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Abstract 
 The membrane trafficking pathway mediated by the SNARE protein Tetanus 
neurotoxin-Insensitive Vesicle Associated Membrane Protein (TI-VAMP) in neurons is still 
unknown. In this work, I show that TI-VAMP expression is necessary for neurite outgrowth in 
PC12 cells in culture. TI-VAMP interacts with plasma membrane and endosomal target 
SNAREs suggesting that TI-VAMP mediates a recycling pathway. This view is supported by 
the direct demonstration that TI-VAMP recycles from and to the plasma membrane. L1, a 
cell-cell adhesion molecule involved in axonal outgrowth, colocalizes with TI-VAMP in the 
developing brain, neurons in culture, and PC12 cells. Plasma membrane L1 is internalized 
into the TI-VAMP-containing compartment. Silencing of TI-VAMP results in reduced 
expression of L1 at the plasma membrane and impaired L1- but not N-Cadherin-mediated 
adhesion. Futhermore, the TI-VAMP-compartment is specifically recruited to L1 bead-cell 
junctions in an actin-dependent manner suggesting that axon guidance cues like L1-ligation 
act by controlling cytoskeletal and membrane dynamics in a coordinated manner. In 
conclusion, TI-VAMP mediates the intracellular transport of L1 and L1-mediated adhesion 
controls this membrane trafficking, thereby suggesting that cross-talk between membrane 
trafficking and cell-cell adhesion plays a central role in coordinating axonal outgrowth and 
pathfinding. 
 
Zusammenfassung 
 Die Rolle des vesikulären Transports in Neuronen, welcher von dem SNARE Protein 
Tetanus neurotoxin-Insensitive Vesicle Associated Protein (TI-VAMP) vermittelt wird, ist 
unklar. In dieser Arbeit ist gezeigt, das die Expression von TI-VAMP für effizientes 
Auswachsen von Neuriten notwendig ist. TI-VAMP interagiert mit target SNARE Proteinen 
der Plasma Membran und des endosomalen Systems. Es kann gezeigt werden, das TI-
VAMP-positive Vesikel mit der Plasmamembrane fusionieren. Daher kann davon 
ausgegangen werden kann, dass TI-VAMP den Austausch von Proteinen und Lipiden 
zwischen der Zelloberfläche und einem intrazellulären, endosomalen System vermittelt. Das 
Zell-Zell Adhesionsmolekül L1, welches eine wichtige Rolle in der Gehirnentwicklung spielt, 
kolokalisiert mit TI-VAMP im embryonalen Gehirn, in in vitro-kultivierten Neuronen sowie in 
der Zellinie PC12. L1 wird von der Plasmamembran in ein intrazelluläres, TI-VAMP-positives 
Membrankompartiment aufgenommen. Die Inhibierung der TI-VAMP-Expression provoziert 
eine verminderte Expression von L1 an der Zelloberfläche und selektive Instabilität von L1-
vermittelten adhesiven Kontakten. Weiterhin rekrutieren L1-abhängige Kontakte TI-VAMP-
positive Vesikel, ein Phänomen, welches von dem Aktincytoskelett abhängig ist. Diese 
Beobachtungen legen die Hypothese nahe, dass Signale wie zum Beispiel die Aktivierung 
des Adhesionsmolküls L1, welche das Navigieren von Axonen während der 
Gehirnentwicklung ermöglichen, die Dynamik des Cytoskeletts und von Membranverkehr in 
koordinierter Weise kontrollieren. Es lässt sich der Schluss ziehen, dass TI-VAMP den 
intrazellulären Transport von L1 vermittelt und das gleichzeitig L1-vermittelte Adhesion die 
Dynamik dieses Membrantransportweges kontrolliert. Der Austausch zwischen 
Membranverkehr und Zelladhäsion könnte von entscheidender Wichtigkeit für Phänomene 
wie das koordinierte Auswachsen von Axonen entlang vorbestimmter Pfade während der 
embryonalen Hirnentwicklung sein. 
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I. Introduction 
 

The structure of the nervous system is of great complexity. A high 

number of distinct neuronal cell types interact with each other via a sophisticated 

network of specific interactions, sometimes over long distances. At the same time, 

communication points between neurons are not static, but can be modified, which 

ultimately allows for the fascinating properties of the nervous system, including 

learning and memory.  

For insight into the complex function of the brain, the molecular 

mechanisms that warrant brain development have to be elucidated. What are the 

molecular events that mediate the correct wiring of the highly diverse neuronal 

connections? It is known that the pattern of connections between neurons is 

organized by guidance cues which are correspondingly of highest diversity. For 

example Cadherins, which play a fundamental role in brain development, constitute a 

large gene family (Yagi and Takeichi, 2000). It is most interesting that the genomic 

organization of a subgroup of Cadherins, the so called protocadherins, shows 

similarities to the genomic organization of B- and T-cell receptors of the lymphoid 

system (Wu and Maniatis, 1999). The well known genomic reorganization of B- and 

T-cell receptors is the fundamental principle by which the almost unlimited diversity 

within the immune system is generated, and a similar mechanism might be involved 

in the generation of diversity during brain development. 

Yet, inherent to the generation of complexity, a fundamental problem 

arises; how to establish specificity in an environment which is of highest diversity? 

Neurons have to grow axons and dendrites to their specific target along specific 

pathways. Contact formation has to occur at the right place and the right time, and 

during its journey the growing neurite has to ignore a number of cues, that are 

recognized by others as their target. Thus, neurons have to be equipped with a highly 

sensitive apparatus that reads and interprets cues and that allows advance while 

preventing the premature establishment of contacts. 

 For all these reasons, studying the molecular mechanisms of neurite 

outgrowth is of fundamental importance in order to understand the complex wiring of 

the nervous system. A huge number of studies on the role of attractive and repulsive 



 

  2 

cues and their effects on the neuronal cytoskeleton has led to an impressive 

knowledge as to how these molecules might work during brain development. In 

contrast, the role of membrane trafficking during neuronal morphogenesis has 

received little attention, although it is the delivery of membrane which ultimately 

allows the neuron to grow. Clearly, for site-directed growth to occur, the delivery of 

membrane has to be tightly connected to the signaling molecules that guide axons 

and dendrites during brain development  

 One reason for the poor knowledge about membrane trafficking in neuronal 

differentiation might be that molecular markers for specific neuronal membrane 

compartments with a function in membrane trafficking were sparse. This has 

changed with the discovery of SNARE proteins, which are essential players in 

membrane trafficking of eukaryotes. Specific SNARE proteins are expressed in 

specific membrane compartments and thus the study of a given SNARE protein will 

lead to a deeper understanding of membrane trafficking pathways and their function 

(see Fig I1). Therefore, the goal of this thesis was to characterize the role of TI-

VAMP/VAMP7, a recently discovered SNARE protein, in the differentiation of 

neuronal cells. 
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Figure I1) Subcellular localization of mammalian SNARE proteins 

The mammalian SNAREs that have been studied so far localize to distinct subcellular compartments 
in the secretory pathway. (Red, syntaxin family; blue, VAMP family; green, SNAP-25 family; black, 
others. CCP, clathrin-coated pits; CCV, clathrin-coated vesicles; DCV, dense core vesicles; IC, 
intermediate compartment; RER, rough endoplasmic reticulum; SER, smooth endoplasmic reticulum; 
SNAP-25, 25 kDa synaptosome-associated protein; TGN, trans-Golgi network; V, vesicles; VAMP, 
vesicle-associated membrane protein.) (from Chen and Scheller, 2001). 

 

 

 

In this introduction, I will first give an overview of the general molecular 

mechanisms of membrane trafficking, as they can be found from yeast to human. 

Secondly, I will present the current knowledge of the role of membrane trafficking in 

neuronal morphogenesis. 
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I.1 Membrane trafficking in eukaryotic cells: a historical 
overview 

 
 

Based on morphological and pulse chase studies on the secretory 

process in pancreatic cells, George Palade suggested in 1975 (Palade, 1975) that 

granules release their protein content into the extracellular lumen via a process 

termed ”exocytosis” or ”membrane fusion”. The membrane of the granule fuses with 

the plasma membrane and the content is released into the extracellular medium 

while the diffusion barrier between the cytosol and the extracellular medium is 

maintained. Moreover, exocytosis was observed to occur in a site-directed and 

stimulus-dependent way. Thus, granules fuse with the apical, but not the basolateral 

plasma membrane and hormones can trigger the release of secretory granules in 

exocrine cells. The astonishing fidelilty by which granules fuse only with the plasma 

membrane despite the existence of numerous intracellular organelles at similar 

distance led to the suggestion that ”complementary recognition sites in each 

membrane may be involved in binding preliminary to fusion” (Palade, 1975).  The 

work on the secretory process in pancreatic cells provided the conceptual framework 

for later studies: a vectorial flow of proteins and lipids between different 

compartments of the cell exists, and this flow is mediated by discrete transport 

carriers or vesicles. The secretion of granules is tightly regulated in space and can be 

regulated in time by stimulus-secretion coupling indicating a high degree of plasticity 

in membrane trafficking. 

The identification of the key molecular components, that correspond to 

the ”complementary recognition sites” predicted by Pallade, has been achieved by 

the convergence of two different approaches, yeast genetics (Novick et al., 1980) and 

in vitro reconstitution of intracisternal transport in the Golgi stack of a mamalian cell 

line (Balch et al., 1984). Randy Schekman and co-workers took advantage of the fact 

that yeast cells defective in secretion accumulate newly synthesized proteins and 

lipids while plasma membrane growth ceases, inducing an increase in cell density. 

Thus, temperature sensitive mutant cells were selected by simple density gradient 

centrifugation separating dense and therefore secretion defective cells from non-

defective cells. This approach led to the identification of 23 distinct gene products 



 

  5 

necessary for secretion and thus cell growth in yeast, called sec 1-23 (Novick et al., 

1980). 

Ultrastructural analysis of the mutant strains grown at the restrictive 

temperature revealed that the different sec mutants could be classified into three 

different categories: accumulation of ER structures (1), accumulation of so called 

Berkeley bodies, similar to Golgi (2) or accumulation of vesicles of 80-100 nm in 

diameter (3) (Novick et al., 1980). To assess the order in which the individual gene 

products were required for secretion, double mutant strains of the different sec 

mutants were generated and a comparative analysis of the single and double mutant 

strains was performed. It was observed that defects in genes producing an ER 

phenotype were always dominant over genes producing a Berkeley body or 80-

100nm vesicle phenotype, indicating that the ER mutants are blocked before the 

Golgi and 100 nm vesicle stage. In turn Golgi mutants were dominant over the 100 

nm vesicle stage. This analysis allowed for the establishment of an order of events in 

the secretory pathway in yeast (Novick et al., 1981). Interestingly, secretion in yeast 

was essentially identical to the order of events in the secretory pathway in mamalian 

pancreatic cells (Palade, 1975). Moreover, this work opened the way for the search 

for key molecules controlling different steps in the secretory pathway in yeast. 

Jim Rothman and colleagues reconstituted intra-Golgi transport in vitro to 

analyze the molecular confinements of this transport mechanism. A thorough 

analysis of this transport assay led to the discovery of numerous key molecules in 

membrane trafficking.  

Transport between Golgi membranes is mediated by vesicular 

intermediates (Balch et al., 1984). Fusion of these vesicles with the acceptor 

membranes could be inhibited when the non-hydrolyzable GTP-analogue GTP-γS 

was added or by pretreatment of the cytosol with the cysteine alkylating agent NEM 

(N-ethylmaleimide) (Orci et al., 1989). Both treatments led to the accumulation of 

vesicles, yet of different morphology. Whereas GTP-γS treatment leads to the 

accumulation of vesicles carrying a coat, NEM treatment leads to the accumulation of 

uncoated vesicles. Treatment with both agents leads to the accumulation of coated 

vesicles only, demonstrating that GTP-γS action precedes the function of the NEM-

sensitive component in vesicular trafficking (Orci et al., 1989). The accumulation of 

coated vesicles upon GTP-γS treatment allowed for the biochemical purification of 
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these vesicles and analysis of the coat components. The target of GTP-γS is a 

cytosolic GTP-binding protein called ARF (Serafini et al., 1991), whereas the coat 

seen by electron microscopy is made of seven proteins termed COP (Waters et al., 

1991). As will be seen later, ARF-dependent recruitment of coat proteins to the donor 

membrane is an essential step in the formation of most transport vesicles in the 

eukaryotic cell (Chavrier and Goud, 1999).  

The NEM-sensitive cytosolic component, essential for intra Golgi 

transport after coat recruitment and vesicle formation, was found to be a 76kDa 

protein that forms homotetramers and has ATP binding and hydrolyzing activity. The 

purified protein restored transport in a NEM-blocked transport assay, and was by 

itself NEM sensitive. (Wilson et al., 1989) Importantly, the NSF protein (for NEM 

Sensitive Factor) was the mammalian homologue to the sec18 gene identified by 

Novick and Schekman (Block and Rothman, 1992). Thus, the authors were able to 

test the hypothesis, that a similar fusion machinery might operate in yeast and 

mammals by replacing mammalian cytosol with cytosol from wildtype or sec18 yeast 

mutants. Indeed, cytosol from WT yeast could restore intra-Golgi traffick in vitro and a 

NEM sensitive factor was required, whereas cytosol generated from sec18 mutants 

failed to restore transport (Wilson et al., 1989).  

This was the first direct evidence that a general fusion machinery exists, 

which is conserved from yeast to mammals. Even plant cytosol could operate in the 

Golgi transport assay, which extended the generality of the finding to all eukaryotic 

cells (Paquet et al., 1986). It was surprising that NSF in yeast was essential for 

protein export from the ER and NSF in mammalian cells for intra-Golgi transport, yet 

they were functionally interchangeable. This led to the conclusion, that NSF is a 

general fusion protein which must in some way interact with factors specific for 

different transport steps (Block and Rothman, 1992).  

Whereas NSF could be found associated with membrane, purified NSF 

would not bind to Golgi membranes, unless cytosol was added. This triggered the 

search and purification of the Soluble NSF Attachment Proteins or SNAPs. The 

homologous proteins α-, β-, and γ-SNAP could be purified from bovine brain based 

on their ability to attach NSF to Golgi membranes and thus restore transport in the in 

vitro assay (Clary et al., 1990). As with NSF, a yeast mutant (sec17) identified in the 

screen of Novick and Schekman failed to restore SNAP activity, but could be rescued 
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by addition of purified mammalian SNAP further strengthening the view, that a 

conserved fusion machinery was operating (Clary et al., 1990).  

Salt stripped Golgi membranes would bind NSF only when purified α-, or 

β-SNAP was present indicating the existence of a membrane integral SNAP 

REceptor or SNARE protein. Purified NSF and SNAP bound to the SNARE could be 

extracted from Golgi membranes with detergent as a stable 20S particle. Thus, four 

proteins were isolated from bovine brain as SNAP receptors which had been 

previously purified and cloned as abundant transmembrane proteins of the 

presynaptic terminal: Synaptobrevin, Syntaxin 1 and SNAP-25 (Söllner et al., 1993b). 

Further characterization of the 20S particle revealed that all three SNARE proteins 

identified from bovine brain were present in a single 20S particle together with NSF 

and SNAP, and that ATPase activity of NSF dissociates the complex (Söllner et al., 

1993a). This finding strongly suggested an important role for SNARE proteins in a 

late step in membrane fusion, since NSF was known function after vesicle formation. 

Intriguingly, Synaptobrevin localizes to synaptic vesicles, whereas Syntaxin and 

SNAP-25 are expressed on the synaptic plasma membrane, thus complex formation 

between these proteins should occur when the synaptic vesicle has approached the 

presynaptic membrane (Baumert et al., 1989; Bennett et al., 1992; Oyler et al., 1989; 

Rothman, 1994). An essential role for SNARE proteins in neurotransmitter release 

had been proposed shortly before (Schiavo et al., 1992). Clostridial neurotoxins 

which completely block neurotransmitter release are in fact proteases which cleave 

the synaptic SNARE proteins Synaptobrevin, SNAP-25 or Syntaxin 1 (Blasi et al., 

1993a; Blasi et al., 1993b; Schiavo et al., 1992). Taking all these observations into 

consideration, Rothman and colleagues suggested a molecular mechanism, which 

would explain vesicle docking and fusion in molecular terms, the so called SNARE 

hypothesis (Rothman and Warren, 1994; Söllner et al., 1993a; Söllner et al., 1993b). 

Each transport step within the eukaryotic cell is mediated by an original pair of 

SNAREs which reside on the vesicle (the v-SNARE) and the target membrane (the t-

SNARE). Complex formation between cognate v- and t-SNAREs would provide the 

specificity of vesicular docking to the target membrane. Fusion of the vesicle with its 

target membrane would then be mediated by the concerted action of the general 

fusion proteins SNAP and NSF.  

The predictions of the SNARE hypothesis as they were formulated in 

1993 did not hold true in all details, as will be described below. Nevertheless, the 
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SNARE hypothesis provided the conceptual framework that stimulated and guided 

studies that aimed at understanding the molecular mechanisms of membrane 

trafficking. 

 

I.2 SNARE proteins in membrane trafficking: the current view 
 
 

A common theme of vesicular trafficking is that cargo-loaded transport 

vesicles are formed in a donor membrane and transported to their specific target 

organelle. Fusion of the vesicle with its target results in the vectorial transport of 

cargo. As mentioned above, the step of NSF/SNAP and SNARE dependent vesicle 

fusion with the target membrane could be distinguished biochemically in the in vitro 

Golgi transport assay from earlier events like vesicle formation. Therefore the intial 

events in membrane trafficking will be discussed briefly before introducing the 

function of SNARE proteins in membrane fusion. 

 

 

I.2.1 The formation of cargo loaded vesicles by coat proteins 

 

The recruitment of cargo proteins destined to leave a donor compartment 

in transport vesicles is mediated by direct and indirect interactions with cytosolic 

factors which form a coat. Coat formation ultimately leads to vesicle formation by 

direct coat-dependent deformation of the membrane or coat dependent recruitment 

of specialized fission proteins (Farsad and De Camilli, 2003; Kirchhausen, 2000). The 

ARF-dependent recruitment of coat proteins, as it was described by Rothman and 

colleagues (see above), is a paradigm for coat formation (Chavrier and Goud, 1999). 

Eight different coats, which are mainly multi-subunit protein complexes, have been 

identified in mammalian cells and most of which are conserved from yeast to  

mammals (Bonifacino and Lippincott-Schwartz, 2003). Different coat complexes 

serve different trafficking pathways which coincides with their differential localization 

throughout the cell. Coats forming at the different membrane compartments can be 

subdivided into two major groups, those that functionally depend upon the structural 

protein clathrin or those that are clathrin independent. The first group includes the 

adaptor protein complexes (AP) 1 and 2, which are multisubunit complexes made of 
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four different polypeptides. GGAs (Golgi-localized, ?-ear-containing, ARF-binding 

proteins) constitute a protein family of three members (GGA 1, 2 and 3) which form 

monomeric coats and function via clathrin recruitment like AP1 and 2. AP-3 and AP-4 

are homologue to AP-1 and 2, but function in a clathrin independent manner like the 

complexes COP I and COP II.  

Demonstrating the essential role of coat formation in the early secretory 

pathway several sec mutants were later on identified as genes coding for subunits of 

COPI and II (Kirchhausen, 2000; Novick et al., 1980). Mutants of clathrin in 

mammalian cells are lethal, (Wettey et al., 2002) whereas yeast mutants show  

delayed growth, but are still viable (Payne and Schekman, 1985). This is similar with 

adaptor proteins. Mouse mutants of subunits of AP-1 and 2 are lethal and mutants of 

AP subunits in Drosophila and Caenorhabditis show a strong phenotype (Zizioli et al., 

1999; Gonzalez-Gaitan et al., 1997; Meyer et al., 2000), whereas yeast cells mutant 

in all AP subunits are still viable (Huang et al., 1999). Thus, in contrast to yeast, in 

multicellular organisms the efficiency of AP-mediated trafficking pathways seems to 

be indispensable for proper development.  

Coat independent pathways are known to exist in the endocytic pathway, 

particularly macropinocytosis and phagocytosis (Bonifacino and Lippincott-Schwartz, 

2003), but they do not seem to be able to compensate for loss of the major endocytic 

pathway, which depends on clathrin (Wettey et al., 2002). 

 

 

I.2.2 The targeted delivery of vesicles by tethering factors and Rab 

proteins 

 

After coat-dependent cargo selection and vesicle formation, the transport 

carrier finds its way towards its specific target membrane. Long-range movements of 

vesicles and organelles are mediated by specific motor proteins of the dynein or 

kinesin family, which bind to microtubules. Specific members of kinesin interact with 

their specific cargo organelle to mediate transport to its final destination (Peretti et al., 

2000; Setou et al., 2000). For example KIF4, a neuronal motor protein of the kinesin 

family, mediates long-range anterograde axonal transport of specific transport 

carriers from the cell body towards the tip of the axon, whereas other vesicles 

transported in the same direction are apparently independent of KIF4 (Peretti et al., 



 

  10 

2000). Following the microtubule -dependent long-range transport, many vesicles will 

undergo local movements on F-actin, which are powered by members of the myosin 

protein family. Again, specific myosin isoforms exist, which mediate movement of 

specific target organelles on the actin cytoskeleton (Hammer and Wu, 2002).  

How do transport vesicles interact specifically with their target membrane? It 

was originally proposed that specific pairing between SNARE proteins would result in 

the docking of the vesicle to its target membrane followed by the final fusion reaction 

(Söllner et al., 1993a). This seems not to be the case. Inactivation of SNARE proteins 

of the synaptic SNARE complex with botulinum neurotoxins blocks neurotransmitter 

release in the giant-squid nerve terminal, but the number of vesicles docked to the 

active zone is in fact doubled, and not diminished (Hunt et al., 1994). Genetic 

inactivation of synaptic v- and t-SNAREs in Drosophila showed that vesicles were still 

docked to the presynaptic plasma membrane, but were unable to release 

neurotransmitter in the perisynaptic cleft (Broadie et al., 1995).  

The molecular nature of docking factors which act independently and 

upstream of SNARE proteins was first described in yeast. In vitro reconstitution of 

ER-to-Golgi transport with purified proteins showed that vesicles can dock to Golgi 

membranes even in the absence of functional SNARE proteins mediating this 

transport step. Instead, docking requires the concerted action of two cytosolic 

proteins: a GTPase of the Rab family, Ypt1p, and another protein called Uso1p (Cao 

et al., 1998). The active GTP bound form of Ypt1p mediates the recruitment of Uso1p 

to the target membrane (the Golgi) (Cao and Barlowe, 2000). The following Uso1p-

dependent binding of vesicles to the Golgi membrane was termed ”tethering” (Cao et 

al., 1998). The mammalian homologue of Uso1p, p115, was shown to act in ER to 

Golgi transport, and its action to be controlled by Rab 1, the mammalian homologue 

of Ypt1p (Allan et al., 2000).  

The importance of tethering factors in vivo became clear when the gene 

products of sec 3, 5, 6, 8, 10, 15, together with Exo70 and Exo84, where shown to 

form a multisubunit tethering complex called the exocyst (Novick et al., 1980; 

TerBush et al., 1996). Similar to Uso1p and YPT1p, formation of the exocyst at the 

plasma membrane in yeast is controlled by a Rab protein called Sec 4 (TerBush et 

al., 1996). A mammalian homologue of the exocyst has been isolated, which plays a 

role similar to the yeast exocyst in recruiting exocytotic vesicles (Grindstaff et al., 

1998). Now, tethering factors, which are recruited by the action of Rab proteins, have 
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been detected in a number of trafficking steps (Zerial and McBride, 2001). 

Interestingly, Rab proteins are also involved in the organization of organelle transport 

along the cytoskeleton, highlighting the importance of Rab proteins in a number of 

membrane trafficking steps (Hammer and Wu, 2002). 

 

 

I.2.3 SNARE proteins and membrane fusion 

 

Once docked, a donor vesicle fuses with its target membrane resulting in 

content mixing or release into the extracellular medium, in the case of exocytosis. 

