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3

Abstract

This thesis studies the possibility of the quantum avoidance of gravitational singularities in

anisotropic cosmological models.

For that purpose, we review the fundamentals of spatially homogeneous cosmological

models and quantum cosmology based on the Wheeler-DeWitt equation in minisuperspace.

Furthermore, we introduce a generalized dynamical system which is designed to emulate some

of the main features of the cosmological models. After studying its geometric properties, we

start to investigate how one can approach the canonical quantization of such a system. The

main focus of our analysis is on the factor ordering problem in the Wheeler-DeWitt equation.

The considerations motivate us to formulate criteria for singularity avoidance, that respect

the conformal geometry of the configuration space of the spatially homogeneous models.

We then go on by studying some specific models with and without matter. In particular

we examine classical and quantum properties of the Bianchi type I, II and IX and the

Kantowski-Sachs universe. The criteria we developed previously are applied to see under

which circumstances singularities can be avoided. If the potential terms are negligible when

compared against the velocity terms in the gravitational action, the approach towards the

singularity is called asymptotically velocity term dominated. We find that such singularities

can be resolved, if the dimension of the minisuperspace is sufficiently large. The underlying

mechanism is a spreading of wave packets in minisuperspace.

We also consider the non-diagonal Bianchi IX model with tilted dust. This model is

relevant in the context of the BKL scenario. We pay particular attention to the asymptotic

regime close to the singularity and the temporal behavior of curvature invariants in this

regime.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Möglichkeit der Vermeidung von Singularitäten in

anisotropen kosmologischen Modellen.

Zu diesem Zweck wiederholen wir die Grundlagen der räumlich homogenen kosmologischen

Modelle und der Quantenkosmologie basierend auf der Wheeler-DeWitt-Gleichung im Mini-

superraum. Des Weiteren führen wir ein verallgemeinertes dynamisches System ein, welches

entworfen wurde um die Haupteigenschaften der kosmologischen Modelle nachzuahmen. Nach-

dem wir dessen geometrische Eigenschaften studiert haben, beginnen wir zu untersuchen wie

dieses System kanonisch quantisiert werden kann. Das Hauptaugenmerk unserer Analyse

liegt dabei auf dem Faktorordnungsproblem in der Wheeler–DeWitt–Gleichung. Unsere

Betrachtungen motivieren uns dazu, Kriterien für die Singularitätenvermeidung zu formulieren,

welche die konforme Geometrie des Konfigurationsraumes der räumlich homogenen Modelle

berücksichtigen.

Wir fahren fort indem wir spezifische Modelle, mit und ohne Materie, untersuchen.

Insbesondere behandeln wir die klassischen und quantenmechanischen Eigenschaften der

Bianchi I, II und IX-Modelle sowie die des Kantowski-Sachs Universums. Wir verwenden

dabei die im Vorigen entwickelten Kriterien, um zu prüfen, unter welchen Umständen Singula-

ritäten vermieden werden können. Wir zeigen, dass Singularitäten, bei welchen die Potential

Terme in der Wirkung vernachlässigbar klein sind, vermieden werden können, wenn die

Dimension des Minisuperraums hinreichend groß ist. Der zugrundeliegende Mechanismus

ist ein Zerfließen von Wellenpaketen.

Des Weiteren betrachten wir ein mit Staub gefülltes nicht-diagonales Bianchi IX-Modell,

welches im Kontext des BKL Szenarios relevant ist. Wir untersuchen insbesondere das

Regime, in welchem sich die Dynamik asymptotisch der Singularität annähert, und studieren

unter anderem das zeitliche Verhalten von Krümmungsinvarianten in diesem Regime.



Notation and conventions

Symbols:

:= Definition, e.g. f(x) := x2 or equivalently x2 =: f(x).

≡ f(x) ≡ 0 is a shorthand notation for f(x) = 0 for all x.

≈ f(x) ≈ 1 states that the relation f(x) ≈ 1 holds approximately.

' Since “≈” is already reserved we shall use f(x) ' 0 in order

to indicate that f(x) vanishes weakly in the Dirac sense.

∝ f(x) ∝ x denotes that f(x) is proportional to x.

⊗ Tensor product.

∧ Wedge product.

d Exterior derivative, e.g. df = ∂f
∂xµ

dxµ.

y Interior product, e.g. ∂
∂xν
ydxµ = δµν .

( . )∗ Complex conjugation, e.g. (x+ iy)∗ = x− iy for x, y ∈ R.

∂µ Shorthand notation for ∂
∂xµ

.

Indices:

• Greek letters (µ, ν, λ, . . .) denote spacetime indices, e.g. µ = 0, 1, 2, 3.

• Small latin letters (i, j, k, l, . . .) denote spatial indices, e.g. i = 1, 2, 3.

• Capital latin letters (A,B,C,D, . . .) denote minisuperspace indices.

We employ the Einstein summation convention everywhere if not stated otherwise. Furthermore,

we will use the same type of letters for holonomic and anholonomic indices. The meaning of

indices should become clear from the context. If both, holonomic and anholonomic indices,

are in use at the same time we will employ hats, e.g. i and î, for a distinction.
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Symmetrization and antisymmetrization of Tensor components: Let Tµν be the

components of a
(

0
2

)
–tensor. For symmetrization and antisymmetrization of tensor indices

we use the notations

T(µν) :=
1

2!
(Tµν + Tνµ)

T[µν] :=
1

2!
(Tµν − Tνµ) ,

and the corresponding generalizations for more than 2 indices. In addition, we introduce the

notation

T(µ|λ|ν) :=
1

2!
(Tµλν + Tνλµ)

and its generalizations (see e.g. [1] for details).

Convention for the curvature tensor: Let M be a differentiable manifold, ∇ be a

connection on M and v = vµ∂µ ∈ TM . We will use the following convention for the

components of the curvature tensor:

Rµ
νλσv

ν := [∇λ,∇σ]vµ .

In other words

Rµ
νλσ = ∂λΓ

µ
νσ − ∂σΓµνλ + ΓµλαΓανσ − ΓµσαΓανλ ,

where Γµνλ are the components of the connection ∇. Furthermore, we use the convention

Rµν := Rλ
µλν .
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Chapter 1

Introduction

1.1 Quantum Gravity

Einstein’s theory of general relativity (GR), developed more than 100 years ago, has unambigu-

ously passed all observational and experimental tests so far. It is highly successful in

describing the physics at the scales of our solar system. Apart from that, GR also consistently

describes the expansion of the universe and forms the basis of current cosmology [2]. More

recently the direct detection of gravitational waves by the LIGO observatories confirmed not

only the existence of binary black hole systems but also the linearized, long-range behavior

of vacuum GR.

The theory, however, also predicts its own breakdown due to the occurrence of spacetime

singularities. The most famous examples of such singularities are the Big Bang singularities

encountered in the homogeneous and isotropic Friedmann models and the singularity at the

center of the spherically symmetric Schwarzschild black hole. Such singularities are not an

artifact of the highly symmetrical nature of these solutions. Indeed the singularity theorems

first proven by Hawking and Penrose [3, 4] state that solutions to the Einstein field equations

possess singularities under quite general assumptions.

All known interactions, apart from gravity, are well described within quantum field theory.

Indeed quantum theory seems to be a universal framework to describe nature. Gravity,

nevertheless, has resisted so far any attempts that try to formulate it within a quantum

framework. In addition, quantum gravitational effects also seem to be currently out of

the experimental and observational reach. There is a widespread belief that the issue of

singularities will be resolved within a quantum theory of gravity.

Attempts at formulating a quantum theory of gravity are mostly pursued from two

directions. One might either start from a classical theory of gravity, that is, general relativity

9
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or some alternative/modification of the former and apply quantization rules, leading to

‘quantum general relativity’ or ‘quantum geometrodynamics’. Alternatively one might attempt

to formulate a unified theory of all interactions and then try to recover quantum general

relativity in an appropriate limit. The most prominent example of the latter approach is

string theory. In this thesis we will follow the former direction.

The first attempts to directly quantize general relativity were undertaken by DeWitt in

the pioneering series of papers [5–7]. While [5] deals with the canonical approach, [6, 7] deal

with the covariant one. We will follow the canonical approach. The 3+1 decomposition of

spacetime M = R × Σ allows for the application of the Dirac-Bergmann algorithm. This

yields a Hamiltonian formulation of general relativity

H = NH +N iHi ' 0 . (1.1)

The Hamiltonian constraint H ' 0 and the momentum (or diffeomorphism) constraints

Hi ' 0 together with the Hamiltonian field equations are then equivalent to the Einstein

field equations. The infinite dimensional configuration space of the theory was first studied

by Wheeler in [8], where it was named superspace. Superspace is the quotient space S(Σ) :=

Riem Σ /Diff Σ where Riem Σ is the space of all three metrics hij on Σ and we factored out

all spatial diffeomorphism Diff Σ. Applying now the Dirac quantization method, with the

three metric chosen as the configuration variable, yields the Wheeler-DeWitt equation and a

quantum version of the momentum constraints. In the vacuum case the equations read

ĤΨ[hij] =

[
−16πG~2Gijkl

δ2

δhijδhkl
−
√
h

16πG
(3)R

]
Ψ[hij] = 0 (1.2)

ĤkΨ[hij] = −2Djhik
~
i

δ

δhij
Ψ[hij] = 0 . (1.3)

The wave functional is a map Ψ : Riem Σ → C. The equations (1.2) and (1.3) are second

order and first order partial functional differential equations, respectively. The dynamical

content of quantum geometrodynamics is provided by the Wheeler-DeWitt equation. The

momentum constraints, on the other hand, ensure that the wave functional is invariant under

spatial coordinate transformations [9]. The so-called DeWitt metric Gijkl has Lorentzian

signature and thus the Wheeler-DeWitt equation (1.2) resembles the form of a Klein-Gordon

equation. The Wheeler-DeWitt approach to Quantum Gravity comes with severe problem

which are of both mathematical and conceptual nature.

To begin with, the Wheeler-DeWitt equation as written in equation (1.2) is ill-defined.

More precisely, second order functional derivatives evaluated at the same point in space
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contain infinities in the form “ δ(0) ”. Thus the Wheeler-DeWitt equation requires a regula-

rization. Several proposals for regularization have been introduced in the literature (see e.g.

the references in [10] and the recent paper [11]). The problem of regularization, however,

remains open.

In ordinary quantum theory time is an external parameter while in GR time is dynamical.

Thus Quantum Gravity certainly requires a novel concept of time. In the canonical approach

under consideration this manifests itself in the fact that, unlike the Schrödinger equation, the

Wheeler-DeWitt equation is a timeless equation. The usual concept of time emerges only as

an approximate notion in the semi-classical limit [10]. Deeply connected to the problem of

time is the problem of Hilbert space. Because of the lack of a well defined Lebesgue measure

in the functional case one might at best define an inner product formally. The most popular

options are a Schrödinger or a Klein-Gordon type inner product. Both options, however, come

with additional problems [10]. To this end it is not even clear if a Hilbert space structure is

needed at all for a quantum theory of gravity. After all the concept of Hilbert space might

only be emergent in the semi classical limit. The lack of a Hilbert space structure and the

problem of time lead to obstacles for the interpretation of the wave functional since we are

missing the notions of probability and unitary time evolution.

Due to the ambiguity in factor ordering there is no unique way of writing the Wheeler-

DeWitt equation. The factor ordering problem is intimately connected to the other problems

as well. Given a Hilbert space, for example, one might demand the Hamiltonian operator

to be symmetric with respect to the inner product. This might fix the ordering or at least

result in an admissible sub-class of factor orderings. The relation between the factor ordering

problem and the problem of time is less obvious but we will try to convince the reader that

they are indeed directly connected.

Another path to canonical Quantum Gravity is provided by Loop Quantum Gravity

(LQG) [10, 12]. In this approach one starts from a different set of canonical variables, the so

called Ashtekar variables. The choice of these variables makes GR look closer to a Yang-Mills

type theory. The kinematic structure of the theory seems to be more or less settled. This

includes that a Hilbert space can be rigorously defined. One of the main open problems is

the quantum implementation of the Hamiltonian constraint. This step might also require a

regularization or renormalization.

Both the Wheeler-DeWitt approach and LQG have in common that the question of the

fate of singularities remains to be open [13].
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1.2 Quantum Cosmology

Soon after Einstein published his theory of general relativity physicists started to investigate

its consequences for cosmology. Einstein himself proposed a static universe model in 1917.

Mostly driven by mathematical curiosity some cosmological solutions to the vacuum field

equations were already derived and studied in 1921 by Kasner [14]. In 1924 Friedmann

dropped the assumption of a static universe and allowed the spatial volume to be dynamic

while preserving spatial homogeneity and isotropy. The same model was studied independently

by Lemaitre in 1927. Robertson and Walker should later prove that the line elements under

consideration are the unique line elements compatible with the spatial homogeneity and

isotropy in 3+1 dimensions. Today these models are known as the Friedmann-Lemaitre-

Robertson-Walker (FLRW) models.

The discovery of Edwin Hubble in 1929 that the universe is expanding showed on the one

hand that the Einstein’s static universe was untenable from an observational point of view.

On the other hand it signaled that the FLRW models are indeed physically relevant. Today

the standard model of cosmology [2] gives a highly consistent picture of the history of our

universe.

The FLRW models are among the simplest solutions of the Einstein field equations.

The simplicity stems from the drastic assumptions of homogeneity and isotropy. For the

models we study in this thesis we drop the assumption of isotropy. The fact that the CMB

is almost isotropic together with the fundamental result of Ehlers, Geren and Sachs [15]

implies that the Universe is almost FLRW at recent times. It was shown, however, by Wald

[16] that certain classes of spatially homogeneous models tend to isotropize at late times if

a positive cosmological constant is present in the Einstein field equations. This signals that

an inflationary era can in principle cause anisotropies to die out. Hence anisotropic models

could still be relevant for the physics of the early universe.1

On the other hand homogeneous anisotropic models are interesting from a purely theoreti-

cal point of view for several reasons. The assumption of homogeneity leads to a drastic

simplifica-tion of the Einstein field equations. Instead of a set of coupled partial differential

equations one has to only deal with a set of coupled ordinary differential equations. Further-

more, the symmetry reduction to spatial homogeneity leads to the concept of minisuperspace.

The term “minisuperspace” is due to Misner [17] and refers to the finite dimensional configura-

tion space of the symmetry reduced model. The models are in that context often called

minisuperspace models and we will also adopt this terminology.

The main idea behind Quantum Cosmology is to apply quantization procedures to a

1Constraints on anisotropy are discussed in [18].
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minisuperspace model. This idea was applied by DeWitt himself in [5]. The focus of this

thesis lies on the minisuperspace Wheeler-DeWitt equation, that is, the equation which is

obtained by applying the Dirac quantization procedure to the symmetry reduced model. The

Wheeler-DeWitt equation in minisuperspace is then no longer a functional partial differential

equation but only a usual partial differential equation. In other words: After a canonical

quantization we will only have to deal with a quantum mechanical problem instead of

quantum field theoretical one. Most importantly the Wheeler-DeWitt equation is no longer

ill defined. It is, however, questionable if this so called minisuperspace “approximation” is

anyhow some valid approximation of a full theory of Quantum Gravity. After all the freezing

out of infinitely many degrees of freedom identically violates the Heisenberg uncertainty

principle. Furthermore, there is so far no way to consistently perform such a symmetry

reduction at the level of the full Wheeler-DeWitt equation. The validity of the minisuperspace

approximation was for example discussed by Kuchař and Ryan in [19]. Nevertheless, even if

the minisuperspace approximation was invalid there are still good motivations to pursue the

path of Quantum Cosmology. Firstly the minisuperspace approximation allows us to study

the conceptual issues which are already present in the full theory at the level of a simplified

setup. These conceptual issues include the problem of time, the Hilbert space problem, the

factor ordering problem, and the interpretation of the wave function Ψ. The problems can

be investigated without the mathematical issues of the full theory at the level of a heavily

simplified setup. Moreover, one can easily compare different quantization schemes within

the context of minisuperspace. Secondly there remains the hope that the results obtained

within the framework of Quantum Cosmology somehow reflect the results of a full theory

of Quantum Gravity. Quantum cosmological models can usually be attacked with standard

methods. This allows one to investigate several aspects as for example the emergence of

a classical world through decoherence [20, 21]. Furthermore, it is expected that Quantum

Gravity plays an important role in the early phases of the universe. Thus it is natural

to discuss for example Quantum Gravity correction to the CMB anisotropy spectrum in a

quantum cosmological framework [22, 23].

Last but not least we can address the issue of singularity avoidance within the minisuper-

space approximation. In the context of the Wheeler-DeWitt framework this program was

initiated by the work [24] followed by a series of papers [25–27] all dealing with certain

singularities in isotropic cosmological models. The results all signal towards the avoidance

of such singularities in Quantum Cosmology. One of the main goals of this thesis is the

extension of this work to spatially homogeneous but anisotropic cosmological models. An

important role in this regard is played by the Belinski-Kalatnikov-Lifshitz (BKL) conjecture
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[28]: During the approach to a generic spacelike singularity the dynamics of neighboring

spacelike separated points approximately decouples and can effectively be described by a

homogeneous cosmological model (usually Bianchi VIII or IX). If the BKL conjecture turned

out to also hold true at the quantum level it might be possible to extend results on singularity

avoidance to the more realistic inhomogeneous cases and finally to the full theory.

1.3 Structure of the thesis

This thesis is organized as follows: Chapter 2 is divided into two parts. We first provide

some general considerations regarding the spatially homogeneous cosmological models at the

classical level. We introduce the Bianchi models and discuss the Lagrangian and Hamiltonian

formulations of their general relativistic dynamics. Furthermore, we introduce a generalized

dynamical system 2.1.5. This model is designed to generalize the dynamics of the minisuper-

space models while still capturing their main features. In the second part of chapter 2 we

discuss the Wheeler-DeWitt equation in minisuperspace and develop criteria for the avoidance

of singularities. Chapter 3 is devoted to the study of specific models with and without

matter. We study both their classical and quantum aspects. Particular attention is given

to the avoidance of singularities in terms of the criteria developed in chapter 2. We start

with the consideration of the Bianchi I model, where we examine the vacuum case, the case

of ideal fluids and the case of a minimally coupled electromagnetic field. Afterwards we

will investigate the Kantowski-Sachs universe, first, with a cosmological constant and an

electromagnetic field and, second, with a minimally coupled massless scalar field. It follows a

short section on the Bianchi II model, in which we restrict our attention to the vacuum case.

In the end of chapter 3 we consider the Bianchi IX universe. In particular we examine the non-

diagonal model filled with a tilted dust field and study the dynamical regime asymptotically

close to the singularity. The thesis is concluded with a summary and an outlook in chapter

4.



Chapter 2

General considerations

2.1 Spatially homogeneous cosmological models

In this section we aim to provide the basics required to prepare ourselves for the discussion

of the Quantum Cosmology of spatially homogeneous models. It is possible to provide a

unified picture of the spatially homogeneous cosmological models and their general relativistic

dynamics. This is feasible because of fundamental work which has been done in the middle of

the last century. The history of the beginnings of this formalism is presented in [29]. The work

of Jantzen [30] can be regarded as an important step towards a complete understanding of

the spatially homogeneous dynamics. For a collective treatment of all spatially homogeneous

models see the paper [31]. Jantzen’s approach is nowadays often referred to as the orthonormal

frame bundle approach. It allows for a study of the spatially homogeneous dynamics from a

group theoretical perspective. We will also introduce the notion of homogeneity preserving

diffeomorphism [32–35, 37] which connects the dynamical point of view with a spacetime

point of view.

While [31] served as a main guideline for this thesis there are certainly many other

resources which will provide different perspectives and add insights which are beyond the

scope of this thesis [35, 36, 38]. We will also not consider any of the observational aspects of

the spatially homogeneous models (see for example [18]).

2.1.1 Homogeneous spaces

In the following let Σ be a (simply connected) manifold and G be a Lie group. A group

representation G is said to act transitively on a space Σ if for all x, y ∈ Σ there exists a g ∈ G
such that gx = y. The space Σ is then called homogeneous with respect to G. In other words,

the group orbit Gx = {gx | g ∈ G} of every point x ∈ Σ is Σ itself. The group is said to act

15
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simply transitively if for all x ∈ Σ it follows that if gx = hx then g = h. 1 Given a basis {ξi}
of the Lie algebra g of G their Lie bracket can be written as

[ξi, ξj] = Ck
ijξk , (2.1)

where Ck
ij are the structure coefficients of the Lie algebra g in the basis {ξi}. The ξi are

linearly independent if and only if G acts simply transitively. Given a group representation

G acting simply transitively on a manifold Σ we aim to construct a metric dl2 on Σ that

respects the homogeneity. In other words, the vector fields ξi should be Killing vector fields

of the metric dl2. We now construct an invariant basis {ei} of TΣ. We therefore pick an

arbitrary point x ∈ Σ and set ei(x) = ξi(x). Using the flow of the ξi this allows us to Lie drag

the vectors ei(x) from x to all other points in Σ by demanding that the basis is invariant,

that is

Lξiej = [ξi, ej] = 0 . (2.2)

This procedure yields a basis {ei} of the tangent bundle TΣ which obeys

[ei, ej] = Ck
ijek . (2.3)

The structure coefficients of the basis {ei} agree with the structure constants of the Lie

algebra g. The coframe {σi} dual to {ei} obeys the relation

dσi = −1

2
Ci
jkσ

j ∧ σk , (2.4)

which is nothing but the Maurer-Cartan equation that determines the anti-symmetric part

of the Levi-Civita connection on Σ. We define now the spatial metric

dl2 = hijσ
i ⊗ σj (2.5)

where hij is real valued and symmetric with Euclidean signature. Since Lξidl2 = 0 by

construction the group G is the isometry group of the Riemannian manifold (Σ, dl2). As

we aim to evolve the metric in time according to Einstein’s theory we define the spacetime

manifold M = R× Σ and equip it with the Lorentzian metric

ds2 = −dt2 + dl2 = −dt2 + hijσ
i ⊗ σj , (2.6)

1Since any Lie group acts simply transitively on itself some authors (e.g. Jantzen [31]) choose to identify
the homogeneous space with Σ = G (or the component of G connected to the identity).
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where the hij are functions of the comoving time t now. The basis on the spatially homogeneous

spacetimeM is {eµ} := {∂t, ei}. The comoving condition [∂t, ei] = 0 is satisfied by construction.

Note that we have made an important choice on the topology in the construction above.

We chose the hypersurfaces Σ such that they can be identified with the connected component

of the isometry group G. As shown in [32], the number of degrees of freedom is in general

not uniquely determined by the isometry group but depends in addition on the choice of

topology.

2.1.2 The Bianchi-Schücking-Behr classification

As we have seen in the previous section homogeneous spaces can be constructed based

on symmetry considerations. Classifying homogeneous spaces is therefore equivalent to a

classification of Lie algebras. The first to work out a classification of 3–dimensional symmetry

groups was Luigi Bianchi in 1898 [39]. The scheme we shall present here is usually referred to

as the Bianchi-Behr classification of 3 dimensional Lie algebras [31, 40]. Engelbert Schücking,

however, played a major role in its development [29].

The starting point of the scheme is the fact that the structure coefficients can be decomposed

into a (2, 0)–tensor density nij and a covector vi as follows:

Ck
ij = εijln

kl + 2vlδ
l
[iδ

k
j] , where

nij =
1

2
C

(i
klε

j)kl
A and vi =

1

2
Cj
ij .

(2.7)

Inserting the basis vectors ei into the Jacobi identity yields that

Cn
i[lC

l
jk] = 0 . (2.8)

After a further contraction of the Jacobi identity one finds that nij and vj must obey the

relation

nijvj = 0 , (2.9)

that is, either vi = 0 or nij has at least one zero eigenvalue. The basis ei is of course not

unique. Letting A = {Aij} ∈ GL(3,R) we can transform to a new basis via ēi = Ai
jej.

Such a basis change induces a transformation of the structure constants according to

Ck
ij 7→ C̄k

ij = (A−1)kmAj
nAi

lCm
ln , (2.10)
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which in terms of nij and vi reads

nij 7→ n̄ij =
1

det(A)
(A−1)ik(A

−1)j ln
kl and vi 7→ v̄i = Ai

jvj . (2.11)

Note that nij transforms like a tensor density of weight 2 and vi transforms like a co-vector.

One can now use a suitable transformation to bring the structure coefficients into the so

called standard diagonal form

{nij} = diag
(
n(1), n(2), n(3)

)
and vi = vδ3

i with v ≥ 0 . (2.12)

A Bianchi type Lie algebra is now said to be of class A if v = 0 and of class B otherwise. For

class B models we can define an additional scalar h via the relation

vivj = hεiklεinmn
knnlm , (2.13)

which becomes v2 = hn(1)n(2) when Ck
ij is in standard diagonal form. Furthermore, we

can assume, without any loss of generality, that the non-zero n(i) are normalized such that

|n(i)| = 1. Modulo permutations of the n(i) and the transformation nij 7→ −nij we finally

obtain the table 2.1 classifying all 3-dimensional Lie algebras.2

Class Bianchi type n(1) n(2) n(3) v h

A I 0 0 0 0 r
II 0 0 1 0 r

VI0 1 -1 0 0 0

VII0 1 1 0 0 0

VIII 1 1 -1 0 0

IX 1 1 1 0 0

B V 0 0 0 1 r
IV 1 0 0 1 r

III:=VI−1 1 -1 0 1 -1

VIh6=0,−1 1 -1 0 v −v2

VIIh6=0 1 1 0 v v2

Table 2.1: Bianchi-Schücking-Behr classification of 3-dimensional Lie algebras. The roman
numerals are due to Bianchi who used a different classification scheme [39].

If the structure constants are in standard diagonal form the commutation relations for the

2To my knowledge the table appeared in this form first in a paper by Ellis and MacCallum [41].
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basis vectors reads
[e1, e2] = n(3)e3 − ve2 , [e2, e3] = n(1)e1 ,

[e3, e1] = n(2)e2 + ve3 .
(2.14)

The only case that is not covered by this classification is the Kantowski-Sachs spacetime

for which the symmetry group G = R × SO(3,R) is 4-dimensional. Its representation is

irreducable and acts transitively but not simply transitively on the spatial hypersurfaces

which can be identified by, e.g. Σ = R× S2. Hence the model requires a separate treatment

(see section 3.2 of this thesis or the appendix of [31]).

The automorphism group Aute(g)

An important ingredient for the description of spatially homogeneous cosmological models

is the automorphism group Aute(g) ⊂ GL(g) of the Lie algebra g with respect to the basis

{ei}. The Automorhism group Aute(g) can be defined as the subgroup of the general linear

group formed by the transformations ēi 7→ ēi = Ai
jej that preserve the structure constant

components, that is,

Ck
ij 7→ C̄k

ij = (A−1)kmAj
nAi

lCm
ln = Ck

ij . (2.15)

To find the generators of the component of automorphism group connected to the identity

we consider a path γ : R → Aute(g), t 7→ Ai
j(t) through the identity Ai

j(0) = δji and

differentiate equation (2.15) to obtain

Ck
ila

j
k = akiC

j
kl + akl C

j
ik (2.16)

where aji is identified as a tangent vector to the path γ at the identity. The general solution

to equation (2.16) thus yields the Lie algebra of Aute(g), which we denote by aute(g).

A set of particular solutions to (2.16) is given by the matrices

akj = [ki]
k
j := Ck

ij . (2.17)

The subgroup which is generated by the subalgebra {ki} is called the inner automorphism

group. We denote this Lie subgroup by In Aute(g) and its Lie algebra by In aute(g). The

remaining solutions to (2.16), that is, those which cannot be written as structure coefficients,

generate the so-called outer automorphism group. We utilize here the notations Out Aute(g)

and Out aute(g) for this Lie group and its Lie algebra, respectively.

The automorphism group not only plays an important role for the efficient description

and the analysis of the classical dynamics of the Bianchi models. We will also see that it is
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of relevance for the corresponding quantum theory. Particularly relevant are the dimensions

dim ( In Aute(g)) and dim (Out aute(g)). They turn out to determine the number of linearly

independent momentum constraints and possible constants of motion of the dynamics. The

dimensions can be read off from the table 2.2. We will further elaborate on the role of the

automorphisms after the discussion of the general relativistic dynamics of the Bianchi models.

Type I II III V IV, VI, VII VIII, IX

dim (Aut(g)) 9 6 4 6 4 3

dim (InAut(g)) 0 2 2 3 3 3

Table 2.2: Dimensions of the automorphsim group and the inner automorphism group for all
Bianchi models. This table was taken from [31].

2.1.3 Kinematics and dynamics of the Bianchi class A models

The ADM form of the metric is given by

ds2 = −N2dt2 + hij
(
N idt+ σi

)
⊗
(
N jdt+ σj

)
. (2.18)

In order to make use of the preferred foliation defined by the homogeneous hypersurfaces

we restrict the Lapse function N and the shift vector N i to be spatially homogeneous as

well, that is, N = N(t) and N i = N i(t). While N controls the time gauge, N i controls

the foliation. Both N and N i will not be determined by any dynamical equations of the

theory and they can in fact be chosen freely (with the constraint that N > 0). Their choice,

however, will influence the dynamics of the spatial metric.

The components of the spatial metric hij contain all the degrees of freedom of the theory

and are functions of the coordinate time t only. If hij stays diagonal during the temporal

evolution we speak of a diagonal model. This is, however, in general not the case and hij is

only diagonalizable at a fixed instant of time t.

Furthermore, we shall from now on mostly restrict our attention to the Bianchi class

A models. The reason for this are certain well known problems with the Hamiltonian

formulation of the class B models, which we shall comment on later.

Diagonal/off-diagonal decomposition

It is well known that the symmetry reduction to spatially homogeneous models reduces

the Einstein field equations to a system of ordinary differential equations. In order to get

insights into the dynamics it is desirable to introduce an appropriate parametrization of the
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minisuperspace such that the form of the dynamical equations assumes a simple form. By

minisuperspace we mean here the unconstrained configuration spaceM which consists of all

3–dimensional matrices {hij} that are symmetric with Euclidean signature.3

Recall the fact that any symmetric matrix is diagonalizable. The main idea is now

to split the minisuperspace M into a diagonal part which coincides with the scale group

Diag(3,R)+ and an unimodular 3–parameter diagonalizing matrix group Ĝ (a Lie group)

such that M∼= Diag(3,R)+ × Ĝ. For that purpose we write

hij = Si
kSj

lh̄kl (2.19)

with S = {Sij} ∈ Ĝ being unimodular and {h̄kl} ∈ Diag(3,R)+. Equation (2.19) can be

thought of as a map Diag(3,R)+× Ĝ→M which we now specify further in order to provide

a suitable parametrization ofM. In practice this map will be used to pullback the equations

of motion fromM to Diag(3,R)+× Ĝ where they should be easier to study. It is convenient

to introduce a suitable parametrization of the diagonal matrix {h̄kl}. We will mostly work

here with the so called Misner variables [42, 43] which we denote by α, β+ and β−.4 The

diagonal part of the metric is parametrized as

{
h̄ij
}

= e2α diag
(

e2β++2
√

3β− , e2β+−2
√

3β− , e−4β+

)
. (2.20)

Note that due to these choices
√
h :=

√
det ({hij}) = e3α, that is, the variable α alone

describes the temporal evolution of the spatial volume of the universe. We will therefore call

eα the scale factor of the universe (in full analogy to the Friedmann models). The variables

β± control the “shape” of the universe and might therefore be called anisotropy factors. The

unimodular matrix diag
(

e2β++2
√

3β− , e2β+−2
√

3β− , e−4β+

)
is sometimes called the anisotropy

matrix. Choosing the Misner variables has the virtue that the kinetic term in the Einstein-

Hilbert action will be partially in canonical form. Note that the decomposition of the degrees

of freedom into a scale and shape part corresponds to an unimodular decomposition of the

spatial metric.

Let us now turn to the question of how to construct the diagonalizing matrix S. Let us

denote the Lie algebra of the diagonalizing group by ĝ. In order to parametrize the connected

component of Ĝ we can use the exponential map exp : ĝ → Ĝ. We will therefore start by

constructing a matrix representation of a basis {κi} of ĝ. Let eij be the 3 × 3-matrix with

the only non-vanishing component being a 1 in the ith row and the jth column. Then {eij}
3Our notion of minisuperspace is not the true analogue of superspace. A notion which appears to be closer

to the notion of superspace in the full theory is provided by Jantzen [30].
4Note that instead of α Misner originally introduced the variable Ω = −α [42, 43].
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constitutes a natural basis of gl(3,R) and satisfies the relations
[
eij, e

k
l

]
= δkj e

i
l− δilekj. We

can now decompose the generators of the diagonalizing matrix group into

κi = [κi]
j
ke

k
j . (2.21)

The diagonalizing matrix is then obtained via the exponential map

S = eθ
1κ1eθ

2κ2eθ
3κ3 , (2.22)

where the θi variables are “generalized angles” which serve as a parametrization of Ĝ (or

more precisely the component of Ĝ connected to the identity). It is required that the algebra

closes and that the generated group is unimodular, that is,

Tr (κi) = 0 and [κi,κj] = −Ĉk
ijκk . (2.23)

For any {hij} ∈ M to be diagonalizable by S it is required that {κi} is an ordered basis with

the property that κi ∈ span
{
ejk, e

k
j

}
for any cyclic permutation (i, j, k) of (1, 2, 3). Now

consider

S−1dS =: κiσ̂
i (2.24)

where the 1-forms on the right hand side can be expanded as

σ̂i = W i
jdθ

j . (2.25)

After denoting the inverse of W i
j by (W−1)i

j we can define the dual vector fields

êi :=
(
W−1

)
i
j ∂

∂θj
. (2.26)

We can then convince ourselves5 that

[êi, êj] = Ĉk
ijêk and dσ̂i = −1

2
Ĉi
jkσ̂

j ∧ σ̂k . (2.27)

Consequently {êi} is a left invariant basis frame of TĜ and {σ̂i} its dual frame on T ∗Ĝ.

Analogously one might construct a right invariant basis [31]. We will only make use of the

left invariant one in this thesis. For completeness we remark that

Ĉk
ij = −4(W−1)[i

l(W−1)j]
n∂lW

k
n . (2.28)

5Compute the exterior derivative of equation (2.24).
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Examples: A particular example of a diagonalizing matrix group is Ĝ = SO(3,R) interpre-

ted as rotations of the principal axes. This is the canonical choice for the diagonalizing matrix

group in the case of the Bianchi IX spacetime. Note that in this case the symmetry group and

the diagonalizing group incidentally coincide. One might parametrize the group SO(3,R)

using three Euler angles θ, φ, ψ. The diagonalizing matrix is then given by the Euler matrix

S =
{
Oi

j
}

= OθOφOψ ∈ SO(3) , where

Oψ =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 , Oθ =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 ,

Oφ =


cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1

 .

(2.29)

This diagonalization has been used by Ryan [44–47]. Ryan, however, diagonalized all Bianchi

models using SO(3,R). This is impractical for all types other than I and IX.

Another particular choice would be to pick the Heisenberg group, that is, choose S as

an upper triangular matrix with diagonal elements being equal to 1. This corresponds to

the Iwasawa decomposition of the triads (see e.g. [48]). While this choice was found to

be useful to reveal hidden Kac-Moody symmetries in gravitational theories, it is, however,

rather impractical for the study of the dynamics of most of the Bianchi class A models at

the Hamiltonian level.

Diagonalization via the special automorphism subgroup: The question remains how

to choose the diagonalizing group such that our kinematical picture is tailored for the study

of the dynamics arising from Einsteins theory. As has been pointed out by Jantzen [31]

there is an advantageous choice of Ĝ for this purpose. This is to take a suitable 3 parameter

subgroup of the special automorphism group

Ĝ ⊆ SAute(g) = {A ∈ Aute(g) | det(A) = 1} , (2.30)

of the Bianchi model under consideration. In particular the inner automorphism group

should be contained as a subgroup in Ĝ. The advantage of this choice will be revealed in

the Hamiltonian formulation. In particular the form of the momentum constraints and the

three–curvature will be drastically simplified. In the case of the diagonalization of Bianchi

class A models with structure constants being in standard diagonal form, S ∈ SAute(g)
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simply means that

nij
(
S−1

)
i
k
(
S−1

)
j
l = nkl and det(S) = 1 . (2.31)

Let us now turn to the construction of the Lie algebra basis {κi}. We first define the matrices

ki := Ck
ije

j
k , (2.32)

where Ck
ij = εijln

lk are the structure constants of the Bianchi class A model in standard

diagonal form. Recall that the ki are the generators of the inner automorphism group.

Diagonalization of types VII0, VIII and IX: The following construction is suitable for

the diagonalization of the type VII0, VIII and IX models. We define the scale matrix{√
Tr
(
kik

T
j

)
/2

}
=

1√
2

diag

(√
[n(2)]

2
+ [n(3)]

2
,

√
[n(3)]

2
+ [n(1)]

2
,

√
[n(1)]

2
+ [n(2)]

2

)
(2.33)

and set

κi :=
1√

Tr
(
kik

T
i

)
/2
ki . (2.34)

By construction the basis {κi} satisfies

Tr (κi) = Ĉj
ij = 0 and [κi,κj] = Ĉk

ijκk , where Ĉk
ij = εijln̂

lk

with
{
n̂ij
}

= diag
(
n̂(1), n̂(2), n̂(3)

)
.

(2.35)

The parameters n̂(i) are given by

n̂(1) =
n(1)

√
2

√
[n(2)]

2
+ [n(3)]

2
, n̂(2) =

n(2)

√
2

√
[n(3)]

2
+ [n(1)]

2
, n̂(1) =

n(3)

√
2

√
[n(1)]

2
+ [n(3)]

2
.

(2.36)

The matrices κi can be explicitly written as

κ1 =


0 0 0

0 0 n̂(3)

0 −n̂(2) 0

 , κ2 =


0 0 −n̂(3)

0 0 0

n̂(1) 0 0

 , κ3 =


0 n̂(2) 0

−n̂(1) 0 0

0 0 0

 ,

(2.37)

Diagonalization of types I, II, VI0: Note that {n̂ij} is not well defined for the Bianchi

class A types I, II and IV0. As already mentioned the above construction only works for
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types VII0, XIII and IX. For the other types it is convenient to pick the generators κi in the

span of the non-vanishing ki and find a suitable candidate for the remaining κi in such a

way that the algebra closes and that the generated group is unimodular. For Bianchi type

I, for example, the special automorphism group is SL(3,R). In this case one might pick any

suitable 3–parameter matrix subgroup to diagonalize the metric, e.g. SO(3,R).

For later usage we also define the (possibly singular) matrix ρi
j via the relation

ki = ρi
jκj . (2.38)

The matrix ρi
j is non-singular for Bianchi types VIII and IX. For all other types it is singular

with at least one zero eigenvalue. In the case of Bianchi I the vanishing of the structure

coefficients implies that ρi
j = 0.

Remarks on other suitable variables: We decide in this thesis to mostly work with

Jantzen’s orthonormal frame approach and to use the Misner variables for the parameterization

of the diagonalized metric. There are of course other variables on the market which are

tailored for certain applications.

The Hubble normalized variables are a set of dimensionless variables which allow for the

application of certain methods from the theory of dynamical systems. This has been used to

obtain rigorous results concerning the dynamics of the Bianchi models and even beyond (see

e.g. [18, 48–50]). Hubble normalized variables are also useful for the application of numerical

methods. The variables are, however, not suitable for quantization.

Another interesting set of variables solely constructed for the application to spatially

homogeneous cosmologies was introduced in [51]. According to the authors these three

variables “completely and irreducibly, determine a spatial three geometry”. The variables

are invariant under the action of special automorphisms and in particular well suited for

applications in Quantum Cosmology.

Lagrangian and Hamiltonian formulation

The topic of this section is the Hamiltonian formulation of the vacuum Bianchi class A models.

One aim is to find a suitable representation of the dynamics by using the diagonal/off-diagonal

decomposition. We presuppose that a class A model has been picked from the table 2.1 and

that a basis {κi} has been constructed according to the previous section such that we obtain
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a diagonalizing matrix S ∈ Ĝ ⊆ SAute(g). Our starting point is the Einstein-Hilbert action

SEH =
1

16πG

∫
M

d4x
√−g(R− 2Λ)− 1

8πG

∫
∂M

d3x
√
hK . (2.39)

The coupling of matter will not be discussed in this section. While a discussion of minimally

coupled scalar fields is straightforward, a general prescription of the coupling of more complica-

ted forms of matter is rather non-trivial and will only be discussed in this thesis based on

the examples of specific models in chapter 3. The Einstein-Hilbert action can be cast into

the well known ADM form

SEH =
1

16πG

∫
Σ

σ1 ∧ σ2 ∧ σ3

∫
dt N

√
h
[(
hikhjl − hijhkl

)
KijKkl + (3)R

]
, (2.40)

where Kij = 1
2N

(
ḣij − 2D(iNj)

)
is the extrinsic curvature and (3)R is the Ricci scalar on

the spatially homogeneous hypersurfaces Σ. The covariant derivative on Σ is denoted by D.

The connection 1-forms on the spatial hypersurfaces Σ are given by σij = (3)Γijkσ
k and are

uniquely determined via the two equations

dσi + σij ∧ σj = 0 (vanishing torsion)

hikσ
k
j + hjkσ

k
i = 0 (metricity) .

(2.41)

The anti-symmetric part of the connection is completely determined by demanding vanishing

torsion. The symmetric part on the other hand is determined by the demand for metricity.

The solution to the two equations is given by

(3)Γkij = −1

2
Ck
ij + hklCm

l(ih
A
j)m . (2.42)

We will from now choose our units such that 1
16πG

∫
σ1 ∧σ2 ∧σ3 = 1

12
. The DeWitt metric

dS2 := Gijkldhij ⊗ dhkl , (2.43)

is defined via its components Gijkl := 48−1
√
h
(
hikhjl + hilhjk − 2hijhkl

)
. Note that the

unconventional prefactor 48−1 and our choice of units are tailored to the application of the

Misner variables. The DeWitt metric dS2 constitutes a metric on the configuration space

M. We can then write the action as

SEH =

∫
dt N

[
2GijklKijKkl +

√
h (3)R/12

]
, (2.44)
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The total Hamiltonian of the system, obtained via the Dirac-Bergmann algorithm, can be

written as

H = NH +N iHi . (2.45)

Where the Hamiltonian and momentum constraints are given by

H =
1

2
Gijklpijpkl −

√
h (3)R/12 ' 0 ,

Hi = 2Cj
ilhjkp

kl ' 0,
(2.46)

respectively. Here Gijkl := 12√
h

(hikhjl + hilhjk − hijhkl) are the components of the inverse

DeWitt metric and pij = 2GijklKkl denote the ADM momenta, that is, the momenta canonically

conjugate to the configuration space variables hij. The notation “' 0 ” means that the

constraints weakly vanish in the Dirac sense.

We perform now the diagonal/off-diagonal decomposition of the metric according to

equation (2.19) and pick the parametrization (2.22) for the diagonalizing matrix S. Let

us first take care of the kinetic term in the action. It is advantageous to define a generalized

“angular velocity” ωk via

S−1Ṡ =
{(
S−1

)
i
kṠk

j
}

=: ωkκk . (2.47)

The “angular velocity vector” can be expanded as ωi =: W i
j θ̇
j, where W i

j are the coordinate

components of the left invariant co-frame {σ̂i} on T ∗Ĝ defined in (2.24). A calculation then

yields

ḣij = Si
kSj

l ˙̄hkl + 2S(i|
kωl[κl]

n
k(S

−1)n
mhm|j) . (2.48)

The Lagrangian in the quasi-Gaussian gauge N i = 0 then takes the form

L = Ne3α

[
−α̇2 + β̇2

+ + β̇2
− + Iijω

iωj

2N2
+ (3)R/12

]
, (2.49)

where the “moment of inertia” tensor is given by

Iij =
1

3
[κi]

k
l

(
δlmδ

n
k + h̄kmh̄

ln
)

[κj]
m
n . (2.50)

Note that the “moment of inertia” tensor is symmetric and completely independent of the

scale factor α and the generalized angles θi, that is, it only depends on the anisotropy factors

β±. For the types VI0, VIII and IX in particular we obtain via the diagonalization procedure
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presented in section 2.1.3 that

{Iij} = diag (I1, I2, I3) , where I1 =
1

3

(
n̂2e
√

3β−−3β+ − n̂3e−
√

3β−+3β+

)2

,

I2 =
1

3

(
n̂3e
√

3β−+3β+ − n̂1e−
√

3β−−3β+

)2

and I3 =
1

3

(
n̂1e−2

√
3β− − n̂2e2

√
3β−
)2

.
(2.51)

The momenta canonically conjugate to the Misner variables are given by

pα =
e3αα̇

N
and p± =

e3αβ̇±
N

, (2.52)

while the momenta conjugate to the generalized angles read

pi :=
∂L

∂θ̇i
=

e3α

N
Ijkω

jW k
i (2.53)

in the gauge N i = 0. For convenience we define the angular momentum like variables

`i :=
e3α

N
Iijω

j =
(
W−1

)
i
jpj . (2.54)

By making use of the Poisson brackets of the canonical variables (θi, pi) and equation (2.28)

one can show that the angular momenta obey the Poisson bracket algebra

{`i, `j} = Ĉk
ij`k . (2.55)

We are now in the position to express all constraints in terms of the variables α, β±, θi and

their momenta. For the Hamiltonian constraint one obtains

H =
e−3α

2

(
−p2

α + p2
+ + p2

− + (I−1)ij`i`j −
e6α

6
(3)R

)
' 0 , (2.56)

where (I−1)ij denotes the inverse of the moment of inertia tensor, that is, (I−1)ikIkj = δij.

