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I. SUMMARY 

The understanding of vascular development in plants has been advanced rapidly in the last decades. 

Nevertheless, there are still many details to be elucidated about the early stages of vascular 

differentiation, which requires easily identifiable marker genes. The WUSCHEL-related 

homeobox 4 (WOX4) is a member of the WOX gene family (Eric van der Graaff, 2009) and it has 

been demonstrated that WOX4 is involved in cambial stem cell maintenance (Suer et al., 2011).  

Existing WOX4 expression analyses in Arabidopsis thaliana were conducted with a short WOX4 

promoter-reporter construct, which contains 2.9 Kb of the 5′ flanking region and 0.6 Kb of the 3′ 

flanking region (Ji et al., 2010; Y Hirakawa et al., 2010; Suer et al., 2011; Shi et al., 2019). These 

studies describe a cambial cell specific expression pattern of WOX4 promoter in the root, shoot, 

cotyledons and leaves (Y Hirakawa et al., 2010). In upper part of the inflorescence stem, WOX4 

activity was confined only to fascicular cambium, but at the stem-base its activity extends into the 

interfascicular region and forms a circular expression domain and this pattern was implied to be 

responsible for the radial outgrowth of the stem (Suer et al., 2011).  

However, by detailed sequence analyses in this study we demonstrate that the WOX4 sequence is 

spatially separated by long intergenic sequences, which contain several distal conserved regions. 

Moreover, by comparing phylogenetic shadowing results with published ATAC-seq data (Frerichs 

et al., 2019) we show the positions of these conserved regions are in open chromatin 

configurations, suggesting a possible regulatory role of these areas in WOX4 expression pattern. 

Hence, we have generated WOX4 promoter-reporter fusions, which contains 9.2 Kb upstream and 

1.7 Kb downstream sequences from the WOX4 coding sequence and transferred into A. thaliana 

with the aim to find a full spectrum of WOX4 activity. Interestingly, the analyses of transgenic 

plants aligned with previously observed cambium cell specific WOX4 activity but additionally it 

marked novel WOX4 expression domains in the SAM, RAM, stem and leaves.  

In the stem, the full-length WOX4 promoter activity starts in groups of cells of the inflorescence 

meristem (IM), possibly marking the provascular cells of emerging primordia. Approximately 80-

100 µm beneath the IM, the promoter activity was localized in a circular expression domain of 

subcortical region that prepatterns the vasculature of young stem. This circular WOX4 expression 

domain was found to exist throughout the inflorescence stem and intrusions in the circle marks 
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fascicular cambium and interfascicular mark strands. Our findings suggest that the full-length 

WOX4 promoter was active during the specification of provascular cells in the shoot apex, 

initiation of fascicular cambium in the young stem without losing competency in the interfascicular 

mark strands and then continuously active in the cambial ring of the matured stem. Additionally, 

its activity was also observed in the xylem parenchyma in different growth phases of the 

inflorescence stem. Similar to the shoot, the WOX4 promoter activity was also found to start in the 

RAM marking the QC and its adjacent meristematic cells. Then its activity was found to confined 

to the vascular system of root. In the leaf, the WOX4 promoter was active in the primary, 

secondary, tertiary and quaternary veins, marking the cambial cells of the complete leaf vascular 

system. Additionally, it was also active in the xylem parenchyma of leaf vascular bundles and the 

sub-epidermal cells in adaxial side of the leaf, marking the palisade parenchyma. 

Taken together, our study indicates that the inclusion of distal conserved regions of the WOX4 

promoter is essential to show the picture of WOX4 expression pattern in different organs of A. 

thaliana. Hence, the full-length WOX4 promoter-reporter constructs analysed in this study could 

further be utilised to elucidate the gene regulatory networks that control vascular development. 

However, the complete upstream region is too large to be used as a standard promoter, therefore 

further promoter dissection studies are needed to identify the cis-regulatory elements, which could 

then be used for engineering approaches. 
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II. ZUSAMMENFASSUNG 

Das molekularbiologische Verständnis der Gefäßentwicklung bei Pflanzen ist in den letzten 

Jahrzehnten weit vorangeschritten. Nichtsdestotrotz gibt es immernoch Details der frühen 

Entwicklungsstadien der vaskulären Differenzierung, die noch nicht vollständig beschrieben sind 

und von einfach detektierbaren Markergenen profitieren würden. WUSCHEL-related homeobox 4 

(WOX4) gehört zur WOX Genfamilie (Eric van der Graaff, 2009). Es wurde gezeigt, dass WOX4 

an der Stammzell-Aufrechterhaltung im Kambium beteiligt ist  (Suer et al., 2011). 

Existierende WOX4 Genexpressionsanalysen in Arabidopsis thaliana wurden mit einem 

vergleichsweise kurzen WOX4 Promoter-Reporter Konstrukt, welches 2.9 Kb der 5′ flankierenden 

Region und 0.6 Kb der 3′ flankierenden Region umfasst, durchgeführt (Yuki Hirakawa et al., 2010; 

Shi et al., 2019). Diese Studien berichten von einer Kambium-spezifischen Expression des WOX4 

Promoters in Wurzeln, Spross, Kotelydonen und Blättern (Y Hirakawa et al., 2010). Im oberen 

Teil der Sprossachse der Infloreszenz beschränkte sich die WOX4 Aktivität auf das faszikuläre 

Kambium, wohingegen sich die Aktivität in der Basis der Sprossachse auf die interfaszikülare 

Region ausgeweitete und eine zirkuläre Domäne formte. Dieses Expressionsmuster könnte das 

radiale Wachstum der Sprossachse einleiten (Suer et al., 2011). 

In einer detailierten Sequenzanalyse zeigen wir hier, dass die WOX4 Sequenz räumlich von langen, 

intergenischen Sequenzen abgegrenzt ist, welche im distalen Bereich konservierte Regionen 

enthalten. Darüberhinaus zeigen wir durch den Vergleich von phylogenetic shadowing- 

Ergebnissen mit publizierten ATAC-seq Daten (Frerichs et al., 2019), dass die Positionen der 

konservierten Regionen in offenen Chromatinbereichen liegen, was uns zu der Hypothese führt, 

dass sie eine wichtige regulatorische Rolle in der WOX4 Expression spielen könnten. Aus diesem 

Grund wurden in dieser Studie WOX4 Promoter-Reporter Fusionen generiert, die den 9.2 Kb 

upstream Bereich und den 1.7 Kb downstream Bereich der WOX4 kodierenden Sequenz umfassen. 

Die Promoter-Reporter Konstrukte wurden in A. thaliana transferiert mit dem Ziel das volle 

Spektrum der WOX4 Aktivität zu erfassen. Interessanterweise stimmten die Analysen der 

transgenen Pflanzen mit der vorher beschriebenen Kambium-spezifischen WOX4 Aktivität 

überein, jedoch konnten zusätzlich markierte, neue WOX4 Expressionsdomänen im SAM, RAM, 

Sprossachse und Blätter identifiziert werden.  
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In der Sprossachse beginnt die Aktivität des WOX4 Volllänge-Promoters in Zellgruppen des 

Inflorezenzmeristems (IM) was möglicherweise provaskuläre Zellen der sich entwickelnden 

Primordien markiert. Circa 80-100 µm unterhalb des IMs zeigte sich eine zirkuläre 

Expressionsdomäne der subcorticalen Region, welche das Muster der Vaskulatur der jungen 

Sprossachse anzeigt. Diese zirkuläre WOX4 Expressionsdomäne zog sich durch die Sprossachse 

der gesamten Infloreszenz, wobei Einstülpungen des Kreisens das faszikuläre als auch Kambium 

markieren. 

Unsere Ergebnisse deuten darauf hin, dass der WOX4 Volllänge-Promoter während der 

Spezifizierung der provaskulären Zellen in der Sprosspitze aktiv ist, während der Initiierung des 

faszikulären Kambiums in der jungen Sprossachse ohne seine Kompetenz im interfaszikulären 

Markstrahl zu verlieren aktiv bleibt und seine Aktivität dann auch kontinuierlich im Kambiumring 

der reifen Sprossachse zu finden ist. Zusätzlich konnte seine Aktivität im Xylemparenchym in 

verschiedenen Wachstumsphasen der Sprossachse der Infloreszenz beobachtet werden. Wie im 

Spross zeigte sich die WOX4 Promoteraktivität auch im RAM wo sie das QC und die angrenzenden 

meristematischen Zellen markierte. Außerdem beschränkte sich die Aktivität auf die Vaskulatur 

der Wurzel. Im Blatt befand sich die WOX4 Promoteraktivität in den primären, sekundären, 

tertiären und quartären Venen, wo sie die Kambiumzellen der kompletten Blattvaskulatur 

markierten. Zusätzlich konnte seine Aktivität in Xylemparenchymzellen der Bündelscheidenzellen 

und der subepidermalen Zellen der adaxialen Seite des Blattes lokalisiert werden, wo sie das 

Palisadenparenchym markierte. 

Zusammengefasst zeigt unsere Studie, dass der Einbezug der distalen, konservierten 

Promoterregionen essentiell für die volle Entfaltung der WOX4 Expression in den verschiedenen 

Pflanzenorganen von A. thaliana ist.  Die in dieser Studie analysierten Volllänge WOX4 Promoter-

Reporter Konstrukte könnten weiterhin der Erforschung der regulatorischen Netzwerke, welche 

die Gefäßentwicklung in Pflanzen steuern, dienen. Allerdings eignet sich die vollständige 

Upstream-Region aufgrund ihrer Größe nicht zum Einsatz als Standardpromoter. Stattdessen wäre 

es sehr interessant detailierte Promoterstudien an dieser Upstream-Region durchzuführen, um 

kleinere cis-regulatorische Elemente zu identifizieren, die in Zukunft in biotechnologischen 

Verfahren an Pflanzen eingesetzt werden können. 
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1. INTRODUCTION 

1.1. The Plant vascular system – structure and function 

The plant vascular system is a network of specialized conductive tissues that are spread throughout 

the entire plant body, connecting all the plant organs with each other in an organized manner and 

it facilitates the transport of water, minerals, and sugars (Lucas et al., 2013). It is composed of two 

types of differentiated tissues, the xylem and the phloem; that are spatially separated by an 

undifferentiated tissue, the cambium (Nieminen et al., 2015). The xylem tissue consists of xylem 

parenchyma, xylem fibers, tracheids and vessel elements and phloem tissue is composed of phloem 

parenchyma, phloem fibers, sieve tube elements and companion cells (Jouannet et al., 2015).  

The primary function of the cambium is to maintain its own stem cell population in the cambial 

zone, the differentiation of xylem and phloem tissues. The basic function of the xylem tissue is to 

transport water and mineral nutrients from roots to various parts of the shoot. The phloem tissue 

transports sugars that are produced in the photosynthetic organs to all other tissues of the plant 

body (Altamura et al., 2001). The bulk flow of water through the xylem tissue is a passive transport 

mechanism, which is driven by the osmotic potential difference of the root surface and the tension 

created in the xylem tissue by transpiration of water through the stomata (Myburg and Sederoff, 

2001). As a consequence, the turgor pressure gradient is established in the adjacent phloem tissue 

that directs the sugar translocation from shoot to root. However, the sugar transport functions via 

an active transport mechanism that requires direct energy inputs in order to perform the phloem 

loading and unloading processes (Hölttä et al., 2009; Lucas et al., 2013). Moreover, the plant 

vascular system plays a major role in long-distance communication, enabling the translocation of 

phytohormones, RNA molecules, and signal peptides within the shoot and between the shoot and 

root. For example, in response to water deficit conditions, roots produce the phytohormone 

abscisic acid, which is then transported to leaves through the xylem, where it reduces the water 

loss by stomatal closure (Hartung et al., 2002). Another important long-distance communication 

is that of florigen, a protein encoded by the FLOWERING LOCUS T (FT) gene. It is expressed in 

the leaves and is then transported to the shoot apical meristem through the phloem, where it 

promotes the floral transition (Corbesier et al., 2007). Interestingly, CLAVATA3/EMBRYO 

SURROUNDING REGION peptides (CLE peptides) secreted by roots in response to the plant-
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microbe interaction are transported to the shoot via the xylem, which then activates a systemic 

responses that regulate root nodulation (Okamoto et al., 2013; Notaguchi and Okamoto, 2015). 

These few examples demonstrate the important role of the plant vascular system in the exchange 

of signals between plant organs serving either internally as developmental regulators or enable the 

plant to react quickly to environmental conditions like biotic and abiotic stresses (Lucas et al., 

2013). In addition, the vascular system also provides mechanical support to the plant body and in 

tree species, it contributes to the development of wood through the secondary thickening growth 

(Ji et al., 2010; Etchells and Turner, 2016).  

1.2. Development of the vascular system in Arabidopsis thaliana 

The vascular system of Arabidopsis thaliana begins with the specification of vascular initials in 

the embryo that gives rise to the vascular system of cotyledons, embryonic root and hypocotyl 

(Figure 1a). After seed germination, the vascular system of the root and shoot develops from the 

root and shoot apical meristems respectively, and grows into a continuous network by the action 

of cambium(Turner and Sieburth, 2003). However, the structural arrangement of cambium and 

vascular tissues varies from organ to organ (Figure 1b). For example, in the root, the vascular 

tissues are arranged in the diarch symmetry, whereas the stem exhibits the collateral arrangement 

(Dengler, 2006). Moreover, anatomical differences also exist within the same organ; for example, 

the anatomy of the inflorescence stem at the apex is generally different from its base (Bowman 

and Floyd, 2007). In the following sections, the vascular development in Arabidopsis thaliana is 

described in detail with an emphasis on both embryonic and post-embryonic differences that occur 

in different organs. 

1.2.1. Initiation of provascular tissues during the embryogenesis 

During the embryogenesis, the zygote undergoes an asymmetric division that produces a small 

apical cell with a dense cytoplasm and a larger basal cell with a big vacuole. The apical cell lineage 

develops into most of the embryo, whereas the basal cell lineage produces the extra-embryonic 

suspensor (Barton and Poethig, 1993). First, the apical cell goes through two rounds of periclinal 

divisions to produce the four celled pro-embryo and then an anticlinal division resulting in an 

octant embryo. The four cells in the upper tier of the octant embryo give rise to the shoot including 

the shoot meristem, whereas the four cells in the lower-tier give rise to the hypocotyl and 
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hypophysis (Jürgens et al., 1995). Further periclinal divisions occurring in the octant result in an 

embryo with the specified cell fates, such as protoderm and ground meristem. The elongated cells 

in lower half of the early-globular embryo are specified as the vascular cells, which is the first sign 

of vascular tissue development (Jürgens, 1995; Scheres et al., 1995). Further periclinal cell 

divisions in the globular embryo give rise to the cotyledon primordia and the subsequent divisions 

in the late heart stage develop the shoot apical meristem in between the developing cotyledons 

(Boscá et al., 2011). Meanwhile, the simple anticlinal divisions that occurred in the basal cell give 

rise to the extra-embryonic suspensor. The upper cell of the suspensor develops into the 

hypophysis which forms the quiescent center of the root meristem and the root cap initials 

(Armenta-Medina and Gillmor, 2019). Numerous gene expression studies suggested that, although 

the provascular tissues were specified during the embryogenesis, the actual vascular differentiation 

marked by certain structural changes including the secondary cell wall formation occurs only after 

the seed germination (ten Hove et al., 2015).  

