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Abstract

This thesis studies the phase transition associated to the percolation for two
different models: level sets of the Gaussian free field and vacant set of random
interlacements. The Gaussian free field is a classical model of statistical mechan-
ics, and the study of percolation for its level sets has been initiated by Bricmont
and Saleur in [56]. Random interlacements is a model recently introduced by
Sznitman in [93], and the existence of an infinite component for its vacant set is
linked to the existence of a giant component in the vacant set left by a random
walk on a torus or a cylinder.

These two models have long-range correlations, and compared to the usual
independent percolation problem, it is challenging to just prove that the phase
transition is non-trivial, see [81] and [93]. We are interested in the existence
of a coexistence phase, that is a phase on which the sets of open and closed
vertices contain an infinite cluster at the same time. The underlying graph that
we consider can be the integer lattice Z¢, d > 3, or a more complicated graph,
such as a Cayley or a fractal graph with some regularity conditions.

One of our main tools is the cable system, a continuous version of the graph,
on which one can derive surprisingly explicit results for the percolation of the
level sets of the Gaussian free field. This was first noticed by Lupu in [57] on Z<,
d > 3. Deep results about the existence of a coexistence phase for the discrete
Gaussian free field follow from this thorough understanding of the percolative
properties on the cable system. A powerful isomorphism between the Gaussian
free field and random interlacements, first introduced by Sznitman in [96], leads,
in turn, to similar results for random interlacements.

In order to understand better the particularities of percolation for the Gaus-
sian free field on the cable system of the integer lattice, we extend and find new
results on the cable system of a very general class of graphs using three new
independent techniques. For instance, there is no coexistence phase for the level
sets of the Gaussian free field on the cable system, and the law of the capacity
of a given cluster can be written explicitly.
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Kurzzusammenfassung

Diese Doktorarbeit studiert die Phasendnderung beziiglich Perkolation fiir zwei
verschiedene Modelle: Niveaumengen des Gauss’schen freien Feldes und vacant
set von random interlacements. Das Gauss’sche freie Feld ist ein klassisches
Modell in der statistischen Mechanik, und die Untersuchung von Perkolation
seiner Niveaumengen wurde zuerst von Bricmont and Saleur in [56] vorgenom-
men. Random interlacements ist ein kiirzlich von Sznitman in [93] eingefiihrtes
Modell, und die Existenz einer unendlichen Komponente in seinem vacant set
ist eng verkniipft mit der Existenz einer riesigen Komponente in dem vacant set,
welches durch eine Irrfahrt auf einem Torus oder einem Zylinder hinterlassen
wird.

Diese beiden Modelle besitzen eine weitreichende Korrelationsstruktur. Im
Vergleich zur gewohnlichen unabhangigen Perkolation ist es schon eine Heraus-
forderung zu zeigen, dass der Phaseniibergang nicht trivial ist, siehe [81] und
[93]. Wir interessieren uns fiir die Existenz einer Koexistenzphase, das heifst
eine Phase, auf welcher die Mengen geoffneter und geschlossener Knoten gle-
ichzeitig eine unendliche Komponente enthalten. Der zugrundeliegende Graph
kann das Gitter der ganzen Zahlen Z?, d > 3, oder ein komplizierterer Graph
wie zum Beispiel ein Cayley- oder ein Fraktalgraph mit zusétzlichen Regular-
itdtsbedingungen sein.

Eines unserer Hauptwerkzeuge ist das cable system, eine stetige Version des
Graphen, auf welchem man erstaunlich explizite Resultate fiir die Perkolation der
Niveaumengen des Gauss’schen freien Feldes gewinnen kann. Dies wurde zuerst
von Lupu in [57] auf Z2¢, d > 3, bemerkt. Weitreichende Ergebnisse iiber die
Existence einer Koexistenzphase fiir das Gauss’sche freie Feld resultieren aus dem
tiefen Verstandnis des cable systems. Ein starker Isomorphismus zwischen dem
Gauss’schen freien Feld und random interlacements, welcher zuerst von Sznitman
in [96] eingefithrt wurde, erlaubt dhnliche Ergebnisse fiir random interlacements.

Um die Genauigkeit der Perkolation des Gauss’schen freien Feldes auf dem
cable system des Gitters der ganzen Zahlen besser zu verstehen, erweitern wir
bestehende und finden neue Ergebnisse auf dem cable system fiir eine sehr
generelle Klasse von Graphen. Zum Beispiel gibt es keine Koexistenzphase fiir
die Niveaumengen des Gauss’schen freien Feldes auf dem cable system und die
Wahrscheinlichkeitsverteilung der Kapazitat einer gegebenen Komponente kann
explizit angegeben werden.
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Chapter 1

Introduction

I.1 Definitions and known results

In this introduction, we define the objects of interest and present the results
of this thesis in a rather informal way, which should be accessible to a general
mathematical audience. This thesis investigates percolation for a few models
with long-range correlations, namely random interlacements and the Gaussian
free field, and gives new results about their phase transitions and related ques-
tions. Considering for instance the integer lattice Z<¢, d > 2, as a graph, and
a random set A C Z? of "open" vertices, percolation theory studies the exis-
tence of infinite clusters in A, that is the existence of connected and infinite
components of open vertices. The law of the random set A usually depends on
some parameter, and, depending on this parameter, 4 might contain an infi-
nite cluster with probability zero or with positive probability, thus exhibiting a
phenomenon of phase transition. Classical problems include physically relevant
questions on the existence and uniqueness of the infinite cluster, the probability
that two vertices are in the same cluster, and the typical size of a finite cluster.

Arguably the simplest model for percolation is that of Bernoulli, or inde-
pendent, percolation. It has been introduced by Broadbent and Hammersley
[17] at the end of the 1950s in their research on gas masks. Even though the
model is easy to define, Bernoulli percolation has been the subject of intensive
mathematical research during the last couple of decades, and deep results have
been obtained. For each p € [0,1] attach to each vertex € Z%, d > 2, (or
sometimes edge e) a Bernoulli random variable B? € {0,1}, such that, under
some probability P2, the family of random variables (B?),cza is independent
and PB(B? = 1) = 1 — PB(B? = 0) = p. In other words, each vertex z € Z?
is considered independently open, when B2 = 1, or closed, when B? = 0, with
respective probability p and 1 — p. One then wants to investigate the existence
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of an infinite cluster in the set of open vertices BP o {x € Z¢: BP = 1}, that

is the existence of a random infinite and connected set C? such that B? =1 for
all x € CP, and study the properties of this cluster. We then naturally define
the following critical parameter

De def. sup{p € [0,1] : P?(B? contains an infinite cluster) = 0}.

Note that p. depends implicitly on the dimension d. By a simple coupling argu-
ment one can easily show that, P5-a.s, B? does not contain any infinite cluster
for p < p., and we call this the subcritical phase, and that B? contains P”-a.s.
at least one infinite cluster for p > p., and we call this the supercritical phase.
Moreover in every dimension d > 2, the phase transition is non-trivial, that is
pe € (0,1), and so both phases exist. In dimension two, duality has proved to
be an essential tool to obtain deep results about percolation, and several tools
have been developed in this case, such as Russo-Seymour-Welsch theory, which
provides the equality p. = % for bond percolation on Z? [47, 52|.

In dimension d > 3, the situation is more complicated. An interesting ques-
tion is the existence of a coexistence phase, where it is possible to have both
an infinite cluster of open and closed vertices at the same time, that is whether
BP and its complement can have an infinite cluster at the same time for some
p € [0,1]. Since (BP)¢ has the same law as B'"P| it is thus of interest to know
whether percolation at p = % occurs or not, which is not the case in dimension
two. This was answered positively by Campanino and Russo in [19], where they
prove that p, < % for all d > 3. In particular, for all p € (p., 1 — p.)(# @), both
(BP)¢ and BP contain an infinite component, which corresponds to the coexistence
phase. We refer to the monographs [44] and [12] for an extensive presentation
of the main results and ideas regarding Bernoulli percolation.

When it comes to percolation models with strong and long-range correlations,
many of the techniques from Bernoulli percolation either have to be extended,
or do not work anymore. Among them, the study of the percolation for the
(massless) discrete Gaussian free field on Z?, d > 3, was initiated at the end
of 1980s by Bricmont, Lebowitz and Maes in [16]. It is defined as a centered
Gaussian field (p,)yez¢ on Z¢ with covariance function

Ep.0,] = 9(z,y),

where g(x,y) is the Green function for the simple random walk on Z?; i.e., it
is the average number of time the random walk beginning in z hits the vertex
y before blowing up. In other words, ¢, is a centered Gaussian variable for all
x € 7%, and the covariance of ¢, and ¢, is g(z,y). Once one assumes d > 3,
simple random walk on Z? is transient, and so the Green function is finite, and
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the field is well-defined. Due to the slow decay properties of the Green function,
this field has very strong correlations decaying as |z — y|~**2 at infinity, which
makes it hard to study. On the other hand, it also exhibits features which help
its investigation, such as the (spatial) Markov property: fixing the value of ¢ on
a finite set K, the field (¢.)zcke is, after deterministic recentering, a Gaussian
free field on K°.

The naturally ensuing percolation model for the Gaussian free field is defined
through its excursion / level sets, i.e., we are interested in the study of the
excursion sets above level h € R, defined via

p>h 4 {r€Z%: ¢, >h}.

We then define the critical parameter h, for the percolation phase transition of
the level sets of the Gaussian free field by

h, < inf{h € R : P%(there exists an infinite cluster in £=") = 0},
Note that E=" is decreasing in h, whereas BP was increasing in p. Analogously
to Bernoulli percolation we have that P%-a.s, £=" does not contain any infinite
cluster for h > h,, and that E=" contains P“-a.s. at least one infinite cluster
for h < h,. It is however less clear than for Bernoulli percolation if the phase
transition is non-trivial, that is if h, € (—o00, o), and we will come back to this
question later.

A more recent percolation problem with long-range correlations concerns
random interlacements, a model introduced by Sznitman in [93] to study the
vacant set left by a random walk on the torus (Z/NZ)?, and which has since
experienced a lot of attention in mathematical research. We denote by Z =
(Zp)n>o0 the simple random walk on Z?, starting at z under P®, and for any
doubly infinite trajectory w : Z — Z<, we call (w(n)),>o the forwards part of
w and (w(—n)),>o the backwards part of w. The random interlacement process
w* at level u > 0 under some probability P! consists of an infinite number of
independent doubly infinite trajectories modulo time shift, and the backwards
and forwards part of each trajectory both behave like the random walk Z. In
order to describe it further, let us define for all finite sets A C Z? the equilibrium
measure and capacity of A by

ea(x) o P?(H 4 = 00)1(x) for all z € Z¢ and cap(A) =3 ZeA(a:), (I.1.1)

z€A

where H 4 et inf{n > 1, Z, € A}, with inf @ = oo, is the first return time in A

for the simple random walk Z. A possible interpretation for the capacity of A is
to see it as the size of A viewed from the point of view of the random walk on
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Z% at infinity. It is increasing in A, that is cap(A) < cap(B) if A C B, and the
capacity of a ball of radius N is of order N9~2.

Let Hy L inf{n € Z : w(n) € A} be the first time a doubly infinite trajec-
tory w on G hits A. For each z € A, the number of trajectories hitting A in z for
the first time in the random interlacements process w" is a Poisson distributed
random variable with parameter ue4(z), and each of these trajectories behaves
like a simple random walk on Z¢ after time Hy, and like a simple random walk
conditioned on not coming back to A before time H 4. Denoting by Z* the ran-
dom interlacement set, i.e. the set of vertices visited at least once by a trajectory

in w", we then have
P/(Z" N A = @) = exp(—ucap(A)). (I.1.2)

This equation actually entirely characterises the law of Z". The random inter-
lacement set Z% consists of the trace on Z? of doubly infinite random walks,
and thus always contains at least one infinite cluster. However, an interesting
percolation problems arises when considering its complement V" el (Z")¢, the
vacant set of random interlacements, which is a set decreasing in u, and which
might contain an infinite cluster with positive probability for some values of the

parameter v > 0. The usual percolation question arises: defining

u, < inf{u > 0 : P/ (there exists an infinite cluster in V*) = 0},
does u, € (0,00)7 Similarly as for the Gaussian free field, one can prove that
P’-a.s, V* does not contain any infinite cluster for « > u,, and that V* contains
Pl-a.s. at least one infinite cluster for u < wu,.

Apart from the discrete graph Z?, this thesis studies extensively percolation
problems on a continuous version of the graph Z?, the cable system, or metric
graph, Z4. The cable system Z4 is obtained by replacing each edge e between
two neighbors of Z¢ by a continuous interval I, e € FE, isomorphic to [0, %], arid
by glueing this intervals through their respective endpoints. One can endow Z¢
with a distance, which corresponds to the length of the shortest path between
two points. The notion of random walk on Z¢ can be generalized to a continuous
time stochastic process (X});>0 on Zd, which is now also taking values inside the
edges I., e € E. This process X is continuous and has the Markov property, its
restriction to Z?, which can be seen as a subset of Zd, behaves like the simple
random walk Z, and X behaves like a Brownian motion on each edge I., e € E.
The process X is sometimes called the Brownian motion on the cable system
7.

The definitions of the Gaussian free field and random interlacements were
extended to the cable system by Lupu in [57]: there exists a continuous field
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(P)4eza ON Zd, such that ¢, is a centered Gaussian variable for all = € id,
and the covariance of ¢, and ¢, corresponds to the average total time spent
in y by the diffusion X beginning in x. The restriction ($,)ecze of @ to Z% is
then a discrete Gaussian free field on Z?, as defined before. Similarly for each
u > 0, there exists a random interlacement process w" at level u, consisting of
an infinite number of independent doubly infinite trajectories on Zd, each with
a forwards and a backwards part both behaving like the process X. Moreover, if
7" denotes the set of points in 74 visited by at least one trajectory in the random
interlacement process w", then 7% N Z? has the same law as the discrete random
interlacement set Z*. From now on, we will identify (¢;),cze and (¢;)zeza, and
see I as subset of Z.

The percolation problem on the cable system corresponds to the existence of
an unbounded connected set, or cluster, where a set A C Z4 is connected if and
only if there exists a continuous path in 74 between every two points x,y € A.
We will naturally study the percolation for the level sets of the Gaussian free
field on the cable system, defined by E=" {r€Z': ¢, >h}foral heR,
and the associated critical parameter is

hy L inf{h € R; P“(E>" contains an unbounded cluster) = 0}. (I.1.3)

If h < %*, then E=" contains P%-a.s. at least one unbounded cluster, and so
EZhn74 = E=" also contains an infinite cluster, that is h < h,. We thus obtain
that h, < h,, and one might inquire whether this inequality is strict or not. In
the case of random interlacements, it similarly holds that if pu L (I“)c contains
an infinite cluster, then V" = VN Z4 also contains an infinite cluster. However,
looking at trajectories, since each discrete connected path m C V* correspond to
a continuous connected path 7™ C VU with # N Z2 = m, one can easily see that
the reverse implication is true as well. The percolation of VU is thus equivalent
to the percolation of V*, and we will not investigate it further.

These two models, the Gaussian free field and random interlacements, are
actually linked by an isomorphism, both on discrete graphs and on their cable
system. The study of such isomorphisms has been initiated by Dynkin [31],
and takes its origin from ideas in physic from Symanzik [88|. The isomorphism
between random interlacements and the Gaussian free field was first proved on
discrete graphs by Sznitman in [96], and extended to the cable system 74 by
Lupu in [57], and can be seen as an extension of the second Ray-Knight theorem
for Markov processes, see [32]. If we call (fl@,u)meid the local times of random
interlacements on the cable system, that is qu is the total time spent in x by
all the trajectories in the random interlacement process w", then:

(1@? + 0, u) _ has the same law as (1(@0 + \/ﬂ)?> _, (I.1.4)
2 "/ zezd 2

xE€7Z4
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where the Gaussian free field and random interlacements on the left-hand side
are taken independent. Let us explain a first consequence of this isomorphism,
which highlights the importance of considering the cable system. Each x € T is
visited by at least one trajectory in the random interlacement process, that is its
local time qu is strictly positive. Since T* consists of unbounded trajectories,
it is clear that {z € Z¢ : 32 + 2!71,“ > 0} contains an unbounded cluster.
Therefore, by (1.1.4), {z € Z%: (3, + v/2u)? > 0} also contains an unbounded
cluster, and by continuity of @ on Z?, either {z € Z% : 3, > —v2u} or {z €
74 : P» < —V/2u} contains an unbounded connected cluster. By symmetry of
the Gaussian free field, we obtain that, P%-a.s, either EZ=V2u or F2V2u contains
an unbounded cluster, and in both cases E* > —+/2u. This holds for any u > 0,
and in combination with the previously obtained inequality ﬁ* < h,, we obtain

0 < he < h.. (1.1.5)

One may naturally wonder which of these inequalities are actually strict, which
is one of the main goals of this thesis. Note that the equality h, > 0 was first
proved in [16], using only the Markov property of the Gaussian free field. On
74, d > 3, it was actually proved by Lupu in [57] that this simple observation
describes the whole supercritical phase of the Gaussian free field on the cable
system, that is h. = 0. Moreover, at level 0, the level sets E=° also contain
P%a.s. only bounded clusters, and by symmetry of the Gaussian free field, this
implies that the sign clusters E1>0 & {z € 7% : |g,| > 0} contain P%a.s.
only bounded clusters. In particular, since (E'Zh)C has the same law as E=~",
there is never an unbounded cluster for both E=" and its complement, and
so no coexistence phase on the cable system, as opposed to discrete Bernoulli
percolation. This result can be surprising since the critical parameter }VL* is not
only explicitly known, but it also does not dependent on the dimension, and we
will generalize this fact to a much broader class of graphs later.

Let us now explain a second interesting direct consequence of the isomor-
phism (I.1.4) from [57]. Fixing some u such that v2u < h,, by symmetry of
the Gaussian free field the set {z € Z% : Yo < —v/2u} contains P%-a.s. an infi-
nite cluster, that we denote by C,. Since h, = 0, by symmetry of the Gaussian
free field, we have that {x € 74 Op < \/ﬁ} contains P%-a.s. only bounded
clusters, and so by continuity of the Gaussian free field on the cable system, the
cluster of y in {z € Z : ($,+v/2u)? > 0} is bounded for all y with 0, < —V2u,
and so also for all y € C,. Using (I.1.4), we obtain that there exists P%a.s. an
infinite cluster C’ such that the cluster of y in {z € Z¢ : oF + 2l7y,u > 0} is
bounded for all y € C). The random interlacement set only contains unbounded
clusters on which its local times are strictly positive, and so we necessarily have
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y € V¥ for all y € C’, that is V* contains P%a.s. an infinite cluster. We thus
obtain the following inequality

hye <V 2uy.

These two applications of the isomorphism (I.1.4) show its importance, as well
as the interest of considering the cable system, and we will present other ap-
plications in this thesis. In order to prove that the phase transition for the
level sets of the Gaussian free field and for the vacant set of random interlace-
ments is non-trivial, we still need to derive upper-bounds for h, and wu,. This
was done by Sznitman for random interlacements in its seminal paper [93] using
a renormalization scheme, and combined with the previous inequalities we have

0=h, < h, <\2u, < ocoonZforall d> 3. (1.1.6)

The inequality h, < oo was initially proved independently by Rodriguez and
Sznitman in [81], without using the isomorphism (I.1.4) with random interlace-
ments. The proofs of the inequalities u, < oo and h, < oo are more involved
than the inequality h, > 0, and both use crucially some decoupling inequali-
ties, see |95, 68| for random interlacements and |67 for the Gaussian free field.
Strict inequalities between the critical parameters in (I.1.6) are harder to obtain:
the strict inequality h, > 0 was proved in [81] when the dimension d is large
enough, but this question is harder to investigate in lower dimension since the
correlations are stronger, and we will come back to this soon. It is still an open
question to know whether the inequality h, < v/2u, is strict or not on Z¢, d > 3,
but this has already been proved on a large class of trees, see [101, 1].

1.2 Existence of a coexistence phase

We now present the results about the positivity of the critical parameters h,,
for the discrete level sets of the Gaussian free field, and u,, for the vacant set
of random interlacements, which imply the existence of a coexistence phase for
these models, as well as some additional results concerning the geometry for the
level sets of the Gaussian free field. The complete statements and proofs are
presented in Chapters II and III, which respectively correspond to the articles
[25] and [26]. The first result, which is proved in Chapter II, is that

h. >0 on Z* for all d > 3. (1.2.1)

This corresponds to the inequality p. < % for Bernoulli percolation from [19],
and so the discrete Gaussian free field on Z%, d > 3 also exhibits a phenomenon
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of phase coexistence: for all h € (—h.,h.)(# @), both the discrete level sets
of the Gaussian free field EZ" and its complement have an infinite cluster at
the same time. In particular, the discrete sign clusters E1>° that is the union
of the clusters above and below level 0, of the Gaussian free field percolate,
whereas the continuous sign clusters E> of the Gaussian free field on the cable
system don’t. The inequality (1.2.1) was already expected to hold in dimension
three since it has been supported by previous numerical evidence in [63]. It
also generalizes the results from [81|, where (1.2.1) is shown in high dimensions,
and in fact in high dimensions one can even derive an asymptotic expression
for h., see [29]. The proofs of these results in high dimension mostly rely on
methods analogue to Bernoulli percolation, whereas our proof of (1.2.1) is new
and specific to the Gaussian free field, since it relies on the isomorphism (I1.1.4)
with random interlacements, and takes advantage of the cable system.

The existence of a coexistence phase is expected to hold in dimension d > 3
for a variety of percolation models of random functions with long range corre-
lation, and the result (I.2.1) for the level sets of the Gaussian free field can be
seen as a milestone in the study of these models. An example is positively cor-
related discrete Gaussian fields on Z¢, or continuous Gaussian fields on R, with
a covariance function decaying fast enough to infinity. In dimension two, several
articles, see [64, 76, 9] for instance, have recently studied the phase transition for
the level sets of smooth planar Gaussian fields and, using Russo-Seymour-Welsh
theory, have proved in particular that the associated critical parameter is zero.
One would then expect the critical parameter to increase with the dimension,
and the result (I.2.1) would then hold on a large class of discrete or continuous
Gaussian fields, but little is known rigorously about this subject for the moment.
Another example on point is the nodal domain of monochromatic random wave,
which should display a supercritical behavior in dimension d > 3, and we refer
to [84] and the references therein for details.

Let us quickly comment on the proof of (1.2.1). As explained before, the
random interlacement set on the cable system 7" has only unbounded clusters,
which correspond by the isomorphism (I.1.4) to unbounded clusters of {z € G :
($2 +v/2u)? > 0}. Since h, = 0, by symmetry of the Gaussian free field we have
that {z € G $» < —V/2u} only contains bounded clusters, and so by continuity
of the Gaussian free field on the cable system, Z* corresponds in fact in (1.1.4)
to unbounded clusters of E=~V2,

Each unbounded cluster of FZ~V2 for the Gaussian free field on the cable
system contains an infinite cluster C, C E=7V2u for the discrete Gaussian free
field such that, for all = € C,, there exists an edge e = {z,y} with y € C, and
@ > —+/2u on the whole edge I.. Conditionally on ¢, and ¢y, one can show that
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the Gaussian free field (¢,).es, on the segment I, is a Brownian bridge of length 1
between ¢, and ¢,,, which has a certain probability p¥ (¢, ¢,) to stay above level

2u on the whole edge I.. For each u > 0, each cluster of 7" thus corresponds
to an infinite cluster C, in E>~V2" such that, conditionally on (P )eezd, the
Bernoulli percolation with parameter p* on the edges of C, contains an infinite
cluster. If u is small enough, one can show that the probability that ¢, > —v/2u
and at least one Bernoulli variable on the edges starting from x with parameter
p* is equal to 1 is strictly smaller than the probability that ¢, > v/2u. Therefore,
C,, corresponds to an infinite component of E>V2u_ that is hy > v/2u > 0.

In order to dominate the probability that ¢, > —v/2u plus a small Bernoulli
noise p* by the probability that ¢, > +/2u, one needs in fact to assume that
|oz| is small enough. Adapting the stability of 7" to small noise from [74] one
can show via a renormalization scheme that an unbounded cluster C,, in F=~V2
exists, such that |@| is small enough on C.,, and this concludes the proof. Most
of the proof of the inequality (I.2.1) consists of proving the existence of such
an unbounded cluster 6’u, but due to its technicality, we refer to Chapter II for
details.

In Chapter III, we improve and generalize the inequality (1.2.1) in various
ways. First we prove the inequality (I.2.1) on a large family of transient graphs,
that we will assume to be unweighted in this introduction for simplicity. The
notion of percolation, that is the existence of an infinite connected cluster, can
naturally be extended from Z¢ to any discrete graph G, as well as the definition of
the Gaussian free field and random interlacement when the graph G is transient.
In order to prove (1.2.1) on the transient graph G, let us add the following
hypothesis:

there exist parameters a and § with 2 < 8 < a such

N —(ap) (I.2.2)
that, |B(z, L)| < L* and g(z,y) < d(z,y) , for x,y € G.

Here d is some distance function on the graph G, |B(x, L)| denotes the volume
of the ball centered in = and with radius L for this distance, and g(z,y) is the
Green function for the graph (. These conditions are actually related to some
heat kernel bounds for the random walk on the graph G, see Chapter III for
details, and have been studied extensively, see [42, 43| for instance. We will also
need an isoperimetric inequality for the graph G, which, in essence, says that

for each finite set A C G, the boundary of A contains an almost

connected path whose length is of the same order as the diameter of A.
(1.2.3)
Under these conditions, we prove that the inequalities (I.1.6) and (1.2.1) still
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hold, that is
0=h, < hy <V2u, <ooif (1.2.2) and (1.2.3) are verified. (1.2.4)

Examples of transient graphs verifying (1.2.2) and (1.2.3) include Z¢, d > 3, but
also Cayley graphs of suitably growing non-Abelian groups and various fractal
graphs. As a direct consequence of (1.2.4), we obtain that 0 < u, < oo, that is
the phase transition for the vacant set of random interlacements in non-trivial. In
particular for all u € (0, u.)(3# @), since the interlacement set Z* always contains
infinite clusters, both Z* and its complement V" contain infinite clusters, which
corresponds to the existence of a coexistence phase for random interlacements.

The inequality u, > 0 was first proved on Z¢, d > 7, in [93], and for any
dimension d > 3 in [87], see also [72]| for a short proof of this result. It was
then extended to any product graph G of the form G = G’ x Z in |95] under the
condition (I.2.2) when a > 1+, and one can show that (1.2.3) is in fact verified
on any such product graph. The result (1.2.4) thus generalize the inequality
u, > 0 to graphs with a < 1+ 3, and a canonical example of such a graph is the
"Toblerone bar" graph, that is the graph G = G’ x Z where G’ is the Sierpin-
ski gasket [50], and also to non-product graphs, such as the three-dimensional
Sierpinksi carpet, see Section 2 of [6]. The inequality u, > 0 can also hopefully
lead to a better understanding of the trace of random walks on cylinders, see
91, 111, 90].

Improving the renormalization technique used to prove (1.2.1), we also obtain
subsequent information on the geometry of the sign clusters for the GFF, which,
under the conditions (1.2.2) and (I1.2.3), can be summed up as follows:

there exist exactly two infinite sign clusters of ¢, one for
each sign, which consume ‘all the ambient space’, up to (I.2.5)

(stretched) exponentially small finite islands of + /- signs.

Adapting the proof of (1.2.1) to this larger class of graphs required us to
overcome many challenges in order to obtain several intermediate results, by
adapting some proofs from the case Z? d > 3, and by finding some new ar-
guments: a proof of (I1.2.3) on product graphs, heat kernel estimates, strong
connectivity of f“, decoupling inequalities for both the Gaussian free field and
random interlacements, and developing a stronger renormalization scheme to
obtain (1.2.5). We refer to Chapter III for details. In order to adapt the proof
of (I.1.6), the main challenges were to prove the equality h. = 0 and to obtain a
stronger version of (I.1.4) including the sign of the processes, see [101], and we
will now extend these results to a much larger class of graphs.
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I.3 Percolation on the cable system

We now investigate percolation for the level sets of the Gaussian free field on
the cable system of a general transient graph, which is the content of Chapter
IV. The cable system Gofa graph G is obtained similarly as before by replacing
each edge e between two neighbors of G by a continuous interval I, of length
%. When G is transient, one can then also extend the deﬁNnition of the Gaussian
free field and random interlacements to the cable system G, and we will keep the
same notations as on Z¢, d > 3. A natural questions is, to which transient graphs
G does the equality h, = 0, see (I1.1.3), verified on Z? (|57]), can be extended?

As explained above (I.1.5), the inequality . > 0 is a direct consequence of the
isomorphism (I.1.4) between random interlacements and the Gaussian free field,
which actually holds on any transient graph, see |96, 57]. However, the proof of
the inequality h < 0, that is E2° does not contain an unbounded cluster, from
[57] can only be easily extended to amenable and transitive transient graphs. As
mentioned in (1.2.4), it also holds on transient graphs such that (1.2.2) is verified,
but also on a large class of trees, see [101, 1|. Let us now introduce a condition
on our graph G, which is verified on all the previously mentioned examples:

cap(A) = oo for all infinite and connected sets A C G, (L.3.1)

where the capacity of a set was introduced in (I.1.1), and is extended to infinite
sets by approximation. It can actually also be extended to any connected and
closed set A C G, and the main result of Chapter IV can then be summed up
as

it G is a transient graph such that (I.3.1) is fulfilled, then h, =0, and
for all h € R and 2o € G, one can give explicitly the law of cap(E="(z)).
(1.3.2)
In the particular case h = 0, the law of the capacity of the sign clusters on the
cable system can be described by the following Laplace transform

E¢ [exp (—ucap(ﬁzo(aro))> ]1%020} = P%(p,, > V2u) for allu >0, (1.3.3)

where EZ%(z) is the set of y € G connected to g € G in E=°. Note that this
formula is explicit since ¢,, is just a centered Gaussian variable with variance
(o, ). One can actually prove the formula (I.3.3) on any graph such that £
contains P%-a.s. only bounded clusters. The result (1.3.2) is thus a generalization
of the equality h, = 0to all previously known graphs, and one can actually prove
that condition (I1.3.1) also holds on any graph such that the Green function
decays to zero at infinity, or also any transitive graph, and is therefore very
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general. We also provide in Chapter IV an example of a transient graph for
which ﬁ* = 0.

One might be surprised that the critical parameter h, is almost independent
of the choice of the graph and explicitly known, or that the law of the capacity
of the level sets is also explicitly known, and actually only depends really little
on the nature of the graph that we consider, see (1.3.3). For these questions,
percolation for the Gaussian free field on the cable system is thus better under-
stood than the, a priori simpler, Bernoulli percolation. In fact, one can prove
the inequality p. < 1 for Bernoulli percolation using the Gaussian free field on
the cable system on a large class of graphs, see [30]. In order to hopefully reach
better heuristics on this result, we give three new different proofs of (I1.3.2).

The first proof involves a Russo’s formula introduced in [79] for the Gaussian
free field, see also [82] for the initial formula for Bernoulli percolation, which
gives a formula for the derivative in h of the probability of events depending
only on the level sets E=". In some specific cases, this formula can be turned
into an explicit differential equation, from which one can deduce (1.3.2). For the
second proof, one explores the level sets of the Gaussian free field E=" from the
point of view of the equilibrium measure to obtain an "exploration martingale",
similar to the one introduced in [24], and (I1.3.2) then follows using some usual
martingale theory.

The third proof involving random interlacements is more complicated, but
also implies additional results, and leads to a deeper understanding of the re-
lation between the level sets of the Gaussian free field on the cable system at
different levels. The isomorphism (I.1.4) between random interlacements and
the Gaussian free field can be extended to also include the sign of &, + v/2u on
the right-hand side, rather than its square, which is proved in [101] when E=0 s
P%-a.s. bounded and the Green function is bounded. In Chapter IV, we weaken
these conditions under which this "signed" isomorphism holds to include any
graph such that (1.3.3) holds, and let us now describe this result in details. We
define for each u > 0 a process (03), .z € {—1, 1}6, such that, conditionally on
(|¢2]),cc and the random interlacement process w,, o
the clusters of {z € G : 2Zw + 32> 0}, 0¥ =1 for all z € 7% and the values
of 0" on each other clusters are independent and uniformly distributed. Then if
cither (I.3.3) holds or E2° is P%a.s. bounded,

(7y/ @2 + 2020

In particular EZ~V2 has the same law as {z € G : o¥ =1}, and, by symmetry
of the Gaussian free field, E>V2* has the same law as {z € G : 0% = —1}. Using
the definition of o* and (I.1.2), and approximating the graph G by finite graphs,

¥ is constant on each of

: has the same law as (@, + V/ 2u)xeé. (1.3.4)

€
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one can prove that (1.3.2) and (I.3.3) hold. Note that this implies that (1.3.3)
is actually equivalent to (1.3.4). The proof of (I1.3.4) relies on an approximation
of the Gaussian free field and random interlacements on G by Gaussian free
fields and random interlacements on finite graphs, and takes advantage of an
isomorphism similar to (I1.3.4) between loop soups and the Gaussian free field,
see [54, 57|. This proof also provides us with a version of (1.3.4) on the discrete
graph G similar to the version of the second Ray Knight theorem from [58],
where the signs o" are also only described in terms of the discrete processes
(pz)zec and w*, and we refer to Chapter IV for details.

In addition to (I.3.2), the "signed" isomorphism (I.3.4) has several other
applications. Concerning the discrete Gaussian free field, it has already been
used, or more precisely its version from [101], to prove the strict inequality in
(I.2.4) between h, and y/2u, on trees in [101, 1], and is expected to also help
on several other graphs including Z¢, d > 3. As explained in Chapter III, it is
also useful to prove the statement (1.2.5) about the geometry of the discrete sign
clusters. On the cable system, this isomorphism also implies that clusters of
EZ" and EZ~" have the same law when they are bounded, and that the critical
parameter Z* is either equal to zero, as under condition (I.3.1), or to infinity,
that is 2" then contains an unbounded cluster with positive probability for all
h e R.

All the results of Chapter IV actually hold on any weighted transient graphs,
that is on graphs on which the random walk on G crosses an edge after an
exponential time whose parameter may depend on the choice of the edge. We
also obtain some partial results when adding the possibility for the random walk
on (G to be stopped after a random time, whose law is described by a killing
measure K : G — [0,00], k # 0, that is on massive graphs. When the random
walk on G is in z, the probability that it is killed before jumping to a neighbor of
x is then proportional to x,. There is no direct proof of the existence of random
interlacements on massive graphs in the literature, and we give one in Chapter
V, which also include the cable system. On massive graphs, trajectories in the
discrete random interlacements process can have forwards parts, or backwards
parts, which are finite when they are killed by the measure s before escaping to
infinity.

One can then naturally introduce the notions of killed random interlacements,
which correspond to the doubly finite trajectories in the random interlacements
process, and surviving random interlacements, which correspond to the doubly
infinite trajectories in the random interlacements process. These definitions can
be extended to the cable system, and other characterizations are available. For
instance, killed random interlacements on the discrete graph G can be obtained
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by starting a Poissonian number of independent forwards trajectories in x for
each x € G, each trajectory behaving like a random walk on G until the first
time it is killed.

Contrary to random interlacements on massless graphs, killed random inter-
lacements consist of finite range trajectories, and therefore the killed random
interlacements set do not always contain an infinite connected component. The
existence of an infinite connected component depends both on the parameter
u and on the choice of the killing measure x, and let us denote by u/~%(k) the
critical parameter associated with the percolation for the discrete killed random
interlacements set on the graph G with killing measure x. For u > uZ*(k), the
killed random interlacements set contains an infinite connected component with
positive probability, and with probability zero for u < uZ* (k). In Chapter V,
we show that on (0, 00)

the function a — a®uZ™(ak) is increasing, (1.3.5)

where we write ax for the killing measure (ak,)zeq. In particular, if uZ*(x) > 0,
then uZ*(ak) > 0 for all a > 1, and, if uZ*(k) < oo, then uZ*(ar) < oo for
all @ < 1. One can also find results similar to (I1.3.5) for the vacant set of killed
random interlacement, instead of the killed random interlacements set, both on
the discrete graph G and the cable system G.

Another characterization of killed and surviving random interlacements can
also be given using the notion of h-transform G}, of a graph G, which can for
instance correspond to a modification of the graph G such that the random walk
on Gy, is the random walk on G, conditionally on being killed by the measure
k in finite time. This characterization directly provides us with a version of
the isomorphism (I.1.4), or even (1.3.4), but between the Gaussian free field
and killed, or surviving, random interlacements. Similar isomorphisms also hold
between the trajectories of random interlacements avoiding a given compact K,
and the Gaussian free field conditioned on being equal to zero on K.

One can also define killed level sets of the Gaussian free field, which corre-
spond to the level sets for the Gaussian free field associated to the random walk
conditioned on being killed by the measure x in finite time. The isomorphism
between killed random interlacements and the Gaussian free field let us write
negative killed level sets of the Gaussian free field as a coupling between killed
random interlacements and sign clusters of the Gaussian free field. Using (1.3.5),
one can prove an identity similar to (1.3.5), but for the critical parameter associ-
ated to the percolation of negative killed level sets of the Gaussian free field on
the cable system. We also give an identity similar to (I1.3.5) for positive killed
level sets of the Gaussian free field on the cable system, and it would be inter-
esting to have similar results for the discrete Gaussian free field, since it could
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provide us with a proof of the identity h, > 0, see (I.2.1), on a larger class of
graph.

1.4 Outlook

The Gaussian free field on the cable system is an interesting toy model to study
percolation properties of strongly correlated random fields, since despite its ap-
parent complexity, it is integrable enough to answer complex questions about
its phase transition. It has also proved useful to study the more complex dis-
crete Gaussian free field [101, 1, 25|, or even other related percolation models
[57, 59, 30|, and it could thus be interesting to have an even better understanding
of this model, and in particular its properties near criticality. More generally,
percolation for the level sets of general smooth Gaussian fields in dimension
d > 3, either on R?, Z?, or even the cable system Zd, seems to be a more natural
percolation problem than the Gaussian free field. It is however mathematically
largely unexplored, especially in dimension d > 3, and it would be interesting to
see how the previous results, in particular the existence of a coexistence phase,
can be extended to this more general class of fields.

I.5 Organization of the thesis

Chapter II concerns the result (I.2.1) about the existence of a coexistence phase
for the Gaussian free field on Z¢, d > 3, which is then extended in Chapter
IIT to the more general class of graphs verifying (1.2.2) and (1.2.3). On these
graphs, the set of inequalities (I.2.4) and the strong percolation result (1.2.5)
are also provided in Chapter III. The equality h. = 0 for the Gaussian free field
on the cable system of transient graphs verifying (1.3.1) is proved in Chapter
IV, as well as the formula (I1.3.3) for the law of its level sets. Finally, random
interlacements on massive graphs are studied in Chapter V, as well as killed and
surviving random interlacements. Chapters II and III correspond respectively to
the articles [25] and [26], Chapter IV to an article in preparation, in collaboration
with Alexander Drewitz and Pierre-Frangois Rodriguez, whereas Chapter V is
additional material. Each chapter can be read independently of the others.

1.6 Notation

In order to improve readability, we gave a name to some of the most important
conditions appearing in this thesis, and for the reader’s orientation we indicate
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here the sections in which they can be found. Conditions (pg), (Va), (Gp) and
(WSI) are introduced in Section III.2, conditions (Sign), (Law;) and (Isom) in
Section IV.1, and condition (Isom’) is Section IV.3. Finally, let us mention that
the notation in Chapters IV and V differs slightly from the the rest of the thesis,
since we only study the cable system in these chapters, and we refer to the
discussion at the end of Section IV.1 for details.



Chapter 11

Percolation for the sign clusters on
7% d >3

II.1 Introduction

The present work studies the percolation phase transition of Gaussian free field
level sets on Z9, d > 3, which provides a canonical example for a percolation
model with strong, algebraically decaying correlations. It was first proved in [16]
that the corresponding critical level h,(d), see (II.1.4) below for its definition,
satisfies h.(d) > 0 for every dimension d > 3 and that h.(3) < co. It was later
shown in [81] that h.(d) is finite in every dimension d > 3, and strictly positive
when d is large, with leading asymptotics as d — oo derived in [29]. We prove
here that this parameter is actually strictly positive in all dimensions d > 3. This
answers a question from [16], see also Remark 3.6 in [81], and fits with numerical
evidence from [63], see Section 4.1.2 and Figure 4.1 therein. A corresponding
classical result for Bernoulli site percolation, pfit(Z9) < % for d > 3, has been
known to hold for several decades already [19].

Our construction of infinite clusters (by which, adopting the usual termi-
nology, we mean unbounded connected components) of excursion sets for the
Gaussian free field crucially relies on another object, random interlacements.
The model of random interlacements has originally been introduced in [93] to
study certain geometric properties of random walk trajectories on large, asymp-
totically transient, finite graphs. The Dynkin-type isomorphism theorem relat-
ing interlacements and the Gaussian free field, see [96], has repeatedly proved
a useful tool in their study, see [96], [98], [78], [57], [101] and [1]. In a broader
scheme, the usefulness of similar random walk representations as a tool in field
theory and statistical mechanics has been recognized for a long time, see [88],
[18] and [31].
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The cable system method introduced in [57| provides a continuous version of
this isomorphism theorem, from which some links between the level sets of the
Gaussian free field and the vacant sets V*, u > 0, of random interlacements can
be derived. This method was used in [101] and [1] to find a suitable coupling
between those two sets, and was applied in the case of transient trees. It was
also proved in these papers that, under certain conditions on the geometry of the
tree T, the critical parameter h,(T) for level set percolation of the Gaussian free
field on T is strictly positive. As will become apparent below, the isomorphism
theorem on the cable system can be paired with renormalization techniques
from random interlacements, and in particular from [74], which imply a certain
robustness property of Z* = Z\ V* with respect to small noise, to yield similar
findings on Z¢, for all d > 3.

Let us now describe the results in more details. For d > 3, we consider Z¢
as a graph, with undirected edge set F, and take uniform weights equal to 1 on
all edges in F, so that the sum of all weights around a vertex z € Z¢ is 2d. For
x,y € Z% we write x ~ y if and only if {z,y} € E. Noting that Z¢, d > 3, is
transient for discrete time simple random walk, we define the symmetric Green
function by

1 oo
g(z,y) = ﬁEﬂc [/ Lix=y} dt], z,y €72, (IT.1.1)
0

where (X;);>o denotes the canonical continuous time random walk on Z?, with
constant jump rate 1, starting at = under P,. We also set g(z) = ¢(0,z), for
x € Z%. We define P, a probability measure on RZ* endowed with its canonical
o-algebra generated by the coordinate maps ®,, € Z?, such that, under P¢,

(D) peza is a centered Gaussian field with (11.2)
covariance function E¢[®,®,] = g(w,y) for all x,y € Z°. o

(Any random field ¢ = (,),ez¢ with law PY on RZ’ will henceforth be called
a Gaussian free field on Z¢). We are interested in level sets of ®, and for every
h € R, denote by {z N oo} the event that z € Z¢ lies in an infinite connected
component of
Eh = {y € 2% @, > h}, (I1.1.3)
and by n(h) its probability, which does not depend on the choice of xz. The
function 7n(-) is decreasing, and it is natural to ask whether it is strictly positive
or not. This leads to the definition of the critical point
ho(d) < inf {h € R; n(h) = 0}. (IL.1.4)
By ergodicity, this definition corresponds to the phase transition for the existence
of an infinite connected component in EZ", see Lemma 1.5 in [81]. It is not a
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priori clear whether |h,| < oo or not, and a summary of the status quo was given
in the first paragraph. In summary, it is known that h.(d) € [0, c0) for all d > 3,
and that h.(d) ~ (2g(0)logd)'/? as d — oo. Our main result is the following
lower bound in all dimensions.

Theorem I1.1.1.
he(d) >0, foralld > 3. (I1.1.5)

Moreover, there exists hy > 0 such that for all h < hy, there exists Lo > 0 such
that EZ" contains an infinite cluster in the thick slab Z* x [0,2Lg)% 2.

In fact, one can replace E>" by {y € Z% K(h) > &, > h}(C EZ") for
sufficiently large K(h) in the previous statement, see Remark I1.5.2, 2) below.
Note that the infinite cluster of E*" cannot be contained in Z? x {0}%~2 for
0 < h < h.(d), as explained in Remark 3.6.1 of [81]. As an immediate corollary
of Theorem II.1.1, we note that there exists an open interval I C R containing
the origin and such that, for all A € I, the level set EZ" and its complement
E<h =74\ EZ" both percolate (with probability one). This follows readily from
(I1.1.5) and the fact that E<" WY pE=h for all h € R, by symmetry of ®. In
particular, choosing h = 0, this implies that

® almost surely contains two infinite sign clusters (one for each sign). (I1.1.6)

In Chapter III, we will extend the inequality (I1.1.5) to other graphs than Z?, and
also obtain more information on the geometry of the sign clusters, see (I11.1.1)
for instance. Put differently, Theorem II.1.1 asserts that the critical density
pS(d) = PC[®y > h.(d)] satisfies pS(d) < 3, for all d > 3, thus mirroring
the result p*°(Z%) < 1, see [19], for independent Bernoulli site percolation
on Z% d > 3. However, the elegant geometric arguments developed therein
to “interpolate” between two- and three-dimensional structures do not seem to
transfer to the current situation: the correlations present a serious impediment.
Moreover, there is no obvious monotonicity of p&(d) (or h.(d)) as a function
of d. One may also conjecture that p&(d) < pfite(Z9), the critical density for
independent site percolation on the lattice, based on the reasonable intuition
that positive correlations “help” in forming clusters of £2". We do not currently

know a proof of this (nor of the more modest conjecture p&(d) < pfite(Z9)).

A key tool in the proof of Theorem II.1.1 is a certain isomorphism, see
Theorem I1.2.2 below, which gives a link between random interlacements and
the Gaussian free field. We now explain its benefits in some detail, and refer
to Section II.2 for precise definitions. Suppose that w denotes the interlacement
point process defined in [93], with law P!, and let w* be the process consisting of
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the trajectories in the support of w with label at most u. Somewhat informally,

wu

is a Poisson cloud of bi-infinite nearest neighbor trajectories modulo time-
shift whose forward and backward parts escape all finite sets in finite time. One
naturally associates to w", see for instance (1.8) in [96], a field of occupation
times ({5 4)zezd, Where £, ,, = £, (w") collects the total amount of time spent at
x by any of the trajectories in the support of w*. The interlacement set at level
u is then defined as

T ={x 7% l,, >0} (I1.1.7)

It corresponds to the set of vertices visited by at least one trajectory in the
support of w*. For any u > 0, the set Z" is almost surely unbounded and
connected [93]. The following isomorphism was proved in Theorem 0.1 of [96],
and has the same spirit as the generalized second Ray-Knight theorem, see for
example [32], [62] or [98]:

(&W + %Cbi) under P! @ P“ has the same law
fezd (I1.1.8)
as <—((I>x + \/%)2) under P,
2 z€Zd

If one attaches to each edge e of Z% a line segment I, of length %, the resulting
“graph” Z4 is continuous and called the cable system, see Section I1.2. On this
cable system, one then defines probabilities PC and P! under which the fields

(CID Jweze and (£, u)xezd admit continuous extensions ® = (®,) se7a and (=
(£, )74, and the set 1" = {x € Z% {,, > 0} is connected. It was proved in
[57] that for each w > 0, a continuous version of the isomorphism (II.1.8) also
holds on Z, see also (I1.2.15) below, and in particular (somewhat inaccurately,
but see (I1.2.15), (11.2.16) below for precise statements) the sign of @, + v/2u is
constant as long as Zpu > 0, and thus by the continuity of ® and the connectivity
of f“, either CT)x > —/2u for all x € T¢ or CT)x < —/2u for all x € T¢. But 7" is
unbounded, hence, taking h = v/2u, by symmetry of the Gaussian free field and

ergodicity, PG_a.s. the set

{z € id; o, > —h} contains an unbounded cluster in the cable system 7.
(I1.1.9)
This result was already known to hold on Z¢ without the isomorphism theorem
[16], where it had been derived using a neat contour argument. It is interesting
to note that, on the cable system, (II.1.9) is actually sharp, because PC-a.s. the
set

{z € 7 &, > 0} does not contain unbounded clusters in the cable system 7,
(I.1.10)
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see Proposition 5.5 in [57], which sharply contrasts with (II.1.6). We will extend
the property (I1.1.10) to a large class of graphs in Chapter IV. All in all, the
infinite cluster in EZ° (part of Z¢), which exists by Theorem II.1.1, “scatters”
into finite pieces upon adding the field on the edges, but the infinite cluster of
E>~" does not, for ever so small h > 0.

On our way towards proving Theorem II.1.1, we will first show that a trun-
cated version of the level sets in (II.1.9) contains an unbounded cluster on 7
Indeed, it was proved in [74] that the intersection of the random interlacement
set 7" with a Bernoulli percolation having large success parameter still contains
an infinite cluster in Z?. By showing a similar stability result on the cable system,
see Proposition I1.4.1, and using the isomorphism theorem on the cable system,
we will obtain, cf. Theorem I11.3.1 below, that the truncated (continuous) level

set
{z e —h< D, < K(h)} (I1.1.11)

contains an unbounded cluster on Z? for all h > 0 and large enough, but finite
K(h) (with hK(h) — 0 as h ~\, 0). Once this has been proved, see Theo-
rem I1.3.1 for the precise technical statement, we no longer need to use random
interlacements to prove Theorem II.1.1 (note however that the interlacements
are crucial in generating a suitable percolating cluster to start with, i.e., one
which is already reasonably “close” to being a sign cluster of the free field, see
(I1.1.11)).

We now describe the second part of the proof. By construction, one can view
&D, the Gaussian free field on the cable system Zd, as a Gaussian free field on
Z* with Brownian bridges of length 1 attached on the edges, see (IL.2.7) and
thereafter. On an edge contained in the set of (II.1.11), those Brownian bridges
never go below —h, which happens with low probability for small A. We are
going to use this low probability to go from —h < <K (h) on the edges to
h<d <K (h) on the endpoints of theses edges and for small enough h, see in
particular Lemma I1.5.1, which will then imply that the set {z € Z% (AIS,E > h}
has an infinite cluster on Z¢, as asserted.

We now explain the organization of this chapter, and highlight its main
contributions. In Section II.2, we recall the definitions of the Gaussian free
field and random interlacements on the cable system, and the link between the
two via the aforementioned isomorphism theorem. In Section II.3, we collect a
few preparatory tools by showing some strong connectivity properties, a large
deviation inequality as well as a version of the decoupling inequalities for random
interlacements on the cable system. Most of these are well-known in spirit, but
existing results do not entirely fit our needs.

The construction of the infinite cluster comes essentially in three steps,
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Proposition 11.4.1, Theorem II1.3.1, and Section II.5, which are the main ref-
erence points of this chapter. Proposition II.4.1 is a fairly generic result, which,
roughly speaking, for any coupling of a continuous interlacement and a Gaussian
free field, see (I1.4.1), yields a percolating interlacement cluster, with good con-
trol on the free field part, and some room to play with along the edges. Its proof
follows a standard static renormalization scheme from [74], [78], assembling the
results of Section II1.3. In Theorem I1.3.1, we “translate” Proposition 11.4.1, for
a certain choice of the coupling, to show that suitably truncated level sets of
the Gaussian free field on the cable system contain an unbounded connected
component. The reference level for the excursion sets of Theorem I1.3.1 is —h,
for (small) positive h. Section II.5 contains the device to “flip the sign” and pass
from —h to h on the vertices, as indicated above. Together with Theorem I1.3.1,
this then yields a proof of Theorem II.1.1.

In the rest of this chapter, we denote by ¢ and C positive constants that
may change from place to place. Numbered constants such as Cy, ¢y, Cy, C1, ...
are fixed until the end of the chapter. All constants are allowed to implicitly
depend on the dimension d and a parameter ug > 0, which will first appear in

Lemma I1.3.2 and throughout the remaining sections.

II.2 Notation and useful facts about the cable
system

In this section, we give a definition of the Gaussian free field and random inter-
lacements on the cable system that will be useful later. We also discuss some
aspects of the Markov property for the Gaussian free field and its consequences,
and recall the isomorphism theorem which links random interlacements and the
Gaussian free field.

For later convenience, we endow the graph Z? with a distance function d(-, -)
which is half of the usual graph distance, i.e., half of the ¢!-distance | - |; on
74, Recall that we write z ~ y, for z,y € Z%, if |x —y|; = 1. We define V° =
{22, x ~ 0}, so that, for all z,y € Z with = ~ y, we can write y = = + %v(m,y)
for a unique v(,,) € V. Note that d(z,z + jv) = %, for all z € Z% and v € V°.
We attach to each edge e = {x,y} the following interval of length 1:

def.

1 1
7, % {x+tv(x,y); te (0, 5)} _ {y + ) t € (0, 5)} (11.2.1)

which is homeomorphic to an open interval of R of length %, and we write I, =
I.U{z, y}. The cable system Z is then defined by glueing these intervals through
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their endpoints. Z%\Z¢ is now the union of such I,, one for every edge ¢ € E. We
extend the definition of the distance d to Z by setting d(z + tv, z + t'v) =t — '
forall z € Z4, v € VP and 0 < ' <t < %, and for all z; ~ 25 and y; ~ y» in Z¢,
A I{rl,m} and 2/ € I{yhy?.}’

d(z,2") = min {d(z,2;) + d(z;, y;) + d(y;, ") }.

i,5€{1,2}

For all e € F and z;, 20 € I, we define (21, 2) C 74 as the open interval in I,
between z; and z,. We also define the distance between two subsets A; and A,
of 74 by d(A;, As) = infica, yea, d(x,y). For Ry < Ry, we introduce the boxes
[Ry, Ry)? = {2 € Z% 2 € Ty, with @,y € [Ry, Ry) for all i = 1,...,d}. The
set Z¢ will henceforth be considered as a subset of Z¢ and we will call vertices
the elements of Z¢.

One can define a continuous diffusion X on the cable system Zd, via prob-
abilities ]SZ, z € Zd, with continuous local times with respect to the Lebesgue
measure on Z%. We now describe this construction from a simple random walk
on Z% with the help of the excursion process of Brownian motion as in Section
2 of [57], and refer to [33] or Section 2 of [36] for precise definitions. Let n
be the intensity measure of Brownian excursions, see Chapter XII §2 in [75],
and A\, be the Lebesgue measure on [0,00). For all z € Z¢ we define under
P, a Poisson point process € = Y\ 0(e,.t,) With intensity measure n ® A,
(Vi )nen an i.i.d. sequence of uniform variables on V? independent of e (here and
in the sequel N = {0,1,2,...}), and (Z,)nen an independent simple random
walk on Z¢ with Z, = x. For any trajectory e in the space of excursions, let
R(e) =inf{t > 0: e(t) = 0} be the length of e, and we define for all n € N

Ta=Ta(€) = Y _ Rle,), 7, =7,(e):=> Rle,), ife=> e,
peN peN neN
tp<tn tp<tn

and T € [0,00) such that there exists N € N with |ex(T — 7y)| = 3 and for all
p € N such that ¢, < ty, sup,.q¢,(s) < 2. In words, T is the first time that the
graph obtained by concatenating the excursions in the support of e according
to their label ¢, reaches height 1/2 in absolute value. For each z € Z?, we then
define under P, for all ¢ < TN

X, =z + |en(t — 7,)|V,, whenever 7, <t < 7.
and for all ¢ € [ry, T,

Xy =+ len(t — m3)|0(20,2)-
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Note that, under ﬁx, ()Z't)KT is a continuous process on Uyw T{x v}, and that
X = Z1, and we repeat this process after time T’ starting in Z1 in such a way
that, conditionally on (Xt)t<T, the law of (Xt)t>T is P,-a.s. the same as the law
of (Xt)t>0 under PZI, and that the projection of the trajectory of X on Z4 is
(Z)nen- On an edge, the process X behaves like a Brownian motion, see Chapter
XII, Proposition 2.5 in |75] for a similar construction of the Brownian motion on
R from the Poisson point process of excursions. Finally, for all z ~ y € Z¢ and
2 € I{z,y, we construct ()?t)t>0 under P. as a Brownian motion beginning in 2
on Iy, ,n until either x or y is reached, and then we continue with the previous
construction beginning at this vertex.

Under P for x € Z<, the local time in x of X at time T relative to the
Lebesgue measure on Z4 has the same law upon renormalization as the local
time in 0 of a Brownian motion at the moment it leaves (—3, 1), and is thus
an exponential variable, see for example Chapter VI, Proposition 4.6 in [75]
for a similar result, with parameter 1, see Section 2 of [57] for details. For all
t € [0,00], let us denote by (L}),z4 the local times relative to the Lebesgue

measure on Z? of X at time ¢, see Section 2 in [57], then for all z € Z%, (LY.), ez
has the same law under ﬁx as the field of occupation times of the jump process X
on Z% under P, (cf. below (I1.1.1)). In particular, we can define for all z,y € Z*
the Green function

g(w,y) = Eu[LL], (IL.2.2)

and its restriction to Z? is the same as the Green function on Z? defined in
(IL.1.1), so the identical notation does not bear any risk of confusion.

We endow the canonical space {2 := C(Zd R) of continuous real-valued func-
tions on Z? with the canonical o- algebra generated by the coordinate functions
(IDx, T € Zd and let P be the probability on 2y such that, under IP’G

(E)x)meid is a centered Gaussian field with (112.3)
covariance function EG[CTDmEDy] = g(z,y) for all z,y € Z°, -

with g(+,-) given by (H 2.2). With a slight abuse of notation, any random variable
= (Pa)yez0 o0 C (Zd R) with law P under some P will be called a Gaussian
free field on the cable system Zd, and it is plain that the restriction of a Gaussian
free field on the cable system to Z¢ is a Gaussian free field on Z%, so we will
often identify ®, with ®, for z € Z<.

Let us recall the simple Markov property for ¢. Let K C Z4 be a compact
subset with finitely many components, and let U = Z¢ \ K. For all z € Z?, we
define

BY=E By 9%y, 1{TU<OO}] and @Y = ¢, — BY, (I1.2.4)
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where Ty := inf{t > 0; X, ¢ U}, with the convention inf @ = oo, is the exit
time from U of the diffusion X on Z¢<. Moreover, for all z,y € id, we define
similarly as in (I.2.2) the Green function gy (z,y) = E.[L7,] of the diffusion X
under P, killed when exiting U. Then,

(8Y),54 is a centered Gaussian field with (112.5)
covariance function gy (x,y) for all z,y € A o

Furthermore, this field is continuous, vanishes on K and is independent of
o(¢,, z € K). A strong Markov property is also known to hold, but we will
not need it here, see Section 1 of [101] for more details.

Following standard notation, we say that (B;)icoy is a Brownian bridge of

length 1 > 0 between x and y of a Brownian motion with variance o* at time 1
under a probability P? if the process
t t
Wii= Bi— 7y = (1 - Z):c, t e 0,1, (11.2.6)
is a centered Gaussian field with covariance function
B o2s1(l — s9) _
E® [Ws, W] = ————= for all 51,9 € [0,(] with 51 < s9 (I1.2.7)

l

(the process (Wi, /V102),cpo. is a standard Brownian bridge). Let e € E, z; #
2o €I, v €V and te (0, 1] such that 2, = 21 + tv, and let $1,52 € [0,¢] such
that s; < s. Under P, 4, ,, until time T, .,), the diffusion X behaves like a
Brownian motion on I, beginning at z; + s;v until the hitting time of (21, 2)°.
Using Chapter II.11 in [13] with s(z) = z, and noting that the function Gy

defined therein is $g(., »,), we have

281(t — 82)

Gor,m0) (21 + S10, 21 + S90) = .

The Markov property for the Gaussian free field implies that, under P (under
which ¢ is a Gaussian free field),

t—s S
Nz sv T ~21 - _Nz 1I.2.8
(s@ T+ e z)sem (11.2.8)

is a centered Gaussian field with covariance function (g, .,)(z1 + s1v,22 +
590))s,,s2¢f0,4, and is independent of (., 2 € 77\ (21, 22)). Thus, it is a Brow-
nian bridge of length ¢ between 0 and 0 of a Brownian motion with variance 2
at time 1. In particular, knowing @ | Z?, the Gaussian free field on the edges
((©2)2e1.)eck is an independent family of random processes such that, for each
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x ~ 1y € Z% the process (gEz)Zel{M} has the same law as a Brownian bridge of
length % between ¢, and ¢, of a Brownian motion with variance 2 at time 1, as
mentioned in Section 2 of [57] or in Section 2.2 of [58|. More precisely, let

BY = Guottvg,, ., — 2tPy — (1= 2t)@,,, forallt € [0,1/2] and e € E, (I1.2.9)

where we have given an (arbitrary) orientation (x.,y.) for each edge e =
{Ze,y.} € E. Then, under P, (B®)eep is a family of independent Brownian
bridges of length % between 0 and 0 of a Brownian motion with variance 2
at time 1. Note that this provides an explicit (and simple) construction of a
Gaussian free field on the cable system starting from the Gaussian free field
(02)weze on Z%: if one links independently each x ~ y € Z? via a Brownian
bridge on I, of length between ¢, and ¢, of a Brownian motion with
variance 2 at time 1, then the resulting process is a Gaussian free field on the
cable system. In view of this construction, we will later need the following result

on the probability that the maximum of a Brownian bridge exceeds some value
M (see e.g. [13], Chapter IV.26).

Lemma I1.2.1. Let x, y be two real numbers, M > max(x,y) and, under P53,
(Bt)ieoy a Brownian bridge of length | between x and y of a Brownian motion
2 at time 1. One has

[PB( sup B; > M) = exp (—2(M —2)(M — y)) : (I1.2.10)

te[0,l] lo?

with variance o

Let us now turn to the definition of random interlacements on Z%, as in [57]
or [101]. The usual definition of random interlacements on Z%, see, for example,
[93] or the monograph [27], can be adapted to define a Poisson point process
& on W* x [0,00), where W* is the space of doubly infinite trajectories on
Z% modulo time- shift, endowed with its canonical o-algebra, and where [O 00)
describes labels of the trajectories. Recall the law (P ),e7a of the diffusion X on
the cable system, started at z € Z4. The intensity measure of w is characterized
as follows: for some Ny, Ny € Z with N; < Na, let K = [N1, NoJ4 N id, let
K:=Kn Z4, let " be the point process which consists of the trajectories in @
with label at most u > 0, and let 55“ be the point process comprising the forward

traJectorles of w" hitting K and begmmng at the first time K is reached. Then

f( is a Poisson point process with intensity measure uPe =uy  cxex( )Px,
where ef is the usual equilibrium measure of K on Z%, as mentioned in [101].
One can also construct the random interlacement process w* at level u > 0
on the cable system from the corresponding interlacement process w* on Z< by

adding independent Brownian excursions on the edges for every trajectory in
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the support of w" in the same fashion as one can construct the diffusion X from
a simple random walk on Z.
One then defines

(Zz,u)zeZd the field of local times of random interlacements, for u > 0,
(I1.2.11)
as the sum of the local times of each of the trajectories in the support of w".
The restriction of these local times to Z? has the same law as the occupation
times (¢, ,)zeze for random interlacements on Z? alluded to in the introduction,
cf. above (II.1.7). The random interlacement set is defined as

1% = {z € Z% 0, > 0}, (11.2.12)

which is an open connected subset of Z?. Note that {x €Z% x € f“} has the
same law as 74, cf. (I1.1.7).

We also recall the following formula for the Laplace transform of (¢;,),cz4,
see for instance [96], (1.9)-(1.11) or Remark 2.4.4 in [97]: for all V : Z¢ — R
with finite support K C Z< and satisfying

|GV ]loe < 1, where (GV)f(x) = > gz, )V (y)f(y) for all f € ¢>(Z7),
yeZ4

(11.2.13)
with g(+,-) asin (IL.1.1), and where ||| denotes the operator norm on £>°(Z%) —
(>(Z%), one has

E'exp{ Y V@)haf| = exp{u(V.(I = GV) " 1))
( = exp {u Z V(z) Z(GV)”l(x)})

x€Z4 n=0

(11.2.14)

Random interlacements are useful in the study of the Gaussian free field on
the cable system Z? because of the existence of a Ray-Knight-type isomorphism
theorem proved in Proposition 6.3 of [57], see also (1.30) in [101].

Theorem 11.2.2. For each u > 0, there exists a coupling PU between two Gaus-
sian free fields @ 3 and~ and a random interlacement process w on the cable system
74 (i.e., under IP“ the law of ¢ and 7 is PC each, and the law of W is the same
as under IPI) such that v and w are independent, and Pu- a.s.,

1_ ~
= (% + \/2u> + 7 Jorallw e 1, (11.2.15)

where (Zx,u)xeid 1s the field of local times of the random interlacements process
w at level u, cf. (11.2.11).
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This coupling will be essential for the proof of Theorem II.1.1. In particular,
we are going to use results from the theory of random interlacements, along
with the coupling (I1.2.15), to deduce certain properties of the level sets of the
Gaussian free field. For now, let us note that P“a.s. on f“, cf. (I1.2.12), one
has |@ + v/2u| > 0, where @ refers to the Gaussian free field from the coupling
in Theorem I1.2.2. Since Z% is connected (and unbounded, by construction)
and since z € Z¢ — 3, is continuous, either @, > —+v/2u for all z € T, or
P < —V2u for all # € Z*. But Proposition 5.5 in [57], cf. also (11.1.10) above,
implies that the set {z € Z%; @, < 0}, which contains {z € Z% &, < —v2u},
only has bounded components, hence

PY —as., Vo € 1% 3, > —V2u. (11.2.16)

In particular, this means that the negative (upper) level sets percolate on 74,
see (I[.1.9).

II1.3 Connectivity and a large deviation inequality
for 7"

The following result, which is proved over the next two sections, is essentially a
refinement of (I1.2.16), which allows us to truncate ®, cf. (11.2.3), at sufficiently
large heights. This important technical step will be helpful in dealing with the
fact that ® is a priori unbounded on sets of interest.

Theorem I1.3.1. For each hy > 0, there exist positive constants Cy and cq, only
depending on d and hg, with Cohy® > 1 such that, for all 0 < h < hg, with

K(h) = y/log <l(j°) (I1.3.1)

there exists Ly = Lo(h) > 0 such that PG-qa.s. the set

An(®) {x e 7\ 7% &, > —h}

U {x 7L Vv e VO, Vit e [o, %} 1By in] < K(h)} (11.3.2)

contains an unbounded connected component in the thick slab 72 x [0,2L0)%72.

Note that, since ® is continuous, asserting that gh(EJ) has an unbounded
component is tantamount to saying that there exists an infinite path in the set
{x € Z% ®, > —h}, and that in addition, for every y € Z? at distance less
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than 2% from a vertex on this path, @yl < K(h) holds. In particular, the set
{x € Z% —h < ®, < K(h)} also contains an unbounded connected component
in the thick slab Z2 x [0,2L¢)%"2, as stated in (I1.1.11). In order to be able to
prove Theorem II.1.1 with the help of Theorem II.3.1 in Section II.5, the key

property of K (h) in (II.3.1) is that
hK(h) — 0, as h \, 0, (I1.3.3)

see in particular the proof of Lemma II.5.1. The proof of Theorem II.3.1 will
involve an application of the isomorphism (I1.2.15), and therefore hinges on a
corresponding statement “in the world of random interlacements,” see Proposi-
tion I1.4.1 at the beginning of the next section. The proof of the latter requires
some preliminary results on the geometry of fu, which we gather now. The de-
pendence of these results on u needs to be precise enough to later deduce (11.3.3)
when transferring Proposition I1.4.1 back to the Gaussian free field.

In the remainder of this section, we consider, under P! , and for each u > 0,
the random interlacement set 7" at level u on the cable system, see (I1.2.12),

and (€;,4),.74 the field of local times of the underlying interlacement process w*,
see (I1.2.11). The following lemma asserts that Z* is typically well-connected.

Lemma I1.3.2. Let d > 3, ¢ € (0,1) and uy > 0. There exist constants ¢ =
c(d, e, ug) and C' = C(d,e,up) such that for all u € (0,ug] and R > 1,

P! ﬂ {z - yin TN [—eR, (1 + a)R)d}> >1-Cexp (—cRY™u),
z,y€Zun[0,R)d
(I1.3.4)
where, for measurable A C Zd, the event {x <> y in f“ﬂA} refers to the existence
of a continuous path in the subset 7' N A of the cable system connecting x and
Y.

This property is essentially known, see for instance Proposition 1 of [73] or
Lemma 3.1 in [74]. However, we need to keep careful track of the dependence of
error terms on the intensity u. For the reader’s convenience, we have included a
proof of Lemma I1.3.2 in the Appendix.

Next, we will need to know how much time the trajectories of random inter-
lacements typically spend in a large box with sufficiently high precision. This
can be conveniently formulated in terms of a large deviation inequality for the
local times.

Lemma I1.3.3. Let d > 3 and ¢ € (0,1). There exist constants ¢ = ¢(d, ¢) and
C =C(d,e) such that for allu >0 and R > 1,

[?P/)I( ‘% Z qu — u’ >c- u) < Cexp (—cRd_Qu) ) (I1.3.5)

z€[0,R)4NZ4
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Proof. Abbreviate Br = [0, R)? N Z% and, for A > 0, let us define V(z) =
(IBr|) A yzepyy- It follows, cf. (I1.2.13) for notation, that there exists K; < oo
such that for all f € (*°(Z?) and = € Z¢,

g(x
(GV /\‘ S |B | ‘< KOAR2 )| ] oz, (IL.3.6)
yeEBR
using that g(z,y) < C’'|lz — y|*7¢, for z,y € Z%. Hence, for A = \gR4 2, with
Ao < K;*', one obtains that [|GV]|. < 1, for all R > 1. In view of (I.3.6),

applying Markov’s inequality and using (I1.2.14) then yields, for all Ay < K;*
and R > 1,

fvf(% S fw> ()

z€[0,R)4NZ

<exp{_)\0Rd2 ((1+5 1+Z KiXo)" )}

n>1

The right-hand side is bounded from above by C'exp (—cRd_Qu) upon choosing
Xo(e) < K" small enough such that >, (K1Ag)" < ¢/2. In a similar fashion
one bounds for V', A as above,

ITDI(% Z Zpu <(1- s)u)

z€[0,R)4NZ4
_ exp V —(1—5)/\u
B e S} )
< MR ((1—¢) — (1 — Kix)™) ) ¢,
exp { MR 2u (1) — ( 2( 20)") }
from which (I1.3.5) readily follows. O

As a direct application of Lemmas I1.3.2 and 11.3.3, we derive lower bounds
for the probabilities of the following events.

Definition I1.3.4. For all v, v/ > 0, and integer R > 1, the events E}%’“/ and
Fﬁ’“, are defined as follows:

(a) E}%’u/ oceurs if and only if for each e € {0,1}%, the set (eR + [0, R)%) N Z"
contains a connected component A, such that

~ 3
Z gy,u > ZU,Rd,
yEANZA

and such that the components (Ac).efo,134 are all connected in 7*N[0,2R)%.
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(b) F" oceurs if and only if for all e € {0,1}4,

~ )
Z gym < ZUIRd.

ye(eR+[0,R)4)NZ4

Note that for fixed v/ > 0, and positive integer R, the events (E;’u,)wo are in-
creasing, i.e., there exists a measurable and increasing function f}é’ . 0, oo)Zd —
{0,1} such that 1E}§“' = f¥(¢.,) for all u > 0, and that the events (Fip™ ),~0

/
are decreasing, i.e., the events ((Fg" )¢)u>0 are increasing. The following con-

sequence of Lemmas I1.3.2 and I1.3.3 is tailored to our purposes in the next
section.

Corollary I1.3.5. Let d > 3 and uy > 0. There exist 6 € (0,1), positive and
finite constants C' = C(d,uy) and ¢ = ¢(d,up) such that for all w € (0,uo] and
R>1,

P! (E]u{(l_é)’u) >1—Cexp (—ch/7u) (I1.3.7)

and

P! (Fp (148).u ") = 1—Cexp(—cR"?u). (I1.3.8)

Proof. Let 6 = +. We begin with (I1.3.8). In view of Definition II.3.4, it follows
from Lemma I1.3.3 applied with u(1+0) instead of u and translation invariance
that for all e € {0,1}% and u > 0,

_ ~ 5
]PI Z Km,u(1+6) < ZRdU
z€(eR+[0,R)4)NZ4

~ 1 ~ 15
= ]PJI ﬁ Z éw,u(1+5) < ﬁU(l + 5)
z€(eR+[0,R)4)NZ4

(I1.3.5)
> 11— Cexp(—cR¥u),

which is (I1.3.8).

In order to obtain (II.3.7), fix any two constants ¢ = ¢(d) € (0,1) and
p = p(d) € (0,1) in such a way that (1 — 8)4(1 — pu)(1 — &) = 2. For all
e € {0,1}%, we define the inner boxes B.(g) = eR + [2|eR], R — QLSRJ)d. It is
sufficient to prove (I1.3.7) for R satisfying e R > 1, which we now tacitly assume.
We then have |B.(e) NZ4|-(1—p)(1—4) > 2R, where | A| denotes the cardinality
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of A C Z%. According to Lemma I1.3.3,

~ ~ 3
I R
ZEBe(e)NZA
~ 1 ~
> IP)I —|B (6) A Zd| Z Em,u(l—&) > (1 - ,U,)U(]. - 6)

ZEBe(e)NZA

>1—Cexp (—cRd_2u) :

We now define Al = B.(¢) N 7%(1-9)  According to Lemma 11.3.2, for every e €
{0, 1}¢, all the vertices of Al are connected in Z*=9 N (eR+[|eR|, R—|cR])%)
with probability at least 1 — Cexp(—cRY"u), and on the corresponding event
we define A, € Z“0=9 " (eR+[|eR], R — |eR])?) such that AL C A, and A, is
connected.

Still according to Lemma I1.3.2, all the A, for e € {0, 1}% are connected with
cach other in 7= N [0,2R)¢ with probability at least 1 — C exp(—cRYu),
which gives (I1.3.7). O

Since the events E}é’“, and Fg’“, are defined in terms of local times and not
in terms of the occupation field (1 {xef“})zezd’ we now give a slightly different
version of the decoupling inequality presented in [68] valid for the local times on
the cable system. This inequality will later enable us to use E]“%’“/ and Fﬁ’ul as
seed events of a suitable multi-scale argument. In what follows, let Q“ u >0, be
the law on Q = [0, oo) * of the local times (ﬁx u)zeza of random interlacements on
the cable system 72, and let (Pz),e74 denote the canonical coordinate functions

on 0, ie., for all f € Q and x € Z¢, p(f) = f(2).

Theorem I1.3.6. Let A1 and Ay be two measurable non- intersecting subsets of
74, Assume that s := d(Al, AQ) > 1, and that the minimum r of the diameters of
Ay and A, is finite. Then there exist ro(d) and k1 (d) such that for allu > 0 and

€ (0,1), for any functions f; : Q — [0,1] which are o(p,, x € A;) measurable
for each i € {1,2}, and which are both increasing or both decreasing,

Q"[f1f2) < QUUFIA]Q =) [fo] + kio(r + 5)% exp(—ric?us®2), (I1.3.9)

where the plus sign corresponds to the case where the f;’s are increasing and the
minus sign to the case where the f;’s are decreasing.

Proof. Let A; and Ay be the smallest subsets of Z? such that for all i € {1,2},
and all x € A;, there exist y,z € A; such that x € T{W}. Note that 4; N Z? C
A;. Since d(A;, Ay) > 1, the sets A; and A, are not intersecting (recall that
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the distance between two neighbors of Z% is %) For two measures p; and po,
we say that p; < po if pe — pq is a non-negative measure. The proof of the
main decoupling result, Theorem 2.1 in [68|, see in particular Section 5 therein,
implies that, for each u > 0, there exists a coupling Q. between the random
interlacement process w on Z? and two independent Poisson point processes w;
and w, having the same law as w, such that, for B C Z%, denoting by (w")|5 the
point process consisting of the restriction to B of the trajectories in w* which
hit B,

QLW ™), < (@94 < (@) 4y, i = 1,2]

) (I1.3.10)
> 1 — ko(r + s)* exp(—k1e7us

For each w > 0 and i € {1,2}, under an extended probability @5, one then

(1-e)

constructs an interlacement process @;’ at level u(1 —¢) on the cable system

by adding independent Brownian excursions on the edges for every trajectory

u(l—e)

in the support of the random interlacement process w; on Z¢, as in the

construction of the diffusion X , see the beginning of Section I1.2.

. ~ . ~u(l—
We now construct a random interlacement process w" at level u using w;‘( )

(1—e)

and w". Tts trajectories are the trajectories of & which have a projection

u(l—¢)

on Z? already contained in w* (i.e., all the trajectories of @; on the event

n (I1.3.10)) and the trajectories of w" Wthh are not already in w;, “179) ifted

8

to 74 using additional independent (of @;' and w") Brownian excursions

on the edges. We repeat this construction to obtain a random interlacement
process @) at level u(1 + ¢) in a similar way from & w and w0
analogue of (I1.3.10) holds for these processes &", &; 079 and " u(l+<) under Q?.
In particular, denoting by Ex s Ex w(i—e) and fx w(ite) their respective local time

fields on the cable system, see (I1.2.11), it follows that

. Then, an

@I[ ru(l—e) < lou < K;u 14e)y T € AL i=1 2] = 1—ko(r+s)? exp(—r1e%us’?)
(IL3.11)
The inequalities in (I1.3.9) are a direct consequence of (I1.3.11). O

I1.4 Percolation for the truncated level set

In this section, we prove Theorem II.3.1: for each h > 0, there exists a finite
constant K (h) such that the level set of the Gaussian free field on the cable
system truncated above level —h and below level K (h) contains an unbounded
connected component. We will actually show a similar statement for random in-
terlacements and use the coupling from Theorem I1.2.2 to obtain Theorem I1.3.1.
The corresponding statement for random interlacement, see Proposition 11.4.1,
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essentially asserts that one can intersect the continuous interlacement set f“,
the set {z € Z% |p,| < K} and a Bernoulli family on the edges with parameter
p and still retain an unbounded connected component in 74 for sufficiently large
K and p close enough to 1. The proof of this statement bears similarities to the
proof of Theorem 2.1 in [74], where it is shown that the intersection of 7% and a
Bernoulli family with parameter p on Z¢, not necessarily independent from Z",
contains an infinite connected component in Z? for large enough p.

