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Abstract. The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse7
spaces in domain decomposition methods and certain supervised machine learning techniques. Adap-8
tive coarse spaces ensure robustness of highly scalable domain decomposition solvers, even for highly9
heterogeneous coefficient distributions with arbitrary coefficient jumps. However, their construction10
requires the setup and solution of local generalized eigenvalue problems, which is typically compu-11
tationally expensive. The idea of ML-FETI-DP is to interpret the coefficient distribution as image12
data and predict whether an eigenvalue problem has to be solved or can be neglected while still13
maintaining robustness of the adaptive FETI-DP method. For this purpose, neural networks are14
used as image classifiers. In the present work, the ML-FETI-DP algorithm is extended to three di-15
mensions, which requires both a complex data preprocessing procedure to construct consistent input16
data for the neural network as well as a representative training and validation data set to ensure17
generalization properties of the machine learning model. Numerical experiments for stationary dif-18
fusion and linear elasticity problems with realistic coefficient distributions show that a large number19
of eigenvalue problems can be saved; in the best case of the numerical results presented here, 97 %20
of the eigenvalue problems can be avoided to be set up and solved.21

Key words. ML-FETI-DP, FETI-DP, machine learning, domain decomposition methods, adap-22
tive coarse spaces, finite elements23
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1. Introduction. Domain decomposition methods are highly scalable, iterative25

solvers for the solution of large systems of equations such as arriving, e.g., from the26

discretization of partial differential equations by finite elements. Among the most27

commonly used domain decomposition methods are the FETI-DP (Finite Element28

Tearing and Interconnecting - Dual Primal) [12, 11, 48, 49], BDDC (Balancing Do-29

main Decomposition by Constraints) [7, 8, 51, 53, 52] and overlapping Schwarz [61]30

methods. All of these methods have successfully been applied to a wide range of31

problems and have been shown to be parallel scalable up to hundred of thousands32

of cores and beyond [26, 62, 2, 1, 39, 44, 40, 38, 37, 27]. In the present article,33

we are mostly interested in the solution of highly heterogeneous stationary diffusion34

or linear elasticity problems with high contrasts in the material distributions. For35

such cases, including those with arbitrary jumps in the diffusion coefficient or the36

Young modulus, the convergence rate of standard domain decomposition methods37

typically deteriorates severely. In particular, the classic condition number bounds for38

standard domain decomposition methods are only valid under relatively restrictive39

assumptions concerning the coefficient function or the material distribution. Thus, in40

case of highly complex coefficient functions, coarse space enhancements are necessary41

to guarantee a robust algorithm while retaining a good condition number bound to42

preserve numerical scalability. For FETI-DP algorithms considered in the present43
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2 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

article, such a condition number bound would only depend polylogarithmically on44

the size of the subproblems while being independent of the contrast of the values of45

the relevant coefficient functions. To accomplish this in three dimensions for material46

discontinuities aligned with the interface between subdomains, additional averages47

along edges and first order moments to enhance the coarse space have been pro-48

posed in [48, 49]. This approach has been heuristically extended in [43] for material49

discontinuities not aligned with the interface using certain weighted averages. We50

have further generalized this technique in [23]. Here, we have integrated general-51

ized weighted averages along faces and/or edges into the coarse space. Using this52

approach as a default can help to make FETI-DP and BDDC algorithms more ro-53

bust for a number of realistic application problems. However, all aforementioned54

approaches are generally not robust for arbitrary coefficient functions, e.g., with nu-55

merous discontinuities along and across the interface between subdomains. Hence,56

adaptive coarse spaces have been developed for different domain decomposition algo-57

rithms [4, 35, 34, 33, 58, 57, 3, 6, 54, 55, 42, 41, 31, 13, 14, 10, 9, 59, 60, 19, 18, 20].58

In adaptive coarse spaces, eigenvectors originating from the solution of certain local59

generalized eigenvalue problems on parts of the interface, e.g., faces or edges, are used60

to enhance the coarse space. For these techniques, condition number bounds that are61

robust with respect to arbitrary coefficient distributions can be proven. In particular,62

the resulting condition number bounds only depend on a user-defined tolerance, which63

is used as a threshold for the selection of the eigenvectors based on their corresponding64

eigenvalues, and on geometrical constants. As a drawback, in a parallel implemen-65

tation, the setup and the solution of the eigenvalue problems take up a significant66

amount of time; cf. [50, 36]. However, for many realistic coefficient distributions, a67

large number of eigenvalue problems which are not necessary for a robust convergence68

of the adaptive domain decomposition method is solved; they are not necessary in the69

sense that no corresponding eigenvectors are being selected. In order to account for70

this, in [24], we introduced the concept of training a neural network to make an auto-71

matic decision whether the solution of a specific local eigenvalue problem is necessary72

for robustness. In particular, we have focused on the two-dimensional case and the73

adaptive coarse space introduced in [54] for the FETI-DP method, which is based74

on local eigenvalue problems on edges between neighboring subdomains; see [42] for75

the first theoretical proof of a robust condition number bound for this algorithm.76

We were able to significantly reduce the number of necessary eigenvalue problems on77

edges by using samples of the coefficient function in the adjacent subdomains as input78

for the machine learning model; in [25], we have shown that it is actually sufficient to79

sample in neighborhoods close to the edges. Throughout this paper, we denote the80

algorithm combining adaptive FETI-DP and machine learning introduced in [24] by81

ML-FETI-DP.82

Here, we extend the two-dimensional ML-FETI-DP approach [24] to three-dimen-83

sional problems. The main concept is very similar, however, the interface between84

the adaptive FETI-DP algorithm and the neural network, i.e., the preprocessing of85

the input data for the neural network, requires substantial modifications and en-86

hancements. In particular, handling faces of three-dimensional unstructured domain87

decompositions, e.g., obtained from METIS [30], is much more complex compared88

to edges in two dimensions. Moreover, in the generation of training and validation89

data, we use METIS domain decompositions and adapt the generation of coefficient90

distributions based on randomization as described for two dimensions in [24] to three91

dimensions. The main focus of this paper is thus on the description of the prepro-92

cessing of the data. As a machine learning approach, we will again - as in [24] -93
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MACHINE LEARNING AND DOMAIN DECOMPOSITION IN 3D 3

employ feedforward neural networks with Rectified Linear Unit (ReLU) activation94

and dropout layers.95

The remainder of this paper is organized as follows. First, we introduce our96

model problems, namely stationary diffusion problems and linear elasticity problems.97

Second, we briefly recapitulate the FETI-DP domain decomposition method and the98

specific adaptive coarse space approach [33, 54, 55] for three dimensions. Afterwards,99

we present our machine learning based approach ML-FETI-DP using feedforward100

neural networks. We then describe the preprocessing of the input data and how we101

generate appropriate training and validation data for the training process of the neural102

network. Finally, we show numerical results for different relevant elliptic problems. At103

first, we consider a coefficient distribution with five balls of different radii in the unit104

cube. Second, we consider an RVE (Representative Volume Element) representing105

the microstructure of a dual-phase steel.106

2. Model problems and adaptive FETI-DP domain decomposition al-107

gorithms. In this section, we give a brief introduction of our model problems and108

shortly describe the classic FETI-DP domain decomposition method [12, 11, 48, 49].109

