC B cells derived from Polk-/-Poll-/-Poli-/- mice, respectively. GC B cells were

isolated from Peyer’s patches. Following cell lysis, a 600 bp fragment was PCR-amplified

from 40.000 cell equivalents using a primer pair that anneals in the framework 3 region of

most J558 V genes and in the intron downstream of JH4 gene segment. All values are

shown in %. n, the number of mutations; Ts., transitions; Tv., transversions; Ts./Tv., the

transions over transversions ratio.
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addition, the ratio of transitions versus transversions in sequences derived from

Polk-/-Poll-/-Poli-/- mice did not change dramatially. Excluding respectively the Gs in

the second position of the intrinsic hot spot motifs RGYW, the mutational patterns

did not change significantly (data not shown). Adenine was still the most frequently

mutated base and the ratio of transitions over transversions remained essentially

the same. Likewise, I did not observe any differences with respect to the frequency

of frameshift or tandem mutations (data not shown). I therefore conclude that the

Polk-/-Poll-/-Poli-/- mice efficiently mutate their Ig genes.
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C2 The Function of M17 in the Immune System

C2.1 Generation of M17-Deficient Mice

To investigate the in vivo function of M17, the M17  locus had been

previously inactivated in the mouse by conditional gene targeting (Angela Egert

and Manolis Pasparakis, Cologne, Germany). A neomycin resistance (neor) gene

flanked by loxP sites was introduced 5’ of exon 4 and an additional loxP site 3’ of

exon 5, thus enabling the deletion of those exons by Cre-mediated recombination.

In addition, a cassette containing a splice-acceptor site, an internal ribosome entry

site (IRES) and a green fluorescence protein gene was introduced 3’ of exon 5 to

mark cells having undergone Cre-mediated deletion. Deletion of exon 4 and 5

removes most of the coding sequence of M17 gene including the ITAM motif and

the putative C-terminal lipid-binding domain plus the 3’ UTR. This strategy likely

results in a nonfunctional M17 gene. The wild-type locus, the targeting vector and

the modified locus after homologous recombination with the targeting vector and

argeted locus after Cre-mediated recombination are depicted in Figure 15A. Two

independently targeted ES cell clones were injected into blastocysts to generate

chimeric animals. Chimeric mice that transmitted the targeted allele into the germ

line were crossed to the Cre-deleter strain to delete exons 4 and 5 in vivo.

Successful deletion was confirmed by Southern blot of Bgl II or EcoR I-digested

tail DNA of the offspring (Figure 15B). Mice homozygous for the deletion of M17

are viable, born at a Mendelian ratios and display no obvious abnormalities.

M17 is predominantly expressed in GC B cells. To confirm the inactivation

of the M17 gene on the level of RNA transcripts, I immunized M17-/- mice and wild-

type controls with NP-CG and isolated CD19+Fas+PNAhigh GC B cells 14 days later

by flow cytometry. I purified RNA from these cells for analysis by RT-PCR using a

primer pair that anneals in exon 1 and 4 of the M17 mRNA, respectively. In

contrast to M17+/+ mice, amplification from equal amounts of GC B cell-derived

cDNA from M17-/- mice did not yield a PCR product (Figure 15C).
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Figure 15. Generation of M17-/- mice. (A) Schematic representation of the gene

targeting in the M17 locus by homologous recombination. C57BL/6-derived ES cells were

targeted with a vector containing the loxP-flanked exons 4 and 5, a frt-flanked IRES-gfp

cassette, and a neomycin resistance cassette for positve selection. Negative selection of

clones harboring randomly integrated vectors was mediated by a thymindine kinase

gene. Only exons 3-5 are shown. Rectangles, coding DNA; filled triangles, loxP sites;

ovals, frt sites; RI, EcoR I; BII, Bgl II. Bold lines indicate regions of homology and

Southern probes are shown as thin black lines under the wild-type locus. (B) Successful

homologous recombination was identified by Southern blot of EcoR I-digested genomic

ES cell DNA and a probe located at the 5’ of M17  exon 3. The wild-type fragment

migrates at 6.9 kb, while the fragment from the targeted locus migrates at 4.6 kb. Cre-

mediated deletion of M17 exon 4 and 5 was confirmed by Southern blot of Bgl II-digested

genomic DNA using a probe located 5’ of exon 4. The wild-type fragment migrates at 2.1

kb and the fragment of the deleted locus migrates at 1.0 kb. (C) Confirmation of the

successful inactivation of M17 by RT-PCR. RNA was isolated from sorted CD19+PNA-

Fas- naïve B cells (N) or CD19+PNA+Fas+ GC B cells from either M17+/+ or M17-/- mice

and reverse transcribed using an oligoT primer.  PCR products were amplified with

primers annealing either in exons 1 and 4 (primer M17 1/4) or in exons 1 and 3 (M17 1/3).

Intron-spanning primers annealing in the b-actin gene were used as loading control. (D)

Sequence comparison of the larger and smaller RT-PCR product amplified with the

primer pair annealing in M17 exons 1 and 4. The smaller PCR product is identical with

the published cDNA sequence of M17, while the larger product reveals a novel exon

located downstream of exon 1. The size and location of the new exon can account for the

discrepancy between HGAL and M17 at the 5’ end of the cDNA.
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PCR amplification with a reverse primer that hybridizes in exon 3 also failed to

yield a PCR product from cDNA of M17-/- mice, suggesting a destabilized mRNA of

the inactivated M17 gene and the IRES-GFP  cassette (data not shown).

Surprisingly, the PCR using cDNA from wild-type mice revealed the presence of

two products. The smaller one was consistent with the expected size of 155 bp.

Sequencing of the larger product demonstrated the existence of a previously

unknown exon of 66 bp that is located between exon 1 and 2 (Figure 15D). M17

and HGAL differ most significantly at the N-terminus, with the cDNA of HGAL

being longer than the one of M17. The discovery of the new exon helps to account

for this discrepancy. A sequence analysis of the new exon on both the DNA and

protein level did not reveal any homologies to other known DNA or protein

sequences besides HGAL.

