
Parallel Overlapping Schwarz

Preconditioners for

Incompressible Fluid Flow and

Fluid-Structure Interaction

Problems

Christian Hochmuth

Parallel Overlapping Schwarz

Preconditioners for

Incompressible Fluid Flow and

Fluid-Structure Interaction

Problems

INAUGURAL-DISSERTATION

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Christian Hochmuth

aus Werne

Köln, 2020

Berichterstatter: Prof. Dr. Axel Klawonn

(Universität zu Köln)

Prof. Dr. Oliver Rheinbach

(TU Bergakademie Freiberg)

Tag der mündlichen Prüfung: 18. Mai 2020

Abstract

Efficient methods for the approximation of solutions to incompressible fluid flow

and fluid-structure interaction problems are presented. In particular, partial dif-

ferential equations (PDEs) are derived from basic conservation principles. First,

the incompressible Navier–Stokes equations for Newtonian fluids are introduced.

This is followed by a consideration of solid mechanical problems. Both, the

fluid equations and the equation for solid problems are then coupled and a fluid-

structure interaction problem is constructed. Furthermore, a discretization by the

finite element method for weak formulations of these problems is described. This

spatial discretization of variables is followed by a discretization of the remaining

time-dependent parts. An implementation of the discretizations and problems in

a parallel C++ software environment is described. This implementation is based

on the software package Trilinos1.

The parallel execution of a program is the essence of High Performance Com-

puting (HPC). HPC clusters are, in general, machines with several tens of thou-

sands of cores. The fastest current machine, as of the TOP500 list2 from Novem-

ber 2019, has over 2.4 million cores, while the largest machine possesses over 10

million cores.

To achieve sufficient accuracy of the approximate solutions, a fine spatial dis-

cretization must be used. In particular, fine spatial discretizations lead to systems

with large sparse matrices that have to be solved. Iterative preconditioned Krylov

methods are among the most widely used and efficient solution strategies for these

systems. Robust and efficient preconditioners which possess good scaling behav-

ior for a parallel execution on several thousand cores are the main component. In

this thesis, the focus is on parallel algebraic preconditioners for fluid and fluid-

structure interaction problems. Therefore, monolithic overlapping Schwarz pre-

conditioners for saddle point problems of Stokes and Navier–Stokes problems are

presented. Monolithic preconditioners for incompressible fluid flow problems can

significantly improve the convergence speed compared to preconditioners based

on block factorizations. In order to obtain numerically scalable algorithms, coarse

spaces obtained from the Generalized Dryja–Smith–Widlund (GDSW) and the

Reduced dimension GDSW (RGDSW) approach are used. These coarse spaces

1trilinos.github.io; see also [90].
2www.top500.org.

v

can be constructed in an essentially algebraic way. Numerical results of the par-

allel implementation are presented for various incompressible fluid flow problems.

Good scalability for up to 11 979 MPI ranks, which corresponds to the largest

problem configuration fitting on the employed supercomputer, were achieved. A

comparison of these monolithic approaches and commonly used block precon-

ditioners with respect to time-to-solution is made. Similarly, the most efficient

construction of two-level overlapping Schwarz preconditioners with GDSW and

RGDSW coarse spaces for solid problems is reported. These techniques are then

combined to efficiently solve fully coupled monolithic fluid-strucuture interaction

problems.

vi

Zusammenfassung

Effiziente Methoden zur approximativen Berechnung von Lösungen inkompress-

ibler Fluid- und Fluid-Struktur-Interaktionsprobleme werden vorgestellt. Aus

grundlegenden physikalischen Erhaltungsprinzipien werden partielle Differential-

gleichungen (PDGLs) für diese Probleme hergeleitet. Zunächst werden dabei die

inkompressiblen Navier–Stokes-Gleichungen für newtonsche Fluide eingeführt.

Im Anschluss folgt eine Betrachtung von Problemen der Festkörpermechanik. Die

Fluidgleichungen und die Gleichungen der Festkörpermechanik werden gekoppelt,

um so ein Fluid-Struktur-Interaktionsproblem zu konstruieren. Schwache For-

mulierungen dieser Probleme werden zunächst mit der Finite-Elemente-Methode

diskretisiert. Auf diese räumliche Diskretisierung folgt eine Diskretisierung der

verbleibenden zeitabhängigen Variablen. Darüber hinaus wird eine Implemen-

tierung dieser Probleme in einer parallelen C++-Softwareumgebung beschrieben.

Diese parallele Implementierung basieren auf dem Softwarepaket Trilinos3

Das parallele Ausführen eines Programms ist der Kernbestandteil von High

Performance Computing (HPC). HPC-Cluster sind Hochleistungscomputer

mit in der Regel mehreren zehntausend Rechenkernen. Der aktuell schnell-

ste Hochleistungscomputer besitzt über 2,4 Millionen Rechenkerne, wobei der

größte Cluster sogar über 10 Millionen Kerne besitzt; Stand November 2019 der

TOP500-Liste4.

Um eine ausreichende Genauigkeit einer approximativen Lösung zu erreichen,

muss in der Regel eine feine räumliche Diskretisierung verwendet werden. Diese

feinen räumlichen Diskretisierungen führen zu großen dünnbesetzten Matrizen,

die es zu lösen gilt. Iterative, vorkonditionierte Krylov-Methoden gehören

dabei zu den weitverbreitetsten und effizientesten Lösungsmethoden für diese

Probleme. Insbesondere die Entwicklung und Implementierung von robusten

und effizienten Vorkonditionierern, die ein gutes Skalierungsverhalten in der

parallelen Ausführung auf mehreren tausend Kernen besitzen, sind für die

Effizienz von großer Bedeutung. Der Schwerpunkt dieser Dissertation liegt auf

parallelen und algebraischen Vorkonditionierern für Fluid- und Fluid-Struktur-

Interaktionsprobleme, die nur wenig Informationen des eigentlichen Problems

benötigen. Es werden monolithische überlappende Schwarz-Vorkonditionierer

3trilinos.github.io; siehe auch [90].
4www.top500.org.

vii

für Sattelpunktprobleme von Stokes- und Navier–Stokes-Problemen vorgestellt.

Monolithische Vorkonditionierer für inkompressible Fluidprobleme können

die Konvergenzgeschwindigkeit im Vergleich zu Vorkonditionierern, die auf

Blockfaktorisierungen basieren, deutlich verbessern. Um numerisch skalier-

bare Algorithmen zu konstruieren, werden Generalized–Dryja–Smith–Widlund -

(GDSW) und Reduced-Dimension-GDSW -Grobgitterräume (RGDSW) genutzt.

Diese Grobgitterräume können im Wesentlichen algebraisch konstruiert wer-

den. Es werden numerische Ergebnisse der parallelen Implementierung für

verschiedene inkompressible Fluidströmungsprobleme vorgestellt. Hierfür wird

eine gute Skalierbarkeit auf bis zu 11 979 MPI Rängen erreicht, was der größten

Problemkonfiguration für den genutzten Supercomputer entspricht. Des Weit-

eren wird ein Vergleich dieser monolithischen Ansätze und häufig genutzter

Block-Vorkonditionierer für inkompressible Navier–Stokes-Probleme vorgenom-

men. Ebenso wird die effiziente Konstruktion von zweistufigen überlappenden

Schwarz-Vorkonditionierern mit GDSW- und RGDSW-Grobgitterräumen für

Probleme der Festkörpermechanik vorgestellt. Alle diese Techniken werden

dann kombiniert, um vollstndig gekoppelte monolithische Fluid-Struktur-

Interaktionsprobleme effizient zu lösen.

viii

Acknowledgements

I would like to thank my doctoral advisor Professor Axel Klawonn for the great

opportunity to join his team and to work with him on the topics of this thesis. I

am also very grateful for his support and guidance throughout the last couple of

years, especially during the difficult times. Furthermore, I express my gratitude

to Professor Oliver Rheinbach for being a referee of my thesis and for being part

of my thesis committee as well as for several interesting discussions, and Professor

Ulrich Lang for chairing my thesis committee.

I am very thankful to everyone in my team including Viktor Grimm, Alexan-

der Heinlein, Jascha Knepper, Martin Lanser, Sabine Musielack-Erle, Matthias

Uran and Janine Weber as well as my former colleagues Stephanie Friedhoff,

Martin Kühn, and Patrick Radtke. All of them have encouraged, motivated, and

supported me during my doctoral studies. A special thanks goes to Alexander

Heinlein, Jascha Knepper, and Janine Weber for reading drafts of this thesis

and making helpful comments. I specifically thank Alexander Heinlein for many

fruitful discussions and much valuable advice, for reading my entire thesis and

for being part of my thesis committee. Without his work on FROSch and his

continuous assistance none of this would have been possible. Another special

thanks goes to Jascha Knepper with whom I share an office and who also read

my entire thesis. His kindness and calmness helped me through many difficult

periods, especially in the last couple of months. I also thank him for constructing

an FSI geometry of a real artery.

I gratefully acknowledge financial support by the German Science Founda-

tion (DFG), project no. 214421492 and the computing time granted by the

Center for Computational Sciences and Simulation (CCSS) of the University of

Duisburg-Essen and provided on the supercomputer magnitUDE (DFG grants

INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) at the Zentrum für

Informations- und Mediendienste (ZIM). I further thank the authors of [26] for

providing a realistic coronary artery geometry.

Last but not least, I thank my girlfriend Antonia for reading and commenting

on the entire thesis and the emotional support as well as my mother Ute and

sister Talli for always being there for me.

ix

Contents

Abstract . v

Zusammenfassung . vii

Acknowledgements . ix

List of Tables . xv

List of Figures . xxi

1 Introduction 1

2 Stokes and Navier–Stokes Equations 7

2.1 Continuum Mechanics . 8

2.2 Incompressible Fluids . 9

2.3 Conservation of Mass . 10

2.4 Conservation of Momentum . 11

2.5 Stokes and Navier–Stokes Equations 13

3 Solid Mechanics 17

3.1 Conservation of Momentum in a Reference Configuration 18

3.2 Solid Equation . 22

4 Fluid-Structure Interaction 27

4.1 Arbitrary Lagrangian Eulerian Description of the Navier–Stokes

Equations . 29

4.2 Monolithic Fluid-Structure Interaction System in Arbitrary La-

grangian Eulerian Form . 32

4.3 Arbitrary Lagrangian Eulerian Map 33

5 Discretizations in Space and Time 37

5.1 Model Problems and Spatial Discretization with Finite Elements . 38

5.1.1 Stokes Problems . 39

xi

5.1.2 Navier–Stokes Problems 41

5.1.3 Elasticity Problems . 44

5.1.4 Almost Incompressible Linear Elasticity Problems 45

5.1.5 Finite Elements for Elliptic Problems 45

5.1.6 Finite Elements for Saddle Point Problems 46

5.1.7 Fluid-Structure Interaction Problems 50

5.2 Temporal Discretization . 54

5.2.1 Implicit Runge–Kutta Methods 54

5.2.2 Multi-Step Methods – Backward Differentiation Formulas . 57

5.2.3 Discretization of the Time-Dependent Navier–Stokes Prob-

lems . 57

5.2.4 Newmark Schemes for Solid Dynamic Problems 61

5.3 Discretization of the Fluid-Structure Interaction Problem 62

5.3.1 Coupling of the Fluid-Structure Interaction Problem . . . 63

5.3.2 Linearization of the Fluid-Structure Interaction Problem . 66

5.4 Solution Methods for Nonlinear Equations 68

6 Domain Decomposition - Two-Level Overlapping Schwarz Methods 73

6.1 Two-Level Overlapping Schwarz Methods with GDSW Coarse

Spaces for Elliptic Problems . 76

6.2 Block Preconditioners for Saddle Point Problems 80

6.2.1 Overlapping Schwarz Methods for Block Preconditioners . 80

6.2.2 SIMPLE . 84

6.2.3 LSC - Least-Squares Commutator 84

6.3 Monolithic Two-Level Overlapping Schwarz Preconditioners for

Saddle Point Problems . 85

6.3.1 Monolithic Schwarz Preconditioners with Lagrangian

Coarse Spaces . 87

6.3.2 Restricted and Scaled First-Level Operators 90

6.3.3 Monolithic Schwarz Preconditioners with GDSW Coarse

Spaces . 91

6.3.4 Treating the Pressure of Fluid Flow Problems 94

6.3.5 GDSW Implementation Based on Trilinos 97

6.3.6 Monolithic Reduced Dimension GDSW Preconditioners . . 101

6.3.7 Sequential and Parallel Computation of the Levels 104

xii

6.4 Fully Algebraic Construction of GDSW and RGDSW Coarse Spaces105

6.5 Preconditioners for Fluid-Structure Interaction Problems 107

6.5.1 FaCSI Block Preconditioner 108

6.5.2 One-level Monolithic Overlapping Schwarz Preconditioners

for FSI . 111

7 FEDDLib 113

7.1 Trilinos . 114

7.2 General Structure . 116

7.3 Meshes and Finite Elements . 117

7.4 Setup of Specific Problems . 121

7.5 Solvers and Preconditioners . 124

7.6 Post-Processing . 129

8 Numerical Results 131

8.1 GDSW for Incompressible Fluid Flow Problems 133

8.1.1 Numerical Results for Stokes Problems 134

8.1.2 Numerical Results for Navier–Stokes Problems 141

8.2 Reduced Dimension GDSW Preconditioners for Incompressible

Fluid Flow Problems . 142

8.2.1 Comparison of Monolithic GDSW and RGDSW Coarse

Spaces . 143

8.2.2 Restricted and Scaled First Level Variants 145

8.2.3 Parallel Coupling Strategies for the Levels 145

8.2.4 Recycling Strategies . 147

8.2.5 Speedup for a Time-Dependent Navier–Stokes Problem . . 149

8.3 Comparison of Block and Monolithic Preconditioners for Incom-

pressible Fluid Flow Problems . 153

8.3.1 Standard Block Preconditioners 153

8.3.2 SIMPLE, LSC, and Monolithic Preconditioners 155

8.4 Results for Almost Incompressible Linear Elasticity Problems . . 160

8.5 Results of Fully Algebraic GDSW and RGDSW Preconditioners

for Nonlinear Elasticity Problems 163

8.6 Results for Fluid-Structure Interaction Problems 168

xiii

9 Conclusion 175

Bibliography 177

xiv

List of Tables

6.1 LDC Stokes problem in two dimensions using H/h = 8 and Taylor–

Hood elements; GMRES iteration counts for both versions of local

problems for a one-level Schwarz preconditioner without coarse

level. Stopping criterion is a residual reduction of 10−6. ∗D and ∗N
indicate Dirichlet and Neumann boundary of the local problems,

respectively, for the velocity u or the pressure p. Taken from [79]. 95

6.2 Iteration counts for the system F with and without local projec-

tions as well as for the system F . The latter is the system with

global Lagrange multiplier. Two-dimensional LDC Stokes prob-

lem using H/h = 50, δ = 6h, and Taylor–Hood elements. Itera-

tion counts for the monolithic preconditioner with GDSW coarse

space. GMRES is stopped when a reduction of 10−6 of the unpre-

conditioned relative residual is reached. Taken from [79]. 95

6.3 LDC Stokes problem in two dimensions with 4 096 subdomains us-

ing H/h = 160, δ = 16h, and Taylor–Hood elements. Timings for

critical parts w.r.t. communication time of the two-level precon-

ditioner with GDSW coarse problem. Standard communication

uses Epetra Import and Epetra Export objects only. Modified

communication uses additional communication; cf. section 6.3.5.3.

‘Avg. apply 1st lvl.’ and ‘Avg. apply 2nd lvl.’ are times averaged

over the number of iterations. Taken from [79]. 100

7.1 Trilinos direct and iterative solver packages with specific solvers. 124

7.2 Trilinos block-preconditioner and nonlinear solver package. . . . 124

xv

8.1 Iteration counts for a LDC Stokes problem in two dimensions,

varying number of subdomains N and overlap δ with H/h = 8 and

Taylor–Hood elements. Stopping criterion ‖e(k)‖ ≤ 10−6, e(k) =

x(k)− x∗ with reference solution x∗ computed with a direct solver.

Taken from [79]. 134

8.2 Weak scalability for the monolithic preconditioner applied to the

two-dimensional LDC Stokes problem, H/h = 160, P2–P1 finite

elements, coarse problem on one core. Baseline for the efficiency is

the fastest time on 64 cores with overlap δ = 20h. Taken from [79]. 135

8.3 Weak scalability for the three-dimensional LDC Stokes problem

with a structured mesh and decomposition, H/h = 10, and Taylor–

Hood elements. Different settings for the coarse problem: MUMPS

used with one MPI rank (serial) and varying number of MPI ranks

(parallel) for the coarse problem; ‘NumProc’ denotes the number

of MPI ranks used for the computation of the coarse problem de-

termined by (8.1). Baseline for the efficiency is the fastest time

on 64 cores with overlap δ = 1h and MUMPS in serial mode. Taken

from [79]. 136

8.4 Number of rows and nonzero entries of the GDSW coarse matrix

for the LDC Stokes problem in three dimensions. Interface com-

ponents of structured and unstructured decompositions. Taken

from [79]. 136

8.5 Iteration counts and weak scalability for two-dimensional channel

Stokes problem, H/h = 200, and stabilized P1–P1 elements. Base-

line for the efficiency is the fastest time on 64 cores with overlap

δ = 25h. Taken from [79]. 137

8.6 Iteration counts and weak scalability for three-dimensional channel

Stokes problem, H/h = 20, and stabilized P1–P1 elements. Base-

line for the efficiency is the fastest time on 64 cores with overlap

δ = 1h. Taken from [79]. 137

xvi

8.7 Weak scalability for the three-dimensional LDC Stokes problem,

δ = 1h, and Taylor–Hood elements. The coarse problem is solved

exactly with MUMPS or with GMRES up to a tolerance εc. Baselines

for the efficiencies are the fastest times on 64 cores for structured

and unstructured meshes and decompositions.

Left: structured mesh and decomposition, H/h = 10, using 24

MPI ranks per node.

Right: unstructured mesh and decomposition, H/h = 13, using 12

MPI ranks per node. Taken from [79]. 138

8.8 Weak scalability for the two-dimensional LDC Navier–Stokes prob-

lem using H/h = 130, δ = 13h, and Taylor–Hood elements. Base-

line for the efficiencies is the time on 64 cores for each Reynolds

number. Times are averages over the number of Newton iterations.

Taken from [79]. 139

8.9 Weak scalability for the three-dimensional LDC Navier–Stokes

problem using H/h = 10, δ = 1h, and Taylor–Hood elements.

Baseline for the efficiencies is the time on 64 cores for each

Reynolds number. Times are averages over the number of Picard

iterations. Taken from [79]. 139

8.10 Weak scalability results for different coarse spaces: standard, re-

duced Option 1 & 2.2 applied to the three-dimensional P2–P1 BFS

Stokes problem, H/h = 10 and δ = 1h. Taken from [80]. 144

8.11 Comparison of the different monolithic one-level Schwarz precon-

ditioners with H/h = 10 applied to the BFS Stokes problem with

P2–P1 finite elements: AS, RAS, and SAS; cf. section 6.3.2. Taken

from [80]. 145

8.12 Weak scalability results for monolithic preconditioners with SAS

first level applied to the three-dimensional BFS Stokes problem

with P2–P1 discretization; H/h = 11, δ = 1h, and RGDSW Op-

tion 1. We always use one core for the solution of the coarse

problem; therefore, for the parallel additive coupling, we allocate

one additional core for the solution of the coarse problem. Taken

from [80]. 146

xvii

8.13 Weak scalability results for monolithic preconditioners with SAS

first level and parallel additive coupling applied to the three-

dimensional BFS Stokes problem; H/h = 11, δ = 1h, and

RGDSW Option 1. We allocate additional cores for the solution

of the coarse problem (in brackets). Taken from [80]. 147

8.14 Weak scalability results for monolithic preconditioners with

coarse space recycling applied to the BFS Navier–Stokes problem;

εnl = 10−6, H/h = 8, δ = 1h, ν = 0.01, Re = 200, and RGDSW

Option 1. The numbers in parentheses denote the number of

Newton iterations. SF, CB, and CM denote the reuse of the

symbolic factorizations for the matrices Ai and A(i)
II , of the coarse

basis φ, and of the coarse matrix A0, respectively. The times for

the solution of a Stokes problem for the initial guess are included.

Taken from [80]. 148

8.15 Iteration counts for the LDC Stokes problem in two dimensions

discretized with P2–P1 finite elements, varying number of sub-

domains N , overlap δ, and fixed H/h = 8. Stopping criterion

‖e(k)‖ ≤ 10−6, e(k) = x(k)−x∗ with solution x∗ obtained by a direct

solver. Preconditioners are monolithic (M), block-triangular (T),

and block-diagonal (D) two-level Schwarz methods with GDSW

or Lagrangian coarse spaces and standard a first level (AS). . . . 154

8.16 Weak scalability for block and monolithic two-level GDSW pre-

conditioners with a standard first level (AS) applied to the two-

dimensional LDC Stokes problem, H/h = 160, δ = 16h, coarse

problem on one core. Baseline for the efficiency is the fastest time

on 64 cores with the monolithic preconditioner. 155

8.17 Results for SIMPLE preconditioner for the three-dimensional

steady BFS Navier–Stokes problem. P2–P1, H/h = 9, and over-

lap δ = 1h. All first level preconditioners use SAS. Number of

Newton iterations in parenthesis. 157

8.18 Results for LSC preconditioner for the three-dimensional steady

BFS Navier–Stokes problem. P2–P1, H/h = 9, and overlap δ =

1h. All first level preconditioners use SAS. Number of Newton

iterations in parenthesis. 158

xviii

8.19 Comparison of the monolithic preconditioner and SIMPLE for

the three-dimensional steady BFS Navier–Stokes problem. P1–

P1 with H/h = 20, P2–P1 with H/h = 9, and Q2–P1disc with

H/h = 8. The overlap is δ = 1h. All first level preconditioners use

SAS. Number of Newton iterations in parenthesis. 159

8.20 History of forcing terms for the P2–P1 problem of table 8.19 pre-

conditioned with the monolithic variant and 243 subdomains. . . 160

8.21 GDSW–Star for the three-dimensional steady BFS Navier–Stokes

problem. Q2–P1disc with H/h = 8. The overlap is δ = 1h. All

first level preconditioners use SAS. Number of Newton iterations

in parenthesis. 161

8.22 Weak scalability with and without rotations for MLE cube prob-

lem in three dimensions with structured mesh and decomposition,

H/h = 11, δ = 1h, ν = 0.49999; 12 MPI ranks per node. The

coarse problem is solved with MUMPS or GMRES up to a tolerance

εc. Baseline for the efficiency is the fastest time on 64 cores with

rotations and exact coarse solves. 161

8.23 Iteration counts for the three-dimensional MLE cube problem with

an unstructured mesh and decomposition, H/h = 11, δ = 2h. . . . 162

8.24 Iteration counts for the three-dimensional MLE beam problem,

H/h = 11, δ = 2h, unstructured decomposition. Maximum num-

ber of iterations is 300. 163

8.25 Stationary Cube problem, discretization P1 (H/h = 21), iteration

counts are averages over all Newton iterations. All problems were

solved in 4 Newton iterations. Taken from [81]. 165

8.26 Stationary Cube problem, discretization P2 (H/h = 9), iteration

counts are averages over all Newton iterations. All problems were

solved in 4 Newton iterations. Taken from [81]. 166

8.27 Comparison of coarse matrix sizes for a structured domain de-

composition and the approximated subdomain maps for a P1

(H/h = 21) and P2 (H/h = 9) discretizaion. Taken from [81]. . . 167

xix

8.28 Results for SIMPLE and monolithic preconditioners in FaCSI

for the three-dimensional FSI benchmark. P2–P1 elements for

the fluid, overlap δ = 1h, one-level Schwarz preconditioner for

solid and geometry parts. All first levels are SAS precondition-

ers. St. Venant–Kirchhoff material law. Simulation of 100 time

steps. An average of 3.1 Newton iterations was needed for all

preconditioners. 169

xx

List of Figures

3.1 Generic mapping of initial reference domain V̂ and arbitrary ref-

erence domain Ŵ to the current domain V (t) 18

4.1 Initial two-dimensional FSI domains (top) and generic deformed

domains at time t (bottom) with the boundary regions highlighted. 33

5.1 Cross-section (left) and unstructured domain decomposition into

nine subdomains of the three-dimensional backward facing step

geometry (right). The Dirichlet boundary ∂ΩD consists of the

inlet ∂Ωin and the walls ∂Ωwall, the outlet ∂Ωout is a Neumann

boundary ∂ΩN ; see fig. 5.2 for the resulting streamline solution of

a Navier–Stokes problem. Taken from [80]. 39

5.2 Streamline solution of a three-dimensional backward facing step

Navier–Stokes problem. Taken from [80]. 39

5.3 Velocity solution of the steady Navier–Stokes benchmark problem;

Re = 20, (x, y, z) = (x1, x2, x3). Taken from [79]. 41

5.4 Full three-dimensional FSI benchmark with fluid and structure

domain (left). Separated structure domain for better visibility

(right). All values are in meters. 53

5.5 Velocity solution (left) and pressure solution (right). Ringing phe-

nomenon of the pressure for the Crank–Nicolson time discretiza-

tion. Depicted are four consecutive time steps with ∆t = 0.01

after the flow field is fully developed. 60

5.6 Velocity solution (left) and pressure solution (right). Fully implicit

treatment of the pressure for the Crank–Nicolson time discretiza-

tion. Depicted are four consecutive time steps with ∆t = 0.01

after the flow field is fully developed. 61

xxi

5.7 Sparsity patterns and numbers of nonzeros (nz) of finite element

matrices of a Stokes problem (left), a Navier–Stokes fixed point sys-

tem (center), and a Jacobian of a Navier–Stokes problem (right).

The two-dimensional problems on a unit square are discretized

with P2–P1 Taylor–Hood elements. Velocity components are or-

dered node-wise. 69

6.1 Two domains with constant subdomain size H/h = 5. Structured

decomposition into 1 subdomain (left) and 4 subdomains (right). . 75

6.2 Structured mesh and domain decomposition (top) and unstruc-

tured mesh and domain decomposition (bottom) of a unit cube:

different colors for each subdomain (left) and one subdomain with

one highlighted layer of overlap (right). The unstructured mesh

is generated as presented in fig. 8.1 and the unstructured domain

decomposition is performed using ParMETIS [100]. Taken from [79]. 77

6.3 A nonoverlapping subdomain (light green) of the three-dimensional

backward facing step for an unstructured decomposition with over-

lap δ = 2h (dark green). 87

6.4 Saddle point harmonic extension for the Stokes equations in two di-

mensions with 9 subdomains. Velocity Φu,u0 (top left) and pressure

Φp,u0 (top right) components of a velocity edge basis function in y-

direction. Velocity Φu,p0 (bottom left) and pressure Φp,p0 (bottom

right) components of the pressure basis function corresponding to

the same edge; see eq. (6.12) for the block structure of φ. Taken

from [79]. 92

6.5 Sketch of the approximation of the nonoverlapping subdomains

and the interface, respectively: uniquely distributed map (left);

extension of the uniquely distributed map by one layer of elements

resulting in an overlapping map where the overlap contains the

interface (center); by selection, using the lower subdomain ID, a

map approximating the nonoverlapping subdomains is constructed

(right). Taken from [81,84]. 106

xxii

7.1 Trilinos parallel linear algebra overview. Dashed items are pure

wrapper packages. Note that the faded MPI library is not part of

Trilinos. 114

7.2 Structure of problem classes in the FEDDLib. Dashed boxes repre-

sent abstract classes with virtual functions. Each specific problem

is a separate class. 121

7.3 Interplay of FEDDLib and Trilinos. All dashed items are Trili-

nos objects/classes. The term “uses” should be red synonymously

to an extensive use of many methods and functions. The term

“calls” should be red synonymously to the use of a single method

or function, e.g., buildPreconditioner(). 123

8.1 Structured (left) and unstructured (right) mesh and decomposi-

tion, H/h = 5. Taken from [79]. 132

8.2 Monolithic GDSW preconditioner applied to the two-dimensional

LDC Stokes problem with structured mesh and decomposition,

H/h = 160, P2–P1 finite elements, serial coarse solve. Iteration

counts for different levels of overlaps (left). First level, second

level, and total time for δ = 20h (right). Taken from [79]. 134

8.3 First level, second level, and total time for two- and three-

dimensional LDC Stokes problems with structured meshes and

decompositions using Taylor–Hood elements, 2D H/h = 160, 3D

H/h = 10. Taken from [79]. 135

8.4 Strong scalability for the monolithic GDSW preconditioner ap-

plied to the Navier–Stokes benchmark problem with unstructured

decompositions and Taylor–Hood elements. Taken from [79]. . . . 140

8.5 Inflow rate for the time-dependent Navier–Stokes problem in a

coronary artery (left); see figs. 8.6 and 8.7 for the correspond-

ing mesh and flow field. Magnitude of the solution to a three-

dimensional Laplacian problem restricted to the inflow boundary

(right). Taken from [80]. 142

8.6 Coronary artery volume mesh with 1 032 k tetrahedral elements.

Resulting Navier–Stokes systems discretized with P2–P1 elements

consists of 4.6 million d.o.f.. Taken from [80]. 142

xxiii

8.7 Solution of the time-dependent Navier–Stokes problem at time

1.0 s for the coronary artery; cf. section 5.1.2. Taken from [80].

. 149

8.8 Timings for the simulation of the coronary artery with the time-

dependent Navier–Stokes problem with 4.6 million d.o.f. solved on

240 cores. SAS for the first level with δ = 1h. Hybrid and additive

two-level preconditioners with different recycling strategies. Taken

from [80]. 150

8.9 Strong scaling results for time-dependent Navier–Stokes problem

with 4.6 million d.o.f. for the realistic coronary artery. SAS for

the first level with δ = 1h. Hybrid two-level preconditioner with

coarse basis recycling and additive two-level preconditioner with

coarse basis and coarse matrix recycling. Simulation to final time

of 1.0 s with ∆t =0.01 s; cf. section 5.1.2, for the description of the

model problem. Taken from [80]. 151

8.10 Total time for the three-dimensional BFS Stokes problem with

P2–P1 finite elements, H/h = 11, and δ = 1h on 4 608 cores. Im-

proved preconditioner versions use SAS for the first level; cf. sec-

tion 6.3.2. The improved (R)GDSW preconditioners with additive

coupling between the levels use parallel coarse solves with 10 ded-

icated MPI ranks for the coarse problem; cf. section 6.3.7. Taken

from [80]. 152

8.11 Speedup for the time–dependent Navier–Stokes problem on 240

cores. Simulation of 0.1 s of the ramp phase, δ = 1h. Improved

preconditioner versions use SAS for the first level and full recycling;

cf. section 6.3.2 and section 8.2.4, respectively. Taken from [80]. . 153

8.12 Left: Slice through elements with high coefficient (µhigh = 103)

displayed as a wireframe. Low coefficient is µlow = 1; cf. [82], for a

detailed discussion of the foam geometry used for an heterogeneous

Poisson problem. Right: Solution of dynamic Foam problem at

T = 10−2 for ∆t = 10−3 with a warp filter and a scaling factor of

5. Taken from [81] . 164

8.13 Strong scaling for dynamic problem up to time T = 2 ·10−2 for the

foam geometry. Taken from [81]. 167

xxiv

8.14 Solid domain (front) with highlighted mesh in blue and fluid do-

main (back) with highlighted mesh in red of the realistic FSI problem.171

8.15 Velocity magnitude at t = 0.5 s and clipped deformed artery wall

with scaling factor 200. 172

8.16 Displacements of artery wall with Neo–Hooke material (front) and

St. Venant–Kirchhoff material (back) at t = 0.5 s with scaling fac-

tor 200. 173

8.17 Average number of linear iterations per Newton iteration for each

time step of the St. Venant–Kirchhoff material and the Neo–Hooke

material. 173

8.18 Solid domain (front) and fluid domain (back), decompositions into

24 subdomains. Same color of subdomain corresponds to same

MPI rank. 174

xxv

1 Introduction

Computational fluid dynamics is a major field of research in applied mathematics.

Enhanced modeling of the physical behavior, new methods for the spatial and

temporal discretizations, and fast and efficient solvers are some of the relevant

research topics. In this thesis, we will concentrate on the last aspect: fast and

efficient solvers for incompressible fluid flow problems.

Fluid mechanics is a branch of the broader field of continuum mechanics. A

second branch of continuum mechanics is solid mechanics. We want to extend the

purely fluid based problems to the more complex fluid-structure interaction (FSI)

problems. As the name already suggests, we have an additional structural prob-

lem which is coupled with the fluid equations. An example for an FSI problem

is the flow of blood in an artery. There, the blood is modeled as a fluid problem

and the artery itself is the corresponding structural problem. The book Cardio-

vascular Mathematics [70] gives a great overview of the mathematical aspect of

fluid-structure interaction and applications to cardiovascular systems. The first

main principle in fluid dynamics is the conservation of mass which can be mod-

eled in two different ways. Therefore, we must distinguish between compressible

fluids, e.g., a gas, and incompressible fluids, e.g., water. Consider a cavity filled

with a fluid and covered by a lid. If we press down on the lid and prevent any

leakage, the volume which is occupied by the fluid particles is decreased. As a

consequence, the density of the fluid increases, due to the conservation of mass.

This behavior is modeled by equations for compressible fluids, e.g, the Euler equa-

tions. In contrast, fluids with a constant density are called incompressible fluids.

The above example of a closed cavity with decreasing volume does not apply for

these fluids. We need to modify the above setup and allow for leaking, or use a

dedicated outflow region to satisfy the conservation of mass for incompressible

fluids. Our efficient solution methods for fluid flow and fluid-structure interaction

problems will be used in the simulation of blood flow in arteries, whose physical

1

INTRODUCTION

behavior is captured very well by incompressible fluid equations. Therefore, only

incompressible fluids will be considered in this thesis. The second main principle

of continuum mechanics, and therefore fluids, is the conservation of momentum.

Together with the conservation of mass, we will arrive at a system of two coupled

equations, the quantities of interest are the velocity and pressure.

Simulations of incompressible fluids are used to approximate, e.g, the flow of

blood through arteries [70], the drag and lift forces created by an aerofoil in a

wind tunnel [114], or even velocities of larger scale problems like earth mantle

convection [112]. Incompressible fluid flow problems are modeled by the time-

dependent Navier–Stokes equations, which consist of two partial differential equa-

tions (PDEs). In general, these PDEs cannot be solved analytically and we need

suitable discretizations. A widely used approach is the finite element method

(FEM). To approximate solutions with the FEM, we generally start with a trian-

gulation of the given computational domain. Usually, triangles or quadrilaterals

are used in two dimensions and tetrahedra or hexahedra are used in the three-

dimensional case. Based on this, the solution is approximated with a suitable

basis representation. In a next step, and without considering the nonlineari-

ties of the Navier–Stokes problem, a matrix and right-hand side are assembled

from the weak formulations of the given PDEs with an elementwise procedure.

This yields a linear system of equations for the unknown coefficients of the ba-

sis representation; cf., e.g., [22]. In particular, finite element discretizations of

the underlying PDEs typically result in large, sparse, and ill-conditioned linear

systems.

Special care has to be taken when constructing preconditioners for the dis-

crete problems. In particular, the block structure and the coupling blocks have

to be handled appropriately to guarantee fast convergence of iterative methods.

We will focus on the construction of monolithic two-level overlapping Schwarz

preconditioners with coarse spaces built from discrete (saddle point) harmonic

extensions, which was already proposed in [79]. Specifically, the extensions of

Generalized Dryja–Smith–Widlund (GDSW) coarse spaces, which were originally

introduced for linear second- and fourth-order elliptic partial differential equa-

tions in [45,49], to general saddle point problems will be presented in Chapter 6.

This approach was inspired by the work on monolithic overlapping Schwarz pre-

conditioners with Lagrangian coarse spaces for saddle point problems by Klawonn

2

and Pavarino in [104, 105]. For elliptic problems, the GDSW coarse basis func-

tions are energy minimal extensions that are able to represent the nullspace of the

elliptic operator. One significant advantage of our new method is that it can be

applied to arbitrary geometries and domain decompositions, whereas the use of

Lagrangian coarse basis functions requires a coarse triangulation. This limits the

use of Schwarz methods with Lagrangian coarse spaces for arbitrary geometries.

In [51,53,54], different approaches for reducing the dimension of GDSW coarse

spaces have been introduced and some of them have been proven to significantly

improve the parallel scalability compared to standard GDSW coarse spaces;

cf. [89]. These Reduced dimension GDSW (or simply Reduced GDSW) (RGDSW)

coarse spaces were also used for the monolithic preconditioners in [80] and will

be presented along the GDSW coarse space in this thesis. Alternatively, the par-

allel scalability could be improved by solving the coarse problem inexactly using

another GDSW preconditioner resulting in a three-level GDSW method; cf. [88].

For highly heterogeneous multiscale problems, GDSW coarse spaces were en-

hanced using local generalized eigenvalue problems in [82], resulting in a method

that is robust with respect to (w.r.t.) the contrast of the coefficients.

As described in [85], in a parallel implementation for elliptic problems, GDSW

coarse spaces can be constructed in an algebraic fashion directly from the fully

assembled system matrix. The parallel implementation of Schwarz precondi-

tioners with GDSW coarse spaces for saddle point problems is based on the

FROSch (Fast and Robust Overlapping Schwarz) software [83], which is part of

the package ShyLU of the Trilinos library [90]. FROSch is a framework for par-

allel Schwarz preconditioners in Trilinos, and one of its main contributions is a

parallel and algebraic implementation of GDSW preconditioners for elliptic prob-

lems; see also [77, 85–87, 89]. Therefore, the parallel implementation described

in this thesis is also algebraic, i.e., the preconditioner can be easily built requir-

ing only few input parameters; the construction will be described in more detail

in sections 6.3.5 and 7.5. Parts of these new implementations have already partly

been added to FROSch and are therefore available as open source as part of Trili-

nos. The remaining features will be added in the future and will therefore also

be available, as part of FROSch.

In our approach, we solve saddle point problems using the Generalized Minimal

Residual method (GMRES) [128]. We mainly consider the construction of mono-

3

INTRODUCTION

lithic preconditioners for Stokes and Navier–Stokes problems in two and three

dimensions. An extensive overview of numerical methods for these saddle point

problems is given in [16].

Older approaches for the iterative solution of saddle point problems are exact

and inexact Uzawa algorithms [5, 12, 24, 62, 126, 150], where velocity and pres-

sure are decoupled and solved in a segregated approach. Other physics-based

approaches are the Semi-Implicit Method for Pressure Linked Equations (SIM-

PLE) and its generalizations, i.e., SIMPLEC and SIMPLER; cf. [39,59,121,122].

Block preconditioners for GMRES, the Minimal Residual method (MINRES),

and the conjugate residual method are presented in [61,102,103,105,108,127,131,

133, 146]. Further block preconditioners are the Pressure Convection-Diffusion

(PCD) preconditioner [64, 101, 132], the Least-Squares Commutator (LSC) pre-

conditioner [60,63,64], Yosida’s method [123,124], the Relaxed Dimensional Fac-

torization (RDF) preconditioner [18] and the Dimensional Splitting (DS) pre-

conditioner [17, 44]. Early studies of domain decomposition methods for Stokes

problems were given in [23]. Schwarz preconditioners for saddle point problems

have already been used for the approximation of the inverse matrices of blocks

in [11, 37, 43, 85] and as monolithic preconditioners in [13, 14, 31, 140, 149]. Al-

ternative solvers for saddle point problems are, e.g., multigrid methods; cf. [21,

25, 72, 96, 141, 142, 147]. Let us note that there are several other publications on

iterative solvers for saddle point problems.

In addition to the incompressible fluid flow problems, we will model, discretize,

and efficiently solve solid dynamics problems. The two-level GDSW and RGDSW

Schwarz preconditioners, which will be employed to solve the fluid flow problems,

can also be used to efficiently solve solid dynamics problems in a parallel envi-

ronment. The monolithic methods and implementations for the 2 × 2 fluid flow

block problems can be used for the general 1× 1 block systems of solid dynamics

problems. In addition, we will also present results for the almost incompress-

ible limit of a linear elastic material. There, we will arrive at the same 2 × 2

saddle point structure which is obtained for incompressible fluid flow problems.

Both the fluid flow and solid problems are then coupled to model a fully coupled

monolithic FSI problem.

This thesis is organized as follows, in Chapter 2 we will derive the incompress-

ible Navier–Stokes and Stokes equations. In Chapter 3, we consider solid dy-

4

namic problems. We combine the fluid and the solid problems to a fluid-structure

interaction problem in Chapter 4. To do so, we first derive an alternative formu-

lation for the Navier–Stokes equations based on an Arbitrary Lagrangian Eulerian

(ALE) mapping. In FSI, ALE mappings are used to match the solid and fluid

problems, which are typically studied in different coordinate systems. A detailed

discussion of these different coordinate systems will be given in Chapters 2 to 4.

In Chapter 5, we will define model problems and consider spatial finite element

discretizations as well as temporal discretizations. For the temporal discretiza-

tions we will use implicit single-step Runge–Kutta (RK) methods and multi-step

Backward Differentiation Formulas (BDF).

The two-level overlapping Schwarz domain decomposition preconditioners with

GDSW and RGDSW coarse spaces will be presented in Chapter 6. We will fo-

cus on the construction of monolithic preconditioners for fluid flow problems.

Furthermore, we will discuss standard block-diagonal and block-triangular pre-

conditioners as well as SIMPLE and LSC block preconditioners for Stokes and

Navier–Stokes problems. The chapter closes with a presentation of the block

factorization-based FaCSI preconditioner for FSI problems; cf. [42]. For the ap-

proximation of block inverses of the above mentioned block methods, we will use

both one-level and two-level overlapping Schwarz (R)GDSW preconditioners.

The discrete problems are implemented using our C++ library FEDDLib, which

is based on the software package Trilinos [90]. Some basic information on Trili-

nos, the general structure of the FEDDLib, and details on the parallel finite

element assembly are given in Chapter 7. Furthermore, we will present the setup

of specific discrete problems based on the underlying weak formulations described

in Chapter 5 and discuss the solution phase, which makes use of several Trilinos

packages. In Chapter 8, numerical results for the previously introduced precon-

ditioners and discretized problems are presented. We will focus on discussing the

parallel efficiency of different preconditioners for fluid, solid, and FSI problems.

The concluding Chapter 9 summarizes the findings of the previous chapters.

5

2 Stokes and Navier–Stokes

Equations

0.0e+00

1.0e+00

0.2

0.4

0.6

0.8

u
 M

a
g

n
it
u

d
e

This chapter is dedicated to the derivation of the

two central sets of equations for incompressible

fluid flow problems which are studied in this thesis,

the Stokes and Navier–Stokes equations. Incom-

pressible fluid flow problems are part of the field

of fluid dynamics, which belongs to the continuum

mechanics. In Chapter 4, we will describe another

branch of continuum mechanics, the solid dynam-

ics. A main difference between the dynamics of

fluids and solids is the coordinate system, in which

they are typically studied. For fluids the standard choice is the Eulerian coordi-

nate system while the description of solids is normally defined in the Lagrangian

coordinate system. In general, the displacement of material (point) from an exter-

nal view is the main quantity of interest in solid dynamics. Therefore, a problem

in the Lagrangian coordinate system uses a reference domain and the quantities

of interest describe, in general, a relation between this reference domain and the

current state; e.g., the displacement of a material point from its coordinates in

the reference system to the new coordinates after a force is applied. In contrast,

in the Eulerian framework we are inside the system and move with the material.

Here, the observation is made at a fixed point and the quantity of interest is not

the deformation or displacement but rather the velocity.

In the next section, we will present some basic principles for both frameworks

and discuss the transformation of variables to different coordinate systems, which

builds the basis of continuum mechanics. The presentation follows the description

in [125].

7

CHAPTER 2. STOKES AND NAVIER–STOKES EQUATIONS

2.1 Continuum Mechanics

Let Ω̂ ⊂ R3 be a closed domain with a smooth boundary ∂Ω̂. Further, let V̂ ⊂ Ω̂

be an arbitrary closed volume in Ω̂ at time t = 0. Consider a point x̂ ∈ V̂ ,

which can be associated with a single particle. Its position at time t > 0 is

x := x(x̂, t) = T̂ (x̂, t). In general, we will use a “hat”-symbol for variables in the

reference configuration. Furthermore, we make the following assumption.

Assumption. T̂ (·, t) : Ω̂ → Ω is an orientation preserving C∞–diffeomorphism

with det
(
T̂ (·, t)

)
> 0 for t > 0 and T̂ (·, 0) is the identity.

Since we are not interested in a single particle, we will make this observation for

every point x̂ ∈ V̂ , which results in the volume V (t) = T̂ (V̂ , t) at time t. In the

Lagrangian framework we directly compute the deformation from x̂ to x as an

external observer. The deformation û of a point or particle x̂ ∈ V̂ is defined as

û(x̂, t) = x(x̂, t)− x̂. (2.1)

Furthermore, the material velocity is defined as

v̂(x̂, t) :=
d

dt
x(x̂, t) =

d

dt
û(x̂, t). (2.2)

We can reverse this view and study the quantities of interest in the current system.

Then, we use

x = x̂ + û(x̂, t) and u(x, t) := û(x̂, t) = x− x̂. (2.3)

The Eulerian velocity in a point x ∈ V (t) is

v(x, t) :=
∂x

∂t
=

∂

∂t
T̂ (x̂, t) =

∂

∂t
û(x̂, t) = v̂(x̂, t). (2.4)

Moreover, in structural mechanics the following basic quantities are used; cf. [125].

Definition 1 (Deformation Gradient). With a differential deformation field

û(x̂, t) on the material domain V̂ the deformation gradient is defined as

F̂(x̂, t) := I + ∇̂û(x̂, t).

