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Abstract	
Chondrites are primitive meteorites made from two major components: chondrules, small 

rocky spherules, embedded within fine-grained matrix. Both components formed in the 

protoplanetary disk, however, their formation mechanisms are not well understood. There are 

two fundamental questions that have not yet been answered: what process(es) formed 

chondrules, and what is the genetic relationship between chondrules and matrix? The purpose 

of my thesis is to constrain the conditions of chondrule and matrix formation. To do so, I 

obtained a comprehensive dataset, containing petrographic and chemical data of chondrules 

and matrix in ordinary (OC), enstatite (EC) and Kakangari (K) chondrites. 

I used this dataset to examine the textural characteristics and bulk chemistries of chondrules. 

A large fraction of chondrules in all chondrites are mineralogically zoned. These chondrules 

have olivine cores, surrounded by low-Ca pyroxene rims. Average 2D fractions are high in 

carbonaceous chondrites (CC; 78%), intermediate in Rumuruti (R; 41%) and OC (39%), and 

rather low in EC (28%) and K chondrites (19%). Due to 2D sectioning effects, 3D zoned 

chondrule fractions are systematically higher by factor 1.24 in CC, 1.29 in OC and 1.62 in EC. 

These results show that mineralogically zoned chondrules are the dominant chondrule type in 

most chondrites. They formed when chondrule melts interacted with surrounding nebula gas, 

and material from the gas was added to the chondrules. By comparing the bulk compositions 

of chondrules that are mineralogically zoned with those that are not, I show that gas-melt 

interaction was a ubiquitous process during chondrule formation in all chondrites. This process 

explains the origin of chondrule textures and the large variability observed in chondrule bulk 

compositions. 

Recent studies identified chondrule-matrix complementarities as key characteristics of CC and 

R chondrites. Various element and isotope ratios are different in chondrules and matrix, but, at 

the same time, solar in the bulk meteorite. This requires joint formation of chondrules and 

matrix from a single solar reservoir. In this thesis, the study of complementarity was expanded 

to Kakangari chondrites. Chondrules, matrix and bulk Kakangari have identical (solar) Mg/Si 

ratios as a likely result of chondrule-gas interaction, as well as element exchange between 

chondrules and matrix during parent body metamorphism. While not strictly complementary, 

I show that Kakangari chondrules and matrix are genetically linked, thereby supporting the 

concept of complementarity. 



Another chapter of this thesis examines a unique compound object found in an ordinary 

chondrite. It consists of a barred olivine chondrule trapped within a large, Ca,Al-rich host 

object. The results indicate that this object could represent a macrochondrule that formed from 

collisions and merging of normal-sized chondrules. It might, therefore, provide first direct 

evidence for a genetic link between compound chondrules and macrochondrules. 

Major constraints for chondrule formation conditions were specified in this thesis: chondrules 

were open systems and interacted with their environment, and each other. Furthermore, 

chondrules and matrix are genetically linked and formed in a common reservoir. Any proposed 

model of chondrule formation must meet these constraints. 

 

 

	 	



Zusammenfassung	
Chondrite sind primitive Steinmeteorite. Sie bestehen hauptsächlich aus Chondren, kleinen 

Silikatkügelchen, die in einer feinkörnigen Matrix eingebettet sind. Beide Komponenten 

bildeten sich im frühen Sonnensystem, aber ihre Entstehungsprozesse sind noch weitgehend 

unbekannt. Zwei grundlegende Fragen konnten bisher nicht beantwortet werden: Welcher 

Prozess bildete Chondren und in welcher genetischen Verbindung stehen sie zur Matrix? Die 

vorliegende Arbeit untersucht insbesondere Petrographie und chemische Zusammensetzung 

beider Komponenten in Gewöhnlichen (OC), Enstatit (EC) und Kakangari (K) Chondriten. Auf 

Grundlage der Ergebnisse sollen die Bildungsbedingungen von Chondren und Matrix 

eingegrenzt werden.  

Ein großer Teil der Chondren in allen Chondriten ist mineralogisch zoniert. Olivin befindet 

sich im Kern zonierter Chondren und wird von einem Pyroxenrand umschlossen. Zonierte 

Chondren (in 2D) kommen besonders häufig in kohligen Chondriten vor (CC; 78%), sind 

relativ verbreitet in Rumuruti (R; 41%) und OC (39%), und etwas seltener in EC (28%) und K 

Chondriten (19%). Aufgrund von Schnitteffekten in 2D Untersuchungen zeigte sich, dass 

zonierte Chondren deutlich häufiger sind, wenn Chondren in 3D untersucht werden. In 3D sind 

zonierte Chondren um den Faktor 1.24 häufiger in CC, um den Faktor 1.29 häufiger in OC und 

um den Faktor 1.62 häufiger in EC. Damit sind zonierte Chondren der dominante Chondren-

Typ in Chondriten. Die mineralogische Zonierung bildete sich als aufgeschmolzene Chondren 

mit ihrer gasreichen Umgebung interagierten und dabei Material aus dem Gas aufnahmen. 

Beim Vergleich der Gesamtzusammensetzungen mineralogisch zonierter und unzonierter 

Chondren wird deutlich, dass die Interaktion von Chondren mit Gas ein wichtiger Prozess 

während der Chondrenbildung war. Die Entstehung verschiedener Chondren-Texturen und die 

große Bandbreite ihrer Gesamtzusammensetzungen lassen sich auf diesen Prozess 

zurückführen.  

In kohligen Chondriten sind viele Element- und Isotopenverhältnisse von Chondren und Matrix 

komplementär. Beide Komponenten sind jeweils unterschiedlich zusammengesetzt, jedoch 

solar im Gesamtmeteorit. Dies spricht dafür, dass sich Chondren und Matrix aus einem 

gemeinsamen Reservoir mit solarer Zusammensetzung bildeten. In dieser Arbeit wurde 

Komplementarität in Kakangari Chondriten untersucht. Chondren, Matrix und die 

Gesamtzusammensetzung von Kakangari sind identisch und solar in Mg/Si. Dies lässt sich auf 

die Interaktion von Chondren mit Gas, sowie den Elementaustausch zwischen Chondren und 

Matrix während niedriggradiger Metamorphose auf dem Mutterkörper zurückführen. Obwohl 



Kakangari keine eindeutige Komplementarität besitzt, ist es dennoch wahrscheinlich, dass 

auch in diesem Meteorit ein genetischer Zusammenhang zwischen Chondren und Matrix 

besteht.  

Ein weiteres Kapitel dieser Arbeit beschäftigt sich mit einem bislang einzigartigen Objekt in 

einem Gewöhnlichen Chondrit. Das Objekt ist ungewöhnlich groß, Ca,Al-reich und enthält 

eine eingeschlossene Chondre. Es könnte sich um eine Makrochondre handeln, die sich durch 

Kollision und Verschmelzung kleinerer Chondren bildete.  

Die Ergebnisse dieser Arbeit zeigen, dass Chondren während ihrer Entstehung offene Systeme 

waren und sowohl untereinander, als auch mit ihrer Umgebung interagierten. Zudem stehen 

die Chondren in genetischem Zusammenhang mit der Matrix. Beide Komponenten bildeten 

sich in einem gemeinsamen Reservoir. Diese Erkenntnisse grenzen Chondren Bildungsmodelle 

und Mechanismen signifikant ein.  
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Chapter 1 
 

Introduction	
Extraterrestrial rocks hold information about the conditions and processes in the early solar 

system. This information can be deciphered by investigating their mineralogy, petrology and 

geochemistry. The most common extraterrestrial rocks available for study are meteorites that 

impacted on Earth. To understand the significance of meteorites, and the information stored 

within, it is necessary to learn about their origin and characteristics. The following chapter 

gives a brief introduction into meteoritics.  

 

1.1. Formation of the solar system 

Our solar system was born from a collapsing molecular cloud ~4.6 Ga ago (Bouvier and 

Wadha, 2010). A molecular cloud is a domain of increased gas and dust densities amidst the 

interstellar medium. About 95% of its material formed in-situ through evaporation and re-

condensation of presolar material. Only 5% of the presolar grains were unaffected by these 

processes (Zinner, 2014). The interstellar cloud became unstable and collapsed once a critical 

mass was exceeded (Jeans instability). The gravitational collapse could have been triggered by 

statistical noise effects, the shockwave of a nearby supernova explosion or by the increased 

density in the spiral arms of the galaxy. After the collapse, a swirling protoplanetary disk – also 

called the ‘solar nebula’ – remained, surrounding the protosun in its gravitational centre (Fig. 

1.1). The ensuing episode of solar system formation was characterized by the growth of solid 

particles, governed by the processes and conditions in the protoplanetary disk. Constraining 

these conditions is the main objective of meteoritics. 

Solid particles condensed during cooling of the solar nebula. Agglomeration of µm- to mm-

sized grains, over time, formed meter- to kilometre-sized planetesimals. The onset of the sun’s 

T-Tauri stage (commencement of hydrogen fusion) cleared the gas from the protoplanetary 

disk and a debris disk remained. Planetesimals continued to grow through collisions 

(accretionary growth) and formed the planets of the solar system. However, a few million 

planetesimals survived until today as asteroids (e.g., Fig. 1.1). They are primordial building 

blocks of planets – left-overs from the protoplanetary disk. Some asteroids are highly pristine 

and never experienced large-scale element redistribution through differentiation. Their 
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chemistry still represents the solar photosphere (without volatile elements). Studying these 

asteroids allows us to unravel timing and origin of the solar system, the source and evolution 

of its chemical components and the processes they experienced.  

Asteroids orbit the sun and vary greatly in size (from 1 m to >100 km). Most of them are located 

in the asteroid belt between Mars and Jupiter. Some asteroids have already been visited by 

spacecrafts to image their surface or to determine their mass by their gravitational effects on 

the passing probe. NEAR Shoemaker landed on Eros in 2001, but did not return to Earth with 

sample material. This task was carried out by Hayabusa in 2005 and is also planned for the 

Hayabusa 2 and OSIRIS-REx missions, which are currently in progress. There is also an easier 

and less expensive way to study asteroids: meteorites originate (mostly) from the asteroid belt. 

They were exposed and dislodged when their parent bodies collided and fragmented, which 

then started their journey to Earth. After falling through the atmosphere, they finally came to 

rest on the planet’s surface. Tons of meteoritic material rain down on Earth every day but most 

material are µm-sized particles. Larger meteorite falls are much rarer. Typically, meteorites are 

recovered from hot and cold deserts as the dry climate allows their preservation. 
 

Fig. 1.1: Different steps of solar system evolution: stars were born from collapsing molecular clouds. A swirling 
protoplanetary disk formed around the star in its centre. Then, solid particles formed and grew to the size of 
planetesimal and/or planets. Left: Hubble image of the Carina Nebula (NGC 3372), a site of ongoing star 
formation (NASA, 2017). Centre: A protoplanetary disk around the young star TW Hydrae (Andrews et al., 2016, 
modified). Right: Asteroid Bennu is currently studied by the OSIRIS-REx spacecraft (NASA, 2018). 

 

1.2. Classification and composition of meteorites 

About ± 60,000 meteorites were discovered (The Meteoritical Society, 2019). They are broadly 

divided into two categories: differentiated and undifferentiated meteorites. Differentiated 

meteorites (~8%) have been affected by melting and recrystallization. They originate from 

differentiated parent asteroids, but may represent different regions on that body. Iron meteorites 

were part of the metallic core. Stony-iron meteorites were located at the boundary between 
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core and silicate mantle. Achondrites are stony meteorites that were part of the outer layers of 

the parent body, and represent the solid residue after partial melts have been extracted. Martian 

and lunar meteorites also fall into this category.  

The majority of meteorites discovered (~92%) are undifferentiated and have never been melted. 

These are called chondrites and can be classified into three major classes, which are further 

subdivided into several groups (listed in Table 1.1). Chondrites of the same group share many 

of the same characteristics, i.e., similar O-isotope composition, bulk chemistry and petrology. 

Ordinary chondrites (OC) are most abundant and can be further distinguished by their metal 

contents: there are high metal (H), low metal (L) and low metal + low iron (LL) ordinary 

chondrites. Enstatite chondrites (EC) are highly reduced and also distinguished by their high 

(EH) or low (EL) metal contents. Carbonaceous chondrites (CC) are subdivided into several 

chemical groups, each named after their type meteorite (for example CI = Ivuna; except CH). 

These groups are, however, not closely related to each other and reflect a wide variety of 

compositions, oxidation states and petrography. Other chondrites, such as Rumuruti (R) and 

Kakangari (K), are rare and have very distinct characteristics that do not allow assigning these 

to any of the other chondrite groups. Technically, K chondrites form a ‘grouplet’ as only four 

meteorites of this type have been recovered so far (Weisberg et al., 1996). 

 
Table 1.1: Chondrite groups and component abundances (vol%; Scott and Krot, 2014, and references therein) 

 
Meteorites from groups printed bold were investigated in this thesis. 
 

Secondary processes can significantly modify the primary characteristics of meteorites. 

Chondrites are therefore classified into several petrological types based on their degree of 

thermal metamorphism and/or aqueous alteration (Van Schmus and Wood, 1967; Huss et al., 

2006; Brearley, 2014). Petrologic type 1 and 2 reflect increasing aqueous alteration and type 

4–7 represent increasing thermal metamorphism. The most primitive chondrites are of 

petrologic type 3.  

CI chondrites are highly aqueously altered and, therefore, classified as petrologic type 1. The 

alteration did, however, not change the bulk chemistry of these meteorites and they best match 

the solar elemental abundances for non-highly-volatile elements (i.e., not for H, He, N, O). The 

Class

Group CI CM CO CR CH CB CV CK H L LL EH EL K R
Matrix 95 70 30 30-50 5 <5 40 75 10-15 10-15 10-15 <10 <10 70 35

Chondrules <5 20 40 50-60 70 30-40 45 15 60-80 60-80 60-80 60-80 60-80 20-30 40
Metal <0.1 0.1 <5 5-8 20 60-70 <5 <0.1 8 3 2 8 15 6-9 <0.1

EnstatiteOrdinaryCarbonaceous Other
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composition of CI chondrites – also called the ‘chondritic’ or ‘solar’ composition – therefore 

represent the composition of the sun and can be used as a reference for various materials. Other 

chondrite groups may show chemical variations in their bulk compositions, such as element 

enrichment or depletion patterns relative to CI. The ratios of many refractory (e.g., Al, Ca, Ti) 

and major elements (e.g., Si, Mg, Fe) are, however, largely unfractionated among many bulk 

chondrites (e.g., CC) and approximately solar. If specific element ratios in chondrites or their 

components differ from the solar ratio of the same two elements, they are referred to as ‘super-

chondritic’, if !"#$%
&'(!"#$% > 1, or as ‘sub-chondritic’, if !"#$%

&'(!"#$% < 1. 

 

1.3. Chondrite components 

Chondritic meteorites are mainly composed of chondrules and matrix (Fig. 1.2). These 

constitute up to 95 vol% of chondrites and are complemented by a number of minor or rare 

components such as opaque phases (Fe,Ni-metals and sulphides), Ca-Al-rich inclusions (CAI), 

amoeboid olivine aggregates (AOA) and presolar grains (‘stardust’). The different chondrite 

groups contain varying proportions of these components. Main component abundances are 

listed in Table 1.1.  

Chondrules: chondrules are µm- to mm-sized spherules and primarily consist of silicate 

minerals and some opaque phases. Most chondrules have a porphyritic texture: large olivine 

and pyroxene crystals are set in a fine-grained or glassy background, which is called 

mesostasis. Depending on the modal abundances of olivine and pyroxene, chondrule textures 

are classified as porphyritic olivine (PO; with ol/px ≥ 0.9), porphyritic pyroxene (PP; with ol/px 

≤ 0.1), or porphyritic olivine-pyroxene (POP) chondrules (Fig. 1.3; Gooding and Keil, 1981). 

Non-porphyritic chondrules are barred-, granular-, skeletal-olivine chondrules (BO, GO, SO), 

radial pyroxene chondrules (RP) or cryptocrystalline chondrules. Chondrules can also be 

distinguished by their mineral compositions: type I chondrule silicates contain little FeO (Mg# 

>90) and type II chondrule silicates have high FeO contents (Mg# <90).  

Matrix: matrix material fills the space between the other components (e.g., chondrules, metal 

grains, CAIs). It is highly abundant in most CC, but less present in OC and EC (Table 1.1). 

Matrix is composed of a mixture of mainly silicates (mostly olivine and pyroxene), oxides, 

sulfides, metals, phyllosilicates and carbonates. Studying matrix material is challenging, as it 

is extremely fine-grained (<100 nm – 10 µm). Matrix material is also more susceptible to 

alteration through aqueous fluids and/or metamorphism on asteroids than the other chondrite 
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components, e.g., due to its fine-grained nature, higher porosity and permeability. Mineralogy 

and chemical composition of matrix material is, therefore, highly variable in different 

chondrites (e.g., Scott and Krot, 2014, and references therein).  

 

 
 
 
Fig. 1.2: Backscattered electrons (BSE) images of the ordinary chondrite NWA8276 (L3.00; left) and the 
carbonaceous chondrite Efremovka (CV3; right). Chondrites are mainly composed of chondrules (chd), fine-
grained matrix and opaque phases (opq). 

 

Other components (opaques, CAIs): minor components are opaque phases (metals and 

sulphides) and CAIs. Metal appears as grains of iron-nickel-cobalt (kamacite/taenite) inside 

chondrules or in the matrix. Sulphides (e.g., Troilit, FeS) are also present in chondrules and 

matrix. Ca-Al-rich inclusions mainly occur in CC with 0–3 vol% (Hezel et al., 2008). They 

consist of refractory (Ca, Al, Ti-rich) mineral phases and represent the first solids that 

condensed in the cooling solar nebula. The age of the solar system can be estimated by 

determining CAI formation ages with long-lived isotope chronometers (e.g., 207Pb-206Pb; 

Amelin et al., 2002; Bouvier and Wadhwa, 2010). 
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Fig. 1.3: BSE-images and phase maps showing the textural classification of chondrules after Gooding and Keil 
(1981). Phase maps show every mineral phase in false-colour. Most chondrules have porphyritic textures (PO: 
porphyritic olivine, POP: porphyritic olivine-pyroxene, PP: porphyritic pyroxene). Other chondrule textures are 
barred olivine (BO) and radial pyroxene (RP). The displayed examples for PO, POP and BO chondrules are 
mineralogically zoned: their olivine cores (red) are surrounded by low-Ca pyroxene rims (blue).   

 

1.4. Constraints for chondrite component formation  

How chondrites and their components formed is a fundamental and long-standing question in 

meteoritics. A particularly challenging problem is the origin and formation mechanism of 

chondrules. The general consensus among meteoriticists is that chondrules formed in the 

protoplanetary disk within a time interval of about 2–3 Ma after or in part contemporaneously 

with CAIs (Amelin et al., 2002; Bizzarro et al., 2004; Becker et al., 2015). Their precursor 

material was melted in a flash-heating event and then rapidly cooled and crystallized in only 

minutes to hours. Still, the exact mechanics of chondrule formation, especially what caused the 

flash-heating event, are yet unknown and are highly debated. There is no limit of ideas, 

hypotheses and models (cf. Russell et al., 2018, and references therein). Popular explanations 

for the temperature spike are shockwaves that propagated through the protoplanetary disk 

(Wood, 1996; Desch and Connolly, 2002; Morris et al., 2012) or impact heating on 

planetesimals (Asphaug et al., 2011; Sanders and Scott, 2012, 2018; Johnson et al., 2015, 

2018). These models require very different formation environments, i.e., chondrule formation 

in a ‘nebular’ or a ‘planetary’ setting. 

Our present understanding of chondrule formation is limited by insufficient and, at times, 

contradicting constraints. Two of the most critical questions currently discussed are: (i) did 

chondrules behave as closed or open systems during their formation? And (ii) is there a genetic 

PO PPPOP BO RP

olivine low-Ca pyr mesostasis Ca-pyroxene opaques
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relationship between chondrules and matrix – the main components of chondrites, i.e., did they 

form in the same, or in spatially separated locations? The following paragraphs briefly address 

these questions.  

 

1.4.1. Chondrule open vs. closed system behaviour 

Chondrules were either open systems during their formation and interacted with their 

environment and/or each other to unknown extents. Or, no interaction took place and 

chondrules essentially behaved as closed systems. This is a pivotal constraint for chondrule 

formation models as various chondrule petrographic and petrologic characteristics must be 

explained very differently with respect to these scenarios.  

Chondrules in all chondrites show a large range of bulk element and isotope compositions (e.g., 

Clayton, 1993; Jones et al., 2005; Jones and Schilk, 2009; Scott and Krot, 2014; Hezel et al., 

2018a). These variations are displayed in Fig. 1.4 for Mg, a main element in CR chondrite 

chondrules. In a closed system, chondrules would have inherited their compositional variety 

entirely from heterogeneous chondrule precursor material (Grossman and Wasson, 1983; 

Alexander, 1994; Hezel et al., 2006, 2007, and references therein). In the open system scenario, 

chondrules could have altered their compositions by interacting with the surrounding nebular 

gas (e.g., Ebel et al., 2018, and references therein).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4: The bar chart shows the large variations of Renazzo (CR) bulk chondrule Mg contents (data from Klerner 
2001; Ebel et al., 2008; Hezel and Palme, 2010). 
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Recently, the open system scenario received much support from studies investigating 

chondrule compositions and textures (e.g., Tissandier et al., 2002; Hezel et al., 2003; Krot et 

al., 2004; Libourel et al., 2006; Jacquet et al., 2012; Friend et al., 2016; Soulié et al., 2017). 

Friend et al. (2016) recognized that the majority of chondrules in CC and R chondrites are 

mineralogically zoned. The cores of these chondrules are dominated by olivine. These are then 

surrounded by low-Ca pyroxene rims. Examples of mineralogically zoned chondrules are 

displayed Fig. 1.5 (also displayed in Fig. 1.3: PO, POP and BO chondrules). Mineralogical 

zonation likely results from the reaction of chondrule olivine (Mg2SiO4) and SiO from the 

surrounding nebular gas, forming low-Ca pyroxene rims (Mg2Si2O6). Therefore, mineralogical 

zonation is attributed to open system interaction of chondrules and surrounding gas by the 

aforementioned authors.  

 

Fig. 1.5: BSE image (left) and phase map (right) of a mineralogically zoned POP chondrule. Zoned chondrules 
have olivine cores surrounded by pyroxene rims. False-color phase maps created with the PHAPS program (Hezel, 
2010) are necessary to identify mineralogically zoned chondrules.  

 

The occurrence of mineralogically zoned chondrules has so far only been quantified in CC and 

R chondrites (Friend et al., 2016). In other chondrites, the extent of interaction between 

chondrules and gas is not well known. Furthermore, only a limited number of bulk chondrule 

compositions have been reported in the literature (ChondriteDB; Hezel et al., 2018a). These 

are necessary to further investigate compositional variations in the chondrule populations of 

meteorites.  
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1.4.2. Single vs. multiple reservoirs: the chondrule-matrix complementarity 

Chondrules and matrix might either originate from the same, or from multiple, spatially 

separated reservoirs. The first scenario suggests a genetic relationship between both 

components, while the second scenario implies separate origins, and subsequent transport and 

mixing of chondrules and matrix. Answering this question would provide crucial constraints 

for all chondrite formation models. The concept of ‘complementarity’ might be the decisive 

argument in this discussion. 

The bulk chemistry of chondrites is largely defined by their two major components – 

chondrules and matrix. Studies that examined the isotope or element compositions of both 

components in CC and R chondrites report a chemical complementarity between them (e.g., 

Wood, 1985; Klerner, 2001; Bland et al., 2005; Hezel and Palme 2008, 2010; Becker et al. 

2015, Palme et al. 2015; Budde et al. 2016a,b; Ebel et al., 2016; Friend et al., 2017, 2018; Hezel 

et al., 2018b, and references therein). Chondrules and matrix have different compositions from 

each other for various element or isotope ratios, e.g., chondrules in CC have super-chondritic 

Mg/Si ratios and matrix has sub-chondritic Mg/Si ratios (Fig. 1.6). Both components together 

add up to the CI-chondritic (solar) ratio of the same elements and/or isotopes. It is highly 

unlikely that both components formed in different reservoirs, but then mixed in exactly the 

right proportions to yield a solar bulk chondrite composition. The aforementioned authors 

conclude that both components must have formed from a single CI-chondritic parental 

reservoir. They furthermore conclude that chondrule-matrix complementarity was established 

in the solar nebula before parent body accretion, therefore excluding all chondrule formation 

models that require a planetary setting.  

The complementarity argument is, however, not yet canonically accepted. Some authors 

attribute the aforementioned observations to element redistribution on chondrite parent bodies 

or analytical artefacts (Zanda et al., 2018). Other authors interpret their findings as evidence 

for multiple parental reservoirs, and mixing of components between them (e.g., Olson et al., 

2016), which would be in conflict with complementarity. Lastly, complementarities have only 

been studied in CC and R chondrites. Wasson (2008) proposed that complementarities might 

be limited to these classes as other chondrites have distinct bulk chemistries, e.g., bulk OC and 

EC are sub-chondritic in Mg/Si. It is yet unknown if complementarities exist for chondrites 

other than CC and R.  
 
 
 



1. Introduction 
 

 

 10 

 
 

Fig. 1.6: The average compositions of chondrules and matrix in Renazzo (CR) are different (sub-, and super-
chondritic) but complementary to each other. They add up to a solar bulk meteorite composition (Fo: forsterite, 
En: enstatite; CR data from Klerner 2001; Ebel et al., 2008; Hezel and Palme, 2010; bulk Renazzo: Mason and 
Wiik, 1962; CI data: Palme et al., 2014).  
 

1.5. Objectives of this thesis 

I outlined two fundamental questions of chondrule formation in Section 1.4: the open vs. closed 

system case, and single vs. multiple reservoirs. Studying these scenarios would provide pivotal 

constraints for chondrule formation and significantly enhance our understanding of the 

processes and conditions in the early solar system. Many recent studies focused on CC and R 

chondrites and investigated mineralogically zoned chondrules (e.g., Friend et al., 2016, and 

references therein), bulk chondrule compositions (e.g., Hezel et al. 2018a, and references 

therein) and chondrule-matrix complementarities (e.g., Hezel et al., 2018b, and references 

therein). To obtain a more comprehensive picture of chondrule formation, I aim to expand these 

studies to OC, EC and K chondrites. These chondrites have very distinct characteristics and 

compositions from CC, and might originate from different regions in the protoplanetary disk 

(e.g., Warren, 2011; Gerber et al., 2017). Thus, they could have experienced very different 

processes and conditions during their formation. Ordinary chondrites might be particularly 

important as these are the most abundant chondrites found on Earth. 
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In the following chapters, I will in detail investigate the extent of chondrule interactions with 

their environment and with each other. For this purpose, I will quantify the abundance of 

mineralogically zoned chondrules in OC, EC and K chondrites, thereby completing the work 

started by Friend et al. (2016). Chondrule textures will be studied with 2D and 3D techniques. 

Furthermore, I will present a comprehensive dataset of bulk chondrule compositions in these 

chondrites, which will allow a detailed study of bulk chondrule compositional variations. 

Lastly, I will investigate the genetic relationship between chondrules and matrix in the rare and 

unusual K chondrite grouplet, thereby extending the study of chondrule-matrix 

complementarities beyond CC and R chondrites. A wide range of analytical tools are required 

for this study, and detailed descriptions of the methods used can be found in every chapter. 
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Abstract 

Chondrules are a major component of chondritic meteorites. Understanding their formation 

conditions provides fundamental insights about how the early solar system formed and 

evolved. We studied the textures of ~650 chondrules from all three groups (H, L, LL) of 

ordinary chondrites, in 2-dimensional (2D) sections through the meteorites. About 40% of the 

chondrules are mineralogically zoned. They consist of an olivine-rich core, which is 

surrounded by a low-Ca pyroxene-rich rim. Chondrules sectioned through their low-Ca 

pyroxene rim do not appear as zoned chondrules, hence, considering such sectioning effects, 

their true fraction might be as high as ~50%. Mineralogical zonation is, therefore, a typical 

chondrule texture in basically all ordinary chondrites, and records a fundamental process 

during chondrule formation. Chondrules were open systems, and initially olivine-rich 

chondrules reacted with their surrounding gas to form low-Ca pyroxene rims. Zoned and 

unzoned chondrules have the same range of bulk compositions, thus ordinary chondrite 

chondrules were likely affected by two sequential episodes: in the first episode, gaseous SiO 

was added to all chondrules, thereby forming low-Ca pyroxene rims around all chondrules. In 

the second episode, only a portion of the chondrules were reheated, thereby remelting and 

homogenizing their initial pyroxene rims, but retaining their bulk compositions. It is therefore 

likely that all chondrules in ordinary chondrites were affected by gas-melt interactions during 

their formation. Open system exchange is consistent with previous studies of chondrule 

formation and can explain many chondrule textures and bulk chondrule compositional 

variations in single meteorites. Hence, the open system behaviour recorded in zoned chondrules 

provides a pivotal constraint on chondrule formation conditions.  
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2.1. Introduction 

Chondrules are near-spherical, igneous-textured objects which are a main component in all 

chondritic meteorites except CI chondrites. Chondrules formed in brief high temperature events 

reaching peak-T of up to 2000°C, during which chondrule precursors were molten and rapidly 

crystallised afterwards (e.g. Scott et al., 1996; Desch and Connolly, 2002; Hewins et al., 2005). 

