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Abstract

This thesis concerns with a framework of canonical quantization of gravity based on the Einstein-

Hilbert action extended by terms quadratic in curvature. The aim is to investigate the semi-

classical limit of such a theory and compare it with the semiclassical limit of the canonical

quantization of the Einstein-Hilbert action alone, the latter of which is the usual approach in

this framework.

General Relativity has passed the tests from the length scales of micrometers up to the

cosmological scales. The classical evolution of our Universe seems to be described by the so-

called ΛCDM model, which was recently tested by the Planck satelite with success. The recent

discovery of gravitational waves seems to confirm also the linearized, long-range behavior of

vacuum General Relativity. However, the behavior of gravity at short scales and relatively

high energies, i.e. in the regimes where quantum effects of matter fields and spacetime become

relevant, remains so far within the many possible theoretical approaches to its understanding. It

is expected that near the initial singularity of our Universe — the Big Bang — the description

of gravity drastically deviates from General Relativity and a theory of quantum gravity is

necessary. But already near the theoretical limit of the highest observable energy scale (energy

per excitation of a quantum field) — the Planck energy scale — it is expected that the effects

of quantum field-theoretical description of matter propagating on classical curved spacetimes

play a significant role. Because of this, General Relativity changes in two ways. First, the

energy-momentum tensor is replaced by the expectation value of the energy-momentum tensor

operator. Second, since the latter diverges, the regularization of these divergences has shown

that it is necessary to modify General Relativity by adding to the Einstein-Hilbert action, among

others, terms quadratic in curvature such as the square of the Ricci scalar and the square of

the Weyl tensor. Since these terms generate fourth order derivatives in the modified Einstein

equations, the doors were opened for investigating modified classical theories of gravity, in

order to provide alternative interpretations of dark matter and the accelerated expansion of the

Universe. However, an often neglected fact in these classical approaches is that these terms are

suppressed at the present, classical scales. This is also reflected in the fact that the respective

coupling constants of these new terms are proportional to the Planck constant and are thus of

perturbative nature. Therefore they are only relevant at high energy/strong curvature regimes,

typical for the very early universe. At extremely high energy scales, i.e. near and above the

Planck energy scale, it is expected that the perturbative description breaks down and that a

full quantum theory of gravity — which assumes that the spacetime itself is quantized as well

— is necessary.

The main goal of this thesis is to quantize the Einstein-Hilbert action extended by the

quadratic curvature terms is within the canonical quantization approach, thus formulating

quantum geometrodynamics of the higher derivative theories. The motivation is to provide an

alternative to the standard canonical quantization based on the Einstein-Hilbert action alone,

because the latter does not generate the quadratic curvature terms in the semiclassical limit. A

particular formulation of a semiclassical approximation scheme is employed which ensures that

the effects of the quadratic curvature terms become perturbative in the semiclassical limit. This

leaves the classical General Relativity intact, while naturally giving rise to its first semiclassical

corrections.

Another topic of interest is a classical theory where the quadratic Ricci scalar and the

Einstein-Hilbert term are absent from the action, which then enjoys the symmetry with respect

to the conformal transformation of fields (local Weyl rescaling). We pay a special attention to



this case, because near and beyond Planck scales it is expected that conformal symmetry plays a

very important role, since it provides a natural setting for the absence of the notion of a physical

length scale. Certain useful model-independent tools are also constructed in this thesis. Firstly,

it is shown that if coordinates are treated as dimensionless and if a set of variables based on

the unimodular decomposition of the metric is introduced, the only conformally variant degree

of freedom becomes apparent. This makes the geometrical origin of the physical length scale

apparent as well, which is especially important in the interpretations of conformally invariant

quantum theories of gravity. With such an approach several earlier results become much more

transparent. Secondly — which naturally follows from the application of the set of these new

variables — a model-independent generator of conformal field transformations is constructed in

terms of which a reformulation of the definition of conformal invariance is given. Thirdly, it is

argued that a canonical quantization scheme makes more sense to be based on the quantization

of generators of relevant transformations, than on the first class constraints. The thesis thus

attempts to combine several minor but important aspects of a theoretical approach and use

them to pursue the main goal.
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Kurzzusammenfassung

Diese Dissertation befasst sich mit einem Modell der kanonischen Quantentgravitation

basierend auf der Einstein-Hilbert-Wirkung, die um Terme mit quadratischer Krümmung er-

weitert wurde. Ziel ist es, die semiklassische Grenze einer solchen Theorie zu untersuchen und

mit der semiklassischen Grenze der kanonischen Quantisierung der Einstein-Hilbert-Wirkung

allein zu vergleichen, wobei die letztere in diesem Rahmen der übliche Ansatz ist.