Finally, in subsection 2.3.2, we describe the employed adaptive FETI-DP coarse space110

technique for three dimensions; see [33, 54, 55].111

2.1. Diffusion, elasticity, and finite elements. As a first model problem,112

we consider a stationary, linear, scalar diffusion problem with a highly heterogeneous113

coefficient function ρ : Ω→ R and homogeneous Dirichlet boundary conditions on ∂Ω.114

Thus, the model problem in its variational form can be written as: find u ∈ H1
0 (Ω)115

such that116

(2.1)

∫
Ω

ρ∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).117

Various examples of coefficient functions are discussed in section 4.118

As a second model problem, we consider the equations of linear elasticity. It119

consists of finding the displacement u ∈ H1
0(Ω) := (H1

0 (Ω))3 such that120

(2.2)

∫
Ω

G ε(u) : ε(v) dx +

∫
Ω

Gβ divu divv dx =

∫
Ω

fTv dx121

for all v ∈ H1
0(Ω), given material functions G : Ω→ R and β : Ω→ R, and a volume122

force f ∈ (L2(Ω))3.123

By a finite element discretization of (2.1) and (2.2) on Ω, we obtain the respective124

linear system of equations125

(2.3) Kgug = fg.126

We denote the finite element space by V h and we have ug, fg ∈ V h. Note that,127

throughout this paper, we assume that the coefficient functions ρ, G, and β are128

constant on each finite element but may have large jumps from element to element.129

For simplicity, in the present article, we only consider tetrahedrons and linear finite130

elements.131

2.2. Standard FETI-DP. Let us briefly describe the classic FETI-DP method132

and introduce some necessary notation.133
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4 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

2.2.1. Domain decomposition. We assume a decomposition of Ω into N ∈ N134

nonoverlapping subdomains Ωi, i = 1, ..., N , i.e., Ω =
⋃N
i=1 Ωi. Each of the sub-135

domains is a union of finite elements. The finite element subspaces associated with136

Ωi, i = 1, ..., N , are denoted by Wi, i = 1, ..., N . We obtain local finite element prob-137

lems K(i) u(i) = f (i) with K(i) : Wi →Wi and f (i) ∈Wi by restricting the considered138

differential equation (2.1) or (2.2) to Ωi and discretizing its variational formulation139

in the finite element space Wi. Let us remark that the matrices K(i) are, in general,140

not invertible for subdomains, which have no contact to the Dirichlet boundary.141

We introduce the simple restriction operators Ri : V h → Wi, i = 1, ..., N , the142

block vectors uT :=
(
u(1)T , ..., u(N)T

)
and fT :=

(
f (1)T , ..., f (N)T

)
, and the block143

matrices RT :=
(
RT1 , ..., R

T
N

)
and K = diag

(
K(1), ...,K(N)

)
. We then obtain the144

identities145

(2.4) Kg = RTKR and fg = RT f.146

The application of RT in (2.4) thus has the effect of a finite element assembly process147

of local finite element functions on the interface Γ :=
(⋃N

i=1 ∂Ωi

)
\ ∂Ω.148

The block matrix K is not invertible as soon as a single subdomain has no contact149

to the Dirichlet boundary. Therefore, the system Ku = f has no unique solution and,150

more precisely, an unknown vector u might be discontinuous on the interface. We151

now proceed to describe how the solution ug is obtained using FETI-DP, i.e., how the152

continuity of u ∈W := W1 × ...×WN on the interface is enforced.153

2.2.2. The FETI-DP saddle point system. Let us assume, we have sorted154

and decomposed an unknown vector u from the product space W into interface vari-155

ables uΓ and all remaining interior variables uI , i.e., uT =
(
uTI , u

T
Γ

)
∈W . We further156

subdivide the degrees of freedoms on the interface uΓ into primal variables uΠ and157

dual variables u∆. Throughout this paper, we select all subdomain vertices to be158

primal. Continuity in the primal variables is enforced by a finite element assembly159

process, while continuity in the dual variables is enforced iteratively by Lagrange160

multipliers.161

For the primal assembly process we introduce the operator RTΠ, which is similar162

to RT , but assembles only in primal variables. We denote the corresponding primally163

assembled finite element space by W̃ . Thus, we have RΠ : W̃ → W and any ũ ∈ W̃164

is of the structure ũT =
(
uTI , u

T
∆, ũ

T
Π

)
, where ũΠ is now a vector of global variables.165

The vector ũΠ can also be seen as a coarse solution and the corresponding Schur166

complement system in the primal variables constitutes the global coarse problem or167

second level problem in FETI-DP. We define primally coupled operators by168

(2.5) f̃ = RTΠf and K̃ = RTΠKRΠ.169

Let us remark that K̃ : W̃ → W̃ will be a regular matrix if enough primal constraints170

are chosen.171

Enforcing continuity in the dual variables is done by the constraint Bũ = 0, using172

a linear jump operator B = [B(1), ..., B(N)]; see, e.g., [44] for a detailed definition of173

B. Each row of B evaluates the jump between two degrees of freedom on the interface174

belonging to the same physical node but different subdomains. Thus, each row of B175

contains exactly one 1 and one −1 and the remaining entries are zero. Enforcing the176

jump condition via Lagrange multipliers, we obtain the FETI-DP saddle point system177

(2.6)

(
K̃ BT

B 0

)(
ũ
λ

)
=

(
f̃
0

)
,178

This manuscript is for review purposes only.



MACHINE LEARNING AND DOMAIN DECOMPOSITION IN 3D 5

where λ is the vector of the Lagrange multipliers. Let us remark that, due to the179

constraint Bũ = 0, the solution ũ ∈ W̃ is continuous on the interface Γ.180

2.2.3. Iterative solution of the FETI-DP system. By a block elimination181

in (2.6) we derive the system182

(2.7) Fλ = d183

with F = BK̃−1BT and d = BK̃−1f̃ . Equation (2.7) is solved iteratively with a184

preconditioned CG or GMRES approach using an additional Dirichlet preconditioner185

M−1
D ; see also [61]. The preconditioner M−1

D is a weighted sum of local Schur com-186

plements in the dual variables. Let187

(2.8) S
(i)
∆∆ = K

(i)
∆∆ −K

(i)
∆IK

(i)−1
II K

(i)T
∆I188

be the Schur complement of K(i), i = 1, ..., N in the dual variables and189

(2.9) BD =
(
D(1)TB(1), ..., D(N)B(N)T

)
190

a scaled jump matrix, where the scaling matrices D(i), i = 1, ..., N are usually defined191

by the PDE coefficients. We further define BD,∆, the restriction of BD to the dual192

variables, and S∆∆ = diag(S
(1)
∆∆, ..., S

(N)
∆∆ ). The preconditioner is then defined by193

(2.10) M−1
D = BD,∆S∆∆B

T
D,∆.194

The application of M−1
D is embarrassingly parallel due to the block diagonal structure195

of S. The desired solution ũ is finally obtained by solving196

(2.11) K̃ ũ = f̃ −BTλ.197

2.2.4. Condition number bound. For scalar elliptic partial differential equa-198

tions as well as for linear elasticity problems, the classic polylogarithmic condition199

number bound200

(2.12) κ(M−1
D F ) ≤ C

(
1 + log

(
H

h

))2

201

holds, with C independent of H and h; see, e.g., [47, 49, 48]. In (2.12) H is the202

maximum diameter over all subdomains, h the maximum diameter over all finite ele-203

ments, and thus H/h is a measure for the number of finite elements per subdomain.204