SNARE proteins play a critical role in this last step of membrane trafficking. The 

proteins Synaptobrevin, Syntaxin 1 and SNAP-25 are the founding members of a 

superfamily of SNARE proteins (Weimbs et al., 1998) which is expressed in all 

eukaryotic organisms analysed so far. SNAREs are membrane anchored either by a 

single transmembrane domain like Synaptobrevin and Syntaxin 1 or via cystein linked 

palmitoylation like SNAP-25. The hallmark of all SNARE proteins is a stretch of about 

sixty amino acids containing conserved heptad repeat sequences that form coiled-

coil structures, wheras N-terminal sequences and the transmembrane domains show 

very little homology (Fasshauer et al., 1998). The crystal structure of the synaptic 

core complex revealed that the coiled-coil domain of synaptobrevin, syntaxin and two 

coiled coil domains provided by SNAP-25 form a bundle of four α-helices aligned in 

parallel (See Figure I2) (Sutton et al., 1998). The bundle of α-helices forms sixteen 

layers of interacting amino acid side chains, which are hydrophobic except the central 

or zero layer. The central layer is made of hydrophilic amino acids, which are three 

glutamines (Q) contributed by SNAP-25 and syntaxin 1 and one arginine (R) 

contributed by synaptobrevin (Sutton et al., 1998). Based on the crystal structure and 

sequence comparisons, SNARE proteins were reclassified from t- and v-SNAREs 

into Q-SNAREs which contribute the glutamine to the central ionic layer and R-

SNAREs which contribute the arginine (Fasshauer et al., 1998). Four distinct 

subgroups of SNARE proteins can be distinguished based on homologies of their 

coiled-coil domains: a syntaxin family of Qa-SNAREs, a SNAP-25 family of Qb-

SNAREs homologous to the N-terminal coiled coil of SNAP-25, a SNAP-25 family of 

Qc-SNAREs homologous to the C-terminal coiled-coil, and a synaptobrevin family of 

R-SNAREs.  
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The detailed analysis of a SNARE complex operating in endosomal 

fusion showed that the N- and C-terminal coiled-coil domain provided by SNAP-25 for 

the synaptic core complex can be provided by two different polypeptides (Antonin et 

al., 2000). Furthermore, the crystal structure of this endosomal complex consisting of 

the R-SNARE VAMP-8 and the Q-SNAREs Syntaxin 7, Syntaxin 8 and Vti1b showed 

striking similarity to the structure of the synaptic core complex (Antonin et al., 2002). 

Based on the analysis of a number of SNARE complexes from different fusion steps 

within the cell, the current model predicts that the structure and function of SNARE 

complexes is conserved and consists of one R-SNARE and three Q-SNAREs (Chen 

and Scheller, 2001)(see Figure I2).  

 

 

 
Figure I2) Conserved Structure of SNARE complexes 

(A) The core of the synaptic SNARE complex consists of an extended four-helix bundle structure that 
contains one helix of Synaptobrevin 2 (R-SNARE), one helix of Syntaxin 1a (Qa-SNARE), and two 
helices of SNAP-25 (Qb- and Qc-SNAREs). The two SNAP-25 helices, and the N-terminal three-helix 
bundle Habc-domain and the SNARE-motif of Syntaxin 1a are connected by flexible linker regions. 
Syntaxin 1a and Synaptobrevin each contain a C-terminal TM domain, whereas SNAP-25 is attached 
to the membrane by palmitoyl modifications. (B) The core of the endosomal SNARE complex consists 
of a very similar four-helix bundle structure. It is composed of one helix each of Endobrevin (R-
SNARE), of Syntaxin 7 (Qa-SNARE), of Vti1b (Qb-SNARE), and of Syntaxin 8 (Qc-SNARE) . Syntaxin 
7, Vti1b, and Syntaxin 8 carry large N-terminal domains, probably all constituting three-helix bundle 
structures. All four endosomal SNAREs hold a TM domain adjacent to their respective SNARE motif . 
The cylinders represent the TM regions that are linked by a short sequence of unknown structure to 
the respective SNARE helices. The curved lines represent extended flexible linker regions (from 
Fasshauer, 2003).  

 
Genome analysis of yeast, worm, fly and human revealed several 

interesting points: a set of twenty to thirty related SNARE proteins, that can be 

detected in yeast, worm, fly and humans seems to be sufficient to mediate the main 

intracellular trafficking events. Moreover, the closest related members in the different 
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species reside in similar subcellular compartments. In human, additional SNARE 

proteins are expressed, which raises the total number of SNAREs detected in the 

human genome to 35 (Bock et al., 2001). This might indicate the use of tissue-

specific SNARE proteins for tissue specific membrane trafficking pathways and a 

diversification of transport steps in mammals.  

The SNARE hypothesis predicts a cognate pair of SNARE proteins for 

each trafficking step within the cell. Consistent with the prediction, different SNARE 

proteins can be found on different subcellular compartments, indicating that specific 

SNARE proteins might indeed be involved in specific transport steps. This view is 

supported by genetic data. Yeast mutants of the SNARE proteins sec22p and sec9p 

block the secretory pathway at an early timepoint and late timepoint, respectively 

(Brennwald et al., 1994; Hay et al., 1997; Novick et al., 1980). Mutations of neuron 

specific SNAREs involved in the highly specialized pathway of neurotransmitter 

release in fly, worm and mice lead to a block of evoked synaptic transmission and are 

lethal (Deitcher et al., 1998; Nonet et al., 1998; Schoch et al., 2001; Washbourne et 

al., 2002). In contrast, mouse mutants of two ubiquitous SNARE proteins involved in 

endosomal trafficking, cellubrevin and vti1b, are viable and show normal 

development without any obvious or only very mild phenotype, respectively (Atlashkin 

et al., 2003; Yang et al., 2001). Thus certain SNARE proteins are dispensable in vivo 

and lack of these proteins can be compensated. Earlier studies showed that 

inactivation of cellubrevin leads to reduced but not complete inhibition of Transferrin 

receptor recycling, already indicating that alternative recycling pathways exist, which 

are presumably mediated by other v-SNAREs (Galli et al., 1994).  

What is the exact function of SNARE proteins? SNARE proteins form 

trans core complexes during membrane fusion (see figure I3). The core complex 

formation is accompanied by major conformational changes in the coiled coil 

domains of the SNARE proteins. Whereas SNARE domains are unstructured in 

solution, combining appropriate SNARE motifs leads to spontaneous formation of 

four helical bundles which is accompanied by a major release of free energy 

(Fasshauer et al., 2002; Hayashi et al., 1994; Yang et al., 1999). Formation of 

SNARE complexes was proposed to proceed in a zipper like fashion from the N-

termial end of the SNARE motifs towards the C-terminal transmembrane domain 

(Hanson et al., 1997; Lin and Scheller, 1997). These results led to a strikingly simple 

model by which the zipper like formation of the SNARE complex would pull the two 
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opposing membranes close together. The release of energy during core complex 

formation would be the driving force needed to overcome the energy barrier in order 

to fuse the opposing membranes (see figure I3). 

 
Figure I3) The SNARE cycle 
Syntaxin is bound to n-Sec1 before formation of the core complex. Rab proteins might facilitate the 
dissociation of n-Sec1 from syntaxin, allowing subsequent binding (nucleation) between the three 
neuronal SNAREs, syntaxin, SNAP-25 and VAMP (for simplicity, only one coil is drawn for SNAP-25). 
Ca2+ triggers the full zipping of the coiled-coil complex, which results in membrane fusion and release 
of vesicle contents. After the fusion event, recruitment of -SNAP and NSF from the cytoplasm and 
subsequent hydrolysis of ATP by NSF causes dissociation of the SNARE complex. Syntaxin, VAMP 
and SNAP-25 are then free for recycling and another round of exocytosis. (NSF; N-ethyl-maleimide-
sensitive fusion protein; SNAP-25, 25 kDa synaptosome-associated protein; SNARE, soluble NSF 
attachment protein receptor, VAMP, vesicle-associated membrane protein) (from Chen and Scheller, 
2001). 

 

SNARE proteins are indeed necessary and sufficient to fuse artificial 

membranes in vitro. (Weber et al., 1998) One R-SNARE and three Q-SNAREs have 

to be present on opposing membranes for fusion to occur in vitro (Fukuda et al., 

2000), consistent with the conclusions drawn from sequence analysis, where four 

different subfamilies of SNARE proteins were identified (see above). Cells 

engineered to express the correct set of cognate SNARE proteins on their plasma 

membrane facing the extracellular medium will fuse with each other (Hu et al., 2003). 

Thus it is clear that SNARE proteins are able to fuse artificial and natural 

membranes.  

Yet whether SNARE proteins are the actual fusogens of the cell is still a 

matter of discussion. In mutants of Synaptobrevin in mice, fly and nematodes, 

spontaneous release of neurotransmitter is reduced, but clearly detectable, in 



 

  15 

contrast to evoked neurotransmitter release, which is essentially abrogated (Deitcher 

et al., 1998; Nonet et al., 1998; Schoch et al., 2001; Washbourne et al., 2002). A 

similar result was obtained in mice mutant for SNAP-25 (Washbourne et al., 2002). 

These results raised the question of whether SNARE-independent membrane fusion 

events might occur in the cell. Indeed, in an in vitro vacuole fusion assay in yeast, the 

function of trans SNARE complex formation was suggested to precede the actual 

fusion reaction. The final fusion of opposing membranes was suggested to be 

mediated by the highly hydrophobic, membrane buried Vo subunits of the vacuolar 

ATPase (Ungermann et al., 1998; Peters et al., 2001).  

In conclusion, SNARE proteins fulfill the structural requirements for 

proteins involved in membrane fusion events, they are necessary for membrane 

fusion in a large number of trafficking events and they are able to fuse artificial and 

natural membranes without auxilliary proteins present. It is possible that the transition 

from trans- to cis-complexes of SNARE proteins is an essential, but incomplete 

intermediate in membrane fusion in vivo, but the data supporting this view is sparse.  

 

 

I.2.5 Spatial and temporal control of SNARE dependent membrane 

fusion 

 

As SNARE complex formation leads to membrane fusion, this event has 

to be under tight control in order to maintain the integrity of membrane 

compartments. Specific SNARE complexes mediate specific trafficking events, which 

led to the proposal that spatial specificity of trafficking events is encoded in SNARE 

proteins themselves (Rothman, 1994). This may not be true in these general terms 

since the lack of phenotype of mice carrying null mutations for the SNAREs 

cellubrevin and vti1b suggests the possibility of functional redundancy (Atlashkin et 

al., 2003; Yang et al., 2001). Also it was demonstrated in vivo that a mutant of fly 

synaptobrevin, n-syb, can be rescued by driving the expression of the ubiquitous 

homologue syb in neuronal tissue and vice versa. Yet, each individual mutant shows 

a strong and specific phentotype (Bhattacharya et al., 2002). Similarly in yeast, 

mutants of  t-SNAREs involved in golgi to endodosome or endosome to vacuole 

trafficking show specific phenotypes but can be rescued by overexpressing either of 

the two SNARE proteins (Darsow et al., 1997; Gotte and Gallwitz, 1997).  
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The isolated, soluble core domains of non-cognate SNARE proteins, i.e. 

which do not pair in vivo, form stable, heat and SDS-resistant core complexes similar 

to cognate SNARE domains, as long as the QaQbQcR-rule is respected (Fasshauer 

et al., 1999; Yang et al., 1999). In contrast, combinatorial pairing of all yeast R-

SNAREs with a number of yeast Q-SNAREs in an in vitro liposome fusion assay 

revealed a certain degree of specificity encoded in the SNARE proteins themselves 

(McNew et al., 2000). Thus, certain combinations of SNARE proteins do favour 

membrane fusion in vitro compared to others, but in vitro and in vivo data suggest, 

that stability of SNARE complex formation alone cannot account for specificity in 

membrane fusion.  

Since complex formation of non cognate SNARE proteins has not been 

observed in vivo (Jahn et al., 2003), it seems likely that regulatory mechanisms are 

superimposed on SNARE complex formation. The existence of individual SNARE 

proteins for different trafficking steps might enable the cell to selectively aquire 

regulatory proteins other than SNAREs. In particular, Rab proteins might play an 

important role in determining fusion specificity. It was shown that activated Rab5 

recruits a multiprotein complex containing the SNARE protein Syntaxin 13, the 

tethering factor EEA1 and the general fusion protein NSF in a functional 

microdomain, resulting in homotypic endosomal fusion (McBride et al., 1999). Thus, 

tethering of the membranes and the local activation or priming of the fusion 

machinery would occur as an integrated mechanism. This is a very attractive model 

of how specificity of membrane fusion events may occur through several layers of 

protein-protein interactions. 

Temporal control over the final, SNARE mediated fusion reaction is in 

part encoded in the structure of SNARE proteins. A number of SNAREs have N-

terminal extensions which participate directly in the kinetics of membrane fusion by 

negatively regulating SNARE complex formation (Filippini et al., 2001). The negative 

regulation of SNARE complex formation by N-terminal extensions is best understood 

for the synaptic Qa SNARE Syntaxin 1. The N-terminal domain of Syntaxin 1 folds 

back on the SNARE motif, thus leading to a so called closed conformation, in which 

the SNARE motif is not accessible for SNARE complex formation (Dulubova et al., 

1999). Removal of the N-terminal extension greatly enhances SNARE complex 

formation and fusion efficiency mediated by Syntaxin 1 (Parlati et al., 1999). A protein 

called nSec1/munc18, which binds to syntaxin 1, plays an essential role in activating 
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Syntaxin 1 in vivo for SNARE complex formation (Pevsner et al., 1994; Richmond et 

al., 2001; Verhage et al., 2000). NSec1 is a member of a family of proteins found 

from yeast to mammals called SM proteins (forSec/Munc) which were shown to be 

crucial in diverse membrane fusion events such as exocytosis and endosomal fusion 

(Jahn et al., 2003).  

Another important family of proteins involved in the temporal regulation 

of SNARE complex formation and membrane fusion are calcium sensing proteins of 

the synaptotagmin family, which are found in metazoae (Sudhof, 2002; Littleton, 

2001). Synaptotagmin I is most likely the main Ca2+-sensing molecule in fast, Ca2+-

triggered neurotransmitter release (FernandezChacon et al., 2001; Geppert et al., 

1994), whereas Synaptotagmin VII is implicated in Ca2+-dependent, lysosomal 

exocytosis mediating plasma membrane repair (Jaiswal et al., 2002). The mechanism 

by which Synaptotagmins control Ca2+ dependent membrane fusion is not 

understood, but Ca2+ dependent lipid binding activity of this protein family seems to 

play an important role (Shin et al., 2003; Sudhof, 2002).  

In addtion, a number of other proteins have been implicated in the 

regulation of membrane fusion, most of which act via direct binding to SNARE 

proteins like Nsec1 and Synaptotagmins (Gerst, 2003). As will be seen in the next 

chapter, the importance for plasticity in membrane trafficking is particularly clear in 

events like neuronal differentiation.  

 

 

I.2.6 The role of membrane trafficking in neuronal morphogenesis 

 

The outgrowth of axons and dendrites of neurons is accompanied by a 

major increase in surface area of the cell. For example, an axon growing at a rate of 

20-50µm/h has to incorporate a membrane area corresponding to the size of its cell 

body every two hours (Futerman and Banker, 1996). To enable axons and dendrites 

to locate their appropriate synaptic partners and therefore to enable the correct wiring  

of the nervous sytem, the delivery of membrane to the axon and dendrites has to be 

integrated into the demands of directed axonal and dendritic growth, respectively. 

This plasticity in neurite outgrowth is exemplified by the fact that the extent of axonal 

outgrowth of a neuron in culture can be drastically modified by the substrate that is 

presented to the neuron (see Fig I4; Lemmon et al., 1989) and signalling cues exist 
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which preferentially stimulate either axonal or dendritic outgrowth (Higgins et al., 

1997; Prochiantz, 1995). Thus, as shown in Figure I4, axonal outgrowth is selectively 

stimulated by a member of the IgCAM superfamily of cell adhesion molecules called 

L1, whereas dendritic outgrowth is not affected compared to the control substrate 

poly-L-Lysine.  

 

 
Figure I4) L1 stimulates axonal outgrowth in hippocampal neurons. Poly-L-Lysine-coated 

coverslips were incubated with anti-human Fc antibodies followed by incubation with (L1) or without 

(poly-Lysine) L1-Fc fragment. Hippocampal neurons seeded at low density were kept in culture for 24 

hours and analyzed by immunofluorescence with pAb to L1. 

 

How do guidance cues, e.g. the ligation of cell adhesion molecules 

translate into directed growth of the axon? Directed axonal navigation is mediated by 

growth cones, which are specialized, highly motile structures found at the tip of 

developing axons. Long- or short-range guidance cues, that can be attractive or 

repulsive, are recognized by receptors expressed on the growth cone and provoke 

the classical forms of growth cone behaviour such as advance, turning, withdrawal, 

and target recognition (Suter and Forscher, 1998). Therefore, by probing and sensing 

the environment and by translating the information received into motile behaviour, the 

growth cone ultimately allows for the establishment of the complex pattern of 

neuronal connexions (Tessier-Lavigne and Goodman, 1996).  

The cytoskeleton of growth cones is intimately involved in the axonal 

response to extracellular cues as drugs interefering with actin dynamics were shown 

to render neurons “blind” in vivo resulting in axons that bypass and extend beyond 
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normal synaptic partners (Bentley and Toroian-Raymond, 1986; Chien et al., 1993; 

Kaufmann et al., 1998). 

 In growth cones, F-actin undergoes a retrograde flow from the 

peripheral to the central region. This so called retrograde actin flow is the result of 

constant de novo-polymerization of actin at the leading edge of the growth cone and 

retrograde transport of actin filaments mediated by myosin motors (Forscher and 

Smith, 1988; Lin et al., 1996). In order for the growth cone to be able to advance, the 

retrograde actin flow has to be coupled to the substrate. This substrate-cytoskeletal 

coupling is mediated by surface receptors which link the underlying cytoskeleton to 

the extracellular matrix and ultimately allows the growth cone to generate force and 

pull forwards. Thus, cell adhesion molecules of the Integrin-, Cadherin- or IgCAM-

family play essential roles in growth cone movement. They all can be linked to the 

underlying actin-cytoskeleton via distinct adaptor proteins in a stimulus-dependent 

manner, which is provided by ligation of the respective receptor with its extracellular 

ligand (Suter et al., 1998).  

For the growth cone to advance, substrate -cytoskeletal coupling has to 

be under tight control. In fact, a gradient of strong adhesion at the leading front and 

weak adhesion at the rear edge of the growth cone has to exist to allow the 

cytoskeletal machinery to pull the growth cone forwards. Such a gradient of 

adhesiveness has been detected for several adhesion molecules, in agreement with 

the predictions of the substrate-cytoskeletal coupling model of growth cone motility 

(Kamiguchi and Lemmon, 2000; Kamiguchi and Yoshihara, 2001; Schmidt et al., 

1995). As will be explained below, local recycling of cell adhesion molecules via 

endocytosis at the rear edge and exocytosis at the leading front could be one 

mechanism in establishing such a gradient of adhesion along the growth cone.  

At the same time, ligation of cell adhesion molecules initiates a local 

signaling cascade (Skaper et al., 2001). The IgCAM L1 induces a complex signaling 

cascade upon ligation, which includes the non-receptor tyrosine kinase p60src and 

the MAP kinase pathway (Schaefer et al., 1999; Schmid et al., 2000). The importance 

of L1-induced signaling for L1-function is highlighted by the fact, that the stimulatory 

effect mediated by homophilic L1-interaction on neurite outgrowth is abrogated in 

neurons deficient in p60src. (Ignelzi et al., 1994) Similarly, neurite outgrowth 

stimulated by L1 or the CAM N-Cadherin are reduced, when the MAP kinase 
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cascade is inhibited, indicating a conversion of signaling cascades mediated by 

CAMs of distinct families (Perron and Bixby, 1999; Schmid et al., 2000).  

The signaling cascades initiated by CAMs allow for the site-directed 

rearrangement of cytoskeletal dynamics and the resulting change in growth cone 

motility (Challacombe et al., 1996; Dent and Kalil, 2001; Suter et al., 1998) and are 

therefore of greatest importance for neuronal morphogenesis. Yet, the exact 

molecular mechanisms that link guidance cues to cytoskeletal dynamics are not clear 

(Skaper et al., 2001).  

Whereas adhesion molecules exert their function via direct cell-cell or 

cell-matrix interaction, other target-derived secreted factors like netrins or the 

sempahorins exist, which act at a distance to attract or repel axons. Secretion 

establishes a gradient and thus attracts or repels axons or dendrites along the 

gradient, if the target neurite expresses the respective receptor (Dickson, 2002). 

Secreted guidance cues induce motile behaviour of the axon by regulating the growth 

cone cytoskeleton, similar to what was described above for CAMs (Dickson, 2002). 

Interestingly, a physical and functional interaction between the receptor for 

Semaphorin 3a, Neuropillin, and the cell adhesion molecule L1 has been observed. 

Whereas binding of Sema3a to its receptor induces growth cone turning away from a 

Sema3a gradient in wild type neurons, repulsion is not observed in L1 knock out cells 

(Castellani et al., 2000). Thus, adhesion molecules can be functionally linked to 

soluble guidance molecules and their receptors, illustrating the high plasticity by 

which growth cones can respond to guidance cues. 

 

In contrast to the well established, important roles for adhesion 

molecules and secreted guidance cues in axonal navigation, the role of membrane 

trafficking in axonal and dendritic outgrowth is less clear. Particularly, a possible link 

between the cytoskeleton, the major target of guidance cues, and the trafficking 

machinery, which delivers membrane for growth, is not established. 

Genetic data which firmly establish a role for exocytotic membrane 

trafficking in neurite outgrowth in vivo were provided very recently in Dorosophila. A 

mutant of sec5, a subunit of the exocyst complex involved in tethering of exocytotic 

vesicles, stops growing neurites as soon as the maternal, cytosolic pool of sec5 is 

exhausted (Murthy et al., 2003). At the same time, accumulation of synaptic vesicles 

at synapses and neurotransmitter release was not affected. Thus, distinct types of 
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vesicles with apparently different targeting mechanisms are implicated in 

neurotransmitter release and neuronal differentiation.  

A first description of the SNARE machinery involved in neurite extension 

came from experiments using clostridial neurotoxins. Clostridial neurotoxins are 

potent inhibitors of neurotransmitter release by cleaving key components of the 

synaptic exocytotic membrane fusion machinery. The inactivation of the neuronal 

plasma membrane target SNARE, composed of SNAP25 and syntaxin 1, by 

Botulinum Neurotoxin (BoNT) A and C1 leads to a pronounced reduction in axonal 

outgrowth (Grosse et al., 1999; Osen-Sand et al., 1996) thus suggesting the 

involvement of SNAP-25/Stx1 dependent exocytosis in neurite outgrowth. In contrast, 

tetanus neurotoxin mediated cleavage of the synaptic v-SNARE Synaptobrevin has 

no effect on neurite outgrowth, in spite of its complete abolition of neurotransmitter 

release (Grosse et al., 1999; Osen-Sand et al., 1996). These findings were confirmed 

by analysing synaptobrevin 2 knock out mice, which showed a severe impairment in 

transmitter release, but apparently normal brain development (Schoch et al., 2001). 

Similarly, mutants for munc-18 and munc 13-1/2, two important regulators of synaptic 

vesicle exocytosis, showed severe defects in neurotransmitter release without any 

apparent impairment of brain development (Aravamudan et al., 1999; Verhage et al., 

2000). Surprisingly, the knock out of SNAP 25 in mouse shows normal brain 

development (Washbourne et al., 2002), whereas the experiments mentioned above 

using clostridial NTs suggested a role for this molecule in neurite outgrowth. This 

discrepancy could be owing to the expression of SNAP23, a close homologue that 

may be able to functionally replace SNAP25 in the SNAP25 knock out mice. In any 

case, these results clearly indicate that the molecules and the membrane 

compartment(s) mediating neurite outgrowth are, to a large extent, different from 

those involved in neurotransmitter release.  

Whereas the studies mentioned above established a role for exocytosis 

in neurite outgrowth, the intracellular membrane carriers fusing with the plasma 

membrane and their molecular composition are only beginning to be characterized. 

An important regulatory role for the exocytosis of membrane carriers of endosomal 

origin in the development and plasticity of synaptic contacts has been recently 

established. The postsynaptic glutamate receptors, NMDA- and AMPA-receptor can 

undergo a controlled, local cycle of endo- and exocytosis at the synapse through 

endosomal compartments. This recycling from and to the postsynaptic plasma 
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membrane directly influences the postsynaptic response to glutamate release at the 

presynaptic active zone by controling the density of membrane resident receptors 

(Sheng and Lee, 2003). At least two different membrane trafficking pathways seem to 

be involved in the recycling of postsynaptic receptors, since membrane carriers could 

be identified that contained the AMPA-receptor and the SNARE protein Syntaxin 13, 

but no NMDA-receptor (Lee et al., 2001). Furthermore, whereas NMDA-receptor 

recycling is independent of Synaptobrevin, recycling of the AMPA-receptor is 

sensitive to cleavage of Synaptobrevin by clostridial neurotoxins (Lan et al., 2001; Lu 

et al., 2001).  

