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Zusammenfassung

Genomische Unterschiede beeinflussen das molekulare Netzwerk, das alle zellulären

Aufgaben ausführt. Da diese Aufgaben in erster Linie von Proteinen erledigt werden,

ist es von zentraler Bedeutung die Effekte von genomischen Unterschieden auf die

Häufigkeiten und Aktivitäten von Proteinen zu verstehen.

Wir haben in zwei unabhängigen Studien in der Spalthefe Schizosaccharomyces pom-

be und der Bäckerhefe Saccharomyces cerevisiae die Effekte von genetischen Verände-

rungen auf das molekulare Netzwerk erforscht, indem wir Genloci mit Einflüssen auf

quantitative Merkmale (QTL) identifiziert haben. Um das molekulare Netzwerk in

mehr Zuständen analysieren zu können, haben wir S. pombe Kulturen oxidativem

Stress ausgesetzt. Die Effekte der meisten QTL haben sich zwischen beiden expe-

rimentellen Bedingungen unterschieden und wir haben genetische Polymorphismen

identifiziert (QTL-Hotspots), die die Expression von Genen beeinflussen, welche in

der Antwort auf zellulären Stress involviert sind. Für einen dieser Hotspots haben

wir die ursächliche Mutation im pka1 -Gen identifiziert und validiert. pka1 ist ein

Bestandteil des RAS-Signalwegs, der an der Antwort auf Umweltstress in S. pombe

beteiligt ist.

In der zweiten Studie haben wir Daten über die Phosphorylierung von hunderten

von Proteinen mit Daten über die Häufigkeiten der Proteine und ihrer Transkripte

kombiniert. Das Phosphoproteom wurde in starkem Maße von genetischen Unter-

schieden beeinflusst und es konnte eine hohen Zahl an Polymorphismen mit einem

Effekt auf Phosphorylierung identifiziert werden. QTL-Hotspots mit Auswirkungen

auf anderen molekular Ebenen, sowie Mutationen in der Nähe der betroffenen Pro-

teine haben auch das Phosphoproteom beeinflusst. Der zusätzliche Informationswert

der Phospho-Daten wurde zudem bei der Analyse von betroffenen Signalwegen deut-

lich. Die umfassende Charakterisierung des Proteoms in beiden Studien hat es uns

ermöglicht, die Beziehung von Effekten auf der Transkript- und Proteinebene zu

erforschen. Diese Beziehung war komplex und unterschied sich deutlich zwischen

verschiedenen Genen mit unterschiedlichen Funktionen.

Diese Arbeit trägt zum tieferen Verständnis von molekularen Netzwerken bei, indem
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die Effekte von genetischen Polymorphismen in den untersuchten Modellorganismen

auf die Stressantwort, das Proteom und das Phosphoproteom bestimmt werden. Es

wird zudem gezeigt, wie Veränderungen im molekularen Netzwerk durch verschiedene

Ebenen hinweg analysiert werden können.
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Abstract

Genomic variation impacts on the molecular network that performs all cellular func-

tions. As these functions are largely carried out by proteins, it is crucial to under-

stand how genomic variation contributes to differences in protein abundances and

activities.

We investigated the effects of genetic variation on the molecular network in two

independent studies in the fission yeast Schizosaccharomyces pombe and the budding

yeast Saccharomyces cerevisiae through the mapping of quantitative trait loci (QTL).

To be able to observe the molecular network in more states, we exposed fission yeast

samples to oxidative stress. The effects of most QTL differed between these two

experimental conditions. We identified QTL-hotspots that affected the expression of

large numbers of stress response genes. For one of these hotspots we identified and

validated pka1 as the causal gene: a missense mutation in pka1 caused a reduction

in RAS signaling, which mediates part of the stress response in fission yeast.

In the second study, we integrated quantitative phosphorylation traits for hundreds

of proteins with matched transcriptomic and proteomic data. We found the phospho-

proteome to be controlled by genetic variation and identified numerous associations

between genetic variants and phosphorylation traits. Hotspots for other molecular

layers and local variation both impacted on the phosphorylation of proteins. The

additional information of phsophorylation was further demonstrated by the analysis

of affected signaling pathways. The comprehensive proteomic data in both projects

allowed us to investigate the effects of changes in transcript levels on protein levels.

We found the relationship between transcript and protein levels to be complex and

variable across functional groups of genes.

This work contributes to the understanding of molecular networks by identifying the

effects of genetic variation on the stress response, proteome, and phosphoproteome in

the yeast models, studied here. We demonstrate how perturbations of this network

can be tracked through multiple molecular layers.

5



Acknowledgements

This thesis represents several years of my life and a large portion of what has formed

me during this time. The fact that these years have been filled with positive emotions

and experiences is due to the people I share this great environment with.

I want to thank my supervisor Andreas Beyer not only for building this environment

but for also supporting me in tremendous ways in my work and development. I have

truly enjoyed my projects so far and I’m grateful that I got to be a part of them and

the Beyer-Lab. I’m also especially thankful to Mathieu Clément-Ziza who let me be

a part of his projects and taught me much of what I know today. I want to thank

Corinna Schmalohr for our many discussions and her support that has helped me

greatly. My thanks also go to Achim Tresch for giving great advice on a variety of

projects and for his continuous support during my time as a student.

As a computational biologists, I’m truly dependent on my collaborators and I’m

grateful that they shared the products of their work with me. My special thanks go

to Stephan Kamrad and Maŕıa Rodŕıguez-López.
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Chapter 1

General introduction

Understanding how genetic variation expresses itself as changes in measurable phe-

notypes is one of the central questions of modern biology.

Many of the traits that are medically or economically relevant are quantitative, i.e.

they follow a continuous distribution. The majority of clinically relevant traits is

estimated to be quantitative (van der Sijde et al., 2014). Yield of crops and growth

rates of animals are quantitative traits that are of economical relevance (King et al.,

2015; Plastow et al., 2005).

Most phenotypes are affected by a combination of environmental and genetic influ-

ences. It has long been debated to which degree each of these factors contribute

to these traits. The overall dependence of a quantitative trait on genetic variation

within a population can be quantified and is referred to as the broad-sense heritability

(reviewed in Visscher et al. (2008)). This heritability can be determined empirically

by comparing the variance in the trait values of closely related individuals to the

variance in the trait values of distantly related individuals, while controlling for en-

vironmental differences. Accurate estimates of heritability in human populations are

challenging since environmental influences tend to be more complicated and harder to

control than in populations of model organisms (reviewed in Visscher et al. (2008)).

Aside from monozygotic twins, there are no humans with identical genomes available

to be studied. In both humans and model organisms, the broad-sense heritability of

many traits was found to be sizeable in the vast majority of instances (Göring et al.,
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2007; Foss et al., 2011; Bloom et al., 2013; Polderman et al., 2015). The heritability

for the same trait can differ between populations as it can be influenced by environ-

mental and genetic factors that differ between the populations (Dandine-Roulland

et al., 2016).

The inheritance of many quantitative traits was studied in humans through genome-

wide association studies (GWASs, Visscher et al. (2017)). GWASs have identified

thousands of cases in which genetic variation contributes to human disease (van der

Sijde et al., 2014). Accordingly GWAS can be used to explain a portion of the disease

risk between individuals (Purcell et al., 2009). A gap between estimates of broad-

sense heritability and the variance that can be explained by such models still exists

and is commonly referred to as ’missing heritability’ (Manolio et al., 2009).

While GWASs often detect numerous associations between genomic regions and a

trait of interest, the causal variant and the mechanism through which it affects the

trait often remain hidden. Reasons for this are (i) the density of polymorphisms in

the human genome, (ii) the linkage disequilibrium (LD) between polymorphisms in

a region of interest, (iii) the incomplete annotation of regulatory elements and gene

functions, and (iv) the incomplete knowledge about the etiology of many common

diseases (van der Sijde et al., 2014). Different approaches to identify causal variants

from a set of polymorphisms, by predicting their effects on protein function, have

been proposed (Rentzsch et al., 2019; Kumar et al., 2009). An alternative approach,

promising to elucidate the mechanisms that are underlying causal genetic variants,

is systems genetics (Civelek and Lusis, 2014). Systems genetics uses knowledge of

the molecular network to link known molecular changes in disease states with effects

of genetic variants on these molecular traits (van der Sijde et al., 2014). If, for

instance, a disease state is associated with a change in the expression of a specific

group of genes and a genetic locus with an effect on disease risk contains such a gene,

that gene would be a candidate causal gene. This molecular network is made up of

multiple layers, of which some of the most important are the genome, transcriptome

and proteome. While the genome and transcriptome are essential to this network as

well, the proteome is largely responsible to perform any functions necessary for the

survival of the cell, such as most structural or enzymatic functions. Consequently

11



protein levels are under stricter conservation (Khan et al., 2013).

Genetic polymorphisms can affect protein levels and activities in a large number of

ways. Variants within regulatory regions such as enhancer, repressor, or promoter

regions have the potential to modulate the expression of a transcript. For instance,

a change in the binding behavior of transcription factors or the RNA-polymerase

can lead to a change in transcription frequency or strength (reviewed in Albert and

Kruglyak (2015)). Genetic polymorphisms within 3’ and 5’ untranslated regions were

shown to affect both mRNA maturation and stability. In addition, they can affect the

translation rates for the transcripts they are part of (reviewed in Pesole et al. (2001)).

All of these changes to transcripts can result in changes in the levels of the respective

proteins. Mutations within the coding region of a gene can lead to both silent

polymorphisms that do not affect the amino acid sequence of the protein product,

and non-silent polymorphisms. Non-silent mutations include missense mutations,

nonsense mutations, shifts of the reading frame, and insertions and deletions. All

of these kinds of polymorphisms have the potential to directly affect the function

of a protein. Polymorphisms within a protein binding site or an active site of an

enzyme, for instance, have been reported to drastically affect the activity of proteins

(Okerberg et al., 2016). Mutations at phosphorylation sites can have a drastic effect

on protein functions (Gupta et al., 2011). Changes in protein binding or folding

can result in increased degradation or aggregation of the protein, (MacDonald et al.,

1993). Even silent mutations can affect the folding of proteins and translation rates

through the availability of the respective tRNAs (Spencer and Barral, 2012).

While data for many macroscopic phenotypes is often readily available, for instance

through medical records, the costs associated with collecting comprehensive tran-

scriptomic and proteomic data for a GWAS-cohort is often prohibitive. In order

to reduce the necessary sample size for significant findings on the molecular net-

work, studies investigating the genetic influences on molecular networks are often

performed in special populations of model organisms (Brem et al., 2002; Holdt et al.,

2013; Clement-Ziza et al., 2014; Snoek et al., 2017). These studies aim to detect

quantitative trait loci (QTL), i.e. genomic regions with a significant effect on the

quantitative trait of interest. QTL-studies can be considered as a subset of GWAS
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and are characterized by several features. Populations in QTL-studies are often de-

rived from a small number of founder-genotypes and have therefore relatively few

genetic polymorphisms. Further, the minor allele frequencies (MAFs) in such popu-

lations are, on average, higher than that in natural populations (Clement-Ziza et al.,

2014; Almasy and Blangero, 2009). Environmental influences can be controlled to

a large degree. All of these factors improve the statistical power of QTL-studies

compared to GWAS in humans. As fewer samples are required, QTL-studies can be

used to systematically investigate molecular traits such as gene expression (eQTL),

protein levels (pQTL) or the levels of metabolites (mQTL) (Brem et al., 2002; Foss

et al., 2007; Albert et al., 2014a; Nagana Gowda and Djukovic, 2014).

As it is technically easier to quantify the transcriptome than the proteome, more

eQTL studies have been performed than pQTL studies and the former have generally

found a larger number of significant associations (Brem et al., 2002; Foss et al., 2011;

Clement-Ziza et al., 2014; Albert et al., 2014a, 2018). While it is established that

the absolute levels of transcripts and proteins are highly correlated across different

genes within an organism, the dependence of protein levels on their transcripts across

samples is less complete (Vogel and Marcotte, 2012). Recent studies suggest that

the control of protein level variation between samples through transcript levels is

limited and variable between genes (reviewed in Liu et al. (2016)). The biological

relevance of protein abundances and their partial independence from transcript levels

necessitate the direct quantification of the proteome to gain a full understanding of

the molecular network.
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Chapter 2

Genetic control of the response to

oxidative stress in

Schizosaccharomyces pombe

2.1 Introduction

Systems genetics aims to understand the overall genetic network which expresses all

cellular traits (Civelek and Lusis, 2014). Environmental influences can affect which

parts of this network are active. Most QTL studies consider the effects of genetic

variation on quantitative traits under standard lab conditions (Brem et al., 2002;

Clement-Ziza et al., 2014; Albert et al., 2018). While a large proportion of traits show

considerable heritable variation in these conditions, many polymorphisms were shown

to have different effects in different growth conditions (Smith and Kruglyak, 2008;

Clement-Ziza et al., 2014; Ackermann et al., 2013). As their effects depend on the

experimental condition, these QTL are referred to as ’conditional QTL’ (Ackermann

et al., 2013). Conditional QTL can elucidate aspects of the genetic network that

would remain hidden from a study restricted to standard laboratory conditions.

Environmental perturbations along with genetic perturbations increase the states in

which the genetic network can be observed and therefore can be helpful to improve
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our understanding of the network.

We chose to investigate the effects of oxidative stress on the expression of molecular

traits. Aside from its general value for perturbing the genetic network, understanding

how the cell responds to oxidative stress is of importance for medical research. Oxida-

tive stress was shown to have some role in aging and pathophysiology (Bhattacharyya

et al., 2014; Liguori et al., 2018). Several aspects of human immune function are in

part dependent on the generation of oxidative stress. For instance the blood forms an

oxidative environment which reduces the spread of metastases and phagocytes gen-

erate reactive oxygen species to attack pathogens (Piskounova et al., 2015; Babior,

2000). Further, oxidative stress has important signaling functions and low levels

of oxidative stress are beneficial to many organisms (reviewed in Yan (2014)). We

investigated the response to oxidative stress in the fission yeast Schizosaccharomyces

pombe. Fission yeast differs from the budding yeast Saccharomyces cerevisiae, the

most widely used yeast model organism for QTL mapping, in several characteristics

that make it interesting as a model organism for QTL studies. While only a small

proportion of genes in budding yeast contain introns and almost no transcripts are

subject to alternative splicing, fission yeast is more similar to higher eukaryotes in

its splicing behavior (Wood et al., 2002; Käufer and Potashkin, 2000). It is often

used to study processes related to growth and cell division and it resembles higher

eukaryotes such as humans in its chromatin structure, telomeres and lower number

of duplicated genes than budding yeast (Hayles and Nurse, 2018).

The response to oxidative stress in fission yeast has been studied in the reference

strain (JB22) before (Chen, 2003; Chen et al., 2008; Marguerat et al., 2014). Several

key players that mediate the stress response have been identified (Toone et al., 1998;

Rodriguez-Gabriel et al., 2006; Rodŕıguez-Gabriel et al., 2003; Wilkinson et al., 1996)

and the response to oxidative stress overlaps with the core environmental stress

response (CESR, Chen (2003)).

To understand the effects of natural genetic variation in fission yeast we measured

the transcriptome, proteome and growth traits of a large number of strains from a

fission yeast cross. The conditional effects of genetic variants on molecular traits

can only be adequately analyzed if they were correctly identified. A common pitfall
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in the comparison of results from different experiments is to compute the overlap in

significant results and consider all other hits as being specific to a condition (reviewed

in Ackermann et al. (2013)). In the case of QTL being mapped in different datasets,

this approach would misclassify QTL that have effects in both conditions, but only

reach significance in a subset, as being conditional. This is especially relevant if the

statistical power in both conditions is not the same. Further, differences in the effects

of QTL between the conditions might be overlooked if only significance is considered.

Other approaches consider the change in trait levels for the same strains as a quanti-

tative trait for QTL-mapping (Smith and Kruglyak, 2008; Ackermann et al., 2013).

While this would lead to the detection of QTL that affect the change in a trait across

conditions, further analysis would still be required to identify the condition in which

the QTL affects the trait level and to identify QTL that have the same effect across

conditions. We applied an approach that was previously proposed by Ackermann et

al. and consists of QTL mapping which is followed by post hoc tests that classify a

QTL based on its effects in the different conditions and determine the conditions in

which it has an effect (Ackermann et al., 2013). We characterized a panel of fission

yeast strains on the transcriptomic and proteomic layer in conditions with and with-

out added oxidative stress. Further, we measured growth efficiency for these strains.

We used these data to investigate the effects of genetic variation on the expression

of these molecular and fitness traits. In particular we were interested in how genetic

variation affects the response to oxidative stress in this cross.

2.2 Methods

2.2.1 Generation of a fission yeast cross for QTL studies

To generate a fission yeast cross in which the response to oxidative stress could be

studied, we chose parental strains that exhibited differences in their resistance to

oxidative stress in preliminary experiments. The three parental strains were JB50,

a strain closely related to the reference strain JB22, JB759, a strain with increased

sensitivity to oxidative stress compared to JB50, and JB760, a strain that is more
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resistant to oxidative stress than JB50.

To obtain diploid hybrids between each pair of parental strains, we deleted the

ade6-locus and replaced it with resistance genes for kanamycin (KAN, in JB50)

nurseothricin (NAT, in JB759) or hygromycin B (HB, in JB760). We used plates

with both fungicides for a pair of parental strains to select for diploid hybrids, car-

rying both resistance genes. F1 segregants were obtained from these diploid hybrids

for each pairwise cross, and were then further crossed to obtain an F2 population.

The cross included 150 strains in total.

2.2.2 RNA seq

Samples for the transcriptomic and proteomic analyses were prepared separately

from different cultures grown from differing number of overlapping strains of the

QTL-cross. The transcriptome of 286 samples, corresponding to 130 strains, was

quantified. These strains included all of the strains whose proteome was quantified.

Samples for the transcriptomic analysis were prepared by inocculating 50 ml YES

medium at 32°. Samples were grown to an OD595 of 0.4-0.5. Samples were either

harvested before or after the exposure to 0.5 mM H2O2 for one hour. RNA was

isolated by hot phenol extraction (Lyne et al., 2003). Poly(dT) enrichment was

achieved through three rounds of Sera-Mag magnetic bead purification. The purity

of RNA was determined with a Bioanalyzer. A total of 500 ng RNA per sample was

used for a library preparation. cDNA was produced from the mRNA, ligated with

SOLiD-adaptors and amplified in 16 PCR cycles. The libraries were sequenced on

an ABI SOLiD V4.0 System to produce stranded and single-end reads with a length

of 50 bp (Applied Biosystems, LifeTechnologies, United States).

Previous work showed that accounting for coding variants improves the quantifica-

tion of transcript levels compared to using a reference genome that does not reflect

all polymorphisms (Clement-Ziza et al., 2014). This has special relevance for the

detection of local eQTL, as polymorphisms can reduce the mapping efficiency when

the reference genome is used, thus resulting in false positive eQTL.

We mapped reads against the Schizosaccharomyces pombe reference genome using
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Bowtie with the following parameters: -C -n 3 -e 100 -best (v.0.12.7, Langmead

et al. (2009)). Read group information was added, and BAM files were sorted using

Picard utilities (http://broadinstitute.github.io/picard). Further processing

of the RNA-seq data was performed with the GATK pipeline (v3.4-46-gbc02625),

according to best practice guidelines (Van der Auwera et al., 2013). Variants at the

polymorphic sites were then called with UnifiedGenotyper. If the GATK score for

a given site was below 20, the position was considered as unknown. We excluded

polymorphic sites for which (i) the samples of the parental strains could not be called,

(ii) or more than 50% of the segregants could not be called, or (iii) the minor allele

frequency was less than 10% in our cross. We also excluded genetic markers if they

were called differently than both closest neighbors (i.e. the nearest upstream marker

and the nearest downstream marker) and those markers were within 50 kb. When

possible, missing genotypes were inferred through the neighboring markers if they

had a identical segregation patterns and were within 50 kb. In these cases the marker

was assigned the same allele as the two flanking markers. VCFs were converted to

strain-specific FASTA-files using the GenomeGenerator tool (Clement-Ziza et al.,

2014).

2.2.3 RNA quantification

We mapped reads with Bowtie (v.0.12.7, Langmead et al. (2009)) against the strain-

specific genomes we generated based on the RNA-seq data using the following op-

tions: -C --best -m 1. Genes to which no reads were mapped in at least 50% of

samples were dismissed. To correct for differences in library size, we compute a cor-

rection factor for each sample. We determined the 20% and 80% quantiles for each

sample i and computed the median Mi for all counts between these quantiles. The

counts for gene j and sample i were then multiplied with the ratio of the median of

the counts for this subset of genes and the mean of these medians across all samples

to correct for different library sizes.

c′i,j = ci,j · Mi

M
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Afterwards counts were divided by the length of the coding region of the correspond-

ing gene to correct for gene length.

c′′i,j =
c′i,j
lj

2.2.4 Proteomics

Culture preparation

Samples for the proteomics analysis were prepared by inocculating 50 ml YES medium

at 32°. Samples were grown to an OD595 of 0.4-0.5. Samples were either harvested

before or after the exposure to 0.5 mM H2O2 for one hour.

Protein extraction

Cells were harvested by centrifugation at 2,000xg, and resuspended in 200 µl of ly-

sis buffer and 100 µl of glass beads. The cells were then lysed by vortexing three

times for 1 minute and sonicated three times for 30 seconds. A small aliquot of the

supernatant was taken to determine the protein concentration using a BCA assay

(Thermo Fisher Scientific, United States) and the protein concentration was adjusted

to 5 mg/ml using additional lysis buffer. Proteins obtained from the different sam-

ples were reduced with 5 mM TCEP for 60 min at 37 °C and alkylated with 10 mM

iodoacetamide for 30 min in the dark at 25 °C. After quenching the reaction with 12

mM N-acetyl-cysteine the samples were diluted with 100 mM ammoniumbicarbonate

buffer to a final urea concentration of 1.5 M. Proteins were digested by incubation

with sequencing-grade modified trypsin (1/50, w/w; Promega, Madison, Wisconsin,

United States) over night at 37°C. Then, the samples were acidified with 2 M HCl

to a final concentration of 50 mM, incubated for 15 min at 37 °C and the cleaved de-

tergent removed by centrifugation at 10,000xg for 5 min. Subsequently, all peptides

were desalted on C18 reversed-phase spin columns according to the manufacturer’s

instructions (Macrospin, Harvard Apparatus, United States), dried under vacuum

and stored at -80°C until further use. The hybrid Orbitrap-Velos mass spectrometer
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was interfaced to a nanoelectrospray ion source coupled online to an Easy-nLC system

(Thermo Fisher Scientific, United States). 1 µg of peptides were separated on a RP-

LC column (75 µm x 20 cm) packed in-house with C18 resin (Magic C18 AQ 3 µm;

Michrom BioResources, United States) using a linear gradient from 95% solvent A

(98% water, 2% acetonitrile, 0.15% formic acid) and 5% solvent B (98% acetonitrile,

2% water, 0.15% formic acid) to 30 % solvent B over 120 minutes at a flow rate of 0.3

µl/min. Each survey scan acquired in the Orbitrap at 60,000 FWHM was followed by

10 MS/MS scans of the most intense precursor ions in the linear ion trap with enabled

dynamic exclusion for 60 seconds. Charge state screening was employed to select for

ions with at least two charges and rejecting ions with undetermined charge state.

The normalized collision energy was set to 32% and one microscan was acquired

for each spectrum. The acquired raw files were converted to centroid mzXML for-

mat using ReAdW (http://tools.proteomecenter.org/wiki/index.php?title=

Software:ReAdW), MS/MS spectra were searched using the SORCERER-SEQUEST

v4.0.3 algorithm against a decoy database (consisting of forward and reverse protein

sequences) of the predicted proteome from Schizosaccharomyces pombe (ftp://ftp.

sanger.ac.uk/pub/yeast/pombe/Protein_data/pompep). The database consists

of 4974 S. pombe proteins as well as known contaminants such as porcine trypsin,

human keratins and high abundant bovine serum proteins (Non-Redundant Protein

Database, National Cancer Institute Advanced Biomedical Computing Center, 2004,

ftp://ftp.ncifcrf.gov/pub/nonredundant) resulting in a total of 10 584 protein

sequences. The search criteria were set as follows: full tryptic specificity was required

(cleavage after lysine or arginine residues, unless followed by proline); 2 missed cleav-

ages were allowed; carbamidomethylation (C) was set as fixed modification; oxidation

(M) was applied as variable modifications; mass tolerance of 10 ppm (precursor) and

0.6 Da (fragments). The database search results were further processed using the

PeptideProphet (Keller et al., 2002) and ProteinProphet (Nesvizhskii et al., 2003)

program and the peptide false discovery rate (FDR) was set to 1% on the peptide and

1% on the protein level and validated using the number of reverse protein sequence

hits in the datasets.

The raw-files were imported into the Progenesis LC-MS software (v2.5, Nonlinear Dy-
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namics Limited, United States), which was used for label-free protein quantification

applying the default parameters. Only unmodified peptides having a PeptideProphet

score of 0.85, corresponding to an FDR of less than 1%, were considered for quan-

tification. The quantitative data obtained were further normalized and statistically

analyzed according to (Brusniak et al., 2008) using the Spotfire Decision Site program

(version 9.1.1, TIBCO) and the guides provided for analyzing large transcriptomics

datasets. In brief, we set a nominal lower bound value (noise level) as the minimum

measured intensity and replaced with it missing values and values below it. We then

calculated fold change ratios (in log-scale) between control and perturbed samples.

