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Abstract

The appreciated macroscopic properties of dual-phase steels, which belong to

the class of advanced high strength steels (AHSS), strongly depend on their

microstructure. Therefore, accurate finite element (FE) simulations of a de-

formation process of such a steel require the incorporation of the microscopic

heterogeneous structure. Usually, the typical length scale of the microscopic

heterogeneities is a factor of up to 106 smaller compared to the macroscopic

length scale. Therefore, a brute force finite element discretization incorpo-

rating the microstructure is not feasible since it results in exceedingly large

problem sizes. Instead, the microstructure has to be incorporated by using

computational homogenization.

In this thesis, we present a numerical two-scale approach of the Nakajima test

for a dual-phase steel, which is a well known material test in the steel industry.

It can be used to derive forming limit diagrams (FLDs), which allow experts to

judge the maximum formability properties of a specific type of sheet metal in the

considered thickness. For the simulations, we use our software package FE2TI,

which is a highly scalable implementation of the well known FE2 homogeniza-

tion approach. The microstructure is represented by a representative volume

element (RVE) and it is discretized separately from the macroscopic problem.

Instead of considering an RVE representing a realistic microstructure, we use

the concept of statistically similar RVEs (SSRVEs), which approximate the

overall material properties. We discuss the incorporation of contact constraints

using a penalty formulation as well as the considered sample sheet geometries

and appropriate boundary conditions. In addition, we introduce a simple load

step strategy and different opportunities for the choice of an initial value for

a single load step by using an interpolation polynomial. Finally, we come up

with computationally derived FLDs obtained from the implementation of two

different evaluation strategies.

Although we use a computational homogenization strategy, the resulting

problems on both scales can be quite large. The efficient solution of such large

problems requires parallel strategies. Therefore, we consider the highly scalable

nonlinear domain decomposition methods FETI-DP (Finite Element Tearing

and Interconnecting - Dual-Primal) and BDDC (Balancing Domain Decompo-

sition by Constraints). A nonlinear FETI-DP method has already been used for

the parallel solution of large microscopic problems in a realistic simulation of a

deformation process of dual-phase steel. For the first time, the BDDC approach

is used for the parallel solution of the macroscopic problem in a simulation of

the Nakajima test. We introduce a unified framework that combines all variants
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of nonlinear FETI-DP and nonlinear BDDC. For the first time, we introduce a

nonlinear FETI-DP variant that chooses suitable elimination sets by utilizing

information from the nonlinear residual. Furthermore, we show weak scaling

results for different nonlinear FETI-DP variants and several model problems.
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Zusammenfassung

Die hervorragenden makroskopischen Eigenschaften von DP Stählen (DP=Dual-

Phasen), die zu der Klasse von hochfesten Stählen (AHSS) gehören, hängen

stark von der Mikrostruktur ab. Daher erfordern Finite-Elemente-Simulationen

(FE=Finite Elemente) eines Umformprozesses eines DP Stahls die Ein-

beziehung der heterogenen Mikrostruktur. Für gewöhnlich ist die charak-

teristische Länge der mikroskopischen Heterogenitäten um einen Faktor von

bis zu 106 kleiner im Vergleich zur charakteristischen Länge des Makroprob-

lems. Dementsprechend ist eine direkte Finite-Elemente-Diskretisierung unter

Berücksichtingung der mikroskopischen Heterogenitäten nicht zielführend, da

wir zu große Probleme erhalten. Stattdessen muss die Mikrostruktur über

einen Homogenisierungsansatz in die Simulation einfließen.

In dieser Arbeit präsentieren wir die Simulation des Nakajimatests für einen

DP Stahl unter Verwendung zweiskaliger Finite-Elemente-Simulationen. Der

Nakajimatest ist ein bekannter Materialtest, der in der Stahlindustrie dazu

genutzt werden kann, Grenzformänderungsdiagramme (FLDs) zu erzeugen,

anhand derer die Experten sofort die maximal zulässigen Umformungen für das

betrachtete Blech mit entsprechender Blechdicke beurteilen können. Für die

Simulationen nutzen wir unser Softwarepaket FE2TI, welches eine hochskalier-

bare Implementierung des bekannten FE2-Homogenisierungsansatzes ist. Die

Mikrostruktur wird durch sogenannte repräsentative Volumenelemente (RVEs)

beschrieben und unabhängig vom Makroproblem diskretisiert. Anstelle einer

realistischen Mikrostruktur nutzen wir das Konzept statistisch ähnlicher

RVEs (SSRVEs), die das Materialverhalten gut approximieren. Wir disku-

tieren die Berücksichtiugung von Kontaktbedingungen unter der Verwendung

einer Straftermformulierung sowie die betrachteten Probengeometrien und

die passende Wahl von Randbedingungen. Zusätzlich stellen wir auch eine

einfache Lastschrittstrategie und Möglichkeiten zu einer besseren Wahl eines

Startwertes eines Lastschrittes vor. Für Letzteres verwenden wir Interpola-

tionspolynome. Schlussendlich zeigen wir Grenzformänderungsdiagramme, die

durch die Auswertung unserer Simulationsergebnisse mithilfe der implemen-

tierten Auswertungsverfahren generiert worden sind.

Obwohl wir einen Homogenisierungsansatz nutzen, können die Probleme auf

Mikro- und Makroebene sehr groß werden. In diesem Fall erfordert die effiziente

Lösung eines solchen Problems die Verwendung eines parallelen Lösers. Dazu

betrachten wir unsere hochskalierbaren nichtlinearen Gebietszerlegungsver-

fahren FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal)

und BDDC (Balancing Domain Decomposition by Constratins). Ein nicht-
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lineares FETI-DP-Verfahren wurde bereits erfolgreich für das parallele Lösen

großer Mikroprobleme in einer realistischen Simulation einer Stahlumformung

genutzt. Für die Simulation des Nakajimatest wird in dieser Arbeit zum ersten

Mal ein paralleler Löser - das BDDC-Verfahren - zur Parallelisierung des

Makroproblems genutzt. Wir stellen ein einheitliches Framework vor, das alle

nichtlinearen FETI-DP- und BDDC-Verfahren zusammenfasst. Zum ersten

Mal wird ein problemabhängiges nichtlineares FETI-DP-Verfahren vorgestellt,

das Informationen des nichtlinearen Residuums dazu nutzt, eine passende

Eliminationsmenge zu bestimmen. Für die nichtlinearen FETI-DP-Verfahren

zeigen wir Ergebnisse von schwachen Skalierbarkeitstests für verschiedene

Modellprobleme.
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1 Introduction

Towards a virtual laboratory for the computer-based derivation of specific prop-

erties of steel, this thesis considers the finite element simulation of contact-

driven deformation processes of a dual-phase (DP) steel. DP steels combine

strength and ductility and belong to the class of advanced high-strength steels.

As a result, they are well-suited as components in safety-relevant parts of cars.

In comparison to conventional steels, they provide the same resistance with less

thickness. Consequently, the usage of DP steel in automobiles reduces weight

and thus fuel consumption. The advantageous properties of DP steel result from

the heterogeneous microstructure, which can be characterized by martensitic in-

clusions in a ferritic matrix material. Assuming that we have an appropriate

chemical composition of the steel, the microstructure can be achieved by a pre-

cise and sophisticated heat treatment process during the rolling process, which

is part of the production process of sheet metals.

Most of the results presented in this thesis have been developed within the

second phase of the EXASTEEL project, which was part of the DFG (Deutsche

Forschungsgemeinschaft) priority programme 1648 “Software for Exascale Com-

puting” (2013-2019). In the last three years, six different groups were involved

in this project, two each working in the fields of mathematics, engineering, and

computer science, respectively. It was the goal of the EXASTEEL project to

provide a realistic finite element simulation of the Nakajima test. This test is

a material test used in the steel industry, in which a sheet metal is clamped

between a blank holder and a die and is then deformed by a spherical rigid

punch until it cracks.

Using different sample sheet geometries in the Nakajima test, certain evalua-

tion strategies lead to a forming limit diagram (FLD), which provides permissi-

ble deformations for the considered thickness of the corresponding type of steel.

It presents major and minor strains before plastic instabilities in a Cartesian

coordinate system, where the minor strains are written on the x-axis. The dif-

ferent sample sheet geometries represent different strain paths, reaching from

uniaxial to equi-biaxial tension. In addition, an interpolation polynomial is

fitted to the different pairs of major and minor strains by using least squares.
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The resulting polynomial is also part of the FLD and it is called forming limit

curve (FLC).

To establish a virtual laboratory, it is mandatory that the simulation repli-

cates the real experiment to the best possible extent. In particular, the simula-

tion has to approximate the real deformation behavior quite well. Accordingly,

we have to incorporate the microstructure into our simulations. For sure, the

most simple idea to consider the microstructure would be to use a finite ele-

ment discretization that resolves the microscopic heterogeneities. However, a

sufficient discretization taking into account the microscopic heterogeneities re-

quires finite elements that are a factor of up to 106 smaller compared to the

macroscopic length scale. Accordingly, a brute force finite element discretiza-

tion leads to problem sizes that cannot be solved, even on the largest current

supercomputers.

Instead, we use a different strategy to incorporate the microstructure into our

simulations. For this purpose, various homogenization approaches have been

developed over the past decades, which allow the independent discretization

of both levels; see, e.g., [30, 43–45, 48, 103, 104, 121, 124, 134, 135, 138]. As a

result, the macroscopic problem, which is homogeneous from a macroscopic

point of view, can be discretized using comparably large finite elements, which

yields smaller macroscopic problems. For the microstructure, the concept of

representative volume elements (RVEs) is used, which assumes that the overall

microstructure can be represented by a small volume fraction. The RVEs are

considered in selected macroscopic points, e.g., Gauß points, and, therefore, the

microscopic problems can be solved in parallel.

Throughout this thesis, we use the FE2 homogenization method; see, e.g., [43,

103,121,134,135,138]. The macroscopic problem is discretized by finite elements

independent of the microstructure, and in each Gauß point, we solve a single

boundary value problem on an RVE. The boundary values of the individual

microscopic problems depend on the macroscopic deformation gradient in the

corresponding points. Therefore, the microscopic problems are weakly coupled

through the macroscopic problem. We exclusively use a phenomenological ma-

terial law on the microscale and the macroscopic material law is replaced by

using volumetric averages of stresses obtained from the corresponding micro-

scopic problem. In addition, we also have to compute a consistent tangent

modulus that takes into account the volumetric average of the tangent moduli

of the corresponding microscopic problem.

Within this thesis, we show various results obtained from different production

runs simulating the Nakajima test. Moreover, we present different FLDs and the
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corresponding FLCs that are obtained by evaluating our simulation results. In

addition, we discuss the numerical implementation as well as required software

developments in our software package FE2TI.

Although we use the FE2 method for considering the microscopic and the

macroscopic levels separately, the resulting discretized problems can be very

large on both scales, but especially on the microscale. As a result, they might

be so large that they cannot be solved efficiently using a (sparse) direct solver.

Accordingly, we have to use parallel solvers instead. So far, in the context of

FE2TI, the FETI-DP method (Finite Element Tearing and Interconnecting -

Dual Primal) [38, 39, 93, 94, 97, 98] has been used for the parallelization of the

microscopic problem; see [74, 107]. The FETI-DP method belongs to the class

of nonoverlapping domain decomposition methods. By introducing a further

level of parallelization resulting from the application of an algebraic multigrid

approach (AMG) to the FETI-DP coarse problem, a FE2TI-based simulation

scaled to the complete JUQUEEN; see [78,79]. For further discussions regarding

the combination of domain decomposition and computational homogenization,

see, e.g., [19,57,143]. Moreover, some discretizations of the macroscopic sample

sheet geometries within this thesis lead to macroscopic problems that cannot be

solved efficiently by using a (sparse) direct solver. Accordingly, we have to use

a parallel solution strategy. Within this thesis, the BDDC method (Balancing

Domain Decomposition by Constraints) [26, 32, 111, 115, 116] is used for the

first time for the parallel solution of the macroscopic problem in FE2TI-based

simulations. The BDDC method also belongs to the class of nonoverlapping

domain decomposition methods.

For the above-mentioned reasons, we are not only interested in the results

of the production runs simulating the Nakajima test, but also focus on the de-

velopment of highly scalable parallel solvers based on domain decomposition

strategies. Since most mathematical formulations of realistic problems tend to

be nonlinear, we consider solvers for nonlinear problems. To be more precise, we

consider nonlinear versions of the nonoverlapping domain decomposition meth-

ods FETI-DP and BDDC. Both, the standard (linear) FETI-DP and BDDC

methods are iterative substructuring methods that were derived from FETI-

1 (Finite Element Tearing and Interconnecting) [12, 40–42, 96] and Balancing

Neumann-Neumann [34,96,114], respectively; see also [150].

The conventional approach for the solution of nonlinear problems with do-

main decomposition strategies can be described as follows: Assuming that we

have a discrete version of a nonlinear problem, this problem will be linearized

first. Afterwards, any choice of a classical domain decomposition method can be
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applied to the linearized system. This includes overlapping as well as nonover-

lapping domain decomposition methods, such as FETI-1, FETI-DP, BDDC,

and overlapping Schwarz [139,150].

Typically, Newton’s method is used for the linearization of the nonlinear prob-

lem due to its quadratic and thus optimal convergence in a neighborhood of the

solution. However, other linearization techniques can also be used; see [18].

Using domain decomposition methods for the solution of nonlinear problems

in the traditional way is referred to as Newton-Krylov-Domain-Decomposition,

e.g, Newton-Krylov-FETI-DP or Newton-Krylov-BDDC. It can be character-

ized by linearization before decomposition.

Alternatively to the traditional approach, we can change the order of the

operations linearization and decomposition, leading to nonlinear problems on

the subdomains. The alternative approach has been applied for many differ-

ent domain decomposition methods, e.g., nonlinear FETI-DP and BDDC, AS-

PIN (Additive Schwarz Preconditioned Inexact Newton) [21, 22, 50, 52–54, 65,

66,100], MSPIN (Multiplicative Schwarz Preconditioned Inexact Newton) [112],

RASPEN (Reduced Additive Schwarz Preconditioned Exact Newton) [33], non-

linear FETI-1 [126], and nonlinear Neumann-Neumann [13]. The nonlinear

FETI-DP and BDDC methods are considered within this thesis and are based

on nonlinear FETI-1. For a nonlinear FETI-DP method, scalability on Mira

for almost 800 000 compute cores has been obtained for nonlinear elasticity;

see [81]. Analogously to linear domain decomposition methods, we also have to

incorporate a coarse problem to obtain good scalability for nonlinear domain

decomposition approaches.

Within this thesis, we present a unified framework that combines all dif-

ferent variants of nonlinear FETI-DP and also nonlinear BDDC into a single

framework. All these methods can be characterized by using a nonlinear right-

preconditioner, which is associated with a (partial) nonlinear elimination of

variables. It turns out that nonlinear FETI-DP methods usually improve the

ratio of local work, global communication, and synchronization. Consequently,

they reduce the time to solution compared to the traditional approach. In addi-

tion to the nonlinear FETI-DP variants presented in [77,84,85,107], which have

strictly defined elimination sets, we introduce a new variant of nonlinear FETI-

DP that is tailored to the problem by choosing problem-dependent elimination

sets.

We conclude the introduction by describing the structure of this thesis. In

the first part (Chapters 2 to 4), we consider the simulation of the Nakajima

test. In the following chapters, we focus on the nonlinear domain decomposition
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methods nonlinear FETI-DP and nonlinear BDDC (Chapter 5), and we present

results for nonlinear FETI-DP methods for different types of model problems

(Chapter 6). In Chapter 7, we shortly summarize the presented results and give

an outlook of possible future research activities.

The different parts are structured as follows. To deliver a necessary basis of

knowledge, we first introduce the experimental test setup of the Nakajima test

as well as two different evaluation strategies to create forming limit diagrams

(Sections 2.1 and 2.2). If the reader is familiar with the Nakajima test, the

first two sections can be skipped. In Section 2.3, we present the microscopic

material law that is used throughout this thesis.. In the following, we describe

the specifications of the sample sheet geometries and of the rigid tools that are

used in the simulations (Section 2.4). In addition, we also discuss the choice

of Dirichlet boundary conditions to approximate the real test setup as good as

possible (see Section 2.5). We also present a strategy to reduce computational

costs by utilizing the symmetric test setup of the Nakajima test; see Section 2.6.

Beginning from Section 2.7, we show the criterion that is used to detect the

appearance of a crack, and we introduce the numerical implementation of the

considered evaluation strategies; see Sections 2.7 to 2.9. Finally, we give a

detailed description of the computation of the major and minor strains that are

essential for the derivation of FLDs.

The results regarding the different simulations of the Nakajima test are pre-

sented in Chapter 3. The FLDs and FLCs that we have obtained from applying

the different evaluation strategies, which are introduced in Chapter 2, are of

central importance. Furthermore, we discuss other aspects like the effects of

different microstructures and penalty parameters, as well as the impact of the

utilization of symmetry.

In Chapter 4, we give an overview of the software package FE2TI that has

been developed during the last six years and is used for the simulations of

the Nakajima test; see also [7]. We briefly discuss the computational homoge-

nization approach FE2 and present the most important software developments

required for the simulation of the Nakjima test. Among others, it includes the

incorporation of a contact algorithm using a penalty formulation.

In Chapter 5, we introduce the nonlinear variants of the nonoverlapping do-

main decomposition methods FETI-DP and BDDC, which can be used for the

parallelization of both levels in the previously introduced FE2TI-based simula-

tions. For a better understanding of the following subsections, we first introduce

some basis notation and the classical linear FETI-DP approach. Subsequently,

we present all nonlinear FETI-DP variants in a unified framework. In partic-
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ular, we present a new variant that determines variable elimination sets with

respect to the nonlinear residual; see also [50]. For the sake of completeness,

we also present the traditional approaches NK-FETI-DP and NK-BDDC. With

some further generalizations to the framework that covers all nonlinear FETI-

DP variants, we can also incorporate the nonlinear BDDC approach into this

framework.

In Chapter 6, we finally show numerical results for the FETI-DP approach

for different nonlinear model problems regarding the p-Laplace equation and

nonlinear elasticity.

We conclude this thesis by shortly summarizing the presented results and by

discussing the possible future research activities.
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2 The Nakajima Test

In the first part of this thesis, we deal with the simulation of the Nakajima

test for the virtual determination of a forming limit diagram (FLD) and the

corresponding forming limit curve (FLC). For a better understanding of the nu-

merical implementation, a certain idea of the considered application is essential.

Therefore, we first describe the test setup of the Nakajima test (see Figure 2.1)

and look at the basic aspects necessary to determine an FLD; see Sections 2.1

and 2.2. Since we simulate the deformation of dual-phase (DP) steel, which

belongs to the class of elasto-plastic materials, we use an elasto-plastic material

model on the microscopic level, which is introduced in Section 2.3. Afterwards,

we deal with the numerical implementation of the essential aspects; see all sec-

tions starting from Section 2.4. The corresponding numerical results are shown

in the following chapter; see Chapter 3. Note that we mark all macroscopic

quantities with an overline in the following to distinguish them from micro-

scopic quantities. The contents of this chapter have been published in this or

similar form by the author of this thesis and his coauthors in [87].

Climate protection is a dominant topic today. Almost every industry faces

new challenges due to stricter CO2 emission regulations all over the world, but

especially in Europe. In addition, in the automotive industry, higher passenger

safety norms are requested. In order to reduce the weight of a car without

violating safety standards, lighter steel grades with higher toughness have to be

used. These properties are fulfilled by steels of the class of DP steels, which be-

long to the class of advanced high-strength steels (AHSS) and combine strength

and ductility. The advantageous macroscopic material properties of DP steels

are achieved by a heterogeneous microstructure consisting of ferrite (first phase,

soft) and martensite (second phase, hard); see, e.g., [9, 10]. In general, the mi-

crostructure results from the chemical composition of the steel and a complex

heat treatment process, i.e., it strongly depends on the temperature and cooling

before and during the rolling process, which is part of the production process of

sheet metals; see, e.g., [9, 10, 145]. Let us note that DP steels can be produced

by both, hot and cold rolling; see, e.g., [145]. For further details regarding the

generation of a microstructure in general and for DP steel in particular, we refer

to the literature mentioned in this paragraph.
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For demonstration purposes, steel developers perform several material tests

to proof the customers that their requirements to the produced sheet metal

are fulfilled. A prominent member of material characterization is the forming

limit diagram (FLD), which contains major and minor strain values at failure

initiation in a Cartesian coordinate system. In this context, material failure

is already associated with the beginning of local necking in the direction of

thickness and not only with crack formation [123, p. v]. The different major

and minor strain points result from different strain paths reaching from uniaxial

to equi-biaxial tension and represent the forming limits of a specific steel grade

with a specific thickness. A regression curve of the determined major and

minor strain values forms the transition between permissible and impermissible

combinations of major and minor strains [123, p. v]. The regression curve is

called forming limit curve (FLC) and gives the extent to which the material

can be deformed by any combination of stretching and drawing without failing

[123, p. v].

There are two standard procedures to derive an FLD, namely the Marciniak

test and the Nakajima test, where the latter one is more common in prac-

tice [123]. In both tests, the specimen is clamped between a blank holder and a

die and a punch is driven into the specimen from below or above until a crack

occurs. The only difference between both tests is the shape of the punch. In the

Nakajima test, we use a hemispherical punch while we use a flat circular punch

in the Marciniak test; see [123, Sec. 4.3.3, 4.3.4] and also Figure 2.1. Note that

it doens not matter whether the punch is driven into the specimen from below

or above. For simplicity, we assume in the following that the punch is always

located below the sample sheet. In both tests, the forming tool is allowed to

move upwards with a speed of 1 to 2 mm per second.

For an accurate determination of the FLC with the Nakajima test, friction

between the hemispherical punch and the specimen has to be avoided as much

as possible [123, p. 2]. Therefore, different lubrication systems can be applied;

see [123, Sec. 4.3.3.3]. A test is only valid if the tribological system is adjusted

such that the crack occurs within a distance less than 15 % of the diameter of

the punch away from the apex of the dome [123, Sec. 4.3.3.3].

Different pairs of major and minor strains are achieved by different shapes of

sample geometries; see [123, Sec. 4.1.2] for a description of the recommended

shapes of the sample sheet geometries and Section 2.4 for the shape of the

sample sheets considered throughout this thesis. All geometries have in common

that they have a central parallel shaft, which is perpendicular to the rolling

direction for steel and parallel to the rolling direction for aluminium; see [123].
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Figure 2.1: Cross section of the experimental test setup of the Nakajima test

including the specifications of the punch, the blank holder, and

the die that are used throughout this thesis.

For an FLC, at least five different shapes of sample geometries have to be used,

and for every shape, three valid tests have to be carried out; see [123].

For evaluation purposes, the surface of a sample sheet is equipped with a

regular grid or a stochastic pattern in experiments (see [123, Sec. 4.2]) and is

recorded by one or more cameras during the deformation process.

There are at least two different strategies to get a pair of major and minor

strains for the FLC, namely the cross section method [123] and a method

based on thinning rates proposed by W. Volk and P. Hora [148]. Since the

FLC gives information about material deformation without failing, we are in-

terested in major and minor strains just before localized necking occurs. Both

strategies are using the values evaluated from the images just before crack ob-

servation to get information about the values immediately before the beginning

of localized necking.

The cross section method uses knowledge about the position of the crack and

evaluates the last recorded image before crack along cross sections perpendicular

to the crack. Then, from these values, the state immediately before material

failure is interpolated; see Section 2.1.

In the method based on thinning rates, the last recorded image before the

occurrence of localized necking is determined explicitly. This specific image is

used to derive major and minor strains for the FLC; see Section 2.2.
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2.1 Evaluation Based on the Cross Section Method

The cross section method is a standardized tool for the evaluation of the cor-

responding major and minor strain pairs for the FLD; see DIN EN ISO 12004-

2:2008 [123, Ch. 5.2], where the presentations in this section are based on.

The evaluation based on the cross section method can be done in different

ways. On one hand, the evaluation can be done on the cracked sample after

removing it from the forming tool. On the other hand, the evaluation can

also be performed using the last state before the crack becomes visible. In

the following, we will consider the latter case. Note that the general idea of

the cross section method is not affected by the different evaluation states, i.e.,

most parts of the following discussion also hold for the evaluation of the cracked

sample sheet.

In the following, we assume that we have successfully performed the Nakajima

test for a single sample sheet, i.e., the sample sheet cracked in the tolerated

range and we have access to all recorded images of the sample sheet surface

during the deformation process.

In the cross section method, the cross sections are considered to be as perpen-

dicular as possible to the crack and have a length of at least 20 mm, including at

least 10 grid points at both sides of the crack. For sample sheet geometries with

a comparable small width of the parallel shaft, cross sections are supposed to

be parallel to the shaft and in general, it is recommended that intersection lines

correspond to the (virtual) grid orientation in the main strain directions [123].

The first cross section is placed such that its center is identical to the center of

the crack and one or two cross sections are positioned above and below with a

distance of about 2 mm.

The idea is to compute a pair of major and minor strains εFLD
1 and εFLD

2 for

each cross section which represents the major and minor strains just before the

beginning of plastic instability, i.e., before localized necking begins. For each

grid point along an intersection line, we store the major and minor strain values

as well as the corresponding x-position. Note that the position is computed from

the arc length with reference to the first intersection point, which is associated

with an x-position of 0 mm.

According to our assumption, we know the crack position as well as the first

recorded image for which the crack becomes visible. For the determination of

the cross sections, the first image with a visible crack is used. Afterwards, the

cross sections are transferred to the previous image, i.e., the last image before

the crack appears, which is subsequently used for the evaluation. Since we have

no crack at this point, the crack position pcr is approximated for each cross
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section separately. Therefore, we look for the maximum major strain value

along the corresponding cross section and fit a second-order polynomial to the

values within a range of 8 mm (4 mm on each side) or at least 5 grid points (2

at each side) by using least squares. The final crack position pcr is given by the

location of the maximum value of the resulting second-order polynomial. Note

that the definition of the crack position does not have to be performed if the

cracked sample is evaluated.

The final major and minor strain values for the FLD are computed from the

evaluation of two inverse second-order polynomials in the crack position. For

the construction of the inverse second-order polynomials, we have to compute

optimal fit windows on each side of the crack separately.

First of all, all grid points belonging to the necked area have to be deter-

mined. Therefore, for the major strains of each three consecutive grid points

i−1, i, i+ 1, i > 1, a second-order polynomial gi is constructed. For each gi, the

second derivative of gi corresponds to the midpoint i of the three consecutive

grid points. By construction, the grid point next to the crack has no associated

second derivative. To smooth the second derivatives in a grid point i, the same

is repeated using five consecutive grid points i − 2, . . . , i + 2, i > 2. Subse-

quently, we generate a second second-order polynomial gfi by using the method

of least squares. Note that the two grid points closest to the crack have no

associated smoothed second derivative.

For all grid points with a maximum distance of 6 mm to the crack position

pcr, we have to find the local maxima of the second derivatives of gi and gfi
closest to pcr. If the local maxima of the second derivatives of gi and gfi differ

by at least one grid point, the end of the necked area is defined by the position

of grid point i with maximum second derivative gi. Otherwise, the end of the

necked area is defined as 3 mm away from pcr. In case that there are less than

four grid points with a maximum distance of 6 mm to the crack, the four grid

points closest to pcr are considered.

To exclude values in the necked area from the interpolation, the end of the

necked area is defined as inner boundary bi of the fit window. Afterwards, we

determine the optimal size w of the fit window by using knowledge about the

major and minor strains εi,l1 , εi,r1 , εi,l2 , and εi,r2 at the inner boundaries on both

sides of the crack. The optimal window size w writes

w = 10 ·

(
1 +

0.5 · (εi,l2 + εi,r2 )

0.5 · (εi,l1 + εi,r1 )

)
.
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Figure 2.2: Fitted inverse secord-order polynomials to the major strain values

along the first cross section. Left: Specimen with a width of the

parallel shaft of 70 mm. Right: Full circular specimen.

This figure is accepted and soon to be published; see [87, Fig.

2]; EXASTEEL - Towards a virtual laboratory for the multiscale

simulation of dual-phase steel using high-performance computing;

Software for Exascale Computing - SPPEXA 2016-2019; Springer

LNSCE.

Finally, the outer boundary bo = bi + w is computed as the sum of the inner

boundary bi and the optimal window size w.

After the fit windows on both sides of the crack are determined, we can start

the interpolation process to recompute the major and minor strain values εFLD
1

and εFLD
2 for the FLD. At first, the major strain point εFLD

1 has to be deter-

mined. Therefore, an inverse second-order polynomial 1
f(x) has to be fitted to

the major strain values ε1 within the fit windows on both sides of the crack by

using the method of least squares. The evaluation of the inverse quadratic func-

tion at the crack position pcr yields the final major strain value εFLD
1 = 1

f(pcr) ;

see Figure 2.2 and Figure 2.7 (bottom). For the corresponding minor strain

value εFLD
2 , we again have to fit an inverse second-order polynomial 1

h(x) within

the same fit windows as before by using least squares. Instead of fitting the

inverse polynomial to the minor strain values ε2, the true thickness strain values

ε3 = −(ε1 + ε2) are used. Note that the true thickness strain is derived via

the incompressibility equation (see [31, Eq. 3.103] and Equation (2.31)). Eval-

uation of the fitted inverse polynomial in the crack position pcr yields the true

thickness strain εFLD
3 = 1

h(pcr) . Finally, the minor strain value εFLD
2 is computed

from the incompressibility equation (see [31, Eq. 3.103] and Equation (2.31))

as

εFLD
2 = −

(
1

f(pcr)
+

1

h(pcr)

)
= −

(
εFLD

1 + εFLD
3

)
.

For further details regarding the cross section method, we refer to [123].
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Note that the derived values of major and minor strains εFLD
1 and εFLD

2

in general never exist during the deformation process. Consequently, these

numbers somehow do not have a physical background [148]. Moreover, instead

of fitting inverse second-order polynomials 1
f(x) and 1

h(x) to the major strain

values ε1 as well as to the true thickness strain values ε3, we fit second-order

polynomials f(x) and h(x) to the inverse of the corresponding values, i.e., 1
ε1

and 1
ε3

.

2.2 Evaluation Method Based on Thinning Rates

Alternatively to the cross section method, another strategy to determine the

corresponding major and minor strain values of the FLD is presented in [148], on

which the discussion in this section is based on. In contrast to the cross section

method, where the computed values usually do not exist during the deformation

process, the method proposed in [148] determines the last image before the

beginning of plastic instability by considering thinning rates. Subsequently, the

major and minor strain values are evaluated from this specific image.

As before, let us assume that we have successfully performed the Nakajima

test for a specific sample sheet and that we have access to all recorded images

of the surface of the sample sheet during the deformation process. Let us

further assume that the sample sheet surface is equipped with a regular grid.

Accordingly, the recorded images of the sample sheet surface can be used to

generate a finite element mesh using 4-node membrane elements. Subsequently,

we can calculate thinning rates for each image and all finite elements.

The computation of thinning rates requires the deformation rate tensor

D = 0.5 · (L+ L
T

),

which can be computed from the velocity gradient tensor

L = Ḟ · F−1
,

where F is the 2D deformation gradient and Ḟ its time derivative; see, e.g., [29,

Sec. 3] for a detailed description of the tensors considered here. The thinning

rate ω̇ := d3 = −(d1 + d2) is now calculated by using the eigenvalues d1

and d2 of the deformation rate tensor D and the incompressibility equation

(see Equation (2.31)). Note that the notation ε̇ is used instead of ω̇ in [148].

However, all macroscopic values are marked with an overline throughout this

13
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thesis and ε is already reserved for the macroscopic strains. Therefore, we

decided to use ω̇ as notation for the thinning rates.

Before the beginning of plastic instability can be observed, a suitable database

must first be determined. For a typical recording frequency of 10 images per

second, the last 30 to 40 images before crack are recommended. Once the

database is set, we have to compute for each image k = 1, . . . , b in the database

and for all elements i = 1, . . . , g in the analysis area the thinning rates ω̇
k
i . We

introduce the ascending sorted set Γk of thinning rates

Γ
k

:=
{
ω̇
k
1, . . . , ω̇

k
g

∣∣ ω̇ki−1 ≤ ω̇
k
i , i = 2, . . . , g

}
, k = 1, . . . , b.

To define a set of elements that belong to the instability zone, we consider the

second-last picture before the crack appears. We compute the representative

maximum thinning rate ω̇max, which is the arithmetic mean value of the five

highest thinning rates, i.e.,

ω̇max =
1

5

g∑
i=g−4

ω̇
b−1
i .

The set of elements in the instability zone is defined as

N =
{
i
∣∣ ω̇b−1

i ≥ αN · ω̇max

}
,

where αN can be chosen by the user. It is recommended to choose αN such

that N contains 5 to 15 elements, depending on the grid size. For every image

k = 1, . . . , b− 1, the set

N k =
{
ω̇
k
j

∣∣ j ∈ N}
of thinning rates in the instability zone is stored and the representative thinning

rate

ω̇
k
rep =

1

|N k|
∑
i∈N

ω̇
k
i

is computed as the arithmetic mean value of thinning rates in N k.

Finally, the representative thinning rates ω̇
k
rep, k = 1, . . . , b, are plotted over

the number of images. This procedure yields a characteristic behavior for all

specimens in the Nakajima test with a linear increase with a very small slope in

the beginning, a linear increase with a high slope in the end, and a curved area

in between; see Figure 2.3 and the corresponding figures in [148]. The small

14



Figure 2.3: Representative thinning rates ω̇
k
rep for the last 4 mm before the

crack appears with an approximative recording frequency of 10

images per millimeter and the rigid punch moves 1 mm per second.

Left: Sample sheet geometry with a parallel shaft width of 30 mm.

Right: Sample sheet geometry with a parallel shaft width of 70

mm.

increase of representative thinning rates ω̇
k
rep is associated with a stable defor-

mation and the large increase is associated with localized necking. To define

the point of beginning plastic instability, we have to fit linear functions to both

linear parts of the diagram using least squares. Afterwards, we have to com-

pute the cross point of both linear functions, which determines the beginning

of plastic instability. In the end, the major and minor strains are computed

as the arithmetic mean value of major and minor strains of all elements in the

instability zone in the last picture before the beginning of plastic instability.

For further details, we refer to [148].

2.3 Elasto-Plasticity

In the simulation of the Nakajima test, we deal with different sample sheets of

a DP steel, which is a specific type of steel and therefore belongs to the class

of elasto-plastic materials. Hence, accurate simulations require the usage of an

elasto-plastic material model representing the different material behavior of the

ferritic and martensitic phases on the microscopic level. Besides metals, also

soils, rocks, and concrete belong to the class of plastic materials. Thus, plas-

ticity is an important research topic in various fields, which is still up-to-date.

In the last decades, also the numerical incorporation of crystal plasticity, which

takes into account the polycrystalline structure of steels, is a large research

topic; see, e.g., [129] and the references therein. For a deeper study of the the-

ory of plasticity in the context of the continuum mechanical framework, we refer
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to, e.g., [61, 62]. For a deeper study of plasticity from a mathematical point of

view, we refer to the references mentioned in [29], e.g., [55]. Following [29], the

usage of a small strain plasticity model leads to inaccurate simulation results in

the case of metal-forming operations. Therefore, we have to take into account

the large strain plasticity model, which is introduced in, e.g., [29, 35,137].

Plastic deformations of steel only take place when the material is subjected

to further load after reaching a certain stress state. Before this state is reached,

all deformations are completely elastic. For the determination of the beginning

of plastic deformation, a yield criterion is required, which determines whether

the deformation is completely elastic or contains plastic components based on

the state of stress. The critical stress is called yield stress and can change

during the deformation process. This change is defined by a hardening law. In

addition, we also need a free energy potential and a flow rule. The latter is

responsible for the evolution of the plastic quantities.

In the following, we derive all necessary functions for our elasto-plasticity

material model following the discussion in [29]. The discussion in this section

is also based on parts of [16,99]. We describe a material model that takes into

account a rate-independent isotropic exponential-type hardening based on an

associative von Mises yield criterion, which is also documented in, e.g., [16,99];

see also the references therein. Let us note that we consider strain-based hard-

ening and that von Mises plasticity is also called J2 plasticity, as is explained

below.

When considering isotropic strain-based hardening, which is here the case,

the hardening law usually depends only on a single scalar value representing

the plastic strain; see [29, Sec. 6.6.2]. In the material model considered here,

we use the effective von Mises plastic strain

εp =

∫ t

0

√
2

3
ε̇p : ε̇p dt =

∫ t

0

√
2

3
||ε̇p|| dt, (2.1)

which is also called the von Mises equivalent plastic strain or, in short, equiva-

lent plastic strain. Here, ε̇p is the rate form of the plastic component εp of the

strain ε.

The free energy potential is a function depending on the overall strain and

the hardening variable, i.e., it can be represented as a function ψ(ε, εp), where

ε represents the strain. As it is assumed in the theory of small strains, we

assume that the free energy potential can be additively split into an elastic and

a plastic part, where the elastic part only depends on the elastic strain εe and
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the plastic part depends on the hardening parameter, i.e., we can write

ψ(ε, εp) = ψe(εe) + ψp(εp), (2.2)

where εe is the elastic part of the overall strain. To formulate the yield function,

the thermodynamical force

β := β(εp) =
∂ψ

∂εp
=
∂ψp

∂εp
(2.3)

is introduced, which is conjugate to the hardening parameter εp.

The yield function is a scalar function depending on a stress tensor, which

is the Kirchhoff stress tensor τ (see [29, Sec. 3.3.6]), and the thermodynamical

force β. Accordingly, the yield function can be written as a function Φ(τ, β).

Note that β defines the yield stress, i.e., the critical stress at which plastic

yielding begins. For all stress states which fulfill Φ(τ, β) < 0, the deformation

is fully elastic. Therefore, we can introduce the elastic domain of stress states

as

EΦ =
{
τ
∣∣ Φ(τ, β) < 0

}
. (2.4)

The boundary of the elastic domain EΦ is defined by

YΦ =
{
τ
∣∣ Φ(τ, β) = 0

}
, (2.5)

which is also called yield surface. It defines the set of Kirchhoff stresses τ at

which plastic deformations may occur. Let us note that the set of admissible

Kirchhoff stresses is defined by

AΦ =
{
τ
∣∣ Φ(τ, β) ≤ 0

}
. (2.6)

As mentioned before, we consider a von Mises yield criterion, where the onset

of plastic flow depends on the J2 stress deviator invariant. This is why the

von Mises plasticity is also called J2 plasticity. The deviator of the Kirchhoff

stress τ is defined as

dev(τ) = τ − 1

3
tr(τ)I

and J2 is defined as the negative second invariant, i.e.,

J2 := J2(dev(τ)) = −I2(dev(τ)) =
1

2
tr(dev(τ)2) =

1

2
||dev(τ)||2.
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The von Mises yield criterion can be written as

Φ(τ, β) =
√

3 · J2(dev(τ))− β =

√
3

2
· ||dev(τ)|| − β. (2.7)

In associative plasticity models, the yield criterion is equivalent to the flow rule.

The evolution of the plastic variables has to be derived from a thermody-

namical law. Therefore, we first have to introduce some relevant tensors. Let

us note that we do not go too much into detail, and we refer to the literature,

e.g., [29], for a more detailed discussion.

In large strain plasticity, the deformation gradient F is multiplicatively split

into the elastic deformation gradient F e and the plastic deformation F p, i.e.,

we can write

F = F e · F p, (2.8)

which was introduced in [109,110]; see also [105]. Here, the elastic deformation

gradient belongs to the stress-driven deformations and the plastic deformation

gradient F p = (F e)−1F belongs to a stress-free intermediate configuration.

Locally, the intermediate configuration can be interpreted as the result of elastic

unloading (multiplication with the inverse of F e) of the overall deformation F .

The multiplicative split of the deformation gradient also finds a solid physical

justification in the slip theory of crystals; see [29, Rem. 4.1]. Analogously to

the deformation gradient F , we can perform the polar decomposition of the

elastic and plastic deformation tensors resulting in

F e = ReU e = V eRe (2.9)

F p = RpUp = V pRp,

where the tensors U j , V j and Rj , j ∈ {e, p}, are denoted as elastic/plastic right

stretch tensor, left stretch tensor, and rotation tensor, respectively; see [29, Sec.

2.2.9]. Similar to the split of the deformation gradient into elastic and plastic

parts, we can also define elastic and plastic parts of the right and left Cauchy-

Green strain tensors C = F TF and B = FF T ; see [29] for details about the

different strain tensors. Defining

Ce = (F e)TF e, Cp = (F p)TF,

Be = F e(F e)T , Bp = F p(F p)T ,
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the multiplicative decomposition of the deformation gradient F (see Equa-

tion (2.8)) yields

B = F eF p(F p)T (F e)T = F eBp(F e)T and

C = (F p)T (F e)TF eF p = (F p)TCeF p.

Inserting Equation (2.8) into the velocity gradient L = ḞF−1, we obtain

L = ḞF−1 = Ḟ eF pF−1 + F eḞ pF−1

= Ḟ eF p(F p)−1(F e)−1 + F eḞ p(F p)−1(F e)−1

= Ḟ e(F e)−1 + F eḞ p(F p)−1(F e)−1

:= Le + F eLp(F e)−1.

Analogously to the stretch tensor (also called deformation rate tensor)

D = 1
2(L+ LT ) = sym(L), we can also define the plastic stretch tensor

Dp = sym(Lp) = sym(Ḟ p(F p)−1). (2.10)

Note that any tensor T can be decomposed into its symmetric and skew-

symmetric part, i.e., we can write

T =
1

2
(T + T T ) +

1

2
(T − T T ) := sym(T ) + skew(T );

see [29, Sec. 2.2.1]. We also define W p := skew(Lp), which is assumed to

be zero throughout this thesis. This assumption is compatible with plastic

isotropy; see [29]. Again, for a more detailed discussion, we refer to, e.g., [29].

Assuming that Dp has the orthonormal eigenvectors vi and corresponding

eigenvalues dpi , i = 1, . . . , 3, we can write Dp in its spectral decomposition as

Dp =
3∑
i=1

dpi vi ⊗ vi.

The plastic stretch tensor measures the plastic strain along the orthogonal di-

rections defined by the orthonormal eigenvectors vi, i = 1, . . . , 3. To consider

the spatial configuration, we have to consider the plastic stretch tensor in the

deformed or spatial configuration, i.e., after applying the elastic rotation Re

(see Equation (2.9)) to Dp (see Equation (2.10)). We obtain

D̃p = ReDp(Re)T = Resym(Lp)(Re)T .
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Note that Dp and D̃p have the same eigenvalues and the corresponding eigen-

vectors of D̃p are Re ·vi, i = 1, . . . , 3, where vi are the orthonormal eigenvectors

of Dp. For further details, we refer to [29].

Throughout this thesis, we consider logarithmic strain measures using the

left Cauchy-Green tensor B, i.e., we obtain

εe =
1

2
ln(Be). (2.11)

Recalling that the elastic part of the free energy only depends on the elastic

strain (see Equation (2.2)), we obtain

ψe(εe) =
λ

2
(ln(λ1λ2λ3))2 + µ((lnλ1)2 + (lnλ2)2 + (lnλ3)2), (2.12)

where (λei )
2, i = 1, . . . , 3 are the eigenvalues of the elastic part of the left (or

right) Cauchy-Green tensor; see [29, Eq. (13.58)].