Die Allgemeine Relativitätstheorie hat die Tests in Längenskalen von Mikrometern bis zu

kosmologischen Skalen bestanden. Die klassische Entwicklung unseres Universums scheint durch

das sogenannte ΛCDM-Modell beschrieben zu werden, das kürzlich vom Planck-Satelliten er-

folgreich getestet wurde. Die jüngste Entdeckung der Gravitationswellen scheint auch das lin-

earisierte weitreichende Verhalten der allgemeinen Relativitätstheorie im Vakuum zu bestätigen.

Das Verhalten der Gravitation auf kurzen Längenskala und bei relativ hohen Energien, d. h. in

den Regimen, in denen Quanteneffekte von Materiefeldern und der Raumzeit relevant werden,

bleibt jedoch innerhalb der vielen möglichen theoretischen Ansätze unseres Verständnisses. Es

wird erwartet, dass in der Nähe der anfänglichen Sigularität unseres Universums dem Big Bang

- die Beschreibung der Gravitation drastisch von der Allgemeinen Relativitätstheorie abweicht

und eine Theorie der Quantengravitation erforderlich ist. Aber bereits nahe der theoretis-

chen Grenze der höchsten beobachtbaren Energieskala (Energie pro Quantenfeldanregung) - der

Planck-Energieskala - wird erwartet, dass die Effekte der quantenfeldtheoretischen Beschreibung

der Ausbreitung von Materie auf klassische gekrümmte Raumzeiten eine bedeutende Rolle spie-

len. Aus diesem Grund ändert sich die Allgemeine Relativitätstheorie auf zwei Arten. Zuerst

wird der Energie-Impuls Tensor durch den Erwartungswert des Energie-Impuls Tensor Opera-

tors ersetzt. Zweitens , da dieser divergiert, hat die Regularisierung dieser Divergenzen gezeigt,

dass es notwendig ist, die Allgemeine Relativitätstheorie zu modifizieren, indem der Einstein-

Hilbert-Wirkung unter anderem Terme mit quadratischer Krümmung hinzugefügt werden, wie

beispielsweise das Quadrat des Ricci-Skalars und das Quadrat des Weyl-Tensors. Da diese

Terme Ableitungen vierter Ordnung in den modifizierten Einstein-Gleichungen erzeugen, wur-

den die Türen für die Untersuchung modifizierter klassischer Gravitationstheorien geöffnet.

Diese erlauben alternative Interpretationen der dunklen Materie und die beschleunigte Ex-

pansion des Universums. Eine oft vernachlässigte Tatsache in diesen klassischen Ansätzen ist

jedoch, dass diese Ausdrücke auf der gegenwärtigen klassischen Skala unterdrückt werden. Dies

spiegelt sich auch in der Tatsache wider, dass die jeweiligen Kopplungskonstanten dieser neuen

Terme proportional zur Planck-Konstante sind und somit störenden Charakter haben. Daher

sind diese nur für Regime mit hohen Energien, beziehungsweise starker Krümmung relevant,

die für das sehr frühe Universum typisch sind. Bei extrem hohen Energieskalen, das heit in

der Nähe und oberhalb der Planck-Energieskala, wird erwartet, dass die störende Beschrei-

bung zusammenbricht und dass eine vollständige Quantengravitationstheorie erforderlich ist,

die davon ausgeht, dass auch die Raumzeit selbst quantisiert wird.

Das Hauptziel dieser Dissertation ist die Quantisierung der Einstein-Hilbert-Wirkung, die

durch die quadratischen Krümmungsterme erweitert wird. Dies geschieht innerhalb des kanonis-

chen Quantisierungsansatzes um somit die Quantengeometrodynamik der Theorien der höheren

Ableitungen zu formulieren. Die Motivation besteht darin, eine Alternative zu der kanonis-

chen Standardquantisierung basierend auf der Einstein-Hilbert-Wirkung allein bereitzustellen,

da letztere nicht die quadratischen Krümmungsterme in der semiklassischen Grenze erzeugt.