In general, different coefficient distributions in two and three dimensions can be cap-205

tured by different coarse spaces and scalings in the preconditioner M−1
D . Please note206

that in three dimensions additional coarse constraints based on averages over edges207

and/or faces are necessary to retain the same logarithmic condition number bound as208

in (2.12); see, e.g., [48, 49] and for experimental results [12, 46].209

However, for completely arbitrary and complex coefficient distributions, (2.12)210

does not hold anymore. In recent years, adaptive coarse spaces have been developed211

to overcome this limitation [4, 35, 34, 33, 58, 57, 3, 6, 54, 55, 42, 41, 31, 13, 14, 10,212

9, 59, 60]. In these algorithms, local eigenvalue problems on parts of the interface,213

i.e., edges or faces, are solved and selected eigenvectors are used to construct appro-214

priate adaptive constraints. The FETI-DP coarse space is then enriched with these215

additional primal constraints in the setup phase before the iterative solution phase216

starts.217
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6 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

2.3. Adaptive FETI-DP in three dimensions.218

2.3.1. Enhancing the coarse space with additional constraints. In gen-219

eral, different approaches to implement coarse space enrichments for the FETI-DP220

method exist. The two most common approaches are a deflation or balancing ap-221

proach [45, 42] and a transformation of basis approach [48, 44]. In the present paper,222

we always use the balancing preconditioner to enhance the coarse space with addi-223

tional constraints, regardless if adaptive or frugal constraints are enforced; see sub-224

section 2.3.2 and subsection 2.4, respectively. Please see [24, Sec. 2.3.1] or [45, 42] for225

a detailed description of the deflation and balancing approach.226

2.3.2. The adaptive constraints. The main idea of adaptive coarse spaces in227

domain decomposition methods is to enrich the FETI-DP or BDDC coarse space with228

additional primal constraints, obtained by solving certain local generalized eigenvalue229

problems on faces or edges, before the iteration starts. In the following, we give a brief230

description of the algorithm considered in [33, 55] for the convenience of the reader.231

In three dimensions, for certain equivalence classes Xij , i.e., faces Fij or edges Eij ,232

we thus solve the generalized eigenvalue problem233

〈PDij
vij , SijPDij

wij〉 = µij〈vij , Sijwij〉 ∀vij ∈ (KerSij)
⊥

;234235

see [33]. Note that, in this approach, we only have to solve edge eigenvalue problems236

on edges that belong to more than three subdomains.237

Here, we define Sij = diag(Si, Sj) and PDij = BTD,Xij
BXij as a local version of the238

jump operator PD = BTDB with BXij
=
(
B

(i)
Xij
, B

(j)
Xij

)
and BD,Xij

=
(
B

(i)
D,Xij

, B
(j)
D,Xij

)
.239

We then select all eigenvalues µij ≥ TOL for a user-defined tolerance TOL and use240

the corresponding eigenvectors vXij to automatically design the coarse space. New241

coarse components then enforce the constraint (BD,Xij
SijPDij

wXij
)TBXij

vXij
= 0 in242

each iteration, e.g., with projector preconditioning or transformation of basis. When243

enforcing these constraints for all faces and edges between subdomains, that do not244

share a face, we obtain the condition number estimate:245

(2.13) κ(M−1K) ≤ 4 max{NF , NEME}2TOL;246

see [33] for the proof. Here, we denote by NF the maximum number of faces of a247

subdomain, by NE the maximum number of edges of a subdomain, and by ME the248

maximum multiplicity of an edge. The condition number bound thus only depends249

on geometrical constants of the domain decomposition and, in particular, not on the250

contrast of the coefficient function. The choice of the tolerance value is user-dependent251

and should be selected with reference to the spectral gap of the eigenvalues of the252

preconditioned solver; see also [28].253

Let us note that the first rigorous proof for the condition number bound was given254

in [42] for two dimensions and was extendend to three dimensions in [33] with the255

additional use of edge eigenvalue problems. In [54, 55] a condition number indicator256

was presented for the first time, both for two and three dimensions.257

2.4. Frugal constraints. As in [24] for the two-dimensional case, we here also258

consider frugal constraints [23] on certain faces. Frugal constraints build a coarse259

space which is robust for many diffusion or elasticity problems with jumps in the260

coefficient function, and the setup of the frugal coarse space is rather cheap compared261

with the setup of adaptive coarse spaces. This is due to the absence of any local262
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Fig. 1. Structure of a dense feed forward neural network with several hidden layers.

eigenvalue problems in the computation of the constraints; see [23] for a detailed dis-263

cussion of frugal constraints. Let us remark that, for each face or edge, a single frugal264

constraint can be computed in case of a diffusion problem, but up to six in case of a265

linear elasticity problem. Nevertheless, for many coefficient distributions, using fru-266

gal constraints exclusively is not sufficient to obtain robustness, and hence, the frugal267

coarse space has to be enriched by additional adaptive constraints on some specific268

faces and/or edges. The combination of both coarse spaces, i.e., the adaptive and the269

frugal coarse space, and how we can exploit the benefits of both approaches using ma-270

chine learning in the ML-FETI-DP approach, is elaborated later; cf. subsections 3.3271

and 4.3.272

3. Selecting necessary eigenvalue problems using machine learning.273

Here, we extend our approach from [24] to three-dimensional problems. In [24], we274

have used machine learning techniques to predict which eigenvalue problems are nec-275

essary for robustness of highly heterogeneous two-dimensional linear diffusion and276

elasticity problems. This approach is based on the observation that, for many re-277

alistic problems with highly heterogeneous coefficient distributions, a large share of278

the eigenvalue problems will not yield large eigenvalues µij > TOL. In particular,279

the number of large eigenvalues that correspond to an equivalence class Xij can be280

attributed to the local part of the coefficient function in the adjacent subdomains.281

Hence, in two dimensions, we used a sampling procedure, to construct, for each edge,282

an image representation of the coefficient function in the two adjacent subdomains;283

cf. [24, Sect. 3.1] and Figure 2 (left). By ‘sampling procedure’, we understand a spe-284

cific sequence of evaluations of the coefficient function. Using the resulting image285

representation as input, a machine learning model was trained to classify whether the286

corresponding eigenvalue problems yield a large eigenvalue or not. Then, only those287

eigenvalue problems that are classified as necessary are solved. As already mentioned288

in the introduction, we denote this hybrid algorithm which combines the adaptive289

FETI-DP algorithm and a machine learning model as ML-FETI-DP. As an extension290

to this binary classification, we also introduced a three-class model, which reduces the291

number of computed eigenvalues even further by additionally using frugal constraints;292

cf. [23], [24, Sect. 3.3], as well as subsections 2.4 and 3.3.293

As described in subsection 2.3.2, edge as well as face eigenvalue problems have294

to be solved for robustness in three dimensions. However, the edges typically only295

possess a relatively small number of nodes, and hence, the corresponding eigenvalue296

problems are rather small; cf. [21]. Therefore, in our three-dimensional approach,297

we restrict ourselves to the identification of necessary face eigenvalue problems and298
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8 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

solve all eigenvalue problems for edges which belong to more than three subdomains.299