The constitutive law for the Kirchhoff stress is now derived from the Clausius-

Duhem inequality (see [16,29]). Neglecting all thermal aspects, we obtain

τ : D − ρψ̇ ≥ 0, (2.13)

where ρ is the mass density of the reference configuration and ψ̇ is the time

derivative of the free energy. From the additive decomposition of the free energy

(see Equation (2.2)), we obtain

ψ̇(εe, εp) =
∂ψe

∂εe
: ε̇e +

∂ψp

∂εp
ε̇p. (2.14)

Inserting Equation (2.11) into the latter equation, we obtain

ψ̇(εe, εp) =
∂ψe

∂εe
: (D − D̃p) +

1

ρ

∂ψp

∂εp
ε̇p. (2.15)

Again, inserting Equation (2.15) into Equation (2.13), we obtain(
τ − ρ∂ψ

e

∂εe

)
: D + ρ

∂ψe

∂εe
: D̃p − ∂ψp

∂εp
ε̇p ≥ 0,

which has to be fulfilled for all tensors D, i.e., the constitutive equation

τ = ρ
∂ψe

∂εe
(2.16)
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has to hold; see [29]. Finally, Equation (2.13) reduces to

τ : D̃p − ∂ψp

∂εp
ε̇p ≥ 0. (2.17)

Let us note that in [16, 99] the constitutive equation τ = 2 ∂ψ
e

∂BeB
e is derived,

which is identical to our result since we have chosen εe = 1
2 ln(Be) and, therefore,

we obtain

∂ψ

∂εe
=

∂ψ

∂ 1
2 ln(Be)

= 2
∂ψ

∂Be

∂Be

∂ln(Be)
= 2

∂ψ

∂Be
Be.

The missing factor ρ results from the slightly different definition of ψ̇ in [16],

where the factor is already introduced in ψ̇.

From the principle of maximum dissipation, we obtain that the current state

of τ and β has to maximize Equation (2.17). Therefore, we have to solve

an optimization problem under the additional constraint that the stress state

belongs to the set of admissible stresses. Instead of maximizing Equation (2.17),

we consider the equivalent minimization of

−τ : D̃p +
∂ψp

∂εp
ε̇p ≤ 0.

Therefore, we introduce the Lagrange multiplier γ̇ and obtain the Lagrange

functional

−τ : D̃p +
∂ψp

∂εp
ε̇p + γ̇Φ(τ, β) ≤ 0. (2.18)

Building the partial derivatives of the Lagrange functional with respect to β

and τ yield the evolution equation of the hardening variable εp and the flow

rule, respectively. For the evolution of the hardening parameter, we obtain

ε̇p = −γ̇ ∂Φ(τ, β)

∂β
, (2.19)

where we have used the relation β = ∂ψp

∂εp (see Equation (2.3)). The plastic flow

rule is given by the constitutive equation

D̃p = γ̇
∂Φ

∂τ
. (2.20)

The partial derivative of Equation (2.18) with respect to the Lagrange mul-

tiplier γ̇ yields Φ(τ, β) = 0. As usual, Equations (2.19) and (2.20) and

Φ(τ, β) = 0 are solved iteratively and the fulfillment of the Lagrange function is

21



NAKAJIMA TEST

ensured by the well-known Karush-Kuhn-Tucker (KKT) optimality conditions

(see, e.g., [11, 113,122])

Φ(τ, β) ≤ 0, γ̇ ≥ 0, Φ(τ, β) · γ̇ = 0. (2.21)

In terms of loading and unloading of sheet metals, we can interpret the KKT

conditions as follows. In the case of elastic loading, the yield criterion is fulfilled,

i.e., Φ < 0 holds; see Equation (2.4). In this case, the third equation of the KKT

condition (2.21) yields γ̇ = 0, i.e., the plastic variable stays unchanged since

ε̇p = 0 is obtained from Equation (2.19). Alternatively, we have to consider the

case when we have a stress state τ ∈ YΦ, i.e., Φ = 0 holds; see Equation (2.5).

From the definition of the admissible set of stress states (see Equation (2.6)),

it follows that the yield criterion can not rise in the next step, i.e., it stays

constant (Φ̇ = 0), or it decreases (Φ̇ < 0). The latter case is associated with

elastic unloading since we obtain γ̇ = 0 as before. If we have Φ̇ = 0, two

different states for the Lagrange multiplier are possible. First, the Lagrange

multiplier can also be zero, i.e., γ̇ = 0, which is associated with a neutral

loading. Otherwise, γ̇ > 0 holds, which represents plastic loading. Pairwise

combination of the values of the individual cases yields the consistency equation

γ̇Φ̇(τ, β) = 0;

see [16]. Let us note that it is also possible to define the flow rule (see Equa-

tion (2.20)) using the directional derivative of the elastic left Cauchy-Green

tensor Be, which is also called the LIE derivative; see [119]. From [16], we

obtain the representation

L(Be) = F

(
∂

∂t
(F−1BeF−T )

)
F T = F (Ċp)−1F T , (2.22)

where the last equation follows from

F−1BeF−T = (F p)−1(F e)−1F e(F e)T (F e)−T (F p)−T = (F p)−1(F p)−T = (Cp)−1.

In [29], the LIE derivative is represented as

L(Be) = Ḃe − LBe −BeLT ,

which can be used to reformulate the flow rule (see Equation (2.20)) to

−1

2
L(Be) · (Be)−1 = γ̇

∂Φ

∂τ
;
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see also [16, 99]. Inserting Equation (2.22) into the last equation and using

F e = F (F p)−1 as well as (Ċp)−1Cp = −(Cp)−1Ċp, we obtain

Ċp = 2γ̇Cp(F−1∂Φ

∂τ
F )

as an alternative flow rule in terms of the plastic part of the right Cauchy-Green

tensor; see again [16,99].

To complete the formulation of the material model, we have to summarize

the important results from this section and also have to formulate a hardening

law, where we use an exponential hardening rule. For the yield criterion, we do

not use the derived function Φ̃(τ, β) =
√

3
2 ||dev(τ)|| − β (see Equation (2.7))

but the equivalent representation

Φ(τ, β) =

√
2

3
Φ̃(τ, β) = ||dev(τ)|| −

√
2

3
β; (2.23)

see also [16]. Inserting the yield criterion (see Equation (2.23)) into the evo-

lution equation of the plastic strain (see Equation (2.19)), the evolution of the

equivalent plastic strain writes

ε̇p =
∂Φ

∂β
γ̇ =

√
2

3
γ̇. (2.24)

For the variable β, which is conjugate to the equivalent plastic strain, we write

β = y∞ + (y0 − y∞)exp(−ηεp) + hεp, (2.25)

where y0 is the initial yield strength and y∞ as well as η are material param-

eters representing the exponential hardening behavior. The variable h defines

the superimposed linear hardening; see [16]. Combining the definition of β in

Equation (2.25) and the relation β = ∂ψp

∂εp (see Equation (2.3)), we obtain the

plastic part of the free energy ψ(ε, εp) as

ψp(εp) = y∞ε
p − 1

η
(y0 − y∞)exp(−ηεp) +

1

2
h(εp)2. (2.26)

All necessary quantities for the derivation of the material model are summarized

in Table 2.1.

Implicit Integration Scheme Since elasto-plastic materials are path-

dependent (see, e.g., [29]), i.e., the stress tensor does not only depend on

the current strain but also on the history of the plastic strain, we have to
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kinematics F = F eF p, Be = F e(F e)T , εe = 1
2 ln(Be)

strain energy ψ = ψe(εe) + ψp(εp) see (2.2)

elastic part
ψe = λ

2 (b1 + b2 + b3)2 + µ(b21 + b22 + b23) see (2.12)

bi = ln(λei ), λ
e
i eigenvalues of Be, i = 1, . . . , 3.

plastic part ψp = y∞ε
p − 1

η (y0 − y∞)exp(−ηεp) + 1
2h(εp)2 see (2.26)

stresses
τ = ρ∂ψ

e

∂εe = 2 ∂ψ
e

∂BeB
e =

∑3
i=1 τi · vi ⊗ vi, τi = ∂ψe

∂bi
,

vi orthonormal eigenvectors of Be

conj. internal β = y∞ + (y0 − y∞)exp(−ηεp) + hεp see (2.25)

yield criterion Φ = ||dev(τ)|| −
√

2
3β see (2.23)

flow rule D̃p = γ̇ ∂Φ
∂τ see (2.20)

evolution of
ε̇p =

√
2
3 · γ̇ see (2.24)

plastic variable

KKT conditions Φ ≤ 0, γ̇ ≥ 0, Φγ̇ = 0 see (2.21)

Table 2.1: Summary of the finite J2 elasto-plasticity material model; see also

[16].

use a special numerical treatment for the integration of the flow rule. In [29],

it is stated that the stress tensor is obtained from solving a constitutive

initial boundary value problem. Therefore, the integration of the flow rule

is necessary, which is a rate constitutive equation and is therefore integrated

using a time discretization. In our case, we will use an implicit Euler scheme

for the discretization and the integration is done using an exponential update

algorithm. Following [99], it was originally proposed by Weber and Anand

in [149]. Using a von Mises flow rule, which is considered throughout this

thesis, plastic incompressibility is preserved throughout the update procedure,

which is necessary for deformation processes of metals; see [16, 29, 99] and the

references therein.

We are interested in the evolution of the plastic variables from time tn to

time tn+1. All quantities belonging to time tn are already known and are de-

noted with an index (·)n. Analogously, all quantities belonging to time tn+1 are

denoted with an index (·)n+1. Note that the relevant quantities at time tn+1

are unknown and only the deformation gradient Fn+1 is known since we con-

sider a deformation driven formulation. The admissible stress state τn+1 and

the equivalent plastic strain εpn+1 are obtained by a return-mapping algorithm

to the time interval [tn, tn+1]. Within this algorithm, it is assumed that the
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deformation from time tn to time tn+1 is completely elastic, i.e., the plastic

quantities do not change. Therefore, we introduce a trial state in time tn+1 and

set

(Cpn+1)trial = Cpn, (εpn+1)trial = εpn.

These quantities are used to compute τ trial
n+1 and βtrial

n+1, which are then used

to check whether the flow criterion Φtrial
n+1(τ trial

n+1 , β
trial
n+1) ≤ 0 is fulfilled. If the

condition holds, the initial assumption of a fully elastic deformation is true and

we set

Cpn+1 = (Cpn+1)trial = Cpn, τn+1 = τ trial
n+1 ,

εpn+1 = (εpn+1)trial = εpn, βn+1 = βtrial
n+1.

Otherwise, the trial stresses have to be projected onto the yield surface, i.e., on

the boundary of the domain of admissible stresses (see Equation (2.5)). Due to

the exponential (nonlinear) hardening law, the projection cannot be derived in

a closed form but has to be computed by a Newton iteration. For further details

regarding the algorithmic treatment of the Newton iteration, we refer to [99].

In case of isotropic hardening, which is considered throughout this thesis, the

return-mapping algorithm is also called radial return algorithm. Following [29],

it was the first type of return-mapping algorithm.

2.4 Sample Sheet Geometries and Specifications of

Rigid Tools

So far, we have introduced the test setup of the Nakajima test as well as two

different evaluation strategies for pairs of major and minor strain values for the

FLD. Furthermore, we have discussed the implemented material model on the

microscopic level. In the following, we will focus on the numerical implementa-

tion of the application introduced above.

The sample sheet geometries we consider within this thesis fit to the normed

range in DIN EN ISO 12004-2:2008 [123]. Furthermore, they were partly used

in another PhD thesis by David Jocham; see [68]. Most of the sample sheets

have a central parallel shaft, where the length of the shaft is 25 mm, and its

width varies from 30 mm to 129 mm; see Figure 2.4 for some examples. These

geometries are expected to yield a more uniform distribution of the experi-

mental forming limit points than rectangular sample sheets and are therefore

recommended; see [123]. Additionally, we consider a fully circular specimen; see
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Figure 2.4: Specifications of sample sheets with different parallel shaft widths

and of the full circular sample sheet. The dark gray area is as-

sumed to be fully clamped, i.e., we apply Dirichlet boundary con-

ditions; see Section 2.5. The red (inner) circle represents the inner

wall of the die and the green (outer) circle represents the begin-

ning of the clamped part between the blank holder and the die;

see also [87, Fig. 1 (right)] for a similar figure.

again Figure 2.4. Throughout this thesis, we exclusively handle sample sheets

with a thickness of 1 mm.

For all specimens, the material is assumed to be completely clamped by a

bead, which has a radius of 86.5 mm. Therefore, we only consider material

points p = [px, py, pz] which fulfill
√

(px − cx)2 + (py − cy)2 ≤ 86.5 mm, where

c = [cx, cy, cz] is the center of the sample sheet; see Figure 2.4. Throughout

this thesis, the center cb = [cx, cy, c
b
z] of the bottom surface of the discretized

sample sheet is always placed in the origin of the coordinate system.

As for the considered sample sheets, also the specifications of the rigid tools

are within the normed range from [123]. The hemispherical punch has a radius

of 50 mm. The blank holder is a square plate of 173 mm × 173 mm that has a

circular whole in the middle with a radius of 55 mm; see the red (inner) circle

in Figure 2.4. The inner wall of the die also has a radius of 55 mm, i.e., it is

placed with a distance of 5 mm to the rigid punch; see, again, the inner (red)

circle in Figure 2.4. The die radius is chosen to be 10 mm (see Figure 2.1),

26



i.e., all material points p with
√

(px − cx)2 + (py − cy)2 =
√
p2
x + p2

y ≥ 65 are

possibly clamped between the blank holder and die.

Following the discussion on appropriate boundary conditions in Section 2.5,

we only consider finite element nodes p which fulfill
√
p2
x + p2

y ≤ 65 for all

specimens with a shaft width of less than 90 mm . The same holds for the

completely circular sample sheet. Only for sample sheets with larger shaft

widths, we consider finite element nodes that fulfill
√
p2
x + p2

y ≤ 86.5.

2.5 Choosing Appropriate Boundary Conditions

To obtain accurate solutions for our finite element simulations of the Nakajima

test, we have to approximate the real test conditions as good as possible. For

this reason, we have to incorporate the blank holder and the die into the simula-

tion process. Otherwise, the deformation behavior of the sheet metal would be

different, which might lead to a wrong failure zone. Furthermore, the forming

tool has to cover a larger distance until failure occurs. The consideration of

the blank holder and the die in the simulation of the Nakajima test becomes

even more relevant if we consider friction. In this case, the frictional sliding of

the sheet metal along with the blank holder and the die has an impact on the

deformation behavior. Therefore, friction affects the time at which the crack

occurs.

Since the blank holder and the die force the metal sheet into a specific shape

by contact, the incorporation of these tools raises the number of possible contact

points in our simulations. Accordingly, we have to add additional contact terms

to more finite element nodes, which enlarges the assembly time on one hand

and the complexity of the problem on the other hand. We have come up with

various strategies for taking the blank holder and the die into account without

increasing the number of contact points.

First of all, we have to identify those areas of the discretized sheet metal

which lie between blank holder and die. Due to the specifications introduced

in Section 2.4, all finite element nodes p with
√
p2
x + p2

y ≥ 65 mm are possibly

clamped; see also Figure 2.4.

The first idea was to force the z-components of all possibly clamped finite

element nodes to stay unchanged. This idea is sufficient for all finite element

nodes which stay within the identified areas throughout the complete simulation

process. However, this finding does not hold in general for all finite element

nodes since finite elements are stretched throughout the deformation process

and, therefore, finite element nodes will drop out of this area. Whenever this
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happens, the assumption of a constant z-component is not sufficient to rebuild

the real circumstances.

A more rigorous strategy is to assume that all finite element nodes with√
p2
x + p2

y ≥ 65 mm are fixed. It is associated with blank holder forces that are

so high that the material cannot move between the blank holder and the die.

For sure, it is sufficient to perform the simulations exclusively on the remaining

finite elements that do not belong to the predefined areas between the blank

holder and the die in this case. Subsequently, we only consider finite element

nodes p that fulfill
√
p2
x + p2

y ≤ 65 mm and choose all finite element nodes

with
√
p2
x + p2

y = 65 mm as Dirichlet boundary. This strategy works quite well

for specimens with a comparable small width of the parallel shaft (less than

90 mm). However, for specimens with wider parallel shafts, it turns out that

this assumption leads to an unexpected material failure in the cutoff area. This

observation is also mentioned in [68], where it is described that the material fails

in the cutoff area due to the prohibited material flow between the blank holder

and the die. Therefore, the assumption of fully clamped sheet metals has to be

slightly adapted for specimens with larger shaft widths. Due to material failing

in the cutoff area, the idea is to allow material movement near the boundaries

of the cutoff. As before, material movement in the remaining parts between

the blank holder and the die is prohibited. More precisely, only finite element

nodes p with
√
p2
x + p2

y ≥ 65 mm and |py| ≤ 50 mm are still assumed to be

fixed; see Figure 2.4 (bottom left) and the corresponding figure in [68, Abb. 7.3]

for further information. The effect of the adaptions is presented in Figure 2.5.

2.6 Exploiting Symmetry

Under ideal experimental conditions, which are considered in our numerical

simulations, the macroscopic sample sheet is expected to crack perfectly along

the vertical centerline. Since the experimental test setup of the Nakajima test is

perfectly symmetric and DP steels are nearly isotropic, it can be advantageous

to consider a half or a quarter instead of the complete sample sheet in numerical

simulations.

The usage of our highly scalable software package FE2TI requires at least

one individual MPI rank for each macroscopic Gauß point; see Section 4.1.

Hence, the demand for individual MPI ranks for one simulation depends on the

number of macroscopic integration points, which is directly connected to the

number of finite elements. Since accurate finite element simulations require a

sufficient discretization, the number of finite elements cannot be chosen arbi-
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Figure 2.5: Comparison of the distribution of the value W of the modified

Cockcroft & Latham criterion (see Section 2.7) for an overall tool

movement of 29.303 mm with different boundary conditions. Com-

putation of a symmetric quarter of a specimen with a width of 90

mm; see also Figure 2.4 (bottom left). Left: Dirichlet boundary

conditions completely prohibit material flow between the blank

holder and the die. Part of the specimen between the blank holder

and the die is in dark grey; computed on magnitUDE. Right:

The usage of adapted boundary conditions enables material flow

between the blank holder and the die in the cutoff area. Here,

we have to simulate the part of the specimen between the blank

holder and the die; computed on JUWELS.

trarily. Therefore, exploiting symmetry reduces the number of individual MPI

ranks without changing the discretization. The number of ranks is reduced by

a factor of two when considering a half of the complete sample sheet and by a

factor of four when considering a quarter of the complete sample sheet. Note

that throughout this thesis, a half always means the upper half of the complete

sample sheet, and a quarter means the upper right quarter; see Figure 2.6 for

an example of a quarter.

By construction, only for discretizations of the complete sample sheet we can

end up with a centered finite element, i.e., the center of a finite element has the

same x- and y-coordinates as the center c = [cx, cy, cz] of the sample sheet.

Whenever we use a symmetric part of the overall sample sheet, the final

solution is approximated by mirroring. Hence, to guarantee continuity of the

final solution, additional partial boundary conditions have to be applied along
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Figure 2.6: Left: Symmetric quarter (light grey) of the overall sample sheet

that is used for the simulations. Right: Microscopic orientation

change of an asymmetric SSRVE resulting from the mirroring of

the symmetric solution to rebuild the overall solution. The light

grey quarter is the computational domain.

the symmetric boundaries. For the half, the symmetric boundary is along the

horizontal centerline. Here, the y-coordinates of all macroscopic finite element

nodes p with py = 0 have to be fixed. For a quarter, additionally displacements

in x-direction have to be avoided for all macroscopic finite element nodes p with

px = 0.

Note that the use of a symmetrical part of the complete sample sheet is only

expected to be exact when the RVE has a symmetric structure, since mirror-

ing of the solution also means mirroring of the RVEs; see Figure 2.6 (right).

Therefore, the assumption of a periodic unit cell is violated for symmetric com-

putations with an asymmetric RVE. In this case, the derived solution is only

an approximation to the solution using the complete sample sheet, even for the

symmetric part. If we take crystal plasticity into account, which is a future goal,

preferred directions along slip systems come into play (see, e.g., [129]), which

cause that the macroscopic symmetry assumption generally does not hold, even

for symmetric RVEs.

Except for the comparison of different RVEs (see Section 3.2), we exclusively

consider an RVE with an asymmetric structure throughout this thesis; see Fig-

ure 3.8 (middle). Nonetheless, most of the simulations are carried out on a

symmetric quarter because saving computing time has a higher priority than

the impact on the solution.

For a comparison between simulations using a symmetric quarter and the full

sample sheet we refer to Section 3.4.
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2.7 Failure Criterion - a Modified Cockcroft & Latham

Criterion

In the cross section method (see Section 2.1) as well as in the evaluation strategy

based on thinning rates (see Section 2.2), the evaluation requires the detection

of the first image for which a crack becomes visible. Since the software does not

feature crack propagation, we use a phenomenological failure criterion to detect

the observation of a failure zone. Therefore, a criterion similar to the Cock-

croft & Latham criterion [24] is chosen. The original criterion was successfully

used in a paper by Tarigopula et al. [144] for analyzing large deformation of a

DP800 grade of steel. It was already introduced in 1968 and it depends on the

macroscopic equivalent plastic strain εp and the maximum positive principal

stress σI at time tk. Note that the stress depends on the overall macroscopic

strain ε. The original Cockcroft & Latham criterion writes

W̃ (εp(tk)) =

∫ εp(tk)

0
max (σI(ε(tk)), 0) dεp. (2.27)

Since the stress tensor σ is a symmetric second order tensor with nine entries, it

can be represented by a symmetric matrix A ∈ R3×3. The computation of the

maximum principal stress component is identical to finding the maximum eigen-

value of A, which are real numbers due to its symmetry. For the computation

of eigenvalues of symmetric 3× 3 matrices; see Section 2.11.

Note that the deformation process is split up into several load steps in the

simulations and, therefore, the evaluations at time tk correspond to the evalu-

ation at load step k, e.g., εpk = εp(tk). Hence, Equation (2.27) can be written

as

W̃k = W̃ (εpk) =

∫ εpk

0
max (σI(εk), 0) dεp. (2.28)

The failure value W̃k in load step k is computed in each macroscopic Gauß point

and is interpolated to the finite element nodes. The failure value is accumulated

throughout the deformation process until a critical value W̃c is reached, i.e.,

W̃k ≥ W̃c is fulfilled, at least in one finite element node on the top surface of the

sample sheet. Exceeding the critical value is associated with the observation of

a crack. In [144], a critical value between 590 MPa and 610 MPa was chosen for

a DP800 steel. In the scope of this thesis, a DP600 grade of steel is considered,

which requires a lower critical value W̃c since a DP600 grade of steel is expected

to be less resistant in comparison to a DP800 grade of steel.
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In contrast to the original criterion due to Cockcroft & Latham [24], we use

a modified version, which we denote as modified Cockcroft & Latham cri-

terion. Here, we do not use the macroscopic equivalent plastic strain εp, since

the macroscopic constitutive law in the FE2 approach is replaced by averaged

microscopic values; see Section 4.1. Therefore, the average of the microscopic

equivalent plastic strains ε̃pk = 〈εp(tk)〉 is used instead of εpk. By usage of nu-

merical integration, Equation (2.28) writes

W k = W̃ (ε̃pk) =

∫ ε̃pk

0
max (σI(εk), 0) dε̃p ≈

k∑
i=1

max (σI(εi), 0) ·
(
ε̃pi − ε̃

p
i−1

)
= W k−1 + max (σI(εk), 0) · (ε̃pk − ε̃

p
k−1), (2.29)

and W k is referred to as modified failure value in load step k. Here, (ε̃pk− ε̃
p
k−1)

is the increment in the average of the microscopic equivalent plastic strains

from load step k − 1 to load step k and the initial values W 0 and ε̃p0 are set

to zero, i.e., W 0 = ε̃p0 = 0. As in the original Cockcroft & Latham criterion,

we define a critical value W c which is associated with failure. We obtain from

Equation (2.29) that the computation of the failure value W of the modified

Cockcroft & Latham criterion in a specific load step requires the failure value of

the last load step. Therefore, in simulations, the failure value has to be stored in

each macroscopic Gauß point. Note that the failure value is updated whenever

convergence of a load step is reached. For an example of the evolution of the

failure criterion during the deformation process; see Figure 3.1.

2.8 Implementation of the Experimental Cross Section

Method

In contrast to the real experiment, the simulation results enable the opportunity

to look inside the sample sheet. Furthermore, the simulations only provide exact

macroscopic values in the integration points, which in general do not coincide

with the finite element nodes. Accordingly, cross sections along the top surface

of the sample sheets would only take interpolated major and minor strains ε1

and ε2 into account. In contrast to the experiment, we therefore consider cross

sections along Gauß points closest to the upper surface.

Due to the fully symmetric test setup of the Nakajima test, it is possible to

exploit symmetry and to simulate only a symmetric part of the overall sample

sheet; see Section 2.6. This automatically implies some assumptions regarding

the position of the failure zone.
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When we consider a quarter, the failure zone is expected to evolve along the

vertical centerline and has its center on the horizontal centerline. The latter

is also true if we consider a half of the full geometry, but in this case, we

do not imply any assumptions regarding the horizontal position of the failure

zone. Only considering the full geometry does not imply any assumptions on

the position of the failure zone.

Finite element discretizations of symmetric parts of the full geometry always

have finite element nodes along the horizontal centerline. Accordingly, no cross

section cuts the expected vertical center of the failure zone, since we consider

cross sections along integration points that usually do not coincide with finite

element nodes. In addition, when considering a quarter of the full structure,

we also have finite element nodes along the vertical centerline, i.e., we have no

integration point at the expected horizontal center of the failure zone. Even for

the simulation of the complete sample sheet, it cannot be guaranteed that we

have integration points at the vertical and horizontal center of the failure zone.

Therefore, we choose the first cross section along these Gauß points that have

the smallest distance to the horizontal centerline. For simplicity, we also build

cross sections along the remaining Gauß points of the finite elements that are

used for the first cross section. Thus, the distance between the cross sections

depends on the diameter of these finite elements and is generally smaller than

2 mm, which is used in the experimental cross section method. Let us note that

we may have a cross section along the horizontal centerline if we do not utilize

symmetry and consider the complete sample sheet. In this case, we only have

two remaining rows of Gauß points in the same finite elements and we have to

consider the neighboring rows of finite elements.

The choice of simulating a quarter or a half of the sample sheet or even the

full geometry also affects the numerical realization of the experimental cross

section method. For all symmetric computations, only cross sections above

the horizontal centerline are considered, but due to the assumptions about the

position of the failure zone, the cross sections below the horizontal centerline

would provide identical results. Furthermore, for a quarter of the full structure,

there is only one side of the cross section available, but the other side can be

simply generated by mirroring; see Figure 2.2 and Figure 2.7 (top). Thus, for

a quarter of the sample sheet, we have to compute the optimal fit window only

for one side of the failure zone.

For the derivation of the FLD, we restrict ourselves to simulations on a quar-

ter of the sample sheet. Unfortunately, it turns out that the failure zone evolves

parallel to the vertical centerline for sample sheet geometries with a parallel
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Figure 2.7: Major strains along the first cross section for the specimen with

a parallel shaft width of 100 mm. Left: Original values of major

strains and fitted inverse second-order polynomial. Right: Major

strains along cross section after shifting maximum values to the

center and fitted inverse second-order polynomial.

This figure is accepted and soon to be published; see [87, Fig.

5]; EXASTEEL - Towards a virtual laboratory for the multiscale

simulation of dual-phase steel using high-performance computing;

Software for Exascale Computing - SPPEXA 2016-2019; Springer

LNSCE.

shaft width of at most 100 mm. Thus, the mirroring of the solution leads to

the occurrence of a second failure zone. In this case, the cross section method

cannot be used as before, since it is only a valid strategy for specimens with

a single crack; see [123]. Therefore, we adapt the implementation of the cross

section method for simulations on a symmetric quarter with an off-centered two

failure zone. We assume that the maximum major strain along the cross section

defines the center of the failure zone. Neglecting all values between the vertical

centerline and the maximum major strain and shifting the failure zone back to

the vertical centerline, we can proceed as before; see Figure 2.7.

Of course, the final pair of major and minor strain values that is written into

the FLD is strongly affected by the evaluation point and thus, it depends on

the chosen critical value of the failure criterion; see Section 2.7.
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2.9 Implementation of the Evaluation Based on

Thinning Rates

In all our simulations, we consider a constant speed of 1 mm per second for our

forming tool, i.e., each load increment makes the same (pseudo-)time increment.

Following [123], the considered speed is the lower bound of allowed forming tool

speeds; see also the beginning of Chapter 2.

In our simulations, we obtain a new image for each converged load step.

Thus, the recording frequency in our simulations depends on the load step size.

Since we have to use small load steps, especially shortly before failure, we have a

higher recording frequency compared to the real test application; see Figure 2.8.

Furthermore, the load increment may change during the simulation; see Sec-

tion 4.2.1. Thus, the time between two consecutive images is not guaranteed

to be constant, which is also in contrast to the real test application.

To overcome the problem of a higher recording frequency, the number of con-

sidered images has to be changed. Recalling that a database of 30 to 40 images

is recommended, the last 3 to 4 mm of the overall tool movement are covered

if a forming tool speed of 1mm
s is considered. Therefore, in our simulations, we

take all images into account that belong to the last 4 mm of punch movement

before reaching the critical value of the modified Cockcroft & Latham failure

criterion in a finite element node on the top surface of the sample sheet; see

Figures 2.3 and 2.8.

To deal with a variable pseudo time between two recorded images, the repre-

sentative thinning rates are no longer plotted over the number of images but over

the accumulated distance covered by the tool. To get closer to the real condi-

tions, it is also possible to consider only images between which the forming tool

has covered a distance of about 0.1 mm; see Figure 2.3 and Figure 2.8 (right).

Recalling that our simulations lead to exact values in the integration points

and not in the finite element nodes, we do not compute the thinning rates at

the top surface but in the Gauß points that are closest to the top surface. In

contrast to the procedure introduced in [148], we have more than one Gauß

point per finite element since we perform fully three-dimensional simulations.

Consequently, we end up with more than one thinning rate per finite element.

Throughout this thesis, we exclusively consider Q2 finite elements on the macro-

scopic level and therefore, we have 9 different thinning rates per finite element.

Accordingly, we first compute the average of thinning rates for each finite ele-

ment before we can follow the strategy introduced in Section 2.2; see also [148].
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Figure 2.8: Representative thinning rates ω̇
k
rep for the last 4 mm before the

crack appears. Sample sheet geometry with a parallel shaft width

of 110 mm. Left: Taking into account all load steps within the

last 4 mm before crack. Right: Consideration of load steps that

have an approximative distance of about 0.1 mm.

As it is the case for the cross section method, the numerical realization of

the method based on thinning rates also depends on whether a quarter, a half,

or even the full sample sheet is simulated. For the full sample sheet, the vari-

able αN should be chosen, such that five to fifteen finite elements belong to the

instability zone, depending on the chosen grid size. To obtain an absolute num-

ber of about nα finite elements in the instability zone, we have to choose bnα4 c
or dnα4 e finite elements when using a quarter and bnα2 c or dnα2 e finite elements

when using a half, since the full solution is approximated by mirroring.

As before (see Section 2.8), the detection of the first image that is associated

with failure, i.e., the choice of the critical value W c (see Section 2.7) strongly

affects the final pair of major and minor strains. Furthermore, it may also

change the characteristics of the resulting diagrams of representative thinning

rates ω̇
k
rep, k = 1, . . . , b, where b is the number of images. After the linear

increase with a high slope, sometimes a constant part or even a linear decrease

with a small slope can be seen, especially for comparable high critical val-

ues; see Figure 2.8. Thus, the selection of the fitted linear function has to be

modified. Instead of starting from the third last picture and choosing a linear

function with minimal error, we generate a linear function for each nx succes-

sive images and choose the function with maximum slope. The number nx can

be chosen by the user. The constant or linear decreasing part after the linear

increase with a high slope might indicate that the chosen critical value is too

high and that the specimen failed earlier.

For the computation of the velocity gradient tensor L, we require the com-

putation of the time derivative Ḟ of the deformation gradient F . It is possible
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to derive Ḟ by a linear approximation

Ḟ t =
F t − F t−1

dt
, (2.30)

where dt = lt =
∑t

i=1 li −
∑t−1

i=1 li is the load increment, which is identical

to the pseudo time increment. Note that
∑t

i=1 li is the accumulated load up

to load step t. The approximative computation of Ḟ in Equation (2.30) is

assumed to be very inaccurate [148]. Therefore, a different strategy for the

computation of Ḟ is suggested in [148] and introduced in [147], where each

entry of Ḟ t has to be computed separately using a quadratic least square fit

considering seven successive load history points ranging from t − 3 to t + 3.

During simulations, values of upcoming load steps cannot be accessed, hence

the linear approximation has to be used for on line computations. Nevertheless,

the least square strategy can be used when the thinning rates are computed in

a post processing step.

2.10 Computation of Major and Minor Strains

The cross section method (see Section 2.1) as well as the strategy based on

thinning rates (see Section 2.2) are using knowledge about the major and minor

strains ε1 and ε2 on the surface of the sample sheet. Hence, the application of

either the cross section method or the method based on thinning rates requires

the computation of major and minor strains, at least, on the surface of the

specimen.

In [148], the numerical derivation of ε1 and ε2 on the sheet metal surface

is described for a finite element mesh using 4-node membrane elements. In

contrast to that, we consider a fully three-dimensional simulation, i.e., we have

a three-dimensional finite element discretization of the full sheet metal and not

only of the surface. Therefore, we have to adapt the descriptions in [148] for

our purposes.

Analogously to [148], we use a Total Lagrange description, i.e., the initial

discretization of the sample sheet is used as a reference configuration and the

solution of the current load step as the present configuration. The computation

of ε1 and ε2 requires the two-dimensional plane strain tensor with respect to

the two main directions parallel to the major and minor strain directions. Un-

fortunately, all quantities in our simulations are three-dimensional quantities.

If we can compute the required 2D plane strain tensor C from our quantities,

we can proceed as in [148].
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At this point, we assume that we have successfully obtained the two-

dimensional plane strain tensor C; see below for the numerical implementation.

The computation of the major and minor strain values ε1 and ε2 requires the

computation of the eigenvalues λ1 and λ2 of C. Since the plane strain tensor C

can be represented by a 2× 2 matrix A = (aij)ij , i, j = 1, 2, the eigenvalues λ1

and λ2 can be directly computed as

λ1 = 0.5 ·
(
a11 + a22 +

√
(a11 − a22)2 + 4 · a12 · a21

)
and

λ2 = 0.5 ·
(
a11 + a22 −

√
(a11 − a22)2 + 4 · a12 · a21

)
.

Note, that the strain tensor is symmetric, i.e., we have a12 = a21.

Afterwards, major and minor strains are the logarithmic strains

ε1 = ln(1 + λ1) and

ε2 = ln(1 + λ2),

which are also called true strains or Hencky strains; see [123, 148]. The true

thickness strain results from the incompressibility equation [31, Eq. 3.103]

ε3 = −(ε1 + ε2). (2.31)

Following the arguments in [148], logarithmic strains are used due to the large

strain components resulting from the Total Lagrange description.

As is suggested in [64], we use the Green-Lagrangian strain tensor

C = 0.5 · (F TF − I), which is in contrast to [148]. As before, F is the

2D deformation gradient and I is the 2× 2 identity matrix.

Derivation of the Plane Strain Tensor In the descriptions of the computation

of the major and minor strain values, we have assumed that we can compute the

two-dimensional plane strain tensor from three-dimensional quantities obtained

from our simulations. In this section, we will briefly introduce the numerical

implementation of the computation.

The starting point is the assumption that the tangent plane Tm at the mid-

point m = [mx,my,mz] of the upper surface of each finite element is a good

approximation to its real surface. Once the corresponding tangent plane is

computed, we can rotate the complete finite element such that Tm is parallel to

the x-y-plane and finally project the finite element nodes of the upper surface

of the rotated finite element to the tangent plane. Due to the projection, the
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z-component can be neglected and the plane displacements as well as the plane

strain tensor can be computed.

The tangent plane Tm is uniquely defined by its normal vector nm and the

coordinate m. Note that nm is the outward normal vector. Assuming that the

surface of the sheet metal is parameterized by convective coordinates ξ and η,

the normal vector nm = [nmx , n
m
y , n

m
z ]T can be computed from the cross product

nm = tξ × tη of the tangent vectors

tξ =
[∑r

I=1
∂NI(m)

∂ξ
pIx,

∑r
I=1

∂NI(m)

∂ξ
pIy,

∑r
I=1

∂NI(m)

∂ξ
pIz

]T
and

tη =
[∑r

I=1
∂NI(m)
∂η pIx,

∑r
I=1

∂NI(m)
∂η pIy,

∑r
I=1

∂NI(m)
∂η pIz

]T
at the midpoint m. Here, NI are the basis functions belonging to the r finite

element nodes pI = [pIx, p
I
y, p

I
z] of the upper surface of a finite element. Since

we consider Q2 finite elements, we have r = 9 throughout this thesis. Note that

the finite element nodes pI belong to the current state.

To determine the rotation angle ϑ, the angle between nm and e3 = [0, 0, 1]T

has to be computed, which yields

ϑ =


− arccos(nm

T
e3), nmx > 0,

− arccos(nm
T
e3), nmx = 0 and nmy < 0,

− arccos(nm
T
e3), else.

For the determination of the final rotation matrix R, the orientation of the

intersection line between the tangent plane Tm and the x-y-plane has to be

determined, which is given by

v =

vxvy
vz

 =


[
1, 0, 0

]T
, if nmx = 0,[

−nmy
nmx
, 1, 0

]T
, otherwise.

Finally, we can state the rotation matrix R as

R =

 av2
x + cos(γ) avxvy − v3 sin(γ) avxvz + vy sin(γ)

avyvx + vz sin(γ) av2
y + cos(γ) avyvz − vx sin(γ)

avzvx − vy sin(γ) avzvy + vx sin(γ) av2
z + cos(γ)

 ,
with γ = −ϑ and a = 1− cos(γ); see [56].

To get the coordinates of the finite element nodes of the rotated finite element,

we have to multiply the current coordinates with R. Since only the x- and y-
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components of the rotated coordinates are of interest, we can write

prx = R11px +R12py +R13pz and

pry = R21px +R22py +R23pz

for a specific finite element node p =
[
px, py, pz

]
. The final plane displacement

ur can be derived by subtracting the reference coordinates pref =
[
pref
x , pref

y , pref
z

]
of the initial state of p from the rotated coordinates pr of the current state, i.e.,

urx = prx − pref
x and

ury = pry − pref
y .

From this displacements, the resulting plane deformation gradient F and subse-

quently the Green-Lagrange strain tensor C = 0.5 ·(F TF−I) can be computed.

2.11 Computation of Eigenvalues of Symmetric 3 × 3

Matrices

In the scope of this thesis, we have to compute the eigenvalues of a symmetric

3× 3 matrix for the evaluation of the failure criterion; see Section 2.7.

Let A = (Aij) ∈ R3×3 be a symmetric matrix. Finding the eigenvalues λ of

A results in finding the roots of the characteristic polynomial

det(λI −A) = (λ−A11)(λ−A22)(λ−A33)− (A12A23A31)− (A13A21A32)

− (A31(λ−A22)A13)− (A32A23(λ−A11))− ((λ−A33)A21A12)

= λ3 − λ2(A11 +A22 +A33)−A11A22A33 −A12A23A31

−A13A21A32 +A13A22A31 +A32A23A11 +A33A21A12

+ λ(A11A22 +A11A33 +A22A33 −A13A31 −A23A32 −A12A21)

= λ3 − λ2tr(A)− det(A)

+ λ(A11A22 +A11A33 +A22A33 −A13A31 −A23A32 −A12A21).

(2.32)

Using

A11A22 +A11A33 +A22A33 −A13A31 −A23A32 −A12A21

=
1

2
(2A11A22 + 2A11A33 + 2A22A33 − 2A12A21 − 2A13A31 − 2A23A32)

=
1

2

(
tr(A)2 − tr(A2)

)
,

(2.33)
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the characteristic polynomial in Equation (2.32) can be rewritten to

det(λI −A) = λ3 − λ2tr(A)− λ

2
(tr(A2)− tr2(A))− det(A). (2.34)

In the last equality of Equation (2.33), it was added 0 =
∑3

i=1(A2
ii −A2

ii).

Now, let v ∈ R3 be an eigenvector of A. If we consider the matrix

B = 1
p(A− qI), p 6= 0, q ∈ R, v is also an eigenvector of B since

λv = Av = (pB + qI)v = pBv + qv

⇔ λ− q
p

v = Bv.

Here, µ := λ−q
p is the corresponding eigenvalue of B to the eigenvector v. Hence,

the eigenvalues of A can be computed from the eigenvalues of B by λ = pµ+ q.

Note that B is not defined for p = 0, but in this case A = pB+ qI reduces to a

diagonal matrix and therefore, the eigenvalues of A are its diagonal entries q.

Following a note in [140], we choose the parameters q = tr(A)
3 and

p =

√∑3
i=1

∑3
j=1(Aij−qIij)2

6 . Since A is symmetric, we can also write

p =

√
tr((A−qI)2)

6 . According to the choice of p and q, we obtain

tr(B) = tr(
1

p
(A− qI)) =

1

p
tr(A)− 3q

p
=

1

p
(tr(A)− tr(A)) = 0, (2.35)

tr(B2) =
1

p2
tr(A2 − 2qA+ q2I) =

1

p2
tr((A− qI)2) =

6p2

p2
= 6. (2.36)

Inserting Equations (2.35) and (2.36) into Equation (2.34) yields

det(µI −B) = µ3 − 3µ− det(B) (2.37)

for the characteristic polynomial of B.

Following [154, Ch. 2.2.2], Equation (2.37) has three real roots if

det(B)2

4
− 1 ≤ 0⇔ |det(B)| ≤ 2 (2.38)

is fulfilled. Otherwise, Equation (2.37) has one real root and two imaginary

roots.

By definition, B is real and symmetric. Hence, the roots of Equation (2.37)

are real numbers and, therefore, Equation (2.38) is fulfilled, since

0 im. roots⇒ ! (2 im. roots)⇒ ! (| det(B)| > 2)⇒ |det(B)| ≤ 2
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holds. Defining b̃ := 1
3 arccos

(
det(B)

2

)
, the eigenvalues of B are given by

µ1 = 2 cos(b̃),

µ2 = − cos(b̃)−
√

3 sin(b̃), and

µ3 = − cos(b̃) +
√

3 sin(b̃);

see [154, Ch. 2.2.2] and the corresponding errata [153]. We can reformulate µ2

and µ3 to

µ2 = 2 cos(b̃+
2π

3
) and µ3 = 2 cos(b̃+

4π

3
)

by using the equality

cos

arccos
(

det(B)
2

)
3

+
2kπ

3

 =

cos

arccos
(

det(B)
2

)
3

 cos

(
2kπ

3

)
− sin

arccos
(

det(B)
2

)
3

 sin

(
2kπ

3

)
, k = 1, 2, ;

see [154, Ch. 6.5.9].

Finally, the eigenvalues of A write λi = q + p · µi, i = 1, 2, 3.
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3 Numerical Results for the Simulation

of the Nakajima Test

In this chapter, we have collected some results regarding the simulations of

the Nakajima test with different sample sheets that were performed on the

supercomputers

• JUWELS at Jülich Supercomputing Centre, Germany; European Tier 0;

TOP500 rank 23 in the year 2018 (114 480 cores; 9.8 petaflops); main

source of compute time for the computation of an FLD; see Section 3.1

• MagnitUDE (Tier-3): 13 536 cores (Broadwell XEON E5-2650v4 12C

2.2GHz; 24 cores and 72 GB per node); 476.5 TFlops NEC Cluster; op-

erated by Center for Computational Sciences and Simulation (CCSS) of

the Universität Duisburg-Essen (UDE) providing computing resources for

UDE; TOP500 rank 384 (November, 2016).

In order to simulate the deformation process of a DP steel accurately, we have

to take into account an elasto-plastic material model; see Section 2.3 and the

references therein. Furthermore, also the choice of the representative volume

element (RVE) has an impact on the deformation behavior; see Section 3.2.