C2.2 M17 mRNA is Upregulated by IL-4

Interleukin-4 (IL-4) induces the expression of HGAL in peripheral blood B

lymphocytes. The M17  gene contains two putative STAT6  binding sites,

suggesting similar regulation and response to IL-4. To determine whether the

expression of M17 is also regulated by IL-4, I stimulated MACS-purified B cells in

vitro with either lipopolysaccaride (LPS) or a monoclonal antibody (mAb) directed

against CD40 in the absence or presence of IL-4. I  isolated total RNA from equal

numbers of cells 48 hours later, and determined M17 mRNA expression by RT-

PCR using intron-spanning primers specific for the M17 and b-Actin genes. As

expected, unstimulated or LPS-stimulated cells did not express M17. Stimulation

with an aCD40 mAb alone also failed to induce M17 expression. In contrast,

activation of the cells with LPS or aCD40 mAb in the presence of IL-4 upregulated

the expression of M17 mRNA (Figure 16). Thus, IL-4 induces the expression of

M17 mRNA in LPS or aCD40-activated B cells in vitro. The M17 gene appears to

be regulated in a fashion similar to the HGAL gene and M17 may be involved in IL-

4 induced immune responses in vivo.
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Figure 16. M17 is upregulated by IL-4. Isolated splenocytes were MACS-depleted of

CD43+ cells and subsequently activated with the indicated stimuli. Following isolation of

total RNA 48 h later, RT-PCR was performed using intron-spanning primers for the M17

and b-Actin genes. A representative experiment is shown.

C2.3 B and T Cell Compartments in M17-Deficient Mice

The predominant sites of M17 mRNA expression in vivo are the GCs.

However, expression of M17 mRNA is also found in developing B cells in the bone

marrow (Christoph, 1993). The analysis by flow cytometry of the bone marrow-

derived cells did not reveal differences in absolute cell numbers or proportions of

major subsets of developing B cells, indicating that M17 is dispensable for B cell

development (data not shown).

In the peripheral lymphoid organs, the number of total cells in spleen and

mesenteric lymph nodes was equivalent in M17-deficient mice and wild-type

control mice. In contrast, the number of total cells in Peyer’s patches is reduced by

2-3 fold (Figure 17A). The reduction of total cells in the latter organ reflected both a

reduced number of Peyer’s patches per mouse (5.1 ± 1.3 versus 7.8 ± 1.1 Peyer’s

patches in M17-/- and M17+/+ mice, respectively) and a reduced size of some but

GC

M17

b-Actin

LPS

a-CD40

IL-4
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Figure 17.  Cell numbers and B cell subsets in peripheral lymphoid organs. (A) The

total number of cells in peripheral lymphoid organs. (B) Splenocytes were stained with a-

IgM and a-IgD mAbs to identify IgMhighIgDlow immature and mature IgMlowIgDhigh B cell

populations. CD21highCD23low MZ and follicular CD21lowCD23high B cells are shown by

staining with a-CD21 and a-CD23 mAbs. Only CD19+ cells are shown. (C) Mice were

immunized with 50 mg NP-CG and analyzed for the presence of CD19+PNA+Fas+ GC B

cells 14 days post immunization. Only CD19+ cells are shown Numbers, average in % plus

standard deviation. SP, spleen; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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not all Peyer’s patches in M17-/- animals.

The proportions of splenic immature IgMhighIgDlow and mature IgMlowIgDhigh

B cell populations were comparable to wild-type controls and the ratio of

CD21highCD23low MZ B cells to CD21lowCD23high follicular B cells was unchanged in

M17-/- mice (Figure 17B). CD4+ and CD8+ T cells were also present at wild-type

levels. Although the number of total cells was reduced in Peyer’s patches, the

proportion of total B cells stayed the same. The ratio of B and T cells was

unchanged and the proportions of B cell subsets were normal when compared to

wild-type mice (not shown).

To analyze the proportions of CD19+Fas+PNAhigh GC B cells in M17-/- mice

and wild-type controls, the mice were immunized with 50 mg NP-CG and the

percentage of GC B cells was determined 14 days later. The proportion of

CD19+Fas+PNAhigh GC B cells in the spleen and mesenteric lymph nodes is not

significantly changed in M17-deficient mice (Figure 17C). Despite the general

reduction of total cells in Peyer’s patches, GC B cells are still generated efficiently

in this compartment. Hence, M17 is dispensable for the generation and

maintenance of the major B and T cell populations in bone marrow, spleen, and

mesenteric lymph nodes, but surprisingly affects the number of B and T cells in

Peyer’s patches. M17 is not essential for the generation of GC B cells.

C2.4 Stimulated M17-Deficient B Cells Proliferate Normally

To analyze the proliferative capacity of M17-deficient B cells, I isolated

splenic B cells from M17-/- mice and wild-type controls by MACS-depletion of

CD43+ cells and labeled the B cells with the protein-binding dye CFSE to study cell

division. Following CFSE-labeling, the cells were stimulated with either LPS or an

aCD40 mAb in the presence of IL-4. Cell proliferation was measured three days

post stimulation by flow cytometry. M17-deficient B cells proliferate at levels

comparable to wild-type cells upon LPS or CD40 stimulation in the presence of IL-

4 (Figure 18). Stimulation with aIgM in the presence IL-4 results in a similar

outcome (data not shown). The measurement of cell proliferation by cell counting

gave similar results. Therefore, M17 is dispensable for efficient cell proliferation in

vitro.
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C2.5 Germinal Center Architecture Is Not Affected in M17-Deficient Mice

         Next, I studied cryosections from spleen and Peyer’s patches by

immunofluorescence to analyze the impact of M17-deficiency on the architecture

of the GCs. Spleens were isolated 14 days after the immunization of either wild-

type or M17-deficient mice with NP-CG. Frozen splenic sections were incubated

with PNA and mAbs against CD19 or FDCM1 coupled to fluorescent conjugates to

visualize B cells follicles, GC B cells and the network of follicular dendritic cells

(FDCs), respectively. As shown in Figure 19A, M17-deficient are able to develop

GCs (PNA+ cells, red) and B cell follicles (CD19+ cells, green) comparable in size

and shape to wild-type animals. M17-deficient mice also show a polarized network

of FDCs (FDCM1+ cells, green), highlighting the GC light zone containing

centrocytes.

