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Abstract. The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse
spaces in domain decomposition methods and certain supervised machine learning techniques. Adap-
tive coarse spaces ensure robustness of highly scalable domain decomposition solvers, even for highly
heterogeneous coefficient distributions with arbitrary coefficient jumps. However, their construction
requires the setup and solution of local generalized eigenvalue problems, which is typically compu-
tationally expensive. The idea of ML-FETI-DP is to interpret the coefficient distribution as image
data and predict whether an eigenvalue problem has to be solved or can be neglected while still
maintaining robustness of the adaptive FETI-DP method. For this purpose, neural networks are
used as image classifiers. In the present work, the ML-FETI-DP algorithm is extended to three di-
mensions, which requires both a complex data preprocessing procedure to construct consistent input
data for the neural network as well as a representative training and validation data set to ensure
generalization properties of the machine learning model. Numerical experiments for stationary dif-
fusion and linear elasticity problems with realistic coefficient distributions show that a large number
of eigenvalue problems can be saved; in the best case of the numerical results presented here, 97 %
of the eigenvalue problems can be avoided to be set up and solved.

Key words. ML-FETI-DP, FETI-DP, machine learning, domain decomposition methods, adap-
tive coarse spaces, finite elements

AMS subject classifications. 65F10, 65N30, 65N55, 68T05

1. Introduction. Domain decomposition methods are highly scalable, iterative
solvers for the solution of large systems of equations such as arriving, e.g., from the
discretization of partial differential equations by finite elements. Among the most
commonly used domain decomposition methods are the FETI-DP (Finite Element
Tearing and Interconnecting - Dual Primal) [12, 11, 48, 49], BDDC (Balancing Do-
main Decomposition by Constraints) [7, 8, 51, 53, 52] and overlapping Schwarz [61]
methods. All of these methods have successfully been applied to a wide range of
problems and have been shown to be parallel scalable up to hundred of thousands
of cores and beyond [26, 62, 2, 1, 39, 44, 40, 38, 37, 27]. In the present article,
we are mostly interested in the solution of highly heterogeneous stationary diffusion
or linear elasticity problems with high contrasts in the material distributions. For
such cases, including those with arbitrary jumps in the diffusion coeflicient or the
Young modulus, the convergence rate of standard domain decomposition methods
typically deteriorates severely. In particular, the classic condition number bounds for
standard domain decomposition methods are only valid under relatively restrictive
assumptions concerning the coeflicient function or the material distribution. Thus, in
case of highly complex coefficient functions, coarse space enhancements are necessary
to guarantee a robust algorithm while retaining a good condition number bound to
preserve numerical scalability. For FETI-DP algorithms considered in the present
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2 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

article, such a condition number bound would only depend polylogarithmically on
the size of the subproblems while being independent of the contrast of the values of
the relevant coefficient functions. To accomplish this in three dimensions for material
discontinuities aligned with the interface between subdomains, additional averages
along edges and first order moments to enhance the coarse space have been pro-
posed in [48, 49]. This approach has been heuristically extended in [43] for material
discontinuities not aligned with the interface using certain weighted averages. We
have further generalized this technique in [23]. Here, we have integrated general-
ized weighted averages along faces and/or edges into the coarse space. Using this
approach as a default can help to make FETI-DP and BDDC algorithms more ro-
bust for a number of realistic application problems. However, all aforementioned
approaches are generally not robust for arbitrary coefficient functions, e.g., with nu-
merous discontinuities along and across the interface between subdomains. Hence,
adaptive coarse spaces have been developed for different domain decomposition algo-
rithms [4, 35, 34, 33, 58, 57, 3, 6, 54, 55, 42, 41, 31, 13, 14, 10, 9, 59, 60, 19, 18, 20].
In adaptive coarse spaces, eigenvectors originating from the solution of certain local
generalized eigenvalue problems on parts of the interface, e.g., faces or edges, are used
to enhance the coarse space. For these techniques, condition number bounds that are
robust with respect to arbitrary coefficient distributions can be proven. In particular,
the resulting condition number bounds only depend on a user-defined tolerance, which
is used as a threshold for the selection of the eigenvectors based on their corresponding
eigenvalues, and on geometrical constants. As a drawback, in a parallel implemen-
tation, the setup and the solution of the eigenvalue problems take up a significant
amount of time; cf. [50, 36]. However, for many realistic coeflicient distributions, a
large number of eigenvalue problems which are not necessary for a robust convergence
of the adaptive domain decomposition method is solved; they are not necessary in the
sense that no corresponding eigenvectors are being selected. In order to account for
this, in [24], we introduced the concept of training a neural network to make an auto-
matic decision whether the solution of a specific local eigenvalue problem is necessary
for robustness. In particular, we have focused on the two-dimensional case and the
adaptive coarse space introduced in [54] for the FETI-DP method, which is based
on local eigenvalue problems on edges between neighboring subdomains; see [42] for
the first theoretical proof of a robust condition number bound for this algorithm.
We were able to significantly reduce the number of necessary eigenvalue problems on
edges by using samples of the coefficient function in the adjacent subdomains as input
for the machine learning model; in [25], we have shown that it is actually sufficient to
sample in neighborhoods close to the edges. Throughout this paper, we denote the
algorithm combining adaptive FETI-DP and machine learning introduced in [24] by
ML-FETI-DP.

Here, we extend the two-dimensional ML-FETI-DP approach [24] to three-dimen-
sional problems. The main concept is very similar, however, the interface between
the adaptive FETI-DP algorithm and the neural network, i.e., the preprocessing of
the input data for the neural network, requires substantial modifications and en-
hancements. In particular, handling faces of three-dimensional unstructured domain
decompositions, e.g., obtained from METIS [30], is much more complex compared
to edges in two dimensions. Moreover, in the generation of training and validation
data, we use METIS domain decompositions and adapt the generation of coefficient
distributions based on randomization as described for two dimensions in [24] to three
dimensions. The main focus of this paper is thus on the description of the prepro-
cessing of the data. As a machine learning approach, we will again - as in [24] -
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MACHINE LEARNING AND DOMAIN DECOMPOSITION IN 3D 3

employ feedforward neural networks with Rectified Linear Unit (ReLU) activation
and dropout layers.

The remainder of this paper is organized as follows. First, we introduce our
model problems, namely stationary diffusion problems and linear elasticity problems.
Second, we briefly recapitulate the FETI-DP domain decomposition method and the
specific adaptive coarse space approach [33, 54, 55] for three dimensions. Afterwards,
we present our machine learning based approach ML-FETI-DP using feedforward
neural networks. We then describe the preprocessing of the input data and how we
generate appropriate training and validation data for the training process of the neural
network. Finally, we show numerical results for different relevant elliptic problems. At
first, we consider a coefficient distribution with five balls of different radii in the unit
cube. Second, we consider an RVE (Representative Volume Element) representing
the microstructure of a dual-phase steel.

