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SUMMARY 

Macroautophagy, hereafter referred to as autophagy, is a conserved degradation pathway that 

engulfs defective protein and cytoplasmic contents within autophagosomes for subsequent 

degradation intolysosomes. Such housekeeping role is especially important in neurons for two 

main reasons: First, neurons are postmitotic cells unable to dilute detrimental proteins and 

organelles by cell division. Second, these cells have extremely polarized structures, such as 

axons, which in humans can extend more than a meter long. Thus, neurons have evolved efficient 

and specialized mechanisms for the transport of cargo along axons, including autophagosomes, 

which must travel long distances along the microtubule (MT) cytoskeleton to finally fuse with 

lysosomes located at the cell soma. Impaired autophagosomal trafficking in axons hallmarks the 

pathology of many neurodegenerative disorders, whereas neuronal-confined knockout (KO) of 

several AuTophaGy (ATG)-related genes causes axonal pathology and neurodegeneration. 

Despite the critical importance of autophagy for the brain function, the precise physiological 

mechanism by which neurons with impaired autophagy undergo neurodegeneration remains 

obscure. Here in this thesis, I report on a novel role of core ATG proteins in the regulation of MT 

dynamics by using brain-confined mouse models and primary neuronal cultures lacking 

autophagy. Specifically, I found that ATG proteins required for the LC3 lipid conjugation are 

dispensable for the survival of forebrain excitatory neurons. Besides, the loss of the LC3 

conjugation machinery impairs axonal trafficking and reveals axonal pathology. This phenotype 

is found to be independent of defective protein degradation and instead caused by the 

accumulation of a complex comprised by LC3, the active zone protein ELKS1, and the MT-

stabilizing protein CLASP2. Finally, this thesis reveals that LC3-ELKS-mediated 

hyperstablilization of MTs impair the normal neurotrophic signaling in neurons. Taken together, 

this work reveals a new role for the LC3 function in the stabilization of MTs along the axon, which 

may help to understand better the physiopathology on neurodegenerative diseases. 
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ZUSAMMENFASSUNG 

Makroautophagie, im Folgenden nur noch als Autophagie bezeichnet, ist ein evolutionär 

konservierter Prozess zum Abbau von mangelhaften Proteinen und cytoplasmischen Inhalten in 

Autophagosomes, mit anschließender Degradierung in Lysosomen. Dieser Prozess ist besonders 

wichtig für Neuronen, da es sich bei ihnen um postmitotische Zellen handelt. Sie untergehen keine 

Zellteilung und können die schädlichen Proteine somit nicht verdünnen. Zudem besitzen sie 

extrem polarisierte Strukturen, wie zum Beispiel Axone, welche in Menschen länger als einen 

Meter sein können. Deswegen haben Neuronen einen effizienten und hochspezialisierten 

Mechanismus entwickelt um Zellinhalte entlang des Axons zu transportieren, darunter auch 

Autophagosomen. Diese werden entlang des Mikotubuli (MT) Cytoskeletts zum Zellsoma 

transportiert wo sie mit den dort lokalisierten Lysosomen verschmelzen. In zahlreichen 

Neurodegenerativen Erkrankungen dient der beeinträchtigte Transport von Autophagosomes 

entlang des Axons als Kennzeichen, während der knock-out (KO) von verschiedenen AuTophaGy 

(ATG) zugehörigen Genen zu Neurodegeneration führt. Obwohl der Prozess der Autophagie in 

Neuronen von besonderer Wichtigkeit für die Gehirnfunktionalität ist, sind die physiologischen 

Mechanismen, durch die Neuronen bei eingeschränkter Autophagie zugrunde gehen, noch immer 

unklar. Mit dieser Arbeit möchte ich eine neue Funktion der wichtigsten ATG Proteine aufzeigen. 

Dazu arbeite ich mit auf das Gehirn begrenzten Mausmodellen und primären Neuronen in Kultur, 

in denen einzelne ATG Proteine nicht mehr exprimiert werden. In diesen Modellen zeige ich den 

Einfluss von ATG Proteinen auf die MT Dynamiken. Genauer gesagt habe ich herausgefunden, 

dass ATG Proteine, die für die Lipid Konjugation von LC3 notwendig sind, verzichtbar für das 

Überleben von exzitatorischen Vorderhirnneuronen sind. Jedoch führt ein Fehlen dieser zur 

Beeinträchtigung des Transportes entlang des Axons, sowieSchwellungen. Dieser Phänotyp 

präsentiert sich unabhängig von dem Prozess der Degradierung und ist begründet in der 

Anhäufung eines Komplexes bestehend aus LC3,  dem aktiven Zonen Protein ELKS1, und dem 

MT stabilisierenden Protein CLASP2. Diese Arbeit zeigt, dass LC3-ELKS vermittelte 

Hyperstabilisierung von MTs die normale neurotrophe Signalübertragung in Neuronen 

beeinträchtigt.Zusammengefasst wurde eine neue Funktion von LC3 in der Stabilisierung der MT 

entlang des Axons aufgedeckt, welche zu einem besseren Verständnis der Pathologie von 

Neurodegenerativen Erkrankungen beitragen könnte. 
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1. INTRODUCTION 

1.1 Microtubule-based transport in neurons 

Neurons are extremely polarized cells typically characterized by a single axon and multiple 

dendrites which defines the pre- and post-synaptic regions, respectively. Indeed, some neurons 

are found to extend their axons for more than a meter long in humans (Stifani, 2014). These two 

properties of polarized morphology and length enforce the need for proteins and organelles to be 

actively transported between neuronal compartments (Terenzio et al., 2017). In fact, given that 

the passive diffusion of macromolecules has long-distance limitations and slow diffuse ratios 

(Wiegert et al., 2007), neurons highly rely on motor-driven mechanisms along the cytoskeletal 

architecture of the cell to achieve efficient intracellular communication and an effective neuronal 

function (Kapitein and Hoogenraad, 2015). 

Among all different cytoskeletal components, microtubules (MTs) have been pointed out as critical 

structures for neuronal function. They play a fundamental role in the maintenance of axonal 

homeostasis: provide tracks for intracellular transport (Maday et al., 2014), produce cellular forces 

during development and cell division (Forth and Kapoor, 2017; Singh et al., 2018), and behave 

as platforms for the recruitment of signaling factors (Akhmanova and Steinmetz, 2008). Indeed, 

intracellular transport of membrane-bounded vesicles, organelles, and proteins must undergo 

anterograde (from the cell body to the periphery) and retrograde (from the periphery to the soma) 

transportalong neurites (axons and dendrites), a movement orchestrated by MT motor proteins 

(Maday et al., 2014). Such functions have been shown to be crucial in neurons since mutations 

in several tubulin isotypes and MT-related proteins are causative of several neurodevelopmental 

and neurodegenerative diseases, such as mutations in the α-tubulin isotype TUBA4A, associated 

with amyotrophic lateral sclerosis (Smith et al., 2014), or tau, which impair axonal transport in 

tauopathies (Kapitein and Hoogenraad, 2015; Yang et al., 2013). 

1.1.1 Microtubule organization and dynamics 

MTs are cytoskeletal polymers, composed of α- and β-tubulin heterodimers. These heterodimers 

assemble into linear protofilaments that associate laterally and form a hollow tube with an outer 

diameter of 25 nm (Howard and Hyman, 2003). MTs are also dynamic structures that undergo 

phases of growth and disassembly, a process called dynamic instability. This dynamic feature 

contributes to MTs properties to grow or retract under different conditions. Dynamic instability is 

given by the head-to-tail association of the α/β heterodimers, resulting in a polarized structure 
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which produces different polymerization rates at the two ends. β-tubulin monomers point towards 

the faster-growing end (plus end) and α-tubulin monomers toward the slower-growing end (minus 

end) (Akhmanova and Steinmetz, 2008). MT assembly and dynamics have been commonly 

attributed to the hydrolytic activity of the ß-tubulin: free ß-tubulin spontaneously binds to 

guanosine triphosphate (GTP) and promote polymerization and stabilization of growing MTs tips, 

whereas the hydrolysis of GTP to GDP provides structural instability, making MTs prone to 

depolymerization, or “catastrophe”, a period of rapid shrinkage (Alushin et al., 2014). 

 

Figure 1. Schematic illustration of MT structure and dynamic instability. (a) α/β-tubulin heterodimers 

align to form a protofilament. (b) Protofilaments associates in a cylindrical manner to form a MT with a 

diameter of 25 nm. (c) MT polymerization depends on the incorporation of GTP-loaded tubulin subunits, 

whose GTP undergo hydrolysis shortly after incorporation and increases the chance of a catastrophe 

event. The figure is taken from Akhmanova and Steinmetz (2008). 

 

Parallel bundles of MTs are differently organized in axons and dendrites. Axons display a uniform 

array of MTs with plus-end-outward orientation, whereas dendrites have equally mixed oriented 
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MTs (Yau et al., 2016). It is widely assumed that these different network properties provide the 

basis for cargo selectivity between axons and dendrites (Tas and Kapitein, 2018). Indeed, some 

motor proteins are found to be axon-specific, such as the kinesin-1, which preferentially binds to 

the minus-end of stable MTs, which are only found in the initial segment of the axon. In contrast, 

stable MTs in dendrites are only found to be plus-end-inward, blocking the access of kinesin-1 to 

the dendrites (Tas et al., 2017). In addition, cargo selectivity is also determined by the formation 

of the axon initial segment (AIS), a specialized zone involved in action potentials generation and 

filtering of intracellular cargos (Gumy and Hoogenraad, 2018; Lazarov et al., 2018). This axonal 

segment is characterized by the presence of tripartite motif 46 (TRIM46), a protein important for 

generating parallel MT bundles near the AIS (van Beuningen et al., 2015). 

 MT organization and dynamics crucially relies upon several regulatory factors such as different 

tubulin isoforms, post-translation modifications, and microtubule-associated proteins (MAPs). 

According to the mode of function, MAPs can be roughly classified into five groups: (1) modulators 

of MT number, such as regulators of nucleation, MT severing proteins, and minus-end targeting 

proteins (-TIPs); (2) motor proteins, such as kinesin and dynein; (3) regulators of MT dynamics, 

such as plus-end tracking proteins (+TIPs) and MT depolymerizers; (4) cross-linking proteins that 

align and form MT bundles, such as the classical MAPs; and (5) enzymes involve in the generation 

of post-translation modifications of tubulin, which allows the formation of distinct MT subtypes  

(Emoto, 2016). 

MT nucleation, or de novo MTs formation, is typically initiated by the γ-tubulin ring complexes (γ-

TuRCs), which commonly localize at the centrosome and form a structure where MTs emerge, 

called the MT organizing center (MTOC) (Teixido-Travesa et al., 2012). In neurons, it was initially 

believed that MTs were generated at the MTOC, cut and distributed through the cell. However, 

recent studies have demonstrated that neurons lacking the centrosome display normal MT 

network and morphology (Kapitein and Hoogenraad, 2015; Stiess et al., 2010). Alternatively, γ-

TuRCs have been shown to nucleate MTs in both dendrites and axons at the Golgi apparatus or 

along existing MTs in a centrosomal-independent manner (Efimov et al., 2007; Sanchez-Huertas 

and Luders, 2015), a process, which is accentuated during neuronal maturation (Yau et al., 2014). 

Another mechanism to form new MT arrays involves the use of severing enzymes, which cut the 

pre-existing MTs to generate templates for the elongation of new MTs. Fidgetin, katanin, and 

spastin are the three classes of MT-severing enzymes so far identified, all of which are members 

of the ATPases Associated with diverse cellular Activities (AAA) superfamily, involved with protein 

disassembly and unfolding activities (Erdmann et al., 1991; Frickey and Lupas, 2004). All three 
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severing enzymes are highly expressed in the nervous system and, particularly, katanin and 

spastin are described to have crucial roles in neuronal morphogenesis, function, and plasticity 

(Kapitein and Hoogenraad, 2015). Katanin is proposed to stimulate dendritic and axonal 

outgrowth by releasing MTs from centrosomes and cutting them off in segments to be transported 

along the neurites during neuronal morphogenesis, but also to play roles in other maturations 

stages and compartments (Sharp and Ross, 2012). Interestingly, it has been reported that tau, 

another MAP, protects MTs from katanin-severing activity, suggesting a regulatory mechanism 

which may be impaired in Alzheimer’s disease (AD), where the MT number is found to be 

decreased (Brunden et al., 2017; Qiang et al., 2006). Sapstin is also active at different stages of 

neuron maturation, but in contrast with katanin, its function is not strongly affected by the presence 

of tau (Lacroix et al., 2010). Interestingly, spastin is reported to have specific influences on the 

organization of axonal MTs, since spastin mutations have been directly linked to axonal 

pathologies in hereditary spastic paraplegia (HSP), also referred as spastic paraplegia type 4 

(SPG4) (Fink, 2013). 

Intracellular cargos are transported in neurons by motor proteins. These motor proteins undergo 

cycles of adenosine triphosphate (ATP) hydrolysis and subsequent release of hydrolysis products 

to induce conformational changes and interactions with the cytoskeleton, which result in the 

generation of mechanical forces able to move the motor protein and the associated cargo 

(Sweeney and Holzbaur, 2018). In axons, two types of transport can be distinguished: the fast 

transport of membranous organelles, which move at a speed of ~1 μm/s, and the slow transport 

of some cytosolic proteins and cytoskeletal proteins, which achieve the speed of <0.1 µm/s 

(Maday et al., 2014).  Motor neurons are classified into three superfamilies, the myosins, the 

kinesins, and the dyneins. Myosins are the motor proteins found in the actin networks, where they 

play important roles in presynaptic terminals and postsynaptic spines for proper synaptic function. 

In contrast, MTs, act as a major longitudinal cytoskeletal filament in axon and dendrites, allowing 

long-distance trafficking by serving as tracks for kinesins and dyneins, which in general move 

towards the MTs plus-end and minus-end, respectively. Kinesin family is composed by 45 Kif 

genes in humans and mice (38 of which are expressed in the brain (Miki et al., 2001)), which in 

turn are classified in 14 classes (kinesin- 1-14). All these different kinesins possess different tail 

regions that allow selectivity for cargo recognition and function, although these specific functions 

of each KIF are sometimes redundant. Dyneins, in contrast, have only two heavy chain family 

members, but it acquires cargo selectivity through direct binding or recruitment of multiple 

light/intermediate chains and dynactin complexes (Hirokawa et al., 2010; Maday et al., 2014). 
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The heterogeneous superfamily of +TIPs specifically accumulates at the plus end of MTs to 

control MTs dynamics, growth directionality, and crosstalk between MTs and the actin 

cytoskeleton. The most conserved and ubiquitous +TIPs are the end binding proteins (EBs). 

These are well-studied proteins, which are localized at the core of +TIPs complexes and able to 

autonomously track growing MTs plus ends and bind to numerous other regulatory proteins 

(Zhang et al., 2015). Mammalian cells express three members of the EB family, (EB1, EB2, and 

EB3), where EB1 and EB3 have been shown to have a stronger capacity to bind and track growing 

MTs (Komarova et al., 2009). Another family of +TIPs is the cytoplasmic linker associated proteins 

(CLASPs), which are also widely conserved in fungi, plants, and animals (Tirnauer and Bierer, 

2000). Mammalian CLASPs are represented by two homologs, the ubiquitously expressed 

CLASP1, and the brain-enriched CLASP2. Both proteins prevent the catastrophe onset via direct 

interaction with MTs (Aher et al., 2018; Akhmanova and Steinmetz, 2010). Interestingly, studies 

in HeLa cells have demonstrated that CLASPs can localize to cortical regions and stabilize MT 

plus ends via its interaction with ELKS (“protein-rich in glutamic acid (E), leucine (L), lysine (K) 

and serine (S)”, also known as CAST2, Rab6IP2, or ERC1) (Lansbergen et al., 2006). ELKS is a 

scaffolding protein expressed by two ELKS genes, Erc1 and Erc2, to produce ELKS1 and ELKS2, 

respectively. In neurons, ELKSs are mostly localized at the presynaptic active zone, where they 

are known to interact with other scaffolding proteins, such as RIM, Munc13, and Piccolo/Basson, 

forming multi-protein complexes that regulate synaptic vesicle exocytosis (Held and Kaeser, 

2018). However, whether ELKS interacts with CLASPs to regulate MT stability in neurons is 

currently not known. 

Classical MAPs, including MAP1, 2, 4, 6, 7, 9 and tau (also referred as structural MAPs), are 

generally showed to bind along the MT lattice and regulate MT polymerization, bundling, and 

stabilization. Despite that, the different MAPs’ families possess unequal functions and 

characteristics (Emoto, 2016). MAP2 is the most abundant structural MAP in the brain, which is 

mainly expressed in neurons, but also detected in oligodendrocytes and astrocytes (Geisert et 

al., 1990; Muller et al., 1997). MAP2 isoforms are classified into high and low molecular weight 

proteins. Among all different isoforms, MAP2A is the most predominant one in the adult brain 

(Nunez, 1988). Moreover, and in contrast to low molecular weight MAP2, high molecular MAP2 

is selectively localized in the soma and the dendrites. Next to its main function to bundle the MTs, 

MAP2 has also been shown to interact with several proteins and regulate processes such as 

neuronal plasticity and signaling (Emoto, 2016). Another interesting and much-studied structural 

MAP is tau/MAPT (tau). Mainly expressed in neurons and specifically localized in axons, tau is 

expressed in several isoforms during different stages of neuron maturation, and it is regulated by 
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different post-translational modifications, such as phosphorylation. Under pathological conditions, 

tau mislocalizes to dendrites and synaptic spines and impairs synaptic function, causing MT 

severing by spastin, traffic jams, and synapse loss (Zempel and Mandelkow, 2014). 

MT dynamics are also intrinsically regulated by post-translational modifications (PTM) of tubulin 

subunits, including detyrosination, Δ2-tubulin generation, glutamylation, glycylation and 

acetylation (Janke and Kneussel, 2010; Witte et al., 2008). α-tubulin genes encode for a protein 

which contains a carboxy-terminal tyrosine. This tyrosine is reversely removed by detyrosination 

(unknown enzyme) in polymerized MTs and re-added by the tubulin tyrosine ligase (TTL) (Raybin 

and Flavin, 1977) in soluble tubulin. Following detyrosination, an additional amino acid residue of 

glutamate can be removed from the C-terminal tail of α-tubulin to generate Δ2-tubulin, a process 

mediated by deglutamylase enzymes and believed to be irreversible (Erck et al., 2005). 

Acetylation of the Lys40 of α-tubulin, similar to detyrosination, takes place on the MT polymers 

but is contrary to the rest of PTMs, it occurs in the lumen of MTs (Ly et al., 2016). Finally, 

(poly)glutamylation and (poly)glycylation are PTMs that are generated by the enzymatic addition 

of one or more glutamate or glycine residues as branched peptide chains to the C-terminal tails 

of α- and/or ß-tubulin, and are believed to regulate MT-MAP interactions (Song and Brady, 2015). 
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Figure 2: Schematic illustration of an α-tubulin and ß-tubulin dimmer and their PTM modifications. 

(a) PTM modifications of tubulin are mostly occurring in the carboxy-terminal tails of the α- and ß-tubulin. 

Detyrosination of the last Tyr residue and the irreversible follow-up removal of the penultimate Glu residue 

(Δ2-tubulin) are specific of the C-terminal tail of the ß-tubulin. Polyglutamylation and polyglycylation can 

occur on different Glu residues within the α- and ß-tubulin C-terminal domain. In contrast, acetylation of 

Lys40 is localized at the amino-terminal domain of α-tubulin. (b) Schematic representation of the different 

PTM reactions and their corresponding enzymes. The figure is taken from Janke and Bulinski (2011).  

Nowadays, the precise mechanism of how PTMs of tubulin regulate MT dynamics is not 

completely understood, but recent studies indicate roles in interacting with motor proteins and 

MAPs. Detyrosination, Δ2-tubulin generation, and acetylation correlate with stable segments of 

MTs, such as the initial segment of the axons (Witte et al., 2008). In addition, detyrosination has 

been showed to regulate several molecular motors and prevent their disassembling from MTs, 

thus protecting from microtubule destabilization (Kaul et al., 2014). On the other hand, tyrosination 

preferentially localize in dynamic segments of microtubules, such as growth cones, where it can 

control the interaction with some plus-end tracking and motor proteins (McKenney et al., 2016). 



8 
 

Polyglutamylation, on the other hand, is suggested to regulate interactions with MAPs, motor 

proteins, and the activity of the microtubule-severing enzyme spastin (Gadadhar et al., 2017). 

 

1.1.2 Altered microtubule dynamics and neurodegeneration 

Several neurodegenerative diseases are characterized by impaired axonal transport, which leads 

to neuronal damage and death. Although causes of axonal transport deficiencies vary among 

different neurodegenerative diseases, many of them converge in altered MTs dynamics (Brunden 

et al., 2017; Dubey et al., 2016). Stable MTs in neurons are well studied to provide tracks for the 

transport of cargos over long distances. In contrast, the role of dynamic MTs in neurites of mature 

neurons, despite its suggested role in synaptic plasticity, MT turnover, and axonal regeneration 

(Bradke et al., 2012; Jaworski et al., 2009), it is not completely well understood. Reduced MT 

stability has been observed in several neurodegenerative diseases, such as the case of 

Alzheimer’s disease (AD) or related tauopathies, where tau-mediated neurodegeneration is 

showed to impair axonal transport and signaling by decreased MT stability (Brunden et al., 2017). 

Similarly, neurons from Parkinson’s diseases (PD) patients show a reduction in the neurite length. 

Moreover, a diminished number of neurite branches and synaptic terminals is observed in PD due 

to increased MT depolymerization in the absence of Parkin; an E3 ubiquitin ligase reported to 

bind and stabilize MTs (Ren et al., 2015). On the other side, hyper-stabilization of MTs also results 

in axonal degeneration; mutations in the MT-severing enzyme spastin are commonly found to 

impair its function and cause HSP. Dysfunctional spastin  induces the accumulation of stable MTs 

and the reduction of MT dynamics, which in turn causes impaired axonal transport and the 

subsequent formation of axonal swellings (Fassier et al., 2013). More evidence come from the 

use of anti-cancer drugs such as taxol, a MT stabilizing molecule used in chemotherapy since it 

arrests mitosis and induces apoptosis. This drug is reported to have detrimental side effects on 

the peripheral nervous system by provoking degeneration, reduced axonal transport, axonal 

length, and axonal fragmentation in animal models (Dubey et al., 2016; Gornstein and Schwarz, 

2014). Thus, a proper equilibrium between the stable and the dynamic populations of MTs is 

crucial for the correct function of neurons. However, although understanding the fine regulation 

of MT dynamics is pivotal to unravel the etiology of neurodegeneration, the precise mechanism 

that regulates the equilibrium between dynamic and stable MTs in axons is currently not well 

understood. 
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1.2 Intracellular degradation pathways  

Practically all cellular functions are performed by proteins, and maintaining a healthy proteome is 

important to ensure cell function and viability. The process by which cells effectively and efficiently 

maintain the regulation and modulation of protein biogenesis and turnover is called protein 

homeostasis (proteostasis). Keeping a healthy proteome also involve the refolding or degradation 

of damaged or misfolded proteins, since their loss- or gain-of-function can impair cellular functions 

(Gregersen et al., 2006). The two major degradative pathways involved in protein homeostasis 

are autophagy and the ubiquitin-proteasome system (UPS). Whereas the UPS degrades small, 

short-lived misfolded proteins (Ciechanover, 2006), autophagy can selectively degrade larger 

structures, including protein aggregates and organelles (Rubinsztein, 2006). 

 

1.2.1 The UPS 

The UPS mediates the degradation of ubiquitin (Ub)-tagged proteins through the proteasome, a 

large multicomplex protein that requires ATP to exert its proteolytic activity. During all this process, 

Ub, a 9 kDa protein, is covalently attached to the N-terminus or internal lysine residues of the 

targeted proteins.  Additionally, the attached Ub can then be the substrate for more ubiquitylation 

processes through the N-terminus or by its seven lysines (K) (K6, K11, K27, K29, K33, K48, and 

K63)(Hohfeld and Hoppe, 2018). K48-linked ubiquitin chains are the most abundant chains in 

mammal cells (Kaiser et al., 2011), and are commonly associated to proteasome degradation, 

although it has been shown that Ub lysines residues can also trigger proteasomal degradation 

(Ciechanover and Stanhill, 2014). Alternatively, Ub linkage is also related to proteasome-

independent pathways. Such as the case of the monoubiquitylation of plasma membrane 

receptors, which can induce their endocytosis and subsequent lysosomal degradation (Haglund 

et al., 2003). 

Ubiquitin is conjugated to targeted proteins by a process comprised of three enzymes E1-3: First, 

ubiquitin C-terminus is attached to the active site cysteine of the E1, also called ubiquitin-

activating enzyme, by hydrolyzing ATP. Second, the E1-Ub binds to the E2, or ubiquitin-

conjugating enzyme, and catalyzes the transfer of the Ub onto the E2 active site cysteine. Finally, 

the Ub from the E2-Ub is transferred to a lysine on the target protein by the E3 ligase. Once the 

targeted protein is fully tagged for proteasome degradation, Ub-tagged proteins are recognized 

by Ub receptors associated with the proteasome to facilitate their degradation. The proteasome, 

also referred to as 26S proteasome (number and “S” refers to their Svedberg sedimentation 
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coefficient) is composed by a barrel-like core complex termed the 20S, involved in the proteolysis 

of proteins, and two regulatory complexes termed 19S complexes, which cap each site of the 20S 

(Ciechanover and Stanhill, 2014). 

UPS function is found to decrease during aging (Kevei and Hoppe, 2014), which is commonly 

linked to the formation of aggregate-prone neurotoxic proteins in several neurodegenerative 

diseases, such as AD, PD and Huntington’s disease (HD)(Dantuma and Bott, 2014; Zheng et al., 

2016). Indeed, the presence of protein aggregates is associated with the inhibition of the 

proteasome, such as α-synuclein aggregates (Lewi bodies) (Snyder et al., 2003). Interestingly, 

UPS is also shown to be involved in the correct turnover of presynaptic proteins in mature 

neurons, such as RIMI (Yao et al., 2007) and the D.melanogaster Bruchpilot (related to the 

mammalian ELKS) (Zang et al., 2013), and inhibition of the UPS is associated with dysfunctional 

synaptic activity (Wang et al., 2017). 

Several lines of evidence interconnect the UPS and autophagy. Both pathways are reported to 

share certain substrates, such as α-synuclein (Webb et al., 2003), and have been suggested to 

be able to coordinate each other and have compensatory mechanisms (Nedelsky et al., 2008; 

Rubinsztein, 2006). Indeed, application of proteasome inhibitors is known to induce autophagy in 

cancer models (Wang et al., 2019). Moreover, compensatory autophagy was also found in 

D.melanogaster models of spinobulbar muscular atrophy, a neurodegenerative disease with 

mutants affecting the proteasome (Pandey et al., 2007). Finally, it is also observed that key 

autophagy proteins are regulated by proteasomal degradation, such as Beclin-1 (Ashkenazi et 

al., 2017) and ATG12 (Haller et al., 2014).  

 

1.2.2 Autophagy 

Autophagy is a cell self-digestive lysosomal degradation pathway that removes and recycles 

unwanted cytoplasmic material including damaged organelles and protein aggregates. There are 

three basic forms of autophagy: microautophagy, chaperone-mediated autophagy, and 

macroautophagy. Microautophagy is the simpler process, in which cytoplasmic contents are 

directly invaginated by the lysosomal membrane. The second one, the chaperone-mediated 

autophagy, degrades selective cytosolic proteins that are brought by chaperones to the lysosome 

membrane and then translocated inside by protein complexes. The latter one, the 

macroautophagy, is the best-characterized form of autophagy and involves the sequestration of 
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cytosolic components by double-membraned vesicles, which subsequently fuse with lysosomes 

(Galluzzi et al., 2017). 