Moreover, we find from this expression that DeWitt metric is brought into the form

dS2 = e3α
(
−dα2 + dβ2

+ + dβ2
− + Iijσ̂

i ⊗ σ̂j
)
, (2.57)

where {dα, dβ+, dβ−} is a basis of T ∗Diag(3,R)+ and {σ̂i} is the basis of T ∗Ĝ defined by

equation (2.24). The momentum constraints are found to become

Hi =
1

2
(S−1)i

kρk
j`j , (2.58)
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where ρj
k was defined in (2.38). Thus the number of the non trivially satisfied linearly

independent momentum constraints is given by the rank of the matrix {ρij}. The rank of

{ρij} is equal to the dimension of the inner automorphism subgroup and hence specific to

each Bianchi model. Let us now turn to the discussion of the potential term
√
h (3)R. Using

the 2nd Cartan structure equation we obtain the curvature 2-form on Σ:

(3)Ωi
j = dσij + σik ∧ σkj =

1

2
(3)Ri

jklσ
k ∧ σl , with

(3)Ri
jkl = −ΓijnC

n
kl + ΓinkΓ

n
jl − ΓinlΓ

n
jk .

(2.59)

The Ricci scalar on Σ for the Bianchi class A models can then be written as

(3)R =
1

2h
(hijhkl − 2hikhjl)n

ijnkl = − 1

24
√
h
Gijklnijnkl . (2.60)

At this stage we can see another advantage of choosing S ∈ Ĝ ⊆ SAute(g) as the diagonalizing

matrix. Namely that we can replace the metric hij in the expression (2.60) by the diagonalized

metric h̄ij and all dependence on the generalized angles θi drops out. Consequently the

curvature potential of the Bianchi class A models can be expressed solely in terms of the

Misner variables:

−e6α

12
(3)R =

e4α

24

[(
n(1)
)2

e4β++4
√

3β− +
(
n(2)
)2

e4β+−4
√

3β− +
(
n(3)
)2

e−8β+

−2n(2)n(3)e−2β+−2
√

3β− − 2n(3)n(1)e−2β++2
√

3β− − 2n(1)n(2)e4β+

]
.

(2.61)

Note that the curvature potential is non-negative for all class A models except for type IX.

The potential can be understood as a self-interaction term which couples the gravitational

field hij to itself. For the Bianchi type I case we have (3)R = 0. In this sense the type I model

can be viewed as a free model, that is, a system without any self-interaction.

Remark on the Hamiltonian formulation of the Bianchi class B models

The procedure of reducing the symmetry at the level of the action as outlined in the previous

section 2.1.3 at the example of the Bianchi class A is to be understood as a heuristic procedure

to obtain a Lagrangian/Hamiltonian formulation for the dynamics of a symmetry reduced

model. After performing the procedure it should in principle be checked if the equations

of motion obtained from the Lagrangian/Hamiltonian are the correct ones, that is, if they

coincide with the equations of motion that are obtained by plugging the ansatz directly

into the Einstein field equations. It is well known that the procedure works well for the
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Bianchi class A models [31] and also in the case of spherical symmetry (see e.g. [10] and the

references therein). However, the procedure leads to an erroneous result in the case of the

Bianchi class B models. To be more precise the resulting Hamiltonian formulation does not

yield the correct Einstein field equations. This is indicated by the fact that the constraints one

obtains by naively applying the procedure are not preserved in time. In order to obtain the

correct equations of motion from the flawed Hamiltonian formulation one can add an ad hoc

forcing term to the Hamiltonian equations of motion (see e.g. [31]). It might, nevertheless,

be possible to find a valid Hamiltonian description of the dynamics. This has, for example

been achieved in [37] for the Bianchi type V model.

The question under which circumstances a symmetry reduction can be carried at the

level of the action out can also be investigated with mathematical rigor (see the Engelbert

Schücking in [29]).

On the automorphism group

So far we have seen that the special automorphism group SAute(g) plays an important role

for the dynamical description of the Bianchi models. As in the full theory of general relativity

the system of secondary constraints H and Hi for the vacuum Bianchi class A models is first

class, that is, the constraints are preserved in time. This is equivalent to the statement that

the constraint algebra closes:

{H,Hi} = 0 and {Hi,Hj} = CkijHk , (2.62)

where the structure coefficients Ckij of the momentum constraint algebra are specific to each

Bianchi model and they satisfy the equation

Cnijρnk = ρi
lρj

mĈn
lm . (2.63)

Consequently the Hi can be identified with the generators of a subgroup of Ĝ ⊆ Aute(g).

More precisely, these are the generators of the inner automorphism subgroup ki = Ck
ije

j
k

defined in equation (2.32).

As we have already pointed out before for Bianchi types VIII and IX the inner automorphism

sub group coincides with the automorphism group. For all other types, however, this is not

true since there are outer automorphisms in addition. Let us denote the matrix representation

of the outer automorphism algebra by

Ei = Ek
ije

j
k . (2.64)
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The phase space representation of the generators then reads

Ei = Ek
ijhklp

jl (2.65)

As it is shown in [35], the Poisson brackets of Ei with the constraints weakly vanishes in

the Dirac sense. Consequently the generators Ei imply the existence of certain constants of

motion, which are specific to each vacuum Bianchi model. We can now conclude this section.6

Conclusion. The special automorphism group SAut(g) is the symmetry group of the equations

of motion, satisfied by the metric hij, in the absence of matter sources.

All scalar combinations constructed from the metric hij and the structure constants Ci
jk

are scalars on M which are invariant under the action of the special automorphism group.

Possible combinations are for example

Ci
jkC

j
ilh

lk , Ci
jkC

l
nmhilh

lkhkn and so on. (2.66)

Since curvature invariants on the spatial hypersurfaces ((3)R, (3)Rij (3)Rij , . . .) are linear

combinations of such terms they are invariant under the action of the special automorphism

group as well. The authors of [37] have used these facts to construct a set of independent

variables, invariant under the action of the special automorphism group. Note that such a

construction is only possible because we performed the symmetry reduction to minisuperspace.

In the full theory such a construction is impossible.

Homegeneity preserving diffeomorphisms

So far we have discussed the symmetries (automorphisms) of the Bianchi models from a

dynamical point of view. The purpose of this section is to link the previous discussion

to a spacetime point of view. More precisely the special automorphisms can be linked to

coordinate transformations which manifestly preserve the spatial homogeneity of the line

element. This fact was first noted by Ashtekar and Samuel [32]. We will use the paper [37]

as a guideline.

In the following we suppose that spacetime manifold M is parametrized by a time

coordinate t and spatial coordinates {xî} =: x and that the spacetime metric is in the

ADM form, that is

ds2 = −N2dt2 + hij
(
N idt+ σi

)
⊗
(
N jdt+ σj

)
. (2.67)

6The following conclusion was first provided by Jantzen in [30].
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The spatial coframe can be expanded according to

σi (x) = σiî (x) dxî . (2.68)

A homogeneity preserving diffeomorphism is a coordinate transformation

{t, xî} 7→ {t̃, x̃î} , (2.69)

which leaves the ADM metric (2.18) form invariant. That means the transformed line element

takes the form

ds2 = −Ñ2dt̃2 + h̃ij

(
Ñ idt̃+ σ̃i

)
⊗
(
Ñ jdt̃+ σ̃j

)
. (2.70)

where Ñ , Ñ i and h̃ij are functions of t̃ only and σ̃i = σiî (x̃) dx̃î.

First, let us consider a transformation of the time variable

t 7→ t̃(t) . (2.71)

The coefficients of the spatial metric transform as

hij(t) 7→ hij(t(t̃)) =: h̃ij(t̃) (2.72)

while the lapse and shift functions transform as

N(t) 7→ N(t(t̃))
∂t

∂t̃
= Ñ(t̃) and N i(t) 7→ N i(t(t̃))

∂t

∂t̃
= Ñ i(t̃) . (2.73)

Hence (2.71) is a homogeneity preserving diffeomorphism. More interesting are transformations

of the spatial coordinates

{t, xî} 7→ {t̃(t), x̃î (t,x)} , (2.74)

where t̃(t) = t. One then obtains that

σi (x) = σiĵ (x)

[
∂xĵ

∂t̃
dt̃+

∂xĵ

∂x̃î
dx̃î

]
. (2.75)

Since both σiî(x) and σiî(x̃) are invertible there exists a non-singular matrix Lij
(
t̃, x̃
)

and
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a triplet ∆N i(t̃, x̃), such that

σiî (x̃)
∂xî

∂x̃k̂
= Lij

(
t̃, x̃
)
σj k̂ (x) ,

σiî (x̃)
∂xî

∂t̃
= ∆N i(t̃, x̃) .

(2.76)

For the coordinate transformation to be homogeneity preserving Lij(t̃, x̃) and ∆N i(t̃, x̃) must

be independent of the spatial coordinates x̃. The resulting line element is then indeed of the

form (2.70) with

Ñ = N , h̃ij = hklL
k
iL

l
j , and Ñ i =

(
L−1

)i
j

(
N j + ∆N j

)
(2.77)

and therefore manifestly spatially homogeneous. The equations (2.76) is to be regarded as

a set of first order partial differential equations for the inverse coordinate transformation

{t̃, x̃} 7→ xî(t̃, x̃). The local existence of solutions is guaranteed by the Frobenius theorem

(see appendix A.2) provided that the necessary and sufficient conditions are satisfied. One

finds [37] that these conditions can be brought into the form

LilC
l
jk = Ci

nlL
n
jL

l
k ,

∆NkCi
klL

l
j =

1

2
L̇ij .

(2.78)

The solutions {Lij,∆N i} to (2.78) have the property that they form a group under the

composition law

(L3)ij = (L1)ik(L2)kj

(∆N3)i = (∆N1)i + (L1)ij(∆N2)j .
(2.79)

where {L1,∆N1} and {L2,∆N2} are two consecutive transformations of the form (2.77). Note

that there are particular solutions of the form Lij(t̃) = Lij = const. with {Lij} ∈ SAut(g)

and ∆N i = 0. These solutions can be trivially identified with the special automorphism

group. In general however the group formed by the solutions to (2.78) is larger than the

special automorphism group. The particular solutions {Lij} ∈ SAut(g) and ∆N i = 0 can be

regarded as the remaining gauge degrees of freedom after having fixed the lapse and shift.

Furthermore, there are solutions with ∆Nk(t̃) being arbitrary. To see that we note that

the matrix 2{∆Nk(t̃)Ci
kj} = 2∆N i(t̃)ki is by definition a path in the Lie algebra of the inner

automorphism group. Having that in mind we can conclude that a further particular solution
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to (2.78) is provided by the time ordered exponential7

{Lij
(
t̃
)
} = T exp

(
2

∫ t̃

t̃0

dt ∆Nk (t)kk

)
∈ IAute(g) , (2.80)

where ∆N i(t̃) is arbitrary. In fact the time ordered exponential is the unique solution to the

initial value problem

∆NkCi
klL

l
j =

1

2
L̇ij , Lij(t̃0) = δij . (2.81)

Because of the group structure of the solution space we conclude that the most general

solution to (2.78) can be obtained via the composition of (2.80) and a constant special

automorphism.

One can show that if {N,N i, hij} and {Ñ , Ñ i, h̃ij} are related by (2.77) and Lij and ∆N i

solve (2.78) then SEH[Ñ , Ñ i, h̃ij] = SEH[N,N i, hij]. Hence, as one would expect, the vacuum

action (2.44) is invariant under the transformation. It follows now that if {N,N i, hij} is a

solution to equations of motion then {Ñ , Ñ i, h̃ij} is a solution as well. We are now in the

position to conclude this section.

Conclusion. Two solutions {N,N i, hij} and {Ñ , Ñ i, h̃ij} which are related via (2.77) such

that Lij and ∆N i satsify (2.78) are also related via a homogeneity preserving diffeomorphism.

The general solution to the equations (2.78) for several Bianchi models can be found

in [37]. For a mathematically more rigorous treatment see [33]. The latter reference,

however, employs a stronger definition of homogeneity preserving diffeomorphism, which

leads to slightly different results (only constant automorphism are homogeneity preserving

diffeomorphisms).

Remark on the curvature of the class A minisuperspaces

We compute the Ricci scalar of the Riemannian space (M, dS2) with the DeWitt metric given

by (2.43). The result is R = − 45√
h

= −45e−3α. After performing a conformal transformation

of the DeWitt metric according to dS2 7→ dS̃2 = e−3αdS2 we obtain that R̃ = −90.

Consequently the unconstrained minisuperspace of the vacuum Bianchi models is conformal

to a space of constant negative scalar curvature. The unconstrained minisuperspace is

7The time ordered exponential can be formally defined via

T exp

(∫ t

0

dt′a(t′)

)
:=

∞∑
n=0

∫ t

0

∫ t′n

0

∫ t′n−1

0

· · ·
∫ t′2

0

a(t′n)a(t′n−1) . . .a(t′1)dt′1 . . . dt
′
n−1dt′n .
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not conformally flat which follows from computing the Weyl squared scalar W̃2 = 1890

corresponding to the metric dS̃2.

2.1.4 Singularities in general relativity and relativistic cosmology

In this section we provide the definition and classification of singularities. It is sufficient

for our purposes to have a rather loose discussion. For an overview of precise definitions,

theorems and classifications of singularities in Einstein’s theory see for example the review

article by Senovilla [52].

Geodesic incompletess

A spacetime is called geodesically incomplete or singular if there exists a geodesic that cannot

be extended past some affine parameter. Penrose and Hawking [3] have shown that, under the

assumption of general energy conditions, solutions to the Einstein field equation necessarily

admit incomplete geodesics. Such results have become known as singularity theorems. These

prove the fact that singularities are not a mere artifact of a certain symmetry reduction

but rather a generic feature of Einstein’s theory of gravity. However, while these theorems

provide information about the existence of singularities they do not tell us anything about

the nature of such singularities.

We have to distinguish between curvature singularities and conical singularities. Further

distinction should be made between spacelike and timelike singularities. Since we are only

dealing with spatially homogeneous cosmological models in this thesis we will restrict our

attention to spacelike singularities.

Curvature singularities

A curvature singularity (or curvature pathology) is a point or a collection of points in

spacetime at which certain curvature scalars diverge. This definition is quite arbitrary since

in principle one can construct infinitely many curvature scalars on a (pseudo-)Riemannian

manifold. The precise definition of a curvature singularity is an open issue known as the

curvature pathology definition problem. Furthermore, the relation between the blowing up of

curvature invariants and geodesic incompleteness is an ongoing debate. In particular there

exist solutions to the Einstein field equations which admit incomplete geodesics while no

curvature pathology occurs [52]. It will be sufficient in the context of this thesis to call a

point in spacetime a curvature singularity if the Kretschmann scalar RµνλσRµνλσ diverges at
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this point. As it is well known, the Kretschmann scalar can be decomposed as

RµνλσRµνλσ = CµνλσCµνλσ + 2

(
RµνR

µν − 1

6
R2

)
(2.82)

where Cµ
νλσ is the Weyl squared tensor. The decomposition allows for further distinctions

[53]. We call a curvature singularity

• Weyl or conformal singularity if CµνλσCµνλσ diverges.

• Ricci singularity if RµνR
µν − 1

6
R2 diverges.

While Ricci singularities are related to unbounded matter densities via the Einstein field

equations, Weyl singularities are related to gravitational field divergences in the vacuum.

The Oppenheimer-Snyder model [54] describes the homogeneous and spherically symmetric

gravitational collapse of a cloud of dust particles and provides a particular example: the

interior of the dust sphere, described by a dust filled closed Friedmann universe, collapses

into a Ricci singularity, while the exterior, described by a vacuum Kantowski-Sachs model,

collapses into a Weyl singularity. Note also that a singularity can be both Ricci and

Weyl at the same time. This situation can occur for example in the case of matter filled

spatially homogeneous but anisotropic cosmological models. Further distinctions in the

characterization of curvature singularities were given by Barrow and Hervik [55]. The authors

also provide asymptotic expressions of the Weyl squared scalar for the Bianchi models filled

with ideal fluids in the vicinity of the singularity.

We also remark that the scalar

lc :=
1

|RµνλσRµνλσ|
1
4

(2.83)

defines a natural curvature length scale. Thus lc might be compared against the Planck length

to provide an indicator for the setting in of Quantum Gravity effects.

The strength of singularities

The idea behind a classification of the strength of a singularities (see e.g. [56]) is as follows:

Loosely speaking, a singularity is called strong if the tidal forces are strong enough to destroy

any extended object (e.g. a string) that comes close to the singularity. A singularity is

called weak if it is in principle traversable by an object which is rigid enough. More precise

definitions, based on considerations of the geodesic deviation equation, were given by Tipler

[57] and Królak [58]. Let uµ and τ be the four velocity and proper time along a timelike
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geodesic respectively. Suppose the geodesic hits the singularity when τ = τ∗. The singularity

is called strong

• according to Krolak if one of the integrals
τ∫
0

dτ ′Rµ
ανβu

αuα diverges as τ → τ∗.

• according to Tipler if one of the integrals
τ∫
0

dτ ′
τ ′∫
0

dτ ′′Rµ
ανβu

αuα diverges as τ → τ∗.

Otherwise the singularity is called weak. While Tipler’s definition is usually regarded as

being more physical, Królak’s definition is easier to study in practice.

Singularities in spatially homogeneous models

We remark at this stage that all Bianchi class A models filled with matter fields that satisfy

the usual energy conditions start their evolution in a spacelike singularity and expand for

eternity. This is true for all Bianchi models except for the type IX model which recollapses

and ends its evolution in a second singularity as proven by Lin and Wald [59]. Such a theorem

also holds for the Kantowski-Sachs model [60]. In fact the so called closed universe recollapse

conjecture (see e.g. [60]) states that all closed universes share this feature.

The asymptotic behavior of the Weyl squared scalar for spatially homogeneous models

filled with (non-tilted) perfect fluids was studied by Barrow and Hervik [55]. If the usual

energy conditions are satisfied and the expansion is anisotropic the Weyl squared scalar

usually diverges when approaching the singularity. How fast it diverges depends on the

equation of state parameter.

Classification in terms of the scale factor

The following classification scheme was designed for the application to Friedmann models

filled with ideal fluids [25]. The classification, as given in the following, allows to distinguish

between five types of singularities :

• Type 0 (Big Bang/Crunch): a→ 0, ρ→∞ and p→∞ in finite comoving time.

• Type I: a→∞, ρ→∞ and p→∞ in a finite comoving time. An example is given by

the Big Rip singularity considered for example in [24].

• Type II (sudden singularity): a and ρ stay finite while p → ±∞ in finite comoving

time. Examples are the Big Brake and Big Démarrage considered in the references [27]

and [26] respectively.
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• Type III (finite scale factor singularity): a→ a∗ = const., ρ→∞ and p→∞ in finite

comoving time. An example is the Big Freeze considered in [26].

• Type IV (Big Separation): a, ρ and p stay finite but the higher derivatives dn

dtn
a and

dn−1

dtn−1H for some n ≥ 3 diverge in a finite comoving time t(H is the Hubble parameter).

• Type V (w-singularity): a, ρ and p stay finite but the equation of state parameter

w = p/ρ blows up in finite comoving time.

Here ρ and p are the energy density and the pressure of the perfect fluid coupled to the

Friedmann model. According to the definition of Tipler only the Type 0 and I singularities

are strong while according to Krolak also the Type III singularity is strong. The above

classification scheme has been refined and enlarged (see e.g. [61] and the references therein).

Since we can also define a scale factor for the more general spatially homogeneous but

anisotropic models via a3 :=
√
h, we can borrow this classification and apply it (to some

extend) to the case of spatially homogeneous cosmological models coupled to perfect fluids.

Note, however, that not all matter fields (e.g. Yang-Mills fields) can be regarded as perfect

fluids. Moreover, important singularities in vacuum solutions, for example the singularity of

the Kasner solution, cannot be classified according to this scheme.

We should also remark that a → 0 is not a sufficient criterion for the existence of a

physical singularity. The Taub-NUT-M solution (see e.g. [45]) is a special case of the vacuum

Bianchi type IX model. Here in fact a→ 0 is a coordinate singularity known as the Misner

interface, which represents a Killing horizon at which one of the spacelike Killing vector fields

becomes lightlike. The solution can be analytically extended. The solution on the other side

of the Misner interface, however, possesses 2 spacelike and 1 timelike Killing vector fields.

The singularity is thus a coordinate artifact similar to the Schwarzschild horizon in the

Schwarzschild coordinates.

VTD and AVDT

If the dynamics of cosmological model is completely determined by the kinetic term in

the Einstein-Hilbert action we call the dynamics velocity term dominated (VTD). The

Kasner solution provides the prototype of a VTD spacetime. If such a behavior is recovered

approximately in the dynamical regime close to the singularity the approach to the singularity

is called asymptotically velocity term dominated (AVTD). This behavior can for example be

found for the Bianchi II vacuum solution where the influence of the curvature potential on the

spacetime dynamics is negligible asymptotically close to the singularity. Another example

is given by the Bianchi I model filled with an ideal fluid which we shall consider later in
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3.1.3. In this case “matter doesn’t matter” in the regime close to the singularity (this is true

except for the isotropic solution). In the Bianchi IX model the three curvature term (2.61)

forms a trapping potential and influences the dynamics of the universe all the way down to

the singularity. Therefore the singularity of the Bianchi IX model provides a prototypical

example which is not AVTD. For more details see [64].

The BKL conjecture

The question whether singularities are a generic feature of Einstein’s theory was also interesting

to Landau. In fact he considered the singularity problem to be one of the main problems

in physics at that time [65]. His idea was to expand the general solution of Einstein’s field

equations in the vicinity of a generic spacelike singularity. This analysis was carried out by the

members of his group, Belinski, Khalatnikov and Lifshitz (BKL) [66]. The heuristic analysis

of BKL then suggested that points in space decouple and the dynamics of a small enough

region then turn out to be effectively the same as those of the (non-diagonal) Bianchi IX or

Bianchi VIII universe. The dynamics of of these models in the vicinity of the singularity are

characterized by an infinite number of oscillations which give rise to a chaotic character of the

solutions. The BKL conjecture states that this behavior is a generic feature of solutions to

Einsteins field equations in the vicinity of a spacelike singularity. Progress towards improving

the mathematical rigor of the conjecture has been made by the authors of [48]. Additionally

numerical studies giving support to the conjecture have been performed in [67] and in the

context of gravitational collapse in [68]. The BKL conjecture has also been studied within

the context of the Gowdy spacetimes [69]. The results of [70] indicate that the conjecture is

indeed true within these models. For a recent overview of the BKL conjecture see [49]. See

also [64] for an overview of numerical results.
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2.1.5 A generalized setup for the dynamics of spatially homogeneous

models

In this section we introduce a general setup which will serve as a starting point for quantization.

Recall that we did not discuss the inclusion of matter fields in section 2.1.3. The case of ideal

fluids was discussed by Jantzen [31]. For a canonical treatment of ideal fluids one might

employ the formalism developed by Schutz [71, 72] and for the particular case of dust the

one by Brown and Kuchař [73]. The setup we will introduce should be general enough to

cover the coupling of matter fields such as scalar fields and Yang-Mills fields to spatially

homogeneous cosmological models. Most importantly it should emulate the main features

of the minisuperspace models obtained via the symmetry reduction of general relativity to

spatially homogeneous spacetimes. The setup that we will introduce in the following has

the virtue of offering a quite general view on the dynamics of minisuperspace models and on

the geometry of minisuperspace. It has, however, a major disadvantage: while the spatially

homogeneous cosmological models admit a dynamical and a spacetime point of view, the

model considered here offers only a dynamical point of view. Although the following setup

is more general than the homogeneous cosmological model, we will nevertheless use the

terminology that is common in the context of (quantum) cosmology.

We assume a d-dimensional minisuperspaceM parametrized by the variables {q0, . . . , qd−1}
with an action of the form

S =

∫
dt L =

∫
dt

[
1

2N
GAB

(
q̇A −N iAi

A
) (
q̇B −N jAj

B
)
−NV

]
, (2.84)

where N =: N0 and N i are Lagrange multipliers and the index i runs from 1 to dmc < d

(for cosmological models usually dmc ≤ 3). The vectors Ai = Ai
A(q)∂A are assumed to be

linearly independent in all points q ∈M. The (generalized) DeWitt metric8 is defined via

dS2 := GABdqA ⊗ dqB . (2.85)

The DeWitt metric constitutes a metric on minisuperspace. In general it has a Lorentzian

signature (−,+, . . . ,+). This signals the presence of a lightcone structure inM. The function

V : M → R is the minisuperspace potential, which is determined by the spatial three-

curvature and the matter potentials. We adopt the terminology of Misner [42, 43] and Ryan

[45] and refer to the configuration q = {qA} ∈ M of the universe as the universe point.

8Often one calls the metric on the gravitational part of M the DeWitt metric. In this thesis, we will call
the metric on M =Mgrav ×Mmatter the DeWitt metric.
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Note that the coupling of phantom fields [24] changes the signature of the DeWitt metric.

The volume element on minisuperspace is given by

?1 =
√
|G| dq0 ∧ dq1 ∧ . . . ∧ dqd−1 , (2.86)

where G is the determinant of the DeWitt metric, that is, G := det ({GAB}).

In the following we want to go over to the Hamiltonian formulation via the Dirac-

Bergmann algorithm. We will use thereby to the terminology of Sundermeyer [74]. Note

that the first step of the algorithm has already been performed by identifying the lapse and

shift functions as non–dynamical variables.

The DeWitt metric and the vector fields Ai
A both appear in the Legendre transform

(
qA, q̇A

)
7→
(
qA, pA =

1

N
GAB

[
q̇B −N iAi

B
])

. (2.87)

The Legendre transform provides a linear map from the velocity phase space TM to the

momentum phase space T ∗M. Performing the Legendre transform at the level of the action

we obtain

S =

∫
dt
(
q̇ApA −N0H0 −N iHi + λ0P0 + λiPi

)
. (2.88)

The variables Λ0 and Λi are Lagrange multipliers, which ensure that the momenta conjugate

to N0 and N i weakly vanish, that is, P0 ' 0 and Pi ' 0. These are the so called primary

constraints, which are usually not written explicitly and we will also omit these terms from

now on. The Hamiltonian constraint takes the form

H0 =
1

2
GABpApB + V ' 0 , (2.89)

This equation provides some important information about the dynamics. It tells us if the

momentum p = {pA} is “timelike”, “spacelike” or “lightlike” as determined by the sign of

the potential. This already allows us to make some simple qualitative statements about the

behavior of the solutions. For example, the trajectory of a recollapsing universe has to turn

“spacelike” in a region around the turning point. Consequently, if V ≥ 0 for all q ∈ M, the

trajectory of the universe point will be “timelike” or “lightlike” and a recollapse is impossible.

In addition we assume in (2.84) the presence of dmc momentum constraints, which are linear

in the momenta. They have the form

Hi = Ai
ApA ' 0 . (2.90)
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We collect the constraints into a single vector by introducing the notation Hµ = {H0,Hi},
where µ = 0, 1, . . . , dmc.

In order to emulate the dynamics of spatially homogeneous cosmological models we require

the Dirac-Bergmann algorithm to stop at this point. Thus the secondary constraints Hµ ' 0

should be first class, that is, they should be preserved in time. This is equivalent to the

requirement that the constraint algebra closes:

{Hµ,Hν} = CλµνHλ ' 0 . (2.91)

Note that the structure functions Cλµν = Cλµν(q,p) are functions of all the phase-space variables

in general. The demand for closure of the constraint algebra will imply certain conditions on

the DeWitt metric dS2, the potential V and most importantly the vector fields Ai which we

will work out in the following. We readily find that

{Hi,Hj} = − [Ai,Aj]
A pA = −

(
Ai

B∇BAj
A − AjB∇BAi

A
)
pA , (2.92)

where ∇ denotes the Levi-Civita connection compatible with dS2. Hence the requirement

(2.91) demands that the vector fields Ai form a closed Lie sub-algebra of vector fields, that is,

LAiAj = [Ai,Aj] = −CkijAk. Following chapter 14 in the textbook [75], we can draw a clear

geometrical picture of the situation. Because of the closure condition, the vector fields Ai

define what is called an integrable distribution. This yields a foliation of the minisuperspace

M into dmc–dimensional sub-manifolds Σ.9 These submanifolds are the so called integral

manifolds of the vector fields Ai, that is, their tangent space at any point q is spanned by

the vectors Ai |q. The integral manifolds are then also called the leaves of the foliation.

For a cosmological minisuperspace model, the leaves are usually spacelike and, in the case

of the vacuum Bianchi models, the leaves of the foliation can be identified with the inner

automorphism group.

We can construct the components of the induced metric on the leaves via Gij := Ai
AAj

BGAB.

We define the dual of Ai as Bi = BA
idqA, where BA

i := GABGijAjB. By construction the

duality relation Aj
ABA

i = δij is satisfied. We can then write

{Hi,Hj} = − [Ai,Aj]yB
kHk = CkijHk . (2.93)

Furthermore, the matrix

PA
B := BA

iAi
B (2.94)

9A dmc – dimensional submanifold is also called submanifold of codimension d−dmc in the mathematically
inclined literature.
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satisfies PA
CPC

B = PA
B and thus it acts as projection operator TM → TΣ (and T ∗M →

T ∗Σ). The projector PA
B maps the momenta into span{Hi} and it is called the tangential

projection operator. The normal projection operator can be defined as

P̄A
B := δBA − PAB . (2.95)

The projector P̄A
B is the complement of PA

B, that is, PA
BP̄B

C = P̄A
BPB

C = 0. By

construction the projectors are orthogonal, i.e.,

PAB = PBA and P̄AB = P̄BA . (2.96)

The normal projector P̄A
B provides a map TM→N (Σ) where N (Σ) is the so called normal

space, which is the space of all vector fields in N (Σ) that are normal to the leaves Σ. For the

traces of the projection operators, it holds that PA
A = dmc and P̄A

A = d−dmc. Furthermore,

the projectors allow for a decomposition of the DeWitt metric into two parts according to

GAB = P̄A
CP̄B

DGCD + PA
CPB

DGCD . (2.97)

Note that PA
CPB

DGCD = BA
iBB

jGij is the induced metric on the leaves. The decomposition

of the inverse metric GAB proceeds analogously.

Let us now consider the Poisson brackets {H0,Hi}. By direct calculation, we find that

{H0,Hi} =
1

2

(
LAidS2

)AB
pApB + LAiV

= −∇(AAi
B)pApB + Ai

A∂AV ,
(2.98)

where (LAidS2)
AB

= −2∇(AAi
B) is the Lie derivative of the (inverse) DeWitt metric with

respect to the vector field Ai. Our considerations so far lead us to impose the following

conditions:

• The vector fields Ai define a distribution on M.

• The DeWitt metric GAB, the potential V and the vector fields Ai satisfy

Ai
A∂AV = 2λiV and

(
∇(AAi

B) + λiGAB
)
P̄A

CP̄B
D = 0 , (2.99)

where λi is defined via

λi := − 1

d− dmc

∇(AAi
B)P̄A

CP̄B
DGCD . (2.100)
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From now on, we will always assume that these conditions are satisfied. Note that, as a

particular case, Ai might be a conformal Killing vector field of both the metric and the

potential. The conditions imply that the constraint algebra closes, that is, {Hµ,Hν} =

CλµνHλ ' 0, where the structure functions are given by

C0
0i = 2λi ,

Cj0i = −
(
∇(AAi

B) + λiGAB
) (
PA

C + 2P̄A
C
)
pCBB

j

Ckij = −
(
Ai

A∇AAj
B − AjA∇AAi

B
)
BB

k .

(2.101)

The calculation in this section shows that the conditions are both necessary and sufficient

for the closure of the constraint algebra. Note that C0
0i and Ckij are functions of only q while

the Cj0i are functions of q and p.

Equations of motion: The evaluation of the Poisson brackets
{
qA, H

}
and {pA, H} gives

2×d equations of motion. In the momentum phase space, the equations of motion constitute

the dynamical system

q̇A =NGABpB +N iAi
A

ṗA =−NGCDΓBACpBpD −N∂AV −N i∂AAi
BpB .

(2.102)

The equations can now be solved after fixing the gauge N and N i and setting up initial

conditions {qin,pin} obeying the constraints

Hµ(qin,pin) = 0 . (2.103)

The time preservation of the constraints is implied by the closure of the constraint algebra.

In configuration space, the equations of motion read

(∂t − ∂t logN)
(
q̇A −N iAi

A
)

+
(
ΓABC q̇

B +N iGCD∇AAi
D
) (
q̇C −N iAi

C
)

+ NGAB∂BV = 0 ,
(2.104)

where ∇B is the Levi-Civita connection that is compatible with the DeWitt metric and ΓABC

are its coefficients. If we gauge N i = 0 and assume that N = N(q) we obtain

(
q̇B∇B − ∂t logN

)
q̇A +NGAB∂BV = 0 . (2.105)
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Note that the equations of motion in configuration phase space are manifestly covariant.

After choosing the gauge N = 1 we get

q̈A + ΓABC q̇
B q̇C + GAB∂BV = 0 , (2.106)

This is of course the geodesic equation on (M, dS2) for a parametrized curve with tangent

vector q̇ plus a conservative force term. Note that the precise form of the solution curves

q(t) depends on the gauge N i.

Transformations of the constraint algebra: We consider the following transformation

of the lapse and shift functions:

N 7→ Ñ = Ω2N , (2.107)

N i 7→ Ñ i = N jLj
i , (2.108)

where Ω : M 7→ R+ is sufficiently smooth and {Lj i} ∈ GL(dmc,R).10 The full Hamiltonian

is invariant under this transformation, that is,

H = NµHµ 7→ H = ÑµH̃µ (2.109)

where the Hamiltonian and momentum constraints transform like

H0 7→ H̃0 = Ω−2H0 =
1

2
G̃ABpApB + Ṽ , (2.110)

Hi 7→ H̃i = Ãi
ApA , (2.111)

with G̃AB = Ω2GAB, Ṽ = Ω−2V and Ãi
A = Li

jAj
A. In the context of Quantum Cosmology,

we will refer to the transformation (2.107) as a conformal transformation. Furthermore, we

introduce the obvious notation

dS̃2 = Ω2dS2 . (2.112)

The transformation (2.108) can also be understood as a change of the basis on the leaves of the

foliation. The full transformation made up of (2.107) and (2.108) induces a transformation

of the structure functions according to

{H̃µ, H̃ν} = C̃λµνH̃λ . (2.113)

10More generally, one could also consider transformations of the form N i 7→ N i + ∆N i. We leave this
investigation for future work.
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The constraint algebra of the transformed system closes and the new structure functions are

related to the old ones by

C̃0
0i = Li

j
(
C0

0j − 2Aj
A∂A log Ω

)
= 2λ̃i ,

C̃j0i = Ω−2
[
Li

lCk0l − GAB
(
∂ALi

k
)
pB
] (
L−1

)
k
j ,

C̃kij =
[
Li

lLj
nCmln + Lj

lAl
A (∂ALi

m)− LilAlA (∂ALj
m)
] (
L−1

)
m
k .

(2.114)

Note that if we only consider rescalings of the lapse function then λi transforms similar to a

Weyl vector field (see appendix B.3):

λi 7→ λ̃i = λi − AiA∂A log Ω . (2.115)

The transformation law suggests that we can interpret the one–form λiB
i as a Weyl one–form

on the leaves of the foliation.

For completeness and later use, we remark that we can define the 2-form F := FijBi∧Bj,

where

Fij := 2Ai
AAj

B∇[AλB] and λA := BA
iλi . (2.116)

Note that by definition P̄A
BλB = 0. The tensor F is in certain aspects analogous to

the Faraday 2-form in electrodynamics. Its most notable feature is its invariance under

rescalings of the lapse. Moreover, it transforms covariantly under transformations of the

shift functions. To be more precise, it transforms like Fij 7→ F̃ij = Li
kLj

lFkl under the

transformation (2.108). A certain simplification arises if F = 0. This is in particular true if

all λi = 0 (or all λ̃i = 0 after a rescaling of the lapse) which is usually the case for spatially

homogeneous cosmological models. If we, however, perform a rescaling of the lapse, which

satisfies Ai
A∂AΩ 6= 0, then λ̃i = −AiA∂A log Ω is non-zero. The condition F = 0 seems

to be important in the context of quantization. In fact, this condition is equivalent to the

statement that the Weyl structure on the leaves is integrable, as we will show later in section

2.2.7.

In addition, we have encountered the objects

KAB
i := ∇(AAi

B) + λiGAB (2.117)

in our calculations. We find that they transform as

KAB
i 7→ K̃AB

i = Ω−2KAB
i , (2.118)
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when we rescale the lapse. This also implies that the scalars Ki := GABKAB
i are invariant

under rescalings of the lapse function. However, neither KAB
i nor Ki transform covariantly

under transformations of the shift. The KAB
i transform as

KAB
i 7→ K̃AB

i = Li
jKAB

j + Aj
(A∂B)Li

j . (2.119)

Nevertheless, since Ai
CP̄C

A = 0 the object KCD
i P̄C

AP̄D
B transforms covariantly under

transformations of the shift. Therefore, the condition KCD
i P̄C

AP̄D
B = 0 has a covariant

meaning. Furthermore, we remark that the structure functions Ckij can be rewritten as

Ckij = 2A[i
AAj]

B∇ABB
k = 2Ai

AAj
B∇[ABB]

k . (2.120)

Our considerations so far might be important in the context of canonical quantization.

The transformations (2.107) and (2.108) certainly leave the physics invariant. We will later

demand that the same holds true for the quantized version of the system. We continue the

discussion on the geometry of minisuperspace in section 2.2.7. But before closing this section

let us have brief look at the notion of symmetries.

Symmetries: A phase-space function f(q,p) is a constant of motion if it weakly commutes

with all constraints

{Hµ, f} ' 0 . (2.121)

We consider first functions of the form f(q,p) = ξApA with ξ = ξA∂A ∈ TM. The

discussion proceeds analogously to the discussion of the momentum constraints. The condition

(2.121) is satisfied if

• The vector field ξ satisfies [ξ,Ai] ∈ span{Ai}. In the mathematical literature on

foliations, these vector fields are called basic or also foliate. The set of all basic vector

fields forms a Lie algebra [76].

• ξA∂AV = 2λξV and
(
∇(AξB) + λξGAB

)
P̄A

CP̄B
D = 0.

The scalar λξ is completely analogous to the one defined in (2.100). Note that the above

conditions are satisfied by the momentum constraints Hi as well (the associated constant of

motion, however, is constrained to be zero). An important example of such a symmetry are

the generators of the special automorphism group in the case of (vacuum) Bianchi models.

In full analogy to the vacuum Bianchi models, we introduce the following terminology:

We refer to the group generated by all vector fields ξ which satisfy the above conditions as



48 CHAPTER 2. GENERAL CONSIDERATIONS

the symmetry group of the system. The subgroup generated by the vector fields Ai will be

called the inner symmetry group. The group which is generated by all vector fields that are

not in the span{Ai} will be called the outer symmetry group.

Let us next consider phase-space functions of the form f(q,p) = XABpBpA with X =

XAB∂A ⊗ ∂B ∈ TM⊗ TM being a symmetric
(

2
0

)
–tensor field XAB = XBA. We compute

the commutators with the secondary constraints as follows

{f,H0} = 2pA

[
1

2
∇(AXBC)pBpC −XAB∂BV

]
,

{f,Hi} = (LAiX)AB pApB .

(2.122)

We find that the condition (2.121) is satisfied if

• (LAiX)ABP̄A
CP̄B

D = 0,

• XAB∂BV = λX
AV ,

•
(
∇(AXBC) + 2λX

(AGBC)
)
P̄A

DP̄B
EP̄C

F = 0.

The vector field λX
A∂A is the vector-field analogue of the scalar (2.100) and the last two

conditions are in some sense equivalent to (2.99). As a particular sub-case, X might be

a conformal Killing tensor field of the DeWitt metric and the potential. Another example

is given by X = ξ ⊗ ξ where ξ generates a symmetry. The reader can easily convince

herself/himself that this tensor satisfies all requirements.

2.1.6 Hamilton-Jacobi formalism

The Hamilton-Jacobi formalism might be considered as the formulation of classical mechanics

which is closest to quantum mechanics. In fact, it was Schrödinger’s actual starting point

for deriving his famous wave equation [77]. In this sense the current section will serve as a

preparation for quantization, which is to be understood in this thesis as a procedure that

tries to reverse the eikonal approximation. More precisely, the Wheeler-DeWitt equation and

the quantum momentum constraints should be constructed such that the Hamilton-Jacobi

equation is recovered in the semi-classical limit. We write now the action in the form

S0[q,p,qin,pin] =

∫
γ

dt
[
q̇ApA −NµHµ

]
, (2.123)

where γ is a path with starting point qin, pin and end point q ∈M, p ∈ T ∗qM. The physical

path is the one that minimizes the action. The Hamiltonian and momentum constraint vanish
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for physical trajectories. On-shell, the action therefore becomes

S0[q,p,qin,pin]=̇

∫
γ

dτ :=

∫
γ

(∂AS0) dqA =

∫
γ

pAdqA . (2.124)

The 1-form dτ is the differential of the so called WKB time. It can now be shown that

(on-shell) S0 satisfies the Hamilton-Jacobi equations

H0

(
q,p = ∂AS0dqA

)
=

1

2
GAB(∂AS0)(∂BS0) + V = 0 ,

Hi

(
q,p = ∂AS0dqA

)
= Ai

A∂AS0 = 0 ,
(2.125)

where initial conditions are to be given on some suitable hypersurface Σ ⊂ M. The initial

momenta ∂AS0|Σ are then also subject to the constraints Hµ (qA, ∂AS0) |Σ = 0. Note that

after solving the equations S0 provides a scalar field on some submanifold of M. Moreover,

if S0 is a solution to the Hamilton-Jacobi equations then −S0 is also a solution. By switching

to the Hamilton-Jacobi formalism, we shift the problem of solving equations of motion to

the problem of solving one non-linear first order partial differential equation for the so called

Hamilton-Jacobi action. Moreover, the formalism so far is completely independent of the

gauge Nµ. After solving the Hamilton-Jacobi equation, we obtain the physical momenta

pA = ∂AS0 by construction. The momentum constraints Ai
A∂AS0 = Ai

ApA = 0 imply that

S0 is constant on the leaves of the foliation spanned by the vector fields Ai.

Note also that the Hamilton-Jacobi equations (2.125) are completely independent of any

external time parameter. We can, however, define a time vector field by

∂τ :=
∂

∂τ
:= GAB(∂BS0)∂A ∈ TM . (2.126)

The momentum constraints Ai
A∂AS0 = 0 ensure that S0 does not change in the direction Ai

which implies that ∂τ does not have components proportional to the vectors Ai; in formulas:

PA
B(∂τ )

B = 0 . (2.127)

Furthermore, we obtain the Lie bracket

[∂τ ,Ai] = −2λi∂τ + 2(∂AS0)∇(AAi
B)BB

jAj . (2.128)

This implies that the algebra formed by {∂τ , Ai} closes.11 If we want to obtain the physical

11This might be important in the context of semi-classical Quantum Cosmology since ∂τ appears on the
left hand side of the functional Schrödinger equation [10, 78].
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trajectories in M we have to solve the equation

1

N
q̇ =

∂

∂τ
+ niAi , (2.129)

which requires to fix a gauge N and ni := N i

N
. The solution q(t) is then an integral curve

of the vector field N
(
∂
∂τ

+ niAi

)
. We note that the flow of this vector field depends on the

gauge ni. We conclude that while different gauges for N only yield different parametrizations

of the solution curves, different gauges ni, that is, different foliations, certainly yield different

trajectories inM. A relation between WKB time τ and the coordinate time t can be obtained

from the equation

dτ := dS0 = pAdqA = GAB
(
q̇A

N
− niAiA

)
q̇Bdt . (2.130)

Let us now turn to a discussion of symmetries at the level of the Hamilton-Jacobi

formulation. Let f(q,p) = ξApA be a symmetry of the system as discussed in section 2.1.5

of this thesis. We denote the flow generated by the vector ξ by

Φξ : M× R→M
(q, T ) 7→ ΦT

ξ (q) = exp (Tξ) q .
(2.131)

Furthermore, we define

S̃T (q) := S
(
ΦT
ξ (q)

)
. (2.132)

One can now show the following:

If ξ generates a symmetry and S solves the Hamilton-Jacobi equations (2.125) then S̃T

is a solution as well.