Figure 18. Proliferation of M17-/- B cell in vitro. Splenocytes were depleted of CD43+
cells, labeled with CFSE, and stimulated with an aCD40 mAb plus IL-4 or LPS plus IL-4.
After three days of culture, cell proliferation was determined by flow cytometry. All
histrograms represent CD19+ B cells. A representative experiment is shown.

CD40 + IL-4

LPS + IL-4

M17-/-M17+/+

CFSE
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Despite the reduced cell numbers in the Peyers patches, the architecture of

GCs remained unchanged in these tissues (Figure 19B). M17-/- mice are still able

to form GCs with an intact network of FDCs (not shown) and resemble GCs from

wild-type mice. Hence, M17 is not an essential component required for GC

formation.

Next page:

Figure 19. GC architecture in M17-/- mice. (A) Mice were immunized with 50 mg NP-CG.

Spleens were analyzed for GC formation 14 days later. Frozen splenic were stained by

immunofluorescence. Sections were incubated with either aCD19 mAb  (green) and PNA

(red) to visualize B cell follicles and GCs or PNA (red) and aFDCM1 mAb (green) to

visualize the network of FDCs within the GCs. SP, spleen; column 1, 10x magnification;

column 2 and 3, 20x magnification. (B) Frozen sections of the Peyer’s patcheswere

stained with aCD19 mAb (green) and PNA (red) to visualize B cells and GCs. Sections

were derived from 2 independent experiments with 2 mice per genotype. Representative

pictures are shown.
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C2.6 Normal Ig Serum Titers and Efficient Class Switching in M17-Deficient

Mice

To analyze the ability of M17-/- mice to undergo CSR, I first measured Ig

antibody titers in the blood serum of unimmunized mice by ELISA. As shown in

Figure 20, M17-/- mice are able to secrete antibodies of all isotypes and reach

antibody levels in their blood serum comparable to wild-type controls. Thus,

deficiency of M17 does not appear to have a major impact on CSR.

While M17-/- mice produce normal amounts of antibodies, M17 may

modulate CSR in more subtle ways.  Hence, I determined the ability of M17-/- B

cells to undergo CSR to particular isotypes in vitro. Splenic B cells from M17-/-

mice and wild-type controls were isolated by MACS depletion of CD43+ cells and

induced with various stimuli to undergo CSR in vitro. After 4 days of culture, the

percentage of class-switched cells was measured by flow cytometry. As expected,

LPS is able to induce efficient CSR to IgG2b and IgG3 in M17-deficient mice as

this stimulus does not induce the expression of M17 mRNA (Figure 21A).

Activation of M17-/- B cells with LPS plus TGF-b or LPS plus IFN-b induces CSR to

IgA and IgG2a at wild-type levels. Activation of M17-/- B cells with aCD40 mAb plus

IL-4 induces the expression of M17 mRNA. However, M17-/- B cells efficiently

switch to IgG1 and IgE isotypes when stimulated with aCD40 mAb plus IL-4.

Finally, I analyzed whether GC B cells in the Peyer’s patches also undergo

efficient CSR (Figure 21B). Most GC B cells in the gut switch to IgA, which is

secreted into the intestinal lumen. Around 40% of GC B cells were IgA+ in M17-

deficient mice, which compared to around 35% in wild-type mice. Therefore, M17

is not required for the induction of CSR or its mechanism in general and switching

to specific isotypes in particular.



Results68

Figure 20. Antibody titers in serum M17-deficient mice. Antibody titers in the serum of

unimmunized wild-type and M17-deficient mice were determined in an ELISA assay. Each

circle represents one mouse. Black bars indicate the geometric means. Closed circles,

wild-type mice; open circles, M17-deficient mice.

Next page:

Figure 21. Class-switch recombination in M17-/- mice. (A) In vitro stimulation of isolated

B cells of M17-/- mice and wild-type controls. B cells were induced to undergo CSR with

the indicated stimuli. The percentage of class-switched cells was determined 4 days later

by flow cytometry. Numbers in the graphs represent the percentages of switched cells.

The experiment was performed 3 times and a representative experiment is shown. (B).

Percentage of IgA+ GC B cells in the Peyer’s patches of M17+/+ (left) or M17-/- mice (right).

A representative experiment is shown.
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C2.7 GC B Cells of M17-Deficient Mice Mutate Their Ig Genes Efficiently

  To elucidate whether M17 is involved in SHM of Ig genes, I studied the

intrinsic features of the hypermutation process by analyzing the accumulation of

mutations in the intron downstream of the rearranged V gene in the IgH locus

(Jolly et al., 1997). I immunized pairs of wild-type and M17-deficient mice with 100

mg NP-CG and isolated GC B cells and naïve B cells 14 days post immunization

from spleen to measure the level and pattern of somatic mutations. All mice used

for this analysis responded to NP-CG as demonstrated by the presence of

elevated levels of NP-CG-specific IgG1 antibodies in the blood (data not shown).

The PCR reaction was performed on genomic DNA from 20,000 cell equivalents

using a primer pair that anneals in the framework region 3 of most VHJ558 genes

and in the intron downstream of the JH4 gene, thus comprising a large proportion

of rearranged V genes. PCR products were subcloned, sequenced, and

subsequently controlled for the absence of clonally related sequences.

Sequences derived from naïve B cells were predominantly unmutated

(Table 7). In contrast, the majority of sequences derived from GC B cells of either

wild-type or M17-deficient mice contained somatic mutations. Sequences

harboring one or more mutations were used to analyze the mutational patterns.
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Both wild-type and M17-deficient mice were able to mutate their Ig genes with an

equivalent average mutation frequency (0.75% versus 0.83%, see Table 7) and

the number of mutations per sequence was in similar range (1-12 versus 1-14

mutations per sequence in M17-/- and M17+/+, respectively). The analysis of the

mutational patterns did not reveal major differences between M17-/- mice and wild-

type controls. Adenine remained a highly mutated base in M17-/- mice and there

was no difference in the number of deletions or insertions (Figure 22). Moreover,

the ratio of transitions versus transversions did not change significantly. 