On the protein level, the ProteinProphet probability were employed to set the FDR

to 1% based on the number of reverse protein hits. Only proteins with a 1.5-fold

change in abundance and a p-value below 0.05 were considered significant.

Preprocessing

The resulting peptide counts per sample were processed further to generate suitable

traits for QTL-mapping. Abundances of zero were considered as missing values.

To estimate differences in the total amount of peptide counts between samples, we

identified those peptides that were identified in all samples and averaged their counts

per sample. The average mean m was computed and each mi was divided by it,

resulting in m′i. All abundances in sample i were then divided by m′i to produce the

normalized abundances. We removed peptides that were detected in only three or

less samples of more than one batch, indicating that their measurement was strongly

dependent on batch effects. This step was necessitated by the observation that

certain peptides were only detected in some batches but not others. Peptides that

were not detected in the majority of samples were also removed.

MS-proteomics quantifies distinct peptides. The number of peptides that is quan-

tified for each protein differs based on the size of the protein, its abundance, the

uniqueness of its sequence, and other technical considerations. The task of estimat-

ing the abundance of the whole protein based on the abundances of multiple peptides

is not trivial and multiple methods have been proposed to solve it (MacCoss et al.,

2003; Teo et al., 2015). In species without extensive alternative splicing, different

21



peptides from the same protein are expected to be strongly positively correlated.

Possible reasons for a lack of positive correlation between the levels of different pep-

tides for the same protein might be general technical noise or batch effects that affect

different peptides to different degrees. Approaches that combine all available levels

by summing them up, or averaging them, generate protein levels that are still af-

fected by the aforementioned technical sources of variance. A common strategy to

avoid this bias is to focus on the most abundant peptides for the respective protein

with the potential downside of ignoring a large number of valuable data points that

can be used to reduce the noise in the resulting protein levels (as possible in Choi

et al. (2014)). We chose to employ an approach that compares peptide levels for the

same protein and combines them to groups if they correlate strongly. This approach

allows for the generation of multiple levels for each protein if the peptide levels do

not agree.

Depending on the size and abundance of a protein, the number of peptides that were

measured and kept after filtering can differ. For proteins for which only one peptide

level was available, the abundance of this peptide was centered by its median and

considered as a peptide group.

For proteins with multiple peptides we computed the pairwise Spearman’s ρ for all

pairs of peptide levels.

If two peptides were never measured for the same sample, we considered their corre-

lation to be 0. We defined the distance between the levels of two peptides as d = 1−ρ
and used the hclust and cuttree functions to separate the peptides into clusters in

which all peptides had a correlation of ρ > 0.3 (R Development Core Team, 2016).

If there were less than two samples in which all peptides for a group were measured,

we used the mean value of the peptides of the group per sample and mean centered

these values. For all other peptide groups we centered each peptide by median and

computed the mean of these values for each sample.

Batch correction was performed separately for peptide groups with and without

missing values. Peptide groups with available values for all samples were corrected

with comBat (Johnson et al., 2007). Because comBat does not allow for missing

data, we used a different approach to correct for batch effects in the peptide groups
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with missing values. Each peptide group for which comBat could not be used, was

corrected by mean centering the abundances for this peptide group per batch.

2.2.5 Growth profiling

Precultures were grown in 10 ml YES medium in Falcon tubes over 36 hours. Cul-

tures were then inoculated in flower-shaped 48 well plates in YES medium using the

bioLector system (m2p-labs, Germany). The cell density of each well was adjusted

so an optical density of 0.2 at a wavelength of 595 nm was reached. The optical

density of each sample was determined in 3 minute intervals for at least 25 hours.

After five to twelve hours, the samples were exposed to 0, 0.5 or 1 mM hydrogen

peroxide. Finally light scattering values were converted to optical densities with a

linear model. ∆OD was computed as the difference between the initial and final OD.

Growth was measured in 28 batches. We corrected for batch effects by subtracting

the mean of all measurements for the batch from each of these measurements. Af-

terwards we employed a step-wise procedure to remove batches that showed much

more variation than the rest of the batches. First, we computed the variance of all

trait values per batch. Second, if any batch had a variance that was 2.5 times as

large as the average variance of all batches, we removed the batch with the highest

variance. Then we repeated this step until the variance for no batch exceeded 250%

of the average variance of the remaining batches. We removed four batches with this

procedure. 1152 trait values remained after batch exclusion, spread across conditions

and strains. We had at least one measurement per condition for 114 strains after

batch removal.

2.2.6 Mapping data

To generate suitable data for QTL-mapping we averaged each trait over all replicates

for a given strain in each condition separately. Here we ignored missing values,

meaning that we took the average of present data. All vectors of trait values were

centered to a mean of 0 and scaled to a variance of 1. We removed two strains

from the pQTL mapping data as they were measured only in one condition. As we
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planned to apply post hoc tests to determine in which condition the QTL is active, we

preferred to have balanced data to avoid differences in power between the conditions.

The mapping data included 130 strains and 7160 traits for the eQTL data and 59

strains and 6853 traits for the pQTL data. We collapsed identical genetic markers

to predictor groups. As some markers were identical between the smaller group of

strains for which the proteome was quantified but not for the larger set of strains for

which the transcriptome was quantified, the final number of markers for the pQTL

mapping data (497) was smaller than for the eQTL mapping data (619). To capture

the effects of population structure on the traits and avoid false positive associations

as a result of population structure, we compute covariates for population structure

as described before (Clement-Ziza et al., 2014). The first four principal components

explained more than 90% of the genotypic variance and were included in the models

we generated for QTL-mapping.

2.2.7 QTL-mapping

We employed a technique based on Random Forest for QTL-mapping. This ap-

proach was developed previously and applied to molecular QTL-mapping (Michael-

son et al., 2010; Ackermann et al., 2013; Clement-Ziza et al., 2014). It is well suited

for QTL-mapping for several reasons: (i) it considers multiple markers in the same

model and (ii) it models epistatic interactions implicitly. RF is a machine learning

algorithm that builds an ensemble of decision trees predicting a categorical or quan-

titative dependent variable or outcome based on a set of independent variables or

predictors (Breiman, 2001). Because the predictors used to split a node are chosen

independently for each node relationships between predictors and subpopulations in

the dataset can be efficiently modelled. In effect this allows for the modelling of

epistatic interactions without prior knowledge of their existence (Michaelson et al.,

2010).

We generated RF-models with a modified version of the randomForest package

(RandomForestExtended, available at http://cellnet-sb.cecad.uni-koeln.de/

resources/qtl-mapping/, Liaw and Wiener (2002)).
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As the alleles for some strains and markers were not known and RF does not accept

missing data, we randomly imputed alleles for the missing genotypes. We did this

by sampling alleles with replacement from the strains for which the genotype at this

marker was not missing. To avoid the creation of artificial biases, we repeated this

imputation step 100 times per trait and grew a separate forest for each imputed

genotype matrix. A forest for each imputation was grown with the following param-

eters: ntree=200, importance=TRUE, keep.forest=F. In the case of the pQTL

data, many trait data were incomplete, i.e. some strains had no measurements. We

removed those data points and mapped the respective traits with a smaller sample

size. We combined the forests generated with each imputation of missing alleles to

one forest with the combine function. Each of the forests that was generated in this

fashion had 20,000 trees. To assess the importance of each predictor in the model

that was generated we extracted the ’residual sum of squares’ and ’permutation im-

portance’ (RSS and PI respectively) for each marker i and combined them as follows:

Si = max(0, P Ii) ·max(0, RSSi)

To estimate the significance of each Sij, we generated null distributions of Si by

permuting the trait vectors. Importantly, the predictors representing the popula-

tion structure were permuted in the same pattern. This way a possible association

between a covariate representing population structure and the original trait vector

would not be removed in the permuted trait vector. Removing possible associations

between the predictors representing the population structure and phenotypes could

result in inflated scores for the rest of the predictors. Overall this might lead to false

negative associations. We permuted only those traits without missing values. For

each marker in each permutation we computed a score S as described above. We

generated 1,432,000 permutations for the eQTL data in each condition and 829,200

permutations for the pQTL data in each condition. The growth traits were permuted

995,000 times. We permuted the trait vectors within each cross (i.e. all strains that

derive from the same pair of parental strains), to remove the association of all vari-

ants to the trait while preserving differences between the crosses. Parental strains
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were permuted along with the strains that derived from them. We computed a p-

value pij for a marker i and trait j by comparing Sij against the distribution of Si

of the same marker in the permuted traits k in 1..l of the same molecular layer and

condition.

pi,j = max(1
l
, 1 −

∑
Si,j>Si,k

l
)

We showed earlier that the pooling of importance scores across the permutations of

different traits does not reduce the precision or power of QTL-mapping if the traits

have the same variance (Michaelson et al., 2010). We performed FDR-correction

across all markers separately for each molecular layer and condition, i.e. separately

for eQTL in N, eQTL in H, pQTL in N, and pQTL in H).

As neighboring markers are often highly correlated, they will often be significant

for the same traits because they reflect the same underlying biological relationship

between QTL and target. To improve the interpretation of these results we combined

significant markers to QTL based on the following criteria. If two markers were

significant for the same trait and had an absolute correlation of 0.8 or higher they

were combined to the same QTL. If they were on the same chromosome and not

more than 9 markers were located between them, all markers located between were

also added to the QTL.

2.2.8 Identification of conditional QTL

To identify QTL that have effects that differ between experimental conditions, we em-

ployed a previously published approach (Ackermann et al., 2013). First we combined

all QTL at FDR<10% from both conditions for each dataset (eQTL and pQTL). If

two QTL that were detected for the same trait in different conditions overlapped, we

combined them to a single one. For each QTL from this combined set we performed

an ANOVA to determine if there is a significant interaction between a marker repre-

senting the QTL and the condition represented by a dummy-variable with the trait

levels of the QTL-target as the dependent variable. These p-values were corrected
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with the Benjamini-Hochberg procedure across all QTL for the dataset (i.e. all eQTL

or all pQTL, but not both at the same time). We used a significance threshold of

FDR<10% for the interaction effect. We also performed ANOVAs to determine how

significant the effect of the QTL was in each separate condition. We adjusted the

p-values for condition-specific ANOVAs with the Bonferroni-procedure. We used a

p-value threshold of α = 0.005 for both conditions. These tests were performed us-

ing the marker with the smallest FDR for the target trait in either condition within

the QTL. Based on the corrected p-values for the interaction effect and the effect

strength in each condition, we classified QTL into four classes, differing in their ac-

tivity pattern: static QTL, conditional QTL active in H, conditional QTL active in

N, and conditional QTL active in H and N. If the interaction effect was not signif-

icant, the QTL was classified as static. If the interaction effect was significant and

the condition-specific ANOVAs were significant in at least one condition, the QTL

was classified as being conditional and being active in those conditions which had

significant p-values. A conditional QTL can be active in all conditions if the effects

in the different conditions differ sufficiently in strength or if they differ in direction.

If the interaction effect was significant but no condition had a significant p-value,

the QTL was classified as static.

2.2.9 Stress response

We computed the log2 fold changes for the RNA and protein levels of the JB50-strain

as a reference for the stress response. We used non-centered and non-scaled mean

values of all replicates in the respective condition for JB50. The stress response rj

for a gene j was defined as

rj = eNj − eHj

where eN and eH are defined as the mean expression in the JB50-strain in the normal

and stress-condition, respectively. We computed the log2 fold change between the

conditions for each peptide group and transcript as described above. We averaged
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the log2 fold changes for peptide groups belonging to the same protein. We compared

the stress response on the transcript level to that published by Chen et al. (Chen,

2003). We accessed their data at ftp://ftp.sanger.ac.uk/pub/postgenomics/

s_pombe/wtaverage.txt. The ”H2O2 60” column was log2 transformed. We used

this data as we also exposed the strains to hydrogen peroxide for an hour. We

directly compared those values to the stress response of the JB50 strain in our data

for all genes measured in both experiments. As the stress response in our data was

computed as N-H and Chen et al. computed it as H-N, we multiplied the correlation

with -1.

2.2.10 Identification of local and distant QTL

In the case of QTL directly affecting a gene product, a spatial relationship between

the QTL and the target can be determined. A QTL affecting the trait of a gene

that is encoded in the vicinity of the QTL is often referred to as ’local’ (Smith and

Kruglyak, 2008). QTL that are more distant or even on different chromosomes than

the trait which they affect are termed ’distant’. The same QTL can be local for one

target and distant for another. For each gene we determined the midpoint between

the start and the end of the coding sequence. We determined the closest marker on

each side of that position. A QTL was called local if any of the markers belonging

to had an absolute Pearson’s correlation of 0.8 or higher with any of the markers

next to the midpoint of the coding region of the target gene. To determine if we saw

more local QTL than expected, we permuted the targets of all eQTL 200 times and

computed the amount of local QTL.

2.2.11 Hotspot detection

Regions harboring QTL for a large number of traits are often referred to as QTL

hotspots. We used a previously published approach to detect QTL hotspots (Brem

et al., 2002). We divided the genome into bins with a size of 50 kb. Bins at the end of

chromosomes were slightly smaller. We assigned QTL to bins based on the location

of marker with the smallest p-value within the QTL. Based on the total number of
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QTL for the molecular layer and condition we computed the expected number of

QTL per bin. A bin containing more QTL than expected at a threshold of α = 0.05

was considered a hotspot, using a Poisson distribution. Consecutive bins on the same

chromosome were combined to one hotspot. As the number of QTL detected differed

between the conditions and molecular layers, the amount of QTL in a bin that is

required for hotspot was not the same for both conditions and molecular layers.

2.2.12 Functional enrichment analysis

Gene ontology (GO) enrichment analysis was performed with the topGO package

(v2.30.1, Alexa (2007)). The annotations were downloaded from www.pombase.com

(uploaded on 1st Sept 2015, Wood et al. (2012)). All genes with an FDR<=10% were

included in the testset while all other genes formed the background, if not indicated

otherwise. Importantly only those genes with available measurements were included

in the background to avoid false positive enrichments. nodeSize was set to 10. We

performed Fisher’s exact tests with the weight01-algorithm. Supplementary tables

contain maximal ten terms per ontology with a p-value p < 0.01.

2.2.13 Generation of a pka1 allele-replacement strain

To investigate the effects of the polymorphism in pka1 (C358F between JB50 and

JB760) we generated an allele replacement strain. This strain was identical to JB50

aside from position 1073 in the coding sequence of pka1, changing the respective

codon from UGU, coding for cystein, to UUU, coding for phenylalanine. The strain

was generated using a CRISPR/Cas9 method as described before (Rodŕıguez-López

et al., 2017). It is referred to as PKA1Rep in the following. We used the following

primers:

F: acataacctgtaccgaagaaAGCAACTGTTGTACTCTTTGgttttagagctagaaatagc

R: gctatttctagctctaaaacCAAAGAGTACAACAGTTGCTttcttcggtacaggttatgt

We used Sanger sequencing to validate that we successfully introduced the JB760-

allele of pka1 in the JB50-background.

29

www.pombase.com


To measure the effects of the pka1 -allele replacement on the transcriptome and pro-

teome, we grew three replicates each of JB50 and PKA1Rep under normal growth

conditions and three replicates, for each strain, which were exposed to increased ox-

idative stress (0.5 mM H2O2) for one hour before the samples were harvested. Each

sample was separated into a fraction for RNA extraction and one for protein quan-

tification. The fraction for protein quantification was centrifuged and the pellets

washed with cold PBS and snap frozen for transport.

2.2.14 Transcriptome quantification of the replacement strain

RNA was extracted with the hot phenol method described in (Lyne et al., 2003).

RNA was further purified with Qiagen RNAeasy columns, and DNAse treatment

was performed in the columns (as suggested by manufacturer) prior to library prepa-

ration. RNA quality was assessed with a Bioanalyzer instrument (Agilent, United

States), and all samples had a RIN (RNA Integrity Number) > 9. cDNA libraries

were prepared with the Illumina TruSeq stranded mRNA kit, according to the

manufacturer’s specifications, by the Cologne Centre for Genomics (CCG) facility.

The samples were sequenced on a single lane of a Illumina Hiseq4000 to produce

stranded 2x75 bp reads. Reads were trimmed with Trimmomatric (v0.36, Bol-

ger et al. (2014)), with the following parameters differing from default settings:

LEADING:0 TRAILING:0 SLIDINGWINDOW:4:15 MINLEN:25. The reference genome

was indexed with bowtie2-build with default settings. Paired reads were aligned to

the reference genome using bowtie2 with default settings (v2.3.4.1, Langmead and

Salzberg (2013)). In the case of the allele replacement strain, the reference genome

was edited to reflect the base substitution within pka1. Aligned reads were counted

using intersect from the bedtools package (v2.27.1, Quinlan and Hall (2010)), with

the parameters -wb -f 0.55 -s -bed. Identical reads were only counted once. Read-

counts were tested for differential expression between strains using DESeq2 v1.18.1,

with default settings (Love et al., 2013). We tested differential expression between

strains separately in the two treatments. The stress response was also estimated

separately per strain.
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2.2.15 Proteome quantification of the replacement strain

2 · 107 cells were lysed in 8M Urea (Sigma Aldrich, United States), 0.1M ammonium

bicarbonate in presence of phosphatase inhibitors (Sigma Aldrich P5726&P0044)

using strong ultra-sonication (Bioruptor, 10 cycles, 30 seconds on/off, Diagenode,

Belgium). Protein concentration was determined by BCA assay (Thermo Fisher Sci-

entific, United States) using a small sample aliquot. 200µg of proteins were digested

as described previously (Ahrné et al., 2016), reduced with 5 mM TCEP for 60 min at

37 °C and alkylated with 10 mM chloroacetamide for 30 min at 37 °C. After diluting

samples with 100 mM ammonium bicarbonate buffer to a final urea concentration of

1.6M, proteins were digested by incubation with sequencing-grade modified trypsin

(1/50, w/w; Promega, United States) overnight at 37°C. After acidification using

5% TFA, peptides were desalted on C18 reversed-phase spin columns according to

the manufacturer’s instructions (Macrospin, Harvard Apparatus, United States) and

dried under vacuum. The setup of the µRPLC-MS system was as described pre-

viously (Ahrné et al., 2016). Chromatographic separation of peptides was carried

out using an EASY nano-LC 1000 system (Thermo Fisher Scientific, United States),

equipped with a heated RP-HPLC column (75 µm x 37 cm) packed in-house with 1.9

µm C18 resin (Reprosil-AQ Pur, Dr. Maisch). Sample aliquots of 1 µg total peptides

were analyzed per LC-MS/MS run using a linear gradient ranging from 95% solvent

A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 2% water,

0.15% formic acid) to 30% solvent B over 90 minutes at a flow rate of 200 nl/min.

Mass spectrometry analysis was performed on Q-Exactive HF mass spectrometer

equipped with a nanoelectrospray ion source (both Thermo Fisher Scientific, United

States). Each MS1 scan was followed by high-collision-dissociation (HCD) of the 10

most abundant precursor ions with dynamic exclusion for 20 seconds. Total cycle

time was approximately 1 s. For MS1, 3∗ 106 ions were accumulated in the Orbitrap

cell over a maximum time of 100 ms and scanned at a resolution of 120,000 FWHM

(at 200 m/z). MS2 scans were acquired at a target setting of 105 ions, accumulation

time of 100 ms and a resolution of 30,000 FWHM (at 200 m/z). Singly charged ions

and ions with unassigned charge state were excluded from triggering MS2 events.
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The normalized collision energy was set to 27%, the mass isolation window was set

to 1.4 m/z and one microscan was acquired for each spectrum. The acquired raw-files

were imported into the Progenesis QI software (v2.0, Nonlinear Dynamics Limited,

United States), which was used to extract peptide precursor ion intensities across all

samples applying the default parameters. The generated mgf-files were searched us-

ing MASCOT against a decoy database containing normal and reverse sequences of

the predicted S. pombe proteome (Uniprot, release date 2019/1/14) and commonly

observed contaminants (in total 11,068 sequences) generated using the SequenceRe-

verser tool from the MaxQuant software v.1.0.13.13). The search criteria were set as

follows: full tryptic specificity was required (cleavage after lysine or arginine residues,

unless followed by proline); 3 missed cleavages were allowed; carbamidomethylation

(C) was set as fixed modification; oxidation (M) ; mass tolerance of 10 ppm (precur-

sor) and 0.02 Da (fragments). The database search results were filtered using the ion

score to set the false discovery rate (FDR) to 1% on the peptide and protein level,

respectively, based on the number of reverse protein sequence hits in the datasets.

The relative quantitative data obtained were normalized and statistically analyzed

using an in-house script as above (Ahrné et al., 2016).

We used intensity based absolute quantification (iBAQ) levels to quantify proteins.

For each sample we computed the 10% and the 90% quantile of the peptide counts

and computed the mean of all counts between them (mi for sample i). The aver-

age mean m was computed and each mi was divided by it, resulting in m′i. All

abundances c in sample i and for protein j were then divided by m′i to produce the

normalized abundances.

c′i,j = ci,j · mi

m

We tested proteins for differential expression by applying two-sided two-sample t-

tests to the normalized levels of the proteins from the two groups of samples for

each comparison. As for the transcriptome, we did not perform a two-factor test,

but performed comparisons between the two strains separately in each condition and

tested the effect of the treatment separately in each strain. We performed an FDR
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correction for each comparison separately.

2.3 Results

2.3.1 Multi-omics characterization of a fission yeast panel

To investigate the influence of natural genetic variation on transcript- and protein-

levels, as well as cellular fitness we generated a panel of 130 strains of Schizosac-

charomyces pombe that was derived from three parental strains (JB50, JB759 and

JB760). As this study aimed to study the effects of genetic variations on the response

to oxidative stress, we chose founder strains that differed in this aspect. The parental

strains included a strain that was sensitive to oxidative stress (JB759), a strain that

was resistant (JB760) and a strain with an intermediary phenotype (JB50, the lab-

oratory strain). We grew a total of 286 samples for 130 strains spread across two

experimental conditions, including biological replicates for some strains. Samples

were grown either on a full medium (normal condition, ’N’) or a full medium with

the addition of 0.5 mM H202 (stress-condition or ’H’, exposed for one hour), a source

of oxidative stress. RNA from these samples was extracted and sequenced with a

median coverage of 44X. The transcriptome of all 130 strains was quantified at least

once in both conditions. 152 separate samples for a total of 61 strains were grown

for proteomics measurements and quantified via mass spectrometry (MS). For 59 of

these strains the proteome was quantified at least once in both conditions.

We were able to measure a total of 7160 transcripts with no missing values in both

conditions for all strains, corresponding to 92% of the annotated transcriptome. This

included 2134 noncoding transcripts. The abundances of 16648 peptides was mea-

sured with less than 50% of missing values and successful measurements in at least

two experimental batches. These peptides corresponded to 2184 unique proteins.

For the proteins with multiple measured peptides, we combined positively correlated

peptides to peptide groups. Our intention was to average out independent technical

noise among the different peptides and to generate traits that are affected by technical
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noise to a lesser degree than the individual peptide levels (Methods). The levels of

16648 peptides were combined to 6853 peptide groups. At least one peptide group

was generated for all 2184 quantified proteins, corresponding to 42% of the proteome.

1433 proteins had multiple peptide groups. The median number of peptides that form

an individual peptide group was 2.

We explored the relationship between the transcript- and protein levels of each gene

by computing the Pearson’s correlation between the transcript level and the level of

each peptide group separately across the panel of our strains. Most peptide groups

were positively correlated with the transcript level of the same gene (Figure 2.1).

The levels of transcripts and peptide groups for the same gene correlated better in

the normal condition than in the stress-condition (one-sided paired Wilcoxon’s rank

sum test p < 10−16).
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Figure 2.1: The Pearson’s correlation between the levels of transcripts and levels of
peptide groups of the same gene is shown separately per condition. N and H refer to
the normal condition and the stress-condition respectively. All genes with available
data on the transcript and peptide group level are shown. Proteins with multiple
peptide groups are shown multiple times.

To be able to investigate the consequences of changes on the transcriptome and

proteome layers for cellular fitness, we generated growth curves by measuring the

optical density of liquid cultures. From these growth curves we extracted the total

change in optical density (∆OD). As the cultures were grown until they entered

the stationary phase, ∆OD should be considered as the growth efficiency rather

than growth speed. We estimated ∆OD for 114 strains in three growth conditions,

differing in the concentration of hydrogen peroxide (no, medium and high H2O2).

In order to explore the relationship between genetic variation and quantitative traits

we genotyped our panel of strains. We used a previously described strategy to call
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variants within coding regions of the genome from RNA-seq data and the parental

genomes (Clement-Ziza et al., 2014). In total we called 7548 distinct variants for

our panel of strains. These variants were in high linkage disequilibrium with their

direct neighbors. To improve the power and interpretability of the subsequent QTL-

mapping we combined the characterized variants to 1693 genetic markers that were

not identical to their neighbors in the full panel of 130 strains. These markers had

an average of 0.8% of missing values.

Notably, a large region of Chromosome I is inverted in JB50, but not the other two

parental strains. This led to reduced recombination and increased linkage disequi-

librium in that region, complicating the identification of causal variants.