It is sufficient to prove the infinitesimal version of this statement. We first expand S̃T

around T = 0. Using the fact that S solves (2.125) and that ξ generates a symmetry one can

show that
1

2
GAB(∂AS̃)(∂BS̃) + V = O(T 2) and Ai

A∂AS̃ = O(T 2) . (2.133)

The terms linear in T vanish identically and hence we can conclude the proof. Recall that the

subalgebra of vector fields {Ai} generate symmetries as well. The momentum constraints

Ai
A∂AS = 0, however, ensure that S̃(Φ(q)) = S(q) if the flow Φ was generated by this

subalgebra.

Recall that an important example of the symmetries in this discussion are the automorphisms

in the case of the vacuum Bianchi models. In that case ξ could be taken as a generator of a
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constant special automorphism, that is, for a fixed T the flow is given by ΦT
ξ (hij) = hklL

k
iL

l
j,

where {Lij} is a constant element of SAut(g).

The Van Vleck factor

An important feature of any quantum theory of gravity should be that it contains the classical

theory in some specific limits. In the Wheeler-DeWitt approach, one of the steps that leads

to the recovery a classical limit usually involves the WKB approximation (see [10] or section

of this 2.2.3 thesis). In the semi-classical limit, the wave functions are then of the form

Ψ ≈
√
DeiS (2.134)

where S is a solution to the Hamilton-Jacobi equation and D is the so called van Vleck factor

(mostly referred to as van Vleck determinant). The following considerations might therefore

be considered a first step into the realm of Quantum Cosmology.

Suppose that we have a solution S to the Hamilton-Jacobi equation (2.125). In the

following, we want to derive a notion of a momentum flux density D in M for the given

solution S . We define the momentum flux

JA := DGAB∂BS0 (2.135)

and demand that it is conserved, that is,

∇AJ
A = 0 . (2.136)

The conservation equation yields a linear transport equation for D which reads

∂τD = −(�S)D (2.137)

We remark that the definition (2.135) and the conservation law (2.136) correspond in some

sense to Fick’s first and second law, respectively.

We can set up initial conditions for D at some point qin ∈ M and then evolve it along

the streamlines γ of the momentum flux by

D(q) = D(qin) exp

(
−
∫
γ

dτ �S

)
. (2.138)

Note that the choice of the initial condition D(qin) > 0 corresponds to some choice of a
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reference density.

Furthermore, note that the definition of D depends on the metric dS2 and therefore on

the choice of the gauge N . More precisely, the van Vleck factor transforms as

D 7→ D̃ = Ω2−dD (2.139)

under a rescaling of the lapse function (2.107). We might say that D transforms in a

conformally covariant way. This implies that the flux

J = D ? dτ , (2.140)

on the other hand, is invariant under rescalings of the lapse function. Note that the Hodge

star operator depends on the metric dS2 and therefore it is not invariant under rescalings

of the lapse. We denote the Hodge dual associated to the rescaled metric dS̃2 by ?̃. The

transformation law for the Hodge star under conformal transformations can be found in the

appendix (B.5).

Recall that in the minisuperspace models the momentum constraints act as diffeomorphism

inducing generators in the phase space T ∗M. We might want to demand that D is as well

invariant under the action of the inner symmetries, that is, LAiD = Ai
A∂AD = 0. This

equation is however not invariant under rescalings of the lapse. We therefore impose the

equation [
Ai

A∂A + (d− 2)λi
]
D = 0 (2.141)

instead. Existence of solutions to the system of equations (2.137) and (2.141) follows from

the fact that the algebra {∂τ ,Ai} closes and by application of the Frobenius theorem if the

additional condition F = 0 is satisfied.

It was already noticed by Hawking and Page [79] that the van Vleck factor is intimately

connected to the coordinate time t. Suppose now that we have solved the Hamilton-Jacobi

equation and we obtained S0 and pA = ∂AS0. After fixing the gauge N and Ni, we are able

to obtain the trajectories qA(t) in terms of the coordinate time t by solving

q̇A = NGABpB +N iAi
A . (2.142)

Using (2.130), we find that

?D = Ndt ∧ J . (2.143)

Recall that the current J is conserved and invariant under rescalings of the lapse. The
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line element Ndt is the infinitesimal time interval which corresponds to the infinitesimal

coordinate time interval in the spacetime metric when N is set equal to 1. Under rescalings

of the lapse ?D transforms as ?D 7→ ?̃D̃ = Ω2 ? D.

2.2 Quantum Cosmology

2.2.1 The Wheeler-DeWitt equation in minisuperspace

In the following, we consider again a general d-dimensional minisuperspaceM as described in

section 2.1.5. The task of canonical quantization is now to “reverse the eikonal approximation”.

Quantization is performed heuristically á la Dirac with the variables qA as configuration

space variables. Recall that qA can contain both the three metric components hij and matter

degrees of freedom. The process gives rise to the Wheeler-DeWitt equation which is usually a

hyperbolic partial differential equation that resembles the form of a Klein-Gordon equation.

Instead of sharp trajectories in minisuperspace, one now obtains wave packets as solutions

to the Wheeler-DeWitt equation. It is then expected that it is possible to construct wave

packets which are roughly peaked over the classical trajectories in certain regions ofM. We

replace now the constraints Hµ ' 0 by their quantum versions ĤµΨ = 0. The momenta

are thereby substituted according to the quantization rule pA 7→ −i~∂A. Following this

procedure, we obtain the minisuperspace Wheeler-DeWitt equation and the quantum versions

of the momentum constraints

ĤΨ = 0 , where Ĥ = −~2

2
“ GAB∂A∂B ” + V

ĤiΨ = 0 , where Ĥi = −i~ “ Ai
A∂A ” .

(2.144)

The Wheeler-DeWitt approach to Quantum Cosmology comes with all of conceptual problems

mentioned in the introduction 1.1. We will not specify in which vector space wave functions

are supposed to live in. There are several questions in this regard which remain unanswered.

For example: Should wave packets be real or complex valued? It has sometimes been argued

that wave functions should be real based on the fact that the Wheeler-DeWitt equation

contains only real quantities. Moreover, it is not clear if and how boundary conditions are to

be imposed on the wave function. We will shortly comment on this issue in section 2.2.6. The

notation “ . ” in (2.144) indicates that the factor ordering is left open. To be more precise,

it can make an immense difference if we, for example, write GAB∂A∂BΨ or ∂A
(
GAB∂BΨ

)
in

the Wheeler-DeWitt equation. The factor ordering problem, or more precisely, the problem

of how to construct the quantization map Hµ 7→ Ĥµ constitutes a major open problem in
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Quantum Cosmology. Indeed, we should pay close attention to this issue because, as we will

see in the following, the factor ordering has a strong influence on the discussion of singularity

avoidance.

It is beyond the scope of this thesis to cover all facets of Quantum Cosmology in the

Wheeler-DeWitt framework. For additional aspects and different perspectives, see in particular

[10, 78, 80, 81] and the references therein.

2.2.2 The conformally covariant Wheeler-DeWitt equation

For the sake of simplicity, we start the discussion with the case when there are no momentum

constraints, that is, the momentum constraints are either trivially satisfied or the classical

dynamics were reduced in such a way that only the Hamiltonian constraint remains.

The invariance of the classical theory under rescalings of the lapse function motivates us

to use the conformal factor ordering, that is, we choose the quantization map

GABpApB 7→ − (�− ξdR) , (2.145)

where ξd = d−2
4(d−1)

and we have set ~ = 1. The operator � − ξdR is the conformal Laplace-

Beltrami operator (or Yamabe operator) with � := 1√
−G∂A

(√
−GGAB∂B

)
being the Laplace-

Beltrami operator and R being the Ricci scalar on the Riemannian manifold (M, dS2).

The choice of the Laplace-Beltrami factor ordering renders the Wheeler-DeWitt equation

invariant under coordinate transformations in minisuperspace, that is, the quantum theory

does not depend on the choice of the minisuperspace coordinates. Note that this symmetry

is already present at the classical level and it seems natural to regain it at the quantum level.

The general covariance on M is not spoiled by adding a term proportional to R. In d = 2

the Laplace-Beltrami and the conformal factor ordering coincide. In addition to the general

covariance in minisuperspace the conformal factor ordering renders the kinetic term in the

Wheeler-DeWitt equation covariant under conformal transformations of the minisuperspace

DeWitt metric and a conformal rescaling of the wave function

GAB 7→ G̃AB := Ω2GAB and Ψ 7→ Ψ̃ := Ω−
d−2

2 Ψ . (2.146)

where Ω : M → R+. An object T (e.g. a tensor or tensor density) that transforms as

T → T̃ = Ωw(T )T under conformal rescaling of the metric is now said to be conformally

covariant with conformal weight w(T ). In particular, we say that T is conformally invariant

if w(T ) = 0. By definition w(dS2) = 2 and w(Ψ) = −(d− 2)/2. The square root of
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the determinant of the DeWitt metric transforms as
√
−G 7→

√
−G̃ = Ωd

√
−G. The volume

element on minisuperspace has therefore conformal weight w(?1) = d. Recall that a conformal

rescaling of the DeWitt metric can be induced by a rescaling of the lapse function

N 7→ Ñ = Ω2N . (2.147)

This induces a transformation of the Hamiltonian constraint into

H 7→ H̃ =
1

2
G̃ijpipj + Ṽ , (2.148)

where Ṽ = Ω−2V . Consequently the minisuperspace potential is to be regarded as a scalar

with conformal weight w(V) = −2. The transformation law for the conformal Laplace-

Beltrami operator is

�− ξdR = Ω2−2p
(
�̃− ξdR̃

)
Ω2p , where

R̃ = Ω−2

[
R− 2(d− 1)

�Ω

Ω
− (d− 1)(d− 4)GAB ∂AΩ∂BΩ

Ω2

]
.

(2.149)

Because of this transformation law, the conformal Laplace-Beltrami operator maps scalars

with conformal weight −d−2
2

into scalars with conformal weight −d−2
2
− 2 and we say that

the operator carries the conformal bi-weight

w(�− ξdR) = (w(Ψ)− 2, w(Ψ)) =

(
−d− 2

2
− 2,−d− 2

2

)
. (2.150)

The Wheeler-DeWitt equation then transforms as

ĤΨ =

(
−1

2
[�− ξdR] + V

)
Ψ =

(
−1

2
Ω2−2p

[
�̃− ξdR̃

]
+ Ω−2pV

)
Ψ̃ = Ω2−2p ˆ̃HΨ̃ .

(2.151)

Note that
ˆ̃HΨ̃ = 0 is just the Wheeler-DeWitt equation obtained when applying the quantiza-

tion procedure to the transformed Hamiltonian constraint H̃ = 0. We conclude also that if Ψ

is a solution to ĤΨ = 0 then Ψ̃ solves
ˆ̃HΨ̃ = 0. In this sense, the conformal factor ordering

renders the Wheeler-DeWitt equation truly independent of the choice of the lapse function N .

The conformal covariance of the quantum formalism might therefore be regarded as a direct

consequence of the time reparametrization invariance at the classical level. Furthermore,

these considerations motivate us to regard the minisuperspace M as a conformal manifold,
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that is, a manifold equipped with a conformal equivalence class of metrics

[
dS2

]
:=
{

Ω2dS2 | Ω :M→ R+

}
. (2.152)

From now on, we shall call this equivalence class the (conformal) DeWitt metric. Based on

this discussion, we should also think of the wave function as an equivalence class of pairs

[dS2,Ψ].

Some issues regarding the conformal factor ordering were already discussed by Misner in

[17] with the following conclusion: “The choice of ∆c rather than ∆, or some other second

order operator, . . . , is a decision on a quantum ‘factor ordering’ problem. In the mini

examples we have so far considered the criterion of conformal invariance led to this decision,

but further decisions to be resolved on some other basis will no doubt arise in more complex

examples.”

It seems that such a situation arises, in particular, when momentum constraints are

present. In the next sections, we will only consider the cases with no additional constraint

except for the Hamiltonian constraintH0 ' 0. The quantum implementation of the momentum

constraints appears to be highly non-trivial and will be discussed at the end of this chapter

in section 2.2.7.

Klein-Gordon current

The Wheeler-DeWitt equation is usually a hyperbolic Klein-Gordon type differential equation.

If we allow for complex wave functions Ψ, we can consider the Klein-Gordon current

J [Ψ1,Ψ2] : =
1

2i
? (Ψ∗1dΨ2 −Ψ2dΨ∗1) = JA[Ψ1,Ψ2] ? dqA , where

JA[Ψ1,Ψ2] =
1

2i
Ψ∗1
←→
∂ AΨ2 :=

1

2i
[Ψ∗1(∂AΨ2)− (∂AΨ∗1)Ψ2] .

(2.153)

The current is conserved in the sense that dJ [Ψ1,Ψ2] = 0 if Ψ1 and Ψ2 are both solutions of

the Wheeler-DeWitt equation. The current has the following properties:

• J [Ψ1,Ψ2] = −J [Ψ∗2,Ψ
∗
1] = J [Ψ1,Ψ2]∗. Therefore the current is real.

• It is bi-linear: J [Ψ1 + Ψ2,Ψ3] = J [Ψ1,Ψ3] + J [Ψ2,Ψ3]

and J [Ψ1, cΨ2] = cJ [Ψ1,Ψ2] = J [c∗Ψ1,Ψ2].

• JA[Ψ1,Ψ2] has conformal weight 2 − d. This implies that
√
−GGABΨ∗1

←→
∂ BΨ2 has

conformal weight 0 and hence most importantly w(J) = 0.
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As we will see, the current J [Ψ,Ψ] can be interpreted as a quantum version of the classical

flux D ? dτ , which is conserved along classical trajectories by construction of the van Vleck

determinant.

2.2.3 The WKB-approximation and the semi-classical limit

As a starting point, we take the action S = S0 + SΦ, where S0 is the minisuperspace action

and SΦ is an action of matter field perturbations. This gives the full Hamiltonian

NH = N(H0 +HΦ) = 0 (2.154)

where NH0 is the minisuperspace Hamiltonian and NHΦ is the Hamiltonian for the perturba-

tions. We now quantize to obtain the Wheeler-DeWitt equation ĤΨ = (Ĥ0 + ĤΦ)Ψ = 0

where

Ĥ0 = − 1

2m2
p

(�− ξdR) +m2
pV , (2.155)

with �c := � − ξd GR being the conformal Laplace-Beltrami operator. In order to perform

the approximation, we have reinserted the Planck mass mp in this section.12 The Planck

mass serves as a large parameter with respect to which the semiclassical expansion will be

performed. In order to proceed we do a Born-Oppenheimer + WKB type ansatz:

Ψ(q,Φ] = eim2
pS0eiS1χ (q,Φ] +O

(
m−2
p

)
, (2.156)

where m2
p serves as a large expansion parameter (ignoring the fact that m2

p has a dimension).

We already anticipate here that χ (q,Φ] will be identified with the wave functional of the

scalar field perturbations in the gravitational background. This is fully in the spirit of the

Born-Oppenheimer approximation. We also assume in this section that we are always in

the regions of M where the WKB-approximation is valid. After inserting the ansatz in the

Wheeler-DeWitt equation one obtains at the two lowest orders:

O
(
m2
p

)
:

1

2
GAB(∂AS0)(∂BS0) + V(q) = 0 , (2.157)

O
(
m0
p

)
:
[
−i GAB(∂AS0)∂B + ĤΦ

]
χ =

[
i

2
�S0 − GAB(∂AS0)(∂BS1)

]
χ . (2.158)

The first equation is just the Hamilton-Jacobi equation for the classical action S0. By using

the principle of constructive interference, it is then argued that one can construct wave

12More precisely, mp is a parameter which is of the order of the Planck mass.
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packets which are peaked over a classical configuration space trajectory [78].

It is reasonable to regard S0 as a conformally invariant scalar, that is, w(S0) = 0. The

Hamilton-Jacobi equation (2.157) is then form invariant under conformal transformations.

We now take care of equation (2.158). Note that no traces of R are to be found at this

order. The Ricci scalar will first appear at the next order O(m−2
p ). Recall, however, that Ψ

is supposed to have conformal weight w(Ψ). For consistency, all orders of the approximation

should carry the same conformal weight. This now raises the question which term on the

right hand side of (2.156) carries this conformal weight. It appears to be convenient to assume

that it is fully contained in the term exp(iS1) = exp(iReS1 − ImS1). This means that ImS1

should transform as

ImS1 7→ ImS̃1 = ImS1 − w(Ψ) log Ω . (2.159)

Furthermore, it is convenient to introduce the WKB time τ by

∂

∂τ
:= GAB(∂AS0)∂B . (2.160)

The vector ∂
∂τ

is orthogonal to the congruences of constant S0 and tangential to the classical

trajectories. The WKB time transforms under a conformal transformation as

∂

∂τ
7→ ∂

∂τ̃
= Ω−2 ∂

∂τ
, (2.161)

i.e. ∂
∂τ

has conformal weight −2 while dτ = (∂AS0) dqA has conformal weight 0. With the

definition of ∂
∂τ

, equation (2.158) simplifies to[
−i

∂

∂τ
+ ĤΦ

]
χ =

[
i

2
�S0 −

∂S1

∂τ

]
χ . (2.162)

We now formally define a scalar product for the perturbations by

〈χ1, χ2〉q =

∫
DΦ χ∗1 (q,Φ]χ2 (q,Φ] . (2.163)

Having solved (2.157) and plugging the result in (2.158) we are left with too many unknown

functions. In order to proceed, two assumptions have to be made:

• ∂
∂τ
〈χ, χ〉q = 0. This condition is obviously conformally invariant when we assign to χ

the conformal weight 0.

• ĤΦ is self-adjount with respect to the scalar product.

We now choose χ to be normalized, that is, 〈χ, χ〉q = 1, and take the scalar product of
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equation (2.158) with χ. The real and imaginary part of the resulting equation have to

cancel independently. The imaginary part gives

∂ImS1

∂τ
=

1

2
�S0 (2.164)

while the real part gives

i
∂χ

∂τ
=

[
ĤΦ +

∂ReS1

∂τ

]
χ . (2.165)

There is no condition left for fixing ReS1. It can, however, be transformed away. After

redefining χ̄ = eiReS1χ, we obtain now the functional Schrödinger equation for the scalar

perturbations on a classical gravitational background

i
∂

∂τ
χ̄ = ĤΦχ̄ . (2.166)

Recall the transformation law for the Hamiltonian constraint. We deduce that for consistency

we require that
ˆ̃HΦχ = Ω2ĤΦχ. The functional Schrödinger equation is then conformally

covariant. Let us now discuss equation (2.164). After defining D := exp (−2 ImS1), the

equation becomes
∂

∂τ
D = −(�S0)D . (2.167)

This is now just the classical evolution equation for the van Vleck factor. The van Vleck

factor has weight w(D) = 2w(Ψ) and the defining equation (2.167) is conformally covariant.

Let us close this section by recapitulating. The solution to the Wheeler-DeWitt equation

in the first order WKB + Born-Oppenheimer type approximation is given by

Ψ =
√
D eim2

pS0χ̄+O(m−2
p ) , (2.168)

with S0 being the classical Hamilton-Jacobi action and χ̄ being the wave functional for the

scalar perturbations obeying the functional Schrödinger equation. D is the van Vleck factor,

which carries all of the conformal weight of the wave function. The validity of the WKB

approximation implies a strong correlation between position and momenta by pi = ∂S0

∂qi
. In

this sense we have recovered aspects of classical cosmology plus quantum field theory on the

cosmological background. Note, however, that it is a widespread belief (see e.g. [78]) that

the validity of the WKB-approximation on its own is not sufficient to ensure the emergence

of classical physics. It is often argued that decoherence plays a crucial role in recovering

classical gravity from the quantum theory [20, 21].

Let us also have a brief look at the Klein-Gordon current in the WKB approximation.
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For simplicity we will disregard the matter perturbations (formally by setting χ = 1) from

now on. For the WKB mode functions Ψ =
√
D eim2

pS0+O(m−2
p ) we obtain |Ψ| =

√
D+O(m−2

p )

and

m−2
p JA[Ψ,Ψ]∂A = D

∂

∂τ
+O(m−2

p ) (2.169)

In this sense the conformally invariant (d− 1)-form J can be regarded as a quantum version

of the classical conserved current D?dτ . Recall that at the classical level this current did not

depend on the gauge N . For a general wave packet Ψ we might thus be tempted to define

the smeared out version of the WKB-time by

∂

∂τ [Ψ]
:=

JA[Ψ,Ψ]

(mp|Ψ|)2
∂A . (2.170)

Note the intriguing property ∂
∂τ [Ψ∗]

= − ∂
∂τ [Ψ]

. We will not consider this object any further

in this thesis. It would, however, be interesting to study the integral curves of ∂
∂τ [Ψ]

since one

might think of them as quantum corrected trajectories.

2.2.4 Interpretation of the wave function of the universe

A Hilbert space structure would be desirable as it provides a straightforward probability

interpretation. It is, however, an open question if a Hilbert space is needed at all in Quantum

Gravity.

Klein-Gordon scalar product

A “natural” scalar product in minisuperspace is given by the Klein-Gordon scalar product. In

order to construct it we foliate minisuperspace into “spacelike” hypersurfaces Σα of constant

scale factor α. We define the scalar product on such hypersurfaces to be

(Ψ1,Ψ2)KG :=

∫
Σα

J [Ψ1,Ψ2] = i

∫
Σα

(∂αy ? 1) GαiΨ∗1
←→
∂ iΨ2 , (2.171)

where J is the Klein-Gordon current. As can now be shown, this scalar product is invariant

under coordinate transformations and deformations of the hypersurfaces Σα. Furthermore,

the scalar product is invariant under conformal transformations of the DeWitt metric and

conserved in “time”

∂α (Ψ1,Ψ2)KG = 0 , (2.172)

for Ψ1/2 being solutions to the Wheeler-DeWitt equation. We have the usual problems

that come with the Klein-Gordon scalar product. Firstly, (., .)KG is not positive definite.
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We therefore have the problem of interpreting positive and negative “frequency” solutions.

Furthermore, it is in general impossible to clearly separate positive and negative frequency

modes [82]. Consequently the scalar product does not provide a clear probability interpretation.

Recall that in the context of relativistic quantum theory this issue with the Klein-Gordon

equation was resolved via second quantization. The Wheeler-DeWitt formalism, however, is

already a second quantized theory. Performing now a second quantization would therefore

actually correspond to a third quantization. This leads to some sort of multiverse picture

[83] and we will not follow this path in this thesis.

The second problem with the use of the Klein-Gordon scalar product is, that it relies on

the interpretation of the scale factor a as being a “time” variable. In some of the models

(e.g. Kantowski-Sachs, Bianchi IX) physically reasonable solutions to the Wheeler-DeWitt

equation satisfy (Ψ,Ψ)KG = 0. This should always be the case for recollapsing models as

can be seen as follows: Physical reasonable wave packets are expected to be peaked over the

classical trajectory. Hence we also expect that Ψ or any other physically relevant quantity

constructed from Ψ approaches 0 as a → ∞. From the conservation law ∂α (Ψ,Ψ)KG = 0 it

follows then that (Ψ,Ψ)KG = 0 for all α ∈ R. In this sense the interpretation of the scale

factor a = eα being a suitable “time” variable breaks down for recollapsing models.

We can conclude that the Klein-Gordon scalar product is in general not suitable for

application in Quantum Cosmology. This does, however, not imply that the Klein-Gordon

current is useless for our purposes. This point of view was also advocated by Vilenkin [84],

who used it in particular for the formulation of boundary conditions.

Hawking-Page formula

Hawking apparently disregarded the usage of the Klein-Gordon current as a route to probability

interpretation. One reason for this might be that wave packets which obey the Hartle-

Hawking no-boundary condition are real and hence their Klein-Gordon current is identically

zero. Instead Hawking and Page [79] assign to each WKB mode the momentum current

JA = D∂AS0 , (2.173)

which coincides with the Klein-Gordon current of the WKB modes Ψ =
√
DeiS0 . The

probability P (A) of finding the configuration of the universe in the region A in minisuperspace

M is then taken to be

P (A) ∝
∫
A

?|Ψ|2 . (2.174)
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Now let B ⊂ M be a thin pencil that is drawn out by classical trajectories. In the region

of minisuperspace where the WKB approximation is valid the contribution of B to the

probability is given by

P (A ∩B) ∝
∫
A∩B

?|Ψ|2 ≈
∫
A∩B

?D = F (B)

∫
Ndt (2.175)

where we have used the relation (2.130) and defined the flux

F (B) :=

∫
Στ∩B

J =

∫
Στ∩B

JA ? dqA . (2.176)

The flux is independent of the choice of hypersurface Στ ⊂ M. The contribution of B to

P (A) is therefore proportional to the coordinate-time that the classical solutions filling out

the pencil B spend in the region A.

Note that in defining the probability P (A) we have to pick out a gauge, by which we

mean a representation of the DeWitt metric and a corresponding wave function. Under

a conformal transformation
√
−G|Ψ|2 → Ω2

√
−G|Ψ|2 and hence ?|Ψ|2 is not conformally

invariant, in other words

w(?|Ψ|2) = 2 . (2.177)

This is nevertheless consistent and reflects the fact that dt depends of course on the gauge N .

Hawking and Page [79] for example pick for their calculations the representation in which dt

becomes the differential of the comoving time. Recall that the current J has weight w(J) = 0

and thus F (B) is conformally invariant.

In general P (M) will not be finite. The Hawking-Page probability P might then only be

useful for computing conditional probabilities, i.e. one is restricted to ask the right question.

One possible question (extensively discussed in the lecture notes [78, 81]) is the probability

for sufficient inflation for a given “initial” state of the wave function.

It is not clear if one can assign meaning to the Hawking-Page probability outside of the

region in minisuperspace where the semi-classical approximation is valid.

2.2.5 Singularity avoidance

If we had a Hilbert space at hand we would also have a clear probability interpretation and

hence a clear notion of singularity avoidance. This is, however, so far not the case and we

have to rely on criteria that we can make us of without these notions.

The most prominent criterion for singularity avoidance is the DeWitt criterion also called

the DeWitt boundary condition: A singularity is said to be avoided if Ψ→ 0 in the vicinity
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of the classical singularity. However, our discussion above shows up problems with this

criterion. Since different representations of the wave function are related by Ψ̃ = Ω
2−d

2 Ψ this

criterion is not conformally invariant. When d > 2 it is in general not true that Ψ → 0 is

equivalent to Ψ̃ → 0. Moreover, there does not seem to be a privileged representative of

the wave function for the imposition of this criterion.

If we decided stick to the Hawking-Page probability interpretation we would use the

following definition: A singularity is said to be avoided if ?|Ψ|2 → 0 in the vicinity of the

classical singularity. But since ?|Ψ|2 is not conformally invariant this criterion suffers from

the same problem as the DeWitt criterion.

The following two criteria satisfy the demand to be invariant under both coordinate

transformations and conformal transformations:

Criterion 1. A singularity is said to be avoided if J [Ψ,Ψ]→ 0 in the vicinity of the classical

singularity.

The problem with this criterion is that J [Ψ,Ψ] ≡ 0 if Ψ is real. We remark that a similar

criterion based, however, on the Schrödinger current was used in [85].

Criterion 2. A singularity is said to be avoided if ? |Ψ| 2d
d−2 → 0 in the vicinity of the classical

singularity.

Note that |Ψ| 2d
d−2 → |Ψ|2 as d→∞. Unlike criterion 1 the second criterion does not seem

to suffer from any problems. The only issue that appears is that there is no clear physical

interpretation of the quantity ? |Ψ| 2d
d−2 .

Is it a problem, that the criteria 1 and 2 are formulated by using densities instead of

usual scalars/tensors? We can for example compare the situation with the case of the non-

relativistic wave function of a particle in a Coulomb potential in 3–dimensional Euclidean

space. Here the wave function Ψ(r, ϑ, ϕ) and the square of its absolute value do not vanish

value at r = 0. The probability density ?|Ψ(r, ϑ, ϕ)|2 = |Ψ(r, ϑ, ϕ)|2r2 sin(ϑ)dr ∧ dϑ ∧ dϕ,

however, vanishes and implies a zero probability of the particle being at the singular point

r = 0. This comparison suggests that the criteria should indeed be formulated in terms of

densities.

Another criterion first proposed by Da̧browski and Kiefer [24] states:

Criterion 3. A wave packet is said to avoid the singularity if the wave packet spreads in the

vicinity of the classical singularity.

A spreading of the wave packets indicates the breakdown of the eikonal approximation

and therefore the classical limit. The singularity theorems by Hawking and Penrose do then
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no longer apply. In the examples we consider in this work we shall see that wave packets

spread close to the initial singularity if the dimension d of minisuperspace is larger than 2.

The spreading can be linked to a decrease of the amplitude of Ψ which might lead to an

avoidance of the singularity by both criteria 1 and 2. In particular the examples we consider

later on give the impression that there is a correlation between the criteria 1 and 3.

Singularity avoidance in other approaches to Quantum Cosmology

Let us give a short overview over the status of singularity avoidance in other approaches to

Quantum Cosmology.

Loop Quantum Cosmology (LQC) is the symmetry reduced minisuperspace version of

Loop Quantum Gravity (LQG) [86]. It is often found in LQC that singularities are avoided

by replacing them with a bounce. These results are mostly based on the effective quantum

corrected equations of motion arising from LQC (see e.g. [87]). More rigorous results at

the level of the full LQC equations are only known in the context of the isotropic models

[88, 89]. The situation in LQC, however, seems to be anything but settled [13]. Other

results [90] that take perturbations into account, for example, indicate that instead of a

bounce a transition into an Euclidean regime takes place (similar to Hartle’s and Hawking’s

no-boundary proposal).

In the Bohmian approach to Quantum Cosmology [91] the wave function of the Universe

Ψ is interpreted as a pilot wave. This interpretation is universal in the sense that it can

be applied to any approach to Quantum Cosmology. In the case of the Wheeler-DeWitt

equation it can be applied as follows: The wave function is written as Ψ = |Ψ|eiS, with S

being a real valued phase (in general this is not the Hamilton-Jacobi function). In addition

to the Wheeler-DeWitt equation a guidance equation is postulated:

q̇A = GAB∂BS . (2.178)

The momentum conjugate to qA is then defined via pA = GAB q̇B = ∂AS.13 It follows now

from the Wheeler-DeWitt equation that the Bohmian dynamics are described by the quantum

corrected Hamiltonian constraint

HQ =
1

2
GABpApB + V +Q = 0 , (2.179)

where Q = −1
2
|Ψ|−1(�− ξR)|Ψ| is called the quantum potential. The quantum potential is

13We remark that this momentum coincides with the smeared out version of the WKB time ∂
∂τ [Ψ∗] that

we defined in .
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thought of as a quantum correction to the classical potential. The presence of Q can lead to

a bouncing scenario for the Bohmian trajectory qA(t). This feature is, however, not generic

and it depends strongly on the choice of the wave packet Ψ.

Singularity avoidance was also studied in the context of gravitational collapse models.

Quantization was performed for a reduced system describing the spherically symmetric

collapse of a thin null dust shell [92]. This approach lead to a Schrödinger equation. As

a direct consequence of the demand for a unitary time evolution of the quantum state it

was found that the singularity was replaced by a bounce. Similar results were obtained for

the marginally–bound Lemâıtre-Tolman-Bondi model [93], where the decoupling of the single

dust shells allows to treat the dynamics of each single dust shell like a minisuperspace model.

These results are also directly transferable to the Oppenheimer-Snyder model [94]. Bounces

which lead to a Black hole to white hole transitions and to an accompanying avoidance of

the singularity are also believed to occur in LQG. [95] offers a review on quantum bounces

in the context of gravitational collapse.

Another approach to Quantum Cosmology is provided by the so-called affine coherent

state quantization. This approach was for example employed in [96] and [97] where it was

shown that it indeed leads to singularity avoidance in the case of the Bianchi IX model.

The authors of [85] studied the resolution of Big Bang type singularities in FLRW models

filled with dust. To this end they used a criterion which is similar to the criterion 1 (vanishing

of KG current) in this thesis, based, however, on the Schrödinger probability current. It was

found that the singularity can be avoided for certain classes of factor orderings. The resolution

of the singularity can be understood to be caused by a repulsive potential that is generated

by a particular class of factor orderings.

We remark that in some of the above mentioned approaches it is often made use of the

fact that matter acts as a clock. After quantization one can then obtain a Schrödinger type

equation. This has the advantage that a clear probability interpretation emerges. One has,

however, to deal with a multiple choice problem, that is, the choice of a clock is not unique

and different choices lead to in-equivalent quantum theories [98].

The paper [99] employs a relational approach to quantization. This approach allows for

the construction of a Hilbert space as well. By applying such a quantization to the Bianchi

I model the author of [99] showed that the probability to reach the singularity was zero for

a specific wave packet. The singularity is here replaced by a bounce as well.

The framework used in [100] yields effective quantum corrected dynamics based on a

certain moment decomposition of the quantum state of the universe. It has been applied

to the Bianchi I model. The results obtained there indeed indicate that the singularity is
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avoided.

2.2.6 Boundary conditions

Boundary conditions appear to be an important ingredient for Quantum Cosmology. The

most prominent boundary conditions in this context are the no-boundary proposal of Hartle

and Hawking [101] and the “tunneling” proposal of Vilenkin (see e.g. [102, 103] and the

references in [103]). One of the scopes of these proposals is to specify a unique wave function

of the universe. In the case of a Friedmann universe with a minimally coupled inflaton field,

the two proposals select two different wave functions [78]. In this sense the two proposals

lead to different predictions.

The boundary conditions stand of course in some relation to our discussion of singularity

avoidance. The Hartle-Hawking proposal for example assumes in some sense from the outset

that the singularity is avoided. Instead of hitting the singularity the universe enters a

Euclidean regime in which time disappears due to a signature change in the metric. The

proposal by Vilenkin states in a sense the opposite to our first criterion for singularity

avoidance which demands that J [Ψ,Ψ] → 0 at the singular boundary of minisuperspace.

Vilenkin’s proposal in contrast demands that the Klein-Gordon current carries flux out at

the singular boundaries.

Of some relevance in this thesis is the Hawking-Page boundary condition proposed in

[79]. It requires that the wave function Ψ goes to zero in classically forbidden regions.

The condition is often helpful to select physically reasonable wave functions out of the full

solution space of the Wheeler-DeWitt equation. This is for example the case for a closed

Friedmann model with a minimally coupled massless scalar field [10, 104]. In this example, the

application of the Hawking-Page boundary condition leads to a matching of the expanding

and recollapsing branches of wave packets. In this sense, the boundary condition selects

solutions which are peaked over the entire classical trajectories instead of just one particular

branch.

The demand for conformal covariance in this thesis poses issues for the Hawking-Page

boundary conditions. This was indeed no problem in [10, 104], where the minisuperspace

was 2–dimensional. In this case it made sense to impose boundary conditions on Ψ since the

wave functions themselves are conformally invariant. In higher dimensional minisuperspaces,

however, wave functions carry a non-vanishing conformal weight. The question then arises

how to impose boundary conditions in a conformally invariant manner. A similar problem

arises of course for Vilenkin’s proposal when formulated in terms of the Klein-Gordon current

1-form JAdqA = ?−1J because it carries conformal weight w(JAdqA) = d−2. The most naive



2.2. QUANTUM COSMOLOGY 67

way out of this would be of course to formulate boundary conditions in terms of conformally

invariant quantities, that is for example, the Klein-Gordon current J [Ψ,Ψ] or the density

? |Ψ| 2d
d−2 . In the case of the Klein-Gordon current, we encounter the usual issue that the

criterion is not applicable in the case of real wave packets.

We will not attempt to give a full answer to the question of boundary conditions in this

thesis. The models discussed in chapter 3 might nevertheless provide some hints on how

boundary conditions are to be implemented in a conformally covariant framework.

2.2.7 Momentum constraints and conformal ordering

The ambitious goal of this section is to devise a generic quantization prescription for the full

constrained system introduced in section 2.1.5 including the momentum constraints. The

hope is then to finally apply the prescription to homogeneous cosmological models with and

without additional matter degrees of freedom.

We saw that the conformal structure and the fact that Ψ carries a conformal weight is

well compatible with the semi-classical approximation. Therefore we shall accept that the

conformal structure is a fundamental pillar of Quantum Cosmology (at least for this section

and the remaining parts of this thesis).

Another important aspect of the quantum theory is the Dirac consistency of the algebra

of quantum operators [10]. What is the mathematical relation between the Dirac consistency

and the existence of non-trivial solutions to the system of partial differential equations

composed of the quantum constraint equations ĤµΨ = 0? Unfortunately we can only provide

a partial answer to this question. For that purpose, ignore the momentum constraints for a

moment. The global existence of solutions to the Wheeler-DeWitt equation might then simply

follow by using the theorem in appendix A.1. Now ignore the Wheeler-DeWitt equation and

only consider the system composed of the momentum constraints ĤiΨ = 0. Local existence

results for this system might then be provided by the Frobenius theorem ((see Appendix

A)). As a prerequisite the theorem requires the algebra of the operators Ĥi to close. Is the

closure of the full operator algebra Ĥµ a necessary condition for the existence of solutions?

This question is unfortunately beyond the scope of this thesis. We will, nevertheless, assume

that Dirac consistency is a fundamental ingredient for Quantum Cosmology and use it as a

guiding principle in this section.

Before discussing the canonical quantization of the constraint system Hµ = 0, let us have

a short interlude on the geometry of minisuperspace. In the following, we assume that the

reader is familiar with the basics of Weylian geometry (see appendix B.3).
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Interlude on the geometry of minisuperspace

The projection operators allow for a decomposition of the DeWitt metric according to

dS2 = ḠABdqA ⊗ dqB + dS2 |Σ . (2.180)

The tensor ḠABdqAdqB = P̄A
CP̄B

DGCD is called the transverse metric [76]. It constitutes a

metric on the normal bundle. The induced metric on the leaves of the foliation Σ is given by

dS2 |Σ= GijBi ⊗Bj , (2.181)

where the components of the induced metric are

Gij = Ai
AAj

BGAB (2.182)

in the (in general anholonomic) basis {Ai}. The components of the inverse of the induced

metric can be written as

Gij = GABBA
iBB

j . (2.183)

The components of the Levi-Civita connection on the leaves of the foliation are then given

by

Γikl =
1

2
Gim

(
Al

A∂AGmk + Ak
A∂AGml − AmA∂AGkl

)
+

1

2
Cikl − GkjCmj(kGAl)m . (2.184)

We shall simply denote the Levi-Civita connection on the leaves by ∇i. We can then, for

example, write

Fij = ∇iλj −∇jλi . (2.185)

Recall that this tensor was shortly studied in section 2.1.5. Under a conformal transformation,

λi transforms as

λi 7→ λ̃i = λi − AiA∂A log Ω, (2.186)

in accordance to the transformation law of λi under rescalings of the lapse in the classical

setup. The Weyl one-form λi allows us to construct a conformal connection on the leaves

according to appendix B.3. The coefficients of the conformal connection are conformally

invariant by construction . This construction allows us to differentiate conformally covariant

tensors in a conformally covariant manner by introducing the so called scale covariant derivative

Di on the leaves of the foliation. We are now in the position to construct an intrinsic conformal

geometry (say conformally covariant curvature tensors) on the leaves according to B.3.
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Let us now turn to the extrinsic curvature of the leaves. For the definition of the extrinsic

curvature tensor, we require a set of orthonormal vectors which are normal to the leaves of

the foliation.14 We denote these vectors by e ī = e ī
A∂A, where ī runs from 1 to d − dmc.

The normalization condition demands that dS2
(
e ī, e j̄

)
= η ī j̄ where η ī j̄ is diagonal with

eigenvalues ±1. If the leaves of the foliation are spacelike then η ī j̄ has a Lorentzian signature.

Note that normal vectors have by definition a conformal weight of w(e ī) = −1. Hence, their

normalization is preserved under conformal transformations. We denote the orthonormal

covectors dual to e ī by ϑ ī = ϑA
īdqA. The components are defined by ϑA

ī := GABη ī j̄ e j̄ B.

They satisfy the duality relation e ī yϑ
j̄ = δ j̄

ī
and ϑA

īe ī
B = P̄A

B. The conformal weight

of the covectors is w(ϑ ī) = 1. This renders the duality relation e ī yϑ
j̄ = δ j̄

ī
conformally

invariant.15 The components of the extrinsic curvature tensor (see e.g. [105]) can then be

obtained by using the Weingarten equation

KAij = A(i
BAj)

C
(
∇BϑC

ī
)
e ī

A . (2.188)

For convenience we rewrite this equation as

KAij = −
(
A(i|

B∇BA|j)
C
)
P̄C

A . (2.189)

The extrinsic curvature tensor has the following properties:

• It satisfies PA
BKBij = 0.

• It is symmetric in the last two indices, that is, KAij = KAji.

• Under a conformal transformation the extrinsic curvature tensor transforms as

KAij 7→ K̃Aij = KAij + GijP̄AB∂B log Ω . (2.190)

The mean curvature vector is defined by tracing over the intrinsic indices of the extrinsic

curvature tensor, that is,

KA := GijKAij . (2.191)

14An orthonormal set of vectors normal to the leaves can be constructed via the Gram-Schmidt process.
15We remark that with these definitions the metric tensor can be decomposed into

dS2 = η ī j̄ ϑ
ī ⊗ ϑ j̄ + GijBi ⊗Bj . (2.187)
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Under a conformal transformation it transforms as

KA 7→ K̃A = Ω−2
(
KA + dmcP̄

AB∂B log Ω
)
. (2.192)

This is indeed remarkable since this implies that

ϕ :=

(
λA −

1

dmc

KA
)

dqA (2.193)

transforms like a Weyl one-form onM. Furthermore, we note that the trace-free part of the

extrinsic curvature,

trace-free part of KAij = KAij −
1

dmc

KAGij , (2.194)

is conformally invariant. Consequently, the tensor

TAB := KAijKBij −
1

dmc

KAKB = GikGjl(tracefree part of KAij)(tracefree part of KBkl)
(2.195)

is conformally invariant as well. This further implies that the curvature scalar

T := GABTAB (2.196)

is conformally covariant with w(T ) = −2.

If we project the Riemann tensor onM onto the leaves Σ, it splits according to the Gauss

equation (see e.g. [105]) into

PA
EPB

FPC
GPD

HREFGH = (Σ)RABCD − GEF (KEABKFCD −KEADKFBC) , (2.197)

where (Σ)RABCD is the induced Riemann tensor on the leaves of the foliation Σ.

Let us also consider again the condition
(
LAiGAB − 2λiGAB

)
P̄A

CP̄B
D = 0 which we

imposed on the classical system in 2.1.5. As we will show in the following, this condition is,

in fact, equivalent to the statement

LAiḠAB = −2λiḠAB . (2.198)

Thus, Ai is a conformal Killing vector field with respect to the transverse metric ḠAB.16

Recall that equation (2.198) is canonical in the sense that it is independent of the choice

16If λi = 0, the transverse metric would be called bundle-like [76]. Equation (2.198) appears to be a
conformally covariant generalization of this notion.



2.2. QUANTUM COSMOLOGY 71

of basis {Ai} on TΣ. To show the equivalence of
(
LAiGAB − 2λiGAB

)
P̄A

CP̄B
D = 0 and

LAiḠAB = −2λiḠAB, we need to show that LAiḠAB = P̄A
CP̄B

DLAiGCD. First, we note that

LAiPAB = −LAiP̄AB. Furthermore, it follows by direct calculation that

LAiPAB =
(
LAiBA

j
)
Aj

B −BA
jCkijAkB . (2.199)

Hence,
(
LAiPAC

)
P̄C

A = −
(
LAiP̄AC

)
P̄C

A = 0 . As a direct consequence of this and the

properties of the projection operators, it now also follows that LAiP̄AB =
(
LAiP̄AC

)
PC

B. If

we now apply the Leibniz rule, we get LAiḠAB = LAi
(
P̄B

DP̄C
A GCD

)
= P̄A

CP̄B
DLAiGCD.