For the derivation of an RVE representing a realistic microstructure, electron

backscatter diffraction is used; see [17]. For DP steels, the martensitic inclu-

sions in the ferrite matrix are quite small and widely spread. Thus, a realistic

microstructure of DP steels requires a fine discretization of the RVE, which

leads to large microscopic problems. To overcome this problem, we do not take

into account an RVE with a realistic microstructure, but we consider statis-

tically similar RVEs (SSRVEs); see [8, 133]. Instead of considering the small

martensitic islands, the SSRVEs only consider inclusions of simple geometries

such as ellipsoids, but describe the overall mechanical behavior of the DP steel

appropriately. The final shapes of the inclusions are derived by an optimization

process. As a result, the inclusions in the SSRVEs are much simpler compared

to the realistic microstructure and, therefore, we can use a coarser grid for the

discretization. If not noted otherwise, we always consider an SSRVE with two

ellipsoidal inclusions that was fitted to the realistic microstructure of a DP600
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grade of steel; see Figure 3.8 (middle). It is discretized using 1 470 P2 finite

elements in an unstructured manner resulting in 7 152 degrees of freedom.

Throughout this thesis, we exclusively use structured Q2 finite elements for

the discretization of the macroscopic sample sheet geometries and, if not noted

otherwise, we use two finite elements in thickness direction. The number of

finite elements depends on the width of the parallel shaft as well as on whether

we use a symmetric part of the sample sheet or not; see Sections 2.5 and 2.6.

Let us note that both, the macroscopic as well as the microscopic discretizations

are derived by using the open source software package GMSH [49].

We provide an individual MPI rank for each microscopic boundary value

problem, i.e., for each macroscopic integration point. Since we consider hexa-

hedral Q2 finite elements, we have 27 integration points per macroscopic finite

element. Consequently, the number of required MPI ranks can be directly com-

puted by multiplying the number of finite elements with 27.

In the simulation of the Nakajima test, we consider a contact-driven defor-

mation that results from the movement of the rigid punch in upward direction;

see Figure 2.1. As one can see in Table 3.1, the rigid punch has to move about

30 mm until failure is detected. Of course, this load is much too large to apply

it in one step. Consequently, we split the movement of the rigid punch into

smaller load steps. As an initial load step, we always choose linit = 0.1 mm. In

our simulations, we make use of a dynamic load step strategy (see Section 4.2.1)

and a linear extrapolation strategy (see Section 4.2.2). Accordingly, the load

step size is expected to change various times during the simulation process. To

exclude too large load steps, we always prescribe a maximum allowed load step

size lmax = 0.2 mm. The linear extrapolation is activated after the third load

step.

Since friction between the rigid punch and the deformable body has to be

avoided as much as possible in the Nakajima test (see [123]), we consider fric-

tionless contact based on a penalty formulation; see Section 4.2.4. If not stated

otherwise, we have chosen a penalty parameter εN = 500 in our simulations.

The derivation of the virtual FLD requires the simulation of the Nakajima test

for different sample sheets. Following [123], at least five different sample sheets

are required for a valid FLD. Nonetheless, we have used 10 different sample

sheets, including a fully circular specimen and sample sheets with parallel shaft

widths of 30 mm, 50 mm, 70 mm, 90 mm, 100 mm, 110 mm, 125 mm, and

129 mm; see Section 2.4 and Figure 2.4. For the derivation of the virtual FLD,

we have restricted ourselves to the usage of the symmetric quarter. On one

hand, the computational costs are reduced by a factor of about 4. On the other
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hand, the resulting problem sizes can be solved on mid-sized HPC systems,

which seems reasonable for the application in industries.

In our software, we have not implemented crack propagation. Instead, we use

a phenomenological failure criterion, namely the modified Cockcroft & Latham

criterion, for the detection of a crack; see Section 2.7. Unfortunately, we do

not have experimental data to calibrate a critical value W c, which is associated

with the appearance of a crack. The original Cockcroft & Latham criterion

was used in [144] for a DP800 grade of steel and they have provided a critical

value of W c = 590 − 610 MPa. Based on this, we have estimated a critical

value W c = 450 MPa, since a DP600 grade of steel is less robust compared to

a DP800 grade of steel. However, to ensure that we do not stop the simulation

too early, the stopping criterion in our simulations is not based on this critical

value. Accordingly, the simulation proceeds if the critical value is reached in a

macroscopic finite element node on the top surface of the sample sheet, even if

it is associated with failure.

Since the stopping criterion is not based on the failure criterion, we have

to formulate other conditions to terminate the simulation. On one hand, the

simulation ends if the overall load, i.e., the accumulated rigid tool movement,

reaches the corresponding value that was prescribed by the user. On the other

hand, the stopping criterion is also based on the load step size. If the load step

size of 10 consecutive load steps is smaller than a predefined allowed minimum

load step size, the simulation somehow stagnates and is therefore stopped. Fur-

thermore, if the load step size has to be reduced seven times within a single

load step, the simulation also terminates. A stopping criterion based on the

load step size is motivated by the fact that small load steps indicate hard nu-

merical problems, which are surely expected in the case of failure. In all our

computations, the minimum allowed load step size is 10−4 · linit = 10−5 mm.

If not noted otherwise, we always use the sparse direct solver package MKL

PARDISO [132] for solving the resulting tangent problems on both scales. As

interval between two checkpoints, we have always used 75 load steps.

3.1 A Virtual Forming Limit Diagram

First, we present the results of different production runs for the derivation of

the virtual FLD and the corresponding FLCs based on the different evaluation

strategies introduced in Sections 2.1 and 2.2; see also Sections 2.8 and 2.9. For

the computation of the virtual FLD, we have exclusively performed our simu-

lations on the JUWELS supercomputer [70]. Some details on the simulations
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Table 3.1: Some details on Nakajima simulations with different sample sheets.

Microscopic problems: SSRVE with two ellipsoidal inclusions; 1 470

unstructured P2 finite elements and 7 152 d.o.f; see Figure 3.8 (mid-

dle). Two MPI ranks per core; computed on JUWELS [70]; one

microscopic problem computed per MPI rank. Overall problem size

is obtained by multiplying the number of MPI ranks by d.o.f. of

microscopic SSRVE and adding the number of macroscopic d.o.f.

resulting in 80 - 112 million d.o.f.

This table is in more detail accepted and soon to be published;

see [87, Tab. 2]; EXASTEEL - Towards a virtual laboratory for the

multiscale simulation of dual-phase steel using high-performance

computing; Software for Exascale Computing - SPPEXA 2016-

2019; Springer LNSCE..
width width width width width width width Full

30 50 70 90 100 110 129 Circular

Macro Finite
424 460 482 558 558 580 574 542

Elements (Q2)
MPI Ranks 11 448 12 420 13 014 15 066 15 066 15 660 15 498 14 634
Macro d.o.f. 13 725 14 804 15 465 17 835 17 835 18 495 18 195 17 145
Covered Dist.

27.156 29.242 29.896 30.734 31.654 32.593 36.566 40.000
Punch (mm)
Load Steps 736 806 901 985 898 780 1 651 569
Newton Its. 8 148 9 272 9 823 10 976 8 604 8 540 10 012 8 064
Runtime (h) 17.60 19.35 22.00 27.00 24.00 21.00 24.17 19.25
Restarts 1 1 1 2 1 1 1 1
Overhead

74 6 8 68 16 24 3 12
Load Steps
Overhead

1.70 0.23 0.23 1.71 0.40 0.58 0.25 0.41
Runtime (h)

are provided in Table 3.1, including the time to solution, the number of macro-

scopic finite elements for the discretization of the sample sheet, and the final

movement of the rigid punch. In addition, we also present the number of re-

quired restarts, which are mostly caused by reaching the pre-chosen wall time

limit. For all our simulations, we have prescribed a maximum movement of the

rigid punch of 40 mm.

We obtain similar simulation results for all sample sheets with a parallel shaft

width. If the rigid punch moves beyond a certain distance, we observe a strong

local increase of different parameters, such as the failure values W of the mod-

ified Cockcroft & Latham criterion, the major strains ε1, the equivalent plastic

strains ε̃p, the von Mises stresses, and the thinning rates ω̇. Due to the local in-

crease in the failure values W of the modified Cockcroft & Latham criterion, the

local area is associated with the failure zone. Within this range, the thickness

of the sample sheet drastically reduces; see Figure 3.2 and Figure 3.3 (left) as

well as [87, Fig. 10]. For wider parallel shaft widths, the rigid tool has to move
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Figure 3.1: Evolution of the failure values W of the modified Cockcroft &

Latham criterion (see Section 2.7) on the top surface of a sample

sheet with a parallel shaft width of 70 mm; symmetric quarter;

see also [87, Fig. 9] for the evolution of W for a sample sheet

with a parallel shaft width of 50 mm. Computed on JUWELS

[70]. Fur further information regarding the simulation; see the

corresponding column in Table 3.1.

further to force the local increase; see Table 3.1. Obviously, all simulations

considering sample sheets with a parallel shaft terminate before the prescribed

maximum distance is reached. For a better understanding how the different

parameters evolve during the simulation process, we present the evolution of

the modified failure values W during the simulation process for a sample sheet

with a parallel shaft width of 70 mm; see Figure 3.1. We observe, that the

modified failure values W drastically increase in a small area within the last

100 load steps, even if they make just a small increment in the accumulated

covered distance of the forming tool.

Although we observe the evolution of localized failure zones for all sample

sheets with a parallel shaft, the position of the failure zone varies. For all sample

sheets with a parallel shaft width of at least 90 mm, the failure zone evolves

along the vertical centerline, as it is expected since we consider a symmetric

quarter. However, for all sample sheets with wider parallel shafts, we obtain off-

centered failure zones; see Figure 3.3 (left). Recent results indicate that the off-

centered failure zones are caused by the symmetry assumption; see Section 3.4

for further details. Nevertheless, we use the results for the generation of FLDs.

For the evaluation strategy based on thinning rates, the position of the failure
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Figure 3.2: Final simulation result of the Nakajima test using a sample sheet

with a parallel shaft width of 50 mm; displacements in z-direction

(top left), thickness (top right), von Mises stresses (bottom left),

major strains (bottom center), and thinning rates (bottom right).

Dirichlet boundary conditions prohibit material movement be-

tween the blank holder and the die (dark grey). This part is

not simulated. Computed on JUWELS [70].

zone is irrelevant, and for the cross section method, we slightly manipulate the

data as mentioned in Section 2.8.

For the fully circular sample sheet, we do not see strong localized effects, even

if it is the only sample sheet for which the rigid punch moves 40 mm in upward

direction. For this reason, we cannot apply the method based on thinning rates

for this specimen, since the thinning rates only slightly increase; see Figure 3.4.

Of course, it is quite similar for the major strains along the cross sections; see

Figure 2.2 (right). However, the cross section method yields evaluation points,

but their physical meanings are questionable. Nonetheless, we reach the critical

value W c = 450 MPa in finite element nodes on the top surface of the sample

sheet, which is associated with failure; see Figure 3.3 (right).

The final FLDs obtained from the cross section method and the method

based on thinning rates as well as the corresponding FLCs are presented in Fig-

ures 3.5 and 3.6, respectively. For the computation of the FLCs as well as for

a comparison of the results obtained by using the different methods, we refer

to Section 3.1.1.

3.1.1 Computation of Forming Limit Curves

The main characteristics of a forming limit diagram are similar for all different

types of steel. The wider the parallel shaft width of the sample sheet, the larger
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Figure 3.3: Final simulation results of the Nakajima test using a sample sheet

with a parallel shaft width of 100 mm (left) and the completely

circular specimen (right); computed on JUWELS [70]; variables

and color bars as in Figure 3.2. Left: Material between blank

holder and die is simulated since material movement is allowed.

Right: Dirichlet boundary conditions prohibit material move-

ment between the blank holder and the die (dark grey). This part

is not simulated.

This figure is accepted and soon to be published; see [87, Fig.

11]; EXASTEEL - Towards a virtual laboratory for the multiscale

simulation of dual-phase steel using high-performance computing;

Software for Exascale Computing - SPPEXA 2016-2019; Springer

LNSCE.

Figure 3.4: Representative thinning rates ω̇
k
rep considering the completely cir-

cular sample sheet and the last 4 mm before the critical value W c

is exceeded.

are the values of the minor strains. The sample sheet, which corresponds to the

minimum major strain, divides the pairs of major and minor strains in the FLD

into two parts. On one hand, we obtain a nearly linear decrease in the major

strain values for all sample sheets which have a smaller parallel shaft width

than the sample sheet which belongs to the minimum major strain, i.e., for all

pairs of major and minor strains which are placed to the left of the minimum
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Figure 3.5: FLD with FLC (black curve) for W c = 450 MPa obtained from

the cross section method. Distribution of failure values W of the

modified Cockcroft & Latham criterion for all Nakajima simula-

tions immediately after reaching the critical value W c on the top

surface. In the cross sections, we identify local necking in thickness

for all but the full circular specimen; computed on JUWELS [70].

This figure is accepted and soon to be published; see [87, Fig.

12]; EXASTEEL - Towards a virtual laboratory for the multiscale

simulation of dual-phase steel using high-performance computing;

Software for Exascale Computing - SPPEXA 2016-2019; Springer

LNSCE.

major strain. On the other hand, the major strain values show a logarithmic

increase for all sample sheets which have a wider parallel shaft compared to

the sample sheet which belongs to the minimum major strain, i.e., for all pairs

which are placed to the right of the minimum major strain.

Due to the characteristics of an FLD, we derive the forming limit curve by

the combination of two regression functions fl(x) and fr(x), each belonging to

one characteristic part of the FLD. The left part fl(x) is obtained from a simple

linear regression, i.e., fl(x) = m · x + n. The right part fr(x) is obtained by a

least squares fit to a logarithmic function, i.e., fr(x) = a · ln(x) + b. Finally, we

have to determine the intersection point xint of both parts, which is

xint = −
a ·W

(
−m·eb/a+n/a

a

)
m

,
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Figure 3.6: FLD and corresponding FLC (black curve) for W c = 450 MPa

obtained from the evaluation based on thinning rates. We have

used the same colors as in Figure 3.5 for the different sample sheet

geometries.

where W (x) is the product logarithm or Lambert W function [25].

Finally, the FLC writes

FLC =

fl(x), x ∈ [xmin, xint],

fr(x), x ∈ (xint, xmax],

where xmin and xmax are the minimum and maximum minor strains of all points

in the FLD. The final FLC is written into the FLD; see the black curves in

Figures 3.5 and 3.6.

Note that the points of the sample sheet belonging to the minimum major

strain value are used in the regression of both parts. In our case, the sample

sheet with a parallel shaft width of 100 mm belongs to the minimum major

strain; see Figures 3.5 and 3.6.

Taking into account the different evaluation strategies, i.e., the cross sec-

tion method (see Sections 2.1 and 2.8) and the evaluation based on thinning

rates (see Sections 2.2 and 2.9), we obtain different FLDs and therefore differ-

ent FLCs. The FLD as well as the final FLC obtained from the cross section

method are shown in Figure 3.5 and were already presented in [87]. The recent

implementation of the evaluation method based on thinning rates allows us to

present a second FLD with its corresponding FLC; see Figure 3.6.

For remarks regarding the implementation of both evaluation strategies, we

refer to Sections 2.8 and 2.9, respectively.
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For the evaluation based on thinning rates, we only consider load steps with

a tool movement of approximately 0.1 mm between them. Consequently, for

the determination of the critical finite elements, we especially do not consider

the second last load step before the critical value was reached in a finite element

node on the top surface of the sample sheet, but the load step for which the tool

was driven up at least 0.2 mm less than at the time of failure. The variable αN

is chosen such that 8 or 12 finite elements of the overall sample sheet belong

to the critical area; see Section 2.2. Since we consider a symmetric quarter, we

have to detect 2 or 3 finite elements with highest average thinning rates.

For the computation of the last image before the occurrence of plastic insta-

bility, we have to fit interpolation polynomials to both parts that are charac-

terized by a linear increase; see, e.g., Figure 2.8. For the approximation of the

unstable area, we compute a linear polynomial using a least squares fit with

five consecutive images each. At the end, we choose that polynomial with the

maximum slope. Since the final slope may depend of the number of images

that are considered within the least squares fit, we also consider other slopes.

Therefore, we compute the intersection angle of the computed polynomial with

the x-axis. Afterwards, we increase and decrease the intersection angle by 5 %,

10 %, 15 %, and 20 %, which leads to 8 other polynomials. Accordingly, we

derive 9 different evaluation points for the FLD.

It turns out that both evaluation strategies yield quite similar evaluation

points for sample sheets with a parallel shaft width of at least 70 mm. Only for

the smallest parallel shaft widths of 30 mm and 40 mm, the evaluation based

on thinning rates leads to smaller major strain and larger minor strain values;

see Figure 3.7 (left). In addition, rotating the approximation polynomials to

the unstable area has a greater effect to the final values than for the remaining

sample sheet geometries; see Figure 3.6 and Figure 3.7 (left).

For a better comparison of the resulting FLCs, we have neglected the full

sample geometry, since the evaluation strategy based on thinning rates cannot

be applied for this case. Due to the nearly identical evaluation points obtained

for sample sheet geometries with a parallel shaft width of at least 100 mm, it is

not surprising that the logarithmic interpolations are nearly the same for both

evaluation strategies. The left part of the FLD obtained from the cross section

method is approximated by a linear polynomial. Therefore, we also approximate

the left part of the FLD obtained from the method based on thinning rates with

a linear polynomial, even if the arrangement of evaluation points looks different;

see Figure 3.7. For the smallest sample sheet geometries, the evaluation points

obtained from the method based on thinning rates are below the evaluation
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Figure 3.7: Comparison of the resulting FLCs obtained from the cross section

method and the evaluation strategy based on thinning rates using

different subsets of the simulation results; see Sections 2.1, 2.2,

2.8 and 2.9. Left: All sample sheets with a parallel shaft. Right:

Sample sheets with a parallel shaft width of at least 50 mm.

Figure 3.8: Different types of SSRVEs. The SSRVE in the middle is used

for the computation of the FLD and is called “Standard SSRVE”

throughout this thesis.

points obtained from the cross section method. Accordingly, the resulting linear

approximation polynomial leads to larger values for the cross section method;

see Figure 3.7 (left). However, if we neglect the evaluation points belonging to

the sample sheet geometries with a parallel shaft width of 30 mm and 40 mm,

the resulting linear approximations are again similar; see Figure 3.7 (right).

3.2 Impact of Different SSRVEs

In this section, we study the impact of the considered SSRVE on the simula-

tion behavior as well as on the final evaluation point. Therefore, we compare

simulations considering the same computational domain but different SSRVEs.

Apart from this section, we have exclusively used the microstructure that is

shown in the middle of Figure 3.8, which is referred to as standard SSRVE

in this section. Accordingly, we compare one of the two other SSRVEs with

the standard SSRVE. We do not only look at the final simulation results, but

53



NUMERICAL RESULTS FOR THE NAKAJIMA TEST

Table 3.2: Comparison of the usage of different SSRVEs for a sample sheet

geometry with a parallel shaft width of 40 mm; see Figure 2.4

(top left). Here, we consider the standard SSRVE (computed on

JUWELS [70]) and an SSRVE with a spherical inclusion (computed

on magnitUDE); see Figure 3.8. The resulting major and minor

strain values εFLC
1 and εFLC

2 are obtained from the evaluation using

the cross section method; see Sections 2.1 and 2.8. Note that the

evaluation is independent of the simulation results beyond reaching

the critical value W c = 450 MPa for finite element nodes on the

top surface of the sample sheet.

Comparison of standard SSRVE and a spherical inclusion

Sample sheet with a parallel shaft width of 40 mm

Standard SSRVE Spherical Inclusion

W c ≥ 450 Final W c ≥ 450 Final
(top surface) step (top surface) step

Load Step 710 751 762 805

Max. W (top surface) [MPa] 451.54 563.02 450.56 502.97
Cov. Dist. Punch [mm] 27.813 28.325 28.194 28.412
∅ Load Step Size [mm] 0.039 0.038 0.037 0.035
∅ Load Step Size

0.012 0.005
beyond W ≥W c [mm]

Major Strain εFLC
1

Sec. 1 0.450 0.455
Sec. 2 0.451 0.456
Sec. 3 0.455 0.458

Minor Strain εFLC
2

Sec. 1 -0.130 -0.127
Sec. 2 -0.131 -0.128
Sec. 3 -0.133 -0.128

also on the corresponding results immediately after reaching the critical value

W c = 450 MPa for the first time for a finite element node on the top surface.

At first, let us consider a very simple SSRVE with a spherical inclu-

sion (see Figure 3.8 (left)). Therefore, we deal with a sample sheet with a

shaft width of 40 mm; see Figure 2.4 (top left). In Table 3.2, we present

some relevant information of both simulations, including the overall covered

distance of the forming tool and the resulting evaluation point obtained from

the cross section method. Furthermore, we have also plotted the differences

of the displacements in z-direction as well as of the modified failure values W

and the major strains ε1 on the top surface of the sample sheet immediately

after reaching the critical value in at least one finite element node on the top

surface of the sample sheet; see Figure 3.9. No matter which SSRVE is used,

the accumulated covered distance of the forming tool is quite similar at the
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Displacement
in z-direction

Modified
failure value W

Major strains ε1

Standard
SSRVE

Platz schaffen

SSRVE with
spherical
inclusion

Difference (ab-
solute values)
some space

Figure 3.9: Comparison of the z-displacements (top), the failure values W

of the modified Cockcroft & Latham criterion (middle), and the

major strains ε1 (bottom) on the top surface of a sample sheet

with a parallel shaft width of 40 mm immediately after reaching

the critical value W c = 450 MPa in a finite element node on the

top surface of the sample sheet. We consider the standard SS-

RVE (left) and a simple spherical inclusion (middle). For further

information; see Table 3.2.

end; see Table 3.2. However, the resulting maximum values of the modified

Cockcroft & Latham criterion differ by about 10 %. Even if the accumulated

covered distance of the rigid punch is a bit larger for the SSRVE with a single

spherical inclusion, the maximum final value of the modified Cockcroft &

Latham criterion on the top surface of the sample sheet is smaller. In addition,

to reach the critical value W c at the top surface of the sample sheet, the

rigid tool also has to move further in comparison to the usage of the standard

SSRVE; see Table 3.2. Consequently, using the SSRVE with a single spherical

inclusion leads to a material that can be deformed to a larger extend without

failing. Since the FLC characterizes the transition between permitted and

prohibited deformations, it is not surprising that the resulting major strain

value, which is written into the FLD, is a bit larger; see Table 3.2. Due to

the very small differences in the major strain values next to the failure zone
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Displacement
in z-direction

Modified
failure value W

Major strains ε1

Standard
SSRVE

Rotated
SSRVE

Difference (ab-
solute values)

Figure 3.10: Comparison of the z-displacements (top), the failure values W

of the modified Cockcroft & Latham criterion (middle), and the

major strains ε1 (bottom) on the top surface of a sample sheet

with a parallel shaft width of 50 mm immediately after reaching

the critical value W c = 450 MPa in a finite element node on

the top surface of the sample sheet. We consider the standard

SSRVE (left) and a rotated version of it (middle). For further

information; see Table 3.3.

(see Figure 3.9), the final major strain values obtained from the cross section

method only slightly differ; see Table 3.2.

For a comparison of the differently rotated SSRVEs with identical ellipsoidal

inclusions, we consider a sample sheet geometry with a parallel shaft width of

50 mm; see Figure 2.4 (top right). Again, we provide the same information

as before; see Table 3.3 and Figure 3.10. We obtain that the rotated SSRVE

reaches the critical value W c earlier, i.e., after a smaller accumulated covered

distance of the rigid punch; see Table 3.3. With the same arguments as in the

previous paragraph, the corresponding point in the FLC moves downwards if

we consider the rotated SSRVE instead of the standard SSRVE. Note that the

resulting difference is more significant compared to the difference between the

standard SSRVE and the spherical inclusion due to the larger differences in the

major strain values next to the failure zone; see Figure 3.10.
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Table 3.3: Comparison of the usage of different SSRVEs for a sample sheet

geometry with a parallel shaft width of 50 mm; see Figure 2.4

(top right). Here, we consider the standard SSRVE and a rotated

version of it; see Figure 3.8. Both simulations have been computed

on JUWELS [70]. For further remarks see the caption of Table 3.2.

Comparison of the standard SSRVE and a rotated version

Sample sheet with a parallel shaft width of 50 mm

Standard SSRVE Rotated SSRVE

W c ≥ 450 Final W c ≥ 450 Final
(top surface) step (top surface) step

Load Step 743 806 742 781

Max. W (top surface) [MPa] 451.33 571.63 452.69 489.40
Cov. Dist. Punch [mm] 28.747 29.242 28.566 28.713
∅ Load Step Size [mm] 0.039 0.036 0.038 0.037
∅ Load Step Size

0.008 0.004
beyond W ≥W c [mm]

Major Strain εFLC
1

Sec. 1 0.446 0.416
Sec. 2 0.446 0.416
Sec. 3 0.447 0.418

Minor Strain εFLC
2

Sec. 1 -0.109 -0.097
Sec. 2 -0.110 -0.097
Sec. 3 -0.110 -0.096

Even if the deformation behavior seems to be similar until the critical value

is reached, the usage of the rotated SSRVE seems to be numerically harder

beyond this stage. After reaching the critical value, we perform less load steps

until the simulation terminates, even if the average load step size is only half

as large; see Table 3.3. As a result, using the standard RVE seems to be less

affected by the fact that the simulation goes beyond the critical value W c that

is associated with failure. Accordingly, the final simulation results differ to a

larger extent; see Figure 3.10.

Surprisingly, also the SSRVE with a spherical inclusion seems to be numeri-

cally harder than the standard SSRVE after reaching the critical value; see Ta-

ble 3.2.

3.3 Some Tests on the Penalty Parameter

In this section, we show the effects of different penalty parameters εN on the

solutions as well as on the required computing times. For our test, we consider

a sample sheet geometry with a parallel shaft width of 40 mm. For all our simu-

lations, we move the rigid punch 10 mm in upward direction, while we take into
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Table 3.4: Computational information using different penalty parameters for

a sample sheet geometry with a parallel shaft width of 40 mm (see

Figure 2.4 (top left)); computed on magnitUDE.

Sample sheet 40
computed on magnitUDE; 2 MPI ranks per core
εN = 50 εN = 500 εN = 5 000 εN = 50 000

Cov. Dist.
10 10 10 10

Punch [mm]
Load Steps 74 101 129 198
Newton Its. 656 1 015 1 236 1 854
∅ Load Step

0.135 0.099 0.078 0.051
Size [mm]

∅ Newton Its.
8.86 10.05 9.58 9.36

per Load Step
Runtime [s] 5 347.60 8 090.79 9 847.62 14 511.90
∅ Time per

72.26 80.11 76.34 73.29
Load Step [s]
∅ Time per

8.15 7.97 7.97 7.83
Newton It. [s]
# penetrated

220 180 141 109
FE nodes

Max. Pen. [mm] 0.22 0.04 0.01 0.002

account different penalty parameters. Some details on the different simulations

are presented in Table 3.4, including the time to solution, the average load step

size, and the maximum penetration of a finite element node resulting from the

rigid punch. For all finite element nodes that have a larger distance d to the

center of the rigid tool than the radius rT of the rigid tool, the penetration is

set to zero. For the remaining finite element nodes, the penetration computes

as rT − d; see also Section 4.2.4.

It turns out that smaller penalty parameters lead to significantly faster run-

times, which are affected by the larger average load step sizes. However, the

maximum amount of penetration is much larger. In addition, also the number

of penetrated finite element nodes is larger; see also Figure 3.11 for the illus-

tration of all finite element nodes that penetrate into the rigid punch. These

observations are consistent with the literature; see, e.g., [151]. We note that

the faster computing times for smaller penalty parameters probably result from

the smaller total deformations, which allow larger load steps.

Throughout this thesis, we have used a penalty parameter of 500. This can be

motivated by a smaller runtime without significantly increasing the maximum

amount of penetration compared to larger penalty parameters.
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εN = 50 εN = 500

εN = 5000 εN = 50 000

Figure 3.11: Comparison of penetrated FE nodes for different penalty pa-

rameters εN for a covered distance of the rigid punch of 10 mm;

symmetric quarter; sample sheet geometry with a parallel shaft

width of 40 mm; computed on magnitUDE. For further informa-

tion; see Table 3.4.

In the future, we plan to introduce an option to start with a comparably small

penalty parameter that can be increased during the simulation. It will be inter-

esting to see, how the computing times and solutions compare to simulations

with a constant penalty parameter.

3.4 Influence of Symmetry to the Final Solution

In this section, we compare simulation results obtained from using a symmetric

quarter with the results obtained from simulations considering the complete

sample sheet. Since the failure zone evolves perfectly symmetric for all sample

sheets with a parallel shaft width of at most 90 mm, we focus on the geometries

with off-centered failure zones using a symmetric computation. To be more

specific, we exclusively consider a sample sheet with a parallel shaft width of

100 mm throughout this section.

For our comparison, we have used different discretizations for the symmetric

quarter as well as for the complete sample sheet. For the symmetric quarter,

we deal with two discretizations, which differ only in the number of finite ele-
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Figure 3.12: Comparison of the failure values W of the modified Cockcroft

& Latham criterion for the simulation results immediately af-

ter reaching the critical value W c = 450 MPa in finite element

nodes on the top surface of the sample sheet. We consider sym-

metric computations with one and two finite elements in thick-

ness direction as well as the corresponding discretization of the

complete sample sheet with one finite element in thickness di-

rection for a sample sheet with a parallel shaft width of 100

mm. Different heights of the sample sheets results from differ-

ent tool movements. Even if we present the upper left quarter

for the symmetric computation with two finite elements in thick-

ness direction, we have computed the same symmetric quarter as

mentioned in Section 2.6. All three simulations were performed

on JUWELS [70] and we have used the NK-BDDC approach for

the parallel solution of the macroscopic problem for the non-

symmetric simulation.

ments in thickness direction. Here, we consider one and two finite elements in

thickness direction. Besides the corresponding discretizations of the complete

sample sheet, we also take into account a third discretization with one finite

element in thickness direction and larger finite elements compared to the other

discretizations.

For both simulations using the symmetric quarter, we get comparable results.

Immediately after reaching the critical value W c = 450 in at least one finite

element node on the top surface of the sample sheet, the overall movement of

the rigid punch is slightly higher for the finite element discretization with one

finite element in thickness direction, but we obtain the same off-centered failure

zone for both simulations ; see Figure 3.12.
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Figure 3.13: Final distribution of the modified failure valueW for a simulation

without utilizing symmetry for a sample sheet with a parallel

shaft width of 100 mm; computed on magnitUDE. Note that the

chosen discretization is coarser compared to the corresponding

discretization of the symmetric quarter that was used for the

simulation of the FLD; see also Figure 3.12.
.

For the coarsest discretization of the complete sample sheet, we also get an

off-centered failure zone, which fits to the results using a symmetric quarter;

see Figure 3.13. However, taking into account a finer discretization (in x-

and y-direction), which is equivalent to the discretization of the symmetric

quarter with one finite element in thickness direction, the failure zone evolves

along the vertical centerline; see Figure 3.12. In comparison to the symmetric

computation, the critical value W c is exceeded for a smaller movement of the

rigid punch; see the different heights in Figure 3.12.

We obtain similar results for the discretization of the complete sample sheet

with two finite elements in thickness direction. Unfortunately, the simulation

has stopped before the critical value W c = 450 MPa was reached due to small

load steps that have not been allowed so far. However, we observe a local for-

mation of a failure zone along the vertical centerline for the last load step. For a

better comparison, we also provide similar simulation states of the correspond-

ing symmetric computation; see Figure 3.14. The application of the identical

load using a symmetric quarter does not lead to strong localized effects; see

Figure 3.14 (top right). Therefore, we also consider the simulation state cor-

responding to a similar modified failure value W , which corresponds to a rigid

tool movement of about 0.5 mm further; see Figure 3.14 (bottom right). In fact,

at this time, we observe a localized evolution of an off-centered failure zone; see

again Figure 3.14 (bottom right).
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Complete Sample Sheet Symmetric Quarter

Cov. Dist.: 28.69 mm
Max. W : 221 MPa

Load step 855

Cov. Dist.: 28.69 mm
Max. W : 174 MPa

Load step 524

Cov. Dist.: 29.12 mm
Max. W : 221 MPa

Load step 607

Figure 3.14: Comparison of the values W of the modified Cockcroft & Latham

criterion for symmetric and non-symmetric simulations for a

sample sheet with a parallel shaft width of 100 mm and a dis-

cretization with two finite elements in thickness direction. Both

simulations have been performed on JUWELS [70] using equiva-

lent discretizations. For the non-symmetric simulation, we have

used the NK-BDDC approach for the macroscopic problem.

It turns out that the symmetric computations seem to have an impact on the

position of the evolution of the failure zone. Therefore, we have to take into

account the complete sample sheet instead of a symmetric quarter, at least for

all sample sheets with off-centered failure zones. Moreover, the simulation of

the fully circular sample sheet might also lead to a localized failure zone without

utilizing symmetry. As we have presented for the sample sheet with a parallel

shaft width of 100 mm, we have to enable the usage of smaller load steps for

simulations on the complete sample sheets. In addition, we can also think about

further options for the dynamic load step strategy in order to prevent critical

load steps.

3.5 Newton-Krylov BDDC for the Macroscopic Problem

We have recently incorporated the Newton-Krylov BDDC approach (see Sec-

tion 5.6.1) for the parallel solution of the macroscopic problems in our FE2TI

software. As a result, we are able to efficiently solve larger macroscopic prob-

lems. For some simulation results using the NK-BDDC approach on the macro-

scopic level, we refer to Section 3.4, where we have used the BDDC approach
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Figure 3.15: Left: Iteration numbers of the NK-BDDC approach for solving

the macroscopic problem in a Nakajima simulation considering

different discretizations of the complete sample sheet with a par-

allel shaft width of 100 mm. For further information, such as

the resulting shape of the sample sheet, we refer to Section 3.4;

computed on JUWELS [70]. Right: Decomposition of the dis-

cretizations of the complete sample sheet with a parallel shaft

width of 100 mm into 32 subdomains. The discretizations with

one (top) and two (bottom) finite elements in thickness direction

are considered in Sections 3.4 and 3.5.

for the simulations of the complete sample sheet. The focus of this section is

rather the numerical analysis of FE2TI using NK-BDDC than the quality of

the computed solutions.

As it is standard for domain decomposition methods, good scalability is usu-

ally only achieved if a suitable coarse problem is incorporated. In our simula-

tions, we have used the following coarse space for the BDDC method. Besides

the subdomain vertices, the subassembly is also performed in a single finite

element node of each edge on the subdomain interface, because the number

of subdomain vertices is comparably small due to the sample sheet geome-

try. Furthermore, for each face across the interface, we have chosen additional

constraints following the frugal approach in [58]. Due to the macroscopic ho-

mogeneity, this is equivalent to weighted averages along faces. For both sim-

ulations on the complete sample sheet that are considered in Section 3.4, the

coarse problem contains about 400 degrees of freedom.

It turns out that the NK-BDDC approach performs quite well for our prob-

lems. As a first indicator, we look at the number of Krylov iterations which

are needed for the solution of the macroscopic problem. Whenever we use the

63



NUMERICAL RESULTS FOR THE NAKAJIMA TEST

NK-BDDC approach as a solver for the macroscopic problem in FE2TI, we

exclusively use GMRES as a Krylov subspace method. Both, the flat sam-

ple sheet geometry and the corresponding METIS decomposition are expected

to have a negative effect on the performance of a Krylov subspace method.

Nonetheless, the number of Krylov iterations is in an acceptable range from

the very beginning; see Figure 3.15 (left). However, this can be improved by

using a better coarse space, e.g., by choosing an adaptive coarse space; see,

e.g., [75, 91, 106, 117, 141, 142]. Moreover, the number of Krylov iterations per

macroscopic Newton iteration only slightly increases during the simulation. As

a result, the NK-BDDC approach is quite robust and requires more or less con-

stant time for the solution, no matter how many finite elements belong to the

plastic regime.

The increased average time for the solution of the macroscopic problem in

a single Newton iteration (see Figure 3.15 (left)) can be explained by the fact

that we have decomposed the considered discretizations into the same number

of subdomains; see Figure 3.15 (right) for the decomposition of both discretiza-

tions. Since we have used discretizations with one and two finite elements in

thickness direction, the overall number of finite elements is twice as large for

the latter case. Consequently, also the subdomains are approximately twice as

large. As a result, the average time is expected to increase with a factor of

more than 2, since we use a sparse direct solver for the subdomain problems.

For our simulations, we obtain a factor of about 2.35, which is satisfactory.
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4 FE2: Theory and Implementation

For the simulation of the Nakajima test, we use our highly scalable software

package FE2TI, which combines a parallel implementation of the FE2 approach

[43,103,121,134,135,138] and different domain decomposition methods such as

FETI-DP [38,39,93,94,97,98] and BDDC [26,32,111,115,116] as solver on both

levels, the macroscale and the microscale. It is a C/C++ implementation based

on PETSc [4–6] and MPI.

We first give a short introduction to the FE2 approach. Afterwards, we in-

troduce the software package FE2TI and give some remarks on recent software

developments such as the implementation of a contact formulation (see Sec-

tion 4.2.4) on the macroscopic level and a dynamic load step strategy (see Sec-

tion 4.2.1). This chapter is based on the discussion in [87]

4.1 The FE2 Method

The macroscopic material properties of many materials, such as DP steels, result

from their heterogeneous microscopic structure. Therefore, accurate finite ele-

ment simulations require the incorporation of these microscopic heterogeneities.

A brute force finite element discretization of the macroscopic problem down

to the microscopic level is not feasible due to two different reasons. On one

hand, the resulting system of equations would be too large to solve it, even on

the largest available supercomputers. On the other hand, the microstructure of

the overall macroscopic domain is usually not known.

Instead, the incorporation of the microstructure has to be achieved with other

techniques. In our simulations, we consider the FE2 method that is a computa-

tional homogenization approach. In the following, we introduce the necessary

equations for the FE2 method as well as the numerical implementation. It is

mainly based on the presentations in [135], but also on [16,107].

In the FE2 approach, the macroscopic and the microscopic scale are dis-

cretized separately. The macroscopic problem is discretized completely ignoring

the microscopic structure, i.e., the problem is assumed to be homogeneous from

a macroscopic point of view. The characteristic length scale of the macroscopic

problem is denoted by L. We assume that the microscopic heterogeneities can
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be represented by a volume fraction of the overall microstructure, which is

called representative volume element (RVE). Its length scale is denoted by l

in the following. For the incorporation of the microscopic heterogeneities, we

solve an independent microscopic boundary value problem in each macroscopic

integration point. Let us note that the same RVE is used for all macroscopic

Gauß points, but the boundary values of the microscopic problems depend on

the macroscopic deformation gradient in the corresponding integration point.

On the macroscopic level, a phenomenological material law is replaced by vol-

umetric averages of microscopic stresses. In addition, we also have to compute

a consistent tangent modulus that takes into account the volumetric average of

the tangent moduli of the corresponding microscopic problem; see, e.g. [135].

Accordingly, constitutive models for the different phases have to be set up exclu-

sively on the microscopic scale. The applicability of the FE2 approach requires

a scale separation which is assumed to be fulfilled considering DP steels, i.e.,

L� l holds. For an illustration of the basic ideas of the FE2 approach we refer

to [74, Fig. 1].

As before, macroscopic quantities will be marked with an overline to distin-

guish them from microscopic quantities. For example, the macroscopic defor-

mation gradient is denoted by F .

We denote the reference configuration of the macroscopic domain by B0 ⊂ R3

and the current configuration by B ⊂ R3. Material points in the reference

configuration are denoted by X and material points in the current configuration

are denoted by x. The deformation ϕ : B0 → B maps points from the reference

configuration to the current configuration and the macroscopic deformation

gradient F (X) is defined by

F (X) := GradX
(
ϕ(X)

)
.

With the macroscopic first Piola-Kirchhoff stress tensor P and some external

load f , the linear balance of momentum with respect to the reference configu-

ration writes

DivXP + f = 0.

In the same manner as for the macroscopic problem, we can formulate micro-

scopic quantities, i.e., the microscopic deformation ϕ : B0 → B maps material

points X from the reference configuration of an RVE to material points x in

the actual configuration. Analogously to the macroscopic deformation gradient,
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the microscopic deformation gradient writes

F (X) := GradX (ϕ(X)) .

The linear balance of momentum with respect to the reference configuration for

the microscopic scale writes

DivXP = 0.

Here, we neglect external forces.

The macroscopic first Piola-Kirchhoff stresses P are computed as volumetric

average of the microscopic first Piola-Kirchhoff stresses P , i.e.,

P :=
1

V

∫
B0

P (F ) dV, (4.1)

where V = |B0| is the volume of the reference configuration of the RVE. The

same holds for the macroscopic deformation gradient

F :=
1

V

∫
B0

F dV.

The latter two equations can also be written as surface integrals; see [135, Eq.

(34)] and [16, Eq. (7.6)].

The macro-homogeneity condition, also known as Hill’s condition or Hill-

Mandel condition, is one of the most important relations in micro-macro scale

bridging schemes and writes

P : Ḟ =
1

V

∫
B0

P : Ḟ dV. (4.2)

Here, Ḟ and Ḟ denote the time derivatives of the macroscopic as well as of the

microscopic deformation gradient, respectively, and can be written as

Ḟ = GradX ẋ, Ḟ = GradX ẋ. (4.3)

Following [135], Hill’s condition can be reformulated to

1

V

∫
B0

(P − P ) : (Ḟ − Ḟ ) dV = 0

⇔ 1

V

∫
B0

(P − P ) : Ḟ dV − 1

V

∫
B0

(P − P ) : Ḟ dV = 0

⇔ 1

V

∫
B0

(P − P ) : GradX ẋ dV − 1

V

∫
B0

(P − P ) : ḞGradXX dV = 0, (4.4)
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where the last equation is obtained by inserting Equation (4.3)2 and the identity

I = GradXX. Note that the second term on the left-hand side can also be

written as

1

V

∫
B0

Ḟ
T

(P − P ) : GradXX dV.

Now, we reformulate both parts on the left-hand side of Equation (4.4) using

ẋTP = (P T ẋ)T and Div(Pẋ) = P T : Gradẋ + ẋ · DivP T (see [29, Sec. 2.5.8,

Eq. (v)]). For the first part, we obtain∫
B0

(P − P ) : GradX ẋ dV =

∫
B0

DivX(ẋT (P − P ))− ẋTDivX(P − P ) dV.

The second term on the right-hand side vanishes due to the equilibrium require-

ment DivX(P − P ) = 0; see [135]. Applying the Gaussian integral theorem

(see [47, Sec. 15]) to
∫
B0

DivX(ẋ(P − P )) dV , we obtain∫
B0

(P − P ) : GradX ẋ dV =

∫
∂B0

(ẋT (P − P )) ·N dA

=

∫
∂B0

ẋT
(
(P − P ) ·N

)
dA

=

∫
∂B0

(
(P − P )N

)T
ẋ dA, (4.5)

where N is the outward normal vector to ∂B0. Analogously, the second term

on the left-hand side of Equation (4.4) writes∫
B0

(P − P ) : ḞGradXX dV =

∫
∂B0

(
(P − P )N

)T
ḞX dA. (4.6)

Here, the term DivX(Ḟ (P − P )) vanishes since Ḟ is independent of X and

because of the equilibrium requirement DivX(P − P ) = 0. Finally, combining

Equations (4.5) and (4.6) and using Cauchy’s theorem (see, e.g., [29, Sec. 3.3.1]

and [14, Ch. 6, Th. 1.3]), i.e., inserting t = PN , we obtain

1

V

∫
∂B0

(t− PN)T (ẋ− ḞX) dA = 0, (4.7)

which is equivalent to Equation (4.2); see also [135].

From [135, Ch. 2.5], we obtain that Equation (4.7) also holds if the time

derivatives ẋ and Ḟ are replaced by the original values x and F or δx and δF ,

respectively. With this in mind, different boundary conditions can be directly

read from Equation (4.7). We obtain valid Dirichlet-type boundary conditions
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by choosing x = FX ∀X ∈ ∂B0, since it fulfills Equation (4.7) when ẋ and

Ḟ are replaced by x and F . Alternatively, the choice t = PN ∀X ∈ ∂B0

fulfills Equation (4.7), which is associated with a Neumman-type boundary

condition.