Macroautophagy, commonly and hereinafter referred to as autophagy, can be divided into several 

distinct stages: autophagosome biogenesis, docking, and fusion with the lysosome, and 

degradation of the lysosomal content. Autophagosome biogenesis is orchestrated and regulated 

by AuToPhagy (ATG) related proteins, whose core machineries can be grouped into several 

functional units, such as the ULK1 kinase complex for the induction of autophagy (ULK, ATG13, 

ATG101 and RB1CC1/FIP200; the ATG9 for delivery of other ATG proteins and recycling of 

membrane; the class III phosphatidylinositol 3-kinase (PI3K) complex (VPS34-Beclin1-VPS15) 

for vesicle nucleation; and the ATG12-ATG5-ATG16L conjugation system for the MT-associated 

protein 1 light chain 3 (MAP1LC3; best known as LC3) lipidation to phosphatidylethanolamine 

(LC3-PE or LC3-II), which allows for membrane expansion and enclosure of the 

autophagosome (See figure 3) (Ariosa and Klionsky, 2016; Hu et al., 2015). Once the 

autophagosome is formed, it matures by fusing with late endosomes and/or lysosomes to form 

autolysosomes, which provide an acidic environment and digestive function to the interior of the 

autophagosome. Lysosomal degradation is mediated by several dozens of hydrolytic enzymes 

of all types (proteases, lipases, and nucleases). These hydrolases, most of which have acidic 

pH optima, are activated when the autolysosomal lumen becomes acidified to pH ~ 4.5-5 by the 

V-ATPase, a large protein complex on the lysosomal membrane that imports hydrogen ions 

(Saftig and Klumperman, 2009). 
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Figure 3. Schematic illustration of autophagosome formation and maturation. (a) Autophagy 

induction requires the inhibition of mTOR complex and the further activation of the ULK1 complex. (b) PI3K 

complex allows the production of PI3P by VPS34, which is tightly regulated by Beclin 1. (c) The 

transmembrane protein ATG9 plays a role in the delivery of proteins and lipids to the phagophore and the 

recycling between the Golgi, endosomes, and autophagosomes. (d) The LC3 and the ATG12 ubiquitin-like 

(UBL) protein conjugation systems allow the conjugation of LC3 to phosphatidylethanolamine. (e) several 

SNARE-like proteins mediate the fusion between autophagosomes and lysosomes. (f) Autolysosomes 

digest their cargo using hydrolytic enzymes. The figure is taken from Marino et al. (2014). 

 

1.2.2.1 Autophagy induction 

A well-known upstream regulation of the autophagy activity includes the mammalian target of 

rapamycin (mTOR) pathway, which negatively regulates autophagy. mTOR is a serine/threonine 

kinase which also mediates vital cellular functions such as protein translation and cellular growth. 

This pathway involves two distinct functional complexes, mTORC1 and mTORC2. mTORC2 

includes the rapamycin-insensitive companion of mTOR (Rictor), and it is believed to partly inhibit 

autophagy through the Akt pathway (Guertin et al., 2006), although more research is needed to 

better understand the mTORC2. On the other hand, mTORC1, the better-characterized complex, 

includes the rapamycin-associated protein of mTOR (Raptor), which is known to sense different 

stimuli and directly inhibit autophagy (Jung et al., 2009). mTORC1 complex prevents autophagy 

induction through direct interaction with the ULK kinase complex, the main player for autophagy 

initiation. Thus, mTORC1 directly binds to ULK1/2 and promote a phosphorylation-dependent 

inactivation of ATG13 and ULK1/2 kinases. Growth factors and amino acids are the best-

characterized extracellular stimuli that activate the mTOR pathway. In contrast, starvation, 

oxygen/hypoxia, and other stressors are found to inhibit mTOR and activate autophagy. Another 

upstream pathway which regulates autophagy is through the AMP-activated protein kinase 

(AMPK), an energy-sensing kinase which senses reduced ATP levels and promotes autophagy 

by inducing ULK1 activation and inactivation of mTORC1 (Sarkar, 2013). Once mTORC1 is 

inhibited, mTORC1 dissociates from the ULK kinase complex resulting in the dephosphorylation 

of ULK1/2 and its activation, which in turns phosphorylates and activates ATG13 and FIP200 for 

the full activation of the ULK complex (Ariosa and Klionsky, 2016). Activation of the ULK complex 

is believed to directly bind to membranes through ULK1 and ATG13, and thus determine the 

nucleation site for autophagosomes formation. Although several membranous structures are 

suggested to generate the nucleation site (endoplasmic reticulum (ER), the Golgi, endosomes, 

mitochondria, the plasma membrane), ER-mitochondria contact sides are pointed as the most 
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probable membranous structures (Hamasaki et al., 2013; Maday and Holzbaur, 2014; Mercer et 

al., 2018). However, more research is required to better understand the mechanism for 

determination of the nucleation site. 

 

1.2.2.2 Membrane nucleation 

Once the nucleation site is specified, ULK complex recruits its immediate downstream effector, 

the PI3K. The PI3K complex includes the lipid kinase vacuolar protein sorting 34 (VPS34, also 

called PIK3C3), 15 (VPS15/PIK3R4), Beclin-1 (BECN1), and ATG14. This complex allows 

VPS34 to generate phosphatidylinositol 3-phosphate (PI3P) and generate the first membranous 

compartment, the omegasome. This PI3P-enriched site recruits tryptophan-aspartic acid (WD) 

repeat domain phosphoinositide-interacting proteins (WIPIs) to the omegasome. In turn, other 

crucial downstream autophagic proteins are recruited, such as the case of ATG16L1, which 

interacts with WIPI2 (Menzies et al., 2017). The PI3K complex is found to be tightly regulated 

by Beclin-1, whose role as an adaptor protein allows the association of the different members 

of the complex, and can suppress or activate autophagosome formation upon interaction with 

several proteins, such as the apoptosis regulator BCL-2 and AMPK (Galluzzi et al., 2017). 

 

1.2.2.3 Phagophore expansion and enclosure 

The membranous expansion of the omegasome forms the phagophore: a double-membraned 

cup-shaped structure, whose elongation and enclosure leads to the autophagosome generation 

(Rubinsztein et al., 2012). The source of the membrane which allows phagophore expansion is 

still under debate, but several candidates are suggested to participate, including the ER, the Golgi 

apparatus, endosomes, mitochondria, and the plasma membrane (Ktistakis and Tooze, 2016). 

For example, the Golgi apparatus contributes to membrane nucleation and phagophore 

expansion by providing the ATG9-positive vesicles, and its defective sorting leads to reduced 

autophagosome generation and axonal degeneration (Ivankovic et al., 2019). Indeed, recent 

evidence suggests that ATG9 also traffics through the endosomal system, interplaying a role in 

sorting and recycling between the Golgi, endosomes, and autophagosomes (Yu et al., 2018). 

The conjugation/lipidation of Atg8 homologs (LC3/GABARAPs) to phosphatidylethanolamine (PE) 

of the up-growing phagophore is another key process for efficient autophagy. Yeast possesses 

only one atg8 gene, whereas mammals contain several homologs (LC3A, LC3B, LC3C, 
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GABARAP, GABARAPL1/GEC1 (Glandular epithelial cell protein 1) and GABARAPL2/GATE-16 

(Golgi-associated ATPase enhancer of 16 kDa). Knockout (KO) for proteins involved in the 

conjugation of LC3/GABARAPs, such as ATG7 (Komatsu et al., 2006) or ATG5 (Hara et al., 

2006), have been largely used as models for impaired autophagy (Mizushima and Levine, 2010). 

Both ATG7 and ATG5 work in two different ubiquitin-like conjugation systems for the lipidation of 

LC3/GABARAPs. One conjugating system requires the cleavage of the C-terminus part of 

LC3/GABARAP by the cysteine protease ATG4, which leads to the exposure of a glycine residue 

(LC3I). Cleaved protein is then processed by ATG7 and ATG3 (E1 activating-like and E2 

conjugating-like ubiquitin systems, respectively). On the other hand, ATG12 irreversibly 

associates with ATG5 by the E1 activating-like enzyme ATG7 and the conjugating-like enzyme 

ATG10. ATG16L1 can then conjugate to ATG5-ATG12 and form a complex that serves as a E3 

ligase-like enzyme which facilitates the lipidation of the processed LC3/GABARAP to PE (LC3II) 

(Ariosa and Klionsky, 2016; Menzies et al., 2017). Genetic ablation of the LC3/GABARAP 

lipidation machinery results in the accumulation of unsealed autophagosomes (Sou et al., 2008). 

In contrast, LC3/GABARAPs are found to be not essential for the enclosure of autophagosomes, 

suggesting that the conjugating machinery system may have additional functions (Nguyen et al., 

2016). The process of phagophore sealing is then poorly understood, but some evidence shows 

that ATG2 and WIPI1 regulate this process (Menzies et al., 2017). 

LC3s and GABARAPs are thought to share common functions during autophagy, since single 

KOs of the different Atg8 homologs show neither alterations in autophagy function nor cell 

viability, suggesting the redundant functions of these homologs (Kuma et al., 2017).  Despite that, 

some evidence indicates that LC3s act at earlier stages of autophagosome formation, whereas 

GABARAPs function downstream in autophagosomes maturation and lysosome fusion (Ktistakis 

and Tooze, 2016; Nguyen et al., 2016). Indeed, further studies need to be conducted to clarify 

the distinct roles of LC3/GABARAP. Among all Atg8 homologs, LC3B is the most studied and it 

is used as a marker for autophagy. LC3B (as well as the rest of LC3s and GABARAPs) is found 

to be lipidated to both the inner and the outer membrane of pahgophores and autophagosomes. 

Moreover, while the inner LC3II is degraded by lysosomal enzymes, the outer LC3-II is cleaved 

and released by the ATG4. Thus, monitoring the ratio of LC3I and LC3II isoforms is a widely used 

tool to study autophagosome formation and processing (Mizushima and Komatsu, 2011). 

Originally, it was believed that autophagy was a non-selective bulk degradation process, which 

engulfs and degrades any portion of the cytoplasm. Nowadays, it is accepted that autophagy can 

also behave as a selective process, which requires of autophagic receptors and adaptors to 
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specifically target cargos for degradation, a process termed selective autophagy. Actually, 

selective autophagy has raised as a more crucial process in most of the mammalian diseases 

than “bulk autophagy”, which it is thought to primarily act as a homeostatic mechanism during 

starvation (Kaur and Debnath, 2015; Levine and Kroemer, 2019). Depending on the target cargo, 

several selective autophagy pathways have been identified: mitophagy (mitochondria), 

aggrephagy (proteins aggregates), xenophagy (pathogens), ER-phagy or reticulophagy (ER), 

ribophagy (ribosomes), pexophagy (peroxisomes), nucleophagy (proteins of the nucleus), 

lipophagy (neutral lipid droplets), proteaphagy (proteasomes), lisophagy (damage lysosomes) 

(Galluzzi et al., 2017). As mentioned above, selective autophagy is driven by autophagy 

receptors, which bridge cargos to the forming phagophore via their interaction with 

LC3/GABARAP through LC3-interacting regions (LIR). As a consequence of their bridging 

function, autophagy receptors become degraded within the lysosomes, which make them suitable 

for monitoring functional autophagy (e.g., p62/sequestosome 1 (SQSTM1)) (Galluzzi et al., 2017; 

Kuma et al., 2017). Moreover, based on how autophagy receptors recognize and interact with 

targeted cargos, selective autophagy can be divided into ubiquitin (Ub)- dependent and 

independent pathways (Khaminets et al., 2016). In the Ub-dependent pathway, ubiquitinated 

cargo is recognized by autophagy receptors via Ub binding domains (UBD). The K63 type of Ub 

linkage appears to be often reported to induce autophagy degradation (Ito et al., 2013; Tan et al., 

2008). However, later reports suggest that mostly substrate aggregation and receptor 

oligomerization, and not the type of Ub linkage, is responsible for the target to autophagy 

clearance (Hohfeld and Hoppe, 2018). Indeed, ATG5 and ATG7 KO autophagy-deficient mice are 

found to accumulate Ub chains of different topology (Riley et al., 2010). Interestingly, and similarly 

to the proteasome system, autophagy uses different autophagy receptors to recognize different 

ubiquitinated cargos. For example, protein aggregates are recognized by p62, NBR1 (next to 

BRCA1 gene 1 protein) and OPTN (optineurin); mitochondria are recognized by OPTN, NDP52 

(nuclear domain 10 protein, also called CALCOCO2); peroxisomes are recognized by (NBR1); 

bacteria are recognized by p62, OPTN, NDP52; and proteasomes are recognized by RPN10 

(Khaminets et al., 2016). On the other hand, Ub-independent autophagy is characterized by the 

utilization of autophagy receptors that recognize different types of signals of different nature 

(proteins, lipids, or sugars). Many of these receptors are yet undiscovered, but an example is the 

FAM134B (family with sequence similarity 134 member B), also termed as reticulophagy 

regulator1 (RETREG1), which mediate ER-phagy via LIR and reticulon domains (ER binding) 

(Khaminets et al., 2016). 
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1.2.2.4 Autophagosome-lysosome fusion 

Once the phagophopre is enclosed, autophagosomes are transported along the MTs to the 

perinuclear region of the cell, where lysosomes are generally located in most of the cell types. 

Dynein-dependent retrograde transport is essential to accomplish autolysosomes formation, but 

kinesins and actin-based motors are also shown to participate in autophagosomes-lysosome 

tethering and fusion (Ktistakis and Tooze, 2016). Prior to autophagosomes-lysosome fusion, both 

membranous organelles are tethered each other by several complexes, including the homotypic 

fusion and protein sorting (HOPS) complex, and the ras-related protein Rab-7 (RAB7). HOPS is 

composed of several vacuole sorting proteins (VPS), which interact with the Q-SNARE Syntaxin 

17 (STX17) located on autophagosomes. At the same time, RAB7, together with other proteins, 

simultaneously binds to the HOPS complex on one side, and to membranes and membrane-

anchored proteins on the other side. Thus, assembly of the HOPS-RAB7 complex can bridge 

opposing membranes and facilitates their close proximity. Finally, STX17 is able to interact with 

synaptosomal-associated protein 29 (SNAP29) and the lysosomal R-SNARE vesicle-associated 

membrane protein 8 (VAMP8) to form the trans-SNARE complex, which provides the force 

required for autophagosome-lysosome fusion. The specificity of vesicle fusion is not only provided 

by the core tethering and SNAREs complexes, but also additional adaptor proteins ensure it. For 

example, LC3/GABARAPs and ATG12-ATG5 are able to interact with the RAB7-HOPS and the 

SNARE complexes (Ktistakis and Tooze, 2016). 

Lysosomal fusion let the release of lysosomal hydrolases into autophagosomes, which degrade 

the inner membrane of the autophagosomes and any other macromolecule, including DNA, RNA, 

proteins, lipids, and carbohydrates. Metabolites generated in these proteolytic processes, such 

as amino acids, are actively pumped out into the cytosol to be reutilized (Ariosa and Klionsky, 

2016). Lysosomal hydrolases have acidic pH optima around 4.5-5. This pH gradient is generated 

and maintained by the activity of a proton-pumping V-type ATPase, which hydrolyzes ATP to 

pump protons into the lysosomal lumen (Ferguson, 2019). Inhibitors of lysosomal acidification 

and autophagosome-lysosome fusion are commonly used for monitoring the turnover of LC3 and 

p62, a read-out of autophagy flux. Bafilomycin A1 (BafA1 or Baf) and chloroquine (CQ) are the 

more common drugs used for this propose. BafA1 have been shown to act at two different steps: 

inhibiting the proton-pumping V-type ATPase, and also by disrupting autophagosome-lysosome 

fusion via inhibiting Ca-P60A/SERCA (Ktistakis and Tooze, 2016). CQ impairs autophagosomes-

lysosome fusion rather than affecting the acidity of the organelle (Mauthe et al., 2018). 
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1.2.2.5 Genetic mouse models of autophagy 

The generation of autophagy-deficient mice lacking specific ATG proteins has been extensively 

used to understand the physiological roles of autophagy in mammals. Phenotypes produced by 

null deletion of core Atg genes can be classified by the stage of death: (1) Embryonal death is 

found in knockouts (KO) of genes that function upstream of the ATG conjugation system (except 

ULK1/2 double KO, which die after birth). Interestingly, depending on the targeted gene, death 

appears at different stages of embryonic development and show tissue heterogeneity 

abnormalities. A possible explanation for such differences may come from the multifunctionality 

of these proteins, which can participate in non-autophagic functions (Kuma et al., 2017). (2) 

Postnatal death within 1 day after birth is common for KO of genes involved in the ATG 

conjugation system. Death results of malnutrition due to lack of self-derived nutrients and suckling 

failure (Kuma et al., 2017). Interestingly, it has been demonstrated that suckling failure is due to 

neuronal dysfunction in ATG5-null mice, and neuronal-specific re-expression of ATG5 can rescue 

these mice from premature death (Yoshii et al., 2017). Thus, the ATG conjugation system appears 

to be essential for neuronal function. On the other hand, it is reported that autophagosomes can 

also form in the absence of the ATG conjugation system at a much-reduced rate (Tsuboyama et 

al., 2016), which in turn may explain the milder phenotype observed in ATG conjugating system-

deficient mice compared with the ones working upstream (Kuma et al., 2017). (3) Absence of 

mortality and no obvious or weak phenotypes are characteristic for mouse models where the KO 

gene possesses a homolog that is functionally redundant (i.e., ULK single KO, ATG4, and 

LC3/GABARAP). 

 

1.2.2.6 Role of MT dynamics in autophagy 

Autophagosomes rely on the MT-based transport to move within the cell and fuse with lysosomes. 

Despite no much is known about how MTs and autophagosomes regulate themselves to ensure 

efficient transport, cumulative evidence highlights the importance of a proper relation between 

both structures. Indeed, it is suggested that starvation-induced autophagosome formation 

requires labile MTs for the recruitment of autophagosome precursors and motor proteins 

(Geeraert et al., 2010). In contrast, mature autophagosomes may require stable MTs for efficiently 

move and fuse to lysosomes (Kast and Dominguez, 2017). In agreement with this concept, low 

treatment of nocodazole, a MT-depolymerizing drug, was found to only depolymerize the labile 

MT subset and subsequently block the formation of new autophagosomes in HeLa cells (Geeraert 
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et al., 2010). In neurons, it is known that autophagosomes form in distal parts of axons, where 

the subset of labile MTs is higher (Kapitein and Hoogenraad, 2015). In this labile region, 

autophagosomes are shown to have an initial bidirectional movement, which later is switched to 

a robust dynein-dependent retrograde transport in the middle and initial segments of the axon 

(Maday et al., 2012). Interestingly, axonal initial and middle segments are enriched in stable MTs 

(Kapitein and Hoogenraad, 2015). Thus, it is suggested that MT dynamics may affect the 

recruitment of motor proteins for the trafficking along MTs, although little is known yet (Tas and 

Kapitein, 2018). 

 

1.2.2.7 Role of autophagy in neurons 

The majority of our neurons accompany us for most of our lifetime, and due to their post-mitotic 

nature, neurons cannot dilute detrimental proteins and organelles by cell division, in contrast to 

other cell types. This fact, combined with extremely polarized neuronal morphology, has made 

neurons to develop efficient and tight mechanisms to control protein degradation. Indeed, 

neuronal autophagy is highly compartmentalized. Most of the mature and fully functional 

lysosomes accumulate within and near the soma (Kulkarni and Maday, 2018). Therefore, newly 

formed autophagosomes coming from distal regions of the axon are retrogradely transported 

along microtubules towards the soma, where autophagosomes mature along the way (Maday et 

al., 2012). Once these organelles enter the soma, autophagosomes are confined into the 

somatodendritic region and are impeded from returning to the axon (Maday and Holzbaur, 2016). 

This compartmentalization may, in turn, ensure efficient recycling of the lysosomal products in the 

primary site of macromolecule biogenesis, the soma (Kulkarni et al., 2018). Whether axonal 

autophagy performs only selective degradation or also “bulk degradation” of axonal content 

remains unclear. However, it was shown that most of autophagosomes are positive for ubiquitin 

(Maday et al., 2012).  The soma of the neuron is also able to generate autophagosomes, but the 

biogenesis in dendrites is more limited in basal conditions. Despite that, autophagosome density 

in dendrites is increased upon enhanced synaptic activity, mostly due to local biogenesis in 

dendrites or by the recruitment from the soma, where autophagosomes can bidirectionally move, 

in contrast with axons (Kulkarni et al., 2018).  

Alternatively, emerging evidence suggests the existence of trans-cellular autophagy, a pathway 

shown by axons of retinal ganglion to throw out mitochondria to adjacent astrocytes for their 

degradation (Davis et al., 2014). A mechanism further supported by the demonstration that 
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C.elegans neurons can extrude organelles and protein aggregates in vesicles termed exophers, 

which are subsequently phagocytosed by surrounding cells (Kulkarni et al., 2018; Melentijevic et 

al., 2017). 

 

1.2.2.8 Autophagy at the synapse 

Synapses are dynamic structures that allow neurons to communicate with each other via the 

release of neurotransmitters. Action potentials generated in the soma travel along the axon and 

evoke, at the presynapse, the release of vesicles containing neurotransmitters, which in turn bind 

to receptors to modulate/trigger the neuronal activity of the postsynaptic neuron (Vijayan and 

Verstreken, 2017). The release of neurotransmitters not only requires the membrane fusion of 

synaptic vesicles with the plasma membrane, but also the retrieval of the membrane by 

endocytosis to form new vesicle pools, receiving then the term of synaptic vesicle cycle 

(Kononenko and Haucke, 2015; Soykan et al., 2017). To accomplish that, large groups of proteins 

are involved in proper function and coordination. Indeed, it is estimated that only in the presynaptic 

region there is an average of 300,000 proteins (Wilhelm et al., 2014). Such a vast amount of 

proteins in a rather small volume coordinate repeatedly the synaptic vesicle cycle, which in some 

neurons is performed in high frequencies (Kononenko and Haucke, 2015). These stressful 

conditions let proteins to be susceptible to damage, which will require of degradative pathways to 

keep proper protein homeostasis in the synapses. 

Cumulative studies point to autophagy as synapse regulator, more specifically in the presynaptic 

region. Impaired autophagy causes a reduction in the number of neuromuscular junctions in D. 

Melanogaster (Shen and Ganetzky, 2009). ATG9 and the subsequent formation of 

autophagosomes are required for proper synapse formation in developing axons of 

C.elegans(Stavoe et al., 2016). Moreover, neuronal activity has been proved to up-regulate 

autophagy in neuromuscular junctions of Drosophila and at pre- and postsynaptic sites of rat 

hippocampal neurons (Vijayan and Verstreken, 2017). Indeed, several synaptic proteins have 

been recently reported to interact with autophagy proteins. Rab26, a member of the Rab-GTPase 

superfamily, was found to selectively localize to presynaptic membrane vesicles and recruit 

components of the pre-autophagosomal machinery (e.g., ATG16L1) (Binotti et al., 2015). 

Endophilin A (EndoA) and its binding partner Synaptojanin 1 (Synj1), two proteins enriched at the 

presynapses with a known role in synaptic vesicle endocytosis, were reported to interact with 

autophagy proteins and modulate autophagy: Phosphorylation of EndoA by the leucine-rich 
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repeat kinase 2 (LRRK2) kinase selectively activates synaptic autophagy via recruiting ATG3, 

which in turn promotes its co-localization with the Drosophila Atg8 (LC3/GABARAP). On the other 

hand, mutations in  Synj1, a lipid phosphatase of phosphoinositisides, were reported to decrease 

autophagy flux due to its loss-of-function to detach the D. melanogaster Atg18 (WIPI2) (Vijayan 

and Verstreken, 2017). One recent interesting report showed that Bassoon, a scaffold protein 

involved in the organization of the presynaptic active zone, was able to directly sequester ATG5, 

and that the loss of Bassoon triggered synaptic autophagy, suggesting a negative control of 

autophagy, in contrast with the previous studies mentioned above (Okerlund et al., 2017). 

Altogether, it seems that presynaptic-enriched proteins have evolved to interact with the 

autophagy machinery to regulate autophagy in synapses. Since many presynaptic proteins are 

shown to be excluded from the soma, and several autophagy-deficient models show specific 

axonal degeneration, it is suggested that autophagy in the axons and synapses may have 

different functions, comparing to autophagy occurring in the somatodendritic area (Vijayan and 

Verstreken, 2017). 

 

1.2.2.9 Autophagy and neurodegeneration 

Loss of protein quality control appears to be a common hallmark across organisms during aging 

and age-related diseases (Labbadia and Morimoto, 2015). In fact, regular autophagy seems to 

decline with age, with decreased levels of key autophagy proteins in the human brain (Lipinski et 

al., 2010; Rubinsztein et al., 2011). Neurons may be particularly sensitive to decreased autophagy 

during aging since most of the late-onset neurodegenerative diseases accumulate damaged 

organelles and harmful cytoplasmic aggregates, which are substrates for autophagy degradation. 

Such as the case of Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s 

disease (HD), where tau and amyloid ß (Aß), α-synuclein, and huntingtin aggregates, 

respectively, are shown to be degraded by autophagy. However, whether these aggregates are 

a result of the loss of protein quality control or a cellular attempt to restore homeostasis remains 

under strong debate (Hohfeld and Hoppe, 2018; Koyuncu et al., 2017; Menzies et al., 2017; 

Vijayan and Verstreken, 2017). 

The majority of neurodegenerative diseases in patients are not caused by the monogenic 

inheritance of mutated genes, which reflects the heterogeneity and polygenetic factors involved 

in these diseases. However, a subset of cases corresponds to familial cases with inherited genetic 

mutations, which are useful to understand the mechanisms of pathogenesis. Thus, cumulative 
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studies have revealed that many of these disease-associated genes affect autophagy (Menzies 

et al., 2017). In some other cases, direct mutations in core autophagy genes have been implicated 

in the pathogenesis of neurodegenerative diseases. Such as the case of the missense E122D 

ATG5 mutation, which was identified in two siblings with mental retardation and childhood ataxia, 

a disease characterized by cerebellar hypoplasia and subsequent lack of coordination. Mutant 

ATG5 was found to poorly associate with its partner ATG12, resulting in impaired 

autophagosomes formation and reduced autophagy flux (Kim et al., 2016). Another autophagy 

gene mutation was found in the gene WDR45 (which encodes for WIPI4). WIPI proteins are PI3P 

sensors that facilitate the recruitment of autophagy proteins during phagophore expansion. 

Mutations in human were causative for static encephalopathy childhood with neurodegeneration 

in adulthood (SENDA/BPAN), which was characterized by impaired autophagy flux and 

accumulation of lipidated LC3-positive membranes (Saitsu et al., 2013). 

Neurodegeneration was also shown in various Atg KO mouse brains. Since conventional KO of 

ATG proteins is associated with embryonic or neonatal lethality, conditional nervous system-

confined Atg KO mouse models have been generated to investigate the different roles of 

autophagy in the brain. Most of these mouse models have been developed under the Nestin-Cre 

(Nes) promoter, which is active in neuronal precursor cells at embryonal stages (E7.75) 

(Dahlstrand et al., 1995). In these KO mice, targeted floxed alleles are deleted in both neurons 

and glia (Menzies et al., 2017). Atg5, Atg7, FIP200, Ulk1/2, and Atg9a are examples of Nes-KO 

models found in the literature (Hara et al., 2006; Joo et al., 2016; Komatsu et al., 2006; Liang et 

al., 2010; Yamaguchi et al., 2018). All models share increased mortality several weeks after birth, 

progressive neurodegeneration in different brain areas, and growth retardation. With the 

exception of Ulk1/2 double-KO, all mice models showed accumulation of p62- ubiquitin-positive 

inclusion bodies, abnormal membranous structures, and impaired motor functions. Axonal 

pathology was also detected by the formation of axonal swellings in different neuronal types. In 

addition, the Nes-Wdr45/WIPI4 KO has also been reported to generate axonal swellings and 

accumulate p62-positive inclusion bodies within somas and axonal swellings (Zhao et al., 2015). 

Despite these common features, the nature of pathology varies according to targeted gene; brain 

regions have different susceptibility for each KO gene; progressive spongiosis (intracellular 

vacuolations) are detected in FIP200 and Atg9a KO mice, but not in Atg5, Atg7; Ulk1/2 double-

KO had non-autophagy functions in the trafficking of ER-to-Golgi, impairment of which was 

responsible for neuronal death. Thus, the variability observed among models may suggest 

unequal patterns of autophagy across brain regions and the existence of non-canonical functions 

for the autophagy machinery. 
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1.2.2.10 Axonal degeneration 

Axon degeneration is a characteristic event in many neurodegenerative diseases, including 

stroke, glaucoma, and motor neuropathies (Wang et al., 2012). Prominent axonal pathology 

precedes the cell body loss in the form of “dying-back”, in which axons from the synaptic regions 

gradually degenerate toward the cell body. Despite differences in the rate of degeneration, this 

process mirrors many morphological features of transected nerves, including the formation of 

axonal swellings, microtubule disassembly, and eventual fragmentation of the axonal 

cytoskeleton. All these steps are followed by an upregulation of autophagy for local degradation 

of proteins and organelles such as mitochondria. Indeed, increased autophagic vacuoles have 

been found in synapses and spheroids during axonal degeneration (Wang et al., 2012; Yang et 

al., 2013). 