2. Model problems and adaptive FETI-DP domain decomposition al-
gorithms. In this section, we give a brief introduction of our model problems and
shortly describe the classic FETI-DP domain decomposition method [12, 11, 48, 49].
Finally, in subsection 2.3.2, we describe the employed adaptive FETI-DP coarse space
technique for three dimensions; see [33, 54, 55].

2.1. Diffusion, elasticity, and finite elements. As a first model problem,
we consider a stationary, linear, scalar diffusion problem with a highly heterogeneous
coefficient function p : 2 — R and homogeneous Dirichlet boundary conditions on 9.
Thus, the model problem in its variational form can be written as: find u € H}(Q)
such that

(2.1) /qu~Vv dx:/fvdx Yo € HY(Q).
Q Q

Various examples of coefficient functions are discussed in section 4.
As a second model problem, we consider the equations of linear elasticity. It
consists of finding the displacement u € Hy(Q) := (H}(€2))? such that

(2.2) /QG g(u) : e(v) dx + /Q Gp divu divv dx = /QfTv dx

for all v € H{(Q), given material functions G : @ — R and 3 : Q — R, and a volume
force f € (L*(Q))3.

By a finite element discretization of (2.1) and (2.2) on 2, we obtain the respective
linear system of equations

(2.3) Kgug = fg~

We denote the finite element space by V" and we have Ug, fg € V. Note that,
throughout this paper, we assume that the coefficient functions p, G, and 3 are
constant on each finite element but may have large jumps from element to element.
For simplicity, in the present article, we only consider tetrahedrons and linear finite
elements.

2.2. Standard FETI-DP. Let us briefly describe the classic FETI-DP method
and introduce some necessary notation.

This manuscript is for review purposes only.



H
~

—= =
ot

(S, S, BN, B, B
3 C

© o

160
161
162
163
164
165
166
167

168

169

4 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

2.2.1. Domain decomposition. We assume a decomposition of €2 into N € N
nonoverlapping subdomains ;, ¢ = 1,...,N, ie., Q = Ufil ;. Each of the sub-
domains is a union of finite elements. The finite element subspaces associated with
Q;, i=1,...,N, are denoted by W;, i =1,..., N. We obtain local finite element prob-
lems K@ u() = () with K® : W; — W; and f@ e W; by restricting the considered
differential equation (2.1) or (2.2) to §2; and discretizing its variational formulation
in the finite element space W;. Let us remark that the matrices K are, in general,
not invertible for subdomains, which have no contact to the Dirichlet boundary.

We introduce the simple restriction operators R; : V* — W;, i = 1,..., N, the
block vectors u” := (u(l)T,...,u(N)T) and f7 := (f(l)T,...,f(N)T), and the block
matrices RT := (RlT,...,RqA}) and K = diag (K(l),...,K(N)). We then obtain the
identities

(2.4) K,=R'KR and f,=R"f.

The application of RT in (2.4) thus has the effect of a finite element assembly process
of local finite element functions on the interface I' := (vazl 8Qi) \ 0Q.

The block matrix K is not invertible as soon as a single subdomain has no contact
to the Dirichlet boundary. Therefore, the system Ku = f has no unique solution and,
more precisely, an unknown vector u might be discontinuous on the interface. We
now proceed to describe how the solution w4 is obtained using FETI-DP, i.e., how the
continuity of w € W := W7 x ... x Wy on the interface is enforced.

2.2.2. The FETI-DP saddle point system. Let us assume, we have sorted
and decomposed an unknown vector u from the product space W into interface vari-
ables ur and all remaining interior variables uy, i.e., u” = (uIT, u%) € W. We further
subdivide the degrees of freedoms on the interface ur into primal variables uy; and
dual variables ua. Throughout this paper, we select all subdomain vertices to be
primal. Continuity in the primal variables is enforced by a finite element assembly
process, while continuity in the dual variables is enforced iteratively by Lagrange
multipliers.

For the primal assembly process we introduce the operator R, which is similar
to RT, but assembles only in primal variables. We denote the corresponding primally
assembled finite element space by W. Thus, we have Ry : W — W and any © € W
is of the structure a7 = (u}r,uz,ﬂg), where 4y is now a vector of global variables.
The vector 4y can also be seen as a coarse solution and the corresponding Schur
complement system in the primal variables constitutes the global coarse problem or

second level problem in FETI-DP. We define primally coupled operators by
(2.5) f=REf and K = RLKRy.

Let us remark that K : W — W will be a regular matrix if enough primal constraints
are chosen.

Enforcing continuity in the dual variables is done by the constraint Bu = 0, using
a linear jump operator B = [BM), ..., BW)]; see, e.g., [44] for a detailed definition of
B. Each row of B evaluates the jump between two degrees of freedom on the interface
belonging to the same physical node but different subdomains. Thus, each row of B
contains exactly one 1 and one —1 and the remaining entries are zero. Enforcing the
jump condition via Lagrange multipliers, we obtain the FETI-DP saddle point system

2o (5% )(2)-(7)
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MACHINE LEARNING AND DOMAIN DECOMPOSITION IN 3D 5

where X is the vector of the Lagrange multipliers. Let us remark that, due to the
constraint Bu = 0, the solution @ € W is continuous on the interface I'.

2.2.3. Iterative solution of the FETI-DP system. By a block elimination
in (2.6) we derive the system

(2.7) Fi=d

with F = BK'BT and d = BIN(’lf. Equation (2.7) is solved iteratively with a
preconditioned CG or GMRES approach using an additional Dirichlet preconditioner
Mp?'; see also [61]. The preconditioner My' is a weighted sum of local Schur com-
plements in the dual variables. Let

i i i) 7(0)—1 ()T
(2.8) St = KXy = KL K[ KL

be the Schur complement of K i =1,...,N in the dual variables and

(2.9) Bp = (D<1>TB<1>, ...,D(N)B(N)T>

a scaled jump matrix, where the scaling matrices D, i = 1, ..., N are usually defined
by the PDE coefficients. We further define Bp a, the restriction of Bp to the dual

variables, and Saa = diag(S(Al)A, ey S(AAQ). The preconditioner is then defined by

(2.10) MBl ZBD’ASAAB%;’A.

The application of MBl is embarrassingly parallel due to the block diagonal structure
of S. The desired solution # is finally obtained by solving

(2.11) Kia=f—B"\

2.2.4. Condition number bound. For scalar elliptic partial differential equa-
tions as well as for linear elasticity problems, the classic polylogarithmic condition
number bound

(2.12) k(Mp'F) < C (1 + log (IZ»Q

holds, with C' independent of H and h; see, e.g., [47, 49, 48]. In (2.12) H is the
maximum diameter over all subdomains, A the maximum diameter over all finite ele-
ments, and thus H/h is a measure for the number of finite elements per subdomain.
In general, different coefficient distributions in two and three dimensions can be cap-
tured by different coarse spaces and scalings in the preconditioner M, L. Please note
that in three dimensions additional coarse constraints based on averages over edges
and/or faces are necessary to retain the same logarithmic condition number bound as
in (2.12); see, e.g., [48, 49] and for experimental results [12, 46].

