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Zusammenfassung

Die Suche und Identifizierung von Genen, die an Selektions- und Anpassungsprozessen

beteiligt sind, haben sich zu einem Hauptforschungsschwerpunkt in der Evolutionsbiologie

entwickelt, um die molekularen Mechanismen zu verstehen, die der Evolution, Anpassung

und auch der Artbildung zu Grunde liegen. Ziel dieser Studie war es, "Selective Sweeps" in

der Hausmaus zu finden. "Selective Sweeps" finden an Gen-Orten statt, die durch eine neu

erworbene Mutation einen Selektionsvorteil erworben haben und dadurch andere Allele am

gleichen Gen-Ort aus dem Gen-Pool verdrängen. Als Untersuchungsobjekt wurde die

Hausmaus gewählt, da einerseits die komplette genomische Sequenz zur Verfügung steht und

sie ein wichtiger Modellorganismus in der biomedizinischen Forschung ist und andererseits

die Ökologie und Phylogenie freilebender Populationen gut untersucht sind. Zwei Mus

musculus und vier Mus domesticus Populationen wurden nach einem Beprobungssystem

gefangen, das vermeidet, nah verwandte Tiere aus der selben Familiengruppe zu fangen.

Die phylogenetische Analyse zeigte, dass die Mus musculus Populationen aus Kasachstan und

Tschechien ziemlich alte Populationen darstellen, während die Mus domesticus Populationen

aus Frankreich, Deutschland, Kamerun und USA einen relativ jungen Ursprung haben. Daher

scheint Westeuropa entgegen anderer Annahmen wesentlich später von der Hausmaus

besiedelt worden zu sein. Zudem hat die Ausbreitung der Art durch den Menschen die

Besiedlungsgeschichte der Hausmaus stark beeinflußt. Die Sequenzierung des

mitochondriellen  D-loops ermöglichte die Unterscheidung zwischen den beiden Mauslinien,

aber der Marker konnte nicht zwischen den Populationen innerhalb einer Linie trennen.

Dahingegen konnten die Populationen durch Typisierung von 81 Microsatelliten Loci gut

unterschieden werden und jedes Individuum wurde genau seiner Herkunftspopulation

zugewiesen.

Während ihrer Besiedlungsgeschichte wurde die Maus vermutlich mit verschiedenen

Selektionsdrücken konfrontiert. Durch Anwendung der lnRV und lnRH Statistik auf die

typisierten Mikrosatelliten Loci wurden 9 potentielle „Selective Sweep“-Loci identifiziert. In

Abhängigkeit von der Mutationsrate der Mikrosatelliten wurden „Selective Sweeps“ auf

unterschiedlichen taxonomischen Ebenen entweder in einzelnen Populationen oder in den

einzelnen Mauslinien detektiert. Die Mikrosatelliten waren so gewählt, dass sie direkt an

Gene gekoppelt sind, die eine Rolle bei Umweltinteraktionen spielen. Die beobachteten

"Sweep Loci" waren an Gene gekoppelt, die an Immunantworten oder an olfaktorischer

Sinneswahrnehmung beteiligt sind oder differentiell exprimiert werden.
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In einem zweiten Ansatz wurden 106 zufällig im Genom verteilte Microsatelliten-Loci

typisiert und auch hier wiesen einige Loci reduzierte Variabilität auf, die auf ein potentielles

„Selective Sweep“ Ereignis hinweisen.

Allerdings bedarf es stets zusätzlicher Methoden, um „Selective Sweep“-Ereignisse zu

bestätigen. Daher konzentrierten sich die weiteren Analysen auf das Immungen ß-Defensin 6,

das möglicherweise einen „Selective Sweep“ in Mus domesticus verursacht hat. Das Ergebnis

wurde durch reduzierte Nucleotid-Diversität in einem „Selective Sweep“-Fenster von 22 kb

bestätigt. ß-Defensin 6 ist ein kationisches Peptid und spielt eine wichtige Rolle bei der

Immunantwort auf bakterielle Infektionen. Die vorteilhafte Mutation, die den „Selective

Sweep“ verursacht hat, trat vermutlich in den regulatorischen Bereichen auf und veränderte

die Induktion des Gens und vermutlich damit auch die Spezifität der Immunantwort.

Quantitative PCR Experimente zeigten, dass der Expressionslevel von ß-Defensin 6 in

verschiedenen Organen von Mus domesticus Tieren etwas niedriger ist als im Vergleich zu

Mus musculus Tieren. Dennoch können erst klare Aussagen über mögliche Veränderungen in

der Genexpression gemacht werden, wenn die Expression unter kontrollierten

Laborbedingungen mit gezüchteten Labortieren nochmal untersucht wird.

Diese Arbeit zeigte, dass ein genomweiter Mikrosatelliten-Screen ein sinnvoller Ansatz ist,

Gene zu identifizieren, die in den verschieden Hausmaus-Population unterschiedlich selektiert

wurden. Andere Methoden wie Sequenzierungen oder quantitative PCR Experimente müssen

jedoch angewendet werden, um die funktionalen Unterschiede zu finden, die den „Selective

Sweep“ verursacht haben.
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Abstract

The search for genes involved in selection and adaptation has become a main research subject

in evolutionary biology to understand the molecular mechanisms of evolution, adaptation and

speciation. The aim of this study was to identify selective sweep events in the house mouse

species complex. Selective sweeps occur at loci that have acquired a new advantageous

mutation and due to a selective advantage the new mutation sweeps through the gene-pool of

a population replacing other alleles at this locus.

The house mouse was chosen as a study object because the full genomic sequence for this

model species of biomedical research is available and also the ecology and phylogenetic

history of natural populations are fairly well known. Two Mus musculus and four Mus

domesticus populations were caught under a stringent sampling regime avoiding the sampling

of closely related individuals. Phylogenetic analysis of these populations showed that the two

Mus musculus populations from Kazakhstan and the Czech Republic were rather old while the

Mus domesticus populations from Germany, France, Cameroon and USA seemed to be of

relatively recent origin claiming that the house mouse colonization of Western Europe is

younger than previously assumed and that human mediated long distance transport strongly

influenced mouse colonization patterns. Mitochondrial D-Loop sequencing distinguished

between the two mouse lineages but was not suitable to differentiate populations within the

lineages. In contrast to this, genotyping of 81 microsatellite loci separated nicely the different

populations and proved that each individual was assigned to its population of origin.

During colonization times the mice were most likely confronted with all kinds of different

selection pressures. By applying the lnRV and lnRH statistics to the microsatellite screen nine

potential sweep loci were identified. Depending on the mutation rate of the microsatellites

selective sweeps were observed at different divergence levels either in single populations or in

whole lineages. The microsatellite loci were chosen to be located in close phyical linkage to

gene which are known to be involved in environmental interactions. The genes linked to the

observed sweep loci play a role in immune response, in olfactory recognition, or they are

known to be differentially expressed.

In another approach 106 randomly chosen microsatellite loci were genotyped and several loci

exhibited reduced variability which is characteristic for a potential selective sweep. However,

additional methods have to be applied to verify selective sweep events.

Therefore, within this study the further analysis focused on the immune response gene

“ß-Defensin 6” that showed a selective sweep in the Mus domesticus lineage. The result was



Abstract
___________________________________________________________________________

6

confirmed by reduced nucleotide diversity within a selective sweep window of 22 kb around

the locus. The ß-Defensin 6 gene is a cationic peptide expressed in several organs and plays

an important role in microbial defense. The advantageous mutation that caused the sweep

occurred probably in the regulatory regions of the gene, altering the induction pathways and

potentially shaped the specifity of the immune response to infections in Mus domesticus.

Quantitative PCR experiments confirmed that slightly lower expression of ß-Defensin 6 are

found in wild caught Mus domesticus animals than in Mus musculus animals. However,

inferences about differences in the regulation of gene expression between the lineages have to

be tested under more controlled conditions with animals raised in the laboratory.

Nevertheless, this study proved that a genome wide microsatellite locus screen is a valuable

tool to identify genes which were shaped by selection in different populations of the house

mouse species complex. Additional methods such as sequencing the genomic regions and

quantitative PCR experiments are necessary to reveal functional differences that have caused

the selective sweep event.
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Mouse populations with indistinguishable D-loop haplotypes can be

differentiated by their unique proportion of shared microsatellite alleles

even in recently founded populations

Introduction

In spite of the ongoing taxonomic debate about the house mouse species complex (Auffray et

al. 1990, Sage et al. 1993, Din et al. 1996, Ferris et al. 1983) there is general agreement that

the house mouse has diverged within the genus Mus about one million years ago. A further

radiation of the complex 0.5 MYA resulted in the today recognized different taxa: Mus

domesticus, Mus musculus, Mus castaneus, Mus molossinus and the not clearly defined Mus

bactrianus. Mus molossinus is of hybrid origin between Mus castaneus and Mus musculus

(Boursot et al. 1993). The status of the taxa is still unresolved; depending on the authors taxa

are either classified as species or subspecies and new lineages are continuously described, e.g.

Mus gentilulus by Prager et al. (1998) and Duplantier et al. (2002). To avoid the problematic

application of species definitions I refer to the different lineages as different taxa.

Figure 1 shows the molecular phylogeny of the genus Mus with Apodemus and Rattus as

outgroups according to Boursot et al. (1993). The relationships of the sister taxa towards the

house mouse are not clearly resolved and they are assumed to be either Mus spretus, Mus

macedonicus or Mus spicilegus. The first two species occur in sympatry with Mus domesticus

while Mus spicilegus lives sympatrically with Mus musculus. All these species are still known

to hybridise occasionally with the house mouse (Boursot et al. 1993, Guenet & Bonhomme

2003).

A unique feature of these sister taxa is that they retained their aboriginal life style while all

house mouse taxa have evolved commensal lineages (Sage et al. 1993). The time of the

evolution of the commensalistic life style is still open. Ferris et al. (1983) suggest that mice

were associated with the hominid lineage already in preagricultural times. Berry et al. (1992)

claim the first real house mouse fossil from human settlements to be 80.000 years old

supporting the more broadly accepted view of multiple origins of commensalism within the

different lineages as the separation of the lineages predates the evolution of the human

associated life style (Boursot 1993, Sage et al. 1993).
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Comparisons of the abundance of fossils at sites predating and post-dating human settlements

suggest that the association with humans has led to an increase in density of house mice and

therefore the commensalism represents a selective advantage (Hesse 1979, reviewed in Sage

1981).

Due to competition in areas of sympatry with other rodents house mice occur nowadays

mainly within human settlements. Only in areas where other mouse species are absent the

house mouse is able to establish feral populations. Only Mus castaneus seems to live

exclusively commensal (Boursot et al. 1993, Sage 1981, Auffray et al.1988).

The colonization history of the house mouse to their present range all over the world is

strongly connected to human migrations and can clearly be distinguished from the distribution

pattern of the aboriginal species (Sage 1981). The strongest indication for the connections of

mouse and human migration is the colonization of the New World continents such as North

and South America and Australia as well as tropical Africa and many Atlantic and Pacific

islands where mice were absent before the human invasions. As especially the Europeans

have extensively roamed since the fifteenth century the western European house mouse Mus

Figure 1: Molecular Phylogeny of the Genus Mus based on scnDNA/DNA hybridisations
(taken from Boursot 1993)
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domesticus is the main species that has colonized these continents via human-mediated long-

distance transport (Boursot et al. 1993, Sage 1981).

Figure 2: Colonization pathways of the house mouse and closely related species (Guenet &
Bonhomme 2003).

Figure 2 illustrates the colonization pathways of the house mouse lineages and the current

distribution of the commensal and aboriginal species. While the youngest migration pathways

can easily be dated according to human colonization events during the last five hundred years

the older colonization pathways are very difficult to date. Estimations of the divergence times

of the main mitochondrial DNA lineages suggest that the initial radiation of the house mouse

occurred 0.9 MYA which is consistent with the absence of house mouse species in the fossil

record before these times (Boursot et al. 1993). The central populations in northern India,

Pakistan and Iran present very polymorphic populations that cannot be grouped in any of the

existing taxa. They represent the ancient lineages and it is assumed that the ancestors of the

house mouse complex have evolved in this region. Boursot et al. (1996) suggest their origin to

be in northern India, while Prager et al. (1998) suggest a more westward one. From there the

species spread over Southeast Asia and evolved into Mus castaneus. While northern Eurasia

and eastern Europe were penetrated by the Mus musculus lineage, the Middle East, the

Mediterranean countries and western Europe were colonized by the Mus domesticus lineage.
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The dates of the colonization of the western Mediterranean countries are highly debatable and

almost no data exist for the Asian colonization. Concerning Mus domesticus the fossil record

suggests its presence in Israel approximately 80.000 years ago (Berry & Bronson 1992).

However, other literature cites house mouse fossils in the middle East not older than 12,000

years BP only (Bonhomme 1993). The area around the Mediterranean Sea and north-west

Europe was not inhabited by mice 4000 to 2800 years ago, fossil evidence even claim

younger colonization (Cucchi, oral presentation at ECM4, Brno). Concerning colonization of

central Europe almost no details are available except that it was colonized after the last

glaciation by a south-western invasion of Mus domesticus and by a north-eastern invasion of

Mus musculus encountering a hybrid zone running in a bent line from northern Denmark to

the Caspian Sea (Hunt & Selander 1973, Bonhomme et al. 1994).

As the distribution of mice is strongly associated with human mediated transport the

colonization history of the house mouse species complex was continuously reshaped by

several invasion events and ongoing long distance transports both complicating the resolution

of the mouse migration history.

Since the house mouse has colonized nearly all places of the world, it was obviously able to

adapt to many different environments which subsequently led to differentiation and

speciation.

So far many studies were conducted to determine the origin of the house mouse species

complex and the subsequent differentiation into the different lineages by analysing nuclear

(Din et al. 1996, Munclinger et al. 2002) and mitochondrial markers (Boursot et al. 1996,

Yonekawa et al. 1994, Ferris et al. 1983, Prager et al. 1996, Prager et al. 1998, Duplantier et

al. 2002). As nuclear marker diagnostic allozymes were used to distinguish between the taxa

and to identify the width and the amount of introgression across hybrid zones (Munclinger et

al. 2002). On the basis of mitochondrial markers it was shown that the today recognized taxa

represent monophyletic lineages. However, the resolution of mitochondrial markers is too

weak to differentiate between populations within one lineage.

The weak resolution of the mitochondrial DNA might either be due to the fact that the

successive migration events during mice colonization resulted in a constant admixture of

lineages within the taxa or that the history of mouse colonization is too young to be traced by
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the divergent evolution rate of mitochondrial markers and no lineage sorting has occurred so

far. If the latter situation is true faster evolving microsatellite markers should be able to trace

the recent population history and divergence (Bowcock et al. 1994, Goldstein et al. 1995a,

Richard et al. 2001, Schlötterer 2001).

Hence, six wild caught populations of Mus musculus and Mus domesticus were genotyped for

81 microsatellite loci to find out whether the populations within the lineages can be

distinguished by their microsatellite alleles, whether they form distinct homogeneous groups

and which factors may have caused the divergence. Among these populations also two young

populations from Cameroon and the United States were analysed which are known to be

younger than 500 years. They are suitable entities to identify the level of variability of young

populations and the time they required for their differentiation. In addition to the wild caught

populations four captive bred populations were added to the analysis including one Mus

musculus population, one Mus domesticus population, one Mus castaneus population and one

lineage from Iran which remained unassigned to any of the today recognized taxa.

Mice are known to live in small family groups of four to twelve individuals with home ranges

rarely exceeding a radius of 2 km. For strictly indoor living mice home ranges can even be

restricted to a few square meters (Berry & Bronson 1992, Sage 1981). Additionally, the

longevity of such demes is very short and leads to high rates of extinction and recolonization

events. Hauffe et al. (2000) calculated extinction rates of 56% of a deme per year and found

very low migration rates within their study populations. While their study populations

consisted of populations with different Robertsonian fusion Singleton et al. (1983) found

similar results for mouse populations with acrocentric chromosomes and they estimated the

life span of their mouse demes to range between two and seven month. This indicates that

mouse demes generally have a low life span independent of the chromosomal races.

In order to have a representative sample of mouse populations within a given area and to

avoid the influence of short term specific family effects I sampled individuals from different

demes which are not related to each other.
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Materials and Methods

Samples

Mouse populations from Germany, France, Cameroon and Kazakhstan were sampled

according to the following sampling scheme: in each country mice were caught at about 50

different locations; trapped mice were assigned to different location only if the trapping sites

were at least 300 m apart from each other; mouse traps were put up in private houses, barns or

stables. Depending on the shape of the landscape, the infrastructure of the area and the

availability of suitable trapping sites the sizes of the trapping areas differ between the various

countries. Mice from the USA (provided by Bettina Harr) were sampled under the same

sampling scheme. Mice from the Czech Republic (provided by Pavel Munclinger) were

sampled under a different sampling regime and the sampling represent mice from only a few

sites, but the sites themselves are distributed over nearly the whole Czech Republic.

Additionally, animals from four captive breeds of wild derived strains from Spain, Iran,

Georgia and India were provided by Francois Bonhomme and Pierre Boursot from the wild

mice breeding centre “Conservatoire genetique de souris sauvage” in Montpellier.

A detailed list of the characteristics of the trapping sites from the different countries is listed

in Table 1.

Table 1: list of populations, their geographic origin and size of the sampling areas

Population Town Coordinates Area Size Samples
(total)

Germany around Bonn and
Cologne

50°45’N - 51°N
6°45’E - 7°E 40 x 70 59

France Severac-le-Chateau,
Massif Central

44°15’N - 44°30’N
2°45’E - 3°15’E 20 x 20 km 88

Cameroon Kumba 4°15’N - 4°30’N
9°15’E - 9°45’E 15 x 20 km 72

Kazakhstan Almaty 43°N
77°E 30 x 45 km 73

Czech
Republic

49°N - 50°30’N
12°E - 16°E

400 km x 200 km (three
main sampling patches) 50

USA Chicago 15 x 30 km 14

Spain Barcelona 41°50’N
2°E ? 12

Iran Birdjand 33°N59E ? 12

Georgia Alazani 42°N46°E ? 12

India Masinagudi ? ? 13



Chapter I                                                                                                           Mouse phylogeny
___________________________________________________________________________

15

Mice were caught in death traps. For DNA isolation mice were dissected: the spleen was

directly dissolved in 5 ml of SDS based Hom-buffer (80 mM EDTA (pH 8), 0.5% SDS,

100 mM Tris (pH 8)) without proteinase K. Liver, kidneys, heart, lung and testis were stored

in 100% Ethanol as tissue backup.

Isolation of DNA and preparation for genotyping

DNA was isolated in 15 ml falcon tubes by standard salt extraction procedures. Only DNA

from the Cameroon samples were isolated by using the extraction kit NucleoSpin® Blood XL

(Macherey - Nagel). Dried DNA pellets were resolved in 500 to 1000 µl of 1 x TE. The DNA

was stored at -20°C. For the genotyping procedures the DNA was diluted to 5 ng per µl and

stored in 96 well-plates for high throughput processing.

D-Loop sequencing

With D-Loop Primers from Prager et al. (1993) with the following sequences:

Forward-Primer: 5’-CAT TAC TCT GGT CTT GTA AAC C
Reverse-Primer:  5’-GCC AGG ACC AAA CCT TTG TGT

50 µl PCR reaction were performed by the following standard PCR conditions: final

concentration of 0.5 ng/µl DNA-template; 0.06 µmol/µl dNTP; 0.045 µmol/µl MgCl2;

0.1 µl/µl of 10 x PCR-buffer; 0.4 pmol/µl of forward and reverse primer and 0.04 units/µl of

EuroBioTaq polymerase or 0.01 µl/µl of selfmade Taq polymerase provided by Martin

Gajewski.

For the amplification the DNA template was denatured for 5’ at 94°C followed by 35 cycles

of 45’’at 94°C denaturation, 45’’ at 59°C annealing, 1’30’’ at 72°C extension and a final

extension step of 5’ at 72°C.

PCR products were purified using ultra-free filters from Millipore according to the

manufacturers protocol. Products were rediluted in 10 mM Tris (pH 8) and 100 ng PCR

product were directly added to a 10 µl cycle sequencing reaction using 3 µl of ET-Terminator

Ready-Reaction Mix (Amersham Biosciences) and 5 pmol of either the reverse or the forward

primer. Cycle sequencing was performed with 35 cycles with 20’’ at 95°C, 15’’ at 58°C and

1’ at 60°C. Sephadex G-50 columns were used for clean-up of the reaction.
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Sequencing reactions were performed on a MegaBace 1000 capillary sequencer (Amersham -

Molecular Dynamics) by the following injection protocol: DNA-injection at 3kV for 60’’

followed by a runtime of 200’ at 7 kV.

Raw sequence data were base-called by the Cimarron 2.19.5 Slim Phredify base-caller

provided within the MegaBace Sequencing Analysis Software Version 2.1. For sequence

alignment the program Seqman of the DNAstar package from Lasergene (DNASTAR, Inc.)

was used. Aligned sequences were analysed with the program Arlequin (Schneider et al.

2000) and DNASP 3.51 (Rozas & Rozas 1999).

Phylogenetic reconstruction of the samples was executed by the neighbour-joining tree

algorithm implemented in the program MEGA 2.1 using the Kimura’s two parameter model

(Kumar et al. 2001). For outgroup comparison the D-Loop sequences of Mus spretus

(Accession number: U47539) and Mus spicilegus (Accession number: U47536) were

downloaded from Genbank, NCBI.

Genotyping 10 mouse populations with 81 microsatellite loci

Microsatellite loci were selected from the mouse genetic mapping panel as part of the

database of the Whitehead Institute (Dietrich et al. 1994, Dietrich et al. 1996, Copeland et al.

1993) and from the NCBI LocusLink database (http://www.ncbi.nlm.nih.gov/LocusLink/) or

they were detected within genomic sequences available on the NCBI nucleotide database

(http://www.ncbi.nlm.nih.gov/). The characteristics of the latter microsatellite loci are that

they are in close vicinity to coding genes.

Primer sequences for the amplification of these loci were directly taken from the databases or

they were designed either by hand in the flanking regions of the repeat-units or by

downloading the relevant microsatellite loci and their surrounding regions into the primer

design software FPCR (http://www.biocenter.helsinki.fi/bi/bare-1_html/manual.htm). The

forward-primer was labelled with a fluorescence 5’-modification such as Fam, Hex or Tet and

ordered from Metabion.

