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Abstract The focus of the present research is on the analysis of local linear sta-
bility of high-order (including split-form) summation-by-parts methods, with e.g.
two-point entropy-conserving fluxes, approximating non-linear conservation laws.
Our main finding is that local linear stability is not guaranteed even when the
scheme is non-linearly stable and that this has grave implications for simulation
results. We show that entropy-conserving two-point fluxes are inherently locally
linearly unstable, as they can be dissipative or anti-dissipative. Unfortunately,
these fluxes are at the core of many commonly used high-order entropy-stable
extensions, including split-form summation-by-parts discontinuous Galerkin spec-
tral element methods (or spectral collocation methods). For the non-linear Burg-
ers equation, we demonstrate numerically that such schemes cause exponential
growth of errors. Furthermore, we demonstrate a similar abnormal behaviour for
the compressible Euler equations. Finally, we demonstrate numerically that other
commonly used split-forms, such as the Kennedy and Gruber splitting, are also
locally linearly unstable.
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1 Introduction

For consistent discretisations of well-posed linear partial differential equations
(PDEs), it is well-known that stability (typically in L2) is necessary and sufficient
for a numerical solution to converge to the analytical solution. This was proven
by Lax and Richtmyer in [24]. However, many important PDEs are not linear and
the Lax-Richtmyer convergence theorem is not valid. Examples include the Burg-
ers equation and the Euler equations of compressible gas dynamics, which are of
primary interest in the present work. It is equally well-known that the equations
of fluid dynamics are not known to be well-posed and it is therefore not known
which stability properties they have. Nevertheless, there is not a complete lack of
knowledge. For smooth solutions of non-linear PDEs, stability of the (well-posed)
linearised problem is sufficient to ensure convergence of the numerical solution with
very fine grids as shown in [39] by Strang. That is, Strang’s theorem allows to go
back to Lax-Richtmyer’s convergence theorem and to prove linear well-posedness
and stability for subsonic flows, where high-order accurate schemes have been
proven to be very efficient, see e.g. [40].

For transonic or supersonic flows, shocks may appear. To capture shocks, an ap-
propriate amount of artificial diffusion must be added to the scheme. This amounts
to ensuring non-linear stability rather than linear. Nevertheless, once the scheme
is stabilised, in the sense that the simulation does not blow up, it is again often
assumed that the scheme is now convergent. However, for non-linear equations one
bound (e.g. in L2) on the solution u is typically not enough to infer (even weak)
convergence for the non-linear fluxes f(u). For instance, in case of the Burgers
equation (see equation (1) below), the flux f(u) = u2/2 and if a sequence of ap-
proximate solutions, un ∈ L2, converges weakly to u, (un)2 does not necessarily
converge to u2 (in L1). In other words, a numerical solution may be perfectly sta-
ble and yet fail to converge to a solution. We also remark, that failure to converge
may not only appear for solutions with shocks. Turbulence is a highly non-linear
phenomena where linear stability may not be sufficient to infer convergence.

Since for the flow equations, there is little mathematical guidance to what
object we want our numerical schemes to converge, we turn to physics. A solution
of the compressible Euler equations should not only satisfy the equations but also
the second law of thermodynamics. That is, the total specific entropy should only
increase in a closed system. This translates into the solution satisfying an extra
partial differential inequality. Mathematically this extra condition implies some
control (stability) of the solution. This has led to the development of so-called
entropy-conservative/stable schemes, e.g., [41,42,12,11,28,46,13,17,19,20,36,47,
7,34,33,37,38,2,32].

Herein, we study the local linear stability of entropy-conservative/stable high-
order (including split-form) summation-by-parts (SBP) schemes. In the following
subsections, we define the concepts of linear stability, entropy-stability and lo-
cal linear stability. In particular, we differentiate between entropy-stability and
entropy-dissipation.
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1.1 Linear stability

Consider a (system of) conservation law(s) on the periodic (in space) domain
[−1, 1]× (0, T ].

ut + f(u)x = 0, u(x, 0) = u0(x), (1)

where u is the solution vector/scalar and f(u) is the vector/scalar flux function.
The problem is closed with the initial datum u0.

We begin by considering stability of linear problems. A linear PDE, ut = Pu,
on a periodic domain (Ω) with initial data u0, is well-posed if there exists a unique
solution (‖u(·, T )‖2)t = Kc exp(αcT )‖u0‖2 where ‖u‖2 = (

∫
Ω
u2 dx)1/2 is the L2

norm. The constants Kc and αc are independent of the initial data. (We tacitly
assume that the estimate is sharp.) Let ut = Phu be a consistent approximation
of the PDE, where u = (u0, u1, ..., uN )T is the discrete solution vector and

‖u‖2 = huTu =
N∑
i=0

hu2i (2)

an L2 equivalent norm. We say that the scheme is stable, if (‖u(·, T )‖2)t =
Kn exp(αnT )‖u0‖2. We refer to [18] for more information on linear well-posedness
and stability. Clearly, this notion of stability implies convergence in the sense of
Lax-Richtmyer. When Kn and αn are any bounded constants, we term the scheme
Lax stable.

To introduce some more restrictive stability notions, we consider the linear
advection equation. That is, we consider (1) with f = a u where a is the constant
advection coefficient. By multiplying from the left by u and integrating in space
and time, using the periodic boundary conditions, we obtain, ‖u(·, T )‖ = ‖u0‖.
The same estimate can be derived using Fourier analysis, and it is sharp. As is
well-known, all eigenvalues of the symbol are purely imaginary. That is, αc = 0.
In fact, for linearly well-posed PDEs, αc is always zero, unless a low-order term
(u without a derivative) is present in the PDE. Since such terms do not affect
well-posedness, other than inducing a growth, they are often ignored. Henceforth,
we assume that there is no such term in the PDE and αc = 0.

Turning to a semi-discretisation of (1) with the linear flux function, let ui(t)
be the approximation of u(xi, t), where xi = i h, i = 0, ..., N and h > 0 is the grid
spacing. Then we consider the semi-discrete finite volume scheme,

(ui(t))t +
fi+1/2 − fi−1/2

h
= 0, (3)

fCN
i+1/2 =

f(ui+1) + f(ui)

2
=
aui+1 + aui

2
. (4)

By inserting (4) into (3), multiplying by hui and summing i from 0 to N , we
obtain ‖u(·, T )‖ = ‖u0‖, where u = (u0, u1, ..., uN )T with the discrete norm (2).

One typically refers to this notion as linear stability, or L2 stability, or energy
well-posedness/stability. As in the continuous case, the estimate can be arrived at
by Fourier analysis and the eigenvalues of the discrete symbol are all imaginary.
Either way, we have αn = αc = 0. The growth of the numerical scheme does not
exceed that of continuous equation.
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Clearly, energy-stability with αn = 0 implies Lax stability (and convergence).
However, so would a scheme with eigenvalues with positive real parts. (Positive
eigenvalues, for short.) For instance, we could add an anti-dissipative term with
a coefficient that vanishes as h → 0. Such a scheme would have αn ∼ h and
would converge. One could even have αn = const.. (Since the scheme is consistent,
those eigenvalues have to be associated with the highest frequency modes, which
are vanishingly small for L2 bounded data.) However, such schemes are highly
impractical since they require an excessive resolution to control the exponentially
growing errors. Since it is straightforward to design energy-stable schemes that
avoid this problem entirely, we henceforth use energy-stability as our definition of
linear stability.

In this sense, the central difference scheme (3)-(4) is the marginally linearly
stable scheme.

1.2 Entropy-stability

While entropy-stability analysis coincides with the linear stability analysis from
the previous section in certain special cases (e.g. analysis of scalar linear problems
with square-entropy), the main motivation for entropy-stability is the investiga-
tion of non-linear problems. We define an entropy (function) for a (non-linear)
conservation law as a convex function U(u) that also satisfies Uu fu = Fu where
F (u) is the corresponding entropy flux.