 

Figure 1. Schematic representation of the vascular tissue development and its organization in different parts of the 

Arabidopsis thaliana plant body during embryogenesis (a) and postembryonic development (b) (Ruonala et al., 2017). 

Provascular tissues are marked in the orange colour, whereas the xylem and phloem tissues are marked in blue and 

red colours respectively. 
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1.2.2. Development of the vascular system in post-embryonic tissues 

The post-embryonic development of the vascular system in organs such as the hypocotyl and 

cotyledons emerges from vascular precursors that are prepatterned during embryogenesis whereas 

the vascular system of shoot organs (leaves, side-shoots, inflorescence stems, flowers and pedicels) 

and roots originates from the specified vascular precursor cells of the shoot apical meristem and 

root apical meristem, respectively (Lucas et al., 2013; De Rybel et al., 2015).  

1.2.2.1. Vasculature of the root 

During early stages of seed germination, the embryonic root or radicle starts protruding from the 

seed by breaking the seed coat and later develops into the primary root. During root development, 

three different developmental zones such as meristematic, elongation, and differentiation zones 

can be observed. These zones are in turn distinguished by the following factors: the external root 

morphology, the internal root anatomy, the structural and functional differences in the vascular 

tissues (Turner and Sieburth, 2003).  

The meristematic zone contains a four-celled quiescent center (QC), which is surrounded by 

actively dividing meristematic cells (Verbelen et al., 2006). These cells are small in size, packed 

with cytoplasm, contain small or no vacuoles. They are enclosed by thin cell walls and their nuclei 

occupy a large area of the cell. The meristematic zone can be further divided into proximal and 

distal meristematic zones, based on the root anatomy. The proximal meristematic zone contains 

the stem cell niche formed by a centrally located QC and a layer of meristematic cells that are in 

direct contact with the QC (Bennett and Scheres, 2010). These meristematic cells are later specified 

as the mother cells that produce all other root tissues. The cells located below the QC serves as the 

columella-mother-cells, which differentiate into the columella cells. Similarly, the cells positioned 

above the QC are specified as the pericycle and vascular initials (Figure 2). The cells that are 

positioned peripherally to the QC, are specified as endodermis/cortex-mother cells and 

epidermal/root cap mother cells (Nieminen et al., 2015). These mother cells give rise to different 

tissues, which forms the distal end of the meristematic zone. The root anatomy at this stage shows 

the following cell layers - the outer epidermal layer, the middle cortex tissue, a layer of 

endodermis, and then a single layer of pericycle that encloses the central stele. The central stele is 

composed of protoxylem tissue at the center, accompanied by two poles of the phloem cells that 
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are located in close proximity to the pericycle, and procambial cells that are positioned between 

xylem and phloem (Masubelele et al., 2005).  

                           

Figure 2. Graphical representation of the organization of different cell types in the root apical meristem (Pérez 

et al., 2013). The quiescent center (QC) and other meristematic cells of the root apex are shown in differentt colours. 

The elongation zone is positioned  at an approximately 300-850 µm away from the QC and in this 

region cell divisions do not occur frequently, but the rapid growth is achieved by cell expansion 

(Verbelen et al., 2006). Several cytological changes occur in this zone such as enlargement of the 

vacuole that pushes the nucleus and cytoplasm towards the cell wall (Jing and Strader, 2019). The 

differentiation zone of the root starts in continuation with the elongation zone. Many anatomical 

changes occur in this zone with the rapid cell divisions gives rise to various vascular tissue types 

(De Rybel et al., 2015). Based on the gene expression studies and the differences in cell 

morphology, the pericycle of the differentiation zone is divided into xylem-pole-pericycle and 

phloem-pole-pericycle (Parizot et al., 2012). The lateral roots also originate from the specified 

cells of xylem pole associated pericycle (Jing and Strader, 2019). Inside the central stele of the 

differentiation root zone, the cambium tissue starts to differentiate into different types of 

metaxylem tissues such as the xylem vessels, xylem fibers, and the phloem tissues such as sieve 

elements and companion cells (Ruonala et al., 2017). The root that is positioned between the 

differentiation zone and the hypocotyl exhibits secondary growth, in which the central part of the 

root is occupied by the concentric rings of secondary xylem tissue, the cambial cell layer and the 

secondary phloem tissues (Fukuda and Ohashi-Ito, 2019).  
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1.2.2.2. Vasculature of the Stem 

The Arabidopsis stem originates from the shoot apical meristem, which is divided into central 

zone, peripheral zone, organizing center, and rib zone (Mayer et al., 1998). The central zone 

contains slowly dividing stem cells that maintain the meristem integrity and also produces daughter 

cells to the sides and bottom. It is flanked by the peripheral zone, where actively dividing cells 

develop into lateral organs such as leaves and flowers. The stem cell population of SAM is 

maintained by the feedback mechanism operated between the central zone and the organizing 

center (Figure 3). The rib zone located below the organizing center takes part in the development 

of the vegetative/inflorescence stem (Bowman and Eshed, 2000). It is also believed that the rib 

zone is further divided into the peripheral-rib zone that produces the cortex and the central-rib zone 

that produce the pith parenchyma. The boundary cells between the peripheral-rib zone and central-

rib zone produce the primary vasculature (Serrano-Mislata and Sablowski, 2018).  

However, the continuation of vascular pattern formation in vegetative stem has been seen in two 

different views: according to the first view, the vasculature of emerging lateral organs are 

eventually connects to the existing vasculature of the stem, which is supported by the direction of 

auxin flow from tip of the leaf primordium towards the leaf base (Scarpella, Marcos, Jirí Friml, et 

al., 2006). In the second view, the existing vasculature of the basal stem extends into the emerging 

leaf primordia and this view is supported by the fact that the plant growth occurs in an acropetal 

manner (Turner and Sieburth, 2003). The second hypothesis of the plant vascular development is 

extensively studied in Arabidopsis during the rosette growth (Kang et al., 2003), in which the 

authors described the vasculature of the vegetative stem by combining the anatomical features with 

the expression pattern of provascular marker HOMEOBOX GENE 8 (ATHB8). According to the 

evidence presented in their report, the vasculature tissue of cotyledons and first four leaves are in 

direct contact with the central stele of the hypocotyl, suggesting that the primary vasculature 

develops as a continuation of the embryonic vascular pattern. Whereas, from the fifth leaf onwards 

the vasculature of each leaf is supplied by a single trace that is derived from two of the eight 

vascular bundles (or sympodia) of the vegetative stem. It was also found that each leaf vasculature 

can be traced back to another leaf; for example, the trace to leaf 5 derives from the base of leaf 2 

trace (n+3 parastichy), while the traces of leaf number 6, 7 and 8 derives from their n+5 parastichy 

(Kang et al., 2003). These studies demonstrate that the vascular system of vegetative rosette is 
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composed of approximately eight vascular bundles that form a reticulate pattern by the multiple 

connections among the different leaves and also with the vascular bundles of the stem (Dengler, 

2006). 

                                     

Figure 3. Schematic representation of the different zones in the shoot apical meristem (Gaillochet and Lohmann, 

2015). Different functional zones in the SAM are shown in different colours – Central zone in yellow, organizing 

center in red, overlapping zone in orange, lateral organs in blue, peripheral zone in the cyan, boundary domain in 

green and the rib meristem in green colours. 

During the vegetative to reproductive transition, the vegetative shoot apical meristem transforms 

into an inflorescence meristem (IM), which later produces the cauline leaves, flower primordia, 

lateral branches, nodes and internodes of the inflorescence stem (Lucas et al., 2013). Due to the 

compressed nature and the difficulties associated with imaging the vegetative stem, the 

inflorescence stem was used more frequently than the vegetative stem to study stem growth. The 

structural changes which occur during inflorescence stem growth in Arabidopsis and wood 

formation in tree species are found to be identical, which has driven researchers to use the 

Arabidopsis inflorescence stem to study radial outgrowth (Ragni and Greb, 2018).  

In general, the development of the inflorescence stem has been divided into primary, intermediary 

and secondary growth depending on the anatomical variations occurring in the inflorescence stem 

over the period of plant growth (Tonn and Greb, 2017). The primary growth phase of an 

inflorescence stem is studied by using either the young inflorescence stem or the matured stem 

segment located beneath the shoot apical meristem. Both are composed of outer epidermis, middle 

cortex, vascular bundles, and central pith (Campbell et al., 2016). Similar to the vegetative stem, 

the young inflorescence stem also possesses approximately eight to ten vascular bundles that are 

arranged in a circular manner (eustele). Each bundle contains the xylem tissue towards central pith, 
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the phloem tissue towards the cortex and the fascicular cambium positioned in between the xylem 

and phloem tissues (Figure 1b; Suer et al., 2011). The vascular bundles are separated by an 

interfascicular region. In the young inflorescence stem, the interfascicular region contains only 

parenchyma tissue, whereas in the mature stem it has lignified fibers (Altamura et al., 2001). The 

molecular basis for the existence of a parenchymatic interfascicular region in the young 

Arabidopsis inflorescence stem is poorly understood so far, because the region is not marked by 

any well-known vascular or non-vascular markers, therefore it is also not clear whether this region 

develops from the cambium or cortex or pith.  

The inflorescence stem that is located in between the shoot apex and the stem base has been 

attributed to study of the intermediate growth phase of the stem (Sanchez et al., 2012). The 

anatomy of the stem undergoing the intermediate growth shows an outer epidermis, the cortex with 

multiple layers, the enlarged pith, and well-defined fascicular and interfascicular regions. The 

vascular bundles are highly differentiated and contain various vascular tissue cell types such as the 

xylem parenchyma, vessel elements, phloem parenchyma, and companion cells, whereas the 

interfascicular region contains xylem fibers with lignified cell walls. A small portion of the stem 

which shows the meristematic activity and appears at the junction of fascicular cambium, cortex, 

and interfascicular regions has been proposed to be the initiation site of stem secondary growth 

(Suer et al., 2011). Similar to the interfascicular region in the young inflorescence stem, until now 

no vascular markers are reported to be active in the entire interfascicular region of the stem during 

the intermediate growth phase. However, one of the cambium associated markers, the WOX4 

promoter (2.9 Kb) activity has been shown in a few meristematic cells that are located at the 

merging point of fascicular and interfascicular regions (Miyashima et al., 2013; Suer et al., 2011). 

This expression pattern has been interpreted as the activation of interfascicular cambium that 

initiates the secondary growth of the inflorescence stem.  

The radius of the inflorescence stem progressively becomes larger from the tip to the base which 

is described as the radial outgrowth or secondary thickening growth (Altamura et al., 2001; Tonn 

and Greb, 2017). Hence the inflorescence stem-base has been used to describe the anatomical 

changes that are occurred in the secondary growth phase (Y Hirakawa et al., 2010; Ji et al., 2010; 

Barra-Jiménez and Ragni, 2017). In contrast to the anatomy of the apical part of the stem, the base 

of stem contains vascular tissues that are arranged in concentric rings (Suer et al., 2011; Sanchez 
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et al., 2012). During the secondary growth, fascicular and inter-fascicular cambia merge to form a 

cambial ring. This cambial ring further produces the secondary xylem tissue towards the center of 

the stem and the secondary phloem tissue towards the cortex, increasing the number of vascular 

cell layers of the stem. Together with the subsequent secondary cell wall depositions, secondary 

growth contributes to the increase in the radius of the stem (Suer et al., 2011; Ragni and Greb, 

2018).  

Overall, the initiation of meristematic cell divisions at the flank of fascicular cambium that is 

progressively extending into the interfascicular region to become the circular cambium and their 

further differentiation into the secondary vascular structures responsible for the radial growth of 

the stem has been supported by many independent studies (Ji et al., 2010; Suer et al., 2011; Shi et 

al., 2017; Shi et al., 2019). Interestingly, in all these studies the WOX4 promoter (2.9 Kb) activity 

has been used to describe the changes that occur in the fascicular and interfascicular regions during 

the primary, intermediary and secondary phases of Arabidopsis inflorescence stem development. 

1.2.2.3. Vasculature of the leaf 

Arabidopsis leaf development begins with an initiation of leaf primordia at the periphery of 

vegetative shoot apical meristem (Kang et al., 2003). The subsequent developmental phases such 

as the primordium outgrowth, abaxial-adaxial polarization, and leaf blade expansion take place in 

coordination with the specification and patterning of the leaf vascular system (Kalve et al., 2014). 

Early leaf primordia contains L1, L2, and L3 layers, in which the L1 layer is responsible for the 

development of epidermis, stomata, and trichomes, whereas the L2 and L3 layers produce the 

ground tissue that is responsible for the development of all internal structures of the leaf including 

the vascular system (Bowman and Floyd, 2007).  

The development of the leaf vascular system starts with the specification of provascular cells at 

the base of the primordium, where it connects with the stem. Initially, the provascular cells are 

morphologically indistinguishable from the surrounding cell pool, but the procambial markers like 

ATHB8 start to express in these cells indicating the prepatterning of the vascular cambium (Nelson 

and Dengler, 1997; Dengler, 2006). As the leaf primordium expands further, the formation of 

provascular cells from the ground tissue occurs continuously to form the procambium (Scarpella, 

Marcos, Jiří Friml, et al., 2006). The procambial cells undergo certain physiological changes to 
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acquire the characteristic thin, slender cellular morphology and these cells are easily 

distinguishable from the surrounding leaf tissue (Sawchuk et al., 2007). The abaxial-adaxial 

polarization of the leaf triggers further development in the procambium of the mid-vein (first-order 

vein) of the leaf vascular system. The procambium tissue located at the center of the vascular 

bundle differentiates to produce the xylem tissue towards the adaxial side and the phloem tissue 

towards the abaxial side of the leaf (Rolland-Lagan, 2008).  

Figure 4. The Arabidopsis leaf shows different vein orders (Biedroń and Banasiak, 2018). The midrib comprised of 

the first order/primary vein (PV-orange) that extends into the secondary veins forming the loops (SV-Yellow). LV-

lateral veins and MV-marginal veins. The secondary veins extend into the tertiary veins (green), which are inter-

connected (CV) or free ending (FV).  

After the specification of the apical-basal, dorsal-ventral body plan of the leaf, the development is 

dominated by the leaf blade expansion. In the meantime, second-order veins develop from the mid-

vein and merge again with the mid-vein to form secondary vascular loops (Dengler, 2006; 

Scarpella et al., 2006b). Then third-order or tertiary veins are formed from the second-order veins. 

Small loops are formed either and by making connections with themselves or by looping back into 

the secondary veins. The reticulate venation of the leaf is completed by the formation of quaternary 

veins from the tertiary veins (Figure 4). The quaternary veins either merge back to the tertiary 

veins or end up freely making direct contact with the mesophyll cells (Scarpella, Marcos, Jirí Friml, 

et al., 2006; Sawchuk et al., 2007). 