8

2.2. INCOMPRESSIBLE FLUIDS

Additionally, the determinant of the deformation gradient

Ĵ := det
(
F̂(x̂, t)

)
(2.5)

denotes the local changes of volume; cf. [125] For the volume V (t) it holds that

|V (t)| =
∫
V̂

Ĵ dx̂. (2.6)

In the following, we will derive the equations of incompressible fluid flow in

the Eulerian coordinate system. In theory, it is possible to model them in the

Lagrangian coordinate system. There, we would need to be able to determine the

position of every particle of the initial system V̂ at every time throughout our

observation. This can only be done if we study a closed system where no particle

enters or leaves the domain of interest. However, in fluid dynamics we typically

have an inflow and outflow region, which prevents us from using the Lagrangian

coordinate system.

2.2 Incompressible Fluids

Only isothermal flows, i.e., flows with a constant temperature, are considered in

this thesis. Therefore, we neglect the energy and our fluid dynamics model only

needs to satisfy

• the conservation of mass and

• the conservation of momentum.

The first quantity of interest is, as already mentioned, the velocity v(x, t). Fur-

thermore, we need to determine the pressure p(x, t) and the density ρ(x, t). In the

following two sections, we will discuss the conservation of mass and momentum

for incompressible fluids. This discussion is along the line of [97,125].

9

CHAPTER 2. STOKES AND NAVIER–STOKES EQUATIONS

2.3 Conservation of Mass

We define the mass as of V (t) as

m (V (t)) :=

∫
V (t)

ρ(x, t) dx. (2.7)

Hence, the conservation of mass yields

d

dt

∫
V (t)

ρ(x, t) dx = 0. (2.8)

The time dependence of the integral is resolved with the following theorem;

cf. [125].

Theorem 1 (Reynold’s Transport Theorem). Let f(x, t) : Ω× (0,∞)→ R be a

differentiable function. Then, for each volume V (t) ⊂ Ω it holds

d

dt

∫
V (t)

f(x, t) dx =

∫
V (t)

∂

∂t
f + div(fv) dx. (2.9)

Now the conservation of mass of can be transformed to a point-wise condition.

Applying theorem 1 to eq. (2.8) yields

d

dt

∫
V (t)

ρ(x, t) dx =

∫
V (t)

∂

∂t
ρ+ div(ρv) dx. (2.10)

We chose V (t) as an arbitrary volume and can therefore use the following point-

wise equation for the conservation of mass

∂

∂t
ρ+ div(ρv) = 0, (2.11)

assuming continuity of eq. (2.11) in V (t).

Since we only consider incompressible fluids, the density is constant in time and

space, i.e., in particular ∂
∂t
ρ = 0. Thus, eq. (2.11) reduces to the incompressibility

condition

div(v) = 0. (2.12)

10

2.4. CONSERVATION OF MOMENTUM

Similarly, this condition can be obtained by directly using the incompressibility

condition on the volume V (t), i.e., the mass of V (t) does not change with respect

to time:

0 =
d

dt
|V (t)| = d

dt

∫
V (t)

1 dx. (2.13)

Applying theorem 1 to eq. (2.13) yields∫
V (t)

div(v)dx = 0,

and eq. (2.12) follows with a point-wise consideration.

2.4 Conservation of Momentum

In this section we will describe the conservation of linear momentum. Linear

momentum for flows is equivalent to Newton’s second law of motion; cf. [97].

Newton’s second law of motion states that

net force = mass× acceleration.

Therefore, we define the linear momentum as

p :=

∫
V (t)

ρ(x, t)v(x, t) dx.

Then, the law of conservation of linear momentum reads

d

dt
p = F (V (t)) + F (∂V (t)) (2.14)

with the external volume force

F (V (t)) :=

∫
V (t)

ρ(x, t)f(x, t) dx, (2.15)

11

CHAPTER 2. STOKES AND NAVIER–STOKES EQUATIONS

and the internal surface force

F (∂V (t)) :=

∫
∂V (t)

t dx, (2.16)

where f is an external volume force, such as gravitiy, and t = t(x,n) is a surface

stress vector known as Cauchy stress vector. In general, a stress describes the

internal force which acts on an imaginary surface inside V (t).

Next, we state Cauchy’s Stress Theorem, cf. [22], which provides the linear

dependency of the stress vector t on the normal direction n ∈ S. In the following,

we will use S ⊂ Ω as the surface of an arbitrary cut through Ω; cf. [125].

Theorem 2 (Cauchy’s Stress Theorem). Let t(·,n) ∈ C1(Ω) for fixed n, t(x, ·) ∈
C0(Ω) for fixed x, and g(x, t) := ρ(x, t)f(x, t) ∈ C0(Ω) in equilibrium for a fixed

time t. Then, there exists a symmetric tensor σ ∈ C1(Ω), such that

t(x,n) = σ(x)n, x ∈ Ω, n ∈ S.

For a proof see [34] or [97]; the latter uses the intuitively accessible tetra-

hedron argument. Cauchy’s Stress Theorem or Principle builds the foundation

of continuum mechanics. In particular, the stress tensor represents all internal

forces.

Using the above theorem, we can write the surface stress in normal direction as

t = σn with Cauchy stress tensor σ ∈ R3×3. Futhermore, using the divergence

theorem for eq. (2.16) we obtain

F (∂V (t)) =

∫
V (t)

div(σ) dx. (2.17)

We apply Reynold’s transport theorem to the left side of the conservation of

momentum eq. (2.14) and obtain

d

dt
p =

∫
V (t)

∂

∂t
(ρv) + div(ρv ⊗ v) dx. (2.18)

Similarly to the conservation of mass, the conservation of momentum must hold

point-wise for every particle in V (t). We can now combine eq. (2.18), eq. (2.15),

12

2.5. STOKES AND NAVIER–STOKES EQUATIONS

and eq. (2.17) to the conservation of momentum in conservative form

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf + div(σ).

For a transition from the conservative to the following nonconservative formula-

tion we refer to [125]. The nonconservative formulation reads

ρ
∂

∂t
v + ρ (v ·∇) v = ρf + div(σ). (2.19)

Furthermore, Hooke’s law for the stress tensor σ is

σ = 2µε + λ trace(ε)I, (2.20)

where ε is the linearized strain tensor, cf. section 3.2, and λ and µ are the first

and second Lamé constants, respectively. In fluid mechanics µ is known as the

dynamic viscosity. In Chapter 3, we will consider Hooke’s law in the context of

solid mechanics. However, for incompressible fluids Hooke’s law reduces to the

Navier–Stokes material law

σ = µ(∇v +∇vT) + λI, (2.21)

since trace(ε) = div(v) = 0. Furthermore, we introduce the pressure p = −λI,

which will act as a Lagrangian multiplier for the incompressibility condition of

the fluid.

2.5 Stokes and Navier–Stokes Equations

Using the Navier–Stokes material law of eq. (2.21) and the incompressibility con-

dition div(v) = 0 we obtain the incompressible (unsteady or time-dependent)

Navier–Stokes equations

ρ

(
∂v

∂t
+ (v ·∇)v

)
− µ∇ · (∇v +∇vT) +∇p = ρf ,

div(v) = 0,

13

CHAPTER 2. STOKES AND NAVIER–STOKES EQUATIONS

This form is often referred to as the stress-divergence form; cf. [74]. We obtain

the conventional form by rewriting

∇ · (∇v +∇vT) = ∇2v +∇(∇ · v), (2.22)

and using div(v) = ∇ · v = 0. With ∇2v = ∆v we obtain the time-dependent

Navier–Stokes equations in conventional form.

ρ

(
∂v

∂t
+ (v ·∇)v

)
− µ∆v +∇p = ρf , (2.23)

div(v) = 0. (2.24)

In the following, we will consider the conventional form if we consider pure fluid

problems. Next, we can scale the pressure with the density; i.e., we replace p

with p/ρ. Furthermore, we introduce the kinematic viscosity ν = µ/ρ. If we

assume that eqs. (2.23) and (2.24) reach a stationary limit at t ∈ (0,∞), we can

use ∂u
∂t

= 0 and obtain the steady Navier–Stokes equations

(v ·∇)v − ν∆v +∇p = f , (2.25)

div(v) = 0. (2.26)

For fluids with negligible advective forces, i.e., if (v ·∇) is comparatively small,

we can further remove the advective term from the Navier–Stokes equations and

obtain the Stokes equations

−µ∆v +∇p = f , (2.27)

div(v) = 0. (2.28)

The above momentum equation of the Stokes problem is typically stated with

the dynamic viscosity µ instead of the kinematic viscosity. We need to enclose

all of the above problems, i.e., the time-dependent and stationary Navier–Stokes

as well as the Stokes problem, with appropriate boundary conditions in order

to have well-posed problems. In general, a fluid domain Ω possesses an inflow

region or boundary ∂Ωin where velocities are prescribed with Dirichlet boundary

14

2.5. STOKES AND NAVIER–STOKES EQUATIONS

conditions:

v = g on ∂Ωin.

Furthermore, if particles can enter the computational domain, particles must also

be able to leave the domain in the case of incompressible fluids. Therefore, we

define an outflow region ∂Ωout. The corresponding boundary condition is often

stated as a Neumann boundary condition.

σn = 0 on ∂Ωout. (2.29)

This boundary condition is typically denoted as do–nothing boundary condition.

We will see in sections 5.1.1 and 5.1.2 that, after the variational formulation

is derived with Green’s formula and the resulting integral over the Neumann

boundary ∂Ωout is dropped, it is immediately satisfied. If we use the conventional

form eq. (2.23) the do-nothing boundary condition reads

ν
∂v

∂n
− pn = 0 on ∂Ωout.

We highlight that it is a different condition than the stress-free condition

of eq. (2.29) which is used for the stress-divergence form eq. (2.22) of the Navier–

Stokes equations. The stress-divergence form of the Navier–Stokes equations is

the correct form for physically meaningful natural boundary conditions; cf. [74].

Therefore, it is mandatory to use this form in a fluid-structure interaction

problem, where fluid and solid stresses are coupled at the fluid-solid interface.

This coupling is further described in Chapter 4. However, for a separated fluid

problem the conventional form of the Navier–Stokes equations is sufficient. All

other boundaries of a fluid problem are generally walls ∂Ωwall which prevent

the fluid from leaking out of the computational domain. The most commonly

used boundary conditions for walls are so-called no-slip conditions, where a fluid

velocity of zero is prescribed:

v = 0 on ∂Ωwall.

Later, we will also consider a specific problem setup without an inflow or outflow

region. There, the fluid domain is closed, no particle enters or leaves the compu-

15

CHAPTER 2. STOKES AND NAVIER–STOKES EQUATIONS

tational domain and the fluid is driven by a “moving” lid. Therefore, this problem

is called lid-driven cavity. There are several indication values which characterize

different properties of a specific Navier–Stokes problem. The most widely used

is the Reynolds number (Re). It describes the relative contributions of advection

and diffusion and gives a general measurement of how advection dominated a

specific problem is. The Reynolds number is defined as, cf. [125],

Re :=
ρūL

µ
=
ūL

ν
(2.30)

where ū is some known velocity and L is a characteristic length scale. Generally, ū

is the average or maximum inflow velocity and L is equal to the height or length

of an obstacle, inflow region, or outflow region. Two- and three-dimensional

flows possess quite different characteristics for a given Reynolds number; i.e., a

two-dimensional problem with a stable solution might be unstable for the same

Reynolds number and an equivalent domain in the three-dimensional case. More-

over, there is no general upper limit to the Reynolds number above which a flow

becomes unstable. Additionally, problems with high Reynolds numbers can suffer

from instabilities due to highly advective regions which are not properly resolved

with the spatial discretization. In section 5.1.6 we will comment on stabilization

techniques for Navier–Stokes problems which exhibit such stability issues.

16

3 Solid Mechanics

0.0e+00

2.8e-01

0.05

0.1

0.15

0.2

0.25

u
 M

a
g
n
it
u
d
e

In this chapter we want to present the basic prin-

ciples and concepts of solid mechanics. Simi-

lar to the previous chapter about incompressible

fluid mechanics, solid mechanics builds on the

same basic concepts of conservation laws. Al-

though both fields belong to the broader area

of continuum mechanics, the usual view, i.e, La-

grangian or Eulerian, on the relevant variables

or quantities is quite different. We saw in the

last chapter that it is much more convenient and

less restrictive to consider fluids in the Eulerian

framework, which means that the quantity of interest is velocity. For solid me-

chanics a more natural viewpoint is the Lagrangian framework. Here, the primary

quantity of interest will be the displacement of a solid body. For convenience,

we will restate some of the considerations which were made at the beginning

of Chapter 2. The presentation follows the description in [125].

Each material point x̂ ∈ V̂ will be at x = T̂ (x̂, t) ∈ V (t) at time t > 0.

Similarly, we have defined the invertible mapping T̂ (t) : V̂ → V (t) for every

material point of the initial reference system V̂ := V0 = V (0). Furthermore,

we define a second (arbitrary) reference system Ŵ ⊂ Ω̂W ⊂ R3. We will work

with different reference systems V̂ and Ŵ , since for fluid-structure interaction

problems two different mappings will be considered.

For a mapping from the arbitrary system Ŵ to the current configuration, we

will define the mapping T̂W (t) : Ŵ → V (t). A generic configuration of the three

systems V̂ , V (t), and Ŵ and the mappings T̂ and T̂W is depicted in fig. 3.1.

In the next section, we will transform the balance of momentum equation for

the current system V (t) to the arbitrary reference system Ŵ . In section 3.2,

17

CHAPTER 3. SOLID MECHANICS

we will then define the general reference system Ŵ to be identical to the initial

reference configuration V̂ and state the equation of our solid problem. We use

the arbitrary system Ŵ since we can reuse many of the results in Chapter 4,

where we present a coupled fluid–structure interaction problem in the Arbitrary

Lagrangian Eulerian formulation.

V̂

Ŵ

V (t)

T̂

T̂W

Figure 3.1: Generic mapping of initial reference domain V̂ and arbitrary refer-

ence domain Ŵ to the current domain V (t)

3.1 Conservation of Momentum in a Reference

Configuration

At the beginning of this section, we will state two important lemmata for the

transformation to an arbitrary system; cf. [125]. Let Ŵ be the arbitrary system

which is fixed in time and T̂W (t) : Ŵ → V (t) be an invertible mapping with

gradient F̂W := ∇̂T̂W and determinant ĴW := det(F̂W) > 0.

Lemma 1 (Inverse Mapping). Let TW (t) : V (t) → Ŵ be the inverse mapping,

let FW := ∇TW be its gradient and let JW := det(FW) be its determinant. With

sufficient regularity, it holds that

FW = F̂−1
W , JW = Ĵ−1

W ,
∂

∂t
TW = −F̂−1

W

∂

∂t
T̂W .

18

3.1. CONSERVATION OF MOMENTUM IN A REFERENCE
CONFIGURATION

The following relations for a scalar function f : V (t) → R and a vector field

w : V (t)→ Rd follow from lemma 1.

∇f = F̂−TW ∇̂f̂ , ∇w = ∇̂ŵF̂−1
W . (3.1)

Lemma 2 (Transformation of Temporal Derivatives). Let f : V (t) → R be a

function with sufficient regularity and f̂(x̂W , t) = f(x, t) its counterpart. It holds

that

∂

∂t
f =

∂

∂t
f̂ −

(
F̂−1
W

∂

∂t
T̂W · ∇̂

)
f̂ ,

d

dt
f =

∂

∂t
f̂ +

(
F̂−1
W

(
v̂ − ∂

∂t
T̂W

)
· ∇̂
)
f̂ ,

where v̂ is the particle velocity.

We can now transform the first parts of the conservation of momentum equation

from V (t) to Ŵ . For convenience, we restate the conservation of momentum in

nonconservative form, which was introduced with eq. (2.19):

ρ
∂

∂t
(v) + ρ (v ·∇) v = ρf + div(σ) in V (t).

Furthermore, we express the following quantities for the reference configura-

tion Ŵ : Density ρ̂(x̂W , t) = ρ(x, t), velocity v̂(x̂W , t) = v(x, t), volume force

f̂(x̂W , t) = f(x, t) and stress tensor σ̂(x̂W , t) = σ(x, t).

Using eq. (3.1) and lemma 2 for the partial temporal derivative of the velocity

and the convective part, we obtain

∂

∂t
v =

∂

∂t
v̂ −

(
F̂−1
W

∂

∂t
T̂W · ∇̂

)
v̂,

(v ·∇v) = ∇vv = ∇̂v̂F̂−1
W v̂ =

(
F̂−1
W v̂ · ∇̂

)
v̂,

which yields

∂

∂t
v + (v ·∇v) =

∂

∂t
v̂ +

(
F̂−1
W

(
v̂ − ∂

∂t
T̂W

)
· ∇̂
)

v̂. (3.2)

19

CHAPTER 3. SOLID MECHANICS

Choosing Ŵ = V̂ the temporal derivative of the mapping is ∂
∂t
T̂W = ∂

∂t
T̂ = v̂

and we obtain

∂

∂t
v + (v ·∇v) =

∂

∂t
v̂.

Finally, we need to transform div(σ) to the reference configuration Ŵ .

Lemma 3 (Piola Transformation). Let the vector field w : V (t) → Rd be dif-

ferentiable and ŵ the corresponding field in the reference system Ŵ . The Piola

transformation of w is

ĴW F̂−1
W ŵ.

For every volume V (t) with reference system Ŵ we have∫
∂V (t)

n · w ds =

∫
∂Ŵ

n̂ ·
(
ĴW F̂−1

W ŵ
)
dŝ,∫

V (t)

div(w) dx =

∫
Ŵ

d̂iv(ĴW F̂−1
W ŵ) dx̂.

In our continuous setting, this relation must also hold point-wise:

ĴW div(w) = d̂iv(ĴW F̂−1
W ŵ). (3.3)

For a proof see [125]; eq. (3.3) must be seen as an equality for all points in Ŵ

with x = T̂W (x̂W , t).

We obtain the following surface forces in the reference system by using a

column-wise consideration of the stress tensor σ = (σ1,σ2,σ3), by apply-

ing lemma 3 to each σi, i = 1, 2, 3, and by combining them afterwards:

F (∂V (t)) =

∫
∂V (t)

σn ds =

∫
V (t)

div(σ) dx

=

∫
Ŵ

d̂iv(ĴW σ̂F̂−TW) dx̂.

=

∫
∂Ŵ

(ĴW σ̂F̂−TW)n̂ dŝ

(3.4)

20

3.1. CONSERVATION OF MOMENTUM IN A REFERENCE
CONFIGURATION

Definition 2. The first Piola–Kirchhoff stress tensor is defined as

P̂ := ĴW σ̂F̂−TW .

The second Piola–Kirchhoff stress tensor is defined as

Σ̂ := F̂−1
W P̂ = ĴW F̂−1

W σ̂F̂−TW .

The above stress tensors give a relation between stresses in the Eulerian system

V (t) and the reference system Ŵ . Note that for small deformations ĴW ≈ 1 and

F̂W ≈ I are generally used. Then, the first and second Piola–Kirchhoff stress

tensors are equal.

With the first Piola–Kirchhoff stress tensor and the transformation of temporal

derivatives, which was used in eq. (3.2), we obtain the momentum equation on

the reference system Ŵ :

ĴW ρ̂

(
∂

∂t
v̂ +

(
F̂−1
W

(
v̂ − ∂

∂t
T̂W

)
· ∇̂
)

v̂

)
= ĴW ρ̂f̂ + d̂iv

(
ĴW σ̂F̂−TW

)
. (3.5)

In the following section, the arbitrary reference domain Ŵ will be specified,

which will yield the solid equation. Furthermore, we will define material laws,

which will be used to describe the material under consideration. These material

laws are for isotropic and isothemeral materials. Isotropic materials are indepen-

dent of the orientation, which means that responses to strain and strain rates are

the same in every direction. In contrast, anisotropic materials generally depended

on a fiber orientation. Moreover, isothermal materials are independent of tem-

perature. All materials are independent of the point-of-view, which is denoted as

objectivity. Materials are hyperelastic if the stresses and strains are related via

Σ̂ =
∂W (Ê)

∂Ê
or P̂ =

∂W (F̂)

∂F̂
,

where W is an energy density function and Ê is the Green–Lagrange tensor, which

is a measure for the strain. It is related to the deformation gradient F̂ via the

right Cauchy–Green tensor Ĉ which is defined as

Ĉ := F̂T F̂.

21

CHAPTER 3. SOLID MECHANICS

Then, we can define the Green–Lagrange tensor as

Ê :=
1

2
(Ĉ− I).

It follows that Ê is a nonlinear function w.r.t. the deformation û:

Ê =
1

2
(∇̂û + ∇̂ûT + ∇̂ûT ∇̂û).

3.2 Solid Equation

The conservation of momentum of eq. (3.5) for the reference system Ŵ = V̂ and

therefore ∂
∂t
T̂V = v̂ reduces to

Ĵ ρ̂
∂2

∂t2
û = Ĵ ρ̂f̂ + d̂iv(F̂Σ̂), (3.6)

where we used ∂
∂t

û = v̂ and the second Piola–Kirchhoff stress tensor Σ̂. Here,

we consider compressible materials which possess the following relation between

the initial density ρ(x, 0) = ρ̂0(x̂) and the density ρ(x, t) at time t ≥ 0.

m(V̂) =

∫
V̂

ρ̂0(x̂) dx̂ =

∫
V (t)

ρ(x, t) dx =

∫
V̂

Ĵ ρ̂(x̂, t) dx̂ = m(V (t)).

With this relation between density and initial density we obtain the solid equation

for an elastic material in the initial reference system V̂ :

ρ̂0
∂2

∂t2
û− d̂iv(F̂Σ̂) = ρ̂0f̂ . (3.7)

We need to enclose eq. (3.7) with boundary and initial conditions. Let Ω̂ be

the reference system and computational domain and let ∂Ω̂ be the boundary or

surface of Ω̂. We partition the boundary into a Neumann boundary part ∂Ω̂N

and a Dirichlet boundary part ∂Ω̂D with ∂Ω̂ = ∂Ω̂N ∪ ∂Ω̂D. On the Neumann

boundary we prescribe stresses in normal direction:

n · F̂Σ̂ = n · Ĵσ̂sF̂−T = gN on ∂Ω̂N × [0, T], (3.8)

22

3.2. SOLID EQUATION

with final time T . For the Dirichlet boundary we prescribe the displacements

û = gD on ∂Ω̂D × [0, T]. (3.9)

Furthermore, we need initial conditions for the displacement, velocity, and den-

sity:

û(·, 0) = û0,
∂

∂t
û(·, 0) = v̂0, ρ̂(·, 0) = ρ̂0 in Ω̂× {0}.

If the boundary conditions in eq. (3.8) and eq. (3.9) are constant w.r.t. time, the

solid equation can run into a steady-state. In this case, the velocity is zero and

consequently ∂2û/∂t2 = 0. Therefore it is sufficient to solve the stationary solid

problem

−d̂iv(F̂Σ̂) = ρ̂f̂ in Ω̂, (3.10)

û = gD on ∂Ω̂D, (3.11)

n · F̂Σ̂ = n · Ĵσ̂sF̂−T = gN on ∂Ω̂N . (3.12)

We now need to define material laws to model the specific physical behavior of

elastic and hyperelastic materials. The following nonlinear materials will be used

for later simulations.

St. Venant–Kirchhoff material: The St. Venant–Kirchhoff material law uses

the following linear dependency of the stress tensor Σ̂ on the nonlinear stresses:

Σ̂ = 2µÊ + λ trace(Ê)I.

Neo–Hooke material: The Neo–Hooke material is defined with the stored en-

ergy function

W
(
Ĉ
)

=
µ

2
(I1 − 3)− µlog

(
Ĵ
)

+
λ

2
log
(
Ĵ
)2

,

where I1 := trace
(
Ĉ
)

is the first principal invariant; cf. [137].

23

CHAPTER 3. SOLID MECHANICS

Linear Elasticity (Navier–Lamé): With the following assumptions we can make

simplifications that result in a fully linear problem.

• Only small deformations are considered and the deformation gradient F̂

is small too. Therefore, we can use the approximations F̂ ≈ I and Ĵ ≈ 1.

Furthermore, we can drop all hats, because the Lagrangian and Eulerian

reference systems are equivalent.

• The strains are so small that we can linearize the Green–Lagrange tensor

Ê =
1

2
(∇̂û + ∇̂ûT + ∇̂ûT ∇̂û) ≈ 1

2
(∇u +∇uT) =: ε

The stationary Navier–Lamé or linear elasticity problem for a reference domain

Ω with boundary ∂Ω = ∂ΩN ∪ ∂ΩD and density ρ = 1 is

− div(σ) = f in Ω, (3.13)

u = gD on ∂ΩD, (3.14)

n · σ = gN on ∂ΩN , (3.15)

with the linear material law σ = 2µε + λ trace(ε)I. For linear material laws the

first Lamé constant λ and second Lamé constant µ can be computed from the

Poisson ratio ν and Young’s modulus E:

λ =
Eν

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
.

Similarly, this linear elastic material model for σ can be inserted into the time-

dependent eq. (3.6), which results in the following time-dependent linear elasticity

24

3.2. SOLID EQUATION

problem for the density ρ = 1:

∂2

∂t2
u = f + div(σ) in Ω× [0, T], (3.16)

u = gD on ∂ΩD × [0, T], (3.17)

n · σ = gN on ∂ΩN × [0, T], (3.18)

u(·, 0) = u0 in Ω× {0}, (3.19)

∂

∂t
u(·, 0) = v0 in Ω× {0}. (3.20)

25

4 Fluid-Structure Interaction

The monolithic system of partial differential equations for the fluid-structure in-

teraction problem couples the incompressible Navier–Stokes equations with the

solid equation. The discussion of this chapter follows the derivation of FSI sys-

tems in [70] and [125]. We want to determine the fluid velocity vf , the fluid

pressure pf , and the solid displacement ûs. The coupling is enforced by three

equalities. Firstly, we want matching velocities of fluid and solid at the interface

Γ(t). This is the kinematic coupling condition. The second condition relates the

stresses in normal direction of the fluid with the stresses in normal direction of

the solid on the interface Γ̂, which is the dynamic coupling condition. Thirdly,

equal displacements of fluid mesh and solid on the interface Γ̂ or Γ(t) are nec-

essary to limit the movement of both. Otherwise, the solid domain could enter

and intersect the fluid domain and vice versa. For a detailed description of the

coupling conditions we refer to [70] and [125]. The notation on its own already

hints at the issue that the coupled system uses both the current system in the

Eulerian framework for the fluid and the Lagrangian framework for the solid.

27

CHAPTER 4. FLUID-STRUCTURE INTERACTION

The fully coupled FSI system reads

ρf

(
∂

∂t
vf + (vf ·∇) vf

)
− div (σf) = ρf f in Ωf (t), (4.1)

div (vf) = 0 in Ωf (t), (4.2)

ρ̂0
∂2

∂t2
ûs − d̂iv

(
F̂sΣ̂s

)
= ρ̂0f̂s in Ω̂s, (4.3)

vf = v̂s ◦ T̂−1
s on Γ(t), (4.4)

n̂ ·
(
Ĵf σ̂f F̂

−1
f

)
= n̂ · F̂Σ̂s on Γ̂, (4.5)

ûf = ûs on Γ̂, (4.6)

with the current fluid domain Ωf (t), reference solid domain Ω̂s, and time t ≥ 0.

For statements on existence and uniqueness of the solution of simplified systems,

we refer to [70, 125]. We note that many of the results for uniqueness and exis-

tence of a solution are made for a coupled problem which is defined for a unified

framework; i.e., we either use the reference domains Ω̂∗ or the current domains

Ω∗ for solid and fluid. A major difficulty arises due to the moving fluid domain,

which depends on the deformation of the solid. Let Ω̂f be the initial configuration

of the fluid domain at time t = 0. In general, we define a function

T̂f (t) : Ω̂f → Ωf (t), (4.7)

which maps the initial fluid domain to the current fluid domain. Similarly, we

define a mapping for the solid domain:

T̂s(t) : Ω̂s → Ωs(t), (4.8)

which is used in the coupling of fluid and solid interface velocities. In the next

section, we will focus on the representation of the incompressible Navier–Stokes

equations on a moving domain with the ALE formulation.

28

4.1. ARBITRARY LAGRANGIAN EULERIAN DESCRIPTION OF THE
NAVIER–STOKES EQUATIONS

4.1 Arbitrary Lagrangian Eulerian Description of

the Navier–Stokes Equations

Firstly, we use the mapping of eq. (4.7) with sufficient regularity to transform

the velocity and pressure variables from the reference domain Ω̂f to the current

domain Ωf (t):

v̂(x̂, t) = v(T̂f (x̂), t) = v(x, t), p̂(x̂, t) = p(T̂f (x̂), t) = p(x, t), ∀x̂ ∈ Ω̂f . (4.9)

For convenience, we restate eq. (3.5) which is the conservation of linear mo-

mentum in a reference system Ŵ .

ĴW ρ̂

(
∂

∂t
v̂ +

(
F̂−1
W

(
v̂ − ∂

∂t
T̂W

)
· ∇̂
)

v̂

)
= ĴW ρ̂f̂ + d̂iv

(
ĴW σ̂F̂−TW

)
.

Similarly, we can state the conservation of mass div(w) = 0 for a reference domain

Ŵ and a vector field w with the Piola transformation of eq. (3.3):

ĴW div(w) = d̂iv(ĴW F̂−1
W ŵ) = 0.

If we replace the mapping to the arbitrary domain Ŵ with the mapping to the

reference fluid domain Ω̂f , this results in the following equivalence (4.10) and

(4.11) due to the conservations of momentum

ρf

(
∂

∂t
vf + (vf ·∇) vf

)
|Ωf (t)

=

ρf

(
Ĵf

(
∂

∂t
v̂f +

(
F̂−1
f

(
v̂f −

∂

∂t
T̂f

)
·∇
)

v̂f

))
|Ω̂f ,

(4.10)

div (σf) + ρff |Ωf (t)
= d̂iv

(
Ĵf σ̂f F̂

−T
f

)
+ Ĵfρf f̂ |Ω̂f , (4.11)

and the following equality (4.12) due to the conservation of mass

div (v) |Ωf (t)
= d̂iv

(
Ĵf F̂

−1
f v̂f

)
|Ω̂f . (4.12)

Here, the Cauchy stress tensor of the fluid in the reference configuration is

σ̂f (v̂, p̂) = −p̂I + ρfνf

(
∇̂v̂F̂−1

f + F̂−Tf ∇̂v̂T
)
.

29

CHAPTER 4. FLUID-STRUCTURE INTERACTION

In eq. (4.10), the additional transport term−∂tT̂f , which originates from the mov-

ing mesh, enters the momentum equation. Next, we will map the Navier–Stokes

equations back into the current system Ωf (t), which results in a formulation that

is easier to discretize. However, in contrast to the ALE formulation which uses

the reference domain Ω̂f we now need to explicitly move our fluid domain with

the map T̂f . Further, we define the material time derivative to circumvent some

further issues with time-dependent integrals. Again, we use an arbitrary volume

V (t) ⊂ Ωf (t). We define the material time derivative, cf. [70], for an Eulerian

field q in the current configuration with the Lagrangian representation q̂ as

D

Dt
q (·, t) :=

∂

∂t
q̂ (·, t) ◦ T̂−1. (4.13)

Furthermore, using the following definition of a partial derivative yields

∂q̂

∂t
(x̂, t) = lim

h→0

q̂(x̂, t+ h)− q̂(x̂, t)

h

= lim
h→0

q(T̂ (x̂, t+ h), t+ h)− q(T̂ (x̂, t), t)

h

=
d

dt
q(T̂ (x̂, t), t).

(4.14)

Combining eq. (4.13) and eq. (4.14) we obtain

D

Dt
q (x, t) =

d

dt
q
(
T̂ (x̂, t) , t

)
, with x = T̂ (x̂, t) . (4.15)

Analogously, we define the ALE time derivative with ALE mapping T̂f

∂q

∂t |T̂f
=

d

dt
q
(
T̂f (x̂, t) , t

)
, with x = T̂f (x̂, t) . (4.16)

This ALE time derivative is needed, since it is not clear that a material point

x ∈ V (t) is still in the domain V (t+ ∆t) for the next time step t+ ∆t in a purely

Eulerian formulation; cf. [70].

We can relate the ALE time derivative with the partial time derivative on the

reference domain Ω̂f . Furthermore, we account for the change in volume with

30

4.1. ARBITRARY LAGRANGIAN EULERIAN DESCRIPTION OF THE
NAVIER–STOKES EQUATIONS

dx = Ĵfdx̂ and obtain

∂vf
∂t
|T̂f = Ĵf

∂v̂f
∂t

. (4.17)

Therefore, we can use eq. (4.17) to replace Ĵf
∂
∂t

v̂f in eq. (4.10) with the ALE time

derivative. The first part of the momentum equation on the reference domain

now reads

ρf

(
∂

∂t
vf |T̂f + Ĵf F̂

−1
f

((
v̂f −

∂

∂t
T̂f

)
·∇
)

v̂f

)
|Ω̂f . (4.18)

Note that the above representation must be seen as a symbolic or intermediate

formulation, since vf is clearly a variable of the current configuration Ωf (t) and

not the reference configuration Ω̂f . Therefore, we further map the remaining

parts of the incompressible Navier–Stokes equations back to the current domain

and obtain an alternative ALE formulation of the Navier–Stokes equations:

ρf

(
∂

∂t
vf |T̂f + ((vf −w) ·∇) vf

)
− div (σf) = ρf f ,

div (v) = 0,

(4.19)

with fluid mesh velocity w = ∂
∂t
T̂f . Through the introduction of the ALE time

derivative the correction of the transport term with the fluid mesh velocity is

kept in the representation on the current configuration Ωf (t). We will see a

second major difference to the fully Eulerian description without the ALE time

derivative in section 5.1. There, we introduce the finite element discretization of

the monolithic fluid-structure interaction problem with Navier–Stokes equations

in ALE form as in eq. (4.19). The fully Eulerian description would introduce

additional nonlinearities through the time derivative ∂v/∂t.

Note that we could have directly used the ALE time derivative of eq. (4.16)

for eq. (4.1) to obtain eq. (4.19). Then, we could have neglected the ALE mapping

to the reference fluid domain Ω̂f . However, it is important to recognize that

there is more than one ALE formulation of a coupled fluid-structure interaction

problem. We have seen the ALE Navier–Stokes problem which is fully mapped

to its reference domain Ω̂f , i.e., without moving the mesh. In contrast, we can

31

CHAPTER 4. FLUID-STRUCTURE INTERACTION

evaluated the Navier–Stokes equations on the current domain Ωf (t) and only

transform the temporal derivative with the ALE time derivative.

4.2 Monolithic Fluid-Structure Interaction System

in Arbitrary Lagrangian Eulerian Form

The ALE mapping of the Navier–Stokes equations provides us the representation

of the following fully coupled FSI system in ALE form:

ρf

(
∂

∂t
vf |T̂f + ((vf −w) ·∇) vf

)
− div (σf) = ρf f in Ωf (t), (4.20)

div (vf) = 0 in Ωf (t), (4.21)

ρ̂0
∂2

∂t2
ûs − d̂iv

(
F̂sΣ̂s

)
= ρ̂0f̂s in Ω̂s, (4.22)

vf = v̂s ◦ T̂−1
s on Γ(t), (4.23)

n̂ · (Ĵf σ̂f F̂
−1
f)) = n̂ · F̂sΣ̂s on Γ̂, (4.24)

ûf = ûs on Γ̂. (4.25)

We need to enclose this system with appropriate boundary and initial conditions.

Similar to the separated fluid and solid problems, we have, in general, an inflow

region ∂Ωin, an outflow region ∂Ωout, and no-slip boundaries ∂Ωwall for the fluid.

Typically, the solid part of the FSI problem has Neumann and Dirichlet boundary

regions ∂Ω̂s,N and ∂Ω̂s,D, respectively. In general, the solid is clamped at ∂Ω̂s,D.

If the solid is, apart from the Dirichlet boundary, fully surrounded by the fluid

domain, the Neumann boundary of the solid and the fluid-solid interface are

identical: ∂Ω̂s,N = Γ̂. In general, we use the same boundary conditions for

the coupled FSI problem as for the fluid subproblem, cf. section 2.5, and the

solid subproblem, cf. section 3.2. In fig. 4.1 a two-dimensional FSI problem with

suitable boundary regions is depicted. In the next section we will present a

concrete ALE maps which can be used in an implementation.

32

4.3. ARBITRARY LAGRANGIAN EULERIAN MAP

∂Ωwall

∂Ωwall

∂
Ω

in

∂
Ω

o
u

t

Ω̂f = Ωf (0)

Ω̂s

Γ̂

∂Ω̂s,D

∂Ωwall

∂Ωwall

∂
Ω

in

∂
Ω

o
u

t

Ωf (t)

∂Ω̂s,D

Figure 4.1: Initial two-dimensional FSI domains (top) and generic deformed

domains at time t (bottom) with the boundary regions highlighted.

4.3 Arbitrary Lagrangian Eulerian Map

In our setting, the ALE map enters the monolithic system as an additional PDE.

There are several ways to define the PDE of the ALE map. However, only few of

the equations used in practice will result in solutions which theoretically possess

sufficient regularity. For a detailed discussion of the regularity and related issues

we refer to [125]. In the following, we will refer to the PDE of the ALE map as the

geometry problem. The solution of the ALE mapping will be uniquely defined by

the boundary conditions. We assume that the boundary for the moving domain

Ωf (t) is known. Furthermore, we need to define the reference domain Ω̂f . For

practical reasons, this will be the initial domain of the fluid problem Ω̂f = Ωf (0).

33

CHAPTER 4. FLUID-STRUCTURE INTERACTION

The ALE map is defined as

T̂f (x̂, t) = x̂f + ûf (x̂, t),

where ûf is the deformation of the fluid domain. The boundary position of

∂Ωf (t) prescribes boundary values for the geometry problem. Further, we need to

compute the interior values of Ωf (t). The easiest choice is an harmonic extension

of the boundary values to the interior. For this particular geometry problem we

have to solve

−∆ûf = 0 in Ω̂f and

ûf = g(t) on ∂Ω̂f

with given displacements g(t) on the boundary. An issue with this geometry

problem is the low regularity of the solution. If only a few edges of the triangula-

tion of the solid domain are deformed alot, we can run into corner singularities,

since the resulting elements of the fluid domain might be degenerated; cf. [125].

Furthermore, the prescribed deformation on the boundary might be large and

the solution of the geometry problem in areas close to the large deformations can

be too small, due to a fast decay of the harmonic extension. Then, the boundary

of the solid domain might enter the fluid domain and we get self-penetrating el-

ements. To circumvent this issue, we add a smoothing function to the harmonic

geometry problem. The scaling parameter α which is constant for an element

of the triangulation is added to the problem. The value of α is defined as the

distance of the center of an element to the interface [125] and should be chosen

in accordance with the underlying domain. We will fully define the smoothing

function in section 5.1.7, where we discuss the finite element discretization of

fluid-structure interaction problems for specific geometries. An alternative ap-

proach consists in the computationally more expensive pseudo elasticity problem.

Here, the geometry problem is defined similar to the stationary linear elasticity

problem of eqs. (3.13) to (3.15):

− div(σ) = 0 in Ω̂f and

ûf = g(t) on ∂Ω̂f .

34

4.3. ARBITRARY LAGRANGIAN EULERIAN MAP

Different choices of geometry problems are presented in [125]. There, in addition

to the harmonic operator and a pseudo elasticity problem, a biharmonic operator

is discussed and a study of the three different choices is presented.

35

5 Discretizations in Space and

Time

We want to compute approximate solu-

tions for the previously presented Stokes

and Navier–Stokes problems, for solid

problems, as well as for fully coupled

FSI problems. In this chapter, we

present the discretization methods for

the problems of Chapters 2 to 4. We

use the method of lines for all time-

dependent problems, i.e., we first dis-

cretize the spatial dimension and obtain

a semi-discretized system. Only then,

we apply a suitable discretization in time. Therefore, we present different meth-

ods to discretize ordinary differential equations (ODEs). Then, we apply these

methods to our semi-discretized and time-depenent problems. In general, the

methods for temporal discretizations can be separated in two classes. Firstly,

we use one-step, multi-stage Runge–Kutta methods. Secondly, we employ multi-

step methods which are based on Backward Differentiation Formula schemes.

Furthermore, we will present Newmark methods, which will be used to discretize

the second-order systems of our solid problems. It is also possible to reverse this

process and start with a temporal discretization, followed by a discretization in

space. This approach is generally known as Rothe’s method. Furthermore, there

are methods which apply both discretizations at the same time and with the

same discretization method; e.g., a problem can be discretized in space and time

with the Galerkin approach and finite elements. Therefore, these approaches are

denoted as space-time methods.

37

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

In the following section, we will start with the spatial discretization using the

Finite Element Method (FEM). For an introduction to the FEM, see, e.g., [22].

Two other popular methods for spatial discretizations are the Finite Difference

Method (FDM) [135] and the Finite Volume Method (FVM) [118].

In section 5.2, the discretization in time will be discussed. Furthermore, we will

combine all previous discretizations in section 5.3 for the coupled FSI problem.

We conclude this chapter with section 5.4, where we will present general solution

strategies for nonlinear problems.

5.1 Model Problems and Spatial Discretization with

Finite Elements

In the following, we assume that Ω ⊂ Rd, d = 2, 3 is fixed in time. This is

sufficient for all problems except for the FSI problem. We will start by giving an

overview of the weak formulations of our problems. Then, we will further specify

different model problems with specific boundary conditions and geometries.

In Chapter 6 we will present the construction of our preconditioners for these

model problems. Furthermore, we will discuss numerical results for our precon-

ditioners used in the solution of these model problems in Chapter 8. There, the

performance and efficiency of different preconditioners is studied for these model

problems. Moreover, we will consider other problems in Chapter 8, which are not

introduced in the following sections, since these problems are not used repeat-

edly throughout the numerical results of this thesis. However, the following weak

formulations and the construction of preconditioners will be the same. The only

differences are due to different geometries and boundary conditions.

When deriving weak formulations of PDEs, Green’s formula is often used,

which leads to boundary integrals. Dirichlet boundary values will be directly built

into the space of trial and test functions. For the following weak formulations

it will be assumed that the integrals over all Neumann boundaries ∂ΩN are zero

if not stated otherwise. All function values for these boundaries, which lead to

vanishing integrals, will be specified in the description of the specific problems.

Furthermore, we use a slight change of notation in comparison to the fluid, solid,

and FSI PDEs of Chapters 2 to 4. The solution we want to compute, will be

generally noted as u in the scalar case or u if we seek to determine a vector

38

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

field. Moreover, our space of test functions will generally be v or v for scalars

and vector fields, respectively. As a reminder, in Chapters 2 to 4 we used u for

displacements and v for velocities.

5.1.1 Stokes Problems

∂Ωwall

∂Ωwall

∂
Ω

in

∂
Ω

o
u

t

Figure 5.1: Cross-section (left) and unstructured domain decomposition into

nine subdomains of the three-dimensional backward facing step ge-

ometry (right). The Dirichlet boundary ∂ΩD consists of the inlet

∂Ωin and the walls ∂Ωwall, the outlet ∂Ωout is a Neumann boundary

∂ΩN ; see fig. 5.2 for the resulting streamline solution of a Navier–

Stokes problem. Taken from [80].

Figure 5.2: Streamline solution of a three-dimensional backward facing step

Navier–Stokes problem. Taken from [80].

39

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

Our first model problem is given by the Stokes equations in two and three

dimensions; cf. eqs. (2.27) and (2.28). We seek to determine the velocity u ∈ Vg
with Vg = {v ∈ (H1(Ω))d : v|∂ΩD

= g} and the pressure p ∈ Q, with g and

Q defined in the following, of an incompressible fluid with negligible advective

forces by solving the variational formulation: find (u, p), such that

µ

∫
Ω

∇u : ∇v dx −
∫

Ω

div(v) p dx =

∫
Ω

f · v dx ∀v ∈ V0, (5.1)

−
∫

Ω

div(u) q dx = 0 ∀q ∈ L2(Ω), (5.2)

with V0 ⊂ (H1(Ω))d, dynamic viscosity µ, and ∂ΩD = ∂Ω. For two matrices

A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 we have A : B :=

∑n
i,j=1 aijbij.

In our numerical tests, we consider the (leaky) lid-driven cavity Stokes problem;

cf. [63], which we will denote as LDC Stokes problem: let Ω be the unit square or

cube in two or three dimensions, respectively. We prescribe the velocity boundary

conditions by

d = 2 : g = (1, 0)T if x2 = 1, g = (0, 0)T if x2 < 1,

d = 3 : g = (1, 0, 0)T if x3 = 1, g = (0, 0, 0)T if x3 < 1,

where Q = L2
0(Ω), and we choose µ = 1 and f ≡ 0 for the Stokes problems of this

thesis. Further, we consider a problem which we will denote as channel Stokes

problem: let Ω be a channel with Ω = [0, 4]× [0, 1] and Ω = [0, 4]× [0, 1]2 in two

and three dimensions, respectively. The inflow and outflow boundary conditions

are

d = 2 : g = (4x2(1− x2), 0)T on ∂Ωin,

d = 3 : g = (16x2(1− x2)x3(1− x3), 0, 0)T on ∂Ωin,

∂u

∂n
− pn = 0 on ∂Ωout,

with the outward pointing normal vector n and Neumann boundary ∂Ωout. In

two and three dimensions the Neumann boundary is ∂Ωout = {(4, x2)T ∈ R2 :

0 < x2 < 1} and ∂Ωout = {(4, x2, x3) ∈ R3 : 0 < x2, x3 < 1}, respectively. On the

remainder of the boundary, we set no-slip boundary conditions and Q = L2(Ω)

is used.