Es wird eine bestimmte Formulierung eines semiklassischen Näherungsschemas verwendet, das

sicherstellt, dass die Auswirkungen der quadratischen Krümmungsterme in der semiklassischen

Grenze störungsfrei werden. Dadurch bleibt die klassische Allgemeine Relativitätstheorie erhal-



ten, während auf natürliche Art und Weise die ersten semiklassischen Korrekturen eingeführt

werden.

Ein weiteres Thema von Interesse ist eine klassische Theorie, bei der der quadratische

Ricci-Skalar und der Einstein-Hilbert-Term in der Wirkung fehlen. Die resultierende Wirkung

weit dann die Symmetrie bezüglich der konformen Transformation von Feldern (lokales Weyl-

Skalieren) auf. Wir widmen diesem Fall besondere Aufmerksamkeit, denn es wird erwartet, dass

in der Nähe und auerhalb der Planck-Skalen die konforme Symmetrie eine sehr wichtige Rolle

spielt, da sie einen natürlichen Rahmen für das Fehlen einer physischen Längenskala bietet.

In dieser Arbeit werden auerdem einige nützliche modellunabhängige Werkzeuge bereitgestellt.

Zunächst wird gezeigt, dass, wenn Koordinaten als dimensionslos behandelt werden und ein Satz

von Variablen basierend auf der unimodularen Zerlegung der Metrik eingeführt wird, der einzige

konform variierte Freiheitsgrad sichtbar wird. Dadurch wird auch der geometrische Ursprung

der physikalischen Längenskala sichtbar, was insbesondere bei der Interpretation konform invari-

anter Quantengravitationstheorie wichtig ist. Mit einem solchen Ansatz werden einige vorherige

Ergebnisse deutlich transparenter. Zweitens — was natürlich aus der Anwendung der Menge

neuer Variablen folgt — wird ein modellunabhängiger Generator für konforme Feldtransforma-

tionen konstruiert, anhand dessen eine Neuformulierung der Definition der konformen Invar-

ianz gegeben wird. Drittens wird argumentiert, dass es sinnvoller ist, die Quantisierung auf

den Generatoren relevanter Transformationen aufzubauen, als auf den Zwangsbedingungen der

ersten Klasse. Diese Dissertation versucht daher, einige kleinere, aber wichtige Aspekte einer

theoretischen Herangehensweise zu kombinieren und damit das Hauptziel zu verfolgen.
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Introduction and motivation

General Relativity (GR) is a theory describing a classical gravitational field as space-

time curved by classical matter. It is a valid description of gravitational phenomena

“at present scales” by which we mean either energy scales or length scales characteristic

for the gravitational phenomena we are currently able to observe. The length scales

extend from planetary and Solar system scales to the scales characteristic for the Uni-

verse as a whole, e.g. Hubble radius (the proper radius of a fictitious sphere centered at

an observer’s position from beyond which light can never reach that observer because

there the Universe expands faster than the speed of light). According to the currently

satisfying cosmological model, the ΛCDM model recently tested by the Planck satelite

[108] designed to measure anisotropies of the cosmic microwave background radiation

(CMB), our Universe would have started from a point (the Big Bang) and then ex-

panded at exponential rate through a phase called inflation, ending up evolving as a

flat Friedman model with a cosmological constant and matter, such that nowadays it is

in an accelerating expansion phase, dominated by the cosmological constant. How our

Universe emerged into existence is not known. What we do understand is that GR is

not a satisfactory description of gravity at the high-energy scales close to the Big Bang,

where the typical length scales of gravitational interaction of matter were much smaller

than today. At these scales quantum effects of matter are expected to have been just as

important as matter’s gravitational effects; classical GR describes only interactions of

classical matter with classical spacetime. This necessitates a theory of quantum gravity

with a valid semiclassical limit that should recover GR and theory of quantum fields

propagating on classical curved spacetime. The notion of a length scale characteristic

for gravitational or quantum phenomena and by which means such a length scale can

be defined and measured in a physically realizable setting becomes a very important

part of the question, especially if considered within the context of conformal symmetry.
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Introduction and motivation