The form of the quantum constraints

We are looking for an operator implementation of the Hamiltonian constraint Ĥ0 and the

momentum constraints Ĥi. We desire to implement the following properties:

1. All quantum constraint equations should be invariant under coordinate transformations

in minisuperspace M. This also means that the quantum theory should not depend

on the choice of the basis on the leaves of the foliation. Hence, the quantum constraint

equations should transform covariantly under a transformation of the basis on the

tangent space to the leaves of the foliation,

Ai 7→ Ãi = Li
jAj where {Lij} :M→ GL(dmc,R) . (2.200)

Note that this requirement can in some sense be viewed as an implementation of the

invariance under transformations of the shift functions.

2. The operators are conformally covariant, when acting on wave functions of weight w(Ψ).

In particular, this means that they should have the conformal bi-weights

w(Ĥ0) = (2 + w(Ψ), w(Ψ)) and w(Ĥi) = (w(Ψ), w(Ψ)) . (2.201)

3. The quantum constraint algebra is Dirac consistent, that is,[
Ĥµ, Ĥν

]
Ψ = i Ĉλµν

(
ĤλΨ

)
. (2.202)

The precise form of the structure operators Ĉλµν has to be determined from the constraint

operators. It might in addition be desirable that the quantum algebra is isomorphic to

the classical algebra.
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4. The quantum system should have a reasonable semi-classical limit.

We remark that a similar plan to ours was followed by the authors of [35] in the specific

case of the vacuum Bianchi class A models. It was, indeed, found that the quantum algebra

is isomorphic to the classical one. The authors, however, employed a different quantization

procedure which requires a certain kind of reduction before quantization. We will try to

follow a different route here.

One of the main conclusion we can draw from the discussion in section 2.1.5 and the

interlude in this section is that the minisuperspaceM comes equipped with a rich structure.

Firstly, there is the conformal metric [dS2]. Secondly, we have a foliation of M into the

integral manifolds of the vector fields Ai. Moreover, the integral manifolds are equipped

with the Weyl one-form λ, which together with the conformal metric, allows to construct

a conformal connection on the integral manifolds. We have also learned that we can in

principle combine λ with the mean curvature on the leaves KA to obtain a Weyl structure

on the whole minisuperspace manifold M. This fact allows for the construction of several

conformally covariant tensors and operators. Thus we have opened the door for numerous

possibilities of constructing factor orderings which at least satisfy the requirements 1 and 2.

The critical points, however, are the requirements 3 and 4. The hope is that these criteria

finally select a factor ordering or at least constrain the possibilities. Moreover, it should be

tested how the factor ordering performs when it is applied to the homogeneous cosmological

models (with and without additional matter degrees of freedom).

Let w(Ψ) be arbitrary for the moment. The question “What is the conformal weight of

Ψ?” will be regarded as part of the factor ordering problem. We first deal with the quantum

momentum constraints, which we implement as follows:

ĤiΨ = −i
(
Ai

A∂A + w(Ψ)λi
)

Ψ = 0 (2.203)

The operator
(
Ai

A∂A + w(Ψ)λi
)

is the scale covariant derivative Di acting on scalar fields

of conformal weight w(Ψ). Note that the operators Ĥi have the required bi-weight via

construction. Note also that via the chosen ordering Ĥi satisfies requirement 2. We compute

the commutator of the momentum constraints as follows[
Ĥi, Ĥj

]
Ψ =

(
iCkijĤk + w(Ψ)Fij

)
Ψ . (2.204)

Hence the requirement for Dirac consistency demands that either Fij = 0 or w(Ψ) = 0. The

former is usually satisfied by the vacuum Bianchi models since we can find a representation

in which all λi = 0. In particular λ = λiB
i is closed. Note that the condition Fij = 0
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is equivalent to the statement that the Weyl structure is integrable on each leave of the

foliation. We will from now on always assume that Fij = 0. The Poincaré lemma then

implies that λ is locally exact. Hence, we can locally always transform λ away via a conformal

transformation.17

Let us now turn to the most critical point: The commutators between the momentum

constraint operators and the quantum Hamiltonian constraint operator. Let us first elaborate

on what we would expect if the algebra closes. We would wish to find that[
Ĥ0, Ĥi

]
Ψ = iĈµ0i

(
ĤµΨ

)
= i2λiĤ0Ψ + i Ĉj0i

(
ĤiΨ

)
. (2.205)

We note that the operators
[
Ĥ0, Ĥi

]
− 2iλiĤ0 are conformally covariant with conformal bi-

weight (w(Ψ)− 2, w(Ψ)). We can therefore conclude that the Ĉj0i are first order differential

operators with conformal bi-weight w(Ĉj0i) = (w(Ψ)− 2, w(Ψ)). This is in accordance with

equations (2.101) and (2.114) and thus resembles the transformation rules of the classical

constraint algebra. Consequently, we can write

Ĉj0i = −i
(
Zj
i
A∂A + zji

)
, (2.206)

where we require that the vector fields Zj
i
A are conformally covariant with w(Zj

i
A) = −2

while the scalars zji have to transform according to zji 7→ z̃ji = Ω−2
[
zji − w(Ψ)Zj

i
A∂A log(Ω)

]
.

We note that the divergence of a conformally covariant vector field transforms as

∇Av
A 7→ ∇̃Aṽ

A = Ωw(v)
(
∇Av

A + [d+ w(v)]vA∂A log Ω
)
. (2.207)

We can therefore write zji as

zji = −w(Ψ)

d− 2
∇AZ

jA
i + a conformally covariant scalar with conformal weight -2 . (2.208)

The ansatz (2.206) yields

iĈj0i
(
ĤjΨ

)
=

−i
[
Zj
i
AAj

B∇A∂B +
([
Zj
i
A∇A + zji

]
Aj

B + w(Ψ)λjZ
j
i
B
)
∂B + w(Ψ)

(
Zj
i
A∂A + zji

)
λj
]

Ψ .

(2.209)

17A closed one form on Σ is globally exact if the first Betti number of Σ vanishes [106]. This would mean
that the Weyl structure on the leaves is trivial. In particular, this allows us to find a conformal representation
in which λ = 0 and hence C0

0i = 0 holds globally on Σ.
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Given an operator implementation of the Hamiltonian constraint Ĥ0, our strategy for checking

the Dirac consistency is as follows: we compute the commutator
[
Ĥ0, Ĥi

]
and compare it to

equation (2.209) we got from the ansatz (2.206). In particular, we obtain three equations:

one by comparing terms in front of the second derivative operator operator ∇A∂B, a second

one from terms in front of ∂A and a third one from the remaining scalar part of the equation.

It will be possible to solve the first equation for the vector fields ZiA
j . The second equation

can be split into two equations by employing the projection operators PA
B and P̄A

B. One

equation then yields the scalars zij. The other equation is a consistency condition.

These results should then be plugged into the third equation, which will finally yield a

second consistency condition. Consequently, we expect the appearance of two consistency

conditions. For the calculation, it is beneficial to keep in mind that these conditions should

transform covariantly with respect to conformal transformations and the transformations

(2.200). The first consistency condition is (symbolically) of the form TensorBi P̄B
A = 0, while

the second condition is of the form Tensori = 0.

Naive conformal ordering

The most naive way to implement the Hamiltonian constraint is to simply use the conformal

ordering discussed 2.2.2. Let us now check if the conformally ordered Hamiltonian constraint

operator, that is,

Ĥ0 = −1

2
(�− ξdR) + V and w(Ψ) =

2− d
2

, (2.210)

satisfies our requirements. The requirements 1 and 2 are certainly satisfied. What remains is

to check the Dirac consistency. The computation is rather lengthy and therefore transferred

to the appendix C.1. We collect the results in the following.

Conclusion. The quantum system of equations

Ĥ0Ψ =

[
−1

2
(�− ξdR) + V

]
Ψ = 0 ,

ĤiΨ = −i
(
Ai

A∂A + w(Ψ)λi
)

Ψ = 0 ,

(2.211)
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where w(Ψ) = (2− d)/2, is Dirac consistent if the three conditions

1.) The Weyl structure on the leaves is integrable, that is Fij = 2∇[iλj] = 0 ,

2.)

[
2∇A

(
K
D[A
i PD

B]
A

)
+ 2w(Ψ)KBA

i λA +
1

2
∇BKi

]
P̄B

C = 0 ,

3.) w(Ψ)
(
Zj
i
A∂A + zji

)
λj = −w(ψ)

2
�λi − ξd

(
Ai

A∂A − λi
)
R ,

(2.212)

are satisfied. The structure operators Ĉµνλ are then given by

Ĉ0
0i = C0

0i = 2λi ,

Ĉj0i = −i
(
Zj
i
A∂A + zji

)
,

where Zj
i
A = −KCD

i BD
j
(
PC

A + 2P̄C
A
)

and zji =
1

2
∇AZ

j
i
A +

1

2
(∇AKi)BA

j −
[

1

2
∇A(Kjk

i Ak
A)− w(Ψ)Kjk

i λk

]
+ Zk

i
AAk

B∇[ABB]
j

Ĉkij = −
(
Ai

A∇AAj
B − AjA∇AAi

B
)
BB

k .

(2.213)

Remarks: All three conditions (2.212) are of course conformally covariant and they

transform covariantly under the transformation Ai 7→ Ãi = Li
jAj. Unfortunately, we

were not able to present these conditions in a more transparent form. Recall that KAB
i :=

∇(AAi
B) + λiGAB.

Certain simplifications arise if we choose a representation dS2 ∈ [dS2] in which all λi = 0

(recall that this representation exists if Fij = 0). In this gauge, the consistency conditions

become

∇A

(
∇(DAi

[A)PD
B] +

1

4
GAB∇DAi

D

)
P̄B

C = 0 ,

ξdAi
A∂AR = 0 .

(2.214)

At least the lower condition can now be easily interpreted geometrically. It is satisfied if

d = 2 and/or R is constant on the leaves of the foliation.

In chapter 3, we will encounter certain problems with the naive ordering. In particular, it

generates undesired terms in the case of the Bianchi IX model discussed in section 3.4.4. Due

to the presence of theses terms the WKB approximation loses its validity in regions where we

would expect it to be valid. In this sense the naive ordering violates the forth requirement.

The ordering is certainly one of the simplest factor orderings that we can construct. So far,

we we did not make much use of the rich geometrical structure of the minisuperspace in the

construction of the ordering. In case there are no additional structures (e.g. momentum

constraints or symmetries), the conformal ordering appears, however, to be the only option
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which has the chance to meet all four requirements.

Modified conformal ordering

Let us now consider another valid factor ordering. We make use of the fact that the DeWitt

metric splits into

dS2 = ḠABdqA ⊗ dqB + GijBi ⊗Bj , (2.215)

where ḠAB = P̄A
CP̄B

DGAB and Gij = Ai
AAj

BGAB. We can then construct the following

Wheeler-DeWitt equation

Ĥ0Ψ =

[
−1

2

(
�̄− ξd−dmcR̄+D2

)
+ V

]
Ψ = 0 . (2.216)

We denote by ∇̄ the transverse Levi-Civita connection compatible with ḠABdqA ⊗ dqB and

�̄ = ḠAB∇̄A∇̄B = Ḡī j̄ ∇̄ī ∇̄j̄ is the transverse Laplacian operator. R̄ is the transverse

Ricci scalar constructed from the transverse metric ḠABdqA ⊗ dqB. The operator D2 is the

conformal Laplacian (see B.3) on the leaves of the foliation. That is,

D2Ψ = GijDiDjΨ = GijDi
[(
Aj

B∂B + w(Ψ)λj
)

Ψ
]
. (2.217)

Setting now

w(Ψ) =
2− (d− dmc)

2
, (2.218)

renders the Wheeler-DeWitt equation conformally covariant. Imposing the momentum con-

straints ĤiΨ = 0 implies that the Wheeler-DeWitt equation reduces to

Ĥ(r)
0 Ψ :=

[
−1

2

(
�̄− ξd−dmcR̄

)
+ V

]
Ψ = 0 . (2.219)

We call Ĥ(r)
0 Ψ = 0 the reduced Wheeler-DeWitt equation. The full Wheeler-DeWitt equation

in the modified ordering (2.216) can then be written as(
Ĥ(r)

0 −
1

2
D2

)
Ψ = 0 . (2.220)

Let us now consider the Dirac consistency of the factor ordering. We use the notation

employed in appendix B.3, that is, we denote for example the conformal curvature tensor on

the leaves of the foliation by Ri
jkl and so on. As a first step, we consider the commutator

[D2, Ĥk]. Note that [D2, Ĥk]Ψ is not conformally covariant. This is because Ĥk has conformal

bi-weight w(Ĥk) = (w(Ψ), w(Ψ)). But w(D2) = (w(Ψ)− 2, w(Ψ)). The term Ĥk (D2Ψ) in
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the commutator is therefore not conformally covariant. However, the term(
[D2, Ĥk]− 2iλkD2

)
Ψ (2.221)

is conformally covariant with weight −2. After using that Fij = 0, we obtain

[D2, Ĥk]Ψ = 2iλkD2Ψ + iDj
(
CikjĤA

i Ψ
)

+ i CikjDj
(
ĤA
i Ψ
)

+ iRk
iĤiΨ . (2.222)

We can already conclude that if the system is Dirac consistent then Ĉ0
0i = C0

0i = 2λi, as

expected. Let us next turn our attention to the commutator [Ĥ(r)
0 , Ĥk]. The term(

[Ĥ(r)
0 , Ĥk]− 2iλkHr

0

)
Ψ (2.223)

is conformally covariant with conformal weight −2. We conclude that we require that(
[Ĥ(r)

0 , Ĥk]− 2iλkH(r)
0

)
Ψ = i

(
Ĉi0k −Rk

i
)
ĤiΨ−iDj

(
CikjĤA

i Ψ
)
−i CikjDj

(
ĤA
i Ψ
)
. (2.224)

The right hand side of this equation is weakly 0. Note that in the particular case when(
[Ĥ(r)

0 , Ĥk]− 2iλkH(r)
0

)
Ψ = 0 the system is automatically Dirac consistent. This knowledge

appears to be sufficient for any applications in the context of the Bianchi models. We remark,

however, that the condition
(

[Ĥ(r)
0 , Ĥk]− 2iλkH(r)

0

)
Ψ = 0 is certainly a sufficient but not

a necessary condition. This cannot be the case because the condition does not transform

covariantly under transformations of the shift functions. One might acquire some deeper

geometrical insights into the modified ordering by identifying the relevant terms inside the

commutator [Ĥ(r)
0 , Ĥk]. We leave this issue for future studies.

Example: A simple toy model

We consider a simple 3–dimensional toy model, which is constructed to have similar features

as the Bianchi models. The minisuperspace manifold is chosen to be M = R× R× S1 and

we parametrize it via the variables T, z ∈ R and ϕ ∈ [0, 2π]. The DeWitt metric is defined

by

dS2 = −dT 2 + dz2 + b2(z)dϕ2 . (2.225)

The function b(z) should be sufficiently smooth and non zero but can be arbitrary apart from

that. In addition, we introduce one momentum constraint defined by

A1 = ∂ϕ . (2.226)
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The minisuperspace potential is chosen to be V = 0. The constraints are then given by

H0 =
1

2

(
−p2

T + p2
z +

p2
ϕ

b2(z)

)
' 0 and H1 = pϕ ' 0 . (2.227)

We find that {H0,H1} = 2λ1 = 0 and hence the constraint algebra closes. Moreover,

{H0, pz} = − b
′

b3
p2
ϕ ' 0 and {H1, pz} = 0 , (2.228)

that is the vector pz is a constant of motion.

Let us now turn to the quantization of the system. Since d = 3 the conformal weight of

the wave function is w(Ψ) = 1/2. We first consider the naive conformal ordering. The Ricci

scalar of the model is given by

R = −2b′′(z)/b(z) . (2.229)

Consequently, the quantum system of equations is given by

Ĥ0Ψ =
1

2

[
∂2
T − ∂2

z −
b′(z)

b(z)
− 1

b2(z)
∂2
ϕ −

1

4

b′′(z)

b(z)

]
Ψ = 0 ,

Ĥ1Ψ = −i∂ϕΨ = 0 ,

(2.230)

The quantum constraint algebra is clearly Dirac consistent. The constraint Ĥ1Ψ = 0 simply

tells us that Ψ = Ψ(T, z) is independent of ϕ and can be easily implemented. The “Wheeler-

DeWitt equation” then becomes[
∂2
T − ∂2

z −
b′(z)

b(z)
− 1

4

b′′(z)

b(z)

]
Ψ = 0 . (2.231)

The naive factor ordering has generated an undesired potential term U(z) := − b′(z)
b(z)
− 1

4
b′′(z)
b(z)

.

While in the classical model the phase space function f = pz was a constant of motion, that

is {f,Hµ} ' 0, the operator version f̂ = −i∂z satisfies [f̂ , Ĥ1]Ψ = 0, but

[f̂ , Ĥ0]Ψ = i

(
b′

b3
∂2
ϕ − ∂zU

)
Ψ . (2.232)

Thus f̂ is only a good quantum number if ∂z U = 0. We conclude that the naive conformal

factor leads to a Dirac consistent quantum system. The quantization procedure spoiled,

however, a symmetry that was present at the classical level.

Let us now consider the modified conformal ordering. Since d−dmc = 2 the wave function

has now conformal weight w(Ψ) = 0. Furthermore, the transverse metric is (conformally)
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flat and the quantum system of equations now takes the much simpler form

Ĥ0Ψ =
1

2

[
∂2
T − ∂2

z −
1

b2(z)
∂2
ϕ

]
Ψ = 0 ,

Ĥ1Ψ = −i∂ϕΨ = 0 .

(2.233)

After implementing the constraint Ĥ1Ψ = 0, the Wheeler-DeWitt equation simply becomes

Ĥ(r)
0 Ψ =

1

2

[
∂2
T − ∂2

z

]
Ψ = 0 . (2.234)

From the fact that [Ĥ(r)
0 , Ĥ1]Ψ = 0 we conclude that the quantum system is Dirac consistent.

Moreover, f̂ = −i∂z is now a good quantum number. In this aspect, the modified ordering

performs better than the naive one in the example under consideration.

Concluding remarks

In the 3–dimensional toy model we just considered the application of the modified ordering

preserved the symmetries of the classical model. The preservation of symmetries is an

important issue in Quantum Cosmology. Recall that outer automorphism are symmetries

of the Bianchi models which also generate homogeneity preserving diffeomorphisms. We can

conclude that the quantization procedure should preserve these symmetries. Otherwise it

would spoil the diffeomorphism invariance. The outer automorphism subgroup is generalized

in our setup by the notion of the outer symmetry group. We recap from section 2.1.5: if

ξ = ξA∂A is a generator of outer symmetries, then f = ξApA is a classical constant of motion.

We might then define an operator version of f as follows:

f̂Ψ := −i
(
ξA∂A + w(Ψ)λξ

)
Ψ . (2.235)

By construction the operator is conformally covariant with bi-weight w(f̂) = (w(Ψ), w(Ψ)).

The symmetry is preserved after quantization if f̂ weakly commutes with all quantum

constraints. That means that we can find a wave functions ψf such that

Ĥµψf = 0 and f̂ψf = fψf , (2.236)

where f ∈ R is a good quantum number that corresponds to the classical constant of motion.

The following questions remain open in this thesis:

• What are the conditions such that symmetries are preserved after quantization?
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• Can one design a quantization prescription which enforces the preservation of symmetries?

Regarding the last question: recall from section 2.1.5 that generators of outer symmetries

are also foliate vector fields. If the algebra of all symmetries closes (this must in general

not be the case) then the generators of symmetries define a distribution. This can be used

for a construction analogous to the modified factor ordering (but with a higher dimensional

distribution).

We remark that we did not exploit the vast possibilities of constructing factor orderings

which meet at least the requirements 1 and 2. In particular the mean curvature KA facilitates

us to construct an infinite amount of alternatives to the ones already mentioned by making

use of the Weyl vector defined by (2.193). Moreover, we might add any scalar with conformal

weight −2 to the Hamiltonian constraint operator without spoiling the conformal covariance.

Examples for such a tensors are the one defined by (2.196) and the conformal curvature scalar

constructed in the appendix B.3.



Chapter 3

Models

3.1 Bianchi I

The Bianchi I universe might be regarded as the simplest anistropic cosmological model. It

describes the temporal evolution of homogeneous three spaces admitting the isomotry group

R3 of spatial translations. Its structure constants are all identically zero, Ci
jk = 0. Hence

the special automorphism group is SAut(g) = SL(3,R) and all automorphisms are outer

automorphism. Consequently all momentum constraints are trivially satisfied in the vacuum

case.

For simplicity we will first focus on the diagonal Bianchi I model in this section. Note

that this section has overlap with our publication [T3].

3.1.1 Metric and action for the diagonal model

The diagonal Bianchi I metric is given by

ds2 = −N2dt2 + a2
xdx

2 + a2
ydy

2 + a2
zdz

2 , (3.1)

where ai can be interpreted as directional scale factors. The relation to the Misner variables

is given by the following relations

a = 3
√
axayaz = eα , ax/a = eβ++

√
3β− , ay/a = eβ+−

√
3β− , az/a = e−2β+ . (3.2)

If we set the factor 3
4πG

∫
d3x = 1 the action becomes

S =
1

2

∫
dt

[
−aȧ

2

N
+
a3

N

(
β̇2

+ + β̇2
−

)]
=

1

2

∫
dt

e3α

N

(
−α̇2 + β̇2

+ + β̇2
−

)
. (3.3)

81
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The Lagrangian has exactly the same form as the Lagrangian of a flat Friedmann universe

with two minimally coupled homogeneous massless scalar fields. Note that under the rescaling

a→ c a , where c ∈ R, the Lagrangian transforms as L→ c3L. Consequently a→ ca maps

solutions into solutions. If matter is added to the system, this symmetry will be broken in

most cases. The gravitational Hamiltonian as obtained from the above action reads

H =
Ne−3α

2

(
−p2

α + p2
+ + p2

−
)

= NH . (3.4)

In configuration space the Hamiltonian constraint equation is given by

−α̇2 + β̇2
+ + β̇2

− = 0 . (3.5)

3.1.2 Kasner solution

Note that β+ and β− are cyclic; this implies that

p+ =
e3α

N
β̇+ = constant and p− =

e3α

N
β̇− = constant. (3.6)

A translation in the anisotropy factors is an outer automorphism. It is related to a homogeneity

preserving diffeomorphism that corresponds to a constant rescaling of the coordinates. For

example the translation (β+, β−) 7→ (β+ + c/2, β− + c/(2
√

3)) corresponds to the rescaling

(x, y, z) 7→ (ecx, y, z). The symmetries are still present if we add matter fields that do not

couple directly to the anisotropy factors, for example scalar fields or ideal fluids.

Time dependence in comoving gauge

When we plug the constants of motion (3.6) into the Hamiltonian constraint (3.5) we obtain

ȧ2 =
N2

a4

(
p2

+ + p2
−
)
. (3.7)

In the comoving gauge N = 1 and if p2
+ + p2

− 6= 0 this is solved by

a(t) =
3

√√
p2

+ + p2
−(t− t0) , β±(t) =

p±

3
√
p2

+ + p2
−

ln(t− t0) + C± . (3.8)

For the case p+ = 0 = p− the solution is just the Minkowski space. In the literature the

Kasner metric is often given in the form

ds2 = −dt2 + t2pxdx2 + t2pydy2 + t2pzdz2 , (3.9)
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where the relation between the momenta is given by

px =
1

3

(
1 +

p+ +
√

3p−√
p2

+ + p2
−

)
, py =

1

3

(
1 +

p+ −
√

3p−√
p2

+ + p2
−

)
,

pz =
1

3

(
1− 2p+√

p2
+ + p2

−

)
.

(3.10)

As it can be easily verified the momenta satisfy

p2
x + p2

y + p2
z = 1 and px + py + pz = 1 . (3.11)

Note that the two equations define the intersection of a plane and a sphere (see figure 3.1).

Therefore the momenta are constrained to lie on a circle, the so-called Kasner circle. If two

of the pi’s are positive/negative, the other one must have the opposite sign. An isotropic

expansion is therefore impossible without the coupling of any additional matter fields.

The Kasner circle can be parametrized by the single variable u ∈ R called the Lifshitz-

Khalatnikov parameter. The parametrization reads

px = − u

1 + u+ u2
, py =

1 + u

1 + u+ u2
, pz =

u(1 + u)

1 + u+ u2
. (3.12)

The nature of the singularity at t→ 0 depends on the value of the coefficients px, py, pz. If one

of them is equal to 1, the Kasner solution becomes the Milne universe which is diffeomorphic

to slices of the Minkowski spacetime. The singularity is then only a coordinate singularity.

For all other values, the singularity is physical, which is indicated by the divergence of the

Kretschmann invariant RµνλσR
µνλσ. Since Rµν = 0, the curvature singularity is a pure Weyl

singularity. If we use the u–parametrization of the Kasner circle, we find that

CµνλσC
µνλσ =

16(1 + u)2u2

(1 + u+ u2)t4
. (3.13)

Note that the Weyl squared scalar satisfies CµνσλC
µνσλ ≥ 0. It is identically zero for the

values u = −1, 0,−∞,∞ which are the Milne universe. For all other values of u the scalar

blows up as t→ 0.

Configuration space trajectory

When parametrized by the variables α, β+ and β−, the Kasner solutions follow straight lines

in configuration space. This becomes clear by considering the form of the gravitational action

(3.3) when we use the quasi-Gaussian gauge N = e3α. The equations of motion will then
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Figure 3.1: Intersection of the Kasner sphere and the Kasner plane. Allowed values of px,
py and pz lie on the red Kasner circle. The circle crosses the axes at the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1). These points correspond to Milne universes (diffeomorphic to slices of
the Minkowski spacetime).

reduce to those of a free relativistic particle in 2+1 dimensions. The Hamiltonian constraint

(3.5) tells us that this particle is massless. Hence the solutions are just given by

α(t) = ±
√
p2

+ + p2
−(t− t0)

β±(t) = p±(t− t0) + C± ,
(3.14)

where C± ∈ R are arbitrary constants, which can be absorbed into the coordinates. When

approaching the singularity , i.e. t→ ∓∞, we have that

a = eα → 0 and β± →

sgn(p±) ∞ if p± 6= 0

C± otherwise
. (3.15)

It depends on the values of the momenta p± if the universe collapses into a line (cigarlike

singularity or a plane (disclike singularity). If we set p− = 0 for example we obtain a

cylindrically symmetric sub case. The universe then collapses into a plane if p+ > 0 and into

a line if p+ < 0.

Since the dynamics of the universe point resembles the dynamics of a free massless

relativistic particle and there is no potential term in the action, the approach to the singularity

is called velocity term dominated (VTD). The Bianchi I vacuum model is an important

example since in many other homogeneous models it might turn out that in the vicinity
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of the initial singularity the curvature and matter potentials might become negligible as

the three volume goes to zero. In this region the dynamics are well approximated by the

dynamics of the Kasner model. In such a case the approach to the singularity is referred to

as asymptotically velocity term dominated (AVTD).

Quantum Kasner solution

The DeWitt metric is conformally flat. A representative dS2 ∈ [dS2] and the corresponding

volume form are given by

dS2 = e3α
(
−dα2 + dβ2

+ + dβ2
−
)
,

?1 = e9α/2dα ∧ dβ+ ∧ dβ− .
(3.16)

This representatives corresponds to the comoving gauge N = 1. After quantizing the

constraint (3.4) we obtain the Wheeler-DeWitt equation

ĤΨ = 0 (3.17)

where the Hamiltonian constraint operator is given by

Ĥ =
~2e−3α

2

[
∂2

∂α2
+ 2f

∂

∂α
− ∂2

∂β+
2 −

∂2

∂β−
2 + ξRe3α

]
. (3.18)

The parameters f and ξ control the factor ordering which is partially left open for the

moment. The Ricci scalar computed from the representative dS2 reads

R =
9

2
e−3α . (3.19)

For f = 3
4
, ξ = 0 one obtains the Laplace-Beltrami factor ordering. If we set ξ = ξ3 = 1/8

instead , we obtain the conformal factor ordering. Note that independently of f and ξ the

Hamiltonian constraint operator Ĥ commutes with the momentum operators p̂± = ~
i

∂
∂β±

and

therefore their eigenvalues are good quantum numbers which we identify with the classical

constants of motion p±. We set ~ = 1 in the following. After rescaling Ψ =: e−fα Ψ̃ the

Wheeler-DeWitt equation simplifies to[
− ∂2

∂α2
+

∂2

∂β+
2 +

∂2

∂β−
2 + f 2 − 9

2
ξ

]
Ψ̃ = 0 . (3.20)
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The equation is now just a Klein-Gordon equation with a “mass”
√

9ξ/2− f 2. The “mass”

vanishes for the conformal factor ordering while for the pure Laplace-Beltrami factor ordering

it becomes imaginary. Solutions of the Wheeler-DeWitt equation in the Laplace-Beltrami

factor ordering can therefore develop tachyonic behavior. Note that the “mass” squared

term would be O(~2) if we re-insert the Planck constant. It is ad hoc not clear to us if the

appearance of such “mass” squared terms is a feature or a failure in the quantum theory.

We will regard it here as a failure and interpret the absence of the mass squared term as an

argument in favor of the conformal factor ordering.

Wheeler-DeWitt equation in conformal factor ordering In the conformal factor

ordering (f = 3/4 and ξ = 1/8) the Wheeler-DeWitt equation becomes the classical wave

equation in 1 + 2 dimensions [
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2

]
Ψ̃ = 0 , (3.21)

The equation is now “massless” and the conformal factor ordering, hence, resolves the

issues that appear when using for example the pure Laplace-Beltrami factor ordering. The

transformation Ψ 7→ Ψ̃ we performed is to be understood as a conformal transformation. We

now work in the representation in which the DeWitt metric is flat. This corresponds to the

Taub gauge N = e3α. The solutions can now be written as a mode expansion

Ψ̃ (α, β+, β−) =
∑
σ=±

∞∫
−∞

dp+

∞∫
−∞

dp− Aσ (p+, p−) ψ̃σp+,p− (α, β+, β−) , (3.22)

where the set of positive and negative frequency plane wave mode functions are given by

ψ̃±p+,p− (α, β+, β−) = exp

(
±i
√
p2

+ + p2
− α− ip+β+ − ip−β−

)
. (3.23)

The amplitudes A± are to be regarded as a distributions in momentum space. Note that a

necessary condition for the existence of the integral in (3.22) is A ∈ L1 (R2, dp+dp−). The

plane wave mode functions (3.23) reflect the VTD behavior of the Bianchi I model. If a

classical model has AVTD behavior, we can in general expect that such a plane wave mode

expansion is always possible in the vicinity of the singularity.

Note that the mode functions are in WKB-form, that is, the WKB-approximation ψ̃±p+,p− =

D̃
1
2 eiS0 with S0 satisfying the Hamilton-Jacobi equation and the Vleck factor being a constant
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D̃ = 1 is exact in this case. The WKB-time vector field obtained from the modes reads

∂

∂τ̃
= ∓

√
p2

+ + p2
−
∂

∂α
+ p+

∂

∂β+

+ p−
∂

∂β−
. (3.24)

Its integral curves as parametrized by WKB time are clearly the classical solutions

α(τ̃) = −
√
p2

+ + p2
−τ̃ + Cα , β+(τ̃) = p+τ̃ + C+ , β−(τ̃) = p−τ̃ + C− (3.25)

as expected. Note that in this case the WKB time τ̃ coincides with the coordinate time in

the quasi-Gaussian gauge. This is the case exactly because we chose to do calculations in

the representation in which the DeWitt metric is flat. This representation corresponds to

the gauge N = e3α.

We now choose the amplitudes

A+ (p+, p−) =
1

2π∆p+∆p−
exp

(
− [p+ − p+,0]2

2∆p2
+

− [p− − p−,0]2

2∆p2
−

)
, A− (p+, p−) = 0 (3.26)

and assume that A+ is sharply peaked, i.e. ∆p+, ∆p− � 1. In addition we assume that p+,0

and p+,0 are sufficiently large such that we can approximate√
p2

+ + p2
− ≈

p+,0 p+ + p−,0 p−√
p2

+,0 + p2
−,0

(3.27)

under the integral in (3.22). We can now evaluate the wave packet approximately as

Ψ̃ (α, β+, β−) ≈ exp

− 1

2∆β2
+

 p+,0 α√
p2

+,0 + p2
−,0

− β+

2
× exp

− 1

2∆β2
−

 p−,0 α√
p2

+,0 + p2
−,0

− β−

2 ,

(3.28)

where ∆β± = 1
∆p±

. The wave packet (3.28) represents now a Gaussian which is broadly

peaked about one of the classical trajectories. As an artifact of the approximation (3.27),

no spreading/decay of wave packets can be seen. This is because we replaced the non-linear

dispersion relation by a linear one. As we shall argue in the following, spreading and decay will

inevitably occur for reasonable wave packet and large enough |α|; hence the approximation

we employed here loses its validity. However, the larger p+,0 and p−,0 and the smaller ∆p+

and ∆p− the better the approximation will be (at least in some region of the minisuperspace).
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We should therefore expect broadly peaked wave packets with large momentum to spread

slower than sharply peaked wave packets with a lower momentum. Plots of a wave packet

for which the approximation breaks down are shown in figure 3.2.

Singularity avoidance

Note that ψ̃p+,p− does not approach zero as α→ −∞. Rather the limit is not well defined and

all modes have an essential singularity at this point. The vanishing of the mode functions,

however, is a sufficient but not a necessary criterion for the vanishing of the wave packets Ψ̃

obtained by smearing out the mode functions.

We know that solutions to the d = 1 + 1 dimensional classical wave equation will not

decay. If we give, for example, a Gaussian initial condition on a infinitely long and friction

less violin string and let it evolve in time, we would see two Gaussian wave packets moving

out in opposite directions. These wave packets would not decay in time and instead preserve

their shape. In our case such a wave packet would run straight into the singularity. If

we, however, go to higher dimensions d > 2, the situation changes. Now wave packets can

propagate in infinitely many directions (Huygen’s principle). This leads to a spreading of

wave packets which is accompanied by a decay of the amplitude |Ψ|. In our case that means

that a wave packet can never reach the singular boundary α → −∞. Our statements can

now be made more precise in the form of so called local decay rate estimates (see e.g. [107]).

For the case of the Kasner quantum solution we can apply the theorem in appendix A.3.

To conclude the discussion on the Kasner quantum solution: No stable wave packets can

be constructed in order to obtain wave packets that are fully peaked about a single classical

trajectory. Note that this is true despite the fact that the WKB approximation is exact for

the classical wave equation. Wave packets which satisfy the requirements of the theorem

in appendix A.3 will be subject to spreading which goes along with the fact that both the

amplitudes |Ψ̃| and the amplitudes of the derivatives |∂AΨ̃| decay at least as fast as 1/
√
|α|.

The Klein-Gordon current J therefore decays as fast as or faster than 1/|α|. Moreover, the

density ?|Ψ| 2d
d−2 = ?|Ψ|6 decays as fast as or faster than 1/|α|3. This leads to an avoidance

of the singularity by criterion 1 and 2:

J → 0 and ? |Ψ|6 → 0 as α→ −∞ . (3.29)

Our criteria, however, also predict an avoidance of the non-singular late stages (α → ∞) of

the universe. This is an example where quantum effects are not restricted to small scales of

Planck size. Because the superposition principle is universally valid in Quantum Cosmology,
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quantum effects can arise in principle at any scale. The question of how the situation changes

if matter is added will be discussed in the following sections. For simplicity we will restrict

our attention to the case of an effective potential.

Figure 3.2: The plot shows the equipotential lines of the absolute value of a typical wave
packet Ψ̃ that was numerically evaluated from (3.22) by using Matlab’s fast Fourier transform
algorithm. For the amplitude A(p+, p−) we chose a Gaussian distribution peaked over some
non–zero momenta. Our choice leads to wave packet which is only sharply peaked over the
classical trajectory (marked by the black line) close to α = 0. The spreading and the decay
of the wave packet are both manifest in the plots.

3.1.3 Effective matter potential

In this section we treat matter in a phenomenological way. A hypersurface orthogonal (non-

tilted) barotropic fluid with an equation of state p = wρ and energy density ρ ∝ a−3(1+w)

can be modeled by adding an effective matter potential of the form V(α) = V0e−3(1+w)α ∝ ρ,

with V0 > 0 being constant, to the Einstein-Hilbert action (3.3). The full action then reads

S =

∫
dt e3α

(
−α̇2 + β̇2

+ + β̇2
−

2N
−NV0e−3(1+w)α

)
. (3.30)

We recognize that the introduction of matter introduces an asymmetry with respect to α.

The usual energy conditions require the following:

• Null energy condition: (w ≥ −1 and V0 ≥ 0) or (w ≤ −1 and V0 ≤ 0),

• Weak energy condition: V0 ≥ 0 and w ≥ −1,

• Dominant energy condition: V0 ≥ 0 and −1 ≤ w ≤ 1,
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• Strong energy condition: (w ≥ −1/3 and V0 ≥ 0) or (w ≤ −1 and V0 ≤ 0).

If we perform a rescaling of the lapse N 7→ Ñ = e−3αN the Hamiltonian constraint can be

written as

H̃ =
−p2

α + p2
+ + p2

−

2
+ Ṽ(α) = 0 , (3.31)

where the rescaled minisuperspace potential is given by Ṽ(α) = V0ekα with k := 3(1 − w).

In particular one obtains Ṽ(α) = Λ
3
e6α for a cosmological constant term, Ṽ(α) = a3

me3α/2 for

an effective dust potential, and V(α) ≡ constant for a stiff fluid. If we assume that V0 > 0

and 0 < k ≤ 6, all energy conditions except the strong energy condition (which requires

0 < k ≤ 4) are satisfied. It is clear from (3.31) that the case k < 0 and V0 > 0 will replace

the Big Bang singularity by a bounce. In the following we are therefore interested in the

qualitative behavior of classical and quantum solution for the case that k > 0. We put to

note that the general solution to the resulting field equations is known as the Heckmann-

Schücking solution [108]. We will find that the case of phantom matter k > 6 (w < −1)

generically leads to the appearance of a Big Rip singularity.

Variation with respect to N and employing the fact that β+ and β− are cyclic yields

ȧ2 = N2
(
p2

+ + p2
− + 2V0a

k
)
a−4 . (3.32)

In the following we assume that p2
+ + p2

− 6= 0 and choose the the comoving gauge N = 1.

Equation (3.32) is then solved by

t(a) =
a3

3
√
p2

+ + p2
−

2F1

(
1

2
,

3

k
; 1 +

3

k
;− 2V0a

k

p2
+ + p2

−

)
, (3.33)

where 2F1(a, b; c; z) is the hypergeometric function. For small a, the hypergeometric function

asymptotically equals 1, and we get for a→ 0:

t ∼ a3

3
√
p2

+ + p2
−
. (3.34)

Thus the universe starts with a Big Bang at t = 0, independent of the value for the barotropic

index w. For large a and w 6= −1, the hypergeometric function can be simplified, too, and

one gets from (3.33) in the limit a→∞:

t ∼
√

2

V0

1

6− ka
(6−k)/2 + t∗. (3.35)

For k < 6 (w > −1), the universe expands infinitely, whereas in the phantom case, that is for
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k > 6 (w < −1), the universe becomes infinitely large already at t = t∗ and ends with a Big

Rip. We note that (3.35) is the full solution for the flat FLRW case: for k < 6 (non-phantom

case) there is a Big Bang, but for k > 6 (phantom case) there is no past singularity. Therefore

one can say that the anisotropy introduces the past singularity, leading to a model with Big

Bang and Big Rip.

For the anisotropy factors one has

β± =
1

k

p±√
p2

+ + p2
−

log

∣∣∣∣∣∣
1−

√
1 + 2V0

p2
++p2

−
ak

1 +
√

1 + 2V0

p2
++p2

−
ak

∣∣∣∣∣∣ ; (3.36)

they become constant for large a. Thus in contrast to the vacuum solution, this universe

isotropizes at late times. For small a, the asymptotic behavior corresponds to (3.8), which is

again independent of the matter content. This property is sometimes called “matter doesn’t

matter”. We conclude that in the limit a→ 0 and if the evolution is anisotropic the matter

potential becomes irrelevant and the Kasner behavior is recovered. In other words: The

approach to the singularity is AVTD. One might say that the universe evolves from a shape

dominated phase to a matter dominated phase.

In contrast to the vacuum case the addition of matter allows now also for isotropic

expansion. This is exactly the case when p+ = p− = 0 for which we obtain the flat Friedmann

model. The approach to the singularity is not AVTD in this case. In the case 0 < k < 6 the

there is a Type I initial singularity. The case k = 6 (cosmological constant) yields the flat

De Sitter universe, which is singularity free. For the case k > 6 there is no initial singularity.

Instead the universe ends in a Big Rip type singularity.

Wheeler-DeWitt equation

The Wheeler-DeWitt equation in conformal factor ordering is given by[
~2

2

(
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2

)
+
V0ekα

2

]
Ψ̃ = 0 . (3.37)

This is an essentially semi-classical model since we use an effective description for the matter

content of the universe. Note that we already chose the representation Ψ̃ of the wave function

that corresponds to the gauge N = e3α. We set again ~ = 1 in the following. The solutions

can be written in the form

Ψ̃ (α, β+, β−) =
∑
σ=±

∫
R2

dp+dp− Aσ (p+, p−) ψ̃σp+,p− (α, β+, β−) , (3.38)
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with the mode functions given by

ψ̃±p+,p− (α, β+, β−) = e−ip+β+−ip−β−c±p+,p−J± 2i
k

√
p2

++p2
−

(
2

k

√
V0ekα/2

)
,

c±p+,p− := Γ

(
1± 2i

k

√
p2

+ + p2
−

)(√V0

k

)∓2i
√
p2

++p2
−/k

,

(3.39)

where Jν(z) and Γ(z) denote the Bessel function of the first kind and the gamma function,

respectively. Let us now investigate the asymptotic forms of the wave packet. In the limit

α→ −∞ we can approximate the mode functions by

ψ̃±p+,p− (α, β+, β−) = e±i
√
p2

++p2
− α−ip+β+−ip−β− +O

(
ekα
)
, (3.40)

which is independent of k. We conclude that the quantum Kasner behavior is recovered in

this limit.

The discussion of the limit α → ∞ is slightly more complicated, but it turns out that a

discussion of the mode functions in the WKB approximation

ψ̃ ≈
√
D exp (iS) (3.41)

will be sufficient. A solution to the Hamilton-Jacobi equation is given by

Sp+,p−(α, β+, β−) =±

2

k

√
p2

+ + p2
− + V0ekα +

1

k

√
p2

+ + p2
− log

∣∣∣∣∣∣
1−

√
1 + V0

p2
++p2

−
ekα

1 +
√

1 + V0

p2
++p2

−
ekα

∣∣∣∣∣∣


− p+β+ − p−β− .
(3.42)

The corresponding van Vleck factor reads

D̃p+,p−(α) =
1√

p2
+ + p2

− + V0ekα
. (3.43)

If we introduce the functions

B+(p+, p−) =

√
k

8π
(1− i)

[
c+
p+,p−e

π
k

√
p2

++p2
−A+(p+, p−) + c−p+,p−e−

π
k

√
p2

++p2
−A−(p+, p−)

]
,

B−(p+, p−) =

√
k

8π
(1 + i)

[
c+
p+,p−e−

π
k

√
p2

++p2
−A+(p+, p−) + c−p+,p−e

π
k

√
p2

++p2
−A−(p+, p−)

]
,

(3.44)
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Figure 3.3: Contour plot of the Hamilton-Jacobi function Sp+,0(α, β+, 0) (black contour lines)
and the corresponding flow of classical solutions (blue streamlines). We chose the dust case
(k = 3) for the plot. Kasner solutions are flowing in from α → −∞. The solutions then
isotropize as α→∞.

then the approximate wave packet with these coefficients,

∑
σ=±

∫
R2

dp+dp− Bσ
√
D exp (σiS) , (3.45)

matches the exact wave packet for large α at the leading order. This follows from the

asymptotic expansion of the exact mode functions and an approximation of the WKB modes

of the form

ψ̃ ≈ 1
4
√V0

e−kα/4 exp

[
±i

(
2

k

√
V0ekα/2

)]
. (3.46)

Then one has

Ψ̃(α, β+, β−) ≈ e−
k
4
α

4
√V0

∑
σ=±

exp

(
σ

2i

k

√
V0e

k
2
α

)∫
R2

dp+dp− Bσ (p+, p−) e−ip+β+−ip−β− . (3.47)

We can now draw a clear picture of the behavior of wave packets. In the limit α→ −∞, we

recover the quantum Kasner behavior. Consequently, we expect a spreading with a resulting

decay of amplitudes. The behavior in the limit α→∞ can be inferred from (3.47): the term

in the second line of this equation is just the Fourier transform of Bσ and is independent of

α. If, for example, we choose Bσ to be Gaussian, its Fourier transform will be a Gaussian

which is peaked about some particular values of β+ and β−. This strongly reflects the classical

behavior of isotropization. Most importantly, wave packets do not spread in the region where
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α is large. The wave packet is modulated by a strongly oscillating factor and an exponentially

decaying factor. The exponentially decaying factor comes from the van Vleck factor (3.43)

and can be interpreted as arising from the particular representation of the wave function.