Microsatellite loci of all individuals were genotyped by the already mentioned standard PCR-

conditions with varying annealing temperatures. PCR-products of three different loci of the

same individual which were labelled with different fluorescence dyes, diluted in a scale of
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1:15, pooled and mixed with an internal ET-Rox size standard (Amersham) and run in the

genotyping mode on the MegaBace 1000 capillary sequencer.

Allele calling was performed with the software Genetic Profiler 2.0 (Amersham) and the data

were transferred into an Excel spreadsheet for further analysis. General gene diversity

estimates were calculated using the Microsatellite toolkit (Park 2001) and the program Fstat

(Goudet 1995).

Deviations from Hardy-Weinberg Expectations were evaluated by the program Arlequin

(Schneider et al. 2000). To prove significant differences in the gene diversity one factor

analysis of variance with the software package SPSS 10.0 for Windows was performed. In

order to identify homogeneous groups the Scheffé procedure was applied which is a Post-Hoc

range test that groups the pairwise comparisons into significantly different and non-different

groups.

Different genetic distances such as Nei’s Gst (Nei 1972), Slatkin’s Rst (Slatkin 1995), ∆µ2

(Goldstein et al. 1995b) and the proportions of shared alleles (Bowcock et al. 1994) were

calculated with the program Microsat (Minch et al. 1995). Significance of the distances was

evaluated by performing 100 bootstraps for each data set. Tree topology was inferred with the

programs Neighbour and Consense from the Phylip 3.5c software package (Felsenstein 1993)

and visualized by the program TreeViewPPC 1.6.6 (Page 1996) and MEGA 2.1. (Kumar et al.

2001).
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Results

Mitochondrial D-loop sequence analysis

The mitochondrial D-loop was sequenced for a subset of 274 individuals. The size of the

processed and aligned sequences is 977 bp including insertions and deletions. The Iranian

sequences contain a 76 bp duplicated insertion. At the homologous position a duplication

within two Mus musculus samples from the Czech Republic is found. Shorter insertions

appear in Mus domesticus samples. Insertions and deletions are excluded from the further

analysis and subsequently the results of the total alignment are based on a sequence stretch of

810 bp. In the alignment 99 polymorphic sites are detected and 25 of them are singletons. In

total 78 haplotypes are found.

Table 2: Results of the D-loop sequencing analysis in the different populations

Indivi-
duals

sequence
length

different
haplotypes

haplotype
diversity

Nucleotide
diversity

Shared haplo-types
between populations

Kazakhstan 45 884 19 0.829 0.00349

USA 11 882 7 0.909 0.00924 1 shared with
Cameroon

India 9 880 1 0 0

Germany 45 835 23 0.934 0.01004 2 shared with
Cameroon

Spain 12 884 1 0 0 1 shared with France

Czech
Republic 18 878 8 0.669 0.01272

Cameroon 59 869 8 0.062 0.00539 1 shared with USA,
2 shared with Germany

France 57 875 16 0.862 0.0023 1 shared with Spain

Georgia 8 882 2 0.25 0.00028

Iran 10 956 1 0 0

Complete
alignment 274 810 78 0.945 0.01991

The populations of the Mus domesticus clade share only four haplotypes. The highest

proportion of haplotypes can be found in the German population followed by the Czech

Republic. The Czech Republic exhibits the highest nucleotide diversity because the

population contains Mus domesticus mitochondrial lineages from the hybrid zone. Apart from

the lab strain populations the Cameroon population shows the lowest haplotype diversity. The
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lab strains contain one or two haplotypes. Haplotypes are used to reconstruct the phylogeny of

the populations. The result is shown in figure 3.
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Figure 3: Neighbour-Joining tree of all
haplotypes and the outgroup sequences of
Mus spretus and Mus spicilegus. Total
number of the occurrence of specific
haplotypes are indicated in brackets.
Numbers at the branches indicate the
bootstrap support.
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The Neighbour-Joining tree reveals a good separation of the different taxa. High bootstrap

values of 99 support the separation of the house mouse complex from the outgroup species

Mus spretus and Mus spicilegus. All lineages within the house mouse comlex are also clearly

distinguishable from each other supported by high bootstrap values above 90. Only the status

of Mus musculus as the sister group of Mus domesticus is poorly supported by a low bootstrap

of 49.

Within the lineages very low bootstrap values are found. The musculus clade contains only

one highly supported cluster from Kazakhstan, but within the other branch a mixture of

animals from Czech Republic, Georgia and Kazakhstan exists.

Within the domesticus clade the resolution is even weaker. The French and Spanish animals

apparently form a distinct group but the accompanying bootstrap support is low. Mice from

Germany, Czech Republic, Cameroon and the USA are completely mixed and form several

clusters.

Generally, the D-loop is a suitable marker to trace population differentiation between mouse

lineages. For within lineage differentiations the resolution of the D-loop is weak although

haplotype sharing between populations is rather low. The Mus domesticus lineage exhibits the

deepest clades within the cluster while the branch lengths of the Mus musculus cluster are half

as long. The differentiation between the Iranian and the Indian samples are comparable to the

separation within the Mus musculus cluster stressing that the two lineages from Iran and India

are relatively closely related. Blasting the Iranian sequence suggests a close similarity to Mus

castaneus.

Microsatellite loci analysis: general population characteristics and phylogenetic inferences

In total 337 animals were genotyped for 81 loci including the same samples that were used for

D-loop sequencing. General gene diversity calculations are represented in Table 3. The

highest gene diversity is found in the population from Kazakhstan with an average of 12.5

alleles per locus and an expected heterozygosity of 0.69. The heterozygosity of the population

from France, Germany and the Czech Republic is comparable to the population from

Kazakhstan although the average number of alleles per locus is between 9 and 10 alleles. The

population from Kazakhstan possesses many low frequency alleles at several loci resulting in

a higher number of alleles overall which do not affect the heterozygosity. Despite of the small

sample size the population from the USA has a heterozygosity of 0.62 and an average number
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of alleles of 5.18 and is comparable to the Cameroon population. The Cameroon population

exhibits the lowest gene diversity of all wild caught populations. Again the lab strain

populations show very low diversities.

Table 3: General gene diversity parameters averaged over 81 microsatellite loci.

Population Sample
size

Loci
typed

Unbiased
Hz Obs Hz No

Alleles
No Alleles

SD
Loci non

HWE
Cameroon 68 81 0.5134 0.3917 6.67 3.73 51
Czech Republic 42 79 0.7054 0.3828 9.08 4.92 74
France 64 81 0.6454 0.4764 9.98 6.30 60
Georgia 8 81 0.3592 0.3166 2.16 0.89 7
Germany 55 81 0.6524 0.4359 10.04 6.58 68
India 6 78 0.2910 0.2342 1.94 1.18 4
Iran 11 80 0.4203 0.3401 2.55 1.09 17
Kazakhstan 59 81 0.6994 0.5671 12.67 7.21 68
Spain 12 81 0.4718 0.4043 3.27 1.60 13
USA 12 79 0.6158 0.4782 5.23 2.85 21
combined 337 81 0.776 0.446 21.58

Among the wild caught population 60 to 90% of the loci show a significant deviation from

Hardy-Weinberg Expectation. The lab populations show less loci deviating from HWE since a

lot of loci are monomorphic and the animals were bred in the laboratory under completely

different outbreeding conditions than the wild caught animals.

In the figures 4a and 4b the significant differences in heterozygosity and average number of

alleles between the populations are visualized. The one factor analysis of variance reveals

significant differences in average heterozygosity between the populations (F = 21.784; df = 9;

p < 0.001) and the average number of alleles (F = 64.665; df = 9; p < 0.001). Horizontal lines

above the bars mark the homogeneous groups with no significant differences in number of

alleles or heterozygosity. Among the wild caught populations significant differences in

heterozygosity are found between the populations of Cameroon on one side and Kazakhstan

and Czech Republic on the other side; all other comparisons are not significantly different.

The lab strains are mainly homogeneous and significantly different from all wild caught

populations except for the Cameroon population which exhibits also a very low gene

diversity.

Similar results are found for the number of alleles per locus: the Cameroon population has a

significant lower number of alleles compared to France, Germany and Kazakhstan, but a



Chapter I                                                                                                           Mouse phylogeny
___________________________________________________________________________

22

significant higher number of alleles compared to the lab strains. The population from the

Czech Republic is significantly different from Kazakhstan.
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Figure 4: a) Average gene diversity per population; b) average number of alleles per
population; populations which are not significantly different are indicated by horizontal bars
above the columns.

Since Hardy-Weinberg Expectations were violated at most of the loci no test was performed

for population differentiation such as Fst estimations. To infer whether the populations consist

of separate units which are different from each other a similarity index based on the

proportion of shared alleles between all pairs of individuals was calculated.

a)

b)
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Figure 5: Neighbour-Joining tree based on the calculation of the proportion of shared alleles
calculated for all individual comparisons

The allele sharing tree based on individuals reveals that every mouse is closer related to

individuals of its population of origin, thus allowing clear distinctions between the

populations. Every population can be characterised by a unique set of alleles. Only the

populations from the Czech Republic and from Germany contain paraphyletic groups.

For the Czech Republic population these paraphyletic groups correspond to different sampling

sites and therefore may be regarded as separate populations. For the German population the

paraphyletic branches contain samples from the extreme boundaries of the sampling area, but

they are still mixed with animals from the geographic centre of the area and hence cannot be

regarded as independent populations.
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Nevertheless, microsatellite loci are regarded as a useful tool to discriminate between various

populations and to assign individuals to their populations of origin.

To infer phylogeny from microsatellite data several distance estimators were calculated and

the resulting trees are shown in the following figures.
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Figure 5a: Neighbour-Joining tree based on the proportion of shared alleles between
populations (100 bootstraps)
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Figure 5b: Neighbour-Joining tree based on Nei’s distance (100 bootstraps)
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Figure 5d: Neighbour-Joining tree based on ∆µ2 distance (100 bootstraps)

The Nei’s distance tree reflects the same topology as the individual allele sharing tree. High

bootstrap values support the divergence between the lineages. Although within the lineages

populations are separated by relatively low bootstrap values. Similar results are achieved by

calculating the proportion of shared alleles between the populations. Only the topology within

the domesticus clade differs from Nei’s distance. Bootstrap values within the domesticus clade

are low.
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Analyses of the trees based on Rst and ∆µ2-values cannot resolve the differences between the

lineages. All bootstrap values are very low and a separation of the different taxa is not

possible. Hence, these methods are considered not suitable to analyse this dataset.

Based on the allele sharing tree and on Nei’s distance estimation deep clades between the

different lineages are visible.

Within the lineages the Mus musculus animals from Kazakhstan and Georgia cluster very

closely together followed by the geographically more distant mice from the Czech Republic.

Within the Mus domesticus clade the resolution is not obvious. Only France and Spain form a

distinct cluster which was already evident in the D-loop analysis.

In the allele sharing tree based on individuals Germany appears to be the basal population

from which the other populations evolved whereas in the allele sharing tree based on

populations the Cameroon population seems to be more basal. Bootstrap values within the

clades for this tree are low and do not allow any inferences about the true relationships.

The topology for Mus domesticus in the allele sharing tree based on individuals is starlike and

the branch lengths are shorter than in the Mus musculus clade suggesting that the populations

are younger. The shortest branch lengths are found in the Cameroon population. The short

branch lengths within the Mus domesticus clade contradicts the results of the D-loop tree.

Shorter branch lengths suggest younger populations while the D-loops sequences contained

older lineages.

There is no correlation with the geographic distance between the populations as the

geographically closest populations from Germany and France exhibit the greatest genetic

distance.
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Discussion

Inferences from the D-loop sequence analysis

As shown in other studies (Boursot et al. 1993, Prager et al. 1998, Duplantier et al. 2002)

sequencing D-loops is a valuable tool to identify different lineages within the house mouse

species complex. D-loop sequencing of the ten wild caught and lab derived mouse

populations analysed in this study allowed to assign mice to the different taxa such as Mus

musculus, Mus domesticus and Mus castaneus. In particular in the hybrid zone within the

Czech Republic mitochondrial markers allowed to assign the samples to one of the two clades

(Munclinger et al. 2002).

The Indian and Iranian samples cluster closely together and form the basal sister group to the

musculus-domesticus clades. However, these results do not provide any significant

contribution to the ongoing discussion about the localisation of the phylogenetic origin of the

house mouse being either in northern India (Boursot et al. 1996) or closer to the Arabian

peninsular (Prager et al. 1998), because both populations appear to be equally basal to the

Mus domesticus and Mus musculus clades in the allele sharing distance and Nei’s distance

calculations.

Within the clades D-loop sequences do not resolve differences between the populations. Only

the animals from France and some from Kazakhstan form distinct groups while all other

groups are fairly strongly intermixed stressing the fact that some of the populations are still

very young and lineage sorting has not occurred. This strong mixture of haplotypes from

different countries corresponds to the studies of Prager et al. (1996) who analysed samples

from a broad area spanning from Egypt to east Asia. They found monophyletic lineages for

the different taxa but no correlation with isolation by distance of the different haplotypes.

Although only four out of 78 haplotypes were shared between the populations the many

differences between them consisted of a majority of single nucleotide exchanges which do not

contribute strongly to the genetic distance. Additionally, some of those nucleotide exchanges

were singletons which may be regarded as very recent mutation events or as sequencing

artefacts.

The populations from the Czech Republic and especially from Cameroon show very low

haplotype frequencies. For the Czech Republic this result might be explained by the

differences in the sampling design: although the sampling area covered the biggest region the
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number of  “different locations” - according to the my definition of different locations -

within this area is rather low. Animals caught from the same location are likely to be related

and members of the same deme.

For the Cameroon populations the extreme low number of haplotypes is probably due to the

founder effect of the young African population.

The populations from the wild mouse strains kept in the breeding centre consisted of only one

or two haplotypes which might be due to the fact that the original samples came from single

localities. Under captive breeding conditions with a low effective population size haplotypes

are likely to be lost by genetic drift.

The longest branches within the D-loop tree are found in the domesticus clade which might

lead to the interpretation that Mus domesticus is more diverse and therefore older than the

Mus musculus clade as suggested by Boursot et al. (1996) and Prager et al. (1996). Since my

domesticus samples are known to be taken from rather young populations (Boursot et al.

1993) I assume that the depth of the clades in my samples is dependent on the origin of the

different ancestral founders and is therefore a random result. Inferences about ages of

populations based on diversity are only reasonable if more representative sampling is done in

continuous regions as for example in Prager et al. (1998).

The use of microsatellite markers in phylogeny and population history of house mouse
populations

To infer phylogeny within the clades I tried to get a resolution with faster evolving

microsatellite markers. Depending on the different time frames, the number of samples and

loci the different estimators perform differentially well to describe phylogenetic relationships

between populations (Goldstein et al. 1995a, Paetkaeu et al. 1997, Richard et al. 2001). For

the mouse data set the Rst- and ∆µ2-distance estimators gave very bad resolutions of the

divergence between lineages and populations: Lineages previously clearly identified by

D-loop analysis were mixed again; generally bootstrap values were very low. Rst- and ∆µ2-

estimators are based on the stepwise mutation model and measure, in particular, the variance

in repeat numbers (Richard et al. 2001). These distance estimators produce wrong results,

because of violated assumptions of the mutation model, very tight constraints on alleles

distribution, or very old separation of populations (Goldstein et al. 1995a, Richard et al. 2001,

Paetkau et al. 1997). Constraints on allele distribution result in the effect that after sufficient
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time of divergence all distance measurements applied to these loci will reach maximum

values and, therefore, are not suitable to infer phylogenies of very distantly related taxa

(Goldstein et al. 1995). Concerning my populations these estimates did not resolve any

phylogeny because of high differences in mutation rates and deviations from the stepwise

mutation model in the used microsatellites.

The different distance estimators mainly affected the clustering of the captive bred strains.

These populations are characterised by their low effective population size indicating that the

distance estimators perform differentially well for different population sizes (Schlötterer

2001). Removing these populations from the analysis results in more consistent phylogenies

for all different distance estimators (data not shown).

Best results were achieved by applying a simple similarity index based on the proportion of

shared alleles as no assumptions about mutation mechanisms or populations sizes are implied.

These estimators were applied to populations as well as to individuals and both applications

led to similar results. Only Cameroon and Germany changed places in the two allele sharing

trees leaving all other topologies unchanged. The reason for the difference in the two trees is

that the German population consists of several paraphyletic clusters which is shown in the

allele sharing tree based on individuals. In the individual allele sharing tree the Cameroon

population is a direct sister group to one paraphyletic group of the German population

indicating a close relationship to the German samples. This relationship can be problematic

for the resolution of the true relationship in the allele sharing tree based on populations.

Iran and India can be regarded as basal populations from which the other two clades

descended. The separation between musculus and domesticus is very well supported by high

bootstrap values in the allele sharing and Nei’s distance tree. Within the musculus clade there

is a clear divergence between Czech Republic and the Kazakhstan-Georgia cluster which

would partially correspond to an isolation by distance pattern. The allele diversity is very high

and especially the branches in the individual allele sharing tree are very long compared to the

domesticus branches suggesting an older origin of these populations. This contradicts the

interpretation of the D-loop results with longer branches in the Mus domesticus populations.

Nevertheless, I assume that the D-loop results are an artefact of the sampling design. The

microsatellite analysis appears to be more reliable because for the Mus domesticus

populations four populations, collected under my stringent sampling regime, exhibit the same
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pattern in the individual allele sharing tree with a starlike phylogeny. This phylogeny would

correspond to the assumption that all domesticus populations are rather young. Interestingly,

there is no real difference in variability and shape of the phylogeny between the European

populations and the “overseas” populations which are known to be younger than 500 years.

The European samples are probably younger than the proposed 4000 to 2800 years

corresponding with the assumption of Cucchi (oral presentation at ECM4, Brno). To verify

this assumption it would be necessary to sample older Mus domesticus populations from the

near East which are known to be at least 10.000 years old.

In contrast to the starlike phylogenies of the Mus domesticus samples the Kazakhstan

population exhibits a much more structured allele sharing tree. No sampling artefact can be

responsible for this as the Kazakhstan population was collected under my stringent sampling

regime and the size of the sampling area is comparable to the areas in France and Germany.

Therefore, I assume that the Kazakhstan population is older than the domesticus populations

and possesses a higher gene diversity and a longer genealogy of the microsatellite alleles. No

inferences can be made about the Czech population because of the different sampling regime.

A young origin of the Mus domesticus clade also corresponds to the low resolution of the

cluster with microsatellite alleles. No real inferences can be made about the relationships

between the examined populations. D-loops are shared between Germany, Cameroon and the

USA suggesting that these populations are more closely related to each other which, however,

is only partially supported by microsatellite analysis. Based on the D-loop and microsatellite

analysis France and Spain seem to form distinct groups. The France samples were caught in a

remote area in the Centre of the Massif Central where agricultural land-use has persisted for a

couple of hundred years or even longer, thus allowing relative constant development of mouse

populations. As the turnover of demes is very high it is very probable that in such a remote

area recolonization takes place from neighbouring demes (Singleton 1992). Thus, in remote

areas the chance of long distance dispersal is lower which could explain the distinct D-loops

and microsatellite clusters for the France population.

In contrast, the German samples belong to an area which has definitely undergone many

structural changes during the past centuries. Agricultural land-use was not as persistent as in

the French area resulting in less stable mouse populations and presumably in more

possibilities of long distance transport and colonization events. Interestingly these populations
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share more haplotypes with the “overseas” populations in Cameroon and USA leading to the

assumption that they are either more closely related to each other than anticipated or that they

were affected in similar ways by recent and still ongoing colonization events.

Concerning the lab strains I also found distinct clusters for all populations. Due to their

reduced effective population size, the small number of individuals and the different sampling

regime no further inferences about age and general diversity estimates compared to the wild

caught populations can be made.

Summarising, I found that the Mus musculus populations can be nicely separated by

microsatellite analysis and also inferences about phylogeography can be made. As the Mus

domesticus populations are rather young no clear phylogeny can be inferred from

microsatellite analysis.

Concerning the diversity of the studied mouse populations the wild caught populations exhibit

comparable gene diversities. Only the Cameroon population shows a significantly reduced

number of alleles and heterozygosity. Contrary, mice from the USA show higher diversities

although the sample size is much smaller. The low gene diversity and the short branches in

the allele sharing tree of the Cameroon population indicate that this population is very young

and was recently founded.

The lab populations exhibit the lowest gene diversities due to the small number of individuals

and the small effective population size under breeding conditions. They were valuable as

outgroups for my phylogenetic estimates but with these populations no further estimates about

their age and general population genetic parameters are possible.

Thus, microsatellites are a valuable tool to show that mice within one area can be

distinguished by their microsatellite alleles as almost each mouse of the 337 samples could be

assigned to its original population by calculating its individual allele sharing index among all

individuals.

This result is very important because most of the loci deviated from Hardy-Weinberg

Equilibrium which is always an indicator for subdivided populations. Since based on their

family structure mouse populations are strongly subdivided it was very important to prove

that demes within a neighbourhood are closer related to each other than to those from distant
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regions. Although demes are short living entities mouse populations of a whole region

develop as homogeneous units because of short distance migration and recolonization by

neighbouring demes. Thus, mice from one area are assumed to have evolved under the same

environmental demands and selection pressures which naturally differ from those in other

areas. Most probably these different influences may have left signatures of selection within

the different mouse populations. Since phylogenetic analysis revealed that most of the wild

caught populations form distinct units and exhibit similar gene diversities these populations

can be used to study the differences within the genomes which are a result of different

selection pressures.
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Screening multiple microsatellite loci identifies selective sweep genes by a

hitchhiking approach

Introduction

Evolution and natural selection is a permanent process which in the past has reshaped

organisms and continues to form and change existing organisms. Nowadays, populations

represent just a snapshot of the evolution and their acquired characteristics do not allow

inferences about the evolutionary forces that have formed them (Grant & Grant 2002).

Although the results of natural selection are clearly visible in terms of different species and

various adaptations within species, almost nothing is known about the actual mechanisms of

evolution that created the different traits (Rieseberg et al. 2002). The mechanisms of selection

and the molecular evolution have been a dominant issue of discussion in the past three

decades and many population genetic theories have been developed (Kimura 1983, Nei 1987,

Maynard Smith & Haigh 1974). On the one hand, neutral mutations within a species result in

DNA variations which are proportional to the amount of divergence between species; on the

other hand, non-neutral mutations lead to differentiation independent of intra-specific

variation. Non-neutral mutations under negative or positive selection pressure are either

eliminated from a gene-pool or they increase in frequency within populations. These

phenomena are known as background selection or selective sweeps (Maynard Smith & Haigh

1974). In both cases, these effects leave traces in the genomes because the elimination or the

increase in frequency of a mutation also affect the flanking regions; this effect is called

hitchhiking event (Maynard Smith & Haigh 1974, Fay & Wu 2000). Hitchhiking events result

in reduced polymorphism in the flanking regions of the advantageous mutation (Kaplan et al.

