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Abstract 
Genomic differences can range from single nucleotide differences (SNPs) to 

large complex structural rearrangements. Current methods typically can annotate 

sequence differences like SNPs and large indels accurately but do not unravel the full 

complexity of structural rearrangements that include inversions, translocations, and 

duplications. Structural rearrangements involve changes in location, orientation, or copy-

number between highly similar sequences and have been reported to be associated with 

several biological differences between organisms. However, they are still scantly studied 

with sequencing technologies as it is still challenging to identify them accurately. 

 Here I present SyRI, a novel computational method for genome-wide 

identification of structural differences using the pairwise comparison of whole-genome 

chromosome-level assemblies. SyRI uses a unique approach where it first identifies all 

syntenic (structurally conserved) regions between two genomes. Since all non-syntenic 

regions are structural rearrangements by definition, this transforms the difficult problem 

of rearrangement identification to a comparatively easier problem of rearrangement 

classification. SyRI analyses the location, orientation, and copy-number of alignments 

between rearranged regions and selects alignments that best represent the putative 

rearrangements and result in the highest total alignment score between the genomes. 

Next, SyRI searches for sequence differences that are distinguished for residing in syntenic 

or rearranged regions. This distinction is important, as rearranged regions (and sequence 

differences within them) do not follow Mendelian Law of Segregation and are therefore 

inherited differently compared to syntenic regions.  Using SyRI, I successfully identified 

rearrangements in human, A. thaliana, yeast, fruit fly, and maize genomes. Further, I also 

experimentally validated 92% (108/117) of the predicted translocations in A. thaliana using 

a genetic approach.
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Zusammenfassung 
Genomische Unterschiede können von Einzelnukleotidunterschieden (SNPs) 

bis zu großen komplexen strukturellen Variationen reichen. Gegenwärtige Verfahren 

können typischerweise Sequenzunterschiede wie SNPs und große Indels genau 

annotieren, aber nicht die volle Komplexität struktureller Umlagerungen aufdecken, die 

Inversionen, Translokationen und Duplikationen umfassen. Strukturelle Umlagerungen 

beinhalten Änderungen der Position, Orientierung oder Kopienzahl zwischen sehr 

ähnlichen Sequenzen und es wurde berichtet, dass sie mit mehreren biologischen 

Unterschieden zwischen Organismen verbunden sind. Sie werden jedoch immer noch 

kaum mit Sequenzierungstechnologien untersucht, da es immer noch schwierig ist, sie 

genau zu identifizieren. 

 Hier präsentiere ich SyRI, eine neuartige Berechnungsmethode zur 

genomweiten Identifizierung von Strukturunterschieden unter Verwendung des 

paarweisen Vergleichs von Chromosomen-Level-Assemblies im gesamten Genom. SyRI 

verwendet einen einzigartigen Ansatz, bei dem zunächst alle syntenischen (strukturell 

konservierten) Regionen zwischen zwei Genomen identifiziert werden. Da alle nicht 

syntenischen Regionen per Definition strukturelle Umlagerungen sind, wandelt dies das 

schwierige Problem der Identifizierung von Umlagerungen in ein vergleichsweise 

einfacheres Problem der Klassifizierung von Umlagerungen um. SyRI analysiert die 

Position, Orientierung und Kopienzahl der Alignments zwischen neu angeordneten 

Regionen und wählt Alignments aus, die die mutmaßlichen Umlagerungen am besten 

darstellen und zu der höchsten Gesamtausrichtungsbewertung zwischen den Genomen 

führen. Als nächstes sucht SyRI nach Sequenzunterschieden, die für den Aufenthalt in 

syntenischen oder neu angeordneten Regionen unterschieden werden. Diese 

Unterscheidung ist wichtig, da neu angeordnete Regionen (und Sequenzunterschiede 

innerhalb dieser) nicht dem Mendelschen Segregationsgesetz folgen und daher anders 
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vererbt werden als syntenische Regionen. Mit SyRI konnte ich erfolgreich Umlagerungen 

in Genomen von Menschen, A. thaliana, Hefen, Fruchtfliegen und Mais identifizieren. 

Außerdem habe ich 92% (108/117) der vorhergesagten Translokationen in A. thaliana 

unter Verwendung eines genetischen Ansatzes experimentell validiert.
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1 Introduction 

Parts of this chapter were the basis of a manuscript that was published as a peer-reviewed research 

article in Genome Biology (Goel et al. 2019)1. However, in this chapter, I only discuss the work that 

was done by me. Results and data that were not generated by me are either clearly pointed or cited. 

Authors list (Goel et al. 2019): Manish Goelα, Hequan Sunβ, Wen-Biao Jiaoα, Korbinian 

Schneebergerα, β. 

Author affiliations: αDepartment of Chromosome Biology, Max Planck Institute for Plant Breeding 

Research, 50829 Cologne, Germany; βLMU Munich, 82152 Planegg-Martinsried, Germany. 

Authors contributions (Goel et al. 2019): The project was conceived by KS and WBJ. MG and KS 

developed the algorithms. MG implemented SyRI and performed all analyses. HS processed 

recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler 

assembly. The manuscript was written by MG and KS with inputs from HS and WBJ. All authors 

read and approved the final manuscript. 

 

Genomes serve as the central data storage hubs for storing biological 

information for all known life forms on earth2.  They are composed of one or more long 

polymers of deoxyribonucleic acid (DNA). These molecules are called chromosomes. Each 

chromosome contains multiple genes that are the representative unit of genomic 

information and are used for the synthesis of proteins, the building blocks for all living 

organisms3. Often, the genomic sequence of an organism can acquire a spontaneous error 

called mutation that makes it different from other individuals of the same species. Though 

mostly benign, these differences can result in fatal diseases or provide evolutionary 

advantages. Besides recombination of existing genomes during sexual reproduction, 

accumulation of such mutations in genomes is a critical driving force for the evolution of 
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species making genomic differences one of the primary sources of the observed biological 

diversity4. Consequently, to better understand and explore the natural differences present 

among various species as well as among individuals of a species, it is important to identify 

and study the differences present in their genomes. 

1.1 Sequence and structural differences in genomes 

Genomic differences can be classified as differences in sequence and differences 

in structure.  Differences in sequence are variation in locally conserved regions on the 

genome and do not involve relocation of genomic regions. Consequently, differences in 

sequence do not affect genome collinearity. These include single nucleotide variation 

(SNVs), insertions and deletions (indels), or structural variation (e.g. large indels, tandem 

repeats). Differences in structure are variation where genomic regions change in the 

location, orientation, or copy-number. As these differences alter the order and orientation 

of genomic regions, thus disrupting genomic collinearity, they are not structurally 

conserved and are collectively referred to as structural rearrangements. These include 

inversions, translocations, and duplications. Inversions are variation when a region gets 

reverse complemented at its locus. Translocations involve relocation of genomic regions, 

whereas duplications involve copying of regions thus changing their copy-number. 

Translocated and duplicated regions are often also reverse complemented resulting in 

inverted translocations and duplications, respectively. 

Further, translocations can be intra-chromosomal transpositions (relocation to 

a different region in the same chromosome) or inter-chromosomal translocations 

(relocation to a different chromosome). Similarly, duplications can be tandem-

duplications (addition of a duplicated copy adjacent to the original) or distal-duplications 

(duplication to a different location, also known as segmental duplications). However, for 

simplicity, unless specified otherwise, I would consider transpositions and translocations 

together as ‘translocations’; and tandem and distal duplications together as ‘duplications’. 



Synteny and Rearrangement Identifier  Introduction 

MANISH GOEL 31

 

1.2 Effects of structural rearrangement 

Structural rearrangements represent more variation in genomes compared to 

single nucleotide polymorphisms (SNPs) and often disrupt functionally relevant regions 

(like genes) resulting in phenotypic differences5. Indeed, it has been shown that large 

rearrangements have a more significant effect on expression compared to SNPs and 

indels6. Further, as structural rearrangements disrupt collinearity, recombination is 

infrequent in these regions7. Over time, random mutations can accumulate in rearranged 

regions leading to population stratification8. Individuals with such rearrangements could 

express different phenotypes and with the continuous accumulation of genomic 

differences can evolve into new species. 

In humans, structural rearrangements are associated with multiple diseases9. 

A recent study demonstrated that structural rearrangements may lead to inactivation of 

tumour suppressors genes while also activating cancer driver genes10. Structural 

rearrangements are also associated with misexpression of genes resulting in limb 

malformation syndromes11. Multiple neurological diseases have also been found to be 

associated with structural rearrangements including autism, schizophrenia, and bipolar 

disorder12–14. 

Structural rearrangements could also have evolutionary effects15. For example, 

when humans started doing agriculture and thus consumed more starch, then duplication 

in salivary amylase gene (catalyst for hydrolysis of starch to sugar) was positively 

selected16. Structural rearrangements were also involved in the development of antifolate 

(drugs used in malaria treatment) resistant Plasmodium falciparum parasite17. Similar 

observations have been made in fruit fly as well, where rearrangements in toxin-response 

genes were found to be under positive-selection18. In plants, R-gene clusters are known to 

be hotspots of rearrangements which helps in the development of resistance19. A 

duplication of the RCO gene in Cardamine hirsute resulted in increased leaf shape 

complexity. Further, loss of the same gene leads to simpler leaves in Arabidopsis thaliana20. 
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Structural rearrangements are also important for breeding research. In tomato, a 

structural rearrangement was used to improve breeding efficiency21. In dog breeding, 

structural rearrangements are being studied as a source for the differences across various 

breeds22.  

1.3 Using whole-genome assemblies for genomic differences 

identification 

Many of the current genomic differences identification methods utilize 

sequencing reads for genomic differences identification. The reads are aligned to the 

reference genome sequence and the alignment breakpoints are processed for identifying 

genomic differences23. This approach can identify sequence differences (like SNPs, indels, 

and structural variation) with high accuracy; however, accurate prediction of structural 

rearrangements remains challenging. In contrast, whole-genome assemblies are 

considered as the gold-standard data for the identification of all rearrangements as 

assembled sequences are typically much longer and of higher quality as compared to raw 

sequence reads24. However, despite recent technological improvements in methods for 

generation of whole-genome de novo assemblies25, there are so far only a few methods that 

can identify genomic differences from whole-genome assemblies26. Available methods 

include AsmVar, Assemblytics, and smartie-sv27–29. AsmVar compares individual 

sequences (scaffolds/contigs) from the query genome assembly against the reference 

sequence and analyses alignment breakpoints to identify inversions and translocations27. 