Less is known about recycling pathways in the development of neurons, 

but an equally important function for local recycling of membrane receptors can be 

expected. Early studies on cell adhesion molecules of the Integrin family showed that 

these molecules do not make immobile glue at the plasma membrane but instead 

recycle through endocytic compartments to and from the plasma membrane 

(Bretscher, 1992). In fact, neurons seem to be able to control the density of integrin 

receptors on the cell surface in response to ligand density by an endocytotic 

mechanism, in order to maintain growth cone motility (Condic and Letourneau, 1997). 

Similarly, the cell adhesion molecule L1, which plays an important role in brain 

development in mice and human, was shown to recycle locally in the growth cone 

(Kamiguchi and Lemmon, 2000). Therefore, intracellular trafficking of cell-cell or cell-

matrix adhesion molecules like L1 and integrins through endosomal compartments is 

likely to be important in regulating and stabilizing adhesive contacts in the course of 

neurite outgrowth. 

What is the nature of the transport carriers, which deliver newly synthesized 

lipids and proteins to the growing axons? Brefeldin A, a fungal toxin that blocks post 

Golgi trafficking of membrane carriers, inhibits neurite outgrowth demonstrating a role 

for golgi-derived vesicles in neurite outgrowth (Jareb and Banker, 1997). Studies on 

the chicken homolog of L1, NgCAM, suggest that, when expressed in rat neurons in 

culture, newly synthesized NgCAM is delivered and inserted in the plasma 

membrane at the distal end of the growing axon (Vogt et al., 1996). Similar results 

were obtained when CD8 alpha, a non-neuronal protein, was expressed in neurons 

in culture and found to be inserted at the tip of the growing axons (Craig et al., 1995). 

These studies suggest that newly synthesized proteins and lipids may be transported 

and inserted into the membrane at the sites where growth actually takes place. 
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Interestingly, a recent study on NgCAM demonstrated that transport carriers 

delivering newly synthesized molecules and endosomal carriers are not necessarily 

different. NgCAM can be transported to the axon in an indirect pathway called 

transcytosis. Newly synthesized NgCAM is first transported to the dendritic plasma 

membrane followed by immediate uptake and delivery to the axon in endosomal 

carriers (Wisco et al., 2003).  

In summary, multiple membrane compartments of different origin may 

participate and interact to allow for the highly complex process of neurite outgrowth. 

Elucidation of the relationship between different post-Golgi compartments involved in 

neurite outgrowth and the molecular composition including the SNARE proteins 

expressed in these compartments represents one of the major challenges to 

understand the role of membrane trafficking in neuronal differentiation. 

 

 

I.3 Aims of the thesis 

 

The discovery of R-SNAREs insensitive to clostridial neurotoxins opened 

the way to test the involvement of neuronal, vesicular compartments different from 

synaptic vesicles in neurite outgrowth (Martinez-Arca et al., 2000a). The first R-

SNARE that was demonstrated to be insensitive to clostridial neurotoxins is called TI-

VAMP for Tetanus neurotoxin Insensitive Vesicle Associated Membrane Protein (also 

called VAMP7) (Galli et al., 1998; Advani et al., 1998). TI-VAMP is broadly expressed 

in a variety of tissues, including neurons (Advani et al., 1999; Coco et al., 1999). No 

true homologue of TI-VAMP exists in yeast, whereas TI-VAMP homologues are 

found in higher uni- and multicellular organisms like Dictyostelium, C.elegans, 

Drosophila and humans (Filippini et al., 2001). The structure of TI-VAMP is different 

from the classical R-SNARE structure found in synaptobrevin and related R-SNAREs 

in that it carries a N-terminal extension in addition to the SNARE motif and the 

transmembrane domain (Galli et al., 1998). This N-terminal extension, the Longin 

domain, is found in a number of R-SNAREs from yeast to human and its sequence 

shows a high degree of conservation between different R-SNAREs carrying this 

extension (Filippini et al., 2001). The Longin domain of TI-VAMP and another R-

SNARE called Ykt6 were shown to negatively regulate SNARE complex formation 



 

  24 

(Martinez-Arca et al., 2000b; Tochio et al., 2001), similar to the structurally unrelated 

Nterminal extensions of Qa SNAREs like Syntaxin 1 (Gonzalez et al., 2001; Tochio et 

al., 2001). In addition to its role as negative regulator in SNARE complex formation, 

the Longin domain of TI-VAMP binds to the adaptor complex AP-3, which is 

important for the localization of this protein to late endosomal compartments in non-

neuronal cells (Martinez-Arca et al., 2003b).  

Although a number of studies attempted to elucidate the membrane 

trafficking pathway(s) mediated by TI-VAMP, its exact nature is still unclear. TI-VAMP 

localizes to late endosomes/multivesicular bodies and to vesicles scattered 

throughout the cytoplasm (Advani et al., 1999; Coco et al., 1999; Martinez-Arca et al, 

2003a; Martinez Arca et al., 2003b). It forms complexes with SNARE proteins 

functioning at the plasma membrane and in endosomal compartments (Bogdanovic 

et al., 2002; Martinez-Arca et al., 2000; Martinez-Arca et al., 2003b; Galli et al., 

1998). Function blocking assays have implicated TI-VAMP in the degradative 

pathway of the EGF receptor and fusion of late endosomes/lysosomes (Advani et al., 

1999; Ward et al., 2000), but this function might be redundant with 

endobrevin/VAMP8, another endosomal v-SNARE (Antonin et al., 2000). Another 

series of studies implicated TI-VAMP in an exocytotic pathway. In epithelial cells, TI-

VAMP plays a role in transport to the apical plasma membrane, a pathway insensitive 

to Tetanus neurotoxin (Galli et al., 1998; Ikonen et al., 1995; Lafont et al., 1999). In 

mastocytes, TI-VAMP might be involved in the process of degranulation, another 

exocytotic pathway insensitive to tetanus neurotoxin (Hibi et al., 2000). The reason 

for this apparent discrepancy of TI-VAMP function in either endosomal or exocytotic 

trafficking is not understood, but cell type dependent differences might play a role. In 

neurons, the TI-VAMP compartment defines a new type of vesicle, which is different 

from synaptic vesicles and transferrin receptor positive recycling endosomes/early 

endosomes (Coco et al., 1999). In young neurons developing in culture, TI-VAMP 

accumulates at the leading edge of growing axons and dendrites, consistent with a 

role for this protein in neurite outgrowth (Coco et al., 1999). Further studies showed 

that TI-VAMP indeed mediates neurite outgrowth in PC12 cells and in neurons in 

culture, which was based on the overexpression of dominant-positive and-negative 

TI-VAMP variants (Martinez-Arca et al., 2000b; Martinez-Arca et al., 2001).  

The goal of this study was to define the role of the TI-VAMP 

compartment in neurite outgrowth. In particular, the nature of the compartment in 
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neuronal cells was not well understood and no cargo protein of the TI-VAMP-

mediated trafficking pathway in neurons was known. A working hypothesis was that 

adhesion molecules might be part of the molecules trafficking through the TI-VAMP 

compartment due to their importance in neuronal development and the fact that these 

molecules can be regulated by membrane trafficking.  

Another important question of this work was to understand the regulation 

of the TI-VAMP mediated trafficking. As outlined above, the growth cone is the 

sensor of the axon for attractive and  repulsive guidance cues. Profound 

rearrangements of the cytoskeleton within the growth cone result from guidance cues 

leading to events like turning, enhanced growth or retraction of the axon (Koleske, 

2003). Since the TI-VAMP compartment is highly enriched in the growth cone of 

axons and dendrites (Coco et al., 1999), a potential relationship between 

rearrangements of the cytoskeleton triggered by guidance cues and regulation of the 

TI-VAMP compartment in the axonal growth cone was explored in this work.  
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II. Materials and methods 

 

II.1. Materials 

 

II.1.1. Antibodies, clones, and reagents 

Polyclonal anti-GFP antibody was described earlier (Martinez-Arca et al., 2001). 

Mouse monoclonal antibodies directed against Syb 2 (clone 69.1) and syntaxin 1 

(HPC-1) anti-transferrin receptor (68.4) and the polyclonal antibody against syntaxin 

7 were generous gifts from R. Jahn (Max Planck Institute, Goettingen, FRG), C. 

Barnstable (Yale University, New Haven, CT), I. Trowbridge (Salk Institute, La Jolla, 

CA, USA) and Dr W. Hong (Institute of Molecular and Cell Biology, Republic of 

Singapore), respectively. Polyclonal rabbit antibodies against mouse L1 and Fab 

fragments generated from this antibody were previously described (Rathjen and 

Rutishauser, 1984). The polyclonal anti-Syb 2 antibody (MC23) was previously 

described (Chilcote et al., 1995). The following commercial antibodies were used in 

this study: monoclonal anti-Green Fluorescent Protein (GFP; clone 7.1 and 13.1) 

from Roche (Indianapolis, IN), monoclonal anti-GluR2 (cl 6C4) from Chemicon 

(Temecula, CA), monoclonal anti-Vti1b (clone 7) and SNAP25 (clone 20) from 

Transduction laboratories, monoclonal anti-Syntaxin 13 (clone 15G2) from StressGen 

(San Diego, CA), monoclonal anti-phospho-tyrosine antibody (clone 4G10) from 

Upstate (Lale Placid, NY) and polyclonal anti-phospho-src (pT418) from Biosource 

International (Nivelles, Belgium). Affinity-purified Alexa 488 and Cy3-coupled goat 

anti-rabbit and anti-mouse immunoglobulins, phalloidin coupled to Alexa 564 or 488, 

Streptavidin coupled to Rhodamine, affinity-purified Fc-fragments from mouse and 

human IgGs were from Jackson ImmunoResearch (West Grove, PA). Biotinylated 

Goat anti mouse-IgG ?-chain antibody was from Southern Biotechnology Associates 

(Birmingham, Alabama). Horseradish peroxidase- and Alkaline Phosphatase-coupled 

streptavidin, sheep anti-mouse and anti-rabbit IgGs were from Promega (Madison, 

WI). NGF was supplied by Alomone Labs (Rehovot, Israel). Collagen was from 

Becton Dickinson (Franklin Lakes, NJ). All other reagents were from Sigma unless 

specified. 
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II.1.2. Plasmids 

The cDNA coding for L1-Fc chimera was kindly provided by Dr. T. Brümmendorff 

(Max-Dellbrück Zentrum für molekulare Medizin, Berlin) and has been described (De 

Angelis et al., 1999). Eukaryotic expression vectors based on pEGFP-C3 (Clonetech) 

coding for Green Fluorescent Protein (GFP) and TI-VAMP fused to GFP at the C- or 

N-terminus were provided by S. Martinez-Arca (Institut Fer-a-Moulin, Paris) and have 

been described. (Martinez-Arca et al., 2000b) 

The prokaryotic expression vector coding for Cyt -TI-VAMP fused to GST was 

provided by Dr Thierry Galli (Institut Fer-a-Moulin, Paris) and described in (Martinez-

Arca et al., 2000b). 

 

 

II.2. General molecular biology methods 

 

II.2.1. PCR 

Each reaction contained the following: 

2µl of 10mM dNTP (a mixture of dATP, dTTP, dCTP, and dGTP each at 10mM 

concentration)  

10µl of 10x Pfu DNA polymerase buffer (supplied with the enzyme)  

10-100ng of template DNA  

2µl of each primer at a concentration of 100ng/? l 

2µl of Pfu DNA polymerase  

Distilled water to a total volume of 100µl   

The PCR was carried out using 25 thermal cycles: 94°C for 1 min, 50°C for 1 min, 

72°C for 2 min/kb of template DNA.  Following these cycles the reaction was 

incubated for a further 10 min at 72°C, before being cooled to 4°C.  

 

II.2.2. Restriction digestion 

Enzymes and buffers were supplied by New England Biolabs and used according to  

the manufacturers’ instructions. 
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II.2.3. Agarose gel electrophoresis 

All agarose gels were run with a TBE (90mM Tris-borate, 2mM EDTA) buffer system.  

Sigma 1kb ladder was used as a marker. DNA bands of interest were isolated and 

purified using the QIAEX II Kit supplied by Qiagen. 

 

II.2.4. DNA Ligation 

The vector and insert DNA were mixed with 1µl of T4 DNA ligase and the buffer 

supplied with the enzyme and incubated at 16°C overnight. 

 

II.2.5. Annealing Oligonucleotides 

0.5-1µg of each oligonucleotide were mixed with 5µl 10x annealing buffer (100mM 

NaCl, 10mM Tris-HCl, pH 7.8, 1mM EDTA) and made up to 50µl with H2O.  The 

reaction mix was annealed in a PCR machine (2 min at 85°C, then cooled to 25°C by 

5°C decrements, 3 min at each temperature). The annealed oligonucleotides were 

ligated into plasmids using the protocol described above, but the plasmid DNA was 

heated to 45°C for 5 min and chilled on ice prior to ligation. 

 

II.2.6. Bacterial culture media 

Bacterial cultures were grown in 2xTY (1.6% tryptone, 1% yeast extract, 0.5% NaCl, 

pH7.4), supplemented with 50µg/ml ampicillin when required.  

 

II.2.7. Transformation of Competent Bacteria 

For each transformation, 50µl of competent bacterial cells (Top Ten, Invitrogen) were 

transferred to a sterile 14ml Falcon tube and placed on ice. 5-10µl of a ligation 

reaction (~10ng DNA) was added to the cells and incubated on ice for 15 min. The 

tubes were then placed in a water bath at 42°C for 90 s and returned to ice for 2 min. 

450µl of 2 x TY was added and the tubes were placed in an orbital shaker at 37°C for 

45 min. 100µl of cells were plated out on a TYE plate containing the appropriate 

antibiotic and incubated at 37°C overnight. 

  

II.2.8. Plasmid Purification 
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Plasmid DNA was purified from bacterial cultures using the QIAprep Spin Miniprep 

Kit or the QIAfilter Plasmid Midi Kit (Qiagen).  

 

II.2.9. Production of GST-fusion proteins  

E. coli XL-1 Blue cells carrying Cyt -TI-VAMP-GST were obtained from Dr. T. Galli. A 

10ml overnight culture containing ampicillin was diluted into 250ml 2TY and grown at 

37°C with shaking until the optical density at 600nm was 0.6 -0.8. 50µl of 1M IPTG 

was added and the cells were grown overnight for four hours at 22°C. The cells were 

pelleted at 4°C, washed in 200ml PBS, pelleted and resuspended in approximately 

5ml PBS. The cells were kept at –20°C until required. Upon thawing, protease 

inhibitors were added and cells were sonicated. Triton X-100 was added to a final 

concentration of 1% and the cells were incubated for 45 min. Following lysis, cell 

debris was removed by centrifugation at 30000g for 20 min at 4°C. 

For each 1ml of cells, 150µl packed volume of glutathione-Sepharose 4B beads 

(Pharmacia) were used. The beads were washed twice in PBS, prior to use. The cell 

lysate was added to the washed beads and mixed gently for 15 min at room 

temperature. The beads were washed with 1.5ml ice-cold PBS five times. To elute 

the fusion protein, the beads were incubated 200µl of 50mM Tris-HCl, pH8, plus 

10mM reduced glutathione for 10 min. The mixture was spun and the supernatant 

kept. This elution step was repeated twice and the supernatants were pooled. The 

fusion protein was quantified and analysed on a polyacrylamide gel. 

 

 

II.3 Tissue culture  

 

II.3.1 Culture of cell lines 

 PC12 cells were cultured according to Greene and Tischler (Greene and Tischler, 

1976) on round collagen-coated plastic dishes, which were coated oN at 200µg 

collagen/150mm diameter in 10ml H2O/30% EtOH under sterile conditions. Cells 

were seeded at low density in RPMI from Invitrogen (Cergy Pontoise), 10% Horse 

Serum , 5% Fetal Calf Serum from Sigma (Lyon) supplemented with Glutamine 

(100x) from Invitrogen and the medium was changed every two days. For 

immunofluorescence, collagen-coated coverslips were prepared with a first layer of 
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poly-L-lysine (Sigma) followed by incubation at 37°C, 60 min with Collagen at 12.5 

µg/ml in PBS. Cos-7 cells were cultured on plastic flasks in DMEM, 10%FCS 

supplemented with Penicillin/Streptomycin. 

 

II.3.2 Preparation and culturing of primary hippocampal and 

cortical/striatal neurons neurons 

Hippocampal neurons were prepared from E18 rat brain, whereas cortical/striatal 

neurons were prepared from E16 rat brain. Hippocampi were dissected in HBSS-

Hepes 20 mM (Sigma and Invitrogen, respectively) and incubated for 15min in 

Trypsin-containing solution (Invitrogen) at 37°C. Hippocampi were washed three 

times with HBSS-Hepes and allowed to pellet by gravity after each wash. Hippocampi 

were resuspended in 3 ml HBSS-Hepes containing 300 µl DNase I (10mg/ml in 

HBSS-Hepes) from Roche and incubated at 37°C for 5 min. Hippocampi were 

dissociated by tituration with a glass pipette were the opening was diminished over 

the flame. Cells were seeded on pretreated coverslips at 10000-20000 cells/coverslip 

(Ø 14mm) in Neurobasal medium supplemented with 4% B27 (both Invitrogen). 

Coverslips were pretreated by chloric and sulphuric acid (1/2) oN at room 

temperature followed by extensive washes for eight hours and coating with poly-L-

lysine oN at 50µg/ml in H2O at 37°C. Cortical/striatal neurons were prepared by 

dissecting the cortex and striatum in PBS/4%Glucose. Tissue was chopped in little 

pieces and dissociated in single cells by tituration. Cells were cultivated in chmically 

defined medium according to Rousselet et al (Rousselet et al., 1990) on pretreated 

coverslips (see above) and a layer of collagen: a drop of collagen was spread on the 

coverslips with a pipette bent over the flame and the collagen was allowed to dry 

before plating the cells. 

 

II.3.3 Culture of hippocampal neurons on L1-substrate 

Neurons were grown on L1-substrate according to (Kamiguchi and Lemmon, 

2000). For purification of L1-Fc chimera, Cos-7 cells were transiently transfected with 

cDNA coding for L1-Fc chimera using Lipofectamine-2000 according to the 

manufactures instructions. For purification of Fc-coupled fusion proteins, cells were 

grown in DMEM (Invitrogen) containing 1% IgG-depleted FCs or full synthetic 

medium AIM V-medium (Invitrogen). Secreted L1-Fc protein was allowed to 

accumulate for several days. The supernatant was collected and recombinant protein 
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was purified using ProteinA-sepharose (Pharmacia, Amersham). To coat coverslips 

with L1-Fc chimera, coverslips were incubated for 2 hrs at 37°C with 20µg/ml goat 

anti-human Fc specific antibody (Sigma, Saint Quentin Fallavier, France) in Leibovitz 

Medium, pH 8 (Invitrogen, Cergy Pontoise, France). Coverslips were rinsed and 

incubated with 3µg/ml L1-Fc fragment in Leibovitz Medium for another 2 hrs at 37°C.  

 

 

II.4 Biochemical methods 

 

II.4.1 Immunoprecipitation 

For immunoprecipitation of TI-VAMP, monoclonal anti-TI-VAMP antibody 

158.2 and control mouse IgG were covalently coupled to Protein G-sepharose 

according to Harlowe and Lane (Harlow and Lane, 1988). Rat brain was 

homogenized with a glass/teflon homogenizer (9 strokes at 900 rpm) in 10 ml of 

homogenization buffer containing 0.32 M sucrose, 150 mM NaCL, 1mM EDTA and a 

protease inhibitor cocktail. All the steps were carried out at 4°C. After 10 min 

centrifugation at 800 g the supernatant was adjusted to 1% Triton X-100 and 

incubated for 60 min on ice. Unsoluble material was removed by centrifugation at 

40000g for 60 min. Rat brain lysate was incubated with immunobeads overnight and 

the beads were washed five times in homogenization buffer with 0.1% Triton X-100. 

Bound material was separated by SDS-PAGE (Schagger and von Jagow, 1987; 

Laemmli, 1970) followed by Western blotting. 

 

II.4.2 SDS-PAGE 

Samples to be analysed by SDS-PAGE were boiled in 1x sample buffer and 

loaded onto mini-gels of the Hoefer™ SE 260 Mini-Vertical Unit (Amersham-

Pharmacia). Buffer compositions for SDS-PAGE were as follows: 

SDS running (resolving) gel buffer: 

Tris 18.17 gr. 

3M HCl 8.20 ml. 

SDS 0.40 gr. 

dH2O to 100 ml. 

Tris and SDS were dissolved in 73 ml H2O 
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and titrated with 3M HCl, then brought to volume. The pH was adjusted to 8.6 -8.8 

3M HCl= 24.75 ml (conc. HCl 14.6M) + 95.875 H2O 

 

SDS stacking gel buffer: 

Tris 6.05 gr. 

SDS 0.40 gr. 

2M HCl 29.1 ml. ca. 

dH2O to 100 ml. 

Buffer was titrated to 6.8-7.0. 

 

SDS-sample buffer: 

glycerol 12.5 gr. 

tris 0.76 gr. 

2-mercaptoethanol 5.00 ml. 

SDS 2.30 gr. 

0.5M HCl 12.3 ml. 

dH2O 71.0 ml. 

bromophenol blue 10 mg. 

Buffer was titrated to pH 6.8-7.0. 

Acrylamide concentrations for stacking gels were 5% and for separating gels 

between 7.5 and 15%. 

 

II.4.3 Western Blotting 

Following SDS-PAGE, proteins were transferred onto nitrocellulose by 

electroblotting at a constant current of 100mA overnight, using a wet blotting method 

in a Hoefer TE 22 Mini Tank Transfer Unit (Amersham-Pharmacia). Buffer 

composition for transfer was as follows. 

TRANSFER SOLUTION: 

tris-base 12.1 gr. 

glycine 57.6 gr. 

ethanol 800 ml. 

dH2O to 4 l. 

After transfer, membranes were blocked in blocking solution. Incubation 

with primary antibodies at appropriate dilution in blocking solution was performed oN 
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at 4°C or for two hours at room temperature. In the following, membranes were 

washed for a minimum of three times 10 min followed by incubation with HRP-

conjugated secondary antibodies followed by another round of washes like for 

primary antibodies. Signals were revealed by chemoluminscence using an ECL-Kit 

(Pierce) and autoradiography.  

Washing Buffer: 

Tris 50 mM pH 7,4 

NaCl 150 mM 

Tween-20 0.1 % 

 

Blocking Buffer: 

Washing Buffer supplemented with 5% low fat dry milk powder 

 

II.4.4 Subcellular fractionation 

PC12 cells were homogenized with an EMBL-cell cracker in 10 mM Hepes-

KOH pH7.2, 250mM sucrose, 1mM EDTA, 1mM MgOAc and protease inhibitors. The 

homogenate was centrifuged at 800 g for 10 min and 1.5 ml of the supernatant was 

loaded onto a 0.3-1.2M linear sucrose gradient and spun for 15min in a SW40 rotor 

at 25000 rpm (velocity-gradient). 1ml fractions were unloaded from the top; 

membranes were pelleted and resuspended in sample buffer. Equal volumes of each 

fraction were separated by SDS-PAGE (Laemmli, 1970) and analyzed by Western 

blotting. For equilibrium gradient analysis the light fractions 1-4 of the velocity 

gradient were pooled and loaded on a sucrose step gradient of the following 

composition: 1ml 0.8M, 2ml 1M, 2ml 1.2M, 2ml 1.4 M, 1 ml 1.6M. After centrifugation 

in SW40 at 25000 rpm overnight, the gradient was unloaded and analyzed as above. 

Rat brain was homogenized as described above. The supernatant (S1) was 

recentrifuged for 15 min at 9250 g to yield a supernatant (S2) and pellet (P2). The S2 

fraction was further separated by velocity gradient centrifugation. An aliquot was 

loaded on top of a sucrose gradient ranging from 0.32 to 1.2 M sucrose and spun for 

20 min at 25000 rpm in a SW41-rotor. The gradient was unloaded by upward 

displacement and 1ml fractions were collected, the membranes were pelleted and 

resuspended in equal volumes of sample buffer. Equal volumes of each fraction were 

analyzed by SDS-PAGE and Western blotting. The first two fractions of the velocity 

gradient were further analyzed by equilibrium gradient centrifugation. The fractions 
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were adjusted to a sucrose concentration of 0.6 M Sucrose and mixed with 1.4 M 

Sucrose to yield a linear gradient ranging from 0.6 to 1.4 M Sucrose. Samples were 

spun overnight at 25000 rpm in a SW41 rotor. Gradients were unloaded as described 

above. The membranes were pelleted and resuspended in equal volumes of sample 

buffer and analysis was performed as described above. 