40

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

Furthermore, we consider the following three-dimensional Stokes problem. We

seek to determine the velocity u ∈ Vg and the pressure Q = L2(Ω), such

that eq. (5.1) holds. We consider the three-dimensional backward facing step

(BFS) geometry shown in fig. 5.1; cf. [63] for the two-dimensional geometry.

The Dirichlet boundary conditions at the inflow and the walls are given by

g =

{
(16umaxx2(1− x2)x3(1− x3), 0, 0)T for x ∈ ∂Ωin,

(0, 0, 0)T for x ∈ ∂Ωwall.

At the outlet, we prescribe the do-nothing boundary condition, i.e.,

∂u

∂n
− pn = 0 on ∂Ωout.

Furthermore, we will use umax = 1.0 and denote this problem as the BFS Stokes

problem.

5.1.2 Navier–Stokes Problems

Figure 5.3: Velocity solution of the steady Navier–Stokes benchmark problem;

Re = 20, (x, y, z) = (x1, x2, x3). Taken from [79].

Next, we consider the steady-state Navier–Stokes equations modeling the

flow of an incompressible Newtonian fluid with kinematic viscosity ν > 0;

cf. eqs. (2.25) and (2.26). We seek to determine the velocity u ∈ Vg and the

pressure p ∈ Q, with g and Q defined in the following, by solving the variational

41

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

formulation: find (u, p), such that

ν

∫
Ω

∇u : ∇v dx +

∫
Ω

(u ·∇u) · v dx−
∫

Ω

div(v) p dx =

∫
Ω

f · v dx ∀v ∈ V0,

−
∫

Ω

div(u) q dx = 0 ∀q ∈ L2(Ω).

The term (u ·∇u) leads to a nonlinear system. Solution strategies for nonlinear

systems are discussed in section 5.4. We will consider two different steady Navier–

Stokes model problems for the numerical scaling experiments. For all Navier–

Stokes problems, the source function is f ≡ 0.

The first model problem is a regularized lid-driven cavity Navier–Stokes

problem, similar to the two-dimensional problem in [63], with ∂ΩD = ∂Ω and

Q = L2
0(Ω). We refer to it as LDC Navier–Stokes problem. The boundary values

of the problem are given by

d = 2 : g = (4x1(1− x1), 0)T if x2 = 1, g = (0, 0)T if x2 < 1,

d = 3 : g = (16x1(1− x1)x2(1− x2), 0, 0)T if x3 = 1, g = (0, 0, 0)T if x3 < 1.

As a second steady-state Navier–Stokes problem, we use the domain and

boundary conditions of the backward facing step Stokes problem and choose the

kinematic viscosity ν = 0.01. This problem will be denoted BFS Navier–Stokes

problem.

Moreover, we consider the time-dependent Navier–Stokes equations, which

model the flow of an incompressible Newtonian fluid with kinematic viscosity

ν > 0; cf. eq. (2.23) and eq. (2.24). We seek to determine the velocity u(x, t) ∈ Vg
and the pressure p(x, t) ∈ Q ⊂ L2(Ω) by solving the variational formulation: find

(u, p), such that∫
Ω

∂u

∂t
· v dx + ν

∫
Ω

∇u : ∇v dx +

∫
Ω

(u ·∇u) · v dx

−
∫

Ω

div(v) p dx =

∫
Ω

f · v dx ∀v ∈ V0,

−
∫

Ω

div(u) q dx = 0 ∀q ∈ L2(Ω).

42

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

As we have seen previously for the steady Navier–Stokes problem, the presence

of the convection term u ·∇u leads to a nonlinear system. In the steady case, we

solve the system using Newton’s method or Picard iterations (fixed point system),

cf. [63], whereas, in the time-dependent case, we can also use an extrapolation

u∗ to linearize the convective part, i.e.,

u ·∇u ≈ u∗ ·∇u.

The next model problem is the three-dimensional Navier–Stokes benchmark

for the flow around a cylinder with circular cross-section, to which we will re-

fer as the Navier–Stokes benchmark ; cf. [130], where a detailed description of

the simulation setup is given. See fig. 5.3 for the benchmark geometry and the

velocity of the solution of the Navier–Stokes benchmark. The length of the do-

main is 2.5 m, A = 0.41 m is the height and width of the domain. Further-

more, we choose ν = 10−3 m2/s, and we define Vg = {v ∈ H1(Ω)d : v|∂ΩD
= g},

V0 = {v ∈ H1(Ω)d : v|∂ΩD
= 0}, and Q = L2(Ω). The inflow and outflow bound-

ary conditions are

u = g = (16umaxx2x3(A− x2)(A− x3)/A4, 0, 0)T on ∂Ωin,

ν
∂u

∂n
− pn = 0 on ∂Ωout,

respectively. The Dirichlet inflow boundary is ∂Ωin = {(0, x2, x3) ∈ R3 : 0 < x2, x3 < A}
and the Neumann outflow boundary is ∂Ωout = {(2.5, x2, x3) ∈ R3 : 0 < x2, x3 < A}.
We use the maximum velocity across the inflow umax = 0.45m/s. On the re-

mainder of the boundary, we set no-slip boundary conditions.

In the dimensionless reformulation of the Navier–Stokes equations, the

Reynolds number Re specifies the relative contributions of convection and dif-

fusion; cf. section 2.4. We obtain Re = Lū/ν with the characteristic length

scale L and maximum inflow velocity ū. For the LDC Navier–Stokes problem

in two and three dimensions, we obtain Re = 1/ν. The Reynolds number of

the benchmark problem with a circular obstacle is Re = 20. In our numerical

tests for the steady BFS Navier–Stokes problem, we set L = 2 as the height

of the outlet and choose the maximum inflow velocity ū = 1.0, and ν = 0.01;

i.e., Re = 200. When dealing with higher Reynolds numbers instabilities in the

numerical simulation can appear. In particular, the advective term or, more

43

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

precisely, the gradient cannot be approximated properly with the given mesh

since the velocity difference between of two neighbouring nodes might be too

large. In some cases a finer mesh could be used to resolve these steep gradients.

However, this is, in general, not possible and suitable stabilization techniques

should be applied instead; cf., e.g, [27]. The problems considered in this thesis

do not need a stabilization.

5.1.3 Elasticity Problems

Next, we consider stationary and time-dependent nonlinear elasticity problems for

different material laws of eqs. (3.10) to (3.12) and eqs. (3.7) to (3.9), respectively.

We seek to determine the displacement u(x, t) ∈ Vg by solving the variational

formulation: find u, such that∫
Ω

∂2u

∂t2
· v dx +

∫
Ω

FΣ(u) : ∇v dx =

∫
Ω

f · v dx, ∀v ∈ V0, (5.3)

where Vg = {v ∈ (H1(Ω))d : v|∂ΩD = g}. For the stationary problem, we use
∂2u
∂t2

= 0 and the first integral vanishes.

For time-dependent and stationary nonlinear elasticity problems, New-

ton’s method is used to linearize Σ(u). We mainly consider the hyperelastic

St. Venant–Kirchhoff material for our numerical experiments and restate the

linear material law for convenience:

Σ(u) = 2µE + λ trace(E)I,

where the nonlinear strain tensor is given by E := 1
2

(C− I) , and C is the right

Cauchy–Green tensor.

We consider the unit cube Ω = [0, 1]3, the boundary conditions

u = 0 on ∂ΩD := {0} × [0, 1]2,

n · FΣ = 0 on ∂ΩN := ∂Ω \ ∂ΩD,

and the body force f = (0,−100, 0)T . We denote this problem as the Cube

problem. In addition, we also consider a time-dependent problem where we use

a body force f = (−20, 0, 0)T , for t < 5 · 10−3, and f = 0, afterwards. This

44

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

problem will be computed on a foam-like structure with a softer surrounding

tissue. Therefore, we will denote it as Foam problem; cf. fig. 8.12 in section 8.5

of the numerical results, for a visualization of the foam structure.

5.1.4 Almost Incompressible Linear Elasticity Problems

Next, we consider mixed linear elasticity problems describing the displacement

u ∈ V and the pressure p = −λ div u ∈ Q of a body consisting of an almost

incompressible material. We fix the body along Γ0 ⊂ ∂Ω and let the body be

subject to the external body force f : find (u, p), such that

2µ

∫
Ω

ε(u) : ε(v) dx −
∫

Ω

div(v) p dx =

∫
Ω

f · v dx ∀v ∈ V,

−
∫

Ω

div(u) q dx − 1

λ

∫
Ω

p q dx = 0 ∀q ∈ L2(Ω),

with V = {v ∈ H1(Ω)d : v|Γ0 = 0}. The components of the linearized strain

tensor ε(v) are ε(v)ij = 1
2
(∂vi/∂xj + ∂vj/∂xi); cf. section 3.2. While a pure

displacement formulation for the linear elasticity problem may suffer from volume

locking in the incompressible limit, the above mixed formulation is a good remedy;

cf., e.g., [22]. The incompressibility of the material is modeled by λ approaching

infinity or by the Poisson ratio ν = λ/2(λ + µ) approaching 0.5. In particular,

we fix µ = 1.0 and increase λ accordingly for our numerical tests.

Firstly, we consider a three-dimensional model problem: let Ω be the unit cube

and Γ0 = ∂Ω. Further, we choose a uniformly distributed random right-hand

side and Q = L2
0(Ω). We denote this problem as mixed linear elasticity (MLE)

cube. Moreover, we will study a second MLE problem on a beam. This problem

is denoted as MLE beam problem. In particular, we use the following domain and

boundary conditions: let Ω = [0, 4]× [0, 1]× [0, 1] be the computational domain

which is clamped at Γ0 = {(0, x2, x3) ∈ R3 : 0 ≤ x2, x3 ≤ 1}. Furthermore, we

use the external force f = (0, 0,−0.01)T and Q = L2(Ω).

5.1.5 Finite Elements for Elliptic Problems

The finite element discretization for elliptic problems, such as the stationary

elasticity problems, or the elliptic part of our hyperbolic problems, such as the

45

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

time-dependent elasticity problems, is straightforward. Therefore, we first in-

troduce a triangulation τh of Ω into triangles or tetrahedra with characteristic

mesh size h, which can be nonuniform. We use the following spaces for our finite

element discretization

V h(Ω) = {vh ∈ (C(Ω))d ∩ (H1(Ω))d : vh|T ∈ Pi ∀ T ∈ τh},

with i = 1 for piecewise linear and i = 2 for piecewise quadratic elements on

triangular or tetrahedral meshes; C(Ω) is the space of continuous functions on Ω.

Again, we refer to [22] for an introduction to the FEM. In particular, we obtain the

following semi-discretized equation for a time-dependent linear elasticity problem:

Mutt +Ku = F, (5.4)

where u are the displacements and utt is the acceleration. Here, M ∈ Rn×n is

the solid mass matrix, K ∈ Rn×n is the stiffness matrix, and F is the discretized

vector of applied forces. In the case of a nonlinear elasticity problem, we further

need a suitable linearization. In general, we will use Newton’s method to solve

nonlinear problems. Then, we need to replace K with the Jacobian matrix. We

will discuss the temporal discretization in section 5.2.4.

5.1.6 Finite Elements for Saddle Point Problems

For the spatial discretization of the incompressible fluid flow problems and mixed

elasticity problems, we use mixed finite elements. In the following, we will con-

sider three different mixed finite element pairs. Again, we use a triangulation

with characteristic mesh size h into triangles, tetrahedra, and/or hexahedra.

Then, we introduce the conforming discrete piecewise quadratic velocity and

piecewise linear pressure spaces

V h(Ω) = {vh ∈ (C(Ω))d ∩ (H1(Ω))3 : vh|T ∈ P2 ∀ T ∈ τh} and

Qh(Ω) = {qh ∈ C(Ω) ∩ L2(Ω) : qh|T ∈ P1 ∀ T ∈ τh},

46

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

respectively, of Taylor–Hood (P2–P1) mixed finite elements.

Secondly, we introduce the discrete piecewise linear velocity space

V h(Ω) = {vh ∈ (C(Ω))d ∩ (H1(Ω))d : vh|T ∈ P1 ∀ T ∈ τh},

which, together with the piecewise linear pressure space Qh, forms the pair of

equal-order P1–P1 mixed finite elements. Thirdly, we introduce the pair of Q2–

P1disc mixed finite elements which consists of the conforming discrete piecewise

biquadratic velocity and discontinuous piecewise linear pressure spaces

V h(Ω) = {vh ∈ (C(Ω))d ∩ (H1(Ω))d : vh|T ∈ Q2 ∀ ∈ τh} and

Qh(Ω) = {qh ∈ L2(Ω) : qh|T ∈ P1 ∀ T ∈ τh}.

The mapped version of the pressure space is used; cf. [19]. We only consider struc-

tured meshes for the Q2–P1disc discretization, where all hexahedra are cubes.

Finite element spaces for velocity and pressure are not independent. In order

to guarantee the existence of a unique solution, pairs of finite element spaces

for saddle point problems must satisfy the famous discrete inf–sup conditon; cf.,

e.g, [20, 73]. Let (uh, p) ∈ V h ×Qh be solutions of the system

ah(uh,vh) + bh(ph,vh) = 〈f ,vh〉 ∀ vh ∈ V h,

bh(qh,uh) = 〈g, qh〉 ∀ qh ∈ Qh,

where ah(·, ·) and bh(·, ·) are the bilinear forms of our incompressible fluid flow

problems. The discrete inf–sup condition is satisfied if

inf
∀qh∈Qh\{0}

sup
∀vh∈V h\{0}

bh(vh, qh)

‖vh‖V h ‖qh‖Qh
≥ γh,

with γh > 0 being independent of the characteristic mesh size h and the dimension

of the problem. The inf–sup condition is satisfied for the P2–P1 and Q2–P1disc

pairs in two and three dimensions; cf. [20]. However, the P1–P1 pair is not inf–

sup stable and we need a suitable stabilization. Therefore, a stabilizing matrix

C is added to the following discrete systems; we will specify C shortly hereafter.

47

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

The resulting discrete Stokes systems, linearized steady Navier–Stokes systems,

and mixed linear elasticity systems have the generic form

Fx =

[
F BT

B −C

][
u

p

]
=

[
f

0

]
= b, (5.5)

with F ∈ Rn×n and x, b ∈ Rn. The derivation of block and monolithic precon-

ditioners as well as the numerical results for saddle point problems are focused

on Stokes and Navier–Stokes problems. Therefore, we denote our general saddle

point problem as F for fluid. Nevertheless, many of the preconditioners can be

built and applied nearly equivalently to a mixed elasticity problem.

In general, we obtain the following semi-discretized time-dependent Navier–

Stokes problem: [
M 0

0 0

][
ut

pt

]
+

[
F BT

B −C

][
u

p

]
=

[
f

0

]
. (5.6)

In section 5.2.3, we will describe a discretization in time of this problem. With a

slight misuse of notation, we will always use the notation of system (5.5) for the

stationary problem when describing our preconditioners in Chapter 6. However,

this will also include the consideration of the fully discretized time-dependent

problems, which result from eq. (5.6).

When using P2–P1 or Q2–P1disc mixed finite elements, for incompressible fluid

flow problems, we choose C = 0, and for the unstable P1–P1 pair, we use the

Bochev–Dohrmann stabilization [48]. This pressure stabilization is inserted in

the conservation of mass equation and penalizes unphysical pressure oscillations.

The stabilization term reads

C =
1

ν

∫
Ω

(p− ρ0p)(q − ρ0q) dx = 0 ∀q ∈ L2(Ω), (5.7)

where ρ0 is an L2-projection onto the space of discontinuous constant functions

P0(τh). Thus, the projection can be computed locally on each element as

ρ0q|T =
1∫

T
dx

∫
T

q dx. (5.8)

In case of a mixed linear elasticity system, we always consider a block C 6= 0.

48

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

For the model problems considered here, the matrix BT arises from the dis-

cretization of the term ∫
Ω

div(vh) ph dx .

after Green’s formula was used to transform the integral over vh ·∇p. Therefore,

the nullspace of BT consists of all constant pressure functions if no pressure

value is prescribed with boundary conditions; i.e, we consider Dirichlet boundary

conditions for all velocity degrees of freedom (d.o.f.) and ∂ΩD = ∂Ω. If the

matrix C is symmetric positive definite, the pressure is uniquely determined.

Therefore, we restrict the pressure to the space

Q
h

= Qh ∩ L2
0(Ω),

i.e., all functions must have zero mean value. In order to do so, we can introduce

a Lagrange multiplier λ to enforce∫
Ω

ph dx = 0. (5.9)

This results in the block system

Fx =

F BT 0

B −C aT

0 a 0

u

p

λ

 =

f

0

0

 , (5.10)

where the vector a arises from the finite element discretization of the integral

in eq. (5.9). Alternatively, we can use the projection

P = Ip − aT (aaT)−1a, (5.11)

onto the space Q
h
, where Ip is the pressure identity matrix.

In our derivations of the new monolithic preconditioners, we first concentrate

on fluid flow problems where ∂ΩD = ∂Ω, such that the pressure is normalized

by (5.9). In section 6.3.4, we will give a brief overview of the projection method

to enforce a zero mean value for the pressure. In case of a global problem with

natural boundary conditions, i.e., ∂ΩN 6= ∅, the pressure generally does not

49

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

belong to Q
h
, and we use a saddle point system formulation as in eq. (5.5). As

mentioned, the construction of preconditioners in Chapter 6 focuses on fluid flow

problems. Therefore, we will use the terms velocity and pressure in the description

of our preconditioners. The basic construction of a preconditioner for a mixed

linear elasticity problem does not change significantly. However, the nullspaces of

Neumann problem matrices, i.e., matrices without Dirichlet boundary conditions,

for a Stokes and a mixed linear elasticity problem are different. The nullspace of

a Stokes problem consists of all translations, while the nullspace of an elasticity

problem additionally contains rotations.

5.1.7 Fluid-Structure Interaction Problems

To discretize the monolithic FSI problems, we use the discretizations which were

presented in section 5.1.6 for the time-dependent Navier–Stokes equations and

in section 5.1.3 for elasticity problems. We only use conforming finite elements

for the fluid and solid subproblems, which results in a one-to-one matching of

nodes on the interface Ω̂s and Ω̂f . From now on we will use σ̂s instead of F̂Σ̂s

for a simplified notation of the solid equations and corresponding coupling con-

ditions. Furthermore, we set the source terms of fluid and solid to zero. A slight

change in notation is made w.r.t. the fluid, solid and geometry variables com-

pared to Chapter 4. We denote the fluid velocity as uf , the solid displacement as

ds and the fluid mesh displacement as dg. The weak formulation of the FSI prob-

lem in eqs. (4.20) to (4.25) with Eulerian coordinates and the ALE time deriva-

tive for the fluid reads: find uf ∈ V (f)
g = {vf ∈ (H1(Ωf (t)))

d : vf |∂Ωf (t),D
= gf},

p ∈ L2(Ωf (t)), d̂s ∈ V̂ (s)
g = {v̂s ∈ (H1(Ω̂s))

d : v̂s|∂Ω̂s,D
= gs}, and

50

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

d̂f ∈ V̂ (g)
g = {v̂g ∈ (H1(Ω̂f))

d : v|∂Ω̂f,D
= gg}, such that

∫
Ωf (t)

ρf
∂uf
∂t |T̂

· vf dx +

∫
Ωf (t)

σf : ∇vf dx

+

∫
Ωf (t)

ρf ((uf −w) ·∇uf) · vf dx−
∫

Γ(t)

σfnf · vf ds = 0 ∀vf ∈ V f
0 ,

−
∫

Ωf (t)

div(uf) q dx = 0 ∀q ∈ L2(Ωf),∫
Ω̂s

ρ̂s
∂2d̂s
∂t2

· v̂s + σ̂s : ∇̂v̂s dx̂ −
∫

Γ̂

σ̂sn̂ · v̂s dŝ = 0 ∀v̂s ∈ V̂ (s)
0 ,∫

Ω̂f

α∇̂d̂f : ∇̂v̂g dx̂ = 0 ∀v̂g ∈ V̂ (g)
0

−σ̂f n̂f = σ̂sn̂s, on Γ̂,

uf ◦ T̂ =
∂d̂s
∂t

, on Γ̂,

d̂f = d̂s on Γ̂.

(5.12)

For the first time in the derivation of our weak formulations, we have not used

a vanishing integral over the Neumann boundaries of fluid and solid. We rather

keep the two integrals ∫
Γ(t)

σfnf · vf ds and∫
Γ̂

σ̂sn̂ · v̂s dŝ

in our formulation. One of the coupling conditions is the equality of stresses

in normal direction of fluid and solid: −σ̂f n̂f = σ̂sn̂s. Clearly, for the normal

vectors on the fluid-solid interface −n̂f = n̂s holds. We will use the two interface

integrals above and a Lagrangian multiplier to enforce this coupling in a weak

sense. Details on the fully discretized system will be given in section 5.3.1. Again,

we want to use the method of lines to discretize the above system of equations.

Therefore, we first discretize the spatial variables with the FEM, followed by a

discretization of the time derivatives. To do so, we need to transform the partial

temporal derivative of the fluid momentum equation to a total derivative of the

51

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

whole integral; cf. [70].∫
Ωf (t)

ρf
∂uf
∂t |T̂

· vf dx =

∫
Ω̂f

ρf Ĵf
∂ûf
∂t

· v̂f dx̂

=
d

dt

∫
Ω̂f

Ĵfρf ûf · v̂f dx̂ −
∫

Ω̂f

Ĵfρf d̂iv(w)ûf · v̂f dx̂

=
d

dt

∫
Ωf (t)

ρfuf · vf dx −
∫

Ωf (t)

ρf div(w)uf · vf dx.

(5.13)

As a model problem, we will consider the following benchmark problem of

Richter [125] for the numerical results. The problem will be denoted as the

FSI benchmark problem. Note that we discretize the full domain: in [125] the

problem is cut in half and a symmetry condition is enforced. In fig. 5.4, the

computational domains of fluid and structure are shown. We prescribe the

velocity in x-direction

ux (y, z) =
y(H − y)(H2 − z2)

(H/2)2H2

9

8
umean.

Moreover, the following boundary conditions are used:

u = g = (β(t)ux(y, z), 0, 0)T on ∂Ωf,in

νf
∂u

∂n
− pn = 0 on ∂Ωf,out.

The mean velocity is umean = 1 m/s and β(t) is the scaling of the inflow velocity,

which allows for a gradual increase of the velocity from 0 at t = 0 to the maximum

velocity at t = 2:

β(t) =

{
1
2
(1− cos(πt/2)), for t < 2,

1, for t ≥ 2.

The following material parameters are used for the FSI benchmark problem:

fluid density ρf = 103 kg/m3, kinematic viscosity νf = 10−3 m2/s, solid density

ρs = 103 kg/m3, shear modulus µs = 5·105 kg/(m·s2) and Poisson’s ratio νs = 0.4.

Furthermore, we employ a nonlinear elasticity problem with the St. Venant–

Kirchhoff material law. As already mentioned in section 4.3, we use a scaling

52

5.1. MODEL PROBLEMS AND SPATIAL DISCRETIZATION WITH
FINITE ELEMENTS

xz

y

1.5

0.8

0.4

0.4
0.10.4

0.2

∂Ωf,wall

∂Ωf,wall

∂Ωf,in

∂Ωf,out

∂Ω̂s,fixed

Figure 5.4: Full three-dimensional FSI benchmark with fluid and structure do-

main (left). Separated structure domain for better visibility (right).

All values are in meters.

parameter α to smooth the ALE map. We define the distance of a node x̂ ∈ Ω̂f

to the interface Γ̂ as

dΓ̂(x̂) = min
∀ŷ∈Γ̂
||x̂− ŷ||. (5.14)

We use the following elementwise definition of the scaling parameter α on an

element T of the finite element discretization:

α|T =

{
106, if dΓ̂(a) < dist,

1, else,

with a being the center of gravity of and element T and dist a suitable dis-

tance. We could also use a function with a more gradual decay. However, for the

problems under consideration the above scaling gives good results with a critical

distance dist = 0.03 for the FSI benchmark problem. The geometry problem

possesses a homogeneous Dirichlet boundary on ∂Ωf,wall, ∂Ωf,in, and ∂Ωf,out.

Furthermore, we will consider an FSI problem for a realistic artery. Details of

this problem will be given together with the results in section 8.6.

53

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

5.2 Temporal Discretization

In this section, we describe discretizations of the previously presented semi-

discretized and time-dependent problems. However, we will start with a simple

ODE and explain the single-step and multi-step methods for this problem. The

transfer to more complex block systems, such as the semi-discretized Navier–

Stokes problem, will be done in a second step. There, the general structure of

the methods is not changed, although it is important to note that the incom-

pressibility equation of our fluid flow problems leads to a differential algebraic

equation (DAE). This section mainly follows the presentation of the book Solving

Ordinary Differential Equations II [76]. Since we deal with stiff problems, we

are restricted to implicit methods to circumvent stability issues. For a detailed

discussion on stability, we refer to [76]. We will start this section by introducing

implicit Runge-Kutta (RK) methods for ODEs. More precisely, we will focus on

diagonally implicit RK (DIRK) methods. Furthermore, we will shortly describe

BDF methods. In contrast to RK methods, these BDF methods rely on several

past solutions, instead of only one. Then, BDF and RK methods will be applied

to our time-dependent, semi-discretized Navier–Stokes problem. After that, we

will present the family of Newmark–β methods. They will be used to discretize

our second-order differential equations which arise after the discretization in space

of our time-dependent elasticity problems. We conclude this section by combin-

ing the temporal discretizations of the fluid and the solid for our monolithic FSI

systems.

5.2.1 Implicit Runge–Kutta Methods

Consider the following first-order initial value problem:

y′ = f(x, y), y(x0) = y0,

where x, y ∈ R and f : R× R→ R. The above problem has the solution

y(x1) = y0 +

∫ x1

x0

f(x, y(x)) dx. (5.15)

Here, we use h as the characteristic parameter of our discretization and set

x1 = x0 + h. Using a quadrature rule to approximate the integral in eq. (5.15)

54

5.2. TEMPORAL DISCRETIZATION

leads to the following definition of the RK methods which is taken from [75] in a

slightly reduced form.

Definition 3. Let bi, aij (i, j = 1, . . . , s) be real numbers and let ci be defined by

ci =
s∑
j=1

aij.

The method

ki = f(x0 + cih, y0 + h

s∑
j=1

aijkj), i = 1, . . . , s,

y1 = y0 + h
s∑
i=1

biki,

is called an s-stage Runge–Kutta method. If aij = 0 for i < j and at least one

aii 6= 0, we have a diagonal implicit Runge–Kutta (DIRK) method.

RK methods can be summarized with Butcher tables, which possess the fol-

lowing form:

c A

bT
=

c1 a11 · · · a1s

...
...

...

cs as1 · · · ass

b1 · · · bs

In the construction of RK methods, the three following conditions generally need

to be satisfied; cf. [76].

B(p) :
s∑
i=1

bic
q−1
i =

1

q
, q = 1, ..., p;

C(η) :
s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, ..., s, q = 1, ..., η;

D(ζ) :
s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), j = 1, ..., s, q = 1, ..., ζ;

55

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

If B(p) is satisfied, then the resulting quadrature formula (bi, ci) is of order p.

The essence of C(η) and D(ζ) is captured by the following theorem of Butcher;

cf. [28].

Theorem 3. If the coefficients bi, ci, and aij of a Runge–Kutta method satisfy

B(p), C(η), and D(ζ) with p ≤ η + ζ + 1 and p ≤ 2η + 2 then the method is of

order p, with p, η, ζ ∈ N.

Some widely used implicit methods can be written in the form of Butcher

tables, among them are the first-order implicit Euler method and the θ-methods.

With θ = 1/2, we obtain the Crank–Nicolson method, which is a second-order

method. Implicit Euler method:

0 0 0

1 0 1

0 1

θ-method:

0 0 0

1 1− θ θ

1− θ θ

Both methods are stiffly accurate. We call a method stiffly accurate if cs = 1 and

bj = asj, j = 1, . . . , s. These methods have the advantage that we can directly

use the last computed ks to obtain the new solution

y1 = y0 + hks.

A third order method which is implemented in our software is DIRK34; cf. [98]

and the literature therein for a derivation of this method. It is a four stage,

diagonally implicit, and stiffly accurate method which possesses the following

nonzero coefficients:

a21 = a22 = a33 = a44 = 0.1558983899988677,

a31 = 1− a32 − a22, a32 = 1.072486270734370,

a42 = 0.7685298292769537, a43 = 0.09666483609791597.

56

5.2. TEMPORAL DISCRETIZATION

By definition 3, it follows that ci =
∑i

j=1 aij, i = 1, . . . , 4. This concludes

the short overview of Runge–Kutta methods. In section 5.2.3, we will apply

these methods to Navier–Stokes problems. Other closely related methods are the

Rosenbrock–Wanner methods; cf. [76] for a general introduction and [98] for an

application to Navier–Stokes problems.

5.2.2 Multi-Step Methods – Backward Differentiation

Formulas

In general, a k-step multi-step methods is defined as

αkym+k + αk−1ym+k−1 + · · ·+ α0ym = h(βkfm+k + · · ·+ β0fm);

cf. [76]. We will consider the following linear BDF multi-step methods. The

BDF1 method is identical to the implicit Euler method and only makes use of

the last solution. In contrast, the BDF2 method uses the last two solutions

ym+2 −
4

3
ym+1 +

1

3
ym =

2

3
hfm+2,

to compute the new solution ym+2. BDF2 is a second-order A-stable method.

Moreover, there are no linear multi-step methods which are A-stable and have an

order greater than two. Again, we refer to [76] for detailed introduction to the

stability theory of stiff ODEs.

5.2.3 Discretization of the Time-Dependent Navier–Stokes

Problems

In this section, we apply the previously presented Runge–Kutta and BDF meth-

ods to the time-dependent Navier–Stokes problem. We will only consider sta-

ble spatial discretizations. Stabilized Navier–Stokes problems can be treated

analogously. The application of Runge–Kutta methods follows the presentation

in [98]. Let M be a mass matrix, τm = tm+1 − tm be the time step length, and

(um+1, pm+1)T the new solution which we want to compute. It is possible to use

an embedded method for the computation of a lower-order solution. Furthermore,

the higher-order and lower-order solution can be used to compute an error and

57

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

consequently choose a more appropriate time step. Therefore, the time length

τm can change from one time step to the next.

Let G(t,u, p) be the operator of all terms of the conservation of momentum

equation except the temporal derivate and let H(t,u) be the operator of the

incompressibility condition; cf. eq. (5.6) Then, a semi-discretized Navier–Stokes

problem can be written as

Mut = G(t,u, p),

0 = H(t,u).

We obtain the following update rules for the above DAE of index 2 after applying

a DIRK scheme.

Mki = G(tm + ciτm,Ui, Pi), Ui = um + τm

i∑
j=1

aijkj, i = 1, . . . , s, (5.16)

0 = H(tm + ciτm,Ui), Pi = pm + τm

i∑
j=1

aijlj, i = 1, . . . , s, (5.17)

um+1 = um +
s∑
i=1

biki, pm+1 = pm +
s∑
i=1

bili. (5.18)

Next, we multiply the second equation of (5.16) with the fluid mass matrix M

and make use of the first equation of eq. (5.16) accordingly.

MUi = Mum + τm

i∑
j=1

aijG(tm + cjτm,Uj, Pj), (5.19)

0 = H(tm + ciτm,Ui). (5.20)

Let F (·) be a suitable linearization of the (1, 1)-block of the Navier–Stokes prob-

lem. We can now apply eq. (5.19) and eq. (5.20) to our semi-discretized time-

58

5.2. TEMPORAL DISCRETIZATION

dependent Navier–Stokes problem which yields[
M + τmaiiF (Ui) τmaiiB

T

B 0

][
Ui

Pi

]
=Mum + τm

i−1∑
j=1

aij(f(tm + cjτm)− F (Uj)Uj −BTPj) + aiiτmf(tm + ciτm)

0

 ,
(5.21)

for i = 1, . . . , s. Since we only consider methods with a11 = 0, eq. (5.21) reduces

to (U1, P1)T = (um, pm)T for the first stage. We can now solve all s-stages

of eq. (5.21) to compute the new solution (um+1, pm+1)T .

The application of the BDF2 method of section 5.2.2 to time Navier–Stokes

problem with source term f = 0 yields the following system:[
1
τm
M + F (um+1) BT

B 0

][
um+1

pm+1

]
=

[
4

3τm
Mum + 1

3τm
Mum−1

0

]

Here, we scaled the mass matrix with the time step length τm in order to get a

consistent scaling for our FSI problem; cf. section 5.3.1. The temporal discretiza-

tion with BDF2 is used in simulations of FSI problems; see section 8.6 for the

simulation results.

We need to highlight an important issue for discretizations of Navier–Stokes

problems with Runge–Kutta methods. In eq. (5.21) we use the scaled matrix

τmaiiB
T which is then multiplied with the pressure p in the same way as the part

M+τmaiiF (Ui) which is multiplied with the velocity. However, in the derivation

of the Navier–Stokes equations in Chapter 2, we used the pressure as a Lagrange

multiplier for the divergence condition div u = 0. The above approach leads to

an unphysical behavior of the pressure solution. This unphysical behavior can

be denoted as ringing since the pressure solution changes rapidly from one time

step to the next. In fig. 5.5, velocity and pressure solutions from consecutive

time steps are depicted. There, the Crank–Nicolson method is used. The solu-

tions are computed for a the two-dimensional Navier–Stokes benchmark, cf. [130],

with constant parabolic inflow (maximum inflow velocity umax = 1.5), viscosity

ν = 10−3, and Reynolds number Re = 100. Additionally, the pressure solution

does not only suffer from the ringing phenomenon, but also from an instanta-

59

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

neous start of the simulation. The maximum inflow velocity is applied from the

first time step with a Dirichlet boundary condition. However, there is no suitable

initial pressure solution p0. A realistic flow field is only obtained after a few time

steps, but only the velocity solution can recover from the instantaneous start. In

contrast, the pressure solution cannot recover due to the ringing phenomenon. A

remedy is a fully implicit treatment of the pressure in the Crank-Nicolson time

discretization. The resulting Navier–Stokes system is[
M + ∆tθF (um+1) ∆tBT

B 0

][
um+1

pm+1

]
=

[
Mum −∆t(1− θ)F (um)um

0

]
,

(5.22)

and the solutions are depicted in fig. 5.6. In eq. (5.22), the source term f = 0 was

used. In our implementation of these methods, we will treat the pressure fully

implicit if the ringing phenomenon would occur otherwise.

Figure 5.5: Velocity solution (left) and pressure solution (right). Ringing phe-

nomenon of the pressure for the Crank–Nicolson time discretization.

Depicted are four consecutive time steps with ∆t = 0.01 after the

flow field is fully developed.

60

5.2. TEMPORAL DISCRETIZATION

Figure 5.6: Velocity solution (left) and pressure solution (right). Fully implicit

treatment of the pressure for the Crank–Nicolson time discretiza-

tion. Depicted are four consecutive time steps with ∆t = 0.01 after

the flow field is fully developed.

5.2.4 Newmark Schemes for Solid Dynamic Problems

In sections 5.1.3 and 5.1.5, we derived the spatial discretization of our time-

dependent elasticity equation. We will begin the presentation of Newmark meth-

ods by stating the linear semi-discretized equation of motion, which is similar

in structure to eq. (5.4) of the semi-discretized elasticity problem. However, we

consider an additional viscous damping matrix C ∈ Rn×n. Furthermore, let M

be the mass matrix and K the stiffness matrix. The semi-discretized equation of

motion is given by

Mutt + Cut +Ku = F, (5.23)

where ut is the velocity and utt the acceleration. Clearly, the equation above is

a second-order system and there are two ways to proceed.

Firstly, we can rewrite eq. (5.23) to a first-order system and use a Runge–Kutta

or BDF method. However, this approach would increase the dimension of the re-

sulting first-order system by a factor of two compared to the second-order system.

Therefore, the computational costs to compute a solution would increase signifi-

cantly. Secondly, we can directly discretize the second-order problem. The most

61

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

widely used methods for solid dynamic problems are Newmark schemes [120].

The following description and details on Newmark schemes can be found in [15].

In general, one-step methods of the Newmark family possess the following form:

Mam+1 + Cvm+1 +Kum+1 = Fm+1,

um+1 = um + ∆tvm +
∆t2

2
((1− 2β) am + 2βam+1) ,

vm+1 = vm + ∆t (1− γ) am,

(5.24)

where am, vm, and um are the known acceleration, velocity, and displacement

at the time step m, respectively. We can rewrite the first equation of (5.24) to

a system for the unknown displacement um+1 and update the unknown velocity

vm+1 and acceleration am+1 afterwards, if β 6= 0. In the following, we will always

use a Newmark scheme with β = 1/4 and γ = 1/2, which is known as constant

average acceleration method. It is implicit and unconditionally stable. Moreover,

Newmark schemes with γ = 1/2 are second-order accurate; cf. [15]. We will now

apply the Newmark scheme to our nonlinear time-dependent elasticity problem.

Furthermore, we linearize eq. (5.3) with Newton’s method. Let J(u
(k)
m) ∈ Rn×n

be the Jacobian matrix of the stationary part of the elasticity equation. In each

iteration of Newton’s method, we have to solve the following problem for the

displacement and update the velocity and acceleration afterwards. In particular,

for a nonlinear time-dependent elasticity problem the system reads

Ma
(k+1)
m+1 + J(u

(k)
m+1)u

(k+1)
m+1 = Fm+1, (5.25)

where the updates for velocity and acceleration are analogously to (5.24).

Again, eq. (5.25) is rewritten to a system for the displacements.

5.3 Discretization of the Fluid-Structure Interaction

Problem

In this section, we will present the discretization of the FSI problem. In particu-

lar, the temporal and spatial discretizations of the fluid and solid subproblems are

combined. Furthermore, the coupling conditions on the interface for the stresses,

velocities, and (mesh) displacements are enforced. In section 5.3.1, discrete repre-

62

5.3. DISCRETIZATION OF THE FLUID-STRUCTURE INTERACTION
PROBLEM

sentations of the coupling conditions are presented for the nonlinear FSI systems.

This is followed by a discussion of linearization strategies in section 5.3.2. In par-

ticular, we will derive two FSI systems. A fully monolithic system, which includes

the geometry problem and a second FSI problem, where the geometry problem

is treated separately.

5.3.1 Coupling of the Fluid-Structure Interaction Problem

The coupling conditions of an FSI problem are essential to the interaction of

fluid and solid. We use the coupling matrices Ci, i = 1, . . . , 5, which arise due to

the coupling of the velocities of fluid and solid as well as due to the Lagrangian

multiplier λ which is introduced to satisfy the continuity of normal stress at the

interface.

The matrices C1 and C2 are used to couple the fluid velocity and the solid velocity

on the interface Γ(t):

uf = ûs ◦ T̂−1
s ;

cf. eq. (4.23). We can define an equivalent coupling on the interface Γ̂ for the

reference configuration, which was already used in section 5.1.7 for the weak

formulation of the FSI system.

uf ◦ T̂s = ûs

Therefore, C1 is a restriction matrix from all fluid d.o.f. to the velocity interface

d.o.f.. Similarly, C̄2 is the restriction of displacement d.o.f. to the interface. Ad-

ditionally, we need to scale C̄2 with the negative inverse of the time step length,

i.e., C2 = −1/τmC̄2, to enforce the equality of velocities. Furthermore, the cou-

pling of stresses in normal direction is enforced with a Lagrangian multiplier.

There, the prolongation C̄3 = CT
1 from the velocity interface d.o.f. to all fluid

d.o.f. and a second prolongation operator C4 = C̄T
2 from the displacement in-

terface d.o.f. to all displacement d.o.f. is used. It is important to note that the

matrix C3, which is used for the weakly coupled fluid stresses, depends on the

time stepping scheme. Suppose, we have the following semi-discretized equation

63

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

of linear momentum conservation

Mut + Fu +BTp = 0,

where we ignore the nonlinearity of F . If we use a θ-scheme (without fully

implicit treatment of the pressure) and time step length ∆t. Thus, we obtain the

two equivalent equations:

Mun+1 + θ∆t(Fun+1 +BTpn+1) = Mun − (1− θ)∆t(Fun +BTpn),

1

θ∆t
Mun+1 +

(
Fun+1 +BTpn+1

)
=

1

θ∆t

(
Mun − (1− θ) ∆t

(
Fun + θ∆tBTpn

))
.

We can directly use the coupling matrix C3 = C̄3 = CT
1 if we use the second

equation. However, if we use the first equation we have to account for the scal-

ing θ∆t of F and BT . In particular, we must use the scaled coupling matrix

C3 = θ∆tC̄3, because it will add the fluid stresses on the interface to the conser-

vation of momentum equation. In general, similar considerations must be made

for the coupling matrix C4 of the solid stresses. However, we exclusively use

Newmark schemes for the time-dependent solid problem and therefore no scaling

is needed. The final coupling matrix C5 is used to model the coupling condition

d̂f = d̂s on Γ̂.

Since, we restrict the solid displacement d.o.f. to the interface, we obtain C5 = C̄2.

After a finite element discretization in space, cf. section 5.1.2 for the fluid sub-

problem and section 5.1.3 for the solid subproblem, we use the BDF2 method for

the fluid, cf. section 5.2.3, and the Newmark method for the solid, cf. section 5.2.4,

to discretize the temporal derivatives. We can now simply combine the subprob-

lems and coupling conditions to the monolithic FSI problem. In the following,

we denote the discretized time-dependent Navier–Stokes problem as F and the

corresponding vector of velocity and pressure as U = (uT , pT)T . Furthermore,

the discretized time-dependent solid problem is denoted as S and the geometry

problem as G. Note that the fluid equations must be assembled in accordance

with the mesh movement, which is due to the ALE setting. In particular, the

64

5.3. DISCRETIZATION OF THE FLUID-STRUCTURE INTERACTION
PROBLEM

mesh velocity must be subtracted for the advective term; cf. eq. (5.13). Thus F
slightly changes in comparison to the separated Navier–Stokes problem. More-

over, we need to assemble an additional matrix for our Navier–Stokes problem,

which is due to the ALE time derivative:∫
Ωf (t)

ρf div(w)uf · vf dx,

where w is the mesh velocity. This term was derived in eq. (5.13) and we need

to account for it in our linearization; cf. section 5.3.2. Moreover, we need to

account for the mesh movement in each iteration, i.e., we need to reassemble

all matrices of the fluid subproblem, because, in general, the underlying domain

Ωf (t) has changed between two consecutive time steps. We obtain the fully

coupled nonlinear FSI problem
F(Un+1, d̂f

n+1
) + 0 + C3λ

n+1 + 0

0 + S(d̂s
n+1

) + C4λ
n+1 + 0

C1Un+1 + C2d̂s
n+1

+ 0 + 0

0 + C5d̂s
n+1

+ 0 + Gd̂f
n+1

 =

bnf
bns

C2d̂s
n

0

 ,

(5.26)

where bf = (bTu , b
T
p)T and bs are the fluid and the solid right-hand side, respec-

tively. Note that the following approximation was used for the strongly coupled

solid velocity on the interface:

d

dt
d̂s ≈

d̂n+1
s − d̂ns

∆t
on Γ̂,

with the equivalent matrix representation

C2d̂s
n+1
− C2d̂s

n
.

Therefore, the coupling of velocities is now enforced with

C1Un+1 + (C2d̂s
n+1
− C2d̂s

n
) = 0.

65

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

We call the system in eq. (5.26) geometry implicit (GI) since the geometry prob-

lem is a part of the monolithic system. In contrast, we define the following

geometry explicit (GE) system:
F(Un+1, d̂f

n
) + 0 + C3λ

n+1

0 + S(d̂s
n+1

) + C4λ
n+1

C1Un+1 + C2d̂s
n+1

+ 0

 =

 bnf
bns

C2d̂s
n

 . (5.27)

Here, the geometry problem Gd̂f
n+1

= 0 is decoupled and can therefore be solved

separately from eq. (5.27). Furthermore, we do not need to reassemble all matrices

of the fluid subproblem in each nonlinear iteration, since the underlying fluid

mesh is only changed after the geometry problem is solved. In the next section,

we discuss different linearization techniques for the GI system and GE system.

5.3.2 Linearization of the Fluid-Structure Interaction Problem

We begin with the linearization of the GE system of eq. (5.27), which is es-

sentially a combination of the linearized Navier–Stokes and solid subproblems.

Additionally, we account for the fluid mesh velocity and use the known fluid mesh

displacements d̂f
n

and d̂f
n−1

of the last two time steps for the assembly of the

fluid problem. For simplicity, only the dependence on the last solution d̂f
n

is

highlighted in eq. (5.27). The mesh velocity is defined as

wn =
d̂f

n
− d̂f

n−1

∆t
.

If we discretize the GI system using Newton’s method we need to assemble partial

derivatives of the Navier–Stokes equations w.r.t. the fluid mesh deformation

d̂f
n+1

. These derivatives are called shape derivatives. For a derivation of shape

derivatives, we refer to [68]. For a detailed discussion on shape derivatives in a

fully coupled monolithic FSI system, we refer to [38]. In Chapter 7, we present

a C++ software library which provides the implementation of the FSI problems.

T his implementation in based on the master’s thesis [33]. The Jacobian matrix

66

5.3. DISCRETIZATION OF THE FLUID-STRUCTURE INTERACTION
PROBLEM

of the GI system for Newton’s method has the following form:

J (Xn+1,k) =

DU(FU) 0 C3 Dd̂f

(F d̂f)

0 Dd̂s
(Sd̂s) C4 0

C1 C2 0 0

0 C5 0 G

 |Xn+1,k
(5.28)

The termDd̂f
(F d̂f) corresponds to the shape derivatives. Apart from the Newton

system, we can use an extrapolation or the Oseen system (fixed point system)

for the fluid block. In both cases, we simply use a system with the form of (5.28)

with Dd̂f
(F d̂f) = 0.