Assemblytics utilizes uniquely aligned regions within contigs from the query genome and 

the reference sequence to identify genomic differences like large indels and local repeats28. 

Smartie-sv too identifies differences by comparing individual alignments between query 

genome assembly and reference genome29.  

In this thesis, I introduce SyRI (Synteny and Rearrangement Identifier), a 

novel computational method for the identification of all genomic differences. SyRI uses 
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whole-genome alignments generated by aligning two chromosome-level whole-genome 

assemblies as input and identifies structurally conserved (syntenic) and rearranged 

regions in the two genomes. Afterwards, SyRI also identifies local sequence differences 

within all syntenic as well as rearranged regions. Noteworthily, SyRI provides complete 

regional annotation of rearrangements by identifying coordinates of genomic differences 

in both genomes, thus reporting which region in reference was rearranged and where that 

rearranged region is located in the query genome. This is a significant improvement 

compared to current methods that typically do not annotate breakpoints for all 

rearrangements in both genomes30–32. Additionally, current methods have limited 

functionality in identifying transpositions and distal duplications. Thus, SyRI is the first 

method that can accurately identify all classes of rearrangements, including transpositions 

and distal duplications.  

Finally, I analysed SyRI’s performance and compared it with current methods 

using simulated rearranged genomes as well as gold-standard genomic differences data. 

Using SyRI, I identified genomic differences in divergent genomes of five model species. 

This also included two A. thaliana strains, for which I experimentally validated over 100 

predicted translocations using a genetic approach. 
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2 Results 

Parts of this chapter were the basis of a manuscript that was published as a peer-reviewed research 

article in Genome Biology (Goel et al. 2019)1. However, in this chapter, I only discuss the work that 

was done by me. Results and data that were not generated by me are either clearly pointed or cited. 

Authors list (Goel et al. 2019): Manish Goelα, Hequan Sunβ, Wen-Biao Jiaoα, Korbinian 

Schneebergerα, β. 

Author affiliations: αDepartment of Chromosome Biology, Max Planck Institute for Plant Breeding 

Research, 50829 Cologne, Germany; βLMU Munich, 82152 Planegg-Martinsried, Germany. 

Authors contributions (Goel et al. 2019): The project was conceived by KS and WBJ. MG and KS 

developed the algorithms. MG implemented SyRI and performed all analyses. HS processed 

recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler 

assembly. The manuscript was written by MG and KS with inputs from HS and WBJ. All authors 

read and approved the final manuscript. 

 

During my PhD, I developed a novel computational method for the 

identification of genomic differences between two closely related individuals. This 

method called “SyRI” for Synteny and Rearrangement Identifier is, to the best of my 

knowledge, the first method that identifies all classes of structural rearrangements. SyRI 

identifies genomic differences by analyzing whole-genome alignments between 

chromosome-level assemblies. Additionally, SyRI is also the first method that annotates 

sequence differences within structurally rearranged regions. 

In this chapter, I present the novel methodologies applied in SyRI and describe 

the various steps involved in the identification of all genomic differences. I also discuss 
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SyRI’s performance in simulated as well as gold standard datasets and its comparison 

with currently popular methods. Since it is not always possible to have chromosome-level 

assemblies; I also describe SyRI’s usefulness in genomic differences identification using 

homology-based pseudo-chromosome level assemblies. I also demonstrate SyRI’s 

usability in finding genomic differences by analyzing genomes of five model species and 

present an example of a highly rearranged region consisting of large structural 

rearrangements overlapping with multiple genes highlighting the importance of efficient 

genomic difference identification. Finally, I describe the validation of SyRI’s prediction 

using a population of 50 F2 plants generated by hybridising the Col-0 and Ler accessions 

(strains) of A. thaliana.  

2.1 SyRI: algorithmic description 

SyRI identifies genomic differences between two chromosome-level 

assemblies by analyzing the whole-genome alignments between them (Figure 1). It starts 

by identifying the longest syntenic regions between homologous chromosomes in the 

genomes. Synteny refers to structurally conserved regions as they are collinear (having 

same relative position) in the homologous chromosomes. By extension, this suggests that 

all non-syntenic regions are structurally rearranged. Therefore, identification of syntenic 

regions simultaneously also identifies structural rearrangements (Figure 1: Step 1). This 

novel approach transforms the difficult problem of structural rearrangement 

identification to a comparatively easier problem of structural rearrangement annotation. 

SyRI annotates rearranged regions as inversions, translocations, and duplications. 

Inversions are similar to syntenic regions as they do not involve the relocation of genomic 

regions; therefore, they are easier to identify and are annotated next. Finally, SyRI 

annotates intra-chromosomal transpositions and duplications followed by inter-

chromosomal translocations and duplications (Figure 1: Step 2). 
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After annotating syntenic and rearranged regions, SyRI identifies sequence 

differences (Figure 1: Step 3). Noteworthily, SyRI identifies sequence differences in both 

syntenic as well as rearranged regions. This is important because rearranged regions and 

sequence differences within them do not follow Mendelian segregation. Further, sequence 

differences in inverted regions are strongly linked because of lack of recombination in 

inversions7, whereas, recombination between the two loci of a transposition or intra-

A T

C

Genome B

Genome AInput:
whole genome
alignment

Step 1:
annotate
syntenic regions

Step 2:
annotate
structural
rearrangements

Step 3:
identify local
variations in
syntenic and
rearranged
regions

2a: annotate inversions

2b: annotate transpositions,
duplications, and remove
redundant alignments

2c: annotate translocations and
duplications between chromosomes

Sequence variations in annotated regions Not aligned regions
T

AG

ACTG

Figure 1: SyRI’s workflow for genomic differences identification. SyRI uses whole-
genome alignment data as input. Grey polygons represent local alignments between 
two regions of the genomes. In the Step 1, SyRI identifies syntenic regions (longest 
collinear region) between homologous chromosomes. In the Step 2 (a-c), SyRI 
annotates structurally rearranged regions as inversions, transpositions and intra-
chromosomal duplications, and translocations and inter-chromosomal duplications. 
Redundant alignments are filtered out. In the Step 3, SyRI identifies local sequence 
differences in all syntenic and rearranged regions by analyzing the individual 
alignments and gaps/overlaps between adjacent alignments of the annotation blocks. 
SyRI also reports not-aligning regions between annotation blocks. (from Goel et al., 
2019) 
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chromosomal duplication can result in copy-number changes for the rearranged region 

(Figure 2). As a result, sequence differences in rearranged regions can lead to false signals 

in genome-wide association studies (GWAS), selection screens, as well as recombination 

analysis33,34. SyRI provides an efficient approach to filter out such SNPs and sequence 

differences by providing a hierarchy of variation where SNPs/indels within structurally 

rearranged regions are also reported. 

2.1.1  Syntenic region identification 

Syntenic region identification involves the selection of the largest set of 

collinear alignments. Starting from whole-genome alignments between homologous 

chromosomes, SyRI selects all directed alignments between them. Using these alignments, 

SyRI generates a directed acyclic graph (DAG) where each node corresponds to an 

alignment and an edge exists between two nodes when they are collinear to each other 

(Methods: 3.1). SyRI then uses dynamic programming to find the longest path in this 
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Figure 2: Genomic difference hierarchy. a) Genomes can have differences in 
structure as well as differences in sequence within the structurally conserved and 
rearranged regions. b) Meiotic recombination between rearranged loci results in copy-
number variation in the haploid gametes. (from Goel et al., 2019) 
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graph. This path represents the largest set of collinear alignments that constitute the 

syntenic region between a pair of homologous chromosomes. This approach is similar to 

the algorithms used by MUMmer to find whole-genome alignments35,36. 

2.1.2 Inversion identification 

An inversion constitutes of one or more inverted alignments that together 

represent one inversion event. To identify inversions, SyRI selects all inverted alignments 

between a pair of homologous chromosomes and reverse-complements the query genome 

to transform inverted alignments into directed alignments. Similar to syntenic 

identification, SyRI again generates a directed acyclic graph (DAG) using these directed 

alignments (Methods: 3.2). In this graph, each path corresponds to a putative candidate 

inversion between two homologous chromosomes, thus, providing all possible 

inversions. These candidate inversions can overlap and intersect each other resulting in 

conflicting annotations. To resolve this, SyRI generates a new DAG using candidate 

inversions and selects candidates that can co-exist in the homologous chromosomes and 

result in the highest combined alignment score for the inversions and syntenic regions.  

2.1.3 Translocation and duplication (TD) identification 

After selecting syntenic and inverted regions, SyRI annotates remaining 

alignments as TDs or removes them as redundant (repetitive). For this, it first identifies 

transpositions and intra-chromosomal duplications between homologous chromosomes 

followed by translocations and inter-chromosomal duplications identification from non-

homologous chromosomes. Both, intra- and inter-chromosomal differences are identified 

using the same methodology (Methods: 3.3). 

For TD identification, SyRI groups alignments such that each group represents 

one putative candidate TD. Each candidate TD gets a score based on the length of the 

individual alignments and the gaps between them (Methods: 3.3.2). SyRI filters out 
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candidates with a low score or high overlap with syntenic or inverted regions. 

Rearrangements in genomic repeats result in alignments to different copies of the same 

repeat. This results in the selection of multiple candidate TDs corresponding to the same 

rearranged region. Similar to inversions, these overlapping candidate TDs result in 

conflicting annotations. SyRI uses optimization strategies to select a non-conflicting set of 

candidate TDs while maximizing the total length of the annotated sequence and the total 

alignment score for the genome (Methods: 3.3.3). 

2.1.4  Annotation block 

SyRI groups syntenic and rearranged alignments to generate annotation 

blocks. Each annotation block consists of consecutive alignments that together represent 

one genomic structural unit. For example, a syntenic block would consist of consecutive 

and uninterrupted syntenic alignments. Similarly, alignments that together constitute one 

inversion (or TD) would form an inversion (or TD) block.  

2.1.5  Sequence difference identification 

SyRI identifies sequence differences (SNPs and small indels) from the aligned 

sequence in the annotation blocks. Larger structural variation (like CNVs and indels) are 

identified by comparing the gaps and overlaps between the consecutive alignments 

within an annotation block (Figure 3) similar to the structure variation identification 

methodology used by Assemblytics28. SyRI also reports all un-aligned sequences that are 

regions between neighbouring annotation blocks but are not part of any annotation block. 

These regions can be considered as insertions and deletions in their respective genomes, 

but their corresponding coordinate in the other genome cannot be described. 