2.3.2 Stress response

Organisms react to environmental changes with a complex response that includes

widespread changes in gene expression. The response of a strain isogenic to JB50

to oxidative stress was described before (Chen, 2003). We estimated differential ex-

pression in JB50, the laboratory strain, by computing the log2-differences between

expression levels in the normal and stress conditions. 2859 transcripts had an ab-

solute log2 fold change of at least 1, of which 1388 increased and 1471 decreased

in expression in the samples exposed to oxidative stress compared to those in the

normal condition. Overall, noncoding transcripts were strongly enriched among the

differentially expressed transcripts (Fisher’s exact test: p < 10−16, OR = 2.17). We

observed both induced and repressed noncoding transcripts (595 and 539 respec-

tively).The coding transcripts whose levels increased at least twofold were strongly

enriched in cellular functions related to detoxification, and especially in functions

related to the oxidative stress response (Supplementary Table 5.2). Repressed tran-

scripts were strongly enriched in translation and ribosome biogenesis (Supplementary

Table 5.1). Previous work has demonstrated the repression of ribosomal protein as

part of the core environmental stress response (Chen, 2003; Gasch et al., 2000). The

log2 fold changes of transcripts correlated strongly with previously published data

(r = 0.84) (Chen, 2003), confirming that the observed expression differences are
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mainly due to the stress-treatment.

We also computed the log2 fold changes for all peptide groups between normal and

oxidative stress conditions in samples of JB50, the laboratory strain. For proteins

with multiple peptide groups, we averaged the log2 fold changes per protein. 265

proteins had an absolute log2 fold change that was larger than 1, with 170 stress-

induced proteins and 95 proteins that were repressed by oxidative stress. The stress

response on the two molecular layers was positively correlated (r = 0.29), indicat-

ing that the transcriptomic changes caused by the exposure to oxidative stress were

transmitted to the proteome to some degree (Figure 2.2). While proteins with up-

regulated transcripts also increased in abundance in the stress condition (negative

log2 fold changes, r = 0.44), proteins whose transcripts were repressed in the stress

condition were not affected in the same way (positive log2 fold changes, r = 0.04).
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Figure 2.2: Log2 fold changes of transcript and protein levels between the normal
and stress-conditions in JB50. If a protein had multiple peptide groups, they were
averaged. Positive values indicate higher trait levels in the normal condition, and
negative values indicate induction in the stress-condition.
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2.3.3 The effects of genetic variants on the transcriptome

often differ between experimental conditions

We investigated the effects of genetic variance on molecular traits with a QTL-

mapping approach that we developed earlier (Clement-Ziza et al., 2014; Michaelson

et al., 2010). We mapped QTL for transcripts, peptide groups and growth traits

in normal and oxidative stress conditions. We detected at least one QTL for 47%

of transcript-levels and for 1.3% of the peptide groups at FDR<10% in the normal

condition. After stress treatment we detected at least one eQTL for 85% of the

transcript-traits and at least one pQTL for 3.7% of the peptide-groups at FDR<10%.

We combined all QTL with a FDR<10% across both conditions, resulting in 12729

eQTL and 303 pQTL. QTL that were significant in both conditions, were combined

to a single one.

To be able to classify the activity of QTL across conditions in an unbiased way, we

tested for an interaction between the marker of the QTL with the highest signifi-

cance and a dummy variable representing the condition, on the trait values, using an

ANOVA as described in Ackermann et al. (2013). Small p-values for the interaction

between the QTL and the condition indicate that the effect of the QTL was not the

same in both conditions. This could be due to the QTL affecting the trait in only

one condition or it affecting the trait in different ways in the two conditions. That

difference could be in effect size or in effect direction. To identify the conditions in

which the QTL is active, the significance of the effect of the QTL in each condition

was assessed separately, also with an ANOVA. QTL without a significant interaction

effect with the condition were classified as ’static’, meaning that their effects were

very similar in both conditions. Those QTL that had a significant interaction effect

were classified as ’conditional’. We defined several classes of conditional QTL: Those

that were only active in the normal condition were classified as ’conditionally active

in N’, while those only active in the stress-condition were termed ’conditionally ac-

tive in H’. QTL that had strong but different effects in both conditions are referred

to as ’conditionally active in N and H’ in the following.

We tested all 12729 eQTL and 303 pQTL at FDR<10% for conditional activity
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(Figure 2.3, Figure 2.4). 40.9% of all eQTL were called as static (Figure 2.5a),

41.4% of eQTL were called as being only active in the stress-condition, while only

12.2% of eQTL were called to only affect transcription in the normal condition. In

contrast to the eQTL, the vast majority of pQTL was called as being static (94%,

Figure 2.5b). Possible reasons for this are considered later (Discussion).

The effects of eQTL across the conditions showed clear differences between the eQTL-

classes we called (Figure 2.6). The effects of static eQTL were very similar in both

conditions (r=0.59). Conditionally active eQTL showed larger effects in the condition

they were called for. For those classes of eQTL the correlation between effects in

N and H was weak (conditionally active in N: r=0.08, and conditionally active in

H: r=-0.1). Notably, conditional eQTL that were active in both conditions affected

gene expression in the same direction for most targets, but did so with a difference in

effect size (r=0.6). eQTL with strong effects in both conditions and opposite effect

directions between the conditions, were very rare.
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Figure 2.3: Significant eQTL at FDR<10%, shown separately for each class of
eQTL. The inversion on Chromosome I is marked with green bars. a depicts the
static eQTL, which are active in both conditions in a similar way. b shows those
eQTL that only have a significant effect in the stress-condition. c shows all eQTL
that are only active in the normal conditions. d describes the eQTL, that are active
in both conditions but have effects that are different in size or direction.
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Figure 2.4: Significant pQTL at FDR<10%, shown separately for each class of
pQTL. The inversion on Chromosome I is marked with green bars. a depicts the
static pQTL, which are active in both conditions in a similar way. b shows those
pQTL that only have a significant effect in the stress-condition. c shows all pQTL
that are only active in the normal conditions.
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Figure 2.5: Number of QTL at FDR<10% in each class. a shows the distribution
of eQTL across classes and b depicts the distribution of pQTL.

Transcripts that were affected by conditional eQTL did not have a stress response

that was biased in one direction, i.e. some targets were up-regulated and some

were down-regulated upon the exposure to oxidative stress (Figure 2.7a), but they

did have an overall stronger stress response than transcripts which were affected by

static eQTL (Figure 2.7b). This was especially true for transcripts that were affected

by an eQTL that was only active in the normal condition (Wilcoxon’s rank sum tests;
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N: p < 10−16, H: p = 0.03).
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Figure 2.6: The effects of eQTL on the abundances of their targets in the normal
and stress-conditions are shown separately for each class of eQTL. Each dot repre-
sents an eQTL. Static eQTL with similar effects in both conditions (a), conditional
eQTL with large effects in the stress condition but no significant effects in the normal
condition (b), conditional eQTL that only affect trait levels in the normal condition
but not the stress-condition (c), and eQTL with significant but different effects in
both conditions (d).
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Figure 2.7: Log2 fold changes of transcript levels between the normal and stress-
conditions in JB50, shown separately for each activity pattern of eQTL. The same
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QTL that affect products of genes, which are encoded close to the QTL, are often

considered to be local, while QTL that are further away from the affected gene are

considered to be distant (Albert and Kruglyak, 2015). We classified QTL to be local

if they included a marker that had an absolute correlation of 0.8 or higher with one

of the markers closest to the target gene, all other QTL were classified as distant.

8.7% of all eQTL were local, affecting a total of 1002 transcripts. The amount of

local eQTL was larger than expected if genes were targeted by eQTL independently

of their position in the genome (p=0.005), suggesting the effects of local variation

on the expression of nearby encoded molecular traits are especially important. We

found at least one local pQTL for 24 proteins at FDR<10% (32 peptide groups with

local pQTL). As for local eQTL, this was higher than expected by chance (p=0.005).

Genes with a local pQTL and a local eQTL overlapped significantly (Fisher’s exact

test, p=10−14). 20 out of 24 genes with a local pQTL also had a local eQTL,

indicating that most local pQTL are caused by local eQTL in this cross.

Since we observed different activity patterns of eQTL across the two conditions,

we asked whether local and distant eQTL differed in this regard. When all eQTL

were considered, the relationship between the activity pattern of an eQTL across

conditions and it being local or distant was significant (Chi-squared test: p=0.02).

As there was high linkage disequilibrium within the inverted region on Chromosome I,

it was harder to accurately call local QTL in this region. For this reason we excluded

all eQTL and targets within the inversion from this analysis. After restricting the

eQTL in this fashion, the relationship between the activity pattern of an eQTL across

conditions and it being local or distant became even more distinct (Chi-squared test:

p=10−11). Post hoc tests revealed that especially eQTL which were only active in

the stress-condition differed in their probability to also be local to their target from

other eQTL (Fisher’s exact test: p < 10−10, OR = 0.5). Compared to eQTL with

other activity patterns, eQTL that were only active in the stress-condition were

much less likely to be local to their target (Figure 2.8). Conditional eQTL that were

active in both conditions were more likely to be local to their target (p < 2 ∗ 10−4

and OR=1.87). 65 out of 66 local eQTL with significant but different effects in the

two conditions affected the expression of their targets in the same direction in both
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conditions. These results indicate that local eQTL are often active in all conditions.

static conditional_H conditional_N conditional_H_N

eQTL−classes

%
lo

ca
l

0

2

4

6

8

10

12

14

Figure 2.8: Proportion of eQTL for each activity-class, that are also local. eQTL
within the inversion of Chromosome I were excluded from this analysis.

2.3.4 Most eQTL-hotspots have a strong effect on the pro-

teome

While we found a large number of distinct QTL that regulated molecular traits, some

loci served as QTL for a large number of molecular traits (visible as vertical lines in

Figures 2.3 and 2.4). Such loci are often referred to as ’QTL hotspots’ (Smith and

Kruglyak, 2008). These hotspots often result in physiological phenotypes and can be

characterized in detail (Brem et al., 2002; Smith and Kruglyak, 2008; Clement-Ziza

et al., 2014).

We identified hotspots by binning the genome and comparing the observed number

of associations for each bin with one that would be expected if QTL were distributed
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across the bins according to a Poisson-distribution, as proposed before (Brem et al.,

2002). Consecutive bins on the same chromosome that were called as hotspots were

combined to a single one. We identified four eQTL hotspots (Table 2.1). The

hotspots were large in size (mean=827kb). In the case of the eQTL-hotspot e-chrI:2,

it encompassed the whole genomic inversion on Chromosome I (Figure 2.9). Three of

these hotspots (e-chrI:1, e-chrI:2, and e-chrIII:1) were described in a previous study

on a part of this cross, derived from the JB50 and JB759 strains (Clement-Ziza

et al., 2014), while the hotspot e-chrII:1 was described in this study for the first

time. Interestingly, the activity of the eQTL across conditions differed between the

different hotspots and often also within the same hotspot (Figure 2.10). Especially

the two eQTL-hotspots on Chromosome I were more active in the stress-condition.

The hotspot on Chromosome II contained eQTL of all activity patterns, highlight-

ing the importance of environmental influences on the effects of genetic variants on

gene expression. The targets of the eQTL-hotspots were strongly enriched in shared

functions (Supplementary Tables 5.3 - 5.6).

The robust identification of hotspots requires large numbers of QTL (Wu et al.,

2008). As the pQTL at FDR<10% were extremely sparse, we considered all pQTL

at FDR<25% to more accurately identify pQTL-hotspots (Figure 2.10). Using this

criterium, we identified eight pQTL hotspots (Table 2.2). Aside from the eQTL-

hotspot e-chrI:1 all eQTL-hotspots overlapped with pQTL-hotspots. In addition

we identified two hotspots that affected the proteome independently of the tran-

scriptome (p-chrI:2, and p-chrIII:1). A previously reported eQTL-hotspot, caused

by a frameshift within swc5 (p-chrIII:2), also affected a large number of proteins

at FDR<25%. The targets of most hotspots were enriched in particular functions

(Supplementary Tables 5.7 - 5.12)

A hotspot within the inversion on Chromosome I which was reported in a previous

study (e-chrI:2) had more targets that were only regulated after the induction of ox-

idative stress than targets of static eQTL. Strains with the JB759-allele at this locus

had higher levels of transcripts of ribosomal proteins and lower levels of transcripts

related to autophagy and acospore formation in the stress-condition (Supplementary

Tables 5.13 - 5.15). These changes in the transcriptome are consistent with a reduced
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stress response in the strains that carry the JB759-allele.

50



T
a
b
le

2
.1

:
eQ

T
L

h
ot

sp
ot

s.

n
am

e
ch

r
fi
rs

t
la

st
st

ar
t

en
d

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

m
ar

ke
r

m
ar

ke
r

(b
p
)

(b
p
)

(u
n
iq

u
e)

(s
ta

ti
c)

(H
)

(N
)

(H
an

d
N

)

e-
ch

rI
:1

I
35

72
45

00
23

76
09

93
99

2
16

0
81

8
10

19
e-

ch
rI

:2
I

27
0

86
6

26
58

23
6

50
30

16
9

37
16

16
55

21
20

21
3

61
e-

ch
rI

I:
1

II
91

5
98

1
37

68
06

74
70

51
31

96
12

39
12

50
57

2
31

0
e-

ch
rI

II
:1

II
I

15
56

16
64

20
47

33
2

22
98

79
1

16
20

83
1

22
1

36
6

20
8

T
a
b
le

2
.2

:
p
Q

T
L

h
ot

sp
ot

s.

n
am

e
ch

r
fi
rs

t
la

st
st

ar
t

en
d

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

ta
rg

et
s

m
ar

ke
r

m
ar

ke
r

(b
p
)

(b
p
)

(u
n
iq

u
e)

(s
ta

ti
c)

(H
)

(N
)

(H
an

d
N

)

p
-c

h
rI

:1
I

29
34

39
62

86
44

87
71

14
12

2
0

0
p
-c

h
rI

:2
I

24
3

25
3

25
26

72
0

25
69

78
8

31
28

4
0

0
p
-c

h
rI

:3
I

35
1

45
2

30
11

98
1

33
56

53
0

29
22

6
1

0
p
-c

h
rI

:4
I

48
0

70
1

34
51

79
1

41
99

79
5

15
1

13
5

20
0

0
p
-c

h
rI

:5
I

79
7

81
0

45
49

13
9

46
02

19
6

15
14

1
0

0
p
-c

h
rI

I:
1

II
91

6
92

7
38

75
22

54
94

53
18

2
17

9
4

0
0

p
-c

h
rI

II
:1

II
I

14
38

14
63

25
48

86
71

48
80

15
9

15
6

1
3

0
p
-c

h
rI

II
:2

II
I

15
56

16
80

20
47

33
2

23
49

85
9

16
0

15
2

5
3

0

51



0
200
400
600
800

1000
1200

static
ta

rg
et

s

chrI chrII chrIII

a

0

500

1000

1500

2000

conditional_H

ta
rg

et
s

chrI chrII chrIII

b

0
100
200
300
400
500

conditional_N

ta
rg

et
s

chrI chrII chrIII

c

0
50

100
150
200
250
300

conditional_H_N

ta
rg

et
s

chrI chrII chrIII

d

Figure 2.9: The number of transcripts that are affected by eQTL at FDR<10% in
each 50kb-bin of the genome is depicted as vertical bars. These counts are shown
separately for transcripts affected by static eQTL (a), conditional eQTL that are
only active in the stress-condition (b), conditional eQTL that are only active in the
normal condition (c), and conditional eQTL that are active in both conditions (d).
Hotspot regions are marked by grey rectangles. The chromosomal borders are shown
by dotted vertical lines. The inverted region on Chromosome I is indicated by green
horizontal lines.
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Figure 2.10: The number of proteins that are affected by pQTL at FDR<25% in
each 50kb-bin of the genome is depicted as vertical bars. The number of targets is
shown separately for proteins affected by static pQTL (a), conditional pQTL that
are only active in the stress-condition (b), and conditional pQTL that are only active
in the normal condition (c). Hotspot regions are marked by grey rectangles. The
chromosomal borders are shown by dotted vertical lines. The inverted region on
Chromosome I is indicated by green horizontal lines.

2.3.5 An eQTL-hotspot on Chromosome I affects the re-

sponse to oxidative stress

The eQTL-hotspot e-chrI:1 affected the abundance of 992 different transcripts (Fig-

ure 2.9, Table 2.1). The parental strain JB759 had a different allele at this locus

than the other two parental strains JB50 and JB760. 82% of the targets of this

locus were affected in a stress-specific way. While the hotspot had large effects on
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the transcriptome, we detected only 2 pQTL at FDR<10%, 15 pQTL at FDR<25%,

and no significant growth QTL for this locus. Most of the eQTL-targets of this locus

that were only affected in the stress-condition had a decreased stress response in the

strains with the JB759-allele of the marker with the most targets at this locus (74%,

Figure 2.11, Methods).

Overall, the eQTL targets of e-chrI:1 were strongly enriched for functions related

to ribosome biogenesis (Supplementary Table 5.3). To further elucidate how this

hotspot affects different groups of targets, we separated the transcripts that were

targeted by this hotspot through stress-specific eQTL into four groups, based on the

direction of the stress response, and for which allele it was stronger. The direction

of the stress response was the same between both alleles for most transcripts (78%).

We tested each group of targets for enrichments compared to the other three groups.

Genes whose transcripts were stress induced in the strains with the JB50/JB760-

allele and whose stress response was stronger in the strains with the JB50/JB760-

allele at this locus were enriched for general stress response functions, autophagy and

membrane localization (Supplementary Table 5.16). Genes that were repressed in

the stress-condition in strains with the JB50/JB760-allele and whose stress response

was more extreme in the strains with the JB50/JB760-allele were strongly enriched

for ribosome biogenesis (Supplementary Table 5.17). Genes whose stress response

was less extreme in strains with the JB50/JB760-allele and up-regulated in the same

strains in the stress-condition, on the other hand, were enriched for growth related

functions, such as alpha-amino acid synthesis and macromolecule biosynthesis (Sup-

plementary Table 5.18). This was also true for transcripts that also responded less

strongly to the stress treatment and were down-regulated in the strains with the

JB50/JB760-allele (Supplementary Table 5.19).

The strains with the JB50/JB760-allele were able to induce the expression of stress

response genes and repress ribosome biogenesis on the transcript level in response to

oxidative stress while the strains with the JB759-allele were less able to do so. The

JB759-allele at this locus confers a reduced stress response.
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Figure 2.11: Effects of HS e-chrI:1 on the stress response of those genes that a had
an eQTL at this locus that was only active in the stress condition. The axes are
shown as vertical and horizontal lines. The diagonal is shown as a solid black line.
Red dots represent genes whose transcripts have a larger absolute log2 fold change
between the normal and the stress-condition in the strains with the JB50/JB760-
allele. Black dots represent the genes whose transcript responded more strongly in
the strains with the JB759-allele.
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Although we mapped protein-level traits for many of the genes whose stress response

was affected by the hotspot on Chromosome I, we did not observe a pQTL hotspot

at this locus. A direct comparison of the effects of this hotspot on the transcript

and protein levels of genes that had stress-only eQTL at this locus revealed that

the levels of the peptide groups belonging to the respective proteins were affected

in the same direction as their transcripts (Figure 2.12). The effects of the locus

on the levels of mRNAs and peptide groups was significantly positively correlated

(r = 0.45, p < 10−16). Most peptide-groups were affected to a lesser degree than the

transcript of the same gene (87.5%). This could reflect buffering of protein levels

against variation on the transcript level, or it could be related to the general lack

of response of the proteome to transcriptional repression after the treatment with

oxidative stress.

We analyzed the genes in this hotspot to identify a causal gene. The genomic re-

gion of the hotspot contained 185 genes, of which 124 were coding. To identify a

potentially causal gene, we concentrated on those genes that either had local eQTL,

local pQTL or coding polymorphisms between the parental strains that produced

the subcrosses which showed the effects of the hotspot. 38 genes satisfied these cri-

teria. Of these, the most promising candidates were cph2, akr1, and nrd1. All three

genes were in close vicinity of the markers with the highest number of targets and had

polymorphisms that changed the amino acid sequence, with JB50 and JB759 sharing

one allele and JB760 having a different allele. In addition, akr1 had a local eQTL.

Cph2 is a member of the RPD3S-complex which is involved in the repression of spu-

rious transcription through epigenetic modifications (Lickwar et al., 2009). While

some members of the RP3DS-complex are involved in forming the related RPD3L-

complex, which is also involved in the response to oxidative stress, cph2 is not one

of them (Alejandro-Osorio et al., 2009; Nicolas et al., 2007). Akr1 is a palmitoyl-

transferase involved in signaling and protein localization (Zhang et al., 2013). The

third candidate gene, nrd1, is known to localize to several kinds of RNA-granules,

including granules containing PABp, and to bind to mRNAs directly (Satoh et al.,

2012; Kobayashi et al., 2013). The localization of nrd1 was reported to be partially

dependent on oxidative stress (Satoh et al., 2012). Further experiments would be
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necessary to determine a causal gene. Due to its known link to the stress response,

nrd1 was a strong candidate.
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Figure 2.12: Effects of HS e-chrI:1 on the levels of peptide groups whose transcripts
had an eQTL, that was only active at the stress condition, at the same locus. Shown
are the levels of the peptide groups after stress treatment. The axes and the diagonal
are shown as solid black lines. Negative log2 fold changes identify genes with higher
expression in the strains with the JB50/JB760-allele.
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2.3.6 Growth efficiency is affected by genetic variation

To investigate the effects of genetic variation on cellular fitness, we mapped the

growth efficiency for 112 strains in three conditions that differed in the intensity of

the oxidative stress. We identified three growth QTL for the normal condition, one

for the intermediary stress-condition and two for the harsher stress-condition (Table

2.3, Figure 2.13). Several gQTL affected ∆OD in multiple conditions. The QTL-

hotspot on Chromosome II (e-chrII:1/p-chrII:1) also affected ∆OD in the normal

condition and the harsher stress-condition signficantly. A second locus on Chro-

mosome II (bp 767643-808514) significantly affected the growth trait in the normal

condition. ∆OD in the harsher stress condition was also affected by a third locus

on Chromosome II (bp 2304929-2549939). A fourth QTL on Chromosome II (bp

3799420-3827447) significantly affected ∆OD in the normal condition and the in-

termediary stress condition. While these gQTL were only signficant in a subset of

growth-conditions, they were among the most significant in all conditions (Figure

2.13).

∆OD was highly correlated across the three conditions (for all pairs of conditions:

r>=0.83). We estimated the average effect of each of these four loci in all three

growth conditions by computing the mean differences between strains from the same

cross with each allele (Methods). The QTL had very similar effects across all three

Table 2.3: gQTL that affect ∆OD. Conditions in which the gQTL is significant,
are indicated with a 1.

name first last chromosome start end N H H
marker marker (bp) (bp) (0 mM) (0.5 mM) (1 mM)

gQTL1 917 919 II 470768 521267 1 0 1
gQTL2 985 998 II 767643 808514 1 0 0
gQTL3 1201 1201 II 2304929 2549939 0 0 1
gQTL4 1362 1378 II 3799420 3827447 1 1 0
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conditions, indicating that other causes than conditional effects could be responsible

for the QTL to be significant only in a subset of these conditions (Figure 2.14).

Notably, the JB759-allele was associated with smaller ∆OD for all four gQTL.
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Figure 2.13: Significance of all genetic markers on the ∆OD growth trait in the
normal condition (a) and two stress-conditions that differ in the concentration of
H2O2 (b and c, respectively). The dotted vertical lines mark chromosome ends and
the horizontal dotted line represents the significance threshold at FDR<10%.
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Figure 2.14: Average effects of the most significant marker of each gQTL in all
three growth-conditions. The y-axis shows the difference in growth of strains with
the JB50-allele at the respective locus compared to strains with the second allele. a
to d show the effects of the gQTL shown in Table 2.3 in the same order.
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2.3.7 A polymorphism in pka1 explains effects on the tran-

scriptome, proteome and cellular fitness

A locus on Chromosome II (chrII:376806-747051) had a significant effect on the ex-

pression of 3196 transcripts and 182 proteins, across the two conditions. As this was

the largest eQTL- and pQTL-hotspot and it regulated growth, we investigated this

locus in more detail. The marker region within this hotspot with the most linkages

(chrII:470768 to chrII:521267) significantly affected the levels of 2645 transcripts and

113 peptide groups at FDR<0.1. In the following we concentrated on this marker

when the effects of the hotspot are considered. We characterized the effects of this lo-

cus by performing a functional enrichment analysis of its targets in the transcriptome

and proteome. Genes with an eQTL at this locus were enriched in functions related

to ribosome biogenesis, glycolysis, alpha-amino acid biosynthesis, and proteins local-

izing to the mitochondria (Supplementary Table 5.5). We saw similar enrichments

for genes with pQTL (Supplementary Table 5.10). We further compared the effects

of the hotspot on the transcriptome with previously published data (Malecki and

Bähler, 2016). Malecki et al. grew samples of JB22, a strain that differs only in the

mating type from JB50, on both glucose and glycerol. In contrast to using glucose

as a primary carbon source, fission yeast has to metabolize glycerol through aerobic

respiration (Chiron et al., 2008). A direct comparison of the transcriptomic response

to the induction of respiration and the effects of the hotspot revealed a strong agree-

ment (r=0.81, Figure 2.15). Strains with the JB760 allele of this locus resembled

samples growing on glycerol on the transcriptomic layer more than strains with the

JB50/JB759 allele of pka1. Transcripts that were affected only in the normal condi-

tion by this hotspot were enriched for functions related to ribosome biogenesis and

mitochondrial respiration (Supplementary Table 5.20). Specifically, transcripts re-

lated ribosome biogenesis were down-regulated in strains with the JB760-allele and

transcripts related to meiosis and mitochondrial function were up-regulated (Sup-

plementary Tables 5.21 and 5.22). Coding genes that were targeted by this locus

exclusively in the normal condition, had a stress response that was highly correlated

with the effects of e-chrII:1 on their abundances in this condition (r=0.82). e-chrII:1
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affects these transcripts in way that is very similar to the stress response.