We want to highlight the structure and coupling of the discretized and lin-

earized FSI system. Therefore, we distinguish between interface d.o.f. Γ and

interior d.o.f. I. We further distinguish between interior fluid d.o.f. If , inte-

rior solid d.o.f. Is, and interior geometry d.o.f. Ig. Note that, with the above

definition, an interior d.o.f. can still be a boundary d.o.f. of the corresponding

domain. However, it is only an inner d.o.f. w.r.t the fluid-solid interface Γ. Fur-

thermore, we will not distinguish between different linearized systems, e.g., the

Jacobian matrix of eq. (5.28), a fixed point system, or a system resulting from

an extrapolation. Therefore, we will use the variables F , B, BT , C for the fluid

problem in block form, S for the solid problem, G for the geometry problem, and

Dd̂s,u
, Dd̂s,p

with Dd̂s
=
(
DT

d̂s,u
, DT

d̂s,p

)T
for the shape derivatives. Then, the

fully coupled GI FSI system matrix has the form

FIf If FIfΓ BT
If

0 0 0 Dd̂s,u,If If
Dd̂s,u,IfΓ

FΓIf FΓΓ BT
Γ 0 0 I Dd̂s,u,ΓIf

Dd̂s,u,ΓΓ

BIf BΓ −C 0 0 0 Dd̂s,p,If
Dd̂s,p,Γ

0 0 0 SIsIs SIsΓ 0 0 0

0 0 0 SΓIs SΓΓ I 0 0

0 I 0 0 − 1
∆t
I 0 0 0

0 0 0 0 0 0 GIf If GIfΓ

0 0 0 0 −I 0 0 I

,

where I ∈ R|Γ|×|Γ| is the identity matrix, τ is the time step length, and we

assume a temporal discretization which does not require a scaling of the coupling

67

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

matrices. In case of a GE system, we drop all matrices right of and under the

solid line:

FIf If FIfΓ BT
If

0 0 0

FΓIf FΓΓ BT
Γ 0 0 I

BIf BΓ −C 0 0 0

0 0 0 SIsIs SIsΓ 0

0 0 0 SΓIs SΓΓ I

0 I 0 0 − 1
∆t
I 0

.

5.4 Solution Methods for Nonlinear Equations

In this section, we give a short description of two widely used methods for the

solution of nonlinear PDEs.

Let f : Rn → Rn be a sufficiently smooth function. In general, we seek to

determine a root of f , i.e.,

f(u) = 0.

Firstly, we consider the fixed point iteration, where we seek to determine the fixed

point u of

g(u) = u,

by evaluating the following expression until convergence

uk+1 = g(uk),

with given initial guess u0. The convergence rate of the fixed point methods is,

in general, only linear. However, speedups can be achieved by using Anderson

Acceleration; cf. [145] or the original work [4].

Secondly, we consider Newton’s method. There, a second-order approximation

of the underlying function is used. Let Jij = ∂fi
∂uj

be the Jacobian matrix of f . We

68

5.4. SOLUTION METHODS FOR NONLINEAR EQUATIONS

0 200 400 600

nz = 5513

0

100

200

300

400

500

600

Stokes

0 200 400 600

nz = 8003

0

100

200

300

400

500

600

Navier-Stokes fixed-point

0 200 400 600

nz = 13297

0

100

200

300

400

500

600

Navier-Stokes Jacobian

Figure 5.7: Sparsity patterns and numbers of nonzeros (nz) of finite element

matrices of a Stokes problem (left), a Navier–Stokes fixed point

system (center), and a Jacobian of a Navier–Stokes problem (right).

The two-dimensional problems on a unit square are discretized with

P2–P1 Taylor–Hood elements. Velocity components are ordered

node-wise.

evaluate J in the last iterate uk and solve the following systems until convergence:

Solve J(uk)δuk = r(uk) for δuk, (5.29)

and update uk+1 = uk + δuk. (5.30)

Here, r(uk) = −f(uk) is the nonlinear residual. Different convergence criteria can

be used, e.g., the norm of the update ‖δuk‖, or the norm of the nonlinear resid-

ual ‖r(uk)‖. In the numerical simulations in Chapter 8, we will use the relative

nonlinear residual norm: ‖r(uk)‖/‖r(u0)‖. As discussed before, we use GMRES

for the iterative solution of large sparse systems. For fluid flow problems, finite

element discretizations of Jacobian matrices are, in general, much denser than

their comparable linear counterparts or the corresponding fixed point systems.

However, they are still sparse and can therefore be solved efficiently with (precon-

ditioned) GMRES. In fig. 5.7 we present sparsity patterns of a Stokes problem,

a fixed point Navier–Stokes system, and a Jacobian matrix of a Navier–Stokes

problem.

69

CHAPTER 5. DISCRETIZATIONS IN SPACE AND TIME

We call Newton’s method with inexact solutions of the linearized systems an

inexact Newton method ; cf. [41]. The most general form of an inexact Newton

method is presented in algorithm 1; cf. [57, 58].

Algorithm 1 Inexact Newton method

For given initial guess u0

for k = 0 do until convergence
find some δuk ∈ [0, 1) and ηk such that∥∥f(uk) + J(uk)δuk

∥∥ ≤ ηk
∥∥r(uk)∥∥

update uk+1 = uk + δuk

end for

For a fixed ηk = 0, we recover the exact Newton method. If we compute a so-

lution iteratively which satisfies
∥∥f(uk) + J(uk)δuk

∥∥ ≤ ηk
∥∥r(uk)∥∥ with GMRES,

then ηk must be chosen before the linear system is solved. Then, ηk is simply

the tolerance for GMRES which is used to compute an approximate solution

of δu in eq. (5.29). An approach with an outer Newton iteration and an inner

Krylov subspace method is often referred to as a Newton–Krylov method. In the

following, we will only allow for changing ηk between successive Newton itera-

tions. The ηk are often called forcing terms ; cf. [58]. We assume that the initial

guess u0 is close enough to the solution u∗ to guarantee the following convergence

rate; cf. [41,58]. The series uk converges to the solution u∗ q-quadratically in the

norm ‖·‖∗, if limx→∞ ηk = 0 and ηk = O
(∥∥f(uk)

∥∥). The norm ‖·‖∗ is defined as

‖J(u∗)x‖ for x ∈ Rn; see [41] and [58] for more convergence rate results.

Still, the local linear model J evaluated in u0 and the function f might disagree

considerably. For instance, the first Jacobian matrix with zero initial guess of

a Navier–Stokes problem is only a Stokes problem. If we consider advection

dominated problems, this is only a rough approximation of the final converged

Navier–Stokes system. It might not be beneficial to choose a small tolerance η0

as the norm of the residual ‖r(u1)‖ might not change much. This phenomenon is

called oversolving and, apart from a bad approximation, it is costly to iteratively

compute solutions with GMRES which satisfy a small tolerance. Therefore, we

want to adaptively choose a forcing term to minimize oversolving. We will use

70

5.4. SOLUTION METHODS FOR NONLINEAR EQUATIONS

the adaptive forcing term which is denoted choice 2 in [58]:

ηk = γ

(∥∥r(uk)∥∥
2

‖r(uk−1)‖2

)α

, (5.31)

with given γ ∈ [0, 1], α ∈ (1, 2], and η0 ∈ (0, 1). The implementation of adaptive

forcing terms and globalization techniques of the Trilinos package NOX will be

used in our simulations. In NOX, the above computation is denoted as type 2.

We use this adaptive forcing term since it only requires the computation of two

vectors and their norms, which have been already evaluated during the Newton

iterations. In contrast, there is another option given in [58] called choice 1. There,

an additional matrix-vector product has to be computed.

Additionally, we want to prescribe upper and lower bounds for the forcing term:

ηk ∈ [ηmin, ηmax]. Above, we assumed that the initial guess is already close to a

solution. In practice, this assumption may not be fulfilled for challenging, highly

nonlinear problems. Therefore, we introduce globalization strategies to facilitate

the global convergence. The following algorithm is a globalized inexact Newton

method with backtracking ; backtracking is a line search method. Another popular

class of globalization techniques are so-called Trust Region methods. We refer the

reader to [57] for a detailed derivation of different globalization techniques and

their specific implementations. The Newton–Krylov method with backtracking

is summarized in algorithm 2.

Algorithm 2 Inexact Newton method with backtracking

For given initial guess u0, η0 ∈ [ηmin, ηmax], t ∈ (0, 1) and 0 < θmin < θmax < 1
for k = 0 do until convergence

solve J(uk)δuk = r(uk) with GMRES and tolerance ηk
while

∥∥f(uk + δuk)
∥∥

2
> [1− t(1− ηk)]

∥∥f(uk)
∥∥

2
do

choose θ ∈ [θmin, θmax]
update δuk = θδuk

end while
update uk+1 = uk + δuk.
compute ηk+1 with (5.31)

end for

71

6 Domain Decomposition -

Two-Level Overlapping Schwarz

Methods

In the previous chapter, we discussed fi-

nite element discretizations of different

PDEs. In order to compute accurate

approximations of the solutions, we, in

general, need a fine discretization and

therefore a high mesh resolution. When

dealing with systems with millions of

unknowns direct solvers become less ef-

ficient. The computational costs for an

LU decomposition of a matrix A ∈ Rn×n

is O(n3). Additionally, the high mem-

ory requirement a of direct solver pre-

vents the efficient solution of large problems. Therefore, inexact iterative solvers

are often employed for the solution of large sparse systems. Since the main fo-

cus of this thesis is the solution of incompressible fluid flow and associated FSI

problems, which are unsymmetric and indefinite, we will employ the Generalized

Minimal Residual method [128]. To facilitate the convergence of GMRES we

need to construct efficient preconditioners. Moreover, if we use a preconditioner

which changes in every iteration we will use Flexible GMRES (FGMRES) [129].

In the following construction of parallel preconditioners, we aim at two things.

On the one hand, we want to localize computations, where each local problem is

independent of the other local problems. On the other hand, we need to exchange

global information, which is lost in the localization process. Therefore, we will

73

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

construct a (global) coarse problem. For this two-step approach we use domain

decomposition based overlapping Schwarz preconditioners [134, 139]. Another

widely used domain decomposition methods is the Finite Element Tearing and

Interconnecting method (FETI) [65,67]. Furthermore, a significant improvement

to FETI is the FETI Dual–Primal method (FETI–DP) [66, 106, 107, 109, 116].

The Balancing Domain Decomposition (BDD) method [139] and the Balanc-

ing Domain Decomposition by Constraints (BDDC) method [36, 47, 115] are a

third class of widely used and efficient approaches. However, they are similar to

FETI methods. There are two main differences between the four last mentioned

methods and an overlapping Schwarz method. While an overlapping Schwarz

method uses overlapping local problems, all other methods use nonoverlapping

local problems. Furthermore, different global matrix data that is needed. Schwarz

preconditioners can be built from the fully assembled stiffness matrix while FETI,

FETI–DP, BDD, and BDDC need the unassembled subdomain Neumann matri-

ces. A one-level Schwarz preconditioner without a coarse problem can be seen as

more algebraic than the other four methods. On the contrary, a one-level Schwarz

method does, in general, not scale w.r.t. iterations counts. Therefore, a coarse

level is needed.

The scalability is one of the most important factors in the construction of

preconditioners. In a parallel setting, scalability has two sides. We first consider

the numerical scalability, where we are only interested in the iteration counts.

Let N be the number of subdomains of our domain decomposition for a mesh

with characteristic mesh size h and let H be the characteristic size or diameter

of a subdomain. If we increase the number of subdomains, each subdomain gets

smaller and therefore H decreases. Next, if we decrease h at the same rate as

H decreases we obtain a constant subdomain size in the sense that subdomains

possess the same number of nodes; cf. fig. 6.1. The size of a subdomain is typically

expressed by the ratio H/h. This consideration is well suited for a structured

mesh and decomposition. If we consider a constant subdomain size H/h and

an increasing number of subdomains N , an iterative solver with a numerical

scalable preconditioner should solve the problem in a (almost) constant number

of iterations.

The second aspect of scalability is the parallel scalability. Here, we compare the

amount of time which is needed for the construction of a preconditioner and the

74

Figure 6.1: Two domains with constant subdomain size H/h = 5. Structured

decomposition into 1 subdomain (left) and 4 subdomains (right).

application in the solution phase. In particular, we need a parallel environment

with many computational units or cores. We can further distinguish between

weak and strong scalability. A perfectly weakly scalable preconditioner computes

the solution in a constant time for a problem with constant subdomain size H/h

and increasing number of subdomains, if the number of cores is increased at the

same rate as the number of subdomains.

On the other hand, if we solve the same problem (constant h) on an increasing

number of cores and subdomains, e.g., n and 2n cores, a perfectly strong scaling

preconditioner needs only half of the time.

It is important to note that the scalability in the iterative solution phase

greatly depends on the iterative solver. However, GMRES mainly uses matrix-

vector products which scale very well for sparse matrices. A minor drawback

is the orthogonalization process in GMRES, which gets more expensive with

each additional iteration. For a given problem Ax = b, initial guess x0, and

unpreconditioned initial residual r0 = b − Ax0 the m-th Krylov subspace is

x0 +Km(A, r0) = x0 + span{r0, Ar0, A
2r0, . . . , A

m−1r0}. In each iteration of GM-

RES an orthonormal basis {v1, . . . , vm} of the Krylov subspace is constructed.

We refer the reader to [128] for a full description and detailed derivation of

the GMRES method. A remedy for the increasing computational costs is the

restarted GMRES method; this version is often denoted as GMRES(r). The ex-

isting Krylov subspace is simply omitted after r iterations and the last solution

75

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

xr is used as a new initial guess. However, the convergence results which were

derived for GMRES cannot be guaranteed for GMRES(r). In particular, this

became evident in the solution of some problems of the previous chapter with the

preconditioners of this chapter. There, GMRES without restarts was generally

more efficient than GMRES(r). Different values for r from 10 to 100 were selected

for Stokes and steady Navier–Stokes problems, which were preconditioned with

a monolithic two-level overlapping Schwarz preconditioner with a GDSW coarse

space. However, the increase in iterations was to large when using GMRES(r)

and therefore we only consider GMRES without restarts in the numerical results

of Chapter 8.

In the section 6.1, we will describe two-level overlapping Schwarz precondi-

tioners for elliptic problems. In particular, we will focus on the construction of

GDSW coarse spaces. Basis functions resulting from harmonic extensions of in-

terface values are constructed, which are then used to compute a coarse problem

matrix. This is followed by a discussion of block preconditioners for saddle point

problems in section 6.2. We will then describe the construction of monolithic

two-level overlapping Schwarz preconditioners for saddle point problems in sec-

tion 6.3 and focus on preconditioners for incompressible fluid flow problems with

GDSW and RGDSW coarse spaces. Fully algebraic GDSW and RGDSW precon-

ditioners based on approximated interfaces are described in section 6.4. In the

last section 6.5, we will consider preconditioners for FSI problems.

6.1 Two-Level Overlapping Schwarz Methods with

GDSW Coarse Spaces for Elliptic Problems

We begin the construction of overlapping Schwarz preconditioners for an elliptic

model problem, which was previously published in [79]. We consider the linear

equation system

Ax = b

arising from a finite element discretization of an elliptic problem, e.g., a Poisson

or elasticity problem on Ω ⊂ Rd, d = 2, 3, with sufficient Dirichlet boundary

conditions.

Let Ω be decomposed into nonoverlapping subdomains {Ωi}Ni=1 with typical di-

76

6.1. TWO-LEVEL OVERLAPPING SCHWARZ METHODS WITH GDSW
COARSE SPACES FOR ELLIPTIC PROBLEMS

1.000e+00

8.000e+00

2

3

4

5

6

7

s
u

b
d

o
m

a
in

s

1.000e+00

8.000e+00

2

3

4

5

6

7
s
u

b
d

o
m

a
in

s

0.000e+00

8.000e+00

1

2

3

4

5

6

7

s
u

b
d

o
m

a
in

1

1.000e+00

8.000e+00

2

3

4

5

6

7

s
u

b
d

o
m

a
in

s

0.000e+00

8.000e+00

1

2

3

4

5

6

7

s
u

b
d

o
m

a
in

1

1.000e+00

8.000e+00

2

3

4

5

6

7

s
u

b
d

o
m

a
in

s

Figure 6.2: Structured mesh and domain decomposition (top) and unstructured

mesh and domain decomposition (bottom) of a unit cube: different

colors for each subdomain (left) and one subdomain with one high-

lighted layer of overlap (right). The unstructured mesh is generated

as presented in fig. 8.1 and the unstructured domain decomposition

is performed using ParMETIS [100]. Taken from [79].

ameter H and corresponding overlapping subdomains {Ω′i}
N
i=1 with k layers of

overlap, i.e., δ = kh; cf. fig. 6.2 for a visualization of a cubic sample domain. The

overlapping subdomains can be constructed from the nonoverlapping subdomains

by recursively adding one layer of elements after another to the subdomains. Even

if no geometric information is given, this can be performed based on the graph

of the stiffness matrix A. Furthermore, let

Γ =
{
x ∈ (Ωi ∩ Ωj) \ ∂ΩD : i 6= j, 1 ≤ i, j ≤ N

}
77

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

be the discrete interface of the nonoverlapping domain decomposition. Note that

Γ was previously used as the fluid-solid interface of the FSI problem. However,

using Γ as the interface of a domain decomposition is the standard notation from

which we do not want to deviate. It should be clear from the context which type

of interface is considered.

We define Ri : V h → V h
i , i = 1, ..., N , as the restriction from the global finite

element space V h = V h (Ω) to the local finite element space V h
i := V h (Ω′i) on

the overlapping subdomain Ω′i; R
T
i is the corresponding prolongation from V h

i to

V h. In addition to that, let V0 be a global coarse space and RT
0 : V h

0 → V h the

corresponding coarse interpolation.

For the time being, we will use exact local solvers; in section 8.1.1.3, we will

also present results for inexact coarse solvers. For exact local and coarse solvers,

the additive Schwarz preconditioner in matrix-form can be written as

B−1
OS−2 = RT

0A
−1
0 R0︸ ︷︷ ︸

coarse level

+
N∑
i=1

RT
i A
−1
i Ri︸ ︷︷ ︸

first level

, (6.1)

where the local and coarse stiffness matrices Ai are given by

Ai = RiAR
T
i , for i = 0, ..., N.

One typical choice for the coarse basis functions are Lagrangian basis functions

on a coarse triangulation. However, a coarse triangulation may not be available

for arbitrary geometries and domain decompositions. Therefore, we consider

GDSW coarse spaces, which do not require a coarse triangulation.

GDSW Coarse Spaces: The GDSW preconditioner, which was introduced by

Dohrmann, Klawonn, and Widlund in [45, 49], is a two-level additive overlap-

ping Schwarz preconditioner with energy minimizing coarse space. Thus, the

preconditioner can be written in the form

B−1
GDSW = ΦA−1

0 ΦT +
N∑
i=1

RT
i A
−1
i Ri,

78

6.1. TWO-LEVEL OVERLAPPING SCHWARZ METHODS WITH GDSW
COARSE SPACES FOR ELLIPTIC PROBLEMS

where Ai and Ri are defined as before and

A0 = R0AR
T
0 = ΦTAΦ

is the matrix of the coarse problem. This corresponds to eq. (6.1), where we

replace RT
0 by Φ, as is standard in the context of GDSW preconditioners.

For the GDSW preconditioner, the choice of the matrix Φ is the main ingredi-

ent. In order to define the columns of Φ, i.e., the coarse basis functions, a partition

of unity of energy-minimizing functions and the nullspace of the operator A are

employed.

In particular, the interface Γ is divided into M connected components Γj which

are common to the same set of subdomains, i.e., into vertices, edges, and, in three

dimensions, faces. Now, let Z be the null space of the global Neumann matrix and

ZΓj the restriction of Z to the degrees of freedom corresponding to the interface

component Γj. Then, we construct corresponding matrices ΦΓj , such that their

columns form a basis of the space ZΓj . Let RΓj be the restriction from Γ onto

Γj. Then, the values of the GDSW basis functions Φ on Γ can be written as

ΦΓ =
[
RT

Γ1
ΦΓ1 ... RT

ΓM
ΦΓM

]
. (6.2)

After partitioning the d.o.f. into interface (Γ) and interior (I) ones, the matrix

A can be written as

A =

[
AII AIΓ

AΓI AΓΓ

]
.

Then, the basis functions of the GDSW coarse space can be written as discrete

harmonic extensions of ΦΓ to the interior degrees of freedom:

Φ =

[
ΦI

ΦΓ

]
=

[
−A−1

II AIΓΦΓ

ΦΓ

]
. (6.3)

Note that AII = diagNi=1(A
(i)
II) is a block diagonal matrix containing the local

matrices A
(i)
II from the nonoverlapping subdomains. Its factorization can thus be

computed block by block and in parallel.

79

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

The condition number estimate for the GDSW preconditioner

κ
(
B−1

GDSWA
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

,

holds for polygonal/polyhedral Lipschitz domains and certain assumptions on the

subdomains. In two dimensions, it also holds for the general case of Ω decomposed

into John domains; cf. [45, 49]. For certain variants of the GDSW coarse space,

the factor
(
1 + log

(
H
h

))2
can be improved to

(
1 + log

(
H
h

))
; see, [50,52].

6.2 Block Preconditioners for Saddle Point

Problems

In this section we want to present several block preconditioners for saddle point

problems. For convenience, we restate our two saddle point systems. The general

block matrix with has the form

Fx =

[
F BT

B −C

][
u

p

]
=

[
f

0

]
,

and for a problem where the pressure is fixed to zero mean value using a La-

grangian multiplier, it reads

Fx =

F BT 0

B −C aT

0 a 0

u

p

λ

 =

f

0

0

 .
Both systems were derived in section 5.1.6.

6.2.1 Overlapping Schwarz Methods for Block Preconditioners

The use of overlapping Schwarz techniques for the approximation of block in-

verses, resulting from an LDU block factorization, was proposed in [105] for

indefinite saddle point problems. For the (standard) saddle point system, we

80

6.2. BLOCK PRECONDITIONERS FOR SADDLE POINT PROBLEMS

obtain the factorization[
F BT

B −C

]
=

[
I 0

BF−1 I

][
F 0

0 S

][
I F−1BT

0 I

]
,

with the Schur complement S = −C − BF−1BT . The resulting block-diagonal

preconditioner reads

B̂−1
D =

[
F̂ 0

0 S

]−1

=

[
F̂−1 0

0 S−1

]
.

The upper block-triangular preconditioner is given by[
F BT

0 S

]−1

=

[
F−1 −S−1BTF−1

0 S−1

]
.

Since the computation of the Schur complement S is very expensive, we seek

to replace it with a suitable approximation. For a Navier–Stokes problem with

kinematic viscosity ν and a low Reynolds number, the Schur complement can

be replaced with a spectrally equivalent scaled pressure mass matrix 1/νMp;

cf. [146]. Similarly, we can directly replace S with Mp for our Stokes problems.

In numerical studies for a mixed linear elasticity problem in [103], it was observed

that overlapping Schwarz methods with a minimal overlap for the pressure block,

using the pressure mass matrix, are a good choice and should be preferred to

a scaled identity operator. A condition number estimate as well as a proof on

the convergence for GMRES are given in [105] for the block-diagonal and the

block-triangular preconditioner, respectively.

For the system with Lagrangian multiplier, we obtain the LDU block factor-

izationF BT 0

B −C aT

0 a 0

 =

F 0 0

B S 0

0 a sa

I F−1BT 0

0 I S−1aT

0 0 1

=

 I 0 0

BF−1 I 0

0 aS−1 1

F 0 0

0 S 0

0 0 sa

I F−1BT 0

0 I S−1aT

0 0 1

 ,

81

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

with sa = aS−1aT . Again, the spectral equivalence of the Schur complement and

the pressure mass matrix yields the approximation S ≈ Mp. Furthermore, we

replace sa by ma = aM−1
p aT . The solution of Mpx = aT is the vector x = 1 with

mean value 1. Consequently, a · x = 1, and therefore, ma = 1.

Then, the inverse of our lower block-triangular preconditioner with Lagrangian

multiplier is

F 0 0

B Mp 0

0 a 1

−1

=

 F−1 0 0

−M−1
p BF−1 M−1

p 0

aM−1
p BF−1 −aM−1

p 1

 .
This preconditioner can be analogously written as an upper block-triangular pre-

conditioner.

The above approximation of the Schur complement with a pressure mass ma-

trix is suitable for low Reynolds numbers. However, for higher Reynolds numbers

the pressure mass matrix does not account for the dominating advective forces in

F . Therefore, for larger advective forces a different approximation of the Schur

complement must be used. We will present the SIMPLE method and LSC block-

triangular preconditioner in section 6.2.2 and section 6.2.3, respectively.

However, we will first describe the approximation of block inverses for block-

diagonal and general block-triangular preconditioners with overlapping Schwarz

methods. In particular, we will denote the generic Schur complement approxi-

mation with Sgen and do not distinguish between SIMPLE, LSC and the above

pressure mass matrix approach.

We can immediately use the two-level overlapping Schwarz preconditioners for

elliptic problems, which were presented in section 6.1, for the approximation of

the blocks F−1 and S−1
gen. Therefore, we decompose the spaces V h and Qh into

local spaces

V h
i = V h ∩ (H1

0 (Ω′i))
d and

Qh
i = Qh ∩H1

0 (Ω′i),

82

6.2. BLOCK PRECONDITIONERS FOR SADDLE POINT PROBLEMS

i = 1, ..., N , respectively, defined on the overlapping subdomains Ω′i. We define

restriction operators

Ru,i : V h −→ V h
i and

Rp,i :Qh −→ Qh
i ,

to the overlapping subdomains Ω′i, i = 1, ..., N , for velocity and pressure degrees

of freedom, respectively. Consequently, RT
i,u and RT

i,p are extension operators from

the local spaces to the global spaces. With these operators, we can restrict our

global problems F and Sgen to local overlapping problems

Fi = Ru,iFR
T
u,i, Sgen,i = Rp,iSgenR

T
p,i, i = 1, ..., N.

In these problems, homogeneous Dirichlet boundary conditions are implicitly

imposed on the boundary of the overlapping subdomains ∂Ω′i by construction.

We define the two-level overlapping Schwarz preconditioners

F̂−1 = ΦuF
−1
0 ΦT

u +
N∑
i=1

RT
u,iF

−1
i Ru,i and

Ŝ−1
gen = ΦpS

−1
gen,0ΦT

p +
N∑
i=1

RT
p,iS

−1
gen,iRp,i,

which are approximate inverses of the matrices F and Sgen, respectively. Here,

the coarse problems F0 = ΦT
uFΦu and Sgen,0 = ΦT

p SgenΦp are built with GDSW

coarse velocity basis functions Φu and pressure basis functions Φp, respectively.

For the construction of Φu, we restrict the nullspace of the subdomain Neumann

matrices of F , which consists of all translations, to the interface. Therefore, we

set each interface node to

r1 :=

[
1

0

]
, r2 :=

[
0

1

]
,

83

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

for the two-dimensional case. In three dimensions, each interface node is set to

r1 :=

 1

0

0

 , r2 :=

 0

1

0

 , r3 :=

 0

0

1

 .
Similarly, in two and three dimensions the interface nodes Φp are set to the

constant function

r :=
[

1
]
.

6.2.2 SIMPLE

The following presentation of SIMPLE and LSC follows the description in [39]. In

particular, we will later use implementations of these block preconditioners which

are provided by the Trilinos package Teko. The package Teko was developed used

in [39]. The SIMPLE block preconditioner was originally derived in [121], and it

can be written as

BS =

[
F 0

B SSIMPLE

][
I 1

α
HBT

0 1
α
I

]
.

The Schur complement is approximated as SSIMPLE = −C −BHBT . We use the

under-relaxation parameter α = 0.9; cf. [39]. The diagonal operator H ≈ F−1 is

defined as

• H = diag(F)−1 for SIMPLE, or

• Hij = δij(
∑N

k=1 |Fik|)−1 for SIMPLEC, where δij is the Kronecker delta

function.

6.2.3 LSC - Least-Squares Commutator

The LSC block-triangular preconditioner can be written as

BLSC =

[
F BT

0 SLSC

]

84

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

Let Mu be the velocity mass matrix. Then, the approximate inverse of the Schur

complement for the LSC block preconditioner reads

S−1
LSC = −(BM−1

u BT + γC)−1(BM−1
u FM−1

u BT)(BM−1
u BT + γC)−1 + αD−1.

We refer to [60] and [63] for a detailed derivation of the LSC preconditioner. In

particular, D, α, and γ are used for the stabilized P1–P1 discretization since the

operator BM−1
u BT is singular for this mixed finite element pair.

γ =
ν (M−1

u F)

3
,

D = diag
(
B diag (F)−1BT + C

)
,

α =
1

ρ
(
B diag (F)−1BTD−1

) .
In particular, the inverse of the velocity mass matrix M−1

u is approximated by

the inverse of its diagonal diag(Mu)
−1, which yields no additional computational

costs. However, we can even use a fully algebraic version for the Schur com-

plement SLSC, i.e, we further replace the scaling diag(Mu)
−1 with the scaling

diag(F)−1. This version is used for our numerical experiments.

6.3 Monolithic Two-Level Overlapping Schwarz

Preconditioners for Saddle Point Problems

Monolithic two-level Schwarz preconditioners for saddle point problems are char-

acterized by the fact that the local problems and the coarse problems possess the

same block structure as the global saddle point problem. In contrast, the block

preconditioners of the previous sections typically omit and/or replace some of

the blocks. Consequently, the convergence of monolithic preconditioners is typ-

ically significantly faster compared to block preconditioners; cf., e.g., [78, 105].

The following construction of different monolithic preconditioners for fluid flow

problems was previously published in [79,80].

The finite element discretizations of the Stokes and Navier–Stokes equations

lead to a symmetric indefinite and nonsymmetric indefinite system, respectively.

Therefore, the resulting monolithic two-level overlapping Schwarz precondition-

85

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

ers posses the same properties. In particular, the preconditioned system is not

symmetric positive-definite and the standard Schwarz theory which was devel-

oped for symmetric positive-definite systems cannot be applied here; cf. [139].

Moreover, convergence estimates for GMRES based on eigenvalue estimates are

not valid. Here, a field-of-value analysis could be used instead; cf. [108, 136] and

the references therein. However, a field-of-value analysis has not been carried

out for monolithic two-level overlapping Schwarz preconditioners for Stokes and

Navier–Stokes systems, to the best of our knowledge. This is still a challenging

open problem.

In the previous works [50,51] by Dohrmann and Widlund on GDSW precondi-

tioners for saddle point problems, only discontinuous pressure spaces were consid-

ered. Consequently, the saddle point problems could be reduced to elliptic prob-

lems by static condensation of the pressure. In contrast, the method presented

in this section is inspired by the monolithic Schwarz preconditioners with La-

grangian coarse basis functions introduced by Klawonn and Pavarino in [104,105],

which operate on the full saddle point problem. The coarse basis functions of

our new monolithic GDSW preconditioner are discrete saddle point harmonic

extensions of interface functions. Preliminary results without algorithmic and

implementation details for a related monolithic GDSW preconditioner for con-

tinuous pressure spaces, based on ideas of Klawonn and Pavarino in [104, 105],

were presented by Dohrmann [46].

Moreover, we will consider restricted and scaled Schwarz operators, introduced

by Cai and Sarkis [32], in the first level of our monolithic preconditioners. These

first level variants can be equivalently used for the previously presented non-

monolithic preconditioners.

In order to improve the parallel performance of monolithic GDSW precondi-

tioners, we will reduce the dimension of the coarse spaces following the work by

Dohrmann and Widlund [54] on RGDSW coarse spaces; the smaller dimension

typically results in a significantly better parallel performance; cf. [89]. Other

earlier approaches to reduce the dimension of GDSW coarse spaces can be found

in, e.g., [51, 53].

Furthermore, we employ two alternative strategies to improve the additive

and sequential coupling of the two levels which was used in [79]: multiplicative

but sequential coupling of the levels and additive coupling combined with the

86

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

concurrent computation of the levels. Finally, for nonlinear or time-dependent

problems, we will make use of different recycling strategies ranging from the reuse

of symbolic factorizations of the local overlapping and nonoverlapping matrices

to the complete reuse of the coarse basis and matrix. As we will show, recycling

of the coarse basis functions can eliminate the drawback of the expensive setup

phase of GDSW coarse spaces.

6.3.1 Monolithic Schwarz Preconditioners with Lagrangian

Coarse Spaces

Figure 6.3: A nonoverlapping subdomain (light green) of the three-dimensional

backward facing step for an unstructured decomposition with over-

lap δ = 2h (dark green).

We first introduce a monolithic two-level overlapping Schwarz preconditioner,

where the coarse basis consists of Taylor–Hood or P1–P1 finite elements. This

approach was introduced by Klawonn and Pavarino in [104, 105] for monolithic

preconditioners. Again, we decompose the spaces V h and Qh into local spaces

V h
i = V h ∩ (H1

0 (Ω′i))
d and

Qh
i = Qh ∩ L2(Ω′i),

87

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

i = 1, ..., N , respectively, defined on the overlapping subdomains Ω′i; an exam-

ple of an overlapping and nonoverlapping subdomain of three-dimensional BFS

geometry is depicted in fig. 6.3.

The restriction operators are defined analogously to section 6.2.1, where ap-

proximations to the inverses of separated velocity and pressure blocks were con-

structed:

Ru,i : V h −→ V h
i and

Rp,i :Qh −→ Qh
i ,

are restriction operators to overlapping subdomains Ω′i, i = 1, ..., N , for velocity

and pressure degrees of freedom, respectively. Consequently, RT
i,u and RT

i,p are

prolongation operators from local spaces to the global spaces. The monolithic

restriction operators

Ri : V h ×Qh −→ V h
i ×Qh

i ,

i = 1, ..., N , have the form

Ri :=

[
Ru,i 0

0 Rp,i

]
.

In addition to that, we introduce local projections

P i : V h
i ×Qh

i −→ V h
i ×Q

h

i ,

where Q
h

i is the local pressure space with zero mean value:

Q
h

i = {qh ∈ Qh ∩ L2
0(Ω′i) : supp(qh) ⊂ Ω′i} ⊂ Qh

i .

Similar to the global projection defined in eq. (5.11), we define local projections

P i = Ip,i − aTi (aia
T
i)−1ai, i = 1, ..., N, (6.4)

where Ip,i is the local pressure identity operator and ai corresponds to the dis-

cretization of eq. (5.9) on the subdomain Ω′i.

88

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

Furthermore, the local velocity identity operators are Iu,i. Then, we can enforce

the zero mean value of the local pressure using the projection

P i :=

[
Iu,i 0

0 P i

]
.

The monolithic two-level overlapping Schwarz preconditioner with Lagrangian

coarse space reads

B̂−1
P2−P1 = RT

0F+
0 R0 +

N∑
i=1

RT
i P iF−1

i Ri, (6.5)

where F+
0 is a pseudo-inverse of the coarse matrix F0 = R0FRT

0 . The con-

struction of the coarse matrix F0 with corresponding restriction operator R0 and

interpolation operator RT
0 is described at the end of this section. Since the pres-

sure may not be uniquely determined in the coarse problem, in general, we have

to use a pseudo-inverse. In practice, we restrict the coarse pressure to Q
H

for the

solution of the coarse problem. Otherwise, if F is nonsingular, F+
0 = F−1

0 . Also

note that, due to the projections P i, the preconditioner B̂P2−P1 is not symmetric

for a Stokes problem.

The local matrices

Fi = RiFRT
i , i = 1, ..., N,

are extracted from the global matrix F and have homogeneous Dirichlet boundary

conditions for both, velocity and pressure.

As we will describe in section 6.3.4, there are several ways to treat the pressure

in the local overlapping problems. Here, we ensure zero mean value for the

pressure of the local contributions using projections P i in addition to the Dirichlet

boundary data in the pressure.

Note that the local overlapping problems and the coarse problem are saddle

point problems with a structure as in eq. (5.5). Similar to the local problems,

the coarse problem with Lagrangian basis functions is defined on a corresponding

89

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

product space V h
0 ×Qh

0 , resulting in the coarse interpolation matrix

RT
0 =

[
RT

0,u 0

0 RT
0,p

]
, (6.6)

which contains the interpolations of the corresponding coarse basis functions.

Therefore, a coarse triangulation is needed for the construction of the coarse

level. This is problematic for arbitrary geometries and, in particular, cannot be

performed in an algebraic fashion. Since the coarse pressure has zero mean value

due to our specific choice of the pseudo-inverse F0, we can omit a projection of

the coarse solution onto Q
H

.

6.3.2 Restricted and Scaled First-Level Operators

Using restricted or scaled first-level extension operators may improve the con-

vergence of the iterative solver. This results in the Restricted Additive Schwarz

(RAS) or Scaled Additive Schwarz (SAS) method; cf., e.g., [32, 51]. For both

approaches, alternative extension operators R̃T
i are introduced, which satisfy

N∑
i=1

R̃T
i Ri1 = 1,

where 1 ∈ Rn is the vector of ones. The resulting one-level preconditioner reads

B̂−1
RAS/SAS =

N∑
i=1

R̃T
i A−1

i Ri.

We obtain the RAS method from a unique distribution of d.o.f. among the

nonoverlapping subdomains; cf. [56]. Therefore, we apply R̃T
i without communi-

cation in a parallel implementation of the RAS method.

In contrast, we construct the extension operators R̃T
i for SAS from the standard

operators RT
i with an inverse multiplicity scaling, i.e.,

R̃T
i = diag

(
N∑
i=1

RT
i Ri1

)−1

RT
i .

90

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

The convergence of the Schwarz method can be improved by applying the scaled

R̃T
i , and requires the same communication as the application of RT

i .

For the description of SAS and RAS, the projection P i, i = 1, . . . , n, was

ignored but can be used analogously to (6.5). Both of these first level combination

techniques can be applied analogously to the preconditioners for elliptic problems

and block approximations of the previous sections 6.1 and 6.2, respectively.

In this thesis, we always restrict a linear or linearized problem. An approach to

facilitate the nonlinear convergence is the restriction to nonlinear local problems;

cf. [30]. Nonlinear domain decomposition methods have been successfully applied

to Navier–Stokes and FSI problems in [92,94,113].

6.3.3 Monolithic Schwarz Preconditioners with GDSW Coarse

Spaces

The monolithic GDSW preconditioner for saddle point problems, which was pre-

sented in [79], is a two-level Schwarz preconditioner with discrete saddle point

harmonic coarse space. Therefore, it can be seen as an extension of GDSW for

elliptic problems, as described in section 6.1, to saddle point problems. Its first

level is defined as in the previous two sections, and therefore, the preconditioner

can be written as

B̂−1
GDSW = φF+

0 φ
T +

N∑
i=1

RT
i P iF−1

i Ri. (6.7)

The coarse operator reads

F0 = φTFφ, (6.8)

with the coarse basis functions being the columns of the matrix φ.

The coarse space is constructed in a similar way as in section 6.1. As for elliptic

problems, the problem is first partitioned into interface (Γ) and interior (I) d.o.f..

Correspondingly, the matrix F can be written as

F =

[
FII FIΓ
FΓI FΓΓ

]
.

91

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

Φu,u0 Φp,u0

Φu,p0 Φp,p0

Figure 6.4: Saddle point harmonic extension for the Stokes equations in two di-

mensions with 9 subdomains. Velocity Φu,u0 (top left) and pressure

Φp,u0 (top right) components of a velocity edge basis function in

y-direction. Velocity Φu,p0 (bottom left) and pressure Φp,p0 (bottom

right) components of the pressure basis function corresponding to

the same edge; see eq. (6.12) for the block structure of φ. Taken

from [79].

Each of the submatrices F∗∗ is a block matrix of the (5.5). The coarse basis

functions are then constructed as discrete saddle point harmonic extensions of

the interface values φΓ, i.e., as the solutions of the linear equation system[
FII FIΓ
0 I

][
φI

φΓ

]
=

[
0

φΓ

]
. (6.9)

Again, FII = diagNi=1(F (i)
II) is a block-diagonal matrix containing the local ma-

trices F (i)
II from the nonoverlapping subdomains and can thus be solved block by

92

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

block and in parallel:

φ =

[
φI

φΓ

]
=

[
−F−1

II FIΓφΓ

φΓ

]
. (6.10)

The interface values of the coarse basis

φΓ =

[
ΦΓ,u0 0

0 ΦΓ,p0

]
(6.11)

are decomposed into velocity- (u0) and pressure-based (p0) basis functions.

In particular, the columns of ΦΓ,u0 and ΦΓ,p0 are the restrictions of the

nullspaces of the operators F and BT to the interface components Γj, j = 1, ...,M ;

cf. section 6.1. Typically, the nullspace of the operator BT consists of all pressure

functions that are constant on Ω; cf. section 5.1.6. Therefore, the columns of

ΦΓ,p0 are chosen to be the restrictions of the constant function 1 to the faces,

edges, and vertices.

Note that, in contrast to the Lagrangian coarse basis functions of eq. (6.6),

where the basis functions do not couple the velocity and pressure degrees of

freedom, the off-diagonal blocks in the block representation

φ =

[
Φu,u0 Φu,p0

Φp,u0 Φp,p0

]
(6.12)

are, in general, not zero for the discrete saddle point harmonic coarse spaces;

cf. fig. 6.4. This is beneficial for the scalability of the method if pressure nor-

malization is enforced by condition eq. (5.9): if the blocks Φu,p0 and Φp,u0 are

omitted, numerical scalability deteriorates.

If, on the other hand, the pressure is fixed through a boundary condition,

the off-diagonal blocks have to be omitted instead to obtain good numerical

scalability. Then, φ reads

φ =

[
Φu,u0 0

0 Φp,p0

]
. (6.13)

This also reduces the computational cost of the Galerkin product in eq. (6.8).

93

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

Construction of φΓ for our model problems: For Stokes and Navier–Stokes

problems in two dimensions, each interface node is set to

ru,1 :=

[
1

0

]
, ru,2 :=

[
0

1

]
, rp,1 :=

[
1
]
. (6.14)

In three dimensions, each interface node is set to

ru,1 :=

 1

0

0

 , ru,2 :=

 0

1

0

 , ru,3 :=

 0

0

1

 , rp,1 :=
[

1
]
. (6.15)

Additionally, we add one basis function for the Lagrange multiplier, as will be

explained in section 6.3.4 for the LDC Stokes and LDC Navier–Stokes problems;

cf. eq. (6.18).

For the two-dimensional mixed linear elasticity problems the coarse basis func-

tions are defined by eq. (6.14) and further by the linearized rotation

ru,3 :=

[
−(x2 − x̂2)

x1 − x̂1

]
.

In the three-dimensional case, the coarse basis functions are defined by eq. (6.15)

and by the linearized rotations

ru,4 :=

 x2 − x̂2

−(x1 − x̂1)

0

 , ru,5 :=

 −(x3 − x̂3)

0

x1 − x̂1

 , ru,6 :=

 0

x3 − x̂3

−(x2 − x̂2)

 ,
with the origin of the rotation at x̂ ∈ Ω. For straight edges in three dimensions,

only two linearized rotations are linearly independent. Therefore, we only use

two rotations for each of these edges. Furthermore, all rotations are omitted for

vertices, and we add a basis function for the Lagrange multiplier.

6.3.4 Treating the Pressure of Fluid Flow Problems

The following considerations for pressure solutions with zero mean value were

published in [79]. As already mentioned in section 5.1.6, there are several ways

94

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

N 4 9 16 25 36

uDpD, δ = 1h 23 39 62 83 101
uDpN , δ = 1h 18 28 44 61 79
uDpD, δ = 2h 16 26 37 52 64
uDpN , δ = 2h 12 24 35 44 57

Table 6.1: LDC Stokes problem in two dimensions using H/h = 8 and Taylor–

Hood elements; GMRES iteration counts for both versions of local

problems for a one-level Schwarz preconditioner without coarse level.

Stopping criterion is a residual reduction of 10−6. ∗D and ∗N indicate

Dirichlet and Neumann boundary of the local problems, respectively,

for the velocity u or the pressure p. Taken from [79].

N 16 64 196

System F using local projections 54 57 58
System F not using local projections 87 196 515

System F with global Lagrange multiplier 56 60 61

Table 6.2: Iteration counts for the system F with and without local projections

as well as for the system F . The latter is the system with global

Lagrange multiplier. Two-dimensional LDC Stokes problem using

H/h = 50, δ = 6h, and Taylor–Hood elements. Iteration counts for

the monolithic preconditioner with GDSW coarse space. GMRES is

stopped when a reduction of 10−6 of the unpreconditioned relative

residual is reached. Taken from [79].

to make the pressure unique. In particular, imposing Dirichlet boundary condi-

tions for the pressure or restricting the pressure to the space L2
0(Ω) are possible

ways. As pointed out in section 6.3.1, the local overlapping problems possess ho-

mogeneous Dirichlet boundary conditions for the pressure. Additionally, we im-

pose zero mean value by projecting the local pressure onto the subspace L2
0(Ωi),

i = 1, ..., N .

Another way of imposing zero mean value locally is to introduce local Lagrange

multipliers, resulting in local matrices

F i =

Fi BT
i 0

Bi −Ci aTi

0 ai 0

 , i = 1, ..., N, (6.16)

95

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

where the vector ai arises from the finite element discretization of the integral∫
Ω′
i
ph dx. In this case, we omit the projections P i in eq. (6.5) and eq. (6.7).