2.2 Performance evaluation using simulated genomes 

To assess SyRI’s genomic differences identification performance, I performed 

a simulation analysis. Using the A. thaliana (Col-0) reference genome as a template, I 
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simulated 100 rearranged genomes each consisting of inversions, transpositions, 

translocations, tandem duplications, distal duplications, or indels, thus, generating 600 

rearranged genomes in total (Methods: 3.4.1, Table S1). I identified genomic differences 

from these rearranged genomes using SyRI and other currently available methods and 

compared their performances. 

2.2.1  Genomic difference identification methods 

To have a comprehensive comparison, I selected six of the currently available 

genomic differences identification methods. Among these, three methods were based on 

whole-genome assemblies (Assemblytics28, Smartie-SV29, and AsmVar27), two methods 

required long-read sequencing data (Sniffles30 and Picky31), and one method used short-

read sequencing data (LUMPY32). For sequencing-reads based methods, I simulated reads 

from the rearranged genomes: PacBio and Oxford Nanopore reads for long-reads based 

method and Illumina reads for short-read based method (Method: 3.4.2). I used 

rearranged genomes directly for assembly-based methods. 

2.2.2  Genome comparisons 

Insertion Deletion SNP

Tandem

1bp

≥ 0bp
≥ 1bp

CopylossCopygain

HDR

Figure 3: Sequence differences classification. Grey blocks are alignments. Adjacent 
alignments can be overlapping or can have gaps in-between (shown as dashed line, 
solid line, and ellipses). (from Goel et al., 2019) 
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I aligned all rearranged genomes and the corresponding sequencing reads to 

Col-0 reference genome and identified genomic differences with all methods (Methods: 

3.4.3). I assessed current assembly-based methods for only those rearrangements that they 

can identify (as they are not designed to identify all types of structural rearrangements). 

Different methods identify and report rearrangements differently. To ensure a 

Genome A

Genome B

Genome A

Genome B

Genome A: Chromosome 1

Genome B: Chromosome 1

Genome A: Chromosome 2

Genome B: Chromosome 2

Genome A

Genome B

Genome A

Genome B

Inversion

Transposition

Translocation

Duplication (tandem)

Duplication (distal)

Figure 4: Structural rearrangement breakpoints. Grey alignments represents 
structurally conserved regions, whereas white alignments represents rearranged 
regions. To analyse the validity of a predicted rearrangement, coordinates marked 
with the black arrows were tested against those of the simulated rearrangements. 
(from Goel et al., 2019) 
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standardized comparison of these methods, inspired by an earlier study30, I compared the 

breakpoints of the predicted rearrangements and used correctness classes for the 

predictions (Figure 4). 

If a method correctly predicted all breakpoints of a rearrangement together 

and provided correct annotation, then the method ‘identified’ the rearrangement. When 

a method could predict at least one breakpoint with correct annotation, then it ‘indicated’ 

the rearrangement. If a method could predict a breakpoint but had the wrong annotation, 

then the method had ‘incorrect’ prediction for the rearrangement. Finally, when a method 

could not predict any breakpoint, then the method ‘missed’ the rearrangement. For 

rearrangements involving relocation of the genomic regions (transpositions, 

translocations, and distal duplications), I checked breakpoints in both reference and query 

genome. For rearrangement involving modifications at the same loci (inversion and 

tandem duplications), I checked the coordinates in only the reference genome (Figure 4). 

To compare indel identification performance, I compared the location and size of the 

simulated and the predicted indels (Method: 3.4.4).  

2.2.3 SyRI accurately identified simulated genomic differences 

SyRI consistently identified most of the simulated variation for all classes of 

structural differences (Figure 5). Other assembly-based methods were limited by design, 

as they do not identify all classes of rearrangements. AsmVar could identify inversions 

and translocations, whereas Smartie-sv and Assemblytics could identify only inversions 

and duplications respectively. In this simulation analysis, AsmVar accurately identified 

transpositions and translocations but had incorrect annotations for the majority of the 

inversions. Assemblytics performed well for the identification of tandem duplications but 

missed most of the distal duplications. Smartie-sv did not perform well for inversion 
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identification and missed most of them. These results suggest that compared to current 

assembly-based methods, SyRI performed better as it identified all classes of 

rearrangements as well as identified each class of rearrangement more precisely than 

current methods.  
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Figure 5: Structural rearrangement identification performance comparison. Vertical 
bars show the ratio of predicted rearrangements belonging to a specific class. ‘Not 
Applicable’ implies that the method is not designed to identify the specific genomic 
difference. Background colours represent the data type required by the respective 
methods (from white to dark grey: chromosome-level de novo assembly, de novo 
assembly, long sequencing reads (both PacBio (PB) and Oxford Nanopore (ONT) 
reads), short sequencing reads). (from Goel et al., 2019) 
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 In contrast, and somewhat counterintuitive, read-based methods performed 

better compared to current assembly-based methods. All read based methods identified 

majority of the inversions, while Picky and LUMPY identified the majority of tandem 

duplications as well. However, they could not identify all breakpoints for transpositions, 

translocations, and distal duplications. These rearrangements involve genomic region 

relocation. Since sequencing-reads do not provide information about the query genome 

Genome B

Genome A

Genome B annotation

Distal duplications are annotated
as large tandem duplications

a)

b)

Genome B

Genome B annotation

Genome A
Transposition

Duplication (distal)

Transpositions are annotated
as large deletions

Genome B annotation

Transpositions are annotated
as large tandem duplications

Figure 6: Incorrect annotation of transpositions and distal duplications. a) Reads 
originating from the translocated loci in genome B align to the reference genome 
similarly to reads originating from deletions and tandem duplications. As a result, 
read-based methods wrongly annotate transpositions as large deletions and tandem 
duplications. b) Similarly, read-based methods cannot differentiate between reads 
originating from large tandem duplications and intra-chromosomal distal 
duplications; again resulting in wrong annotations. (from Goel et al., 2019) 
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structure; these methods could not identify breakpoints in the query genome for relocated 

regions. Additionally, reads originating from relocated regions align to the reference 

genome similarly to reads originating from large deletions or tandem duplications (Figure 

6). Consequently, read-based methods falsely predicted multiple large deletions and 

tandem duplications (between homologous chromosomes) that were overlapping 

transpositions and distal duplications. This resulted in lower performance in 

rearrangements identification and over-estimation of deletion and tandem duplications 

in the genome.  

All methods had few false-positives for inversions, translocations, and 

tandem duplications identification. However, for distal duplications, read-based methods 

and Assemblytics had a high false-positive rate. Whereas Picky and LUMPY had multiple 

falsely predicted breakpoints for genomes with simulated transpositions. 

For indel identification, all assembly-based methods performed better than 

read-based methods, and the performance of assembly-based methods were comparable 

to each other (Figure 7). 
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Figure 7: Indel identification performance comparison. Sensitivity (green points) 
and precision (orange points) values for the prediction of indels by different methods. 
Y-axis value corresponds to the average performance from 100 simulated genomes 
and the results are shown for two allowed error values: 5 and 100 bps (Methods: 3.4.4). 
Background colours represent the data type required by the respective methods (from 
white to dark grey: chromosome-level de novo assembly, de novo assembly, long 
sequencing reads (both PacBio (PB) and Oxford Nanopore (ONT) reads), short 
sequencing reads). (from Goel et al., 2019) 
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This analysis showed that compared to current genomic differences 

identification methods SyRI performs better. By using the structural information present 

in chromosome-level genome assemblies, SyRI can accurately identify breakpoints in the 

reference as well as the query genome for all rearranged regions. 

2.3 Performance evaluation using real genomes 

I compared SyRI against different methods by finding the genomic differences 

in the human NA19240 genome for which a chromosome-level assembly of a haplotype 

was recently generated (Methods: 3.5)37. Further, I compared these predictions against the 

gold-standard variation dataset that was generated by combining genomic differences 

Figure 8: Total size and number of rearrangements and indels identified by 
different methods in the NA19240 genome. Genomic differences were identified 
against the human reference genome. a) The total size of annotated differences. b) The 
number of annotations in. The dashed line corresponds to the total size of the human 
reference genome assembly. Smartie-sv resulted in no output when run using real 
genome assemblies and hence, corresponding results are unavailable. AsmVar was 
computationally challenging for the human genome and therefore, it could not be 
analysed. For translocations, read based methods reported only single breakpoint, so 
size information was not available. For this figure, I considered each breakpoint to 
correspond to a translocation of size 1bp. (from Goel et al., 2019) 
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identified by various sequencing and experimental methodologies38. The dataset 

contained inversions, insertions, and deletions present in both haplotypes of the NA19240 

genome compared to the human reference genome. However, this dataset was based on 

an older version of the human reference genome (GRCh38), so I remapped the variants to 

the newer version of the human reference genome (GRCh38.12) using the Genome 

Remapping Service from NCBI. I identified differences in the NA19240 genome using 

SyRI and other methods (described in the previous section, Figure 8) and compared the 

predictions against the gold-standard dataset (Figure 9).  

 SyRI identified 55.2% (9685/17545) insertions, 54.5% (9494/17391) deletions, 

and 49.7% (81/163) inversions from the gold standard variation data (Figure 9). These 

results were consistent with expectations as the genome assembly used to identify 

variants consisted of single haplotype, compared to gold-standard variation dataset that 

consisted of variation in both haplotypes. In this analysis too, SyRI performed better than 

other methods (Figure 9). These methods had a varying performance for the three variant 

types. Specifically, sniffles performed better in predicting insertions and deletions while 

picky performed better for inversions. Performance of Smartie-sv and AsmVar could not 
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Figure 9: Gold-standard genomic differences identification by methods. Y-axis 
shows the per cent of gold-standard differences identified. Smartie-sv gave no output 
when run using real genome assemblies and hence, corresponding results are 
unavailable. AsmVar was computationally too challenging for the human genome 
and therefore, it could not be analysed. (from Goel et al., 2019) 
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be analysed because Smartie-sv did not output anything whereas running AsmVar was 

computationally challenging for the human genome.  

I also compared the methods by finding genomic differences between two 

accessions of A. thaliana (Methods: 3.5). Similar to the human genome analysis, I compared 

the chromosome-level assembly of accession Landsberg erecta (Ler) against the reference 

genome sequence Col-0 (Figure 10)39,40. Assembly-based methods identified more indels 

compared to read-based methods. In contrast, for read-based methods the predicted total 

length of duplications and deletions has high. In fact, for all reads-based methods, this 

value was larger than the total size of the A. thaliana genome as they predicted multiple 

large deletions and tandem duplications (Table S2, Figure 10). These unexpected results 
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Figure 10: Total size and number of rearrangements and indels identified by 
different methods in the Ler genome. Genomic differences were identified against 
the Col-0 reference genome. a) The total size of annotated differences. b) The number 
of annotations in. The dashed line corresponds to the total size of the Col-0 reference 
genome assembly. Smartie-sv resulted in no output when run using real genome 
assemblies and hence, corresponding results are unavailable. For translocations, read 
based methods reported only single breakpoint, so size information was not available. 
For this figure, I considered each breakpoint to correspond to a translocation of size 
1bp. (from Goel et al., 2019) 
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suggest false annotations of reads originating from transpositions and distal duplications 

as deletions and tandem duplications (Figure 6).  