1989). The region exhibiting the reduced polymorphism is referred to as the selective sweep

window. Although it is still unclear to which extent neutral, positive and negative selection

are acting upon populations and which molecular mechanisms are responsible for adaptations

(Fay & Wu 2001, Schlötterer 2002a) these theories allowed the development of several tests

for the identification of regions and genes under selection within populations and species.

In the past decade the development of molecular techniques became a powerful tool in

population genetics, and they were applied to verify the theoretical models in natural

populations. First approaches used single candidate genes that were already known to be

shaped by environmental selection pressure. Changes within the genomic region of a
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candidate gene were directly linked to a change of the phenotype. These genes were, for

example, resistance genes in mosquitoes (Yan et al. 1998), in rats (Kohn et al. 2000, Kohn et

al. 2003) and in the Malaria parasites Plasmodium falciparum (Wootton et al 2002, Nair et al.

2003). Other genes identified to be subjected to positive selection and selective sweeps were

involved in reproductive isolation between species, for example the Sdic gene (Nurminsky et

al. 1998) and the Nup96 gene (Presgrave et al. 2003) in Drosophila, or they were involved in

lineage specific new characteristics such as the Foxp2 gene which is relevant for the human

ability to develop language and speech (Enard et al. 2002).

All these studies dealt with the monogenic traits that were shaped under extreme selection

pressures and some of these studies even identified species specific genes. Nevertheless,

selective sweeps and hitchhiking events can influence polygenic traits and occur under

weaker selection pressure in local populations of a species. They may be used to identify

genomic regions exposed to recent selection pressures although the different phenotypes are

not easily measurable (Schlötterer 2003). As genome wide approaches with neutral markers

already have identified multiple regions exhibiting traces of hitchhiking events this method

seems to be a tool to identify "new" i.e. not yet identified genes which play a role in

adaptation processes: first evidence resulted from screening neutral markers which exhibited

reduction of polymorphism or skews in the allele frequency distributions independent on

demographic events (Schlötterer et al. 1997, Payseur et al. 2002, Vigouroux et al. 2002, Kauer

et al. 2002, Kayser et al. 2003).

Several methodological concepts were developed to identify regions subjected to selection

and the different methods and statistics were reviewed by Fay & Wu (in press), Nurminsky

(2001) and Schlötterer (2003).

The molecular methods to identify regions under selection are either based on sequencing

approaches or on typing microsatellite markers. Both methods require different statistical

treatments. Sequencing approaches offer the possibility to identify ancestral and derived states

of a polymorphism by sequencing the common ancestor of two populations or a closely

related taxon as an outgroup. Several statistics as the H-Test (Fay & Wu 2000) or the

composite likelihood test (Kim & Stephan 2002) apply these characteristics to detect local

signatures of selection. Those tests analyse the frequency of new derived mutations, and

calculate whether the frequency spectrum follows neutral or non-neutral expectations. Similar
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approaches which are only based on the frequency of polymorphisms were developed by

Tajima (1989) and Fu & Li (1993). The Hudson-Kreitman Aguadé test compares interspecific

divergence to intraspecific polymorphism which correlate under neutral conditions (Hudson et

al. 1987).

Microsatellites require very different tests. Since many different alleles exist at one locus the

ancestral states of microsatellites are difficult to determine. Wiehe (1998) showed that

microsatellite variation is effected by selection due to the hitchhiking effect but the effect is

dependent on the time to fixation of the linked favourable mutation. High mutation rates

quickly obscure the hitchhiking effect. Hence microsatellites only show effects of selective

sweeps within a certain time frame which is dependent on the mutation and recombination

rate.

The expected effect of a selective sweep event on a microsatellite locus is that the locus

shows reduced variability within the population which was affected by the selective sweep

event. To identify such a locus inferences about the neutral variability are necessary and

demographic factors such as general low variabilities must be taken into account. Since

mutation rates differ strongly between loci (Ellegren 2000) neutral assumption for each

microsatellite are difficult to infer. Schlötterer (2002b) developed a statistical test that is

independent of locus specific or demographic effects and solely relies on the comparison of

gene diversities of different populations which are likely to be affected by different selection

pressures: the lnRV and lnRH statistics are based on direct pairwise comparisons of variance

in repeat units (V) or heterozygosities (H) at multiple loci. Loci at the same genomic location

are assumed to evolve under the same mechanisms and same constraints. Due to the pairwise

comparisons locus specific effects such as mutation rates are eliminated. Demographic effects

are controlled for by inclusion of multiple loci because all loci of one population are equally

affected by a demographic event.

This approach allows the identification of extreme differences at one locus independent of

demographic effects which might be the result of a locus specific selection event.

Other tests like the Lewontin-Krakauer test apply genetic distance estimators such as the Fst-

values per locus to identify loci for which distance estimators deviate extremely from the

other loci (Baer 1999). Since the variance of Fst values per locus under neutrality is

substantially high this could lead to many false positive sweeps if this method is solely

applied (Schlötterer 2003). Within populations, deviation from neutrality can be inferred from
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the expected and observed allele frequency distribution as done in a study on human

microsatellite allele distributions by Payseur et al. (2002).

Other approaches rely on the fact that selective sweeps show extended linkage disequilibrium

as found in studies of Gilad et al. (2002), Kohn et al. (2000) and Sabeti et al. (2002).

The growing amount of theoretical knowledge in combination with today's high throughput

genotyping procedures allows to address the question to which extent natural populations are

affected by selection and, in particular, which genes are responsible for the different

adaptations or even speciation events. To study these questions the house mouse was selected

as a model system because

- the species has colonized many different habitats all over the world (chapter 1) and

was certainly confronted with different selection pressures which must have left traces

within the genome of the different populations;

- the house mouse species complex is relatively young. It diverged from the other Mus

taxa less than one million years ago and even younger splits in the different lineages

such as Mus domesticus and Mus musculus occurred. The new world continents are

known to be colonized by the house mouse within the last centuries forming very

young entities (chapter 1);

- the first draft of the full genomic sequence became available in 2002 at public

database such as ENSEMBL (http://www.ensembl.org/) and NCBI (http://www.ncbi.

nlm.nih.gov/genome/guide/mouse/ );

- the house mouse is a model system in biomedical research and many genetic,

biochemical and physiological information about the species is available;

- the ecology of wild house mice has been extensively studied.

All these factors are an important basis for studying and understanding natural selection and

the molecular mechanisms underlying the adaptations of the house mouse to different

environments.

To identify selective sweeps I chose genotyping of microsatellite loci because genotyping

costs are lower and the processing of samples is faster than in sequencing approaches. In total,

81 microsatellite loci in six wild caught populations from Germany, France, Cameroon, USA,

Czech Republic and Kazakhstan were screened. Detailed information about the populations

was given in chapter 1. Most microsatellite loci were directly linked to genes that are likely to

play a role in response to the abiotic or biotic environment: resistance genes are likely to be
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shaped by different pathogenic environments; genes involved in environmental perception

such as olfactory receptor genes; saliva genes which are involved in social interactions such

as mate choice; genes that are differentially regulated as fast responses to changing

environments and genes that are already known to play a role in species barriers such as

hybrid sterility genes. In addition, four microsatellites were chosen randomly from the genetic

map of the Whitehead Institute (http://www-genome.wi.mit.edu/cgi-bin/mouse/index). I call

this approach “multi-locus candidate gene approach”. This approach was chosen because the

extend of sweep windows are still a matter of debate and the direct physical linkage to the

candidate locus increases the chance of detecting a sweep event (Nair et al. 2003, Glinka et al.

2003, Saez et al. 2003). In a separate approach, 106 random microsatellite loci, selected from

the genetic maps of the mouse (Dietrich et al. 1996), were genotyped in four populations from

Germany, France, Cameroon and Kazakhstan, which were also used in the multi-locus

candidate gene approach. This approach intended to evaluate the likelihood of detecting

selective sweep events by randomly chosen microsatellite loci.

For statistical analysis the lnRV and lnRH tests were chosen since they proved to be robust to

small demographic differences such as recent bottlenecks and differences in mutation rates of

the microsatellite loci (Schlötterer 2002b).

 The aim of these microsatellite screens was:

- to evaluate whether microsatellite genotyping is a suitable tool to identify traces of

selection within different populations of the house mouse;

- to determine which kind of genes are affected by selective sweeps;

- to evaluate the usefulness of the “multi-locus candidate gene approach” versus the

“random microsatellite approach”;

- to identify possible differences in the performance of the different microsatellite

markers depending on their characteristics such as repeat length and variability.
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Materials and Methods

Six wild caught mouse populations were used to search for selective sweep events. Two

populations were Mus musculus types from Kazakhstan and the Czech Republic and four

populations were Mus domesticus types from Germany, France, Cameroon and the USA.

Details about the sampling design, the phylogeny and population history of these populations

are presented in chapter 1. The analysis for selective sweeps is based on the same 81 micro-

satellite loci that were also used to infer the phylogenetic relationships. These microsatellites

were selected from genomic sequences in the flanking regions or within introns of genes

which are likely to respond to environmental selection pressures. Genes were chosen from the

following databases:

- Pubmed, Locuslink and Nucleotide database (http://www.ncbi.nlm.nih.gov/) were

screened with the following keywords: “interferon”, “resistance”, “speciation”,

“behaviour”, “imprinting”, “olfactorious”, “saliva”.

- Differentially expressed genes from a preliminary micro-array experiment comparing

differential expressions from different mouse taxa.

Genomic sequences of these genes were downloaded and screened for microsatellite repeats

by applying a text search for all different kinds of di-, tri- and tetra-nucleotide repeats. An

overview of the used loci, their search history, sequence characteristics and location on the

chromosomes is given in Table 1. This screen will be referred to as the “multi-locus candidate

gene approach”.

Additionally, 48 animals each of the populations from Kazakhstan, Germany, France and

Cameroon were screened for 106 microsatellite loci. Theses marker were extracted from the

genetic map of the Whitehead Institute: 41 microsatellites were located on chromosome 1 and

selected to represent equal centiMorgan locations; 39 markers were located on chromosome 9,

and 26 markers were located on chromosome 15. This screen is referred to as the "random

microsatellite screen".

Table 1: List of used loci containing short tandem repeats within their sequences, the search
history of the loci, the Genebank accession number, the characteristics of the repeat types, the
location on the chromosome and the distance of the repetitive sequences to the coding regions
of the genes.



internal
number

search
history Accession Name size Number of repeats Chromo-

some Location of microsatellite locus

P1 M37707 Ly-6E/A gene 267 (TGGG)4 15 within genomic sequence; max 1 kb distance to exon

P7 M32489 Mouse interferon consensus sequence binding protein
mRNA 684 indel 8 within genomic sequence; max 1 kb distance to exon

P8 AJ299405 Microtubule associated protein 44 (Mtap44gene) 160 (CA)24 3 within genomic sequence; max 1 kb distance to exon

P10 L09126 Calcium-independent nitricoxide synthase (iNOS) 200 (GT)36 11 within genomic sequence; max 1 kb distance to exon

P11 L23806 Nitricoxide synthase (Nos-1) 249 (GT)36 11 within genomic sequence; max 1 kb distance to exon

P12 X07640 Cell surface glycoprotein Mac-1 alpha-chain 217 (GT)(GA)48 7 within genomic sequence; max 1 kb distance to exon

P14 U20949 Lymphoid-specific interferon regulatory factor (LSIRF) gene 180 (GTT)(GGT): 97 bp 13 within genomic sequence; max 1 kb distance to exon

P19 X01973 Interferon alpha 4 (MuIFN-alpha4) 185 (GTTT)(ATTT)12 4 within genomic sequence; max 1 kb distance to exon

P25 NM_008331 Interferon-induced protein with tetratricopeptide repeats1
(Ifit1) 183 (GTT)9 19 within genomic sequence; max 1 kb distance to exon

P26 U06237 Interferon alpha/beta receptor (IFNAR) gene 196 (GTn): 47 bp 16 within genomic sequence; max 1 kb distance to exon

P27

G
en

eb
an

k:
 In

te
rfe

ro
n

U19119 G-protein-like LRG-47 156 (TAAA)8 11 within genomic sequence; max 1 kb distance to exon

P29 D17Mit71 MS next to gene protein kinase, interferon-inducible double
stranded RNA dependent 106 (GT)23 17 same linkage group

P31 D4Mit302 MS next to interferon alpha family 108 (TG)23 4 0.1 cM distance (MGI backcross map)

P32 Lo
cu

sl
in

k:
In

te
rfe

ro
n

D1Mit349 MS next to  interferon activated gene 201 (Ifi201) 118 (TG)26 1 0.6 cM distance (MGI backcross map)

P33 D1Mit1 D1Mit1 125 (CA)24 1

P34 D1Mit100 D1Mit100 244 (TG)22(TA)48 1

P35 ra
nd

om
ly

ch
os

en

D1Mit200 D1Mit200 199 (TAGA)19(TA-GT-CA):58
bp; interrupted 1

P36 AB051897 Scya6, Scya9, Scya16-ps, Scya5 genes 338 (CT)(GT)96 11 8 kb upstream Scy6

P37 D83329 Prostaglandin D2 synthase 291 (TA)(CA)100 2 5 kb upstream

P38 D78343 Ig gamma-chain, secrete-type and membrane-bound 225 (GA)48 12 within genomic sequence; max 1 kb distance to exon

P42 AF021345 Plasma selenoprotein P (SELP) gene 290 (GT)12(CA)23(CAGACA)4 15 within genomic sequence; max 1 kb distance to exon

P44 D78344 Ig gamma-chains, partial cds 304 (TC)(GT)43 14 4 kb distnat from exons

P45 M65161 Pro-alpha1 (II) collagen chain gene 267 (GA)36 11 within intron; max 1 kb from exon

P46 M17376 Alpha-1-acid glycoprotein I (AGP-1) gene 350 (GT)28 4 within genomic sequence; max 1 kb distance to exon

P47 AJ271004 TFF3/ITF gene for Trefoil Factor 3/Intestinal Trefoil Factor
protein 541 (GA)(CA)150 2 within genomic sequence; max 1 kb distance to exon

P49

di
ffe

re
nt

ia
lly

 e
xp

re
ss

ed

X56790 Growth factor inducible immediate early gene cyr61 352 (CA)27 3 within genomic sequence; max 1 kb distance to exon
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internal
number

search
history Accession Name size Number of repeats Chromo-

some Location of microsatellite locus

P50 D3Mit19 MS next to NDV-induced circulating interferon (Ifi1) 159 (CA)23 3 0.1 cM distance  (MGI backcross map)

P51 D17Mit200 MS next to interferon activated gene 15  (Ifi15) 123 (CA)12 17 0.3 cM distance (MGI backcross map)

P52 D10Mit187 MS next to interferon gamma 254 (TG)29 10 0.5 cM distance (MGI backcross map)

P53 D6Mit47 MS next to interferon regulatory factor 5 (Irf5) 189 (CA)15 17 0.3 cM distance (MGI backcross map)

P54 D14Mit261 MS next to interferon dependent positive acting transcription
factor 3 gamma (Isgf3g) 92 (GT)18 5 same linkage group  (MGI backcross map)

P55 D5Mit89 MS next to chemokine (C-X-C motif) ligand 9 (Cxcl9) 147 (CA)33 interrrupted 6 same linkage group (MGI backcross map)

P56 Lo
cu

sl
in

k:
 In

te
rfe

ro
n,

 li
nk

ed
M

S

D11Mit140 MS next to interleukin 3 (Ili3) 129 (GT)19 9 0.5 cM distance (MGI backcross map)

P57 M73741 Alpha-B2-crystallin gene 328 (CT)20 4 within genomic sequence; max 1 kb distance to exon

P58 M36120 Keratin 19 gene 348 (CAGA)11 15 within genomic sequence; max 1 kb distance to exon

P59 AF071001 PHR1 (Phr1) gene 281 (GT)27 19 4 kb upstream

P61 di
ffe

re
nt

ia
lly

ex
pr

es
se

d

X14061 Beta-globin complex DNA for y, bh0, bh1, b1 and b2 genes,
bh2 and bh3 pseudogenes 363 (CA)15 7 within intron; max 1 kb from exon

P62 U44903 GTP binding protein (IRG-47) gene 369 CAA/CAAAA: 63 bp 11 within genomic sequence; max 1 kb distance to exon

P63 NM_008331 Interferon-induced protein with tetratricopeptide repeats 1
(Ifit1) 388 (GTT)10 19 within genomic sequence; max 1 kb distance to exon

P66 Lo
cu

sl
in

k:
In

te
rfe

ro
n;

M
S 

w
ith

in
ge

ne
se

qu
en

ce

U06237 Interferon alpha/beta receptor (IFNAR) gene 387 (GTTT): 59 bp,
interrupted 16 within genomic sequence; max 1 kb distance to exon

P67 randomly
chosen D17Mit23 D17Mit23 137 (GTTT-GTT): 49 bp,

interrupted 17

P71 NM_011445 SRY-box containing gene 6 (Sox6) 197 (CAA)5 7 within genomic sequence; max 1 kb distance to exon

P72 NM_011444 SRY-box containing gene 5 (Sox5) 162 (GAAA)7 6 within genomic sequence; max 1 kb distance to exon

P73 AF070933 YFVB sex determining region of Y protein 265 (GA/GGAA): 114 bp Y within genomic sequence; max 1 kb distance to exon
P76 AF342999 Axonemal dynein heavy chain 8 Dnahc8 gene 330 (CAA/CAAAA): 71 bp 17 2 kb upstream

P83 M32352 Mouse renin (Ren-1-d) gene 238 (CA)18 1 within genomic sequence; max 1 kb distance to exon

P85 U84291 Ornithine decarboxylase antizyme gene 232 (GA)39 10 within genomic sequence; max 1 kb distance to exon

P92 AF363577 Haplotype t axonemal dynein heavy chain 8 short form 2
(Dnahc8) 299 (TCC): 45 bp, interupted 17 within genomic sequence; max 1 kb distance to exon

P94

G
en

eb
an

k:
 s

pe
ci

at
io

n

NM_013486 CD2 antigen (Cd2) 184 (TCC): 45 bp, interupted 3 within genomic sequence; max 1 kb distance to exon

P103 AJ300673 Beta-defensin 8 326 (GT)(CT)100 interrupted 8 within genomic sequence; max 1 kb distance to exon

P104 AB063110 Beta-defensin 6 327 (GT)(CT)100 interrupted 8 within genomic sequence; max 1 kb distance to exon

P106 D29794 T cell receptor gamma chain 337 (GT)(CT)90 13 within genomic sequence; max 1 kb distance to exon

P108 Pu
bm

ed
: s

al
iv

a
ge

ne

X68699 Psp gene for parotid secretory protein 237 (GT)25 2 within genomic sequence; max 1 kb distance to exon
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internal
number

search
history Accession Name size Number of repeats Chromo-

some Location of microsatellite locus

P116 U82375 MSG2alpha, beta, gamma, delta and epsilon salivary protein
(Vcs2) 324 (GTTT)(ATTT)24 5 within genomic sequence; max 1 kb distance to exon

P118 AC091802 Chromosome 2 clone RP23-52P17 282 (TC/TTCC): 96 bp 2
P119 AC091747 Chromosome 19 clone RP23-64I16 263 GTT/GTTT: 62 bp 19

P120 AC091745 RP23-52M7 238 (CA)23 2

P121 AC091743 RP23-71E10 361 (TA): 120 bp, interrupted 10
P122 AL136158 RP21-538M10 381 (CTTT/CCTT): 128 bp 17

P126 AF133300 MOR 3'Beta1, MOR 3'Beta2, MOR 3'Beta3, MOR 3'Beta4,
Cbx3 pseudogene, MOR 3'Beta5 and MOR 3'Beta6 genes 215 (GT)18(GA)15 7 21 kb upstream to exon

P127 Y09167 MATH4B gene 319 (GA)22 10 within genomic sequence; max 1 kb distance to exon

P129 AJ251155 Nasal embryonic LHRH factor (Nelf-pending) 219 (GT)23 4 6 kb upstream

P133 NM_008192 Guanylyl cyclase 2e (Gucy2e) 253 (GACA): 60 bp 11 within genomic sequence; max 1 kb distance to exon

P139 AF016619 Rb-8 neural cell adhesion molecule short form precursor
(RNCAM) 194 (CCTCT): 37 bp 16 within genomic sequence; max 1 kb distance to exon

P141 U49391 Cyclic nucleotide-gated olfactory channel protein gene 327 (GTTT/GT): 35 bp X within genomic sequence; max 1 kb distance to exon

P142 X92969 OR23 gene 333 (TC/GT)38 1 within genomic sequence; max 1 kb distance to exon

P146

G
en

eb
an

k:
 o

lfa
ct

or
y 

ge
ne

s

U01213 Olfactory marker protein (OMP) gene 312 (CCT): 112 bp 7 within genomic sequence; max 1 kb distance to exon

P148 AB007765 Mest gene 249 (GT)25 6 within genomic sequence; max 1 kb distance to exon

P149 NM_010514 Insulin-like growth factor 2 (Igf2), mRNA 212 (CA)18 7 within genomic sequence; max 1 kb distance to exon

P150 AF049091 H19 and muscle-specific Nctc1 genes 158 (GT)18 7 10 kb downstream

P151 AB030734 Peg8/Igf2as 148 (TA)14 7 within genomic sequence; max 1 kb distance to exon

P153 AF130348 Zfp127 protein gene 195 (CA)14 7 4 kb upstream

P154 AF198619 Snrpn gene 217 (GA/GAA): 46 bp 7 within genomic sequence; max 1 kb distance to exon

P155 AF081460 Small nuclear ribonucleoprotein N gene 187 (TG)23 7 within genomic sequence; max 1 kb distance to exon

P156 D78349 Preproadrenomedullin 203 (TG)20 7 within genomic sequence; max 1 kb distance to exon

P157 U84903 L23 mitochondrial-related protein (L23mrp) gene 188 (TG): 16 bp, interrupted 7 within genomic sequence; max 1 kb distance to exon

P158 AF139595 Mash2 gene 168 (CA)31 7 within genomic sequence; max 1 kb distance to exon

P159 AJ251788 Tssc6 gene 255 (CA)21 7 5 kb upstream

P160

G
en

eb
an

k:
 im

pr
in

tin
g

AP001916 Clone:B131C 223 (CA)20 7

P111a linked MS to
olfactory gene D15Mit243 Aquaporin 5 (Aqp5) 125 (GT)22 15 same linkage group (MGI backcross map)

P140a linked MS to
saliva gene D14Mit203 Olf-1/EBF-like-3 transcription factor (O/E-3) 149 (GT)30 14 0.2 cM distance (MGI backcross map)

41

   
 C

ha
pt

er
 II

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  M
ic

ro
sa

te
lli

te
 S

cr
ee

n



Chapter II                                                                                                    Microsatellite Screen
___________________________________________________________________________

42

Statistical analysis

General gene diversity estimates were calculated by using the Microsatellite Toolkit (Park 2001)

and the progam MS Analyser (Dieringer & Schlötterer 2003). For all microsatellites of the

“multi-locus candidate gene approach” the length of the repeat region was calculated by

subtracting the smallest from the largest allele found among all samples. Markers were classified

into pure dinucleotide repeat units, interrupted repeats, and tri- and tetranucleotide repeat units

and analysed for any correlation of repeat type or length of the repetitive sequence with the

variability indices such as expected heterozygosity, variance in repeat units and number of

alleles. Kruskal-Wallis tests and regressions of the program SPSS 10.0. were applied to find

significant differences.