In addition, a third type of suitable boundary conditions can be derived - the

periodic boundary conditions. Therefore, the overall boundary ∂B0 has to be

subdivided into two different parts ∂B+
0 and ∂B−0 , where each point X+ ∈ ∂B+

0

has an associated partner X− ∈ ∂B−0 . We introduce a periodic fluctuation

field w̃ which fulfills x = FX + w̃. Following [135], a periodic fluctuation

field is defined by w̃+ = w̃− ∀X+ ∈ ∂B+
0 , X− ∈ ∂B−0 , and the corresponding

outward normals N+ and N− fulfill the relation N+ = −N−. Replacing ẋ and

Ḟ in Equation (4.7) by x and F and subsequently using the definition of the

periodic fluctuation field w̃ = x− FX, we obtain

1

V

∫
∂B0

(t− PN) · w̃ dA = 0

⇔ 1

V

(∫
∂B+

0

(t+ − PN+) · w̃+ dA+

∫
∂B−0

(t− − PN−) · w̃− dA

)
= 0

⇔ 1

V

∫
∂B+

0

(t+ − PN+ + t− + PN+) · w̃+ dA = 0

⇔ 1

V

∫
∂B+

0

(t+ + t−) · w̃+ dA = 0.

From the last equation, we obtain the necessary condition t+ = −t− for a

periodic fluctuation field w̃. Let us note that [16, Ch. 7.1.2] also refers to an

alternative derivation in [121].

The numerical implementation requires the weak formulation of the balance

of momentum on both scales. On the microscopic scale, the weak form writes

−
∫
∂B0

δx ·DivX(P (F )) dV = 0, (4.8)

where δx is a variational function. Analogously, the weak form of the macro-

scopic balance of momentum writes

−
∫
∂B0

δx ·
(
DivX(P (F )) + f

)
dV = 0,

where δx is a variational function.

In general, the resulting systems of equations on both scales have a nonlinear

character. Therefore, the solutions are derived by an iterative process. Here, we

make use of Newton’s method. Thus, we have to compute the linearization of
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the resulting systems. On both scales, the computation of the stiffness matrices

of a single finite element requires the computation of the tangent modulus in

each integration point, which is the partial derivative of the stresses with respect

to the deformation gradient. As mentioned before, we only have a constitutive

material law on the microscopic level. Thus, the macroscopic tangent moduli

A = ∂P
∂F

cannot be computed directly.

In the following, we focus on periodic boundary conditions on the microscopic

level. Recalling the representation x = FX + w̃, where w̃ is a periodic fluctua-

tion field, we obtain the additive decomposition of the microscopic deformation

gradient F = F + F̃ . Note that the macroscopic deformation gradient F is

known and constant over the RVE attached to the corresponding macroscopic

integration point.

Recalling from Equation (4.1) the relation of the macroscopic and microscopic

stresses P = 1
V

∫
B0
P (F ) dV , the macroscopic tangent modulus writes

A =
∂P

∂F
=

∂

∂F

(
1

V

∫
B0

P (F ) dV

)
=

1

V

∫
B0

∂P (F )

∂F
dV.

Inserting F = F + F̃ into the latter equation, we obtain with the chain rule

A =
1

V

∫
∂B0

∂P (F )

∂F
dV

=
1

V

∫
∂B0

∂P (F )

∂F
:
∂F

∂F
dV

=
1

V

∫
∂B0

A :
∂(F + F̃ )

∂F
dV

=
1

V

∫
∂B0

A : I + A :
∂F̃

∂F
dV

=
1

V

∫
∂B0

A dV +
1

V

∫
∂B0

A :
∂F̃

∂F
dV. (4.9)

Hence, the computation of the macroscopic tangent moduli decomposes into

the computation of the volumetric average of the microscopic tangent moduli

and an additional term.

Note that the macroscopic stresses P as well as the macroscopic tangent mod-

uli A only have to be computed when the microscopic problems are converged,

i.e., it can be assumed that the weak form of the balance of momentum on the

microscopic level is fulfilled; see Equation (4.8). This can be utilized to derive

a discrete version Ah of an overall consistent macroscopic tangent modulus A
resulting from a finite element formulation; see [135, Ch. 3.2].
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We assume that a finite element discretization into n finite elements Ti,

i = 1, . . . , n, of an RVE is given. Analogously, the macroscopic problem is

discretized into m finite elements T i, i = 1, . . . ,m. The discrete version of the

first term in Equation (4.9), i.e., the volumetric average of the tangent modulus

on the microscopic level, writes

1

V

n∑
i=1

∫
Ti

Ah dV. (4.10)

Here, Ah is the discrete version of the microscopic tangent modulus. To obtain

the discrete version of the second term in Equation (4.9), we need the tangential

element matrices

kTi =

∫
Ti

BTTiA
hBTi dV

as well as

lTi =

∫
Ti

AhBTi dV.

Here, BTi contains the derivatives of the shape functions of the finite element Ti

with respect to the reference coordinates. A standard assembly process of the

tangential element matrices kTi yields the matrix K. In the same way, the

matrix L is derived from the element matrices lTi . Note that the matrix K is

identical to the matrix DK in [107, Ch. 5.1]. Furthermore, let us note that

the matrix L has as much rows as the overall number of degrees of freedom

in an RVE and the number of columns depends on the spatial dimensions of

the problem. For two-dimensional problems, L has 4 columns and for three-

dimensional problems, L has 9 columns.

Once the matrices L and K are computed, the discrete version of the second

term in Equation (4.9) writes

− 1

V
LTK−1L, (4.11)

which is derived from the weak form of the balance of momentum on the mi-

croscopic level. We refer to [135] for the derivation.

Finally, the overall consistent discrete macroscopic tangent modulus is ob-

tained from Equations (4.10) and (4.11) and writes

Ah =
1

V

∫
B0

Ah dV − 1

V
LTK−1L. (4.12)
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4.2 Software Package FE2TI

For the simulations of the Nakajima test, we use our software package FE2TI. It

was developed in the first phase of the EXASTEEL project (see [7]) and further

developed in the second phase of the EXASTEEL project. The EXASTEEL

project was part of the DFG priority programme 1648 “Software for Exascale

Computing” (SPPEXA). In the past years, the FE2TI software scaled to some

of the largest available HPC systems; see [74, 78, 79, 81]. Before we introduce

the recent software features, we first describe the software package in general.

Therefore, we follow the presentation in [107].

As already mentioned in the description of the FE2 approach, we have to solve

a boundary value problem on an RVE in each macroscopic integration point.

The choice of the microscopic solver depends on the size of the resulting lin-

earized system. For comparably small RVEs, the usage of a sparse direct solver

such as MUMPS [1], UMFPACK [28], or MKL PARDISO [132] is recommended.

They are provided via the PETSc interface. In this case, each RVE is computed

on an individual core. If the microscopic problems lead to systems of equations

that are too large to solve them efficiently with a sparse direct solver, one of our

highly scalable parallel domain decomposition approaches (see Chapter 5) can

be used to tackle the usually nonlinear problem. Such a domain decomposition

method requires more than one core per RVE. Therefore, the computational

cores have to be grouped into subsets where each subset is responsible for the

parallel solution of one microscopic problem. As already mentioned in [107],

we create different subsets by splitting the MPI COMM WORLD communica-

tor into different subcommunicators using MPI Comm split. The microscopic

tangent systems can be solved completely independently, i.e., there is no com-

munication necessary between subcommunicators. The latter also holds for the

averaging of the stresses and the overall consistent tangent modulus in one in-

tegration point. To provide the overall consistent macroscopic tangent modulus

and all stresses to all necessary cores, collective communication is required.

Similar to the microscopic level, the choice of the solver for the linearized

macroscopic problem also depends on its size. For small tangent systems, the

same direct solvers as for the microscopic level are provided via the PETSc

interface. If we use such a sparse direct solver, all compute cores redundantly

solve the macroscopic problem. On one hand, this reduces communication since

the macroscopic solution does not have to be distributed to other cores. On the

other hand, all cores require the macroscopic mesh. Otherwise, if the macro-

scopic problem is too large to solve it efficiently with a sparse direct solver, we

have recently integrated the Newton-Krylov BDDC approach (see Section 5.6.1)
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for the parallel solution of the macroscopic problem. In this case, we introduce

an additional subcommunicator to build up and subsequently solve the lin-

earized system. Afterwards, collective communication is necessary to provide

the solution to all cores. Again, we use MPI Comm split for the creation of the

subcommunicator. It is also possible to use BoomerAMG [2,59] from the hypre

package [37] for a parallel solution of the macroscopic problem, but it turned

out that it does not perform well for the simulation of the Nakajima test. For

completeness, it is also possible to use a parallel sparse direct solver, but this

has not been tested so far.

Independently of the choice of the solver for the linearized problem on the

macroscopic level, the assembly process of the macroscopic stiffness matrix and

right-hand side is parallelized to save computation time. When using NK-

BDDC, this is done automatically. In case of using a sparse direct solver, only

a small number of cores is responsible for the assembly process. Since all cores

have the macroscopic mesh, they can all participate in the assembly process

without additional effort. The user can provide a real number between 0 and

1 which defines the fraction of overall cores that participate in the assembly

process. It is usually about 1 % in our simulations. Once the assembly process

is finished, the final stiffness matrix and right-hand side have to be provided to

the other cores by collective communication.

Let us also give some general remarks regarding the software package FE2TI.

As mentioned before, it is a C/C++ implementation based on PETSc and MPI.

In all our simulations presented throughout this thesis, the macroscopic prob-

lem is discretized using triquadratic brick elements (Q2) and the microscopic

problem is discretized using piecewise quadratic tetrahedral elements (P2) in

an unstructured manner. Both meshes are generated using the open source

software GMSH [49].

Throughout this thesis, the microscopic problem is always small enough to

solve it efficiently with a sparse direct solver and we have used MKL PARDISO

[132]. In our opinion, the simulation of the Nakajima test may be of interest for

industrial application. Since most companies do not have access to the largest

HPC systems, we found it reasonable to consider problem sizes which can be

computed on mid-sized supercomputers. Therefore, in most simulations, also

the macroscopic problem is chosen to be small enough to use a sparse direct

solver.

So far, the software has only been used for the simulation of deformation pro-

cesses of a DP steel, but it is not restricted to this case. The implementation

of further microscopic material laws and the generation of other RVEs enables
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the use of the software in many other fields of application. In our case, the

microscopic material law is nonlinear, which also results in a nonlinear macro-

scopic problem, since the microscopic material properties are propagated to the

macroscopic level by averaging. As a consequence, we have an iteration process

on the macroscopic level. Of course, each macroscopic Newton iteration requires

the solution of all microscopic problems, which are also nonlinear. Accordingly,

we have an iteration process on the microscopic level in each macroscopic iter-

ation. Furthermore, in simulations of real-world applications, the overall load

is usually much too large to apply it in one step. Therefore, the total load is

split into several small load steps, where each load step applies a fraction of

the overall load and the solution of the current load step serves as initial value

for the next load step. Let us note that each load step is associated with a

pseudo time step. Since load stepping provides a solution whereas the applica-

tion of the overall load cannot be solved, it is often used and it can be seen as

a globalization strategy.

Considering the FE2 approach in our software package FE2TI, the time to

solution strongly depends on the number of load steps as well as on the num-

ber of macroscopic Newton iterations per load step. Furthermore, an individual

macroscopic Newton iteration, again, depends on the time to solution of the mi-

croscopic problems. In the following, we introduce the software implementation

in order to keep the number of load steps as well as the number of macroscopic

Newton iterations as small as possible. The following presentations are based

on the discussion in [87].

The number of load steps depends on the load step size, but its choice is

critical. On one hand, too large load steps may lead to divergence of individual

microscopic problems, which cause a termination of the simulation. On the

other hand, too small load steps may increase the computing time. Therefore,

we introduce a simple load step strategy to dynamically control the load step

size; see Section 4.2.1.

The number of Newton iterations is affected by the choice of the initial value.

The simplest choice of an initial value for the current load step is the con-

verged solution of the previous load step; see Figure 4.1. It is also possible

to introduce the predicted deformation of the current load step into the initial

value; see Section 4.2.2. Choosing a better initial value reduces the number of

Newton iterations per load step and the overall time to solution. In case of

simulations of a tensile test using the FE2TI software package, the strategy of

linear extrapolation (see Section 4.2.2) was successfully used; see [74].
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Figure 4.1: Schematic sequence of the FE2 algorithm using a load step strat-

egy.

Besides the software developments regarding the minimization of the num-

ber of load steps and macroscopic Newton iterations, we have also integrated

a Checkpoint/Restart strategy, which is introduced in Section 4.2.3. Note that

Section 4.2.3 is based on the presentations in [87]. The usage of a Check-

point/Restart strategy reduces the consequences of hardware errors during the

simulation. Additionally, it can be used to overcome specific wall time limits

on HPC systems.

In addition, the simulation of the Nakajima test requires the incorporation of

macroscopic contact constraints. Therefore, we have implemented a frictionless

contact formulation using the penalty method into our software package FE2TI;

see Section 4.2.4.

4.2.1 Dynamic Loadstepping

In our simulations, the mean time per load step strongly depends on the load

step size, where a smaller load step size leads to a smaller mean timer per load

step. However, a small load step size also leads to a large number of load steps to

cover the overall load. It turns out that a larger load step size is advantageous in

order to minimize the overall computing time; see Tables 4.1 and 4.2 as well as

Tables 4.3 and 4.4. In simulations using a load step strategy, it is possible that

a load step size works well in the beginning of the simulation, but may be too

large in a later stage. In the context of FE2TI, a too large load step is associated

with at least one diverging microscopic problem, which causes the termination

of the simulation due to missing tangent moduli and stresses. Therefore, using

a constant load step size is inappropriate. Instead, we use a dynamic load step

strategy which enables the possibility to start with a comparable large load

step size without causing the termination of the simulation in a later load step.
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Macroscopic Newton Iteration i of Load Step k

Convergence within 20

(microscopic) Newton iterations

No reduction of norm in a microscopic Newton

iteration after the 6th Newton iteration

No Convergence within 20

(microscopic) Newton iterations

Compute stresses and tan-

gent moduli and give them

to the macroscopic level

Give information of no convergence to the

macroscopic level, reduce load increment

loadk by 50%, and restart load step k

Continue with next macroscopic

Newton iteration i + 1 of load step k

Figure 4.2: Impact of microscopic events on the load step size.

The strategy detects whether the load step size may be decreased, increased, or

should remain constant; see Figure 4.4. For us, decreasing means to halve the

load step size and increasing means to double it. The choice of the load step

size depends on macroscopic as well as on microscopic information.

Based on microscopic information, the load step size may only be decreased.

Whenever stagnation of a single microscopic problem is detected, this informa-

tion is given to the macroscopic level, where the current load step is repeated

with a halved load step size. Stagnation of a microscopic problem is detected

when the norm of the solution of the current microscopic Newton iteration does

not reduce compared to the previous one after the sixth microscopic Newton

iteration or if convergence is not reached within 20 iterations; see Figure 4.2.

Note that stagnation can occur in each microscopic problem of each macroscopic

Newton iteration of a load step.

Based on macroscopic information, the load step size may be decreased or

increased. Let us assume that convergence of a load step was reached within 20

macroscopic Newton iterations. The number of Newton iterations of the current

load step has to be compared with the number of Newton iterations of the

previous load step. If the number of the current load step is at most 50% of the

number of the last load step, the load step size of the next load step is increased.

Otherwise, the load step size remains constant. In case that convergence of a

load step is not reached within 20 macroscopic Newton iterations, the load step

size has to be decreased anyway. But if the norm of the solution of the 20th

Newton iteration is close to the Newton tolerance, five more Newton iterations

are spent. If convergence is reached within these five iterations, the load step
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Figure 4.3: Impact of macroscopic events on the load step size.

This figure is similarly accepted and soon to be published; see

[87, Fig. 6]; EXASTEEL - Towards a virtual laboratory for the

multiscale simulation of dual-phase steel using high-performance

computing; Software for Exascale Computing - SPPEXA 2016-

2019; Springer LNSCE.

size of the next load step has to be halved. Otherwise, the load step has to

be repeated with a halved load step size. To prevent sticking to unnecessary

small load step sizes, a load step size is increased whenever convergence of a

load step is reached within one macroscopic Newton iteration. For an overview

of all cases; see Figure 4.3.

To demonstrate the functionality of our dynamic load step strategy, we have

compared different initial load step sizes with and without the usage of the

dynamic load step strategy; see Tables 4.1 and 4.2. We have considered sample

sheet geometries with parallel shaft widths of 50 mm (see Table 4.1) and 70 mm

(see Table 4.2).

In both cases, we obtain similar results. For a comparably large load step size

of 0.2 mm, the simulations using a constant load step size terminate within the

second load step due to diverging microscopic problems. Instead, if we use our

dynamic load step strategy, the simulation continues until the desired covered

distance is reached. For the sample sheet with a parallel shaft width of 50 mm,
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Figure 4.4: Schematic sequence of the FE2 algorithm using a load step strat-

egy with dynamic load step sizes depending on microscopic as well

as macroscopic events (see Figures 4.2 and 4.3).

a load step size of 0.2 mm is suitable in a later stage. Therefore, the average

load step size is close to 0.2 mm and the overall computing time is minimal

compared to all other simulations; see Table 4.1. In contrast, after the load

step size has to be decreased, the load step size remains constant (0.1 mm) for

the rest of the simulation for the sample sheet with a parallel shaft width of

70 mm. Due to the overhead of the repeated load step, a constant load step

size of 0.1 mm is slightly faster; see Table 4.2.

For comparably small load step sizes, the load step strategy detects that larger

load step sizes are possible and raises the step size. Therefore, the absolute

runtime can be significantly reduced.

Furthermore, an initial load step size of 0.1 mm seems to be optimal in some

sense. If we use a linear extrapolation strategy (see Section 4.2.2), the dynamic

load step strategy leaves the load step size unchanged, at least for the first 2

mm of tool movement; see also Tables 4.3 and 4.4. Of course, the load step size

will be decreased if the rigid tool moves further. For example, for the sample

sheet geometry with a parallel shaft width of 50 mm (see Table 3.1), we have

required a minimum load step size of 0.00625 mm during the simulation of the

Nakajima test until the critical value W c was reached in finite element nodes

on the top surface of the sample sheet.
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Table 4.1: Comparison of some characteristic quantities for the first 2 mm

covered by the rigid punch using different constant load step sizes

as well as the dynamic load step strategy with different initial load

step sizes; computed on JUWELS [70]; symmetric quarter of the

sample sheet with a shaft width of 50 mm; two finite elements in

thickness direction. We have used linear extrapolation and 2 MPI

ranks per core. We consider the computation time as well as the

number of macroscopic load steps and Newton iterations.

Sample sheet 50
computed on JUWELS; 2 MPI ranks per core

Constant Load Step Size Dynamic Load Step Strategy

Load Load Load Load Load Load
0.003125 0.1 0.2 0.003125 0.1 0.2

Cov. Dist.
2 2 term. 2 2 2

Punch [mm]

Load Steps 640 20 after 86 20 11

Newton Its. 970 130 one 328 130 91

∅ Load Step
0.003125 0.1 load 0.0233 0.1 0.18

Size [mm]

∅ Newton Its.
1.52 6.50 step 3.81 6.50 8.45

per Load Step

Runtime [s] 7 204.58 1 048.61 2 415.89 1 070.00 808.01

∅ Time per
11.26 52.43 28.09 53.50 73.46

Load Step [s]

∅ Time per
7.43 8.07 7.37 8.23 8.88

Newton It. [s]

4.2.2 Prediction of an Initial Value

For Newton-type methods, a good choice of the initial value is essential for

superlinear convergence. If the initial value is close to the solution, only a

few Newton iterations are required. Analogously to [74], we can use a linear

interpolation polynomial to approximate the solution of the next load step.

Let us assume that we have just finished load step k and the accumulated

load
∑k−1

i=1 li as well as the solution uk−1 of the previous load step k − 1 are

known, where lj denotes the load increment of load step j. Furthermore, we

assume that the load increment of load step k + 1 is known. Therefore, the

accumulated load
∑k+1

i=1 li is also known. Since every load step makes a small

load increment, the accumulated loads of different load steps are obviously

distinct. Accordingly, we obtain from, e.g., [127] that there exists a unique

linear or constant interpolation polynomial

p1(l) = a · l + b, a, b ∈ R,
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Table 4.2: Comparison of some characteristic quantities for the first 2 mm

covered by the rigid punch using different constant load step sizes

as well as the dynamic load step strategy with different initial load

step sizes; computed on magnitUDE; symmetric quarter of a sample

sheet with a shaft width of 70 mm; two finite elements in thickness

direction. We have used linear extrapolation and 2 MPI ranks per

core. We consider the computation time as well as the number of

macroscopic load steps and Newton iterations.

Sample sheet 70
computed on magnitUDE; 2 MPI ranks per core

Constant Load Step Size Dynamic Load Step Strategy

Load Load Load Load Load Load
0.025 0.1 0.2 0.025 0.1 0.2

Cov. Dist.
2 2 term. 2 2 2

Punch [mm]

Load Steps 80 20 after 42 20 19

Newton Its. 344 136 one 216 136 138

∅ Load Step
0.025 0.1 load 0.048 0.1 0.105

Size [mm]

∅ Newton Its.
4.3 6.8 step 5.14 6.8 7.26

per Load Step

Runtime [s] 2 901.11 1 175.58 1 831.08 1 186.06 1 200.59

∅ Time per
36.26 58.78 43.60 59.30 63.19

Load Step [s]

∅ Time per
8.43 8.64 8.48 8.72 8.70

Newton It. [s]

with p1(
∑k−1

i=1 li) = uk−1 and p1(
∑k

i=1 li) = uk. The resulting interpolation

polynomial writes

p1(l) = uk−1 +
l −
∑k−1

i=1 li∑k
i=1 li −

∑k−1
i=1 li

· (uk − uk−1);

see [127, Eq. (1.4)]. This polynomial can be used to approximate the solution

of the next load step k + 1 by inserting the accumulated load
∑k+1

i=1 li into the

polynomial. The approximated solution is subsequently used as initial value for

load step k + 1, i.e., the initial value u
(0)
k+1 writes

p1(

k+1∑
i=1

li) =: u
(0)
k+1 = uk−1 +

lk+1 + lk

lk
· (uk − uk−1). (4.13)

In comparison to the presentation in [74], p1 depends on the load increments of

some load steps, since we do not consider constant load increments due to the

dynamic load stepping introduced in Section 4.2.1. Let us note that all load
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Figure 4.5: Schematic sequence of the FE2 algorithm using a load step strat-

egy with dynamic load step sizes and a linear extrapolation strat-

egy for the computation of the initial value of the next load

step. Instead of a linear extrapolation strategy, we can also use

quadratic extrapolation; see Equation (4.13). The load step size

depends on microscopic as well as macroscopic events (see Fig-

ures 4.2 and 4.3).

increments of load steps smaller than k vanish due to subtraction. The usage

of a linear interpolation polynomial for the computation of an initial value for

the next load step is referred to as linear extrapolation throughout this thesis.

As mentioned before, the macroscopic material behavior is nonlinear if the

microscopic material model is nonlinear. Therefore, it might be advantageous

to use a nonlinear interpolation polynomial instead of a linear one (see Equa-

tion (4.13)). Therefore, we also consider a polynomial p2 of degree 2. In

comparison to the linear polynomial, for which only the solutions and accu-

mulated loads of the current and the previous load steps are required (see

Equation (4.13)), we additionally need the solution and the accumulated load

of the second last load step. Let us assume that we have just finished load

step k and the solutions and accumulated loads of the previous load steps k−1

and k−2 as well as the load increment of load step k+ 1 are known. The inter-

polation polynomial p2(l) = a · l2 +b · l+c, a, b, c ∈ R, with p2(
∑k−2

i=1 li) = uk−2,

p2(
∑k−1

i=1 li) = uk−1, and p2(
∑k

i=1 li) = uk is unique, since the accumulated
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loads of different load steps are distinct; see, e.g., [127]. We formulate p2 in

terms of the Lagrange polynomial, i.e., p2 writes

p2(l) =

k∑
i=k−2

ui · Li(l),

with

Lj(l) =

k∏
m=k−2
m6=j

(
l − (

∑m
s=1 ls)

)(
(
∑j

s=1 ls)− (
∑m

s=1 ls)
) ;

see, e.g., [127]. Inserting the accumulated load after load step k+1 into p2, i.e.,

we choose l =
∑k+1

i=1 li, we obtain the initial value u
(0)
k+1 as

p2(
k+1∑
i=1

li) =: u
(0)
k+1 =

(lk+1 + lk)lk+1

lk−1(lk + lk−1)
uk−2 −

(lk+1 + lk + lk−1)lk+1

lk−1lk
uk−1

+
(lk+1 + lk + lk−1)(lk+1 + lk)

(lk + lk−1)lk
uk.

(4.14)

Similar to the linear polynomial, load increments of load steps smaller than

k − 1 vanish due to subtraction. Throughout this thesis, we refer to the usage

of an initial value computed with an interpolation polynomial of degree 2 as

quadratic extrapolation.

The algorithmic scheme using extrapolation for the computation of an im-

proved initial value is shown in Figure 4.5. In order to save some space, only

the case of linear extrapolation is shown, but for quadratic extrapolation, only

the formula for calculating the initial value has to be exchanged (see Equa-

tions (4.13) and (4.14)). Since the quadratic extrapolation has been imple-

mented very recently, most simulation results including all simulation for the

derivation of the FLD are performed using the linear extrapolation strategy.

Let us compare the different extrapolation strategies. Therefore, we consider

the first 4 mm of tool movement for a symmetric quarter of a sample sheet with

a parallel shaft width of 40 mm (see Table 4.3) as well as for a complete sample

sheet with a parallel shaft width of 90 mm (see Table 4.4). In the latter case,

we exclusively consider finite elements that do not belong to the clamped area

between the blank holder and die; see Sections 2.4 and 2.5. For the simulation

of the complete sample sheet, we use a finite element discretization with one

finite element in thickness direction to reduce the computational costs.

As a baseline for our comparison, we consider a simulation without using any

extrapolation but taking into account our dynamic load step strategy intro-
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duced in Section 4.2.1. Note that quadratic extrapolation cannot be activated

before convergence of the third load step, because it requires information from

the previous two load steps. In comparison, linear extrapolation can already

be activated one step earlier. We have activated both extrapolation strategies

as soon as possible. To provide a fair comparison, we have also activated lin-

ear extrapolation at the same time as quadratic extrapolation. It would be

also possible to perform one step of linear extrapolation and thereafter activate

quadratic extrapolation, but this has not been considered so far.

We obtain similar results for the simulation of both sample sheets; see Ta-

bles 4.3 and 4.4. Even if we use a constant load step size, the number of overall

macroscopic Newton iterations can be significantly reduced. As one can see

in Tables 4.3 and 4.4, the usage of the quadratic extrapolation seems to be

more efficient since it needs less overall macroscopic Newton iterations and,

therefore, saves more than 10% of computing time compared to linear extrap-

olation.

As mentioned in the previous section, the load step size remains constant for

a comparably small covered distance of the rigid punch if we use an initial load

step size of 0.1 mm in combination with a linear extrapolation strategy. This

is different in case of quadratic extrapolation. After activating quadratic ex-

trapolation, the number of macroscopic Newton iterations drops such that less

than 50% of the previous number of macroscopic Newton iterations are needed.

Thus, the load step size is increased. After a while, the load step size again has

to be decreased due to diverging microscopic problems. Nonetheless, the aver-

age load step size is larger and, therefore, less load steps are necessary compared

to linear extrapolation. It is striking that the average number of Newton steps

per load step is smaller compared to linear extrapolation, although a larger

average load is used. This shows once again that quadratic extrapolation can

be worthwhile. Finally, the usage of quadratic extrapolation using a dynamic

load step strategy can reduce the computing time by more than 50% compared

to the simulation without any extrapolation strategy; see Table 4.4.

The drawback of the quadratic extrapolation is an additional storage of a so-

lution vector since we require the solution of the last two load steps. Depending

on the HPC system, it might occur that we are memory bounded, especially

for large macroscopic problems. If this is the case, the quadratic extrapolation

strategy cannot be used. Furthermore, the additional solution vector also has

to be integrated into our checkpoint (see Section 4.2.3), which also takes some

extra time for large macroscopic problems.
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Table 4.3: Comparison of linear and quadratic extrapolation for the first 4

mm covered by the rigid punch with and without using a dynamic

load step strategy (see Section 4.2.1); initial load step size of 0.1

mm; computed on magnitUDE; symmetric quarter of the sample

sheet with a shaft width of 40 mm; two MPI ranks per core; two

finite elements in thickness direction.

Sample sheet 40
computed on magnitUDE; 2 MPI ranks per core

Const. Load Step Size Dynamic Load Step Strategy

Lin. Lin. Quad. No Lin. Lin. Quad.
Extra. Extra. Extra. Extra. Extra. Extra. Extra.

Cov. Dist.
4 4 4 4 4 4 4

Punch [mm]

1. Load Step
3 4 4 − 3 4 4

Using Extra.

Load Steps 40 40 40 45 40 40 33

Newton Its. 310 312 273 562 310 312 245

∅ Load Step
0.1 0.1 0.1 0.089 0.1 0.1 0.12

Size [mm]

∅ Newt. Its.
7.75 7.8 6.83 12.49 7.75 7.8 7.42

per Load Step

Runtime [s] 2 435.86 2 451.4 2 158.09 4 409.67 2 414.47 2 435.57 1 943.37

∅ Time per
60.90 61.28 53.95 97.99 60.36 60.89 58.59

Load Step [s]

∅ Time per
7.86 7.86 7.91 7.85 7.79 7.81 7.93

Newt. It. [s]

Let us note that the use of extrapolation changes the role of the contact

constraints. While the contact constraints exclusively cause the deformations

without using an extrapolation strategy, they have a slightly different task if an

extrapolation strategy is used. No matter which polynomial we use to calculate

an initial value, in both cases we obtain an approximate solution of the next

load step. As a consequence, the initial value already contains deformations

that have not been driven by the contact constraints. Therefore, the contact

constraints have to check the deformations contained in the initial value and

adjust them if necessary.

4.2.3 Checkpoint/Restart

The virtual derivation of an FLD and its corresponding FLC requires the simu-

lation of the Nakajima test with different sample sheets. For each sample sheet,

the simulation has to be performed until a failure zone occurs, which takes more

than 14 hours (see Table 3.1), even if the full supercomputer is available. Longer

runtimes automatically increase the risk of hardware failures during the simu-

84



Table 4.4: Comparison of linear and quadratic extrapolation for the first 4 mm

covered by the rigid punch with and without using a dynamic load

step strategy (see Section 4.2.1); initial load step size of 0.1 mm;

computed on magnitUDE; no utilization of symmetry for a sample

sheet with a shaft width of 90 mm; two MPI ranks per core; one

finite element in thickness direction.

Sample sheet 90
computed on magnitUDE; 2 MPI ranks per core

Const. Load Step Size Dynamic Load Step Strategy

Lin. Lin. Quad. No Lin. Lin. Quad.
Extra. Extra. Extra. Extra. Extra. Extra. Extra.

Cov. Dist.
4 4 4 4 4 4 4

Punch [mm]

1. Load Step
3 4 4 − 3 4 4

Using Extra.

Load Steps 40 40 40 40 40 40 34

Newton Its. 332 334 286 445 332 334 262

∅ Load Step
0.1 0.1 0.1 0.1 0.1 0.1 0.12

Size [mm]

∅ Newt. Its.
8.3 8.35 7.15 11.13 8.3 8.35 7.71

per Load Step

Runtime [s] 2 684.55 2 688.70 2 326.75 3 623.05 2 672.15 2 683.78 2 157.91

∅ Time per
67.11 67.22 58.17 90.58 66.80 67.09 63.47

Load Step [s]

∅ Time per
8.09 8.05 8.14 8.14 8.05 8.04 8.24

Newt. It. [s]

lations. To reduce the consequences of such hardware failures on the one hand

and to overcome specific wall time limits of supercomputing systems on the

other hand, we equipped our FE2TI software with a Checkpoint/Restart (CR)

strategy. Therefore we integrated the CRAFT library (Checkpoint/Restart and

Automatic Fault Tolerance) [136], which was developed in the second phase of

the SPPEXA project ESSEX. Even if the library enables many more possibil-

ities such as automatic fault tolerance, we only use it for Checkpoint/Restart

so far. In CRAFT, we can choose between synchronous and asynchronous

Checkpoint/Restart. By default, asynchronous Checkpoint/Restart creates lo-

cal copies of the checkpointing data, which might be large for us. Furthermore,

we can only write a single checkpoint when using the asynchronous variant.

Accordingly, we choose synchronous Checkpoint/Restart in our simulations.

Let us note that we use different checkpoint objects for macroscopic values

and microscopic values. Furthermore, we have a third checkpoint object, which

writes a checkpoint immediately before termination of the simulation, i.e, if the

rigid punch has reached the desired covered distance or if too much consecutive

load steps with a very small load step size were performed. The latter checkpoint
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object can be used to increase the contact stiffness εN for the final solution in

an additional simulation. To prevent us from simulating load steps twice in a

restart run, we recently implemented the option to write a checkpoint and to

stop the simulation if the wall time is almost reached.

So far, we choose a simple checkpoint interval depending on a specific number

of load steps, which can be chosen by the user. With this strategy, the time

interval between two checkpoints strongly depends on the load step size, since

the mean time per load step depends on the load step size; see Tables 4.1 to 4.4.

Hence, the time between two checkpoints is much smaller if the load step size

is small, which is usually the case at the end of the simulation. One could

also think about a checkpoint interval based on a fixed covered distance of the

rigid punch. Here, the time interval between two checkpoints may be too large

if a small load step size is used. As an improvement, the checkpoint interval

can also be based on a wall time interval which additionally could depend on

the expected runtime and the mean time of hardware failure on the used HPC

system; see [27] for different checkpoint intervals based on this idea.

4.2.4 Frictionless Contact Between a Rigid Tool and a Deformable

Body

In the Nakajima test, the sample sheet comes into contact with several rigid

tools, namely the hemispherical punch, the blank holder, and the die. Hence,

the simulation of the Nakajima test requires the incorporation of macroscopic

contact into the FE2TI software package. As mentioned in Chapter 2, friction

between the rigid punch and the sample sheet has to be avoided as much as

possible by using a sufficient lubrication system. Since the deformation process

is completely driven by the frictionless contact between the hemispherical punch

and the sample sheet and is only restricted through contact with the die and the

blank holder, we consider a formulation for frictionless contact between a rigid

tool and a deformable body. In the following, the deformable body is denoted

by B and the different rigid tools by T i, i = 1, 2, 3. The hemispherical punch

is referred to as T 1, the blank holder is denoted by T 2, and the die is denoted

by T 3. For simplicity, we consider contact between the deformable body B and

an arbitrary rigid tool T in the following. The following discussion is based on

the presentations in [87].

In contact formulations, one contact partner is assumed to be the master

body and the other body is referred to as slave body [102,151]. Only points of

the contact surface of the slave body are allowed to penetrate into the master

body. In the case of contact between a deformable body and a rigid tool, as
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considered here, the amount of penetration can be computed using the rigid

body as master body or as slave body [102]. In our implementation, we fol-

low the recommendation from [151, Rem. 4.3] to use the rigid body contact

surface as master surface. The resulting contact contributions to the stiffness

matrix and the right-hand side are computed in the coordinate system of the

deformable body, regardless of the choice of the master body.

Let us assume that only points of one surface of the deformable body B can

come into contact with the rigid tool T and that the surface is denoted by

ΓB. In each iteration, we have to check for each finite element node xB ∈ ΓB
whether it penetrates into the master body T or not. Therefore, we have to

determine for each xB ∈ ΓB the related point on the rigid tool surface ΓT , which

has minimum distance to xB, i.e., we are looking for

xmin
T := min

xT ∈ΓT

||xB − xT ||.

Once we have found the related minimum distance point xmin
T , we have to

compute the outward normal vector nmin
T at this point. This can be done as

usual as cross product of two tangent vectors which are orthogonal to each

other. When using the penalty method for the incorporation of the contact

constraints, the outward normal vector can also be computed as

nmin
T =

xB − xT
||xB − xT ||

. (4.15)

For the computation of the outward normal vectors of the different rigid tools

in the Nakajima test, we refer to Section 4.2.4.3.

Since in reality one solid cannot penetrate into another, we want to include

this condition into the numerical simulation. The mathematical formulation of

the non-penetration condition is

gNP (xB) =
(
xB − x

min
T
)T · nmin

T ≥ 0, xB ∈ ΓB. (4.16)

In conjunction with the penalty method, we have to compute the amount of

penetration for all finite element nodes that violate Equation (4.16). Therefore,

we denote the set of active contact constraints as

Γc :=
{
xB ∈ ΓB

∣∣ gNP (xB) < 0
}

;

see red squares in Figure 4.6. For all finite element nodes xc ∈ Γc, the outward

normal at the corresponding minimum distance point writes nmin
T = −

xc−xmin
T

||xc−xmin
T
||
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gN =
(
xB − xmin

T

)
· nmin
T

xB

xmin
T

Rigid tool
surface ΓT

Sheet metal
surface ΓB

nmin
T := nT

(
xmin
T

)

Point on the rigid tool
surface with minimal
distance to FE-node xB

FE-node with active
contact constraint

FE-node with inactive
contact constraint

Figure 4.6: Illustration for the determination of active contact nodes and the

amount of penetration.

This figure is accepted and soon to be published; see [87, Fig.

5]; EXASTEEL - Towards a virtual laboratory for the multiscale

simulation of dual-phase steel using high-performance computing;

Software for Exascale Computing - SPPEXA 2016-2019; Springer

LNSCE.

and the amount of penetration gN can be computed as

gN (xc) = −||xc − xmin
T || = −

||xc − xmin
T ||

2

||xc − xmin
T ||

= −
(
xc − xmin

T
)T · xc − xmin

T
||xc − xmin

T ||

=
(
xc − xmin

T
)T · nmin

T

= gNP (xc). (4.17)

The amount of penetration is set to zero for the remaining finite element nodes

xB ∈ ΓB \ Γc on the contact surface of B, i.e., gN (x) = 0 ∀x ∈ ΓB \ Γc. For an

illustration presenting the basic ideas discussed in this section; see Figure 4.6.

The rigid tool T is not discretized by finite elements, but its surface is charac-

terized by an analytical function. This simplifies the computation of the related

minimum distance point, and thus the calculation of the outward normal vector

and of the amount of penetration; see Section 4.2.4.3. For a detailed description

of contact kinematics between two deformable bodies, we refer to [151, Sec 4.1].

As usual in standard finite element simulations of continuum mechanical

problems, we are interested in the minimization of an energy functional Π̃. Due

to the non-penetration condition (cf. Equation (4.16)), we have to consider
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a constrained optimization problem, which can be solved by, e.g., the penalty

method.

4.2.4.1 Penalty Method

The solution of constrained optimization problems is required in many appli-

cations. For example, in the simulation of contact driven simulations it must

be ensured that the bodies in contact do not penetrate each other. Mathemat-

ically, this condition can be formulated as an inequality constraint (see Equa-

tion (4.16)) and it has to be taken into account when minimizing the resulting

energy functional.

A prominent approach for the approximative solution of constrained mini-

mization problems is the quadratic penalty method; see [122, Ch. 17.1] and [113,

Ch. 13]. The general idea of penalty methods is to approximate the solution of

the constraint minimization problem by solving an unconstrained minimization

problem. The objective function of the unconstrained minimization problem

results from the objective function of the original problem and additional terms

which penalize the violation of the constraint equations. Small violations of a

specific constraint are less penalized than large violations.

In detail, the solution of minimizing a function

f : Rn → R

x 7→ f(x)

under some constraint equations ci(x) ≥ 0, i ∈ I ⊆ {1, . . . , n}, is approximated

by solving an unconstrained minimization problem of a function

g : Rn → R

x 7→ f(x) +
εN
2

∑
i∈I

max(−ci(x)2, 0).

Here, εN > 0 is a penalty parameter, which is often denoted by c in the liter-

ature; see, e.g., [11, 113]. In the context of contact between a deformable body

and a rigid tool, we have an individual constraint equation for each possible

contact node. Let us define the active set A of contact constraints as

A :=
{
i ∈ I

∣∣ ci(x) < 0
}
⊆ I. (4.18)

This definition differs from the notation in the literature, where an active set

contains all indices i ∈ I with ci(x) = 0 (see, e.g., [113, 122]). However, using
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Equation (4.18), we can rewrite g to

g(x) = f(x) +
εN
2

∑
i∈A

ci(x)2,

since constraints with ci(x) = 0 do not contribute to the objective function

g(x).

Let us assume that both, the constrained as well as the unconstrained mini-

mization problems have a solution. Then, the penalty parameter εN implicitly

determines the accuracy of the approximative solution. For small penalty pa-

rameters, violation of the constraint equations is less penalized and hence, the

approximative solution is poor. In contrast, for large penalty parameters, vio-

lation of the constraints generate high costs, even for small violations, i.e., the

solution xg of g(x) is close to the solution x∗ of f(x). In practice, a sequence{
xkg
}

of minima of g(x, εkN ) is generated with an increasing penalty parameter

tending to infinity, i.e., limk→∞ ε
k
N = ∞ and εkN > εk−1

N ; see [113]. It can be

shown that the sequence
{
xkg
}

, generated by the penalty method, converges to

the solution x∗ of the constraint minimization problem of f ; see [113, Ch. 13,

p. 400].

In [151], it is noted that εN → ∞ yields the Lagrange multiplier method,

which can also be used for the solution of constrained minimization problems;

see [113,122].

In contact simulations, we do not compute a sequence of rising penalty param-

eters for each load step but choose a constant penalty parameter throughout

the simulation process. However, the penalty parameter might be increased

during the simulation or at its end.

A disadvantage of the penalty approach is the fact that for large penalty

parameters the Hessian matrix becomes ill-conditioned. For εkN → ∞, |A|
eigenvalues of the Hessian matrix also tend to infinity; see [113, p. 406ff] for

further details. Note that the convergence rate of Newton’s method is not

affected by the structure of the eigenvalues of the Hessian, but the inverse of

the ill-conditioned Hessian has to be computed carefully; see [113, Ch. 13.4].

For further details, we refer to [122, Ch. 17], [113, Ch. 13], and [11, Ch. 2.1].

4.2.4.2 Contact Formulation Using the Penalty Method

The treatment of frictionless contact as a constrained optimization problem

follows directly from the contact formulation. It is obvious that there are no

contact stresses PN in the contact interface if gN > 0 holds for all xB ∈ ΓB,

i.e., gN > 0 implies PN = 0. In case that the bodies are in contact, gN = 0 has
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to hold and the contact stress PN is not zero. Following [151], adhesive stresses

are forbidden in the contact interface. Hence, in case of contact, PN < 0 holds.

The latter explanations can be combined to

gN ≥ 0, PN ≤ 0, gN · PN = 0. (4.19)

These conditions are called Hertz-Signorini-Moreau conditions (see [151]) and

are equivalent to the Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [11,113,

122]).

There are many different methods to incorporate contact constraints into

finite element formulations; see [151, Sec. 6.3]. Besides the penalty method,

the method of Lagrange multipliers is the most commonly used method. While

the number of unknowns does not increase in the case of the penalty method,

the contact constraints are only resolved approximately. The amount of allowed

penetration depends on the choice of the penalty parameter εN , which can be

interpreted as the stiffness of a spring that is placed in the contact interface of

the deformable body and the rigid tool [151, Sec. 2.1.3]. For a suggestion of

the choice of the penalty parameter, we refer to [151, Rem. 10.2].