This analysis demonstrated the usefulness of whole-genome assembly-based 

methods for accurate identification of genomic differences. 

2.4 Effect of assembly contiguity on SyRI  

SyRI requires chromosome-level assemblies for accurate identification of 

genomic differences. This limits its applicability, as generating high-quality assemblies is 

still not trivial. However, this limitation can be overcome using methods like ntJoin, 

RaGOO etc that can generate pseudo-chromosomes from incomplete assemblies using 

homology against the reference genome sequence41,42. For cases when a reference genome 

is not available, I developed a heuristic method called chroder (for chromosome ordering) 

for generating pseudo-chromosomes by analyzing homology between the two incomplete 

assemblies (Methods: 3.6). 

Ler pseudo
assembly

‘TRUE’
SRs

Predicted
SRs

Col-0
assembly

Col-0
assembly

Ler de novo
assembly

Ler incomplete
assembly

Adding random
breakpoints

Using homology for
re-assembly

Figure 11 Workflow for analyzing the effects of genome contiguity. Starting from 
the Ler chromosome-level de novo assembly, an incomplete assembly was generated 
by adding random breaks in it. The incomplete assembly was then re-assembled based 
on the homology with the Col-0 reference genome. Structural rearrangements (SRs) 
predicted from pseudo-assemblies were compared against the rearrangements 
identified from the Ler de novo assembly, which were considered as ‘TRUE’ SRs.  
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I studied the effects of assembly contiguity on SyRI’s performance by 

performing a simulation analysis (Figure 11). I introduced random breaks in the 

chromosome-level assembly of Ler to simulate multiple incomplete assemblies (Methods: 

3.7). Then, I generated homology-based pseudo chromosomes using Col-0 as reference. 

Structural rearrangements between Col-0 and pseudo-genome assemblies were identified 

using SyRI and compared with the structural rearrangements between the reference and 

the chromosome-level assembly of Ler that were considered as ‘TRUE’ variation data 

(Method: 3.7). 

In this analysis, SyRI identified structural rearrangements with a sensitivity 

>0.9 for 90% of the pseudo-genomes with incomplete assembly N50 >470Kb. Similarly, a 

precision value of >0.9 was observed for 90% of pseudo-genomes with incomplete 

assembly N50 >674Kb (Figure 12). Additionally, I analysed SyRI’s performance when both 

assemblies were incomplete by simulating incomplete assemblies from Col-0 and Ler 

genomes (Methods: 3.7). I used chroder to generate homology-based pseudo-genomes 

and identified structural rearrangements using SyRI. Similar to earlier, structural 

rearrangements predicted from pseudo-genomes were compared to the true-variation 

data from the chromosome-level assembly. SyRI had sensitivity and precision values of 
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Figure 12: Rearrangement prediction efficiency of SyRI in incomplete assemblies. 
Each point corresponds to an incomplete assembly and the black lines represent the 
polynomial-fit. (from Goel et al., 2019) 
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more than 0.7 for 70% of the pseudo-genomes with incomplete assembly N50 >868Kb and 

>721Kb respectively (Figure S1). 

In this analysis, SyRI could identify almost all structural rearrangements if a 

chromosome-level reference genome is available. SyRI had a lower prediction quality 

when both assemblies were incomplete; however, it still identified many of the putative 

rearrangements. 

2.5 Analysing multiple model species using SyRI 

I identified genomic differences in humans, maize, fruit fly, and yeast using 

SyRI (Table S1, Methods: 3.8). For humans, I compared genomes NA19240 and NA12878 

against the reference genome GRCh38.p1237,43. For maize, I compared the accession PH207 

against the reference genome from B7344,45. For fruit fly, the genome of strain A4 was 

compared against the reference genome from strain ISO-146,47. For yeast, the de novo 

genome assembly of strain YJM1447 was compared against the reference genome from 

strain S288C48,49. As maize is a highly repetitive genome, I masked the repeat regions to 

limit computational requirements50. In our analysis, I observed that for all organisms at 

least 5% of the genome was non-syntenic (Table 1, Figure S2, Figure S3, Figure S4, Figure 

S5, Figure S6).  

For all these comparisons, SyRI’s was computationally fast and resource-

efficient. For the human, fruit fly, and yeast genomes, it required less than 600 seconds of 

CPU runtime and less than 1GB of memory. An exception was the maize genome for 

which it utilized ~3350 secs of CPU runtime and ~6GB of memory. SyRI identifies the best 

combination of alignments to annotate rearranged regions. In repetitive genomes, there 

could be many alignments between repeat regions increasing the runtime and memory 

requirement significantly. This problem can be alleviated by decreasing the sensitivity of 

whole-genome alignment and filtering out of smaller alignments. 
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Table 1: Computation resources used and structural differences identified by SyRI for 

difference genomes. 

 

 (from Goel et al., 2019) 

2.6 Example of a highly rearranged region 

Wijnker et al. reported two consecutive large inversions between chromosome 

3 of Col-0 and Ler accessions of A. thaliana33. In my analysis of these accessions using SyRI, 

I indeed identified these inversions (Figure S7). However, with SyRI it was also possible 

to identify one large translocation and one large duplication in the same region, thus 

further increasing the complexity of this highly rearranged region (Figure 13). This 

rearranged region overlaps multiple genes and could affect their expression. This example 

Species Sample CPU 

runtime 

(in secs) 

Memory 

Usage 

(in MB) 

 Syntenic 

Regions 

Structural Rearrangements Un-aligned 

Inversion Translocation Duplication 

Human NA12878 542.71 581 size 2.8 Gb 7.0 Mb 11.6 Mb 27.9 Mb 224.1 Mb 

% genome 91.1 0.2 0.4 0.9 7.4 

number 1147 66 270 3766 840 

NA19240 528.79 1003 size 2.8 Gb 3.7 Mb 11.8 Mb 27.1 Mb 208.8 Mb 

% genome 91.7 0.1 0.4 0.9 6.9 

number 1134 68 254 3429 848 

Yeast YJM1447 34.51 5 size 11.2 Mb 1.8 Kb 92.0 Kb 629.6 Kb 87.3 Kb 

% genome 92.5 0.02 0.8 6.0 0.7 

number 222 3 54 370 164 

Fruit Fly A4 522.02 289 size 124.8 Mb 119.5 Kb 2.0 Mb 7.5 Mb 1.2 Mb 

% genome 92.1 0.1 1.4 5.5 0.8 

number 1947 15 636 4387 1365 

Maize PH207 3342.62 5873 size 1.3 Gb 82.5 Mb 10.1 Mb 15.9 Mb 669.6 Mb 

% genome 62.2 4.0 0.5 0.8 32.5 

number 8779 195 3954 9612 15166 
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illustrates the usefulness of SyRI in identifying genomic differences altering biological 

process.  

2.7 Experimental validation of predicted translocations 

Recombination can result in different copy-numbers for a translocated region 

in daughter cells (Figure 14a). This distinguishes translocations from syntenic regions, as 

for the later copy-number will not be affected by recombination.  This phenomenon allows 

validation of translocations predicted by SyRI. 

I used a previously published population generated by selfing F1 hybrids from 

crossing Col-0 and Ler accessions of A. thaliana, resulting in 50 F2 recombinant plants51. 

The authors also performed whole-genome sequencing (~5x coverage/sample) and 

identified genotype information for each of the 50 F2 plants by aligning the sequencing-

reads to Col-0 reference genome and using TIGER for crossover identification52. I selected 

all translocations (and transpositions) that were larger than 1kb and outside the peri-

centromeric regions (n=117) and estimated their expected copy-numbers in all samples 

based on the genotype of that sample. As reads originating from both loci of a translocated 

region would align to the same loci in the reference sequence, by analyzing the read-

coverage at the translocated region, I calculated the observed copy-number for the 

Col-0

Ler

12.2 Mb

12 Mb

13.4 Mb

13 Mb

 Synteny
 Inversion
Translocation
 Duplication

Chr3

Figure 13: Multiple co-occurring rearrangements. The red and blue line reflects Col-
0 and Ler chromosome 3, respectively. Black lines on top represent regions containing 
genes. 
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translocation (Figure 14b). Additionally, read counts for reference and alternate alleles in 

the translocated region were also identified. 
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Figure 14: Validating translocations using recombination induced copy-number 
changes. (a) Recombination between translocated loci can result in copy-number 
differences in recombinant genomes. (b) Short-reads from recombinant genomes are 
aligned to the reference genome. (c-e) Tests used for validation of the predicted 
translocations:  (c) testing for the absence of reads in samples, (d) goodness-of-fit 
between expected and observed copy-number, and (e) clustering of samples having 
the same genotypes. (f) In the heatmap, rows correspond to the tests and columns 
represent individual translocations. The colour represents whether a translocation 
was validated (green), was selected but could not be validated (dark grey), or was 
filtered out as the test was not applicable (grey). (from Goel et al., 2019) 
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Predicted translocations were tested using three tests and I considered a 

translocation validated if it passed any of the three tests (Figure 14c-e). In the first test, I 

checked samples with genotypes corresponding to the absence of a translocated region 

and considered a translocation as valid if these samples had no copy (read coverage <0.2x) 

of the translocated region (Method: 3.9.1). In the second test, I assessed the linear model 

fit between the expected and observed copy-numbers of a translocated region across 

samples and considered translocations with good fitting as valid (Method: 3.9.2). In the 

third test, I compared the read counts of Col-0/Ler alleles in samples with the same 

genotypes and considered translocations for which read counts clustered based on 

genotypes as valid (Method: 3.9.3). More than 90% (108/117) of the predicted 

translocations were validated by at least one test and 50% (59/117) translocations with at 

least two tests (Figure 14f). I checked the read alignments for the remaining translocations 

manually and though I could observe signals supporting their existence, these signals 

were not strong enough to be validated by these tests. From this analysis, I conclude that 

SyRI accurately identified genome-wide translocations.
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3 Methods 

Parts of this chapter were the basis of a manuscript that was published as a peer-reviewed research 

article in Genome Biology (Goel et al. 2019)1. However, in this chapter, I only discuss the work that 

was done by me. Results and data that were not generated by me are either clearly pointed or cited. 