Henceforth, for a given p € (0,1) (and d > 3), let @p be any coupling between
a Gaussian free field ¢, a random interlacement process w and a family of inde-
pendent Bernoulli random variables on the edges B = (6?).cp with parameter

p, i.e.,
under Q”, the law of (D) peza 18 P9, the process & has the same
law as under P’ and (0%)ccr is an ii.d. family of {0, 1}-valued (I1.4.1)
random variables with Q” (02 =1) = p for each e € E.

In particular, @, w and B? need not be independent, and in fact, we will later use
a coupling such that (I1.2.16) holds. For any level u > 0, we define the random

interlacement set Z* as in (I1.2.12) and the local times ((yu), 7 as in (I1.2.11)
in terms of @. We further denote by ¢ the restriction of ¢ to Z¢ and by Z" the
restriction of Z" to Z<.

Proposition I1.4.1. (d > 3, up > 0, (11.4.1))

There ezist positive constants Cy, c¢1, C] and ¢}, only depending on d and uy,
satisfying Crug® = 1 and Cug' < 1, such that for all u € (0, uo), with

K (u) - Nlog (ﬁ) and  p(u) g Clue, (I1.4.2)
Ut
there exists Lo(u) > 0 such that, if p € [p(u), 1], then QP-a.s. the set
A, = (T\1)

U {x € 1% |go| < K(u) andVy ~ z, |o,| < K(u) and 07,

1
(11.4.3)

contains an unbounded connected component in the thick slab Z2 x [0, 2Lo(u))4~2.

We now comment on (I1.4.3). First, note that Z* C Z?, so saying that Zﬁw
contains an unbounded connected component implies that A; ,N Z¢ contains an
infinite path such that all the edges of this path are in Z*%, and for all vertices
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2 on this path and all y ~ z, |¢,| < K(u) and 0y, ,, = 1. Proposition I1.4.1 is

true for any choice of coupling probability QP satisfying (II.4.1). Once its proof
is completed, we will choose the coupling introduced in (I1.2.15). This will auto-

matically enforce the lower bound —h required for the proof of Theorem I1.3.1,
since 7% C {z € Z% &, > —/2u}, see (11.2.16). A good choice of 0,y cf.
Lemma I1.4.9 below, will then allow to control the height of the field along the
edges. To this effect, (I1.4.3) essentially guarantees that on A/;’p we are dealing
with Brownian bridges whose boundary values are uniformly bounded.

The proof of Proposition 11.4.1 follows a strategy very similar to the proof
of Theorem 2.1 in [74], but we need to pay diligent attention to the dependence
on u in order to obtain the explicit bounds (II.4.2). We use a renormalization
scheme akin to the one introduced in Section 4 of |74], which uses a sprinkling
technique developed in [93] and later improved in [95] and [68]. For n > 0 and

Lo > 1, we define the geometrically increasing sequence
L, =10Ly, where ly = 41(d) and I(d) = 4(5 - 4% + 1) (11.4.4)
and the coarse-grained lattice model
Gy° = LyZ* and GE = L, 7% c GX° | for n > 1.

Note that, albeit only implicitly, the sequence L, depends on the choice of Ly,

which is the only parameter in this scheme. For z € G%

o we further introduce
the boxes

AL =Gy N (@ + [0, L)Y, (IL.4.5)

and note that {AL0; 2 € GLo} forms a partition of GZ° . For a given collection of

events indexed by Gg °, that we denote by A = (A,) cglo, we define recursively
0

the events GL9,(A) such that G£?0 = A, for all z € G{°, and for all n > 1 and
r € Glo,
G = J Go.a@nGg

z2,n—1

(A), (I1.4.6)

L
1 7126[\1‘,077,

\$1—$2|oo2f(7”)

where | - | stands for the (*°-distance on Z4. For each x € Z<, let T, be the
translation operator on the space of point measures on W*, the space of doubly
infinite trajectories on 74 modulo time-shift such that, if p is such a measure,
then T, (u) is the point measure where each trajectory in the support of y has
been translated by x. Moreover, in a slight abuse of notation, let 7, be defined
by

wor, =T,(w). (I1.4.7)
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We introduce a family of events on the space .oup on which @p, cf. (I1.4.1), is
defined. We say that an event A € o(g,, z € id) is increasing if there exists
an increasing and measurable function f: Qg — {0, 1} such that, QP-as., 14 =
f(®), and decreasing if A€ is increasing. Recall that the events Ezoul and F goul
from Definition I11.3.4 are respectively increasing and decreasing, and we will
from now on tacitly consider them as subsets of (eoyp.

Definition I1.4.2. For each u > 0, integer Ly > 1, K > 0 and p € [0, 1] let

(a) (ELo") _gro be the family of increasing events such that, for all z € Gie,
&0

the event ELov = -1 (%™} occurs
T T Lo )

(b) (Fio*) _sro be the family of decreasing events such that, for all z € Gy,
0

Loou _ —1 u,u
the event F;*" = 7, (F o ) occurs,

(c) (CEoK) .o be the family of decreasing events such that, for all z € Gg°,
&0

the event CLo-X occurs if and only if for all y € (x + [—1,2L¢ + 1)%) N Z,
we have ¢, < K,

(d) ((A'J:%O’K)zeGLO be the family of increasing events such that, for all z € GJ°,
0

the event CLo-K occurs if and only if for all y € (z + [—1,2Lo + 1)%) N Z¢,
we have ¢, > —K,

(e) (DLP) _oro be the family of events such that, for all z € Gg°, the event
0

DZLoPr occurs if and only if for all e € (z+[—1,2Ly + 1)4) N E, we have
o = 1.

A vertex x € GOLO is called a good (Lo, u, K, p) vertex if
CLoK o CLloK q pLow q ELov q Fhov (I1.4.8)
occurs, and otherwise a bad (Lo, u, K, p) vertex.

The reason for the choices in Definition 11.3.4 and (I1.4.8), with regards to
Proposition 11.4.1, comes in the following.

Lemma I1.4.3. (u >0, Ly > 1, p € (0,1])

If (xo,x1,...) is an unbounded nearest neighbor path of good (Lg,u, [?(u),p)
vertices in G{°, then the set | ;> (7;+[0,2Lo)?) contains an unbounded connected

path in Al cf (11.4.3).

u?p7
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Proof. Let x,y be two good (Lo, u, [?(u),p) vertices and neighbours in G§°, and
assume that there exists e € {0,1}% such that z + eLy = y. Since ELo* holds,
there exist two random sets A, C Z% N (z + [0, Lo)?) and A,. C Z% N (z +
eLo + [0, Ly)?) which are connected in Z% N (z + [0,2Lo)?), and such that the
sum of the local times on the vertices of each of those two sets is larger than
3uLg. Moreover, since FLo* occurs, the sum of the local times on the vertices
of A,. UA,( is smaller than %uLg because A, . U A, C v N (y + [0, Lo)d).
Hence, A,. N A,o # @, and this implies that A, is connected to A, in
U0 (x4 [0,2Lo)%).

Applying the above to each of the neighbors in our path (zg,z,...), we get
that for all i € Ny, A, o is connected to A,,,, o in 750 ((x; 40, 2L0)d) (Tip1+
[0,2L¢)%)). Thus, one can find an unbounded connected path in 7N U2 (2 +
[0,2L)%), and this path is actually in A’ since |, < K(u) and 67 = 1 for all
z,e € Ui (v + [-1,2L0 + 1)4) by Deﬁmtlon 11.4.2, (c), (d), (e). O

To prove that an unbounded nearest neighbor path of good (Lg, u, K (u),p)
vertices in Gé“ exists for a suitable choice of the parameters, we pair our good
(seed) events with the renormalization scheme (II1.4.6) to show that, if being
a good seed is typical, i.e., if it occurs with probability sufficiently close to 1,
then the probability of being good “at level n” cf. (I1.4.6) and (I1.4.21) below,
is overwhelming. The respective bounds for all events of interest, cf. Definition
I1.4.2, can be found in Lemmas I1.4.4, 11.4.6 and 11.4.7 below. We first consider
the events (EL0"), ;0 and (FLo") 4, and take advantage of Corollary 11.3.5
and Theorem I1.3.6 to show the following.

Lemma I1.4.4. (uy > 0)

There exist Cy = Cy(d,ug) and Cy = Ci(d,ug) such that for all u € (0,ug] and
Lo > 1 with Léﬁu > (),

Q" [Ggs, (BR))] <27, (IL.4.9)
and for all uw € (0,up] and Ly > 1 with Ll/7 > (Y,
Q" [Ggs, (B m))] <27 (IL.4.10)

Proof. We only prove (I1.4.9). The proof of (I1.4.10) is similar. Fix § € (0,1) as
in Corollary 11.3.5, and let ¢’ € (0,1) be small enough such that

u(1—19)
n—1 /
k=1 (1 o 5’«)

(with u; = u(1 —0)). For all € G}°, let ELow = 7-1(E} Iy vy, of. (IL4.7)

x

and Definition 11.3.4, and note that ELowv = ELov For all u € (0,uo], Lo > 1,

Uy 1= <u, Vn>1 (I1.4.11)



Chapter II. Percolation for the sign clusters on Z% 38

positive integer n, i € {1,2} and z; € G0 such that |z; — o5|s > Lot = 4L,

= 1(d)
the events Gﬁgn_l ((BELov' )Y are (L, 2 € z; + [0, L, + Lo)?) measurable for

all v’ > 0, and, defining r,, := %,

S o= d (z1+[0,2r,)", 25 + [0,2r,) 1) = d(x1,22) — 100 > L.

By Theorem I1.3.6 applied with ¢ = 1 — uu_il = ¢’27", and since the events
(ELO’“'”‘)c are decreasing, there exist two constants C' and ¢ independent of u, n

and Lg such that

Qv [Glo,_, (EFow)eyq Gho ) ((ERont)e)]
< QP [Ghe,_, (Eforny)] Qv [Gle,_y ((BEom1)9)] (11.4.12)

+ C(sn +1p) exp (—cust 47") .

We have chosen I$72 > 8, see (I11.4.4), whence for L(l)ﬁu > c(d, uyp),

1
5'C(sn + Ly + Lo) " exp (—cusl4™) < C'exp (— CUL(1)/72n) S (42722
0
(I1.4.13)

We now prove by induction over n that for all z € GLo, and all u € (0, ug),

1

ey LiTu> c(duo).  (IL4.14)

@ [ars, (Bm))] <
For n = 0, the bound on the right-hand side of (I1.4.14) is purely numerical.
Thus, it is clear from Corollary 11.3.5, and since G5 ((Efowv)e) = (ELowuvye,
see above (I1.4.6), that if one takes Lé/ "u large enough (only depending on u
and d), then (I1.4.14) holds for n = 0 on account of (I1.3.7). Suppose now it
holds for n — 1 > 0. Then, according to (11.4.6)

@ (65, (BRy)]
< Y @ [EH (B) 16, ()]

L
x1a$2eAm,0n

\x1—w2|>lL(7">

1
< Sadoa
(213%)2%"

where the last equality follows from (I1.4.12), (I1.4.13), the induction hypothesis
and [ALo] < 1§, and (IL4.14) follows. The claim (IL4.9) then follows from
(I1.4.11), (I1.4.14) and the fact that the (ELO’“'”‘)c are decreasing events. O

We now turn to the Gaussian free field part CLo-X and CLo-X | see (c) and (d)

in Definition I1.4.2, of the good events in (I.4.8). Sprinkling techniques have
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been used successfully in investigating level set percolation of the Gaussian free
field, see for example [81], [78] or [29], and also [80] with regard to non-Gaussian
measures. These techniques imply similar results as for random interlacements,
and this is mainly due to the fact that decoupling inequalities as (II.3.9) also
hold for the Gaussian free field. With hopefully obvious notation, in writing
® + ¢ below, with ® as in (II.1.2), we mean the field whose value is shifted by
c € R everywhere.

Theorem I1.4.5 ([67, Corollary 1.3] and thereafter). Let Ay and As be two non
intersecting subsets of 7, define s = d(Ay, Ay) and assume that the minimum r
of their diameters is finite. Then, there exist positive constants r,(d) and ' (d)
such that, for all ¢ € (0,1), and any two functions f; : RZ" — [0, 1] which are
o(®,, x € A;) measurable for each i € {1,2}, and either both increasing or both
decreasing,

E°[f1(®) f2(®)] S ECfi(® £ e)[E[fo(® £ )] + g(r + 5)" exp(—r)e®s'7?),
(I1.4.15)
where the plus sign corresponds to the case where the f;’s are increasing and the
minus sign to the case where the f;’s are decreasing.

Theorem 1.2 in [67] gives a slightly better inequality, but (I1.4.15) will be suf-
ficient for our purposes, and readily yields the following analogue of Lemma I1.4.4
for the events pertaining to the free field.

Lemma I1.4.6. There ezist constants C3(d) > 1 and C}(d) > 0 such that for
all Ly = C5 and K > 0 with

K > C%/log(Lo), (I1.4.16)

one has
Q¥ [ng((cLOvK)C)} <27 and @ [G(ﬁ; ((GLOvK)C)} <27 (IL4.17)

Proof. One knows from (2.35) and (2.38) in [81] that if K > C'/log(Ly) for

some constant C' large enough,
w[Er )] = [(cP )= s w>K)
z€[—1,2Lo+1)¢ (H4 18)

(K—C log(LO))2

<e 29(0)

The claim (I1.4.17) now follows by induction over n from (I1.4.18) and Theo-
rem I1.4.5 in exactly the same way as Lemma I1.4.4 was obtained from Corol-
lary I1.3.5 and Theorem II.3.6. [
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Finally, we collect a simple estimate for the Bernoulli part of our good events
DZo? see part (e) in Definition I1.4.2.

Lemma I1.4.7 (|74, Lemma 4.7]). There exists Cy = Cy(d) such that for all
Lo > 1 and p € (0,1) satisfying

p = exp (—%) , (I1.4.19)
Li
one has
Q" [Ggs, (DRP)9)] < 272" (11.4.20)

The bounds of Lemmas 11.4.4, 11.4.6 and 11.4.7 allow for a proof of Proposi-
tion I1.4.1 by means of a standard duality argument. In view of Lemma I1.4.3,
this requires an estimate on the probability to see certain long (dual) paths. The
relevant events, see (11.4.22), can be suitably expressed in terms of bad vertices
at level n, as Lemma I1.4.8 asserts.

Recall the definition of good (Lo, u, K, p) vertices in (I11.4.8). For n > 0, we
call z € GLo a bad n — (Ly,u, K, p) vertex if the event

G, (G )L (B UG, (D)) UG ((BH0+)7) UG (B

(I1.4.21)
occurs, and a good n — (Lg,u, K,p) vertex otherwise. Note that a good
0 — (Lo, u, K,p) vertex is simply a good (Lg,u, K,p) vertex. We say that
(20,1, -, Tn,...) is a *path in G° if for all i € {0,1,...}, z; € G§° and
l|x; — zit1]|o = Lo. For each u, K > 0, integer Ly > 1, p € (0,1), 0 < M < N
with M, N multiples of Ly, and = € Gg 0 let

Hyy(z; Lo, u, K, p) = {(z + [~ M, M]?) is connected to (z + 9[—N, N]?) by
a *-path of bad (Lg,u, K, p) vertices in Géo}.
(I1.4.22)

Here, 9[- N, N]? denotes the boundary of the set [N, N]¢, which intersects G5
since IV is a multiple of Lg. The following lemma asserts that Hzf” (x; Lo, u, K, p)
can only happen if there is a bad n — (Lo, u, K, p) vertex in the box of radius
2L,, around x.

Lemma I1.4.8. For all integers n > 0 and Lo > 1, u, K > 0, p € (0,1), and
r € Glo,

H22 (2; Lo, u, K, p) C U {y is n— (Lo, u, K,p) bad}. (11.4.23)

YEGEO N (2+[—2Lp 2Ln)9)
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Proof. This is a consequence of Lemma 4.4 of [78] (with N = 5, r = [(d) and
Ly, ly as in (I1.4.4) above). We include the proof for the reader’s convenience.
We proceed by induction over n: it is clear that (I11.4.23) is true for n = 0, and we
assume that it holds for any choice of x up to level n — 1. If Hﬁ" (x; Lo, u, K, p)
occurs, there exists a #-path 7 of bad (Lg,u, K,p) vertices in G¢° from (z +
[—L,, L,]%) to (z+0[—2L,, 2L,]?). This path intersects the concentric £*°-spheres
(z + 0[—L, — 16iL,_1, L, + 16iL, 4]¢) for all i € {0,...,m — 1}, where m =
549 + 1 (recall that Iy = 16m). In view of (I1.4.4), for all i € {0,...,m — 1},
one can thus find y; € G%°, N (x 4 [~ Ly, — 16iL,_1, L, 4 16iL,_1]?) such that
7O (yi + [=Ln_1, Ln_1]?) # 2.

For each i € {0,...,m — 1}, we clearly have (y; + [~2L,_1,2L,1]%) C
(x + [~2L,,2L,]%), and so the connected #-path 7 in G{° connects (y; +
[~Ln_1,Ln_1]%) to (yi + 8[—2L,_1,2L,_1]%), and thus the induction hypoth-
esis implies that there exists z; € (y; + [~2Ln_1,2L,_1)%) which is (n — 1) —
(Lo, u, K,p) bad, and in particular z; € GL°,. There are m = 5 - 4% 4 1
such z;, and since there are only 4% elements in GLo N (x+ [—2Ln,2Ln)d),
one can find xo in this set such that AL . cf. (IL4.5), contains at least 6
different z;. By (I1.4.21), one can thus find £ # j in {0,...,m — 1} and
Ay € {(ChoK)e (CloK)e (DLow)e (BLow)e (FLow)e} such that z and z; are
in ALo and G0 (Ag) and GLo

o U 2tn—1(Ao) both occur. Moreover,

||zk - ZJHOO > ||yk - y]Hoo - 4Ln—l 2 12Ln—l 2 Ln/l(d)a

which, in view of (I1.4.6), implies that GLo (Ay) occurs, and thus zg is n —

zo,n

(Lo, u, K, p) bad. ]

By Lemmas 11.4.4, 11.4.6 and 11.4.7, we know that for all u € (0, ug|, and for
a suitable choice of the parameters Ly, K and p, the probability that a vertex
is n — (Lo, u, K,p) bad is very small. Lemma I1.4.8 then yields that a %-path
of (Lo, u, K,p) bad vertices in Ggo exists with very small probability only, and
on account of Lemma I1.4.3, we can prove Proposition II.4.1 using a Peierls
argument.

Proof of Proposition I1.4.1. Choose a constant Cs = C5(d, ug) large enough such
that, upon defining

Lo(u) = (05/1;7] ,

one has Lo(u)/"u > max(Cy,C}), cf. Lemma 11.4.4, and Lo(u) > Cs, cf.
Lemma I1.4.6, for all u € (0, up]. One can now find constants ¢;, Cy, ¢ and C]
such that if (IL4.2) holds, then K(u) > C4y/log(Lo(u)), cf. (I1.4.16), and
p(u) > exp(—%), cf. (I1.4.19), for all u € (0,ug]. Let us now fix arbitrarily
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some u € (0,up] and p € [p(u),1]. Lemma I1.4.8, Lemmas I1.4.4 and 11.4.6 and
Lemma I1.4.7 can now be applied with Ly = Lo(u), K = K(u) and p, to yield

@ (HE (0 Lo(w),u, K (w),p)

(11.4.23)

< 4d@p(0 is n — (Lo(u), u, K (u), p) bad)
@ ((emoney)] @ fel (@)
e ()] e ()]
( Lo(

- @fot ()]}

< 547 2—2",

using (11.4.9), (11.4.10), (I1.4.17) and (I1.4.20) in the last step. Since this bound
holds for all n > 0, and we have, in view of (I1.4.4), HY (0; Lo(u), u, K (u),p) C
H7E (0; Lo(u), u, K (u),p) for any n € N such that 2L, < N, one can find con-
stants ¢,C' > 0 depending only on d, u and uy such that, for all integers N,

Q" <Hév (0; Lo(u), u, [?(u),p)) < Cexp (—eN°). (I1.4.24)

Given (I1.4.24), the argument proceeds as follows. For any set A C Z2 x {0}%72,
define (o, ..., Zn,...) to be a nearest neighbor path of good (Lo(v), u, K (u), p)
vertices in GOLO(U) N (Z* x {0}972) that connects A to oo if all the z; €
GE™ M (72 x {0}42) are good (Lo (u),u, K (u), p) vertices, ||lz;—ip1||1 = Lo(u)
for all i € {0,1,...}, g € A and ||z;]|oc — 00, as i — 0. Now, assume that
there exists no unbounded nearest neighbor path of good (Lo (u),u, K (u), p) ver-
Lo (72 x {0}9-2), and in particular that for all M € Lo(u) - N = N,
there is no nearest neighbor path of good (Lo(u), u, K (), p) vertices that con-
nects [M, M]* x {0}%72 to oo. Then by planar duality, for all M € N,, there
exists a #-path 7 around [—M, M]? x {0}9-2 in GL*™ N (Z% x {0}9-2) of bad
(Lo(u),u, K (u),p) vertices. If N > M denotes the smallest multiple of Lg(u)
such that zy = (N,0) € N, x {0} is in m, then HY (zn; Lo(u), u, K (u), p)
occurs. Thus, the probability that there is no infinite nearest neighbor path
of good (Lo(u),u, K(u),p) vertices in G°™ n (Z* x {0}%-2) that connect
[—M, M)? x {0}92 to oo is bounded by

Z @ (H(])V(OS LO(U)vuJ?(u)ap) < Z Cexp (—cN°).

NeNy: N>M NeNy:N>M

tices in Gy,

This is true for all M € N,,, hence the probability of having no unbounded nearest
neighbor path of good (Lo(u), u, K (u),p) vertices in GE°™ 1 (72 x {0}%-2) is 0.
Lemma I1.4.3 then implies that the set gjw percolates (almost surely), for any
u € (0,up] and p € [p(u), 1], and the claim of Proposition 11.4.1 follows. O
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With Proposition I1.4.1 at hand, it is possible to deduce Theorem I1.3.1 for
a good choice of coupling Q7 in (I1.4.1). The idea is to use (I1.2.15), and to
suitably couple the Bernoulli percolation B” with {|¢| < K(h)} on the edges.

The key to the proof of Theorem I1.3.1 is the following lemma, by which
one can essentially couple a Bernoulli percolation {B” = 1} on the edges with
sufficiently large success parameter p > 1 — Cju®, cf. (I1.4.2), with {|g] < K'}
on the edges for K’ large enough.

Lemma 11.4.9. Let ¢ be a Gaussian free field on the cable system under P.
For all ug > 0, there exist positive constants Cy and cy such that, for all
u € (0,up], with K(u) and p(u) as defined in (11.4.2), h = 2u and K(h)

as defined in (11.3.1), the following holds: under P, there exists a family of inde-
pendent Bernoulli variables B = (05(“))6@ with parameter p(u) > p(u), and
the property that

for all e = {z,y} € E, if || < K(u) and || < K(u),
then {95(“) =1=Vzel, |g.|<K(h)}.

Proof. Let u € (0,up] and h = v/2u. With C4, ¢;, C] and ¢] as given by Propo-
sition 11.4.1, fix constants Cy and ¢q depending only on wug and d such that

(IL3.1) C C 1 Cluc
w2 () 3 oe ()
SO =

Let (B®)cecr be defined as in (I1.2.9), and recall that (B¢).cg is an i.i.d. family
of Brownian bridges with length % of a Brownian motion with variance 2 at time
1. For all e € E, define

_{ 1, if |BY| < K(h) — K(u) for all t [0,1],

(I1.4.25)

(I1.4.26)

HP(w)

e

11.4.27
0, otherwise. ( )

Then (92’(“))6 is an i.i.d. family of Bernoulli variables with parameter

S
def. =<

Blu) < P (w €[0,1/2], |BY| < K(h) — z’%<u)) .

Moreover, by symmetry (the boundary values of B¢ are both 0) and Lemma I11.2.1

Blu) > 1— 2P ( sup Bf > K(h) - f<<u>>

te[0,1/2]
(11.2.10)

> 1—2exp (—Q(K(h) - [?(U»Q)

(11.4.26)
> p(u),
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and, using (11.2.9) and (I1.4.27), for all e = {x,y} € E such that ¢, < K (u) and
SOZJ < K(u)7

(95(“) = 1 = Vt c [0, 1/2]7 ’&ertv(Ly) - (1 - 2t)g0$ - 2t90y| < K(h’) - [A{'(U’)
= Vzel, |p.| <K(h),

whence (11.4.25). O

Proof of Theorem I1.3.1. Let ug = };—(2), and, for any h € (0, hyl, define u = %2 Let
P¥ be the coupling from Theorem I1.2.2, under which there exist a Gaussian free
field ¢ and a random interlacement process w such that (I11.2.16) holds. For this
@, let B = BP(W)(Z) be the family of independent Bernoulli variables under P
introduced in Lemma I1.4.9. This yields a coupling @ﬁ(“) satisfying (I1.4.1), with
parameter p(u) = p(u). One can now apply Proposition I1.4.1 to obtain that,
ﬁ“—a.s, the set g;ﬁ(u)’ cf. (I1.4.3), contains an unbounded connected component

in the thick slab Z2 x [0, Lo(u))*2, and thus (I1.4.25) yields that P"a.s. the set
(ZN 2\ ZY) U {z € 2% Vv e VO, ¥t € [0,1/2], |Pusn] < K(h)} (11.4.28)

contains an unbounded connected component in the thick slab Z2 x [0, Lo (u))*2.
Now (I1.2.16) implies that the set defined in (I1.4.28) is included in A,(¥), and
Theorem I1.3.1 follows. O

II.5 Percolation for positive level set

In this section, we prove our main result, Theorem II.1.1, with the help of
Theorem I1.3.1. We consider the Gaussian free field ® on Z¢ as defined in
(I1.2.3), and, with Theorem I1.3.1 at hand, we will no longer need random in-
terlacements nor the coupling (I1.2.15) to prove Theorem II.1.1. A key ingre-
dient is the following observation: we have shown, see (II.1.11) that the set
{r €7 —h <P, <K (h)} contains an unbounded connected component for
large enough K(h), cf. (IL.3.1). Suppose that z € Z% is a vertex inside this un-
bounded component, and that . is attached to z (recall that & = d | Z%). Then,
since ® behaves like a Brownian bridge on I., see (I1.2.9), the probability that
®, > —hfor all z € I, becomes very small as h N\ 0. In fact, since hK (h) — 0 as
h ™\, 0,if e = {z,y}, for sufficiently small h > 0, it is more costly to keep d>—h
along the entire cable I, than to require ®, > h (at the vertex x only!), knowing
that —h < &, < K(h) and |®,| < K(h), see Lemma I1.5.1 for the corresponding
statement. Accordingly, the probability that the set {z € Z%; —h < &, < K(h)}
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contains an unbounded connected component becomes smaller than the proba-
bility that the set {z € Z% h < ®, < K(h)} contains an infinite cluster (in Z<)
as h goes to 0, which implies Theorem II.1.1.

Comparing the probability that ®, > h knowing that —h < &, < K(h) with
the probability that the Brownian bridge on I, remains above level —A in a uni-
form way requires some control on the Gaussian free field d in the neighborhood
of x, and for this purpose we are actually going to use Theorem II.3.1 and not
only (IL.1.11). We define, for z € Z% and v € V°, the subsets U** and U* of Z?
by

v 1 T v 1
U =z + [O’ZU> and U" = U U =z + U [O,Zv>. (IL.5.1)

veV?o veV?o

We call K* = 0U” the boundary of U*, which has exactly 2d elements, and
define K = (J, 74 K*. Henceforth, we set

ho =1 (11.5.2)

in all the previous definitions and results, and in particular in Theorem II.3.1
(this value is chosen arbitrarily in (0, 00)). For any h € (0, 1], we define K (h) as
in (I1.3.1) (with ¢y, Cp numerical constants depending only on d by the choice
(I1.5.2)). We further define two families of events (E};""),cze and (F),"),czd vevo
(part of Qq, cf. above (11.2.3)) by

=@y > —h}n {w ek |8, < K(h)]

- (IL5.3)
and F™" = {vz cU™. 3, > —h},
as well as
Ep = Ey* and Gy = | (Ep' N FY), (I1.5.4)
veVo
and the (random) subsets of Z4
Ey, = {z € Z% E} occurs} and G}, = {x € Z% G7 occurs}. (I1.5.5)

For all K C id, we denote by Ay the o-algebra o (¢,, z € K). We note that
the sets U” are disjoint when z varies, cf. (I.5.1) and (I.2.1), and that the
events E;"" are Ag.-measurable. Theorem II.3.1 implies that G} contains an
infinite connected component, and the goal is to go from this to the percolation
of B, N{z € Z% ®, > h}. The following lemma makes the above observation,
see the discussion at the beginning of this section, precise.
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Lemma I1.5.1. There exists hy € (0, 1] such that for all h € (0, hy] and x € Z,

PY (G | Ax=) < PC(Bf N {®, > B} | Ak-). (IL.5.6)

Proof. Let us fix some x € Z%. It is sufficient to prove that there exists h; € (0, 1]
such that for all h € (0, hy] and all v € VO,

~ 1
LgroPE (F" N {®, < 20} | Axe) < ﬁmup (h < @, <2h|Ax:). (IL5.7)

Indeed, if (I1.5.7) holds, then

PC (GF | Axx) = PO (GE N {®, > 20} | A=) + P (GF N {®, < 2h} | Ax-)

(I1.5.4) _

< PE(GEN{D, > 2h} | Axr)
+ ) PY(E N EY N {®, < 2k} | Axe)

veVo0
(IL5.7)
< IPG (GF N {D, > 2h} | Axe)
—d > PYER N {h < B, < 2h}| Ax)
veV?o

<PY(Ef N {®, > h}| Ax),

noting that G7, E;"" C E¥ in the last inequality, and (I1.5.6) follows. We now
show (I1.5.7). Let us fix some v € VY. We begin with the study of ®,, by
decomposing it suitably. It follows from the Markov property, cf. (I1.2.4), that
®U" = &, — U7 is a centered Gaussian variable with variance gy« (z,z). The
value of the variance gpe(z,x) = 00 does not depend on z € Z? (it actually
follows from Section 2 of [57] that of = 7). Moreover, on the event E;", it is
clear that |3U°| < K(h). Thus, on the event E, since the harmonic average
Bg " is Ay.-measurable, we obtain, for all A > 0,

h<o, <2h|Aicw)
=B (-n< B+ AV < 2h’Am>
1

Stz 2
2h (v=5")"\ 4
=~ o ), P T W
2wog J—h 90
rra\ 2 ~rrx
210 205 —h o a3

2
! exp (— (%) > X 3hexp <2hK(h)> : (I1.5.8)

N

2
)
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A similar calculation shows that on the event E}"", for h > 0,

PY (h < Dy < 20| Axe) > ! exp (—@> x hexp (_—2h(K(h) + h)> .

2 2
210 20¢ 0§

(I1.5.9)
Define

he(0,1] 0 g9

and note that Cs < oo since hK(h) — 0 as h \, 0, cf. (I.3.1). Hence, by (I1.5.8)
and (I1.5.9),

LpzoPY (—h < @, < 20| Age) < ColpraPY (h < @, < 20| Ags), for h € (0,1].

(IL.5.10)
Let us now turn to the events F;"". It follows again from the Markov property
for the Gaussian free field, see in particular the discussion below (II.2.8), that,
knowing A[Czu{z/}, the process (‘T%)zer is a Brownian bridge of length }l be-
tween ®, and @, 1y of a Brownian motion with variance 2 at time 1. Using
Lemma II.2.1, one can then find h; € (0,1] such that, for all h € (0, hy], on the
Ajyc=ugzy measurable event EyY N {—h < &, < 2h},

PE (" | Acsugay) =P (2}}“ . > —h ‘ A/@u{@)
—1—exp (—4(h + @) (h+ <T>$+iv))
<1 —exp(—12h(K(h) + h))
1
2dC,’

We now conclude using (I1.5.10) and (I1.5.11): for all h € (0, hy],

<

(IL5.11)

Lz PO (B N {®, < 2h} | Axr)

(I1.5.3) ™ v
=V | Lpzong-nea,<on P (B | Aceogs) ‘“4’0”}

(IL5.11) 1 561 < @ WA
< 15 PO (—h < D, < 21| A
200, e | Ac)

(11.5.10) 1 -

which is (IL.5.7). O

Lemma I1.5.1 roughly asserts that it is more likely to have {®, > h} than
to have G7 (on EY¥) for small h > 0 and we know by Theorem II.3.1 that G},
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has an infinite connected component in a thick slab. Using the Markov property
for the Gaussian free field we will show that this implies that E>" see (I1.1.3),
percolates in a sufficiently thick slab for any such value of A, thus obtaining
Theorem II.1.1.

Proof of Theorem II.1.1. Let us fix some h € (0, hy], with hy as in Lemma I1.5.1.
The Markov property for the Gaussian free field, see (I1.2.5), (I1.5.1) and (I1.2.1),
implies that the family (EIV’,U'r)xezd is i.i.d. and independent of Ay, and that for
all z € Z% and z € U®,

b, =B+ o
where BUw is Ax.-measurable for all + € Z? For each x € Z9, there exists
fo: C(Z4R) x RE" — {0,1} and g, : C(Z%, R) x RX" — {0,1} such that

Loy = fo(PY", D) and 1prage, sny = gu(PV, De). (I1.5.12)

For each measurable subset A of id, let us denote by PG4 the law of 5‘ A under
P%. Lemma I1.5.1 now gives that for all z € Z? and for P*"-a.s. all * € R,

PC (£, (7, 6%) = 1) < P%(g,(BY", %) = 1). (I1.5.13)

For each x € Z? and 8% € R*" such that (I1.5.13) holds, abbreviating the left
and right-hand sides of (I1.5.13) by ps(5*) and p,(5%), respectively, so that
pr(8%) < py(B*), we can now define a probability vg. on {0,1}? such that,
with m and 7, respectively denoting the projections onto the first and second
coordinate of {0,1}?, we have

T S, vge(m =1)=pr(f°) and vg(my = 1) = py(B7). (I1.5.14)

The measure vg. can for instance be constructed from a uniform random variable
Y on [0,1] as the law of (1{y<p,(se)}, Liv<p,(s=)}) on {0,1}%. For each g € R
and x € Z4, let 8% = (.).ex= € RY", and finally define, for PGK as. all B € RE
the following probabilities on ({0, 1}%")2

vg = ® Vge and v =E° [V&)UJ : (I1.5.15)

x€Z4

Note that for all B C {0,1}?, % + vg(B) is measurable, and thus v is well-
defined. Let 7} and 7, be the projections on the first and second coordinate
of ({0,1}%%)2. Then #/ < =, v-a.s by (I1.5.14), (IL5.15), and on account of
(IL.5.12) m} has the same law under v as (1gs)yeze under PC and 7 has the

same law under v as (1gzn{a,>h})reze under PC. Moreover, by Theorem I1.3.1,
there exists Lo = Lo(h) > 0 such that the set A, (®), cf. (I1.3.2), contains P%a.s.
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an unbounded connected component M in the thick slab Z2 x [0,2L¢)? 2. By
definition, see (IL.5.5), M NZ* C G}, and thus {z € Z¢ : 7}(z) = 1} contains
v-a.s. an unbounded component in Z2 x [0,2Ly)*2. Since 7} <, this implies
that Ej, N {z € Z% : D, > h} also contains an infinite connected component in
72 % [0,2L0)%42, as desired. O

Remark 11.5.2. 1) The result of [81] is actually slightly better than Theorem I1.1.1
in high dimensions: if d is large enough, there exist hy = ho(d) > 0 and Ly =
Lo(d) > 1 such that the level set {x € Z% ®, > hy} percolates in the slab
Z*x0,2Ly) x {0}473. However, in all dimensions d > 3, the set {z € Z%; ®, > h}
never percolates for h > 0 in Z2 x {0}472, as explained in Remark 3.6.1 of [81].

2) It is possible to get a result similar to (II.1.11) for the positive level set of
the Gaussian free field ® on Z? just constructed, thus obtaining the following
strengthening of Theorem II.1.1. For all h < hy, let K(h) be as in (I1.3.1) for
ho = 1, then the set {z € Z% h < ®, < K(h)} contains a.s. an infinite con-
nected component. Indeed, using an argument similar to that of Lemma I1.5.1,
one can prove that, conditionally on A=, the probability of Gf N {®, < K(h)}
is smaller than the probability of Eff N {h < ®, < K(h)} and the result follows.

3) Theorem 2.2 in |74] can also easily be extended to the Gaussian free field: for
each h < hy, the set {z € Z%; ®, > h} contains an almost surely transient com-
ponent. Indeed, looking at the proof of Theorem 2.2 in |74], see also Theorem 1
in [73], we can use (I1.4.24) instead of (5.1) in [74] to obtain that the set ;ﬁw
defined in (II.4.3) contains an unbounded connected and transient component
for p € [p(u), 1]. Using the same coupling as in Lemma 11.4.9, we get that this is
also true for the set Ay (@) defined in (I1.3.2), and the same proof as the proof of
Theorem I1.1.1 tells us that {z € 74 &, > h} also contains an infinite connected
and transient component for h < h;.

4) Another parameter h < h, has been introduced in [28|, and a similar one
has been used in [100]. This parameter describes a strong percolative regime
for E2" when h < h, i.e., all connected components of E2" in [~R, R]% with
diameter at least 1—% are connected in [—2R, 2R]? with large enough probability
when R goes to oco. It has been proved that h > —oo and it is believed that
actually h = h., but it is still unknown whether h > 0 or not. Our methods may
perhaps help in that regard.
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II.A  Appendix: Proof of Lemma II1.3.2

The proof of Lemma I1.3.2 is very close to the proof of Proposition 1 in [73],
but we need to remove the dependence on u of the constants, and make the
dependence on u of the error term explicit instead. We will henceforth refer to
[73] whenever possible, and in particular, Lemmas 3 to 6 and 11 in [73] do not
involve u at all, so we will use them without proof. Recall w*, the interlacement
process at level u on Z?, and @*, the interlacement process at level u on the cable
system, obtained from w* by adding independent Brownian excursions on the
edges, as in the construction of the diffusion X from a simple random walk on Z¢
in the beginning of section I1.2. We denote by 7" the set of edges traversed by at
least one of the trajectories in supp(w*). Now observe that the event that every
z and y in 7% N[0, R)% be connected in Z% N [—eR, (1+¢)R)?, which is the event
of interest in (I1.3.4), is more likely than every x and y in 7N [—1, R+1)% being
connected in 7" N [—eR, (1 4 €)R)%. Thus, we only need to show the respective
statement of Lemma 11.3.2 for Z* instead of f“, cf. Lemma IT1.A.5 below.

The idea of the proof is to show that there exists C' > 1 such that for every
integer R > 1 and every x,y € Z% N [~ R, R)¢, the vertices x and y are connected
through edges in 7N [-CR,CR)? with high enough probability. It is quite
hard to directly link = and y, especially if R is large. Therefore, let us define,

under some probability P, WZ ég for i € {1,2,3}, three independent Poisson point

process with the same law as w*3 under P/, such that w" = 2?21 w;, 43. Let

us call I;L 43 the set of vertices visited by at least one of the trajectories from
supp(w;f :/,)3), denote by Z“ 43 the set of edges traversed by at least one of the
trajectories from supp(wz é?’), and let C' / 3(35, R) be the set of vertices connected
to « by edges in flu?/):a N[—R,R)? for i € {1,2,3} and x € Z%. We are going to
prove that, if z € Iﬁ{f and y € I%B, then C!"*(z, R) and C2/*(y, R) are big
enough, and that one can connect these two sets by edges in f;f é?’ N[-CR,CR)?
with high probability. In particular, this will imply that z and y are connected
through edges in Z* N [—CR,CR)? with high probability.

We first recall a property of the Poisson distribution (see for example (2.11) in
[73]): let N be a random variable which has Poisson distribution with parameter
A, then there exist constants ¢ < 1 and C' > 1 independent of A such that

P(eASN<CN)>21—Cexp(—c)).

For A C Z% finite and w an interlacement process, we call for all u > 0 N% the the
number of trajectories in supp(w") which enter A, and write Z;, ..., Zyu for the
corresponding trajectories, parametrized such that Z;(0) € A and Z;(—n) ¢ A
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for all n > 0. Note that Z;,..., Zyu depend on w, u and A even if this is only
implicit in the notation. Then NY is a Poisson variable with parameter ucap(A)
and

P! (cucap(A) < N4 < Cucap(A)) > 1 — Cexp (—cucap(A)). (ILA.1)

Here, cap(A) is the capacity of the set A, i.e., the total mass of the equilibrium
measure of A. The following standard bounds will soon prove to be useful: For
any A C [-R,R)*NZ%and R > 1,

cap(A) < cap([-R, R)?) < CR*? and cap([-R, R)?) > cR*2  (ILA.2)

The next lemma gives a bound on the probability to connect the two sets
C3(x, R) and C2*(y, R) in I N [=CR, CR)* in terms of capacity.

Lemma II.A.1. There exist constants ¢ = c¢(d) > 0 and C' = C(d) < oo such
that for all R > 0 and u > 0, for all subsets U and V of [-R, R)?,

Zvn[-CR,CR)?
—

P'(U V) = 1— Cexp (—cR* “ucap(U)cap(V)) .

Proof. If there is a trajectory among (Z, ..., Zyg), which hits V' after 0 and
before leaving [~-CR, CR)?, then U is connected to V through edges of 7N
[—CR,CR)%. We can use Lemma 11 in [73| to lower bound the probability of a
trajectory to behave accordingly by cR* ?cap(V), and thus we infer

Fu~[_ d cuca;
P! (U ’ m[<C—R’>CR) V) > 1PN} < cucap(U)) — (1 — CRQ_dcap(V)) p(U)

(I1.A1),(I1.A.2)
> 1—Cexp (—ch’ducap(U)cap(V)) .
O]

We are now going to prove that cap(C’f/S(x, R)) and cap(C§/3(y, R)) are

large enough with high probability, and in particular that they grow faster in R
than R“Z". From now on we fix some up > 0, and for all u > 0, A C Z? finite
and T a positive integer, we define the set ¥(u, A,T') by

Ni
U(u, A, T) = AU J{Z(n), 0<n < T} (IL.A.3)
i=1
Lemma I1.A.2. Foralle € (0,1), k > 1 and § > ¢, there exist constants ¢ > 0

and C < oo such that for every u € (0,uo), A C Z¢ finite and T a positive
integer,

P! (cap (¥ (u, A, T)) = ¢ min (ucglp(A)TlgE’TWD

(ILA.4)
>1—Cexp (—c min (TE/Q, ucap(A))) ,
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and, if A C B = [—KT° kT°)?,

14+¢ 14¢

: ,TT)d) >1-Cexp(—cT®).  (ILA5)

p! <\If(u,A,T) CB+[-T

Proof. (I1.A.4) is a simple consequence of Lemma 6 in 73] and (II.A.1). In order
to prove (II.A.5), let us first define h(T,¢), the probability that the simple ran-

1+ l1+e

dom walk on Z? beginning in 0 leaves [-T2 ,T 2 )¢ before time T. Hoeffding’s

inequality yields that h(T,e) < Cexp(—cT®). Now, taking B = [—kT°, kT°)?

and assuming A C B, observing that, in order for ¥(u, A,T) not to be con-
1+e 1+e

tained in B+ [-T"2 ,T 2 )%, at least one of the walks Z; in (II.A.3) must reach
distance T°2" before time T, and noting that Nj < Nj, we get

P! <\I/(u, AT)C B+ [_leiTl—;E)d)

>1— P/ (Np > Cucap(B)) — Cucap(B)h(T, ¢)

(I1.4.1),(11.4.2) e Ty o
>1— Cexp (—cul ) — CuT exp (—cT®)
>

which concludes the proof. [

We now iterate this process to find the desired bound on cap (C"(z, R)).
Consider, under some probability Q, a sequence of independent random inter-
lacement processes (wg)r>1 which define an independent sequence (V}),, such
that for all £ > 2, U, has the same law as U (see (II.A.3) for notation), and let
7? be the random interlacement set associated with w?. For each z € Z%, let Z*
be the trajectory with the smallest label v contained in w; such that Z*(0) = z,
which exists since x € Z} for v € (0, 00) large enough. For all z € Z%, u > 0 and
T positive integer, we recursively define a sequence of subsets (U&’“ (2, T))>1 of
74 by

U (x,T) ={Z%(n), 0<n < T},
and, for all k£ > 2,

UP (2,T) = Uy, (u, UL (2, T),T).

Note that U (,T) depends on w only for k& > 2. In the next lemma, we iterate
the results of Lemma I1.A.2 to find lower bounds on the capacity of U (x,T)
and upper bounds on the diameter of U&d_z)(x, T).

Lemma I1.A.3. For all e € (0,3], there exist constants ¢ > 0 and C' < oo such
that for every u € (0,uo], x € Z¢, positive integer T and k € {1,...,d — 2},

Q (cap (UF (2, 1)) = u* (CTI%E)IC) >1—Cexp (—cTE/Qu) (IL.A.6)
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and

QU@ 1) Ca+[-

j)d) >1-Cexp(—cT®u).  (ILA.7)

Proof. Let us introduce the shorthand U = Uq(Lk)(x,T), and note that, albeit
only implicitly, U¥) depends on z and T' . We first prove (II.A.6) by induction
onke{l,...,d—2}. For k =1, (II.A.6) follows directly from Lemma 6 in [73].
Let us assume that (II.A.6) holds true at level £ — 1 for some k € {2,...,d — 2},
and that ¢ is small enough so that ugc < 1. The event in (I.A.6) is 1mp11ed by
the event

{Cap (Ulgk—l)) > uh 2(CT )k 1}
N {cap (Uék)) > c¢min <ucap (U(k 1)) T%i TW)}

since k < d—2. We only need to prove (IL.A.6) if ¢I°/?u > 1, and then T u >
Lo\ k-1
T¢/? and (II.A.4) gives that, on the event cap (Uék 1)> > b (cT 3 ) 7

Q <cap (UP) > cmin (ucap (U157, TW) ‘ UL(Lk—l))
1—¢ k—1
>1— Cexp (—cmin (Tf/z, < 2 u) )) >1—Cexp (—CTS/Zu),

and (II.A.6) follows by the induction hypothesis. The proof of (II.A.7) is similar:
one needs to use the fact that h(7T,e) < Cexp(—cT?) for k = 1 (see the proof of
Lemma I1.A.2 for the definition of h(T),¢)), and then proceed by induction with
(II.A.5) for k > 2. O

Corollary II.A.4. For all € € (0, 3], there exist constants ¢ > 0 and C' < oo
such that for every u € (0,ug|, z € Z% and R > 0,

P! (x € T", cap(C*(z, R)) < CR(lfs)(d72)ud73) < Cexp (_CR5/2U) ’

where C"(x, R) is the set of vertices connected to x by edges in I N [—R, R)%.

Proof. For all v € (0,4%], let w@2v = S 2 w?) where (w)is1 are the in-
dependent random interlacement processes at level v used in the definition of
( M, .))k>1, see above Lemma I1.A.3, and let I(d 2 be the random interlace-
ment set associated with w(¢=2V. By definition, w(®~?? has the same law under Q

as a random interlacement process at level (d —2)v, and if z € ZV then UM (2, T)
is a connected subset of Z(4=2 for all k € {1,...,d -2}, z € Z% and positive
integer T In particular, if © € Z} and if the event in (IL.A.7) occurs with ¢ in
that formula taking the value of some ¢ € (0, 5), then

U D(2,T) € C@2¥(z, (d—2)T"3").
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Using Lemma II.A.3 with £ = d — 2 we obtain, for all § € (0, %), v € (0,up],
x € Z% and positive integer T,

Q (v ey, cap (CU(w, (d—2)TH)) < 75 000)
< Cexp (—cT5/2v) :

The result follows by taking v = %5, T' = {(%)2_1 and 0 = 5=. ]

We now have all the tools required to connect z,y € Z* N [~ R, R)? through
edges in Z% N [-CR, CR)4, as mentioned at the beginning of the Appendix.

Lemma II.A.5. There exist constants ¢ > 0 and C' < oo such that for every
u € (0,up], R>0 and 2,y € [-R, R)%,

- 4 c
P! (x,y SAR {x HNROReR) y} ) < Cexp (—ch/Gu) )

Proof. Using the notation introduced at the beginning of the Appendix, we have

St u c
pl (fﬁ,y c T {xI N[-CR,CR) y} )

3 c
” ” Z*N[-CR,CR)?
<3 P(xezzg?’, Ijg?’,{ EROR) y})

i,j=1

Let us now fix 4,j € {1,2,3} and let k € {1,2,3} be different from i and j. We
define the events

B = {eap (C1F(@,R)) > CRZS =

E, = {cap (C’;‘/S(y, R)) > CR* 52 yd- 3},

and note that F) C {z € I%g} and Ey C {y € Ijué?’} Thus,
u~[_ d ¢
P (93 € Izué‘g, Ijuég, { PNOROR) y} )
ZM3n[~CR,CR)?
<PlENB)\{Ci@R) ™ iy R)}

P ({x e TP\ E1> P ({y € TP\ EQ) .

(ILA.8)
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For uRY% > 1, we can now use Lemma II.A.1 to bound the first summand of
(I.A.8) as

J

Z'30[~CR,CR)?
P((Em&)\{c;%m,m Sl C@L(y,R)})

< Cexp (—CRQ_du % R u2(d_3)>
< Cexp (—ch/Gu) )

The second summand of (II.A.8) can also be bounded using Corollary I1.A.4
with e = #, and the result follows. O

We now come to the

Proof of Lemma I1.53.2. Lemma I1.3.2 is a simple consequence of Lemma I[.A.5.
Indeed, let us define R’ = |eR/2C| with C' as in Lemma II.A.5, and we can
assume without loss of generality that eR > 2C. We define for each z € Z? the

events AV ={7"n (z + [-R,R)%) # @)} and

A:(EQ) _ m {I‘ f“ﬂl‘-i—[—SR,ER)d y} ‘

z,y€ZvN(z+[-2R/,2R)%)
Note that these events depend on our choice of v and R even if it does not

appear in the notation. It follows from the definition of random interlacements,
(II.A.2) and Lemma II.A.5 that

P’ (AS)) >1—exp (—cRd_Qu) and P’ (A(2)) >1—CR*exp (—ch/Gu) :

X
In particular, we get that

PI( AN Ag)) >1— CR*exp (—cRY%u) > 1= Cexp (—cRu).
e

[0,R)4NZ4

Let us call A the event on the left-hand side in the previous line, and suppose
that A occurs. Then, for all 7,y € Z*N [0, R)?, one can find a path of nearest
neighbors between z and y in [0, R)?. Moreover, if x and 2’ are two neighbors
in [0, R)%, then (x + [-R, R)) U (2/ + [-R,R")?) C x + [-2R',2R')¢, so every
vertex in

7" N (x + [-R, R)%) is connected to every vertex in Z" N (2’ + [~ R, R')?)
(ILA.9)
by a path of edges in Z" N (z + [—eR,cR)?) C " N [—£R, (1 + £)R)%, and
the sets in (II.A.9) are not empty. This tells us that if A occurs, then every
z,y € TN [0, R)? can be connected by edges in Zen [—eR, (1+¢)R)%, and thus
A implies the event on the left-hand side of (I1.3.2). O






Chapter 111

(Geometry of the sign clusters and
random interlacements on transient
graphs

III.1 Introduction

This chapter rigorously investigates the phenomenon of phase coexistence which
is associated to the geometry of certain random fields in their supercritical phase,
characterized by the presence of strong, slowly decaying correlations. Our aim
is to prove the existence of such a regime, and to describe the random geometry
arising from the competing influences between two supercritical phases. The
leitmotiv of this work is to study the sign clusters of the Gaussian free field in
“high dimensions” (transient for the random walk), which offer a framework that
is analytically tractable and has a rich algebraic structure, but questions of this
flavor have emerged in various contexts, involving fields with similar large-scale
behavior. One such instance is the model of random interlacements, introduced
in [93] and also studied in this chapter, which relates to the broad question
of how random walks tend to create interfaces in high dimension, see e.g. [91],
[92], and also [106], [20]. Another case in point (not studied in this chapter) is
the nodal domain of a monochromatic random wave, e.g. a randomized Laplace
eigenfunction on the n-sphere S”, at high frequency, which appears to display
supercritical behavior when n > 3, see [84] and references therein.

As a snapshot of the first of our main results, Theorem III.1.1 below gives an
essentially complete picture of the sign cluster geometry of the Gaussian free field
® (see (II1.1.5) for its definition) on a large class of transient graphs G. It can
be informally summarized as follows. Under suitable assumptions on G, which
hold e.g. when G = Z4, d > 3 —but see (II11.1.4) below for further examples,
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which hopefully convey the breadth of our setup—,

there exist exactly two infinite sign clusters of ®, one for
each sign, which “consume all the ambient space,” up to (II1.1.1)

(stretched) exponentially small finite islands of +/— signs;

see Theorem III.1.1 for the corresponding precise statement. In fact, we will show
that this regime of phase coexistence persists for level sets above small enough
height h = ¢ > 0. It is worth emphasizing that (III.1.1) really comprises two
distinct features, namely (i) the presence of unbounded sign clusters, which is an
existence result, and (ii) their ubiquity, which is structural and forces bounded
connected components to be very small. Our results further indicate a certain
universality of this phenomenon, as the class of transient graphs G for which
we can establish (III1.1.1) includes possibly fractal geometries, see the examples
(IT1.1.4) below, where random walks typically experience slowdown due to the
presence of “traps at every scale,” see e.g. 6], [42], [43] and the monograph [4].

As it turns out, the phase coexistence regime for sign(®) described by (I11.1.1)
is also related to the existence of a supercritical phase for the vacant set of ran-
dom interlacements; cf. [93] and below (III.1.15) for a precise definition. This is
due to a certain algebraic relation linking ® and the interlacements, see [96], [57],
[101], whose origins can be traced back to early work in constructive field theory,
see [88], and also 18], [31], and which will be a recurrent theme throughout this
work. Interestingly, the arguments leading to the phase described in (III.1.1),
paired with the symmetry of ®, allow us to embed (in distribution) a large part
of the interlacement set inside its complement, the vacant set, at small levels.
As a consequence, we deduce the existence of a supercritical regime of the latter
by appealing to the good connectivity properties of the former, for all graphs G
belonging to our class. We will soon return to these matters and explain them
in due detail. For the time being, we note that these insights yield the answer to
an important open question from [95], see the final Remark 5.6(2) therein and
our second main result, Theorem III.1.2 below.

We now describe our results more precisely, and refer to Section III1.2 for
the details of our setup. We consider an infinite, connected, locally finite graph
G endowed with a positive and symmetric weight function A on the edges. To
the data (G, \), we associate a canonical discrete-time random walk, which is
the Markov chain with transition probabilities given by p,, = A;,/A\s, where
Ae = ZyeG Azy- It is characterized by the generator

Lf(z) = Ai S Ay () — £(2)), for 2 € G, (I11.1.2)

z yeG
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for f : G — R with finite support. We assume that the transition probabilities
of this walk are uniformly bounded from below, see (pg) in Section III.2, and
writing g(x,y), z,y € G, for the corresponding Green density, see (I111.2.3) below,
that

there exist parameters a and  with 2 < 8 < «
such that, for some distance function d(-,-) on G, (II1.1.3)
AN B(z, L)) < L* and g(z,y) =< d(z,y)" P, for z,y € G,

where =< means that the quotient is uniformly bounded from above and below
by positive constants, B(z, L) is the ball of radius L in the metric d(-,-) and
AA) = > ca A is the measure of A C G, see (V,) and (Gg) in Section II1.2
for the precise formulation of (III.1.3). The exponent § in (III.1.3) reflects the
diffusive (when 8 = 2) or sub-diffusive (when 5 > 2) behavior of the walk on
G, cf. Proposition II1.3.3 below. Note that the condition on g(-,-) in (III.1.3)
implies in particular that G is transient for the walk. For more background on
why condition (III.1.3) is natural, we refer to [42], [43] as well as Theorem I11.2.2
and Remark II1.3.4 below regarding its relation to heat kernel estimates. As will
further become apparent in Section III.3, see in particular Proposition II1.3.5 and
Corollary II1.3.9, choosing d to be the graph distance on G is not necessarily a
canonical choice, for instance when G has a product structure.

Apart from (py), (V,) and (Gg), we will often make one additional geometric
assumption (WSI) on G, introduced in Section III.2. Roughly speaking, this
hypothesis ensures a (weak) sectional isoperimetry of various large subsets of
G, which allows for certain contour arguments. Rather than explaining this
in more detail, we single out the following representative examples of graphs,
which satisfy all four aforementioned assumptions (py), (Va), (G) and (WSI),
cf. Corollary I11.3.9 below:

G, = 7% with d > 3,
Gy = G' x Z, with G’ the discrete skeleton of the Sierpinski gasket,
(G3 = the standard d-dimensional graphical Sierpinski carpet for d > 3,

G- Cayley graph of a finitely generated group I' = (S) with S = S~!
L having polynomial volume growth of order o > 2

(I11.1.4)

(see e.g. [6], pp.6-7 for definitions of G’ and G, the latter corresponds to V(%)
in the notation of [6]), all endowed with unit weights and a suitable distance
function d (see Remark II1.2.1 and Section III.3). The graph G is a benchmark
case for various aspects of [95], to which we will return in Theorem III1.1.2 be-
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low. The case G5 underlines the fact that even in the fractal context a product
structure is not necessarily required.

The fact that (WSI) holds in cases Gy, G3 and G4 is not evident, and will
follow by expanding on results of [108], see Section II1.3. In the case of Gy,
(WSI) crucially relies on Gromov’s deep structural result [45]. The reader may
choose to focus on (II1.1.4), or even Gy, for the purpose of this introduction.

Our first main result deals with the Gaussian free field ® on the weighted
graph (G, \). Its canonical law P¢ is the unique probability measure on R such
that (®,).ec is a mean zero Gaussian field with covariance function

E¢[®,®,] = g(z,y), for any z,y € G. (IIL.1.5)

On account of (II1.1.3), ® exhibits (strong) algebraically decaying correlations
with respect to the distance d, captured by the exponent

v a—8(>0). (I11.1.6)

We study the geometry of ® in terms of its level sets
B2y e Gy @, > h}, heR. (111.1.7)

The random set E2" decomposes into connected components, also referred to as
clusters: two points belong to the same cluster of E2" if they can be joined by a
path of edges whose endpoints all lie inside EZ". Finite clusters are sometimes
called islands.

As h varies, the onset of a supercritical phase in E=" is characterized by a
critical parameter h, = h.(G), which records the emergence of infinite clusters,

h. < inf {h € R; PY (there exists an infinite cluster in Ezh) = O} (II1.1.8)

(with the convention inf @ = 00). The existence of a nontrivial phase transition,
i.e., the statement —oo < h, < 0o, was initially investigated in [16], and even in
the case G = G| = Z% with d > 3, has only been completely resolved recently
in [81]. It was further shown in Corollary 2 of [16] that h, > 0 on Z¢, and this
proof can actually be adapted to any locally finite transient weighted graph, see
the Appendix of [1], or [57] for a different proof.

Of particular interest are the connected components of E=°. The symmetry
of ® implies that E£=° and its complement in G' have the same distribution.
The connected components of E=° and its complement are referred to as the
positive and negative sign clusters of ®, respectively. It is an important problem
to understand if these sign clusters fall into a supercritical regime (below h,),
and, if so, what the resulting sign cluster geometry of ® looks like. In order to
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formulate our results precisely, we introduce a critical parameter h characterizing
a regime of local uniqueness for E2" whose distinctive features (II1.1.10) and
(IT1.1.11) below reflect (i) and (ii) in the discussion following (III.1.1). Namely,

h = sup{h € R; ® strongly percolates above level b’ for all b’ < h}, (II1.1.9)

where the Gaussian free field ® is said to strongly percolate above level h if there
exist constants c¢(h) > 0 and C'(h) < oo such that for all x € G and L > 1,

>h
pe E”"N B(a:,‘L) hz‘aus no connected ) <cer (111.1.10)
component with diameter at least ¥
and
there exist connected components of EZ" N B(x, L)
P¢ with diameter at least % which are not connected < Ce ¥
in E>h N B(SB, 2010[1)
(IT1.1.11)

(the constant Cyy is defined in (III1.3.4) below). With the help of (III.1.10),
(IT1.1.11) and a Borel-Cantelli argument, one can easily patch up large clusters
in £2" N B(x,2%) for k > 0 when h < h to deduce that h < h,. One also readily
argues that for all h < h, there is a unique infinite cluster in E=", as explained
in (II1.2.12) below.

We will prove the following result, which makes (III.1.1) precise. For refer-
ence, conditions (po), (Va), (Gg) and (WSI) appearing in (III.1.13) are defined
in Section II1.2. All but (py) depend on the choice of metric d on G. Following
(II1.1.3), in assuming that conditions (V,), (G) and (WSI) are met in various
statements below, we understand that

(Va), (Gp) and (WSI) hold with respect to some distance function

d(-,-) on G, for some values of a and § satisfying a > 2 and § € [2, ).
(I11.1.12)

Theorem III.1.1.

If (po), (Va), (Gg) and (WSI) hold, then h > 0. (I11.1.13)

The proof of Theorem III.1.1 is given in Section II1.9. For a list of pertinent
examples, see (I11.1.4) and Section I11.3, notably Corollary 111.3.9 below, which
implies that all conditions appearing in (II1.1.13) hold true for the graphs listed
in (I11.1.4), and in particular for Z¢ d > 3. Some progress in the direction of
Theorem II1.1.1 was obtained in Chapter II, where it was shown that h,(Z%) >
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0. The sole existence of an infinite sign cluster without proof of (II1.1.11) at
small enough A > 0 can be obtained under slightly weaker assumptions, see
condition (\7V\S/I) in Remark II1.8.5 and Theorem II1.9.3 below. As an immediate
consequence of (I11.1.10), (I11.1.11) and (II1.1.13), we note that for all h < h,
and in particular when h = 0, denoting by 6" (z) the cluster of z in E=",

PY(L < diam(¢"(z)) < 00) < Ce ™. (I11.1.14)

The parameter h, or a slight modification of it, see Remark 111.9.4, 1) below,
has already appeared when G = Z% in [28], [100], [70], [83], [11] and [21] to
test various geometric properties of the percolation cluster in E>" in the regime
h < h; note that h > —oo is known to hold on Z? as a consequence of Theorem 2.7
in 28], thus making these results not vacuously true, but little is known about
h otherwise. These findings can now be combined with Theorem II1.1.1. For
instance, as a consequence of (I11.1.13) and Theorem 1.1 in [70], when G = Z¢,
denoting by € the infinite +-sign cluster,

P%a.s., conditionally on starting in €5, the random walk on %7
(see below (1.2) in [70] for its definition) converges weakly to a

non-degenerate Brownian motion under diffusive rescaling of space and time.

(I11.1.15)

We refer to the above references for further results exhibiting, akin to (III.1.15),
the “well-behavedness” of the phase h < h, to which the sign clusters belong.

We now introduce and state our results regarding random interlacements,
leading to Theorem II1.1.2 below, and explain their significance. As alluded to
above, cf. also the discussion following Theorem III1.1.2 for further details, the
interlacements, which constitute a Poisson cloud w" of bi-infinite random walk
trajectories as in (II1.1.2) modulo time-shift, were introduced on Z? in [93], see
also [103] and Section II1.2, and naturally emerge due to their deep ties to ®.
The parameter u > 0 appears multiplicatively in the intensity measure of w" and
hence governs how many trajectories enter the picture — the larger u, the more
trajectories. The law of the interlacement process (w"),¢ is denoted by P! and
the random set Z" C G, the interlacement set at level u, is the subset of vertices
of G visited by at least one trajectory in the support of w". Its complement
V' =G\ I" is called the vacant set (at level u). The process w" is also related
to the loop-soup construction of [53], if one “closes the bi-infinite trajectories at
infinity,” as in [98].

Originally, w" was introduced in order to investigate the local limit of the
trace left by simple random walk on large, locally transient graphs {Gx; N > 1}
with Gy G as N — oo, when run up to suitable timescales of the form
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uty with u > 0 and ty = ty(Gn), see [10], [89], [91], [92], [106], as well as
[110] and [20]. The trajectories in the support of w* can roughly be thought
of as corresponding to successive excursions of the random walk in suitably
chosen sets, and the timescale ty defines a Poissonian limiting regime for the
occurrence of these excursions (note that this limit is hard to establish due to
the long-range dependence between the excursions of the walk). Of particular
interest in this context are the percolative properties of V%, as described by the
critical parameter (note that V* is decreasing in )

u, < inf {u > 0; P’ (there exists an infinite connected component in V*) = 0}.

(IT1.1.16)
This corresponds to a drastic change in the behavior of the complement of the
trace of the walk on Gy, as the parameter u appearing multiplicatively in front
of ty varies across u,, provided this threshold is non-trivial; see for instance
[106] for simulations when Gy = (Z/NZ)? with ty = N The finiteness of u.,
i.e. the existence of a subcritical phase for V", and even a phase of stretched
exponential decay for the connectivity function of V* at large values of u, can be
obtained by adapting classical techniques, once certain decoupling inequalities
are available. As a consequence of Theorem I11.2.4 below, see Remark I11.7.2, 1)
and Corollary II1.7.3, such a phase is exhibited for any graph G satisfying (po),
(Vo) and (Gj) as in (I11.1.12).

On the contrary, the existence of a supercritical phase is much less clear in
general. It was proved in [95] that u, > 0 for graphs of the type G = G’ X Z,
endowed with some distance d such that (III.1.3) holds, see (1.8) and (1.11) in
[95]. However, in this source the condition v > 1 was required, cf. (II1.1.6),
excluding for instance the case G = Gy in which v = % < 1, see [50]
and [2]. As a consequence of the following result, we settle the question about
positivity of u, affirmatively under our assumptions. This solves a principal
open problem from [95], see Remark 5.6(2) therein, and implies the existence of a
phase transition for the percolation of the vacant set V* of random interlacements
on such graphs. We remind the reader of the convention (III.1.12) regarding
conditions (V,), (Gg) and (WSI), which is in force in the following:

Theorem III.1.2. Suppose G satisfies (po), (Va), (Gz) and (WSI). Then there
exists u > 0 and for every u € (0,u], a probability space (", F*, Q") governing
three random subsets T,V and K of G with the following properties:

i) I, resp. V, have the law of T, resp. V", under P!,
ii) IC is independent of . (II1.1.17)
i) Q"-a.s., TN K contains an infinite cluster, and (ZNK) C V.
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A fortiori, u, > u(> 0).

Thus, our construction of an infinite cluster of V* for small u > 0, and hence
our resolution of the conjecture in [95], proceeds by stochastically embedding a
large part of its complement, Z* N K inside V*. The law of the set K can be
given explicitly, see Remark 111.9.4, 2), and K could also be chosen independent
of V instead of Z, see Remark 111.9.4, 3).

While we will in fact deal more generally with product graphs in Section II1.3,
let us elaborate shortly on the important case G = G’ x Z considered in [95].
In this setting, the conclusions of Theorem III.1.2 hold under the mere assump-
tions that (pg) holds and G’ satisfies the upper and lower heat kernel estimates
(UHK(ev, B)) and (LHK(«, 3)), see Remark I11.2.2, with respect to d = dg, the
graph distance on G', for some a > 1 and 8 € [2,1 + «); for instance, if G = G
from (III.1.4), then o = igig and § = }Zgg, see |7, 50]. This (and more) will
follow from Proposition s I11.3.5 and II1.3.7 below; see also Remark I11.3.10 for
further examples. Incidentally, let us note that Theorem II1.1.2 is also expected

to provide further insights into the disconnection of cylinders G x Z by a simple
random walk trace, for G a large finite graph, for instance when Gy is a ball
of radius N in the discrete skeleton of the Sierpinski gasket (corresponding to
Gy of (I11.1.4)), cf. Remark 5.1 in [89).

Since Theorem II1.1.2 builds on the arguments leading to Theorem III1.1.1,
we delay further remarks concerning (II11.1.17) for a few lines, and first provide
an overview of the proof of Theorem III.1.1.

As hinted at above, a key ingredient and the starting point of the proof
of Theorem III.1.1 is a certain isomorphism theorem, see [96], [57], [101] and
(II1.5.2) and Corollary II1.5.3 below, which links the free field ® to the interlace-
ment w*. The argument unfolds by first studying the random set Z*, which has
remarkable connectivity properties: even though its density tends to 0 as u | 0,
T" is an unbounded connected set for every w > 0. Much more is in fact true,
see Section II1.4, in particular Proposition I11.4.1 below, the set Z* is actually
locally well-connected. These features of 7", especially for u close to 0, will
figure prominently in our construction of various large random sets, and ulti-
mately serve as an indispensable tool to build percolating sign clusters. Indeed,
as a consequence of the aforementioned correspondence between ® and w", see
also (II1.5.4) below, one can use Z" in a first step as a system of “highways” to
produce connections inside EZ~", for ever so small h = v2u > 0.

A substantial part of these connections persists to exist in Ez—h (h > 0),
the level sets of the free field ¢ on a continuous extension G of the graph, the
associated cable system. This object, to which all above processes can naturally
be extended, goes back at least to [8] and is obtained by replacing the edges
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between vertices by one-dimensional cables. This result, which quantifies and
strengthens the early insight h.(Z?) > 0 of [16] — deduced therein by a soft but
indirect and general argument — is in fact sharp on the cables, see Theorem I11.9.5
below. Importantly, the recent result of [101], which can be applied in our
framework, see Corollary I11.5.3, further allows to formulate a condition in terms
of an (auxiliary) Gaussian free field 7 appearing in the isomorphism and 7", the
continuous interlacement, for points in E=" 1o “rapidly” (i.e. at scale Ly in
the renormalization argument detailed in the next paragraph) connect to the
interlacement Zv=h°/2, Following ideas from Chapter II, we can then rely on
a certain robustness property exhibited on the cables to pass from Ez"" to
EZ*" by means of a suitable coupling, which operates independently at any
given vertex when certain favorable conditions are met. These conditions in
turn become typical as u — 07, see Lemma III.5.5 and Proposition I11.5.6.

The previous observations can be combined into a set of good features, assem-
bled in Definition I11.7.4 below, which are both increasingly likely as Ly — oo
and entirely local, in that all properties constituting a good vertex x € G are
phrased in terms of the various fields inside balls of radius ~ L in the distance
d around x. This notion can then be used as the starting point of a renormaliza-
tion argument, presented in Sections II1.7 and III.8, to show that good regions
form large connected connected components. Importantly, with a view towards
(IT1.1.10) and (III.1.11), good regions need not only to form but do so every-
where inside of G. This comes under the proviso of (WSI) as a feature of the
renormalization scheme, which ensures that subsets of G having large diameter
are typically connected by paths of good vertices, see Lemmas I11.8.6 and I11.8.7
below. Using additional randomness, the connection by paths of good vertices
is turned into a connection by paths in EZ", and this completes the proof of
Theorem III.1.1, see Section III.9.

A renormalization of the parameters involved in the scheme is necessary due
to the presence of the strong correlations, and it relies on suitable decoupling
inequalities, see Theorem II1.2.4 below. At the level of generality considered
here, namely assuming only (py), (Va), (Gs), and particularly in the case of Z",
see (I11.2.21), these inequalities generalize results of [95] and are interesting in
their own right. At the technical level, they are eventually obtained from the
soft local time technique introduced in [68] and developed therein on Z?. The
difficulty stems from having to control the resulting error term, which is key in
obtaining (II1.2.21). This control ultimately rests on chaining arguments and a
suitable elliptic Harnack inequality, see in particular Lemmas II1.6.5 and II1.6.7,
which provides good bounds if certain sets of interest do not get too close (note
that, due to their Euclidean nature, the arguments leading to the precise controls
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of [68] valid even at short distances seem out of reach within the current setup).
Fortunately, this is good enough for the purposes we have in mind.

The proof of Theorem III1.1.2 then proceeds by using the results leading to
Theorem III.1.1 and adding one more application of the coupling provided in
Corollary II1.5.3. Indeed, the above steps essentially allow to roughly translate
the probabilities in (IT1.1.10) and (II1.1.11) regarding E=", for h > 0 in terms
of the interlacement Z%, for u = h?/2 and some “noise”, see Lemma I11.8.4 and
(the proof of) Lemma II1.8.7, but E=" is in turn naturally embedded into V*,
see (I11.5.4). Following how the percolative regime for V* is obtained, one thus
starts with its complement Z“, first passes to ® and proves the phase coexistence
regime around h = 0 asserted in Theorem III.1.1, and then translates back to V*.
The existence of the phase coexistence regime along with the symmetry of ® is
then ultimately responsible for producing the inclusion #i7) in (II1.1.17). The set
K appearing there morally corresponds to all the undesired noise produced by
bad regions in the argument leading to Theorem III.1.1. It would be interesting
to devise a direct argument for w, > 0 which by-passes the use of . We are
currently unable to do so, except when v > 1, in which case the reasoning of
[95] can be adapted, see Remark I11.7.2, 2). We refer to Remark I111.9.4, 5)-8)
for further open questions.

We now describe how this chapter is organized. Section III.2 introduces the
precise framework, the processes of interest and, importantly, the conditions
(po), (Va), (Gg) and (WSI) appearing in our main results. We then collect some
first consequences of this setup. The decoupling inequalities mentioned above
are stated in Theorem II1.2.4 at the end of that section.

Section II1.3 has two main purposes. After gathering some preliminary tools
from harmonic analysis (for L in (II1.1.2)), which are used throughout, we first
discuss in Proposition II1.3.5 how (V,,), (Gp) are obtained for product graphs of
the form G = G’ x G”, when the factors satisfy suitable heat kernel estimates.
This has important applications, notably to the graph G = G5 in (II1.1.4), and
requires that we work with general distances d in conditions (V,), (Gg). For
this reason, we have also included a proof of the classical (in case d = dg, the
graph distance) estimates of Proposition I11.3.3 in the appendix. The second
main result of Section III.3 is to deduce in Corollary II1.3.9 that the relevant
conditions (pg), (Va), (Gg) and (WSI) appearing in Theorems III.1.1 and II1.1.2
apply in all cases of (III.1.4). In addition to Proposition I11.3.5, this requires
proving (WSI) and dealing with boundary connectivity properties of connected
sets, which is the object of Proposition III.3.7.

Section III1.4 collects the local connectivity properties of the continuous in-
terlacement set f“, see Proposition II1.4.1 and Corollary II1.4.2. The overall
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strategy is similar to what was done in [73] on Z4, see also Chapter II, to which
we frequently refer. The proof of Proposition I1I1.4.1 could be omitted on first
reading.

Section IIL.5 is centered around the isomorphism on the cables. The main
takeaway for later purposes is Corollary I11.5.3, see also Remark II1.5.4, which
asserts that the coupling of Theorem 2.4 in [101] can be constructed in our
framework. This requires that certain conditions be met, which are shown in
Lemma II1.5.1 and Proposition II1.5.2. The latter also yields the desired inclu-
sion (I11.5.4). The generic absence of ergodicity makes the verification of these
properties somewhat cumbersome. Lemma II1.5.5 contains the adaptation of the
sign-flipping argument from Chapter II, from which certain desirable couplings
needed later on in the renormalization are derived in Proposition II1.5.6. Section
IT1.5 closes with a more detailed overview over the last four sections, leading to
the proofs of our main results.

Section II1.6 is devoted to the proof of Theorem II1.2.4, which contains the
decoupling inequalities. While the free field can readily be dispensed with by
adapting results of [67], the interlacements are more difficult to deal with. We
apply the soft local times technique from [68]. All the work lies in controlling
a corresponding error term, see Lemma II[.6.6. The regularity estimates for
hitting probabilities needed in this context, see the proof of Lemma II1.6.7, rely
on Harnack’s inequality, see Lemma II1.6.5 for a tailored version.

Section II1.7 introduces the renormalization scheme needed to put together
the ingredients of the proof, which uses the decoupling inequalities of Theo-
rem [I1.2.4. The important Definition I11.7.4 of good vertices appears at the
end of that section, and Lemma II1.7.6 collects the features of good long paths,
which are later relied upon. The good properties appearing in this context are
expressed in terms of (an extension of) the coupling from Corollary I11.5.3.

Section II1.8 takes advantage of the renormalization scheme introduced in
Section III.7 to create a giant and ubiquitous cluster of good vertices, and of
random interlacements with suitable properties. Proposition I11.8.3 first yields
the desired estimate that long paths of bad vertices are very unlikely, for suit-
able choices of the parameters. Lemmas I11.8.4 and II1.8.7 provide precursor
estimates to (II1.1.10) and (III.1.11), which are naturally associated to our no-
tion of goodness. In particular, Lemma I11.8.7 directly implies that A > 0 as a
first step toward Theorem III.1.1, see Corollary I11.8.8. An important technical
step with regards to Lemma II[.8.7 is Lemma III.8.6, which asserts that large
sets in diameter are typically connected by a path of good vertices.