Let us note that the equations describing the behavior of the bodies com-

ing into contact are not affected by the incorporation of the contact con-

straints [151]. Using the quadratic penalty method, we have to add the ad-

ditional term

Π̃P =

∫
Γc

1

2
· εN · g2

N dA

to the energy functional Π̃ [151, Sec. 6.3]. Hence, all active finite element nodes

have an impact to the overall energy functional. Instead of using the notation

of active contact constraints, other authors like Konyukhov and Schweizerhof

introduce the Heaviside function; see, e.g., [101,102]. The Heaviside function is

also called unit step function and can be found in, e.g., [71, Sec. 1.1] or [29, Eq.

7.94].

In FE2TI, we solve the resulting weak formulation including the contact

constraints iteratively by using Newton’s method. Hence, also the contact con-

straints have to be linearized, which leads to an additional contact part in the

resulting stiffness matrix. Moreover, we also obtain an additional contact part

in the right-hand side. Following the representation in [67], the impact of a

single contact constraint to the stiffness matrix of a single finite element writes

K = Kmain +Krot +Kcurv.
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The different parts of K in the latter equation are derived by numerical inte-

gration over the contact surface of the finite element. We obtain for an active

contact constraint

Kmain = εN ·
ngp∑
q=1

AT (n⊗ n)A · wq · b,

Krot = −εN · gN
ngp∑
q=1

wq · b
2∑
i=1

2∑
j=1

AT,j · aij(n⊗ a,i)A+AT (a,i ⊗ n) · ajiA,j ,

Kcurv = −εN · gN
ngp∑
q=1

wq · b
2∑
i=1

2∑
j=1

AT (a,i ⊗ a,j)hijA.

Here, ngp is the number of quadrature points and wq are its corresponding

weights. The value b =
√

det aij is the square root of the determinant of

the metric tensor written in a covariant basis, aij are the components of the

metric tensor in a contravariant basis, and hij is the curvature tensor in the

contravariant basis. The vector a,i, i = 1, 2, is the tangent vector in direction i

at the quadrature point and the matrices A and A,j write

A = −

N
1 0 0 . . . Nngp 0 0

0 N1 0 . . . 0 Nngp 0

0 0 N1 . . . 0 0 Nngp

 ,

A,j = −

N
1
j 0 0 . . . N

ngp
j 0 0

0 N1
j 0 . . . 0 N

ngp
j 0

0 0 N1
j . . . 0 0 N

ngp
j

 ,
where N i are the basis functions of the finite element surfaces and N i

j , j = 1, 2,

are their partial derivatives; see [67].

In our implementation, we use Q2 finite elements. Hence, the contact sur-

face of a finite element has 9 quadrature points. Furthermore, we check for

penetration at the finite element nodes. Therefore, we consider the Lobatto

integration with its weights 1
9 for the corners, 4

9 for midpoints of edges, and 16
9

for the midpoint of the surface. Note that we use only the main part of the

stiffness matrix in our implementation since the rotational and the curved parts

are small due to the multiplication with gN .

For a detailed derivation of the linearized terms as well as for the definition

of the metric tensor and the curvature tensor we refer to different works of

Konyhukov and Schweizerhof [67,101,102] as well as to [151, Sec. 6.5] and [151,

App. B].
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4.2.4.3 Contact With Rigid Tools in the Nakajima Test

As mentioned before, the computation of the corresponding projection point

on the rigid surface as well as its associated outward normal vector simplifies

if the rigid surface is characterized by an analytical function. In the Nakajima

test, the sample sheet is in contact with the hemispherical punch, the blank

holder, and the die. While the blank holder is only a horizontal plane, the die

consists of three different parts, namely a horizontal flat part, a vertical flat

part, and a curved part in between. Therefore, we have to distinguish between

three different cases, which are contact with the rigid punch, contact with a

flat part, and contact with the curved part of the die; see Figure 2.1 and the

different radii in Figure 2.4.

Contact with the Rigid Punch Let us first consider contact between the sheet

metal and the forming tool T 1. We assume that the radius rs and the initial

position of the center cs =
[
c1
s, c

2
s, c

3
s

]
∈ R3 of the hemispherical punch are

known. Then, the surface of the hemispherical punch can be characterized

by the function ||x − cs|| = rs, x ∈ R3. Note that the third coordinate c3
s

of the center of the hemispherical punch changes in every load step. With

the analytical function describing the surface of the rigid punch T 1, we can

formulate an alternative non-penetration condition

ĝT 1
NP (xB) = ||xB − cs|| − rs ≥ 0, xB ∈ ΓB.

For any finite element node xB ∈ ΓB, the outward normal direction nmin
T 1

at the

related minimum distance point xmin
T 1

of the upper half of the sphere is defined

through the direction from the center cs to xB, which yields

nmin
T 1

=
xB − cs
||xB − cs||

.

The related minimum distance point xmin
T 1

to xB ∈ ΓB can be derived in closed

form as xmin
T 1

= cs + nmin
T 1
· rs.

Contact with a Flat Rigid Surface Parallel to a Coordinate Plane Things

become even more simple for a flat contact surface parallel to one of the

three coordinate planes. We consider a rigid body T ∈ R3 with a flat contact

surface Γ
i
T , i ∈ {1, 2, 3}, which is parallel to one of the coordinate planes.

The contact surface Γ
i
T is defined by all points p =

[
p1, p2, p3

]
∈ T , where

a single component pi, i ∈ {1, 2, 3}, is a constant value cf ∈ R, i.e., pi = cf

for one i ∈ {1, 2, 3}. The corresponding outward normal is ±ei, where ei
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is the i-th unit vector. The sign depends on the position of the deformable

body B in comparison to the rigid surface ΓT . Subsequently, for any finite

element node xB =
[
x1
B, x

2
B, x

3
B

]
∈ B, the related minimum distance point

xmin
f =

[
xmin,1
f , xmin,2

f , xmin,3
f

]
∈ Γ

i
T is defined by xmin,i

f = cf , x
min,j
f = xjB,

i ∈ {1, 2, 3} , j 6= i. Finally, the alternative non-penetration condition writes

ĝf,iNP (xB) = |xiB − cf | ≥ 0, xB ∈ Γ
i
B, i ∈ {1, 2, 3} .

For a better understanding, we consider the case of a flat contact surface

parallel to the x-y-plane in more detail. Here, the contact surface is defined as

ΓT = Γ
3
T =

{
p =

[
p1, p2, p3

]
∈ T

∣∣ p3 = cf =: h
}

and the constant cf represents the height h of the contact surface. Inde-

pendently of the finite element node xB ∈ B, the outward normal writes

nmin
f = [0, 0,±1]T = ±e3. We obtain nmin

f = e3 if the deformable body is

placed above the rigid surface and nmin
f = −e3 for the opposite scenario.

The related minimum distance point for a finite element node xB ∈ B writes

xmin
f =

[
x1
B, x

2
B, h

]
and we obtain the alternative non-penetration condition

ĝfNP (xB) =

x3
B − h ≥ 0, rigid surface below deformable body

x3
B − h ≤ 0, rigid surface above deformable body

, xB ∈ ΓB.

Contact with the Curved Area of the Die Finally, we consider the curved

part of the die as a rigid contact surface. This scenario is somehow similar to

the case of contact with a rigid punch. Of course, we do not have to compute the

distance to the center cs of the rigid punch but to the center cref of a circle that

is a specific slice of the curved edge of the die. The computation of cref has to

be performed for each finite element node xB =
[
x1
B, x

2
B, x

3
B

]
∈ ΓB separately.

It depends on the current position of the center cs =
[
c1
s, c

2
s, c

3
s

]
of the rigid

punch and the height hd of the flat part of the die as well as on the radius rd,

where the flat part of the die starts; see Figures 2.1 and 2.4. In our test setup

we have rd = 65 mm. The final coordinates of cref write

cref = cref(xB) =


c1
s +

x1
B
−c1s√

(x1
B
−c1s)2+(x2

B
−c2s)2

· rd

c2
s +

x2
B
−c2s√

(x1
B
−c1s)2+(x2

B
−c2s)2

· rd

rd + hd

 .
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Once the reference point cref is computed, we can proceed similar to the case

with the rigid punch. Therefore, we additionally require the die radius re that

is 10 mm in our test setup; see Figure 2.1. The outward normal has the same

direction as the difference of the finite element node xB ∈ B and the center of

the slice, which is the reference point cref . Thus, the outward normal writes

nmin
c =

xB−cref

||xB−cref || . The related minimum distance point is the orthogonal pro-

jection of the finite element node xB onto the boundary of the slice, i.e., we

obtain xmin
c = cref + re ·nmin

c . The alternative non-penetration condition for the

curved part of the die writes

ĝcN (xB) = ||xB − cref || − re ≥ 0, xB ∈ ΓB,

where cref again depends on the finite element node xB.
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5 Nonlinear FETI-DP and BDDC

Methods

In this chapter, we focus on the introduction of a unified framework for non-

linear FETI-DP and BDDC methods. These methods can be used to solve

discretized nonlinear partial differential equations. Different variants of nonlin-

ear FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal) and

BDDC (Balancing Domain Decomposition by Constraints) methods were intro-

duced for the first time in [76, 77]. The unified framework was first published

in [85], where this chapter is partially based on. We consider different exam-

ples of nonlinear FETI-DP methods (see Section 5.4) and compare them to the

traditional Newton-Krylov-FETI-DP approach; see Section 5.5. Furthermore,

problem dependent nonlinear FETI-DP methods are presented for the first time

by exploiting information from the nonlinear residual, similarly to a strategy

published in [50]; see Section 5.4.2.5. Additionally, we also shortly present a

nonlinear BDDC approach (see Section 5.6.2) and discuss a strategy to make

nonlinear domain decomposition methods more robust; cf. Section 5.7. Finally,

we show numerical results for the introduced FETI-DP methods for different

model problems such as the p-Laplace equation and hyperelasticity problems

in two dimensions with and without contact. We show results obtained with

sequential MATLAB [120] computations as well as parallel results; see Chap-

ter 6.

5.1 Basic Notation

Before we start with the description of the different methods, let us first in-

troduce the notation which is used throughout this chapter. It is similar to

the standard notation used, e.g., in [89, 97, 98, 150]. We consider finite ele-

ment methods which are based on the concept of divide and conquer, i.e., the

computational domain Ω ⊂ Rd, d = 2, 3, is divided into N nonoverlapping

subdomains Ωi, i = 1, . . . , N , where each subdomain Ωi again is subdivided

into finite elements. Note that we consider matching finite element nodes on

the boundaries of neighboring subdomains. Denoting the closures of the com-
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putational domain Ω and the subdomains Ωi with Ω and Ωi, respectively, we

obtain

Ω =
N⋃
i=1

Ωi.

The diameter of each subdomain Ωi is denoted with Hi and H := maxi=1,...,N Hi

is the maximum diameter of all subdomains. Similar, the maximum diameter

of the finite elements is denoted with h.

Usually, on some parts of the boundary of the computational domain,

the solution is prescribed by some Dirichlet boundary conditions. We re-

fer to this part of the boundary ∂Ω as ∂ΩD. The domain decomposition

interface Γ consists of all points, which belong to the closure of at least

two different subdomains but do not belong to the Dirichlet boundary,

i.e., Γ =
{
x ∈ (Ωi ∩ Ωj) \ ∂ΩD

∣∣ i 6= j
}

; see also [106].

In the following, we consider the discretized version of the computational

domain Ω, which is referred to as Ωh. Since we consider matching finite element

nodes on neighboring subdomains, all physical points x ∈ Γ belong to the

finite element discretization of at least two different subdomains. Analogously

to [106], we denote with Γh, ∂Ωh
D, and ∂Ωh

i , i = 1, . . . , N , the sets of finite

element nodes belonging to Γ, ∂ΩD, and ∂Ωi, respectively. For simplicity, the

superscript h is neglected in the following.

To follow the standard FETI-DP notation as in, e.g., [89, 97, 98, 150],

we denote the local finite element spaces by Wi and the product space by

W = W1 × · · · ×WN . Furthermore, we denote the set of finite element func-

tions which are continuous in all interface variables by Ŵ ⊂ W . The space

of globally assembled finite element functions is denoted by V h = V h(Ω); it

is isomorphic to Ŵ . Restrictions from the globally assembled finite element

functions V h to the local subdomains are performed by the operator

Ri : V h →Wi, i = 1, . . . , N.

All methods that are considered throughout this thesis make use of a strong

coupling in some degrees of freedom. Therefore, we partition the degrees of free-

dom into different subsets. The interface variables Γh are divided into dual (∆)

and primal (Π) variables. Additionally, we introduce the set of interior vari-

ables (I), which contains all variables that do not belong to Γh. Combining the

inner and dual interface variables, we obtain B = [I,∆]. Similar to Ŵ , which

contains all finite element functions that are continuous across the interface,

we introduce the space W̃ , which contains all finite element functions that are
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continuous only in the primal variables. Since the primal variables are a subset

of the interface variables, we have

Ŵ ⊂ W̃ ⊂W.

Throughout this thesis, we usually consider a nonlinear system of equations,

which results from the finite element discretization of an energy functional. For

example, we consider a nonlinear problem of the form K(u) − f = 0. In this

case, the tangential matrix DK(u) occurs in the linearized system. In order to

use a consistent notation throughout this thesis, also the system matrix of a

linear problem is denoted with DK. This is in contrast to the standard notation

but identical to the notation in [107].

5.2 Classical FETI-DP

We recall the traditional FETI-DP approach for a better readability of the fol-

lowing sections. The content of this section is strongly based on the descriptions

in, e.g., [107, Sec. 2.1] and [94].

As mentioned before, the FETI-DP method can be used to solve linear or

linearized systems of equations which result from the finite element discretiza-

tion of a partial differential equation. It was first published in [38]. In general,

the solution is obtained by solving the equivalent minimization problem of the

corresponding energy functional.

If the resulting linearized system of equations on the computational domain Ω

leads to a large problem

DK̂ û = f̂ , û ∈ V h,

which cannot be solved in a direct fashion, we have to apply other solution

strategies. The idea is to decompose the domain Ω into N nonoverlapping

subdomains of a sufficient size. Subsequently, on each subdomain Ωi we solve

a local problem

DK(i) u(i) = f (i) (5.1)

and the overall solution is derived by interconnection of the local solutions

on the interface. The local stiffness matrices DK(i) and the local right-hand

sides f (i) result from local finite element assemblies on the subdomains. Note

that the subdomain problems can be solved in parallel.
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Since finite element nodes in Γh have at least one local copy in another sub-

domain, we have to ensure continuity on the interface. In FETI-DP methods,

we use a combination of global subassembly in the primal variables Π (e.g.

subdomain vertices) and additional dual conditions on the remaining dual vari-

ables ∆; see Figure 5.3.

For the continuity in the dual interface variables, we introduce the FETI-DP

jump operator BB (see, e.g., [94, 150]) and additional Lagrange multipliers λ

to enforce the zero jump condition BBuB = 0, which is also called continuity

condition. Note that BB is not unique and its number of rows depends on

the number of Lagrange multipliers. For example, for a subdomain corner

belonging to four subdomains in 2D, three up to six Lagrange multipliers can

be implemented without changing the solution. Likewise, for an edge in three

dimensions, the choice of Lagrange multipliers is not unique ; see [150]. The

usage of a minimal set of Lagrange multipliers is referred to as the nonredundant

case and using all possible Lagrange multipliers is called the fully redundant

case, which is often used in practice; see, e.g., [106,107]. Therefore, we have one

Lagrange multiplier λ for each pair of local copies of a global interface variable.

Since we have continuity in the inner variables, i.e., the jump is zero, the jump

operator BB writes BB =
[
0I B∆

]
. Each row of B∆ belongs to one Lagrange

multiplier, i.e., each row of BBuB = 0 enforces equality of two local copies of

a global interface variable. Therefore, each row in B∆ only contains a single 1

and a single −1 and a multiplication with BB only causes nearest neighbor

communication.

For the global assembly in the primal variables Π, we introduce the operator

RTΠ =
[
R

(1)T

Π , . . . , R
(N)T

Π

]
, which is standard in FETI-DP; see, e.g., [94,150]. For

example, a typical choice for the primal variables are the subdomain vertices.

Let us note that further choices of primal variables are possible, such as edge

constraints; see [97]. Furthermore, we can also choose a problem-dependent

set of primal variables by using an adaptive coarse space; see, e.g., [58,76,106].

Subassembly in the primal variables leads to the FETI-DP coarse problem which

is a global problem and generally all subdomains add primal constraints. In

the following, all quantities which are subassembled in the primal variables are

marked with a tilde. In comparison to the discretized problem on the whole

domain Ω, the FETI-DP coarse problem is significantly smaller. Furthermore,

computations on the FETI-DP coarse problem can be parallelized using inexact

FETI-DP variants; see Section 5.4.4 and [107, Sec. 3].
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Let us go back to Equation (5.1). Using the introduced partition of variables

in Section 5.1, the local subdomain matrices DK(i) write (after reordering)

DK(i) :=

[
DK

(i)
BB DK

(i)
BΠ

DK
(i)
ΠB DK

(i)
ΠΠ

]
, (5.2)

where the upper left block DK
(i)
BB writes

DK
(i)
BB :=

[
DK

(i)
II DK

(i)
I∆

DK
(i)
∆I DK

(i)
∆∆

]
. (5.3)

Note that DK
(i)
ΠB = DK

(i)T

ΠB and DK
(i)
∆I = DK

(i)T

∆I hold.

Subassembly in the primal variables leads to the FETI-DP master systemDKBB DK̃BΠ BT
B

DK̃ΠB DK̃ΠΠ 0

BB 0 0


uBũΠ

λ

 =

fBf̃Π

0

 , (5.4)

where we have used

DKBB :=


DK

(1)
BB

. . .

DK
(N)
BB

 , (5.5)

DK̃ΠB :=
[
DK̃

(1)
ΠB, . . . , DK̃

(N)
ΠB

]
=
[
R

(1)T

Π DK
(1)
ΠB, . . . , R

(N)T

Π DK
(N)
ΠB

]
, and

DK̃ΠΠ :=
N∑
i=1

R
(i)T

Π DK
(i)
ΠΠR

(i)
Π .

Note that the diagonal blocks DK
(i)
BB, i = 1, . . . , N , are completely local to the

subdomains since they are restricted to the interior and dual variables of the

local matrices DK(i). Obviously, the matrix BB as well as the vectors uB and

fB have an analogous block structure, i.e.,

BB =
[
B

(1)
B , . . . , B

(N)
B

]
, uB =

[
u

(1)T

B , . . . , u
(N)T

B

]T
, fB =

[
f

(1)T

B , . . . , f
(N)T

B

]T
.

Defining the Schur complement S̃ΠΠ in the primal variables as

S̃ΠΠ := DK̃ΠΠ −DK̃ΠBDK
−1
BBDK̃BΠ (5.6)
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and using the notation

F = BBDK
−1
BBB

T
B +BBDK

−1
BBDK̃BΠS̃

−1
ΠΠK̃ΠBDK

−1
BBB

T
B and

d = BBDK
−1
BBfB +BBK

−1
BBDK̃BΠS̃

−1
ΠΠ

(
f̃Π − K̃ΠBDK

−1
BBfB

)
,

we finally obtain

Fλ = d (5.7)

from the third line of system (5.4) by block Gauß elimination of the variables uB

and ũΠ. Note that inverting DKBB - due to its block structure - only requires

inverting the local operators DK
(i)
BB; see Equation (5.5).

If we combine the variables uB and ũΠ to ũ :=
[
uTB, ũ

T
Π

]T
as well as fB and

f̃Π to f̃ :=
[
fTB , f̃

T
Π

]T
and write B :=

[
BB 0

]
, we can rewrite Equation (5.4) in

compressed form as [
DK̃ BT

B 0

][
ũ

λ

]
=

[
f̃

0

]
. (5.8)

Here, DK̃ is defined as

DK̃ :=

[
DKBB DK̃BΠ

DK̃ΠB DK̃ΠΠ

]
. (5.9)

The equivalent version of Equation (5.7) in the compressed form (cf. Equa-

tion (5.8)) writes

B(DK̃)−1BTλ = B(DK̃)−1f. (5.10)

Using the assembly operator RTΠ, we can also write

DK̃ = RTΠ(DK)RΠ,

where DK has a block-diagonal structure with DK(i), i = 1, . . . , N , (cf. Equa-

tion (5.2)) on its diagonal block entries.

Instead of solving Fλ = d (cf. Equation (5.7)) or its equivalent compressed

version (cf. Equation (5.10)), the FETI-DP method solves the preconditioned

system

M−1Fλ = M−1d (5.11)
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iteratively using a Krylov subspace method, such as CG [60] or GMRES [51,

130]. There are different possible choices of the preconditioner M−1 such as the

standard Dirichlet preconditioner (see [41,150])

M−1
FETID

:=
N∑
i=1

B
(i)
∆,DS

(i)
∆∆B

(i)T

∆,D, (5.12)

which is a weighted sum of local Schur complements

S
(i)
∆∆ := DK

(i)
∆∆ −DK

(i)
∆I(DK

(i)
II )−1DK

(i)
I∆,

which result from the elimination of the interior variables I in DK
(i)
BB; see Equa-

tion (5.3). Replacing the local Schur complements in Equation (5.12) by local

stiffness matrices on the dual interface leads to the lumped preconditioner,

which is defined as

M−1
FETIL

:=
N∑
i=1

B
(i)
∆,DK

(i)
∆∆B

(i)T

∆,D; (5.13)

see, e.g., [94, 150]. The operators B
(i)
∆,D, i = 1, . . . , N , result from the jump

operators B
(i)
B by restriction to the dual variables ∆ and scaling of the rows.

For more details including different choices of weights, we refer to [94,150]. By

construction, the considered preconditioners are weighted sums of local opera-

tors. Thus, they can be applied completely in parallel. Throughout this thesis,

we only use the Dirichlet preconditioner, i.e., M−1 := M−1
FETID

, for which the

polylogarithmic condition number bound

κ
(
M−1F

)
≤ C

(
1 + log

(
H

h

))2

(5.14)

has been shown for various two- and three-dimensional model problems; see

[90, 95, 97, 98, 118]. Here, the constant C is independent of the jumps in the

coefficients of the PDE as well as of the parameters H and h. Note that the

condition number bound for the lumped preconditioner contains a linear fac-

tor H
h instead of the polylogarithmic bound; see [94] and the references therein.

For each problem, a sufficient set of primal variables has to be chosen and

suitable weights for the preconditioner have to be found depending on the co-

efficients of the partial differential equation.

Let us further note that we mostly use the compressed version of the FETI-DP

master system (see Equation (5.8)) instead of Equation (5.4) in the remainder

of this thesis.
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5.3 Nonlinear Domain Decomposition in the Context of

FETI-DP

The FETI-DP approach, as introduced above, can only be applied to a linear

system of equations, but most simulations of real world problems require the

solution of nonlinear systems of equations. To tackle nonlinear problems with

the FETI-DP approach, the nonlinear system can be either linearized before de-

composition or we can perform a nonlinear decomposition before linearization.

Throughout this thesis, we exclusively use Newton’s method for the lineariza-

tion of nonlinear problems due to its fast convergence in a neighborhood of

the solution. Applying Newton’s method to the nonlinear problem before de-

composition leads to the Newton-Krylov-FETI-DP approach; see Section 5.5.

Otherwise, decomposing the nonlinear problem and applying Newton’s method

to the local nonlinear problems results in nonlinear FETI-DP methods, which

are introduced in Section 5.4.

Before we introduce a unified framework of nonlinear FETI-DP methods,

we first recall the general ideas and assumptions of nonlinear domain decom-

position. The discussion in this section is strongly based on the descriptions

in [107, Sec. 2.3, Sec. 2.5.1] and [77, Sec. 2, Sec. 3.1].

As already mentioned in the previous sections, we do not consider the dis-

crete problem of the partial differential equation, but we solve the equivalent

minimization problem

min
û∈V h

J(û) (5.15)

of the corresponding energy functional J : V h → R, which is usually nonlinear.

This leads to the (nonlinear) system of equations

A(û) = 0, û ∈ V h. (5.16)

We assume that the global energy functional J can be represented as a sum of

local energy functionals, which operate on the subdomains. This assumption

is generally fulfilled for standard problems discretized by finite elements due

to the additivity of the integral and it is summarized in Assumption 1; see

also [77,107].

Assumption 1. There exist local energy functionals Ji : Wi → R, i = 1, . . . , N ,

such that the global energy functional J(û) can be represented as a sum of the
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local energies, i.e.,

J(û) =
N∑
i=1

Ji(ui) ∀û ∈ V h.

Here, ui := Riû are the restrictions of û to the subdomains.

This assumption holds for the p-Laplace problem as well as for standard hy-

perelasticity problems that are considered in the remainder of this thesis. It

is also fulfilled for incompressible hyperelasticity problems and other relevant

nonlinear problems, but might not be satisfied for problems with nonlocal phe-

nomena, e.g., nonlocal damage models in structural mechanics; see [77].

As before, we introduce a linear, discrete jump operator B =
[
B1, . . . , BN

]
to enforce continuity across the interface Γ; see Section 5.2. So far, we do

not consider a strong coupling in the primal variables Π. Therefore, the jump

operator B also enforces continuity across primal variables (Π) and not only on

the dual variables (∆). Consequently, the jump operator in Section 5.2 can be

derived from B by simply removing all lines corresponding to Π; see [107].

For any u =
[
uT1 , . . . , u

T
N

]T
∈ W , ui ∈ Wi, with Bu = 0, we have u ∈ Ŵ .

Recalling that Ŵ and V h are isomorphic, we can rewrite the minimization

problem (5.15) with Assumption 1 and obtain

min
û∈V h

J(û) = min
û∈V h
ui=Riû

N∑
i=1

Ji(ui) = min
u∈Ŵ

N∑
i=1

Ji(ui) = min
u∈W
Bu=0

N∑
i=1

Ji(ui); (5.17)

see also [107, Sec. 2].

We introduce the space of Lagrange multipliers as V := range(B) and the

Lagrange function

L : W × V → R,

L(u, λ) =
N∑
i=1

Ji(ui) + (Bu)Tλ.
(5.18)

The computation of the stationary points of Equation (5.18) results in tak-

ing the partial derivatives of the Lagrange functional with respect to u and

λ and setting the resulting equations equal to zero. The stationary points of

Equation (5.18) are then the solutions of the system[∑N
i=1 J

′
i(ui)(vi) + (Bv)Tλ

(Bu)Tµ

]
=

[
0

0

]
∀v ∈W, µ ∈ V. (5.19)
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We assume that we have Ni nodal finite element basis functions for each local

finite element space Wi, i = 1, . . . , N , which are denoted by ϕi,j , j = 1, . . . , Ni.

Furthermore, we assume that we can represent the evaluations of the deriva-

tive of the local energy functionals in the nodal basis functions J ′i(ui)(ϕi,j) by

(Ki(ui)− fi)j . Using the notation

K(u) :=


K1(u1)

...

KN (uN )

 , f :=


f1

...

fN

 , and u :=


u1

...

uN

 , (5.20)

we derive the discrete nonlinear system of equations

K(u) +B
T
λ = f,

Bu = 0
(5.21)

from Equation (5.19). Note that fi is independent of ui and that Equation (5.21)

can be seen as the nonlinear analogon of the linear FETI-DP master system

in Equation (5.8). The equivalence of system (5.21) and the initial prob-

lem (5.15) is further discussed in [107, Sec. 2.5.1] and [77, Sec. 3.1].

Let us now have a closer look at the nonlinear system (5.21). As before, we

partition the interface variables uΓ into a set of primal variables ũΠ and u∆;

see also Section 5.2. To consider the partially assembled nonlinear system of

equations, we recall the definitions of the jump operator B from Section 5.2,

which enforces continuity in the dual variables u∆, and of the partial assembly

operator RTΠ. Again, note that the operator B from Section 5.2 can be derived

from B by removing all lines corresponding to the primal variables. Our nonlin-

ear FETI-DP methods are constructed by partial assembly of Ki(ui) and fi in

the primal variables. They are based on the nonlinear FETI-DP master system

RTΠK(RΠũ) +BTλ−RTΠf = 0,

Bũ = 0.
(5.22)

Introducing the notation

K̃(ũ) := RTΠK(RΠũ) and f̃ := RTΠf,

Equation (5.22) can be written in more compact form as

A(ũ, λ) :=

[
K̃(ũ) +BTλ− f̃

Bũ

]
=

[
0

0

]
. (5.23)
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The computation of the derivative of K̃(ũ) yields with the chain rule

DK̃(ũ) := D(K̃(ũ)) = D(RTΠK(RΠũ)) = RTΠDK(RΠũ)RΠ. (5.24)

From Equation (5.24), we obtain that the derivative of the subassembled nonlin-

ear operator K̃ can be computed by partially assembling DK, i.e., by partially

assembling the derivatives of the local subdomain operators Ki, , i = 1, . . . , N .

Instead of simply linearizing system (5.23), we first apply a nonlinear right-

preconditioner M(ũ, λ) which, in case it is the identity, is called Nonlinear-

FETI-DP-1; see Section 5.4.2.1. The application of the preconditioner M(ũ, λ)

is associated with a nonlinear elimination process [108] and different choices

of M lead to different variants of nonlinear FETI-DP. Furthermore, our precon-

ditioners M can also be viewed in the context of nonlinear right-preconditioning

[20,23] in Newton’s method.

After the application of the preconditioner M(ũ, λ) to Equation (5.23), the

resulting system

A(M(ũ, λ)) = 0 (5.25)

is linearized using Newton’s method. As in the classical NK-FETI-DP ap-

proach (see Section 5.5), in each Newton iteration the linearized system is solved

with a Krylov subspace method, such as CG [60] or GMRES [51, 130], using a

suitable preconditioner, such as the Dirichlet preconditioner; see [41, 150] and

also Section 5.2 for its definition.

Applying Newton’s method to Equation (5.25) yields the iteration[
ũ(k+1)

λ(k+1)

]
:=

[
ũ(k)

λ(k)

]
− α(k)

[
δũ(k)

δλ(k)

]
, (5.26)

where α(k) is a suitable step length and δũ(k) and δλ(k) are the Newton updates.

Both are computed from

(
DA(M(ũ(k), λ(k))) ·DM(ũ(k), λ(k))

)[δũ(k)

δλ(k)

]
= A(M(ũ(k), λ(k)), (5.27)

where the left-hand side is the derivative of Equation (5.25) with respect to

ũ and λ. Note that the superscript ·(k) no longer indicates the corresponding

subdomain Ωk, as is the case in Section 5.2, but the current Newton iteration.

Instead, the associated subdomain Ωj is marked with an index j in the following.
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Nonlinear FETI-DP Nonlinear BDDC

1. Mapping M : W̃ × V → W̃ × V Mapping M : Ŵ → Ŵ
2. M puts the current iterate into the neighborhood of the solution;

see also [18].
3. M(x) is easily computable com-

pared to the inverse action of
A(x) with x := (ũ, λ).

M(x) is easily computable com-
pared to the inverse action of
A(x) with x := û.

Figure 5.1: Properties of the nonlinear preconditioner M ; see also [85, Fig. 1

and Fig. 4]. Left: Nonlinear FETI-DP methods. Right: Non-

linear BDDC methods.

In each Newton iteration, the nonlinear preconditioner is evaluated by com-

puting

g(k) := M(ũ(k), λ(k)). (5.28)

Let us note that we are in fact not interested in obtaining ũ∗∗ and λ∗∗ satis-

fying A(M(ũ∗∗, λ∗∗)) = 0, but, as usual in nonlinear right-preconditioning, we

are rather interested in the solution (ũ∗, λ∗) = M(ũ∗∗, λ∗∗).

To ensure that the application of the nonlinear preconditioner M acceler-

ates the computation of the solution, we list some assumptions and desired

properties in Figure 5.1 (left).

Let us give some remarks on the convergence of nonlinear FETI-DP meth-

ods. First, we consider the convergence of Newton’s method. Therefore, we

assume that problem (5.16) has a solution (ũ∗, λ∗), i.e., A(ũ∗, λ∗) = 0 holds.

We formulate the following assumption; see also [77,85,107].

Assumption 2. Let U be an open neighborhood of the solution (ũ∗, λ∗). We

assume that A(ũ, λ) is continuously differentiable in U and that DA(ũ∗, λ∗) is

a nonsingular matrix.

If Assumption 2 is satisfied, Newton’s method converges to the solu-

tion (ũ∗, λ∗) of A(ũ, λ) = 0 for all (ũ(0), λ(0)) ∈ U∗ ⊂ U ; see, e.g., [125, Sec

10.2.2]. Note that the subset U∗ is obtained from the inverse function theorem

(see [46, Sec. 18, Th. 3, p. 100]). If DA(ũ∗, λ∗) is nonsingular, as by

Assumption 2, DK̃ is also nonsingular in a neighborhood of ũ∗ if a suitable

set of primal constraints is used. Note that DA(ũ∗, λ∗) will be singular in the

case of redundant Lagrange multipliers since the matrix B only has full rank

for nonredundant multipliers. Nonetheless, the same Newton iterates ũ(k) are
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derived when using redundant Lagrange multipliers, which yields the same

convergence behavior; see [107, Sec. 2.5.2].

As mentioned before, redundant Lagrange multipliers are often used in prac-

tice. For this case, stopping criteria based on the update δλ(k) have to be

avoided since convergence can only be guaranteed in W̃ ; see the end of [107, Sec.

2.5.2] as well as [85, Sec. 2.3].

In order to analyze the convergence behavior of nonlinear FETI-DP meth-

ods for solving the nonlinear right-preconditioned system (5.25), we make the

following additional assumption; see also [85, Ass. 2.2].

Assumption 3. Let V ∗ be an open neighborhood of the solution (ũ, λ). The

evaluation of the nonlinear right-preconditioner M(ũ, λ) is well defined and

computable in V ∗ and M(V ∗) ⊂ U∗.

Assumption 3 yields that M(ũ(k), λ(k)) ∈ U∗ for all iterates (ũ(k), λ(k)) ∈ V ∗.
It follows with Assumption 2 and the discussion above that the nonlinear FETI-

DP method for the nonlinear right-preconditioned system (5.25) converges to

the solution (ũ∗, λ∗) for all initial values (ũ(0), λ(0)) ∈ V ∗. If V ∗ is larger

than U∗, the convergence radius is increased.

5.4 Unified Framework for Nonlinear FETI-DP

In this section, we now present a common framework for different nonlinear

FETI-DP methods [76, 77, 84] using partial nonlinear elimination. Our repre-

sentations are based on those in [85], where the framework was first presented.

Similar to classical FETI-DP methods, where an index splitting is used for

the partial assembly, this splitting can also be used for the construction of the

nonlinear preconditioner M . As mentioned before, the effect of the nonlinear

preconditioner can be understood as a nonlinear partial elimination process.

Therefore, we introduce the variable splitting

ũ =
[
ũE ũL

]
,

where the index E denotes the set of variables which will be eliminated non-

linearly and L is the set of variables which will be linearized. Usually, the

elimination set is denoted with E instead of E (see [85, 86]), but we have cho-

sen the notation E to distinguish it from Young’s modulus E in elasticity; see

Section 6.1.2. To use a consistent notation, we also use L instead of L for the

set of variables that are not eliminated nonlinearly.
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Analogously to ũ, the jump operator B can be written in terms of the index

sets E and L and we obtain

B =
[
BE BL

]
.

Finally, the unpreconditioned system (5.23) writes

A(ũE , ũL, λ) :=

AE(ũE , ũL, λ)

AL(ũE , ũL, λ)

BE ũE +BLũL

 =

K̃E(ũE , ũL) +BT
E λ− f̃E

K̃L(ũE , ũL) +BT
Lλ− f̃L

BE ũE +BLũL

 =

0

0

0

 .
(5.29)

Since E is chosen such that it contains all variables which will be eliminated

nonlinearly, the elimination process is restricted to the variables ũE . Therefore,

the nonlinear preconditioner M(ũ, λ) = M(ũE , ũL, λ) is linear in ũL and λ.

Here, in fact, the preconditioner is only the identity in ũL and λ. We introduce

the notation

M(ũ, λ) = M(ũE , ũL, λ) := (Mũ(ũE , ũL, λ), λ)

:= (MũE (ũE , ũL, λ), ũL, λ)

= (MũE (ũL, λ), ũL, λ),

(5.30)

Note that MũE (ũE , ũL, λ) = (MũE (ũL, λ), ũL, λ) is independent of its first ar-

gument ũE , which is only introduced for convenience, such that the deriva-

tive DMũE is a square matrix; see Section 5.4.1. Since we are interested in

the nonlinear elimination of all variables in the index set E , we consider the

first line of Equation (5.29). All variables in E are eliminated if the right-

preconditioner MũE (ũE , ũL, λ) fulfills the equation

K̃E(MũE (ũE , ũL, λ), ũL) +BT
E λ− f̃E = 0, (5.31)

i.e., MũE (ũE , ũL, λ) is defined implicitly from the first line of Equation (5.29);

cf. [84, Eq. (5)]. Therefore, we have to solve Equation (5.31) for MũE (ũL, λ),

e.g., with Newton’s method, and subsequently replace the variables ũE in the

second and third line of Equation (5.29) by MũE (ũL, λ). Let us note that the

solution of Equation (5.31) is discussed in more detail in Section 5.4.1.

We obtain the nonlinear Schur complement system

SL(ũL, λ) = 0, (5.32)
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where the nonlinear Schur complement SL(ũL, λ) is defined as

SL(ũL, λ) :=

[
K̃L(MũE (ũL, λ), ũL) +BT

Lλ− f̃L
BEMũE (ũL, λ) +BLũL

]
. (5.33)

Accordingly, the nonlinearly preconditioned system (5.25) writes

A(M(ũ, λ)) = A(M(ũE , ũL, λ)) = A(MũE (ũL, λ), ũL, λ) =

[
0

SL(ũL, λ)

]
.

Finally, the nonlinear system (5.32) has to be solved, e.g. with Newton’s

method. The linearization of Equation (5.32) requires the computation of the

tangent DSL of SL, which is obtained using the chain rule and the implicit

function theorem; see Section 5.4.1.

5.4.1 Computing the Tangent

Each application of the preconditioner M requires the solution of a nonlinear

system

AE(gE , ũL, λ) = KE(gE , ũL) +BT
E λ− f̃E = 0 (5.34)

for gE ; cf. Equation (5.31). The computation of

gE := MũE (ũE , ũL, λ) (5.35)

can be achieved by applying Newton’s method to Equation (5.34). This yields

the iteration

g
(k)
E,l+1 := g

(k)
E,l −

(
DEK̃E(g

(k)
E,l , ũ

(k)
L )
)−1 (

K̃E(g
(k)
E,l , ũ

(k)
L ) +BT

E λ− f̃E
)
, (5.36)

which converges to the solution g
(k)
E under sufficient assumptions which are

made throughout this thesis; see Section 5.3. Note that the indices l and k in

Equation (5.36) represent the inner and outer Newton iteration, respectively.

Similar to Equation (5.9), we assume the partition

DK̃(·) =

[
DK̃EE(·) DK̃EL(·)
DK̃LE(·) DK̃LL(·)

]
(5.37)

for the tangent of K̃. Using the notation g(k) := Mũ(ũ
(k)
E , ũ

(k)
L , λ(k)) we obtain

g(k) = (g
(k)
E , ũ

(k)
L ) (5.38)
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from Equation (5.30).

For the computation of the Newton update (cf. Equation (5.27)), we require

the derivative of the preconditioner M . Since M is the identity in ũL and

λ, we only have to consider the partial derivatives MũE with respect to the

different variables ũE , ũL, and λ in more detail. Note that the partial derivatives

of MũE are obtained from Equation (5.34) using the chain rule. The derivative

of Equation (5.34) with respect to the first variable ũE yields

DũE K̃E(MũE (ũE , ũL, λ), ũL) ·DũEMũE (ũE , ũL, λ) = 0. (5.39)

Assuming that DũE K̃E(MũE (ũE , ũL, λ), ũL) is invertible (see Section 5.3), we

obtain

DũEMũE (ũE , ũL, λ) = 0. (5.40)

Computation of the derivative of Equation (5.34) with respect to ũL yields

DũLMũE (ũE , ũL, λ)

= −
(
DũE K̃E(MũE (ũE , ũL, λ), ũL)

)−1
·DũLK̃E(MũE (ũE , ũL, λ), ũL). (5.41)

Again, invertibility of DũE K̃E(MũE (ũE , ũL, λ), ũL) is assumed.

The computation of the derivative of Equation (5.34) with respect to λ results

in

DũE K̃E(MũE (ũE , ũL, λ), ũL) ·DλMũE (ũE , ũL, λ) +BT
E = 0, (5.42)

which is equivalent to

DλMũE (ũE , ũL, λ) = −
(
DũE K̃E(MũE (ũE , ũL, λ), ũL)

)−1
BT
E . (5.43)

Recalling that the preconditioner M(ũE , ũL, λ) is the identity in ũL and λ and

using the same notation as in Equation (5.37), the derivative DM(ũE , ũL, λ) of

the preconditioner M in iteration k is obtained as

DM(ũ
(k)
E , ũ

(k)
L , λ(k))

=

0 −DK̃EE(g(k))−1DK̃EL(g(k)) −DK̃EE(g(k))−1BT
E

0 I 0

0 0 I

 . (5.44)
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Thus, the left-hand side of Equation (5.27) writes

DA(g(k), λ(k)) ·DM(g(k), λ(k))

=

DK̃EE DK̃EL BT
E

DK̃LE DK̃LL BT
L

BE BL 0

 ·
0 −DK̃−1

EEDK̃EL −DK̃−1
EEB

T
E

0 I 0

0 0 I



=

0 0 0

0 −DK̃LEDK̃−1
EEDK̃EL +DK̃LL −DK̃LEDK̃−1

EEB
T
E +BT

L
0 −BEDK̃−1

EEDK̃EL +BL −BEDK̃−1
EEB

T
E



=:

0 0 0

0 DSLL DSLλ

0 DSλL DSλλ

 ; (5.45)

see [84, Eq. (11)] and [85, Eq. (15)]. The tangent DA(g(k), λ(k)) is obtained

by computing the partial derivatives of the components of the nonlinear system

in Equation (5.29); see also Equation (5.48). Note that we have suppressed the

function evaluation in g(k) for a better readability. We introduce the operator

DSL(g(k)) :=

[
DSLL(g(k)) DSLλ(g(k))

DSλL(g(k)) DSλλ(g(k))

]
. (5.46)

Under sufficient conditions, i.e., choosing a suitable set of primal variables (see

again Section 5.3), the operator DSL, which results from the multiplica-

tion of the tangents of the nonlinear system A(ũ, λ) and the nonlinear

right-preconditioner, is the tangent of the nonlinear Schur complement SL in-

troduced in Equation (5.33). This result is obtained from the implicit function

theorem and the chain rule.

Assuming that we have computed g(k) by solving Equation (5.34), we can

write the Newton system (5.27) by using Equations (5.33) and (5.45) as0 0 0

0 DSLL DSLλ

0 DSλL DSλλ


δũ

(k)
E

δũ
(k)
L

δλ(k)

 =

 0

K̃L(g(k)) +BT
Lλ

(k) − f̃L
Bg(k)

 . (5.47)

As mentioned before, the preconditioner M(ũ(k), λ(k)) is independent of ũ
(k)
E .

Nonetheless, we use ũ
(k+1)
E as an initial guess for the computation of g(k+1);

see Figure 5.2. Let us note that in efficient implementations the tangent DSL

of the Schur complement is never computed. Furthermore, the left-hand side

of the Schur complement system (5.47) can also be obtained by eliminating
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the block DK̃EE(g
(k)) from DA(g(k), λ(k)). Thus, we replace the left-hand side

in Equation (5.47) by

DA(g(k), λ(k)) =

DK̃EE(g
(k)) DK̃EL(g(k)) BT

E
DK̃LE(g

(k)) DK̃LL(g(k)) BT
L

BE BL 0

 ; (5.48)

i.e., we will solveDK̃EE DK̃EL BT
E

DK̃LE DK̃LL BT
L

BE BL 0


δũ

(k)
E

δũ
(k)
L

δλ(k)

 =

 0

K̃L +BT
Lλ

(k) − f̃L
Bg(k)

 (5.49)

instead of Equation (5.47); see Section 5.4.2. Again, we have suppressed

the function evaluation point g(k) for a better readability. Note that the

updates δũ
(k)
L and δλ(k) are not affected, but we additionally obtain an up-

date δũ
(k)
E , which might be useful. Moreover, inexact or inexact reduced

FETI-DP methods can be considered when using Equation (5.49); see Sec-

tion 5.4.4.