Authors list (Goel et al. 2019): Manish Goelα, Hequan Sunβ, Wen-Biao Jiaoα, Korbinian 

Schneebergerα, β. 

Author affiliations: αDepartment of Chromosome Biology, Max Planck Institute for Plant Breeding 

Research, 50829 Cologne, Germany; βLMU Munich, 82152 Planegg-Martinsried, Germany. 

Authors contributions (Goel et al. 2019): The project was conceived by KS and WBJ. MG and KS 

developed the algorithms. MG implemented SyRI and performed all analyses. HS processed 

recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler 

assembly. The manuscript was written by MG and KS with inputs from HS and WBJ. All authors 

read and approved the final manuscript. 

 

In this section, I provide additional description of SyRI’s workflow and 

algorithms. Additionally, I also describe the steps and strategies used in performing all 

the analysis. 

3.1 Syntenic region identification 

Starting from whole-genome alignments, SyRI selects all directed alignments 

between a pair of homologous chromosomes and generates a directed acyclic graph 

(DAG). In this DAG, each node corresponds to an alignment and edges are added between 

two nodes when the corresponding aligned regions are: 
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 collinear in both genomes (i.e. have the same relative position in both genomes) 

irrespective of the distance between them 

 not overlapping 

 not separated by other collinear alignments on both genomes 

In Figure S8, I show an example of this process. Starting from alignments a-l, 

SyRI generated a DAG with each alignment becoming a node. Edges were added from ‘a’ 

to ‘e’ as well as ‘c’ as both nodes were collinear to ‘a’, but no edge was added from ‘d’ to 

‘e’ as their aligned regions were not collinear. Nodes ‘a’ and ‘b’ were not connected as the 

aligned regions were overlapping, whereas nodes ‘a’ and ‘d’ were not connected as they 

were separated by ‘c’ on both genomes. 

SyRI assigns each node a score corresponding to its alignment score. It also 

adds two imaginary 0-score nodes, S (start) and E (end) and connects node S to all nodes 

without any in-edge and node E to all nodes without any out-edge. It identifies all 

alignments that constitute the syntenic region by finding the longest path from node S to 

E using dynamic programming. For all pair of homologous chromosomes, SyRI repeats 

this process. 

3.2 Inversion identification 

Both synteny and inversion are characterized as having a conserved location 

in the two genomes. This implies that reverse complementing the query genome would 

transform alignments of an inversion into locally syntenic regions. Additionally, 

alignments representing a putative inversion can have different conformations (Figure 

S9). Overlapping inverted alignments result in conflicting annotations further 

complicating inversion identification. In SyRI, I developed a methodology that selects 

inverted alignments corresponding to the longest inversions for all conformations of 

inverted regions. 
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For inversion identification, SyRI selects all inverted alignments between a 

pair of homologous chromosomes and then reverse complements the query chromosome 

converting the inverted alignments to directed alignments (Figure S10). Similar to 

syntenic region identification, it creates a DAG where each node corresponds to a now 

directed alignment and edges are added between two nodes when the corresponding 

aligned regions are: 

 collinear in both genomes (i.e. have the same relative position in both genomes) 

irrespective of the distance between the regions 

 not overlapping 

 not separated by other collinear alignments on both genomes 

SyRI uses alignment scores as the node score and adds two imaginary 0-score 

nodes, Start (S) and End (E). Edges are added from node S to all nodes and from all nodes 

to node E. In this DAG, each path from S to E represents a putative inversion candidate 

with its score being the difference of the sum of the score of its constituent alignments’ 

and the sum of alignment score of any syntenic region within the inverted region. This is 

because syntenic regions cannot be present within an inversion and therefore would be 

removed if any overlapping candidate inversion were selected. 

The candidates can overlap each other and could have conflicting annotations. 

SyRI selects all non-conflicting inversions with highest total alignment score. For this, it 

generates a DAG with candidates as nodes and edges between nodes representing 

candidates that do not overlap, are collinear, and are not separated by another candidate. 

Candidate score is used as the node score. Two imaginary 0-score Start (S) and End (E) 

nodes are added with edges from node S to all nodes without any in-edge and to node E 

from all nodes without any out-edge. SyRI finds non-conflicting candidates by finding the 

longest path from node S to node E using dynamic programming. 

3.3 Translocation and duplication (TD) identification 
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From the remaining alignments, SyRI selects translocations and duplications 

(TDs) and removes redundant (repetitive) alignments. Genomic repeats result in multiple 

overlapping alignments with conflicting annotations. SyRI accurately identifies TDs from 

them using a two-step methodology. First, it identifies candidate TDs that consists of one 

or more alignments representing a putative relocation event (Figure S11a). Second, SyRI 

selects non-conflicting candidates with the highest alignment score (Figure S11b). 

3.3.1  Overlapping candidates have inter-dependent annotations 

Overlapping candidates can influence the annotation of a candidate TD. I 

explain this in Figure S11c where four candidates (two green and two blue) overlap each 

other. In the first case, the green candidates are longer and better represent two relocation 

event; therefore, they should be selected as TDs. In the second case, however, the blue 

candidates are longer and better represent TDs suggesting that the green candidates are 

redundant. Even though green candidates are the same in both cases, their annotation is 

different because of overlapping candidates. Therefore, SyRI compares all overlapping 

candidates simultaneously to find optimal annotations for rearranged regions. 

3.3.2  Candidate TD identification 

SyRI generates a DAG with the remaining directed alignments, where each 

node corresponds to an alignment, and adds edges between nodes when the 

corresponding aligned regions are: 

 collinear in both genomes (i.e. have the same relative position in both genomes) 

irrespective of the distance between the regions 

 not overlapping 

 not separated by other collinear alignments on both genomes 

 not separated by a syntenic or an inverted region on both genomes 
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The alignment score is used as the node score. SyRI adds two imaginary 0-

score Start (S) and End (E) nodes with edges from node S to all other nodes and to node E 

from all other nodes (Figure S12). In this graph, each path from S to E corresponds to a 

candidate TD. SyRI finds them using dynamic programming and calculates candidate 

score for each candidate using its alignment length and gaps between them: 

𝑠𝑐𝑜𝑟𝑒 =  𝑚𝑖𝑛 ൬
𝑔𝑒𝑛𝐴_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ − 𝑔𝑒𝑛𝐴_𝑔𝑎𝑝_𝑙𝑒𝑛𝑔𝑡ℎ

𝑔𝑒𝑛𝐴_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ
,
𝑔𝑒𝑛𝐵_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ − 𝑔𝑒𝑛𝐵_𝑔𝑎𝑝_𝑙𝑒𝑛𝑔𝑡ℎ

𝑔𝑒𝑛𝐵_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ
൰ 

Candidates with large gaps get a negative score and are filtered out. A similar 

process is followed for inverted alignments. 

3.3.3 Selecting optimal candidate TDs 

SyRI groups overlapping candidate TDs generating a network of rearranged 

repeat regions. Starting from a candidate TD, SyRI adds candidates that overlap the focal 

candidate in the group. Then, it iteratively adds candidates overlapping with the recently 

added candidates until no new candidate can be added. In Figure S11c, starting from the 

left green candidate, SyRI would first add the two blue candidates as they overlap the 

green candidate. Then, it would add the right green candidate as it overlaps the blue 

candidates. Consequently, all four candidates would constitute a network. 

From such a network, SyRI selects candidates aligning regions that do not 

overlap with other candidates or syntenic/inverted regions (Figure S13a). Since only one 

candidate can annotate such a region, therefore, SyRI selects such candidates as necessary. 

It removes redundant candidates that overlap with syntenic/inverted regions or already 

selected candidates on both genomes (Figure S13a). SyRI repeats this process until it 

reaches a deadlock when it cannot select or remove any more candidates (Figure S13b). To 

overcome deadlocks, it uses brute-force (for networks with <50 candidates) and 

randomized-greedy (networks with >50 candidates) methods. 
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In the brute-force method, SyRI selects all different combinations of non-

conflicting candidates. SyRI selects necessary candidates as the initial combination. Then, 

it iteratively checks whether a candidate is non-conflicting to any combination. If yes, then 

it creates a new combination comprising of candidates of the non-conflicting combination 

and the focal candidate (Figure S13c). After iterating over all candidates, SyRI compares 

the score for each combination and selects the highest scoring combination (see below). If 

the number of combinations becomes large, then it switches to the randomized-greedy 

method to restrict computational resources usage. In the randomized-greedy method, 

SyRI again selects necessary candidates as output combination. To overcome a deadlock, 

it randomly adds one of the twenty highest-scoring candidates to the output combination 

with selection probability for a candidate proportional to its candidate score. SyRI then 

continues to find necessary/redundant candidates while resolving deadlocks with 

random selection until all candidates are either selected or removed resulting in a 

combination of non-conflicting candidates. SyRI repeats this process 100 times to get 100 

combinations of non-conflicting candidates and selects the highest scoring combination. 

I defined combination score as the number of unannotated bases its 

constituent candidates annotates. SyRI selects a combination with a high score and a low 

number of candidates. For combinations with similar scores, the combination comprising 

of few longer candidates would be preferred over combinations comprising of many 

smaller candidates. SyRI annotates candidates of the selected combination as 

translocations or duplications based on their overlap with syntenic/inverted regions and 

with other candidates. A candidate is annotated as translocation when it does not overlap 

with syntenic/inverted regions and other candidates on both genomes, and duplication 

when it overlaps with syntenic/inverted regions on a genome. If two candidates overlap 

each other, then the candidate with the higher score is selected as translocation and the 

other is selected as duplication. 
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3.4 Simulation analysis 

3.4.1 Generating rearranged genomes from the A. thaliana reference genome 

I used SURVIVOR and RSVSim to simulate 100 rearranged genomes each with 

inversions, transpositions, translocations, tandem duplications, and distal duplications 

from the Col-0 assembly53,54. I simulated 40, 436, 100, 100, and 1241 rearrangements, 

respectively, for the five rearrangement types. I used the Col-0 vs Ler comparison to get a 

size distribution for inversions, transpositions, and distal duplications, whereas for 

translocations and tandem duplications size ranged from 1000-5000bp and 100-1000bp 

respectively. Using SURVIVOR, I also simulated 100 genomes each having 1000 indels 

with size ranging from 1-500bp. 