Cell numbers of Peyer’s patches are reduced in M17-deficient mice. I

therefore asked whether SHM could be affected in this cellular compartment.

CD19+Fas+PNA+GC B cells from the Peyer’s patches of 2 unimmunized M17-/-

mice or wild-type mice were isolated by FACS-purification and analyzed for SHM

similarly to the analysis of splenic GC B cells. While the mutation frequency was

higher in GC B cells derived from Peyer’s patches than in splenic GC B cells, I did

not observe an altered mutation frequency in M17-deficient mice when compared

Figure 22. SHM patterns in M17-/- mice. Patterns of nucleotide exchanges in a 500 bp-

long region in the intron downstream of the rearranged VHDHJH4 joints of GC B cells

derived from pairs of M17+/+ and M17-/- mice, respectively. GC B cells were isolated 14

days post immunization with NP-CG. Following cell lysis, a 600 bp fragment was PCR-

amplified from 40.000 cell equivalents using a primer pair that anneals in the framework 3

region of most J558 V genes and in the intron downstream of JH4 gene segment. All

values are shown in %. n, the number of mutations; Ts., transitions; Tv., transversions;

Ts./Tv., the transions over transversions ratio. 
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to wild-type controls (1.70% for M17-/- mice versus 1.62% for M17+/+ mice). The

range of the number of mutations per sequence remained the same and there was

no major difference in the mutational pattern (data not shown). Likewise, the ratio

of transitions to transversions did not change. Hence, M17 is not required for the

efficient introduction of somatic mutations in the Ig genes.

C2.8 Immune Response of M17-Deficient Mice to NP-CG

Finally, I sought to test the primary and secondary antibody response of

M17-deficient mice against the T cell-dependent antigen NP-CG. To this end, I

immunized groups of 7 wild-type or M17-deficient mice with either 50 mg or 10mg

NP-CG in alum per mouse and measured the serum titers of NP-specific IgG1 and

Igl antibodies every 7 days for 4 weeks. The M17-deficient cohort immunized with

50 mg NP-CG yielded a robust and consistent antibody response with a geometric

mean of 117 mg/ml of NP-specific IgG1 at the peak of the immune response (Figure

23A). The response was comparable to wild-type controls. M17-deficient mice

immunized with 10 mg NP-CG in alum gave rise to a similar immune response

against NP-CG, albeit at lower levels. The immune response peaked at 56 mg/ml

of NP-specific IgG1 14 days post immunization and was indistinguishable from the

response in wild-type mice (Figure 23B). The measurement of the NP-specific Igl

antibodies gave similar results (not shown).

Next, I evaluated the ability of M17-/- mice to mount an efficient secondary

immune response against NP-CG. The same mice used for the analysis of the

primary immune response were immunized with 10 µg NP-CG without alum 63

days after the primary immunization. The secondary immune response was

followed for three weeks. M17-/- mice that had been immunized with 50 µg NP-CG

for the primary immune response were also able to mount a secondary response.

However, the secondary response was moderately weaker in M17-/- mice than in

the wild-type controls (Figure 23C). While M17+/+
 reached a geometric mean of 804

µg/ml at the peak of the secondary immune response, M17-/- mice peaked at

247µg/ml (Figure 23C). Mice that had been immunized with 10 µg/ml in the

primary immune response gave a similar result (Figure 23D). Thus, M17-/- mice

have a secondary immune response.
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Figure 23. Primary (A, B) and secondary (C, D) immune response of M17-/- mice and

wild-type controls to NP-CG. (A) Primary immunization with 50 µg NP-CG in alum. (B)

Primary immunization with 10 µg NP-CG in alum. (C) Secondary immunization with 10 µg

NP-CG without alum of mice previously immunized with 50 µg NP-CG. (D) Secondary

immunization with 10 µg NP-CG without alum of mice previously immunized with 10 µg.

Each circle represents one mouse. Bars indicate the geometric means. Closed circle,

M17+/+ mice; open circle, M17-/- mice.
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D. DISCUSSION

D1. The Role of Polk and Other DNA Polymerases in SHM

Error-prone DNA polymerases are required for the bypass of DNA lesions

at stalled replication forks. They can bypass their cognate lesions accurately and

are mutagenic when copying non-cognate lesions or undamaged templates.

Several reported deficiencies of mammalian DNA polymerases were either

embryonic lethal (Polb, Polz)(Bemark et al., 2000; Esposito et al., 2000a; Gu et al.,

1994a; Wittschieben et al., 2000) or resulted in a increased susceptibility to skin

cancer (Polh)(Masutani et al., 1999). In contrast, my studies show that Polk-

deficient mice are viable and do not exhibit obvious abnormalities.

The observation of increased sensitivity to killing of Polk-deficient MEFs

following exposure to UV radiation supports the notion that like other specialized

DNA polymerases with abnormally low fidelity, Polk is required for the replicative

bypass of one or more types of base damage produced by UV radiation. The

independent observation that Polk is able to bypass the minor photoproduct

thymine glycol, but not the major photolesions thymine dimers and [6-4]

photoproducts in vitro (Fischhaber et al., 2002), confirms the idea that Polk is

required for translesion synthesis across certain types of base damage in vivo.

Polk has also been found to serve as an efficient extender from mismatched

primer termini generated by other DNA polymerases (Haracska et al., 2002;

Washington et al., 2002). In this latter role, Polk has been implicated in the bypass

of thymine dimers (Washington et al., 2002), thus explaining the increased UV

sensitivity of Polk-deficient fibroblasts. Another function of Polk may be the bypass

of aromatic DNA adducts. Expression of Polk is augmented by aromatic

compounds (Ogi et al., 2001) and polyaromatic hydrocarbons such as

benzopyrenes serve as good substrates for Polk (Huang et al., 2003; Suzuki et al.,

2002; Zhang et al., 2002). Consequently, increased expression of Polk has been

found in the adrenal cortex, where steroid synthesis occurs, (Velasco-Miguel et al.,
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2003) and in specimens of several lung cancers (J et al., 2001).