There are several publications in which different variants of nonlinear FETI-

DP methods were introduced; see e.g. [76, 77, 80, 82–85]. These methods can

now be represented by a single algorithm; see Figure 5.2.

5.4.2 Different Variants of Nonlinear FETI-DP

As mentioned before, the application of the nonlinear preconditioner M(ũ, λ)

can be interpreted as a partial nonlinear elimination. Hence, the choice of the

preconditioner determines the set of variables which will be eliminated and

strongly affects the properties of the nonlinear FETI-DP method. In the past,

four different choices of the preconditionerM have been considered, which result

in four different nonlinear FETI-DP variants.

First, a linear preconditioner M = I was considered; see [76, 77, 80, 82, 83,

85]. Here, no variables are eliminated nonlinearly and this method is called

Nonlinear-FETI-DP-1 or, to shorten the notation, NL-1. In contrast to the

linear preconditioner, nonlinear preconditioning of the variable ũ was considered

later; see [77,85]. Here, the variable ũ is eliminated nonlinearly and the method

is called Nonlinear-FETI-DP-2, or, in short, NL-2. Motivated by the vari-

able splitting in FETI-DP methods, two further nonlinear FETI-DP variants

were introduced, which can be characterized by a nonlinear preconditioning of

uB and uI , respectively. Both methods were described in [84,85]. Precondition-
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Init: ũ(0) ∈ W̃ , λ(0) ∈ V
for k = 0, . . . , convergence do

Compute:(
g(k), λ(k)

)
:=
(
Mũ(ũ(k), λ(k)), λ(k)

)
= M(ũ(k), λ(k))

/* Often requires solution of localized nonlinear problems; see Equa-
tion (5.36) and Figure 5.7 (top left)*/
if ||A(g(k), λ(k))|| sufficiently small then

break //Convergence of nonlinear FETI-DP
end if

Solve (with Krylov subspace method):(
DA(g(k), λ(k)) ·DM(ũ(k), λ(k))

) [ δũ(k)

δλ(k)

]
= A(g(k), λ(k))

Update ũ: ũ(k+1) = ũ(k) − α(k)δũ(k)

Update λ: λ(k+1) = λ(k) − α(k)δλ(k)

end for

Figure 5.2: Nonlinear FETI-DP algorithm(s). We always use ũ(k+1) as initial

value for the computation of g(k+1). Note that ||A(g(k), λ(k))||
and ||A(ũ(k+1), λ(k+1))| can be replaced by ||δũ(k)

E || and ||δũ(k)||,
respectively. This figure has been similarly published in [85, Fig.

3].

ing in uB leads to Nonlinear-FETI-DP-3 or NL-3 and preconditioning in

uI leads to Nonlinear-FETI-DP-4 or NL-4. The four different methods are

considered in the following sections in more detail; see Sections 5.4.2.1 to 5.4.2.4

and also Figure 5.3.

The choices of E and L are not restricted to these cases. Therefore, we have

recently implemented a nonlinear FETI-DP method which chooses a problem-

dependent elimination set based on information of the nonlinear residual; see

Section 5.4.2.5. It is called Nonlinear-FETI-DP-Res and we will refer to it

as NL-Res in the remainder of this thesis.

Let us note that all nonlinear FETI-DP methods as well as the Newton-

Krylov-FETI-DP approach reduce to the standard FETI-DP method and are

therefore equivalent when they are applied to a linear problem.

5.4.2.1 Nonlinear-FETI-DP-1

We start with the NL-1 method, which is one of the extreme cases of nonlinear

partial elimination.

To obtain NL-1 as introduced in, e.g., [76, 77], the index set E is chosen to

be the empty set, i.e., no variables are nonlinearly eliminated and E := ∅ holds.
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λ λ

λ

λ

Primal variables Π; Vertices of subdomains

Dual variables ∆

λ

Interior variables I

Lagrange multipliers

Figure 5.3: Coupling of nonlinear local problems in the primal variables Π

(black squares). Continuity in the dual interface variables ∆ (red

dots) is enforced by Lagrange multipliers λ. The remaining inte-

rior variables I are represented by blue circles. The nonlinear pre-

conditioning in NL-4 performs exclusively on the interior variables

(blue circles). In NL-3, the nonlinear preconditioning additionally

operates on the dual interface variables (red dots). For NL-2 the

nonlinear preconditioning operates on all variables, which includes

the primal variables (black squares). This figure has already been

published in [85]; see [85, Fig. 2].

As a consequence, we have L :=
[
I ∆ Π

]
. Thus, the preconditioner M(ũ, λ)

reduces to the identity, i.e.,

M(ũ, λ) := (ũ, λ). (5.50)

Again, using the notation g(k) := Mũ(ũ, λ) (see Equation (5.35)), we ob-

tain g(k) = ũ(k). The preconditionerM(ũ, λ) automatically yieldsDM(ũ, λ) = I.

Therefore, the linearized system (5.27) writes in a compressed form[
DK̃(ũ(k)) BT

B 0

][
δũ(k)

δλ(k)

]
=

[
K̃(ũ(k)) +BTλ(k) − f̃

Bũ(k)

]
, (5.51)

which reduces to the dual Schur complement system

B
(
DK̃(ũ(k))

)−1
BT δλ(k)

= −Bũ(k) +B
(
DK̃(ũ(k))−1

)(
K̃(ũ(k)) +BTλ(k) − f̃

)
,

(5.52)

as is standard in exact or inexact FETI-DP methods. Thus, we can solve Equa-

tion (5.52) using a preconditioned Krylov subspace method and a suitable choice

of the preconditioner is the Dirichlet preconditioner; see [41,150] and also Equa-

tion (5.12).
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Let us note that DK̃(ũ(k))−1 is never build explicitly, but its application to

a vector is computed by local, i.e., parallel, sparse LU-factorizations and the

solution of the globally coupled coarse problem, i.e., a small Schur complement

system; see Equations (5.5) and (5.6) and [77] as well as Section 5.2.

For our model problems, it turns out that NL-1 performs similar to the classic

NK-FETI-DP method, which will be introduced in Section 5.5. To improve the

performance of NL-1, we can compute an initial value by solving the nonlinear

equation

K̃(ũ(0)) +BTλ(0) − f̃ = 0 (5.53)

for given initial values ũ(0) and λ(0); see [76,77,80,83]. Throughout this thesis,

λ(0) = 0 is chosen and most numerical results for NL-1 are obtained by including

the computation of the initial value ũ(0).

5.4.2.2 Nonlinear-FETI-DP-2

The other extreme case of nonlinear partial elimination is the NL-2 method,

where the variable ũ is completely eliminated. We obtain the NL-2 method as

described in [76, 77] by choosing E :=
[
I ∆ Π

]
and L := ∅, which is vice versa

compared to NL-1; see Section 5.4.2.1. Since the index set E contains all degrees

of freedom, we obtain MuE (ũE , ũL, λ) = Mũ(ũ, λ) and the preconditioner is

defined implicitly by

K̃(Mũ(ũ, λ)) +BTλ− f̃ = 0;

see also Equation (5.34). The solution g(k) := Mũ(ũ(k), λ(k)) (see Equa-

tion (5.35)) is achieved by the application of Newton’s method. It yields the

Newton iteration

g
(k)
l+1 := g

(k)
l −

(
DK̃(g

(k)
l )
)−1 (

K̃(g
(k)
l ) +BTλ(k) − f̃

)
, (5.54)

which is assumed to converge to the solution g(k); see also Equation (5.36).

As before, k represents the outer Newton iteration and l represents the inner

Newton iteration, which is needed for the computation of g(k), which again is

needed for the right-hand side of the linearized system; cf. Equation (5.27).

For NL-2, the resulting system writes in compressed form[
DK̃(g(k)) BT

B 0

][
δũ(k)

δλ(k)

]
=

[
0

Bg(k)

]
. (5.55)
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Again, the resulting Schur complement system

B
(
DK̃(g(k))

)−1
BT δλ(k) = −Bg(k) (5.56)

can be solved by a Krylov subspace method and a suitable preconditioner such

as the Dirichlet preconditioner (see [41, 150] and Equation (5.12)). By solving

Equation (5.56) for δλ(k), we automatically assume that the Newton update

δũ(k) is zero.

As mentioned at the end of Section 5.4.1, it is more practical to solve

Equation (5.55) instead of Equation (5.56). Since Equation (5.56) is obtained

from Equation (5.55), this does not change the solution δλ(k), but we addi-

tionally obtain δũ(k), which can be used to update the initial value for the

computation of g(k+1), i.e., it accelerates the computation of g(k+1) by choosing

a better initial value. Furthermore, it is possible to apply inexact or inexact

reduced FETI-DP methods without changing the solution; see Section 5.4.4.

The NL-2 approach can be characterized by an exact nonlinear elimination

of the variable ũ. We have an inner and an outer Newton iteration, where the

inner Newton iteration represents the computation of the right-hand side of the

linearized system which has to be solved in the outer Newton iteration.

Note that in NL-3 and NL-4, we also have inner and outer Newton iterations,

but the elimination sets do not contain the primal variables. Hence, the inner

Newton iteration in NL-3 and NL-4 is expected to be cheaper compared to NL-2,

since it does not contain the coarse problem and its all-to-all communication.

5.4.2.3 Nonlinear-FETI-DP-3

The next two nonlinear FETI-DP methods are motivated by the variable split-

ting of the classical FETI-DP approach. The idea is to design methods with

completely local nonlinear Newton iterations to improve scalability. Therefore,

we have to ensure that the elimination set E does not contain the primal vari-

ables. The NL-3 approach, as described in [84], is obtained by choosing E := B

and L := Π. As before, the preconditioner MũE (ũE , ũL, λ) is implicitly de-

fined by Equation (5.34); see also Section 5.4.2.2. From the choice of E and L,

we obtain g(k) = (g
(k)
B , ũΠ); see Equation (5.38). Applying Newton’s method

to Equation (5.34) yields the iteration

g
(k)
B,l+1 := g

(k)
B,l −

(
DK̃BB(g

(k)
B,l, ũ

(k)
Π )
)−1(

K̃B(g
(k)
B,l, ũ

(k)
Π ) +BT

Bλ
(k) − f̃B

)
, (5.57)

which converges to the solution g
(k)
B ; see Equation (5.36).
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By definition, we have continuity in all primal variables Π. Hence, we ob-

tain BL := BΠ = 0. Then, the linearized system writesDK̃BB(g(k)) DK̃BΠ(g(k)) BT
B

DK̃ΠB(g(k)) DK̃ΠΠ(g(k)) 0

BB 0 0


δũ

(k)
B

δũ
(k)
Π

δλ(k)

 =

 0

K̃Π(g(k))− f̃Π

Bg(k)

 . (5.58)

In the inner Newton iteration of NL-3, local nonlinear problems in the variable

ũB have to be solved, which can be computed completely independent for each

subdomain and do not include the solution of any FETI-DP coarse problem.

In comparison to the NL-2 approach, this method dramatically reduces the

number of primal assembly processes and FETI-DP coarse solves since this has

to be done only in the outer Newton iteration. This is expected to improve the

scalability.

As mentioned before, the inner Newton iteration in NL-3 does not require

any synchronization. Consequently, the local nonlinear problems can be solved

completely in parallel. It is obvious that different subdomains may need dif-

ferent numbers of inner Newton iterations. Assuming that we have assigned

each subdomain to a single core, this can lead to problem-dependent load im-

balances. So far, dynamic load balancing, e.g., by resizing the subdomains,

is currently not feasible; see [88]. Instead, we set those cores to sleep, which

have already finished the inner Newton iteration. This approach can save a

significant amount of energy. For details, we refer to [88].

5.4.2.4 Nonlinear-FETI-DP-4

The NL-4 approach was first introduced in [84]. It is quite similar to the NL-3

approach; see Section 5.4.2.3. We choose E := I and L :=
[
∆ Π

]
= Γ. Again,

the preconditioner MũE (ũE , ũL, λ) is implicitly defined by Equation (5.34); see

also Section 5.4.2.2. We obtain g(k) = (g
(k)
I , ũΓ) from Equation (5.38) and the

application of Newton’s method to Equation (5.34) yields the iteration

g
(k)
I,l+1 := g

(k)
I,l −

(
DK̃II(g

(k)
I,l , ũ

(k)
Γ )
)−1 (

K̃I(g
(k)
I,l , ũ

(k)
Γ )− f̃I

)
, (5.59)

which converges to the solution g
(k)
I ; see Equation (5.36). Then, the linearized

system writesDK̃II(g
(k)) DK̃IΓ(g(k)) 0

DK̃ΓI(g
(k)) DK̃ΓΓ(g(k)) BT

Γ

0 BΓ 0


δũ

(k)
I

δũ
(k)
Γ

δλ(k)

=

 0

K̃Γ(g(k)) +BT
Γλ

(k) − f̃Γ

Bg(k)

. (5.60)
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Analogously to NL-3, no coarse problem has to be solved in the inner Newton

iteration, which results in completely local nonlinear problems. Here, only the

inner variables ũI are eliminated, which results in cheaper local solves compared

to NL-3. Again, due to the local nonlinear problems in the inner Newton

iteration, problem-dependent load imbalances can be used to save energy as in

NL-3; see Section 5.4.2.3 and [88].

5.4.2.5 Choosing Problem-Dependent Elimination Sets in Nonlinear

FETI-DP

The framework of nonlinear FETI-DP methods also allows to choose arbitrary

index sets E and L, which results in problem-dependent nonlinear FETI-DP

methods. The goal is to select the index set E in such a way that the precon-

ditioner M is efficient and at the same time E is as small as possible in order

to keep the effort of the inner Newton iteration low. Of course, the resulting

nonlinear problems are usually no longer completely independent as it is the

case for NL-3 and NL-4 since the elimination set might also contain primal

variables. Nonetheless, we have usually less coupling compared to NL-2.

For the choice of a problem-dependent elimination set E , we use a strategy

introduced by Gong and Cai in [50] in the context of inexact Newton methods.

It is recommended that the index set E contains the degrees of freedom which

have a high absolute residual value.

As before, we consider the nonlinear problem

A(M(ũ, λ)) = 0;

cf. Equation (5.25). Generally, we are interested in the solution ũ of the non-

linear system at hand. The Lagrange multipliers are only introduced to fulfill

the continuity requirement of the final solution ũ. Therefore, it is reasonable

to consider the nonlinear residual A(ũ, λ) restricted to the variable ũ. Assum-

ing that we have computed the solution λ
(k)
∗ and ũ

(k)
∗ at the end of iteration k

(see Section 5.4), we obtain

A(ũ
(k)
∗ , λ

(k)
∗ )
∣∣
ũ

= K̃(ũ
(k)
∗ ) +BTλ

(k)
∗ − f̃ .

Since K̃(ũ
(k)
∗ ) and f̃ are only assembled in the primal variables, other interface

nodes usually have different values in the subdomains they belong to. Therefore,

we consider the fully assembled residual

r(k) := RT ·A(ũ
(k)
∗ , λ

(k)
∗ )
∣∣
ũ
,
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i.e., we apply the assembly operator RT (see Sections 5.2 and 5.6.1) to

A(ũ
(k)
∗ , λ

(k)
∗ )
∣∣
ũ
. Let us introduce the following notation. Depending on the

number d of degrees of freedom per finite element node, we have d associated

residual values per finite element node. Let

S = {1, . . . , n}

be the index set of all finite element nodes and

I = {1, . . . ,m}

the index set of all degrees of freedom corresponding to the variable ũ, where

m = n·d holds. The residual vector r(k) decomposes into n subvectors r
(k)
(i) ∈ Rd,

where each r
(k)
(i) holds the residual values r

(k)
(i)j

, j = 1, . . . , d, corresponding to

the degrees of freedom of finite element node i.

The maximum absolute residual value of the current iteration k is given by

the infinity norm ||r(k)||∞. With the introduced notation, we obtain

||r(k)||∞ =
n

max
i=1
||r(k)

(i) ||∞ =
n

max
i=1

(
d

max
j=1
|r(k)

(i)j
|
)

=
n

max
i=1

(
d

max
j=1
|RT(i)jA(ũ

(k)
∗ , λ

(k)
∗ )
∣∣
ũ
|
)
,

where RT(i)j is the row of RT corresponding to the degree of freedom ij . Similar

to [50], we want to determine an index set of degrees of freedom that has to be

eliminated nonlinearly. Therefore, we introduce the index set

S(k)
b :=

{
i ∈ S

∣∣ ||r(k)
(i) ||∞ ≥ ρres · ||r(k)||∞

}
⊆ S,

which contains all indices of finite element nodes with at least one degree of

freedom with a large residual component. Here, ρres ∈ (0, 1] defines the toler-

ance to distinguish wether a finite element node lies within S
(k)
b or not. The

smaller ρres, the more finite element nodes are contained in the index set S
(k)
b .

Furthermore, we introduce the index set

I(k)
b :=

{
ij ∈ I

∣∣ i ∈ S(k)
b , j = 1, . . . , d

}
⊆ I,

i.e., ρres also affects the number of degrees of freedom in I(k)
b . In contrast

to [50], we do not consider the degrees of freedom of a single finite element node

separately, i.e., we decide to eliminate all degrees of freedom corresponding to

a finite element node if at least one degree of freedom has a higher residual
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component than the maximum residual value multiplied with ρres. Thus, the

elimination set usually contains degrees of freedom with residual values smaller

than ρres · ||r(k)||∞. Furthermore, we decide to include finite element nodes

into S(k)
b if one corresponding degree of freedom has a residual value as large

as ρres · ||r(k)||∞, which also enlarges the number of degrees of freedom to be

eliminated compared to [50]. Therefore, also the choice ρres = 1 is reasonable

since S
(k)
b contains at least one index in this case.

In a last step, we extend the index set S
(k)
b using an approach similar to

the overlap δ ∈ N in overlapping domain decomposition methods such as the

additive overlapping Schwarz method. The index set S
(k)
b,δ is defined as

S(k)
b,δ := S(k)

b

⋃{
i ∈ S \ S(k)

b

∣∣ ∃ l ∈ S(k)
b : i is in the overlap δ of l

}
⊆ S,

which is used to remedy sharp jumps in the residual function as is mentioned

in [50]. As before, we also introduce the corresponding set of degrees of freedom

as

I(k)
b,δ :=

{
ij ∈ I

∣∣ i ∈ S(k)
b,δ , j = 1, . . . , d

}
⊆ I.

Finally, we eliminate all degrees of freedom that are contained in I(k)
b,δ , i.e., we

set E := I(k)
b,δ . We provide numerical results with different choices of δ and ρres;

see Section 6.7.

Note that in our opinion, it would also be possible to choose the Euclidean

norm instead of the infinity norm. Certainly, this requires another choice of the

parameter ρres, since the infinity norm is invariant with respect to the length

of any vector while the Euclidean norm is not.

Let us give some further remarks regarding the elimination set E . So far, we

have considered constant elimination sets throughout the computation, but the

framework only requires a constant elimination set E within the inner Newton

iteration. Therefore, in the context of problem-dependent index sets E and L, it

might be advantageous to determine a new elimination set E at the end of each

outer Newton iteration. This strategy is referred to as dynamic computation

of the elimination set (see Figure 5.4) and, for the Nonlinear-FETI-DP-Res

approach, it is activated for all simulation results presented within this thesis.

The usage of a dynamically computed elimination set also enables the pos-

sibility to choose an empty elimination set, i.e., E = ∅, which might be ad-

vantageous if the current iterate is in the neighborhood of the solution, since

Newton’s method is expected to converge quadratically in this case. Thus, the

nonlinear elimination of some variables might be superfluous or even counterpro-
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ductive. Therefore, we perform an NL-1 step (E = ∅), whenever the considered

norm (||A(ũ(k), λ(k))|| or ||δũ(k)||) is smaller than a pre-chosen tolerance tol; see

Figure 5.4.

Finally, we have to consider the very first iteration. Assuming that the prob-

lem at hand is unknown, it might be disadvantageous to choose an elimination

set based on the initial guess, since it provides too little information. In this

case, it is possible to start with an empty elimination set, i.e., we perform an

NL-1 step and compute the elimination set at the end of the first iteration.

This strategy is used for the 2D contact simulations but not for the simulations

with the p-Laplace equation; see Section 6.7.

As mentioned before, we refer to the nonlinear FETI-DP approach using a

residual-based strategy to determine the elimination set E as Nonlinear-FETI-

DP-Res or, to shorten the notation, NL-Res in the remainder of this thesis.

5.4.3 Remarks on the Preconditioners

In this section, we shortly discuss the properties of the nonlinear precondi-

tioner M and give some remarks on the preconditioners that were introduced in

the previous Sections 5.4.2.1 to 5.4.2.5. It is based on the discussions in [85, Sec.

2.5.4] and [85, Sec. 2.5.9].

In general, the preconditioner M fulfills the first two properties listed in Fig-

ure 5.1 (left), by definition. Furthermore, M can be computed easier compared

to A, since the constraint Bu = 0 is omitted. Therefore, the third condition of

Figure 5.1 (left) is also satisfied.

As mentioned before, our methods can be seen as nonlinear right-

preconditioned Newton methods, which follows from Equation (5.25) and [18].

In right-preconditioned Newton-Krylov methods, the computation of DM−1

can be avoided by a first order approximation of M ; see [18]. However, we do

not use an approximation but compute the tangent exactly; see Equation (5.27)

and [85]. Nonetheless, the action of M−1 may be approximated under some

circumstances; see Section 5.7.

Comparing the preconditioners of NL-1, NL-2, NL-3, NL-4, and NL-Res, it

is obvious that the preconditioner of NL-1, which is the identity, is the cheap-

est one, but it does not give a good approximation to A. However, we can

overcome this drawback by the computation of an initial value ũ(0) from the

nonlinear problem K̃(ũ(0)) = f̃ −BTλ(0); see Equation (5.53). Therefore, New-

ton’s method is used and λ(0) is a given initial value chosen to be zero through-

out this thesis, which is a common choice; see, e.g., [77]. The computation

of the initial value also includes a nonlinear coarse problem. Hence, the re-
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Init: ũ(0) ∈ W̃ , λ(0) ∈ V , tol ∈ R, ρres ∈ [0, 1], δ ∈ N
Compute E based on A(ũ(0), λ(0))

∣∣
ũ

or choose E = ∅, depending on ũ(0)

for k = 0, . . . , convergence do
Compute:(
g(k), λ(k)

)
:=
(
Mũ(ũ(k), λ(k)), λ(k)

)
= M(ũ(k), λ(k))

/* Often requires solution of localized nonlinear problems; see Equa-
tion (5.36) and Figure 5.7 (top left)*/
if ||A(g(k), λ(k))|| sufficiently small then

break //Convergence of nonlinear FETI-DP
end if

Solve (with Krylov subspace method):(
DA(g(k), λ(k)) ·DM(ũ(k), λ(k))

) [ δũ(k)

δλ(k)

]
= A(g(k), λ(k))

Update ũ: ũ(k+1) = ũ(k) − α(k)δũ(k)

Update λ: λ(k+1) = λ(k) − α(k)δλ(k)

if ||A(ũ(k+1), λ(k+1))|| ≤ tol then
Set E = ∅

else
if dynamic computation of E activated then

Compute E based on A(ũ(k+1), λ(k+1))
∣∣
ũ
, ρres, and δ

else
Reuse E from the last iteration

end if
end if

end for

Figure 5.4: Nonlinear-FETI-DP-Res algorithm using a problem-dependent

choice of the elimination set E based on the residual values. We

always use ũ(k+1) as the initial value for the computation of g(k+1).

Note that ||A(g(k), λ(k))|| and ||A(ũ(k+1), λ(k+1))| can be replaced

by ||δũ(k)
E || and ||δũ(k)||, respectively.

sulting costs of the computation of the initial value in NL-1 are similar to the

costs of the application of the preconditioner M in NL-2, which is the most

expensive preconditioner of all nonlinear FETI-DP variants. Assuming that a

good coarse space is chosen, M will be a good approximation of the inverse

of A and, therefore, M will be a good preconditioner for A. As mentioned

before, the preconditioners in NL-3 and NL-4 do not include a nonlinear coarse

problem. Thus, the computation of M is computationally cheaper compared to

NL-2. Furthermore, the computation only includes local solves and can be done

completely in parallel. By construction, the preconditioner in NL-4 is cheaper
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compared to that in NL-3, but it is only a good preconditioner for A, if the

subdomains are chosen such that the nonlinearities of the problem do not touch

the interface; cf. the numerical results in Chapter 6.

Due to the problem-dependent choice of the elimination set in NL-Res, the

application of the preconditioner is usually not completely parallel but only re-

quires the solution of a subproblem of the FETI-DP coarse problem. In NL-2,

NL-3, and NL-4, the elimination set contains the inner variables and, therefore,

most variables are eliminated. This is different for the NL-Res approach. The

elimination set only contains the most critical degrees of freedom depending

on the choice of ρres. As a consequence, the elimination set is much smaller

compared to NL-2, NL-3, and NL-4, even if a large δ environment (see Sec-

tion 5.4.2.5) is chosen; see also Section 6.7. Thus, the application of the pre-

conditioner of NL-Res operates on less degrees of freedom compared to NL-2,

NL-3, and NL-4, but it also requires the solution of a subproblem of the coarse

problem. Consequently, the application of the preconditioner in NL-Res might

be cheaper compared to NL-3 and NL-4 whenever the additional costs of the

global subproblem are insignificant. However, the preconditioner in NL-Res

is probably more effective compared to NL-3 and NL-4 since it contains some

relevant primal variables that are not affected by the preconditioners in NL-3

and NL-4.

5.4.4 Using Algebraic Multigrid to Approximate the Coarse Problem

of Nonlinear FETI-DP Methods

In this section, we briefly discuss how we achieve a good parallel scalability for

nonlinear FETI-DP methods on very large scales by combining our nonlinear

FETI-DP methods with the framework of inexact reduced FETI-DP. We follow

the discussions in [85, Sec. 2.6] and [107, Sec. 3].

It is well known that the exact solution of the FETI-DP coarse problem S̃ΠΠ

is a scaling bottleneck for large coarse problems; see, e.g., [94, 107]. Usually,

the coarse problem grows with the number of subdomains, e.g., if subdomain

vertices are chosen as primal variables. If we assume that we have one subdo-

main per compute core, it automatically follows that the exact solution of the

FETI-DP coarse problem is a scaling bottleneck at large scales. To overcome

this issue, we want to solve the coarse problem approximately using an algebraic

multigrid (AMG) method. Note that solving the coarse problem of standard

(linear or nonlinear) FETI-DP methods inexactly, e.g., with a multilevel solver,

perturbs the solution since the coarse problem is part of the operator and not

part of the preconditioner. To use (linear or nonlinear) FETI-DP methods on
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the largest supercomputers efficiently without perturbing the solution, a dif-

ferent approach was introduced in [80, 94], where the solution of the coarse

problem is transferred to the preconditioner.

Recalling Equation (5.49) from Section 5.4.1, all nonlinear FETI-DP variants

result in a linearized system of the formDK̃BB(ũ(k)) DK̃BΠ(ũ(k)) BT
B

DK̃ΠB(ũ(k)) DK̃ΠΠ(ũ(k)) 0

BB 0 0


δũBδũΠ

δλ

 = rhs1.

Note that the left-hand side is identical for all nonlinear FETI-DP methods,

but the right-hand side differs due to the different choices of the elimination

sets; see Equation (5.49) as well as Equations (5.51), (5.55), (5.58) and (5.60).

The idea is to construct FETI-DP methods that perform a single iteration of

a multilevel preconditioner instead of an exact factorization of the FETI-DP

coarse problem S̃ΠΠ; see Equation (5.6). For this purpose, we perform a block

elimination of ũB, as presented in [92], which leads to[
S̃ΠΠ −(DK̃ΠB)(DK̃BB)−1BT

B

−BB(DK̃BB)−1(DK̃BΠ) −BB(DK̃BB)−1BT
B

][
δũΠ

δλ

]
= rhs2,

where we have suppressed the function evaluation point ũ for a better read-

ability. Again, rhs2 differs for the different nonlinear methods described in

Sections 5.4.2.1 to 5.4.2.5. Afterwards, we use a block triangular precondi-

tioner for saddle point systems in combination with GMRES; see [80, 92, 94].

Throughout this thesis, a single iteration of BoomerAMG [59] is used as a pre-

conditioner for the S̃ΠΠ block and, as in [92], the standard FETI-DP Dirichlet

preconditioner (see [41, 150] and Equation (5.12)) is used as a preconditioner

for the lower right block; see [92]. Let us note that it is also possible to use

the conjugate gradient (CG) method as a Krylov subspace method when using

the well-known symmetric positive definite reformulation of the achieved sad-

dle point system; see [15, 73, 92]. As was shown in [2], BoomerAMG is parallel

scalable for linear elasticity problems on more than half a million cores when

using appropriate interpolation strategies from [3] and, therefore, the usage of

BoomerAMG provides a substantial improvement of the scalability of FETI-DP

methods.

For further details regarding inexact reduced FETI-DP methods as well as

inexact FETI-DP methods, we refer to [92].
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5.4.5 Energy Efficiency in NL-Res and NL-2

For the example of NL-3, a more energy efficient implementation was introduced

in [88]. It takes advantage of the fact that the subdomain problems can be

completely solved in parallel for NL-3, which probably leads to load imbalances.

To save energy, all cores belonging to subdomains that have already finished

the local solution process are set so sleep. For further details, we refer to [88].

Note that the strategy presented in [88] is not restricted to NL-3, but can

be applied for all preconditioners with a nonempty elimination set that do not

contain any primal variables. Therefore, it also covers NL-4 and NL-Res in case

that no primal variable is included into the elimination set. Since the latter is

usually not the case, let us give some remarks on the energy efficiency of NL-Res

and NL-2.

First, let us note that the primal variables ΠE , which belong to the elimi-

nation set E , are usually a (small) subset of all primal variables. Accordingly,

the nonlinear elimination of the primal variables ΠE requires the solution of a

subproblem of the global coarse problem. Therefore, we need the local stiffness

matrices and right-hand sides of all neighboring subdomains. Consequently, the

elimination of a primal variable automatically involves all subdomains that are

adjacent to primal variables in ΠE .

In order to apply a strategy similar to that presented in [88] for the NL-3

approach, we introduce the notation of clusters of subdomains. We consider

independent clusters of subdomains, i.e., each subdomain exclusively belongs

to one cluster.

First of all, each subdomain that is not adjacent to a primal variable in ΠE

builds its own cluster, i.e., the cluster contains only a single subdomain. The

remaining subdomains have to be distributed to different clusters. Two subdo-

mains Ωi and Ωj belong to the same cluster C, if there is a path from Ωi to Ωj by

only crossing primal variables that belong to ΠE . For sure, all subdomains Ωk

that were passed through on this way also belong to the cluster C. Accordingly,

if there is no such path for a subdomain Ωi with all subdomains that belong to

the cluster C, it belongs to a different cluster.

Finally, we can apply the same strategy to NL-Res as introduced in [88], but

we have to consider clusters instead of subdomains. Note that each subdomain

builds its own cluster if the elimination set does not contain any primal vari-

able. In this case, the notations of clusters and subdomains are equivalent and,

therefore, our strategy is exactly the same as in [88].

In FETI-DP methods, usually each subdomain contains at least on primal

variable on its interface. For example, we have chosen the subdomain corners
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as primal variables throughout this thesis. Recalling that all primal variables

belong to the elimination set for NL-2, i.e., we obtain ΠE = Π, it immediately

follows that we end up with only one cluster that contains all subdomains.

Accordingly, all subdomains are involved throughout the complete nonlinear

elimination process and therefore, no subdomain finishes the inner iteration

before others.

At the end of this section, we briefly discuss a possible parallel implemen-

tation of the energy-efficient NL-Res approach. Usually, each subdomain has

its own compute core. For each cluster Cl, l ∈ N, we introduce an independent

subcommunicator that contains the corresponding cores of all subdomains that

belong to Cl. In order to safe energy, all cores can be set to sleep, which belong

to clusters that have already finished the inner Newton iteration and are waiting

for other clusters. Note that the subcommunicators have to be reset at the end

of each outer Newton iteration since the elimination set can change; see Sec-

tion 5.4.2.5. However, it remains constant within the elimination process, i.e.,

the inner loop.

5.5 Newton-Krylov-FETI-DP

For the sake of completeness, we also describe the traditional approach to tackle

nonlinear problems with the FETI-DP method. It is based on the discussion

in [107, Sec. 2.2].

Instead of performing a nonlinear domain decomposition, the nonlinear prob-

lem is first linearized and afterwards decomposed into subdomains. Again, note

that we use Newton’s method for the linearization due to its fast convergence

in the neighborhood of the solution. Therefore, the method is called Newton-

Krylov-FETI-DP or, in short, NK-FETI-DP. Let us note that this strategy

is not restricted to the use of FETI-DP, but other domain decomposition ap-

proaches such as BDDC are possible to solve the resulting linearized system;

see also Section 5.6.1. All together build the class of Newton-Krylov-Domain-

Decomposition approaches.

As a starting point, we consider a nonlinear system of equations of the

type A(û) = 0, û ∈ V h, resulting from the equivalent minimization problem

of a finite element discretization of a partial differential equation. Let us note

that A(û) = 0 operates on V h, i.e., we consider finite element functions which

are continuous in all interface variables. To use the same notation as before,

we assume that we can reformulate the nonlinear problem A(û) = 0 to

A(û) = RTK(Rû)−RT f = 0. (5.61)
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Using N nonoverlapping subdomains Ωi, i = 1, . . . , N , to decompose the com-

putational domain Ω, the quantities K(u), f , and R can be represented as

before as

K(u) =


K1(u1)

...

KN (uN )

 , f =


f1

...

fN

 , R =
[
RT1 , . . . , R

T
N

]T
,

where Ki(ui)−fi represents the discretized nonlinear problem on subdomain Ωi.

Linearization of Equation (5.61) in the kth Newton iteration leads to the fully

assembled linearized system

RTDK(Rû(k))R · δû(k) = RTK(Rû(k))−RT f (5.62)

with the Newton iteration

û(k+1) = û(k) − α(k)δû(k), (5.63)

where α(k) is a suitable step length. For example, α(k) could be chosen such

that the Wolfe conditions are fulfilled; see [77, 107, 122]. Using the restriction

ui = Riû
(k) of the fully assembled vector û(k), the operator DK(Rû(k)) writes

DK(Rû(k)) =


DK1(u1)

. . .

DKN (uN )

 ,
i.e., DK(Rû(k)) has the tangential matrices of the corresponding subdomains

on its diagonal block entries.

Using a FETI-DP method for the solution of the linearized problem, we

only consider a subassembled system in the primal variables instead of the fully

assembled system; see Section 5.2. Therefore, we also require the jump operator

B, which enforces continuity on the remaining interface variables ∆. To describe

the relation between the fully assembled variables û and the partially assembled

variables ũ, we introduce scaled versions of the assembly operators RTΠ and RT ,

which are denoted by RTΠ,D and RTD, respectively. For both matrices, the scaling

factors depend on the multiplicity of the corresponding variables. Each row in

RTΠ,D, which corresponds to a primal variable, is multiplied with the inverse of

its multiplicity. Analogously, each row in RTD is scaled with the multiplicity of

the corresponding variable. Hence, we can write ũ := RTΠ,DRû for the relation

between ũ and û and after solving the linearized equations, the relation between
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the updates writes δû := RTDRΠδũ, i.e., the (sub-)assembled variables are first

restricted to the local subdomains and subsequently (partially) reassembled.

The subassembled system writes[
RTΠDK(RΠũ

(k))RΠ BT

B 0

][
δũ(k)

λ

]
=

[
RTΠK(RΠũ

(k))−RTΠf
0

]
. (5.64)

Recalling the notations

K̃(ũ) = RTΠK(RΠũ),

DK̃(ũ) = RTΠDK(RΠũ)RΠ, and

f̃ = RTΠf

from Section 5.3, system (5.64) can be written in compressed form as[
DK̃(ũ(k)) BT

B 0

][
δũ(k)

λ

]
=

[
K̃(ũ(k))− f̃

0

]
. (5.65)

Note that system (5.65) is equivalent to the compressed system (5.8) in the

linear case. From the second line of Equation (5.65), we obtain Bδũ(k) = 0 ∀ k
and, therefore, all iterates are continuous across the interface if the initial value

is continuous across the interface.

One step of block elimination in Equation (5.65) leads to[
DK̃(ũ(k)) BT

0 FNK(ũ(k))

][
δũ(k)

λ

]
=

[
K̃(ũ(k))− f̃
dNK(ũ(k))

]
, (5.66)

with

FNK(ũ(k)) = B
(
DK̃(ũ(k))

)−1
BT ,

dNK(ũ(k) = B
(
DK̃(ũ(k))

)−1 (
K̃(ũ(k))− f̃

)
.

Hence, analogously to the linear case (cf. Equation (5.7)), we have to solve the

reduced system

FNK(ũ(k))λ = dNK(ũ(k)), (5.67)

which can be done by a Krylov subspace method using a preconditioner M−1

such as the standard Dirichlet preconditioner defined in [41, 150]; see also Sec-

tion 5.2. The algorithmic overview of the NK-FETI-DP approach is given

in Figure 5.5.
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Init: ũ(0) ∈ Ŵ
for k = 1, . . . , convergence do

Build: K̃(ũ(k)) and DK̃(ũ(k))
Solve (with Krylov subspace method):

B
(
DK̃(ũ(k))

)−1
BT · λ = B

(
DK̃(ũ(k))

)−1 (
K̃(ũ(k))− f̃

)
//see Equa-

tion (5.67)
Compute δũ(k) from λ:

δũ(k) =
(
DK̃(ũ(k))

)−1 (
K̃(ũ(k))− f̃ +BTλ

)
//see Equation (5.66)

Update: ũ(k+1) := ũ(k) − α(k)δũ(k)

end for

Figure 5.5: Newton-Krylov-FETI-DP algorithm. This algorithm has been

similarly published in [107, Fig. 2.3] and [77].

Since Ŵ is isomorphic to V h, it is also possible to formulate a Newton iter-

ation operating on Ŵ . With u(k+1), u(k), and δu(k) ∈ Ŵ and a suitable step

length α(k), we write

u(k+1) = u(k) − α(k)δu(k),

where the Newton update δu(k) = RΠδũ
(k) results from the solution of Equa-

tion (5.65) by using ũ(k) := RTΠ,Du
(k).

5.6 BDDC for Nonlinear Problems

The above presented framework for nonlinear FETI-DP methods (see Sec-

tion 5.4) can be modified such that the nonlinear BDDC approach can be

included. The nonlinear BDDC method was introduced in [77]. Before we

introduce the nonlinear BDDC method into our framework (see Section 5.6.2),

we shortly present the classical Newton-Krylov-BDDC approach (see Sec-

tion 5.6.1), which is also used for the parallelization of the macroscopic

problem in our FE2TI package when simulating the Nakajima test.

5.6.1 Newton-Krylov-BDDC

In this section, we briefly discuss the Newton-Krylov-BDDC approach based on

the descriptions in [77].

As mentioned before, Newton-Krylov-BDDC belongs to the class of Newton-

Krylov-Domain-Decomposition methods. The nonlinear problem is first lin-

earized with Newton’s method and afterwards decomposed into subdomains.
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Let us reuse the previously introduced notation, i.e., the computational do-

main Ω is decomposed into N nonoverlapping subdomains Ωi, i = 1, . . . , N .

The discretized subdomain problems write Ki(ui)− fi = 0 and we have

K(u) :=


K1(u1)

...

KN (uN )

 , f :=


f1

...

fN

 , R =
[
RT1 , . . . , R

T
N

]T
, ui = Riu;

see also Section 5.5. The NK-BDDC approach operates on the completely

assembled system

RTK(Rû)−RT f = 0, û ∈ V h. (5.68)

Analogously to R, the restriction of the global interface variables to the local

interface variables is denoted by RΓ. Equation (5.68) is solved by Newton’s

method, which yields the iteration

û(k+1) = û(k) − α(k)δû(k),

where the update δû(k) is computed from

RTDK(Rû(k))Rδû(k) = RTK(Rû(k))−RT f. (5.69)

Accordingly to Equation (5.8), we partition the tangential matrix DK and the

right-hand side into interior and interface variables I and Γ, respectively, which

leads to

DK(Rû) =

[
DKII(Rû) DKIΓ(Rû)

DKΓI(Rû) DKΓΓ(Rû)

]
and

K(Rû)− f =

[
(K(Rû)− f)I

(K(Rû)− f)Γ

]
=

[
KI(Rû)− fI
KΓ(Rû)− fΓ

]
;

see also Section 5.4.2.4. Now, to solve Equation (5.69) with the BDDC algo-

rithm, we eliminate the interior variables and solve for the remaining variables,

i.e., the assembled interface variables, by some preconditioned Krylov iteration.

Eliminating the inner variables results in the Schur complement

SΓΓ(û) = DKΓΓ(û)−DKΓI(û)DKII(û)−1DKIΓ(û).

As a preconditioner, we introduce

M−1
BDDC(û) := RTD(RTΠDK(û)RΠ)−1RD, (5.70)
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where the operator RTD is defined as

RTD :=

[
RT∆,DR

B
∆ 0

0 IΠ

]
.

Here, RT∆,DR
B
∆ is the weighted restriction from the index set B to ∆. Since

BDDC operates on the assembled system, the resulting preconditioned equation

writes

M−1
BDDC(Rû(k))Sg(Rû

(k))δû(k)
g = M−1

BDDC(Rû(k))gg(Rû
(k)), (5.71)

with

Sg(û) := RTΓSΓΓ(û)RΓ and (5.72)

gg(û) := RTΓ
(
KΓ(û)− fΓ −DKΓI(û)DKII(û)−1(KI(û)− fI)

)
.

Finally, the Newton update δû(k) is obtained as

δû(k) :=

[(
DKII(Rû

(k))
)−1

(
KI(Rû

(k))− fI −DKIΓ(Rû(k))δû
(k)
g

)
δû

(k)
g

]
.

5.6.2 Nonlinear BDDC Framework

With some further generalizations to the above introduced framework for non-

linear FETI-DP methods (see Section 5.4), it is possible to include the nonlin-

ear BDDC approach (see [77]) into the framework. Similar to NL-4 (see Sec-

tion 5.4.2.4), in a nonlinear BDDC method all interior variables are eliminated

nonlinearly and the resulting Schur complement system on the interface vari-

ables Γ has to be linearized.

Based on the discussion in [85, Sec. 3], we describe how the nonlinear BDDC

approach can be described in the context of a unified framework for nonlinear

FETI-DP and BDDC methods.

So far, for nonlinear FETI-DP methods, we have considered nonlinearly right-

preconditioned systems of the form A(M(x)) = 0 with x = (ũ, λ) and A as

defined in Equation (5.29); cf. Equation (5.25). Since BDDC methods operate

on the assembled system, we do not need Lagrange multipliers to enforce con-

tinuity. Thus, we define x := û. Accordingly, we define the nonlinear problem

as

A(x) := A(û) := RTK(Rû)−RT f. (5.73)
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Note that the same notation is used as before; see, e.g., Sections 5.5 and 5.6.1.

Similar to the NL-4 approach (see Section 5.4.2.4) as well as to the classical

NK-BDDC approach (see Section 5.6.1), where the linearized system is par-

titioned into interior and interface variables, we now partition the nonlinear

system into interior and interface variables. We obtain

A(û) =

[
AI(û)

AΓ(û)

]
=

[
KI(Rû)− fI

RTΓKΓ(Rû)−RTΓfΓ

]
. (5.74)

Analogously, we split the variables û = (ûI , ûΓ).