1.3. Regulation of vascular development 

The development and patterning of plant vascular system is controlled by the gene regulatory 

networks that involve multiple interactions between phytohormones, transcription factors, 
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peptides and microRNAs (Ohtani et al., 2017). Although the phytohormone Auxin is known to 

play a central role in plant vascular development (Little, 2002; Wenzel et al., 2007), several studies 

revealed as well a significant involvement of other phytohormones such as cytokinins (Dettmer et 

al., 2009), and gibberellins (Miyashima et al., 2013). An auxin dependent transcription factor 

MONOPTEROS or AUXIN RESPONSIVE FACTOR5 (MP/ARF5) plays an important regulatory 

role in specification and patterning of the vasculature during embryogenesis and post embryonic 

development and loss of function of the MP leads to severe defects in the vascular development 

(Hardtke and Berleth, 1998; Berleth et al., 2004). The available evidences suggest that the MP acts 

as a positive regulator of the PIN-FORMED1 (PIN1) that exports auxin from cells and provides 

the feedback on the auxin status in the future provascular cells (Wenzel et al., 2007). The direct 

target of MP is TARGET OF MONOPTEROS 5 (TMO5), which forms a heterodimer with 

LONESOMEHIGHWAY (LHW) and induces the expression of the LONELYGUY (LOG) to produce 

the bioactive cytokinins that regulate periclinal cell divisions specifying the provascular cells (De 

Rybel et al., 2014). Interestingly, MP was also reported to upregulate the expression of ATHB8, 

which has a crucial role in leaf vascular patterning (Scarpella, Marcos, Jirí Friml, et al., 2006).  

Another regulatory pathway that influences several aspects of plant vascular development 

including the cambial cell divisions, vascular patterning, and differentiation of vascular cell types 

is the peptide signaling module (Fukuda and Ohashi-Ito, 2019). It is composed of the ligand 

TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) and the receptor 

PHLOEM INTERCALATED WITH XYLEM (PXY) pair (Etchells and Turner, 2010). The ligand – 

TDIF peptide is secreted in the phloem tissue, then pairs with the PXY present in the cambium 

and decides the fate of xylem differentiation (Y Hirakawa et al., 2010). The TDIF-PXY signaling 

module regulates the vascular development in coordination with the WOX4 (Y Hirakawa et al., 

2010; Etchells et al., 2016) which will be described in detail in the following sections.  

1.3.1. WOX4 as a regulator of plant vascular system 

The WUSCHEL-related homeobox 4 (WOX4) is one of the members of WOX gene family, a plant-

specific subclade of homeobox transcription factor superfamily (Ji et al., 2010). In Arabidopsis 

thaliana, the WOX gene family is comprises of fifteen members, including the founding member, 

the transcription factor WUSCHEL (WUS) (van der Graaff et al., 2009). Based on the phylogenetic 

relationship, the WOX gene family is divided into three clades and they are WOX13, WOX9, and 
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WUS clades (Nardmann et al., 2009; Costanzo et al., 2014). The WOX13-clade is comprised of 

WOX13, 10 and 14 genes, which can be found in vascular and nonvascular plants, including mosses 

and green algae. The WOX9-clade includes WOX8, 9, 11 and 12 that can be found in vascular 

plants including the lycophytes. The WUS-clade contains the founding member WUSCHEL and 

the remaining seven WOX genes from WOX1 to WOX7 (Nardmann and Werr, 2012).  

The WOX genes are essential for several plant developmental processes including the embryonic 

patterning, and the lateral organ development. Some of these WOX genes also show functional 

similarities such as the maintenance of stem cells. For instance, in the WUS-clade, the founding 

member WUS regulates the maintenance of stem cells in the shoot apical meristem (SAM) (Mayer 

et al., 1998). The WUS gene encodes a homeodomain transcription factor in the organizing center 

and then the protein moves to upper layers of the central zone, where it activates the CLV3 

expression. The CLV3, a small extracellular peptide, negatively regulates the WUS expression by 

activating the CLV1/CLV2 receptor kinase complex. This feedback loop mechanism between 

CLV3 and WUS is important to maintain the stem cell homeostasis in SAM (Sarkar et al., 2007; 

Yadav et al., 2011). Similarly, another WUS-clade member WOX5 exclusively is expressed in the 

quiescent center (QC) of the root apical meristem (RAM) and regulates the stem cell maintenance 

of RAM (Sarkar et al., 2007). Here, the CLE40 peptide that is encoded by CLAVATA3/EMBRYO 

SURROUNDING REGION-related (CLE) family member, regulates the WOX5 expression domain 

by activating the ARABIDOPSIS CRINKLY4 (ACR4) receptor kinase signaling mechanism 

(Stahl and Simon, 2009). Moreover, the recent studies indicates that another member of WUS-

clade, the WOX4 is preferentially expressed in the cambial cells and promote the proliferation of 

stem cells in the vascular cambium (Ji et al., 2010; Suer et al., 2011; Shi et al., 2019). The TDIF 

peptides that are encoded by CLE41 and CLE44 in the phloem regulates the WOX4 expression 

through the PXY leucine-rich receptor-like kinase (Y Hirakawa et al., 2010). The PXY, similar to 

WOX4 is expressed in the cambium and required for the normal organization of xylem, phloem 

and the cambium tissues in the vascular bundles (Etchells and Turner, 2010). Furthermore, the 

functional WOX4 is necessary for PXY function (Y Hirakawa et al., 2010). Thus, the TDIF-PXY 

signaling module regulates the vascular development in coordination with the WOX4 (Y Hirakawa 

et al., 2010; Etchells et al., 2016). The wox4-1 mutant showed a thin stem phenotype, in which the 

number of vascular tissues were decreased, but the acquisition of fascicular cambium was not 

much affected (Ji et al., 2010). However, overexpression studies indicated that the WOX4 can 
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promote the cell divisions in both young and matured stems and increase the area of secondary 

vascular tissue (Ji et al., 2010).  

In addition, the WOX3 and WOX4 genes appear to function together during the leaf development. 

In Arabidopsis, the WOX4 participates in the development of leaf vascular system (Ji et al., 2010) 

while the WOX3 play a role in the expansion of the leaf blade by regulating the marginal and plate 

meristems identity (Matsumoto and Okada, 2001). Whereas, the WOX3 orthologs in maize, the 

NARROW SHEATH 1 and 2 (NS1 and NS2) regulate both the leaf blade expansion and the number 

of leaf vascular bundles (Nardmann et al., 2004). Similarly, WOX3 orthologs in rice, the 

NARROWLEAF 2 & 3 genes also involved in the regulation of both leaf blade expansion and the 

vascular patterning (Cho et al., 2013). However, it has been shown in rice that AtWOX4 ortholog, 

OsWOX4 is active in SAM (Ohmori et al., 2013). Interestingly, these studies have shown that 

OsWOX4 functions in maintaining the stem cell identity in the SAM of rice, replacing the WUS 

function. Moreover, the OsWOX4 expression was found to extend from the SAM into the early 

leaf primordia and taking part in the leaf development including the vascular patterning suggesting 

that the OsWOX4 specifies vascular identity in the SAM in rice (Yasui et al., 2018). In Arabidopsis, 

the available studies have been shown that WOX4 is expressed in the vasculature of root, shoot, 

cotyledons and leaves, but its activity was only confined to the cambial cells of all these organs (Y 

Hirakawa et al., 2010). The WOX4 promoter in Arabidopsis was extensively used to mark the 

cambial cells during the different developmental phases of the inflorescence stem (Suer et al., 

2011). It has been shown that WOX4 promoter was active only in the fascicular cambium of the 

young stem referring it as the primary growth phase. Then the expression was shown to extend 

from the fascicular cambium into few cells that are positioned in between the fascicular and 

interfascicular regions of the stem. This extension was stated as an indication of the initiation of 

secondary growth. Then the circular WOX4 expression domain was observed in matured stem 

(Suer et al., 2011). However, the published studies of WOX4 expression pattern (Y Hirakawa et 

al., 2010; Suer et al., 2011) were based on using 2.9 Kb upstream and 0.6 Kb downstream regions, 

although long intergenic sequences flank the WOX4 gene. 
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2. AIM OF THE THESIS 

The main aim of this thesis work is to find out new information about spatio-temporal expression 

patterns of the WUSCHEL-related homeobox4 (WOX4) gene in different organs of Arabidopsis 

thaliana.  

Although the published WOX4 promoter has shown cambial specific activity, it contains only 2.9 

Kb upstream and 0.6 Kb downstream sequences, which results in weak overall activity. Hence, we 

analysed the large flanking area, including 9.2 Kb upstream and 1.7 kb downstream from the 

WOX4 gene sequence to identify the distal conserved elements. Furthermore, full-length WOX4 

promoter-reporter constructs, targeting either the endoplasmic reticulum (flWOX4::erGFP and 

flWOX4::erCERULEAN) or the nucleus (flWOX4::H3-GFP) were generated and transformed into 

Arabidopsis thaliana. The consequences of addition of all conserved distal elements were studied 

in detail with respect to the WOX4 expression pattern in the shoot, roots and leaves. 
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3. MATERIALS AND METHODS 

3.1. List of chemicals 

Name  Abbreviation Manufacturer 

Acetic acid  Roth 

Acetone  Roth 

Agar  Roth, Duchefa 

Agarose  Bio-Budget 

Bromophenol blue  Merck 

Calcium chloride CaCl2 Merck 

Chloroform  Roth 

Dexamethasone Dex Roth 

Disodium phosphate Na2HPO4 Roth 

Ethanol  Roth 

Ethidium bromide EtBr Sigma Aldrich 

Ethylinediamine tetra acetic acid EDTA Sigma Aldrich 

Glacial acetic acid  Sigma Aldrich 

Glufosinate-ammonium (Basta®)  Bayer 

Glycerol  Sigma Aldrich 

Hydrochloric acid HCl Roth 

Isoamyl alcohol  Roth 

Isopropanol  Roth 

Magnesium chloride MgCl2 Roth 

MES salt  Sigma Aldrich 

Monopotassium phosphate KH2PO4 Sigma Aldrich 

Phenol  Sigma Aldrich 

Phloroglucinol  Sigma Aldrich 

Potassium chloride KCl Roth 

Potassium hydroxide KOH Roth 

Propidium iodide PI Sigma Aldrich 

Silwet®   Sigma Aldrich 

Sodium acetate  Merck 

Sodium chloride NaCl Roth 

Sodium dodecyl sulphate SDS Merck 

Sodium hydroxide NaOH Merck 

Sodium hypochlorite NaClO Roth 

Tris base  Roth 

Tryptone  Roth 

Yeast-extract  Roth 
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3.2. Buffers 

TAE Buffer (50X):  242 g Tris base, 57.1 ml Glacial acetic acid and 100 ml of 0.5M EDTA (pH 

8.0) per 1L. The 1X working solution is 40 mM Tris-acetate/1 mM EDTA. 

TBE Buffer (5X):  54 g Tris base, 27.5 g Boric acid and 20 ml of 0.5M EDTA (pH 8.0) per 1L. 

The 0.5X working solution is 45 mM Tris-borate/1 mM EDTA. 

PBS Buffer:  25.6 g Disodium Phosphate, 80 g NaCl, 2 g KCl and 2 g Monopotassium phosphate 

per 1L. 

3.3. Kits 

Name Purpose Manufacturer 

Nucleospin-plasmid Plasmid Purification       Macherey-Nagel 

Nucleospin- Gel and PCR clean-up PCR clean-up & Gel purification Macherey-Nagel 

Invitrap spin RNA extraction Startec. molecular 

Superscript II Reverse transcriptase cDNA Synthesis Thermo Scientific 

SMARTer RACE 5′/3 5′- RACE Clonetech 

My-budget 5X Taq PCR master mix Colony PCR Bio-budget Tech 

3.4. Growth Media 

LB medium: Tryptone – 1 %,  Yeast Extract – 0.5 %, NaCl – 1 % , Agar – 15 % , 

pH: 7.0 

SOC-medium: Tryptone – 2 %, Yeast Extract – 0.5 %, NaCl – 1 %, MgCl2 – 10 

mM, MgSO4 – 10 mM, KCl – 2.5 mM, Glucose – 20 mM, and Agar 

– 15 % , pH: 7.0 

Infiltration medium: 50 g of Sucrose and 200 µl of Silwet in 1L of distilled water 

MS medium: 2.3 g of MS salts with B5 vitamins (Duchefa Biochemie), 10 g 

Sucrose, 0.5 g MES salt, and 8 g Agar in 1L of distilled water. Total 

concentration of micro & macro elements including vitamins: 

4414.09 mg/l, pH 5.7 
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3.5. Biological materials 

3.5.1. Enzymes 

Name Purpose Manufacturer 

Phusion DNA polymerase DNA amplification Sigma Aldrich 

Taq DNA polymerase DNA amplification Sigma Aldrich 

Restriction endonucleases To cut the DNA specifically New England Biolabs 

Alkaline Phosphatase,  

Calf Intestinal phosphatase (CIP)  

Dephosphorylation of  

5´ and 3´ ends of DNA  

New England Biolabs 

Klenow fragment Blunting the DNA ends, 

Second strand cDNA synthesis 

New England Biolabs 

T4 DNA ligase Ligation New England Biolabs 

3.5.2. Primers 

Oligo Name Sequence 5' to 3' Purpose 

Up region1-FP_Asc1 GGCGCGCCAGCAAACATACCCACACAAAAG  Cloning 

Up region1-RP_Sac1 GAGCTCGGGGGTATTTTAAAAAAATCTGATG Cloning 

Up region2-FP_Sac1 GAGCTCTCTAAATGCCTTGTCACCAAATC  Cloning 

Up region2-RP_NcoI CCATGGCTGCTATATGTTAAAACTAGCAAATGC Cloning 

Downstream-FP_Apa1 GGGCCCAGTCATGAAGGTGAGG Cloning 

Downstream-RP_Asc1 GGCGCGCCTCTTCTCATGGATTCT Cloning 

erCerulean-RP_BspHI TCATGAAGACTAATCTTTTTCTCTTTCTCATCTTTTC Cloning 

erCerulean-RP_Apa1 GGGCCCTTAGAGTTCGTCGTGCTTGTACAG Cloning 

erGFP-FP_BspH1 GTCATGAAGACTAATCTTTTTCTC Cloning 

erGFP-RP_Apa1 TTAGAGTTCGTCGTGTTTGTATAG Cloning 

H3-FP_Nco1 CCATGGCTCGTACCAAGCAGAC Cloning 

H3-RP_Sal1 GTCGACAGCTCGTTCTCCTCTGATTC Cloning 

GFP-FP_Sal1 GTCGACAGTAAAGGAGAAGAAC Cloning 

GFP-RP_Apa1 GGGCCCTTAGAGTTCGTCGTGTTTG Cloning 

WOX4_cDNA_RP1 AAGACACCAGTGGTCGTGAAGC RACE 



26 

 