To identify a causal variant for this hotspot we analyzed the genes in the region. 106

genes were located in the overlap of the eQTL- and pQTL-hotspots at this locus.

Of these genes, 69 were coding. We further concentrated on the genes that had a

local eQTL or had missense-mutations that segregated in the R2- and R3-crosses.

37 genes were affected by a local eQTL and only two genes had polymorphisms

resulting in a difference in amino acid sequence for which the JB760-allele differed

from that of both JB50 and JB759. One of the genes in this region was pka1. pka1

was a candidate causal gene for multiple reasons. It had both a local eQTL and was

polymorph between the parental strain, with the JB760-allele differing from that

of the other two parental strains. As the hotspot had a large number of targets

the causal gene likely was well annotated and might have a functional connection to

energy metabolism or a signaling role. pka1 is well documented to have a crucial role

in the PKA/RAS pathway, which integrates signals on glucose availability and stress

exposure (Maeda et al., 1994). The enrichments of the eQTL-targets of this locus in

ribosome biogenesis and mitochondrial respiration were consistent with differences

in RAS-signaling causing the molecular effects of this hotspot, as these functions

are often regulated in response changes in glucose availability (Malecki and Bähler,

2016).

pka1 had a polymorphism at position 1073 of the coding sequence, changing the re-

spective codon from TGT in JB50/JB759, coding for a cysteine residue, to TTT in

JB760, coding for a phenylalanine residue. The neighboring threonine residue at po-

sition 356 was reported as a phosphosite before, and its phosphorylation was shown

to partially control the localization of pka1 (Gupta et al., 2011). Using strains with

phosphomimetic alleles of pka1, Gupta et al. showed that the phosphorylation at

T356 increases the concentration of pka1 in the nucleus. The inability to be phospho-

rylated at residue 356 was shown to result in a partial loss of pka1 -function (Gupta

et al., 2011). Taken together, this evidence motivated us to validate if the mutation

in pka1 was causal to the hotspot observed on Chromosome II. To investigate the

causal mutation for this hotspot, we generated a strain that differed from JB50 only

in the amino acid at position 356 of the pka1 protein, using a previously published
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approach utilising the CRISPR/Cas9 methodology (Rodŕıguez-López et al., 2017).

This allele-replacement strain is referred to as ’PKA1Rep’ in the following. This

strain, together with JB50, allowed us to investigate the effects of the polymorphism

in pka1 without the confounding effects of polymorphisms at other genetic loci. We

investigated the effects of this polymorphism through transcriptomic and proteomic

profiling. Three samples each of JB50 and PKA1Rep were grown in the normal

condition and with the addition of 0.5 mM H2O2. Each sample was divided and

subjected to quantification of the transcriptome and proteome. In total, we were

able to quantify 7749 transcripts. An analysis with DESeq2 revealed that 5335 tran-

scripts were differentially expressed between the strains in the normal condition at

FDR<10%. 4795 transcripts were differentially expressed in the stress-condition at

FDR<10%. We also quantified the levels of 3378 proteins in both conditions. 2029

proteins were differentially abundant between JB50 and PKA1Rep in the normal con-

dition and 1504 proteins were differentially abundant between the two strains in the

stress-condition at FDR<10%. The changes occuring between JB50 and PKA1Rep

in the transcriptome and in the proteome in the normal condition were compared di-

rectly, showing a strong positive correlation (r=0.79, Figure 2.16a). Transcriptomic

and proteomic changes between the two strains in the stress-condition also showed

strong similarity, but were less strongly correlated than those in the normal condition

(r=0.5, Figure 2.16b).

The log2 fold changes at the transcriptomic level between JB50 and PKA1Rep cor-

related strongly with those observed for the hotspot in the full panel of strains when

all coding genes with transcript levels in both experiments were considered (r=0.68

in the normal condition, r=0.34 in the stress-condition). The correlation between

changes in the transcriptome was highest when only genes with available protein

levels (r=0.82 in the normal condition, r=0.39 in the stress-condition, Figure 2.17a

and b) were considered.
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Figure 2.15: Changes in transcript levels upon the induction of respiration, using
glycerol as the primary carbon source, compared to changes caused by the hotspot
e-chrII:1. Each dot corresponds to a gene that is regulated by the hotspot in the
normal condition. The diagonal and the axes are represented by black lines.
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Figure 2.16: Differential expression between JB50 and PKA1Rep on the tran-
scriptomic and proteomic layers for all genes with measurements on both layers.
Differential expression is shown separately for the normal (a) and stress-condition
(b). Axes are represented by solid black lines.
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Figure 2.17: The effects of the allele replacement in JB50 are compared to the
expression differences of strains differing in the pka1 -allele in the cross in N (a and
c) and H (b and d). Each dot represents a gene with available protein levels in both
experiments. Plots a and b show the effects on RNA levels, while c and d show the
effects on the protein levels. Proteins with multiple peptide groups correspond to
multiple points in c and d.
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The differences of the protein levels between JB50 and PKA1Rep correlated strongly

with those observed in the cross in the normal condition (r=0.59, Figure 2.17c) and

the stress-condition (r=0.64, Figure 2.17d). We were able to replicate the relation-

ship between conditional effects of the hotspot in the normal condition and the stress

response in the independent data generated with JB50 and PKA1Rep. 88% of coding

genes that were targeted by e-chrII:1 in the normal condition only were also differen-

tially expressed between JB50 and PKA1Rep in the normal condition at FDR< 10%.

Their log2 fold changes between JB50 and PKA1Rep correlated strongly with the

stress response of JB50 in the same experiment (r=0.69).

The mutation within pka1 caused the differential expression of 86% of the target

transcripts of the e-chrII:1 hotspot in the normal condition. 93% of the transcripts,

that were differentially expressed between the two alleles of pka1 in both experiments,

changed their expression in the same direction. 69 out of 77 proteins that had a pQTL

at the pka1 -locus were also differentially expressed between the validation strains.

The abundance of 68 out of 69 of these proteins changed in the expected direction. In

the normal condition the strains with the JB760-allele at the pka1 -locus have a lower

expression of transcripts related to ribosome biogenesis and a higher expression of

transcripts related to mitochondrial respiration. Here we show that a single amino

acid substitution in pka1p causes widespread changes in gene expression, protein

abundance and growth. It does so in condition-specific way and induces changes in

the transcriptome in the normal condition that resemble the oxidative stress response

in the strains carrying the same allele as JB760, the parental strain with the highest

stress resistance.

2.4 Discussion

The aim of this study was to elucidate the genetic control of the oxidative stress

response in fission yeast. This was accomplished by generating a genetically diverse

population of fission yeast strains and studying the combined effects of oxidative

stress and genotypic variation on a large number of molecular traits. We character-

ized the transcriptome of all strains and the proteome of a subset of strains on both
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molecular layers, using RNA-seq and mass spectrometry, respectively. The growth

efficiency of a subset of strains was also measured. We identified eQTL and pQTL,

and classified these QTL depending on their effects on the different growth condi-

tions (Ackermann et al., 2013). We identified multiple polymorphisms that affect

the response to oxidative stress on the transcriptomic level.

At a FDR<10%, we identified eQTL for 90.7% of all transcripts that were measured

and found pQTL for 11% of all proteins which were measured in our study. We

improve on the number of eQTL reported for a subset of this cross and detect pQTL

for the first time in fission yeast (Clement-Ziza et al., 2014). Most eQTL were found

to have different effects in the normal condition and the stress-condition and were

therefore classified as conditional. Thus, the perturbation of the cellular network

through the application of oxidative stress has greatly increased the information

that could be extracted through QTL-mapping. We report similar proportions of

transcripts being affected by conditional eQTL as a similar study in budding yeast

(Smith and Kruglyak, 2008). The conditional eQTL that affected transcript levels

in both conditions usually had the same effect direction in both conditions, speaking

to the robustness of gene regulation across conditions.

We detected much more eQTL that were only active in the stress-condition than

eQTL that were only active in the normal condition. This is likely due to a combina-

tion of biological and technical reasons. Several loci that affected many targets did so

in a stress-specific manner (e.g. e-chrI:1 and e-chrI:2). Conversely, we did not iden-

tify eQTL hotspots that are specific to the normal condition. As the FDR-correction

was performed separately for the two datasets, the existence of these hotspots can

affect the FDRs of all other QTL in a condition-specific manner. We correct for

this with the post hoc calling of conditionality and detect static eQTL that would

not have reached significance in the normal condition independently. As we only

test eQTL that reached the significance threshold in at least one of the conditions

for conditional effects, we might miss some eQTL that were specific to the normal

condition and did not reach significance, but could have done so if their p-value was

corrected together with those of eQTL called for the stress-condition. For future ex-

periments, the FDR-correction might be performed for p-values of different datasets
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simultaneously to avoid this possible bias.

Variants that are present in our panel of strains were fixed in at least one parental

strain. Variants with strong negative effects on fitness likely would have been removed

through negative selection. If the parental strains were exposed to negative selection

primarily under conditions other than oxidative stress, variants with effects on the

response to oxidative stress would be allowed to accumulate if they did not affect

growth in other conditions simultaneously. Since fission yeast was heavily influenced

by human activity, a reduced adaption to stressors in some parental strains seems

plausible (Jeffares et al., 2015).

We detected much more eQTL than pQTL (12,729 eQTL vs 303 pQTL). Per trait

that was mapped, we found around 40 times as many eQTL as pQTL. The transcrip-

tomic and proteomic data differed in important technical aspects, making it harder

to detect pQTL. The sample size for the pQTL study was around half of that of

the eQTL study, decreasing the statistical power of the approach. Further, some

peptides were only measured in a subset of samples. We chose to combine peptide

levels to peptide groups to avoid removing meaningful variation in the trait levels.

However, this also increased the multiple testing burden. An approach that combines

peptide levels to levels for proteins in a more accurate and sparse way could have

increased the number of significant pQTL. In addition mass spectrometry is overall

more prone to technical noise (Collins and Aebersold, 2018).

Since the samples were taken an hour after the application of the oxidative stress,

the cultures were likely not in steady state. The relative lack of proteins that were

repressed after the induction of stress is an indication of the ongoing adaption to

stress on the proteomic level. This could have led to increased variation in protein

levels, making it harder to map them.

Earlier work indicated that protein levels are under stricter selection than transcript

levels and are therefore more conserved (Khan et al., 2013). Genetic variants that

solely affect the levels of transcripts but not protein levels, would therefore be ex-

pected to be under less strict selection than those variants that have a strong effect

on protein levels. This would explain some reduction in pQTL, compared to eQTL.

We detected only a small number of conditional pQTL. We observed a lack of re-
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pression of proteins corresponding to transcripts that are down-regulated upon the

induction of oxidative stress. The likely reason for this is, that the samples were taken

one hour after the stress was first induced. As many proteins have a half-life that

is much longer than one hour, only those proteins that are actively degraded would

show a drastic decrease in levels (Christiano et al., 2014). As we computed FDRs

for the interaction effect between the QTL and the condition, the lack of conditional

pQTL that affect how the levels of proteins decrease after stress treatment could

have made it more difficult to correctly classify those pQTL that increase protein

levels in the stress condition as conditional. Some static pQTL might start to lose

their effect on the proteome upon the induction of stress but might still be detected

as significant in both conditions due their target proteins not being degraded fast

enough. As we use univariate linear tests to assess the effect of the QTL in each con-

dition, the statistical power to detect its effect might be reduced (Michaelson et al.,

2010). If QTL were found not to have conditional effects because of a lack in power,

they would be misclassified as static QTL. An additional test assessing the similarity

of effects, as opposed to their difference, could be added to make the identification of

static QTL more reliable. Weak QTL for which the difference in effects between the

conditions cannot reliably determined could be classified as an additional ’unknown’

class.

Many molecular traits were affected by nearby variants. Both the levels of transcripts

and peptide groups were targets of these local QTL more often than expected by

chance. Notably, local eQTL were less often specific to the stress-condition than

expected by chance. This suggests that local eQTL often affect gene expression in

fundamental ways that are affected by the response to environmental stimuli. Most

local pQTL overlapped with local eQTL, suggesting that local pQTL in this cross

are mostly caused by local eQTL. In agreement with previous QTL-studies in yeast,

we found most eQTL and pQTL to be distant (Clement-Ziza et al., 2014; Albert

et al., 2018; Foss et al., 2011; Brem et al., 2002).

We identified hotspots that affected large numbers of traits on both molecular layers.

These hotspots largely overlapped between the molecular layers. Notable exceptions

were the hotspots e-chrI:1 and p-chrIII:1, which were hotspots only affecting the
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transcriptome and proteome, respectively. For e-chrI:1 we showed that the effects on

the transcriptome were in fact transmitted to the proteome but were buffered to a

large degree. Several hotspots were more important for one experimental condition

than the other. Many targets of e-chrI:1 and e-chrI:2 were only affected in the

stress-condition. The allele that was associated with a weaker response to oxidative

stress was inherited from JB759 in both cases. JB759 was isolated from an alcoholic

beverage, and might therefore be adapted to a niche with abundant glucose in which

fast growth coupled with fermentation is preferable. Oxidative stress would likely

play a small role in that environment. Conversely, many targets of e-chrIII:1 were

only affected in the normal condition. e-chrII:1, on the other hand, included eQTL

of all classes. Through the reduction of RAS-signaling and the induction of aerobic

respiration, the JB760-allele of e-chrII:1 caused transcriptomic changes in the normal

condition that resemble the response to oxidative stress.

Earlier work in budding yeast indicated that the proteome is regulated independently

from the transcriptome to a large degree (Foss et al., 2007). We observed eQTL that

effect the levels of proteins less than expected (e-chrI:1), eQTL that affect protein

levels as expected (e-chrII:1) and pQTL that are not caused by eQTL (p-chrIII:1).

This suggests that the transmission of eQTL effects to the proteome is not the same

for all causal variants.

The eQTL- and pQTL-hotspot with the most targets was located on Chromosome

II (e-chrII:1, p-chrII:1). We identified and validated the causal variant within pka1,

a protein kinase central to RAS-signaling (Maeda et al., 1994). The variant causes a

missense mutation close to a phosphorylation site that controls the activity of pka1

through its localization (Gupta et al., 2011). A possible mechanism through which

this variant might affect the function of pka1 is by affecting the accessibility of this

site for kinases. We quantified the proteome of JB50, the lab strain, and PKA1Rep,

the strain in which the pka1 -allele was replaced. Many of the proteins that were

significantly differentially expressed between them also were affected by the hotspot

in the QTL-panel but were mostly not called as significant pQTL. This indicates that

our QTL-study was underpowered to detect these associations. Notably, the JB760-

allele of pka1 conferred a positive effect on growth efficiency. As it also up-regulated
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aerobic respiration, cultures could grow to a higher density by metabolizing available

glucose by respiration as opposed to aerobic fermentation.

In summary, we identify three major eQTL-hotspots that affect the expression of

stress response genes. Notably the JB759 parental strain, which is more susceptible

to oxidative stress, carries the allele for all three loci that is associated with a reduced

induction of stress response genes in the respective condition. Further, we show that

these hotspots also affect the proteome, although the response on the proteomic layer

is weakened in the case of e-chrI:1. The same parental strain (JB759) carries those

alleles that reduce growth efficiency at all gQTL. JB760, the parental strain that

is most resistant to oxidative stress, carries all alleles at the eQTL-hotspots with

an effect on the stress response that increase the induction of stress response genes.

JB760 also carries the allele associated with higher growth density at three out of four

gQTL. We identified and validated a mutation within a key player of RAS-signaling,

pka1, for the e-chrII:1 hotspot. Further work is required to investigate the causal

polymorphisms at other hotspots.

Our results have implications for the fission yeast community and the field of QTL-

mapping. The hotspots and gQTL that we identified can explain some of the phe-

notypic differences between different fission yeast isolates and may help to select the

right isolate for a specific research question. With this panel of fission yeast strains,

we provide a resource that can be used for further studies. Through our analysis,

we add to the understanding of how transcriptomic changes are transmitted to the

proteome, and identify a hotspot that regulates the levels of proteins without affect-

ing their transcript levels. We show that hotspots often affect different molecular

targets in different conditions, emphasizing the need to generate omics-data in the

most relevant condition. Local eQTL were often active in all conditions, as observed

before (Smith and Kruglyak, 2008), suggesting that data from multiple conditions

could be used to differentiate local cis-eQTL and local trans-eQTL that might occur

around hotspots.

The detected QTL may also be used to investigate directed selection in the parental

strains, as proposed previously (Orr, 1998; Riedel et al., 2015).
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2.5 Contributions

Not all scientific work in this project was performed by me. I did not contribute

to the generation the QTL-cross, the wet-lab experiments or the preprocessing of

the generated data, including the generation of the genotype-matrices. I performed

the combination of sample-wise measurements to strain-wise data and performed

the QTL-mapping. I identified the QTL-hotspots, called conditions for eQTL and

pQTL, assessed the stress response in JB50 and identified local QTL. The analysis

on QTL-hotspots and their effects on the stress response was also performed by me.

The identification of pka1 as the candidate gene for e-chrII:1 was done by me, as

well. Generation of the allele replacement strains, the preparation of the cultures

and follow up measurements were done by others. Processing of the generated data

and integration with the omics-data for the QTL-cross were done by me.
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Chapter 3

Effects of genetic variation on the

phosphoproteome of

Saccharomyces cerevisiae

3.1 Introduction

Genetic polymorphisms are important modifiers of many physiological traits, such

as body height and disease susceptibility. Variations of these traits are caused by

alterations of the underlying molecular networks (Emilsson et al., 2018). As most

cellular functions are performed by proteins, their abundances and activities are of

special relevance when studying this network. Genetic variants might either act indi-

rectly through multiple layers to affect protein levels, e.g. by first changing transcript

levels, which then influences protein levels, or directly on individual layers, e.g. by

directly changing protein levels through altered protein stability (van der Sijde et al.,

2014). Changes in the sequence of an mRNA can affect translation rates, hence alter-

ing protein abundance, while the concentration of the transcript from the same gene

stays constant (reviewed in Bali and Bebok (2015)). Genetic variants might also af-

fect protein activities directly through post-translational modifications (PTMs) such

as phosphorylation without affecting the abundance of the protein or its transcript.
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Varying concentrations of a kinase can affect phosphorylation levels of its targets,

which, in turn, might lead to their degradation (Henchoz et al., 1997), activation or

inhibition (Ardito et al., 2017), or changes in their subcellular localization (Miller

and Cross, 2002).

A comprehensive view of the effects of genetic perturbations on integrated molecular

networks requires accurate quantitative measurements at different molecular layers

from the same samples (Civelek and Lusis, 2014). For example, with current RNA

sequencing (RNA-seq) technologies it is possible to detect eQTL for virtually all

transcripts present in a cell (Albert et al., 2018). Likewise, mass spectrometry has

been used to identify hundreds pQTL (Foss et al., 2011; Holdt et al., 2013; Picotti

et al., 2013; Wu et al., 2013) and QTL affecting metabolic traits (mQTL; reviewed in

Nagana Gowda and Djukovic (2014)). A shortcoming of many existing studies is that

either only one layer was measured, typically transcripts or, if multiple layers were

measured, transcripts and proteins were not isolated from the same cultures. Such

issues have limited the comparison and integration of data from different molecu-

lar layers. For example, the extent to which eQTL also affect protein levels has

been a matter of debate and previous studies have come to seemingly contradictory

conclusions (Albert et al., 2018; Chick et al., 2016; Foss et al., 2011). Studies that

quantified both the transcriptome and proteome covered a much larger part of the

transcriptome and included only a small proportion of the proteome (Foss et al.,

2007, 2011; Albert et al., 2014a). Another limitation of the existing body of research

is the focus on the concentrations of biomolecules, i.e., transcript and protein lev-

els, whereas PTMs of proteins, such as phosphorylation, which are key mediators of

cellular signalling and modulators of enzyme activities, were largely neglected. Its

essential role for cellular organization suggests that variable protein phosphorylation

serves as a central ’relay’ mediating the effects of genetic polymorphisms to complex

cellular and organismal traits, such as cellular growth rates.

In order to investigate the effects of genetic variation on these protein traits we de-

signed a multi-omics QTL study in recombinant offspring of a cross of two budding

yeast strains with the following four key distinguishing features: (i) We quantified

transcripts, proteins, and phosphorylation levels at genomic scale; (ii) by using the
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SWATH-MS technology we could reproducibly quantify a large number of proteins

consistently across virtually all samples; (iii) RNA, protein, and phosphoprotein sam-

ples were obtained from the same yeast culture, greatly facilitating the comparability

of the data; and (iv) the data integration scheme that we developed for this study

enabled us to investigate interdependencies of the molecular patterns between the

layers.

To address these questions, we utilised a cross of two Saccharomyces cerevisiae strains

(BY4716 and RM11-1a) that has been studied with different technologies and in dif-

ferent conditions (Brem et al., 2002; Foss et al., 2007; Smith and Kruglyak, 2008; Foss

et al., 2011; Albert et al., 2014a,b, 2018). Budding yeast is generally well annotated,

including information on gene functions, protein-complexes and phenotypes. As the

causal variants are known for a number of loci in this cross, QTL that affect phos-

phorylation traits have the potential to be readily interpreted and analyzed. Further,

budding yeast has very low levels of splicing, which simplifies the investigation in the

relationship of transcript and protein levels.

We used this approach to study the effects of genetic variation on transcript levels,

protein levels, protein phosphorylation simultaneously.

3.2 Methods

3.2.1 Sample preparation

All media were prepared in a single batch to limit experimental variability. The yeast

strain collection was originally derived from a cross between the two parental strains:

BY4716, an S288C derivative (MATα lys2∆0), and RM11-1a (MATa ,leu2∆0 ura3∆0

ho::KAN) (Brem et al., 2002) . Strains were picked in random series of 16 (see supple-

mentary information), pre-cultured in synthetic dextrose medium (S.D., containing

2% glucose), and then grown in 120 ml fresh S.D. medium at 30°C until a maximal

OD600 of 0.8 (+/- 0.1). The cultures were then harvested and processed essentially

as described in (Bodenmiller and Aebersold, 2010) . In short, at an OD600 of 0.8,

trichloroacetic acid (TCA) was added to the culture media to a final concentration
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of 6.25% and the cells were harvested by centrifugation at 1500 g for 5 min at 4 °C
and washed three times with cold acetone. The final cell pellets were transferred

into 2-ml Eppendorf tubes and frozen before further processing. Altogether, 180 cell

pellets were collected for cultures which matched the abovementioned conditions and

processed further.

3.2.2 RNA seq

Total RNA was isolated from deep frozen aliquots of yeast pellets using RiboPure

RNA Purification Kit, yeast (Ambion, Germany), which includes a DNaAse treat-

ment to eliminate contamination. RNA quality was assessed using RNA ScreenTape

assay (Agilent, United States). All RNAs were of very high quality (median RIN

9.8, minimal RIN 9.1). cDNA libraries were prepared from poly(A) selected RNA

applying the Illumina TruSeq protocol for mRNA using a total of 1 µg RNA per

sample and 14 PCR cycles (Illumina, United States). The cDNA libraries were se-

quenced on a HiSeq2000 with 20 samples per lane (8 million reads per sample). The

generated reads were stranded, single-end, and had a length of 100 bp.

3.2.3 Genotype calling

The BYxRM yeast cross has been widely used for QTL mapping. Microarray-based

genotype information of the segregants is available (Brem et al., 2005). However,

deep sequencing enables a more accurate genotyping of recombinant lines. To this

end we have exploited published resequencing data of the parental strains (Bloom

et al., 2013) together with the RNA-seq data generated here to infer the genotype of

the segregants of the BYxRM cross using a method that was previously published

(Clement-Ziza et al., 2014). Sequence variation information of the parental strains

was obtained from http://genomics-pubs.princeton.edu/YeastCross_BYxRM/;

only calls with a MQ>30 where considered, which represents 42,769 polymorphic

sites. RNA-seq data were mapped to the S.cerevisiae reference genome (SaCer3) us-

ing TopHat 2 (Kim et al., 2013)) with the following options: --min-intron-length

10 --min-segment-intron 10 --b2-very-sensitive --max-multihits 1
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--library-type fr-secondstrand. Read group information was added, and BAM

files were sorted using Picard utilities (http://broadinstitute.github.io/picard/).

RNA-seq data were further processed using the GATK pipeline (version 3.4-46-

gbc02625) following the best practice guide (Van der Auwera et al., 2013). First

reads containing exon-exon junction were split using the following options: -T

SplitNCigarReads -rf ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U

ALLOW N CIGAR READS, then the variants were called using the UnifiedGenotyper at

the 42,769 polymorphic sites identified in the resequencing data of the parental strains

(Bloom et al., 2013). Genotype calls where the GTAK genotype score was below 40

(GQ<40) or that were covered with less than 5 reads (DP<4) were considered as

missing values.