A weak solution, u, of (1) is termed entropy solution, if it also satisfies,

U(u)t + F (u)x ≤ 0, (5)

which is an incarnation of the second law of thermodynamics.
The idea of entropy-stability is to design a numerical scheme for (1) that also

satisfies (5). In the review [43], it is detailed how to achieve this for a finite volume
scheme. We summarise the results here. First, we denote the vector Uu = wT as the
entropy variables. We consider the finite volume scheme (3) with non-linear flux
functions f(u). Multiplying by the entropy variables of cell i, wTi , and assuming
that,

(wTi+1 − wTi ) fi+1/2 − (Ψi+1 − Ψi) ≤ 0, (6)

one arrives at,

(Ui)t +
Fi+1/2 − Fi−1/2

h
≤ 0, ∀i, (7)

where Ψ = wT f −F is the entropy potential and Fi+1/2 = 1
2 (wTi+1 +wTi )fi+1/2 −

1
2 (Ψi+1 + Ψi) is the numerical entropy flux. The inequality (7) is a consistent
approximation of (5). What remains to do is to find fluxes fi+1/2 that satisfy (6).

As there is a somewhat confusing and loose definition of entropy-stability in
the recent high-order literature, we introduce the following nomenclature used
throughout this paper: A scheme is

(i) entropy-stable, if (7)/(6) is satisfied at all i and for any admissible entropy
function U(u);
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(ii) entropy-conservative, if (7)/(6) is satisfied as an equality for one entropy func-
tion at all i;

(iii) entropy-dissipative, if it satisfies (7)/(6) but is neither entropy-stable nor en-
tropy-conservative.

We will also refer to fluxes as having these properties with respect to (6) (locally).

Remark 1 There are several ways to extend the finite volume entropy-conserving
or dissipative scheme to high-order accuracy. A popular approach is to use high-
order interpolation/reconstruction based on entropy-conservative fluxes within the
blocks/elements, while the fluxes across the grid blocks/element interfaces can be
either entropy-conservative or dissipative, see e.g. [26,27,10,3,11,14,4]. Note that
using entropy-stable fluxes in the volume terms reduces the accuracy to first order.

1.3 Local linear stability

In fluid dynamics, e.g. in turbulence research [29], it is common to investigate
the stability of certain flow states and their transition from a linear laminar be-
haviour to a non-linear turbulent behaviour. The analysis proceeds by linearising
the non-linear system of conservation laws around a given baseflow state. The lin-
earised equation reveals if the baseflow state is locally stable in space and time
(the flow remains laminar), or allows a growth (local instability) and transitions
to turbulence (non-linear behaviour).

This idea is closely connected to linear stability. It is reasonable to demand that
the numerical scheme has the same local behaviour as the equations themselves.
For linear PDEs, we can immediately state that energy-stable schemes have this
property (they do not allow nonphysical growth), while Lax stable schemes might
violate this principle.

Next, we apply the idea used in fluid dynamics research to extend the linear
stability analysis to non-linear equations. Let us assume that we have a smooth
’baseflow’ ũ(x, t) that satisfies the non-linear PDE. We will also interchangeable
denote the baseflow as linearisation state throughout the manuscript. Local linear
stability concerns how small fluctuations |u′(x, t)| << |ũ(x, t)| added to the base-
flow evolve in time. Thus, we make the ansatz u(x, t) = ũ(x, t) + u′(x, t) for the
solution of the non-linear problem and derive a linear equation for the fluctuations
u′. Consider Burgers equation, i.e. (1) with f(u) = u2/2 on a periodic domain.
We insert the ansatz

(ũ(x, t) + u′(x, t))t +
1

2

(
(ũ(x, t) + u′(x, t))(ũ(x, t) + u′(x, t))

)
x

= 0, (8)

neglect all but the leading order terms, and use that ũ is an exact solution to
arrive at

(u′)t + (ũ(x, t)u′)x = 0, (9)

which is a variable coefficient advection equation in conservative form with the
advection velocity ũ(x, t) for the fluctuations u′(x, t). The local linear stability
of the non-linear problem, at the linearisation state ũ(x, t), is determined by the
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energy analysis of (9). Multiplying by u′ and integrating over the domain, we get
after some further manipulations

d

dt
‖u′‖2(t) =

1∫
−1

(ũ(x, t))x (u′(x, t))2 dx. (10)

Since (ũ)x is a known and integrable function, we obtain

‖u′(·, T )‖2 ≤ exp

[
T

1

2
sup
x,t
| (ũ(x, t))x |

]
‖u′(·, 0)‖2. (11)

This shows that in general, a bounded growth of the fluctuations is possible.
Hence, the variable coefficient advection problem is linearly well-posed. However,
the growth maybe exponential due to the low-order term. Below, we present a
sharper estimate for specific variable coefficient problems that enables us to rule
out schemes that are only Lax stable.

The remainder of the paper is organised as follows: In section 2, we present
the local stability analysis of entropy-conservative/dissipative schemes for Burgers
equation, including skew-symmetric high-order discontinuous Galerkin spectral
element approximations. The analysis reveals severe local linear stability issues
with such schemes. In section 3, we show that the local linear stability issues
carry over to the case of the compressible Euler equations in multi dimensions and
provide further numerical evidence. We draw our conclusions in section 4.

2 Local linear stability analysis of the non-linear Burgers equation

The split-form of the non-linear Burgers equation is

ut + α
(
u2/2

)
x

+ (1− α)uux = 0, (12)

where α ∈ [0, 1] is the split parameter. The choice α = 1 gives the divergence form
of the PDE, whereas α = 0 gives the advective quasi-linear form. It is well-known
that the 2/3-trick can be used to derive an entropy estimate for the non-linear
equation. The Burgers equation with α = 2/3 takes the form

ut +
1

3
uux +

1

3
(u2)x = 0. (13)

Multiplying by u and integrating in space gives

1

2
(‖u‖2)t +

[
1

3
(u3)

]1
−1

= 0, (14)

and with periodicity

d

dt
(‖u‖2) = 0. (15)

This trick is used to design entropy-conservative fluxes and entropy-conserving
split-form schemes.
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2.1 The finite volume perspective

By approximating (12), with central finite differences, we obtain

(ui)t + α
1
2u

2
i+1 − 1

2u
2
i−1

2h
+ (1− α)ui

ui+1 − ui−1

2h
= 0. (16)

It is straight forward to check that the approach is conservative, as it can be recast
into the finite volume form (3) with the split-flux function

fαi+1/2 =
1

2
(f(ui) + f(ui+1))− 1

2

(1− α) (ui+1 − ui)
2

(ui+1 − ui). (17)

The choice α = 2/3 corresponds to the skew-symmetric form (13) and gives the
entropy-conserving flux function

fEC
i+1/2 =

1

2
(f(ui) + f(ui+1))− 1

2

(ui+1 − ui
6

)
(ui+1−ui) =

1

6
(u2i+ui ui+1+u2i+1).

(18)
To gain some further insights into the properties of the fluxes (17) and (18),

we interpret them as a standard finite volume flux of the form,

fi+1/2 =
1

2
(f(ui) + f(ui+1))− 1

2
Ri+1/2(ui+1 − ui), (19)

where Ri+1/2 is a dissipation coefficient/matrix. We hence get for the fluxes (17)
and (18) the dissipation coefficients

Rαi+1/2 =
(1− α) (ui+1 − ui)

2
, REC

i+1/2 =
(ui+1 − ui

6

)
. (20)

Note, that the coefficients (20) are not necessarily definite. Only for the choice
α = 1, the dissipation coefficient is guaranteed to be zero for all values ui+1, ui,
and the fluxes reduce to the central flux. For general α, in particular for the
skew-symmetric entropy-conserving choice α = 2/3, the flux can be positive and
thus dissipative, but also negative and thus anti-dissipative. We note that for the
entropy-conserving flux, this was already observed in [43].

By linearising the finite volume scheme (3) with the split-fluxes (17) around a
smooth baseflow ũ that is assumed to satisfy the scheme, it is straightforward to
deduce that we get again a finite volume form (3) with the linearised fluxes

f̃αi+1/2 =
(ũi+1 u

′
i+1) + (ũi u

′
i)

2
− 1

2
R̃αi+1/2 (u′i+1 − u′i), (21)

where the dissipation coefficient of the linearised flux is

R̃αi+1/2 = (1− α) (ũi+1 − ũi). (22)

We note that the linearised flux f̃αi+1/2 is consistent with the linearised problem (8)
for all split parameters α. Furthermore, the dissipation coefficient of the linearised
fluxes R̃αi+1/2 are for arbitrary α 6= 1 positive or negative, depending on the slope
of the baseflow ũ. Clearly, the scheme is stable for all α in the sense of Lax for
smooth ũ, but the anti-dissipative parts will cause positive eigenvalues and we
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thus do not have energy-stability (see section 1.1) and consequently the scheme is
not locally linearly stable.