WOX4_cDNA_RP2 GGTTGTTCCTCTTCTGCTTCTGTCTCTCCG RACE 

SMARTer-oligoIIA AAGCAGTGGTATCAACGCAGAGTACXXXXX  RACE 

RACE-UPM-long 

CTAATACGACTCACTATAGGGCAAGCAGTGGTATC 

AACGCAGAGT 

RACE 

RACE-UPM-short CTAATACGACTCACTATAGGGC RACE 

Nested 1_N1  CAATCTGTTGAGCATTAGGAGTACG RACE 

Nested 2_N2  CTGTTCTTGAGTCGGGTTCCAC RACE 

3.5.3. Antibiotics 

Name  Working concentration (µg/ml) Manufacturer 

Kanamycin  50 Duchefa 

Ampicillin / Carbenicillin 100 Duchefa 

Gentamycin 25 Duchefa 

Rifampicin 50 Duchefa 

Hygromycin 100 Duchefa 

3.5.4. Cloning vectors 

Name Source Resistance  Function 

pJET 1.2/blunt Thermo Scientific™ Ampicillin  Cloning 

pBluescript KS (+) (M.A.Alting-Mees and J.M.Short, 1989) Ampicillin  Cloning 

pGPTV - Kan (Überlacker and Werr, 1996) Kanamycin Binary 

pGPTV - Bar (Überlacker and Werr, 1996) Kanamycin, 

Phosphinothricin 

Binary 

3.5.5. Bacterial strains 

Organism Strain  Function 

E. coli DH5α (Hanahan, 1983) Cloning 

A. tumefaciens GV3101 (pMP90) GentR, RifR 

 (Koncz and Schell, 1986) 

Plant transformation 

3.5.6. Plant material 

All the phenotypic and molecular biology studies were carried out in Arabidopsis thaliana Col-0 

as the wild-type control. Same plant background was used to generate the transgenic lines. 
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3.6. Methods 

3.6.1. Phylogenetic Shadowing 

Phylogenetic shadowing was used to identify the conserved sequences in the WOX4 promoter 

region. First, the WOX4 orthologs were identified by using AtWOX4 coding sequence to BLAST 

against the genomes of Brassicaceae members’ viz. Arabidopsis thaliana, Arabidopsis lyrata, 

Arabidopsis halleri, Boechera stricta, Brassica rapa, Brassica oleracea, Capsella rubella, and 

Capsella grandiflora. Using the locus information of these orthologs, the flanking genes were 

identified and then, the complete upstream and downstream sequences from the WOX4 coding 

region were retrieved by using Phytozome 10 and Vector NTI. These sequences were aligned with 

the mVISTA (http://genome.lbl.gov/vista/mvista/submit.shtml), at the default settings of LAGAN 

(Brudno et al., 2003) alignment tool. Based on the sequence similarity obtained in vista plots, the 

conserved elements in the WOX4 promoter are recognized. 

Transgenic line Ecotype Selection Purpose Source 

pWOX4:: YFP Col-0 Phosphinothricin Cambium Thomas Greb 

pATHB8:: YFP Col-0 Phosphinothricin Pro-cambium E. Scarpella 

flWOX4::erCER Col-0 Phosphinothricin Full-length WOX4 

promoter reporter 

Current study 

flWOX4::erGFP Col-0 Phosphinothricin Full-length WOX4 

promoter reporter 

Current study 

flWOX4:: H3-GFP Col-0 Phosphinothricin Full-length WOX4 

promoter reporter 

Current study 

flWOX4:gWOX4-GFP Col-0 Phosphinothricin Translational fusion Current study 

pWOX4-Ω::erCER Col-0 Phosphinothricin 5′-modification in 

the WOX4 promoter  

Current study 

pWOX4::erCER-PAS Col-0 Phosphinothricin 3′-modification in 

the WOX4 promoter   

Current study 

http://genome.lbl.gov/vista/mvista/submit.shtml
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3.6.2. Nucleic acid extraction & purification 

Total genomic DNA was isolated from the leaf tissue according to the protocol described 

previously (K. Edwards, 1991) and purified by phenol-chloroform-isoamyl alcohol method.  

Total RNA was isolated from young seedlings by Invitrap spin plant RNA mini kit, following the 

manufacturer protocol. An additional DNase treatment was performed and purified by phenol-

chloroform-isoamyl alcohol method. 

3.6.3. RACE (Rapid amplification of cDNA ends) 

SMARTer® RACE 5′/3′ kit was used to identify the 5′ end of WOX4 mRNA. 1µg of total RNA 

(DNA free) was used to synthesize the cDNA. Then the nested PCRs were performed by using 

N1, N2 primers that binds in the Exon 2 of WOX4. Subsequently, the RACE-PCR products were 

cloned into pJET1.2 blunt vector (Thermo Scientific) and sequenced with WOX4 specific primers. 

The resulting sequences were aligned with the WOX4 genomic DNA sequence to identify the 

transcription start site. 

3.6.4. Promoter constructs 

Following constructs were generated in the current study- 

flWOX4::erCER 9183 bp upstream > erCERULEAN > 1704 bp downstream 

flWOX4::erGFP 9183 bp upstream > erGFP > 1704 bp downstream 

pWOX4::erCER:PAS 9183 bp upstream > erCERULEAN> poly-adenylation sequence 

pWOX4::Ω:erCER 237 bp WOX4  upstream region was replaced by TMV-Ω leader 

flWOX4::H3-GFP 9183 bp upstream > H3-GFP > 1704 bp downstream 

flWOX4:gWOX4-GFP 9183 bp upstream > gWOX4>mGFP5> 1704 bp downstream 

3.6.5. Primer design 

All primers were designed using the Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) and 

then validated with Sigma-OligoevaluatorTM (https://www.sigmaaldrich.com/technical-

documents/articles/biology/oligo-evaluator.html). 

http://bioinfo.ut.ee/primer3-0.4.0/
https://www.sigmaaldrich.com/technical-documents/articles/biology/oligo-evaluator.html
https://www.sigmaaldrich.com/technical-documents/articles/biology/oligo-evaluator.html
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3.6.6. PCR Amplification 

Total genomic DNA was used as the template for PCR amplification of upstream and downstream 

sequences from the AtWOX4 coding region. The downstream sequence of 1704 bp was amplified 

in a single PCR event, whereas the upstream sequence of 9183 bp was amplified as an upstream 

region-I (6375 bp) and upstream region-II (3285 bp). Amplification with the Phusion DNA 

polymerase: 

Reaction mixture  PCR-program 

5X HF buffer                     10.00 µl 1. Denaturing       95oC, 3 min 

10 mM dNTPs 1.00 µl 2. Denaturing       95oC, 30 sec. 

10 µM Forward primer 2.50 µl 3. Annealing        58oC, 30 sec. 

10 µM Reverse primer 2.50 µl 4. Elongation       72oC, 1 min per Kb 

Phusion polymerase 0.50 µl 5. Amplification   2 to 4, 30 cycles  

gDNA template 1.00 µl 6. Extension         72oC, 5 min 

Water 32.50 µl 7. Stop     4oC, forever 

Total 50.00 µl  

Amplification with the Taq-DNA polymerase (PCR Mastermix from bio-budget): 

Reaction mixture  PCR-program 

5X Mastermix                     10.00 µl 1. Denaturing       94oC, 3 min 

10 µM Forward primer 2.50 µl 2. Denaturing       94oC, 30 sec. 

10 µM Reverse primer 2.50 µl 3. Annealing        56oC, 30 sec. 

gDNA template 1.00 µl 4. Elongation       72oC, 1 min per Kb 

Water 34.00 µl 5. Amplification   2 to 4, 30 cycles  

Total 50.00 µl 6. Extension         72oC, 5 min 

  7. Stop     4oC, forever 

3.6.7. Cloning 

The amplified DNA fragments were first cloned into pJET1.2 blunt vector, transformed into E. 

coli DH5α competent cells, selected against the antibiotic resistance, confirmed with the restriction 

digestion and with the Sanger sequencing. Then the fragments were cloned into pBluescript vector 
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using appropriate restriction sites to generate various constructs. Finally, these constructs were 

cloned into pGPTV binary vector using AscI site, transformed into Agrobacterium tumefaciens 

GV3101 strain. 

Ligation  

NEB T4 DNA ligase was used in each ligation reaction following the manufacturer protocol. In 

all the ligation reactions, insert to vector ratio was 1:5 and their concentrations were calculated 

according to the formula described below.   

([ng of vector] x [kb size of insert]) / (kb size of vector) x (insert: vector ratio) = ng of insert 

required 

Reaction:  Conditions: 

5X ligation buffer  4  µl 3 - 5 minutes at room temperature   

Vector 1  µl Or overnight at 4oC 

Insert X µl  

Ligase 1  µl  

3.7. Transformation 

3.7.1. Transformation of Escherichia coli DH5α 

E. coli competent cells were prepared using CaCl2 and stored in -80oC. These competent cells were 

carefully thawed on ice prior to the transformation, 1-2 µl of plasmid or ligation mixture was added 

and mixed gently. Then the transformation was performed by the heat shock at 42oC for 30 

seconds, followed by the addition of 200 µl of SOC medium and incubation at 37oC for an hour. 

The transformed cells were selected on the LB agar medium with an appropriate antibiotic. 

3.7.2. Transformation of Agrobacterium tumefaciens 

Agrobacterium cells were transformed by electroporation. The competent cells were carefully 

thawed on ice prior to the transformation, and then 1 µl of the plasmid was added and mixed gently. 

Electroporation was performed with the Gene Pulser (Bio-rad) at 1.8 kV. These cells were 
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incubated with YEB medium at 28oC for an hour and transformed cells were selected on the LB 

agar medium with Kanamycin, Rifampicin, and Gentamycin.  

3.7.3. Transformation of Arabidopsis thaliana (floral-dip method) 

Plant transformation was performed with the floral-dip method (Clough and Bent, 1998). 

Agrobacterium tumefaciens GV3101 with binary vector pGPTV harboring a construct of interest 

was grown overnight in the LB medium with Kanamycin, Rifampicin, and Gentamycin at 28oC. 

Then the cells were harvested by centrifugation at 5000 rpm and then suspended gently in the 

infiltration medium. The Arabidopsis inflorescences were dipped in the cell-suspension for about 

3-4 minutes and incubated overnight in the dark covering with a dome-shaped cover. Plants were 

then transferred to the greenhouse and the seeds were harvested after 30-35 days.  

3.8. Selection of the transformants 

Seeds collected after the floral-dip were considered as T1, they were germinated on large trays and 

5mg/L BASTA (Glufosinate) solution was sprayed on the young seedlings to select the T1 

transgenic lines. Transgenic plants carrying NptII or Hpt resistance were selected on the ½ MS 

medium with 50mg/L Kanamycin or 100mg/L Hygromycin. At least six independent T1 transgenic 

lines were used for the microscopic analysis. 

3.9. Confocal Imaging 

Confocal imaging was performed with the confocal laser scanning microscopes (CLSM) - Zeiss 

LSM 700 and Leica TCS SP8. The GFP chromophore was excited at 488 nm and the emission 

signal was collected between 502-520 nm, whereas the CERULEAN chromophore was excited at 

442 nm and the emission signal was collected in between 470-520 nm. YFP chromophore was 

excited at 514 nm and the emission signal was collected in between 590-680 nm.  Propidium Iodide 

was excited with 488 nm and emission signal was collected in between 620-680 nm.  

3.10. Image Processing 

Processing of the CLSM 2D images and conversion of the Z-stacks into 3D images were performed 

with the software-Imaris (Bitplane, Switzerland). 
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4. RESULTS 

4.1. Phylogenetic shadowing revealed conserved regions within the WOX4 promoter 

The function of the WOX4 gene is conserved in plant vascular tissue development and the promoter 

elements that regulate the WOX4 expression pattern might be located either in the upstream and/or 

downstream of the WOX4 coding region. Therefore, phylogenetic shadowing was performed to 

identify the evolutionarily conserved regions in the Arabidopsis WOX4 promoter by comparing 

the orthologous WOX4 sequences from the seven Brassicaceae species including Arabidopsis 

halleri, Arabidopsis lyrata, Brochera stricta, Brassica rapa, Brassica oleracea, Capsella rubella, 

and Capsella grandiflora. 

The orthologous WOX4 genes from the above mentioned seven species were identified by using 

the WOX4 coding sequence from Arabidopsis thaliana (AT1G46480.1) as a query in the NCBI-

BLAST analysis. The genes that flank the WOX4 were also identified and used to define the length 

of intergenic regions. Interestingly, in all the eight species that were examined in this study, WOX4 

coding sequence is separated by long intergenic sequences. This information was used to retrieve 

the sequences of WOX4 orthologs along with the complete upstream and downstream regions from 

Phytozome 12 (https://phytozome.jgi.doe.gov/pz/portal.html) and National Center for Biological 

Information (NCBI, https://www.ncbi.nlm.nih.gov/genome/) databases. In the next step, 

phylogenetic shadowing was performed using the WOX4 sequences along with the complete 

upstream and downstream intergenic regions by using the mVISTA. The mVISTA is an online 

toolkit with a set of computational programs generally used for studying the comparative genomics 

(http://genome.lbl.gov/vista/mvista/submit.shtml). At the default settings, the mVISTA browser 

uses the computational program LAGAN (Brudno et al., 2003), which detects the conserved 

regions by conducting the progressive pairwise alignments of the nucleotide sequences. The 

AtWOX4 gene sequence along with the complete upstream and downstream intergenic regions 

were used as a reference sequence (Figure 5C) for the pairwise alignment of orthologous WOX4 

genomic sequences obtained from the other seven Brassicaceae species. The annotation details of 

the AtWOX4 gene from the TAIR database (TAIR10) were used in the LAGAN program to define 

the exon, intron and 5′, 3′ untranslated regions. The resulting VISTA plot was visualized in the 

VISTA browser with default settings that calculate 70 % consensus identity at the calculation 

https://phytozome.jgi.doe.gov/pz/portal.html
https://www.ncbi.nlm.nih.gov/genome/
http://genome.lbl.gov/vista/mvista/submit.shtml
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window of 100 base pairs. This analysis revealed that the WOX4 orthologs are highly conserved 

within the three exons while the conservation is slightly lower within the two introns (Figure 5B). 

Moreover, several conserved blocks in the WOX4 promoter with varying percentages of sequence 

homology were identified. Highly conserved sequences with at least 75 % homology were located 

both in the upstream and in the downstream regions from the WOX4 coding region (Figure 5B). In 

the upstream region, three conserved blocks were identified between -1 to -1800 bp (Block 1), -

4000 to -5000 bp (Block 2), and -6500 to -8500 bp (Block 3). In the downstream region, the 

conserved blocks were located in between 1 to 1700 bp after the STOP codon. The striking 

exception was C. grandiflora, in which only two conserved blocks in the upstream and one block 

in the downstream were identified (Figure 5B). 

 

Figure 5. Phylogenetic shadowing of WOX4 gene sequences, upstream and downstream regions. 