To identify loci under selection pressure the lnRV and lnRH statistics according to Schlötterer

(2002b) and Kauer et al. (2003) were applied. This approach is based on the following equations:

=RVln ln ( )( )
( )( )21Re

11Re
poplocVar
poplocVar VarRe =   variance in repeat units

Loc     =   microsatellite locus
pop     =   population

1
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H      =   heterozygosity

Based on the estimator:
H = 1 – (1 / (1+2θ)1/2)
(Ohta & Kimura 1973)

The lnRV and lnRH ratios are calculated for all 81 microsatellite loci of the “multi-locus

candidate gene approach” and all 106 loci of the “random microsatellite screen”. For the “multi-

locus candidate gene approach” the pairwise lnRV and lnRH values were calculated by

comparing all single populations against each other resulting in 15 different comparisons;

additionally the Mus domesticus populations from Germany, France, Cameroon and USA were

pooled, as well as the Mus musculus populations from Czech Republic and Kazakhstan and both

groups were compared against each other. For the “random microsatellite screen” the same

analysis were performed for the subset of the populations from Germany, France, Cameroon and

Kazakhstan.
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Pooling of the samples allows to identify sweeps that occurred after the split of the species into

the eastern and the western house mouse while the pairwise population comparisons intends to

identify sweeps specific for single populations.

Simulations done by Schlötterer (2002b) predict that under neutrality the amount of all lnRV and

lnRH values will follow a normal distribution. Due to the pairwise comparisons the statistic is

robust to differences in mutation rates at single loci and to differences in constraints because

these factors are eliminated by the ratio. The statistic is also not affected by differences in

effective population size as  for example small bottleneck events (Schlötterer 2002b). Assuming

that most microsatellite markers will behave in a neutral manner, the distribution can be regarded

as a test distribution against which single values can be compared to. Loci with lnRV or lnRH

values below or above the 95%-interval are potential sweep loci. The statistics was applied to the

different level of comparisons:

1) comparison of all loci between pooled Mus musculus and Mus domesticus animals to identify

lineage specific sweeps;

2) pairwise comparisons of each population against all others for all loci to identify population

specific sweeps;

3) summary of all lnRV or lnRH values from 2) to evaluate whether the same loci are identified

as in the single pairwise comparisons.

For all levels the distribution of lnRV and lnRH values was tested for normality with the

Kolmogorov-Smirnov goodness of fit test. Descriptive statistics and histograms were calculated

with the SPSS 10.0 for Windows software package. The characteristics of all distributions such

as the standard deviation were compared to each other. All loci that show values above or below

the 95% confidence interval were listed.

Different characteristics were applied to distinguish “real” selective sweep loci from false

positive results by analysing the number of extreme values per locus. Selective sweeps are

assumed to occur either in a single population or in a monophyletic clade; exceptions from this

rule are independent sweep events for the same locus. Therefore, sweep loci should exhibit

extreme values in multiple comparisons. For loci exhibiting multiple extreme values the allele

frequency distributions were analysed. Sweep loci are assumed to show reduced polymorphism

in a single group of population which results in a high frequency of single alleles. Such effects

should be detectable in allele frequency diagrams.
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Generally, the used microsatellite loci were analysed whether the occurrence of extreme lnRV or

lnRH values also depend on the characteristics of the repeat units. Chi-Square tests were applied

to test for statistical differences; Kruskall-Wallis tests were performed to test for significant

differences between the number of extreme values per locus dependent on the repeat type.

One potential sweep locus that followed the above mentioned criteria was examined for its

sweep window size: the genomic sequence around the sweep locus was downloaded from the

ENSEMBLE database, and short tandem repeat sequences were identified in the flanking regions

with the program Tandem Repeats Finder (Benson 1999). Five microsatellite loci located within

50 kb upstream of the locus and 6 microsatellite loci located within 90 kb downstream were

genotyped in all populations and the lnRV and lnRH values were calculated to identify extreme

outliers within the same sweep window.
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Results

General gene diversity of the different populations and characteristics of the different
microsatellite markers

The “random microsatellite screen” and the “multi-locus candidate gene approach” were

analysed separately and subsequently compared to each other. Contrary to the “random

microsatellite screen”, general gene diversity seems to be lower in the “multi-locus candidate

gene approach” which might be caused by the fact that this screen has included loci with

generally shorter repeat regions. Nevertheless, the characteristics of the populations with

respect to each other are the same in both screens: the population from Cameroon exhibits the

lowest gene diversity in both screens, followed by the USA population which was only

screened in the “multi-locus candidate gene approach”. The populations from France,

Germany, Czech Republic and Kazakhstan exhibit relative equal gene diversities; only

Kazakhstan has the highest number of alleles in both screens. The number of individuals from

the USA is rather low and resulted in the lowest number of alleles. Still the characteristics of

the USA population are comparable to the Cameroon population as analysed in detail in

chapter 1, and subsequently, the population is also included in the search for selective sweep

events. Gene diversities per population and per screen are summarised in Table 2.

Table 2: Characteristics and gene diversity estimates of the genotyped populations.

Population Sample size Loci typed Unbiased He Obs He No Alleles

“Multi-locus candidate gene approach”
Cameroon 68 81 0.5134 0.3917 6.67
Czech Republic 42 79 0.7054 0.3828 9.08
France 64 81 0.6454 0.4764 9.98
Germany 55 81 0.6524 0.4359 10.04
Kazakhstan 59 81 0.6994 0.5671 12.67
USA 12 79 0.6158 0.4782 5.23

“Random microsatellite screen”
Cameroon 48 104 0.6722 0.4916 7.54
France 48 104 0.7853 0.5605 10.81
Germany 48 106 0.7991 0.5288 10.64
Kazakhstan 48 106 0.8111 0.6219 12.76

The microsatellite loci selected for the “multi-locus candidate gene approach” show very

different characteristics: some markers contain long stretches of up to 100 dinucleotide

repeats comparable to the markers used in the “random microsatellite screen”, while other

markers contain interruptions within the repetitive elements. Markers with tri- or
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tetranucleotide repeats never contain more than 12 repeat units. The characteristics of the

repeats strongly affect the gene diversity of these loci. The highest diversity is found in the

dinucleotide repeats and the lowest diversity in the interrupted repeats (Table 3). Kruskall-

Wallace tests revealed highly significant differences of variability depending on the repeat

type.

Table 3: Results of the Kruskall-Wallace Test for differences between heterozygosity,
variance in repeat units, and alleles for the different marker classes pure dinucleotides,
interrupted repeats and pure tri- and tetranucleotide repeats.

Repeat type N Mean Chi-Quadrat df Significance
Pure Dinucleotides 48 0.87
Interrupted repeats 21 0.57

Hetero-
zygosity

Pure Tri-, Tetranucleotides 12 0.67
25.844 2 0.000***

Pure Dinucleotides 48 51.37
Interrupted repeats 21 19.06

Variance
repeat
units Pure Tri-, Tetranucleotides 12 42.06

12.485 2 0.002**

Pure Dinucleotides 48 25.29
Interrupted repeats 21 12.57

Number
of alleles

Pure Tri-, Tetranucleotides 12 15.92
24.549 2 0.000***

Kruskall-Wallace Test            * level of Significance

Strong correlation is apparent in the total length of the repeat region and the variability indices

as shown in Figure 1. Longer repeat stretches correlate significantly with higher variability.
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Figure 1: Correlation of the total length of the repeat region with the different gene diversity
estimates.
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monomorphic loci in the following population: within locus P1 (France, Germany, USA), P26

(Cameroon, Germany, USA), P62 (France), P66 (France, USA), P71 (Czech Republic,

France, Germany, Kazakhstan, USA), P92 (Cameroon, France, Germany, USA), P94 (France,

USA), P103 (Germany, USA), P104 (Cameroon), P154 (Germany), P157 (France, Germany,

USA).

lnRV and lnRH calculations were done on different levels:

a) pooling the Mus musculus type and Mus domesticus type populations; b) population

pairwise comparisons by comparing each population against all others, and c) summary of

all values of the population pairwise comparisons. For the “random microsatellite screen”

only a) and c) were performed. The resulting distributions were checked for normal

distribution and the characteristics such as mean, standard deviation and the 5% and 95%

percentils were calculated (Table 4).

Table 4: Characteristics of all pairwise lnRV and lnRH distributions. Table a) shows the
summaries of all combined pairwise comparisons and the results of the pooled analysis for the
“random microsatellite screen” and the "multi-locus candidate gene approach”; b) shows the
results of all comparisons of the "multi-locus candidate gene approach" of “within lineages”
comparisons only comparing Mus domesticus to Mus domesticus populations or Mus
musculus to Mus musculus; c) shows the “between lineage” comparisons: Mus domesticus
populations were compared to Mus musculus populations.

Random microsatellite screen Multi-locus candidate gene approach a)
 
 

Combined pairwise
comparisons

dom-mus
pooled

Combined pairwise
comparisons

dom-mus
pooled

N 626 106 1195 81
 lnRV LnRH LnRV lnRH lnRV LnRH lnRV lnRH
Mean 0.33 0.31 -0.33 0.28 -0.04 -0.39 -0.85 -0.98

Stdev 1.29 1.56 1.15 1.23 2.19 1.73 1.80 1.77

Lower 5% border -1.76 -2.38 -2.13 -1.75 -3.67 -3.41 -5.40 -4.94

Upper 95% border 2.53 2.78 1.79 2.26 2.99 2.31 1.59 1.79

KS_Z-value 0.97 0.69 0.61 0.66 1.93 1.02 1.03 0.81

Significance 0.31 0.72 0.85 0.78 0*** 0.25 0.24 0.53
*** = highly significant deviation from normal distribution

Multi-locus candidate gene approach: pairwise population comparison 
within lineages

 b)
 
 

Cam-Fra Cam-Ger Cam-USA Fra-Ger Fra-USA Ger-USA CZ-Kaz
N 81 81 79 81 79 79 79

lnRV lnRH lnRV lnRH lnRV LnRH lnRV lnRH lnRV LnRH lnRV lnRH lnRV lnRH
Mean -0.02 -1.13 -0.11 -1.28 -0.04 -1.08 -0.09 -0.15 -0.04 0 0.06 0.22 -0.07 0.15

Stdev 1.92 1.52 1.75 1.50 2.19 1.46 1.64 0.96 1.72 1.41 1.64 1.37 1.47 1.46

Lower 5% border -2.62 -3.60 -2.90 -3.80 -3.91 -3.61 -2.29 -1.99 -3.45 -2.05 -2.96 -1.94 -2.44 -1.85

Upper 95% border 2.77 1.56 2.96 1.36 3.73 0.91 1.56 1.41 2.17 2.59 1.94 2.90 1.88 2.57

KS_Z-value 0.79 0.59 0.94 0.34 0.90 0.49 0.77 0.62 0.79 0.56 1.04 0.54 1.09 1.0

Significance 0.57 0.88 0.34 1 0.40 0.97 0.60 0.84 0.56 0.91 0.23 0.94 0.18 0.26
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Multi-locus candidate gene approach: pairwise population comparison  
between lineages

 c)
 
 Cam-CZ Cam-Kaz CZ-Fra CZ-Ger CZ-USA Fra-Kaz Ger-Kaz Kaz-USA
N 79 81 79 79 77 81 81 79
 lnRV lnRH lnRV lnRH lnRV lnRH lnRV lnRH lnRV lnRH lnRV lnRH lnRV lnRH lnRV lnRH
Mean -1.05 -1.57 -1.08 -1.66 0.98 0.41 0.89 0.26 0.97 0.52 -1.06 -0.53 -0.97 -0.37 1.07 0.63

Stdev 1.98 1.53 2.27 1.85 2.23 1.65 1.98 1.61 2.43 1.45 2.51 1.98 2.35 1.90 2.59 1.71

Lower 5% border -5.26 -4.43 -5.81 -4.17 -2.07 -1.63 -1.85 -2.17 -2.52 -1.66 -7.59 -4.52 -6.81 -4.03 -2.11 -2.34
Upper 95% border 1.83 1.39 1.91 1.96 6.49 4.42 5.42 4.07 5.88 2.77 2.12 2.55 1.82 2.96 7.62 3.27

KS Z-value 0.72 0.42 0.82 1.01 0.77 1.17 0.87 0.85 1.22 0.55 1.02 0.87 1.06 1.13 0.54 0.67

Significance 0.67 0.99 0.51 0.25 0.60 0.13 0.44 0.47 0.10 0.92 0.25 0.44 0.21 0.16 0.93 0.77

“Random microsatellite screen”:
Summary of all pairwise comparisons

“Multi-locus candidate gene approach”:
Summary of all pairwise comparisons
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Figure 2: Distribution of lnRV and lnRH values calculated for the “random microsatellite
screen” and “multi-locus candidate gene approach”. The distributions represent the summary
of all pairwise comparisons between the separate populations.

All lnRV and lnRH distributions resulted in normal distributions except for the lnRV

distribution which consists of all pairwise results from the “multi-locus candidate gene
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approach”. The deviation from normal distribution resulted from too many extreme values at

the edges of the distribution which is shown in Figure 2. These extreme lnRV values

correspond to high differences in variability at one locus in two populations. Therefore, these

loci can be regarded as potential sweep loci. All loci below the 5% or above the 95%

threshold of the normal distribution can be regarded as significantly different because they

exceed the threshold which is characteristic for a normal distribution. The comparisons were

performed on different levels by comparing populations of different divergence times. The

thresholds for each pairwise distribution differ from each other depending on which

populations were compared.

In general, the distributions of the “random microsatellite screen” is narrower compared to the

distribution of the “multi-locus candidate gene approach”. Even the combined distribution of

all pairwise lnRV calculations is normally distributed indicating that almost no extreme

differences exist between the loci. Therefore most of the observed extreme differences can

probably be considered as normal statistical deviations. The “multi-locus candidate gene

approach” was analysed in more detail because the distribution of all combined pairwise

comparisons deviated from a normal distribution while all pairwise comparisons themselves

were normally distributed.

It is difficult to set a general threshold for the identification of a sweep locus as the threshold

values are influenced by the general characteristics of the populations. This can be illustrated

by analysing the pairwise comparisons including the Cameroon population: the Cameroon

population generally exhibits a lower gene diversity. As a consequence, all comparisons with

this population in the numerator are slightly skewed to more negative values. Comparing

lnRV and lnRH values from the Cameroon pairwise comparisons against the summary of all

pairwise distributions of the “multi-locus candidate gene approach” lead to wrong results

because lnRV values below -3.67 which are well within the confidence interval of most of the

Cameroon pairwise distributions lie beyond the 5% threshold of the combined distribution

(Table 4). Therefore, the lower gene diversity of the Cameroon population has to be taken into

account.

Generally, the distribution resulting from “between lineage” comparisons (comparing a Mus

musculus population against a Mus domesticus population) results in a broader distribution.

This was inferred by comparing the standard deviation for the “between lineage” comparisons
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to the “within lineage” comparisons (comparing Mus domesticus with Mus domesticus

populations and Mus musculus with Mus musculus populations) (T = -4.477; df = 13;

p = 0.001 for LnRV; T = -3.337; df = 13; p = 0.005 for lnRH). Depending on the level of

divergence time different thresholds must be applied. Accordingly, all loci with extreme

differences in either the lnRV or the lnRH distributions are listed in Table 5.

Table 5: List of all loci exhibiting extreme values in any lnRH and lnRV calculation.
Populations mentioned in the cells carry the lower variance or heterozygosity; populations in
bold and curved are significant in the single pairwise comparison and in the summarized
pairwise comparison.

within lineages pairwise
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between lineages pairwise
population comparisons
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lnRH 4 Fra Ger Fra Ger USAP1 lnRV 1
P8 lnRH 1 Cam
P12 lnRH 4 CZ USA
P14 lnRH 2 CZ
P19 lnRH Ger

lnRH 2 Fra Ger USA CZ KazP25 lnRV 1 1 Kaz Kaz Kaz Kaz Kaz
lnRH 8 1 Cam Fra Ger USAP26 lnRV 5 1
lnRH 2P29 lnRV 1
lnRH 1P31 lnRV 1 CZ Kaz
lnRH USAP32 lnRV Fra

P34 lnRH CZ
P35 lnRH 1 USA
P36 lnRV 2

lnRH 1 CamP37 lnRV CZ CZ
lnRH 1 USAP38 lnRV 3 USA USA

P42 lnRH 2 CZ Kaz Kaz Kaz
lnRH CZP44 lnRV CZ CZ CZ CZ CZ
lnRH 4 USA USA CZ CZ Kaz KazP45 lnRV Kaz Kaz Kaz

P49 lnRH 1
P51 lnRH 6 USA
P55 lnRV 4 Cam Ger Ger
P57 lnRV Cam

lnRH 3 Cam Cam CamP61 lnRV 1 Cam Cam CZ
P62 lnRH 5 Fra Fra Ger Fra
P63 lnRV 1

lnRH 5 Fra Cam Fra USAP66 lnRV 7 Cam Fra USA
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P67 lnRH 5 1 Kaz CZ Kaz Kaz Ger Kaz
lnRH 1 1 CZ CZ CZ CZP72 lnRV 4 Ger CZ CZ CZ CZ CZ
lnRH 2P73 lnRV 2 Fra Fra
lnRH 4 Cam Cam CamP76 lnRV 5 Cam Cam Cam Ger Cam Cam

P83 lnRH 1 Kaz
P85 lnRH 4 USA USA

lnRH 6 1 Fra Ger Cam Cam Fra Ger GerP92 lnRV 7 Fra Ger CZ Kaz
lnRH 1P94 lnRV 8 Fra Ger USA CZ
lnRH 1 Ger GerP103 lnRV 7 Cam Ger USA CZ
lnRH 9 Fra Ger USA Cam Fra Ger USA Fra Ger USAP104 lnRV 6 1 Fra Cam Fra Ger Fra Ger

P106 lnRH 1 CZ
P108 lnRV 2 Kaz
P116 lnRH 1
P118 lnRH Ger
P120 lnRH 2 Fra

lnRH 2 Fra Fra CZ Kaz CZ Kaz KazP121 lnRV 1 Kaz Kaz Kaz Kaz
P127 lnRH 5 Cam Cam Cam

lnRH 1 1P129 lnRV 1 Kaz Kaz Kaz
P140 lnRH Cam

lnRH 5 CZ Cam CZ Fra Ger USAP141 lnRV 6 Cam CZ Cam CZ
lnRH GerP142 lnRV Cam

P149 lnRV CZ
P150 lnRH Fra
P153 lnRH Ger

lnRH 7 Fra Ger GerP154 lnRV 2
P156 lnRH Kaz

lnRH 3 Fra GerP157 lnRV 3 1
P158 lnRH 3
P159 lnRV Fra

lnRH 1 USAP160 lnRV 6 Ger USA Ger USA

In total 56 loci show extreme differences: 33 genes exhibit extreme lnRV values and 49 loci

exhibit extreme lnRH values. Different levels of comparisons result in different identifications

of sweep loci. By pooling the Mus musculus populations and the Mus domesticus populations

population specific differences disappear. For example locus P76 shows an extreme reduction

in polymorphism in the Cameroon population in five lnRV and three lnRH comparisons.

These differences disappear in the comparison of the pooled musculus and domesticus

samples (Table 5). The loci P92 and P94 are rather monomorphic and contain a maximum of
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three alleles leading even to contradictive results for the lnRV and lnRH calculations and are

also considered as artefacts.

Extreme values which just occurr in one or two comparisons are regarded as normal statistical

deviations and accordingly 32 loci are excluded from the sweep locus list above. Additionally,

to apply very conservative assumptions loci are considered as potential sweep loci only if they

reveal extreme values in at least three comparisons in the same population. Applying these

characteristics to Table 5, I suggest that the following loci can be regarded as potential sweep

loci: the Interferon-induced protein with tetratricopeptide repeats1 (Ifit1) (P25), the Interferon

alpha/beta receptor gene (P26), the ß-Defensin 6 gene (P104), the nasal embryonic LHRH

factor (P129) and the randomly chosen microsatellite locus (P67) seem to contain sweep loci

in the domesticus-musculus comparison. P26 and P104 are rather monomorphic in the Mus

domesticus lineage while P25 and P67 and P129 lost variability in Mus musculus. Other loci

show reduction in polymorphism in multiple comparisons in just one population: locus P61

within the Beta-globin complex, the Axonemal dynein heavy chain 8 Dnahc8 gene (P76) and

the MATH4B gene (P127) show reduction in the Cameroon population. The microsatellite

P44 within the Ig gamma-chains, and the locus P72 within the SRY-box containing gene 5

(Sox5) have potentially swept within the Czech population. Kazakhstan mice show reduction

in polymorphism at the following loci: P42 within the Plasma selenoprotein P (SELP) gene,

P45 within the Pro-alpha1 (II) collagen chain gene and P121 which is located in the genomic

sequences containing olfactory genes. P141 within the Cyclic nucleotide-gated olfactory

channel protein gene exhibits extreme values in nearly all populations compared to the

Kazakhstan population.