 

 

II.5 Cell biological methods 

 

II.5.1 SiRNA treatment of PC12 cells 

PC12 cells grown on collagen-coated 35mm dishes were transfected (as 

described above) twice on two consecutive days with 0.5µg GFP plus either 4µg 

siRNA molecules corresponding to the rat TI-VAMP sequence, bp 486-506: 

AACCTCGTAGATTCGTCCGTC (siRNAr, Dharmacon, Lafayette, CO), or control 

siRNA molecules corresponding to the equivalent sequence of canine TI-VAMP: 

AATCTTGTGGATTCGTCTGTC (siRNAd, Proligo-Genset, Paris, France). The 

canine TI-VAMP sequence was obtained by rt-PCR of RNA from MDCK cells. The 

next day, cells were split and aliquots cultured on either collagen-coated coverslips or 

put back on collagen-coated culture dishes. For the neurite outgrowth assay, the cells 

were differentiated by the addition of 100nM staurosporine 48 h after the second 

transfection, fixed the next day (i.e.96 hrs after the first transfection) and processed 

for immunofluorescence with anti-GFP and anti-TI-VAMP antibodies. 30 randomly 

chosen images for each condition were taken based on the GFP signal with a 

MicroMax CCD camera (Princeton Instruments, Princeton, NJ), resulting in the 

analysis of at least 50 GFP-positive cells. A neurite was defined as a thin process 

longer than 10 µm. The length of each neurite, from the cell body limit until the tip of 

the process, was measured in each case using the Metamorph software (Princeton 

Instruments, Princeton, NJ). Differences were evaluated statistically with the Chi 

squared test. All the recordings and the Metamorph analysis were done blind. 

 

 

II.5.2 Antibody uptake assays 
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PC12 cells were plated on collagen-coated glass coverslips and treated with 

NGF at a concentration of 50ng/ml for 2 to 3 days for analysis of uptake of L1-specific 

Fab-fragments. Cells were incubated with Fab-fragments directed against L1 in NGF-

containing medium at a concentration of 25 µg/ml for 60 min at 37°C. The cells were 

fixed after washes in cold PBS with 1 mg/ml BSA and acid stripping with 0.2 M acetic 

acid/0.5M NaCl for 2 min at 4°C. Antibody uptake on neurons grown on collagen-

coated glass coverslips was performed essentially as described for PC12-cells. No 

acid stripping was performed, but after removal of Fab-fragments and two washes of 

the cells in medium, neurons were reincubated for 60 min at 37°C. 

For analysing uptake of GFP-antibody in PC12 cells expressing TI-VAMP with 

GFP fused to the C-terminus, PC12 cells were transfected by electroporation. PC12 

were trypsinized, washed, and resuspended at a density of 7.5–10 x 106 cells/ml in 

Optimix (Equibio). Electroporation was performed with 10 µg DNA in a final volume of 

0.8 ml cell suspension using a Gene Pulser II device (Bio-Rad) with one shock at 950 

µF and 250 V. Immediately after electroporation, cells were washed with 5 ml of 

complete medium before plating them. 5 h later, the medium was removed and 

replaced with fresh medium containing 100 nM staurosporine to induce neurite 

outgrowth. PC12 cells were processed 24 hrs later. For enhanced expression of the 

exogenous proteins, 5 mM sodium butyrate was added the last 6 h before processing 

the cells. After transfection, cells were incubated in the presence of 5 µg/ml 

monoclonal anti-GFP antibody in culture medium for 15 min on ice, followed by 0, 15 

or 60 min incubation at 37°C, 24 h after transfection with GFP-TI-VAMP or TI-VAMP-

GFP. The cells were then washed twice with culture medium and twice with PBS, 

fixed with PFA, and processed for immunofluorescence. 

 

 

II.5.3 Qualitative and quantitative immunocytochemistry 

Developmental localisation of TI-VAMP and L1 was analysed in Sprague 

Dawley rats. Embryos (E13, E15, E19) were extracted from timed-pregnant dams 

after chloral hydrate anaesthesia (E0=day of mating) and fixed in 4% 

paraformaldehyde overnight. After 24 hour cryoprotection in 10% sucrose in 

phosphate buffer, serial cryostat sections (15 µm thick) were taken from the whole 

head in the sagittal plane for embryos. Sections were incubated overnight at room 
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temperature in TI-VAMP monoclonal antibody (clone 158.2; 1/500) alone or in 

combination with the L1 antibody (1/500) and processed for immunofluorescence. 

Cells in culture were fixed with 4% PFA/ 4% sucrose and processed for 

immunofluorescence as follows. Cells were briefly permeabilized in phosphate 

buffered saline (PBS), gelatine 0.2% and Triton X-100 0.25%. Cells were incubated 

with primary antibodies in blocking buffer containing PBS and 2% goat serum for 2 

hrs at RT or oN at 4°C in a humid chamber. After washes with PBS, cells were 

incubated with fluorescently labeled secondary antibodies and mounted in PBS 

containing 90% glycerol. 

Optical conventional fluorescence microscopy was performed on an 

Olympus Provis microscope equipped with a MicroMax CCD camera (Princeton 

Instruments, Princeton, NJ). Confocal laser scanning microscopy was performed 

using a SP2 confocal microscope (Leica Microsystems, Mannheim, Germany). 

Images were assembled using Adobe Photoshop (Adobe Systems, San Jose, CA). 

For analyzing the effect of silencing the TI-VAMP-expression in PC12 cells on L1-

surface expression, cells treated with siRNAr or siRNAd were incubated on ice with 

anti-L1 polyconal antibody before fixation. Cells were fixed and processed for 

immunofluorescence analysis by conventional fluorescence microscopy. 

Quantification of surface L1 signal was performed with a semi-automatic program 

based on the MetaMorph software (Universal Imaging, Downingtown, PA). Cells were 

segmented automatically and the mask obtained by the segmentation procedure was 

used to compute the average intensity of the fluorescence over each cell. All 

acquisition and segmentation parameters were kept constant for all images. 

Differences were evaluated statistically with the Mann-Whitney non-parametric test. 

The immunofluorescence intensities of growth cones double-labeled for TI-VAMP 

and Syb 2 and contacting a L1-coated bead were quantified using the “Region 

Measurement” function of the MetaMorph software (Universal Imaging, 

Downingtown, PA). Growth cones were chosen on the basis of TI-VAMP signal thus 

blind for synaptorevin 2 signal. The average pixel intensity was computed over 

identical regions of identical basal and apical confocal sections for the TI-VAMP and 

Syb 2 signals. Differences were evaluated statistically with the Mann-Whitney non-

parametric test. 

For analyzing immunofluorescence intensities of TI-VAMP- and 

Synaptobrevin-stained growth cones double labeled with Alexa488 Phalloidin in 
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contact with L1- or N-Cadherin coated beads, cells were washed and fixed as 

described above. To block excessive anti-mouse Fc-specific IgGs used to cover 

beads for coupling N-Cadherin-Fc protein, cells were incubated after fixation with 

recombinant mouse Fc fragment at 400µg/ml in PBS for four hours at RT. Cells were 

refixed briefly and processed for immunofluorescence. Signals associated with mAb 

were revealed by incubating the cells with biotinylated anti mouse-IgG ?-chain-

specific secondary antibody followed by incubation with streptavidin coupled to 

Rhodamine. Single confocal sections were taken based on Actin-fluorescence 

intensity and thus in blind for TI-VAMP- or Synaptobrevin 2-associated signal and 

were analyzed and statistically evaluated as above.  

For comparing TI-VAMP- or Synaptobrevin 2-expression with F-actin content 

in growth cones, cells were double labeled with mAbs to TI-VAMP or Synaptobrevin 2 

and Alexa564-coupled Phalloidin. Images were aquired by confocal microscopy 

based on the actin staining and therefore in blind for TI-VAMP- or Synaptobrevin 2-

associated immunoreactivity. The fluorescence intensity of single confocal planes 

within growth cones was analyzed and a regression analysis was performed to 

evaluate differences stastitically. 

 

 

II.5.4 Bead-cell adhesion assay 

Bead adhesion to PC12 cells was performed according to (Lambert et al., 

2000). For coating of L1-Fc chimera, surfactant-free Latex-sulfate microspheres 

(diameter 6,2 µm for PC12 cells and 4 µm for hippocampal neurons, Interfacial 

Dynamics Corporation, Portland, Or) were incubated with goat anti-human Fc 

antibody (Sigma) at a ratio of 1 volume IgGs/ 9 volumes beads overnight at 4°C in 

0.1M borate buffer pH 8. Beads were then blocked with borate buffer containg 1% 

BSA for 15 min at RT in the case of PC12 cells or with BlockAid (Molecular probes, 

Netherlands) diluted 1/3 in borate buffer in the case of hippocampal neurons. 

Blocked beads were incubated with L1-Fc (80µg/ml) at a ratio of 1 volume L1-Fc/ 4 

volumes beads in borate/BSA buffer for 2 hrs at RT or with Borate/BSA buffer alone 

(control beads). For hippocampal neurons, beads were incubated with either L1-Fc 

fragment or with recombinant human Fc fragment at the same concentration 

(Jackson ImmunoResearch, West Grove, PA). For coupling N-Cadherin-Fc chimera 
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to beads, anti-mouse Fc antibodies were used (Jackson ImmunoResearch, West 

Grove, PA).  

To test bead cell adhesion, PC12 cells were seeded on collagen-coated 

coverslips (∅12mm) at intermediate density. The next day, beads were added to the 

cells (2 µl beads in 200µl complete medium) and left for 45 min at 37°C. Cells were 

washed with 3ml of prewarmed medium, fixed and analysed by immunofluorescence. 

Neurons were plated at a density of 2.104cells/14mm coverslip and incubated with 

beads at day three in vitro in Neurobasal media plus 4% B27 containing 1%BSA. 

To test the role of TI-VAMP in L1 or N-Cadherin mediated bead cell junctions, 

PC12 cells were treated with siRNA as described above. The bead cell adhesion 

assay was performed as above and cells were stained with 158.2 and anti-L1-

polyclonal antibody. For L1 beads images were acquired by conventional 

epifluorescence at a magnification of 40X. The choice of cells was based exclusively 

on the 158.2-signal thus in blind for the signal corresponding to cell-associated L1-

beads. N-Cadherin beads were detected with anti-mouse Cy3 conjugated secondary 

antibody. In that case, choice of cells was based on the L1 signal thus blind for cell 

associated Cadherin beads. The number of beads in each image was counted and 

differences were evaluated statistically with the Mann-Whitney non-parametric test. 

 

 

II.5.5 Video microscopy 

PC12 cells or hippocampal neurons were transiently transfected with TI-

VAMP-GFP using Lipofectamine 2000. The next day cells were incubated with L1- or 

N-Cadherin beads in an appropriate chamber equilibrated to 37°C and 5%CO2. TI-

VAMP-GFP positive cells with associated bead were recorded every 10 s (exposure 

time 300ms) taking images by phase contrast or using filters for GFP-fluorescence 

over a time period of 20 min using a Leica DMIRE2 microsope equipped with a 

Cascade camera (Roper Scientific, San Antonio, Texas, USA). Camera and 

microscope used automatized and driven by the metamorph software (Princeton 

Instruments). Films and extracts were assembled using the metamorph software 

(Princeton Instruments). 
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III. Results 

 

Part 1: TI-VAMP mediates L1 trafficking 

 

III.1 Characterization of the TI-VAMP monoclonal antibody Cl158.2 

 
 The specificity of the new monoclonal antibody Cl158.2 was assessed by 

Western blotting, immunoprecipitation and immunofluorescence. A single band was 

recognized by Cl158.2, corresponding to the expected size of 25 kDa, by Western 

blotting of rat brain homogenate. The rabbit polyclonal anti-TI-VAMP antibody TG16 

purified on a recombinant fragment of TI-VAMP recognized a band of the same size 

(Fig. 1a). Cl158.2 immunoprecipitated both in vitro translated TI-VAMP and a protein 

from lysates of rat brain and PC12 cells that was recognized by TG16 and 

corresponded in size to in vitro translated TI-VAMP (Fig. 1b). Furthermore, 

synaptobrevin 2 immunoreactivity was not detected in an immunoprecipitation 

performed with Cl158.2 from rat brain lysate indicating that Cl158.2 does not cross-

react with the vesicular SNARE protein Synaptobrevin 2 (Fig. 1c). By 

immunofluorescence, Cl158.2 revealed the expected vesicular pattern in PC12 cells, 

which was completely abrogated when the antibody was preincubated with 

recombinant TIVAMP-GST (Fig. 1d). Similarly, Cl158.2 associated reactivity with rat 

brain cryosections was completely abrogated, when the antibody was preincubated 

with recombinant TIVAMP-GST, but not GST alone (Fig, 1e).  

Thus, the monoclonal antibody Cl158.2 specifically recognizes TI-VAMP 

and was therefore used in this study to analyze the TI-VAMP compartment in the 

nervous system. 
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Figure 1) Characterization of the monoclonal anti TI-VAMP antibody 158.2. 
a) Rat brain homogenates were separated by SDS-PAGE and transferred to nitrocellulose by electroblotting. 
Membranes were incubated with polyclonal anti-TI-VAMP-antibody TG16 and monoclonal antibody 158.2. Both 
antibodies recognize one main reactive band of 25 kDa, which corresponds to the predicted size of TI-VAMP. 
b) Cl 158.2 was covalently coupled to Protein G Sepharose and incubated with TI-VAMP and SNAP 25 (ctr) 
generated by in vitro translation (in vitro translation) or with TritonX-100 extracts from adult rat brain (Adult rat 
brain) or PC12 cells (PC12 cells). Bound material was analyzed by Western blotting with TG16 79-135. Cl158.2 
immunoprecipitates one main band reactive with TG16 79-135 from rat brain and PC12 cells, which corresponds 
in size to in vitro translated TI-VAMP, and is bound to Cl 158.2 immunobeads. The “Start” lanes correspond to 
1/10 of the input in each immunoprecipitation experiment. 
c) TritonX-100 extracts from adult rat brain were incubated with Cl158.2, anti-synaptobrevin 2 (Cl69.1) or control 
IgGs covalently coupled to Protein G sepharose. Bound material was tested by immunoblotting for TI-VAMP (pAb 
TG16 79-135) and synaptobrevin 2 (mAb 69.1). TI-VAMP was specifically precipitated by mAb 158.2 but not 
synaptobrevin 2, whereas synaptobrevin 2 was found specifically associated with 69.1 immunobeads but not TI-
VAMP (compare IP 158.2 and 69.1). Neither TI-VAMP nor synaptobrevin 2 were found associated with control 
immunobeads (IP Ctr).  
d) MAb 158.2 was preincubated with either 100µg recombinant Glutathione S-Transferase (GST) or 100µg 
recombinant TI-VAMP-Glutathione S-Transferase (TIVGST). Double-immunofluorescence analysis of PC12 cells 
was performed with pretreated mAb 158.2 (“158.2+GST” and “158.2+TIVGST”) and phalloidin coupled to Alexa 
568 to label actin filaments. 158.2 preincubated with GST reveals the expected vesicular pattern whereas 158.2-
associated immunoreactivity is completely abrogated by preincubation with recombinant TIVGST (bar=20µm). 
e) Brain sections through the dentate gyrus were incubated in antibody 158.2 , showing a dense staining of axon 
terminals in the hilus. The consecutive section incubated with the preadsorbed antibody shows no 
immunoreactivity in the corresponding area (bar=100 µm). 
 

 



 

  41 

 

III.2 The expression of TI-VAMP is developmentally regulated 

 

Functional studies have implicated TI-VAMP in a membrane trafficking 

pathway necessary for neurite outgrowth (Martinez-Arca et al., 2000b; Martinez-Arca 

et al., 2001). Since the expression levels of a number of proteins involved in 

neuritogenesis and synaptogenesis are developmentally regulated (Song et al., 

1999), the expression level of TI-VAMP during development of the brain was 

analyzed. TI-VAMP expression was compared to the expression levels of the cell 

adhesion molecule L1, involved in axonal outgrowth, pre- and postsynaptic proteins 

involved in synaptic transmission (AMPA-receptor subunit GluR2 and SNARE 

proteins SNAP25 and Synaptobrevin 2) as well as a SNARE protein of the 

endosomal system (syntaxin 7) (Fig. 2). Homogenates prepared from rat brain at 

embryonic day 16 (E16), 2 days and fourteen days after birth (P2/14) and adulthood 

were analysed by Western blotting. The TI-VAMP expression level increases from 

day E16 to a maximum at day P14 followed by a slight decrease to adulthood, 

whereas the expression level of syntaxin 7 does not change during brain 

development. The expression pattern of TI-VAMP is very similar to the expression 

pattern of L1, which also reaches a maximum expression at day P14. The markers of 

synaptic transmission all reach maximal expression levels at day fourteen, which stay 

stable to adulthood. Thus, the expression level of TI-VAMP is upregulated during 

brain development, similar to proteins invo lved in axonal outgrowth or synaptic 

transmission. 
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Figure 2) TI-VAMP expression is upregulated during brain development. 
Homogenates were prepared from rat brain at embryonic day 16 (E16), 2 days and fourteen days after 
birth (P2/14) and adulthood. Equal amounts of protein were analyzed by Western blotting for the 
expression levels of TI-VAMP with mAb 158.2. TI-VAMP expression was compared to the expression 
levels of the cell adhesion molecule L1 involved in axonal outgrowth, pre- and postsynaptic proteins 
involved in synaptic transmission (AMPA-receptor subunit GluR2 and SNARE proteins SNAP25 and 
Synaptobrevin 2) as well as a SNARE protein of the endosomal system (syntaxin 7).  
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III.3 TI-VAMP forms complexes with SNAP-25, syntaxin 1, syntaxin 7, 

and vti1b in vivo and recycles to the plasma membrane in neuronal cells 

 

The nature of the membrane trafficking pathway mediated by TI-VAMP in 

neurons is not clear. A function of TI-VAMP in endocytosis has been suggested by 

several studies in non-neuronal mammalian cells (Advani et al., 1999; Wade et al., 

2001) as well as in Dictyostelium discoideum  (Bogdanovic et al., 2002). We have 

previously shown that TI-VAMP recycles to the plasma membrane in neuronal cells 

and forms SNARE-complexes with the plasma membrane t-SNARE SNAP25 

(Martinez-Arca et al., 2000). In order to identify the target membranes of TI-VAMP-

containing vesicles in neuronal cells, I sought to identify the full catalogue of cognate 

t-SNARE partners of TI-VAMP. To this end, I searched for t-SNAREs that would co-

immunoprecipitate with TI-VAMP from a Triton X-100 extract of rat brain. TI-VAMP 

was specifically immunoprecipitated by the monoclonal antibody 158.2 but not by 

control IgGs. Additionally,  the plasma membrane t-SNAREs SNAP-25 and syntaxin 

1 (Stx 1), and the endosomal t-SNAREs syntaxin 7 (Stx 7) and Vti1b were recovered 

with the TI-VAMP immunobeads (Fig. 3A). Importantly, no complex formation with 

another endosomal t-SNARE, syntaxin 13 was observed. The recombinant forms of 

syntaxin 13 and TI-VAMP are able to interact in vitro, (Yang et al., 1999), thus the 

absence of syntaxin 13 in the assay suggests that the complexes isolated were not 

formed during the process of detergent solubilization of the tissue. Furthermore, 

when I determined the subcellular distribution of TI-VAMP and Stx 7 in primary 

cortico-striatal cultures grown for 1 div, extensive colocalization of both proteins on 

vesicular structures in the cell body and along the growing neurites was observed 

(Fig. 3B). These results show that TI-VAMP forms cognate SNARE complexes with 

the plasma membrane SNAREs SNAP-25 and Syntaxin 1 and the endosomal 

SNAREs Syntaxin 7 and Vti1b in the adult rat brain. Complex formation between the 

ubiquitous SNAREs TI-VAMP and Syntaxin 7 is likely to occur in nerve cells, since 

they colocalize in neurons grown in culture. 
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Figure 3) TI-VAMP forms SNARE complexes with plasma membrane and 
endosomal t-SNAREs and colocalizes with Stx 7. 
A) SNARE-complex fomation of TI-VAMP in rat brain. The TritonX-100-soluble fraction of rat brain was 
incubated with monoclonal antibody 158.2 or control IgGs (Ctr) covalently coupled to proteinG-
sepharose. An aliquot of the starting material (SM) and material bound to immunobeads was analyzed 
by Western blotting with antibodies to TI-VAMP, Vti1b, Syntaxin 7 (Stx7), Syntaxin 13 (Stx 13), 
Syntaxin 1 (Stx1) and SNAP25.  
B) Localization of TI-VAMP and Syntaxin 7 in cortical/striatal neurons in culture. E16 rat cortical-striatal 
neurons were grown for 1 div, labeled for TI-VAMP and syntaxin 7, and analysed by confocal 
microscopy. Vesicular structures positive for TI-VAMP and Stx 7 are indicated by arrows (bar: 5µm). 
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As suggested by the complex formation with plasma membrane SNAREs, TI-

VAMP may mediate exocytosis in neuronal cells. To test this possibility, a GFP-tag 

was fused to the c-terminal and thus luminal part of TI-VAMP (TI-VAMP-GFP). Upon 

exocytosis, the GFP-tag is exposed to the extracellular medium  and is thus 

accessible to GFP-specific antibodies. PC12 cells transfected with TI-VAMP-GFP 

were incubated with anti-GFP antibody on ice, before fixation. Antibody labeling was 

detected at the plasma membrane and was often concentrated at the tip of the 

growing neurite (Fig. 4). When the cells were allowed to internalize the antibody at 

37°C, a fast, time-dependent uptake could be observed. After 15 min at 37°C, the 

anti-GFP immunoreactivity was seen in peripheral structures, very close to the 

plasma membrane with a low degree of overlap with the green signal emitted by the 

bulk of TI-VAMP-GFP. After 60 min, most of the  immunoreactivity colocalized with TI-

VAMP-GFP, indicating that the anti-GFP antibody had reached the TI-VAMP-GFP 

compartment. As a control, we transfected PC12 cells with GFP fused to the N-

terminal and thus cytosolic part of TI-VAMP (GFP-TI-VAMP). No plasma membrane 

labeling or GFP antibody internalization was detected in GFP-TI-VAMP–transfected 

or untransfected cells (Fig 4 GFP-TIVAMP) demonstrating the lack of capture of the  

antibody by fluid phase uptake. Thus TI-VAMP recycles to the plasma membrane in 

the course of neurite outgrowth. Taken together with the results in Figure 3, TI-VAMP 

is likely to mediate a recycling pathway that connects the plasma membrane with an 

endosomal Stx 7 -containing compartment in neurons. 
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Figure 4) TI-VAMP recycles at the neuritic plasma membrane.  
PC12 cells transfected with TIVAMP-GFP or GFP-TIVAMP and treated with staurosporine for 20 h 
were placed on ice, incubated with monoclonal antibody anti-GFP (5 µg/ml) for 15 min, and then fixed 
(15'/4°C) or further incubated at 37°C for 15 min (+15'/37°C) or 60 min (+60'/37°C) before fixation. 
Note the dense labeling of the neuritic plasma membrane in the 15'/4°C and +15'/37°C conditions. Full 
loading of the GFP-TIVAMP compartment is reached in the +60'/37°C condition (Bar=5 µm). 
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III.4 TI-VAMP is essential for neurite outgrowth 

 

It was previously proposed that TI-VAMP mediates neurite outgrowth on the 

basis of the effect of overexpression of dominant-positive and negative forms of the 

protein in PC12 cells and neurons (Martinez-Arca et al., 2000; Martinez-Arca et al., 

2001). A more direct approach is to interfere with the TI-VAMP expression in 

neuronal cells and analyze its effect on neurite outgrowth. To this end, small 

interfering double stranded RNA (siRNA,) (Elbashir et al., 2001) were designed 

equivalent to the sequence of either rat or, as a control, dog TI-VAMP to silence the 

expression of the TI-VAMP protein in rat cells. Extracts of transfected cells were 

analysed by Western blotting with antibodies against TI-VAMP, Synaptobrevin 2, the 

IgCAM L1 and Transferrin Receptor and densitometric analysis of the corresponding 

signals was performed (Fig. 5B). In rat siRNA (siRNAr) transfected cells, total TI-

VAMP expression was reduced to 30% (average over 3 independent experiments) of 

that of dog siRNA (siRNAd) transfected cells. No difference in the expression level of 

L1, Transferrin Receptor and Synaptobrevin 2 was observed. To analyze the effect of 

silencing TI-VAMP expression on neurite outgrowth, PC12 cells were transfected with 

siRNAr or siRNAd and differentiation of PC12 cells was induced by treatment with 

staurosporine for 24h. To clearly identify transfected cells, small amounts of EGFP 

plasmid DNA were cotransfected with the siRNAs. As seen by immunofluorescence, 

siRNAr-transfected, GFP-positive cells were virtually devoid of TI-VAMP 

immunoreactivity, whereas no effect on TI-VAMP expression was seen in siRNAd 

transfected cells (Fig. 5A). Silencing TI-VAMP expression led to a 25% reduction in 

the average neurite length compared with control. The effect of reduced TI-VAMP 

expression on neurite length was particularly pronounced when the number of 

neurites longer than 30, 45, or 60µm was compared to control cells (Fig. 5C).  