The early-onset degenerative event is characterized by a channel-mediated influx of extracellular 

calcium. Increased levels of calcium activate the serine-threonine protease calpain, which is 

capable of cleaving axonal neurofilaments and MT-associated components, such as spectrin and 

tubulin. Other degradative pathways, like autophagy, are also triggered by the calcium influx 

(Knoferle et al., 2010). However, more studies are needed to understand the mechanism of action 

in axonal degeneration. 

Axonal swellings (also termed as beadings or spheroids) are appeared in the first steps of axonal 

degeneration and are often associated with jamming of intracellular organelles and the 

accumulation of autophagosomes. Indeed, several neurodegenerative diseases such as  

Alzheimer´s, Parkinson´s, and Huntington´s diseases develop axonal swellings preceding axonal 

degeneration (Yang et al., 2013).  This is also evidenced in axons, where organelle trafficking 

was disrupted by inhibition of lysosomal proteolysis, a phenotype, which leads to accumulation of 

autophagosomes specifically within axonal swellings, mimicking AD-like axonal dystrophy (Lee et 

al., 2011). As mentioned above, the deletion of Atg5, Atg7, FIP200, WIPI4, or Atg9a under Nes-

Cre promoter induces the formation of axonal swellings in neurons. However, and despite the 

above observations, the pathological significance and the mechanism behind beading and 

swelling formation remain controversial. 
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1.3 BDNF-TRKB neurotrophic signaling 

Neurotrophins are a family of proteins that play critical roles in neuronal development and 

maintenance of the nervous system, including a multitude of biological roles such as survival, 

differentiation, cell cycle arrest, neurodegeneration, neuroprotection, apoptosis, and modulation 

of synaptic plasticity (Park and Poo, 2013; Sasi et al., 2017). These wide ranges of functions are 

mediated by four different neurotrophins; nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4), whose mature forms 

predominantly bind to tyrosine receptor-like kinases (TRK) A, B, or C. NGF binds preferentially to 

TrkA, BDNF and NT4 bind to TRKB, and NT-3 binds to TRKC, leading to subsequent activation 

of specific well-characterized signaling pathways that are predominantly neurotrophic. All mature 

neurotrophins also bind to the p75 neurotrophic receptor (p75NTR) with low affinity, whereas 

immature forms are specific for this receptor. p75NTR acts predominantly to promote neuronal 

degeneration, growth cone collapse, or to inhibit axonal regeneration (Blum and Konnerth, 2005; 

Sasi et al., 2017). 

Among all neurotrophin proteins, BDNF is the most studied neurotrophic signal due to its potential 

neuroprotective and restorative treatment for neurodegenerative diseases. Indeed, BDNF is 

widely expressed in the central nervous system, and its levels are found downregulated in several 

neurodegenerative diseases (Lu et al., 2013). Accordingly, substantial invitro and in vivo studies 

have revealed BDNF pro-survival effects upon several types of insults, such as glucose 

deprivation (Tong and Perez-Polo, 1998), glutamate excitotoxicity (Lindholm et al., 1993), and in 

AD models overexpressing amyloid-beta (Arancibia et al., 2008). Interestingly, it is also reported 

that reduced levels of BDNF levels during mice development worsen epileptic phenotypes and 

cause neuronal loss (Tandon et al., 1999). In the brain, BDNF is also involved in neuronal 

morphology and synaptic function. For instance, BDNF loss causes reduced neuronal complexity 

in cortical neurons (Gorski et al., 2003), and abolish long-term potentiation (LTP) required for 

memory consolidation (Panja et al., 2014; Sasi et al., 2017). 

At the molecular level, BDNF-binding to TRKB commonly promote the homodimerization of 

receptors and activates its intrinsic kinase activity, which undergoes autophosphorylation and 

activates three intracellular signaling cascades: (1) the PI3K/AKT pathway; (2) the ERK 

(extracellular signal-regulated kinase, also termed MAPK) pathway; (3) the phospholipase C-

gamma (PLCγ) pathway. Once the TRKB receptor is activated, several scaffolding proteins are 

recruited; the scaffold SHC protein interacts via the phosphorylated tyrosine 515 at the TRK 
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receptors and mediates the activation of the PI3K/Akt pathway. Similarly, SHC also mediates the 

recruitment of the GTPase Ras and the subsequent activation of the ERK pathway. Downstream 

of ERK and PI3K/AKT, MAP kinase-interacting kinases (MNK), and mTOR-signaling mediate 

BDNF/TRKB functions for translational control. On the other hand, phosphorylation of the 

tyrosine 816 at the C-terminus of TRKB (Tyr816) creates the binding site for the PLCγ, which 

subsequently induces the release of calcium ions from intracellular calcium stores. Calcium 

release links BDNF signaling with many calcium-dependent proteins, such as CaMKII, a master 

regulator of synaptic plasticity (Sasi et al., 2017).  

 

Figure 4. Schematic illustration of the BDNF/TRKB signaling. BDNF binding and subsequent TRKB 

activation activate three different downstream molecular pathways: the PI3K/AKT, the ERK (MAPK), and 

the PLCγ. The figure is taken from Sasi et al. (2017). 

 

TRKB receptors are found at both pre- and postsynaptic terminals, thus modulating synaptic 

plasticity at both sides (Dieni et al., 2012). Once BDNF binds and activates TRKB receptors, 

TRKB is endocytosed and internalized together with its activated effectors, such as p-ERK, into 

endosomes, also referred as “signaling endosomes”, since the signaling is sustained in these 

structures (Watson et al., 2001). Although TRKB-mediated endocytosis was commonly believed 

to be clathrin-dependent (Ginty and Segal, 2002), later reports have revealed that this 

internalization mostly occurs via a clathrin-independent mechanism, the EHD4/pincher-
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dependent micropinocytosis (Kononenko et al., 2017b; Philippidou et al., 2011).  Such endocytic 

pathway is responsible for the internalization of TrkB-activated receptors into TrkB-multivesicular 

bodies, which are refractory to lysosomal degradation, thus ensuring persistent signaling 

(Philippidou et al., 2011). “Signaling endosomes” are retrogradely transported along MTs to the 

soma, where the sustained signaling induce neurotrophic gene expression (Matusica and 

Coulson, 2014). Our lab has also recently published that autophagosomes carry TrkB-signaling 

complexes along the axons into the soma to promote neuronal branching and prevent 

neurodegeneration, whose neuroprotection effect is blocked in the autophagy-deficient model of 

ATG5 KO (Kononenko et al., 2017b). Despite this novel process, the precise cellular mechanism 

underlying defective neurotrophic signaling in autophagy-deficient neurons remains yet unclear.  

  



26 
 

2. AIMS OF THE STUDY 

Most of the studies using autophagy-deficient mice have generated conditional KOs under the 

brain-specific promoter Nestin, which targets for both neurons and glia (Hara et al., 2006; 

Komatsu et al., 2006; Liang et al., 2010; Yamaguchi et al., 2018; Zhao et al., 2015). Such studies 

have revealed tissue-specific susceptibility to the lack of autophagy, being the cerebellum the 

area generally most affected. Cortex and hippocampus were also shown to be severely 

vulnerable, but at different extent according to the targeted KO gene. Although Purkinje neurons 

have been directly targeted with specific promoters (Nishiyama et al., 2007), no studies have 

demonstrated whether the corticohippocampal neuronal degeneration is only due to the lack of 

autophagy in neurons or in both, neurons and glia. 

Loss of core autophagy genes such as Atg5 or Atg7 suffer from neurodegeneration, accompanied 

by axonal pathology and the accumulation of p62- and ubiquitin-positive inclusion bodies (Hara 

et al., 2006; Komatsu et al., 2006). Given the role of autophagy in regulation of protein 

homeostasis, these studies suggested that impaired degradation and accumulation of abnormal 

proteins can disrupt neuronal function and lead to neurodegeneration. However, a following 

publication showed that the abolishment of inclusion bodies in autophagy-deficient brains did not 

prevent neurodegeneration, although axonal pathology persisted in neurons (Komatsu et al., 

2007). Indeed, later studies from autophagy-deficient mouse brains have also revealed axon-

specific susceptibility, which is mainly characterized by the formation of axonal swellings or 

spheroids, which in turn is a common hallmark displayed in several neurodegenerative diseases 

(Yang et al., 2013). Thus, axonal dystrophy, and presumed trafficking impairment, are pointed as 

leading cause of degeneration in autophagy-deficient brains. However, the exact mechanism by 

which the lack of autophagy leads to axonal pathology and subsequent neuronal loss is poorly 

understood. 

Alternatively, our lab previously reported a non-canonical role of autophagy by which 

autophagosomes can traffic neurotrophic signals along the axon. Interestingly, ATG5-deficient 

neurons were shown to suffer from defective neuronal branching (Kononenko et al., 2017), a 

common feature found in neurodegenerative diseases (Baloyannis, 2009; Gonatas, 1967). 

However, the exact molecular and cellular mechanism leading to reduced neuronal arborization 

in autophagy-deficient neurons requires further investigation. 
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Taken together, this work intended to: 

1. Investigate the lack of autophagy in corticohippocampal-specific neurons. 

2. Decipher the exact molecular mechanism leading to axonopathy and subsequent 

neuronal loss in autophagy-deficient neurons. 

3. Further demonstrate and characterize the impaired neurotrophic signaling in autophagy-

deficient neurons 
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3. RESULTS 

3.1 Forebrain excitatory neurons lacking the LC3 lipidation machinery 

survive normally but develop severe axonal pathology. 

To investigate the lack of autophagy in forebrain excitatory neurons, the commonly used 

Atg5flox/flox mouse line (Hara et al., 2006; Kononenko et al., 2017b; Nishiyama et al., 2007) was 

crossbred with the CamKIIα-Cre mice, expressing Cre specifically in forebrain excitatory neurons 

(Dragatsis and Zeitlin, 2000a). In detail, Atg5floxallele contains two loxP sequences at the same 

orientation flanking the exon 3 of the Atg5 gene. In the presence of the Cre recombinase 

expressed under the CamKIIα promoter (CamKIIα-Cre), Cre binds to both equally oriented loxP 

sequences and excises the targeted exon. Excision of the exon 3 in the Atg5 gene was 

demonstrated to abolish the protein expression levels of ATG5 and impair autophagy (Hara et al., 

2006) 

 

3.1.1 Forebrain excitatory neurons lacking ATG5 have impaired autophagy 

To analyze the role of autophagy in excitatory neurons, we first examined the levels of ATG5 in 

cortical lysates extracted from CamKIIα-Cre (Atg5flox/flox:CamkIIα-Cre (ATG5 KO)) mice and 

compared them to lysates obtained from Atg5flox/flox(WT) mice.  As demonstrated in Fig.5a,b, the 

levels of ATG5 were almost abolished in our conditional ATG5 KO mice. Autophagy flux is 

typically monitored via LC3A/B lipidation to autophagosomes (conversion of LC3I→LC3II), which 

indicates successful autophagosome formation and maturation. Due to the small molecular weight 

and sequence similarity between LC3A and LC3B isoforms (82.5%), most of the available 

antibodies recognize both isoforms. Thus, LC3 levels have been commonly monitored using 

antibody recognizing LC3A/B, which hereinafter is referred to as LC3. On the other hand, p62 

protein levels are also commonly used as a marker of autophagic flux, since p62 is degraded by 

autophagy and, thus, reports the autophagosome degradation (Kuma et al., 2017). Decreased 

LC3II levels (Fig.5c,d) and accumulation of p62 protein levels (Fig.5e,f) in ATG5 KO cortical brain 

lysates confirmed autophagy impairment in ATG5 excitatory neurons-confined KO mice. To 

validate that CamKIIα-dependent Cre recombinase expression is confined to mouse forebrain, 

CamKIIα-Cre mice were crossbred with the Rosa-tdTomato reporter mouse line. This reporter 

allele contains a CAG promoter followed by a loxP-flanked STOP cassette, which suppresses the 

expression of a red fluorescent variant of tdTomato. In the presence of the Cre-recombinase, the 
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STOP cassette is excised, allowing the fluorescence expression (Madisen et al., 2010). CamkIIα-

Cre/Rosa-tdTomato mice displayed strong fluorescence expression in the cortex and the 

hippocampus, but not in midbrain areas (Fig.5g), in agreement with previously published data 

(Dragatsis and Zeitlin, 2000a). 

 

Figure 5: Impaired autophagy in Atg5flox/flox:CamkIIα-Cremice. Western blot of cortical brain lysates from 

13 week-old ATG5 KO mice compared to controls. (a,b) ATG5 expression levels are significantly decreased 

in ATG5 KO lysates. Protein levels in the KO are normalized to the WT set to 100%. KO: 8.40±4.39, 

p=0.001, N=3. (c,d) LC3II expression levels are significantly decreased. Protein levels in the KO are 

normalized to the WT set to 100%. KO:10.29±4.62%, p=0.001, N=3. (e,f) p62 expression levels are 

significantly increased in ATG5 KO lysates. Protein levels in the KO are normalized to the KO set to 100%. 

KO: 6696.69±2105.47%, p=0.044, N=3. (g) Representation of the Cre activity from a horizontal section of 

the brain ofCamkIIα-Cre/Rosa-tdTomatomice. CX: cortex, HP: hippocampus (white rectangular area depicts all the 

hippocampal area), MB: midbrain. All data shown represent the mean ± SEM from N independent experiments. 

 

3.1.2 Mice lacking ATG5 in forebrain excitatory neurons suffer from weight reduction and 

epileptic seizures which compromises their survival 

Nestin-Cre ATG5 KO mice were reported to die several weeks after birth, suffering from weight 

reduction and ataxia, a loss of voluntary coordination of muscle movements (Hara et al., 2006). 

In contrast, CamKIIα-Cre ATG5 KO mice were viable and did not display any ataxic disorder, 

showing both normal walking pattern and non-impaired limb clasping reflexes (data not shown). 
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However, ATG5 KO mice revealed a cessation of weight gain starting about one month of age 

when compared to their wild-type littermates (Fig.6a), independently of sex (data not shown). 

Moreover, 64% of ATG5 KO mice started to display epileptic seizures at about 12 weeks (84 

days) of age (Fig.6b), which subsequently lead to the death of ATG5 KO mice with epilepsy 

attacks few days or weeks after the of the first seizure (Fig.6c). Conversely, seizure-resistant 

ATG5 KO mice showed no premature death. Taken together, these data suggest a critical role of 

ATG5 and/or autophagy in CamKIIα-expressing excitatory neurons for the survival of mice. 

 

Figure 6: Atg5flox/flox:CamkIIα-Cremice suffer from weight reduction and reveal epileptic seizures. (a) 

Growth curves of WT and ATG5 KO mice. N: WT=28, KO=22 animals. Data analyzed using Two-Way 

repeated measures ANOVA. (b) Percentages of mice displaying epileptic seizures or not in conditional 

ATG5 KO mice. N: seizures=21, no seizures=8, total=21.  (c) Kaplan-Meier survival curves of conditional 

ATG5 KO mice displaying seizures and their littermate controls. N=5. 

 

3.1.3 ATG5 KO or ATG16L1 is dispensable for the survival of CamKIIα-expressing 

excitatory neurons 

Brain-confined autophagy-deficient mouse models have been extensively reported to show 

neuronal loss and apoptotic cell death across brain areas (Hara et al., 2006; Joo et al., 2016; 

Marino et al., 2014; Menzies et al., 2017). We, therefore, hypothesized that compromised survival 

of ATG5 KO mice is caused by apoptosis-induced neuronal loss. First, to examine the neuronal 

loss, we analyzed Nissl-stained brain sections obtained from perfused 13-week old ATG5 KO 

mice.  Surprisingly, no sign of neuronal loss was neither found in the cortex (Fig.7a,b) nor in the 

hippocampus (Fig.7c,d), which both maintained a proper structure and organization. Next, we 

analyzed the induction of apoptosis by performing the immunostaining of brain sections with an 

antibody recognizing the cleaved-caspase 3, a reporter of activated apoptosis (Chollat et al., 

2019). Although p62 was clearly found accumulated in the cortex, no sign of cleaved-caspase 3 
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was detected in ATG5 KO brains (Fig.7e). In addition, subsequent western blot analysis of cortical 

lysates from WT and ATG5 KO mice showed no activation of caspase 3 in both conditions 

(Fig.10a).  

To reveal whether the mere lack of ATG5 or the impaired autophagy per se was responsible for 

the phenotype observed in conditional ATG5 KO mice, Atg16L1flox/flox:CamkIIα-Cre (ATG16L1 KO) 

mouse line was generated. In this mouse line, Atg16L1flox allele is flanked by the loxP sequences 

between the promoter region of Atg16l1 and the intron 1 (Adolph et al., 2013b). ATG16L1 

functions as another critical component of the LC3 lipidation machinery and is crucial for functional 

autophagy. Similar to ATG5 KO mice, ATG16L1 levels were almost abolished in the KO condition, 

accompanied by impaired LC3 lipidation and accumulation of p62 (data not shown). Moreover, 

ATG16L1 KO mice also showed epileptic seizures at around the same time that ATG5 KO mice 

(data not shown, currently studied by another PhD student in the lab). In agreement with data 

obtained from ATG5 mice, analysis of Nissl-stained ATG16L1 KO cortical brain areas revealed 

no sign of neuronal loss (Fig.7f,g). Collectively, these data reveal that the lack of ATG5 or 

ATG16L1, and therefore the LC3 lipidation machinery, are dispensable for the survival of 

CamKIIα-positive excitatory neurons in cortex and hippocampus. 

 

Figure 7. Survival of CamKIIα-expressing excitatory neurons in the mouse brain is dispensable of 

ATG5 and ATG16L1. Histopathological analysis of Nissl-stained brain sections of ATG5 KO brains at 13-

week old reveals no loss of cortical (a,b) andCA1 (Cornu Ammonis area 1)hippocampal neurons (c,d): 

Cortex: WT:0.0026±0.0002, KO: 0.0022±0.0001. p=0.163. N=4. Hippocampus: WT:0.0028±0.0003, KO: 

0.0026±0.0002, p=0.465, N=4. Scale bars: 200µm (e) Representative confocal images of cortical brain 

sections from WT and ATG5 KO mice immunostained for cleaved-caspase 3 (CASP3, green) and co-

immunostained for p62 (red). White rectangular boxes indicate areas magnified to the right. Scale bars: 
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200µm (f,g) Histopathological analysis of Nissl-stained brain sections of WT and ATG16L1 KO cortical 

brains at 13 weeks old: WT:0.0021±0.0001, KO: 0.0023±0.0001, p=0.354, N=3. Scale bar: 200µm. n.s.-

non significant.All data shown represent the mean ± SEM from N independent experiments. 

 

3.1.4 Loss of ATG5 causes axonal neurodegeneration in forebrain excitatory neurons 

Despite most of the CamKIIα expression was confined to the cortex and the hippocampus 

(Fig.5g), Nissl-stained brain sections from 13-week old ATG5 KO mice revealed a substantial 

neuronal loss in the midbrain structure of the thalamus, concretely, in the posterior and ventral 

nuclei (Fig.8a). Interestingly, this area was not targeted by the activity of CamKIIα promoter 

driving the Cre recombinase expression (Fig.8b). Since thalamic atrophy is known to occur in a 

number of axonal-dystrophy associated diseases (Minagar et al., 2013; Schonecker et al., 2018), 

and axonal pathology is a common hallmark of autophagy-deficient neurons (Menzies et al., 

2017), we hypothesized that structural changes observed in the thalamus of ATG5 KO mice were 

caused by the degeneration of long-range corticothalamic axons. To investigate that, efferent 

projections of the motor cortical deep layer neurons targeting the thalamus were labeled by 

injecting adeno-associated virus expressing GFP under CamKIIα promoter (AAV9-GFPCamkIIα) via 

stereotaxic surgery (Fig.8c). Corticothalamic axons of ATG5 KO neurons revealed signs of axonal 

degeneration, characterized by en-passant axonal swellings (Fig.8d). Taken together, we found 

that although ATG5 is dispensable for the survival of CamKIIα-expressing excitatory neurons in 

the cortex and the hippocampus, ATG5 KO neurons develop a severe axonal pathology, which 

may drive the degeneration of other brain areas. 
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Figure 8. Neurodegeneration of thalamus is associated with axonal pathology of cortical neurons in ATG5 

KO mice. (a) Histopathological images of Nissl-stained brain sections of ATG5 KO brains at 13-week old 

reveals neuronal loss in the posterior and ventral nuclei of the thalamus. Scale bar: 900µm. White 

rectangular boxes indicate areas magnified to the right. Scale bar: 200µm. (b) The same image from Fig.5g 

was modified to select the posterior/ventral nuclei (c) Schematic illustration of stereotaxic delivery of AAV9-

GFPCamkIIα into deep layers of primary motor cortex which connect to midbrain areas. (d) Representative 

horizontal brain sections images of posterior thalamus brain sections from WT and ATG5 KO 13-week old 

mice after stereotaxic AAV9-GFPCamkIIα injection. Confocal images depict GFP-expressing axons. Scale 

bar: left images: 200µm. Magnified areas in the right: 10µm. 

 

3.2 LC3 lipidation machinery regulates axonal homeostasis 

To further investigate the molecular and cellular mechanisms by which the lack of ATG5 or 

autophagy per se drives the axonal pathology, an in vitro model for autophagy-deficient primary 

neuronal cultures was developed. Atg5flox/flox or Atg16L1flox/flox mice were crossbred with a 

tamoxifen-inducible CAG-Cre recombinase line (Kononenko et al., 2017) to generate either 

Atg5flox/flox:CAG-Cre or Atg16L1flox/flox:CAG-Cre. CAG is a synthetic promoter which combines the 

cytomegalovirus immediate-early enhancer, the chicken ß-actin promoter, and the splice acceptor 

of the rabbit ß-globin gene (Niwa et al., 1991). Tamoxifen-inducible CAG-Cre contains the Cre 

recombinase fused to a mutant form of the mouse estrogen receptor which does not bind to the 

natural ligand, but to 4-hydroxytamoxifen (tamoxifen, Tmx). Tamoxifen-inducible CAG-Cre is 

restricted to the cytoplasm but can be translocated to the nucleus of the cell upon tamoxifen 

binding (The Jackson Laboratory).  Thus, the addition of tamoxifen (KO) or the vehicle solution 

(WT) at the day in vitro (DIV) 0 defined the genetic background of neuronal cultures. Moreover, 

neuronal cultures were prepared from cortex and hippocampus brain areas, which are known to 

have a high expression of excitatory neurons, e.g., 70-80% of the neurons in the cortex are 

excitatory (Lodato and Arlotta, 2015) 

 

3.2.1 Autophagy is impaired in ATG5 and ATG16L1 KO neurons in vitro 

First, ATG5 and ATG16 KOs were validated in cortical/hippocampal cultured neurons (hereafter 

referred to as cultured neurons). We detected almost a complete loss of each protein in KO 

lysates of cultured neurons at DIV16 (Fig.9a,d), the age when cultured neurons are reported to 

be fully mature (Moutaux et al., 2018). Similar to in vivo data, neurons lacking ATG5 and ATG16L1 
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accumulated p62 and had impaired LC3 lipidation showed by decreased LC3II protein levels 

(Fig.9b,c, and e,f). Thus, ATG5- and ATG16L1-deficient neurons have impaired autophagy in 

vitro. 

 

Figure 9. Cultured neurons lacking either ATG5 or ATG16 have defective autophagy in vitro. (a) 

ATG5 expression levels are significantly decreased in ATG5 KO lysates from cultured neurons at DIV16. 

Protein levels in the KO were normalized to the WT set to 100%. KO: 1±0.00%, p<0.000. N=5. (b) p62 and 

LC3 blots in WT or ATG5 KO lysates at DIV16. (c) Analysis of p62 expression from b: KO: 

3661.93±1618.82%. Protein levels in KO condition were normalized to the WT set to 100%. p=0.046, N=5. 

(d) ATG16L1 expression levels are significantly decreased in ATG16L1 KO lysates from cultured neurons 

at DIV 16-18. Protein levels in the KO were normalized to the WT set to 100%. KO: 9.34±4.69%, p<0.000. 

N=4. (e) p62 and LC3 blots in WT or ATG16L1 KO lysates at DIV16-18. (f) Analysis of p62 expression from 

e: KO: 13757.23±3317.55%. Protein levels in KO condition were normalized to the WT set to 100%. 

p=0.013, N=4. All data shown represent the mean ± SEM from N independent experiments. 

 

3.2.2 ATG5- and ATG16L1-deficient cultured neurons show neither apoptosis nor neuronal 

death 

Since neither neuronal degeneration nor apoptosis was detected in autophagy-deficient CamKIIα-

expressing neurons in vivo (Fig.7), we next used ATG5 KO and the ATG16L1 KO in vitro models 

to investigate whether cultured neurons are resistant to neuronal death upon defective autophagy. 

First, levels of cleaved caspase 3 were analyzed by Western blotting. Neither ATG5 nor ATG16L1 
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KO lysates from cultured neurons showed signs of apoptosis, in contrast to hydrogen peroxide-

treated cells, a known inducer of apoptosis (Fig. 10a,b). Strikingly, cultured ATG16 KO neurons 

were apoptosis-resistant even under starvation (Fig.10b), a known stress condition, which 

induces autophagy (Young et al., 2009). These data were further supported by the analysis of 

mRNA levels of apoptotic genes, which revealed no changes between WT and ATG5 KO 

conditions (Fig.10c). Finally, since apoptosis is only one of the multiple molecular mechanisms 

inducing neuronal death, a live/dead imaging assay was performed to identify neuronal death in 

autophagy-deficient condition. ATG5 KO neurons were viable and had a similar WT ratio of live 

(green) and dead (red) cells (Fig.10d,e). Collectively, these in vivo and in vitro data demonstrate 

that cortical/hippocampal neurons are viable and do not undergo apoptosis upon ATG5- and 

ATG16L1-deficiency. 

 

Figure 10. ATG5- and ATG16L1 deficient neurons do not show apoptosis or neuronal death in vitro. 

(a) Western blot illustrating cleaved-caspase 3 (CASP3) levels in lysates from cultured WT and ATG5 KO 

neurons (CAG-Cre), as well as cortical lysates from WT and ATG5 KO mice (CamKIIα-Cre). HEK293T cells 

treated with H2O2 were used as a positive control. (b) Western blot depicting cleaved-CASP3 levels from 

WT and ATG16L1 cultured neuronal lysates without treatment (Control) or starved 16 hours. HEK293T 

cells treated with H2O2 were used as a positive control. (c) Bcl-xl, cFLIP, Bax, and Chop mRNA levels 

analyzed by qPCR are not significantly altered in ATG5 KO neurons compared to controls. mRNA levels 

were normalized to the levels of the housekeeping gene Tbp set to 100%. (d,e) Representative 

fluorescence images of WT and ATG5 KO primary neurons after performing Live/Dead cell viability assay. 

The total number of living (green) and dead (red) neurons were counted and compared with the total number 
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of neurons as a percentage of alive neurons: WT: 97.55±0.60%, KO: 95.25±3.04%. In total, 6796 WT and 

6220 KO cells were counted from N=3. n.s.-non significant. All data shown represent the mean ± SEM from 

N independent experiments. 

 

3.2.3 Loss of ATG5 or ATG16L1 in primary neurons causes selective axonal degeneration  

As described previously, cortical neurons from Atg5flox/flox:CamkIIα-Cre mice showed axonal 

pathology characterized by the formation of axonal swellings (also termed spheroids). Taken 

advantage of the in vitro model, we performed a detailed morphological analysis of autophagy-

deficient neurons transfected with GFP. The presence of spheroids in only MAP2 (dendritic 

marker)-negative neurites confirmed that axons, but not dendrites, suffer from the axonal 

pathology upon ATG5-deficiency (Fig.11a,b). Interestingly, although 5% of WT neurons 

developed axonal swellings, about 30% of all ATG5 KO neurons displayed these spheroids 

(Fig.11c). We also found that 58% of axonal swellings were co-localized with the presynaptic 

marker synaptobrevin 2 (SYB2) (Fig.11d). The phenotype was rescued by re-expression of 

ATG5-eGFP at DIV 7-8 for 7 days (Fig.11c). Moreover, spheroids were mostly present in the last 

segment of the axon, showing a size-range from 2 to 7µm of diameter, of which 2-4µm diameter 

spheroids were significantly upregulated in ATG5 KO neurons (Fig.11e). WT neurons mostly 

contained 1-1.9µm diameter varicosities, regular size for presynaptic sites, further confirmed by 

their colocalization with synaptic marker Syb2 (data not shown). Finally, dendritic spine density 

was not affected by the ATG5 deletion (Fig.11f,g). Collectively, these data confirm that ATG5-

deficient neurons have increased susceptibility for axonal degeneration, in agreement with in vivo 

data. 
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Figure 11. Axons, but not dendrites, degenerate under autophagy-deficient conditions. (a) ATG5-

deficient primary neurons transfected with eGFP (green) and immunostained for MAP2 (blue) and 

synaptobrevin 2 (SYB2) (magenta). SYB2 channel was hidden to better distinguish the other two channels. 