I.1 The effect of quantum fields at high energies/short

length scales

To get an idea of these high energy scales, let us briefly take a point of view of a

hypothetical experimenter that lives in the time of such regimes. If such an entity

would use one particle to scatter off another particle in order to investigate the latter’s

properties, the Compton wavelength (in its reduced version),

λc :=
~
Mc

,

corresponding to the mass equivalent M of their total energy Mc2 would have a lower

observable limit [68]. Namely, if the Compton wavelength of such a system of particles

is smaller than the Schwarzschild radius

rSch :=
2GM

c2
,

corresponding to the mass equivalent of their total energy, a black hole would be formed,

from which no information could be extracted via such scattering process. The energy

a particle has to have such that this would happen are finite but very large for a

single particle, they are of the order ∼ 1018 − 1019 GeV (ultra-relativistic compared to

the energy equivalent of even the heaviest elementary particles). This is the (reduced)

Planck energy scale and is derived from the condition λc = rSch, which results in

mpc
2 := c2

√
~c

(8π)G
∼ 1019 GeV ,

where mp :=
√
~c/8πG is the reduced Planck mass and G, c, ~ are Newton’s gravita-

tional constant, speed of light and the (reduced) Planck’s constant, respectively. The

“reduced” label is usually added to the definition if the factor of 8π is present — but the

difference is about one order of magnitude and is therefore fundamentally non-existent.

In this work we use the version with the factor of 8π, but omitt the “reduced” label in

the text. The corresponding Planck length scale — the mentioned smallest observable

Compton wavelength — is then of the order of

lp :=

√
8π~G
c3

∼ 10−35 m .

Now, according to ΛCDM cosmological model (which does not take into account

the wave-particle duality of matter in the early universe in a way mentioned above),

2



I.1. The effect of quantum fields at high energies/short length scales

which is a solution to Einstein’s equations of GR, the Universe has no lower limit on

its size and no upper limit on energy density — the time dependent scale factor a(t),

describing the relative size of our Universe, towards the initial point t = 0 in the past

tends to zero and the energy density diverges (which is the point referred to as The Big

Bang). This point is called the initial singularity. But as we mentioned above, there

seems to be a natural lower limit for the length — and therefore, size — of a region

of the Universe within which matter interactions could be described in a physically

meaningful way, so this singularity is not reached before effects of Planck scales step

onto the stage. The situation could be understood also in terms of the Planck time, i.e.

the time it takes a massless particle to travel the Planck length,

tp :=
lp
c

:=

√
8π~G
c5

∼ 10−44 s .

Namely, physical processes which take place over a period of time shorter than the

Planck time are unobservable, according to the discussion above. This means that the

extrapolation of the classical description of the universe backwards in time is meaningful

only until t = tp, i.e. until Planck scales are reached. Beyond this point into the past

another description of the evolution of our Universe is needed, in order to accomodate

the effects of Planck scales.

As a first step towards a description of matter-spacetime interactions near Planck

scales, the high-energy regimes approaching the Planck energy should somehow take

into account the effect of quantum matter fields on a classical spacetime curved by

those very same fields. This is the aim of quantum field theory in curved spacetimes

[13, 106] which treats spacetime as classical, but takes into account the effects of high-

energies (short length scales) of quantum matter. An important extension of the ΛCDM

model that takes these effects into account to some extent is inflation (see e.g. [91]),

which is a relatively short period of rapid expansion of the Universe expected to have

taken place at most at ∼ 1014 GeV. Inflation takes care of some of the problems of

the ΛCDM model (the horizon and the flatness problems) and in the heart of it is the

description of an evolving scalar field that drives the rapid expansion of the Universe and

the evolution of quantized perturbations of this field. The latter give rise to natural

initial conditions for classical perturbations describing the local inhomogeneities as

seeds for the structure formation of the Universe. The important fact here is that the

gauge invariant formulation of these perturbations [97] requires that the perturbations

of the scalar field are put together into a specific linear combination with the scalar

perturbations of the spacetime metric and only then such a mixture is quantized, with

an assumption of an initial vacuum state. This means that the very early period of the

Universe’s evolution already seems to necessitate quantization of at least perturbations

of the spacetime, in order to give rise to the observable randomness of local anisotropies

of the CMB.