With a nonlinear right-preconditioner M , which fulfills the properties noted

in Figure 5.1 (right), we can write the nonlinear BDDC method introduced

in [77] in the context of our framework; see Figure 5.6. Applying Newton’s

method to A(M(û)) = 0 yields

DA(M(û(k))) ·DM(û(k))δû(k) = A(M(û(k)))

with the iteration

û(k+1) = û(k) − α(k)δû(k);

cf. Equations (5.26) and (5.27).

In the nonlinear BDDC approach, the interior variables are eliminated from

the linearized system. Therefore, we introduce the nonlinear preconditioner

M(û) := (MI(û), ûΓ), (5.75)

where MI(û) is the solution of

AI(û) = KI(MI(û), RΓûΓ)− fI = 0. (5.76)

The latter equation is obtained from the first line of Equation (5.74) inserted

into A(M(û)) = 0.

With the notation used in the context of nonlinear FETI-DP for building the

tangents of A and M (see Section 5.4.1) we obtain

DA(M(û)) =

[
DKII(RM(û)) DKIΓ(RM(û))RΓ

RTΓDKΓI(RM(û)) RTΓDKΓΓ(RM(û))RΓ

]

from Equation (5.74). Furthermore, with the partial derivatives of Equa-

tion (5.76) and the definition of M in Equation (5.75), the derivative of M

134



Init: x(0)

for k = 0, . . . , convergence do
Compute: g(k) := M(x(k)) //see Figure 5.7 (left)
if ||A(g(k))|| sufficiently small then

break // Convergence of nonlinear right-preconditioned method
end if

Solve iteratively with some preconditioner:
DA(g(k))DM(x(k))δx(k) = A(g(k))
Update: x(k+1) = x(k) − α(k)δx(k)

end for

Figure 5.6: Generalized nonlinearly algorithm. This figure has been similarly

published in [85]; see [85, Fig. 5].

writes

DM(û) =

[
0 −DK−1

II (RM(û))DKIΓ(RM(û))RΓ

0 I

]
.

From the implicit definition of the preconditioner M (see Equation (5.76)) and

the system (5.74), we obtain

A(M(û)) =

[
0

RTΓKΓ(RM(û))−RTΓfΓ

]
.

Combining the last three equations, we obtain the nonlinear BDDC method as

introduced in [77].

As in nonlinear FETI-DP, the product

DA(M(û)) ·DM(û) =

[
0 0

0 RTΓDKΓΓRΓ −RTΓDKΓIDK
−1
II DKIΓRΓ

]
(5.77)

yields the derivative of the nonlinear Schur complement. For simplicity, we

have suppressed the function evaluation point RM(û). Let us note that, again,

we can remove the multiplication with the inner derivative DM(·) to obtain an

additional update δû
(k)
I without changing the update δû

(k)
Γ . As before, δû

(k)
I is

only used to update the initial value for the computation of g(k+1), where

g(k) = M(û(k)) = (MI(û
(k)), û

(k)
Γ )

is defined analogously to the nonlinear FETI-DP context.
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For local convergence analysis of nonlinear BDDC methods, similar assump-

tions compared to nonlinear FETI-DP methods have to be made; see Assump-

tions 2 and 3 in Section 5.3. More details can be found in [85]. For a short

comparison between nonlinear FETI-DP methods and nonlinear BDDC meth-

ods, we refer to [77].

The unified algorithmic overview including nonlinear FETI-DP and BDDC

methods is presented in Figure 5.6.

5.7 Controlling the Inner Newton Iteration in Nonlinear

Domain Decomposition

In the context of nonlinear FETI-DP and nonlinear BDDC methods, all vari-

ants except NL-1 have an inner and an outer Newton iteration. It is possible

that all these methods show a loss of robustness and performance compared to

the corresponding traditional Newton-Krylov-Domain-Decomposition variants,

e.g., if the nonlinearities are not contained in the elimination set E . In this case,

the application of the preconditioner M may lead to an increase in the global

energy. Furthermore, it is possible that the inner Newton iteration does not

converge due to an insufficient coarse space. Therefore, we consider a strategy

with some additional control of the inner Newton iteration to enlarge the con-

vergence radius of our nonlinear FETI-DP methods. This approach was first

introduced in [86] for nonlinear FETI-DP methods and was later generalized

to the nonlinear BDDC method in [85]. The representations in this section are

strongly based on [85, Sec. 4].

A common globalization strategy for Newton-type methods is the enforce-

ment of a sufficient reduction of an energy, e.g., in each Newton iteration [146].

Therefore, we have to control the Newton update and a Newton step may have

to be rejected and replaced, e.g., by a steepest descent step. Additionally,

the step length usually has to be controlled to give some global convergence

properties. This can be achieved by a line search approach satisfying, e.g., the

Wolfe or Armijo condition; see [122]. For the use of a line search approach

in nonlinear FETI-DP methods, we refer to [77]. Note that it is also possible

to apply the previously introduced strategies to nonlinear right-preconditioned

Newton-Krylov methods [86].

With the notation introduced in Equations (5.34) and (5.76), we can write

the nonlinear elimination process performed by the preconditioner M as

AE(g
(k)) = 0,
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Init: g
(k)
0 = x(k), l = 0

while ||AE(g(k)
l )|| > εI do

Update with Newton’s

method to g
(k)
l+1

l = l + 1
g(k) = g

(k)
l

end while

Init: g
(k)
0 = x(k), l = 0, τtol ∈ (0, 1],

Jold = 1
2 ||A(g

(k)
0 )||2

while ||AE(g(k)
l )|| > εI do

Update with Newton’s method to

g
(k)
l+1

Compute: Jnew = 1
2 ||A(g

(k)
l+1||

2

if Jnew > τtolJold then
g(k) = g

(k)
l

break while
else
Jold = Jnew

end if
l = l + 1
g(k) = g

(k)
l

end while

Figure 5.7: Computation of the preconditionerM with and without additional

control of the inner Newton iteration. This figure has been pub-

lished in [85]; see [85, Fig. 6].Left: Computation of M(x(k)).

Right: Computation of M(x(k)).

where g(k) = M(x(k)); see also Figure 5.7 (left). Performing the iteration de-

scribed in Figure 5.7 (left), we minimize the energy JE := 1
2 ||AE(x)||2 without

considering how the global energy J = 1
2 ||A(x)||2 evolves. In order to also

obtain control over the global energy J , we check in each iteration how it de-

velops. Our idea is to stop the inner Newton iteration whenever a sufficient

descent in the global energy is not achieved. If we stop the inner iteration

before convergence is reached, i.e., the nonlinear elimination is only performed

approximately. The preconditioner representing the corresponding approxima-

tive nonlinear elimination is denoted with M(x(k)). If the sufficient descent

condition J(g
(k)
l+1) ≤ τtolJ(g

(k)
l ) is not satisfied, we set M(x(k)) := g

(k)
l ; see

Figure 5.7 (right). Obviously, the parameter τ has to be chosen such that

0 < τtol ≤ 1 is satisfied and throughout this thesis, we use τtol = 0.8.

This strategy avoids oversolving in the inner Newton iteration and is

somewhat similar to inexact Newton methods with carefully chosen forcing

terms [36].

Note that we can end up with two extreme cases for M(ũ, λ). On one hand,

we can end up withM(ũ, λ) = M(ũ, λ). On the other hand, even the first inner

Newton iteration may not satisfy the descent condition. In this case, M(ũ, λ)

reduces to the identity, which results in an NL-1 step in the context of nonlinear

FETI-DP. Obviously, the number of inner Newton iterations within an outer
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Newton iteration is never increased compared to the nonlinear methods without

additional control over the global energy J in the inner Newton iteration.

Since we do not want to rely on the initial value x(0), we handle the very first

computation ofM(ũ, λ) in a slightly different way. Instead of stopping the inner

Newton iteration if J(g
(0)
1 ) > τtolJ(x(0)) is fulfilled, we continue computing g

(0)
l

until J(g
(0)
l ) > τtolJ(g

(0)
l−1) holds for l ≥ 2. This adoption can also be used

for the computation of the initial value in NL-1; see Section 5.4.2.1. As a

consequence of the usage of the approximationM(ũ, λ) instead of M(ũ, λ), the

product DA · DM will be generally no longer identical to the derivative of

the nonlinear Schur complement, i.e., Equations (5.45) and (5.77) do not hold

anymore in the context of FETI-DP and BDDC, respectively. Furthermore,

the block entries in the right-hand side corresponding to the elimination set E
(see Equations (5.47) and (5.49)) can no longer be assumed to be zero sinceM
is only an approximation of M . Therefore, in each outer Newton iteration, we

solve the approximate tangential system

DA(M(x(k)))δx(k) = A(M(x(k))).

Note that, as before, all linearized systems are identical at convergence.

In the following, we refer to nonlinear FETI-DP and BDDC methods using

the approximation M instead of M as NL-ane-FETI-DP and NL-ane-BDDC,

where the addition stands for approximate nonlinear elimination.
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6 Numerical Results for Nonlinear

FETI-DP Methods

In this chapter, we present results for our nonlinear FETI-DP methods de-

scribed within this thesis for different model problems. On one hand, we con-

sider different variants of the scaled p-Laplace equation with local and nonlocal

nonlinearities. Local nonlinearities are completely contained within the sub-

domains while nonlocal nonlinearities cross the interface, i.e., the subdomain

boundaries. On the other hand, we also consider a two-dimensional elasticity

problem taking into account a Neo-Hooke material model. For the latter case,

we only present sequential MATLAB [120] results.

First, we briefly introduce the model problems and the HPC systems that

were used for the simulations; see Section 6.1 and Section 6.2. Afterwards, we

give some general remarks on the implementation as well as on the different

numbers that are presented in the tables; see Section 6.3. Finally, we present

the numerical results; see Sections 6.4.1 to 6.4.3 and 6.5 to 6.8. Let us note

that parts of this chapter were already published in this or similar form by

the author of this thesis and his coauthors in [85, Sec. 5]. This includes most

parallel results regarding the p-Laplace model problem.

6.1 Model Problems

6.1.1 The p-Laplace Equation

Let us first consider the p-Laplace equation. We start by defining the scaled

p-Laplace operator for p ≥ 2 as

α∆pu := div(α|∇u|p−2∇u);

see also [107]. Subsequently, our model problem writes

−α∆pu− β∆2u = 1 in Ω,

u = 0 on ∂Ω,
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Ωi,I

∆4u = −1

Ωi,η

∆2u = −1

Ωi,Cv

∆4u = −1

Ωi,R
∆2u = −1

Ωi,Ch

∆4u = −1

Ωi,R

∆2u = −1

Figure 6.1: Top: Inclusion (left) as well as a vertical (middle) and horizontal

(right) channel for a single subdomain Ωi discretized using finite

elements of diameter h = 1/16. Channels and inclusion have a

width of H/2. Bottom: Different arrangements of horizontal and

vertical channels. Vertical channels (left), “Grid” (middle), and

“Cross” (right) for 16 subdomains discretized using finite elements

with a typical diameter h = 1/64. All channels have a width

wc = H/2. This figure is similar to [85, Fig. 1].

where α, β : Ω → R are coefficient functions. For further details regarding

the p-Laplace equation as well as the introduction of the resulting energy func-

tional, we refer to [107, Sec. 2.7.1]. Let us note that we exclusively use p = 4

throughout this thesis.

As mentioned before, we deal with different types on nonlinearities. On one

hand we, consider problems where the nonlinearities are completely contained

in the interior of the subdomains. On the other hand, we consider problems

where we have nonlinearities on parts of the interface as well. The first case is

called “Localized Nonlinearities” and the second case is called “Nonlocal

Nonlinearities”.

For “Localized Nonlinearities”, we consider different types of inclusions. Let

us note that we usually deal with square subdomains in two dimensions. There-
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Figure 6.2: Example of random inclusions for 16 subdomains and finite ele-

ments with a diameter h = 1/64.

fore, the first choice of inclusions are squared inclusions of the same size for all

subdomains, which is denoted “Standard Inclusions”; see Figure 6.1 (top left).

In this case, the size of the inclusions can be characterized by the width η of

the hull Ωi,η = Ωi \ Ωi,I . Usually η is defined in terms of the finite element

diameter h. As a second case, we also think about other shapes of inclusions

including a rectangle, a cross, and an ellipse (approximated on a regular grid).

They are periodically arranged in x-direction; see [85, Fig. 8 (bottom)]. This

case is referred to as “Nonstandard Inclusions”. In addition, we also consider

random inclusions. Here, for each subdomain, the distance between the inclu-

sion and the subdomain boundary is randomly chosen within a given range for

all four sides separately. Thus, all inclusions have a rectangular shape, but in

an extreme case, there might be subdomains without inclusions; see Figure 6.2

for an example. The latter case is referred to as “Random Inclusions”. We also

consider a three-dimensional problem, where we have cubes as subdomains. We

exclusively consider standard inclusions, where we have a centered spherical in-

clusion of radius r = 0.3 · H (approximated on a regular grid). We denote

these parts of the subdomain Ωi that belong to the inclusions with Ωi,I . Thus,

ΩI :=
⋃N
i=1 Ωi,I includes all finite element nodes that belong to the inclusions.

For all problems considering inclusions, we have no jumps in the coefficient

functions α and β, i.e., we have

α(x) =

{
1 if x ∈ ΩI

0 elsewhere
β(x) =

{
0 if x ∈ ΩI

1 elsewhere;
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For the case of “Nonlocal Nonlinearities” we exclusively study two-

dimensional problems. First, we consider an arrangement in which a centered

channel of width wc passes through each column of subdomains; see Figure 6.1

(top middle and bottom left). This is referred to as “Channels”. Furthermore,

we consider a grid of channels that do not touch the boundaries of the compu-

tational domain Ω; see Figure 6.1 (bottom middle). This problem is denoted

“Grid”. In addition, we also deal with a single channel in vertical direction as

well as a cross of a single vertical and horizontal channel; see Figure 6.1 (bottom

right). They are referred to as “Single Channel” and “Cross”, respectively. In

all arrangements, we deal with different combinations of channels. Therefore,

all parts belonging to p = 4 are collected in ΩC :=
⋃N
i=1 Ωi,C , where Ωi,C is the

part of each subdomain Ωi that belongs to the channel(s). In general, Ωi,C is

further divided into parts of horizontal and vertical channels Ωi,Ch and Ωi,C,v,

respectively, i.e., Ωi,C = Ωi,C,v
⋃

(Ωi,Ch \ (Ωi,Ch ∩ Ωi,C,v)); see Figure 6.1.

In contrast to “Localized Nonlinearities”, we are not restricted to identical

coefficients anymore. To be more precise, we also take into account higher

coefficients inside the channels. Therefore, our coefficient functions write

α(x) =

{ {
1, 105

}
if x ∈ ΩC

0 elsewhere
β(x) =

{
0 if x ∈ ΩC

1 elsewhere.

For two-dimensional problems, we consider the unit square Ω = [0, 1]× [0, 1],

different rectangles, and a curved domain. The latter is exclusively used for the

case of “Nonstandard Inclusions”. For three-dimensional problems, we consider

cuboid domains.

6.1.2 Neo-Hooke Elasticity

As a second model problem, we also consider nonlinear hyperelasticity. There-

fore, we take into account a Neo-Hooke material model. We exclusively deal

with two-dimensional problems on the unit square. We consider a deformable

body that is deformed by contact with a rigid arc. We consider frictionless con-

tact using a penalty formulation as introduced in Section 4.2.4. Analogously

to the assumption regarding the Nakajima test, the rigid tool moves in up-

ward direction, i.e., only finite element nodes with py = 0 can be in contact.

This model problem is exclusively introduced for an analyzation of the NL-Res

approach.

Let us consider nonlinear hyperelasticity a bit more detailed. The following

discussion is based on [107, Sec. 3.4.1].
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Since we consider two-dimensional problems, the strain energy density func-

tion (see [63,152]) writes

W (u) =
µ

2

(
tr(F TF )− 2

)
− µln(J) +

λ

2
ln2(J);

see [107, Sec 3.4.1]. Here, we have J = det(F ), F (x) = ∇ϕ(x) is, as before,

the deformation gradient, and ϕ(x) = x+ u(x) is the deformation, where u(x)

denotes the displacement. Furthermore, λ and µ are the Lamé parameters,

which can also be written in terms of Young’s modulus E and the Poisson

ratio ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
;

see [14, Sec. 6] and [131, Sec. 4]. Throughout this thesis, we consider ν = 0.3,

i.e., we deal with compressible hyperelasticity.

We are interested in the solution of the partial differential equation

−div(P (F )) = f in Ω,

u = 0 on ΩD,

where P (F ) is the first Piola-Kirchhoff stress tensor, which is

P (F ) = µ(F − F−T ) + λln(J)F−T ;

see [107, Sec. 5.1].

Fore a more general form of the resulting energy functional functional, we

refer to [107, Sec. 5.1]

6.2 Computational Platforms

Our simulations are performed on three different HPC systems in Germany,

which belong to different classes of the German High Performance Computing

Pyramid. They are listed in the following.

• JUQUEEN (Tier-1/0): 458 752 Blue Gene/Q cores (PowerPC A2 1.6

GHz; 16 cores and 16 GB per node); 5.9 PFlops; operated by Jülich

Supercomputing Center (JSC) providing computing time for Germany

and Europe; ranked 19th in the current TOP500 list (November, 2016).

• Taurus (Tier-2): 34 656 Xeon cores (2 020 nodes); 1.4 PFlops; operated by

Center for Information Services and High Performance Computing (ZIH)
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of the TU Dresden providing HPC resources for Saxony; TOP500 rank

107 (November, 2016).

• MagnitUDE (Tier-3): 13 536 cores (Broadwell XEON E5-2650v4 12C

2.2GHz; 24 cores and 72 GB per node); 476.5 TFlops NEC Cluster; op-

erated by Center for Computational Sciences and Simulation (CCSS) of

the Universität Duisburg-Essen (UDE) providing computing resources for

UDE; TOP500 rank 384 (November, 2016).

On Taurus, we use the Haswell XEON E5-2680v3 12C 2.5GHz processor parti-

tion with 24 cores and 64 GB memory per node.

6.3 General Remarks

Before we give some implementation remarks, we first discuss the notation in

the following sections. In all our tables, we refer to the traditional NK-FETI-

DP approach as NK. As already introduced before, our nonlinear FETI-DP

variants are referred to as NL-Res as well as NL-X, X = 1, 2, 3, 4 and NL-ane-

X, respectively. Note that NL-ane-1 is not considered in this thesis. In all

our simulations, we exclusively deal with linear finite elements (P1) and only

subdomain vertices on the interface are chosen as primal variables. For the effect

of different coarse spaces enforced by the transformation of basis approach, we

refer to [77].

To provide a fair comparison in terms of runtime for our parallel implementa-

tion of our nonlinear FETI-DP variants as well as the traditional NK-FETI-DP

approach, we use a common software framework. Thus, we use the same soft-

ware building blocks. The software is implemented in PETSc [4–6] and we use

the latest version of UMFPACK [28] for all local sparse factorizations. Note

that we also present some results obtained from our sequential MATLAB [120]

implementation for which no runtimes are shown. In order to interpret the par-

allel as well as the sequential results in a similar way, we provide the number

of necessary factorizations of the FETI-DP coarse problem S̃ΠΠ (denoted by

“Coarse Fact.”), the number of local factorizations of DKEE (denoted by “Lo-

cal Fact.”) and the accumulated sum of Krylov iterations over all outer Newton

iterations (denoted by “Krylov Its.”). This is identical to previous publications;

see [77,80,85].

For NL-1 and NL-2, the factorization of the coarse problem is not only nec-

essary in the outer Newton iterations, but also in the computation of the initial

value for NL-1 as well as for the inner loop for NL-2. Therefore, we consider the

144



number of necessary coarse factorizations of S̃ΠΠ in the inner and outer loop sep-

arately. Coarse factorizations in the inner and outer loops are denoted by “in.”

and “out.”, respectively. The lowest numbers of the considered quantities are

marked in bold. Let us note that the number of inner coarse factorizations is

always zero for NL-3 and NL-4 and for all methods, the number of outer coarse

factorizations is identical to the number of outer Newton iterations.

For our recent MATLAB implementation of NL-Res, we also present the

average size of the elimination set E , since its size depends on the chosen pa-

rameters δ and ρres.

For all parallel results, we focus on the overall execution time (denoted by

“exec. time”), which includes the time to assemble and to solve the problem. As

before, the lowest runtimes are also marked in bold. Furthermore, the number

of subdomains is always equal to the number of MPI ranks. As a baseline for

the computation of the parallel efficiency, we always choose the fastest approach

on the smallest number of compute cores. Thus, we obtain parallel efficiencies

below 100 % for four of five approaches for the smallest computations. Note

that we only have five different approaches, since we do not have a parallel

implementation of NL-Res yet.

A fair comparison of our nonlinear FETI-DP algorithms also require the usage

of identical stopping criteria for the inner as well as for the outer Newton itera-

tion. We consider stopping criteria that are formulated in terms of the variable

ũ. The outer Newton iteration is usually stopped whenever the fully assembled

nonlinear residual is smaller than a pre-chosen tolerance εO. For “Nonstandard

Inclusions” on the curved domain as well as for three-dimensional problems, we

formulate stopping criteria based on the norm of the update δũ; see the caption

of the tables. The inner Newton iteration is associated with the solution of

K̃E(MũE (ũL, λ), ũL) +BT
E λ− f̃E = 0; see Equation (5.34). Similar to the outer

Newton iteration, we also have a pre-chosen tolerance εI corresponding to the

inner Newton iteration. To avoid unnecessary exactness in the first outer New-

ton iterations without loosing sufficient exactness at convergence, inner Newton

iterations are stopped if ||K̃E(MũE (ũL, λ), ũL) + BT
E λ − f̃E ||L2 is smaller than

the minimum of εI and the norm of the fully assembled residual of the previous

outer Newton iteration multiplied by 10−2. Throughout our simulations we

deal with different values εO ∈
{

10−8, 10−12
}

and εI ∈
{

10−5, 10−6, 10−7
}

; see

the captions of the corresponding tables and figures.

It can be shown for the p-Laplace equation that the tangential matrix is al-

ways symmetric positive definite if it is not evaluated in constant functions.

In our simulations, we always consider zero Dirichlet boundary conditions on
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the complete boundary and we have a nonzero initial value. Thus, we usually

use the preconditioned CG (PCG) method as a Krylov subspace method. If we

consider inexact reduced FETI-DP variants, the block-triangular preconditioner

is not symmetric. Instead of using the symmetric positive definite reformula-

tion (cf. [15, 92]), we use GMRES as a Krylov subspace method. The latter

is also chosen for the sequential MATLAB implementation of the nonlinear

hyperelasticity problem with contact.

No matter which Krylov subspace method is considered, we use a relative

residual tolerance of 10−10 for all Krylov iterations. For sure, this leads to

an unnecessary high exactness, especially in the first outer Newton iterations.

More advanced techniques to choose forcing terms in inexact Newton’s method

can be found in [36], but is not in the focus of this thesis.

6.4 Localized Nonlinearities in Two Dimensions

In this section we analyze the different nonlinear FETI-DP variants as well as

the traditional NK-FETI-DP approach for nonlinearities that are completely

contained within the subdomains. We split the results into two parts. On one

hand, we consider the results on midsized HPC systems, namely magnitUDE

and Taurus (see Section 6.2), where we exclusively use the exact FETI-DP ap-

proaches. On the other hand, we also consider numerical results on JUQUEEN,

which was one of the largest HPC systems of their time. For JUQUEEN, we

can scale to more than 100k MPI ranks and, therefore, we also take into account

the inexact reduced versions of our FETI-DP methods.

6.4.1 Standard, Exact Nonlinear FETI-DP Methods

Let us first consider our standard FETI-DP methods for nonlinear problems,

i.e., with solving the coarse problem with a sparse direct solver. Besides the

different NL-X variants, X = 1, . . . , 4, we also consider the traditional NK-

FETI-DP approach. At first, we discuss the results obtained from simulations

on Taurus and magniUDE. These HPC systems have a smaller number of com-

pute cores than the JUQUEEN [69], but provide more memory per core. Thus,

we can deal with comparably large subdomains and we choose H/h = 400,

which results in 160k d.o.f. per subdomain. Let us recall that H and h are the

maximum diameters of the subdomains and finite elements, respectively.

Since the magnitUDE has only 13 536 cores, we have to use two MPI ranks per

core (making use of the hyperthreads for MPI processes) for larger problems.

As a consequence, we also choose two MPI ranks per core for smaller problems.

146



For our applications, we have observed a small performance gain of about 10

% if we use two MPI ranks per core instead of one. Let us note that we do not

use threading.

On Taurus, we always use one MPI rank per core, i.e., the number of MPI

ranks is identical to the number of cores and to the number of subdomains.

In this section, we exclusively deal with “Localized Nonlinearities”, i.e., the

nonlinearities are completely contained in the elimination sets of NL-2, NL-3,

and NL-4. As a consequence, the inner Newton iterations of these methods are

expected to be effective in reducing the number of outer Newton iterations. Of

course, NL-1 only has an outer Newton iteration, but the computation of the

initial value (see Equation (5.53)) is somehow equivalent to an inner iteration

of NL-2 and is therefore also expected to be effective.

For “Standard Inclusions”, we present results for simulations on Taurus as

well as on magnitUDE; see Figure 6.3 and Table 6.1. For more details regarding

the simulation on Taurus, we refer to [85, Tab. 2], where all simulation results

are presented in a table analogously to the tables in this thesis. On both HPC

systems, we use a rectangular domain Ω = [0, 1.5] × [0, 1], but the size of the

inclusions as well as the tolerance for the inner Newton iteration slightly differ;

see the captions of Figure 6.3 and Table 6.1.

For “Nonstandard Inclusions”, we present results for a simulation on magni-

tUDE with a curved domain Ω; see Table 6.2.

The simulation results presented in this section have in common that NL-2

is the fastest method and is therefore especially faster than NK; see Figure 6.3

and Tables 6.1 and 6.2. For a small number of MPI ranks, NL-4 is always

slower than NK, but it turns out for “Standard Inclusions” that NK is always

the slowest method beyond 96 ranks; see Figure 6.3 and Table 6.1. For “Non-

standard Inclusions”, we obtain that NK and NL-4 have identical computing

times for the largest test; see Table 6.2.

It turns out that the nonlinear FETI-DP algorithms NL-2, NL-3, and NL-4

are about twice as fast compared to NK for large problems of the type “Standard

Inclusions”. All nonlinear FETI-DP variants drastically reduce the number of

Krylov iterations compared to the traditional NK approach. This is achieved by

investigating more local work; see the number of local factorizations. Again, let

us note that we refer to [85, Tab. 2] for a detailed presentation of the simulation

results on Taurus.

Following the discussion in Section 5.4.3, the NL-2 approach has the most

expensive inner Newton iteration since each inner iteration requires a factoriza-

tion of the coarse problem. However, this also means that each inner iteration
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Figure 6.3: Model problem “Localized Nonlinearities” - “Standard In-

clusions” (see Section 6.1.1); weak scalability of nonlinear

FETI-DP algorithms (NL-X, X = 1, . . . , 4) compared to the

more traditional Newton-Krylov-FETI-DP method (NK); do-

main Ω = [0, 1.5]× [0, 1] decomposed into square subdomains;

p = 4 and a weight of α = 1 inside the inclusions and p = 2 and

β = 1 elsewhere; H/h = 400; η = 10h; εI = 10−6; εO = 10−12; one

MPI rank per core; computed on Taurus. For further information;

see [85, Tab. 2].

provides a global transport of information. In contrast, in NL-3 and NL-4,

we have completely local nonlinear problems, i.e., the inner iteration does not

require any factorization of the coarse problem. As a consequence, there is no

global transport of information. We obtain that the NL-2 method is most effec-

tive since it achieves the largest reduction of Krylov iterations and the fastest

computing times. As a result, the savings in the accumulated number of coarse

solves (see “Coarse Fact.”) cannot compensate for the higher numbers of local

factorizations and Krylov iterations. Thus, the cost of the coarse problems does

not seem to be significant enough for the considered problem sizes.

It is not surprising that the computing times of NL-1 are always in between

the computing times of NK and the remaining nonlinear FETI-DP methods.

This can be explained by the fact that we have no inner iteration in NL-1

and, therefore, NL-1 is algorithmically closely related to the traditional NK

approach.

It is striking that the parallel efficiencies significantly drop for the largest

computations for “Standard Inclusions” on both HPC systems due to the costs

resulting from solving the coarse problem exactly. For example, the parallel

efficiency for NL-2 decreases from above 70 % to below 50 %; see Figure 6.3
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Table 6.1: Model problem “Localized Nonlinearities” - “Standard

Inclusions” (see Section 6.1.1); nonlinear FETI-DP al-

gorithms (NL-X, X = 1, . . . , 4) compared to the more

traditional Newton-Krylov-FETI-DP method (NK); do-

main Ω = [0, 1.5]× [0, 1] decomposed into square subdomains;

p = 4 and a weight of α = 1 inside the inclusions and p = 2 and

β = 1 elsewhere; H/h = 400; η = 20h; εI = 10−7; εO = 10−12;

two MPI ranks per core; computed on magnitUDE. This table has

already been published in [85]; see [85, Tab. 1].
Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 20 - 20 363 171.01s 63%
NL-1 23 11 12 224 142.64s 76%

24 3 844 001 NL-2 26 22 4 73 108.09s 100%
NL-3 40 0 5 91 148.77s 73%
NL-4 42 0 5 98 171.81s 63%
NK 19 - 19 499 191.08s 57%
NL-1 25 12 13 345 167.56s 65%

96 15 368 001 NL-2 27 23 4 105 119.05s 91%
NL-3 43 0 5 132 166.60s 65%
NL-4 37 0 5 144 164.66s 66%
NK 21 - 21 619 222.28s 49%
NL-1 25 12 13 351 176.12s 61%

384 61 456 001 NL-2 29 25 4 117 130.29s 83%
NL-3 43 0 5 144 173.42s 62%
NL-4 38 0 5 162 176.77s 61%
NK 24 - 24 738 265.48s 41%
NL-1 33 12 21 541 250.05s 43%

1 536 245 792 001 NL-2 30 26 4 120 136.43s 79%
NL-3 43 0 5 150 175.94s 61%
NL-4 41 0 5 168 190.05s 57%
NK 25 - 25 802 297.77s 36%
NL-1 29 15 14 411 219.46s 49%

6 144 983 104 001 NL-2 32 28 4 125 149.87s 72%
NL-3 47 0 5 157 196.45s 55%
NL-4 45 0 5 173 213.16s 51%
NK 26 - 26 871 485.9s 22%
NL-1 29 15 14 400 313.19s 35%

24 576 3 932 288 001 NL-2 35 31 4 127 225.31s 48%
NL-3 47 0 5 159 235.17s 46%
NL-4 43 0 5 177 240.28s 45%

and Table 6.1. As already discussed in Section 5.4.4, we can improve scalability,

especially for a large number of cores and ranks, if we use inexact reduced

versions of our FETI-DP methods. Therefore, we also consider our FETI-DP

algorithms in combination with a multilevel solver for the coarse problem in

the next section.
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Table 6.2: Model problem “Localized Nonlinearities” - “Nonstandard

Inclusions” (see Section 6.1.1); nonlinear FETI-DP algo-

rithms (NL-X, X = 1, . . . , 4) compared to the more traditional

Newton-Krylov-FETI-DP method (NK); p = 4 and a weight of

α = 1 inside the inclusions and p = 2 and β = 1 elsewhere; domain

Ω is a curved domain with a height of 0.1 and a width of 1.0, see

also [85, Fig. 8 (bottom)]; decomposed into square subdomains;

H/h = 400; εI = 10−5; εO = 10−8; the stopping criterion is based

on the norm of δũ; two MPI ranks per core; computed on magni-

tUDE. This table has already been published in [85]; see [85, Tab.

3].
Localized Nonlinearities - Nonstandard Inclusions

2D; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 19 - 19 343 88.27s 60%
NL-1 20 11 9 138 60.92s 87%

24 3 844 001 NL-2 23 19 4 62 53.20s 100%
NL-3 40 0 6 92 84.67s 63%
NL-4 54 0 8 128 125.39s 42%
NK 21 - 21 568 116.85s 46%
NL-1 27 9 18 350 107.51s 49%

96 15 368 001 NL-2 31 26 5 107 75.58s 70%
NL-3 41 0 6 142 91.81s 58%
NL-4 50 0 9 229 135.84s 39%
NK 22 - 22 614 125.49s 42%
NL-1 26 10 16 332 101.88s 52%

384 61 456 001 NL-2 27 23 4 95 67.11s 79%
NL-3 33 0 6 150 79.95s 67%
NL-4 44 0 9 243 127.28s 41%
NK 25 - 25 729 152.78s 35%
NL-1 27 8 19 380 116.05s 46%

1536 245 792 001 NL-2 32 27 5 111 81.75s 65%
NL-3 37 0 6 155 89.88s 59%
NL-4 43 0 8 246 126.53s 42%
NK 20 - 20 610 136.54s 39%
NL-1 28 8 20 378 127.45s 42%

6144 983 104 001 NL-2 29 25 4 98 77.69s 68%
NL-3 36 0 6 157 92.28s 58%
NL-4 45 0 8 252 136.83s 39%

6.4.2 Scalability on JUQUEEN

In this section, we present scaling results on the JUQUEEN supercomputer [69]

for our exact FETI-DP methods as well as for inexact reduced FETI-DP meth-

ods. In contrast to the previous section, we consider smaller subdomains with

H/h=200 due to the smaller amount of memory per core and the slower Blue-

Gene/Q PowerPC cores compared to the other x86-based supercomputers.
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Similar to the magnitUDE, we use two MPI ranks per core. It is not moti-

vated by the simulation of larger problems, but by the efficient use of hardware

threads of the BlueGene/Q processor. By using threading or multiple MPI

ranks per core, we can achieve a significant performance gain of nearly a factor

two; see also [79].

For exact FETI-DP algorithms, we consider the unit square Ω = [0, 1]× [0, 1]

(see Table 6.3 and Figure 6.4) as well as a rectangle Ω = [0, 2]× [0, 1] (see Fig-

ure 6.5) as computational domains. As one can see in Figure 6.5, the execution

times increase for a problem size of 32 768 MPI ranks. Simultaneously, the par-

allel efficiency drops due to the exact solution of the coarse problem. Therefore,

we consider a maximum problem size of 16 384 MPI ranks for the unit square;

see Table 6.3 and Figure 6.4. It turns out that the results in Table 6.3 and Fig-

ures 6.4 and 6.5 are similar to the results presented in the previous section;

see Section 6.4.1.

We obtain good weak scalability for all our nonlinear FETI-DP methods for

a maximum problem size of 16 384 MPI ranks even if we do not consider inexact

reduced FETI-DP variants. This can be explained by the powerful network of

BlueGene/Q machines. Since also the traditional NK approach suffers from

the exact factorization of the coarse problem, all nonlinear FETI-DP methods

are significantly faster compared to the traditional NK approach; see Table 6.3

and Figures 6.4 and 6.5.

As mentioned before, parallel scalability can be improved if we do not solve

the coarse problem exactly. Thus, we also consider inexact reduced FETI-DP

algorithms, where we apply an AMG preconditioner to the coarse problem in-

stead of using an exact (sparse) direct solver; see Section 5.4.4. The simulations

have been performed on the computational domain Ω = [0, 2] × [0, 1] and the

results are presented in Table 6.4 and Figure 6.6. We obtain weak parallel

scalability to 131 072 MPI ranks. To save some space, we have only shown the

smallest as well as the largest problem sizes in Table 6.4. For the iteration

numbers regarding the problem sizes in between, we refer to [85, Tab. 5].

As a consequence of the application of the AMG preconditioner, we have to

perform additional Krylov iterations for the solution of

M−1
AMGS̃ΠΠδũΠ = M−1

AMG · rhsΠ

in the inner loop of NL-2 as well as in the computation of the initial value of

NL-1; see also [80] for further details. Since these Krylov iterations are cheaper

compared to those in the outer Newton iteration, we count them separately and

present them in an extra sub-column in Table 6.4 that is denoted “S̃ΠΠ”. The
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Table 6.3: Model problem “Localized Nonlinearities” - “Standard In-

clusions” (see Section 6.1.1); nonlinear FETI-DP algo-

rithms (NL-X, X = 1, . . . , 4) compared to the more traditional

Newton-Krylov-FETI-DP method (NK); p = 4 and a weight of

α = 1 inside the inclusions and p = 2 and β = 1 elsewhere;

domain Ω = [0, 1] × [0, 1] and H/h = 200 decomposed into square

subdomains; η = 10h; εI = 10−7; εO = 10−12; two MPI ranks per

core; computed on JUQUEEN [69]; see also Figure 6.4. This table

has already been published in [85]; see [85, Tab. 4].
Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 200; exact FETI-DP; computed on JUQUEEN
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 21 - 21 443 236.96s 56%
NL-1 21 15 6 126 144.82s 91%

64 2 563 201 NL-2 23 20 3 66 131.68s 100%
NL-3 36 0 5 105 193.75s 68%
NL-4 38 0 6 135 227.14s 58%
NK 22 - 22 559 261.73s 50%
NL-1 22 15 7 180 160.37s 82%

256 10 246 401 NL-2 23 20 3 79 133.47s 99%
NL-3 37 0 5 127 201.16s 66%
NL-4 39 0 6 166 237.00s 56%
NK 24 - 24 660 294.08s 45%
NL-1 26 16 10 241 200.32s 66%

1024 40 972 801 NL-2 29 25 4 103 171.35s 77%
NL-3 38 0 5 134 207.26s 64%
NL-4 39 0 6 177 239.97s 55%
NK 26 - 26 770 336.14s 39%
NL-1 26 16 10 248 209.08s 63%

4096 163 865 601 NL-2 29 25 4 107 181.57s 73%
NL-3 39 0 5 139 215.60s 61%
NL-4 38 0 6 185 239.30s 55%
NK 27 - 27 823 403.87s 33%
NL-1 28 19 9 216 250.36s 53%

16384 655 411 201 NL-2 31 27 4 110 230.21s 57%
NL-3 41 0 5 141 239.12s 55%
NL-4 41 0 6 188 268.49s 49%

Krylov iterations that are required for the outer Newton iteration are referred to

as “Full” in Table 6.4. Furthermore, the application of the AMG preconditioner

replaces a coarse factorization. Therefore, we count the different AMG setups

instead of coarse factorizations in Table 6.4. Due to the large number of MPI

ranks, we usually only use a small fraction of the available MPI ranks for solving

the coarse problem. For example, we only use 2 % for the largest computation

on 131 072 MPI ranks; see also [80].

The results obtained from the simulations using inexact reduced FETI-DP

methods are qualitatively similar to the results obtained from simulations using

exact FETI-DP algorithms; see Section 6.4.1 and Table 6.3. For the first time,
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Figure 6.4: Model problem “Localized Nonlinearities” - “Standard Inclusions”

(see Section 6.1.1); weak scalability of nonlinear FETI-DP algo-

rithms (NL-X, X = 1, . . . , 4) and the more traditional Newton-

Krylov-FETI-DP method (NK) on the JUQUEEN BlueGene/Q

supercomputer at Forschungszentrum Jülich [69]; data from Ta-

ble 6.3. This figure has partly been published in [85]; see [85, Fig.

9].

the NL-3 approach is the fastest method for and beyond 8 192 MPI ranks. We

benefit from the favorable inner Newton iteration without solving any coarse

problem as well as the small number of outer Newton iterations, which addition-

ally leads to a small number of Krylov iterations. Even if the NL-4 approach is

very similar to the NL-3 approach, it is slower due to a larger number of Krylov

iterations.

6.4.3 Localized Nonlinearities in Three Dimensions

We now consider “Localized Nonlinearities” in three dimensions. As mentioned

in Section 6.1.1, we exclusively deal with centered spherical inclusions (approx-

imated on a regular grid) of the same size for each subdomain. We always use

a radius of r = 0.3H for the inclusions. Let us note that we have chosen the

stopping criterion based on the norm of the update δũ instead of the norm of

the nonlinear residual for all simulations presented within this section.

All in all, we get similar results as for two dimensions. At the cost of more

local work, the numbers of Krylov iterations and outer Newton iterations for

NL-X, X = 1, . . . , 4, are significantly reduced compared to NK. However, the

costs of the coarse problem in 3D seem to be relevant even for smaller problem
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Figure 6.5: Model problem “Localized Nonlinearities” - “Standard Inclusions”

(see Section 6.1.1); weak scalability of nonlinear FETI-DP algo-

rithms (NL-X, X = 1, . . . , 4) and the more traditional Newton-

Krylov-FETI-DP method (NK) on the JUQUEEN BlueGene/Q

supercomputer at Forschungszentrum Jülich [69]; same settings as

in Figure 6.4 except for the computational domain Ω = [0, 2]×[0, 1]

and εI = 10−6.

sizes, since one of the methods NL-3 and NL-4 is the fastest for each of the two

computational domains Ω; see Tables 6.5 and 6.6.

Let us first consider the smaller domain Ω = [0, 1.5] × [0, 1] × [0, 1]; see Ta-

ble 6.5. While NL-2 and NL-3 have almost identical execution times, the NL-4

approach achieves the fastest convergence except for the smallest test. This

is related to a reduced number of Krylov iterations and a much lower number

of coarse solves in comparison to NL-2. At the same time, the local work in-

creases only slightly. The better performance compared to NL-3 is partly due

to the fact that the average timer per inner iteration is significantly lower; see

Figure 6.7.

If we consider Ω = [0, 4] × [0, 4] × [0, 3], we get slightly different results;

see Table 6.6. Instead of NL-4, NL-3 is the fastest method. The inner iteration

of NL-4 is not as effective as before, which leads to an increased number of outer

Newton iterations and, thus, to more Krylov iterations. This could be related

to the larger interface. Nevertheless, the NL-4 algorithm is considerably faster

than the traditional NK approach for the largest test. The shorter execution

time of NL-3 compared to NL-1 and NL-2 results from a similar amount of local

work. We benefit from the fact that the local factorization for NL-3 does not

include the coarse problem.
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Figure 6.6: Model problem “Localized Nonlinearities” - “Standard Inclu-

sions” (see Section 6.1.1); weak scalability of new inexact re-

duced FETI-DP algorithms (irNL-X, X = 1, . . . , 4) and the inex-

act reduced version of the more traditional Newton-Krylov-FETI-

DP algorithm (irNK) on the JUQUEEN BlueGene/Q machine at

Forschungszentrum Jülich [69]; data from Table 6.4. This figure

has partly been published in [85]; see [85, Fig. 10].