Note that, for unstructured domain decompositions, these edges are rather rare. As300

in the two-dimensional case, we will additionally consider a three-class approach;301

cf. subsection 3.3. As input for the machine learning model, we now sample from302

the three-dimensional coefficient function creating a three-dimensional image repre-303

sentation; see subsection 3.1 and Figure 2 (left). This step is significantly extended304

compared to the two-dimensional case.305

The eigenvalue classification problem in our approach is essentially an image clas-306

sification task. Therefore, as in [24], we will employ neural networks, which have been307

proven to be powerful models for image classification. In general, classification is a308

task of supervised machine learning. Supervised learning models approximate the309

nonlinear functional relationship between input and output data F : I → O, with310

the input space I being a product of R, N, and boolean vector spaces. For classifi-311

cation problems, as considered here, the output space is typically an N vector space.312

A detailed description of supervised learning and feedforward neural networks (or313

multilayer perceptrons, respectively), can, e.g., be found in [17]. Here, we will use314

dense neural networks, which means that each neuron in a given layer is generally315

connected with all neurons in the previous layer; cf. Figure 1 for a visualization of316

a dense feedforward neural network. However, to further improve the generalization317

properties for our neural network, we use dropout layers with a dropout rate of 20%;318

see also [24]. Let us note that analogously to [24], we choose the ReLU (Rectified319

Linear Unit) function [29, 56, 16] as our activation α(x) in all our numerical experi-320

ments, which is defined by α(x) = max {0, x} . The training and validation procedure321

for the neural network model is described in subsection 3.2 and first results on the322

training and validation data are presented in subsection 3.4.323

For a complete description of the employed machine learning framework, please324

refer to [24, Sec. 3] and the references therein.325

3.1. Data preprocessing. In analogy to [24], we aim to train and test our326

neural network for both regular domain decompositions as well as for domain decom-327

positions obtained from the graph partitioning software METIS [30]. We will observe328

that extending our methods introduced in [24] from two dimensions to three dimen-329

sions causes additional challenges and additional effort is needed preprocessing the330

input data for our machine learning model. The preprocessing of input data is at the331

core of our hybrid ML-FETI-DP algorithm. Hence, the preprocessing of the three-332

dimensional input data is one of the main novelties compared to the two-dimensional333

case. Generally, the sampling should cover all elements in a neighborhood of the334

respective interface component. Therefore, in order to prevent an incorrect or incom-335

plete picture of the material distribution resulting from gaps in the sampling grid, a336

smoothing procedure for irregular edges, in two dimensions, or irregular faces, in three337

dimensions, is necessary; see [24, Fig.4] for a graphical representation of the smooth-338

ing procedure in two dimensions. Moreover, an additional challenge in the sampling339

procedure for irregular faces, such as faces obtained via METIS (METIS faces), with340

an arbitrary orientation in the three-dimensional space, arises. In particular, a con-341

sistent ordering of the sampling points is neither a priori given nor obvious. More342

precisely, there is no natural ordering of a grid of points on an irregular face, such as343

going from the lower left corner to the upper right corner. A consistent ordering of344

the sampling points is, however, essential when using them as input data to train a345

neural network. In particular, since neural networks rely on input data with a fixed346

structure, an important requirement of our data preprocessing is to provide samples347
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sampling order

i1 i2 . . . iN

i2N+1i2N+2 . . . i3N

iN+1 iN+2 . . . i2N

i3N+1i3N+2 . . . i4N

eij

Fig. 2. Left: Visualization of the ordering of the sampling points in 2D (red) for a straight
edge (blue). Figure from [24, Fig. 3]. Right: Visualization of the computed sampling points in 3D
(red) for a regular face (blue) between two neighboring subdomains. The different shades correspond
to increasing distance of the sampling points to the face and therefore to a higher numbering of the
sampling points.

of the coefficient distribution with a consistent spatial structure in relation to each348

face in our domain decomposition, even though the faces may vary in their location,349

orientation, and shape. In this approach, some sampling points may lay outside the350

two subdomains adjacent to a face. We encode these points using a specific dummy351

value which differs clearly from all true coefficient values. Since all coefficient values352

are positive, we encode sampling points outside the adjacent subdomains by the value353

−1. This is essential to ensure that we always generate input data of a fixed length354

for the neural network; see also [24].355

3.1.1. Sampling procedure for regular faces. In case of regular faces, the356

procedure is fairly similar to the approach for straight edges in a two-dimensional357

domain decomposition; see [24]. Basically, we compute a tensor product sampling358

grid by sampling in both tangential directions of a face as well as in the direction359

orthogonal to the face. This results in a box-shaped structure of the sampling points360

in both neighboring subdomains of the face; see also Figure 2 (right). A required361

consistent ordering of the sampling points is provided by passing through the sampling362

points ’layer by layer’ with growing distance relative to the face.363

3.1.2. Sampling procedure for METIS faces. Our sampling procedure for364

METIS faces consists of two essential steps. First, we construct a consistently ordered365

two-dimensional auxiliary grid on a planar projection of each face. Second, we extrude366

this auxiliary grid into the two adjacent subdomains of the face. The resulting three-367

dimensional sampling grid has both a fixed size and a consistent ordering for all faces.368

Sampling points which do not lie on the face or within the two adjacent subdomains369

are encoded using the dummy value −1.370

First step – Construction of a consistently ordered auxiliary grid for METIS faces.371

In order to construct the auxiliary grid for a METIS face, we first compute a projection372

of the original face represented in the three-dimensional Euclidean space onto an373

appropriate two-dimensional plane. In particular, we project a given METIS face onto374

a two-dimensional plane, such that we obtain a consistently sorted grid covering the375

face. This grid is induced by a tensor product grid on the two-dimensional projection376

plane. Note that since we use tetrahedral finite elements in three dimensions, each377

METIS face is naturally decomposed into triangles. Due to the projection from three378
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dimensions to two dimensions, elements, i.e., triangles of the face, can be degraded or379

deformed, i.e., they can have a large aspect ratio. We can also obtain flipped triangles;380

see Figure 3 for an example where both cases occur. Hence, we have to regularize the381

two-dimensional projection of the face before constructing the sampling grid.382

To obtain a well-shaped projection of the face which is appropriate for our pur-
pose, we numerically solve an optimization problem with respect to the two-dimensio-
nal projection of the face. More precisely, the objective functions of the optimization
problem are carefully designed such that flipped triangles (phase 1) as well as sharp-
angled triangles (phase 2) are prevented:

min
x

∑
Tj

λ1 · e−λ2·det(Tj(x)) + λreg · ‖d(x)‖22 (phase 1) and

min
x

∑
Tj

lpj
2(x) + lqj

2(x)

2 ·Aj(x)
(phase 2).