On the other hand, the matrix F i remains nonsingular even if, instead of

Dirichlet boundary conditions, Neumann boundary conditions are imposed for

the local pressure. Comparing both approaches separately for a monolithic one-

level Schwarz preconditioner, we can observe that imposing Neumann boundary

conditions performs slightly better; cf. table 6.1. However, this approach is not

suitable for an algebraic implementation since, in general, we do not have access

to the local Neumann matrices. Therefore, we use the variant with Dirichlet

boundary conditions.

Furthermore, for the construction of the monolithic Schwarz preconditioners

described in section 6.3, the local projections P i have to be built. In practice, we

do not compute the local projection matrices (6.4) explicitly, but just implement

the application of P i, i = 1, ..., N , to a vector, requiring access to the local

vectors ai; they can be extracted from the global vector a, which arises from the

discretization of eq. (5.9). If a is not available, geometric information is necessary

for the construction of ai.

For the saddle point problem with Lagrange multiplier of eq. (5.10), we can de-

fine an algebraic version of the monolithic GDSW preconditioner. Therefore, we

omit the local projections P i in eq. (6.7). Then, the resulting two-level precondi-

tioner is symmetric for a Stokes problem. In addition, we modify the definition

of the restriction operators Ri such that the Lagrange multiplier is also added to

the local problems:

Ri =

Ri,u 0 0

0 Ri,p 0

0 0 1

 , (6.17)

Consequently, the local overlapping matrices are of the form (6.16).

The construction of the GDSW coarse space is also slightly modified. Since the

Lagrange multiplier is shared by all subdomains, we treat the Lagrange multiplier

as a vertex of the domain decomposition, which is therefore part of the interface

Γ. We add one coarse basis function corresponding to the Lagrange multiplier

96

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

and modify the definition of φΓ accordingly:

φΓ =

ΦΓ,u0 0 0

0 ΦΓ,p0 0

0 0 ΦΓ,λ0

 =

ΦΓ,u0 0 0

0 ΦΓ,p0 0

0 0 1

 (6.18)

This monolithic GDSW preconditioner can be built in a purely algebraic fashion

from system (5.10). It reads

B̂−1
GDSW = φF−1

0 φT +
N∑
i=1

RT
i F−1

i Ri,

where the coarse matrix is F0 = φTFφ with φΓ defined in (6.18) and extended

saddle point harmonically, using F of eq. (5.10), to the interior degrees of freedom;

cf. eq. (6.9). Note that the coarse matrix becomes nonsingular by adding the

Lagrange multiplier. Furthermore, the local martices are constructed with the

restrictions of eq. (6.17), Fi = RiFRT
i , i = 1, ..., N .

We observe that both variants, i.e., using local projections and a global La-

grange multiplier, perform equally well; cf. table 6.2. Furthermore, without re-

stricting the local pressure to L2
0(Ω), the numerical scalability of the two-level

monolithic Schwarz preconditioner with GDSW coarse space deteriorates.

6.3.5 GDSW Implementation Based on Trilinos

In this section, we will describe the different stages in the construction of a

parallel two-level overlapping Schwarz GDSW preconditioner in Trilinos with the

package FROSch [83]. It was previously published [79]. For simplicity, we begin

with the setup of GDSW for the system matrix A of an elliptic problem. Then,

we will highlight the necessary modifications for a Stokes or Navier–Stokes saddle

point problem. In particular, special considerations must be made for a system

with Lagrangian multiplier for the enforcement of pressure solutions with zero

mean value. In this section and in Chapters 7 and 8, we highlight all software

packages and specific methods with this font.

The GDSW setup of preconditioners in FROSch is partitioned into an

initialize phase and a compute phase. The initialize phase sets up

some basic structures of the preconditioner, i.e., it

97

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

• identifies the overlapping subdomains, and

• identifies the interface for the construction of Φ and constructs the coarse

map and ΦΓ.

The compute phase implements

• the construction of the matrix Φ that contains the coarse basis,

• the computation of the coarse matrix A0,

• the extraction of local overlapping matrices Ai, i = 1, ..., N , from the global

stiffness matrix A,

• the factorization of the local matrices Ai, i = 1, ..., N , and the coarse matrix

A0.

In the application phase, the two levels of the serial level additive Schwarz pre-

conditioner are first applied separately and then summed up. In [85], exact local

solvers are used, i.e., the local overlapping matrices Ai, i = 1, ..., N , are extracted

from the global stiffness matrix and direct solvers are used for the solution of the

local problems. The coarse basis functions are constructed as described in sec-

tion 6.1. To optimize parallel performance we drop values from Φ which are

smaller than 10−8.

The current GDSW implementation in FROSch was restructured compared to

the implementation [85]. In particular, it is now partitioned into a class for

the first level, AlgebraicOverlappingOperator, and a class for the coarse level,

GDSWCoarseOperator. Each of the classes contains both setup and application

of the correspondig Schwarz operator. Both levels are coupled in an additive way

using a SumOperator. For more details on the new structure of the implemen-

tation, we refer to [83]. Some results of this thesis were computed with an older

GDSW version based on [79, 85]. This version was based on the Epetra linear

algebra package of Trilinos. Instead, the newest version of FROSch is based on

a linear algebra package called Xpetra, which allows to use Epetra and thus can

be seen as a wrapper class. A more detailed discussion of the underlying software

packages as well as more implementation details can be found in Chapter 7. How-

ever, we want to highlight some implementation details of the monolithic Schwarz

98

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

preconditioners in the following sections. For our extension of the GDSW im-

plementation to saddle point problems, we introduced the class BlockMat that

implements block operators for Epetra objects. This class is used for both the

implementation of the saddle point problem itself as well as the implementation

of the monolithic preconditioners.

6.3.5.1 A Class for Block Matrices

We note that the following description is based on the GDSW version which ex-

clusively used Epetra. To handle the block structure of saddle point problems, we

implemented the BlockMat class. It is derived from the class Epetra Operator,

which defines an abstract interface for arbitrary operators in Epetra. To keep the

implementation of the BlockMat class as general as possible, we allow for various

types of blocks, e.g., Epetra Operator or Epetra MultiVector objects. Objects

derived from Epetra Operator are, e.g., Epetra CrsMatrix objects, precondi-

tioners like Ifpack, ML, and the GDSW implementation in [85], or even BlockMat

objects.

Therefore, the class BlockMat could also be used to define block precondition-

ers, such as block-diagonal or block-triangular preconditioners, with Ifpack, ML,

or GDSW preconditioners as blocks; cf. [78]. We use the BlockMat class through-

out the implementation of the monolithic preconditioners with Lagrangian mul-

tipliers to maintain the block structure of all occurring matrices.

6.3.5.2 Setup of the First Level

As for elliptic problems, in the construction of the monolithic Schwarz precon-

ditioner for saddle point problems, we extract the local overlapping matrices F i
from the global matrix F .

In our algebraic implementation, we set up the index sets of the overlapping

subdomains by adding layers of elements recursively based on the graph of the

matrix F . In each recursive step, the nonzero pattern of the subdomain matrices

has to be gathered on the corresponding Message Passing Interface (MPI) [35]

ranks, whereas the values of the matrix entries can be neglected. Even if a

Lagrange multiplier is introduced to ensure zero mean value of the pressure, we

only consider the submatrix F of F , because the Lagrange multiplier couples all

pressure degrees of freedom.

99

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

Then, the local overlapping submatrices F i, i = 1, ..., N , are communicated and

extracted from F using an Epetra Export object based on the aforementioned

local index sets of overlapping subdomains. Then, the matrices are stored in serial

Epetra CrsMatrix objects and factorized using direct solvers in serial mode. The

setup is performed by passing the global BlockMat F and a user-specified size of

overlap. In addition to that, we specify the rows and columns of the block matrix

which are excluded from the identification of the overlapping subdomains, i.e.,

the rows and columns corresponding to the Lagrange multiplier.

6.3.5.3 Setup of the Coarse Level

Communication Avg. apply 1st lvl. Avg. apply 2nd lvl.

Standard 1.42 s 0.59 s
Modified 1.28 s 0.12 s

Table 6.3: LDC Stokes problem in two dimensions with 4 096 subdomains us-

ing H/h = 160, δ = 16h, and Taylor–Hood elements. Timings for

critical parts w.r.t. communication time of the two-level precondi-

tioner with GDSW coarse problem. Standard communication uses

Epetra Import and Epetra Export objects only. Modified commu-

nication uses additional communication; cf. section 6.3.5.3. ‘Avg.

apply 1st lvl.’ and ‘Avg. apply 2nd lvl.’ are times averaged over the

number of iterations. Taken from [79].

As described in section 6.3.4, we add one coarse basis function with ΦΓ,λ0 = 1,

that corresponds to the Lagrange multiplier, to the coarse space. The velocity

and pressure variables are added, specifying the dimension of the domain, number

of degrees of freedom per node, and the ordering of the degrees of freedom in the

system. The ordering options are “node-wise”, “dimension-wise”, and “user

-defined”.

For the computation of the discrete harmonic extensions, we extract the ma-

trices F (i)

II and F (i)

IΓ , i = 1, ..., N , from F ; since we assume that F is distributed

according to the nonoverlapping subdomains, no communication is needed for this

step. Now, we factorize each F (i)

II in serial mode and solve −F (i)

IIφ
(i)
I = F (i)

IΓφ
(i)
Γ

column by column for φ
(i)
I ; cf. eq. (6.9). Then, the global Blockmat φ is as-

sembled. Furthermore, the coarse matrix is computed as F0 = φTFφ and the

100

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

resulting globally distributed coarse matrix is reduced to a smaller number of

processes using multiple communication steps and a linear coarse map, cf. [85],

or the package Zoltan2 in combination with ParMETIS [100]. We used three

communication steps in all numerical experiments with Lagrangian multiplier; in

general, this led to the best total performance. Finally, if a direct coarse solver

is used, the coarse matrix is factorized in serial or parallel mode.

6.3.5.4 Application of the Preconditioner

Our global Epetra Map of the solution is uniquely distributed. Therefore, the

Lagrange multiplier λ is assigned to only one MPI rank although it belongs to

each overlapping subdomain. Also, the coarse basis function corresponding to

the Lagrange multiplier couples all subdomains. Consequently, the handling of

the Lagrange multiplier in the monolithic preconditioners requires all-to-one and

one-to-all communication. As already mentioned in [85], such communication

patterns are, in general, not handled well by Epetra Export and Epetra Import

objects. One way to overcome this issue is to introduce multiple communication

steps. Here, we use MPI Broadcast and MPI Reduce for the communication re-

lated to the Lagrange multiplier and Epetra Export and Epetra Import objects

for the remaining d.o.f.. In table 6.3, we report the speedup due to separate

communication of the Lagrange multiplier. We save 10% and 80% time in each

application of the first and second level, respectively, for the LDC Stokes problem

in two dimensions on 4 096 MPI ranks.

Besides this, the application of the monolithic GDSW preconditioner was han-

dled as for elliptic problems; cf. [85].

6.3.6 Monolithic Reduced Dimension GDSW Preconditioners

So far, we mainly discussed the (standard) GDSW preconditioner. In order to

reduce the dimension of our GDSW coarse spaces, we follow [54,79] and introduce

monolithic RGDSW coarse spaces. More precisely, we combine the construction

described in section 6.3.3 with a different choice of interface components and

interface values. For the parallel implementation of monolithic RGDSW coarse

spaces, we extend our implementation of monolithic GDSW coarse spaces of sec-

tion 6.3.3 and combine it with the parallel implementation of RGDSW coarse

101

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

spaces for elliptic problems in FROSch; cf. [89]. We refer to this article for de-

tails on the parallel implementation. The derivation of the following monolithic

RGDSW preconditioners for incompressible fluid flow problems was published

in [80]. Only Option 1 and Option 2.2 of the RGDSW variants proposed in [54]

are considered; Option 1 is algebraic and Option 2.2 additionally requires the

coordinates of the finite element nodes. We will focus on the construction of the

velocity basis functions ΦΓu ; the construction the pressure basis functions ΦΓp is

then performed analogously.

The index set Scu is the set of all subdomains which share the velocity inter-

face component (i.e., vertex, edge, or face) cu. In particular, velocity and pressure

components are distinguished to allow for nonequal order discretizations or stag-

gered grids. Moreover, a hierarchy of all interface components is defined: we call

a component cu,i ancestor of cu,j if Scu,j ⊂ Scu,i ; conversely, we call cu,i offspring

of cu,j if Scu,j ⊃ Scu,i . We classify cu,j as coarse component if it has no ancestors.

Its corresponding basis functions will be part of the RGDSW coarse space.

Let γ̃u,i, i = 1, ..., M̃u, be the coarse components of the RGDSW coarse space

and

Γ̃u,i :=
⋃

Scu⊂Sγ̃u,i

cu

the union of the coarse component γ̃u,i and its respective offspring; the Γ̃u,i, i =

1, ..., M̃u, define an overlapping decomposition of the interface Γu. Furthermore,

let RΓ̃u,i
be the restriction of all velocity d.o.f. from Γ̃u to Γ̃u,i, similar to the

GDSW coarse space, and let SΓ̃u,i
∈ R|Γ̃u|×|Γ̃u| be a suitable diagonal scaling

matrix, such that we obtain an interface partition of unity

M̃u∑
i=1

SΓ̃u,i
RT

Γ̃u,i
RΓ̃u,i

1 = 1Γ̃u
,

where 1Γ̃u
∈ R|Γ̃u| is the vector of ones on the interface. We obtain different

reduced dimension coarse spaces, depending on the choice of the scaling matrices

SΓ̃u,i
, i = 1, ..., M̃u. Next, we define

R̃Γ̃u,i
:= SΓ̃u,i

RΓ̃u,i
, i = 1, ..., M̃u.

102

6.3. MONOLITHIC TWO-LEVEL OVERLAPPING SCHWARZ
PRECONDITIONERS FOR SADDLE POINT PROBLEMS

The interface values of the velocity basis functions can then be written in the

same form as for the classical GDSW coarse spaces

ΦΓ̃u
=
[
R̃T

Γ̃u,i
ΦΓ̃u,1

... R̃T
Γ̃u,M̃u

ΦΓ̃u,M̃u

]
;

cf. (6.2). Analogous to the standard GDSW coarse spaces, the columns of ΦΓ̃u,i

form a basis of the restriction of the nullspace Zu to the Γ̃u,i, such that the

columns of ΦΓ̃u
span the nullspace Zu. The scaling matrices SΓ̃hu,i

for variants

of the RGDSW coarse space denoted as Option 1 and Option 2.2 in [54] are

constructed as follows. In Option 1,

sΓ̃u,i
=

{
1/ |Ccu| if cu,i ∈ Ccu ,
0 otherwise,

with Ccu being the set of all velocity ancestors of the interface component cu,i.

The corresponding scaling matrices read

SΓ̃u,i
= diag

(
sΓ̃u,i

)
, i = 1, ..., M̃u.

Using basis functions based on an inverse distance weighting approach results in

another option to define the scaling matrices; cf. [54]. In particular, the values of

the scaling vectors are chosen as

sΓ̃u,i
=

1/di(cu)∑

cu,j∈Ccu
1/dj(cu)

if cu,i ∈ Cun ,

0 otherwise

and di(cu) is the distance from the component cu to the coarse component cu,i.

This construction is denoted as Option 2.2 in [54]. To compute the distance

between different interface components the construction depends on additional

geometric information. Option 1 is therefore more algebraic. The coarse pressure

basis functions ΦΓp are constructed correspondingly. We obtain the monolithic in-

terface values analogously to (6.11) and extend them to the interior; cf. eq. (6.10).

Compared to the standard GDSW coarse spaces, the reduced dimension coarse

spaces have an advantage, since the dimension of the coarse problems are signif-

icantly smaller. In [89], it has been shown that RGDSW coarse problems can be

103

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

smaller by more than 85 % for elliptic problems in three dimensions and struc-

tured domain decompositions; this typically results in a much improved parallel

scalability. For results on the improved parallel scalability for incompressible

fluid flow problems due to the use of RGDSW coarse spaces, see section 8.2.1.

6.3.7 Sequential and Parallel Computation of the Levels

The following discussion of parallel additive levels and a multiplicative sequential

coupling of the levels was first presented in [80].

The levels are often computed in a sequential way when constructing two-level

additive Schwarz preconditioners; cf. [79,84,85]. The coarse problem is typically

solved on a small subset of ranks, and most of the cores are idle in the mean

time. To circumvent this issue we will resort to the following two approaches:

a multiplicative but sequential coupling of the levels and an additive coupling

combined with parallel computation of the levels. The solver performance is

improved with both methods; cf. section 8.2.3. A similar approach for the parallel

computation of levels was already used in [8] for an implementation of a multilevel

BDDC method.

Multiplicative Coupling of the Levels: In general, a better solver convergence

is achieved through a multiplicative coupling of the levels. In particular, we use

the hybrid preconditioner

B̂−1
hybrid = (I − P0)B̂−1

AS(I − P0)T + φA−1
0 φT ,with

P0 = φA−1
0 φTA;

cf. [139]. If the projected Krylov method is started with a suitable initial vector

x0 = φA−1
0 φT b, the application of the hybrid preconditioner B̂−1

hybrid requires only

one additional application of the system matrix A compared to the two-level

additive preconditioner B̂−1
M . Due to the multiplicative coupling of the levels,

they have to be applied sequentially.

Parallel Computation of the Levels: When the levels are coupled additively, a

significant amount of work for the construction and the application of the levels

can be performed in parallel which is why the MPI ranks are split among the

104

6.4. FULLY ALGEBRAIC CONSTRUCTION OF GDSW AND RGDSW
COARSE SPACES

levels. For a fixed total number of MPI ranks, the number of subdomains is

decreased and thus the size of the overlapping subdomains is increased slightly.

Additionally, we compute the coarse basis functions φ and the RAP product

(triple matrix product) of the coarse matrix A0 on MPI ranks assigned to the

first level. In contrast, the factorizations and forward-backward solves of the local

overlapping and the coarse problems are computed in parallel. We refer to sec-

tion 8.2.3 for results on the speedup of the above described coupling strategies

compared to the sequential additive coupling.

6.4 Fully Algebraic Construction of GDSW and

RGDSW Coarse Spaces

The derivation of the fully algebraic methods described in this section have been

previously published in [81]. We will focus on the algebraic construction of pre-

conditioners for elasticity problems, where the nullspace not only consists of the

three translations but also of the (linearized) rotations. The coarse basis functions

of a three dimensional elasticity problem are defined by the three translations

r1 :=

 1

0

0

 , r2 :=

 0

1

0

 , r3 :=

 0

0

1

 ,
and by the linearized rotations

r4 :=

 x2 − x̂2

−(x1 − x̂1)

0

 , r5 :=

 −(x3 − x̂3)

0

x1 − x̂1

 , r6 :=

 0

x3 − x̂3

−(x2 − x̂2)

 ,
with the origin of the rotation at x̂ ∈ Ω. By analogy with the construction of a

GDSW preconditioner for a mixed linear elasticity, cf. section 6.3.3, for straight

edges in three dimensions, only two linearized rotations are linearly independent.

Therefore, we only use two rotations for each of these edges. Furthermore, all

rotations are omitted for vertices.

As previously described, the construction of GDSW and RGDSW coarse spaces

for various problems requires both the domain decomposition interface and the

105

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Figure 6.5: Sketch of the approximation of the nonoverlapping subdomains and

the interface, respectively: uniquely distributed map (left); exten-

sion of the uniquely distributed map by one layer of elements result-

ing in an overlapping map where the overlap contains the interface

(center); by selection, using the lower subdomain ID, a map ap-

proximating the nonoverlapping subdomains is constructed (right).

Taken from [81,84].

nullspace of the operator, i.e., all rigid body motions. In particular, the linearized

rotations can only be computed if coordinate values are available. We will de-

scribe a method to approximate the nonoverlapping subdomains, resulting in an

approximate interface, if no geometric information is provided; cf. [84]. In partic-

ular, we consider the case when the system matrix is uniquely distributed, such

that the interface cannot be identified. To discuss the performance of the fully

algebraic approach, we will compare it to the classical GDSW type coarse spaces

using all necessary information. These results are presented in section 8.5, where

we consider the solution of large, parallel distributed stationary and dynamic

elasticity problems with a moderate Poisson ratio; i.e., we do not consider the

almost incompressible limit case. Here, we describe how we construct the coarse

space if this information is not available.

Algebraic approximation of the interface: If the distribution of the system

matrix is unique, the interface cannot be recovered. Therefore, we will carry out

the following process to approximate the nonoverlapping subdomains and hence

the interface. Starting from the unique distribution, we first add one layer of

elements to each subdomain. The overlap of the resulting domain decomposition

now contains the interface but also other finite element nodes. In order to reduce

106

6.5. PRECONDITIONERS FOR FLUID-STRUCTURE INTERACTION
PROBLEMS

the number of unnecessary nodes, we compare the subdomain ID of the original

unique decomposition and the decomposition with one layer of overlap and remove

nodes from the overlapping subdomains, if the subdomain ID is lower compared

to the original decomposition; this process is sketched in [84] and fig. 6.5.

Incomplete nullspace: The rigid body modes are the translations and rotations

of the elastic body. The translations are constant functions which can be con-

structed without any geometric information. Since we are not able to compute the

rotations from the fully assembled matrix and without coordinates of the finite

element nodes, we just omit them in the fully algebraic coarse space; see also [85].

For the results in section 8.5, only the number of iterations is negatively affected

by omitting rotations from the coarse space, but the time-to-solution actually

benefits from the smaller coarse space. Note that, from theory, the rotational

basis functions are necessary for numerical scalability. Therefore, we expect that

there are types of problems for which the full coarse space performs better.

6.5 Preconditioners for Fluid-Structure Interaction

Problems

In this section we will present preconditioners for the geometry explicit and im-

plicit FSI problems, presented in section 5.3.1. We will begin with an overview

of the FaCSI preconditioner [43] and further discuss some variants of it. The

name FaCSI originates from the Factorzied (Fa) FSI block system, the static

Condensation (C) and the use of the SIMPLE (SI) preconditioner for the fluid

problem. In general, variants of the FaCSI preconditioner can be obtained by

using different preconditioners for the fluid subproblem. Instead of a SIMPLE

preconditioner we will use our monolithic preconditioner, which was presented

in section 6.3. Similarly, we can use any other preconditioner which is an ap-

proximation to the inverse of the Navier–Stokes problem matrix. Based on the

previously presented monolithic overlapping Schwarz preconditioners for fluid

flow problems, the construction of monolithic preconditioners for FSI problems

will be presented in section 6.5.2.

107

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

6.5.1 FaCSI Block Preconditioner

We will follow the presentation in [43] and will start by reordering the blocks of

our fully coupled GI FSI system, which was linearized using Newton’s method.

Therefore, we want to approximate the FSI Jacobian matrix with a FaCSI precon-

ditioner, which also includes shape derivatives. We reorder the system of (5.28)

in a way that the first block is the solid problem S, followed by the geometry

problem G. The third block is the fluid problem F , and the final block consists of

our Lagrangian multiplier for the coupling of stresses on the interface. However,

we will consider our 2 × 2 fluid subproblem in combination with the coupling

blocks and will use this 3× 3 block subsystem. Furthermore, we drop all explicit

dependencies on the last solutions. In the following, D are the shape derivatives.

The reordered Jacobian matrix of the FSI system reads

J =

S 0 0 C4

C5 G 0 0

0 D F C3

C2 0 C1 0

 .

The FaCSI preconditioner is based on an incomplete block factorization. There-

fore, the C3 block in the upper part is neglected in the construction and the

resulting block preconditioner is an upper triangular block matrix:

BFaCSI =

S 0 0 0

C5 G 0 0

0 D F C3

C2 0 C1 0

 (6.19)

Next, we can decouple the different physical subproblems in eq. (6.19) and obtain

BFaCSI =

S 0 0 0

0 IG 0 0

0 0 IF 0

0 0 0 IΓ

IS 0 0 0

C5 G 0 0

0 0 IF 0

0 0 0 IΓ

IS 0 0 0

0 IG 0 0

0 D F C3

C2 0 C1 0

 = BSBGBF .

An approximate inverse to BS can now be computed, since it is already block-

diagonal. In general, we will use the previously presented two-level overlapping

108

6.5. PRECONDITIONERS FOR FLUID-STRUCTURE INTERACTION
PROBLEMS

Schwarz preconditioners for this approximation. However, the other two matrices

BG and BF can be further factorized.

BG =

IS 0 0 0

C5 IG 0 0

0 0 IF 0

0 0 0 IΓ

IS 0 0 0

0 G 0 0

0 0 IF 0

0 0 0 IΓ

 = BG1BG2

BF =

IS 0 0 0

0 IG 0 0

0 D IF 0

0 0 0 IΓ

IS 0 0 0

0 IG 0 0

0 0 IF 0

C2 0 0 IΓ

IS 0 0 0

0 IG 0 0

0 0 F C3

0 0 C1 0

 = BF1BF2BF3

We can now approximate the inverse of the block-diagonal matrix BG2 similar to

BS. Furthermore, we can exactly invert BG1 , BF1 , and BF2 . Now, only the 3× 3

subproblem (
Fk C3

C1 0

)(
xk

λk

)
=

(
rF ,k

rλ,k

)
(6.20)

of BF3 must be approximated. In general, we now consider the k-th nonlinear

iteration. Here, rF ,k and rλ,k are residual vectors arising in the iterative solution

process, and xk and λk are the solution vectors which we want to compute.

Moreover, the coupling matrix C1 in eq. (6.20) restricts all fluid d.o.f’s., i.e.

velocity and pressure, to the fluid velocity interface. In particular, we separate

interior variables I and interface variables Γ of xk. We use the same notation for

interior and interface variables as in the derivation of our domain decomposition

methods. However, we highlight that we distinguish between physical parts of

our domains, i.e., an interface of the fluid and solid domain and variables in

the interior of our fluid domain. Furthermore, we note that the pressure is not

restricted to the interface and only velocities are coupled. Rewriting eq. (6.20)

as the linear system

Fkxk + C3λk = rF ,k (6.21)

C1xk = rλ,k (6.22)

109

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

and using the separation into interior and interface d.o.f. gives us the solution

xk,Γ from eq. (6.22). The solution xk,Γ is now inserted into eq. (6.21) and the

elimination of λk follows:

λk = C1C3λk = C1(rF ,k −Fkxk).

Finally, we obtain the condensed system for the fluid subproblem

Fk,IIxk,I = rk,I −Fk,IΓxk,Γ. (6.23)

More details on the derivation of the FaCSI preconditioner can be found in [43].

Equation (6.23) can then be approximated with a SIMPLE preconditioner. How-

ever, any other block or monolithic preconditioner can be used as well. We will

compare the performance of FaCSI using a SIMPLE preconditioner with FaCSI

using the monolithic (R)GDSW preconditioners in section 8.6. For the subprob-

lems in the SIMPLE preconditioner we will again use our two-level overlapping

Schwarz preconditioners with GDSW type coarse spaces. We finish this section

with a pseudo-code to highlight the different steps in the application of B−1
FaCSI;

cf. [43]. Therefore, we consider the residual r = (rTds , r
T
df
, rTu , r

T
p , r

T
λ)T and solve

BFaCSIw = r. Furthermore, we approximate the inverses of S, G, and FII with

suitable preconditioners Ŝ−1, Ĝ−1, and F̂−1
II , respectively, and denote the cor-

responding FaCSI preconditioner as B̂−1
FaCSI. As we have seen in the derivation,

the application of a FaCSI preconditioner can be divided into three separated

parts: B̂−1
S , B̂−1

G , and B̂−1
F . Moreover, we do not use an explicitly condensed

fluid problem but rather fix all fluid velocity interface d.o.f. in the preconditioner

for the fluid problem. Instead of using an approximate inverse F̂−1
II of FII , we

use the auxiliary matrix F which is initialized as a copy of F . Then, in addi-

tion to the Dirichlet boundary conditions of the original problem, we introduce a

homogeneous Dirichlet condition for all fluid interface d.o.f. in F . In the follow-

ing, we can use the approximate inverse F̂
−1

of the auxiliary matrix F , which

makes the implementation more compact. All of the above steps are summarized

in algorithm 3.

The shape derivatives D may be zero due to a different linearization strategy.

Moreover, if the underlying problem matrix J arises from a geometry explicit

110

6.5. PRECONDITIONERS FOR FLUID-STRUCTURE INTERACTION
PROBLEMS

Algorithm 3 Application of B̂−1
FaCSI

In: Ŝ−1, Ĝ−1, F̂
−1

, Jacobian FSI matrix J , residual r
Out: Solution w of B̂FaCSIw = r
1. Solid part: wds = Ŝ−1rds
2. Geometry part: wdf = Ĝ−1(rdf − C4wds)
3. Fluid part:
zF = rF −Dwdf , zλ = rλ − C2wds , with zF = (zTu , z

T
p)T

Condense fluid: zu = zu − C3C1zu, zu = zu + C3zλ

Apply auxiliary fluid preconditioner: wF = F̂
−1

zF , with wF = (wu, wp)
T

wλ = C1(zu − Fwu −BTwp)

coupling, we simply skip the geometry and shape derivative parts in the above

algorithm, since the geometry problem is not a part of J in this case.

6.5.2 One-level Monolithic Overlapping Schwarz

Preconditioners for FSI

In this section, we present an extension of the monolithic overlapping Schwarz

preconditioners for fluid flow problems to FSI problems. A similar monolithic

approach was already used in [148]. We skip the definitions of the different

(sub)spaces and only highlight the construction of the first level restriction oper-

ators.

The monolithic restriction operators for the overlapping subdomains of the GI

FSI problem have the form

RGI,i :=

Ru,i 0 0 0 0

0 Rp,i 0 0 0

0 0 RΓ,i 0 0

0 0 0 Rs,i 0

0 0 0 0 Rg,i

 ,

111

CHAPTER 6. DOMAIN DECOMPOSITION - TWO-LEVEL
OVERLAPPING SCHWARZ METHODS

and for the GE FSI problem they take the form

RGE,i :=

Ru,i 0 0 0

0 Rp,i 0 0

0 0 RΓ,i 0

0 0 0 Rs,i

 ,

i = 1, ..., N . Here, we combine the restriction operators of the velocities Ru,i, the

pressure Rp,i, the interface RΓ,i, the solid displacements Rs,i and, in the GI case,

the mesh displacements Rg,i. We highlight that the overlapping subdomains Ω′i,

i = 1, ..., N , which correspond to the monolithic restriction operators, must be

seen as monolithic subdomains. In the construction of monolithic preconditioners

for fluid flow problems, we always used subdomains for the velocities and the

pressure which occupied the same space w.r.t the geometry. In general, this is

different for the monolithic one-level preconditioner of the FSI problem. Only

the interface is shared by the fluid and solid domains. Therefore, special care has

to be taken when constructing subdomains of FSI problems. We will highlight

this issue in section 8.6. The next logical step is the construction of a monolithic

two-level preconditioner with (R)GDSW coarse spaces. Although, our general

implementation of the monolithic (R)GDSW preconditioners allows for an easy

adaptation to the presented FSI problems this is a topic for future investigations.

112

7 FEDDLib

The FEDDLib (Finite Element and Do-

main Decomposition Library) is an object-

oriented C++ library which was developed

for the parallel solution of partial differ-

ential equations. In general, the paral-

lelization of the code is achieved with the

MPI [35]. An MPI-parallel code can run

the same program distributed among many

processes. The MPI nomenclature defines

these processes as ranks. MPI is a standard for programs which run on distributed

memory systems. There, each rank has a dedicated memory and MPI manages

the communication between the different ranks. In contrast, OpenMP [40] is an

application programming interface for shared-memory systems, where each pro-

cess has access to the same memory. These two parallelization techniques are not

exclusive and can be used in combination.

In the following, we will focus on the MPI parallelization of the FEDDLib.

Furthermore, we will use the terms ranks, processes, and cores synonymously. In

general, this is not the case, as a single core can spawn multiple ranks or threads.

However, we will always use one MPI rank per core.

We start with a short introduction of the C++ library Trilinos [90] in sec-

tion 7.1. Trilinos consists of over 50 subpackages and several of these subpack-

ages are used within the FEDDLib. In section 7.2, we give an overview of the

general structure of the FEDDLib and the coupling with Trilinos. In particular,

we present the wrapper for the Trilinos linear algebra classes. Section 7.3 ex-

plains the discretization methods of the FEDDLib. This is followed by section 7.4,

where we discuss how specific PDEs are defined and used within the abstract

FEDDLib framework. In section 7.5, we will give an overview of solution strate-

113

CHAPTER 7. FEDDLIB

Thyra

Xpetra

Epetra Tpetra

wraps

wraps wraps

wraps wraps

Epetra MPI

uses

Teuchos MPI

uses

Kokkos
uses

MPI
wraps wraps

Figure 7.1: Trilinos parallel linear algebra overview. Dashed items are pure

wrapper packages. Note that the faded MPI library is not part of

Trilinos.

gies for the discretized systems. The last section 7.6 explains the post-processing

and export tools.

7.1 Trilinos

The main building blocks of Trilinos are the two parallel linear algebra packages

Epetra and Tpetra. Epetra is the older linear algebra package and it manages

the parallel computation of all common operations between scalars, vectors, and

matrices. The newer package Tpetra basically covers the same operations, but

additionally supports the use of templates and the use of the package Kokkos;

cf. [55]. Within the last years, it became popular to use graphics processing units

(GPUs) for computations which were previously exclusively carried out with cen-

tral processing units (CPUs). In general, code for CPUs cannot be used directly

for GPUs. Therefore, existing code must be ported or rewritten for GPUs. Here,

Kokkos provides a framework for advanced multicore architectures. It maxi-

mizes the amount of reusable user code without modifications and minimizes

the amount of architecture specific knowledge. Performance of applications de-

pends heavily on device specific memory access. This becomes more evident if

we look at CPU and GPU vector access. CPU vector units require stride-one

114

7.1. TRILINOS

for the best performance. In constrast, GPU vector units require coalesced ac-

cess, which allows for multiple memory access in a single transaction with thread

parallelization; cf. [55]. These different access patterns are managed by Kokkos.

Furthermore, Kokkos manages thread-parallel work and is orthogonal to MPI,

which results in an additional layer of parallelization. With Kokkos, Tpetra can

use OpenMP, POSIX Threads (Pthreads), or Nvidia’s CUDA model for GPUs

to allow for shared-memory programming. The package Xpetra is the third al-

gebra package in Trilinos. It provides wrapper classes for a common access to

the Epetra and the Tpetra linear algebra; cf. fig. 7.1. Moreover, in Trilinos

a second linear algebra wrapper is used. The package Thyra provides some of

the same wrapping mechanisms as Xpetra. Thyra wraps all of the three previ-

ously presented linear algebra packages Epetra, Tpetra, and Xpetra. The main

difference between Thyra and Xpetra is that Thyra is more of an interface class

for the interaction of different packages and it does not wrap all of the methods

of Epetra and Tpetra. In contrast, Xpetra wraps almost all of the Epetra and

Tpetra methods. In general, Trilinos packages must convert a given Thyra

object internally to the underlying Epetra, Tpetra, or Xpetra object in order

to be able to use the full range of methods. Another important package which

is extensively used in the FEDDLib is Teuchos. It provides, among other things,

wrappers to MPI, smart pointers, and parameterlist management tools. The

smart pointers of the class Teuchos::RCP (Reference Count Pointers) are sim-

ilar to the Boost smart pointers and the smart pointers of the C++ standard.

With the introduction of C++11, the C++ standard library provides smart point-

ers which originate from the Boost smart pointers. In general, smart pointers

use reference counts, which means that the underlying object of the pointer(s)

is only freed if the last existing smart pointer is deleted. Furthermore, the al-

located memory of the underlying object must not be freed by the user, but is

instead cleared by the smart pointer which automatically calls the deconstruc-

tor of the underlying object. Other Trilinos packages are introduced in the

following sections. There, we will discuss the use of the core Trilinos solver

packages Amesos, Amesos2, and Belos. Additionally, the packages NOX, Teko,

and FROSch are introduced, which provide solution strategies for nonlinear prob-

lems, block-preconditioners for Stokes and Navier–Stokes saddle point problems,

and a framework for Schwarz preconditioners, respectively.

115

CHAPTER 7. FEDDLIB

7.2 General Structure

As mentioned in the previous section, Xpetra provides a common interface to

the Trilinos linear algebra packages. In the FEDDLib, we wrap the map, multi–

vector, and matrix classes of Xpetra with the FEDD::Map, FEDD::MultiVector,

and FEDD::Matrix classes, respectively. The combination of all these classes is

denoted as the FEDD::LinearAlgebra (FEDD::LA) . Within the FEDDLib these

classes are almost always used. Therefore, it is possible to use the FEDDLib

with other linear algebra subroutines, e.g., PETSc [9], if the necessary methods

for FEDD::Map, FEDD::MultiVector, and FEDD::Matrix are implemented. An

exception to the use of these FEDDLib linear algebra classes is made when the

solvers are called. There, we need to work with the underlying Thyra objects,

which can be easily extracted. The Thyra objects are then passed to the abstract

Thyra interface and the relevant underlying solvers, e.g., Belos GMRES, the

nonlinear solvers of NOX, or the overlapping Schwarz preconditioners of FROSch are

constructed with the information provided by a parameterlist. We will continue

the discussion of these solvers in section 7.5.

The use of the matrix and multi-vector classes is straightforward. Here, a

multi-vector is a vector with one or more columns which are equally distributed.

In contrast to the sparse matrix format, a multi-vector is dense. The map classes

of Trilinos and FEDDLib are used in the construction of vectors and matrices.

A map determines the parallel distribution of indices across MPI ranks and it

maps local indices to global indices and viceversa. In general, a map provides a

distribution of matrix and vector rows. With a distribution of matrix rows, all

columns can be accessed by each rank. For the assembly of finite element matri-

ces and in the context of domain decomposition methods, we have to distinguish

between two types of maps. The first type is a map which uses a unique distri-

bution of global indices and we call a map of this type a unique map. The second

type of map uses a nonunique distribution of global indices and we call it repeated

map. Similar to the FEDD::Map, FEDD::MultiVector, and FEDD::Matrix classes,

the FEDDLib implements corresponding classes for block systems. The classes

FEDD::BlockMap, FEDD::BlockMultiVector, and FEDD::BlockMatrix manage

the use of maps, multi-vectors, and matrices for block systems based on the

FEDDLib classes for nonblock systems. Although Xpetra also provides block ma-

trix classes, it is advantageous to implement block classes directly in the FEDDLib,

116

7.3. MESHES AND FINITE ELEMENTS

since they do not need to be reimplemented if the underlying linear algebra is

changed. Furthermore, we need to highlight that the FEDDLib mainly consists

of template classes. In general, the same template parameters are used as in

Xpetra. Each FEDD::Map uses a template for the local indices (Local Ordinal,

LO), the global indices (Global Ordinal, GO), and the node type (Node Ordinal,

NO) which specifies the node–level programming model. In addition, FEDD::

MultiVector and FEDD::Matrix objects use a fourth template, the scalar type

(SC). We use the following default template parameters:

LO = i n t ; GO = long long ;

SC = double ; NO = KokkosClass ic : : DefaultNode ;

The node type is a default type and it depends on the Trilinos build.

If Trilinos was built without a threading library, then it defaults to

KokkosClassic::SerialNode. For a Trilinos build with the threading li-

brary Pthreads it defaults to KokkosClassic::TPINode.

7.3 Meshes and Finite Elements

The starting point of an FEM implementation is a discretization of the compu-

tational domain Ω. The class FEDD::Mesh provides node and element lists which

define an approximate discretization of Ω. Furthermore, we distinguish between

structured and unstructured meshes which are implemented in the classes FEDD

::MeshStructured and FEDD::MeshUnstructured, respectively. These classes

are derived from FEDD::Mesh and thus can be used without explicit knowledge

of the underlying type in the FEM. Structured meshes are only used for simple

geometries, e.g., a square, cube, or backward facing step domain in two or three

dimensions, which can be entirely built in parallel. In contrast, unstructured

meshes are used for more complex domains which are usually defined by exter-

nal files. We use the MEDIT Inria mesh format (.mesh) [71] for these external

meshes. A .mesh-file is loaded globally and then partitioned with METIS [99]

in a second step. In a third step, the mesh is distributed with the previously

computed METIS partition among all relevant ranks. In section 6.3.7, we intro-

duced a strategy for parallel coarse solves for our two-level overlapping Schwarz

preconditioners. There, we used a set of ranks for the subdomains of the first

level and the problem matrix and a second set of ranks dedicated to the coarse

117

CHAPTER 7. FEDDLIB

problem. The first set is chosen in accordance with the above METIS partition

and the second set of ranks is left untouched until the computation of the coarse

problem is needed. Furthermore, in a multi-physics problem with multiple com-

putational domains, such as an FSI problem, we can define two different types of

partitions. The first type uses a partition of all meshes across all relevant ranks.

In contrast, the second type uses an individual partition for a set of ranks for

each computational domain. In general, considering an FSI problem with a fluid

and a solid domain, we partition the fluid domain among ranks 0 to M and the

solid domain among ranks M + 1 to N − 1 for N total ranks. Here, the fractions

for fluid and solid can be defined by the user or, more conveniently, based on

the number of elements of the fluid and solid mesh. Furthermore, we highlight

that the METIS partition is computed for the dual graph of the underlying mesh,

which means that the mesh elements and not the nodes are partitioned. Conse-

quently, this partition defines a repeated distribution of nodes which corresponds

to the nonoverlapping subdomains of our domain decomposition methods. This

repeated distribution of nodes also defines our first FEDD::Map. In a next step,

this repeated map is reduced to a unique map, which then defines the distribution

of nodes of the problem matrix. Up to this point, we only considered node maps,

but we also need to handle maps for vector fields. This is done with the class

FEDD::Domain which implements build and access methods for the corresponding

d.o.f. maps and access methods for the underlying node maps.

Now, we have all necessary objects to proceed with the FEDDLib finite element

assembly routines. However, we first need to take a closer look at the construc-

tion and use of matrices and vectors in Trilinos. Both Trilinos linear algebra

packages, Epetra and Tpetra, and consequently the FEDDLib use the same set of

maps for the description of MPI distributed objects. We emphasize the construc-

tion of matrix objects here. In general, a distributed Xpetra or FEDDLib matrix

is defined by four maps: a domain map, a range map, a row map, and a column

map. We initialize a parallel distributed matrix object with a distributed unique

row map as follows:

MatrixPtr Type A = rcp (new Matrix Type (domain−>getMapUnique ())) ;

The matrix object of type Matrix_Type is passed to a Teuchos smart pointer

and stored in A. We often use custom type definitions such as Matrix_Type or

MatrixPtr_Type which reduces the amount of code and makes the code more

118

7.3. MESHES AND FINITE ELEMENTS

readable. The above type definitions are simply the FEDD::Matrix and a smart

pointer to an FEDD::Matrix with default template parameters:

typede f FEDD: : Matrix<LO,GO, SC,NO> Matrix Type ;

typede f Teuchos : : RCP<Matrix Type> MatrixPtr Type ;

The second map which describes the distribution of a matrix is the column map.

In general, this map is not created by the user, but built by the matrix object in

the final phase of the matrix construction. After an empty matrix is constructed,

we set new matrix values for each global row by passing an array of values and

an array of global column indices to the matrix:

A−>i n s e r tG loba lVa lue s (row , c o l I n d i c e s , va lue s) ;

However, at this point the matrix cannot be used for general linear algebra rou-

tines, such as matrix-vector or matrix-matrix multiplications, since all index sets

are global, but are only locally available. The final step of the matrix construction

is a transfer from global to local indices, which is performed with the method:

A−>f i l l C o m p l e t e () ;

The matrix pattern is now fixed and we are not allowed to set new entries,

only existing values can be changed. Furthermore, a matrix column map is now

constructed by the matrix object. The column map is, in general, repeated

and consists of all column indices that exist on a given rank. We highlight the

structure of row and column maps with the following example. Let A ∈ R4×4

be distributed among two ranks. The row map is provided by the user and the

column map is generated with a call of fillComplete():

A =

3 2 0 4

0 0 1 0

2 0 1 3

0 0 4 2

row map rank 0: (0, 1)

rank 1: (2, 3)

column map rank 0: (0, 1, 2, 3)
rank 1: (0, 2, 3)

The parallel distribution of the matrix is now complete, but two additional maps

are needed for the use of parallel linear algebra routines. These maps are the

domainMap and the rangeMap, and they must be consistent with the other partic-

ipating linear algebra objects. With a call of fillComplete(), the domain map

and range map are automatically set to the distributed row map of A. Other

maps can be provided with the method fillComplete(domainMap,rangeMap).

Furthermore, this method must be used if nonsquare matrices are constructed.

119

CHAPTER 7. FEDDLIB

We provide an example for these maps for a generic matrix A ∈ Rn×m multiplied

with a (multi-)vector x ∈ Rm and the resulting (multi-)vector y ∈ Rm.

// o b j e c t s f o r matrix−vec to r product y=Ax

MatrixPtr Type A = rcp (new Matrix Type (mapA)) ;

MVPtr Type x = rcp (new MV Type(mapX)) ;

MVPtr Type y = rcp (new MV Type(mapY)) ;

. . . // s e t t i n g va lue s o f A and x

A−>f i l l C o m p l e t e (mapX,mapY) ;

Although mapY and mapA (row map of A) possess the same global indices, they

can be distributed differently. However, in practice we mostly use mapY = mapA.