We emphasise that the local linear analysis simply demonstrates that the anti-
dissipative character observed in (20), is unchanged in the linear regime. Only for

the choice α = 1 the dissipation coefficients are Rαi+1/2 = 0 and R̃αi+1/2 = 0 for
all i, which is the marginal case for linear stability. This is well-known since the
scheme turns into the central difference scheme of the divergence form, which has
purely imaginary eigenvalues.

Remark 2 We note that for the entropy-conserving case, α = 2/3, Tadmor [43]
proposed to remove the anti-dissipative character by replacing the entropy-conserv-
ing dissipation coefficient REC

i+1/2 in (20) with

RTA
i+1/2 = max

(
1

6
(ui+1 − ui), 0

)
. (23)

Then the corresponding numerical flux becomes entropy-dissipative with respect to
the square-entropy U(u) = u2/2.

An alternative way to construct an entropy-dissipative flux is to add an ex-
plicit viscosity term to an entropy-conserving flux. For instance, a Rusanov-type
viscosity term of the form

fED
i+1/2 =

1

6
(u2i + ui ui+1 + u2i+1)− 1

2
max(|ui|, |ui+1|) (ui+1 − ui)

=
1

2
(f(ui) + f(ui+1))− 1

2

(ui+1 − ui
6

+ max(|ui|, |ui+1|)
)

(ui+1 − ui),
(24)

which corresponds to RED
i+1/2 =

(
ui+1−ui

6 + max(|ui|, |ui+1|)
)
≥ 0. In contrast, the

standard Rusanov flux function, see e.g. [44], is an entropy-stable flux function

fES
i+1/2 =

1

2
(f(ui) + f(ui+1))− 1

2
max(|ui+1|, |ui|) (ui+1 − ui), (25)

which corresponds to RES
i+1/2 = max(|ui+1|, |ui|).

2.2 The finite difference perspective

To give an alternative perspective on the issue, we consider the split-form (16)
directly in its finite difference form. One reason of the popularity of the split-form
schemes (16) is that for the choice α = 2/3 (skew-symmetric form) the continuous
estimate (15) carries over

d

dt
‖u‖ = 0. (26)

Hence, the skew-symmetric scheme is neutrally stable in L2 and (once again)
we conclude that it is entropy-conservative with respect to the square-entropy
U(u) = u2/2. This appears to be at odds with the conclusion above that the scheme
is not locally linearly stable. However, local linear stability refers to the local
behaviour in space and time deduced from the linearised problem. The estimate
(26) shows that there is an upper limit to the local (un-)physical growth. Below,
however, we will demonstrate numerically, that this global bound allows for a
significant growth of local fluctuations.
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To analyse the finite difference approximation (16) we first re-write it in the
following equivalent way

(ui)t+
1
2u

2
i+1 − 1

2u
2
i−1

2h
− (1− α)

2
h2

(ui+1 − ui−1)

2h

(ui+1 − 2ui + ui−1)

h2
= 0. (27)

We can re-interpret this form as a consistent discretisation of the following con-
tinuous problem

ut +

(
u2

2

)
x

− ν uxx = 0, (28)

where the last term corresponds to dissipation with the coefficient

ν =
(1− α)

2
h2 ux, (29)

that analogously to the finite volume perspective gets anti-dissipative for negative
slopes ux < 0, if α 6= 1.

As before, we linearise the scheme around a baseflow ũi(t) (which solves (16))
and insert the ansatz ui = ũi + u′i into the scheme (16). Neglecting high-order
terms of the small amplitude fluctuations, such as (u′i)

2, we get

(u′i)t + α
ũi+1u

′
i+1 − ũi−1u

′
i−1

2h
+ (1− α)

[
ũi
u′i+1 − u′i−1

2h
+ u′i

ũi+1 − ũi−1

2h

]
= 0,

(30)
which is a consistent approximation of

(u′)t + α (ũ u′)x + (1− α)
(
ũ (u′)x + u′ ũx

)
= 0, (31)

which in turn is a split-form of the continuous linearised variable coefficient advec-
tion problem (9). Again, it is possible to equivalently re-write this discretisation
into

(u′i)t +
ũi+1u

′
i+1 − ũi−1u

′
i−1

2h
− (1− α)

2
h2
[

(ũi+1 − ũi−1)

2h

(u′i+1 − 2u′i + u′i−1)

h2

+
(u′i+1 − u′i−1)

2h

(ũi+1 − 2 ũi + ũi−1)

h2

]
= 0,

(32)

which we can again re-interpret as a consistent discretisation of following contin-
uous problem

ut + (ũ u′)x −
(1− α)

2
h2 (ũx u

′
xx + u′x ũxx) = 0

ut + (ũ u′)x − (ν̃ u′x)x = 0,

(33)

where the last term again corresponds to dissipation with the coefficient

ν̃ =
(1− α)

2
h2 ũx. (34)

Again, analogously to the finite volume perspective, the coefficient gets anti-
dissipative for negative slopes of the baseflow ũx < 0, if α 6= 1.
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Remark 3 The analysis was performed for general α and shows that any split-
form is at most Lax stable, except for the central approximation with α = 1. In
particular, the skew-symmetric split-form, that is entropy-conserving, is at most
Lax stable.

The effect of split-form approximations for variable coefficient problems has
also been studied in Manzanero et al. [30]. They showed that with the additional
assumption ũ(x, t) > 0, ∀x, t, a sharper estimate than (11) can be derived

min
x∈[−1,1]

{ũ(x)} ‖u′(., T )‖2 ≤ max
x∈[−1,1]

{ũ(x)} ‖u′0(.)‖2. (35)

The estimate is interesting, as it shows that for positive linearisation states, the
fluctuation energy is decaying. In addition, Manzanero et al. showed that for pos-
itive linearisation states the central approximation based on the divergence form
(α = 1) of the PDE with central fluxes is the only scheme that has the correct be-
haviour, i.e. there is no artificial growth or damping. The central scheme (3) with
the numerical flux fCN

i+1/2 = 1
2 (f(ui) + f(ui+1)) is thus the least diffusive linearly

stable scheme for such a problem. This is exactly the same conclusion that we can
draw based on the above analysis, where we interpreted the scheme as a central
scheme plus (anti-)dissipation. The estimate (35) is very convenient for the later
numerical experiments and we will refer to it as the Manzanero-estimate.

Remark 4 We note that it is possible to design either energy-stable schemes for
the linear problem, or entropy-dissipative/conservative schemes for the non-linear
problem. However, it seems that the core of the issue is that discretisation of the
non-linear PDE and linearisation of the resulting scheme is not the same as lin-
earisation of the PDE and then discretising the linearised problem.

In view of the above observations, we will use the lack of local linear stability
as an indicator that a scheme is anti-dissipative. There are two options to study
the linearised equations: 1) Derive an energy estimate. Only anti-diffusive terms
can cause a growth of the norm in a periodic linear scheme in the absence of
low-order terms. 2) Compute the eigenvalues of the spatial operators. Recall that
for equations with no low-order terms, the spectrum has non-positive eigenvalues.
Hence, we can determine if the scheme has anti-dissipative terms by examining if
the eigenvalues have positive real parts.

2.3 Analysis of high-order diagonal-norm split-form summation-by-parts
operators

In this subsection we focus on high-order diagonal-norm split-form summation-by-
parts approximations with different entropic properties for the Burgers equation.
In particular, we analyse the skew-symmetric discontinuous Galerkin spectral ele-
ment method [14] that is strongly related to split-form summation-by-parts finite
difference approximations with simultaneous approximation terms, e.g. [10]. We
note that the entropy-conserving flux function is a key building block for the con-
struction of high-order entropy-conserving/dissipative schemes, see e.g., [27,10,3,
11,14,4].
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Details on the high-order discretisation can be found e.g. in [14,17]. We give
a short summary of the necessary building blocks. We split the computational
domain into elements of equal size h. We map the elements to a unit reference
element [−1, 1]. In each reference element, the solution is approximated by a poly-
nomial of degree N . We use N +1 Legendre-Gauss-Lobatto nodes to represent the
polynomials with Lagrangian basis functions. Thus, the solution is represented as
a vector of nodal values u. For convenience we also introduce the diagonal injection
of the nodal values to simplify notation, i.e. U = diag(u). The corresponding main
operators are the mass matrix M = diag([ω0, ..., ωN ]) (or integration matrix), the
differentiation matrix D and the boundary matrix B = diag([−1, 0, ..., 0, 1]). The
ωi are the corresponding N+1 Legendre-Gauss-Lobatto integration weights in the
reference element. The operators satisfy the summation-by-parts property

M D + (M D)T = B, (36)

where the mass matrix is interpreted as the diagonal-norm operator. We consider
the split-form discontinuous Galerkin approximation

h

2
ut + α

1

2
DU u+ (1− α)U Du = −M−1B

[
f∗ − 1

2
U u

]
, (37)

which follows directly from the continuous split-form (12) of the Burgers equation.
The numerical flux vector is

f∗ = [fi−1/2, 0, ..., 0, fi+1/2]T , (38)

where fi+1/2 is a consistent and unique numerical flux function, e.g. as used in
the finite volume approach, see section 2.1.