Olivine and low-Ca pyroxene are the major chondrule minerals, usually set in a glassy or 

microcrystalline mesostasis, which itself represents the residual melt. In a chondrite, 

chondrules are embedded in the matrix, a fine-grained mixture of mineral grains including 

presolar grains and organic matter. Despite many advances in understanding chondrule 

formation, critical details such as the source of the heating events or the interaction of the 

chondrule melt with the surrounding gas remain insufficiently understood.  

Chondrules of all chondrite groups show large variations in their chemical and isotopic 

compositions (e.g. Clayton, 2005; Jones et al., 2005; Hezel et al., 2006, 2018a). The two major 

hypotheses explaining these variations are: (i) chondrules inherited the variations from 

heterogeneous precursor grains. This is known as the closed system case (e.g. Sears et al., 1996; 

Hezel and Palme, 2007, and references therein); and (ii) chondrules exchanged material with 

the surrounding gas, thereby also changing their bulk compositions, including isotopes. This is 

the open system case (e.g. Sears et al., 1996; Grossman et al., 2002; Tissandier et al., 2002; 

Hezel et al., 2003; Krot et al., 2004; Libourel et al., 2006; Chaussidon et al., 2008; Hezel and 

Palme, 2010; Kita et al., 2010; Jacquet et al., 2012; Harju et al., 2014; Di Rocco and Pack, 

2015; Friend et al., 2016; Soulié et al., 2017). In a hybrid scenario, the compositional range of 

chondrules would not only be controlled by the composition of the precursor assemblage, but 

also by material exchange during chondrule formation. 

A number of studies have provided direct evidence for the open system case: (i) Tissandier et 

al. (2002) experimentally allowed melt to react with gaseous SiO during crystallisation and 

reproduced textures similar to those of naturally zoned chondrules. This similarity supports the 

idea that chondrules experienced gas-melt interaction. (ii) Libourel et al. (2006) showed that 

chondrule glasses are not located on the subtraction lines of olivine or low-Ca pyroxene in 

appropriate phase diagrams, indicating that type I chondrules do not obey closed-system 

crystallization and gained material from the surrounding gas. (iii) Chaussidon et al. (2008) 

studied the oxygen isotope systematics of olivine and pyroxene in CR and CV chondrites. They 

found that the oxygen isotopic composition of low-Ca pyroxene at the chondrule rims 
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represents a mixture of dissolved precursor olivine (2/3 of the oxygen) and the addition of SiO 

from the surrounding nebula gas (1/3 of the oxygen). Although several subsequent studies have 

found O-isotopic agreement between coexisting chondrule olivine and pyroxene (Kita et al., 

2010; Rudraswami et al., 2011; Weisberg et al., 2011; Ushikubo et al., 2012; Tenner et al., 

2013, 2015, 2017; Nagashima et al., 2015; Miller et al., 2017; Schrader et al., 2017; Hertwig 

et al., 2018; Chaumard et al., 2018), these researchers nevertheless argue for open system 

behaviour of chondrules (e.g. Kita et al., 2010; Ushikubo et al., 2012; Schrader et al., 2014). 

Tenner et al. (2017) furthermore provides mechanisms that explain both the Si enrichment of 

chondrule rims and O-isotope homogeneity among chondrule olivine and pyroxene. (iv) 

Jacquet et al. (2012) measured trace elements in chondrule minerals of carbonaceous 

chondrites. While olivines have an igneous origin, trace element patterns of pyroxenes, 

particularly in the rim regions of the chondrules, suggest an interaction with the surrounding 

gas, presumably the addition of silica to the chondrule melt. The authors concluded that the 

formation of chondrule core olivine and their pyroxene-rich rims were distinct events. (v) Harju 

et al. (2014) measured the Si isotopic composition of Allende chondrule olivine and pyroxene. 

The difference between these minerals was on average ~0.3‰ (δ29Sipx < δ29Siol), while at 

equilibrium pyroxene would be only ~0.01‰ lighter than olivine. Hence, these differences 

cannot result from an equilibrium fractionation between both phases. They are best explained 

by the condensation of isotopically lighter Si (as SiO(g)) into the melt from which the pyroxene 

formed. In summary, various strands of evidence support the process of late addition of SiO to 

chondrules at high temperature, thereby forming low-Ca pyroxene rims on olivine-rich core 

material. 

In a recent paper on chondrule open system behaviour, Friend et al. (2016) showed that the 

majority of chondrules in carbonaceous (CC) and Rumuruti (R) chondrites are mineralogically 

zoned, with olivine in the core surrounded by a rim dominated by low-Ca pyroxene. In 

agreement with the aforementioned studies, Friend et al. (2016) also explained the formation 

of low-Ca pyroxene rims by the reaction of chondrule olivine with SiO from the surrounding 

gas. They found that possibly up to >90% of the chondrules in C and R chondrites have low-

Ca pyroxene rims, and, hence, interpreted that the majority of chondrules acted as open systems 

when they formed. The authors further studied the appearance, abundance and general 

characteristics of zoned chondrules and estimated that about 3–15 wt.% of SiO2 was added to 

the chondrules during this process. The high portion of mineralogically zoned chondrules make 

them the dominant type of chondrules in C and R chondrites. 
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Mineralogical zonation in chondrules was recognised very early by Scott and Taylor (1983). 

Since then it has been frequently, if briefly, mentioned (e.g. Grossman, 1996; Grossman et al., 

2002; Tissandier et al., 2002; Hezel et al., 2003, 2006; Krot et al., 2004; Hewins et al., 2005; 

Berlin et al., 2006; Lauretta et al., 2006; Chaussidon et al., 2008; Jones, 2012; Hewins and 

Zanda, 2012; Harju et al., 2014; Jacquet et al., 2012; Scott and Krot, 2014; Jacquet and 

Marrocchi, 2017; Soulié et al., 2017). Friend et al. (2016) presented the first systematic study 

of mineralogical chondrule zonation, restricted, however, to C and R chondrites. No similar 

study exists for ordinary chondrites (OC). OC generally have high chondrule modal 

abundances (60–80 vol.%) and correspondingly small matrix abundances (<20 vol.%; Lobo et 

al., 2014; Scott and Krot, 2014). Bulk OC have sub-chondritic Mg/Si ratios (~0.9xCI) and are 

slightly depleted in refractory elements (Scott and Krot, 2014; Hezel et al., 2018b, and 

references therein). It has been speculated that ordinary and carbonaceous chondrites formed 

in different formation regions in the protoplanetary disk (e.g. Walsh et al., 2011; Warren, 2011; 

Burkhardt et al., 2017). 

Mineralogical zonation as a result of chondrule open system behaviour is an important 

constraint for chondrule formation. Here we study the appearance, abundance and distribution 

of mineralogically zoned, but also unzoned chondrules in all three groups (H, L, LL) of 

ordinary chondrites. We compare our results to the reported mineralogically zoned chondrules 

in C and R chondrites of Friend et al. (2016) and discuss the formation conditions of zoned and 

unzoned chondrule textures and bulk chondrule compositional variations. This includes 

similarities and differences that may have existed among chondrule-forming environments 

from different chondrite groups, and constraints on astrophysical theories that attempt to 

describe chondrule as well as chondrite formation. 

 

2.2. Methods 

All analyses were performed with an electron microprobe (EPMA, JEOL JXA-8900RL 

Superprobe) and/or a scanning electron microscope (SEM, Zeiss Sigma 300 VP), both located 

at the Institute of Geology and Mineralogy, Cologne. Mineral compositions were determined 

by EPMA spot analyses with a focused beam of 1 µm diameter and a beam current of 20 nA. 

The accelerating voltage was set to 20 kV. Well characterised reference materials were used 

for calibration and ZAF corrections were applied (Bence and Albee, 1968). Detection limits 

for minor elements were 100 wt.-ppm for CaO, TiO2, NiO and Na2O; 200 wt.-ppm for Cr2O3; 

and 250 wt.-ppm for MnO and FeO. Element x-ray maps of individual chondrules were 
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obtained with EPMA by moving the stage under the stationary electron beam. The chondrules 

for these individual map (IM) analyses were randomly chosen by hand from the entire area of 

the meteorite section. Every element map was recorded with a 1 µm focused beam, a 20 nA 

beam current, a 4 µm step size and a dwell time of 250 ms. Element maps were recorded before 

spot analyses.   

The SEM was only used for chondrule imaging and compiling large area maps (LAM) of 

chondrite sections. For both tasks, the electron beam rastered the sample surface over small 

areas (~800x800 µm, pixel size ~2 µm) at a working distance of 8.5 mm and a dwell time of 

100 ms per pixel. The sample was then moved to a new centre and the next map was obtained. 

The aperture diameter was set to 60 µm and the accelerating voltage to 20 kV, resulting in an 

output count rate of ~45,000 cps. Individual maps constituting the LAM were recorded in 

random sequence to avoid local charge build-up. To test the robustness of IM and LAM 

analyses, we measured and compared the L3.00 chondrite sample NWA8276 with both 

methods.  

The chondrule element maps and LAMs were used to create phase maps using the phase map 

program PHAPS (Hezel, 2010). The resulting false-colour images allow instant visual 

identification of the different mineral phases and quantification of rim abundances. Modal 

recombination of the phase maps and element analyses allowed determination of bulk 

chondrule compositions. In 2D chondrule sections, metal and sulphide contents cannot be 

determined reliably, as has been demonstrated by e.g. Hezel (2007), Ebel et al. (2009) and 

Hezel and Kießwetter (2010). Thus, chondrule metals and sulphides were not analysed and not 

included in the bulk chondrule data. Hezel and Kießwetter (2010, and references therein) 

furthermore noted that 2D bulk compositions are not necessarily representative of the true 3D 

chondrule bulk compositions and provided a tool to calculate the error of 2D bulk compositions 

relative to the true 3D bulk composition. The relative errors between 2D and 3D bulk 

compositions of porphyritic chondrules are typically between ± 1–30 rel.%. 

 

2.3. Results 

We studied a total of ~650 chondrules from 8 ordinary chondrites of all three subgroups (Table 

2.1). Of these, we studied 227 chondrules in detail to determine their petrographic and 

petrologic characteristics. We further included 20 chondrules reported by Berlin (2009).  
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Most samples studied are of low petrologic type and experienced neither extensive thermal 

metamorphism, nor extensive aqueous alteration. Thermal metamorphism affected the samples 

of petrologic type 3.6 and 3.8, disturbing their primary chondrule mineral chemistry. However, 

chondrule textures in these chondrites remained unchanged and can thus be used for this study 

(see also Section 2.4.3).  

In chondrites of petrologic type ≤ 3.4, we classify porphyritic chondrules into type I (Fo ≥ 90) 

and type II (Fo < 90) based on the abundance of their forsterite component in olivine. In 

petrologic type 3.6 chondrites, the onset of Mg-Fe equilibration prohibits this approach. 

Chondrule olivines frequently have FeO-rich rims and if we would classify the chondrules 

based on their average forsterite component, almost all chondrules would be type II. To our 

knowledge, no definite protocol exists for type I/II discrimination in samples of higher 

petrologic type. Diffusion coefficients in pyroxene are significantly lower than in olivine, thus 

equilibration occurs less rapidly (Jones, 1996a). Pyroxene equilibration is not completed until 

petrologic type 5 (Huss et al., 2006, and references therein). It is likely that chondrules retain 

primary pyroxene compositions until petrologic type > 3.8. Therefore, to classify chondrules 

in petrologic type 3.6 and 3.8 chondrites, as well as chondrules lacking olivine, we use low-Ca 

pyroxene compositions (type I: En ≥ 90 and type II: En < 90). 

A mineralogically zoned chondrule is characterised by olivine and mesostasis in its core and a 

rim of low-Ca pyroxene (Fig. 2.1). All chondrules with different textures are designated as 

unzoned (Section 2.3.2).  

 
Table 2.1: Host meteorites of the ~650 chondrules studied. 

 

IM: Individual chondrule maps, LAM: Large area mapping. Petrographic details and mineral compositions were 
only studied on IM chondrules. 
* Data from Berlin (2009) 
 

Meteorite Group Meteorite Name Abbreviation Petrologic type Technique Chondrules studied Zoned Chondrules 
LL Huacachina Hua 3 IM 34 13   = 38%
LL Parnallee Parn 3.60 IM 39 14   = 36%
LL Semarkona Sem 3.00 LAM 167 52   = 31%
L NWA8276 N8276 3.00 IM 65 34   = 52%
L NWA8276 N8276 3.00 LAM 165 71   = 43%
L Moorabie Moor 3.80-an LAM 107 50   = 47%
H Suwahib (Buwah) Suw 3.80-an IM 49 21   = 43%
H Willard (b) Will 3.60 IM 40 12   = 30%
L(LL)* Meteorite Hills 00526 M0526 3.05 IM 20   6   = 30%
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Fig. 2.1: Typical appearances of zoned chondrules in various ordinary chondrites. In these phase maps from the 
PHAPS program (Hezel, 2010), olivine (red) dominates the core and is surrounded by low-Ca pyroxene rims 
(blue) of variable thicknesses. 

 

2.3.1. Chondrule petrography and petrology  

The average fraction of zoned chondrules in all ordinary chondrites studied here is ~40% (Fig. 

2.2). The fractions in individual chondrites vary from 30% to 52% (Table 2.1). In the H 

chondrites, the fraction of zoned chondrules is 30% in Willard b (H3.6) and 43% in Suwahib 

(Buwah, H3.8-an). In the LL chondrites, zoned chondrule fractions are quite similar, with 31% 

in Semarkona (LL3.00), 36% in Huacachina (LL3) and 38% in Parnallee (LL3.6). The 

chondrite MET 00526 (L/LL3.05) contains 30% zoned chondrules (Berlin, 2009) and 

Moorabie (L3.8-an) contains 47% zoned chondrules. In the second L chondrite, NWA8276 

(L3.00), the fraction of zoned chondrules was determined with two different techniques (IM & 

LAM): Using IM, a fraction of 52% zoned chondrules was identified, whereas using LAM, a 
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lower fraction of 43% zoned chondrules was identified. This difference will be discussed in 

Section 2.4.2.  

 

Fig. 2.2: Fraction of zoned chondrules in different groups of ordinary (this study), carbonaceous and Rumuruti 
chondrites (Friend et al., 2016). On average, 40% of all chondrules in ordinary chondrites are mineralogically 
zoned. The numbers indicate the amount of chondrules studied. Meteorite abbreviations are listed in Table 2.1. 

 

The detailed petrographic chondrule characteristics presented in the following are based on the 

227 high-resolution individual chondrule (IM) phase maps, as the LAM provide insufficient 

resolution to be used for such detailed petrographic studies. Almost all chondrules studied have 

a porphyritic texture. From these, 57% are porphyritic olivine-pyroxene chondrules (POP), 

20% are porphyritic olivine chondrules (PO; containing <10 vol.% pyroxene) and 23% are 

porphyritic pyroxene chondrules (PP; containing <10 vol.% olivine). Most zoned porphyritic 

chondrules are POP (66%), with fewer being PO (20%) and PP (14%). Furthermore, five zoned 

chondrules are barred olivine (BO) chondrules.  

The abundance of type I chondrules is lowest in Huacachina (LL3, 40%), intermediate in 

Willard b (H3.6, 46%), M0526 (L/LL3.05, 47%) and Suwahib (B) (H3.8-an, 53%), and high 

in Parnallee (LL3.6, 69%) and NWA8276 (L3.00, 82%; Fig. 2.3a). Most of the mineralogically 

zoned chondrules are type I. In NWA8276 ~94% of zoned chondrules are type I, in Parnallee 

86%, M0526 75%, Suwahib 70%, Huacachina 60%, and in Willard b ~56% (Fig. 2.3b). 
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Fig. 2.3: (A) Fractions of type I porphyritic chondrules in the various ordinary chondrites. (B) Type I/II fractions 
of mineralogically zoned chondrules. The majority of zoned chondrules are type I. *Huacachina is classified as 
petrologic type 3. Olivine Fa and Cr2O3 mean values might indicate an increased petrologic type (possibly 3.4; 
Bouvier et al., 2017). From the Cr2O3 contents determined in this study (~0.10 wt.% on average) we propose that 
Huacachina is at least petrologic type ≥ 3.2 following the classification by Grossman and Brearley (2005). 
 

The relative abundances of zoned chondrules among the type I and II chondrules are markedly 

different (Table 2.2). In NWA8276, 29 out of 46 type I chondrules are zoned (63%), while only 

2 out of 10 type II chondrules are zoned (20%). In addition to this difference among type I/II 

chondrules, 7 chondrules have non-porphyritic textures and 3 of them are zoned. No chondrule 

types were determined for 2 other chondrules, which are both unzoned. This totals 52% zoned 

chondrules in NWA8276 (Fig. 2.2). The abundances of type I chondrules which are also zoned 

are lowest in Willard b (42%), M0526 (43%) and Parnallee (48%), while their abundances are 

high in NWA8276 (63%), Suwahib (74%) and Huacachina (75%). Abundances of zoned 

chondrules which are type II chondrules are again very variable: only ~13% are zoned in 

M0526, 18% in Parnallee and 20% in NWA8276. Higher abundances of zoned type II 

chondrules are observed in Willard b (29%), Huacachina (33%) and Suwahib (35%).  

 
Table 2.2: Chondrule types, (their respective zoned chondrule abundances), [and % zoned chondrule fractions]. 

*n.d.: type not determined – this includes non-porphyritic chondrules. 

 

The olivines in type I chondrules in Huacachina (LL3), Willard b (H3.6) and Parnallee (LL3.6) 

are typically compositionally zoned, presumably due to metamorphism. Their cores contain 

average fayalite of Fa8 in Willard b and Fa7.5 in Huacachina and Parnallee. At their rims, most 

olivines are significantly enriched in FeO, showing average fayalite of Fa18 in Willard b, and 

Chondrules
Type I (zoned) [%] 46 (29) [63] 7 (3) [43] 8 (6) [75] 25 (12) [48] 12 (5) [42] 19 (14) [74]
Type II (zoned) [%] 10 (2) [20] 8 (1) [13] 12 (4) [33] 11 (2) [18] 14 (4) [29] 17 (6) [35]
n.d.* (zoned) [%] 9 (3) [33] 5 (2) [40] 14 (3) [21] 3 (0) [0] 14 (3) [21] 13 (1) [8]
Total (zoned) [%] 65 (34) [52] 20 (6) [30] 34 (13) [38] 39 (14) [36] 40 (12) [30] 49 (21) [43]

Suwahib (H)NWA8276 (L) MET0526 (L/LL) Huacachina (LL) Parnallee (LL) Willard b (H)
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up to Fa26 in Huacachina. Olivines in Suwahib (H3.8-an) are mostly equilibrated in Fe-Mg and 

contain on average Fa13. In the few remaining forsteritic olivine cores, the average is Fa4.5. 

NWA8276 (L3.00) olivines usually do not show Fe-zoning. On average, they contain Fa3.75, 

however, some olivines are almost entirely iron-free, with only 0.3 wt.% FeO. Type II 

chondrule olivines contain on average Fa13.5 in Suwahib (equilibrated in Fe-Mg), Fa17 in 

NWA8276, Fa19 in Willard b, Fa21 in Huacachina and Fa22 in Parnallee. Low-Ca pyroxene 

average compositions are less FeO-rich in Huacachina (Fs8), while higher FeO contents are 

observed in the other samples (Fs~16). 

Similarly, low-Ca pyroxenes in type I NWA8276 chondrules are poor in ferrosilite (Fs4 on 

average). The low-Ca pyroxenes have higher FeO contents in Huacachina (Fs6), Parnallee 

(Fs6.5) and are highest in Suwahib and Willard b (Fs7.5). High-Ca pyroxene is rare in most 

chondrules and usually appears as overgrowth on low-Ca pyroxene crystals. When present, it 

contains on average 14.7 wt.% CaO, 19.3 wt.% MgO and 5.3 wt.% FeO, translating to augite 

with average Fs17.7, Wo39.1. 

Only small differences are observed between mesostases in type I and II chondrules, e.g. the 

mesostasis in type I chondrules is usually slightly enriched in refractory elements (Al, Ti, Ca), 

compared to type II. In both chondrule types, the glassy/recrystallised mesostasis is 

normatively feldspathic with the highest CaO concentrations (7–12 wt.%) and simultaneously 

the lowest Na2O contents (3–4 wt.%) in NWA8276 mesostasis, while the opposite is true for 

mesostasis in Huacachina (2–6 wt.% CaO and ~7 wt.% Na2O). Average chondrule phase 

compositions are given in Table 2.3a for type I chondrules and Table 2.3b for type II 

chondrules. 

The thickness of low-Ca pyroxene rims within zoned chondrules varies from very thin rims of 

only a few µm to comparatively thick rims that occupy large portions of the chondrules (cf. 

rim thicknesses displayed in Fig. 2.1 plate b compared to plate c). The average rim fraction is 

about 30% of a single chondrule, but varies from 6 to 70%. Some chondrules have non-uniform 

rim thicknesses or their olivine cores are only partially enclosed by low-Ca pyroxene. In 

chondrules with a large low-Ca pyroxene rim fraction, low-Ca pyroxene often also appears 

scattered throughout the entire chondrule, usually mixed with olivine and mesostasis (Fig. 2.1 

d).  
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Table 2.3: Average compositions of type I and II chondrule phases in OC samples (wt.%). Sample abbreviations 
are taken from Table 2.1.  

 
 

 

*For type I chondrule olivines only average core compositions are tabulated. Olivines are often compositionally 
zoned and can contain up to 25 wt.% FeO at their rims. 

Type II chondrules
Mineral        Olivine        Mesostasis
Sample Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL) Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL)
SiO2 40.42 38.97 39.74 38.67 38.98 64.88 61.65 61.27 63.07 58.77
TiO2 0.01 0.04 0.02 0.01 0.02 0.44 0.23 0.45 0.41 0.42
Al2O3 0.02 0.14 0.05 0.02 0.11 14.75 15.79 15.42 15.41 16.87
Cr2O3 0.03 0.08 0.44 0.07 0.14 0.18 0.27 0.12 0.22 0.36
FeO 12.99 17.63 15.95 20.35 19.52 3.55 4.51 7.01 3.97 3.39
MnO 0.47 0.47 0.41 0.44 0.35 0.19 0.08 0.23 0.16 0.24
NiO 0.02 0.02 0.02 0.02 0.13 0.06 0.09 0.02 0.03 0.25
MgO 46.96 42.77 43.87 39.86 41.20 4.90 4.35 2.25 3.61 6.75
CaO 0.03 0.09 0.19 0.05 0.11 4.73 5.25 7.38 5.22 7.93
Na2O 0.03 0.02 0.04 0.02 0.05 7.16 7.22 4.12 7.18 5.18
Total 100.99 100.21 100.72 99.49 100.61 100.83 99.45 98.28 99.28 100.17

Mineral       low-Ca pyroxene        high-Ca pyroxene
Sample Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL) Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL)
SiO2 56.85 55.56 55.81 56.30 57.87 53.55 52.65 52.84 53.16 52.94
TiO2 0.04 0.16 0.11 0.03 0.08 0.24 0.35 0.46 0.31 0.49
Al2O3 0.40 0.70 0.96 0.39 0.52 1.37 1.77 3.16 2.31 3.72
Cr2O3 0.55 0.34 0.85 0.64 0.55 1.65 1.22 1.43 1.65 1.77
FeO 10.14 10.88 10.20 9.96 5.46 10.54 8.56 8.23 8.90 6.08
MnO 0.51 0.45 0.40 0.50 0.33 0.79 0.35 0.40 0.80 1.01
NiO 0.06 0.03 0.04 0.01 0.06 0.07 0.12 0.02 0.02 0.21
MgO 31.39 30.76 30.41 30.68 35.05 19.82 17.85 16.85 17.89 19.27
CaO 0.72 0.68 1.87 0.70 0.64 11.15 15.37 16.57 13.58 13.71
Na2O 0.18 0.18 0.06 0.07 0.11 0.70 1.00 0.52 0.66 0.68
Total 100.83 99.75 100.72 99.29 100.66 99.86 99.24 100.49 99.30 99.90

Type I chondrules
Mineral        Olivine*        Mesostasis
Sample Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL)          Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL)
SiO2 41.11 40.79 41.76 40.80 41.10 58.00 63.73 55.05 59.80 62.61
TiO2 0.03 0.01 0.02 0.01 0.03 0.37 0.50 0.56 0.49 0.49
Al2O3 0.14 0.08 0.10 0.04 0.13 20.21 16.37 19.84 17.78 20.06
Cr2O3 0.08 0.07 0.39 0.05 0.09 0.33 0.32 0.37 0.43 0.39
FeO 4.52 7.76 3.75 7.61 8.77 2.44 4.83 3.02 2.86 3.84
MnO 0.07 0.28 0.21 0.29 0.23 0.20 0.25 0.34 0.36 0.06
NiO 0.01 0.02 0.03 0.01 0.06 0.05 0.05 0.18 0.05 0.21
MgO 53.90 51.04 54.25 50.16 50.12 4.63 3.34 4.94 4.33 2.87
CaO 0.34 0.12 0.21 0.11 0.23 8.86 3.20 11.73 6.65 2.24
Na2O 0.01 0.01 0.03 0.01 0.03 5.61 7.17 3.60 6.91 7.40
Total 100.23 100.18 100.77 99.09 100.75 100.71 99.76 99.64 99.65 100.17

Mineral       low-Ca pyroxene        high-Ca pyroxene
Sample Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL) Suw (H) Will (H) NWA (L) Parn (LL) Hua (LL)
SiO2 57.86 56.84 58.50 57.85 57.77 52.97 53.10 52.51 51.59 52.07
TiO2 0.09 0.10 0.10 0.05 0.13 0.55 0.37 0.79 0.72 0.87
Al2O3 0.72 0.80 0.68 0.46 0.97 3.64 3.10 4.87 5.65 9.88
Cr2O3 0.45 0.59 0.63 0.46 0.57 1.88 1.56 1.75 1.69 0.70
FeO 5.25 5.17 2.83 4.42 4.41 4.88 5.86 3.03 3.45 3.59
MnO 0.27 0.32 0.29 0.30 0.26 1.04 1.15 0.78 0.92 0.22
NiO 0.04 0.02 0.05 0.02 0.08 0.10 0.02 0.07 0.06 0.16
MgO 35.37 34.96 37.02 34.85 35.67 20.22 18.53 19.90 18.28 15.79
CaO 0.42 0.67 0.59 0.42 0.59 14.15 14.54 16.36 16.66 15.95
Na2O 0.12 0.11 0.05 0.10 0.14 0.58 0.64 0.25 0.46 1.31
Total 100.61 99.59 100.72 98.92 100.58 100.00 98.87 100.30 99.48 100.55
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In most of the zoned chondrules, the low-Ca pyroxenes of the rim poikilitically enclose olivine 

grains. We use a 4-step qualitative scheme to discriminate non-poikilitic rims versus weakly 

(Fig. 2.1a), medium (Fig. 2.1b, c) and strongly poikilitic rims (Fig. 2.1d). In total, about 5% of 

the zoned chondrules have non-poikilitic rims; 20% have weakly poikilitic rims; 47% have 

medium and 28% have strongly poikilitic rims. This distribution is similar to the distribution 

of poikilitic rims in carbonaceous and Rumuruti chondrites reported by Friend et al. (2016). 

 

2.3.2. Unzoned chondrules 

Unzoned chondrules lack mineralogical zonation by definition and have large variations of 

textural appearance (Fig. 2.4). The low-Ca pyroxene minerals in unzoned chondrules are not 

restricted to the chondrule borders, but can be randomly distributed in the whole chondrule, 

often intermingled with olivine and mesostasis. As shown in Table 2.2 and Fig. 2.3b, unzoned 

chondrules are predominantly, but not only, type II chondrules. In Fig. 2.4a, the chondrule 

contains skeletal olivine. The olivine appears in the chondrule centre, but also rims the entire 

chondrule. This texture, as well as inverse chondrule zonation with pyroxene in the core and 

olivine at the rim, was found in only five chondrules. The chondrules in Fig. 2.4b & c are 

composed of mesostasis with almost only olivine or only low-Ca pyroxene. The type I PP 

chondrule in Fig. 2.4d shows tiny amounts of poikilitically enclosed olivine in its centre. 

Abundant matrix material and some metal grains fill the space between individual low-Ca 

pyroxene crystals.  

Apart from their textures and with a few exceptions, unzoned chondrules also share many 

characteristics with zoned chondrules, e.g. their average sizes and mineralogy. Chondrules that 

are exceptionally larger than the average chondrule in a meteorite section (e.g. 

macrochondrules) are, however, always unzoned. 

 

2.3.3. Bulk chondrule compositions 

We determined the silicate-only bulk compositions of 127 chondrules in H (35), L (50) and LL 

(42) chondrites. Major element (Mg, Si, Fe) and minor refractory element (Ca, Al, Ti) contents 

are highly variable in chondrules of all ordinary chondrite groups (Fig. 2.5). The chondrule Mg 

concentrations range from 13 to 23 wt.% in H and 12 to 26 wt.% in LL chondrites, while Fe 

varies between 2 and 13 wt.% in H and LL chondrites. Magnesium concentrations of L 

chondrite chondrules are higher than in the other groups and range from 14 up to 32 wt.%. The 

Fe concentrations are significantly lower in the L chondrite, with a peak below 1 wt.%, but 
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then spread to 12 wt.%. Bulk chondrule Si concentrations range from 20 to 27 wt.% in all 

ordinary chondrite groups. Bulk chondrule concentrations of the refractory minor elements Ca, 

Al and Ti are displayed in Fig. 2.5 (d, e, f). The average Ca concentration is controlled by the 

abundance of high-Ca pyroxene and mesostasis and ranges from 0.3 to 3.5 wt.%, but can in 

some cases be as high as 5.0 wt.%. The average Al concentrations depend on the abundance of 

mesostasis and vary from 0.3 to 1.5 wt.%. However, some chondrules contain up to 4.8 wt.% 

Al. Titanium contents are generally low, between 200 and 1000 wt.-ppm, with a few outliers 

of up to 1800 wt.-ppm. We note, that Fig. 2.5 contains samples of different petrologic types. 