However, for completely arbitrary and complex coefficient distributions, (2.12)
does not hold anymore. In recent years, adaptive coarse spaces have been developed
to overcome this limitation [4, 35, 34, 33, 58, 57, 3, 6, 54, 55, 42, 41, 31, 13, 14, 10,
9, 59, 60]. In these algorithms, local eigenvalue problems on parts of the interface,
i.e., edges or faces, are solved and selected eigenvectors are used to construct appro-
priate adaptive constraints. The FETI-DP coarse space is then enriched with these
additional primal constraints in the setup phase before the iterative solution phase
starts.

This manuscript is for review purposes only.
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2.3. Adaptive FETI-DP in three dimensions.

2.3.1. Enhancing the coarse space with additional constraints. In gen-
eral, different approaches to implement coarse space enrichments for the FETI-DP
method exist. The two most common approaches are a deflation or balancing ap-
proach [45, 42] and a transformation of basis approach [48, 44]. In the present paper,
we always use the balancing preconditioner to enhance the coarse space with addi-
tional constraints, regardless if adaptive or frugal constraints are enforced; see sub-
section 2.3.2 and subsection 2.4, respectively. Please see [24, Sec. 2.3.1] or [45, 42] for
a detailed description of the deflation and balancing approach.

2.3.2. The adaptive constraints. The main idea of adaptive coarse spaces in
domain decomposition methods is to enrich the FETI-DP or BDDC coarse space with
additional primal constraints, obtained by solving certain local generalized eigenvalue
problems on faces or edges, before the iteration starts. In the following, we give a brief
description of the algorithm considered in [33, 55] for the convenience of the reader.
In three dimensions, for certain equivalence classes &j;, i.e., faces Fj; or edges E;j,
we thus solve the generalized eigenvalue problem

<PD1.].1)Z'J', SZ—]—PDijwiﬁ = /~L7lj <vij7 Sijwij> Vvij S (Ker Sij)l;

see [33]. Note that, in this approach, we only have to solve edge eigenvalue problems
on edges that belong to more than three subdomains.
Here, we define S;; = diag(S;, S;) and Pp,, = ngij By,; as alocal version of the

jump operator Pp = BE B with Bx,, = (Bgé) ng) ) and Bp x,; = (Bg?xijaBg,)Xij)-

ij? ij

We then select all eigenvalues p;; > TOL for a user-defined tolerance TOL and use
the corresponding eigenvectors vy,; to automatically design the coarse space. New
coarse components then enforce the constraint (Bp, x:;9i5 P, inj)TBXij vx,; = 0in
each iteration, e.g., with projector preconditioning or transformation of basis. When
enforcing these constraints for all faces and edges between subdomains, that do not

share a face, we obtain the condition number estimate:
(2.13) k(M 'K) < 4max{Nz, Ne Mg }*TOL;

see [33] for the proof. Here, we denote by Nz the maximum number of faces of a
subdomain, by Ng the maximum number of edges of a subdomain, and by Mg the
maximum multiplicity of an edge. The condition number bound thus only depends
on geometrical constants of the domain decomposition and, in particular, not on the
contrast of the coefficient function. The choice of the tolerance value is user-dependent
and should be selected with reference to the spectral gap of the eigenvalues of the
preconditioned solver; see also [28].

Let us note that the first rigorous proof for the condition number bound was given
n [42] for two dimensions and was extendend to three dimensions in [33] with the
additional use of edge eigenvalue problems. In [54, 55] a condition number indicator
was presented for the first time, both for two and three dimensions.

2.4. Frugal constraints. As in [24] for the two-dimensional case, we here also
consider frugal constraints [23] on certain faces. Frugal constraints build a coarse
space which is robust for many diffusion or elasticity problems with jumps in the
coefficient function, and the setup of the frugal coarse space is rather cheap compared
with the setup of adaptive coarse spaces. This is due to the absence of any local

This manuscript is for review purposes only.
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Input Hidden Output
layer layers layer

F1c. 1. Structure of a dense feed forward neural network with several hidden layers.

eigenvalue problems in the computation of the constraints; see [23] for a detailed dis-
cussion of frugal constraints. Let us remark that, for each face or edge, a single frugal
constraint can be computed in case of a diffusion problem, but up to six in case of a
linear elasticity problem. Nevertheless, for many coefficient distributions, using fru-
gal constraints exclusively is not sufficient to obtain robustness, and hence, the frugal
coarse space has to be enriched by additional adaptive constraints on some specific
faces and/or edges. The combination of both coarse spaces, i.e., the adaptive and the
frugal coarse space, and how we can exploit the benefits of both approaches using ma-
chine learning in the ML-FETI-DP approach, is elaborated later; cf. subsections 3.3
and 4.3.

3. Selecting necessary eigenvalue problems using machine learning.
Here, we extend our approach from [24] to three-dimensional problems. In [24], we
have used machine learning techniques to predict which eigenvalue problems are nec-
essary for robustness of highly heterogeneous two-dimensional linear diffusion and
elasticity problems. This approach is based on the observation that, for many re-
alistic problems with highly heterogeneous coefficient distributions, a large share of
the eigenvalue problems will not yield large eigenvalues p;; > TOL. In particular,
the number of large eigenvalues that correspond to an equivalence class X;; can be
attributed to the local part of the coeflicient function in the adjacent subdomains.
Hence, in two dimensions, we used a sampling procedure, to construct, for each edge,
an image representation of the coefficient function in the two adjacent subdomains;
cf. [24, Sect. 3.1] and Figure 2 (left). By ‘sampling procedure’, we understand a spe-
cific sequence of evaluations of the coefficient function. Using the resulting image
representation as input, a machine learning model was trained to classify whether the
corresponding eigenvalue problems yield a large eigenvalue or not. Then, only those
eigenvalue problems that are classified as necessary are solved. As already mentioned
in the introduction, we denote this hybrid algorithm which combines the adaptive
FETI-DP algorithm and a machine learning model as ML-FETI-DP. As an extension
to this binary classification, we also introduced a three-class model, which reduces the
number of computed eigenvalues even further by additionally using frugal constraints;
cf. [23], [24, Sect. 3.3], as well as subsections 2.4 and 3.3.

As described in subsection 2.3.2, edge as well as face eigenvalue problems have
to be solved for robustness in three dimensions. However, the edges typically only
possess a relatively small number of nodes, and hence, the corresponding eigenvalue
problems are rather small; cf. [21]. Therefore, in our three-dimensional approach,
we restrict ourselves to the identification of necessary face eigenvalue problems and

This manuscript is for review purposes only.
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8 A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

solve all eigenvalue problems for edges which belong to more than three subdomains.
Note that, for unstructured domain decompositions, these edges are rather rare. As
in the two-dimensional case, we will additionally consider a three-class approach;
cf. subsection 3.3. As input for the machine learning model, we now sample from
the three-dimensional coefficient function creating a three-dimensional image repre-
sentation; see subsection 3.1 and Figure 2 (left). This step is significantly extended
compared to the two-dimensional case.