A. Representation of the Arabidopsis WOX4 gene model, based on the TAIR10 database. Three exons were shown in 

blue colour, two introns (colourless) and the 5′ & 3′ untranslated regions were shown in pale-blue colour. B. The 

mVISTA plot illustrating the conserved regions based on the pairwise nucleotide sequence alignment of orthologous 

WOX4 sequences. The peaks in blue, pale-blue and red colours represent at least 70 % sequence conservation in the 

coding regions, 5′ & 3′ untranslated regions (5′ and 3′ UTR) and in the intronic, further upstream and downstream 

regions, respectively. C. Three identified conserved blocks in the upstream region D. The graphical representation of 

complete upstream (9,183 bp) and downstream (1,704 bp) regions from the WOX4 coding region of Arabidopsis 

thaliana. E. The graphical representation of the short WOX4 promoter construct (WOX4::YFP) that was used in the 

study by (Suer et al., 2011). 
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The conserved elements that were identified by phylogenetic shadowing show that the previously 

published AtWOX4 expression study (WOX4::YFP) by (Suer et al., 2011) in which 2.9 Kb 

upstream and 0.6 Kb downstream region of WOX4 coding sequence were used and it covers 

proximal conserved blocks but excludes the distal conserved elements (Figure 5C & E ). 

We were interested to know the chromatin accessibility of the AtWOX4 promoter, and for this 

purpose we used the ATAC-seq (Assay for Transposase-Accessible Chromatin using high-

throughput sequencing) data that was recently published from our group (Frerichs et al., 2019). In 

this study, the DORNRÖSCHEN-LIKE (DRNL) promoter-reporter was used to mark the lateral 

organ founder cells in the peripheral zone of the inflorescence meristems in Arabidopsis thaliana 

apetala1-1 cauliflower-1 double mutant background (Frerichs et al., 2019). The lateral organ 

founder cells that express the reporter gene were separated by the Fluorescence-activated cell 

sorting (FACS) and then subjected to the ATAC-seq analysis. The ATAC-seq is a powerful 

technique that is used to assess the chromatin accessibility in the plant genome (Tsompana and 

Buck, 2014). It uses the Tn5 transposase activity for cleaving the open genomic DNA sequences, 

revealing the open chromatin configurations. By utilizing the data, we recognized that the peaks 

referring to the open chromatin are clearly correlating with the locations of the conserved regions 

identified in the phylogenetic shadowing of the WOX4 promoter (Figure 6). One distal peak 

(indicated by star mark) was found to be specifically associated with a distal conserved region 

appeared only within the closely related species, A. thalina, A. halleri and A. lyrata (Figure 6A). 
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Figure 6. ATAC-seq analysis of the WOX4 promoter region 

A. Representation of the identified open chromatin peaks within the WOX4 promoter region by ATAC-seq analysis. 

B & C. Comparison of the positions of the open chromatin peaks to the 9.2 Kb WOX4 promoter region, indicating the 

exact overlap of the positions of the open chromatin peaks to the upstream conserved regions that were identified by 

phylogenetic shadowing. Star mark (★) indicates the ATAC-seq peak that belongs to the conserved region appeared 

only within the A. halleri and A. lyrata. 

4.2. The proximal region of the WOX4 promoter contains a conserved open reading frame 

In the investigated seven Brassicaceae members, the immediate proximal promoter region (Block 

1; -1 to -1800 bp) upstream to the WOX4 translational start codon is relatively highly conserved 

(Figure 5B). Subjecting the proximal promoter region of AtWOX4 for the detailed analysis 

revealed an AT-rich sequence and specifically the upstream 550 bp sequence comprised of several 

ATG triplets.  

 

Figure 7. Analysis of the WOX4 proximal promoter region  

A. Analysis of the A. thaliana WOX4 proximal promoter region revealed several conserved ATGs (red) and a 63 bp 

short open reading frame (blue) within the immediate upstream 550 bp region of the WOX4 proximal promoter. B and 

C: Representing the nucleotide and amino acid sequence conservation of the 63 bp upstream ORF, respectively. 
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 Additionally, the multiple sequence alignment of this region (-550 bp) also confirmed the 

conservation of upstream ATG triplets in the WOX4 orthologous promoter sequences of the studied 

Brassicaceae members. A total of thirteen ATGs were observed within this 550 bp upstream 

region, out of which six ATGs were located in-frame with the WOX4 translational start codon 

ATG+1 (Figure 7A). Moreover, a highly conserved 63 bp long upstream open reading frame (ORF) 

that started at -237 and terminated at -174 bp with a stop codon TAA was also identified (Figure 

7B). Translation of this 63 bp ORF into amino acid sequence displayed 100 % identity within the 

five Brassicaceae members - A. thaliana, A. halleri, A. lyrata, C. grandiflora, and C. rubella. 

Whereas, in B. stricta, B. oleracea and B. rapa there is only one amino acid substitution (Proline 

to Threonine) at the position eight. However, in one paralogue of B. rapa this region showed only 

66 % sequence identity (Figure 7C).  

4.3. The transcriptional start site of the WOX4 is located further upstream 

The 5′ RACE (Rapid Amplification of cDNA Ends) was performed using the SMARTer RACE 

kit (Clonetech) in order to find out the WOX4 transcriptional start site and to confirm whether the 

63 bp upstream ORF is a part of the WOX4 transcript.  

Initially, the cDNA was synthesized by following the SMARTer-RACE user manual. The first 

round of nested PCR was performed using the purified cDNA as a template, the gene-specific 

reverse primer N1 and the forward primer UPM-long (Universal Primer A mix-long; Clonetech). 

The second round of nested PCR was performed using the tenfold diluted nested PCR1 product as 

a template, the forward primer UPM-short and gene-specific reverse primer N2 (Figure 8A). The 

primer sequences were listed in the materials and methods section (3.5.2). After two rounds of 

nested PCRs, the RACE-PCR fragments were purified, cloned into the pJET vector and 

transformed into the E. coli DH5α. The colony PCR was initially performed to select the clones 

with WOX4 specific sequences and then the selected clones were confirmed with the restriction 

digestion followed by the Sanger-sequencing. In total, more than 50 clones were sequenced. All 

the sequences of RACE products were trimmed and aligned to the WOX4 genomic sequence to 

identify the transcripts with desired splicing pattern and then the 5′ termini were examined. This 

analysis revealed that the cDNA sequences varied in their lengths with different 5′ termini and 

sequence alignment of the cDNA clones that contain long 5′ termini was shown in Figure 8B. Four 
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identical clones with longest 5′ RACE fragments were found to be terminated at -302 bp upstream 

of the WOX4 coding sequence, which includes the conserved 63 bp upstream ORF (Figure 8C). 

No evidence was obtained for an additional intron or alternative splicing.  

 

Figure 8. Identification of the WOX4 transcriptional start site 

A. Schematic representation of the WOX4 gene model from TAIR database showing the exons, and UTRs. 

Approximate positions of the uORF, nested primers (N1, N2) used in the 5′ RACE-PCR are shown and the putative 

TSS is indicated by the question mark ‘?’. B & C: Multiple sequence alignment of the selected long 5′ RACE-PCR 

clones shows the intron splicing and transcripts starting from further upstream of the conserved upstream ORF. 

4.4. The full-length WOX4 promoter construct includes all the conserved regions 

To examine whether the distal conserved sequences in the WOX4 promoter region contribute to its 

expression pattern, the full-length WOX4 promoter construct that includes all the conserved distal 

promoter elements were created, by combining the 9,183 bp upstream and 1,704 bp downstream 

sequences from the WOX4 coding region. 

The PCR amplification of the 1,704 bp downstream sequence was achieved in a single step, 

whereas the 9,183 bp upstream sequence was too large to be amplified in a single PCR reaction. 

Hence, upstream proximal 3.2 Kb and distal 6 Kb promoter regions were amplified separately and 

were fused together using restriction sites (Figure 9C). The three fragments (downstream and 

upstream proximal and distal promoter regions) were amplified using the primers listed in table 

3.5.2 (materials and methods section) that adds the following restriction sites: AscI at 5′ end & 
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NheI at 3′ end of the upstream distal promoter, the NheI at 5′ end & NcoI at 3′ end of the upstream 

proximal promoter and the SalI, ApaI at 5′ end & AscI, KpnI at 3′ end of the downstream region. 

Here, two different restriction sites were added at the 5′ and 3′ end of the downstream region by 

keeping further cloning steps in mind. All three promoter fragments were initially cloned into the 

pJET 1.2/blunt cloning vector and confirmed by sequencing. The individual promoter fragments 

were then assembled in the pBluescript vector backbone by using the directional cloning approach. 

First, the distal and proximal promoter regions were combined using the NheI restriction site and 

then the downstream fragment was added by using the SalI-KpnI restriction sites. The resulting 

plasmid contains the multiple cloning site between the upstream and downstream promoter 

sequences, which was later used for creating different combinations of the promoter-reporter 

constructs.  

The full-length WOX4 promoter-reporter constructs with two different combinations of 

fluorophores, the GFP and CERULEAN that are either nuclear localized or targeted to the 

endoplasmic reticulum were generated to recognize the WOX4 promoter activity in different 

tissues with variable morphology. The full-length WOX4 promoter-reporter constructs 

flWOX4::erCERULEAN and flWOX4::erGFP were created by inserting endoplasmic reticulum 

(er) targeting erCERULEAN and erGFP fluorescent protein-coding sequences between the 

upstream and downstream promoter sequences by using the NcoI-ApaI restriction sites (Figure 9D 

& E). These constructs represent the WOX4 transcriptional fusions as they contain the full-length 

promoter with only the reporter, but not the WOX4 coding region.  

The nuclear-localized full-length WOX4 promoter-reporter construct flWOX4::H3-GFP (Figure 

9F) was created by inserting the histone (H3) sequence and then the GFP coding sequence between 

the upstream and downstream promoter regions by using NcoI-SalI and SalI-ApaI sites, 

respectively. To examine whether the conserved upstream ORF affects the WOX4 expression 

pattern or not, the WOX4 promoter region from -1 to -237 bp was replaced by the TMV-Ω leader 

sequence (Töpfer et al., 1993) and created the reporter construct WOX4-Ω::erCERULEAN 

(Figure 9G).  
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Figure 9. Graphical representation of the WOX4 promoter region 

A. Schematic representation of previously studied WOX4 promoter construct (Suer et al., 2011) B. Phylogenetic 

shadowing diagram illustrating the conserved areas within the full-length WOX4 promoter and the gene sequences. 

The conserved coding regions, 5′ and 3′ UTRs and intronic, further upstream and downstream regions were shown in 

blue, pale-blue and red colour peaks, respectively. C. Schematic representation of the full-length WOX4 promoter 

which includes – upstream distal, proximal and downstream regions. D-F: Schematic representation of different 

WOX4 promoter-reporter constructs; D. flWOX4::erCERULEAN, E. flWOX4::erGFP, F. flWOX4::H3GFP. G and H: 

The truncated WOX4 promoter-reporter constructs; G. pWOX4::Ω:erCERULEAN, in which the proximal promoter 

region (-237 bp) was replaced by TMV-Ω leader sequence, H. pWOX4::erCERULEAN-PAS, in which the downstream 

1704 bp sequence was replaced with the downstream region of the 35S gene including the polyadenylation sequence 

(PAS) and I. Schematic representation of the WOX4 translational fusion construct flWOX4::gWOX4-GFP. 

Likewise, the promoter construct WOX4::erCERULEAN-PAS (Figure 9H) was also created by 

replacing a 1.7 Kb downstream sequence of the WOX4 coding region with the downstream region 

of the 35S gene, which includes the polyadenylation sequence (PAS). This construct was used to 

study whether the downstream sequence is essential for the WOX4 expression pattern or not. The 
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WOX4 translational fusion construct flWOX4:gWOX4-GFP (Figure 9I) was created by replacing 

the histone 3 sequence from flWOX4::H3-GFP construct with the WOX4 gene sequence (gWOX4) 

by using PstI and SalI restriction sites. The comparison of WOX4 expression patterns obtained by 

transcriptional and translational fusion constructs would be helpful to understand if the WOX4 

protein moves from one cell to the other. The non-cell autonomous activity of the WUSCHEL 

protein was previously well defined by comparing expression patterns generated by transcriptional 

and translational fusion constructs (Yadav et al., 2011). Therefore, we used the WOX4 translational 

fusion and WOX4 promoter-reporter constructs to study whether WOX4 protein is mobile or not.   

However, the respective flWOX4 promoter-reporter cassettes were released from the pBluescript 

vector backbone using the restriction site AscI, cloned into the destination vector pGPTV-Bar 

(Überlacker and Werr, 1996) and subsequently, transferred into the Agrobacterium tumefacience 

GV3101 (Koncz and Schell, 1986) by electroporation (Mersereau et al., 1990) and the Arabidopsis 

thaliana Col-0 plants by the floral-dip method (Clough and Bent, 1998). The T1 generations were 

selected upon the Basta treatment and independent transgenic plants were used for the confocal 

microscopic studies.  

4.5. Expression analysis of the full-length WOX4 promoter-reporters in stem 

All the three full-length WOX4 promoter-reporters flWOX4::erCERULEAN, flWOX4::erGFP 

and flWOX4::H3-GFP showed a similar expression pattern throughout the development in 

different tissues, and the details are presented in the following sections. However, we noticed that 

the signal intensities varied depending on the tissue type and cell structure. For example, the 

endoplasmic reticulum-targeted erCERULEAN and erGFP reporters showed the superior signals 

in tissues such as the cambium and xylem parenchyma, whereas the nuclear-localized H3-GFP 

had shown excellent signals in the meristematic cells of the shoot apex. The meristematic cells of 

the shoot apex are small, hence mostly occupied by the nuclei; while the cells of the young/mature 

stem are large, hence the endoplasmic reticulum occupies more cellular space than the nucleus. 

Therefore, the nuclear-targeted flWOX4::H3-GFP (green signal) was used to visualize the 

flWOX4 promoter activity in the apical meristems while the endoplasmic reticulum targeted 

flWOX4::erCERULEAN (blue signal) construct was used to visualize the flWOX4 promoter 

activity in the stem and leaves. 
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4.5.1. WOX4 promoter activity starts early during the shoot development 

The shoots that comprised of the inflorescence meristem, flower primordia, young and mature 

stems were used to analyse the WOX4 promoter activity by using the flWOX4 promoter-reporter 

lines. The live imaging of the shoot apex was performed by placing the inflorescence on an agar 

block and carefully removing the flowers to expose the meristem. Whereas, the longitudinal 

sections of the shoot apex were obtained by embedding the young inflorescence in low-melting 

agar, then making thin sections using the vibratome. The stem sections were also obtained by hand 

sectioning wherever it was possible. All the sections were counterstained with the 1µg/ml 

propidium iodide solution prior to scanning for the reporter expression. The confocal laser 

scanning microscopy was used for the live imaging with the wavelengths 440 nm & 490 nm from 

argon laser to excite the CERULEAN & GFP fluorescent proteins, respectively. The emitted 

signals were collected in the range of 468-510 nm for CERULEAN, 510-545 nm for GFP and 610-

630 nm for propidium iodide.  

A top view at the shoot apex of flWOX4-H3::GFP reporter line revealed the early activity of the 

WOX4 promoter and it was observed in the meristematic cells of the inflorescence meristem (IM) 

(Figure 10A). The fluorescent signal was found in the group of cells that are arranged like a spiral 

pattern (Figure 10A), which might correspond to the position of emerging flower primordia. 