All FEDDLib finite element routines use an element-based assembly, which means

that a node or d.o.f. is used by one or more elements. Therefore, a node or d.o.f.

might also be used by elements of different ranks. Each newly computed value of

an element is set to the global matrix and saved separately w.r.t. the ranks. Only

a call of fillComplete() aggregates these values by summation for a unique row

map. Additionally, node or d.o.f. contributions computed by ranks which do not

own this node or d.o.f. with respect to the unique map are communicated. For

blocks systems, we assemble each matrix separately and place the resulting ma-

trix in the corresponding position in a FEDD::BlockMatrix object. Furthermore,

the FEDDLib provides an interface to assembly routines, which are generated with

AceGen and AceFEM. AceGen and AceFEM are subpackages of the mathematical

computation program Mathematica [95]. Element assembly routines can be writ-

ten down as symbolic expressions in AceFEM. Subsequently, these expressions are

evaluated and exported as C code with AceGen. This code is then added to the

FEDDLib code and can be used with the existing interface. The combination

of AceFEM and AceGen uses automatic differentiation techniques; cf., e.g., [111].

These techniques are well suited for the discretization and linearization of non-

linear problems; e.g, the Jacobian matrix of a nonlinear elasticity problem with

a complex material law can be easily computed.

We proceed with the setup of specific problems in the following section. There,

we illustrate the assembly processes of a Stokes problem and general nonliner

time-dependent problems. However, we first explain the general structure of the

abstract interface for discretized PDEs.

120

7.4. SETUP OF SPECIFIC PROBLEMS

Problem TimeProblem

NonLinearProblem LinearProblem

Specific Problems

NavierStokes

NonlinearElasticity

FSI

Specific Problems

Laplace

Stokes

LinearElasticity

MixedLinElas

wraps

Figure 7.2: Structure of problem classes in the FEDDLib. Dashed boxes repre-

sent abstract classes with virtual functions. Each specific problem

is a separate class.

7.4 Setup of Specific Problems

We use several different classes for the full description of a problem. In the

first case, we assume to have a single time-independent PDE which is then dis-

cretized with the finite element method provided by the FEDDLib. This assembly

process can be called for every FEDD::Problem with the pure virtual function

assemble(). A concrete or specific implementation of this method must be pro-

vided by the specific problem which is considered. A general overview of abstract

and concrete problem classes is depicted in fig. 7.2. After the assembly we have

an FEDD::Matrix system and right-hand side vector object FEDD::MultiVector.

Furthermore, we have a FEDD::MultiVector for the unknown solution. Actu-

ally, we always use the corresponding block linear algebra classes, even if we only

consider a 1× 1 system. A code example for the assembly and block structure of

a Stokes problem with P2–P1 finite elements is given below.

/∗ domV i s the v e l o c i t y domain (e . g , P2 f i n i t e e lements)

domP i s the p r e s su r e domain (e . g , P1 f i n i t e e lements)

domVP i s a vec to r o f both domains

f e i s a f i n t e element c l a s s ob j e c t ∗/
// c r e a t e 2x2 block matrix

BlockMatrixPtr Type F = rcp (new BlockMatrix Type (2)) ;

MatrixPtr Type A

= rcp (new Matrix Type (domV−>getVecFieldMapUnique ())) ;

MatrixPtr Type BT

= rcp (new Matrix Type (domV−>getVecFieldMapUnique ())) ;

121

CHAPTER 7. FEDDLIB

MatrixPtr Type B

= rcp (new Matrix Type (domP−>getMapUnique ())) ;

fe−>assembleLaplace (A,domV) ;

fe−>assembleDiv (BT,B,domVP) ;

F−>addBlock (A, 0 , 0) ;

F−>addBlock (BT, 0 , 1) ;

F−>addBlock (B, 1 , 0) ;

th i s−> i n i t i a l i z e V e c t o r s () ; /∗ s o l u t i o n and rhs o b j e c t s are c r ea ted a f t e r the

f u l l system matrix i s known ∗/

The three linear algebra objects for the solution, right-hand side, and problem

matrix are all member variables of the abstract FEDD::Problem class. We further

need to provide access to preconditioners and solvers. This is also handled by

the abstract FEDD::Problem class, since we only need the matrix for the precon-

ditioner, the matrix, right-hand side, and the solution for the solver. We will

pass additional information to the preconditioner, which is done through param-

eterlists; cf. section 7.5, for the construction of preconditioner and solver objects.

With these objects, we can represent and solve problems with a simple structure:

linear and time-independent problems.

In case of a nonlinear problem, we need some additional methods and mem-

ber variables. The abstract virtual class FEDD::NonLinProblem is derived from

FEDD::Problem. Therefore, the FEDD::BlockMultiVector right-hand side of

the FEDD::Problem still holds information of assembled source terms as well as

Dirichlet boundary data. Similarly, the matrix object and solution vector of

FEDD::Problem can be reused. However, the matrix object now corresponds to

the linearized problem and we solve for an additional update vector, which is

then added to the last solution; cf. section 5.4. Furthermore, we need an addi-

tional member variable for the nonlinear residual vector of the nonlinear prob-

lem. The virtual function assemble() is still used and must be implemented by

a concrete nonlinear problem to assemble all constant matrices. W.r.t. specific

nonlinear problems the additional pure virtual function reAssemble() must be

implemented for each concrete nonlinear problem and it must manage the assem-

bly of nonconstant matrices, which change from one nonlinear iteration to the

next.

In a last step, we extend linear and nonlinear problems to time-dependent

problems. We first highlight that, in many cases, a time-dependent problem

122

7.5. SOLVERS AND PRECONDITIONERS

FEDD::LAXpetra FEDD::Prec FEDD::Solver

Trilinos Prec. Trilinos Solver

Thyra objects

FEDD::Problem

wraps
uses calls calls

calls calls

provides

uses uses

Figure 7.3: Interplay of FEDDLib and Trilinos. All dashed items are Trilinos

objects/classes. The term “uses” should be red synonymously to

an extensive use of many methods and functions. The term “calls”

should be red synonymously to the use of a single method or func-

tion, e.g., buildPreconditioner().

is obtained by adding an appropriate temporal-derivative ∂u/∂t to the time-

independent problem; cf. section 2.4, for the difference between the steady and

time-dependent Navier–Stokes equations, or even simpler, the difference between

a Poisson problem and the heat equation. We can use the same concrete imple-

mentations of time-independent problems for the corresponding time-dependent

problems. The class FEDD::TimeProblem manages the transition from the steady

to the unsteady problem. It assembles corresponding mass matrices and com-

bines them with the matrices of the underlying problem. The combination is

based on the desired time-stepping scheme. The FEDDLib provides single-step

Runge–Kutta methods, cf. section 5.2.1, with Butcher tables of up to four stages.

Two of these tables represent the implicit Euler and the Crank–Nicolson method.

Furthermore, the multi-step BDF2 method of section 5.2.2 can be used. For hy-

perbolic second-order problems, we can use the family of Newmark–β methods;

cf. section 5.2.4.

123

CHAPTER 7. FEDDLIB

Amesos Amesos2 Belos

Direct solvers Direct solvers Iterative solvers
(Epetra based) (Epetra & Tpetra based) (own algebra wrappers)

KLU KLU2 GMRES

Umfpack (interface) Umfpack (interface) Flexible GMRES

MUMPS (interface) MUMPS (interface) PCG

Pardiso (interface) Pardiso (interface) . . .
.

Table 7.1: Trilinos direct and iterative solver packages with specific solvers.

Teko NOX

Block preconditioner Nonlinear solver
(Epetra and Tpetra) (Epetra and Tpetra)

LSC Inexact Newton methods
SIMPLE(C) Adaptive forcing terms

PCD (not via Thyra) Globalization techniques
Steepest descent
Nonlinear CG

. . .

Table 7.2: Trilinos block-preconditioner and nonlinear solver package.

7.5 Solvers and Preconditioners

The FEDDLib mainly depends on the Trilinos linear algebra packages. However,

several other important Trilinos packages are used in the solution phase. In ta-

bles 7.1 and 7.2, an overview of the Trilinos solver packages is given. All of

these packages are called via Thyra and only need some additional code to gen-

erate the needed Thyra (block) objects. However, to use the package NOX to

full efficiency, each specific problem of the FEDDLib must provide additional

methods. Moreover, the package Teko for the Navier–Stokes block precondi-

tioners needs some more advanced setup than the direct and iterative solvers of

Amesos, Amesos2, and Belos. We discuss the necessary implementations later in

this section. A visualization of the simplified connections between FEDDLib and

Trilinos is depicted in fig. 7.3. For a description of the solvers and precon-

ditioners, we start with the most outer loop, i.e., the loop over all time steps.

The class FEDD::DAESolverInTime calls the assembly methods of all FEDD::

124

7.5. SOLVERS AND PRECONDITIONERS

TimeProblem submatrices and manages the combination to these submatrices

and right-hand sides for the desired timestepping scheme. After assembly and

combination, the FEDD::DAESolverInTime calls the solve() method of FEDD

::TimeProblem and updates the timestepping information. Then, solve() of

FEDD::TimeProblem simply calls the method solve() of the underlying FEDD

::Problem. Depending on the type of the underlying problem, i.e, linear or

nonlinear, either the linear problem is solved or the desired nonlinear solver is

called; cf. section 5.4, for a description of fixed point iterations and Newton’s

method. The FEDD::NonLinSolver class provides a Thyra interface to the pack-

age NOX for the solution of the specific nonlinear problem. In order to use NOX,

the abstract class FEDD::NonLinProblem provides methods for the construction

of Thyra vector spaces. Furthermore, the concrete FEDD::NonLinProblem must

implement appropriate assembly routines for problem matrices, right-hand sides,

and conversions to corresponding Thyra objects. Therefore, we can simply call the

reAssemble() method, which was presented in the previous section, and use the

conversion methods to Thyra objects which are provided by the FEDD::Matrix,

FEDD::MultiVector, and corresponding block classes. For block classes, we pro-

vide a conversion to two different types of Thyra objects. On the one hand,

a FEDD::BlockMatrix can be converted to a Thyra::LinearOpBase with the

method getThyraLinOp(), which represents a single monolithic problem matrix.

On the other hand, we can get a Thyra::BlockedLinearOpBase object with a call

of getThyraLinBlockOp(), which represents the block structure of the problem.

Furthermore, NOX calls the desired linear solver, which is specified in a param-

eterlist. For the efficient iterative solution the arising sparse linear systems, we

additionally need to provide a construction method for a preconditioner object

for NOX. The setupPreconditioner() method is used for all linear problems

which are solved with an iterative method and will be explained in detail at the

end of this section.

For the iterative solution of linear systems in NOX or if the underlying problem

is linear, we use the Trilinos package Belos. In particular, we use GMRES

or flexible GMRES and the desired solver and solver settings are specified with

a parameterlist. If NOX is not used, we create the linear solver in the FEDDLib.

This is done in the class FEDD::LinearSolver, which manages the setup of all

relevant Thyra objects. Here, the central Thyra solver base object is Thyra::

125

CHAPTER 7. FEDDLIB

LinearOpWithSolveBase, which has access to all other Thyra objects, such as the

problem matrix, the right-hand side, the solution vector, and the preconditioner.

The following code shows the setup of a Thyra linear solver with a preconditioner

followed by a solve.

/∗ problem i s a FEDD: : Problem

s o l v e r B u i l d e r i s S t ra t im ikos : : De f au l tL inea rSo lv e rBu i ld e r

∗/
// i n i t i a l i z e s o l v e r ob j e c t

s o l v e rBu i l d e r−>se tParameterL i s t (pL i s tSo l v e r) ;

RCP<LinearOpWithSolveFactoryBase> lowsFactory

= so lv e rBu i l d e r−>c r ea t eL inea rSo l v eS t r a t egy (””) ;

RCP<Thyra : : LinearOpWithSolveBase> s o l v e r

= lowsFactory−>createOp () ;

// prov ide Thyra o b j e c t s

RCP<Thyra : : LinearOpBase> thyraMatrix

= problem−>getSystem ()−>getThyraLinOp () ;

RCP<Thyra : : MultiVectorBase> thyraX

= problem−>ge tSo lu t i on ()−>getThyraMultiVector () ;

RCP<Thyra : : MultiVectorBase> thyraB

= problem−>getRhs ()−>getThyraMultiVector () ;

RCP<Thyra : : Precondit ionerBase> thyraPrec

= problem−>ge tPre cond i t i one r ()−>getThyraPrec () ;

// pass p r e v i o u s l y computed p r e c o n d i t i o n e r to s o l v e r

Thyra : : i n i t i a l i z e P r e c o n d i t i o n e d O p (thyraMatrix ,

thyraPrec ,

s o l v e r) ;

// s o l v e Ax=b

Thyra : : s o l v e (so lv e r , thyraB , thyraX) ;

Note that the preconditioner was already computed prior to the solve in the

above example. Since the class FEDD::LinearSolver provides a general interface

to Thyra, it is also possible to use other solvers by changing the type in the

parameterlist; e.g., direct solvers of the Trilinos package Amesos2.

126

7.5. SOLVERS AND PRECONDITIONERS

The class FEDD::Preconditioner manages the setup of preconditioner objects

and aggregates all necessary information for the setup. Again, we use the corre-

sponding Thyra interfaces of the preconditioner objects. In general, we construct

a Thyra::PreconditionerBase object and pass it to the Thyra solver base.

The computation of a preconditioner is performed with the method Thyra

::initializePrec(...) and the preconditioner and corresponding options are

specified with a parameterlist:

// i n i t i a l i z e p r e c o n d i t i o n e r ob j e c t

s o l v e rBu i l d e r−>se tParameterL i s t (pLis tPrec) ;

RCP<Thyra : : Precondit ionerFactoryBase> precFactory

= so lv e rBu i l d e r−>c r e a t e P r e c o n d i t i o n i n g S t r a t e g y (””) ;

RCP<Thyra : : Precondit ionerBase> thyraPrec = precFactory−>c r ea tePrec () ;

// compute p r e c o n d i t i o n e r

Thyra : : i n i t i a l i z e P r e c (precFactory , thyraMatrix , thyraPrec) ;

Prior to the initialization of the preconditioner, we gather data to improve the

performance of our FROSch preconditioners. In theory, we can construct many

different types of preconditioner objects in the class FEDD::Preconditioner with

different settings of the parameterlist; e.g., multigrid preconditioners of the pack-

age MueLu and inexact factorizations of the package Ifpack2. However, we high-

light that the class FEDD::Preconditioner is designed for the construction of

FROSch preconditioner objects. In general, FEDD::Preconditioner sets up all

necessary information for a TwoLevelBlockPreconditioner of FROSch. There-

fore, we loop over all blocks of the problem and separately extract information for

each block. Furthermore, this information is wrapped with a Teuchos::RCP ob-

ject and written to a Teuchos parameterlist; i.e., we essentially pass the memory

location and not the whole data to the parameterlist and the preconditioner. For

a TwoLevelBlockPreconditioner, we need the number of d.o.f. per node for

each block. Moreover, for the best performance, we use the repeated maps of

our domain decomposition. In Chapter 8, we will also present and discuss results

for two-level Schwarz preconditioners with GDSW type coarse spaces, which are

constructed from unique maps of a domain decomposition; cf. section 6.4.

127

CHAPTER 7. FEDDLIB

/∗ domainVec i s the array o f domains ∗/
ArrayRCP<FROSch : : DofOrdering> dofOrder ings (numBlocks) ;

ArrayRCP<unsigned> dofsPerNodeVector (numBlocks) ;

f o r (i n t i = 0 ; i < numBlocks ; i++) {
RCP<Xpetra : : Map<LO,GO,NO> > mapXpetra ;

dofsPerNodeVector [i] = domainVec [i]−>getNumDofs () ;

// Ordering type , FROSch : : DimensionWise or FROSch : : NodeWise

dofOrder ings [i] = domainVec [i]−>getDofOrder ing () ;

i f (dofsPerNodeVector [i] > 1) { // block o f a vec to r f i e l d

// we e x t r a c t the under ly ing Xpetra : : Map from the FEDD: : Map

mapXpetra = domainVec [i]−>getMapVecFieldRepeated ()−>getXpetraMap () ;

repeatedMaps [i] = mapXpetra ;

}
e l s e { // block o f a s c a l a r

mapXpetra = domainVec [i]−>getMapRepeated ()−>getXpetraMap () ;

repeatedMaps [i] = mapXpetra ;

}
}
pListPrec−>s u b l i s t (”FROSch”) . s e t (”Repeated Map Vector ” , repeatedMaps) ;

pListPrec−>s u b l i s t (”FROSch”) . s e t (” DofOrdering Vector ” , do fOrder ings) ;

pListPrec−>s u b l i s t (”FROSch”) . s e t (”DofsPerNode Vector ” , dofsPerNodeVector) ;

If geometric information is needed, e.g., for an Option 2.2 RDGSW coarse space

or a coarse space which consists not only of translations, but also of linearized ro-

tations, the coordinates are also passed to FROSch via the parameterlist. With the

above setup, we can automatically construct a monolithic preconditioner based

on the input problem. The FEDDLib also provides setup methods of block pre-

conditioners for saddle point problems and a block preconditioning approach for

different FSI variants. For the construction of block preconditioners for Stokes

and Navier–Stokes problems, we use the Trilinos package Teko. In particular,

we can construct SIMPLE(C) and LSC preconditioners via the Thyra interface of

Teko. As presented in sections 6.2.2 and 6.2.3, we need to approximate inverses

of 1 × 1 blocks for SIMPLE(C) and LSC. This is done with the general setup

for monolithic FROSch preconditioners, which was explained above. As a conse-

quence, we can use other preconditioners for the approximation of these inverses,

as in the general monolithic case. In section 6.5.1, we described the FaCSI pre-

conditioner for FSI; the setup is similar to the Teko preconditioner setup. The

class FEDD::PrecOpFaCSI is derived of a Thrya::PreconditionerOperator and

implements all necessary application routines. Moreover, all inexact inverses

which are needed for the FaCSI preconditioner are constructed separately for

each block; i.e., for the fluid, the solid, and the geometry block. Again, we can

choose between a monolithic approach and a SIMPLE(C) or LSC block precon-

128

7.6. POST-PROCESSING

ditioner for the fluid block. We now have presented all necessary steps to solve

complex multi-physics problems with an emphasis on the realization in the par-

allel, object-oriented C++ software library FEDDLib. In Chapter 8, we are going

to present numerical results which were computed with the FEDDLib and FROSch.

7.6 Post-Processing

For the post-processing, the FEDDLib wraps Trilinos export methods for

HDF5 files. HDF5 [138] is a software package and data format which provides

parallel read and write methods for external data. In general, the FEDDLib writes

approximate solutions of the discretized PDE problems together with the un-

derlying mesh data to a HDF5 file. Additionally, the FEDDLib creates XDMF files.

XDMF uses XML to store meta information of the underlying data, which is stored

in separate HDF5 files. This meta data can then be used by visualization tools to

view the HDF5 data. For the actual visualizations, we use ParaView [1, 7], and

the XDMF files are created accordingly. To generate the XDMF and HDF5 files for a

previously computed solution, only a few lines of code are needed:

// Export the v e l o c i t y o f a Stokes problem

Teuchos : : RCP<ExporterParaView<SC,LO,GO,NO> > expor te r =

Teuchos : : rcp (new ExporterParaView<SC,LO,GO,NO>()) ;

exporter−>setup (” f l u i d v e l o c i t y ” /∗name o f HDF and XDMF f i l e s ∗/ ,

domainVelocity /∗ f l u i d v e l o c i t y domain∗/ ,

”P2” /∗ v e l o c i t y d i s c r e t i z a t i o n ∗/) ;

MVPtr Type v e l o c i t y = s toke s . g e tSo lu t i on ()−>getBlock (0) ;

exporter−>addVariable (v e l o c i t y , ”v” , ” Vector ”) ;

exporter−>save (0 . 0) ; // save f o r time 0 .0

exporter−>c l o s eExpor t e r () ;

129

8 Numerical Results

In this chapter, we will present results for

the model problems presented in the pre-

vious chapters. In particular, we will fo-

cus on the discussion of results for the

Stokes and Navier–Stokes problem, solid

problems, and the FSI problems. Before

we start with a discussion of the results, we

specify the hardware which was utilized in

the computation of our parallel results. All parallel results were computed on the

magnitUDE supercomputer at University Duisburg-Essen, Germany. A normal

node on magnitUDE has 64 GB of RAM and 24 cores (Intel Xeon E5-2650v4 12C

2.2 GHz), interconnected with Intel Omni-Path switches. Intel compiler version

17.0.1 and Intel MKL 2017 were used.

Moreover, we use the direct solver MUMPS 5.1.1 [2, 3] through the Amesos

and Amesos2 interfaces for all direct solves. The local problems are solved in

serial mode, whereas in case of coarse solves, the coarse problem is solved in

serial or parallel mode. We always consider one subdomain, and thus one local

problem, per MPI rank. In particular, we use one MPI rank per core, if not

stated otherwise. In order to reduce the computational costs of the RAP product

for the coarse problem matrix, we drop entries that are smaller than 10−8 in φ

after the computation of extensions to the interior d.o.f.. Furthermore, if not

stated otherwise, the number of MPI ranks for the exact and inexact coarse

solution phases is determined by the formula

0.5(1 + min{NumProcs,max{NumRows/10 000, NNZ/100 000}}), (8.1)

131

CHAPTER 8. NUMERICAL RESULTS

where NumRows and NNZ are the numbers of rows and nonzeros of the coarse

problem, respectively; cf. [85]. For the coarse matrices of the model problems in

this thesis, this formula tends to be dominated by the number of nonzeros.

Two types of unstructured meshes are used during the numerical results. In the

first case, we construct unstructured meshes from structured meshes by moving

the interior nodes; cf. fig. 8.1. This type of mesh is only used to determine the

parallel performance of our preconditioners for unstructured meshes. To partition

the unstructured meshes in parallel, we use ParMETIS 4.0.3 [100]. The second

type of unstructured meshes arises in the discretization of complex geometries.

In particular, we load the mesh from a .mesh-file, cf. section 7.3, and partition it

with METIS 5.1.0 [99]. We highlight that the pre-ordering method used in MUMPS

Figure 8.1: Structured (left) and unstructured (right) mesh and decomposition,

H/h = 5. Taken from [79].

to approximate the minimum fill-in of the LU decomposition is crucial for saddle

point problems. We observed good scalability when METIS and ParMETIS were

chosen for the pre-ordering. With an automatic selection of the pre-ordering

algorithm we encounter problems w.r.t. to weak scalability; e.g., it took twice as

much time to compute an LU decomposition of a subdomain of a problem with

4 096 total subdomains than it took for a corresponding subdomain of a problem

with 1 000 total subdomains, although the subdomain sizeH/h was kept constant.

For the sake of clarity, we characterize all meshes and decompositions by uniform

parameters H and h throughout this chapter. Furthermore, N will generally

denote the number of subdomains.

132

8.1. GDSW FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

8.1 GDSW for Incompressible Fluid Flow Problems

The results and discussion of this section were already published in [79]. In the

following numerical results, we report first level, second level, and total times.

The first level time is the sum of construction and application time for the first

level of the preconditioner, where the application is performed in every outer

GMRES or FGMRES iteration. The total time is the sum of both levels.

The two- and three-dimensional Navier–Stokes problems are solved with New-

ton and Picard iteration, respectively, We could not observe a good convergence

with Newton’s method for the three-dimensional problem. Both methods are

started with zero initial guess and the stopping criterion is ‖r(k)
nl ‖/‖r

(0)
nl ‖ ≤ 10−8,

with r
(k)
nl being the k-th nonlinear residual. However, we highlight that the first

linearization of the advective term is not computed with zero initial guess, but

with a vector that satisfies the boundary conditions. Results in later sections are

computed with zero initial guess for the linearization of the advective term, i.e.,

all advective forces are zero and only a Stokes system is solved in the first non-

linear iteration, which improves the convergence of the nonlinear solver. When

using a direct solver for the coarse problem, we employ GMRES [128] for the

solution of the linear systems. We use the stopping criterion ‖r(k)‖ ≤ ε‖r(0)‖,
where r(k) is the k-th unpreconditioned residual and ε = 10−6 is the tolerance for

the Stokes problems. For Navier–Stokes problems, we use the tolerance ε = 10−4

for the linear systems. Let us note that in order to reduce computational cost,

the recurrence relation in GMRES is evaluated until the stopping criterion is

satisfied, and only after that the true residual vector r(k) = b − Fx(k) is com-

puted; this is a standard stopping criterion in the Trilinos package Belos. In

case of inexact coarse solves, we employ FGMRES [129] for the outer iterations;

cf. section 8.1.1.3. For both Krylov methods, we use the implementations in

the Trilinos package Belos. We highlight that all parallel results of this section

were computed with an older implementation of FROSch, which exclusively used

Epetra. Many improvements to the overall efficiency have been made in newer

versions of the code. For all parallel results of this section, the standard GDSW

preconditioner is used.

133

CHAPTER 8. NUMERICAL RESULTS

δ 1h 2h

N 4 9 16 25 36 49 64 4 9 16 25 36 49 64

#its. B̂−1
GDSW 25 33 35 37 38 39 40 21 27 29 32 32 32 33

#its. B̂−1
P2−P1 21 25 27 28 28 29 29 18 29 21 22 22 22 22

Table 8.1: Iteration counts for a LDC Stokes problem in two dimensions, varying

number of subdomains N and overlap δ with H/h = 8 and Taylor–

Hood elements. Stopping criterion ‖e(k)‖ ≤ 10−6, e(k) = x(k)−x∗ with

reference solution x∗ computed with a direct solver. Taken from [79].

0 1000 2000 3000 4000 5000 6000 7000 8000

cores

0

30

60

90

120

150

G
M

R
E

S
 i
te

ra
ti
o
n
s

δ = 12h
δ = 16h
δ = 20h
δ = 24h

0 1000 2000 3000 4000 5000 6000 7000 8000

cores

0

50

100

150

200

250

300

T
im

e
 i
n
 s

Total time, δ = 20h
First level time, δ = 20h
Second level time, δ = 20h

Figure 8.2: Monolithic GDSW preconditioner applied to the two-dimensional

LDC Stokes problem with structured mesh and decomposition,

H/h = 160, P2–P1 finite elements, serial coarse solve. Iteration

counts for different levels of overlaps (left). First level, second level,

and total time for δ = 20h (right). Taken from [79].

8.1.1 Numerical Results for Stokes Problems

First, we present a comparison of monolithic Schwarz preconditioners with GDSW

and standard Lagrangian coarse spaces; cf. sections 6.3.1 and 6.3.3. Further,

parallel scalability results for the monolithic GDSW preconditioner are presented

for serial and parallel direct coarse solves and inexact coarse solves.

8.1.1.1 Comparison of Lagrangian and GDSW Coarse Spaces

Iteration counts for the solution of the LDC Stokes problem in two dimensions

using monolithic Schwarz preconditioners with GDSW and Lagrangian coarse

spaces are given in table 8.1; the results were computed with Matlab [117] on

134

8.1. GDSW FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

cores 64 256 1 024 4 096 8 100

δ = 12h
Time 174.4 s 183.8 s 187.7 s 206.6 s 224.8 s
Effic. 87% 82% 81% 73% 67%

δ = 16h
Time 154.7 s 166.4 s 172.9 s 185.5 s 202.6 s
Effic. 98% 91% 88% 82% 75%

δ = 20h
Time 151.7 s 157.1 s 166.9 s 180.5 s 197.2 s
Effic. 100% 97% 91% 86% 77%

δ = 24h
Time 156.6 s 160.9 s 169.7 s 185.1 s 199.4 s
Effic. 97% 94% 89% 82% 76%

Table 8.2: Weak scalability for the monolithic preconditioner applied to the two-

dimensional LDC Stokes problem, H/h = 160, P2–P1 finite elements,

coarse problem on one core. Baseline for the efficiency is the fastest

time on 64 cores with overlap δ = 20h. Taken from [79].

0 1000 2000 3000 4000 5000 6000 7000 8000

cores

0

50

100

150

200

250

300

T
im

e
 i
n

 s

Total time in 2D, δ = 20h
First level time in 2D, δ = 20h
Second level time in 2D, δ = 20h

0 1000 2000 3000 4000

cores

0

25

50

75

100

T
im

e
 i
n

 s

Total time in 3D, δ = 1h
First level time in 3D, δ = 1h
Second level time in 3D, δ = 1h

Figure 8.3: First level, second level, and total time for two- and three-

dimensional LDC Stokes problems with structured meshes and de-

compositions using Taylor–Hood elements, 2D H/h = 160, 3D

H/h = 10. Taken from [79].

structured meshes and domain decompositions. Here, GMRES terminates if the

error e(k) = x(k)−x∗ of the current iterate x(k) to the reference solution x∗ of the

linear system satisfies ‖e(k)‖ ≤ 10−6; as reference solution we use the one obtained

by a direct solver. The results are qualitatively similar to those reported in [103].

We observe that the performance of Lagrangian coarse spaces is slightly better

for structured domain decompositions. In contrast, the use of Lagrangian coarse

spaces for unstructured decompositions requires additional coarse triangulations

and is therefore unfeasible in the context of an algebraic implementation.

135

CHAPTER 8. NUMERICAL RESULTS

overlap
#cores 64 216 1 000 4 096 64 216 1 000 4 096

NumProc 1 1 1 1 2 9 55 255

δ = 1h
Time 23.5 s 26.4 s 33.4 s 78.4 s 24.7 s 26.3 s 32.2 s 53.5 s
Effic. 100% 89% 70% 30% 95% 89% 73% 44%

δ = 2h
Time 34.7 s 36.9 s 44.3 s 87.9 s 33.1 s 35.9 s 40.7 s 62.5 s
Effic. 67% 64% 53% 27% 71% 65% 58% 38%

Table 8.3: Weak scalability for the three-dimensional LDC Stokes problem with

a structured mesh and decomposition, H/h = 10, and Taylor–Hood

elements. Different settings for the coarse problem: MUMPS used with

one MPI rank (serial) and varying number of MPI ranks (parallel)

for the coarse problem; ‘NumProc’ denotes the number of MPI ranks

used for the computation of the coarse problem determined by (8.1).

Baseline for the efficiency is the fastest time on 64 cores with overlap

δ = 1h and MUMPS in serial mode. Taken from [79].

#cores 64 216 512 1 000

Structured

NumRows 1 117 4 461 11 453 23 437
NumNonZeros 165 929 830 409 2 352 361 5 086 985

Vertices 55 251 687 1 459
Edges 216 900 2 352 4 860
Faces 288 1 080 2 688 5 400

Unstructured

NumRows 3 432 15 210 40 757 85 214
NumNonZeros 1 466 640 8 729 840 26 303 223 58 576 054

Vertices 389 1 932 5 421 11 587
Edges 677 2 995 7 887 16 468
Faces 558 2 254 5 809 11 883

Table 8.4: Number of rows and nonzero entries of the GDSW coarse matrix for

the LDC Stokes problem in three dimensions. Interface components

of structured and unstructured decompositions. Taken from [79].

Hence, we will focus on the performance of our parallel implementation of the

new monolithic GDSW preconditioners for the remainder of this section.

8.1.1.2 Parallel Scalability Using an Exact Coarse Solver

In table 8.2 and fig. 8.2, we compare the weak scalability of our monolithic GDSW

preconditioner for different levels of overlap δ for the two-dimensional LDC Stokes

problem with structured subdomains of constant size H/h = 160. We observe

136

8.1. GDSW FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

cores 64 256 1 024 4 096

δ = 15h
its. 80 83 82 81
Time 33.0 s 36.9 s 37.3 s 41.5 s
Effic. 94% 84% 83% 75%

δ = 20h
its. 66 69 70 68
Time 31.8 s 33.5 s 35.4 s 41.4 s
Effic. 97% 93% 87% 75%

δ = 25h
its. 56 60 62 60
Time 31.0 s 33.3 s 35.3 s 38.9 s
Effic. 100% 93% 88% 80%

Table 8.5: Iteration counts and weak scalability for two-dimensional channel

Stokes problem, H/h = 200, and stabilized P1–P1 elements. Baseline

for the efficiency is the fastest time on 64 cores with overlap δ = 25h.

Taken from [79].

cores 108 500 2 048 4 000

δ = 1h
its. 44 48 48 49
Time 24.5 s 27.5 s 32.3 s 38.3 s
Effic. 100% 89% 76% 64%

δ = 2h
its. 37 47 47 48
Time 27.9 s 33.1 s 36.3 s 42.1 s
Effic. 88% 74% 67% 58%

Table 8.6: Iteration counts and weak scalability for three-dimensional channel

Stokes problem, H/h = 20, and stabilized P1–P1 elements. Baseline

for the efficiency is the fastest time on 64 cores with overlap δ = 1h.

Taken from [79].

very good parallel scalability for every choice of δ, the best efficiency of 77% from

64 to 8 100 MPI ranks is obtained with δ = 20h. Corresponding detailed timers

are depicted in fig. 8.3 (left) for up to 8 000 MPI ranks. The time for the first

level stays almost constant, whereas a slight increase of the second level time can

be observed due to the increasing size of the coarse problem.

In fig. 8.3 (right), the corresponding times for the three-dimensional LDC

Stokes problem with subdomain size H/h = 10 are presented. Again, the time

for the first level stays constant, whereas a more significant increase of the second

level time makes the weak scalability worse compared to the two-dimension case.

In particular, the time for the second level exceeds that of the first level when

137

CHAPTER 8. NUMERICAL RESULTS

Coarse solve
partition structured unstructured
#cores 64 216 1 000 4 096 64 216 512 1 000

Exact
Time 22.8 s 24.7 s 28.1 s 49.1 s 95.2 s 118.9 s 135.1 s 191.1 s
Effic. 100% 92% 81% 46% 98% 78% 69% 49%

GMRES its. 40 40 38 36 51 52 62 63

εc = 10−1
Time 24.3 s 26.4 s 33.0 s 49.4 s 95.0 s 125.9 s 140.1 s 143.7 s
Effic. 94% 86% 69% 46% 98% 74% 66% 65%

FGMRES its. 48 56 75 101 62 68 79 97

εc = 10−2
Time 23.0 s 25.9 s 28.5 s 39.4 s 93.0 s 120.3 s 134.6 s 149.3 s
Effic. 99% 88% 80% 58% 100% 77% 69% 62%

FGMRES its. 43 53 52 56 54 58 68 79

Table 8.7: Weak scalability for the three-dimensional LDC Stokes problem, δ =

1h, and Taylor–Hood elements. The coarse problem is solved exactly

with MUMPS or with GMRES up to a tolerance εc. Baselines for

the efficiencies are the fastest times on 64 cores for structured and

unstructured meshes and decompositions.

Left: structured mesh and decomposition, H/h = 10, using 24 MPI

ranks per node.

Right: unstructured mesh and decomposition, H/h = 13, using 12

MPI ranks per node. Taken from [79].

more than 1 000 processor cores are used; see fig. 8.3 (right). This is a typical

behavior of two-level methods due to an increased size of the coarse problem

and the fact that a direct solver is applied to solve it. A remedy to improve the

parallel efficiency is either to reduce the size of the coarse problem, which will

be presented in section 8.2.1, or to introduce a third level [88]. The Three-level

approach was successfully applied to a problem matrix resulting from an elliptic

PDE in [88]. As can be observed from table 8.3, the parallel scalability can al-

ready be improved slightly by using MUMPS in parallel mode as the coarse solver;

the number of processors used is determined by the formula (8.1). Consequently,

we will always use MUMPS in parallel mode for the following results with direct

coarse solves. Similar results are obtained for the stabilized P1–P1 discretiza-

tion. In tables 8.5 and 8.6, we present weak scaling results for the two- and

three-dimensional channel Stokes problem, respectively.

As can be observed in table 8.4 for the three-dimensional LDC Stokes prob-

lem, the dimension of the coarse problem becomes very large for an increasing

138

8.1. GDSW FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

Reynolds number Re = 20 Re = 200
cores 64 256 1 024 4 096 64 256 1 024 4 096

Time 78.6 s 78.0 s 86.4 s 94.8 s 87.4 s 84.5 s 98.3 s 104.0 s
Effic. 100% 102% 90% 84% 100% 103% 89% 84%

Avg. GMRES its. 78.8 77.3 74.5 71.5 101.3 93.3 107.8 99.0
Newton its. 3 3 2 2 4 4 4 4

Table 8.8: Weak scalability for the two-dimensional LDC Navier–Stokes prob-

lem using H/h = 130, δ = 13h, and Taylor–Hood elements. Baseline

for the efficiencies is the time on 64 cores for each Reynolds number.

Times are averages over the number of Newton iterations. Taken

from [79].

Reynolds number Re = 20 Re = 200
cores 64 216 1 000 4 096 64 216 1 000 4 096

Time 26.0 s 27.8 s 35.0 s 53.7 s 28.3 s 32.0 s 36.7 s 59.0 s
Effic. 100% 93% 74% 48% 100% 88% 77% 48%

Avg. GMRES its. 61.8 63.8 63.0 62.3 77.4 86.9 89.9 87.1
Newton/Picard its. 4 4 3 3 18 14 11 7

Table 8.9: Weak scalability for the three-dimensional LDC Navier–Stokes prob-

lem using H/h = 10, δ = 1h, and Taylor–Hood elements. Baseline

for the efficiencies is the time on 64 cores for each Reynolds num-

ber. Times are averages over the number of Picard iterations. Taken

from [79].

number of subdomains. In particular for unstructured domain decompositions,

the dimension of the coarse problem and the connectivity of the coarse matrix

increase significantly; the dimension can be almost four times and the number of

nonzeros more than ten times as large as for the structured case.

Therefore, the factorization of the coarse problems with MUMPS becomes very

costly. In the next section 8.1.1.3, we investigate inexact coarse solves for GDSW

coarse problems, where the coarse problems are only solved up to a tolerance εc.

A similar approach was used in [93] for two-dimensional, stabilized Stokes and

Navier–Stokes problems.

139

CHAPTER 8. NUMERICAL RESULTS

10
2

10
3

cores

10
2

10
3

T
im

e
 i
n
 s

Optimal scaling
Total time, δ=1h
Total time, δ=2h
Total time, δ=3h

Figure 8.4: Strong scalability for the monolithic GDSW preconditioner applied

to the Navier–Stokes benchmark problem with unstructured decom-

positions and Taylor–Hood elements. Taken from [79].

8.1.1.3 Parallel Scalability Using an Inexact Coarse Solver

Instead of solving the coarse problem with a direct method, we solve F0 iteratively

with GMRES, and we use FGMRES for the outer Krylov iterations. In FGMRES,

B̂ is used as a right preconditioner and the k–th residual is r(k) = b−FB̂−1(B̂x(k)).

The coarse problem is solved with GMRES and ‖r(k)
c ‖ ≤ εc‖r(0)

c ‖, with coarse

residual r
(k)
c is used as the stopping criterion.

In table 8.7, we compare inexact coarse solves using εc = 10−1, 10−2 with ex-

act coarse solves for structured and unstructured decompositions. Here, we use

right preconditioned GMRES as the iterative Krylov solver in the case of exact

coarse solves, such that the residual and the stopping criterion are the same as

for FGMRES. We observe that using an inexact coarse solver can be beneficial

for both, structured and unstructured decompositions. For structured decom-

positions, inexact coarse solves with εc = 10−2 start to be more efficient when

using more than 1 000 subdomains, whereas for unstructured decomposition, it

is already more efficient for more than 512 cores to use inexact solves.

140

8.1. GDSW FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

8.1.2 Numerical Results for Navier–Stokes Problems

The scalability results for the LDC Navier–Stokes problems with Reynolds num-

ber Re = 1 are comparable to the results for the LDC Stokes problems presented

in section 8.1.1 and are therefore not reported. In this section, we use Re = 20

or Re = 200. Inexact coarse solves, as presented in section 8.1.1.3 for the LDC

Stokes problem, are not as beneficial for the LDC Navier–Stokes problem. The

number of coarse GMRES iterations to reach an acceptable tolerance εc is too

high and thus an additional preconditioner for the coarse problem would be re-

quired; cf., e.g., [93]. Therefore, we only consider exact coarse solvers and left

preconditioning.

In table 8.8 and table 8.9, we present weak scalability results for two- and

three-dimensional LDC Navier–Stokes problems, respectively. All weak scalabil-

ity times are averaged over the number of nonlinear Newton or Picard iterations.

For Re = 20 and a structured decomposition, we observe a slight reduction in

iterations counts for finer meshes, as also observed for the LDC Stokes problem;

see, e.g., table 8.7. Furthermore, the number of Newton or Picard iterations may

be reduced when the problem is solved on finer meshes. For two-dimensional

problems, we observe 84% parallel efficiency from 64 to 4 096 processor cores,

whereas the efficiency deteriorates to 48% in three dimensions. Similar to the

results of the LDC Stokes, we observed that an overlap of roughly 10 % is most

efficient.

Finally, we present results for the flow around a cylinder benchmark with cir-

cular cross-section and Re = 20; see fig. 5.3 for the velocity field of the solution.

We obtain good values for the drag and lift coefficients, cD = 6.178, cL = 0.0095,

for a problem with 2.9 million d.o.f. (2.8 million velocity, 127 k pressure). The

domain was partitioned using METIS. Both coefficients are computed with the vol-

ume integrals given in [96]. Strong scalability results for the monolithic GDSW

preconditioner with δ = 1h, 2h, 3h are presented in fig. 8.4. The good strong scal-

ability deteriorates from 256 to 512 cores, since the additional time to construct

and solve the larger coarse problem exhausts the other time savings.

141

CHAPTER 8. NUMERICAL RESULTS

t in s

Q in mm3/s

0.5 1

600

Figure 8.5: Inflow rate for the time-dependent Navier–Stokes problem in a coro-

nary artery (left); see figs. 8.6 and 8.7 for the corresponding mesh

and flow field. Magnitude of the solution to a three-dimensional

Laplacian problem restricted to the inflow boundary (right). Taken

from [80].

Figure 8.6: Coronary artery volume mesh with 1 032 k tetrahedral elements. Re-

sulting Navier–Stokes systems discretized with P2–P1 elements con-

sists of 4.6 million d.o.f.. Taken from [80].

8.2 Reduced Dimension GDSW Preconditioners for

Incompressible Fluid Flow Problems

In this section, we present numerical results of our parallel implementation of

the monolithic RGDSW preconditioners. These results have previously been

published in [80] and the discussion is along the lines of this article. If not stated

otherwise, the coarse problems are solved in parallel mode. To determine the

number of MPI ranks, the default setting of FROSch is used; cf. eq. (8.1).

142

8.2. REDUCED DIMENSION GDSW PRECONDITIONERS FOR
INCOMPRESSIBLE FLUID FLOW PROBLEMS

Here, we solve the nonlinear steady-state Navier–Stokes problems us-

ing Newton’s method with zero initial guess. The stopping criterion is

‖r(k)
nl ‖/‖r

(0)
nl ‖ ≤ εnl , with r

(k)
nl being the k-th nonlinear residual. In the so-

lution of the problems we apply right preconditioned GMRES with the relative

stopping criterion ‖r(k)‖ ≤ ε‖r(0)‖, where ε = 10−6 and ε = 10−4 are the

tolerances for the Stokes and steady-state Navier–Stokes problems, respectively,

and r(k) = b − FB̂−1(B̂x(k)) is the k-th residual. Right preconditioned GMRES

is always used from this point on, if not stated otherwise.

In this section, we consider the BFS Stokes and BFS Navier–Stokes problems,

where the largest problem possesses more than 400 million d.o.f.. Additionally,

a time-dependent fluid flow for a realistic arterial geometry is simulated.

The geometry of a straight coronary artery was bent to generate the mesh

depicted in fig. 8.6. The original straight coronary artery was used for simulations

of stress distributions in the walls of patient-specific atherosclerotic arteries in [10,

26]. We prescribe a parabolic inflow profile with increasing flow rate for 0.5 s;

cf. fig. 8.5. After the flow rate of Qsteady = 600 mm3/s is reached, it is kept

constant for further 0.5 s. We apply no-slip and do-nothing boundary conditions

at the wall and the outlet of the arterial geometry, respectively. Furthermore, we

use a time step length of ∆t = 0.01 s, the BDF2 time discretization scheme, and

the kinematic viscosity ν = 3.0 mm2/s. The length of the artery is 12 mm and

the inflow diameter is approx. 2 mm. The linearized systems are solved up to a

tolerance ε = 10−6. In the following numerical results, we report combined setup

times of the first and second level since a distinction is not straightforward for a

parallel computation of the levels. Moreover, the identification of the interface is

omitted from our setup times.

8.2.1 Comparison of Monolithic GDSW and RGDSW Coarse

Spaces

Table 8.10 depicts the comparison of the performance of different (R)GDSW

coarse spaces for the monolithic Schwarz preconditioners for the BFS Stokes

problem using structured meshes and domain decompositions in three dimensions.

In particular, we consider the GDSW coarse space of section 6.3.3 as well as

Option 1 and Option 2.2 of the RGDSW coarse space as described in section 6.3.6.

143

CHAPTER 8. NUMERICAL RESULTS

Prec. #cores 243 1 125 4 608 11 979

GDSW

#its. 84 116 160 202
setup 14.7 s 19.7 s 36.6 s 73.9 s
solve 10.7 s 20.9 s 37.5 s 220.0 s
total 25.4 s 40.6 s 74.1 s 293.9 s

RGDSW
#its. 128 117 111 110
setup 12.6 s 13.7 s 16.2 s 24.0 s

Option 1
solve 14.8 s 15.1 s 21.3 s 36.2 s
total 27.4 s 28.8 s 37.5 s 60.2 s

RGDSW
#its. 135 131 121 123
setup 12.2 s 12.8 s 15.8 s 22.7 s

Option 2.2
solve 15.7 s 16.9 s 17.9 s 39.4 s
total 27.9 s 29.7 s 33.7 s 62.2 s

Table 8.10: Weak scalability results for different coarse spaces: standard, re-

duced Option 1 & 2.2 applied to the three-dimensional P2–P1 BFS

Stokes problem, H/h = 10 and δ = 1h. Taken from [80].