The decay of the mode functions in this representation can be intuitively understood by

inspecting the Hawking-Page formula (2.175): The representation of the wave function Ψ̃ we

are working corresponds to the gauge N = e3α. In this gauge, classical solutions reach α =∞
in a finite time t. Hence they spend less and less time t in the region of minisuperspace where

α is large. In this sense the decay of the density
√
−G̃D̃ is implied by (2.175).

We can switch to the comoving time representation via a conformal rescaling with Ω =

e3α/2. For our WKB modes this yields a comoving time density

?|ψ| = ?Dp+,p− ∝ a
(1+3w)

2 da ∧ dβ+ ∧ dβ− (3.48)

in the large a region. Note also that we switched from the variable α to the scale factor a.

Consider the prefactor a
(1+3w)

2 . It decays with a when w < −1
3

and grows with a for w > −1
3
.

This behavior precisely reflects the accelerated and decelerated late time expansion phases

of the universe. Figure 3.4 displays the behavior of the wave packet in the model with dust.

The asymmetry compared to Fig. 3.2 is clearly visible.

Figure 3.4: The plot shows equipotential surfaces of the absolute value of a (rescaled) wave
packet Ψ constructed from (3.38). We chose dust (k = 3) and the amplitude A(p+, p−)
to be Gaussian and peaked about some momenta (p+, p−) = (p̄+, p̄−). It turned out to be

appropriate to plot the equipotential surfaces of the rescaled wave packed D
−1/2
p̄+,p̄−|Ψ| instead

of |Ψ| to counter the decrease in the amplitude. The black line marks the corresponding
classical configuration space trajectory (3.36).

For simplicity we set B− = 0. Then the large-α limit of the Klein-Gordon current is given
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by

J [Ψ,Ψ] =

∣∣∣∣∫
R2

dp+dp− B+e−ip+β+−ip−β−

∣∣∣∣2 dβ+ ∧ dβ− +O
(

e−
k
4
α
)
. (3.49)

Up to leading order, the current only has an α component given by the Fourier transform of

B+ (p+, p−). If we assume that B+ is peaked at some particular values p+ and p−, we will

expect the Fourier transform of B+ to be peaked at some particular value of β+ and β−. The

current thus reflects the classical behavior in the region where α is large (in contrast to the

vacuum Kasner case). We have, however, ?|Ψ|6 → 0 as α→∞. Note that the behavior

is qualitatively independent of w, that is, there is no difference between the cases w ≥ −1

and w < −1, although the latter case leads to a Big Rip. The Big Rip is thus only avoided

by criterion 2.

3.1.4 Scalar fields

The symmetry reduced matter action for a minimally coupled scalar field φ can be brought

into the form

Sm =
1

2

∫
dt a3

[
φ̇2

N
−NV (φ)

]
(3.50)

The full action then reads

S =
1

2

∫
dt

e3α

N

[(
−α̇2 + β̇2

+ + β̇2
− + φ̇2

)
−N2V (φ)

]
. (3.51)

Note that if we transform N → N̄ = Ne−3α, it becomes manifest that the model is analogous

to a massless relativistic particle in a potential e6αV (φ).

Massless scalar field

In the region where a → 0 the massless scalar field might be a good approximation for

the general case if the universe enters a region in minisuperspace where the potential is

negligible. In the gauge N = e3α it becomes clear that this can in particular be the case

when approaching the initial singularity (α→ −∞) since then e6αV (φ) might be negligible.

The scalar field is then called kinetic-dominated.

In the comoving and in the quasi-Gaussian gauge the equations of motion are solved by
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gauge N = 1 e3α

α(t) = 1
3

log
(√

p2
+ + p2

− + p2
φ[t− t0]

) √
p2

+ + p2
− + p2

φ (t− t0)

β±(t) = p±

3
√
p2

++p2
−+p2

φ

log(t− t0) + C± p±(t− t0) + C±

φ(t) =
pφ

3
√
p2

++p2
−+p2

φ

log(t− t0) + Cφ pφ(t− t0) + Cφ

In the quasi-Gaussian gauge it is manifest that the solution represents again straight lines

in configuration space.

Are these solutions an exception to the phrase “matter doesn’t matter”? Not really!

The qualitative nature of the initial singularity is not affected, that is, it remains VTD. In

addition, however, we obtain the possibility of an isotropic singularity, i.e. the universe can

collapse into a point. This is exactly the case when p+ = p− = 0 and pφ 6= 0.

Wheeler-DeWitt equation

The DeWitt metric is given by

dS2 = e3α
(
−dα2 + dβ2

+ + dβ2
− + dφ2

)
. (3.52)

The Wheeler-DeWitt equation reads

ĤΨ =
~2e−3α

2

[
∂2

∂α2
+ 2f

∂

∂α
− ∂2

∂β+
2 −

∂2

∂β−
2 − ξRe3α − ∂2

∂φ2
+

e6α

~2
V (φ)

]
Ψ = 0 , (3.53)

where the Ricci scalar on M is

R =
27

2
e−3α . (3.54)

The Laplace-Beltrami factor ordering is now obtained for f = 3/2 and ξ = 0. Setting instead

ξ = ξ4 = 1
6

we obtain the conformal factor. As in the vacuum case we define Ψ̃ := efαΨ. The

Wheeler-DeWitt equation then simplifies to[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 −

∂2

∂φ2
+

e6α

~2
V (φ) + f 2 − 27

2
ξ

]
Ψ̃ = 0 . (3.55)

In the case of conformal factor ordering we then get[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 −

∂2

∂φ2
+

e6α

~2
V (φ)

]
Ψ̃ = 0 . (3.56)

If the minisuperspace potential e6α

~2 V (φ) becomes negligible in the singular region α → ∞,

we can conclude the avoidance of the singularity by applying the decay rate estimates for the
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classical wave equation in 3+1 dimensions. Both |Ψ̃| and |∂AΨ̃| decay as fast or faster than
1
|α| due to the spreading of wave packets. This implies an avoidance of the singularity by all

three criteria imposed in section 2.2.5.

In [T3] the discussion was extended to the case of a phantom field (opposite sign in the

kinetic term). The coupling of the phantom field can lead to the appearance of a Big Rip

type future singularity. The singularity was found to be only avoided by criterion 2.

3.1.5 Electromagnetic fields

In the following we will couple an electromagnetic field to the general Bianchi I metric. The

resulting model was to my knowledge first studied in [109].

We write the Bianchi I metric in the ADM form (2.18) where the basis one forms are

σ1 = dx, σ2 = dy and σ3 = dz. The structure coefficients of Bianchi I are all zero. Therefore

the momentum constraints are trivially satisfied in the vacuum case, that is, Hi = 0. The

full Hamiltonian for the non-diagonal Bianchi I model is therefore given by

H = NH =
Ne−3α

2

(
−p2

α + p2
+ + p2

− +
l21
I1

+
l22
I2

+
l23
I3

)
. (3.57)

This result is independent of the choice of the diagonalizing group. Since there are no inner

automorphisms there are no distinguished choices for the diagonalizing group. We will choose

the diagonalizing group to be SO(3,R) in the following. In the discussion of the Bianchi IX

in section 3.4.2 we will diagonalize the spatial metric by using the so called Euler matrix

which is parametrized by the three Euler angles θ, φ and ψ. We can do the same thing here

by just using the result from section 3.4.2. Note that in the vacuum case the total angular

momentum l21 + l22 + l23 commutes with the total Hamiltonian and therefore constitutes a

constant of motion.

The matter action is given by

SMaxwell =
1

8µ0

∫
?F ∧ F . (3.58)

We first need to perform the symmetry reduction in the matter sector. Matter fields should

respect the symmetries of the gravitational system. This leads to the fact that vector fields

can only be coupled to certain Bianchi models [110]. In the Bianchi I case the vector potential

can be expanded as

A = Atdt+ Axdx+ Aydy + Azdz . (3.59)

The field strength tensor is then obtained by F = dA . The gauge potential A might contain
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nonphysical degrees of freedom. The field strength F, however, is physical and should respect

the symmetries of Bianchi I. Hence we demand that LvF = 0 for all Killing vector fields v.

In the Bianchi I case v = ∂x, ∂y, ∂z and the field strength tensor is restricted to be of the

form

F = Eidx
i ∧ dt+

1

2
Bijdx

i ∧ dxj (3.60)

with the components Ei and Bij being functions of t only. Demanding, furthermore, F to

be exact, already implies that Bij = const. We conclude that the most general ansatz for a

vector potential respecting the symmetries of Bianchi I reads

At = xcx + ycy + zcz ,

Ax = −Ax +
1

2
(yBz − zBy) ,

Ay = −Ay +
1

2
(zBx − xBz) ,

Az = −Ax +
1

2
(xBy − yBx) ,

(3.61)

where ci = ci(t). The electric and magnetic field as measured by comoving observers are

given by Ei = Ȧi + ci and Bij = εijkB
k = constant, respectively. It seems that we do no

harm when setting ci = 0. We can now rewrite the action (3.58) in the ADM form

SMaxwell =
1

2

∫
dt
√
h

[
1

N
hij
(
Ei +NkBki

) (
Ej +N lBlj

)
− 1

2
NhijhlkBilBjk

]
, (3.62)

Where we absorbed the factor 1
2µ0

∫
R3 d3x into the fields. Let us denote the momenta

conjugate to Ai by

Πi =
∂L

∂Ȧi
=

√
hhij

N

(
Ej +NkBkj

)
. (3.63)

The Legendre transform yields the matter part of the Hamiltonian

H(m) = NH(m) +N iH(m)
i . (3.64)

The matter part of the Hamiltonian constraint and momentum constraints are given by

H(m) =
1

2
√
h
hij
(
ΠiΠj +BiBj

)
, H(m)

i = −BikΠ
k = εijkB

jΠk . (3.65)
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The full Hamiltonian is then given by

H =
Ne−3α

2

[
−p2

α + p2
+ + p2

− +
l21
I1

+
l22
I2

+
l23
I3

+ hij
(
ΠiΠj +BiBj

)]
−N iBijΠ

j

=: NH +N iHi .

(3.66)

Note that the matter part of the Hamiltonian constraint now explicitly depends on the Euler

angles. The total angular momentum l21 + l22 + l23 is therefore not conserved in general.

The momenta Πi are constants of motion. The momentum constraints Hi = H(m)
i ' 0 are

enforcing the vanishing of the Poynting vector. The constraint algebra closes with the Poisson

brackets given by

{H,Hi} = 0 and {Hi,Hj} = 0 . (3.67)

Our result for the Hamiltonian agrees with the one obtained in [109]. It was also checked in

[109] that the symmetry reduction works in the sense that it produces the correct Einstein-

Maxwell equations.

The equations of motion are a rather complicated set of coupled second order differential

equations. From the fact that the potential is positive, however, it is already clear that the

scale factor α is strictly increasing (or decreasing depending on the choice of the direction

of time). The authors of [109] have used diagrammatic methods to analyze the general case.

In order to get some insight into the situation we restrict ourselves to the consideration of

a more simple and symmetric situation for which the equations of motion are analytically

solvable.

Diagonal case

We consider the subset of solutions for which the metric coefficients hij are diagonal at all

times, i.e. the Euler angles are kept fixed (θ = π/2, φ = 0 = ψ). Without the loss of

generality we can set Πx = Πy = 0 and Bx = By = 0 and keep only the z-components to

be non-zero. Note that this is only possible because the equations of motion for the Euler

angles now consistently imply li = 0. The momentum constraints are also satisfied by this

ansatz. The dynamics of this universe is controlled by the Lagrangian

L =
e3α

2N

(
−α̇2 + β̇2

+ + β̇2
−

)
− N

2

[
(Πz)2 + (Bz)2

]
e−α−4β+ (3.68)

The dynamics are completely analogous to a relativistic particle that is reflected from one

potential wall that moves in the β+ direction as α (corresponding to time here) grows. There

is a now an additional Noether symmetry in the system. We expose it by defining new
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configuration space variables. We first rescale the lapse function by N → Ñ = e−3αN . Now

we can get rid of the “time” dependence in the potential by performing the Lorentz boost

T :=
2α− β+√

3
, X :=

2β+ − α√
3

. (3.69)

The Lagrangian now becomes

L =
1

2Ñ

(
−Ṫ 2 + Ẋ2 + β̇2

−

)
+
Ñ

2

[
(Πz)2 + (Bz)2

]
e−2
√

3X . (3.70)

The symmetries are now exposed: since T and β− are cyclic, their momenta pT and p− are

constants of motion

pT = − Ṫ
Ñ

=
β̇+ − 2α̇

Ñe2α
= constant . (3.71)

Variation with respect to X yields

Ẍ =
√

3
[
(Πz)2 + (Bz)2

]
e−2
√

3X , (3.72)

where we have fixed the gauge Ñ = 1 (N = e3α). We can solve the equation and get

X(t) =
1√
3

log

(
1 +K2 [(Πz)2 + (Bz)2] e2

√
3K(t−t0)

2K2e
√

3K(t−t0)

)
,

T (t) = −pT (t− t0) + CT ,

β−(t) = p−(t− t0) + C− ,

(3.73)

where K,CT , C− ∈ R are integration constants. We choose CT = C− = 0 since they can be

absorbed into the coordinate functions anyways. Up to now we haven’t taken the Hamiltonian

constraint into account. The Hamiltonian constraint, obtained by varying with respect to

Ñ , reads

−Ṫ 2 + Ẋ2 + β̇2
− +

[
(Πz)2 + (Bz)2

]
e−2
√

3X = 0 . (3.74)

Plugging the solution (3.73) into the constraint implies that

pT = ±
√
K2 + p2

− . (3.75)
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Performing the Lorentz boost back to the Misner variables yields

α(t) = ±2

√
p2
− +K2

3
(t− t0) +

1

3
log

(
1

2K2
e−
√

3K(t−t0) +
[(Πz)2 + (Bz)2]

2
e
√

3K(t−t0)

)
β+(t) = ±

√
p2
− +K2

3
(t− t0) +

2

3
log

(
1

2K2
e−
√

3K(t−t0) +
[(Πz)2 + (Bz)2]

2
e
√

3K(t−t0)

)
β−(t) = p−(t− t0) .

(3.76)

We now discuss the limiting behavior. For brevity we set t0 = 0 and restrict ourselves to the

solutions with the +-sign and the case when K > 0 and (Πz)2 + (Bz)2 6= 0. For t→ −∞ the

asymptotics are

α(t) ≈
√
p2

+,1 + p2
− t+ const.

β+(t) ≈ p+,1 t+ const.

β−(t) ≈ p− t+ const. ,

(3.77)

where p+,1 =
−2K+

√
p2
−+K2

√
3

=
|pT |−2

√
p2
T−p

2
−√

3
. For t→ +∞ the asymptotics are

α(t) ≈
√
p2

+,2 + p2
− t+ const.

β+(t) ≈ p+,2 t+ const.

β−(t) ≈ p− t+ const. ,

(3.78)

where p+,2 =
2K+
√
p2
−+K2

√
3

=
|pT |+2

√
p2
T−p

2
−√

3
. Both asymptotic solutions correspond to ingoing

and outgoing Kasner solutions (3.14). From the asymptotic solutions we conclude that during

the process of reflection at the potential wall a momentum of ∆p+ = 4K√
3

is transferred.

(t)

+
(t)

-
(t)

Figure 3.5: Plot of a particular solution in the gauge N = e3α. One can clearly see the
transition from one Kasner solution to the other
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Let’s now provide a physical interpretation of the situation. The components of the

energy-momentum tensor are given by

{T µν} =
e−4β+

8πa4

[
(Πz)2 + (Bz)2

]
diag (−1, 1, 1,−1) . (3.79)

If p− = 0 (cylindrical symmetry), the universe starts to expand in the z-direction and it

contracts in the other two directions. The pressure now starts to grow as the electric and

magnetic field lines become denser, which finally leads to a bounce. After the bounce the

universe contracts in the z-direction and expands in the other two directions.

Wheeler-DeWitt equation

Starting from the Hamiltonian (3.66) we can read off the DeWitt metric, compute the volume

element, and the Ricci curvature scalar of the 4–dimensional minisuperspace

dS2 = e2α
(
−dα2 + dβ2

+ + dβ2
−
)

+ e4β+dA2
z , R = −6e−2α ,

?1 = e3α+2β+dα ∧ dβ+ ∧ dβ− ∧ dAz .
(3.80)

We started here from the conformal gauge which corresponds to N = eα. Note that, in

contrast to the previous models, the configuration space is not conformally flat. This follows

from the fact that the Weyl squared scalar is given by W2 = 12e−4α. The DeWitt metric,

however, admits a representation for which the curvature scalar is constant. For simplicity

we set the magnetic field Bi to zero in the following. The Laplace-Beltrami operator reads

� = e−2α

(
− ∂2

∂α2
+

∂2

∂β+
2 +

∂2

∂β−
2 −

∂

∂α
+ 2

∂

∂β+

)
+ e−4β+

∂2

∂Az
2 . (3.81)

We pick the conformal factor ordering defined by

Ĥ := −1

2
(�− ξR) , (3.82)

with ξ = ξ4 = 1/6. The conformal weight of the wave function is w(Ψ) = −1. The

Hamiltonian constraint operator is then given by

2Ĥ = e−2α

(
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 +

∂

∂α
− 2

∂

∂β+

+ 6ξ

)
− e−4β+

∂2

∂Az
2 . (3.83)
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We transform now Ψ → Ψ̃ = e
α
2

+β+Ψ. The transformation corresponds to a conformal

transformation Ω = e−
α
2
−β+ . The volume element is now given by

?̃1 =

√
−G̃ dα ∧ dβ+ ∧ dβ− ∧ dAz = eα−2β+dα ∧ dβ+ ∧ dβ− ∧ dAz . (3.84)

Most importantly note that
√
−G̃

{
G̃AB

}
= diag

(
−1, 1, 1, e2α−4β+

)
. After the conformal

transformation, the Wheeler-DeWitt equation reads[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 − e2α−4β+

∂2

∂Az
2 +

3(1− 8ξ)

4

]
Ψ̃ (α, β+, β−, Az) = 0 . (3.85)

Due to the transformation we got rid of the first derivatives but we have picked up a mass2

term of the form 3(1−8ξ)
4

. Note that it does not vanish for the usual conformal factor ordering

with ξ = 1/6. Furthermore, note that P̂z = i
~

∂
∂Az

is a good quantum number. Therefore it

suggests itself to perform the mode expansion

Ψ̃ (α, β+, β−, Az) = ψ̃Pz(α, β+, β−)e
i
~PzAz . (3.86)

We then obtain[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 + P 2

z e2α−4β+ +
3(1− 8ξ)

4

]
ψ̃Pz(α, β+, β−) = 0 . (3.87)

The modes with quantum number Pz = 0 (vanishing electric field) then obey the equation[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 −

1

4

]
ψ̃0(α, β+, β−) = 0 . (3.88)

As we would wish to recover the behavior of the vacuum Bianchi I model, we remove the

mass squared term from the Wheeler-DeWitt equation, that is, we consider instead of (3.90)

the equation [
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 + P 2

z e2α−4β+

]
ψ̃Pz(α, β+, β−) = 0 . (3.89)

The Wheeler-DeWitt equation is solved analogously to the classical case. We first perform

the Lorentz boost (3.69) to get[
∂2

∂T 2
− ∂2

∂X2
− ∂2

∂β−
2 + P 2

z e−2
√

3X

]
ψ̃Pz(T,X, β−) = 0 . (3.90)
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This is solved by a superposition of the mode functions

ψ̃±Pz ,pT ,p− (T,X, β−, Az) = c±pT ,p−I
±i

√
p2
T
−p2−
3

(
Pze

−
√

3X

√
3

)
e−ipTT eip−β−eiPzAz . (3.91)

Now remind yourself that in the classical model the trajectory comes in from the region where

X →∞. In this region the universes asymptotic behavior corresponds to that of the Kasner

solution. The trajectory then hits the potential barrier and is reflected back to X = ∞.

The region X → −∞ is therefore classically forbidden if Pz 6= 0. After boosting back to the

Misner variables, we obtain the general solution

Ψ̃ (α, β+, β−, Az) =

∞∫
−∞

dPz

∞∫
−∞

dpT

∞∫
−∞

dp− Al (Pz, pT , p−) ψ̃lPz ,pT ,p− (α, β+, β−, Az)

where ψ̃±Pz ,pT ,p− (α, β+, β−, Az) = c±pT ,p−,PzI
±i

√
p2
T
−p2−
3

(
Pze

α−2β+

√
3

)
e
−ipT

2α−β+√
3 eip−β−eiPzAz

with c±pT ,p−,Pz = Γ

(
1± i

√
p2
T − p2

−

3

)
e±i

√
p2
T
−p2−
3 [log(2

√
3)−Pz] .

(3.92)

We should choose A± (Pz, pT , p−) such that supp(A±) ⊆
{

(Pz, pT , p−) ∈ R | p2
T − p2

− ≥ 0
}

.

The coefficients c±pT ,p−,Pz were chosen such that for small e−
√

3X = eα−2β+ the mode functions

behave as

ψ̃±Pz ,pT ,p− (α, β+, β−, Az) = e±i

√
p2
T
−p2−
3

(α−2β+) [1 +O
(
P 2
z e2(α−2β+)

)]
e
−ipT

2α−β+√
3 eip−β−eiPzAz

=
[
1 +O

(
P 2
z e2(α−2β+)

)]
e
−i

2pT∓
√

p2
T
−p2−√

3
α
e

i
pT∓2
√

p2
T
−p2−√

3
β+eip−β−eiPzAz .

(3.93)

Identifying now

p+,1 :=
pT − 2

√
p2
T − p2

−√
3

and p+,2 :=
pT + 2

√
p2
T − p2

−√
3

(3.94)

and restricting attention to the oscillating modes with pT ≥ |p−| we can write

ψ̃+
Pz ,pT ,p−

(α, β+, β−, Az) =
[
1 +O

(
P 2
z e2(α−2β+)

)]
e−i
√
p2

+,1+p2
−αeip+,1β+eip−β−eiPzAz ,

ψ̃−Pz ,pT ,p− (α, β+, β−, Az) =
[
1 +O

(
P 2
z e2(α−2β+)

)]
e−i
√
p2

+,2+p2
−αeip+,2β+eip−β−eiPzAz .

(3.95)

Therefore the plus modes ψ̃+
Pz ,pT ,p−

correspond to the asymptotics solutions of the classical

model given by equations (3.77) and the minus modes ψ̃−Pz ,pT ,p− to the ones given by equations
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(3.78).

Usually the problem of matching is solved after imposing the Hawking-Page boundary

(see e.g. the example in [104]). The boundary condition demands that wave packets vanish

deep inside of the classically forbidden region. As discussed in section 2.2.6, this criterion

is questionable in view of the conformal covariance of the wave function. By studying the

asymptotics of the modified Bessel functions [111] we find that the real part of the modes

functions (3.91) blows up like exp
(
exp

(
−
√

3X
)
/
√

3
)

as X → −∞. This problem is cured

by choosing the Macdonald function Kν(z) instead of the modified Bessel functions Iν(z) in

(3.91). Hence we get

ψ̃Pz ,pT ,p− (α, β+, β−, Az) = K
i

√
p2
T
−p2−
3

(
Pze

α−2β+

√
3

)
e
−ipT

2α−β+√
3 eip−β−eiPzAz . (3.96)

The Macdonald function decays exponentially in the classically forbidden region. The mode

function (3.96) is a certain linear combination of the plus and minus modes in (3.91). The

choice of (3.96) thus leads to a matching of the ingoing and outgoing modes.

Singularity avoidance: Classically the electric field does not influence the spacetime

dynamics close to the singularity, that is, “matter doesn’t matter” and we recover the Kasner

behavior in the vicinity of the singularity. Interestingly the same holds for the quantum model

in the following sense: The (1+3)–dimensional Wheeler-DeWitt equation becomes effectively

(1 + 2)–dimensional as α→ −∞:[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 − e2α−4β+

∂2

∂Az
2

]
Ψ̃ ≈

[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2

]
Ψ̃ = 0 . (3.97)

Note that this is different from the case of minimally coupled scalar fields. By using the

decay rate estimate in appendix A.3 we find that |Ψ̃| and |∂AΨ̃| decay as fast as or faster

than 1√
|α|

as α→ −∞. We conclude that all components of the Klein-Gordon current J in

the presently used coordinates decay like 1/|α|, that is, they decay in the same way as in

the vacuum Bianchi I case. This is true for all components except for the Az component in

front of dα ∧ dβ+ ∧ dβ− which decays like exp(−2
√

3X). The conformally invariant density

?|Ψ|4 = e−
√

3X |Ψ̃|4dα∧ dβ+ ∧ dβ− ∧ dAz goes to zero at the singular boundary. We conclude

that the singularity can be avoided by all three criteria imposed in section 2.2.5.
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3.2 Kantowski-Sachs

As already mentioned in section 2.1.2, the Kantowski-Sachs spacetime is the only spatially

homogeneous cosmological model which is not covered by the Bianchi classification. The

isometry group of the models is R × SO(3). The Kantowski-Sachs model is particularly

interesting. It was already noticed by Kantowski and Sachs [112] that the vacuum solutions

are in fact the interior part of the Schwarzschild spacetime.

3.2.1 The Kantowski-Sachs metric

We have visualized the topology of constant time hypersurfaces Σ = R × S2 in figure 3.6a.

Note that it is in principle possible to compactify the spatial hypersurfaces by imposing

periodic boundary conditions as shown in figure 3.6b. The topology of the spatial hypersurfaces

then becomes S1 × S2. We will refer to this three–dimensional manifold as the Kantowski-

Sachs torus.

r

S2

D2

D2

(a) Kantowski-Sachs cylinder.

r

S2 × I

S2 × S1

(b) Compactification to Kantowski-
Sachs torus.

Figure 3.6: Visualization of the topology of the Kantowski-Sachs universe.

The spacetime manifold is given by M = R× Σ and we equip it with the spherical class

of Kantowski-Sachs metrics.1 The line element is given by

ds2 = −N2dt2 + z2dr2 + b2dΩ2 , (3.98)

where b = b(t), z = z(t) and dΩ2 = dϑ2 + sin2 ϑdϕ2 is the standard metric on S2. The model

1There also exists a flat and open version of the metric. These are however just special cases of the Bianchi
type I and Bianchi type III model which are obtained by imposing additional symmetries [31].
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possesses four spacelike Killing vector fields

η = ∂r , σ1 = ∂ϕ ,

σ2 = sinϕ ∂ϑ + cotϑ cosϕ ∂ϕ ,

σ3 = cosϕ ∂ϑ − cotϑ sinϕ∂ϕ

(3.99)

that obey the Killing algebra

[σi, σj] =
∑
i,j

εijkσk and [η, σi] = 0 for i, j, k = 1, 2, 3 . (3.100)

It will turn out to be useful to switch to another set of configuration space variables defined

by

a3 := zb2 and s := e−3σ :=
z

b
. (3.101)

The metric then becomes

ds2 = −N2dt2 + a2(e−4σdr2 + e2σdΩ2) . (3.102)

The shear factor s controls the shape of the universe and the scale factor a controls the

volume of the spatially homogeneous hypersurfaces. If we define α := ln a then α and σ play

the role of Misner type variables. The inverse transformation reads

b = aeσ , z = ae−2σ. (3.103)

We will encounter the following types of singularities in this thesis:

• Disklike singularities with z → 0 and therefore a→ 0 and σ →∞. As we will see, such

singularities can be part of a horizon and hence coordinate singularities. If this is the

case the model is incomplete.

• Cigarlike singularities for which b→ 0.

• We will see that also a third kind of singularity is possible for which both z and b

approach zero at the same time.

The Weyl squared scalar of the Kantowski-Sachs universe reads

CµνλσC
µνλσ =

3

4

[
1

b2
+
Nz̈ − Ṅ ż
N3z

]2

. (3.104)
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Therefore b→ 0 seems to be a good indicator for the presence of a curvature singularity.

Particles moving in the r-direction with a four velocity u = 1
N

√
P 2

z2 −K∂t+ P
z2∂r move on

geodesics. K = −1 for timelike geodesics and K = 0 for lightlike geodesics. The parameter

P is the constant of motion associated with the spacelike killing vector field η = ∂
∂r

. In the

case K = −1 it is the momentum per rest mass of the particle. If K = 0 the parameter P is

the wave number of the lightlike particle. Setting K = −1 and P = 0 shows that observers

comoving with the coordinates r, ϑ and ϕ move on geodesics. Furthermore, if we gauge N = 1

then t is the comoving time of these observers.

3.2.2 Hamiltonian formulation

The Ricci scalar of the Kantowski-Sachs spacetime reads

R =
6

N2a2

(
ȧ2 + a2σ̇2 + aä− aȧṄ

N

)
+ (3)R , (3.105)

where the three–curvature is given by (3)R = 2e−2σ

a2 = 2
b
. The trace of the extrinsic curvature

is given by

K =
3ȧ

Na
. (3.106)

Furthermore, the determinants of the four and three metrics are given by

√−g = Na3 sin θ
√
h = a3 sin θ

(3.107)

By plugging the symmetry-reduced ansatz into the Einstein-Hilbert action (2.39) we obtain

S =
I

2G

∫
dt

[
−3aȧ2

N
+

3a3σ̇2

N
+N

(
ae−2σ − Λa3

)]
, (3.108)

where I :=
∫
I

dr is a compactification parameter. We set G = 1 in the following. The

gravitational Lagrangian is then given by

L =
I
2

[
−3aȧ2

N
+

3a3σ̇2

N
+N

(
ae−2σ − Λa3

)]
. (3.109)

If we switch to the variable α := ln a it becomes

L =
I
2

[
3e3α

N

(
−α̇2 + σ̇2

)
−Ne3α

(
Λ− e−2(α+σ)

)]
. (3.110)



3.2. KANTOWSKI-SACHS 109

Expressed in terms of z and b the Lagrangian reads

L =
I
2

(
−2bḃż

N
− zḃ2

N
−NΛzb2 +Nz

)
. (3.111)

We can read off the minisuperspace potential V(z, b) = Iz(Λb2−1)
2

. In particular, if Λ = 0, the

potential is negative everywhere. Consequently the trajectory of the universe point will be

“spacelike” in M and the universe can recollapse. The conditions under which the matter

filled model recollapses were studied in [60].

Note that under the transformation

z 7→ c · z , with c ∈ R (3.112)

the gravitational Lagrangian transforms as L 7→ c · L. The resulting equations of motions

will therefore be invariant under the transformation, i.e. the transformation (3.112) maps

solutions into solutions. Furthermore, the rescaling symmetry enables us to absorb the

compactification parameter I into z. This symmetry can be explicitly broken by adding

matter to the system.

For the study of both the classical as well as the quantum dynamics it is helpful to

introduce yet another parametrization of the minisuperspace. A useful set of minisuperspace

coordinates is defined by the following transformation

ᾱ := α− 1

2
σ , φ̄ := σ − 1

2
α and N =: 2N̄eᾱ+2φ̄ . (3.113)

The inverse transformation of the configuration space variables is

α =
4

3
ᾱ +

2

3
φ̄ and σ =

4

3
φ̄+

2

3
ᾱ . (3.114)

Note that the transformation can be regarded as a combination of a Lorentz-boost and a

rescaling of the minisuperspace coordinates. The Lagrangian now becomes

L = I
[

e3ᾱ

N̄

(
˙̄φ2 − ˙̄α2

)
+ N̄eᾱ

]
, (3.115)

while the Hamiltonian constraint reads

˙̄α2 − ˙̄φ2 + N̄2e−2ᾱ = 0 . (3.116)
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This corresponds to the Friedmann equation of a closed universe with a minimally coupled

scalar field. Since φ̄ is cyclic we now have

κ̄ :=
2Ie3ᾱ

N̄
˙̄φ = constant . (3.117)

The transformation exposed an internal symmetry of the system. If we think about the

Kantowski-Sachs as the Schwarzschild interior the corresponding constant of motion κ̄ will

be proportional to the Schwarzschild mass M . If we plug the constant of motion into the

Friedmann equation we get
dφ̄

dᾱ
= ±

κ̄
2I√

κ̄2

4I2 − e4ᾱ

, (3.118)

from which we obtain the configuration space trajectories

φ̄(ᾱ) = ±1

2
arcosh

( κ̄

2Ie2ᾱ

)
+ C . (3.119)

The Quantum Cosmology of the closed Friedmann universe with one minimally coupled

massless scalar field was extensively discussed in [10] and in more detail in [104]. We will

return to the discussion of the classical vacuum solution in section 3.2.3. We remark that

the dust solution was first given by Kantowski and Sachs in their original paper [112]. The

Quantum Cosmology of the model filled with dust was discussed in great detail by Conradi

[113].

The canonical momenta conjugate to the configuration space variables a and pσ are given

by

pa = −3Iaȧ
N

, pσ =
3Ia3σ̇

N
. (3.120)

The Hamiltonian is then obtained by the usual Legendre transform

H =
N

2I

[
−p

2
a

3a
+

p2
σ

3a3
+ I

(
Λa3 − ae−2σ

)]
= NH . (3.121)

If we switch to the variable α := ln a and its conjugate momentum pα = apa the Hamiltonian

becomes

H =
N

2I

[
e−3α

3

(
−p2

α + p2
σ

)
+ I2e3α

(
Λ− e−2[α+σ]

)]
. (3.122)

The diffeomorphism constraints are all trivially satisfied, that is H is the full Hamiltonian of

the system. The canonical momenta of z and b are given by

pz = −Ibḃ
N

, pb = −I(zb)̇

N
. (3.123)
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In these variables the Hamiltonian is given by

H =
N

2I

[
−2pzpb

b
+
zp2

z

b2
+ I2

(
Λzb2 − z

)]
. (3.124)

3.2.3 Cosmological constant and electromagnetic field

In this section we consider a Kantowski-Sachs universe filled with a cosmological constant

and an electromagnetic field. The general solution to the classical field equations turns out

to be the interior Reissner-Nordström-DeSitter solution as was already noted by the authors

of [114]. The Wheeler-DeWitt equation also turns out to be analytically solvable by using

the symmetries of the model.

Coupling of electromagnetic field

The Lagrangian density of Maxwell’s theory minimally coupled to gravity is given by

LMaxwell = − 1

16π
FµνF

µν . (3.125)

We expand the one-form vector potential as

A = Atdt+ Ardr + Aϑdϑ+ Aϕdϕ . (3.126)

The field strength tensor is then obtained by F = dA. The Faraday two-form should respect

the symmetries of the Kantowski-Sachs spacetime. Therefore we demand that LvF = 0 for

v = η, σi (i = 1, 2, 3) being the Killing vector fields of the Kantowski-Sachs spacetime. This

restricts the form of F to

F = −Erdt ∧ dr +Br sinϑ dϑ ∧ dϕ , where

Er = Er(t) and Br = Br(t) .
(3.127)

Further demanding dF = 0 requires Br = constant. This fixes the four potential up to

admissible gauge transformations to be of the form

At = cr(t)r , Ar = Ar(t)

Aϑ =

∫ ϕ

cϕ(ϑ, φ)dφ , Aϕ = cϕ(ϑ, ϕ)−Br cosϑ
(3.128)

Since cr can in principle be absorbed into Ar we will set it to zero. The electric field is then

given by Er = −Ȧr. The form of the function cϕ is irrelevant as well since it will not appear
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in the action anyways. The action for the four potential then becomes

SMaxwell =

∫
d4x
√−g LMaxwell

=
I
2

∫
dt

[
ae4σ

N
Ȧ2
r −

Ne−4σ

a
B2
r

] (3.129)

Note that, in contrast to a scalar field, Ar couples to both the scale and shape factors. Note

also that the conformal invariance of Maxwell’s theory enables us to cancel the coupling to

the scale factor by rescaling the lapse according to N 7→ N̄ = N/a (N̄ = 1 is the conformal

time gauge).

Electric field and cosmological constant

Expressed in terms of z and b the Lagrangian of the electromagnetic four potential reads

LMaxwell =
I
2

[
b2Ȧ2

r

zN
− NzC2

M

b2

]
, (3.130)

where CM = Br In the following we use the variable A := −Ar. Note that Ȧ = Er is the

electric field in the r-direction. The full Lagrangian is now given by

L =
I
2

(
−2bḃż

N
− zḃ2

N
+
b2Ȧ2

r

zN
− NzC2

M

b2
−NΛzb2 +Nz

)
. (3.131)

As usual it should be checked if the symmetry reduced Lagrangian yields the correct equations

of motion. We will not do so here. The correctness of the Lagrangian will only be justified

later by the fact that it yields the correct solution to the field equations which is the Reissner-

Nordström-DeSitter solution.

Since ∂L
∂A

= 0 the canonical momentum pA is a constant of motion, that is

CE :=
b2Ȧ

zN
= constant . (3.132)

The constant CE will later be identified as an electric charge while CM can in principle

be identified with a magnetic charge. Variation of the action with respect to N yields the

Hamiltonian constraint

zḃ2 + 2bżḃ+N2

(
1− Λb2 − C2

E + C2
M

b2

)
z = 0 , (3.133)
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where we already made use of equation (3.132). By varying the action in z we obtain the

field equation

ḃ2 +N2

(
1− Λb2 − C2

E + C2
M

b2

)
+ 2

(
b̈− Ṅ

N
ḃ

)
b = 0 . (3.134)

After multiplying this expression with ḃ/N2 it can be written as a total time derivative:

d

dt

[
b

(
ḃ2

N2
+ 1− Λ

3
b2 +

C2
E + C2

M

b2

)]
= 0 . (3.135)

Integration in t now yields

ḃ2

N2
+ 1− Λ

3
b2 − b∗

b
+
C2
E + C2

M

b2
= 0 , (3.136)

where b∗ is another constant of motion. If we now make the ansatz z = z(b) and replace ḃ2

in the Hamiltonian constraint (3.133), we obtain the equation

z′

z
=

1

2

(
1− Λb2 − C2

E

b2

b− Λ
3
b3 − b∗ +

C2
E+C2

M

b

− 1

b

)
. (3.137)

Integration then yields the configuration space trajectory

z(b) = z∗

√
b∗
b

+
Λ

3
b2 − C2

E + C2
M

b2
− 1 . (3.138)

Note that the integration constant z∗ can be absorbed into the r-coordinate. After fixing the

gauge N = b the “energy” equation (3.136) can be written as

ḃ2 + Veff(b) = 0 , where Veff(b) = b2 − Λ

3
b4 − b∗b+ C2

E + C2
M . (3.139)

In this gauge the constant of motion C2
E + C2

M acts like an energy offset. One can now

analyze the behavior of the solutions by plotting the effective potential for different cases

(for an example see subsection 3.2.3).

Performing now the coordinate transformation defined by

t→ t̄ := b(t) , r → r̄ := z∗r , (3.140)
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brings the metric into the form

ds2 = − 1

2M
t̄

+ Λ
3
t̄3 − Q2

E+Q2
M

t̄2
− 1

dt̄2 +

(
2M

t̄
+

Λ

3
t̄3 − Q2

E +Q2
M

t̄2
− 1

)
dr̄2 + t̄2dΩ2 , (3.141)

where we made the identifications b∗ =: 2M , CE =: QE and CM =: QM . This metric is

indeed the interior of the Reissner-Nordström-DeSitter solution. We conclude that it has a

coordinate singularity and that it can be analytically extended beyond the horizons. This

works of course only if no compactifications have been imposed. If, however, a compactification

is imposed the magnetic and electric field lines are closed and there is no electric charge and

also no magnetic monopole. This is why we decided to keep the parameter QM to be non-zero.

In the following we take a look at special cases of this solution.

Vacuum solution

In the vacuum case the “energy” equation (3.136) reads

ḃ2

N2
+ 1− Λ

3
b2 − b∗

b
= 0 , (3.142)

where b∗ is a constant motion that arises after integration. The equation fixes the classical

range of the constant of motion b∗ ≥ b (1− Λb2/3). If Λ = 0 the constant b∗ is the maximum

of b(t). This will become important in the later study of the corresponding quantum model.

In phase space the constant of motion reads

b∗ =
1

I2b
p2
z + b

(
1− Λ

3
b2

)
. (3.143)

In the case I = ∞ the constant of motion can be identified as b∗ = 2M , where M is the

mass of the black hole, as we will see in the following . We now turn to the case Λ = 0 and

choose the gauge N = b. Then

b(t) = b∗ sin2

(
t− t0

2

)
and z(t) = z∗ cot

(
t− t0

2

)
, (3.144)

where the constant z∗ ∈ R is independent of b∗ and can be absorbed into the coordinate r.

The configurations space trajectory (3.138) reduces to

z(b) = z∗

√
b∗
b
− 1 . (3.145)
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b,
z

t

b(t)

z(t)

0 π 2π

0

b∗

(a) Plots of z and b versus t.

z

b

0
0

b∗

(b) Configuration space trajectory.

Figure 3.7: Plots of z and b. The universe emerges out of a cigarlike singularity collapses to
a disklike singularity and goes back to the cigarlike singularity.

In terms of the scale and shear factor the solution reads

a(t) = a∗ sin

(
t− t0

2

)
cos

1
3

(
t− t0

2

)
and s(t) :=

z(t)

b(t)
= s∗

cos
(
t−t0

2

)
sin3

(
t−t0

2

) , (3.146)

where a∗ = 3
√
z∗b2
∗ and s∗ = z∗/b∗. The maximal and minimal scale factors amax/min =

±2−
4
3

√
3a∗ are reached at t− t0 = 2π

3
and t− t0 = 4π

3
. In the vacuum case the metric (3.141)

reduces to the interior Schwarzschild metric:

ds2 = − 1
2M
t̄
− 1

dt̄2 +

(
2M

t̄
− 1

)
dr̄2 + t̄2dΩ2 . (3.147)

If we now choose t ∈ (0, π) the coordinate t̄ runs from 0 to 2M and the metric covers the

white hole region IV in the Kruskal diagram 3.9. If we had chosen t ∈ (π, 2π), then t̄ would

range from 2M to 0. We see now explicitly that the disklike singularity corresponds to the

intersection of the Schwarzschild horizons.

It is instructive to visualize the compactified vacuum solution. Equivalence relations can

be imposed at some constant values r1 and r2 > r1. The resulting Kantowski-Sachs torus

can then be plotted in a Kruskal diagram (see figure 3.9b).

Having the Oppenheimer-Snyder solution in mind, it should also be clear that it is possible

to glue a Friedmann universe to the Kantowski-Sachs spacetime at some fixed radius. The

matching and the Quantum Cosmology of the resulting model have been discussed by Conradi

[113].
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a
,
s

t

a(t)

s(t)

0 π 2π

−amax

0

amax

(a) a, s versus t

s

a

0

−amax

0

amax

(b) configurations space trajectory

Figure 3.8: plots of a and s.

T

X

7t = cons
t.

7r
=

const.

7t = 0

7t = 0

7r =
1;
7t =

2M
7r =
!1

; 7t =
2M

I

II
III

IV

(a) The Kruskal diagram shows the
maximally analytic extension of the
Schwarzschild spacetime. The red
lines in the interior regions (II and
IV) correspond to the Kantowski-
Sachs cylinder at different stages of its
temporal evolution.

T

X

b ! 0
z ! 1

b ! 0
z ! 1

T

X

b ! 0
z ! 1

b ! 0
z ! 1

b = 2M; z = 0b = 2M; z = 0

(b) This Kruskal diagram shows
the Kantowski-Sachs torus for a
specific choice of compactification.
After compactification the disklike
singularity (bifurcation point in the
Kruskal diagram) turns into a conic
singularity.

Figure 3.9: Kruskal diagrams.

Vanishing cosmological constant

In the following we concentrate on the solutions with Λ = 0 and a non-vanishing electromagnetic

field. This case corresponds to the interior Reissner-Nördstrom solution if no compactifications

are imposed. We choose the gauge N = b and write the equation of motion for b as

ḃ2 +

(
b− b∗

2

)2

=
b2
∗
4
− C2

E . (3.148)
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This is just the energy equation of a harmonic oscillator with an energy b2∗
4
−C2

E that oscillates

around the minimum of the potential at b∗/2. The solution is given by

b(t) =
1

2

(
b∗ +

√
b2
∗ − 4C2

E sin(t− t0) .