Here, we denote by x the coordinate vector of all corner points of all triangles of a383

given face after projection onto the two-dimensional plane, by Aj(x) the area of a384

given triangle Tj(x), and by lpj (x), lqj (x) the lengths of two of its edges. By d(x) we385

denote the displacement vector containing the displacements of all points x from the386

initial state prior to the optimization process. Furthermore, we denote by det(Tj(x))387

the determinant of the transformation matrix which belongs to the affine mapping388

from the unit triangle, i.e., the triangle with the corner points (0, 0), (1, 0), and (0, 1),389

to a given triangle Tj(x). We also introduce scalar weighting factors λ1, λ2, and λreg390

to control the ratio of the different terms within the objective functions. The concrete391

values for these weights were chosen heuristically and for all our computations, we392

used the values λ1 = 1, λ2 = 50, and λreg = 10.393

Let us briefly motivate our objective functions in more details. Prior to the394

optimization of phase 1, we locally reorder the triangle corners, such that det(Tj(x))395

is negative for all flipped triangles. In order to do so, we start with one triangle and396

define it either as flipped or non-flipped. Then, we go through the remaining triangles397

of the projected face and classify them based on the following equivalence relation:398

two adjacent triangles are equivalent if and only if they do not overlap. Depending on399

the label of the initial triangle, we obtain two values for the objective function of phase400

1, and we choose our classification into flipped and non-flipped triangles such that we401

start with the lower value. After this, flipped triangles can always be identified by a402

negative determinant of the respective transformation matrix. Therefore, we explicitly403

penalize such negative determinants in phase 1 of our optimization by minimizing the404

factors λ1 ·e−λ2·det(Tj(x)). Note that we also add the regularization term λreg · ‖d(x)‖22405

to the objective function to prevent that the projection can be arbitrarily shifted406

or rotated in the given plane. In phase 2, we minimize the sum of all fractions407
lpj

2(x)+lqj
2(x)

2·Aj(x) . This specific fraction is inspired by geometrical arguments; see also [15,408

Sect. 4]. It is minimized to obtain equilateral triangles, i.e., a high value in this409

fraction corresponds to a triangle with large aspect ratio. The fraction may actually410

be infinity if Aj(x) = 0. This may happen if a triangle is initially projected onto411

a straight line. However, in the first optimization phase, small areas are penalized412

in terms of the determinant, such that we do not obtain values close to zero in the413

second phase.414

We start the optimization procedure with the initial projection onto the plane415

x = 0, y = 0, or z = 0 that results in the lowest objective value when adding416
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Fig. 3. Left: Example of a typical METIS face in the three-dimensional space (blue
triangles) and its corresponding projection onto the two-dimensional plane z = 0 (green
triangles). Right: Due to the projection, we obtain both flipped triangles, which are marked
in grey with red edges, and degraded triangles with a large aspect ratio, from which one is
marked in blue. Let us remark that the different shades of green are only introduced for
visualization purpose and do not have any physical meaning, e.g., different coefficients.

the objective functions of phase 1 and phase 2. Then, we use the gradient descent417

algorithm as an iterative solver and optimize, i.e., minimize, alternating in succession418

the two aforementioned objective functions. The optimization procedure is stopped if419

the norm of the relative change of the coordinate vector of the triangles with respect420

to the prior iteration is below a factor of 1e − 6 in both phases. Please see Figure 4421

and Figure 5 for an example of the different steps of the optimization procedure in422

phase 1 and phase 2, respectively, for an exemplary METIS face consisting of ten423

triangles. Let us note that for all tested faces in section 4 the optimization procedure424

did always converge in phase 1 and phase 2, respectively, before the maximum number425

of iterations was reached, which we set to 500. Additionally, in almost all cases, only426

optimizing twice in phase 1 and once in phase 2 - alternating in succession - was427

necessary to obtain an appropriate projection of a given METIS face.428

As the next step, we construct the smallest possible two-dimensional tensor429

product grid aligned with the coordinate axes covering the obtained optimized two-430

dimensional projection of the face; see also Figure 6 (left) for an example. Let us431

remark that this grid has a natural ordering of the grid points starting in the lower432

left corner and proceeding row by row to the upper right corner. We then make use433

of barycentric coordinates to map the grid, together with the corresponding ordering,434

back into the original triangles in the three-dimensional space. Based on the ordering435

of the grid points in two dimensions, we can now establish a natural ordering of the436

points in three dimension; see also Figure 6 (right).437

Let us summarize the complete process to obtain the auxiliary grid points for438

each triangle of a specific face with a consistent ordering. First, we project the face439

from the three-dimensional space (Figure 3 (left: blue face)) onto a two-dimensional440

plane (Figure 3 (left: green face)). Second, we remove all flipped triangles (phase 1)441

and optimize the shape of all triangles (phase 2) of the projected face in an iterative442

optimization process; see Figures 4 and 5. Finally, we cover this optimized face by443

a two-dimensional tensor product grid with a natural ordering (Figure 6 (left)) and444

project these points back to the original face in three dimensions (Figure 6 (right)).445

Therefore, local barycentric coordinates can be used.446

Let us note that, in our numerical experiments in section 4, this procedure was447
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Fig. 4. Visualization of the optimization process of the original projection in two dimen-
sions in phase 1 after 0, 20, 30, 50, 100 and 150 iteration steps (from upper left to lower
right).

Fig. 5. Visualization of the optimization process of the original projection in two dimen-
sions in phase 2 after 0, 10, 30, 50, 70 and 100 iteration steps (from upper left to lower
right). Let us remark that the initial state here is the same as the final state from Figure 4.

always successful. However, in general, there may be rare cases where our optimization448

does not converge to an acceptable two-dimensional triangulation. For instance, it is449

possible that a subdomain is completely enclosed by another subdomain, such that450

the face between the two subdomains is actually the complete boundary of the interior451

subdomain. In this case, we cannot remove all flipped triangles without changing the452

structure of the face. If we detect that our optimization does not converge to an453

acceptable solution, we can still proceed in the two following ways: either we mark454
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Fig. 6. Left: Two-dimensional projection of the original face (depicted on the right) after
both optimization phases have been carried out; the optimized projection is covered by a regular
grid with natural ordering; same face as in the last picture of Figure 5. Right: Original face in
three dimensions with corresponding grid points; numbers are obtained by a projection from two
dimensions (left) back to three dimensions using barycentric coordinates.

the eigenvalue problem corresponding to the face as necessary, or we split the face into455

smaller faces and consider each of the smaller faces separately in our ML-FETI-DP456

algorithm.457

Second step – Extrusion of the auxiliary grid into three dimensions. Starting458

from the ordered auxiliary points on the face, we can now build a three-dimensional459

sampling grid. For this purpose, for each of the auxiliary points on the face, we first460

define a sampling direction vector pointing into one of the two adjacent subdomains.461

Second, we extrude the two-dimensional auxiliary grid on the actual METIS face into462

the two neighboring subdomains along the sampling directions, resulting in a three-463

dimensional sampling grid. Note that the first layer of sampling nodes does not lie464

on the face itself but next to it; cf. Figure 2. Moreover, we neglect all points of the465

auxiliary grid, which are outside the METIS face, and encode all corresponding points466

in the three-dimensional sampling grid by the dummy value −1. Similar as for edges467

obtained by a two-dimensional METIS decomposition, choosing the normal vectors468

of the triangles as sampling direction vectors in the extrusion process leads to gaps469

in the three-dimensional sampling grid close to the face; see also [24, Sec. 3.1, Fig.470