Thymine glycols represents DNA lesions that often result from the presence

of reactive oxygen species (Hegi et al., 1989). Reactive oxygen species have been

associated with DNA damage of spermatozoa (Gil-Guzman et al., 2001; Ollero et

al., 2001). Polk copies faithfully across thymine glycols (Fischhaber et al., 2002).

The high levels of expression of Polk  mRNA in testis in both meiotic and post-

meiotic cells (Velasco-Miguel et al., 2003) were suggestive of a possible

specialized role(s) for this enzyme during spermatogenesis. However, the

architecture of the testis in the Polk mutant mice appears to be normal and the

mice are fertile over several generations. Many error-prone DNA polymerases are

strongly expressed in testis (Aoufouchi et al., 2000; Garcia-Diaz et al., 2000;

McDonald et al., 1999). Base-excision repair is involved in the repair of

spontaneous DNA damage such as thymine glycols and other lesions and is a

very efficient DNA repair pathway in germ cells (Olsen et al., 2001).  Poll and Poli,

which are also highly expressed in the seminiferous tubules of the mouse testis,

have been implicated to operate in base excision repair (Bebenek et al., 2001;

Garcia-Diaz et al., 2000; McDonald et al., 1999). It was therefore conceivable that

Polk, Poll, and Poli together contribute to the genome integrity in testis. However,

compound mutants that are deficient of Polk, Poll, and Poli are viable, reproduce

normally and do not show any visible abnormalities, arguing against cumulative

functions of these DNA polymerases during spermatogenesis (unpublished own

data). At the present time, I cannot rule out that the absence of Polk or other DNA

polymerases results in the accumulation of mutations in the germline, which might

affect fertility or viability of the mice in later generations. In this context, it is

interesting to note that one colony of Polk-/- mice developed diabetes insipidus and

the onset of the disease decreased over several generations (Errol Friedberg,

Southwestern Medical Center, Dallas, USA, personal communication). The reason

for this phenotype is not know. However, one can speculate that normally Polk

copies faithfully across base damages that arise during spermatogenesis, such as

thymine glycols, and the absence of Polk leads to mutations, which in this case

affected a gene responsible for the this particular phenotype.
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Somatic hypermutation introduces mainly point mutations but deletion and

insertion also occur (Goossens et al., 1998; Kocks and Rajewsky, 1988; McKean

et al., 1984). The discovery of AID has furthered the understanding of the initiation

of SHM. Deamination of cytidines by AID leads to the formation of uracil residues.

Subsequent DNA replication across this lesion results in the incorporation of

adenine opposite uracil and thus to the introduction of C to T transitions (Petersen-

Mahrt et al., 2002). UNG-deficient mice fail to efficiently remove uracil residues

due to their impaired uracil-deglycosylase function and consequently harbor

elevated levels of transition mutations in their Ig genes (Rada et al., 2002).

However, although somatic mutations tend to cluster in the context of the RGYW

hotspot motifs, they are scattered throughout the Ig genes and occur at all four

bases. Importantly, they represent not only transitions but also almost 50%

transversions. Which factors can account for this pattern? A role of error-prone

DNA polymerases in SHM has long been considered (Bertocci et al., 1998;

Brenner and Milstein, 1966; Diaz et al., 1999) and the class of recently discovered

error-prone DNA polymerases has attracted considerable attention in this regard.

Uracil-deglycosylation creates abasic sites, which are either non-instructive sites

during DNA replication or the origin of DNA strand breaks, whose repair involves

error-prone short-patch DNA synthesis (Di Noia and Neuberger, 2002; Petersen-

Mahrt et al., 2002). Alternatively, the mismatch-repair enzymes MSH2 and MSH6

recognize the U-G mismatches and subsequent error-prone short-patch DNA

synthesis introduces mutations (Jacobs et al., 1998; Phung et al., 1998). Error-

prone DNA polymerases exhibit varying degrees of processivity or fidelity and

different abilities to synthesize from mismatched or misaligned DNA termini. For

example, Poli is very mutagenic when copying undamaged template but has poor

processivity, whereas Polz extents mismatched termini efficiently. It is therefore

conceivable that the resulting mutation pattern of SHM is due to the combined

action of AID and several error-prone DNA polymerases.

The mutagenic nature of Polk and its expression in B cells were suggestive

of a role of this enzyme in SHM mechanism of Ig genes. Here I show that Polk-

deficiency does not affect B cell development and the formation of GC B cells. The



Discussion78

mutant mice are still able to produce normal antibody serum titers and to mount a

robust T cell-dependent immune response. To test the ability of Polk-/- mice to

introduce somatic mutations in their Ig genes, I examined the mutation frequency

and pattern in the non-biased intron downstream of rearranged V genes containing

the JH4 gene segment. The mutation frequency in sequences derived from Polk-/-

mice (1.0 and 1.1 %) is similar to the ones in sequences derived from wild-type

controls (0.9 and 1.3%). Likewise, the mutation pattern of SHM stayed essentially

the same between the two groups of mice, even when excluding Gs in the second

position of RGYW hotspots. Adenine was still the most frequently mutated base

and the ratio of transitions to transversion did not change (1.0 and 1.2 versus 1.0

and 1.1). Polk can introduce frameshift mutations in vitro. However, my analysis

does not reveal differences with respect to the number of frameshift or tandem

mutations. The present work therefore demonstrates that Polk is not an essential

component of the hypermutation machinery. This finding was recently also

confirmed in a Polk-deficient mouse strain that was generated independently from

the one analyzed here (Shimizu, 2003).