Thus, TI-VAMP expression in PC12 cells is necessary for efficient neurite outgrowth. 
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Figure 5) Silencing of TI-VAMP expression impairs neurite outgrowth in PC12 
cells. 
A) PC12 cells were transfected with siRNAr (rat) or siRNAd (dog) combined with an expression 
plasmid encoding GFP. After 72 h, differentiation was induced by treatment with staurosporine for 24 
h. SiRNAr silenced the expression of TI-VAMP and inhibited neurite outgrowth (GFP-positive cell, right 
panel) whereas siRNAd had no effect (GFP-positive cell, left panel) (bar: 5µm). 
B) Lysates of cells corresponding to A) were analysed by Western blotting for the expression levels of 
TI-VAMP, L1, Transferrin Receptor (TfR) and Synaptobrevin 2 (Syb 2). 
C) The neurite length of GFP-positive cells transfected with siRNAr or siRNAd was quantified. Bars 
represent the % of the total number of neurites longer than 30, 45, and 60 µm from two independent 
experiments (*p<0.05; **p<0.01). 
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III.5. The IgCAM L1 is a cargo molecule of the TI-VAMP compartment 

 

In order to further understand the role of TI-VAMP-mediated trafficking in the 

differentiation of neuronal cells, I searched for cargo molecules of the TI-VAMP 

compartment. Candidate molecules included cell adhesion molecules (CAMs) such 

as integrins, cadherins and CAMs of the Immunoglobulin Superfamily (IgCAMs), 

owing to their essential role in brain development. The IgCAM L1 is particularly 

interesting in this context because it actively recycles with the neuronal plasma 

membrane during axonal outgrowth (Kamiguchi and Lemmon, 2000a) (Nishimura et 

al., 2003) To investigate the possible relationship between L1-trafficking and TI-

VAMP, an analysis of the expression of both proteins in the developing rat brain by 

confocal microscopy was performed on embryonic brain cryosections. During 

embryonic life, corresponding to the phases of active axon outgrowth, TI-VAMP 

labels a large number of axons in cranial nerves such as the olfactory nerve, the 

trigeminal nerve (Fig. 6A,B,C), and major central axon tracts, such as the 

thalamocortical tract (Fig. 6D). In all these locations, TI-VAMP-labeled axons co-

expressed L1 suggesting that TI-VAMP could indeed play a role in L1 function during 

active axonal outgrowth.  
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Figure 6) TI-VAMP and L1 are coexpressed in growing axonal tracts in the 
developing rat brain. 
Expression of L1 and TI-VAMP in the developing brain. E15 and E19 embryos were serially sectioned 
in the sagittal plane and labeled for TI-VAMP and L1 (right column). In all four examples shown there 
is a high degree of colocalisation: A) Olfactory nerve branching out in the olfactory epithelium; B-
C) Trigeminal ganglion and nerve root . B) The trigeminal nerve ganglion contains TI-VAMP labeled 
neurons. Their labeled axons are seen to converge towards the brainstem and C) Trigeminal nerve 
branches fan out towards the facial vibrissae; (left part of the figure); D) In the forebrain, TI-VAMP 
labeled axon tracts are observed, that correspond to corticofugal pathways and to cortical afferent 
pathways (bar: 100 µm). 



 

  51 

 

Using confocal microscopy, the expression pattern of L1 and TI-VAMP was 

analyzed at a subcellular level in PC12 cells and hippocampal neurons. In 

undifferentiated PC12 cells grown at low density, L1-expression was not restricted to 

the plasma membrane but a considerable intracellular pool of L1 could be detected. 

This intracellular pool largely coincided with TI-VAMP-positive vesicular structures 

(Fig. 7A arrows). When L1 is used as a substrate, axonal outgrowth is greatly 

stimulated in several neuronal cell types (Lemmon et al., 1989). Fig intro), owing to 

homophilic interactions between L1 on the neurons and on the substrate (Lemmon et 

al., 1989; Dahme et al., 1997). Therefore I analyzed the subcellular localization of L1 

in hippocampal neurons grown on L1, and thus engaged in homophilic adhesion, and 

compared it to the localization of TI-VAMP. In the growth cone as well as in the cell 

body, L1 was expressed on the plasma membrane and, in addition, an intracellular 

pool of L1 could be observed (Fig. 7B,C). Importantly,  considerable colocalization 

could be observed between TI-VAMP and the intracellular pool of L1 at the tip of the 

growing axon (Fig. 7B) and in cell bodies (Fig. 7C). Occasionally, a striking 

accumulation of TI-VAMP and L1-immunoreactivity at sites of cell-cell contact could 

be observed (Fig. 7C arrow, compare also Fig. 13). L1 appeared to be partly 

vesicular at these sites, which was not the case in varicosities, where L1 was at the 

plasma membrane (Fig. 7C).  
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Figure 7) TI-VAMP and L1 colocalize in neurons grown in culture. 
A) Localization of TI-VAMP and L1 in PC12 cells. PC12 cells were grown at low density in the absence 
of NGF and processed for immunofluorescence analysis by confocal microscopy. A considerable pool 
of L1 immunoreactivity (green) is located on intracellular structures, which largely coincides with TI-
VAMP expression (red), as indicated by arrows (bar: 4µm). 
B, C) Localization of TI-VAMP and L1 in neurons grown on L1. Hippocampal neurons were grown for 
1div on L1 and labeled for TI-VAMP and L1. B) The confocal sections were taken from the apical part 
of the growth cone shown in the inset. The arrow points to a row of vesicular structures positive for TI-
VAMP (red) and L1 (green); most of L1 (green) at the tip of the growth cone accumulates in clusters at 
the plasma membrane (bar: 3.5µm). C) Two contacting neurons are shown. The arrowheads point at 
vesicular structures in the cell body of a neuron, which are positive for L1 and TI-VAMP expression. 
Note also the accumulation of L1 and TI-VAMP-immunoreactivity where a neurite extending from the 
cell body is forming a contact with a passing axon (arrow) (bar: 7µm). 
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To further validate the coexpression of TI-VAMP and L1 in the same 

intracellular compartment,  the TI-VAMP compartment was partially purified by 

subcellular fractionation of PC12 cells and adult rat brain. Velocity gradient analysis 

of PC12 cells showed that TI-VAMP and L1 immunoreactivity were enriched in the 

top four fractions of the gradient (Fig 8A Velocity gradient). This pool of membranes 

did not contain significant amounts of Na/K-ATPase, a plasma membrane protein that 

does not recycle with endosomal compartments (Le et al., 1999). When these four 

fractions were pooled and separated by subsequent density gradient centrifugation, 

we found co-fractionation of L1 and TI-VAMP with membranes of similar density, 

which were clearly different from plasma membrane (Fig 8A Equilibrium gradient). 

Then the same approach was applied to fractionate adult rat brain. The supernatant 

of a low speed centrifugation of rat brain homogenate (S1) was separated by medium 

speed centrifugation to yield the supernatant S2 and the pellet P2. An antibody 

directed against the extracellular domain of L1 detected three major reactive species 

of 220 kDa, 140 kDa and 80 kDa (Fig 8B). These three species correspond to full 

length L1 (L1-220) and the two cleavage products resulting from a specific 

proteolysis within the third fibronectin type III domain of L1, extracellular L1-140 and 

membrane-bound L1-80 (Liljelund  et al., 1994; Silletti et al., 2000). Whereas Na/K-

ATPase and L1-80 were heavily enriched in fraction P2, a small pool of L1-220 and 

L1-140 immunoreactivity was detectable in S2. TI-VAMP showed an equal 

distribution between S2 and P2. Since S2 was poor in plasma membrane proteins, 

the membrane population of S2 was further analyzed by velocity and equilibrium 

gradient centrifugation. As in PC12 cells, velocity gradient centrifugation of S2 led to 

an enrichment of TI-VAMP positive membranes in the upper fractions of the gradient 

(Fig 8B Velocity gradient), which also contained L1-220, whereas plasma membrane 

peaked in fraction 3 as seen by L1-80 staining. Subsequent equilibrium gradient 

centrifugation of these first two fractions clearly separated plasma membrane from 

TI-VAMP-positive membranes, as shown by the peak of expression of L1-80 and 

Na/K-ATPase in fractions 3 and 4 (arrowhead and quantification) as compared to the 

peak of TI-VAMP expression in fraction 9 (arrow) (Fig 8B Equilibrium Gradient and 

Quantification). Interestingly, L1-220 immunoreactivity was found in a broad 

distribution from light membranes, presumably corresponding to L1 associated with 

plasma membrane, to denser membranes where it coincided with TI-VAMP (Fig 8B 
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Equilibrium Gradient and Quantification). L1-140 showed a distribution indicating a 

main association with the plasma membrane, but in addition a partial association with 

intracellular membranes (Fig 8B Equilibrium Gradient and Quantification). The pool of 

membranes positive for L1 and TI-VAMP expression was different from synaptic 

vesicles because they were found at lower densities, as seen by expression of Syb 2. 

Stx 7 showed a broad distribution throughout the gradient, which was very similar to 

L1-220 and TI-VAMP in fractions 7-11, in agreement with the data in Figure 1 

showing complex formation and colocalization of TI-VAMP and Stx 7 (Fig 8B 

Equilibrium Gradient and Quantification).  
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Figure 8) An intracellular pool of L1 cofractionates with TI-VAMP positive 
membranes in PC12 cells and adult rat brain. 
A) Fractionation of membranes from PC12 cells positive for TI-VAMP and L1 in velocity and 
equilibrium gradients. PC12 cells were homogenized and membranes were separated on a continuous 
sucrose gradient by velocity gradient centrifugation. The first four fractions of the gradient were pooled 
and subjected to equilibrium gradient centrifugation on a continuous sucrose gradient. Equal volumes 
of each fraction were analyzed by Western blotting with antibodies to TI-VAMP, L1 and Na/K-ATPase. 
B) Fractionation of membranes from rat brain positive for TI-VAMP and L1 in velocity and equilibrium 
gradients. Rat brain was homogenized and the supernatant of a low-speed centrifugation (S1) was 
subjected to a medium speed centrifugation to yield a pellet, P2, and a supernatant, S2. Equal 
amounts of protein were analyzed by Western blotting for TI-VAMP, L1 and Na/K-ATPase expression. 
An aliquot of S2 was loaded onto of a continuous sucrose gradient and membranes were separated 
by velocity gradient centrifugation. Fractions were collected and Western blot analysis of equal 
volumes of each fraction was performed with antibodies to TI-VAMP, L1 and Na/K-ATPase. The first 
two fractions were pooled and centrifuged to equilibrium. Analysis was performed as described above 
with antibodies to TI-VAMP, L1, Na/K-ATPase, Syb 2 and syntaxin 7. The corresponding signals were 
quantified by densitometry, the peak signal was defined as 1 and the resulting graphs are shown 
adjacent to the Western blot. 
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Previous studies (Kamiguchi and Lemmon, 2000b; Kamiguchi and Yoshihara, 

2001) suggest that the intracellular pool of L1 that was observed by 

immunofluorescence analysis (Fig. 7) and subcellular fractionation (Fig. 8) may 

correspond to molecules that recycle to the plasma membrane. To test this 

hypothesis, living PC12-cells were incubated with Fab fragments directed against L1. 

A punctate labeling for L1-specific Fab fragments could be detected along the 

neurites and within the cell bodies (Fig. 9A) demonstrating that plasma membrane L1 

was endocytosed in NGF-differentiated PC12 cells, as described for neurons from 

dorsal root ganglia (Kamiguchi and Lemmon, 2000b; Kamiguchi and Yoshihara, 

2001). The punctate staining of L1 specific Fab fragments did not correspond to fluid 

phase uptake of the antibody since no uptake of control immunoglobulins used at the 

same concentration was detected (Fig. 9A). I then asked whether endocytosed L1 

would reach, and be restricted to, TI-VAMP’s compartment. NGF-differentiated PC12 

cells were incubated with L1-specific Fab fragments and co-stained for either TI-

VAMP or Syb 2 as a marker for the well-characterized compartment of regulated 

exocytosis in PC12 cells. Analysis by confocal microscopy, shown in Figure 9B, 

demonstrated that endocytosed L1 labeled with L1-specific Fab fragments 

colocalized to a great extent with TI-VAMP in punctate structures scattered around 

the perinuclear region (arrows). In contrast, no colocalization of endocytosed L1 was 

observed with the Syb 2-positive compartment in PC12 cells (Fig. 9B). The analysis 

of the endocytic trafficking of L1 and TI-VAMP was extended to neurons grown in 

culture. Plasma membrane L1 underwent endocytosis in neurons differentiating in 

primary culture as confocal microscopy revealed a punctate labeling for L1 Fab 

fragments along the axon (Fig. 9C). These intracellular structures of endocytosed L1 

coincided with structures positive for TI-VAMP expression (marked by arrows).  

Altogether, these results show that L1 is specifically endocytosed into the TI-VAMP-

containing compartment. This prompted me to investigate the function of TI-VAMP-

mediated trafficking in L1-mediated adhesion. 
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Figure 9) Endocytosed L1 reaches the TI-VAMP compartment, but is absent 
from the Syb 2-compartment. 
A) L1 is endocytosed in NGF-differentiated PC12-cells. PC12 cells were grown in the presence of NGF for 48 h. 
Cells were incubated with L1 specific Fab-fragments or control IgGs. The cells were “acid stripped” and 
processed for immunofluorescence analysis (bar: 8µm). 
B) L1 is taken up into the TI-VAMP compartment but not into the Syb 2 compartment. NGF-differentiated PC12 
cells were incubated with L1-specific Fab fragments (green) as above and labeled for TI-VAMP (red) or Syb 2 
(red). Arrows highlight intracellular structures positive for TI-VAMP and endocytosed L1-specific Fab fragments 
(green) (bar: 5µm). 
C) L1 is taken up into the TI-VAMP compartment in neurons in culture. Cortical-striatal neurons grown on collagen 
were incubated with Fab-fragments directed against L1. After removal of the Fab-fragments, the neurons were 
further incubated at 37°C, fixed, and labeled for TI-VAMP (red) and endocytosed L1 (green). Arrows point at 
structures in the growing axon positive for TI-VAMP and endocytosed anti-L1 Fab fragments (bar: 3µm). 
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III.6. TI-VAMP is required for L1-mediated adhesion 

 

The biological function of L1 as a homophilic adhesion molecule can be 

mimicked by presenting recombinant L1 on a planar substrate (Fig intro) or coated on 

beads (Kamiguchi and Yoshihara, 2001; Yip and Siu, 2001). This approach allows 

the analysis of L1-specific adhesive contacts isolated from the complex situation that 

occurs when two cells form contacts. Therefore I adapted a bead assay that was 

successfully used to analyze the functional consequences of N-Cadherin mediated 

contact formation (Lambert et al., 2000). Stable contact formation of L1-beads with 

PC12 cells was dependent on the presence of recombinant L1 on the beads, as no 

beads were found associated with PC12 cells when L1 was omitted during the 

coating procedure (not shown). For insight into the role of TI-VAMP in L1-mediated 

adhesion, the expression of TI-VAMP was silenced with siRNA in PC12 cells and the 

cells were incubated with beads coated with the extracellular domain of L1. N-

Cadherin-coated beads were used as a control, since it has been suggested that the 

function of N-Cadherin is independent of intracellular trafficking in neurons 

(Kamiguchi and Yoshihara, 2001). A reduction of 50 % in the number of L1-beads 

associated with cells treated with siRNAr was found when compared with cells 

treated with siRNAd (Fig. 10 A, B). In contrast, I did not find any effect on the amount 

of N-Cadherin-beads attached to cells treated with either siRNA rat or dog (Fig. 10 

A,B). To analyze the effect of inhibiting TI-VAMP-dependent trafficking on the surface 

expression of L1, PC12 cells were treated with siRNAr/d and incubated at 4°C with 

the anti-L1 antibody before fixation. Quantification of L1-associated immunoreactivity 

revealed that L1 surface expression was reduced to about 80% in siRNAr treated 

cells compared to control cells (n=4, p<0.02) (compare also Fig. 10 A L1 panels).  

This result demonstrates that TI-VAMP-mediated trafficking is important for surface 

expression of L1 and the stability of L1-dependent adhesive binding events and thus 

for the proper function of L1 at the plasma membrane. These results also show that 

N-Cadherin-mediated adhesive junctions are independent of TI-VAMP trafficking and 

suggest that the functions of L1 and N-Cadherin at the plasma membrane of PC12 

cells are regulated in different ways. 
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Fig 10) TI-VAMP-mediated intracellular trafficking is essential for L1-dependent 
adhesive contacts.  
A) Binding of L1-coated beads to PC12 cells is inhibited by silencing TI-VAMP expression. PC12 cells 
were treated with siRNA dog or rat and incubated with beads coated with L1-Fc or N-Cadherin-Fc 
chimeras. Immunofluorescence was performed with mAb 158.2 and pAb to L1. Note that N-Cadherin 
beads are labeled by Cy3-coupled anti-mouse secondary antibody owing to the presence of the 
mouse Fc fragment in the N-Cadherin chimera (bar: 20µm).  
B) Binding of L1 and N-Cadherin-coated beads to siRNA treated PC12 cells was quantified by 
counting the number of beads per image. (*p<0.01). 
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Part II: L1 controls TI-VAMP-mediated transport 

 

III.7. TI-VAMP accumulation in axonal growth cones is actin dependent  

 

In the first part of this work, it was shown that the TI-VAMP compartment is 

essential for neurite outgrowth. Then, I demonstrated that TI-VAMP controls transport 

and function of the cell adhesion molecule L1 at the plasma membrane, which might 

explain the defects in neurite outgrowth when TI-VAMP expression is inhibited. Yet, a 

potential regulation of the trafficking pathway mediated by TI-VAMP has not been 

analyzed. Therefore, the second part of this work aimed at elucidating regulatory 

mechanisms that control TI-VAMP-dependent trafficking.  

  During the analysis of TI-VAMP localization in neurons in culture, a striking 

accumulation of TI-VAMP immunoreactivity in the axonal growth cone was noticed 

(Coco et al., 1999) Fig. 7). At the same time, labeling intensity in different growth 

cones was heterogeneous. Some growth cones were strongly labeled, whereas 

others were virtually devoid of TI-VAMP immunoreactivity (Fig. 11 A). These 

differences could be observed in processes emerging from the same cell body. 

Therefore, different types of neurons present in the culture cannot account for 

variations in TI-VAMP staining intensity seen in different growth cones.  

Soluble or membrane bound signaling molecules bind to receptors expressed 

on the axonal growh cone, which controls the dynamics of the cytoskeleton within the 

growth cone (Challacombe et al., 1996). Depending on the nature of the signal, the 

peripheral actin cytoskeleton in the growth cone can be assembled or disassembled 

leading to advancement or retraction of the growth cone (Song and Poo, 2001). 

Therefore, one hypothesis was that differences in TI-VAMP staining intensity might 

be related to different assembly states of the peripheral actin cytoskeleton in the 

growth cone. To test this, neurons kept in culture for three days were labeled for 

filamentous actin and TI-VAMP. As shown in Fig 11 A, a high labeling intensity for F-

actin in two growth cones coincided with high labeling intensity for TI-VAMP (Fig. 11 

A upper pannels, marked with +), whereas another growth cone low in F-actin 

content showed low labeling intensity for TI-VAMP (Fig11 A, upper pannels, marked 

with -). In contrast, comparison of F-actin content with Synaptobrevin labeling 

intensity in growth cones did not coincide (Fig. 11 A, lower pannels). To validate 
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these observations, the F-actin content of a number of growth cones was quantified 

and compared with TI-VAMP or Synaptobrevin labeling intensity (Fig. 11 B). Whereas 

the F-actin content and TI-VAMP labeling intensity are highly correlated (Fig 11 B, 

R2=0.818), no correlation between F-actin content and synaptobrevin labeling 

intensity in growth cones could be observed (Fig, R2=0.123). Furthermore, the TI-

VAMP compartment colocalizes with F-actin rich filiopodial structures in the periphery 

of the growth cone (Fig. 11 C, upper pannels). In contrast, Synaptobrevin-

immunoreactivity seemed to be restricted to the central region of the growth cone by 

a barrier of F-actin accumulation, separating the central from the peripheral filipodia 

rich region (Fig. 11 C, lower panne ls). In summary, accumulation of TI-VAMP in 

growth cones coincides with the assembly state of F-actin suggesting that the 

dynamics of TI-VAMP and actin are coupled. This notion is supported by the 

observation that TI-VAMP localizes to actin rich peripheral structures of the growth 

cone. 
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Figure 11) The accumulation of TI-VAMP and F-actin in axonal growth cones is 
correlated. 
A) Hippocampal neurons grown 3 div were stained for F-actin and TI-VAMP or Synaptobrevin 2. Labeling intensity 
was analyzed by confocal microscopy. High labeling intensity of TI-VAMP (+) coincides with high labeling intensity 
of F-actin (+), whereas the central growth cone is low in TI-VAMP-and F-actin-staining (-) (Upper panels). The two 
growth cones in the lower panels show either high (+) of low (-) F-actin staining whereas Synaptobrevin 2-staining 
shows no variation (Bar=10µm).  
B) Confocal images of hippocampal neurons stained for F-actin and TI-VAMP or Synaptobrevin 2 were taken 
based on F-actin staining, thus blind for associated TI-VAMP or Synaptobrevin 2 labeling (24 images each). 
Labeling intensity of each marker in the whole growth cone was quantified and F-actin staining was plotted versus 
associated TI-VAMP (upper panel) or Synaptobrevin 2 (lower panel) labeling intensity. Whereas TI-VAMP and F-
actin staining are highly correlated (Y=-6.771+1.185*X; R2=0.818; p<0.0001), the distribution of Synaptobrevin 2 
versus F-actin labelling intensity appears random (Y=31.269+0.312*X; R2=0.123; p=0.093). 
C) High magnification confocal images of axonal growth cones are shown, which were double labeled for F-actin 
and TI-VAMP (upper panels) or Synaptobrevin 2 (lower panels). TI-VAMP immunoreactivity coincides with F-actin 
staining in the peripheral region of the growth cone, whereas the central region of the growth cone is low in 
intensity for both markers. Synaptobrevin 2 staining accumulates in the central region of the growth cone, which is 
low in F-actin staining (Bar=4µm). Note that synaptobrevin 2 appears to be excluded from the peripheral growth 
cone area by a barrier of F-actin. 
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To test the hypothesis that TI-VAMP accumulation in the growth cone is 

directly dependent on actin dynamics, neurons were treated with low concentrations 

of F-actin disrupting drugs. As shown in Figure 12 A, treatment of hippocampal 

neurons with Cytochalasin B led to a redistribution of F-actin to distinct, highly 

fluorescent foci (Fig 12 A, middle panels, arrows) and a change in growth cone 

morphology. Interestingly, TI-VAMP immunoreactivity was redistributed to F-actin rich 

foci (Fig. 12 A, middle panels, arrows). Treatment with the vehicle DMSO alone had 

no apparent affect on F-actin distribution, growth cone morphology or codistribution 

of TI-VAMP to actin rich structures Fig. 12 A, upper panels). Treatment of neurons 

with Latrunculin A disrupted the actin cytoskeleton. At the same time, TI-VAMP 

immunoreactivity became diffuse and no accumulation of TI-VAMP could be 

observed following this treatment (Fig. 12 A, lower panels). Localization of 

Synaptobrevin 2 was not affected by either drug (Fig. 12 B). Therefore, consistent 

with the observations shown in Figure 11, TI-VAMP localization in growth cones is 

linked to the assembly state of the actin cytoskeleton, since disrupting the actin 

cytoskeleton leads to a dramatic redistribution of TI-VAMP immunoreactivity. 