4] for a two-dimensional graphical representation. This is caused by the fact that,471

in general, METIS faces are not smooth. As we have already shown for edges in the472

two-dimensional case, the neighborhood of an interface component will be the most473

important for the decision if adaptive constraints are necessary or not and therefore474

the aforementioned gaps have to be minimized; see [25]. To avoid these gaps and thus475

to obtain sampling points in most finite elements close to the face, we suggest the use476

of sampling directions obtained by a moving average iteration over the normal vectors477

of the face. In some sense, this can be interpreted as a smoothing of the face or, more478

precisely, the field of normal vectors on the face.479

The following procedure turned out to be the most appropriate for our purposes480

in the sense that, on average, for each face and each neighboring subdomain, it results481

in the highest number of sampled elements relative to the overall number of elements482

in the subdomain. Here, we first uniformly refine all triangles of a given METIS face483

once by subdividing each triangle of the face into four new regular triangles. For484
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Fig. 7. Visualization of the moving average procedure to obtain the sampling direction vectors
for the extrusion of the auxiliary grid. For the red triangle, all grey, light blue and dark blue triangles
are considered recursively as grouped by colors for a moving average with a window length of 3.

each of the resulting finer triangles, we compute the normal vector originating in its485

centroid. We then use the normal vectors of the refined triangulation to compute a486

single sampling direction for each triangle of the original triangulation of the face. For487

this purpose, we first ’smooth’ the field of normal vectors of the refined triangulation488

by using a component-wise moving average, applied twice recursively with a fixed489

window length of 3. Subsequently, by computing the average of the resulting normal490

vectors of all four related finer triangles we finally obtain the sampling direction of491

the original triangles. Then, we use the same sampling direction for all points of the492

auxiliary grid which are located in the same triangle.493

Let us briefly describe the moving average approach and the meaning of the494

window length in more details. For each triangle of the refined face, one after another,495

we replace the normal vector by a component-wise average of the normal vector itself496

and the normal vectors of certain surrounding triangles. The triangles considered in497

the averaging process are aggregated recursively as follows. In a first step, for a given498

triangle, we add all neighboring triangles that share an edge with the given triangle499

to obtain a patch with a window length of 1. Recursively, for an increasing window500

length, we add all triangles that share an edge with a triangle that has been selected501

in the previous step. Please see also Figure 7 for an exemplary visualization of all502

considered triangles for a moving average with the window length of 3.503

Finally, we use the obtained sampling directions to compute the final three-504

dimensional sampling grid in the two neighboring subdomains of the face. In Figure 8,505

we visualize all sampled (middle) and non-sampled (right) finite elements using the506

described procedure for an exemplary METIS face; we call a finite element “sampled”507

if it contains at least one sampling point. We can observe that, especially in the close508

neighborhood of the face, we obtain sampling points in almost all finite elements.509

As final input for our neural network, we use a vector containing evaluations of510

the coefficient function ρ or the Young modulus E, respectively, for all points in the511

sampling grid.512

3.2. Training and validation phase. For the training and validation of the513

neural network, we use a data set containing approximately 3 000 configurations of514

pairs of coefficient functions and subdomain geometries for two subdomains sharing a515

face. To obtain the output data, i.e., the correct classification labels, for the training516

of the neural network, we solve the eigenvalue problem described in subsection 2.3.2517

for each of these configuration. Note that the correct classification label for a specific518

face does not only depend on the geometry and the coefficient distribution but also519
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Fig. 8. Visualization of a METIS face between two neighboring subdomains (left) and all
sampled (middle) and non-sampled (right) FE’s when using the described sampling procedure.

on the underlying PDE. Therefore, we will use the same configurations for diffusion520

and elasticity problems but compute the correct classification labels separately.521

In [24], for the two-dimensional case, we used only two edge geometries, i.e., a522

regular edge and an edge with a single jag, and combined them with a set of carefully523

designed coefficient distributions, resulting in a total of 4 500 configurations; in [22],524

this data set based on manually designed coefficient distributions was also referred to525

as ‘smart data’. Since both the domain decomposition and the coefficient distribution526

may be more complex in three dimensions compared to two dimensions, we use a527

different approach for the generation of our training and validation data. In particular,528

we consider six different meshes resulting from regular domain decompositions of the529

unit cube into 4 × 4 × 4 = 64 or 6 × 6 × 6 = 216 subdomains of size H/h = 6, 7, 8.530

For each of these meshes, we generate 30 different randomly generated coefficient531

distributions based on the approach discussed in [22]. More precisely, we control the532

ratio of high vs. low coefficient voxels and impose some light geometrical structure.533

In particular, we build connected stripes of high coefficient with a certain length in534

x, y, or z direction, and additionally combine them by a pairwise superimposition;535

cf. [22] for a more detailed description for the two-dimensional case and Figure 9 for536

an exemplary coefficient distribution in three dimensions. In analogy to [22], we refer537

to this set of coefficient functions as random data.538

For each combination of mesh and coefficient distribution, we now consider the539

aforementioned regular domain decomposition as well as a corresponding irregular do-540

main decomposition into 64 or 216 subdomains, respectively, obtained using the graph541

partitioning software METIS [30]. Finally, we consider the eigenvalue problems cor-542

responding to all resulting faces combined with the different coefficient distributions.543

As mentioned before, we obtain a total of approximately 3 000 configurations.544

Note that, in general, using a smaller number of METIS subdomains, we obtained545

face geometries which resulted in worse generalization properties of our neural net-546

works. Moreover, in contrast to the two-dimensional case, where we needed at least547

4 500 configurations, we are here able to obtain very good results for total of only548

roughly 3 000 configurations. This is likely due to the much smaller numbers of finite549

elements per subdomain used, compared to our two-dimensional experiments in [24].550

For the sampling, we select 22 points in both of the two tangential directions of551

the auxiliary grid of a face and 22 points in orthogonal direction for each of the two552

adjacent subdomains; hence, we obtain approximately two sampling points in each553

finite element when using a subdomain size of H/h = 10.554
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Fig. 9. Example of a randomly distributed coefficient function in the unit cube obtained by using
the same randomly generated coefficient for a horizontal or vertical beam of a maximum length of
4 finite element voxels. The grey voxels correspond to a high coefficient and we have a low coeffient
of 1 otherwise. Visualization for 2 × 2 × 2 subdomains and H/h = 5.

Fig. 10. ROC curve and precision-recall plot for the optimal model obtained by a grid search.
We define precision as true positives divided by (true positives+false positives), and recall as true
positives divided by (true positives+false negatives). The thresholds used in section 4 are indicated
as circles.

As in [24], we train the neural network using the Adam (Adaptive moments) [32]555

optimizer, a variant of the Stochastic Gradient Descent (SGD) method with adaptive556

learning rate. The hyper parameters for the training process and the neural network557

architecture are again chosen based on a grid search with cross-validation. More558

precisely, we compare the training and generalization properties of different neural559

networks for several random splittings of our entire data set into 80 % training and560

20 % validation data; cf. [24] for details on the hyper parameter search space and finally561

chosen set of hyper parameters. The Receiver Operating Characteristic (ROC) curve562

and a precision-recall plot of the neural network with optimal hyper parameters are563

shown in Figure 10. Let us note that we use the same neural network for both, regular564

and METIS decompositions, in our numerical experiments.565

3.3. Extension to three-class classification using frugal face constraints.566

As described in subsection 2.4, we can replace the adaptive constraints by less costly567

frugal constraints on faces, where only a single constraint (in case of a stationary568

diffusion problem) or less than or equal to six constraints (in case of linear elasticity)569

are necessary. Please see [23] for a detailed description of the resulting frugal con-570
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classification type threshold fp fn acc

two-class classification
0.45 2.76% 1.76% 95.5%
0.5 1.70% 3.40% 94.9%

three-class classification
0.4 5.2% 1.7% 93.1%
0.5 2.1% 2.3% 95.6%
Table 1

Results on the complete training and validation data set. We define the accuracy (acc) as the
number of true positives and true negatives divided by the total number of training and validation
configurations.