The eigenvalue classification problem in our approach is essentially an image clas-
sification task. Therefore, as in [24], we will employ neural networks, which have been
proven to be powerful models for image classification. In general, classification is a
task of supervised machine learning. Supervised learning models approximate the
nonlinear functional relationship between input and output data F' : I — O, with
the input space I being a product of R, N, and boolean vector spaces. For classifi-
cation problems, as considered here, the output space is typically an N vector space.
A detailed description of supervised learning and feedforward neural networks (or
multilayer perceptrons, respectively), can, e.g., be found in [17]. Here, we will use
dense neural networks, which means that each neuron in a given layer is generally
connected with all neurons in the previous layer; cf. Figure 1 for a visualization of
a dense feedforward neural network. However, to further improve the generalization
properties for our neural network, we use dropout layers with a dropout rate of 20%;
see also [24]. Let us note that analogously to [24], we choose the ReLU (Rectified
Linear Unit) function [29, 56, 16] as our activation a(x) in all our numerical experi-
ments, which is defined by a(z) = max {0, 2} . The training and validation procedure
for the neural network model is described in subsection 3.2 and first results on the
training and validation data are presented in subsection 3.4.

For a complete description of the employed machine learning framework, please
refer to [24, Sec. 3] and the references therein.

3.1. Data preprocessing. In analogy to [24], we aim to train and test our
neural network for both regular domain decompositions as well as for domain decom-
positions obtained from the graph partitioning software METIS [30]. We will observe
that extending our methods introduced in [24] from two dimensions to three dimen-
sions causes additional challenges and additional effort is needed preprocessing the
input data for our machine learning model. The preprocessing of input data is at the
core of our hybrid ML-FETI-DP algorithm. Hence, the preprocessing of the three-
dimensional input data is one of the main novelties compared to the two-dimensional
case. Generally, the sampling should cover all elements in a neighborhood of the
respective interface component. Therefore, in order to prevent an incorrect or incom-
plete picture of the material distribution resulting from gaps in the sampling grid, a
smoothing procedure for irregular edges, in two dimensions, or irregular faces, in three
dimensions, is necessary; see [24, Fig.4] for a graphical representation of the smooth-
ing procedure in two dimensions. Moreover, an additional challenge in the sampling
procedure for irregular faces, such as faces obtained via METIS (METIS faces), with
an arbitrary orientation in the three-dimensional space, arises. In particular, a con-
sistent ordering of the sampling points is neither a priori given nor obvious. More
precisely, there is no natural ordering of a grid of points on an irregular face, such as
going from the lower left corner to the upper right corner. A consistent ordering of
the sampling points is, however, essential when using them as input data to train a
neural network. In particular, since neural networks rely on input data with a fixed
structure, an important requirement of our data preprocessing is to provide samples
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Fic. 2. Left: Visualization of the ordering of the sampling points in 2D (red) for a straight
edge (blue). Figure from [24, Fig. 3]. Right: Visualization of the computed sampling points in 8D
(red) for a regular face (blue) between two neighboring subdomains. The different shades correspond
to increasing distance of the sampling points to the face and therefore to a higher numbering of the
sampling points.

of the coefficient distribution with a consistent spatial structure in relation to each
face in our domain decomposition, even though the faces may vary in their location,
orientation, and shape. In this approach, some sampling points may lay outside the
two subdomains adjacent to a face. We encode these points using a specific dummy
value which differs clearly from all true coefficient values. Since all coefficient values
are positive, we encode sampling points outside the adjacent subdomains by the value
—1. This is essential to ensure that we always generate input data of a fixed length
for the neural network; see also [24].

3.1.1. Sampling procedure for regular faces. In case of regular faces, the
procedure is fairly similar to the approach for straight edges in a two-dimensional
domain decomposition; see [24]. Basically, we compute a tensor product sampling
grid by sampling in both tangential directions of a face as well as in the direction
orthogonal to the face. This results in a box-shaped structure of the sampling points
in both neighboring subdomains of the face; see also Figure 2 (right). A required
consistent ordering of the sampling points is provided by passing through the sampling
points ’layer by layer’ with growing distance relative to the face.

3.1.2. Sampling procedure for METIS faces. Our sampling procedure for
METIS faces consists of two essential steps. First, we construct a consistently ordered
two-dimensional auxiliary grid on a planar projection of each face. Second, we extrude
this auxiliary grid into the two adjacent subdomains of the face. The resulting three-
dimensional sampling grid has both a fixed size and a consistent ordering for all faces.
Sampling points which do not lie on the face or within the two adjacent subdomains
are encoded using the dummy value —1.

First step — Construction of a consistently ordered auxiliary grid for METIS faces.
In order to construct the auxiliary grid for a METIS face, we first compute a projection
of the original face represented in the three-dimensional Euclidean space onto an
appropriate two-dimensional plane. In particular, we project a given METIS face onto
a two-dimensional plane, such that we obtain a consistently sorted grid covering the
face. This grid is induced by a tensor product grid on the two-dimensional projection
plane. Note that since we use tetrahedral finite elements in three dimensions, each
METIS face is naturally decomposed into triangles. Due to the projection from three
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dimensions to two dimensions, elements, i.e., triangles of the face, can be degraded or
deformed, i.e., they can have a large aspect ratio. We can also obtain flipped triangles;
see Figure 3 for an example where both cases occur. Hence, we have to regularize the
two-dimensional projection of the face before constructing the sampling grid.

To obtain a well-shaped projection of the face which is appropriate for our pur-
pose, we numerically solve an optimization problem with respect to the two-dimensio-
nal projection of the face. More precisely, the objective functions of the optimization
problem are carefully designed such that flipped triangles (phase 1) as well as sharp-
angled triangles (phase 2) are prevented:

min Z/\l ceAwdet(Ti(@) Ly - ld(2)]2 (phase 1) and

l 2
mmz b,” + qJ ( ) (phase 2).

Here, we denote by z the coordmate vector of all corner points of all triangles of a
given face after projection onto the two-dimensional plane, by A;(z) the area of a
given triangle T;(x), and by I, (z),ly, (x) the lengths of two of its edges. By d(x) we
denote the displacement vector containing the displacements of all points x from the
initial state prior to the optimization process. Furthermore, we denote by det(T;(z))
the determinant of the transformation matrix which belongs to the affine mapping
from the unit triangle, i.e., the triangle with the corner points (0, 0), (1,0), and (0, 1),
to a given triangle T;(z). We also introduce scalar weighting factors A, Az, and Areg
to control the ratio of the different terms within the objective functions. The concrete
values for these weights were chosen heuristically and for all our computations, we
used the values A\; =1, A2 = 50, and Ae = 10.