3



Introduction and motivation

But at these and even higher energies another important effect of quantum field

theory in curved spacetimes needs to be taken into account. Namely, Einstein equations

(EE) — arising from the sum of the Einstein-Hilbert (EH) and matter action — change

in two ways if the matter action refers to the quantum matter described by quantum

fields, instead of the classical matter.

Firstly, instead of the energy-momentum tensor one has to write down the expec-

tation value of the operator corresponding to the energy-momentum tensor evaluated

with respect to some quantum state. If part of the matter is classical then the classical

energy-momentum tensor is present as well. These are then not classical but semiclassi-

cal Einstein Equations (SEE) for a dynamical spacetime background metric interacting

with quantum matter through the expectation value of the energy-momentum tensor

operator [51]. The spacetime metric unfortunately cannot be solved for in a closed

form because the quantum state is unknown until the background metric is known,

but the background metric can in general only be determined by the mentioned ex-

pectation value. This fact — that the gravitational field of the quantum matter reacts

back to matter that produces it — is called the backreaction. The problem is that the

calculation of the backreaction term leads to divergent results which depend on the

energy scale [13, 106, 143]. In order to deal with these divergences, one uses procedures

referred to as regularization and renormalization; chapter 3 in [106] presents several

methods of these procedures. The former isolates the divergences from the finite terms

and it turns out that these divergences are proportional to terms depending only on

derivatives of the metric (in a covariant way), not on the matter fields. This would all

be less concerning if the divergent terms were proportional only to the Einstein ten-

sor, the metric tensor and other terms with coupling constants already present in the

matter action — then they would be taken care of by the redefinition of the Newton

gravitational, cosmological and other constants in the matter action using the latter

method, remormalization (see further below). But it turns out that these terms at the

first order of approximation contain up to four derivatives (in various combinations) of

the metric covariantly disguised either as quadratic curvature tensors or as covariant

derivatives of curvature tensors — objects which do not originally appear in the EE.

This is where one gets to know the second way that the EE change.

Namely, because of these higher-derivative divergent terms, renormalization pro-

cedure then requires that one adds additional terms to the EH action with their own

“bare” coupling constants which would produce precisely those terms in the SEE which

the mentioned divergences are proportional to. One calls them “counter-terms” and

there are more counter-terms necessary as energies are increased. These counter terms

turn out to be made of various contractions of the Riemann tensor with itself and

its covariant derivatives: they are scalar terms such as the quadratic1 Ricci scalar

1There are also other terms such as ∇µ∇µR and certain non-local terms, but for simplicity we do
not consider these terms here. Note that term ∇µ∇µR is not relevant for equations of motion since
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and Ricci tensor βR2, γRµνR
µν and squared Weyl-tensor αCµανβC

µανβ ≡ C2, where

β, γ, α are coupling constants with dimensions of ~. Then by redefining “bare” cou-

pling constants β, γ, α of these new terms in such a way to include2 or counter the

divergent terms arising from the mentioned procedure one ends up with finite terms

with energy-dependent couplings (the same happens in high-energy particle physics,

see e.g. [44, 68]), β(E), γ(E), α(E). This is how one ends up with additional curvature

terms in the SEE apart from the Einstein tensor. The most important consequence

of this is that the SEE become fourth order. The corresponding action, with all cou-

pling constants redefined appropriately, is called the effective action [24], but is also

referred to as the higher derivative theory of gravity, for reasons we state in section I.3

of this introduction. It is important to note that the effective action is perturbative in

nature, where ~ plays the role of the perturbation parameter, the powers of which the

mentioned additional terms are proportional to. Thus, at low energies — due to its

perturbative nature — the correction terms do not contribute significantly compared

to the EH term [44], namely e.g. the term R2 is significant only if β(E)R & 1070m−2 or

β(E)∇µ∇µR/R & 1070m−2. On the other hand, again due to its perturbative nature,

it is expected that near Planck energies the SEE break down because the mentioned

higher-derivative terms become significant. At these scales one must abandon the ef-

fective action with a perturbative approach and find a different description of gravity.