For all those loci the allele distributions were analysed and the distributions are shown in

figures 3a - 3d.
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Figure 3a: Allele distributions of the sweep loci within Cameroon mice.

The locus P61 and P76 are nearly monomorphic in the Cameroon population, while they are

relatively polymorphic in the other populations. The possibility that they have lost variability

due to a locus specific selective event is well supported by the lnRV and lnRH calculations.

The locus P127 also shows a striking pattern with one very frequent allele in the Cameroon

population but only the lnRH calculation recognizes this locus as a potential sweep locus.

The lnRV and lnRH calculations are differentially influenced by the different parameters: the

lnRV distribution is strongly dependent on the size distribution of the alleles. Interrupted

allele distributions can result in high variances although the general gene diversity is rather

low. This seems to be the case at locus P127: although the locus seems to exhibit a low gene

diversity and shows one major allele with 305 bp in the Cameroon population some rare

alleles of 297 and 327 bp are found and increase the variance at this locus substantially. The

lnRH calculation, in contrast, is less dependent on the allele distribution and just takes into

account the frequencies of the alleles which results in extreme lnRH values for locus P127.



Chapter II                                                                                                    Microsatellite Screen
___________________________________________________________________________

54

P25

0,00

0,20

0,40

0,60

0,80

1,00

173 176 179 182 185 188 191 197 218

P26

0,00

0,20

0,40

0,60

0,80

1,00

196 198 200 202 204 208

P67

0,00
0,20
0,40
0,60
0,80
1,00

122 134 137 140 143 167 170

P129

0,00
0,20
0,40
0,60
0,80
1,00

265 271 274 280

P104

0,00
0,20
0,40
0,60
0,80
1,00

33
3

33
7

34
3

34
7

35
1

35
5

35
9

36
3

P141

0,00
0,20
0,40
0,60
0,80
1,00

348 350 354 356 358 360 362 370

Cam
CZ
Fran
Ger
Kaz
USA

Figure 3b: Allele distributions of the domesticus-musculus sweep loci.

Figure 3b shows the sweep loci which seem to be lineage specific and occur either in all Mus

domesticus populations or all Mus musculus populations. Only locus P141 exhibits extremely

high polymorphism in the Kazakhstan population while all other populations have swept.

Interestingly all “lineage specific sweep loci” show a rather low number of total alleles per

locus. Locus P129 shows a very low diversity and the sweep was just recognized by the lnRV

statistics. The result therefore seems to be an effect of the gap in the allele distribution for the

domesticus clade; all populations have one major allele for this locus and the extreme value

for P129 seems to be an artefact. Generally, loci with a low number of alleles tend to exhibit

extreme lnRV and lnRH values easily because differences in the allele distributions directly

result in higher differences of heterozygosity and variance of repeats.

Therefore, only loci P26, P104 and P141 exhibit the expected allele distribution for a selective

sweep event with an extreme reduction of diversity in one clade and substantial variation in

the other populations.
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Figure 3c: Allele distributions of the sweep loci recognized in the Kazakhstan animals.

The allele distributions for potential sweeps in the Kazakhstan population follow the

expectation for selective sweep events. P42 is just recognized by the lnRH statistics but shows

extreme reduction of polymorphism within the Kazakhstan population compared to the other

rather polymorphic populations. P45 exhibits extreme lnRV and lnRH values for Kazakhstan

but also for the USA animals indicating two possible independent events at this locus. P121 is

also significant in the lnRV and lnRH values and shows the expected sweep pattern.
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Figure 3d: Allele distributions of the sweep loci recognized in the population from the Czech
Republic.

The selective sweeps for the Czech Republic are highly debatable because, in all cases, the

allele with the highest frequency in the Czech Republic is also the allele with the highest

frequency in the other populations.

In general, extreme lnRV or lnRH values are at the first indicators for possible sweep events

but the sweep event has to be confirmed by further methods such as analysis of the allele

distributions. Summarising the analysis of the calculations and the inspections of the allele

frequency distributions the following loci fulfil the criteria of selective sweep events: three

genes known to be differentially expressed carrying the microsatellite loci P42, P45 and P61;

three loci within olfactory genes carrying the microsatellite loci P121, P127 and P141; one

saliva gene containing locus P104; one interferon related gene containing locus P26 and one

speciation gene carrying P76.

The “random microsatellite screen” was not analysed in such detail. The analysis of the

summary of all pairwise comparisons reveals that from 106 microsatellite loci, 32 loci show

lnRV-values exceeding the 95%-threshold of the lnRV distribution; nine of those loci occur in

three or more comparisons. For the lnRH distribution 33 loci exhibit extreme values

exceeding the 95%-threshold; eight of them in at least three comparisons. Extreme lnRV and
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lnRH values occur simultaneously in eleven comparisons and seven of these loci exhibit

extreme values in more than four lnRV and lnRH comparisons.

Correlation between repeat type and extreme lnRV and lnRH values

Since the variance in repeat units and the heterozygosity is dependent on the repeat type, I

tested whether the repeat types also influence the occurrences of extreme lnRV or lnRH

values. In summary, extreme lnRV and lnRH values are detected in 21 dinucleotide repeat

units, 14 interrupted repeat units, and 6 tri- or tetranucleotide repeat units. However, Chi-

Square tests reveal no significant differences in the occurrence of extreme or non-extreme

values depending on the repeat type (data not shown). Generally, more loci exhibit extreme

lnRH than lnRV values independent of the repeat type.

Significant differences are found by comparing the number of extreme comparisons per locus

in dependence of the repeat type: mean number of extreme lnRV values are lowest in

dinucleotide repeat markers and highest in tri- or tetranucleotide repeat markers. The lnRH

values are less dependent on the repeat type, only the comparison of the dinucleotide repeats

with the interrupted repeats results in significant different results (results of significance

analysis are not shown).

Table 5: Occurrence of extreme values in di-, tri-, tetra and interrupted repeats.

Number of loci lnRV LnRH
non-extreme

Com-
parisons

Extreme
Com-

parisons
number of loci

Mean number of
extreme comparisons

per locus
number of loci

Mean number of
extreme comparisons

per locus
Dinucleotid
Repeats 27 21 14 2.14 22 1.64

Interrupted
repeats 7 14 9 3.78 13 4.4

Tri-/Tetranu-
cleotid Repeats 6 6 3 5.7 6 3.2

Interrupted repeats and tri- and tetranucleotide repeat markers correlate with lower gene

diversities. As already mentioned allele distributions based on a smaller number of alleles are

more likely to exhibit extreme lnRV or lnRH values as small changes in the allele

distributions directly correlate with big differences in the variance of repeat units or the

heterozygosity, which explains the higher number of extreme values for those repeats.
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Delimitation of the selective sweep window

Another proof for a selective sweep event is the occurrence of a sweep window due to the

hitchhiking effect. To identify the size of a sweep window eleven microsatellites around the

ß-Defensin 6 gene were genotyped in a region of 150 kb around the sweep locus. Since my

results suggest that the ß-Defensin 6 gene has swept in the Mus domesticus lineage samples

were pooled for the two lineages and the lnRV and lnRH values for the flanking

microsatellites were calculated. The results are presented in Figure 4.

Figure 4: lnRV and lnRH results of microsatellite loci flanking the ß-Defensin 6 locus. The
dashed lines indicate the upper and lower border of the 95% confidence interval for the
pooled lnRV and lnRH calculations.
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The reduction of polymorphism at the ß-Defensin 6 locus is exceeding the 95%-threshold for

the lnRV and lnRH calculations. Nevertheless, no reduction in polymorphism is visible in the

flanking regions except 30 kb downstream of the ß-Defensin 6 locus a strong reduction of

heterozygosity for Mus musculus occurs. Most of the flanking microsatellite loci consist of

pure dinucleotide repeat units except for one tri- (maximum length of 24 bp) and one

tetranucleotide (maximal length of 64 bp) repeat marker. All dinucleotide repeat markers have

repeat regions of at least 32 bp. Therefore, those flanking microsatellite loci have a higher

mutation rate compared to locus P104 which has a repeat length of 32 bp and shows

interruptions within the repeat units.
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Thus for the ß-Defensin 6 locus the sweep window is either very narrow or the flanking

microsatellite loci have evolved a new polymorphic allele spectrum after the sweep event

obscuring the traces of selection.
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Discussion

Identification of selective sweep loci and their differentiation from false positive results

Genotyping multiple microsatellite loci is a valuable tool to identify regions within the

genome which are affected by selection (Schlötterer et 1997, Payseur et al. 2002, Schlötterer

2002b). The aim of the present study was to detect selective sweeps in different populations

of the house mouse species complex by genotyping 81 microsatellite loci directly linked to

genes that may play a role in adaptations, and by a “random microsatellite screen” of 106

markers. By using the lnRV and lnRH statistics of Schlötterer (2002b), I was able to identify

several loci which might have swept as indicated by extreme values. Particularly, in the

summary of all pairwise population comparisons, the lnRV statistics showed a deviation from

the normal distribution which was caused by a high amount of extreme values at the edges of

the distribution. These extreme values could not be considered as normal statistical

deviations.

In contrast to this, the “random microsatellite screen” exhibited no deviation from the

Gaussian distribution indicating that the number of observed extreme values was lower and

within the range of normal statistical deviations. Also for the lnRH calculations all

distributions did not show significant deviations from normality.

A general problem of multi-locus analysis is to distinguish “real” sweep loci from false

positive results since, generally, values exceeding 95% confidence interval at the lower and

upper end of the distribution are assumed to be potential sweep loci. Therefore, all multi-locus

screens try to verify their results by further methods. One important criteria is that a “real”

sweep locus must exhibit significant results in multiple comparisons (Schlötterer 2002b);  in

other studies two different methods such as calculating Rst and lnRV values are used to

confirm sweep loci (Kayser et al. 2003). Screening of markers in the flanking region to

identify the size of the region that was subjected to the hitchhiking event are also applied by

several authors (Kohn et al. 2000, Harr et al. 2002, Payseur et al. 2002, Nair et al. 2003).

Sequencing of the suspicious locus is also promising to verify sweep events because different

statistical analysis tools can be applied to sequence data (Harr et al. 2002).

The statistical schemes applied in the studies of Vigouroux et al. (2002) and Payseur et al.

(2002) are based on neutral expectations of allele frequency distributions and the estimations

are either derived from the stepwise mutation model (Payseur et al. 2002) or from the infinite
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allele model. As previously discussed in chapter 1, the application of estimators based on the

microsatellite mutation models to the markers used in my screen lead to false results in the

genetic distance estimations and, therefore, I concluded that these models are not applicable to

estimate neutral allele distributions for my markers. In contrast, the lnRV and lnRH

calculations are not based on any modelling parameters or apriori assumptions thus reducing

the likelihood of false estimations. Multiple simulations proved that the lnRV statistic is

robust to differences in mutation rates, different population sizes and demographic deviations

(Schlötterer 2002b) which are, indeed, strong arguments for the application of this approach.

To identify sweep loci in this screen I applied the lnRV and lnRH calculations and verified

the results by the analysis of multiple pairwise comparisons of each population against all the

others and by inspection of the allele frequency distributions of promising loci. For the locus

P104 I also investigated the variability of the flanking regions to identify the size of the sweep

window.

Identifying multiple extreme comparisons for one population is a problematic issue because

threshold values of the different comparisons vary substantially. One general outcome of the

population pairwise comparisons was that the pairwise comparisons either within the Mus

musculus or the Mus domesticus lineages result in narrower normal distributions with a lower

standard deviation than the between lineage comparisons between a Mus musculus population

against a Mus domesticus population. This is probably a result of neutral divergence between

the lineages. Therefore, sweep loci that are different between Mus musculus and Mus

domesticus must exhibit very extreme differences to exceed the already high “neutral”

divergence rate between the taxa.

By identifying sweeps the levels of different divergence times have to be taken into account:

within the sampled populations I have the possibility to study lineage specific sweeps by

comparing pooled musculus and pooled domesticus samples against each other. These lineage

specific comparisons can be verified by looking for extreme values in the pairwise population

comparisons: as expected my results prove that extreme loci in the musculus-domesticus

comparison also showed extreme values in the pairwise comparisons between the single

populations except for locus P63 (results are listed in Table 5).

Generally, loci that showed extreme values in the musculus-domesticus comparisons were loci

which consist of a relatively low number of alleles. Two explanations exist for this

phenomenon: on the one hand loci with a low number of alleles are prone to exhibit extreme
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values just because slight differences in the allele distribution have major effects on the

diversity indices. For the loci P129, P67 and P63 (distribution not shown) this seemed to be

the case because none of these loci exhibit a typical sweep with one major allele in one

population and a distinct allele distribution compared to the other populations. On the other

hand loci with a shorter repeat length also have a lower mutation rate (Schug et al. 1997) and

are better suited to retain older sweeps such as sweeps after the divergence of the Mus

musculus and the Mus domesticus lineages. This was probably the case for locus P104.

Except for locus P129 all significant microsatellite loci for the musculus-domesticus

comparison consist of non-dinucleotide repeat units which correlate with lower diversity and

a lower mutation rate (Ellegren 2000, Balloux and Lougon-Moulin 2002 and references

therein). Thus, these loci are suitable to detect older sweep events.

On a different divergence level the sampled populations offer the opportunity to study

population specific sweeps. Populations within Mus domesticus or within Mus musculus are

more similar to each other and show narrower distributions of the standard deviation.

Therefore, values which are extreme for the within lineage comparisons would be obscured

by the between lineage distribution. These pairwise population comparisons also take

demographic parameters into account: the Cameroon population showed the lowest gene

diversity in all comparisons, therefore, by calculating the lnRV or lnRH values with

Cameroon in the numerator the values will always be slightly biased to negative values

shifting the whole distribution to negative values. Extreme values indicative for a Cameroon

sweep, therefore, have to be very negative to exceed the 95% threshold at the lower end of the

distribution. Accordingly, inferring sweeps for Cameroon by just using the threshold of the

combined pairwise distribution would result in many “false” positives which show extreme

values due to the general low gene diversity of the Cameroon population.

Hence, to apply very conservative estimates the extended criteria for sweep detection based

on pairwise population comparisons was that at least three pairwise comparisons should show

extreme reduction in polymorphism in the same population. By doing so, I detected 9

population specific sweep loci.

After analysing the allele distributions the Czech specific sweep loci were considered as

“false” positives because the major allele of the distribution was also a major allele within the

other populations. However this finding does not correspond with the expectation of a

selective sweep event. For a population specific sweep the selective sweep allele is expected

to exhibit a high frequency just in the population where the sweep occurs.
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In contrast to the results of the musculus-domesticus comparisons four out of seven

microsatellite loci that exhibit population specific extreme values consists of pure dinucleotide

repeat units. Therefore, dinucleotide repeat markers with faster mutation rates are better suited

to trace sweeps which have occurred in single populations. Especially, within the Cameroon

population three loci were found that show the expected pattern of a selective sweep event.

Still no differences were found for example between the German and the France population

although phylogenetic inferences in chapter 1 suggest that the populations have evolved their

unique allele distributions. Some loci of the lnRV and lnRH calculations showed extreme

values in the pairwise comparison but were excluded from further analysis due to the stringent

criteria of at least three extreme values for one population. The lack of sweep loci between the

German and France population may be caused by sharing more or less the same ecological

habitat, or the method of identifying real sweeps was too stringent and has removed some

potential sweep loci from further analysis.

This problem could be solved by genotyping more local populations to increase the possibility

of further pairwise comparisons.

Comparison of the “multi-locus candidate gene approach” to the “random microsatellite
screen” and other multi-locus screens in different organisms

The “random microsatellite screen” generally had a narrower distribution compared to the

“multi-locus candidate gene approach”. This result may either be caused that mainly pure

dinucleotide repeats were implemented in the random screen or due to the fact that only one

Mus musculus population, instead of two Mus musculus population as in the “candidate gene

approach”, was incorporated which reduced the comparisons between populations of different

lineages and the number of comparisons with different values due to neutral divergence. The

analysis for the “random microsatellite screen” was not done in such detail as for the “multi-

locus candidate approach”. Still, about seven loci out of 106 were identified to exhibit

extreme values in multiple comparisons in the lnRV and lnRH distribution. Compared to the

“candidate gene approach” with nine out of 81 significant loci, the number is lower. Since in

the “candidate gene approach” the microsatellite loci were close to genes which might be

involved in adaptation and selection a higher number of extreme values compared to a

random microsatellite screen was expected.

Compared to other studies the identification of nine potential sweep loci out of 81 is rather

high. Vigouroux et al. (2002) performed a multi-locus candidate screen in maize and

identified 15 loci out of 501 exhibiting evidence for selection. Payseur et al. (2002) analysed
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5,257 microsatellites within humans and found 43 sweep windows which included several

linked markers with skews in their frequency distribution. These skews were an indicator of

non-neutral evolution. Kayser et al. (2003) identified eleven out of 332 microsatellite loci as

potential sweep candidates in human populations. However, similar to my data Schlötterer et

al. (1997) identified one microsatellite locus out of 10 which showed reduced variability in a

random microsatellite screen in Drosophila melanogaster. Another screen of Schlötterer

(2002b) identified four loci by screening 94 random microsatellite loci in the human genome.

Two of them showed promising features which might have been shaped by a selective sweep

event. Considering that the “multi-locus candidate gene approach” that I applied for the

investigation of the mouse populations was a candidate approach with genes that were pre-

chosen because of their potential response to selection, I expected that the number of potential

sweep loci exceed the number of sweeps compared to those in random microsatellite screens.

In addition, the close vicinity of these microsatellite loci to the coding regions increases the

probability that they might be located in the same sweep window as an advantageous

mutation.

Analysis of selective sweep windows and factors influencing the detection of sweep regions

Evidently, all loci with extreme values must be evaluated by additional means to proof that

the individual extreme value is caused by a selective sweep event. Genotyping microsatellite

loci in close vicinity to each other is a suitable tool to identify the size of the sweep region

(Harr et al. 2002, Kayser et al. 2003). Nevertheless, such an analysis requires the use of

microsatellite loci with identical characteristics such as same repeat structure and same length

of the repetitive region in order to ensure that they evolve under the same mutation rate

(Ellegren 2000). In the case of the ß-Defensin 6 locus the flanking microsatellite loci were not

suitable to trace the signatures of selection. They mainly consist of large stretches of

dinucleotide repeat units, which correlate with a higher mutation rate. Thus, since the

ß-Defensin locus was assumed to be a sweep in the Mus domesticus lineage the sweep event

backdates too long and the traces were obscured by the high mutation rates of the flanking

markers.

Another unknown factor influencing the detection of a selective sweep event is the size of the

sweep window. The size essentially depends on the recombination rate of a region and on the

strength of selection (Kim & Stephan 2002). The recombination rate can be estimated by

comparing the physical (http://www.ensembl.org/Mus_musculus/) and the genetic map
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(Copeland et al. 1993, Dietrich et al. 1994, Dietrich et al. 1996). Nevertheless, the selection

coefficient remains unknown. For the genomic region around the ß-Defensin 6 locus the

recombination rate was rather low: for a region of 2 Mb no recombination was found in the

Copeland and Jenkins backcross map (Copeland et al. 1993). Therefore, a larger sweep

window was expected which contradicts the genotyping results of the flanking microsatellite

loci. Nevertheless, since the sweep is assumed to be old and occurred at the split of the

domesticus and the musculus lineage sufficient time has past to recover diversity in the

flanking region, particularly, as the flanking microsatellite loci are faster evolving than the

core marker within the ß-Defensin 6 gene. Nothing can be inferred about the strength of the

selection. A weak selection coefficient also results in a narrower sweep window. In other

studies the size of the sweep windows differ substantially: Nair et al. (2003) identified a

selective sweep window in Plasmodium falciparum to be as long as 100 kb which

corresponded to 6 cM in this species. Glinka et al. (in press) even detected selective sweeps

every 140 kb by scanning fragments on the Drosophila X-chromosome. Saez et al. (2003)

estimated the size of a sweep window to be around 41 kb to 54 kb. Instead of this, Nachman

found the extent of linkage equilibrium to be much smaller than 50 kb (Nachman et al. 2003).

These differences depend on the sweep characteristics such as time of the sweep event,

strength of the selection coefficient and the recombination rate of the genomic region.

Analysing the size of sweep windows is an important tool to develop guidelines for genome

wide screens for selective sweeps: large sweep windows will easily be traced by genotyping

random markers. In contrast, small sweep windows can be missed if markers are screened in

low density. Generally, the source of a selective sweep event will be located within a

functional region of a gene. Hence, a candidate locus screen of all potential genes within a

genome is probably the method of choice to discover most of the important sweep events.

Influence of microsatellite repeat types on the discovery of selective sweep events

The occurrence of extreme lnRV or lnRH values was independent on the repeat unit types

used for this screen. Still there was a significant difference in the number of extreme values

per locus for the different repeat types: non-dinucleotide repeat markers proved to be

significant in more comparisons than dinucleotide repeat markers. As dinucleotide repeat

markers are known to have higher mutation rates than other repeat types (Ellegren 2000), the

microsatellite loci are differentially suitable for different levels of divergence: older sweeps

can only be traced with slower evolving markers as tri-, tetra- or interrupted repeat markers
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which was also proven in this study; younger sweeps are recognizable with faster evolving

markers as dinucleotide repeat loci.

Type of genes that are involved in selective sweep event

The nine microsatellites that have potentially been involved in a selective sweep event were

closely linked to the following genes:

P42 was linked to the Plasma selenoprotein P (SELP) gene and P45 Pro-alpha1 (II) collagen

chain gene; both genes were included in this analysis because a preliminary micro-array

experiment showed differential expression of these genes between different mouse lineages

(unpublished results). Selenoproteins are known to be differentially regulated and play a role

in health, for example by protection of tissues from antioxidant injuries and in other

regulatory pathways (Burk et al. 2003, Moustafa et al. 2003); Collagen genes are known to be

highly conserved between mice and humans (Metsaranta et al. 1991), and they are extensively

studied in biomedical research but their evolutionary significance is unclear so far. The beta-

globin complex containing the microsatellite locus P61 was also identified via differential

expression. The beta-globin complex has already been involved in evolutionary studies 20

years ago (Konkel et al. 1979) and is still an interesting candidate for differential selection

and adaptation.

The olfactory senses in the house mouse are strongly developed and are important for the

perception of the environment, therefore, olfactory genes were generally assumed to be good

candidates for selection. Three olfactory genes were identified as potential sweep loci. The

microsatellite locus P121 is located within the olfactory receptor gene family (AC091743).