Let us briefly motivate our objective functions in more details. Prior to the
optimization of phase 1, we locally reorder the triangle corners, such that det(Tj(z))
is negative for all flipped triangles. In order to do so, we start with one triangle and
define it either as flipped or non-flipped. Then, we go through the remaining triangles
of the projected face and classify them based on the following equivalence relation:
two adjacent triangles are equivalent if and only if they do not overlap. Depending on
the label of the initial triangle, we obtain two values for the objective function of phase
1, and we choose our classification into flipped and non-flipped triangles such that we
start with the lower value. After this, flipped triangles can always be identified by a
negative determinant of the respective transformation matrix. Therefore, we explicitly
penalize such negative determinants in phase 1 of our optimization by minimizing the
factors Ay - e~*2°4e8(T5(2))  Note that we also add the regularization term A - ||d(z)||3
to the objective function to prevent that the projection can be arbitrarily shifted

or rotated in the given plane. In phase 2, we minimize the sum of all fractions

lp; % (@) Hg; ()
Aj(@)

Sect. 4]. It is minimized to obtain equilateral triangles, i.e., a high value in this

fraction corresponds to a triangle with large aspect ratio. The fraction may actually
be infinity if A;(x) = 0. This may happen if a triangle is initially projected onto
a straight line. However, in the first optimization phase, small areas are penalized
in terms of the determinant, such that we do not obtain values close to zero in the
second phase.

We start the optimization procedure with the initial projection onto the plane
z =0,y =0, or 2z =0 that results in the lowest objective value when adding

. This specific fraction is inspired by geometrical arguments; see also [15,
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Fic. 3. Left: Ezample of a typical METIS face in the three-dimensional space (blue
triangles) and its corresponding projection onto the two-dimensional plane z = 0 (green
triangles). Right: Due to the projection, we obtain both flipped triangles, which are marked
in grey with red edges, and degraded triangles with a large aspect ratio, from which one is
marked in blue. Let us remark that the different shades of green are only introduced for
visualization purpose and do not have any physical meaning, e.g., different coefficients.

the objective functions of phase 1 and phase 2. Then, we use the gradient descent
algorithm as an iterative solver and optimize, i.e., minimize, alternating in succession
the two aforementioned objective functions. The optimization procedure is stopped if
the norm of the relative change of the coordinate vector of the triangles with respect
to the prior iteration is below a factor of le — 6 in both phases. Please see Figure 4
and Figure 5 for an example of the different steps of the optimization procedure in
phase 1 and phase 2, respectively, for an exemplary METIS face consisting of ten
triangles. Let us note that for all tested faces in section 4 the optimization procedure
did always converge in phase 1 and phase 2, respectively, before the maximum number
of iterations was reached, which we set to 500. Additionally, in almost all cases, only
optimizing twice in phase 1 and once in phase 2 - alternating in succession - was
necessary to obtain an appropriate projection of a given METIS face.

As the next step, we construct the smallest possible two-dimensional tensor
product grid aligned with the coordinate axes covering the obtained optimized two-
dimensional projection of the face; see also Figure 6 (left) for an example. Let us
remark that this grid has a natural ordering of the grid points starting in the lower
left corner and proceeding row by row to the upper right corner. We then make use
of barycentric coordinates to map the grid, together with the corresponding ordering,
back into the original triangles in the three-dimensional space. Based on the ordering
of the grid points in two dimensions, we can now establish a natural ordering of the
points in three dimension; see also Figure 6 (right).

Let us summarize the complete process to obtain the auxiliary grid points for
each triangle of a specific face with a consistent ordering. First, we project the face
from the three-dimensional space (Figure 3 (left: blue face)) onto a two-dimensional
plane (Figure 3 (left: green face)). Second, we remove all flipped triangles (phase 1)
and optimize the shape of all triangles (phase 2) of the projected face in an iterative
optimization process; see Figures 4 and 5. Finally, we cover this optimized face by
a two-dimensional tensor product grid with a natural ordering (Figure 6 (left)) and
project these points back to the original face in three dimensions (Figure 6 (right)).
Therefore, local barycentric coordinates can be used.

Let us note that, in our numerical experiments in section 4, this procedure was
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Fi1c. 4. Visualization of the optimization process of the original projection in two dimen-
stons in phase 1 after 0, 20, 30, 50, 100 and 150 iteration steps (from upper left to lower
right).
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Fic. 5. Visualization of the optimization process of the original projection in two dimen-
sions in phase 2 after 0, 10, 30, 50, 70 and 100 iteration steps (from upper left to lower
right). Let us remark that the initial state here is the same as the final state from Figure 4.

448  always successful. However, in general, there may be rare cases where our optimization
449  does not converge to an acceptable two-dimensional triangulation. For instance, it is
450 possible that a subdomain is completely enclosed by another subdomain, such that
451  the face between the two subdomains is actually the complete boundary of the interior
452  subdomain. In this case, we cannot remove all flipped triangles without changing the
453  structure of the face. If we detect that our optimization does not converge to an
454 acceptable solution, we can still proceed in the two following ways: either we mark
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Fic. 6. Left: Two-dimensional projection of the original face (depicted on the right) after
both optimization phases have been carried out; the optimized projection is covered by a regular
grid with natural ordering; same face as in the last picture of Figure 5. Right: Original face in
three dimensions with corresponding grid points; numbers are obtained by a projection from two
dimensions (left) back to three dimensions using barycentric coordinates.

the eigenvalue problem corresponding to the face as necessary, or we split the face into
smaller faces and consider each of the smaller faces separately in our ML-FETI-DP
algorithm.

Second step — Extrusion of the auziliary grid into three dimensions. Starting
from the ordered auxiliary points on the face, we can now build a three-dimensional
sampling grid. For this purpose, for each of the auxiliary points on the face, we first
define a sampling direction vector pointing into one of the two adjacent subdomains.
Second, we extrude the two-dimensional auxiliary grid on the actual METIS face into
the two neighboring subdomains along the sampling directions, resulting in a three-
dimensional sampling grid. Note that the first layer of sampling nodes does not lie
on the face itself but next to it; cf. Figure 2. Moreover, we neglect all points of the
auxiliary grid, which are outside the METIS face, and encode all corresponding points
in the three-dimensional sampling grid by the dummy value —1. Similar as for edges
obtained by a two-dimensional METIS decomposition, choosing the normal vectors
of the triangles as sampling direction vectors in the extrusion process leads to gaps
in the three-dimensional sampling grid close to the face; see also [24, Sec. 3.1, Fig.
4] for a two-dimensional graphical representation. This is caused by the fact that,
in general, METIS faces are not smooth. As we have already shown for edges in the
two-dimensional case, the neighborhood of an interface component will be the most
important for the decision if adaptive constraints are necessary or not and therefore
the aforementioned gaps have to be minimized; see [25]. To avoid these gaps and thus
to obtain sampling points in most finite elements close to the face, we suggest the use
of sampling directions obtained by a moving average iteration over the normal vectors
of the face. In some sense, this can be interpreted as a smoothing of the face or, more
precisely, the field of normal vectors on the face.