The bulk chondrule elemental variance decreases with increasing petrologic type, but never 

increases. Thus, including chondrites of different petrologic types does not change our 

conclusion that bulk chondrule element contents are highly variable in OC. The average bulk 

compositions of porphyritic chondrules (type I/II) are listed in Table 2.4. Type II chondrules 

have higher Fe and lower (covariant) Mg contents. 

 
Table 2.4: Average bulk chondrule compositions (wt.%) of the various ordinary chondrites.  

 

Only the silicate portion of the chondrules were used to determine the bulk chondrule compositions. *Type I 
chondrules: Average bulk chondrule compositions containing olivine forsteritic cores, as well as fayalite-rich 
rims.  
 

The large range of chondrule Mg and Si concentrations is shown in Fig. 2.6. The bulk chondrule 

compositions (excluding metal and sulphides) fall between the Mg-rich endmembers of olivine 

and pyroxene. It is striking that bulk chondrule compositions of zoned and unzoned chondrules 

are basically identical in the Mg-Si plot. The NWA8276 (L) bulk chondrule compositions plot 

slightly off the LL and H chondrite chondrule compositions due to their higher Mg 

concentrations. NWA8276 is the lowest petrologic grade chondrite in this study. The bulk 

chondrule compositions taken from petrologic type 3.6 and 3.8 samples were affected by Fe-

Mg exchange during thermal metamorphism. This shifts chondrules along the solid solution 

lines towards Fe-rich endmembers (Fig. 2.6). In consequence, this might have reduced the 

       Type I*        Type II
Sample Suw (H3.8) Will (H3.6) NWA (L3.0) Parn (LL3.6) Hua (LL3)          Suw (H3.8) Will (H3.6) NWA (L3.0) Parn (LL3.6) Hua (LL3)
SiO2 54.64 52.87 50.40 52.87 46.40 51.92 50.36 48.23 50.94 52.73
TiO2 0.12 0.13 0.13 0.11 0.12 0.09 0.14 0.10 0.09 0.10
Al2O3 2.55 2.39 1.92 2.01 2.08 2.12 2.80 1.27 2.27 1.67
Cr2O3 0.43 0.53 0.56 0.43 0.23 0.37 0.31 0.58 0.48 0.51
FeO 6.17 7.07 3.20 8.04 11.16 10.45 11.73 11.90 12.93 8.22
MnO 0.35 0.46 0.26 0.37 0.22 0.48 0.39 0.29 0.47 0.37
NiO 0.05 0.02 0.05 0.03 0.08 0.06 0.03 0.03 0.02 0.09
MgO 33.82 32.68 41.89 32.82 38.85 32.79 30.06 36.35 29.31 34.57
CaO 1.72 2.37 1.91 1.75 1.09 1.61 2.68 1.52 2.02 1.85
Na2O 0.95 0.96 0.31 0.74 0.68 1.07 1.37 0.33 0.95 0.59
Total 100.79 99.46 100.62 99.16 100.91 100.94 99.86 100.61 99.50 100.71



2. Mineralogically zoned chondrules in OC 
 

 

 25 

initial spread in the Mg-Si plot but could not have enhanced it. Thus, the initial compositional 

spread of these chondrules could have only been larger. 
 

 

Fig. 2.4: Examples of typical unzoned chondrule types in the various ordinary chondrites. Phase maps from the 
PHAPS program show: (a) Unzoned chondrule with an olivine-rich rim. The mineral phases have a skeletal or 
elongated morphology and are randomly distributed in the chondrule. (b) A mesostasis-rich, unzoned chondrule 
with a very low abundance of olivine. (c) PO chondrule that is missing low-Ca pyroxene. (d) The appearance of 
tiny olivine grains in the centre of this PP chondrule and the high abundance of matrix material in it indicates that 
this is most likely a rim section of a zoned chondrule. As indicated in Section 2.4.1, this chondrule, as well as 
similar chondrule rim sections, are not included in the conservative count of zoned chondrules.  
 

Literature data for ordinary chondrite bulk chondrule compositions taken from ChondriteDB 

(Hezel et al., 2018a) are provided for comparison. All chondrules studied are slightly shifted 

to higher Mg- and Si-concentrations than bulk OC chondrule compositions from the 

ChondriteDB database. Most bulk chondrule data in the ChondriteDB were obtained including 

all chondrule phases, i.e., silicates as well as the opaque phases metal and sulphides. In this 
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study, however, we used only the chondrule silicates to calculate the bulk chondrule 

compositions. If opaque phases were included in the bulk chondrule composition, their Mg- 

and Si- concentrations would be relatively lower. To test this, we calculated bulk chondrule 

compositions with their respective opaque phase abundances taken from the phase maps. Then, 

more than 90% of the chondrules studied plot in the field of the ChondriteDB data. Hence, the 

bulk chondrule compositions studied are in excellent agreement with the bulk chondrule 

compositions from the literature. 

 

 
 

Fig. 2.5: Distributions of (silicate-only) bulk chondrule element concentrations in H, L, and LL chondrites.  
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Fig. 2.6: Silicate-only bulk chondrule Mg and Si concentrations in H, L and LL chondrites, compared to bulk 
chondrule compositions obtained from the ChondriteDB database (Hezel et al., 2018a). Almost all chondrules 
would plot within the field of the literature bulk chondrule data, if chondrule metal was included when determining 
the bulk chondrule compositions of this study. 
 

 
2.4. Discussion 

2.4.1. 2D sectioning effects 

A 2D section of a meteorite sample sections all chondrules randomly. The fraction of zoned 

chondrules might depend on whether the chondrules were sectioned close to their rims or close 

to their equators. Each section would produce a different 2D appearance of a zoned chondrule, 

but also of every other chondrule type. For example, the chondrule in Fig. 2.1c has a much 

thicker rim compared to the chondrules in Figs. 2.1a & b. The simplest explanation is that the 

apparent 2D rim thickness gradually increases towards the chondrule border and that chondrule 

c was sectioned closer to its border. In Fig. 2.1d, low-Ca pyroxene appears at the border, but 

also scattered throughout the entire chondrule, and is in all cases strongly poikilitic. This 

appearance could indicate a section similar to chondrule c, or even closer to its border. The 

low-Ca pyroxene at the centre of the chondrule in Fig. 2.1d would then also be rim pyroxene. 

A more extreme case of a potential rim section is the PP chondrule displayed in Fig. 2.4d. This 

chondrule contains olivine grains in the centre, but also substantial matrix material in-between 

the grains (brown parts in Fig. 2.4d). The matrix material intermingled with the low-Ca 
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pyroxenes could indicate that this chondrule was indeed sectioned very close to its border. 

Therefore, it is likely a zoned chondrule, but was sectioned through its low-Ca pyroxene rim. 

Up to 11% of all chondrules in LL chondrites and approximately 9% in L as well as H 

chondrites display this type of potential rim sectioning. All these were not included in the initial 

count of zoned chondrules. If these chondrules were indeed zoned chondrules, it would 

increase the total portion of zoned chondrules in ordinary chondrites to ~50%. Although this 

estimate is very reasonable, we will hereafter only refer to the conservative count of ~40% 

zoned chondrules.  

It is further possible that some chondrules are only partially rimmed by low-Ca pyroxene. Not 

all sections of a partially rimmed chondrule would then display a low-Ca pyroxene rim. This 

might particularly be the case for large chondrules.  

 

2.4.2. Phase map techniques (IM vs LAM) 

Chondrule phase maps were produced from either individual chondrules maps (IM), or large 

area maps (LAM; cf. Section 2.2). In NWA8276, the fraction of zoned chondrules was 

determined with both techniques, each producing a slightly but significantly different result: 

The fraction of zoned chondrules was lower when determined using LAM (43%), compared to 

when using IM (52%). The difference between the IM and LAM method is that LAM includes 

all chondrules in a meteorite section, whereas IM represents a random chondrule selection from 

the sample. Using IM, the fraction of zoned chondrules might be overestimated (by max. 10 

percentage points, as demonstrated above), because particular chondrule appearances may have 

been inadvertently preferred. On the other hand, the fraction of zoned chondrules might be 

underestimated using LAM, since the lower resolution of the phase maps prevents the 

identification of chondrules with only a thin low-Ca pyroxene rim. The true fraction of zoned 

chondrules most likely lies between the IM and LAM results.  

The different results when using IM or LAM might also explain why we determined small 

differences in zoned chondrule abundances among chondrites from of the same group. In 

Semarkona (LL), we determined a zoned chondrule abundance of 31% using LAM, but in 

Huacachina (LL) and Parnallee (LL) we determined abundances of 36% and 38%, respectively, 

using IM. It is reasonable to assume that in this case these differences more likely represent 

variations among the various chondrites, as similar variations are observed in H chondrites. 
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2.4.3. Variation in type I/II fractions of porphyritic chondrules  

Type I and II chondrules were classified according to the protocol given in Section 2.3. Our 

determined type I/II chondrule fractions of 46% type I chondrules in Willard b and 53% in 

Suwahib (H, petrologic types 3.6 and 3.8) are similar to literature data of Zanda et al. (2006), 

who reported a similar fraction of ~55% type I chondrules in unequilibrated H chondrites. 

However, in LL chondrites, Zanda et al. (2006) observed significantly fewer type I chondrules 

(25%), compared to the 70% we determined in Parnallee (LL3.6) and the 40% in Huacachina 

(LL3). According to McCoy et al. (1991) and Jones (1996a), minor effects of metamorphism 

can be observed in Parnallee pyroxenes. If pyroxene compositions in Parnallee were affected 

significantly by Fe-Mg equilibration, the pyroxene Fe contents would have increased. Then, 

we would have wrongfully classified type I chondrules as type II. This is clearly not the case 

as we determined a much higher type I fraction in Parnallee than Zanda et al. (2006) and, 

furthermore, a higher type I fraction compared to the lower petrologic type sample Huacachina. 

In addition, the high abundance of mineralogically zoned type I chondrules in Huacachina and 

Parnallee might indicate that type I chondrules are indeed very abundant in both samples. 

It is important to note that neither increasing petrologic type, nor any other known parent body 

process, produces (see Section 2.4.4) or erases mineralogical chondrule zonation below the 

onset of textural equilibration due to thermal metamorphism at petrologic type ~3.6. Only 

minor textural changes occur until petrologic type 5 (Huss et al., 2006).  

 

2.4.4. Formation of low-Ca pyroxene rims 

Mineralogical zonation is a typical chondrule appearance in ordinary chondrites. We examine 

three possible hypotheses for the formation of low-Ca pyroxene rims. 

(i) Crystallisation during chondrule cooling: Assuming a simple chondrule formation scenario 

in which molten silicate droplets were surrounded by relatively cool gas, the droplets would 

have likely cooled from their border to their centre. Olivine, the first mineral to crystallise, 

should then dominate the chondrule margins. Pyroxene, which crystallises at lower 

temperatures, should have been concentrated in the centre. However, the opposite is observed: 

olivine is located in the core and pyroxene at the rim. This simple cooling and crystallisation 

from a melt, therefore, cannot have produced the observed textures. Experimental attempts to 

reproduce chondrule textures without gas-melt exchange also have never produced 

mineralogically zoned chondrules (e.g. Connolly and Hewins, 1996; Hewins et al., 2005).  
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(ii) Parent body processes: All studied chondrules are hosted in unequilibrated meteorites that 

did not experience extensive metamorphism or alteration on their parent bodies. Nevertheless, 

chemical equilibration occurred in samples of higher petrologic types (e.g. Suwahib H3.8). The 

formation of zoned chondrules on the chondrite parent bodies via the metamorphic reaction 

olivine + SiO2 = pyroxene is highly unlikely. It would have required olivine chondrules 

surrounded by quartz-rich matrix, which is not observed in unequilibrated chondrites. It would 

also have also required high temperatures and the transport of SiO2 to the olivine (Friend et al., 

2016). Such conditions were never achieved on the parent bodies of these meteorites. 

Furthermore, there is no correlation between the abundance of zoned chondrules and increasing 

petrologic type (up to 3.8). On the contrary, the most pristine sample, NWA8276 (L3.00) with 

a peak metamorphic temperature below 200°C (Huss et al., 2006) even has the highest fraction 

of zoned chondrules (43–52%). Hence, parent body processes can be ruled out. 

(iii) Chondrule melt-gas interactions: Gas-melt interaction under high SiO(g) partial pressures 

can explain major petrographic, chemical and isotopic characteristics of chondrules (Tissandier 

et al., 2002; Hezel et al., 2003, 2006; Krot et al., 2004; Libourel et al., 2006; Chaussidon et al., 

2008; Harju et al., 2014; Marrocchi and Chaussidon, 2015). In high temperature experiments, 

Tissandier et al. (2002) exposed partially molten, chondrule-like samples to high SiO(g) partial 

pressures. Their experimental charges reproduced typical zoned chondrule textures: Olivines 

occur preferentially in the centres of the chondrules and are frequently poikilitically enclosed 

in pyroxenes. Elevated dust/gas ratios in the solar nebula are invoked by several authors to 

explain the presence of silicate liquids (e.g. Wood, 1963; Wood and Hashimoto, 1993; Ebel 

and Grossman, 2000; Tissandier et al., 2002; Cuzzi and Alexander, 2006; Libourel et al., 2006; 

Johansen et al., 2007; Alexander et al., 2008; Hezel et al., 2010, 2018c; Schrader et al., 2013; 

Marrocchi and Chaussidon, 2015; Tenner et al., 2015). Evaporation in a dust-rich environment 

of the solar nebula could have generated elevated gas pressures with SiO as a dominant species 

(Libourel et al., 2006; Javoy et al, 2012). As pointed out by Rubin (2017), gas-melt exchange 

might even occur in a regime of low SiO(g) partial pressures, if chondrules formed during 

multiple melting and cooling events.  

Various authors have proposed that olivine and pyroxene in the same chondrule may have 

different formation histories (e.g. Tissandier et al., 2002; Hezel et al., 2003; Krot et al., 2004; 

Libourel et al., 2006; Chaussidon et al., 2008; Jacquet et al., 2012; Harju et al., 2014, Friend et 

al., 2016). On the basis of in-situ oxygen isotope measurements, Chaussidon et al. (2008) 

showed that in carbonaceous chondrites, chondrule core olivines and rim pyroxenes are not co-
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magmatic and did not crystallise from the same melt. The authors proposed that 2/3 of the 

oxygen in the low-Ca pyroxene originated from partially dissolved precursor olivine, while 1/3 

was added by the reaction with SiO from the surrounding gas via the reaction sequence: 

 

SiO(gas) + 1/2 O2(gas) = SiO2(melt) (eq.1) 

Mg2SiO4(olivine) + SiO2(melt) = Mg2Si2O6(pyroxene) (eq.2) 

 

This gas-melt exchange requires chondrules to behave as open systems during their formation 

(e.g. Chaussidon et al., 2008; Di Rocco and Pack, 2015; Marrocchi and Chaussidon, 2015). 

Subsequent studies, investigating chondrule trace element patterns and silicon isotopic 

compositions, agree with this scenario (Jacquet et al., 2012; Harju et al., 2014).  

The evidence for gas-melt exchange based on O-isotopic differences between olivine and 

pyroxene reported by Chaussidon et al. (2008) might, however, only exist in a portion of the 

zoned chondrules. Subsequent studies on chondrules from all chondrite classes unanimously 

reported O-isotopic homogeneity of coexisting olivine and pyroxene (Kita et al., 2010; 

Rudraswami et al., 2011; Weisberg et al., 2011; Ushikubo et al., 2012; Tenner et al., 2013, 

2015, 2017; Nagashima et al., 2015; Miller et al., 2017; Schrader et al., 2017; Hertwig et al., 

2018; Chaumard et al., 2018). These authors concluded that olivine and pyroxene must be co-

magmatic and crystallised from a melt with homogenous oxygen isotopic composition. 

Nevertheless, these studies collectively argue for open system behaviour during chondrule 

formation, involving interactions between chondrule melt and ambient gas. In continuation of 

these results, Marrocchi and Chaussidon (2015) modeled how the oxygen isotopic composition 

of chondrule minerals might be modified by chondrule melt interaction with the surrounding 

gas. Their model explains how oxygen isotopic homogeneity in chondrule olivine and rim 

pyroxene is achieved through gas-melt exchange. Both, homogenous and heterogeneous 

oxygen isotopic compositions in chondrule silicates can be the result of melt-gas interaction, 

depending on the degree of dust enrichment in the chondrule forming region and processes of 

isotopic re-equilibration. In particular, Marrocchi and Chaussidon (2015) estimated that at dust 

to gas ratios greater than ~10, chondrule olivine and pyroxene should have indistinguishable 

oxygen isotope ratios. 

Chondrules were heated to above liquidus temperatures and rapidly cooled and crystallised 

afterwards in minutes to hours (e.g. Hewins et al., 2005). Di Rocco and Pack (2015) 

demonstrated experimentally that considerable exchange between chondrule melt and nebula 
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gas could have occurred. They calculated that 50 to 70% of the oxygen in a chondrule – 

depending on chondrule type – could have exchanged with oxygen from the ambient gas. Such 

a quantity is in good agreement with model predictions of the timescales of chondrule 

formation (e.g. Hewins and Connolly, 1996; Morris and Desch, 2010).  

We propose that the zoned chondrule textures observed in ordinary chondrites result from melt-

gas exchange during chondrule formation. Chondrule olivine cores, surrounded by poikilitic 

low-Ca pyroxene rims, are a common chondrule appearance and directly results from the 

reactions in eq. 1,2.  Melt-gas exchange, furthermore, explains variable (silicate-only) bulk 

chondrule compositions observed in Figs. 2.5, 2.6. Their spread in the Mg-Si plot reflects 

varying extents of SiO addition to forsteritic chondrule melts. This scenario is in agreement 

with aforementioned authors, presenting textural, chemical and isotopic evidence for open 

system chondrule behaviour. 

 

2.4.5. Formation of unzoned chondrules 

The fraction of ~40% zoned chondrules in ordinary chondrites is significantly smaller than the 

fraction of ~80% zoned chondrules reported in carbonaceous chondrites (Friend et al., 2016; 

Fig. 2.2). This was not necessarily expected, as bulk ordinary chondrites have higher bulk rock 

Si/Mg ratios than carbonaceous chondrites. Therefore, we expected more low-Ca pyroxene and 

more zoned chondrules. Yet, more than half of the OC chondrules are unzoned. These unzoned 

chondrules must have followed a different formation path than the zoned chondrules. 

Some authors report abundant low-Ca pyroxene rims around type I, but not type II chondrules 

(e.g. Scott and Taylor, 1983). Our study confirms these observations, e.g. ~75% of the type I 

chondrules in Suwahib and Huacachina are zoned (Fig. 2.3b, Table 2.2). Type II chondrules 

are also mineralogically zoned, but less frequently. The fractions of type II zoned chondrules 

determined in this study (up to ~35%) are in good agreement with the fraction of 38% zoned 

type II chondrules in CC, as reported by Friend et al. (2016). Type II chondrules are 

significantly more abundant in OC compared to CC, consistent with the total fractions of zoned 

chondrules in OC being lower.  

In the previous section, we explained the formation of zoned chondrules by gas-melt interaction 

between olivine and SiO-rich gas (eqs. 1, 2). As apparently unzoned chondrules have no 

pyroxene rims, it seems obvious to assume that unzoned chondrules escaped any gas-melt 

interaction. However, this is unlikely for various reasons: (i) the straightforward explanation 
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for preventing gas-melt interaction would be a limited supply of SiO(g), allowing only a fraction 

of the molten chondrules to exchange material with the gas. In this scenario, unzoned 

chondrules would form at a time when SiO(g) was almost entirely consumed. At this point in 

time, the gas might be generally depleted in condensable elements, including volatile elements 

such as Na. Such low concentrations of volatiles in the gas might entail evaporation of e.g. Na 

at the time when unzoned chondrules form. However, the observed alkali contents in the 

mesostasis of zoned and unzoned chondrules are identical. This does not support the idea that 

unzoned chondrules formed in a gas with low partial pressures of SiO, Na, and so on. Hence, 

SiO(g) was most likely present in the gas when unzoned chondrules formed, which might then 

also have been added to the unzoned chondrules. (ii) Secondly, unzoned chondrules probably 

also interacted with the gas and did not behave as closed systems. We explained above the 

variable (silicate-only) bulk compositions of zoned chondrules resulting from the addition of 

SiO from the surrounding gas. If this did not happen to unzoned chondrules, they should have 

retained their initial bulk compositions and their compositional variability would have to be 

explained differently. In the Mg vs. Si plot (Fig. 2.6), unzoned chondrules cover the same space 

as zoned chondrules. Therefore, it seems unlikely that separate explanations for bulk 

compositional variations in zoned and unzoned chondrules are required. Rather, chondrules 

that appear to be unzoned also received SiO from the surrounding gas. We suggest two 

processes to explain the absence of pyroxene rims around unzoned chondrules, and, at the same 

time, explain the formation of both zoned and unzoned chondrules. 

Type I and II chondrules likely formed in close spatial proximity (e.g. Berlin, 2009; Villeneuve 

et al., 2015), but at different times as demonstrated by Kurahashi et al. (2008) in CO chondrites. 

They found a formation gap of up to 1 Ma between type I and type II chondrules. If this is true, 

and also applies to OC chondrules, we suggest the following scenario: Type I chondrules 

formed early from ol-rich material in a reducing environment and interacted substantially with 

the surrounding gas, thereby becoming more SiO2-rich and producing low-Ca pyroxene rims. 

Chondrule formation and gas-melt exchange continued for 1 Ma in a progressively more 

oxidising reservoir, now mostly forming ol-rich type II chondrules. These chondrules also 

interacted with the gas, becoming more SiO2-rich and likely developing pyroxene rims. Then, 

a portion of the chondrules remelted during subsequent heating events, thereby losing their 

initial zonation. The much more SiO2-rich chondrule melt compositions crystallised olivine 

and pyroxene throughout the chondrules and prevented further formation of low-Ca pyroxene 

rims around these chondrules. Zoned and unzoned chondrules are then indistinguishable in 
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their bulk compositions and cover similar spaces in the Mg-Si plot (Fig. 2.6). As Fe-rich 

silicates melt at lower temperatures (e.g. forsterite: ~1900°C, fayalite: ~1200°C; at atmospheric 

pressure), remelting might have primarily affected type II chondrules, explaining the large 

fraction of unzoned type II chondrules. This model is consistent with numerous studies 

presenting evidence for multiple melting events of chondrules (e.g. Wasson, 1993; Alexander, 

1994; Rubin and Krot, 1996; Jones et al., 1996b, 2005; Hezel et al., 2003; Wasson and Rubin, 

2003; Rubin, 2006, 2010; Ebel et al., 2008), as well as the conclusions of Hezel and Palme 

(2007) that chondrules were reheated no more than 2–3 times.  

 

2.5. Conclusions 

Mineralogical zonation (olivine-rich cores, Ca-poor pyroxene-rich rims) is a typical chondrule 

texture in ordinary chondrites. Previous work has found even more abundant mineralogically 

zoned chondrules in carbonaceous and Rumuruti chondrites. However, zoned chondrules are 

significantly less abundant in ordinary (~40% of all chondrules) than in carbonaceous 

chondrites (~80%, Friend et al., 2016). The occurrence of two dominant chondrule textures in 

OC, i.e., zoned and unzoned (i.e. lacking a pyroxene-rich rim) chondrules, is, therefore, a 

distinctive characteristic of ordinary chondrites. The majority of type I chondrules in OC are 

zoned, while type II chondrules are largely unzoned. The significantly higher fraction of type 

II chondrules in OC compared to CC explains their lower total fraction of zoned chondrules. 

The abundant occurrence of zoned chondrules in all types of chondrites must represent a 

dominant process during chondrule formation. We propose the following scenario: Chondrule 

precursor aggregates were comparatively rich in forsteritic olivine. Chondrule formation 

started when the precursor aggregates melted during brief high-temperature events. Olivine 

formed the chondrule cores. This olivine reacted with the SiO from the surrounding gas to form 

Ca-poor pyroxene. Only minimal amounts of silica diffused deep into the chondrule melts, as 

Si is a network-forming element in silicate melts (Libourel et al., 2006). The reaction stopped, 

i.e. was no longer possible as soon as the low-Ca pyroxene rim completely enclosed the 

chondrule preventing further gas-melt interaction. This scenario is consistent with numerous 

related studies on chondrules from various groups, as well as experiments on open system 

interaction between chondrules and gas (e.g. Tissandier et al., 2002; Grossman et al., 2002; 

Hezel et al., 2003; Krot et al., 2004; Libourel et al., 2006; Chaussidon et al., 2008; Hezel and 

Palme, 2010; Jacquet et al., 2012; Harju et al., 2014; Di Rocco and Pack, 2015; Marrocchi and 

Chaussidon, 2015; Friend et al., 2016; Soulié et al., 2017). This open system scenario is, 
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furthermore, in agreement with the findings of complementarity in major and minor element 

distributions between chondrules and matrix in carbonaceous and Rumuruti chondrites (e.g., 

Hezel and Palme, 2010; Palme et al., 2015; Becker et al., 2015; Ebel et al., 2016; Friend et al., 

2017; Hezel et al., 2018b). Chondrule-matrix complementarities have not yet been 

unequivocally identified in ordinary chondrites. 

All (silicate-only) bulk chondrule compositions plot between forsteritic olivine and enstatitic 

pyroxene in a Mg-Si plot (Fig. 2.6), which likely reflects varying extents of SiO addition to 

initially olivine-rich chondrules (cf. Libourel et al., 2006; Hezel et al., 2006). Zoned and 

unzoned chondrules cannot be discriminated based on their bulk compositions, i.e., they 

overlap in their bulk compositional ranges. It seems, therefore, likely that gaseous SiO was 

added to almost all chondrule melts and the majority of chondrules might have initially formed 

low-Ca pyroxene rims. The unzoned chondrules might then have formed when a portion of the 

initially zoned chondrules were remelted, thereby also melting and homogenising their low-Ca 

pyroxene rims into the bulk chondrule. As Fe-bearing silicates melt at lower temperatures, 

remelting might have primarily affected type II chondrules. This would imply that unzoned 

chondrules formed after zoned chondrules. A systematic study of chondrule ages that extends 

the results of Kurahashi et al. (2008) to zoned and unzoned chondrules could, therefore, prove 

or disprove this scenario.  
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Abstract 

Mineralogically zoned chondrules are a common chondrule type in chondrites. They consist of 

olivine cores, surrounded by low-Ca pyroxene rims. By serial sectioning porphyritic 

chondrules from carbonaceous, ordinary and enstatite chondrites, we demonstrate that the 2D 

textural appearances of these chondrules largely depend on where they are cut. The same 

chondrule may appear as a porphyritic pyroxene (PP) chondrule when sectioned through the 

low-Ca pyroxene rim, and as a porphyritic olivine-pyroxene (POP) or porphyritic olivine (PO) 

chondrule when sectioned close or through its equator. Chondrules previously classified into 

PP/POP/PO chondrules might therefore not represent different types, but various sections 

through mineralogically zoned chondrules. Classifying chondrule textures into PP, POP and 

PO has therefore no unequivocal genetic meaning, it is merely descriptive. Sectioning effects 

further introduce a systematic bias when determining mineralogically zoned chondrule 

fractions from 2D sections. We determined correction factors to estimate 3D mineralogically 

zoned chondrule fractions when these have been determined in 2D sections: 1.24 for 

carbonaceous chondrites, 1.29 for ordinary chondrites and 1.62 for enstatite chondrites. Using 

these factors then show that mineralogically zoned chondrules are the dominant chondrule type 

in chondrites with estimated 3D fractions of 92% in CC, 52% in OC and 46% in EC. 
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3.1. Introduction 

Chondrules and fine-grained matrix are the two major components of chondrites. Chondrules 

are millimetre-sized igneous droplets mainly composed of silicates (olivine, pyroxene, 

plagioclase), Fe-Ni metal, sulphide and a glassy or micro-crystalline mesostasis. A series of 

studies argued that chondrules formed in an open system and interacted with the ambient gas 

during their molten stage (Ebel et al., 2018, and references therein). Important support for this 

open system scenario is recorded in chondrules as a mineralogical and/or a compositional 

zonation (e.g., Tissandier et al., 2002; Hezel et al., 2003; Krot et al., 2004; Libourel et al., 2006; 

Nagahara et al., 2008; Friend et al., 2016; Marrocchi et al., 2018; Barosch et al., 2019, and 

references therein). The open system scenario constrains chondrule formation processes and 

explains various chondrule characteristics, such as the abovementioned chondrule zonations or 

bulk compositional variations in chondrule populations. 

Chondrules are classified either according to their textures and mineralogies, or their chemical 

compositions (cf. Scott and Krot, 2014, and references therein). Three main classification 

schemes are commonly used: (i) textural appearance- as introduced by Gooding and Keil 

(1981). The major textural categories are porphyritic olivine (PO), porphyritic pyroxene (PP), 

porphyritic olivine-pyroxene (POP), barred olivine (BO), and radial pyroxene (RP). Minor 

textural classifications, partly restricted to individual chondrite classes, are for example skeletal 

olivine (SO), granular olivine (GO), cryptocrystalline (C), or microporphyritic olivine 

chondrules (MPO); (ii) bulk chondrule Si-concentration- these are the three types A (Si-rich), 

AB (intermediate) and B (Si-poor). The distinction between Si-rich and -poor is only 

qualitative, not quantitative, and directly related to the textural types. PO are Si-poor, POP 

intermediate, and PP Si-rich. (iii) chondrule olivine FeO-concentration- chondrules are divided 

into type I, when the chondrule olivine FeO content is below 10 wt.%, and in type II, when the 

chondrule olivine FeO content is above 10 wt.%. We note that various authors might, however, 

use different threshold values. Furthermore, this classification only works for unequilibrated 

samples with petrologic types below ~3.5. Another, though more rarely used chemical 

chondrule classification is based on the cathodoluminescence (CL) activity of chondrule 

minerals (Sears et al., 1995). Lastly, a small number of chondrules are Al-rich with >10 wt.% 

Al2O3 (Bischoff and Keil, 1983). 