3.4.2 Simulating reads from the rearranged genomes 

For read-based genomic differences identification methods, I simulated reads 

from the rearranged genomes using wgsim (Illumina short-reads, parameters: -e 0.001 -d 

550 -N 12000000 -1 150 -2 150) and SURVIVOR (PacBio and Nanopore reads, default 

parameters) to get 30x genome coverage53,55. SURVIVOR required read-profiles for 

simulating reads which I generated using the long-read sequencing data from NCBI 

project: PRJEB2127056. I aligned the reads to Col-0 assembly using minimap2 and 

converted the alignments from SAM to BAM format using samtools57,58. 

3.4.3 Finding genomic differences using various methods 

SyRI 

Rearranged genome assemblies were aligned using nucmer (parameters: --

maxmatch -c 100 --noextend -l 100). Alignments were filtered using delta-filter 

(parameters: -m –i 90 -l 100) and converted to tab-separated table format using show-

coords (parameters: -THrd). SyRI was run using the default parameters. 
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Assemblytics28 

I used the same alignments as I used for SyRI. The default value for unique 

sequence length was used with variant size set to 1-100000 bp. 

AsmVar27 

I followed the pipeline provided by the authors of the method. Reference 

genome was indexed using lastdb with default parameters. I aligned genomes using lastal 

and then used last-split with parameters suggested by the authors. Finally, I used 

ASV_VariantDetector with default parameters to predict genomic differences59. 

Smartie-sv29 

I used the method with default settings but changed the number of jobs to run 

in parallel and job wait time to make it suitable for available computational resource.  

Sniffles30 

Simulated long-reads (both PacBio and Nanopore) were aligned using 

minimap257.  Using samtools, the SAM file was converted to BAM, and subsequently 

sorted and indexed58. Sniffles was run using the default parameters. 

Picky31 

I used the workflow as described by the authors. Simulated reads were 

converted from fasta to fastq format using faToFastq60. I used lastal to align reads and 

identified structural differences with picky. I used suggested parameters for all 

commands. 

LUMPY32 

I aligned short-reads using minimap257. The alignments were processed using 

samblaster and samtools as suggested by authors58,61. I used LUMPY with default 

parameters but changed the values of paired-end read distribution parameters (mean: 550, 

read_length: 150, min_non_overlap: 150) to match simulated reads. 
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3.4.4 Calculating prediction accuracy 

I calculated the efficiency of different methods by comparing the coordinates 

of the breakpoints of simulated and predicted rearrangements. I considered the predicted 

breakpoints for inversions, transpositions, translocations, tandem duplications, and distal 

duplications correct when they were within 150bp range of simulated breakpoints. Read-

based methods did not annotate transpositions or translocations but reported breakpoints 

corresponding to translocations and transpositions. Consequently, I used breakpoints as 

representatives for these rearrangements. Similarly, as tandem and distal duplications 

were not distinguished, all annotations corresponding to duplicated regions were 

considered. For indels, I checked whether a predicted indel is within 𝑁 bps of any 

simulated indel with its size also within 𝑁 bps to simulated indel’s size. I used two 

different values for 𝑁: 5 bps and 100 bps. 

3.5 Comparing real genomes and comparison against the gold-

standards dataset  

I aligned the assemblies of NA19240 and Ler genomes to the respective human 

and A. thaliana reference genome as described in section 3.8 and simulated reads as 

described in section 3.4.2. For simulating long reads for NA19240, I used the read-profile 

provided by SURVIVOR53. I identified structural differences using different methods as 

described in section 3.4.3. However, Smartie-sv did not result in any output for both 

assemblies and AsmVar was computationally too challenging for NA19240, therefore 

their results are not available. AsmVar had better predictions in the .svd output file 

compared to the .vcf output file; therefore, I used it for downstream analysis. I used 

custom scripts to extract count and length of the predicted insertions, deletions, and 

inversions in somatic chromosomes. I considered an insertion (or deletion) as correctly 

identified if a method predicts an insertion (or deletion) within 100 bp region from it. I 

considered an inversion correctly identified if a method predicted an overlapping 
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inversion. As read-based used to generate gold-standard data might have misrepresented 

inverted TDs as inversions, for SyRI, I checked overlap with them as well. 

3.6 Generating homology-based pseudo-chromosome level 

assemblies 

I developed a heuristic method called ‘chroder’ (for chromosome ordering) to 

generate homology-based pseudo-chromosomes using whole-genome alignments 

between incomplete assemblies. Chroder can use homology between a chromosome-level 

and an incomplete assembly as well as between two incomplete assemblies to generate 

pseudo-chromosomes. In the presence of chromosomes, chroder uses them as a template 

to order and orient contigs from the incomplete assembly. When both assemblies are 

incomplete, chroder uses alignments between homologous contigs to order and orient 

them. If a contig aligns with multiple contigs from the other assembly, then chroder orders 

these contigs to form a longer sequence (Figure S14). Chroder orients homologous contigs 

to have directed alignments by reverse complementing the contigs with inverted 

alignments; however, it does not break contigs and assigns a contig to only one pseudo-

chromosome. Finally, it concatenates contigs with Ns in between them to generate 

pseudo-chromosomes. Contigs that could not be assigned to pseudo-chromosomes are 

filtered out. 

3.7 Incomplete assemblies generation and analysis 

3.7.1  Single incomplete assembly 

I simulated incomplete assemblies from the Ler genome by introducing 10-400 

random breaks to generate 200 contig assemblies. Using RaGOO, I generated homology-

based pseudo-chromosome level assemblies with Col-0 as a reference, which were then 

aligned to Col-0 using nucmer. I considered genomic differences identified by SyRI from 
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pseudo-genome assemblies as correct if a rearrangement of the same type existed in the 

Col-0 vs Ler comparison within 100 bps. 

3.7.2 Double incomplete assemblies 

I simulated incomplete assemblies from Col-0 and Ler genomes by 

introducing 10-400 random breaks to generate 100 pairs of incomplete assemblies. I used 

chroder to generate homology-based pseudo-chromosome level assemblies. This failed 

for sixteen pairs so I filtered them out from the further analysis. I aligned these assemblies 

using nucmer, identified genomic differences using SyRI, and calculated prediction 

correctness based on the Col-0 and Ler assembly predictions. 

3.8 Aligning whole-genome assemblies 

I used eleven whole-genome assemblies from five model species, three from 

humans and two each form A. thaliana, yeast, fruit fly, and maize (Table S1). I selected 

only chromosomes and filtered-out unplaced scaffolds/contigs. I aligned the assemblies 

using nucmer from the MUMmer3 package36. For each species, I selected nucmer 

parameters -c, -b, and -l to ensure sufficient alignment resolution while limiting 

computational runtime and resource requirements. Also, I used --maxmatch parameter to 

get all alignments. I selected alignments with identity >90% and length >100bp using 

delta-filter and transferred alignments to a tab-separated table format using show-

coords36.  The exact commands used are shown in Table S3. The highly repetitive maize 

genomes were repeat-masked using RepeatMasker v4.0.662. 

3.9 Validation of predicted translocations 

I extracted allele count information from the whole-genome sequencing data 

of 50 F2 recombinants using SHORE63. For calculating copy-number of a predicted 

translocation in a sample, I divided the average read-coverage for the translocated region 

by the average read-coverage for the entire sample. I filtered out translocations in the peri-
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centromeric regions and for which >25% of the sequence had >10% Ns. Within the 

translocated regions, I selected highly conserved SNPs and filtered out SNPs having 

sequence variation within 25bps to it. 

3.9.1  Test 1: Absence of translocated sequence 

I tested translocations for which genotype of at least two samples indicated 

the absence of the translocated region. I considered a predicted translocation as valid if all 

samples with the predicted absence of region had an average read-coverage of less than 

0.2x in the translocated region. 

3.9.2  Test 2: Modelling expected and observed copy numbers 

For a translocation, I filtered out samples that had either homozygous Col-0, 

heterozygous, or homozygous Ler genotype at both loci of the translocation. In these three 

cases, the translocated region has two copies each increasing the number of samples with 

two expected copies biasing linear modelling. I tested only those translocations that had 

samples corresponding to at least three different expected copy-number values. I used the 

lm function of R to generate a linear regression model and did multiple hypothesis 

correction using Benjamini-Hochberg method64. I considered a translocation valid if the 

model had slope >0.75 and p-value <10-6. 

3.9.3  Test 3: Genotype derived sample clustering 

For SNP markers in the translocated regions, I normalized allele-counts for 

each sample based on the number of reads sequenced and the number of reads mapped. 

I filtered out outlier markers (highest one percentile allele count). Translocations with at 

least: 

 three SNP marker positions 

 two genotypes with three samples each 
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were tested. For a translocation, I filtered out genotypes with less than three samples. 

Translocations with low alternate allele count variance (variance<1) were also removed. 

For a translocation, I represented each sample as a point on the ‘reference 

allele count vs alternate allele count’ plane and calculated Euclidean distance between 

points. To quantify clustering of samples corresponding to a genotype, I calculated 

closeness_score as the sum of ratios of the mean distance of samples of a genotype to the 

mean distance against samples from other genotypes. For true translocations, samples 

from the same genotype would have similar allele counts (small distance) compared to 

samples from different genotypes with different allele clusters (higher distance) resulting 

in lower closeness_score. I created a null distribution of closeness_score by simulating 

clusters of genotypes where allele counts (for reference and alternate alleles) were 

sampled from Poisson distribution. For each translocation, I calculated lower-tail p-value 

by comparing its closeness_score against the null distribution. I did multiple hypothesis 

correction using the Benjamini-Hochberg method and selected translocations with p-

value<0.05 as valid64. 
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4 Discussion and Conclusion 

Parts of this chapter were the basis of a manuscript that was published as a peer-reviewed research 

article in Genome Biology (Goel et al. 2019)1. However, in this chapter, I only discuss the work that 

was done by me. Results and data that were not generated by me are either clearly pointed or cited. 

Authors list (Goel et al. 2019): Manish Goelα, Hequan Sunβ, Wen-Biao Jiaoα, Korbinian 

Schneebergerα, β. 

Author affiliations: αDepartment of Chromosome Biology, Max Planck Institute for Plant Breeding 

Research, 50829 Cologne, Germany; βLMU Munich, 82152 Planegg-Martinsried, Germany. 

Authors contributions (Goel et al. 2019): The project was conceived by KS and WBJ. MG and KS 

developed the algorithms. MG implemented SyRI and performed all analyses. HS processed 

recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler 

assembly. The manuscript was written by MG and KS with inputs from HS and WBJ. All authors 

read and approved the final manuscript. 