Locus P127 is located within MATH4B gene. This gene is involved in the activation cascade

of bHLH regulators in olfactory neuron progenitors (Cau et al. 1997). Locus P141 is located

within a cyclic nucleotide-gated olfactory channel protein gene (Ruiz et al. 1996).

Saliva is known to play a role in recognition in mice. One salivary androgen binding protein

has already been identified to have evolved under strong divergent evolution between

different mouse lineages and proved to play a role in female choice preferences (Karn &

Laukaitis 2003, Talley et al. 2001). From screening six microsatellite loci within genomic

sequences of different saliva genes the locus P104 showed a selective sweep. P104 is located

within the ß-Defensin 6 gene; ß-Defensins are cationic peptides playing a role in microbial

defence and are expressed in the mucosal surface (Bals et al. 1999).
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Other sweep loci were connected to an interferon alpha/beta receptor (IFNAR). Interferons

are generally involved in pathogen mediated immune response (Boehm et al. 1997) and can

be considered to be continuously shaped by selection.

Locus P76 within the axonemal dynein heavy chain gene is already known to cause hybrid

sterility in crosses with Mus spretus and might play a role in divergent evolution and

separation of taxa (Fossella et al. 2000).

All those genes are very likely to be shaped by differential selection pressures and are good

candidates for selective sweep events.

Summary and Conclusion

Microsatellite loci are suitable tools to detect regions under selection. The “random

microsatellite screen” detected seven interesting regions within the house mouse genome.

These regions were not further analysed for possible functional genes within close vicinity.

With the “multi-locus candidate gene approach” nine genes revealed extreme values in

multiple comparisons and are promising to be real sweeps. However, the search for the

advantageous mutation that has led to the selective sweep must employ other approaches such

as sequencing the functional regions around the significant microsatellite loci. Microsatellite

loci are considered to be neutral markers, therefore, they will only be affected by hitchhiking

along with an advantageous flanking mutation. Thus, sequencing is the tool to analyse

functional regions and to identify the changes which are responsible for the selective

advantage.

To find selective sweeps at the different levels of population comparisons the analysis must

be separated for the different levels of divergence times between populations; all kinds of

different microsatellite repeat types should be genotyped to trace older and younger sweep

events. Screening more microsatellite loci in close vicinity to each other allow to proof

potential sweep loci by identifying the sweep windows.

For the investigated populations it would not only be necessary to extend the level of

divergence times but also to have multiple population of the same level to extend the level of

pairwise comparisons. As discussed in detail in chapter 1 the Mus domesticus populations

seem to be rather young. To determine further sweeps within the Mus domesticus clade it

would be beneficial to have an older population as a reference to identify loci under selection

in the younger populations. Older Mus domesticus populations are assumed to occur in the
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near East and Arabian peninsula (chapter 1). To improve the results for the Mus musculus

clade the current Czech population should be replaced by a new population to be collected

under the same sampling scheme as all other populations, and to catch a third population to

allow additional comparisons within the Mus musculus clade.
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The antimicrobial peptide ß-Defensin 6 was subjected to a selective sweep

event caused by differences in the regulatory regions

Introduction

Genomewide scans of microsatellite loci are valuable tools to identify regions subjected to

selection as already discussed in chapter 2. Still, verification by other methods is necessary to

distinguish false positives from real sweep loci (Schlötterer 2003, Harr et al. 2002). The

multi-locus candidate gene approach identified the ß-Defensin 6 gene as a potential sweep

locus. Nevertheless, by genotyping flanking microsatellite loci no hint for a sweep window

around the locus was detectable. This result was either due to a very narrow sweep window or

to higher mutation rates of the flanking microsatellite loci obscuring the traces of the selective

sweep. Subsequently, the results of the selective sweep event had to be verified by sequencing

the region around the ß-Defensin gene. In addition, the size of the sweep window had to be

determined by sequencing several flanking fragments in distances of 5 to 20 kb to each other

along the chromosome 8. Microsatellite mutation rates vary substantially: in mammals

mutation rates ranging from 10-2 to 10-5 per locus and per generation were found (Weber &

Wong 1993, Schug et al. 1998 and references therein) and in Drosophila even lower mutation

rates of 10-6 were detected (Schlötterer 1998, Schug 1997). In contrast, mutation rates of

nucleotide sequences vary less and are assumed to be around 10-9 per locus and per generation

(Crow 1993). Therefore, nucleotide diversity is superior to trace a selective sweep because the

flanking sequences will recover diversity under the same mutation rate as the sweep region

itself, and thus allowing the identification of the selective sweep window.

The assumption of similar mutation rates and the limited number of alleles per nucleotide

position facilitates the development of statistical tests and, so far, more methods have been

developed for sequence data than for microsatellite data such as the HKA test, Tajima’s D,

H-Tests etc. (Fay & Wu 2001 and references therein). Prediction about neutral and non-

neutral behaviour are more reliable for sequence data than for microsatellite data, and

selective sweeps are retained over a longer time frame. By sequencing an outgroup, for

example Mus spretus as the sister taxon of the house mouse species complex, the ancestral or

derived state of a nucleotide polymorphism can be inferred and subsequently allow inferences

about the behaviour of new derived mutations and their spread throughout the genome.
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Therefore, sequencing is the preferred method to verify the results of the microsatellite screen.

Since sequencing is more labour and cost intensive, the sequencing approach was applied to

the ß-Defensin 6 locus only because this locus based on its features of extreme reduction in

polymorphism in the domesticus lineage and high number of alleles in the musculus sample

was assumed to display the classical expectation of a selective sweep event.

In contrast to microsatellite regions which presumably evolve neutrally and are just shaped by

selection due to the hitchhiking effect, sequencing probably allows the identification of the

advantageous changes responsible for the sweep because they can consist of functional and

non-functional regions. Advantageous changes are expected to occur in functional regions of

the genome such as RNA, or protein coding regions, or regulatory regions such as promoters

and transcription factor binding sites. For example amino acid changes were identified in the

pfcrt gene responsible for chloroquine resistance in malaria parasites (Wootton et al. 2002),

and in the FOXP2 gene which in comparison to the very conserved FOXP2 gene in other apes

exhibits two amino acid substitutions in the human lineage. The changes in the human lineage

may be responsible for the development of articulation and speech in humans (Enard et al.

2002). Generally, the hypothesis is that a selective sweep is the consequence of a selective

advantage either of a new mutation or due to changes in the environment which then suddenly

favour a certain allele of an existing polymorphism. Due to the ubiquity of the genetic code

changes in the coding regions can easily be correlated with changes in the amino acid

composition of a protein and in the potentially different function of the gene. Statistics such as

the ratio of synonymous to non-synonymous substitutions or the McDonald and Kreitman test

deal with such changes in the coding region (Fay & Wu 2001, Nekrutenko et al. 2001,

McDonald & Kreitman 1991). The ratio of synonymous to non-synonymous substitutions

compares the frequency of nucleotide changes resulting in silent or in replacement

substitutions in amino acid coding sequences. Under neutrality equal frequencies are expected

while non-neutral mutations can be recognized by non-synonymous changes of nucleotides

which are either more frequent under positive selection or less frequent under background

selection (Fay & Wu 2001, Yang 2001). The McDonald and Kreitman test compares

synonymous and replacement substitutions within and between species similar to the Hudson-

Kreitman-Aguadé test for non-coding nucleotide sequences (Hudson et al. 1987, Mc Donald

& Kreitman 1991).
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Concerning regulatory regions of a gene inferences about advantageous changes are less

obvious (Zhang & Gerstein 2003, Qiu 2003). The identification of promoters and cis-

regulatory elements from sequence data is still a challenging task for bioinformatics because

regulatory elements consist of a wide variety of different transcription factor binding sites in

different combinations and vary in size from ten up to thousand base pairs (Lenhard et al.

2003, Qui 2003, Zhang et al. 2003). As complete genome sequences of complex organisms

became available the importance of gene regulation and regulatory networks became more

and more a subject of evolutionary studies because the complexity of different organisms are

likely to depend more on differential gene regulation than on the actual number of genes

(Markstein & Levine 2002). Approaches to detect transcription factor binding sites are based

on the identification of the core motifs within sequence stretches. As the core motifs consist

of four to six fully conserved base pairs only (Zhang & Gerstein 2003) concepts were

developed to trace sequences for combinations of such informative motifs. Generally,

regulatory regions consist of a variety of many transcription factor binding sites and,

therefore, only sites which contain several binding elements (Qiu 2001) are considered as true

regulatory sites.

Based on the availability of sequence data from different species, evolutionary concepts can

be applied to identify regulatory regions as functional active regions which are subject to

selective constraints and which will probably remain more conserved between two species

than non-functional regions. This approach is called phylogenetic footprinting and is

embedded in several software programs which try to identify functional regions by aligning

sequences of different species (Zhang & Gerstin 2003). In case of the murine ß-Defensin 6

gene I applied the concept of phylogenetic footprinting by aligning the sequence with the

outgroup Mus spretus and by searching the rat genome databases for orthologous sequences.

Alignments with the different organisms then allow the identification of conserved regions

containing potential transcription factor binding sites. The identification of such regions in the

non-protein coding regions of the ß-Defensin 6 gene would then allow the search for

functional differences in gene regulation between the different lineages Mus musculus and

Mus domesticus.

Still, these computational approaches can only predict functional regions. To prove whether

the ß-Defensin 6 gene is really differentially expressed in the two mouse lineages, the

expression levels of mRNAs of different organs from wild caught mice of both lineages were
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analysed. As all other ß-Defensin genes, the ß-Defensin 6 gene is a cationic peptide that is

involved in microbial defence in various epithelial tissues. In total 14 murine ß-Defensin

genes are known and located in two clusters on chromosome 8 (Maxwell et al. 2003,

Morrison et al. 2003). All these genes consist of two exons and specifically the second exon

seems to be subjected to strong positive selection. The strong selection pressure is due to the

role of this gene family as defence against different bacterial pathogens (Morrison et al.

2003). Different ß-Defensin genes show tissue specific expressions (Jia et al. 2000,

Yamaguchi et al. 2001) and are switched on or off by different regulatory pathways. While

some ß-Defensin genes such as ß-Defensin 4 seem to be constitutively expressed other

ß-Defensin genes are inducibly expressed by microbial infections (Burd et al. 2002, Bals et al.

1999, Morrison et al. 2002). The ß-Defensin 6 gene is the only gene of this family that is

expressed in the skeletal muscle which might indicate a special physiological role

(Yamaguchi et al. 2001). Therefore, the ß-Defensin 6 gene is an attractive candidate gene

which is most likely involved in a selective sweep event. By measuring the expression level

of the gene in various organs, I tried to identify possible differences in gene expression

between the two lineages which might be a hint for differential regulation of the gene that was

shaped by differential selection pressures.

Evidence from the literature indicates that all ß-Defensin genes are subject to positive

selection pressure (Morrison et al. 2003). Now, the aim of this approach was to find out

whether the gene has also differentially evolved in the lineages of Mus domesticus and Mus

musculus causing the selective sweep in the Mus domesticus populations.

Summarising the aims of this chapter are:

- to verify the selective sweep that was found by the microsatellite analysis as described

in chapter 2;

- to determine the size of the sweep window by sequencing the flanking regions;

- to identify the advantageous changes within functional regions of the gene and their

potential consequences such as altered amino acid sequences or changed regulatory

patterns of the gene in the different populations;

- to prove that functional differences result in differential expressions of the gene in the

different lineages.
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Materials and Methods

Analysis of nucleotide diversity of the ß-Defensin 6 gene and the flanking region

660 kb of genomic sequence from the mouse chromosome 8 including the ß-Defensin 6 locus

were downloaded from the ENSEMBL database. Since 38.6% of the mouse genome consists

of repetitive elements such as LINEs, SINEs and transposable elements (Waterston et al.

2002) I applied the internet based program RepeatMasker (Smit & Green, RepeatMasker at

http://ftp.genome.washington.edu/RM/RepeatMasker.html) to identify repetitive regions and

to avoid sequencing them. Within the non-repetitive sequences primers were designed to

amplify stretches of 500 to 1,000 bp. The amplicons were chosen in such a way that they were

equally distributed over the whole region of 600 kb with a higher density around the

ß-Defensin 6 locus (Figure 1). About 4,000 bp of the genomic region around the two

ß-Defensin 6 exons were also sequenced. Primer design, PCR amplification and sequencing

of these stretches were performed following the methods described in the previous chapters.

Figure 1: 662 kb of Chromosome 8 surrounding the ß-Defensin 6 gene. Annotated genes are
displayed within the sequence. Dark blue bars represent the location of sequenced fragments.
Light blue and purple bars represent the exon and coding sequences of genes.
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In total 25 fragments of maximal 800 bp each and two fragments of 2,600 bp and 1,200 bp

containing the ß-Defensin 6 exons were sequenced in 28 animals: selecting always five

animals from Kazakhstan, Czech Republic, Cameroon, France, Germany and three animals

from the USA. For outgroup comparisons four animals from Mus spretus were sequenced for

each fragment. Among the 25 shorter fragments three fragments contained exon sequences of

the ß-Defensin 3 and ß-Defensin 4 gene.

The sequences were aligned with the program Seqman of the Lasergene expert sequence

analysis software (DNASTAR, Inc.) and imported into the program DNASP 3.51 (Rozas &

Rozas 1999). As direct sequencing was performed there was the possibility of sequencing

heterozygote individuals resulting in a base-calling for two different nucleotides at one locus.

Most of the sequence analysis programs cannot deal with the heterozygote annotations,

therefore, all sequences were duplicated and each nucleotide state was assigned to one of the

duplicated sequences.

Gene diversity and the number of polymorphic sites were calculated separately for the two

lineages Mus musculus and Mus domesticus with the program DNASP 3.51 (Rozas & Rozas

1999). By comparing all polymorphic sites against the Mus spretus sequences the ancestral or

derived state for each polymorphism was inferred.

The multi-locus Hudson-Kreitman-Aguadé test developed by Jody Hey (http://lifesci.rutgers.

edu/~heylab) was performed to test for non-neutral divergence between the house mouse

lineages and Mus spretus and non-neutral polymorphism rates by analysing the variability

within species. Theory predicts that under neutrality the interspecific divergence rate

correlates with the intraspecific polymorphism.

The exon sequences were analysed for synonymous and non-synonymous nucleotide

exchanges. The McDonald-Kreitman test was applied to test for non-neutral nucleotide

exchanges within the coding and non-coding regions of the ß-Defensin 6 locus by comparing

the house mouse lineages against Mus spretus. Nucleotide changes within coding regions

were analysed for the Ka/Ks ratio. Ka is the proportion of non-synonymous changes at non-

synonymous sites and Ks is the proportion of synonymous changes at synonymous sites. Both

analysis are implemented in the program DNASP 3.51 (Rozas & Rozas 1999). The exon

sequences were blasted against the rat genome to identify a possible orthologous gene.
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Analysis of regulatory regions of the ß-Defensin 6 locus

To identify possible regulatory regions of the ß-Defensin 6 gene two Mus domesticus and two

Mus musculus consensus sequences were created containing all possible nucleotide alleles.

These sequences were aligned with one Mus spretus sequences and subjected to the program

ConSite (http://www.phylofoot.org/ described in Lenhard et al. 2003). The program

recognizes conserved stretches between the two species which are likely to contain functional

regions. These regions are analysed for transcription factor binding sites. The search for

transcription factor binding sites was performed with a pre-selection of vertebrate specific

transcription factors.

The different Mus musculus and Mus domesticus sequences were aligned separately with the

Mus spretus sequence to identify differences in possible transcription factor binding sites due

to single nucleotide polymorphisms in the coding regions.

Test for differential expression of ß-Defensin gene analysed in several organs

RNA was isolated from 6 different organs from six Mus domesticus and six Mus musculus

animals. The animals were caught in Germany and Czech Republic, kept in the laboratory for

48 hours, killed by applying a CO2 atmosphere and directly dissected. The organs were shock

frozen in liquid nitrogen and stored at -80°C. The following organs were used for measuring

expression-levels of ß-Defensin 6: lung, tongue, salivary glands, esophagus, trachea and

skeletal muscle from the hind leg.

For isolation of RNA the organs were homogenised in Trizol (Gibco) and total RNA isolation

was performed following the manufacturers protocol. Total RNA was quantified by

spectrophotometry and 5 µg of total RNA were used for reverse transcriptase reaction with

the Superscript II RT-Polymerase Kit (Invitrogen) following the manufacturers protocol.

Real-time PCR was performed using the SYBR Green Kit from Qiagen and reactions were

run on the Light Cyler (Roche) by applying the following PCR program:

1) Initial denaturing: 95°C   for   15’
2) Denaturing : 94°C   for   8’’
3) Annealing: 58°C   for   20’’
4) Elongation: 72°C   for   8’’
5) Measuring: 82°C   for   1’’ During step 5:   Fluorescence measurement
          Repetition of step 2 to 5:   45 times
6) melting curve Increase from 58°C to

95°C with 0,1°C/s
Permanent fluorescence measurement

7) cooling 95°C to 45°C
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The SYBR green is a fluorescence dye binding to double stranded DNA. The Light Cycler

technology allows to quantify the amount of double stranded DNA such as amplified PCR

products by measuring the fluorescence after each PCR cycle.

PCR was performed for the ß-Defensin 6 gene using intron spanning primers. Additionally

two housekeeping genes Glyceraldehyd-3-phosphate dehydrogenase and TATA box binding

protein were amplified.

Table 1: list of primer sequences used for the amplification of the ß-Defensin gene and the
two housekeeping genes

Gene Accession Primer

ß-Defensin 6 NM_054074 ß-Def6-F: GTCATGAAGATCCATTACCTGC
ß-Def6-R: ACCCAGTCGAAAACCTCCATTGC

Glyceraldehyd-3-phosphate
dehydrogenase

M32599 GAPDH-F:  CATCTTGGGCTACACTGAGG
GAPDH-R:  GGAGGCCATGTAGGCCATG

TATA box binding protein (Tbp) NM_013684 TBP-F:    TGCACCGTTGCCAGGCACC
TBP-R:    TCAGCATTTCTTGCACGAAGTGC

The theoretical prediction for PCR reactions are that each PCR cycle duplicates the amount of

the PCR template. The expectation is that the amount of template increases exponentially

until a certain saturation is reached due to depletion of dNTPs and reduced efficiency of the

polymerase. Thus, the increase in PCR product follows a sigmoidal curve.

To compare the amount of template within different samples all probes were amplified in the

same Light Cycler run. Early increase of the curve corresponds to higher template

concentrations. For relative quantification of the different template concentrations a line was

drawn through the parallel slopes of all sigmoidal curves. The crossing points of the slopes

with this line correspond to the number of PCR-cycles that were necessary to reach the same

amount of PCR product and are negatively correlated with the amount of the starting

template.

The amount of template can differ due to RT-PCR efficiency and different mRNA

concentration of the samples, independent on the original expression level. Therefore,

normalisation with housekeeping genes is necessary. The expectation is that housekeeping

genes are constitutively expressed and exhibit equal concentration in the same organs of

different animals. Thus, they can be used as references to normalise expression levels of non-

housekeeping genes by the following equation:
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







−

= gene) epingCP(houseke
gene)CP(target 

gene)(target 2 Expr
Expr  =  relative expression level of the target gene

CP     =  crossing point of the slopes with the crossing line

Samples were analysed for expression or non-expression of the ß-Defensin gene. Significant

differences between the lineages of Mus musculus and Mus domesticus were inferred by

calculating a chi-square test implemented in Excel separately for each organ and also

summarised over all samples.

Differences in quantified expression levels between Mus musculus and Mus domesticus were

analysed by the Mann-Whitney-U-Test implemented in SPSS 10.0.
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Results

Nucleotide diversity along chromosome 8

In total 19711 bp were sequenced in each of about 56 chromosomes of the two lineages Mus

musculus and Mus domesticus. The distribution along the chromosome, the length of the

fragments and the diversity estimates per fragment and per lineage are listed in Table 2. The

number of sequenced chromosomes per taxon is a duplication of the number of sequenced

animals because of heterozygote animals. The polymorphic loci are the number of single

nucleotide polymorphisms per sequenced fragment. The fixed derived alleles are

monomorphic sites within one taxon which exhibit a derived allelic state compared to the

outgroup Mus spretus but they are polymorphic in the musculus and domesticus comparison.

The nucleotide diversity per fragment along the chromosome for Mus musculus and Mus

domesticus and the comparison of the two lineages are shown in Figure 2.

The Mus domesticus samples generally exhibit lower gene diversity especially in the region

from 300 kb upstream to 45 kb downstream of the ß-Defensin 6 gene. Outside this regions as

well as at single fragments within the region higher nucleotide diversity for Mus domesticus is

found indicating that the lower nucleotide diversity is not a general feature of Mus

domesticus. The highest proportion of fragments with extreme reduced nucleotide diversity is

found from 10 kb upstream to 10 kb downstream of the ß-Defensin 6 gene indicating a whole

window of reduced nucleotide diversity in this area while in the other region the nucleotide

diversity is more fluctuating. The results for this window are very reliable as long stretches

were sequenced within this area: in an area of 22 kb 5,000 bp are sequenced while in other

regions of the same size just one fragment of about 600 bp is sequenced. More fragments

around the ß-Defensin 6 locus were sequenced to identify the size of a possible sweep

window. From this analysis I assume a sweep window of roughly 22 kb around the

ß-Defensin 6 locus because outside this window are stretches with higher nucleotide diversity.

As shown in Figure 2c the area around the ß-Defensin 6 locus in Mus domesticus exhibits not

only the lowest nucleotide diversity in comparison to Mus musculus but also in comparisons

with other fragments within Mus domesticus: the π-values of the sequences within the

window are lower than the average π-value of Mus domesticus.
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Other regions along chromosome 8 were not as densely sequenced and the differences in

nucleotide diversity between Mus musculus and Mus domesticus are not that extreme as

compared within the region of the ß-Defensin 6 gene.

Table 2: List of sequenced fragments in Mus musculus and Mus domesticus and their relative
distance in kb to the ß-Defensin 6 locus. Diversity indices were calculated by the program
DNASP 3.51.