Ideally, a chondrule classification provides genetic information. Chondrules are however 

mostly classified using 2D sections, which are not necessarily representative of the 3D 
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chondrules (e.g., Hezel, 2007; Ebel et al., 2009; Hezel and Kießwetter, 2010; Cuzzi and Olson, 

2017, and references therein), and thus might skew any potential genetic information. If a 

sectioning bias is present in the majority of chondrules, the classification becomes meaningless 

or even incorrect. Mineralogically zoned chondrules might be particularly deceiving with 

regard to textural classification: they have an olivine core, surrounded by a low-Ca pyroxene 

rim, and their 2D appearances depend on where they are sectioned. Classification of such 

mineralogically zoned chondrules in 2D sections could therefore be unreliable, and might 

easily lead to misclassifications.  

Here we study this bias with sectioning experiments on chondrules in carbonaceous (CC; 

Efremovka CV3), ordinary (OC; Moorabie L3.8-an) and enstatite chondrite samples (EC; 

Sahara 97096 EH3, see Piani et al., 2012, 2016). In addition, we measured CM, CV and CR 

chondrites (Table 3.1) with cabinet-sized micro-tomography to test whether this method can 

be used to study chondrule textures. The study of chondrules in 3D allows us to understand if, 

and to what extent their 2D classification into PO/POP/PP, as well as A/AB/B depends on 

sectioning effects. 

 

3.2. Methods 

3.2.1. Microtomography (µ-CT) 

Micro-CT allows studying the petrography of a sample in 3D (e.g., Ketcham, 2005; Ebel et al., 

2009; Beitz et al., 2013; Hezel et al., 2013; Hanna and Ketcham, 2017), largely non-destructive 

(Sears et al., 2018) and non-invasive, and therefore seems to be the undisputed technique of 

choice for this study. This technique is nonetheless highly challenging for this kind of study, 

as µ-CT primarily images the density contrast between minerals. Olivine and pyroxene have 

very similar densities, with a span from 3.27 to 4.39 g/cm3 for forsterite and fayalite, and a 

span from 3.20 to 3.95 g/cm3 for enstatite and ferrosilite. We therefore performed a number of 

experiments with various measurement settings, as well as the two software-packages 

ImageJ/Fiji and Avizo, to test whether the low-Ca pyroxene can be reliably discriminated from 

the olivine based on density contrasts. 

Individual meteorite chips of a few mm in diameter were CT scanned in a Zeiss Xradia 520 

Versa X-ray microscope at the Natural History Museum in London. Up to 4 chips were stacked 

upon each other in a plastic tube for a single experiment. Table 3.1 lists the settings used for 

the various experiments. The chips could only be a few mm in diameter to obtain the resolution 
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of a few µm required to identify the often only tens of µm thick low-Ca pyroxene layers 

surrounding the olivine core. We therefore chose a chondrite group with many chondrules, but 

small chondrule sizes: CM, with average chondrules sizes of 145 µm (Friend et al., 2018); and 

two chondrite groups with large chondrule sizes, but then only few chondrules: CR and CV, 

with average chondrules sizes of 700 and 900 µm, respectively (Friedrich et al., 2016). All 

samples studied are listed in Table 3.1. 

The resulting image stack was first processed with the Avizo software to correct for ring 

artefacts and reduce the noise as well as increase the contrast of the images using smoothing-

wave and enhancement filtering (cf. Li et al. 2017; Ni et al. 2017; Ferreira et al. 2018). As the 

olivine is slightly denser than the low-Ca pyroxene, olivine should appear slightly brighter than 

the pyroxene. Figure 3.1 displays a representative slice through Vigarano (CV3). It is almost 

impossible to unequivocally discriminate olivine from low-Ca pyroxene based on their 

respective different brightness. We also hoped to identify pyroxene by their characteristic 110 

cleavages, which is principally very distinctive from the homogeneous appearance of olivine. 

However, the images were insufficiently resolved to unequivocally identify these cleavages. 

 
Table 3.1: Measurement conditions for the various µ-CT experiments. 

 
 

In places where large pyroxenes or olivines could be identified, e.g., based on their appearance 

with and without cleavages, we could measure the grey value changes across individual 

minerals. Such grey value difference across individual minerals were a few units, e.g., two to 

five gray value units. However, absolute gray value differences between olivine and pyroxene 

were also in the range of about three to six gray value units. This means, olivine and pyroxene 

Samples* Experiment
Current 

(µA)
Voltage 

(kV)
Exposure 
Time (s)

Number of 
Projections

1 80.2 50 2 3000
2 80.2 50 5 6401
3 80.2 30 20 6401
4 75 40 5 6401
5 80 40 5 6400
6 80 50 7 1601
7 80 40 60 1601

Mokoia (CV3)            
Cold Bokkeveld (CM2)    
Jbilet Winselwan (CM2) 
Kaba (CV3)

8 80 40 10 3201

Murchison (CM2) 
NWA801 (CR2) 
Vigarano (CV3)

Cold Bokkeveld (CM2)

*The samples were stacked upon each other and all measured together in each 
experiment.
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gray values overlap already because of their individual gray value spread, resulting from 

mineral inhomogeneities. This makes it virtually impossible to threshold olivine from pyroxene 

using their gray values. This unfortunate result is true for all instrument settings we tested. And 

although in rare cases discriminating olivine from pyroxene may be possible, the density 

difference of olivine and low-Ca pyroxene in the samples studied and the instrument used was 

simply not enough for sufficiently reliable phase identification. Hence, reliably studying 

mineralogically zoned chondrules in 3D with µ-CT based on phase density contrasts, and 

without crystallographic information, is not yet possible. We instead used 3D serial sectioning 

for this study. 

 

Fig. 3.1: A representative slice through the tomography image stack of Vigarano (CV3). The contact between 
olivine core and low-Ca pyroxene rim might be vaguely guessed, but cannot be determined reliably.  
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3.2.2. 3D serial sectioning 

Serial sectioning, combined with scanning electron microscopy (SEM), allows 3D 

reconstruction of chondrules. At first, a chondrite thick section was prepared by saw-cutting a 

large (0.5–1 cm-sized) chondrite chip, embedded in epoxy resin. The surface was polished with 

a diamond polishing compound. Then, the following 3-step procedure was repeatedly carried 

out: (i) 2D element maps of entire sample surfaces were recorded using an SEM (Zeiss Sigma 

300 VP, located at the Institute of Geology and Mineralogy, Cologne). The focused electron 

beam rastered the stationary sample surface over small areas (~500 x 400 µm, pixel size ~4 

µm). The aperture was set to 60 µm, the accelerating voltage to 20 kV and the dwell time to 10 

ms, resulting in a count rate of ~50,000 cps. The sample was then moved to a new position and 

the next map was obtained. All individual element maps were stitched together to a large area 

map (LAM), showing the entire chondrite section. (ii) From the LAM, a phase map was created 

using the PHAPS program (Hezel, 2010). Every colour in the phase map represents a different 

mineral phase, allowing instant visual identification of chondrule textures. (iii) Finally, the 

sample was ground down a few tens of µm and again polished with a diamond polishing 

compound.  

Each large-area phase map represents a different section perpendicular to the z-axis of the 

sample and, when stacked on top of each other, the resulting image stack allows 3-dimensional 

insights into the sample. The amount of grounding in each step was monitored using a slide 

gauge. In addition, two precise aluminium cones were embedded on opposing sides of every 

sample thick section. The basal cone diameters were measured at each sectioning step and the 

difference to the previous section was used to calculate the slice of material removed by 

grinding. Depending on the sample, typical abrasion thicknesses varied between 20 and 120 

µm. In Efremovka and Moorabie, on average ~80 µm were ground down in each step. Grinding 

step sizes were smaller for Sahara 97096, with on average ~40 µm. This was done for ~10 

sections for each of the three chondrites. We then obtained 3D chondrule images by tracing the 

chondrules through the phase maps of the neighbouring sections. 
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3.3. Results 

3.3.1. Sectioning effects when classifying chondrules 

Three unequilibrated chondrites were serial sectioned – covering all three chondrite classes – 

and their chondrules studied in 2D and 3D: Efremovka (CV3; 86 chondrules), Moorabie (L3.8-

an; 117 chondrules) and Sahara 97096 (EH3; 252 chondrules). Mineralogically zoned 

chondrules typically consist of an olivine core surrounded by a low-Ca pyroxene rim of 

variable thickness (cf. examples in Fig. 3.2). We designate chondrules based on their mineral 

modal abundances as follows: PP (with ol/px ≤0.1), POP and PO (with ol/px ≥0.9).  

The apparent 2D textural appearances of mineralogically zoned chondrules vary, depending on 

where a chondrule is sectioned (Fig. 3.2). A 2D section close to the chondrule border will cut 

through the low-Ca pyroxene rim, and the chondrule texture appears as PP. Small olivine grains 

are often poikilitically enclosed in the rim pyroxene crystals, but in some rims, olivine is 

completely absent. In sections closer to the equator of a chondrule, the olivine- plus mesostasis-

rich core is cut, and the apparent 2D texture is POP, due to the commonly still high abundance 

of pyroxene. A section close or through the chondrule equator is the most likely to appear as a 

PO texture, depending on the thickness of the pyroxene rim. We found only 3 Efremovka (CV) 

chondrules that had PP textures in every section through these chondrules. PP chondrules were 

naturally more common in the enstatite chondrite Sahara 97096, with a 3D fraction of ~60%. 

Examples for the sectioning effects are displayed in Figure 3.2: Row a– the Efremovka 

chondrule rim section has an apparent PP 2D texture – i.e., the chondrule is seemingly unzoned 

–, but then shows an apparent POP texture in sections located in-between border and equator, 

and finally an apparent PO texture, when sectioned directly through its equator. This example 

also demonstrates how the mineralogical zonation of this chondrule is disguised in the rim 

section by the apparent PP texture. We further note that the apparent chondrule diameter 

increases from PP (smallest diameter), to POP (intermediate) and lastly, to PO (largest). Row 

b– the Moorabie chondrule has an apparent PP 2D texture in the section through its rim, again 

disguising the zoned nature of this chondrule. The sections closer to and directly through this 

chondrule’s equator then result in apparent POP textures. Row c– enstatite chondrite 

chondrules almost always appear as PP chondrules due to their thick low-Ca pyroxene rims. 

Tiny olivine cores are however highly abundant in EC chondrules (see also Piani et al., 2016). 

The example demonstrating this in Fig. 3.2 is a chondrule from Sahara 97096. 
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Fig. 3.2: Different sections through single chondrules in Efremovka, Moorabie and Sahara 97096 are displayed. 
The apparent 2D textures and, hence, their classifications into PP, PO or POP depend on where a chondrule is 
sectioned. Chondrule diameters in row a, and b, apparently increase from PP (smallest) to POP (intermediate) and 
PO (largest) diameter. 

 

3.3.2. Sectioning effects when determining the fraction of mineralogically zoned chondrules  

To determine 2D and 3D zoned chondrule fractions in all three samples, we first picked the 

middle sections of each sample’s image stack for 2D evaluations. Every chondrule studied in 

2D in these sections was subsequently studied in 3D, by tracing it through the phase maps of 

the neighbouring sections. The zoned chondrule fractions determined from 2D sections are 

64% in Efremovka (86 chondrules studied in total), 42% in Moorabie (117 chondrules studied 

in total) and 26% in Sahara 97096 (252 chondrules studied in total). The zoned chondrule 
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fractions of the same chondrules, but determined in 3D, are significantly and systematically 

higher: 79% in Efremovka, 54% in Moorabie and 43% in Sahara 97096. In relative proportions, 

the increase from 2D to 3D zoned chondrule fractions are +24% (i.e., by factor 1.24) in 

Efremovka, +29% (i.e., by factor 1.29) in Moorabie and +62% (i.e., by factor 1.62) in Sahara 

97096 (Fig. 3.3). 

 
Fig. 3.3: Here, 2D and 3D zoned chondrule fractions have been determined in the same samples. The fraction of 
zoned chondrules is always higher when determined in 3D, demonstrating the systematic bias when the fraction 
of zoned chondrules is determined in 2D. The 2D-3D differences can be used as approximate correction factors 
to estimate the true 3D fraction of zoned chondrules from a determined 2D fraction.  

 

3.4. Discussion and Summary 

A classification scheme for chondrule textures can ideally be used to draw conclusions about 

their formation processes. It is therefore critical that such a scheme does not provide misleading 

information. Chondrule textures are first discriminated into porphyritic and non-porphyritic 

chondrules. Different thermal histories apply to these types: porphyritic chondrules crystallized 

from melts with abundant nuclei after incomplete melting of precursor materials (Lofgren, 

1996; Connolly et al., 1998; Marrocchi et al., 2018, 2019), while non-porphyritic chondrules 

likely crystallized from superheated melts without nuclei (e.g., Connolly and Hewins, 1995). 

Porphyritic chondrules are then classified into PP, PO and POP (e.g., Gooding and Keil, 1981). 

This classification is, however, not always meaningful and can be misleading, as most 

chondrules are studied in 2D only. We demonstrate in Fig. 3.2 that an individual porphyritic 

zoned chondrule can be classified as PP, POP and PO, solely based on where it was sectioned. 

Thus, discriminating between PP, POP and PO chondrules often only indicates where a 

chondrule was cut, but does not necessarily reveal useful genetic information. This then also 

applies to the sub-classification of chondrules into A (Si-rich), AB (intermediate) and B (Si-

0 20 40 80 10060
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poor), as this is directly related to the textural types PP, POP, and PO. Therefore, the same 

argument applies to this classification scheme: It is largely controlled by sectioning effects. 

However, not all 2D PP chondrules are rim sections: we indeed find entire PP chondrules in 

3D. These are very common in the EC sample, rare in the OC sample and very rare in the CC 

sample. Using a sub-set of our data, we estimate the true (3D) fraction of PP chondrules to 

~60% in the EC sample and to ~7% in the CC sample. This is significantly lower than the 2D 

PP chondrule fractions of ~80% in EC and 30% in CC, thereby further illustrating the 

sectioning problem. Hence, in CC, where most chondrules are mineralogically zoned, the vast 

majority of PP chondrules – as observed in 2D sections – are actually rim sections of POP/PO 

chondrules. 

Based on the aforementioned observations, it is clear that the textural classification of 

porphyritic chondrules needs to be used with caution. Designating chondrules as either 

mineralogically zoned (MZ) chondrules or mineralogically unzoned (MU) chondrules might 

be a useful addition to the PP, POP, PO classification, as it adds currently missing textural 

information. However, reliably identifying zoned chondrules in 2D sections is as well 

problematic. Therefore, deciding which classification scheme is used might depend on what 

specific problem is studied. All we need to do here is to clearly point out and quantify the 

sectioning effects with regard to mineralogically zoned chondrules. This is of great importance, 

as these are – as demonstrated below – the dominant chondrule type in most chondrites.   

Mineralogically zoned chondrules sectioned through their low-Ca pyroxene rims usually 

appear as unzoned. Consequently, the fractions of mineralogically zoned chondrules in 

chondrites are underestimated in 2D studies (e.g., Friend et al., 2016; Barosch et al., 2019). 

Determining true zoned chondrule fractions requires 3D textural analysis, e.g., serial 

sectioning. With this technique, we studied chondrules in 3D, excluding all sectioning effects. 

We determined the following correction factors for estimating true 3D fractions from measured 

2D fractions: 1.24 for CC, 1.29 for OC and 1.62 for EC (Fig. 3.3). 

The weighted average 2D zoned chondrule fractions reported in previous studies, and including 

the new 2D data reported in this study, are ~74% in CC (Friend et al., 2016), ~40% in OC 

(Barosch et al., 2019) and ~29% in EC (unpublished). The 3D corrected, i.e., estimated true 

average zoned chondrule fractions are then: 92% in CC, 52% in OC and 46% in EC. This 

makes mineralogically zoned chondrules the dominant chondrule type in chondrites. 
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Abstract 

We found a large (~2 mm) compound object in the primitive Yamato 793408 (H3.2-an) 

chondrite. It consists mostly of microcrystalline material, similar to chondrule mesostasis, that 

hosts an intact barred olivine (BO) chondrule. The object contains euhedral pyroxene and large 

individual olivine grains. Some olivine cores are indicative of refractory forsterites with very 

low Fe- and high Ca, Al-concentrations, although no 16O enrichment. The entire object is most 

likely a new and unique type, as no similar compound object has been described so far. We 

propose that it represents an intermediate stage between compound chondrules and 

macrochondrules, and formed from the collision between chondrules at low velocities (below 

1 m/s) at high temperatures (around 1550°C). The macrochondrule also trapped and preserved 

a smaller BO chondrule. This object appears to be the first direct evidence for a genetic link 

between compound chondrules and macrochondrules. In accordance with previous suggestions 

and studies, compound chondrules and macrochondrules likely formed by the same mechanism 

of chondrule collisions, and each represents different formation conditions, such as ambient 

temperature and collision speed.   
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4.1. Introduction 

Ordinary chondrites (OC) are dominated by up to 80 vol.% chondrules. The mafic chondrules 

typically consist of olivine, pyroxene and opaque phases such as metal, sulphide and spinel. 

These phases are set in a glassy or fine-crystalline, so-called mesostasis. Chondrules have a 

complex formation history: in the canonical view of chondrule formation, a chondrule 

precursor aggregate was briefly heated to up to >2000 K, melted, and solidified subsequently 

in minutes to hours (Hewins et al., 2005).  

Chondrules were open systems during their molten stage and interacted with their surrounding 

nebular gas (e.g., Tissandier et al., 2002; Libourel et al., 2006; Marrocchi and Chaussidon, 

2015; Friend et al., 2016; Piani et al., 2016; Soulié et al., 2017; Ebel et al., 2018; Barosch et 

al., 2019). The open system scenario is further supported by Marrocchi et al. (2018, 2019) and 

Libourel and Portail (2018), who suggested that refractory forsterites (RF) – olivines with high 

Ca,Al- and very low Fe-concentrations – formed from crystallisation and interaction with the 

surrounding gas. The latter, however, is in conflict with the interpretation of Pack et al. (2004), 

who suggested that these refractory olivines originated from a common reservoir, i.e., RF are 

basically xenolithic in chondrites.  

Compound chondrules formed when a chondrule collided and fused together with another 

chondrule, fragment or other object (Wasson et al., 1995; Arakawa and Nakamoto, 2016, 

2019). Such chondrule collisions might have also led to macrochondrule formation (e.g., 

Weyrauch and Bischoff, 2012). Macrochondrules are similar in texture and composition to 

regular chondrules, only significantly larger (i.e., > 5 mm in maximum dimension; Weisberg 

et al., 1988). They typically contain abundant coarse-grained olivines, while low-Ca pyroxene 

is often only a minor constituent – a difference to regular chondrules. The mesostases of 

chondrules as well as macrochondrules are mostly feldspathic. Bridges and Hutchison (1997) 

report identical oxygen isotope compositions for macrochondrules and normal chondrules in 

the same meteorite. The O-isotope compositions of OC chondrules are usually 16O-poor and 

range from approx. +2 to +5‰ in δ17O and +4 to +7‰ in δ18O (Scott and Krot, 2014). It has 

been proposed that compound chondrules and macrochondrules represent various stages and/or 

ambient conditions of chondrule collisions, e.g., macrochondrules possibly formed through 

collisions between molten chondrules that fully merged and grew into the exceptionally large 

macrochondrules (Weyrauch and Bischoff, 2012; Bischoff et al., 2017; Bogdan et al., 2019). 
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However, no unequivocal evidence for this relationship between compound and 

macrochondrules has so far been reported. 

Ordinary chondrites occasionally contain another group of large objects with diameters above 

5 mm. These clasts (Bridges and Hutchison, 1997), represent a highly diverse group: they range 

from clearly xenolithic, chondritic fragments (e.g., impact melt clasts) to chemically 

fractionated objects with mineralogies and bulk compositions different from most chondrules. 

Therefore, these are often related to planetary differentiation processes (Hutchison et al., 1988; 

Bischoff et al., 1993; Ruzicka et al., 1995; Bridges et al., 1995; Bridges and Hutchison, 1997; 

Sokol et al., 2007; Terada and Bischoff, 2009; Rubin et al., 2017; Yokoyama et al., 2017; 

Crowther et al., 2018). Impact melt clasts represent a large sub-group of clasts, and likely 

formed when objects from as small as chondrules up to as large as planetesimals collided. They 

commonly represent a different chondrite group than their host chondrites. For example, Herd 

et al. (2013) described an impact melt clast in the Peace River L6 chondrite that formed from 

LL-group chondritic material. A similar object was described in NWA 5764 – a brecciated LL6 

chondrite – that contains L4 clasts (Gattacceca et al., 2017). H chondrite melt clasts were 

detected in L (Hutchison et al., 1988), and LL chondrite hosts (Corrigan et al., 2015). Bischoff 

et al. (2006, and references therein) list melt clasts of various origins and formation histories. 

Impact melt clasts typically have microporphyritic textures, dominated by euhedral to 

subhedral olivine phenocrysts (e.g., Lunning et al., 2016). Pyroxenes are only observed as 

admixed relict grains (Metzler et al., 2011), although Fe-rich glasses of plagioclase and 

pyroxene-normative compositions occur frequently (e.g. Lunning et al., 2016). Many impact 

melt clasts completely lack any metal and sulphides (Metzler et al., 2011; Corrigan et al., 2015; 

Crowther et al., 2018).  

Atypical objects in chondrites that are either xenolithic, rare and/or otherwise different from 

the common chondritic assemblage can provide unique, and in cases even pivotal clues to 

understand processes in the protoplanetary disk, such as chondrule formation. Here we study a 

large, 2 mm-sized fragment in the H3.2-an chondrite Yamato 793408, which has been 

described as being among the least equilibrated H chondrites by Kimura et al. (2002). This 

fragment has a peculiar texture and mineralogy and contains a well-preserved barred olivine 

(BO) chondrule.  
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4.2. Methods 

Electron microprobe  

Mineral analyses were obtained with the electron microprobe (EMP) JEOL 8900RL at the 

Institute of Geology and Mineralogy, University of Cologne. The accelerating voltage was set 

to 15 kV and the beam current to 20 nA. The ZAF-algorithm was used for correction (Bence 

and Albee, 1968). Cathodoluminescence images were taken with a black and white detector 

mounted on the EMP. Back scattered electron (BSE) images were also taken with the EMP.  

 

Oxygen isotope analyses using secondary ion mass spectrometry 

We measured the oxygen isotope compositions with a CAMECA IMS 1280 at CRPG-CNRS 

(Nancy, France). 16O-, 17O-, and 18O- ions produced by a Cs+ primary ion beam (~15 mm, ~4 

nA) were measured in multi-collection mode with two off-axis Faraday cups (FC) 

for 16,18O- and the axial FC for 17O-. To remove 16OH- interference on the 17O- peak and to 

maximize flatness atop the 16O- and 18O- peaks, the entrance and exit slits of the central FC 

were adjusted to obtain mass resolution power of ~7000 for 17O-. A slit #1 (MRP = 2500) was 

used with the multicollection FC detectors. The total measurement times were 240 s (180 s 

measurement + 60 s pre-sputtering). We used five terrestrial standard materials (San Carlos 

olivine, magnetite, glass, clinopyroxene and diopside) to define the instrumental mass 

fractionation line for the 3 oxygen isotopes and correct the instrumental mass 

fractionation (IMF) due to the matrix effect for the olivine, clinopyroxene and glass. Typical 

count rates obtained on the San Carlos olivine standards were 2.5 × 109 cps for 16O, 

1.0 × 106 cps for 17O, and 5.4 × 106 cps for 18O. The 2s errors were ≈ 0.2‰ for d18O, ≈ 0.4‰ 

for D17O, and ≈ 0.8‰ for d17O (D17O representing the deviation from the TFL, D17O = d17O - 

0.52 × d18O).  

 

µ-Raman spectroscopy 

Raman spectra were obtained with a confocal Horiba HR800 Raman spectrometer equipped 

with an Olympus BX41 microscope in 180° backscatter geometry and an EM-CCD detector at 

the Institute of Geoscience at the University of Bonn, Germany. Analyses were performed with 

a He-Ne laser (632.81 nm) with about 100 mW laser output power, a 100x objective, a 600 

grooves/mm grating, a confocal hole of 500–1000 µm and a spectrometer entrance slit width 

of 100 µm, yielding a spectral resolution of approx. 3.5 cm-1. Prior to analysis, the spectrometer 
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was calibrated with a Si standard. Spectra of samples were then measured for 3 x 10 s, their 

relative intensities were corrected with a white light source, and a 5th order polynomial was 

fitted for background subtraction. 

 

4.3. Results 

4.3.1. Petrography 

Figure 4.1 displays the Y-793408 section. The unusual compound object is the largest object 

(~2 mm) in the section. It is metal-free and hosts a barred olivine chondrule of about 1 mm in 

diameter (Fig. 4.2). In the following, we discriminate between the BO chondrule inclusion and 

the surrounding host object. The mesostasis of the BO chondrule and the mesostasis of the host 

object appear to be identical. Both are fine grained (nm to ~10 µm-sized), eutectic intergrowths 

of feldspar, pyroxene, silica and a few tiny spinels (Fig. 4.3). Some BO chondrule olivines have 

inclusions of mesostasis-like material that sometimes even show the same mineral intergrowths 

as the mesostases (inset b in Fig. 4.2). All olivines are fractured and have subhedral to rounded 

shapes. The olivines in the host object are up to ~500 µm long, ~200 µm wide and seem to 

free-float in its mesostasis. Most clinopyroxenes occur along the border of the host object and 

some are free-floating in its mesostasis. They sometimes also grew onto the olivines as well as 

onto the border of the BO chondrule. The pyroxenes are euhedral to subhedral and often show 

sector zoning and the typical pyroxene cleavage along [110] (Fig. 4.2). The mesostasis in the 

host object appears to have domains, in which the tiny minerals are oriented in the same 

direction. The center of the host object and the center of the BO chondrule have visible and 

highly localized porosities (Fig. 4.2). 
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Fig. 4.1: BSE image overview of the Y-793408 thin section studied. The unusual compound object and three 
additional chondrules are shown in the boxes. We analysed the O-isotope compositions of their mineral phases. 

 

4.3.2. Element compositions of the minerals in the compound object 

Table 4.1 lists representative major and minor elements of all minerals in the compound object. 

All olivines – no matter whether these occur in the host object or are part of the BO chondrule 

– are zoned with respect to several elements: FeO has the most prominent zonation from as 

low as 0.8 wt.% in the olivine cores to up to 8.3 wt.% at their rims. Some of the individual 

olivines have CaO (~0.9 wt.%) and Al2O3 (~0.2 wt.%) concentrations typical of refractory 

forsterites (RF; Steele et al., 1986; Pack et al., 2004). Some of these olivines are CL-active – 

also typical of RF –, e.g., the two forsterites shown in inset a. of Fig. 4.2. Unlike the other 

olivines, these forsterites are unzoned and have very low FeO concentrations of 0.2 wt.%. 
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Fig. 4.2: BSE image of the compound object. Inset a. is a CL image. The white cores in two olivines (white 
arrows) are indicative of refractory forsterites with very low Fe- and high Ca, Al-concentrations. The mesostasis 
(mes) in the CL-image is very bright due to the abundant presence of feldspar. Inset b. shows the inclusion in a 
BO chondrule olivine. The texture and composition of this inclusion is identical to the mesostasis. Clinopyroxene 
shows sector zoning and [110]-cleavage (see close-up in inset c). White arrows in the center of the host object as 
well as the BO chondrule point at porosities. 

 
The pyroxenes are clinopyroxenes and are always zoned, with sometimes textbook-like 

developed sector zoning (Fig. 4.2). The oxides SiO2 and MgO have higher concentrations in 

the pyroxene cores and lower concentrations at the rims (SiO2-core-rim: 53.5–48.1 wt.%; MgOcore-

rim: 21.1–16.3 wt.%). Inverse to this zonation, Al2O3, CaO, Cr2O3 and TiO2 are depleted in the 

cores and enriched at the rims (Al2O3-core-rim: 3.2–10.2 wt.%; CaOcore-rim: 19.0–20.5 wt.%; 

Cr2O3-core-rim: 1.0–1.6 wt.%; TiO2-core-rim: 0.4–1.4 wt.%). FeO (~1.9 wt.%) and MnO (~0.2 wt.%) 

do not show any zonation. The chemical compositions of other pyroxenes with less developed 

zonations range between the two extremes of the pyroxene. All pyroxenes have a fassaite 

component with Al2O3 ranging between 2.9 and 10.2 wt.%. The FeO-concentration in these is 

low, between 1.8 and 2.0 wt.%.  

The fine-crystalline material in the host object’s mesostasis and the mesostasis of the BO 

chondrule are compositionally identical: both are high in SiO2 (51 wt.%), Al2O3 (22 wt.%), 

CaO (14 wt.%), and low in MgO (7 wt.%) and FeO (2 wt.%). 
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a

a

c
b

c

50 µm300 µm

b



4. An unusual compound object in Y-793408 
 

 

 71 

Table 4.1: Representative mineral element compositions. 