However, the Z-stack images obtained from the top of the epidermis to few sub-epidermal cell 

layers revealed that the fluorescent signal was prominent in the cells of the sub-epidermal layer 

than in the epidermis (Figure 10B). On the other hand, there was no detectable signal in confocal 

image obtained from the top view of shoot apex from flWOX4::erCERULEAN reporter line (Figure 

10C). However, the longitudinal section of the same inflorescence showed a weak WOX4 promoter 

activity in the inflorescence meristem (IM), but stronger signal was detected in the stem tissues 

subtending to the IM (Figure 10D). 

There is a discrepancy in visualizing flWOX4-H3::GFP and flWOX4::erCERULEAN reporter 

signals, due to the morphology of cells and the position of nucleus. The meristematic cells in the 

flower primordia were better visualized by flWOX4-H3::GFP, and the cells of the young/mature 

stem by flWOX4::erCERULEAN reporter. Therefore, combining the confocal images obtained by 

both the reporters showed a better overview of the full-length WOX4 promoter activity during the 
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shoot development. For this reason, in the subsequent sections, we used flWOX4::erCERULEAN 

reporter lines to depict the WOX4 promoter activity in young and mature stems. 

 

Figure 10. Full-length WOX4 promoter activity at the shoot apex 

A. The WOX4 promoter activity depicted by the flWOX4::H3-GFP reporter line. The confocal laser scanning 

microscopy (CSLM) image of the inflorescence tip shows the GFP signal in the group of cells of IM. B. The 3D image 

of the shoot apex shows that the GFP signal in the sub-epidermal cells (marked by the arrowheads). C and D: The 

WOX4 promoter activity depicted in the shoot apex by the flWOX4::erCERULEAN reporter line. The CLSM images 

indicate the lack of CERULEAN signal at the shoot apex in a top view (C) and the appearance of a high-intensity 

CERULEAN signal within the longitudinal section marking the stem region subtending to the IM (D).  
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4.5.2. WOX4 promoter is active in a circular domain of subcortical cells beneath the IM  

A medial plane longitudinal section through the inflorescence meristem showed that the full-length 

WOX4 promoter was active in the developing stem (Figure 11B). In order to depict in which cell-

types it is active, a series of transverse sections (40 µm thick) were made, starting from the tip of 

the inflorescence to the subtending nodes. Two of the representative transverse sections (Figure 

11C & D) were used to visualize the cells in which the WOX4 promoter was active.  

 

Figure 11. flWOX4 promoter activity in the sub-cortical cells of the inflorescence meristem. 

A. Graphical representation of the inflorescence region that was chosen for the confocal imaging B. Longitudinal 

section through the inflorescence tip of a flWOX4::erCERULEAN reporter line C. Transverse section of the shoot 

apex 80-100 µm below the IM showing a cylindrical domain of WOX4 promoter activity in the sub-cortical area. D. 

Transverse section of the subtending node, showing a connection between the WOX4 expression domain of the stem 

and flower pedicle. 
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The transverse section obtained from approximately 80-100 µm below the inflorescence meristem 

illustrates that the WOX4-expressing cells were positioned in the sub-cortical region of the stem 

(Figure 11C). The WOX4 promoter activity was confined only to the region with one or two cell 

layers that were located between the cortex and pith regions creating a circular domain of the sub-

cortical cells. Moreover, prominent fluorescence signal was also observed in flower pedicles 

(Figure 11C).  

A series of transverse sections of inflorescence stem further below the shoot apex revealed the 

similar WOX4-expression domain and it was illustrated by one of the transverse sections (Figure 

11D). It means that the flWOX4 promoter activity was continued in a circular domain of sub-

cortical cells from the tip of the inflorescence to the subtending young nodes and altogether makes 

a hollow cylindrical expression domain. The series of transverse sections of the stem also 

illustrated the connections of the WOX4-expression domain in the stem with the vascular bundles 

of surrounding flower pedicles (Figure 11C & D). All the connections of WOX4-expression 

domain in the stem with the flower pedicels seem to interrupt the circular shape (Figure 11D).  

4.5.3. WOX4 promoter activity continues into the subtending nodes of the stem 

In subsequent nodes, the WOX4 promoter also showed a continuous activity in a similar circular 

domain of sub-cortical cells. A transverse section obtained from the inflorescence stem 

approximately 300 µm beneath the IM showed the WOX4 expressing domain was circular both in 

the stem and flower pedicels (Figure 12A). This expression pattern was similar to that of the pattern 

found with the transverse section 80 µm below the IM. 

Interestingly, the transverse section obtained from the node far away from the IM also showed the 

WOX4 promoter activity in the sub-cortical tissue of the main stem and its lateral branch (Figure 

12C). Although the lateral branch contains a perfect circular domain of the WOX4 expressing cells, 

the main stem showed a wavy circle. The wavy appearance of WOX4 expression domain possibly 

indicate the developing vascular bundles and the anatomy also shows the emerging xylem and 

phloem tissues from the newly forming fascicular cambium (Figure 12C). 
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Figure 12. The flWOX4 promoter activity in the subtending nodes of IM 

A. The transverse section obtained from the inflorescence stem region approximately 300 µm below the IM and 

circular patterns of WOX4 expression in the sub-cortical cells of both in the stem and its surrounding pedicels. B. The 

same image from Figure 12B is used to represent the approximate position of the transverse sections. C. WOX4 

promoter activity in the subcortical tissue of the main stem and its lateral branch when transverse sections obtained 

further away from the IM, the node that is below the flower cluster.  

4.5.4. WOX4 expression domain continued to exist throughout the developing stem 

A transverse section acquired from the stem node further down the shoot apex also showed the 

WOX4 promoter activity in a similar circular domain of subcortical cells (Figure 13B). The circle 

at this stage also contains intrusions, which indicate the fascicular cambium, xylem and phloem 

tissues (Figure 13C). Interestingly, the inner side of the expression domain at the intrusions marked 

a major portion of the developing xylem tissue (Figure 13C). These emerging vascular bundles are 

in direct connection with the rest of the subcortical tissue, specifying that the WOX4 promoter was 

continuously active throughout the primary stem. According to the previously published reports 

with the short promoter construct (Suer et al., 2011), the WOX4 promoter was shown to be 

intermittently active only in the fascicular cambium at this developmental stage, but not in a 

complete subcortical circular domain as shown with the full-length WOX4 promoter-reporter. 
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Figure 13. The flWOX4 promoter activity continued as the circular domain of sub-cortical cells 

A. The graphical representation of the stem section that was chosen for the confocal imaging. B & D: Transverse 

sections showing the circular expression domain of WOX4 in the subcortical cells of the developing stem internode. 

C & E: The magnified views indicate the WOX4 expression in different cell types.  

The WOX4 promoter activity further continued in a similar circular domain of subcortical cells 

even in the subtending nodes (Figure 13D). The transverse sections of these nodes showed that the 

stem has different anatomical features compared to the sections obtained from the top portion of 

the inflorescence. The characteristic features include large pith at the center with enlarged cells, a 

multi-layered cortex, the fully developed vascular bundles containing fascicular cambium with 

small dividing cells and the xylem & phloem tissues with different cell-types like xylem 

parenchyma, fibers, tracheary elements, phloem parenchyma, and companion cells. The stem also 

contains multiple layers of the interfascicular region positioned between two vascular bundles 

(Figure 13D & E). The previously published WOX4 expression pattern (Suer et al., 2011) at this 
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developmental stage, which was obtained using the short WOX4 promoter, marked only the 

fascicular cambium and few cells in the interfascicular cambium. However, the transverse section 

obtained using the flWOX4 promoter-reporter prominently illustrated that the WOX4 promoter is 

consistently active in the circular domain including the cells of fascicular cambium that are in 

connection with the cell layers of interfascicular region, completes the circle.  

4.5.5. The circular WOX4 expression domain persists in the stem during secondary growth  

The full-length WOX4 promoter-reporter showed that the WOX4 promoter is also active in the 

circular domain of sub-cortical cells of the matured stem, both in the internode and the base of the 

stem (Figure 14). The fascicular cambium gradually produces the phloem tissue towards the cortex 

and the xylem tissue towards the pith, which appears to stretch the area of fascicular cambium to 

form the intrusions in the circular expression domain (Figure 14A & B). The intrusions are more 

prominent in the sections of the internode than at the base of the stem.  

 

Figure 14: The flWOX4 promoter activity during the radial growth of the stem  

A. Graphical representation of the position of stem sections used for confocal imaging. B, C & D: Transverse section 

obtained from bottom-internode of the stem, B. 10X magnification of the stem showing the WOX4 promoter activity, 
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C. 40X magnification of the same image clearly showing the signal in the fascicular, inter-fascicular regions, arrow 

pointing the reporter gene expression in the xylem tissue. D: The magnified view of the selected region in Figure 10C, 

indicating the signal in xylem parenchyma of the interfascicular region, arrows pointing the reporter gene expression 

towards in the cells of interfascicular region. E, F & G. Transverse section obtained at the base of the stem, E. 10X 

magnification showing the circular expression of WOX promoter-reporter, F. 40X magnification of the stem section 

shows a continuous activity in the fascicular and inter-fascicular cambium. G. The magnified view of the selected 

region from Figure 10F. 

The signal intensity was higher in the fascicular cambium than the interfascicular region of the 

internode, which gives the impression that the circular expression domain looks discontinuous, 

however by visualizing the same sample at higher magnification clearly illustrate the WOX4 

expression in the interfascicular region (for example Figure 14B vs. 14C). The difference in these 

signal intensities might occur due to the different cellular structures; for example, the fascicular 

cambium is made up of two types of cells - smaller & angular shaped ray-initials and slender & 

cylindrical-shaped fusiform-cells. A close clustering of these cells possibly intensifies the signal 

in the fascicular cambium. Whereas, the interfascicular region is made up of tubular xylem fibers 

and larger xylem parenchyma cells (Figure 14D), in which some of the cells are lignified to 

transport water and other cells have big vacuoles, pushing the cytosol towards the cell walls, as a 

result, the weaker fluorescence signals were observed (Figure 14D).   

At the base of the stem, fascicular and interfascicular regions are combined together to form a 

near-perfect-circular WOX4 expression domain, that has no deeper intrusions (Figure 14E). Even 

at this stage, the WOX4 promoter activity is not only restricted to the cambium, but it can also be 

seen in the xylem parenchyma (Figure 14E). 

4.6. Expression analysis of the full-length WOX4 promoter-reporter in the root 

According to the expression patterns obtained by the short WOX4 promoter-reporter, WOX4 

activity was confined only to the vascular cambium in the mature root (Y Hirakawa et al., 2010) 

and there are no reports for the WOX4 expression in the root apical meristem. However, when the 

pattern of the full-length WOX4 promoter analysed using the construct flWOX4::H3-GFP we 

discovered the expression in the root meristem. As depicted in the Figure 15A, the flWOX4::H3-

GFP construct the WOX4 promoter is active in the quiescent center (QC). Subsequently, the 

expression appears to extend from the QC downwards into the columella-initials and upwards into 



49 

 

the vascular/pericycle-initials. However, the GFP signal is absent in other neighbouring cells of 

the QC, including the cortex-initials, endodermis-initials, and the root cap-initials.  

                

Figure 15: Activity of full-length WOX4 promoter in the root tip.  

CLSM image of the flWOX4::H3-GFP reporter indicates the full-length WOX4 promoter activity in terms of GFP 

fluorescence in the root apical meristem marking the quiescent center (white arrowhead) and its neighbouring cells. 

The propidium iodide cell walls were false coloured (purple). 

The WOX4 promoter expression appears to extend further downwards from the columella-initials 

into the immediate descendant columella cells, however, the expression is absent in the cells of 

both root cap and epidermis. In the upper portion, the WOX4 promoter activity appears to continue 

from the vascular/pericycle mother cells into their descendent cell files. Although this expression 

pattern appears to mark most of the cells in the central stele, it is not clear whether these cells 

belong to the pericycle or the other vascular tissues, at least with this resolution (Figure 15). 

Further, the WOX4 promoter activity in the central stele extends from the meristematic zone to the 

cell elongation zone (upper portions of the root in Figure 15). A transverse section through the 

upper portion of the root would have provided the details of cell types in which the WOX4 promoter 

is active, but due to the tender nature of this root zone, we were unable to get the transverse sections 

even after several attempts with hand sectioning and with the vibratome or cryotome. 
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The elongation zone contains thin and actively elongating cells, whereas the maturation zone 

contains large cells that are mostly occupied with the vacuole pushing the nucleus towards the cell 

wall. Such variation in the anatomy of cells makes it difficult to illustrate them by using the nuclear 

localized WOX4 promoter construct. Hence, we used the endoplasmic reticulum targeted promoter 

construct flWOX4::erCERULEAN for further study. Interestingly, the patterns obtained by 

flWOX4::erCERULEAN also showed that the WOX4 promoter is active in the central stele of the 

root (Figure 16). The expression patterns obtained by the flWOX4::H3-GFP (Figure 15) and the 

flWOX4::erCERULEAN (Figure 16) in two different zones but restricted to the central part of the 

root reveals that the WOX4 promoter is continuously active from the elongation zone into the 

maturation zone. 

                                       

Figure 16: WOX4 promoter activity in the root maturation zone.  

CLSM image of the root depicts the WOX4 promoter activity in the maturation zone of the root. Blue colour indicates 

the fluorescence of flWOX4::erCERULEAN construct and Propidium iodide stains the cell walls in red colour. 

It is interesting to know the WOX4 expression in different cell types of the mature root, but we 

encountered the same difficulties that are associated with the transverse sectioning of the root. As 

an alternative approach, we used the optical sectioning of a 3D image constructed from the Z-

stack-images which were obtained from different focal planes of the matured root part that also 

contains the lateral root (Figure17A). The optical section shows the WOX4 promoter activity in 
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the central parts of both main and lateral roots (Figure 17B). However, the optical sections also 

did not show the details of the vascular cell types in which the WOX4 promoter is active, but at 

least it shows the strong cerulean signal marking all the cells in central stele of the lateral root 

(marked by the yellow arrow 17B), whereas the only few cells in the central stele of main root 

(marked by red arrow in Figure 17B). Such discrepancy in the signal indicates that the WOX4 

promoter is active not in the centrally located xylem tissue of the main root. 

              

Figure 17: The WOX4 promoter activity in the mature root along with the lateral root  

A. CLSM image depicts the WOX4 promoter activity in the central parts of both main and lateral roots in 

flWOX4::erCERULEAN lines. Pale-blue colour indicates the CERULEAN fluorescence signal and propidium iodide 

stained cell walls were false-coloured (purple). B: The optical section of the root at the junction of the lateral root 

emerging from the main root shows the expression of the WOX4 promoter (yellow arrow). A weak CERULEAN signal 

in the center of the main root is indicated by red arrow. 