For every polymorphic site between the progenitors, we compared the polymorphisms

in the segregants and the parental strains to infer which allele was inherited. We

further excluded polymorphisms (i) that could not be called (or correctly called) in

the parental strains based on RNA-seq data, (ii) that could be called in less than

70% of the segregants, and (iii) with a lower allele frequency of less than 20%. As

previously discussed in Clement-Ziza et al. (2014), genotypes called differing from

the two direct flanking markers in more than one segregant (93 cases) probably de-

note erroneous genotype calls; the corresponding polymorphisms were excluded from

the analysis. This resulted in 25,590 polymorphisms that were considered as genetic

markers. Finally, missing genotype values were inferred from when the informative

flanking sites showed the same segregation patterns and when they were < 20 kilo

bases (kb) away, the same genotype as the flanking one was assigned to the missing

value, assuming that no recombination event took place (Clement-Ziza et al., 2014).

Adjacent markers with the same segregation pattern across all segregants were col-

lapsed into one unique marker, resulting in a set of 3,593 unique genetic markers

for QTL-mapping. Thus, each marker represents a genomic interval in which all

polymorphisms are in full linkage disequilibrium in the cross.
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3.2.4 Transcriptome quantification

In previous work, we have shown that accounting for individual genome variations

for RNA-seq alignment improved gene expression quantification and deflated the

number of falsely detected local eQTL. Therefore we used the strategy we had pre-

viously developed to map RNA-seq reads. It consists of generating a strain-specific

genome, for each segregant, against which the corresponding reads are aligned. First,

we generated both strain-specific genome sequences and strain-specific annotations

from the reference genome sequence (SaCer3), the reference genome annotation and

the available information about genetic polymorphisms (VCF files) previously gen-

erated with RNA-seq data. Then RNA-seq reads were aligned to the corresponding

strain specific genomes using STAR (ver 2.5.0a) (Dobin and Gingeras, 2015) with

the following options: --alignIntronMin 10 --quantMode GeneCounts. The gene

specific read counts (strand specific) generated by STAR were used to quantify gene

expression. RNA-seq coverage was computed by dividing the sum of the length of all

reads by the sum of the length the coding regions of the quantified transcripts per

sample. Raw read counts were normalized using rlog method of DESeq2(Love et al.,

2013). Normalized data were further corrected for effects due to culture batches us-

ing the non-parametric empirical Bayes framework ComBat (Johnson et al., 2007).

Normalized, log transformed and batch corrected read counts c were corrected for

gene length as follows for gene i in sample j:

c′i,j = log2(2ci,j · 1000
li

)

, where li is the length of the coding region of gene i, excluding intronic regions.

3.2.5 Proteomics

Protein extraction

Cell pellets were resuspended in lysis buffer containing 8 M urea, 0.1 M NH4HCO3,

and 5 mM EDTA and cells were disrupted by glass bead beating (5 times 5 min at

4°C, allowing the samples to cool down between cycles). The total protein amount
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from the pooled supernatants was determined by BCA Protein Assay Kit (Thermo

Fisher Scientific, United States). Three milligrams of extracted yeast proteins were

reduced with 5 mM TCEP at 37 °C for 30 min and alkylated with 12 mM iodoac-

etamide at room temperature in the dark for 30 min. The samples were then diluted

with 0.1 M NH4HCO3 to a final concentration of 1 M urea and the proteins were

digested with sequencing-grade porcine trypsin (Promega, United States) at a final

enzyme:substrate ratio of 1:100 (w/w). Digestion was stopped by adding formic acid

to a final concentration of 1%. Peptide mixtures were desalted using 3cc reverse

phase cartridges (Sep-Pak tC18, Waters) and according to the following procedure:

washing of column with one volume of 100% methanol, washing with one volume

of 50% acetonitrile, washing with 3 volumes of 0.1% formic acid, loading acidified

sample, reloading flow-through, washing column with sample with 3 volumes of 0.1%

formic acid, and eluting sample with two volumes of 50% acetonitrile in 0.1% formic

acid. Peptides were dried using a vacuum centrifuge and resolubilized in 100 µl of

0.1% formic acid. Retention time standard peptides (iRT-Kit, Biognosys, Switzer-

land) were spiked into the samples before they were analyzed by LC-MS for total

protein abundances (’non-enriched samples’).

Enrichment for phosphopeptides

The remaining 95 µl were supplemented with 300 µl of an overnight re-crystalized

and cleared up phthalic acid solution prepared by carefully dissolving 5 g of ph-

thalic acid in 50 ml of 80% acetonitrile before adding 1.75 ml of trifluoroacetic acid.

The samples were then enriched for phosphopeptides by incubating for 1 hour under

rotation with 1.25 mg of TiO2 resin (GLscience, Germany) pre-equilibrated twice

with 500 µl of methanol, and twice with 500 µl of phthalic acid solution. Peptides

bound to the TiO2 resin were then washed twice with 500 µl phthalic acid solution,

twice with 80% acetonitrile, 0.1% formic acid, and twice with 0.1% formic acid. The

phosphopeptides were eluted from the beads twice with 150 µl of 0.3 M ammonium

hydroxide at pH 10.5 and immediately acidified again with trifluoroacetic acid to

reach pH 2. The enriched phospho-peptides were desalted on microspin columns

with the protocol described above, dried using a vacuum centrifuge, and resolubi-
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lized in 10 µl of 0.1% formic acid. Again, retention time standard peptides (iRT-Kit,

Biognosys, Switzerland) were spiked into the samples before they were analyzed by

LC-MS for total peptide abundances (’phosphopeptides samples’).

Measurements with SWATH-MS

The peptide concentration in all samples was measured on a NanoDrop at OD280 and

normalized to allow injection of approx. 1 µg of material into the mass spectrometer.

The samples were randomized and then either injected individually for SWATH-MS

acquisition or pooled and injected in technical duplicates for shotgun acquisition

(see supplementary information). The LC-MS acquisitions were performed on an

AB Sciex 5600 TripleTOF coupled to a NanoLC2Dplus HPLC system. The liquid

chromatographic separation and mass spectrometric acquisition parameters were es-

sentially as described earlier (Selevsek et al., 2015). The peptide separation was

performed on a 75 µm diameter PicoTip/PicoFrit emitter packed with 20 cm of

Magic C18 AQ 3 resin using a 2-35% buffer B at 300 nl/min (buffer A: 2% acetoni-

trile, 0.1% formic acid; buffer B: 98% acetonitrile, 0.1% formic acid). For shotgun

experiments, the mass spectrometer was operated with a ’top 20’ method, with a

500-ms survey scan followed by a maximum of 20 MS/MS events of 150 ms each.

The MS/MS selection was set for precursors exceeding 200 counts per second and

charge states greater than 2. The selected precursors were then added to a dynamic

exclusion list for 20 s. Ions were isolated using a quadrupole resolution of 0.7 amu

and fragmented in the collision cell using the collision energy equation 0.0625 x m/z

- 3.5 with a collision energy spread of 15 eV. For SWATH-MS acquisition, a 100-ms

survey scan was followed by a series of 32 consecutive MS/MS events of 100 ms each

with 25 amu precursor isolation with 1 amu overlap. The sequential precursor isola-

tion window set-up was as follows: 400-425, 424-450, 449-475 ... 1174-1200 m/z. The

collision energy for each window was determined based on the collision energy for a

putative doubly charged ion centered in the respective window (equation: 0.0625 x

m/z - 3.5) with a collision energy spread of 15 eV. All the MS data files were visually

inspected and curated at this stage for low total ion chromatogram intensities, and

the corresponding samples re-injected, if possible. This resulted in a final set of 179
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SWATH data files for non-enriched and 179 SWATH data files for phospho-enriched

samples that were used for data extraction. Similarly, 40 DDA files for non-enriched

and 30 DDA files for phospho-enriched samples were selected for database searching

and library generation.

LC-MS database searching

The shotgun data was searched with Sorcerer-Sequest (TurboSequest v4.0.3rev11

running on a Sage-N Sorcerer v4.0.4) and Mascot (version 2.3.0) against the SGD

database (release February 2011, containing 6,750 yeast protein entries, concatenated

with 6,750 corresponding ’tryptic peptide pseudo-reverse’ decoy protein sequences).

For the search, we allowed for semi-tryptic peptides and up to two missed cleav-

ages per peptide. For the non-enriched samples, we used carbamidomethylation as

a fixed modification on cysteine residues and oxidation as variable modification on

methionine residues. For the phospho-enriched samples, we additionally allowed for

phosphorylation as variable modification on serine, threonine, and tyrosine residues.

The Sequest and Mascot search results were converted to pep.xml-files and then

combined using iProphet (included in TPP version 4.5.2) both for the non-enriched

and for the phospho-enriched samples. Both search results were filtered at 1% FDR

by decoy counting at the peptide spectrum matches (PSM) level, resulting in a total

of 698,652 identified spectra, 26,893 unique peptides, and 4,310 proteins for the non-

enriched sample set; in the phospho-enriched sample set there were a total of 22,4551

identified spectra, 16,515 unique peptides (thereof 14,466 unique phosphopeptides),

and 2,333 proteins (thereof 1,911 phosphoproteins). Those data were compiled into

two spectra libraries (one ’non-enriched’ and one ’phospho-enriched’) using Spec-

traST (included in TPP 4.5.2) essentially as described earlier (Schubert et al., 2015)

, including the specific splitting of the consensus spectra when MS/MS scans iden-

tifying the same peptide sequence were recorded more than 2 minutes apart, also

described earlier (Schubert et al., 2015). Those ’split peptide assays’ were given dif-

ferent protein entry names labeled Subgroup 0 ProteinX to Subgroup N ProteinX,

respectively. The fragment ion coordinates for the peptides contained the top 6 most

intense (singly or doubly charged) y or b fragment ions for each spectrum, excluding
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those in the SWATH precursor isolation window for the corresponding peptide. The

non-enriched assay library comprised assays for 19,473 peptides (thereof 18,074 pro-

teotypic peptides matching a total of 3,119 unique proteins). The phospho-enriched

assay library comprised assays for 14,339 peptides (thereof 12,969 phosphopeptide

sequences) or assays for 13,786 proteotypic peptides (thereof 12,678 proteotypic phos-

phopeptides, matching a total of 1,676 unique phosphoproteins).

The SWATH-MS data extraction was performed using the iPortal workflow manager

(Kunszt et al., 2015) calling OpenSWATH (openMS v. 1.10) (Röst et al., 2014) and

pyProphet (Teleman et al., 2015). The precursors were then re-aligned across runs

using TRIC (Röst et al., 2017). The two resulting SWATH identification result files

contained a total of 18,273 identified peptides (thereof 16,922 proteotypic peptides

matching a total of 2,940 proteins) for the non-enriched datasets; in the phospho-

enriched datasets there were 13,748 identified peptides (thereof 12,412 phosphopep-

tides) or 13,218 proteotypic peptides (thereof 12,139 proteotypic phosphopeptides

matching a total of 2,247 unique phosphoproteins). After alignment, we used a set

of in-house scripts to compare the chromatographic elution profiles of the various iso-

baric phosphopeptide isoforms matching a same delocalized peptide form (peptide

sequence + number of phosphorylations) within each single run and to eventually

group those co-eluting phosphopeptide assays into the proper corresponding num-

ber of phospho-peak clusters (labeled cluster0 to clusterN, respectively). The

phospho-peak clusters were then consistently re-numbered across runs and those were

used as input to mapDIA (Teo et al., 2015) to select for the best suitable transitions

and peptides for quantification. This resulted in the final peptide and protein quan-

tification matrices for the non-enriched and phospho-enriched datasets that were

used for further processing.

Processing of peptide levels to protein level data

First, features detected after 7000 s, corresponding to decoys, reverse proteins, or

not unique peptides were removed. We also removed fragments with oxidized me-

thionine and their corresponding non-oxidized fragments. Next, native retention

times were converted to iRTs (Escher et al., 2012). Fragments corresponding to pep-
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tides, whose sequence was existing only in the reference proteome (i.e. the BY1416

background) and not in RM11-1a background were excluded from subsequent anal-

ysis. Normalization of the fragment-level data and aggregation into peptides and

protein level data was performed using mapDIA (Teo et al., 2015) with the fol-

lowing options: NORMALIZATION = RT 10, MIN CORREL = 0.3, MIN FRAG PER PEP

= 2, MIN PEP PER PROT = 1 and a maximum of 20% missing data for each fragment.

Finally, abundance data were further corrected for effects due to culture batches and

proteomics measurement batches using the non-parametric empirical Bayes frame-

work ComBat (Johnson et al., 2007).

Processing of phosphopeptide levels

As for the protein level data, only unique peptides were considered. First features

that were detected after 6000 seconds and peptides corresponding to decoys or re-

verse proteins were removed. As for the non phospho-enriched samples, we replaced

native retention time by iRT (Escher et al., 2012). We removed peptides that were

polymorph between the parental strains. Using mapDIA we combined the fragment

levels for each peptide to one abundance for the whole phosphopeptide with the fol-

lowing options: NORMALIZATION = RT 10, MIN CORREL = 0.3, MIN FRAG PER PEP

= 2. Again we allowed for up 20% of missing values per fragment. Correction for

culture batches was performed with ComBat (Johnson et al., 2007).

3.2.6 Computation of derived traits

In order (i) to separate the changes in protein abundance due to RNA changes from

changes that originate on the protein level through post-transcriptional processes,

and (ii) to distinguish changes in phosphopeptide abundance due to protein abun-

dance changes from changes of relative phosphorylation levels, we have generated

regression-traits, as already proposed in (Foss et al., 2011). This approach was used

to generate regression-traits that represent protein-level variation that is not due

transcript variation and to generate traits that represent variation in the abundance

of phosphopeptides that is not due changes of protein levels of the same gene. First,
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for each pair of corresponding traits (e.g. a phosphopeptide and the protein that it

is derived from) relative abundances across sample were normalized using a modified

transformation to standard score (i.e. centering and scaling). To compute mean and

standard deviation for this normalization, only the values corresponding to the sam-

ples, in which measurements were available for both phosphopeptides and protein

were used. Then, for each pair, normalized phosphopeptide data were regressed on

protein data using a robust linear regression using a MM-estimate (Yohai, 2007), ini-

tialized by an S-estimate using Hubber’s weights function and using an M-estimator

as final estimate using a Tukey’s biweigh function as implemented through the MM-

estimation option in the rlm function of the MASS R package. The residuals of these

regression were then used to as trait in the following analyses.

Traits representing variance in protein levels that is not due to variance in the tran-

script levels of the same gene are term pt-traits and can be regulated by ptQTL.

Traits representing variance in phosphopeptide levels that is not due to variance in

the protein levels of the same gene are term phRes-traits and can be regulated by

phResQTL.

3.2.7 Heritability

Broad-sense heritability estimates were computed based on replicate measurements

of some strains, as described elsewhere (Bloom et al., 2013). We used six different

segregants with three replicates each, as well as the parents with six (BY) and eight

(RM) replicates each. In short, the lmer function from the lme4 R package was

used to create a linear mixed-effects model with the phenotype as the response and

the segregant labels as random effects. The variance components σ2G (the variance

due to genetic effects, i.e., different segregants), and σ2E, (the error variance), were

extracted, and broad sense-heritability was calculated as

H2 = σ2G
σ2G+σ2E

.

Standard errors were calculated using the delete-one jackknife procedure, as proposed

previously (Bloom et al., 2013). Random distributions of heritability estimates for
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each molecular layer were generated by permuting the strain labels and compared to

the real distributions using a Mann-Whitney test. In order to be able to compare

heritability estimates between the different molecular levels, we restricted the analysis

to the set of 402 proteins where we had measurements for expression, protein, and

at least one phospho-peptide.

3.2.8 QTL mapping

QTL-mapping was performed as described in the previous chapter. We mapped

trait data that was averaged by strain for each molecular layer considered. We only

considered those 112 strains for which data on all molecular layers was available.

Therefore the same genotype was used for all molecular layers. We combined the

25,990 genetic markers to 3593 aggregated genetic markers for QTL-mapping by

fusing identical neighboring markers. Within each aggregated genetic marker all

genetic markers are in perfect linkage disequilibrium within our cross. We included 7

predictors representing the population structure, computed as described in the last

chapter. These covariates explain more than 25% of the genotypic variance. We

generated 2,171,600 permutations for the transcript data, 520,800 permutations for

the pt-traits, 524,000 permutations for the protein traits, 152,800 permutations for

the phRes-traits, and 464,000 permutations for the phosphopeptides.

3.2.9 Identification of QTL-hotspots

Hotspots were identified essentially as described in the previous chapter. We divided

the genome into 293 bins. Each bin was 40kb, only bins at the end of chromosomes

were smaller. At α = 0.01, a bin would have to have 30 eQTL, 9 ptQTL, 13 pQTL,

4 phResQTL, or 11 phQTL. Consecutive bins that were called as hotspots for any

molecular layer were combined to a single hotspot.

3.2.10 Local and distant QTL

Local QTL were identified as described in the last chapter.
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3.2.11 Functional enrichment analysis

GO-enrichment was performed as described in the last chapter, usign the topGO

package (Alexa, 2007). For this study we used annotations form SacCer3.

3.2.12 Integration of growth QTL

QTL affecting growth under various conditions were taken from (Bloom et al., 2013).

If the reported peak position of the growth QTL was within 50 kb of the middle of

the positions of the loci that affected the most traits on each of the molecular layers,

we considered them to be the same QTL.

3.2.13 Enrichment of targets of kinases and phosphatases

among HAP1 -targets

We tested the phosphoproteins targeted by the HAP1-locus for enrichments in the

previously annotated targets of a large number of kinases and phosphatases (Boden-

miller et al., 2010). Here we only considered target proteins that were reported to

be phosphorylated or dephosphorylated at serine residues. We also considered pro-

teins that were measured in (Bodenmiller et al., 2010) but not found to be regulated

by any genetic perturbation. Among the 315 proteins that were measured in both

studies, a total of 45 proteins had at least one phResQTL at the HAP1-locus and

were measured in (Bodenmiller et al., 2010). We used one sided Fisher’s exact tests

to assess the significance of the enrichments of targets of a kinase or phosphatase

among the genes that were also targeted by the HAP1-locus.

3.2.14 Annotation of protein complexes

We used previously published annotations for protein complexes (ftp://ftp.ebi.

ac.uk/pub/databases/intact/complex/current/complextab/saccharomyces_cerevisiae.

tsv, Meldal et al. (2015)). We extracted the participating molecules per complex.

Non protein members where not considered. We also removed all complexes with
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only one protein member. To investigate the influence of complex stoichiometry on

the protein levels, we computed the correlation between levels of proteins in the

same complex. Here we only considered genes for (i) which protein and transcript

levels were available, and (ii) which were annotated for complexes that did not have

any overlap with other complexes. We excluded nucleolar and ribosomal proteins,

as genes of these functions were observed to be buffered (Results) which might bias

the results from the analysis of complex protein pairs. In total we considered 286

unique pairs of proteins from the same complex. These pairs corresponded to 188

genes. Some genes were part of more than one pair. For the same set of genes,

we investigated if QTL were shared between pairs of genes coding for proteins that

either share a complex or are members of different complexes, by checking if there

was any overlap between the QTL of both genes.

3.2.15 Polymorphisms in and around genes

To investigate the cause of local QTL, we counted polymorphisms in the upstream

region, downstream region, 3’ and 5’ UTRs, coding sequence and amino acid sequence

of each coding gene between the BY and RM genomes. We considered all SNPs

reported by (Bloom et al., 2013). We excluded all genes with insertions and deletions

from this analysis. UTR-annotations were downloaded from www.yeastgenome.org

in October 2017. If the UTR was reported multiple times with differing lengths, we

used the largest annotation. The up- and downstream regions of a gene spanned

2kb each and began at the outer borders of the UTRs. The number of coding

polymorphisms was defined as the number of amino acid changes in a protein between

BY and RM. Multiple SNPs in the same codon were only counted once. Figure 3.7

shows only genes with available UTR annotations and available measurements on

the protein level. Genes with indels are not included. For each phosphosite we

identified the closest polymorphism in the amino acid sequence space by computing

the absolute difference of the position of the modified serine and all polymorphic

amino acids within the protein and using the minimum of those distances. Note

that phosphopeptides were only included in this study if they did not have any
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polymorphisms.

3.3 Results

3.3.1 Available data

The BYxRM Saccharomyces cerevisiae yeast segregant panel used in this study re-

sults from a cross of a wild isolate (RM11-1a) and a laboratory strain (BY4716)

isogenic to the reference strain S288C. This cross has previously been used to study

the genetic contribution to molecular traits - including RNA and protein levels -

and to test novel systems genetics approaches (van der Sijde et al., 2014). We grew

the two parental haploid yeast strains and 110 of their recombinant offspring under

tightly controlled conditions, with multiple replicates for some of the strains (Figure

3.1). Each of the 170 cultures underwent transcriptome sequencing at high coverage

(38-186x) allowing for the quantification of 5,429 transcripts. The RNA-seq data was

also used to infer the genotypes of the strains, using a strategy that was previously

developed (Clement-Ziza et al., 2014), which significantly improved the localization

of recombination sites compared to previous studies (Brem et al., 2005). In samples

from the same yeast cultures, we used SWATH-mass spectrometry (MS) to obtain

abundances of 1,862 proteins with less than 1.8% missing values across all samples

(Figure 3.2). This represents a four-fold increase in the number of quantified pro-

teins compared to previous studies in the same cross (Foss et al., 2007, 2011; Picotti

et al., 2013; Albert et al., 2014a). We also quantified the phosphorylation state of

the proteins by SWATH-MS and after stringent filtering we obtained abundances of

2,116 phosphopeptides from 988 proteins with less than 2.4% missing values across

all samples. Only a subset of the host-proteins of the quantified phosphopeptides

was measured (40.6%).
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Figure 3.1: Experimental design and study overview. Yeast segregants and the
parental strains they were derived from, BY and RM, were grown, and character-
ized with different omics approaches. Their transcriptome, proteome, and phospho-
proteome was directly quantified from the same cultures. Regression traits (lighter
colors) representing the disparities between transcript and protein levels (i.e., mea-
suring post-transcriptional regulation, light green), and those between protein and
phosphopeptide levels (i.e., measuring relative phosphorylation, pink) were com-
puted. QTL analyses were performed to elucidate genetic regulation within each of
these molecular layers.
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3.3.2 Derived traits

As expected, we observed that in most cases, protein abundances were positively

correlated with their transcript levels (average r = 0.23, Figure 3.3a), and most

phosphopeptides were positively correlated with their proteins of origin (average

r = 0.29, Figure 3.3b). However, each layer can also be affected independently of the

genetic effects on the other layers. We aimed to investigate genetic variation that

affected protein levels and the levels of phosphopeptides directly. For this purpose we

computationally generated traits that for a given gene only include variation that can

not be explained by a matched molecular layer (Foss et al., 2011). First, we estimated

the contribution of transcript changes to protein-level changes by regressing the con-

centration of a given protein against the concentration of its encoding transcript

across all strains. Deviation from this regression (residuals) can either result from

noise in the data or from effects on protein levels that are independent of transcript-

level changes. We used the residuals as estimates of post-transcriptional regulation,

resulting in 1857 post-transcriptional (pt) traits (Foss et al., 2011). Likewise, we

regressed phosphopeptide levels against levels of their proteins of origin and used

the residuals as estimates of differential phosphorylation, resulting in 879 phospho-

residual (phRes) traits. As we could only compute phRes-traits for phosphopeptides

for which the levels of the protein of origin were also available, phRes-traits were

computed only for 42% of phosphopeptides. The QTL obtained by mapping these

residual traits were termed post-transcriptional QTL (ptQTL) and phospho-residual

QTL (phResQTL), respectively.
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Figure 3.3: Correlation of traits for the same gene across different molecular lay-
ers. (a) shows the correlation of transcript and protein levels for the same gene
for all genes with available measurements on both levels. (b) shows the correlation
between phosphopeptides and their proteins of origin for all genes with available
measurements on both levels. As one protein can host multiple phosphopeptides,
the same gene can be shown multiple times.

3.3.3 Traits at all molecular layers are affected by genetic

variation

In order to quantify the fraction of trait variation that can be attributed to genetic

differences, we quantified broad sense heritability by leveraging available replicates,

as proposed before (Bloom et al., 2013). Broad sense heritability was computed

by comparing the variation between replicates from the same strain (which is non-

genetic) to the total variation between strains. When the intra-strain variation is

small compared to the inter-strain variation, one can conclude that the genetic con-

tribution to trait variation is large under the experimental conditions tested (Bloom

et al., 2013). In order to ensure comparability between the molecular layers, only

the 402 genes for which measurements at each level were available are shown (Figure

3.4). The traits at all molecular layers had heritabilities greater than expected by

chance (Wilcoxon rank sum test, p < 2.2 ·10−16). For genes with available data on all
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molecular layers, transcript-levels were on average more heritable (mean H2 = 0; 47)

than protein (mean H2 = 0.33) and phosphopeptide levels (mean H2 = 0.3), and

the heritability of the residual traits was on average lower than that of the directly

measured traits (mean H2 = 0.29 for pt-traits and mean H2 = 0.24 for phRes-traits).

Note that the heritabilities for some genes were likely underestimated, because only

few strains had enough replicates to be used for the estimation, therefore under-

representing the genetic diversity. As not all genes are regulated by the same loci, a

QTL for some genes might segregate in the strains used to estimate the heritability,

while the QTL for other genes might not segregate. Further, the parental strains

could have been exposed to balanced selection in the past, generating allele combi-

nations in these strains that lead to similar trait values. For those genes heritability

might also be underestimated. Accordingly, for many traits that were estimated to

have a broad-sense heritability close to zero, we were still able to identify significant

QTL. Remarkably, 525 (28%) pt-traits and 165 (18%) phRes traits had heritabilities

greater than 50%, which means that the majority of the variance of these derived

traits was due to genetic variation. The lower heritability of the regressed traits

compared to the directly measured layers can be partly attributed to the fact that

they were derived from multiple measurements, thus adding up noise.
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Figure 3.4: Broad-sense heritability of traits belonging to the 402 genes for which
measurements at each molecular level were available. As one protein can host mul-
tiple phosphopeptides, the same gene can be shown multiple times for the phospho-
layers.