 

‘Host object’ is the object surrounding the barred olivine chondrule. Ol: olivine; inc: inclusion; CL-OL: 
cathodoluminescence active olivine; por Px: porphyritic pyroxene crystals in the host object; mesA: mesostasis 
in the host object; mesA3: mean from 55 points; fc Px: fine-crystalline pyroxene in mesA; fc Fsp: fine-crystalline 
feldspar in mesB; Spl: spinel; mesB: BO mesostasis; mesB2: mean from 29 points; mesB4: mean from 17 points 

 

 

 

 

 

 

 

 

Fig. 4.3: BSE image enlargement of BO 
chondrule mesostasis. Mesostases in BO 
chondrule and host object appear to be 
petrographically and chemically identical. 

 

4.3.3. Silica is quartz in the BO mesostasis and cristobalite in the host object’s mesostasis 

The silica polymorphs in the fine-crystalline mesostases of BO chondrule and host object are 

different – despite otherwise almost identical petrographic and petrologic characteristics of 

both mesostases. The silica in the BO chondrule is quartz, while the silica in the host object is 

cristobalite. Representative µ-Raman spectra of the silica polymorphs in the respective 

mesostases are displayed in Fig. 4.4. 

 

 

 

Host Object
Ol-1 Ol-1 inc in Ol-1 Ol Ol Ol rim Ol core CL-OL CL-OL por Px por Px por Px rimpor Px core fc Px fc Fsp mesA mesA3

SiO2 41.23 41.94 38.90 41.60 42.16 41.26 42.61 41.97 42.10 50.26 48.42 48.14 53.45 54.10 49.58 51.58 51.32
TiO2 <d.l. 0.05 1.72 <d.l. <d.l. 0.03 <d.l. <d.l. <d.l. 0.98 1.05 1.37 0.44 1.14 0.24 1.64 0.74
Al2O3 0.04 0.17 24.77 0.10 0.05 0.05 0.04 0.17 0.20 7.68 8.84 10.22 3.19 6.17 30.42 20.55 22.57
Cr2O3 0.07 0.14 0.47 0.13 0.12 0.30 0.16 0.05 0.08 1.58 1.72 1.63 1.00 0.67 <d.l. 0.37 0.27
FeO 6.62 1.05 0.36 3.38 0.87 8.27 0.81 0.19 0.19 1.77 1.85 1.86 1.91 7.37 0.47 3.28 2.60
MnO 0.05 <d.l. <d.l. 0.03 0.03 <d.l. <d.l. <d.l. 0.04 0.10 0.21 0.22 0.14 0.41 <d.l. 0.20 0.17
MgO 51.72 56.00 8.83 54.05 56.12 49.85 56.62 56.68 56.50 17.01 16.78 16.32 21.10 21.62 1.00 7.08 6.30
CaO 0.11 0.65 25.07 0.49 0.56 0.30 0.41 0.88 0.76 20.60 20.85 20.47 18.99 9.79 16.40 13.63 14.27
Na2O <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 0.15 2.02 0.63 1.49
K2O 0.04 <d.l. <d.l. <d.l. <d.l. <d.l. 0.05
Total 99.93 100.05 100.16 99.83 99.94 100.27 100.68 99.97 99.94 100.02 99.75 100.28 100.26 101.43 100.20 98.97 99.74

Barred Olivine Chondrule
Ol Ol Ol rim Ol core Ol rim Ol core inc in Ol inc in Ol Spl  fc Px fc Fsp fc Silica mesB2 mesB4

SiO2 41.23 41.39 41.09 41.11 41.26 41.92 50.44 50.18 1.13 52.47 49.15 92.05 51.65 53.58
TiO2 <d.l. 0.05 0.03 <d.l. <d.l. <d.l. 1.16 0.48 0.49 2.24 0.37 0.50 0.91 0.53
Al2O3 0.10 0.03 0.09 0.07 0.07 0.08 21.41 20.86 51.16 3.53 29.81 2.89 21.11 23.08
Cr2O3 0.26 0.14 0.18 0.21 0.08 0.19 0.50 0.38 14.09 1.54 0.12 <d.l. 0.35 0.20
FeO 4.33 7.34 4.48 3.08 5.45 2.70 0.74 2.22 13.96 5.12 0.49 0.43 2.20 1.11
MnO 0.11 0.15 0.09 0.05 0.16 0.08 <d.l. 0.09 0.13 0.37 0.05 <d.l. 0.10 0.05
MgO 53.24 51.42 53.08 54.18 52.33 54.63 3.96 10.01 17.21 17.42 1.18 0.74 7.16 5.65
CaO 0.33 0.29 0.27 0.43 0.20 0.41 15.20 12.28 0.30 18.47 16.30 2.57 14.82 13.91
Na2O <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 5.67 2.06 <d.l. 0.08 2.57 0.32 0.81 1.77
K2O <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l.
Total 99.60 100.79 99.30 99.13 99.57 100.03 99.09 98.62 98.50 101.24 100.06 99.54 99.13 99.91
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4.3.4. Mineral O-isotope compositions 

We measured the O-isotope compositions of the mineral phases in the compound object and 

three additional chondrules (Table 4.2; cf. Fig. 4.1). Figure 4.5a displays the results from the 

compound object. The δ17O compositions of the BO chondrule olivines are systematically 

shifted to lighter values by – on average – 0.8 ‰, and compared to the individual olivine grains 

in the host object. The porphyritic pyroxenes in the host object are lighter than all olivines in 

the host object, in both δ17O and δ18O, and by – on average – about 1 ‰. Both mesostases span 

a surprisingly large range, although most analyses fall roughly in between the olivine and 

pyroxene compositions of the host object.  

The O-isotope compositions of all minerals in the compound object are similar or slightly 

shifted to lighter compositions when compared to ordinary chondrite bulk O-isotope 

compositions. The opposite is observed for the O-isotope compositions of all minerals in the 

three other chondrules studied: all of these are shifted to slightly heavier compositions when 

compared to ordinary chondrite bulk O-isotope compositions. However, within the error these 

are almost identical. The olivines in the three other chondrules are always lighter by a few 

permil than the pyroxenes, while the mesostasis has a roughly similar composition as pyroxene. 

This is a similar pattern as in the compound object. One olivine grain in chondrule 6 has a very 

light composition of -6.49 ‰ in δ17O and -6.71 ‰ in δ18O (inset in Fig. 4.5b).  

 

Fig. 4.5: Representative Raman spectra of SiO2 phases in the host object’s mesostasis and the BO mesostasis, 
identified as cristobalite and quartz, respectively. For reference spectra of alpha-quartz, the reader is referred to 
Scott and Porto (1967), Etchepare et al. (1974), and Nasdala et al. (2004) and for cristobalite to Etchepare et al. 
(1978). Asterisks mark Raman bands originating from laser scattering of adjacent feldspar and clinopyroxene 
grains. 
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Fig. 4.6: a. Mineral O-isotope compositions of the compound object. b. Mineral O-isotope compositions of the 3 
other chondrules (cf. Fig. 4.1). The blue dot in the inset represents one olivine grain in chondrule 6, with 
significantly lighter O-isotope composition than all other studied mineral grains. Grey dots in the inset represent 
all measured chondrule mineral values. Grey dots in a. are the data from the 3 other chondrules, and grey dots in 
b. are the data from the compound object. Black dots represent a selection of ordinary chondrite bulk O-isotope 
compositions taken from MetBase (2017). Bulk Y-793408 (2.52‰ in δ17O and 3.87‰ in δ18O) was taken from 
Kimura et al. (2002). TFL: terrestrial fractionation line; CCAM: carbonaceous chondrite anhydrous mixing line 
(cf. Young and Russell, 1998; Kita et al., 2008) 
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Table 4.2: O-isotope composition of chondrule and host object minerals. 

 
All data given in ‰ and relative to the SMOW standard. 

Phase Location Point δ18O 2 s.e. δ17O 2 s.e.
olivine Host-obj 1 6.26 0.29 4.93 0.39
olivine Host-obj 2 4.64 0.29 3.14 0.43
olivine Host-obj 3 4.97 0.29 3.01 0.40
olivine Host-obj 4 5.92 0.29 4.19 0.39
olivine Host-obj 5 6.63 0.29 4.26 0.41
olivine Host-obj 6 5.14 0.29 3.44 0.41
olivine Host-obj 7 4.65 0.29 3.06 0.46
olivine Host-obj 8 5.31 0.29 2.49 0.45
olivine Host-obj 9 6.32 0.29 3.07 0.44
olivine Host-obj 10 4.43 0.29 1.82 0.53
olivine Host-obj 11 7.32 0.29 4.78 0.39
olivine Host-obj 12 4.81 0.29 3.23 0.45
olivine Host-obj 13 4.80 0.29 2.96 0.43
olivine Host-obj 14 5.07 0.29 2.44 0.45
olivine Host-obj 15 5.75 0.29 3.93 0.39
olivine Host-obj 16 3.84 0.29 2.78 0.47
pyroxene Host-obj 17 3.85 0.54 2.31 0.90
pyroxene Host-obj 18 4.25 0.54 2.60 0.89
pyroxene Host-obj 19 4.32 0.54 4.43 0.86
pyroxene Host-obj 20 4.26 0.54 1.90 0.97
pyroxene Host-obj 21 4.58 0.54 1.97 0.97
pyroxene Host-obj 22 5.77 0.54 3.09 0.89
pyroxene Host-obj 23 5.16 0.54 2.25 0.94
pyroxene Host-obj 24 4.11 0.54 1.89 0.94
pyroxene Host-obj 25 4.28 0.54 2.58 0.93
pyroxene Host-obj 26 4.09 0.54 3.51 0.88
pyroxene 27 5.77 0.54 3.93 0.88
mesostasis Host-obj 39 1.20 0.48 -0.07 2.13
mesostasis Host-obj 40 3.22 0.29 1.70 0.58
mesostasis Host-obj 46 5.04 0.11 3.03 0.68
mesostasis Host-obj 47 4.53 0.11 3.79 0.59
mesostasis Host-obj 48 3.82 0.11 2.93 0.66
mesostasis Host-obj 49 5.78 0.10 3.08 0.67
mesostasis Host-obj 50 7.68 0.09 7.54 0.58
olivine BO 28 5.51 0.29 1.57 0.56
olivine BO 29 4.87 0.29 2.79 0.48
olivine BO 30 5.72 0.29 2.34 0.47
olivine BO 31 5.58 0.29 2.22 0.49
olivine BO 32 6.04 0.29 3.44 0.42
olivine BO 33 6.02 0.29 2.55 0.44
olivine BO 34 4.62 0.29 2.41 0.43
olivine BO 35 5.19 0.29 3.06 0.41
mesostasis BO 36 2.84 0.29 1.70 0.64
mesostasis BO 37 4.98 0.28 3.03 0.44
mesostasis BO 38 5.92 0.28 4.31 0.40
pyroxene chd 6 51 5.32 0.83 4.14 0.98
pyroxene chd 6 52 5.15 0.83 3.28 1.08
olivine chd 6 53 -6.49 0.81 -6.71 0.92
olivine chd 6 54 4.54 0.81 3.83 0.95
pyroxene chd 6 55 5.68 0.82 4.66 0.97
mesostasis chd 6 56 5.23 0.81 5.19 0.93
mesostasis chd 6 57 3.87 0.82 4.58 0.95
olivine chd 21 58 0.50 1.81 1.67 1.11
olivine chd 21 59 1.31 0.87 3.08 0.96
olivine chd 21 60 0.93 0.95 2.28 0.99
pyroxene chd 21 61 4.44 0.85 3.31 1.10
pyroxene chd 21 62 3.90 1.16 2.93 1.33
pyroxene chd 21 63 2.19 0.84 2.14 1.20
mesostasis chd 21 64 3.43 0.82 4.70 0.94
mesostasis chd 21 65 4.25 0.82 5.05 0.94
olivine chd x 66 2.79 0.82 0.72 3.89
olivine chd x 67 3.22 0.82 2.35 1.00
pyroxene chd x 68 3.60 6.75 3.59 1.00
pyroxene chd x 69 5.67 0.82 5.13 0.95
mesostasis chd x 70 6.96 0.81 7.30 0.93
mesostasis chd x 71 6.43 0.81 6.10 0.93
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4.4. Discussion 

Unusual objects, such as xenolithic clasts are rare and highly diverse constituents of ordinary 

chondrites (e.g., Bischoff et al., 2006, 2019). Their unusual and, in cases, unique properties 

often prohibit assigning these to known formation processes and places of origin. This means, 

studying these objects allows insights to processes and mechanisms in the early solar system 

that are otherwise concealed. The compound object we studied here is particularly interesting, 

as it appears to be of a new type. To our knowledge, no similar large, mesostasis- and 

refractory-rich object, hosting an intact BO inclusion, has been described before. In the 

following, we discuss the characteristics, origin and evolution of the Y-793408 compound 

object, and compare it to other rare and unusual objects in chondrites, in particular to 

macrochondrules and impact melt clasts. 

 

4.4.1. Mineralogy, structure and petrography of the Y-793408 compound object 

The compound object is a fragment and must have originally been significantly larger. Based 

on its shape, it was likely round and up to twice its current size, with an original diameter of 

~5 mm. As both, macrochondrules (Weyrauch and Bischoff, 2012) and xenolithic clasts 

(Bridges and Hutchison, 1997) are frequently fragmented, the broken nature of the compound 

object is no indication of its origin.  

The occurrence of an intact barred olivine chondrule found inside the compound object is 

particularly remarkable and distinctive. An equally rare clast hosting a barred olivine chondrule 

was found in the Y-793241 (L6) chondrite (Prinz et al., 1984). However, this clast has a 

Brachina-like, Ca,Al-poor mineralogy with no individual, large pyroxene or olivine grains and 

is therefore very different from the compound object studied here. Sokol et al. (2007) reported 

large (3 mm) clasts in the very primitive Adrar 003 LL(L)3 chondrite, with some of them 

containing intact BO chondrules. In contrast to their host meteorite, these clasts are strongly 

metamorphosed and therefore clearly xenolithic. The original textures and compositions of the 

fragments were largely homogenised during thermal metamorphism on their parent body. To 

our knowledge, these are the only other clasts hosting BO chondrules reported in the literature. 

However, these are otherwise very different from the compound object studied here, making 

the compound object so far unique.  

To retain its original BO texture, the chondrule in the compound object must have been in a 

solid state when it was incorporated into its molten host. We suggest two different formation 
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scenarios: (i) the compound object formed in the solar nebula, when the molten host object 

collided with a BO chondrule. This scenario then constrains the relative particle velocities and 

particle temperatures, i.e., the collision velocity could not have been high, as otherwise the BO 

chondrule would not have gotten stuck inside the host object (cf. Arakawa and Nakamoto, 

2016, 2019; Bogdan et al., 2019). Bogdan et al. (2019) found experimentally that colliding 

particles at low velocities (<1 m/s) can fully merge and homogenise, thereby forming 

macrochondrules. We suggest that the compound object studied here could then represent an 

intermediate stage between compound and macrochondrule formation. According to the 

findings of Bogdan et al. (2019), the host object and BO chondrule might have collided with 

an approximate relative velocity below 1 m/s and at a temperature above 1200ºC.  

Alternatively, (ii) the host object could represent an impact melt that incorporated variable 

amounts of clastic debris, produced during the impact or collision. The BO chondrule would 

then represent a piece of such unmelted debris. This scenario is supported by chondrules that 

occasionally occur as relicts in impact melts, and which were incorporated together with other 

clasts of the target rock (see Fig. 7a of Bischoff et al., 2019 or Fig. 4b in Morlok et al., 2017 

from the Chelyabinsk melt lithology). However, the large sizes of the individual free-floating 

olivine grains are atypical when compared to impact melt clast textures described in the 

literature, which are usually microporphyritic (e.g., Lunning et al., 2016). It is rather likely that 

the free-floating olivine grains in the host object are remnants of one or more other chondrules 

that were added to the host object with which the BO chondrule collided.  

Therefore, the first scenario seems more likely, and we suggest that the initial host object was 

a rare, but not unusual large (macro)chondrule, dominated by significant amounts of 

mesostasis-like material. We then suggest that the molten host object (mesostasis melting 

point: ~1100–1200ºC at 1 atm; Anderson, 1915) collided with other chondrules at ambient 

temperatures slightly below the olivine melting point (forsterite: 1800ºC at 1 atm; Kirkpatrick 

et al., 1983). Chondrules trapped in the host object would then dissolve and their olivines would 

be scattered throughout the host object. The solid olivine shell surrounding the BO chondrule 

could have protected this chondrule from dissolving. However, openings in this shell would 

have allowed exchange of mesostasis material between the host object and the BO chondrule. 

The identical compositions of mesostasis in the BO chondrule and the host object support 

material exchange between both mesostases. Alternatively, the homogeneity of BO and host 

object mesostases is a primary feature. In this case, both mesostases formed at the same time, 
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from the same precursor material and in the same location, thus resulting in the observed 

chemical similarity. 

The free-floating, large, euhedral pyroxene crystals are located at the borders of the host object, 

and, to a smaller extent, also on the surfaces of the free-floating olivines and the BO chondrule. 

These sites likely acted as nucleation points of the pyroxenes. The unusually high Al and Ti 

concentrations in the pyroxenes support in-situ crystallisation from the Al-, Ti-rich host 

chondrule melt (see Table 4.1). Pyroxenes have crystallisation temperatures in between olivine 

and mesostasis, around 1550°C (at 1 atm; Kirkpatrick et al., 1983). Their large sizes indicate 

that the compound object was exposed to this temperature for a prolonged time, before it was 

quenched and the mesostasis formed. This would perfectly agree with the aforementioned 

scenario in which chondrules were added to, or in combination constituted the initial host 

object. The chondrules were incorporated and dissolved slightly below the olivine melting 

point, i.e., at temperatures around 1550ºC. This temperature pertained for some time after or 

during ongoing collisions to allow pyroxene crystallisation and, possibly, material exchange 

between the host object and BO chondrule mesostases. This temperature is also in good 

agreement with the minimum temperature required to form such objects in experiments (i.e., > 

1200°C for macrochondrule formation; Bogdan et al., 2019). 

The mesostases in the host object and the BO chondrule have different silica polymorphs: 

alpha-quartz in the BO chondrule and cristobalite in the host object. Silica is a common, albeit 

not a frequent constituent of OC chondrules and clasts in OC (e.g. Krot and Wasson, 1994; 

Hezel et al. 2006, and references therein). It usually occurs as tridymite and cristobalite, 

whereas quartz is rare. The presence of the high-temperature SiO2 polymorphs in chondrules 

is typically interpreted to reflect fast cooling (e.g., Hezel et al., 2006,2003). The cristobalite in 

the host object might therefore represent fast cooling. The fast temperature drop requires a 

sudden cool surrounding, as is typical for the fast temperature drop after the chondrule high-T 

formation event. Alternatively, the host object’s mesostasis might have been quenched by the 

BO chondrule, if the BO chondrule was significantly cooler than the host object during their 

collision. In this case, the mesostases could not have exchanged material between host object 

and BO chondrule, nor could the pyroxenes have crystallised on the BO olivine surfaces (cf. 

Fig. 4.2). We therefore propose that the host object and the BO chondrule had similar 

temperatures when they collided, i.e., around 1550°C, as indicates above. The cristobalite in 

the host object likely formed during the sudden and typical temperature drop shortly after 
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chondrule formation. The olivine shell of the BO chondrule might have slowed cooling of the 

BO chondrule mesostasis, in which then silica was transformed into alpha-quartz.   

 

4.4.2. O-isotope composition of the compound object 

The oxygen isotope compositions of the phases in the compound object plot mostly in the field 

of ordinary chondrites and their chondrules (Fig. 4.5a; e.g., Clayton et al., 1991; Scott and Krot, 

2014). A rough estimate of the bulk O-isotope composition of the compound object (using 

modal recombination) is ~4.9 in δ18O and ~2.9 in δ17O. This is consistent with an OC origin of 

the compound object, while a xenolithic origin is unlikely.  

The compound object’s olivines are 18O-enriched compared to olivines in three additional 

chondrules measured in Y-793408. The same is true for all phases in the compound object, 

when comparing these to the whole rock O-isotope composition of Y-793408 (black square in 

Fig. 4.5): the δ18O of all phases in the compound object are shifted towards heavier 

compositions by up to ~3‰. However, their δ17O are – within error – mostly identical to bulk 

Y-793408, thereby indicating some mass-independent O-isotope fractionation of the phases in 

the compound object.  

The mesostases in the BO chondrule and host object are compositionally identical and rich in 

refractory elements (Al, Ca, Ti). Refractory material was obviously a major part of the 

precursor objects that formed the host chondrule. However, only small amounts of CAI 

material could have been added to the compound object as the oxygen isotope composition of 

the mesostases plot mostly in the field of OC, and not towards 16O-rich compositions, indicative 

of CAIs (e.g., Scott and Krot, 2014, and references therein). The large amounts of refractory 

material contributing to the mesostasis likely originated from the same source as all of the 

material that formed the object studied. However, as some data plot below the terrestrial 

fractionation line, minor contributions of 16O-rich (e.g., CAI) material cannot be excluded.  

The O-isotope composition of the host object mesostasis has a large scatter, bracketed by the 

lightest and heaviest O-isotope compositions of all the phases. As these compositions plot on 

a non-mass-dependent trend, these likely reflect some exchange of material with the 

surrounding gas (e.g., Tissandier et al., 2002; Hezel et al., 2003; Krot et al., 2004; Libourel et 

al., 2006; Jacquet et al., 2012; Di Rocco and Pack, 2015; Friend et al., 2016; Metzler and Pack, 

2016; Soulié et al., 2017; Ebel et al., 2018; Barosch et al., 2019), i.e., an initially lighter material 
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exchanged O-isotopes with a heavier gas, e.g., heavy water as found in cosmic symplectites 

(Sakamoto et al., 2007).  

 

4.4.3. Origin of Ca,Al-rich olivine cores 

The Ca,Al-, and Fe-concentration of a few forsteritic olivine cores in the compound object are 

typical for RF and occur as free-floating grains next to other individual, but apparently non-

refractory olivines. The O-isotope composition of these refractory olivines are, however, 

similar to typical OC chondrule olivines, and thereby unlike the 16O-enriched isotope 

compositions of RF (D17O between -4 and -10‰; Weinbruch et al., 2000; Pack et al., 2004, 

2005). It has been proposed that RF formed by fractional crystallisation of refractory condensed 

melts that experienced gas-melt interactions (Pack et al., 2005). It is since then generally 

assumed that RF represent 16O-rich relict olivine that crystallised early in the thermal history 

of chondrules (Pack et al., 2004) or were inherited from chondrule precursors (Jones et al., 

2004). However, it has been shown recently that 16O-rich relict chondrule olivine grains are 

rather Ca-Al-Ti poor (Marrocchi et al., 2018), which is inconsistent with the previous idea that 

refractory-enriched grains are relicts (Pack and Palme, 2003; Pack et al., 2004). Further, 

Libourel and Portail (2018) and Marrocchi et al. (2018, 2019) suggest that RF formed together 

with other chondrule olivine grains by epitaxial growth during gas-melt interactions. These RF 

show constant D17O within a single chondrule and between different chondrules, thus reflecting 

interaction with an 16O-poor gas in the chondrule-forming region (Marrocchi et al., 2018). In 

the compound object studied here, the RF do not show 16O-rich isotope compositions. This 

supports our suggestion that all free-floating olivines are in fact remnants of one or more 

chondrules that collided and constituted the macrochondrule with which the BO chondrule 

collided (cf. Section 4.4.1).  

 

4.5. Conclusions 

We found a unique compound object in Y-793408 (H3.2-an) that is composed of at least two 

sub-components: (i) a large host object, likely a mesostasis-rich macrochondrule with 

individual, free floating, large olivine grains in the mesostasis. Some olivines contain 16O-poor, 

forsteritic cores. (ii) A BO chondrule trapped in the macrochondrule. 

We conclude that the compound object is the fragment of a macrochondrule that collided with 

and preserved a BO chondrule. If correct, the object appears to be the first macrochondrule 
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with another object still inside it, and thereby provides the first petrographic evidence that 

compound chondrules and macrochondrules are indeed genetically related, as e.g., suggested 

by Bogdan et al. (2019). The object studied therefore allows new insights into macrochondrule 

formation, their temperature evolution and details of their formation process.  

We suggest that the compound object formed in a nebular setting as follows: first, the 

mesostasis-rich host object formed by collisions and subsequent merging of molten chondrules, 

similar to compound chondrule formation (Weyrauch and Bischoff, 2012; Bogdan et al., 2019). 

The free-floating, large olivines represent disaggregated remnants of other chondrules that 

collided and built the macrochondrule. At least one of these initial chondrules must have 

consisted of large amounts of mesostasis material, in which the other chondrules dissolved and 

thereby disintegrated, which then dispersed their olivine grains throughout the 

macrochondrule. One of the colliding objects was a BO chondrule that got trapped inside the 

host object, i.e., the macrochondrule. The olivines at the BO chondrule’s border likely 

protected the BO chondrule from disintegration. The mesostasis of the BO chondrule possibly 

exchanged material with the host object, thereby homogenising both mesostases. During and 

after these low velocity collisions (< 1m/s; Bogdan et al., 2019), the macrochondrule remained 

in a molten state for some time. The temperatures must have been below the forsterite melting 

point, i.e., below 1800°C, at around the pyroxene crystallisation point of 1550ºC (Kirkpatrick 

et al., 1983), during which the pyroxenes at the border of the host object and some olivines 

formed. The mesostasis was then quenched, preserving cristobalite in the host object. The BO 

chondrule mesostasis might have cooled a little slower, maybe due to thermal insulation from 

the olivine shell, thereby allowing a reconstructive transformation of cristobalite to quartz. 

A few of the free-floating olivine grains are RF and likely formed from gas-melt interaction 

with an 16O-poor gas (Marrocchi et al., 2018, 2019; Libourel and Portail, 2018), rather than 

being relict olivines (e.g., Jones et al., 2004). 
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Abstract 

The study of chondritic meteorites and their components allows us to understand processes and 

conditions in the protoplanetary disk. Chondrites with high and about equal proportions of 

chondrules and matrix are ideal candidates to not only study the formation conditions of 

chondrules, but also the relationship between these two major components. An important 

question is whether these formed in the same or in separate reservoirs in the protoplanetary 

disk. So far, such studies have been mainly restricted to carbonaceous chondrites. We here 

expand these studies to the K (Kakangari-like) chondrite grouplet. These have various 

distinctive properties, but the abundance of major components – chondrules and matrix – is 

similar to other primitive meteorites. We obtained a comprehensive petrographic and chemical 

dataset of Kakangari and Lewis Cliff 87232 chondrules and matrix. Chondrules in Kakangari 

show a large compositional scatter, supporting material addition to chondrules during their 

formation. Contrary to almost all other chondrite groups, the majority of Kakangari chondrules 

are not mineralogically zoned. However, Kakangari chondrules were likely initially zoned, but 

then lost this zonation during chondrule remelting and fragmentation. Average compositions 

of bulk chondrules, matrix and bulk Kakangari are identical and approximately solar for Mg/Si. 

This might indicate the formation of chondrules and matrix from a common reservoir and 

would agree with findings from carbonaceous and Rumuruti chondrites: chondrules and matrix 

in most chondrite groups were not transported through the protoplanetary disk and then mixed 

together. Rather, these major components are genetically related to each other and formed in 

the same reservoir.  
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5.1. Introduction 

The K grouplet comprises four chondrites (Kakangari, Lewis Cliff 87232, NWA 10085 and – 

with minor taxonomic uncertainties; cf. Prinz et al., 1991 – Lea County 002). They are named 

after Kakangari, the first and largest K chondrite fall. Previous studies identified a combination 

of properties that define this new grouplet, as Kakangari was so different from any of the other 

major chondrite classes (Weisberg et al., 1996). Based on its chemical composition, Kakangari 

was first recognised as a “unique” chondrite by Graham and Hutchison (1974), later confirmed 

by Davis et al. (1977). With relatively high fractions of matrix (33–77 vol%) and chondrules 

(19–41 vol%), K chondrites resemble carbonaceous chondrites (CC; Weisberg et al., 1996). 

The high metal contents (6–10 vol%) are more similar to the metal fractions of H-group 

ordinary chondrites (OC).  

Chondrules are mm-sized silicate spherules that formed during brief high-temperature events. 

It has only recently been recognised that most chondrules (> 80%) in carbonaceous and 

Rumuruti (R) chondrites are mineralogically zoned, with olivine in the core and low-Ca 

pyroxene at the border of these chondrules (Friend et al., 2016; Barosch et al., 2020). The 

number of mineralogically zoned chondrules is significantly lower in OC and enstatite 

chondrites (EC; about 30–40%; Barosch et al., 2019, 2020). Mineralogically zoned chondrule 

textures are attributed to open system behaviour during chondrule formation, when chondrule 

olivine reacted with gaseous SiO, thereby forming the low-Ca pyroxene rims (e.g., Tissandier 

et al., 2002; Libourel et al., 2006; Ebel et al., 2018, and references therein). Most of the type I 

chondrules, defined as porphyritic chondrules with low FeO-olivine (Fo > 90), are 

mineralogically zoned, while mineralogical zoning is less common in type II chondrules (Fo < 

90). Interestingly, type II chondrules seem to be either entirely absent in Kakangari (Nehru et 

al., 1986; Weisberg et al., 1996; Genge and Grady, 1998) or could be missing as a consequence 

of FeO reduction in the nebula, according to Berlin (2009) who studied 20 Kakangari 

chondrules in detail. Most chondrules have porphyritic textures, are pyroxene and olivine-rich, 

contain patches of mesostasis, metal beads, troilite, and sometimes silica and/or Cr-spinel. 