White rectangular boxes depict areas magnified in b. DIV 16.Scale bar: 50µm (b) Amplified images showing 

the SYB2 channel. White arrows indicate axonal swellings positive for SYB2. Scale bar: 50 µm. (c) 

Percentage of WT and ATG5 KO neurons revealing spheroids when transfected with eGFP (WT: 

4.60±1.09%, KO: 32.82±3.70%) or with ATG5-eGFP (WT: 7.47±2.60%, KO: 7.18±2.20%). pWTGFP vs 

KOGFP =0.001, pWTATG5 vs KOATG5 =0.002. In total, 596 WT and 421 KO neurons fromN=3. (d) Majority of 

spheroids are found at synapses (58.62±0.81%). (e) Histogram showing the number of axonal swellings in 

WT and ATG5 KO neurons plotted as a function of their diameter. Statistical significance was tested via 

two-way ANOVA repeated measures.***pWT vs KO<0.0001. N=4, in total 40 WT and 40 KO neurons.(f,g) 

Unaltered spine density in ATG5 KO neurons compared to controls (WT: 2.36±0.36, KO: 2.24±0.14). N=4. 

Scale bar, 5µm.n.s.-non significant. All data shown represent the mean ± SEM from N independent 

experiments. 

 

3.2.4 Loss of core autophagy machinery involved in the LC3 lipid conjugation and 

processing cause axonal degeneration 

To further investigate whether the lack of ATG5 or autophagy per se was responsible for the 

formation of axonal pathology, we analyzed axonal pathology in several other models of 

autophagy deficiency. Similarly to Atg5flox/flox:CAG-Cre, Atg16L1flox/flox:CAG-Cre neurons also 

revealed a significantly increased number of axonal swellings (Fig.12a,b). Since ATG5 and 
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ATG16L1 work in the same pathway and their interaction directly regulates LC3 lipidation 

(Romanov et al., 2012), we tested whether the overexpression in WT neurons of the inactive 

C74A form of ATG4B, involved in the LC3 processing outside of the ATG5-ATG12-ATG16L1 

complex (see Figure 1 in the introduction), could lead to the formation of axonal spheroids. In line 

with our previous models, neurons overexpressing ATG4BC74A developed significantly more 

axonal swellings compared to controls (Fig.12c,d). On the other hand, deletion of FIP200 using 

smart pool of short interfering (si) RNA, a manipulation that prevents autophagy induction, not 

directly affecting the levels of LC3 (Hara and Mizushima, 2009), was not sufficient to cause the 

formation of axonal swellings in cultured neurons (Fig. 12e-g). Similarly, downregulation of ULK1 

expression levels via short hairpin RNA plasmid transfection of WT cultured neurons do not reveal 

the formation of axonal swellings (ongoing research). Taken together, these data indicate that 

impaired LC3 conjugation system, but not the global loss of autophagy function, is responsible for 

axonal pathology in neurons, suggesting a novel function in axonal homeostasis. 

 

Figure 12. Impaired LC3 lipid conjugation and processing cause axonal degeneration. (a) WT and 

ATG16L1 KO cultured neurons transfected with eGFP (green) and immunostained for MAP2 (red). Scale 

bar 10µm. White rectangular boxes depict areas magnified to the right. Scale bar: 2µm. (b) Percentage of 

WT and ATG16L1 KO neurons revealing axonal swellings. WT: 6.05±2.14%, KO: 23.85±1.24%. p=0.004, 

in total 234 WT and 238 KO neurons from N=3. (c) Primary control neurons transfected with either mCherry 

or pmStrawberry-ATG4BC74A (green) and immunostained for MAP2 (red). Scale bars: left panels 10µm, 

right panels 2µm. (d) Percentage of control neurons with axonal swellings transfected either with mCherry 

(4.03±0.25%) or pmStrawberry-Atg4BC74A (11.60±1.22%). p=0.008. In total, 486 WT and 360 KO 
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neuronsfrom N=3. (e,f) Validation of small interfering RNA (siRNA) against Fip200.Expression levels of 

FIP200 in MEF cells transfected either with scramble (scr) (106.70±14.04%) or with Fip200 siRNA 

(52.67±11.34%). P=0.042. N=3. Protein levels in KO condition were normalized to the WT set to 100%. (g) 

Axonal swellings are absent in neurons with Fip200 siRNA-mediated knockdown (KD). Scr:4.46±2.40%, 

Fip200 siRNA:5.78±2.87%, p=0.659. In total, 534 control and 820 Fip200 siRNA neurons from N=4.n.s.-

non significant.All data shown represent the mean ± SEM from N independent experiments. 

 

3.2.5 Impaired LC3 lipidation and accumulation of non-lipidated LC3 causes axonal 

swellings 

Previous data suggest that axonal pathology in autophagy-deficient neurons might be caused by 

defects in LC3 lipidation machinery. Indeed, ATG5 and ATG16L1 KO neurons not only failed to 

conjugate LC3 (Fig.9b,e) but also revealed the accumulation of non-lipidated LC3 form (LC3I) 

(Fig. 9b,e, and Fig.13a,b). Thus, we hypothesized that the accumulation of LC3I in the absence 

of ATG5 and ATG16L1 is responsible for the formation of axonal swellings. To directly test that, 

control neurons were transfected with a lipidation-deficient construct of LC3B, which contains a 

single point mutation that substitutes the glycine responsible for lipid conjugation by an alanine 

residue (G120A) (Kabeya et al., 2000). Overexpression of the RFP-LC3BG120A caused an 

upregulation of the number of neurons containing spheroids comparing with neurons 

overexpression the wild-type RFP-LC3B (Fig. 13c,d). Moreover, downregulation of LC3B protein 

levels using siRNA against Lc3b (Fig.13e,f) diminished axonal pathology in ATG5 KO neurons 

(Fig.12g,h). Interestingly, LC3 was accumulated in axonal swellings of ATG5 KO cultured 

neurons, which corresponds presumably to LC3I, since lipidation machinery is impaired (Fig.13g). 

Collectively, these data strongly suggest that non-lipidated LC3 accumulates in axonal swellings 

and promotes axonal pathology. 
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Figure 13. Accumulation of non-lipidated LC3 in axons causes axonal pathology. LC3I protein levels 

are significantly increased in (a) ATG5 KO (1.47±0.11, p=0.025, N=3) and (b) ATG16L1 KO (1.23±0.08, 

p=0.04, N=4) cultured neurons, compared to WT controls set to 1. Representative blot images in Fig.8b 

(ATG5 KO) and Fig.8d (ATG16L1 KO). (c) Representative fluorescent images of control neurons 

transfected either with full-length ptagRFP- LC3B (proLC3) or ptagRFP-LC3BG120A and co-transfected 

with eGFP to visualize the axons (green). Scale bars: left panels 10µm, right panels 2µm. (d) Percentage 

of neurons with axonal swellings expressing either full-length ptagRFP- LC3B (6.29±0.30%) or ptagRFP- 

LC3BG120A (19.16±2.50%). p=0.014. In total, 332 ptagRFP-LC3B neurons and 251 ptagRFP- 

LC3BG120A from N=3. (e,f) Validation of siRNA against Lc3b.Expression levels of LC3 in MEF cells 

transfected either with scr (100±4.5%) or with Lc3b siRNA (49.48±9.86%). P=0.007. N=4). (g) Primary 

ATG5 KO neurons transfected with eGFP (green) to visualize the axons and co-transfected with either 

scrambled siRNA (scr) or LC3b siRNA and immunostained for LC3 (red). White circles indicate en-passant 

axonal swellings. Scale bars: 5µm. (t) Loss of LC3B in ATG5 KO neurons significantly decreases axonal 

spheroid area KOscr: 4.57±0.06µm2, KOsiLC3b2.78±0.20µm2, p=0.001. In total, 417 for scr, and 502 for siRNA 

from N=3. All data shown represent the mean ± SEM from N independent experiments. 
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3.3 Axonal swellings are not a result of defective protein clearance but 

accumulate components of MT-based trafficking machinery  

Axonal swellings have been reported to accumulate different sorts of proteins and membranous 

organelles, which in turn is commonly associated with jamming of intracellular organelles (Yang 

et al., 2013). To further understand the mechanism by which the lack of LC3-lipidation machinery 

causes axonal pathology, we sought to investigate the precise content of axonal swellings. 

 

3.3.1 Protein inclusion bodies are not accumulated in spheroids from ATG5- and ATG16-

deficient neurons 

Accumulation of protein aggregates is a common hallmark of defective autophagy. Indeed, 

accumulation of Ub- and p62-positive inclusion bodies have been largely reported in autophagy-

deficient neurons (Hara et al., 2006; Komatsu et al., 2007b; Liang et al., 2010; Zhao et al., 2015). 

Accordingly, p62 levels were increased in ATG5 and ATG16L1 KO neurons in vivo (Fig. 5e) and 

in vitro (Fig.9c,f). Thus, we investigated whether protein inclusion bodies accumulate within ATG5 

and ATG16L1 KO axonal swellings due to their defective clearance. To prove that, ubiquitinated 

proteins and p62 levels were analyzed by immunocytochemistry in WT and KO cultured neurons. 

While ATG5 and ATG16 KO soma clearly revealed massive accumulation of p62-positive 

inclusion bodies (Fig.14a-c), axonal compartments and spheroids were devoid of such protein 

aggregates (Fig.14d-g). Similarly, ubiquitin staining showed Ub-positive inclusion bodies in the 

soma but not in the axon of ATG5 KO neurons (Fig.14h-j). These data are in agreement with the 

previous report that neurodegeneration is independent of protein inclusions in ATG7 KO brains 

(Komatsu et al., 2007a), and thereby confirms that axonal swellings are not a result of defective 

protein clearance. 
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Figure 14. Spheroids do not accumulate Ub- and p62-positive inclusion bodies in neither ATG5 nor 

ATG16L1 KO neurons. (a-c) Representative fluorescence images and analysis of p62-containing puncta 

in somas of primary ATG5 KO and ATG16L1 KO neurons, immunostained for MAP2. WT: 0.007±0.001, 

KOATG5: 0.023±0.002, p=0.001. In total, 27 WT and 33 KO neurons from N=3; WT: 0.013±0.002, KOATG16L1: 

0.045±0.007, p=0.009. In total, 31 WT and 28 KO neurons from N=3. Scale bars: 10µm. (d-g) 

Representative fluorescence images and analysis of p62-containing puncta in axons of primary ATG5 KO 

and ATG16L1 KO neurons. WT: 0.009±0.001, KOATG5: 0.012±0.002, p=0.131. In total, 29 WT and 30 KO 

axons from N=3; WT: 0.018±0.002 0, KOATG16L1: 0.015±0.005, p=0.545. In total, 31 WT and 22 KO neurons 

from N=3. Scale bars: 5µm. (h-j) Representative fluorescence images and analysis of ubiquitin-containing 

puncta in somata and axons of primary ATG5 neurons (WTsoma: 0, KOsoma: 0.05±0.00, p<0.000; WTaxon:  0, 

KOaxon: 0, p KOsoma vs KOaxon<0.000. In total, 30 WT and 30 KO neurons from N=3. Scale bars: 10 µm. n.s.-

non significant.All data shown represent the mean ± SEM from N independent experiments. 

 

3.3.2 Axonal swellings accumulate components of MT-based trafficking machinery 

Since axonal swellings were enriched at presynaptic terminals (Fig.11b,d), we hypothesized that 

axonal swellings could be a result from distended synapses in the axon due to either defective 

synaptic vesicle (SV) exocytosis or impaired trafficking of synaptic membranous compartments. 

To address the first hypothesis, the levels of SV marker synaptobrevin 2 (SYB2) were analyzed 

within axonal terminals by immunocytochemistry. We found no alterations in the levels of SYB2 
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at the presynapses in ATG5 KO neurons compared to controls (Fig.15a,b). Next, WT and ATG5 

KO cultured neurons were transfected with the pH-sensitive GFP (pHluorin) fused to SYB2 

(Kononenko et al., 2013). pHluorins undergo quenching within the acidic SV lumen and are 

unquenched upon exocytotic fusion, thereby serving as reporters for SV exocytosis (Kononenko 

and Haucke, 2015). No significant differences were shown by analyzing the SYB2-pHluorin decay 

fluorescence upon stimulation with 200 action potentials at 50 Hz, further indicating that neurons 

are capable of normal activity-dependent SV exocytosis (Fig.15c). 

 

 

Figure 15. ATG5-deficient neurons neither accumulate SV nor have impaired SV exocytosis. (a) 

Representative confocal images from eGFP transfected WT and ATG5 KO neurons and immunostained 

for synaptobrevin 2 (SYB2) (red). White circles surround axonal varicosities and spheroids. (b) Analysis of 

the mean grey value of SYB2-containing puncta/area of axonal varicosity or spheroid in axons of WT and 

ATG5 KO neurons. KO:77.39±14.05%, protein levels in KO condition were normalized to the WT set to 

100%. p=0.124, N=3. (c) Average SYB2-pHluorin responses to 200 APs at 50 Hz in WT and ATG5 KO 

neurons (>400 boutons from N=3). Fluorescence transients were normalized to the initial baseline 

fluorescence before stimulation. n.s.-non significant. All data shown represent the mean ± SEM from N 

independent experiments. 

 

Previous studies from mouse models and brain biopsies of patients suffering from axonopathies 

revealed the accumulation of multiple membranous organelles, including late endosomes and 

mitochondria within axonal spheroids (Wang et al., 2012; Yang et al., 2013). Moreover, several 

autophagy-deficient mice models evidenced the presence of aberrant membranous structures 

and accumulation of tubular ER-like structures in soma and axons, respectively (Ivankovic et al., 

2019; Nishiyama et al., 2007). Thus, the soma and presynaptic terminals of ATG5 KO neurons 

were examined by electron microscopy. In line with previously published, aberrant membranous 

structures, 1-2 µm diameter size, were found in the soma of ATG5 KO neurons compared to WT 

(Fig.16a,b). Presynaptic sites of ATG5 KO neurons were frequently found together with 

endosome-like structures (Fig.17a) and mitochondria (Fig.17b,c). Strikingly, ATG5 KO axonal 
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swellings not only showed an increased presence of late endosomes and mitochondria, but also 

a massive accumulation of tubular ER-like structures (Fig.17d) 

 

Figure 16. Aberrant membranous structures are formed in ATG5 KO neurons. Electron micrographs 

of the soma of WT and ATG5 KO cultured neurons at DIV 16. (a) Two different pictures from WT neurons. 

Scale bars: 2µm (left) and 1 µm (right). (b) Picture from ATG5 KO soma illustrating several aberrant 

membranous structures (arrows). The red rectangular box depicts an area magnified to the right. Scale 

bars: 2µm (left), 0.5µm right (right). 
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Figure 17. Axonal swellings from ATG5 KO neurons retain mitochondria, endosome- and tubular 

ER-like structures. Electron micrographs of synapses from cultured WT and ATG5 KO neurons at DIV 16. 

(a) Endosome-like structures were found at presynapses (Pre). LE: late endosomes-like structures (arrow). 

Scale bars: 200nm. (b,c) The average number of mitochondria is significantly increased within 500nm of 

the active zone in ATG5 KO presynapses compared to controls. WT: 0.15±0.03, KO: 0.28±0.02, p=0.016, 

N=3, 60 synapses per condition. (c) Representative axonal swelling from an ATG5 KO axon filled with ER-

like structures. 

 

To confirm that membranous structures accumulate in ATG5 KO neurons, cultured neurons were 

also analyzed by immunocytochemistry. Axonal swellings accumulated the late endosomal 

marker RAB7 (Fig.18a,b). Moreover, live-imaging of mito-mCherry-transfected WT and ATG5 KO 

neurons revealed not only an increased accumulation of mitochondria in the KO condition, but 

also a decreased number of moving mitochondria along the axon (Fig.18c,d).  
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Figure 18. Axonal swellings accumulate RAB7-positive structures and mitochondria, which suffer 

from impaired axonal mobility in ATG5 KO cultured neurons. (a,b) RAB7-containing puncta density in 

axons of eGFP-transfected WT and ATG5 KO neurons at DIV 15-17. KO: 148.84±15.63%. p=0.044. In 

total, 27 WT and 25 KO axons from N=3. Fluorescent levels in the KO were normalized to the WT set to 

100%. Scale bars: 10µm upper panels, 2µm lower panels. (c,d) Mito-mCherry (mCherry containing the 

mitochondrial targeting sequence)and eGFP co-transfection of WT and ATG5 KO neurons. KO: 

60.83±7.79%, p=0.02, N=3. Axonal mobility of mitochondria in KO condition was normalized to the WT set 

to 100%. All data shown represent the mean ± SEM from N independent experiments. 

 

Ongoing experiments in the laboratory are trying to identify the nature of accumulated ER-like 

structures in axonal swellings from ATG5 KO neurons. So far, data failed to identify them with the 

ER marker protein disulfide isomerase (PDI) (Hewett et al., 2000) and by overexpression of the 

fluorescence-tagged ER targeting sequence KDEL (Valdes et al., 2012). Furthermore, our 

preliminary data (done as a part of the revision for the manuscript submitted to Nature 

Communications) do not support the hypothesis that ER-like tubules in autophagy-deficient 

neurons may correspond to pre-autophagic structures incapable of autophagosome enclosure, 

since these structures are not positive for the phagophore markers ATG13, ATG9A, WIPI2, and 

FIP200, upstream proteins from the ATG5 recruitment. In addition, markers of ER-stress 

response were preliminarily tested by analyzing the levels of phosphorylated eIF2α (p-eIF2α), 

which is known to be phosphorylated upon ER stress (Remondelli and Renna, 2017). Levels of 
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p-eIF2α appeared to be unchanged in ATG5 KO neurons compared to WT (Fig.19a,b). Future 

experiments may conclude this result by comparing the phosphorylated levels/total levels of p-

eIF2α. 

 

 

Figure 19. ATG5 KO neurons may not have an ER stress response. (a,b) Western blot analysis of 

phosphor-eIF2α (Serine 51) levels in WT and ATG5 KO at DIV 16. KO: 82.75±10.91, p=0.1651, N=4. n.s.-

non significant. All data shown represent the mean ± SEM from N independent experiments. 

 

All membranous structures found accumulated within axonal swellings have the common property 

of been trafficked along the axons via the MT-based trafficking machinery (Farias et al., 2019; 

Maday et al., 2014). Moreover, reduced mitochondria mobility enforced the hypothesis that ATG5 

KO neurons may suffer from impaired axonal trafficking of intracellular cargo. To elucidate this 

hypothesis, the levels of the MT-associated dynein activator Dynactin (DYNC1) were examined 

in axonal spheroids of ATG5 KO neurons by immunocytochemistry. Data revealed that whereas 

in control axons DYNC1 shows a longitudinal appearance, likely corresponding to its association 

with MT-based motor dynein, ATG5 KO neurons revealed large spheroid-like accumulations of 

DYNC1 (Fig.20a,b). Furthermore, these DYNC1-positive accumulations contained activated 

tropomyosin-related kinase receptor B (TRKB) receptors (Fig.20c,d), a known cargo of dynein 

motors in axons (Kononenko et al.,2017). 
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Figure 20. Axonal swellings accumulate components of retrograde MT-based trafficking. (a,b) 

DYNC1-containing puncta density in axons of eGFP-transfected of WT and ATG5 KO neurons. KO: 

133.26±2.53%), p=0.003. In total, 28 WT and 27 KO axons from N=3. Fluorescent levels in the KO were 

normalized to the WT set to 100%. Scale bars in (a): upper panels, 10µm, lower panels, 2µm.(c) Confocal 

images of WT and ATG5 KO neurons immunostained for DYNC1 (green) and phosphorylated TRKB 

receptors (Py816TRKB) (red). Scale bars: upper panels, 30µm, lower panels, 10 µm. (o) Representative 

fluorescent profiles through the axons of WT and ATG5KO neurons, illustrating the accumulation of DYNC1 

and pTRKB within axonal spheroids in KO condition. All data shown represent the mean ± SEM from N 

independent experiments. 

 

To ultimately prove the hypothesis that ATG5 KO neurons have defective axonal trafficking, 

fluorescently-tagged TRKB (TRKB-mRFP) construct was transfected in WT and ATG5 KO 

neurons and monitored by live imaging (Fig.21a). In line with mitochondria results, the relative 

number of TRKB-positive vesicles moving anterogradely and retrogradely along the axon was 

significantly reduced in ATG5 KO condition compared to the WT (Fig.21b). Furthermore, speed 

analysis of TRKB-positive vesicles revealed that the retrograde velocity, but not the anterograde, 

is impaired in axons of ATG5-deficient neurons (Fig.21c). 
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Figure 21. Trafficking of TRKB-positive vesicles along the axon is impaired in ATG5-deficient 

neurons. (a) Representative images at different time points and respective kymographs of TRKB-mRFP 

carriers. (b) Loss of ATG5 significantly decreased the mobility of TRKB carriers compared to WT controls. 

WTRetro: 20.99±2.63%, KORetro: 13.23±1.09%, WTAntero: 20.00±1.72%, KOAntero: 13.22±1.97%. pRetro=0.034, 

pAntero=0.041. In total, 29 neurites per each condition from N=4. (c) Loss of ATG5 significantly decreased 

the retrograde TRKB velocity compared to WT controls. WTRetro: 0.32±0.02µm/s, KORetro: 0.22±0.01µm/s, 

WTAntero: 0.29±0.01µm/s, KOAntero: 0.28±0.03µm/s). pRetro=0.004, pAntero=0.721.In total, 29 neurites per each 

condition from N=4. n.s.-non significant. All data shown represent the mean ± SEM from N independent 

experiments. 

 

Taken together, these results demonstrate that axonal swellings under conditions of defective 

LC3 lipid conjugation machinery are not a result of inadequate clearance of protein inclusions, 

and instead accumulate ER-structures and components of MT-based trafficking machinery, 

including RAB7-positive structures, mitochondria, and TRKB-activated receptors. Furthermore, 

this phenotype is accompanied by defective axonal trafficking, presumably due to a novel LC3 

function since modulation of non-lipidated LC3 levels is able to decline or rescue the axonal 

pathology. 

 

3.4 LC3 lipidation-deficient neurons have impaired MT-dynamics 

Initially, LC3 was identified in rat brain samples as a protein associated with microtubules (MTs). 

Based on this, LC3 was proposed to influence the binding of MAP1A and MAP1B to the tubulin 

cytoskeleton (Mann and Hammarback, 1994). Since LC3I was found to accumulate in axonal 

swellings of autophagy-deficient neurons (Fig.13g), we asked whether accumulated LC3I may 

bind to MTs and alter their dynamics. To test this hypothesis, endogenous α-tubulin (α-TUB) from 

WT or ATG5 cultured neuronal lysates was immunoprecipitated, and LC3A/B was co-
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immunoprecipitated with a specific antibody. To investigate the LC3 association specifically with 

soluble and polymerized MTs fractions, we adopted a previously published protocol for extraction 

of soluble and polymerized MTs to our cultured primary neurons (Sharma et al., 2011a). 

Interestingly, in both WT and KO conditions, only a tiny fraction of LC3I was found to be 

associated with α-tubulin in either soluble or polymerized MT fractions (Fig.22a,b). 

 

Figure 22. LC3A/B barely associates with soluble α-tubulin or MTs. Immunoprecipitation of either IgG 

(negative control) or α-tubulin in soluble-tubulin fractions (a) or in polymerized-tubulin fractions (b) from 

cultured WT and ATG5 KO neurons.  Inputs, 5% from the soluble lysate and 8% from the polymerized 

lysate. A representative example from N=3 independent experiments. 

 

Although no strong association between LC3 and α-tubulin could be detected in autophagy-

deficient neurons, axonal traffic jams have been largely reported to be a consequence of impaired 

MT dynamics in the axon (Wang et al., 2012). Thus, we next investigated whether ATG5 KO 

neurons suffer from impaired MT dynamics. To test this, we monitored the dynamics of the plus-

end MT-binding protein EB3-tdTomato in cultured WT and KO neurons. EB3 binds to the plus-

end tip of the growing MT, thus allowing for tracking polymerization rates, so-called “comets” 

(Stepanova et al., 2003). Interestingly, whereas EB3-positive comets were evident along control 

axons, the overall number of EB3-positive comets were severely decreased in ATG5 KO 

condition, a phenotype rescued by the re-expression of ATG5 (Fig.23a,b). Similarly, ATG16L1 

KO neurons displayed a significant reduction in the number of polymerization events (Fig.23c,d). 

Thus, deficient LC3-lipidation reduces the dynamism of the MT cytoskeletonin neurons. 
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Figure 23. Defective MT dynamics in ATG5- and ATG16L1-deficient neurons. (a) Representative 

fluorescent images from time-lapse videos of WT and ATG5 KO neurons co-transfected with Tubulin-eGFP 

and EB3-tdTomato. Corresponding kymographs are shown to the right. Red arrows indicate retrograde 

EB3 comets. Scale bars; x=5µm, y=30s. (b) Analysis of EB3 comet density in axons from (b). WTGFP: 

0.05±0.01, KOGFP: 0.02±0.00, or with eGFP-ATG5; WTATG5: 0.05±0.00, KOATG5: 0.06±0.01. pWTGFP vs 

KOGFP =0.032, pKOGFP vs KOATG5 =0.019. In total, 45 WT and 50 KO axons from N=3. (c) Representative 

fluorescent images from time-lapse videos of WT and ATG16L1 KO neurons transfected with EB3-

tdTomato. Corresponding kymographs are shown to the right.  Red arrows indicate retrograde EB3 comets 

in WT neurons, which are absent in KO. Scale bars, x: 5µm, y: 30s. (d) EB3 comet density from c. WT: 

0.07±0.01, KO: 0.03±0.01. p=0.029: In total, 27 WT and 26 KO axons from N=3. n.s.-non significant. All 

data shown represent the mean ± SEM from N independent experiments. 

 

3.4.1 MTs are more stable in ATG5 and ATG16L1 KO neurons 

Since MTs appear to be less dynamics in ATG5- and ATG16L1-deficient neurons, an engaging 

scenario suggests that autophagy-deficient MTs are generally hyperstable. To answer that, first, 

the amount of labile and stable MTs were quantified by analyzing the levels of tyrosinated and 

detyrosinated α-tubulin. Tyrosinated α-tubulin is found in dynamics segments of MTs, such as the 

growth cone. Oppositely, detyrosinated α-tubulin is enriched labels stable parts of MTs (Cambray-

Deakin and Burgoyne, 1987). Western blot analysis of tubulin polymerized fractions showed a 

significant decreased in tyrosinated α-tubulin (Y α-TUB) in ATG KO neurons compared to the WT, 
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whereas detyrosinated α-tubulin (deY α-TUB) levels were upregulated (Fig.24a). Similarly, the 

levels of acetylated (Ac-TUB) and Δ2 tubulin (Δ2-Tub), PTMs of α-tubulin occurring exclusively in 

stable MTs, were found to be upregulated in ATG5- (Fig.24c-f) and ATG16-deficient neurons 

(Fig.24g-i). Importantly, changes observed in PTMs of α-tubulin were not due to altered levels of 

total α-tubulin in ATG5 KO neurons compared to WT (Fig. 24j). 

 

 

Figure 24. Increased stable-resident PTM of α-tubulin in ATG5- and ATG16L1-deficient neurons. (a) 

Western blot analysis from polymerized MTs isolated from ATG5 KO neurons compared to the WT set to 

100%. Tyrosinated (Y) α-tubulin levels are significantly decreased: KOY α-Tubulin: 82.25±5.75%, p=0.045, 

N=3, while the levels of detyrosinated (deY) α-tubulin are significantly upregulated: KOdeY α-Tubulin: 

134.49.25±9.09%, p=0.032, N=3. (b,c) Levels of acetylated tubulin (Ac) are significantly increased in 

lysates from cultured ATG5 KO neurons compared to controls: KO: 182.25±33.07%. Protein levels in KO 
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condition were normalized to the WT set to 100%. p=0.034. N=5. (d) Representative fluorescent images of 

cultured WT and ATG5 KO neurons immunostained for Δ2 α-Tubulin.  Scale bars, 50µm. (e,f) Δ2 α-Tubulin 

levels are significantly increased in lysates of ATG5 KO neurons compared to the WT set to 100%. KO: 

136.13±16.78%, p=0.049, N=5. (g)Representative fluorescent images of cultured WT and ATG16L1 KO 

neurons immunostained for Δ2 α-Tubulin. Scale bars: 50µm. (h,i) Δ2 α-Tubulin levels are significantly 

increased in lysates of ATG16L1 KO neurons compared to the WT set to 100%. KO: 136.18±10.79%, 

p=0.039, N=3. (j)Levels of α-tubulin are not changed in ATG5 KO neurons compared to the WT. KO: 

97.51±4.28%.Protein levels in KO condition were normalized to the WT set to 100%. p=0.593, from 

N=3.n.s.-non significant. All data shown represent the mean ± SEM from N independent experiments. 