The pieces are put together in Section II1.9, and the proofs of Theorems
IT1.1.1 and III.1.2 appear towards the end of this last section. Proposition I11.5.6
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exhibits the coupling transforming (for instance) giant good regions from
Lemma II1.8.7 into giant subsets of EZ" h > 0, see Lemma I11.9.2, from
which (II1.1.10) and (III.1.11) are eventually inferred. Finally, Section III.9
also contains the simpler existence result, Theorem II1.9.3, alluded to above,
which can be obtained under a slightly weaker condition (V/V\S/I), introduced in
Remark III.8.5.

We conclude this introduction with our convention regarding constants. In
the rest of this chapter, we denote by ¢,c,... and C,C’,... positive constants
changing from place to place. Numbered constants ¢y, Cy, ¢1, Cq,... are fixed
when they first appear and do so in increasing numerical order. All constants
may depend implicitly “on the graph G” through conditions (pg), (V) and (Gp)
below, in particular they may depend on o and (. Their dependence on any
other quantity will be made explicit.

For the reader’s orientation, we emphasize that the conditions (pg), (Va),
(Gg) and (WSI), which will be frequently referred to, are all introduced in Section
I11.2. We seize this opportunity to highlight the set of assumptions (I11.3.1) on
(G, \) appearing at the beginning of Section III.3, which will be in force from
then on until the end.

III.2 Basic setup and first properties

In this section, we introduce the precise framework alluded to in the introduction,
formulate the assumptions appearing in Theorems II1.1.1 and III.1.2, and collect
some of the basic geometric features of our setup. We also recall the definitions
and several useful facts concerning the two protagonists, random interlacements
and the Gaussian free field on G, as well as their counterparts on the cable
system. We then state in Theorem II1.2.4 the relevant decoupling inequalities
for both interlacements and the free field, which will be proved in Section III.6.

Let (G, E) be a countably infinite and connected graph with vertex set GG
and (unoriented) edge set £ C G x GG. We will often tacitly identify the graph
(G, E) with its vertex set G. We write x ~ y, or y ~ z, if {z,y} € E, ie., if
x and y are connected by an edge in G. Such vertices z and y will be called
netghbors. We also say that two edges in E are neighbors if they have a common
vertex. A path is a sequence of neighboring vertices in G, finite or infinite. For
A C G, weset A= G\ A, we write 04 = {y € A; 3z € A°, z ~ y} for its inner
boundary, and define the external boundary of A by

8extA =

def. { y € A% 3 an unbounded path in A } (1112.1)

beginning in y and 3z € A, z ~ y
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We write <> y in A (or z PN y in short) if there exists a nearest-neighbor
path in A containing = and y, and we say that A is connected if x PN y for
any z,y € A. For all A; C Ay C G, we write A} CC A, to express that A; is
a finite subset of A;. We endow G with a non-negative and symmetric weight
function A = (A, )z yeq, such that A, , > 0 for all z,y € G and A, > 0 if and
only if {z,y} € E. We define the weight of a vertex x € G and of a set A C G
by Ay = 22, p Aey and A(A) = > 4 A, We often regard {A, : z € G} as a
positive measure on G endowed with its power set o-algebra in the sequel.

To the weighted graph (G, ), we associate the discrete-time Markov chain
with transition probabilities

o A
pey S T2, forzy G (I11.2.2)

-

We write P,, x € G, for the canonical law of this chain started at x, and
Z = (Zn)n>o for the corresponding canonical coordinates. For a finite measure
p1on G, we also set
P, =N (@) P (111.2.3)
zeCG
Our assumptions, see in particular (Gg) below, will ensure that Z is in fact
transient. We assume that G has controlled weights, i.e., there exists a constant
¢p such that
Pay > Co for all z ~y € G. (po)

Note that (pg) implies that each € G has at most |1/¢o] neighbors, so G has
uniformly bounded degree.
We introduce the symmetric Green function associated to Z,

of. 1 -
g(x,y) e /\—Ez [Z 1{Zk:y}i| for all x,y € G. (I1.2.4)
Y k=0
For A C G, we let Ty < inf{k > 0; Z, ¢ A}, the first exit time of A and

Hy def. Ty = inf{k > 0; Z, € A} the first entrance time in A, and introduce

the killed Green function

Ty

e ].
ga(z,y) def. )\_Ex[ E 1{Zk:y}:| for all z,y € A. (II1.2.5)
Y k=0

Applying the strong Markov property at time T4 for A CC G, we obtain the
relation

Eulg(Zr,,u)] + 9a(w,y) = g(z,y), for all 2,y € A, (I11.2.6)
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Finally, the heat kernel of Z is defined as
pol,y) = A;lPx(Zn =y) forall z,y € G and n € N. (II1.2.7)

We further assume that GG is endowed with a distance function d.

Remark 111.2.1. A natural choice is d = dg, the graph distance on G, but this
does not always fit our needs. We will return to this point in the next section.
Roughly speaking, some care is needed due to our interest in product graphs such
as G in (II1.1.4), and more generally graphs of the type G = G’ x Z as in [95].
This is related to the way by which conditions (V,,) and (Gg) below propagate
to a product graph, especially in cases where the factors have different diffusive
scalings, see Proposition I11.3.5 and in particular (II1.3.22) below. 0

We denote by B(z,L)={y € G : d(xz,y) < L} the closed ball of center x
and radius L for the distance d and by Bg(z, L) the set of edges for which both
endpoints are in B(x, L). For all A C G, we write d(A, x) = inf,c 4 d(y, z) for the

def.

distance between A C G and = € G, B(A,L) = {y € G : d(A,y) < L} is the
closed L-neighborhood of A and §(A) o sup, e d(,y) € [0, 00] the diameter of
A. Note that unless d = dg, balls in the distance d are not necessarily connected
in the sense defined below (I11.2.1).

We now introduce two — natural, see Theorem II1.2.2 below — assumptions
on (G, \), one geometric and the other analytic. We suppose that G has regular
volume growth of degree o with respect to d, that is, there exists o > 2 and

constants 0 < ¢; < (f < oo such that
o L* < )\(B(x,L)) < C1L%, forallz € Gand L > 1. (V)

We also assume that the Green function g has the following decay: there exist
constants 0 < ¢o < Cy < oo such that, with a as in (V,), for some 8 € [2,a), g
satisfies

ey < g(z,x) < Cy for all x € G and

G
cd(w,y)™" < g(x,y) < Cod(z,y) " for allz # y € G, (Ga)

where we recall that v = a — 8 from (III.1.6). The parameter 8 > 2 in (II1.1.6)
can be thought of as characterizing the order of the mean exit time from balls
(of radius L), which grows like L? as L — oo, see Lemma IT1.A.1.

Remark 111.2.2 (Equivalence to heat kernel bounds). The above assumptions are
very natural. Indeed, in case d(-, -) is the graph distance — but see Remark I11.2.1
above — the results of [42|, see in particular Theorem 2.1 therein, assert that,
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assuming (pp), the conditions (V,,) and (G) are equivalent to the following sub-
Gaussian estimates on the heat kernel: for all z,y € G and n > 0,

1

i) < Cnep{ = (UE2) 7T (UHK (o, )

and, if n > dg(z,y),

cn

() + Prsa (@) > e~ exp{ - (M) } (LHK(a, 3))

Many examples of graphs G for which (UHK(«, £)) and (LHK(«, 5)) hold for
the graph distance are given in [50], [5] and [46], and further characterizations
of these estimates can be found in [43], [3], [7] and [4]. We will return to the
consequences of (V,), (Gg), and their relation to estimates of the above kind

within our framework, i.e., for general distance function d, in Section IIL.3, cf.
Proposition I11.3.3 and Remark III1.3.4 below. Il

We now collect some simple geometric consequences of the above setup. We
seize the opportunity to recall our convention regarding constants at the end of
Section III.1.

Lemma II1.2.3. Assume (po), (Va), and (Gg) to be fulfilled. Then:

d(z,y) < Csdg(z,y) for all x,y € G, (II1.2.8)
d(z,y) > c3 for allx #y € G, (I11.2.9)
s <oy <A <Cy forallz ~yeG. (II1.2.10)

Proof. We first show (II1.2.8). Using (po), (G), and the strong Markov property
at time H,, there exists ¢ > 0 such that for all z ~ y € G,

g(z,y) = Po(Hy < 00)g(y,y) = Day9(¥,y) > CoCo,

where p, , is the transition probability between = and y for the random walk Z,
see (II1.2.2). Thus, one can find C5 such that

(Gs) v
d(z,y) Sﬂ (g(g_;y)) < (Csforallz ~yeqG. (II1.2.11)

For arbitrary x and y in G, we then consider a geodesic for the graph distance be-
tween x and y, apply the triangle inequality (for d) and use (II1.2.11) repeatedly
to deduce (II1.2.8). Similarly, for all z # y € G,

@) @ ()
dw,y) = (g(x’y)> > (9) .

Ca C2
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We now turn to (II1.2.10). For z ~y € G, we have x € B(x,1) and thus, by

(Va), Aoy <A <y def. C,. Moreover, g(z,z) > A\, ! by definition, and thus by

(pO) and (G6)7
Co Co def.

Aoy = Codg > 0 et
Ve ) TG

]

We now define the weak sectional isoperimetric condition alluded to in Sec-
tion I1I.1. This is an additional condition on the geometry of G that will enter in
Section II1.8 to guarantee that certain “bad” regions are sizeable and thus costly
in terms of probability, cf. the proofs of Lemma II1.8.4 and Lemma II1.8.6. We
say that (z1,...,z,) is an R-path from x to B(x,N)c if 1y = z, z,, € B(x, N)€,
and d(z;,z;41) < R for all ¢ € {1,...,n — 1}, with the additional convention
that (z,) is an R-path from x to B(z, N)¢ if N < R. The weak sectional isoperi-
metric condition is a condition on the existence of long R-path in the boundary
of sets, and similar conditions have already been used to study Bernoulli perco-
lation, see [69]. More precisely, this weak sectional isoperimetric condition states
that there exists Ry > 1 and ¢; € (0, 1] such that

for each finite connected subset A of G and all x € 0., A,

: ' (WSI)
there exists an Rg-path from x to B(z,c50(A))C in Oepi A.

We now introduce the processes of interest. For each x € GG, we denote by ®,
the coordinate map on R® endowed with its canonical o-algebra, ®,(w) = w,
for all w € RY and PY is the probability measure defined in (IT11.1.5). Any
process (¢z)zeq With law P9 will be called a Gaussian free field on G; see [86]
as well as the references therein for a rigorous introduction to the relevance of
this process. Recalling the definition of the level sets E=" of ® in (II1.1.7) and
of the parameter h from (II1.1.9), we now provide a simple argument that

for each h < h, P%-a.s., EZ" contains a unique infinite cluster. (I11.2.12)

Indeed, if L is large enough, on the event A? = {B(z, L/2) intersects at least
two infinite clusters of E="}, there is at least two clusters of E="N B(z, L) with
diameter at least L/10 which are not connected in G, and thus the event in
(ITI1.1.11) occurs. The events A" are increasing toward {E=" has at least two
infinite clusters} as L goes to infinity, and thus by (III.1.11) E=" contains P%-
a.s. at most one infinite cluster for all h < h, and (I11.2.12) follows since h < h,
as explained below (III.1.11).

On the other hand, random interlacements on a graph G as above are defined
under a probability measure P! as a Poisson point process w on the product
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space of doubly infinite trajectories on G modulo time-shift, whose forward and
backward parts escape all compact sets in finite time, times the label space
[0, 00), see [103]. For u > 0, we denote by w" the random interlacement process
at level u, which consists of all the trajectories in w with label at most u. By
T" we denote the random interlacement set associated to w", which is the set of
vertices visited by at least one trajectory in the support of w", by V" “a \ Z¢
the vacant set of random interlacements, and by (¢, ).cc the field of occupation
times associated to w", see (1.8) in [96], which collects the total time spent in each
vertex of GG by the trajectories in the support of w*. As stated in Corollary I11.4.2

below, if (po), (V) and (Gs) hold,
for all u > 0, Z" is P’-a.s. an infinite connected subset of G (I1.2.13)

For vertex-transitive G, (I11.2.13) is in fact a consequence of Theorem 3.3 of [105],
since all graphs considered in the present chapter are amenable on account of
(II1.3.16) below as well as display (14) and thereafter in [105] (their spectral
radius is equal to one).

Recall the definitions of the critical parameters h, and wu, from (II1.1.8) and
(IT1.1.16), which describe the phase transition of E=" the level sets of ® (as
h varies), and that of V* (as w varies). Note that (II1.2.13) indicates a very
different geometry of Z" and V* as u — 0 in comparison with independent
Bernoulli percolation on G. Indeed, it is proved in [104] that for all the graphs
from (II1.1.4), both the set of open vertices and its complement undergo a non-
trivial phase transition.

In order to derive an alternative representation of the critical parameters
u, and h,, we recall that the FKG inequality was proved in Theorem 3.1 of
[103] for random interlacements, and that it also holds for the Gaussian free
field on G. Indeed, it is shown in [65] for any centered Gaussian field with non-
negative covariance function on a finite space, and by conditioning on a finite
set and using a martingale convergence theorem this result can be extended
to an infinite space, see for instance the proof of Theorem 2.8 in [44]. As a
consequence, for any x € G, we have that

(I11.2.14)

w. = inf {u > 0. ]P’I( the connected component of ) _ 0}’

V" containing x is infinite
and similarly for A,.

The proofs of Theorems I11.1.1 and II1.1.2 involve a continuous version of the
graph G, its cable system é, and of the various processes associated to it. We
attach to each edge e = {z,y} of G a segment I, of length p,, = 1/(2),,), and
G is obtained by glueing these intervals to GG through their respective endpoints.
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In other words, G is the metric graph where every edge e has been replaced by
an interval of length p.. We regard G' as a subset of G and the elements of
G will still be called vertices. One can define on G a continuous diffusion X
via probablhtles PZ, z € G such that for all z € G, the projection on G of the
trajectory of X under P has the same law as the discrete random walk Z on
the weighted graph G under P,. This diffusion can be defined from its Dirichlet
form or directly constructed from the random walk Z by adding independent
Brownian excursions on the edges beginning at a vertex. We refer to Section 2
of [57] or Section 2 of [36] for a precise definition and construction of the cable
system G and the diffusion X; see also Section I1.2 for a detailed descrlptlon in
the case G = Z. For all 2,y € G we denote by g(x,y), z,y € G, the Green
function associated to X i.e., the density relative to the Lebesgue measure on
G of the 0- potential of )? which agrees with gon G, as well as gy for U C G
the Green function associated to the process X killed on exiting U.

We define for A C G the set A* C G as the smallest set such that A* D GﬂA
and such that for all z € A \ G, there exist x,y € A* such that z € = I{gyy- For
all x € G and L > 0, we write B(x L) for the largest subset B of G such that
B* = B(z, L), and for all Ac Gand L >0, we let B(A L) denote the largest
subset B of G such that B* = B(A*, L). Moreover, for Ac G, we write

2<% 2 in A, (I11.2.15)

if there exists a continuous path between z and 2/ in A. We say that A is
connected in G if z <> 2’ in A for all 2,2 € A. Similarly, for A; C A and
Ag C A we write A1 — A2 in A if there exists a continuous path between A1
and A2 in A

The Gaussian free field naturally extends to the metric graph G: Let CTDZ, z €
G , be the coordinate functions on the space of continuous real-valued functions
C (CNJ ,R), the latter endowed with the o-algebra generated by the maps &Dz, 2 €q.
Let P be the probability measure on C(G, R) such that, under P€, ((EZ)ZG@ is
a centered Gaussian field with covariance function

E¢ [&)ZIQZJ = §(21, 22) for all 21,2 € G. (II1.2.16)

The existence of such a continuous process was shown in [57]. Any random
variable & on C(G,R) with law P¢ will be called a Gaussian free field on G.
Moreover, if ¢ is a Gaussian free field on G, then it is plain that (9;).eq is a
Gaussian free field on G. With a slight abuse of notation, we will henceforth
write ¢, instead of ¢, when x € G for emphasis. We now recall the spatial
Markov property for the Gaussian free field on é, see Section 1 of [101]. Let
K CGbea compact subset with finitely many connected components, and let
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U=0aG \ K be its complement. We can decompose any Gaussian free field ¢ on
G as

@ _ QZU + B’U with gg = EZ [SZ)}TU]I{TUQ)o}} for all z € é, (111.2.17)
@Y is a Gaussian free field independent of (., z € K) and with covariance
function gy, and in particular @V vanishes on K.

One can also adapt the usual definition of random interlacements on G, see
[103], to the cable system G as in [57], [101] and Chapter II. For cach u > 0,
one thus introduces under a probability measure P! the random interlacement
process w" on G at level u, whose restriction to the trajectories hitting K CC G
can be described by a Poisson point process with intensity u ~e « Where eg is the
usual equilibrium measure of K CC G, see (II1.3.6) below. One then defines
a continuous field of local times (@Jze& relative to the Lebesgue measure on
G associated to the random interlacement process on G at level u, i.e., Zzu
corresponds for all z € G to the density with respect to the Lebesgue measure
on G of the total time spent by the random interlacement process around z. For
all u > 0, the restriction (&7U)ZGG of the local times to G coincides with the field
of occupation times (¢, ,).cc associated with the discrete random interlacement
process w" defined above (I11.2.13), and just like for the free field, we will write
s, instead of qu when z € G. We also define for each measurable subset B of

G and u > 0 the family

> def. /7

(50 = (u).c5 € C(B,R), (I11.2.18)
and the random interlacement set at level u by
I ={2€G; [, >0} (111.2.19)

The connectivity properties of 7 will be studied in Section I11.4. In particular,
as stated in Corollary 111.4.2, 7" is P-a.s. an unbounded and connected subset
of G, and the same is true of Z* (as a subset of G). We will elaborate on an
important link between the fields Zéu and ¢ from (II1.2.16) and (II1.2.18) in
Section II1.5.

Finally, one of the main tools in the study of the percolative properties of
the vacant set of random interlacements and of the level sets of the Gaussian
free field, and the driving force behind the renormalization arguments of Section
II1.8 are a certain family of correlation inequalities on é, which we now state.
Their common feature is a small sprinkling for the parameters v and h, respec-
tively, which partially compensates the absence of a BK-inequality (after van
den Berg and Kesten, see for instance [44]) caused by the presence of long-range
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correlations in these models. The results below, in particular (I11.2.21) below,
are of independent interest. We recall the notation from the paragraph preced-
ing (I11.2.16) and (II1.2.18) and use C'(A,R) to denote the space of continuous
functions from A to the reals, where the topology on A is generally clear from
the context.

Theorem 1I1.2.4. Suppose G is infinite, connected and (G, \) such that (po),
(V.), (Gg) hold. Let Ay and Ay be two Borel-measurable subsets ofG at least
one of which is bounded. Let s = d(A%, A3) and r = 6(A3) A 6(AL) (note that
r < 00). There exist Cg and cg such that for all e € (0,1), and all measurable
functions f; : C’(Ki, R) — [0,1], i = 1,2, which are either both increasing or both
decreasing, if s > 0,

B [11(®),) £2(35,)]
< E€ [fl(i;'gl + 5)} EC [f2(<5|g2 + 6)] + Cs(r + s)% exp {—06523”} ,
(I11.2.20)

and there exist Cy, Cs and cg such that for allu > 0, ¢ € (0,1) and f; as above,
ZfS > 07(7‘ V 1),

ARG

= IEI [fl (Zgl’“(li@)] EI |:f2 (Zgg,u(lis))} + 08<r + S)Q €xXp {—0882%5‘”} ,
(IT1.2.21)

where the plus sign corresponds in both equations to the case where the func-
tions f; are increasing and the minus sign to the case where the functions f; are
decreasing.

The proof of Theorem II1.2.4 is deferred to Section II1.6. While (III.2.20)
follows rather straightforwardly from the decoupling inequality from [67] for the
Gaussian free field (see also Theorem II1.6.2 for a strengthening of (I11.2.20)),
the proof of (III.2.21) is considerably more involved. It uses the soft local times
technique introduced in [68] on Z? for random interlacements, but a generaliza-
tion to the present setup requires some effort (note also that for graphs of the
type G = G’ x Z, one could also use the inequalities of [95], which are proved
by different means).

II1.3 Preliminaries and examples

We now gather several aspects of potential theory for random walks on the
weighted graphs introduced in the last section. These include estimates on killed
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Green functions, see Lemma I11.3.1 below, a resulting (elliptic) Harnack inequal-
ity, bounds on the capacities of various sets, see Lemma I11.3.2, and on the heat
kernel, see Proposition I11.3.3, which will be used throughout. We then proceed
to discuss product graphs in Proposition I11.3.5 and, with a view towards (WSI),
connectivity properties of external boundaries in Proposition I11.3.7. These re-
sults are helpful in showing how the examples from (II1.1.4), which constitute an
important class, fit within the framework of the previous section. We conclude

this section by deducing in Corollary III1.3.9 that our main results, Theorems
[I1.1.1 and III.1.2, apply in all cases of (I11.1.4).

From now on,

we assume that (G, \) is an infinite, connected, weighted graph endowed with

a distance function d that satisfies (po), (V,) and (Gjp)
(I11.3.1)

(see Section II1.2). Throughout the remainder of this chapter, we always tac-
itly work under the assumptions (II11.3.1). Any additional assumption will be
mentioned explicitly.

The following lemma collects an estimate similar to (Gg) for the stopped
Green function (I11.2.5).

Lemma II1.3.1. There exists a constant Cy > 1 such that, if Uy C Uy CC G

2d(e,y) < gua(ey) < Cod(a,y)™ for all w #y € Uy, and
2 (I11.3.2)

02_2 < gu,(z,x) < Cy for all x € Uy.

Proof. Let U; C Uy CC G. The upper bound in (I11.3.2) follows immediately
from (Gp) since gy, (z,y) < g(z,y) for all 2,y € G by definition. For the lower
bound, using (II1.2.6) and (Gz), we obtain that for all = # y € Uy,

gu, (JI, y) > 62d<x7 y)iu - C2EI [d<XTU2 ) y)il/] 2 Czd(ﬂ?, y)iy - CQd(Ula Ué:)il/'

Thus, choosing Cy large enough such that % > g—gﬁ, it follows that if d(Uy, US) >
095([]1) (2 ng(.l’, y))a then

gu, (z,y) > Czﬁd(x,y)_” for all x £y € Uy.

The lower bound for gy, (x,x), x € Uy, is obtained similarly. O
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Using Lemma A.2 in [94], which is an adaptation of Lemma 10.2 in [42], an
important consequence of (I11.3.2) is the elliptic Harnack inequality in (I11.3.3)
below. For this purpose, recall that a function f defined on U, def. Bg(Us, 1),
the closed 1-neighborhood of U, for the graph distance, is called L-harmonic
(or simply harmonic) in Us if E,[f(Z1)] = f(x), or equivalently Lf(z) =0 (see
(II1.1.2)), for all # € Us. The bounds of (II1.3.2) imply that there exists a
constant ¢y € (0,1) such that for all U; C Uy, CC G with 6(U;) > 2C3 and
d(Uy,US) > Cy(206(Uy) V 1), and any non-negative function f on U, which is
harmonic in Us,

inf f(y) > co sup f(y). (I11.3.3)
yeUy yeU;
Another important consequence of (II1.3.2) is that the balls for the distance d
are almost connected in the following sense:

VeeG R>1and y,y € B(x,R), y < v in B(z,CyoR), with Cjy = 2Cq + 1.

(I11.3.4)
Indeed, for all U CC G and v,y € G, y PN y' is equivalent to gy (y,y’) > 0,
and by definition,

d(B(z, R), B(z,CioR)%) > 2CoR > Co6(B(z, R)). (I11.3.5)

As a consequence, (II1.3.2) implies that gp@cor)(y,y’) > 0 for all y,y' €
B(z, R).
We now recall some facts about the equilibrium measure and capacity of

various sets. For A CC U C @G, the equilibrium measure of A relative to U is

defined as

eav(r) L NPy (Hy > Ty)La(z) for all € G, (111.3.6)

where H 4 def- inf{n > 1, Z, € Ay} is the first return time in A for the random
walk on (G, and the capacity of A relative to U as the total mass of the equilibrium
measure,

capy (A) - Z eau(z). (I11.3.7)

T€EA

For all A cC U C @G, the following last-exit decomposition relates the entrance
time Hy of Z in A, the exit time Ty of U, the stopped Green function and the
equilibrium measure:

P,(Ha <Ty) = ZgUx y)eau(y) for all z € U. (II1.3.8)

yeA
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For A CcC G and x € @G, we introduce the equilibrium measure, capacity and
harmonic measure as

ea(x) def. eac(), cap(A) def. capg(A) and ealz) = cap(A)’

(I11.3.9)
respectively. The capacity is a central notion for random interlacements, since
we have the following characterization for the random interlacement set Z"

P(Z"N A= @) = exp{—u-cap(A)} for all A CC G; (II1.3.10)

see Remark 2.3 in [103]. With these definitions, it then follows using (I11.3.8)
and (II1.2.8) that for all R > C5 and x¢ € G,

coR Vcap (B(zg, R)) <1 = Z 9(20,Y)eB(zo,R) (V)

y€0B(zo,R)

< Cy(R — Cs) Vcap (B(zo, R)),

and hence there exist constants 0 < ¢1; < (1 < oo only depending on G such
that for all R > 1 and = € G,

CHRV S cap (B(ZL', R)) S OHRV. (111311)

A useful characterization of capacity in terms of a variational problem is given
by

cap(A) = (igf Z g(x,y)u(x)u(y)) 71, for ACC G, (II1.3.12)

where the infimum is over probability measures ;1 on A, see e.g. Proposition 1.9 in
[98] for the case of a finite graph with non-vanishing killing measure (the proof
can be extended to the present setup). In particular, since every probability
measure ;4 on A is also a probability measure on any set containing A, the
capacity is increasing, so for A, B C G,

ACB implies cap(A) < cap(B). (II1.3.13)

Another consequence of the representation (II1.3.12) is the following lower bound
on the capacity of a set.

Lemma I11.3.2. There exists a constant ¢ depending only on G such that for
all L >1 and A C G connected with diameter at least L,

cL, ifv>1,
cap(A) = { iy v =1, (I11.3.14)
cl”, if v < 1.
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Moreover, if A C G is infinite and connected, then for all xq € G
cap(AN B(xp, L)) - 00 as L — oo, (II1.3.15)

and thus ANT* # @ Pl-a.s.

Proof. Let us fix some L > 1, A connected subset of G with diameter at least
L, and xy € A. We introduce L' = |L/(2C5)] and for each k € {1,..., L'} the
set A = AN (B(xo,Csk) \ B(zo,C3(k — 1))), which is non-empty by (III.2.8).
Then

k k—2 %
Z Sélj) g(z,y) < C'2<2 + C4 Z(k —1- p)*”) < Oy (2 + (4 Zpil’),
p=1Y="r p=1 p=1

Now let p be the probability measure on A defined by u(z) = (L'|Ax])~" if
x € Ay for some k € {1,..., L'}, and p(z) = 0 otherwise. For all k € {1,..., L'}
and x € Ay, we have by (Gp) that
L/
2C: .
> 9@ yu@nly) < 7 (2+C>p™).

z,ycA p=1

Combining this bound with (I11.3.12), the inequality (I11.3.14) follows. If A is
now an infinite and connected subset of GG, then for each xqg € G there exists
Ly > 0 such that for all L > Ly, the set AN Bg(xo, L/C3) has diameter at least
ﬁ, and thus by (I11.2.8) AN B(xg, L) contains at least a connected component
of diameter 5%-, and (II1.3.15) then follows directly from (II1.3.14). Finally, by

2C3?
(I11.3.10),

P(ANT" =2) <P (ANT"“N B(x, L) = @)
<exp{ —u-cap(ANB(xo, L))}
— 0.
L—o0

]

Next, we collect an upper bound on the heat kernel (II1.2.7) and an estimate
on the distribution of the exit time of a ball T, r).

Proposition II1.3.3.

i) There exists a constant C' such that for all x,y € G and n > 0,

palr,y) < Cn7 5. (I11.3.16)
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it) There exist constants ¢ and C such that for all x € G, R > 0 and positive
integer n,

Po(Tpm < 1) < Cexp{ - (?) ‘3} (IT1.3.17)

Proposition I11.3.3 is essentially known, for instance if d is the graph distance
dg then these results (as well as (UHK(«, 8)) and (LHK(a, $))) are proved in
[42]. For a general distance d, some estimates similar to (I11.3.16) and (II1.3.17)
(as well as (UHK(«, 5)) and (LHK(«, 3))) are also proved in [41] and [40] in the
more general setting of metric spaces, and we could apply them to the variable
rate continuous time Markov chain on G. However, there does not seem to be
any proof in the literature that exactly fits our needs (general distance d, discrete
time random walk Z), and so, for the reader’s convenience, we have included a
proof of Proposition I11.3.3 in the Appendix.

Remark 111.3.4. 1) With Proposition I11.3.3 at our disposal, following up on Re-
mark I11.2.2, we briefly discuss the relation of the above assumptions (I11.3.1)
to heat kernel bounds within our setup. A consequence of (III.3.16) and
(IT1.3.17) is that, under condition (py),

(Va) + (Gg) = (UHK(«e, B)); (II1.3.18)

note that in contrast to the results of Remark 2.2, this holds true even when
d is not the graph distance, where (UHK(«, 3)) is defined in Remark I11.2.2.
Indeed, for d = dg this implication is part of Proposition 8.1 in [42], but
the proof remains valid for any distance d. However the corresponding lower
bound (LHK(«, 8)) on the heat kernel does not always hold. To see this,
take for example G a graph such that (po), (V) and (Gg) hold when d is the
graph distance, and let d' = dx for some r > 1 (cf. Proposition I11.3.5 and
(II1.3.22) below for a situation where this is relevant). Then for the graph
G endowed with the distance d’, the conditions (py), (Vo) and (Gg) hold
with o/ = ax and 3 = Bk. Moreover, using (U,HK(a,B)) for the distance d,

one obtains that p,(z,y) + pps1 (2, y) < 200" 7 exp{— (d (z.9)° )ﬁ 1}. Taking
n = d'(z,y) for instance, it follows that for any ¢ > 0, since B’ > [,

(pu(,9) + Prsa(,9))n % exp { (M)B}

cn

Pt P g
§2C’exp{—<n0 )B_ —i—(n )5 }—>O,
C n—oo

thus (LHK(/, 8)) cannot hold for G endowed with the distance d'.




Chapter III. Geometry of the sign clusters and random interlacements 82

2) Even in cases where (LHK(«, 3)) does not hold, it is still possible to obtain
some slightly worse lower bounds for a general distance d. We will not need
these results in the rest of the chapter, and therefore we only sketch the
proofs. We introduce the following near-diagonal lower estimate

(@, Y) 4 poia(z,y) = en” 7 forall 2,y € G and n > cd(x,y)”.
(NLHK(a, 3))
Let us assume that the condition (pg) is fulfilled, we then have the following
equivalences for all « > 2 and 8 € [2,a)

(Va) + (Gp) < (UHK(«v, B)) + (NLHK(«, 5)). (IT1.3.19)

The first implication follows from (13.3) in [42], whose proof remains valid
for a general distance d, given (II1.3.18), (I11.3.16), (III.A.1) and (IIL.3.3),
and the proof of its converse is exactly the same as the proof of Proposi-
tion 15.1 in [42] or Lemma 4.22 and Theorem 4.26 in [4|. Estimates similar
to (UHK(«, 5)) and (NLHK(«, 3)) for the continuous time Markov chain
on G with jump rates (\;)zec and transition probabilities (ps,)zyeq, see
(II[.2.2), are also equivalent to (II1.3.19), see Theorem 3.14 in [41]. Let us
now also assume that there exist constants ¢ > 0 and ¢ € [1, ) such that

for all > 0, k € N and z,y € G such that d(x,y) < ck%r, there exists
a sequence ry = T, Ty, ..., T, =y with d(z;_1,2;) <rforalli e {2,... k},

(D¢)

then the conditions in (II1.3.19) are also equivalent to (UHK(a, 8)) plus the
following lower estimate

d(z,y)’
cn

)BCC} for all n > dg(x,v).

(LHK (e, 8,¢))
Indeed, under condition (D), the proof that (II1.3.19) implies (LHK(«, £, ())
is similar to the proof of Proposition 13.2 in [42] or Proposition 4.38 in [4],

P, y) 4 Prya (z,y) = en™ B exp{ — (

modulo some slight modifications when d is a general distance, and its con-
verse is trivial. Note that if d = dg, it is clear that (D;) holds and that
the lower estimate (LHK(a, ,1)) is the same as (LHK(«, )), and thus we

recover the results from Remark I11.2.2. If d = dé for some ¥ > 1 as in
the counter-example of Remark II1.3.4, 1), and (V,,) and (G3) hold with the
distance dg, then (D) hold for the distance d’ and thus also (LHK(</, f', k))
for the distance d’, where ' = Sk and o = ak, which is exactly the same as
(LHK(a, B)) for the distance dg. O
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We now discuss product graphs. Let G; and G5 be two graphs as in the pre-
vious section (countably infinite, connected and with bounded degree), endowed
with weight functions A and A%, The graph G = G; x Gy is defined such that
x = (x1,22) ~ y = (y1,y2) if and only there exists i # j € {1,2} such that
x; ~ y; and z; = y;. One naturally associates with G the weight function A such
that for all x = (21, 22) ~ y = (y1,92), one has

Ay = Ao, where i € {1,2} is such that z; # y;. (II1.3.20)

Ti,Yi?

Proposition II1.3.5. Suppose that (G, \)), i = 1,2, satisfy (UHK(c, 3;)) and
(LHK(cv;, B;)) with respect to the graph distance dg,, as well as (py). Assume
that

a; >1and2 < f; <1+ a, fori=1,2, and 35 € {1,2} s.t. a; > 1 or ; > 2.

(IT1.3.21)
Then, if By < Ba, the graph Gy x Gy endowed with the weights (111.3.20) satisfies
(Va), (Gg) with

B
a = 041% + g, 6 - 62 and d(.ﬁU, y) = nax (dGl(Il)yl)ﬁQ ) dGQ(‘T27 y2))
1
(I11.3.22)

Proof. We first argue that (G, \) satisfies (V). By Remark I11.2.2, (G;, \Y),
i = 1,2, satisfy (V,,). On account of (II1.3.20), one readily infers that A(A x
B) = M(A) - |B| + |A| - X*(B) for all A C Gy, B C G5. Applying this to
A = Byg, (21, RA%/B) B = B, (72, R), observing that By((71,22), R) = A x B
by definition of d(-,-) and noting that c4]A| < M (A) < C4]A| (and similarly for
B), see (I11.2.10), it follows that uniformly in (z1,22) € G, A(Byg((z1,x2), R)) is
of order R* with a given by (II1.3.22), whence (V) is fulfilled.

It remains to show that (Gg) holds. Let (X,)i>0, 7 = 1,2, denote the con-

tinuous time walk on G; (resp. G) with jump rates A}, = AL, and

y:dGi (:c,y):l ;7217
suppose 7,1, 72 are independent. Let X. be the corresponding walk on G (with
jump rates )., cf. (II1.3.20)). Then X. has the same law as (7‘1, 72) and in view

of (111.2.4),

2

g(z,y) = / P(X, =y)dt = / Py (X, = y1) P (X, = yo)dt, (IIL3.23)
0 0

with x = (x1,22) and y = (y1,92). We introduce for ¢ = 1,2, the additive
functionals

t
A;‘:/ Agids, fort>0,i=1,2, (111.3.24)
0 S
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along with 77 = inf{s > 0; A’ > t} and the corresponding time-changed pro-

cesses
def. <+t

(Y20 = (X )0
By the above assumptions, the discrete skeletons of Y%, i = 1,2, satisfy the
respective heat kernel bounds HK(«y, ;) in the notation of [4|, and thus by
Theorem 5.25 in [4] (the process Y has unit jump rate), for all z = (21, z2)
and y = (y1,y2) in G, abbreviating d; = dg,(x;,y;) and d = d(z,y), so that
dP2 = 4 v d5?,
a B2 B . Bi 1
o] = (L) < o — < e { - ()71,
(I11.3.25)
where the lower bound holds for all ¢ > d; V1 and the upper bound for all ¢ > d;.
Going back to (I11.3.23), noting that Yz = in and that c;t < Al < Cyt for all
t > 0 by (II1.2.10) and (II1.3.24), and observe that

“inf sup P, (Y = y;) < Ce V), (II1.3.26)
ic{1,2} tSC4CZl(d1\/d2)

which follows for instance from Theorem 5.17 in [4]. We obtain for all x and v,
with constants possibly depending on «; and f3;, keeping in mind that d*? = df ‘
for some 7 in the third line below,

o(z,y) < / sup  {Po (Y = y) Py (Y2 = 1)) dt
0

cat<s<Cyt

(I11.3.25),(I11.3.26)
< C(dy V dy)ecldrVez)

O e {2 (5"
. — C//t

2 (divda)

11}dt

u=d=P © « a «
L 266_cd+0// d*(5%11+a2)u*(ﬁfi+ﬁ*§)exp{ . (C//u)—ﬁ}dﬂg du
0

< " q~—(@=Fh)

)

(I11.3.27)

recalling the definition of a and § from (I11.3.22) in the last step; we also note
that the integral over w in the last but one line is finite since a; > 1 and

B; < 14«4, so that g— > lia > % with strict inequality for at least one of the ¢’s
due to (I11.3.21), whence 3t + 32 > 1. In view of (II1.1.6), (I11.3.27) yields the
desired upper bound. For the corresponding lower bound, one proceeds similarly,
starting from (I11.3.23), discarding the integral over 0 < t < ¢;*(d; Vdy V1), and
applying the lower bound from (II1.3.25). Thus, (Gz) holds, which completes

the proof. O



85 II1.3. Preliminaries and examples

Remark 111.3.6. 1) Proposition II1.3.5 is sufficient for our purposes but one
could also extend it to graphs (G;, A;) which satisfy (po), (UHK(ay, 5;)) and
(NLHK(y;, 5;)) under a general distance d; for i = 1, 2.

2) Under the hypotheses of Proposition I11.3.5, one can show that there exists
constants ¢ > 0 and C' < oo such that for all n € N, x; € G; and x4, 95 €
G, the upper bound (UHK(«, )) and the lower bound (LHK(«,)) for
pn((21,22), (x1,2)) hold, and for all n € N, 21,41 € G; and 23 € Gy, the
upper bound

d(z,y)’

Pal(21,72), (Y1, 72)) < O 7 exp { — <T> [’1‘} (I11.3.28)

and the similar lower bound (LHK(«, 3, 82/51)) for p,((z1,x2), (y1,z2)) hold.
In particular, the estimates (UHK(«,5)) and (LHK(«, 5, 52/51)) are the
best estimates one can obtain for all z,y € G. We only sketch the proofs
since these results will not be needed in the rest of the chapter. Between
vertices of the type © = (x1,25) and y = (x1,y2), one can show that the
condition (D;) holds, and (LHK(«, 8))=(LHK(«, $,1)) is then proved as in
Remark I11.3.4, 2), and the upper bound (UHK(«, 3)) is a consequence of
(II1.3.18). Between the vertices x = (1, x2) and y = (y;, x2), one can prove
a result similar to (III.A.1) but for the expected exit time of the cylinder
B'(x,R) = Bg, (x1, R ) x Be, (12, R% ), and the proof of (II1.3.28) is then
similar to the proof of (I11.3.18), and (LHK(«, 3, B2/51)) is proved in Re-
mark I11.3.4, 2) since (D%) always holds on G. O

We now turn to the proof of (WSI) for product graphs and the standard
d-dimensional Sierpinski carpet, d > 3. If G = G; X G, we say that two vertices
x = (x1,29) and y = (y1,y2) are s-neighbors if and only if both, the graph
distance in G; between x; and y; and the graph distance in G5 between x5 and
Yo, are at most 1. If GG is the standard d-dimensional Sierpinski carpet, we say
that x = (z1,...,24) and y = (y1,...,y4) in G are *-neighbors if and only if
there exist 4,j € {1,...,d} such that |z; — y;| <1, |z; —y;| < 1, and x, = yy
for all k£ # ¢,7. Moreover, we say in both cases that A C G is *-connected if
every two vertices of A are connected by a path of x-neighbors vertices. We are
going to prove that in these two examples, the external boundary of any finite
and connected subset A of GG is *-connected. In order to do this, we are first
going to prove a property which generalizes Lemma 2 in [108], and then apply it
to our graphs. In Proposition II1.3.7, we say that C is a cycle of edges if it is a
finite set of edges such that every vertex has even degree in C, that P is a path
of edges between = and y in G if x and y are the only vertices with odd degree
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in P, and we always understand the addition of sets of edges modulo 2. We also
define for all x € G the set 02, A = {y € OeriA; v PELIN x}.

ext

Proposition I11.3.7. Let C be a set of cycles of edges such that for all finite
sets of edges S C E and all cycles of edges @),

there exists Co C C with SN <Q + Z C) = Q. (I11.3.29)
CeCy

Then for all finite and connected sets A C G' and for all x € AC, the set 02,,A is
connected in G, the graph with the same vertices as G and where {y,z} is an
edge of G* if and only if y and z are both traversed by some C € C.

In particular, if A is either a finite and connected subset of G1 x Go for two
infinite and locally finite graphs G1 and Ga, or of the standard d-dimensional

Sierpinski carpet for d > 3, then Og A is x-connected.

Proof. Let A be a finite and connected subset of G, and let us fix some zy € A,
x1 € A%, and S; and S two arbitrary non-empty disjoints subsets of G such that
LA =51US,y. Define S; = {(z,y) € E; x € Aand y € S;} for each i € {1,2}.
We will prove that there exists C' € C which contains at least one edge of &;
and one edge of Sy; thus by contraposition 951, A will be connected in G since
S1 and Sy were chosen arbitrary. Since A is finite and connected and S; and S,
are non-empty, there exist two paths P; and P, of edges between xy and x; such
that P,NS; # @ but P,NS3;_; = @ for all i € {1,2}, and then Q = P, + P, is a
cycle of edges. By (I11.3.29), there exists Cy C C such that

Q=Q+> C
CeCo

does not intersect Sy. Let us define C; = {C € Cy; CNS; # @} and Cy = Cy \ Cy,
then

P+ ) C=Q+P+> C. (111.3.30)

CeCq CeCy

The left-hand side of (II1.3.30) is a path of edges between xy and x; which does
not intersect S; by definition, and thus it intersects Sy. Therefore, the right-hand
side of (II1.3.30) intersects Sy as well, i.e., there exists C' € C; which intersects
Ss, and also &7 by definition.

We now prove that 0., A is *-connected when G = G x G, for G; and G,
two infinite and locally finite graphs. We start with considering the case that G
is a tree, i.e., it does not contain any cycle. We define C by saying that C' € C
if and only if it contains exactly every edge between (x1,z2), (x1,%2), (y1,¥2)
and (y;,xs) for some x; ~ y; € Gy and x5 ~ yo € Go. Hence a set is connected
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in GT if and only if it is *-connected. Note that since G; and G are infinite,
OextA = 0%, A for all x € A, and thus we only need to prove (I11.3.29).

Let S be a finite set of edges and )y be a cycle of edges. We fix a nearest-
neighbor path of vertices 7 = (v, v1,-..,¥p) C G such that all the vertices
visited by the edges in () are contained in Gy x {7}, vy, ¢ {yo,...,yp-1}, and
SN (Gy x{y,}) = @. For all n € {0,...,p—1} and all edges e = (e1,yn) €
Ey x {y,}, with E; denoting the edges of Gy, we define C? as the unique cycle
in C containing the edges e and (e1, y,+1). Next, we recursively define a sequence
(@Qn)neqo,...py of sets of edges by

Qni1 = Qn + Z C? forallmne{0,...,p—1}.

e€QnN(G1x{yn})

By construction, for all n € {0,...,p—1}, @, does not contain any edge in
G1 % {yn} and thus if e is an edge in @, of the form (e;,y) for some e; € £
and y € Gy, then necessarily y = y,. Since @), is a cycle of edges and since G
does not have any cycle, Q, C Gy x {y,}, and thus @, NS = &, which gives us
(IT1.3.29).

Let us now assume that (G, contains exactly one cycle of edges, and let
{z2,y2} and {z2, 20} be two different edges of this cycle. Let A be a finite and
connected subset of G, then the exterior boundary of A in Gy X (G2 \ {za,y2})
and the exterior boundary of A in Gy X (Gy \ {x2, 20}) are *-connected in G
since G \ {72, 2} and Gy \ {2, 22} do not contain any cycle. First assume that
there exists 1 € Gy such that (x1,22) € A, (21,y2) € OerrA and (21, 23) € Deri A,
then (x1, z2) is *-connected in G to any vertex of the external boundary of A in
G1 X (Ga\ {2, y2}) and (x1, y2) is *-connected in G to any vertex of the external
boundary of A in G x (G \ {2, 22}), that is (x1, y2) and (z1, 22) are *-connected
in G. The other cases are similar, and we obtain that the exterior boundary of
A in G is *-connected. We can thus prove by induction on the number of cycles
that if G5 has a finite number of cycles of edges, then the external boundary of
any finite and connected subset A of GG is *-connected. Otherwise, let z and y
be any two vertices in 0., A, and let 7® be an infinite nearest-neighbor path in
A€, without loops, beginning in x, such that the projection of 7% on G is a finite
path on G, i.e. constant after some time, and 7Y be a finite nearest-neighbor
path in A€, without loops, beginning in y and ending in 7”. Let G, be the graph
with vertices the projection on Gy of A U 0pprA U {7*} U {n¥}, and with the
same edges between two vertices of G, as in G5. By definition G, is infinite
and only contains a finite number of cycles of edges, so the exterior boundary
of Ain G x G is *-connected in G; x G, and thus x and y are *-connected in G.



Chapter III. Geometry of the sign clusters and random interlacements 88

Let us now take GG to be the standard d-dimensional Sierpinski carpet, d > 3,
that we consider as a subset of N?, and A a finite and connected subset of G.
We define C as the set of cycles with exactly 4 edges, and then a set is connected
in G* if and only if it is *-connected, thus we only need to prove (II1.3.29).
Let S be a finite set of edges, (Qy be a cycle of edges, and p € N such that
Qo C GN({0,...,p—1} x N 1) and SN ({p} x N¥1) = &. We also define V, as
the set of d— 1-dimensional squares V' = {ns, ..., ng+m}x---x{ng,...,ng+m}
such that {n} xV € Gand ({n+1} x V) NG = {n + 1} x (V\ V), where
V={n—1,...onp+m+1} x--- x{ng—1,...,ng +m + 1}. Let us now
such that Q,, C {n,...,p} x Z4 1 for all n € {0,...,p}. For each square V €
V,, all the vertices of {n} x V have an even degree in Q, N ({n} x V) since
QuN{n—1}xV)=Q,N({n+1} x V) = @ and Q, is a cycle of edges.
Moreover, since d > 3, every cycle of edges in {n} x V is a sum of cycles with
exactly 4 edges in {n} x V, and thus one can find a set Cyy C C (with Cy = @ if
({n} x V)N Q,, = @) of cycle of edges included in {n} x V such that

{n} x V)0 (Qu+ D C) c {n} x (V\V)

CeCy

We first define R, 1 by

Rn+1:Qn+ Z ZC

VeV, CeCy

By construction, every edge e = (n,e;) € R, N ({n} x Z971) is such that
(n+1,e1) € G, and we then define C? as the unique cycle in C containing the
edges e and (n+ 1,e;), and we take

Qn—i—l = Rn+1 + Z Cg

e€ERpt1N({n}xzd-1)

By construction, Q1 N ({0,...,n} x Z91) = @ and since Q,;; is a cycle of
edges, we have Q41 C {n+1,...,p} x Z?~1. Therefore, we have Q, NS = &
by our choice of p, which gives us (I11.3.29). O

Remark 111.3.8. 1) One can extend Proposition I11.3.7 similarly to Theorem 3
in [108]. Let us assume that there exists C such that (II1.3.29) hold, and that
for each edge e of E*\ E, where ET is the set of edges of G, there exists
a cycle O, of edges of G* such that O, \ {¢} C E. Then for all finite set
A connected in G and for all z € A€, the set 9%, A is connected in G*F,
the graph with the same vertices and edges as Gt plus every edge of the
type {z,y} for x,y both crossed by O, for some edge e € ET \ E. Indeed
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let G be the graph with the same vertices as G, and edge set E} which
consists of E plus the edges in ET \ E with both endpoints in A, and let
Ci =CU{O,, e edge of E} \ E}. For each cycle @ of edges in E} we then
have that

is a cycle of edges in F, and thus by (II1.3.29) for G with the set of cycles of
edges C, one can easily show that (II1.3.29) also hold for G} with the set of
cycles of edges C. Since A is connected in G, by Proposition I11.3.7, 9%, A

ext
is connected in GT.

In particular, if G is either a product of infinite graphs G; x Gy or the d-
dimensional Sierpinski carpet, d > 3, taking O, such that O, \ {e} only
contains two connected edges of E for each e € ET \ E, we get that the ex-
ternal boundary of every finite and *-connected subset A of (G is x-connected
since Gt = G™.

Proposition II1.3.7 provides us with a stronger result than Lemma 2 in [108|
even when G = Z¢, d > 3. Indeed, Z? = Z% ' x Z and thus the external
boundary of every finite and connected (or even x-connected) subset of Z4
is *-connected in the sense of product graphs previously defined, i.e., it is
connected in Z% U {{(z,n), (y,n+1)}; n € Z,x ~y € Z¢1}.

An example of a graph G for which we cannot apply Proposition I11.3.7, and
in fact where we can find a finite and connected set whose boundary is not
«-connected, and where (WSI) does not hold, but where (Gj) and (V,,) hold,
is the Menger sponge. It is defined as the graph associated to the following
generalized 3-dimensional Sierpinski carpet, see Section 2 of [6]: split [0, 1]*
into 27 cubes of size length 1/3, remove the central cube of each face as well
as the central cube of [0, 1]?, and iterate this process for each remaining cube.

It is easy to show that G endowed with the graph distance verifies (V,,) with
_ log(20)
- ?ogg(3)

on the Menger sponge is transient, see p.741 of [5]. One can then easily check

that taking A, = (3"/2,5 x 3"/2)3 N G, where we see G as a subset of R?,

then 0,,:A is not *-connected. In fact for each = € 0,,: A, and p < n, there

is no 3? path between x and B(z,2 x 37)¢, and thus (WSI) does not hold. [J

, and (Gp) follows from Theorem 5.3 in [6] since the random walk

We can now conclude that our main results apply to the examples mentioned

in the introduction.

Corollary II1.3.9. The graphs in (I11.1.4) (endowed with unit weights) satisfy
(po), (Va), (Gg), for some a > 2, 5 € [2,a) and (WSI), with respect to a suit-
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able distance function d(-,-). In particular, the conclusions of Theorems II1.1.1
and II1.1.2 hold for these graphs.

Proof. Condition (pg) holds plainly in all cases since all graphs in (I11.1.4) have
unit weights and uniformly bounded degree. For (G;, we classically have @ =
d, 5 = 2 and (WSI) follows e.g. from Proposition II1.3.7 with d = dg (or
even the ¢*-norm) since Z? = 747! x Z. The case of Gy is an application of
Proposition s II1.3.5 and I11.3.7: it is known [7, 50| that G’, the discrete skeleton
of the Sierpinski gasket, satisfies (V,,,) and (Gg,) with ay = 282 and 3, = 1285

log 2 log2?
whence (V,), (Gg), hold for G5 with respect to d in (II1.3.22), for o = ;ol(g)gz

and § = % as given by (II11.3.22) with oy = 1, f; = 2 (note that as > 1
so (IT1.3.21) holds), and it is easy to see that any *-connected path is also a
1-path for d in (II1.3.22), hence (WSI) holds. Regarding G, the standard d
dimensional graphical Sierpinski carpet endowed with the graph distance, with
d > 3 (cf. p.6 of [6]), o = log(3%—1)/log(3) (with d = dg) and (G) then follows
from Theorem 5.3 in [6] since the random walk on Gj is transient for d > 3, see
p.741 of [5]. Moreover, (WSI) on G5 follows from Proposition I11.3.7 since any
x-connected path in G is also a 2-path.

Finally, G4 endowed with the graph distance d = dg, satisfies (V) for some
a > 2 by assumption and (G4) holds with 8 = 2 by Theorem 5.1 in [48]. To see
that (WSI) holds, we first observe that the group I' = (S) which has G4 as a
Cayley graph is finitely presented. Indeed, by a classical theorem of Gromov [45],
I is virtually nilpotent, i.e., it has a a normal subgroup H of finite index which
is nilpotent. Furthermore, H is finitely generated (this is because I'/ H is finite,
so writing gH, g € C with |C] < oo and 1 € C for all the cosets, one readily
sees that H = ({h € H; h = g 'sg’ for some g,¢’ € C' and some s € S})).

Since H is nilpotent and finitely generated, it is in fact finitely presented, see
for instance 2.2.4 (and thereafter) and 5.2.18 in |77], and so is I'/ H, being finite.
Together with the normality of H one straightforwardly deduces from this that
I" is finitely presented, see again 2.2.4 in [77|. As a consequence I' = (S|R) for a
suitable finite set of relators R. This yields a generating set of cycles for G4 of
maximal cycle length t < oo, where t is the largest length of any relator in R,
and Theorem 5.1 of [107] (alternatively, one could also apply Proposition I11.3.7)
readily yields that, for all x € 0.+ A, every two vertices of 9%, A are linked via
an Ry path in 07,
growth, {0%,A, * € 0O.,+A} contains at most two elements, see for instance
Theorem 10.10 and 12.2, (g), in [112] and, since G' does not have linear growth,
in fact only 1, see for instance Lemma 5.4, (a), and Theorem 5.12 in [51]. We

A, with Ry = t/2. Moreover, since G has sub-exponential

also prove this fact for any graph satisfying (II1.3.1) in the course of proving
Lemma IIL.6.5.
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In order to prove (WSI), we thus only need to show that there exists ¢ > 0
such that 6(0erA) > cd(A) for all finite and connected subgraphs A of G, and
we are actually going to show this inequality in the general setting of vertex-
transitive graphs G. Write m ) (OextA), let us fix some xg € J.pp A, and let
B(z,m) = {y € G; every unbounded path beginning in y intersects B(x,m)},
for all z € G. Let us assume that there exists 2, € B(xg, m) such that B(x;, m)N
B(zg,m) = &, and then we have B(z,,m) C B(zg,m) \ B(zg,m). Since G is
vertex-transitive, there exists xo € B(z;,m) such that B(xy, m) N Bz, m) =
@. Moreover, by definition, B(xs,m) C B(zy,m) \ B(z;,m), and z; > x5 in
B(z1,m). Tterating this reasoning, we can thus construct recursively a sequence
(2n)nen of vertices such that B(z,41,m) C B(zn, m)\ B(z,,m), and x,, <> 7,1
in B(z,,m) for all n € N. Therefore, there exists an unbounded path beginning
in 2, in B(x,m) \ B(zy, m), which is a contradiction by definition of B(xq,m).
Hence, §(B(x,m)) < 4m, and so 6(A) < 40(0ei A). O

Remark II1.3.10. The conclusions of Theorems II1.1.1 and III.1.2 do not only
hold for Gy in (III.1.4), but also for any product graphs G; x G2 under the
same hypotheses as in Proposition III1.3.5. Further interesting examples can be
generated involving graphs G endowed with a distance d # dg which is not
of the form of a product of graph distances as in (I11.3.22). For instance, in
Corollary 4.12 of [46], estimates similar to (UHK(o/, o/ + 1)) and (LHK(¢/, o/ +
1,()) for some o/ > 1 and ¢ € [1,' + 1) are proved for different recurrent fractal
graphs G’ when the distance d’ on G’ is the effective resistance as defined in (2.4)
of [46]. By Lemma 3.2 in [46], (V) hold on G’ endowed with the distance d’,
and thus one can then prove similarly as in the proof of Proposition I11.3.5 that
G = G' X Z (or some other product with an infinite graph satisfying (UHK(«, 3))
and (NLHK(«, 3))) satisty (V,) and (G) with o = ?"",TH and 8 = o + 1 for the
distance

d((z',n), (y',m)) =d(«',y") V |n — m|% for all 2,y € G' and n,m € Z.

Moreover, (WSI) is also verified on G by Proposition II1.3.7, and thus the con-
clusions of Theorems III.1.1 and III.1.2 hold for G. It should be noted that d’
is not always equivalent to the graph distance on G’, see for instance the graph
G’ considered in Corollary 4.16 of [46]. This graph is also another example of a
graph where (D;) hold for some ¢ > 1 but not ( = 1, and where the estimates
(UHK (e, 8)) and (LHK(e, 5,()) are optimal at this level of generality. O
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III.4 Strong connectivity of the interlacement set

We now prove a strong connectivity result for the random interlacement set on
the cable system, Proposition I11.4.1 below; see also Proposition 1 in [73] and
Lemma I1.3.2 for similar findings in the case G = Z¢. We recall our standing
assumption (II1.3.1). The availability of controls on the heat kernel and exit
times provided by Proposition II1.3.3 will figure prominently in obtaining the
desired estimates; see also Remark II1.4.8 below. The connectivity result will
play a crucial role in Section II1.9, where 7% will be used as a random network
to construct certain continuous level-set paths for the free field. We recall the
notation introduced in (II1.2.15) and (II1.3.4), and our standing assumptions
(IT1.3.1).

Proposition I11.4.1. For each ug > 0, there exist constants cio > 0, ¢ > 0 and
C < oo all depending on ugy such that, for all xg € G, u € (0,up] and L > 1,

ﬁI( m {ze— 2 in T" N B (z0,2C1oL) }) >1—Cexp{—cL“u}.
2,2/ €T4NB(xo,L)

(I11.4.1)

The proof of Proposition II1.4.1 requires some auxiliary lemmas and appears
at the end of the section. In the rest of the chapter, we will not use directly
Proposition II1.4.1 because the event in (II1.4.1) is neither increasing nor de-
creasing, see above (II1.7.4), and therefore cannot be used in the decoupling in-
equalities, see Theorem I11.2.4. We will however use two auxiliary results which
together readily imply Proposition II1.4.1, namely Lemma II1.4.3 and Proposi-
tion I11.4.7. Another interest of Proposition I11.4.1 is the following corollary,
which is a generalization of Corollary 2.3 of [93] from Z? to G as in (II1.3.1).

Corollary II1.4.2. Let uw > 0. Then @I-a.s., the subset T oféY 1s unbounded
and connected. Analogously, P! -a.s., the subset % of G is infinite and connected.

Proof of Corollary I11.4.2. Fix any vertex o € G. Let Ay denote the event
appearing on the left-hand side of (I11.4.1), and A}, = {Z" N B (x, L) # @}.
Note that {Z" is unbounded, connected} > (| ; AL) Nliminf, Ay, The events
Al are increasing with lim, P/(4}) = 1 by (IIL3.11), and by (II1.4.1) and a
Borel-Cantelli argument, P! (liminf;, A7) = 1. The same reasoning applies also
to Z" (with (I11.4.2) below in place of (II1.4.1)). O

Let us denote for each u > 0 by 7" the set of edges of GG traversed by at
least one of the trajectories in the trace of the random interlacement process w®.
From the construction of the random interlacement process on the cable system
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G from the corresponding process on G by adding Brownian excursions on the
edges, it follows that the inequality

]P’I( ﬂ {z sy in I“NBg (g, 2C10 L) }) > 1—C(ug) exp(—L™y)

@,yeT*NB(x0,L)

(I11.4.2)

for all u < ug, will entail (IT1.4.1), where for z,y € G and A C E, {2 <2+ y in A}
means that there exists a nearest neighbor path from z to y crossing only edges
contained in A. We refer to the discussion at the beginning of the Appendix of
Chapter II for a similar argument on why (II11.4.2) implies (I11.4.1). In order to
prove (I11.4.2), we will apply a strategy inspired by the proof of Proposition 1
in 73] for the case G = Z<.

For U CC G let N} be the number of trajectories in supp(w®) which enter
U. By definition, Nj} is a Poisson variable with parameter ucap(U), and thus
there exist constants ¢, C' € (0, 00) such that uniformly in u € (0, c0),

P! (cu - cap(U) < N& < Cu-cap(U)) > 1 — Cexp{—cu-cap(U)}, (I11.4.3)

cf. display (2.11) in [73]. We now state a lemma which gives an estimate in terms
of capacity for the probability to link two subsets of B(x, L) through edges in
7“nN B(.’L', ClOL)'

Lemma II1.4.3. There exist constants ¢ € (0,1) and C € [1,00) such that for
all L>1,u>0 and all subsets U and V of B(x, L),

]P>I(U L vinIvn Bp(z,CyoL)) > 1 — Cexp {—cL " ucap(U)cap(V)},
(ITL.4.4)
with v as in (I111.1.6).

Proof. For U not to be connected to V' through edges in 7N Bg(z,CioL), all of
the N{; trajectories hitting U must not hit V' after hitting U and before leaving
B(z,CyoL), so

P! (U L Vin 7N B(z, CloL))
o (IL45)
>1—P(Ng < cucap(U)) — (Pey (Hy > Tpacownn))

(recall (I11.2.3) and (II1.3.9) for notation). For all y € B(x, L), by (II1.3.8),
(II1.3.5) and (IIL3.2),

C —v
Py(HV > TB(Q:,CwL)) S 11— Z 9B(z,C1oL) (yv Z)GV(Z) S 1-— 52(2[’) Cap(v)v
z€B(z,L)
(I11.4.6)
where we also used ey < ey p(z.cy01) in the first inequality. Since cap(V) < Cy1 LY

by (II1.3.11), we can combine (II1.4.5), (I11.4.3) and (II1.4.6) to get (I11.4.4). [
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Foreachz € Gand L > 1,if x € ", we denote by C*(z, L) the set of vertices
in G connected to x by a path of edges in 7N Bg(x, L), and we take C*(z, L) =
@ otherwise. On our way to establishing (II1.4.2) we introduce the following
thinned processes. For each i € {1,...,3}, let w;’ /3 be the Poisson point process
which consists of those trajectories in w" which have label between (i — 1)u/3
and iu/3. Le., wf/?’, i € {1,2,3}, have the same law as three independent random
interlacement processes at level u/3 on G. For each i € {1,...,3}, let Z}' /3 and
flu / 3, respectively, be the set of vertices and edges, respectively, visited by at
least one trajectory in supp(w'’?), and for each z € G and L > 0, let C1"/*(x, L)
be the set of vertices connected to = by a path of edges in ff/?’ N Bg(x, L). Note
that P’-a.s. we have T% = U3_,Z"* and T* = U3_,7/*. Now fix some zy € G
and L > 0, and assume there exist z,y € Z% N B (o, L) such that z is not
connected to y through edges in Z* N By (zo, C1oL) . Let 4,7 € {1,2,3} be such
that x € If/g and y € I;?‘/S, and let k = k(i,7) € {1,2,3} be different from ¢
and j. By definition, C’;L/S(x, L) is not connected to C’;‘/3(y, L) through edges in
7* N Bg(zo,2C,L), and so

]P)I <$, Yy e Iu, {ZL‘ <L> Yy in fu N BE(ZL'(), QCloL)} >

3 w/3 A w/3 ¢
<> P leenVyeT? C ﬁ”;sL) €7 (y, L) . (111.4.7)
m IZ N BE(.I'(), 2010[/)

ij=1
Since 7?:/3 is independent from fl?t/?) and f;‘/?’ and C;L/?’(:E,L) C B(x,2L), we
can use Lemma II1.4.3 to upper bound the last probability in (II1.4.7). In order
to obtain (II1.4.2), we now need a lower bound on the capacity of C;L/?’(x, L),
and for this purpose we begin with a lower bound on the capacity of the range
of N random walks. For each N € N and Sy = (21,...,2n) € G" we define a
Zi = x; under some probability measure PV, i.e., for each i € {1,..., N}, Z°
has the same law under P°¥ as Z under P,,. For all positive integers M and N
we define the trace T'(N, M) on G of the N first random walks up to time M by

N M
def. i
(N, M) = | J{Z}
i=1 p=0
For ease of notation, we also set

N M?*= ify <2,
v = 3 > 1 and F,(M) =14 log(M) ify=2, (II1.4.8)

1 otherwise,
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with o and § from (V,) and (Gg). The function F, reflects the fact that the
“size” of {Z,; n > 0} (as captured by /3, see Lemma III.A.1) becomes increasingly
small relative to the overall geometry of G (controlled by «) as v grows. As
a consequence, intersections between independent walks in Z" are harder to
produce for larger . This is implicit in the estimates below.

Lemma I11.4.4. There exists C' < oo such that for all t > 0, positive integers
N and M, and starting points Sy € GV,

P~ (cap(T(N, M)) < tmin (%,M“)) < Ct. (I11.4.9)

Proof. Consider positive integers N and M, and Sy € G¥. By Markov’s in-
equality,

pSy (cap(T(Na M)) < tmin <F]7V(AJ\§) ’ MWI))

(I11.4.10)

. < NM
< tmin

(M)’ OE&F”@W“MWW-

Applying (I11.3.12) with the probability u = m Zf\il Zﬁi(M/ﬂ 0z
which has support in T'(N, M), yields

ESY [cap(T(N, M))™!] < ESN[N2M2 Z Z (2, 7 } (II1.4.11)

1,j=1p,q=[M/2]

Moreover, using the heat kernel bound (III.3.16) and the Markov property at
time p, we have uniformly in all p € N and =,y € G,

) S Balg(Zpy)] =D palz,y) SCY 07 < Cp', (111.4.12)

and, thus, for p < ¢, with P an independent copy of P. governing the process Z ,
using symmetry of g(-, ),

o ~ ~ o~ zi . (1IL4.12)
B [0(7, 7)) = Bu [Brylo(Zo, Zyy)| = B lIE,Z)) < Cla—p)',

(I11.4.13)

and the same upper bound applies to E,, [g(Zé, Z}i)], again by symmetry of g.

Considering the on-diagonal terms in the first sum on the right-hand side of
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(II1.4.11), we obtain

M

ESN[Z Z (Z; Zl} <2Nle{nlr1aXN}EN{ > Q(ZZQ»ZQ}

i=1 pg=[M/2] - U7 pa=[M/2]

p=<q
/2] (IT1.4.14)
(I11.4.13)
< onNmM(1+ Y R
k=1
(II1.4.8)
< CNMF,(M).
For i # j on the other hand, (II1.4.12) implies
M M M
| X e@z)| = X i@ son Y o
p,q=[M/2] p,q=[M/2] p=[M/2]
< CM*7.
Combining this with (II1.4.10), (II1.4.11) and (II1.4.14) yields (II1.4.9). O

We now iterate the bound from Lemma II1.4.4 over the different parts of the
random walks (Z");eq1, vy in order to improve it.

Lemma II1.4.5. For each € € (0, 1), there exist constants c¢(e) > 0 and C(¢) €
[1,00) such that for all positive integers N and M, and Sy € GV,

pow (Cap(T(N, M)) < c;«;) < Cexp{—cM*°}, (IT1.4.15)
where
: NMI_E —1)(1—¢
= K,(N, M,")/,e’f) = min (W’M(’Y )( )> . (111416)

Proof. For e € (0,1), all positive integers N, M and k, we define

kM—1

UU{T

=1 p=(
By the Markov property and Lemma I11.4.4, for all ¢ > 0, £ € (0,1) and Sy €
GN, with F'M = 0(ZL,1 <i < N, 1 <p < (k—1)[M')),
psy <cap(Tk(N, (M) < tr ‘ ]—",ﬁV’M> < Ct. (I11.4.17)

Moreover,
[Me=/2]

U To(N, [M'=¢]) € T(N, M),
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whence cap(T(N, M)) < L implies cap(Ty(N,[M'])) < L forall 1 < k <
| M</2| by the monotonicity property (I11.3.13). Thus, applying the Markov
property and using (I11.4.17) inductively we obtain,

PN (cap(T(N,M)) < tr) < (CH)MH < exp{—cM®}
for all ¢ small enough and M > 2. This yields (I11.4.15). O

The next step is to transfer the bound in Lemma II1.4.5 from the trace on G
of N independent random walks to a subset of the random interlacement. For all
u > 0and A CC G, conditionally on the number N} of trajectories in supp(w")
which hit A, let S% € GV4 be the family of entrance points in A by trajectories
in the support of the random interlacement process w* on G. With a slight abuse
of notation, we identify Z*,..., Z¥4 under P4 with the forward (seen from the
first hitting time of A) parts of the trajectories in supp(w*) which hit A under
PI(-|S%). We define W(u, A, M) = T(N4, M) for all positive integers M.
Lemma II1.4.6. For each uy > 0 and ¢ € (0,1), there exist constants
d = d(e) > 0 independent of ug, c(ug,e) > 0 and C(ug,e) < oo such
that for all u € (0,up], A CC G, = € G, and positive integers M, with
Fun L k(ucap(A), M,~,€) (cf. (IT1.4.16)),

P’ (cap(¥(u, A, M)) < Fya) < Cexp{ — c(ucap(A) A M)},  (IIL4.18)
and for all positive integers k, if A C B(x, k:Mll#) (with B as in (Gg)),

e(v

50w}, (I114.19)

P! <\Il(u,A,M) ¢ Bz, (k+ I)M%D < Ck exp{ —cM
Proof. Writing, with N = [cucap(A)],

P' (cap (¥ (u, A, M)) < Fya) <P (N} < N)
+ SUp PN (cap(T(N,M)) < 'Fua),
N
the inequality (II1.4.18) easily follows from the Poisson bound (II1.4.3) and
Lemma II1.4.5. We turn to the proof of (III.4.19), and we fix z € G,
e € (0,1 A (y—1)) as well as positive integers k and M. Let us write A, =
B(z, leﬂj) to simplify notation. If W(u, Ay, M) ¢ Aji1, then for at least one
trajectory Z¢ among the forward trajectories Z', ..., Z™4 in supp(w*) which
hit Aj, the walk Z? will leave B(Zé, M%E) before time M, which is atypically
short on account of Proposition II1.3.3 ii). Therefore, since Nj < Nj |

P! (W(u, A, M) & Agi1)
<P (N% > Cu-cap(Ay)) + Cu - cap(Ay,) sup P, <TB(y7M(1+s)/g) < M)

yEAg
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Using (I11.4.3), (III.3.11) and (II1.3.17), we get

v(l+e)

P (V(u, A, M) ¢ Apy1) <Cexp{ —cuk’M 7 }
+ C’ul{:”M% exp { — cMﬁ},

and (I11.4.19) follows. O

With Lemma II1.4.6 at hand, we can finally produce the desired bound on
the capacity of C*%(z, L) (see after Lemma I11.4.3 for the definition).

Proposition II1.4.7. For each uy > 0 there exist c13 > 0 and Ci3 < 00 in-
dependent of ug, ¢ = c(ug) > 0 and C' = C(ug) € [1,00) such that for every
u € (0,up], z € G and L > 1,

P’ (z € I%, cap(C*(z, L)) < 013L3”/4um’”) < Cexp{—cul®}. (I1IL.4.20)

Proof. We focus on the case v < 2. Let ug > 0, x € G, and u € (0,ug) as above

and consider a positive integer M and § € (0,1) to be chosen suitably. Since
v < 2, we have F, (M) = M*™ by (II1.4.8). Thus, by Lemma II1.4.5,

P’ (z € I% cap(¥(u, {z}, M)) < C’M(1—5)(7—1))
=E’ []lzeIqu (Cap(T(l, M)) < C’M(lffi)(%l))} < C’exp{—cM‘;},

and with (I11.4.19),

§(vAl)

IP’](\I/(u, {z}, M) ¢ B(x,2M%)) < Cexp{—cM 7 uj}.

146

Note that if W(u,{z}, M) C B(m,QMll#), then U(u, {z}, M) C C*(z,2M 7 )
by definition. Thus, combining the previous two estimates,

P! (x SAN cap(C“(:z:, 2M1%6)> < c’M(l_‘s)(V_l)) < Cexp{ — cM%u}

and (I11.4.20) follows by taking M = L(L/Q)%J and = £ since f(y — 1) = .
For v > 2, stronger bounds are required to deduce (I11.4.20) than the one
provided by Lemma II1.4.6. The idea is to apply recursively Lemma I11.4.6 to a
sequence of |v] independent random interlacement processes at level u/|v] as
in Lemma 8, 9 and 10 of [73] or Lemma II.A.3 and Corollary I11.A 4 for G = Z¢.
We refer the reader to these references for details. [

We conclude with the proof of Proposition II1.4.1.
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Proof of Proposition II1.4.1. Fix some uy > 0. Recall the notation below
Lemma I11.4.3, and write for all xy € G, L > 1, u € (0,uo] and z,y € B(xg, L),

E, = {cap (C?/G(%L)) > 013L3V/4UM_H},

E2 = {cap (C;/G(y, L)) > 013L3”/4uh*”} .

Noting that £, C {z € Z}*} and E, C {y € I;-J“/g}, the probability in the second
line of (II1.4.7) is upper bounded by

7

+ P ({z e Y\ B + P ({y e )\ B»).

P! <E1 NEy\ {02/3(1-, L) &5 ¢y, L) in 7 1 Ba(ao, 20@)})

(I11.4.21)

For the first term in (II1.4.21), we fix the constant c;5 = c12(e) € (0,013/2]
small enough so that, using Lemma III.4.3 and the capacity estimates on the
event £y N Ey, for all z,y € B(xo, L), whenever uL?*12 > 1,

P! <E1 NEs\ {05‘/3(95, L) <& C*B(y, L) in 17 1 By(ao, 2(]10L)}>

< Cexp {—cL™u x L¥*?07U} < Cexp { — cL**u}.
(I11.4.22)

Note that when uL?2 < 1, it is easy to see that (II1.4.22) still holds upon
increasing the constant C'. To bound the probabilities in the second line of

(IT1.4.21), we apply Proposition I11.4.7. Combining the resulting estimate with
(II1.4.7), (111.4.21), (111.4.22), we get for all u < ug, L > 1 and x,y € B(xy, L),

P! <x, y el {x AN y in v N Bg (o, QCmL)} ) < CeXp{_CLZCIQU}’

and (II1.4.2) follows from a union bound on z,y € B(z, L), (V,) and (I11.2.10).
[

Remark 111.4.8. The resulting connectivity estimate (II1.4.1) is not optimal, see
for instance (I11.4.22). Notwithstanding, its salient feature for later purposes
(see Section I11.8) is that it imposes a polynomial condition on u and L of the
type u®L? > C, for some a,b > 0, in order for the complement of the probability
in (II1.4.1) to fall below any given deterministic threshold (later denoted 1715 %%,
see Proposition I11.7.1). O
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II1.5 Isomorphism, cable system and sign flipping

In the first part of this section we explore some connections between the inter-
lacement Z" and the (continuous) level sets

EPr e G b, > h) (I1L.5.1)

of the Gaussian free field on the cable system defined in (II1.2.16). Among other
things, we aim to eventually apply a recent strengthening of the Ray-Knight
type isomorphism from [96], see Theorem 2.4 in [101] and Corollary I11.5.3 below.
This improvement will be crucial in our understanding that certain level sets tend
to locally (i.e. at the smallest scale Ly of our renormalization scheme — see Section
II1.7) connect to 7" and that the latter can be used to build connections of
desired type, but it requires that certain conditions be met within our framework
(IT1.3.1). We will in fact prove that the critical parameter for the percolation
of the (continuous) level sets (I11.5.1) is zero, and that E>~" contains P%a.s. a
unique unbounded connected component for all A > 0. In the second part of this
section, we use a “sign-flipping” device which we introduced in Chapter II, see
Lemma II1.5.5, but improve it in view of the isomorphism from Corollary I11.5.3,
which leads to certain desirable couplings gathered in Proposition III.5.6 as a
first step in proving Theorem II1.1.1 and III.1.2.

Our starting point is the following observation from [57|, see also (1.27)-
(1.30) in [96] (N.B.: (IIL.5.2) below is in fact true on any transient weighted
graph (G, \)). For each u > 0, there exists a coupling P between two Gaussian
free fields ¢ and 7 on CN}, and local times Z@u of a random interlacement process

on G at level u such that,

Y-a.s., g, and ~ are independent and

(111.5.2)

~ ~ 1. ~
(goz + v2u)2 =0, + 573, for all z € G.

—~ NI KR

I11.5.2) has the following immediate consequence: I?D“—a.s.,

¢ c {2 € G; |p. + V2u| > 0}. (111.5.3)

The isomorphism

In particular, by continuity, Z" is either included in {z € G; 3, > —V2u}or{z €
G . $. < —/2u}. This result will be improved with the help of Corollary 111.4.2
in Proposition I11.5.2. We begin with the following lemma about the connected
components of {z € G; |®, + h| > 0}.