The abundant fine-grained matrix in Kakangari has been investigated by Brearley (1989) and 

Berlin (2009). Scott and Krot (2005, and references therein) pointed out that the reduced 

mineralogy of the Kakangari matrix is unusual compared to other chondrite matrices. Most 

interestingly, these authors found that the Kakangari matrix composition is surprisingly similar 

to the average chondrule composition in K chondrites. The fine-grained Kakangari matrix is 



5. Chondrules and matrix in Kakangari 
 

 

 89 

dominated by enstatite (~50 vol%) and magnesian olivine (~20 vol%), with lower amounts of 

high-albite, anorthite, troilite, Fe,Ni-metal, Cr-spinel, as well as secondary ferrihydrite and 

chlorapatite (Brearley, 1989; Berlin, 2009). 

The mechanism of chondrule and matrix formation is not yet understood, although there is no 

shortage of proposed hypotheses (Russell et al., 2018, and references therein). A key question 

is whether chondrules and matrix originated from a single common reservoir, or multiple 

separate reservoirs in the solar nebula. In recent years, the chondrule-matrix complementarity 

has been recognised as a key characteristic of many CC and R chondrites (e.g., Hezel et al., 

2018a, and references therein). A large number of element ratios in these bulk meteorites, but 

also the few isotope ratios studied so far (Becker et al., 2015; Budde et al., 2016a, b), are close 

to the respective CI chondrite ratios, while their ratios in chondrules and matrix are different. 

The most likely – but not universally accepted (cf. Zanda et al., 2018) – interpretation of these 

complementarities is that chondrules and matrix in these meteorites formed from single 

reservoirs of near-solar composition. This interpretation, or its falsification, is an important 

constraint for models of chondrule formation and parent body accretion. Chondrule-matrix 

complementarities have not yet been demonstrated for classes other than CC and R chondrites 

(Hezel et al., 2018a). Ordinary chondrites present difficulties for demonstrating 

complementary chemical compositions of matrix and chondrules, as the fraction of matrix is 

small and important element ratios (e.g., Mg/Si) are non-solar in bulk OC. 

Various authors have proposed that Kakangari chondrules and matrix formed in close spatial 

proximity in the protoplanetary disk, e.g., based on compositional similarities between both 

components (Brearley, 1989; Scott and Krot, 2005; Berlin, 2009). This is supported by 

Nagashima et al. (2015), who observed O-isotope homogeneity between chondrules and most 

parts of matrix, and proposed that both sampled a common O-isotope reservoir. Kakangari 

therefore seems to be an interesting candidate to study chondrule-matrix complementarity. 

Both components are abundant and bulk Kakangari is close to solar for some element ratios 

(e.g., CI-normalised Mg/Si = Mg/Si/CI = 0.964, Mason and Wiik, 1966; Palme et al., 2014). 

Kakangari was described as a ‘pristine’ meteorite by various authors (e.g., Brearley, 1989; 

Nuth et al., 2005; Scott and Krot, 2005). However, recent evidence presented by Berlin (2009) 

indicates that Kakangari experienced secondary alteration and metamorphism on its parent 

body. Large apatite grains, Ni-zoning profiles in olivine and narrow ranges of olivine 

compositions, as well as narrow ranges of MnO contents in olivines point towards a petrologic 

subtype between 3.4 and 3.8 (Berlin, 2009).  
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Only a few K chondrite bulk chondrule compositions and matrix analyses have been reported 

in the literature (ChondriteDB, Hezel et al., 2018b). Also, the abundance of mineralogically 

zoned chondrules in K chondrites is so far unmeasured. Here, we study chondrules and matrix 

in Kakangari (K3) and Lewis Cliff (LEW) 87232 (K) sections. We present a comprehensive 

dataset that contains petrographic and chemical data of components in these meteorites. We 

use this dataset to study the origin and formation of chondrule textures, bulk chondrule and 

matrix compositions and chondrule-matrix complementarities in K grouplet meteorites.  

 

5.2. Methods 

All samples were prepared with diamond polishing compounds and then analysed with an 

electron probe microanalyzer (EPMA) using element mapping and spot analyses. Element 

maps of four Kakangari sections and one LEW 87232 section were produced with the 

CAMECA SX-100 at the American Museum of Natural History (AMNH), New York. BSE 

images (Fig. 5.1) and element maps were obtained by rastering the stage under a stationary 

electron beam in 512x512 pixel frames with a resolution of 4 µm/px. We used a 1 µm focussed 

beam with a 40 nA beam current at 15 kV accelerating voltage. The dwell time was set to 15 

ms. Contiguous X-ray frames were stitched together, creating single element maps of entire 

chondrite sections for Al, Ca, Fe, Mg, Na, Ni, P, S, Si and Ti. In addition, we created phase 

maps of all samples using the PHAPS program (Hezel, 2010). A phase map shows every 

mineral phase in false-colour. This was used for visual identification of chondrule textures and 

mineral distributions throughout the samples.  

Quantitative data of chondrule phases and matrix minerals were collected with the EPMA at 

AMNH (Kakangari) and the JEOL JXA-8900 RL Superprobe at the Institute of Geology and 

Mineralogy, University of Cologne, Germany (LEW 87232). For chondrule phases, we used a 

1 µm focussed beam and a 20 nA beam current at 15 kV accelerating voltage for Kakangari, 

and at 20 kV for LEW 87232. Well-characterised reference materials were used for calibration 

and ZAF corrections were applied (Bence and Albee, 1968). Matrix material was analysed in 

two Kakangari sections (3956-t1-ps1A, and -ps2A) with the same settings (15 kV, 20 nA), but 

with a 20 µm defocused beam. Spot analyses were randomly placed and opaque phases (metals, 

sulphides) were not avoided. We excluded analyses with totals below 80 wt.% and above 105 

wt.%. Low totals likely result from holes and cracks in the thin sections, while high totals are 

usually due to abundant Fe, Ni-rich opaque phases, for which element contents were 
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recalculated as oxides. Bulk chondrule compositions were obtained from mineral spot analyses 

with modal recombination, using the equation:  

!"#$ = 	 '	(	)	*'	(	)    eq. 1 

c = phase abundance; r = phase density; c = element concentration 

Following the protocol of Ebel et al. (2016), all samples were segmented for statistical 

evaluation (Fig. 5.2). Element maps, RGB composite maps and phase maps were used to 

identify all components in the samples. These were then outlined and categorised, i.e., 

classified into one of several categories: porphyritic chondrules, nonporphyritic chondrules, 

chondrule and silicate fragments, opaques (metals & sulphides), CAI-like material, AOAs, 

chlorapatite and matrix (Table 5.1). The components of each category were subsequently 

characterised for statistical evaluation, e.g., object abundances, sizes and average 

compositions. As segmentation was done by hand, outlining extremely small particles proved 

challenging. Silicate particles sized ~15x15 µm and below were therefore collectively 

categorised as matrix. While we were also unable to outline opaque phases of the 

aforementioned size, these particles were easily identified in the RGB composite- and phase 

maps. They were initially categorised as matrix. In an additional step, the abundance of these 

opaque particles in the matrix was determined, subtracted from the total matrix abundance and 

then reclassified into the correct category.  

We use bulk K chondrite compositions reported in the literature, however, little data exists. For 

example, Kakangari bulk chemistry was determined by neutron activation analysis (INAA; 

Weisberg et al., 1996), hence, no Si and Ti concentrations were reported. We therefore use the 

wet chemistry data from Mason and Wiik (1966) for Kakangari. However, only INAA bulk 

data are available for LEW 87232 (Weisberg et al., 1996). K chondrite material is highly 

limited, which is why we approximated bulk chondrite compositions using modal 

recombination (eq. 1; using data from Tables 5.1 & 5.4; see appendix). All calculated element 

ratios in Kakangari are within ~10 rel% when compared to the data from Mason and Wiik 

(1966), except for element ratios involving Ti, which might be concentrated in small matrix 

phases such as perovskite that might have been missed. Fe and Ni are also challenging: (i) 

chondrule metal and sulphide contents cannot be determined reliably in 2D sections, as 

demonstrated by e.g., Hezel (2007), Ebel et al. (2009), Hezel and Kießwetter (2010). Therefore, 

all chondrule bulk data reported in this study are silicate-only. However, if only chondrule 

silicates are considered, then we clearly underestimate bulk chondrule Fe-metal contents. This 
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is especially the case for chondrules with opaque rims. (ii) Fe,Ni-rich opaque phases are 

recalculated as oxides in EPMA matrix analyses, leading to artificially high FeO concentrations 

(~10 rel%). These difficulties illustrate the general uncertainties of modal recombination, 

which cannot replace accurate bulk chondrite measurements.  

 

Fig 5.1: BSE image of LEW 87232. 
 

Table 5.1: Modal abundances of Kakangari and LEW 87232 components (area%).     

   
 

Kakangari LEW87232
area studied (mm2) 237.50 54.96

matrix 66.78 53.36
chondrules + fragments (silicates) 22.71 33.68

opaques in matrix 5.43 10.92
opaques in chondrules 4.16 2.05

CAI-like material 0.19 <0.1
AOA 0.16 <0.1

Chlorapatite 0.58 <0.1
Total 100.00 100.00
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Fig. 5.2 (previous page, right): Components in LEW 87232 after the entire section was mapped and segmented 
by outlining every object and particle (cf. Fig. 5.1). Each grayscale represents an object of a different category. 
Component modal abundances are listed in Table 5.1. 
 

5.3. Results 

5.3.1. Abundances and characteristics of components in K chondrites 

We mapped and studied a total area of 238 mm2 in four Kakangari sections: AMNH 3956-1, -

2 and 3956-t1-ps1A, -ps2A. Additionally, we received LEW 87232.14 from the Meteorite 

Working Group with a total area of 55 mm2 (Fig. 5.1, 5.2). Component modal abundances are 

listed in Table 5.1. Matrix is dominant in both samples, with ~67 area% in Kakangari and 53 

area% in LEW 87232. Complete chondrules, fragments and silicate aggregates – often 

interpreted as debris derived from shattered chondrules (cf. Brearley, 1989) – of various sizes 

have significantly lower abundances in Kakangari (23 area%) and LEW 87232 (34 area%). 

Opaque phases in Kakangari are equally abundant in chondrules (4 area%; including chondrule 

opaque rims) and matrix (5 area%), which is less than the reported 16% opaques by Weisberg 

et al. (1996). In LEW 87232, opaques mostly occur in the matrix (11 area%) and to a smaller 

extent in chondrules (2 area%). AOAs (0.16 area%) and fragmented CAI-like material (0.19 

area%; cf. Bischoff and Keil, 1983) were observed in Kakangari, but not in LEW 87232. 

Additionally, the abundance of chlorapatite (0.58 area%) was determined in Kakangari.  

In the following we briefly describe the characteristics of chondrules and potential chondrule 

fragments in K chondrites. Bulk chondrule and matrix compositions will be described 

separately in Section 5.3.2. We refer to Brearley (1989) and Berlin (2009) for a detailed 

description of matrix in Kakangari. 

 

Chondrules 

Many chondrules seem to be incomplete and heavily fragmented. Here, we only describe 

chondrules which are apparently complete, i.e., without major holes and fractures. Potential 

chondrule fragments were excluded from textural analysis and will be described separately. 

The average Kakangari chondrule has an apparent diameter of ~700 µm. Individual chondrule 

diameters range from 200 µm up to ~2.6 mm. LEW 87232 chondrules are generally smaller 

with ~400 µm average diameter. 

We used chondrule phase maps to determine the textural types of 119 Kakangari chondrules 

and 47 LEW 87232 chondrules (Table 5.2). A total of 102 Kakangari chondrules are taken 
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from this study, complemented by 17 intact chondrules from Berlin (2009). Porphyritic textures 

are most common among K chondrite chondrules (Figs. 5.3a, b, 5.4). Kakangari has a high 

portion of porphyritic olivine-pyroxene chondrules (POP, 43%) and about equal amounts of 

porphyritic olivine (PO; with ol/px ≥ 0.9) and porphyritic pyroxene (PP; with ol/px ≤ 0.1) 

chondrules (each 21–22%). Radial pyroxene chondrules (RP; 9%) and agglomeratic 

chondrules (AC) – consisting of fine-grained silicates and abundant metal and sulphide beads 

– are less frequent (5%). The dominant chondrule texture in LEW 87232 is PP (57%), with 

intermediate amounts of POP (30%) and a low fraction of PO textures (9%). A few chondrules 

are AC (4%). Other chondrule textures (e.g., barred olivine, BO chondrules) seem to be absent 

in both meteorites.  

We classify chondrules as mineralogically zoned if olivine is largely concentrated in the 

chondrule cores, while simultaneously these are surrounded by, or poikilitically enclosed in 

low-Ca pyroxene crystals. In Kakangari, 9 out of 119 chondrules (7.5%) meet these criteria 

(Table 5.2, Fig. 5.3c). In contrast, LEW 87232 has a much higher abundance of mineralogically 

zoned chondrules (30%, 14 of 47 chondrules; Fig. 5.3d). Most zoned chondrule cores consist 

of either a single or few large (up to 300 µm-sized), or abundant small (often < 50 µm-sized) 

olivine crystals. The pyroxene rim fractions vary strongly, but often occupy large portions (> 

50 vol%) of zoned chondrules. Large pyroxene crystals frequently poikilitically enclose olivine 

crystals. This can, however, also be observed in unzoned chondrules.  

The average compositions of major chondrule phases, i.e., olivine, low-Ca pyroxene, high-Ca 

pyroxene and mesostasis, are given in Table 5.3. Olivine and low-Ca pyroxene are the 

dominant chondrule minerals in both samples. LEW 87232 chondrules, in particular, are 

dominated by enstatite. The total surface olivine/enstatite ratio is 0.77 for Kakangari 

chondrules, but much lower (0.32) for LEW 87232 chondrules. All porphyritic chondrules in 

both samples are type I (Fo > 90), with average Mg numbers of 93.8 in Kakangari and 97.3 in 

LEW 87232. Olivines are forsteritic with average Fo96.3 in Kakangari and Fo98.8 in LEW 87232, 

while enstatite is on average En93.0 and En97.0, respectively. 

Some chondrules are surrounded by rims with igneous textures. These rims have variable 

thicknesses and are dominated by fine-grained silicates, and frequently contain opaque phases 

(cf. Genge and Grady, 1998). Other chondrules are surrounded by massive or porous opaque 

rims. Igneous textured rims and porous opaque rims often completely enclose chondrules, but 

massive opaque rims only occur as partial rims. Opaque phases are not restricted to the 

chondrule borders, but often also appear as beads inside chondrules. Most chondrules contain 
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at least a few opaque beads. The abundance of opaque phases can be as high as 30 area%. 

Approximately one-third of the Kakangari chondrules are metal-free in 2D sections. 
 

Table 5.2: Frequency of chondrule textural types and zoned chondrules in K chondrites (PP: porphyritic pyroxene, 
PO: porphyritic olivine, POP: porphyritic olivine-pyroxene, RP: radial pyroxene, AC: agglomeratic chondrules).   
 

 

*17 chondrules were taken from Berlin (2009). 
**fragments potentially derived from zoned chondrules (see phase maps in Fig. 5.3e, f). 
 

Inferred chondrule fragments 

Kakangari contains a large number (~1100) of fragments, i.e., fragmented chondrules with 

angular outlines and mineral fragments. Fragment sizes vary greatly: some are larger than 1000 

µm in diameter, but most have diameters of less than 400 µm. Relatively small silicate mineral 

fragments with diameters ranging from ~30–200 µm are abundant. These occur either as 

isolated grains or mineral aggregates composed of typical chondrule phases, e.g., enstatite 

and/or olivine crystals and sometimes chunks of mesostasis-like material. Mineral assemblages 

and chemical compositions of fragments, silicate aggregates and intact chondrules are very 

similar to each other. No fragments of barred olivine chondrules were identified. A number of 

inferred chondrule fragments in Kakangari consist of olivines that are partially surrounded by 

low-Ca pyroxene at their margins. The crystals are truncated by fracture surfaces at their edges. 

They look like pieces of shattered, formerly mineralogically zoned chondrules. Two 

representative fragments are displayed in Fig. 5.3e, f. Kakangari sections contain a total of 21 

of these fragments. Four similar-looking fragments were found in LEW 87232.    

 

Kakangari LEW87232
No. of chd* % No. of chd %

PP 26 21.85 27 57.45
PO 25 21.01 4 8.51

POP 51 42.86 14 29.79
RP 11 9.24 0 0.00
AC 6 5.04 2 4.26

Total 119 47

intact zoned chondrules 9 7.56 14 29.79
zoned chd fragments** 21 4
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Fig. 5.3: Chondrule phase maps using the PHAPS program (Hezel, 2010) show: (a, b) typical chondrules in K 
chondrites, (c, d) representative appearances of mineralogically zoned chondrules in K chondrites, and (e, f) 
potential fragments of mineralogically zoned chondrules in Kakangari. 
 

(c) Kakangari (d) LEW 87232
olivines in chondrule center

low-Ca pyroxene

200 µm 200 µm

200 µm 200 µm

(a) Kakangari (K3) (b) LEW 87232 (K)
typical K-chondrule typical LEW-chondrule

zoned chondrule

Olivine
Low-Ca pyroxene
Mesostasis
Metal
High-Ca pyroxene/Mesostasis

(f) Kakangari(e) Kakangari
zoned chd fragment zoned chd fragment

200 µm200 µm

zoned chondrule 
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Table 5.3: Average composition of major chondrule phases in K chondrites (wt%). 

 

 

 

Fig. 5.4: Textural types of chondrules in Kakangari and LEW 87232. 

 

5.3.2. Bulk chondrule and matrix compositions 

We determined the bulk compositions of 57 chondrules in Kakangari and 22 chondrules in 

LEW 87232 by modal recombination (eq. 1). We further included 20 Kakangari bulk chondrule 

compositions obtained by Berlin (2009) in the University of New Mexico (UNM) sections 559 

and 585. All chondrule bulk compositions are silicate-only. The average Kakangari bulk 

chondrule compositions from this study and from Berlin (2009) – both listed in Table 5.4 – are 

similar. Significant differences (> 10 rel%) are only observed in average Al2O3 contents with 

2.5 (this study) vs. 2.0 wt% (Berlin, 2009) and average CaO contents with 1.8 (this study) vs. 

2.2 wt% (Berlin, 2009). The average composition of LEW 87232 chondrules differs slightly 

from Kakangari. For example, LEW 87232 chondrules have lower average FeO contents in 

their silicate portion (1.8 wt%) compared to Kakangari (4.2 wt%). Simultaneously, LEW 87232 

Kakangari LEW87232
Analyses 219 258 111 209 135 168 70 139
Mineral olivine low-Ca px high-Ca px mesostasis olivine low-Ca px high-Ca px mesostasis
SiO2 42.19 58.08 54.44 64.37 42.11 58.73 54.63 60.69
TiO2 0.02 0.05 0.42 0.42 0.03 0.08 0.57 0.19
Al2O3 0.10 0.41 2.99 17.27 0.08 0.41 3.94 20.31
Cr2O3 0.05 0.53 1.53 0.27 0.08 0.26 1.15 0.12
FeO 3.71 4.63 4.83 2.58 1.24 2.11 1.62 0.93
MnO 0.43 0.47 0.84 0.18 0.21 0.29 0.46 0.07
NiO 0.02 0.03 0.03 0.09 0.01 0.02 0.07 0.05
MgO 53.89 35.31 20.71 3.67 56.20 37.75 20.26 3.54
CaO 0.10 0.87 13.86 4.68 0.03 0.40 17.02 6.06
Na2O 0.03 0.09 0.70 5.53 0.03 0.14 1.12 8.54
Total 100.54 100.47 100.36 99.06 100.02 100.19 100.83 100.51
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chondrules have ~3 wt% higher average SiO2 contents than Kakangari chondrules, indicating 

lower olivine/pyroxene ratios. 

Bulk chondrule compositional variations of major (Mg, Si) and refractory elements (Al, Ca) in 

Kakangari are shown in Fig. 5.5. All element distributions, and in particular the distribution of 

Mg, are unimodal. Chondrules from the study of Berlin (2009) plot in the same, large 

compositional range between 13–31 wt% in Mg and 20–30 wt% in Si, as the present study. 

Table 5.4: Average bulk chondrule and matrix compositions in K chondrites (wt%).

 
 

SE = standard error 
*silicates only  
**Data from 3956-t1-ps1A, and -ps2A sections. 

 

The average Kakangari matrix compositions from 3956-t1-ps1A, and -ps2A sections are 

displayed in Table 5.4. We compare our results to the mean of 125 matrix analyses from 

Kakangari UNM sections 559 and 585 (Table 5.4, Berlin, 2009). The average contents of most 

oxides are similar (MgO, SiO2, Al2O3, NiO, CaO, Na2O, TiO2, Cr2O3, MnO) in both studies. 

FeO contents are ~4 wt% higher in our study. LEW 87232 matrix has higher FeO, NiO, and 

lower MgO, CaO and Cr2O3 contents than Kakangari.  

Kakangari and LEW 87232 bulk chondrule and matrix compositions of the two major elements 

Mg and Si are displayed in Fig. 5.6. The plot shows comparatively large variations in Si and 

Mg concentrations of bulk chondrule and matrix analyses. The average Mg/Si ratio of all 

chondrules in Kakangari is close to CI-chondritic (Mg/Si/CI = 0.98). The same is true for the 

average Mg/Si ratio of the matrix (Mg/Si/CI = 1.03). The Kakangari bulk meteorite 

composition was taken from Mason and Wiik (1966, wet chemistry) and CI data are from 

Palme et al. (2014).  

 

chondrules* matrix
Sample
Analyses 57 bulks SE 22 bulks SE 245 spots SE 342 spots SE 20 bulks 125 spots
SiO2 53.38 0.52 56.22 0.49 34.97 0.28 34.31 0.52 54.10 36.39
TiO2 0.11 0.01 0.10 0.01 0.11 0.01 0.07 0.00 0.10 0.10
Al2O3 2.49 0.14 2.76 0.24 2.60 0.07 2.98 0.13 1.96 3.00
Cr2O3 0.39 0.03 0.26 0.02 0.50 0.13 0.08 0.00 0.43 0.53
FeO 4.21 0.17 1.79 0.08 24.63 0.60 26.80 0.61 4.64 20.49
MnO 0.43 0.01 0.25 0.01 0.33 0.01 0.13 0.00 0.48 0.32
NiO 0.04 0.00 0.02 0.00 1.23 0.05 2.28 0.07 0.02 1.01
MgO 36.67 0.68 35.91 0.72 24.61 0.28 21.80 0.37 35.47 25.80
CaO 1.78 0.11 1.74 0.13 1.24 0.05 0.58 0.05 2.17 1.50
Na2O 0.75 0.06 1.15 0.14 1.22 0.03 1.50 0.04 0.71 1.29
Total 100.25 100.22 91.45 90.54 100.07 90.44

Berlin 2009
bulk chondrules* matrix

Kakangari LEW87232 Kakangari** LEW87232 Kakangari
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Fig. 5.5: Kakangari bulk chondrule compositional variations in major (Mg, Si) and refractory elements (Al, Ca). 
Bulk CV chondrules also show a unimodal distribution and large compositional variations in Mg and Si. CV 
chondrule bulks were taken from the ChondriteDB (129 chondrules, Hezel et al., 2018b). 

 

5.4. Discussion 

5.4.1. Why are zoned chondrules rare in Kakangari, but not in LEW 87232?  

The very low abundance of mineralogically zoned chondrules in Kakangari (7.5%) is 

surprising: (i) zoned chondrule textures are abundant in all chondrites, with previously reported 

>80% zoned chondrules in CC, >40% in OC, and >30% in EC (Friend et al., 2016; Barosch et 

al., 2019, 2020). These studies (and references therein) also showed that mineralogical zonation 

is very common in type I and less frequent in type II chondrules. All Kakangari chondrules 

�� �� �� �� �� �� �� �� ���

�

��

��

��

��

�� (��%)

��
��

��
��

��
��
���

Kakangari chondrules

�� �� �� �� �� �� �� �� ���

�

��

��

�� (��%)

��
��

��
��

��
��
���

Kakangari chondrules

�� �� �� �� �� �� �� �� �� �� �� ���

�

��

��

��

��

��

��

�� (��%)

��
��

��
��

��
��
���

CV chondrules

�� �� �� �� �� �� �� ���

��

��

��

��

�� (��%)

��
��

��
��

��
��
���

CV chondrules

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�

��

��

�� (��%)

��
��

��
��

��
��
���

Kakangari chondrules

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�

��

��

�� (��%)

��
��

��
��

��
��
���

Kakangari chondrules



5. Chondrules and matrix in Kakangari 
 

 

 100 

seem to be type I, but mostly without zonation. Thus, Kakangari is the first and so far only 

meteorite with a very low zoned chondrules abundance. (ii) Kakangari chondrules show similar 

bulk compositional variations as chondrules in other chondrites (Fig. 5.5). The bulk chondrule 

Mg and Si variations are best explained by chondrule open system behaviour, i.e., the reaction 

of chondrule melts with ambient SiO-enriched gas during chondrule crystallisation (e.g., 

Tissandier et al., 2002; Libourel et al., 2006; Ebel et al., 2018, and references therein). Zoned 

chondrules providing textural evidence for this open system interaction are, however, largely 

absent in Kakangari. (iii) Finally, in contrast to Kakangari, LEW 87232 has a significantly 

higher fraction of zoned chondrules (30%).  

Barosch et al. (2020) discuss sectioning effects and their consequences for the fraction of 

mineralogically zoned chondrules. For example, chondrules sectioned through their low-Ca 

pyroxene rims typically appear unzoned in 2D sections. When studied in 3D, zoned chondrule 

fractions are significantly higher in all chondrites. Many chondrules in LEW 87232 are 

relatively small and pyroxene-rich. The most abundant textural type is PP (57%; Table 5.2, 

Fig. 5.4). Similar to EC chondrules, zoned LEW 87232 chondrules have small olivine cores 

and thick low-Ca pyroxene rims (Fig. 5.3d). They might be especially susceptible to sectioning 

effects as there is a high probability that these chondrules are frequently sectioned through their 

thick pyroxene rims. The true 3D abundance of mineralogically zoned chondrules in LEW 

87232 could therefore be significantly higher. We estimate that the 3D zoned chondrule 

fraction in LEW 87232 could be as high as 50% (cf. Barosch et al., 2020). This does, however, 

not necessarily apply to Kakangari chondrules, which are larger and have a lower fraction of 

PP chondrules (20%; Table 5.2, Fig. 5.4). It is therefore unlikely that 3D studies would reveal 

significantly higher fractions of zoned chondrules in Kakangari. 

It might be hypothesised that the absence of mineralogically zoned chondrules is related to the 

high inferred abundance of chondrule fragments in Kakangari, which may result from 

widespread chondrule fragmentation. We observed a total of 102 complete chondrules in 

Kakangari and more than 1000 fragments of various sizes that are commonly interpreted as 

fragments of shattered chondrules (based on similar compositions, cf. Brearley, 1989). An 

average complete chondrule covers an area of 0.38 mm2, and all fragments in our dataset sum 

up to a combined area of ~30 mm2. Roughly estimating, all fragments could then be derived 

from ~80 average-sized chondrules. This means, that from the initial chondrule population 

about 56% remained intact, while 44% were fragmented. 
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Fig. 5.6: Mg/Si plot showing Kakangari and LEW 87232 bulk chondrule, matrix and bulk meteorite compositions. 
The standard errors of average chondrules and matrix are smaller than the respective symbols (Table 5.4). Bulk 
meteorite mass balance calculations are listed in the appendix. The calculated bulk Mg/Si does not plot in-between 
chondrule and matrix compositions as opaque phases are included in this calculation. We further note that 
calculated bulk compositions likely have large uncertainties and cannot replace bulk meteorite measurements. CI 
data are from Palme et al. (2014). *Kakangari matrix weighted average (see appendix), calculated from McSween 
and Richardson (1977, 20 spot analyses), Berlin (2009, 125 spots), 3956-t1-ps1A (51 spots), and -ps2A (194 
spots). **bulk Kakangari data is from Mason and Wiik (1966, wet chemistry). 

CI-ratio

opq

LEW 87232

opq
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This estimate is in accordance with that of Genge and Grady (1998), who reported the same 

fractions of chondrules and inferred chondrule fragments (50% out of 154 chondrules studied). 

In Section 5.3.1., we reported fragments that were likely derived from shattered 

mineralogically zoned chondrules (e.g., Fig. 5.3e, f). Widespread chondrule fragmentation 

could therefore have either destroyed initially zoned chondrules, or abraded large portions of 

the pyroxene rims from zoned chondrules. However, as almost all intact chondrules are 

unzoned, this hypothesis would require selective fragmentation of zoned chondrules. Nelson 

and Rubin (2001) pointed out that some types of chondrules are indeed more easily destroyed 

than others. For example, broken chunks of porphyritic chondrules are more often observed 

than remnants of non-porphyritic chondrules. Such selectivity can, however, be excluded for 

mineralogically zoned and unzoned chondrules, as these appear in a large variety of chondrule 

textural types (e.g., Friend et al., 2016; Barosch et al., 2019).  

Genge and Grady (1998) observed igneous rims around Kakangari chondrule fragments and 

single crystals. They interpret these fragments and crystals as remnants of shattered, former 

chondrules and suggest that the igneous rims around them formed during one or more 

subsequent reheating events in the nebula. Berlin (2009) also suggested reheating of a portion 

of Kakangari chondrules to explain what she believes was solid-state reduction of type II to 

type I chondrules. Reheating of chondrules has also been suggested for chondrules in other 

chondrites (e.g., Jones, 1996; Jones et al., 2005; Genge and Grady 1998, Hezel et al., 2003; 

Wasson and Rubin, 2003; Rubin, 2006, 2010; Ebel et al., 2008).  