Mus musculus Mus domesticusRel.
distance
to ß-Def6
[kb]

Seque
nce
length Number

of Chro-
mosomes

Nucleotide
Diversity

Polymor-
phic Loci

fixed
derived
alleles

Inserti
on/Del
etion

Number
of Chro-
mosomes

Nucleotide
Diversity

Polymor-
phic Loci

fixed
derived
alleles

Inserti
on/Del
etion

SNP8-9 -1400 473 18 0.00398 9 3 32 0.00621 11 1

SNP8-8 -403.1 546 20 0.00053 2 9 32 0.00585 22 0
SNP8-7 -302.1 644 16 0.00378 10 1 I/D 34 0.0029 6 1 I/D
SNP8-6d -263.2 724 8 0.00219 3 I/D 32 0.00104 4 I/D

SNP8-6 -202.1 799 18 0.00532 14 32 0.00043 2 9

SNP8-5ef -187 582 20 0.00378 7 36 0.00313 8

SNP8-5d2 -160.5 725 12 0.00196 4 28 0.0007 2

SNP8-5cd -148.6 550 10 0.00162 2 36 0.0002 2

SNP8-4c -110 671 18 0.0033 6 30 0.00055 2

SNP8-4ab -99.5 875 16 0.00222 6 1 28 0.00032 3 1

SNP8-4a -84.6 564 16 0.00356 5 28 0.00136 3 1

SNP8-3c -76 726 14 0.00605 10 30 0.00033 1 1

SNP8-3a -55.1 578 18 0.00204 5 I/D 30 0.00087 3 2

SNP8-2a -41.5 750 14 0.00035 1 1 28 0.00121 2

Defb4-Exon1 -25.8 801 14 0.00344 7 26 0.00055 2 1

Defb4-Exon2 -23 549 16 0.00131 4 I/D 14 0.00236 4 1

SNP8-1 -12 544 20 0.00577 7 1 I/D 36 0.00032 2 1

Defb6-1 0 2596 18 0.00479 32 28 0.00019 4 7 (1 only dom)

Defb6-2 2.9 1152 12 0.01098 28 I/D 26 0.00171 5 10 I/D

SNP8-0a 10.8 697 14 0.00787 6 I/D 26 0.00256 5 1

SNP8-2down2 16.8 648 10 0.00274 5 2 32 0.00322 10 2

SNP8-3down 32.4 628 12 0.00321 6 I/D 32 0.0008 4 2

SNP8-4down 47.1 697 12 0.00724 11 2 14 0.00429 8 1

SNP8-5down 65.1 496 8 0.00276 4 3 (2 only mus) 32 0.00555 9 1

Defb3_Exon2 71.4 555 18 0.00138 8 1 32 0.00085 2 3

SNP8-7down 89.2 562 18 0.03466 42 I/D 32 0.01327 23 24

SNP8-8down 108.1 579 16 0.00923 12 1 I/D 32 0.00695 21 I/D

Total 1500 kb 19711 406 256 25 798 178 71

Average 730 15 0.00504 9.63 2.27 29.56 0.0025 5.81 3.55
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Figure 2: Nucleotide diversity calculated per fragment in a) Mus musculus and b) Mus
domesticus; in c) the difference in nucleotide diversity for Mus musculus – Mus domesticus;
in d) the location of ß-Defensin exons and other annotated potential genes on chromosome 8.
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An interesting result of the sequencing approach is the high proportion of fixed derived alleles

in the Mus domesticus samples. While the average number of polymorphic loci is 40%

smaller in Mus domesticus than in Mus musculus the number of fixed derived alleles is 1.5

times higher. All these fixed derived sites are SNPs which are polymorphic in Mus musculus

but fixed in Mus domesticus except for one site which is a new mutation specific for the Mus

domesticus lineage. The highest proportion of fixed derived alleles is found in SNP8-7down,

SNP8-6, ß-Defensin 6-1 and ß-Defensin 6-2; the ß-Defensin 6-1 locus contains the Mus

domesticus specific SNP. Locus SNP8-7down exhibits, in general, strange results such as a

very high nucleotide diversity and a very high number of heterozygote individuals and,

therefore, needs further analysis for example a check for a possible duplication of the

sequence. Therefore the ß-Defensin 6 locus is among the sites with most of the fixations

which represent a typical feature of a selective sweep event.

Test for selection on chromosome 8

With 20 of the sequenced fragments the multi-locus HKA-test was performed. The results

reveal a significant deviation from neutrality in the comparison of Mus spretus to Mus

domesticus (χ2 = 71.6594; dF = 19; p < 0.001); no such deviation was found in the

comparison Mus musculus and Mus spretus (χ2 = 21.147; dF = 19; p = 0.329). The results are

listed in Table 3. The average of the expected divergence between Mus domesticus and Mus

spretus with 19.6 differences per fragment is the same as the averaged divergence between

Mus musculus and Mus spretus with 19.2 which indicates that the significant χ2 results are

due to differences within the sequenced fragments of the Mus domesticus samples. The χ2

value is the sum of deviations of the within species polymorphism and of the divergence

between the taxa. Therefore, loci with the highest values strongly influence the high χ2 value

and are responsible for the deviation from neutrality. For Mus domesticus the largest

deviations are found for ß-Defensin 6-1, SNP8-8 and SNP8-8down. While the first locus

exhibits much less polymorphism than expected the last two loci exhibit much higher

polymorphism than expected. The results of the last two loci are caused by high numbers of

nucleotide exchanges at low frequency; the frequencies themselves are not considered in the

HKA-test. Exclusion of these fragments from the analysis still results in a significant χ2 test

indicating that these fragments are not the only reason for a significant HKA test result (data

not shown). Generally, many fragments of Mus domesticus show higher deviations indicating

that the whole region is affected by non-neutral evolution. The highest deviation is found at

the ß-Defensin 6-1 locus proving that selection and selective sweeps have acted on this locus.
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In contrast to this no such extreme deviation is found in any fragment of the Mus musculus

screen indicating that no selection process affected this region.

Table 3: Result of the HKA-test: a) Mus domesticus compared with Mus spretus; b) Mus
musculus compared with Mus spretus.

a) Polymorphism within Mus domesticus Divergence between Mus domesticus and
Mus spretus

Locus observed expected variance Deviation observed Expected variance deviation
ß-Def6-1 4 19.48 59.76 4.007 70 54.52 79.57 3.01
ß-Def6-2 5 9.86 20.57 1.147 33 28.14 34.82 0.678
SNP8-0a 6 2.85 3.75 2.639 5 8.15 8.71 1.137
SNP8-1 2 7.99 14.0 2.566 27 21.01 24.72 1.454
SNP8-2a 2 1.05 1.17 0.767 2 2.95 3.02 0.297
SNP8-2down 10 5.4 8.3 2.553 10 14.6 16.4 1.292
SNP8-3a 3 4.27 6.14 0.261 13 11.73 12.89 0.124
SNP8-3c 1 4.00 5.64 1.595 14 11 12.02 0.749
SNP8-4a 3 2.35 2.95 0.142 6 6.65 7.02 0.06
SNP8-4ab 3 9.21 18.22 2.117 32 25.79 31.39 1.229
SNP8-4c 2 6.67 11.23 1.939 23 18.33 21.17 1.029
SNP8-4down 8 4.52 7.69 1.576 12 15.48 17.5 0.692
SNP8-5cd2 2 5.24 7.82 1.341 17 13.76 15.36 0.683
SNP8-5down 9 4.86 7.21 2.381 9 13.14 14.6 1.175
SNP8-5ef 8 6.89 11.36 0.108 17 18.11 20.87 0.059
SNP8-6 2 6.44 10.63 1.854 22 17.56 20.16 0.978
SNP8-7 6 5.46 8.34 0.035 14 14.54 16.32 0.018
SNP8-7down 23 17.44 48.16 0.642 42 47.56 66.62 0.464
SNP8-8 22 8.91 16.80 10.208 11 24.09 28.98 5.915
SNP8-8down 21 9.12 17.53 8.049 13 24.88 30.09 4.688
average 7.1 7.1005 Sum: 45.927 19.6 19.5985 Sum: 25.731

b) Polymorphism within Mus musculus Divergence between Mus musculus and
Mus spretus

Locus observed expected variance deviation observed expected variance deviation
ß-Def6-1 32 36.24 212.56 0.085 66 61.76 172.8 0.104
ß-Def6-2 28 20.74 94.26 0.559 33 40.26 87.44 0.602
SNP8-0a 6 4.57 7.82 0.26 7 8.43 10.49 0.194
SNP8-1 7 12.82 33.63 1.007 27 21.18 34.24 0.99
SNP8-2a 1 1.06 1.23 0.002 2 1.94 2.05 0.001
SNP8-2down 5 4.56 8.55 0.023 9 9.44 12.04 0.016
SNP8-3a 5 6.29 11.59 0.143 12 10.71 14.05 0.118
SNP8-3c 10 9.35 23.55 0.018 17 17.65 26.73 0.016
SNP8-4a 5 5.06 8.74 0 9 8.94 11.27 0
SNP8-4ab 6 14.1 42.63 1.539 33 24.9 42.95 1.527
SNP8-4c 6 11.47 29.11 1.026 25 19.53 30.65 0.975
SNP8-4down 11 8.16 19.54 0.412 13 15.84 23.14 0.348
SNP8-5cd2 2 6.19 13.55 1.293 17 12.81 17.6 0.996
SNP8-5down 4 4.29 8.44 0.01 10 9.71 12.45 0.007
SNP8-5ef 7 9.05 19.42 0.216 17 14.95 21.46 0.196
SNP8-6 14 11.1 27.62 0.305 16 18.9 29.31 0.288
SNP8-7 10 9.76 23.44 0.002 17 17.24 25.89 0.002
SNP8-7down 42 25.97 119.5 2.149 29 45.03 104.05 2.468
SNP8-8 2 5.66 9.71 1.377 13 9.34 11.89 1.125
SNP8-8down 12 8.56 19.5 0.605 12 15.44 22.37 0.528
average 10.75 10.75 Sum: 11.03 19.2 19.2 Sum: 10.5
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Analysis of the coding regions

The reduced polymorphism at the locus ß-Defensin 6 and the HKA test revealed that this

locus has undergone non-neutral changes in the Mus domesticus lineage such as a selective

sweep event. To identify the reason for the non-neutral evolution sequences of the exons of

the locus were checked for any non-synonymous nucleotide exchanges.

The first exon consists of 19 codons which contained no nucleotide polymorphism in the two

house mouse lineages. The same is true for the second exon consisting of 45 codons.

Accordingly, the amino acid coding sequences do not contain any advantageous changes

responsible for the selective sweep event. In contrast to this, the sequences of three Mus

spretus animals were polymorphic with three intraspecific SNPs resulting in 2 amino acid

replacements and 6 interspecific SNPs resulting in four amino acid replacements in exon 1

and three intraspecific polymorphism resulting in three replacement polymorphisms in exon 2

and one interspecific replacement polymorphism.

Nucleotide sequence Exon1

Cons    --* -*- --- --- --- -** --- --* -** --- *-- --- --- *-- --- --- --- --- ---
Dom/Mus ATG AAG ATC CAT TAC CTG CTC TTT GCC TTT ATC CTG GTG ATG CTG TCT CCA CTT GCA
Spre1   ATG AGG ATC CAT TAC CAT CTC TTC GCA TTT CTC CTG GTG CTG CTG TCT CCA CTT GCA
Spre2   ATG AGG ATC CAT TAC CAT CTC TTC GAA TTT CTC CTG GTG CTG CTG TCT CCA CTT GCA
Spre3   ATA AGG ATC CAT TAC CAT CTC TTT GCA TTT CTC CTG GTG CTG CTG TCT CCA CTT GCA

Amino acid sequence Exon1

Cons     **---*--*-*--*-----
Dom/Mus  MKIHYLLFAFILVMLSPLA
Spre1    MRIHYHLFAFLLVLLSPLA
Spre2    MRIHYHLFEFLLVLLSPLA
Spre3    IRIHYHLFAFLLVLLSPLA
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Nucleotide sequence Exon2

Cons    --- --- --- --- --- --- --- --- -*- --- --- --- --- --- --- --- --- --- ---
Dom/Mus GCC TTT TCC CAA TTA ATC AAC AGT CCA GTA ACA TGC ATG AGC TAT GGA GGC TCA TGC
Spre1   GCC TTT TCC CAA TTA ATC AAC AGT CCA GTA ACA TGC ATG AGC TAT GGA GGC TCA TGC
Spre2   GCC TTT TCC CAA TTA ATC AAC AGT CCA GTA ACA TGC ATG AGC TAT GGA GGC TCA TGC
Spre3   GCC TTT TCC CAA TTA ATC AAC AGT CTA GTA ACA TGC ATG AGC TAT GGA GGC TCA TGC

--- -*- --- --- --- --- --- --- -*- --- --- --- --- --- --- --- --- --- --- --- ---
CAG CGT TCA TGC AAT GGA GGT TTT CGA CTG GGT GGC CAT TGT GGC CAT CCT AAA ATC AGA TGC
CAG CGT TCA TGC AAT GGA GGT TTT CGA CTG GGT GGC CAT TGT GGC CAT CCT AAA ATC AGA TGC
CAG CAT TCA TGC AAT GGA GGT TTT CAA CTG GGT GGC CAT TGT GGC CAT CCT AAA ATC AGA TGC
CAG CGT TCA TGC AAT GGA GGT TTT CGA CTG GGT GGC CAT TGT GGC CAT CCT AAA ATC AGA TGC

--- -*- --- --- ---
TGC CGC AGA AAA TAG
TGC CAC AGA AAA TAG
TGC CAC AGA AAA TAG
TGC CAC AGA AAA TAG

Amino acid sequence Exon2

Cons    --------*-----------*------*-------------*--
Dom/Mus AFSQLINSPVTCMSYGGSCQRSCNGGFRLGGHCGHPKIRCCRRK
Spre1   AFSQLINSPVTCMSYGGSCQRSCNGGFRLGGHCGHPKIRCCHRK
Spre2   AFSQLINSPVTCMSYGGSCQHSCNGGFQLGGHCGHPKIRCCHRK
Spre3   AFSQLINSLVTCMSYGGSCQRSCNGGFRLGGHCGHPKIRCCHRK

The McDonald-Kreitman test was applied to the whole region of the ß-Defensin 6-1 and ß-

Defensin 6-2 loci to check for selection between the different mouse species. For both

fragments the McDonald-Kreitman test revealed no significant results (G-value = 0.639;

p = 0.42415 for part 1 and G = 0.003; p = 0.95366 for part 2) indicating that the divergence at

the loci is compatible with neutral divergence between the taxa Mus spretus and Mus

musculus/domesticus although functional regions are always assumed to be under selective

constraints.

The Ka/Ks test was applied to the coding sequences to identify the rate of divergence between

the species. The sequence of the Mus musculus/domesticus lineage was tested against the

three Mus spretus sequences revealing 49 silent positions and 143 non-synonymous positions.

The number of silent differences ranged from 1.5 to 2.5 and the number of non-synonymous

differences was between 5.5 and 9. In the three comparisons the Ka/Ks ratios ranged from 0.7

to 1.8. Ka/Ks values above 1 are usually a sign for strong positive selection which contradicts

the results of the McDonald-Kreitman test.

The exon sequences were blasted against the Rat genome database. Exon 1 matched with one

part of the ß-Defensin 2 precursor gene (NM_022544) with 82.46% sequence identity but a
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very low E-value on rat chromosome 16 within the cluster of ß-Defensin genes. The second

exon also matched with a high E-value of 8.9e-7 but no coding regions corresponded to the

match which indicates that the mouse ß-Defensin 6 gene does not directly correspond to a ß-

Defensin gene in the rat genome.

Analysis of regulatory regions

The above analysis shows that the advantageous changes have occurred after the divergence

of the Mus musculus and the Mus domesticus lineage. Since no differences were found in the

amino acid coding regions between the lineages the expectation is to find changes in the

regulatory regions of the gene.

In total 45 transcription factor binding sites were identified by the program ConSite (Table 4).

Nineteen TFs are mouse specific transcription factors and 26 are specific for vertebrates.

25 transcription factor binding sites showed differences by comparing the Mus musculus and

Mus domesticus sequences. In 24 cases Mus musculus showed variability in transcription

factor binding sites with the presence of the site in one and absence in the other Mus musculus

sequence while the Mus domesticus samples were monomorphic. In nine cases the

transcription factor binding site was lost while in fifteen cases the transcription factor binding

site was present in the Mus domesticus samples. Eight transcription factor groups were in

close vicinity of less than 50 bp of twelve fixed derived alleles of the Mus domesticus

sequences correlating with the loss of binding sites in four groups. Two of these groups

contained three fixed derived alleles in a sequence stretch of 30 bp. Two fixed derived alleles

correspond to a loss of the binding site and two fixed derived alleles showed no correlation

with gain or loss of a binding site.
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Table 4: List of potential transcription factor binding sites and their localization identified by
the program ConSite. Depending which sequence was aligned to the Mus spretus sequence
different TFs were identified. The last column indicates the location of the fixed derived
mutations in the Mus domesticus samples; in bold letters are sites less than 50 bp distant to a
TF binding site. Light grey and white shadings indicate same location with domains for
several TFs. Dark grey shading indicates the amino acid coding part of the gene.

origine of
Transcription

factors
Transcription

factors Sequence motif dom1 dom2 mus1 mus2
Location of

fixed derived
allele (dom)

Rat TF HNF-3beta ATGTAAACATTC 63 63
Human TF FREAC-4 GTAAACAT 65 65
Mouse TF Sox-5 AAACATT 67 67 125
Mouse TF SOX17 GAGAATGCA 295
Human TF E4BP4 ATAGGTAACAT 325 311
Human TF E4BP4 AGGTAACATAA 327 509
Human TF HFH-3 GCATATTTGCTT 715 715 715 715
Rat TF HNF-3beta GCATATTTGCTT 715 715 715 715
Mouse TF Sox-5 AATGTTA 750 750 750
Mouse TF Sox-5 AGTGTTA 759 759 759
Mouse TF Sox-5 GGACAAT 837 837 835
Mouse TF SOX17 GACAATAGG 838 838
Mouse TF Sox-5 TAGCAAT 857 857 857 857
Human TF RORalfa-1 AGGCAGGTCA 947 947 947 947
Human TF AML-1 TACCACAGA 1034 1034 1034 1034
Mouse TF SOX17 ATCATTGTG 1596 1596 1596
Human TF AML-1 ATTGTGTTT 1599 1599 1599
Mouse TF Sox-5 ATTGTGT 1599 1599 1599
Human TF HFH-3 TTGTGTTTGTAT 1600 1600 1600
Human TF HFH-3 AACCAAATATGC 1850 1853 1838 1825
Rat TF HNF-3beta AACCAAATATGC 1850 1853 1838
Human TF FREAC-4 CTTTTTAC 1861 1864 1849 1864
Human TF RORalfa-1 TTACCTTGAA 1865 1868 1853 1868
Mouse TF c-FOS TCATTCAC 1891 1894 1879 1894
Mouse TF Brachyury TTCACAGCTAA 1894 1897 1882 1897
Rat TF USF TCACATG 1911 1914 1899 1914
Mouse TF ARNT CACATG 1912 1915 1900 1915
Mouse TF n-MYC CACATG 1912 1915 1900 1915
Human TF FREAC-4 TTAAACAT 1981 1984 1969 1984 2005, 2170
Human TF FREAC-2 TAAATGTAAAGAAG 2620 2430
Human TF FREAC-4 GTAAAGAA 2625 2650
Human TF FREAC-4 TTAAACAA 2763 2766 2751
Mouse TF Sox-5 AAACAAG 2765 2768 2753
Human TF RXR-VDR GGGTCAAATACTTCA 2789 2792 2777
Mouse TF Sox-5 GAAAAAT 2828 2820, 2830, 2840
Vertebrate TF Thing1-E47 CAGCCAGACA 2996 2999 2999
Mouse TF c-FOS GTGAGGCA 3054 3042 3057
Human TF Thing1-E47 AAACCAGAAC 3307 3310 3310
Human TF AML-1 AACCAGAAC 3308 3311 3372 3311
Human TF Myf CAGCATCAGCGG 3326 3329 3329
Human TF HFH-3 AAACAGATATCA 3362 3365 3365 3390
Mouse TF Sox-5 CAACAGT 3512 3515 3507 3415
Mouse TF SOX17 GCCATTGTG 3586 3589 3581 3589
Human TF AML-1 ATTGTGGCC 3589 3592 3584 3592
Mouse TF Sox-5 ATTGTGG 3589 3592 3584 3592
Human TF USF CAACGTG 3645
Mouse TF ARNT AACGTG 3646 3655, 3675, 3685
Mouse TF n-MYC AACGTG 3646
Mouse TF c-FOS GTGAATAA 3649
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Differential Expression of the ß-Defensin 6 gene in various epithelial organs

To test the reliability of the real-time Light Cycler PCR results the PCR of the ß-Defensin 6

gene was repeated three times in all twelve esophagus and twelve trachea organs; the

housekeeping genes GAPDH was repeated two times in all organs. The line crossing the

sigmoidal curves of all PCR reaction was manually drawn through the parallel part of the

curves and the crossing points with this line were determined (Figure 3).

Figure 3: Light cycler results for the amplification of GAPDH in the esophagus of Mus
musculus and Mus domesticus and demonstration of the determination of the crossing points
for all samples. The coloured lines correspond to the increase in double stranded PCR product
per PCR cycle in 6 Mus musculus and 6 Mus domesticus animals. The colours and the
corresponding samples are listed in the dark underlayed part of the legend. The pink curve
represents the amplification results of the blank probe. Increase in product is very delayed and
correspond to random amplifications of the PCR primers. The cycle numbers at the crossing
points are a relative measurement of the initial amount of template. Lower cycle number
correspond to higher template concentrations, since less cycles are needed to reach an equal
amount of PCR-product that is reached in all probes at the crossing line.

For the replicate PCR runs the mean of the crossing points for all samples and the standard

deviations were calculated and are shown as error bars in figure 4.

Line crossing all parallele

sigmoidal curves

Crossing point
with x-achses

1 GADPH3
2 GADPH4
3 GADPH5
4 GADPH6
5 GADPH7
6 GADPH8
7 GADPH-blank_Tra
8 GADPH_Tra_dom7
9 GADPH_Tra_dom10
10 GADPH_Tra_dom5
11 GADPH_Tra_dom6
12 GADPH_Tra_dom8
13 GADPH_Tra_dom9
14 GADPH_Tra_mus6
15 kaputt
16 GADPH_Tra_mus8
17 GADPH_Tra_mus9
18 GADPH_Tra_mus11
19 GADPH_Tra_mus12
20 GADPH-Eso_dom7 
21 GADPH-Eso_dom10 
22 GADPH-Eso_dom5 
23 GADPH-Eso_dom6 -
24 GADPH-Eso_dom8 
25 GADPH-Eso_dom9 
26 GADPH-Eso_mus6 
27 GADPH-Eso_mus7 
28 GADPH-Eso_mus8 
29 GADPH-Eso_mus9 
30 GADPH-Eso_mus11 
31 GADPH-Eso_mus12 
32 GADPH blank_Eso 
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Comparison of replicates
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Figure 4: Comparisons of expression levels in replicate runs per sample of the ß-Defensin 6
and the GAPDH gene in trachea and esophagus. On the x-axes the organs and sample names
are listed (Tra = trachea; Eso = esophagus).