Lemma II1.5.1. For each h # 0, PC-q.s. the set
{z€G;|®,+h| >0}

contains a unique unbounded connected component.
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Proof. By symmetry of d it is sufficient to consider the case h > 0. For con-
venience, we write h = V2u for suitable u > 0 and consider the field © with
law P¢ under P* instead of ®. The existence of an unbounded connected com-
ponent of {z € G; |, + h| > 0} follows from (II.5.3) in combination with
Corollary I11.4.2. Thus, it remains to show uniqueness. Assume on the contrary
that the set {z € G; |3, +v/2u| > 0} contains at least two unbounded connected
components. Then by connectivity of fu, see Corollary I11.4.2, and by the inclu-
sion (IIL.5. 3) at least one of these unbounded connected components does not
intersect Z%. Call it C*. Since C* C V*, the isomorphism (I11.5.2) and continuity
imply that C* is an infinite cluster of {z € G; |3.| > 0}. But since 5 and Z*
are independent, it follows from Lemma II1.3.2 that Pv-a.s. all the unbounded
connected components of {z € G; |7,| > 0}, and thus C*, intersect 7", which is
a contradiction. [

The uniqueness and existence of the unbounded component of {z € G; ]q)

h| > 0} for h > 0 ensured by Lemma IIL5.1 implies that PC-a.s. either E>"
or G \ E>~" contains an unbounded connected component, and we are about
to show that it is always E>~h. For graphs G having a suitable action by a
group of translations (for instance graphs of the form G = G’ x Z), this result
is clear by ergodicity and symmetry of the Gaussian free field. Due to the lack
of ergodicity, we use a different argument here. The measure Pv refers to the
coupling in (II1.5.2).

Proposition II1.5.2. For all h > 0, I@G—a.s., the set E>" only contains bounded
connected components whereas the set E>~" contains a unique unbounded con-
nected component. Moreover, for all u > 0, P*-a.s.,

T c{z€G; §. > —2u}. (I11.5.4)
Proof. We only need to show that for all h > 0

I@”Zé ({z € G, ¢, < —h} contains an unbounded connected component) =0.
(II1.5.5)

Indeed, if (II1.5.5) holds then by symmetry E>h only contains bounded con-
nected components, by Lemma III.5.1 E>~" contains PC%-as. a unique un-
bounded component and (II1.5.4) follows from (III.5.3) and Corollary I11.4.2.

Assume that (III 5.5) does not hold for some height h > 0, which is henceforth
fixed, and set u = 2. Let €" C G be the set of points belonging to the infinite
connected component of {z € G; §, < —h} whenever it exists (¢" = @ if there
is no such component). By a union bound there exists oy € G such that

P (zy € €") > 0. (I11.5.6)
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For all n € N, we define the random variable

B |Z% N B(xg,n)|

Y, = ., (where u = h?/2. II1.5.7
Blao, )] ( /2.) ( )

All constants from here on until the end of this proof may depend implicitly on
u (or h). By definition of random interlacements, P/(z € Z%) = 1 — ¢ sGo),
whence for all z € G, ¢ < P/(z € Z%) < C due to (Gg) and thus, in view of
(I115.7),

1

e <EW] = Boom

Y Puzerv<C (I11.5.8)

x€B(zo,n)

Following the lines of the proof of (1.38) in [95] one finds with the help of (Gp)
that there exists a constant C' such that for all z, 2" € G,

COVﬁu (ﬂxEIuy ]lx’EI“) = COV]P:I (HIEV”7 ]156’6\)“) S Cg(x, ZU/). (11159)

Moreover, by (I11.2.10) and Lemma III.A.1, there exists a constant C' < oo such
that for all x € G and n € N,

> glay) <O’ (I11.5.10)
yeB(z,n)
Combining (II1.5.9), (II1.5.10), (I11.2.10) and (V,,) yields that for all n € N
1 —Q et 4
varﬁu (Yn) = W Z COV@U (]lmGIuy ]lzv’EZ") S C’nﬁ =Cn7v.

z,z’ €B(zo,n)

(II1.5.11)
With (II1.5.8), (II1.5.11) and Chebyshev’s inequality, one then finds Ny > 0 large
enough such that for all n > N,

— Pu(l‘o c %h)

= <Cn?< : I11.5.12
Eu[Y,,]? 2 ( )

pu (Yn < E [QYn]) < 4Varg, (Y5,) <
where the last step follows from the assumption (II1.5.6). Using (II1.5.12) and
(II1.5.8), we get that for all n > N,

Eu[Yn']lxoggh] Z E [2Yn] ]’I"Du (Yn Z E [2Yn]

20 € %h) > Pz € 7). (IIL5.13)

If 29 € €™, then €™ is the unique connected component of {z € G; |3, +h| > 0}
by Lemma III.5.1, and thus by (IIL.5.3), (IIL.5.13), (V,) and (III.2.10), for all
n > Ny the lower bound

E* [|€" N B(xo,n)| - Lyyeqn] > E* [‘I“ N B(zo,n)| - ]].xoegpﬂhi| > cn®P(zo € €")
(IIL.5.14)
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follows. On the other hand,

E" [|€" N B(zo,n)|  Lyewn] = > Pz €€ me?"), (IIL5.15)

z€B(z0,n)
and, according to Proposition 5.2 in [57], for all z € G,
PU(z € €" 20 € €") < P*(x « 20 in {2z € G; .| > 0})

T - ’)Z)u m) Y o). T

Combining (II1.5.15), (IT1.5.16) and (II1.5.10) then yields the upper bound

< arcsin(

E" [|€" N B(xo,n)| - 1yen] < CnP. (I11.5.17)

Finally, by (I11.5.14) and (II1.5.17) one obtains, for all n > Nj, Iﬁ’“(xo €6 <
CnP~* < On~", which contradicts (I11.5.6) as n — oo. O

Having shown Proposition I11.5.2, taking complements in (I11.5.4), we know
that for all u > 0,
{z€G; ¢. < —V2u} C V" (IT1.5.18)

(and in particular h, < +/2u,) for all graphs G satisying our assumptions
(IT1.3.1). Moreover, as will become clear in the proof of Corollary I11.5.3 below,
Proposition II1.5.2 provides us with a very explicit way to construct a coupling
P* as in (II1.5.2) with the help of [101]. With a slight abuse of notation (which
will soon be justified), for all u > 0, we consider a (canonical) coupling P* be-
tween a Gaussian free field 5 on G (with law P¢) and an independent family
of local times (Eu)zeé continuous in z € G of a random interlacement process
with the same law as under P/, cf. (II1.2.18). Note that this defines the set Z"
by means of (II1.2.19). We then define

C,° as the union of the connected components
-~ _ ~ (II1.5.19)
of {z € G; 2., +72 > 0} intersecting Z".

The following is essentially an application of Theorem 2.4 in [101].

Corollary II1.5.3. The process (¢.),.a defined by

. {—mw’z if 2 ¢ C,
Yz =

= I11.5.20
—V2u+/20.,+7% ifzeCy. ( )

for all z € é, 1s a Gaussian free field, i.e., its law is ]INDG, and the joint field
(7., 0., p.) thereby defined constitutes a coupling such that (111.5.2) holds. More-
over, C° is the unique unbounded connected component of {z € G; ¢, > —v/2u}.
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Proof. We aim at invoking Theorem 2.4 in [101] in order to deduce that the field
¢ defined in (II1.5.20) is indeed a Gaussian free field. The conditions to apply
this result are that

PC-as., {z € G; |®.| > 0} only contains bounded connected components,
(IIL.5.21)
and g(x,z) is uniformly bounded. The latter is clear by (Gpg), but it is not
obvious that (I11.5.21) holds. However, by direct inspection of the proof of
Theorem 2.4 in [101], we see that (II1.5.21) is only used to prove (1.33) and
(2.48) in [101], and that it can be replaced by the following (weaker) conditions:

for all u > 0, P"a.s., Z" C {z € G; ¢. > —V2u} and (II1.5.22)
all the unbounded connected components of {z € G, |7.| > 0} intersect 7v,
(I1.5.23)

and the proof of Theorem 2.4 in [101] continues to hold. For the class of graphs
(II1.3.1) considered here the condition (II11.5.22) have been shown in (II1.5.4)
and the condition (II1.5.23) follows from Lemma II1.3.2 and the independence
of 7 and 7v. Thus, Theorem 2.4 in [101]| applies and yields that ¢ defined in
(I11.5.20) has law PC.

By (I11.5.19), (., = 0 for z ¢ C> and it then follows plainly from (II1.5.20)
that (II1.5.2) holds. Finally, the fact that C2° is the unique unbounded cluster of
{z € G; $. > —/2u} is a consequence of Proposition I11.5.2 and the definitions
of Co° and @, recalling that Iv = {z € G, Zzu > 0} is an unbounded connected
set due to Corollary 111.4.2 and (I11.2.19). O

Remark 111.5.4. 1) An interesting consequence of Corollary I11.5.3 is that for
all graphs satisfying our assumptions (I11.3.1), the inclusion (II1.5.18) can be
strengthened to

for all A C (—00,0), {2z € G; 3, € —V2u+ A} C Ven {z € G, 7, € A},
(I11.5.24)
see Corollary 2.5 in [101].

2) For the remainder of this chapter, with a slight abuse of notation, we will
solely refer to P* as the coupling between (7.,4.,,@.) constructed around
(I11.5.19) and (II1.5.20). Thus, the conclusions of Corollary II1.5.3 hold, and

in particular P* satisfies (I11.5.2). O

3) In Chapter IV, we will extend the results from Proposition I11.5.2 and Corol-
lary II1.5.3 to a way more general class of graph than the graphs satisfying
(II1.3.1) studied in this chapter, and will in fact show that the isomorphism
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(IT1.5.20) is equivalent to the condition (II1.5.21). In particular, if G is a
graph satisfying (II1.5.22) and (II1.5.23), then (III1.5.21) holds.

We now adapt a result from Section I1.5 which roughly shows that, under I@“,
for each # € G and with u = h?/2 for a suitable h > 0, except on an event with
small probability, a suitable conditional probability that ¢, > —h for all z on
the first half of an edge starting in = is smaller than the respective conditional
probability that ¢, > h at the vertex x whenever h (or u) is small enough.

For each x ~ y € GG, we denote by U*¥ the compact subset of G which consist
of the points on the closed half of the edge Iy, ,; beginning in x, and for x € G
let U* =, . U™ and K* = 9U?*, i.e., K* is the finite set of midpoints on any
edge incident on x. For all U C é, we denote by Ay the o-algebra o(@,, z € U).
For all z € G, u > 0 and K > 0, we also define the events

Yy~

R, = {Ely € G;y~xand p, > —V2u for all z € U””’y},

S I11.5.25
%:{QZZ—K for allze]C’”}, ( )

For all z € K%, let y, be the unique y ~ z such that z € U*¥. Recall that by the
Markov property (I11.2.17) of the free field, one can write, for all x € G,

x z T > ~ 1 ~
0. = Y+ 07", where gV = Z P, (XTUI = z)goy =\ Z Aoy, P
zeK® T zek=
(II1.5.26)
is Aj= measurable and V" is a centered Gaussian variable independent of Ay

2

and with variance gy«(z,x) = ST = where we recall p,, =
y~ax \PT,Y

1
22,
1/(2X;,,) and refer to Section 2 of [57] for details on these calculations.

Lemma II1.5.5. There exists c14 > 0 such that for all w > 0, x € G and
K > \/2u satisfying
K)\x\/ 2u S Ci4, (111527)

we have
~ 1~ .
g, P* (R [ Ags) < 51@“(% > V2ul|Age)  on {BY < K}, (I11.5.28)

and, denoting by F' the cumulative distribution function of a standard normal
variable,

P(pp > V2u| Axz) > F(V20 (K —V2u))  on {BY" > K}.  (I11.5.29)

Proof. We first consider the event {8Y" < K}. For any v > 0 and K > v/2u, on
the event {8Y" < K} N S%, we have |8V"| < K by (I11.5.25) and (I11.5.26) and



Chapter III. Geometry of the sign clusters and random interlacements 106

thus

—V2u < ¢, < 2V2u | Ak:)

\/7/ exp {—A(y — V") dy
< \/mexp{ A:(BY)2} x Bexp {4v2u K }. (I11.5.30)
Similarly, still on the event {8Y" < K} N S%,
P*(V2u < @, < 2V2u| Ag:) > \/mexp{ Ae(BY7)?} exp { — 8vV2uN K}
(I11.5.31)

For any x € G and z € K, by the Markov property (II1.2.17), the law of the
Gaussian free field ¢ on U®¥: conditionally on Ay, is that of a Brownian

bridge of length p,,./2 = (4\,,.)"" between ¢, and &, of a Brownian motion
with variance 2 at time 1. Furthermore, still conditionally on Ax=yi,y, these
bridges form an independent family in z € K¥. Therefore, on the event {—v/2u <
0. < 2v/2u} N {BY" < K} N S%, using an exact formula for the distribution of
the maximum of a Brownian bridge, see for instance [13], Chapter IV.26, we

obtain
Pr(RL] Acug) =1 - [TP (3 2 €U™; g < =V2u ’ A/cxu{a:})
y~T
=1- H exp{ — 4Ny, (02 + V2u) (p, + \/2u)}
o

<1—exp{—24V2u\, K} < 24V2u), K.
(I11.5.32)

Together, (I11.5.30), (II1.5.31) and (I11.5.32) imply that for all © > 0 and K >
v2u, on the event {sY" < K} N S%.,
P (RN {py < 2V2u} | Age)
P (vV2u < ¢, < 2v2u | Ax:)

We now choose the constant cj4 such that the right-hand side of (I11.5.33) is
smaller than 1/2 if V2ul, K < cyy, and (I11.5.28) then readily follows from
(II1.5.33). The inequality (I11.5.29) follows simply from (I11.5.26): for all u > 0,
K >+/2u and = € G, on the event {8V > K},

P (g > V2u| Ag:) > PV > Vou — K | Age) = F(v/2M(K — V2u)).

This completes the proof of Lemma II1.5.5. O]

< 72V2uM K exp {12V2u)\, K}, (I11.5.33)
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For all parameters v > 0 and p € (0,1), we consider a probability mea-
sure QUP, extension of the coupling P introduced above (IT1.5.19), see also
Remark I11.5.4, 2), governing the fields ((7.),a (Ew)zeg, (BP).c) such that,
under Q“P,

the fields 7., Zu are those from above (I11.5.19) (and thus Corollary II1.5.3
applies), BY, x € G are i.i.d. {0, 1}-valued random variables with
Qur (B? = 1) = p, the three fields B?, 7., Zu are independent.
(I11.5.34)
Let us introduce the following condition on u > 0, K > +/2u and p € (0, 1)

—_

S <p< iggF(\/R(K —V2u)). (I11.5.35)

\)

Recalling the definition of the o-algebra Ax., x € G, we consider a family
(X kp)ecc € {0,139 of random variables defined with the same underlying

probability Q“P from (II1.5.34) and the property that, for K > +/2u and all
x € G,
Lgves g QU (X2, = 1] Axs) < p. (I11.5.36)

We will consider the following two natural choices for X, g ,, either
Xoxp=08p z€G, (II1.5.37)
or
Xorp=Lip.<ky, T€G, (II1.5.38)

and we will allow for both. The reason for this twofold choice is explained below
in Remark I11.9.4, 2). In case (I11.5.37), inequality (II1.5.36) follows directly
from the definition (II1.5.34), whereas in the case (II1.5.38) it is a consequence
of the decomposition (II11.5.26) and the fact that p > 1/2 = Q“P(¢U < 0] Ak=).
We introduce the event

Sz {75, > —K +V2uforall y € K*} (I11.5.39)

and the following random subsets of G, cf. (II1.5.25) for the definitions of R¥
and S%:

.S {x € G: R occurs},

{z € G; S} occurs},
{r € G; S% occurs},
Xqudif {r € G; X g, =1}, and

dcf

o (I11.5.40)
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By (I11.5.20), under Q"?, if 3, < —K, then 7, < —K + v/2u for all z € G, and
thus for all z € G, in view of (II1.5.25) and (II1.5.39),

(S%.)¢ C (S%)¢, and therefore Si C Sk. (IT1.5.41)

We now take advantage of Lemma II1.5.5 to obtain the following coupling.

Proposition I11.5.6. For allu > 0, K > v/2u and p € (0, 1) such that (111.5.27)
and (I1L.5.35) hold true for all x € G, with (X} )sec as in (I11.5.37) or

(II1.5.38), one can find an extension (QWIr Fukr Qukr) of the probability
space underlying Q“P on which one can define for each 0 < v < u two random

subsets H = H,, , k. and v of G such that

sz/ﬂ has the same law under Q57 as EZV2 under Pe, (I1.5.42)

the family {x € H},eq is i.i.d. and independent of T, v and (B),eq, {v € H}

is independent of {y € Ezm}yeg\{m}, QukP(x € H) > 0, and the following

inclusion holds:

Vv

(R UH)N Sk N XuxpCE (I11.5.43)

Proof. For fixed values of u, K and p satisfying the above assumptions, we
consider an extension (QwfP Fukr Qukp) of the probability space underlying
@“’p , on which we also have an i.i.d. family (V,).eq of uniform random variable
on [0,1], independent of f“, ~v and (BP),cq. For each x € G and 0 < v < u,
there exists a measurable function f7, : R*" — (—00,1] such that, with Agx =
o(pe, € K),

Q“?(p, > V20| Ac) — QP(RE N S5 N {XE g, = 1} Ax)
1 - Que(Rz N S% N{XZ,, =1} Ax)

T ~

w,v (SOVCZ) =

(I11.5.44)
(in particular the right-hand side depends on @ only through @xc=). Moreover
for each = € G, by (I11.5.26), (I11.5.28), (I11.5.29), (I11.5.36) and since v < u, for
all 1 € RM with ¢, > —K for all y € K®, we have

2 () > (F(vV2M(K = V2u)) —p) A %F( ~ V(K +v/2)).
By (I11.2.10) and (III.5.35), we thus have

Foin T inf  inf  f7(¢) > 0. (I11.5.45)

2€G  yeRK": “r
Yy >—K,yek?
For all 0 < v < w, let

B (0 € Gy Ve < 2,(Fie)} U (RN Bk N Xuiey) (I11.5.46)
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and

HY {2 eG; Vi < fun} (111.5.47)
It is clear that the family {x € H},c¢ is i.i.d. and independent of 7%, 7 and
(BP) eq, that {x € H} is independent of {y € Ezm}yeg\{x}, and that Q“?(z €

H) > 0 due to (II1.5.45). We proceed to verify (II1.5.43) with Sg replacing Sk,
which is sufficient due to (II11.5.41). We have

(HN Sk N Xukp)

(I11.5.25),(111.5.45) — —
C (H N SK N {JI € G : fff,v(SOUCI) Z fmin})
(I11.5.47) ~
C {zeG Vi< fi (@)}

(IIL5.46) —>. /3
B
from which (II1.5.43) (with Sk in place of Sk ) immediately follows, since (R, N
S’K N XUJCP) C EZ\/%.
It remains to check that (II11.5.42) holds. By (I11.5.46) and by definition of
R®, S% and X7, see (II1.5.25) and (II1.5.37) or (IIL.5.38), conditionally on

u,K,p
Ay, the events {z € Ezm}, x € G, are independent under Q“*P_ Therefore,
abbreviating ¢ = Q“*?(z € (R, NSk N Xy k) |.A;C), we have
Qukr(y e BV | Ax)
WIE 4 QuEP(V, < f7 (Bier), # € (RuN Sk N Xoscp) [ Ax)
= q+ fi,(P=)(1 —q)
() @u’p(@x > V2u | Ax).

(I11.5.48)

Conditionally on Ay, the events {z € Ezm}, x € G, respectively {p, > v2v},

x € G, are independent and so by (II1.5.48) 2 and {r e G:p>—V2u}
have the same conditional law. Integrating, we obtain (II1.5.42). [

Remark 111.5.7. Lemma II1.5.5 is stated in terms of the field ¢ under the mea-
sure P* with u > 0, or equivalently under the measure @“’p, to which it will
eventually be applied. Nevertheless, let us note here that it could in fact be
stated for the Gaussian free field ® under P for any weighted graph (G, \)
since the assumptions (I11.3.1) are not required for its proof. Proposition I11.5.6
is valid on any transient weighted graph (G, A) such that (I11.2.10) and Corol-
lary II1.5.3 holds, i.e. on any graph such g(z, x) is uniformly bounded and such
that the conditions (II1.2.10), (II1.5.22) and (I11.5.23) hold. In particular, the
assumptions (II1.3.1) are not necessarily required.
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We close this section with an outlook of the remaining sections. Under Q%%
from Proposition I11.5.6 with X, x,, from (II1.5.37), we have that Sk N X, kp

and Z" are independent, and by (II1.5.4) that Z% N Sk N X, kp C Ry NSk N

Xuxp, C B2V, Moreover by (IIL5.42) and (IIL5.24), we have that =" >"

is stochastically dominated by V*. In order to prove Theorem II1.1.2 (but not
Theorem II1.1.1), we thus only need to show that 7% N Sk N X, k, percolates for
a suitable choice of u, K and p with K\,v/2u < ¢14 and p < F(\/R(K— \/ﬁ))
for all z € G. A promising strategy to prove that the intersection of Z* and a large
set percolates on G is to apply the decoupling inequalities of Theorem II1.2.4 to
a suitable renormalization scheme, similarly to [74] and Chapter II. This requires
roughly the same amount of work as obtaining an estimate like (II1.1.10) for small
h > 0 (both are “existence™type results), and they will follow as a by-product of
the renormalization argument developed in the course of the next three sections.
The actual renormalization scheme will be considerably more involved than the
arguments presented in [74] and Chapter II in order to produce an estimate like
(II1.1.11) for small A > 0 and thereby allow us to deduce Theorem III.1.1.

II1.6 Proof of decoupling inequalities

The coupling Q** of (I11.5.34) will eventually feature within a certain renormal-
ization scheme that will lead to the proof of our main results, Theorems III.1.1
and III.1.2. This is the content of Sections III.7 and II1.8. The successful de-
ployment of these multi-scale techniques hinges on the availability of suitable
decoupling inequalities, which were stated in Theorem III.2.4 and which we now
prove. In essence, both inequalities (II1.2.20) (for the free field) and (I11.2.21)
(for interlacements) constituting Theorem II1.2.4 will follow from two corre-
sponding results in [67] and [68], see also (II1.6.4) and (II1.6.29) below (these
results are stated in [67], [68], for Z¢ but can be extended to G, the cable sys-
tem of any graph satisfying (II1.3.1)), once certain error terms are shown to
be suitably small. In the free field case, see Lemma I11.6.4, the respective esti-
mate is straightforward and we give the short argument, along with the proof of
(II1.2.20), first.

The issue of controlling the error term is considerably more delicate for the
interlacement. The key control comes in Lemma II1.6.6 below. Following ar-
guments in [68], it essentially boils down to estimates on the second moment
and on the tail of the so-called soft local times attached the relevant excursion
process (for one random walk trajectory), see (I11.6.25) below, which are given
in Lemma I11.6.7. For G = Z%, these bounds follow from the strong estimates of
Proposition 6.1 in [68|, but its proof is no longer valid at the level of generality
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considered here (the details of the argument are very Euclidean; see for instance
Section 8 in [68]). We bypass this issue by presenting a way to obtain the desired
bounds in Lemma II1.6.7 and along with it, the decoupling inequality (II1.2.21),
without relying on (strong) estimates akin to Proposition 6.1 of [68]. This ap-
proach is shorter even when G = Z<¢ but comes at the price of requiring an
additional assumption on the distance between the sets. An essential ingredient
is a certain consequence of the Harnack inequality (I11.3.3), see Lemma I11.6.5
below.

The following lemma will be useful to find “approximate lattices” at all scales
inside G. It will be applied in the context of certain chaining arguments below.
These lattices will also be essential in setting up an appropriate renormalization
scheme in Section I11.7.

Lemma I11.6.1. Assume (po), (Va), and (Gg) to be fulfilled. Then there exists
a constant C4 such that for each L > 1, one can find a set of vertices A(L) C G
with

U Bw.L)=¢, (I11.6.1)
yeA(L)
and for all x € G and N > 1,
IA(L) N B(z, LN)| < C14N®. (I11.6.2)

Proof. For a given L > 1, let A(L) C G have the following two properties: i) for
all y £y € A(L), d(y,y’) > L, and ii) for all x € G, there exists y € A(L) such
that d(x,y) < L. Indeed, one can easily construct such a set A(L) = {yo,v1, ...},
e.g. by labeling all the vertices in G = {zg,z1,...} and then “exploring” G,
starting at yo = z¢ € G, then defining y; as the point with smallest label in the
complement of B(xg, L), idem for ys in the complement of B(yq, L) U B(y1, L),
etc.

By ii), for each = € G, there exists y € A(L) such that d(z,y) < L, and so
in particular (J,c, ) B(y, L) = G. Moreover, for all x € G and N > 1,

L
g B(y, 5) C B(z, L(N + 1)),
yeA(L)NB(z,NL)

and the balls B(y, %), y € A(L), are disjoint by i). Combining this with (V)

we infer that for L > 2,

Ci(L(N + 1))~ < 440
C1 (L/Q)a - C1

and the proof of (II1.6.2) for 1 < L < 2 is trivial by (V,,) and (III.2.10) (choose

A(L) = G). O

A(L) N B, NL)| < e,
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We start with some preparation towards (111.2.20). Let A; and A, be two
disjoints measurable subsets of G such that A, is compact with finitely many
connected components, and let U 1= g‘i We recall the definition of the harmonic
extension Eﬁl of the Gaussian free field ® from (II1.2.17), and for each ¢ > 0
define the event

H, = { sup |37 < 5. (I11.6.3)
z€Ay
The following result is stated on Z< in [67] but its proof is actually valid on é,
for any G as in (I11.3.1), using the Markov property of the free field on G, cf.
(II1.2.17), instead of the Markov property on Z.

Theorem II1.6.2 (|67, Theorem 1.2|). Let A, and Ay be two disjoints measur-
able subsets ofG such that Ay is compact with finitely many connected compo-
nents, and let fy (AQ, R) — [0, 1] be a measurable and increasing or decreasing
function. Then for all € > 0, ﬁG—a.s.,

{ES | fa(® )5, - 02)| — B (H2) } 1,
<E[f(@)5,) |84, ] L. < (B9 [R(@5, +00)| +BC (D)} 1,
(I11.6.4)

where o = 1 if fy is increasing and 0 = —1 if fy is decreasing.

Remark 111.6.3. We note in passing that conditions (pg), (V,) and (Gp) are
not even necessary here: Theorem II1.6.2 holds on any locally finite, transient,
connected weighted graph (G, \). O

Assume now that A; is no longer compact, but only bounded (and measur-
able) and let A be the largest subset B of G such that B* = A% (see before
display (I11.2.15) for a definition of B*), i.e., A] is the closure of the set where
one adds to A; all the edges I, such that AnNI, #+ @, and Al = A* C G is the
prm 7 of A’ in G. Note that every continuous path started in G \A’ and enter-
ing A’ will do so by traversing one of the vertices in A* The set A’ is a compact
subset of G with finitely many connected components. We can thus define H.
as in (111.6.3) but with U] o (A})< in place of Uy, for any bounded measurable
set A; C G. The inequality (I11.2.20) will readily follow from Theorem I11.6.2
once we have the following lemma, which is similar to Proposition 1.4 in [67].

Lemma II1.6.4. Let /L and AVQ be two Borel-measurable subsets of é, s =
d(A;, A) and r = 6(A7). Assume that s > 0 and r < co. There exist constants
ce > 0 and Cg < oo such that for all such Ay, Ay and all € > 0,

Cs
2

PC (H.) < —=(r+ s)*exp {—cges" } . (I11.6.5)
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Proof. Let K = 83(2{*{, s). By assumption, every connected path on G from A,
to A; must enter K prior to Aj. By the strong Markov property of X, we have
B = > wck P.(Hy < oo,)~(HK = x)ng for all z € Ay and therefore, in view of
(II1.6.3), we obtain the bound

P¢ (H) < P¢ (sup \ﬁfi\ > E) = P¢ (sup ‘Bff‘ > E) , (I11.6.6)
2 reK 2

zeK

with 6;4 - E, [CDZHA«*H H5T<°°]' Here, the equality follows from the fact that

under P, for z € K , )AfTﬁ/ =X H; 18 always on g’{ (cf. the discussion below
1 1

Remark I11.6.3), that the law of &ﬂg under P€ is P%, and that the law of )?]G
under P, is P, for each z € G. Following the proof of Proposition 1.4 in [67]

(see the computation of Var(h,) therein), if s > 2C}3, then for each x € K, g
is a centered Gaussian variable with variance upper bounded by
(Gg) (111.2.8)
sup g(z,y) < Cysupd(x,y)™” < Cy(s—C5)7"<Cs™, (I11.6.7)

yeﬁ’l‘ yegf

noting that d(K, ;ﬁ) > s — (3 by (II1.2.8). By possibly adjusting the constant
C, we see that (II1.6.7) continues to hold if s < 2C5, for then s > ¢ and
supweKvyegig(x,y) < sup,ee g(z,x) < Cy by (Gp) and using that g(z,y) =
P,(H, < 00)g(y,y) < ¢(y,y). By a union bound, using (V,) and (II1.2.10), we
finally get with (II1.6.7) and (II1.6.6),

PC (H.) <2C)(r + s)exp { — cs"e?},
for all s > 0 and r < oo, which completes the proof. O

Proof of (111.2.20). We may assume without loss of generality that A s
bounded and r = §(A;). Applying Theorem II1.6.2 with A} and Ay, multi-
plying the upper bound in (II1.6.4) by fl(g5| z,) for some monotone function

f1: C(A1,R) = [0,1] and integrating yields

B |£1(Py5,) £2(®)5,) | SB[ £i($)5, £2)| B |fa(®yz, 2 2) | + 2B° (HLF).
(IIL6.8)
The inequality (I11.2.20) then follows from (II1.6.8) and (II1.6.5). O

We now turn to (II1.2.21), the decoupling inequality for random interlace-
ments. We will eventually use the soft local times technique which has been
introduced in [68] to prove a similar (stronger) inequality on Z4, for d > 3. In
anticipation of arising difficulties when estimating the error term which naturally
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appears within this method, we first show a certain Harnack-type inequality, see
(II1.6.11) below, which will be our main tool to deal with this issue. Let

K >5V (2C3)° (I111.6.9)

be a parameter to be fixed later (the choice of K will correspond to the constant
C; appearing above (I11.2.21), see (I11.6.36) below). We consider A; and A, two
measurable subsets of G and we assume that the diameter r of A} is finite and
smaller than the diameter of A3 (recall the definition of A* C G for A C G from
Section I11.2), and that s = d(A%, A}) > K(r V1) and s > 0. We then define

A= A%, Ay = B(,ql, g) and V — aB<A1, \/%) (I11.6.10)
(I11.6.9)

These assumptions imply that s > K > 2C5VK, so that by (I11.2.8), the
sets Ay, Ay and V' are disjoints subsets of G, Ay D 113 and any nearest neighbor
path from A; to Ay crosses V. The following lemma will follow from (I11.3.3) and
a chaining argument.

Lemma II1.6.5. For all K > ¢, there exists Ci5 = C15(K) > 1 such that for
any Ay, Ay, V as above, B € {A;, Ay, Ay U As}, v a non-negative function on

G, L-harmonic on B€,

supv(y) < Cy5 inf v(y). (I11.6.11)
yev yGV

Proof. Set e(K) = \/L? and

Up = B(A1,€°(2Co + 1)s), Uy = B(Ay,es), Uy = B(As,£°(2C + 1)s)",
and V' the largest component of V(= 9U;) which is connected in U§ N Us, where

Cy corresponds to the constant in the elliptic Harnack inequality, see above
(II1.3.3) and Lemma II1.3.1. We first prove that if K > ¢ (so that ¢ is small
enough) then V' = V| ie., V is connected in U§ N Us. We first assume that
K > cso that Uy C Uy C U,. If V! # V| then there exist y,y’ € V such that
y is not connected to y' in U§ N Us, and in particular using the strong Markov
property of Z at time Hy,,

Py(Hy/ < TU2) < Py(HUo < TUQ) sup ch(Hy/ < TUQ). (111612)

zeUp

Recall the relative equilibrium measure e, 1,(-) and capacity capy,(Up) from
(II1.3.6) and (II1.3.7). Using that s > K'r, it follows that for K > ¢, d(U;,Us) >
Cy0(U1) so that, by (II1.3.2) and (IIL.3.8), one obtains for all z € A; C U,,

/ / ¢ L
1= Z gu, (x, 2" ey, v, (2') > 52(27“ +e*(2Cq + 1)s) “capy, (Us)
@'elo (I11.6.13)
> b (£%(2Cq + 3)s) “capy, (Up).
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We further assume that K > ¢ and ¢ is small enough so that d(Uy, V') > £, and

)
then, using again (II1.3.2) and (II1.3.8), for all y € V,
(I11.6.13)
Py(Hy, < Ti) = > gu(y, 2)evyv, (1) < Cod(Us, V) ¥capy, (Uy) < Cxe”.
xzelUy
(I11.6.14)

We stress that C' is uniform in K (and ¢) in (II1.6.14). On the other hand,
applying the strong Markov property at time H, and (II1.3.2) we find for all

z el

e
2 d(w,y)" < Py(H,y < Ty,) = gu(T,Y) 2d(z,y)™.  (IIL6.15)

202 gu, (ylv y/> C

Combining (I11.6.12) with (I11.6.14) and (II1.6.15) (recall that Uy C U; and
y € Up) we get, for K > ¢

dy,y')" < Cxe”x (%) <O x5 (I11.6.16)

(with constants C' and C” uniform in K and ¢). But since y,y" € V,
d(y,y') <2(r+es) < des. (I11.6.17)

Clearly, upon choosing K large enough, as e(K) — 0 as K — oo, (I11.6.16) and
(II1.6.17) lead to a contradiction. Thus V' is connected in U§ N Us.

For all z € B(A;,2e%Cys)° N B(Asg,22Cys), v is harmonic on B(x,22Cys)
by assumption and thus (II1.3.3) gives

inf  w(z) >cog sup wv(z). (II1.6.18)

2€B(z,£25) 2€B(x,25)

By connectivity of V’ in U§ N Uy and (I11.6.1), for all y,3’ € V, one can find
N € N, asequence zg, ..., zy in A(e2s/2)NB(A;, 262 Cys)°*NB(As, 262Cys)©, with
A(g%s/2) as in Lemma IIL.6.1, such that z; # z; for i # j, y € B(z0,%s), ¥ €
B(zn,€%s) and for all 7 € {1,..., N}, there exists y; € B(z;_1,e%s) N B(z;,&2%s).
Note that with the help of (II1.6.2), we can choose N uniformly in s and y,y’ € V
(but still as a function of K). We then apply (II1.6.18) recursively on each of
the balls B(z;,e2s), i € {0,..., N}, to find

u(y) > ¢ Toly),

and (I11.6.11) follows. O
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We now recall some facts about soft local times from [68]. We continue
with the setup of (II1.6.10) and introduce the excursion process between B €
{A;, Ay, A1 U Ay} and V for the Markov chain Z. on G as follows. Let 6, : GY —
G" denote the canonical time shifts on GV, that is for all n, p € N and w € GV,
(0n(w))p = Wntp- The successive return times to B and V' are recursively defined
by Dy =0 and for all k£ > 1,

R, =Hgo QD,%I 4+ D1 D, =Hyo QRk + Ry, (111619)
where Hp is the first hitting of B by Z., cf. below (I11.2.4). Let N? = inf{k > 0:
Ry, = oo}, and note that N < oo a.s. since Z. is transient. For k € {1,..., NP —

-----

It takes values in Zp, the set of trajectories starting in 0B and either ending the
first time V' is hit or never visiting V. We add a cemetery point A to =g and,
with a slight abuse of notation, introduce a new point A’ in GG such that for any
random variable H € NU {0}, Zg = A’ if H = oo. For each z € 0B, let Zp(x)
be the set of trajectories in Zp \ {A} starting in x. Set Zg(A’) = {A} and for
all o € Zp, let 0¢ € V be the last point visited by o if ¢ is a finite trajectory of
Ep\ A, and 0¢ = A’ otherwise. Upon defining ¥, = A for & > NB, the sequence
(3k)k>1 can be viewed as a Markov process on Zp, called the excursion process
between B and V.

We now sample the Markov chain (¥j)g>1 using a Poisson point process as
described in Section 4 of [68]|. Let pup be the measure on =Zp given by

pp(S) = Pu(Sy € 8) +0a(S) (I11.6.20)

z€0B
for all S in the o-algebra generated by the canonical coordinates, where da
denotes a Dirac mass at A, and let pp : Zg X Zg — [0,00) be defined (see also

(5.18) of [68]) by

pp(o,0') = P,e(Hp = x) for all ¢ € Z5 and ¢’ € Zg(x), x € 0BU{A'},

(I11.6.21)

with the convention Pa/(Hp = A’) = 1. Let 1 be a Poisson random measure on

some probability space (€2, F,P) with intensity up ® A, where A is the Lebesgue

measure on [0,00). Let oy be a random variable on =g independent of 7 such

that

Plog=y) =ey(y) forally e V

(see (II1.3.9) for notation). Moreover, set I'y : =5 — R, with I'g(0) = 0 for all

o € Zg. We now define recursively the random variables &,,, 0, v, and I',,: for

all n > 1, (o, v,) is the P-a.s. unique point in =5 X [0, 00) such that

&n

def. inf v — anl(U)

111.6.22
(00) Pp(On-1,0) ( )



117 IT1.6. Proof of decoupling inequalities

is reached in (0,,v,), where the infimum is taken among all the possible pairs
(o,v) in supp(n) \ {(o1,v1), ..., (0n_1,vn_1)}, and define

(o) =Th_1(0) + &pp(on_,0) for all o € Zp. (I11.6.23)

Note that, for all n > 1 and (o,v) € supp(n), as follows from (III.6.22) and
(I11.6.23), P-a.s,

v<T,(0) = (0,v) € {(o1,v1),...,(On,vn)} (I11.6.24)

According to Proposition 4.3 in [68], (¢4, ),>1 has the same law under P as (X,,),,>1
under P, (recall the notation from (I11.2.3)). By definition, see (II1.6.21), for
all 0,0" € Ep, pp(0,0’) only depend on the last vertex visited by o and on the
first vertex visited by ¢’ and thus, on account of (I11.6.23), for all x € 0B U {A'}
and 0,0’ € Zp(z), I',(0) = I',(0'). In particular, we can define the soft local
time up to time T2 C inf {n; 0, = A} of the excursion process between B and

V by

FE(z) = Trs(0,) for all 2 € 0B U {A'}, (I11.6.25)
where o, is any trajectory in Zg(x). By definition, see (II1.6.23), we can also
write

TB
FB(r) = kapg(ak,l, o.), forallz e dBU{A'}. (I11.6.26)
k=1

Assume that (Q, F,P) is suitably enlarged as to carry a family F' = {FP; k =
1,2,...} of ii.d. random variables with the same law as FZ, and, for each
u > 0, a random variable ©) with law Poisson(u - cap(V')) independent of F.
The variables FkB, 1<k < @X correspond to the soft local times attached to
each of the trajectories in the support of w", the interlacement point process,
which visit the set V' (by (II1.6.10) these are the trajectories causing correlations
between Zﬁl,u and Zgw). For all u > 0 and x € 0B, we then set

GB(r) = Z FB(x), (I11.6.27)

which has the same law as the accumulated soft local time of the excursion
process between B and V' up to level u defined in (5.22) of [68] (note that
Section 5 in [68] can be adapted, mutatis mutandis, to any transient graph).
The proof of Proposition 5.3 in [68] then asserts that there exists a coupling
Q between three random interlacements processes w, w; and ws such that w; and
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wsy are independent and, for all u > 0 and € € (0, 1),

Q@ ), < @a, < @, i =1,2]
>1- S P (|62 @) - BGE@)] = SEGE @),

(v, B):( (1+e),A1), z€0B
(u(1+£e),A2),(u,A1UA2)

IN

(I11.6.28)

where (w"))4, is the point process consisting of the restriction to A; of the trajec-
tories in w* hitting A; and we write p < v if and only if v — i is a non-negative
measure. Adding independent Brownian excursions on the cable system G as in
the proof of Theorem I1.3.6, one then easily infers that (II11.6.28) can be extended
to the local times on the cable system, and thus, in the framework of (II1.6.10),
since A; = Av’{ and ﬁ; C Ay, that there exists a coupling Q such that

@[£Z (1- 5)<€xu§£$u1+a), .TGA“ 1=1 2]

>1- Y Y P([68@) —EGI@)]| = SEGE @)

(v,B)=(u(l+te),A1), =z€0B
(u(lie) ,Az),(u,Al UAQ)

(I11.6.29)

where (Z’mu)xeév (Z;u)axeé and (Zgu)xeé have the law under Q of local times of
random interlacements on the cable system é, cf. around (I11.2.18), with /1
independent from (2. The decoupling inequality (I11.2.21) will follow at once
from (I11.6.29), see the end of this section, once the following large deviation
inequality on the error term is shown. We continue with the setup leading to
(II1.6.10). Recall the multiplicative parameter K in (II1.6.9) controlling the
distance d(A%, A3).

Lemma II1.6.6. There exists Ko > 5V (2C5)? such that for allu > 0, € € (0,1)
and B € {Ay, Ay, Ay U A} as in (I11.6.10) with K > Ky and x € 0B,

P (|GE () — EIGE (2))| = SE[GE(@)]) < C(K) exp {—c(K)sus"}

In order to prove Lemma II1.6.6, cf. (II1.6.27), we need some estimates on
the law of FZ(x), which deals with one excursion process between B and V. Let
us define

NB_-1

™y, z) = Ey{ Z 5ZRM], forr e Bandy eV, (I11.6.30)

k=1
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the average number of times an excursion starts in x for the excursion process
beginning in y (here, d,, = 1 if z = y and 0 otherwise; recall N? from below
(I11.6.19)). It follows from (5.24) in [68| that

7B (z) < =Y ev(y)rly,a (111.6.31)

yeVv

The following estimates will be useful to prove Lemma III.6.6.

Lemma II1.6.7. For K > K, there ezist c156(K) > 0 and Cis(K) < 0o such
that, for all B € {A1, Ay, Ay U A} as in (111.6.10), all 2 € OB and v € (0, 00),

(i) E[FE(z)?] <4C5m8(x)?,
(it) P (Ff(z) > nP(z)v) < Cigexp{—ciev}.

Proof. We tacitly assume throughout the proof that K > ¢ so that Lemma I11.6.5
applies. Theorem 4.8 in [68] asserts that for all z € B

E [FP(2)?] < 47" (z) sup 7P (v, 2).
y'ev
The function 3’ — 78(y/, z) is L-harmonic on B¢, and (i) follows from (I11.6.31)
and Lemma II1.6.5. We now turn to the proof of (ii). Using (II1.6.26) and
(II1.6.21), we have for all x € OB and 2’ € 0B U {A'}, P-a.s.,

o Py(Zy, = 1)) —
= &Po;_ (Zyy =2a') > inf § 22282 Py (Zy, =
2 Skl s “—fév{mZHB:x)}; g =9
1 infyey Py(Zp, :x)

z), (111.6.32
- 015 IIlfy cv Py (ZHB = ) ( ) ( )

where we used the fact that y — P,(Zy, = z) is harmonic on B° and
Lemma II1.6.5 in the last inequality. Slight care is needed above if 0.5 | = A/,
in which case Pff;B,l(ZHB =21) > Pa;&l(ZHB =z) =0 for all z € 9B and
' € 0B U{A’} so that (II1.6.32) continues to hold. With (II.6.32), we obtain
for all z € 9B and v € (0, 0),

P (FlB(:r;) > 7TB<£L'>U)

1 infyey Py(Zy, = ')
I B y'ev Hp B
V' €e 0BU{A'}: FP(2') > o -y (ZHBZQT)W (x)v)

<r(
<P (Vx' €OBU{A}: FP(2') > — inf Py(Zu, — x')v) ,

15 Y'EV

(I11.6.33)
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since 78(x) > infy ey Py(Zy, = «) by (IIL6.30) and (IIL6.31). By (IIL6.24)
and (I11.6.25), if FB(z') > wu for some u > 0 and 2/ € OBU{A’}, then
for every 0 € Ep(2') and v € [0,u] such that (o,v") € supp(n), (o,v") €
{(o1,v1),...,(ors,vp8)}, and thus by (I111.6.33), for all x € 9B and v € (0, 00),

P (FP(x) > 7%(x))
sp{n( U {Es")} x [0 CL inf Py(Zm, =a')v ]) STB]

o/ €OBU{A'} vev
S ap + A,
where
a; =Pln U {Zp(2")} x [ 1 inf P, (Zn :x’)v] < 2
015 y'eV B - 20125 ’
@' €dBU{A’}
(I11.6.34)
v
as =P (TB > ) : (I11.6.35)
207,

We bound a; and ay separately. For all ' € 0BU{A'}, pup(Ep(2’)) = 1, see
(I11.6.20), so the parameter of the Poisson variable in (II1.6.34) is

1
a2 il B(Zu, =z o
15 conogan? < 15

by Lemma II1.6.5, and thus a; in (II1.6.34) is bounded by C(K) exp{—c(K)v}
by a standard concentration estimate for the Poisson distribution (recall that
Ci5 = C15(K)). We now seek an upper bound for ap. Assume for now that
B = Ay, whence {¥; = A} = {H4, = oo} Py-as. for all y € V, and thus T7(=
inf{n; ¥, = A}) is dominated by a geometric random variable with parameter
inf ey Py(Ha, = 00) = 1 —sup,ey Py(Ha, < o0). By (IIL.3.8) and (IIL.6.10), for
all y € V,

(Gp) —v
Py(Ha, < o0) = 3 gl w)ea (@) = Ca == Cs) cap(y)
e/ (I11.6.36)

(111.3.11)
< 2VCHCy K2,

for all y € V, where we used s > (2C3v/K) V (Kr) in the last inequality (this is
guaranteed, cf. around (I11.6.10)). By choosing K| large enough, we can ensure
that the last constant in (II1.6.36) is, say, at most 1/2 for all K > K, so that 7"
is dominated by a geometric random variable with positive parameter and then
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as in (I11.6.35) is bounded by C'(K) exp{—c(K)v}, for all K > 0 and v € (0, c0).
The proof is essentially the same if B = Ay or B = A; U Ajy; the only point that
requires slight care is that 72 > 2 on account of (IIL.6.10), and thus we use
instead that 72 — 1 is bounded by a suitable geometric random variable. O

With Lemma II1.6.7 at hand, we are now able to prove Lemma II1.6.6 using
arguments similar to those appearing in the proof of Theorem 2.1 in [68|.

Proof of Lemma I11.6.6. By (111.6.27), (II1.6.31) and Markov’s inequality, we
can write for all a > 0, x € OB and ¢ € (0, 1), recalling that ©) and the family
F" are independent,

P(GI(x) = (1+ D)E[GE ()
<E [(E[exp {aFP(z)} D@X] exp {—a(l + %)ucap(V)wB(x)}

< exp {ucap(V) (E[exp {aFP(z)}] —1—a(l+ %)TFB(ZL“)>} . (I11.6.37)

We now bound E[ exp {aF(z)} | for small enough a. If t € [0, 1], e" < 1+¢412,
so by (i) of Lemma II1.6.7, for K > Ky, x € 0B and a > 0,

E [exp {aFP(z)} H{Fls(x)gafl}] <1+ ar®?(z) + 4a*Ci577 (v)? (I11.6.38)

(recall for purposes to follow that C5 and also Cg, ¢16 all depend on K'). More-
over, by (ii) of Lemma IIL6.7, for all K > Ko, € 9B and a € (0, 53],

) 278 ()

o

B [exp (B (0)} Lsperoay| S [ BFP (@) > 0) dt + B(FP() > a7

a

o]
€16

S a'/TB(.T)C]_G/ e(awB(x)_clﬁ)t dt +ex Clﬁe_m

(amB (z))~1

__ce 2arB ()
< Cis(l+e)e 2e75@ < Ci(l +€) <—> ,
C16

(I111.6.39)

where we took advantage of the inequality e ™ < 9%2 for x > 0 in the last step.
Thus, combining (I11.6.37), (I11.6.38) and (I11.6.39) with the choice a = <<

w5 ()

for a small enough constant ¢(K') > 0, we have for all x € 9B and € € (0, 1) and
K > K07

P(GE(@) = (1+ 2)E[GE@)]) < exp {~ (K)ustcap(V)}

(I1.3.11)
< exp{—c"(K)ue’s"} .



Chapter III. Geometry of the sign clusters and random interlacements 122

In a similar way, one can bound P(G% (z) < (1—%)E[GF (x)]) from above. Indeed,
using instead that for all ¢ > 0, e < 1—t+#* and so by (i) of Lemma II1.6.7,
one obtains for a > 0, x € 0B and K > K,

E [exp {—aF(2)}] <1—an®(z) + 4a*Cy57" (2)*.
This completes the proof. ]

We can now conclude.

Proof of (111.2.21). Consider A; and A, as in the statement of Theorem II1.2.4
and set C; = Ky with K as appearing in Lemma III.6.6. This fits within
the framework described above (II1.6.10) with K = K, whence (I11.6.29) and
Lemma I11.6.6 apply. Thus, (III.2.21) follows upon using (V,), (II1.2.10) and
(II1.6.10) to bound |0B| for any B € {A;, Ay, A; U As}. O

I11.7 General renormalization scheme

We now set up the framework for the multi-scale analysis that will lead to the
proof of Theorems III.1.1 and I11.1.2 in Section II1.9. This will bring together
the coupling P from Section II1.5, see Corollary III1.5.3 and Remark II1.5.4,
2), and the decoupling inequalities of Theorem I11.2.4, which have been proved
in Section II1.6 and which will be used to propagate certain estimates from
one scale to the next, see Proposition II1.7.1 below, much in the spirit of [93]
and [95]. Crucially, this renormalization scheme will be applied to a carefully
chosen set of “good” local features indexed by points on the approximate lattice
A(Lg) (cf. Lemma II1.6.1) at the lowest scale Lg, see Definition II1.7.4, which
involve the fields (7., Z,u, BP) from the coupling Qur, see (II1.5.34). Importantly,
good regions will allow for good local control on the set C.° which is defining
for ¢., see (I11.5.20), and in particular of the 7.-sign clusters in the vicinity to
the interlacement, cf. (II1.5.19). This will for instance be key in obtaining the
desired ubiquity of the two infinite sign clusters in (I11.1.13), see also (I11.1.10)
and (IT1.1.11).

Following ideas of [93], improved in [95], [68] for random interlacements and
extended in [81], [67] to the Gaussian free field, we first introduce an adequate
renormalization scheme. As before, GG is any graph satisfying the assumptions
(I11.3.1). We introduce a triple £ = (Lo, [, ly) of parameters

— _1 -
Lo>Cs, 1>2 and Iy >8YY VO, V(8 +4C;) (I11.7.1)
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(cf. (I11.2.8) for the definition of Cj, before (I111.2.21) for C5, (I11.6.2) for Cy,
and recall v from (II1.1.6)), and define

L,=10Ly and A%=A(L,) forallne{0,1,2,...}. (I11.7.2)

Here, A(L), L > 1 is any henceforth fixed sequence of subsets of G as given
by Lemma II1.6.1. For any family B = {B, : * € A5} of events defined on
a common probability space, we introduce the events Gin(B) for all z € AL
recursively in n by setting

G5o(B) =B, for all z € Af, and
Gs.(B) = U Gin,l(B) NG5, (B) foralln>1andxc AL,

y/7n71
vy’ AL NB(x,lLy)
d(y,y')>Ln

(111.7.3)

We recall here that the distance d in (II1.7.3) and entering the definition of balls
is the one from (III.3.1) (consistent with the regularity assumptions (V,,) and
(Gs)) and thus in general not the graph distance, cf. Remark I11.3.4. Note that
since Ly > Cs and Iy > 21 > 4, see (II1.7.1), then by (II1.2.8), (II11.6.1) and
(I11.7.2) the union in (IIL.7.3) is not empty. For A any measurable subset of
G and B a measurable subset of C (Z, R), we say that B is increasing if for all
f € Band [ € C(K,R) with f < f’, f' € B, and B is decreasing if B€ is
increasing. For h € R and u > 0, we define the events

B%"={®;+heB} and B'™={l;, €B}, (IIL.7.4)

and we add the convention B'* = & for u < 0. If B is increasing then (I11.7.4)
implies that B&" ¢ B&" for h < k' and B'* ¢ B for u < /.

Proposition I11.7.1. For all graphs G satisfying (111.3.1), there exist c17 > 0
and Cy7 > 1 such that for all all Ly, | and ly as in (II1.7.1), alle > 0 and h € R
(resp. u > 0) with

(Vo Lo)" ue?(v/IoLo)"
—_ VI s > II1.7.
log(Lo+1) — Crr (resp log(Lo+1) — Cl?)’ (IL.7.5)

and all families B = {B, : ¥ € A5} such that the sets B,, x € A§, are either all
increasing or all decreasing measurable subsets of C(B(z,1Ly),R) satisfying

PC(BGh) < 17 (resp. P/(BL") < C”) forallz € A5, (IIL7.6)

< <
one has for alln € {0,1,2,...} and v € A%,

PC(GE, (B ) <272 (resp. P(GE,(BM0%9))) < 272"),  (LIL7.7)
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where the plus sign corresponds to the case where the sets B, are all decreasing
and the minus sign to the case where the sets B, are all increasing.

Proof. We give the proof for the Gaussian free field in the case of decreasing
events. The proof for increasing events and/or random interlacements is similar
and relies in the latter case on (II1.2.21) rather than (II1.2.20), which will be
used below. Thus, fix some ¢ > 0, h € R, [ and [y as in (IIL.7.1), and assume
B = {B, : © € A%} is such that B, is a decreasing subset of C(B(z,1Lo),R)
satisfying (I11.7.6), for all x € A§. The sequence (h,),>o is defined by ho = h
and for all n > 1, h, = h+ >, %+, whence h,, < h+ ¢ for all n.

We now argue that there exists a constant C'7 such that, if the first inequality
in (II1.7.5) holds, then for all n € {0,1,2,...},

—on

(Gz,n( )) — 20%4[306

with a as in (V,) and Cy4 defined by (II11.6.2). It is then clear that (II1.7.7)
1

follows from (II1.7.8) since Iy > C,** and the sets B,, © € A5, are decreasing.
We prove (II1.7.8) by induction on n: for n = 0, (II11.7.8) is just (III.7.6) upon
choosing

for all x € A%, (I11.7.8)

crr E L
4C%,
Assume that (II1.7.8) holds at level n — 1 for some n > 1. Note that by (II1.7.3),
(IL.7.1), for all i > 0 and x € A5_,, GE,_(B%"") € 0 (®y, € B(x,21L, 1)).
Let r, = 2lL,_;. Then, for all # € A% and y,y’ € A, N B(x,IL,) such that
d(y,y') > L, (as appearing in the union in (II1.7.3)),

_ , _ (I11.7.1) lO (I11.7.1) def.
an 2 d(B(yv Tn)a B(y 7Tn)) 2 (lo - 41) Ln—l Z ELn—l Z C’?/rn = Sn.

Using (I11.6.2), (I11.7.3), (I11.7.2), a union bound and the decoupling inequality
(II1.2.20), we get

PY(G5, (B™))
2

~ 2
< (C’MZSO‘)Q {( sup P¢ (Gin—l(BGthil))> + Cs Ly, exp ( — cﬁ%sql;)] :
Y

where the supremum is over all y € A2 | N B(x,1L,). Then (II1.7.8) follows by
the induction hypothesis upon choosing C7 large enough such that for all I and
lp as in (II1.7.1), € € (0,1) and Ly > 1 such that the first inequality in (II1.7.5)
holds, as well as all n > 1,

2 9—2"

n)x fe% 6 14
060122‘[(()5+ ) L exp ( — CG%%) < 102 Ao
14b0
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which is possible since £2s¥ > £2(Loly/2)" > Ci7log(Lo + 1)(VIpla ! /2)" and
I8 > 8. O

Remark 111.7.2. 1) (Existence of a subcritical regime) As a first consequence of
the scheme put forth in (II1.7.1)—(I11.7.4) and noteworthily under the mere
assumptions (I11.3.1), Proposition II1.7.1 can be readily applied to a suitable
family of events B = {B, : © € A§} and of parameters £ in (I11.7.1) to
obtain (stretched) exponential controls on the connectivity function above
large levels. This complements results in [95]. The argument is classical, see
e.g. [95], so we collect this result and simply sketch its proof. Let

ho. L inf {h € R; liminf sup P¢ (B(z, L) £=5 B(x,2L)) = 0}, (IIL7.9)

where the event under the probability refers to the existence of a nearest
neighbor path of vertices from the ball B(z, L) to the boundary of the ball
OB(z,2L) in E=". The parameter u,, is defined similarly, but with the in-
fimum ranging over v > 0 in (II1.7.9) and the probability under considera-

tion replaced by P!(B(z, L) & OB(x,2L)). By definition, h, < h,. and
Us < Uy, cf. (I11.1.8) and (I11.1.16).

Corollary 111.7.3. For G satisfying (I111.3.1), there ezists c13 > 0 such that

. . G Ezh
h.. = inf {h € R; hj{nlnfsup]P’ (B(z,L) $— 0B(z,2L)) < c15} < 00

—0 ze@
(I11.7.10)
and

Uy = Inf {u > 0; lim inf sup]P’I(B(x,L) PN (9B(a:,2L)) < 018} < 00.

L—ooo gzei
(IT1.7.11)
Moreover, for all h > h,, and u > ., there exist constants ¢ > 0 and C' < oo
depending on u and h such that for allx € G and L > 1,

P (z & OB(z,L)) < Ce™ and P! (z & dB(z,L)) < Ce ™.
(II1.7.12)

We now outline the proof, and focus on (II1.7.11). One chooses [ = 4 and
lp =8Y"v C’;li V (8 +4C)l in (II1.7.1), takes ¢ = 1 and fixes some Lg large
enough so that the second condition in (II1.7.5) holds for all w > 1. It is then
clear from (V,,), (Gs) and (I11.2.10) that one can find u > 1 large enough such
that P/ (B(z,2Lo) < 0B(2,4L0)) < X, cpary € 9 < cis = ciqlg ™,
for all € G, and where we used (II1.3.10) and a union bound to infer the
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first inequality. Having fixed such w, one first shows that u,, < 2u and hence
Uy 1s finite as asserted by applying Proposition II1.7.1 as follows: for z € G,
one considers

{z€G; f(=

B, = {f € C(B(z,4L),R) : B(x,2Lo) ““Y<" 0B(2, 4Ly)},

which are decreasing measurable subsets of C(B(x,4Ly),R), and one proves
by induction over n with the help of (III.6.1) that for all n € {0,1,2,...}
and z € G,

Vu(l-&-s)

({0 +—

Vu(1+£)

0B(z,4L,)} C ) {B(z,2L,) +— 0B(x,4L,)} C GE, (B""1+e))

(II1.7.13)
(for now € = 1 but this is true for any £,u > 0). By these choices, Propo-
sition IILI.7.1 applies, yielding for all n > 0 that P! (Gin(Bm“)) <277 <L

C exp{—L¢}, and in particular, lim,, P’ (B(z,2L,) & 0B(z,4L,)}) =0, as
desired.

To prove the equality in (II1.7.11), one repeats the above argument but with

different choices of u, Ly and €. Namely, one considers any u > 0 for which
lim inf sup P! (B(z, 2Lo) < 9B(x,4Lg)) < 1. (111.7.14)
L()—)OO re@G

It suffices to show that u(1 + &) > w,s, for then by letting ¢ | 0, it follows

that w,, is smaller or equal than the infimum in (I11.7.11), and the reverse

inequality is obvious, as follows from (II1.7.9). With u and ¢ fixed, one selects

Ly > 1 large enough so as to ensure (II1.7.5), and such that the probabilities

in (II1.7.14) are smaller than ¢;5. Proposition II1.7.1 then implies as explained
Vu(1+e)

above that lim, P! (B(z,2L,) " 0B(z,4L,)}) = 0 and L — P! (z %—s
0B(z, L)) has stretched exponential decay in L for all x € G, thus yielding
that u(1+ €) > u,, and the interlacement part of (II1.7.12) as a by-product.
The proof of (I11.7.10) and the free field part of (II1.7.12) follow similar lines.
U

(Existence of a supercritical regime for v > 1) Another simple consequence
of Proposition 7.1 is that if G is a graph satisfying (I11.3.1) with v > 1 which
contains a subgraph isomorphic to N2, then, identifying with a slight abuse
of notation this subgraph with N2, there exists v > 0 such that P’-a.s.,

V* N N? contains an infinite connected component, (IT1.7.15)

and in particular u, > 0. In the proof of Theorem III.1.2, we only show that
under the same assumptions there exists v > 0 and L > 0 such that V* N



127 II1.7. General renormalization scheme

B(N?, L) contains an infinite connected component, see Theorem I11.9.3 and
Remark I11.9.4, 5). Thus, (II1.7.15) provides us with a stronger, and easier
to prove, result for random interlacements. Examples of graphs for which we
can prove (I11.7.15) are product graphs G = G x G5 as in Proposition I11.3.5
with v = a — 8 > 1 since if P; and P, are two semi-infinite geodesics of GGy
and G, which exist by Theorem 3.1 in [109], then P, x P, is a subgraph of
G isomorphic to N2, Also, finitely generated Cayley graphs verifying (V,,) for
some « > 3 which are not almost isomorphic to Z, see Theorem 7.18 in [61],
are covered by this setting.

Let us now sketch the proof of (II1.7.15). Using the result from Exercise 1.16
in [27], which is given for Z¢ but immediately transfers to our setting, we
have for all positive integer L, M and N, since v > 1,

L+1
cap([M, M + L] x {N}) < -
nfrenr vt ZZJYS\; 9((k,N), (p,N))
(Gp)
< Lyl ccn

T GG

Here, we used that d((k,N), (p,N)) < Csdg((k,N),(p,N)) < Cs|k — p| in
the second inequality, see (II1.2.8), and we also have a similar bound on
the capacity of {M} x [N, N + L]. For all positive integer L and all z €
{L+1,L+2,...}2 we write S(x,L) = v + N> N d2[—L, L]?, where Oy2 A is
the boundary of A as a subset of N?, and we thus get by a union bound

cap (S(z, L)) < CL. (II1.7.16)

Fix | = 4 and Iy = 8"/Y v C},> V (8 +4C7)l in (IIL.7.1), take ¢ = 1/2, and
let Cig be such that for all v > 0 and Ly > (5 with ulLy < Cig, and all
ve{d4lo+1,4Lo+2,...}?%,

gu (11L.7.16)
P! (8(m,2L0) Al 8(x,4L0)) < 1—exp{—2CuLy} < %
0

where A <% C means that there exists a x-path in B C N2, as defined above
Proposition I11.3.7, beginning in A and ending in C. Since ¥ > 1 one can
find Ly large enough so that (II1.7.5) hold when u = CjgL;", and, applying
Proposition II1.7.1 and using a property similar to (II1.7.13) for *-paths of
%, we get that L — sup, P!(x LI g (x,L)) has stretched exponential
decay, with the supremum ranging over all z € {L+1,L+2,...}2. If Vy*nN
N? has no infinite connected component, then for any positive integer L
the sphere dy2[0, L)? is not connected to oo in V* N N2 Thus, by planar



Chapter III. Geometry of the sign clusters and random interlacements 128

duality, see for instance Proposition II1.3.7, there exists L' > L — 1 and
re{L +1,L +2} x {L' + 1} which is connected to S(x, L’) by a *-path in
7" N N2, which happens with probability 0.

In order to prove u, > 0 for v = 1 by the same method, one would need to
remove the polynomial term (r, +s,)® in the decoupling inequality (111.2.21),
and it seems plausible that one could do that for a large class of graphs
(including Z?), using arguments similar to [23] or [102]. This is proved in the
case G = G’ x Z in [95]. However, this method does not seem to work in the
case v < 1. A (simpler) proof of u, > 0 is given for G = Z% in |72] without
using decoupling inequalities, but it seems that one cannot adapt simply its
proof to more general graphs if v < 1. Therefore, the result u, > 0 from
Theorem II1.1.2 is particularly interesting when v < 1. U

We now introduce the families of events of the form (II1.7.4) to which Propo-
sition II1.7.1 will eventually be applied. The reason for the following choices will
become apparent in the next section. The strategy developed in Chapter II to
prove h, > 0 on Z%, d > 3, serves as a starting point in the current setting, but
the desired ubiquity result (II1.1.13) requires a considerably finer analysis, which
is more involved, see also Remark II1.7.5 below. All our events will be defined
under the probability Q%P from (IT1.5.34), under which the Gaussian free field
&. on G is defined in terms of (3., £.,,) by means of (II1.5.20).

We now come to the central definition of good vertices. As usual, we denote

by (gx,u)xEG = (gx,u)z€G> I =1I"NG, v = (Ya)eee and ¢ = (Pz)zec the
projections of ¢, Z" % and @ on the graph G. For all u > 0, these fields have
the same law as the occupation time field of random interlacements at level
u, a random interlacement set at level u and two Gaussian free fields on G,
respectively. We recall the definition of the constants Cg from (I111.3.4), C5 from
(II1.2.8), and ¢;3 from Proposition I11.4.7, the definition of Bl from (I11.5.34),
the definition of Z" from above (II1.4.2), and that C*(xz, L) is the set of vertices

in G connected to x by a path of edges in f“ﬂBE(x, L), see below Lemma I11.4.3.

Definition I11.7.4 (Good vertex). For v > 0, Lo > 1, K > 0, p € (0,1),
r € (G, the event

(i) CLoK occurs if and only if 5, > —K/2 for all z € G such that z €
B(SL’, BClo(Lo + 03) + 2L0 + 03),
(ii) DEov occurs if and only if Z%/* N B(z, Lo) # 2,
(iii) DEo oceurs if and only if cap(C**(y,2(Lo+C5))) > Clg(Lo‘i‘Cg)%(%)m_u
for all y € T%* N B(z, Ly + Cs),
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(iv) D,”" occurs if and only if

ﬂ {y <% o in ZN Bp(x,3C1o(Lo+Cs)) },
y,y' €T/ 2NB(x,Lo+C3);
cap (C”/Q(yQ(Lo-i-Ca))) >e13(Lo+C3)3/4(u/8)ly =11,
cap (CH/2(yf 2(Lo+Cs)) ) Zexs (Lo+Cs)™ /4 (u/8) 1)
(I11.7.17)

(v) ELov occurs if and only if every component of {y € G; ¢, > —v2u} N
B(x, Ly/2) with diameter at least L /4 is connected to Z%* in {y € G; ¢, >

—V2u} N B(z, L),
(vi) FloP occurs if and only if BY =1 for all y € B(x,3C1o(Lo + Cs) + 2Lo).
Moreover, a vertex x € G is said to be (Lg, u, K, p)-good if the event
CLoK  pLown Plow q DL o plow y plow (I11.7.18)
occurs, and (Lo, u, K, p)-bad otherwise.

Remark 111.7.5. The above definition of good vertices differs in a number of
ways from a corresponding notion introduced in Chapter II (cf. Definition 11.4.2
therein) by the authors. This is due to the refined understanding of the iso-
morphism (II1.5.2) stemming from (II1.5.19) and (III.5.20). Notably, property
(i) above is new in dealing directly with 7. (rather than ¢.). Observe that (v)
involves both the field ¢ and the random interlacements set Zv simultaneously,
coupled as in (I11.5.20). It will lead to a direct proof of the inequality h > 0, see
Corollary II1.8.8, without using our sign-flipping method, Proposition III.5.6.
Properties (ii), (iii) and (iv) can be viewed as a more transparent substitute for
the events involved in Lemma I1.3.3 and Definition I1.3.4 (see also (4.1) in [74]),
and have the advantage of preserving the local uniqueness of interlacements, at
the cost of introducing a sprinkling between u/4 and u. It would be possible
to find sharp estimates on the ‘size’ of the interlacement in a ball similar to
Lemma I1.3.3 on the class of graphs considered here, but such bounds are in fact
unnecessary once we have Lemma II1.4.3 and Proposition I11.4.7. U

We conclude this section by collecting the following result, which will be
crucially used in the next section. It sheds some light on why good vertices may
be useful.

Lemma II1.7.6. For allu >0, Ly > 1, K >0, p € (0,1) and any connected
set A C G such that each x € A is an (Lo, u, K,p)-good vertex, there exists a
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connected set A such that

@ # T N B(x,Lo) C A for allx € A, A C T" N B(A,3C10(Lo + Cy)),
(I11.7.19)

as well as

for all x € A, AN B(x, Ly) # @ and every connected component
of {y € G; ¢, > —v2u} N B(x, Ly/2) with diameter at least (IT1.7.20)
Lo/4 is connected to A in {y € G; ¢, > —v2u} N B(z, Lo).

and

3. > —K/2 for all z € B(A, 2Ly + C3) and B, = 1 for ally € B(ANG,2Ly).
(111.7.21)

Proof. For all x; ~ xs € A, by (ii) of Definition II1.7.4, there exists y; €
Z%* N B(x;, Ly) for each i. By (I11.2.8), d(z1,1) < Lo + Cs and by (iii) of
Definition 1I1.7.4 cap(C"?(y;, Lo + C3)) > c13(Lo + C3)*/*(u/8)1"~ for each
i € {1,2}. Therefore, by (II1.7.17), 1 AN Yo in f“ﬂBE(xl, 3C10(Lo+C3)), and
since each edge traversed by a trajectory of the random interlacement process
is included in Z%, we also have that y; < v, in Z% N B(z1, 3C10(Lo + C3)). We
now define A as the union of the connected paths in 7% N B(x,3C10(Lo + C3))
between y and ¢’ for all z € A and y,y' € B(x, Ly + C3) N Z%*, which is thus
connected and it is clear that (II11.7.19) holds.

For all z € A, we clearly have AN B(z, Ly) # @ by (II1.7.19). Moreover,
we have by (v) of Definition II1.7.4 that every connected component of {y €
G; o, > —V2u} N B(x, Ly/2) with diameter at least Ly/2 is connected to Z%4
in {y € G; p, > —v2u} N B(x, Ly), and thus is also connected to A in {y €
G; ¢, > —/2u} N B(x, Ly), and we obtain (I11.7.20). One infers from (i) and
(vi) of Definition II1.7.4 that (II1.7.21) also hold. O

II1.8 Construction of a giant cluster

We are now going to use the general renormalization scheme from Proposi-
tion II1.7.1 to find a giant, or ubiquitous, cluster of (L, u, K, p)-good vertices,
as defined in Definition II1.7.4, or of 7" with suitable properties. This comes in
several steps. The first one is reached in Proposition I11.8.3 below and yields
under the mere assumptions (I11.3.1) that long good (R-)paths, cf. Definition
I11.7.4, are very likely for suitable choices of the parameters. The second step is
to prove the existence of a suitable infinite cluster A of 7% and is presented in
Lemma II1.8.4, and the third step is to prove that this cluster is ubiquitous, see
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Lemma II1.8.7. This giant cluster A of I* verifies (II1.7.21) and is the neighbor-
hood of a cluster A of good vertices, for which (I11.7.20) hold. It can be seen as
precursor of the giant cluster of £2", h > 0, that we will construct in Section
I11.9, which will lead to (III.1.10) and (III.1.11) (for small ~ > 0). In a sense,
the resulting estimates (I11.8.15) and (I11.8.23) provide a rough translation of
the events appearing in (II1.1.10) and (III.1.11) to the world of interlacements,
and deliver directly (I11.1.10) and (III.1.11) for any h < 0, see Corollary II1.8.8.
Apart from the quantitative bounds leading to Proposition II1.8.3, these two
estimates crucially rely on the additional geometric information provided by
(WSI), on all aspects of Definition II1.7.4 and on certain features of the renor-
malization scheme, in particular with regards to the desired ubiquity, gathered
in Lemma II1.8.6 below.

We continue in the framework of the previous section and recall in partic-
ular the scheme (I11.7.1)~(I11.7.3), the measure Q*? from (II1.5.34) and Defi-
nition II1.7.4. We also keep our standing (but often implicit) assumption that
G satisfies (I11.3.1) and mention any other condition, such as (WSI), explicitly.
Henceforth, we set

| = 22¢19Ch0, o =8V vV O 2 V(84 4CK), (I11.8.1)

where

cro & 7(1 4 7c; ') if G satisfies (WSI) and ¢y 7 otherwise. (I11.8.2)

Note that [ and [, satisfy the conditions appearing in (II11.7.1). For all Ly > Cs,
we write Lo = (Lg,l,lp) rather than £ to insist on the choice (II1.8.1). Thus
Lo > C5 remains a free parameter at this point. We now define bad vertices at
all scales Ly, n > 0, cf. (II1.7.2). For all Ly > Cs, 2 € A(Lg) = A5°, u > 0,
K >0 and p € (0,1), we introduce

ClLok — N CloK, (I11.8.3)

yGB({L',QOClgCloLo)

and similarly Do, f)go’“, Eio’u ELov and FLo? by replacing CyLO’K with the
relevant events D)o, ELo* and F'o? in Definition II1.7.4, (ii)-(iv). The families
(CHI)e = {(CE) 5 7 € A} and (DA, (DEo))e, (D")* (B0) and

T

(FLoP)c are defined correspondingly. For n > 0 and x € A% (cf. (II1.7.2)), we
then say that the vertex x is n — (Lo, u, K,p) bad if (recall (II1.7.3))

GE, ((C1)1) U GE5 (D)%) U G, (B0

UGiDn((ELO’u)C) U Gﬁ,on((E )c) U Gﬁo ( c) (11184)
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occurs (under Q%?), and x is n— (Lo, u, K, p) good otherwise. In view of (I11.7.18)
and the first line of (IIL.7.3), an (Lo, u, K, p)-bad vertex in A5 is always a
0 — (Lo, u, K, p) bad vertex, but not vice versa. A key to Proposition I11.8.3, see
(II1.8.14) below, is to prove that the probability of having an n — (Lo, u, K, p)
bad vertex decays rapidly in n for a suitable range of parameters (Lo, u, K, p).
This relies on individual bounds for each of the events in (II1.8.4), which are the
objects of Lemmas I11.8.1 and I11.8.2 as well as (I11.8.10) below. Due to the pres-
ence of long-range correlations, the decoupling estimates from Proposition I11.7.1
will be crucially needed.

Lemma III.8.1. There exist constants C1g < oo and Ciy < oo such that for

all Ly > Chg, K > Cg4/log(Lo), n € {0,1,2,...} and z € A%, and all u > 0,
p€(0,1),
@u,p(Gigl((CLo,K)C)) < 272" (I11.8.5)

Proof. In view of (I11.8.3), Definition 111.7.4 (i), and (IIL.8.1), if Ly > Cj, the
event (CLoK)¢ is measurable with respect to the o-algebra generated by 5‘ BlaiLo)
and (CLoX)e is of the forni {3V Beiry T K € By}, cf. (IIL7.4), for a suitable
decreasing subset B, of C(B(z,[Ly),R). With this observation, and since 7 has
the same law under Q*? as ® under P¢, in order to show (I11.8.5), it is enough
by Proposition II1.7.1 to prove that there exists C}, such that

for all Ly > Chg, K > Clor/log(Lo) — 1 and z € AL : QU ((CLoK)e) < T

I’

(IIL.8.6)
where Cg > C3V 2 is chosen so that the first inequality in (II1.7.5) holds for all
Ly > Chy, with [y as in (IIL.8.1) and € = 1. Conditionally on the field v = ¥|¢,
and for each edge e = {y,y'}, the process (§y+t6)te[o7py 1 on I has the same
law as a Brownian bridge of length p, ,» = 1/(2),,) (thé length of I, cf. below
(II1.2.14)) between ~, and v, of a Brownian motion with variance 2 at time 1,
as defined in Section I1.2. This fact has already appeared in the literature, see
Section 2 of [57], Section 1 of [60] or Section 2 of [58] for example. We refer to
Section I1.2 for a proof of this result when G = Z¢, which can be easily adapted
to a general graph satisfying (I11.3.1). Let us denote by (Wty’y,)te[ww,] defined
as WPV = Vyte — 2Ay 7y — (1 — 2X, 4 t)7, the Brownian bridge of length p,
between 0 and 0 of a Brownian motion with variance 2 at time 1 associated with
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(;\Y/y+t6)t€[0,py’y/]' For all L > 1, K > 0 and x € G, we thus have

~ K
e s 72 )

2€B(z,L) 2
~ K ~ K
<o wrE) e T @ e s ),
yeB(x,L) 4 (e Bu(al) tel0,, /] 4
(I11.8.7)

We consider both terms in (II1.8.7) separately For all y € B(z,L), v, is a
centered Gaussian variable with variance ¢(y, y), thus by (V,) and (Gp)

2

~ g( y y
o 252 ¥ o ey
yeB(x,L) Y Z 329 Y, y)
CLC“
< e exp{—cKQ}.

The law of the maximum of a Brownian bridge is well-known, see for instance
[13], Chapter V.26, and so for all y ~ ¢ in G, by (II1.2.10),

K2

16py,

~ . K
Q“’p< sup WY > Z) = exp{ —

t€[0,py /]

} < exp{—cK?},

where to obtain the inequality we took advantage of the fact that ﬁ =2\, y >
¢, cf. (II1.2.10). Therefore, returning to (I11.8.7), using (V,), (III.y?%lO) and the
fact that G has uniformly bounded degree, we obtain that for all L > 1 and
K > 1, @“’p(supzeé(%m 3. > K) < OL*exp{—cK?}. Choosing L = [Ly and
using the symmetry of 7., we can finally bound for all Ly > Cjg and K > 1,

~ ~ K
Qe ((ClF)) Qe swp 5.z ) < OLjexp{—ck?},

z€B(z,lLo)
from which (II1.8.6) readily follows for a suitable choice of C'4. O

The next lemma deals with the events involving the families DEo, DEowu,
Lo,u

D,
In the former case, this will bring into play the connectivity estimates from

and ELo- in (I11.8.4), which all involve the interlacement parameter u > 0.