A significant reduction of the coarse space dimension is obtained when using

the RGDSW coarse spaces. For the largest problem with 11 979 subdomains, the

dimension of the coarse problem for the RGDSW coarse space is 40 530 (30 390

velocity and 10 140 pressure basis functions), while it is 305 157 (228 852 velocity

and 76 305 pressure basis functions) for the standard GDSW coarse space. Com-

pared to the standard GDSW coarse space, the setup of the reduced dimension

Option 1 and Option 2.2 coarse spaces is more than twice as fast for the largest

BFS Stokes problem. Surprisingly, for the largest problem, iterations counts for

the standard GDSW variant are also higher than for the reduced dimension vari-

ants. In the case of elliptic problems, this is typically the opposite; cf. [54, 89].

In comparison to the standard GDSW coarse space, the time-to-solution for the

reduced dimension coarse spaces is lower by more than 50 % on 4 608 cores. It

is also important to note that Option 1 of the RGDSW coarse space performs

better than Option 2.2 with respect to iteration counts; also the compute time is

generally lower except for the case of 4 608 cores. This is also different compared

to elliptic problems; cf. [54, 89]. In fact, it is beneficial since Option 1 is more

algebraic than Option 2.2.

144

8.2. REDUCED DIMENSION GDSW PRECONDITIONERS FOR
INCOMPRESSIBLE FLUID FLOW PROBLEMS

δ = 1h δ = 2h
First level #cores 243 1 125 4 608 243 1 125 4 608

AS

#its. 272 515 862 180 348 595
setup 8.7 s 9.1 s 10.3 s 16.6 s 17.6 s 22.5 s
solve 30.2 s 68.1 s 106.5 s 34.2 s 70.5 s 153.7 s
total 38.9 s 87.1 s 116.8 s 50.8 s 86.4 s 176.2 s

RAS

#its. 242 460 785 185 366 649
setup 8.9 s 9.6 s 9.9 s 17.1 s 22.0 s 20.7 s
solve 26.3 s 52.1 s 89.4 s 34.6 s 72.4 s 163.9 s
total 35.2 s 61.7 s 99.3 s 51.1 s 94.4 s 184.6 s

SAS

#its. 222 433 740 168 336 591
setup 8.7 s 9.1 s 10.4 s 16.7 s 17.5 s 19.1 s
solve 24.6 s 50.2 s 88.1 s 32.0 s 69.3 s 146.9 s
total 33.3 s 59.3 s 98.5 s 48.7 s 86.8 s 166.0 s

Table 8.11: Comparison of the different monolithic one-level Schwarz precon-

ditioners with H/h = 10 applied to the BFS Stokes problem with

P2–P1 finite elements: AS, RAS, and SAS; cf. section 6.3.2. Taken

from [80].

8.2.2 Restricted and Scaled First Level Variants

Table 8.11 presents weak scalability results for the three first level variants AS,

RAS, and SAS with overlap δ = 1h, 2h; cf. section 6.3.2 for definitions of the

different variants.

An overlap of 1h yields the best performance for all three different approaches.

Compared to the standard (AS) and the restricted (RAS) approach, the iteration

counts are always lower for the scaled variant (SAS). Therefore, although we save

some communication in RAS, SAS performs best for all configurations in this

comparison. Moreover, iteration counts for RAS are even higher than for AS for

a wider overlap δ = 2h. We will therefore use SAS with overlap δ = 1h as our

default first level from this point on.

8.2.3 Parallel Coupling Strategies for the Levels

The the parallel coupling strategies for the first and the second level, which were

introduced in section 6.3.7, will be applied to further improve the performance

of the simulations. We present parallel scalability results comparing sequential

145

CHAPTER 8. NUMERICAL RESULTS

#cores 243 1 125 4 608 11 979
Coupling #its. 120 114 105 108

sequential additive
setup 18.6 s 18.8 s 21.4 s 29.4 s
solve 17.6 s 19.2 s 20.5 s 27.6 s
total 36.2 s 38.0 s 41.9 s 57.3 s

parallel additive
(+1 core)

setup 17.7 s 17.9 s 19.8 s 27.9 s
solve 17.1 s 19.0 s 17.6 s 21.0 s
total 34.8 s 36.9 s 37.4 s 48.9 s
#its. 89 90 84 91

multiplicative
setup 17.6 s 18.1 s 19.1 s 29.6 s
solve 14.7 s 15.8 s 16.9 s 23.5 s
total 32.3 s 33.9 s 36.0 s 53.1 s

Table 8.12: Weak scalability results for monolithic preconditioners with SAS

first level applied to the three-dimensional BFS Stokes problem with

P2–P1 discretization; H/h = 11, δ = 1h, and RGDSW Option 1.

We always use one core for the solution of the coarse problem; there-

fore, for the parallel additive coupling, we allocate one additional

core for the solution of the coarse problem. Taken from [80].

additive, parallel additive, and multiplicative coupling in table 8.12. There, we

use one core for the solution of the coarse problems, and we allocate one additional

core for the solution of the coarse problem in the parallel approach to obtain the

same domain decompositions for all three approaches. The hybrid version of

the two-level preconditioner performs better than the sequential additive version,

since iteration counts are lower. Specifically, we save more than 7 % in total

computing time on 11 979 cores. However, more than 14 % computing time can

be saved by using the parallel additive coupling. The performance of the parallel

additive coupling with a varying number of cores for the solution of the coarse

problem is depicted in table 8.13. The increase of the number of cores from 1

to 10 yields a further speedup by more than 10 %. We anticipate an increasing

advantage of the parallel additive approach if a larger configuration with more

cores is used.

146

8.2. REDUCED DIMENSION GDSW PRECONDITIONERS FOR
INCOMPRESSIBLE FLUID FLOW PROBLEMS

#cores 243 1 125 4 608 11 979
Coupling #its. 120 114 105 108

parallel additive
(+1 core)

setup 17.7 s 17.9 s 19.8 s 27.9 s
solve 17.1 s 19.0 s 17.6 s 21.0 s
total 34.8 s 36.9 s 37.4 s 48.9 s

parallel additive
(+5 cores)

setup 17.6 s 18.5 s 20.0 s 25.3 s
solve 18.8 s 19.0 s 20.1 s 20.8 s
total 36.4 s 37.5 s 40.1 s 46.1 s

parallel additive
(+10 cores)

setup 17.3 s 18.6 s 18.1 s 22.8 s
solve 18.7 s 18.9 s 19.5 s 21.0 s
total 36.0 s 37.5 s 37.6 s 43.8 s

Table 8.13: Weak scalability results for monolithic preconditioners with SAS

first level and parallel additive coupling applied to the three-

dimensional BFS Stokes problem; H/h = 11, δ = 1h, and RGDSW

Option 1. We allocate additional cores for the solution of the coarse

problem (in brackets). Taken from [80].

8.2.4 Recycling Strategies

The information of previous Newton iterations or time steps can be reused to save

computing time. All index sets corresponding to the overlapping subdomains and

the interface components, are typically constant over all iterations and the reuse

is straightforward. The nonzero pattern typically stays the same, while the en-

tries of the system matrix change during Newton and time iterations, which is

why the symbolic factorizations of the local matrices and the global coarse matrix

could be reused. To save compute time we dropped small matrix entries in φ be-

fore the computation of the coarse RAP product. Therefore, the nonzero pattern

of the coarse matrix is changed and not constant. However, we save more time

in the computation of the coarse RAP product by dropping small matrix entries

in φ than by reusing the symbolic factorizations. The reuse of the symbolic fac-

torizations of the local overlapping matrices Fi and interior subdomain matrices

F (i)
II used in the saddle point extensions is denoted as Symbolic Factorization

(SF) recycling strategy. The symbolic factorizations require between 15 % and

20 % of the total factorization time for overlapping subdomain matrices Fi for

a Navier–Stokes problem with H/h = 8 and δ = 1h. The numeric factorization

and the symbolic factorization require approximately 3.6 s and 0.7 s, respectively.

147

CHAPTER 8. NUMERICAL RESULTS

Recyling strategy #cores 243 1 125 4 608

-

#its. 155.25 (4) 158.3 (3) 149.0 (3)
setup 28.4 s 23.7 s 30.1 s
solve 40.5 s 37.7 s 42.2 s
total 68.9 s 61.4 s 72.3 s

SF

#its. 155.25 (4) 158.3 (3) 149.0 (3)
setup 24.1 s 20.3 s 25.6 s
solve 40.7 s 35.0 s 42.1 s
total 64.8 s 55.3 s 67.7 s

SF + CB

#its. 157.0 (4) 159 (3) 151.0 (3)
setup 18.7 s 16.7 s 21.8 s
solve 40.7 s 35.1 s 42.4 s
total 59.4 s 51.8 s 64.2 s

SF + CB + CM

#its. 165 (4) 175.3 (3) 170.3 (3)
setup 18.0 s 15.4 s 19.4 s
solve 42.8 s 38.0 s 46.3 s
total 60.8 s 53.4 s 65.7 s

Table 8.14: Weak scalability results for monolithic preconditioners with coarse

space recycling applied to the BFS Navier–Stokes problem;

εnl = 10−6, H/h = 8, δ = 1h, ν = 0.01, Re = 200, and RGDSW

Option 1. The numbers in parentheses denote the number of New-

ton iterations. SF, CB, and CM denote the reuse of the symbolic

factorizations for the matrices Ai and A(i)
II , of the coarse basis φ,

and of the coarse matrix A0, respectively. The times for the solu-

tion of a Stokes problem for the initial guess are included. Taken

from [80].

The effect is similar for interior subdomain matrices F (i)
II . We reuse the symbolic

factorizations all following results in this section. Furthermore, the reuse of the

numeric factorizations of the matrices Fi is not a viable approach as it yields sig-

nificantly worse iteration counts. For the coarse level, we propose two recycling

strategies: the Coarse Basis (CB) recycling strategy according to which the the

coarse basis φ is reused while the coarse RAP product (6.8) is recomputed, and

the Coarse Matrix (CM) recycling strategy according to which the coarse matrix

F0 is reused, which saves the computation time of the coarse RAP product as

well as the time of the coarse factorization.

148

8.2. REDUCED DIMENSION GDSW PRECONDITIONERS FOR
INCOMPRESSIBLE FLUID FLOW PROBLEMS

A comparison of a complete recomputing of the preconditioner and three dif-

ferent combinations of the recycling strategies is presented in table 8.14 for a

steady-state Navier–Stokes problem. Clearly, the SF approach should always be

preferred to the recomputation of the whole preconditioner. Furthermore, for

larger numbers of subdomains, the combination SF+CB is most efficient, while

the scalability deteriorates for the combination SF+CB+CM. This is due to the

fact that a recycled basis can still represent the nullspace of the operator, whereas

a recycled coarse problem might be a bad approximation of the current linearized

problem. Specifically, we reach 69 % efficiency from 243 to 4 608 cores with basis

recycling. In the next subsection we present further comparisons of the proposed

recycling strategies for time-dependent problems, where we observe a substantial

increase in efficiency.

8.2.5 Speedup for a Time-Dependent Navier–Stokes Problem

Figure 8.7: Solution of the time-dependent Navier–Stokes problem at time 1.0 s

for the coronary artery; cf. section 5.1.2. Taken from [80].

Due to the added mass matrix, time-dependent problems are much better con-

ditioned than their steady-state counterparts for small time steps. Certain prob-

lems do not even require a coarse space for numerical scalability; see, e.g., [29], for

the special case of a symmetric parabolic problem in two dimensions. In general,

for the time-dependent Navier–Stokes problem studied in this section, we prefer

to use an RGDSW coarse space due to the significantly lower iteration counts.

For the following time-dependent Navier–Stokes problem, we consider the real-

istic coronary artery geometry; cf. figs. 8.6 and 8.7. We require on average 82.8

iterations per time step for the one level preconditioner, and only 38.5 iterations

149

CHAPTER 8. NUMERICAL RESULTS

Figure 8.8: Timings for the simulation of the coronary artery with the time-

dependent Navier–Stokes problem with 4.6 million d.o.f. solved on

240 cores. SAS for the first level with δ = 1h. Hybrid and additive

two-level preconditioners with different recycling strategies. Taken

from [80].

for the additive two-level method with coarse basis and coarse matrix recycling.

With the recycling methods presented in section 8.2.4, the additional time for

the setup of the second level is neglectable.

Figure 8.8 shows the comparision of a one-level SAS preconditioner with

two-level hybrid and additive SAS preconditioners. The coarse basis recycling

(SF+CB) and the full recycling (SF+CB+CM) for the additive preconditioner

and basis recycling for the hybrid preconditioner are compared. Full recycling

(SF+CB+CM) for the hybrid preconditioner is not presented, since we did not

observe good convergence. This is due to the larger effect of the coarse operator

when coupled in a multiplicative way. For the additive two-level preconditioner

with full recycling, Only 7.7 s are spent for the construction of second level, for

the additive two-level preconditioner with full recycling. 82.0 s of 480.5 s total

computing time are spent during the application of the coarse level. We observed

no advantage w.r.t total computing time when a full reset of the recycled opera-

tors, i.e., recomputing the coarse basis functions φ and the coarse matrix, after

a certain number of time steps, was used. In fig. 8.9, we present strong scaling

results for the realistic artery geometry. All simulations with this realistic artery

were carried out with LifeV [69], which is based on the Epetra linear algebra.

150

8.2. REDUCED DIMENSION GDSW PRECONDITIONERS FOR
INCOMPRESSIBLE FLUID FLOW PROBLEMS

Figure 8.9: Strong scaling results for time-dependent Navier–Stokes problem

with 4.6 million d.o.f. for the realistic coronary artery. SAS for the

first level with δ = 1h. Hybrid two-level preconditioner with coarse

basis recycling and additive two-level preconditioner with coarse

basis and coarse matrix recycling. Simulation to final time of 1.0 s

with ∆t =0.01 s; cf. section 5.1.2, for the description of the model

problem. Taken from [80].

In particular, we used the time-dependent Navier–Stokes implementation with

extrapolation of the convection, BDF2 for the temporal discretization, and

P2–P1 mixed finite elements for the spatial discretization. A problem with

4.6 million d.o.f. using a two-level additive RGDSW preconditioner with full

recycling (SF+CB+CM) and a two-level hybrid RGDSW preconditioner with

basis recycling (SF+CB) is solved. Both preconditioners achieve similarly good

scaling results from 120 to 480 cores. As opposed to the additive preconditioner,

the speedup of the hybrid preconditioner stagnates for more than 480 cores.

Therefore, we prefer the additive preconditioner for this configuration due to the

lower total computing time (between 5 % and 25 %).

By combining the RGDSW Option 1 coarse space, the scaled first level (SAS),

and the multiplicative coupling of the levels, we achieve a reduction of the time-

to-solution by 60 % compared to the previous results obtained with an additive

two-level GDSW coarse space for a BFS Stokes problem solved on 4 608 cores;

cf. fig. 8.10 for timings. For time-dependent and nonlinear problems, we can

151

CHAPTER 8. NUMERICAL RESULTS

Figure 8.10: Total time for the three-dimensional BFS Stokes problem with

P2–P1 finite elements, H/h = 11, and δ = 1h on 4 608 cores. Im-

proved preconditioner versions use SAS for the first level; cf. sec-

tion 6.3.2. The improved (R)GDSW preconditioners with additive

coupling between the levels use parallel coarse solves with 10 ded-

icated MPI ranks for the coarse problem; cf. section 6.3.7. Taken

from [80].

further recycle the symbolic factorizations, the coarse basis, coarse basis, and

the coarse matrix. For the best configuration of the GDSW coarse spaces a

reduction of 75 % of total time was achieved, solving the first 10 time steps of

the coronary artery problem compared to the previous implementation using the

GDSW preconditioner. Similarly, a reduction of 85 % was achieved with the best

configuration for the RGDSW coarse spaces; cf. fig. 8.11.

152

8.3. COMPARISON OF BLOCK AND MONOLITHIC PRECONDITIONERS
FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

Figure 8.11: Speedup for the time–dependent Navier–Stokes problem on 240

cores. Simulation of 0.1 s of the ramp phase, δ = 1h. Improved

preconditioner versions use SAS for the first level and full recycling;

cf. section 6.3.2 and section 8.2.4, respectively. Taken from [80].

8.3 Comparison of Block and Monolithic

Preconditioners for Incompressible Fluid Flow

Problems

8.3.1 Standard Block Preconditioners

Similar to section 8.1.1, we begin with a comparison of block and monolithic

preconditioners for two types of coarse spaces, i.e., for GDSW and standard La-

grangian coarse spaces. Here, we use the standard block-diagonal and -triangular

preconditioners with a pressure mass matrix approximation of the Schur comple-

ment; cf. section 6.2.1. All parallel results in this section are based on the older

FROSch implementation, which exclusively used Epetra.

Iterations counts for GDSW and Lagrangian coarse spaces are given in ta-

ble 8.15. The LDC Stokes problem in two dimensions is solved using a Matlab im-

plementation on a structured mesh and decomposition. For both types of coarse

spaces, results for the iteration of the block-diagonal, -triangular, and monolithic

preconditioners are presented. GMRES terminates if the error e(k) = x(k)− x∗ of

153

CHAPTER 8. NUMERICAL RESULTS

GDSW coarse space Lagrangian coarse space

δ N B̂−1
M B̂−1

T B̂−1
D B̂−1

M B̂−1
T B̂−1

D

1h

4 25 62 120 21 61 122
9 33 83 165 25 80 154
16 35 97 186 27 88 166
25 37 102 197 28 89 170
36 38 104 207 28 90 173
49 39 106 213 29 90 173
64 40 108 219 29 90 173

2h

4 21 71 138 18 73 142
9 27 92 166 20 90 170
16 29 98 177 21 93 174
25 31 101 188 22 95 177
36 32 103 196 22 95 179
49 32 105 205 22 95 180
64 33 107 211 22 96 180

Table 8.15: Iteration counts for the LDC Stokes problem in two dimensions

discretized with P2–P1 finite elements, varying number of sub-

domains N , overlap δ, and fixed H/h = 8. Stopping criterion

‖e(k)‖ ≤ 10−6, e(k) = x(k)−x∗ with solution x∗ obtained by a direct

solver. Preconditioners are monolithic (M), block-triangular (T),

and block-diagonal (D) two-level Schwarz methods with GDSW or

Lagrangian coarse spaces and standard a first level (AS).

the current iterate x(k) to the solution x∗, which is computed with a direct solver,

satisfies ‖e(k)‖ ≤ 10−6. The results of table 8.15 are qualitatively similar to those

obtained in [105] for the Lagrangian coarse space. The block-diagonal precon-

ditioners need twice as many iterations as the block-triangular preconditioners.

Surprisingly, iteration counts are lower for the block-triangular GDSW precon-

ditioner as well as for the block-triangular and block-diagonal preconditioners

with Lagrangian coarse space if the smaller overlap δ = 1h is used, instead of

δ = 2h. A similar behavior was observed in [105] for Lagrangian coarse spaces.

As expected, the monolithic preconditioners provide the lowest iterations counts.

Weak scalability results for the three different preconditioners with GDSW

coarse spaces are given in table 8.16. In particular, only a one-level approxima-

tion of the pressure mass matrix is used. We observe that the monolithic precon-

ditioner is the most efficient one for the two-dimensional LDC Stokes problem.

154

8.3. COMPARISON OF BLOCK AND MONOLITHIC PRECONDITIONERS
FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

Preconditioner #cores 64 256 1 024 4 096

Monolithic
#its. 66 70 69 68

Total time 154.7 s 170.0 s 175.8 s 188.7 s
Effic. 100% 91% 88% 82%

Triangular
#its. 137 143 146 150

Total time 309.4 s 329.1 s 359.8 s 396.7 s
Effic. 49% 44% 43% 37%

Diagonal
#its. 342 400 426 442

Total time 736.7 s 859.4 s 966.9 s 1105.0 s
Effic. 21% 18% 16% 14%

Table 8.16: Weak scalability for block and monolithic two-level GDSW pre-

conditioners with a standard first level (AS) applied to the two-

dimensional LDC Stokes problem, H/h = 160, δ = 16h, coarse

problem on one core. Baseline for the efficiency is the fastest time

on 64 cores with the monolithic preconditioner.

This is due to the much lower number of iterations compared to the slightly

higher setup time. Compared to the block-diagonal preconditioner, the block-

triangular preconditioner only needs one additional matrix-vector product and

one additional dot product. Apart from this, the setup time of both block pre-

conditioners is the same. Thus, the block-triangular preconditioner should be

preferred to the block-diagonal preconditioner due to the lower number of itera-

tions.

8.3.2 SIMPLE, LSC, and Monolithic Preconditioners

In this section, we present parallel results for SIMPLE and LSC block precondi-

tioners and compare them to the monolithic preconditioner with RGDSW coarse

space. In particular, we will discuss results for different (R)GDSW variants as

approximations for the block inverses in SIMPLE and LSC. The Trilinos pack-

age Teko is used for the general setup and application of SIMPLE and LSC. The

underlying block approximations are constructed with FROSch. All RGDSW pre-

conditioners use the more algebraic Option 1, where no geometric information

is needed and 5 ranks are used for all coarse solvers. For problems with low

Reynold’s, the pressure mass matrix approach can compete with SIMPLE and

LSC. However, the performance of a mass matrix approach quickly deteriorates

155

CHAPTER 8. NUMERICAL RESULTS

if the Reynolds number is increased. Therefore, we use SIMPLE and LSC in the

solution of a Navier–Stokes problem with a Reynolds number of Re = 200. In

particular, we will discuss results for the BFS Navier–Stokes problem in three

dimensions. The solution of nonlinear problems is carried out with an inexact

Newton method and adaptive forcing term of type 2; cf. section 5.4. In partic-

ular, the following parameters for the forcing term were used: maximum forcing

term ηmax = 10−3, minimum forcing term ηmin = 10−8, and initial forcing term

ηinit = 10−3. Moreover, the relative tolerance for Newton’s method is εnl = 10−8.

Results of different coarse space configurations for SIMPLE are depicted in ta-

ble 8.17. The same coarse space configurations are used for the LSC precon-

ditioner and the results are given in table 8.18. For approximations of sub-

problems, we use GDSW and RGDSW with and without coarse basis recycling.

Similar to the result of recycling strategies for the monolithic RGDSW precon-

ditioner reported in table 8.14, a coarse matrix recycling (CM) does not yield a

further decrease in total computation time compared to the coarse basis recycling

(CB) approach. Therefore, these results are not reported here. Additionally, all

preconditioners reuse symbolic factorizations; cf. section 8.2.4. Basis recycling is

always beneficial for the steady BFS Navier–Stokes problem since it reduces the

total computation time compared to the corresponding preconditioners without

recycling. A comparison of the different (R)GDSW and recycling combinations

for SIMPLE and LSC shows us that SIMPLE requires less total computation

time than LSC. This is mainly due to the lower number of iterations. We need

to highlight that there are more efficient versions of LSC which might perform

better for the BFS Navier–Stokes problem. It is possible to incorporate boundary

information to the commutator which improves the performance [63,64].

Furthermore, it is important to note that a one-level SAS preconditioner for the

approximation of the Schur complement in LSC is not a good choice. The setup

is only slightly faster, but the increase in iterations counts is too large. However,

using only a one-level SAS approach for the Schur complement approximation in

SIMPLE is beneficial. Suprisingly, a one-level preconditioner for the Schur com-

plement is even better than a two-level preconditioner w.r.t. iteration counts. The

most efficient combination is a SIMPLE block preconditioner with the following

block approximations: for the fluid block F , a two-level RGDSW preconditioner

156

8.3. COMPARISON OF BLOCK AND MONOLITHIC PRECONDITIONERS
FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

SIMPLE
Prec.’s for blocks N 243 1125 4608

F: GDSW
S: one-lvl SAS

avg. #its. 132.4(5) 142.0(5) 149.4(5)
setup 53.4 s 70.6 s 124.6 s
solve 61.1 s 75.9 s 126.1 s
total 114.5 s 146.5 s 250.7 s

F: GDSW CB
S: one-lvl SAS

avg. #its. 135.4(5) 144.6(5) 153.6(5)
setup 36.0 s 45.3 s 99.9 s
solve 60.7 s 74.4 s 127.9 s
total 96.7 s 119.7 s 227.8 s

F: RGDSW
S: one-lvl SAS

avg. #its. 152.2(6) 159.6(5) 168.2(5)
setup 50.5 s 44.5 s 53.4 s
solve 80.6 s 77.3 s 98.4 s
total 131.1 s 121.8 s 151.8 s

F: RGDSW CB
S: one-lvl SAS

avg. #its. 155.7(6) 161.2(5) 171.4(5)
setup 39.4 s 35.4 s 37.9 s
solve 84.4 s 77.2 s 91.7 s
total 123.8 s 112.6 s 129.6 s

F: GDSW
S: GDSW

avg. #its. 150.6(5) 183.2(5) 207.4(5)
setup 54.9 s 78.7 s 159.0 s
solve 72.3 s 103.0 s 206.2 s
total 127.2 s 181.7 s 365.2 s

F: GDSW CB
S: GDSW CB

avg. #its. 151.8(5) 185.8(5) 212.8 (5)
setup 37.2 s 53.7 s 159.0 s
solve 70.7 s 102.7 s 208.7 s
total 107.9 s 156.4 s 367.7 s

F: RGDSW
S: RGDSW

avg. #its. 156.8(5) 194.4(5) 218.4(5)
setup 43.2 s 45.2 s 55.9 s
solve 71.2 s 96.1 s 133.7 s
total 114.4 s 141.3 s 189.6 s

F: RGDSW CB
S: RGDSW CB

avg. #its. 157.4(5) 197(5) 221.8(5)
setup 32.0 s 34.6 s 42.7 s
solve 70.6 s 96.6 s 134.7 s
total 102.6 s 131.2 s 177.4 s

Table 8.17: Results for SIMPLE preconditioner for the three-dimensional steady

BFS Navier–Stokes problem. P2–P1, H/h = 9, and overlap δ = 1h.

All first level preconditioners use SAS. Number of Newton iterations

in parenthesis.

with coarse basis recycling (CB) is used, and a one-level SAS preconditioner for

the Schur complement SSIMPLE is employed.

157

CHAPTER 8. NUMERICAL RESULTS

LSC
Prec.’s for blocks N 243 1125 4608

F: GDSW
S: one-lvl SAS

avg. #its. 261.8(6) 448.2(5) 930.0(5)
setup 64.6 s 62.7 s 120.7 s
solve 158.4 s 258.1 s 778.9 s
total 223.0 s 320.8 s 899.6 s

F: GDSW CB
S: one-lvl SAS

avg. #its. 259(6) 462.6(5) 922.8(5)
setup 42.0 s 45.5 s 97.8 s
solve 154.1 s 261.6 s 758.0 s
total 196.1 s 307.1 s 855.8 s

F: RGDSW
S: one-lvl SAS

avg. #its. 291.3(6) 492.3(6) 951.8(5)
setup 49.5 s 53.7 s 49.5 s
solve 170.2 s 315.2 s 562.4 s
total 219.7 s 368.9 s 611.9 s

F: RGDSW CB
S: one-lvl SAS

avg. #its. 291.0(6) 492.2(6) 947.8(5)
setup 37.2 s 39.9 s 38.2 s
solve 168.9 s 310.6 s 555.0 s
total 206.1 s 350.5 s 593.2 s

F: GDSW
S: GDSW

avg. #its. 194.7(6) 259.2(5) 377.2(5)
setup 64.1 s 70.0 s 170.0 s
solve 124.9 s 165.3 s 421.7 s
total 189.0 s 235.3 s 591.7 s

F: GDSW CB
S: GDSW CB

avg. #its. 196.8(6) 261(5) 384.6(5)
setup 42.4 s 52.0 s 147.4 s
solve 123.9 s 164.1 s 425.4 s
total 166.1 s 216.1 s 572.8 s

F: RGDSW
S: RGDSW

avg. #its. 201.2(6) 279.8(5) 406.0(5)
setup 50.4 s 45.4 s 52.8 s
solve 122.6 s 155.9 s 260.2 s
total 173.0 s 201.3 s 313.0 s

F: RGDSW CB
S: RGDSW CB

avg. #its. 199.7(6) 280(5) 409.2(5)
setup 37.8 s 34.5 s 43.7 s
solve 120.4 s 154.1 s 278.0 s
total 158.2 s 188.6 s 321.7 s

Table 8.18: Results for LSC preconditioner for the three-dimensional steady

BFS Navier–Stokes problem. P2–P1, H/h = 9, and overlap δ = 1h.

All first level preconditioners use SAS. Number of Newton iterations

in parenthesis.

In table 8.19, we compare the most efficient SIMPLE preconditioner with the

monolithic RGDSW CB preconditioner. This monolithic preconditioner required,

in general, the lowest total computation time of all monolithic variants for the

158

8.3. COMPARISON OF BLOCK AND MONOLITHIC PRECONDITIONERS
FOR INCOMPRESSIBLE FLUID FLOW PROBLEMS

Disc. Prec. N 243 1 125 4 608

P1–P1

Monolithic
RGDSW CB

avg. #its. 48.6(5) 51.2(5) 51.8(5)
setup 49.7 s 52.8 s 61.7 s
solve 32.7 s 36.7 s 41.7 s
total 82.4 s 89.5 s 103.4 s

SIMPLE
RGDSW CB

avg. #its. 166.8(5) 196.6(5) 199.2(5)
setup 37.1 s 39.2 s 43.4 s
solve 99.4 s 126.4 s 140.4 s
total 136.5 s 165.6 s 183.7 s

P2–P1

Monolithic
RGDSW CB

avg. #its. 108.2(5) 103.6(5) 92.0(5)
setup 39.6 s 43.0 s 49.0 s
solve 52.0 s 54.9 s 54.7 s
total 91.6 s 97.9 s 103.7 s

SIMPLE
RGDSW CB

avg. #its. 155.7(6) 161.2(5) 171.4(5)
setup 39.4 s 35.4 s 37.9 s
solve 84.4 s 77.2 s 91.7 s
total 123.8 s 112.6 s 129.6 s

Q2–P1disc

Monolithic
GDSW CB

avg. #its. 21.5(5) 25.6(4) 28.4(5)
setup 41.9 s 51.4 s 103.6 s
solve 8.4 s 10.5 s 51.4 s
total 50.3 s 61.9 s 155.0 s

SIMPLE
RGDSW CB

avg. #its. 144.4(5) 164.4(5) 156(5)
setup 30.3 s 32.5 s 35.8 s
solve 49.4 s 61.5 s 66.1 s
total 79.7 s 94.0 s 101.9 s

Table 8.19: Comparison of the monolithic preconditioner and SIMPLE for the

three-dimensional steady BFS Navier–Stokes problem. P1–P1 with

H/h = 20, P2–P1 with H/h = 9, and Q2–P1disc with H/h = 8.

The overlap is δ = 1h. All first level preconditioners use SAS.

Number of Newton iterations in parenthesis.

given steady BFS Navier–Stokes problem; cf. table 8.14. A history of the adaptive

type 2 forcing terms for the monolithic preconditioner applied to the BFS Navier–

Stokes problem with a P2–P1 discretization is depicted in table 8.20.

Furthermore, three different finite element discretizations are used for the com-

parison in table 8.19. For the stabilized P1–P1 elements, the monolithic precondi-

tioner provides the lowest total computation time. Nearly half the time is needed

for the setup and solution of problems on 1 125 and 4 608 MPI ranks compared to

SIMPLE. Furthermore, the monolithic preconditioner is around 20% faster than

159

CHAPTER 8. NUMERICAL RESULTS

Newton step 1 2 3 4 5

Forcing term ηk 1.0e-3 1.8e-05 1.0e-3 1.0e-3 1.0e-3

Table 8.20: History of forcing terms for the P2–P1 problem of table 8.19 pre-

conditioned with the monolithic variant and 243 subdomains.

SIMPLE for the P2–P1 discretizations. It is not possible to employ the mono-

lithic RGDSW preconditioner for the Q2–P1disc discretization. There, a singular

coarse matrix arises after the RAP product, which is a topic for future research.

As a remedy we employ a monolithic GDSW CB preconditioner. Even though the

setup of GDSW is much more expensive, the performance is competitive. This is

due to the low iteration counts of the monolithic GDSW preconditioner for the

Q2–P1disc elements. For a problem with 4 608 subdomains it takes SIMPLE 1/3

less time to solve it compared to the monolithic GDSW preconditioner. Since

the coarse space of GDSW is, in general, too large to be competitive for a three-

dimensional problem with several thousand of ranks and subdomains, we have

constructed a smaller coarse space. This GDSW variant is denoted GDSW–Star .

We follow the idea of RGDSW and use vertex-based basis functions. In contrast

to RGDSW, these functions only prescribe values for adjacent edges and not for

adjacent faces. The values for edges are determined by an inverse multiplicity

scaling in analogy to RGDSW Option 1. To obtain a partition of unity, we fur-

ther add all face basis functions to the coarse space. Therefore, the GDSW–Star

coarse space can be seen as a combination of GDSW and RGDSW. Results for the

GDSW–Star preconditioner with coarse basis recycling are given in table 8.21.

For smaller problems with 243 and 1 125 subdomains this coarse space is slower

than GDSW but faster than SIMPLE. This relation is reversed for 4 608 ranks,

where SIMPLE is 20 % faster.

8.4 Results for Almost Incompressible Linear

Elasticity Problems

In this section, we consider the three-dimensional mixed linear elasticity cube and

beam problems; cf. section 5.1.4. All parallel results in this section are based on

the older FROSch implementation, which exclusively used Epetra. In table 8.22,

we compare the weak scalability using a direct coarse solver and the full coarse

160

8.4. RESULTS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY
PROBLEMS

Prec. N 243 1 125 4 608

Monolithic
GDSW–Star CB

avg. #its. 88.3(6) 91.0(5) 98.4(5)
setup 35.3 s 35.0 s 51.4 s
solve 36.5 s 41.9 s 71.9 s
total 71.8 s 76.9 s 123.3 s

Table 8.21: GDSW–Star for the three-dimensional steady BFS Navier–Stokes

problem. Q2–P1disc with H/h = 8. The overlap is δ = 1h. All

first level preconditioners use SAS. Number of Newton iterations in

parenthesis.

space with inexact coarse solves and neglecting the linearized rotations from the

coarse space. For most results of this section, we only use 12 MPI ranks on a

Coarse solve
coarse space with rotations without rotations

#cores 64 216 1 000 4 096 64 216 1 000 4 096

Exact
Time 35.7s 38.1s 44.5s 93.4s 35.8s 37.4s 42.8s 98.7s
Effic. 100% 94% 80% 38% 100% 96% 83% 36%

GMRES its. 50 50 50 50 69 70 71 72

εc = 10−1
Time 40.4s 48.7s 61.1s 104.6s 38.2s 45.2s 58.4s 90.9s
Effic. 87% 73% 58% 34% 94% 79% 61% 39%

FGMRES its. 90 122 157 226 93 125 139 203

Table 8.22: Weak scalability with and without rotations for MLE cube prob-

lem in three dimensions with structured mesh and decomposition,

H/h = 11, δ = 1h, ν = 0.49999; 12 MPI ranks per node. The

coarse problem is solved with MUMPS or GMRES up to a tolerance

εc. Baseline for the efficiency is the fastest time on 64 cores with

rotations and exact coarse solves.

node with 24 cores due to the higher memory demands for GDSW and a mixed

linear elasticity problem. For inexact coarse solves, we employ GMRES with the

tolerance εc. Therefore, FGMRES is used for the global problem; cf. section 8.1.

If rotations are omitted from the the coarse space, inexact coarse solves are most

efficient for 4 096 cores. Only results for a coarse solve tolerance of εc = 10−1

are shown, as for lower tolerances, the total time becomes worse both with and

without rotations. For inexact coarse solves, we can observe that the number

of iterations is similar for coarse spaces with and without rotations. In the case

of 1 000 and 4 096 MPI ranks, we even need less iterations without rotations.

161

CHAPTER 8. NUMERICAL RESULTS

This can be explained with the high coarse tolerance εc, as the coarse GMRES

problem is often solved in a single iteration. Furthermore, we only report results

for an overlap δ = 1h, as larger overlaps decreased the overall efficiency. However,

as discussed in section 8.1.1.2, the parallel efficiency can be improved for larger

numbers of cores by speeding up the computations on the coarse level. Let us

note that the coarse problem in the case of elasticity using rotations is even larger

than in the case of Stokes equations.

For an elliptic linear elasticity problem with ν = 0.3 and exact coarse solves, it

was reported in [85] that it is more efficient to set up the GDSW coarse problem

without rotations.

Here, for ν = 0.49999, the coarse space with rotations and exact coarse solves

is slightly more efficient than the coarse space without rotations and exact coarse

solves. In total, using an inexact coarse solver, the coarse space without rotations,

and an overlap of δ = 1h, is the most efficient approach for a large number of

MPI ranks. Moreover, from the implementation and usability point of view,

neglecting the rotations in the coarse space should be preferred since coordinates

of mesh nodes or basis vectors of the nullspace are needed as input to set up

the coarse space with rotations. For an algebraic setup of our preconditioner,

the approach without rotations should thus be preferred. In table 8.23, iteration

counts both with and without rotations for an unstructured decomposition and

ν approaching 0.5 are presented. We observe very good numerical scalability for

coarse space with rotations without rotations

N
ν

0.3 0.49 0.4999 0.49999 0.3 0.49 0.4999 0.49999

64 36 43 45 45 41 52 56 56
216 45 51 51 51 54 68 69 69
512 50 55 55 55 63 79 78 78

1 000 53 60 59 67 68 86 82 82

Table 8.23: Iteration counts for the three-dimensional MLE cube problem with

an unstructured mesh and decomposition, H/h = 11, δ = 2h.

both coarse spaces. However, the numerical scalability depicted in table 8.24

for the MLE beam problem deteriorates for higher Poisson ratios and number of

subdomains for both types of coarse spaces. The main difference between the

MLE cube and the MLE beam problem are the boundary conditions. While the

162

8.5. RESULTS OF FULLY ALGEBRAIC GDSW AND RGDSW
PRECONDITIONERS FOR NONLINEAR ELASTICITY PROBLEMS

coarse space with rotations without rotations

N
ν

0.3 0.4 0.49 0.499 0.4999 0.3 0.4 0.49 0.499 0.4999

64 43 44 55 66 70 85 90 110 124 128
216 51 52 70 105 115 107 114 145 190 208
512 57 59 81 131 152 130 135 173 249 287

1 000 61 63 88 147 182 140 146 192 297 >300

Table 8.24: Iteration counts for the three-dimensional MLE beam problem,

H/h = 11, δ = 2h, unstructured decomposition. Maximum number

of iterations is 300.

MLE cube problem possesses only homogeneous Dirichlet boundary conditions for

the displacements, the MLE beam problem has only a small portion of Dirichlet

boundary. The beam is clamped at the bottom and the rest of the beam can

move freely. We have observed a similar behavior for Stokes and Navier–Stokes

problems with an outflow boundary. There, a monolithic two-level overlapping

Schwarz GDSW preconditioner was used. The monolithic RGDSW coarse spaces

led to an improved scalability for fluid flow problems with a Neumann boundary,

compared to the monolithic GDSW coarse space; cf. table 8.10. The scalability of

the RGDSW coarse spaces for mixed linear elasticity problems could be evaluated

in future numerical tests.

8.5 Results of Fully Algebraic GDSW and RGDSW

Preconditioners for Nonlinear Elasticity

Problems

In our numerical simulations of the nonlinear elasticity Cube and Foam prob-

lems, we will employ the recycling strategies presented in section 8.2.4. Here,

we always reuse the symbolic factorizations from the previous Newton iteration

and/or time step. Moreover, the coarse basis functions from previous iterations

are reused for the stationary problem. For the dynamic problem we additionally

reuse the coarse matrix. Furthermore, a SAS first level operator with overlap

δ = 1h is employed for all problems in this section. The following discussion

and results have been published in [81]. In this section, we compare the GDSW

163

CHAPTER 8. NUMERICAL RESULTS

and RDSW preconditioners with exact interface maps and a full coarse space,

GDSW and RGDSW preconditioners with an exact interface map but without

rotational basis functions, and the fully algebraic variant with approximated in-

terface and without rotational basis functions; for the sake of brevity, we denote

the three variants as “rotations”, “no rotations”, and “algebraic”, respectively.

As discussed in section 5.1.3, we consider a stationary elasticity problem with

homogeneous shear modulus of µ = 5 · 103 and a dynamic elasticity problem

with two material phases; cf. fig. 8.12 (left) for a graphical representation of the

coefficient distribution of the shear modulus. For both cases, we choose ν = 0.4.

Figure 8.12: Left: Slice through elements with high coefficient (µhigh = 103)

displayed as a wireframe. Low coefficient is µlow = 1; cf. [82], for a

detailed discussion of the foam geometry used for an heterogeneous

Poisson problem. Right: Solution of dynamic Foam problem at

T = 10−2 for ∆t = 10−3 with a warp filter and a scaling factor of

5. Taken from [81]

For the stationary homogeneous model problem, we use structured meshes

and structured decompositions into cubic subdomains, whereas for the dynamic

problem, we use a fixed unstructured tetrahedral mesh with roughly 3.3 million

elements and 588 k nodes. We use the inexact Newton method of section 5.4 with

a type 2 forcing term until a relative residual of εnl = 10−8 is achieved. The initial

forcing term is ηinit = 10−3 and the maximum and minimum forcing terms are

ηmax = 10−2 and ηmin = 10−8, respectively. Furthermore, backtracking line search

164

8.5. RESULTS OF FULLY ALGEBRAIC GDSW AND RGDSW
PRECONDITIONERS FOR NONLINEAR ELASTICITY PROBLEMS

is used for the globalization of Newton’s method. In particular, the step length is

chosen as 1
2l

with l = 0, 1, ... until the Armijo condition is satisfied. All linearized

problems are solved with right-preconditioned GMRES with the corresponding

GDSW and RGDSW preconditioners and the tolerance for the relative residual

error is the forcing term η.

Prec. Type #cores 64 512 4 096

GDSW

rot.

avg. #its. 17.8 19.0 19.0
setup 35.1 s 45.3 s 167.1 s
solve 7.4 s 9.7 s 26.1 s
total 42.5 s 55.0 s 183.2 s

no rot.

avg. #its. 27.3 32 35.5
setup 29.3 s 32.9 s 70.8 s
solve 10.6 s 13.8 s 23.3 s
total 39.9 s 46.7 s 94.1 s

algebraic

avg. #its. 32.8 38.5 39.0
setup 39.5 s 41.6 s 84.3 s
solve 13.4 s 17.2 s 27.3 s
total 52.9 s 58.8 s 111.6 s

RGDSW

rot.

avg. #its. 20.5 22.5 22.5
setup 28.8 s 30.9 s 42.0 s
solve 8.2 s 9.5 s 11.7 s
total 37.0 s 40.4 s 53.7 s

no rot.

avg. #its. 33.0 37.3 39.5
setup 25.2 s 26.5 s 30.1 s
solve 12.4 s 14.7 s 18.0 s
total 27.6 s 41.2 s 48.1 s

algebraic

avg. #its. 40.0 42.0 43.0
setup 27.2 s 28.7 s 32.9 s
solve 15.5 s 16.8 s 19.6 s
total 42.7 s 45.5 s 52.5 s

Table 8.25: Stationary Cube problem, discretization P1 (H/h = 21), iteration

counts are averages over all Newton iterations. All problems were

solved in 4 Newton iterations. Taken from [81].

In Tables table 8.25 and table 8.26, weak scaling results for the stationary

model problem with piecewise linear and piecewise quadratic elements are de-

picted. Although iteration counts are slightly higher for the RGDSW coarse

spaces compared to the respective GDSW coarse spaces, the total computation

165

CHAPTER 8. NUMERICAL RESULTS

Prec. Type #cores 64 512 4 096

GDSW

rot.

avg. #its. 16.3 17.3 19.3
setup 40.1 s 55.0 s 223.3 s
solve 5.9 s 8.5 s 24.4 s
total 46.0 s 63.5 s 247.7 s

no rot.

avg. #its. 24.5 29.3 32.3
setup 32.5 s 38.4 s 102.2 s
solve 8.4 s 11.8 s 20.0 s
total 40.9 s 50.2 s 122.2 s

algebraic

avg. #its. 57.5 74.8 78.0
setup 42.0 s 46.0 s 124.8 s
solve 20.5 s 29.9 s 50.5 s
total 62.5 s 75.9 s 175.3 s

RGDSW

rot.

avg. #its. 18.8 21.3 19.8
setup 27.8 s 31.1 s 41.3 s
solve 6.4 s 8.0 s 8.9 s
total 34.2 s 39.1 s 50.2 s

no rot.

avg. #its. 29.0 32.8 35.5
setup 26.2 s 27.3 s 31.1 s
solve 9.4 s 11.8 s 14.3 s
total 35.6 s 39.1 s 45.4 s

algebraic

avg. #its. 60.7 78.5 83.0
setup 27.9 s 28.7 s 34.1 s
solve 19.9 s 27.9 s 33.1 s
total 47.8 s 56.6 s 67.2 s

Table 8.26: Stationary Cube problem, discretization P2 (H/h = 9), iteration

counts are averages over all Newton iterations. All problems were

solved in 4 Newton iterations. Taken from [81].

time is much smaller for RGDSW due to the lower dimension of the coarse prob-

lem. This effect is even stronger for larger numbers of subdomains and cores;

cf. table 8.27. Furthermore, we observe competitive iteration counts and com-

puting times when using the fully algebraic coarse spaces. In addition to that,

the approximation strategy for the interface seems to perform better for piecewise

linear than for piecewise quadratic elements.