Figure 6.7: Model problem “Localized Nonlinearities” in 3D (see Sec-

tion 6.1.1); comparison of the weak scalability behavior of the

inner loops of NL-3 and NL-4. Here, we present the average run-

time per Newton step for computations performed on magnitUDE;

see Table 6.6 for the complete results. This figure has already been

published in [85]; see [85, Fig. 11].
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Table 6.4: Model problem “Localized Nonlinearities” - “Standard Inclu-

sions” (see Section 6.1.1); inexact reduced nonlinear FETI-DP

algorithms (irNL-X, X = 1, . . . , 4) compared to the inexact re-

duced version of the more traditional Newton-Krylov-FETI-DP

method (NK); domain Ω = [0, 2] × [0, 1] decomposed into square

subdomains; p = 4 and a weight of α = 1 inside the inclusions

and p = 2 and β = 1 elsewhere; H/h = 200; η = 10h; εI = 10−6;

εO = 10−12; two MPI ranks per core. Instead of the exact factor-

izations of S̃ΠΠ, we now have to set up an AMG preconditioner for

S̃ΠΠ several times. We also have one AMG application per GM-

RES iteration; computed on the JUQUEEN supercomputer [69];

see also Figure 6.6. This table has similarly been published in [85];

see [85, Tab. 5].
Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 200; inexact reduced FETI-DP; computed on JUQUEEN
MPI Problem Nonlin. Local AMG Krylov Exec. Parallel

Ranks Size Solver Fact. Setup Its. Time Effic.

in. out. S̃ΠΠ Full

irNK 16 - 16 - 341 178.98s 64%
irNL-1 19 8 11 31 252 165.35s 69%

32 1 282 401 irNL-2 20 17 3 63 71 114.06s 100%
irNL-3 31 0 4 0 87 163.79s 70%
irNL-4 34 0 5 0 112 198.37s 58%
irNK 23 - 23 - 722 307.87s 37%
irNL-1 26 12 14 60 472 259.02s 44%

32 768 1 310 796 801 irNL-2 31 27 4 134 155 199.05s 57%
irNL-3 30 0 4 0 121 176.47s 65%
irNL-4 35 0 5 0 165 224.48s 51%
irNK 24 - 24 - 766 371.68s 31%
irNL-1 26 12 14 60 467 316.50s 36%

131 072 5 243 033 601 irNL-2 35 31 4 153 160 278.56s 41%
irNL-3 29 0 4 0 119 206.57s 55%
irNL-4 38 0 5 0 165 281.22s 41%

6.5 Nonlocal Nonlinearities in Two Dimensions

In the following, we also consider “Nonlocal Nonlinearities”, i.e., the nonlinear-

ities are no longer restricted to the subdomains but cross the interface. As a

consequence, the elimination set E in NL-4 does not contain all nonlinearities.

Thus, NL-4 is expected to be less efficient compared to ‘Localized Nonlineari-

ties”.

In this section, we deal with channels, where each column of subdomains

contains a vertical channel of width 0.5H; see Figure 6.1 (bottom left). Since

the channels do not touch subdomain vertices, the elimination set of NL-3

contains all nonlinearities. The same holds for the elimination set of NL-2 since

it contains all variables.
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Table 6.5: Model problem “Localized Nonlinearities” in 3D (see Section 6.1.1);

nonlinear FETI-DP algorithms (NL-X, X = 1, . . . , 4) compared to

the more traditional Newton-Krylov-FETI-DP method (NK); do-

main Ω = [0, 1.5]× [0, 1]× [0, 1] decomposed into cubic subdomains;

p = 4 and a weight of α = 1 inside the inclusions and p = 2 and

β = 1 elsewhere; H/h = 30; centered spherical inclusions with

diameter 0.6H; εI = 10−5; εO = 10−8; two MPI ranks per core;

computed on magnitUDE. This table has already been published

in [85]; see [85, Tab. 6].
Localized Nonlinearities in 3D

p = 4; H/h = 30; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 17 - 17 804 464.92s 65%
NL-1 22 16 6 278 337.06s 89%

96 2 650 021 NL-2 23 20 3 146 302.91s 99%
NL-3 24 0 3 150 300.41s 100%
NL-4 30 0 4 161 377.07s 80%
NK 22 - 22 805 786.32s 38%
NL-1 27 20 7 580 480.00s 63%

768 20 967 241 NL-2 29 25 4 319 441.04s 68%
NL-3 31 0 4 308 446.72s 67%
NL-4 36 0 4 299 418.66s 72%
NK 27 - 27 2 437 1 085.29s 28%
NL-1 31 24 7 689 587.34s 51%

6 144 166 811 281 NL-2 33 29 4 377 540.86s 56%
NL-3 36 0 5 396 540.25s 56%
NL-4 41 0 4 344 490.25s 61%

The results of different simulations on magnitUDE are presented in Table 6.7

and Figure 6.8, where we have used a maximum of 6 144 MPI ranks.

As expected, the performance of NL-4 is deteriorated. It turns out that it

is even worse than the traditional NK approach. In contrast, the remaining

variants perform similar to “Local Nonlinearities”; see Section 6.4.

As before, the cost of the coarse problem is not that relevant for the considered

problem sizes. Therefore, the increased local work of NL-3 compared to NL-2

cannot be compensated by less coarse solves. Thus, NL-2 is the fastest method,

but NL-3 slightly catches up. The performance of NL-2 and NL-3 are convincing

since both are more than five times faster than the NK approach for the largest

tests. Even the NL-1 algorithm is more than twice as fast as the NK approach

for the same problem sizes.

The results presented in this section clearly indicate that the choice of the

elimination set is crucial for the performance of our nonlinear FETI-DP vari-

ants, which motivates the choice of problem-dependent elimination sets; see Sec-

tion 6.7.
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Table 6.6: Model problem “Localized Nonlinearities” in 3D (see Sec-

tion 6.1.1); nonlinear FETI-DP algorithms (NL-X, X = 1, . . . , 4)

compared to the more traditional Newton-Krylov-FETI-DP

method (NK); we use the same settings as in Table 6.5 except for

Ω = [0, 4]× [0, 4]× [0, 3]; computed on magnitUDE. This table has

already been published in [85]; see [85, Tab. 7].
Localized Nonlinearities in 3D

p = 4; H/h = 30; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 13 - 13 430 316.93s 90%
NL-1 20 13 7 243 300.59s 95%

48 1 332 331 NL-2 24 20 4 110 307.18s 93%
NL-3 23 0 4 129 286.62s 100%
NL-4 35 0 6 179 425.14s 67%
NK 14 - 14 1 002 668.84s 43%
NL-1 22 14 8 568 543.11s 53%

384 10 512 661 NL-2 25 21 4 263 418.15s 69%
NL-3 23 0 4 372 381.35s 75%
NL-4 38 0 6 392 565.94s 51%
NK 17 - 17 1 560 704.02s 41%
NL-1 22 14 8 687 495.83s 58%

3 072 83 521 321 NL-2 24 20 4 330 410.92s 70%
NL-3 22 0 4 364 377.20s 76%
NL-4 40 0 6 515 565.37s 51%
NK 17 - 17 1 586 1 634.88s 18%
NL-1 23 15 8 673 988.49s 29%

24 576 665 858 641 NL-2 24 20 4 357 756.77s 38%
NL-3 23 0 4 371 613.18s 47%
NL-4 44 0 6 554 967.76s 30%

6.6 Choosing the Accuracy of the Inner Newton

Iteration: Numerical Results

In this section, we analyze the effectiveness of the additional control of the inner

Newton iteration for our nonlinear FETI-DP methods. Therefore, we consider

our model problem “Grid” of the type “Nonlocal Nonlinearities”, where the non-

linearities have a more global character compared to “Channels”. In addition,

we consider a domain decomposition with ragged edges; see [85, Fig. 8, right]

for an example of a domain decomposition with ragged edges for 16 subdomains.

Since the “Grid” is an arrangement of centered vertical and horizontal channels

that do not touch the domain boundary ∂Ω, only the elimination sets in NL-2

and NL-3 contain all nonlinearities, but not the elimination set in NL-4. As a

consequence, NL-4 is expected to be inefficient for this type of model problem.

In contrast to the previous sections, we provide results obtained from our se-

quential MATLAB implementation. In addition, we consider the NL-1 method

without the additional computation of an initial value. In Table 6.8 we com-
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Table 6.7: Model problem “Nonlocal Nonlinearities” - “Channels” (see Sec-

tion 6.1.1); nonlinear FETI-DP algorithms (NL-X, X = 1, . . . , 4)

compared to the more traditional Newton-Krylov-FETI-DP

method (NK); p = 4 and a multiplicative weight of α = 105 in-

side the channels and p = 2 and β = 1 elsewhere; each sub-

domain intersected by one channel; width of a channel is 0.5H;

domain Ω = [0, 1.5] × [0, 1] decomposed into square subdomains;

H/h = 400; εI = 10−7; εO = 10−8; two MPI ranks per core; com-

puted on magnitUDE; see also Figure 6.8. This table has already

been published in [85]; see [85, Tab. 8].
Nonlocal Nonlinearities - Channels

2D; α = 105; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlin. Local Coarse Krylov Exec. Parallel

Ranks Size Solver Fact. Fact. Its. Time Effic.
in. out.

NK 15 - 15 420 138.48s 85%
NL-1 21 11 10 367 139.23s 85%

24 3 844 001 NL-2 30 26 4 119 118.37s 100%
NL-3 53 0 4 115 183.39s 65%
NL-4 71 0 12 561 328.94s 36%
NK 13 - 13 1 171 230.88s 51%
NL-1 21 11 10 804 203.36s 58%

96 15 368 001 NL-2 30 26 4 265 144.75s 82%
NL-3 53 0 4 261 196.99s 60%
NL-4 76 0 13 1 818 531.38s 22%
NK 12 - 12 2 553 433.40s 27%
NL-1 19 10 9 1 193 252.97s 47%

384 61 456 001 NL-2 29 25 4 426 164.38s 72%
NL-3 44 0 4 424 196.16s 60%
NL-4 62 0 12 3 637 775.52s 15%
NK 11 - 11 4 041 692.55s 17%
NL-1 19 10 9 1 479 304.93s 39%

1536 245 792 001 NL-2 28 24 4 534 180.31s 66%
NL-3 46 0 4 497 217.84s 53%
NL-4 53 0 12 4 596 927.91s 13%
NK 11 - 11 4 698 856.28s 14%
NL-1 19 10 9 1 666 352.16s 34%

6144 983 104 001 NL-2 24 21 3 427 159.84s 74%
NL-3 31 0 3 385 163.69s 72%
NL-4 42 0 11 4 445 937.61s 13%

pare the different NL-ane-X approaches, X = 1, . . . , 4, with the traditional

NK-FETI-DP approach. For completeness, we also present the results of the

corresponding nonlinear FETI-DP methods without the additional control of

the inner Newton iteration (see the numbers in brackets). Note that “div”

indicates that the corresponding method does not reach convergence.

At first, let us note that NL-1 and the traditional NK approach perform quite

similar since we do not use the computation of an initial value for NL-1.

Let us further note that we do not reach convergence for NL-2 and NL-3

for and beyond 16 subdomains, which is due to an insufficient coarse space. In
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Figure 6.8: Model problem “Nonlocal Nonlinearities” - “Channels”

(see Section 6.1.1); weak scalability of new FETI-DP algo-

rithms (NL-X, X = 1, . . . , 4) and the more traditional Newton-

Krylov-FETI-DP algorithm (NK); performed on magnitUDE

at Universität Duisburg-Essen; the fastest nonlinear FETI-DP

methods (NL-2 and NL-3) are more than five times faster than

the traditional NK approach; data from Table 6.7. This figure

has partly been published in [85]; see [85, Fig. 12].

contrast, the corresponding NL-ane-2 and NL-ane-3 approaches yield convincing

results. The NL-ane-2 approach saves more than 50 % of Newton iterations and

66 % of Krylov iterations compared to the traditional NK approach and the

closely related NL-1 method without computing the initial value. Although the

number of local factorizations is identical for NL-ane-2 and NL-ane-3, we obtain

a higher number of outer Newton iterations for and beyond 64 subdomains for

NL-ane-3. This automatically implies a higher number of Krylov iterations.

Nonetheless, NL-ane-3 reduces the number of Krylov iterations by more than

50 % compared to NK and also to NL-1 without the computation of an initial

value.

For NL-4, it is remarkable that the algorithm converges for all considered

problem sizes in contrast to NL-2 and NL-3. However, it turns out that the outer

Newton iterations and Krylov iterations are only slightly smaller compared to

NK and the closely related NL-1 method without the computation of an initial

value due to the fact that the nonlinearities are not completely contained in the

elimination set of NL-4.

If we compare NL-4 and NL-ane-4, we obtain that the numbers of outer

Newton iterations (equivalent to coarse solves) and the Krylov iterations are
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Table 6.8: Model problem “Nonlocal Nonlinearities” - “Grid” (see Sec-

tion 6.1.1); nonlinear FETI-DP algorithms controlling the accu-

racy of the inner Newton iteration (NL-ane-X, X = 2, 3, 4) com-

pared to the more traditional NK-FETI-DP method (NK) and

the closely related NL-1 method without computing the initial

value (NL-1 no Init); numbers in brackets belong to the runs of

the corresponding traditional nonlinear FETI-DP method; div in-

dicates no convergence; p = 4 and a weight of α = 1 inside the

grid and p = 2 and β = 1 elsewhere; see also Figure 6.1 (bottom

middle); Ω = [0, 1]× [0, 1]; decomposed into square subdomains; N

is the number of subdomains; ragged edges (see [85, Fig. 8 (top

right)]); H/h = 16; εI = 10−12; εO = 10−12; one MPI rank per

core; computed on Schwarz. This table has already been published

in [85]; see [85, Tab. 9].
Nonlocal Nonlinearities - Grid

2D; p = 4; H/h = 16; exact FETI-DP; computed on Schwarz
N Problem Nonlinear Local Coarse Krylov

Size Solver Fact. Fact. Its.
in. out.

NK 11 - 11 599
NL-1 no Init 10 - 10 563

4 1 089 NL-ane-2 14 (59) 7 (48) 7 (11) 310 (480)
NL-ane-3 14 (76) 0 (0) 7 (14) 307 (805)
NL-ane-4 14 (32) 0 (0) 8 (9) 425 (470)
NK 13 - 13 1174
NL-1 no Init 12 - 12 1148

16 4 025 NL-ane-2 15 (div) 7 (div) 8 (div) 490 (div)
NL-ane-3 15 (div) 0 (div) 8 (div) 471 (div)
NL-ane-4 17 (34) 0 (0) 10 (9) 734 (712)
NK 15 - 15 1891
NL-1 no Init 14 - 14 1857

64 16 641 NL-ane-2 15 (div) 9 (div) 6 (div) 576 (div)
NL-ane-3 15 (div) 0 (div) 9 (div) 803 (div)
NL-ane-4 21 (44) 0 (0) 13 (12) 1421 (1365)
NK 17 - 17 2692
NL-1 no Init 16 - 16 2602

256 66 049 NL-ane-2 18 (div) 11 (div) 7 (div) 840 (div)
NL-ane-3 18 (div) 0 (div) 11 (div) 1221 (div)
NL-ane-4 23 (51) 0 (0) 15 (15) 2003 (2092)

almost the same. However, we observe that the number of local factorizations

decreases significantly for NL-ane-4. Note that the number of local factoriza-

tions for NL-ane-4 is less than two times the number of outer iterations, i.e., the

elimination of uI reduces the global energy J just in a few cases. As a result,

the performance of NL-ane-4 is quite similar to NL-1 without the computation

of an initial value. This confirms the expectation that the inner iteration is

inefficient in NL-4, since not all nonlinearities are included into the elimination

set.
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We obtain that the additional control of the inner Newton iteration enlarges

the convergence radius of nonlinear FETI-DP methods and reduces the depen-

dency on the coarse space on one hand. On the other hand, it avoids unneces-

sary inner Newton iterations if the elimination set is insufficient. However, in

the latter case, the NL-ane approach does not decrease outer Newton iterations

and Krylov iterations in general.

6.7 A Problem-Dependent Choice of the Elimination Set

in Two Dimensions

Within the ongoing joint work with Axel Klawonn, Martin Lanser, and Oliver

Rheinbach on nonlinear FETI-DP methods, the design of problem-dependent

nonlinear FETI-DP variants is of great interest. During the currently ongoing

work on her master thesis [128], Frauke Piechulla has incorporated the problem-

dependent choice of the elimination set E (see Section 5.4.2.5) into our existing

MATLAB implementation of nonlinear FETI-DP variants. Therefore, in ad-

dition to the already existing methods NL-X, X = 1, . . . , 4, the software now

also includes the NL-Res approach. Let us note that all presented results within

this section regarding the NL-Res approach are based on the implementation

of Frauke Piechulla, which, as already mentioned above, is itself based on an

already existing implementation of NL-X, X = 1, . . . , 4. For the computation

of the elimination set, we refer to Section 5.4.2.5. By construction, the size

of the elimination set E strongly depends on the chosen parameters ρres and

δ. It grows with a decreasing parameter ρres as well as with an increasing

parameter δ; see Figures 6.9 and 6.10.

Within this section, we present results for different types of the model prob-

lem “Nonlocal Nonlinearities” for the p-Laplace equation; see Section 6.7.1.

In addition, we also deal with a two-dimensional elasticity problem, where we

take into account a Neo-Hooke material model; see Section 6.7.2. We com-

pare different variants of NL-Res, i.e., different combinations of ρres and δ,

with the remaining nonlinear FETI-DP methods as well as with the traditional

NK-FETI-DP approach. Note that we consider the NL-1 method without the

computation of an initial value.

In all tables within this section, we introduce the notation NL-Res(ρres) to

distinguish between different variants of NL-Res. The iteration numbers result-

ing from different choices of δ are presented in sub-columns. Recalling that the

elimination set in NL-Res may contain some primal variables, we do not know

anymore whether the nonlinear elimination requires the solution of a subprob-
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ρres = 0.8

δ = 0

ρres = 0.5

δ = 0

ρres = 0.3

δ = 0

ρres = 0.1

δ = 0

Figure 6.9: Effect of different choices of ρres on the elimination set E for the

“Grid” considering δ = 0. The finite element nodes belonging to

E are marked with red squares; finite elements belonging to ΩC

are in dark grey.

ρres = 0.3

δ = 1

ρres = 0.3

δ = 3

Figure 6.10: Effect of different choices of δ on the elimination set E for the

“Grid” considering ρres = 0.3; see also Figure 6.9 for δ = 0. The

finite element nodes belonging to E are marked with red squares;

finite elements belonging to ΩC are in dark grey.

lem of the global coarse problem. Accordingly, we distinguish between inner

and outer Newton iterations instead of local and coarse factorizations. As be-

fore, each outer Newton iteration is guaranteed to require a factorization of

the coarse problem. In addition to the previous sections, we also provide the

average size of the elimination sets in all tables within this section.
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6.7.1 NL-Res for Nonlocal Nonlinearities

In this section, we consider the p-Laplace equation with “Nonlocal Nonlineari-

ties”. However, the nonlocal nonlinearities have a local character. On one hand,

we deal with a single channel that cuts through a single column of subdomains.

On the other hand, we also consider a cross of a single horizontal and a single

vertical channel.

Even if the implementation enables the possibility to start with an empty

elimination set in the first iteration (see Section 5.4.2.5), we do not use this

option. Moreover, the elimination set is computed dynamically, i.e., it may

change at the end of each outer Newton iteration. Since Newton’s method

converges quadratically in the neighborhood of the solution, we choose an empty

elimination set whenever the norm of the nonlinear residual is at most as large

as 10−5. To provide a fair comparison, this strategy is also applied to NL-2,

NL-3, and NL-4. Consequently, we do not have constant elimination sets for

these methods anymore. As a result, the average size of the elimination set of

NL-2 might be smaller compared to NL-3 and NL-4, depending on the number

of overall outer Newton iterations and the number of outer Newton iterations

with an empty elimination set. However, for nonempty elimination sets, the

elimination set of NL-2 is larger as the elimination set of NL-3, which again is

larger as the elimination set of NL-4.

For both problems considered within this section, we obtain similar results;

see Tables 6.9 and 6.10. First of all, the traditional NK-FETI-DP approach

and the NL-1 method without the computation of an initial value perform

quite similar. It turns out that the NL-2 method performs best, but also the

NL-3 and the NL-4 approach perform quite well. For the largest problems,

these three methods reduce the number of outer Newton iterations and Krylov

iterations by more than 50 % compared to NK. Although the number inner

iterations is larger for NL-3, the number of outer iterations is identical to NL-4.

It seems that the elimination of all dual variables on the interface does not have

the desired effect, even if the nonlinearities cross the subdomain interface.

For the different NL-Res variants, we obtain significantly smaller average

sizes of the elimination sets. Nonetheless, for the smaller problem sizes, we find

at least one sufficient δ for all three parameters of ρres to achieve a performance

similar to NL-3 and NL-4. However, it turns out that too small average sizes of

the elimination sets do not lead to a good performance. In this case, the number

of inner iterations increase, while the number of outer iterations is comparable

to NK and NL-1 without the computation of an initial value. As a result, only

the NL-Res(0.1) approach can compete with NL-3 and NL-4 for the largest
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problem sizes of both model problems; see Tables 6.9 and 6.10. However, for

a single channel, also NL-Res(0.5) performs well for δ > 0 for 256 subdomains;

see Table 6.9. Consequently, smaller average sizes of the elimination sets seem

to be efficient for a single vertical channel, for which the nonlinearities have

a more local character compared to the cross; see Tables 6.9 and 6.10. We

conclude that much smaller elimination sets are sufficient to achieve a similarly

good performance. Note that the increased number of inner iterations might

be neglected due to the very small elimination sets.

6.7.2 NL-Res for a Contact Problem in Nonlinear Elasticity

In addition to the model problems regarding the p-Laplace equation, we also

deal with nonlinear elasticity under consideration of a Neo-Hooke material

model. Therefore, we consider the deformation of the unit square by a rigid

tool, where we use a penalty formulation for the contact constraints; see Sec-

tion 4.2.4. As before, we choose a penalty parameter εN = 500. The initial

simulation setup is presented in Figure 6.11 (left).

We do not only take into account a homogeneous material with a Young’s

modulus E = 210 and a Poisson ration ν = 0.3, but also a heterogeneous mate-

rial with stiffer inclusions characterized by a Young’s modulus E = 210 000. In

both cases, the rigid tool is driven into the unit square from below. Throughout

this section, the rigid tool is an arc of radius 1; see Figure 6.11 (right) for the

final solution that is obtained from moving the arc 10 % in upward direction.

We exclusively consider a single load step, i.e., the desired movement of the arc

is applied within one step.

As in the previous section, we have compared the traditional NK-FETI-DP

approach with the nonlinear FETI-DP methods NL-X, X = 1, . . . , 4, as well

as with different variants of the NL-Res approach, which are referred to as NL-

Res(ρres) in Tables 6.11 and 6.12. For different choices of δ, the results are

presented in sub-columns of the corresponding lines. Let us note that we take

into account NL-1 without the additional computation of an initial value, which

is therefore closely related to the traditional NK-FETI-DP method.

For all methods with nonempty elimination sets, i.e., NL-2, NL-3, NL-4, and

NL-Res, we switch to the NL-1 approach whenever the current iterate is close to

the solution. In the context of nonlinear elasticity, we choose empty elimination

sets if the norm of the update of the displacements is not larger than 10−3. In

addition, we also use the option to start with a single step of NL-1 in the very

first iteration.
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Table 6.9: Model problem “Nonlocal Nonlinearities” - single vertical channel

(see Section 6.1.1); comparison of different inner elimination sets in

nonlinear FETI-DP (NL-2, NL-3, NL-4, NL-Res) to the more tra-

ditional NK-FETI-DP method (NK) and the closely related NL-1

method without computing the initial value (NL-1 no Init); p = 4

and a weight of α = 1 inside the channel and p = 2 and β = 1

elsewhere; see also Figure 6.1 (top middle); Ω = [0, 1]× [0, 1]; de-

composed into square subdomains; N is the number of subdomains;

H/h = 16; εI = 10−12; εO = 10−12; elimination set is chosen to be

empty if the norm of the nonlinear residual is not larger as 10−5;

channel has a width of H/3; one MPI rank per core; computed on

Schwarz.
Nonlocal Nonlinearities - Single Vertical Channel

2D; p = 4; H/h = 16; exact FETI-DP; computed on Schwarz
N Prob. Nonlin. Inner Outer Krylov ∅ Size

Size Solver Newt. It. Newt. It. Its. E [%]
δ 0 1 5 0 1 5 0 1 5 0 1 5

16 4 225

NK - 14 202 -
NL-1 no Init - 13 199 0
NL-2 18 5 72 60
NL-3 32 7 100 71
NL-4 23 6 91 76
NL-Res(0.8) 31 38 31 9 9 7 139 141 107 0.2 0.8 4
NL-Res(0.5) 28 40 28 7 8 6 108 123 91 0.9 2 6
NL-Res(0.1) 24 32 30 6 7 7 89 100 100 11 12 18

64 6 641

NK - 14 249 -
NL-1 no Init - 14 264 0
NL-2 22 5 87 60
NL-3 28 6 105 66
NL-4 25 7 131 64
NL-Res(0.8) 49 43 33 12 9 7 223 164 127 0.07 0.3 2
NL-Res(0.5) 35 31 28 9 7 6 168 126 108 0.3 0.9 3
NL-Res(0.1) 27 34 32 6 7 7 108 121 122 10 10 14

256 66 049

NK - 18 357 -
NL-1 no Init - 17 363 0
NL-2 24 5 99 60
NL-3 35 7 129 71
NL-4 26 7 150 51
NL-Res(0.8) 64 46 40 15 9 8 309 184 160 0.03 0.1 0.5
NL-Res(0.5) 49 28 34 11 7 7 226 143 140 0.09 0.4 0.1
NL-Res(0.1) 36 36 37 7 7 8 134 129 148 9 9 10

For the homogeneous material, we consider a comparably large load step,

where we move the arc 10 % in upward direction; see Table 6.11 for the results.

It is striking that apart from some NL-Res variants only NL-4 converges for the

largest problem size. Moreover, the traditional NK-FETI-DP approach already

fails for a decomposition into 16 subdomains. Let us note that the divergence

of NL-2 and NL-3 is related to an inappropriate coarse space.
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Table 6.10: Model problem “Nonlocal Nonlinearities” - “Cross” (see Sec-

tion 6.1.1); comparison of different inner elimination sets in non-

linear FETI-DP (NL-2, NL-3, NL-4, NL-Res) to the more tradi-

tional NK-FETI-DP method (NK) and the closely related NL-1

method without computing the initial value (NL-1 no Init); p = 4

and a weight of α = 1 inside the cross and p = 2 and β = 1 else-

where; Ω = [0, 1]× [0, 1]; decomposed into square subdomains; N

is the number of subdomains; H/h = 16; εI = 10−12; εO = 10−12,

elimination set is chosen to be empty if the norm of the nonlinear

residual is not larger as 10−5; horizontal and vertical channel have

a width of H/3; one MPI rank per core; computed on Schwarz.
Nonlocal Nonlinearities - Cross

2D; p = 4; H/h = 16; exact FETI-DP; computed on Schwarz
N Prob. Nonlin. Inner Outer Krylov ∅ Size

Size Solver Newt. It. Newt. It. Its. E [%]
δ 0 1 5 0 1 5 0 1 5 0 1 5

16 4 225

NK - 12 164 -
NL-1 no Init - 12 175 0
NL-2 25 6 81 67
NL-3 35 7 94 71
NL-4 25 6 86 76
NL-Res(0.8) 32 42 37 11 11 7 160 159 103 0.2 0.6 5
NL-Res(0.5) 37 39 27 9 8 6 129 112 132 0.6 2 9
NL-Res(0.1) 24 36 25 6 8 6 82 105 80 9 9 20

64 6 641

NK - 15 273 -
NL-1 no Init - 15 288 0
NL-2 21 5 89 60
NL-3 34 7 121 71
NL-4 27 7 132 64
NL-Res(0.8) 55 54 51 15 12 9 286 232 175 0.02 0.2 1
NL-Res(0.5) 43 55 38 11 10 7 211 193 132 0.2 0.5 3
NL-Res(0.1) 30 38 34 7 8 7 126 140 121 5 6 10

256 66 049

NK - 18 371 -
NL-1 no Init - 17 380 0
NL-2 26 5 99 60
NL-3 37 7 128 71
NL-4 27 7 152 51
NL-Res(0.8) 63 66 69 16 14 10 352 310 219 0.01 0.04 0.3
NL-Res(0.5) 54 66 61 13 11 10 283 246 206 0.04 0.1 0.6
NL-Res(0.1) 25 36 40 5 7 8 100 127 154 5 4 6

As it is the case in the previous section, the NL-Res approach achieves a

better performance if the average size of the elimination set is larger, i.e., the

performance improves with smaller choices of ρres and larger choices of δ. It

turns out that the problem-dependent choice of the elimination set is advan-

tageous, since the average size of the elimination set is significantly smaller

compared to NL-4, but can be more effective resulting in less outer iterations;

see Table 6.11.
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Figure 6.11: Left: Initial simulation setup for the contact problem in nonlin-

ear elasticity. Right: Final solution for a homogeneous material

with E = 210, ν = 0.3 that is obtained from the NL-Res(0.1)

approach with δ = 10 considering a load step of 0.1 and an arc

with a radius of 1.

As a result, nonlinear FETI-DP methods enable the possibility to choose

larger load steps compared to the traditional NK approach. Furthermore, the

NL-Res approach reduces the dependency on the coarse space compared to

NL-2 and NL-3 and, therefore, enables even larger load steps. Moreover, the

problem-dependent choice of the elimination set can improve the efficiency of

the application of the nonlinear preconditioner.

For the heterogeneous material, we deal with random inclusions similar to

the p-Laplace equation; see Figure 6.2. In this case, we have to consider a

smaller load step. Otherwise, all our variants would diverge. Therefore, we half

the load step size and move the arc 5 % in upward direction. For this type

of model problem, we exclusively provide results for a decomposition into 64

subdomains; see Table 6.12.

First of all, it turns out that all methods reach convergence for the considered

problem with a load step size of 0.05. However, the performance of NL-2 is

deteriorated. It is even worse than the traditional NK approach, which is, as

before, related to an inappropriate coarse space.

Especially the NL-1 method without the computation of an initial value,

but also the traditional NK approach perform quite well, i.e., they need only

a few number of outer iterations to reach convergence. While the nonlinear

elimination in NL-3 and NL-Res does not improve the performance compared

to NL-1 without the computation of an initial value, NL-4 slightly reduces the

number of outer iterations and Krylov iterations. Moreover, the performance of
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Table 6.11: Contact problem in nonlinear elasticity; comparison of different

inner elimination sets in nonlinear FETI-DP (NL-2, NL-3, NL-4,

NL-Res) to the more traditional NK-FETI-DP method (NK) and

the closely related NL-1 method without computing the initial

value (NL-1 no Init); simulation of a single load step with a Neo-

Hooke material model; load step size: 0.1; homogeneous material

with E = 210, ν = 0.3; εN = 500; Ω = [0, 1] × [0, 1]; decom-

posed into square subdomains; N is the number of subdomains;

H/h = 20; εI = 10−6; εO = 10−6; E is chosen to be empty in

the very first iteration as well as if the norm of the update is not

larger as 10−3; one MPI rank per core; computed on Schwarz.
Nonlinear Elasticity with Contact for a Homogeneous Material

2D; Neo-Hooke; H/h = 20; exact FETI-DP; computed on Schwarz
N Prob. Nonlin. Inner Outer Krylov ∅ Size

Size Solver Newt. It. Newt. It. Its. E [%]
δ 0 5 10 0 5 10 0 5 10 0 5 10

4 1 681

NK - 8 96 -
NL-1 no Init - 6 72 0
NL-2 8 5 60 40
NL-3 8 5 60 40
NL-4 8 5 60 38
NL-Res(0.5) 9 7 8 6 5 5 72 60 60 0.1 3 7
NL-Res(0.3) 10 7 8 6 5 5 72 60 60 0.3 5 10
NL-Res(0.1) 9 8 8 5 4 4 60 48 48 0.7 12 21

16 6 561

NK No Conv.
NL-1 no Init - 7 168 0
NL-2 20 7 167 43
NL-3 15 7 167 43
NL-4 11 6 143 46
NL-Res(0.5) No 14 9 Conv. 7 6 167 142 2 3
NL-Res(0.3) 17 10 12 7 5 5 169 119 118 0.3 2 6
NL-Res(0.1) 13 11 10 6 5 6 145 119 142 0.3 5 5

64 25 921

NK No Conv.
NL-1 no Init No Conv.
NL-2 No Conv.
NL-3 No Conv.
NL-4 10 6 194 46
NL-Res(0.5) No Conv.
NL-Res(0.3) No 18 12 Conv. 7 5 228 161 0.9 2
NL-Res(0.1) 23 10 11 8 6 5 258 193 159 0.1 1 3

NL-3 and all variants of NL-Res is identical, which indicates that a very small

average size of the elimination set is sufficient. It is striking that the number of

inner iterations in NL-Res increases with δ, i.e., with a larger elimination set.

However, it has no effect on the number of outer iterations.

In addition, we also consider the NL-Res(0.1) approach without computing

the elimination set anew at the end of each outer Newton iteration. It is referred

to as “NL-Res(0.1) static E” in Table 6.12. Since we start with an empty

elimination set, we stick to the elimination set that is computed at the end of
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Table 6.12: Contact problem in nonlinear elasticity; comparison of different

inner elimination sets in nonlinear FETI-DP (NL-2, NL-3, NL-4,

NL-Res) to the more traditional NK-FETI-DP method (NK) and

the closely related NL-1 method without computing the initial

value (NL-1 no Init); simulation of a single load step with a Neo-

Hooke material model; load step size: 0.05; heterogeneous mate-

rial with random inclusions; matrix material: E = 210, ν = 0.3,

inclusions: E = 210 000, ν = 0.3; εN = 500; Ω = [0, 1] × [0, 1];

decomposed into square subdomains; N is the number of sub-

domains; H/h = 20; εI = 10−6; εO = 10−6; Elimination set in

the very first iteration is empty for all considered methods; elim-

ination set is chosen to be empty if the norm of the update of

the displacements is not larger as 10−3; one MPI rank per core;

computed on Schwarz.
Nonlinear Elasticity with Contact for a Heterogeneous Material

2D; Neo-Hooke; H/h = 20; exact FETI-DP; computed on Schwarz
N Prob. Nonlin. Inner Outer Krylov ∅ Size

Size Solver Newt. It. Newt. It. Its. E [%]
δ 0 5 10 0 5 10 0 5 10 0 5 10

64 25 921

NK - 8 285 -
NL-1 no Init - 6 214 0
NL-2 49 9 318 67
NL-3 15 6 213 50
NL-4 10 5 177 55
NL-Res(0.5) 6 11 19 6 6 6 213 214 212 0.1 2 4
NL-Res(0.3) 9 13 19 6 6 6 213 212 212 0.2 2 4
NL-Res(0.1) 9 12 27 6 6 6 212 211 212 0.7 6 13
NL-Res(0.1)

7 12 36 6 6 8 213 213 283 1 13 29
static E

the first Newton iteration, as long as the norm of the update is larger than

10−3.

Obviously, the dynamic choice of elimination sets is advantageous. While the

average size of the elimination set is smaller, the results are at least as good as

for static elimination sets; see Table 6.12. For a deeper insight, we show the

evolution of the dynamically chosen elimination set E during the simulation of

NL-Res(0.1) with δ = 10. Note that the first nonempty elimination sets are

identical for the static and dynamic approach, but the elimination set remains

constant for the static case; see Figure 6.12 (top left).

The results indicate that the choice of elimination set affects the efficiency

of the nonlinear elimination process. Consequently, the choice of dynamically

chosen elimination sets is preferred. Furthermore, if we consider elasto-plastic

problems, e.g., for solving boundary value problems on RVEs in FE2TI (see
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Elimination set E
Iteration 2

Elimination set E
Iteration 3

Elimination set E
Iteration 4

Elimination set E
Iteration 5

Figure 6.12: Nonempty elimination sets E of NL-Res(0.1) with δ = 10 for ran-

dom inclusions and an arc (radius 1) that moves 5 % in upward

direction. Note that the elimination sets in the first and last

iteration are empty.

Chapter 3), plastic yielding occurs in different regimes at different times. There-

fore, the dynamic choice of the elimination set is indispensable.

6.8 Better Scalability in Nonlinear FETI-DP Methods by

Localizing Work

Throughout this chapter, we have presented simulation results for different

model problems and different problem sizes. If we assume that we have ap-

propriately chosen elimination sets, all nonlinear FETI-DP methods have in

common that they improve the ratio of local work and global communication

as well as synchronization. As a result, they reduce computing times and im-

prove parallel scalability.

Let us again consider “Localized Nonlinearities”, since all nonlinear FETI-

DP methods performed well for this type of model problem. We present the

average time of an inner Newton iteration for NL-2, NL-3, and NL-4 as well

as the average time of an iteration of the traditional NK-FETI-DP approach

for “Standard Inclusions” computed on JUQUEEN in Figure 6.13. For further

settings, we refer to the caption of Figure 6.13. Let us note that an outer

Newton iteration in our nonlinear FETI-DP methods is similar to an iteration

171



NUMERICAL RESULTS FOR NONLINEAR FETI-DP METHODS

Figure 6.13: Model problem “Localized Nonlinearities” - “Standard In-

clusions” (see Section 6.1.1); comparison of the average

time spent in the different loops of exact nonlinear FETI-

DP (NL-X, X = 2, 3, 4) versus Newton-Krylov-FETI-DP (NK).

The inner loop (NL-2 inner, NL-3 inner, and NL-4 inner) rep-

resents the nonlinear elimination step. The timings are for

H/h = 200; εI = 10−6; εO = 10−12; Ω = [0, 2] × [0, 1]; com-

puted on JUQUEEN [69]; see also Figure 6.5. The computation

of the initial value in NL-1 is not shown here, as it has a cost

comparable to that of the inner loop in NL-2. This figure has

already been published in [85]; see [85, Fig. 13].

of the NK approach and is therefore not shown. Furthermore, we do not present

the average time of an iteration for the computation of the initial value for NL-1

since it is comparable an inner iteration for NL-2.

While we obtain convincing scalability for the inner iterations of NL-3 and

NL-4, the average time per inner iteration increases for the NL-2 method for a

problem size of 32 768 MPI ranks. This is related to the fact that the cost oft

the exactly factorized coarse problem becomes relevant. Of course, scalability

can be improved using a multilevel preconditioner instead of a sparse direct

solver for the coarse problem; see Sections 5.4.4 and 6.4.2.

Obviously, the average times of the inner iterations are significantly smaller

than the average time of an outer iteration due to a smaller problem size. To be

more precise, we reduce the problem size at least by the Lagrange multipliers,

which avoids nearest neighbor communication resulting from the application of

the jump operator B. As a result, the average time of an inner Newton iteration
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for NL-2, NL-3, and NL-4 is about twice as fast compared to an outer iteration.

Therefore, it is valuable to increase local work in order to reduce outer Newton

iterations and improve scalability.
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7 Conclusion and Future Work

In this thesis, we have focused on the simulation of deformation processes of a

DP steel using our highly scalable FE2TI software package. Therefore, we have

presented results of several production runs. More precisely, we have simulated

the Nakajima test for different sample sheet geometries in order to obtain a

virtual forming limit diagram and a corresponding forming limit curve. For

this purpose, we had to incorporate a contact formulation into our software

package. To overcome the problem of diverging microscopic problems arising

from large macroscopic deformations resulting from too large load steps, we

have integrated a dynamic load step strategy. Furthermore, we have also im-

plemented different strategies to improve the initial value of the next load step

by extrapolation. In order to obtain accurate simulation results, we have taken

into account an elasto-plastic material model on the microscopic level.

Fortunately, the results presented within this thesis partially exceeds the for-

mulated goals of the EXASTEEL project. Besides the robust simulation of the

Nakajima test using several different sample sheet geometries, the simulation

results can be used to derive forming limit diagrams by applying the introduced

evaluation strategies in a post-processing step. The corresponding forming limit

curves result from linear and logarithmic interpolation for the different parts,

separately, by using least squares. Although we do not have comparative ex-

perimental data, the final outcome looks quite convincing. For sure, the next

step towards a virtual laboratory requires the comparison of simulation results

and experimental data considering the same type of steel. Therefore, we have

to ensure that we use an RVE/SSRVE that represents the material behavior of

the considered type of steel in the experiment. In order to apply the FE2TI

software to a wider range of contact-driven deformation processes, e.g. deep

drawing, the incorporation of friction is indispensable.

Moreover, the results obtained within this thesis trigger further questions

that can be considered in more detail. The simulations on the complete sample

sheet indicate that the off-centered position of the final failure zone may be

related to a coarse discretization. Therefore, we have to analyze the mesh

dependencies on both levels, i.e., we have to perform the Nakajima test with

finer discretizations and compare the results. Furthermore, we also have to
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study the effect of utilizing symmetry, since we obtain differently positioned

failure zones for equivalent discretizations on a symmetric quarter and on the

complete sample sheet. For further comparisons of different simulations with

and without exploiting symmetry, we especially have to improve the simulations

on the complete sample sheet. On one hand, we may reduce the required

time for a single solve of the macroscopic solution using the BDDC approach.

Therefore, we have to reduce the number of Krylov iterations, which can be

achieved by using an adaptive coarse space (see, e.g., [75,91,106,117,141,142])

as well as by optimizing the decomposition into subdomains, which is obtained

from METIS [72]. On the other hand, we also have to ensure that we do not

require too small load steps.

In order to reduce the costs of a single simulation of the Nakajima test,

which is significant for simulations on the complete sample sheet, especially for

a study regarding mesh dependencies, it may be an idea not to use FE2 on

the complete sample sheet. Instead, we can use the FE2 method in the critical

area, i.e., where the failure zone is expected to evolve, and use a corresponding

phenomenological material law on the macroscopic level for the remaining finite

elements.

Furthermore, we can also take into account improvements regarding the RVEs

to obtain a better representation of the realistic material properties. Therefore,

we are going to incorporate the IVS approach (see [17, 87]), which takes into

account that ferrite close to martensitic inclusions has some other properties

than ferrite with a larger distance to martensitic inclusions.

Besides the simulation of the Nakajima test, we have also considered nonlinear

FETI-DP methods within this thesis. Based on nonlinear right-preconditioning,

which corresponds to a (partial) nonlinear elimination, we have presented a

framework that covers all nonlinear FETI-DP methods. With some general-

izations, we can also include a nonlinear BDDC method into the framework,

which was first introduced in [85].

For the first time, we have presented a nonlinear FETI-DP method with a

problem-dependent choice of the elimination set. Therefore, we use a strategy

similar to that presented in [50] in the context of inexact Newton methods.

The elimination set contains all degrees of freedom of a single finite element

node that has a high absolute value in the nonlinear residual for at least one

degree of freedom. In this context, a high value means that it is at least as

large as a specific percentage of the maximum nonlinear residual. Therefore,

the user provides a parameter ρres ∈ [0, 1]. In addition, the elimination set

may be enlarged by including degrees of freedom of neighboring finite element
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nodes. Since the resulting elimination set is based on the nonlinear residual, the

corresponding nonlinear FETI-DP method is called Nonlinear-FETI-DP-Res.

In contrast to the previously introduced variants of nonlinear FETI-DP (see

[85]), the Nonlinear-FETI-DP-Res approach does not stick to elimination sets

that are related to the typical variable splitting in FETI-DP. By construction,

the NL-FETI-DP-Res approach is expected to overcome the issues of NL-3

and NL-4, which might suffer from elimination sets that do not contain all

nonlinearities, and also of NL-2, which requires the solution of the FETI-DP

coarse problem in each inner iteration.

For the problems considered within this thesis, we obtain promising results.

The elimination sets based on the nonlinear residual are usually much smaller

compared to the elimination sets in NL-2, NL-3, and NL-4, but the resulting

nonlinear elimination seems to be comparably effective. However, if the elimina-

tion sets are too small, the elimination process will become ineffective, because

we spend some effort in local work without reducing global work.

Of course, we have to further analyze the Nonlinear-FETI-DP-Res approach

to get a better understanding how to choose ρres and the number of neighbor-

ing finite element nodes optimally. Furthermore, we have recently implemented

the NL-FETI-DP-Res approach sequentially in MATLAB. It will be exciting

to see how this approach performs for larger problems in parallel. Accordingly,

the NL-FETI-DP-Res method has to be incorporated into our existing parallel

software. It might be also interesting to incorporate the strategy of control-

ling the inner Newton iteration (NL-ane) into the NL-FETI-DP-Res method.

Therefore, also some further investigations regarding the NL-ane approach are

required.

Furthermore, it might be interesting to consider other strategies to deter-

mine the elimination set, or to modify the implemented strategy by using the

Euclidean norm instead of the infinity norm.

So far, we have only shown some local convergence properties of our non-

linear FETI-DP variants (see [85]), but it would be of great interest to have a

proof, how to choose the elimination set to guarantee the improvement of the

convergence of Newton’s method. Moreover, the combination of our nonlin-

ear FETI-DP variants with a globalization strategy could also be an exciting

research topic.
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