Section II1.4 in order to initiate the decoupling.

Lemma II1.8.2. For all ug > 0, there exist constants cog and Coyy depending on
Uo such that fOT all u € (O,Uo), L() > Cg with LoUCQO > CQQ, n c {O, 1,2, . },
x € A and p € (0,1),

@U,P(Gf,%(<DL0,u)c)> < 2_2"7 @u,p(Gf’%((ﬁLo,uy)) < 2_2n7

Fwp (1o ((TyLon g e © . (188)
Q7 (GE,(D77))) <27 and Q7 (G, (BF)7)) <277
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Proof. We start with the estimate involving the family (DZo*)c. By (II1.3.10)
and (I11.3.11) we have

Q" (D)) < exp(—eni(u/8)L)

By (II1.8.3) and a union bound, this readily implies that both (II1.7.5), for [,
as in (II[.8.1) and € = 1, and @“’p((Dﬁo’uﬂ)c) < c17ly* hold for all u € (0, u)
and Ly > C3V Cu~° (and all z € Aoﬁo). For all Ly > Cs, v > 0 and z € G
the events (DLo*)¢ are measurable with respect to the o-algebra generated by
1 BlalLo)u and decreasing in u. Therefore, Proposition II1.7.1 with ¢ = 1 applies
and (II1.7.7) yields the first part of (II1.8.8).

Let us now turn to the events (f)LO’“)C. For all Ly > 0, v > u/8 and z € G,
we say that the event Bﬁo’”’“ occurs if and only if cap(C“/4+”(y, 2(Lo+ C3))) >
c13( Lo+ C5)3/4 (/)= for all y € Z%* N B(x, Lo + C3), and we define DEov
similarly as in (IT1.8.3), replacing C*" by 13507”7“. Consider a fixed value of
ug > 0. Note that the law of Z%/4+ \ Z7%/* conditionally on Z*/4 is the same as
the law of Z%. By (I11.2.8) the set C*/4(y, Lo + C3) has diameter at least Ly for
all y € Z%*, and thus by (I11.3.10) and (III.3.14), we have for all v > u/8 and
y € I%* N B(x, Ly + C3)

Moreover, if on the other hand (Z%/4+v \ Tw/4) 0 C/4(y, Ly + C3) # @ for some
y € T%* N B(x, Ly + C3), then C¥*+V(y, 2(Ly+Cs)) contains the cluster of edges
in B(y', Lo + C3) traversed by at least one of the trajectories of Tu/4+v \f“/“
for some 3/ € (Z%/4v\ Z%*) N B(x,2(Lo + C3)). By Proposition I11.4.7 applied
to Z/4tv \ Z%/4, (V,) and a union bound, we thus have for all u < wuy and
v € [u/8, uo)

@u,p <(ﬁ£0,v,u)c

I%*) < Clun) (Lo + Ca)* (exp (= clun)u(Lo + Co))

+ exp ( — cuLéAl)).

Moreover, conditionally on Zu/ 4 the events (IA)J%O’”’“)C are decreasing in v, i.e.,
there exists a decreasing subset B, of C(B(x,1Ly),R) (depending on Ly and
7v/4) such that (Do) has the same law as BL* for all u > 0 and v > u/8,
see (IT1.7.4). By a union bound, we have that @“’p((ﬁio’“/&“)c) < cy7lg ™ and
the second part of (II1.7.5) with [y as in (II1.8.1) and £ = 1 simultaneously hold
for all u € (0,ug), and Ly > C3 V C(ug)u="0), and by another application of
Proposition II1.7.1 with € = 1 we obtain that for all u € (0, uy)

QU7 (G (Do) | Z) < 272
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Since DEow/4u — DLo e obtain directly the second part of (II1.8.8) by inte-
grating over 7v.

We now consider the events (5L0’u)°. Forall Ly > 0,u>0,v>0and x € G,
we say that the event Eﬁo’v’u occurs if and only if

ﬂ {y Ly y' in f“/QJ”’DBE(x, 3010(L0+C'3))},
yy €T/ 2NB(z,Lo+C3);
cap (C"/2(y72(L0+C3))) >c13(Lo+C3)%/* (u/8)17 1),
cap (C¥/2(y/ 2(Lo+C3)) ) Zera(Lo+Cs)>/4(u/8) =1

where C%?2(z, Ly) is defined below Lemma I11.4.3, and we define ﬁio’v’u simi-
larly as in (IIL.8.3), replacing C** by DL0 " Note that C*/2(y,2(Ly + C5)) C
B(z,3(Lo+ C3)) for all y € B(x Lo+ C’g) By (V4), Lemma II1.4.3 and a union
bound, we have for all u € (0,uq), v € [u/4,u/2], x € G and L > Cj,

Qup <( Lo vu) |Iu/2) < C(LO + C3)a exp ( _ CUQL’Y*1J+1(LO + 03)11/2>.

Conditionally on 7v/ 2 the events (ﬁio’v’u)c are decreasing in v, and similarly as
before we can apply Proposition I11.7.1 with € = 1 to obtain the third bound of
(I11.8.8) for all u € (u,up) and Ly > Cs V C(ug)u~*™) since ﬁﬁo’uﬂ = DL0 u

Regarding (EXo#)e, under Q*2, note that by (II1.5.20), the clusters of {y €
G; p, > —V/2u} are the same as the clusters of {y € G;y € C® or v, > 0}.
Therefore if the cluster U, of v in {y € G; p, > —v/2u}NB(x, Ly/2) has diameter
at least Ly/4 and is not connected to Z%* in {y € G; ¢, > —v/2u} N B(z, L),
then either U, is a cluster of {y € G;y € C3°\Cxy, or v, > 0} N B(x, Lo/2)
of diameter at least Ly/4, or U, contains a vertex y in C9 74 1 B(z, Ly/2) not
connected to Z%* in {y € G; ¢, > —V2u} N B(x, Ly), and then by (IIL.5.19)
and (I11.5.20), y is in a connected component of {z € G: |7.| > 0} N B(x, Lo) of
diameter > L /4 not intersecting Z%/*. Therefore, defining the event

all the connected components of
{ye G;yecCr \Cu/4 or v, > 0} N B(x, Lo/2)
or of {z € G; [3.| > 0} N B(x, Ly)
with diameter > Lg/4 intersect Z"

Lowv,u __
Ea; 1 —

for all v < u/4, we have ELove C ELov by Definition 111.7.4 (v). We also

Lo, v, o33 : : Lo,u Lo,v,u T3u/4 _
(ieﬁneN E 0" similarly as 1nN(HI.8.3), replacing C,*" by Ejo%%. Let I, " =
T\ I%*, then C \ Coja i 13“/ * measurable. Moreover 7 is independent from
the random interlacement set 7%, see (I11.5.34), Zo"/*

T%*, and there are at most 2|B (x, Ly)| connected components of either ({y €
CoNC U{y € Gy vy > 0}) N B(x, Lo/2) or {z € G; [7:| > 0} N B(z, Lo) with

is also independent from
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diameter at least %. Thus, by (V,), Lemma I11.3.2, and (IIL.3.10), @“71’—&5., for
all u> 0, v € [u/8,u/4] and p € (0, 1),

@u,p ((Ealczo,v,u)c

%,fﬁ“/‘*) <2C,L§exp{ — cuLéM}. (II1.8.9)

The fourth bound in (II1.8.8) is then obtained by virtue of another applica-
tion of Proposition I11.7.1 under the conditional measure QU#(- |'7V,I§’u/ %), using
(I11.8.9) and a union bound to deduce that QP((EL” /8, )07, ISUM) < cprlg
the second part of (II1.7.5) with /[y as in (II1.8.1) and € = 1 simultaneously holds
true whenever Lou® > C’. Noting that, for all v < w/4, conditionally on 7
and Zo"/* (ELovu)e is a decreasing a(zB(ijo)w)—measurable event in v, Propo-
sition I11.7.1 yields an upper bound similar to (II1.8.8) but for G, ((Ez™ u/hye )

under QU (- W,Igu/ *). The desired bound (II1.8.8) then follows by integrating
over 5 and Z5"/* since G20 ((Bfom)e) € GEo (B ELo/4)e ). O

Finally for the events involving the family (FZoP)¢ in (II1.8.4), by a similar
reasoning as in Lemma 4.7 of [74] and using (V,,), there exists a constant Cyy
such that for all p € (0,1) such that p > exp{—C2L;"}, all u > 0, n > 0 and
T € Ao,

QP (G0 ((Flor)e)) < 272", (I11.8.10)

For all ug > 0 and R > 1 we define
LQ(U) =RV 03 V 019 vV 020u_620, (111811)

where we keep the dependence of various constants and of Lo(u) on up and R im-
plicit. Furthermore, we choose constants Coy and ¢y such that /log(Cagu=c22) >
Co\/log(loLo(w)) for all u G (0,up), and constants Cy3 and ce3 such that 1 —
Cozucs > exp{ 021 (loLo(u O‘} for all u € (0, up), which can both be achieved
on account of (II1.8.11). Then, by (III.8.4), Lemmas II1.8.1 and II1.8.2 and
(II1.8.10), for all n € N and u € (0, uy)

Lo € [Lo(u), loLo(w)], N

K > y/log(Cou=c22) imply Q"“P(x is n— (Lo, u, K, p) bad) < 6x27%".

and p > 1 — Cyzu

(II1.8.12)

Relying on (I11.8.12), we now deduce a strong bound on the probability to see
long R-paths of (L, u, K, p)-bad vertices (see above (WSI) for a definition of
R-paths). We emphasize that the following result holds for all graphs satisfying
(III.3.1). In particular, (WSI) is not required for (I11.8.13) below to hold.
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Proposition II1.8.3. For G satisfying (111.3.1) and each uy > 0, there exist
constants c(ug), C(ug) € (0,00) such that for all R > 1, x € G, u € (0,uy),
K > 0 with K > \/log(Cau=2), p € (0,1) with p > 1 — Co3u®®, and N > 0,

there exists an R-path of (Lo, u, K, p)

Q _ e(uo)
Q < -bad vertices from x to B(x, N)* ) < C(uo)exp{ (N/Lo(u)) }

(111.8.13)

Proof. We will show by induction that for all n € {0,1,2,...}, Ly > RV Cj,
and z € A%,

there exists an R-path of (L, u, K, p)-bad .
{ vertices from B(z, L,) to B(x,lL,)° } C {zis n = (Lo,u, K, p) bad}.
(I11.8.14)
If (II1.8.14) holds, then Proposition I11.8.3 directly follows from (II1.8.11) and
(I11.8.12) by taking n € N and Lg € [Lo(u), loLo(u)) such that [[7 Ly = N. Let us
fix some Ly > RV C3. For n = 0, if there exists a bad vertex in B(x, L), then,
see below (I11.8.4), z is 0 — (Lo, u, K, p) bad. Suppose now that (I11.8.14) holds
at level n — 1 for all z € Aﬁﬂ for some n > 1. Then, since Ly > RV (5 and
[ > 22, if there exists an R-path 7 of (Lo, u, K, p)-bad vertices from B(z, L,) to

B(z,IL,)¢, one can find for each k € {1,...,7} a vertex
yr € ™ N (B(x,3kLy,) \ B(z, (3k — 1)L,)).

Using (I11.6.1), one then picks for each k € {1,...,7} a vertex z, € A°, such
that v, € B(2x, L,_1). One then easily checks that with the choice of I and I
in (I11.8.1), for all k # K in {1,...,7}, d(zx,2x) > Ly, and B(zg,(L,_1) C
B(z,1L,)\ B(z, L,). In particular, for each k € {1,...,7}, 7 yields an R-path of
(Lo, u, K, p)-bad vertices from B(z, Ln_1) to B(zx,[L,—1), and the induction
hypothesis implies that zj is (n — 1) — (Lo, u, K,p) bad. Among these seven
(n — 1) — (Lo, u, K,p) bad vertices, there exist i # j € {1,...,7} and A €
{(ClK)e, (DEeK)e, (Dl )e (D" )<, (Blow)e, (FLw)e} such that G2, (A)
and Gfﬁnfl(A) both occur, whence z; and z; appear in the union for G£9,(A),
see (II1.7.3). By definition (II1.8.4), = is n — (Lo, u, K,p) bad and (I11.8.14)

follows. O

Using the additional condition (WSI), Proposition I11.8.3 together with
Lemma III.7.6 can be used to show the existence of a certain set Z, see
Lemma I11.8.4 below, from which the prevalence of the infinite cluster of E=",
h > 0 small, will eventually be deduced. The bound obtained in (II1.8.15) will
later lead to (III.1.10).
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Lemma II1.8.4. Assume G satisfies (WSI) (in addition to (I111.3.1)), and let
R = Ry as in (WSI). Furthermore, let ug > 0, u € (0,up), K > 0 with
K > \/log(Cyu=c2), and p € (0,1) with p > 1 — Cozu®3. Then @“’p—a.s. there
exists Ly > 1 and a connected and unbounded set ggo C I* such that (II1.7.21)
holds and there exist constants ¢ > 0 and C' < oo depending on u and uy such
that for all xg € G and L > 0,

@u,p(gzo N E(xo; L) = @) < Cexp{—L°}. (IT1.8.15)

Proof. Fix a vertex xy € G. By (WSI), there exists Ry > 1 such that, for
all finite connected subsets A of G with 2o € A and 6(A) > Cj, noting that
d(z,x0) < §(A) + C5 < 26(A) for all z € 0.y A by (111.2.8),

for all z € 0.+ A, 3 an Ry-path from x to B(x, csd(z, 20)/2)° in Oerr A.
(I11.8.16)
It is then enough to prove that for all u € (0,ug), K > \/log(Cpu=c2) and
p > 1 — Cozu®3, the probability under @“’p of the event

{ there does not exist an unbounded nearest neighbor path in G

II1.8.17
of (Lo, u, K, p)-good vertices starting in B(xg, L) } ( )

has stretched-exponential decay in L for some Ly > 1 (with constants depending
on u and ug). Indeed, if (I11.8.17) does not occur, then by Lemma II1.7.6 there
exists an unbounded connected component /Tgo cIv intersecting B (20, L) such
that (II1.7.21) holds; therefore, the bound (II1.8.15) follows.

Thus, in order to establish the desired decay, assume that (I11.8.17) occurs for
some u € (0,up), K > y/log(Copu=22), p > 1 — Co3u3, a positive integer L and
Lo as in (II1.8.11). We may assume that L > C3. We now use Proposition I11.8.3
and a contour argument involving (II1.8.16) to bound its probability. Note that
the assumptions of Proposition I11.8.3 on the set of parameters (Lg, u, K, p) are
met for all u € (0,u) by our choice of constants. Define

Ap = B(xo, L)U{x € G; x +» B(xg, L) in the set of (L, u, K, p)-good Vertices},

which is the set of vertices in G either in, or connected to B(zg, L) by a nearest
neighbor path of (Lo, u, K, p)-good vertices in G. Since (II1.8.17) occurs, A
is finite. It is also connected, and 0(Az) > Cj. Hence, since every vertex in
OextAr is (Lo, u, K, p)-bad, by (I11.8.16) there exists « € 0.y Az, and an Ry-path
of (Lo, u, K, p)-bad vertices from z to B(z,ced(x,z0)/2)¢. Let N = |d(z, )],
then N > L, and thus by a union bound the probability that the event (I11.8.17)
occurs is smaller than

i Z @wp ( there exists an Ry-path of (Lg,u, K, p) )

-bad vertices from z to B(x,cN)¢
N=L zeB(z9,N+1)
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which has stretched-exponential decay in L by (V,), (II1.2.10) and Proposi-
tion I11.8.3. O

Remark 111.8.5. One can replace (WSI) by the following (weaker) condition
(W\STI) and still retain a statement similar to Lemma I11.8.4. This is of interest
in order to determine how little space (in G) one can afford to use in order for
various sets, in particular V* at small v > 0 in Theorem III.1.2, to retain an
unbounded component; see Theorem I11.9.3 and Remark I11.9.4, 5) below. We
first introduce (\7\/\8/1) Suppose that there exists an infinite connected subgraph
Gp,of G, (>0, Ry > 1, a vertex xy € G, and cg4 > 0 such that

for all finite connected A C G, with zy € A, there exists x € (0ertA) N G,
and an Ry-path from @ to B(x, coyd(x,20)*)¢ in (OerrA) N G,
(WSI)

i.e., all the vertices of this path are in (0etA) N G,. It is easy to see that
(WSI) implies (\Xf\S/I) with ¢ = 1. Suppose now that instead of (WSI), condition
(\7\7\8/1) hold for some subgraph G, of G. Then the conclusions of Lemma IT1.8.4
leading to (II1.7.19) still hold and the set Zgo thereby constructed satisfies
At < B(G,,3C1(Lo(u) + Cs)). To see this, one replaces (II1.8.16) by the
following consequence of (W\S/I): there exists Ry > 1, o € G, and ¢ > 0 such
that for all finite connected subsets A of G, with zy € A,

Jx € (0eatA) N G, and a Ry-path from x to B(x, cd(z, 20)°)€ in (OpgrA) N Gp.
(II1.8.16")
One then argues as above, with small modifications due to (II1.8.16), whence, in
particular, the set A;, needs to be replaced by Ar(G)) =4 (B(wo, L)NG,)U{z €
Gp: © < B(zo, L) N G, in the set of (Lg, u, K, p)-good vertices in G,}, so that
Ap = AL(G). O
The bound (II1.8.15) will be useful to prove that (III.1.10) holds, and we
seek a similar result which roughly translates (I11.1.11) to the world of random
interlacements. This appears in Lemma III1.8.7 below. Its proof rests on the
following technical result, which is a feature of the renormalization scheme.

Lemma III1.8.6. Assume G satisfies (WSI), and recall the definition of cig
from (111.8.2). For any Lo > C5, K > 0, u > 0 and n € {0,1,2,...}, if there
exists a vertex x € A50 which is n — (Lo, u, K,p) good, then every two connected

components of B(x,20ci9L,,) with diameter at least ci9L, are connected via a
path of (Lo, u, K, p)-good vertices in B(x,30c19C10Ly).

Proof. We use induction on n. For n = 0, if z is 0 — (Lo, u, K, p) good, then
in view of (II1.8.3), (II1.8.4) and Definition II1.7.4, every path in B(x,20c19Lg)
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is a path of (Lg,u, K, p)-good vertices and all the vertices in B(z,20¢19C10Lo)
are (Lo, u, K, p)-good, so the result follows directly from (II1.3.4). Let us now
assume that the conclusion of the lemma holds at level n — 1 for some n > 1 and
let

x be an n — (Lo, u, K, p) good vertex. (II1.8.18)

Let Uy and Uy be any two connected components of B(x,20c19L,,) with diameter
at least ci9L,,. We are first going to show that

U, and Uy are linked via (n — 1) — (Lo, u, K, p)

o (I11.8.19)
-good vertices in B(z,22¢19C19Ly,),

by which we mean that there exists a subset S of A2, NB(z, 22¢19CyoL,) contain-
ing only (n—1) — (Lo, u, K, p) good vertices and such that {J,cg B(y, Ln—1) con-
tains a connected component intersecting both ¢, and Us. To see that (I111.8.19)
holds, for each i € {1,2} choose seven connected subsets (UF)eq1
that for all &k # k' € {1,...,7},

7y of U; such

.....

AU UY) > Ly + 20,1 and  SUF) > TLacs™;

such a choice is possible since Ly > Cs, lp > 1 > 22 and cj9 = 7(1 + 7c5 ).
If for each k € {1,...,7} there exists an (n — 1) — (Lo, u, K,p) bad vertex
ye € A0, such that B(yg, Ln_1) NUF # @, then there are at least seven (n —
1) — (Lo, u, K, p) bad vertices in B(x,20c19L, + L,_1) C B(x,1L,) with mutual
distance at least L,, which contradicts (II1.8.18) by (II1.8.4) and the definition
of the renormalization scheme, see (I11.7.3). For each i € {1,2} we can thus find
k; such that each y € A%, with B(y, L,_,) NUM # @ is (n — 1) — (Lo, u, K, p)
good. Recalling that L[f" is connected, we can define for each i € {1,2} the set
compn_l(uiki) C G as the connected component in

U B(y, L,_1) (I11.8.20)

yEAsglﬂB({L’QQCH)CloLn),
y is (n—1)—(Lo,u,K,p) good

containing L{fi.

The claim (IT1.8.19) amounts to showing that comp, ;(U4F") = comp,, ,(Us?).
Suppose on the contrary that comp, ,(Uf") and comp,,_,(Us?) are not equal.
By (II1.3.4), there is a nearest neighbor path (z1,...,x,) in B(x,20c19C10Ly)
connecting U and UJ?. Recalling the notion of external boundary from
(II1.2.1), since x; € U, either there exists m € {1,...,p} such that z,, €
Dewrcomp,,_; (UY), or every unbounded nearest neighbor path beginning in ,
intersects comp,_,(U"), and likewise for comp, ,(Us?). If every unbounded
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path beginning in x, hits comp,_ (") and every unbounded path beginning
in x; hits comp,, ,(U5?), then by connectivity every unbounded path beginning
in comp,_,(U) hits comp,_;(Us?) and every unbounded path beginning in
comp,_;(Us?) hits comp,_,(U™), which is impossible since comp,, ,(UF) #
comp, ;(Uy?) (indeed, unless comp, ,(UM) = comp, ,(Us?), these con-
ditions would require any such path to ‘oscillate’ between comp, ,U™)
and comp,_,(Us?) infinitely often and thus it remains bounded). There-
fore, we may assume that Oucomp, ,(U™) N B(x,20c10C10L,) # @ (other-
wise exchange the roles of U; and U,), and by (WSI), there exists an Ry-
path in 8extcompn_1(2/{f1) of diameter between 7L, and 8L, beginning in
B(z,20¢19C0Ly,). By definition of comp, (Uf"), see (II1.8.20), every vertex
of this Ro-path is contained in B(y, L,—1) for some (n — 1) — (Lg,u, K, p) bad
vertex y in A%°, N B(x, (20c19C10 + 8 + 1Y) L,) C B(z,22¢19L,), and, since
Lo > Cs and [y > [ > 22, there are at least 7 (n — 1) — (Lo, u, K, p) bad vertices
in B(z,22c19Cy0L,) = B(x,lL,) with mutual distance at least L,. By (I11.7.3)
and (I11.8.4), = is n — (Lo, u, K, p) bad, which is a contradiction.

Therefore, we have comp, ,(U") = comp,_,(Us?), i.e., (IT11.8.19) holds.
Thus, by (II1.6.1) there exists yo € U™, Ymy1 € Us? and a sequence of vertices
Yy Ym € Aflo_l N B(x,22¢19C10Ly,) of good (n—1)— (Lo, u, K, p) vertices such
that

5c19Ln—1 < d(yj—1,y;) < 6c19L,1Vj e {1,....m} and d(Ym, Ym+1) < 6¢19Ly_1.

(II1.8.21)
We now construct the desired nearest neighbor path of (Lo, u, K, p)-good vertices
connecting U; and Us. To this end, we fix a nearest neighbor path 7y in L[fl
beginning in ¥y, a nearest neighbor path 7,1 in Z/{§ ? beginning in ¥,,,+1, and, for
each j € {1,...,m} a nearest neighbor path 7; beginning in y; such that for all
j€{0,....m+1}, cioLn—1 < 6(m;j) < 2¢19L,,—1, which is always possible since
Tlocs ' > c19, see (II1.8.1). Note that, using (I11.8.21),

o, ™1 C B(yl, ZOclgLn,l) and d(ﬂ'o, 7T1) 2 ClgLnfl. (111822)

In view of (II1.8.22), applying the induction hypothesis to my and m, we
can construct a nearest neighbor path 7 of (Lo, u, K,p)-good vertices in
B(y1,30¢19C10L, 1) C B(x,30¢19C10L,,) with diameter at least cy9L, 1 con-
necting my and ;. Moreover, we can further extract from 7, a nearest neighbor
path 7} included in B(y1, 2¢19L,—1) and with diameter at least ¢i9L,,_1, and so we
have 7, C B(ys2,20c19L,_1) and d(7}, m2) > c19L,_1. By the induction hypothe-
sis, we can thus find a nearest neighbor path 7y of (Lo, u, K, p)-good vertices in
B(y2,30¢19C10L,—1) C B(x,30¢19C19L,,) with diameter at least ¢j9L,,_1 between
71 and 7. Iterating this construction, we find a sequence of (7_Tj)je{1 ,,,,, m+1} of
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nearest neighbors paths of (Lo, u, K, p)-good vertices in B(z,30¢19C19L,,) such
that my N7 # &, ;N7 # @ for all j € {1,...,m} and Tppq N M1 # 2.
Concatenating the paths 7g,..., T,y provides a path of (Lg,u, K,p)-good
vertices in B(z,30c19C19L,,) connecting U; and Us, as desired. O

Using Lemma II1.7.6 and the quantitative bounds derived earlier in this sec-
tion, we infer from Lemma II1.8.6 the following estimate tailored to our later
purposes. Let us define

Ef_m ={y € G; p, > —V2u}.

Lemma II1.8.7. Assume G satisfies (WSI) (in addition to (I11.3.1) ), and take
R = Ry from (WSI). Then for all ug > 0, u € (0,up), x € G, K > 0 with
K > \/log(Cypu=c2), p € (0,1) with p > 1 — Cy3u®® and L > 0, there exists
Lo = Lo(L) € [Lo(u),loLo(u)), C < oo and ¢ > 0 depending on u and ug such
that

Q*r ( ;,L) >1- C(“? UO) exp{—Lc(u, UO)}v

where £ is the event

(3 a connected set A%, C B(z,2Cy L) which intersects every cluster
of B(z, L) with diameter > /L, and a connected set A’g,L cI'n
B(z,2C10L) verifying (I11.7.21), such that B(y, Lg) N AV;L #* O

for all y € A} ; and every cluster of Eg_m N B(x, L) with

| diameter > L/10 is connected to E;L NG in ng\/ﬂ N B(z,2L) )

(II1.8.23)

Proof. As a direct consequence of Lemma I11.8.6 and (I11.8.12) with R = R,
from (WSI), we obtain that for all uy > 0, u € (0,up], K > y/log(Coqu=c22),
p>1—Couu»neN xe A and Ly € [Lo(u), loLo(u)], see (IIL.8.11),

there exist connected components of B(z,20c¢19Ly,)
@“’p with diameter > c¢19L, which are not connected by <6 x 27,
a path of (Lo, u, K, p)-good vertices in B(z,30¢19C10Ly,)
(I11.8.24)
Therefore, for all L large enough, taking Ly = Lo(L) € [Lo(u),loLo(u)) and
n € N such that L = 20c;9lj Lo, we have

N there exist connected components of B(z, L)
Q“P | with diameter > % which are not connected by a | <6 x 22"
path of (L, u, K, p)-good vertices in B(x,2C}L)
< CeXp{—LC},
(I11.8.25)
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for some constants C' = C'(u,ug) and ¢ = c(u, up). Let us call ?;L the comple-
ment of the event on the left-hand side of (II1.8.25). On the event EZ 1, there
exists a connected set A} ; C B(x,2CL) of (Lo, u, K, p)-good vertices which
intersects every connected component of B(x, L) with diameter > 1%. One can
construct such a set by starting with a path 7 of (L, u, K, p)-good vertices in
B(z, L) with diameter > &
(Lo, u, K, p)-good vertices between 7 and every other connected component of
B(z, L) with diameter > .

By Lemma IIL.7.6, for L large enough, this 1mphes the existence of a
connected set A“L C B(x 2C10L + 3Cho(Lo + C3)) C B(x 3C1oL) such that
(IT1.7.19), (II1.7.20) and (IT1.7.21) hold when replacing A by Aj ; and A by ﬂ;‘L
Moreover, if V is a cluster of Ef,*mﬂB (x, L) with diameter at least L/10, then
there exists z € VN A} ;, and thus V contains a cluster of Ef‘m N B(z, Lo/2)
with diameter at least Ly/4. By (II1.7.20) we obtain that V is connected to AVZL
in EZ7V2“ N B(z, Ly) C B(x,3CyL).

If EZL and EU,L happen for y and 3 in G with y ~ o', then §(Aj; ;N
B(y', L)) > &, and so there exists z € Ay NAy . By (ITL7.19), @ # B(z, Lo)N
Tv4 C A“L n A v 1 Sy 10y happens for all y € B(x,CioL), let us define
B, C B(z,CyyL) a connected set containing B(x, L), which exists by (I11.3.4),
and

and taking A} ; as the union of all the paths of

Al = U Aty and AU = U Al VT
yeBL yEB],

Then A is a connected subset of B(x,Cio(L + 20v/L)) C B(z,2CyoL) and
A“L is a connected subset of B(x,Cio(L + 30v/L)) C B(x,2C,L) for L large
enough. Changing Lo into Lo(10v/L), we clearly have that (IT1.7.21) still holds,
that B(y, Lo) ﬂA“L # @ for all y € A}, that every cluster of EZ~ V2un B(x, L)
with diameter at least v/ L < L/10 is connected to A%L in £ i N B(x, L +
30C1 VL) C Eg_m N B(x,2L), and that A, ;, intersects every connected com-
ponent of B(z, L) with diameter at least v/L. Therefore by (V) and (II1.8.25),

we have

Qur (&) > QuP ﬂ z:,loﬁ >1—CLYexp {—(10\/2)0} .

yGB(:E,Cl()L)

O

Under &£}, we have constructed by (II1.5.4) a giant cluster Z . N G inter-
secting B(x, L/2), with A“LﬂG C EZ7V2NB(x,2CyyL) and such that Av NG
is connected in EZ~ V2u  B(x,2L) to every cluster of Ef_m N B(xz, L) with
diameter at least L/10. We readily obtain by (II1.8.23) that:
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Corollary II1.8.8. For all h < 0, there exists constants c¢(h) > 0 and C'(h) < 0o
such that (I11.1.10) and (I11.1.11) hold, and thus h > 0.

Remark 111.8.9. As the perceptive reader will have already noticed, one does
not need to use our "sign flipping" result, Proposition II1.5.6, to prove h >
0. One also does not need local uniqueness for random interlacements on the
cable system, see Proposition II1.4.1, but only on the discrete graph. We need
to use percolation results for random interlacements on the cable system and
Proposition I11.5.6 only to prove h > 0, which is the content of the next section.
This is similar to the case of h, on Z%, d > 3, where one can prove h, > 0 without
using Proposition I11.5.6, see for instance [16] or (III.5.4), but an equivalent of
Proposition I11.5.6 is used to prove h, > 0, see Lemma I1.5.1.

I11.9 Denouement

We proceed to the proof of our main results, Theorems III.1.1 and III.1.2.
In Lemma II1.9.2, we first use Proposition II1.5.6 to translate the result of

Lemma II1.8.7, which is stated in terms of Z" and Eg_m, to a similar re-

V2 and E%‘m, 0 < v < u, which correspond to level sets

of a Gaussian free field, see (II1.5.42). This gives us directly, with overwhelm-

sult in terms of EZ

ing probability, that a giant cluster of sz/ﬁ intersecting every large connected
component of E§*@ exists, see Lemma II1.9.2. The sets H, , i, from Propo-
sition II1.5.6 provide us with additional randomness, and we will take advantage

of it to connect the giant cluster of sz/ﬁ not only to every large connected
component of Eg_m, but also to every large connected component of Ezm,
and this delivers Theorem III.1.1. We then use the couplings from (I11.5.24) and
Proposition I11.5.6 as well as Lemma I11.8.4 to also obtain Theorem II1.1.2. As a
by-product of our methods, Theorem II1.9.3 asserts the existence of infinite sign
clusters (in slabs) without any statements regarding their local structural prop-
erties under the slightly weaker assumption (W\S/I), introduced in Remark II1.8.5

above. We then conclude with some final remarks.

Let us first choose the parameters u > 0, K < oo, p € (0,1) in such a
way that the conclusions of Proposition II1.5.6 and Lemmas I11.8.4 and II1.8.7
simultaneously hold. Recall that A\, < Cy for all z € G, see (I11.2.10). We now
specify the range of values of u > 0 and p € (0,1) for which we will consider.
Fix an arbitrary reference level ug > 0, say ug = 1, and choose u; € (0, ug) such
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that, for all 0 < u < w4,

. Ci4 Ci4
JK > 2v2u with y/log(Cou=22) V ——— < K < ———,
- g< 2 ) \/ 2u 04 o vV 2u C4

1
and 3p € [5, 1) such that 1 — Chzu™ < p < F(X/%E)v

where we recall that I denotes the cumulative distribution function of a stan-

(111.9.1)

dard normal distribution. Also, note that u; with the desired properties ex-
ists by considering the limit as v | 0 and using the standard bound F(x) >
1-— ﬁexp{—g—?} for all > 0 in the second line. For a given u € (0, ], we
then select any specific value of K = K(u) and p = p(u) satisfying the con-
straints in (I11.9.1), and henceforth refer to these values when writing K and
p, and in particular we take the probability @“’p, cf. (I11.5.34), and Q“5P  cf.
Proposition II1.5.4, for this particular value of K and p. Then K satisfies the
constraint in (I11.5.27) and p satisfies the constraint in (II11.5.35) on account
of (I11.9.1) and (II1.2.10). Therefore Proposition I11.5.6 applies for u € (0, u4].
Noting that K/2 < K —+/2u, recalling Sy from (I11.5.39) and (II1.5.40), taking
Xurkp as in (II1.5.37) and (II1.5.40) and using (II1.2.8), we have for all set A
such that (I11.7.21) holds that B(gﬂ G, Ly) C Sk N Xy kp. Moreover, recalling
R, from (I11.5.25) and (II1.5.40), and using (I11.5.4), we have that Z* C R,,. We
thus obtain by (I11.5.43) that for all u € (0,u;] and v < u, under Q“5?,

if A CZ"is a connected set such that (II1.7.21) holds for

some Lo > 1, thenAﬂGCI“ﬂSKﬂXquCEzm

and B(AN G, Lo) N Hyw ey C BV,

(111.9.2)

Definition III.9.1. For all x € G, L > 0, Ly = Lo(L) as in Lemma II1.8.7,
u € (0,u1) and 0 < v < u let us define the event ?;2 as the event that

i) there exists a U(I“, v, (B )xeg) measurable and connected set A"y C
B(x,2CL) such that A} intersects every connected component of B(x, L)
with diameter at least v/L,

ii) there exists a connected set C} C BV n

(ng, Lo) N Huva - EZ\/ﬂ

B(z,2CyoL) such that

iii) for ally € A7}, B(y, Lo) NC,[ # 2.

Applying (I11.9.2) to the set Ag ;, from (III 8.23) and taking A"} = A% and

Cor = A;L NG, it is clear that &', C Ex 1, see (I11.8.23) for the deﬁnmon of

+1- Moreover, it is clear that Lemma III.8.7 holds for any 0 < u < uy, and K
and p as in (II1.9.1), and we obtain:
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Lemma II1.9.2. For all x € G, L > 0, Ly = Lo(L) as in Lemma II1.8.7,
u € (0,u1), K and p as in (111.9.1), and 0 < v < u, there exist constants C < oo
and ¢ > 0 depending on u such that

Q9 () > 1 Coxp{ L),

xT

= . —=>V2
Under Szzz, we have thus constructed a giant component C;’; C EZH N

B(z,2C0L) such that, by i), any cluster of BV n B(z, L) with diameter at

least /L intersect the set Ay, and, by iii), it also intersects B(y, Lo) for some

y € C,';. Therefore, any cluster of V"B (x, L) with diameter at least L/10

is connected to B(y, Lo) for many vertices y € C;f:}i, and if B(y, Lo) C Hyvxp
for one of these y, by ii), this cluster would be connected to the giant component
C,p in EV"nB (y, Lo). We use this remark and the independence of H, ,
from A7} to deduce Theorem III.1.1 from (II1.5.42) and Lemma II1.9.2.

Proof of Theorem II1.1.1. We first show that for all h < h; = /2uy, (II1.1.10)
holds. On the event EZ:Z, with u = h?/2, we have that C} is a connected

component of B0 B(x,2Cy L) such that d(C.’;, B(z, L/2)) < Lo, and thus
C,r, intersects B(x, L/2+ Lyg). In particular C;; N B(z, L) has diameter at least
L/5, and we can conclude by (I11.5.42) and Lemma II11.9.2.

Let us now prove that (II11.1.11) holds for all A < h;. By Corollary I11.8.8, it is
enough to prove that (II1.1.11) holds for all 0 < h < hy, and let us fix v = u; and
v = h2/2. We will simply denote by H the event H,, ,, i, from Proposition II1.5.6.
Let us define for all x € G, L large enough, Ly as in Lemma III.8.7, k €
(2,..., | %]} and y € B(z, L)

=2V
gyf — 2N { 'the cluster of y in F N By, Qk\/f) N B(x, L) } ‘
© ’ intersects 9B(y, 2kv/L) but does not intersect Cy}

Let also Z¥7 = A%} N B(y,2kvV/L — Ly — C3) N B(z, L)\ B(y, 2(k — 1)V'L + L),

and Zj, be the smallest z € Zgj]-j (in some deterministic fixed order on the vertices

of G) such that

Y 0Bz, Lo) in B2 0By, 2kVI)NB(a, L)\ | B(Z, Lo). (I119.3)

’ Y,k
z EZI’L

We fix arbitrarily Z; = y if (I11.9.3) never happens. By (I11.2.8), if é‘\i’f happens
and L is large enough, since the set of vertices in B(y,2kvVL — Ly — C3) N
B(x, L)\ B(y, 2(k —1)v/L+ Ly) connected to y in VN B(y,2kv/L)NB(x, L)
contains a connected component with diameter > 2v/L — 2Ly —3C5 > /L, by i)
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of Definition II1.9.1 it must intersect some z € A’} , and so Z, # y. Since under

c‘?;’f the cluster of y in BV B(y,2kv/L)N B(z, L) does not intersect C,p, we
obtain by ii) and iii) of Definition II1.9.1 that H° N B(Z, Ly) # @. Therefore

ElT C{Zu#y, H N B(Zy, L) # 2. (111.9.4)

Since Ay} is o(Z",7, (BP)sec) measurable, we have that the events {Z), = 2}
are F, measurable for all z € B(y, 2(k — 1)\/_ + Ly)¢, where

—>V2v

]: - O-(IU7:?7 (B )iUEG? {LU SO }x’EB(z,Lo)C)‘

Moreover by Lemma II1.5.6 the event {2’ € H} is independent of F, for all
z € G and 2’ € B(z, L) and so, under Q"% P(-|F,), {2’ € H}yep(sLo) IS an
i.i.d. sequence of events with common probability Q“5?(x € H) > 0. Since
for all £ € N we have E’i’f - 557,2—1 and c‘?;’f_l is F, measurable for all z €
B(y,2(k — 1)vV/L + L), with the convention 5’32 = EZZ, we obtain by (V,,) and
(II1.9.4) that

m oy.k
Q ’K’p(gg,L)
S Z EQ“*K"’ []IA;”Z ﬂ{Zk:z} Q%KW(HC N B(Z, LO) 7& ) | Fz)]

z€B(y,2(k—1)VL+Lo)¢
< QUELT) (1 - QU € HY)OH)

Iterating, we obtain that there exists constants ¢ = c(u,v) > 0 and C' =
c(u,v) < oo such that for all k € {2,.. [ =1},

QU,K,p(é\g:E) S Cexp(_ck). <11195)
>\/ﬂﬁ

By ii) of Definition I11.9.1, we have moreover under EZZ that C,7) C E-

B(z,2C)0L) and is connected. Now the event in (III.1.11) for h = +/2v and

sz/% instead of EZ" implies that either EZZ does not happen, or it happens

and there exists y € B(z, L) such that the component of y in EZ\/%QB(Q:, L) has
diameter at least /10 and is not Connected to C“Z n BV n B(z, 2C’10L) and

the same law under Q%7 as E=" under P“, and thus by (Va), Lemma III.9.2
and (II1.9.5), we obtain that the probability in (III.1.11) is smaller than

Qur(E! ) Q”Kp< U é\ijé\gj) < Cexp(—L°) + CL® exp(—cVL).

y€B(z,L)
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We now continue with the proof of Theorem III.1.2.

Proof of Theorem II1.1.2. We continue with the setup of (II11.9.1), and fix some
u < @Y uy. We now define the probability 71 on ({0,1}9)2 x ({0,1}9) as the
(joint) law of

(Laezey Lisgnexs e, =1 see (L, o2 ) )

under Q“¥P and the probability v, on ({0,1}¢) x ({0,1}%)? as the law of

(Lpozvmay) veer (Liweviy, Li—ru0p) o)

under @“’p . We concatenate these probabilities by defining the probability Q* on
the product space ({0,1}%)% x ({0, 1}%) x ({0, 1}¢)? such that for all measurable
sets A; C ({0,1}9)%, Ay € {0,1}% and A3 C ({0,1}9)?

Q" (A1 x Ay x A3) = E,, [ﬂ{n{eAl,n;eAg}Vz (5 € As|ni = 77%)],

where we wrote the coordinates under v; as (1, 75) for all i € {1,2}, and further-
more v5(n3 € - |n? = +) is a regular conditional probability distribution on {0, 1}¢
for n3 given o(n?). One then defines the three random sets from the statement of
the theorem under Q" as follows: the sets Z and K are defined by the marginals
of n} and the set V as the first marginal of 3. With this choices, part i) and 77)
of (III.1.17) are clear by definition, noting that Z* and Sk N X, k, with X, x,

coming from (II1.5.37) are independent under Q"?, which follows from (I11.5.34)

on account of (I11.5.39). Since TN Sk N Xy kp C B by (I11.5.4), (II1.5.25)

and (I11.5.43), E2Y™ Jas the same law as {z € G;—p, > V2u} by (I111.5.42)
and symmetry of o, and {x € G; —p, > +/2u} C V* by (111.5.24), one can easily
check that the inclusion Z N K C V holds under Q. Finally, Z% N Sk N X, kp
contains Q"P-a.s. an infinite cluster by Lemma I11.8.4 and (I11.9.2), and thus
Z N K under Q* too. This completes the proof. ]

As the perceptive reader will have noticed, the inclusion in part ii) of
Theorem III.1.2 can be somewhat strengthened to a statement of the form
(ZNK) c (WnNK') with £ independent of ¥V and with the same law as
{z € G; ®, > 0} under P¢ by taking into account the effect of ¥ in (II1.5.24),
cf. (I11.5.34) regarding the asserted independence.

The sole existence of an infinite cluster without the local connectivity pic-
ture entailed in (III.1.11) can be obtained under the slightly weaker geometric
assumption (\/7\78/1) from Remark II1.8.5. We record this in the following
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Theorem II1.9.3. Under the assumptions (I11.3.1) and (W\gl) on G, there
exists hy > 0 such that for all h < hy, (I11.1.10) holds for some x € G and there
exists a.s. an infinite connected component in E=" N B(G,, C'Ly(h*/2)) and in
V20 B(G,, CLo(h?/2)) with Lo(-) given by (I11.8.11). In particular h, > 0
and u, > 0.

Proof. One adapts the argument leading to (III.1.10) in the proof of Theo-
rem III.1.1, replacing the use of Lemma II1.8.7 by Lemma II1.8.4, or more pre-
cisely by the corresponding result obtained under the weaker assumption (\7\7\8/1)
described in Remark I11.8.5. We omit further details. O

We conclude with several comments.

Remark 111.9.4. 1) In [28], on Z%, d > 3, a slightly different parameter h; is
introduced since only a super-polynomial decay in L is required in the con-
ditions corresponding to (III.1.10) and (III.1.11), and in [100] yet another
parameter hy is introduced by allowing the addition of a small sprinkling
parameter ' to connect together the large paths of E=". However, it is clear
that A < hy < hy, and so the parameters hy and hs are also positive as a
consequence of Theorem II1.1.1.

2) Looking at the proof of Theorem 1.2, one sees that for u small enough,
the set K can be taken with the same law under Q" as Sk N X, x, under
QuP, for some K > 0 and p € (0,1) as in (II1.9.1), where Sk is defined in
(I11.5.39) and (II1.5.40), and X, k, in (II1.5.37) and (II1.5.40). Changing the
event CLo? in Definition I11.7.4 by the increasing event C'Lo? which occurs
if and only if for all 2z € é(m, 2C10(Lo + C3) + C3), ¢, > —K, and the event
FLoP by the decreasing event FLoP which occurs if and only if for all 2z €
B(z,2C10(Lo + C3) 4+ Cs), @. < K, one can show as in Lemma I11.8.4 that
there exists a connected and unbounded set A C G such that

AcCT and |@.| < K for all z € B(A, 2Ly + C5).

Therefore, adapting the proof of Theorem II1.1.2, one can take I with the
same law under Q* as Sk N X, x, under @“’p, for some K > 0 and p € (0,1)
as in (I11.9.1), where Sk is defined in (I11.5.25) and (I11.5.40), and X, , in
(II1.5.38) and (I11.5.40), or with the same law as {z € G; |¢,| < K for all z €
U*}, and i) and iii) in (II1.1.17) still hold. This choice for I has a simple
expression and would be enough for the purpose of proving 2 > 0 and u, > 0,
but has the disadvantage of not being independent from Z. Independence,
however, is expected to be useful for future applications.
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3)

Taking complements in the inclusion Z N K C V, see Theorem II1.1.2, and
intersecting with C, we obtain that V*NK C Z°¢. Taking Z' = V¢ and V' = Z¢,
we obtain the inclusion Z' N K C V', and K is independent of Z, and thus of
V'. Therefore, we could have chosen K independent of V in ii) of (II1.1.17)
instead of K independent of 7.

Using a similar reasoning as the one leading to Corollary II1.8.8, one can
prove strong percolation, as in (I11.1.9), for the level sets E>h see (ITL.5.1),
for all h < 0, in the sense that (I11.1.10) and (III.1.11) hold but for the level
sets " of the Gaussian free field on the cable system G instead of the graph
G. Moreover, the critical parameter h for percolation of the continuous level
sets E>" is exactly equal to O by Proposition II1.5.2, and thus the strongly
percolative phase consists of the entire supercritical phase for the Gaussian
free field on the cable system, i.e. if one introduces h as in (II1.1.9), but
putting “tildes everywhere” in (II1.1.10) and (III.1.11), one arrives at the
following

Theorem 111.9.5. If G satisfies (111.3.1) and (WSI), then h= hy =0.

This result can also be proved without condition (WSI). Indeed, by (II1.5.4),
(II1.3.11) and the definition of random interlacements, the probability that
E>~V2" does not contain a connected component of diameter at least L/10
has stretched exponential decay in L for any u > 0. Moreover, by Corol-
lary I11.5.3, any connected component of {z € G; &, > \/ﬂ} N B(x, L)
cither intersects Z* or is a connected component of {z e G; 7. > 0} not
intersecting 7*. Since 7" and ~ are independent under Q“p the probability
that Z* does not intersect a component of {z € G5 7. > 0} with diam-
eter at least L/10 has stretched exponential decay by Lemma III1.3.2 and
(II1.3.10). Therefore, with high enough probability, any connected compo-
nent of {z € G; @. > —v2u} N B(x, L) with diameter at least L/10 inter-
sects fu, and strong connectivity of E~V2U then readily follows from Propo-
sition II1.4.1.

Looking at Theorem II1.9.3, we have in fact proved that if (W\S/I) holds for
some subgraph in G, of GG, then there exists 0 < h; < h, such that for all
h < hy, there exists L > 0 with

P¢ (there exists an infinite connected components in E=" N B(G,, L)) =1.

It then follows by (II1.5.18), that the same is true for V" i.e., there exists
0 < u; < uy such that for all v < u;, and some L > 0,

P! (there exists an infinite connected components in V* N B(G,, L)) = 1.
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If G = G; x G2, we may choose G, = P, x P a half-plane, where P, and P,
are two semi-infinite geodesic in G and Gs. Hence, we obtain that £2" and
V* percolate in thick planes B(G,, L) for h > 0 and u > 0 small enough. If
v > 1, then V* actually percolates in the plane G, for u small enough, see
Remark II1.7.2, 2), and in Theorem 5.1 of [95], it is shown that this is also
true if v = 1 and G| = Z. It is still unclear, and an interesting open question,
whether this holds true for ¥ < 1 or not.

The existence of a non-trivial supercritical phase for Bernoulli percolation
(and other models) is proved in [104] if G satisfies the volume upper bound
of (V,) and a local isoperimetric inequality. The proof involves events similar
to those considered in (III.1.11), and it is possible that our condition (WSI)
could be replaced by this local isoperimetric inequality, which would for ex-
ample cover the case of the Menger sponge, see Remark I11.3.8, 3). However,
one would then need to take a super-geometric scale in our renormalization
scheme (II1.7.2), and then lose the stretched exponential decay in (I11.1.10)
and (II1.1.11).

One may also inquire whether a phase coexistence regime for percolation of
{l¢| > h} and {|¢| < h} exists, or similarly for the level sets of local times
{z € G; {,, > a} of random interlacements, with u > 0, o > 0, considered
in |78]. For instance, regarding the latter, is it possible for all & > 0 to find
u > 0 such that percolation for the local times at level u above and below «
occur simultaneously?

Finally, it would be desirable to have a conceptual understanding of the mech-
anism that lurks behind the percolation above small enough levels h > 0 for
the discrete level sets E=" (as opposed to their continuous counterparts E’zh,
cf. 4) above). Our current techniques are based on stochastic comparison,
see Lemma III.5.5 and Proposition II1.5.6, but the induced couplings suggest
that one should be able to exhibit these features as a property of ¢ itself,
without resorting to additional randomness.

Acknowledgments. I would like to thank A.-S. Sznitman for pointing out an

error in an earlier version of this chapter.

III.A  Appendix: Proof of Proposition 111.3.3

Proposition I11.3.3 is proved in [42] when d is the graph distance, and we are
going to adapt its proof for a general distance d. Let us begin with the
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Proof of Proposition I11.3.3, 7). Using (G) and (V,,), we have for all z € G and
t S 027

(Gg)
My eG: glay) >1) < Myeq: Cudlz,y)™ > 1)
_1 (Vo) o
< M8 () 1) < o

Moreover, by (Gg), A\({y € G : g(x,y) >t}) =0 for all z € G and t > (s, and
(II1.3.16) follows directly from Proposition 5.1 in [42]. O

In order to prove Proposition II1.3.3, iz) we first need the following bounds
on the expected time at which the random walk Z on G leaves a ball.

Lemma II1.A.1. There exist constants 0 < co5 < Cys < 00 only depending on
G such that for allx € G and R > 1,

s R’ < BT r)] = Z Ay9B(z.R) (T, Y) Z Ayg(z,y) < Cys RP
yEB(z,R) yGB(;r R)
(IILA1)

Proof. Let us fix some x € G and R > 1. The equality in (III.A.1) is true by
definition of the stopped Green function (II1.2.5). Partitioning B(z, R) \ B(z,1)
into By = B(x,27%R) \ B(x,27*'R) for k € {0,..., |log, R|}, we have

[logy R (Gp) [logy R
S ez 3 S haten 203 ey
yeB(z,R)\B(z,1) k=0 yE€By
(Vo)
< CR(X—I/ZQ—]C(OL—V))
k=0

and the upper bound in (III.A.1) follows since & — v = § > 0 and

3 Agsen(@y) < G0

yE€B(z,1)

For the lower bound, we can assume w.l.o.g. that R is large, and we write

Z /\ygB (z,R) ‘T y) Z /\ygB(x,R) (ZL‘, y)

yEB(z,R) yEB(m,ﬁ)

(I13.2) ¢, W)
> 5 Z Nd(z,y)™" > cRY".

yeB(x,ﬁ)\{m}
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We now follow the proof of Proposition 4.33 in [4]. One can see the bounds
in Lemma III.A.1 on the expected exit time of a ball give us the following lemma
as a first step in the proof of Proposition 111.3.3, 7).

Lemma III.A.2. There exist constants Cos > 0 and cog > 0 only depending on
G such that for all x € G and R > 0,

P, (To.r) > C%Rﬁ) > Co6

Proof. Take Cos = (co5 N 1)/4. Let us fix € G and R > 0, and we can assume
w.l.o.g. that CyeR® > 1/2 (and then R > 1). We first need to remark that, by
Lemma III.A.1, for all y € B(x, R),

Ey [Tpwr)] < Ey [Tayer) < Cys(2R)".

Let us write n = [C%RBW . An application of the Markov property of Z at time

n gives us
Eﬂc [TB(CE,R)]ITB(I,R)>TL:| = Ex [EXn [TB(x,R)]]lTB(I,R)>n:| < 025(2R)18Px(TB(3:,R) > n)
(II1.A.2)
On the other hand, by Lemma III.A.1,
Ex [TB(%R)]ITB(;C,R)>”} Z CQ5R’8 —nNn Z CQﬁRB, (IIIA?))
and combining (III.A.2) and (IT1.A.3) let us conclude. O

It is interesting to note that Lemma II1.A.2 is analogue to Proposition I11.3.3,
i1) for n = LC%R/}J , and we are going to use it iteratively with the help of
(II1.2.8) to finish the proof of Proposition III.3.3.

Proof of Proposition 111.5.3, ii). Let us fix z € G, r > 0 and a positive integer
m. We define recursively the sequence of stopping time S,, p € N by

So=z, andforallp>1,5,= TB(XSp_lvT)'

For all p € N, d(Zs,_,, Zs,—1) < r and by (I11.2.8), d(Zs,_,,Zs,) < r+ Cs. In
particular, d(x, Zy) < (r+Cs)m for all 0 < k < Sy, and thus Sy, < Tz, (r405)m)-
Let us define

gp = Il‘Sp*Sp—IECQGT/B and N e ng.

By definition, Ts(s (r+c5)m) = Sm > Cyr® N. Moreover, by the strong Markov
property and Lemma II1.A.2, E,[§, | Fs,_,] > ¢, where F; = 0(Zy, ..., Z;) for
all i > 0. Using a martingale inequality, Lemma A.8 in [4], we thus get

™TcCag

C
P, (TB(%(HCS)m) < 262026rﬁm> <P, (N < ) <exp{—cm}. (III.A4)



Chapter III. Geometry of the sign clusters and random interlacements 154

Let us now fix a constant co7 small enough so that, if Cy 'R <n < cy;RP, then
By 5 N . 1 AT
1 e <027R >B1 §2<027R )ﬂ 3 Td:f.E_ng_< n >;a '
n n m 4 \cor R

%rﬁ > Cascas X Sa >n

2 T 2 x4 Cor ’
and (I11.3.17) (with C' = 1) then readily follows from (II1.A.4) as long as C5 'R <
n < cyrRP. Finally, if n < C; 'R, then by (I11.2.8) Bg(z,n) C B(x, R) and the
left-hand side of (II1.3.17) is always 0, and it is easy to find a constant C' large
enough so that the right-hand side of (II1.3.17) is always larger than 1 whenever
n > cyr RP. O

and




Chapter 1V

Percolation for the Gaussian free
field on the cable system of
transient graphs

IV.1 Introduction

This chapter studies the percolative properties of the level sets of the Gaussian
free field on the cable system, or metric graph, a continuous version of the
Gaussian free field on a discrete weighted graph investigated in [57]. Percolation
for the level sets of the discrete Gaussian free field was first studied in [16] on Z<,
d > 3, more than three decades ago. Its investigation has recently resurged by
the introduction of new ideas from related topics, such as random interlacements
introduced [93] or the cable system, see e.g. [81], [57] and [24]. Regarding the
discrete lattice Z¢, in [81] the non-triviality of the phase transition has been
established for the level sets of the Gaussian free field. Considering continuous
level sets of the Gaussian free field on the cable system, it was shown in [57] that
the phase transition was not only non-trivial, but actually happens at level 0.
That is, the critical parameter Iy, sce (IV.1.4) below, for the percolation of the
Gaussian free field on the cable system of Z¢ is equal to 0, which philosophically
corresponds to p, = % in the language of Bernoulli percolation. This is different
from the situation for the discrete Gaussian free field, where the phase transition
actually happens at a strictly positive level, see Chapter II. The equality he =0
was proved on several other transient graphs, see [101], [1] or Chapter III for
instance, and we generalize all these results here by showing that h. = 0 on
massless graphs under the weak condition (Cap) that the capacity of a connected
and infinite set is infinite, see also (IV.4.1).
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Moreover, under condition (Cap), we also derive an explicit formula for the
law of the capacity of the component of some point x( in the level sets above
any level h € R, see (Lawy), and this law surprisingly only depends on the
choice of the graph via the Green function at xy. We are going to give three
different proofs of these results, and one of them involves a strong version of the
isomorphism (Isom) between the Gaussian free field and the model of random
interlacements, introduced in [93|. This isomorphism has several consequences,
such as (Lawy,), but also implies the dichotomy h, € {0, 00} on massless graphs.
We also give an example of a graph for which hy = 0.

Let us now explain the settings and results in details. We consider a weighted
graph G = (V, A, k), where V' is a finite or countably infinite set, A, , € [0, c0),
x,y € V, are non-negative weights satisfying A\, , = A, > 0 and A\, , = 0 for
all x,y € V, and k, € [0,00], z € V, is a killing measure, possibly infinite. We
always assume that the induced graph with vertex set G = {x € V : Kk, < 00}
and edge set £ = {{z,y} : v € G,y € V, A\, > 0} is connected and locally
finite. Unless explicitly mentioned otherwise, we henceforth assume without loss
of generality that G = V, that is k, < oo for all x € G, and refer to (IV.2.5)
et (IV.2.6) below regarding how to reduce to this case. We write x ~ y when
{z,y} € E, and we define

>\x = Kz + Z)\x,yy Pz =

yeG

1 1
o foerGandpm,y:waorxwyeG

(IV.1.1)

(with p, = oo when k, = 0).

One naturally associates to G a continuous version (3 , the corresponding cable
system or metric graph, which will be our main object of interest. The cable
system G is obtained by replacing each edge e = {x,y} € E by an open interval
I, of length p, ,, glued to G through its endpoints x and y. In order to take into
account the effect of the killing measure s, which was supposed to be equal to
0 in the previous chapters, one additionally attaches to each vertex r € G an
interval I, isometric to [0, p.), glued to = through 0.

One then defines (e.g. in terms of its associated Dirichlet form, see (IV.2.1)
and (IV.2.2) for details) a diffusion process (X;);=o on GU{A}, where A denotes
an (absorbing) cemetery state, which can be seen as Brownian motion on the
cable system. The process X induces a pure jump process Z = (Z;)i>p on
G U {A}, its print on G, see Section IV.2 for its precise definition, which has
the law of the continuous-time Markov chain that jumps from z € G toy € G
at rate A\, , and is killed at rate x,. We write P, for the canonical law of X with
starting point x € G , and occasionally Pf in place of P, to stress the dependence
on the datum 5
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Our findings deal with the graph G and its associated metric graph G , when
G is transient, that is when the Markov chain Z is transient, which we assume
tacitly from now on. In particular, the graph G may be finite when x # 0. We
then define the Gaussian free field on G , whose canonical law P¢, defined on
the space C' (é ,R), endowed with coordinate maps ¢,, = € G , and the o-algebra
they generate, is such that

under P° (¢2),cq 18 a centered Gaussian field with covariance function g(-, -),

(IV.1.2)
where g(+, ) is the Green density of X. with respect to m, the Lebesgue measure
on G, see (IV.2.12). The restriction of this process to G has the same law as the
usual Gaussian free field on G associated to the discrete Markov chain Z.

We now describe our main results. We are interested in the geometry of
the level sets E=h & {y € g @y > h} of ¢, for h € R, and endow Q with
the (geodesic) distance dz(-,-) such that all intervals I, e € E, and I, when
Pz < 00, have length one (rather than p., resp. p,), Albeit not imprescindible,
we assume for convenience that dgz also assigns length one to I, when p, = oo
(by means of some strictly increasing bijection [0,1] — [0,00)). We introduce
the clusters of E2"

E="(x0) = {yEQ zo <+ y in EZ}, for 20 €G, heR,; (IV.1.3)

here, for a measurable A C G and z, y € G, we write {z <> y in A} if there exists
a (continuous) path from z to y in A, and we say that A is connected in G if
24 2 in A for all 2,2 € A.

Our principal focus is on the percolative properties of the set E=" (with
respect to dg) and we introduce the corresponding critical parameter

h, = inf {h € R; IP’G(EZh contains an unbounded connected component) = O}
(IV.1.4)
(with the convention inf @ = o). The definition (IV.1.4) of h, also corresponds
to the usual definition of the critical parameter for percolation on an infinite
discrete graph G, more precisely it is the critical parameter associated with the
percolation of E="(x¢) NG, z € G. In particular, the critical parameter for the
percolation of the discrete Gaussian free field on the graph G is larger than R
Other definitions of the critical parameter for the percolation of the Gaussian
free field on the cable system are possible and will be useful for us, see (IV.3.1)
and (IV.3.2).
We now briefly introduce the process of random interlacements on é, see
[93] and [103|, which will play a prominent role in this context, due to recent
isomorphisms, see [57], [101] and (Isom) below, relating it to the Gaussian free
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field in a very explicit fashion. Under a suitable probability P, for each u > 0,
random interlacements at level u on the cable system constitute a Poisson point
process w, with intensity uvg, where vz is a measure on doubly non-compact
trajectories modulo time-shift (when x # 0, these trajectories can be killed by
the measure k before escaping to infinity, i.e. they can exit G via I, for some
x € G with k, > 0; see (IV.2.36) and (IV.2.37) for the precise definition of vg).
We denote by (Em,u)zeé the continuous field of local times associated with w,,
i.e. the sum of the local times relative to the Lebesgue measure on 5 of all the
trajectories in w,, and by Z" C G the interlacement set, defined as the open set
of points with positive local times. Without any further assumptions on G, one
knows that for all u > 0,

1
<€z7u + 5@%) ; has the same law under P¢ @ P’
S

1
as (5(%3 + vV 2u)2> _under P¢

€

(IV.1.5)

(this was first derived for the square of the processes on discrete graphs with
k = 0 in [96], as a consequence of the second Ray-Knight theorem for Markov
processes, cf. [32]; this identity can actually be easily extended in a variety of
ways, e.g. to any discrete transient graph, without the condition x = 0. It was
also generalized to the cable system with Z? d > 3 as underlying graph in
Proposition 6.3 of [57], see also (1.27)—(1.30) in [101] for general graphs). We
now introduce an additional structural property of g, namely

cap(A) = oo for all (dz-)unbounded, closed, connected sets A C G (Cap)

(see (IV.2.20) and (IV.2.27) for the definition of the capacity cap(-) in this con-
text). One can for instance show that (Cap) is verified whenever the Green
function g decays to 0 at infinity, see Lemma IV.4.1 below. In particular, (Cap)
holds on any vertex-transitive graph. As will turn out, cf. (IV.3.1) and (IV.3.2),
the “magnitude” of clusters in £Z" can be measured in several natural ways, and
condition (Cap) reflects such a choice, based on capacity as a measure of size.
Our main result investigates the connection between the percolation phase
transition for the level sets of the Gaussian free field on é, the value of the
associated critical parameter %*, see (IV.1.4), and the following properties of
EZM h > 0:
P%-a.s. the clusters of E=° only contain S
bounded connected components; (Sign)
EY[exp ( — ucap(E="(x0))) Ly, >n] = P (02 > V2u + h2N)

L
for all w > 0 and zy € G; (Law,)



159 IV.1. Introduction

(<p$]1m¢cgo + V2 + 2@7”]1366@30)%5 has the same law

Isom
under P! @ P as (gom + v 2u) ocd under P9, for all u > 0, ( )

where C;° denotes the closure of the union of the connected component of the
sign clusters {x € G : |@,| > 0} intersecting the interlacement set Z*. These
conditions will be duly discussed below. For the time being, we just note that
the identity (Isom), derived in [101] under certain assumptions on G, among
which (Sign), considerably strengthens (IV.1.5). Moreover, the random variable
cap(E=2"(z¢)), h > 0, with moment-generating function given by (Lawy,), can be
equivalently described in terms of its density pp, which is explicit, see (IV.3.6)
and Lemma IV.4.5 below.

We now present our main result, which is a combination of various findings
presented in more details in Section IV.3.

Theorem IV.1.1. Let G = (V,\ k) be a transient weighted graph as above.
Then:

1) PC-a.s., the random variable cap(E="(x)) is finite for all zo € G. In par-
ticular, the condition (Cap) implies (Sign) (see Theorem IV.3.1 and Corol-
lary 1V.3.2 for details).

2) If k =0, then he >0 (see Corollary IV.3.2 for details).
3) The following implications hold true:

7 Cor, IV.8.7
="

Thm. 1V.3.

Sign) T)> Laws) ;>0

a)
and

Thm. IV.3.4 Prop. IV 4.7

(Lawo) (9= (Isom) (9= (Lawy),s.

©) d)

In particular, l'fg is a transient weighted graph such that k = 0 and (Cap) is
fulfilled, then h, = 0 and the law of cap(E="(xy)) is characterized by (Lawy,),
for h > 0 (equivalently, (Isom) holds).

Let us explain and comment the results in Theorem IV.1.1 in details. In
Theorem IV.1.1,1), one can see the inequality cap(E=°(xj)) < oo as an indication
that the sign clusters of the Gaussian free field on the cable system do not
percolate, at least in terms of capacity, see Theorem IV.3.1 for details. Condition
(Cap) makes the previous intuition correct, since it directly implies that closed
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connected sets have finite capacity if and only if they are bounded, and so (Sign)
holds, that is h < 0, see (IV.1.4). The inequality h, < 0 had previously already
been proved on a certain number of graphs with x = 0:

e 7% d > 3, with unit weights, see Theorem 1 and Proposition 5.5 in [57].
This proof could actually easily be extended to any vertex-transitive and
amenable graph, and these graphs verify (Cap), see Lemma IV.4.1.

e The (d + 1)-regular tree, d > 2, with unit weights, see Proposition 4.1 in
[101]. It is easy to prove that these graphs verify (Cap), since one can find
a uniform upper bound for the equilibrium measure of a set.

e Any tree T' with unit weights such that {x € T : R? > A} only has
bounded components for some A > 0, where R2° is the effective resistance
between x and infinity for the descendants of z, see Proposition 2.2 in [1].
These graphs verify (Cap), see Lemma IV .4.2.

e Any transient graph with bounded weights, such that (V) holds, that is
the volume of a ball increases polynomially fast, and (G) holds, that is the
Green function decreases polynomially fast, see Proposition I11.5.2. These
graphs verify (Cap), see Lemma I11.3.2.

Therefore, Theorem IV.1.1,1) is a generalization of all these previously known
result, and also include many other graphs, such as any vertex-transitive graphs,
see Lemma IV.4.1. Note that without assuming that (Cap) is fulfilled, it is
possible to find a graph G such that he > 0, and we give an example of such a
graph in Section IV.9. One can also easily find an example of a graph such that
(Sign) is verified, but not (Cap), see Remark 1V.9.2,4)

Theorem IV.1.1,2) asserts that, in the case of massless graphs k = 0, E="
contains an unbounded and connected set with positive probability for all A < 0.
This was first proved on Z%, d > 3, for the discrete Gaussian free field in [16],
but when x = 0 one can adapt their proof to the Gaussian free field on the cable
system on any transient graph, and obtain that EF=" contains an unbounded
and connected set with positive probability for all h < 0, see also the Appendix
of [1]. We also give new proofs of this result. If x # 0, then it is possible to
have h, < 0. For instance, if G is a finite transient graph, then it only contains
bounded sets, and so ﬁ* = —00.

Let us now comment on the various implications in Theorem IV.1.1,3). The
equivalence a) asserts that if he = 0, then the level sets of the Gaussian free
field never percolate at the critical point h = 0, even if (Cap) is not verified.
The implication b) asserts that, if the sign clusters of the Gaussian free field are
bounded, for instance under condition (Cap), then there is an explicit formula
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for the law of the positive level sets of the Gaussian free field on the cable system
given by (Lawp,)s>0. One can use this formula to directly obtain bounds on the
probability that E="(xq) exits a large ball, as well as on the critical window
for h, see (IV.3.9) or (IV.3.11), which generalize the results from Theorems 3
to 6 in [24], from Z¢, d > 3, to any transient weighted graph fulfilling (Sign).
In Theorem IV.3.3, we also give an explicit formula for the law of the negative
level sets of the Gaussian free field under condition (Cap). An explicit formula
for the probability that z +— vy in E=° has also already been obtained in
Proposition 5.2 of [57|, and was the key ingredient for all the previous proofs of
the inequality h. < 0.

The direct implication in c¢) asserts that it is enough to know that the law of
the capacity of the sign clusters is given by (Lawg) to obtain the strong version
of the isomorphism (Isom). In particular, if (Sign) is verified, then (Isom) holds,
which is a generalization of the version of the isomorphism from [101], where
an additional assumption on the boundedness on the Green function is required.
Moreover, there are graphs verifying (Lawy), and thus (Isom), but not (Sign), see
Remark 1V.9.2,3). According to the direct implication in d), the isomorphism
(Isom) implies that for all A > 0, the law of the capacity of the level sets is given
by (Lawy). This follows directly, see Lemma IV.4.7, from a slightly different
version of the isomorphism that we denote by (Isom’), and which is stated in
Section IV.3. It includes the law of the signs of ¢ on the left-hand side of
(Isom), which are given in Lemma 3.2 of [57]. We also give a version of the
isomorphism (Isom’) for the discrete graph G in Theorem IV.3.4, similar to the
version of the second Ray-Knight theorem from Theorem 8 in [58]. Finally,
since (Lawp,)p>0 trivially implies (Lawy), the direct implications in c¢) and d) are
actually equivalences.

We now present the ideas behind the proofs of the various results in Theo-
rem IV.1.1. It is surprising that, under the weak condition x = 0 and (Cap),
the critical parameter h. and the law of the capacity of the positive level sets
cap(E="(z¢)) are explicitly known, and are almost independent of the nature
of the graph. In order to gain a better understanding of this result, we present
in Sections IV.5, IV.6 and IV.7 three independent proofs of 1), 2) and 3,b) in
Theorem IV.1.1. The first two proofs both involve the average value Mj of
the Gaussian free field weighted by the equilibrium measure of K, where K is a
compact of 5, that is

My =) ex(x)pa (IV.1.6)

2€dK
One can show using the strong Markov property for the Gaussian free field, see
(IV.2.31), that if K is a random compact of G, which essentially only depends on
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the Gaussian free field around this compact, then the law of Mg, conditionally
on knowing ¢ on K, is Gaussian with mean My and variance cap(K) — cap(K);
we refer to Lemma IV.2.3 for a precise statement.

The first proof involves Russo’s formula for the Gaussian free field on the
cable system, see Proposition IV.5.1, which was first introduced on discrete
graphs in Proposition 3.2 of [79], and bears some similarities to Russo’s formula
for Bernoulli percolation, see [82]. This formula relates the derivative in h of
the probability of an event depending only on the level-sets E=" N K, for some
compact K, to the average value of My when this event happens. In order to
obtain Theorem IV.3.1, one consider events of the type {cap(E="(zo)NK) >t}
for some t > cap({zo}). Conditionally on {cap(E="(xq) N K) > t}, one can then
use the previously mentioned Markov property to replace the average value of
Mg by Mpzn(z)nr in Russo’s formula. Moreover, ¢ > h on E="(x) N K, and so
Mpg=zn(z)nx = ht, and we thus obtain a differential inequality for the probability
of the event {cap(E="(x¢) N K) > t}. Solving this differential inequality let
us compare this probability of this event at level h and level 0, see (IV.5.5),
and taking K 7 G and ¢t — oo we obtain Theorem IV.3.1. The proof of
Theorem 1V.3.3 is similar, but considering events of the type “{cap(E="(z)) ~
t, E="(zy) C K} instead, and using that, if E="(zy) C K, then ¢ = h on
the boundary of E="(xy) by continuity of the Gaussian free field, to obtain a
differential equality instead of a differential inequality. This implies in particular
that a version of (IV.3.7) still holds on any transient graph, that is cap(E="(x))
have the same law for positive and negative h when E="(z,) is compact, see
(IV.5.9).

The second proof involves an exploration martingale, similar to the one intro-
duced in [24] on Z%, d > 3, see also Lemma 4.2 in [101] for a similar martingale
on the (d + 1)-regular tree, d > 2. To explore E="(z,) for some fixed vertex
20 € G, define K™ the set of points in E="(z4) at (chemical) distance at most t

from x( and ./\/lgh) = M., the average value of the Gaussian free field weighted

by the equilibrium measure of the set of points explored at time ¢ > 0. One

can then use the previously mentioned Markov property to prove that (M,ﬁh))tzo

is a continuous martingale, and that its quadratic variation is cap(ngh)), see
Lemma IV.6.1. In particular, by usual martingale theory, up to time modifi-
cation by (cap(lC,gh)))tZO, (./\/lgh))tzo is a Brownian motion, see Lemma IV.6.2.
Moreover, ¢ > h on the boundary of ICih), and so Mﬁ") > hcap(lCih)), and, if the
exploration is stopped at time 7', then by continuity of the Gaussian free field
¢ = h on the boundary of ICgL) and ng) = E=h(x), and so ./\/l(Th) = hcap(ngl))
and cap(ngph)) = cap(E="(zp)). After time change by cap(lCt(h)), one can thus

link the probability that cap(E="(z)) > s to the probability that a Brownian
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motion starting at a positive value and with drift —ht has not reached 0 at
time s, see Proposition 1V.6.3, and using usual formulas for this distribution,
see (IV.6.5), Theorems IV.3.1 and IV.3.3 follow.

The last proof is more involved, but let us obtain all the results from The-
orem [V.3.1 at once. We are mainly going to prove the strong isomorphism
(Isom’) between random interlacements and the Gaussian free field on an ade-
quate class of graphs, and the identity (Lawy),>o then follows at once, that is
the direct implication in Theorem IV.1.1,3,d) holds. When G is a finite tran-
sient graph, the isomorphism (Isom) is a direct consequence of the isomorphism
between loop soups, see [54] and [57], and the Gaussian free field that we recall
in Theorem 1V.7.1, and we refer to Lemma IV.7.2, proved in the Appendix, for
details. Once (Isom), and thus (Lawy,),>0, have been proved on finite transient
graphs, we are going to approximate the Gaussian free field on any infinite tran-
sient graph G by the Gaussian free field on a sequence of finite transient graph
G, increasing to G, see Lemma IV.7.4, to obtain our third proof of 1), 2) and
3,b) in Theorem IV.1.1, see the end of Section IV.7 for details.

It is interesting to extend (Isom) to infinite transient graphs, which is done
in Section IV.8, since it also provides us with the equivalences a), ¢) and d) in
Theorem IV.1.1,3). Moreover, the isomorphism (Isom), as stated in Theorem 2.4
in [101] under stronger conditions, has already been useful in [101] and [1] to
compare the critical parameter for the percolation of random interlacements
and the Gaussian free field on discrete trees, and in Chapter III to prove strong
percolation for the level sets of the discrete Gaussian free field at a positive level
on a large class graphs, for instance Z?, d > 3, or various fractal graphs. It is
not always easy to check that the conditions of Theorem 2.4 in [101] are exactly
verified, see the proof of Corollary I11.5.3 which sparked our interest, and it thus
can be interesting to replace them by the stronger condition (Lawg). Moreover,
if G is a graph such that (Isom) holds, this implies a stronger statement than
(IV.3.7): conditionally on being compact, the level sets of the Gaussian free field
above level h and —h have not only the same law for their capacity, but in fact
the same law, see Proposition IV.4.7.

In order to prove (Isom) on infinite transient graphs, we approximate random
interlacements on infinite graphs by random interlacements on finite graphs,
see Lemma IV.8.2, and using as well the previously mentioned approximation
for the Gaussian free field, we obtain (Isom) if (Sign) or (Lawy) is fulfilled,
see Lemma IV.8.3, that is Theorem IV.1.1,3,c) holds. Moreover, our proof of
(Isom) by approximation by finite graphs, instead of the Markov property as
in [101], let us also derive immediately a signed version of the isomorphism for
random interlacements on discrete graphs, (IV.3.15), from the equivalent discrete
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isomorphism for the loop soup, (IV.7.3).

Finally, the isomorphism (Isom) has another interesting consequence, stated
in Corollary IV.3.6: if (Sign) does not hold, then hy = 0. In particular, if G is
a graph such that h, < 0, then E=" is P%-a.s. bounded for all A > 0, and thus
(Lawy,) holds for all A > 0, see Theorem IV.3.3. Taking the limit as h \, 0, one
can then prove that (Lawg), and thus (Isom), hold. Since h, # oo, this means
that (Sign) must hold, and thus we obtain Theorem IV.1.1,3,a).

We now explain how the chapter is organized. Section IV.2 recalls the main
objects of interest, the diffusion X, the Gaussian free field, and random interlace-
ments on the cable system, as well as their properties. For later use, the notion
of equilibrium measure and capacity are also extended to the cable system, see
Lemma IV.2.1, (IV.2.18) and (IV.2.20).

Section IV.3 collects and explains in details our results, which together imply
Theorem IV.1.1, and that we will prove throughout the rest of the chapter.

Section IV.4 gathers various interesting results. It first gives some simple con-
sequences and equivalent formulations of our main conditions (Cap) and x = 0,
and presents several example of graphs on which they are verified. Then, the
law of cap(E="(x)), as given by its Laplace transform in (Lawy,), is further de-
scribed by computing its density and asymptotics for its cumulative distribution
function. Finally, simple consequences of the isomorphism (Isom) are derived at
the end of the section, such as the the identity (Lawy,).