In Figure 8.13, we present strong scaling results from 48 to 720 cores for the

dynamic model problem. The reported times are the total times for our pre-

conditioners, i.e., the sum of the times needed for their construction and their

166

8.5. RESULTS OF FULLY ALGEBRAIC GDSW AND RGDSW
PRECONDITIONERS FOR NONLINEAR ELASTICITY PROBLEMS

#cores 64 512 4 096

GDSW

rotations 1 593 16 149 144 045
no rotations 837 8 589 77 085
algebraic P1 disc. 1 395 11 355 84 762
algebraic P2 disc. 1 554 11 466 84 708

RGDSW

rotations 162 2 058 20 250
no rotations 81 1 029 10 125
algebraic P1 disc. 93 1 065 10 218
algebraic P2 disc. 93 1 038 10 134

Table 8.27: Comparison of coarse matrix sizes for a structured domain de-

composition and the approximated subdomain maps for a P1

(H/h = 21) and P2 (H/h = 9) discretizaion. Taken from [81].

Figure 8.13: Strong scaling for dynamic problem up to time T = 2 · 10−2 for

the foam geometry. Taken from [81].

applications in GMRES. We solve the problem with ∆t = 10−3 up to a final time

T = 2 · 10−2 using the RGDSW rotations coarse space and using the RGDSW

algebraic coarse space both with matrix recycling. Here, we observe very good

strong scalability results for both variants even though the model problem has

coefficient jumps. Again, the fully algebraic variant is competitive.

167

CHAPTER 8. NUMERICAL RESULTS

8.6 Results for Fluid-Structure Interaction

Problems

In this final section of numerical results, we combine the previously presented pre-

conditioners to efficiently solve FSI problems. We present strong scaling results

for the FSI benchmark problem which are computed with the geometry explicit

approach. The comparison of the SIMPLE block preconditioner for the fluid and

the monolithic approach is continued. In particular, we solve the FSI bench-

mark problem with GMRES and the FaCSI preconditioner; cf. section 6.5.1. In

FaCSI, we apply the monolithic RGDSW preconditioner with CB and CB+CM

recycling as well as the SIMPLE preconditioner with the following block approxi-

mations to the fluid subproblem: RGDSW preconditioner with CB and CB+CM

recycling for the F block of the fluid problem and a one-level Schwarz approxima-

tion for the approximate Schur complement. This was also the best performing

combination of SIMPLE block preconditioners for a BFS Navier–Stokes problem;

cf. section 8.3.2. Moreover, the solid and geometry problems are solved using a

one-level Schwarz preconditioner. All preconditioners use SAS in the first level

with overlap δ = 1h.

The results were computed on an unstructured tetrahedral mesh with 34 352

P1 fluid nodes and 7 155 P1 solid nodes. Furthermore, we used P2–P1 mixed

finite elements for the spatial discretization of the Navier–Stokes equations in

ALE form. Consequently, we use P2 elements for the solid problem to guar-

antee matching nodes on the fluid-solid interface. For the solid problem, we

consider the nonlinear elasticity equation with the St. Venant–Kirchhoff material

law. As the geometry problem, a scaled harmonic extension problem with a

P2 discretization is used. For the description of the benchmark and material

parameters of the subproblems, we refer to section 5.1.7. Newmark and BDF2

are used as time stepping schemes for solid and fluid, respectively, and the time

step length is ∆t = 0.001 s. The results in table 8.28 are taken from a simulation

of the first 100 time steps, since there was no significant increase in iteration

counts during later time steps. The geometry explicit FSI system is linearized

with Newton’s method. We employ an inexact Newton method with type 2

forcing term: ηmax = 10−3, ηmin = 10−8, and ηinit = 10−3 until a relative residual

norm smaller than εnl = 10−8 is achieved. Moreover, the line search backtracking

168

8.6. RESULTS FOR FLUID-STRUCTURE INTERACTION PROBLEMS

cores Prec. avg. #its. setup solve total

240

Monolithic CB 51.5 743.6 s 552.6 s 1 296.2 s
Monolithic CB+CM 48.7 462.8 s 522.8 s 985.6 s
SIMPLE CB 59.9 569.5 s 578.0 s 1 147.5 s
SIMPLE CB+CM 65.0 413.3 s 622.8 s 1 036.1 s

360

Monolithic CB 51.7 699.0 s 515.6 s 1214.6 s
Monolithic CB+CM 48.4 326.1 s 494.4 s 820.5 s
SIMPLE CB 63.0 466.2 s 499.9 s 966.1 s
SIMPLE CB+CM 68.3 304.1 s 541.5 s 845.6 s

480

Monolithic CB 52.4 631.1 s 564.3 s 1 195.4 s
Monolithic CB+CM 49.3 306.2 s 531.2 s 837.4 s
SIMPLE CB 67.1 475.1 s 660.6 s 1 135.7 s
SIMPLE CB+CM 72.8 275.6 s 721.9 s 997.5 s

Table 8.28: Results for SIMPLE and monolithic preconditioners in FaCSI for

the three-dimensional FSI benchmark. P2–P1 elements for the fluid,

overlap δ = 1h, one-level Schwarz preconditioner for solid and ge-

ometry parts. All first levels are SAS preconditioners. St. Venant–

Kirchhoff material law. Simulation of 100 time steps. An average

of 3.1 Newton iterations was needed for all preconditioners.

globalization with step length 1
2l

for l = 0, 1, ... is used.

After 3.5 s of simulation time, we obtain a deflection of 9.1164·10−4 m in x-

direction and 2.0292·10−5 m in y-direction of the reference point (0.45, 0.15, 0.15) ∈
Ω̂s, i.e., a point in the upper left part of the solid domain. The values reported

in [125] for a corresponding steady-state benchmark are much lower: 5.95·10−5 m

in x-direction. In [6] an incompressible Mooney–Rivlin material has been used

and the resulting deflections after 4.6 s are closer to our results: 4.558·10−3 m in

x-direction and 3.871·10−4 m in y-direction.

The usage of monolithic RGDSW and SIMPLE preconditioners for the fluid

block provides good results. Similar to the standalone time-dependent Navier–

Stokes problem, we obtain lower total computing times if coarse matrix recycling

is used. Surprisingly, CB+CM recycling for the monolithic preconditioner yields

a lower amount of average GMRES iterations compared to CB recycling. The

monolithic preconditioner with CB+CM grants the fastest computation times.

We highlight that the timings in table 8.28 also include setup and application

169

CHAPTER 8. NUMERICAL RESULTS

of the one-level SAS preconditioner of the solid problem as well as the one-level

SAS preconditioner of the geometry problem.

Realistic artery: We also consider a realistic artery which was constructed from

a surface mesh of arteries with an aneurysm [91]. The aneurysm and branching

sections were cut off and a solid geometry was constructed around the remaining

part of the vessel resulting in an artery and arterial wall with a total diameter of

2.5 mm. In fig. 8.14, the tetrahedral meshes of the fluid and the solid domain are

shown. The lumen diameter of the artery is approximately 2 mm, which corre-

sponds to the size of a middle cerebral artery; cf. [119]. The fluid domain consists

of 21 277 P1 nodes and 99 969 elements, while the solid domain is discretized with

23 889 P1 nodes and 84 734 elements. Furthermore, the resulting GE FSI matrix

problem possesses 1 028 422 d.o.f.. Again, Newmark and BDF2 are used as time

stepping schemes for solid and fluid, respectively, and the time step length is

∆t = 0.001 s. The geometry problem is fixed with homogeneous Dirichlet bound-

ary conditions on ∂Ωf,in and ∂Ωf,out. In particular, the scaled harmonic extension

problem uses the scaling α = 1000 and the distance dist = 0.1; cf. section 5.3.

We model the physical properties of blood with the following fluid parameters:

density ρf = 10−6 kg
mm3 and dynamic viscosity µf = 3·10−6 kg

mm·s . Blood can be

modeled as a Newtonian fluid in larger arteries like the middle cerebral artery. To

model the arterial wall we use the St. Venant–Kirchhoff material model and the

following paramters: density ρs = 1.3·10−6 kg
mm3 , Young’s modulus E = 910 kg

mm·s2 ,

and Poisson’s ratio νs = 0.49. The structure is clamped at both ends and a

parabolic inflow profile in z-direction is prescribed on the left; all figures of the

realistic artery are positioned such that the blood flows from left to right. The

maximum inflow velocity is linearly increased from 0 at t = 0 to umax = 600 mm
s

at t = 0.5 s. This peak velocity occurs in middle cerebral arteries; cf. [110]. At

the outflow, a do-nothing boundary condition is used. For the realistic artery

problem, this outflow condition was sufficient. However, to prevent unphysical

oscillations due to wave reflections at the outflow boundary, resistance or resistive

boundary conditions can be used; cf. [143,144].

We use the same line search backtracking globalization as for the FSI benchmark.

Moreover, the following parameters for the inexact Newton method with type 2

forcing term are used: ηmax = 10−2, ηmin = 10−6, and ηinit = 10−3 until a relative

170

8.6. RESULTS FOR FLUID-STRUCTURE INTERACTION PROBLEMS

residual norm smaller than εnl = 10−8 is achieved. The solution at t = 0.5 s is

shown in fig. 8.15.

Figure 8.14: Solid domain (front) with highlighted mesh in blue and fluid do-

main (back) with highlighted mesh in red of the realistic FSI prob-

lem.

Figure 8.16 shows a comparison of the St. Venant–Kirchhoff material and a Neo–

Hookean material. The deformation of the artery with the Neo–Hooke material is

slightly larger, but no significant difference can be observed and the overall defor-

mation of the artery is small. With these material models a realistic behavior can

only be described for small deformations. For larger deformations, more complex

material models which include fiber-orientation should be used; cf. [10, 11, 26].

Furthermore, in fig. 8.17, the number of average linear iterations per Newton

iteration for the St. Venant–Kirchhoff material and the Neo–Hooke material are

compared. A similar number of total linear iterations is needed for both prob-

lems. For the Neo–Hookean material, the average number of linear iterations per

time step and Newton iteration is 69.4. Similarly, the St. Venant–Kirchhoff mate-

rial requires on average 71.0 linear iterations. Roughly the same number of total

Newton iterations is needed for the Neo–Hookean and the St. Venant–Kirchhoff

material. On average, the FSI problems are solved in 3.2 Newton iterations.

The use of a fully monolithic one-level SAS preconditioner, cf. section 6.5.2,

171

CONCLUSION AND FUTURE WORK

Figure 8.15: Velocity magnitude at t = 0.5 s and clipped deformed artery wall

with scaling factor 200.

for the simulation of the realistic artery yields no adequate results. Iterations

counts are 10 times higher than for the FaCSI preconditioner. The partitions of

the fluid and solid domains are independent, which can result in geometrically

independent fluid subdomains and solid subdomains without a shared fluid-solid

interface. The resulting monolithic preconditioner cannot account for the cor-

rect coupling and only aggregates fluid and solid subdomains based on the rank.

Figure 8.18 shows independent decompositions of the fluid and the solid domain

into 24 subdomains. These partitions are likely the cause of the bad performance

of a fully monolithic preconditioner. As a remedy, we would need to combine

both meshes and partition the resulting mesh. This approach is currently not

implemented and a topic for future investigation.

172

Figure 8.16: Displacements of artery wall with Neo–Hooke material (front) and

St. Venant–Kirchhoff material (back) at t = 0.5 s with scaling fac-

tor 200.

Figure 8.17: Average number of linear iterations per Newton iteration for each

time step of the St. Venant–Kirchhoff material and the Neo–Hooke

material.

173

CONCLUSION AND FUTURE WORK

Figure 8.18: Solid domain (front) and fluid domain (back), decompositions into

24 subdomains. Same color of subdomain corresponds to same

MPI rank.

174

9 Conclusion

The efficient solution of incompressible fluid flow problems with monolithic par-

allel preconditioners on HPC systems with several thousand cores has been the

main focus of this thesis. For the simulations of these fluid flow problems and

additional fluid-structure interaction problems, the parallel object-oriented C++

software library FEDDLib has been developed. Furthermore, the Trilinos package

FROSch for parallel Schwarz preconditioners has been extended to saddle point

problems and general monolithic systems. In particular, the essentially algebraic

monolithic GDSW and RGDSW preconditioners were developed for Stokes and

Navier–Stokes fluid problems. These preconditioners can be constructed like-

wise for structured and unstructured spatial finite element discretizations. To

reduce the time-to-solution, different recycling approaches for steady-state and

time-dependent Navier–Stokes problems have been considered. In particular, the

coarse basis recycling for steady-state problems resulted in significant reductions

in computing time. Similarly, the coarse basis and additional coarse matrix re-

cycling provided substantial reductions in time-to-solution for time-dependent

Navier–Stokes problems. Moreover, advanced combination techniques such as

the multiplicative coupling and the parallel additive coupling of the first and

coarse level operators provided further efficiency gains. Specifically, the simulta-

neous computation of the first and second level of the additive two-level RGDSW

preconditioner has been most efficient. Weak scalability results for up to 11 979

cores showed an efficiency of over 80 % for a three-dimensional Stokes problem.

The largest possible configuration on the employed supercomputer allowed for

problems with over 400 million degrees of freedom.

A comparison of the novel monolithic preconditioners with block-diagonal and

block-triangular preconditioners for incompressible fluid flow problems resulted in

faster convergence rates and lower total computing times. As a proof of concept,

the most efficient monolithic RGDSW preconditioner for time-dependent Navier–

175

CONCLUSION AND FUTURE WORK

Stokes problems as well as two-level RGDSW preconditioners for solid problems

were combined to solve an FSI problem of a realistic artery. Extended simulations

of FSI problems with a focus on parallel two- and multi-level overlapping Schwarz

methods are a topic for future investigations.

176

Bibliography

[1] James Ahrens, Berk Geveci, and Charles Law, Paraview: An end-user tool for large data
visualization, The visualization handbook 717 (2005).

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis
and Applications 23 (2001), no. 1, 15–41.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for
the parallel solution of linear systems, Parallel Computing 32 (2006), no. 2, 136–156.

[4] Donald G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Com-
put. Mach. 12 (1965), 547–560.

[5] Kenneth Joseph Arrow, Leonid Hurwicz, Hirofumi Uzawa, and Hollis Burnley Chenery,
Studies in linear and non-linear programming (1958).

[6] Eugenio Aulisa, Simone Bnà, and Giorgio Bornia, A monolithic ALE Newton-
Krylov solver with multigrid-Richardson-Schwarz preconditioning for incompressible fluid-
structure interaction, Comput. & Fluids 174 (2018), 213–228.

[7] Utkarsh Ayachit, The paraview guide: a parallel visualization application, Kitware, Inc.,
2015.

[8] S. Badia, A. Mart́ın, and J. Principe, Multilevel balancing domain decomposition at ex-
treme scales, SIAM Journal on Scientific Computing 38 (2016), no. 1, C22–C52.

[9] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dmitry
Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes,
Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F. Smith, Stefano
Zampini, Hong Zhang, and Hong Zhang, PETSc Web page, 2019.

[10] D. Balzani, D. Böse, D. Brands, R. Erbel, A. Klawonn, O. Rheinbach, and J. Schröder,
Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of in-
travascular ultrasound diagnostics, Engrg. Comput. 29 (2012), no. 8, 888–906.

[11] Daniel Balzani, Simone Deparis, Simon Fausten, Davide Forti, Alexander Heinlein, Axel
Klawonn, Alfio Quarteroni, Oliver Rheinbach, and Jörg Schröder, Numerical modeling
of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and
anisotropic viscoelastic material models at finite strains, Int. J. Numer. Methods Biomed.
Eng. (2015).

[12] Randolph E. Bank, Bruno D. Welfert, and Harry Yserentant, A class of iterative methods
for solving saddle point problems, Numer. Math. 56 (1990), 645 –666.

[13] Andrew T. Barker and Xiao-Chuan Cai, Scalable parallel methods for monolithic coupling
in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys.
229 (2010), no. 3, 642–659.

177

BIBLIOGRAPHY

[14] , Two-level Newton and hybrid Schwarz preconditioners for fluid-structure inter-
action, SIAM J. Sci. Comput. 32 (2010), no. 4, 2395–2417.

[15] Ted Belytschko and Thomas J. R. Hughes (eds.), Computational methods for transient
analysis, Mechanics and Mathematical Methods. A Series of Handbooks. Subseries: Com-
putational Methods in Mechanics, vol. 1, Elsevier Scientific Publishing Co., Amsterdam,
1983.

[16] Michele Benzi, Gene H. Golub, and Jörg Liesen, Numerical solution of saddle point prob-
lems, Acta Numer. 14 (2005), 1–137.

[17] Michele Benzi and Xue-Ping Guo, A dimensional split preconditioner for Stokes and
linearized Navier-Stokes equations, Appl. Numer. Math. 61 (2011), no. 1, 66–76.

[18] Michele Benzi, Michael Ng, Qiang Niu, and Zhen Wang, A relaxed dimensional factor-
ization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys.
230 (2011), no. 16, 6185–6202.

[19] Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and ap-
plications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg,
2013.

[20] , Mixed finite element methods and applications, Springer Series in Computational
Mathematics, vol. 44, Springer, Heidelberg, 2013.

[21] D. Braess and C. Blömer, A multigrid method for a parameter dependent problem in solid
mechanics, Numer. Math. 57 (1990), no. 8, 747–761.

[22] Dietrich Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elas-
tizitätstheorie, Springer-Verlag, 2013.

[23] James H. Bramble and Joseph E. Pasciak, A domain decomposition technique for Stokes
problems, Appl. Numer. Math. 6 (1990), no. 4, 251–261.

[24] James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev, Analysis of the inexact
Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997), no. 3,
1072–1092.

[25] Susanne C. Brenner, Multigrid methods for parameter dependent problems, RAIRO Modél.
Math. Anal. Numér. 30 (1996), no. 3, 265–297.

[26] S. Brinkhues, A. Klawonn, O. Rheinbach, and J. Schröder, Augmented Lagrange methods
for quasi-incompressible materials - Applications to soft biological tissue, International
Journal for Numerical Methods in Biomedical Engineering 29 (2013), no. 3, 332–350.

[27] Alexander N. Brooks and Thomas J. R. Hughes, Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199–
259. FENOMECH ”81, Part I (Stuttgart, 1981).

[28] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50–64.

[29] Xiao-Chuan Cai, Some domain decomposition algorithms for nonselfadjoint elliptic and
parabolic partial differential equations, Ph.D. Thesis, 1989. Tech. Rep. 461, Department
of Computer Science, Courant Institute.

[30] Xiao-Chuan Cai and David E. Keyes, Nonlinearly preconditioned inexact Newton algo-
rithms, SIAM J. Sci. Comput. 24 (2002), no. 1, 183–200.

178

BIBLIOGRAPHY

[31] Xiao-Chuan Cai, David E. Keyes, and Leszek Marcinkowski, Non-linear additive Schwarz
preconditioners and application in computational fluid dynamics, Internat. J. Numer.
Methods Fluids 40 (2002), no. 12, 1463–1470.

[32] Xiao-Chuan Cai and Marcus Sarkis, A restricted additive Schwarz preconditioner for
general sparse linear systems, SIAM Journal on Scientific Computing 21 (1999), 239–
247.

[33] Deniz Cevik, Eine parallele Implementierung monolithischer Fluid-Struktrur-Interaktion
in ALE-Formulierung, Master’s Thesis, Universität zu Köln, 2020.

[34] Philippe G. Ciarlet, Mathematical Elasticity Volume I: Three–Dimensional Elasticity,
North-Holland, 1988.

[35] Lyndon Clarke, Ian Glendinning, and Rolf Hempel, The MPI message passing interface
standard, Programming environments for massively parallel distributed systems, 1994,
pp. 213–218.

[36] Jean-Michel Cros, A preconditioner for the Schur complement domain decomposition
method, Domain decomposition methods in science and engineering, 2003, pp. 373–380.
Proceedings of the 14th International Conference on Domain Decomposition Methods in
Science and Engineering.

[37] P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni, Parallel algorithms for fluid-
structure interaction problems in haemodynamics, SIAM J. Sci. Comput. 33 (2011), no. 4,
1598–1622.

[38] Paolo Crosetto, Fluid-structure interaction problems in hemodynamics parallel solvers,
preconditioners, and applications, EPFL, MATHICSE, Lausanne, 2011.

[39] Eric C. Cyr, John N. Shadid, and Raymond S. Tuminaro, Stabilization and scalable block
preconditioning for the Navier-Stokes equations, J. Comput. Phys. 231 (2012), no. 2, 345–
363.

[40] Leonardo Dagum and Ramesh Menon, OpenMP: an industry standard API for shared-
memory programming, IEEE computational science and engineering 5 (1998), no. 1, 46–
55.

[41] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug, Inexact Newton methods, SIAM
J. Numer. Anal. 19 (1982), no. 2, 400–408.

[42] Simone Deparis, Davide Forti, Gwenol Grandperrin, and Alfio Quarteroni, Facsi: A block
parallel preconditioner for fluid–structure interaction in hemodynamics, Journal of Com-
putational Physics 327 (2016), 700–718.

[43] , FaCSI: a block parallel preconditioner for fluid-structure interaction in hemody-
namics, J. Comput. Phys. 327 (2016), 700–718.

[44] Simone Deparis, Gwenol Grandperrin, and Alfio Quarteroni, Parallel preconditioners
for the unsteady Navier-Stokes equations and applications to hemodynamics simulations,
Comput. & Fluids 92 (2014), 253–273.

[45] Clark Dohrmann, Axel Klawonn, and Olof B. Widlund, A family of energy minimizing
coarse spaces for overlapping Schwarz preconditioners, Domain decomposition methods
in science and engineering, 2008, pp. 247–254.

[46] Clark R. Dohrmann, Some domain decomposition algorithms for mixed formulations of
elasticity and incompressible fluids, Workshop on Adaptive Finite Elements and Domain
Decomposition Methods.

179

BIBLIOGRAPHY

[47] , A preconditioner for substructuring based on constrained energy minimization,
SIAM J. Sci. Comput. 25 (2003), no. 1, 246–258.

[48] Clark R. Dohrmann and Pavel B. Bochev, A stabilized finite element method for the Stokes
problem based on polynomial pressure projections, Internat. J. Numer. Methods Fluids 46
(2004), no. 2, 183–201.

[49] Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund, Domain decomposition for less
regular subdomains: overlapping Schwarz in two dimensions, SIAM J. Numer. Anal. 46
(2008), no. 4, 2153–2168.

[50] Clark R. Dohrmann and Olof B. Widlund, An overlapping schwarz algorithm for almost
incompressible elasticity, SIAM J. Numer. Anal. 47 (2009), no. 4, 2897–2923.

[51] , Hybrid domain decomposition algorithms for compressible and almost incom-
pressible elasticity, Internat. J. Numer. Meth. Engng 82 (2010), no. 2, 157–183.

[52] , An alternative coarse space for irregular subdomains and an overlapping Schwarz
algorithm for scalar elliptic problems in the plane, SIAM J. Numer. Anal. 50 (2012), no. 5,
2522–2537.

[53] , Lower dimensional coarse spaces for domain decomposition, Domain decomposi-
tion methods in science and engineering XXI, 2014, pp. 527–535.

[54] , On the design of small coarse spaces for domain decomposition algorithms, SIAM
J. Sci. Comput. 39 (2017), no. 4, A1466–A1488.

[55] H Carter Edwards, Christian R Trott, and Daniel Sunderland, Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns, Journal of Parallel
and Distributed Computing 74 (2014), no. 12, 3202–3216.

[56] Evridiki Efstathiou and Martin J. Gander, Why Restricted Additive Schwarz converges
faster than Additive Schwarz, BIT Numerical Mathematics 43 (2003), no. 5, 945–959.

[57] Stanley C. Eisenstat and Homer F. Walker, Globally convergent inexact Newton methods,
SIAM J. Optim. 4 (1994), no. 2, 393–422.

[58] , Choosing the forcing terms in an inexact Newton method, 1996, pp. 16–32. Special
issue on iterative methods in numerical linear algebra (Breckenridge, CO, 1994).

[59] Howard Elman, V. E. Howle, John Shadid, Robert Shuttleworth, and Ray Tuminaro, A
taxonomy and comparison of parallel block multi-level preconditioners for the incompress-
ible Navier-Stokes equations, J. Comput. Phys. 227 (2008), no. 3, 1790–1808.

[60] Howard Elman, Victoria E. Howle, John Shadid, Robert Shuttleworth, and Ray Tumi-
naro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput.
27 (2006), no. 5, 1651–1668.

[61] Howard Elman and David Silvester, Fast nonsymmetric iterations and preconditioning
for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33–46. Special issue
on iterative methods in numerical linear algebra (Breckenridge, CO, 1994).

[62] Howard C. Elman and Gene H. Golub, Inexact and preconditioned Uzawa algorithms for
saddle point problems, SIAM J. Numer. Anal. 31 (1994), no. 6, 1645–1661.

[63] Howard C. Elman, David J. Silvester, and Andrew J. Wathen, Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics, Second, Numerical
Mathematics and Scientific Computation, Oxford University Press, Oxford, 2014.

180

BIBLIOGRAPHY

[64] Howard C. Elman and Ray S. Tuminaro, Boundary conditions in approximate commutator
preconditioners for the Navier-Stokes equations, Electron. Trans. Numer. Anal. 35 (2009),
257–280.

[65] Charbel Farhat, A Lagrange multiplier based on divide and conquer finite element algo-
rithm, J. Comput. System Engrg 2 (1991), 149–156.

[66] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel Rixen,
FETI-DP: a dual–primal unified FETI methodpart I: A faster alternative to the two-level
FETI method, International journal for numerical methods in engineering 50 (2001), no. 7,
1523–1544.

[67] Charbel Farhat and Francois-Xavier Roux, A method of Finite Element Tearing and
Interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Engrg. 32 (1991),
1205–1227.

[68] Miguel Ángel Fernández and Marwan Moubachir, A newton method using exact jacobians
for solving fluid–structure coupling, Computers & Structures 83 (2005), no. 2-3, 127–142.

[69] L. Formaggia, M. Fernandez, A. Gauthier, J.F. Gerbeau, C. Prud’homme, and A.
Veneziani, The LifeV Project.

[70] Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani (eds.), Cardiovascular math-
ematics, MS&A. Modeling, Simulation and Applications, vol. 1, Springer-Verlag Italia,
Milan, 2009. Modeling and simulation of the circulatory system.

[71] Pascal Frey, MEDIT : An interactive Mesh visualization Software, Technical Report RT-
0253, INRIA, 2001.

[72] M. W. Gee, U. Küttler, and W. A. Wall, Truly monolithic algebraic multigrid for fluid-
structure interaction, Internat. J. Numer. Methods Engrg. 85 (2011), no. 8, 987–1016.

[73] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes
equations, Springer-Verlag, New York, 1986.

[74] P. M. Gresho, Some current CFD issues relevant to the incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg. 87 (1991), no. 2-3, 201–252.

[75] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I, Sec-
ond, Springer Series in Computational Mathematics, vol. 8, Springer-Verlag, Berlin, 1993.
Nonstiff problems.

[76] E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in
Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 2010. Stiff and differential-
algebraic problems, Second revised edition, paperback.

[77] A. Heinlein, Parallel overlapping schwarz preconditioners and multiscale discretizations
with applications to fluid-structure interaction and highly heterogeneous problems, PhD
thesis, 2016.

[78] Alexander Heinlein, Christian Hochmuth, and Axel Klawonn, GDSW preconditioners and
block-preconditioners for saddle point problems. In preparation.

[79] , Monolithic overlapping Schwarz domain decomposition methods with GDSW
coarse spaces for incompressible fluid flow problems, SIAM J. Sci. Comput. 41 (2019),
no. 4, C291–C316.

[80] , Reduced dimension GDSW coarse spaces for monolithic Schwarz domain decom-
position methods for incompressible fluid flow problems, International Journal for Numer-
ical Methods in Engineering 121 (2020), no. 6, 1101–1119.

181

BIBLIOGRAPHY

[81] , Fully algebraic two-level overlapping Schwarz preconditioners for elasticity prob-
lems, accepted for publication to the proceedings of the ENUMATH 2019 conference,
Springer LNCSE, April 2020.

[82] Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach, Adaptive
GDSW coarse spaces for overlapping Schwarz methods in three dimensions, SIAM Journal
on Scientific Computing 41 (2019), no. 5, A3045–A3072.

[83] Alexander Heinlein, Axel Klawonn, Sivasankaran Rajamanickam, and Oliver Rheinbach,
FROSch – a parallel implementation of the GDSW domain decomposition preconditioner
in Trilinos. In preparation.

[84] , FROSch: A Fast and Robust Overlapping Schwarz Domain Decomposition Pre-
conditioner Based on Xpetra in Trilinos, Universität zu Köln, 2018.

[85] Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach, A parallel implementation of
a two-level overlapping Schwarz method with energy-minimizing coarse space based on
Trilinos, SIAM J. Sci. Comput. 38 (2016), no. 6, C713–C747.

[86] , Parallel two-level overlapping Schwarz methods in fluid-structure interaction,
Numerical mathematics and advanced applications—ENUMATH 2015, 2016, pp. 521–
530.

[87] , Parallel overlapping Schwarz with an energy-minimizing coarse space, Domain
decomposition methods in science and engineering XXIII, 2017, pp. 353–360.

[88] Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Friederike Röver, A three-level
extension of the GDSW overlapping Schwarz preconditioner in two dimensions, March
2018. Submitted for publication to Lecture Notes in Computational Science and Engi-
neering.

[89] Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Olof B Widlund, Improving
the parallel performance of overlapping Schwarz methods by using a smaller energy min-
imizing coarse space, 2017, pp. 383–392.

[90] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J
Hu, Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T
Phipps, Andrew G Salinger, Heidi K Thornquist, Ray S Tuminaro, James M Willenbring,
Alan Williams, and Kendall S Stanley, An overview of the Trilinos project, ACM Trans.
Math. Softw. 31 (2005), no. 3, 397–423.

[91] AneuriskWeb http://ecm2.mathcs.emory.edu/aneuriskweb, Emory University, Depart-
ment of Math&CS, 2012.

[92] Feng-Nan Hwang and Xiao-Chuan Cai, A parallel nonlinear additive Schwarz precondi-
tioned inexact newton algorithm for incompressible Navier–Stokes equations, Journal of
Computational Physics 204 (2005), no. 2, 666–691.

[93] , Parallel fully coupled Schwarz preconditioners for saddle point problems, Electron.
Trans. Numer. Anal. 22 (2006), 146–162.

[94] , A class of parallel two-level nonlinear Schwarz preconditioned inexact newton
algorithms, Computer methods in applied mechanics and engineering 196 (2007), no. 8,
1603–1611.

[95] Wolfram Research, Inc., Mathematica, Version 11.3. Champaign, IL, 2018.

[96] Volker John, Higher order finite element methods and multigrid solvers in a benchmark
problem for the 3D Navier-Stokes equations, International Journal for Numerical Methods
in Fluids 40 (2002), no. 6, 775–798.

182

BIBLIOGRAPHY

[97] , Finite element methods for incompressible flow problems, Springer Series in Com-
putational Mathematics, vol. 51, Springer, Cham, 2016.

[98] Volker John and Joachim Rang, Adaptive time step control for the incompressible Navier-
Stokes equations, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 9-12, 514–524.

[99] George Karypis and Vipin Kumar, A fast and high quality multilevel scheme for parti-
tioning irregular graphs, SIAM Journal on scientific Computing 20 (1999), no. 1, 359–
392.

[100] George Karypis, Kirk Schloegel, and Vipin Kumar, ParMETIS - Parallel graph partition-
ing and sparse matrix ordering. Version 4.0.3, University of Minnesota, Department of
Computer Science and Engineering, 2011.

[101] David Kay, Daniel Loghin, and Andrew Wathen, A preconditioner for the steady-state
Navier-Stokes equations, SIAM J. Sci. Comput. 24 (2002), no. 1, 237–256.

[102] Axel Klawonn, Block-triangular preconditioners for saddle point problems with a penalty
term, SIAM Journal on Scientific Computing 19 (1998), no. 1, 172–184.

[103] , An optimal preconditioner for a class of saddle point problems with a penalty
term, SIAM J. Sci. Comput. 19 (1998), no. 2, 540–552.

[104] Axel Klawonn and Luca Pavarino, Overlapping Schwarz methods for mixed linear elas-
ticity and Stokes problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4,
233–245.

[105] , A comparison of overlapping Schwarz methods and block preconditioners for sad-
dle point problems, Numer. Linear Algebra Appl. 7 (2000), no. 1, 1–25.

[106] Axel Klawonn and Oliver Rheinbach, Inexact FETI-DP methods, Internat. J. Numer.
Methods Engrg. 69 (2007), no. 2, 284–307.

[107] , Highly scalable parallel domain decomposition methods with an application to
biomechanics, ZAMM Z. Angew. Math. Mech. 90 (2010), no. 1, 5–32.

[108] Axel Klawonn and Gerhard Starke, Block triangular preconditioners for nonsymmetric
saddle point problems: field-of-values analysis, Numer. Math. 81 (1999), no. 4, 577–594.

[109] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja, Dual-primal FETI methods
for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer.
Anal. 40 (2002), no. 1, 159–179.

[110] W Andrew Kofke, Patric Brauer, Raymond Policare, Susan Penthany, David Barker, and
Joseph Horton, Middle cerebral artery blood flow velocity and stable xenon-enhanced com-
puted tomographic blood flow during balloon test occlusion of the internal carotid artery,
Stroke 26 (1995), no. 9, 1603–1606.

[111] Joze Korelc and Peter Wriggers, Automation of finite element methods, Springer, 2016.

[112] Martin Kronbichler, Timo Heister, and Wolfgang Bangerth, High accuracy mantle con-
vection simulation through modern numerical methods, Geophysical Journal International
191 (2012), no. 1, 12–29.

[113] Li Luo, Wen-Shin Shiu, Rongliang Chen, and Xiao-Chuan Cai, A nonlinear elimina-
tion preconditioned inexact Newton method for blood flow problems in human artery with
stenosis, J. Comput. Phys. 399 (2019), 108926, 20.

[114] JB Malone, JC Narramore, and LN Sankar, Airfoil design method using the Navier–Stokes
equations, Journal of Aircraft 28 (1991), no. 3, 216–224.

183

BIBLIOGRAPHY

[115] Jan Mandel and Clark R. Dohrmann, Convergence of a balancing domain decomposition
by constraints and energy minimization, Numer. Linear Algebra Appl. 10 (2003), 639–
659.

[116] Jan Mandel and Radek Tezaur, On the convergence of a dual-primal substructuring
method, Numer. Math. 88 (2001), no. 3, 543–558.

[117] MATLAB, version 8.6.0 (R2015b), The MathWorks Inc., Natick, Massachusetts, 2015.

[118] Fadl Moukalled, L Mangani, Marwan Darwish, et al., The finite volume method in com-
putational fluid dynamics, Vol. 113, Springer, 2016.

[119] Daichi Nakagawa, Masaaki Shojima, Masanori Yoshino, Taichi Kin, Hideaki Imai, Seiji
Nomura, Toki Saito, Hirofumi Nakatomi, Hiroshi Oyama, and Nobuhito Saito, Wall-to-
lumen ratio of intracranial arteries measured by indocyanine green angiography, Asian
journal of neurosurgery 11 (2016), no. 4, 361.

[120] Nathan M Newmark, A method of computation for structural dynamics, Journal of the
engineering mechanics division 85 (1959), no. 3, 67–94.

[121] S.V. Patankar and D.B. Spalding, A calculation procedure for heat, mass and momentum
transfer in three dimensional parabolic flows, International J. on Heat and Mass Transfer
15 (1972), 1787–1806.

[122] M. Pernice and M. D. Tocci, A multigrid-preconditioned Newton-Krylov method for the
incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 23 (2001), no. 2, 398–418.

[123] Alfio Quarteroni, Fausto Saleri, and Alessandro Veneziani, Analysis of the Yosida method
for the incompressible Navier-Stokes equations, J. Math. Pures Appl. (9) 78 (1999), no. 5,
473–503.

[124] , Factorization methods for the numerical approximation of Navier-Stokes equa-
tions, Comput. Methods Appl. Mech. Engrg. 188 (2000), no. 1-3, 505–526.

[125] Thomas Richter, Fluid-structure interactions: models, analysis and finite elements,
Vol. 118, Springer, 2017.

[126] EM Rønquist, A domain decomposition solver for the incompressible Navier-Stokes equa-
tions, 1994 Workshop on Spectral Element Methods, North Carolina State University.

[127] Torgeir Rusten and Ragnar Winther, A preconditioned iterative method for saddlepoint
problems, SIAM J. Matrix Anal. Appl. 13 (1992), no. 3, 887–904.

[128] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986), 856–869.

[129] Youcef Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Com-
put. 14 (1993), no. 2, 461–469.

[130] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark computations of
laminar flow around a cylinder (Ernst Heinrich Hirschel, ed.), Flow simulation with high-
performance computers II. Notes on Numerical Fluid Mechanics, vol. 48, Vieweg+Teubner
Verlag, 1996.

[131] David Silvester, Howard Elman, David Kay, and Andrew Wathen, Efficient precondition-
ing of the linearized Navier-Stokes equations for incompressible flow, 2001, pp. 261–279.

[132] , Efficient preconditioning of the linearized Navier-Stokes equations for incom-
pressible flow, J. Comput. Appl. Math. 128 (2001), no. 1-2, 261–279.

184

BIBLIOGRAPHY

[133] David Silvester and Andrew Wathen, Fast iterative solution of stabilised Stokes systems.
II. Using general block preconditioners, SIAM J. Numer. Anal. 31 (1994), no. 5, 1352–
1367.

[134] B.F. Smith, P.E. Bjørstad, and W. Gropp, Domain decomposition: Parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press, 1996.

[135] G. D. Smith, Numerical solution of partial differential equations, Third, Oxford Applied
Mathematics and Computing Science Series, The Clarendon Press, Oxford University
Press, New York, 1985. Finite difference methods.

[136] Gerhard Starke, Field-of-values analysis of preconditioned iterative methods for nonsym-
metric elliptic problems, Numerische Mathematik 78 (1997Nov), no. 1, 103–117.

[137] Govindjee S. Taylor R. L., FEAP - finite element analysis program - version 8.5 user
manual (2017).

[138] The HDF Group, Hierarchical Data Format, version 5, 1997-2020.
http://www.hdfgroup.org/HDF5/.

[139] Andrea Toselli and Olof Widlund, Domain decomposition methods: algorithms and theory,
Vol. 3, Springer, 2005.

[140] RS Tuminaro, CH Tong, JN Shadid, KD Devine, and DM Day, On a multilevel precon-
ditioning module for unstructured mesh Krylov solvers: two-level Schwarz, International
Journal for Numerical Methods in Biomedical Engineering 18 (2002), no. 6, 383–389.

[141] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables, J. Comput. Phys. 65 (1986), no. 1, 138–158.

[142] R. Verfürth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal. 21 (1984),
no. 2, 264–271.

[143] Irene E. Vignon-Clementel, C. Alberto Figueroa, Kenneth E. Jansen, and Charles A. Tay-
lor, Outflow boundary conditions for three-dimensional finite element modeling of blood
flow and pressure in arteries, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 29-
32, 3776–3796.

[144] Irene E Vignon-Clementel, CA Figueroa, KE Jansen, and CA Taylor, Outflow boundary
conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable
arteries, Computer methods in biomechanics and biomedical engineering 13 (2010), no. 5,
625–640.

[145] Homer F. Walker and Peng Ni, Anderson acceleration for fixed-point iterations, SIAM J.
Numer. Anal. 49 (2011), no. 4, 1715–1735.

[146] Andrew Wathen and David Silvester, Fast iterative solution of stabilised Stokes systems.
I. Using simple diagonal preconditioners, SIAM J. Numer. Anal. 30 (1993), no. 3, 630–
649.

[147] Gabriel Wittum, Multi-grid methods for Stokes and Navier-Stokes equations, Numerische
Mathematik 54 (1989), no. 5, 543–563.

[148] Yuqi Wu and Xiao-Chuan Cai, A parallel two-level method for simulating blood flows in
branching arteries with the resistive boundary condition, Comput. & Fluids 45 (2011),
92–102.

[149] , A fully implicit domain decomposition based ALE framework for three-
dimensional fluid-structure interaction with application in blood flow computation, J.
Comput. Phys. 258 (2014), 524–537.

185

BIBLIOGRAPHY

[150] Attila Zsaki, Daniel Rixen, and Marius Paraschivoiu, A substructure-based iterative inner
solver coupled with Uzawa’s algorithm for the Stokes problem, International journal for
numerical methods in fluids 43 (2003), no. 2, 215–230.

186

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut
oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich
gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität
zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublika-
tionen - noch nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung
vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte

Dissertation ist von Prof. Dr. Axel Klawonn betreut worden.

Teilpublikationen

• Alexander Heinlein, Christian Hochmuth and Axel Klawonn, Monolithic Overlapping
Schwarz Domain Decomposition Methods with GDSW Coarse Spaces for Incompressible
Fluid Flow Problems, SIAM J. Sci. Comput. 41 (2019), no. 4, C291-C316

• Alexander Heinlein, Christian Hochmuth and Axel Klawonn, Reduced dimension GDSW
coarse spaces for monolithic Schwarz domain decomposition methods for incompressible
fluid flow problems, International Journal for NumericalMethods in Engineering 121
(2020), no. 6, 1101-1119.

• Alexander Heinlein, Christian Hochmuth and Axel Klawonn, Fully algebraic two-level
overlapping Schwarz preconditioners for elasticity problems, accepted for publication to
the proceedings of the ENUMATH 2019 conference, Springer LNCSE, April 2020.

(Christian Hochmuth)

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Stokes and Navier–Stokes Equations
	2.1 Continuum Mechanics
	2.2 Incompressible Fluids
	2.3 Conservation of Mass
	2.4 Conservation of Momentum
	2.5 Stokes and Navier–Stokes Equations

	3 Solid Mechanics
	3.1 Conservation of Momentum in a Reference Configuration
	3.2 Solid Equation

	4 Fluid-Structure Interaction
	4.1 Arbitrary Lagrangian Eulerian Description of the Navier–Stokes Equations
	4.2 Monolithic Fluid-Structure Interaction System in Arbitrary Lagrangian Eulerian Form
	4.3 Arbitrary Lagrangian Eulerian Map

	5 Discretizations in Space and Time
	5.1 Model Problems and Spatial Discretization with Finite Elements
	5.1.1 Stokes Problems
	5.1.2 Navier–Stokes Problems
	5.1.3 Elasticity Problems
	5.1.4 Almost Incompressible Linear Elasticity Problems
	5.1.5 Finite Elements for Elliptic Problems
	5.1.6 Finite Elements for Saddle Point Problems
	5.1.7 Fluid-Structure Interaction Problems

	5.2 Temporal Discretization
	5.2.1 Implicit Runge–Kutta Methods
	5.2.2 Multi-Step Methods – Backward Differentiation Formulas
	5.2.3 Discretization of the Time-Dependent Navier–Stokes Problems
	5.2.4 Newmark Schemes for Solid Dynamic Problems

	5.3 Discretization of the Fluid-Structure Interaction Problem
	5.3.1 Coupling of the Fluid-Structure Interaction Problem
	5.3.2 Linearization of the Fluid-Structure Interaction Problem

	5.4 Solution Methods for Nonlinear Equations

	6 Domain Decomposition - Two-Level Overlapping Schwarz Methods
	6.1 Two-Level Overlapping Schwarz Methods with GDSW Coarse Spaces for Elliptic Problems
	6.2 Block Preconditioners for Saddle Point Problems
	6.2.1 Overlapping Schwarz Methods for Block Preconditioners
	6.2.2 SIMPLE
	6.2.3 LSC - Least-Squares Commutator

	6.3 Monolithic Two-Level Overlapping Schwarz Preconditioners for Saddle Point Problems
	6.3.1 Monolithic Schwarz Preconditioners with Lagrangian Coarse Spaces
	6.3.2 Restricted and Scaled First-Level Operators
	6.3.3 Monolithic Schwarz Preconditioners with GDSW Coarse Spaces
	6.3.4 Treating the Pressure of Fluid Flow Problems
	6.3.5 GDSW Implementation Based on Trilinos
	6.3.6 Monolithic Reduced Dimension GDSW Preconditioners
	6.3.7 Sequential and Parallel Computation of the Levels

	6.4 Fully Algebraic Construction of GDSW and RGDSW Coarse Spaces
	6.5 Preconditioners for Fluid-Structure Interaction Problems
	6.5.1 FaCSI Block Preconditioner
	6.5.2 One-level Monolithic Overlapping Schwarz Preconditioners for FSI

	7 FEDDLib
	7.1 Trilinos
	7.2 General Structure
	7.3 Meshes and Finite Elements
	7.4 Setup of Specific Problems
	7.5 Solvers and Preconditioners
	7.6 Post-Processing

	8 Numerical Results
	8.1 GDSW for Incompressible Fluid Flow Problems
	8.1.1 Numerical Results for Stokes Problems
	8.1.2 Numerical Results for Navier–Stokes Problems

	8.2 Reduced Dimension GDSW Preconditioners for Incompressible Fluid Flow Problems
	8.2.1 Comparison of Monolithic GDSW and RGDSW Coarse Spaces
	8.2.2 Restricted and Scaled First Level Variants
	8.2.3 Parallel Coupling Strategies for the Levels
	8.2.4 Recycling Strategies
	8.2.5 Speedup for a Time-Dependent Navier–Stokes Problem

	8.3 Comparison of Block and Monolithic Preconditioners for Incompressible Fluid Flow Problems
	8.3.1 Standard Block Preconditioners
	8.3.2 SIMPLE, LSC, and Monolithic Preconditioners

	8.4 Results for Almost Incompressible Linear Elasticity Problems
	8.5 Results of Fully Algebraic GDSW and RGDSW Preconditioners for Nonlinear Elasticity Problems
	8.6 Results for Fluid-Structure Interaction Problems

	9 Conclusion
	Bibliography