 

Having shown that ATG5 and ATG16L1 KO neurons have increased levels of stable MTs, we 

wanted to ultimately prove the increased MT stability in KO condition by treating ATG5 KO 

neurons with the MT disassembly drug nocodazole (Fassier et al., 2013). In line with previous 

results, ATG5 KO neurons were resistant to the nocodazole after 40 min of treatment, whereas 

WT neurons started to display MT depolymerization after 10 min of treatment (Fig.25a,b). Taken 

together, these data reveal that the loss of core autophagy machinery involved in lipid conjugation 

of LC3 regulates MT stability in neurons. 

 

Figure 25. Hyperstability of MTs in ATG5 KO neurons. (a) Time-lapse images of WT and ATG5 KO 

neurons transfected with α-tubulin-eGFP treated with 1µg/ml of nocodazole for 40 min. (b) WT neurons 

treated with nocodazole have a profound loss of α-tubulin-eGFP immunofluorescence along the neurite. In 

contrast, ATG5 KO neurons either treated with DMSO or with nocodazole were indistinguishable from 

DMSO-treated controls. 
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3.5 LC3A and LC3B, but not GABARAPL1, associate with the active 

zone protein ELKS1 

Thus far, these data suggest a model where increased levels of LC3I are causative of impaired 

axonal trafficking and formation of axonal swellings. However, the exact molecular mechanism 

by which increased LC3I levels modulate MT dynamics remained elusive. Since LC3 itself barely 

binds to MTs (Fig.22), we searched for new possible interacting partners of LC3 by mass 

spectrometry.  LC3A/B was immunoprecipitated from lysates of adult mouse brain cortex, and its 

interaction partners were analyzed by another PhD student from the lab (Melina Overhoff), 

together with the CECAD proteomic facility. This is the reason why these data are not shown in 

this thesis. Interestingly, one of the highest hits corresponded to the ELKS1 (glutamic 

acid/leucine/lysine/serine-rich protein 1, also known as RAB6IP2, CAST2, or ERC1 (Monier et al., 

2002)). ELKS1 is a scaffolding protein ubiquitously expressed, but abundantly found in the brain, 

where it mainly localizes at the active zone of presynaptic terminals (Wang et al., 2002). 

Intriguingly, ELKS1 is known to regulate MT dynamics via its interaction with the MT-associated 

protein CLASP in non-neuronal cells (Lansbergen et al., 2006). To investigate whether this 

function of ELKS1 is conserved in neurons, we first verified the interaction of LC3 and ELKS1 by 

performing a co-immunoprecipitation assay in HEK cells. Ectopically expressed ELKS1, tagged 

with tdTomato, was co-immunoprecipitated either eGFP-LC3A (Fig.26a) or eGFP-LC3B 

(Fig.26b), comparing to control HEK cells only transfected with GFP. In contrast, GABARAPL1, 

another member of the LC3/GABARAP family, did not interact with tdTomato-ELKS1 (Fig.26c). 

Reciprocally, eGFP-LC3A and eGFP-LC3B were co-immunoprecipitated with tdTomato-ELKS1 

(Fig.26d,e). Moreover, pull-down experiments with native proteins in vitro confirmed that ELKS1 

and LC3 directly interact (Fig.26f). 
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Figure 26. LC3 directly associates with ELKS1 in vitro.Ectopically expressed ELKS1, tagged with 

tdTomato is co-immunoprecipitated (Co-IP) with eGFP-tagged LC3A (a) and LC3B (b) but not with 

GABARAP (c). HEK cell lysates were directly analyzed (Input) or subjected to GFP immunoprecipitation 

(Elution) and further immunoblotted against mCherry (Co-IP). Input, 1% of the total lysate was added to the 

assay. (d,e) Ectopically expressed LC3A and LC3B, tagged with eGFP are co-immunoprecipitated with 

tdTomato-ELKS1. HEK cell lysates were directly analyzed (Input) or subjected to ELKS1 

immunoprecipitation (Elution) and further immunoblotted against GFP (Co-IP). Input, 1% of the total lysate 

was added to the assay. (f) Purified recombinant His6-LC3B, detected by immunoblotting with LC3B 

antibody directly binds Myc-ELKS1. Input, 5% of the total recombinant LC3B added to the assay. 

 

Next, ELKS1-LC3 interaction was investigated in neurons. Immunofluorescence analysis of co-

transfectedtdTomato-ELKS1 and eGFP-LC3B cultured WT neurons showed an 80% overlap 

coefficient between these two proteins (Fig.27a,b). 
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Figure 27. Close co-localization of tdTomato-ELKS1 and eGFP-LC3B in WT axons. (a) Axons of 

primary WT mouse neurons co-transfected with tdTomato-ELKS1 (red) and eGFP-LC3B (green). Scale 

bars: 5µm (upper panel), 1µm (lower panels). (b) Analysis oftdTomato-ELKS1 and eGFP-LC3Bco-

localization by Mander´s overlap coefficient: 80.42±7.22 %. N=7. Data shown represent the mean ± SEM 

from N independent experiments. 

 

 

3.6 LC3 regulates MT stability via ELKS1/CLASP2 function 

Given that LC3 associates with ELKS1 in neurons, we next determined whether ELKS1-CLASPs 

function might mediate MT stability in LC3 lipidation-deficient neurons. To investigate that, first, 

protein levels of ELKS1 were analyzed in ATG5 KO neurons in vitro and in vivo. ELKS1 levels 

were found significantly upregulated in lysates from cultured neurons (Fig.28a,b) and within the 

brain (Fig.28d,e) of neurons lacking ATG5. Indeed, ELKS1 accumulated within axonal swellings 

of cultured neurons lacking the LC3 lipid conjugation machinery (Fig.28c). Since ELKS1 could be 

accumulated due to defective degradation via autophagy, ELKS1 proteins levels were studied 

upon treatment with BafilomycinA, an inhibitor of the V-type ATPase that blocks lysosomal 

degradation. Strikingly, we found that ELKS1 is not degraded via autophagy (Fig.28f). Thus, 

these data suggest that LC3 regulates ELKS1 via a non-canonical degradation independent 

pathway. 
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Figure 28. ELKS1 levels are stabilized in ATG5 KO neurons via an independent degradation 

mechanism.(a,b) Western blot analysis of ELKS1 levels in cultured ATG5 KO neurons compared to the 

WT set to 100%. KO: 217.44±25.52%. p=0.022. N=3. (c)Cultured neurons from WT and ATG5 KO mice, 

carrying tdTomato allele as a reporter of Cre-recombination (red), were immunostained for ELKS1 (green). 

White boxes depict the magnified areas underneath. Scale bars, 10µm upper panels, 4µm lower panels. 

(d) Representative confocal images of cortical sections from WT and ATG5 KO mice immunostained for 

ELKS1 (green) and co-immunostained for β3-Tubulin (red) to reveal neuronal processes. In lower panels, 

ELKS1 fluorescent intensity in neurites was false color-coded with warm colors representing high 

intensities. Scale bars, 50µm upper panels, 5µm lower panels. (e)ELKS1 levels are significantly increased 

in ATG5 KO brains compared to the WT set to 100%. KO:180.12±15.20%. p=0.009. N=4. (f) ELKS1 protein 

levels upon 67µM BafilomycinA (BafA) or vehicle solution (DMSO) treatments for 16h in NSC34 neuronal-

like cell line. p62 blot illustrates the inhibition of the autophagy-lysosome degradation pathway. All data 

shown represent the mean ± SEM from N independent experiments. 

 

3.6.1 CLASP2 levels are increased in neuronal processes of ATG5 KO mice 

Next, we investigated CLASP2 protein levels in WT and ATG5 KO neurons. In line with ELKS1 

data, CLASP2 levels were upregulated in ATG5 KO mouse brain (Fig.29a,b). Moreover, 

superresolution STED imaging highlighted an increased abundance of CLASP2 association along 

MTs in ATG5 KO cultured neurons compared to WT (Fig.29c,d). Collectively, these data suggest 
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that ELKS1 retention via LC3I accumulation in ATG5 KO neurons alters the levels of the MT 

stabilizing protein CLASP2. 

 

Figure 29. CLASP2 levels are increased in KO axonal swellings. (a) Representative confocal images 

of cortical sections from WT and ATG5 KO mice immunostained for CLASP2 (green) and co-

immunostained for β3-Tubulin (red) to reveal neuronal processes. In lower panels, CLASP2 fluorescent 

intensity in neurites was false color-coded with warm colors representing high intensities. Scale bars, 50µm 

upper panels, 10µm lower panels. (b) CLASP2 levels are significantly increased in ATG5 KO brains 

compared to the WT set to 100% (179.08±25.04%). p=0.046.N=4. (c,d) Confocal and STED images of 

neurons of CLAPS2 (green) and α-tubulin (red). White rectangular boxes depict images in e. Scale bars: 

10µm. (e) Amplified images from d. Scale bars: 1µm. All data shown represent the mean ± SEM from N 

independent experiments. 

 

3.6.2 Non-lipidated LC3 regulates MT dynamics via ELKS1-CLASP2 dependent mechanism 

in axons 

Thus far, we hypothesized that the non-lipidated LC3 stabilizes ELKS1-CLASP2 within the axon, 

which in turn may alter MT dynamics in LC3 lipidation-deficient neurons. To test this hypothesis, 
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first, levels of ELKS1 in axonal swellings were analyzed upon LC3 KD (see Fig.13e,f for siRNA 

validation). In line with our hypothesis, LC3 KD not only rescued axonal swellings after 7 days 

post-transfection (13g,h), but also caused a 30% reduction of ELKS1 protein density within 

spheroids (Fig.30a,b). Interestingly, these data suggested that reduction of ELKS1 levels in axons 

might also rescue the formation of spheroids in ATG5 KO neurons. Thus, smart pools of siRNAs 

against Elks1 were used.  Fig.30c,d shows ELKS1 KD validation in NSC34 cells after 72h post-

transfection. In neurons, although only a 30% of reduction in ELKS1 protein levels was detected 

after 7 days of transfection (Fig.30e,f), this KD period was enough to significantly reduce the 

average size of axonal swellings in ATG5 KO neurons (Fig.30e,g). Moreover, ELKS KD was also 

accompanied by a significant reduction of CLASP2 protein levels within spheroids (Fig.30h,i). 

Ultimately, the deletion of ELKS1 in autophagy-deficient neurons was sufficient to completely 

rescue impaired MT dynamics, monitored by the expression of EB3-tdTomato in WT and ATG5 

cultured neurons (Fig.30j,k). Taken together, these data demonstrate that dysfunctional LC3 

lipidation, and its subsequent accumulation, alters MT dynamics via controlling the abundance of 

ELKS1-CLASP2 within axons. 
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Figure 30. Autophagy lipidation machinery regulates MT dynamics in neurons via ELKS1/CLASP2-

dependent mechanism. (a)Immunostained for LC3 (red) cultured ATG5 KO neurons, transfected with 

eGFP (green) and co-transfected either with scrambled siRNA (scr) or siRNA directed against LC3b. Scale 

bars, 10 µm upper panels, 4 µm lower panels. (b) ELKS1 levels are significantly decreased in ATG5 KO 

neurons treated with LC3B siRNA. KOsiLC3B: 70.1±4.37%. p=0.010.Protein levels in the KOsiLC3B were 

normalized to the KOscr set to 100%. In total, 247 KOscr and 281 KOsiLC3B axons from N=3. (c,d)Levels of 

ELKS1 are significantly decreased in NSC34 cells treated with either scrambled (scr) or Elks1 siRNA after 
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72h. WT: 96.91±10.39%. KO: 29.45±4.58%. p=0.004. N=3 (e) Immunostained for ELKS1 (red) WT and 

ATG5 KO neurons transfected with eGFP (green) and co-transfected either with scr siRNA or Elks1 siRNA. 

Scale bars, 5µm. (f) Fluorescence analysis of ELKS1 levels in WT or ATG5 KO axons upon scramble or 

Elks1 siRNA after 7 days from transfection. WTScr: 99.09±7.53%, N=19; KOScr: 129.82±8.2%, N=19; WTElks1 

KD: 68.33±5.56, N=16, KOElks1 KD: 95.25±7.27%, N=17. p WTScr vs KOScr= 0.016, p WTScr vs WTElks1 KD=0.023,  

p KOScr vs WTElks1 KD< 0.000, p KOScr vs KOElks1 KD= 0.007. (g) The spheroid areain ATG5 KO neurons 

treated with ELKS1 siRNA (KOsiElks1: 5.76±0.23µm2) compared with scramble KO controls (KOscr: 

4.25±0.30µm2). p=0.018. In total, 142 spheroids for KOscr and 125 spheroids for KOsiElks1, from N=3. (h,i) 

Confocal analysis of CLASP2 levels in ATG5 KO axons upon scramble or Elks1 siRNA co-transfection with 

eGFP. KOScr= 84.82±1.38%. p=0.004. Protein levels in KOElks1 KD condition were normalized to the KOScr 

set to 100%. N=3. (j) Representative fluorescent images from time-lapse videos of ATG5 KO neurons 

transfected with EB3-tdTomato and co-transfected with either scrambled siRNA (scr) or with siRNA directed 

against Elks1. Corresponding kymographs are shown to the right.  Scale bars, x: 5µm, y: 30s. (k) EB3 

comet density. WTscr: 0.06±0.00, KOscr: 0.03±0.01, Elks1siRNA: WTsiElks1: 0.08±0.01, KOsiElks1: 0.07±0.01. 

pWTscr vs KOscr =0.025, pKOscr vs KOsiElks1=0.004, pWTscr vs WTsiElks1 =0.041.In total, 53 WT and 55 KO 

axons from N=3.n.s.-non significant. All data shown represent the mean ± SEM from N independent 

experiments. 

 

3.7 Loss of MT dynamics in ATG5 KO neurons impairs BDNF/TRKB 

neurotrophic signaling 

Previous work from our laboratory reported that ATG5-deficient neurons have reduced neuronal 

complexity, presumably due to defective retrograde transport of BDNF/TRKB-positive vesicles 

(Kononenko et al., 2017b). In line with this publication, data shown in Fig.21 revealed defective 

retrograde transport of TRKB-positive vesicles in ATG5 KO neurons. Thus, in this final section, 

we investigated whether defective TRKB trafficking causes impaired neurotrophic signaling, 

leading to reduced neuronal arborization in ATG5 KO neurons. Indeed, levels of BDNF-activated 

TrkB (p-TrkBY816), as well as the main downstream targets, ERK1/2 and AKT, were observed to 

be reduced in ATG5-deficient neurons (Fig. 31a,b). Moreover, since BDNF gene expression is 

positively regulated by functional TRKB signaling (Tuvikene et al., 2016), we next analyzed Trkb 

and Bdnf mRNA expression levels as a readout of TRKB signaling. Analysis of qPCR results 

revealed that levels of Bdnf mRNA, but not TrkB, were dramatically diminished in ATG5 KO 

neurons, thus suggesting a loss of the positive feedback loop (Fig.31c,d). Although TrkB mRNA 

levels did not change in ATG5 KO, total protein levels of TRKB were found significantly 

downregulated compared to the WT (Fig.31e,f), thus suggesting that either mRNA translation of 
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TRKB is reduced, or degradation of the protein TRKB is enhanced in the KO condition.  

Interestingly, total TRKB expression levels were rescued upon inhibition of the proteasomal 

activity (also Fig.31e,f), a common drug that blocks the β5 subunit of the ß-ring complex in the 

20S proteasome core (Goldberg, 2012)). On the other hand, TRKB signaling was also 

accompanied by a severe reduction in phosphorylated P6 ribosomal protein (pS6) (Fig.31g,h), a 

common marker of the activated mTORC1 pathway (Oh and Jacinto, 2011). Collectively, these 

data demonstrate that BNDF/TRKB signaling is defective in ATG5-deficient neurons. 

 

Figure 31. BDNF/TrkB signaling is significantly decreased in ATG5 KO neurons. (a,b) Lysates from 

cultured ATG5 KO neurons blotted for p-TRKBY816,ERK1/2, and AKT.Protein levels in the KO were 

normalized to the WT set to 100%.KOp-TRKB: 54.68±16.78%, p=0.027; KOp-ERK: 73.34±9.94%, p=0.028; KOp-

Akt: 64.70±10.82%, p=0.016. N=5. (c) Bdnf mRNA levels are significantly decreased in cultured ATG5 KO 

neurons (KOBdnf: 12.35±2.88%, KOGapdh: 98.79±0.36%). p<.000. N=4. mRNA levels in KO condition were 

normalized to the WT set to 100%. (d) TrkB mRNA levels are non-altered in ATG5 KO neurons (KOTrkB: 

81.25±8.37%, KOGapdh: 98.79±0.36%). mRNA levels in the KO were normalized to the WT set to 100%. 

(e,f) Protein levels of TRKB upon either DMSO or MG132 10µM treatment for16 hours in ATG5 KO neurons 

compared to the WT. KODMSO: 63.27±20.18%; KOMG132: 107.37±40%. pWTDMSO vs pKODMSO = 0.044, 

pWTMG132 vs pKOMG132 = 0.358. Protein levels in KO condition were normalized to the WT set to 100%. 

N=3. (g,h) Protein levels of phosphorylated S6 ribosomal protein (pS6) from cultured ATG5 KO neurons. 

Protein levels in the KO were normalized to the WT set to 100%. KO: 40.39±14.04%, p=0.016. p=0.016. 

N=4. n.s.-non significant. All data shown represent the mean ± SEM from N independent experiments. 
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Given that BDNF gene expression in ATG5 KO neurons may be dramatically decreased due to 

impaired retrograde transport and subsequent loss in BDNF/TRKB signaling, we sought to 

investigate whether the defective neuronal branching can be rescued by boosting BDNF/TRKB 

signaling. To test this hypothesis, cultured eGFP-expressing WT and ATG5 KO neurons were 

treated with BDNF for 14 days, and their neuronal branching was analyzed by Sholl analysis 

(Kononenko et al., 2017b). Indeed, BDNF supply rescued defective neuronal branching in ATG5 

KO neurons (Fig.32a-d), but did not ameliorate the axonal dystrophy (Fig.32e). Interestingly, 

rescue of neuronal branching in ATG5-deficient neurons was accompanied by the upregulation 

of pS6 levels (Fig.32f,g), suggesting a cause/consequence relation with mTORC1 activation. 

 

Figure 32. Exogenous administration of BDNF rescues defective branching of ATG5 KO neurons. 

(a) Representative confocal images of ATG5 KO neurons at DIV18 transfected with eGFP (green), stained 

for MAP2 (red), and either continuously treated with vehicle (H2O) or BDNF (50ng/mL). Sholl analysis of 

cultured WT (b) and ATG5 KO neurons (c) either treated with H2O or BDNF. Statistical significance was 

tested via two-way ANOVA repeated measures. N=4. (d) Normalized values from Sholl analysis: KOBDNF: 
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121.97±9.88, KOH
2
O: 57.04±4.72, p=0.001. N=4. In total, 65 WT and 74 KO from N=4. (e) Histogram 

showing the number of axonal swellings in WT and ATG5 KO neurons upon BDNF treatment plotted as a 

function of their diameter.Statistical significance was tested via two-way ANOVA repeated measures. (f,g) 

pS6 protein levels are significantly increased in lysates of ATG5 KO neurons treated with BDNF (KO: 

175.16±36.20%), comparing to H2O-treated KO controls. KO: 46.61±6.40%. p=0.049. N=3, Protein levels 

in KO condition were normalized to the WT set to 100%. 
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4. DISCUSSION 

My research data unravel a non-canonical function for LC3 and the autophagy lipidation 

machinery for the regulation of MT dynamism in neurons. Loss of the LC3-lipid conjugation 

function results in the accumulation of non-lipidated LC3 in axons, which in turn leads to the 

retention of the active zone protein ELKS1 and its partner CLASP2. The MT-stabilizing function 

of CLASP2 may be responsible for impaired MT dynamics within axons and explain the defective 

trafficking of neurotrophic signals, the accumulation of membranous cargo, and the subsequent 

formation of axonal swellings (Fig.33). However, although defective neurotrophic signaling is 

causative of reduced neuronal branching, autophagy-deficient neurons show no signs of neuronal 

death in both, in vitro and in vivo. In contrast, these data suggest that the loss of neuronal 

connectivity due to axonal degeneration, but not neuronal apoptosis, may be responsible for the 

appearance of seizures in ATG5-deficient forebrain excitatory neurons. Here below, these pivotal 

findings will be extensively discussed. 
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Figure 33. Schematic model illustrating the role of LC3 in MT-based trafficking and axonal 

homeostasis. Impaired LC3 conjugation and its subsequent accumulation in axons upregulate MT stability 

via ELKS1-CLASP2 retention in axons, which in turn impairs axonal trafficking of neurotrophic signals and 

the accumulation of membranous cargo. 

 

4.1 Loss of ATG5 or ATG16L1 in forebrain excitatory neurons does not cause 

neuronal cell death 

Several studies have reported the association between the accumulation of ubiquitin-positive 

aggregates and neuronal cell death in brain-confined KOs for several core autophagy proteins, 

including ATG5 (Hara et al., 2006), ATG7 (Komatsu et al., 2006), FIP200 (Liang et al., 2010). 

Such transgenic mice models revealed neuronal degeneration across brain regions, including the 

cortex and the hippocampus. Moreover, observed neuronal cell death in autophagy-deficient 

neurons was suggested to be mediated by apoptosis (Hara et al., 2006; Liang et al., 2010). 

Surprisingly, our in vivo data from Atg5flox/flox:CamkIIα-Cre and Atg16L1flox/flox;CamkIIα-Cre models, 

revealed no apparent signs of apoptosis in cortiohippocampal neurons, where most of the 

CamKIIα-expressing neurons are located. Similarly, cultured corticohippocampal neurons lacking 

ATG5 and ATG16 did not show apoptosis as well. The first noticeable difference between our 

work and other publications is the utilization of different promoters. In the prior studies, Cre 

recombinase was expressed under the Nestin promoter, which is mostly expressed in neural stem 

and progenitor cells (NSCs and NPC, respectively), which further differentiate to both neurons 

and glia (Hendrickson et al., 2011; Shimada et al., 2012). Thus, the cellular populations affected, 

as well as the time when each promoter starts to induce the Cre-recombinase expression, are 

two crucial aspects to take into account. Calcium/calmodulin-dependent protein kinase II alpha 

subunit (CamKIIα)-expressing neurons represent up to 70% of granule and pyramidal neurons of 

the hippocampus, and 10-35% of pyramidal neurons in the cortex (Tsien et al., 1996; Wang et al., 

2013b). On the other hand, Nestin, an intermediate filament protein, is mostly expressed in NSCs 

and NPCs, and afterward replaced by the expression of cell-specific intermediate filaments during 

the differentiation to neurons or glia (Hendrickson et al., 2011). Interestingly, whereas the Nestin 

promoter is active during early embryonical stages (E7.75) (Dahlstrand et al., 1995; Mignone et 

al., 2004), CamKIIα promoter has been shown to be activated several days after birth (Burgin et 

al., 1990), when some fundamental neural circuits are already established (Farhy-Tselnicker and 

Allen, 2018). Thus, whereas the Nestin promoter affects most of the neuronal and glial 

populations during early embryogenesis, CamKIIα-activated promoter is mostly found in 
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differentiated forebrain excitatory neurons from postnatal stages. In addition, it has been 

previously reported that NSCs undergo apoptosis by the loss of autophagy (Xi et al., 2016; 

Yazdankhah et al., 2014). Hence, it remains unclear whether the reported neurodegeneration 

under the Nestin promoter in autophagy-deficient neurons could be also due to deficient NSCs 

proliferation and subsequent apoptosis. Apart from neurons, NSCs also generate glia populations, 

including astrocytes and oligodendrocytes (Hendrickson et al., 2011). Both mentioned above glial 

cells are generated in embryonal stages, and assist neurons for their correct development and 

functioning (Farhy-Tselnicker and Allen, 2018; Le Bras et al., 2005). Thus, it cannot be excluded 

that Nestin promoter-driven autophagy deficient glia might undergo cell death. In fact, astrocytes 

have been observed to degrade damaged mitochondria from neighboring neurons by a process 

termed transmitophagy (Davis et al., 2014). 

Alternatively, although no sign of apoptosis could be detected in 13 weeks old KO mice, one could 

consider whether some CamKIIα-positive ATG5 KO neurons may die at earlier and/or later stage. 

Ongoing research is trying to decipher that hypothesis, although preliminary data from 3 week-

old mice also revealed no sign of apoptosis. On the other hand, although neuronal cell death has 

been commonly monitored by apoptosis, different mechanisms of cellular death, such as 

ferroptosis, could be activated in autophagy-deficient mice as well (Galluzzi et al., 2018). 

Nevertheless, given the fact that no neuronal loss could be observed in either 

cortical/hippocampal brain areas or cultured neurons from ATG5 and ATG16L1 KO mice, our data 

indicate that ATG5 and/or ATG16L1-mediated autophagy is dispensable for the survival of 

forebrain excitatory neurons. Finally, another intriguing scenario suggests that CamKIIα-positive 

neurons are exceptionally resistant to the lack of autophagy. Indeed, ongoing data in our 

laboratory indicate a selective loss of specific classes on interneurons in autophagy-deficient 

brains, but further extensive research is needed to define whether autophagy has a particular role 

in different neuronal subtypes (current research of Dr. de Bruyckere in our laboratory).  

 

4.2 Forebrain excitatory neurons lacking ATG5 display axonal degeneration, 

accompanied by weight reduction and epileptic seizures in KO mice 

Axonal degeneration is an early hallmark of several neurodegenerative diseases, such as 

Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease (Lee et al., 2011; 

Salvadores et al., 2017).  This phenotype is typically characterized by a dying-back mechanism, 

in which axons from the synaptic regions gradually degenerate toward the cell body (Wang et al., 
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2012). ATG5 KO neurons revealed axonal pathology characterized by the formation of spheroids 

in axons, but not in dendrites. These data are consistent with previous reports for Nestin-driven 

KOs of ATG5 (Hara et al., 2006), ATG7 (Komatsu et al., 2006), and WIPI4 (Zhao et al., 2015) in 

mice. In contrast, although Nestin-driven KOs for FIP200 (Liang et al., 2010) and ATG9A 

(Yamaguchi et al., 2018) also revealed axonal pathology, this axonal pathology was characterized 

by progressive spongiosis, which consists in the clustering of vacuoles, a typical feature of prion 

diseases (Soto and Satani, 2011). Here in this thesis, axonal pathology was identified in cortical 

motor neurons of ATG5 KO mice projecting to ventral thalamic nuclei. Interestingly, 

posterior/ventral nuclei were the unique areas with apparent neuronal loss, although the thalamus 

has no CamKIIα-expressing neurons. Thus, this data suggests that axonal pathology in ATG5-

deficient mice may interfere with the proper connectivity of the cortex with the thalamus, which in 

turn may mediate the degeneration of selective brain areas. However, a deeper anatomical and 

electrophysiological study will be required to verify impaired connectivity between these two 

areas. 

Why ATG5 KO mice are leaner and reveal reduced weight gain? Current research is focusing on 

answering that question. Although ATG5 KO mice are smaller than the WT littermates, magnetic 

resonance imaging (MRI) measurements did not reveal changes in fat, lean, and total water 

content when compared to body weight (data not shown). Thus, this data may point to retardation 

in whole-body development. To further investigate this phenotype, ATG5 KO mice will be 

analyzed by PhenoMaster, a metabolic cage which measures the energy consumption, the 

amount of food and water consumed, and the distance that they move within the cage. Despite 

the data acquired so far, the cause for the reduction of weight gain remains intriguing. Even 

though the neuronal loss is detected in the thalamus, this area is not known to control energy 

homeostasis in mice (Price and Drevets, 2010). In contrast, the hypothalamus is reported to 

mediate the endocrine function, including the homeostasis of growth hormones (Janowski et al., 

1993). Since forebrain cortical areas have been shown to project to the hypothalamus and 

integrate endocrine functions (Saper, 2000), it would be interesting to study the 

cortical/hypothalamic connectivity in mice lacking autophagy in forebrain excitatory neurons. 

On the other hand, autophagy-deficient mouse models studied here displayed epileptic seizures, 

followed by compromised viability. In fact, it is reported that neurons with CamKIIα activity prevent 

epilepsy in mice (Perlin et al., 1992), whereas inhibition of CamKII activity induces 

hyperexcitability (Ashpole et al., 2012). Thus, whether unbalance of excitatory/inhibitory inputs is 

dysregulated, and triggers epileptic seizures in CamKIIα-positive ATG5 KO neurons, is currently 
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being studied. Interestingly, we have also generated ATG5 KO mice under the vesicular GABA 

transporter (VGAT) promoter, which targets inhibitory neurons within the whole brain. 