The following procedure turned out to be the most appropriate for our purposes
in the sense that, on average, for each face and each neighboring subdomain, it results
in the highest number of sampled elements relative to the overall number of elements
in the subdomain. Here, we first uniformly refine all triangles of a given METIS face
once by subdividing each triangle of the face into four new regular triangles. For
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Fic. 7. Visualization of the moving average procedure to obtain the sampling direction vectors
for the extrusion of the auziliary grid. For the red triangle, all grey, light blue and dark blue triangles
are considered recursively as grouped by colors for a moving average with a window length of 3.

each of the resulting finer triangles, we compute the normal vector originating in its
centroid. We then use the normal vectors of the refined triangulation to compute a
single sampling direction for each triangle of the original triangulation of the face. For
this purpose, we first 'smooth’ the field of normal vectors of the refined triangulation
by using a component-wise moving average, applied twice recursively with a fixed
window length of 3. Subsequently, by computing the average of the resulting normal
vectors of all four related finer triangles we finally obtain the sampling direction of
the original triangles. Then, we use the same sampling direction for all points of the
auxiliary grid which are located in the same triangle.

Let us briefly describe the moving average approach and the meaning of the
window length in more details. For each triangle of the refined face, one after another,
we replace the normal vector by a component-wise average of the normal vector itself
and the normal vectors of certain surrounding triangles. The triangles considered in
the averaging process are aggregated recursively as follows. In a first step, for a given
triangle, we add all neighboring triangles that share an edge with the given triangle
to obtain a patch with a window length of 1. Recursively, for an increasing window
length, we add all triangles that share an edge with a triangle that has been selected
in the previous step. Please see also Figure 7 for an exemplary visualization of all
considered triangles for a moving average with the window length of 3.

Finally, we use the obtained sampling directions to compute the final three-
dimensional sampling grid in the two neighboring subdomains of the face. In Figure 8,
we visualize all sampled (middle) and non-sampled (right) finite elements using the
described procedure for an exemplary METIS face; we call a finite element “sampled”
if it contains at least one sampling point. We can observe that, especially in the close
neighborhood of the face, we obtain sampling points in almost all finite elements.

As final input for our neural network, we use a vector containing evaluations of
the coefficient function p or the Young modulus F, respectively, for all points in the
sampling grid.

3.2. Training and validation phase. For the training and validation of the
neural network, we use a data set containing approximately 3000 configurations of
pairs of coefficient functions and subdomain geometries for two subdomains sharing a
face. To obtain the output data, i.e., the correct classification labels, for the training
of the neural network, we solve the eigenvalue problem described in subsection 2.3.2
for each of these configuration. Note that the correct classification label for a specific
face does not only depend on the geometry and the coefficient distribution but also

This manuscript is for review purposes only.



Lo

NN NN N
U > W N

[
(=)

NN
o

—

wW N

[S1ETN

~N O

W W W W W W Ww w w w
oo

©

=
o

=

=

o oo

©

S <, BNG IINS, BIG BING BINS) SIS, BING, BN S) BIEe, BENG) IS BING, BING, BN S) IR, SIS, BN, B Y; BING, BN, SIS, BING) BING) <, BING, BN, IR S, BINe, BING, B, BENG, BN, SIS,
SIS B, BN NS R

or Ot

U

MACHINE LEARNING AND DOMAIN DECOMPOSITION IN 3D 15

Fic. 8. Visualization of a METIS face between two meighboring subdomains (left) and all
sampled (middle) and non-sampled (right) FE’s when using the described sampling procedure.

on the underlying PDE. Therefore, we will use the same configurations for diffusion
and elasticity problems but compute the correct classification labels separately.

In [24], for the two-dimensional case, we used only two edge geometries, i.e., a
regular edge and an edge with a single jag, and combined them with a set of carefully
designed coefficient distributions, resulting in a total of 4500 configurations; in [22],
this data set based on manually designed coefficient distributions was also referred to
as ‘smart data’. Since both the domain decomposition and the coefficient distribution
may be more complex in three dimensions compared to two dimensions, we use a
different approach for the generation of our training and validation data. In particular,
we consider six different meshes resulting from regular domain decompositions of the
unit cube into 4 x 4 x 4 = 64 or 6 X 6 X 6 = 216 subdomains of size H/h = 6,7, 8.
For each of these meshes, we generate 30 different randomly generated coefficient
distributions based on the approach discussed in [22]. More precisely, we control the
ratio of high vs. low coefficient voxels and impose some light geometrical structure.
In particular, we build connected stripes of high coefficient with a certain length in
x, y, or z direction, and additionally combine them by a pairwise superimposition;
cf. [22] for a more detailed description for the two-dimensional case and Figure 9 for
an exemplary coefficient distribution in three dimensions. In analogy to [22], we refer
to this set of coefficient functions as random data.

For each combination of mesh and coefficient distribution, we now consider the
aforementioned regular domain decomposition as well as a corresponding irregular do-
main decomposition into 64 or 216 subdomains, respectively, obtained using the graph
partitioning software METIS [30]. Finally, we consider the eigenvalue problems cor-
responding to all resulting faces combined with the different coefficient distributions.
As mentioned before, we obtain a total of approximately 3 000 configurations.

Note that, in general, using a smaller number of METIS subdomains, we obtained
face geometries which resulted in worse generalization properties of our neural net-
works. Moreover, in contrast to the two-dimensional case, where we needed at least
4500 configurations, we are here able to obtain very good results for total of only
roughly 3000 configurations. This is likely due to the much smaller numbers of finite
elements per subdomain used, compared to our two-dimensional experiments in [24].

For the sampling, we select 22 points in both of the two tangential directions of
the auxiliary grid of a face and 22 points in orthogonal direction for each of the two
adjacent subdomains; hence, we obtain approximately two sampling points in each
finite element when using a subdomain size of H/h = 10.
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Fi1Gc. 9. Example of a randomly distributed coefficient function in the unit cube obtained by using
the same randomly generated coefficient for a horizontal or vertical beam of a mazimum length of
4 finite element vozels. The grey vozels correspond to a high coefficient and we have a low coeffient

of 1 otherwise. Visualization for 2 X 2 x 2 subdomains and H/h = 5.
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Fic. 10. ROC curve and precision-recall plot for the optimal model obtained by a grid search.
We define precision as true positives divided by (true positives+false positives), and recall as true
positives divided by (true positives+false negatives). The thresholds used in section 4 are indicated
as circles.

As in [24], we train the neural network using the Adam (Adaptive moments) [32]
optimizer, a variant of the Stochastic Gradient Descent (SGD) method with adaptive
learning rate. The hyper parameters for the training process and the neural network
architecture are again chosen based on a grid search with cross-validation. More
precisely, we compare the training and generalization properties of different neural
networks for several random splittings of our entire data set into 80 % training and
20 % validation data; cf. [24] for details on the hyper parameter search space and finally
chosen set of hyper parameters. The Receiver Operating Characteristic (ROC) curve
and a precision-recall plot of the neural network with optimal hyper parameters are
shown in Figure 10. Let us note that we use the same neural network for both, regular
and METIS decompositions, in our numerical experiments.