Several other error-prone DNA polymerases are also dispensable for SHM

in vivo.  Mice deficient of Polb, Pold, Poll, Poli, or Polm mutate their Ig genes

efficiently and these polymerases do not show a significant change in their

mutational pattern (Bertocci et al., 2002; Esposito et al., 2000a; Longacre et al.,

2003; McDonald et al., 2003). Nonetheless, evidence for the involvement of error-

prone DNA polymerases in the SHM mechanism has been accumulated in recent

years. For example, the error-spectrum of Polh in vitro correlates with mutations at

SHM hotspots (Pavlov et al., 2002; Rogozin et al., 2001). While the frequency of

SHM in Polh-deficient XP-V patients reaches normal levels, the mutation pattern is

biased towards G-C mutations. Thus, Polh it is probably responsible for many of

the mutations at A-T nucleotides (Zeng et al., 2001). Polz is thought to introduce

mutations when extending from mismatches incorporated by other DNA

polymerases (Diaz et al., 2001; Zan et al., 2001). One of the latter DNA

polymerases may be Poli, which was found to interact with Polz. Deficiency of Poli

in a hypermutating cell line results in the reduction of G-C mutations (Faili et al.,

2002). However, the significance of this finding is unclear, because Poli-deficient
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mice mutate their Ig genes at normal levels without obvious changes in the

mutational patterns (McDonald et al., 2003). This apparent paradox could be

explained by the expression of a particular DNA polymerase in cell lines, but the

synergistic and redundant action of several DNA polymerases during SHM in vivo.

To investigate whether several DNA polymerase have overlapping function

during SHM, I started to generated compound mutant mice deficient of Polk, Poll,

and Poli. Somatic hypermutation in compound mutant mice deficient of these three

DNA polymerases appear to mutate their Ig genes normally. Both the mutation

frequency and the mutation patterns resemble those in wild-type controls. The

ratio of transition versus transversions remains basically the same and the number

of deletions or insertions does not change. In the light of this finding, it seems

unlikely that the combined contribution of of Polk, Poll, and Poli to SHM is

significant. However, their function in SHM can still be substituted by other error-

prone DNA polymerases. One of the candidates for such a function is Polm. The

lymphoid-specific TdT-like Polm acts in a template-dependent but sequence

independent manner and has been implicated in the processing of DNA ends

during Ig light chain rearrgangement (Bertocci et al., 2003). However, its

expression is not restricted to developing lymphocytes. Polm is also found in GC B

cells and this expression pattern was suggestive of specialized function during

SHM. Yet, it is not an essential component for the SHM process as mice deficient

of Polm mutate their Ig genes normally (Bertocci et al., 2002). l am currently in the

process of intercrossing Polk-/-Poll-/-Poli-/- with mice deficient of Polm to explore

the question of the redundant function of DNA polymerases in SHM further.
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D2 Function of M17 in the Immune System

Diffuse large B cell lymphomas (DLBCL) are a heterogeneous group of

tumors with diverse clinical features and distinct gene expression profiles (Lossos

and Levy, 2003). Patients with DLBCL can be subgrouped according to the

expression of HGAL in these tumors. HGAL can serve as a prognostic marker for

the clinical outcome in patients with DLBCL (Lossos et al., 2003). High expression

of HGAL in DLBCL results in a better clinical prognosis with longer survival rates.

However, the biological function of HGAL is unknown. In this study, I have

investigated mice deficient of M17, the murine homologue of HGAL, to elucidate its

role in B cell function.

The M17 and HGAL genes share a similar exon-intron structure and the

respective proteins are homologous to each other but not to other known proteins.

Both proteins contain several potential phosphorylation sites and include a non-

canonical ITAM motif. These features suggest that HGAL and M17 are true

homologues (Lossos et al., 2003; Pan et al., 2003). However, M17 and HGAL

differ substantially at the N-terminus as HGAL possesses an elongated N-terminus

due to exon 2 in the HGAL mRNA, which is absent from the published M17 mRNA.

During the course of this analysis, I detected a novel isoform of the M17 mRNA

that contains a previously unidentified exon. The novel exon is located between

exon 1 and 2 of the M17 mRNA and of similar length as exon 2 of the HGAL

mRNA. It can thus account for the discrepancy in the length of the N-terminus

between HGAL and M17.

M17 and HGAL share overlapping but not identical expression patterns.

M17 is expressed at low levels in developing B cells and is predominantly

expressed in GC B cells (Christoph, 1993; Christoph et al., 1994). This very

specific expression pattern was suggestive for a function of M17 within the GC

reaction. Here, M17 may play a role in cell signaling due to the presence of a non-

canonical ITAM motif. The expression of HGAL mRNA is upregulated in naïve B

cell upon stimulation with the cytokine IL-4. My observation that the expression of

M17 mRNA can also be induced by IL-4 in LPS or CD40-activated B cells

suggests that expression of HGAL and M17 are regulated by a similar mechanism.

IL-4-mediated signaling plays an important role in GC function and is particularly
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essential for CSR from Cm to the Cg1 and Ce isotypes (Kühn et al., 1991) . Thus,

the IL-4-induced expression of M17 is consistent with the notion that M17 plays a

role within the GCs, where it may function during certain aspects of IL-4 mediated

events.

M17 is expressed in developing B cells (Christoph, 1993). In this study, I

show that both the pro-B and pre-B cell fractions are present at wild-type levels in

M17-/- mice. B cell development appears to be unaffected in the absence of M17.

M17 therefore seems to be dispensable for B cell development. However, the

precise role of M17 in this cellular compartment requires further investigation. M17

was originally isolated via a cDNA subtraction between GC B cells and LPS-

stimulated B cells. Thus, it was not surprising that naïve B cells do not require

M17. Splenocytes are present at normal numbers in M17-/- mice and the

proportions of the major B and T cell subsets are not altered.

Immunization of M17-/- mice with a T cell-dependent (TD) antigen leads to

the formation of GC B cells and the size of this specialized compartment is similar

to wild-type controls. GC B cells in M17-/- are morphologically organized like wild-

type GCs. GCs of M17-/- mice are separated into the dark zone and the FDC-rich

light zone and are equal to wild-type GCs with respect to number and size. Thus,

M17 is not required for GC formation. M17-deficent B cells proliferate equally well

as wild-type controls when stimulated with anti-IgM or anti-CD40 mAbs in the

presence of IL-4. It appears unlikely that GC B cell proliferation is affected by the

lack of M17. IL-4 is a critical cytokine for CSR to IgG1 and IgE (Kühn et al., 1991).