Surprisingly, these mice do not display seizures, further suggesting a selective role for ATG5 in 

defined populations of neurons in the brain.  

 

4.3 Impaired LC3 lipid conjugation and subsequent accumulation of non-lipidated 

LC3 is responsible for selective axonal pathology 

ATG5-deficient forebrain excitatory neurons exhibited the formation of axonal swellings, a 

phenotype which was reproducible in ATG5 and ATG16L1 KO cortical/hippocampal cultured 

neurons. Intriguingly, only 25-30% of cultured neurons showed axonal pathology in ATG5 and 

ATG16L1 KO neurons. Cultured neurons contain different neuronal populations, and it is likely 

that they respond differently to the lack of ATG5 or ATG16L1. Moreover, unequal autophagy 

responses have also been observed by fasting or upon bafilomycinA1 treatment in different brain 

regions (Nikoletopoulou et al., 2017). Thus, the presence of axonal pathology in a fraction of all 

cultured neurons may be due to a specific axonal sensitivity for some certain neuronal types. 

Future studies will elucidate which neuronal populations are more sensitive to axonal pathology. 

In this thesis, axonal pathology was only observed in neurons with impaired LC3 processing or 

conjugation to autophagosomes, whereas knockdown of genes implicated in autophagy initiation, 

such as FIP200 and ULK1, did not reveal spheroids. These data contrast with previously reported 

Nestin-driven KO mouse models for FIP200 and ATG9A, another protein not directly involved in 

LC3 lipid conjugation, which displayed axonal spheroids in the brain (Liang et al., 2010; 

Yamaguchi et al., 2018). Nevertheless, FIP200 and ATG9A KO brains were observed to generate 

axonal swellings by the selective accumulation of vacuoles (also termed spongiosis), a phenotype 

which was not reported neither in ATG5 nor ATG7 KO mice (Hara et al., 2006; Komatsu et al., 

2006), nor in this thesis. Collectively, these data further suggest that impaired LC3 lipidation 

causes axonal pathology in neurons by a different mechanism reported in FIP200 and ATG9 KO 

mice.  

Our data unravel a mechanism by which the accumulation of non-lipidated LC3 in axons and 

presynaptic terminals causes the formation of axonal swellings. Although non-lipidated LC3 levels 

were significantly increased by 50% and 25% in ATG5 and ATG16L1 KO cultured neurons, 

respectively, no significant upregulation was observed in ATG5 KO brain lysates. This is due to 

the fact that CamKIIα-positive neurons represent a small neuronal fraction when compared to the 
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rest of neuronal and glial cells in the cortex, thus masking the KO effect. Accumulation of LC3I 

was also published for Nestin-driven WIPI4 KO, which in line with our results, reported a massive 

formation of axonal swellings in neurons (Zhao et al., 2015). WIPIs are a family of proteins which 

bridge the phosphatidylinositol 3-phosphate generated in the forming phagophore with other core 

autophagy proteins (Menzies et al., 2017). This is the case of WIPI2, which recruits ATG16L1 to 

the phagophore for the LC3 lipidation (Polson et al., 2010). The function of WIPI4 is not well-

known, and it is reported to act downstream and upstream of LC3 lipidation (Bakula et al., 2017; 

Lu et al., 2011). Importantly, this thesis demonstrated that modulation of non-lipidated LC3, via 

both LC3G120A overexpression or LC3A/B KD, enhanced or rescued the formation of axonal 

swellings, respectively. Moreover, presumable non-lipidated LC3 was found to accumulate in 

axonal swellings of ATG5 KO neurons, which disappeared from spheroids upon LC3B KD. 

Maday and Holzbaur (2014) reported that autophagy biogenesis in axons mostly occurs in the 

distal parts of the neurite. Moreover, they also showed that autophagy biogenesis in distal tips of 

hippocampal neurons isolated from GFP-LC3B transgenic mice (Mizushima et al., 2004) has a 

rate of around 1 event every 8 minutes. These transgenic mice cells are characterized by a 

substantial accumulation of non-lipidated GFP-LC3, which has been shown to reveal much slower 

lipidation dynamics comparing to the endogenous LC3 (Ni et al., 2011). This raises the question 

of whether GFP-LC3 transgenic mice display the neurodegeneration or axonal pathology as well 

(Mizushima et al., 2004)(Katsumata et al., 2010)(Maday and Holzbaur, 2014). Currently, this 

question is being addressed in our laboratory. In support of our hypothesis, our preliminary data 

indicate that the overexpression of tagRFP-proLC3 itself causes axonal swellings comparing to 

an empty GFP construct. However, future experiments are needed to elucidate this hypothesis in 

details.  

 

4.4 Is there defective degradation of membranous organelles in axons with 

impaired LC3 conjugation machinery?  

Defective protein degradation and accumulation of p62- and UB-positive inclusions have been 

extensively reported in cells lacking autophagy, including neurons (Mizushima and Levine, 

2010)(Hara et al., 2006). Our data reported here are in line with previous reports and show that 

neurons lacking either ATG5 or ATG16L1 accumulate p62- and UB-positive puncta in the soma. 

However, these protein inclusion bodies were not found in axonal swellings, indicating that, 

indeed, axonal swellings may not result from defective protein clearance, as previously suggested 
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(Komatsu et al., 2007a). Furthermore, although some previous in vivo studies reported p62- and 

UB-positive puncta within spheroids, these puncta only appeared occasionally, and not in all 

axonal swellings (Komatsu et al., 2007b; Nishiyama et al., 2007; Zhao et al., 2015). Thus, it 

appears that defective protein clearance is not the leading cause for the formation of axonal 

swellings in LC3 lipidation-deficient neurons.  

Accumulation of aberrant membranous structures has been previously reported in brain-confined 

KOs for ATG5 (Nishiyama et al., 2007) and ATG7 (Komatsu et al., 2007b). Accordingly, enormous 

multilamellar structures were found within the soma of ATG5 cultured neurons. Although the 

nature of such structures in neurons remains elusive, this phenotype has also been reported in 

liver cells defective for ATG7 (Komatsu et al., 2005). In this thesis, axonal swellings also revealed 

the accumulation of membranous structures, including mitochondria, late endosomes, and ER-

like tubular structures. Whereas the first two organelles are known to be trafficked along the axon, 

little is known about the expansion of the ER within autophagy-deficient axons (Gurel et al., 2014). 

In fact, in the last years, axonal ER functions have started to emerge, including the biosynthesis 

of lipids, transport of mRNAs and proteins, calcium dynamics, and  the regulation of other 

membrane organelles (Luarte et al., 2018). Here in this thesis, the accumulation of massive 

amounts of tubular ER is reported. Identification of such structures could only be observed by the 

electron microscopy (Ivankovic et al., 2019; Wu et al., 2017), since immunostainings for the 

common ER marker proteins such as disulfide isomerase (PDI) (Hewett et al., 2000; Merianda et 

al., 2009) and the targeting sequence KDEL (Valdes et al., 2012) failed to localize in axonal 

swellings. Despite that, future experiments may identify these ER structures by using other 

commonly reported markers such as reticulons (i.e., reticulon-4) (Farias et al., 2019). Importantly, 

this thesis raises some questions about why tubular ER-like structures accumulate in axonal 

swellings from ATG5-deficient neurons: (1) Given that ER serves as a platform to generate 

autophagosomes (Uemura et al., 2014), are pre-autophagic structures accumulating due to 

deficient maturation of phagophores when LC3-lipidation machinery is impaired? (2) Is ER 

degradation defective? (3) Or maybe ER trafficking is altered? 

Regarding the first question, published ultrastructural studies in ATG5 KO MEF cells reported the 

presence of pre-autophagic structures unable to properly enclose, followed by subsequent 

enlargement and formation of whorl-like structures (see figure 34) (Kishi-Itakura et al., 2014; Sou 

et al., 2008). However, these structures do not really match with ER structures found in this thesis, 

which instead resemble the tubular ER (Ivankovic et al., 2019; Wu et al., 2017). Indeed, 

preliminary data from the lab have revealed no enrichment of pre-autophagic markers such as 
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FIP200, WIPI2, ATG9A, or ATG13 (Kishi-Itakura et al., 2014), thus suggesting that immature 

phagophores do not massively accumulate within spheroids of LC3 conjugation-deficient 

neurons.  

 

Figure 34. Electron micrographs of isolation membranes formed in WT (a) or ATG5 KO MEFs (b-d). 

The figure is taken from Kishi-Itakura et al. (2014). 

Second, tubular ER accumulations might result from their defective degradation via autophagy. 

This process, also called ER-phagy, is shown to be independent of either ubiquitination or p62, 

and instead require ER-resident receptors that bind to LC3/GABARAPs, such as FAM134B 

(Khaminets et al., 2015; Mochida et al., 2015). In line with this hypothesis, Ivankovic et al. (2019) 

reported that neurons deficient for the adaptor protein-4 (AP-4) reveal the missorting of ATG9A-

positive vesicles (involved in the transport of core ATG proteins) into axons, with subsequent 

autophagy flux retardation and generation of axonal swellings containing tubular ER. Interestingly, 

in this publication, they also revealed that both WT and AP-4 KO axons develop spheroids during 

axonal growth. Moreover, although both conditions led to the accumulation of tubular ER, WT 

spheroids disappeared after a few minutes, whereas KOs spheroids persisted during a few hours. 

In addition, autophagosomes could be observed engulfing ER in the KO condition, but no sign of 

pre- or mature autophagosomes were showed in WT axonal swellings. Thus, although autophagy 

is suggested to be involved in the degradation of ER in axonal swellings, it remains elusive 

whether impaired ER-phagy is the cause of enhanced accumulation of ER, or rather 

autophagosomes are recruited to axonal swellings as a consequence of impaired ER 

homeostasis. Hence, the third question arises, is there impaired ER trafficking along the axons 

with defective LC3 conjugation machinery? 

Little is known about the trafficking of ER in cells, and less in polarized structures like axons. 

There is evidence that ER can be transported along MTs through two mechanisms: via motor 

protein-dependent transport, and via EB1-dependent dragging during the MT polymerization 
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(Friedman et al., 2010; Gurel et al., 2014; Waterman-Storer and Salmon, 1998). In this thesis, MT 

motor movements and MT polymerization events are reduced in both ATG5 and ATG16L1 KO 

axons, suggesting a possible impairment in the ER trafficking. However, more fundamental 

understanding of ER trafficking in axons is needed to highlight the interconnection between ER 

trafficking and MT dynamics. Examples of MT and ER links are found in some cases of hereditary 

spastic paraplegia (HSP), where mutations in different proteins, such as the two MT-binding 

proteins, REEP1 (Beetz et al., 2013) and spastin (Park et al., 2010), are found to dysregulate ER 

homeostasis in neurons. Interestingly, mutations of spastin results in the loss of its MT-severing 

function, which causes reduced MT-dynamics, impaired axonal trafficking, and formation of 

axonal swellings (Fassier et al., 2013). Taken together, all these cumulative evidence, followed 

by the results of this thesis, suggest a succulent interconnection among autophagy, MT dynamics, 

and ER homeostasis. 

On the other hand, this thesis also showed the accumulation of mitochondria and late endosomes 

in spheroids of ATG5-deficient neurons. Mitochondria were to found to be slowly trafficked along 

axons, and appeared to be more accumulated in axonal swellings. Whether mitophagy is impaired 

in LC3 lipidation-deficient neurons cannot be ruled out from these data. It is commonly reported 

that damaged mitochondria undergo mitophagy via Parkin- and p62- mediated mitophagy, 

although this process is flexible and may not always require these two proteins (Palikaras et al., 

2018). Ongoing research is investigating whether mitochondria are functional in ATG5 and 

ATG16L1 KO neurons. Studies using brain-confined deletion of ATG5 and ATG7 did not report 

mitochondria damage (Komatsu et al., 2007b; Nishiyama et al., 2007), although it was observed 

in FIP200 KO mice (Liang et al., 2010). These differences among published data may result from 

the reported action of ATG5/ATG7-independent alternative autophagy, which is dependent on 

ULK1/2 and FIP200 (Nishida et al., 2016). Alternatively, mitochondria can be degraded via 

endosomal invagination and fusion to lysosomes, a process, which is mediated by the ESCRT 

complex and requires the Beclin1 (Hammerling et al., 2017; Tekirdag and Cuervo, 2018). 

 

4.5 Non-lipidated LC3 stabilizes ELKS1-CLAPS2 at the presynapse and causes the 

hyperstabilization of MTs 

Here we report that the regulation of MT stability in axons is promoted by the action of a protein 

complex comprising the scaffolding active zone ELKS1 and the MT-stabilizing CLASP2. CLASP2 

is the brain-enriched member of the CLASPs family (Akhmanova et al., 2001), known to play roles 
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during neuronal polarity, synaptic function, and brain development (Beffert et al., 2012; Dillon et 

al., 2017). In agreement with data from HeLa cells (Lansbergen et al., 2006), CLASP2 function in 

MT stabilization in ATG5 KO axons was found to require its interaction with ELKS1. In addition, 

this work suggests that ELKS1-CLAPS2 complex is stabilized in axonal swellings via ELKS1 

interaction with non-lipidated LC3. Several lines of evidence support this hypothesis. First, we 

demonstrated that LC3 directly associates with ELKS1 in vitro (Fig.26). Second, levels of ELKS1 

were found upregulated in ATG5 KO axonal swellings (Fig.28c) and were decreased in LC3 KD 

condition (Fig. 30a,b). Finally, downregulation of ELKS1 levels in ATG5 KO neurons rescued 

impaired MT-dynamics and diminish axonal pathology (Fig.30g-k). Furthermore, data from 

another PhD student in the lab have revealed that ELKS1 and LC3 form a complex in the mouse 

brain. On the other hand, this thesis also showed that CLASP2 levels are upregulated in brains 

of ATG5 KO mice. Moreover, CLASP2 levels were found slightly but significantly decreased in 

axonal swellings upon ELKS1 KD in ATG5 KO neurons. Collectively, data presented here, taken 

together with previous reports indicating the MT-stabilizing action of ELKSs-CLASPs interaction 

in cells (Lansbergen et al., 2006), suggest that ELKS1-CLASP2 function may be directly involved 

in the hyperstabilization of axonal MTs in ATG5 KO neurons. Current experiments are focusing 

on the analysis of MT-dynamics upon CLASP2 overexpression or downregulation in neurons. 

Interestingly, upregulation of CLASP2 levels in cultured neurons was reported to alter neuronal 

morphology and increased presynaptic terminal circumference (Beffert et al., 2012). 

ELKS proteins are known to mediate the exocytosis of synaptic vesicles in presynaptic terminals, 

and ELKS KO reduces Ca+2 influx and neurotransmitter release in neurons (Held and Kaeser, 

2018; Liu et al., 2014). Our data indicated that increased ELKS1 levels in axonal swellings and 

presynaptic terminals do not impair the exocytosis of synaptic vesicles, suggesting a regular 

synaptic activity of ATG5 KO neurons. However, the physiological role of LC3-ELKS interaction 

in WT neurons is enigmatic. ELKS was initially identified as a RAB6 interacting protein mediating 

the endosome-to-Golgi dependent transport (Monier et al., 2002), a pathway also involving the 

intra-Golgi and Golgi-to-ER retrograde transport (White et al., 1999)(Held and Kaeser, 2018). 

Although no published work currently connects autophagy and RAB6-positive vesicles, the 

involvement of RAB6-dependent trafficking in the delivery of catalytic hydrolases to lysosomes 

has been published in D. melanogaster (Ayala et al., 2018). Alternatively, LC3-ELKS1 binding 

could control autophagosomes at presynaptic sites. Indeed, another scaffolding protein, Bassoon, 

known to interact with ELKS, has been reported to sequester ATG5 and inhibit autophagy at 

presynaptic sites (Okerlund et al., 2017). How LC3 and ELKS regulate autophagy and axonal 

trafficking along the axon in physiological conditions will require more research. However, here in 
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this thesis, we suggest a model by which autophagy lipidation machinery regulates MT dynamics 

for the correct trafficking of autophagosomes from presynaptic sites. 

In line with upregulated CLASP2 levels and defective MT dynamics, analysis of the PTM of tubulin 

revealed a shift to stabilized MTs in LC3 lipidation-deficient neurons. This phenotype was 

characterized by increased levels of detyrosinated, Δ2, and acetylated α-tubulins in KO neurons, 

levels of which correlate with stable MTs. Interestingly, the levels of tyrosinated α-tubulin, which 

are found in labile MTs, were decreased upon ATG5 and ATG16L1 KO in neurons. This 

phenotype was further demonstrated by increased resistance of ATG5 KO neurons to nocodazole 

treatment, a MT depolymerizing drug. In fact, there are several publications reporting that 

bidirectional imbalance between dynamic and stable MTs hallmarks several neurodegenerative 

diseases (Dubey et al., 2016; Tarrade et al., 2006). Interestingly, autophagy induction is shown 

to promote MT stability and avoid a dramatic retraction of axons upon spinal cord injury (He et al., 

2016). This function of autophagy in stabilizing MTs is consistent with the hypothesis that LC3-

ELKS-CLASP2 may stabilize MTs to facilitate the trafficking of autophagosomes in physiological 

conditions. 

 

4.6 Reduced neurotrophic signaling matches defective neuronal branching in 

ATG5 deficient neurons  

Data coming from our laboratory indicate that ATG5 deficient neurons have impaired neuronal 

complexity, presumably due to defective trafficking of BDNF/TRKB-positive vesicles (Kononenko 

et al., 2017b). In agreement with prior results, this thesis showed that ATG5 KO neurons suffer 

from impaired trafficking of TRKB-positive vesicles in axons, decreased BDNF/TRKB signaling, 

and subsequent loss of BDNF expression in ATG5 KO neurons. Similarly, mouse models for 

Huntington disease (Gauthier et al., 2004) and Alzheimer disease (Poon et al., 2011) reported 

that impaired neurotrophic signaling in the axon is sufficient to affect the rest of the cell and cause 

neurodegeneration (Gauthier et al., 2004). In addition, mRNA levels of BDNF were severely 

decreased. It is known that BDNF expression is regulated via a positive feedback system 

dependent on TRKB signaling, concretely through the MAPK pathway (ERK1/2) (Tuvikene et al., 

2016). Moreover, this positive feedback loop is reported to regulate the paracrine stimulation of 

neighboring neurons in vitro (Lindholm et al., 1996) and in vivo (Wang et al., 2015). Given that 

both ERK1/2 activation and BDNF expression are downregulated, these data suggest that the 

positive feedback system is lost in ATG5 KO neurons. 
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This thesis also reports that the total levels of TRKB are found downregulated in ATG5 KO 

cultured neurons, which could also explain why downstream TRKB signaling is reduced. 

Interestingly, levels of total TRKB could be rescued upon inhibition of the proteasome activity by 

MG132. It is published that TRK receptors, including the TRKB, are ubiquitinated to facilitate their 

internalization into RAB7-positive endosomes and their subsequent lysosomal degradation. 

Importantly, UB-dependent internalization of TRKB was also showed to decrease the viability of 

BDNF-dependent primary neurons (Murray et al., 2019). Other reports have indicated that p62 

serves as a shuttling protein for the interaction of TRKA receptors and the proteasome, which 

promote the de-ubiquitination of TRKA-internalized proteins prior to degradation by lysosomes 

(Geetha et al., 2008; Geetha and Wooten, 2008). Collectively, plausible hypothesis would suggest 

that there is either an increased TRKB UB-dependent internalization or/and increased p62-

dependent de-ubiquitination and subsequent lysosomal degradation of TRKB. However, further 

research is required to elucidate the mechanism by which proteasome inhibition rescue TRKB 

receptors in ATG5 KO neurons. 

On the other hand, impaired neuronal complexity could be rescued by the exogenous supply of 

BDNF, although axonal pathology was not improved. In fact, TRKB receptors are expressed 

throughout the plasma membrane, including the soma (Haapasalo et al., 2002). Thus, the effect 

observed upon BDNF application to cultured neurons may occur through receptors located on the 

soma or other areas of neurites, thus circumventing the long-distance trafficking in the axon. In 

contrast with our data, Ivankovic et al. (2019) reported no alterations of neuronal branching in 

AP4 KO neurons with impaired ATG9A trafficking. Although neurons displayed a similar 

phenotype of axonal pathology and accumulation of tubular ER, autophagy was not completely 

blocked in this model, suggesting a possible milder phenotype compared to our model. 

BDNF neurotrophic signaling is known to strengthen synapses, modulate synaptic plasticity, and 

induce long-term potentiation for memory consolidation (Bekinschtein et al., 2008; Nagahara and 

Tuszynski, 2011), which is also reported to depend on local protein synthesis via mTORC1 

activation (Slipczuk et al., 2009; Takei et al., 2004). This thesis revealed that mTORC1 activity is 

downregulated in ATG5 KO neurons, which is rescued to WT levels upon BDNF supply. Given 

the role of proper axonal trafficking (Wang et al., 2013a) and BDNF signaling in memory 

consolidation, one could speculate whether memory acquisition is impaired in LC3 lipidation-

deficient mice. Currently, another PhD student is investigating this hypothesis. In conclusion, this 

thesis reveals a decreased MT dynamics and subsequent dysfunction of retrograde neurotrophic 

signals in axons with impaired LC3 conjugation machinery.
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5. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE WORK 

The work performed in the frame of this doctoral dissertation aimed: (I) to investigate whether the 

selective loss of autophagy in forebrain excitatory neurons is detrimental for the brain function of 

mice; (II) to decipher the molecular and cellular mechanism leading to axonal pathology in 

autophagy-deficient neurons; (III) to characterize the link between autophagy and the 

neurotrophic signaling. Throughout my research, the following key findings have been revealed: 

1. Selective loss of ATG5 or ATG16 in forebrain excitatory neurons is not causative of either 

apoptosis or neuronal death in the cortex and the hippocampus, although it is responsible 

for a gradual loss of weight and the manifestation of seizures in mice.  These results 

contrast with previously published neuronal death in brain-confined KOs for several 

autophagy genes (Hara et al., 2006; Komatsu et al., 2006; Zhao et al., 2015). Indeed, my 

work invites to reconsider the utilization of the nestin promoter for the specific study of 

neurons, since nestin-driven KOs may also affect the function of NSCs, astrocytes, and 

oligodendrocytes, and thus explain the more severe phenotype. On the other hand, these 

data also suggest that distinct neuronal populations may have a different vulnerability to 

the lack of autophagy. Hence, interesting future research may elucidate whether some 

neuronal subtypes are more vulnerable to the lack of autophagy and whether indeed this 

could be relatedto some neurodegenerative diseases. 

2. Loss of core autophagy machinery involved in the LC3 lipid conjugation and processing 

causes the formation of axonal swellings in neuronsin vitro and in vivo. This is revealed to 

be dependent on LC3 since (a) LC3I is upregulated and accumulates in axonal swellings; 

(b) overexpression of a LC3 lipidation-deficient mutant in WT neurons causes axonal 

pathology; (c) knockdown of LC3 improves axonal shape by reducing the size of 

spheroids; and (d) impaired function of ATG proteins involve in LC3 conjugation lead to 

the defective axonal morphology, a phenotype not observed in deficient ATG proteins 

involved in autophagy induction. This data is in agreement with previously suggested that 

FIP200, ATG9A, and ULK1/2 KOs display a distinct axonal pathology when compared to 

ATG5 and ATG7 KOs (Hara et al., 2006; Joo et al., 2016; Komatsu et al., 2006; Liang et 

al., 2010; Yamaguchi et al., 2018). 

3. My research further indicates that axonal swellings are not a result of defective protein 

clearance, but rather a consequence of defective axonal trafficking due to MT 

hyperstability in LC3 lipidation-deficient neurons. PTMs of tubulin highlighted the presence 
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increased stable MTs, which was followed by decreased EB3-dependent polymerization 

dynamics in ATG5 and ATG16L1-deficient neurons. Moreover, MT-based trafficking 

machinery was found to accumulate within spheroids, a phenotype accompanied by 

defective trafficking of mitochondria and TRKB-positive vesicles. Intriguingly, my results 

are not sufficient to elucidate whether LC3 lipidation-deficient neurons may suffer from 

defective degradation of membranous organelles. In fact, a massive accumulation of 

tubular ER is observed within spheroids, suggesting a connection between autophagy, 

ER, and axonal degeneration,an exciting topic to be addressed in the future. 

4. Non-lipidated LC3 regulates MT stability at synapses via modifying the abundance of the 

active zone protein ELKS1 and the MT stabilizing protein CLAPS2. Both ELKS1 and 

CLASP2 are known to associate in non-neuronal cells and mediate the stabilization of 

MTs (Lansbergen et al., 2006). Moreover, my data not only shows that ELKS1 and 

CLASP2 are upregulated in ATG5 KO neurons but also reveals a direct association 

between LC3A/B and ELKS1. Interestingly, knockdown of ELKS1 was sufficient to rescue 

MT dynamics and reduce axonal pathology in ATG5 KO neurons. Hence, taken together 

with all these results, I strongly suggest in a model where impairment of LC3 lipidation to 

autophagosomes drives its accumulation in axons, accompanied by the retention of 

ELKS1 and CLAPS2, which subsequently hyperstabilze MTs and alters the axonal 

trafficking. To further demonstrate this model, current research is investigating the 

association of LC3-ELKS1-CLAPS2 complex in neurons, and the potential alterations in 

MT dynamics upon modulation of CLASP2 levels. 