4.7. Full-length WOX4 promoter is active during the leaf development 

Although, the short WOX4 promoter constructs pWOX4::GUS (Y Hirakawa et al., 2010) and 

pWOX4::YFP (Suer et al., 2011) showed that the WOX4 promoter activity was confined to the 

vascular cambium in the mature leaf, the activity was obscure in the young primordia. However, 

with the expression analysis of the flWOX4::erCERULEAN reporter, we could observe the early 
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activity of the WOX4 promoter during the leaf development. To depict the young leaf primordia, 

the vegetative shoot apex was dissected by using the vibratome and the serial transverse sections 

were used for the confocal imaging. As shown in Figure 18A, the WOX4 promoter is active in the 

group of cells (indicated with the star marks). The location of these cell clusters indicates the 

position of the leaf primordia and the signal is predominantly localized in the developing midrib, 

which is possibly marking procambial cells (Figure 18A). The subsequent developmental stages 

also show the WOX4 expression located at the center of the leaf primordia, but the expression 

domain appears to expand in terms of the area which is also evident in the intensity of the enhanced 

signal (Figure 18A). Such an increase indicates that, as the primordium develops the WOX4 

expression expands from procambial cells into its descendants.  

 

Figure 18: The WOX4 promoter activity during the leaf development 

A. CLSM image of the vegetative shoot apex depicting the WOX4 promoter activity (blue colour) in the procambium 

of the young leaf primordia and the cambium of developing leaf. B. CLSM image of the transverse section obtained 

beneath vegetative shoot apical meristem illustrating the WOX4 promoter activity in the cambial cells of developing 

leaves (at the center). The circular expression domain indicates the promoter activity in the petioles of the mature leaf. 

Arrow marks indicate the expansion of the WOX4 promoter activity into the sub-epidermal layer of the mature leaf.  

The transverse section obtained from the region beneath the vegetative shoot apical meristem 

further showed the WOX4 promoter activity in the vegetative stem and developing leaves including 

the leaf blades and petioles (Figure 18B). As depicted in the image, in the vegetative stem the 

WOX4 promoter showed enhanced activity in the fascicular cambium than the interfascicular 
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region, but they are well connected to each other forming an irregular circular expression domain 

which is similar to the young inflorescence stem. The matured leaves that are positioned away 

from the SAM also show the circular expression domain (Figure 14B). According to their position 

and angle of the transverse section, these circular expression domains could be identified as the 

vasculature of the leaf petioles. This expression pattern is similar to that of the flower pedicles 

seen on the inflorescence shoot.  

Additionally, the matured leaf also exhibits the WOX4 promoter activity and is appeared to be 

active in the sub-epidermal tissue of the leaf, however, this activity is confined only to the adaxial 

side (arrow marks in Figures 18A & B). This specific expression pattern was also observed in the 

transgenic leaves of the flWOX4::H3-GFP lines (Figure 19A & B). These expression patterns 

indicate that the WOX4 promoter activity is not only restricted to the cambial cells of the leaves, 

but it also extends into the other tissues and marks the palisade parenchyma of the leaf adaxial 

portion. 

 

Figure 19: The WOX4 promoter activity in the adaxial side of the matured leaf  

A: CLSM image showing the full-length WOX4 promoter activity in the sub-epidermal layer of the adaxial side of the 

leaf. B: CLSM image of the same leaf visualized with a 40X magnification lens. Green fluorescence represents WOX4 

promoter activity in the nuclei of the sub-epidermal layer; Red colour indicates the autofluorescence of chloroplasts.  

The full-length WOX4 promoter was active in all the parts of the vascular network of the matured 

leaf (Figure 20A). It includes the expression in a first-order vein or the mid-vein that connects the 
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leaf with the main stem, the second-order veins that emerge from the mid-vein and the third-order 

veins completing the vascular network (Figure 20A). It implies the expression of WOX4 promoter 

throughout the development of vascular system of the leaf. The cerulean signal intensity in the 

mid-vein is higher than in the secondary veins, whereas the secondary veins show higher signal 

intensity than the tertiary veins. These signal-intensity differences seem to occur due to the size 

and anatomy of the different orders of veins. The tertiary veins are made up of only procambial 

cell files that occupy the smaller area, whereas the secondary veins contain the well-defined 

cambium and its descendant’s which occupy a larger area than the tertiary veins, hence the 

secondary veins possess higher signal than the tertiary veins. The primary veins show highest 

cerulean signal intensity among all the veins, because the WOX4 expression in the primary vein is 

not only restricted to the cambial cells (CC) but it also extends into the adjacent the xylem 

parenchyma. This expression pattern is clearly visible in the transverse section of the matured leaf 

through the mid-vein (Figure 20B). 

 

Figure 20: WOX4 promoter activity in the matured leaf  

A: CLSM image of the matured leaf depicting the WOX4 promoter activity (blue colour) in the vasculature of the mid-

vein, the second and third-order veins. B: CLSM image of the transverse section obtained through the mid-vein 

illustrating the WOX4 promoter activity in the cambial cells (CC) and the xylem parenchyma (XP).  
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5. DISCUSSION 

5.1. The conserved distal elements are essential for WOX4 promoter activity 

Phylogenetic shadowing of the AtWOX4 upstream (9.2 Kb) and downstream (1.7 Kb) regions with 

the gene flanking areas of seven orthologous regions from Brassicaceae species revealed three 

conserved blocks in the upstream and one conserved block in the downstream region of the WOX4 

coding sequence (Figure 5). The importance of upstream and downstream conserved sequences in 

regulating gene expression patterns has already been reported in several studies. For instance, 

phylogenetic shadowing of the DRNL promoter revealed four conserved upstream regions which 

influence the DRNL expression pattern in lateral organ founder cells at the periphery of the 

inflorescence meristem (Comelli et al., 2016). Similarly, an evolutionarily conserved 57 bp 

segment that was located -550 bp upstream of the WUSCHEL coding region was found to be 

needed for its spatio-temporal expression pattern in the shoot apical meristem (Bäurle and Laux, 

2005). Furthermore, a small conserved sequence located in the 3′ flanking region of the CLV3 was 

found to be essential for the control of both, the activation and the repression of CLV3 transcription 

by regulating its binding affinity to the WUSCHEL homeodomain (Perales et al., 2016). In another 

example, phylogenetic shadowing of GIGANTIA revealed three conserved regions in their 

promoter regions, in which a cis-regulatory module CRM2 controls transcriptional regulation of 

GIGANTIA. Further analysis showed that one of the sub-fragments (CRM2-A) controls light 

inducibility whereas another fragment namely CRM2-B exhibits a diurnal response that was 

sufficient enough to recapitulate the complete function of its full-length promoter (Berns et al., 

2014).  

Upstream and/or downstream conserved elements regulate gene expression patterns by serving as 

binding sites for transcription factors. The open chromatin configurations indicate that a specific 

genomic region is bound by transcription factors. Several techniques were developed o identify 

open chromatin configurations, which are based on the accessibility of the genome for 

endonucleases such as DNase I and MNase (Tsompana and Buck, 2014). ATAC-seq (assay for 

transposase-accessible chromatin with high-throughput sequencing) is another powerful technique 

that uses Tn5 transposase activity for cleaving of open genomic DNA sequences (Tsompana and 

Buck, 2014). For this purpose, we could make use of recently published ATAC-seq data (Frerichs 
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et al., 2019) to locate positions of open chromatin peaks within the AtWOX4 promoter. We then 

compared ATAC-seq data to positions of conserved regions which were identified previously by 

phylogenetic shadowing. We identified a significant overlap between positions of open chromatin 

peaks and the conserved regions of the WOX4 promoter (Figure 6). This suggests that the identified 

conserved regions of the WOX4 promoter contain open chromatin configurations, which might be 

essential for the regulation of WOX4 transcription, while probably functioning as binding sites for 

transcription factors.  

Until now, the expression pattern of the AtWOX4 promoter was carried out by using the 2.9 Kb 

upstream region and the 0.6 Kb downstream region (Y Hirakawa et al., 2010; Suer et al., 2011). 

This promoter construct included the proximal conserved region (Block 1), but excluded the distal 

conserved elements (Block 2 and 3) that were identified in our phylogenetic analysis (Figure 5B). 

However, the ATAC-seq analysis showed that Block 2 and 3 are also in open chromatin state 

(Figure 2). Taken together, this suggests that these conserved distal regions are involved in 

directing the WOX4 expression pattern. This was analysed by confocal microscopy in transgenic 

Arabidopsis plants carrying WOX4 promoter-reporter constructs that include the 9.2 Kb upstream 

and the 1.7 Kb downstream sequences. As a general note, we used two different reporters, GFP 

and CERULEAN, to overcome the issue of signal overlap with autofluorescence from secondary 

cell wall depositions such as lignin. Moreover, nuclear-targeted reporters were used to visualize 

the signal in meristematic cells while endoplasmic reticulum-targeted reporters were used to 

visualize the signal in differentiated tissues. However, our confocal analyses recapitulated the 

cambium specific activity of the WOX4 promoter, as reported also in the previous studies (Y 

Hirakawa et al., 2010; Suer et al., 2011). Interestingly, the inclusion of all conserved regions 

marked novel spatio-temporal expression domains of the WOX4 in the SAM, RAM, stem and leaf 

(Figure 10 – 20). Identified new expression patterns will be discussed in detail in the following up 

sections. 

The conserved block1 of the WOX4 promoter was unique in its structure, specifically the region 

of 550 bp located immediately upstream of the WOX4 coding region was found to contain multiple 

conserved ATGs and a small 63 bp ORF, from -237 bp to -174 bp (Figure 7A). Upstream ORFs 

(uORFs) are known to reduce the translation efficiency of genes by ribosomal stalling (Jorgensen 

and Dorantes-Acosta, 2012). For example, translation efficiency of Arabidopsis SUPRESSOR OF 
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ACAULIS 51 (SAC51) that plays a role in stem internode elongation is regulated by its small uORF. 

A mutation in the uORF of SAC51 in sac51 mutant lines led to the premature stop codon, which 

resulted in the increased translational efficiency of SAC51. The increased SAC51 expression 

rescues the acaulis 5 (acl5) dwarf phenotype in sac51 acl 5 double mutants (Imai et al., 2006). 

Similarly, WOX4 also contains an uORF, which is part of the longest WOX4 transcripts that start 

at -302 bp (Figure 8B & C). In order to validate, whether this putative uORF functions as a 

potential uORF, we replaced the complete -237 bp upstream fragment that includes the uORF with 

the TMV-Ω transitional leader sequence (Töpfer et al., 1993) and fused it to a reporter gene (Figure 

9G). In case uORF regulates WOX4 expression, transgenic plants containing the above named 

construct were expected to show a robust activity of the WOX4 promoter-reporter. But 

surprisingly, the analysis of transgenic plants showed no detectable reporter signal. This indicates 

that the proximal -237 bp region contains sequences that are essential for WOX4 transcription. 

Therefore, we hypothesized that future experiments with an exclusive deletion of uORF would 

unravel the role of WOX4 uORF in its regulation. 

We replaced the WOX4 downstream region (1.7 Kb) with downstream region of the CaMV35S 

gene (Figure 9H) to investigate whether the WOX4 downstream region contains any other 

important regulatory elements. However, confocal imaging of transgenic plants expressing the 

pWOX4::erCERULEAN-PAS construct revealed no significant change in the expression pattern of 

WOX4 compared to that of the images obtained by the full-length promoter, suggesting that the 

conserved downstream regions might not regulate the WOX4 transcription. 

Plant developmental processes can be mediated by an inter-cellular movement of transcription 

factors such as SHORTROOT (SHR) (Nakajima et al., 2001), SHOOTMERISTEMLESS (STM) 

(Kim et al., 2003) and WUSCHEL (WUS) (Yadav et al., 2011). The homeodomain transcription 

factor WUS that regulates the maintenance of the stem cell population in SAM, is produced in the 

organizing center and moves to the central zone (CZ) to activate the CLV3 expression (Yadav et 

al., 2011). Thus, the dynamic expression pattern of WUS transcription and its movement is 

necessary for the maintenance of the stem cell population at the SAM. It is also known that WOX4 

expression promotes the development of the procambium (Ji et al., 2010) and maintains stem cell 

identity of fascicular and interfascicular cambia (Suer et al., 2011). However, the cell-to-cell 

movement of WOX4 is not reported yet. Therefore, we examined the possibility of intercellular 
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movement of the WOX4 protein by transforming A. thaliana with a WOX4 translational fusion 

construct (Figure 9I). However, confocal images obtained of the transcriptional as well as the 

translational fusion constructs showed no difference between the two expression patterns, 

suggesting that WOX4 might not be moving out of the cells.  

5.2. WOX4 promoter activity starts in the shoot apex and continues as a circular domain  

Until now, WOX4 promoter activity has not been reported to be active in SAM of Arabidopsis, 

while its activity remained confined to cambial cells. Most of these studies were done by using a 

short WOX4 promoter (2.9 Kb) construct (Y Hirakawa et al., 2010; Suer et al., 2011). However, 

in rice, the AtWOX4 orthologous gene OsWOX4 was found to be expressed in cells of the SAM 

(Ohmori et al., 2013). It was further shown that the functional relevance of OsWOX4 was 

associated with the differentiation of both vascular and parenchyma cells, during rice leaf 

development (Yasui et al., 2018). A recent study also investigated the expression pattern of WOX4 

in the shoot apex comprising early leaf primordia of Populus (dicot tree species) using the 

orthologous PttWOX4 promoter (Kucukoglu et al., 2017). One important finding of current study 

is the expression pattern of the WOX4 promoter that appeared to start at the shoot apex. This 

striking feature was obtained by using the full-length WOX4 promoter that includes all the 

evolutionarily conserved elements (Figure 10). The discrepancy of the expression pattern of our 

full-length WOX4 and the previously described shortWOX4 promoter in Arabidopsis indicates the 

importance of the distal promoter elements for a proper regulation of WOX4 expression in the 

shoot apex.  

To obtain a complete picture of WOX4 expression pattern within the shoot apex, Z-stacks of images 

were generated from the tip of the IM to its subtending regions and combined to create 3D images 

of the inflorescences.  The analysis of the inflorescence shoot apices of transgenic plants carrying 

the nuclear-targeted promoter-reporter construct flWOX4::H3-GFP showed fluorescence in a 

group of cells that are in close proximity to the central zone of inflorescence meristem. The 

arrangement of these cell clusters suggests that the WOX4 expression domain marks founder cells 

of the emerging flower primordia (Figure 10). In general, stem cell identity is maintained in the 

central zone of the SAM while lateral organs are formed from the peripheral zone. Groups of 

lateral organ founder cells shortly loose stem cell identity and then gain competence to differentiate 
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into primordia. Different zones within the IM can generally be visualized by promoter activities 

of MP, PIN1, DRNL, DOF5 (Wenzel et al., 2007; Chandler et al., 2011; Kang et al., 2003) or by 

using a synthetic auxin-responsive DR5 promoter (Chen et al., 2013). The phyllotactic pattern of 

lateral organs and the initiation of the vascular system within these lateral organs are closely 

associated (Kang et al., 2003; Dengler, 2006). Nevertheless, it is not very clear whether vascular 

development defines the phyllotaxy pattern or if the development of lateral primordia provides a 

positional clue for vascular initiation. The first concept is supported by the fact that developing 

organs need to be connected with the main stem. The second one is supported by the action of 

auxin accumulation (Dengler, 2006). However, full-length WOX4 promoter activity was found in 

a group of cells that are located in close proximity to the central zone of the IM, suggesting that 

WOX4 might be expressed in lateral organ founder cells and possibly prepatterns the vascular 

structures of developing flower primordia (Figure 10A & B). The longitudinal view of the 

inflorescence at the apex region shows fluorescence of WOX4-expressing cell clusters, which are 

found preferentially in the subtending cells of the L1 layer (Figure 10B). This sub-epidermal 

expression domain denotes the ground meristem, which is later responsible for the development 

of internal structures of the lateral organs including the vasculature. Our observation supports that 

vascular prepatterning is closely associated with phyllotaxy. 