)
(3.149)

For the solutions to be physically viable we have to demand that |CE| < b∗/2. In the case

CE = 0 the solution reduces to that of the vacuum case with Λ = 0 and we obtain a cigarlike

and disklike singularity. For 0 < |CE| < b∗/2 the cigarlike singularity vanishes and the

solution oscillates through disklike coordinate singularities. This is plotted in figure 3.10.

The plot in figure 3.10 can be identified with the black and white hole regions in the Penrose

diagram of the Reissner-Nordström solution (see e.g. [1] for the Penrose diagramm). The

points where z = 0 correspond to the bifurcation points.

b,
z
,
E

t

b(t)

z(t)

E(t)

0 π 2π 3π 4π

0

b∗
2

b∗

Figure 3.10: Plot of z, b and E versus t in the gauge N = b.

The energy momentum tensor of the electromagnetic field is given by

{T µν} =
C2
E

8πb4
diag (−1, −1, 1, 1) . (3.150)

We can now interpret the energy-momentum tensor as that of a fluid and read off energy

density and pressure

ρ = −pr = pθ = pϕ =
C2
E

8πb4
. (3.151)

The pressure in the θ and ϕ direction rises when b approaches 0. Instead of a cigarlike

singularity, as in the vacuum case, the universe encounters a bounce due to the increasing

pressure in the θ and ϕ directions.
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General solution for M 6= 0, Q 6= 0 and Λ 6= 0.

The configuration space trajectory is given by

z(b) = z∗

√
b∗
b

+
Λ

3
b2 − C2

E

b2
− 1 , (3.152)

and the effective potential can be written as

Veff(b) =

(
b− b∗

2

)2

− Λ

3
b4 + C2

E −
b2
∗
4
. (3.153)

The potential and configuration space trajectory are plotted now for an exemplary case in

figure 3.11. For the plot we choose the gauge N = b. Note that when b� b∗ and Λ > 0 we

have z ∼ b and the shape becomes constant. The scale factor behaves as a(t) ∝ b(t) ∼ e
√

Λ
3
t

in this limit. Consequently these solutions undergo inflation and isotropize at late times.

z
,
V
eff

b

z(b)

Veff(b)

0 b∗

0

Figure 3.11: Λ = 0.5, b∗ = 1 and CE = 0.45. We see three particular solutions. The left
one has no physical meaning. The middle one oscillates between two disklike singularities
such as the solution in figure 3.10. The right solution is reflected at a disklike singularity. Its
large b limit is the interior DeSitter solution. If no compactification is imposed the solutions
correspond to a particular case of the Reissner-Nordström-DeSitter solution and the disklike
singularities are in fact part of a horizon.

Wheeler-DeWitt equation

In this subsection we will derive and solve the Wheeler-DeWitt equation for a Kantowski-

Sachs torus filled with a cosmological constant and an electromagnetic field. Conradi [113]

already derived and solved the Wheeler-DeWitt equation for an effective dust potential and a
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cosmological constant. The Wheeler-DeWitt equation Conradi obtained in Laplace-Beltrami

factor ordering for the vacuum case reads

ĤΨ =

[
− 1

2b2I

(
z
∂2

∂z2
+

∂

∂z
− 2b

∂2

∂z∂b

)
+
I
2

(
Λzb2 − z

)]
Ψ = 0 . (3.154)

An important step in Conradis deriviation of the solution to the Wheeler-DeWitt equation

was the recovery of a quantum operator b̂∗ that corresponds to the classical constant of motion

(3.143). Most importantly b̂∗ commutes with H and therefore its eigenvalues represent good

quantum numbers. Hence the quantum model possesses the same symmetry as the classical

model. The full Hamiltonian of the system under consideration is given by

H =
N

2I

[
−2pzpb

b
+
z

b2
(p2
z + p2

A + I2Q2
M) + I2

(
Λzb2 − z

)]
(3.155)

By writing the Hamiltonian constraint as

H =
1

2
GABpApB + V(z, b) , (3.156)

we can read off the components of the inverse DeWitt-metric and the minisuperspace potential

{
GAB

}
=

1

Ib


z/b −1 0

−1 0 0

0 0 z/b

 , V(z, b) =
I
2

(
Λzb2 − z

)
+

z

2Ib2
I2Q2

M (3.157)

where {qA} = {z, b, A}. The Ricci scalar is given by R = − 5
2Izb2 . Note that the DeWitt

metric is not conformally flat.2 The Hamiltonian constraint operator in conformal factor

ordering is given by

Ĥ =
1

4zb2I

[
−2z2

(
∂2

∂z2
+

∂2

∂A2

)
− b

z

∂

∂b
+ z

∂

∂z
+ 4bz

∂2

∂z∂b
+ 5ξ

]
+ V(z, b) , (3.158)

where ξ = 1/8. We now perform a conformal transformation of the DeWitt metric with a

conformal factor Ω =
√
z/b. The wave function then transforms as

Ψ→ Ψ̃ :=

√
b√
z

Ψ . (3.159)

2Since the minisuperspace is 3-dimensional this can be checked by computing the Cotton tensor and seeing
that its components are non-vanishing (e.g. by using the xAct package xCoba to get a quick answer).
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From the relation ĤΨ = Ω
5
2

ˆ̃HΨ̃ we obtain

ˆ̃H =
b2

2I

[
− ∂2

∂z2
− ∂2

∂A2
− 2

z

∂

∂z
+

2b

z

∂2

∂z∂b
+

40ξ − 5

64z2

]
+
b4

z
V(z, b) . (3.160)

After inserting the value ξ = 1/8, the expression simplifies to

ˆ̃H =
1

Iz

[
−z

2

(
∂2

∂z2
+

∂2

∂A2

)
− 1

2

∂

∂z
+ b

∂2

∂z∂b

]
+
b2

z
V(z, b) . (3.161)

The kinetic term now coincides with that of (3.154) up to the additional term −∂2/∂A2 and a

non-constant prefactor. Note that in contrast to the case of Bianchi I model with an electric

field no (undesired) mass squared term appears in the Hamiltonian constraint operator. The

Wheeler-DeWitt equation now reads[
z2

(
∂2

∂z2
+

∂2

∂A2
− I2Q2

M

)
+
z

2

∂

∂z
− 2zb

∂2

∂z∂b
+ I2z2b2

(
1− Λb2

)]
Ψ(z, b, A) = 0 , (3.162)

where from now on we skip the tilde over Ψ and H (but keep in mind that we have performed

a conformal transformation). We define the operators

I2 b̂∗ := −1

b

∂2

∂z2
+ I2

(
b− Λ

3
b3 +

Q̂2
E +Q2

M

b

)
and I Q̂E := −i

∂

∂A
. (3.163)

These operators correspond to the classical constants of motion b∗ and QE. It holds now for

the commutators of these operators that[
b̂∗, zb

−2Ĥ
]

= 0 ,
[
Q̂E, Ĥ

]
= 0 and

[
Q̂E, b̂∗

]
= 0 . (3.164)

Therefore they represent good quantum numbers and we can conclude that the physical

symmetries were preserved during the process of quantization. The eigenvalue equations

Q̂Eψ = QEψ and b̂∗Ψ = 2Mψ (3.165)

are solved by the mode functions

ψ±M,QE
(z, b, A) = ΦM,QE(b) exp

[
±i gM,Q(b) z + i

QE

I A

]
(3.166)

where

gM,Q(b) := I|b|
√

Λ

3
b2 +

2M

b
− Q2

b2
− 1 (3.167)
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and Q :=
√
Q2
M +Q2

E . The functional form of ΦM,Q(b) is determined by plugging (3.166)

into the Wheeler-DeWitt equation. This way we obtain the equation

∂bΦM,QE

ΦM,QE

=
1

4b
− ∂bgM,QE

gM,QE

, (3.168)

which is readily solved by

ΦM,Q(b) ∝ b1/4

gM,QE(b)
=

b−3/4√
Λ
3
b2 + 2M

b
− Q2

b2
− 1

. (3.169)

The mode functions are then obtained as

ψ±M,QE ,QM
(z, b, A) =

b−3/4√
Λ
3
b2 + 2M

b
− Q2

b2
− 1

exp

(
±iIz|b|

√
Λ

3
b2 +

2M

b
− Q2

b2
− 1 + i

QE

I A

)
.

(3.170)

We note the interesting fact that the mode functions are in the WKB form, that is

ψ±M,QE ,QM
(z, b, A) =

√
DM,QE ,QM (z, b) exp (iSM,QE ,QM (z, b, A)) , (3.171)

where SM,QE ,QM (z, b, A) is a solution of the Hamilton-Jacobi equation and

DM,QE ,QM (z, b) =
b−3/2

Λ
3
b2 + 2M

b
− Q2

b2
− 1

(3.172)

is the corresponding Van Vleck factor. Conradi [113] also found mode functions which were

in WKB form in the case of the dust model.

In the following we set Λ = 0 for simplicity. In order to obtain mode functions that are

exponentially damped in the classically forbidden region and wave packets that fulfill

Ψ→ 0 as b→∞ (3.173)

we have to choose the mode with the plus sign. Otherwise the mode functions blow up in the

classical classically forbidden region. Even if this is not a conformally invariant condition it

seems reasonable to disregard the modes with the minus sign (at least in the Λ = 0 case).

Wave packets are then constructed by smearing out the mode functions against a suitable
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momentum distribution A(M,QE):

Ψ(z, b, A) =

∞∫
0

dM

∞∫
−∞

dQE A(M,QE)ψ+
M,QE

(z, b, A) . (3.174)

Singularity avoidance

A discussion of singularity avoidance, of course, only makes sense if there is a singularity. This

is not the case for the model with an electromagnetic field (more precisely the singularity is

located behind the horizon which is not part of the minisuperspace model under consideration).

For the vacuum case (we can ignore the cosmological constant in the singular region) the

Hamiltonian constraint reads

H =
1

2I

[
e−3α

3

(
−p2

α + p2
σ

)
− I2e3αe−2[α+σ]

]
. (3.175)

Close to the singular boundary of minisuperspace where α → −∞ the Wheeler-DeWitt

equation in conformal ordering becomes[
∂2

∂α2
− ∂2

∂σ2

]
Ψ = 0, where w(Ψ) = 0 . (3.176)

This is just the (1 + 1)–dimensional wave equation. Hence no spreading occurs and wave

packets run straight into the singular boundary without any decay of their amplitudes. To

conclude: the vacuum model does not have a sufficiently large number of degrees of freedom

to avoid the singularity.

3.2.4 Scalar field

In this section we couple a scalar field to the Kantowski-Sachs spacetime via the minimal

coupling procedure.

The Lagrangian of a minimally coupled scalar field

The action of a homogeneous scalar field minimally coupled to the Kantowski-Sachs spacetime

metric is given by

Sφ =
1

2

∫
d4x
√−g [−∂µφ∂µφ− V (φ)] = 2πI

∫
dt a3

[
φ̇2

N
−NV (φ)

]
. (3.177)
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For brevity we rescale the scalar field and the potential to absorb a factor of 8π. We then

get

Lφ =
Ia3

4

[
φ̇2

N
−NV (φ)

]
. (3.178)

Note that the homogeneous scalar field φ couples only to the scale factor a and not to the

sheer factor s of the Kantowski-Sachs spacetime. Furthermore, note that the coupling of the

scalar field does not break the rescaling symmetry of z. The case of a non-vanishing potential

is rather complicated and no exact solutions are known up to my knowledge.

Massless scalar field

We now restrict our attention to the case of a massless scalar field, that is, we set V (φ) = 0.

The corresponding solution was first derived in [115]. The same authors also studied a

conformally coupled field in [116]. We choose here a different way for deriving the solution

and make use of the fact that the dynamics of the Kantowski-Sachs universe with a minimally

coupled massless scalar field are mathematically equivalent to the dynamics of a classical

Friedmann universe with two minimally coupled massless scalar fields. Therefore both the

classical as well as the Quantum Cosmology of these models appear to be most easily handled

by using the bared variables ᾱ and φ̄ introduced in section 3.2.1. The full Lagrangian of the

system then takes the simple form

L = I
[

e3ᾱ

N̄

(
− ˙̄α2 + ˙̄φ2 + φ̇2

)
+ N̄eᾱ

]
. (3.179)

Since both φ̄ and φ are cyclic variables we get

2Ie3ᾱ

N̄
˙̄φ = const. =: κ̄ and

2Ie3ᾱ

N̄
φ̇ = const. =: κ . (3.180)

We restrict our attention to the case κ 6= 0. This now yields that κ̄φ̇ = κ ˙̄φ and integration

gives

κφ̄− κ̄φ = const. =: κC1 . (3.181)

Since φ is either strictly increasing or decreasing we can use the scalar field as a time variable.

The Hamiltonian constraint equation reads

˙̄α2 − ˙̄φ2 − φ̇2 + N̄2e−2ᾱ = 0 . (3.182)
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We can now eliminate φ̄ from the equation and obtain

dφ

dᾱ
= ± κ√

κ2 + κ̄2

√
κ2+κ̄2

2I√
κ2+κ̄2

4I2 − e4ᾱ

. (3.183)

An integration then gives

φ(ᾱ) = ± κ

2
√
κ2 + κ̄2

arcosh

(√
κ2 + κ̄2

2Ie2ᾱ

)
+ C2 . (3.184)

Finally we obtain a paramtrization of the configuration space trajectory in terms of the scalar

field:

exp (ᾱ(φ)) =
(κ2 + κ̄2)

1/4

√
2I

cosh−1/2

(
2
√
κ2 + κ̄2

κ
[φ− C2]

)
,

φ̄(φ) =
κ̄

κ
φ− C1 .

(3.185)

By switching to the scale and shape variables we obtain

a(φ) =
3

√
κ2 + κ̄2

4I2
cosh−2/3

(
2
√
κ2 + κ̄2

κ
[φ− C2]

)
exp

(
2

3

[ κ̄
κ
φ− C1

])
, (3.186)

s(φ) =
2I√
κ̄2 + κ2

cosh

(
2
√
κ2 + κ̄2

κ
[φ− C2]

)
exp

(
−4
[ κ̄
κ
φ− C1

])
. (3.187)

The limits are given by

s(φ) ∼ exp

(
2

κ

[√
κ̄2 + κ2 ∓ 2κ̄

]
|φ|
)
,

a(φ) ∼ exp

(
− 2

3κ

[√
κ̄2 + κ2 ± κ̄

]
|φ|
)

as φ→ ±∞ .

(3.188)

We now restrict attention to the case κ̄ > 0. Then s goes to zero if |κ| <
√

3|κ̄| and it blows

up if |κ| >
√

3|κ̄| as φ→∞. In the limiting case |κ| =
√

3|κ̄| it approaches a constant value.

In all cases a goes to 0 when φ→ −∞.

We now derive the time dependence of the variables z and b in order to compare the

solution with that of the vacuum case. By combing the equations (3.182) and (3.180) we get

˙̄α2 − N̄2

(
κ2 + κ̄2

4I2e6ᾱ
− e−2ᾱ

)
= 0 (3.189)
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√

3|κ̄|

Figure 3.12: Plots of a and s versus φ. We choose κ̄ > 0 in both cases.

We now choose the gauge N̄ = eᾱ/2 corresponding to N = b. Integration then yields

e2ᾱ(t) =

√
κ2 + κ̄2

2I sin(± [t− t0]) . (3.190)

We choose the + sign and set t0 = 0 in the following. Furthermore, we take t ∈ [0, π]. The

scalar field strength is then

φ(t)− φ(π/4) =
κ

2
√
κ2 + κ̄2

ln (tan(t/2)) . (3.191)

We now choose φ(π/4) = 0. After some calculation we finally obtain

z(t) ∝ [tan(t/2)]−K , (3.192)

b(t) =

√
κ2 + κ̄2

2I sin(t) [tan(t/2)]K . (3.193)

where K := κ̄√
κ2+κ̄2 fulfills −1 ≤ K ≤ 1. Note that if we set the constant of motion κ = 0,

identify b∗ = 2M = |κ̄|/I and replace t → t − t0 + π/2 the above expressions coincide with

those obtained in the vacuum case. For the particular case K = 0 we have b(t) = |κ|
2I sin(t)

and z(t) = const.

What happens with the structure of the disklike singularity that was the bifurcation point

of the horizon in the vacuum case? This singularity is at t = π if κ ≥ 0 and at t = 0 otherwise.



126 CHAPTER 3. MODELS

Let us consider the case κ ≥ 0. The limits as t→ π are then as follows:

z → 0 for all K ∈ (0, 1] , (3.194)

b→

b∗ , when K = 1

0 , when 0 < K < 1 .
(3.195)

The energy-momentum tensor of the massless scalar field reads

{T µν} =
κ2

16I2a6
diag (−1, 1, 1, 1) . (3.196)

Hence the energy density and pressure diverge as a → 0. Consequently both singularities

are physical. Note at this point that the massless scalar field mimics a stiff fluid, that is,

it satisfies the equation of state p = ρ. We can obtain an expression for the Weyl squared

scalar by plugging the solution {N(t), z(t), b(t)} into (3.104). This way we obtain

CµνλσC
µνλσ =

3I tan−2K
(
t
2

) (
4Iκ̄2 +

√
κ2 + κ̄2

[
4Iκ̄ cos(t) + (κ2 + κ̄2) sin3(t) tanK

(
t
2

)])
2 (κ2 + κ̄2)2 sin4(t)

.

(3.197)

For the vacuum case κ = 0 and κ̄ > 0 we have that CµνλσC
µνλσ → 3I(I + κ̄)/(2κ̄)2 as t→ π

(i.e. at the bifurcation point of the horizon). However for κ > 0 and κ̄ > 0 we have that

CµνλσC
µνλσ → −∞ as t → π. We conclude that the singularity at t = π is a curvature

singularity.

Let us at this point retain the following: the coupling of the massless scalar field changed

the structure of the disklike singularity. It is replaced by a physical singularity for which

both z and b approach zero.

Next we perform the coordinate transformation

t→ t̄ :=
2M

K
sin2(t/2) , (3.198)

where 2M := κ̄/I. In addition we absorb the prefactor of z into the r-coordinate. The metric

then assumes the interior Schwarschild like form

ds2 = − 1(
2M
Kt̄
− 1
)K dt̄2 +

(
2M

Kt̄
− 1

)K
dr̄2 +

t̄2(
2M
Kt̄
− 1
)K−1

dΩ2 , (3.199)

which reduces to the interior Schwarzschild metric in the vacuum case, that is, κ = 0 and



3.2. KANTOWSKI-SACHS 127

b,
z

t

b(t)

z(t)

0 π/2 π
0

b∗

(a) K = 1, corresponding to the vacuum
case. The universe goes from a cigarlike
singularity to a disklike singularity.
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(b) 0 < K < 1, i.e. |κ| > 0. If we
switch on the scalar field the disklike
singularity is turned into a physical
singularity.

Figure 3.13: Plots of the t-dependence of z and b for different values of K.

K = 1. The t̄ dependence of the scalar field is

φ(t̄) =− κ

4
√
κ2 + κ̄2

ln

(
2M

Kt̄
− 1

)
=± 1

4

√
1− 1

K2
ln

(
2M

Kt̄
− 1

)
.

(3.200)

We remark on the formal similarities with the corresponding spherically symmetric solution

with a massless scalar field. This is the so called Janis-Newman-Winicour-Wyman (JNWW)

solution [117, 118]. This solution has a naked singularity at its center and hence violates

the cosmic censorship hypothesis. It can formally be obtained from (3.199) and (3.200) by

switching r̄ ↔ t̄. M = κ̄
2I will then become the ADM mass. In this sense one might formally

regard the solution of the Kantowski-Sachs universe with a minimally coupled massless scalar

field as the “interior” solution of a naked singularity.

Wheeler-DeWitt equation

The Hamiltonian of a scalar field coupled to the Kantowski-Sachs metric reads

H =
N

2I

[
e−3α

3

(
−p2

α + p2
σ +

3

4
p2
φ

)
+ I2e3α

(
Λ− e−2(α+σ) + V (φ)

)]
(3.201)
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Again, we restrict our attention to the simple case of a massless scalar field with V = 0 and

Λ = 0. The DeWitt metric and the Ricci scalar are given by

dS2 = 3Ie3α

(
−dα2 + dσ2 +

4

3
dφ2

)
and R =

3

2I e−3α . (3.202)

The Wheeler-DeWitt equation reads

ĤΨ =
1

6Ie3α

[(
∂

∂α
+ 2f

)
∂

∂α
− ∂2

∂σ2
− 3

4

∂2

∂φ2
− 3IξRe3α − 3I2e4α−2σ

]
Ψ = 0 (3.203)

where the factor ordering is partially left open as indicated by the presence of the parameters

f and ξ. The Laplace-Beltrami factor ordering is obtained by setting f = 3/4 and ξ = 0.

Setting ξ = 1/8 instead gives the conformal factor ordering. Note that if f < 0 the wave

equation is damped while for f > 0 it is driven. Now we define

e−fαΨ̃ := Ψ . (3.204)

The Wheeler-DeWitt equation ĤΨ = 0 then becomes[
∂2

∂α2
+ f 2 − ∂2

∂σ2
− 3

4

∂2

∂φ2
− 9ξ

2
− 3I2e4α−2σ

]
Ψ̃ (α, σ, φ) = 0 (3.205)

In this representation 9ξ
2
−f 2 can be interpreted as a mass squared term. If f 2 > 9ξ

2
the mass

is imaginary and solutions to the Wheeler-DeWitt equation can develop tachyonic behavior.

We now fix the factor ordering to the conformal one. This makes f 2 and 9ξ
2

cancel exactly.

If in addition we switch to the variables ᾱ and φ̄ defined in section 3.2.1 we obtain[
∂2

∂ᾱ2
− ∂2

∂φ̄2
− ∂2

∂φ2
− 4 I2e4ᾱ

]
Ψ̃(ᾱ, φ̄, φ) = 0. (3.206)

The equation is now separable and we can perform the mode expansion

Ψ̃κ̄,κ(ᾱ, φ̄, φ) = Cκ̄,κ(ᾱ)eiκ̄φ̄eiκφ , (3.207)

which yields the equation

C ′′κ̄,κ(ᾱ) +
(
κ̄2 + κ2 − 4 I2e4ᾱ

)
Cκ̄,κ(ᾱ) = 0 . (3.208)
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This equation is solved by the modified Bessel functions

C±κ̄,κ(ᾱ) = I± i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
. (3.209)

Now note that for large ᾱ we can expand

I± i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
=

√
π exp (−2Ie2ᾱ)

2
√

2I
[
ie−ᾱ exp

(
4Ie2ᾱ ∓ π

2

√
κ̄2 + κ2

)
+ e−α +O(e−3ᾱ)

]
,

(3.210)

while for small ᾱ we get

I± i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
=

I± i
2

√
κ̄2+κ2

Γ
(
1± i

2

√
κ̄2 + κ2

)e±i
√
κ̄2+κ2ᾱ +O

(
e4ᾱ
)
. (3.211)

We can now identify

ψ±(ᾱ, φ̄, φ) =
Γ
(
1± i

2

√
κ̄2 + κ2

)
I± i

2

√
κ̄2+κ2

C±κ̄,κ(ᾱ)eiκ̄φ̄eiκφ . (3.212)

In order to obtain an exponentially decreasing wave function for ᾱ → ∞ we choose the

MacDonald function

Cκ̄,κ(ᾱ) =
π
[
C−κ̄,κ(ᾱ)− C+

κ̄,κ(ᾱ)
]

2i sinh
(
π
2

√
κ̄2 + κ2

) = K i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
. (3.213)

For large ᾱ the expansion now reads

K i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
=

√
π exp (−2Ie2ᾱ)

2
√
I

[
e−ᾱ +O(e−3ᾱ)

]
, (3.214)

while for small ᾱ we get

K i
2

√
κ̄2+κ2

(
2Ie2ᾱ

)
=
I i

2

√
κ̄2+κ2

2
Γ

(
− i

2

√
κ̄2 + κ2

)
ei
√
κ̄2+κ2ᾱ

+
I− i

2

√
κ̄2+κ2

2
Γ

(
i

2

√
κ̄2 + κ2

)
e−i
√
κ̄2+κ2ᾱ +O

(
e4ᾱ
)
.

(3.215)

Note that our criterion for picking the MacDonald function is in principle the Hawking-Page

boundary condition which is not conformally invariant. Nevertheless we will later see that

only this choice leads to wave packets which are peaked over the full classical trajectory. This

is completely analogous to the case of a closed Friedmann model with one massless scalar

field as discussed in [10, 104].
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Wave packets are then formed via

Ψ̃(α, σ, φ) =

∞∫
−∞

dκ̄

∞∫
−∞

dκ A(κ̄, κ) ψ̃κ̄κ(α, σ, φ) where

ψ̃κ̄κ(α, σ, φ) := K i
2

√
κ̄2+κ2

(
2Ie2α−σ) exp

(
iκ̄

[
σ − 1

2
α

]
+ iκφ

) (3.216)

and A(κ̄, κ) is some momentum distribution. We remark that the wave packet (3.216) might

be regarded as an integral transform A(κ̄, κ) 7→ Ψ̃(α, σ, φ) which is closely related to the so-

called Kontorovich-Lebedev transform. A similar solution to the Wheeler-DeWitt equations

was discussed by Misner in [17].

Construction of wave packets

We now show that by choosing A(κ̄, κ) to be peaked about certain values of κ̄ and κ we

obtain wave packets that are peaked over a classical configuration space trajectory. This

works analogously to the case of a closed Friedmann universe with a minimally coupled

scalar field. We can therefore use [104] as a guideline.

The equation (3.208) for Cκ̄,κ(ᾱ) has the form of a zero-energy Schrödinger equation with

a “potential”

Eκ̄,κ(ᾱ) := κ̄2 + κ2 − 4 I2e4ᾱ (3.217)

If κ̄2 + κ2 is sufficiently large we can solve this equation in a WKB approximation. The

turning point of the potential is given by Eκ̄,κ(ᾱκ̄,κ) = 0, i.e. ᾱκ̄,κ = 1
4

ln κ̄2+κ2

4I2 . The WKB

solution for ᾱ < ᾱκ̄,κ reads

Cκ̄,κ(ᾱ) ≈ [Eκ̄,κ(ᾱ)]−
1
4 cos

(∣∣∣∣∣
∫ ᾱ

ᾱκ̄,κ

dα̃
√
Eκ̄,κ(α̃)

∣∣∣∣∣− π

4

)

=
cos
(√

κ̄2+κ2

2
arcosh

(√
κ̄2+κ2

2Ie2ᾱ

)
− 1

2

√
κ̄2 + κ2 − 4I2e4ᾱ − π

4

)
(κ̄2 + κ2 − 4I2e4ᾱ)

1
4

.

(3.218)

The WKB solution of course corresponds, up to a constant prefactor, to the expansion of the

exact solution Cκ̄,κ(ᾱ) if one neglects terms off the order less or equal to e−2ᾱ. For ᾱ > ᾱκ̄,κ

the corresponding WKB solution is exponentially decreasing. We can also read of the van

Vleck factor:

D̃κ̄,κ (ᾱ) ∝ 1√
κ̄2 + κ2 − 4I2e4ᾱ

. (3.219)

In order to calculate the explicit form of a wave packet we choose A(κ̄, κ) as a symmetric
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Gaussian function with center (k̄, k) and width ∆k:

A(κ̄, κ) =
1

π∆k
exp

(
−
[
κ̄− k̄

]2
+ [κ− k]2

2∆k2

)
. (3.220)

Furthermore, we choose it to be sharply peaked around the center, i.e. ∆k � 1. The

integration can then be performed in an approximate manner by replacing all terms that

vary slowly with κ or κ̄ with their values at κ = k and κ̄ = k̄, respectively. In this way the

wave packet can be approximated as

Ψ̃(ᾱ, φ̄, φ) ≈ dk,k̄(ᾱ)

∞∫
−∞

dκ

∞∫
−∞

dκ̄ exp

(
−
[
κ̄− k̄

]2
+ [κ− k]2

2∆k2

)

× cos

(√
κ̄2 + κ2

2
arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
− 1

2

√
κ̄2 + κ2 − 4I2e4ᾱ − π

4

)
e−i(κ̄φ̄+κφ) ,

(3.221)

where

dk̄,k(ᾱ) =
1

2
√
π∆k

e−
π
4

√
k̄2+k2(

k̄2 + k2 − 4I2e4ᾱ
) 1

4

. (3.222)

Since
√
κ̄2 + κ2 arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
� 1

2

√
κ̄2 + κ2 − 4I2e4ᾱ (3.223)

the second term in the cosine corresponds to a much lower frequency. Therefore it is also

reasonable to replace κ and κ̄ by k and k̄ here. In addition we expand the square root in

front of the arcosh around the center of the Gaussian and approximate the term by

√
κ̄2 + κ2 ≈

√
k̄2 + k2 +

k̄(κ̄− k̄) + k(κ− k)√
k̄2 + k2

. (3.224)

The integral in (3.221) may now be evaluated by employing the calculus of Gaussian integrals.
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The real part of the resulting wave packet is given by

Re Ψ̃(ᾱ, φ̄, φ) ≈ πdk,k̄(ᾱ)

4∆k2

×

f+
k,k̄

(ᾱ, φ̄, φ) exp

−∆k2

2

( k̄

2
√
k̄2 + k2

arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
− φ̄
)2

+

(
k

2
√
k̄2 + k2

arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
− φ
)2


+f−
k,k̄

(ᾱ, φ̄, φ) exp

−∆k2

2

( k̄

2
√
k̄2 + k2

arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
+ φ̄

)2

+

(
k

2
√
k̄2 + k2

arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
+ φ

)2
 ,

(3.225)

where

f±
k,k̄

(ᾱ, φ̄, φ) := cos

(
k̄φ̄+ kφ± 1

2

[√
k̄2 + k2arcosh

(√
k̄2 + k2

2Ie2ᾱ

)
−
√
k̄2 + k2 − 4I2e4ᾱ

]
∓ π

4

)
.

(3.226)

This represents a sum of two modulated Gaussians of width ∆k−1 whose centers follow the

classical configuration space trajectory (3.185).

The validity of the WKB solution breaks down near the turning point ᾱ = ᾱκ̄,κ. Therefore

a separate discussion is appropriate for this region. Consider again equation [3.208] in the

linear approximation in ᾱ− ᾱκ̄,κ around the turning point:

Eκ̄,κ(ᾱ) ≈ 4
(
κ̄2 + κ2

)
(ᾱ− ᾱκ̄,κ) . (3.227)

The solution of equation (3.208) that matches the WKB solution is given by

Cκ̄,κ(ᾱ) ∼
(
κ̄2 + κ2

)−1/6
Ai
(

3
√

4 (κ̄2 + κ2) [ᾱ− ᾱκ̄,κ]
)
, (3.228)

where Ai is the Airy function which for small arguments can be written as

(
4
[
κ̄2 + κ2

])−1/6
Ai
(

3
√

4 (κ̄2 + κ2) [ᾱ− ᾱκ̄,κ]
)
≈

−(4 [κ̄2 + κ2])
−1/6

3
1
3 Γ
(
−1

3

) − (4 [κ̄2 + κ2])
1/6

3
1
3 Γ
(

1
3

) (ᾱκ̄,κ − ᾱ) .
(3.229)
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As in the limit ᾱ → ᾱk̄,k the difference ᾱκ̄,κ − ᾱ goes to 1
4

ln
(
κ̄2+κ2

k̄2+k2

)
only the first term is

relevant. We then obtain the form of the wave packet in the close vicinity of the turning

point:

Re Ψ̃(ᾱ, φ̄, φ) ∼ cos
(
k̄φ̄+ kφ

)
exp

(
−∆k2

2

[
φ̄2 + φ2

])
(3.230)

There is no noticeable spreading of the wave packet in the region of the classical turning

point.

To conclude: We have recovered the classical behavior from the quantum model in the

sense that wave packets are peaked about classical trajectories. There is, however, a caveat:

The computations in this section are to be taken with a grain of salt. By employing the

approximation (3.224) we neglected the spreading of the wave packet. Since close to the

singular regions in minisuperspace the Wheeler-DeWitt equation becomes the classical wave

equation in 2+1 dimensions, the wave packet will spread. We can conclude that the wave

packet becomes “maximally sharp” during the bounce from the potential wall. This can be

seen in the plot in fig. 3.14. When approaching the singularity the situation is the same as

for the vacuum Bianchi I model. The singularity is therefore avoided by all three criteria.

The plot 3.14 confirms the qualitative features we just discussed in this section.
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Figure 3.14: Plot of a the equipotential surfaces of a rescaled wave packet Ψ̃ obtained from
numerical evaluation of (3.216). The black line is the corresponding classical trajectory. The
plot was obtained analogously to the one shown in fig. 3.4.

3.3 Bianchi II

We study the Bianchi II model in preparation for the study of the more complicated Bianchi

IX. Misner [42] showed that during the bounces from the potential the Mixmaster universe

can be well approximated by a Bianchi II model. Our attention shall be restricted to the

vacuum case. The isometry group of the universe can be identified as the Heisenberg group.

A basis on T ∗Σ is given by

σ1 = dx , σ2 = dy , σ3 = dz − xdy . (3.231)

Let us now perform the diagonal/off-diagonal decomposition. We construct the diagonalizing

matrix S = eθ
1κ1eθ

2κ2eθ
3κ3 by choosing

κ1 =


0 0 0

0 0 1

0 0 0

 , κ2 =


0 0 −1

0 0 0

0 0 0

 and κ3 =


0 1 0

−1 0 0

0 0 0

 . (3.232)

Note that κ1 and κ2 are generators of inner automorphisms, while κ3 generates a particular

outer automorphism. This yields that {ρij} = diag(1, 1, 0). The algebra of the generators
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reads

[κ1,κ2] = 0 , [κ1,κ3] = κ2 , [κ2,κ3] = −κ1 . (3.233)

Following the description in section 2.1.3 we obtain the “angular velocities” and the “moment

of inertia tensor”

ω1 = cos
(
θ3
)
θ̇1 − sin

(
θ3
)
θ̇2 , ω2 = sin

(
θ3
)
θ̇1 + cos

(
θ3
)
θ̇2 , ω3 = θ̇3 ,

{Iij} = diag (I1, I2, I3) =
1

12
diag

(
e−6β++2

√
3β− , e−6β+−2

√
3β− , 4 sinh2

(
2
√

3β−

))
.

(3.234)

The momenta pi conjugate to the θi are given by

p1 =
e3α

N

[
I1 cos

(
θ3
)
ω1 + I2 sin

(
θ3
)
ω2
]

= cos
(
θ3
)
`1 + sin

(
θ3
)
`2 ,

p2 =
e3α

N

[
−I1 sin

(
θ3
)
ω1 + I2 cos

(
θ3
)
ω2
]

= − sin
(
θ3
)
`1 + cos

(
θ3
)
`2 ,

p3 =
e3α

N
I3ω

3 = `3 ,

(3.235)

where the angular momentum variables `i = e3α

N
Iijω

j are found to obey the Poisson bracket

algebra

{`1, `2} = 0 , {`1, `3} = −`2 and {`2, `3} = `1 . (3.236)

This is in accordance with the results from section 2.1.3. The three dimensional Ricci scalar

obtained from (2.61) is given by

(3)R = −1

2
e−2αe8β+ . (3.237)

The constraints now take the form

H0 =
e3α

2

(
−p2

α + p2
+ + p2

− +
`2

1

I1

+
`2

2

I2

+
`2

2

I3

− e−6α

6
(3)R

)
,

H1 = cos
(
θ3
)
`1 − sin

(
θ3
)
`2 , H2 = sin

(
θ3
)
`1 + cos

(
θ3
)
`2 .

(3.238)

The third momentum constraint is trivially satisfied, that is, H3 = 0. The two momentum

constraints effectively account to `1 ' 0 and `2 ' 0. This is expected since `1/2 are the

phase space generators of inner automorphisms. Furthermore, we find that the three Poisson

brackets {l3,Hµ}, where µ = 0, 1, 2, all vanish. Accordingly `3 is a constant of motion. This

is expected as well since `3 is the generator of an outer automorphism by construction.
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Classical and Quantum Cosmology

We will focus on the diagonal vacuum case from now on.

Diagonal case

Our main aim in this section is to study the bounce from the curvature potential wall. For

that purpose we reduce to the diagonal case, that is, we fix the generalized angles θi to be

zero. The momentum constraints are then trivially satisfied and the gravitational Lagrangian

becomes

L =
−α̇2 + β̇2

+ + β̇2
−

2Ñ
− Ñ e8( 1

2
α+β+)

24
, (3.239)

where we have performed a rescaling of the lapse N 7→ Ñ = Ne3α. The curvature potential

thus presents an exponentially steep moving wall and we expect it to lead to a transition

between two Kasner type solutions. The problem of solving the equations of motion is now

equivalent to a relativistic scattering problem on a flat 1 + 2 dimensional background. In

order to expose an additional symmetry, we perform a Lorentz boost with velocity −1
2

in

β+-direction via the change of variables

T :=
2√
3

(
α +

1

2
β+

)
X :=

2√
3

(
β+ +

1

2
α

)
Y := β− . (3.240)

Thus we obtain

L =
1

Ñ

[
−Ṫ 2 + Ẋ2 + Ẏ 2

2
− Ñ2

24
e4
√

3X

]
. (3.241)

The symmetries of the system are now exposed. Variation with respect to Ñ gives the

Hamiltonian constraint
−Ṫ 2 + Ẋ2 + Ẏ 2

2
+

1

24
e4
√

3X = 0 , (3.242)

where we have chosen the quasi-Gaussian gauge Ñ = 1 (N = e3α). Since in the Lagrangian

both T and Y are cyclic variables their conjugate momenta are constants of motion, i.e.

pT = −Ṫ = const. and pY = Ẏ = const. (3.243)

The Hamiltonian constraint gives a differential equation for the variable X:

Ẋ = ±
√
p2
T − p2

Y −
1

12
e4
√

3X . (3.244)
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We choose the plus sign in the following. We see that we require p2
T − p2

Y > 0 in order to

obtain real solutions. After solving the differential equation we obtain a family of trajectories

of the universe point parametrized by t

X(t) =
1

4
√

3
log

(
12[p2

T − p2
Y ]

[
1− tanh2

(
2
√

3(p2
T − p2

Y )[t− t0]

)])
T (t) =− pT (t− t0) + CT , Y (t) = pY (t− t0) + CY ,

(3.245)

where t0, CT , CY ∈ R are integration constants. The inverse Lorentz transformation back to

the Misner variables yields the solution

α(t) =
2√
3

(
T (t)− 1

2
X(t)

)
, β+(t) =

2√
3

(
X(t)− 1

2
T (t)

)
, β−(t) = Y (t) . (3.246)

We now study the asymptotic limits when t → ±∞. Without the loss of generality we

can set CT = CY = t0 = 0. First, we have to take a closer look at the functional form of

X(t). An asymptotic expansion of the expression yields that

X(t) ≈ −
√
p2
T − p2

Y |t|+
1

4
√

3
log
(
48[p2

T − p2
Y ]
)
, (3.247)

when |t| is large. In the following we choose pT > 0. This choice leads to a scale factor

a = eα that decreases with t, i.e. the universe hits the singularity when t→∞. In the limit

t→ −∞ the Misner variables can then be approximated by

α(t) = −
√
p2

+,in + p2
−,in t− C

β+(t) = p+,in t+ C , β−(t) = p−,in t with

p+,in =

√
p2
T − p2

Y

3
+

pT

2
√

3
, p−,in = pY

(3.248)

and C = log (48[p2
T − p2

Y ]) /12 is an irrelevant constant that can be absorbed into the

coordinates. In the limit t→ +∞ we obtain

α(t) = −
√
p2

+,out + p2
−,out t− C

β+(t) = p+,outt+ C , β−(t) = p−,outt+
√

3C with

p+,out = −
√
p2
T − p2

Y

3
+

pT

2
√

3
, p−,out = pY

(3.249)

Note that
√
p2

+,in + p2
−,in −

√
p2

+,out + p2
−,out = 2

√
p2
T−p

2
Y

3
. Therefore the momentum of the
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universe point in the (α, β+, β−)-coordinates decreases when it is scattered from the potential

wall while moving towards the singularity.

With the help of some computer algebra, we can compute the Weyl squared scalar. The

expression is lengthy and we refer to appendix C.2. We find that

CµνλσC
µνλσ →∞ as t→∞ , (3.250)

independent of the values of pT , pY and CT . Hence the universe indeed encounters a curvature

singularity as t→∞.

Let us now turn to the corresponding quantum model. The Hamiltonian constraint is

given by

H0 =
e3α

2

(
−p2

α + p2
+ + p2

− −
e−6α

6
(3)R

)
. (3.251)

The Wheeler-DeWitt equation in conformal ordering is given by[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β−
2 +

1

12
e8( 1

2
α+β+)

]
Ψ̃ = 0 (3.252)

where we performed a conformal transformation to switch to the representation that corresponds

to the gauge N = e3α. The DeWitt metric is flat in this representation. The Lorentz boost

(3.240) yields [
∂2

∂T 2
− ∂2

∂X2
− ∂2

∂Y 2
+

e4
√

3X

12

]
Ψ = 0 (3.253)

This equation is readily solved by the mode functions

ψ±pT ,pY (T,X, Y ) = c±pT ,pY I
± i

2

√
p2
T
−p2
Y

3

(
e2
√

3X

12

)
eipTT e−ipY Y with

c±pT ,pY = exp

(
∓π

4

√
p2
T − p2

Y

3

)
Γ

(
1± i

2

√
p2
T − p2

Y

3

)
.

(3.254)

For the same reason as in the Kantowski-Sachs case, we choose to construct wave packets

from the MacDonald function, that is, we consider wave packets of the form

Ψ(T,X, Y ) =

∫
R2

dpTdpY A(pT , pY )ψpT ,pY (T,X, Y )

where ψpT ,pY (T,X, Y ) = K
i
2

√
p2
T
−p2
Y

3

(
e2
√

3X

12

)
eipTT e−ipY Y .

(3.255)

The amplitude A should be chosen such that its support lies in the region where p2
T > p2

Y .
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In the region of minisuperspace where X → −∞ the asymptotics of the mode functions are

ψpT ,pY (T,X, Y ) ≈ 1

2

(
d+
pT ,pY

e−i
√
p2
T−p

2
YX + d−pT ,pY ei

√
p2
T−p

2
YX
)

eipTT e−ipY Y ,

where d±pT ,pY = 24
± i

2

√
p2
T
−p2
Y

3 Γ

(
± i

2

√
p2
T − p2

Y

3

)
.

(3.256)

The asymptotic expansion allows us to identify an ingoing and outgoing part of the wave

packet Ψ = Ψin + Ψout, which we choose to write as

Ψin(T,X, Y ) ≈
∫
R2

dpTdpY B(pT , pY )eipTT e
−i
√
p2
T−p

2
Y

[
X− 1

4
√

3
log(48[p2

T−p
2
Y ])

]
e−ipY Y

Ψout(T,X, Y ) ≈
∫
R2

dpTdpY e2iδ(pT ,pY )B(pT , pY )eipTT e+i
√
p2
T−p

2
YXe−ipY Y ,

(3.257)

where the rescaled amplitude B(pT , pY ) and the phase shift δ(pT , pY ) are defined by

B(pT , pY ) :=
1

2
d+
pT ,pY
A(pT , pY )e

−i
√
p2
T−p

2
Y

1
4
√

3
log(48[p2

T−p
2
Y ])

e2iδ(pT ,pY ) := d−pT ,pY /d
+
pT ,pY

e
i
√
p2
T−p

2
Y

1
4
√

3
log(48[p2

T−p
2
Y ]) .

(3.258)

Since both the incoming and outgoing waves are Kasner like we expect a spreading of the

wave packets on both sides, that is, before and after the bounce from the curvature potential

wall. However, the ingoing and outgoing wave might not be peaked about their corresponding

classical trajectories due to the complicated behavior of the phase shift δ(pT , pY ). For large

values of
√
p2
T − p2

Y we can approximate

e2iδ(pT ,pY ) ≈ e
−i

√
p2
T
−p2
Y

4
√

3

[
log(48[p2

T−p
2
Y ])+O

(
[p2
T−p

2
Y ]
−1/2

)]
. (3.259)

That is if B(pT , pY ) has support only over large values of
√
p2
T − p2

Y , the outgoing wave packet

can be approximated as

Ψout(T,X, Y ) ≈
∫
R2

dpTdpY e2iεB(pT , pY )eipTT e
+i
√
p2
T−p

2
Y

[
X− 1

4
√

3
log(48[p2

T−p
2
Y ])

]
e−ipY Y ,

(3.260)

where ε ∈ R varies only slowly in
√
p2
T − p2

Y when compared to the other functions. Consequent-

ly such wave packets are expected to be sharply peaked (apart from spreading) around the

classical trajectories whose asymptotics were given by (3.247). We conclude that wave packets

constructed with amplitudes B(pT , pY ) that have only support in the region where
√
p2
T − p2

Y
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is large behave “more classically”.3 It seems that the bounce from the potential will not have

a big effect on the spreading of wave packets in the sense that it neither enhances nor weakens

the spreading.