3.3.4 Detection of QTL for all molecular layers

We utilized a mapping strategy based on Random Forest to identify QTL. This

approach was previously shown to outperform traditional QTL mapping methods,

because of its capability to account for complex (epistatic) interactions between

genetic loci (see Michaelson et al. (2010) and Methods). In total, we detected 5,776

eQTL, 2,078 pQTL, and 1,327 ptQTL at FDR<10%. (Table 3.1). The same fraction

of transcripts and proteins had at least one QTL (77% at FDR<10% in both cases;

Figure 3.5). The high quality of the proteomics data is underlined by this large

proportion of proteins with at least one pQTL (Foss et al., 2011). We also detected

1,595 phQTL and 466 phResQTL affecting 1,266 phosphopeptides (60%) and 389

phospho-residuals (44%), respectively (Table 3.1).
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Table 3.1: Number of QTL and affected traits at each molecular layer at FDR<10%.

type QTL traits

eQTL 5776 4202
ptQTL 1327 1081
pQTL 2078 1438
phResQTL 466 389
phQTL 1595 1266
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3.3.5 Local variation frequently affects protein levels directly

To understand where these QTL are located with respect to their target genes, we

classified QTL as either local or distant based on their linkage disequilibrium with

the genetic marker that is closest to the affected gene (Methods). We detected

local QTL for all molecular layers, including the protein-residuals and phospho-

residuals. QTL-maps for all molecular layers reveal an enrichment of local QTL

as a high density of dots on the diagonal (Figure 3.6). The fraction of molecular

traits with a local QTL was in a similar range for all directly measured traits (10-

20%), with transcripts being most strongly enriched for local QTL (Figure 3.5).

The residual-derived traits (pt and phRes) had the smallest fraction of local QTL,

which may be due to biological reasons or increased noise (as discussed above) or

a combination of the two. Next, we asked whether local eQTL and pQTL could

be attributed to changes in the sequence of the respective transcript, which might

influence transcription and translation rates. We found that genes with local QTL

affecting concentrations of biomolecules (i.e. local eQTL, pQTL, ptQTL), compared

to genes only affected by distant QTL, had an increased number of polymorphisms

in non-coding regions (e.g. 5’ untranslated regions (UTRs) or 3’ UTRs; Figure 3.7).

The existence of local ptQTL (129 local ptQTL for 6.9% of all pt traits), and the fact

that ptQTL were enriched for polymorphisms outside coding regions, suggests that

variants in non-coding parts of the genome can influence protein levels independently

of their coding transcripts (Foss et al., 2011) for example through polymorphisms

in ribosomal binding sites affecting translation initiation or variants altering mRNA

capping and looping.
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Figure 3.6: The locations of QTL and their targets are shown. Each dot represents
a QTL. Its coordinates on the map represent the location of the QTL (x-axis) and
the target (y-axis). In the case of phosphopeptide-traits, the location of the protein
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3.3.6 Several QTL-hotspots affect all molecular layers

Regions in the genome that affect significantly more traits than expected by chance

are referred to as QTL hotspots (Smith and Kruglyak, 2008). Since these loci affect

large numbers of traits they are often assumed to act through master regulators

such as transcription factors or kinases (Yvert et al., 2003; Albert et al., 2018). We

tested for regulatory hotspots as proposed before (Brem et al., 2002) (Methods) and

detected between 9 and 15 significant hotspots for each molecular layer, with the

largest number of hotspots being detected for the eQTL layer (Figure 3.8 , Table

3.2). Previous work found that most distant eQTL act from within hotspots (Albert

et al., 2018). Our data shows that this is the case for all five molecular layers. Many

of the detected hotspots have been reported as eQTL hotspots for this yeast cross

before, and for some of them a causal gene has been validated, e.g., HAP1 (chrXII:2),

IRA2 (chrXV:1), and MKT1 (chrXIV:1)(Brem et al., 2002; Smith and Kruglyak,

2008; Zhu et al., 2008). While most of the hotspots affected multiple molecular

layers simultaneously, we also observed hotspots that predominantly impacted the

transcriptome (e.g., chrV:2), the proteome (e.g., chrXII:1) or the phosphoproteome

(e.g., chrVIII:1), suggesting that the causal variant influences the effect transmission

between the different molecular layers.
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3.3.7 The effects of eQTL on protein levels differ between

functional groups of target proteins

The deep coverage of the transcriptome and proteome enabled us to investigate to

what extent transcript level changes transmit to levels of corresponding/cognate

proteins. First, we observed that local eQTL and local pQTL were significantly

overlapping (one sided Fisher’s exact test , OR = 11, p < 2.2 · 10−16), which is ex-

pected in the absence of major post-transcriptional or post-translational regulation.

In order to estimate QTL effect sizes, we split the population based on the alleles

at a linked locus and computed the log fold change of the transcript and protein

levels between the two sub-populations. When comparing transcript fold changes

with the respective protein fold changes, we found that they were strongly correlated

(FDR<10%, r=0.73, Fig. 3b). Previous work suggested that local and distant eQTL

affect the proteome in different ways (Foss et al., 2011; Chick et al., 2016). Using

our data, a regression of transcript and protein fold changes had a slope close to 1

for both local and distant eQTL, implying that changes in transcript levels tend to

cause similar changes in protein levels regardless of the eQTL being local or distant

(Figure 3.9). This also held true when we only considered eQTL that did not overlap

with ptQTL for the same gene. In addition, for most eQTL hotspots, transcript vari-

ation was propagated to protein levels, as for example at the HAP1 locus (chrXII:2).

Effects of this hotspot on protein concentrations were highly correlated with those

at the transcript level (Person’s correlation coefficient r=0.94 for the 289 eQTL at

FDR<10%).

Despite widespread concordance between eQTL effects on transcripts and proteins,

we also detected many eQTL exhibiting effects on the protein level that were dif-

ferent from those on the transcript level. We classified targets of eQTL into three

groups based on the difference of effects at the transcript and protein levels (Methods

and Figure 3.10). The first group contained genes for which the effect of an eQTL

on its transcript and protein fold changes was similar. The second group contained

genes for which the effects of an eQTL were repressed or even entirely buffered on

the protein level. The third group contained genes for which proteins showed en-
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Figure 3.9: Effects of local (in red) and distant (in blue) eQTL on the proteome.
The effect on transcript levels is shown on the x-axes and the effect on protein levels
is shown on the y-axis. The colored lines represent regression lines for the respective
set of eQTL.

hanced responses compared to their corresponding transcript. As a fourth group we

added genes that were affected on their protein level by ptQTL without a signifi-

cant effect on the corresponding transcript (protein only). GO-analysis revealed that

genes with eQTL that affected their protein level to a similar extent as the transcript

levels were enriched for genes related to protein import into the mitochondrial ma-

trix (Supplementary Table 5.23). Genes with buffered eQTL effects were strongly

enriched for terms related to cytoplasmic translation, including the large subunit of

the ribosome, and proteins localizing to the nucleolus (Supplementary Table 5.24).

Although buffering of ribosomal proteins has been observed before (Foss et al., 2011),
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it could not be excluded that this was due to technical issues in protein quantifica-

tion. However, this was unlikely the case here: first, because ribosomal proteins are

relatively highly expressed, i.e. easy to quantify, and second, because these proteins

were affected by other pQTL at a similar rate as the rest of the proteome (73% of

proteins with buffered eQTL had at least one pQTL).
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Figure 3.10: Effects of QTLs on transcript and protein levels. Each dot represents
an association of a QTL with a gene. The relationship between effect size and
direction on the transcript and protein levels are colorcoded based on the four effect
classes described in the main text. Axes show the log2transformed fold changes of
BY versus RM alleles.

Genes affected by enhanced eQTL were strongly enriched for mitochondrial ribo-

somes and other terms related to mitochondrial translation (Supplementary Table

5.25). Interestingly, the correlation between transcript- and protein levels was higher

for mitochondrial ribosomes than for cytoplasmic ribosomes or nucleolar proteins

(Figure 3.11). Like buffered proteins, proteins affected by ’protein only’ effects were

also enriched for functions related to cytoplasmic translation (Supplementary Table
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5.26). This unexpected functional similarity between buffered proteins and proteins

subject to ’protein only’ effects raised the question whether the same proteins could

be subject to both phenomena. Indeed, we found that genes affected by a buffered

eQTL were more likely to also be affected by a ’protein only’ QTL (219 genes; Fisher’s

exact test: p = 7 · 10−4). Thus, specific groups of proteins seem to require exten-

sive post-transcriptional fine-tuning of their cellular concentrations, which decouples

protein levels from transcript levels.
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Figure 3.11: Correlations between transcript and protein levels of the same gene
are shown for different groups of genes. The groups are based on GO-annotations
and not exclusive. Outliers are not shown.

This notion was further supported by detailed investigation of individual hotspots

with heterogeneous eQTL and pQTL effects. For example, the effects of the IRA2

hotspot (XV:1) on transcript levels of cytoplasmic ribosomal genes was not trans-

mitted to protein levels, but the same locus affected protein levels of genes related

to mitochondrial respiration without changing their transcript levels. While the ef-
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fects of the MKT1 hotspot (XIV:1) on the protein levels of cytosolic ribosomes were

buffered, the effects of the same locus on the protein levels of mitochondrial ribo-

somes were enhanced. Thus, our analysis revealed complex post-transcriptional QTL

effects, especially for genes involved in translation, with marked differences between

cytoplasmic and mitochondrial translation.

3.3.8 Protein levels are regulated through protein-complex

stoichiometry

The buffering of cytoplasmic ribosomal proteins is a well-described phenomenon:

excess proteins not incorporated into ribosomes get degraded (Tsay et al., 1988).

Recently, buffering of components of other protein complexes has been reported

(Jüschke et al., 2013; Liu et al., 2017, 2019), suggesting that the need to maintain

protein complex stoichiometry drives post-transcriptional protein abundance regula-

tion. Indeed, we observed extensive co-regulation of genes whose products participate

in common complexes on multiple molecular layers: both, transcript levels and pro-

tein levels of protein complex members were correlated across the strains (average

Pearson’s correlation on the RNA and protein levels: r = 0.8 and r = 0.46, re-

spectively). Furthermore, pairs of genes of the same complex were affected by the

same eQTL or pQTL at a significantly higher rate than pairs from different com-

plexes. Whereas this phenomenon was particularly strong for ribosomal proteins,

we still observed significant enrichment after excluding ribosomal proteins from the

analysis (eQTL: OR = 3.45, Fisher’s exact test: p < 7 · 10−13; pQTL: OR = 3.06,

p < 7 · 10−9). Strikingly, proteins in the same complex were even more often affected

by the same ptQTL (OR = 6.18, p < 2.2 · 10−16), indicating that their levels are

co-regulated independently of their RNA-levels to a significant degree. Indeed we

observed that most proteins from complexes correlated better with other proteins in

the same complex than with their own transcript (75%), confirming that complex

stoichiometry is a major driver controlling protein levels. One example for this is

the Gcn1p-Gcn20p complex, which plays a role in translation initiation. Whereas

both proteins were affected by a common pQTL, only GCN20 transcripts, but not
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GCN1 transcripts were affected by the respective eQTL (Figure 3.12, Garcia-Barrio

(2002)). Hence, the protein level effect on Gcn1p is likely an indirect response to the

Gcn20p change, thereby re-establishing stoichiometric ratios. Taken together, our

data supports protein complex stoichiometry as an important post-transcriptional

effector of protein abundance that substantially contributes to ptQTL effects.
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Figure 3.12: Effects of the hotspot chrXIV:1 on the Gcn1p-Gcn20p protein com-
plex (y-axes show log2 -transformed read counts and protein abundances, respec-
tively). Trait levels for each strain are shown separately for each allele as dots for
each gene/protein. GCN20 is affected at the transcript and protein levels while the
transcript levels of GCN1 did not change significantly.

3.3.9 Protein phosphorylation is often regulated separately

from protein levels

To investigate effects acting directly on the phosphorylation state of proteins, we

focused on the phRes traits for which the phosphorylation effects were corrected for

abundance changes of the host proteins. After this correction we still detected 466

phResQTL (44% of all phRes traits), including multiple phResQTL hotspots (Figure

3.8). For example, we detected 89 phResQTL at the HAP1 locus, affecting 22% of
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all phosphoproteins but we detected QTL for only 6.5% and 2% of all transcripts

and pt-traits of the 402 genes whose products were detected on all three molecular

layers (Figure 3.13). phRes traits of the same protein (i.e., different phosphosites on

the same protein) had a higher chance to be targeted by the same QTL than random

pairs of phosphosites (one sided Fisher’s exact test: p = 3 ·10−8; Figure 3.14). This is

consistent with the notion that multiple phosphosites on the same protein are often

targeted by a common kinase or phosphatase (Ben-Levy et al., 1995).

ptQTL eQTL

phResQTL

2
1 6
0

5 18

82

Figure 3.13: QTL targets of the HAP1 locus (chrXII:2) on the transcript, pro-
tein residual, and phospho-residual level among the 402 genes whose products were
detected on all layers are shown.
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Figure 3.14: The proportion of pairs of phosphosites on different or the same
protein that share a phResQTL is shown.

3.3.10 Protein sequence changes affect phosphorylation rates

Next, we asked whether local phResQTL might be caused by genetic variants directly

affecting the phosphorylation state of a protein, for example through the modification

of residues close to a kinase or phosphatase binding site. In support of that notion,

we found that proteins that were affected by at least one local phResQTL had more

missense polymorphisms than proteins that only had distant phResQTL (one-sided

Wilcoxon rank sum test, p = 1.3 · 10−7). In addition, phosphosites with a local

phResQTL were closer to a missense variant than those with a distant phResQTL

(p = 2.4 · 10−5, Figure 3.15). Further, if two phosphosites on the same protein

112



were both affected by two different phResQTL - one local and the other distant -

the phosphosite with the local phResQTL was on average closer to a polymorphism

than the distant one (one-sided paired Wilcoxon rank sum test, p = 0.005, Figure

3.16). In summary, these results suggest that many local phResQTL are caused

by missense polymorphisms acting by directly changing the folding of proteins or

protein recognition motives that in turn affect binding of kinases and phosphatases.
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Figure 3.15: Distance of phosphosites affected by a local phResQTL or exclusively
by distant phResQTL to the nearest missense mutation in the host protein are shown.
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Figure 3.16: Distances to the closest missense mutations for multiple phosphosites
on the same protein. For proteins with one phosphosite with a local phResQTL and
a different phosphosite with a distant phResQTL the distance of both phosphosites
to the closest missense mutation in the sequence space is shown. A solid black line
shows the diagonal. Dots above the line represent proteins for which the phosphosite
with the distant phResQTL is located further away from the closest missense muta-
tion than the phosphosite with the local phResQTL. Dots under the line represent
proteins where the reverse is true.
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3.3.11 QTL effects on signaling networks and cellular fitness

In order to better understand the mechanisms of how genetic variation affects cellular

fitness we integrated our molecular QTL data with 46 growth traits measured for

the same yeast cross (Bloom et al., 2013). First, we found that QTL hotspots were

more likely than other genomic regions to also affect growth rates (Figure 3.17a,

Supplementary Table 5.27), which underlines the contribution of hotspots to complex

growth trait variation. growthQTL that were close to molecular hotspots explained

more variance than those growthQTL that were not (Figure 3.17b). Importantly,

the number of growth traits linked to a hotspot was best predicted by the number

of phospho traits targeted by the same hotspot, whereas all other molecular layers

were less predictive (Figure 3.17c).

This unique role of post-translational responses to genetic variability demanded a

closer inspection of state changes in regulatory networks. To study QTL effects

on the ’regulome’, we integrated the five molecular layers with regulatory network

information. We found that while phResQTL targets were in general not enriched

for particular functions, they were often functionally related to the putative causal

genes of a given hotspot and/or targets of kinases that were affected by the same

locus.

The IRA2 hotspot (Smith and Kruglyak, 2008) is an example for such a case. This

hotspot affected 36 physiological traits and it had targets on all five molecular layers

(Figure 3.8). Ira2p inhibits the RAS/PKA pathway by promoting the GDP-bound

form of Ras2p, which is crucial for the adaptation of cellular metabolism to diverse

stress conditions (Tanaka et al., 1990). Earlier work showed that polymorphisms in

the IRA2 coding sequence affect the activity of the RAS/PKA pathway and that

the RM-allele of IRA2 inhibits this pathway more efficiently (Smith and Kruglyak,

2008). Several phQTL of this hotspot were functionally connected to IRA2 including

a local phQTL targeting Ira2p itself, a phQTL targeting Cdc25p, which promotes

the GTP-bound form of Ras2p, and a phQTL targeting the Ras2p protein (Gross

et al., 1992). In addition, we detected phQTL for numerous downstream targets of

RAS/PKA signaling at the IRA2 hotspot. This analysis implies that the differential
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a b c

Figure 3.17: Hotspots for molecular traits have an effect on physiological pheno-
types. Growth QTL from Bloom et al. whose peak was within 50 kb of the loci
with the most targets in our hotspots were considered the same QTL. (a) Density
of growth QTL close to hotspots (’within hotspots’) compared to the rest of the
genome (’outside hotspots’). Here, density refers to the number of growth QTL (any
growth condition) per kb. For hotspots, the points represent the individual hotspots
(red), for the rest of the genome the points represent the individual chromosomes
(blue). The hotspots with the highest and lowest growth QTL density are indicated.
(b) Distribution of the proportion of growth phenotype variance that was explained
by growth QTL that were close to hotspots, or not, respectively. (c) Relationship
between the number of targets at each layer and the number of growth QTL that
were affected by each hotspot. Linear regressions and Pearson correlation coefficients
are indicated. All correlations were significant with a corrected p-value below 0.05.

phosphorylation of Ras2p acts upstream of the effects on transcript and protein

abundances associated with this locus.

Another example illustrating the effect of genetic variants on cellular signaling is the

HAP1 locus on Chromosome 12 (chrXII:2) (Brem et al., 2002; Albert et al., 2014b),

which was shown earlier to impact on 19 physiological traits (Bloom et al., 2013).

Again, our analysis revealed that this locus had much more prominent effects on the

phospho layer than on transcript and protein abundances (Figure 3.13). Hap1p has

been shown to be involved in the regulation of respiration (Verdière et al., 1985). The

integration of the multi-layer QTL data with previously published kinase-substrate

networks suggested a new mode of effect for this hotspot: both the expression and
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phosphorylation of Psk2p, a protein kinase and known regulator of carbohydrate

metabolism (Rutter et al., 2002), were significantly regulated by the HAP1 locus.

Previously reported target sets of the kinase Psk2p (Bodenmiller et al., 2010) were

enriched in proteins whose phosphorylation was affected by the HAP1 locus. While

the enrichment was not significant after correcting for multiple testing with the

Bonferroni-method, PSK2 was the kinase with the strongest enrichment (OR = 2,

p = 0.04 before correction). This enrichment of phosphorylated Psk2p substrates

strongly implies a directed signaling cascade, from the HAP1 locus via altered Psk2p

activity to the Psk2p substrates.

The examples of the HAP1 and IRA2 hotspots suggest that the phQTL mapping

provides information on signaling networks that is orthogonal to transcript and pro-

tein abundance data: genetic variants often affect the phsophorylation states of gene

products that are distinct from the genes affected by abundance changes (i.e. eQTL

and pQTL targets) and those protein activity changes often act upstream of QTL

abundance effects.

3.3.12 A signaling pathway is impacted by chrVIII:1

The added value of integrating biomolecule abundance data with protein phospho-

rylation traits was even more apparent from a hotspot on Chromosome 8 (chrVIII:1,

Figure 3.8) with the pheromone response gene GPA1 harboring the causal mutation

(Yvert et al., 2003). The hotspot harbored only 69 eQTL, 8 pQTL, and 1 ptQTL,

but 41 phQTL (Table 3.2). About 41% of the hotspot eQTL targets could be found

downstream of the mating pheromone response pathway, which supports GPA1 as

a causal gene. However, several targets of the hotspot, especially targets on the

phospho-layer such as Rck2p and Rsc9p, were involved in the osmotic stress response,

which is unrelated to GPA1. This suggests that the polymorphisms in GPA1 do not

fully explain the effects of this hotspot and prompted us to look for other potential

key effectors of the hotspot. The genetic marker with the most phQTL-targets within

the hotspot lay within the coding region of STE20. Ste20p is the key activator of

multiple mitogen-activated protein kinase (MAPK) pathways, including the mating
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pheromone response, but also invasive growth regulation, regulation of sterol uptake,

and, importantly, osmotic stress response (Figure 3.18). Indeed, for many of the tar-

get genes of this hotspot we found a link to STE20 and/or GPA1 (Supplementary

Tables 5.28 and 5.29) and most of the phosphopeptides and phRes-traits targeted

by the hotspot corresponded to proteins phosphorylated by components of MAPK

pathways downstream of Ste20p (51%) (Figure 3.18). GO enrichment analysis of

targets of the hotspot at the transcript layer revealed an enrichment for biological

processes under the influence of STE20 (Supplementary Table 5.30). Taken together,

these results suggest that the effects of the chrVIII:1 hotspot are due to the combined

effects of the polymorphisms in GPA1 and STE20. Furthermore, we provide new

potential components of the MAPK pathways that are regulated by this hotspot,

but were not previously identified as downstream targets of Ste20p (Supplementary

Table 5.31). Overall, we show that by quantifying the effects of sequence polymor-

phisms on multi-layer molecular networks our integrated approach can provide clues

toward reconstructing the molecular architecture underlying complex traits and the

chain of causality through multiple layers of regulation.
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Figure 3.18: Multi-layer effects of the hotspot around GPA1 and STE20 on Chro-
mosome VIII. Gpa1p and Ste20p play key roles in the mating response pathway
(left, through transcription factor complex Ste12p/Ste12p) and filamentous growth
regulation pathway (middle, through transcription factor complex Tec1p/Ste12p).
Ste20p additionally regulates the osmotic stress response pathway (right, transcrip-
tion factor Msn2p/Msn4p). Depicted are genes that are known to have a direct or
indirect connection with GPA1 and/or STE20. Genes that we found to be affected
by the GPA1 /STE20 hotspot on any molecular layer are indicated with arrows in
the respective color of each layer. The arrow orientation indicates the fold change
direction (up: higher in BY, down: higher in RM).
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3.4 Discussion

In this study, we present the first dataset that quantifies the effects of natural ge-

nomic variation concurrently on the transcript (eQTL), protein (pQTL), and protein

phosphorylation (phQTL) layers. While previous ’omics’ QTL studies have primarily

focused on the abundances of biomolecules, our study integrates abundance with the

states of biomolecules, i.e. protein phosphorylation. Hence, one conceptual advance

of our study is the possibility to investigate the consequences of genomic variation

comprehensively, for example the phosphorylation-mediated activation of a signaling

pathway component, through the different layers of a molecular network. The three

hotspots containing IRA2, HAP1, and GPA1 /STE20 exemplify this notion.

Our high-quality transcriptomic and proteomic data enabled us to study the rela-

tionship of transcript and protein levels under the influence of genetic variation in

the same samples. We observed that eQTL effects were on average transmitted to

the protein levels of the same gene with a 1:1 relationship (Figure 3.9), in contrast to

previous observations (Foss et al., 2011). While many eQTL affected the proteome

in expected ways, we also observed large numbers of eQTL that had either enhanced

or buffered effects on protein levels (Figure 3.10). The targets of these eQTL with

unexpected effects were often involved in translation (buffered: nucleolus, cytoplas-

mic ribosomes; enhanced: mitochondrial ribosomes; Supplementary Tables 5.24 and

5.25).

Earlier work suggested that local and distant eQTL affect the proteome in differing

ways (Chick et al., 2016; Foss et al., 2011). We found local and distant eQTL to affect

protein levels with the same strength, when the size of the effect on the transcript-

levels was taken into account.

A large number of proteins was affected directly by genetic variants through ptQTL

(Figure 3.6). Notably we found a large number of local ptQTL which affected protein

levels of genes encoded in their vicinity, without affecting the transcript levels of the

same genes (Foss et al., 2011; Albert et al., 2014b). As reported by others for a

smaller part of the proteome, we identified hotspots that regulated protein levels,

without having a similar effects on the respective transcript levels confirming the
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existence of loci with highly pleoitropic effects that are not obvious on the transcript

level (e.g. chrII:1 and chrXII:1, Albert et al. (2014b)). Many hotspots affected their

targets in multiple modes: the same hotspots acted as buffered eQTL, enhanced

eQTL, and ptQTL for different targets. This demonstrates that the transmission

of the QTL-effect is highly dependent on its target. Our results show that protein

levels are frequently affected by post-transcriptional regulation.

Protein complex membership has been proposed as a source of post-transcriptional

regulation of protein levels (Jüschke et al., 2013). We confirm this, by showing that

proteins in the same complex shared ptQTL at a more elevated rate than eQTL and

that the levels of proteins in complexes agree more with other proteins in the same

complex than their own transcripts. The example of the Gcn1p/Gcn20p-complex

further illustrates how protein levels can be affected through complex stoichiometry.