Section IV.5, IV.6 and IV.7 are devoted to the three proofs of 1), 2) and
3,b) in Theorem IV.1.1, or more precisely Theorems IV.3.1 and IV.3.3. Section
IV.5 contains the proof using Russo’s formula, Proposition IV.5.1. An interesting
porism, Corollary IV.5.3, is a relationship between the law of cap(E="(z)) when
E="(z4) is compact, and the law of cap(E=(x)) when E=°(z,) is compact, for
all h € R and on any transient graph, which generalize the result from (IV.3.7).

Section IV.6 is centered around the proof using an exploration martingale
(IV.6.1). The main interest of this proof is a condition equivalent to (Lawy), even
when (Sign) does not hold, in terms of the limit of the exploration martingale,
see Remark IV.6.4.

The proof in Section IV.7 consists in proving the isomorphism (Isom) on
finite graphs, see Lemma IV.7.2; as well as the approximation of the Gaussian
free field on a graph G, by Gaussian free fields on a sequence of graphs increasing
to G, Lemma IV.7.4.

Section IV.8 is devoted to the proof of the isomorphism between random
interlacements and the Gaussian free field (Isom) under the condition (Lawy),
and to its consequences, Corollaries IV.3.6 and IV.3.7. An important role is
played by the approximation of random interlacements on a graph G, by random
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interlacements on a sequence of graphs increasing to G, see Lemmas [V.8.1 and
IV.8.2. Some concluding remarks and open questions are gathered at the end of
the section.

Section IV.9 gives an example of a graph for which he = 00, as opposed
to Theorem IV.1.1. This graph is constructed as a d-regular tree, but with
unbounded weights, or equivalently with unbounded length of the edges for its
cable system.

For the reader’s orientation, we note that the conditions (Sign), (Law;) and
(Isom) are introduced above Theorem IV.1.1, and that the condition (Isom’) is
introduced above Theorem 1V.3.4.

The notations in this chapter, as well as in Chapter V, differ slightly from
the notation in Chapters I, II III. First we denote by G the graph and by G its
vertex set, whereas G was denoting both in previous chapters. The reason for
this choice is that we are going to consider in this chapter different graphs with
the same vertex set, see (IV.2.7) for instance, and it is thus now important to
distinguish them. In the previous chapters, we denoted by G the cable system
associated to (G, and we will consequently denote it by G from now on. Note
that one additionally attaches to the graph G an interval I, for all z € G, and
we will denote by GP the graph obtained by glueing together only the intervals
I, for e € E, which corresponds to the definition of the cable system from the
previous chapters. When x = 0, which we always assumed until this chapter,
adding the intervals I, x € G, with infinite length plays essentially no role, see
(IV.2.11) and Lemma IV.4.3.

Moreover, we will often add G as a subscript or superscript to the notation
when we want to precise the graph that we consider for our cable system, and G
when we want to precise that we only consider the discrete graph. For instance
the diffusion X on G is defined under ng, whereas the jump process Z on G
is defined under Pg. Finally, since we almost always only consider the cable
system from now on, we removed many tilde to avoid cumbersome notation, for
instance on the Gaussian free field ¢, the level sets E=", the local times of random
interlacements £, ,, the random interlacements Z%, or on the probabilities PY,
P! and P, on the cable system, which were denoted by &, Ezh, Ec,u, f“, Ezh,
PG P! and P, in the previous chapters.
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I1V.2 Definition and useful results

Let us consider a weighted graph as described above (IV.1.1). For all zy € G,
we define a Markov jump process on G U {A}, where A is a cemetery state, as
follows: under the probabilities ngo the process Z = (Z;)i> is started in . If at
x at a certain time, Z jumps to y with rate A, , and is killed with rate x,. The
process Z is defined up to time (, see (IV.2.3), such that { < oo if this process
is either killed by x at time ¢ or blows up in finite time (. We always assume
that Z is transient, and we denote by (En)neN the sequence of sites visited by
the process Z, and the former is usually referred to as the discrete time skeleton

of Z.

Let us now define the cable system 6, a continuous version of the graph G,
and the diffusion associated to it. We first assume that x, < oo for all z € V,
the general case being addressed below (IV.2.4). To each edge e = {z,y} of G,
an open interval I., isometric to [0, p,,], see (IV.1.1), is attached; furthermore,
) isometric to [0, p,)

to each vertex x of GG, an open interval I, of length p, (= 5.~
(possibly infinite) is attached. The cable system G is then obtained by glueing
together the intervals I., e € F, to G through their respective endpoints, and
glueing the starting point of I, x € G, to x. In other words, G is the metric
graph where every edge e has been replaced by an interval of length p., and
where we have added an interval of length p,, possibly infinite, starting at every
vertex x € G. Then GG can be interpreted as a subset of G. The elements of G
will still be called vertices and the intervals I, e € E and I, x € GG, are referred
to as the edges of G. The canonical distance on each I.,e€ F and I, x € G,
is denoted by Dg. Note that Dg(z,y) is not defined if x and y are not on the
same edge. For any edge e = {z,y} € E and any t € [0, p,,], we denote by
x+t-I.=vy+ (psy —t)- I the point of I, at distance ¢ from z, and for any
vertex € G and any t € [0, p,), by  +t - I, the point of I, at distance ¢ from
x.

We also define a distance dg on 5, such that dg(a:, Y), T,y € G is the minimal
length of a continuous path between x and y, when changing the length of each
I., e € EUG from p. to 1. In particular the restriction of dz to the graph G
is just the graph distance dg on G. One can see G as a metric space for the
distance dg~, and for a subset A of 5 we define JA as the boundary of A in 5
for this distance. For simplicity, we will say that a set K is a compact of G , if
it is compact for the distance dz and has finitely many connected component,
or equivalently if K is a finite unions of compacts of I., e € E'U (G, with finitely
many components. A connected set K is then compact if and only if it is closed,
bounded and K N I, is a connected compact of I, for all x € G. Note that I,
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itself is not compact.

IV.2.1 The canonical diffusion on the cable system

We define the set of forward trajectories VV+ as the set of functions w™ : [0, 00) —

G U {A}, for which there exists ¢ € [0, oo] such that w[oE e C([0,¢),G) and,

when C < 00, wt(t) = A for all t > C. For each t > 0 we denote by X; the
projection at time ¢, i.e. Xy (wt) = wt(¢) for all wt € Wg, and by Wéf the
o-algebra on Wg generated by X;, ¢ > 0. The Lebesgue measure on G , which
can informally be interpreted as the sum of the Lebesgue measures on each I,
e € E, and I, x € G, is denoted by m, with the normalization m(l.) = p.
and m(I,) = p,. Let us now define a diffusion on G , which we will characterize
through its associated Dirichlet form. In order to introduce the latter, we define
for f: G — R measurable

=) f2 dmyr,, (IV.2.1)

ec EUG

LQ(g, m) = {f: G — R measurable; (f, f)m < oo} and (f,g)m the associated
quadratic form on L2(G,m). Let Cy(G) be the closure for the || - ||s norm of
the set of continuous function with compact support on g and let D(g m) C
L2(G,m) be the space of functions f € Co(G) such that fir. Y2(I.,myy,) for

alle € EUG and
> filliveq,my,) < o
ec EUG

where W12(I,, m;,) denotes the Sobolev space on I.. We now define the Dirichlet
form on L?(G,m)

E5(f.9) = (f ¢ for all f,g € D(G,m). (IV.2.2)

By Theorem 7.2.2. in [37], one can associate for each z € G an m-symmetric
diffusion starting in x with state space G to the Dirichlet form £z, and we denote
by P¢ its law on (Wg, Wéf) We then let

=inf{t >0: X; =A}and ( =inf{t > 0: Z, = A}. (IV.2.3)

Informally E is either oo, or the first time X blows up (i.e. escapes all bounded
sets) or gets killed (i.e. exits G through some I, with , > 0). We refer to Section
5 of [14], Section 2 of [36] and Section 2 of [57] for more details about the metric
graph g and its associated diffusion X, the Brownian motion on Q Note that
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in these references the cable system is defined without the cables I, x € G, but
in fact the two definitions are essentially equivalent, see the discussion below
(IV.2.11). Informally, one can obtain a diffusion with law Pg as follows: first
run a Brownian motion starting at x on I, with x € I, e € E' U G, until a vertex
y is reached, then choose uniformly at random an edge, or a vertex, e € EUG
which contains ¥, or is equal to y, run a Brownian excursion on /. until a vertex
is reached, and iterate this process until either the process blows up (i.e., it
escapes all bounded sets) or the open end of the interval I, is reached for some
x € G, and in the latter case the process is killed at that time. We refer to
Section 1.2 for a more accurate description of this construction on Z?, d > 3.
We also define for any non-negative measure p on G with countable support
supp(u) the probabilities

TN (IV.2.4)

xEsupp(u)

Let us now extend our definition of the cable system QN and the diffusion Pg
to any graph G with s € [0, 0c]. Let

E,. = {{x,y} cx,y €V, Ay >0,k =00 and Ky < oo}. (IV.2.5)

Let G() be the graph with vertex set G U E,., edges between each z ~ y € G,
as well as edges between = and e for all e € E, and x € G Ne. The symmetric
weights and killing measure on G are given for all z,y € G U E,, by

Azy if x,y € G,
M) = 2\, Hy=e={z 2} €k,

Y
0 otherwise, (IV.2.6)
q (00) Ky if x € G,
and k) =
2\,. ifx=e={y,z}€E,.

We then have that G(>) is a graph with () < 0o, and we can define G =Gl
and Pg = Pg(oo) for all z € G. Using properties of exponential and geometric
random variables, it is easy to prove that for all x € G, the restriction of Z to
G under Pf(oo) has the same law as Z under PY. To simplify notation, we will
identify G and G in the rest of the chapter; in particular, unless explicitly
mentioned otherwise, one can assume without loss of generality that x, < oo for
all x € V.

In the following, it will be useful to compare the diffusion X on G for different
values of the killing measure k. For any killing measure ' on V, we define
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G = (G, \, '), and we view
G CG=G, ifw>n, (IV.2.7)

where k' > K means k!, > k, for all z € V. We set, under Pf, z € Gu(CG),

{Xf', if t < ¢~

~> where (" =inf{t >0: X, ¢ G}, IV.2.8
N ¢ { t ¢ G} ( )

By Theorem 4.4.2. in [37], the Dirichlet form associated to X[ is & ,, and so

the law of X/ under PEN’ is Pg for all 2 € G (IV.2.9)

One can show, analogously to Section 2 of [57|, that the process X under Pg

has a space-time continuous family of local times (¢,(t)) Therefore, using

v ye§,t20'
that PY lives on the canonical space (W,gir , ng ), for all sets F¥ C E UG of the

form
F=|]JLuJ{=}

ecFy xeFy
where F} C EUG and F;, C GG arbitrary, we can define the time change

F def L f {3 >0: / Ix,ey, p 1. du+ Z ly(s) > t} for all ¢ > 0.
0 1

yeF,

Here, we use the convention inf @ = g,.; and denote the print of X on F' by
Xt = (XTtF)tZO, which corresponds to a time changed process with respect to a
PCAF, see (A.2.36) and below in [37] for example. As a first application of this
definition, it follows from Theorem 6.2.1. in [37] that for all x € G

the print X¢ of X on G has the same law under PY as Z under P,
(IV.2.10)
and that the local times (fy(E ))yec of X after being killed have the same law
under Pf as the occupation times of the Markov jump process Z after being
killed under P9, see for instance (1.97) and (2.80) in [98].

We define GZ as the closed subset of G which consist of the union of the
intervals 1., e € F, and X gE, the print on GP of X , that is the cable system
that we considered in the previous chapters when s was equal to zero. One can
prove by Theorem 6.2.1. in [37] that the Dirichlet form on L% (G, mige) = {f €

L2(G*, Mige) D peq kaf (¥)? < 00} associated to the print X9 of X on G is
def. 1
Ege([.9) S S0 Imge + D haf (x)g(x)
poere (IV.2.11)
for all f, g € D(QE,m@E) N L%(QE,m@E).
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If kK = 0, the process X 9* thus corresponds to the usual diffusion on the cable
system G”. If k > 0, it follows from Theorems 6.1.1. and A.2.11. in [37] that
X9 has the same law under Pg as the diffusion X% under Pgo killed at time

EE = inf {t < Zb : Zﬁx(t)/{x > f},

zelG

where £ is an 1ndependent exponential variable with parameter 1 and with the
convention inf @ = (. This process has been studied in Section 2 of [57]: X G
under P9 also has print Z on G, and so the local times (0y(t)),cgm 0 have the
same law under Pg as the local times of the process X 9* under Pg , that is the
local times of the process introduced in Section 2 of [57].

We define the Green function on an open set U C G by
gu(x,y) = Eg[éy(TU)] for all z,y € G, (IV.2.12)

where

Ty =inf{t >0: X, ¢ U}

is the first exit time of U, with the convention inf @ = E , and gz is then the
usual Green function on G. This definition of the Green function agrees with the
usual definition of the Green function on G associated with the Markov process
Z. Using the Markov property for X at time Ty, we have for all U C G

gu(®,y) = 95(x,y) — EY [95( Xy, y) 1y, ¢ (IV.2.13)

IV.2.2 Equilibrium measure and capacity on the cable sys-
tem

We now introduce the notions of equilibrium measure and capacity on the cable
system G as generalizations of the respective standard versions of these notions
on transient graphs, see (IV.2.18), (IV.2.20) and (IV.2.27), and give several
identities between the diffusion X and the equilibrium measure. For all finite
A C G the equilibrium measure and capacity of A are defined by

eag(r) = N\PI(Hy = 00)Ia(x) forallz € G, and  cap(A) =Y esg(@);
T€EA

(IV.2.14)
here, H 4 et inf{n > 1, 7, € A}, with inf @ = oo, is the first return time to A
for the discrete time random walk Z on G. We now define a graph G4 for each
finite A ¢ G , which has almost the same cable system as G, but contains A in
its vertex set, and such that the diffusions X on gN 4 and 5 are essentially the
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same. For instance, G1*} corresponds to the graph where we added z as a vertex
between y and z when = € I, e = {y, z}, or to the graph where we added z as
a vertex with an edge between x and y and an adapted killing mass at © when
zel,yed.

Lemma IV.2.1. For all finite set A C 5, there exists a unique graph G4 =
(VA XA kA with vertex set G4 = AU G, such that

e in a slight abuse of notation, 5 s a subset of JA;

[ ]
for all x € G*, the law of the print (X _ca)i>0
o (IV.2.15)
of X on G* under P9 is PI";
e for all finite sets K C G,
exga(r) =exg(x) forallz € G. (IV.2.16)

Proof. We first consider the case where A = {y} for some y € G. If y €
Itzozy \ {@o, 21} for some xp, 21 € G with xy ~ x;, we introduce the graph
G} as the graph obtained by adding a vertex y to V, as well as replacing the
edge between xy and z; by two edges between xy and y and between y and z;.
We thus take V¥ = V U {y}, and the symmetric weights and killing measure
on G are defined by

ke ifx#y,
0 if x =uy.

/\w,x’ if .’L',.CU/ ¢ {1;073:173/}7
)‘Eﬁ’ =3Y if {z,2'} = {mo, 21}, and ¥ = {

m if {z,2'} = {7, y}
By (IV.1.1) we have

pW + plt = Dg(xo,y) + Dg(y, x1) = Dg(x0, 1) = Pag,e: -

One can then identify G} \ 1, with G, and by a similar reasoning as in (IV.2.11),
for all € G, the law of the print of X on G under P9 is PY9. By (IV.2.10)
applied to the graph G¥} we thus obtain that (IV.2.15) holds for A = {y}.
Moreover if K is a finite subset of G' containing x,, then we have

e (10) = N (P (Z) # y, Hy = 00) + P9 (Z) = y, Zo = 21, Hi = 0))

74 7 /\izé}y/\?gyx}l 3
= )‘JUOPEO(ZI #x, He = OO) + ﬁpz(f‘[]{ = OO)
)‘IOJI + >\y7x1
=A Pg (21 7& xl?ﬁK = OO) + )\xo,x1pxg1(ﬁK — OO)

To+ xo

= BK’g (ZE())
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One can easily similarly prove that if K is a finite subset of G, then (IV.2.16)
holds for A = {y}. If now y € I, \ {z} for some zy € G, the graph G{¥} is the
graph obtained by adding a vertex y to the graph G and an edge between zy and
y. We thus take VI = VU {y}, and the symmetric weights and killing measure
on G are defined by

Ry lffE gé {y7$0}7

; /
R e (R
D (z0y) L ALT 5 =T Yy, Ko e

¢ 1—2nz0D0g~(x0,y) if © = Y-
(IV.2.17)

One can show similarly as before that one can identify G with G , and that
(IV.2.15) and (IV.2.16) hold for A = {y}. If y € G, we simply define G¥} = G.
One can easily conclude by induction on the number of vertices in A, noting
that (IV.2.15) uniquely define the weights and killing measure of G4. O

When K is a compact subset of 5, then since the number of connected
component of K is finite by assumption, 0K is finite. Thus, we can define the
equilibrium measure of K in G by

e g(T) o eor,gox (x) for all z € OK and ey () “oforallze (OK)“.

(IV.2.18)
For all K C G compact and A C G finite such that 9K C A, one can see G4 as
(G9%)4, and so applying (IV.2.16) to the graph Go% we have

eor,ga () = exg(x) for all x € A. (IV.2.19)

Note that (IV.2.19) is trivial if z € A\ 0K since both side of the equation are
0. We now define the capacity of a compact K with finitely many connected
components on G as the total mass of the equilibrium measure

capg(K) =3 Z ex (), (IV.2.20)

x€IK

which coincides with the definition of the capacity from (IV.2.14) if K C G.
We can also define capgs(K) := capg(K) for all compacts K C GP, see above
(IV.2.11). This definition clearly corresponds to the natural notion of capacity on
GZ that one could also construct directly similarly as in (IV.2.18) and (IV.2.20).
When there is no ambiguity, in order to simplify notation we will write

P, for Pg, g(z,y) for gz(z,y), ex foregs and  cap(K) for capg(K).

Using (IV.2.15), (IV.2.18), and (IV.2.19), we can extend most of the results on
equilibrium measures from the discrete case to the equilibrium measure on G. By
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(1.57) in [98], one can easily show the following identity between the entrance
time Hy of X in K, the stopped Green function and the equilibrium measure:

P,(Hx < () = Z g(x,y)ex(y). (IV.2.21)

yeoK

A useful characterization of the capacity in terms of a variational problem is

cap(K) = (i€ 3" gle.y)p(anty) (1V.2.22)

z,y€0K

where the infimum is over all probability measures 1 on 0K, see for e.g. Propo-
sition 1.9 in [98]. When K C K’ are two compacts of G, one has
P,

exr

(Xy, =, Hx < () =ex(x) forall z € G, (IV.2.23)

which is usually referred to as “sweeping identity,” see for e.g. (1.59) in [98]. In
particular, summing (IV.2.23) on z € 0K, we infer the monotonicity property

cap(K) < cap(K'); (IV.2.24)

note in the above references that while [98] deals with discrete graphs, the trans-
fer of the respective results to the cable graph setting is immediate, also in the
references below.

For any function f : G — Rand compact K C GofG , we define the harmonic
extension n{( of f on K by

me(z) = > Pu(Xp, =y, Hx <) f(y) forallz € G. (IV.2.25)

yeOK

Moreover, we say that an increasing sequence of compacts (K, ),en increases to
a compact K if K is the closure of the union of K,,, n € N, and that a decreasing

sequence of compacts (K, ),en decreases to a compact K if K is the intersection
of K,,n e N.

Lemma IV.2.2. Let f: G — R be a continuous function, and let (K,)nen and
K be compacts of G such that K, increases to K or K, decreases to K. Then
forallz e G

M, () — k().

Proof. For all y € 0K, let A} = {2 € 0K, : dz(z,y) < dg(z,y') for all ' €
OK}. Then max,c y dg(z,y) — 0 for all y € 0K, and there exists N € N such
n—o0
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that for all n > N, (AY),cax is a partition of 0K,,. By (IV.2.25), we have for all
z € Gandn > N that

(@) = g, ()

yeOK 2EAY,

For any £ > 0 one can find N’ > N such that foralln > N’ y € 0K and z € AY
we have |f(y) — f(z)| < e. Therefore for all x € G and n > N’

Inf(x) — i, ()|
<e+ Z f(y>‘Pr(XHK =y, Hx < Z) - P96<XHKTL S A?;NHKn < E)‘

Since for all z € 5 and y € 0K we have

|Po(Xay, =y, Hx < Q) — Po(Xu,, € A, Hy, < C)|
< Po(Xpye = 4, X, & AY, Hy < ¢, Hy, < () + Py(Hy < C, Hg, = C)
+ Po(Xuy # v, Xie, € AV Hye < C, Hg, < {) + Po(Hi = C, Hi, < C)
— 0,

n—o0

we can conclude. O

Another interesting consequence of (IV.2.23) is then that, if (K, )neny and
K are compacts of G such that K, increases to K or K, decreases to K, by
Lemma IV.2.2 with f =1 we have
lim cap(K,) = cap(K). (IV.2.26)
n—oo
Therefore, we can extend the definition of the capacity to any closed set A C G
with finitely many components by taking
cap(A) = lim cap(AN K,), (IV.2.27)
n—oo
where (K, ),en is an increasing sequence of compacts of G converging to G. This
limit exists, does not depend on the choice of the sequence (K,,),en by (IV.2.24),
and is consistent with our previous definition of the capacity for compacts by
(IV.2.26).
We now define for any compact K of G the last exit time Ly of K by
Lk =sup{t > 0: X; € K}, with the convention sup @ = —oo. For all x € 0K
with P9(Xp, = z) > 0 we define

Pf’g as the law of (X¢y1, )i>0 under Pf( | X1, = 7). (Iv.2.28)
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For all z € OK and y € G. by (1.56) in [98] applied to the graph Go%Y{v} and
(IV.2.15), we have B
P} (XL, =) =g(y, x)ex(x). (IV.2.29)

In particular for each x € 0K, Pg (XL = x) > 0 is in fact equivalent to
P9” (Hx = o0) > 0, and the law of the print of X on G under PX9 is
then P9 (| Hx = o0). In fact, one can show that the law of (X;1r, )i>0 under
PJ(-|Lg, Xp, = x)is P9 if L > 0 for all y € G, and that (X;)ss0 is a strong
Markov process, see Theorem 2.12 in [38§].

IV.2.3 Gaussian free field

:EGQ'~ on

the cable system G of a transient graph G, as defined in (IV.1.2). The process

Let us now define recall some properties of the Gaussian free field (¢,)

(¢2),cgr 1s a Gaussian free field on G¥ and has been studied in [57], and (¢, )zec
then has the same law under Pg as the discrete Gaussian free field on the graph
G. We will write Pg instead of ng when we want to stress that we only consider
the discrete Gaussian free field (¢,).cg, and PY instead of ]P’g when there is
no ambiguity about the graph G that we consider. One of the most important
properties of the Gaussian free field is the strong spatial Markov property, which
we now shortly recall, see Section 1 of [101] for details. For any open set O C G ,
let us define the o-algebra Ao = o(¢,, v € O), and for any compact K C G we
define
Ak =) Ax-,
>0

where K* is the open ¢ ball around K for the distance dz. We say that K is a
compatible random compact of G if K is always a compact of G and {KcCO} e
Ay for any open set O C G. We then define

A;:{AeAg: ANn{K C K} € A} for allcompaetsKCé

o s _ (IV.2.30)
which is the closure of its 1nter10r}.

Now the Markov property states that for any compatible random compact IC,

vl is a Gaussian field
) ) (IV.2.31)
with mean fr],“é and covariance gie,

conditionally on Af, (¢,)

where n¢ was defined in (IV.2.25) and gie in (IV.2.12). An application of the
Markov property is that, conditionally on (p,).eq, if € = {y, 2} € E, one can
describe the law of (¢;).er., as a Brownian bridge of length p. between ¢, and
@, of a Brownian motion with variance 2 at time 1, and these Brownian bridges
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are independent. Similarly, conditionally on (p,).eq, one can describe the law
of (¢z)zer,, as a Brownian bridge of length p, between ¢, and 0 of a Brownian
motion with variance 2 at time 1 if s, > 0, and as a Brownian motion starting
in ¢, with variance 2 at time 1 if x, = 0, and all these Brownian bridges and
Brownian motions are independent. We refer to Section II.2 for a proof of this
result on Z? d > 3, which can easily be adapted to any transient graph. In
particular, we have that

conditionally on (p,).eq, the random variables (¢, )zer,, e € EUG,

are independent, and for all e € EU G, (¢z)zer, only depends on ¢,
(IV.2.32)
where g = (¢, 9y) if e = {z,y} € E and ¢, = ¢, if e = 2 € G. Moreover,
using the exact formula for the distribution of the maximum of a Brownian
bridge, see for instance [13], Chapter IV.26, we have for alle € E UG and h > 0

P(Jg. — h| > 0 for all z € I | ¢e) = (1 —pf (¢ — b)) Leck, (IV.2.33)

where for all e = {z,y} € Eand f: G — R

pI(f) =

def. p;&g(f, O) _ {exp ( - QAm,yf(x)f(y)) if f(x)f(y) Z 07 (IV234)

1 otherwise,

and p»9(f,0) is defined in (IV.3.13), and is independent of the choice of u > 0.
Let us now give another consequence of the Markov property (IV.2.31), which
will later be essential to the proof of Theorems IV.3.1 and IV.3.3 both via Russo’s

formula in Section IV.5 and via the exploration martingale in Section IV.6.
Recall the definition of M from (IV.1.6).

Lemma IV.2.3. For any compact K ofg and compatible random compact KC
such that K C K P%-a.s,

conditionally on Af, My is Gaussian

with mean My and variance cap(K) — cap(K).

Proof. By (IV.2.31) and (IV.1.6), we have that, conditionally on A, Mg is
Gaussian

with mean Z ex (z)ng(x) and variance Z ex(x)er(y)gre(x,y).
ze0K z,ycdK
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By (IV.2.23) and (IV.2.25) we have, P%-a.s,

Z Z‘PyZGK XHK_vaIC<C)

z€IK yeoK z€0K
= E ex(y)py

yeIK

:MIC7

and so the conditional mean of My is M. Moreover, for any compact K’ C K

of G, we have by (IV.2.21) and (IV.2.23) that

> ex(t)ex (V) E" [9(y, Xu, )1y, 7]

z,yco0K

= Z eK( |: Hper << Z 6K y)XHK/>i|
z€0K yeoK

=Y ex(x)Po(Hyr < ¢) = cap(K).
€K

Using (IV.2.13), and noting that Tie = H, we have for all z,y € K

gee(z,y) = 9(z,y) — B [g(y, X)L < (]
= E*[g(y, X ) Lay <] — E*[9(y, X)L ae < €],

and therefore the conditional variance of My is cap(K) — cap(K). O

One can also describe the law of the restriction of the Gaussian free field on
any transient graph G to a connected compact K of G by a Gaussian free field on a
finite graph. Indeed, if 0K C G, following Proposition 1.11 in [98], one can define
a graph GE with vertex set GE := {x € G: Je € E,x € e, K NI, # &}, such
that the restriction of the weights to £ N K? is still A, , for all {z,y} € EN K?,
the killing measure is egx (z) for all z € GE, and ggx (2,y) = gg(z,y) for all
x,y € GE. We can then also see K as a subset of (jf, and for all z,y € K with
x # vy, considering the graph Gt#¥} | it is easy to see that 9o (z,y) = gg(z,y) for
all z,y € K. Therefore, considering the graph GX, for all connected compacts
KofG , there exists a graph GX with vertex set GX UOK, killing measure eg ()
for all z € GX UOK, and such that, using (IV.1.2),

(pz)zex has the same law under Pg and IP’QQK. (IV.2.35)

IV.2.4 Random interlacements

Let us now define our second object of interest, random interlacements on the
cable system G, similarly as in [57] or [101]. We define the set of doubly infinite
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trajectories Wz as the set of functions w : R — Gu A, for which there exist
—00 < {~ < (F < oo such that W7+ € C((C,¢h),G) and w(t) = A for all
t ¢ (Z" -, Z“Jr) For each w € W, we also define pg(w) as the equivalence class of
w modulo time-shift; here, w and w’ are equal modulo time-shift if there exists
to € R such that w(t + ty) = w(t) for all t € R, and Wz = {pé(w), w € Wg}.
We define W the o-algebra on Wi generated by the coordinate functions, and
W%v ={AC wg (pgv)’l(A) € Wg}. For each compact K of G, we denote by
W 5 the set of w € Wz with Hg(w) = 0, where Hg(w) = inf{t € R : w(t) €
K} With the convention inf @ = ZJF. By W* ~ we denote the set of w* € Wéﬁ
such that (p ) Hw ) n W) & wa # @. For w E W, we define the forward part
of w as (w(t))t>0 and the backward part of w as (w(—t))t>0, which both are
elements of W+, see above (IV.2.1). For w* € W* AL define the forward and
backward part of w* on hitting K, respectively, as the forward and the backward
part of w, respectively, where w is the only trajectory in (p 5) "H{w*}) N W% G
For a set B € Wg we write

Bt & {(w(t))so : w € BY and B~ L {(w(—t))i=0 : w € B},

and it is clear that BT, B~ ¢ )/V+ The set of B € W5, B C W & such that
B is equal to the set of w € WO kG whose forward part is in BJr and whose
backward part is in B~, is denoted by WO . We then observe that WO ~ and
{AeWs: WIO(, sNA=0 } generate W. Recalhng the notational conventlon of
(IV.2.28), we define a measure @) k.G on Wg, whose restriction to W?(’ g is given
by

Qug= Y ex(@)PL(HPLI(), (IV.2.36)

z€dK

and such that Q s(A) = 0 for all A € Wz with AN W%fgu = @. Note that

Pf’g(-_) is well-defined whenever PE(XLK = z) > 0, that is ex(z) > 0 by
(IV.2.29), and so the sum in (IV.2.36) is well-defined. There exists a unique
measure Vg on WG’E, which is the intensity measure underlying random interlace-

ments on G. , such that for all compacts K C G )
vg(A) = QKg((pé)_l(A)) for all A e ng, ACW, & (IV.2.37)

We will not give a proof of the existence of the measure vz; instead, we refer to
[103] for a proof of the existence of such a measure on the discrete graph G when
k = 0, and to [57] for a proof of the existence of such a measure on the cable
system associated to Z¢, d > 3. One can easily adapt these proofs to obtain a
measure vg such that (IV.2.37) hold for all compacts K of G with 0K C G, even
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when x #Z 0. Now considering any compact K of ('j, one can thus construct a
measure Vg« such that (IV.2.37) holds for vgox and K, and using the fact that
PE is the law of the print of X on G under PEGK, one can easily prove that v is
the print on G of Vgox, and so that (IV.2.37) also holds for vg and K. We refer
to Section V.2 for a complete proof of the existence of the measure vz, and an
in depth study of the associated interlacements process.

The random interlacement process w under some probability ]P’é~ is a Poisson
point process on ng x (0,00) with intensity measure vz ® A, where A is the
Lebesgue measure on (0,00). When x # 0, these trajectories can be killed before
blowing up; in our setup this is realized by the trajectory exiting G via I, for
some z € G with k, > 0, both for their forwards and backwards part. We also
denote by w* the point process which consist of the trajectories in w with label
less than u, by ({;4),.g the continuous field of local times relative to m on G of
wy, and by Z" = {x € QN: Uy > 0} the interlacement set at level u, and one can
easily show that it is characterized by the following identity: for any closed set
A C G with finitely many components, possibly non-compact,

]P’é(I“ NA=0g)=exp(—ucap(A)). (IV.2.38)

The print w9 of w, on G has the same law under Pé, or equivalently PL. as
the usual discrete random interlacement process, see [103] in the case k = 0. If
k Z 0, a trajectory in w9 can start or end at a fixed point x € G, and in this
case we say that this trajectory is killed at . We also define Zp, C E'U G to
be the set of edges crossed by at least one single trajectory in w9, union with

the set of vertices at which a trajectory in w9 is killed, and we shall write Pé
instead of Pé in case we want to emphasize that we only consider w¥. In the case

Apy = TL-H for all z,y € F and k, = d;g—fl”) for all x € G, T > 0, the discrete
random interlacement process w¢ corresponds to the model of finitary random
interlacements studied in [15], and we refer to Proposition 4.1 in [15] for a proof
of the correspondence.

Moreover, we can describe w, as follows: for any compact K of G , the law
of the forward trajectories in w, on hitting K is a Poisson point process with
intensity uPe%{, and so it can be constructed from a Poisson point process with
intensity uPegKaK by adding Brownian excursions on the edges. Thus w, can be
constructed from w¢ by adding independent Brownian excursion on the edges,

and we refer to [57| for more details on this construction. In particular

g

u

conditionally on w;/, the random variables (¢, ,)zer., ¢ € E UG,

are independent, and for all e € E'U G, (¢, 4)zer, only depends on wgu,

(IV.2.39)
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where wgu is the set of trajectories in w9 hitting e. When there is no ambiguity,
we will simply write P for Pé, and v for vg.

IV.3 Statement of the Results

In this section, we explain and state our results, which we will prove in the rest
of the chapter. Put together, these results imply in particular Theorem I1V.1.1,
but we are going to give more details here. Theorem IV.3.1, together with its
consequence, Corollary IV.3.2, correspond to 1) and 2) in Theorem IV.1.1. In
Theorem IV.3.3, we give the law of the capacity for all h € R under condi-
tion (Cap), and not only for h > 0 as in Theorem IV.1.1. Once the law of
the capacity is known, one can derive some bounds on the critical window as
h — 0, see (IV.3.9), and we give an example of this in (IV.3.11) under the
condition (IV.3.10). We then study the isomorphism (Isom) between random
interlacements and the Gaussian free field, and Theorem 1V.3.4 gathers results
corresponding to the equivalences 3),c) and 3),d) in Theorem IV.1.1. We also
give another formulation of this isomorphism on the cable system, see (Isom’),
as well as a version on the discrete graph, see (IV.3.15). Finally, we gather some
interesting consequences of the isomorphism (Isom’) in Proposition IV.3.5 and
Corollaries IV.3.6 and 1V.3.7.

In order to get a better understanding on why the conditions x = 0 and (Cap)
are introduced in Theorem IV.1.1, we now introduce some useful additional
critical parameters. Recall the definition of a compact set introduced at the
beginning of Section IV.2, and that a set is compact if and only if it is bounded
and its intersection with [, is a compact of [, (identified with a semi-open
interval of length p,) for all x € G. Our second critical parameter (after Iy, sce
(IV.1.4)) is then defined as

>h : _
peom — in {h € R: P° < E=" contains a non-compact ) _ 0} avan

connected component

Every compact set is bounded, and so we always have A™ > %* A third critical
parameter, involving the capacity of E=", is

>h ;
B — o {h € R: PC ( E=" contains a connected ) _ O} (v32)

component with infinite capacity

Every compact set has finite capacity, and so h{™ > h¢. and we therefore have
that
on any transient graph, A2 > h{*™ and h{"™ > h,. (Iv.3.3)
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On any graph such that x = 0 or (Cap) is verified, the situation is simpler. On
the one hand, if kK = 0, since I, is an interval of infinite length for each x € G,
one can easily prove that £2" N I, is a compact of I, for all h € R, and so
E="is compact if and only if it is bounded, see Proposition IV.4.4. By (IV.1.4),
(IV.3.1) and (IV.3.3), we thus obtain that

if G is a transient graph with x = 0 then, h{"™ = E* > h{P. (IV.3.4)

We refer to Proposition IV.9.1 for an example of a graph for which the inequality
in (IV.3.4) is strict. On the other hand, if condition (Cap) is fulfilled, then every
connected closed set with finite capacity is bounded, and so h¢® > h, by (IV.1.4)
and (IV.3.2). In fact, one can also show that for all zy € G, if cap(E="(z)) < oo,
then E="(z,) is also compact, and so he® > h¢™ see Proposition 1V.4.4. By
(IV.3.3), we thus obtain that

if G is a transient graph verifying (Cap) then, (™ = h{*™P > hs. (IV.3.5)

In particular, if G satisfies (Cap) and x = 0 as in Theorem IV.1.1, then from
(IV.3.5) and (IV.3.4) it is clear that the three critical parameter h™, h, and
h$* coincide; hence, in this case, for proving that they are equal to zero, it is
now enough to show that one is non-negative and another one is non-positive.

Theorem IV.3.1. Assume G is transient. For all zg € G and h > 0 the random
variable cap(E="(xq)) is PY-a.s. finite, and for all h < 0 the level sets E="(xg)
of xy is non-compact with positive probability. In particular, we have h{*® < 0
and h{®™ > 0.

Using (IV.3.4) and (IV.3.5), as well as Proposition IV.4.4, we directly obtain
the following corollary.

Corollary IV.3.2. Assume G is transient. If G satisfies (Cap), then (Sign)
holds; in this case, in particular, h{®™ = h$* = 0. If Kk = 0, then for all h < 0
the level sets E="(zy) of xo is unbounded with positive probability; in this case,
n particular, h{°™ = h, > 0. Therefore, if G satisfies (Cap) and k = 0, then
hye = h{®™ = h{*P = (.

We refer to Proposition IV.9.1 for an example of a graph for which (Cap) is
not satisfied, and h{"™ = h, = 0o, and to Remark IV.9.2.4) for an example of
a graph for which h{°™ = h$*P = 0, but the condition (Cap) is not fulfilled. An
interesting direct consequence of Corollary IV.3.2 is that if G satisfies (Cap), then
by symmetry {z € G: |@z| > 0} only contains compact connected components,
and so the loop soup on G at level % also only contains compact connected
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component on which its local time are positive, see Theorem 1 in [57]. A fortiori,
the discrete loop soup on G at level % then only consists of finite clusters.

Let us now consider the case where G is a finite transient graph as a first
example of graphs on which some critical parameters are equal to 0, in order to
give an intuition about the results from Theorem IV.3.1 and Corollary IV.3.2.
For all h < 0 and =z € G such that s, > 0, since ¢ on [, conditionally on ¢,
has the same law as a Brownian bridge of length p, < 0o between ¢, and 0 of a
Brownian motion with variance 2 at time 1, see the discussion below (IV.2.31),
we have that P%(p, > hfor ally € I,) > 0, and since I, is non-compact, we
obtain h&™ > 0. Now similarly if & > 0, then P%(¢, > h for all y € I,,) = 0 for
all z € G, and since G is finite, we obtain that h{°™ < 0. Since (Cap) is trivially
verified on finite graphs, we thus have by (IV.3.5) that hZ™ = A% = 0. Note
however that h, = —oo since there is no unbounded sets on finite graphs, and
so the inequality in (IV.3.5) can be strict.

We are now interested in the law of the level sets, under the condition that the
level sets E=", h > 0, of the Gaussian free field only contain compact connected
components. Note that by Corollary IV.3.2, on any graph G such that the
condition (Cap) is satisfied, condition (Sign) is also satisfied, and so E=" contain
only compact connected components for all h > 0.

Theorem IV.3.3. Assume G is transient. For all xo € G and h > 0 such
that E=" is P%-a.s. bounded, on the event {©,, > h} (in order to ensure non-
triviality), the random variable cap(E="(x¢)) has moment generating function
given by (Lawy) and density given by

h’t

exp ( _ T)LZQ(WO)_L (IV.3.6)

1
B 27Tt\/g(x0, x0)(t — g(zo, x0)™1)

If G satisfies (Cap), then for each h > 0, (Lawy) holds, the random variable

pn(t)

cap(EZ’h(:z:O))]lcap(ngh(xO))e(om) has the same law as cap(Ezh(xo))]I%OZh,
(IV.3.7)
and so

PY(cap(E=""(x¢)) = 00) = P%(¢,, € (—h, h)). (IV.3.8)

Three independent proofs of Theorems IV.3.1 and IV.3.3 are given at the end
of Sections IV.5, IV.6 and IV.7. In the case k = 0 one can replace in Theorems
IV.3.1 and 1V.3.3 the cable system G by the cable system GP , which corresponds
to removing the edges I, * € G, from é, see Lemma IV.4.3, and is the usual
definition of the cable system, see [57]. One can deduce from Theorem 1V.3.3
some bounds on the critical window as h — 0, which are similar to the ones
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obtained in [24] on Z%, d > 3. Indeed, for all n € N and h € R, due to the
monotonicity of capacity (cf. (IV.2.24)) one has that

P (cap(E=" (1)) > cap(B(zg,n)) < P% (2 +— B(xg,n)" in E=")

< P¢ zh > i
< B9 (cap(E=" (z0)) = o A)chap(A)L

(1V.3.9)

where the infimum is over connected sets A, §(A) is the diameter of A and

B(x0,n) is the ball of radius n for the distance dz. One can then exploit the find-

ings of Theorem IV.3.3 in order to derive asymptotics for P%(cap(E="(z4)) > )

as h, — 0, and we gather these results in Lemma IV.4.6. A particularly inter-

esting example is when G is a transient graph such that for all zy € G,
cap(B(xo, 1))

cap(B(xp,n)) — oo and limsup - < oo. (IV.3.10
p< ( 0 )>”_>OO n—>oop MlzocACG,6(A)>n Cap(A) ( )

Note that (IV.3.10) directly implies that (Cap) is fulfilled, and so (Sign) holds
true as well. The bound (IV.3.10) is fulfilled on any graph such that k = 0, the
volume of B(zy,n) increases as n® for some o > 2, and the Green function g(z,y)
decreases as |z — y|™¥ for some v € (0,1), see (II1.3.11) and (II1.3.14), and an
example of such a graph is G = G’ X Z, where G’ is the Sierpinski gasket, see [50].
As a direct consequence of (IV.3.9) and the asymptotics from Lemma IV.4.6,
we then obtain that, under (IV.3.10), for any sequence h,, > 0,

G ¢ v >ha
]P];DG((OO:IZ(EE;;’Q)CIEZ;N)) —0 if and only if h,+/cap(B(zg,n) — 00,
(IV.3.11)
One could also find some results on the critical window for h,, < 0 using (IV.3.9)
and Lemma IV .4.6.
We now turn to our results about the isomorphism between random inter-

lacements and the Gaussian free field (Isom), and its link with the condition
(Lawy,). We first present another formulation of the isomorphism (Isom), which
will be useful later. It includes the law of the sign of ¢ on the left-hand sign of
(Isom), which was first given in Lemma 3.2 in [57], and the simple proof of the
equivalence between (Isom’) and (Isom) is part of the proof of Theorem IV.3.4
given at the end of Section IV.8.

On some extension I?Dé of Pg ® Pé, that we simply denote by P! when there
is no ambiguity, let us define for each u > 0 an additional process (o) .z €
{-1, 1}5, such that, conditionally on (|¢.|),.g and w,, 0" is constant on each
of the cluster of {z € G : 20, + 2 > 0}, 0% = 1 for all 2 € 7% and the
values of ¢“ on each other cluster are independent and uniformly distributed.
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If 20, + @2 = 0, the value of ¢% will not play any role in what follows, and
one can fix it arbitrarily. Recalling the definition of C° from below (Isom), it is
clear that the clusters of {x € G : 20, + 2 > 0} are the union of the clusters
of the interior of C2° and the clusters of {z € G : |p,| > 0} N (C>®)¢, and so one
can equivalently define " as follows: o% = 1 for all x € C;°, 0" is constant
on each of the cluster of {z € G : |p,| > 0} N (C), and its values on each
cluster are independent and uniformly distributed. Let us now introduce another

isomorphism between random interlacements and the Gaussian free field

( N/ 2000+ gog) ~ has the same law under P’

Isom’
as ((px + vV 2u) ~ under PY for all u > 0. ( )

If (Isom’) holds, it follows by symmetry of the Gaussian free field that for all

u > 0, E>V?" has the same law under IPG as {z € 5 o = —1} under @I and
E>~V24 has the same law under IP’G as {x €g: = 1} under ]P’I Moreover

by definition of ¢, the expectatlon of o is the probablhty that x € C>®, that
is the probability that the cluster of z in {z € G : |¢,| > 0} intersects Z*.
Using (IV.2.38), one can then directly prove that (Isom’) implies (Lawg), see
Proposition IV.4.7 for details. In the next theorem, that we prove at the end of
Section IV.8, we show that (Isom’), or equivalently (Isom), is actually equivalent
to (Lawyg), or even (Lawy),~0, and we also give a formulation of (Isom’) for the
discrete graph G.

Theorem 1V.3.4. Assume that G is transient. Then
(Lawy) <= (Lawy,),., <= (Isom) <= (Isom’). (IV.3.12)

Moreover, if one of the previous condition is fulﬁlled on some extension IP’I of
]P’G ® IP’ , let us define for each uw > 0 a random set 5 C FUG such that, con-
dltwnally on (0z)zec and w9 8 contains each edge and vertex in Iy, and each
additional edge and vertexr e € E'UG conditionally independently with proba-
bility 1 — p»9(p,L..,), where p9 : RE x [0,00)¢ — [0,1] is defined for each
e={z,y} € E by

pe9(f,9) ZeXp(—A y(f@)f () + V(f(2)? + 29( ))(f(y)2+2g(y)))),
(IV.3.13)

and for each x € G by

w9(f, g) = exp ( — kg 2u(f ()2 + 2g(x ))) (IV.3.14)

Then &, has the same law under IAF% as &, = {e € EUG : 20, + ¢2 >
0 for allx € I.} under Pé. In particular, if we define a process (6%)zec €
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{—1,1}€, such that, conditionally on (0z)seq, WS and é\u, o is constant on

each of the clusters induced by &,, c* =1 for all x € £, NG, and the values of

x
a" on each other cluster are independent and uniformly distributed, then

under Pg.
(IV.3.15)

T

(8“ 205 + gpg)xeG has the same law under ]?P/’é as (gpx + 2u)$€G

The main interest of the isomorphism (Isom’) comes in the following propo-
sition, whose simple proof is given in Section IV.4.3. It shows that (IV.3.7) also
holds for the law of the compact clusters of the level sets, and not only for the
law of their capacity.

Proposition 1V.3.5. Let G be a graph such that (Isom’) holds. Then the com-
pact clusters of EZ~" have the same law as the compact clusters of E=".

Let us finally give some additional consequences of Theorem IV.3.4. We
denote by 0 the constant killing measure equal to 0, and we define

def.

ho(z) < P9 ((, < &) for all z € G, (IV.3.16)

in the notation of (IV.2.7) and (IV.2.8). In other words, hy(x) is the probability
that the diffusion X starting in x is killed before blowing up, or equivalently the
probability that the discrete Markov chain Z on G starting in z is killed by the
measure ~ before blowing up, and we say that hy < 1 if hy(x) < 1 for all z € G.
Under condition (Lawy), another interesting consequence of Theorem IV.3.4 is
that one can replace the condition k = 0 by hy < 1 in Corollary IV.3.2. It also
provides us the following dichotomy for the value of h..

Corollary IV.3.6. Assume G is transient and satisfies (Lawg). Then either the
sign clusters E=° of the Gaussian free field on G only contain compact connected
components P%-a.s, or for all h € R the level sets E=" contain at least one
unbounded connected component with PC-positive probability. If moreover hy <
1, then for all x¢ € G and h < 0 the level set E="(xq) of g is unbounded with
positive probability, and in particular he = h¢o™ € {0, 00},

The proof of Corollary IV.3.6 is done at the end of Section IV.8. We refer to
Remark IV.9.2.3) for an example of a graph satisfying (Lawg) and hy < 1, but
for which h, = h$°™ = oo, that is the dichotomy from Corollary 1V.3.6 is non-
trivial. Note that however we still have h{*® < 0 by Theorem IV.3.1. In view of
Corollary IV.3.6, an interesting open question is then whether a transient graph
with %, € (0, 00), or h{™ € (0,00), exists or not. An interesting consequence of
Corollary IV.3.6 is that if h, = 0, then the level sets of the Gaussian free field
do no percolate at the critical point A = 0, and we refer to the end of Section

IV.8 for a proof.
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Corollary 1V.3.7. If G is a transient graph such that h, < 0, then E=Y contains
only bounded connected components.

IV.4 Preliminaries

IV.4.1 The conditions (Cap) and k = 0.

In this subsection, we prove another characterization of (Cap) in terms of the
discrete graph G, see (IV.4.1), and give several example of graphs verifying
(Cap): graphs with a Green function decreasing to zero at infinity, and in
particular transitive graphs, see Lemma IV.4.1, or the trees studied in [1], see
Lemma IV.4.2. We then show that, if kK = 0, the law of the capacity of the
level sets of the Gaussian free field on G from (Lawy,) can be equivalently stated
directly on the graph GE , see Lemma 1V.4.3. We finally explain in Proposi-
tion IV.4.4 under which conditions compactness and boundedness are equivalent
for the level sets of the Gaussian free field, which directly imply the equalities
in (IV.3.4) and (IV.3.5), and Corollary 1V.3.2 follows then directly from Theo-
rem [V.3.1.

The condition (Cap) plays an essential role in the proof of hy = 0, and
we now give an equivalent condition in terms of the cable system 5, which
shows in combination with Theorem IV.3.1 that E=° is bounded on any graph
satisfying (IV.4.1). We also give a condition which implies (Cap), but is stated
only in terms of the Green function on G, and thus can be easier to verify. It
implies for instance that any vertex-transitive graph verifies (Cap), and so that
Corollary IV.3.2 generalizes the results from Proposition 5.5 in [57].

Lemma IV.4.1. 1. Condition (Cap) holds true if and only if

cap(A) = oo for all infinite and connected sets A C G. (IV.4.1)
2. If
there exists gy < 0o such that {z € G : g(z,z) > go} (1V.42)
has no unbounded connected component
and if

for any sequence (xy), (yx) € GN with dg(xk, yi) 700 9(Tk, Yr) ]H—O>OO’

(IV.4.3)
then condition (Cap) is wverified for G. In particular, if G is vertex-
transitive, then condition (Cap) is verified.
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Proof. (a) Let us first assume that (Cap) holds true for the graph G, then for
all infinite and connected A C G, writing A for the union of the I, for all edges
e € F between two vertices of A, we have by (IV.2.18) and (IV.2.27)

cap(4) = cap(A) = ox,

since A is an unbounded and connected set of G, and so (IV.4.1) is satisfied.
Assume now that G is a graph such that (IV.4.1) is verified, and let A be a
connected and unbounded subset of G. Then A contains an infinite and connected

set A C G, and so by (IV.2.24) and (IV.4.1) cap(A) > cap(A) = oo, that is (Cap)
holds.

(b) Let us now assume that G is a graph such that (IV.4.2) and (IV.4.3)
are satisfied. We can assume that GG is an infinite graph, otherwise condition
(IV.4.1), and thus (Cap), is trivially satisfied. Let A be an infinite and connected
subset of G, which contains an infinite path 7 = (zg, z1,...) such that z;_; ~ x;
for all : € N, and x; € G. Let us define recursively ag = 0 and

a,, = inf {z > Qp_1 ¢ dg(75,24;) > n forall j <n —1and g(z;,2;) < go}.

The existence of a, is guaranteed by (IV.4.2). Let us fix some ¢ > 0, and let
A = {xgy,Tqy,...} and K., = {y € A\ {z} : g(z,y) > ¢} for all x € A.
For all n € N such that K.,, # @, there exists y, € A, y, # 7,,, such
that g(x,,,yn) > ¢, and by definition of the sequence (ax)r>0, we then have
dg(za,,yn) > n. By (IV.4.3), this is only possible for finitely many n, that
is there exists N € N such that K.,, = @ for all n > N. Let us define
By, = {%ay, - Tay,, .} for all n € N, we then have that g(z,y) < ¢ and
g(x,x) < go for all x # y € B, and n € N. Therefore, we have by (IV.2.22) that

can(B) > (o5 3 gley) = (L)

z,y€By

Using (IV.2.24) and (IV.2.27), we obtain that cap(A) = oo, that is (IV.4.1), and
thus (Cap), holds.

Let us now assume that G is vertex-transitive. Then g(z,x) = go is constant,
and so (IV.4.2) holds, and by transitivity, (IV.4.3) is equivalent for any z € G
to the following condition:

for any sequence (y;,) € G with dg(z, yi) 7 00, wWe have g(z, yx) = 0.
—00 —00

Let us assume that this does not hold, that is there exists ¢ > 0, x € GG, and a
sequence (y) € GN with dg(z, yx) 00 and g(x,yg) > € for all £ € N. Since
—00
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forally € G g(z,y) = P.(H, < {)g(y,y) and g is symmetric, we then have for
all £ € N that

P.(H, <()>gy'e and P, (H,<()>g,'c

For each n € N, there exists k, € N such that dg(z,yx,) > n, and then by the
strong Markov property

Po(3t > Tpamy : Zi =) > Po(H

Ykn

<(It>H, : Z =7 > gy e

Since T, increases to ¢, there exists a sequence (an)nen such that for all
neN

2
g
Px(at € [TB(z,an)aTB(m,anJrl)) . Zt = l’) > ?
0
Now
o0 TB(z,ant1) 2
g(z,x) = Ex[/o 1z,—2 dt] > ZE$ [/T 1z, dt] > Z 20, = 00,
neN B(=z,an) neN

where we used in the last inequality the fact that Z; stays a time £()\,) in x
whenever it is hit, and this is a contradiction. Therefore (IV.4.3) holds, and so
also (Cap). O

In Proposition 2.2 of [1], it is proved that the sign clusters E=° of the Gaussian
free field on the cable system on T only contains compact connected components
P%-a.s, when T is a tree with unit weights and zero killing measure, and such
that {z € T : R;° > A} only has bounded components for some A > 0. Here R°
denotes the effective resistance between x and infinity for T, (the tree consisting
only of = and its descendants); in other words, ﬁ is the probability that the
Markov chain Z on T starting in x first visit a child of z, and then never comes
back to x. We are now going to prove that (Cap) is always fulfilled on such
trees; a fortiori, as a consequence of the previous discussion, Corollary IV.3.2

generalizes Proposition 2.2 of [1].

Lemma IV.4.2. If T is a transient tree with zero killing measure and unit
weights such that {x € T : R > A} only has bounded connected components
for some A > 0, then (Cap) is verified.

Proof. By Lemma IV.4.1 and (IV.2.24), it is enough to prove that cap(B) = oo
for all infinite sets B of the form B = {zg,z, ... }, where z; has degree at least 3
and is some descendant of z;_; foralli € N. Foreachi € N, {x € T,, \ B: R >
A} is finite, and so there exists a cut-set C; between x; and infinity in T,, \ B,
such that R° < A for all y € ;. Adding a vertex to T in the middle of each I,
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e € E, one can assume without loss of generality that each y € C; has degree
two, see the discussion below (2.18) in [1] for details. Taking B, = {xq, ..., s},
we have for all n € Nand i € {1,...,n — 1} that

e, (1;) = Ay, P2 (X,, € T, \ B for all n € N)

~ Az, -
>\, Y PYXy. =y, He < Hy, > 2% pl(H. < H,).
- ch:_ 1‘1( HCi y Cz 1))\yR<y>o — 214 $1( CZ 1)

Since T is transient and the random walk on 7Z is recurrent, it is easy to see that
B is visited infinitely often with probability 0. Therefore for each ¢ € N, under
P} if Z, € T,, for all n € N, then there exists p > ¢ such that He, < H,,, and
SO

1 T . 7 T 7
7 SAPL(Bp > i Ho, < Hy) <3 A P (He, < Hy,),

Ti p>i

where in the last inequality we used A, Pi (H,, < Hy,) = Ao, P (Hy, < H,,)
Az, Since for each x € T with degree 2, using (1.11) in [1], we have R
RZO +1 > R;’o when y is the first descendant of z, we have that > AL

infinitely often, and so, using (IV.2.20) and (IV.2.27),

I IA

1
R3,

, 1 T ~
cap(B) = lim {OZ }eBn<:ci) > o % Ao, L (He, < H,,) = 0.
1€10,..., n 7

]

We now turn to the proof that Corollary 1V.3.2 follows from Theorem IV.3.1,
and we begin with an auxiliary result about the capacity of I, x € G, and the
capacity on GP, defined below (IV.2.27). Tt implies that, if K = 0, the law
of the capacity of the level sets of the Gaussian free field on 5 obtained in
Theorem IV.3.3 can be equivalently stated directly on the graph §E, for which

the Gaussian free field was defined in the previous chapters. Recall that capgs
was defined below (IV.2.20).

Lemma IV.4.3. For all x € G, we have the following dichotomy

if ke > 0, then cap(l,) = 0o, and if k, =0, then cap(l,) = cap({z}).
(IV.4.4)
Moreover, if Kk = 0, then for all connected and closed sets A C G such that
ANGE + @, we have capg(A) = capgs (AN Go).



Chapter IV. Percolation for the Gaussian free field on the cable system 190

Proof. Let us first prove (IV.4.4). If k, > 0, then for all ¢t € (0, p,), writing
yo = &+ (py — 1) - I, we have by (IV.2.17) that £{/) = L and so A} > L. Let
I =2+ [z,y,] - I, then by (IV.2.17)

i) t

glvtt /77 o 1 v
Py =00 = T =

and so by (IV.2.18) we have cap(I%) > ep(y) > 5 — ﬁ, and by (IV.2.27) we
obtain cap(l,) = oo. If k, = 0, then keeping the same notation we have for all
t € (0,00) Pygt{yt}(ﬁ[é = 00) = 0 since X behave like a Brownian motion on I,
and thus will always come back in I* in finite time, and P9 (H [t = 00) =
P9 (Hy,y = o0). Therefore by (IV.2.18), we have cap(I) = e (z) + 0 =
ez (x) = cap({x}), and by (IV.2.27) we obtain cap(l,) = cap({z}).

Let us now assume that Kk = 0, and let K C G be a connected and compact
set such that K N §E # &. Then for all z € 9(K N (jE), we have that

exrge (2) = NPT (Hinge = 00) = XM P (Hye = 00) = exc(x),
and ex(y) = 0 if y € OK \ O(K NGF), and we can conclude by (IV.2.27). O

We now state a general lemma about the level sets E=" of the Gaussian free
field, from which the equalities in (IV.3.4) and (IV.3.5) follow directly. Thus,
Corollary IV.3.2 will be entailed as well once we will have proved Theorem IV.3.1.

Proposition IV.4.4. Fiz h € R and xq € G arbitrarily. P%-a.s, if either h > 0,
cap(E="(xq)) < 0o or k = 0 on G, then the level set E="(xq) of zo is compact
if and only if it is bounded.

Proof. Observe that by definition, a connected set K is compact if and only if
it is a closed and bounded subset of 5 such that I, N K is a connected compact
subset of I, for all x € G. Therefore, if the level set E="(zy) of g is compact,
then it is bounded. Hence, we only have to show the remaining implication, and
we assume from now on that E="(z() is bounded. First note that, as explained
below (IV.2.31), if k, = 0, since ¢ on I, conditioned on ¢, has the same law
as a Brownian motion starting in ¢, with variance 2 at time 1, we have that
I, NE="(z4) is P%-a.s. a connected compact of I,.. Therefore E="(x) is compact
if kK = 0. If k, > 0 we have by (IV.4.4) applied to the graph G{***/=} that
cap([t, pz) - I.) = oo. If cap(E="(xy)) < oo, by (IV.2.24) we obtain [t, p,) - [, ¢
E="(zy), that is I, N E="(x,) is a connected compact of I, and so E="(z,) is
compact. Finally, if k, > 0 and A > 0, as explained below (IV.2.31), since ¢
on [, conditioned on ¢, has the same law as a Brownian bridge of finite length
between ¢, and 0 of a Brownian motion with variance 2 at time 1, I, N E="(z)
is a connected compact of I, and so E="(z,) is compact. O
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IV.4.2 Description of the law of cap(E="(z))

In this subsection, we will study properties of the law of the capacity of the
level sets of the Gaussian free field, when their the Laplace transform is given in
(Lawy,) (see above Theorem IV.1.1). The first lemma implies that cap(E="(x))
satisfies (Lawy,) if and only if its density (on the event {E="(xq) # @}) is given
by pn(-), see (IV.3.6), for any h > 0, as mentioned in Theorem IV.3.3.

Lemma IV.4.5. For all u > 0 and h € R,

/ pr(t) exp(—ut) dt = P (py, > V2u + h?), (IV.4.5)
g

(xo,z0) 7t

where py, is defined as in (IV.3.6).

Proof. Taking v = u + h?/2 and a = g(xg, )", it is enough to show that

[ee] 1 o] tQ
/ ————exp(—vt)dt = / exp ( - a_) dt for all v,a > 0. (IV.4.6)
o 1\/27(t —a) Nor 2

For v = 0 we have, taking s = \/t — a,

e 1 2 [ 1 2 s o T
—dt =4/ — ———ds=4/— [arctan (—)] =4/,
a ty/2m(t —a) )y $*+a am va’lo 2a

and so (IV.4.6) holds for v = 0. Moreover by dominated convergence, the left-
hand side of (IV.4.6) viewed as a function of v > 0 is C' and its derivative is
given by

/ \/mexp dt:—\/g/oooexp(—v(a+s2))ds
- = exp(-va)

and so is equal to the derivative with respect to v of the term on the right-hand
side of (IV.4.6). This yields (IV.4.6), and thus (IV.4.5). O

We now give some asymptotics on the tail of PE(cap(E="~ (x4) > -), for cer-
tain sequences hy el 0, from which the result (IV.3.11) on the critical window

as h N\, 0 under condltlon (IV.3.10) follows directly in view of (IV.3.9). One

could also use these asymptotics to obtain bounds on the critical window, even
when the condition (IV.3.10) does not hold or when h 0, similarly as in [24].
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Lemma IV.4.6. Assume G satisfies (Lawy)p>o. If hy > 0 is a sequence such
that hN\/NN—> heo € [0,00], then for all ¢ € G,
—00

2

exp ( — hﬁ) (IV.4.7)

VB cap(B2"5 () = N) > — 1 ;

N—oo T A /g(mo’ :CO)

Assume that G also satisfies (IV.3.7) and (IV.3.8). If hy > 0 is a sequence such

that hN\/NN—> heo € [0,00], then for all zo € G,
—00

1 h? 2

VNPC (cap(E=""¥ (1)) > N) — ————exp | ——2 ) +hooy | —————,
( p( ( 0)) - ) N—r00 774 /g(xo,xo) P ( 2 ) Wg(xo, .CC[))
(IV.4.8)

and if hN\/NN—> 00, then for all xq € G,

—00
2

hy'PY (cap(E= " (20)) > N) — (IV.4.9)

N—00 7Tg(_f[,’0,{170).

Proof. Let use first assume that (Lawy),>o is fulfilled, then pn, h > 0, see
(IV.3.6), is the density of cap(E="(zy)) by Lemma IV.4.5. Let hy > 0 be a
sequence such that hN\/NN—> heo € [0,00), then, as N — oo,

—00

BY (cap(E2" (20) > N)

— [ oty
N
o] 2

—/ L exp(—NhNt> dt
1 27rt\/g(x0,x0)(tN — g(xo,x9)71) 2

(- [ s
~exp| ——==
P 27 )1 27t\/g(xo, To)tN

1 h?,
e )
v/ g(xo, o) N 2

and so we obtain (IV.4.7). The proof is similar if ho, = oco. Let us now as-
sume that (IV.3.7) and (IV.3.8) are fulfilled. Then, since ¢,, is N(0, g(xo, zo))-
distributed, we have that if hy > 0, hy N—> 0, then, as N — oo,

—00

P (cap(E= "V (z) = 00) = P% (¢4 € (—hn, hn)) ~ hN\/%'

One can then directly obtain (IV.4.8) and (IV.4.9) from (IV.3.7) and (IV.4.7).
]
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IV.4.3 Consequences of the isomorphism

In this subsection, we prove that the signed isomorphism (Isom’) between ran-
dom interlacements and the Gaussian free field implies that the law of the com-
pact clusters of the Gaussian free field at positive and negative levels are the
same, see Proposition 1V.3.5, and that the law of the capacity of the level sets
is given by (Lawy)p>o and (IV.3.7), and we will use this fact several times in
Sections IV.7 and IV.8.

Proof of Proposition 1V.3.5. If (Isom’) holds, then the compact clusters of
EZ~V2t have the same law as the closure of the compact clusters of {z € é :
o = 1}. Each cluster of Z" is non-compact, and so by definition of o, the
compact clusters of E>7V2u have the same law as the compact clusters of EZ0
not intersected by Z" with ¢ = 1 on these clusters, and so the same law as the
compact clusters of EIZ% not intersected by Z" with ¢* = —1, that is all the
compact clusters of EIZ° with ¢* = —1. By (Isom’), they also have the same
law as the compact clusters of {x € G: ¢, < —v/2u}, and by symmetry of the

Gaussian free field, the same law as the compact clusters of E=V2u. ]

Proposition IV.4.7. Let G be a graph such that (Isom’) is verified for all u > 0,
then (Lawp)p>0 holds on G. Moreover, if (Cap) is also fulfilled, then (IV.3.7)
also holds on G..

Proof. We first consider the case h = 0, and for all = € G let us denote by
EPz)={yeG:y+—ain{z€G: |p.|>0}}, and by E>(z) its closure.
Note that if E>%(z)NZ" = @, then the cluster of z in {y € G : 20y +@; > 0} is
equal to EI*%(z), and so ¢ = £1 with probability 1, and if E%(z) NZ" # @,
then z «+— Z" in {y € G: 20y + @5, > 0}, and so o = 1. By (Isom’), (IV.2.38)

and symmetry of the Gaussian free field, we thus have for all u > 0 and x € G

2P (p, > V2u) = 1 — E“[sign(, + v2u)]
= 1—E'[0]
=1-P/(EP(2)NT" # 2)
= R¢ [exp (—ucap(EbO‘(:c)))} ,

where we used that Z is open in the last equality to replace EI>%(z) by EI>0/(z).
By the Markov property (IV.2.31), for all compacts K of G, conditionally on

EP(x)NK, (spy)ye(E\Tl(x)mK)c is a Gaussian free field on G\ (EI>%(z) N K), and

thus ¢ behave like Brownian bridges on the boundary of EI>0(z). Therefore,

any point y in the boundary of EI>%(z) can be approximated by a sequence
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yn € (EIP%(z))¢, n € N, such that ¢,, < 0, and if ¢, > 0 we obtain that
EI>0(z) = E2%(x) PYa.s. By symmetry of the Gaussian free field, we thus have

1 -
EY [exp (—ucap(E=%(z))) 1y, 0] = §EG [exp (—ucap(E‘>0‘(x)))]
= P%(p, > V2u).
Let us now consider some i > 0, and let ug = h?/2. By symmetry of the Gaussian

free field and (Isom’), we have that E="(x) has the same law under P“ as the

closure of the connected component of z in {y € G: 0,0 = —1} under P!, that

is the same law as EI>0l(z) if Z4 N E>0l(x) = & and 0, = —1, and & otherwise.
Therefore by (IV.2.38) we have for all u > 0

EY [exp (—ucap(E="(x)) 14, >1]

= IE[ []IZUOQE\T\(Q;):QG;O:?I exp (—ucap(E\T\(x)ﬂ
1 _

— §EG [exp (—(u + Uo)Cap(E|>0|(m)>]

= ]P)G(S% > V2u+ h2),

Now assume that (Cap) holds on G, and let us fix some i > 0. Then the clus-
ters of EZ~" with finite capacity are the bounded clusters of EZ~" and so by
Proposition IV.4.4 the compact clusters of EZ~". By Proposition IV.3.5, they
thus have the same law as the compact clusters of E=", that is all the clusters
of E2" and so (IV.3.7) follows. O

IV.5 Proof using Russo’s formula

For any compact K of G, and event A € {0,1}®K we write
AW = (E*h N K € A}, (IV.5.1)
Proposition IV.5.1. For all compact K ofg and event Ay € {0,1}8K,

dPe(AR)

= E9 M1
da [ K

L] foralla € R. (IV.5.2)
K

Proof. Fix a compact K of G. For arbitrary a € R, introducing the function
h,(z) = —ah(z), h(z) ¥ PI[Hg <, z€G,
one has in particular h,|x = —a and therefore, in view of (IV.5.1),

PE (A () = PY(AL (¢ + h,)). (IV.5.3)
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By (IV.2.21), we moreover have for all z € G

ho(2) = —a Y ex(y)g(y, v) = E[p. (- aM)].

yeOK

By (IV.2.20) with £ = @ and the Cameron-Martin theorem, see for instance
[49], Theorems 14.1 and 14.13, one knows that P defined by

dP¢

g (IV.5.4)

2 K
:exp<_aMK_%>
2
is a probability measure and that ¢ under fDaG has the law of ¢ + h, under P¢.
In view of (IV.5.3) and by dominated convergence, this implies that

dPe(ALY ~
e L

o G d a’cap(K)
=7 E g (e (ot - =50) )

= E¢ Lo, (Mg + acap(K))}
G
E |1y Mrc| -

]

O

Corollary IV.5.2. For all xy € §, compact K ofg such that xo € K, h > 0
and cap({zo}) < s <t < oo, we have

PC (cap(E>" (o) N ) € (s,1]) < P (cap(E>"(o) N K) € (s,1]) exp ( %25)
(IV.5.5)

Proof. The bound (IV.5.5) will follow by integrating a suitable differential in-
equality, see (IV.5.8) below. Let C7, = {cap(E="(z) N K) € (s,]} and

KM B2 (20) N K. (IV.5.6)

Note that C?, is of the form (IV.5.1) (with A = {w € {0,1}* : cap(C,,(zo)NK) €
(s,t]}, where C,(zg) refers to the cluster of zy), whence Proposition IV.5.1
applies to this event. Moreover, the set K" in (IV.5.6) is a compatible random
subset of G and K" C K. Lastly, on account of (IV.2.30), the event Cl, is
Azh—measurable. Together these observations imply that

- dpo(ch)

= E°[EY Mk | Af1en ], heR. (IV.5.7)
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Applying Lemma IV.2.3, noting that ¢ > h on K", we deduce that for h > 0,

E[My | AL en, = Mionon, = > excn (1)L,
x€OKH

Z hcap(}Ch>]lcgt Z hS]ngt'

Substituting this into (IV.5.7) yields

dlog PE(C"
dogP (o)) _ _ps. n>0. (IV.5.8)
dh
Integrating (IV.5.8) then gives (IV.5.5). O

In case E>h(x0) is compact, we can be more precise than Corollary IV.5.2.
For all zg € Q closed connected set F' of g such that xog € F' and h € R, let uh
be the law of cap(E="(0)) 1 gz (s0)c £, B> (20) compact, g >h UNAeET PC.

Corollary IV.5.3. For all xg € 6, closed connected set F' ofg such that xqy € F),
and h,h' € R

(h* — (W)*)t

duf,
Eh(t) = exp (-

duk; ) t € (cap(zo), 00) (IV.5.9)

(here with a slight abuse of notation we identify ul with its restriction to
(cap(zo), 00) ).

Proof. Assume first that F is compact. Let X} have law pu! and note that

aw

XF fa cap(E=2"(0)) L p=n(zp)cp- For h € R, 0 < & < cap(zo) (> 0) and ¢ >
cap(xg), consider the event

AL S {t — e < XF <) = {EPM(3y) C F, cap(E>(z0) N F) € (¢ — ,1]}
(IV.5.10)

and write

PE(AM(8)) = exp { / h dlog PSCEA? ®) da} CPEAY (). (IV5.11)

Since the event in (IV.5.10) is of the form (IV.5.1), the logarithmic derivative
can be computed by means of Proposition IV.5.1, yielding (with K = F)

dlog PY(AL(t)) 1 dPY(AL(t)) avsz  —1
da PO(A®)  da BO(Ap)

EY [Mrlag)] -
(IV.5.12)
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As A(t) € Af. with K* = E2%(z9) N F, using that K®14eq) = E="(20)1ae()
and that, still on the event A%(t), one has ¢, = a for all € 9K®, a similar
computation as below (IV.5.7) involving Lemma IV.2.3 gives

EC [Mplas] .. EY [cap(E="(z0))1aep)] (V5.10)
PG (A2(t)) Pe(A(t))

(a(t —€),at]. (IV.5.13)

Substituting (IV.5.12) and (IV.5.13) into (IV.5.11) then yields

2 2
(t—e) 2=

212 1pGAh(t
NS (AZ(2)) < -t (IV.5.14)

T EPO(AL ()

from which the claim follows by letting ¢ — 0. To obtain (IV.5.9) in case F' is
non-compact, one writes F as the increasing limit of a sequence {F},} of compact
sets, to which (IV.5.14) applies and gives uniform bounds (in n). One then first
takes the monotone limit of the two probabilities as n — oo using (IV.2.27), and
lets then ¢ — 0. O]

We now proceed to do the

First proof of Theorem IV.3.1. Recall the definition of K" for the quantity de-
fined in (IV.5.6). Noting that K" 7 E>"(xq) as K ' G and therefore cap(K")
cap(E>"(z)) by (IV.2.24) and (IV.2.27), one has, for all s > cap({zo}) and
h >0,

(IV.5.5) 2,
P% (cap(E>"(z)) > s) = lim lim P%(cap(K") € (s,8]) < e 2. (IV.5.15)
K G t—o0
Letting s — oo in (IV.5.15) yields
PY(cap(E="(20)) < 00) = 1, for all h > 0, (IV.5.16)

and therefore h$*? < 0 in view of (IV.3.2). In order to deduce (IV.5.16) for h = 0
one considers instead (IV.5.5) with s = cap({z¢}), noting that cap(E="(z)) >
cap(wg) is P%-a.s. equivalent to ¢, > h, to obtain for all h > 0 and ¢ > 0

P (0, > h,cap(K") < t) < P(py, > 0, cap(K") < t)e’h el (IV.5.17)
Letting K 7 G, t — oo and h N 0 in (IV.5.17), the claim follows again by
monotone convergence as the limit on the left-hand side equals % by (IV.5.16).

It remains to argue that h%™ > 0, i.e. that for all h > 0 the level set E=~"(x)
of xy is non-compact with positive probability. Assuming on the contrary that
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E>~" is P%a.s. compact for some h > 0, one deduces, noting that any compact
set has finite capacity, that

19 ((cap(g), 00)) = P(py, > s, B> (x) is compact) = P (g, > s), s > —h.
(IV.5.18)
But (IV.5.18) and (IV.5.9) applied with A’ = —h imply
]P’G((pxo > _h) = ]P)G(QDJCO > h)7
a contradiction. This completes the proof. [

We can now do the

First proof of Theorem IV.3.3. Let us first fix some h > 0 such that E=" is
P%-a.s. bounded. Note that by Proposition IV.4.4, for any zo € G and u > 0,
E>hV2u(2.0) is P9-a.s. compact, hence

ug+m is the law of Cap(Ethrm(ﬂfo))ﬂwothrm for allu > 0. (IV.5.19)

In particular, for any u > 0

]P)G(gpxo > h+ \/ﬁ) = p¢ (cap(EE’”m(xo)) > cap(xo))

IV.5.19) &
=y, g ((cap(xo), 00))
(IV.5.9)

& / e duf (1)
cap(zo)

(IV519) E¢ [exp ( — ucap(EZh(%)))]l{wzth}}?

as desired. The fact that the density is py, as given by (IV.3.6), then follows
from Lemma IV.4.5.

Assume now that (Cap) holds. This implies that for any h € R, E="(x)
being compact is equivalent to cap(E="(z0)) being finite, whence for all A > 0,
p9, is the law of cap(E="(0)) Leap(52 1 (z0))<o0pry >—h- Moreover E=" is P%-a.s.
bounded for all A > 0 by Corollary IV.3.2, and so (Lawy) and (IV.5.19) hold
for all h > 0. From this and (IV.5.19), the asserted equality in law in (IV.3.7)
follows immediately from the equality

Ngh|(0,m) = uilm,m), for all h > 0

(by which we mean the equality of the restriction of the respective measures
to the space ((0,00),B(0,00))), itself an immediate consequence of (IV.5.9).
Therefore by (Lawy,) for u = 0 we have

PG(Cap(EZ_h(xO)) € (Cap<{x0})7 OO)) = PG(QO:BO > h)
Since PY(cap(E=""(x9)) < cap({zo})) = P“(pz, < —h), we obtain (IV.3.8). O
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Remark 1V.5.4. 1) Using (IV.5.9) with F = G we get

G >0 G Oz = V2U,
E [exp (_ucap(E_ (x()))]lgaxOZh,EZO(xo) compact] =P ( EZ\/;TL compact ) .

In particular by Proposition 1V.4.4, (Lawg) is equivalent to

E>V?* unbounded).

(IV.5.20)

EG [ eXp (_ ucap(EZO(xD)) ]lcszZh,EEO(wo) unbounded :| = ]P)G(

2) One can easily deduce from (IV.5.20) and Theorem IV.3.1 that if F=° is
unbounded with positive probability, then E=V2¢ is unbounded with positive
probability for all u > 0, that is he = oo. Moreover, by Theorem IV.3.1,
when x = 0, if £2° is compact, then h&™ = 0. By Proposition 1V.4.4 and
(IV.3.4), we thus get that h®™ = h, € {0,00} when s = 0. One can thus
obtain partial results in Corollary IV.3.6, replacing the condition hy < 1 by
the condition £ = 0, without using random interlacements. One can then
deduce Corollary IV.3.7 from Corollary IV.3.6, see the end of Section IV.8
for details.