So far we have only considered the diagonal case. The quantization of the non-diagonal

Bianchi II model is particularly interesting because the model possesses inner and outer

automorphisms. Since it is not clear how to construct a factor ordering for this situation the

investigation is left for future research.

3.4 Bianchi IX

In view of the BKL conjecture the Bianchi types VIII and IX are certainly the most interesting

spatially homogeneous models. In this section we put focus on the latter. In particular by

assuming that the minisuperspace approximation has some informative value a quantum

avoidance of the singularity might be interpreted as a strong indication for the avoidance of

the general singularity in a full theory of Quantum Gravity.

The Bianchi IX model and the BKL conjecture have been subject to many studies.

Overviews can be found in the articles by Belinski [65] and the one by Heinzle and Uggla

[119].

Studies of the dynamics of the general Bianchi IX spacetime were first carried out by

BKL in the context of the BKL conjecture [66]. The dynamics of the diagonal Bianchi IX

model were independently studied by Misner [42, 43]. Misner intention, however, was the

search for a possible solution to the horizon problem via a process he called mixing. This

is how the diagonal Bianchi IX model received the synonymous name mixmaster universe.

It turned out later, however, that the mechanism suggested by Misner is not sufficient to

resolve the issue (see e.g. [64]). Ryan, who was a student of Misner, generalized the analysis

to the non-diagonal case [46, 47].

In contrast to the models we considered in the previous sections of this chapter the

approach to the singularity is in general not AVTD. This is because the curvature potential

plays a significant role in the vicinity of the singularity. Coupling a scalar field, however, can

change the situation both quantitatively and qualitatively: The approach to the singularity

becomes AVTD (see e.g. [64]). Similar results hold for spinor fields [120].

The general solution cannot be given in a closed form and apart from a few particular

solutions no exact solutions are known. A series of approximations (see e.g. [66]), however,

3Supposing that pT > 0, we infer from (3.248) and (3.249) that for p2
T � p2

Y we have that p+,in ≈
√

3
2 pT

and p+,out ≈ − 1
2
√

3
pT while p−,in = p−,out = pY .
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gives a clear picture of the Bianchi IX dynamics in the regime close to the singularity:

The approach to the singularity is characterized by an infinite series of oscillations of the

directional scale factors. The same picture is obtained by applying heuristic considerations

as done by Misner [42] and Ryan [45–47]. Furthermore, these oscillations give rise to a

chaotic character of the solutions [121]. Moreover, it is known that under the assumption

of general energy condition a recollapse always occurs. In other words, the universe starts

from an initial singularity, expands and then recollapses into a second singularity. This was

proven by Lin and Wald in [59]. It is expected that in the approach towards the singularity

the Kretschmann scalar becomes unbounded. This was proven by [122] in the case of the

mixmaster model. A proof for the general model does not exist up to my knowledge.

Our analysis concerns the BKL scenario and our main interest lies in the asymptotic

behavior of the general solutions close to the singularity. We begin by examining the

diagonal case and discuss the more complicated non-diagonal case afterwards. We will restrict

ourselves to qualitative and heuristic considerations which will be supported by numerical

simulations.

3.4.1 Kinematics of the general Bianchi IX model

Spatial hypersurfaces in the spacetime are regarded as topological S3, which can be parametri-

zed by using the Euler angles
{
θ̄, φ̄, ψ̄

}
∈ [0, π] × [0, 2π] × [0, π]. We write the Bianchi IX

metric in a synchronous frame:

ds2 = −N2dt2 + hijσ
i ⊗ σj (3.261)

where the basis 1-forms are given by

σ1 = cos(ψ̄)dφ̄+ sin(ψ̄) sin(φ̄)dθ̄

σ2 = sin(ψ̄)dφ̄− cos(ψ̄) sin(φ̄)dθ̄

σ3 = cos(φ̄)dθ̄ + dψ̄ .

(3.262)

The isometry group of the metric is SO(3,R). The structure coefficients Ci
jk = εijk are in

the standard diagonal form with n(1) = n(2) = n(3) = 1. The group SAut(g) coincides with

the isometry group SO(3,R) and hence it is convenient to use the special orthogonal group

for the diagonalization of the spatial metric, i.e. we set

hij = Oi
kOj

lh̄kl , (3.263)
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where {Oi
j} ∈ SO(3). We choose here a slightly common but slightly different route for

the parametrization of Oi
j than the one discussed in section 2.1.3. More precisely we choose

O = {Oi
j} = OθOφOψ (i=̂rows, j=̂columns) to be the so-called Euler matrix which is

parametrized by a set of Euler angles , that is

Oψ =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 , Oφ =


1 0 0

0 cos(φ) sin(φ)

0 − sin(θ) cos(φ)



Oθ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 .

(3.264)

The Euler angles θ, φ and ψ describe nutation, precession and pure rotation of the principal

axes, respectively.

3.4.2 Hamiltonian formulation

In the following we shall be concerned with deriving the Hamiltonian formulation of the

general Bianchi IX model. In order to keep track of the momentum constraints we insert the

shift functions and replace the metric (3.261) by the more general ansatz

ds2 = −N2dt2 + hij
(
N idt+ σi

)
⊗
(
N jdt+ σj

)
, where hij = e2αOj

lOi
kbkl . (3.265)

The Hamiltonian formulation of the non-diagonal was first derived in a series of papers by

Ryan. The so called symmetric/non-tumbling case which is obtained by constraining ψ and

φ to be constant but keeping θ dynamical was discussed in [46]. The general case is discussed

in [47]. We now write the Einstein-Hilbert action in the ADM form,

SEH =
1

16πG

∫
σ1 ∧ σ2 ∧ σ3

∫
dt N

√
h
[(
hikhjl − hijhkl

)
KijKkl + (3)R

]
, (3.266)

whereKij := 1
2N

(
ḣij − 2D(iNj)

)
is the second fundamental form andDi denotes the covariant

derivative in the non-coordinate basis. We will again set 3
4πG

∫
σ1∧σ2∧σ3 = 1 for simplicity.

The three dimensional Ricci curvature scalar (3)R can be read off from (2.61) and is given by
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Ṽ(α, β+, β−) =
e4α

24

(
e−8β+ − 4e−2β+ cosh

(
2
√

3β−

)
+ 2e4β+

[
cosh

(
4
√

3β−

)
− 1
])

= −
(3)R e6α

12
.

(3.267)

We will also make use of the variables that BKL used in their original analysis [66]. They

chose the set of variables Γi to parametrize the diagonal metric

{
h̄ij
}

= diag (Γ1,Γ2,Γ3) . (3.268)

The relation to the Misner variables is as follows:

Γ1 = e2αe2β++2
√

3β− , Γ2 = e2αe2β+−2
√

3β− , Γ3 = e2αe−4β+ . (3.269)

Let us now turn to the computation of the momentum constraints. We proceed as in section

2.1.3 and define the anti-symmetric angular velocity tensor ωij via the matrix equation

ω =
{
ωij
}

=


0 ω1

2 −ω3
1

−ω1
2 0 ω2

3

ω3
1 −ω2

3 0

 := OT Ȯ. (3.270)

An explicit calculation of the right hand side shows that

ω2
3 = cos(ψ)φ̇+ sin(ψ) sin(φ)θ̇ , (3.271)

ω3
1 = sin(ψ)φ̇− cos(ψ) sin(φ)θ̇ , (3.272)

ω1
2 =ψ̇ + cos(φ)θ̇ . (3.273)

The Lagrangian in the gauge N i = 0 then takes the form

L = Ne3α

[
−α̇2 + β̇2

+ + β̇2
− + I1 (ω2

3)
2

+ I2 (ω3
1)

2
+ I3 (ω1

2)
2

2N2
+ (3)R/12

]
, (3.274)

where the moments of inertia are given by

3I1 = sinh2
(

3β+ −
√

3β−

)
, 3I2 = sinh2

(
3β+ +

√
3β−

)
, 3I3 = sinh2

(
2
√

3β−

)
.

(3.275)
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Note in particular that the term 1
2

[
I1 (ω2

3)
2

+ I2 (ω3
1)

2
+ I3 (ω1

2)
2
]

would identically corre-

spond to the rotational energy of a rigid body if the moments of inertia were constant. The

canonical momenta conjugate to the Euler angles are given by

pθ =
e3α

N

[
I1 sin(ψ) sin(φ)ω2

3 − I2 cos(ψ) sin(φ)ω3
1 + I3 cos(φ)ω1

2

]
pφ =

e3α

N

[
I1 cos(ψ)ω2

3 + I2 sin(ψ)ω3
1

]
pψ =

e3α

N
I3ω

1
2

. (3.276)

As in section 2.1.3 it is now convenient to introduce the (non-canonical) angular momentum

like variables

`1 =
e3α

N
I1ω

2
3 , `2 =

e3α

N
I2ω

3
1 , `3 =

e3α

N
I3ω

1
2 . (3.277)

The relation to the canonical momenta can be given explicitly via the equations

pθ = sin(ψ) sin(φ)`1 − cos(ψ) sin(φ)`2 + cos(φ)`3 , `1 =
sin(ψ)

sin(φ)
[pθ − cos(φ)pψ] + cos(ψ)pφ

pφ = cos(ψ)`1 + sin(ψ)`2 , `2 = −cos(ψ)

sin(φ)
[pθ − cos(φ)pψ] + sin(ψ)pφ

pψ =`3

.

(3.278)

It is readily shown that the variables `i obey the Poisson bracket algebra {`i, `j} = −Ck
ij`k,

with Ck
ij being the structure constants of Bianchi IX. By performing the usual Legendre

transform we obtain the Hamiltonian constraint

H =
e−3α

2

(
−p2

α + p2
+ + p2

− +
`2

1

I1

+
`2

2

I2

+
`2

3

I3

− e6α

6
(3)R

)
. (3.279)

From (3.266) we obtain that the momentum constraints (∂L/∂N i = 0) can be written as

Hi = 2Cj
ilhjkp

kl , (3.280)

where pij =
√
h

24N

(
hikhjl − hijhkl

)
Kkl is the ADM momentum. From this expression we can

finally compute the momentum constraints in terms of the angular momentum like variables

and obtain

Hi = Oi
j`j , (3.281)



3.4. BIANCHI IX 145

that is we can as usual identify the momentum constraints with a basis of the generators of

SO(3,R). The full gravitational Hamiltonian now reads

H = NH +N iHi . (3.282)

From the form of the diffeomorphism constraints we conclude that in the vacuum case `i = 0

and no rotation is possible, that is, we obtain the diagonal case. If we want to obtain a

rotating Bianchi IX universe we are consequently forced to add matter to the system. A

formalism for obtaining equations of motion for general Bianchi class A models filled with

fluid matter was developed by Ryan [44]. The equations of motion for all Bianchi models

coupled to ideal fluids can also be found in [31]. For simplicity we will only consider the case

of dust here. If we were interested in the study of the Quantum Cosmology of this model it

would be desirable to couple a fundamental matter field instead. Usual scalar fields alone,

however, cannot make Bianchi IX rotate. The easiest way, to my knowledge, is to couple a

Dirac field as it has been done by the authors of [123]. We remark that the symmetries of

the model do not allow for the coupling of electromagnetic fields as implied by the hairy ball

theorem. We will use the formalism developed by Kuchař and Brown in [125] to couple dust

and then reduce the symmetry in the matter sector of the model. Before doing so let us,

however, have a look at the vacuum model, that is, the mixmaster universe.

3.4.3 Mixmaster dynamics

In the Taub gauge N = e3α the universe point behaves like a particle moving in a time

dependent trapping potential. As with the other Bianchi models it is therefore instructive

to visualize the curvature potential Ṽ = − e6α

12
(3)R to get some qualitative insights concerning

the dynamics. The plot can be found in figure 3.15.

By using the analogy of a relativistic particle it is possible to explain some of the

main features of the dynamics by considering the form of the potential Ṽ . It consists of

three exponentially steep potential walls which form three valleys. When approaching the

singularity (α → −∞) the walls move away from the origin β+ = 0 = β−, which allows

the universe to become more and more anisotropic. The universe point can enter any of the

three valleys of the potential. Thereby it oscillates between the potential walls that form

the valley.4 In the asymptotic regime close to the singularity the walls become effectively

hard walls. Thus during the time between two successive bounces the potential is negligible

4This is true except for the special case when the universe point goes perfectly straight into one of the
valleys. This solution is known to be the Taub-NUT solution [45], which is a particular solution that can be
given in closed form.
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Figure 3.15: Logarithmic contour plot of the mixmaster potential Ṽ(α, β+, β−) for fixed α.
When α becomes smaller the potential walls move away from the origin with speed 1/2 (when
α is viewed as time and β± as positions). The potential is form invariant under rotations in
the β± plane by angles that are integer multiples of 2π/3. The potential assumes negative
values in a region around the origin β+ = 0 = β−. This is essential for the existence of a
rebounce.

and the dynamics can be well approximated by those of the Kasner model. The period

between two successive bounces is thus called a Kasner epoch. The period between entering

and exiting a valley is called a Kasner era. The approach towards the singularity consists of

an infinite sequence of Kasner eras which themselves consist of a finite sequence of Kasner

epochs. Note also that the potential Ṽ is negative in a region around the origin β+ = 0 = β−.

This essentially allows for the recollapse of the Bianchi IX model.

Furthermore, we remark that in the vacuum case the Lagrangian (3.274) transforms as

L→ c2L under the rescaling

α→ α + log(c) , and N → cN (3.283)

for all constants c > 0. This means that the equations of motions are unaffected by the

transformation. Consequently (3.283) maps solutions into solutions. The transformation

(3.283) is equivalent to the transformation

α→ α + log(c) , and t→ c−1t . (3.284)

Numerical analysis

Numerical simulations of the Bianchi IX dynamics were already carried out in the late 1980’s

and early 1990’s (see e.g. [127, 128]). Recall that the evolution of Bianchi IX towards the

singularity is characterized by an infinite number of bounces from the potential wall. The
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universe then hits the singularity in a finite comoving time. In order to resolve the bounces

in the temporal evolution it is practical to work in the quasi-Gaussian gauge N = e3α. In

this time gauge the singularities lie at t = ± inf.

In terms of the variables Γi as defined by (3.269) the constraint reads

0 = −(log Γ1)·(log Γ2)· − (log Γ3)·(log Γ2)· − (log Γ1)·(log Γ3)·

+ Γ2
1 + Γ2

2 + Γ2
3 − 2(Γ1Γ2 + Γ3Γ1 + Γ2Γ3) ,

(3.285)

while the equations of motion are given by

(log Γ1)·· = (Γ2 − Γ3)2 − Γ2
1 , (log Γ2)·· = (Γ3 − Γ1)2 − Γ2

2 , (log Γ3)·· = (Γ1 − Γ2)2 − Γ2
3 .

(3.286)

With given initial conditions (obeying the constraintH = 0) the system can now be integrated

by using a suitable shooting method, e.g. Runge-Kutta. In this work we employ the

MATLAB R2016b solver ode113 [126]. This code is an implementation of a linear multistep

method, the so called Adams-Bashforth-Moulton method. It turned out to lead to better

results when compared with the other MATLAB solvers. The relative error tolerance of the

solver was chosen of the order 10−14. A numerical vacuum solution obtained by the method

is plotted in the figures 3.16.
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Figure 3.16: Numerical solution of the mixmaster model. The plots show a typical Kasner
era where the solution bounces around in one of the potential valleys. The black dotted lines
in the left figure represent the potential valleys.

A major problem in numerical relativity is that the Hamiltonian constraint is usually not

preserved exactly by the numerical procedure. Similar to [127, 128] we find that the error

in the Hamiltonian constraint varies most significantly right after starting the simulation.
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Furthermore, it varies very strongly when the evolution of the universe is close to the point of

maximal expansion. While approaching the singularity the error settles down and approaches

an approximately constant value. Therefore we minimize the error when we choose the

initial conditions such that we start the simulations further away from the point of maximal

expansion. Moreover, it turned out that the error can be further reduced when we constrain

the solvers maximally allowed time step size from above. This size should, however, not be

too small since this can drive the propagation of round off errors. By manually fine tuning

the initial conditions and the maximally allowed time step size it was possible to get the order

of the error as low as 10−18. In most of the simulations, however, the error was smaller than

of the order of 10−10, which turned out to be sufficient for short time simulations. Another

check is obtained by plotting the value of the expression

|pα|−1
√
p2

+ + p2
− =

√(
∂β+

∂α

)2

+

(
∂β−
∂α

)2

. (3.287)

This is nothing but the velocity of the universe point in the β-plane as measured in α-time.

Since in the asymptotic regime close to the singularity the hard wall approximation becomes

valid we expect the universe point to spend much time close to the Kasner circle K◦, that is,

the set in momentum space where |pα|−1
√
p2

+ + p2
− = 1. If this ceases to be true it indicates

a breakdown of the validity of the numerical method due to an increasing relevance of the

error in the Hamiltonian constraint when approaching the singularity.
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Figure 3.17: Plot of the error in the Hamiltonian constraint and the velocity in the β-plane
corresponding to Figure 3.16.
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3.4.4 Wheeler-DeWitt equation of the mixmaster universe

We include some heuristic considerations regarding the solutions to the conformally covariant

Wheeler-DeWitt equation of the vacuum mixmaster model. The Bianchi IX model is also

suitable for checking the factor ordering proposals. Some other aspect of the Wheeler-DeWitt

Quantum Cosmology have been studied before [43, 124].

We start from the Hamiltonian constraint (3.279) and implement the momentum constraints

(3.281). This yields the Hamiltonian constraint of the mixmaster universe

H =
e−3α

2

(
−p2

α + p2
+ + p2

− −
e6α

6
(3)R

)
. (3.288)

Implementing the momentum constraints (3.281) reduced the dimension of minisuperspace

effectively to d = 3. We now quantize the system using the conformal ordering to obtain[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β+
2 + 2Ṽ

]
Ψ̃ = 0 . (3.289)

Note that we already switched to the Wheeler-DeWitt equation in the representation that

corresponds to the Taub gauge N = e3α by performing a conformal transformation with

Ω = e3α/4.

I conjecture on the avoidance of the BKL singularity by spreading of the wave packet

accompanied by a decay of its amplitude. This conjecture is can be rooted on the BKL

scenario: Classical solutions are made up of an infinite sequence of Kasner eras which

themselves consist of epochs. Our considerations on the Quantum Kasner solution in the

previous section show that wave packets spread during Kasner epochs. During bounces from

one epoch into another the solutions effectively behave like solutions to Bianchi II which we

discussed in section 3.3. In a particular bounces from the Bianchi II potential wall did not

seem to have a noticeable effect on the spreading. The author of [130] employed numerical

techniques to solve the Wheeler-DeWitt equation by using a hard wall approximation. His

findings support our conjecture on the spreading of wave packets. It might, however, be

desirable to make this statement mathematically more precise. A possible way to do this is

the application of decay rate estimates for the classical wave equation with a time dependent

trapping potential. Up to my knowledge there are so far no results which are directly

applicable to the situation in question.

Let us now turn to a discussion of the factor ordering. The Wheeler-DeWitt equation

(3.289) of the vacuum mixmaster universe was obtained by first implementing the momemen-

tum constraints and a subsequent quantization of the 3-dimensional reduced system. In view
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of the full theory, however, it might be desirable to first quantize the full system and then

implement the momentum constraints at the quantum level. One might expect that after a

successful quantization it should somehow be possible to relate the resulting Wheeler-DeWitt

equation back to the one of the mixmaster universe (3.289). We illustrate that this is not

the case if we employ the naive conformal factor ordering.

We transform the momentum constraints Hi 7→ H̄i := (O−1)i
jHj = `i. For brevity we

skip the bar from here on and simply write Hi = `i. The Poisson bracket algebra of the

constraints is then given by

{H0,Hi} = 2e3α
∑
j

Ck
ij

`j
Ij
`k = Cµ0iHµ

{Hi,Hj} = −Ck
ij`k = CkijHk .

(3.290)

Consequently the non-vanishing components of the structure function of the constraint

algebra read

Ck0i = 2e3α
∑
j

Ck
ji

`j
Ij
, and Ckij = −Ck

ij . (3.291)

Note that λi ≡ 0. The minisuperspace is M = R3 × SO(3,R) and it is equipped with the

conformal DeWitt metric [dS2]. As was already pointed out by Misner [42] a representation

of the conformal DeWitt metric is given by

dS̃2 = −dα2 + dβ2
+ + dβ2

− +
3∑
i=1

Ii(B
i)2 (3.292)

where
B1 = sin(ψ) sin(φ)dθ + cos(ψ)dφ

B2 = − cos(ψ) sin(φ)dθ + sin(ψ)dφ

B3 = cos(φ)dθ + dψ .

(3.293)

Note that in this representation the DeWitt metric is singular on the three lines in the

(β+, β−)-plane where β− = 0, β− = ±
√

3β+. The Ricci scalar is given by R̃ = −90 and the

volume element reads

?̃1 =
√
I1I2I3 sin(φ)dα ∧ dβ+ ∧ dβ− ∧ dθ ∧ dφ ∧ dψ . (3.294)
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We shall define angular momentum operators via

ˆ̀
1 =

sin(ψ)

sin(φ)
[p̂θ − cos(φ)p̂ψ] + cos(ψ)p̂φ

ˆ̀
2 = −cos(ψ)

sin(φ)
[p̂θ − cos(φ)p̂ψ] + sin(ψ)p̂φ

ˆ̀
3 = p̂ψ

, (3.295)

where p̂θ = −i∂θ etc.

We now quantize the system. We make first use of the naive conformal factor ordering

Ĥ = −1
2

(�− ξR) + V . Since the dimension of the minisuperspace is d = 6 the wave

function carries the conformal weight w(Ψ) = −2. This is different from the case where we

first implemented the momentum constraints and then quantized the resulting 3 dimensional

system. In that case the conformal weight of the wave function was w(Ψ) = −1
2
.

We obtain the Wheeler-DeWitt equation

ˆ̃HΨ̃ = −1

2

[
− ∂2

∂α2
+

∂2

∂β+
2 +

∂2

∂β−
2 −

ˆ̀2
1

I1

−
ˆ̀2
2

I2

−
ˆ̀2
3

I3

− 2Ṽ + 90ξ

+
1

2

∂ log (I1I2I3)

∂β+

∂

∂β+

+
1

2

∂ log (I1I2I3)

∂β−

∂

∂β−

]
Ψ̃ = 0 .

(3.296)

We already wrote the Wheeler-DeWitt equation in the representation that corresponds to

the Taub gauge. Note that the factor ordering generated friction terms of the form

∂A

(√
I1I2I3G

AB
)
∂BΨ̃ =

1

2

(
∂ log (I1I2I3)

∂β+

∂

∂β+

+
∂ log (I1I2I3)

∂β−

∂

∂β−

)
Ψ̃ . (3.297)

In addition to the Wheeler-DeWitt equation we have quantum diffeomorphism constraints.

According to the discussion in section 2.2.7, we implement them as

ĤiΨ = ˆ̀
jΨ = 0 . (3.298)

It is readily shown that they satisfy the commutation relations [Ĥi, Ĥj]Ψ̃ = iCk
ijĤkΨ̃. Further-

more,

[Ĥ, Ĥi] = 2e3α
∑
j,k

Ck
ij

ˆ̀
j

Ij
ˆ̀
k. (3.299)

Hence the quantum system of equations is Dirac consistent. Since in this gauge the Wheeler-

DeWitt equation still contains friction terms we perform a conformal transformation with

Ω−4 =
√
I1I2I3 , i.e. we transform Ψ̃ → Ψ := Ω−2Ψ̃. The Wheeler-DeWitt equation then
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becomes [
− ∂2

∂α2
+

∂2

∂β+
2 +

∂2

∂β−
2 −

ˆ̀2
1

I1

−
ˆ̀2
2

I2

−
ˆ̀2
3

I3

− Ṽ + 90ξ − U
]

Ψ = 0 . (3.300)

where U = 12 − 1
I1
− 1

I2
− 1

I3
. If we now implement the constraints ˆ̀

iΨ = 0 we do not

obtain the Wheeler-DeWitt equation (3.289) that we got by implementing the momentum

constraints before quantization. This is because of the presence of the additional potential

term U . The presence of this term spoils the Kasner like behavior in between two successive

bounces. In this sense we interpret its presence as a failure of the naive conformal ordering.

If we use the modified ordering defined by (2.216), the above mentioned problem is absent.

The reduced Wheeler-DeWitt equation is then given by

ˆ̃H(r)
0 Ψ̃ =

1

2

[
∂2

∂α2
− ∂2

∂β+
2 −

∂2

∂β+
2 + 2Ṽ

]
Ψ̃ = 0 , (3.301)

which coincides with (3.288). The constraint algebra obeys the same relations as in the case

of the naive ordering. The undesired potential terms, however, are absent.

3.4.5 The dust filled Bianchi IX spacetime

We now add pressure less matter to the system. This is rather straightforward when

considering comoving dust. In order to make the Bianchi IX universe rotate, however, we

require the dust velocities to have non-vanishing spatial components. In order to obtain

equations of motion for this system we use the formalism developed by Ryan (to be found

in [44, 46, 47] and for other Bianchi models in [31]). This formalism, however, has the

disadvantage that it is not quite canonical. It is therefore not suitable for quantization

without employing additional approximations.

The energy momentum tensor for dust reads Tµν = ρ uµuν , where ρ is the rest mass

density of the dust field. As it is well known, the local energy conservation ∇µT
µν = 0

leads to a geodesic equation for the positions of the dust particles. Let us start therefore by

considering the geodesic equation for a single dust particle, whose four-velocity we express

in the non-coordinate frame via the Pfaffian form

u = u0dt+ uiσ
i with 〈u,u〉 = −1 . (3.302)
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We partially fixed the gauge by setting N i = 0. The normalization condition implies

u0 = −N
√

1 + hijuiuj . (3.303)

We chose the minus sign because it ensures that the dust time T runs in the same direction as

the coordinate time t. The geodesic equation for the spatial components of the four velocity

can then be written as

u0(∂tui)− Ck
ijuku

j = 0 . (3.304)

The geodesic equation implies the existence of an additional constant of motion. To see

this explicitly we compute the expression
∑

i=1,2,3

u̇iui under the employment of the geodesic

equation and convince ourselves that it vanishes identically. Thus the euclidean sum

C2 := (u1)2 + (u2)2 + (u3)2 (3.305)

is a constant of motion and we are left with 2 degrees of freedom. When we now define

~u := (u1, u2, u3)T the geodesic equation (3.304) can be re-written in the vector notation

∂t~u =
Ne−2α

[
~u× (Ob−1OT~u)

]
√

1 + e−2α~uTOb−1OT~u
, (3.306)

where “×” denotes the usual cross product on three dimensional euclidean space. It is now

convenient to define ~v := OT~u/C. This vector is normalized in the sense that (v1)2 + (v2)2 +

(v3)2 = 1 and the geodesic equation simplifies to5

(∂t + ω)~v =
NCe−2α [~v × (b−1~v)]√

1 + C2e−2α~vT b−1~v
(3.307)

Note that we can also write ω~v = ~v × ~ω where ~ω = {ωi} = N
e3α

(
`1
I1
, `2
I2
, `3
I3

)T
. It will

therefore be possible to eliminate ω from the geodesic equation by using the diffeomorphism

constraints. We now couple the dust to the system by using the Kuchař and Brown formalism

[125]. The full Hamiltonian of the Bianchi IX universe coupled to dust reads

H = N
(
H +H(m)

)
+N i

(
Hi +H(m)

i

)
, where

H(m) =

√
p2
T + hijH(m)

i H(m)
j and H(m)

i = −pTui
(3.308)

5Note that our result here differs from Ryan’s by a factor 1/2.
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The Hamiltonian constraint and diffeomorphism constraints read

H +H(m) =
e−3α

2

(
−p2

α + p2
+ + p2

− +
`2

1

I1

+
`2

2

I2

+
`2

3

I3

− e6α

6
(3)R + 2e3αpT

√
1 + hijuiuj

)
Hi +H(m)

i = Oi
j (`j − CpTvj) .

(3.309)

The parameter pT > 0 is the momentum conjugate to the dust proper time T . Since the

Hamiltonian does not explicitly depend on T the momentum pT is a constant of motion.

Moreover, pT controls the dust density which is given by

ρ =
pT e−3α√
1 + hijuiuj

. (3.310)

The formalism we derived is not quite canonical in the sense that it must be supplemented

with the geodesic equation for the dust particles (3.304). The fact that `2
1 + `2

2 + `2
3 commutes

with H implies that `2
1 + `2

2 + `2
3 = (CpT )2 is a conserved quantity. This is consistent with the

fact that (u1)2 +(u2)2 +(u3)2 = C2 which itself now follows from the canonical description. In

addition to the curvature potential − e6α

12
(3)R we have two additional “potentials”. The term

e3αpT
√

1 + hijuiuj can be interpreted as three rotational potential walls. These potentials

are rather unimportant close to the singularity since they move away from the origin β± = 0

with speed 1. The term
`21
I1

+
`22
I2

+
`23
I3

can be interpreted as three centrifugal potential walls.

Asymptotically these walls are expected to become static. In general, however, all potential

walls are dynamical and change in a complicated manner dictated by the motion of the dust

particles. The centrifugal walls prevent the universe point from penetrating certain regions

of the configuration space (see figure 3.18). Ryan [46, 47] employed these facts to obtain

approximate solutions in a diagrammatic form.

For numerical purposes it is convenient to write the equations of motion using the variables

Γi. Furthermore, we shall pick the gauges N = e3α =
√

Γ1Γ2Γ3 and N i = 0. The Hamiltonian

constraint then becomes

− (log Γ1)·(log Γ2)· − (log Γ2)·(log Γ3)· − (log Γ1)·(log Γ3)·

+ Γ2
1 + Γ2

2 + Γ2
3 − 2(Γ1Γ2 + Γ3Γ1 + Γ2Γ3)

+ 24

[
`2

1

I1

+
`2

2

I2

+
`2

3

I3

+ 2|pT |
√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3)

]
= 0

(3.311)

where the moments of inertia are

I1 =
(Γ3 − Γ2)2

12Γ3Γ2

, I2 =
(Γ1 − Γ3)2

12Γ1Γ3

, I3 =
(Γ1 − Γ2)2

12Γ1Γ2

. (3.312)
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(a) General case. (b) Non-tumbling case

.

Figure 3.18: When rotating dust is coupled the potential becomes modified. The dashed red
lines represent the singular centrifugal walls which might appear and disappear during the
temporal evolution. The dotted blue lines represent the exponentially steep rotation walls
which move outwards with speed 1 when approaching the singularity. These walls might
open and close again during the temporal evolution of the universe. The rotation walls are
rather unimportant in the study of the dynamics towards the singularity since they cannot
be reached by the universe point. They are only relevant for the dynamics in the vicinity of
the rebounce.

The diffeomorphism constraints read `i = pTCvi and can be used to eliminate the angular

momentum variables from the equations of motion. The equations of motion can then be

written as

(log Γ1)·· =(Γ2 − Γ3)2 − Γ2
1 + 2p′2TC

2

[
Γ1Γ3(Γ1 + Γ3)v2

2

(Γ1 − Γ3)3
+

Γ1Γ2(Γ1 + Γ2)v2
3

(Γ1 − Γ2)3

]
+

p′T (Γ1Γ2Γ3 + 2C2v2
1Γ2Γ3)√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3)

(log Γ2)·· =(Γ3 − Γ1)2 − Γ2
2 + 2p′2TC

2

[
Γ1Γ2(Γ1 + Γ2)v2

3

(Γ2 − Γ1)3
+

Γ2Γ3(Γ2 + Γ3)v2
1

(Γ2 − Γ3)3

]
+

p′T (Γ1Γ2Γ3 + 2C2v2
2Γ1Γ3)√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3)

(log Γ3)·· =(Γ1 − Γ2)2 − Γ2
3 + 2p′2TC

2

[
Γ1Γ3(Γ1 + Γ3)v2

2

(Γ3 − Γ1)3
+

Γ3Γ2(Γ3 + Γ2)v2
1

(Γ3 − Γ2)3

]
+

p′T (Γ1Γ2Γ3 + 2C2v2
3Γ1Γ2)√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3)
.

(3.313)

where we have introduced p′T := 12pT for brevity. We use the diffeomorphism constraints to
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eliminate ~ω from the geodesic equation (3.307). This yields

∂t~v =
NC

e3α
~v ×

([
eαb−1

√
1 + C2e−2α~vT b−1~v

− pT diag

(
1

I1

,
1

I2

,
1

I3

)]
~v

)
. (3.314)

If expressed in the gauge N = e3α it can conveniently be written as

~̇v =C~v × (M~v) where M ∈ R3×3 is given by

M =
diag (Γ2Γ3, Γ1Γ3, Γ1Γ2)√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3)

+ p′Tdiag

(
Γ2Γ3

[Γ2 − Γ3]2
,

Γ1Γ3

[Γ3 − Γ1]2
,

Γ1Γ2

[Γ1 − Γ2]2

)
.

(3.315)

Together with the constraint v2
1 +v2

2 +v2
3 = 1 this is all we need for the numerical integration.

Note that we have eliminated all dependence on the Euler angles and their momenta from

the equations of motion (3.313,3.315). After giving arbitrary initial conditions the time

dependence of the Euler angles can be obtained by integrating the equations
θ̇

φ̇

ψ̇

 = pTC


sin(ψ)/ sin(φ) − cos(ψ)/ sin(φ) 0

cos(ψ) sin(ψ) 0

− cos(ψ) sin(ψ)/ sin(φ) cos2(ψ)/ sin(φ) 1




v1/I1

v2/I2

v3/I3

 . (3.316)

The time evolution of the dust time T is obtained by integrating the equation

Ṫ = e3α
√

1 + uiui =
√

Γ1Γ2Γ3 + C2 (Γ2Γ3v2
1 + Γ1Γ3v2

2 + Γ1Γ2v2
3) . (3.317)

The lifetime of the universe in terms of the dust proper time is expected to be finite.

Non-tumbling case

Before a further discussion of the general case let us have a short glance at the more simple

non-tumbling case. This case is obtained if we choose for example the initial conditions

v1 = 0 = v2 and v3 = 1. The geodesic equation (3.315) implies now that the velocities

stay constant in time. This implies `1 ≡ 0 ≡ `2 and `3 ≡ pψ ≡ pTC. Furthermore, we set

θ = π/2, φ = 0 initially. With this choice only ψ stays dynamical. The potential contains

now in addition to the curvature induced potential only one exponentially steep rotation wall

and one centrifugal wall. The centrifugal wall is singular and hence prevents the universe

point from crossing the line β− = 0. The rotation wall becomes irrelevant in the approach

towards the singularity. The time dependence of the remaining Euler angle ψ(t) is obtained
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by integrating the equation ψ̇ =
pψ
I3

. From this expression it is clear that the angle only

changes significantly during bounces from the centrifugal wall. The calculations of Belinskii,

Khalatnikov and Ryan [132], furthermore, suggest that the Euler angles assume constant

values while the universe approaches the singularity. We shall check this claim using the

numerical methods. Plots are shown on the next page in Figure 3.19.
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Figure 3.19: Plots of a numerical solution of equations 3.313 for the non tumbling case
(v3 = 1, v1 ≡ 0 ≡ v2). All plots belong to the same solution (pT = 1/2, pψ = 100). We
chose the initial conditions such that we obtain bounces between the curvature wall and the
centrifugal wall. The Euler angle ψ changes significantly only during bounces of the universe
point from the centrifugal wall. Furthermore, it appears to assume a constant value as t
grows.

General case

The potential for the general case is depicted in figure 3.18. In contrast to the non-tumbling

case the centrifugal walls are not static and change in a complicated manner dictated by the
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geodesic equation (3.315). Note that the centrifugal walls can in principle be crossed by the

universe point. This is clear since we can set up the initial conditions such that we obtain

this case. We can integrate the equations of motion together with the geodesic equation to

obtain a numerical solution to the system. We set up initial conditions at t = 0. From here

we evolve the solution backwards (figure 3.20) in time towards the rebounce and forwards in

time towards the final singularity (figure 3.21). We remark that the validity of the numerical

method broke down at some time t ≈ 1.8 × 106. This was indicated by the fact that the

expression in (3.287) stopped to be close to unity during Kasner epochs. We view this as a

sign that the numerical method we employ is too naive to deal with the problem in its full

complexity. For the regime we are interested in, however, the method seems to be sufficient.

We provide plots of the two ratios Γ2/Γ1, Γ3/Γ2 and the velocities ~v in order to provide a

check of the approximation we will perform later on. In addition we plotted the dust time

T in figure 3.20. The plot indicates that the dust time assumes constant values as t→ ±∞
and changes most significantly close to the rebounce as expected.

The simulation plotted in Fig. 3.20 and 3.21 were performed for the tumbling case, that

is, the vi are all chosen to be non-zero initially.
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Figure 3.20: The plots show a numerical solution of the dust filled Bianchi IX universe. We
chose to plot the solution against the dust proper time which allows to resolve the oscillations
close to the rebounce.

Special classes of solutions

Before a discussion of the asymptotic regime close to the singularity, we comment on particular

classes of solutions: One class of solutions is obtained if we choose, for example, the initial

conditions v1 = 0 = v2 and v3 = 1. The geodesic equation (3.315) implies now that the
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velocities stay constant in time. This implies that at all times `1 = 0 = `2 and `3 = pψ = pTC.

This class of solutions is known as the non-tumbling case. Furthermore, there are classes of

solutions which are rotating versions of the Taub solution. These solutions should be divided

into two sub classes: one class that oscillates between the centrifugal walls and the curvature

potential and one class that runs through the valley straight into the singularity. We set

v1 = v2 =
1

2
, v3 = 0 and β− = 0. (3.318)

For the Γi variables it means that Γ1 = e2αe2β+ = Γ2 and Γ3 = e2αe−4β+ . With this choice we

obtain I3 = 0 and 3I1 = 3I2 = sinh2 (3β+). Most importantly the geodesic equation (3.315)

is trivially satisfied, that is, v1 = v2 = 1/2 and v3 = 0 for all times.

Such as in the case of Bianchi I no isotropic expansion is possible without the addition

of matter. The dust filled closed Friedmann universe is obtained by setting both anisotropy

factors β±, their velocities and the dust velocities ui to zero (or alternatively simply by putting

C = 0). The three curvature then reduces to (3)R = 3e−2α

2
. This corresponds to a FLRW line

element with k = 3/2. The Hamiltonian constraint becomes the second Friedmann equation

α̇2 = N2

(
a3
me−3α − 1

4
e−2α

)
, (3.319)

where am = 2pT . The solution in the conformal gauge N = a = eα reads

a(t) = 4a3
m sin2

(
t− t0

4

)
, (3.320)

where t0 is an arbitrary constant.

The asymptotic regime close to the singularity

A numerical solution to the equations of motion for the general case is plotted in figure 3.21.

We regards this part of this solution to be not quite in the asymptotic regime but rather at

the transition into the asymptotic regime.
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Figure 3.21: The plots show a numerical solution; a typical Kasner epoch in which the
universe point bounces around between the curvature and the centrifugal walls of the
potential.

In order to simplify the dynamics of the general case, BKL made two assumptions based

on qualitative considerations of the equations of motion. The first assumption states that

anisotropy of space grows without bound. This means that the solution enters the regime

Γ1 � Γ2 � Γ3. (3.321)

The ordering of indices is irrelevant. In fact there are six possible orderings of indices which

each correspond to the universe point being constrained to one of the six regions bounded by

the rotation and centrifugal walls sketched in Fig. 3.18. The region Γ1 > Γ2 > Γ3 corresponds

to the right region above the line β− = 0 in figure 3.18. More precisely, the inequality (3.321)

means that

Γ2/Γ1 → 0 and Γ3/Γ2 → 0 . (3.322)

Our numerical simulations support the validity of this assumption (see the plot of the ratios

Γ2/Γ1 and Γ3/Γ2 in Fig. 3.22).

The second assumption made by BKL states that the Euler angles assume constant values:

(θ, φ, ψ)→ (θ0, φ0, ψ0) , (3.323)

that is, the rotation of the principal axes stops for all practical purposes and the metric

becomes effectively diagonal. The analysis of BKL [131] supports the consistency of making

both assumptions at the same time. Similar heuristic considerations can possibly be applied

to other Bianchi models as well [31]. In the dust model under consideration, this assumption
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is equivalent to the statement that the dust velocities ~v assume constant values ~v → ~v(0).

Our numerical results indicate that this is in fact true (see Fig. 3.22).
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Figure 3.22: The plots show the relevant ratios of the Γi variables and the dust velocities vi
obtained from the numerical solution plotted in 3.21.

BKL then arrive at the simplified effective set of equations. Let us now carry out the

approximation and apply it to our equations of motion. The kinetic term stays untouched

during the approximation. The first step in the approximation is to ignore the rotational

potential. In view of the strong inequality (3.321), we approximate the curvature potential

via

Γ2
1 + Γ2

2 + Γ2
3 − 2(Γ1Γ2 + Γ3Γ1 + Γ2Γ3) ≈ Γ2

1 . (3.324)

Furthermore, we approximate the centrifugal potential by

`2
1

I1

+
`2

2

I2

+
`2

3

I3

≈ 12C2p2
T

[
Γ3

Γ2

(
v

(0)
1

)2

+
Γ2

Γ1

(
v

(0)
3

)2
]
. (3.325)

Note that one centrifugal wall was ignored completely. Having Fig. 3.18 in mind, this

approximation is well motivated since only two of the centrifugal walls are expected to have

a significant influence on the dynamics of the universe point. After defining the new variables

a ≡ Γ1 , b ≡ 2p′2TC
2
(
v

(0)
3

)2

Γ2, c ≡ 4p′4TC
4
(
v

(0)
1 v

(0)
3

)2

Γ3, (3.326)

we arrive at a simplified Hamiltonian constraint and equations of motion,

(log a)·(log b)· + (log a)·(log c)· + (log b)·(log c)· = a2 + b/a+ c/b,

(log a)·· = b/a− a2, (log b)·· = a2 − b/a+ c/b, (log c)·· = a2 − c/b,
(3.327)
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which coincides with the asymptotic form of equations obtained in [131]. Equations (3.327)

can now be treated by the numerical methods which we have used in the previous sections.

One must ensure that initial conditions are chosen such that the simulation starts close to

the asymptotic regime (3.321).

The numerical simulations indicate that the non-diagonal Bianchi IX solutions, with tilted

dust, evolve into the regime where Γ1 � Γ2 � Γ3 and vi ≈ const. The results motivate us

to formulate the conjecture:

Given a tumbling solution to the general Bianchi IX model filled with pressure less tilted

matter, there exists t0 ∈ R such that the solution is well approximated by a solution to the

asymptotic equations of motion for all times t > t0 describing the vicinity of the singularity.

To make the notion of “approximation” mathematically more precise, a suitable measure

of the “distance” on the set of solutions is needed. For this purpose, we propose to use the

following simple measure:

∆(t) ≡
√

(log Γ1(t)− log ā(t))2 +
(
log Γ2(t)− log b̄(t)

)2
+ (log Γ3(t)− log c̄(t))2, (3.328)

where {Γ1,Γ2,Γ3} denotes the numerical solution to the exact equations of motion (3.313)–

(3.315), and

a = ā , b = 2p′2TC
2
(
v

(0)
3

)2

b̄ , c = 4p′4TC
4
(
v

(0)
1 v

(0)
3

)2

c̄ (3.329)

denote the numerical solution to the asymptotic equations of motion (3.327).

We have evolved the exact system of equations from t = 0 forward in time until t = 3×106.

There we used the same initial conditions as the ones we used to obtain the solution shown in

Fig. 3.21. We then took the final state at t = 3×106 as an initial condition for the asymptotic

system of equations and evolved it backwards in time towards the re-bounce until t = −980.

Fig. 3.23 presents the measure (3.328) as a function of time. We can see fast decrease

of ∆ with increasing time (evolution towards the singularity) and fast increase of ∆ with

decreasing time (evolution away from the singularity).

Our numerical simulations give strong support to the conjecture concerning the asymptotic

dynamics of the general Bianchi IX spacetime put forward long ago by Belinski, Khalatnikov,

and Ryan [131].