The aforementioned arguments indicate a complex formation history of Kakangari chondrules 

prior to parent body accretion, including at least two heating events and chondrule 

fragmentation. This complex history could explain the absence of mineralogically zoned 

chondrules in Kakangari: if the first generation of chondrules was mineralogically zoned, 

subsequent remelting and fragmentation could have destroyed or removed their initial zonation. 

The main evidence for this hypothesis are bulk chondrule compositional variations in CC, OC 

and Kakangari chondrites (Fig. 5.5), which most likely resulted from open system gas-melt 

interaction (e.g., Tissandier et al., 2002; Libourel et al., 2006; Ebel et al., 2018, and references 

therein). Barosch et al. (2019) found that the ranges of bulk compositions of zoned and unzoned 

chondrules in OC are indistinguishable from each other. They then argued that initially the 

majority of chondrules received SiO from the ambient gas, thereby forming zoned chondrules. 

Some chondrules then lost their initial zonation during the subsequent remelting events. If 

correct, the same scenario might apply to Kakangari chondrules. Open system exchange, 
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fragmentation and remelting of Kakangari chondrules might then explain the absence of 

mineralogically zoned chondrules. 

 

5.4.2. The likely origin and formation of agglomeratic chondrules in Kakangari 

Berlin (2009) found a considerable abundance of agglomeratic chondrules (AC) in Kakangari 

(14% of all chondrules) and interpreted these as evidence for partial melting of fine-grained 

chondrule precursor material at ~1200°C (see also Weisberg and Prinz, 1996). We measured a 

lower abundance of AC of about 5%. Berlin (2009) noticed that AC chondrules and silicate-

dominated rims with igneous textures (i.e., igneous rims) around chondrules (cf. Genge and 

Grady, 1998) have similar textures and compositions, which we can confirm. Agglomeratic 

textures might therefore simply represent sections through thick igneous rims, even though 

Berlin (2009) dismissed this idea for larger ACs (e.g., one AC at 1500 µm diameter). The 

largest AC in our study has a diameter of 1700 µm. We also observed at least one AC with a 

diameter of >1000 µm and containing a ~300 µm compact, coarse-grained, enstatite-rich core. 

This texture likely resulted from sectioning a chondrule mostly through its igneous rim. This 

is similar to the sectioning effects observed in mineralogically zoned chondrules by Barosch et 

al. (2020) and discussed above (Section 5.4.1.). It is apparent that igneous rims around some 

Kakangari chondrules can be very thick and therefore chondrule sizes are not a sufficient 

criterion to reliably distinguish AC chondrules from sections through chondrule igneous rims. 

We therefore suggest that perhaps all AC in Kakangari are sections through igneous rims. 

Studies in 3D would be required to test this hypothesis and/or determine how many AC 

chondrules exist, or if these are better explained by the processes suggested by Berlin (2009). 

 

5.4.3. Mg/Si ratios of Kakangari chondrules and matrix 

The chondrule-matrix complementarity is based on two essential criteria outlined in Hezel et 

al. (2018a): (i) the bulk meteorite has a close to CI-chondritic ratio of an element or isotope 

pair, and (ii) average chondrules and matrix differ in this element or isotope ratio. This is then 

best explained by chondrule and matrix formation from a single solar reservoir. A prominent 

example for complementarity in CC is the Mg/Si ratio, as reported by various authors (e.g., 

Klerner, 2001; Hezel and Palme, 2010; Palme et al., 2015; Ebel et al., 2016; Friend et al., 2018; 

Hezel et al., 2018a, and references therein). Mg and Si are major elements in all chondrites – 

and chondrules and matrix are by far the largest reservoirs of these two elements. In CC with 
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Mg/Si complementarities, chondrules generally have higher Mg/Si ratios than CI chondrites. 

This is compensated by a lower than CI Mg/Si ratio in the matrix.  

Kakangari appears to be an intriguing exception with respect to Mg/Si complementarity (Fig. 

5.6): first, the Mg/Si/CI ratio of bulk Kakangari is 0.964 (Mason and Wiik, 1966; Palme et al., 

2014), which is close to CI-chondritic, thereby meeting one of the two criteria for 

complementarity. Chondrules and matrix plot in distinct areas in the Mg-Si space, which are 

similar to where chondrules and matrix from chondrites with complementary Mg/Si ratios plot, 

i.e., Mg- and Si- concentrations in chondrules are about a factor of 1.6 higher than in the matrix 

(Table 5.4). However, the Mg/Si ratios of average chondrules and matrix in Kakangari are 

indistinguishable from each other (Mg/Si/CI matrix: 1.03, chondrules: 0.98), which are then 

also close to CI-chondritic. Kakangari therefore does not meet the second criterion for 

complementarity.  

Ebel et al. (2016) found for CO chondrites that initially different chondrule and matrix element 

ratios – i.e., the second criterion for complementarity – can be entirely equalised by parent 

body processes: the Mg/Si ratios in chondrules and matrix in CO chondrites of petrologic type 

3.0 are significantly different, but become progressively more uniform and CI-chondritic with 

increasing petrologic type (cf. Fig. 10 in Ebel et al., 2016). The Mg/Si ratios of chondrules and 

matrix in Warrenton (CO3.7) are about CI-chondritic. This is attributed to Fe-Mg exchange 

between chondrules and matrix during a mild thermal event on the parent body of the various 

CO chondrites. Hence, chondrules and matrix in Warrenton are interpreted to initially also have 

had different and complementary Mg/Si ratios, but parent body alteration equalised this 

difference. Warrenton chondrule and matrix Mg/Si ratios now no longer fulfil the second 

criterion of complementarity (Ebel et al., 2016).  

As stated in Section 5.1, Berlin (2009) classified Kakangari as petrologic type ≥ 3.5 and ≤ 3.8 

based on a large set of criteria. Therefore, Kakangari has a similar petrologic type as the CO3.7 

chondrite Warrenton. The Mg/Si ratios of chondrules and matrix in Kakangari might therefore 

represent the result of a similar process as observed in Warrenton: chondrules and matrix 

initially had significantly different and complementary Mg/Si ratios. This initial difference 

equilibrated during parent body metamorphism, and towards the bulk Kakangari, CI-chondritic 

Mg/Si ratio. If true, Kakangari had an initial Mg/Si complementarity which would support 

formation of chondrules and matrix from a common reservoir. Alternatively, chondrules and 

matrix could have also formed from spatially separated reservoirs, but with identical, solar 

compositions. They were then transported and mixed together. 
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There are multiple arguments supporting a common origin of chondrules and matrix in 

Kakangari: (i) chondrule populations typically show large variations in their bulk compositions 

and a close to normal distribution (Hezel et al., 2006, 2018a; Hezel and Parteli, 2018; Barosch 

et al., 2019). As demonstrated in Fig. 5.5, this is also the case for Kakangari chondrules. Hezel 

and Parteli (2018) modelled whether such distributions could be explained by mixing of 

chondrules from multiple reservoirs. They concluded that transport and mixing of chondrules 

from different reservoirs in the protoplanetary disk seems unlikely. Rather, all chondrules of 

individual chondrites originated from the same reservoir. It is remarkable that the very diverse 

chondrule population (Fig. 5.6) has an average Mg/Si equal to that of the matrix. It is therefore 

unlikely that Kakangari chondrules originated from multiple parental reservoirs.  

(ii) Many previous studies argued that the mineralogy and chemical characteristics of 

chondrules and matrix are very similar and both therefore formed in the same reservoir and 

location. Apparently, this similarity is a unique feature of the Kakangari chondrite and led 

Nehru et al. (1983) to propose that Kakangari consists of only one major component, instead 

of two. Based on chondrule and matrix similarities, Brearley (1989) suggested that both could 

have formed from identical precursor material during the same thermal event, but at different 

temperatures. Scott and Krot (2005) supported this statement, pointing out that matrix particles 

must have formed in close spatial proximity to the chondrules. However, these aforementioned 

authors assumed a low petrologic type for Kakangari, while recent arguments by Berlin (2009) 

instead indicate a relatively high petrologic type, i.e., ≥ 3.5. Berlin (2009) presented a model 

for Kakangari formation, taking into account a complex history of secondary overprints, e.g., 

metamorphism, reduction and secondary alteration. Nevertheless, Berlin (2009) fully agrees 

with the aforementioned authors: chondrules and matrix formed from similar precursor 

material in close spatial proximity and potentially by the same heating mechanism.  

(iii) Prinz et al. (1989) and Weisberg et al. (1996) reported O-isotope differences between 

Kakangari chondrules and matrix, with an 16O-enriched bulk matrix when compared to 

chondrules. These results suggest that both components sampled separate O-isotope reservoirs, 

implying that there is no genetic relation. Similar results were reported by Nagashima et al. 

(2015), however, these authors argued that the matrix has a bimodal O-isotope composition. 

For the most part, the matrix is identical to the chondrules, but ~10% 16O-rich material was 

added to the Kakangari reservoir and incorporated into the matrix and chondrule rims. If this 

admixed 16O-rich material had a CI-chondritic composition, it would not disturb a 

complementary relationship, but only dilute the effect seen in the matrix (cf. Jacquet et al., 
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2016; Braukmüller et al., 2018). O-isotope characteristics may therefore also support a 

common reservoir for Kakangari chondrules and most of the matrix.  

(iv) Lastly, an additional argument for a single reservoir applies the criteria of Jones (2012), 

who argued that chondrule populations from different chondrite groups show characteristic 

properties. In Kakangari we observe a unique population of chondrules, and complete lack of 

whole or fragmental barred olivine chondrules.  

In accordance with the aforementioned arguments from the literature, we propose that 

Kakangari chondrules and matrix were most likely initially complementary in Mg/Si and 

formed from a common reservoir. The different initial compositions were then equalised during 

parent body metamorphism, similar to CO chondrites (Ebel et al., 2016). 

 

5.4.4. Chondrule and matrix relationships in LEW 87232 

If we strictly apply the complementarity criteria as outlined at the beginning of Section 5.4.3., 

no element pair studied is complementary in either LEW 87232 or Kakangari. This makes K 

chondrites the first chondrite group in which no direct evidence for complementarities has been 

found. Due to analytical difficulties and an incomplete record of literature bulk chondrite data 

(cf. Section 5.2), only a limited number of elements was available to test complementary 

relationships: Al, Ca as major refractory, and Mg, Si, Cr as major elements in chondrules and 

matrix. In the following, we discuss potential reasons why chondrule-matrix complementarities 

are not observed in LEW 87232 for these elements.  

LEW 87232 has been significantly altered during terrestrial weathering and was classified into 

weathering category B, referring to moderate rustiness (Mason, 1992). Weisberg et al. (1996) 

observed brownish staining covering the friable sample. Kallemeyn (1994) and Weisberg 

(1996) reported depletion of lithophile and siderophile elements as a result of Antarctic 

weathering, e.g., Fe is depleted in bulk LEW 87232 relative to Kakangari. A number of 

elements that are typically interesting for complementarity – foremost Ca – have also been 

affected by this weathering. The bulk Al/Ca/CI ratio in LEW 87232 is 2.27. This requires a 

significant fractionation, which is unknown from nebular processes, but can easily be achieved 

by terrestrial weathering, strongly indicating Ca loss in bulk LEW 87232 while resting in the 

ice.  

Bulk LEW 87232 Mg/Si has not yet been determined. As Kakangari and LEW 87232 are both 

classified as K grouplet meteorites (Weisberg et al., 1996), we assumed that their bulk Mg/Si 
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ratios are the same. This is in conflict with our calculated bulk Mg/Si/CI ratio of 0.92 for LEW 

87232, which is well below the CI-chondritic ratio. Interestingly, the average Mg/Si ratio of 

chondrules and matrix in LEW 87232 are sub-chondritic and virtually identical, with Mg/Si/CI 

= 0.92. This would mean that bulk LEW 87232 is also sub-chondritic and – contrary to our 

assumption – different from Kakangari. 

In comparison to Kakangari, LEW 87232 contains highly abundant low-Ca pyroxene in 

chondrules and matrix. Most chondrules have a PP textural type, while olivine-rich PO 

chondrules are rare (Table 5.2, Fig. 5.4). The olivine/pyroxene ratio in all intact LEW 87232 

chondrules is 0.32, whereas it is much higher in intact Kakangari chondrules (0.77). The ratios 

are similar if fragments are included. This means that the main carrier phase of Mg – forsterite 

– is significantly underrepresented in LEW 87232 compared to Kakangari, resulting in sub-

chondritic Mg/Si ratios for LEW 87232 main components. Mg/Si ratios are also sub-chondritic 

in OC and R chondrites, and could be explained by removal of early formed forsterites (Mg-

loss; Petaev and Wood, 1998; Dauphas et al., 2015). Alternatively, these ratios could result 

from Si-addition to the reservoir. The latter is invoked by Friend et al. (2017) to explain sub-

chondritic Mg/Si in R chondrites. Both scenarios could explain why LEW 87232, in contrast 

to Kakangari, does not have a bulk CI-chondritic Mg/Si ratio. 

 

5.5. Conclusions 

K grouplet meteorites have unique petrographic, chemical and isotopic characteristics (Graham 

and Hutchison, 1974; Davis et al., 1977; Weisberg et al., 1996; Scott and Krot, 2005). Our 

study emphasises and expands on these unique properties: (i) almost no mineralogically zoned 

chondrules are present in Kakangari (7%), although these are abundant chondrule textures in 

virtually all other chondrites (Friend et al., 2016; Barosch et al., 2019, 2020). The other K 

chondrite studied, LEW 87232, contains 30% zoned chondrules. (ii) Bulk Kakangari is 

approximately CI-chondritic in various major (e.g., Mg/Si) and refractory element ratios (e.g., 

Al/Ca), and average chondrules and matrix also have CI-chondritic ratios for, at least, Mg/Si. 

Chondrules, matrix and likely also bulk LEW 87232 are identical and sub-chondritic in Mg/Si.  

The conditions and processes forming K chondrites appear to have been similar to other 

chondrites: the bulk chondrule compositional variation in K chondrites is close to a normal 

distribution and with a large compositional spread, similar to chondrules in OC and CC (Fig. 

5.5). This is best explained if Kakangari and LEW 87232 chondrules were open systems and 



5. Chondrules and matrix in Kakangari 
 

 

 108 

received material (i.e., SiO) from the ambient gas during their formation (Tissandier et al., 

2002; Libourel et al., 2006; Ebel et al. 2018, and references therein). SiO-addition to 

chondrules typically produces mineralogically zoned chondrules as observed in many other 

chondrites (Friend et al., 2016; Barosch et al., 2019, 2020, and references therein). Zoned 

chondrules are only occasionally seen in Kakangari, likely because nebular processes such as 

chondrule fragmentation and remelting of chondrules abraded and overprinted most of the 

initial mineralogical zoning. 

SiO-addition further explains how chondrules with initially super-chondritic Mg/Si developed 

towards chondritic Mg/Si ratios. This process has been suggested for chondrules in CC, in 

which cases the average chondrule Mg/Si ratio remained super-chondritic to variable degrees 

(Hezel and Palme, 2010). The result in CC is a complementary relationship of chondrules with 

CC matrices, as bulk CC Mg/Si ratios are close to CI-chondritic (Hezel et al., 2018, and 

references therein). The same process likely happened in Kakangari, and initially, chondrules 

had super-chondritic Mg/Si ratios, and matrix had complementary, sub-chondritic Mg/Si ratios. 

Subsequent thermal overprint on the Kakangari parent body equilibrated this initial difference, 

similar to what has been reported in CO chondrites (Ebel et al., 2016). We therefore conclude 

that Kakangari chondrules and matrix initially had complementary Mg/Si ratios. Therefore, 

matrix most likely formed together with chondrules in the same reservoir. This conclusion is 

also supported by various arguments from previous studies (e.g., Brearley, 1989; Scott and 

Krot, 2005; Berlin, 2009; Nagashima et al., 2015). 

LEW 87232 has distinct petrographic, mineralogical and bulk chemical characteristics 

compared to Kakangari. Chondrules are more abundant and generally smaller in LEW 87232, 

mostly intact and not fragmented. They are frequently mineralogically zoned and more 

pyroxene-rich. Bulk LEW 87232 Mg/Si is probably sub-chondritic. LEW 87232 is also less 

pristine than Kakangari. To better understand the relationship between LEW 87232 and 

Kakangari it would be beneficial to determine bulk Si concentrations for LEW 87232. 
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Element ratios (CI normalised)
Meteorite Mg/Al Mg/Si Mg/Ca Mg/Ti Mg/Fe Al/Si Al/Ca Al/Ti Al/Fe Si/Ca Si/Ti Si/Fe Ca/Ti Ca/Fe Ti/Fe
Kakangari A (literature) 1.08 0.96 1.18 0.95 1.26 0.89 1.08 0.87 1.17 1.22 0.98 1.31 0.80 1.08 1.34
Kakangari B (literature) 1.09 1.10 1.09 1.01 0.99 0.99
Kakangari (calculated) 1.07 1.01 1.28 1.11 1.24 0.95 1.19 1.03 1.15 1.26 1.09 1.22 0.86 0.97 1.12

LEW87232 (literature) 1.04 2.36 1.61 2.27 1.55 0.68
LEW87232 (calculated) 0.90 0.92 2.25 1.49 0.98 1.02 2.50 1.66 1.09 2.44 1.62 1.07 0.66 0.44 0.66

Kak A: Mason and Wiik (1966); wet chemistry CI normalised element ratios >0.9, <1.1
Kak B: Weisberg et al. (1996); INAA CI normalised element ratios <0.9, >1.1
LEW: Weisberg et al. (1996); INAA

Bulk meteorite element concentrations (wt%)
Meteorite Mg Al Si Ca Ti Fe

CI 9.54 0.84 10.70 0.91 0.04 18.66 Palme et al. (2014)

Kakangari A (literature) 14.53 1.18 16.90 1.18 0.07 22.47 Mason and Wiik (1966)

Kakangari B (literature) 14.40 1.16 - 1.25 - 25.90 Weisberg et al. (1996)

Kakangari (calculated) 14.25 1.17 15.76 1.06 0.06 22.56

LEW87232 (literature) 16.30 1.38 - 0.66 - 19.80 Weisberg et al. (1996)

LEW87232 (calculated) 12.68 1.24 15.43 0.54 0.04 25.25

Calculated bulk compositions (wt%)
Kakangari Chd + Fragments Matrix Sulphide Metal* CAI AOA Chlorapatite calculated bulk
Abundance (%) 22.78 66.98 3.46 6.43 0.19 0.16 0.58 100
Density (g/cm

3

) 3.2 4.6 4.6 7.9 3.2 3.2 3.2 -
Si 25.04 16.47 0.00 0.00 11.75 39.83 0.00 15.76
Ti 0.06 0.07 0.00 0.00 1.07 0.37 0.00 0.06
Al 1.24 1.33 0.00 0.00 18.06 8.15 0.00 1.17
Cr 0.28 0.42 0.00 0.00 0.00 0.29 0.00 0.34
Fe 3.36 18.61 63.52 77.67 0.39 5.80 0.00 22.56
Mn 0.35 0.24 0.00 0.00 0.00 0.10 0.00 0.23
Ni 0.02 1.02 0.00 21.90 0.00 0.00 0.00 2.16
Mg 21.92 15.07 0.00 0.00 6.10 39.41 0.00 14.25
Ca 1.35 0.92 0.00 0.00 20.09 5.47 38.48 1.06
Na 0.55 0.81 0.00 0.00 0.08 0.11 0.00 0.66

LEW87232 Chd + Fragments Matrix Sulphide Metal CAI AOA Chlorapatite calculated bulk
Abundance (%) 33.68 53.36 5.19 7.78 0 0 0 100
Density (g/cm

3

) 3.2 4.6 4.6 7.9 3.2 3.2 3.2 -
Si 26.28 16.04 0.00 0.00 15.43
Ti 0.06 0.04 0.00 0.00 0.04
Al 1.46 1.58 0.00 0.00 1.24
Cr 0.18 0.06 0.00 0.00 0.08
Fe 1.39 20.83 63.52 79.70 25.25
Mn 0.20 0.10 0.00 0.00 0.10
Ni 0.02 1.79 0.00 19.63 2.08
Mg 21.65 13.15 0.00 0.00 12.68
Ca 1.25 0.41 0.00 0.00 0.54
Na 0.85 1.11 0.00 0.00 0.83

*average metal composition from Berlin (2009) and Weisberg et al. (1996)



5. Chondrules and matrix in Kakangari 
 

 

 116 

 
 
 
 
 
 
 
 

Kakangari
Sample Chondrule PO PP POP RP AC SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O Sum
3956-1 Chd01 x 53.00 0.12 3.32 0.38 4.33 0.49 0.02 35.79 1.81 1.66 100.92
3956-1 Chd02 x 60.32 0.16 3.23 0.67 6.11 0.55 0.04 24.92 3.78 1.44 101.22
3956-1 Chd03 x 55.86 0.07 3.05 0.25 2.80 0.32 0.04 36.32 1.52 0.85 101.08
3956-1 Chd04 x 48.38 0.15 3.54 0.23 3.91 0.36 0.04 39.29 2.28 1.96 100.14
3956-1 Chd05 x 55.76 0.11 3.87 0.29 3.45 0.33 0.02 33.41 1.42 1.69 100.36
3956-1 Chd06 x 50.34 0.10 1.97 0.34 5.58 0.52 0.03 39.67 1.72 0.76 101.03
3956-1 Chd07 x 55.70 0.10 2.72 0.44 4.63 0.45 0.05 33.23 1.30 1.21 99.83
3956-1 Chd08 x 57.77 0.05 1.58 0.51 5.74 0.70 0.06 32.65 1.39 0.74 101.19
3956-1 Chd09 x 61.38 0.17 4.52 0.46 3.42 0.46 0.02 26.00 2.31 2.13 100.86
3956-1 Chd10 x 58.33 0.12 1.87 0.75 5.23 0.52 0.03 30.06 2.48 0.79 100.17
3956-1 Chd11 x 56.35 0.08 2.54 0.60 3.36 0.46 0.02 34.79 1.28 0.89 100.37
3956-1 Chd12 x 54.60 0.07 1.22 0.41 3.26 0.37 0.04 38.99 1.46 0.23 100.65
3956-1 Chd13 x 49.70 0.13 3.60 0.38 3.80 0.42 0.01 38.50 2.42 1.61 100.58
3956-1 Chd14 x 56.60 0.06 2.52 0.29 3.12 0.34 0.03 35.71 1.03 0.95 100.65
3956-1 Chd15 x 56.16 0.07 2.00 0.30 3.31 0.38 0.02 37.21 0.53 0.83 100.80
3956-1 Chd16 x 54.41 0.07 2.64 0.24 3.03 0.36 0.02 38.38 0.74 1.26 101.15
3956-1 Chd17 x 48.55 0.09 2.00 0.19 3.79 0.42 0.01 42.76 1.68 1.01 100.51
3956-1 Chd18 x 52.41 0.05 2.03 0.29 5.01 0.44 0.02 38.74 1.02 0.87 100.89
3956-1 Chd19 x 55.60 0.08 3.43 0.06 1.46 0.21 0.02 38.19 0.75 1.29 101.08
3956-1 Chd20 x 47.53 0.04 0.85 0.18 3.71 0.42 0.02 47.20 0.62 0.41 100.98
3956-1 Chd21 x 54.36 0.10 3.21 0.31 3.26 0.40 0.01 36.59 1.40 1.45 101.08
3956-1 Chd22 x 52.24 0.05 2.07 0.63 3.27 0.42 0.01 40.79 1.25 0.48 101.21
3956-1 Chd23 x 54.90 0.05 1.63 0.32 3.07 0.43 0.04 38.86 1.17 0.30 100.78
3956-2 Chd01 x 56.81 0.12 2.52 0.37 3.27 0.39 0.02 35.95 1.36 0.43 101.25
3956-2 Chd02 x 54.45 0.07 1.09 0.33 3.52 0.41 0.02 39.85 1.32 0.25 101.33
3956-2 Chd03 x 56.76 0.06 1.62 0.65 6.15 0.53 0.02 31.58 1.32 0.24 98.94
3956-2 Chd04 x 49.47 0.10 1.79 0.28 4.84 0.48 0.01 40.89 2.42 0.33 100.64
3956-2 Chd05 x 56.16 0.08 2.07 0.43 3.55 0.38 0.02 35.67 1.60 0.42 100.38
3956-2 Chd06 x 58.39 0.11 1.94 0.51 4.61 0.60 0.01 31.70 1.63 0.39 99.89
3956-2 Chd07 x 48.30 0.12 2.61 0.20 3.79 0.37 0.02 41.85 2.18 0.90 100.35
3956-2 Chd08 x 48.42 0.13 2.79 0.26 4.07 0.39 0.05 40.50 2.94 0.76 100.31
3956-2 Chd09 x 50.46 0.10 2.73 0.17 4.43 0.36 0.07 40.48 1.15 0.48 100.44
3956-2 Chd10 x 57.25 0.13 2.68 0.44 2.96 0.40 0.02 34.14 1.91 0.66 100.58
3956-2 Chd11 x 51.96 0.38 4.56 0.28 4.63 0.44 0.02 34.44 1.99 1.31 99.99
3956-2 Chd12 x 47.98 0.15 2.60 0.36 4.98 0.42 0.04 40.05 3.46 0.68 100.72
3956-2 Chd13 x 52.78 0.04 1.51 0.26 4.08 0.38 0.13 39.40 0.97 0.24 99.79
3956-2 Chd14 x 48.45 0.04 0.45 0.22 4.16 0.47 0.02 45.91 1.08 0.17 100.97
3956-2 Chd15 x 49.19 0.14 3.17 0.33 3.49 0.39 0.03 39.45 3.36 0.78 100.34
3956-2 Chd16 x 54.23 0.13 2.09 0.42 4.77 0.54 0.03 35.33 2.06 0.44 100.03
t1-ps1A Chd01 x 58.93 0.09 1.60 0.51 5.82 0.42 0.01 31.20 0.95 0.33 99.86
t1-ps1A Chd02 x 52.76 0.09 1.46 0.46 4.51 0.38 0.02 37.69 2.00 0.33 99.71
t1-ps1A Chd03 x 46.86 0.06 1.39 0.26 5.54 0.49 0.03 43.55 0.74 0.41 99.33
t1-ps1A Chd04 x 54.33 0.14 4.67 0.28 3.23 0.38 0.24 33.07 2.10 1.33 99.76
t1-ps1A Chd05 x 54.88 0.23 5.09 0.29 3.16 0.47 0.02 30.74 3.43 1.08 99.39
t1-ps1A Chd06 x 53.12 0.04 1.61 0.34 4.76 0.49 0.02 38.20 0.94 0.40 99.92
t1-ps1A Chd07 x 58.14 0.24 5.95 0.80 3.59 0.61 0.04 23.97 3.66 1.02 98.01
t1-ps1A Chd08 x 58.59 0.12 2.22 0.70 4.48 0.61 0.01 30.99 1.98 0.59 100.30
t1-ps2A Chd01 x 45.36 0.11 2.00 0.17 3.34 0.38 0.04 45.19 2.54 0.47 99.59
t1-ps2A Chd03 x 52.37 0.03 0.83 0.03 1.84 0.24 0.02 42.79 0.53 0.24 98.94
t1-ps2A Chd04 x 54.00 0.19 2.55 1.00 3.27 0.51 0.04 34.91 3.17 0.39 100.04
t1-ps2A Chd05 x 47.35 0.09 1.78 0.27 4.01 0.42 0.02 43.38 1.47 0.24 99.03
t1-ps2A Chd06 x 47.83 0.12 2.43 0.32 5.54 0.43 0.12 40.19 1.86 0.64 99.49
t1-ps2A Chd09 x 55.20 0.12 2.60 0.68 5.47 0.44 0.03 32.01 2.43 0.44 99.41
t1-ps2A Chd10 x 56.77 0.10 3.66 0.47 4.36 0.50 0.12 30.70 2.79 0.87 100.33
t1-ps2A Chd11 x 52.52 0.07 1.44 0.45 4.14 0.41 0.05 37.01 1.43 0.45 97.98
t1-ps2A Chd12 x 57.00 0.19 3.33 0.62 9.07 0.39 0.09 25.94 1.97 0.38 98.98
t1-ps2A Chd13 x 45.58 0.22 1.48 0.75 7.79 0.46 0.02 43.17 1.28 0.06 100.81

Matrix, weighted average composition 35.23 0.11 2.51 0.61 23.94 0.32 1.30 24.98 1.29 1.09 91.38
calculated from McSween and Richardson (1977; 20 spot analyses), Berlin (2009; 125 spots), and this study: Kak-t1-ps1A (51 spots),

           and -ps2A (194 spots)

Bulk composition (wt%)Chondrule texture*
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LEW87232
Sample Chondrule PO PP POP RP AC SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O Sum
LEW87232 Chd 01 x 55.69 0.10 2.16 0.42 1.94 0.32 0.02 37.48 2.23 0.44 100.80
LEW87232 Chd 02 x 59.07 0.07 2.85 0.30 1.68 0.25 0.01 34.28 1.20 1.28 100.99
LEW87232 Chd 03 x 55.82 0.09 1.86 0.28 1.79 0.28 0.04 38.62 1.44 0.60 100.81
LEW87232 Chd 04 x 57.31 0.06 1.47 0.28 2.38 0.24 0.02 37.62 1.10 0.41 100.87
LEW87232 Chd 05 x 52.12 0.09 2.39 0.13 1.30 0.21 0.02 41.13 1.71 1.07 100.18
LEW87232 Chd 06 x 55.06 0.15 2.93 0.35 1.52 0.28 0.01 36.49 2.92 0.59 100.29
LEW87232 Chd 07 x 58.40 0.12 4.91 0.28 1.70 0.20 0.02 29.43 2.46 2.67 100.18
LEW87232 Chd 08 x 58.95 0.11 4.34 0.27 1.86 0.30 0.01 29.82 2.27 2.21 100.13
LEW87232 Chd 09 x 58.47 0.18 4.80 0.12 1.49 0.25 0.03 31.54 1.46 1.67 100.01
LEW87232 Chd 10 x 53.74 0.12 4.22 0.18 1.26 0.21 0.02 36.04 1.96 1.97 99.72
LEW87232 Chd 11 x 54.45 0.12 2.76 0.26 1.82 0.23 0.02 36.81 1.99 1.19 99.65
LEW87232 Chd 12 x 57.68 0.07 0.89 0.30 2.05 0.26 0.01 36.78 0.89 0.44 99.37
LEW87232 Chd 13 x 52.11 0.07 2.24 0.11 1.30 0.21 0.02 41.95 0.56 1.09 99.66
LEW87232 Chd 14 x 52.98 0.18 2.10 0.22 1.69 0.26 0.04 39.73 1.82 1.11 100.13
LEW87232 Chd 15 x 56.77 0.13 2.48 0.37 2.21 0.34 0.02 34.17 2.70 0.69 99.88
LEW87232 Chd 16 x 55.65 0.15 3.02 0.33 1.36 0.28 0.02 36.08 2.36 0.96 100.21
LEW87232 Chd 17 x 57.67 0.08 3.43 0.20 1.79 0.28 0.02 33.86 1.10 1.54 99.97
LEW87232 Chd 18 x 59.80 0.07 4.43 0.20 1.58 0.20 0.01 30.14 1.93 2.23 100.59
LEW87232 Chd 19 58.38 0.07 1.25 0.39 2.52 0.27 0.02 35.67 2.28 0.40 101.26
LEW87232 Chd 21 x 52.72 0.08 2.66 0.19 1.72 0.24 0.03 39.70 1.54 1.27 100.17
LEW87232 Chd 22 x 56.88 0.08 2.14 0.21 2.43 0.22 0.05 35.63 1.19 0.97 99.81
LEW87232 Chd 23 x 57.22 0.12 1.46 0.27 1.92 0.24 0.03 37.01 1.24 0.54 100.05

Matrix, average composition (this study) 34.31 0.07 2.98 0.08 26.80 0.13 2.28 21.80 0.58 1.50 90.54

*
POP porphyritic olivine-pyroxene
PO porphyritic olivine
PP porphyritic pyroxene
RP radial pyroxene
AC agglomeratic chondrule

Chondrule texture* Bulk composition (wt%)
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Chapter 6 
 

Discussion 

The publications presented in this thesis address in detail the extent of chondrule-gas 

interaction in different chondrites (Chapter 2, 3 and 5), the interaction among chondrules 

during their formation (Chapter 4), and the genetic relationship of chondrules and matrix in 

Kakangari chondrites (Chapter 5). These results provide pivotal constraints for chondrule 

formation conditions, which will be summarised and discussed. Ultimately, these constraints 

help to identify the chondrule forming mechanism. 