Localization of the Synaptobrevin 2 compartment in growth cones is apparently 

independent of the dynamics of the actin cytoskeleton. 
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Figure12) TI-VAMP localization in the growth cone depends on actin dynamics. 
A) Hippocampal neurons grown on ploy-Lysine 3 div were treated for 30 min with 5µM DMSO, 5 µM 
Cytochalasin B (Cyto B) or 2,5 µM Latrunculin A (Latr A). Cells were fixed and processed for analysis 
by confocal microscopy for expression of TI-VAMP and F-actin. Whereas DMSO treated cells show 
accumulation of actin and TI-VAMP in growth cones, treatment with Cytochalasin B leads to a 
redistribution of both  F-actin and TI-VAMP to highly fluorescent foci (indicated by arrows). Latrunculin 
A treatment disrupts the actin cytoskeleton and results in diffuse TI-VAMP staining. 
B) Hippocampal neurons at 3div were treated with drugs as in A) and analyzed for expression of 
Synaptobrevin 2 and F-actin by confocal microscopy. Whereas F-actin is redistributed by Cytochalasin 
B and Latrunculin A as described in A), the distribution of Synaptobrevin 2 appears very similar in all 
three conditions tested (Bar top panels=4µm, all others=8µm). 

 



 

  65 

 

 
III.8. L1-dependent adhesion controls TI-VAMP-mediated trafficking 

 

 The correla ted accumulation of F-actin and TI-VAMP in growth cones 

was observed in neurons grown on poly-L-Lysine in a chemically defined medium. 

Thus, cues leading to an assembly or disassembly of TI-VAMP and F-actin 

containing structures cannot be easily deduced. This raises the question of what 

events might induce actin and concomitant TI-VAMP accumulation in the growth 

cone in a physiological context. As shown in Fig. 7, accumulation of TI-VAMP and L1 

was occasionally observed at contact sites between neurites. Furthermore, extensive 

remodelling of the actin cytoskeleton has been observed when the growth cone 

establishes contact with a target cell (Lin and Forscher, 1993). Thus, adhesive cues 

presented to the growth cone might induce the actin-dependent accumulation of TI-

VAMP containing vesicles observed in Figures 11 and 12. Therefore, the structure of 

the actin cytoskeleton was compared to the TI-VAMP distribution at contact sites of 

neurites. As shown in Fig. 13, contact sites between neurites could be observed 

which showed a strong accumulation of F-actin (arrows). Similarly, TI-VAMP labeling 

was heavily enriched in these structures (arrows). Thus, adhesive events might 

indeed represent a naturally occurring cue which leads to a remodelling of the actin 

cytoskeleton and concomitant accumulation of TI-VAMP positive vesicles.  
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Figure 13) Accumulation of F-actin and TI-VAMP at contact sites between 
neurites. 
Hippocampal neurons at 3div were stained for TI-VAMP with mAb 158.2 (TI-VAMP) and phalloidin for 
F-actin (Actin). Confocal microscopy analysis reveals accumulation of TI-VAMP and F-actin at sites of 
contact indicated by arrows (Bar=4µm). 
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To test this, I made use of the bead assay described above to mimic acutely 

forming, L1-dependent contacts in PC12 cells and hippocampal neurons. The 

subcellular localization of TI-VAMP and L1 in PC12 cells incubated with L1-coated 

beads was analyzed by confocal microscopy. As shown in Figure 14 A, L1-

dependent contact formation between cell and bead led to a strong accumulation of 

plasma membrane L1 at sites of contact, indicating homophilic binding between L1-

bead and L1 at the cell surface. Furthermore, vesicles positive for both L1 and TI-

VAMP could often be observed in close proximity to the contact site (Fig 14 A 

arrows). To analyze the dynamics of the recruitment of TI-VAMP vesicles to L1-

mediated contact sites, GFP-TI-VAMP was expressed in PC12 cells and the cells 

were incubated with L1- or N-Cadherin-coated beads. Time-lapsed video-microscopy 

revealed a recruitment of GFP-TI-VAMP to the L1-bead-cell contact, which was 

stable for the entire time of recording (20 minutes) (Fig 14 B arrow, video 1). At the 

same time, GFP-TI-VAMP vesicles more distant to the bead-cell contact showed a 

dynamic localization with clusters of vesicles appearing and disappearing in several 

domains of the cytoplasm (Fig 14 arrowhead, video 1). No accumulation of GFP-TI-

VAMP close to sites of N-Cadherin bead-cell contact was observed (Fig 14, video 2), 

indicating that N-Cadherin-dependent outside-in signaling events do not influence TI-

VAMP trafficking. Taken together, these results suggest that L1-mediated adhesion 

promotes a local accumulation of TI-VAMP-containing vesicles at sites of L1-bead-

cell contact. 
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Figure 14) L1-dependent adhesive contacts induce clustering of TI-VAMP-
positive vesicles at sites of contact in PC12 cells. 
A) TI-VAMP vesicles accumulate at sites of L1-bead contact. PC12-cells were incubated with L1-
coated beads, processed for immunofluorescence with mAb 158.2 and pAb to L1 and analyzed by 
confocal microscopy. Arrows indicate TI-VAMP positive intracellular structures clustered around the 
bead cell contact, which are also positive for L1 (bar: 5µm). 
B) L1-beads induce stable clusters of TI-VAMP-GFP. PC12 cells were transfected with TI-VAMP-GFP 
and incubated with L1-coated beads (upper panels) or N-Cadherin-coated beads (lower panels). 
Dynamics of TI-VAMP-GFP were observed by time-lapse video microscopy. Snapshots taken with 
phase contrast (left) and with GFP-filters (middle and right, shown in false color to highlight 
concentration of TI-VAMP-GFP signal) are shown. A stable accumulation of TI-VAMP-GFP close to 
the site of L1-bead-cell contact could be observed during the recording time (indicated by arrow). A 
second pool of TI-VAMP-GFP signal indicated by an arrowhead showed a dynamic behavior. N-
Cadherin-coated beads did not show any influence on the dynamic behavior of TI-VAMP-GFP 
(position of N-Cadherin bead in false coloured images is indicated with asterisk) (bar: 6µm). 
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The accumulation of TI-VAMP containing vesicles at sites of L1-bead-cell 

contact was even more striking when hippocampal neurons were incubated with L1-

coated beads. As shown in Figure 15 A, L1-coated beads bound to axonal growth 

cones induced a strong accumulation of TI-VAMP immunoreactivity at sites of bead-

cell contact, as seen by the appearance of bead-shaped structures strongly labeled 

for TI-VAMP, especially in the apical planes of the confocal sections shown (i.e. 

where the bead surface is surrounded by the growth cone membrane). As with PC12 

cells, the binding of beads to neurons was strictly dependent on the presence of the 

L1-Fc fragment (not shown). The dynamics of TI-VAMP recruitment to L1-bead-

growth cone contact were analyzed by video microscopy in GFP-TI-VAMP 

transfected neurons (Fig. 15 B, video 3). The recording was started immediately after 

the bead marked with an arrow had started to contact the growth cone, whereas the 

other beads shown were already in contact with the growth cone. After contact 

formation (10 sec), the growth cone seems to wrap a filopodium around the bead 

surface (phase contrast, 100 sec), which is strongly labeled with GFP-TI-VAMP 

(GFP-TI-VAMP, 100 sec). The bead is then transported to the more central region of 

the growth cone, presumably via receptor mediated linkage of L1 present on the 

bead to the retrograde actin flow (Kamiguchi and Yoshihara, 2001). Accumulation of 

GFP-TI-VAMP around the bead surface in the central region of the growth cone is 

weaker (GFP-TI-VAMP, 300 sec). Images taken at a more basal focal plane revealed 

the presence of GFP-TI-VAMP at all four beads associated with the growth cone (not 

shown), but to a much lesser extent than the accumulation of GFP-TI-VAMP shown 

in the peripheral region of the growth cone at 100 sec. Beads present along the 

neurites or at the cell body did not induce accumulation of GFP-TI-VAMP (not 

shown). Interestingly, the original region of contact between bead and growth cone 

was still heavily labeled with GFP-TI-VAMP 300 sec after the initial contact, even 

after the bead had moved away from the periphery of the growth cone.  
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15) L1-dependent adhesive contacts induce clustering of TI-VAMP-positive 
vesicles in growth cones of hippocampal neurons. 
A) Accumulation of TI-VAMP at bead-growth cone junctions. Hippocampal neurons grown for three 
days in vitro were incubated with L1 coated beads and processed for confocal microscopy analysis 
with mAb 158.2 and pAb to L1. A basal and an apical section of the same region are shown. Note the 
formation of bead shaped, TI-VAMP positive structures in the growth cones (Bead diameter: 4µm). 
B) Dynamics of TI-VAMP recruitment to L1-coated beads in contact with an axonal growth cone were 
analyzed by time-lapse video microscopy in hippocampal neurons transfected with TI-VAMP-GFP. 
Sequential snapshots taken with phase contrast (upper panels) and with GFP-filters (lower panels) are 
shown. Note that the stage of the microscope was moved slightly to the right during recording time 
between frames 10 sec and 100 sec. Shortly after the bead touched the growth cone (10 sec, bead 
touching is marked with an arrow), a filopodium can be recognized in phase contrast wrapping around 
the upper part of the bead (phase contrast 100 sec), which shows strong accumulation of TI-VAMP-
GFP (100 sec; TI-VAMP-GFP). The bead is moving away from the peripheral, filopodium-rich region to 
the central part of the growth cone (300 sec phase contrast), and TI-VAMP-GFP signal close to the 
bead is weaker (TI-VAMP-GFP 300 sec). Note that the TI-VAMP-GFP signal remains elevated in the 
filiopodium rich, peripheral region of the growth cone, where the bead originally touched (Bead 
diameter: 4 µm). 
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Thus, signaling events induced by the L1-L1 homophilic interaction seem to 

persist for a certain time, even after the homophilic engagement is terminated. This 

analysis revealed, that the recruitment of the TI-VAMP compartment to sites of L1-

induced contacts in the growth cone is a transient phenomenon and occurs in the 

peripheral, actin rich region of the growth cone.  

Importantly, the accumulation of TI-VAMP at sites of bead-growth cone 

contact was a very robust phenomenon as shown in Figure 16. When images were 

taken based on the L1 signal (i.e. in blind for associated TI-VAMP immunoreactivity), 

formation of bead shaped structures strongly labeled for TI-VAMP could be observed 

in six out of eight examples. In summary, L1-coated beads induce a strong, 

temporary accumulation of the TI-VAMP-positive membrane compartment in the actin 

rich, filopodial domain of growth cones. 
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Figure 16) Accumulation of TI-VAMP in growth cones contacting L1 beads is a 
robust phenomenon.  
Hippocampal neurons at 3 div were incubated with L1 coated beads and processed for confocal 
microscopy analysis with mAb 158 and pAb to L1. Images were taken based on L1 fluorescence, 
therefore blind for TI-VAMP immunoreactivity. Accumulation of TI-VAMP reactivity at sites of bead 
contact were scored as positive (+) and no accumulation as negative (-) (Bead diameter represents 
4µm). 
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III.9. L1-, but not N-Cadherin-mediated adhesive contacts induce actin-

dependent recruitment of the TI-VAMP compartment  

 

The results obtained in Figures 11,12 and 13 suggested that the recruitment of 

the TI-VAMP compartment to L1-dependent contacts might involve a remodeling of 

the actin cytoskeleton around contacting beads. Indeed, beads coated with the cell 

adhesion molecules of the Cadherin- or IgCAM family actively remodel and recruit F-

actin rich structures via outside-in signaling upon engagement in homophilic 

interaction with receptors (Lambert et al., 2000; Suter et al., 1998). Therefore, the 

behavior of the TI-VAMP compartment was analyzed with reference to the actin 

cytoskeleton after incubation of neurons with L1-coated beads. Figure 17 shows that 

structures enriched for TI-VAMP labeling, which are induced by the L1 beads present 

on the growth cone, colocalize with F-actin rich structures surrounding the beads. 

Both the formation of F-actin rich structures and the accumulation of TI-VAMP by L1-

beads were completely abrogated in neurons treated with cytochalasin B. The same 

result was obtained using latrunculin A (not shown). Thus, L1-dependent contact 

formation in the growth cone leads to the formation of F-actin rich structures, which 

are necessary for the recruitment of the TI-VAMP compartment to sites of bead-

growth cone contact.  
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Figure 17) Recruitment of TI-VAMP to L1 beads depends on actin dynamics in 
the growth cone. 
Hippocampal neurons at 3div were incubated with L1 coated beads in the presence of either 5µM 
DMSO or 5µM Cytochalasin B for 45 min. Cells were processed for confocal microscopy with mAb to 
TI-VAMP (green), phalloidin (red) or pAb to L1 (blue). Bead shaped structures can be recognized 
which are positive for TI-VAMP and F-actin and which coincide with L1-coated beads present on the 
growth cone shown (merge) (upper panels). Low magnification images of Cytochalasin B treated cells 
demonstrate, that growth cones appear flat and broad (lower panels). A number of L1 coated beads 
are seen to touch the three neuritic extremities (micrograph L1), but no bead shaped structures appear 
that are positive for TI-VAMP or F-actin (Bead diameter: 4µm). 
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As shown above, adhesion of N-Cadherin-coated beads to PC12 cells is 

independent of the expression of TI-VAMP and does not induce recruitment of the TI-

VAMP compartment to bead-cell junctions (Fig. 10 and Fig. 14). Yet, both L1- and N-

Cadherin mediated adhesive junctions can induce profound, local rearrangements of 

the cytoskeleton (Fig 17 and (Lambert et al., 2000). Thus, I tested, whether formation 

of actin-rich structures independent of the signaling cue is sufficient to induce the 

accumulation of TI-VAMP-containing vesicles in the axonal growth cone. Therefore, 

the behavior of the TI-VAMP compartment was compared when either an L1-or N-

Cadherin-coated bead contacts a growth cone. As shown in Figure 18 A, both L1- 

(marked by asterisk) and N-Cadherin-coated beads induced a strong accumulation of 

F-actin in the growth cones close to the beads. In contrast, F-actin-rich structures 

close to N-Cadherin beads showed low TI-VAMP immunoreactivity when compared 

to F-actin-rich structures in proximity to the L1 bead, which were strongly labeled for 

TI-VAMP. Quantification of the TI-VAMP immunoreactivity in F-actin rich structures 

showed, that the TI-VAMP signal close to L1-beads is more than twice than that 

close to N-Cadherin beads. A simultaneous analysis of the Synaptobrevin 2 

compartment did not reveal any differences in fluorescence intensity close to either 

L1- or N-Cadherin beads. Moreover, Synaptobrevin 2 fluorescence intensity showed 

rather high variation in both cases (not shown), indicating that the localization of the 

Synaptobrevin 2 compartment is not influenced by either adhesive system.  
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Fig 18) L1-, but not N-Cadherin mediated contacts induce accumulation of TI-
VAMP in axonal growth cones   
A) Hippocampal neurons at 3div were incubated for 45 min with beads coated with either L1- or N-
Cadherin. Cells were processed for immunofluorescence with mAb 158.2 and Phalloidin and analyzed 
by confocal microscopy. Both L1- and N-Cadherin-coated beads induced a strong accumulation of F-
actin in the growth cone close to the bead (upper and lower micrographs, L1 beads are indicated by 
asterisks). Whereas TI-VAMP-immunoreactivity close to the L1 beads is strong, no particular 
accumulation for TI-VAMP can be recognized in the growth cone close to the N-Cadherin-bead. Note 
that anti-mouse Fc-specific antibodies were used to couple N-Cadherin fusion protein to beads. Anti-
mouse Fc-binding sites were only partially blocked by preincubation with recombinant mouse Fc 
fragments before incubation with mAb to TI-VAMP resulting in fluorescent labeling of the N-Cadherin-
coated beads (see material and methods) (Bead diameter: 4µm).  
B) Neurons were incubated with L1- or N-Cadherin-coated beads and processed for analysis by 
confocal microscopy  with mAbs to TI-VAMP or Synaptobrevin 2. Images were taken based on actin-
fluorescence, blind for TI-VAMP- or Synaptobrevin 2- associated fluorescence intensity. Regions in 
growth cones in close apposition to beads were selected based on high F-actin staining intensity, and 
the corresponding TI-VAMP- or Synaptobrevin 2-fluorescence was quantified. The mean normalized 
fluorescence-intensity for TI-VAMP close to L1 beads was more than two times higher than 
fluorescence intensity close to N-Cadherin beads (L1beads: n=25, N-Cadherin beads: n=17, 
p<0.0001). In contrast, no difference in synaptobrevin 2 staining close to either L1- or N-Cadherin-
coated beads could be observed (L1-and N-Cadherin-beads: n=17). 
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Importantly, this experiment demonstrates, that the presence of beads on growth 

cones alone is not sufficient to induce accumulation of the TI-VAMP compartment. 

Moreover, recruitment of the TI-VAMP compartment to adhesive junctions depends 

on signaling events induced by L1, and not N-Cadherin. Finally, whereas the 

presence of F-actin was shown to be necessary for the accumulation of TI-VAMP in 

growth cones (Fig. 12 and Fig. 17), F-actin per se is not sufficient for the recruitment 

of TI-VAMP, because F-actin-rich structures induced by N-Cadherin-coated beads 

are low in TI-VAMP immunoreactivity.  

 

 

III.10. Specific recruitment of the TI-VAMP compartment to the plasma 

membrane at L1-dependent contacts  

Next, I analyzed whether membrane compartments other than TI-VAMP 

containing vesicles might be recruited to L1-coated bead-growth cone contact. The 

behavior of the TI-VAMP-compartment was compared to the Synaptobrevin 2-

compartment when an L1-bead-growth cone contact. The comparison of these two 

compartments was of particular interest. Both compartments are expressed in the 

growth cone and are of similar, vesicular morphology. As seen in Figure 19 A, TI-

VAMP immunoreactivity was particularly enriched in the apical plane of the confocal 

sections of the growth cone shown, where a bead shaped structure was observed. In 

contrast, Synaptobrevin 2 reactivity decreased from the basal to the apical plane of 

the growth cone and no formation of a bead like structure was seen. The average 

pixel intensity was quantified in the basal and apical region of TI-VAMP and 

Synaptobrevin 2 immunoreactivity in eight growth cones in contact with a bead (Fig. 

19 B). In the case of Synaptobrevin 2, the ratio between apical to basal average pixel 

intensity was found to be 0.4+/- 0.06, indicating a sharp decrease in fluorescence 

intensity from the basal to the apical plane. In contrast, using the same parameters to 

analyse TI-VAMP distribution in the same growth cones, a ratio close to 1 was found 

(0.9+/-0.085). The difference between the apical to basal ratio of Synaptobrevin 2 

and TI-VAMP was statistically significant (p=0.01; Mann-Whitney non-parametric 

test). Thus L1-coated beads contacting an axonal growth cone induced a strong and 

specific accumulation of the TI-VAMP compartment in proximity to the cell-bead 

contact when compared to the Synaptobrevin 2 compartment.  



 

  78 

 

 

Fig 19) L1-dependent adhesive contacts induce clustering of TI-VAMP-, but not 
Synaptobrevin 2-positive vesicles in neuronal growth cones. 
A) Comparison between TI-VAMP and Synaptobrevin 2 (Syb 2) compartment in a growth cone 
contacting a bead. Hippocampal neurons were incubated with L1 beads and processed for 
immunofluorescence with mAb 158.2 and pAb to Syb 2. A basal and an apical section of the same 
region are shown and bead positions are indicated by asterisks. Note the strong TI-VAMP 
immunoreactivity in the apical confocal section as compared to the basal section. (Bar=4µm).  
B) The average pixel intensity was quantified in the basal and apical region of TI-VAMP and 
Synaptobrevin 2 immunoreactivity in eight growth cones in contact with a bead. In the case of 
Synaptobrevin 2, the ratio between apical and basal average pixel intensity was found to be 0.4+/- 
0.06, indicating a sharp decrease in fluorescence intensity from the basal to the apical plane. In 
contrast, using the same parameters to analyse TI-VAMP distribution in the same growth cones, we 
found a ratio close to 1 (0.9+/-0.085). The difference between the apical:basal ratio of Synaptobrevin 2 
and TI-VAMP was statistically significant (p=0.01). 
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Next, the recruitment of other membrane compartments to L1-coated beads 

was analyzed with specific antibodies to Calreticulin, an ER-resident protein, 

Syntaxin 7 and VAMP 4, a SNARE protein expressed in the Golgi complex (Fig. 20). 

The expression of these makers was compared to TI-VAMP specific labeling. 

Syntaxin 7 and TI-VAMP are both expressed along the neurite including the growth 

cone, where they partially colocalize, as seen in the basal confocal section (Fig. 20 B, 

arrows). The apical section shown revealed that the TI-VAMP containing 

compartment enriched around the bead is devoid of Syntaxin 7 immunoreactivity. 

The VAMP 4-specific staining showed the typical Golgi shaped staining in the cell 

body (Fig. 20 C) and was weak along the neurite. No enrichment of VAMP 4 was 

seen in apposition to the L1 beads, marked by asterisks, although TI-VAMP staining 

showed high intensity at the same beads. A similar result was obtained with another 

Golgi marker, GM130, which was not recruited to the beads (not shown). Late 

endosomes/lysosomes labeled with the marker proteins LAMP1 or CD63 were 

restricted to the neuronal cell body and thus also absent (not shown). In contrast, the 

ER, as seen by Calreticulin labeling, seems to be recruited to L1 bead growth cone 

contacts. Labeling with another ER marker confirmed the presence of the ER at bead 

growth cone contacts. In summary, L1-mediated adhesive contacts in the growth 

cone specifically recruit the TI-VAMP compartment and seem to induce enrichment of 

the ER.  
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Fig 20) Recruitment of internal membranes to L1 junctions is specific for the TI-
VAMP compartment and ER. 
Hippocampal neurons 3 div were incubated with L1-coated beads. Membrane compartments were 
visualized with specific markers to ER (pAb to Calreticulin-Calr), endosomes (pAb to Syntaxin 7-Stx7) 
or Golgi (pAb to VAMP4) and costained with mAb to TI-VAMP. Comparison between TI-VAMP 
associated staining and Syntaxin 7 showed that both markers are present in the basal part of the 
growth cone shown, close to the L1-coated bead marked by an asterisk. In contrast, only TI-VAMP 
staining can be observed in the apical confocal section of the same growth cone (Bar=8µm). VAMP 4 
staining is most intense in the cell body, showing a typical Golgi-shaped staining pattern. In contrast to 
TI-VAMP staining, no particular enrichment of VAMP 4 can be observed close to the two L1 beads 
marked by asterisks (Bar=16µm). Calreticulin shows strong labeling intensity in the basal and apical 
confocal sections close to L1 beads indicated by asterisk, similar to TI-VAMP staining (Bar=8µm).  
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The accumulation of the TI-VAMP compartment around L1-coated beads 

implies an outside-in signaling cascade triggered by L1 engaged in homophilic 

interactions. Indeed, activation of L1 by homophilic interactions is known to trigger 

signaling cascades such as the MAP kinase pathway (Schaefer et al., 2002; Schmid 

et al., 2000). In addition, the non receptor kinase p60src plays a crucial role in L1 

mediated neurite outgrowth, since stimulation of axonal growth by L1 is abrogated in 

src deficient neurons (Ignelzi et al., 1994). Activation of outside-in signaling pathways 

by L1-coated beads was tested by immunofluorescence with specific antibodies to 

phosphorylated and thus activated kinases of the src-family and to tyrosine 

phosphorylated proteins (Fig. 21). In A), two beads bound to the growth cone shown 

(marked by asterisk) induced the formation of bead shaped TI-VAMP positive 

structures (Fig. 21 A). As seen by the phospho-src immunoreactivity, these structures 

were also highly enriched in phosphorylated and thus activated p60src (Fig. 21 A). 