The approximation discussed in this section were used for a discussion of the singularity

avoidance within the framework of affine coherent states quantization [97]. It might also

be interesting to do the same within the Wheeler-DeWitt framework. One might, however,

argue that the same considerations as in section 3.4.4 can be applied here as well.
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Figure 3.23: The difference between the exact and the asymptotic solutions: (a) evolution
towards the singularity, (b) evolution away from the singularity towards the rebounce.

Temporal evolution of curvature invariants in the general dust filled Bianchi IX

universe

In the following we consider the Kretschamnn scalar for the general Bianchi IX model filled

with dust. The calculation and the resulting expression of the Kretschmann scalar are rather

involved and can be found in the Appendix C.3. The final expression is readily manipulated

for a numerical evaluation.

We focus now again on the asymptotic regime close to the singularity. According to the

phrase “matter does not matter” we expect the matter terms in the Kretschmann scalar to

be negligible in the asymptotic regime, that is, the Weyl part should dominate over the Ricci

part.

During Kasner epochs (i.e. between two successive bounces in the asymptotic regime) we

expect the most relevant term to be the term in the first two lines of (C.43) right after the

equals sign. We therefore assume now that the Kretschmann scalar can be approximated by

RµνλσR
µνλσ ≈ 1

N4

(
[(log Γ1)·(log Γ2)·]2 + [(log Γ1)·(log Γ3)·]2 + [(log Γ2)·(log Γ3)·]2

+(log Γ1)·(log Γ2)·(log Γ3)· [(log Γ1)· + (log Γ2)· + (log Γ3)·]) .
(3.330)

This claim is confirmed by our numerical simulations. We remark that this term corresponds

exactly to the Weyl squared scalar of the Bianchi I model. The Weyl tensor of the Bianchi

I model has only an electric part, and the magnetic part vanishes (in the quasi-Gaussian
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gauge).

During Kasner epochs the time evolution can be parameterized using the Lifshitz -

Khalatnikov parameter u following the considerations in [131]. Doing so and using the

assumption (3.330) we obtain that the Hubble-normalized Kretschmann scalar can be approximated

by

RµνλσR
µνλσ/|Ki

i|4 ≈
16u2(1 + u)2

(1 + u+ u2)3 during Kasner epochs. (3.331)

Consequently the Kretschmann scalar blows up like the expansion Ki
i to the power 4 during

Kasner eras. In order to understand the temporal evolution of the Kretschmann scalar over

the course of one epoch we have plotted the expression on the right hand side of (3.331) as

a function of u in Fig. 3.24. It is important that the function has a maximum in u = 1. 6
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Figure 3.24: The plot shows the function on the right hand side of equation (3.331).

BKL refer to bounces from the curvature potential as transformations of the first kind

while they call bounces from centrifugal walls transformations of the second kind. Transforma-

tions of the first kind change the Lifshitz-Khalatnikov parameter according to u
1→ u − 1.

Transformations of the second kind interchange the values of the velocities according to

(log Γ1)·
2→ (log Γ2)·, (log Γ2)·

2→ (log Γ1)· and leave the value of u unchanged, i.e. u
2→ u.

It follows that
1→ changes the value of the Hubble normalized Kretschmann scalar (3.331)

while
2→ does not. According to the analysis in [131] a typical Kasner era can be expressed

as a sequence of n Kasner epochs which starts with an epoch that has a maximum u-value

larger than 1 when evolving towards the singularity. The value of u decreases with each

transformation of the first kind and ends with the epoch for which u becomes smaller than

6This maximum implies an upper bound for the Hubble normalized Kretschmann scalar during Kasner
eras given by 64/27.
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1 for the first time, e.g.

1 < u1 = umax
1→ u2

2→ u3
1→ u4

2→ u5
1→ . . .

2→ un−1
1→ un = umin < 1 . (3.332)

It should be remarked at this point that the u-map was found to be asymptotically exact

for particular cases (for a collection of rigorous results concerning the u-map see [49, 119]).

A solution of the discrete mixmaster map and a detailed study of its chaotic nature for the

vacuum Bianchi IX case can be found in [133].

We are now in the position to provide a picture of the behavior of the Kretschmann

scalar over the course of one Kasner era: According to the formula (3.331) plotted in Fig.

3.24 and the u-map (3.332) we expect the Hubble normalized Kretschmann scalar to increase

its value with each transformation of the first kind before it hits the value umin < 1 for which

it decreases again. This is apart from the behavior in the vicinity of the bounces precisely

what we observe in the numerically evaluated Hubble normalized scalar plotted in Fig. 3.21.

Consequently during Kasner epochs, RµνλσR
µνλσ increases like the expansion to the power

four. Over the course of a single Kasner era the value of the Hubble normalized Kretschmann

scalar increases until it drops down to a finite value when it ends. This process will repeat

itself infinitely often with the beginning of the next Kasner era until the system approaches

the singularity.
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Figure 3.25: The plots show the temporal evolution of the Hubble normalized Kretschmann
scalar obtained from the numerical solution plotted in 3.21.
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Chapter 4

Conclusion and outlook

Conformal covariance in minisuperspace requires a rethinking about the criteria for singularity

avoidance. We proposed three criteria which are compatible with the conformal covariance

and applied them to specific models. The mechanism by which the singularity is resolved is

mostly the same in all models. The spreading of wave packets leads to a decreasing amplitude.

As a result singularities can in principle be avoided by all three criteria. Spreading of wave

packets can occur if the dimension of minisuperspace is sufficiently large (d ≥ 3) and if the

approach towards the singularity is AVTD. The prototype of a model with such features

is the Bianchi type I universe which we extensively studied in this thesis. The criteria for

singularity avoidance not only predicted an avoidance of the initial singularity but also an

avoidance of the late stages of the universe due to the spreading of the wave packets in

the vacuum case. We found that matter can in principle stabilize wave packets in the late

stages of the universe. We have also studied the Bianchi I model with a minimally coupled

electromagnetic field where we found that the situation was similar to the vacuum case.

In contrast to scalar fields, electromagnetic fields apparently do not enhance the spreading

of wave packets. Indeed the effect of electromagnetic fields is negligible in the asymptotic

regime close to the singularity. We expect these results to be representative for other types

of models. This could be seen in the case of the Kantowski-Sachs and the Bianchi II model

where the approach towards the singularity was AVTD as well. The situation, however, is

not so clear when the approach to the singularity is not AVTD. This is, for example, the

case for the vacuum Bianchi type VIII and IX models. One might nevertheless expect a

spreading of wave packets based on the fact that between two consecutive bounces from the

curvature potential the dynamics of these models are Kasner–like. The numerical results in

[130] support this conjecture. It would, nevertheless, be desirable to have a more rigorous

result at hand. Furthermore, it should also be interesting to investigate how decoherence
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affects the spreading of wave packets.

In this thesis we only considered minisuperspace models within Einstein’s theory and we

have restricted ourselves to the discussion of minimally coupled matter fields. It is desirable

to extend the discussion to minisuperspace models with non-minimally coupled matter fields

or models that result from applying the symmetry reduction to alternative theories of gravity

[134] as for example the Brans-Dicke theory. Furthermore, we mostly studied Big Bang type

singularities in this thesis. One might extend this work to more exotic types of singularities

such as the Big Brake and Big Rip in anisotropic models. The latter type was already studied

in [T3]. The authors found that the singularity was only avoided by criterion 2.

Furthermore, it would be exciting to study minisuperspace models and their quantization

within the Einstein-Cartan theory or more generally within the Poincaré gauge theories with

minimally coupled Fermion fields [135]. We can expect here that we would have to deal with

quite different structures in the constraint equations than the ones discussed in this thesis.

An interesting next step would be to investigate singularity avoidance within midisuper-

space models. Candidates for an examination are for example the LTB spacetime or more

generally the silent universe model. Apart from these it would also be interesting to explore

singularity avoidance in Gowdy models [69] and gravitational wave spacetimes. The Gowdy

spacetimes are particularly appealing as they display BKL behavior when approaching the

singularity [70]. One might also discuss the validity of the minisuperspace approximation

within the midisuperspace models (e.g. Friedmann in LTB or homogeneous models within

the Gowdy spacetimes [69]).

Moreover, we initiated an investigation of the factor ordering problem. The factor ordering

is deeply connected with the other problems of Quantum Cosmology and in particular it

appears to have some deep connection with the problem of time. Our discussion of the

generalized setup in section 2.1.5 and 2.2.7 revealed some interesting structures which can be

found in minisuperspace models and seem to lie at the interface between foliation theory and

conformal differential geometry. Singularity avoidance also strongly depends on the factor

ordering ambiguities. This issue is not exclusive to the Wheeler-DeWitt approach but was

also argued to be relevant in [13, 85, 93]. The factor ordering problem also prevented us

from investigating singularity avoidance in the case of non-diagonal Bianchi models (e.g.

Bianchi I and II). A big part of the factor ordering problem is the question of the conformal

weight of the wave function. In particular our criteria for singularity avoidance are partially

not applicable if the conformal weight of the wave function is unknown. For the above

mentioned reasons I believe that it is worthwhile to investigate further into this direction.

It appears that the factor ordering problem in Wheeler-DeWitt Quantum Cosmology can be
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approached in a systematic way. One of the main motivations to study Quantum Cosmology

is to provide us with toy models. The final goal, however, is to gain insights into full theory,

possibly by applying what one learned from the toy models. Thus one of the main questions

is how to convert the idea of conformal ordering to the full Wheeler-DeWitt equation and if

this idea can harmonize with any of the regularization approaches.
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Appendix A

Partial differential equations

A.1 Existence of solutions to hyperbolic partial differen-

tial equations

Consider an initial value problem in d = 1 + n dimensions of the form
[
Mµν ∂

∂xµ
∂
∂xν

+ aµ ∂
∂xµ

+ b
]

Φ = 0 , {xµ} = (x0 = t,x = {xi}) ∈ R+ × Rn

(Φ, ∂αΦ) |t=0 = (f, g)
. (A.1)

where {Mµν} is a real symmetric d×d matrix with the properties that M00 < 0 and {M ij} is

positive definite. Theorem 8.6 in Ringströms book [136] can be specialized to this situation.

It implies the global existence and uniqueness of solutions Φ ∈ C∞(Rd,R) provided that

Mµν , aµ and b are smooth functions Rd → R and f and g are smooth functions Rn → R.

The theorem is thus applicable to a wide class of minisuperspace Wheeler-DeWitt equations.

A.2 Frobenius theorem

We formulate here a very simple version of the Frobenius theorem suited for the application

to PDE systems. See [75] for a geometric formulation and generalizations of the theorem.

Let f i(x) = fi
A(x)∂A be r < n linearly independent vector fields on Rn such that the

coefficients are at least C1(Rn,R). Consider the system of partial differential equations

fi
A(x)∂Au(x) = 0 . (A.2)

where u ∈ C2(Rn,R). One seeks for a set of solutions u1, . . . , un−r such that the differentials

171



172 APPENDIX A. PARTIAL DIFFERENTIAL EQUATIONS

du1, . . . , dun−r are linearly independent. The theorem states that such solutions exist locally

if and only if

[f i,f j]u = Ck
ijfku , (A.3)

where Ck
ij are functions of x.

In the following let us consider a generalized system of equations of the form

Liu(x) = fi
A(x)(∂A + λA(x))u(x) = 0 . (A.4)

We suppose in the following that f i(x) satisfies (A.3). Furthermore, the differential form

λ := λAdxA is closed. It follows now that

[Li,Lj]u = Ck
ijLku , (A.5)

Moreover, the Poincaré lemma implies that there exists a function Φ such that λA = ∂AΦ.

Now set ū := eΦu and we obtain from (A.2) that ū satisfies the following PDE system

fi
A(x)∂Aū(x) = 0 , (A.6)

to which we can readily apply the Frobenius theorem.

A.3 Local decay rate estimate for the classical wave

equation

Let Φ be a solution to the classical wave equation in d = 1 + n dimensions
[
∂2

∂t2
−

n∑
i=1

∂2

∂(xi)2

]
Φ = 0 , {xµ} = (t,x = {xi}) ∈ R+ × Rn

(Φ, ∂αΦ) |t=0 = (f, g)

, (A.7)

where f and g are any smooth functions with compact support. It is well known (see e.g.

[107]) that in d ≥ 3 dimensions there exist constants C1/2 > 0 such that

|Φ(t,x)| ≤ C1|t|−
d−2

2 , (A.8)

|∂µΦ(t,x)| ≤ C2|t|−
d−2

2 . (A.9)
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The positive constants C1/2 are determined from certain Sobolev norms of f and g. Their

precise form is irrelevant for our discussion but can be found in [107].



174 APPENDIX A. PARTIAL DIFFERENTIAL EQUATIONS



Appendix B

Conformal geometry

Let (M, dS2) be a pseudo-Riemannian manifold with metric signature (−,+,+, . . .). A Weyl

or conformal rescaling of the metric is the transformation

dS2 → dS̃2 = Ω2dS2 , (B.1)

where Ω : M → R+. Weyl rescalings define an equivalence relation. The resulting

equivalence class [dS2] is referred to as conformal metric and we shall refer to (M, [dS2]) as

a conformal manifold. Length and volume are not a well defined concept on such a manifold

without imposing additional structures. Since angles are preserved by Weyl rescalings,

however, the light cone structure is also preserved.

Particular interest lies on scale covariant tensors (or more generally tensor densities), i.e.

all tensors T that transform as

T → T̃ = ΩkT for some k ∈ R , (B.2)

under the transformation (B.1). We call k the conformal weight of the tensor T and denote

it by k = w(T ). By definition w(dS2) = 2. The most popular conformally invariant tensor

is certainly the Weyl tensor WA
BCD with w(WA

BCD) = 0. The Weyl squared scalar W2 :=

WABCDWABCD is conformally covariant with w(W2) = −4.

B.1 Transformation laws

Now let M be parametrized by the coordinates qA. Let us pick a representative of the

conformal metric dS2 ∈ [dS2]. The components of the Levi-Civita connection compatible
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with dS2 transform according to

ΓBAC 7→ Γ̃BAC = ΓBAC +
(
δBA∂C + δBC∂A − GACGBD∂D

)
log Ω . (B.3)

From this one can derive the transformation laws for the Riemannian curvatures. Formulas

for the Riemann tensor are quite involved but can be found in [137]. The Ricci scalar

transforms like

R 7→ R̃ = Ω−2

[
R− 2(d− 1)

�Ω

Ω
− (d− 1)(d− 4)GAB ∂AΩ∂BΩ

Ω2

]
. (B.4)

For a conformally covariant differential form ω of degree deg(ω) and with conformal weight

w(ω) it holds that

w(?ω) = w(ω) + d− 2 deg(ω) . (B.5)

B.2 Yamabe problem

The Yamabe problem [138] is an important problem in conformal differential geometry. It

was partially solved with the following result: Given a compact manifold M with dimension

d ≥ 3 equipped with a conformal equivalence class of Riemannian metrics [dS2] there exists

a gauge dS2 ∈ [dS2] in which the Ricci curvature scalar is constant. The non-compact and

Lorentzian cases, however, remain to be some of the major open problems in the field of

conformal differential geometry.

B.3 Weylian geometry

A conformal manifold lacks the notion of a scale. Consequently there is no conformally

invariant notion of parallel transport of tensor fields. However, the introduction of an

additional structure, namely, the so-called Weyl vector allows for the construction of a

conformally invariant connection. This, furthermore, allows for the definition of conformally

covariant curvature tensors and conformally covariant differentation. The articles [139, 140]

served as guidelines for this section of the appendix. The paper [139] offers historical

perspective and [140] gives a formulation within the language of exterior calculus.

Weyl metric

A Weylian manifold (M, [dS2,ϕ]) consists of a manifold equipped with a Weylian metric

[dS2, ϕ], i.e. an equivalence class of pairs, where dS2 = GABdqA ⊗ dqB is in our case a
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Lorentzian metric and ϕ = ϕAdqA is called the Weyl one-form (or often simply Weyl vector).

The equivalence relation between pairs is defined via

(dS2,ϕ) ∼ (dS̃2, ϕ̃) :⇔ ∃ Ω :M→ R+ : (i) dS̃2 = Ω2dS (ii) ϕ̃ = ϕ− d log Ω .

(B.6)

The transformation (i) is called conformal rescaling and (ii) is called a scale gauge transforma-

tion. Together they form what is called a Weyl transformation in this context.1 If ϕ is closed

we speak of an integrable Weyl structure and if ϕ is exact the Weyl structure is referred

to as trivial. With some abuse of terminology we shall refer to choosing a representative

(dS2,ϕ) ∈ [dS2,ϕ] as fixing the gauge.

The conformal connection and the scale covariant derivative

Recall that our main interest lies in conformally covariant tensor fields. In particular, we

want to differentiate such fields without spoiling the conformal symmetry. In order to do so

we define the (torsion–free and linear) conformal connection Γ via its components

Γijk := GΓ
i
jk + δijϕk + δikϕj − Gjkϕi , (B.7)

where GΓ
i
jk are the Christoffel symbols of the Levi-Civita connection compatible with dS2.

We will use in this section the left subscript G( . ) to indicate that an object is a Riemannian

object constructed in a particular gauge. The conformal connection is constructed in such a

way that under a Weyl transformation

ΓABC 7→ Γ̃ABC = ΓABC , (B.8)

that is, the conformal connection is invariant under Weyl transformations. For later convenience

we also introduce the tensor CADBC := δABδ
D
C + δACδ

D
B − GBCGAD . We can then define

ΓABC := GΓ
A
BC + CADBCϕD . (B.9)

The scale covariant derivative of a tensor field T is then defined by

DT := ∇T + w(T )ϕ⊗ T , (B.10)

1Note that in the main body of the thesis we sloppily refer to both conformal rescalings and Weyl
transformations as conformal transformations.
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where ∇ is the covariant derivative defined by the conformal connection Γ. By construction

we now have that for a tensor field T of type
(
r
s

)
the tensor field DT is of type

(
r
s+1

)
and

w(DT ) = w(T ). The components of a vector field for example are differentiated as

DAT B = ∂AT B + ΓBACT C + w(T )ϕAT B . (B.11)

The divergence of a vector field is consequently given by

DAT A = G∇AT A + [d+ w(T )]ϕAT A . (B.12)

Since the left hand side of this equation is conformally covariant can conclude that the

divergence G∇AT A is conformally covariant if and only if w(T ) = −d. Moreover, the scale

covariant exterior derivative acting on differential forms is

DΦ := dΦ + w(Φ)ϕ ∧ Φ . (B.13)

Most importantly it holds that D (dS2) = 0 or equivalently DCGAB = 0. One says that the

conformal connection is weakly compatible with the metric. The conventions here lead to a

non-metricity QCAB := −∇CGAB = 2ϕCGAB.

Conformal curvatures

Now let v = vA∂A be a vector field of arbitrary weight. We can define the conformal curvature

tensor via

[DB,DA] vC =: RC
DABv

D . (B.14)

It can be expressed in terms of the conformal connection:

RC
DAB = ∂AΓCDB − ∂BΓCDA + ΓEDBΓCEA − ΓCBEΓEDA . (B.15)

Other curvature tensors can now be defined such as in Riemannian geometry, for example

RAB := RC
ACB and R := RA

A . (B.16)

They have the following properties:

• The curvature tensors are conformally covariant. In particular w(RC
DAB) = 0, w(RAB) =

0 and w(R) = −2.

• RC
DAB = −RC

DAB .
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• The first Bianchi identity RC
[DAB] = 0 holds. This is a consequence of the absence of

torsion.

• The second Bianchi identity ∇[ARC
BD]E = 0 holds.

• RABCD + RBACD = −FCD GAB and thus RAB − RBA = 2R[AB] = −d
2
FAB. This

is a consequence of the non-metricity of the Weylian connection. The conformally

invariant curvature tensor FAB := ∂AϕB − ∂BϕA is an analogue of the electromagnetic

field strength tensor. FAB vanishes if and only if ϕ is closed, i.e. the Weyl structure is

integrable.

Denoting now the curvatures of the Riemannian manifold equipped with the metric GAB by

GRC
ABD and so on we obtain the following relations

RC
DAB = GRC

DAB + 2 G∇[A

(
CCGB]DϕG

)
+
(
CEGDBCCFEA − CCFBECEFDA

)
ϕFϕG , (B.17)

RAB = GRAB − (d− 1)FAB − GAB G∇Cϕ
C + (d− 2)

(
ϕAϕB − G∇BϕA − GBDϕCϕC

)
,

(B.18)

R = GR− 2(d− 1) G∇Aϕ
A − (d− 2)(d− 1)ϕAϕA . (B.19)

Trivial Weyl structure: Let Φ be a is strictly positive conformally covariant scalar of

conformal weight k 6= 0 . We can then define a Weyl 1-form via

ϕ := −1

k
d log Φ . (B.20)

The resulting Weylian metric is referred to as trivial since we can gauge the Weyl vector

away. This can be seen from the following: We can find a conformal transformation such

that Φ̃ = ΩkΦ = 1 by setting Ω = Φ−1/k. This implies that

(Φ−2/kdS2, 0) ∈ [dS2, ϕ] . (B.21)

In this gauge the conformal connection is metric compatible and the curvatures are equal to

the Riemannian curvatures. In this sense Weylian geometry can be regarded as a generalization

of Riemannian geometry. One usually refers to the gauge (B.21) as the Riemann gauge.

The operator D2 and the Yamabe operator

Consider first the Laplace-Beltrami type operator

D2Ψ := DADAΨ , (B.22)
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where Ψ is a scalar field of weight w(Ψ) = k. Since it maps conformally covariant scalar

fields of weight w(Ψ) to conformally covariant scalar fields of weight w(D2Ψ) = w(Ψ) − 2

one says that the operator D2 has conformal bi-weight (w(Ψ)−2, w(Ψ)). We can express the

operator in terms of the Weyl 1-form as

D2Ψ =
[
G�+ (2k + d− 2)(ϕA∂A + kϕAϕA) + k

(
G∇Aϕ

A − kϕAϕA
)]

Ψ , (B.23)

where G� := 1√
−G∂A

(√
−GGAB∂B

)
is the usual Laplace-Beltrami operator on the Riemannian

manifold (M, dS2). Using equation (B.19) we can eliminate G∇Aϕ
A from the equation and

obtain

D2Ψ =

[
G�+ (2k + d− 2)

(
ϕA∂A +

k

2
ϕAϕA

)
+

k

2(d− 1)
(GR−R)

]
Ψ . (B.24)

It now follows that when restricting ourselves to the weight k = 2−d
2

we obtain

[
D2 − ξR

]
Ψ = [G�− ξ GR] Ψ , (B.25)

where ξ = d−2
4(d−1)

. Hence D2 − ξR coincides with the conformal Yamabe operator acting on

scalar fields Ψ of weight w(Ψ) = −d−2
2

. The expression (B.25) is completely independent

of the Weyl 1-form. Since it maps scalars of conformal weight −d−2
2

to scalars of conformal

weight −d+2
2

the operator D2 − ξR has conformal bi-weight
(
−d+2

2
,−d−2

2

)
.



Appendix C

Auxiliary calculations

C.1 Dirac consistency of naive conformal ordering

In this part of the appendix we provide auxiliary calculations for section 2.2.7. Recall that

KAB
i = ∇(AAi

B) + λiGAB. Furthermore, it helps to keep in mind that

P̄A
BBB

i = 0 , Ai
BP̄B

A = 0 , and ∇APB
C = −∇AP̄B

C . (C.1)

The commutator
[
Ĥ0, Ĥi

]
splits into the following parts

[
Ĥ0, Ĥi

]
Ψ = i

(
1

2

[
�, Ai

A∂A
]

+
w(Ψ)

2
[�, λi]−

ξd
2

[
R, AiA∂A

]
−
[
V , AiA∂A

])
Ψ . (C.2)

The commutators that appear on the right hand side of the expression can be written as

[
�, Ai

A∂A
]

= 2∇(AAi
B)∇A∂B +

(
�Ai

A + Ai
BRB

A
)
∂A

[�, λi] = �λi + 2GAB (∂Aλi) ∂B[
V , AiA∂A

]
= −AiA∂AV = −2λiV[

R, AiA∂A
]

= −AiA∂AR .

(C.3)

It holds that

∇(AAi
B)∇A∂BΨ = −λi�Ψ +KAB

i ∇A∂BΨ , (C.4)

Recall that the KAB
i are conformally covariant with weight w(Ki

AB) = −2. Recall also that

for the closure of the classical constraint algebra we required that

KAB
i P̄A

CP̄B
D = 0 . (C.5)

181
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This implies that we can rewrite (C.4) by using that

KAB
i ∇A∂BΨ = KCD

i

(
PC

A + 2P̄C
A
)
BD

jAj
B∇A∂BΨ . (C.6)

A careful inspection of the commutator (C.2) and a comparison with equation (2.209) then

yields the three equations according to the strategy for the computation that we lined out in

section 2.2.7 :

• 1st equation

Zj
i
A = −KCD

i BD
j
(
PC

A + 2P̄C
A
)
. (C.7)

This equation followed from the inspection of the terms in front of the operator ∇A∂B.

Note that the above expression yields that w(Zj
i
A) = −2 as expected.

• 2nd equation

[
Zj
i
A∇A + zji

]
Aj

B + w(Ψ)λjZ
j
i
B = −1

2

(
�Ai

B + Ai
BRB

A + 2w(Ψ)GBA∂Aλi
)
. (C.8)

This equation follows from an inspection of the terms in front of the operator ∂A. We

will split the equation into two equations: One by projecting it with PB
A and one by

projecting it with P̄B
A.

• 3rd equation

w(Ψ)
(
Zj
i
A∂A + zji

)
λj = −w(ψ)

2
�λi − ξd

(
Ai

A∂A − λi
)
R . (C.9)

This equation followed from an inspection of the remaining scalar part.

We consider the 2nd equation (C.8) and contract it with BB
j (this is equivalent to a

projection with PB
A). The resulting equation can be solved for the scalars zji as anticipated.

We obtain

zji = −
[

1

2

(
�Ai

B + Ai
ARA

B + 2w(Ψ)∇Bλi
)

+ Zk
i
A∇AAk

B + w(Ψ)Zk
i
Bλk

]
BB

j . (C.10)

Let us try to bring this expression into the form (2.208). We first note that

2∇AK
AB
i = �Ai

B + AAi RA
B +∇B∇AAi

A + 2GBA∂Aλi
and ∇AAi

A = Ki − dλi where Ki := GABK
AB
i .

(C.11)
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Hence we can replace the following term

�Ai
B + Ai

ARA
B + 2w(Ψ)∇Bλi = 2∇AK

AB
i −∇BKi . (C.12)

This yields that

zji =

[
−∇AK

AB
i +

1

2
∇BKi − Zk

i
A∇AAk

B − w(Ψ)Zk
i
Bλk

]
BB

j . (C.13)

We note that w(Ki) = 0. Thus the scalars (∇BKi)BB
j are conformally covariant with

w(∇BKi) = −2 and we will not manipulate this term any further. The divergence of Zj
i
A

can be written as

∇AZ
j
i
A = −2(∇AK

AD
i )BD

j − 2KAD
i ∇(ABD)

j +∇A(Ak
AKkj

i ) , (C.14)

where we defined the scalars Kjk
i := KCD

i BD
jBC

k for brevity. Solving for −(∇AK
AD
i )BD

j

yields

−(∇AK
AD
i )BD

j =
1

2
∇AZ

j
i
A +KAD

i ∇(ABD)
j − 1

2
∇A(Ak

AKkj
i ) . (C.15)

Furthermore, we note that

ZkB
i λkBB

j = −Kjk
i λk . (C.16)

We can now write

zji =
1

2
∇AZ

j
i
A +

1

2
(∇AKi)BA

j −
[

1

2
∇A(Kjk

i Ak
A)− w(Ψ)Kjk

i λk

]
− Zk

i
A(∇AAk

B)BB
j +KAD

i ∇(ABD)
j .

(C.17)

Now note that the term inside the brackets, that is,

1

2
∇A(Ak

AKkj
i )− w(Ψ)Kjk

i λk (C.18)

is conformally covariant with weight −2. The first term in the second row of (C.17) can be

written as

Zk
i
A(∇AAk

B)BB
j = KAB

i ∇(ABB)
j − Zk

i
[AAk

B]∇[ABB]
j . (C.19)

Finally we can write

zji =
1

2
∇AZ

j
i
A +

1

2
(∇AKi)BA

j −
[

1

2
∇A(Kjk

i Ak
A)− w(Ψ)Kjk

i λk

]
+ Zk

i
AAk

B∇[ABB]
j .

(C.20)
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Also the last term is now manifestly conformally covariant with weight -2. It can also be

written as

Zk
i

[AAk
B]∇[ABB]

j =− 2KAC
i BC

kAk
B∇[ABB]

j

=−KAC
i BC

kBB
j∇AAk

B +Kjk
i (Kk − dλk) .

(C.21)

In the following we shall attempt to bring the consistency conditions into a form that is

manifestly conformally covariant and invariant under transformations of the shift. Let us

now contract the second equation with P̄B
C . We obtain

(
Zj
i
A∇AAj

B + w(Ψ)λjZ
j
i
B
)
P̄B

C = −1

2

(
�Ai

B + Ai
BRB

A + 2w(Ψ)∇Bλi
)
P̄B

C (C.22)

By Using equation (C.12) we get(
Zj
i
A∇AAj

B + w(Ψ)λjZ
j
i
B +∇AK

AB
i − 1

2
∇BKi

)
P̄B

C = 0 . (C.23)

Now note that

Zj
i
A
(
∇AAj

B
)
P̄B

C = −KCD
i

(
δAC + P̄C

A
) (
∇APD

B
)
P̄B

C

ZjB
i P̄B

C = −2KBD
i BD

jP̄B
C .

(C.24)

Therefore the condition becomes(
∇AK

AB
i −KCD

i

(
δAC + P̄C

A
) (
∇APD

B
)
− 2w(Ψ)KBA

i λA −
1

2
∇BKi

)
P̄B

C = 0 . (C.25)

Which can be written as(
∇AK

AB
i −KCD

i P̄C
A
(
∇APD

B
)
−KAD

i

(
∇APD

B
)
− 2w(Ψ)KBA

i λA −
1

2
∇BKi

)
P̄B

C = 0 .

(C.26)

Now consider

0 = ∇B

(
KCD
i P̄C

AP̄D
B
)

=
[
∇DK

CD
i −∇B

(
KCD
i PD

B
)]
P̄C

A +KCD
i P̄D

B∇BP̄C
A . (C.27)

We can rewrite the last term by noticing that

KCD
i P̄D

B = KAD
i P̄D

BPA
C and 0 = ∇B(PC

DP̄D
A) = ∇B(PC

E)P̄D
A + PC

D∇BP̄D
A .

(C.28)
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It follows than that

[
∇DK

CD
i −∇B

(
KCD
i PD

B
)
−KED

i P̄D
B∇BPE

C
]
P̄C

A = 0 . (C.29)

Using this we can rewrite the condition to become[
∇A

(
KBD
i PD

A
)
−KAD

i ∇APD
B − 2w(Ψ)KBA

i λA −
1

2
∇BKi

]
P̄B

C = 0 . (C.30)

This can be written as[
2∇A

(
K
D[A
i PD

B]
A

)
+ 2w(Ψ)KBA

i λA +
1

2
∇BKi

]
P̄B

C = 0 , (C.31)

or alternatively as

P̄C
B [∇A − 2w(Ψ)λA]

(
K
D[A
i PD

B]
A +

1

4
GABKi

)
= 0 . (C.32)

We can now convince ourselves that this condition is conformally covariant and that the

condition is covariant under the transformation Ai
A 7→ Ãi

A = Li
jAj

A. In other words: The

tensor

OC
i := P̄C

B [∇A − 2w(Ψ)λA]

(
K
D[A
i PD

B]
A +

1

4
GABKi

)
(C.33)

is conformally covariant with weight w(OC
i ) = −2. A lengthy calculation shows that it

transforms as OA
i 7→ ÕA

i = Li
jOA

j as Ai
A 7→ Ãi

A = Li
jAj

A. This implies that the tensor

OA
B := BB

iOA
i is invariant under the transformation Ai

A 7→ Ãi
A = Li

jAj
A. Moreover, it is

traceless OA
A = 0. In principle one should also be able to manipulate the third condition in

such a way that becomes manifestly covariant. The hope was that this process also makes

the conditions more transparent. This was not justified in the case of the first condition and

we decide to stop the computation at this point.
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C.2 Weyl squared scalar for diagonal Bianchi II

With the help of some computer algebra we obtain

CµνλσC
µνλσ =

4

3

−18Ṅ
(
α̇
(
β̇2

+ + β̇2
−

)
− 2β̇3

+ + β̇+

(
β̈+ + 6β̇2

−

)
+ β̇−β̈−

)
N5

−6Ṅe−2(α(t)+4β+)β̇+

N3
+

9Ṅ2
(
β̇2

+ + β̇2
−

)
N6

+
3e−2(α(t)+4β+)

(
2α̇β̇+ + 2β̈+ − 31β̇2

+ + β̇2
−

)
N2

+
1

N4

(
9
(
α̇2
(
β̇2

+ + β̇2
−

)
+ 2α̇

(
−2β̇3

+ + β̇+

(
β̈+ + 6β̇2

−

)
+ β̇−β̈−

)
+4β̈+β̇

2
− + β̈2

+ + 8β̇+β̇−β̈− + 4β̇4
+ + β̇2

+

(
8β̇2
− − 4β̈+

)
+ β̈2

− + 4β̇4
−

))
+e−4(α(t)+4β+)

)
.

(C.34)

For the vacuum solution discussed in section 3.3 we obtain

CµνλσC
µνλσ =

1

18
sech6

(
2
√

3t
√
p2
T − p2

Y

)
×
(
−9e−4

√
3(CT−pT t)

((
41p2

T − 40p2
Y

)
cosh

(
4
√

3t
√
p2
T − p2

Y

)
+ p2

T

)
× cosh4

(
2
√

3t
√
p2
T − p2

Y

)
+9e−8

√
3(CT−pT t)

(
−4pT

√
(pT − pY )(pT + pY ) sinh

(
4
√

3t
√
p2
T − p2

Y

)
×
(

18

(
−7p4

T + (pT − pY )(pT + pY )
(
p2
T + 28p2

Y

)
cosh

(
4
√

3t
√
p2
T − p2

Y

)
+43p2

Tp
2
Y − 36p4

Y

)
− 7e4

√
3(CT−pT t) cosh4

(
2
√

3t
√
p2
T − p2

Y

))
+9(pT − pY )(pT + pY )

(
95p4

T − 228p2
Tp

2
Y + 352p4

Y

)
−36

(
7p6

T − 39p4
Tp

2
Y − 16p2

Tp
4
Y + 48p6

Y

)
cosh

(
4
√

3t
√
p2
T − p2

Y

)
+9
(
5p6

T + 95p4
Tp

2
Y − 132p2

Tp
4
Y + 32p6

Y

)
cosh

(
8
√

3t
√
p2
T − p2

Y

))

+
2 cosh8

(
2
√

3t
√
p2
T − p2

Y

)
p2
T − p2

Y

 .

(C.35)
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C.3 Calculation of the Bianchi IX Kretschmann scalar

In this part of the appendix we compute the Kretschmann scalar for the dust filled Bianchi

IX universe. The calculations can also be found in [T4]. The Kretschmann scalar can

be decomposed according to (2.82). For our purposes it is convenient to make use of the

constraints and the equations of motion to simplify the expressions such that they are suited

for a numerical evaluation. We will do so throughout the calculation in this section and

bring our expression into a form that is ready for a numerical evaluation. This means that

all expressions should only involve the variables log Γi, (log Γi)
· and vi as well as the constant

parameters p′T ≡ 12pT and C. Furthermore, we shall use the quasi-Gaussian gauge N i = 0

while keeping the lapse N unspecified. We now proceed by calculating the terms on the

right-hand side of equation (2.82).

From the Einstein field equations Rµν − 1
2
Rgµν = κTµν = κρuµuν it follows that we can

write

RµνR
µν = κ2TµνT

µν = κ2ρ2 and R = −κT µµ = κρ . (C.36)

Recall that in the model under consideration

ρ =
pT e−3α√

1 + hijuiuj
=

pT√
Γ1Γ2Γ3 + C2 (Γ2Γ3v2

1 + Γ1Γ3v2
2 + Γ1Γ2v2

3)
. (C.37)

We conclude that the Ricci part 2RµνR
µν − 1

3
R2 of the Kretschmann scalar blows up as

[
Γ1Γ2Γ3 + C2

(
Γ2Γ3v

2
1 + Γ1Γ3v

2
2 + Γ1Γ2v

2
3

)]−1
(C.38)

when approaching the singularity. The calculation of the Weyl part of the Kretschmann

scalar, however, is less trivial. The 3+1 split allows for a decomposition of the Weyl tensor

into electric and magnetic part (see e.g. [129]) according to

CµνλσC
µνλσ = 8

(
EijE

ij −BijB
ij
)

where

Eij = KijKk
k −Ki

kKjk + (3)Rij −
κ

2

[
Sij +

1

3
hij
(
4ε− Sii

)]
,

Bij = εikl

[
DkKj

l − κ

2
δkj j

l
]
,

(C.39)

with εikl being the Levi-Civita tensor. The other objects involved in the decomposition are

explained below. Now let P µ
ν = δµν + nµnν denote the projector onto spatial hypersurfaces

orthogonal to the normal vector {nµ} = (1/N, 0, 0, 0), that is P µ
i = δµi , P µ

0 = 0. Di denotes
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the 3 dimensional covariant derivative on these hypersurfaces. The quantities involved in

equation (C.39) are

ε = nµnνTµν = ρ(1 + uiui) ,

Sij = P µ
i P

ν
j Tµν = ρuiuj ,

ji = −P iµnνTµν = pTu
i/
√
h ,

(C.40)

where ε, Sij and ji are the energy density, the shear density and the momentum density as

measured by Eulerian observers (observers with four velocity nµ).

A direct calculation yields

4N2Γ1Γ2Γ3BijB
ij =

(
Γ2

1 + Γ2
2 + Γ2

3

) [ Γ̇1

Γ1

+
Γ̇2

Γ2

+
Γ̇3

Γ3

]2

+ (Γ1 + Γ2 + Γ3)
(

Γ̇1 + Γ̇2 + Γ̇3

)( Γ̇1

Γ1

+
Γ̇2

Γ2

+
Γ̇3

Γ3

)

+
1

4
(Γ1 + Γ2 + Γ3)2

 Γ̇2
1

Γ2
1

+
Γ̇2

2

Γ2
2

+
Γ̇2

3

Γ2
3

− 3

(
Γ̇1

Γ1

+
Γ̇2

Γ2

+
Γ̇3

Γ3

)2


+
N2C2p′2T (Γ1 + Γ2 + Γ3)2

24Γ1Γ2Γ3

[
v2

1

I1

+
v2

2

I2

+
v2

3

I3

]
.

(C.41)

Let us now turn to the computation of EijE
ij, which can be written out as

EijE
ij =Ki

jK
j
k

(
Kk

lK
l
i − 2Kk

iK
l
l

)
+Ki

jK
j
i(K

l
l)

2

− 2
(
Ki

lK
lj −K l

lK
ij
)

(3)Rij + (3)Rij
(3)Rij

+ 6ρ
(
Ki

lK
lj −K l

lK
ij − (3)Rij

)
uiuj

+ ρ
(
8 + 6uku

k
) [
Ki

jK
j
i − (K l

l)
2 − (3)R

]
+ ρ2

[
54
(
uku

k
)2

+ 96 uku
k + 48

]
.

(C.42)

We now evaluate the single terms. The term in the first line of (C.42) right after the equal
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sign can be written as

8N4
[
Ki

jK
j
k

(
Kk

lK
l
i − 2Kk

iK
l
l

)
+Ki

jK
j
i(K

l
l)

2
]

=

[(log Γ1)·(log Γ2)·]2 + [(log Γ1)·(log Γ3)·]2 + [(log Γ2)·(log Γ3)·]2

+ (log Γ1)·(log Γ2)·(log Γ3)· [(log Γ1)· + (log Γ2)· + (log Γ3)·]

+N4C4p′ 4
T

[
v4

1

Γ2
1(Γ2 − Γ3)4

+
v4

2

Γ2
2(Γ1 − Γ3)4

+
v4

3

Γ2
3(Γ1 − Γ2)4

+
2v2

1v
2
2

Γ1Γ2 (Γ1 − Γ3)2 (Γ2 − Γ3)2

+
2v2

2v
2
3

Γ3Γ2 (Γ2 − Γ1)2 (Γ3 − Γ1)2 +
2v2

1v
2
3

Γ1Γ3 (Γ1 − Γ2)2 (Γ3 − Γ2)2

]
− N2C2p′ 2

T v2
1

Γ1(Γ2 − Γ3)2
[(log Γ1)· [(log Γ2)· + (log Γ3)· − (log Γ1)·] + 2(log Γ2)·(log Γ3)·]

− N2C2p′ 2
T v2

2

Γ2(Γ1 − Γ3)2
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− N2C2p′ 2
T v2

3

Γ3(Γ2 − Γ1)2
[(log Γ3)· [(log Γ2)· + (log Γ1)· − (log Γ3)·] + 2(log Γ2)·(log Γ1)·] .

(C.43)

We denote the three-dimensional Ricci tensor of the diagonal model by (3)R̄ij. The three-

dimensional Ricci tensor of the non-diagonal model can then obtained via rotation according

to (3)Rij = Oi
kOj

l (3)R̄kl. The only non-vanishing components of (3)R̄ij are given by

(3)R̄11 = 1 +
Γ2

1

2Γ2Γ3

− Γ2

2Γ3

− Γ3

2Γ2

(3)R̄22 = 1 +
Γ2

2

2Γ1Γ3

− Γ1

2Γ3

− Γ3

2Γ1

(3)R̄33 = 1 +
Γ2

3

2Γ1Γ2

− Γ1

2Γ2

− Γ2

2Γ1

.

(C.44)

The first term in the second line of (C.42) reads

− 2
(
Ki

lK
lj −K l

lK
ij
)

(3)Rij =
(Γ2 + Γ3 − Γ1) (log Γ2)·(log Γ3)·

2N2Γ2Γ3

+
(Γ1 + Γ3 − Γ2) (log Γ1)·(log Γ3)·

2N2Γ1Γ3
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(Γ1 + Γ2 − Γ3) (log Γ1)·(log Γ2)·

2N2Γ2Γ1

+
C2p′ 2

T

2Γ1Γ2Γ3

[
(Γ1 − Γ2 − Γ3) v 2

1

(Γ2 − Γ3)2 +
(Γ2 − Γ1 − Γ3) v 2

2

(Γ1 − Γ3)2 +
(Γ3 − Γ1 − Γ2) v 2

3

(Γ1 − Γ2)2

]
.

(C.45)
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The three-dimensional Ricci squared scalar can be written as

(3)Rij
(3)Rij =

(Γ2
1 − 12I1Γ2Γ3)

2
+ (Γ2

2 − 12I2Γ1Γ3)
2

+ (Γ2
3 − 12I3Γ1Γ2)

2

4 (Γ1Γ2Γ3)2 . (C.46)

The term in the third line of (C.42) becomes

6ρ
(
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(C.47)

We can use the Hamiltonian constraint equation to simplify

Ki
jK

j
i − (K l

l)
2 − (3)R = −p′T

√
1 + uiui

Γ1Γ2Γ3

. (C.48)

We therefore obtain a simple expression for the term in the fourth line of (C.42). Since we

have direct numerical access to the quantities in the fourth and fifth line of (C.42), we will

not manipulate them further.

It is well known that the Weyl squared scalar vanishes for the Friedmann models. The

dust filled closed Friedmann universe is included in the model under consideration as the

particular case for which Γ1 = Γ2 = Γ3 and C = 0. As a consistency check of our calculation

we convinced ourselves that the Weyl squared scalar vanishes for these restrictions. We found

that BijB
ij and EijE

ij vanish separately and hence CµνλσC
µνλσ = 0 as expected.
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Lemâıtre-Tolman-Bondi model. Phys. Rev. D 99, 126010 (2019).

arXiv:1904.13220 [gr-qc].

[94] T. Schmitz, Towards a quantum Oppenheimer-Snyder model. Phys. Rev. D 101, 026016

(2020). arXiv:1912.08175[gr-qc].

[95] D. Malafarina, Classical collapse to black holes and quantum bounces: A review. Universe

2017, 3(2), 48. arXiv:1703.04138 [gr-qc]

[96] H. Bergeron, E. Czuchry, J. Gazeau, P. Ma lkiewicz and W. Piechocki, Singularity

avoidance in a quantum model of the Mixmaster universe. Phys. Rev. D 92, 124018

(2015) arXiv:1501.07871 [gr-qc]
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