For the two runs of the housekeeping gene the results are nearly identical and standard

deviations are very small with a maximum of 1.2 in the sample Eso-mus 7. For the

ß-Defensin 6 gene the standard deviations are higher with a maximum of 2.3 in sample

Eso-mus 6. The behaviour of all replicates within each run is nearly the same: comparing the

results within each run the relative differences between all samples remain the same. Only the

crossing points are slightly different which is an effect of the manual choice of the crossing

line. By analysing the behaviour of replicates within each run and between the runs, main

differences are found between the samples indicating that the differences are sample specific

and the results of each run are highly reproducible. The only exception is the sample

Eso-mus 6 which exhibits different results in two runs. Generally, the standard deviation of

the ß-Defensin 6 samples averaged over all samples within one run are between 3.2 to 4.1 and

much higher than the standard deviation averaged over the replicate results per sample

ranging from 0.74 to 2.3. The run conditions therefore seem to be very stable and differences

are not dependent on PCR conditions but on the characteristics of the samples themselves.

The real-time PCR results of the other organs were based on single PCR runs only and are

listed in Table 5. The housekeeping genes were expressed in all organs except for the

esophagus sample from Mus domesticus 7 which showed no expression of any organ and no

expression of TBP was found in the lung of Mus domesticus 8. GAPDH was expressed in this
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sample. In the tongue ß-Defensin 6 was expressed in all samples; in the other organs

ß-Defensin 6 was expressed in few animals only.

Table 5: Results of the expression of the ß-Defensin 6 gene in the different organs of Mus
musculus and Mus domesticus. In the first columns the number of animals is listed which
show expression or non-expression of the gene; in the last columns the average expression
levels normalised with the two housekeeping genes and averaged over all animals from Mus
musculus or Mus domesticus are listed.

domesticus musculus Chi-Square
Mean normalised
expression level

(GAPDH)

Mean normalised
expression level

(TBP)
dom mus dom mus

expr 4 5
Trachea

non-expr 2 1
P = 0.505 M     0.41

Std  0.007
M     0.044
Std  0.046

M    0.63
Std  0.195

M    0.63
Std  0.030

expr 3 6
Esophagus

non-expr 2 0
P = 0.087 M    0.386

Std  0.17
M    0.432
Std  0.047

M    0.638
Std  0.002

M    0.687
Std  0.035

expr 2 3
Lung

non-expr 4 3
P = 0.74 M    0.433

Std  0.011
M    0.469
Std  0.026

M    0.603
Std  0.016

M    0.63
Std  0.035

expr 1 4Salivary
Glands non-expr 5 2

P = 0.079 M    0.524
Std /

M    0.472
Std  0.021

M   0.649
Std /

M    0.603
Std  0.015

expr 6 6
Tongue

non-expr 0 0
Not determined M    0.451

Std  0.05
M    0.48
Std  0.061

M    0.673
Std  0.010

M    0.69
Std  0.022

expr 2 3Skeletal
Muscle non-expr 4 3

P = 0.558 M    0.402
Std  0.085

M    0.262
Std  0.051

M    0.63
Std  0.036

M    0.59
Std  0.003

Expr 18 27
total

Non-expr 17 9
P = 0.039

The expression and non-expression of ß-Defensin 6 was tested for significant differences

between the two taxa. For the organs separately none of the comparisons was significant

although the expression patterns in the esophagus and the salivary glands were nearly

significant. The total expression revealed a significant different expression with a lower

expression of ß-Defensin 6 in Mus domesticus. No hint was found that the expression of

ß-Defensin 6 is dependent on the individual because ß-Defensin 6 expression was not

consistently switched on or off in the different organs of one individual.

To determine the level of expression the results were normalised with the two housekeeping

genes. The mean expression levels per organ and per species was calculated by averaging the

expressions of the samples where the gene showed expression.

Mann-Whitney-U test was applied to test whether the levels of expressions differed between

the two lineages. The calculations were done separately for the two housekeeping genes. A

significant result in expression level was detected for the esophagus samples: the Mus

domesticus animals showed a significant lower expression level than the Mus musculus

animals (Z = -2.196; p = 0.028 for GAPDH normalisation; Z = -2.745; p = 0.006 for TBP

normalisation). All other organs showed no significant differences in expression levels.
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Discussion

Confirming the selective sweep for the ß-Defensin 6 locus by a sequencing approach

In many studies the analysis of nucleotide sequences has been used to confirm the positive

results of multi-locus microsatellite screens for traces of selection (Harr et al. 2002,

Vigouroux et al. 2002). While Vigouroux et al. (2002) sequenced the promising sweep locus

alone, Harr et al. (2002) additionally sequenced fragments in the flanking regions. In this

study about selective sweeps in the house mouse quite extensive sequencing was performed

along chromosome 8 in order to identify the sweep window, its size and the general

fluctuation of nucleotide diversity along chromosome 8 within the mouse genome.

Summarising the findings over all sequenced fragments Mus domesticus exhibits a lower

nucleotide diversity than Mus musculus which corresponds to the results of the microsatellite

screen for the locus P104 located within the intron of the ß-Defensin 6 gene (chapter 2).

Additionally, by analysing the nucleotide diversity per fragment substantial fluctuation in

diversity is obvious. Fluctuation of nucleotide diversity is a normal pattern along a

recombining chromosome and high variability is expected under neutrality due to

recombination (Kim & Stephan 2002). Therefore, it is straightforward to differentiate between

regions with reduced variability due to selective sweeps and hitchhiking events, and

sequences with reduced variability due to chance alone (Kim & Stephan 2002).

To verify the results of the microsatellite screen and to identify the size of the sweep window

a higher proportion of fragments were sequenced around the ß-Defensin 6 locus, in contrast to

less fragments in other regions located in a certain distance from the sweep locus. By

comparing Mus domesticus against Mus musculus a window of reduced variability ranging

from 12 kb upstream to 10 kb downstream of the ß-Defensin 6 locus was identified. The

borders of the window are marked by fragments of higher nucleotide diversity of Mus

domesticus versus Mus musculus. Microsatellite analysis identified this region as a potential

sweep locus and the sequencing approach verified the results of reduced nucleotide diversity

within the Mus domesticus lineage and even allowed to estimate the size of the sweep window

to be between 22 kb and 30 kb. The estimated size of this sweep window corresponds to

sweep window sizes in Drosophila melanogaster with 41 to 54 kb (Saez et al. 2003) and

28 kb (Harr et al. 2002). Other sequenced fragments along chromosome 8 revealed several

patterns of reduced nucleotide diversity. The results were based on local sequence stretches of

500 to 800 bp while the results of the ß-Defensin 6 locus were based on sequencing 5 kb



Chapter III                                                                                 Selective Sweep of ß-Defensin 6
___________________________________________________________________________

91

within a region of 22 kb. Nevertheless, in the chromosomal region of 300 kb upstream of the

ß-Defensin locus there are annotations of five putative genes which are derived by automated

computational analysis using gene prediction methods such as BLAST or genome scan

(information within NW_000383, Genbank Accession number for sequence stretch on

chromosome 8). These sequence stretches, therefore, may contain functional regions such as

unknown genes which might also be potential targets for selection. The fluctuation of

nucleotide polymorphism upstream and downstream of the ß-Defensin 6 gene can also be the

result of multiple selection events at different sites that have independently shaped the

diversity along the chromosome.

As the size of the sweep window is influenced by many factors such as strength of selection,

mutation rates, recombination and time passed since the selective sweep event it is very

difficult to predict sizes of sweep windows (Kim & Stephan 2002, Fay & Wu in press). The

advantage of nucleotide diversity is that the mutation rates of sequence stretches are more

similar to each other and the estimation of the sweep window size is more reliable than with

microsatellites which show high variations in mutation rates. Consequently, the search for

selective sweeps by sequencing random fragments within the genome only the recombination

rate of the relevant region has to be taken into account and the sequence fragments have to be

distributed in equal centiMorgan distances. In contrast to this, by screening microsatellite loci

the mutation rate has to be considered in addition. Due to their high variability microsatellite

loci are better suited to identify recent sweeps but their traces will be obscured relatively fast

(Schlötterer 2003). Sequence data are superior to identify ancient sweep events (Glinka et al.

in press) as is the case for the ß-Defensin 6 locus which apparently has undergone a selective

sweep event after the separation of the Mus musculus and the Mus domesticus lineage.

Test for selection by comparisons with the outgroup Mus spretus

Although the microsatellite screen and the sequencing approach confirmed the reduced

variability at the ß-Defensin 6 locus the multi-locus Hudson-Kreitman-Aguadé test was

applied to check for selection. The HKA test compares the intraspecific nucleotide

polymorphism within populations against the interspecific nucleotide divergence between two

species. Under neutrality polymorphism and divergence should be equal because the same

fragments are assumed to have evolved neutrally under the same mutation mechanism

(Kimura 1983). Mus musculus and Mus domesticus were both tested against sequences of Mus

spretus which diverged from the house mouse about 2 Mya ago (Bonhomme 1993). The
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comparison of Mus musculus against Mus spretus followed neutral expectations while the

comparison of Mus domesticus against Mus spretus significantly deviated from neutrality. For

Mus domesticus almost all fragments showed higher deviations than the Mus musculus

fragments and the χ2 test indicated that selection is acting on multiple fragments in this

region. The highest deviations were found in the intraspecific comparisons indicating that the

selective process has acted within Mus domesticus. Some fragments showed high deviations

which are probably artificial results because they are based on elevated nucleotide diversity

only due to one or two animals carrying different nucleotides. For locus SNP8-8 one Mus

domesticus animals carried a Mus musculus sequence. This animal increased the general

nucleotide polymorphism at this locus artificially and the sequence of this locus requires

revaluation. SNP8-8down and SNP8-7down generally exhibit extremely high nucleotide

diversities based on many heterozygote animals. Since in the other sequences heterozygote

animals were rare, the results of these fragments have to be reanalysed for duplications of the

fragments or for any other effects leading to this extremely high polymorphism.

Even after eliminating these fragments from the HKA-analysis the results remain significant

(data not shown). The highest deviation is then found in the first part of the genomic sequence

of the ß-Defensin 6 gene but also other loci especially in the downstream region of the

ß-Defensin 6 gene exhibit high deviations. Starting with the ß-Defensin 4 gene 25 kb upstream

to ß-Defensin 6 there is a cluster of ß-Defensin genes stretching over several 100 kb

downstream (Maxwell et al 2003, Morrison et al 2003). Comparing the human and the mouse

ß-Defensin cluster other studies found out that the cluster has evolved through duplication and

then further developed under strong directional selection (Maxwell et al. 2003). Therefore, it

is not an unexpected result if additionally to the ß-Defensin 6 gene other regions of the

ß-Defensin cluster are shaped by selection.

Only Mus domesticus showed traces of selection within this cluster and none were found

within Mus musculus. Compared to the Mus musculus populations the Mus domesticus

populations are rather young (chapter 1). Maybe the cluster was reshaped again during the

colonization of new habitats while within the old Mus musculus populations these traces

became already obscured by mutation and recombination events.
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Search for the advantageous mutation

Multiple evidence showed that the region around the ß-Defensin 6 gene was subject to

selection within the Mus domesticus clade. Now the challenge was to find the advantageous

mutation that has swept through the populations eliminating other polymorphisms. One

characteristic of such an advantageous mutation is that it must occur in a functional region

either in the amino acid coding sequence or in the regulatory regions. Simultaneously, alleles

in non-functional regions become monomorphic just because of the hitchhiking effect.

Sequencing of the two exons of the ß-Defensin 6 gene revealed no nucleotide substitutions.

All sequenced animals from the Mus musculus and Mus domesticus lineages were completely

monomorphic even at the silent positions of the amino acid coding sequence indicating that

the advantageous mutation did not occur within the coding sequence.

By comparing the sequence against the Mus spretus animals evidence of positive selection

was found by calculation the Ka/Ks ratios. If the number of replacement substitutions exceeds

the number of synonymous substitutions this is usually an indication for positive Darwinian

selection (Yang 2002). Generally Ka/Ks values of orthologous genes of mice and humans are

around 0.18 and only 1% of all genes are known to result in Ka/Ks values above 1 and those

genes are mainly involved in sexual selection or disease resistance (Fay & Wu (a), in press)

which is also true for the ß-Defensin 6 gene. Morrison et al. (2003) analysed the ß-Defensin

gene cluster in different rodent species and discovered that most of the genes evolved by

duplication and subsequent positive selection. However, they were not able to amplify the

second exon of ß-Defensin 6 in Mus spretus. In this study I succeeded to amplify and to

sequence the whole genomic region of the ß-Defensin 6 gene in Mus spretus. For the amino

acid coding sequences high polymorphism rates were detected which even revealed different

amino acid exchanges within four Mus spretus animals. Polymorphism of the ß-Defensin

peptides within one species is not reported in the literature (Morrison et al. 2003, Maxwell et

al. 2003) probably because only one or few animals of the relevant species were sequenced.

The McDonald Kreitman test showed no significant deviation from neutral expectation and

the genomic sequence within Mus spretus evolved without any selective constraints.

Normally, functional genes are always under selective controls which are either positive or

negative: positive selection is expected to increase the number of amino acid substitutions but

with little impact on polymorphism while negative selection affects the amino acid

polymorphism but not divergence (Fay & Wu (a), in press).
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This result indicates that the high values of the Ka/Ks test are just a result of unconstraint

evolution indicating that the gene in Mus spretus is not subjected to strong directional

selection.

By blasting the exon sequences against the rat database only one coding sequence for the first

exon to the ß-Defensin 2 precursor gene in the rat genome was found. The second exon

showed a highly significant BLAST match but no coding region was annotated for this

sequence which indicates that a similar sequence stretch exists in the rat genome but does not

contain a functional gene.

This result corresponds well with the results of Morrison et al. (2003) who amplified the

ß-Defensin 6 exons only in Mus domesticus, Mus musculus, Mus castaneus and in Mus caroli,

but not in more distantly related rodents. In contrast to this, other ß-Defensin genes were

found in many different rodent species indicating that those genes evolved early during the

divergence time of the Genus Mus. Morrison et al. (2003) suggest that the ß-Defensin 3,

ß-Defensin 5 and ß-Defensin 6 gene evolved by duplication of the ß-Defensin 4 gene four to

six million years ago and were shaped by strong selection pressure.

Mus caroli is more distantly related to the house mouse species complex than Mus spretus and

the ß-Defensin 6 gene showed eight amino acid changes which correspond to a very high

divergence rate. In Mus spretus four inter- and intraspecific amino acid substitutions for the

second exon were found but differed from the substitution in Mus caroli, thus indicating again

that the ß-Defensin 6 gene evolved differently in Mus spretus.

Within the house mouse the gene presumably acquired novel physiological roles because of

its special expression pattern in the skeletal muscle (Yamaguchi et al. 2001). As the gene is

rather young and shows special features in the house mouse species complex, it is very likely

that the gene is still being shaped by further selection within the different lineages of the

house mouse species complex.

Analysis of the regulatory regions

The history of duplication of the ß-Defensin cluster and of the positive selection pressure

shaping the whole gene family does not explain why a selective sweep window was identified

around the ß-Defensin 6 gene for Mus domesticus and not for Mus musculus. Although the

amino acid coding regions exhibited no differences between the lineages the hypothesis is that

advantageous changes occurred in the regulatory regions and altered the expression patterns

of the gene. Especially the regulatory regions of duplicated genes are under strong selective
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control as reviewed by Ohta (2003), because strict regulation is often an important factor for

the survival of a duplicated gene.

Therefore, all Mus musculus and Mus domesticus sequences were analysed for possible

transcription factor binding sites. This approach was based on the concept of phylogenetic

footprinting that assumes that functional regions are under selective constraints and are more

conserved between two species than non-functional regions (Lenhard et al. 2003, Zhang &

Gerstein 2003). The house mouse sequences were aligned to Mus spretus. Within the aligned

sequences several conserved stretches between the species and about 45 putative transcription

factor binding sites were identified. To detect the advantageous mutation the analysis

concentrated on the differences between Mus musculus and Mus domesticus. The most

important difference was that Mus musculus was mainly polymorphic for the presence or

absence of transcription factor binding sites while Mus domesticus was more monomorphic

showing either presence or absence of the same binding site in all sequences. The regulation

of transcription in Mus domesticus seemed to be more strictly controlled as a possible

response to a selection pressure which caused the precise activation of the ß-Defensin 6

gene.

This interpretation follows the idea that a selective sweep is a response to a changing

environment which suddenly favours one allele of an existing polymorphism. Another theory

about selective sweeps assumes that a new advantageous mutation occurs within a population

which suddenly changes its properties without changes in the environment. Such mutations

are recognized as derived variants.

For Mus domesticus 17 fixed derived alleles were identified within the ß-Defensin 6 region.

The transcription factor analysis showed that eleven of all these alleles occurred in close

vicinity to putative transcription factor binding regions and can thus play a role in the altered

regulation of the expression of the gene.

Phylogenetic footprinting allows the identification of possible functional regions but, so far,

the program ConSite is only able to detect about 68% of experimentally confirmed

transcription factor binding sites (Lenhard et al. 2003). These computational approaches

always produce a lot of false positive results and the identification of a transcription factor

binding site does not always correspond to a transcription factor binding site in vivo (Zhang &

Gerstein 2003).
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Although no differences were found in the coding sequence between Mus musculus and Mus

domesticus quite a lot of differences appeared in potential transcription factor binding sites

indicating that the advantageous mutation which caused the selective sweep can be one of the

single nucleotide changes that altered possible regulatory sites. Of particular interest are those

sites where Mus domesticus exhibits fixed derived alleles in high density: for example around

the position 2828 three fixed derived variants were found that led to the complete loss of the

Sox-5 binding site and this site is definitely an excellent candidate for an advantageous

mutation.

Differential expression of ß-Defensin 6

Gene regulation within an organism is one of the most complicated processes responsible for

the ontogenetic development of individuals; on a broad scale the evolution of those networks

is probably a major contributor to animal diversity (Rast 2003). Disturbances of the regulatory

system can lead to severe malfunctions and diseases and, therefore, the regulatory system has

to be under stringent control. Gradually the understanding of the architecture of these

regulatory networks is coming into the focus of research (Rast 2003).

On the other hand flexible regulation of genes allows the organism to respond quickly to the

environment and especially genes that play a role in environmental interactions are often

inducible genes and expressed by certain signals only.

The ß-Defensin cluster consists of genes that are differentially regulated: some genes are just

expressed if they are induced by certain pathogens while other genes are constitutively

expressed (Bals et al. 1999, Jia et al. 2000, Yamaguchi et al. 2001, Burd et al. 2002). The

ß-Defensin 6 gene is known to be expressed in the esophagus, tongue, trachea and skeletal

muscle and is inducible expressed in the lung (Yamaguchi et al. 2001). As I assume that the

selective sweep of the ß-Defensin 6 gene within Mus domesticus is based on differential

regulation the expression level of the gene in various organs of the two lineages Mus

domesticus and Mus musculus were analysed. Generally, less expression of ß-Defensin 6 was

found in Mus domesticus. This result would correspond nicely to the fact that within Mus

domesticus the potential transcription factor binding sites are either present or absent but not

as polymorphic as in the Mus musculus samples. Subsequently, I assume that the expression is

more specifically regulated in Mus domesticus. Concerning the different organs it was found

that ß-Defensin was constitutively expressed in the tongue of all animals while in the other

organs ß-Defensin expression was found in some animals only. For the esophagus the
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expression level was found to be slightly significantly lower in Mus domesticus than in Mus

musculus.

Still, the results of the expression level of the ß-Defensin 6 gene in Mus domesticus and Mus

musculus showed a lot of variance and no clear differences were found in the regulation of the

gene in the two lineages.

The problem of measuring gene expression levels is that gene expression can deviate

substantially depending on the state  of the animal. For the quantitative PCR experiments wild

caught animals were used. Although kept in the lab for 48 hours the state of the animals

remained unclear: no information could be obtained about age, state of health and general

physiological conditions. Particularly, for a gene as the ß-Defensin gene the expression can

differ significantly dependent on any kind of bacterial infections. Therefore, to really get an

answer whether the expression of the ß-Defensin 6 gene is differentially regulated within the

species the experiment must be repeated with lab raised Mus musculus and Mus domesticus

animals with well known status. Additionally, I expect differences in the regulation of the

gene which might be visible only if the animals are subjected to bacterial infections.

Therefore, a final answer whether the gene is differentially regulated can only be inferred

after testing the response of lab raised animals of the two lineages to bacterial infections

under controlled conditions.

Summary and Conclusion

Sequencing several fragments along chromosome 8 revealed that the region around the

ß-Defensin 6 gene was shaped by selection within Mus domesticus. Other regions, in

particular, regions within the ß-Defensin cluster also showed traces of selection which are

either caused by an extended hitchhiking event or by several independent selective sweep

events. Comparisons of the coding sequences revealed no differences between Mus musculus

and Mus domesticus. Nevertheless, all ß-Defensin genes have evolved under strong positive

selection within rodents and, therefore, are promising targets for further selection events. The

ß-Defensin 6 gene is a rather young gene within the house mouse species complex. Although

no changes were found in the coding regions the analysis of potential transcription factor

binding sites revealed many differences between Mus musculus and Mus domesticus mainly

resulting in  monomorphic occurrence of transcription factor binding sites within the Mus

domesticus clade. Although selective changes in regulatory regions are difficult to proof the

analysis of the expression levels of the gene within different organs revealed significant
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differences independent of the unknown state of the animals which certainly increased the

variance of the results and reduced the chance to detect significant differences.

My search for a selective sweep event within the house mouse complex identified the

ß-Defensin 6 gene as a sweep locus. Although the functional differences are not completely

resolved, this study showed that the method is successful to determine an interesting

candidate gene which was already identified by other research groups to play a role in

evolution and adaptation at a higher taxonomic level.
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