Similarly, binding of L1 beads to growth cones induced high and local activity of 

tyrosine kinases (Fig. 21 B). The growth cone shown exhibits high immunoreactivity 

for the pTyr specific antibody compared to the axonal shaft (basal plane). In the 

apical part of the bead a structure wrapping around half the bead labeled strongly for 

pTyr (apical plane). Note that pTyr labeling in the apical panel colocalizes with L1 

positive structures, that can be recognized by the increased labeling intensity for L1 

in the right part of the bead (arrows). In conclusion, engagement of L1 in homophilic 

interactions leads to the activation of src-family kinases and possibly other tyrosine 

kinases in axonal growth cones. These events are likely to be involved in the 

rearrangement of the actin cytoskeleton and recruitment of the TI-VAMP 

compartment. 
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Figure 21) Binding of L1 coated beads to growth cones activates src-kinases 
and tyrosine kinases. 
Hippocampal neurons 3 div incubated with L1-coated beads were analyzed by confocal microscopy for 
the expression of phosphorylated, and thus activated src-kinases and tyrosine-phosphorylated 
proteins with specific antibodies. A) Two L1-coated beads (asterisks) bound to the growth cone shown 
are surrounded by a local accumulation of TI-VAMP immunoreactivity. Phospho-src immunoreactivity 
coincides with the TI-VAMP staining pattern. B) L1 staining indicates the presence of two beads on the 
growth cone. PTyrosine staining is strong in the growth cone compared to the axonal shaft (basal). In 
the apical confocal plane, accumulation of tyrosine phosphorylated proteins around one bead can be 
recognized (arrow). Note that the side of the bead positive for tyrosine phosphorylation also shows 
irregular and more intense L1-labeling, indicating the presence of membrane protrusions positive for 
both, L1-and pTyrosine immunoreactivity (arrow, apical) (Bead diameter: 4µm for all micrographs). 
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As described earlier, TI-VAMP forms SNARE complexes with the plasma 

membrane SNAREs Stx1 and SNAP25 (Fig. 3) and undergoes exocytosis in 

neuronal cells (Fig. 4). Yet, a potential regulation of this exocytotic pathway has not 

been explored. L1-induced outside-in signaling might represent such a regulatory 

cue. Figure 22 shows a growth cone contacted by three L1-coated beads. Strikingly, 

TI-VAMP immunoreactivity is localized close to or in continuity with the plasma 

membrane of the growth cone. This type of TI-VAMP labeling pattern was observed 

frequently in larger growth cones where the point of bead-growth cone contact could 

be clearly distinguished from the plasma membrane outlining the growth cone (see 

Figures 17 and 21). Thus, L1 mediated adhesive contacts seem to trigger signaling 

events that lead to a relocalization of the TI-VAMP compartment towards the plasma 

membrane. To support this notion, the localization of Syntaxin 1, the plasma 

membrane t-SNARE of TI-VAMP in neurons (Fig. 3), and sec 6, a subunit of the 

exocyst complex, was analyzed in neurons incubated with L1-coated beads. Syntaxin 

1 is localized throughout the axonal plasma membrane including the growth cone 

(Fig. 22 B, basal). Staining with phalloidin reveals the formation of the typical F-actin 

rich structure around the L1-coated bead (marked by asterisk) contacting the upper 

growth cone, which colocalized with Syntaxin 1-positive plasma membrane (Fig. 22 

B, apical). A similar result was obtained for the exocyst subunit sec 6 (Fig. 22 C). L1 

staining demonstrates the presence of several beads contacting a growth cone. The 

basal plane shows localization of sec 6 along the plasma membrane of the growth 

cone. The apical confocal section demonstrates the presence of a bead-shaped 

structure positive for sec 6 which wraps around a bead.  

The presence of Syntaxin 1 in structures forming around the L1-coated bead 

supports the possibility that the TI-VAMP-compartment undergoes local exocytosis in 

the growth cone controlled by L1-induced signaling events. The exocyst complex 

could play a role in determining the site of exocytosis of TI-VAMP vesicles, similar to 

its role in yeast and epithelial cells (Grindstaff et al., 1998; TerBush et al., 1996).  
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Figure 22) Localization of TI-VAMP, Syntaxin 1 and the exocyst subunit Sec 6 in 
growth cones contacted by L1 beads. 
Hippocampal neurons 3div were incubated with L1 coated beads. The expression of TI-VAMP and two 
markers of the exocytotic machinery in neurons, Syntaxin 1 and sec 6, was analysed by confocal 
microscopy. A) A growth cone is in contact with three L1 coated beads, as seen by L1 
immunolabeling. TI-VAMP immunoreactivity outlines the shape of the periphery of the growth cone 
indicating TI-VAMP localization close to, or coinciding with, the plasma membrane (arrow) (Bead 
diameter: 4µm). B) A basal confocal section of Syntaxin 1 immunolabeling reveals a uniform 
distribution of this protein throughout the neuritic plasma membrane including the growth cone 
(Syntaxin 1, basal). An actin rich structure revealed by phalloidin staining, which forms around the L1 
bead (indicated by asterisk), is also positive for Syntaxin 1 (apical section). C) Sec 6 is localized to the 
plasma membrane along the neurite and the growth cone (basal section). L1 staining reveals the 
presence of four beads on the growth cone shown. On the apical confocal section, a bead shaped 
structure can be recognized that is positive for sec 6. Note that the L1 staining on the bead positive for 
sec 6 is irregular and of higher intensity compared to adjacent beads, indicating the presence of L1 
positive membrane wrapping around the bead surface (arrow) (Bead diameter: 4µm in both Syntaxin 1 
and sec 6 micrographs).  
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IV Discussion 

 

In this study, I have demonstrated that TI-VAMP expression is necessary for 

neurite outgrowth and L1-mediated adhesion. Furthermore, L1-mediated adhesion 

controls TI-VAMP-mediated trafficking via an actin-based mechanism. This model is 

based on the following evidence presented here: (i) TI-VAMP mediates a recycling 

pathway in neuronal cells and inhibiting this pathway by TI-VAMP-specific RNAi 

strongly inhibits neurite outgrowth in PC12 cells; (ii) TI-VAMP co-localizes with L1 in 

situ in the developing brain, PC12 cells and neurons and endocytosed L1 is localized 

to the TI-VAMP compartment; (iii) impaired TI-VAMP expression affects the surface 

expression of L1 and reduces the binding of L1-coated beads to PC12 cells; (iv) the 

TI-VAMP expression in growth cones depends on actin dynamics and L1-dependent 

adhesive contacts induce local clustering of TI-VAMP in an actin-dependent manner, 

suggesting that L1-mediated adhesion controls the anchoring of TI-VAMP containing 

vesicles. Therefore, this report demonstrates that a cross talk exists between TI-

VAMP-dependent trafficking and L1-mediated adhesion and between L1-induced 

signaling and TI-VAMP dynamics. 

 

 

IV.1.  TI-VAMP expression is developmentally regulated and required for 

neurite outgrowth 

 

The results described show that TI-VAMP expression is upregulated during 

brain development, similar to other proteins with known function in neurite outgrowth 

and synaptogenesis (Fig. 2) suggesting an important role of this protein for brain 

development in vivo. Furthermore, a strong decrease of TI-VAMP expression was 

achieved by RNA interference in PC12 cells (Fig. 5). Similar results were obtained by 

our group using hippocampal neurons in primary culture providing strong evidence 

that TI-VAMP expression is essential for neurite outgrowth (Fig. 5 and (Alberts et al., 

2003).  

These results confirm and extend previous studies from our group (Martinez-

Arca et al., 2000; Martinez-Arca et al., 2001), which demonstrated that the TI-VAMP 
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membrane trafficking pathway is important for axonal and dendritic outgrowth, by 

using dominant positive and negative forms of the protein. The present finding that 

TI-VAMP expression is required for normal neurite outgrowth clearly demonstrates 

that membrane trafficking plays an important role in this process. Also, this 

underlines the high degree of compartmentalization of neuronal cells and the 

specificity of v-SNAREs in mediating distinct membrane trafficking pathways. Similar 

conclusions were drawn from the analysis of another neuronal v-SNARE Syb 2, 

which was shown to be essential for neurotransmitter release, but, in contrast to TI-

VAMP, dispensable for neuronal differentiation (Osen-Sand et al., 1996). In vivo 

confirmation of these observations were obtained by the analysis of mice mutant for 

Syb 2, which show an almost complete block in neurotransmitter release, but 

apparently normal brain development (Schoch et al., 2001). 

Similarly, the regulators of membrane trafficking involved in neurotransmitter 

release and trafficking events leading to neuronal differentiation seem to be distinct 

to a large extent. Mutants for munc-18 and munc 13-1/2, two important regulators of 

synaptic vesicle exocytosis, show severe defects in neurotransmitter release without 

any apparent impairment of brain development. (Aravamudan et al., 1999; Verhage 

et al., 2000) However in contrast, studies describing that SNAP-25 antisense 

oligonucleotides and botulinum neurotoxin A inhibited neurite outgrowth (Osen-Sand  

et al., 1993; Osen-Sand et al., 1996), were not confirmed in the knockout mice 

(Washbourne et al., 2002). Since neurons express several syntaxins and both 

SNAP23 and SNAP25 (Chen et al., 1999), a level of redundancy can be anticipated 

and only the genetic invalidation of several plasma membrane SNAREs (at least 

SNAP25 and SNAP23) could result in defects in the development of the brain.  

Taken together with the earlier results provided by our group (Martinez-Arca et 

al., 2000; Martinez-Arca et al., 2001), the study presented here establishes the  

important function of the TI-VAMP compartment in neurite outgrowth and will help to 

define the role of other SNARE proteins and regulators of membrane trafficking 

involved in neuronal differentiation. 
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IV.2.  TI-VAMP mediates a recycling pathway in neuronal cells  

 

It was important to define the pathway mediated by TI-VAMP in neuronal cells, 

because conflicting data exist as to whether it is of exocytotic (Galli et al., 1998; Hibi 

et al., 2000; Lafont et al., 1999) or degradative nature (Advani et al., 1999; 

Bogdanovic et al., 2002; Ward et al., 2000). The results presented here suggest that 

TI-VAMP mediates a recycling pathway in neuronal cells, which is based on the 

following findings: i) TI-VAMP forms SNARE complexes with the plasma membrane 

SNAREs Syntaxin 1 and SNAP-25 as well as the endosomal SNAREs Vti1b and 

Syntaxin 7 and colocalizes with the latter (Fig. 3); ii) the IgCAM L1 is endocytosed 

into the TI-VAMP compartment in both neurons and in PC12 cells (Fig. 8); iii) TI-

VAMP undergoes exocytosis in PC12 cells during the course of neuronal 

differentiation (Fig. 4); iv) importantly, TI-VAMP controls the surface expression of L1, 

thus clearly indicating that TI-VAMP mediates an exocytotic pathway in neuronal cells 

(Fig. 10). 

It was previously shown, that TI-VAMP defines a new type of vesicle that is 

different from synaptic vesicles and transferrin receptor positive recycling 

endosomes/early endosomes in neuronal cells (Coco et al., 1999). A striking feature 

of the TI-VAMP localization in neurons is its accumulation in the peripheral region of 

growth cones (Coco et al., 1999) Fig. 7, 11 and 12). In fact, acidic, late 

endosomal/lysosmal compartments are absent from growth cones and confined to 

axonal and dendritic regions proximal to the cell body (Overly and Hollenbeck, 1996; 

Parton et al., 1992). Thus, whereas TI-VAMP might localize to late endosomal 

compartments in the neuronal cell body similar to non-neuronal cells, this is clearly 

not the case in growth cones. The majority of endocytic organelles in the growth cone 

are of a pH typical for recycling/sorting endosomes (Overly and Hollenbeck, 1996) 

and therefore, in agreement with the observations made in Figures 3, 4 and 9, TI-

VAMP is likely to mediate a local recycling pathway within the growth cone.  

In non neuronal cells, TI-VAMP colocalizes with late endosomal markers like 

CD63 (Advani et al., 1999; Coco et al., 1999; Martinez Arca et al., 2003; Martinez-

Arca et al., 2003) and TI-VAMP was suggested to mediate late endosomal/lysosomal 

fusion together with Syntaxin 7 (Bogdanovic et al., 2002; Ward et al., 2000). 
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Ultrastructural analysis by electron microscopy performed by our group and Advani et 

al. localized TI-VAMP to multivesicular bodies and a tubulo-vesicular compartment in 

the neuronal cell line PC12 and in brain (Advani et al., 1999; Coco et al., 1999; 

Muzerelle et al., 2003). Multivesicular bodies are in fact intermediates of the 

endosomal pathway and are therefore better referred to as multivesicular endosomes 

(MVEs) (Raiborg et al., 2003). Since late endosomal/lysosomal compartments in 

neurons seem to be restricted to cell bodies and the proximal part of neurites (Overly 

and Hollenbeck, 1996; Parton et al., 1992), proteins and membrane destined to be 

degraded have to be transported retrogradely to the cell body. Interestingly, the 

transport carriers mediating this pathway have been identified as large, multivesicular 

structures (Parton et al., 1992). Thus, TI-VAMP could play a role in retrograde 

transport along the axon mediated by MVEs as seen by Dotti and colleagues (Parton 

et al., 1992).  

In recent years, however, the detailed analysis of multivesicular endosomes in 

several cell types has shed new light on possible, additional functions. So called 

secretory lysosomes in hematopoetic cells are derived from or identical to MVEs. 

These specialized organelles are of lysosomal nature, but can be exocytosed in 

response to stimulation (Blott and Griffiths, 2002) and the secretion of secretory 

lysosomes from mast cells was proposed to be mediated by TI-VAMP. (Hibi et al., 

2000) In fact, secretory lysosomes do not seem to be restricted to specialized cell 

types like hematopoetic cells but, as recently demonstrated, exist in multiple, different 

cell types, where they mediate plasma membrane repair (Jaiswal et al., 2002). It is 

tempting to speculate that membrane repair and cell outgrowth could depend on the 

same exocytotic pathway. Intriguingly, a PC12 cell line was described which lacks the 

classical, TeNT-sensitive regulated secretion, but specialized secretory vesicles 

persist, called enlargosomes, which are capable of mediating membrane repair and 

neurite outgrowth (Borgonovo et al., 2002).  

Both membrane repair and cell outgrowth require massive transport to the 

plasma membrane, and internal vesicles in MVEs could be seen as a reservoir of 

membrane that could be mobilized upon demand (Blott and Griffiths, 2002). 

Supporting this notion, it was demonstrated in dendritic cells, that a maturation 

stimulus leads to fusion of the internal vesicles with the limiting membrane of the 

MVE resulting in a tubular organelle (Kleijmeer et al., 2001). Transport to the plasma 

membrane of peptide-loaded MHCII molecules occurs thereafter, in vesicles devoid 
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of lysosomal markers like LAMP (Amigorena et al., 1994; Turley et al., 2000). Recent 

results from our group demonstrate, that TI-VAMP is localized to the internal 

membranes of MVEs in the epithelial cell line MDCK (V.Proux, G. Raposo, T.Galli, 

unpublished). Thus, the membrane compartment in neurons containing TI-VAMP and 

Syntaxin 7 could be related to the multivesicular endosomes/secretory lysosomes 

known from hematopoetic cells. The TI-VAMP-positive vesicles accumulating in 

growth cones, which are devoid of Syntaxin 7-immunoreactivity, might have 

originated from this compartment. Ultrastructural analysis of the TI-VAMP-

compartment in neurons grown in culture should help to better understand the 

relation between TI-VAMP-positive membrane carriers expressed in growth cones 

and in the cell body. 

 

 

IV.3.  TI-VAMP is required for L1 function 

 

 The finding that L1-dependent adhesion is impaired by reduced expression of 

TI-VAMP clearly points to an essential role of TI-VAMP-dependent trafficking in the 

function of L1 at the plasma membrane (Fig. 10).  

L1 is a cell adhesion molecule of the IgCAM family expressed mainly in brain, where 

it plays a crucial role in development. A human neurological disorder, known as 

MASA syndrome, is caused by mutations in the L1 gene (Brummendorf et al., 1998). 

The disease is characterized by malformations of the brain, particularly of the cortico-

spinal tract. Similarly, mice mutant for L1 show defects in corticospinal axon guidance 

(Cohen et al., 1998; Dahme et al., 1997). At the cellular level, purified L1 presented 

to neurons growing in vitro stimulates axonal outgrowth by homophilic L1 interactions 

(see Fig Intro, (Lemmon et al., 1989), which is abrogated in L1 knock-out animals 

(Dahme et al., 1997).  

 Interestingly, neuronal L1 harbours an additional short exon that yields a 

tyrosine-based motif YRSLE. This motif mediates binding to the AP-2 adaptor 

complex and clathrin dependent endocytosis and accelerates the recycling of 

neuronal L1 (Kamiguchi et al., 1998). Thus, a role for intracellular trafficking in L1 

function, especially in the course of neuronal development, can be anticipated. In 

analogy to migrating cells, it was suggested that L1 trafficking in the axonal growth 
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cone establishes a dynamic gradient of L1 adhesivity necessary to move along the 

substrate (Kamiguchi and Lemmon, 2000b). Indeed, such a gradient was recently 

detected and its maintenance was dependent on endocytic trafficking (Kamiguchi 

and Yoshihara, 2001). The results presented here suggest that the TI-VAMP-

dependent intracellular trafficking of L1 may be necessary to stabilize and regulate 

adhesive contacts of neuronal cells. As mentioned above, TI-VAMP colocalizes with 

the tetraspanin CD63 (Coco et al., 1999; Martinez-Arca et al., 2003) which has been 

implicated in Integrin-mediated cell migration, like other tetraspanins (Berditchevski, 

2001). Thus, the TI-VAMP compartment could correspond to a specialized recycling 

endosome to which L1 and tetraspanins like CD63 would be targeted following 

internalization and from which they would then be recycled to the plasma membrane. 

Additionally, the YRSLE motif important for L1 trafficking is conserved in other 

members of the IgCAM family like NrCAM and neurofascin suggesting that these 

molecules might also travel through the TI-VAMP compartment (Kayyem et al., 1992; 

Volkmer et al., 1992). 

 Since decreased neurite outgrowth in TI-VAMP-depleted cells was observed in 

PC12 cells grown on collagen (Fig. 5) or hippocampal neurons grown on poly-L-

lysine (Alberts et al., 2003), neurite extension should not directly depend on 

homophilic L1-ligation in these systems. In addition to homophilic L1-interactions, a 

wide spectrum of heterophilic interactions of L1 in cis and trans with other members 

of the IgCAM family, receptors of the Integrin family or receptors for secreted 

guidance cues have been reported (Brummendorf et al., 1998; Castellani et al., 

2000). Other IgCAMs have been shown to cooperate in cis in promoting axonal 

outgrowth (Buchstaller et al., 1996) suggesting important functions in neurite 

outgrowth for the observed cis-interactions of L1 with other members of the IgCAM 

family. Moreover, L1 was shown to enhance β1 integrin-mediated cell migration and 

this promoting effect seems to depend on L1-mediated endocytosis of β1 integrin 

(Thelen et al., 2002). Therefore interfering with the TI-VAMP-dependent traffcking of 

L1 would be expected to affect functional interactions of L1 with other molecules that 

promote neurite outgrowth. Clearly, the exact consequences of inhibiting TI-VAMP-

expression for neurite outgrowth will not be understood until a more complete picture 

of the cargo proteins of the TI-VAMP compartment exists.  
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 The endosomal nature of the TI-VAMP compartment does not exclude the 

possibility that newly synthesized L1 is targeted to the axon in a TI-VAMP dependent 

manner. A very recent study on the biosynthetic pathway of L1 unraveled a 

specialized, axonal targeting pathway for newly synthesized L1, called transcytosis 

(Wisco et al., 2003). Transcytosis is an important trafficking pathway particularly well 

described in epithelial cells, where it mediates targeting to the apical plasma 

membrane (Tuma and Hubbard, 2003). Newly synthesized L1 is first transported to, 

and inserted in, the dendritic plasma membrane followed by immediate uptake into 

endosomal compartments, which then mediate axonal targeting (Wisco et al., 2003). 

The transcytotic targeting depends on the YRSLE motif of L1, further underlining the 

importance of intracellular trafficking in the function of neuronal L1 (Kamiguchi and 

Lemmon, 1998; Wisco et al., 2003). Interestingly, it has been proposed that sorting of 

proteins to the apical membrane in epithelial cells is similar to the sorting 

mechanisms leading to axonal targeting in neurons and TI-VAMP is implicated in the 

delivery of membrane carriers to the apical plasma membrane (Dotti and Simons, 

1990, Lafont, 1999 #5370).  

 Furthermore, the role of TI-VAMP-mediated endosomal trafficking in the 

function of cell adhesion molecules like L1 might not be restricted to regulating the 

cell surface density of these molecules. Activation of L1 by homophilic interaction 

triggers a cascade of intracellular signaling events including p60src and MAP kinases 

(Schaefer et al., 1999; Schmid et al., 2000) see also Fig. 21), important for L1 

function (Ignelzi et al, 1994). Importantly, the L1-triggered signaling cascade depends 

on clathrin-mediated endocytosis (Schaefer et al., 1999) and thus also establishes a 

role for endosomes in signaling events important for neuronal differentiation. In fact, 

the regulation of signaling events by endosomal compartments may play key roles in 

neurite outgrowth in vivo as illustrated by a drosophila mutant defective in the gene 

spinster. Spinster localizes to a late endosomal compartment and late endosomes 

show altered size and distribution in spinster flies. This phenotype is associated with 

a very pronounced synaptic overgrowth (200% increase in synaptic bouton number at 

the neuro-muscular junction), and an enhanced TGF-ß signaling (Sweeney and 

Davis, 2002). Synaptic overgrowth of this range has also been observed in the case 

of overexpression of an ubiquitin hydrolase (DiAntonio et al., 2001).  
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 Clearly, the identification of TI-VAMP as an essential molecular player involved 

in the trafficking of L1 will greatly facilitate the analysis of the complex function and 

regulation of this highly important molecule in brain development. 

 

 

IV.4.  TI-VAMP-localization in growth cones depends on actin dynamics 

 

 TI-VAMP-localization in axonal growth cones shows a heterogenous 

appearance. Whereas some growth cones show accumulation of the TI-VAMP 

compartment in the peripheral, actin-rich domain, others are virtually devoid of TI-

VAMP positive membranes. This dynamic behaviour of the TI-VAMP compartment is 

highly correlated with actin dynamics in axonal growth cones (Fig. 11) and TI-VAMP 

localization in growth cones depends on the integrity of the actin cytoskeleton (Fig. 

12). 

 The dependence of TI-VAMP localization on actin and the enrichment of the 

TI-VAMP compartment to actin-rich filopodia in the periphery of growth cones is of 

great interest. The growth cone, and particularly the peripheral filopodia, constitutes 

the sensing organ of the axon which reads guidance cues. This is illustrated by the 

fact that actin-depolymerizing drugs administered in vivo prevent filopodia formation 

in axonal growth cones and induce dramatic pathfinding errors with no apparent 

effect on neurite elongation (Bentley and Toroian-Raymond, 1986; Chien et al., 1993; 

Kaufmann et al., 1998). Similar results were obtained in vitro. Low concentrations of 

actin depolymerizing drugs prevent filopodia formation and completely disrupt growth 

cone turning in a gradient of soluble, attractive cues (Zheng et al., 1996) or in 

substrate-induced repulsion (Challacombe et al., 1996). In fact, isolated filopodia 

were described as the fundamental probing unit for neuronal pathfinding, since they 

represent an autonomous sensing and signalling machinery. (Davenport et al., 1993) 

The central region of the growth cone then integrates signals received from different 

filopodia resulting in motility and neurite elongation (Davenport et al., 1993). 

Interestingly, neurite outgrowth is not significantly inhibited by drug concentrations 

which inhibit filopodia formation (Dent and Kalil, 2001; Rajnicek and McCaig, 1997; 

Zheng et al., 1996), but it becomes unpolarized. (Dent and Kalil, 2001) In this study, 

actin depolymerizing drugs were used at concentrations which were previously 

shown to have no effect on axonal outgrowth in hippocampal neurons (Dent and 
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Kalil, 2001; Rajnicek and McCaig, 1997). Thus, the accumulation of the TI-VAMP-

positive membrane compartment is presumably not necessary for neurite outgrowth. 

Unpolarized exocytosis of TI-VAMP vesicles outside the growth cone might be 

sufficient to supply membrane for growth. Rather, it can be speculated that the actin-

dependent accumulation of the TI-VAMP-compartment in the growth cone periphery 

might be necessary to integrate actin- and membrane-dynamics to enable polarized 

growth. It will be of great interest to test this hypothesis as a possible involvement of 

intracellular, growth cone-resident membrane compartments in pathfinding of 

neurons has not previously been anticipated.  