straints in two and three dimensions. Consequently, if known a priori, we can omit571

the eigenvalue problem to compute the adaptive constraints on these faces. Thus,572

we also propose an extended three-class classification approach for faces, analogously573

to the three-class approach for edges in [24]. Here, we train a neural network which574

distinguishes between the following three classes: faces, where the eigenvalue prob-575

lem is unnecessary (class 0), where the eigenvalue problem results in exactly one (for576

stationary diffusion) or less than or equal to six (linear elasticity) constraints (class577

1), and where the eigenvalue results in more than one or six, respectively, constraints578

(class 2). For all faces assigned to class 0, we do not enforce any face constraint.579

For all faces assigned to class 1, we enforce the frugal face constraints as described580

in [23]. Only for the remaining faces, we solve the corresponding eigenvalue problems581

and enforce the computed adaptive constraints.582

3.4. Results on the training data. On the complete set of training and valida-583

tion data, we obtain the results listed in Table 1. As in [24], we used the classification584

thresholds 0.45 and 0.5 for the two-class classification and 0.4 and 0.5 for the three-585

class classification, respectively. For the two-class classification, we observe nearly586

the same accuracy values when using the classification threshold 0.5 and 0.45. For587

the three-class classification, however, lowering the threshold to 0.4 results in a lower588

accuracy value than for using the threshold of 0.5. In both cases, the number of false589

negative faces, which corresponds to the number of critical faces not detected by the590

algorithm and which are critical for the convergence of the iterative FETI-DP solver,591

can be reduced by decreasing the threshold. We denote this approach to improve the592

robustness as ‘overshooting’; cf. [24]. In section 4, we will always compare the results593

for the default threshold, 0.5, and the overshooting threshold, 0.45 and 0.4 for the594

two-class and three-class model, respectively.595

4. Numerical results for ML-FETI-DP. In this section, we provide compar-596

ative results for the classical FETI-DP, adaptive FETI-DP, and our ML-FETI-DP597

method. We present numerical results for different coefficient functions ρ in model598

problem (2.1) and different distributions for the Young modulus E in (2.2). We always599

use structured tetrahedral meshes of the unit cube constructed from discretizing each600

voxel of a regular voxel mesh by five piecewise linear tetrahedral finite elements; all601

coefficient distributions are chosen to be constant on each voxel. For all our numerical602

computations, we use the preconditioned conjugate gradient (PCG) algorithm. As the603

stopping criterion for PCG we use a relative reduction of the preconditioned residual604

by a factor of 1e-8. For adaptive FETI-DP, we use the tolerance TOL = 100. In our605

comparison, we consider both domain decompositions into regular, cubic subdomains606

as well as irregular domain decompositions obtained from METIS [30]. Please note607

that the configurations appearing in the numerical experiments in this section are608
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Fig. 11. Five spheres with different radii in the unit cube. Resolution of 128 × 128 × 96 voxel
corresponding to computations with H/h = 16 and 8 × 8 × 6 = 384 subdomains. Figure from [23,
Fig. 11].

Fig. 12. Left: Visualization of the area with a high coefficient for two neighboring subdomains,
marked in red and blue, and the face between those subdomains, marked in green; see Figure 11
for the complete coefficient function. Right: Zoom-in of the coefficient jump along the green face
between two neighboring subdomains. Figure from [23, Fig. 12].

generally not part of our training and validation data set. In particular, we have609

chosen both different coefficient distributions as well as combinations of the numbers610

of elements and subdomains.611

4.1. Coefficient functions. For stationary diffusion, we consider a coefficient612

function based on five spherical inclusions of different radii in the unit cube; see Fig-613

ure 11. Here, all voxels within the five spheres have an identical high coefficient ρ,614

whereas the remaining voxels all have a small coefficient.615

As the second model problem, we consider a linear elastic representative volume616

element (RVE) of a dual-phase steel representing the microstructure of a DP600 steel617

and obtained by an EBDS (electronic backscatter diffraction) measurement. This618

dual-phase steel consists of a martensitic phase and a ferritic phase. In our compu-619

tations, we use a high coefficient in the martensitic phase and a low coefficient in the620

ferritic phase of the material. The most realistic model problem considered here is621

the case of a coefficient contrast of 1e3. Let us note that the RVE is part of a larger622

microstructure which was presented in [5].623

4.2. Two-class model. Let us first discuss our two-class model. Here, the624

neural network distinguishes between faces, where the eigenvalue problem results in at625
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Fig. 13. Coefficient distribution on a representative volume element (RVE) of a dual-phase
steel in the unit cube. This RVE is part of a larger structure presented in [5]. Visualization of the
domain decomposition into 512 subdomains and H/h = 4. High coefficients are shown in black, and
subdomains are shown by blue slices. The higher coefficient is E1 = 1e3 and the lower coefficient is
E2 = 1, with ν = 0.3 everywhere.

least one (stationary diffusion) or six (linear elasticity) additional adaptive constraints626

and faces, where the eigenvalue is unnecessary. In analogy to [24], we will refer to627

the latter case as “negative” or “negative face” and to the first case as “positive” or628

“positive face”. For the adaptive algorithm, we always use a tolerance of TOL = 100.629

4.2.1. Regular domain decompositions. Let us first consider the stationary630

diffusion problem, where the coefficient distribution is given by the spherical inclusions631

depicted in Figure 12. We partition the cubic domain into 4×4×4 regular subdomains632

with subdomain size H/h = 10. In Table 2, we compare the iteration counts and633

condition number estimates for the classical FETI-DP, adaptive FETI-DP, and the634

new ML-FETI-DP method. As already done in [24], we also report the number of635

false negative and false positive faces resulting from our machine learning classification636

for two different ML thresholds τ ; cf. the discussions in subsection 3.4 and [24]. Let637

us note that only false negative faces are critical for the convergence of the ML-FETI-638

DP method, whereas false positive faces correspond to eigenvalue problems, which are639

solved even though they are not necessary for the robustness of the algorithm. We640

observe that, when using the ML threshold of τ = 0.5, we obtain two false negative641

faces. This leads to a worse condition number estimate, while the iteration number of642

the algorithm is still satisfactory. By lowering the ML decision threshold to τ = 0.45,643

we are able to eliminate all false negative faces and thus to correctly identify all critical644

faces, where the eigenvalue problem is necessary. In particular, using our ML-FETI-645

DP approach with overshooting, we solve only 12 eigenvalue problems in contrast to646

144 eigenvalue problems for the fully adaptive approach. Nonetheless, we are still able647

to retain the same condition number estimate and iteration count. This is indeed a648

major saving in the number of eigenvalue problems and thus computation time.649

We further provide numerical results for the linear elasticity problem using the650

RVE in Figure 13 as material distribution. Here, we decompose our domain into651

8 × 8 × 8 regular subdomains with a reduced size H/h = 6. Let us note again that652

we use a neural network different from the one used for diffusion problems since653

the correct labels may differ; cf. subsection 3.2. We summarize the comparative654

results for this model problem in Table 3. As for the stationary diffusion problem655
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Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

Five adaptive - 44.97 63 144 - - -
Spheres ML 0.5 2.73e4 67 7 2 2 0.97

ML 0.45 44.97 63 12 5 0 0.96

Table 2
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-

main decompositions for the two-class model. Decomposition of the unit cube into 4 × 4 × 4
subdomains and H/h = 10. Stationary diffusion problem. We show the ML threshold (τ), the
condition number (cond), the number of CG iterations (it), the number of solved eigenvalue prob-
lems on faces (evpF ), the number of false positives (fp), the number of false negatives (fn), and the
accuracy of the classification (acc).

Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

RVE adaptive - 16.89 39 1344 - - -
Problem ML 0.5 3.76e4 45 52 10 5 0.98

ML 0.45 16.89 40 66 19 0 0.98

Table 3
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-

main decompositions for the two-class model. Decomposition of the unit cube into 8 × 8 × 8
subdomains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

in Table 2, we are able to eliminate all false negative faces and thus obtain a robust656

algorithm when using an ML threshold of 0.45. Furthermore, we observe that only657

66 eigenvalue problems have to be solved for ML-FETI-DP in comparison to 1344658

eigenvalue problems solved for the fully adaptive FETI-DP method.659

4.2.2. METIS domain decompositions. We also consider an irregular do-660

main decomposition obtained via METIS for the same stationary diffusion and linear661

elasticity problems as in subsection 4.2.1. The corresponding results are summarized662

in Table 4 and Table 5, respectively. For the stationary diffusion problem, the ML663

algorithm misses 4 critical faces when using the ML threshold τ = 0.5. However,664

when lowering the ML threshold to τ = 0.45, we are again able to identify all crit-665

ical faces. Consequently, we retain nearly the same convergence behavior as for the666

adaptive FETI-DP method, while solving only 38 instead of 288 eigenvalue problems;667

see Table 4. For the elasticty problem, the results are fairly comparable; see Table 5.668

Again, when using the ML threshold of τ = 0.45, we are able to identify all faces669

which are critical for the convergence of the algorithm. In particular, we only have to670

solve 92 eigenvalue problems instead of 1547 for the adaptive FETI-DP approach.671

4.3. Three-class model. Let us now discuss the results for our three-class672

model; cf. subsection 3.3. Let us note once more that, in the three-class approach, we673

now construct frugal face constraints instead of solving an eigenvalue problem if our674

neural network labels a face as class 1; cf. subsection 2.4. Thus, we do not need to675

solve any eigenvalue problems for the corresponding faces. As for the two-class model,676

we always use a tolerance of TOL = 100 in the adaptive algorithm. We consider the677

same coefficient functions and material distributions, respectively, as in subsection 4.2.678

4.3.1. Regular domain decompositions. The results for the stationary dif-679

fusion problem are summarized in Table 6. As for the two-class model, we are able680
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Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

Five adaptive - 30.24 49 288 - - -
Spheres ML 0.5 3.17e4 55 27 5 4 0.97

ML 0.45 30.25 50 38 12 0 0.96

Table 4
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for METIS do-

main decompositions for the two-class model. Decomposition of the unit cube into 64 subdo-
mains and H/h = 10. Stationary diffusion problem. See Table 2 for the column labeling.

Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

RVE adaptive - 20.13 41 1547 - - -
Problem ML 0.5 3.57e4 47 77 10 6 0.98

ML 0.45 20.13 41 91 18 0 0.98

Table 5
Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for METIS do-

main decompositions for the two-class model. Decomposition of the unit cube into 512 subdo-
mains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

to eliminate all false negative faces for the three-class model, when using the ML681

threshold τ = 0.4. However, in comparison to the two-class model in Table 4, we now682

only need to solve 9, instead of 12, of the original 144 face eigenvalue problems. Thus,683

due to the computation of the frugal constraints, we are able to further reduce the684

number of necessary eigenvalue problems, while retaining a robust algorithm.685

For the linear elasticity problem, the results are again fairly similar; see Table 7.686

In this case, we are able to further reduce the number of necessary eigenvalue problems687

from 66 in Table 6 to 32 by using frugal face constraints for all faces classified to class 1.688

4.3.2. METIS domain decompositions. Using the three-class model and689

METIS domain decompositions, we obtain similar results compared to those for reg-690

ular domain decompositions in subsection 4.3. In Table 8, we present the results for691

the stationary diffusion problem. We observe that, for a robust choices of the ML692

threshold, the number of necessary face eigenvalue problems can be further reduced693

from 38, for the two-class model in Table 4 and τ = 0.45, to 19, for τ = 0.4. Con-694

sidering the results for the linear elasticity problem in Table 9 does not change the695

picture. Using the three-class classification, we only need to solve 45 out of originally696

1 547 eigenvalue problems on faces for τ = 0.45 while retaining robustness and fast697

convergence of the algorithm.698

5. Conclusion. We have extended our hybrid ML-FETI-DP approach, which699

combines adaptive FETI-DP methods and machine learning, to three dimensions.700

Using this approach, the number of necessary eigenvalue problems in an adaptive701

FETI-DP method for heterogeneous coefficient distributions may be significantly re-702

duced. The extension to three dimensions required a rather complex but computa-703

tionally relatively inexpensive preprocessing procedure to generate structured input704

data of the neural network, even for unstructured geometries. We have used both the705

two-class and the three-class classification approaches from [24], where the three-class706

approach utilizes the frugal constraints introduced in [23] to reduce the number of707
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Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

Five adaptive - 44.97 63 144 - - -
Spheres ML 0.5 1.36e4 66 5 4 3 0.95

ML 0.4 46.77 64 9 13 0 0.91
Table 6

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the three-class model. Decomposition of the unit cube into 4 × 4 × 4
subdomains and H/h = 10. Stationary diffusion problem. See Table 2 for the column labeling.

Model Problem Algorithm τ cond it evpF fp fn acc
standard - - >350 0 - - -

RVE adaptive - 16.89 39 1344 - - -
Problem ML 0.5 4.27e3 44 27 11 5 0.98

ML 0.4 18.49 40 32 26 0 0.98
Table 7

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the three-class model. Decomposition of the unit cube into 8 × 8 × 8
subdomains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

eigenvalue problems even further than the two-class approach.708

We have provided numerical results comparing the new three-dimensional ML-709

FETI-DP algorithm to classical and adaptive FETI-DP methods for diffusion and710

linear elasticity problems and realistic coefficient distributions. Using an overshooting711

strategy, we have always obtained a robust method with a low condition number712

estimate. When using the three-class approach and frugal constraints, we have been713

thus able to reduce the number of necessary eigenvalue problems by at least 86 %. In714

the best case, we even have been able to reduce the number of eigenvalue problems of715

the plain adaptive FETI-DP method from 1344 to 32 using the three-class approach;716

this corresponds to a reduction by more than 97 %.717
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[4] P. E. Bjørstad, J. Koster, and P. Krzyżanowski, Domain decomposition solvers for large727
scale industrial finite element problems, in PARA2000 Workshop on Applied Parallel Com-728
puting, Lecture Notes in Computer Science 1947, Springer-Verlag, 2000.729

[5] D. Brands, D. Balzani, L. Scheunemann, J. Schröder, H. Richter, and D. Raabe, Com-730
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