IV.6 Proof using exploration martingales

In this section, we are going to prove Theorems IV.3.1 and IV.3.3 using an
exploration martingale, similar to the one introduced in [24] on Z4, d > 3, or
in Lemma 4.2 of [101] on the (d 4 1)-regular tree, d > 2. For a set F' C G,
we define the distance d7 on 5, such that d¥(x,y), =,y € @v, is the minimal
length of a continuous path in F' between = and y, when changing the length of
each I., e € E from p. to 1, and of each I, x € G, from p, to oo, by means
of some strictly increasing bijection [0, p,) — [0, 00) when k, > 0. We take the
convention d¥(z, ) = 0 for all € G, and d®(z,y) = oo if  # y and ecither
x ¢ Foryé¢F. Let us fix some zy € G, and let B, be the closed ball of radius ¢
around x( for the distance d%o. Note that B; is compact for all t > 0, hence our

choice of the distance d> here. Under P¢, we then define

K = {2 € B2": dn(a,20) < £} and MY = M, (IV.6.1)

see (IV.1.6) for the definition of Mg. Note that ICgh) is an increasing sequence
of connected compact with K\ c By, and that K" = {,} is deterministic.
Moreover, looking at geodesics one can easily prove that for all open sets @ #
0Ocg , taking a sequence K, p € N, of compacts increasing to O, and all t > 0
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we have

(K 0y = {{r € 0: diunglr.) < 1 Ky,

peN

and so ICih) is a compatible random compact of 5, see above (IV.2.30). By
Lemma 1V.2.3, we thus have

M =E[Mp, | F)] for all 0 < s < ¢, with F" = A%, for all s > 0. (IV.6.2)

Lemma IV.6.1. Forall h € R, the process (Mih))tzo 15 a continuous martingale
with respect to (.Ft(h))tzo with continuous quadratic variation given by

(MW), = cap(K{") — cap({zo}).

Proof. Using (IV.2.30), one can easily prove that (.E(h))tzo is a filtration, and so
(MM),50 s a (FM),20 martingale, since for all £ > 0, by (IV.6.2), (M), is
a Doob martingale. Let us fix some ¢y > 0. By (IV.2.31) and (IV.6.2), we can
write for all 0 <t < tg

M = EMi, | RV = 3 eny @B lps | Af] = D ey (@) (@)

mG&BtO wGaBtO

Since for each 0 <t < ty, (ICgh))KKtO decreases to ICgh) and for each 0 < t < tg,
(ICgh))OSSQ increases to ICgh), we have by Lemma IV.2.2 that (Mgh))0§t<to is
continuous, and thus (Mf”)tzo is continuous. We now compute the quadratic
variation of (M!"™),50. By Lemma IV.2.3 we have for all s < ¢

EC[(MM)? — cap(KM) | F)
= EC[EC[Mj, | FV)? | FM] — E[cap(K{") | FI]
= Var(Mjp, | F" >+EG[MBt| W12 — B [Var(Mp, | F") + cap(K) | FM]

= cap(B;) — cap(K{") + (MM)? — E[cap(B,) | "]
= (M)’ cap(/Cﬁh))'

By (IV.2.24) and (IV.2.26), the function ¢t — cap(lCEh)) is continuous and in-
: : (h) _
creasing, and so we can conclude since Ky~ = {zo}. O

As a consequence of Lemma IV.6.1, as well as Proposition 1.26, Chapter IV,
and Theorem 1.7, Chapter V, in [75], we obtain the following.

Lemma IV.6.2. Let (f;)i>0 be a standard Brownian motion under some proba-
bility space (Q°, FP PP), and Ty = inf{s > 0 : Cap(ngh)) > t}. If cap(E="(z9)) <
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00, then there exists a random variable M%) such that M t—>Mg’;) More-
— 00

over, under PP @ PY, the process (Wt(h))tzo, defined by

_ {ng —cap({zo})pwy,  if t € [cap({zo}), cap(E="(x9)))
Mg’é) - cap({xo})goxo + Btfcap(Ezh(xo)) th > Cap<EZh<x0))a

is a standard Brownian motion.

Q)

t—cap({zo})

Moreover, one can easily see that the results of Lemmas IV.6.1 and IV.6.2
still hold under P(- | ¢,,). Therefore the law of (VVt(h))tZO under P¢(-| p,,) does
not depend on ¢,,, and so

(Wt(h))tzo is independent of ¢, . (I1V.6.3)
We now state the main result of this section

Proposition IV.6.3. Let

g(h,a, M) =P%(B, > ht +a for all t € [0, M)) for all h,a € R and M > 0.
(IV.6.4)
For all h € R, abbreviating X;, = cap(E="(zy)) — cap({xo}), for all M > 0 we
have

PY(X), > M) = E°[1,, >ng(h,cap({zo})(h — @a,), M)]
— E9[1x, 0.0 9(h, heap(E="(z)) = M), M — X,,)].

Proof. Note that P%a.s., {p,, > h} = {ps, > h} = {X; > 0}, and so by
Lemma IV.6.2 we have for all M > 0, that P%-a.s,

{z0 = B W)y > ht — cap({zo})px, Yt € [cap({mo}), M + cap({z0})) }
— (X3, > M, M > ht for all t € [cap({z,}), M + cap({zo}))) }

L [Xue (0, M), MY > ht for all t € [cap({zo}), cap(E="(x))),
By > h(t + cap(E="(20))) = M for all t € [0, M — X},)) |

Moreover, if cap(E="(z)) > cap({zo}), for all t € [cap({zo}), cap(E="(x0))),
we have by continuity of (cap(ngh)))szo, that 7, < oo, cap(lC%L)) =t
cap(KP)) = cap(E="(x)). Noting that if Exc(h) (z) = 0 for some z € K™,
xm(y) =0foralls > andy € K" such that y +— z in (th))c, we
have that there exists x € 8/C%l) with Cxeim () # 0 such that ¢, > h, that is by
(IV.6.1)

then e

{Xh >0,te [cap({xo}),cap(EZh(xo)))} = M%L) > hcap(lCt(h)) = ht.
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We thus obtain

{00 2 0, W) oy > 1t — cap({20})pa, VT € [cap({zo}), M + cap({z0}))) }
={X;, > M}
U {X), € (0, M), B; > h(t + cap(E="(z0))) — M for all t € [0, M — X}))}.

Moreover by Lemma IV.6.2 and (IV.6.3)

Pé Oy = N, Wt(fv):ap({:po}) > ht — cap({Zo}) P,
for all t € [cap({zo}), M + cap({zo}))

= ]EG []]-goxOZhg(h7 Cap({xO})(h - (pxo)7 M)} ’

and so we can conclude. [
Theorem IV.3.1 follows directly from Proposition IV.6.3.

Second proof of Theorem IV.3.1. Note that a Brownian motion with drift —h
never hits a fixed negative level a with probability 0 if A > 0, and with strictly
positive probability if h < 0, see for instance equation 2.0.2 (1), in Part II of
[13], and so by dominated convergence

0 it h >0,
>0 ifh<O.

M—oo

lim ]EG []lszZhg(h7cap({x0})<h - pro)vM)} = {

Let us fix some h > 0, then by Proposition IV.6.3 we have that

PY(cap(E="(x4)) = 00) < ]\/lflinoo E¢ []l%ozhg(h, cap({xo})(h — ¢z,), M)] =0.
Let us now fix some h < 0, and let us assume that E="(z) is P%-a.s. compact,
then there exists P%a.s. ¢y < 0o such that d3%, (2, 20) < to for all € E="(x),
and then for all ¢ > ¢, we have ngh) = E="(z). Moreover since by continuity
0, = h for all x € OE="(zy), we get by (IV.1.6) and (IV.6.1) that MM =
heap(E="(x0)) for all t > to, and thus MY = hcap(E2"(z9)) P-a.s. Since
By = 0 PP-a.s, we have g(h,0, M) = 0 for all h € R and M > 0, and therefore
by Proposition IV.6.3 if h < 0 is such that E="(xy) is P%-a.s. compact, then

PY(cap(E="(20)) = c0) = lim E¢ (L4, >n9(h, cap({zo})(h — ©g,), M)] > 0.

M—oo

This is a contradiction since the capacity of any compact is finite. ]
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Moreover, it follows from equation 2.0.2, Part II in [13] that the function g
from (IV.6.4) is derivable with respect to M and that
dg(h,a, M) a (hM + a)?
= exp | ———————
M Vamarz P 2M

) forall h e R,a < 0and M > 0.

(IV.6.5)
Let us define

F(h,M)=E“ (L, >n9(h, cap({zo})(h — ¢g,), M)] for all h € R and M > 0.

By (IV.6.5) and dominated convergence, we have that

dF(h, M)

dM
_ G cap({zo})(h — ¢u,) (hM + cap({zo})(h — ¢u,))?
=E [1%2/1 NoTIVEE exp (— I ) }
el () (M (o)
/oo 271/ g(wo, o) M3/2 P ( ) dy

_2g(:v0, xo) 2M

_exp (= (h*/2)(M + cap({zo}))) /0 o [ YL+ My(zo,20))\
2 (g0, 20) M) TP e, 0 )
1
- - exXp { — (h2/2)(M ‘f‘g(l'o,l‘o)_l) )
21/ (w0, w0) M (g(x0, 0) ™" + M) ( )
where we used the fact that ¢,, is a centered Gaussian variable with variance
g(x0, 7o) and that cap({zo}) = g(zo, 7o) ". By (IV.3.6), we obtain that

—00

dF(h, M — g(xo,20)"")
dM

= —pp(M) for all M > g(z0,20) " and h € R.
(IV.6.6)

In view of Proposition IV.6.3, this result provides us with the desired explicit
formula for the law of cap(E="(z)), Theorem IV.3.3.

Second proof of Theorem IV.3.3. Let us fix some h > 0 such that E=" is P%-a.s.
bounded, and M > 0. By Proposition IV.4.4, we have that E="(x) is compact,
and then K" = E="(x0) for ¢ large enough and MY = hcap(E>"(z,)). By
Proposition 1V.6.3, since g(h,0, M’) = 0 for all M’ > 0, we have for all M >
cap({zo})

IP’G(cap(EZh(:EO)) > M) = F(h,M — cap({zo}) = F(h, M — g(xq,20) ).
(IV.6.7)
Therefore by (IV.6.6), under {p,, > h} = {cap(E="(z¢)) > cap({zo})} the
density of cap(E="(x¢)) is pp, see (IV.3.6). In view of Lemma IV.4.5, this also
implies (Lawy,).
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Let us now assume that (Cap) is verified, and let us fix some h > 0. By
Corollary IV.3.2, E=" is P%-a.s. bounded, and so (Law,) and (IV.6.7) hold. Un-
der condition (Cap), by Proposition IV.4.4, we have that if cap(E=""(xq)) <
oo, then E=7"(xq) is compact. Therefore, ME"‘) is constant and equal to
—hcap(E=""(x¢)) for all t large enough, and so MED = —hcap(E=""(xy)).
By Proposition 1V.6.3, we thus have

]P’G(cap(EZ_h(xo)) € [M, oo)) = F(—h, M — g(xq,70) ).
Since by (IV.6.6) and (IV.3.6) for all M > 0

dF (—h, M — g(z9,20)"") dF (h, M — g(zo,20) ")
dM dM ’

we obtain (IV.3.7). The identity (IV.3.8) follows readily from (IV.3.7). O

= —p-n(M) = —pp(M) =

Remark 1V.6.4. Following the proof of Theorem IV.3.3, one can easily see by
Proposition IV.6.3 and (IV.6.6) that if G is a graph such that MY =0 P%-a.s,
then (Lawg) holds. This is obviously the case when condition (Sign) is verified

gg) = 0 even without that

as in Theorem IV.3.3, but one could also prove that M
condition, see Remark 1V.9.2,3). This is actually an equivalence: if M9 >0
with positive probability, then by Proposition IV.6.3 and (IV.6.6), it is clear that

(Lawg) does not hold.

IV.7 Proof using random interlacements

In this section, we are going to prove Theorems IV.3.1 and IV.3.3 using the
isomorphisms between random interlacements, or loop soups, and the Gaussian
free field. We first recall the isomorphism theorems between loop soups and the
Gaussian free field from [57], and deduce from it a version of Theorem IV.3.4, see
Lemma IV.7.2, on finite graphs. Then approximating the Gaussian free field on
any transient graph by Gaussian free field on infinite graphs, see Lemma IV.7.4,
we can prove Theorems IV.3.1 and 1V.3.3 with the help of Proposition 1V.4.7.

Following [35], one can define a measure on loops ué associated with Pf ,

reg , and, under some probability measure PZ, we define for all a > 0 the loop
soup L, with parameter o as a Poisson point process in the space of loops on
G with intensity oz,ué. We denote by (L;(f))xeg its field of local times relative to

m on G, which can be taken continuous, see Lemma 2.2 in [57]. Moreover we
denote by Lg , the Poisson point process which consist of the print on G of each
loop in L,, which has the same law as the loop soup associated with P9, see
Section 2 of [57] or Section 7.3 of [35] for details, and we will write P§ instead
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of Pé when we want to stress that we only consider the discrete loops Lg . An
important property of the loop soup L, is the restriction property, see Section
6 of [35]: for all connected and open subsets A of G, if we denote by £ the set
of trajectories in £ entirely included in A, then

£ has the same law under IP’é~ as L, under Pé&, (IV.7.1)
where G4 is a graph with the same vertices, edges and weights as G4, but with
killing measure equal to x on (G'N A) \ A and infinity on dA U (G'N A°), that
is for all x € A, the diffusion X under Py B has the same law as the diffusion X
killed on exiting A under 122

When a = %, loop soups and the Gaussian free field are linked via an iso-
morphism, first derived for the square of the Gaussian free field and discrete
graphs by Le Jan, see Theorem 2 of [54], and extended to include the sign of the

Gaussian free field both on G and G by Lupu, see [57]. To simplify notation,

1

1
we define L, = L;(EQ) the local time of the loop soup with parameter 3

Theorem IV.7.1 (|57]). On some extension f”é of]P’é, let us define an additional
process (0:),c5 € {—1, 1}5, such that, conditionally on E%, o is constant on each
cluster of {x € G:L,> 0} and its values on each cluster are independent and
uniformly distributed. Then

under IP’é~ the law of (UwVQLI)J;Eg is IP’QQ. (IV.7.2)
Moreover, on some extension E’% of IP’é, let us define a random set & C E such
that, conditionally on Eg,%> E contains each edge crossed by a loop in Eg,§7
and each additional edge e € E conditionally independently with probability 1 —
p9(VL), where p? is defined in (IV.2.34). Then & has the same law under
P as € :={e € E: L, > 0 forallz € I.} under Pé. In particular, if we
define a process (G%)eq € {—1,1}9, such that, conditionally on Lgi1 and &, o
1s constant on each of the clusters induced by £ and its values on each cluster
are independent and uniformly distributed, then

(Ez\/ZLx)ZGG has the same law under I?Dé as (ps)zec under P§.  (IV.7.3)

The equality between the squares of the processes in (IV.7.2) follows from
Theorem 3.1 in [35] and the law of ¢ on G follows from a version of Lemma 3.2 in
57] on G instead of GZ. Moreover Corollary 3.6 in [57] provides us with the law
of {e € £} conditionally on Lg 1, and one can then directly derive (IV.7.3), see

Theorem 1.bis in [57]. Note that the process o on G can be explicitly constructed.
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Let (2, )nen be a dense sequence in G and (0)),en € {—1, 1} be a sequence of
independent and uniformly distributed random variables under some probability
Q. Under IP’é = IP’Igi ® Q, we define m(x) as the smallest n € N such that x,, and

x are in the same cluster of {z € G : L, > 0}, and since (z,,)ney is dense and

(Ly),cg is continuous, we have that m(z) < oo when L, > 0. We then define

/
m(z

In the isomorphism between random interlacements and the Gaussian free field,

Oz = Opya) if L, > 0, and o, = 1 otherwise, which has the desired properties.
Theorem IV.3.4, one could also construct explicitly the law of the signs ¢* by a
similar procedure.
For each xq € G, one can use the following decomposition for the loop soup
E% = E{IZO}C + Z{;IO}, into the loops E‘r;m}c which never hit zy, and the loops
2 2 2

Z{fm} which hit zy at least once, and these two processes are independent. In
Theorem 2 of [58], see also section 2 of [55], this decomposition is used to deduce
the second Ray-Knight theorem from Theorem IV.7.1, which is an equivalent of
Theorem IV.3.4, but replacing random interlacements by the diffusion X killed
at time 77°, the first time ¢,,(t) reaches u, and ¢ by the Gaussian free field

conditioned on being equal to 0 in . More precisely, they use that by (IV.7.1),
E{fO}C is just a loop soup on gifO}c, and so its local times is the square of the
2

Gaussian free field on G2 by (IV.7.2), and that the concatenation of the loops

in Z{fO} has the same law under P* as (X;),_ = under P,,. In fact, as noted

1 t<ry
in [54], Z{fm} is also linked to random interlacements on finite graphs, and very
similarly as in the proof of Theorem 2 of [58], we can obtain the isomorphism
between random interlacements and the Gaussian free field, Theorem 1V.3.4,
on finite graphs. For completeness, we have included the proof in the case of
random interlacements in the Appendix.

Lemma IV.7.2. If G is a transient graph such that G is finite, then (Isom’)
holds. Moreover, conditionally on w9 and (©,)scq, the family {e € &,}, e €
E UG, in independent, and for alle € EUG

Pl(e € & |wd, @) = Leery V (1 — p9(p, L)), (IV.7.4)

Note that the probability 1 — p»9(¢,€ ) in (IV.7.4) corresponds in [58],

after replacing random interlacements by the diffusion X, to the probability
of the combination of O(y) and the additional edges opened independently of

(Xt)t<’r{fo .

Remark IV.7.3. 1) In the Appendix, we prove Lemma IV.7.2 using the isomor-
phism between loop soups and the Gaussian free field, Theorem IV.7.1. Sim-
ilarly as in Theorem 2.4 of [101], one could in fact use the Markov property
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(IV.2.31) to prove that (Isom) holds on any finite transient graph, or even
on any transient graph with bounded Green function such that (Sign) holds.
However, this proof does not directly provide us with the discrete isomor-
phism described by (IV.7.4). Moreover, it uses the “squared version” of the
isomorphism (IV.1.5), which can also be seen as a consequence of the “squared
version” of Theorem IV.7.1, thus making our proof conceptually shorter.

2) Similarly as in Theorem 2 of [58], one could also use Theorem IV.7.1 to deduce
a theorem between random interlacements and the Gaussian free field even if
G is infinite. More precisely, if G is a graph such that [{x € G : k, > 0}| < o0,
then one can prove an 1som0rphlsm similar to Theorem IV.3.4, but replacmg
random interlacements on G by killed random interlacements on Q that is
all the trajectories in the random interlacement process whose forward and
backward parts are both killed before escaping all bounded sets, and replacing
© + v2u by ¢ + v2uhy, see (IV.3.16). One could then try to extend this
theorem to any graph G with x #Z 0 by using a similar strategy as in Section
IV.8, but we will not need this fact here.

We are now going to approximate the Gaussian free field on any transient
graph G by Gaussian free fields on finite graphs. We say that a sequence of
graphs G, increases to g it G, = G,.(n) for some sequence PONe [0, oo] of kllhng
measures such that /iz ) decreases to Ko for all x € GG. Note that we can see gn
as a subset of G , that G, increases to G , and that for each compact K of G we
have K C G, for n large enough.

Lemma IV.7.4. Let G be a transient graph, and let G,, n € N, be a sequence
of transient graphs increasing to G. There exists a probability space (£, F,P)
(n)

on which one can define processes (ps"),cq,, n € N, and (gp&m))zeg, with the
(n)

following properties: for each n € NU{oo}, taking Go. = G, the process (¢2 ) ,ea,
has law ng. Moreover, P-a.s, for each compact K C g, QO:Scn = QO;E ) for all

n

x € K and n large enough, and, for all xq € G and h € R, defining E="(z0) as
in (IV.1.3) but for o™, n € NU {oo}, we have

liminf capg (E7"(20)) > capg(Efoh(xo)). (IV.7.5)

n—o0

Proof. Let E(fo) be a process under some probability space (€2, F,P) with the
2

same law as L1 under ]P’é. For each n € N we define (Lg(cn))

+cg, as the total local
times of the loops in [,(OO) which are entirely contained in G, C G. One can
clearly identify G, with g and by (IV.7.1), the law of (L( )ecg, 18 the sam)e

as the law of (L), g under IP~ Moreover for each z € G, the sequence LY

o0 )
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(c0)

n € N, is increasing, and we denote by L; ’ its limit. Since each loop of [,(100) is

2

compact, it is contained in §n for n large enough, and so (ngoo)) correspond

zeG
to the total local times of the loops in [,(fo) which are entirely contained in G.
2

For each n € N, let (A(") )pen be some enumeration of the clusters {x € G:
L > 0}, and let (0,)pen € {—1,1}" be an independent sequence of uniformly
distributed random variables. For each n € N and z € G, we define EEf(x) =
{(yeGn: iz yin{ze G, : L > 0}}, and if LI # 0, we define k,(z) €
{1,...,n} such that EX(x) N ékn(x) # @ and E%(x) N ékn(x),l = o, with the
convention Gy = @. We also define p,(z) = inf{p € N : Ab@ EE(x)},
with the convention inf @ = 4o00. Note that since L;(rn), n € N, is increasing
for all z € G and k,(x) < n, we have that p,(z) < oo. For each n € N and

(n) _

z € G,, we also define o\ = Opn(x) 1f LM > 0 and o{” = 1 otherwise, as well

as gp:(c") — o™y /oLt By Theorem IV.7.1, (@;”)) ~ has law IP’S Moreover for

cach z € G with LY > 0, we have that x € Qn with L > 0 for n large
enough, and that k,(z) is constant for n large enough since E%(x) increases to
E~ (x). Therefore the sequence p,(z), n € N, is decreasing for n large enough,
and we denote by p.o(x) its limit. Note that we then have p,(x) = ps(x) for

n large enough We define o{™

gl

= Opoo(a) if L > 0 and o0 =1 otherwise,

and cp;(voo) 2L8% . We then have Pz (n) — cpm =) for all z € G and since

9g (x,y) — gg(z,y) for all z,y € G, we have that (gog(coo)) veg has law PC.
" n—o00

For each connected compact K of G , there exists N € N, such that for all
n > N, K C G, and no trajectory in £(f°) hitting K hits G\ G,,, and then for all
2

n> N, L8 = LF for all z € K and the clusters of {:L‘ € G : L > 0} entirely
included in K are equal to the clusters of {z € G : L5 > 0} entirely included
in K. Therefore, ol - am ) for all these clusters and n > N. Since 0K is finite,
we also have 057 " = 0 for all 2 € OK and n large enough. We thus obtain

that gp;(v "= gpx forall z € K and n large enough.

For each connected compact K of 5 and n € N such that K C én, since
PI(Hy = 00) < P9 (Hi = oo) for all z € K, we have capg (K) > capg(K)
by (IV.2.14), (IV.2.18) and (IV.2.20). For each connected compact K C G
containing o, defining E="(xo, K) = {z € G, NK : zy +— = in E2" N K}
for all n € NU {00}, we have that o™ = x(>) on K for n large enough, and
so B2 (xg, K) = EZ"(zy, K) for n large enough. Therefore, by (IV.2.24) and
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(IV.2.26)

liminf capg (E;"(20)) > liﬂg}f capg, (E" (20, K))

n—oo

> lim inf capg(EEh(l’m K))

n—oo

— capg (B2 (o, K)).

Taking a sequence of compacts (K, )nen increasing to G, EZ(zg, K,,) is a se-
quence of compacts increasing to E="(x), and we obtain (IV.7.5) by (IV.2.27).
]

We are now ready to do the proof of Theorem IV.3.1, as a consequence of
(IV.1.5) and Lemmas IV.7.2 and IV.7.4.

Third proof of Theorem IV.3.1. Let us fix some xq € G and for a sequence U,
n € N, of finite connected subsets of GG, increasing to G, let us define the killing
measure K;n) = K, if z € U,, and /{S”‘) = oo otherwise, and let G, = G,.n). Then
the sequence of graphs G,, n € N, increases to G, and G,, is finite for each
n € N. Considering the sequence (gogc"))xegn from Lemma IV.7.4, we have by

Lemma IV.7.2 and (Law,) that for all n € N

E [exp (—ucapg (E;°(x0))) %gyzo} = P(gog([;) > V2u) for all u > 0. (IV.7.6)

n

Taking the limit as n — oo, by dominated convergence and (IV.7.5), we thus
have

E“ [exp (—ucapg(E="(x0))) Ly, >0] > PY(pn, > V2u) for all u > 0.

Taking the limit as u — 0, we obtain by dominated convergence

PY(cap(E=%(x)) < 00, pgy > 0) >

N | —

Since E=%(z9) = @ when ¢,, < 0 and P%(¢,, < 0) = 3, we obtain that
cap(E=°(x)) is P¢-a.s. finite.

Let us now fix some h < 0, and let v = h%/2. By (IV.2.38), 7" = {z € G :
Uy > 0} intersects {zo} with positive probability, and all components of Z*
are non-compact by definition. Therefore by (IV.1.5) the component of xy in
{z € G : (pe + h)? > 0} is non-compact with positive probability, that is by
continuity and symmetry of the Gaussian free field, either E="(xq) or E=~"(x()
is non-compact with positive probability. Since E=~"(xq) C E="(x), we obtain
that E="(x) is non-compact with positive probability. O
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Third proof of Theorem IV.3.3. Let G be a transient graph, and let G,, n € N,
be a sequence of finite graphs increasing to G with G,, finite for all n € N, as
in the third proof of Theorem IV.3.1. Let us fix some zy € QN, and assume
that E2"(zy) is compact. By Lemma IV.8.2, we have that ™ = ¢©(*) on a
neighborhood of EZ"(z,) for all n large enough. Moreover, one can easily prove
by (IV.2.14) that the equilibrium measure of any compact set K on én converge
to the equilibrium measure of K on G, and thus by (IV.2.20) we obtain that for
all h € R, if EZ"(x¢) is compact
lim capg (E7"(20)) = nh_)rglO capg, (EZ(20)) = capg (Ex (x0)).

n—oo

Since G, is finite for each n € N, we have by Lemma IV.7.2 that (Isom’) holds
on G, and so by Proposition IV.4.7 we have

E [exp (—ucapg (E;"(20))) ]l$0<n>>h] = P((,Dg’(l)) > V2u + h?) for all u > 0.
n Ty =

Now assume that (Sign) is fulfilled on G and fix some h > 0, then EZ"(x)
is P-a.s. compact, and then taking the limit as n — oo, we obtain by domi-
nated convergence that (Lawy,) holds on G, and thus (IV.3.6) also holds on G by
Lemma IV.4.5.

If (IV.3.8) is fulfilled on G, then either cap(EZ"(zq)) < oo, and then EZ"(x)
is bounded, and thus compact by Proposition IV.4.4, or cap(E="(x)) = oo, and
so, using (IV.7.5), we have that for all h < 0, P-a.s,

lim capg (E7"(20)) = nh_}rrgo capg, (EZ(20)) = capg (Ex (o).

n—oo

For each n € N, (Cap) holds trivially on G,, and so by Proposition 1V.4.7 we
have for all h > 0

E [exp (—ucapg (E; " (0))) ]lw(n)wj = P(gog’;) > V2u + h?) for all u > 0.
n 1/'0 -

Taking the limit as n — 0o, we obtain by dominated convergence that (IV.3.7)
holds on G. Therefore by (Law) for u = 0 we have

P (cap(E=""(z0)) € (cap({z0}),00)) =B (s, = h).
Since P (cap(E=""(19)) < cap({zo})) = P“(ps, < —h), we obtain (IV.3.8). O
Remark IV.7.5. 1) With the help of Lemma IV.7.4, we directly obtain a way to
prove (Lawg). Indeed if G is a graph such that there exists a sequence G,, of

graphs increasing to G, and such that (Lawg) hold on G, for all n € N and,
P-a.s,

lim sup capg (B () < capg(EgoO(xo)) for all 2 € G, (IV.7.7)

n—o0
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then, using (IV.7.5), we thus have capg (E7°(z0)) — capgz(EZ’(x0)), and
n n—00
taking the limit in (IV.7.6), we obtain that (Lawg) holds.

2) By Proposition IV.4.7 and Lemma IV.7.2, we have that if G is finite graph,
then the compact clusters of EZ~" and EZ" have the same law, and so for all
compacts K of G, the clusters of E2~" and E=" included in K have the same
law. Let us now consider a general transient graph G, then the graph GX,
defined above (IV.2.35), is finite, and so we directly obtain that the clusters
of £27" and E=" included in K also have the same law for the graph G.
Approximating any connected and closed set F' by an increasing sequence of
compacts, this is thus a generalization of Corollary IV.5.3.

IV.8 Proof of the signed isomorphism with ran-

dom interlacements

In this section we prove the isomorphism between random interlacements and the
Gaussian free field, Theorem IV.3.4. We first compare random interlacements
on G with random interlacements on G, for some ' > x in Lemma IV.8.1, and
use this comparison to approximate random interlacements on any transient
graphs by random interlacements on finite graphs in Lemma IV.8.2. Using the
approximation of the Gaussian free field on transient graphs by Gaussian free
fields on finite graphs from Lemma IV.7.4, and that Theorem 1V.3.4 holds on
finite graph, see Lemma IV.7.2, we can prove Theorem 1V.3.4, see Lemma IV.8.3.
Finally at the end of the section, we prove Proposition IV.3.5 and deduce from
Theorem 1V.3.4, that Corollaries IV.3.6 and IV.3.7 also hold.

We are now going to approximate random interlacements on any transient
graph G by random interlacements on a sequence of finite graphs G, increasing
to G. We are first going to compare random interlacements on G with random
interlacements on G,/, for some killing measure ' > k. Note that we can see Gv,_i/
as a subset of G , and for all compacts K of G and w € WIO(7 5 we define we

define the killing times E;K(w) and E,;?K(w) by

Ghac(w) = inf {t €10,C7) : w(t) ¢ G} and
e def.

Coxc(w) = sup {t € (¢,0): w(t) ¢ Gul,

with the convention inf @ = (*(w) and sup @ = ¢~ (w). We also define TE ok -
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0 0
WK, : WK,'g“K, by

- _ w(t) ifte (Z,Q,K(w)fi,;((w)),
T ac(10) = {A otherwise,

* . * *
as well as TGk - WK,§ — WK7 g,
*

T i © pg. In other words 7T§7H,7 K(w*) is the doubly infinite trajectory modulo

time-shift on QNR/, whose forward and backward parts on hitting K are the forward

as the unique function such that péﬂ/ OTG 1 )¢ =

and backward parts on hitting K of w*, both stopped on exiting G,..

Lemma IV.8.1. Let G be a graph with killing measure k, let &' be another killing

measure such that k' > K, and let K and K' be compacts of G with K' C K.

There exists a measure ,ug’lf/ on W :, such that
KK

-1
gy g5 © (MG i)™ T hig,y = (g wy s wi s -

(IV.8.1)

Moreover we have

,ug:,(/(W;»gv ,) = capg ,(K) — capg , (K') — capg(K) + capg(K').  (IV.8.2)

K

Proof. Considering the graph GZXY9K' see Lemma IV.2.1, we can assume with-
out loss of generality that 0K C G and 0K’ C G. Considering the graph G4,
where A C G, is a set containing exactly 1 vertex on I, for all x € K N G, we can
also assume without loss of generality that x, = k), = 0 for all x € K N G. Let
us recall the notation X* and . from (IV.2.8), and note that for all w € W% &
the forward part of 7z ., r-(w) on hitting K is X #(wt), where wt is the for-

ward part of w. We define the signed measure ﬁg’f/ on Wy s which is given

0
on WK, g, by

St = 3 (g (PB4 i = G PP
r€O0K

- 6K7§(SE)P§<XH’ €T Hyg = gﬂ)pml(,&(X,{/ c '_)>’

and such that 5" (A) = 0 for all A € Wy s with ANWY - = @. We

!

also define p5%" = ﬁgK o (p5 )7', and by (IV.2.36) and (IV.2.37), it is clear

G,k
that (IV.8.1) holds. Let us denote by ()A(?f)neN the discrete Markov chain which
jumps to a new vertex of GG every time X" hit this new vertex, that is for each
x € G, the Markov chain X* has the same law under Pf as Z under PY. Let
us denote by Z"‘K =sup{n € N: X5 e K} the last exit time of K for )/5”‘, and
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Ly =sup{t > 0: X" € K} the last exit time of K for X, with the convention

sup@ = oo, and then {Xf, = 2} = {Xf = z}. By definition of P/*¢ and
K

(IV.2.29) we have for all z € K with ey z(z) >0

— Pf,é( X e ) =epg@)PY((X] )ispy € | Xf = )

1 - / =
p— g K . Ij p—
B gé(x,x)PZ (X € R 7)
1 - / - N
= § PO((XF)yorpn €, XF=a, L5 =n
9g(x,7) & (K)o 1z i =n)

= M PI((X[ Visrs € - L = 0),

where we used in the fourth inequality the strong Markov property and the
identity
1 vk
95z, w) = x ZPx(X = ).

n
T >0

Similarly we have, using similar notations, by (IV.2.9),

g, (DVPIT () = XPOe (X)) gy € - T = 0)

= N, PI((X)pop € L =0).

On the event Z"‘K = 0, since r, = «!, for all € K, we have L%, = L. Therefore,
by a similar argument as before, for all z € 0K with e 5(x) > 0,

)\:C c , o w!
)\—/eK,g} (:E)Pf’gﬁ () — eK’g(x)Pf’g(X € )
= \PI((XF ) iops € LK =0 < L)

Az

= g, (OP (X)) oy Lk < Lig| Xpyr = 2).

Note that if ex z(x) = 0 and e; g (v) > 0, then L < oo = L% ng—a.s, and
so the previous equality still holds. Moreover, using (IV.2.9), we have for all
x € 0K

P9 (-, Hir = &) — PY(X¥ € Hio = &) = PY(X™ € -,& > Hio > Cu).
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We obtain that, on W9 -

K,G..’
~K,K'
g,f-c’
)\; — )\m g~ / + = K,(j / —
- Z ( A/ 6[(,QNN/ ('ZU)P{L‘N (. 7HK/ — <H,)P£E r ( . )
r€OK T
)\.’E C , -~ c K _ P K
3 e, (OPF (5 i = Go) PY((XE )y €7 L < Li| Xy = )
+ eK,Q(x)PE(X“' c .‘h& > Hyr > ZH/)PJ(Q(X,@/ c .—))’ (IV.8.3)
and so ﬁglf/ is positive on WE( g, By the monotone class theorem it is a positive

KK’ . ..
measure on Wy s , and so g, 1 also a positive measure. Moreover we have
K K

by (IV.2.20) and (IV.2.23)

B Wig ) =Tl (Ve )

K,G,./ 5,[{’ K,G,./
= > (eng, @PF (Hio = o) = eyegl@) P (Hio = C.))
0K

= capg (K) — capgﬂl(K’) — capg(K) + C&pg(K').
]

The difference between the trajectories under vz and vz hitting K but

not K’, when K’ C K compact g,@/, comes into three parts: first the difference
between the weights X, > A, then it is more likely for the forward trajectories to
not hit K’ before time Z,{/ than before time Em and finally it is more likely for the
backwards trajectories to not come back in K before time Eﬁ/ than before time
Z,{. These three differences are all contained in the measure ug”fl from (IV.8.1),

see (IV.8.3). Taking a sequence (K,),en of compacts increasing to 5,{,, one can
then use Lemma I'V.8.1 to construct a random interlacement process on G, from

the random interlacement process w on G.: take the image through 7%75,7 K, of
each trajectory in w hitting K, but not K, ; for all p € N, with Ky, = &, and
g:,Kp’l ® A for all p € N. Using
this construction and the estimate (IV.8.2), we can now approximate random

add Poisson point processes with intensity u

interlacements on G by random interlacements on G,,, where G, is a sequence of
finite graphs increasing to G.

Lemma IV.8.2. Let G be a transient graph, and let G,, n € N, be a sequence
of transient graphs increasing to G. There exists a probability space (Q’,]-"’,]P")
on which one can define a sequence of processes w™, n € N, and w>) with the
following properties: for each n € NU {oc}, taking G = G, the process w™
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has the same law as w under Pé Moreover, there exists an increasing sequence
n

(@n)nen such that for each uw > 0 and compact K of (j, P'-a.s, there exists N € N
such that for all n > N the restriction to K of the set of trajectories hitting K
1s the same for wi™ and W .

Proof. Let (K,)nen be such that K, is a compact of én for each n € N, and K,
n € N, increases to G. Let w(®) be a Poisson point process under (€, 7/, P') with

the same law as the random interlacement process w under Pé. For each n € N

and k € {1,...,n}, we define wgk’")

the image through 7r* of all the trajectories in w®™ which hit K r but not

as the Poisson point process which consist of

k() K

Kj._1, with the notatlon KO &, which is a Poisson point process with intensity

(v )IW* Wi go( 5 K )~L. We also define wék ™) as an independent Poisson
, k

k:Kk 1

point process Wlth intensity Hg ® A and wé") as an independent Poisson

point process with intensity (I/gn>|(W;; 5 ® A. Defining for each n € N

£ E (A et),

we have by Lemma IV.8.1 that w™ has the same law as as w under PL . Let us

now fix some u > 0 and p € N. By definition, no trajectories of wl n), wékm) and

é ") hits K, if p < k < n. Moreover there is a only a finite number of trajectories
in wffo) hitting K, and so for each k € {1,...,p}, we have that the restriction to

(k,n)

K, of all the trajectories of w; " at level w hitting K, is constant for all n large

enough. By (IV.8.2), for each n > p, the number of trajectories in > 7_, wék ™) at
level u is a Poisson random variable with parameter u(capg (K,) — capg(K})),
and one can easily prove by (IV.2.14), (IV.2.18) and (IV.2.20) a since K, compact
that capg (K,) — capg(K,) _ 0. Using Borel-Cantelli Lemma, one can find a

sequence (a,)nen such that P'-a.s, Zzzlwék’a") contains no trajectory at level

u for all v > 0 and n large enough, and by a diagonal argument, one can take
(@n)nen independent of the choice of p. Therefore for all compacts K of G , there
exist p € N such that K C K, and P'-a.s, the restriction to K, of all the
trajectories of wi) hitting K, is constant for all n large enough, and we can
conclude. O

From Lemmas IV.7.4 and IV.8.2, we obtain a way to approximate the Gaus-
sian free field and random interlacements on a graph G by Gaussian free fields
and random interlacements on a sequence of graphs finite graphs increasing to
G. With the help of Lemma IV.7.2, we obtain the following Lemma, from which
Theorem 1V.3.4 readily follows.
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Lemma IV.8.3. If either (Sign) or (Lawy) is fulfilled, then (Isom’) and (IV.7.4)
hold on G.

Proof. Let G,, n € N be a sequence of finite graphs increasing to G, and
consider the space (2 x O, F @ F',P ® P’) from Lemmas IV.7.4 and IV.8.2.
Up to considering a subsequence of G,, n € N, we can assume that a, = n
in Lemma IV.8.2. Note that G, is finite for each n € N, and so one can
use Lemma IV.7.2 for G,. For each n € N U {oo}, let (&%)Iegn be the to-
(n)

tal local times of the trajectories of w&n), ' = {z € G : lzw > 0} and
EX%2)={yeG,:az+— yin{z e G,: oMsign(pl) > 01} for all z € G,.
Let us prove that there exists a sequence (b,)nen such that, P ® P-a.s. for all

reqg

u |>0] R T u |>0]
{78 NEZ(z) #£ 2} = hggggf {Z; NE; () # 2}

V.84
= limsup {Z} N Elfm(:v) + o} ( )
n—oo
IfyeZn EL%O‘(;I;), then y € Z" for n large enough and there is a path 7 C G

between z and y in {z € G : go,(zoo)sign(gogoo)) > 0}. Since 7 is compact, by

Lemma IV.8.2, o™ = »(>) on 7 for n large enough, and thus 7 is also a path
between = and y in {z € G : psign(xt™) > 0}, and so y € Z* N EF%(z) for n
large enough, that is

{78 N EZ%(2) £ 2} C lim inf {1 N EZ%(2) # 2}
(C limsup {Z} N EIZ0(z) +# a}).

n—o0

(IV.8.5)

We now prove the other inclusions in (IV.8.4), and first assume that (Sign) is
fulfilled. Let us fix some x € G such that Z¥ N E,?m(:v) # @ infinitely often.
By Lemma IV.8.2, since ECEO‘(:U) is compact, we have that ™ and Z" are
constant for n large enough on an open neighborhood of Egol(x), and then
ELZO‘(:E) NIy = Egol(x) NZY for n large enough. Therefore, infinitely often,
AN EL%O'(:,;) =7I'N E,‘?O‘(:);) # &, and combining with (IV.8.5), we obtain
(IV.8.4) for b, = n.

Let us now assume that (Lawy) is fulfilled for G. For all n € NU {oc}, by
(IV.2.38)

(P P)(Zy N EZ%(g) # @) =1- ]E[exp(—ucapgn(EFO'(x)))].

Since G, is finite for each n € N, we have by Lemma IV.7.2 and Proposi-
tion IV.4.7 that (Lawy) holds on G, and therefore, denoting by ® the distri-
bution function of a A(0, 1)-distributed random variable, we have by (IV.2.38)



217 IV.8. Proof of the signed isomorphism with random interlacements

and symmetry of the Gaussian free field

(P P) (I}{ N Efo'(az) =+ @) =1- E[exp(—ucapgn(ELzol(m)))]
= 2@(@(9@ (, :c))’lﬂ) —1
— 2(1)(\/%(g§(:c,x))’1/2) -1

n—o0

— (PoP)(I% N EE() + 2),

where we used (Lawg) for the graph G in the last equality. Therefore, using
(IV.8.5), there exists a sequence (b, )nen such that for all n € N

ZP@P’({I;; N EZ() £ @)\ {8 N B0 () £ @}) < 0.

neN

By Borel-Cantelli Lemma, we thus obtain that P ® P-a.s.

limsup {Z;" N Elfo‘(x) + o} ={IL N EZ% () # o}
n—o0
Using a diagonal argument and separability of G , we can actually choose the se-
quence (b, )nen uniformly in € G. Combining with (IV.8.5), we obtain (IV.8.4).
Up to taking a subsequence of G,,, n € N, we can from now assume that
b, = n in (IV.8.4). For each n € NU {oc} and z € G,, we define o%" = 1
it BEFN2) NIt # @ or o =0, and 0" = sign(¢!”) otherwise. Then by

Theorem IV.7.1, for each n € N U {oo}, the law of (¢, o8 ,08™) g, under

P®P" is the same as the law of (¢, 4, [¢:], 0}),cg under ]i’/’é , for a certain choice

of ¢*, and thus by Lemma IV.7.2 we have for all n € N

(o2 \/%m,u + (¢ )2))%5&(”) has the same law as (¢ + \/QU)%@;(M'
(IV.8.6)
Let z € G. f T N EX"(x) # @, then by (IV.8.4), we have 0" = 1 for all n large

enough, and thus o%" —s ¢ If i = 0, then ¢ = 0 for n large enough,
n—oo

and thus o" — oo™ If o £ 0 and AN Ego‘(x) = o, then by (IV.8.4),
n—oo

AN EleO'(x) = @ for n large enough, and thus ¢¥" =1 (n_, — 1

20 L0 ez T
ow>. Therefore, P ® P’ a.s,

o) 205 4 ()2 — g \/%gﬁ) + (N2 for all z € G,
n—oo

and gog;n) + V2u — ¢ + v/2u. Using (IV.8.6), we obtain that (Isom’) holds
n—oo
for G.
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Let us now define for all n € NU {oo} the random set of edges and vertices
g ={ec EUG: 200 + ()2 > 0 for all # € I.}. By (IV.7.4), we have for
all n € N that

PRP)(e€ &M |wd™, M) =Teeqy Vv pin(p™, €7),
where 7y, is the set of edges crossed by the trace we'™ of W on G, and of
vertices on which a trajectory of we™ is killed. Moreover, using (IV.2.32) and

(IV.2.39), we have that for each n € N U {oo}, conditionally on (gog(gn))xeg and
w? ™ the family {e e &Sn)}, e € B UG, is independent, and for all e € EU G,

(P P) (e e 55”) |wg’("), go(”)) =P® IP”)(@ € 51([‘) |weg”u(”), ((,0(”))|e).

Ty, = Ti ., and by (IV.3.13) and (IV.3.14), pd (o™, (0)) = prd (o (7))
for all n large enough, and so

(]P) ® ]P),) (6 < 51500) | wg,(oo)7 SO(OO)) = ]]'EEI% oo \% pg7g(w(00)7€(00))7
which is equivalent to (IV.7.4) for the graph G. O

Let us now quickly explain how one can deduce Theorem IV.3.4 and Corol-
laries IV.3.6 and IV.3.7 from Lemma IV.8.3, and prove Proposition IV.3.5.

Proof of Theorem IV.3.4. We start with the proof of (IV.3.12). If (Isom’) holds,
then (Lawy,)nso also holds by Proposition 1V.4.7. If (Lawy)pso holds, then
(Lawyg) also holds by taking the limit as h \, 0 in (Law,) and using (IV.2.24).
If (Lawg) holds, then (Isom’) also holds by Lemma IV.8.3. Therefore, we only
need to prove that the two versions (Isom) and (Isom’) of the isomorphism be-
tween random interlacements and the Gaussian free field are equivalent. Since

for all @ ¢ C°, ¢, = sign(p,)y/¢2 + 20, and by Theorem IV.7.1, the law of
(sign(we)Legeee + Loecse ), g under (]P’é ® Pg)( |||, w") is the same as the law
of o* under ﬁé( | |o], w"), this is clear.

Let us now assume that one of the conditions in (IV.3.12) hold. Then by
Lemma IV.8.3, we have that (Isom’) and (IV.7.4) hold. Moreover, the family
{e € .}, e € EUG, is independent by (IV.2.32) and (IV.2.39), and, by (IV.7.4)
it is thus clear that (&, (0%)seq, (0r)seq,wd) has the same law under ]?P/’(Ij as

(E.,5", ¢, w9) under ﬁ’é The equality (IV.3.15) then follows directly from (Isom’)

since by (IV.2.38) and (IV.4.4), PI(Z*N I, # @) = 1 for all z € G with k, >
0. [
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Proof of Corollary IV.5.6. Let G be a graph such that (Lawg) is fulfilled, then
(Isom’) holds by Lemma IV.8.3. Let us assume that £=° contains at least one
non-compact component with positive probability, then there exists xy € G
such that E=%(z) is non-compact with positive probability. Moreover by The-
orem IV.3.1, we have cap(E=%(z)) < oo PY%a.s, and so by Proposition 1V.4.4,
E=%(z4) is also unbounded with positive probability. By (IV.2.38) we have
that, for all w > 0, with P! positive probability, £Z(z,) is unbounded and
EZ%(z0) NT" = @, and therefore the component of zo in {z € G : o* = —1} is
unbounded with positive probability. By (Isom’) and symmetry of the Gaussian
free field, we obtain that for all u > 0 E=V2%(z,) is unbounded wit positive
probability. Therefore if h°™ > 0, E=° contains a non-compact component with
positive probability, and so EZ" contains an unbounded component for all A > 0,
that is %* = 0.

If moreover hy < 1, then with positive probability Z* contains a trajectory
which is not killed before blowing up, and thus unbounded, and by (Isom’)
we then have that E=~V2“ is also unbounded with positive probability, that is
h, > (. Therefore by (IV.3.3), we have h{™ > h, > (). Since h, = oo if heem™ > 0,
we thus obtain h, = he™ € {0, co}. O

Proof of Corollary IV.3.7. Let us assume that he < 0, then EZ" is P%a.s.
bounded for all A~ > 0. By Theorem 1V.3.3, we thus have that (Lawy) holds
for all h > 0, and so (Lawg) also holds by (IV.3.12). Since E=" is P%a.s.
bounded for all A > 0, we thus obtain by Corollary IV.3.6 that E=° is P%-a.s.
bounded. ]

Remark IV.8.4. 1) From Proposition IV.4.7 and Lemma IV.8.3, one could im-
mediately prove again Theorem IV.3.3.

2) In view of Remark IV.7.5,1), if (Law) and (IV.7.7) hold for some sequence
G, of graphs increasing to G, then (Law) holds on G, and thus also (Isom’)
and (Lawy). Similarly, by Remark IV.6.4, if MY =0 PC-a.s, then (Lawyg),
(Isom’) and (Lawy) hold on G.

3) As explained in Corollary IV.3.6, if (Isom’) and hg < 1 are fulfilled, then
hy € {0,00}. If hy = 1 it is however possible that (Isom’) is verified but
h, = —o0, for instance on finite graphs since finite graphs are bounded but
trivially verify (Cap). It is thus an interesting open question to know whether
the equality hy = h®™ = 0 can still hold on some transient graphs satisfying
(Isom’), or equivalently (Lawy), and hy = 1.

4) Another interesting open question is whether a transient graph G exists such
that (Lawg) does not hold. In view of Corollary IV.3.6, one could also ask if
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a transient graph G exists, such that hy < 1 is fulfilled, but h, € (0,00) or
he™ € (0,00), and then (Lawg) would not hold. On such a graph, we would
still have by Theorem IV.3.3 that (Lawy,) holds for all A > h{o™.

IV.9 An example of a graph with infinite critical

parameter

In this section, we are going to provide an example of a graph for which the
critical parameters h, and h{®™ are strictly positive, and in fact infinite, thus
providing a counterexample to Corollary IV.3.2 if we do not assume (Cap) to
hold. For any a € (0,1) and d € N, d > 2, we define TG the (d + 1)-regular tree,
such that, denoting by 7;, the set of vertices in T§ at generation n,
MY =" ifr e, and y € T4,

and 0 otherwise. We moreover take x(® = 0 if a > clz and k(@ = 1, otherwise,
where 0 is the root of the tree. Since for x € T,, and a > é,

a”  da - 1
anl4+dam  1+4+da = 2
we have that T is a transient graph for all & € (0,1) and d € N, d > 2.

Pri(Zy € Tyy) =d

Proposition IV.9.1. There exists a constant Cy < oo, such that for any o €

(0,1) and d € N, d > 2, with d(l — exp ( — dﬁl)) > (Y, E%; contains ]P’%g -a.s.

an unbounded connected component for all h € R, and so h, = h™ = oo and
h$*P < 0.

Proof. Using the Markov property (IV.2.31), one can construct a Gaussian free
field on (T%)¥ recursively on the generation T},. Indeed let Y, z € TY, be a family

of i.i.d. random variables with distribution A'(0, 1), and let ¢y = Yo /grs(0,0).
Recursively on n, we then define

wx dg~ wa;*P%g (H{m*} < OO) —+ YZ" /gTﬁ({L'7l') for aﬂ x € Tn+1,

where x~ is the first ancestor of x. One can then easily prove by (IV.2.31) that
(¥z)zery has the same law as (;)zere under ]P’%g. Moreover, let B¢, e € EUG,

be a family of independent process, such that for each edge e = {z,y} € E

between x € T,, and y € T},,1, B® is a Brownian bridge of length 2c+n between 0

and 0 of a Brownian motion with variance 2 at time 1, and let

1
Ve, = 20"y + (1 — 2a)1b, + By for all t € [0, 2—}.
an
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Then (), e(q)r has the same law as (pr>a:€(ﬁ‘g)E under ]P’%, see Section I1.2

for a proof of a similar fact on Z¢, d > 3. One could also easily extend this
construction to ﬁ'g‘ by similarly adding on I; an independent Brownian bridge
of length 1/2 between ¢y and 0 with variance 2 at time 1 if o < é, as well as an
independent Brownian motion starting in ¢, and with variance 2 at time 1 for
every other vertices x.

Now for each =z € T},,1, we have that,

P(ve > (AY) 72 01, - >()-12 2 P(Y, > (MY gre(z,2))7?)
>P(Yy > 1),
since x spends at least a time & ()\(O‘)) in z before hitting 7, under Py ¢, and

SO g7¢(a, m))\( ) > 1. Moreover using (IV 2.33), we have for all x € T),,1, writing
e ={x,2~}, on the event ¢, > (/\( )2 ahy > (A NG )) 12,

Py > N1V y € L. | ¢, 1)
=1 —exp (— 20" (¥ — (AY)75)(¢h- — (A) 1))
>1—exp (—a"(AW) 2 (AY)72)

)

doo+1/’

21—exp<—

for all n large enough. Therefore for all n large enough and each y € T, 11, the
cluster of y in {z € (T9)¥ : ¥, > (A’))~1} contains with positive probability
an independent Galton-Watson tree, with average number of children

d(l —exp(— do\z/—ia—l)>P(YO > 1).

Taking Cy > P(Yy > 1)7!, letting n go to infinity, we thus have that {z € 'ﬁ'g‘ :

Yy > ()\g(ca))—i} contains P-a.s. an unbounded component if d(l—exp (— d;é/fl)) >

Co, and since AY) — 0, || — oo, we obtain h, = co. By (IV.3.4), we thus have
h$°™ = oo, and the inequality h{*P < 0 follows directly from Theorem IV.3.1. [

Remark 1V.9.2. 1) In both cases a > Cll and a < Cll, It is possible to find a €

(0,1) and d € N, d > 2 such that d(l — exp ( — dﬁl)) > (. For instance,

one can take a = § for some constant a > 0, and choose dg large enough.

2) One can easily derive from Proposition IV.9.1 an example of a graph G with
Azy = 1forall z,y € G and k, = 0 for all z € G, which is the usual setting
of graphs without weights, on which h, = h®™ = oco. Fix some d € 2N,

d > 2 such that d(l — exp ( — X g/d)) > (), and then by Proposition IV.9.1
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we have that E=" contains ]P’~2 2/ a.s. an unbounded connected component

for all h € R. Now let U be the set which contains 2~ + (k/2) - Iy 4y for
all k€ {1,...,(d/2" ' =1}, 2 € T, and n € N, and let G = (T, the
graph which corresponds to the tree ']I'd/ plus 2"~ — 1 equidistant vertices
on Iy, 4 for each z € T, and n € N. Then one can identify G7 with (T/4)#
and so £=" contains also Pg—a.s. an unbounded connected component for all

heR, and A\=1and k=0 o0n G.

Y

If o <2 and d(1—exp(— dﬁl)) > Cpy, we have szrg(lllgpn_1 < () =1 for
all x € T,,, since the generation of Z has the same law as a random walk on
N, with a negative drift and a killing at 0. Therefore for each compact K of
Te, if z € K is such that z— € K, we have ex(z) = 0, and so {z € K
e, (7) # 0} is constant and M = 0 for all ¢ large enough, where M©®
is Eche martingale from (IV.6.1). By Remark IV.6.4, T is thus an example
of a graph on which (Law) holds but h, = h%®™ = oo, and so both cases
in Corollary IV.3.6 are possible. Note that one could also construct such a
graph on which x = 0, and thus hy < 1 is verified, by replacing the killing at

0 on TY by a copy of Z?* attached to 0.

One can also easily construct an example of a graph G not fulfilling condition
(Cap), but for which we still have E* = h$*P = hc™ = (. Consider G to be the
graph Z3 plus a copy of N attached to the origin, with unit weights and zero
killing measure. The cable system G can then be identified with 237 the cable
system of Z3, by identifying I, C Z3 with the cables corresponding to the edge
of Nin G. Since condition (Cap) is clearly verified on Z?, using Lemma IV .4.1
for instance, we obtain he = h$P = h$°™ = 0 by Corollary IV.3.2. Now for
each n € N, the equilibrium measure of {0,...,n} is only supported on 2
points, and so the capacity of N is at most 2 by (IV.2.27), that is G does not
fulfills (Cap).

IV.A Appendix: Proof of Lemma I1V.7.2

In this Appendix we are going to prove that the coupling between loop soups

and the Gaussian free field, Theorem IV.7.1, implies the coupling between ran-

dom interlacements and the Gaussian free field on finite graphs, Lemma IV.7.2,

following similar ideas to the proof of Theorem 2 in [58]. From now on, we will

always assume that G is a transient graph such that G is finite and «, € [0, 00)

for all x € V, which we can assume without loss of generality by considering the
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graph G| see below (IV.2.4). Let us define

& {r € G: Kk, >0},

and let G* be the graph with vertex set GG, plus an additional vertex x,. The
symmetric weights on G* are

Ay Whenz,yeG

Ary = A Ka when x € U, and y = z,

0 when = ¢ U, and y = x,,

and the killing measure k* = 1,,. We write G* = G U {x,} and E* = {{z,y} €
G* . )‘;’,y > 0} for the vertex and edge set of G*. Note that each edge I, of 5*,
e € E*, can be identified with some edge I. of G, e € E'U U,, and one can then
identify the cable system G*\ {/,. U Useu, L2} with G and then by (IV.2.9), one
can show that for all z € G the law of the print of X on G killed on hitting x,
under ng is ng . Recall the decomposition of the loop soup E% = E{;*} + E?*

on G* defined above Theorem IV.7.2, and define the local times <Zz*)$€g* of

Z?*} under ]P’é*, and £{ 1 as the print of £{ + on G*. Each loop in £g* 1
can be decomposed into 1ts excursions outside x*, that is a trajectory entlrely
contained in G, starting and ending in U,,, and the process ZZ;{E } of excursions
is then defined as the point process consisting of all the excursions outside z, for
all the loops in Zgé We can now compare the Gaussian free field on G* with

the Gaussian free field on G , and the loops Z{f*} hitting z, on G* with random

interlacements on G.

Proposition IV.A.1. Let G be a transient graph such that G s finite. For any
u > 0,

(¢w>xe§ has the same law under IP’g*( | 0r, = V2u) as (9%+V2U) under [[D
(IV.A. 1)
and

ZZ*{E‘} has the same law under Pg.(-| Ly, = u) as w under PG, (IV.A.2)

In particular,

(L., _& has the same law under IP’ (| Le, = u) as (o), under ]P’é.

z€G
(IV.A.3)
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Proof. We begin with (IV.A.1). By the Markov property applied to the graph
G*, see (IV.2.31), conditionally on AE;*}, (¢2)4eq 18 a Gaussian field with mean
n{‘px*} = ¢, and variance g(;,jc = gg, and thus (pz — ¥r.),cq has the same law
under Pg*(- | A?z*}) as ¢ under Pg, and (IV.A.1) follows.

Let us now prove (IV.A.2). Following Section 7 of [54], see also Proposi-
tion 3.7 in [58], conditionally on L,, = L, = u, the excursions outside x, in

chi have the same law as the excursions of the Markov jump process Z outside
2

x, stopped when reaching local time u at x, under ng:, which can be described
as follows: first stay an exponential time with parameter \,, in x,, then jump
to an x € U, with probability ;TZ and follow on G a process with the same law
as Z under PY9. Once this process is killed, jump back in z, and iterate this
process until reaching local time u in z,. By a property of exponential variables,
the number of time this process is iterated is a Poisson variable with parameter

)

uM,,, and thus E;;{mf } is a Poisson point process with intensity
2

Note that, under P9, we have ]:vIG = oo if and only if € U, and the discrete
skeleton Z of Z is killed at time 1, and thus eg(z) = k, for all z € U, and

ec(x) = 0 otherwise. Therefore by (IV.2.36) and (IV.2.37) with K = G, condi-

tionally on L,, = u, Zg{ xf} is a Poisson point process with intensity uvg, where
12

vg is the intensity measure of discrete random interlacements on G, and we ob-
—FTx

tain (IV.A.2). This implies in particular that (L, ).cc has the same law under
]P’é( | Ly, = u) as ({y4)zec under ]P’é, and thus (IV.A.3) follows by considering

the graph G for any finite subset A of 5, see Lemma IV.2.1. ]

Using Theorem IV.7.1 for the graph G*, and decomposing L% on G* into

E{lx*} “ and ZE””*}, we are now ready to prove Lemma IV.7.2.
5 2

Proof of Lemma IV.7.2. Let us define (L"), 5. the total local times of the loops

in E{f*}c under Pé*. By (IV.7.1), (L%*)__z has the same law as the restriction
2

z€G
to G of the local time of a loop soup on §i§*}c, and thus the same law as the
local time of a loop soup on G. By (IV.7.2), (L3*),eq has thus the same law
under Pé*, or also Pé( |0., = 1, L, =u), as 1¢? under IF’gg. Moreover, under
]Pé*(-\ax* = 1,32 — u), using the equality L, = L% + L, for all = € g,
the law of (0,),.g can be described as follows: conditionally on (L3*),.g and

—,

(L, ),eg> 0 is constant on each cluster of {z € G:L. + L% >0}, with o, = 1

for all z € QN such that Zﬁ* > (0, and the values of o on each other cluster are
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independent and uniformly distributed. Using (IV.A.3) we thus have that, under
Pé*< | UI* = 1vzi: = U),

(02v/2L;), g has the same law as (07 \/20, . + ¢2), .5 under I?%

According to (IV.7.2), the law of (0,v/2L,), g under ﬁé( |0p, = 1, Ly, = u)
is the same as the law of (¢,),.g under IP’G (-] @2, = v/2u), and thus by (IV.A.1)
the same as the law of (o, + v2u), 5 under ]P’~ and we obtain (Isom’).

By (IV.2.32) and (IV.2.39), it is clear that, condltlonally on w9 and (¢,)eca,
the family {e € &,}, e € EUG, is independent. We define £** = {e € E* :
L% > 0 for all z € I.}, and conditionally on E{;*}c, let 0™ be an independent

additional process, such that o® is constant on each cluster of {z € G*: L™ > 0}
and its values on each cluster are independent and uniformly distributed. Under
]P’é*( | Ly, = u), by (IV.7.1) and (IV.7.2), (67*1/2L2%"), .5 has then the same law

as ¢ under ]P’g, by (IV.A.2) Zg{i } has the same law as w9 under PL, and by

(IV.A.3), € has the same law as &, \ {I,,z € US} under @é Let us also write
TE C E' UG for the set of edges of G which are entirely crossed by a trajectory

in £ g{m;} and of vertices in G killed by a trajectory in £ g*{ 1*} , which has the

same law under Pg*( | L., = u) as 73 under P5. For each e € E*, the event
{e ¢ &} is independent of Eg 1 , and, conditionally on {e ¢ £}, L{x* and
Lfé = (L3
since {e ¢ 5””*} C {e ¢ £}, we obtain
—{z} T x*

( géé']/:gl ’L|G7 |G)

= IP’év* (e ¢ &™

)zec, the event {e ¢ 5} is independent of o} = (07" )seq- Therefore,

T

Ly o)L (e ¢ €| Lgi) L, e & £7).

Now, since (02*\/2L2+,{e ¢ £7}) has the same law as ((¢z)zcq,{Vy € L
|y > 0}°) under ]P’gg, it follows from (IV.2.33) that for all e € E*,

]P)é* (6 ¢ o (O-gxg* V 2L£*)x€G7) = pg<ax* v 2Lw*)]le€E + ]16¢E7 (IVA4)

where we identified e with the corresponding edge or vertex of EUG. Now since

{e ¢ £*-} is independent of chi}, we have by Theorem IV.7.1 that for all edges
P)

eck

EL [PL (e ¢ €|Lgy) \/:g:}, L]
EX [Pé (e g & ﬁgg}c) | Liz:]

EWLE)

PL (g€ |Z§ff Lie d €)=
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Combining with (IV.A.4), we thus obtain that for all edges e € F,

e L
pe (VL) o
— p:,g (O’x* V2L, " ) ]le¢I§,

where we used (IV.3.13) and (IV.2.34) in the last equality. Now if e € E* \ E,
then one can identify e with some z € Uy, and by (IV.A.4), we have e ¢ £
]P’L -a.8s, and so e is crossed by a loop in Eg 1 if and only if e is crossed by a loop

in Eg 1 , that is e € Z&. Therefore by Theorem IV.7.1,

atds T r*
PL (e et & L1 LG o) =

g (e g€l ﬁefxl*}a Lz, o I =u) =Pk (e ¢ €| Eefxl*},Lfé,Zx* = u)

=07 (VL= + L7 ) e 7,

= p9 (0™ V2 Lm*j"f*)]le%,
where we used (IV.3.13) and (IV.2.34) in the last equality. Finally, if z € G\ Uy,
then k, = 0, z ¢ 7}, and Pé(m ¢ Eulwl, (0u)eeg) = 1 = p9 (a’\/ZL”C*,Zx*),

and we can conclude.

[



Chapter V

Random interlacements on massive
graphs

V.1 Introduction

Random interlacements is a model introduced on Z%, d > 3, in [93], to study
disconnection of cylinders by a random walk, and which was extended to any
transient weighted graphs in [103]. In this chapter, we are going to be interested
in random interlacements on massive transient weighted graphs, that is a graph
G on which the random walk can be killed in a finite random time by a killing
measure <. In Chapter IV, we already took advantage of this definition of random
interlacements on massive graphs, see for instance Lemmas 1V.7.2, IV.8.1 or
IV.8.2, and we are going to investigate the particularities of this model in depth
here. Random interlacements on a massive graph consist of a Poisson point
process of trajectories modulo time-shift, and, when fixing arbitrarily a time
zero for each trajectory, the corresponding forwards trajectory behave like a
random walk on G and can thus either be finite, when they are killed in finite
time by the killing measure x, or infinite, and similarly for the corresponding
backwards trajectories. In particular, if the probability that the random walk
on G is killed in finite time by the killing measure « is equal to one, then random
interlacements consists of doubly finite trajectories modulo time-shift, with a
starting and ending point.

Since the trajectories of random interlacements on massive graphs can be
finite, it is not anymore true that the random interlacement set always contain
an infinite connected component, and it will in fact often exhibit a phenomenon
of phase transition. We are interested in understanding how does changing the
killing measure k, i.e. changing the speed at which the trajectories are killed,
affects this phase transition, and in particular under which conditions does the
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phase transition stays non-trivial when changing the killing measure. Similar
questions are raised for level sets of the Gaussian free field, and the results are
gathered in Theorems V.1.1 and V.1.2.

The setting for this chapter is similar to the setting for Chapter IV, and we
recall it briefly. We consider a graph G = (G, A, k), where G is a countable set
of vertices, A = (A\yy)zyec € [0,00)9%C are called weights, and rx = (k;)zeq €
[0,00)¢ is called the killing measure. We always assume that the associated
graph with vertex set G and edge set F = {{z,y} € G*: A\,, > 0} is connected,
locally finite, and that the Markov jump process Z on this massive weighted
graph is transient, where Z starts in z under P9, z € (3, and jumps from z to y
at exponential speed with parameter A, , and is killed at x at exponential speed

with parameter k.. We denote by A\, = > Azy + Ky the total weight of the

yeG
vertex x € G.

Our study of random interlacements on massive graphs also includes the
cable system G of G, which is defined by glueing together segments I, with
length p. = 1/(2)A,,), e = {z,y} € E, through their endpoints, and glueing the
endpoint of half-open intervals I, with length p, = 1/(2k,) to z, z € G. One
can endow G with a distance dg, such that dz(z,y) is the length of the shortest
path between x and y when replacing the length of I, by 1 for each e € F'U G,
through some given increasing bijection [0,00) — [0, 1) for I, when x, = 0. The
associated metric space G is a Polish space, and a connected set K is compact
for this topology if and only K N G is finite and K N I, is a connected compact
of I, for all e € E'UG. For simplicity, we say that K is a compact of G if it is
compact for the distance dz and has finitely many components. One can then

define a diffusion X on G , starting at x under ng , X € G , through its associated
Dirichlet form, see (V.2.1). It behaves locally like a Brownian motion on each
I., e € GUFE, and its print on G behaves like the Markov jump process Z.
The diffusion X stays in G until a time 5 € [0, 00|, after which it remains in
some cemetery state A, and, as t Z , either X, reaches the open end of the
cable I, for some x € (G, and we say that X has been killed, or X; exits every
bounded and connected sets, and we say that X blows up. We define hy as the
probability to be killed before blowing up and h; as the probability to blow up

before being killed: for all x € G,

def.

ho([[‘) lef def.

(V.1.1)
We define similarly the time ¢ at which the jump process Z on G is either killed

P9 ((X;)i>0 is killed before blowing up) and hy ()

by the killing measure x or exits every finite set, that is blow up, and hy(z) is
also equal to the probability under PY that Z is killed before blowing up for all
x € (. One can easily check that this definition of hy is equivalent to the one



229 V.1. Introduction

given in (IV.3.16).
We show in Proposition V.2.2 that a measure vz on the set ng of doubly

non-compact trajectories modulo time-shift on G exists, which correspond to
the usual measure underlying random interlacements on the cable system, see
(V.2.11) and (V.2.12). One can then classically define under some probability ]P’é
the random interlacement process w as a Poisson point process on ng x (0,00)
with intensity vz @ A, where A is the Lebesgue measure on (0,00). It consists
of an infinite number of independent doubly non-compact trajectories modulo
time-shift, each with a forwards and backwards part behaving like the diffusion
X. Random interlacements on the discrete graph G then correspond to the print
of won G.

When x # 0, there are four possible types of trajectories in w: they are
either killed, that is both their forwards and backwards part are killed before
blowing up, or surviving, that is both their forwards and backwards parts blow
up before being killed, or backwards-killed, that is their backwards parts are
killed before blowing up but their forwards parts blow up before being killed,
or forwards-killed, that is their backwards parts blow up before being killed,
but their forwards parts are killed before blowing up. We call killed random
interlacements, surviving random interlacements, backwards-killed random in-
terlacements and forwards-killed interlacements the point processes consisting
of the corresponding trajectories in w, and we denote them respectively by w,
wS, whS and wS*, see Definition V.3.1 for details on notation.

For random interlacements on transient massless graphs, the random inter-
lacement set 7" consists of unbounded trajectories, and thus always contains
an unbounded connected component, and this is also true on massive graph for
surviving, backwards-killed or forwards-killed random interlacements whenever
they are not empty. However, the killed random interlacement set Z¢, i.e. the
open set of points in G reached by a trajectory in the killed random interlacement
process w® with label at most u, does not automatically contain an unbounded
connected component, since it consists only of bounded trajectories. We thus
naturally define the following critical parameter associated to the percolation of
T

-t (G) I sup {u>0: ]P’gf( % contains an unbounded cluster) = 0}.

It depends on the choice of the graph G whether the phase-transition for the per-
colation of Z% is non-trivial, that is u~Z(G) € (0, o), or not, see Remark V.5.3,5.
In particular, it also depends on the choice of the killing measure , and we will
now compare the values of 77 when changing the value of x.

For any killing measures x' € [0,00)¢, we define the graph G.. = (G, V,«'),
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that is G, is the same graph as G but with killing measure " instead of x, and
we define hf as in (V.1.1) but for the graph G,.,. Our first result compare the
critical parameter for the percolation of killed random interlacements on G = G,
and G, when ' < k.

Theorem V.1.1. Let G = G, be a transient graph with k % 0. For all killing
measures k' # 0 with K < Kk let

c(k, K) . (sup H—f) (sup fa ) . (V.1.2)

zeG Ky z€G ’f& + (’i:v - ’i_{n)hgl (ZL‘)

If sup,cq :—z < 00, then

U (Gw) < (Gl 1),

Note that sup,cq % < c¢(k, k) < (Sup,eq %)%, and so c(k,r') < oo if
and only if sup,q % < 0. An easy Consequengée of Theorem V.1.1 is that
if W~%(G,) > 0, then for all constants C' > 1 we have w1 (Goy) > 0, and if
wT(G,) < oo, then for all constants 0 < ¢ < 1 we have u~7(G,,.) < oo. Sim-
ilar results could also be obtained when considering percolation for the vacant
set V¢ :=Z¢ of killed random interlacements or percolation for the discrete set
T N G of random interlacements, see Remark V.5.3,4). If hf = hf = 1, then
all the trajectories in the random interlacement process are doubly-killed, and
so killed random interlacements are equal to random interlacements, and The-
orem V.1.1 let us compare critical parameter for the percolation of the random
interlacement set at different values of .

Random interlacements are linked through isomorphisms theorems to the
Gaussian free field, see [96], [57] and [101], and this let us derive a result similar
to Theorem V.1.1 for the Gaussian free field on the cable system, that we now
describe. We denote by ¢ = (¢;),.5 the Gaussian free field on G under some
probability ]P’g, that is the canonical centered Gaussian free field with covariance
function the Green function (¢(z,y)), ,.g- We are going to study percolation for

the killed level sets of the Gaussian free field, defined for all h € R and z( € G
by

EZ" - {z€G: g, >hxhy(z)} and EZ"(x0) =3 {z € G: x4+ xin E,%h}
One can see E,%h as the level sets for the Gaussian free field associated with the
diffusion X conditioned on being killed before blowing up, see Proposition V.4.2
for details. We define similarly the surviving level sets of the Gaussian free field
Eﬁh by replacing hy by h;. When h = 0, the level sets E%O = E§07 and also
coincide with the usual level sets of the Gaussian free field, and we will often
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simply denote them by E2°. Let KX be the critical parameter associated with
the percolation of the killed level sets of the Gaussian free field, that is

RE(G) < inf {heR: Pg(E,%h contains an unbounded cluster) = 0}. (V.1.3)
Let us also recall the following condition on the graph G from Chapter IV
E=° contains Pg-a.s. only bounded connected components. (Sign)

In Corollary IV.3.2, we proved that (Sign) is verified on any graph such that
(Cap) hold, that is the capacity of any unbounded set is infinite, and is thus
verified on a very large class of graphs, but there are also examples of graphs
on which (Sign) does not hold, see Proposition IV.9.1. In both cases, let us now
present the analogue of Theorem V.1.1 for the Gaussian free field.

Theorem V.1.2. Let G = G, be a transient graph with k % 0. For all killing
measures k' # 0 with k' < k we have

i) if (Sign) does not hold for G, then (Sign) does not hold for G, and

WE(Guw) = 15 (Gr) 2 0,
ii) if (Sign) holds for G and sup,cq % < oo, then
0> ﬁf(gfi’) > ?Ll*c(gli) C(’ﬁ ’{/)7

iii) iof (Sign) holds for G, but does not hold for G, then

RE(Go) > 0 > B5(G,).

Similarly as for random interlacements, we have that if h<(G,) < 0, then for
all constants C' > 1 we have h¥(Ge,.) < 0, and if A<(G,) > —oo, then for all
constants 0 < ¢ < 1 we have h¥(Ge,) > —oo. Moreover, if h§' = h§ = 1, then
Theorem V.1.2 let us compare usual level sets of the Gaussian free field on the
cable system on G, and G,.,. Note that iii) of Theorem V.5.5 is a trivial conse-
quence of the definitions (V.1.3) and (Sign), and we only include it to list all the
possible cases. A result similar to i) of Theorem V.1.2 holds for surviving level
sets of the Gaussian free field, see Remark V.5.6,2), and this is the only relevant
case since the critical parameter associated to the percolation of the surviving
level sets of the Gaussian free field is always non-negative, see Remark V.4.7.4).
It would be interesting to prove an equivalent of Theorem V.5.5 for the Gaussian
free field on the discrete graph G, which could imply percolation for the discrete
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sign clusters of the Gaussian free field, as studied in Chapters II and III, see
Remark V.5.6,2) for details.

Let us now describe the proofs of Theorem V.1.1 and V.1.2, as well as various
intermediate results, which are also interesting in their own right. The intensity
measure underlying killed, surviving, backwards-killed or forwards-killed inter-
lacements can be described directly, in a similar way as the intensity measure
vg underlying random interlacements, see for instance (V.3.2) and (V.3.3) in
the case of killed random interlacements. In particular, one can define the no-
tion of killed capacity capg(K) of a compact K of G, see (V.3.1) and (V.3.4),
and the number of trajectories hitting K in the killed random interlacement
process at level u is then Poi(ucapg(K ))-distributed, similarly as for random
interlacements.

There is however a simpler description of killed random interlacements: for
each x € G, start in x a Poi(uhg(z)k,)-distributed number of independent tra-
jectories, each distributed like the Markov jump process Z conditioned on being
killed before blowing up. Then the point process consisting of these trajectories
modulo time shift has the same law as the discrete killed random interlacement
process w9 at level u, that is

w9 has the same law under ]P’g ! as a Poisson point process with

intensity uﬂ’gC modulo time-shift, with Zg : Z K.ho(z - I/V’C +)
zeG

(V.1.4)
We also extend this description of killed random interlacements to the cable
system, and give similar descriptions for backwards-killed and forwards-killed
random interlacements, see Proposition V.3.3.

Using the description (V.1.4) of killed random interlacements, one can show
that for all ¥’ < k and v > uc(k,K'), see (V.1.2), and z,y € G, the number
of trajectories starting in x and killed in y in the killed random interlacement
process at level u on G, is smaller than the number of trajectories starting in
x and killed by & in y for the killed random interlacement process at level v’
on G/, see Lemma V.5.1. One can do a similar reasoning on the cable system,
which let us find a Couphng of the local times of killed random interlacements
on QN at level v and on g,f/ at level v/, see Proposition V.5.2, and Theorem V.1.1
follows directly from this coupling.

Another possible description of killed, or surviving, random interlacements
is through the Doob h-transform. For any harmonic functions h on G , we define
a graph Gy, the h-transform of the graph G, such that, after time change, see
(V.4.2) and (V.4.3), the diffusion X on Gy, corresponds to the usual h-transform
of the diffusion X on G, see for example Chapter 11 in [22]|, and we refer to
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Lemma V.4.1 for a more precise statement. In particular, if h = hg, then after

time change, the law of X under ng "0 is the same as the law of X under PE ,
conditioned on being killed before blowing up, see (V.4.2). Moreover,

the random interlacement process w on Gy, has the same law

after time change as the killed random interlacement process w™ on G ,

see (V.4.5) for details. Similar statements hold when replacing hy by h; and
killed random interlacements by surviving random interlacements.

It is easy to also compare the Gaussian free field on Gy, and G, see (V.4.6),
and using the description of killed random interlacements as random interlace-
ments on the hy-transform graph Gy, we can adapt the results from Chapter
IV about the Gaussian free field and random interlacements to results about the
Gaussian free field and killed random interlacements. We thus obtain the law
of the killed capacity of the sign clusters of the Gaussian free field on the cable
system, see (V.4.14), and an isomorphism between killed random interlacements
and the Gaussian free field, Theorem V.4.6, similar to Theorem IV.3.4. Similar
considerations are also available when h = h; for surviving random interlace-
ments.