We get an entropy-conserving semi-discretisation with the choice α = 2/3
(skew-symmetric form) and f∗ taken to be the entropy-conserving numerical flux

(18) for the square entropy U(u) = u2/2. We obtain entropy-dissipation when
switching the numerical flux from entropy-conserving to entropy-dissipative, e.g.
(24). Thus, these versions of the high-order discretisation have a global bound on
the discrete L2-norm, see e.g. [14].

Having defined the scheme, we proceed with the local linear stability analysis.
As before, we consider a perturbation of a smooth baseflow u = ũ+u′ and assume
that ũ solves (37). The analysis of the numerical flux function fi+1/2 appearing in
the surface integral, is similar to the finite volume discussion in section 2.1. Simi-
larly, if we linearise the volume terms by inserting the ansatz with the fluctuations,
neglecting high order fluctuation terms, we obtain[

α
1

2
DU u+ (1− α)U Du

]
−
[
α

1

2
D Ũ ũ+ (1− α) Ũ D ũ

]
⇒ α

[
D Ũ u′

]
+ (1− α)

[
Ũ D u′ + U ′D ũ

]
.

(39)

The analysis of these volume terms is analogous to the finite difference discus-
sion in section 2.2. As mentioned already before, for ũ > 0 (for all elements),
the Manzanero-estimate (35) applies. The corresponding discrete estimate is only
obtained when α = 1, which is the central approximation with divergence form vol-
ume terms. All other choices, including the α = 2/3 entropy-conserving/dissipative



12 Gregor J. Gassner et al.

choice, allow local artificial growth of fluctuations, i.e. they are not locally linearly
stable. Of course, the central approximation does not have a non-linear global
bound.

2.4 Numerical investigations for the non-linear Burgers equation

To numerically investigate our theoretical findings of the local linear stability is-
sues, we consider the non-linear Burgers equation with periodic boundary condi-
tions and choose the smooth initial data

ũ(x) = sin(π (x− 0.7)) + 2, x ∈ [−1, 1], (40)

which will serve as the linearisation state. Since this state is positive, there should
be no (local in time) growth of the solution. As discussed in the sections 2.1 and
2.2, positive eigenvalues of the spectrum of the linearised spatial operator indicate
a violation of the non-growth and that artificial anti-dissipative terms are present
in the scheme.

Figure 1 shows an illustration of the baseflow for the investigations used below.
To mimic mild under-resolution of the baseflow, we project the linearisation state
(40) onto piece-wise linear polynomial basis functions (Ñ = 1) for all Burgers
simulation results presented below. As can be seen in Figure 1, the baseflow is
discontinuous across element interfaces, although the jumps are relatively small as
the baseflow is only mildly under-resolved.
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Fig. 1 Plot of the baseflow (40) for a discretisation with 10 elements and polynomial degree

Ñ = 1 in every element. Note that there are small jumps at the element interfaces.

2.4.1 Comparison of the spectra of the semi-discrete operator

To compute the spectrum of a spatial operator, we use the typical finite difference
approach to approximate the linearisation and determine the j-th column of the
Jacobi matrix of the semi-discrete residual as

Aej ≈
rhs(ũ+ ej ε)− rhs(ũ− ej ε)

2 ε
(41)
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where ε = 10−8 and ej is the unit vector in the j-th direction. With the finite
difference approach, the accuracy of the eigenvalues are limited to about single
machine precision and hence, we interpret eigenvalues within this accuracy con-
straint as zero, even when formally the number is positive. The computed eigen-
values of the approximative Jacobi matrix A give an approximate spectrum of the
semi-discrete high-order operator. We are particularly interested in assessing the
maximum real part across all eigenvalues as positive eigenvalues imply growth of
their eigenmodes.

For the approximation (37), we plot the results of the fully central approxima-
tion (α = 1) and the entropy-conserving approximation (α = 2/3) in Figure 2. The
plots reveal a significant positive real part of 1.0307 for the entropy-conserving ap-
proximation, whereas the spectrum of the central approximation is neutrally stable
and almost purely imaginary in accordance with (35).
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Fig. 2 Spectra of spatial operators. Left: Central approximation with the divergence form
(α = 1) and the central numerical flux. Right: Entropy-conserving approximation with skew-
symmetric form (α = 2/3) and the entropy-conserving flux (18). [Discretisation with polyno-
mial degree N = 3 and 10 elements with the baseflow shown in Figure 1. The maximum real
part in of the approximate spectrum is about 8.8 × 10−8 for the central scheme and about
1.0307 for the entropy-conserving scheme.]

With a maximum real part of about 1.0307 in the defective spectrum, we should
expect a strong exponential growth of the corresponding eigenmode. We plot the
corresponding eigenmode in Figure 3. We note that the eigenmode is active in the
part of the domain, where the slope of the baseflow is negative. Although unclear
if there is a direct connection, it is interesting to note that this coincides with the
discussion on the entropy-conserving split-form in the previous section 2.2, where
the dissipation coefficient gets negative, when the slope of the linearisation state
is negative.

Next, we investigate if either the volume terms or the surface terms are the
cause for this faulty and undesired behaviour of the discretisation. Figure 4 shows
the result for the divergence form of the volume terms (α = 1) combined with the
entropy-conserving flux (18) in the left plot. In the right plot, the discretisation
ingredients are flipped with skew-symmetric (α = 2/3) volume terms and the
central numerical flux for the surface terms. It is clearly seen that the spectra
still have eigenvalues with large positive real parts, here the maximum is 0.1006
in the left plot and 0.93 in the right plot. The growth rate with the entropy-
conserving surface flux is smaller than for the fully entropy-conserving scheme.



14 Gregor J. Gassner et al.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

ei
ge

nm
od

e

Fig. 3 Plot of the eigenmode corresponding to the eigenvalue with the largest real part (about
1.0307) for the entropy-conserving discretisation with skew-symmetric form (α = 2/3) and the
entropy-conserving flux (18). [The discretisation uses 10 elements and a polynomial degree
N = 3, with the baseflow (40). The eigenmode is scaled such that its largest peak is 0.001.]

The reason is, that the baseflow is relatively well resolved, with only small jumps
at element interfaces. As the anti-dissipation scales directly with this jump, its
effect is decreased. The plot on the right also suggests that the volume terms in
entropy-conserving form are indeed a major contributor to the lack of local linear
stability.
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Fig. 4 Spectra of spatial operators. Left: Volume term in divergence form (α = 1), surface
term uses entropy-conserving flux (18). Right: Volume term in skew-symmetric form (α = 2/3),
surface term uses central flux. [Discretisation with polynomial degree N = 3 and 10 elements
with the baseflow shown in Figure 1. The maximum real part is about 0.1006 (left) and 0.9300
(right). ]

We further investigate the impact of the modified entropy-conserving flux by
Tadmor (23) that excludes the anti-dissipation. To demonstrate that it has a
stabilising effect on the scheme, we redo the plots of Figure 4. The results are
illustrated in Figure 5 and suggest that indeed Tadmor’s modification seems to
get rid of the faulty influence of the anti-dissipation (left plot), when combined
with divergence form volume terms. This corroborates our theoretical findings that
the positive part of the spectrum is associated with the anti-diffusive character
of the scheme. However, it is also clear, that this particular modification of the
surface term is not enough to fix the locally linearly unstable behaviour of the
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skew-symmetric volume terms, as can be seen in the right plot, which still has a
significant positive real part, due to the anti-diffusion in the volume terms.
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Fig. 5 Spectra of spatial operators. Left: Volume term in divergence form (α = 1), surface
term uses the modified entropy-stable flux that excludes anti-dissipation (23). Right: The
volume terms are in skew-symmetric form (α = 2/3), the surface term uses the modified
entropy-dissipative flux that excludes anti-dissipation (23). [Discretisation with polynomial
degree N = 3 and 10 elements with the baseflow shown in Figure 1. The maximum real part
is about −9.01 × 10−8 (left) and 0.9298 (right).]