5. Finally, this thesis exemplifies the consequences of impaired axonal trafficking by the 

reduced velocity of TRKB-positive vesicles in ATG5 KO neurons. A phenotype which is 

accompanied by decreased TRKB levels and its downstream signaling, including the 

expression of BDNF. Indeed, these data suggest that impaired axonal arborization of 

neurons is caused by the loss of TRKB-BDNF signaling in ATG5 KO neurons. Despite 

these new results, it remains unclear how levels of total TRKB are reduced in ATG5 KO 

neurons. Moreover, given the fact that BDNF-TRKB signaling is involved in the modulation 

of synaptic plasticity and strengthening of synaptic activities, it would be interesting to 

study whether this phenotype could impair the connectivity between brain areas and be 

responsible for the seizures found in ATG5 KO mice. 
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6. MATERIALS AND METHODS 

6.1 Materials 

6.1.1 General laboratory equipment 

Instrument Manufacturer Identifier 

Cabinet, Horizontal laminar flow Thermo Fisher 

Scientific 

Heraguard ECO 

Cabinet, Vertical laminar flow cabinet 

(cell lines) 

Scanlaf Mars Safety Class 2 

Cabinet, vertical laminar flow (primary 

cells) 

Thermo Fisher 

Scientific 

Safe 2020 

Centrifuges  Eppendorf 

Hettich 

VWR 

5702R 

320R 

MicroSTAR 17R 

Electrophoresis Power Source VWR 300V 

Electrophoresis chamber (PCR) VWR 700-0569 

Electrophoresis chamber (WB) Bio-Rad Mini-Protean Tetra Cell 

Dissection tools 

   Forceps 

 

 

   Scissors 

 

 

   Scalpel 

FST  

11253-27 

16020-14 

11270-20 

14090-09 

13002-10 

14002-13 

10073-14 

Freezer (-20°C) LIEBHERR 9988187-12 

Fridge (4°C) LIEBHERR 9983491-10 

Gel imager system (PCRs) Bio-Rad Gel DocTM XR+ 

Incubator CO2 (cell lines) Binder C170 

Incubator CO2(primary neurons) Eppendorf Galaxy 1705 

Incubator Shaker Eppendorf M1335-0002 

Microscope, inverted (cell culture) Leica Leica DMi1 

Microscope, inverted fluorescence 

Camera 

   Temperature module 

   LED Light source 

   Software 

   Objectives: 

      40x/1.4 oil DIC 

      63x/1.4 oil 

      10x/0.3 

Zeiss 

Hamamatsu 

Zeiss 

CoolLED 

Micro-Manager 

 

Zeiss 

Zeiss 

Zeiss 

Axiovert 200M 

C11440 

TempMoudleS 

pE-4000 

MicroManager1.4 

 

420762-9900 

420780-9900 

420304-9901 
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Microscope, inverted confocal 

 Camera 

   Detector 

   Software 

   Objectives: 

40x/0.85  

      63x/1.20 

 

Leica 

Leica 

Leica 

Leica 

 

Leica 

Leica 

TCS SP8 

HyVolution 2 

4 HyD’s, 1 PMT 

LAS X 

 

Apo CORR CS 

PL APO W motCORR CS2 

Microscope, light (histoscanner) 

Software 

Leica 

Leica 

SCN400 

Digital Image Hub 

Microscope, stereo (dissection) Leica Leica M80 

Microscope, transmission electron 

Camera 

   Software 

Jeolusa 

Gatan 

Gatan 

JEM-2100 Plus 

OneView 4K 16 bit 

DigitalMicrograph 

Microtom Thermo Fisher 

Scientific 

Microm HM 430 

Microwave Inverter Sharp 

Neubauer chamber Marienfeld 0640110 

Osmometer Gonotec Osmomat 3000 

Perfusion pump WPI Peri-Star Pro 

pH-meter Mettler Toledo Seven Easy 

Photometer Eppendorf Bio Photomer plus 

Real-time PCR Thermocyler Applied 

Biosciences 

7500 RealTimePCR System 

Sonicator BRANSON Sonifier 250 

Scales OHAUS 

VWR 

EX225D 

T1502746 

Thermocycler  VWR peqSTAR 

Thermoschaker CellMedia Thermomixer basic 

Water bath VWR VWB6 

Vortex Scientific 

Industries 

Vortex-Genie 2 

 

6.1.2 Chemicals 

Chemical Manufacturer Identifier 

2-ß-Mercaptoethanol Roth 4227.1 

2-Propanol Roth CP41.3 

Acetic acid 100% Roth 3738.4 

Acetone Roth 5025.1 

Ammonium chloride Roth K298.2 
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Ammonium peroxidisulfate (APS) Merck 1.012.001.000 

Ampicillin sodium salt Roth K029.2 

Boric acid VWR J67202 

Bovine Serum Albumin Sigma A7906 

Bromophenol blue Sigma B5525 

Calcium chloride dihydrate Roth 5239.2 

Calcium chloride hexahydrate Roth T886.1 

Cresyl violet acetate Sigma C5042 

D-(+)-Glucose Sigma G5767 

D-Manitol Sigma M4125 

Digitonin Roth 4005.1 

Dimethyl sulfoxide (DMSO) Roth A994.2 

di-Potassium hydrogenphoshate  Roth 6875.1 

di-Sodium hydrogen phosphate dihydrate Roth 4984.1 

di-Sodium hydrogen phosphate anhydrous Merck 106559 

EDTA AppliChem A1104.1000 

EGTA Roth 3054.2 

Ethanol Omnilabs A1613.2500PE 

Gelatin from porcine skin Sigma G2500 

Glycerol Roth 7530.1 

Glycine Roth 3908.3 

HEPES Sigma H4034 

Hydrochloric acide 32% Roth X896.2 

IGEPAL Sigma I8896 

Kanamycinsulfat Roth T832 

LB-Agar (Lennox) Roth X965.2 

LB-Medium (Lennox) Roth X964.2 

Luminol Roth 4203.1 

Magnesium chloride hexahydrate Roth 2189.1 

Magnesium sulphate heptahydrate Roth P027.2 

Methanol Roth 4627.5 

Milk powder Roth T145.2 

Normal Goat Serum (NGS) Thermo Fisher Sci 16210064 

Paraformaldehyde (PFA) Merck 104.005.100 

p-coumaric acid Sigma C9008 

Phenol red Sigma P3532 

PIPES Sigma P8203 

Ponceau S Roth 5938.1 

Potassium acetate Roth T874.1 

Potassium chloride Roth 6781.1 

Potassium dihydrogen phosphate Roth 3904.1 

Potassium disulfite Sigma 60508 

Potassium hypochlorid Carl Roth 9062.3 
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Saponin Serva  34655 

Sodium chloride Roth 3957.1 

Sodium hydrogen carbonate Roth 6885.1 

Sodium hydroxide Roth 6771.1 

Sodium dodecyl sulfate (SDS) ultra-pure Roth 2326.2 

Sodium tetraborate VWR 1303964 

Sucrose Sigma S0389 

Tetramethylenediamine (TEMED) AppliChem A1148.0028 

Tris (hydrogenmethyl) aminomethane (Tris-

base) 

VWR 28.808.294 
 

Trizma hydrochloride (Tris-HCl) Sigma T3253 

Trypan blue Roth CN76.1 

Tween 20 VWR 663684B 

 

6.1.3 Reagents 

6.1.3.1 Reagents for molecular biology 

Reagent Manufacturer Identifier 

Acryl/BisTM solution (30%) 37.5:1 VWR E347 

Bradford Reagent Sigma B6916 

Complete Mini Protease Inhibitor Roche 11836153001 

DNA ladder (100 bp/ 1 kb) Thermo Fisher Sci SM0323/SM0311 

DNA Gel Loading Dye (6X) Thermo Fisher Sci R0611 

DreamTaq DNA polymerase Thermo Fisher Sci EP0703 

ECLTM WB detection reagents GE Healthcare RPN2106 

LongAmp Taq DNA polymerase BioLabs M03235 

Normal Goat Serum  Gibco 16210064 

Nuclease-free water Ambion AM9938 

PageRuler Plus Prestained Prot. Ladder Thermo Fisher Sci 26619 

PierceTM Protease and phosphatase 

inhibitor mini tablets Thermo Fisher Sci 

A32959 

Proteinase K Sigma AM2546 

SuperSignalTM West Femto Thermo Fisher Sci 34094 

SYBR Safe DNA Gel Stain Thermo Fisher Sci S33102 

Trizol Reagent Life Technologies 15596-026 
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6.1.3.2 Cell culture media and reagents 

Reagent Manufacturer Identifier 

B-27 Supplement (50X) Thermo Fisher Sci 17504-044 

Conconamycin A Sigma C9705 

BDNF Almone DE2457539 

Cytosine ß-D-arabinofuranpsode 

hydrochloride Sigma 

 
C6645 

DMEM (1X)+GlutaMAXTM Thermo Fisher Sci 31966-021 

Deoxyribonuclease I from bovine pancreas Sigma 
 
D5025 

EBSS Thermo Fisher Sci 14155-048 

Fetal Bovine Serum Merck S0115 

Fetal Bovine Serum (sterile filtered) (FBS) Sigma F7524 

GlutaMAXTM Thermo Fisher Sci 35050-061 

HBSS (1X) [-] CaCl2, [-] MgCl2 Thermo Fisher Sci 14175-053 

HEPES (1M) Thermo Fisher Sci 15630-080 

Insulin, human recombinant zinc Thermo Fisher Sci 12585-014 

MEM Thermo Fisher Sci 51200-046 

MG132 Sigma M7449 

Penicillin/Streptomycin (P/S) Thermo Fisher Sci 15140-122 

Poly-D-lysine (1mg/mL) Merck A-003-E 

Sodium Pyrubate Thermo Fisher Sci 11360-039 

Transferrin, Holo, Bovine Plasma Merck 616420 

Trypsin from bovine pancreas Sigma T1005 

(Z)-4-Hydroxytamoxifen (Tamoxifen) Sigma  

 

6.1.3.3 Reagents for animals 

Reagent Manufacturer Identifier 

Isofluran Piramal  B73E16A 

Ketamin hydrochloride Sigma K2753 

Rompun 2% (Xylazine) Bayer KP0BZPE 

 

6.1.4 Kits and other equipment 

Reagent Manufacturer Identifier 

Endotoxin-free plasmid DNA purification Macherey-Nagel 740420.10 

High Capacity cDNA Reverse Transcription Thermo Fisher Sci 4368814 

Lipofectamine 3000 Thermo Fisher Sci L3000-008 
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Lipofectamine RNAiMAX Thermo Fisher Sci 13778-030 

LIVE/DEADTM Cell Imaging Kit Thermo Fisher Sci R37601 

ProFection Mammalian Transfection 

System- Calcium Phosphate Promega E1200 

qPCRBIO SyGreen Mix Lo-ROX PC3 Biosystems PB20.11 

TaqManTM Gene Expression Assay Thermo Fisher Sci 4331182 

 

6.1.5 Antibodies 

Antibody Manufacturer Identifier 

 WB ICC IHC   

Rabbit polyclonal anti-

ATG16L1 

1:1000 - - MBL PM040 

Rabbit monoclonal anti-ATG5 1:1000 - - Abcam ab108327 

Rabbit polyclonal anti-

CASPASE-3 cleaved 

(Asp175) 

1:1000 - 1:200 Cell Signaling 9661 

Rabbit polyclonal anti-

CLASP2 

1:1000 - 1:500 Millipore ABT263 

Goat polyclonal anti-DNCT1 - 1:200 - Abcam ab11806 

Rabbit polyclonal anti-ELKS1 1:1000 1:500 - Novus Biologicals NBP1-88178 

Rabbit monoclonal anti-

FIP200 

1:1000 - - Cell Signaling 12436 

Mouse monoclonal anti-

GAPDH 

1:1000 - - Sigma-Aldrich G8795 

Chicken polyclonal anti-GFP - 1:2000 1:1000 Abcam ab13970 

Mouse monoclonal anti-GFP 1:5000 - - Takara Bio 

Clontech 

632375 

Rabbit polyclonal anti-LC3B 1:2000 - - Novus Biologicals NB600-

1384SS 

Mouse monoclonal anti-

LC3A/B 

- 1:300 - MBL M152-3 

Mouse monoclonal anti-

MAP2 

- 1:500 - Sigma-Aldrich M9942 

Mouse monoclonal anti-

MAPK activated (P-ERK-1&2) 

1:1000 - - Sigma-Aldrich M8159 

Mouse monoclonal anti-

mCherry 

- 1:5000 - Novus Biologicals NBP1-96752 

Rabbit polyclonal anti-

mCherry 

1:2000 - - Abcam ab167453 
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Rabbit polyclonal anti-P-S6 

Ribosomal Protein 

(Ser235/236) 

1:1000 - - Cell Signaling 2211 

Guinea pig polyclonal anti-

p62 

1:1000 1:500 1:1000 Progen GP62-C 

Rabbit monoclonal anti-P-

AKT (Ser473) 

1:1000 - - Cell Signaling 4060 

Rabbit monoclonal anti-RAB7 - 1:250 - Cell Signaling 9367S 

Rabbit polyclonal anti-SYB2 - 1:800 - Synaptic Systems 104 202 

Rabbit polyclonal anti-TRKB 1:1000 1:250 - Almone ANT-019 

Rabbit polyclonal anti-P-

TRKB (Y816) 

1:1000 1:250 - Abcam ab75173 

Mouse monoclonal anti-α-

TUBULIN 

1:1000 1:500 - Synaptic Systems 302 211 

Mouse monoclonal anti- beta-

3-TUBULIN 

- - 1:500 Thermo Fisher 

Sci 

14-4510-80 

Rabbit monoclonal anti-α-

TUBULIN acetylated (Lys40) 

1:1000 - - Cell Signaling 5335 

Mouse monoclonal anti-α-

TUBULIN 

tyrosinated 

1:1000 - - Sigma-Aldrich T9028 

Rabbit polyclonal anti-α-

TUBULIN 

detyrosinated 

1:1000 - - Millipore AB3201 

Rabbit polyclonal anti-α-

TUBULIN Δ2 

1:1000 1:500 - Synaptic Systems 302 213 

Rabbit antiserum anti-

UBIQUITIN 

1:1000 1:200 - Sigma-Aldrich U5379 

Goat anti-Mouse IgG (H+L) 

peroxidase-conjugated 

1:5000 - - Jackson 

ImmunoResearch 

115-035-003 

Goat anti-Mouse IgG, light 

chain specific, peroxidase 

conjugated 

1:5000 - - Jackson 

ImmunoResearch 

115-035-174 

Goat anti-Rabbit IgG (H+L) 

peroxidase-conjugated 

1:5000 - - Jackson 

ImmunoResearch 

111-035-003 

Goat anti-Guinea Pig IgG 

(H+L) peroxidase-conjugated 

1:5000 - - Jackson 

ImmunoResearch 

106-035-003 

Normal Rabbit IgG 1:5000 - - Cell Signaling 2729 

Normal Mouse IgG 1:5000 - - Millipore 12-371 

Alexa Fluor 488 Goat anti-

Mouse IgG 

- 1:500 - Thermo Fisher 

Sci 

A-11029 

Alexa Fluor 488 Goat anti-

Rabbit IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-11034 
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Alexa Fluor 488 Goat anti-

Chicken IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-11039 

Alexa Fluor 568 Goat anti-

Mouse IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-11031 

Alexa Fluor 568 Goat anti-

Rabbit IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-11036 

Alexa Fluor 568 Donkey anti-

Goat IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-11057 

 

Alexa Fluor 647 Goat anti-

Mouse IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-21236 

Alexa Fluor 647 Goat anti-

Rabbit IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-21245 

Alexa Fluor 647 Goat anti-

Guinea Pig IgG 

- 1:500 1:500 Thermo Fisher 

Sci 

A-21450 

Abberior STAR 635P Goat 

anti-mouse IgG 

- 1:1000 - Abberior ST635P 

 

6.1.6 Oligonucleotides and vectors 

Virus strain 

Virus strain Manufacturer Identifier 

AAV9-CamKIIα-eGFP Penn Vector Core. University of 

Pennsylvania School of Medicine AV-9-pV1917 

 

6.1.6.1 Genotyping primers 

Gene Sequence (5’- 3’) Annealing 

temp (°C) 

Atg5forward 1 GAA TAT GAA GCC ACA CCC CTG AAA TG 65 

Atg5 forward 2 ACA ACG TCG AGC ACG CTG GCG AAG G 65 

Atg5 reverse GTA CTG CAT AAT GGT TTA ACT CTT GC 65 

Atg16l1 forward CAG AAT AAT TTC CGG CAG AGA CCG G 65 

Atg16l1 reverse AGC CAA AGA AGG AAG GTA AGC AAC GAA 65 

Cre forward CCG GGC TGC CAC GAC CAA 55 

Cre reverse  GGC GCG GCA ACA CCA TTT TT 55 

tdTomato forward CTG TTC CTG TAC GGC ATG G 65 

tdTomato reverse AAG GGA GCT GCA GTG GAG TA 65 

Postive control forward CCG AAA ATC TGT GGG AAG TC 65 

Positive control reverse AAG GGA GCT GCA GTG GAG TA 65 

 



87 
 

 

6.1.6.2 qRT-PCR primers 

Gene; Sequence (5’- 3’) Manufacturer Annealing 

temp (°C) 

Primer: Bdnf Forward:  

GGG TCA CAG CGG CAG ATA AA 

Burbach et al. (2004) 

58 

Primer: Bdnf Reverse:  

GCC TTTGGATACCGGGACTT 

Burbach et al. (2004) 

58 

Primer: Ntrk2 Forward:  

CCG CTA GGA TTT GGT GTA CTG 

PrimerBank 

ID: 6679150a1 

58 

Primer: Ntrk2 Reverse:  

CCG GGT CAA CGC TGT TAG G 

PrimerBank 

ID: 6679150a1 

58 

Primer: Gapdh Forward:  

AAC TTT GGC ATT GTG GAA GG 

Kye et al. (2011)  58 

Primer: Gapdh Reverse:  

ACA CAT TGG GGG TAG GAA CA 

Kye et al. (2011)  58 

Bcl-xl: Mm00437783_m1 Applied Biosystems 60 

cFLIP: Mm01255580_m1 Applied Biosystems 60 

Bax: Mm00432051_m1 Applied Biosystems 60 

Chop: Mm00492097_m1 Applied Biosystems 60 

 

6.1.6.3 siRNAs 

Gene Manufacturer Annealing temp (°C) 

siRNA Erc1 (Elks1) smart pool Dharmacon L-058829-01-0005 

siRNA Maplc3b smart pool Dharmacon M-040989-01-0005 

siRNA Mallc3a smart pool Dharmacon L-056203-01-0005 

siRNA Fip200 smart pool Dharmacon L-041191-01-0005 

siRNA Scrambled non-targeting smart pool Dharmacon D-001206-13-05 

 

6.1.6.4 Plasmids 

Plasmid (source gene) Manufacturer Identifier 

pFUGW-H1-eGFP Kononenko et al., 2013 N/A 

pmCherry-N1 Kind gift from Dr. M. Kreutz N/A 

ptagRFP-C Kind gift from Dr. M. Kreutz N/A 
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pmStrawberry-ATG4BC74A (mouse) Addgene #21076 

TRKB-mRFP (mouse) Kononenko et al., 2017 N/A 

EB3-tdTomato (human) Addgene #50708 

Tubulin-eGFP (chicken) Addgene #66105 

Plasmid: pEGFP-C1-mApg5 (mouse) Kind gift from Prof M. 

Lammers 

N/A 

mito-mCherry Kind gift from Prof E. Rugarli  N/A 

ptagRFP-C-LC3B (pro LC3) (rat) Kononenko Lab N/A 

ptagRFP-C-LC3BG120A (rat) Kononenko Lab N/A 

eGFP-GABARAPL1 Kind gift from Dr Michael 
Schramm 

N/A 

eGFP-LC3B (rat) Kind gift from Dr. M. Kreutz N/A 

eGFP-LC3A (human) Kononenko Lab N/A 

tdTomato- ELKS1 (rat) Kind gift from Dr. H. Kawabe 

and Prof. Nils Brose 

N/A 

SYB2-pHluorin (rat) Kononenko et al., 2013 N/A 

 

6.1.7 Cell lines 

Cell line Manufacturer Identifier 

Mouse embryonic fibroblast 

(MEFs) 

Kind gift from Prof Dr. Thomas Langer N/A 

Human embryonic kidney 

(HEK) 293T 

Kind gift from Prof Dr. Thomas Langer N/A 

Mouse motor neuron-like 

hybrid cell line (NSC-34) 

Kind gift from Prof Dr. Brunhilde Wirth N/A 

 

6.1.8 Mouse models 

Mouse model Manufacturer Identifier 

C57BL/6J CECAD in vivo facility N/A 

Atg5lox/lox: tamoxifen inducible CAG-Cre Kononenko et al. 

(2017) 

N/A 

Atg16llox/lox: tamoxifen inducible CAG-Cre Kononenko lab N/A 

Atg5lox/lox: CamKIIα-Cre Kononenko lab N/A 

tdTomato:CamKIIα-Cre The Jackson 

Laboratory 

Ai9(RCL-

tdT) line 
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6.1.9 Solutions and Media 

6.1.9.1 Routinely used solutions 

If not mentioned, solutions were stored at room temperature (RT) 

Name Composition 

1.5M Tris pH 8.8 181.65g Tris Base; 0.4% (w/v) SDS; 1L ddH2O ; pH 8.8 

0.5M Tris pH 6.8 6g Tris Base; 0.4% (w/v) SDS; 100 mL ddH2O; pH 6.8 

10% Acrylamide gel 8.04 ml H2O; 5ml 1.5M Tris pH 8.8, 6.67ml 30% acrylamide/bis, 

200µl 10% SDS, 100µl APS 10%, 10µL TEMED  

15% Acrylamide gel 5.04 ml H2O; 5ml 1.5M Tris pH 8.8, 9.67ml 30% acrylamide/bis, 

200µl 10% SDS, 100µl APS 10%, 10µL TEMED 

4% Acrylamide gel 

(Stacking) 

6mL ddH2O; 2.52 mL 0.5 M Tris pH 6.8, 1.32 mL 

acrylamide/bis, 100µL 10%SDS, 50µL 10% APS, 10µL TEMED 

2% agarose gel 2% (w/v) agarose in TBE 1X 

B buffer 35.6g Na2HPO4*2H2O, 31.7g Na2HPO4 in 500mL, pH=7.4 in 

500mL H2O 

Blocking solution WB (BSA) 5% (w/v) BSA in TBS-T 

Blocking solution WB (milk 

powder) 

5% (w/v) milk powder in TBS-T 

DMSO post-fixation 31.25 mL 0.4M PB, 46.75 mL H2O, 25.2g glycerin, 2mL DMSO 

ICC blocking/permeabilizing 

solution  

5% (v/v) NGS; 0.3% (w/v) Saponin, in PBS 

Imaging Buffer 1mL B buffer; 100µL NaCl 5M; 4.9 µL MgCl2, 13µL CaCl2 1M; 

total volume 10 mL 

Neutralization Buffer 1.3g Tris-HCl in 200Ml ddH20. pH=5 

Lammeli Buffer (4x) 250mM Tris-HCL;1% (w/v) SDS; 40% (v/v) Glycerol; 4% (v/v) 

ß-mercaptoethanol; 0.02% Bromophenol 

PFA 4% (perfusion) 4% (w/v) PFA in PB 0.125 M, 60°C. pH 7.4 

PFA 4% (ICC fixation) 4% (w/v) PFA, 4% (w/v) Sucrose, dissolved in PBS. pH 7.4 

PBS 0.137M NaCl; 0.0027M KCl; 0.01M Na2HPO4; 1.8mM KH2PO4 

Phosphate Buffer 0.4M (PB) 27.6g NaH2PO4, 35.6g Na2HPO4*2H2O, 31.7g Na2HPO4 in 

500mL, pH=7.4 

Proteinase K solution 50mM Tris-HCl; 1mM CaCl2; 50% Glycerol, in ddH2O to 

generate dilution Buffer. + 20g Proteinase K for 1mL of dilution 

buffer. 

Ponceau staining solution 1% (w/v) Ponceau S; 2% (v/v) acetic acid in ddH2O 

Ringer 0.85% (w/v) NaCl, 0.025% (w/v) KCl, 0.02% (w/v) NaHCO3 in 

ddH2O 

RIPA buffer 50mM Tris-Base; 150 mM NaCl ; 1% (v/v) IGEPAL; 0.5% (w/v) 

Sodim deoxycholate; 0.1% (w/v) SDS dissolved in ddH2O (1 
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tablet of protease inhibitor and phosphatase inhibitor/10mL 

RIPA buffer) 

Running Buffer 10X 25mM Tris-Base; 192mM Glycine; 0.1% (w/v) SDS in ddH2O 

Transfer Buffer 10X 25mM Tris-Base; 192mM Glycine; 0.025% (w/v) SDS in ddH2O 

Transfer Buffer 1X 10% (v/v) Transfer Buffer 10X; 20% (v/v) methanol; 70% (v/v) 

ddH2O 

Tail lysis buffer 1M Tris-Base; 0.5M EDTA; 20% (w/w) SDS, 5M NaCl, in 

ddH2O, pH 8.5 

TBE 10X 108g Tris-Base; 55g Boric acid; 7.4g EDTA in 1L ddH2O 

TBS-T 20mM Tris; 137 Mm NaCl; 0.1% (v/v) Tween 20 

Lysis buffer for IP (Co-IP 

buffer) 

50 mM Tris-HCl; 1% IGEPAL; 100mM NaCl; 2mM MgCl2 in 

ddH2O (1 tablet of protease and phosphatase inhibitors/10Ml of 

lysis buffer) 

 

6.1.9.2 Cell culture media 

All cell culture media was filtered through 0.2 µm pore size membranes and stored at 4°C 

Name Composition 

  

Basic Media 1L MEM; 5g Glucose; 200mg NaHCO3, 100mg Transferrin 

Borate Buffer 0.1M 1.24g boric acid; 1.9g sodium tetraborate in 400ml autoclaved 

ddH2O 

Digestion Solution 137mM NaCl; 5mM KCl; 7mM Na2HPO4; 25mM HEPES 

dissolved in autoclaved ddH2O. pH 7.2 

Dissociation Solution Hank’s + 12mM MgSO4x7H2O 

Growth Media 100mL Basic Media; 5mL sterile filtered FBS; 0.25mL 

GlutaMAX; 2mL B-27; 1mL P/S 

Hank’s solution 500 mL HBSS; 5mL Sodium pyrubate; 5mL HEPES; 5mL P/S 

Hank’s + 20% FBS Hank’s + 20% (v/v) sterile filtered FBS 

Plating Media 100 mL Basic Media; 10 mL sterile filtered FBS; 1mL 

GlutaMAX; 625µL Insulin; 1.1 mL P/S 

Cell line media DMEM + 10% (v/v) FBS + 0.1% (v/v) P/S 
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6.2 Methods 

6.2.1 Animals 

C57/BL/6 mice were housed in polycarbonate cages at standard 12/12 day-night cycles and 

water, and food was provided ad libitum. All animal experiments were approved by the ethics 

committee of LANUV Cologne and were conducted according to the committee’s guidelines. 

Conditional tamoxifen-inducible ATG5 KO (ATG5flox/flox: B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J) is 

described inthe results section, and Kononenko et al.(2017). Conditional forebrain confined ATG5 

KO mice were created by crossing Atg5flox/flox mice with CamKIIα-Cre line (Dragatsis and Zeitlin, 

2000b), kindly provided by Prof. Aleksandra Trifunovic (CECAD, Cologne, Germany). 

Atg16l1flox/flox mice (Adolph et al., 2013a) were received from Prof. Philip Rosenstiel (University 

Hospital Kiel, Germany). Conditional tamoxifen-inducible ATG16L1 KO mice were created by 

crossing Atg16l1lox/lox mice with a Tamoxifen-inducible CAG-Cre line (B6.Cg-Tg(CAG-

cre/Esr1*)5Amc/J; The Jackson Laboratory).Ai9(RCL-tdT) (tdTomato) line (The Jackson 

Laboratory) was received from Dr. Matteo Bergami (CECAD, Cologne, Germany). To reveal the 

CamKIIα-Cre activity in the brain Ai9(RCL-tdT) mice were crossed with CamKIIα-Cre line. 

 

6.2.2 Genotyping 

DNA extraction. Newborn pups were tattooed after birth, and subsequently, a 1mm of the tail from 

each pup was collected for genotyping. DNA extraction from each tail sample was performed by 

the incubation of samples in 300 µL of tail lysis buffer plus 3 µL of proteinase K solution at 55°C 

overnight (ON). For the isolation of DNA, digested samples were centrifuged at 13 000 revolutions 

per minute (rpm) for 5 min. Next, the supernatant was discarded, and the pellet was resuspended 

with 400 µL of isopropanol and gently mixed prior centrifugation at 13 000 rpm for 15 min. Again, 

the supernatant was discarded, and DNA was washed once with 70% ethanol, followed by 

another centrifugation of 13 000 rpm for 10 min. Finally, the supernatant was discarded, the pellet 

dried out, and resuspended with 100 µL of autoclaved water. 

PCR. DNA samples were diluted in PCR tubes following the master mix showed below. Note that 

working primers were diluted at 10pmols/µL. 
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Atg5, Cre, tdTomato Volum (µL)  Atg16l1 Volum (µL) 

Sample 1  Sample 1 

Dream Taq Buffer 2  LongAmp Buffer 5 

MgCl2 25mM 2  Primer Mix 1 each primer 

Primer mix 1 each primer  DNTPs 2 mM 3.75 

DNTPs 2 mM 1.5  LongAmp Taq pol. 1 

Dream Taq pol. 0.2µL  H2O till 20 µL total 

H2O till 20 µL total  

 

PCR program: 

 

Step 

Atg5 

(36 cycles) 

Atg16l1  

(35 cycles) 

Cre 

(35 cycles) 

T (°C) Time T (°C) Time T (°C) Time 

Initial denaturation 94 4min 94 2 min 95 5min 

 cycles denaturation 94 30s 94 30s 95 30s 

Anneling 63 30s 65 30s 62 30s 

Elongation 72 60s 68 300s 72 30s 

Final extension 72 60s 68 480s 72 5min 

Hold 4  4  4  

 

 

Step 

tdTomato  

T (°C) Time 

Initial denaturation 94 2min 

 10 

cycles 

Denaturation 94 30s 

Anneling 65 (-0.5 each cycles) 30s 

Elongation 68 60s 

28 

cycles 

Denaturation 94 15s 

Anneling 60 15s 

Elongation 72 10s 

Final extension 72 2 min 

Hold 4  

 

Elctrophoresis. PCR results were subsequently mixed with DNA loading sample and charged in 

a 2% Agarose gel with SYBR safe, at a concentration indicated by the manufacture by guideline. 

Finally, electrophoresis was done at 120V for 40 min (1% agarose gel, 120V, and 120 min for 

Atg16l1 samples) and results were visualized by the gel imager system (Bio-Rad). 
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6.2.3 Preparation of neuronal cultures and transfections 

Neuronal cell culture. Cortex and hippocampi were isolated from postnatal pups at P1–5, cut in 

small pieces, washed twice in Hank’s+20%FBS and Hank’s, and digested with 10 mg trypsin and 

10 µL DNasedissolved in 2 mL of digestion solution, which was then incubated at 37°C for 15 

min.Trypsination was stopped by washingtwice with Hank’s+20%FBS and Hank’s, prior addition 

of 2 mL of dissociation solution containing 10 µL of DNAse.  Samples were mechanically 

dissociated by pipetting 2-3 times with a fire-polished glass pipette, followed by the centrifugation 

of cells at 0.3 rcf, 8 min at 4°C. The supernatant was discarded, and the pellet of cells was re-

suspended in plating media, which were then counted with a solution of trypan blue and a 

Neubauer chamber. 50µL solution containing 110 000 cells were plated in pre-coated 24mm 

diameter coverslips or 3 cm diameter dishes. The coating was performed the day before by 

dissolving the PDL with borate buffer 0.1M and adding it on the coverslips or dishes for 2 to 16 

hours, which afterward were washed with autoclaved water and dried. Once cells are attached to 

the surface of the coverslip or dish (1-2 h), 2 mL of prewarmed plating media was added to each 

well and cells were placed inside the incubator at 37°C/5% CO2. After 24 h, half of the media was 

removed, and the same amount of Growth media with 2 µM ofcytosine ß-D-arabinofuranoside 

hydrochloride was added. 48 h after the cell culture preparation, the same volume of media used 

after 24 h was added with 4 µM of cytosine ß-D-arabinofuranoside hydrochloride. No further 

media was added afterward. 