 

4.1 Whole-genome assembly based genomic differences 

identification 

Accurate identification of genomic differences is critical for understanding 

biological diversity. During my PhD, I developed a novel computational method for 

identifying all genomic differences between two closely related organisms by comparing 

their chromosome-level assemblies. I call this method SyRI and it identifies syntenic 

(structurally conserved) as well as structurally rearranged regions that have a different 

location, orientation, and/or copy-number between genomes. 
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4.1.1  Changing the paradigm of structural rearrangement 

Single nucleotide polymorphisms (SNPs) are the most commonly studied 

genomic variation. They are identified by first aligning sequencing-reads to a reference 

genome and then finding positions with multiple reads with a mismatched base. Multiple 

structural rearrangement identification methods have been developed using a similar 

strategy. These methods sequentially analyse the alignment breakpoints between 

sequencing reads or contigs (from the query genome) and the reference genome to identify 

structural rearrangements. However, this approach does not consider the overlap and 

conflicts between annotations resulting from repeat alignments. Additionally, as read-

based methods do not have query genome assembly, they cannot annotate rearrangement 

coordinates accurately in the query genome. 

SyRI overcomes these challenges. It analyses sequence as well as structure 

information of the query genome, using whole-genome alignments between 

chromosome-level assemblies, to identify genomic differences with high accuracy. SyRI’s 

novel approach allows comparison of overlapping alignments for identification of non-

conflicting rearrangements. This is a significant technical advancement compared to 

current methods as now genome-wide optimised rearrangements can be identified. 

4.1.2  Genome-wide optimisation for rearrangements 

SyRI uses a novel approach for structural rearrangement identification where 

it first identifies genome-wide syntenic regions (longest set of collinear alignments). 

Syntenic regions describe structurally conserved regions, implying that non-syntenic 

regions are structural rearrangements by definition. Thus, identifying syntenic regions 

simultaneous identifies all rearranged regions as well. This approach transforms the 

challenging problem of rearrangement identification to a comparatively easier problem of 

rearrangement annotation. 



Synteny and Rearrangement Identifier  Discussion and Conclusion 

MANISH GOEL 75

 

SyRI annotates rearranged regions as inversions, translocations, and 

duplications based on their location, orientation, and copy-number. Using genome-

graphs and optimisation algorithms, it compares overlapping alignments and performs 

simultaneous identification of non-conflicting rearrangements that best explain genomic 

structural differences. This makes SyRI, to the best of my knowledge, the first method to 

identify structural rearrangements optimised for genome-wide differences. Finally, even 

though I used the algorithms and methods mentioned here for analysing genome-graphs 

generated from whole-genome alignments between two genomes, they can be extended 

to other genome-graphs as well65,66. 

4.1.3 Nested sequence differences and their identification 

SyRI also identifies sequence differences (structural variation, indels, and 

SNPs) in the aligned regions and between adjacent alignments of all syntenic and 

rearranged regions. This generates a hierarchy of genomic differences where sequence 

differences are present within larger structurally rearranged regions (e.g. a SNP in a 

translocated region). As recombination is suppressed in rearranged regions, sequence 

differences can accumulate7. Also, recombination between relocated loci of a translocation 

or duplication can result in copy-number variation. Further, as rearranged regions do not 

follow Mendelian segregation, SNPs in them can confound the variance in genotypes 

affecting the interpretation of genomic patterns from recombination analysis, selection 

screens, and genome-wide association studies33,34. Using SyRI it is now possible to filter 

out such rearranged SNPs. 

4.2 Efficient genomic differences identification by SyRI  

I analysed SyRI’s performance in both simulated and real genomes and 

showed that it can identify structural rearrangements accurately in both datasets. For 

simulated rearranged genomes, it had near 100% sensitivity implying that it can identify 

all simulated rearrangements without many false positives. By analysing the human 
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NA19240 genome, for which gold-standard variation data was available, I also 

demonstrated that SyRI accurately identifies genomic differences from real-genomes as 

well. In comparison, current methods (both assembly and read-based) had limited 

performance. Assembly-based methods were limited by design as they were not 

developed for identification of all different classes of rearrangements (AsmVar cannot 

identify duplications, Assemblytics cannot find inversions and translocations, Smartie-SV 

cannot find translocations and duplications). Read-based methods could identify more 

classes of rearrangements but were unable to identify all corresponding breakpoints. 

Additionally, read-based methods were unable to distinguish between breakpoints from 

relocated regions versus local genomic differences. Consequently, breakpoints 

corresponding to transpositions and intra-chromosomal distal duplications were 

incorrectly annotated as large deletions or tandem duplications. For cases when 

chromosome-level assemblies are not available, I showed that SyRI can still be used with 

homology-based pseudo-chromosome level assemblies to gain useful insights about the 

structural rearrangements. 

4.3 Current limitations of SyRI 

SyRI analyses different combinations of alignments for TDs identification 

allowing identification of non-conflicting annotations from highly overlapping repeat. 

However, listing and analysing all TDs is computationally challenging. If a large TD is 

represented by multiple alignments, then SyRI generates all possible candidate TDs from 

these alignments which can result in 2 candidates (𝑛 = number of alignments). This can 

significantly increase RAM and CPU usage. I am working to optimise the algorithms 

developed in this work to improve SyRI’s performance in such worst cases in 

collaboration with Prof. Dr Gunnar W. Klau, Institute of Informatics, Heinrich Heine 

University, Düsseldorf. 
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SyRI also lacks some ease-of-life features. Currently, it requires that the same 

strands of the homologous chromosomes are compared. Whole-genome aligners do not 

consider strand information. So, if different strands are aligned then biologically syntenic 

regions result in inverted alignments. As SyRI cannot differentiate between inverted 

alignments corresponding to inversions and those originating from different strands, it 

will assume that the homologous chromosomes are inverted and do not have syntenic 

region. The current solution for this problem is for the user to ensure that the same strands 

are being compared. This issue also reflects that analysing genomes using SyRI is a two-

step process: performing whole-genome alignment and finding genomic differences. A 

more user-friendly approach would involve using assemblies as input, perform whole-

genome alignment and required pre-processing internally, and then identify genomic 

differences. 

4.4 Towards population-level genomic variance identification 

One of the biggest goal of genomic research at the beginning of the 21st century 

was the accurate generation of whole-genome assembly. With the advances in sequencing 

technologies and the development of ingenious assembly methodologies, this goal has 

been nearly achieved. This claim is supported by multiple recent studies that sequenced 

several organisms of a species and generated reference-quality genome assemblies39,48,67,68. 

Scientists throughout the world are constantly sequencing new organisms, creating an 

ever-increasing database of whole-genome assemblies. However, little progress has been 

made towards the population-level analysis and comparison of these assemblies. SyRI 

provides an excellent platform for the development of the first method for population-

wide genomic differences identification by comparing multiple whole-genome 

assemblies. Technically, such an analysis would be similar to generating a pan-genome as 

it will try to find all conserved genomic regions in a population. However, it would also 

describe the variant regions and therefore, increase our understanding of genic presence-

absence variation, differences in regulatory regions, as well as distribution of transposable 
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elements in a population. Identification of large conserved rearrangements in a 

population could provide information about population stratification that can potentially 

lead to speciation. A multi-genome comparison would also be helpful to learn about the 

current evolutionary pressure within a species as well as to decipher the evolutionary 

history. 

4.5 Concluding remarks 

During my PhD research, I developed SyRI, a novel computational method 

for the identification of genomic differences from whole-genome assemblies. SyRI uses a 

novel strategy where it first identifies structurally conserved regions, and then annotates 

rearranged regions using graph and optimisation strategies. I compared SyRI against the 

current genomic differences identification methods using simulated and real genomes 

and demonstrated that SyRI outperforms all current methods. I also demonstrated the 

advantages of using whole-genome assembly compared to sequencing reads for structural 

rearrangement identification. I analysed genomes of five model species and showed that 

SyRI can efficiently identify genomic differences from genomes of all complexities. 

Finally, I validated more than 100 translocations predicted by SyRI genetically by using a 

hybrid population of two accessions of A. thaliana. 

I believe SyRI would contribute towards initialising a new phase in genomics.  

It will allow a transition from the contemporary genome comparison strategies focussed 

mainly on SNVs and small indels to the analysis of more consequential structural 

rearrangements. Future technological developments would lead to even better assemblies 

increasing the efficiency of assembly-based methods like SyRI. Additionally, 

identification of nested sequence variation by SyRI will help improve the accuracy of the 

current marker-based analysis. Finally, the algorithms developed in this work would 

support the development of methods for performing population-level multiple-genome 

comparisons. 
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6 Appendix 

Parts of this chapter were the basis of a manuscript that was published as a peer-reviewed research 

article in Genome Biology (Goel et al. 2019)1. However, in this chapter, I only discuss the work that 

was done by me. Results and data that were not generated by me are either clearly pointed or cited. 

Authors list (Goel et al. 2019): Manish Goelα, Hequan Sunβ, Wen-Biao Jiaoα, Korbinian 

Schneebergerα, β. 

Author affiliations: αDepartment of Chromosome Biology, Max Planck Institute for Plant Breeding 

Research, 50829 Cologne, Germany; βLMU Munich, 82152 Planegg-Martinsried, Germany. 

Authors contributions (Goel et al. 2019): The project was conceived by KS and WBJ. MG and KS 

developed the algorithms. MG implemented SyRI and performed all analyses. HS processed 

recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler 

assembly. The manuscript was written by MG and KS with inputs from HS and WBJ. All authors 

read and approved the final manuscript. 

 

6.1 Using SyRI and a working example 

SyRI is an open-source method available under the MIT license and is 

available for download at github.com/schneebergerlab/syri. A user-manual is also 

available at schneebergerlab.github.io/syri/. I developed SyRI using Python3.5 and used 

Cython for computationally demanding tasks. SyRI was developed on Linux, but it can 

work on other platforms as well. 

6.1.1 Installing SyRI 
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Pre-requisites 

 C/C++ compiler: g++ 

 Python3.5 

 Python packages: Cython, numpy, scipy, pandas, python-igraph, biopython, 

psutil, and pysam 

Installing dependencies and SyRI: 

 The python packages can be installed in a conda environment using: 
conda install cython numpy scipy pandas biopython psutil 
conda install -c conda-forge python-igraph 
conda install -c bioconda pysam 

 SyRI can be downloaded from github using: 
git clone https://github.com/schneebergerlab/syri.git 

 From the downloaded folder, SyRI can be installed using: 

python3 setup.py install 
chmod +x syri/bin/syri syri/bin/chroder  # Make scripts executable 

6.1.2  Working example 

Here, I provide a small pipeline that can be used to download, pre-process 

and analyse two yeast genomes using SyRI. For the purpose of this example, I assume that 

minimap2 is installed and in the working path of the user57. 