 

 

IV.5.  Regulation of the TI-VAMP-compartment in growth cones by L1 

signalling 

 

 L1-mediated adhesion induces a local recruitment of the TI-VAMP 

compartment to sites of adhesion (Fig. 14, 15, 16). The accumulation of TI-VAMP 

depends on the adhesive cue, as it is not induced by N-Cadherin-mediated adhesive 

junctions (Fig. 18). TI-VAMP recruitment is strictly dependent on the actin-

cytoskeleton (Fig. 17) and recruitment of membrane by L1-junctions is highly 

selective for the TI-VAMP-compartment (Fig. 19, 20). Importantly, accumulation of 

the TI-VAMP-compartment was observed at contact sites in neuronal cultures, 

suggesting that adhesion-dependend accumulation of the TI-VAMP compartment 

might indeed occur in vivo (Fig. 7, 13). These findings strongly support the 

hypothesis that the TI-VAMP compartment in growth cones is involved in early 

signaling events, leading to advancement or retraction upon encountering attractive 

or repulsive substrates during axonal navigation. Furthermore, they reveal a 

functional crosstalk between L1-mediated adhesion and TI-VAMP-dependent 

trafficking. TI-VAMP controls the trafficking of L1 to, and function at, the plasma 

membrane (first part of this study). In turn, L1-mediated adhesive cues lead to a local 

recruitment of the TI-VAMP compartment (second part of this study).  

 The novelty of this finding raises several important questions. Are these 

vesicles involved in the establishment and/or maintenance of the contacts? Recent 

results on the regulation of L1 trafficking show that endocytosis of L1 is directly linked 

to tyrosine dephosphorylation of neuronal L1 on the YRSLE-motif (Schaefer et al., 
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2002). Interestingly, this dephosphorylation seems to occur locally at sites where L1 

is engaged in cell-cell contacts or axonal outgrowth on L1 substrate (Schaefer et al., 

2002). The concentration of TI-VAMP vesicles at L1-dependent contacts might 

therefore provide the trafficking machinery necessary for L1 to recycle locally and 

thus perform its function.  

 How does L1-dependent signaling control membrane trafficking? Activation of 

L1 by homophilic interaction stimulates a signaling pathway involving p60src and 

activation of src seems to play an essential role in L1 dependent neurite outgrowth 

(Ignelzi et al., 1994; Schaefer et al., 1999; Schmid et al., 2000). Here, local activation 

of tyrosine kinases and in particular src-family kinases due to L1-bead binding to 

growth cones was observed (Fig. 21) indicating that activation of src-family kinases is 

a very early event in L1-induced signaling. This view is in agreement with studies on 

apCAM, a cell adhesion molecule of the IgCAM family found in Aplysia. Binding of 

apCAM-coated beads to growth cones induces local activation of src kinases (Suter 

and Forscher, 2001). P60src was proposed to phosphorylate L1 on tyrosine 1176 of 

the YRSLE motif, which inhibits L1-binding to the AP-2 adaptor complex thus 

inhibiting its endocytosis (Schaefer et al., 2002). It can be speculated that TI-VAMP-

mediated transport of L1 to sites of newly formed contacts enhances homophilic L1-

ligation and therefore L1-induced activation of src kinases. Thus, a dynamic 

equilibrium might exist between TI-VAMP-dependent L1-delivery and signaling 

events regulating the stability or removal of L1 from the plasma membrane. 

Interestingly, p60src has been localized to endosomes in fibroblasts (Kaplan et al., 

1992) and a recent study showed that p60src activity on endosomes is necessary for 

the stable association of endosomes with actin cables via a RhoD/hDia2C complex 

(Gasman et al., 2003). Thus, src activity could serve as an integrator for coordinated 

delivery of L1-containing, TI-VAMP-positive endosomal structures to L1 junctions and 

L1 stability at the plasma membrane, which would provide the cell with a highly 

dynamic regulatory mechanism to control adhesion and growth cone movement. 

 It will be important to identify the molecule(s), which link TI-VAMP-positive 

organelles to the actin cytoskeleton upon L1 signaling. Scaffolding proteins like 

Ankyrin and Ezrin, which interact directly with L1, could play a role in recruiting the 

TI-VAMP-compartment to L1-junctions (Davis and Bennett, 1994; Dickson et al., 

2002). Ankyrin B is a scaffolding protein that links L1 to the spectrin-based actin 

cytoskeleton via dual interaction with L1 and spectrin (Davis and Bennett, 1994). 
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Similar to Ankyrin, Ezrin interacts directly with L1 and is known to serve as a 

membrane-cytoskeleton linker (Dickson et al., 2002). Ezrin or other members of the 

Ezrin-Radixin-Moesin (ERM)-family of proteins are good candidates to mediate early 

events in L1-dependent adhesion, since they localize to actin rich, peripheral regions 

in growth cones (Paglini et al., 1998). Future studies should test to what extent the 

recruitment of TI-VAMP vesicles to L1-dependent contacts depends on any of the 

proteins mentioned above or whether an as yet unknown mechanism is recruiting 

and stabilizing TI-VAMP-vesicles.  

 Furthermore, Rab proteins can be expected to play an important role in the 

site-directed trafficking unravelled here. As described, members of this family play 

crucial roles in vesicle targeting and association of organelles with the cytoskeleton 

(Hammer and Wu, 2002). Rab 5 is a very interesting candidate, since it is expressed 

in neurons and localizes to multilamellar, endocytic organelles different from synaptic 

vesicles in brain (Ikin et al., 1996). It was proposed, that Rab5-activity is involved in 

the regulation of actin-based membrane motility, particularly in highly dynamic 

processes like neurite outgrowth (Sabo et al., 2003). 

 Figure 20 suggests that the endoplasmic reticulum could be recruited together 

with the TI-VAMP-compartment to L1-junctions. A highly dynamic behavior of ER in 

growth cones has been observed before and it was proposed that local Ca2+ release 

by ER-resident Ca2+ channels might be implicated in regulation of the cytoskeleton 

(Dailey and Bridgman, 1989). Indeed, intracellular release of Ca2+ via ER-resident 

Ca2+ channels has been shown to play important roles in growth cone guidance 

(Xiang et al., 2002) and might contribute to local Ca2+ signaling events that are 

observed upon activation of L1 (Archer et al., 1999). In fact, Ca2+ signaling could play 

a direct role in regulating the recruitment of TI-VAMP vesicles to L1-beads. Ca2+ 

signaling is of major importance in vivo for both the regulated secretion of 

neurotransmitter at synapses (FernandezChacon et al., 2001; Geppert et al., 1994) 

and for the regulated release of secretory lysosomes during plasma membrane repair 

(Jaiswal et al., 2002). It will be important to test the specificity of ER recruitment by 

L1-beads in order to better understand this potentially interesting observation. 
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IV.6.  Specific recruitment of TI-VAMP by L1-, but not N-Cadherin 

junctions 

 

 Both L1- and N-Cadherin-dependent contacts induce strong accumulation of 

actin-rich structures (Fig. 18). Yet, whereas recruitment of TI-VAMP vesicles is 

dependent on actin dynamics (Fig. 17), formation of actin rich structures is not 

sufficent to recruit TI-VAMP vesicles (Fig. 18). Thus, L1 and N-Cadherin seem to 

induce different signaling events.  

 Differences in L1- and N-Cadherin-stimulated neurite outgrowth have 

previously been observed. Whereas blocking endocytosis inhibits L1-dependent 

neurite outgrowth, no effect was observed on N-Cadherin-mediated neurite outgrowth 

(Kamiguchi and Yoshihara, 2001). This finding is in agreement with the result shown 

in Figure 10 demonstrating that N-Cadherin-dependent junctions are independent of 

TI-VAMP-mediated trafficking. Growth cones grown on N-Cadherin, L1 or Laminin, 

which stimulates receptors of the integrin family, exhibit different morphologies 

(Burden-Gulley et al., 1995) and differences in the dynamics of growth cone-

substrate interaction were observed depending on the substrate (Drazba et al., 

1997). These morphological and mechanistic differences between L1- and N-

Cadherin-function are reflected by differences in the molecular composition of the 

adaptor complexes, which mediate linkage of L1 and N-Cadherin to the actin 

cytoskeleton. Thus, activation of Cadherins by homophilic interactions induces 

linkage to the underlying actin cytoskeleton via catenins (Ranscht, 2000), while, as 

described above, ankyrin and ERM proteins are involved in linkage of IgCAMs to 

actin.  

 In contrast, differences in signaling pathways induced by L1 and N-Cadherin 

are less clear. In fact, both ligation of N-Cadherin and L1 leads to activation of the 

MAP kinase signaling pathway and inhibition of the MAP kinase pathway interferes 

with neurite outgrowth on both substrates (Perron and Bixby, 1999; Schaefer et al., 

1999; Schmid et al., 2000). L1 and N-Cadherin were suggested to stimulate neurite 

outgrowth through activation of the FGF Receptor and FGF Receptor-dependent 

signaling (Williams et al., 1994). The different morphologies of growth cones 

observed when neurons are grown on L1 or N-Cadherin (Burden-Gulley et al., 1995) 

most likely result from the action of small GTPases of the Rho family, which are key 
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regulators of actin filament structures in response to extracellular cues (Skaper et al., 

2001). Yet the Rho-family GTPase Rac1 is implicated in the function of both N-

Cadherin and L1 (Lambert et al., 2002; Schaefer et al., 1999). Thus, whereas points 

of conversion in signaling events generated by different adhesive systems apparently 

exist, the differences providing specific responses are not yet fully understood (Fig. 

18; Burden-Gulley et al., 1995) 

 It is reasonable to assume that the recruitment of the TI-VAMP compartment 

by L1 is involved in establishing the differences between L1- and N-Cadherin-

junctions. In fact, a deeper understanding of the function of the TI-VAMP-recruitment 

by L1 might provide insights into the different functions of adhesive systems like N-

Cadherin and L1 for brain development. 

 

 

IV.7.  Neurite outgrowth and neuronal polarity 

 

 A major task to understand neuronal differentiation in more detail is to 

elucidate the temporal and spatial cues which regulate the delivery and insertion of 

transport vesicles into specific domains of the plasma membrane. The results 

presented in in this study suggest that the TI-VAMP compartment undergoes 

regulated, polarized exocytosis in the growth cone upon L1 ligation. Thus, an intimate 

link seems to exist between TI-VAMP-dependent exocytotic membrane trafficking  

involved in neurite outgrowth and adhesion/signaling molecules like L1, which 

determine neuronal morphogenesis.  

 What determines sites for exocytosis? Exocytosis of the TI-VAMP 

compartment depends on the plasma membrane SNAREs Syntaxin 1 and SNAP-25 

(Fig. 2). As shown in Figure 22, Syntaxin 1 is diffusely expressed throughout the 

axonal plasma membrane, thus presumably does not account for the spatial 

specificity of exocytosis. This observation agrees with earlier reports that Syntaxin 1 

and SNAP-25, which are essential for fusion of synaptic vesicles with the plasma 

membrane, are distributed diffusely throughout the plasma membrane and are not 

found to be concentrated at sites of synapses (Galli et al., 1995). Similarly, in the 

budding yeast S.cerevisiae, membrane growth produces the daughter cell bud via 

exocytosis at the tip of the bud. The plasma membrane t-SNAREs Sec9p and 

Sso1p/2p are essential for this process but are nevertheless localized over the entire 
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surface of the mother cell and bud (Brennwald et al., 1994). Thus, whereas it is clear 

that the plasma membrane resident target SNAREs are essential for the polarized 

delivery of transport carriers, they cannot account for the spatial specificity of 

exocytotic events during, for example, neurite outgrowth and synaptogenesis.  

 In yeast a key component to specify the site of exocytosis during bud 

formation is the exocyst complex, which shows a polarized distribution to the 

daughter bud. Disruption of components of the exocyst complex results in 

accumulation of transport vesicles in the bud, suggesting a role for the exocyst in 

tethering of vesicles to specific sites (TerBush et al., 1996). As suggested by Figure 

22, the exocyst could play a similar role in the site-directed exocytosis of the TI-

VAMP compartment in neuronal growth cones. As outlined above, the exocyst plays 

an important role in neurite outgrowth, although the exact function in the generation 

of neuronal polarity was not established (Murthy et al., 2003). A link between the 

exocyst and the generation of cell polarity has been demonstrated in mammalian 

epithelial cells (Grindstaff et al., 1998). Upon formation of cell-cell contacts, the 

exocyst complex is recruited to sites of cell-cell contact and is essential for the 

delivery of a basolateral membrane protein, the LDL receptor (Grindstaff et al., 1998). 

Importantly, the localization of the exocyst complex to the apical junctional complex is 

dependent on cell-cell adhesion mediated by E-Cadherin. Therefore, an E-Cadherin 

mediated initial spatial cue can result in the establishment of an exocyst-dependent 

targeting patch where polarized exocytosis occurs. It can be speculated that L1-

ligation might play a role similar to E-Cadherin-activation in defining sites of 

recruitment for the exocyst, which in turn allow for the site-specific delivery of 

exocytotic vesicles. 

 In neuronal cells, the importance of cell adhesion molecules in defining sites of 

synaptogenesis and maturation in functional synapses has been highlighted by 

several recent publications. Two unrelated CAMs, neuroligin and SynCAM, were 

shown to be sufficient to induce morphological and functional presynaptic 

differentiation in contacting axons, when presented by non-neuronal cells engineered 

to express these molecules (Biederer et al., 2002; Scheiffele et al., 2000). Analysis of 

the neuromuscular junction in mice deficient for the neuronal cell adhesion molecule 

NCAM showed relatively normal synapse formation, but severe deficits in the 

mechanism of recycling of synaptic vesicles, leading to impaired synaptic release 

(Polo-Parada et al., 2001). In fact, NCAM might play a role in neurons similar to that 
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of E-Cadherin in epithelial cells by defining spatial cues for the delivery of transport 

carriers to sites of synaptogenesis (Sytnyk et al., 2002). NCAM seems to perform this 

task by directly interacting via spectrin with TGN transport carriers which contain 

synaptic vesicle proteins (Sytnyk et al., 2002).  

 The findings presented here have important implications for the understanding 

of the role of adhesion molecules like L1 in the differentiation of neurons and the 

development of the brain. It can be proposed that the function of L1 does not solely 

depend on its capacity to transduce intracellular signals and to mediate cell-to-cell 

adhesion but also consists in the targeting of exocytotic organelles to the leading 

edge of growing axons and to sites of contact formation between cells. At the same 

time, delivery of adhesion and signaling molecules like L1 in a TI-VAMP-dependent 

manner may stabilize initial contacts and reinforce signaling mechanism leading to 

stable target recognition and/or directed growth by a positive feedback mechanism 

(See model 1).  

 Therefore, neuronal morphogenesis is likely to occur as an integrated 

mechanism of cytoskeleton and membrane dynamics, which are controlled by 

morphogenetic cues, such as ligation of the cell adhesion molecule L1. 

a)       b) 

 
Model 1: a) Homophilic binding between L1 expressed on the growth cone of an axon (bottom) and an 
adjacent cell (top) leads to conformational change and activation of the L1 molecule. Activation of L1 
leads to an assembly of a molecular scaffold including the exocyst, perhaps via src-activation, and 
reorganization of the actin cytoskeleton. The establishment of this spatial cue allows for the 
recruitment and accumulation of TI-VAMP-positive vesicles containing L1 at sites of contact formation. 
SNARE complex formation between TIVAMP and the t-SNARE SNAP25/Stx 1 mediates exocytosis of 
L1 molecules which will reinforce the initial contact and lead to stable contact formation. 
b) Stable contact formation will reinforce L1-induced signaling and thus recruitment of TI-VAMP 
vesicles. In turn, enhanced recruitment of TI-VAMP-vesicles will stimulate growth towards the 
attractive substrate. Therefore, a positive feedback mechanism based on L1-signaling and TI-VAMP-
mediated trafficking could result in directed growth of the axon or stable target recognition. 
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VI. Deutsche Zusammenfassung 

 

In dieser Arbeit wurde die Rolle des vesikulären SNARE Proteins 

Tetanus neurotoxin Insensitive VAMP (TI-VAMP, auch VAMP-7 genannt) in der 

neuronalen Differenzierung untersucht.  

 TI-VAMP gehört zur Familie der SNARE Proteine, die eine entscheidende 

Rolle im Membranverkehr eukaryotischer Zellen spielen. Sogenannte vesikuläre oder 

v-SNAREs wie TI-VAMP sind in vesikulären Transportintermediaten exprimiert, 

während sich die sogenannten target oder t-SNAREs auf der Zielmembran befinden. 

Die SNARE-Hypothesis sieht voraus, das die Komplexformation zwischen 

spezifischen v- und t-SNAREs zur spezifischen Fusion des Transportintermediats mit 

seiner Zielmembran führt. Auch wenn SNARE-Proteine nur bedingt die Spezifität von 

Membranfusion bestimmen, sind sie dennoch hervorragende Marker spezifischer 

Transportwege und genetische Inaktivierung von SNARE Proteinen führt oftmals zu 

dem Verlust eines spezifischen Transportwegs innerhalb der Zelle. Aus diesem 

Grund erlaubt das Studium eines bestimmten SNARE Proteins ein tieferes 

Verständis der Funktion spezifischer Membrantransportwege. 

 TI-VAMP ist ein ubiquitär exprimiertes v-SNARE, welches in nichtneuronalen 

Zellen in einem spätendosomalen Kompartiment lokalisiert ist. Es konnte gezeigt 

werden, das TI-VAMP eine Rolle in der neuronalen Differenzierung spielt, wobei der 

genaue Membrantransportweg und eventuelle Cargoproteine, die durch diesen Pfad 

transportiert werden, nicht definiert wurde. Aus diesem Grund sollte in dieser Arbeit 

der TI-VAMP-vermittelte Transportweg in neuronalen Zellen genauer definiert 

werden. Ausserdem sollten Cargoproteine identifiziert werden, um die Rolle des TI-

VAMP-abhängigen Transports in der neuronalen Differenzierung besser zu 

verstehen.  

 Ein zweiter wichtiger Punkt, der in dieser Arbeit näher untersucht werden 

sollte, war die Frage nach der Regulation des TI-VAMP-vermittelten vesikulären 

Transports. Die neuronale Differenzierung ist ein Prozess von ausserordentlicher 

Komplexität. Das Auswachsen von Axonen und Dendriten verläuft entlang genau 

definierter Bahnen, die durch direkte Zell-Zell-Interaktionen oder Bindung von 

sekretierten Signalmolekülen an einen Rezeptor vorgegeben werden. Die Signale 

können entweder anziehender oder abstossender Natur sein, und dementsprechend 
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wird das wachsende Axon in einen bestimmten Hirnbereich eindringen oder aber ihn 

meiden. Dieses zielgerichtete Wachstum von Neuriten während der Hirnentwicklung 

erlaubt le tztendlich das komplexe Muster an synaptischen Kontakten im adulten 

Gehirn. Somit ist klar, dass der Membranverkehr, welcher Wachstum von Neuriten 

erlaubt, einer strikten Kontrolle unterliegen muss. In dieser Arbeit sollte die 

Hypothese getestet werden, ob Signalmoleküle, die die axonale Navigation 

kontrolieren, einen Einfluss auf den TI-VAMP-vermittelten Membranverkehr haben. 

 Im ersten Teil dieser Arbeit wird gezeigt, das die Expression von TI-VAMP für 

effizientes Auswachsen von Neuriten notwendig ist. Transfektion der neuronalen 

Zellinie PC12 mit inhiborischen, kleine RNAs spezifisch für die mRNA Sequenz von 

TI-VAMP inhibieren die Expression dieses Proteins. Als Folge ist das Auswachsen 

von Neuriten in der Zellinie PC12 inhibiert. Es kann gezeigt werden, dass TI-VAMP 

mit target SNARE Proteinen der Plasmamembran und des endosomalen Systems im 

Gehirn der Ratte interagiert. Ausserdem wird demonstriert, dass TI-VAMP-positive 

Vesikel direkt mit der Plasmamembran fusionieren. Daher kann davon ausgegangen 

werden, dass TI-VAMP den Austausch von Proteinen und Lipiden zwischen der 

Zelloberfläche und einem intrazellulären, endosomalen System vermittelt und dass 

dieser Transportweg von entscheidender Bedeutung für die neuronale 

Differenzierung ist. 

Das Zell-Zell Adhesionsmolekül L1, welches eine wichtige Rolle in der 

Gehirnentwicklung spielt, colokalisiert mit TI-VAMP im embryonalen Gehirn, in in 

vitro-kultivierten primären Neuronen sowie in der Zellinie PC12. L1 wird von der 

Plasmamembran in ein intrazelluläres, TI-VAMP-positives Membrankompartiment 

aufgenommen. Da Inhibierung der TI-VAMP-Expression eine verminderte Expression 

von L1 an der Zelloberfläche provoziert, sind die TI-VAMP-positiven Vesikel 

wahrscheinlich an dem Transport von L1 von einem endosomalen Kompartiment zur 

Plasmamembran beteiligt. Inhibierung der TI-VAMP-Expression provoziert nicht nur 

eine verminderte Expression von L1 an der Zelloberfläche, sondern auch die 

selektive Instabilität von L1-vermittelten adhesiven Kontakten. Gleichzeitig hat die 

verminderte Expression von TI-VAMP keinen Einfluss auf die Stabilität von N-

Cadherin-abhängigen Adhesionsverbindungen. Somit wird in diesem ersten Teil der 

Arbeit demonstriert, das der TI-VAMP-abhängige Membranverkehr in neuronalen 

Zellen eine entscheidende Rolle in der neuronalen Differenzierung spielt. Vermutlich 

ist der TI-VAMP-vermittelte Transport des Zelladhesionsmolküls L1 hierbei von 
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grosser Bedeutung. L1 spielt eine wichtige Rolle in der neuronalen Diffenzierung, da 

Mutationen dieses Moleküls zu schweren Missbildungen des Gehirns in Maus und 

Mensch führt.  

Im zweiten Teil dieser Arbeit wird gezeigt, das die Dynamik des TI-

VAMP-Kompartiments in Neuronen von dem Aktincytoskelett abhängig ist. 

Behandlung von Neuronen mit aktindepolymerisierenden Drogen führt zu einer 

drastischen Delokalisation von TI-VAMP. Somit kann die Dynamik des TI-VAMP-

Kompartiments in Neuronen direkt durch die Dynamik des Aktincytoskeletts bestimmt 

werden. Das Aktincytoskelett spielt eine wichtige Rolle in der axonalen Navigation 

während der Entwicklung, und seine Dynamik wird durch Navigationssignale 

bestimmt. In der Tat kann gezeigt werden, dass die lokale Aktivierung des 

Adhesionsmolekül L1 zu einer gleichzeitigen Akkumulation von Actin und TI-VAMP-

positiven Vesikeln führt. Die Akkumulierung der TI-VAMP-Vesikel ist spezifisch für 

L1-vermittelte adhesive Kontakte und wird nicht durch N-Cadherin-vermittelte 

Kontakte induziert. Ausserdem ist die Akkumulation intrazellulärer Membranen 

hochspezifisch für das TI-VAMP-Kompartiment. Es kann gezeigt werden, dass L1-

induzierte adhesive Kontakte einen Signaltransduktionsweg aktivieren, welcher 

Tyrosinphosphorylierungen und Aktivierung von Tyrosinkinasen der src Familie 

beinhaltet. Es kann davon ausgegangen werden, das die beobachtete Rekrutierung 

von Aktin und des TI-VAMP-Kompartiments von diesen oder ähnlichen 

Signaltransduktionsketten abhängt. Somit kann in diesem zweiten Teil der Arbeit 

gezeigt werden, dass das TI-VAMP-Kompartiment durch Signale wie zum Beispiel 

die Aktivierung des Adhesionsmolküls L1 reguliert wird, welche das Navigieren von 

Axonen während der Gehirnentwicklung ermöglichen. 

Die Beobachtung, dass die Dynamik des Cytoskeletts und 

Membranverkehr in koordinierter Weise durch morphogenetische Signale reguliert 

wird, ist von grossem Interesse. Sie legt nahe, dass Zelladhesionsmoleküle wie L1 

eine Rolle in neuronaler Morphogenese nicht nur als Vermittler von Zell-Zell-

Adhesion und Regulatoren von Signaltransduktionswegen spielen können, sondern 

gleichzeitig einen zielgerichteten Transport von Vesikeln zu Adhesionskontakten 

ermöglichen. 

Zusammengefasst wird in dieser Arbeit gezeigt, dass TI-VAMP den 

intrazellulären Transport von L1 vermittelt und das gleichzeitig L1-vermittelte 

Adhesion die Dynamik dieses Membrantransportweges kontrolliert. Das funktionelle 
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Zusammenspiel zwischen Zelladhesion und Membranverkehr, welches hier 

demonstriert wird, ist vermutlich von grosser Wichtigkeit für die Koordinierung der 

neuronalen Differenzierung.  
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