3.3. Extension to three-class classification using frugal face constraints.
As described in subsection 2.4, we can replace the adaptive constraints by less costly
frugal constraints on faces, where only a single constraint (in case of a stationary
diffusion problem) or less than or equal to six constraints (in case of linear elasticity)
are necessary. Please see [23] for a detailed description of the resulting frugal con-
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classification type threshold ‘ fp fn acc
two-class classification 0.45 2.76%  1.76%  95.5%
0.5 1.70%  3.40% 94.9%
. . 0.4 52%  1.7%  93.1%
three-class classification 0.5 9.1% 9.3% 95.6%
TABLE 1

Results on the complete training and validation data set. We define the accuracy (acc) as the
number of true positives and true negatives divided by the total number of training and validation
configurations.

straints in two and three dimensions. Consequently, if known a priori, we can omit
the eigenvalue problem to compute the adaptive constraints on these faces. Thus,
we also propose an extended three-class classification approach for faces, analogously
to the three-class approach for edges in [24]. Here, we train a neural network which
distinguishes between the following three classes: faces, where the eigenvalue prob-
lem is unnecessary (class 0), where the eigenvalue problem results in exactly one (for
stationary diffusion) or less than or equal to six (linear elasticity) constraints (class
1), and where the eigenvalue results in more than one or six, respectively, constraints
(class 2). For all faces assigned to class 0, we do not enforce any face constraint.
For all faces assigned to class 1, we enforce the frugal face constraints as described
in [23]. Only for the remaining faces, we solve the corresponding eigenvalue problems
and enforce the computed adaptive constraints.

3.4. Results on the training data. On the complete set of training and valida-
tion data, we obtain the results listed in Table 1. As in [24], we used the classification
thresholds 0.45 and 0.5 for the two-class classification and 0.4 and 0.5 for the three-
class classification, respectively. For the two-class classification, we observe nearly
the same accuracy values when using the classification threshold 0.5 and 0.45. For
the three-class classification, however, lowering the threshold to 0.4 results in a lower
accuracy value than for using the threshold of 0.5. In both cases, the number of false
negative faces, which corresponds to the number of critical faces not detected by the
algorithm and which are critical for the convergence of the iterative FETI-DP solver,
can be reduced by decreasing the threshold. We denote this approach to improve the
robustness as ‘overshooting’; cf. [24]. In section 4, we will always compare the results
for the default threshold, 0.5, and the overshooting threshold, 0.45 and 0.4 for the
two-class and three-class model, respectively.

4. Numerical results for ML-FETI-DP. In this section, we provide compar-
ative results for the classical FETI-DP, adaptive FETI-DP, and our ML-FETI-DP
method. We present numerical results for different coefficient functions p in model
problem (2.1) and different distributions for the Young modulus F in (2.2). We always
use structured tetrahedral meshes of the unit cube constructed from discretizing each
voxel of a regular voxel mesh by five piecewise linear tetrahedral finite elements; all
coeflicient distributions are chosen to be constant on each voxel. For all our numerical
computations, we use the preconditioned conjugate gradient (PCG) algorithm. As the
stopping criterion for PCG we use a relative reduction of the preconditioned residual
by a factor of le-8. For adaptive FETI-DP, we use the tolerance TOL = 100. In our
comparison, we consider both domain decompositions into regular, cubic subdomains
as well as irregular domain decompositions obtained from METIS [30]. Please note
that the configurations appearing in the numerical experiments in this section are
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Fic. 11. Five spheres with different radii in the unit cube. Resolution of 128 x 128 x 96 vozel
corresponding to computations with H/h = 16 and 8 x 8 x 6 = 384 subdomains. Figure from [253,
Fig. 11].

Fic. 12. Left: Visualization of the area with a high coefficient for two neighboring subdomains,
marked in red and blue, and the face between those subdomains, marked in green; see Figure 11
for the complete coefficient function. Right: Zoom-in of the coefficient jump along the green face
between two neighboring subdomains. Figure from [23, Fig. 12].

generally not part of our training and validation data set. In particular, we have
chosen both different coefficient distributions as well as combinations of the numbers
of elements and subdomains.

4.1. Coefficient functions. For stationary diffusion, we consider a coefficient
function based on five spherical inclusions of different radii in the unit cube; see Fig-
ure 11. Here, all voxels within the five spheres have an identical high coeflicient p,
whereas the remaining voxels all have a small coefficient.

As the second model problem, we consider a linear elastic representative volume
element (RVE) of a dual-phase steel representing the microstructure of a DP600 steel
and obtained by an EBDS (electronic backscatter diffraction) measurement. This
dual-phase steel consists of a martensitic phase and a ferritic phase. In our compu-
tations, we use a high coefficient in the martensitic phase and a low coefficient in the
ferritic phase of the material. The most realistic model problem considered here is
the case of a coefficient contrast of 1e3. Let us note that the RVE is part of a larger
microstructure which was presented in [5].

4.2. Two-class model. Let us first discuss our two-class model. Here, the
neural network distinguishes between faces, where the eigenvalue problem results in at
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Fic. 13. Coefficient distribution on a representative volume element (RVE) of a dual-phase
steel in the unit cube. This RVE is part of a larger structure presented in [5]. Visualization of the
domain decomposition into 512 subdomains and H/h = 4. High coefficients are shown in black, and
subdomains are shown by blue slices. The higher coefficient is E1 = 1e3 and the lower coefficient is
Eo =1, with v = 0.3 everywhere.

least one (stationary diffusion) or six (linear elasticity) additional adaptive constraints
and faces, where the eigenvalue is unnecessary. In analogy to [24], we will refer to
the latter case as “negative” or “negative face” and to the first case as “positive” or
“positive face”. For the adaptive algorithm, we always use a tolerance of TOL = 100.

4.2.1. Regular domain decompositions. Let us first consider the stationary
diffusion problem, where the coefficient distribution is given by the spherical inclusions
depicted in Figure 12. We partition the cubic domain into 4 x 4 x 4 regular subdomains
with subdomain size H/h = 10. In Table 2, we compare the iteration counts and
condition number estimates for the classical FETI-DP, adaptive FETI-DP, and the
new ML-FETI-DP method. As already done in [24], we also report the number of
false negative and false positive faces resulting from our machine learning classification
for two different ML thresholds 7; cf. the discussions in subsection 3.4 and [24]. Let
us note that only false negative faces are critical for the convergence of the ML-FETI-
DP method, whereas false positive faces correspond to eigenvalue problems, which are
solved even though they are not necessary for the robustness of the algorithm. We
observe that, when using the ML threshold of 7 = 0.5, we obtain two false negative
faces. This leads to a worse condition number estimate, while the iteration number of
the algorithm is still satisfactory. By lowering the ML decision threshold to 7 = 0.45,
we are able to eliminate all false negative faces and thus to correctly identify all critical
faces, where the eigenvalue problem is necessary. In particular, using our ML-FETI-
DP approach with overshooting, we solve only 12 eigenvalue problems in contrast to
144 eigenvalue problems for the fully adaptive approach. Nonetheless, we are still able
to retain the same condition number estimate and iteration count. This is indeed a
major saving in the number of eigenvalue problems and thus computation time.