 Step 1: From within the working directory, download the yeast genomes from 

NCBI: 
## Get Yeast Reference genome 
wget 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/146/045/GCA_000146045.2_R
64/GCA_000146045.2_R64_genomic.fna.gz 

## Get Query genome 
wget 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/977/955/GCA_000977955.2_S
c_YJM1447_v1/GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.gz 

 Step 2: Unzip the genomes and remove mitochondrial chromosomes: 
gzip -df GCA_000146045.2_R64_genomic.fna.gz 
gzip -df GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.gz 
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## Remove mitochondrial DNA 
head -151797 GCA_000977955.2_Sc_YJM1447_v1_genomic.fna > 
GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.filtered 
 
## Create symlink objects 
ln -sf GCA_000146045.2_R64_genomic.fna refgenome 
ln -sf GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.filtered qrygenome 

 Step 3: Perform whole-genome alignment using minimap2: 
## Using minimap2 for generating alignment 
minimap2 -ax asm5 --eqx refgenome qrygenome > out.sam 
samtools view -b out.sam > out.bam 

 Step 4: Identify genomic differences using SyRI: 

python3 $PATH_TO_SYRI -k -F B -c out.bam -r refgenome -q 
qrygenome 
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6.2 Additional Tables: 

Table S1: Statistics of assemblies used. 

Species Sample/Strain NCBI Accession Assembly size 
(in Mb) 

Sequence information (% 
genome size) 

After pre-processing 

Arabidopsis thaliana Reference/Col-0 GCA_000001735.3 119.1 0.99 

Arabidopsis thaliana Ler GCA_900660825 118.0 0.99 

Homo sapiens Reference GCA_000001405.27 3088.2 0.95 

Homo sapiens NA12878 GCA_002077035.3 3034.9 0.92 

Homo sapiens NA19240 GCA_001524155.4 3037.3 0.92 

Saccharomyces cerevisiae Reference/S288C GCA_000146045.2 12.0 1.00 

Saccharomyces cerevisiae YJM1447 GCA_000977955.2 12.1 0.99 

Drosophila melanogaster Reference/iso-1 GCA_000001215.4 133.8 0.99 

Drosophila melanogaster A4 GCA_002300595.1 135.5 0.99 

Zea Mays Reference/B73 GCA_000005005.6 2106.3 0.19 

Zea Mays PH207 GCA_002237485.1 2060.2 0.18 

(from Goel et al., 2019)  
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Table S2: Number of large (>1Mb) variations identified by each method in Ler genome. 

Method Number of deletions Number of tandem duplications 

SyRI 0 0 

AsmVar 0 0 

Assemblytics 0 0 

Sniffles_PB 38 26 

Sniffles_ONT 49 39 

Pickt_PB 30 47 

Picky_ONT 32 37 

LUMPY 155 149 

 (from Goel et al., 2019)  
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Table S3: Whole-genome alignment commands used. 

Species Genome A Genome B Command  

Arabidopsis thaliana Col-0 Ler nucmer --maxmatch -c 100 -b 500 -l 50 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

Homo sapiens GRCh39.p12 NA12878 nucmer --maxmatch -c 500 -b 500 -l 100 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

Homo sapiens GRCh39.p12 NA19240 nucmer --maxmatch -c 500 -b 500 -l 100 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

Saccharomyces cerevisiae S288C  YJM1447 nucmer --maxmatch -c 100 -b 500 -l 50 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

Drosophila melanogaster iso-1 A4 nucmer --maxmatch -c 100 -b 500 -l 50 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

Zea Mays B73 PH207 nucmer --maxmatch -c 500 -b 500 -l 100 refgenome qrygenome 

delta-filter -m -i 90 -l 100 out.delta > out_m_i90_l100.delta 

show-coords -THrd out_m_i90_l100.delta > out_m_i90_l100.coords 

 (from Goel et al., 2019)  
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6.3 Additional Figures 
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Figure S1: SyRI’s rearrangement performance when both assemblies are 
incomplete. (a) Points represent samples, colour represents sensitivity and precision 
values. The x- and y-axes represent N50 values for Col-0 and Ler incomplete 
assemblies respectively. (b) Distribution of sensitivity and precision values across 
samples. (from Goel et al., 2019) 
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Figure S2: Genomic differences between human reference genome (Hg38) and 
genome NA19240. (a) Total length and number of syntenic, structurally rearranged, 
and not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 



Synteny and Rearrangement Identifier  Appendix 

MANISH GOEL 97

 

  

0001 00003 0002
Count

Synteny

Inversion

Translocation

Duplication

Not Aligned

0 110 Mb 440 Mb 1000 Mb 1.8 Gb
Total length

Hg38
NA12878

a

Not
 A

lig
ne

d
Dup

lic
at

ion

Tra
ns

loc
at

ionIn
ve

rs
ion

Syn
te

ny

10 1 Kb 100 Kb 10 Mb
Length

b

HDR

Copygain Copyloss Tandem

Insertion Deletion SNP

SYN INV TRANS

SYN INV TRANS SYN INV TRANS SYN INV TRANS

SYN INV TRANS SYN INV TRANS SYN INV TRANS
0e+00

1e+06

2e+06

3e+06

0

500

1000

0

250000

500000

750000

0

300

600

900

0e+00

1e+05

2e+05

3e+05

4e+05

0

500

1000

1500

2000

0

250

500

750

1000

1250

C
ou

nt

c

Figure S3: Genomic differences between human reference genome (Hg38) and 
genome NA12878. (a) Total length and number of syntenic, structurally rearranged, 
and not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 
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Figure S4: Genomic differences between yeast reference genome (S288C) and 
accession YJM1447. (a) Total length and number of syntenic, structurally rearranged, 
and not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 
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Figure S5: Genomic differences between fruit-fly reference genome (iso-1) and 
accession A4. (a) Total length and number of syntenic, structurally rearranged, and 
not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 
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Figure S6: Genomic differences between maize reference genome (B73) and 
accession PH207. (a) Total length and number of syntenic, structurally rearranged, 
and not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 
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Figure S7: Genomic differences between A. thaliana reference genome (Col-0) and 
accession Ler. (a) Total length and number of syntenic, structurally rearranged, and 
not-aligned regions identified in the two genomes. (b) Length distribution of 
predicted regions. (c) The number of sequence variations found. HDR: highly 
diverged regions. (from Goel et al., 2019) 
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Figure S8: Using a Directed Acyclic Graph (DAG) for syntenic path identification. 
Grey blocks represent alignments between Genome A and Genome B (top). 
Overlapping alignments are stacked vertically (“b” is overlapping “a” on Genome A 
and it is overlapping “e” on Genome B). Using alignments, a directed acyclic graph 
(DAG) is generated (bottom). The grey nodes correspond to the alignments and the 
white nodes (“S” and “E”) represent imaginary nodes. Longest path in the graph is 
shown by the blue line, corresponding alignments of the syntenic path have the blue 
boundary. (from Goel et al., 2019) 
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Figure S9: Various conformation of inversions and inverted alignments. White and 
grey blocks correspond to inverted and syntenic alignments, respectively. Inversions 
consist of inverted alignments surrounded by syntenic alignments on both sides. An 
inversion can consist of a simple inverted alignment or multiple inverted alignments. 
More than one inversions can occur consecutively. Inverted alignments in a region 
could represent conflicting inversions and can be overlapping with other alignments. 
Large inversions could be interrupted by alignments from TDs or syntenic regions. 
(from Goel et al., 2019) 
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Figure S10: Two-step method for inversion identification. (a) Grey and blue blocks 
correspond to inverted and already annotated syntenic alignments, respectively (top). 
A directed acyclic graph (DAG) is generated from the originally inverted alignments 
(bottom). Grey and white (S, E) nodes correspond to alignments and imaginary nodes, 
respectively. Each SE path represents a candidate inversion. (b) In this case, seven 
candidates are identified. Orange blocks represent inverted alignments that constitute 
the candidate inversion. A second DAG is generated using where orange nodes 
correspond to the candidates, while white nodes (“S” and “E”) are imaginary nodes. 
The green line is the highest scoring path from node S to E, and it constitutes of the 
highest scoring non-conflicting inversions. (from Goel et al., 2019) 
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Figure S11: Complexities of translocations and duplication identification. Grey 
blocks represent syntenic/inverted regions. (a) Examples of TDs consisting of more 
than one alignment. White blocks are alignments (directed or inverted).  (b) White 
blocks represent candidate TDs (a group of alignments representing one TD). The 
candidate TDs can overlap each other resulting in conflicting annotations. Here, the 
rearranged region in the lower genome can be annotated as translocation (or 
duplication) from two different regions resulting in conflicting annotations. (c) Green 
and cyan blocks represent candidate TDs that form a network of overlapping 
candidates. (from Goel et al., 2019) 
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Figure S12: Using a Directed Acyclic Graph (DAG) for candidate TD identification. 
Grey and blue blocks are currently un-annotated alignments and already annotated 
syntenic/inverted regions, respectively. In the DAG, each node represents an 
alignment and edges are added between nodes that can together represent a TD. Two 
imaginary nodes (S and E) are added (white nodes) and edges are added from node S 
to all other nodes and from all other nodes to node E. Each SE path corresponds to 
a candidate TD. (from Goel et al., 2019) 
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Figure S13: Selecting non-conflicting candidate TDs. a) A network of overlapping 
candidate TDs (orange blocks) and syntenic/inverted regions (blue alignments). Seven 
candidates TDs align three regions on genome A to five regions on genome B. 
Candidates that align a region uniquely (green boundary candidates) are necessary 
candidates and will be part of the output group of candidates. Candidates that align 
already annotated regions (white candidates) are redundant and removed. b) 
Deadlock is when no more necessary or redundant candidates can be selected (black 
boundary). c) Deadlocks in smaller networks are solved using brute-force by listing 
all possible combinations in which the remaining candidates can be selected (i and ii). 
The highest-scoring combination is selected as the output. (from Goel et al., 2019) 



Synteny and Rearrangement Identifier  Appendix 

MANISH GOEL 108

 

Genome BGenome A

Scaf_B_1

Scaf_B_2

Scaf_B_3

Scaf_B_4

Scaf_B_5

Scaf_A_4

Scaf_A_3

Scaf_A_2

Scaf_A_1

Figure S14: Homology based pseudo-chromosome generation. Red and blue lines 
show scaffolds/contigs from Genome A and Genome B, respectively. Smaller 
scaffolds/contigs from one genome aligning to the same scaffolds/contigs in the other 
genome are grouped and ordered. 
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