Remark 5 It is interesting to note that Carpenter et al. considered a modifica-
tion of the volume terms to introduce entropy-dissipation, where they use entropy
generation of the central approximation compared to the entropy-conserving ap-
proximation to adjust the volume terms (see [3], section 5, equation (5.6)). Un-
fortunately, our numerical investigations show only little influence on the spectra
for this modification, as can be seen in Figure 6. In particular, we still observe
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Fig. 6 Spectrum of spatial operator. The volume terms are entropy-dissipative according
to the modification of Carpenter et al. (see [3], section 5, equation (5.6)). The surface flux
is the modified version of Tadmor (23), that excludes anti-dissipation. [Discretisation with
polynomial degree N = 3 and 10 elements with the baseflow shown in Figure 1. The maximum
real part is about 0.9297.]

significant positive real parts of about 0.9297, similar to the case with full skew-
symmetric volume terms. This highlights that a sufficient amount of dissipation is
necessary to pull the spectrum to the left-hand side.
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Next, we investigate the impact of resolution on the behaviour of the spec-
trum. As discussed in the previous section 2.2, we are able to interpret the skew-
symmetric forms as central discretisations with dissipation. The dissipation coef-
ficient can be positive or negative and scales with the mesh size h, which suggests
that refining the mesh (decreasing h) should improve the faulty behaviour. We
plot in Figure 7 the resulting spectra of the entropy-conserving skew-symmetric
form when increasing the number of elements from 10 (compare right part of Fig-
ure 2) to 20 and 40 respectively. One can clearly see that the maximum positive
real part does not shrink and stays at the value of about 1. However, we can also
clearly observe that the faulty eigenmodes get pushed to higher frequencies, as the
corresponding imaginary parts increase with decreasing mesh size. We note that
we observe a similar behaviour for all discretisations discussed in this work: the
faulty eigenmodes always get pushed to higher frequencies when refining the mesh,
whereas the maximum real part stays about the same. It is thus not straight for-
ward that the schemes are even Lax stable, as the maximum positive real part does
not shrink with mesh refinement. However, we expect that for very well resolved
smooth problems, the content of the high frequency eigenmodes decays quickly.
Thus, the contribution of the faulty high frequency eigenmodes should also be
reduced when refining the mesh, compare the discussion at the end of section
1.1. We refer to the next section for further numerical results that support this
expectation, see the results in Figure 13 and Figure 14.
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Fig. 7 Spectra of spatial operator, for entropy-conserving approximation with skew-symmetric
form (α = 2/3) and the entropy-conserving flux (18). Left: Number of elements is 20. Right:
Number of elements is 40. [Discretisation with polynomial degree N = 3. Linearisation with
the baseflow shown in Figure 1. Maximum real part is 1.021 (left) and 1.025 (right). ]

Lastly, we investigate the effect of a strongly dissipative numerical surface flux
function. As in most practical simulations, the skew-symmetric volume terms are
combined with a dissipative numerical surface flux, such as e.g. the Rusanov-type
entropy-dissipative flux (24). From a theoretical point of view, it is not obvious
how a surface dissipation term can apply control over volume type anti-dissipation.
However, as can be seen in the left part of Figure 8, the spectrum gets shifted
towards the negative real axis, with the maximum real part of now −1.06× 10−7.

Unfortunately, it is possible to design a discretisation setup where the surface
dissipation is not enough to stabilise the skew-symmetric volume integrals. To
provoke such a behaviour, we first increase the polynomial degree from N = 3 to
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Fig. 8 Spectra of spatial operator, the surface term uses entropy-dissipative Rusanov-type
flux (24), the volume term is in skew-symmetric form (α = 2/3). Left: Discretisation with
polynomial degree N = 3 and 10 elements and linearisation with baseflow shown in Figure 1.
Maximum real part is −1.06 × 10−7. Right: Discretisation with polynomial degree N = 15
and 3 elements, and an increased baseflow frequency from π to 4π, to mimic severe under-
resolution. Zoom in on the spectrum, to show the eigenvalues with maximum real parts of
1.359.

N = 15 and decrease the number of elements from 10 to 3. This gives about the
same number of degrees of freedom (48 in comparison to 40), however the number
of element interfaces is smaller, which should obviously decrease the stabilising
effect of the surface terms. We note that it is especially the high-order polynomial
approximations that are attractive for under-resolved turbulence simulations, e.g.
[16]. Second, we mimic severe under-resolution of the baseflow by increasing the
frequency of the baseflow (40) from π to 4π. In combination with the very low
number of elements, this results in large jumps across the element interfaces. A
zoom in of the resulting spectrum is plotted in the left part of Figure 6, where
the maximum real part of the eigenvalue is 1.359, which means that the entropy-
dissipative scheme in this setup is again locally linearly unstable and allows for
exponential growth.

As an intermediate conclusion, the numerical results confirm the theoretical
findings and the faulty behaviour of the entropy-conserving numerical flux and the
entropic split-form approach with diagonal-norm summation-by-parts operators.
The schemes allow for an nonphysical exponential growth of local fluctuations.
Adding a dissipative mechanism through the numerical fluxes at the interfaces
does not necessarily pull the spectrum to the negative half-plane. Neither does
necessarily adding dissipation to the volume terms. Both these ”fixes”, at best
only mask the inherent issue. We suspect that additional artificial diffusion for the
volume terms is necessary, in combination with truly entropy-dissipative surface
fluxes, to obtain the locally correct behaviour.

On the other hand, the central approximation in these particular investigations
is locally linearly stable. However, the central approximation of course lacks a non-
linear (entropy) stability estimate and hence is not suitable for the simulation of
highly non-linear (under-resolved) problems.

2.4.2 Simulation of the growth of the fluctuations

The goal of this section is to solidify the numerical results from the previous section
and perform actual simulations to monitor the growth of the fluctuations. The
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semi-discretisation (37) of the non-linear Burgers equation gives a system of weakly
coupled ordinary differential equations in time that we integrate with a three-stage
third-order low storage strong stability preserving Runge-Kutta scheme with a
time step computed as

∆t = CFL
h

(N + 1)λmax
, (42)

where λmax = max
u

f ′(u) and CFL = 0.05 to keep the time integration errors low.

We particularly focus on validating the previous results and are hence inter-
ested in the evolution of the fluctuations. It is clear that the function shown in
Figure 1 is not a solution of the non-linear homogeneous Burgers equation. In-
stead, we consider the inhomogeneous Burgers equation, where we use the residual
computed with the linearisation state as a discrete source term. For the inhomoge-
nous source term, we first compute the fully non-linear semi-discrete residual with
the linearisation state rhs(ũ) as a pre-processing step. Then, during the actual
simulation, we substract in every single Runge-Kutta stage the residual of the lin-
earisation state. By solving the inhomogenous Burgers equation with this discrete
source term, we make sure that a simulation with initial condition equal to the
linearisation state would give zero growth down to machine precision. This is im-
portant, as we are now able to add fluctuations u′0(x) in a controlled way around
the linearisation state to get our actual initial conditions

u(x, t = 0) = ũ(x) + u′0(x), (43)

such that we can monitor the growth of the fluctuations in comparison to the
linearisation state.

To bring the simulation results in context with the investigation of the spectra
from the previous subsection, we choose the critical eigenmode corresponding to
the eigenvalue with the largest real part shown in Figure 3 as our initial fluctuation
u′0(x). Note that the eigenmode is scaled such that its maximum peak is 10−3, thus
we have an initial perturbation with amplitude 10−3. Throughout the simulation,
we monitor the maximum peak of the approximative solution in comparison to the
linearization state ũ after every time step and plot the result in log-scale over time
in Figure 9. To compare these numerical results to the previous analysis, we take
the maximum real part of the spectra and use this to estimate the growth rate and
to generate a prediction of the corresponding exponential growth, starting with the
perturbation amplitude 10−3. The spectrum for the central approximation shows
indeed no growth, as the amplitude of the fluctuations stay at about the initial
amplitude 10−3. In stark contrast, the entropy-conserving discretisation shows
significant exponential growth, with a growth rate matching the prediction from
the previous analysis of the spectrum.