In this study, we generated genome-wide matched proteomic and phosphoproteomic

data for a QTL-cross for the first time. This enabled us to correct the abundances of

phosphopeptides for the abundances of their proteins of origin, producing traits that

reflect relative phosphorylation. The absolute and relative phosphorylation of the

phosphosites was often highly heritable. Indeed we identified phQTL and phResQTL

that affected these phosphosites, demonstrating that that these traits are affected by

natural genetic variation. Notably, we observed that the relative phosphorylation of

many sites was affected by polymorphisms in their proteins of origin. Further, the

distance of the phosphosites to the closest polymorphism was lower for phosphosites

with a local phResQTL, suggesting that the physical proximity of a phosphosite to

a polymorphism makes it more or less accessible for effector proteins like kinases

and phosphatases. This implies that these sites are either under weak selection or

selection on them differed between the parental strains.

We identified several hotspots that affected the phosphorylation of large numbers of

proteins. These effects were consistent with previously reported effects of the loci

(e.g. IRA2, GPA1 and HAP1 ) (Brem et al., 2002; Smith and Kruglyak, 2008). For

the IRA2 -locus we were able to confirm that the IRA2 -allele causes differences in

phosphorylation in Ira2p itself, Cdc25p, and Ras2p, all of which have central roles

in the RAS/PKA pathway. This suggests that the downstream effects of the IRA2 -
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polymorphisms are mediated through changes in phosphorylation of other pathway

members. A hotspot at the HAP1 -locus affected the highest number of phospho-

targets overall. As its targets were enriched among reported substrates of Psk2p

and PSK2 -transcript levels and Psk2p-phosphorylation were affected by this locus,

it is likely that the effects of this hotspot on the phosphoproteome are, at least in

part, mediated through the kinase Psk2p. In the case of the hotspot near the GPA1 -

locus, our data indicates that the effects of this hotspot on the phosphorylation are

not mediated solely by GPA1 but also by STE20. The improved understanding of

these QTL-hotspots illustrates the added value of directly measuring abundances of

phosphopeptides and their proteins of origin.

Our results have implications for future work on human disease and genetic variation

in the context of personalized medicine. First, we establish the feasibility of consis-

tently measuring phosphopeptides across many samples and that a large part of the

observed variance in these measurements is heritable. Second, we show that parts of

the phosphoproteome, at least in yeast, are highly variable and that these differences

in phosphorylation-traits can help to elucidate the effects of polymorphisms. Fur-

ther, the phosphorylation changes were more predictive of cellular fitness than other

molecular layers. This knowledge can be leveraged to better characterize disease

states, develop biomarkers and to more accurately predict the effects of SNPs. Vari-

ants near phosphosites could be predictive of protein function. Our findings on QTL

hotspots and local QTL have strong implications on QTL-studies. First, we show

that local QTL are prevalent on all molecular layers that were analyzed here. Any

studies that investigate the influences of genetic variants on specific gene products

should give special attention to local variation, e.g. through a genotyping approach

as demonstrated here. Second, we show that both the addition of proteomic and

phosphoproteomic data improve our understanding of the effects of genetic variants.

For each of these molecular layers we found hundreds of direct effects, that could

not have been predicted through the transcriptome alone. Future studies should in-

vestigate as many molecular layers as possible, and not only the transcriptome. Our

data could be used as a resource to study further topics such as the relationships

between known kinases and the levels of phosphopeptides to identify new kinase-
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substrate pairs. The multi-omic data across biological replicates could also be used

to study the sources of biological variance in more detail, e.g. the correlation of

molecular traits across replicates of the same strain. Our data on local phResQTL

could inform a model that combines different data such as the distance to the closest

polymorphism and the amino acid that is mutated to predict which polymorphisms

will result in phResQTL. In conclusion, our study sets the stage for a truly compre-

hensive understanding of genomic effects on multi-layered cellular networks.

3.5 Contributions

As this was a large and diverse project, only part of the scientific work was per-

formed by me. I did not contribute to the experimental work in the wet-lab, or the

preprocessing of the molecular data and the computation of heritability. I performed

the combination of sample-wise measurements to strain-wise data and performed the

QTL-mapping and QTL-calling. The identification of QTL-hotspots and local QTL

was done partly by me and I also contributed to the analysis of local phResQTL. I

performed the analyses on local variation for other local QTL, the effects of eQTL on

the proteome, the post-transcriptional effects of protein-complex membership, and

shared QTL between phosphopeptides. Most of the analysis for both the HAP1 and

IRA2 hotspots were also performed by me. I made only minor contributions to the

analysis of the STE20 -locus and the integration of hotspots and previously published

growth QTL.
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Chapter 4

Outlook and Conclusions

We investigated the genetic control of molecular traits in two yeast models. Despite

the evolutionary separation of these species by millions of years, we were able make

highly consistent observations between them. In both crosses, multiple eQTL- and

pQTL-hotspots impacted on the transcript and protein levels of ribosomal proteins,

underlining the sensitivity ribosome biogenesis to genetic and environmental pertur-

bations. Notably, the effects of eQTL were often not transmitted to the protein-level

for these genes. pQTL hotspots often affected the protein levels of ribosomal proteins

without affecting their transcript levels. These observations demonstrate the clear

necessity of measuring the levels of ribosomal proteins directly, instead of relying

on transcriptomic data to draw conclusion about the proteins they encode. Relying

on transcriptomic data would lead to an overestimation of the importance of some

eQTL-hotspots and to an underestimation of the importance of some pQTL-hotspots.

In our detailed analysis of the transmission of effects on transcript levels to the

proteome, we observed that overall there is a strong relationship between the inter-

strain variation on these two molecular layers. We also observed this in fission

yeast where the transcriptomic and proteomic changes in response to the pka1 -allele

replacement were highly correlated. While this relationship is not perfect, as seen

from the example of ribosomal proteins, it holds true for most genes.

The vast majority of known causal variants of QTL-hotspots of the crosses considered

in this work are polymorphisms that impact on the amino acid sequence of proteins.
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This is true for both validated causal variants in the JB50xJB759xJB760 cross (swc5

and pka1 ) and for a large number of hotspots in the BYxRM cross (IRA2, HAP1,

GPA1 /STE20, and MKT1 ). While an investigation bias (i.e., the motivation to un-

dertake experiments to validate a candidate) might promote the analysis of loci with

well annotated proteins that carry coding polymorphisms, only few large hotspots

remain in either cross where regulatory variation (i.e., variation of abundance rather

than seuquence) could play a major role.

Another common feature for both studies was the observation of QTL-hotspots that

were caused by variation in members of the RAS/PKA-pathway (pka1 in fission yeast

and IRA2 in budding yeast). As RAS-signaling affects a large number of targets in

a coordinated manner, genetic variants within the genes of this pathways have the

potential to confer large fitness benefits when adapting to a new environment. In both

studies, the integration of data from different molecular layers added information

that was not obvious from just the transcriptome. For instance, the effects of the

hotspot p-chrIII:1 in fission yeast and chrXII:1 for budding yeast targeted the protein

layer directly. The phosphorylation data in the budding yeast study added valuable

information about the biology of previously identified hotspots. For both the IRA2 -

hotspot and the GPA1 -hotspot the phosphorylation data would have aided in the

identification of the causal genes, if they were unknown at this time.

With the maturation of existing proteomics technologies and the development of new

approaches, the investigation of the proteome in many samples will become even more

feasible, as throughput, precision, and coverage are expected to improve (Swami-

nathan et al., 2018; Collins and Aebersold, 2018; Schubert et al., 2017). Emerging

technologies, such as LiP-proteomics, will further add to the protein states that can

be analyzed (Schopper et al., 2017). Additional states of proteins that could be

assessed are oxidation levels, protein localization, complex formation and different

PTMs such as ubiquitination, methylation, or acetylation. pQTL studies might, in

addition, be improved through the artificial development of crosses with lower linkage

disequilibrium through the use of CRISPR-based approaches (Sadhu et al., 2016).

These data would readily allow the identification of causal variants and could be

used to study interactions between nearby polymorphisms. These approaches could
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be combined to study a variety of protein states under a multitude of environmental

perturbations.
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Table 5.1: Enrichments of stress-repressed transcripts in JB50.

Ontology GO term Description p-value

BP GO:0006364 rRNA processing < 2e-16
BP GO:0030490 maturation of SSU-rRNA < 2e-16
BP GO:0042273 ribosomal large subunit biogenesis < 2e-16
BP GO:0042254 ribosome biogenesis 1.4e-10
BP GO:0006360 transcription from RNA polymerase I prom... 3.7e-08
BP GO:0042274 ribosomal small subunit biogenesis 5.7e-08
BP GO:0030488 tRNA methylation 2.5e-07
BP GO:0006383 transcription from RNA polymerase III pr... 3.5e-07
BP GO:0000054 ribosomal subunit export from nucleus 7.5e-07
BP GO:0000466 maturation of 5.8S rRNA from tricistroni... 1.2e-06
MF GO:0030515 snoRNA binding < 2e-16
MF GO:0004004 ATP-dependent RNA helicase activity 8.9e-11
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 2.1e-08
MF GO:0003899 DNA-directed 5’-3’ RNA polymerase activi... 2.9e-08
MF GO:0003723 RNA binding 1.1e-07
MF GO:0008175 tRNA methyltransferase activity 5.9e-07
MF GO:0008173 RNA methyltransferase activity 0.00036
MF GO:0140101 catalytic activity, acting on a tRNA 0.00041
MF GO:0000049 tRNA binding 0.00044
MF GO:0008170 N-methyltransferase activity 0.00129
CC GO:0005730 nucleolus < 2e-16
CC GO:0032040 small-subunit processome < 2e-16
CC GO:0005736 DNA-directed RNA polymerase I complex 2.9e-09
CC GO:0030686 90S preribosome 1.2e-08
CC GO:0005666 DNA-directed RNA polymerase III complex 1.8e-08
CC GO:0030687 preribosome, large subunit precursor 3.6e-07
CC GO:0030688 preribosome, small subunit precursor 3.8e-07
CC GO:0005732 small nucleolar ribonucleoprotein comple... 5.2e-06
CC GO:0044452 nucleolar part 6.3e-06
CC GO:0009277 fungal-type cell wall 2e-04
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Table 5.2: Enrichments of stress-induced transcripts in JB50.

Ontology GO term Description p-value

BP GO:0006081 cellular aldehyde metabolic process 5.7e-07
BP GO:0034599 cellular response to oxidative stress 7.9e-07
BP GO:0098754 detoxification 9.3e-07
BP GO:0044248 cellular catabolic process 2.1e-06
BP GO:0016236 macroautophagy 2.1e-06
BP GO:0044282 small molecule catabolic process 4.3e-06
BP GO:0034614 cellular response to reactive oxygen spe... 4.8e-06
BP GO:0032258 protein localization by the Cvt pathway 7.9e-06
BP GO:0006111 regulation of gluconeogenesis 1.2e-05
BP GO:0031327 negative regulation of cellular biosynth... 1.4e-05
MF GO:0016616 oxidoreductase activity, acting on the C... 5.0e-10
MF GO:0016491 oxidoreductase activity 2.2e-05
MF GO:0004601 peroxidase activity 0.00018
MF GO:0035091 phosphatidylinositol binding 0.00141
MF GO:0016209 antioxidant activity 0.00171
MF GO:0031072 heat shock protein binding 0.00268
MF GO:0008238 exopeptidase activity 0.00583
CC GO:0000324 fungal-type vacuole 5.4e-06
CC GO:0034045 pre-autophagosomal structure membrane 7.8e-06
CC GO:0000329 fungal-type vacuole membrane 0.0020
CC GO:0005829 cytosol 0.0025
CC GO:0005634 nucleus 0.0030
CC GO:0044437 vacuolar part 0.0037
CC GO:0016021 integral component of membrane 0.0052
CC GO:0005783 endoplasmic reticulum 0.0076
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Table 5.3: Enrichments of targets of e-chrI:1 among all measured transcripts.

Ontology GO term Description p-value

BP GO:0002181 cytoplasmic translation < 2e-16
BP GO:0042254 ribosome biogenesis 6.0e-09
BP GO:0006364 rRNA processing 1.6e-07
BP GO:0042273 ribosomal large subunit biogenesis 5.3e-06
BP GO:0030490 maturation of SSU-rRNA 8.1e-06
BP GO:0030488 tRNA methylation 9.1e-05
BP GO:0000054 ribosomal subunit export from nucleus 0.00013
BP GO:0002182 cytoplasmic translational elongation 0.00017
BP GO:0002183 cytoplasmic translational initiation 0.00098
BP GO:0006914 autophagy 0.00144
MF GO:0003735 structural constituent of ribosome 2.5e-08
MF GO:0030515 snoRNA binding 1.6e-07
MF GO:0003743 translation initiation factor activity 6.9e-05
MF GO:0019843 rRNA binding 0.00036
MF GO:0008175 tRNA methyltransferase activity 0.00059
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 0.00230
MF GO:0008536 Ran GTPase binding 0.00361
MF GO:0004601 peroxidase activity 0.00648
MF GO:0005524 ATP binding 0.00733
CC GO:0022625 cytosolic large ribosomal subunit < 2e-16
CC GO:0005730 nucleolus < 2e-16
CC GO:0022627 cytosolic small ribosomal subunit 4.4e-12
CC GO:0032040 small-subunit processome 1.2e-08
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00085
CC GO:0005829 cytosol 0.00113
CC GO:0030686 90S preribosome 0.00262
CC GO:0016282 eukaryotic 43S preinitiation complex 0.00389
CC GO:0030688 preribosome, small subunit precursor 0.00389
CC GO:0005852 eukaryotic translation initiation factor... 0.00389
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Table 5.4: Enrichments of targets of e-chrI:2 among all measured transcripts.

Ontology GO term Description p-value

BP GO:0002181 cytoplasmic translation < 2e-16
BP GO:0042254 ribosome biogenesis 1.4e-08
BP GO:0006364 rRNA processing 6.4e-07
BP GO:0042273 ribosomal large subunit biogenesis 1.7e-05
BP GO:0030490 maturation of SSU-rRNA 3.2e-05
BP GO:0000054 ribosomal subunit export from nucleus 4.2e-05
BP GO:0030488 tRNA methylation 0.00023
BP GO:0002182 cytoplasmic translational elongation 0.00052
BP GO:0002183 cytoplasmic translational initiation 0.00280
BP GO:0006914 autophagy 0.00284
MF GO:0003735 structural constituent of ribosome 6.0e-08
MF GO:0030515 snoRNA binding 6.2e-07
MF GO:0003743 translation initiation factor activity 0.00022
MF GO:0019843 rRNA binding 0.00112
MF GO:0008175 tRNA methyltransferase activity 0.00127
MF GO:0008536 Ran GTPase binding 0.00656
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 0.00766
CC GO:0022625 cytosolic large ribosomal subunit < 2e-16
CC GO:0005730 nucleolus < 2e-16
CC GO:0022627 cytosolic small ribosomal subunit 6.3e-11
CC GO:0032040 small-subunit processome 6.0e-08
CC GO:0030687 preribosome, large subunit precursor 0.00099
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00158
CC GO:0030686 90S preribosome 0.00534
CC GO:0016282 eukaryotic 43S preinitiation complex 0.00630
CC GO:0030688 preribosome, small subunit precursor 0.00630
CC GO:0005852 eukaryotic translation initiation factor... 0.00630
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Table 5.5: Enrichments of targets of e-chrII:1 among all measured transcripts.

Ontology GO term Description p-value

BP GO:1901607 alpha-amino acid biosynthetic process 7.1e-05
BP GO:0043650 dicarboxylic acid biosynthetic process 7.2e-05
BP GO:0018130 heterocycle biosynthetic process 0.00020
BP GO:0061621 canonical glycolysis 0.00043
BP GO:0006536 glutamate metabolic process 0.00048
BP GO:0051604 protein maturation 0.00052
BP GO:0006364 rRNA processing 0.00060
BP GO:1901362 organic cyclic compound biosynthetic pro... 0.00062
BP GO:0019751 polyol metabolic process 0.00096
BP GO:0009082 branched-chain amino acid biosynthetic p... 0.00168
MF GO:0005524 ATP binding 1.4e-06
MF GO:0016836 hydro-lyase activity 7.8e-05
MF GO:0016616 oxidoreductase activity, acting on the C... 8.8e-05
MF GO:0008483 transaminase activity 0.00027
MF GO:0030515 snoRNA binding 0.00053
MF GO:0016620 oxidoreductase activity, acting on the a... 0.00085
MF GO:0004004 ATP-dependent RNA helicase activity 0.00093
MF GO:0004812 aminoacyl-tRNA ligase activity 0.00295
MF GO:0019200 carbohydrate kinase activity 0.00645
MF GO:0004298 threonine-type endopeptidase activity 0.00967
CC GO:0032040 small-subunit processome 7.2e-06
CC GO:0005730 nucleolus 0.00031
CC GO:0005634 nucleus 0.00064
CC GO:0005739 mitochondrion 0.00071
CC GO:0005887 integral component of plasma membrane 0.00214
CC GO:0005829 cytosol 0.00274
CC GO:0005838 proteasome regulatory particle 0.00638
CC GO:0044452 nucleolar part 0.00850
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Table 5.6: Enrichments of targets of e-chrIII:1 among all measured transcripts.

Ontology GO term Description p-value

BP GO:0016573 histone acetylation 0.00038
BP GO:0006338 chromatin remodeling 0.00073
BP GO:0008360 regulation of cell shape 0.00151
BP GO:0006378 mRNA polyadenylation 0.00165
BP GO:0006400 tRNA modification 0.00360
BP GO:0006379 mRNA cleavage 0.00425
BP GO:0006357 regulation of transcription from RNA pol... 0.00426
BP GO:0006284 base-excision repair 0.00659
BP GO:1901615 organic hydroxy compound metabolic proce... 0.00662
BP GO:0016579 protein deubiquitination 0.00933
MF GO:1990837 sequence-specific double-stranded DNA bi... 0.0017
MF GO:0140101 catalytic activity, acting on a tRNA 0.0043
MF GO:0003756 protein disulfide isomerase activity 0.0066
MF GO:0004843 thiol-dependent ubiquitin-specific prote... 0.0083
CC GO:0005847 mRNA cleavage and polyadenylation specif... 0.0045
CC GO:0000124 SAGA complex 0.0070
CC GO:0033202 DNA helicase complex 0.0082

Table 5.7: Enrichments of targets of p-chrI:1 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

MF GO:0003779 actin binding 0.0035
MF GO:0005525 GTP binding 0.0080
CC GO:0030479 actin cortical patch 0.0068
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Table 5.8: Enrichments of targets of p-chrI:2 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

BP GO:0007035 vacuolar acidification 0.00032
BP GO:0015991 ATP hydrolysis coupled proton transport 0.00058
MF GO:0046961 proton-transporting ATPase activity, rot... 0.0042
MF GO:0000287 magnesium ion binding 0.0081
CC GO:0016471 vacuolar proton-transporting V-type ATPa... 0.00032
CC GO:0033178 proton-transporting two-sector ATPase co... 0.00074

Table 5.9: Enrichments of targets of p-chrI:4 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

BP GO:0006099 tricarboxylic acid cycle 7.5e-05
BP GO:0042775 mitochondrial ATP synthesis coupled elec... 0.0014
BP GO:0043648 dicarboxylic acid metabolic process 0.0046
BP GO:0072593 reactive oxygen species metabolic proces... 0.0066
BP GO:1902600 hydrogen ion transmembrane transport 0.0068
BP GO:0006090 pyruvate metabolic process 0.0092
CC GO:0005759 mitochondrial matrix 1e-06
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Table 5.10: Enrichments of targets of p-chrII:1 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

BP GO:0006098 pentose-phosphate shunt 7.0e-07
BP GO:0006099 tricarboxylic acid cycle 1.4e-05
BP GO:0042775 mitochondrial ATP synthesis coupled elec... 4.0e-05
BP GO:0006536 glutamate metabolic process 0.00051
BP GO:0042776 mitochondrial ATP synthesis coupled prot... 0.00051
BP GO:0046365 monosaccharide catabolic process 0.00123
BP GO:0044262 cellular carbohydrate metabolic process 0.00254
BP GO:0006091 generation of precursor metabolites and ... 0.00275
BP GO:0032787 monocarboxylic acid metabolic process 0.00534
BP GO:0006081 cellular aldehyde metabolic process 0.00553
MF GO:0016616 oxidoreductase activity, acting on the C... 2.3e-06
MF GO:0046933 proton-transporting ATP synthase activit... 0.00078
MF GO:0046872 metal ion binding 0.00160
MF GO:0016773 phosphotransferase activity, alcohol gro... 0.00651
MF GO:0016787 hydrolase activity 0.00655
MF GO:0000287 magnesium ion binding 0.00762
MF GO:0046961 proton-transporting ATPase activity, rot... 0.00898
MF GO:0003779 actin binding 0.00926
MF GO:0016651 oxidoreductase activity, acting on NAD(P... 0.00991
MF GO:0004721 phosphoprotein phosphatase activity 0.00991
CC GO:0005746 mitochondrial respiratory chain 9.2e-05
CC GO:0098803 respiratory chain complex 0.00063
CC GO:0070069 cytochrome complex 0.00126
CC GO:1990204 oxidoreductase complex 0.00395
CC GO:0005759 mitochondrial matrix 0.00442
CC GO:0005739 mitochondrion 0.00547
CC GO:0098800 inner mitochondrial membrane protein com... 0.00761
CC GO:0005753 mitochondrial proton-transporting ATP sy... 0.00886
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Table 5.11: Enrichments of targets of p-chrIII:1 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

BP GO:0002181 cytoplasmic translation 3.3e-10
BP GO:0061077 chaperone-mediated protein folding 0.00032
BP GO:0006457 protein folding 0.00056
BP GO:0061621 canonical glycolysis 0.00203
BP GO:0009082 branched-chain amino acid biosynthetic p... 0.00550
BP GO:0045842 positive regulation of mitotic metaphase... 0.00597
BP GO:0002183 cytoplasmic translational initiation 0.01000
MF GO:0003735 structural constituent of ribosome 3.2e-06
MF GO:0051082 unfolded protein binding 2.1e-05
MF GO:0019843 rRNA binding 2.8e-05
MF GO:0016887 ATPase activity 6.9e-05
MF GO:0005524 ATP binding 0.00043
MF GO:0003743 translation initiation factor activity 0.00595
MF GO:0004175 endopeptidase activity 0.00685
MF GO:0003755 peptidyl-prolyl cis-trans isomerase acti... 0.00777
CC GO:0022625 cytosolic large ribosomal subunit 3.0e-06
CC GO:0005838 proteasome regulatory particle 1.9e-05
CC GO:0044445 cytosolic part 0.00024
CC GO:0000785 chromatin 0.00037
CC GO:0005829 cytosol 0.00195
CC GO:0022627 cytosolic small ribosomal subunit 0.00384
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Table 5.12: Enrichments of targets of p-chrIII:2 at FDR<25% among all measured
proteins.

Ontology GO term Description p-value

BP GO:0006536 glutamate metabolic process 0.0020
BP GO:0009225 nucleotide-sugar metabolic process 0.0046
BP GO:0002181 cytoplasmic translation 0.0050
BP GO:0007021 tubulin complex assembly 0.0050
BP GO:0035967 cellular response to topologically incor... 0.0067
MF GO:0051082 unfolded protein binding 0.00099
MF GO:0005524 ATP binding 0.00132
MF GO:0005525 GTP binding 0.00451
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Table 5.13: Enrichment analysis of targets of e-chrI:2 in the stress-condition. All
quantified transcripts were chosen as the background.

Ontology GO term Description p-value

BP GO:0002181 cytoplasmic translation < 2e-16
BP GO:0006364 rRNA processing < 2e-16
BP GO:0042254 ribosome biogenesis 7.1e-16
BP GO:0002183 cytoplasmic translational initiation 8.4e-09
BP GO:0002182 cytoplasmic translational elongation 6.3e-08
BP GO:0030490 maturation of SSU-rRNA 4.7e-07
BP GO:0042273 ribosomal large subunit biogenesis 3.2e-06
BP GO:0006457 protein folding 6.3e-06
BP GO:0009168 purine ribonucleoside monophosphate bios... 0.00019
BP GO:0009152 purine ribonucleotide biosynthetic proce... 0.00022
MF GO:0003735 structural constituent of ribosome < 2e-16
MF GO:0019843 rRNA binding 4.2e-09
MF GO:0003743 translation initiation factor activity 1.6e-08
MF GO:0003723 RNA binding 6.2e-08
MF GO:0051082 unfolded protein binding 1.8e-06
MF GO:0030515 snoRNA binding 3.4e-06
MF GO:0003899 DNA-directed 5’-3’ RNA polymerase activi... 6.5e-05
MF GO:0043021 ribonucleoprotein complex binding 0.0007
MF GO:0008175 tRNA methyltransferase activity 0.0014
MF GO:0016879 ligase activity, forming carbon-nitrogen... 0.0025
CC GO:0005730 nucleolus < 2e-16
CC GO:0022625 cytosolic large ribosomal subunit < 2e-16
CC GO:0022627 cytosolic small ribosomal subunit < 2e-16
CC GO:0032040 small-subunit processome 4.6e-07
CC GO:0044452 nucleolar part 3.0e-05
CC GO:0030686 90S preribosome 4.9e-05
CC GO:0005732 small nucleolar ribonucleoprotein comple... 4.9e-05
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00018
CC GO:0005829 cytosol 0.00043
CC GO:0005852 eukaryotic translation initiation factor... 0.00070
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Table 5.14: Enrichment analysis of targets of e-chrI:2 in the stress-condition that
were up-regulated in the strains with JB759-allele. All significant targets of this
hotspot in the stress condition were chosen as the background.