 

6.1. Constraints for chondrule formation conditions 

6.1.1. Chondrules behaved as open systems 

An important constraint for chondrule formation is whether chondrules interacted with their 

environment or not. This is essential to explain the various petrographic and petrologic 

observations of chondrules. The results of this thesis strongly support open system behaviour 

of chondrules, based on textural and compositional evidence.  

The first systematic study of mineralogically zoned chondrules in CC and R chondrites was 

presented by Friend et al. (2016; 256 chondrules in 16 meteorites). Zoned chondrules have 

olivine cores surrounded by pyroxene (and/or silica) rims. In this present thesis, the textures of 

~1800 chondrules from 17 different meteorites were analysed (8xOC, 6xEC, 1xCC, 2xK; Table 

6.1), thereby completing the study of mineralogically zoned chondrules in all chondrites. Most 

EC data in Table 6.1 will be published in a forthcoming paper. The fractions of zoned 

chondrules as determined in 2D sections and in the different chondrite groups are displayed in 

Table 6.1 and Fig. 6.1. Fractions are high in CC (78%), intermediate in R (41%) and OC (39%), 

and comparatively low in EC (28%) and K chondrites (19%).  

A total of 455 chondrules from CC, OC and EC samples were studied in 3D. Their 3D fractions 

of mineralogically zoned chondrules are systematically and significantly higher compared to 

their respective 2D fractions. 3D fractions are higher by factor 1.24 in CC, by factor 1.29 in 

OC and by factor 1.62 in EC (Fig. 6.2). These differences result from sectioning effects, which 

also skew the widely-used textural classification of porphyritic chondrules (cf. Chapter 3). The 
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apparently distinct textural types (PP, PO, POP) often simply represent 2D sections through 

the same mineralogically zoned chondrule, i.e., sections through pyroxene rims (PP) or olivine 

cores (PO).  

 
 
Fig. 6.1: 2D fractions of mineralogically zoned chondrules in all chondrite groups. Data and meteorite 
abbreviations are taken from Table 6.1. The numbers indicate the total amount of chondrules studied. Black: 
carbonaceous chondrites and Rumuruti (Friend et al., 2016, modified), blue: ordinary chondrites, green: enstatite 
chondrites, orange: Kakangari. 
 

The formation of mineralogically zoned chondrules is attributed to open system behaviour of 

chondrules (cf. Chapter 2; Tissandier et al., 2002; Libourel et al., 2006; Ebel et al., 2018, and 

references therein). Low-Ca pyroxene rims result from the reaction of chondrule olivine with 

an SiO-rich surrounding gas. Mineralogically zoned chondrules therefore provide direct 

textural evidence for chondrule open system behaviour.  

The aforementioned high fractions of mineralogically zoned chondrules (Fig. 6.1, 6.2, Table 

6.1) clearly indicate that zoned chondrules represent a large, and in cases even the dominant 

sub-population of chondrules in chondrites. Non-mineralogically zoned chondrules constitute 

the second sub-population. If zoned chondrules are explained by open system gas-melt 

interaction, then unzoned chondrules could indicate the absence of this process, i.e., they might 

have been closed systems during their formation. To test this, the bulk compositions of 274 

chondrules in OC, EC and K chondrites were studied. Bulk chondrule compositions in these 
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meteorites are highly variable, spreading along the forsterite-enstatite mixing line. This 

represents an increasing molar fraction of SiO2, as indicated in Fig. 6.3.  

 
 
Fig. 6.2: 2D and 3D fractions of mineralogically zoned chondrules in different chondrite groups. 3D fractions 
were calculated from the 2D data (Table 6.1) by using the approximate correction factors as determined from real 
3D data in Chapter 3: 1.24 for carbonaceous chondrites, 1.29 for ordinary chondrites and 1.62 for enstatite 
chondrites. 

The variability of chondrule bulk compositions is best explained by open system behaviour: 

chondrules were initially forsterite-rich but received various amounts of gaseous SiO during 

cooling, thus altering their bulk compositions (cf. Chapter 2; Tissandier et al., 2002; Libourel 

et al., 2006; Hezel et al., 2006; Ebel et al., 2018, and references therein). The relative addition 

of material to each chondrule likely depended on various factors, such as the surface/volume 

ratio, the ambient SiO-gas pressure, chondrule peak temperatures, cooling rates, timing, and so 

on. Zoned and unzoned chondrules have the same range of bulk compositions (Fig. 6.3). This 

requires SiO addition to both chondrule sub-populations and, therefore, it is likely that all 

chondrules were open systems. 
 

 

 
 
Fig. 6.3: Highly variable SiO2 molar fractions (X) of bulk chondrules in ordinary (H, L, LL) and Kakangari 
chondrites. These likely result from SiO addition to initially fo-rich chondrules. Zoned and unzoned OC 
chondrules have the same range of bulk compositions. fo: forsterite, en: enstatite, qz: quartz. 
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If both chondrule sub-populations received gaseous SiO, it is unexpected that some chondrules 

formed pyroxene rims (zoned chondrules), and others did not (unzoned chondrules). It is, 

however, possible that unzoned chondrules initially formed pyroxene rims, which they 

subsequently lost. Several secondary processes are capable of removing pyroxene rims around 

chondrules. An example is Mokoia, a CV chondrite that was affected by secondary processes 

on its parent body. For a CC chondrite, Mokoia has an atypically low fraction of zoned 

chondrules (29%, Fig. 6.1, 6.2; Friend et al., 2016). The outermost layers of Mokoia chondrules 

(i.e., pyroxene rims of zoned chondrules) were replaced by secondary minerals during parent 

body aqueous alteration (Tomeoka and Onishi, 2015). Therefore, the original fraction of zoned 

chondrules in this meteorite was most likely significantly higher. Another example is 

Kakangari, the chondrite with the lowest fraction of zoned chondrules (~8%, Table 6.1; 

Chapter 5). Interestingly, this meteorite has the largest spread of bulk chondrule compositions 

in Fig. 6.3, despite an almost complete absence of zoned chondrules. This might indicate that 

Kakangari chondrules also received gaseous SiO to various extents. Further, Kakangari 

chondrules experienced wide-spread fragmentation. This process shattered mineralogically 

zoned chondrules (cf. Fig. 5.3) and possibly also abraded portions of chondrule pyroxene rims. 

However, this process cannot be solely responsible for the absence of zoned chondrules in 

Kakangari as almost all intact chondrules are also unzoned.  

Chondrules could have also lost their initial pyroxene rims when they were reheated and 

subsequently remelted (cf. Chapter 2). This scenario is in line with various previous studies 

suggesting multiple heating of chondrules (e.g., Wasson, 1993; Wasson et al., 1995; Rubin and 

Krot, 1996; Rubin, 2000, 2006, 2010; Hezel et al., 2003, 2006; Jones et al., 2005; Ebel et al., 

2008), as well as chondrule age constraints (e.g., Kurahashi et al., 2008, Becker et al., 2015; 

Budde et al., 2016a). Chondrule reheating and remelting is likely true for all chondrites studied 

in this thesis and would mean that the chondrule population of a meteorite formed during more 

than one heating event. This has important implications: proposed chondrule forming 

mechanisms that cannot heat chondrules more than once must be discarded. Excluded heating 

mechanisms are, for example, jetting during particle collisions, exothermic chemical reactions, 

supernova shock waves and gamma-ray bursts (cf. Rubin, 2000). 

 

6.1.2. Chondrules interacted with each other through collisions 

Important details about chondrule formation might be derived from atypical chondrules and 

unusual objects in chondrites. An interesting example are macrochondrules (cf. Chapter 4, 
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Weisberg et al., 1988). These are petrologically similar to average chondrules but significantly 

larger (i.e., 10 times or more). Weyrauch and Bischoff (2012) suggested that macrochondrules 

could have formed from chondrule collisions. It is widely accepted that chondrule collisions 

can fuse two or more chondrules together, forming compound chondrules (e.g., Gooding and 

Keil, 1981; Ciesla, 2006; Arakawa and Nakamoto, 2016, 2019; Bogdan et al., 2019). However, 

macrochondrule formation – contrary to compound chondrule formation – would require 

chondrules to fully merge and homogenise after colliding, thereby destroying any petrographic 

evidence for the preceding collisions. 

In laboratory experiments, Bogdan et al. (2019) determined possible outcomes of chondrule 

collisions at constant velocities (~1 m/s) but variable temperatures (Fig. 6.4; cf. Arakawa and 

Nakamoto, 2016, 2019, for high velocity collisions). Their results suggest that collisions at low 

temperatures lead to chondrule fragmentation or plastic deformation. At intermediate 

temperatures, partially molten chondrules may stick-, and subsequently fuse together to form 

compound chondrules. At high temperatures, largely molten chondrules could fully merge after 

colliding, forming macrochondrules. However, this model of compound and macrochondrule 

formation is not universally accepted (e.g., Hubbard, 2015) and might be challenging to verify 

without petrographic evidence.  

The unusual compound object presented in Chapter 4 could be the first object genetically 

linking compound chondrules to macrochondrules. It appears to be a macrochondrule that 

collided with a solid BO chondrule, and afterwards failed to homogenise. The object thereby 

provides first petrographic support for the model of Bogdan et al. (2019). Interestingly, the 

phase map displayed in Fig. 6.4 shows a mineralogically zoned compound chondrule. The 

displayed compound chondrule must have been partially molten during/after the collision, 

which then allowed open system gas-melt interaction and thereby pyroxene rim formation 

during cooling. This scenario would be in conflict with compound chondrule formation from 

the collision of solid and/or supercooled droplets (Arakawa and Nakamoto, 2016, 2019). 

According to Ciesla (2006) and Arakawa and Nakamoto (2016, 2019), the nebular shock wave 

model (Wood, 1996; Desch and Connolly, 2002; Morris et al., 2012; Morris and Boley, 2018) 

best explains compound chondrule formation and, therefore, also macrochondrule formation. 

High abundances of macrochondrules and/or compound chondrules in chondrites (e.g., OC) 

might, furthermore, indicate that these chondrites formed in dust-rich regions of the solar 

nebula, allowing frequent chondrule collisions. Nebular regions with elevated dust/gas ratios 

are invoked by many authors (e.g., Wood, 1963; Ebel and Grossman, 2000; Tissandier et al., 
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2002; Libourel et al., 2006; Alexander et al., 2008; Marrocchi and Chaussidon, 2015), but their 

existence is not undisputed (e.g., Rubin et al., 2018).   
 

 
Fig. 6.4: Schematic image and examples illustrating the consequences of chondrule collisions at different 
temperatures. If solid chondrules collide, they are fragmented or deformed. If the colliding chondrules were 
partially molten (T > T1), they were fused together to form compound chondrules. If the colliding chondrules were 
largely or completely molten (T > T2), they merged completely to form macrochondrules. The displayed examples 
show: left: fragmented chondrule, centre: phase map of two chondrules fused together (compound chondrule), 
right: a macrochondrule in comparison to an average-sized chondrule of ~700 µm diameter. 
   
 

6.1.3. Chondrules and matrix likely formed in common reservoirs 

Most chondrule formation models can be categorised into one of two groups: those that propose 

a common reservoir for chondrules and matrix formation and those that suggest spatially 

separated origins and subsequent mixing of both components (cf. Hezel et al., 2018b). If a 

genetic relationship between chondrules and matrix could be proven or refuted, one of these 

groups must be discarded. As outlined in detail by Hezel et al. (2018b, and references therein) 

the chondrule-matrix complementarity in CC and R chondrites could be a decisive argument 

for a common reservoir for both components (see also Section 1.4.2, Section 5.4.3). The study 

of complementarity was expanded to K chondrites in this thesis. Prior to parent body 

metamorphism, Kakangari chondrules and matrix were likely complementary in Mg and Si, 

the two major elements in chondrites (cf. Chapter 5). The results suggest that chondrule open 
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system behaviour has been essential to establish not only bulk chondrule compositional 

variations (Fig. 6.3), but also Mg/Si complementarity. Together, complementarity and open 

system interaction provide a coherent picture of chondrule formation. 

All chondrites with complementarities formed from reservoirs with solar initial ratios for their 

complementary element pair(s). In case of Mg/Si, forsterite-rich aggregates condensed at high-

temperatures from the cooling nebular gas, thereby preferentially extracting Mg from and 

progressively enriching SiO in the gas. The forsterite-rich solids served as chondrule precursors 

and melted during the chondrule forming heating event(s). During cooling, the chondrules 

received variable amounts of gaseous SiO, thus altering their bulk compositions (Fig. 6.3). 

Bulk chondrule compositions thereby spread out along the forsterite-enstatite mixing line, 

reflecting SiO-addition. The displacement of chondrule bulks from the ideal fo-en line in the 

Mg/Si plot depends on the FeO contents of chondrules. The average bulk chondrule 

composition gradually approached the solar ratio with progressing SiO-addition to chondrules. 

In CC, chondrule gas-melt interaction stopped while the average chondrule composition was 

still at a superchondritic Mg/Si ratio. In Kakangari, these initially different compositions likely 

equilibrated during parent body metamorphism, similar to what has been observed in CO 

chondrites by Ebel et al. (2016). Complementarity then requires that matrix formed in the same 

reservoir, but timing and details are not yet fully understood. Matrix might represent a mixture 

of un-melted precursor material, added CI-like material, and material that condensed 

during/after chondrule formation (Alexander, 2005; Hezel and Palme, 2010; Brearley, 2014; 

Friend et al., 2016; Braukmüller et al., 2018; Hezel et al., 2018b, and references therein). The 

matrix was subsequently altered during parent body processes.  

This proposed scenario is fully consistent with all aforementioned constraints for chondrule 

formation and is further supported by various authors studying complementarities (cf. 

references in Hezel et al., 2018b).   



6. Discussion 
 

 

 126 

6.2. Formation of chondrites and their components 

In the following, I will review the properties of different chondrite groups as reported in the 

literature and in this thesis. These might translate to approximate nebular locations of chondrite 

forming reservoirs and, furthermore, allow valuable insight into the processes and conditions 

in these reservoirs. 

 

6.2.1. Characteristics of chondrite forming reservoirs 

The properties of chondrites and their components represent the conditions and processes in 

their respective formation reservoirs. Many authors proposed a bimodality of chondrite 

forming reservoirs, in which non-carbonaceous chondrites (EC, OC) formed in heliocentric 

distances closer to the Sun than carbonaceous chondrites (CC; Fig. 6.5; e.g., Wasson, 1977; 

Rubin and Wasson, 1995; Weisberg et al., 1996; Warren, 2011; Walsh et al., 2011; Budde et 

al., 2016a; Gerber et al., 2017; Burkhardt et al., 2019, and references therein). These two major 

reservoirs might have been isolated from each other when Jupiter formed in-between them 

(e.g., Walsh et al, 2011; Gerber et al., 2017), and broadly divided the solar system into an inner 

and an outer region. The following paragraphs will point out some general petrologic, chemical 

and isotopic differences in inner (non-carbonaceous) and outer (carbonaceous) solar system 

reservoirs. 

Component abundances: the main component modal abundances in carbonaceous and non-

carbonaceous chondrites are strikingly different: chondrule to matrix proportions are 

approximately 40:60 in many carbonaceous chondrites, but 80:20 in non-carbonaceous 

chondrites (Scott and Krot, 2014). The abundances of minor (CAI) and unusual components 

(e.g., macrochondrules) are also different. CAIs are relatively common in CC but mostly absent 

in non-carbonaceous chondrites. Macrochondrules are frequently observed in OC, but not as 

often in CC (Weyrauch and Bischoff, 2012).  

Oxidation states: Rubin and Wasson (1995) correlated the oxidation states of nebular reservoirs 

with ambient temperatures. As nebular temperature decreased with heliocentric distance, the 

inner regions of the solar nebula had lower oxidation states than distant regions. The oxidation 

states of meteorites then indicate their approximate heliocentric formation distances. Non-

carbonaceous meteorites are more reduced and, therefore, formed closer to the sun than CC.  

Bulk chemistries: there are various differences in the bulk compositions of inner and outer solar 

system chondrites. Relative to CI, refractory elements (Ca, Al) are slightly enriched in CC, and 
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slightly depleted in non-CC. Main elements (Si, Mg, Fe) are essentially unfractionated from 

the solar ratio in most CC, but enriched and/or depleted in non-CC. Bulk CC have 

approximately solar Mg/Si ratios but OC and EC have Mg/Si/CI ratios of ≤ 0.9 (Wasson and 

Kallemeyn, 1988; Palme et al., 2014; Hezel et al., 2018a), which requires Si enrichment and/or 

Mg depletion in these meteorites. Volatile elements (e.g., Mn, Na, Rb, Zn, S) are depleted in 

all chondrites relative to CI, however, CC are slightly more depleted than the other chondrites 

(Braukmüller et al., 2018). 

Isotope characteristics: nucleosynthetic isotope anomalies for a large number of elements, e.g., 

Ti, Mo, Cr, support distinct CC and non-CC reservoirs (e.g., Budde et al., 2016b; Gerber et al., 

2017; Burkhardt et al., 2019, and references therein). For example, Gerber et al. (2017) showed 

that CC contain 50Ti enriched chondrules, whereas OC and EC do not. The authors argued that 

these compositions result from the addition of CAI-like material (i.e., 50Ti-rich nuggets) to CC 

chondrule precursors, thereby supporting spatially separated and isolated reservoirs of CC and 

non-CC chondrites. The trend towards lighter O isotope compositions observed in CC also 

reflects increasing heliocentric formation distances (Rubin and Wasson, 1995). 

Chondrule characteristics: The chondrule populations of chondrites exhibit various 

differences and similarities. Mineralogically zoned chondrules can be found in every chondrite 

(Fig. 6.1 and 6.5). However, they are more abundant in outer solar system chondrites (> 80%, 

on average). Non-CC have significantly lower fractions of zoned chondrule (≤ 50%, on 

average). All chondrule populations in CC and non-CC show large ranges of bulk compositions 

and close to normal bulk compositional distributions (Fig. 6.5). Chondrule-matrix 

complementarities were reported in CC, R (Hezel et al., 2018b, and references therein) and 

possibly K chondrites (cf. Chapter 4), but not yet in OC and EC. 

 

6.2.2. Origin of K chondrites 

Weisberg et al. (1996) argued that the properties of K chondrites do not clearly fit into the inner 

or outer solar system (Fig. 6.5). New insights from recent studies (e.g., Berlin, 2009) and this 

thesis (Chapter 5) allow an attempt to assign K-grouplet meteorites to an approximate location 

in the protoplanetary disk.  
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Fig. 6.5 (previous page): Schematic image of the protoplanetary disk showing likely locations of chondrite 
forming reservoirs. The results of this thesis show that mineralogically zoned chondrules formed in every reservoir 
and that chondrule populations in all reservoirs have a normal distribution of bulk compositions. Complementarity 
was observed in CC (Hezel et al., 2018b) and possibly K chondrites, but not yet in OC and EC. 
 

Kakangari has a high abundance of matrix (70%), which suggests that heating during chondrule 

formation was inefficient. This is further supported by the degree of chondrule melting, 

inferred from their textures: barred olivine chondrules – often associated with higher degrees 

of melting than porphyritic chondrules (Wasson et al., 1995) – are absent in Kakangari. 

Furthermore, O-isotope compositions of Kakangari (average Δ17O of -1.6‰; Weisberg et al., 

1996) imply relatively low nebular temperatures according to Rubin and Wasson (1995). These 

characteristics support an outer solar system origin of K chondrites.  

The main argument for an inner solar system origin of K chondrites is their highly reduced 

mineralogy. Chondrule silicates and matrix are FeO-poor and indicate an oxidation state 

intermediate of OC and EC (Weisberg et al., 1996). However, evidence presented by Berlin 

(2009) suggests that Kakangari might have experienced widespread reduction. It is possible 

that the conditions in the K chondrite reservoir were more oxidising than previously assumed. 

Therefore, an outer solar system origin cannot be excluded solely based on the oxidation state 

of K chondrites. 

Weisberg et al. (1996) further refers to the abundances of refractory and main elements to 

support an inner solar system origin. It is true that refractory elements, relative to CI, are 

slightly enriched in CC and slightly depleted in OC, EC and K. However, as shown in Chapter 

5, bulk main element ratios are close to solar in Kakangari (i.e., Mg/Si/CI is 0.96; Mason and 

Wiik, 1966; Palme et al., 2014) and, therefore, clearly different from non-carbonaceous 

chondrites. Kakangari chondrules and matrix, furthermore, were likely complementary in 

Mg/Si prior to parent body metamorphism. Unfractionated main element ratios and 

complementarities are key characteristics of many CC (e.g., Hezel et al., 2018b, and references 

therein). 

Zoned chondrule fractions are relatively low in chondrites from inner solar system reservoirs. 

Of all chondrites studied, Kakangari has the lowest fraction of zoned chondrules. However, 

this does not necessarily indicate a specific nebular location, but rather highlights the complex 

history of secondary processing observed in Kakangari chondrules (cf. Chapter 5; Berlin, 

2009). Similar to chondrule populations of other chondrites, Kakangari shows a close to normal 

distribution of bulk chondrule compositions. Thus, these characteristics of Kakangari 

chondrules do not clearly indicate an inner or outer solar system origin.  
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The aforementioned arguments show that Kakangari might be more closely associated with 

CC than OC and EC. This would promote an outer solar system origin of K chondrites. 

Nucleosynthetic isotope studies (e.g., 50Ti) of Kakangari chondrules would help to more 

accurately link this meteorite to a nebular location. So far, 50Ti has only been measured in a 

single Kakangari chondrule (Niemeyer, 1988). This chondrule does not have a 50Ti deficit and 

is, therefore, neither indicative of CC, nor non-CC reservoirs (Gerber et al., 2017). 

 

6.2.3. Processes during chondrite component formation 

The distinct properties of the individual chondrite groups (Section 6.2.1.) may be attributed to 

the conditions in the respective reservoirs and/or the processes that formed chondrites. It is 

important to determine whether chondrites and their components formed from different 

processes or if they experienced the same processes throughout the protoplanetary disk. Here, 

I want to discuss if the constraints reported in this thesis (cf. Section 6.1) result from localised 

or ubiquitous processes in the disk. 

The concept of complementarity – in coalescence with gas-melt interaction (cf. Section 6.1.3) 

– is theoretically applicable to all chondrites. However, complementarities have not yet been 

identified in OC and EC and it is still controversial if they exist in these meteorites. Chondrules 

are the dominant component in most non-carbonaceous chondrites, i.e., these often have up to 

80 vol% chondrules and typically only 10–15 vol% matrix (Scott and Krot, 2014). Thus, bulk 

OC and EC compositions are mainly defined by their chondrules, which causes difficulties for 

demonstrating complementarities. Unlike CC, there is definitely no main element (i.e., Mg/Si) 

complementarity in OC and EC as these do not have solar main element ratios (cf. Section 

6.2.1). Future work could, instead, focus on refractory lithophile and siderophile elements in 

these chondrites (e.g., Al, Ca, Ti, Zr, W, Hf, REE). Refractory element ratios are often 

unfractionated from the respective solar ratios. As demonstrated by Becker et al. (2015), Hf/W 

behaves complementary in CV chondrules and matrix. Lithophile Hf was mostly incorporated 

in chondrule silicates, and siderophile W in matrix opaques. This shows that complementarities 

do not necessarily require comparable chemical behaviour of element pairs. If chondrules and 

matrix were formed by the same process in all chondrites, then, eventually, complementarities 

will be detected in non-CC. However, so far, complementarities can only be confirmed for 

outer solar system reservoirs.  

The results of this thesis clearly demonstrate that zoned chondrules are abundant in all 

chondrites studied (Fig. 6.1, 6.2, 6.5). Thus, the process that formed zoned chondrules – open 
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system interaction – must have operated ubiquitously in protoplanetary disk reservoirs. This 

conclusion is challenged by authors who proposed that chondrules from inner and outer solar 

system reservoirs were transported and mixed together (Olson et al., 2016). In this case, zoned 

chondrules might have formed in the outer solar system as CC have up to 90% zoned 

chondrules, and were then mixed into inner solar system chondrites with lower zoned 

chondrule fractions. This scenario can be ruled out for several reasons: (i) complementarity 

excludes separate origins and mixing of components for CC (and likely K), however, not yet 

for OC and EC. (ii) Jupiter likely prevented large scale mixing of components from inner and 

outer solar system reservoirs (Fig. 6.5; Walsh et al, 2011; Gerber et al., 2017). (iii) All 

chondrule bulk compositions show close to normal distributions (Fig 6.5). Hezel and Parteli 

(2018) argued that such distributions can only be explained by a common origin of the 

chondrule population in a chondrite. Separate origins and disk-wide transport of chondrules 

would instead produce multimodal distributions. Lastly, (iv) Jones (2012) argued that the 

distinct properties of chondrule populations in chondrites (i.e., average chondrules sizes, 

petrographies, bulk chemical and isotope compositions) require common origins. Individual 

chondrite groups then sampled unique chondrule-forming reservoirs. 

 

6.3. Conclusions  

The results of this thesis – i.e., fractions of zoned chondrules in chondrites, range and 

distribution of bulk chondrule compositions, and complementarity – show that the processes 

during chondrule formation were most likely rather similar in the carbonaceous and non-

carbonaceous reservoirs, despite all the aforementioned differences among the groups (Section 

6.2). The distinct properties of individual chondrite groups then largely reflect various, and, 

importantly, local ambient conditions in the distinct reservoirs. For example, as temperatures 

were higher in the inner solar system, the chondrule heating mechanism might have been more 

energetic compared to outer regions (e.g., Ciesla, 2005). Thus, more chondrules were produced 

in inner solar system reservoirs, while less efficient heating resulted in the high matrix fractions 

observed in outer solar system chondrites. 

Based on the results of this thesis and their implications discussed above, I suggest to discard 

chondrule formation models that (i) require separate origins of chondrules and matrix, or 

mixing of chondrules from multiple reservoirs (ii) prohibit open system interaction, and (iii) 

cannot heat chondrules more than once. In principle, the following models would satisfy the 

constraints presented in this thesis: chondrule formation by nebular shock waves (Wood, 1996; 
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Desch and Connolly, 2002; Morris et al., 2012; Morris and Boley, 2018, and references 

therein), current sheet heating from magneto-rotational instabilities (McNally et al., 2013), and 

the layered disk model introduced by Mac Low et al. (2017). These models provide disk-wide 

mechanisms for chondrule formation that would also allow localised heating events and 

cogenetic formation of chondrules and matrix. They are, thus, compatible with 

complementarity, open system interaction, remelting of chondrules and macrochondrule 

formation.  
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