For completeness, we plot the resulting numerical solutions in Figure 10, where
we can clearly observe how the faulty growth of the small scale fluctuations start
to get visible in case of the entropy-conserving scheme. The amplitude 10−3 of
the initial fluctuations grows up to more than 0.1, such that this can already be
seen in the simulation results. It is interesting to note again, that the eigenmode
is active in the part of the domain with negative slopes, hence the solution first
starts to deviate from the baseflow in this part of the domain.
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Fig. 9 Evolution of the maximum amplitude of the fluctuations of the inhomogeneous simu-
lation. Left: Central approximation, volume term in divergence form (α = 1) and central nu-
merical flux for the surface term. Right: Entropy-conserving scheme with the skew-symmetric
volume terms (α = 2/3) and the entropy-conserving flux (18). [Discretisation with 10 elements
and polynomial degree N = 3, using baseflow from Figure 1 for initialisation and rhs(ũ), and
an added initial fluctuation being the scaled eigenmode shown in Figure 3 with the maximum
initial amplitude 10−3. End time of the simulation is T = 5. For comparison, we take the
maximum real part of the corresponding spectra and use it to predict the exponential growth.
The maximum real part is 8.8 × 10−8 (left) and 1.0307 (right). Spectra shown in Figure 2. ]
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Fig. 10 Numerical solution of the inhomogeneous simulation at T = 5 and comparison to
baseflow. Left: Central approximation with divergence form volume term (α = 1) and the
central numerical flux for the surface term. Right: Entropy-conserving scheme with the skew-
symmetric volume terms (α = 2/3) and the entropy-conserving flux (18). [Discretisation with
10 elements and polynomial degree N = 3, using baseflow from Figure 1 for initialisation and
rhs(ũ), and an added initial fluctuation being the scaled eigenmode shown in Figure 3 with
the maximum initial amplitude 10−3. Spectra shown in Figure 2. ]

Remark 6 We did several investigations with different versions of the scheme, dif-
ferent configurations of volume and surface terms, and different initial fluctuation
distributions. In every case, a faulty spectrum with a positive maximum real part
leads to an exponential growth in the actual simulation and shows that the scheme
is locally linearly unstable. For discretisations where the maximum real part is zero
(in relation to the accuracy of the approximative Jacobian), all simulations keep
the initial condition with only negligible variations for all times and are locally
linearly stable.

Next, we consider a long term simulation of the entropy-conserving discretisa-
tion. The goal is to investigate the behaviour of the method when the amplitude of
the fluctuations are so large, that non-linear effects cannot be neglected. We thus
increase the end time from T = 5 to T = 20 and show the results in Figure 11. It is
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interesting to see that at about t = 7.5, non-linear behaviour seem to emerge and
start to dominate the scheme. It is important to note that the entropy-conserving
scheme is neutrally stable in the L2-norm, which is clearly visible in the left plot.
The right plot shows the numerical solution at the final time, and reveals a wild
collection of large scale oscillations that completely dominate the solution and
overshadow the baseflow. It is important to recall, the the physical prediction is
that the initial condition, the baseflow (black line), stays steady for all times!
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Fig. 11 Long time behaviour of the inhomogeneous simulation, using the entropy-conserving
scheme with skew-symmetric volume terms (α = 2/3) and the entropy-conserving flux (18).
Left: Evolution of the maximum fluctuation amplitude over time, compared to the predicted
exponential growth with the maximum real part 1.0307. Right: Numerical solution at final
time T = 20 and comparison with the initial baseflow. [Discretisation with 10 elements and
polynomial degree N = 3, using baseflow from Figure 1 for initialisation and rhs(ũ), and an
added initial fluctuation being the scaled eigenmode shown in Figure 3 with the maximum
initial amplitude 10−3.]

We further show an interesting result for the dissipative modification of Tadmor
(2.1) and the volume modification of Carpenter et al. discussed in Remark 5. As
shown in the previous section, the scheme is not locally linearly stable, despite the
added dissipation. The left plot of Figure 12 shows this behaviour with a similar
faulty exponential growth, until the non-linear effects kick in at about t = 5 and
stabilise the solution via its global L2 estimate. Due to the added dissipation,
the global stability mechanisms kick in at an earlier time t = 5 compared to
the entropy-conserving scheme at time t = 7.5 in Figure 11. Consequently, the
maximum fluctuation amplitude is smaller in comparison as well and the numerical
solution plotted in the left part of Figure 12 looks much ’nicer’ compared to the
result of the entropy-conserving scheme in Figure 11. Still, although it is better
than the entropy-conserving result, this should not deflect the attention from the
fact that it also displays faulty behaviour.

Finally, we document another interesting numerical result, where the initial
fluctuations are not chosen as the particular eigenmode corresponding to the
critical eigenvalue with large maximum real part. Instead, we choose a smooth
distribution of the initial fluctuation u′0(x) = 0.001 cos(π x). This fluctuation is
well resolved by the chosen discretisation. We choose again the scheme with the
entropy-dissipative surface modification of Tadmor and volume modification of
Carpenter et al. for this assessment. It can be seen in the left plot of Figure 13
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Fig. 12 Long time behaviour of the inhomogeneous simulation, using the modified entropy-
dissipative scheme of Tadmor (23) and the volume modification of Carpenter et al. discussed in
remark 5. Left: Evolution of the maximum fluctuation amplitude over time, compared to the
predicted exponential growth with the maximum real part 0.929. Right: Numerical solution at
final time T = 20 and comparison with the initial baseflow. [Discretisation with 10 elements
and polynomial degree N = 3, using baseflow from Figure 1 for initialisation and rhs(ũ), and
an added initial fluctuation being the scaled eigenmode shown in Figure 3 with the maximum
initial amplitude 10−3.]

that until about t = 5, the solution behaves very accurately and keeps the am-
plitude of the initial fluctuations in check at about 10−3. If one would choose
the final time of the simulation smaller than t = 5, one might get tricked into
believing that the scheme works well. However, the smooth distribution of the
fluctuations also contain parts of the eigenmodes that correspond to eigenvalues
with positive maximum real part. It comes as no surprise that these eigenmodes
grow throughout the simulation and get amplified until they finally dominate the
initial smooth fluctuations. Once, the eigenmode dominates, we can observe the
exponential growth with the rate 0.9297 until the non-linear behaviour takes over.
If we increase the resolution from 10 to 20 elements, we discussed in the previ-
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Fig. 13 Long time behaviour of the inhomogeneous simulation, with a smooth initial fluctua-
tion, using the modified entropy-dissipative scheme of Tadmor (23) and the volume modifica-
tion of Carpenter et al. discussed in remark 5. Left: Evolution of the maximum fluctuation am-
plitude over time, compared to the predicted exponential growth with the maximum real part
0.929. Right: Numerical solution at final time T = 20 and comparison with the initial baseflow.
[Discretisation with 10 elements and polynomial degree N = 3, using baseflow from Figure 1
for initialisation and rhs(ũ), and an added smooth initial fluctuation u′0(x) = 0.001 cos(π x).]

ous section, compare Figure 7, that the faulty eigenmodes get shifted to higher
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frequencies. Thus, we expect that for smooth (well-resolved) fluctuations the am-
plitude of the faulty eigenmodes decrease, as higher frequencies parts containing
these modes should decay quickly. As can be seen in Figure 14, we can observe
that indeed the approximative solution stays stable for longer times, up to t = 7.5
in comparison to t ≈ 6. Consequently, the overall maximum growth of the fluctu-
ation amplitude is smaller compared to the lower resolution before the non-linear
stability estimate kicks in. However, we can also clearly observe that increasing
the resolution only shifts the problem to later times and does not fully resolve it,
as we still get artificial exponential growth of the fluctuations later on.
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Fig. 14 Long time behaviour of the inhomogeneous simulation, with a smooth initial fluctu-
ation and 20 elements, using the modified entropy-dissipative scheme of Tadmor (23) and the
volume modification of Carpenter et al. discussed in remark 5. Left: Evolution of the max-
imum fluctuation amplitude over time, compared to the predicted exponential growth with
the maximum real part 0.929. Right: Numerical solution at final time T = 20 and comparison
with the initial baseflow. [Discretisation with 20 elements and polynomial degree N = 3, using
baseflow from Figure 1 for initialisation and rhs(ũ), and an added smooth initial fluctuation
u′0(x) = 0.001 cos(π x).]