Ontology GO term Description p-value

BP GO:0006897 endocytosis 3.8e-09
BP GO:0035556 intracellular signal transduction 1.5e-06
BP GO:0034613 cellular protein localization 4.2e-06
BP GO:0007165 signal transduction 6.3e-06
BP GO:0030437 ascospore formation 9.1e-06
BP GO:0006886 intracellular protein transport 1.3e-05
BP GO:0006875 cellular metal ion homeostasis 3.4e-05
BP GO:0061024 membrane organization 4.6e-05
BP GO:0010927 cellular component assembly involved in ... 7.1e-05
BP GO:0006887 exocytosis 0.00014
MF GO:0004674 protein serine/threonine kinase activity 5.8e-06
MF GO:0000978 RNA polymerase II core promoter proximal... 1.4e-05
MF GO:0035091 phosphatidylinositol binding 0.00014
MF GO:0008017 microtubule binding 0.00065
MF GO:0004003 ATP-dependent DNA helicase activity 0.00126
MF GO:0061630 ubiquitin protein ligase activity 0.00226
MF GO:0008270 zinc ion binding 0.00348
MF GO:0001077 transcriptional activator activity, RNA ... 0.00406
MF GO:0005515 protein binding 0.00505
MF GO:0000982 transcription factor activity, RNA polym... 0.00730
CC GO:0016021 integral component of membrane 6.8e-09
CC GO:0032153 cell division site 2.2e-08
CC GO:0051286 cell tip 9.5e-08
CC GO:0005794 Golgi apparatus 1.3e-07
CC GO:0000329 fungal-type vacuole membrane 2.0e-07
CC GO:0044732 mitotic spindle pole body 7.8e-07
CC GO:0000790 nuclear chromatin 1.7e-06
CC GO:0005886 plasma membrane 5.6e-06
CC GO:0000778 condensed nuclear chromosome kinetochore 1.9e-05
CC GO:0000324 fungal-type vacuole 0.00011
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Table 5.15: Enrichment analysis of targets of e-chrI:2 in the stress-condition that
were down-regulated in the strains with JB759-allele. All significant targets of this
hotspot in the stress condition were chosen as the background.

Ontology GO term Description p-value

BP GO:0002181 cytoplasmic translation < 2e-16
BP GO:0006364 rRNA processing < 2e-16
BP GO:0042254 ribosome biogenesis 7.1e-16
BP GO:0002183 cytoplasmic translational initiation 8.4e-09
BP GO:0002182 cytoplasmic translational elongation 6.3e-08
BP GO:0030490 maturation of SSU-rRNA 4.7e-07
BP GO:0042273 ribosomal large subunit biogenesis 3.2e-06
BP GO:0006457 protein folding 6.3e-06
BP GO:0009168 purine ribonucleoside monophosphate bios... 0.00019
BP GO:0009152 purine ribonucleotide biosynthetic proce... 0.00022
MF GO:0003735 structural constituent of ribosome < 2e-16
MF GO:0019843 rRNA binding 4.2e-09
MF GO:0003743 translation initiation factor activity 1.6e-08
MF GO:0003723 RNA binding 6.2e-08
MF GO:0051082 unfolded protein binding 1.8e-06
MF GO:0030515 snoRNA binding 3.4e-06
MF GO:0003899 DNA-directed 5’-3’ RNA polymerase activi... 6.5e-05
MF GO:0043021 ribonucleoprotein complex binding 0.0007
MF GO:0008175 tRNA methyltransferase activity 0.0014
MF GO:0016879 ligase activity, forming carbon-nitrogen... 0.0025
CC GO:0005730 nucleolus < 2e-16
CC GO:0022625 cytosolic large ribosomal subunit < 2e-16
CC GO:0022627 cytosolic small ribosomal subunit < 2e-16
CC GO:0032040 small-subunit processome 4.6e-07
CC GO:0044452 nucleolar part 3.0e-05
CC GO:0030686 90S preribosome 4.9e-05
CC GO:0005732 small nucleolar ribonucleoprotein comple... 4.9e-05
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00018
CC GO:0005829 cytosol 0.00043
CC GO:0005852 eukaryotic translation initiation factor... 0.00070
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Table 5.16: Enrichment analysis of targets of e-chrI:1 that were affected by condi-
tional eQTL that were specific to the stress condition, and up-regulated in strains
with the JB50 allele at this locus, and showed a stronger stress response in the strains
with the JB50-allele. All transcripts that were targeted by a conditional eQTL that
was specific to the stress-condition were chosen as the background.

Ontology GO term Description p-value

BP GO:0006914 autophagy 7.2e-05
BP GO:0033554 cellular response to stress 0.00015
BP GO:0016197 endosomal transport 0.00021
BP GO:0010033 response to organic substance 0.00050
BP GO:0072665 protein localization to vacuole 0.00050
BP GO:0006511 ubiquitin-dependent protein catabolic pr... 0.00050
BP GO:0016192 vesicle-mediated transport 0.00054
BP GO:0016482 cytosolic transport 0.00141
BP GO:0016567 protein ubiquitination 0.00197
BP GO:0044262 cellular carbohydrate metabolic process 0.00232
MF GO:0070011 peptidase activity, acting on L-amino ac... 0.0002
MF GO:0061630 ubiquitin protein ligase activity 0.0030
MF GO:0008270 zinc ion binding 0.0085
CC GO:0016021 integral component of membrane 2.7e-06
CC GO:0098805 whole membrane 4.1e-05
CC GO:0000329 fungal-type vacuole membrane 0.00016
CC GO:0098588 bounding membrane of organelle 0.00143
CC GO:0031966 mitochondrial membrane 0.00345
CC GO:0032153 cell division site 0.00460
CC GO:0000324 fungal-type vacuole 0.00825
CC GO:0030864 cortical actin cytoskeleton 0.00955
CC GO:0030176 integral component of endoplasmic reticu... 0.00955
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Table 5.17: Enrichment analysis of targets of e-chrI:1 that were affected by condi-
tional eQTL that were specific to the stress condition, and down-regulated in strains
with the JB50 allele at this locus, and showed a stronger stress response in the strains
with the JB50-allele. All transcripts that were targeted by a conditional eQTL that
was specific to the stress-condition were chosen as the background.

Ontology GO term Description p-value

BP GO:0006364 rRNA processing < 2e-16
BP GO:0042273 ribosomal large subunit biogenesis 3.6e-11
BP GO:0042254 ribosome biogenesis 9.6e-11
BP GO:0030490 maturation of SSU-rRNA 2.0e-10
BP GO:0006360 transcription from RNA polymerase I prom... 4.7e-06
BP GO:0002181 cytoplasmic translation 1.2e-05
BP GO:0030488 tRNA methylation 5.7e-05
BP GO:0006400 tRNA modification 7.3e-05
BP GO:0000054 ribosomal subunit export from nucleus 9.6e-05
BP GO:0000466 maturation of 5.8S rRNA from tricistroni... 0.00013
MF GO:0003723 RNA binding 1.4e-14
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 1.0e-09
MF GO:0030515 snoRNA binding 1.0e-09
MF GO:0004004 ATP-dependent RNA helicase activity 1.6e-07
MF GO:0003899 DNA-directed 5’-3’ RNA polymerase activi... 9.3e-06
MF GO:0008170 N-methyltransferase activity 0.00013
MF GO:0008175 tRNA methyltransferase activity 0.00029
CC GO:0005730 nucleolus 2e-16
CC GO:0032040 small-subunit processome 5.9e-12
CC GO:0030686 90S preribosome 2.0e-06
CC GO:0044452 nucleolar part 6.5e-06
CC GO:0005634 nucleus 2.4e-05
CC GO:0005736 DNA-directed RNA polymerase I complex 5.5e-05
CC GO:0005666 DNA-directed RNA polymerase III complex 0.00029
CC GO:0030687 preribosome, large subunit precursor 0.00029
CC GO:0030684 preribosome 0.00070
CC GO:0005732 small nucleolar ribonucleoprotein comple... 0.00090
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Table 5.18: Enrichment analysis of targets of e-chrI:1 that were affected by condi-
tional eQTL that were specific to the stress condition, and up-regulated in strains
with the JB50 allele at this locus, and showed a stronger stress response in the strains
with the JB759-allele. All transcripts that were targeted by a conditional eQTL that
was specific to the stress-condition were chosen as the background.

Ontology GO term Description p-value

BP GO:1901607 alpha-amino acid biosynthetic process 0.00027
BP GO:0010557 positive regulation of macromolecule bio... 0.00156
BP GO:0031328 positive regulation of cellular biosynth... 0.00264
BP GO:0030001 metal ion transport 0.00416
BP GO:0051640 organelle localization 0.00496
BP GO:0098662 inorganic cation transmembrane transport 0.00624
BP GO:0043604 amide biosynthetic process 0.00842
CC GO:0016021 integral component of membrane 0.0069
CC GO:0005783 endoplasmic reticulum 0.0099

Table 5.19: Enrichment analysis of targets of e-chrI:1 that were affected by condi-
tional eQTL that were specific to the stress condition, and down-regulated in strains
with the JB50 allele at this locus, and showed a stronger stress response in the strains
with the JB759-allele. All transcripts that were targeted by a conditional eQTL that
was specific to the stress-condition were chosen as the background.

Ontology GO term Description p-value

BP GO:0034645 cellular macromolecule biosynthetic proc... 0.00042
BP GO:1901990 regulation of mitotic cell cycle phase t... 0.00211
BP GO:0000122 negative regulation of transcription fro... 0.00284
BP GO:0033044 regulation of chromosome organization 0.00384
BP GO:0000070 mitotic sister chromatid segregation 0.00887
CC GO:0043234 protein complex 0.0023
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Table 5.20: Enrichment analysis of targets of e-chrII:1 in the normal condition. All
coding transcripts were chosen as the background.

Ontology GO term Description p-value

BP GO:0006364 rRNA processing 4.4e-12
BP GO:0030490 maturation of SSU-rRNA 0.00030
BP GO:0006222 UMP biosynthetic process 0.00031
BP GO:0001522 pseudouridine synthesis 0.00153
BP GO:0030488 tRNA methylation 0.00175
BP GO:0002098 tRNA wobble uridine modification 0.00233
BP GO:0015718 monocarboxylic acid transport 0.00284
BP GO:1901566 organonitrogen compound biosynthetic pro... 0.00374
BP GO:0000466 maturation of 5.8S rRNA from tricistroni... 0.00504
BP GO:0006479 protein methylation 0.00510
MF GO:0004004 ATP-dependent RNA helicase activity 8.8e-08
MF GO:0030515 snoRNA binding 2.3e-05
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 0.00036
MF GO:0008175 tRNA methyltransferase activity 0.00246
MF GO:0016614 oxidoreductase activity, acting on CH-OH... 0.00374
MF GO:0008276 protein methyltransferase activity 0.00655
MF GO:0008170 N-methyltransferase activity 0.00936
CC GO:0005730 nucleolus 2.4e-11
CC GO:0032040 small-subunit processome 7.2e-07
CC GO:0044452 nucleolar part 6.0e-05
CC GO:0030687 preribosome, large subunit precursor 0.00033
CC GO:0030686 90S preribosome 0.00064
CC GO:0005753 mitochondrial proton-transporting ATP sy... 0.00131
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00960
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Table 5.21: Enrichment analysis of targets of e-chrII:1 in the normal condition that
are up-regulated in the strains with the JB760-allele. All coding transcripts that were
affected by conditional eQTL specific to the normal condition, were included in the
background.

Ontology GO term Description p-value

BP GO:0044248 cellular catabolic process 0.00078
BP GO:0006839 mitochondrial transport 0.00445
BP GO:0044282 small molecule catabolic process 0.00574
BP GO:0019953 sexual reproduction 0.00804
MF GO:0016788 hydrolase activity, acting on ester bond... 0.00095
MF GO:0016614 oxidoreductase activity, acting on CH-OH... 0.00445
MF GO:0043168 anion binding 0.00537
CC GO:0005739 mitochondrion 0.00049
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Table 5.22: Enrichment analysis of targets of e-chrII:1 in the normal condition that
are down-regulated in the strains with the JB760-allele. All coding transcripts that
were affected by conditional eQTL specific to the normal condition, were included in
the background.

Ontology GO term Description p-value

BP GO:0006364 rRNA processing 1.7e-10
BP GO:0006400 tRNA modification 6.7e-05
BP GO:0042254 ribosome biogenesis 0.0005
BP GO:0030490 maturation of SSU-rRNA 0.0024
BP GO:0001510 RNA methylation 0.0041
BP GO:0042273 ribosomal large subunit biogenesis 0.0041
BP GO:0071426 ribonucleoprotein complex export from nu... 0.0067
MF GO:0003723 RNA binding 1.3e-06
MF GO:0004004 ATP-dependent RNA helicase activity 0.00019
MF GO:0008757 S-adenosylmethionine-dependent methyltra... 0.00147
MF GO:0005525 GTP binding 0.00244
MF GO:0030515 snoRNA binding 0.00244
MF GO:0140101 catalytic activity, acting on a tRNA 0.00244
MF GO:0140098 catalytic activity, acting on RNA 0.00527
MF GO:0008173 RNA methyltransferase activity 0.00673
MF GO:0005524 ATP binding 0.00692
MF GO:0003677 DNA binding 0.00889
CC GO:0005730 nucleolus 4.6e-14
CC GO:0043234 protein complex 1.0e-05
CC GO:0044452 nucleolar part 7.0e-05
CC GO:0032040 small-subunit processome 0.00055
CC GO:0030684 preribosome 0.00068
CC GO:0030529 intracellular ribonucleoprotein complex 0.00548
CC GO:0000790 nuclear chromatin 0.00550
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Table 5.23: Enrichment analysis of genes affected by eQTL classified as ’similar’.

ontology GO.ID Term pvalue

BP GO:0030150 protein import into mitochondrial matrix 0.0036
BP GO:0097502 mannosylation 0.0059
BP GO:0031505 fungal-type cell wall organization 0.0064
BP GO:0006696 ergosterol biosynthetic process 0.0073
BP GO:0016485 protein processing 0.0091
MF GO:0005525 GTP binding 0.0017
MF GO:0016887 ATPase activity 0.0099
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Table 5.24: Enrichment analysis of genes affected by eQTL classified as ’buffered’.

ontology GO.ID Term pvalue

BP GO:0000463 maturation of LSU-rRNA from tricistronic... 3.6e-09
BP GO:0006364 rRNA processing 4e-06
BP GO:0002181 cytoplasmic translation 3.9e-05
BP GO:0000447 endonucleolytic cleavage in ITS1 to sepa... 0.00011
BP GO:0000466 maturation of 5.8S rRNA from tricistroni... 0.00036
BP GO:0000472 endonucleolytic cleavage to generate mat... 0.00101
BP GO:0000027 ribosomal large subunit assembly 0.00108
BP GO:0042797 tRNA transcription from RNA polymerase I... 0.00137
BP GO:0000480 endonucleolytic cleavage in 5’-ETS of tr... 0.00163
BP GO:0006259 DNA metabolic process 0.00189
BP GO:0006526 arginine biosynthetic process 0.00334
BP GO:0006360 transcription from RNA polymerase I prom... 0.00517
BP GO:0000055 ribosomal large subunit export from nucl... 0.0077
BP GO:0042254 ribosome biogenesis 0.00774
BP GO:0031668 cellular response to extracellular stimu... 0.00824
MF GO:0001056 RNA polymerase III activity 0.00026
MF GO:0003723 RNA binding 0.00048
MF GO:0001054 RNA polymerase I activity 0.00216
MF GO:0042134 rRNA primary transcript binding 0.00718
MF GO:0019200 carbohydrate kinase activity 0.00837
CC GO:0005730 nucleolus 2.7e-18
CC GO:0030687 preribosome, large subunit precursor 6.5e-11
CC GO:0022625 cytosolic large ribosomal subunit 6.1e-05
CC GO:0005666 DNA-directed RNA polymerase III complex 0.00026
CC GO:0005654 nucleoplasm 0.00054
CC GO:0032040 small-subunit processome 0.00106
CC GO:0005736 DNA-directed RNA polymerase I complex 0.00216
CC GO:0070545 PeBoW complex 0.00845
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Table 5.25: Enrichment analysis of genes affected by eQTL classified as ’enhanced’.

ontology GO.ID Term pvalue

BP GO:0032543 mitochondrial translation 1.9e-20
BP GO:0019419 sulfate reduction 0.00068
BP GO:0019344 cysteine biosynthetic process 0.0031
BP GO:0006839 mitochondrial transport 0.00548
BP GO:0070814 hydrogen sulfide biosynthetic process 0.00592
BP GO:0000947 amino acid catabolic process to alcohol ... 0.00592
BP GO:0005975 carbohydrate metabolic process 0.006
MF GO:0003735 structural constituent of ribosome 4.6e-13
MF GO:0016744 transferase activity, transferring aldeh... 0.0025
MF GO:0004022 alcohol dehydrogenase (NAD) activity 0.0025
CC GO:0005762 mitochondrial large ribosomal subunit 2.5e-14
CC GO:0005763 mitochondrial small ribosomal subunit 3.9e-09
CC GO:0005737 cytoplasm 6e-04
CC GO:0005759 mitochondrial matrix 0.0011
CC GO:0005739 mitochondrion 0.0048

Table 5.26: Enrichment analysis of genes affected by ptQTL.

ontology GO.ID Term pvalue

BP GO:0002181 cytoplasmic translation 4.7e-05
BP GO:0055114 oxidation-reduction process 0.0076
BP GO:0006099 tricarboxylic acid cycle 0.0085
CC GO:0022625 cytosolic large ribosomal subunit 0.0015
CC GO:0042645 mitochondrial nucleoid 0.0095
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Table 5.27: QTL affecting growth under various conditions were taken from (Bloom,
2013). Listed below are the growth QTL affected by hotspots that were mentioned
in the text. Hotspots that affected only expression typically affected fewer growth
traits than hotspots that affected many phospho-traits.

chrV:2 chrVIII:1 chrXII:1 chrXII:2 chrXV:1

Menadione Caffeine Cobalt Chloride 4-Hydroxybenzaldehyde 4NQO
Congo red 4NQO 5-Fluorocytosine
Cycloheximide Cadmium Chloride 5-Fluorouracil
Diamide Calcium Chloride 6-Azauracil
E6 Berbamine Cisplatin Calcium Chloride
Formamide Cobalt Chloride Cisplatin
Indoleacetic Acid Copper Cobalt Chloride
Menadione Cycloheximide Congo red
SDS E6 Berbamine Copper
YNB Ethanol Cycloheximide
YNB:ph3 Formamide E6 Berbamine
YNB:ph8 Lithium Chloride Ethanol
YPD Manganese Sulfate Formamide
YPD:15C Mannose Galactose
Zeocin Neomycin Hydrogen Peroxide
5-Fluorocytosine Tunicamycin Lactate
5-Fluorouracil YNB Lactose

YPD Lithium Chloride
Zeocin Magnesium Chloride
Hotspot XIV:1 Maltose
4-Hydroxybenzaldehyde Manganese Sulfate
4NQO Mannose
5-Fluorocytosine Neomycin
5-Fluorouracil Paraquat
Caffeine Raffinose
Calcium Chloride SDS
Cisplatin Sorbitol
Copper Trehalose
Cycloheximide Xylose
E6 Berbamine YNB
Ethanol YNB:ph3
Formamide YPD
Hydrogen Peroxide YPD:15C
Indoleacetic Acid YPD:37C
Magnesium Chloride YPD:4C
Raffinose Zeocin
Trehalose
Tunicamycin
Xylose
YNB
YNB:ph3
YPD
YPD:37C
YPD:4C
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Table 5.28: Targets of chrVIII:1 with a reported link to STE20 /GPA1.

name references

GIP4 PMID: 16537909
FUS1 PMID: 17604854, PMID: 1903837
KAR4 PMID: 17604854, PMID: 16522208
LRG1 PMID: 27704052, PMID: 11591390
RGA2 PMID: 12455995
MFA1 PMID: 2659433, PMID: 17604854
APA2 PMID: 16522208, PMID: 12732146
RGD2 PMID: 24062589, PMID: 11591390
CRH1 PMID: 16522208, PMID: 19234305, PMID: 18184748
GPA1 PMID: 2536595, PMID: 9832519, PMID: 10712512, PMID: 12556475
PRM5 PMID: 10535956, PMID: 11062271
EXO70 PMID: 19955214
FAR1 PMID: 12029138, PMID: 18261907, PMID: 8500168, PMID: 15690603
STE18 PMID: 2536595, PMID: 7834739
HYM1 PMID: 16522208
SST2 PMID: 9537998
PRP39 PMID: 16522208
KAR5 PMID: 12052881, PMID:16522208
FUS2 PMID: 16522208, PMID: 11166190
PRM1 PMID: 11062271, PMID: 11166190, PMID: 16522208
AGA1 PMID: 11166190, PMID: 15690603, PMID: 2072914
VHS3 PMID: 25904326
STE13 PMID: 2685554
DIG1 PMID: 17604854, PMID: 8918885, PMID: 9094309
PRM4 PMID: 11062271, PMID: 11166190, PMID: 16522208
RGC1 PMID: 24298058, PMID: 12142009, PMID: 10970855
TEC1 PMID: 17118154
PST1 PMID: 10535956, PMID: 11062271
AFR1 PMID: 16522208, PMID: 11743162, PMID: 19841731, PMID: 18552279, PMID: 20489023, PMID: 20093466
CDC20 PMID: 21329885, PMID: 12642613
SPO11 PMID: 9456310
RIM101 PMID: 20333241
HAL1 PMID: 16522208, PMID: 11525741, PMID: 12040128
FUS3 PMID: 11525741
ERG11 PMID: 17895367
SNL1 PMID: 24121774
SKT5 PMID: 16522208, PMID: 12732146
AKL1 PMID: 19269370, PMID: 22875988
REG1 PMID: 24003253
GIC2 PMID: 14734533, PMID: 9367979
DIG2 PMID: 15690603, PMID: 17604854, PMID: 9841672
BOI2 PMID: 23785492
AVT1 PMID: 16522208
MSN4 PMID: 12142009, PMID: 10970855
MNR2 PMID: 16319894
SRP40 PMID: 17101777
SSK1 PMID: 10970855, PMID: 8808622
RCK2 PMID: 10805732
NUP2 PMID: 23645671
BDF1 PMID: 16118188, PMID: 16319894
RSC9 PMID: 19153600
MLF3 PMID: 16816427
NBA1 PMID: 25416945, PMID: 19841731, PMID: 28751498
RTS1 PMID: 8846889
MSC3 PMID: 21329885, PMID: 15665377
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Table 5.29: Targets of chrVIII:1 with a plausible link to STE20 /GPA1.

name references

MUM2 PMID: 14585977, PMID: 22875988
SHU1 PMID: 19234305, PMID: 22438580, PMID: 17604854
YAP3 PMID: 21127252, PMID: 17417638
CNA1 PMID: 1651503
SPT21 PMID: 21057056
PSK1 PMID: 19269370
TAF12 PMID: 16118188, PMID: 29079657
ZRG8 PMID: 24062589, PMID: 15972461
VPS27 PMID: 20093466, PMID: 22282571, PMID: 27708008
GDS1 PMID: 27708008, PMID: 20093466
HEK2 PMID: 18805955
SEG1 PMID: 26359496
LSP1 PMID: 26359496
EIS1 PMID: 26359496
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Table 5.30: Functional enrichment analysis of eQTL targets of chrVIII:1.

ontology GO.ID Term pvalue

BP GO:0000755 cytogamy 4.2e-06
BP GO:0000742 karyogamy involved in conjugation with c... 1.4e-05
BP GO:0000750 pheromone-dependent signal transduction ... 1.9e-05
BP GO:0000753 cell morphogenesis involved in conjugati... 0.00059
BP GO:2000220 regulation of pseudohyphal growth 0.00128
BP GO:0022604 regulation of cell morphogenesis 0.00212
BP GO:0000754 adaptation of signaling pathway by respo... 0.003
BP GO:0046020 negative regulation of transcription fro... 0.00765
BP GO:1900429 negative regulation of filamentous growt... 0.00765
BP GO:0043547 positive regulation of GTPase activity 0.00909
BP GO:0120031 plasma membrane bounded cell projection ... 0.0091
MF GO:0016836 hydro-lyase activity 0.0047
MF GO:0005096 GTPase activator activity 0.0048
CC GO:0043332 mating projection tip 5e-04
CC GO:0000131 incipient cellular bud site 0.0077
CC GO:0098797 plasma membrane protein complex 0.0091

Table 5.31: Targets of chrVIII:1 without a known link to STE20 /GPA1.

YBR225W LOT5 YHL017W APN1 SFB3
RAD59 VPS36 MCO14 YIL108W MOB1
YGL194C-A YMR226C OPI1 ACF2 SRS2
YGR122C-A RFC3 NPR3 PRD1 RSF2
SNM1 CPR8 SNF6 SAS4 DPS1
DUR3 PPG1 MMO1 SSD1 NOG2
TCD1 YOL106W MFT1 NPL3
HTD2 DCI1 PUT4 CHD1
ORC6 BUD26 YPR127W YGL114W
APL2 YBP2 TNA1 CAB4
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