Although the 3D image analyses of the inflorescence apices provided interesting aspects about the 

WOX4 promoter activity, it was impossible to track fluorescence signals much deeper into the 

stem. Therefore, a series of transverse sections of the inflorescence stem were obtained by using 

the vibratome and used for the confocal microscopy. CERULEAN fluorescence signal could be 

tracked in transverse sections obtained from approximately 80-100 µm below the organizing center 

of the IM of flWOX4::erCERULEAN transgenic plants. Analysis of the confocal images revealed 

that CERULEAN signal marked the WOX4 activity in a circular expression domain of one or two 

sub-cortical cell layers (Figure 11B & C). Identified cells showed a spherical shape with thin cell 

walls, which is a characteristic feature of meristematic cells that are described to have different 

cell faiths during development including vascular tissue (Scanlon and Freeling, 1997). The circular 

expression domain suggests that the WOX4 promoter activity initially marks the sub-cortical cell 

layers, that might be associated with the vascular system in the stem. Our finding suggests that the 

WOX4 expression pattern in Arabidopsis resembles the OsWOX4 promoter activity in rice which 
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marks both the meristematic cells of SAM and the provascular cells in the primordia (Ohmori et 

al., 2013).  

The analysis of transverse sections obtained from the subtending node of the inflorescence stem, 

which has already acquired the circular expression domain showed that the cells in this domain 

are in direct connection with the cells of the flower pedicles (Figure 11B & D). These connections 

create the protrusions in the circular expression domain; however, the anatomy showed no sign of 

differentiated tissues like xylem or phloem, suggesting that the meristematic cells marked by the 

full-length WOX4 promoter connects the emerging lateral organs such as flower pedicles with the 

main stem. It also resembled the expression pattern of another vascular marker ATHB8 that was 

extensively studied with respect to the vascular connection and the formation of new vascular 

bundles of lateral organs such as leaves from the existing vasculature of the vegetative stem 

(Dengler, 2006). 

5.3. The circular WOX4 expression domain prepatterns the vasculature  

To examine the WOX4 expression pattern throughout the development of the stem, we analysed 

the transversal sections obtained from the different positions of the inflorescence stem, including 

the nodes and internodes at different positions. By combining this data with the details of 

expression patterns obtained at the shoot apex, we found that the activity of the full-length WOX4 

promoter continuously exists in the cells of the subcortical layer while maintaining a nearly perfect 

circular shape (Figure 12-14). This continuous existence of the circular WOX4expression domain 

throughout the stem represents a novel aspect identified in this study with the help of the full-

length WOX4 promoter. Previous reports described the WOX4 activity in the fascicular cambium 

and only in some cells of interfascicular cambia of young stem while a circular expression domain 

was reported only in the mature stem (Y Hirakawa et al., 2010; Suer et al., 2011). Our findings 

suggest that the existence of circular expression domain might prepatterns the vascular system 

throughout the stem development. 

Due to the compressed nature of the vegetative shoot, the Arabidopsis inflorescence stem has 

rather been chosen to study developmental processes that are associated with vascular patterning 

(Turner and Sieburth, 2003). Due to its anatomical similarities with the wood formation in trees 



61 

 

the inflorescence stem was also used to study processes involved in the radial outgrowth or 

secondary growth of the stem (Barra-Jiménez and Ragni, 2017).  

Conceptually, the growth of the Arabidopsis stem has been divided into three developmental 

phases - the primary, the intermediate and the secondary growths using the expression patterns 

obtained by the short WOX4 promoter (Suer et al., 2011). While the molecular studies focussing 

on auxin accumulation showed that vascular pattering starts early in the periphery of IM (Biedroń 

and Banasiak, 2018), anatomical features of the vascular development are also evident in the stem 

in close proximity to the SAM (Dengler, 2006). However, the changes that occur during the 

primary growth phase were surprisingly attributed to the WOX4 expression pattern within the stem 

region far below the IM (Suer et al., 2011), but not from the IM. A reason could be a weak or 

lacking expression of the short WOX4 promoter in the shoot apex. These descriptions mainly 

include the expression in the half-moon shaped fascicular cambium of the primary stem that 

separates xylem and phloem; though it was not exactly clear where and when these cells 

differentiate to form cambium, xylem or phloem tissues. Nevertheless, in our study, the transversal 

sections obtained from similar locations of the stem showed full-length WOX4 promoter activity 

in the subcortical layer of the circular expression domain (Figure 12C). Interestingly, the circular 

WOX4 expression domain showed the intrusions towards the center of the stem. These intrusions 

were formed because of the differentiation of the phloem tissue that pushes the WOX4 expression 

domain towards the center. Based on the differentiation of xylem and phloem tissues at this 

position of inflorescence stem, it could be assumed that WOX4 expression domain in the intrusions 

indicates the the position of fascicular cambium (Figure 12C). By comparing changes in the shape 

of the circular expression domain at shoot apex (Figure 11) and the wavy circle in the subtending 

stem sections (Figure 12), it is possible that a few cells within the circular expression domain are 

specified to be the fascicular cambia. Taken together, our results showed that the meristematic 

cells in the circular WOX4 expression domain prepatterns the development of the fascicular 

cambium within the vascular bundles of the inflorescence stem during primary growth. 

In addition to marking the specification of the fascicular cambium, the same transverse sections 

showed the activity of full-length WOX4 promoter in a V-shaped layer adjacent to the fascicular 

cambium and positioned towards the pith (Figure 12C). Based on the morphological features and 

the position, cells in the V-shaped layer belong to xylem parenchyma. The association of WOX4 
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expression with xylem parenchyma in the matured stem was evident from previous reports using 

the short WOX4 promoter (Bennett et al., 2016; Gursanscky et al., 2016). In our present study, 

with the full-length WOX4 promoter, xylem parenchyma associated expression could be visualized 

in the primary stem itself. Interestingly, the V-shaped structure formed by WOX4 expressing xylem 

parenchyma cells indicates that these cells are closely associated with the circular expression 

domain. Nevertheless, this expression pattern is not sufficient to tell whether the xylem 

parenchymal identity is provided by the fascicular cambium or these cells are direct descendants 

of the circular expression domain of sub-cortical layers. The first aspect could be more plausible, 

but the latter aspect also cannot be completely ruled out, as the xylem parenchyma cells keep the 

competency to express WOX4 promoter throughout the stem.  

The intermediate growth phase of the stem has been described in the previous studies by using the 

transverse sections of the internode regions positioned between the shoot apex and the base of the 

stem. The expression of the short WOX4 promoter in these sections has been shown to be 

concentrated in the fascicular cambium but also in a few cells that share the boundary between 

fascicular and the interfascicular region (Suer et al., 2011). However, WOX4 expression patterns 

of the full-length promoter showed a continuous existence of WOX4 expressing cells in the circular 

domain (Figure 13 & 14). Such expression pattern could support the radial outgrowth, but in a 

different perspective; instead of the reactivating WOX4 expression in a few cells of the 

interfascicular region, the whole interfascicular region might provide the basis for radial growth 

in the intermediate growth phase of the stem.  

To describe the secondary growth phase, the base of the inflorescence stem has been used 

extensively where the short WOX4 promoter activity was shown to be restricted to the cambial 

ring that differentiates into secondary xylem towards the pith and the secondary phloem towards 

the periphery (Suer et al., 2011; Gursanscky et al., 2016). The full-length WOX4 promoter also 

marked a similar expression domain specifying the vascular cambium ring (Figure 14B & E).  

Overall, the detailed analysis of the full-length WOX4 promoter activity in different parts of the 

stem gives a complete picture of the WOX4 expression pattern over the entire period of stem 

development. This analysis provides a different perspective of radial outgrowth. WOX4 expression 

starts at the IM periphery marking founder cells of the lateral organs and then becomes confined 
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to the circular domain of the subcortical cells. Then, this circular expression domain is 

continuously maintained throughout the inflorescence stem with some intrusions providing the 

basis for the prepatterning of the fascicular cambium without losing its competency in the 

interfascicular region and finally forms a ring of vascular cambium. The existence of such a 

continuous circular expression domain aligns with the radial growth of the stem. Moreover, the 

very young stem that is localised in close proximity to the IM also possesses some radius, which 

might be provided by the circular expression domain It is also possible that the radial expansion 

of the stem from the shoot tip to the base is a more gradual process, rather than the intermittently 

activated growth.  

5.4. WOX4 activity starts in the RAM and continues into the vascular system 

The importance of the transcription factors WUS, WOX5 and WOX4 in the maintenance of their 

specific stem cell zones in the Arabidopsis is well known. The WUS plays an important role in the 

stem cell maintenance of the SAM (Schoof et al., 2000). Similarly, It has been shown in earlier 

studies that the expression of WOX5 was exclusively confined to the QC where it functions in the 

stem cell maintenance of the root (Haecker et al., 2004; Sarkar et al., 2007). The role of WOX4 in 

maintaining cambial cell identity has also been reported (Y Hirakawa et al., 2010), but no studies 

have shown WOX4 expression in RAM so far. However, we could show that WOX4 is active in 

the QC of RAM with full-length WOX4 promoter (Figure 15). In addition to the QC, full-length 

WOX4 promoter activity also marked cells adjacent to the QC, including the columella mother 

cells and the descendant columella cells towards the root cap. Further, the WOX4 promoter activity 

marks only mother cells that give rise to the stele, but not the mother cells of endodermis, cortex, 

and epidermis (Figure 15). Although WOX4 promoter activity was found in the stele, marking the 

vascular initials, it is not clear whether it marks the pericycle layer at this resolution. Subsequently, 

the WOX4 promoter activity continued throughout the root vasculature (Figure 16 & 17). 

Although, a decent signal intensity was found in the vasculature, details of WOX4 expressing 

vascular cell types could not be distinguished. Analysis of root transverse sections might provide 

more insights into cell types. However, due to the tender nature of the roots, we could not succeed 

in obtaining good cross-sections. To overcome this, optical dissection in the form of 3D images 

were obtained at the junction between the main and the lateral roots. We observed that the WOX4 

promoter was active in all cell types of the stele in lateral roots while the fluorescence signal in the 
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main root was not detected at the very center of the stele (Figure 17). This could be explained by 

the fact that in mature roots, the centrally located xylem vessels are dead in nature. Taking together, 

we could show the full-length WOX4 promoter-reporter activity that starts in the QC and its 

adjacent mother cells, marking the vascular initials and further continue into the vascular system 

of root. However, we could not study the complete details of WOX4 expression in different 

vascular cell types, due to the difficulties in obtaining transverse sections of root. Possibly, this 

problem could be resolved further by using advanced techniques such as growing the roots on 

slides with micro chambers. 

5.5. The WOX4 promoter marks novel expression domains in the leaf 

Leaf development is a complex process that involves many molecular regulators. Leaf vascular 

initiation and pattern formation were extensively studied using the ATHB8 promoter (Kang et al., 

2003). The leaf primordium is specified at the periphery of the SAM, in which the specification of 

epidermis is controlled by the L1 layer and L2, L3 layers which contribute to the development of 

mesophyll and vascular tissues (Kalve et al., 2014). The initiation of first-order veins which are 

specified within the ground meristem and prepatterns of the cambium can be visualized by the 

ATHB8 promoter (Scarpella, Marcos, Jirí Friml, et al., 2006). 

The leaf specific expression pattern of WOX4 has already been reported using the short WOX4 

promoter (Suer et al., 2011); but its activity was not observed in the leaf primordia. However, 

similar to the early expression pattern observed in flower primordia of the inflorescence shoot 

using the full-length WOX4 promoter, we also observed that the WOX4 promoter is active in leaf 

primordia, close to vegetative SAM (Figure 18), which is comparable to ATHB8 expression pattern 

(Dengler, 2006; Scarpella, Marcos, Jiří Friml, et al., 2006). A transverse section below the SAM 

showed the WOX4 expression pattern in the first and second-order veins depending on the 

developmental stage of the leaf. The analysis on whole leaf samples further showed a WOX4 

activity in the tertiary and quaternary veins (Figure 20A). However, the signal intensity of the 

reporter gradually reduced from the first-order veins to the fourth-order veins. This expression 

strength was apparently depending on the size of the veins, which can also be seen by observing 

the adaxial side of leaf. The midvein that develops earlier than the other veins apparently grow 

bigger in size and contains more cells. The transverse section of leaf at the position of the midvein 
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showed these anatomical differences in terms of a higher signal intensity (Figure 20B). The 

anatomy of the midvein showed the WOX4 promoter activity in the cambial and the xylem 

parenchyma cells that are positioned on the adaxial side of the leaf (Figure 20B). In previous 

studies WOX4 activity was confined to the undifferentiated cambial cells of the leaf, but not in the 

differentiated tissues such as the xylem parenchyma (Y Hirakawa et al., 2010; Suer et al., 2011). 

However, SlWOX4, a WOX4 ortholog in tomato showed an enormous increase in the number of 

both xylem and phloem tissues when expressed under the control of the 35S promoter (Ji et al., 

2010), suggesting a role of WOX4 in vascular tissue differentiation.  

Interestingly, the WOX4 promoter activity was also found in the mesophyll of mature leaves in 

transgenic plants carrying the flWOX4::H3-GFP (Figure 19). Promoter activity was confined to 

the adaxial part of the leaf, representing the nuclear-localized signal in the palisade parenchyma, 

but not to the abaxial side of the leaf with spongy parenchyma. Thus, the parenchyma-specific 

expression pattern of the WOX4 promoter partially overlaps with the WOX3 expressing middle 

domain of the leaf (Matsumoto and Okada, 2001).WOX3 is an important transcription factor that 

controls marginal and plate meristem identity in Arabidopsis leaves (Nakata and Okada, 2012). 

The WOX3 ortholog in maize regulates both, leaf blade growth and the number of vascular bundles 

(Nardmann et al., 2004). However, it would be further interesting to understand how interactions 

between WOX3 and WOX4 expressing domains control the fate of vascular and mesophyll tissue 

identity.  

Taken together, full-length WOX4 promoter-reporter analyses showed that WOX4 promoter 

activity starts early in young leaf primordia and marks the provascular cells within the midrib. 

Then expression extends from first order veins to the next order veins marking the complete 

vascular network of the leaf. Additionally, WOX4 expression domain marked xylem parenchyma 

in vascular bundles and the palisade parenchyma of the mesophyll tissue, suggesting that WOX4 

promoter activity is not only restricted to the cambial cells, it is also active in non-vascular cells.  
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