The results of the longterm simulations of the entropy-conserving or entropy-
dissipative discretisations shown in Figure 11, 12, 13 and 14 are highly worrisome.
They demonstrate that the discretisations might generate results that appear sta-
ble, but the simulations are nonphysical as they allow for an initial exponential
growth of small scale fluctuations until the non-linear stability estimate kicks in
and provides a global bound.

The physical behaviour for the linearised problem with the given positive base-
flow is known and does not allow growth. The worrisome aspect is that the scheme
artificially generates solution structures, that are caused by the lack of local linear
stability of the numerical scheme and not by actual physics. We have also shown
that grid refinement might shift the issues to later simulation times. At first, one
might lean towards rating this behaviour as acceptable in practice, as one could
just refine the grid until the simulation time can be reached safely. However, at
second sight, this behaviour is at least as worrisome as we do not want to arti-
ficially increase the resolution of our discretisation, just to make it stable. This
is certainly not a feasible strategy for three-dimensional turbulence. Furthermore,
while we can easily assess the behaviour and judge the numerical results for the
Burgers equation, simulation results for fluid dynamics equations in multiple spa-
tial dimensions are much more complicated and harder to assess. It seems to be
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very difficult to decide, when the resolution in a complex application is enough
to suppress the artificial exponential growth (assuming that it is even feasible
to increase the resolution). In particular, one may then ask the critical question,
if those artificial structures generated by the scheme might get transformed by
the high-order scheme into something that resembles a meaningful fluid dynamics
structure. One might even interpret the extended range of medium and small scales
appearing as a positive aspect of the ”low numerical diffusion of the high-order
approximation”.

To further investigate this hypothesis, we have to consider the true flow equa-
tions, which is the topic of the next section.

3 Local stability analysis for the compressible Euler equations

In this section, we show that the issues of the entropy-conserving fluxes carry over
to the compressible Euler equations. To simplify the analysis, we first consider the
one-dimensional version

ut + f(u)x =

 ρ
ρ v
ρE


t

+

 ρ v
ρ v2 + p
ρE v + p v


x

=

0
0
0

 , (44)

where ρ is the density, v the velocity, E the specific total energy, p = (γ−1) ρ (E−
v2/2) the pressure with the perfect gas assumption, and γ = 1.4 the adiabatic
coefficient. For our analysis, we consider the entropy pair

U(u) = − ρ s

γ − 1
, F (u) = − ρ v s

γ − 1
, s(u) = ln

(
p

ργ

)
(45)

where s is the thermodynamic entropy. The corresponding entropy variables are

w =
∂U

∂u
=

(
γ − s
γ − 1

− ρ

p

v2

2
,
ρ

p
v , −ρ

p

)T
. (46)

We consider first the finite volume discretisation (3) of the compressible Euler
equations (44). There are several numerical flux functions available in literature,
e.g., [21,5,35] that give discrete entropy-conservation. We consider for instance the
variant presented by Chandrashekar [5] that is given by

fEC
i+1/2 =

 {ρ}ln {{v}}
{ρ}ln {{v}}2 + p̂

{ρ}ln {{v}} ĥ

 , (47)

where {{.}} is the arithmetic mean value, the logarithmic mean is

{ρ}ln =
ρi+1 − ρi

ln(ρi+1)− ln(ρi)
, (48)

and

p̂ =
{{ρ}}
{{ρ/p}} , ĥ =

1

{ρ/p}ln(γ − 1)
+ {{v}}2 − 1

2

{{
v2
}}

+
p̂

{ρ}ln . (49)



24 Gregor J. Gassner et al.

We consider a particular simple test problem with periodic boundary conditions
in the domain [−1, 1], where the initial condition is given by

ρ(x) = 1 + 0.98 sin(2π x), v = 0.1, p = 20, (50)

which resembles an entropy wave with a minimum density of ρmin = 0.02. Plugging
this solution into the compressible Euler equations (44), the problem reduces to
a set of constant coefficient advection equations. Thus, the exact solution of this
problem is directly given by the characteristics theory, i.e. the wave is transported
without changing its shape or form. As this test problem reduces the compressible
Euler equations to a simple advection problem, we know that again the finite
volume scheme with the central numerical flux

fCN
i+1/2 =

1

2
(f(ui) + f(ui+1)) (51)

is the least diffusive scheme that is linearly stable. Moreover, all three equations
reduce to exactly the same advection equation when using the central flux which
is well-known to produce accurate solutions. Thus, we are again able to use the
central flux as the baseline scheme for comparisons with other numerical flux
functions.

We turn to the analysis of the mass equation and compare the entropy-con-
serving flux (47) to the central flux (51) and get the relationship

(f1)EC
i+1/2 = (f1)CN

i+1/2 −
1

2
(R1)EC

i+1/2 (ρi+1 − ρi), (52)

where the dissipation coefficient is

(R1)EC
i+1/2 =

2({{ρv}} − {ρ}ln {{v}})
ρi+1 − ρi

= ({{ρ}}−{ρ}ln)
2 {{v}}

ρi+1 − ρi
+

(vi+1 − vi)
2

, (53)

which shows that again anti-dissipation could occur for certain configurations, as
(R1)EC

i+1/2 is indefinite. In particular, if we consider the test problem (50) with

the constant positive velocity, and since {ρ}ln ≤ {{ρ}}, the dissipation coefficient
(R1)EC

i+1/2 is negative in the part of the domain where the density slope is negative,
i.e. ρx < 0.

Remark 7 Unlike the central scheme, the entropy-conservative flux does not reduce
to the same scheme for the advection equation for all three equations. Hence, the
numerical solutions of the three equations will not be the same but interact with
each other. Consequently, the scheme does not only introduce negative artificial
dissipation, but also contains a mechanism for generating perturbations.

This short analysis for the simple test case already demonstrates that the issues
of anti-dissipation carry over from the discussion on the Burgers equation to the
compressible Euler equations. We note that the entropy-conserving numerical flux
is again the main building block to extend the finite volume approach to high-order
discretisations. Thus, it is expected that the issues with anti-dissipation and lack
of local linear stability most likely carry over to the high-order framework.
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In the following numerical results, we do not simulate the evolution of the flu-
cutations with respect to a baseflow by using a inhomogeneous test case. Instead,
we perform a standard simulation with the non-linear homogeneous compress-
ible Euler equations. We are interested in numerical investigations of the actual
behaviour of the high-order framework. We choose again a high-order discontinu-
ous Galerkin spectral element method with Legendre-Gauss-Lobatto nodes, which
belongs to the class of diagonal-norm summation-by-parts methods. In contrast
to the Burgers equation, no explicit split-form to obtain entropy-conservation is
known up to this point. Instead, Fisher [9] and Carpenter et al. [3,4] extended the
high-order entropy-conserving reconstruction of LeFloch et al. [25] to diagonal-
norm summation-by-parts operators on finite domains, including e.g. the spectral
collocation operator with Legendre-Gauss-Lobatto nodes. For a detailed descrip-
tion of the algorithms in multiple dimensions and additional assessment of their
properties, we further refer to [17,15].

The numerical investigations are carried out with the open source three-di-
mensional high-order simulation code Fluxo (github.com/project-fluxo). The as-
sessment is done in pseudo two-dimensions on a grid with 4 × 4 × 1 elements in
the domain [−1, 1]3 with polynomial degree N = 5. The initial condition (50) is
extended to multiple spatial dimension and reads

ρ(x) = 1 + 0.98 sin(2π (x+ y), (v1, v2, v3) = (0.1, 0.2, 0.0), p = 20. (54)

Figure 15 shows the visualization of the initialized density. We observe that this
particular test problem is very well resolved. Furthermore, this initial distribution
is also used as a linearisation state to compute the spectrum of the non-linear
operators.

Fig. 15 Visualisation of the discrete density distribution of the initial condition (54) used for
the numerical simulations, on a 4 × 4 × 1 grid with polynomial degree N = 5.

The semi-discretisation is explicitly integrated in time with a low-storage 5-
stage Runge-Kutta method of 4th order accuracy [22]. The time step is updated
during the simulation with CFL = 0.05. The end time of the simulation is T =
5, but we will add the final crash times for simulations that did not reach the
end time. For the investigation of the spectra, we use the initial conditions as
our linearisation state ũ(x, y, z) = u0(x, y, z). The computation of the spectra in
pseudo two-dimensions is more involved compared to the scalar one-dimensional
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case: we use the Arnoldi algorithm with modified Gram-Schmidt orthogonalisation
to build an upper Hesseberg matrix from which we compute the eigenvalues via
Lapack (dhseqr) [1]. For the Arnoldi algorithm, we only need the matrix vector
product of the Jacobian with a given vector and hence no explicit Jacobian matrix.
The matrix vector product is approximated as a Frechet derivative again with a
central finite difference formula with step size ε = 10−8.