The upregulation of M17 mRNA after stimulation with an aCD40 mAb and IL-4

suggested the involvement of M17 in CSR to IgG1 and IgE. However, the

presence of wild-type levels of antibody serum titers in M17-deficient mice and the

in vitro ability of B cells from these mice to undergo CSR to all isotypes including

the aCD40 and IL-4-induced isotypes IgG1 and IgE show that M17 is not essential

for CSR. In addition, M17-/- mice undergo efficient SHM in response to a TD

antigen. The mutation frequency and patterns are comparable to wild-type mice.

Primary TD immune responses reach NP-specific IgG1 levels in the serum similar

to those found in wild-type mice and this characteristic is independent of the



Discussion82

amount of immunizing antigen. Thus, M17 is surprisingly dispensable for the core

events of the GC reaction during a primary immune response.

Besides the high expression of HGAL in GC B cells, expression of HGAL

mRNA is also found at low levels in memory B cells (Lossos et al., 2003). In vitro

studies indicated a role for IL-4 in the promotion of memory B cell formation (Choe

et al., 1997) and the alteration of homing properties of B cell during this process

(Roy et al., 2002). For this reason, HGAL has been suggested to participate in the

differentiation of memory B cells. Some M17+ cells localize to the marginal zone

(Christoph, 1993), where memory B cells reside in the spleen. However, M17-/-

mice produce normal NP-specific IgG1 serum titers upon secondary antigen

challenge. Although the current data do not lend strong support to the hypothesis

of an involvement of M17 in memory B cell formation, it is still possible that M17 is

involved in such a process. Further studies involving bone-marrow chimeras of

M17-/- and wild-type cells will help to investigate this question.

The analysis of Peyer’s patches M17-/- mice revealed that the absence of

M17 affects the Peyer’s patches. M17-defcient mice have a reduced number of

Peyer’s patches per mouse and the individual Peyer’s patches are often smaller in

size. These two effects combined result in a 2-3 fold reduction of total cells in the

Peyer’s patches. The ratio of T versus B cells, however, remains normal in Peyer’s

patches when compared to wild-type mice. In particular, the size of GC B cells

populations is not altered in the Peyer’s patches of M17-/- mice and the

architecture of the GCs is undisturbed. On a functional level, GC B cells in the

Peyer’s patches of M17- / -  mice are capable of class switching to IgA, the

predominant isotype in the gut. Likewise, the reduced number of cells in the

Peyer’s patches does not affect SHM as both the mutation frequency and mutation

patterns are equal to wild-type controls.

It is surprising that the absence of M17 affects the cell number of the

Peyer’s patches. The lymphotoxin (LT)-driven development of Peyer’s patches

occurs in three stages (Adachi et al., 1997). It commences in the embryo at day 15

post gestation with the formation of clusters of cells expressing the adhesion

molecules VCAM and ICAM and is followed by the entry of hemapoetic cells a few

days later. Entry of mature lymphocytes completes the development of mature
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Peyer’s patches just prior to birth but is not required for the compartmentalization

of Peyer’s patches (Hashi et al., 2001). The expression pattern of M17 during

embryogenesis has not been investigated. Since the cellularity of the Peyer’s

patches does not change in M17-deficient mice, it seems possible that the

reduction in cell numbers is not due to a B cell-specific effect. Alternatively, M17

may modulate homing properties of B cells, which become apparent during the

formation and development of Peyer’s patches. In this context, it is interesting to

note that IL-4 can augment autocrine lymphotoxin production in B cells (Worm et

al., 1998). Mice with B cell-specific ablation of LTb show a disturbed splenic

microarchitecture and a reduced size of Peyer’s patches with intact B and T cell

compartments (Tumanov et al., 2002). The former phenotype is not seen in M17-/-

mice. However, in the light of the latter finding, one can speculate that M17-

mediated signals might modulate the formation of Peyer’s patches.

At the present time, it is unclear whether high expression of HGAL in

DLBCL merely identifies a particular subset of lymphomas with a beneficial

prognosis or is indeed a reflection of the biological function of HGAL. High

expression of BCL6, which is expressed in GCs and serves as another prognostic

marker for patients with DLBCL, is also indicative of better overall survival (Lossos

et al., 2001). Moreover, elevated co-expression of both genes appears to have

cumulative effects with respect to survival (Lossos et al., 2003). Interestingly,

expression of both genes can be induced by IL-4. Expression of HGAL and BCL6

therefore identifies GC-derived tumors that are exposed to higher IL-4 levels. IL-4

can inhibit in vitro proliferation in lymphoma cells (Defrance et al., 1992; Taylor et

al., 1990). Such growth-moderating effects could be mediated by HGAL and M17

and would predict stronger proliferation of M17-/- B cells and possibly enlarged

GCs. These effects have not been observed in M17-/- mice and hence argue

against such a hypothesis. On the other hand, high expression of HGAL and BCL6

may simply identify tumors that originate from B cells at a particular differentiation

stage. DLBCL can be separated into distinct subtypes. The more malignant type is

derived from activated B cells, while the more benign subtype is of GC B cell origin

(Alizadeh et al., 2000). HGAL marks subsets of DLBCL with a better prognosis and
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may even identify DLBCL derived from particular GC subsets, for example

centroblasts or centrocytes. Given the moderate phenotype of M17-/- mice in GC

formation and function, I would favor the latter explanation.

In conclusion, M17 does not affect B or T cell development in a major way.

M17 is dispensable for GC formation, B cell proliferation, Ig class switching, SHM

and the formation of an immune response against a TD antigen. The biology of

M17 suggests that HGAL serves as a prognostic marker for the improved survival

of DLBCL patients in a more indirect way. However, M17-/- mice have less and

smaller Peyer’s patches, indicating a potential role in the organogenesis of Peyer’s

patches.
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E SUMMARY

In T cell-dependent immune responses, activated B cells undergo a phase

of rapid expansion and form distinct histological structures, the germinal centers

(GC). GCs are the sites of secondary antibody diversification. Somatic

hypermutation (SHM) introduces mutations into the rearranged V genes, whereas

class switch recombination (CSR) alters the IgH constant region to modulate

effector function.