The isomorphism between killed random interlacements and the Gaussian
free field (V.4.15) provides us with the following description of negative killed

level sets of the Gaussian free field on the cable system: for all u > 0, E,%_m

has the same law as the union of E¢” and the clusters of (Eg’)¢ intersecting Zj.
Following ideas from [57], one can easily find a coupling of non-negative killed
level sets of the Gaussian free field on G,. and G, when x’ < k, see Lemma V.5.4,
and easily deduce i) of Theorem V.1.2. Combining these observations with the
previously mentioned coupling of the killed random interlacements Z¢ on G,; and
G., we thus also obtain a coupling of negative killed level sets of the Gaussian
free field on G, and G, see Proposition V.5.5, from which ii) of Theorem V.1.2
follows readily.

Let us finally give an interesting consequence of the isomorphism between
surviving random interlacements and the Gaussian free field, which let us find
an isomorphism between the trajectories in the surviving random interlace-
ment process avoiding a compact K of QN, and the Gaussian free field condi-
tioned on being equal to 0 on K, and is proved at the end of Section V.4.
We define Hx = inf{t > 0 : X, € K}, with inf @ = (, hg(z) = PY(Hg =
¢, (X¢)i>oblows up before being killed) for all x € g, (5, the total local times
of the trajectories in the surviving random interlacement process w? at level u

never hitting K and Z¢ ;.. = {z € G- (355 > 0}



Chapter V. Random interlacements on massive graphs 234

Theorem V.1.3. Assume that G is a transient graph such that condition (Cap)
is fulfilled, and let K be a compact of G. On some extension ]@g% ofIP’gg(- | ok =
0) ®Pgl, let us define for each u > 0 an additional process (af’“)xeg e {-1, 1}g~,
such that, conditionally on (|¢z|),cg and w,, X is constant on each of the
cluster of {z € G : 25K+ 02 > 0}, 00X =1 for all v € T4 ko, and the values
of a5 on each other cluster are independent and uniformly distributed. Then

(O_f,u %ifc + (p%)weg has the same law under ﬁ’ﬁlg (V.1.5)

as (s + V 2uhK(:v))x€§ under lP’gg( ok =0).

We now describe how this chapter is organized. Section V.2 introduces vari-
ous definitions and notations, which are useful to obtain a last exit decomposition
(V.2.10) for the canonical diffusion X on the cable system G , and then to prove
the existence of random interlacements on the cable system of massive weighted
transient graphs, see Proposition V.2.2.

Section V.3 is devoted to the various definitions or characterizations of killed,
surviving, backwards-killed and forwards-killed random interlacements. They
are first introduced as mappings of the random interlacement process w, see
Definition V.3.1, then directly constructed from the law of X conditioned on
being killed before blowing up, or blowing up before being killed, see (V.3.2) and
(V.3.3) for instance, and finally a more direct description of killed, backwards-
killed and forwards-killed random interlacements is given in Proposition V.3.3.

Section V.4 is centered around the notion of Doob h-transform and its various
consequences. For any harmonic functions h, the h-transform Gy, of a graph G
is introduced, so that the diffusion X on gNh is related to the usual h-transform
of the diffusion X on 5, see Lemma V.4.1. If h = hg, see (V.1.1), we can
then relate the diffusion X, random interlacements or the Gaussian free field
on 'g}m to the diffusion X, conditioned on being killed before blowing up, killed
interlacements or the Gaussian free field on G , and similarly when h = hy, see
Proposition V.4.2. These relations are turned into correspondences for local
times in Corollary V.4.5, which let us use the results from Chapter IV to obtain
the law for the killed, or surviving, capacity of the sign clusters of the Gaussian
free field, see (V.4.14), and a signed isomorphism between killed, or surviving,
random interlacements and the Gaussian free field, see Theorem V.4.6. Finally,
the proof of Theorem V.1.3 is given at the end of the section.

Section V.5 combines the previous results to give couplings of killed random
interlacement sets, or killed level sets of the Gaussian free field at positive or
negative levels, on G, and G, when k' < k, see Proposition V.5.2, Lemma V.5.4
and Proposition V.5.5, from which Theorems V.1.1 and V.1.2 follow readily.
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Throughout the chapter, we will often remove the subscript or superscript G
from the notation when there is no ambiguity about the choice of the graph G.

V.2 Definition of (massive) interlacements

In this section, we explain how to extend the definition of random interlacements
to the cable system of massive weighted graphs. We first recall the definition
of the canonical diffusion X on 5, and present its last exit decomposition in
(V.2.10), that is a decomposition of the law of X before and after the time
Li at which X leaves the compact K of QN forever. We then use this last
exit decomposition to prove the existence of the measure vz underlying random
interlacements, see Proposition V.2.2.

Let m be the Lebesgue measure on G , that is the sum of the Lebesgue measure
on each I, e € EUG, W, be the set of continuous functions from [0, 00) to
GU A, where A is some cemetery point, X; be the projection function at time
t for all t > 0, and W™ the algebra generated by X;, t > 0. We simply write
W+ and W' when there is no ambiguity about the choice of the graph G. For
all measures m on G, that is myr, is a measure on (I, B(I.)) for alle € EUG,
and measurable function f : Q’ — R, we define

(fHa= > | fAdmy,

ee EUG Ie

LG, m) = {f : (f.f)m < oo}, and (f,g)m the associated Dirichlet form on
L*(G,m). Let also D(G,m) C L*(G, m) be the space of function f € Cy(G) such
that fi;,, € Wh*(I.,my;,) for all e € E UG and

> i

ee EUG

2
W1*2(Ie,771|15) < 0.

The canonical Brownian motion on G is then defined by taking probabilities PE ,
or simply P, when there is no ambiguity about the choice of the graph G, = € G,
under which the process X is an m-symmetric diffusion on G with associated
Dirichlet form on L?*(G,m)

def. 1

Es(f.9) = §(f’,g')m for all f,g € D(QN7 m). (V.2.1)

These definitions could also be extended to any killing measure x € [0, 00| by
replacing G by the graph G(*, which is the graph with finite killing measure,
obtained by keeping only the vertices z with s, < oo, and adding a vertex
between each z and y such that x, < oo, kK, = 0o and A, > 0, and such that
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the restriction of the random walk on G(* to G is a random walk on G. We
refer to Section IV.2 for more details and properties of the cable system G and
its associated diffusion X.

In order to study random interlacements on the cable system, we are first
interested in describing a decomposition of (X;);>o before and after the last time
L at which X exits a compact K of G, which will be given in (V.2.10). Using
Theorems 4.1.2 and 4.2.4 in [37], the O-potential of X has a density that we

denote by (g(z,v)) the Green function on G, and one can associate to the

m,y€g~’ ~
diffusion X a family of probability densities (pi(x,¥y))i=0, ,y € G, such that

P.(X, € dy) = iz, y)m(dy) and g(z,y) = / Tpmyd. (V22)

One can show that this definition of the Green function corresponds to the
definition given in (IV.2.12), using for instance Theorem 3.6.5 in [62]|. Let us
now recall some useful results from Section 2 of [34] about the existence of
Markovian bridges, that we apply to our m-symmetric diffusion X. Under P,,
the process (pi—s(Xs,y))sejo,y) is a martingale, and thus we can define

d;f. Ea: [pt—s(X87 y)]]'A]

for all A € Fy:=0(X,,u<s)and 0 <s <t
pi(,y)

Py yi(A)

and this definition is consistent. One can extend the definition of P, ,; to a
probability measure on F;, which informally corresponds to the law of a bridge
of length ¢ between = and y for X. Applying the optional stopping theorem to
the martingale (p;—s(Xs, ¥))sco,), see for instance Theorem 3.2 in Chapter II of
[75], we have that for all ¢ > 0 and stopping time T

Ex[pt—T(XT7 y)]]'A,T<t] = Px,yﬂf(A) T < t)pt(ma y) fOI' au A € ‘FTv (v23)

where Fr = {F € F,: FN{T < s} € F, for all s <t} is the filtration associated
with T. Moreover by m-symmetry of X, we have for all £ > 0 and z,y € G that

(Xi—s)sejo,q has the same law under P, ,; as (X)scjo,q under P, ,;. (V.2.4)

Using (V.2.4), one can derive a decomposition for stopping time on the reversed
time scale: for all random times 7 such that {7 >t} is in o(X;4y,u > 0),

(Xs)sefo,r] has the same law under P,(-|G,) as (X;)sep,,) under P, x, -,
(V.2.5)
where G, = o (7, X;44,u > 0). We now define for any compacts K of G the last
exit time L of K by Lix = sup{t > 0: X; € K}, with sup @ = —o0, and, for all
xr € 0K with P,(X., = x) > 0 we define PxK’g as the law of (Xyy1, )i>0 under



237 V.2. Definition of (massive) interlacements

P.(-| XL, = x), and we simply write P when there is no ambiguity about
the choice of the graph G. Using results for general Hunt processes, see either
Theorem 8 in [66], Proposition 5.9 in [39] or Theorem 2.12 in [38], under P,, on
the event Lx > 0, (Xsi1,)s>0 is @ Markov process depending on the past only
through X ., and so we have for all z € 3,

(Xs+Lx )s>0 has the same law under P, (- | Li, X1, ) as (X;)s>0 under P)I((LK.
(V.2.6)
Combining (V.2.5) and (V.2.6), one can thus describe the law of (X;);>¢ both
before and after the last visit Lx of K. Let us now describe the law of Lx and

Xr,. We define a measure the equilibrium measure and the capacity of a set
K C G by

def.

e (@) C NPI(Hy = C) for all € G and capg(K) =Y e, q(a), (V.2.7)

zeK

where Hj is the first time the Markov jump process Z on (G return in K after its
first jump time, which is equal to ( if Z never comes back in K. We simple write
ex(z) and cap(K) when there is no ambiguity about the choice of the graph
G. One can extend these definitions to any compacts K of 5 , see (IV.2.18) and
(IV.2.20). Using (IV.2.29), we have that

Py (X, =x)=g(y,v)ex(x) for all z,y € G. (V.2.8)
This leads to the following description of the law of Lx and X, .
Lemma V.2.1. For all compacts K ofg and x,y € g~, we have
P,(Lx € dt, X, =vy) = pi(x,y)ex(y)dt. (V.2.9)
Proof. For all t > 0, we have by the Markov property at time ¢ and (V.2.8)
Po(Li > t, X1, =y) = B [Px,(X1,. = )] = Ex[9(X0,9) e (y).

Using (V.2.3), we moreover have F,[ps_+(Xt,y)] = ps(x,y) for all s > ¢, and so
by (V.2.2)

Ex [Q(Xt,y)] = /too Ea: [ps—t(Xtay)} ds = /toops(x7y) dS,

and we can conclude. ]

We are now ready to give the last exit decomposition of (X;);>¢ before and
after time Lg. We denote by W/ the set of continuous trajectories in G with
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finite length, that is of continuous functions from [0, ¢] to G for some t > 0. Let
T W x (0,00) = W/ the application w(w,t) = wypy, m = w(-,t) for all
t > 0, and W/ the smallest o-algebra such that 7 is measurable with respect to
W+ ® B((0,00)). For all A, € W/ and Ay € WT, using (V.2.5) with 7 = L,
we have that for all z € G and y € 0K

Px((Xt)te[O,LK] € A, (Xegrg)izo € Ao, Xy = y)
=L, []l(Xt+LK)t20€A2,XLK:y(PLy,LK © ﬂ-ljflg)(Al)}

= PyK(A2>EﬂC []]‘XLK:y(annyK © WZII()(AI)} )

where we used (V.2.6) in the last equality. By (V.2.9), we moreover have that

Ex [1XLK:y(Pz,y,LK o ﬂ-zfl()(Al)] = eK(y) /0 (Pa:,y,s o 7T8_1)(A1)ps(l‘, y) ds.

Summing over y in 0K, we thus obtain the following last exit-decomposition for
all compacts K of G, z € G, A; € W/ and A, € W+

Po((Xt)tepo,Li) € A1, (Xigri )iz0 € Ag, L > 0)

- Z eK(y)PZJK(A2> /OOO Px,y,s(7;1<A1))ps(l’,y) ds.

yedK

(V.2.10)

The last exit decomposition (V.2.10) will now let us define random inter-
lacements on the cable system of any massive transient graph. The random
interlacement measure was first defined on Z%, d > 3, in [93], and then on any
discrete transient graph with £ = 0 in [103]. It was then extended to the cable
system of Z% in [57] using the fact that one can obtain the diffusion X by adding
Brownian excursions on the edges to a discrete random walk on Z¢, and this
proof can easily be extended to any transient graph on which discrete random
interlacements exist. A continuous analogue of random interlacements, Brow-
nian interlacements, has also been defined on R?, d > 3, in [99]. We seize the
opportunity here to give a direct construction of random interlacements on the
cable system without using Brownian excursions, which also include the case
Kk Z 0.

Let us first recall some definitions from Chapter IV. The set of doubly non-
compact trajectories W is the set of continuous functions from R to Gu A,
which take values in G between times (~ € [—00, 00) and ¢ € (—o00, 0], and is
equal to A on (™, ()¢, We denote by pé(w) the equivalence class of w modulo
time-shift for each w € Wg, and W5 = {pé(w), w € Wz}. We define Wy the
o-Algebra on Wz generated by the coordinate functions, and Wé ={AC W§ :
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(pg) '(A) € W;}. For each compact K of G, we denote by W0 "G the set of
trajectories in W~ hitting K for the first time at time 0, and by W* ~ the set of
trajectories modulo time-shift in VV(j hitting K. The forwards part of a trajectory
w € W5 is (w(t));>0 and its backwards part (w(—t)):>0, and we denote by WO ~

the set of events B € W5, B C W ~, which can be uniquely decomposed mto
an event BT € WZL concerning the forwards part of the trajectories and an
event B~ € VVJr concermng the backwards part of the trajectories. We define a
measure ¢ 5 on Wg, whose restriction to WO ~ is given by

Qs = Y eK,g<x>P5<-+>Pf§<-->, (V.2.11)

r€0K
and such that Qg z(A) = 0 for ail A € Wz with AN W%fgu = @. As usual, we
will simply remove the subscript G to all the notation introduced in the previous
paragraph when there is no ambiguity about the choice of the graph G.
Proposition V.2.2. There exists a unique measure vg on Wé‘i such that for all

compacts K of G
vg(A) = QKjg((pé)*l(A)) for all A e W%, A C W;a (V.2.12)

Proof. The uniqueness is clear since Wp: increases to W* as K increases to G.
Let us now fix some compacts K and K’ of G with K C K'. For all A € WY
we denote by A" = {(w(t + Hg))ter, w € A}. In order to prove (V.2.12), it is
enough to prove that for all A € WY, such that A’ € WY,

Qr(A) = Qr/(A). (V.2.13)

Indeed one can then define Ty v = Qo (p*)~! for all compacts K of G , and this
definition is consistent by (V.2.13), and we can conclude by taking a sequence
of compacts increasing to G. Using (V.2.11) and (V.2.8) we have

()= Y - (; PP (X )izo € A7 Xy = ).
r€OK ’

Taking A* = {(w(t)tepo,a,] : w € A'}, one can easily check that (X1, )i>0 € A~
if and only if (Xyyr,, )0 € (A)” and (X_i1,, )iepo,0,0-1x)] € AT. Therefore
using (V.2.10) for K’ and (V.2.4), we obtain that for all x € 0K

Pac((Xt—i—LK)tZO €A, X, = $)

== Z eK’(y)PyKl((Al)i) / Px,y,s((Xsft)tE[O,s—LK} S AiaXLK = 33)]?5(1',?/) dS
0

yeOK'
o

= Z eK’ PKI ) )/ Py,z,s((Xt)te[O,HK] € AiaxHK = x)Ps(?Jﬁ”) ds.
0

yeOK'
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Moreover by (V.2.3), we can write

/ Py,x,s((Xt)te[O,HK] € A:i:’ XHK = x)ps(ya ZL') ds
0
= \/0 Ey [ps_HK (.T, ‘r)]]‘(Xt)te[QHK]EAi,XHK:m} dS

= Ey [E(Xt)te[o,HK]EAivaKl’/
Hg

- 9(1'7 I>Py((Xt)tE[O,HK] S A:ta XHK - x)?

where we used (V.2.2) in the last equality. Combining the previous equations,

o0

Ds—Hy (T, 7) ds]

we thus obtain by the strong Markov property at time Hy that
Qu(A) = Y exW)PolAN)P((Xeto,nl € A*, Xy = ) P ((A)7)

2€OK yedK'
= Y ew@R((A) Xu, =2) P ((4)7)
2€OK yedK'
= Qr:(4),
where we used in the second equality the fact that (X;)i>0 € (A’)T if and only
if (X4)ieo,m) € A* and (Xprm, )10 € AT, and we can conclude. O

The measure vz from Proposition V.2.2 is the intensity measure underlying
random interlacements on QN , and as usual we then define w the random inter-
lacement process under some probability Pé as a Poisson point process with
intensity measure vz ® A, where A is the Lebesgue measure on (0, 00). We simply
write v and P! when there is no ambiguity about the choice of the graph G. We
also denote by w" the point process, which consist of the trajectories in w with
label less than u, by (£...),cg the continuous field of local times with respect to
m on G of w, and by ¢ = {z € G- (. > 0} the interlacement set at level .

Remark V.2.3. Similarly as in (1.40) of [93] or (2.16) of [99], it is easy to show
that random interlacements on the cable system are invariant under time rever-
sal. Indeed for all connected compacts K of G we have by (V.2.11), (V.2.10)
and (V.2.5) that for all A/, A” € W+ and A’ €¢ W/,

QK((X—t)tZO € A, (Xi)icp,Ly] € A (X)L € AH)
- Z €K (x)eK<y)PyK(AN)PmK<A) /0 Px,y,s(A,)ps(xv y) ds

z,yc0K
= Qr ((X_t)iz0 € A", (Xi—t)iepo.rx] € A (Xi)isr, € A).

Denoting © the image of v under time reversal, taking a sequence of compacts
increasing to G, we thus directly obtain by (V.2.12) that

V=1 (V.2.14)
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V.3 Killed and surviving random interlacements

In this section, we introduce the notion of killed, or surviving, random interlace-
ments, corresponding to the trajectories in the random interlacement process
w which are doubly killed before blowing up, or blows up doubly before being
killed. We also present a direct construction of killed and surviving random
interlacements, see (V.3.2) and (V.3.3), and prove another characterization of
killed random interlacements when replacing doubly non-compact trajectories
by forwards trajectories starting at a given vertex, see Proposition V.3.3 and
(V.1.4). Similar results are also presented for backwards-killed and forwards-
killed random interlacements.

For w* € Wé, we say that the forwards part of w* has been killed before

blowing up if there exists w € (pé)*l(w*) such that w(0) € G and the trajectory
(w(t))¢>0 has been killed before blowing up, using similar terminology as above
(V.1.1), and similarly for the backwards part of w* by considering (w(—t))¢>0
instead. Let Wg ™ be the set of doubly non-compact trajectories modulo time-
shift whose forwards and backwards parts have been killed before blowing up,
Wg* be the set of doubly non-compact trajectories modulo time-shift whose

forwards and backwards parts blow up before being killed, Wg S* be the set
of doubly non-compact trajectories modulo time-shift whose backwards parts
have been killed before blowing up and forwards parts blow up before being
killed, and Wgzc,* be the set of doubly non-compact trajectories modulo time-
shift whose forwards parts have been killed before blowing up and backwards
parts blow up before being killed. We also define similarly the subsets Wg,

Wg , Wgs and Wg’c of the set W5 of doubly non-compact trajectories, Wg’+
the set of forwards trajectories in Wg which are killed before blowing up, and
Wg "™ the set of forwards trajectories in Wg which blow up before being killed,

and we denote by W»g~ all the associated o-algebras, generated by the coordinate
functions.

Definition V.3.1. Let Vg = (Vg)lwg,* the measure underlying killed random
g

interlacements, 12 := (v/z),,,s.~ the measure underlying surviving random inter-
» TG g |W§

lacements, I/Iggs = (y§)|wgs,* the measure underlying backwards-killed random
g

interlacements and l/glc = (Vg~)|w§)c,* the measure underlying forwards-killed

random interlacements. We also define the killed random interlacement process

w* under some probability space ]P’g I as a Poisson point process with intensity

V’gf ® A, where ) is the Lebesgue measure on R, , wX the Poisson point process

= the

z€G
field of total local times with respect to m of all the trajectories in w® and

which consist of the trajectories in w® with label at most u > 0, (¢X )

T
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It :={regG: (%, > 0} the killed random interlacement set on G. We use sim-
ilar notations for surviving random interlacements under Pgl , backwards-killed

random interlacements under PgSI , and forwards-killed random interlacements
under PgK I

Note that by definition, we have that

w has the same law under Pé as

W+ w® + W+ W under Pgl ® ng ®P§Sl ®]P’§KI,

and that w* = W = wS* =0if hg =0, i.e. k =0, and W = W = W =0
if hy = 1, where hy(z) = Pg( g+) was defined in (V.1.1). If K #Z 0, one can
directly describe the law of killed random interlacements as follows. We say that
the Markov jump process Z is killed before blowing up if Z is killed by the killing
measure k at time ¢ < oo, and we denote by Wéc " the corresponding event. For
any finite sets K C G, let us define similarly as in (V.2.7) the killed equilibrium
measure by

e o(a) S Ao () PY (Hye = ¢, WE™) for all = € 9K. (V.3.1)

This definition of the killed equilibrium measure can be extended to an equilib-

K

rium measure e g on the cable system G for any compacts K of G by considering

the graph G?% with 0K C G, similarly as for the equilibrium measure on G , see
Lemma IV.2.1 and (IV.2.18). Let now Q’fdj be the probability measure on W¥,

whose restriction to W?( gl Wg is given by

def. G 5,
o = D Eng@PI (T IWEPEI( W), (V.3.2)

z€IK

and such that Qﬁ g(A) =0forall A€ Wg with AN W[O<§ N Wg = @. Since
vag(Wéf*) = PS(W§ ™" |Hg = ¢) for all K € G and = € K with P9(Hy =
¢) > 0, one can easily show by (V.2.12) and Definition V.3.1 that for all compacts
Kofg

vE(A) = Q) 5((p5) ' (A)) for all A€ W3, A C W;g, (V.3.3)

with Wgé =Wy éﬂwg . In other words, the restriction of WX to the trajectories

hitting a compact K of G can be described as follows: for each z € K , there are
Poi(ue’f{ g(x)) independent trajectories hitting K for the first time in z, and each
of thesefrajectories has a forwards part which behave like a Brownian motion

on G conditioned on being killed before blowing up, and a backwards part which



243 V.3. Killed and surviving random interlacements

behave like a Brownian motion on G conditioned on never coming back in K and
being killed before blowing up. We also define the killed capacity of a compact
K of G by
capl () = )" ek (), (V.3.4)
z€dK
and the killed interlacement set is then characterized by the following identity

PE(TEN K = @) = exp (—ucapg’S(K)) . (V.3.5)

One can also give similar definitions and results for surviving random interlace-
ments by replacing hy by h; and Wg " by ng", or for backwards-killed and
forwards-killed random interlacements. Note that since random interlacements
are invariant under time reversal, see (V.2.14), killed and surviving random in-
terlacements are also invariant under time reversal, and the time reversal of
backwards-killed interlacements is forwards-killed interlacements. In particular,
the law of the number of trajectories hitting a given set is the same for backwards-
killed and forwards-killed interlacements, that is backwards-killed and forwards-
killed capacity are equal: for all finite K C G,

capSS(K) 3" Nohy (2) PY (Hye = ¢, W)

vek N o (V.3.6)
= Z A$h0(x)Pf (HK =(, Wg+) = capgK(K).
rzeK

This equality can easily be generalized to any compacts K of G by considering
the graph G from Lemma IV.2.1, and one could also prove it directly using the
last exit decomposition (V.2.10). As usual, we will simply remove the subscript
G to all the previous definitions when there is no ambiguity about the graph the
choice of the graph G.

Let GE be the subset of G consisting of only the edges I, for e € E, that is
removing the edge I, starting from z for all x € G. There is an easier way to di-
rectly describe the restriction to GE of killed, backwards-killed, or forwards-killed
random interlacements, instead of describing them through their restriction to
compacts as in (V.3.3). Before giving this description, let us begin with an inter-
mediate lemma. In essence, it states that, starting with the " killed equilibrium
measure of G", that is khg, the probability to hit U in y and then to be killed
before blowing up is the killed equilibrium measure of U in y, which bears some
similarity with (IV.2.23).

Lemma V.3.2. For ally € G and all finite U C G we have
Z K'xpxg(HU < Ca ZHU = y) = )‘ypyg(ﬁU = Ca Wg7+)]lyEUa (V37>

zeG
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and

> ke PY(Hy < ¢, Wg) = capl (U). (V.3.8)

zeG

Proof. Let us denote by (Zn)neNo the discrete skeleton of the jump process Z on
G, which is equal to A after being killed. Let us fix some sequence U,, n € N,
of finite subsets of GG increasing to GG, and let

def.

Ly, € inf{k>0: Z, € Uy, Zysr # N, Z, ¢ U, for all p > n + 1},
with the convention inf @ = co. By the Markov property, we have for all x € U,

Pyg(fon =, Ly, < ) :ZPE(Ek:x,Z\kH#A,Z\p%Un forall p >n+1)

k>0

=Y PIUZy=2)PU(Z1 # N, Z, ¢ U, for all p > 1)

= gly.2)(ev, () — ).

Therefore we obtain by (IV.2.21), that for all n € N large enough such that
yeU,

Zﬁmg(xy Zgy, x)ey, (x ZPgZA _xLU < 00)

xelUy, zeUnp, zeUp

Note that EU" < oo for all n large enough if and only if the trajectory blows up
before being killed, and thus

> keglw,y) = lim 1 — PY(Ly, <o0) =1—PJ(WS") =ho(y). (V.3.9)

n—oo
zeG

Now we have for all z € (G that

D 9z y) Y wPY(Hy <G Zny = y) = Y wE2[9(Zuy, 2) Ly <c].

yeG zeG zeG

Moreover by Hunt’s switching identity, see for instance (1.50) in [98], we have
E919(Zn,, 2) 1, <c] = E9[9(Zu,, ®) 11, <), and so using (V.3.9) we obtain

Zg ZY Z’%z HU <C ZHU - y) Ezg ZHIQ<ZHU7x)]lHU<C

yeG zeCG zeG
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where we used the strong Markov property at time Hy in the last equality. Let
us now define

Ly inf{k>0: Z,€U,Z, ¢ Uforall p>k+1},

with the convention inf @ = oo. By simple Markov property, we have for all
ze@G

> gz NP (Hy = (WD yer =D PI(Z, = y)PY (Hy = ¢, WE™)
yeG yeU k>0
:ZZPE(/Z\k:?JaLU:kaWéC’+)
yeU k>0

= PI(Ly < 0o, W5).

Noting that {Ly < oo} = {Hy < (}, and that the operator Gf(x) :=
> vec 9(x,y) f(x) is invertible, see for instance (1.37) in [98], we obtain (V.3.7).
The equality (V.3.8) follows directly since by the strong Markov property,
(V.3.1) and (V.3.4) we have

S ke PIHy < CWET) = 3N ko PY(Hy < ¢ Zigy =y, WE)

zeG yelU zeG

= ho(y) Y k.PI(Hy < ¢, Zn, =)
yeUu zeG
= > N\ho(y) PY (Hy = ¢, W)

yeU

= cap™(U).
[

Lemma V.3.2 let us derive another description of killed, backwards-killed
and forwards- kllled random interlacements. For all x € G with k, > 0, we
denote by PE9 the law of (Xt+L,c)t>o under P,(- ’XL,; =, L < 5)7 which
has the same law as a BES®(0) process on I, starting in  and stopped when
reaching the open end of I, see for instance Theorem 4.5, Chapter XII in [75].
Similarly as above (V.2.11), we define WQ ~ as the set of trajectories in W

hitting G at time 0 for the first time, the set WSE gof BEW, BC WgE &

which can be uniquely decomposed into an event Bt concerning the forwards
part of the trajectories and an event B~ concerning the backwards part of the

trajectories, and the set WgE 5 (WSE gN WX). We then have that WSE 5

and {AeW: AN WgE g = @} generate W.
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Propos1t10n V.3.3. Let v 1/~ RS and DgK be the probabilities on (Wz, Wg) given

g
on Wg~E g

~IC def K+ 15,6 G/ —
> raho(@) PY (-5, (W5 )PE( 5, ),
zeG

PSS N k(@) PY( L, IWENPEI(-2,),
zelG

S m (@) P (5 )P (G IWET),
zelG

and such that v Vg~ = VIQCS = ;glc =0 for all A € Wg with AN WQQE ;=9 Then

VE(A) = 75 ((p5) 71 (A)) for all A€ W5, A C WgE*g, (V.3.10)

and similarly for backwards-killed and forwards-killed random interlacements.

Proof Let us first consider killed random interlacements. Let K be a compact
of G such that K € G and 0K C G, and let (K,),en be a sequence of compacts
increasing to GP such that for alln € N K C K, and K, C G. If A € W with
AC ng = (p*)~ (W* )ﬁVV’C we write Az = {(w(t + Hgs))ier : w € A}.
For alln € Nand A € W?(mg such that A C WK,§ and AgE € W ~, we have
by (V.3.2)

Qk, (A) = T(Age) = Y ek, (@) Pa(AT [WHH P (AT W)

€K,

= rsho(2) Po(AL [WHHPE(AL,).

z€G

Let us define 0.x K, = {x € 0K,, : Jy € GNKE, y ~ z} for each n € N, as
well as a measure p,, on )/V’C s ={AeWr: AC Wz}, which is given for all

A€ WO ~ Such that A C W’C~ and Azp € WgEé by

pa(A) 3T (@) Po(AT [ W) PR (AT [ W)

Ieaethn

Y k(@) Pa(AL, [ W) PE(AS,),

xeKﬁU@ethn

and u,(A) =01if AN WO =9 Such sets A generate )/V’C & and so this is
enough to define pu,,. For all x € 0K, \ Oert Ky, we have

e (x) = Noho(a)PE(Hy, = (W) = Aoho(2)P(Z) = A) = kho(2),
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Agr = A and Pl (-|[Wh) = P if ki, > 0. Therefore we obtain that
Q% (A) = TF(Age)| < pa(A), (V.3.11)

for all A € W9 - such that A C WE g and Ags € W@QE’ g- Moreover, we have by

oy

(V.3.2), (V.3.3) and (V.3.8)
Qk, (Wi g) = Qi(Wy 5) = cap® (0K)
= ko Po(Hi < ¢, WS (V.3.12)

zeG

~K (117K
=V (WK,é)’
and so (V.3.11) holds for for all A € W}Eg with A C W[O( g by the 7-lambda
theorem, and we obtain that ’ 7

Q% (A) = 7 (Age)| < pn(Wig ) for all A€ Wiz with AC W) = (V.3.13)

Since (Wi MWy )7 = {Xo € Ku, Hx < yNWST (WENW) o) =

{Xy € K,} N WX+ and similarly when considering WQQE 5 we have

(Wig) = > ek (@) P (Hik < ([Wg™)

$Eae:l;tKn

+ > KePu(Hg < WRT).

xerluaextKn

Using again the equality ) (z) = r,hy(z) for all € K, \ Oeqe K, we have by
(V.3.2) and (V.3.12)

> ek (@) PY(Hg < C|WET)

xeaethn
K,
= Q. Wka) = D KePI(Hx < WE)
xeaKn\aethn
= Y mPIHK <¢WET).
xeKﬁU@ethn

- K wi 0
We obtain for all A € Wis with A C Wi & that by (V.3.13) and (V.3.8)

QK. (A) =T Az <2 Y wPu(Hi < (W) —0.

n—oo
:EEK,CLUBGCMK"

Using (V.3.3), we thus have that (V.3.10) hold for all A € Wg. such that
A C W;S Since this is true for any compacts K C GP with 0K C G, we
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obtain (V.3.10) by the m-lambda theorem. For backwards-killed random inter-
lacements, one can easily obtain from (V.3.7) an equality similar to (V.3.8) but
for cap™®(U) by replacing Wg * by W§’+, and the rest of the proof is simi-
lar. One can then also conclude for forwards-killed random interlacements using
that by (V.2.14) the forwards-killed random interlacement measure is the image
under time reversal of the backwards-killed random interlacement measure. [

Proposition V.3.3 provides us with an interesting description of killed inter-
lacements. Indeed, if one is only interested in the Kkilled interlacement process
5 K on §E, i.e. the print on QE of each forwards part on hitting QE of the
trajectories in the killed interlacement process wX, then its law can be described
as follows: for each x € GG, take a Poisson number of trajectories with parameter
uk;ho(z), each independent and with law PEE( | WX+), then the point process
which consist of all these trajectories modulo time-shift has the same law as wg oK
under PX?. The description (V.1.4) of the discrete killed random interlacement
process w9, the print of wX on G follows also directly from Proposition V.3.3.
The restriction of Z¢ to G has thus the same law as the set of vertices reached
by a Poisson point process of trajectories with intensity uﬁ’gc, which could be di-
rectly proved by (V.3.5) and (V.3.8). Similar descriptions can also be obtained
for backwards-killed and forwards-killed random interlacements. Note that fini-
tary interlacements, as introduced in [15], are a special case of killed random
interlacements, and (V.1.4) can be seen as generalization of Proposition 4.1 in

I15].

Remark V.3.4. 1) One could also prove (V.3.10) similarly as (V.2.13), but re-
placing Qx by Q% and Qg by X, and using that the killed equilibrium
measure of GG, defined similarly as in (V.3.1) for K = @G, is equal to khy.
One would also need to extend the decomposition (V.2.10) to include the
case K = (, and then the general strategy is very similar to the proof of
Proposition V.2.2. We chose to present another proof here, which consists of
taking a sequence of compacts K,,, n € N, increasing to GE , and show that

% increases to %

2) If one applies (V.3.10) to a new graph G’ which is like G, plus an additional
vertex 2/ on each I,, x € G, then (V.3.10) describes the law of X on (G')Z,
that is on GZ and on [z,2/)(C I,), z € G. We can approximate the whole
cable system G in that way by letting [z, 2] increase to I, for all x € G,
and thus (V.3.10) is enough to obtain the complete law of v*. One cannot
however find a direct description similar to (V.3.10) for the complete law of
V& since for all z € G with k, > 0, v*(W}:) = cap™(I,) = oo, by a similar
argument as in (IV.4.4), and so there is an infinite number of trajectories in
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the killed random interlacement process starting at the open end of 7.

3) When hy = 1, for instance on finite transient graphs or on graphs with
bounded degree, constant weights and constant killing measure, killed ran-
dom interlacements and random interlacements coincide. Therefore, (V.3.10)
then provides us with a description of the restriction of random interlacements
to GZ and (V.1.4) with a description of discrete random interlacements.

V.4 Doob h-transform

In this section, we introduce the notion of the Doob h transform G, of a graph
G, when h : G — (0,00) is an harmonic function, so that the diffusion X on
the cable system Qh of Gy is related to the h-transform of the diffusion X on
Q see Lemma V.4.1. In particular, if h = hg, then the diffusion X on Qho
is related to the diffusion X conditioned on being killed before blowing up,
and if h = h;, conditioned on blowing before being killed, see (V.4.4). One
can then also relate the law of random interlacements on Gy, to killed random
interlacements on G, and the Gaussian free field on Qho to the Gaussian free field
on G, and similarly when h = h; for surviving random interlacements, see (V.4.5)
and (V.4.6). Similar relations also hold for the field of local times associated to
X, or to random interlacements, see Corollary V.4.5. Therefore, one can use
the results from Chapter IV about the Gaussian free field and local times of
random interlacements on Gy,,, to obtain similar results about the Gaussian free
field and local times of killed random interlacements on G, or surviving random
interlacements when h = hy, see (V.4.14) and Theorem V.4.6. Finally, we use
these results for surviving random interlacements on a suitable graph to obtain
the isomorphism between random interlacements not hitting K and the Gaussian
free field, Theorem V.1.3.

We first define the Doob h-transform, or h-transform, of the graph G, using
similar ideas as in the proof of Proposition 4.6. in [58]. For all e = {x,y} € E
and t € [0, p.] we denote by = + ¢ - I, the point of I, at distance ¢ from x, that
iszx=x2+4+0-1, =y+ pe- I, and similarly for all z € G and ¢ € [0, p,), we
denote by x 4t - I, the point of I, at distance ¢ from x. We say that a function
h:G — (0,00) is harmonic on G, when h(z +¢- I.) = tp-'h(y) + (1 — p; t)h(z)
for all e = {z,y} € E and t € (0, p), h(01,) := lim;_,,, h(z + ¢ - I,) exists, is
finite, and h(z+t-1,) = tp; 'h(01,)+ (1—p; t)h(z) for all x € G and t € [0, p,),
and

> Xeyh(y) + £0(0L) = Ah(z) for all z € G. (V.4.1)
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When h is an harmonic function on G , let us denote by Gy, the graph with the
same vertex set Gy, = G, with weights Aty = h(z)h(y)\;,, z,y € G, and with
killing measure o = k:h(x)h(0I,), x € G. We say that Gy, is the h-transform
of the graph G, and we will often write x for the vertex of GG}, corresponding to
x € (G, and e for the edge of Gy corresponding to e € E. By (V.4.1), the total
weight of a vertex x € Gy, is then AR = h(x)?)\,. We also define a function
Un : G — gh such that if e € F'U G and x € 01, then

def. t
Un(e +t- 1) = X+h(x)h(x+t-]e)

I, for all t € [0, p,),

and we will take the notation ¥n(A) = A. One can easily check that this
definition does not depend on the choice of the endpoint x or y of I, when
e = {x,y} € E, that vy, is bijective, and that ¢ (z) = x for all z € G. For any
forwards trajectories w* € ng; on (jh, we define the time change

0}”“;’+( t) def- inf {8 >0: / h(l/)gl(w+(u)))4du > t}, (V.4.2)
0
with the conventions h(A) = 0 and inf @ = (, and

(En(w ™)) () L g (wH (62" (¢))) for all t € [0, 00). (V.4.3)

The process {,(X) is thus a stochastic process on G under Pgh(m), T € é, and
let us now prove that it corresponds to the h-transform of X. We recall the
definition of the Dirichlet form &z and of the domain D(g ,m) for any measures
m on G from (V.2.1) and above.

Lemma V.4.1. If h is an harmonic functwn on G, then & (X) is an (h? - m)
symmetric diffusion on G under Pg @y T € g with associated Dirichlet form

Es(fh,gh) on L2(G, % - m) with domain D(G,h? - m).

Proof. Let my be the Lebesgue measure on Gy. The Dirichlet form associ-
ated to the ((h o iy')* - my)-symmetric diffusion (Xg})f(t))t<(0§)*l(g) under

P9z € Gy is &g (f,9) on L*(Gn, (h o ¢ ')* - my) with domain {f €

L*(Gn, (ho z/;h )4 mh) NCo(Gn) : ' € L2(Gn, my)}, where my, is the Lebesgue
measure on Gy, see Theorem 6.2.1 in [37]. Let mj, = ((howy")* - my) o Y.
Following Section 13 of [85], one can prove that the Dirichlet form associated to
the mj -symmetric diffusion &, (X') under Pgh Lz €G,is &g (fowgl, goy ') on
L2(G,m}) with domain {f € L%(G,m},) mCO( ) - (foyt) € L*(Gn,mn)}. Let
e € EUG, then (¢y,)'(z) = h(z) 2 for all x € I, and (¢;,") () = (ho )y, ' (x))?
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for all € I, and so we have by substitution for all e € E UG for any Borel
sets A C I,

my(A) = ((hoyy )" mn)(Yn(4)) = /w (A)<h o) dmy,
:/Athm:(hQ-m)(A),

and so m}, = h2-m. Moreover for any functions f, g in D(G,h%-m) ande € EUG
we have

/ (f oY (g 0wy dmy = / (' o ) o vt (ho i) dim,
Yn(le)

wh(Ie)

= / f'¢'h*dm.
Ie
Integrating by parts and noting that h’ = h! is constant on I, we have

g dm = [ (fh(gh) dm — b, / (foYhdm— W2 [ fgdm

Ie Ie Ie Ie

— / (fh)'(gh)" dm — h.[fgh];.

Ie

Moreover, if e = {x,y} € F, then h, = p_'(h(y) — h(z)) = 2\, ,(h(y) — h(z)),

and so we have

S h[fghl, =2 > Ay (f®ewh(y) — f(x)g(x)h(x)) (h(y) — h(z))

ecE e={z,y}€kE

=2 3" Ay f(@)g(@)h(z) (h(z) — h(y)),

z,yeG

and if e = z € G, then h!, = p, ' (h(dz) — h(z)) = 2k,(h(dx) — h(z)), and so

> h[fghl;, =2 k.f(x)g(z)h(z)(h(z) — h(IL,)).

zeG zeG

Therefore we obtain by (V.2.1) that the process &, (X) under Pf:(
symmetric diffusion, and its associated Dirichlet form is

» isa (h?-m)-

E(fh,gh) + 3 F()g(e)h(e) (e (hOL) — b)) + 3 Ary (h(y) — () )

zeG yeG

on L(G,h? - m) with domain D(G, h%-m). We can conclude by (V.4.1). O
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Lemma V.4.1 implies that &,(X) corresponds to the h-transform of X, see
for instance Chapter 11 of [22], and when h = hy, see (V.1.1), one can then clas-
sically relate the law of the diffusion X on G conditioned on being killed before
blowing up with the hy transform of X, see Theorem 11.26 in [22]. Therefore,
the law of X on G conditioned on being killed before blowing up can be related
to the diffusion X on the hyp-transform Qho of Q and since the proof of this
result is short, we include it below for completeness. Similarly, the law of X
on G conditioned on blowing up before being killed can be related to the law of
X on §h1, where h; := 1 — hg is the probability that X blows up before being
killed.

As a consequence, one can also relate killed random interlacements on G
with random interlacements on §h0, and surviving random interlacements on §
with random interlacements on (jhl, as well as the corresponding Gaussian free
fields. If w* € ngh, we denote by & (w*) the trajectory in ng which corre-
sponds to taking the image modulo time-shift of a trajectory with backwards
part &n((w(—t))i>0) and forwards part &, ((w(t);>0), for some w € (pgh)_l(w*),
and one can easily check that this definition does not depend on the choice of
w.

Proposition V.4.2. If G is a graph with hy # 0, then the function hy is har-
monic on G. Moreover, for all x € G, the diffusion

€no(X) has the same law under Pg:g(x) as X under PE( | W§’+), (V.4.4)
the random interlacement process

o (51*10)_1 has the same law under }P’ého as W™ under ]P’gl, (V.4.5)

and the Gaussian free field

<h0($)¢¢ho(w))me§ has the same law under ]P)gho as (pz),eg under ]P’g. (V.4.6)

Similar results hold when replacing hy by hy, W§,+ by Wg’Jr, and killed random
interlacements by surviving random interlacements.

Proof. We only do the proof for hy, the proof for h; is similar. It is clear that
ho(0I,) = 1if k, # 0 and that hy(01,) = hy(x) if k, = 0. If e = {x,y} € F and
t € [0, pe], then the probability beginning in x + ¢ - e that X hits y before z is
tp!, and by the Markov property hy is harmonic on I.. If x € G with k, # 0
and t € [0, p,), then the probability beginning in = + ¢ - e that X hits « before
being killed is 1 — p; ¢, and thus by the Markov property hy is harmonic on
I,. If x € G with k, = 0, then hy is constant equal to hy(x) on I, and thus
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harmonic on I,. Moreover for all x € G using the Markov property at the first
time another vertex of G is hit, we have

Acho(2) = Aayho(@) + ke = Y Aeyho(x) + koho(O1,).

Yy~ y~z

The function hy is thus harmonic on G. For all = € 5, t € [0,00) and f €
L?*(G,hZ - m) we have by the Markov property at time ¢

5 1

B fX) WG] = s B [f(X0)ho(X0)].

E9[f(X)1 e ] =
T [f( t) Wg +} ho(l‘)
Let P, be the semi-group associated with X under Pg then LPt(ho f) is

the semi-group associated with the (h? - m)-symmetric d1ffus10n X under
PY(-| W§’+), and thus its associated Dirichlet form on L?(G, hZ - m) is

lim © (f—imfho) 9) s = i (7o — P fho), gho) = E5(fho, gho),

t—0 t
with domain D(G,h2 - m), and we obtain (V.4.4) by Lemma V.4.1.
We now turn to the proof of the identity (V.4.12) for random interlacements.
By (V.2.12) and (V.3.3), it is enough to prove that

"= Qg0 s (V.4.7)

Qg (K).Gny © o PG, ) =
for all compacts K of 5, see (V.2.11) and (V.3.2). Considering the graph G7¥
from Lemma IV.2.1, we can assume without loss of generality that 0K C G. By
(V.2.7) and (V.3.1) we have for all z € 0K that

On, =~
g 1.y (V10(@)) = X2 Py (Hony 1) = €)
= Aoho()*PY (Hi = ¢| W)
= ¢ gl®) (V.4.8)

K7g

where we used (V.4.4) in the second equality, and the fact that Z has the
same law as the print of X on G. Moreover by (V.4.4), one can easily prove
that PwhO )Gng (€ny(X) € ) = PKG(.| Wg*), and we obtain (V.4.7), and thus
(V.4 5)

Let us now prove (V.4.6). By the Markov property, we have that for all ¢ > 0
and z,y € 5

P2(X, € dy | W) = e y)bo(y)m(dy),
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and so by (V.2.2) we obtain that, with respect to m,

ho(y)g5(z, y) )
x ye”g"

the Green function associated to X under P,g(- | WE*Y is (
g hy ()

(V.4.9)
Let us denote by (X, )nen the discrete time Markov chain on G, which cor-
responds to the discrete skeleton of the print of X on G In other words, if
X =z € (G, then Xn+1 jumps to y € G' with probability = 29 and is killed in A

with probability §=. It easily follows from (V.4.3) and (V. 4 4) that wh (X ) has

the same under P (z) as X under P; h“( \Wg ™) for all # € G. Therefore we
have for all z,y € G

1 Gy [©
gg~h0 (77Z)h0 (l’), 7v/}h() (y)) = )\(ho) Ewhg(:c) [Z ]l)?k:who (y)i|

Vg (1) k=0
1 R
- _x —FY 1o |wi+
ho(y)” ~ N, x[}; £ |5 }
_ 9g(a,y)
ho(x)ho(y)’

where we used (V.4.9) in the last equality. This relation can be extended to any
T,y € G by considering the graph G{*¥} from Lemma IV.2.1, and therefore the
two processes considered in (V.4.6) are centered Gaussian fields with covariance
function gz, and they thus have the same law. O

Remark V.4.3. Let us describe the analogue of Proposition V.4.2 but for the
discrete graph G. We define for all continuous time trajectories w" on Gy,

§f+( t) et 1nf{s >0: /Osh(¢;1(m+(u)))2du > t}
—inf {s >0: Y l(s)h(x)* > t},

zeG

with the conventions h(A) = 0 and inf @ = ¢, and

En@))(®) L g (@@ (1)) for all £ € [0, 00).

Then the results from Proposition V.4.2 still hold when replacing &, by &, the
diffusion X by the jump process Z, the random interlacement process w by the
discrete random interlacement process w¥, and the Gaussian free field (¥2)peq
on § by the Gaussian free field (¢.).eq on G. One can deduce this statement
from Proposition V.4.2 by using the fact that Z and w9 are the prints of X and
w on G, or prove it directly, see the proof of Proposition 4.6 in [58| for a proof

of a similar statement.
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In view of (V.4.5) and (V.4.6), one can transform any results about random
interlacements or Gaussian free field on ého into results about killed random
interlacements or Gaussian free field on G. We want to apply this strategy to
the results of Chapter IV, which involve the field of local times associated to
random interlacements, and in order to do that, let us first compute the local
times of &y.

Lemma V.4.4. Let h be an harmonic function on G. Under Pj:(_), with respect
to the measure m,

the field of local times associated to &u(X) is (h(z)*ly, ) (05 (1))

t>0,2€G"

(V.4.10)

Proof. Following Section 2 of [57], we have for all z € G and ¢ > 0 that Poh-a.s.

1 t
g T t) = 1 ]l x,€ d )
Yn( )( ) El_I)I(l) mh(wh(B(ng))) /O Xy EYn(B(z,e)) AU

where B(z,e) = {z+t-1, € G:t€[0,¢] and e € EUG with z € I,}. Taking
u = 6;X(s), we have

4

t 0:X (t)
/0 (e, (x))eBae) ds = /0 Ix,evnB@eh(¥n (Xu)) du,

and since
mh(wh(B(x, 5))) 1
m(B(z,¢)) =0 h(z)?’

we obtain that

1 t
51—I>% m(B(x’g)) /(; (én(X))s€B(z,e) 45
1 NG 1
:1 ]l N h ) Xu
50 h(x)thWh(B(x,a)))/o Xu€¥n(B(z.€)) (q/)h ( ))

= h(2)"Cy,, ) (05, (1)).

This corresponds to the field of local times associated to the process ,(X) in x

4du

at time t, see for instance Theorem 3.6.3 in [62]. O

Combining (V.4.4) and (V.4.10) let us compare the local times of the diffusion
X conditioned on being killed before blowing up on G with the local times of
X on Gy, see (V.4.11). Using (V.4.5) and (V.4.10), one can also compare the
local times of killed random interlacements on G with the local times of random
interlacements on ého, see (V.4.12). Let us now gather these results, as well as
the corresponding statements for h;.
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Corollary V.4.5. For each y € é, if hg # 0, the process

(2(t);50.0cG has the same law under Pg( \ Wng)
(V.4.11)

G
as (ho(2)* Loy, (@) (O (1)) 15 g under Py,

and the process

(Eﬁu)xeg has the same law under Pgl as (ho(x)ngho(m):u)meg under Pého.
(V.4.12)
Similar results hold when replacing hy by hy, Wg’J“ by W§’+, and killed random
interlacements by surviving random interlacements.

We are now ready to take advantage of the results from Chapter IV about
the Gaussian free field and random interlacements on Gy,. The first interesting
result is Theorem 1V.3.3, which gives the law of the capacity of the level sets of
the Gaussian free field on the cable system. We first need to relate the capacity
of a set in ého to the killed capacity of a set in 5 . Considering the graph G%
from Lemma IV.2.1, one can easily extend the equality (V.4.8) to any compacts
K of G, and thus by (V.2.7) and (V.3.4)

capg, (Vny(K)) = capg(K) for all compacts K of G. (V.4.13)

A similar equality also holds when replacing hy by h; and killed capacity by
surviving capacity. It then follows directly from (Lawy), (V.4.6) and (V.4.13),

that, if (Sign) holds, then for all A > 0, u > 0 and zy € G

Egg [exp (—ucapg (E%h(xo))> ﬂ«pzozhxho(m)] = Pg(%co > ho(z0)V2u + h?),

(V.4.14)
and a similar identity holds when replacing hy by hy, killed capacity by surviving
capacity and killed level sets by surviving level sets. In particular for h = 0, one
has an explicit formula for the capacity, the killed capacity, and the surviving
capacity of the sign clusters of the Gaussian free field on the cable system. When
h < 0, one could also derive identities similar to (IV.3.7) and (IV.3.8) for the law
of the killed capacity of the level sets E,%h, and the law of the surviving capacity
of the level sets th.

One can similarly deduce from the isomorphism between random interlace-
ments and the Gaussian free field, Theorem 1V.3.4, an isomorphism between
killed interlacements, or surviving interlacements, and the Gaussian free field.
Let us first introduce some notation: we denote by w9 the print of w, on
GG, which corresponds to a killed random interlacement process on the discrete
graph G, and by Zf ,» C EUG the set of edges crossed by at least one trajectory
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of w9 and of vertices on which a trajectory of w9 is killed, either for its
forwards or its backwards part. We will write P instead of IF’é when we want to
stress that we only consider w9, and P§ instead of IP’g when we want to stress

that we only consider (¢;)zcq, which has the same law as a discrete Gaussian
free field on G.

Theorem V.4.6. Assume that G is transient and hg # 0. On some extension
ﬁgl of ng ® Pgl, let us define for each u > 0 an additional process (057“)165 €
{-1, 1}g~, such that, conditionally on (|¢.),cq ok

of the cluster of {z € G : 205, + 2 > 0}, ok = 1 for all x € I¢, and the
values of o®* on each other cluster are independent and uniformly distributed.
Then (V.4.14) holds for h =0 if and only if for all uw > 0

Kou K 2 KT
0,205, + %) = has the same law under P3
( ot B)cs g (V.4.15)

as (ps + V 2uh0(x))$efgv under IP’gg.

and w 1s constant on each

Moreover, if (V.4.14) holds for h = 0, let us define for each u > 0 a random
set E’C C E UG such that, conditionally on (¢z)rec and w9, E’C contains
each edge and vertex in Tj; -, and each additional edge and vertex e € EUG
conditionally independently with probability 1 — p9(yp, Eicu), where p*9 is defined
n (IV.3.13) and (IV.3.14). Then EX has the same law under IAP%” as EF =
{e € FUG : 2€’C + @2 > 0 forallx € 1.} under IF’KI In particular, if we
define a process ( f“)xeg € {—1,1}%, such that, condztzonally on (¢z)zeq, WY
and Ef, Ku'is constant on each of the clusters induced by EIC, v =1 for all
T € a’f NG, and the values of 7" on each other cluster are mdependent and

uniformly distributed, then

~Kau  [opK 2 BKI
o, 208+ 2 has the same law under P
( ot e g (V.4.16)

as (ps + V 2uh0(m))xeG under P§.

Similar results hold when replacing hy by hy, killed random interlacements by
surviving random interlacements and 1 — p“9 by 1.ep(1 — p»9).

Remark V.4.7. 1) When x # 0 and {x € G : k, > 0} is finite, (V.4.16) can be
seen as a reformulation of Theorem 8 in [58]. Indeed, one can then define
the graph G* which corresponds to G, but replacing the open end of each I,
x € G with k, > 0, by a common vertex z,, and using (V.4.5), one can show
that the law of the excursions on G of (X;);— e« under PJ (|72 < () is the
same as the law of w9 under Pgl, where 7%+ = inf{s > 0 : £, (s) > u},
see (IV.A.2) for a proof of a similar statement. One can then easily find an
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equivalence between (V.4.16) and Theorem 8 in [58|, and we refer to the proof
of Lemma IV.7.2 in the Appendix of Chapter IV for details. Moreover, it is
easy to see that a version of Theorem 8 in [58] on the cable system, as given
in their proof, holds on any transient graph, and by a similar equivalence as
before we obtain that (V.4.15) holds on any transient graph such that x # 0
and {x € G : k, > 0} is finite, and thus (V.4.14) as well.

One can prove (V.4.15) or (V.4.16) directly, without using Theorem IV.3.4.
Indeed, let K,, n € N, be a sequence of finite subsets of GG increasing to
G, k™ = glg,, and G, be the same graph as G, but with killing measure
x™ instead of x. Since {z € G : ERNES 0} is finite, as explained before,
one can use Theorem 8 in [58] to obtain Theorem V.4.6 on G, for all n €
N. Using the description of killed random interlacements from (V.3.10) and
Remark V.3.4,2), one can compare for each n € N the killed interlacements

measures v~ and Vg on the whole cable system, instead of their restriction

to compactgsn as in Lemma IV.8.1. Proceeding similarly as in the proof of
Lemma IV.8.3, one can then approximate killed random interlacements on
G by killed random interlacements on the sequence én, decreasing to G , to
obtain (V.4.15) for G if (V.4.14) holds for h = 0. It seems more complicated

to find a direct proof for surviving random interlacements.

Following the proof of Proposition IV.4.7, one can easily prove that (V.4.15)
implies (V.4.14) for all h > 0, and in particular, if the law of the killed
capacity of the level sets of the Gaussian free field is given by (V.4.14) for
h = 0, then the law of the killed level sets of the Gaussian free field for all
h >0 is also given by (V.4.14).

Since capg(A) < capg(A) and Capg(A) < capg(A) for all connected and
closed sets A C G, we have by Theorem IV.3.1 that capg(EZO(xo)) < oo and
cap‘gg(EZO(xo)) < 0. Moreover, by Corollary IV.3.2, if condition (Cap) is
fulfilled, then EZ"(z) and E5"(zo) contains P-a.s. only compact connected
components for all h > 0, and so (V.4.14) and (V.4.15) hold for both killed
and surviving random interlacements. When h < 0, the situation is less clear.
Using Theorem IV.3.1 for the graph Gy, , we have that th(xo) is unbounded
with positive probability if hy; # 0. We however expect that EZ"(zo) stays
compact for some h < 0 on a large class of graphs with hy # 0, that is
1E(G) < 0.

Using Theorem V.4.6 for surviving random interlacements on a suitable

graph, let us finally prove the isomorphism between the trajectories in the ran-

dom interlacement process w" avoiding a compact K of G and the Gaussian free
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field conditioned on being equal to 0 on K, Theorem V.1.3.

Proof of Theorem V.1.3. We write GE* for the same graph as Go% | as defined in
Lemma IV.2.1, but with killing measure equal to x on G N K¢, and infinity on
(GNK)UOK. We refer to the discussion below (IV.2.4) for an explanation of
why all our results still hold when allowing infinite killing measure, and, up to
considering each connected component of K¢ individually, we will assume that
K¢ is connected. In other words, GX® is the graph such that Qfgc is obtained

by "removing" K from G, and then the law of (Xt)t<m, under Pf is Py = for
all z € K¢, see Theorem 4.4.2 in [37], and we will often identify K¢ and GX*.
Moreover, using the Markov property for the Gaussian free field, see (IV.2.31),
one can easily see that

(pz)zexe has the same law under ]P’g( | o = 0) as (¢) egre under nggc.
(V.4.17)
Using the last exit decomposition (V.2.10) and that the event WgKt for a tra-

+

jectory in ngc corresponds to the event { Hy = Z} N W§’+, for a trajectory in

ng , one can also easily show that for all compacts K’ of éofgc

1 K€ 1o -~ SIc
eger e (@) PE9= (L WEE) = ey, 5(2) PE9 (- Hie = ¢, Wé*) for all z € GE".

GE*

Therefore, by (V.2.11), (V.2.12) and Definition V.3.1, we obtain that Vch =

V‘gg((WI*{ )" "), where we identify with a slight abuse of notation the trajectories
in ng not hitting K with trajectories in ngKc. In particular we obtain that

(éi’fc)xem has the same law under IP)SI as (Ef,u)mefgvgc under P‘gij,gc. (V.4.18)

Moreover, the function hyx on K° corresponds to the function h; on GX°, and
since K is compact and G is transient, we have hx # 0. Noting that capgge (F)>
capg(F') for all ' C G'N K¢, we also have that if condition (Cap) holds for G,
then it also holds for GE°. By Remark V.4.7.4), we thus have that (V.4.15) holds
for surviving random interlacements on GX°, and thus by (V.4.17) and (V.4.18),
we obtain (V.1.5). O

Remark V.4.8. One could also derive a version of (V.1.5) for the discrete graph
G similar to (V.4.16), or a formula for the law of the capacity, for the diffusion
X on G not hitting K, of the level sets of the Gaussian free field conditioned on
being equal to 0 on K, similar to (V.4.14).
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V.5 Coupling for different killing measures

In this section we prove Theorems V.1.1 and V.1.2. We first use Proposi-
tion V.3.3 to obtain a coupling of the local times of killed random interlacements
under ng for different values of the killing measure k, see Proposition V.5.2,
from which Theorem V.1.1 follows readily. Following ideas from [57], we also
present a coupling of positive level sets E%h of the Gaussian free field under Pgﬂ,
h > 0, for different values of the killing measure x, see Lemma V.5.4. Combining
the two previous results with the isomorphism between killed random interlace-
ments and the Gaussian free field, Theorem V.4.6, we finally obtain a coupling
of the negative level sets E,%h of the Gaussian free field under ngﬁ, h <0, for
different values of k, see Proposition V.5.5, and deduce Theorem V.1.2.

Let us begin with an auxiliary lemma, which will be useful in the proof
of Theorem V.1.1. Recall that for any killing measures x' we defined G, =
(G, A\, k'), that we see G. as a subset of G if ¥ < k, and the definition of
c(k, k') from (V.1.2). We also write ng(y) C Wg:r for the event that a

trajectory on G, is killed on I,, y € G and Hg, the first time the diffusion X on

G, leaves Qv,i.

Lemma V.5.1. For any v’ <k, z,y € G and A € ng we have

fthg(x)Pzg“ (A N W;{Jr(y) ‘ WéiJr) Kyky

R (2) P2 (X)er,, € ANTWET () |[ W) #elrs + (5 = )G (1))

T

< c(k, k).

Proof. Let z, € G'H/ be the only point in I, N 85,.{ if li; < Ky, and z, = A

otherwise. By (IV.2.9) and the strong Markov property at time Hg., we have

Py ((Xt)t<H§’% € AN W£’+(y), Wé{’f) = Py (A N W£’+(y))hg/(zy)a

with the convention h§ (A) = 1. Since X behave like a Brownian motion on
I, until the first time it hits y, we have using general results about Brownian
motion, see for instance equation 3.0.4 (b), in Part II of [13]

G = 1/(2k) K
Piv(H, = () = o=
2y =¢) 1/(2ry) Ry

and so
’ K, Kl k! + (k, — &/ )hE (y
hS(Zy)=K—y+(1—K—y)hg(y): y (yﬁ y) o()’
Y Y y

and the result then follows from the definition of ¢(k, k'), see (V.1.2). O
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Applying Proposition V.3.3 and Lemma V.5.1, we find a coupling of local
times of killed random interlacements on G, and G, k¥ < k. The restriction 55
of 5,4 to edges, as defined above Lemma V.3.2, is independent of the choice of
', and we will simply denote it by GE.

Proposition V.5.2. For any " < K, there exists a probability space (Q, F,P)
on which one can define for all w > 0 families (ng)weé’E € [O,oo)gE and
(‘gﬁf/)xegg € [0,00)9" with the same law as the restriction of the local times

(fgu)xeﬁ of killed random interlacements to §E, respectively under IP’gI and
]P’gl, and such that if u' > uc(k, ), then (XF < Eﬁf for all z € GE.

Proof. On some probability space (2, F,P), let us define for each z € G a
Poisson point process w® on Wéi ’/+ x (0,00) with intensity P5" (-| Wéi ’/+) ® A,
where ) is the Lebesgue measure on (0,00). For all # € G and u > 0, let w®"
be the point process on Wé; consisting of the trajectories of w” with label at

’

most ur’hf (z). For all 7,y € G let w®¥* be the point process on ng obtained
by only keeping the trajectories of w” with label at most

Kzky
K (K + (ky — k)b (y)

urhg (2)

which leave G, on I, for the first time, and stopping them after the first leaving
time ch of G.. It follows from Lemma V.5.1 that w?¥"* is a Poisson point

process with intensity umzhg(x)Pg“ (-, Wg+(y) | Wg+) For each z,y € G, let

(f””’”/)zegn; be the restriction to GZ of the local times of all the trajectories in w®*’

Z,u
and (€29"), e be the restriction to G” of the local times of all the trajectories
in w®¥*. Defining for all z € G¥ and u > 0

K.x' E T,k K,k _ E T,k
fz,u - Ez,u and gz,u - gz,’u )

zeG z,yeG

it follows from Proposition V.3.3 that (ﬁ’zc,;f/)ze@; and (€57), = have the same

U

law as (€f,),cge respectively under ]P’gl and ng. By Lemma V.5.1, if o/ >

’

uc(k, k'), then for all x,y € G any trajectory in w™%" corresponds to a trajectory
stopped when exiting G, on I, and thus EZ’CJ” < ﬁf’j,, for all z € G¥.

k'

n w,,

O
Noting that finding an unbounded connected component in Zy is equivalent

to finding an unbounded connected component in Z¢ N G? , Theorem V.1.1 is a
direct consequence of Proposition V.5.2
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Proof of Theorem V.1.1. Let us define for all u > 0 the random sets ¢ , = {z €
Go . Oow >0} and ¢, = {z € GZ . (%" > 0}, which have the same law as the

killed random interlacement set Z N GZ respectively under PX! and Pgl . For

all u > w7 (Q}), we have that 7 contains Pgl -a.s. an unbounded connected
component, and so Zg = contains P-a.s. an unbounded connected component.
Using Proposition V.5.2, taking v’ = uc(k, x), we have T¢ . C I}éﬁ and so I}é:N/

K

contains P-a.s. an unbounded connected component, that is v’ > v/~ (C?,{/). O

Remark V.5.3. 1) One could also derive from Proposition V.3.3 results similar
to Proposition V.5.2 and Theorem V.1.1 for backward-killed and forwards-
killed random interlacements, but this is less interesting since backwards-
killed and forward-killed interlacements are either empty or always contain
an unbounded connected component, that is their phase transition is always

trivial.
2) One cannot extend Proposition V.5.2 in order to find families (£57¥), .5 and
(fﬁﬁ/)xeg , with the same law as the local times of killed random interlace-

ments respectively under IP’gI and IP’gI , and such that for a right choice of

u,u’ > 0, Eﬁ;f < Efﬁ for all z € Q}. Indeed let us fix some x € G with
K. # kg, and let y € I, N OG,. Then lim,_,, 05, = u ng—a.s, which follows
from instance from (V.4.15), whereas IP’g:/ (O =0)= IP’g:/(y ¢ I%) > 0 by
(V.3.5), which would be a contradiction.

3) Since c(k,ar) < a2 for all constants a € (0, 1], it follows from ii) and iii) of
Theorem V.5.5 that if (Sign) holds for G, then a*u™*(G,,) is increasing in
a € (0,00). In particular, if Wt%(G,) > 0, then @7 (G,,) > 0 for all @ > 1. It
is an interesting open question whether this also holds when sup, :—Z = 00,

or more generally if 7%(G,) is actually increasing in .

4) Taking complements in Proposition V.5.2, one can derive a result analogue to
Theorem V.1.1 but for the vacant set of killed random interlacements V¢ =
(Z)°. More precisely let us denote by @'Y the critical parameter associated
with the percolation of the vacant set of killed random interlacements on the
cable system, that is

v (G) =3 inf{u >0: ]P’gl(V}é contains an unbounded cluster ) = 0}.
(V.5.1)

For all killing measures x’ with x > «’, we then have

TV (Gor) < TV (G e, ).
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Similar results can also be obtained when considering percolation for the
discrete killed random interlacement set Z¢ N G, or the discrete vacant set of
killed random interlacements, V¢ N G.

5) The phase transition for the percolation of Zy can either be trivial or not
depending on the choice of the graph G, as we now explain. First consider
the case where G is a finite graph with x > 0, then 5 is bounded, and so it
is clear that u7(G) = oo, that is the phase transition is trivial. Let us now
consider for some T > 0 and d > 3 the graph GT = (Z¢,\T k1), d > 3, where
A= TLH and kI = T+1 Then by Proposition V.3.3, or Corollary 4.2 in
[15], Z¥NZ?* = T2 NZ% has the same law as the finitary random interlacement
set introduced in [15]. One can prove similarly as in Theorem 2 of [71] that
there exists T' small such that Z is ]P’gTI -a.s. bounded. Moreover for each
edge e = {x,y}, the number of trajectories starting in x and crossing first e

in a Poisson point process with intensity urjy, see (V.1.4), has law

AL ul
. T\, o .
o 52) ).

Therefore for any u large enough so that 1 —exp(—uT /(T +1)?) > p,, where

pe is the critical parameter for Bernoulli bond percolation on Z?, there is an
infinite connected component of edges crossed by the discrete killed random
interlacement process w’C g*
ponent. We obtain that 0 < ﬂ’f’z (GT) < oo when T is small enough, and thus
the phase transition is non-trivial. We expect that this result could actually

be extended to any 7" > 0.

, and thus Z}¢ contains an infinite connected com-

We now turn to the proof of the inequalities between the critical parameters
for the level sets of the Gaussian free field for different values of the killing
measure, Theorem V.1.2. We first present a coupling of positive killed level sets
of the Gaussian free field under Pgﬁ for different values of x, which is a direct
consequence of the isomorphism between loop soups and the Gaussian free field
from [57], and will easily imply i) of Theorem V.1.2. The proof is similar to the
proof of Lemma IV.7.4, but we still include it for completeness.

Lemma V.5.4. For any &' < k, K # 0, and 2y € G, there exist a prob-
ability space (U, F',P") on which one can define random fields (cpg{))xegn and
(gp;(f))xeg with respective laws IP’G and IP’G ., and such that |90('€)| < |<p('€l)| for
allz € G, and szgn(gpéo)) = szgn(gpwo )) In partzcular forall0 < h' < h, denotmg
by E,%];(xo) the cluster of zo in {z € GZ : ) > hx hi(x)} and EZ" ( o) the

cluster of zo in {x € G¥ o) > b x hgl(x)}, we have E,an(xg) C E,aﬁ,(xo).
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Proof. Let (', F',P’) be some probability space on which one can define a loop
soup £’ with parameter 5 L associated with the diffusion X under Py~ , T € Q} ,
as defined in Section 3 of [35]. Let £ be the point process which consists of the
loops in £, entirely included in QK(C G ), which has the same law by Theo-
rem 6.1 in [235] as the loop soup with parameter 3 1 associated with the diffusion X
under Pg*‘ z € G,.. We define (L, )wcg, and (L, )x€g~ the continuous fields of local
times respectively associated with Cl and E , which exist by Lemma 2.2 in [57].

Let finally 0 € {—1 1}9" and o’ € {—1, 1}9 be two additional processes such
that, conditionally on £/ 1,0 is constant on each cluster of {x € Ge.: L, > 0},
and its values on each cluster is independent and uniformly distributed, o’ is
constant on each cluster of {z € G : L’ > 0}, and its values on each cluster is
independent and uniformly distributed, and coupled so that o,, = o7, . Then by
Theorem 3.1 in [35] and Lemma 3.2 in [57], we have that

QO(K) d;f- (JJ: /2L )xeé has law ]P) and 90(,{/) d;f' (0;1 /2[’2})&565/ has law ng/

K

L, < L', and h&'(z) < hf(z) for all z € G,, we can easily
conclude. ]

Since 0, = 03,

Using Theorem V.4.6, one can relate negative killed level sets of the Gaussian
free field to sign clusters of the Gaussian free field and killed random interlace-
ment set, and with the help of Proposition V.5.2 and Lemma V.5.4, one can also
find a coupling of negative level sets of the Gaussian free field on the cable system
under IP’G for different values of x, which will easily imply ii) of Theorem V.1.2.

K

Proposition V.5.5. Let ' < k, K # 0, and assume that G, and G, both
satisfies (Sign). For any xg € GE. there exist a pmbability space (", F" P") on
which one can define for all h < 0 random sets EZ", (o) C GZ and E,C wi(x0) C
GZ with the same law as the level set E "(x0) N QE respectively under IP’G and

PQ/ and such that if h,h' <0 with h' < hy/c(k, k'), then E,Cﬁ(xo) C E,Cﬁ,( xo)

if E%};(xg) is unbounded.

Proof. Let (', F" P") = (Q x Q, F® F ,P®P) be the product of the prob-
ability spaces from Proposition V.5.2 and Lemma V.5.4, and (E’C W) peq, and

(Kfj )xe(‘j&/ some extensions of ((5F) sz and (Kﬁﬁl)xegE with the same law as

éicu respectively under Pé and Pé . Let us define for all © > 0 the random sets
I’%’”N: {zx €G, : Oor > 0}y and I, = {x € 5,4 o * > 0}, and for each
x € Gy, E,'ggl(x) the cluster of z in {y € G, : |\ | > 0} and E‘>O‘( ) the cluster
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of zin {y € G : |0\ > 0}. We also define for all u > 0 and z € G,

gl e | —VZu() + J Kot ()2 i TE, N B £ o
—V2uh§(x) + ¢ () otherwise,

and wg(f/’u) for all z € G similarly by replacing x by «’. Since (Sign) holds
for both G, and G,/, we also have that (V.4.14), and thus (V.4.15), hold as
well. One can thus easily check that ¥ and ) have the same law as
@ respectively under ]P’Q and IP’G E similarly as in (Isom) in Chapter IV. For

all u > 0, we then define E,g Hm(xo) as the closure of the cluster of zy in
{x e Gyl > \/ﬂh“( )} and EZ V2% (20) as the closure of the cluster of
z in {z € GF : Pl —v/2uh§ (x)}, with the convention ¢**9) = () and
PO Z o).

Let us now fix u, v/ > 0 with ' > uc(k, #') and # +— 2o in {y € GF : p{™) >
—+/2u}, and assume that E,%;m(xo) is unbounded. We then necessarily have
T¢ . N E,légl(xo) NGE + @, since otherwise E%;m(xo) would be either empty
or the closure of the cluster of zg in {x € G¥ : |p,| > 0}, and thus bounded by
(Sign). We then have that z < z in {y € G¥ : 205 + (£$7)2 > 0}, thus
T+ o in {y € GF : 2€’C’H/ (cp('ﬂ/))2 > 0} and Z¥,, N E,'ég/‘(xo) # &, by

=V ()

Proposition V.5.2 and Lemma V.5.4, and so x € F xp). Taking closure,

TV @) C B

we thus obtain E xg), and we can easily conclude. ]

Noting that, IP’gg -a.8s, E,g contains an unbounded cluster if and only if E,%h N

GE also contains an unbounded cluster, Theorem V.1.2 is a simple consequence
of the couplings from Lemma V.5.4 and Proposition V.5.5.

Proof of Theorem V.1.2. Let us first assume that (Sign) does not hold for G,.
Then for all 2, € G2, F O(xo) is unbounded with ]P’G positive probability, and

by Lemma V.5.4 with h = &' = 0, Eg%(z) is also unbounded with ]P’G positive

probability, that is (Sign) does not hold for G, ) hX(G.) > 0and h’c(g,{ ) > 0. For
all b > hX(G,.) and o € G¥, we have that EZ"(20) is PE & -a.s. bounded, and by

Lemma V.5.4 with h = b/, Eg" () is also IP’QQ ~a.s. bounded, that is h > h¥(G,),
and we obtain i) of Theorem V.1.2. "

Let us now assume that (Sign) holds for G,s and sup g % # < o00. Then (Sign)
also holds for G, by i) of Theorem V.1.2, and so (V.4.14) holds for h = 0, and
thus also (V.4.15), for both G, and G... Moreover hX(G./) < 0 and h¥(G,) < 0,
and for all h < h¥(G,) and 2o € G, we have that E2"(x,) is unbounded with ngm

positive probability. Taking h' = hy/c(k, k'), we have by Proposition V.5.5 that
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E,%hl (x0) is unbounded with Pg, positive probability, that is A’ < 7L’f (Gw), and
we obtain ii) of Theorem V.1.2. Finally, iii) of Theorem V.1.2 follows directly
from the definitions (V.1.3) and (Sign). O

Remark V.5.6. 1) Since c(k,ax) < a2 for all constants a € (0, 1], it follows

from ii) and iii) of Theorem V.5.5 that if (Sign) holds for G, then ah®(G,,.) >
1X(G,) for all a € (0,1], and from i) and ii) of Theorem V.5.5 that if (Sign)
does not hold for G,, then h¥(G,,) < h¥(G,) for all a € [1,00). It is an
interesting open question to prove that either a — ah’(G,) or a — h¥(Gay)
is actually decreasing on (0, 00), or even as functions of &.

One can adapt the proof of Lemma V.5.4 to find a coupling of positive sur-
viving level sets of the Gaussian free field on G, and G,/, and obtain a result
similar to i) of Theorem V.1.2 for positive surviving level sets of the Gaussian
free field, with an extra term since hf < h’f', or even positive usual level sets
of the Gaussian free field. It would be interesting to prove an equivalent of
Theorem V.5.5 for killed level sets of the Gaussian free field (¢;).cq on the
discrete graph G, for instance by proving an equivalent of Lemma V.5.4 for
the discrete Gaussian free field. Indeed, it is reasonable to think that perco-
lation for the sign clusters of the Gaussian free field converges to Bernoulli
percolation for p = % as kK — 00, and a statement similar to i) in Theo-
rem V.1.2 would imply that sign clusters of the discrete Gaussian free field
percolate whenever p. < %, which is so far only known on a smaller class of

graph studied in Chapter III.

Proceeding similarly as in the proof of Theorem IV.3.6, one can easily prove
that if (V.4.14) holds and (Sign) does not hold, then h<(G) = oo. We cur-
rently do not know any examples of a graph under which (V.4.14) does not
hold, and thus all the critical parameters appearing in i) of Theorem V.1.2
might always be infinite, and the statement then only says that if h*(G,) =
o0, then hW*(G,./) = oo for all k¥ < k. However, when (Sign) does hold, we
expect that there are many examples of graphs with A<(G) € (—o0,0), for in-
stance on the graphs G7 considered in Remark V.5.3,5) on which we already
know that 0 < u%(GT) < oo for T small enough.

One can easily see that if (V.4.15) holds, then for all u > 0, Z} is stochasti-
cally dominated by E%_m and E%m by V¢, similarly as in Theorem 3 of

[57], and thus
/2T < BE <2, (V.5.2)
where u/V is the critical parameter corresponding to the percolation of Vi

as defined in (V.5.1). The inequalities in (V.5.2) also hold on the discrete
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graph G, and it would be interesting to know which of these inequalities are
strict, similarly as in Theorem 3.4 in [1] for instance.
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