As a first result, we verify in Figure 16 the behaviour of the central approx-
imation, where we use the volume terms in divergence form and the numerical
surface flux as the central flux. As can be seen in the left plot, the spectrum is
essentially imaginary, with the largest positive real part being 2.978 × 10−3. As
described above, the algorithm to compute the spectrum is more complex for the
compressible Euler equations in multiple dimensions and its accuracy is limited
by approximation errors and finite precision arithmetics. The spectra in the tests
have eigenvalues with imaginary parts in the range of 103, whereas the maximum
real part is in the range of 10−3, which gives an accuracy range of 10−6 and seems
reasonable. The right plot shows the corresponding simulation results at the final
time T = 5, and confirms that the solution is well resolved and properly advected
by the dissipation-free purely central high-order approximation.
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Fig. 16 Numerical results with the central approximation, volume term in divergence form
and the central numerical flux function for the surface term. Left: Spectrum of the spatial
operator at t = 0, maximum real part is 2.978 × 10−3. Right: Visualisation of the density
distribution at the final simulation time T = 5. [The grid is 4 × 4 × 1 with polynomial degree
N = 5. The initial condition is shown in Figure 15.]

Next, we use the entropy-conserving high-order approximation based on the
numerical flux function by Chandrashekar [5]. (We only document results with
this flux, but we also tested other entropy-conservative fluxes including the one
by Ismail and Roe [21] with similar outcome.) Figure 17 shows the results of this
investigation. The left plot shows the spectrum of the operator and reveals that
there are significant positive real parts with a maximum value of about 31.003,
which confirms our theoretical analysis from above. For strong negative density
gradients, the scheme produces anti-dissipation which in our terminology implies
a local linear instability. The impact on the simulation is devastating for this par-
ticular test problem, as the simulation crashes at time t = 0.5533 before reaching
the final time T = 5. We note that for illustration, the test case is setup on pur-
pose such that severe faulty behaviour in the discrete density evolution can cause
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negative density. However, we stress again that the simple central approximation
is able to comfortably reach the final time T = 5, and much longer end times
without problems. This is a simple well resolved test problem and it is thus even
more worrisome that the entropy-conserving high-order discretisation fails. Fur-
thermore, we also tested with other setups with less density variation and we could
observe similar issues, it just requires longer simulation times for the instability to
grow and crash the simulation1. We emphasise that the behaviour is independent
of the choice of CFL, as it is not a time integration issue but a spatial discretisation
failure.
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Fig. 17 Numerical results with the entropy-conserving approximation, using entropic flux-
difference volume terms [3] with the entropy-conserving flux of Chandrashekar [5], which is
also used for the surface term. Left: Spectrum of the spatial operator at t = 0, maximum
real part is 31.003. Right: Visualisation of the density at time t = 0.55, right before the code
crashes because of negative density. [The grid is 4 × 4 × 1 with polynomial degree N = 5. The
initial condition is shown in Figure 15.]

We next switch on the surface dissipation and use the Rusanov flux [45]. The
high-order scheme is now formally entropy-dissipative. We note again that the
volume terms are still in entropy-conserving form and it is not obvious that a
surface dissipation term can fully control anti-dissipation generation through the
volume. The results are shown in Figure 18, which shows that the maximum real
part is 3.3283 and hence the discretisation is locally linearly unstable again. Indeed,
the simulation crashes at an early time t = 0.6595.

While we focus on the discretisations with entropic properties, it is interesting
to note that there are many different split-forms for compressible fluid dynamics,
with different properties such as e.g. kinetic-energy-preservation, see e.g. [23,8,15,
31,6]. These split-forms are all different, but have one obvious common property:
they are not the central approximation. Consequently, all these split-forms can
be compared to the central approximation and have additional terms, that are
either dissipative or maybe anti-dissipative. Hence, if for our considered baseflow
the split-form does not reduce to the central approximation, the split-form has
a similar issue with local linear stability as the entropy-conserving variant. As
an example and numerical evidence, we consider the Kennedy and Gruber split-
ting [23] with the Rusanov numerical flux [45] for the surface terms. This gives

1 i.e. for a density variation ρ = 1+0.5 sin(2π(x+y)), the entropy-conserving scheme crashes
at T = 26.7.
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Fig. 18 Numerical results with the entropy-dissipative approximation, using entropic flux-
difference volume terms [3] with the entropy-conserving flux of Chandrashekar [5], and guar-
anteed entropy-dissipative surface terms via the Rusanov flux [45]. Left: Spectrum of the spatial
operator at t = 0, maximum real part is 3.3283. Right: Visualisation of the density at time
t = 0.65, right before the code crashes because of negative density. [The grid is 4 × 4 × 1 with
polynomial degree N = 5. The initial condition is shown in Figure 15.]

a discretisation that is kinetic-energy-dissipative [15]. The numerical results are
shown in Figure 19 and clearly show faulty behaviour for this test problem. The
maximum real part is about 48.309, which again reveals that the discretisation is
locally linearly unstable. Again the impact on the actual simulation is devastating,
as the simulation crashes at an early time t = 0.0845.
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Fig. 19 Numerical results with the kinetic-energy-dissipative approximation, using split-form
volume terms [15] based on the Kennedy&Gruber splitting [23] and surface terms with the
dissipative Rusanov flux [45]. Left: Spectrum of the spatial operator at t = 0, maximum real
part is about about 48.309. Right: Visualisation of the density at time t = 0.05, right before
the code crashes with negative density. [The grid is 4 × 4 × 1 with polynomial degree N = 5.
The initial condition is shown in Figure 15. ]

4 Conclusion

In this work, we demonstrate worrisome and downright faulty behaviour of the
recently developed class of entropic high-order summation-by-parts schemes (in-
cluding split-forms). To articulate the issue, we introduced the notion of local
linear stability, i.e. the stability of fluctuations around a linearisation state for the
non-linear problem. The core of the issue is that discretisation of the non-linear
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PDE and linearisation of the resulting scheme is not the same as discretising the
linearised equations. Hence, non-linear stability does not automatically give local
linear stability.

For some special test cases, we could use the central approximation based on the
simple central flux as a baseline discretisation to obtain the least diffusive scheme
that is locally linearly stable. We compare entropy-conserving fluxes to the central
flux and observe that the difference can either be dissipative or anti-dissipative.
Artificial anti-dissipation is problematic, as it tries to artificially ”push” the solu-
tion away from the linearisation state, i.e. it generates artificial exponential growth
of small scale fluctuations. The theoretical findings have been verified in numeri-
cal tests, where the corresponding spectra of the spatial operator show significant
positive real parts and the simulations demonstrate actual artificial exponential
growth of fluctuations. We observed that adding a dissipative mechanism through
the numerical fluxes at the interfaces does not necessarily guarantee local linear
stability either, and neither does adding dissipation to the volume terms. Both
these ”fixes” at best only mask the inherent issue.

We further show that the faulty behaviour carries over to the compressible
Euler equations with a devastating outcome for robustness of these schemes. While
the simple central approximation, without added dissipation, happily runs the test
case, the entropy-conserving and the entropy-dissipative schemes crash at early
times due to nonphysical growth of density fluctuations. As a final remark, we
demonstrate that this faulty behaviour also appears in other split-forms used in
the fluid dynamics community, including kinetic-energy-preserving variants such
as the Kennedy and Gruber splitting, with similar devastating numerical results
as shown in our numerical investigations. As a matter of fact, the issue carries over
to all split-forms that do not reduce to a central discretisation for the particular
test cases considered in this work.

It is clear that the erroneous behaviour of the high-order entropic split-form
schemes needs further investigations and a proper fix. We tested several mech-
anisms to introduce dissipation through the volume, but it seems that it is not
straightforward to find a strategy that does provide enough dissipation for local
linear stability without overwhelming the high-order accuracy with excessive dis-
sipation. Thus, further research is needed and this work is a first documentation
of the issues. Without a fix, results obtained with these schemes should be in-
terpreted carefully. Due to the locally linearly unstable behaviour, nonphysical
structures might get introduced and subsequently evolved by the fluid equation to
appear as ’meaningful’ vortices and turbulent-like features, while being purely a
numerical artefact.
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