We further provide numerical results for the linear elasticity problem using the
RVE in Figure 13 as material distribution. Here, we decompose our domain into
8 x 8 x 8 regular subdomains with a reduced size H/h = 6. Let us note again that
we use a neural network different from the one used for diffusion problems since
the correct labels may differ; cf. subsection 3.2. We summarize the comparative
results for this model problem in Table 3. As for the stationary diffusion problem
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Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
Five adaptive - | 4497 63 144 - - -
Spheres ML | 0.5 | 2.73e4 67 7T 2 2 097
ML | 0.45 | 44.97 63 12 5 0 0.96
TABLE 2

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the two-class model. Decomposition of the unit cube into 4 X 4 x 4
subdomains and H/h = 10. Stationary diffusion problem. We show the ML threshold (t), the
condition number (cond), the number of CG iterations (it), the number of solved eigenvalue prob-
lems on faces (evpr), the number of false positives (fp), the number of false negatives (fn), and the
accuracy of the classification (acc).

Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
RVE adaptive - | 16.89 39 1344 - - -
Problem ML | 0.5 | 3.76e4 45 52 10 5 0.98
ML | 0.45 | 16.89 40 66 19 0 0.98
TABLE 3

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the two-class model. Decomposition of the unit cube into 8 X 8 x 8
subdomains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

in Table 2, we are able to eliminate all false negative faces and thus obtain a robust
algorithm when using an ML threshold of 0.45. Furthermore, we observe that only
66 eigenvalue problems have to be solved for ML-FETI-DP in comparison to 1344
eigenvalue problems solved for the fully adaptive FETI-DP method.

4.2.2. METIS domain decompositions. We also consider an irregular do-
main decomposition obtained via METIS for the same stationary diffusion and linear
elasticity problems as in subsection 4.2.1. The corresponding results are summarized
in Table 4 and Table 5, respectively. For the stationary diffusion problem, the ML
algorithm misses 4 critical faces when using the ML threshold 7 = 0.5. However,
when lowering the ML threshold to 7 = 0.45, we are again able to identify all crit-
ical faces. Consequently, we retain nearly the same convergence behavior as for the
adaptive FETI-DP method, while solving only 38 instead of 288 eigenvalue problems;
see Table 4. For the elasticty problem, the results are fairly comparable; see Table 5.
Again, when using the ML threshold of 7 = 0.45, we are able to identify all faces
which are critical for the convergence of the algorithm. In particular, we only have to
solve 92 eigenvalue problems instead of 1547 for the adaptive FETI-DP approach.

4.3. Three-class model. Let us now discuss the results for our three-class
model; cf. subsection 3.3. Let us note once more that, in the three-class approach, we
now construct frugal face constraints instead of solving an eigenvalue problem if our
neural network labels a face as class 1; cf. subsection 2.4. Thus, we do not need to
solve any eigenvalue problems for the corresponding faces. As for the two-class model,
we always use a tolerance of TOL = 100 in the adaptive algorithm. We consider the
same coefficient functions and material distributions, respectively, as in subsection 4.2.

4.3.1. Regular domain decompositions. The results for the stationary dif-
fusion problem are summarized in Table 6. As for the two-class model, we are able
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Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
Five adaptive - | 30.24 49 288 - - -
Spheres ML | 0.5 | 3.17e4 55 27 5 4 097
ML | 0.45 | 30.25 50 38 12 0 096
TABLE 4

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for METIS do-
main decompositions for the two-class model. Decomposition of the unit cube into 64 subdo-
mains and H/h = 10. Stationary diffusion problem. See Table 2 for the column labeling.

Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
RVE adaptive - | 20.13 41 1547 - - -
Problem ML | 0.5 | 3.57e4 47 77 10 6 0.98
ML | 0.45 | 20.13 41 91 18 0 0.98
TABLE 5

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for METIS do-
main decompositions for the two-class model. Decomposition of the unit cube into 512 subdo-
mains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

to eliminate all false negative faces for the three-class model, when using the ML
threshold 7 = 0.4. However, in comparison to the two-class model in Table 4, we now
only need to solve 9, instead of 12, of the original 144 face eigenvalue problems. Thus,
due to the computation of the frugal constraints, we are able to further reduce the
number of necessary eigenvalue problems, while retaining a robust algorithm.

For the linear elasticity problem, the results are again fairly similar; see Table 7.
In this case, we are able to further reduce the number of necessary eigenvalue problems
from 66 in Table 6 to 32 by using frugal face constraints for all faces classified to class 1.

4.3.2. METIS domain decompositions. Using the three-class model and
METIS domain decompositions, we obtain similar results compared to those for reg-
ular domain decompositions in subsection 4.3. In Table 8, we present the results for
the stationary diffusion problem. We observe that, for a robust choices of the ML
threshold, the number of necessary face eigenvalue problems can be further reduced
from 38, for the two-class model in Table 4 and 7 = 0.45, to 19, for 7 = 0.4. Con-
sidering the results for the linear elasticity problem in Table 9 does not change the
picture. Using the three-class classification, we only need to solve 45 out of originally
1547 eigenvalue problems on faces for 7 = 0.45 while retaining robustness and fast
convergence of the algorithm.

5. Conclusion. We have extended our hybrid ML-FETI-DP approach, which
combines adaptive FETI-DP methods and machine learning, to three dimensions.
Using this approach, the number of necessary eigenvalue problems in an adaptive
FETI-DP method for heterogeneous coefficient distributions may be significantly re-
duced. The extension to three dimensions required a rather complex but computa-
tionally relatively inexpensive preprocessing procedure to generate structured input
data of the neural network, even for unstructured geometries. We have used both the
two-class and the three-class classification approaches from [24], where the three-class
approach utilizes the frugal constraints introduced in [23] to reduce the number of
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Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
Five adaptive - | 4497 63 144 - - -
Spheres ML | 0.5 | 1.36e4 66 5 4 3 095
ML | 0.4 | 46.77 64 9 13 0 091
TABLE 6

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the three-class model. Decomposition of the unit cube into 4 X 4 X 4
subdomains and H/h = 10. Stationary diffusion problem. See Table 2 for the column labeling.

Model Problem | Algorithm 7 | cond it evpr fp fn acc
standard - - >350 0 - - -
RVE adaptive - | 16.89 39 1344 - - -
Problem ML | 0.5 | 4.27e3 44 27 11 5 0.98
ML | 0.4 | 18.49 40 32 26 0 0.98
TABLE 7

Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular do-
main decompositions for the three-class model. Decomposition of the unit cube into 8 X 8 X 8
subdomains and H/h = 6. Linear elasticity problem. See Table 2 for the column labeling.

eigenvalue problems even further than the two-class approach.

We have provided numerical results comparing the new three-dimensional ML-
FETI-DP algorithm to classical and adaptive FETI-DP methods for diffusion and
linear elasticity problems and realistic coefficient distributions. Using an overshooting
strategy, we have always obtained a robust method with a low condition number
estimate. When using the three-class approach and frugal constraints, we have been
thus able to reduce the number of necessary eigenvalue problems by at least 86 %. In
the best case, we even have been able to reduce the number of eigenvalue problems of
the plain adaptive FETIT-DP method from 1344 to 32 using the three-class approach;
this corresponds to a reduction by more than 97 %.
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