Induction of homologous recombination of Atg5 or Atg16l1 KO alleles by tamoxifen. To initiate 

homologous recombination in neurons from floxed animals expressing a tamoxifen-inducible Cre 

recombinase, cultured neurons were treated with 0.2 μM (Z)-4-hydroxytamoxifen immediately 

after plating. After 24h hours, cells weretreated with 0.4 µM of tamoxifen during medium removal. 

Ethanol was added to control neurons (WT) in an amount equal to the tamoxifen. 

Plasmid and siRNA transfections. Neurons were transfected at DIV 7–9 using an optimized 

calcium phosphate protocol (Kononenko et al., 2013). In brief, 6μg plasmid DNA, 12.5µL of 

CaCl22M, and 81.5 µL of water (for each well of a 6-well plate) were mixed with an equal volume 

of 2x HEPES buffered saline (100μl) (ProFection Mammalian Transfection System- Calcium 

Phosphate) and incubated for 20 min, allowing for precipitate formation. Meanwhile, neurons were 

incubated in NBA medium for the same time at 37°C, 5% CO2. Subsequently, precipitates were 

added to the cells and incubated at 37°C, 5% CO2 for 30 min. Finally, neurons were washed twice 

with HBSS medium and transferred back to the medium. Note that the osmolarity of NBA and 

HBSS media was readjusted the original cellular media of the neurons with D-mannitol.In the case 
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of siRNA knockdown experiments,eGFP plasmid was always co-transfected with 100nM siRNAs 

on DIV-7-9, and the cells were analyzed 5-8 days posttransfection. 

 

6.2.4 Stereotaxic injection of AAV9-CamKIIα-eGFP  

Stereotactic injections were performed on 12-13 week-old Atg5flox/flox :CamKIIα-Cre WT and KO 

mice. Mice were anesthetized with a mixture of Ketamine (100mg/kg)/ Xylazin (20mg/kg)/ 

Acepromazine (3 mg/kg) and mounted in a Kopf stereotactic frame. For the injection, a small hole 

was made in the skull of the mouse and a 1µl Hamilton syringe filled with 300nl of AAV9-CamKIIα-

eGFP was lowered into the M1 area of the primary motor cortex, using following coordinates: AP- 

1.25, DL- 1.8, Depth- 0.52. A volume of 300 nl AAV was delivered during 5 min, with a 5-min delay 

after the penetration, and waiting another 15 min before withdrawing of the syringe. The animal 

was given a dose of carprofen to reduce postsurgical pain (s.c, 5 mg/kg) before the end of the 

surgery. Suturing the skin over the wound completed surgery and the animal was then allowed to 

recover. Animals were sacrificed by transcardial perfusion 10-14 days after surgery, and the 

eGFP expression was analyzed by confocal microscopy (see Immunohistochemical analysis of 

brain sections).  

 

6.2.5 Generation and use of plasmids 

Cloning and generation of plasmids were performed by Dr Sujoy Bera. Briefly, Rat Lc3b sequence 

(GeneID: 64862) was cloned in ptagRFP-C vector (Gift from Dr Michael Kreutz) using Bgl II and 

EcoRI restriction enzymes. For generating the LC3BG120A, Glycine at 120 was mutated to 

alanine, and a stop codon was introduced after the alanine 120 by side-directed mutagenesis. 

pFUGW-H1-eGFP, TRKB-mRFP, and Syb2-pHluorin were described previously ((Kononenko et 

al., 2017a; Kononenko et al., 2013). pmCherry-N1 and ptagRFP-C were kindly provided by Dr. 

Michael Kreutz (LIN, Magdeburg, Germany). pmStrawberry-ATG4BC74A, EB3-tdTomato, and 

Tubulin-eGFP were purchased from Addgene. pEGFP-C1-mApg5 and mito-Cherry were kind 

gifts from Prof. Michael Lammers (University of Greifswald, Germany) and Prof. Elena Rugarli 

(CECAD, Germany), accordingly. 
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6.2.6 Long-term treatment with BDNF 

Neurons were treated with 50 ng/mL of recombinant BDNF (the same amount of water 

was used as a control) at DIV 2, 6, 10 and 14. Neurons were fixed or harvested at DIV 16 for ICC 

or WB, respectively.  

 

6.2.7 MG132 treatment of cultured neurons 

For inhibiting the proteasome system, cultured DIV 15 neurons were treated for 16 h with 10 µM 

of MG132 (the same amount of DMSO was used as a control). After the treatment, neurons were 

harvested for WB analysis. 

 

6.2.8 Immunocytochemistry and analysis of cultured neurons 

Neurons were fixed at DIV 16-18 in 4% PFA/sucrose in phosphate-buffered saline (PBS) for 

15 min at room temperature (RT), washed three times, permeabilized and blocked with PBS 

containing 5% NGS, 0.3% Saponin for 1 h. After blocking, neurons were incubated with primary 

antibodies for 1 h blocking solution. Coverslips were rinsed four times with PBS (2-5 min each) 

and incubated with corresponding secondary antibodies, which were diluted againin blocking 

solution, for 30 min. Subsequently, coverslips were washed three times in PBS and mounted in 

Immu-mount (Thermo Fisher Sci). Fixed neurons were imaged using either Zeiss Axiovert 200M 

microscope equipped with 40x/1.4 oil DIC objective and the Micro-Manager software (Micro-

Manager1.4, USA) or with Leica SP8 confocal microscope (Leica Microsystems) equipped with a 

63x/1.32 oil DIC objective and a pulsed excitation white light laser (WLL; ∼80-ps pulse width, 80-

MHz repetition rate; NKT Photonics). For quantitative analysis of fluorescent protein levels (or 

fluorescent puncta), the area of the neuron, cell body, axon or spheroid (depending on the 

experiment) was manually selected using ImageJ selection tools (ROI), and the mean gray value 

was quantified within the ROI after the background subtraction. Fluorescent puncta were 

determined by applying the autothreshold “minimum” algorithm implemented in ImageJ and 

analyzed using the “Analyze particles” ImageJ module to determine the number of fluorescent 

puncta per 1 µm2. For quantifying the number of neurons containing axonal swellings, coverslips 

were imaged by using EVOS FL Auto 2 (Invitrogen, USA). For quantifying the number of spheroids 

per axon, the quantity and the diameter of spheroids from WT and KO neurons were analyzed in 
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the last 300µm of the axon by the ImageJ. The number of dendritic spines was quantified per 10 

µm of the primary dendrite per neuron.  

 

6.2.9 Immunostaining of αTubulin in cultured neurons 

Neurons were treated on DIV 16 either with 0.2 µg/ml Nocodazole (Sigma) or with 0.2 µg/ml 

DMSO for 1 h. Afterward, they were rinsed with warm PHEM buffer (60 mM PIPES, 25 mM 

HEPES, 10 mM EGTA, 4 mM MgCl2), followed by an incubation step in PHEM buffer containing 

0.05% Triton-X-100 and a protease inhibitor cocktail (Roche) at 37°C for 1.5 min to remove the 

soluble Tubulin. Afterward, neurons were fixed with cold methanol (-20°C) for 8 min, 

permeabilized and blocked with PBSS (PBS containing 0.2% saponin and 2.5 BSA) for 30 min at 

RT and incubated with primary antibodies diluted in PBSS for 2 h. Coverslips were washed twice 

in PBSS (2 min each) and incubated with corresponding secondary antibodies (diluted 1:500) in 

PBSS for 30 min. Finally, coverslips were washed four times in PBSS and mounted in Immu-

mount.  

 

6.2.10 STED imaging 

Cultured cortical/hippocampal neurons were fixed under MTs stabilization conditions, as 

previously described (Zempel et al., 2017). Subsequent MT extraction of neurons was performed 

by using 0.5% Triton X-100, 5% BSA in PBS, followed by antibody incubation without further 

blocking reagents or detergents. Finally, coverslips were mounted in ProLong Gold (Thermo 

Fisher Scientific) and imaged with SP8 STED imaging. STED imaging with time-gated detection 

was performed using a commercial Leica SP8 TCS STED microscope (Leica Microsystems) 

equipped with a pulsed excitation white light laser (WLL; ∼80-ps pulse width, 80-MHz repetition 

rate; NKT Photonics) and two STED lasers for depletion (continuous wave at 592 nm, pulsed 

at 775 nm). The pulsed 775-nm STED laser was triggered by the WLL. Fluorescence signals 

were detected sequentially by hybrid detectors at appropriate spectral regions separated from 

the STED laser by corresponding dichroic filters. Images were acquired with an HC PL APO 

CS2 × 100/1.40-N.A. oil objective (Leica Microsystems), a scanning format of 1,024 × 1,024, 

eight-bit sampling, and 4.5 zoom, yielding a pixel dimension of 25.25 nm and 25.25 nm in 

the x and y dimensions, respectively. 
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6.2.11 Sholl analysis of cultured neurons 

Neurons were transfected with eGFP on DIV 8. Cells were either fixed on DIV 16-18 and 

processed as above. Neurons were imaged with a Leica SP8 confocal microscope using a Plan-

Apochromat 63X/1.32 Oil DIC objective, corrected for both chromatic and spherical aberrations. 

Neurons were scanned at a resolution of 1024×1024, eight-bit sampling, zoom 1 and z-increment 

of 0.5 µm. Sholl analysis of single cells was performed using the ImageJ Sholl Analysis Macro. 

The complexity of neuronal branching was calculated by summing the number of intersections 

within 200 µm from the cell body.   

 

6.2.12 Live imaging of cultured neurons 

Neurons were imaged on DIV 16-18 at 37ºC in imaging buffer (see above) using Zeiss Axiovert 

200M microscope (Observer. Z1, Zeiss, USA) equipped with 63X/1.40 Oil DIC objective;a pE-

4000 LED light source (CoolLED) and a Hamamatsu Orca-Flash4.O V2 CMOS digital camera. 

Time-lapse images of neurons expressing TRKB-mRFP were acquired every second using Micro-

Manager software (Micro-Manager1.4, USA) for 30 s. In the case of experiments with EB3-

Tdtomato and Mito-Cherry plasmids videos were acquired every second for 60 s. Kymographs 

were generated using the software KymoMaker (Chiba et al., 2014) and analyzed by ImageJ. To 

monitor the exocytosis of synaptic vesicles via SYB2-pHluorin assay, neurons were subjected to 

electrical field stimulation at 50Hz for 4 s using an RC-47FSLP stimulation chamber (Warner 

Instruments) and imaged as described above (Time-lapse images were acquired every second 

for 2 min). To prevent the activation of postsynaptic receptors, 10 μM CNQX and 50 μM AP-5 

were added to the imaging buffer prior to imaging.  

To image the percentage of live and dead neurons, LIVE/DEADTM Cell Imaging Kit (Thermo Fisher 

Scientific) was used. Following manufacturer indications, an equal amount of imaging buffer was 

mixed with the dye and added to WT and ATG5 KO neurons (DIV 16) for 15 min at RT. 

Subsequently, neurons were imaged using Zeiss Axiovert 200M microscope (Observer. Z1, Zeiss, 

USA) equipped with 20X objective;a pE-4000 LED light source (CoolLED) and a Hammatsu Orca-

Flash4.O V2 CMOS digital camera. The analysis was performed using ImageJ.  

 

 

 



98 
 

6.2.13 Electron microscopy 

Cortical/hippocampal neurons cultured on 18 mm Ø coverslips were fixed with a pre-warmed 

fixative solution (2% glutaraldehyde, 2.5% sucrose, 3 mM CaCl2, 100 mM HEPES, pH 7.4) at RT 

for 30 min, followed by the post-fixation at 4°C for 30 min. Afterward, cells were washed with 0.1 

M sodium cacodylate buffer, incubated with 1% OsO4, 1.25% sucrose, 10mg/ml 

K₄[Fe(CN)₆]·3H₂O in 0.1 M cacodylate buffer for 1 h on ice and washed three times with 0.1 M 

cacodylate buffer. Subsequently, cells were dehydrated at 4°C using ascending ethanol series 

(50, 70, 90, 100%, 7 min each), incubated with climbing EPON series (EPON with ethanol (1+1) 

for 1 h; EPON with ethanol (3+1) for 2 h; EPON alone ON; 2 x 2 h with fresh EPON at RT) and 

finally embedded for 48-72 h at 62°C. Coverslips were removed with liquid nitrogen and heat, 

consecutively. Ultrathin sections of 70 nm were made using an ultramicrotome (Leica, UC7) and 

stained with uranyl acetate for 15 min at 37°C and lead nitrate solution for 4 min. Electron 

micrographs were taken with a JEM-2100 Plus Electron Microscope (JEOL), Camera OneView 

4K 16 bit (Gatan) and software DigitalMicrograph (Gatan). 

 

6.2.14 Immunohistochemical analysis of brain sections 

Mice were euthanized at 12-15 week-old by an overdose of ketamine/xylazine, 1.2%/0.16%, 

respectively in PBS (i.p., 10 µl per 10 g body weight) and transcardially perfused with 50 ml saline 

solution (Ringer) (0.85% NaCl, 0.025% KCl, 0.02% NaHCO3, pH 6.9, 0.01% heparin, body 

temperature), followed by 50 ml cold (7–15 °C) freshly depolymerized 4% (w/v) PFA in 0.125 M 

Phosphate buffer (PB), pH 7.4. Brains were carefully taken out of the skull, postfixed overnight in 

the same fixative solution, and placed in a mixture of 20% (v/v) glycerol and 2% (v/v) 

dimethylsulfoxide in 0.4 M PB for 24 h for cryoprotection. Frozen horizontal sections (40 μm) were 

collected in six series in DMSO using the microtome. For immunostaining, corresponding sections 

from WT and KO littermates were processed simultaneously. Sections were washed three times 

in PB (3 × 15 min each), followed by permeabilization with PB containing 0.3% Triton X-100 (9 × 

20 min each). Sections were preincubated with PB containing 5% (v/v) NGS and 0.3% (v/v) Triton 

X-100 for 1 h and subsequently incubated with primary antibody at 4 °C for 48 h. Then, sections 

were washed nine times for 20 min each in 0.3% Triton X-100 in 0.125 M PB and incubated with 

Alexa-conjugated secondary antibodies (1:500) for 2 h using standard techniques. The sections 

were washed three times for 15 min each in 0.125 M PB. Finally, sections were mounted on 

gelatin-coated glass slides (see also Kononenko et al., 2013).  
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6.2.15 Nissl staining 

Sections were mounted in 0.2% gelatin solution in 250 mM Tris-HCl and dried overnight at 40 °C 

on a heating plate. Mounted parts were re-hydrated for 1 min in water and stained for 5–10 min in 

0.1% cresyl violet solution. Subsequently, sections were rinsed three times (2 min each) in water 

and dehydrated using an ascending ethanol series (50, 70, 80, 90%) for 2 min each. After rinsing 

the sections in 96% ethanol, they were destained with 0.5% acetic acid and washed twice in 100% 

ethanol (2 min each), incubated with xylene for 2 min and subsequently mounted using Entellan 

(Kononenko et al., 2017a). 

 

6.2.16 Western blotting 

Mice were sacrificed at 12-15 week-old by cervical dislocation. Brains were dissected and 

immediately placed into liquid nitrogen to be stored at -80 °C for further use or directly 

homogenized with a Wheaton Potter-Elvehjem Tissue Grinder in RIPA buffer (50 mM Tris pH 8.0, 

150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% Sodium deoxycholate, 0.1% SDS) containing 

protease inhibitor cocktail (Roche), sonicated and incubated for 1 h on ice for the protein 

extraction. To extract protein from cortical/hippocampal primary cultures, neurons were harvested 

at DIV16-18 with RIPA buffer containing protease inhibitor and phosphatase inhibitor cocktail 

(Thermo Scientific), sonicated, and placed for 30 min on ice. The lysates were centrifuged at 

13300 rpm at 4°C and supernatants were collected and used for further analysis. Protein 

concentrations were determined by Bradford assay. Depending on the experiment, 2-20 µg of 

total protein were loaded onto the gel and separated by SDS-PAGE, and then transferred to a 

nitrocellulose or PVDF membrane (LC3 blots). Membranes were blocked for 1 h at RT in 5% skim 

milk (or with BSA, for phosphor antibodies) in TBS-T and incubated with primary antibodies ON 

at 4°C, followed by the washing of membranes three times (10 min each) with TBS-T. Afterward, 

the membranes were incubated with secondary antibodies diluted in 5% skim milk or BSA in TBS-

T buffer for 1.5 h at RT. After the incubation, the membranes were washed three times as above 

and subsequently developed using ECL based autoradiography film system for documentation. 

The analysis was performed using Image J Analyze Gel plugin.  

Starvation was induced by exchanging the original media with the osmolarity-adjusted Earle’s 

Balanced Salt Solution (EBSS). Cells were incubated at 37°C/5% CO2 ON for 16 h and harvested 

for WB analysis as described above. 
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In order to study the levels of acetylated α-tubulin, neuronal cultures were harvested with a lysis 

buffer containing 6 M Urea, 50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% Triton, pH 7.4. Protein 

samples were then processed as described above. 

 

6.2.17 Extraction of soluble and polymerized tubulin fractions  

To fractionate soluble and polymerized microtubules from cultured cortical/hippocampal neurons, 

first the lysis Buffer A1 (137 mM NaCl, 20 mM Tris-HCl, 1% Triton X-100 and 10% Glycerol) was 

added to the cells at DIV 16 at 4°C for 3 min, plates were gently swirled two to three times, and 

the supernatant was collected as a soluble fraction (Sharma et al., 2011b). Immediately after, 

polymerized tubulin was extracted using lysis Buffer B (Buffer A+1% SDS), which was added to 

the cells for 1 min, and the cells were harvested as a polymerized fraction. Both soluble and 

polymerized fractions were briefly sonicated, incubated on ice 30 min, and protein levels were 

quantified using Bradford assay. Samples were processed using SDS-PAGE sample buffer and 

analyzed by Western blotting.  

 

6.2.18 Extraction of dynamic microtubule fraction 

A similar protocol as above with minor modifications was used to fractionate the dynamic 

microtubule fraction. To isolate the dynamic microtubules, first, the soluble fraction was extracted 

at DIV 16 with the lysis Buffer A2 containing 137 mM NaCl, 20 mM Tris-HCl and 0.1% digitonin 

(Sigma) for 10 min at RT. Next, to induce the depolymerization of stable microtubules, neurons 

were incubated with Buffer A2 at 4°C for 1 h. The supernatant was collected and saved as 

dynamic microtubule fraction. Cold-stable microtubules were extracted with Buffer B (Buffer 

A2+1% SDS) and proceeded as above. 

 

6.2.19 Co-immunoprecipitation assays 

To immunoprecipitate α-tubulin from cultured WT and ATG5 KO neurons, first, the soluble MT 

fraction was extracted as described above (under “Extraction of soluble and polymerized tubulin 

fractions”). Remaining cells were then incubated with the Co-IP buffer (50 mM Tris-HCl, 1% NP-

40, 100 mM NaCl, 2 mM MgCl2, a protease inhibitor (Roche), pH 7.4) and the extraction of 

polymerized tubulin was performed by incubating the cell lysates at 4°C for 45 min. Following 
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incubation, the lysates were centrifuged at 3000 rpm for 5 min at 4°C and supernatants were 

collected and used as polymerized fractions for immunoprecipitation (IP) assay. For the IP, 

Dynabeads Protein G (Invitrogen) were coupled either to the α-tubulin antibody or to an equivalent 

amount of non-specific IgG as a control. After the coupling, the unbound antibody was removed 

by carefully placing the tubes on the magnetic bar. Antibody-coupled Dynabeads were then 

incubated with soluble and polymerized tubulin fractions. For the IP from the soluble fraction, the 

Dynabeads were incubated overnight at 4°C to avoid the polymerization of tubulin, while the 

polymerized fraction was incubated for 1 h at RT. Samples were then washed 3 times using Co-

IP buffer. Proteins were eluted in 4XSDS sample buffer and analyzed by Western blotting. 

For experiments in HEK293T cells, cells were maintained in DMEM medium (GIBCO), containing 

10 % FCS, penicillin (255 Units/ml) and streptomycin (255 µg/ml). 24 hours after seeding, the 

cells were transfected with eGFP or eGFP-LC3B, eGFP-LC3A, eGFP-GABARAPL1 along with 

tdTomato-ELKS1. Following 20 hours of overexpression, cells were harvested and lysed with the 

Co-IP buffer, and immunoprecipitation assays were performed by incubating the cell lysates with 

magnetic GFP-microbeads (Miltenyibiotech, Germany). The samples were analyzed by WB as 

described above. 

 

6.2.20 In-vitro pull-down  

Full-length human LC3B was expressed from pRSF-Duet-1 (G2P) as His6-tagged fusion protein. 

The expression was performed in Escherichia coli BL21 (DE3). The cells were harvested by 

centrifugation (15 min, 4000 rpm, 4°C), resuspended in buffer A (100 mM NaCl, 50 mM Tris/HCl 

pH 7.4, 5 mM MgCl2, 2 mM -mercaptoethanol, 100 µM Pefabloc) and lysed by sonication. The 

His6-LC3B containing supernatant after centrifugation (45 min, 20.000 rpm) was loaded onto an 

equilibrated Ni-NTA column (Ni Sepharose 6 Fast Flow, GE Healthcare) using buffer B (100 mM 

NaCl, 50 mM Tris/HCl pH 7.4, 5 mM MgCl2, 2 mM -mercaptoethanol) plus 20 mM Imidazole. 

The column was washed 10 times with column volumes of washing buffer C (300 mM NaCl, 50 

mM Tris/HCl pH 7.4, 5 mM MgCl2, 20 mM Imidazole, 2 mM -mercaptoethanol) and the His6-LC3 

protein eluted using a 20 mM to 500 mM Imidazole gradient in buffer B. The His6-LC3B containing 

fractions were pooled and concentrated using a 3 kDa MWCO Amicon ultrafiltration unit for the 

subsequent size-exclusion chromatography on a HiLoad 26/600 Superdex 75 pg column (GE 

Healthcare) in buffer D (50 mM HEPES pH 7.9, 100 mM NaCl, 5 mM MgCl2, 2 mM -

mercaptoethanol). The His6-LC3 containing fractions were pooled, shock-frozen in liquid nitrogen, 
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and stored at -80°C. Purified recombinant MYC/DDK tagged human ERC1 protein was purchased 

from (OriGene CAT#: TP313864). For the assay 2 µg of His6-LC3B was mixed with 1 µg of 

MYC/DDK-ERC1 in reaction buffer (50 mM Tris, pH 7.6, 500 mM NaCl, 5 mM MgCl2, 2 mM -

mercaptoethanol, 10% Glycerol, 30 mM Imidazole) with 30 µl of Ni-NTA magnetic agarose beads 

(Qiagen). For the control group, only MYC/DDK-ECR1 was added to the Ni-NTA magnetic beads. 

The reaction mixture was incubated for 1 hour at 4°C with gentle shaking. Following the 

incubation, the beads were washed three times with the reaction buffer, and proteins were eluted 

from the beads by adding 4X SDS-PAGE sample buffer, and the samples were analyzed by 

immunoblotting using ELKS1 and LC3B antibodies. 

 

6.2.21 Knockdown experiments in MEF or NSC-34 cells 

Mouse embryonic fibroblasts (MEFs) or mouse motor neuron-like hybrid cell line (NSC-34) were 

transfected with 300pM siRNA using Lipofectamine RNAiMAX Reagent. Gene silencing was 

achieved by two consecutive rounds of transfections with the interval of 24h. 48h after the first 

transfection cells were harvested and cell lysates were then analyzed by WB. 

 

6.2.22 Quantitative RT-PCR 

RNA isolation was performed under RNase-free condition: using sterile tubes and pipette tips, 

nuclease-free water, and a mask to cover the mouth. RNA isolation was performed using Trizol 

(Thermo Fisher Scientific) following manufacturing indications. To obtain complementary DNA 

(cDNA) for qRT-PCR analysis, RNA was reversely transcribed with the High-capacity cDNA 

Reverse Transcription Kit. 20 ng of total RNA was used for reverse transcription following the 

manufacturer´s instructions. Quantitative real-time PCR allows to monitor the progress of the PCR 

reaction in real-time; thus, the photodetector 7500 Real-time PCR System was used for 

fluorescent detection. As a dye, qPCRBIO SyGreen Mix Kit was utilized for fluorescent detection, 

which is able to bind to double DNA and emit fluorescence when it unconjugated. qRT-PCR 

experiments were conducted in a 96-well plate with duplicates for each sample. Annealing 

temperatures for each couple of primers were optimized prioranalysis with ATG5 KO samples. 

The threshold of the cycle (Ct) value is given by the cycle number in which the fluorescence signal 

in the exponential amplifying phase passes the fixed threshold (0.1). The composition and 

reaction conditions were followed by manufacture instructions: 
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Component Amount 

2x qPCRBIO SyGreen Mix 20 µL 

1 µM forward primer 4 µL 

1 µM reverse primer 4 µL 

cDNA 6µL (6ng) 

Nuclease-free wáter to a final volumen of 40 µL 

 

Step T (°C) Time 

Stage 1 50 2min 

Stage 2 95 10 min 

Stage 3 

40 cycles 

Denaturation 95 15s 

Annealing 58 40s 

Elongation 72 60s 

Hold 4  

 

Gapdh housekeeping expression was evaluated using two other housekeeping genes, Rrn18s 

and Hprt1(Kye et al., 2011). qPCR analysis of the mRNA expression of pro-survival and pro-

apoptotic genes was performed using a universal PCR master mix and TaqMan probes (Applied 

Biosystems; Bcl2l1/Bcl-xL: Mm00437783_m1, cflar/cFlipL: Mm01255580_m1, Dtit3/Chop: 

Mm00492097_m1, Bax: Mm00432051_m1) and the Ct values were normalized to TATA-box-

binding protein (Tbp) that was used as reference gene. Relative expression of gene transcripts 

was assessed using the 2-ΔΔCt method (Kondylis et al., 2015). 

 

6.2.23Statistical Analysis 

For analysis of experiments, significant estimates were obtained from independent experiments 

(N). MS Excel and GraphPad Prism version 7 were used for the assessment of the statistical 

analysis. The statistical significance between two groups for all normally distributed raw data 

except growth factor treatments was evaluated with a two-tailed unpaired t-test student. Effect of 

BDNF on neuronal complexity wasassessed using paired student's t-tests. The statistical 

significance between more than two groups for all normally distributed raw data was evaluated 

using Two-Way ANOVA (Tukey posthoc test was used to determine the statistical significance 

between the groups). All normalized data were assessed using one-sample student’s t-test. 

Statistical significance on variables obtained from Sholl analysis was calculated using two-way 
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ANOVA with repeated measurements after data normalization using Ln transformation. 

Significant differences were accepted at p<0.05. 
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7. DATA CONTRIBUTION 

In this thesis dissertation, other researchers have contributed by generating/analyzing some of 

the data presented in the results section. Next table clarify the contribution of external 

researchers. 

Figure Contribution Researcher Institution/lab 

7b,d, g Analysis Dr Elodie De Bruyckere CECAD/Kononenko lab 

8c,d Stereotaxic injection DrNatalia L. Kononenko CECAD/Kononenko lab 

12b,d Data generation/analysis Melina Overhoff CECAD/Kononenko lab 

13d,h Data generation/analysis Melina Overhoff CECAD/Kononenko lab 

14c,g Data generation/analysis Melina Overhoff CECAD/Kononenko lab 

18d Analysis Dr Sujoy Bera CECAD/Kononenko lab 

26 Data generation Dr Sujoy Bera CECAD/Kononenko lab 

26f Protein synthesis/purification Qin Chuan Greifswald/Lammers lab 

28a-d Data generation/analysis Melina Overhoff CECAD/Kononenko lab 

29a Data generation Melina Overhoff CECAD/Kononenko lab 

30a,b Data generation/analysis Melina Overhoff CECAD/Kononenko lab 
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