The current model of SHM postulates cytidine deamination by AID, followed

by error-prone repair that involves short-patch DNA synthesis by error-prone DNA

polymerases. The Polk (DinB1) gene encodes a specialized mammalian DNA

polymerase called DNA polymerase k. The mouse Polk gene is expressed in most

tissues of the body including B cells. The ability of Polk to generate mutations

when extending primers on undamaged DNA templates identifies this enzyme as a

candidate for the introduction of nucleotide exchanges during SHM. Here, I show

that Polk-deficient mice are viable, fertile and able to mount a normal immune

response to the antigen (4-hydroxy-3-nitrophenyl) acetyl-chicken globulin (NP-

GC). Polk-deficient mice mutate their Ig genes normally. Polk-/-Poll-/-Poli-/- mice

also show no defects in SHM, indicating that these error-prone DNA polymerases

do not substitute for each other’s function during SHM. However, Polk-deficient

embryonic fibroblasts are sensitive to cell death following exposure to ultraviolet

radiation, suggesting a role for Polk in translesion DNA synthesis.

The human gene HGAL serves as marker in the prognosis of patients with

GC-derived diffuse large B cell lymphomas (DLBCL). The mouse gene M17 is the

homologue of HGAL. M17 is predominantly expressed in the GCs, indicating a role

in GC function. In the present study, I analyzed M17-/- mice to investigate the role

of M17 in the GC reaction. M17-/- mice form normal GCs, undergo efficient CSR

and SHM and mount a T cell-dependent immune response. Thus, M17 is

dispensable for the GC reaction and the current data support a rather indirect role

for HGAL as a prognostic marker in the biology of DLBCL.



Zusammenfassung86

F ZUSAMMENFASSUNG

Aktivierte B Zellen proliferieren während T Zell-abhängigen

Immunantworten und bilden definierte histologische Strukturen, die Keimzentren.

Dort findet die sekundäre Diversifikation der Antikörper statt: Somatische

Hypermutation (SHM) fügt Mutationen in den zusammengefügten V Genen ein

und Klassenwechsel-Rekombination ändert die konstante Region der schweren

Immunglobulinkette.

Das aktuelle Model der SHM postuliert zunächst eine Cytidin-Deaminierung

durch AID und anschliessende fehlerhafte DNA Reperatur, die zum Teil durch

fehlerbehaftete DNA Polymerasen verursacht wird. Die fehlerbehaftete DNA

Polymerase k (Polk) wird in den meisten Geweben exprimiert, darunter auch in B

Zellen. Die Fähigkeit von Polk, Mutationen während der DNA Synthese einfügen

zu können, legt eine Beteiligung dieser DNA Polymerase an der SHM nahe. In

dieser Arbeit habe ich daher Polk-/- Mäuse generiert, um diese Frage zu klären.

Polk-/- Mäuse sind lebensfähig und zeugungsfähig. Die mutanten Mäuse haben

eine normale T Zell-abhängige Immunantwort und mutieren ihre Immunglobulin

Gene in gleichen Massen wie Polk+ / +  Mäuse. Analyse von Polk-/-Poll-/-Poli-/-

Mäusen ergibt ein vergleichbares Ergebnis, was eine austauschbare Funktion der

drei DNA Polymerasen in SHM unwahrscheinlich erscheinen lässt. Hingegen ist

Polk wichtig für die DNA Reperatur, da Fibroblasten aus Polk+/+  Mausembryos

eine erhöhte Sterblichkeit nach Bestrahlung mit ultraviolettem Licht zeigen.

Das humane Gen HGAL dient als Marker für die klinische Prognose von

Tumoren des Keimzentrums. Das Maushomolog von HGAL heisst M17 und ist

vorwiegend in den Keimzentren exprimiert. Ich habe M17-/- Mäuse analysiert, um

die Rolle von M17 in der Keimzentrums-Reaktion zu verstehen. M17-/- Mäuse

bilden normale Keimzentren, führen effiziente SHM und Klassenwechsel-

Rekombination durch, und reagieren in der Immunantwort ähnlich wie wild-typ

Kontrollen. Der gegenwärtige Kenntnisstand unterstützt eher eine indirekte Rolle

für H G A L  als Marker in der Biologie von Tumoren des Keimzentrums.
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H ABBREVIATIONS

AID activation-induced deaminase

APC Allophycocyanine

BCR B cell receptor

bp base-pairs

BSA bovine serum albumin

C constant region

CSR class switch recombination

D diversity gene segment

DLBCL diffuse large B cell lymphoma

DMEM Dulbecco’s modified Eagle medium

DMSO Dimethylsuloxide

EDTA ethylene-diamine tetraacidic acid

EGFP enhanced green fluorescence protein

ES cell embryonic stem cell

FACS fluorescence assisted cell sorting

FCS fetal calf serum

FDC follicular dendritic cell

FITC Fluoresceine-isocyanate

GC germinal center

Ig immunoglobulin

IgH immunoglobulin of the heavy chain locus

IgL immunoglobulin of the light chain loci

IL-4 Interleukin-4

i.p. intra-peritoneally

J joining gene segment

kDa kilo Dalton

LA long arm of homology

LIF leukemia inhibitory factor

LPS lipopolysaccaride

mAb monoclonal antibody

MACS magnetic cell sorting
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MEF mouse embryonic feeder cells

MLN mesenteric lymph node

NHEJ non-homologous end joining

PBS phosphate-buffered saline

PCR polymerase chain reaction

PE Pycoerythrine

Pol DNA polymerase

PNA peanut agglutinin

PP Peyer’s patches

R purine (adenine or guanine)

RPMI Rosewell-Park-Memorial-Institute cell culture medium

RSS recognition signal sequence

SA short arm of homology

SDS sodium dodecyl sulfate

SP spleen

SHM somatic hypermutation

TD T cell-dependent

Tris tris(hydroxymethyl)amineethane

W adenine or thymidine

WT wild-type

V variable gene segment or variable region

Y pyrimidine (cytidine or thymidine)
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