I.2 Quantum gravity

This is where quantum gravity enters the stage. There are quite a few approaches

to quantum gravity [82] and we have so far motivated it in one way; there are other

reasons to motivate quantum gravity such as the need for unification of matter and

gravitational interactions, or consistent description of interaction of black holes with

quantum matter [81]. Quantum gravity is a general name for a theory which treats

both gravitational and matter interactions as quantum. In such theories the spacetime

itself is of quantum nature. Whatever the final quantum theory of gravity is, it should

not only describe the spacetime at the mentioned energy regimes close to (and perhaps

beyond) the Planck scales but also have a valid and consistent semiclassical limit. From

this semiclassical limit a correct description of the classical world must emerge under

certain conditions. In ordinary quantum mechanics these conditions are achieved by

what is usually referred to as the limit of vanishing Planck’s constant, ~ → 0. One

could think of this as “classical mechanics is a regime of scales with respect to which the

quantum of action (i.e. ~) looks negligibly small”; equivalently but somewhat formally,

we would like to say that an action S describes classical physics if S/~ � 1. We

it is a total divergence, but it may be relevant for a quantum theory of gravity. The non-local terms
are relevant for long-range behavior [44] at low energies and their coupling constants are theoretically
predictable.

2One usually says “absorb”.
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prefer the latter, because that statement does not depend on the choice of units (i.e.

it is dimensionless) — a guideline we shall prefer to adopt in this thesis. Now, just as

classical mechanics is a limit of quantum mechanics, classical gravity (assumed to be

described by GR) should be the limiting case of a potential quantum gravity theory.

But there must be one intermediate step in this approximation which must arise from

any quantum gravity theory: the SEE mentioned in the previous two sections. Namely,

a full quantum gravity theory has to explain the emergence of classical spacetime and its

interaction with quantum matter fields that propagate on it. Which parameter serves

the role of regulating the semiclassical approximation to a quantum gravity theory?

Since Planck length scale is much smaller than even the lowest observed length scales

[67] l0 & 137µm where classical gravitational phenomena are still described by GR

and Newtonian limit, we could say that the enormous dimensionless ratio of at least

l0/lp ∼ 1028 (independent of chosen units!) is a good parameter which can tell us that

any quantum phenomena relevant at Planck scales are negligible with that order of

precision at scales described by l0. This ratio could also be interpreted as the ratio of

a radius of the presently relevant spacetime curvature with the radius corresponding

to the much stronger curvature at Planck scales. However, this ratio could be smaller

for gravitational phenomena involving high mass-energy densities such as the ones in

the very early universe where energy per particle approaches Planck energies, or even

in very strong gravity regimes in the present-day Universe such as formation of black

holes. In such regimes a typical curvature radius of the relevant region of spacetime

becomes comparable with the Planck length, i.e. l0/lp ∼ 1. If we interpret l0 as the

Compton wavelength of a typical particle in such strong-gravity regions of spacetime

and recall the aforementioned example of scattering particles at high energies, we could

say that towards Planck energies the Compton wavelength becomes comparable with

the Planck length. These are few of several various ways of interpreting l0 and they seem

to make l0/lp � 1 a good candidate for controlling the semiclassical approximation to

a quantum gravity theory. Indeed, it is the gravitational coupling constant expressed

in terms of the Planck length (or Planck mass mp) via G ∼ l2pc3/~ = ~c/m2
p which tells

one about the strength of gravity, yet only in given units and thus in an ambiguous

way. But since G can be expressed in terms of a fundamental length (or mass) unit,

i.e. the Planck scale, then it makes more sense to express the strength of gravity with

respect to some given length scale, in this case the Planck scale, as l0/lp, which is what

we do in this thesis. The semiclassical picture should emerge from a quantum theory of

gravity once the limit l0/lp � 1 is taken and should be able to show that SEE emerge,

just as classical mechanics emerges from quantum mechanics in S/~ � 1 limit. It is

thus important to review the SEE in some more detail.

I.3 Semiclassical and higher-derivative gravity

The most drastic consequence of the SEE after the procedure of renormalization has

taken place is that the presence of quadratic curvature terms in the SEE implies that
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not only the solution for the metric is different compared to the original EE but also

that there are more solutions to the resulting differential equations due to their fourth

order nature; moreover, some of these new solutions exhibit instabilities in the sense

that they diverge as one takes the limit of β, γ, α→ 0, and thus fail to give a meaningful

low energy limit.

An important example of such additional solutions is the Starobinsky inflation based

on the work by Starobinsky [133], a solution to the vacuum SEE stemming from the EH

action extended by an R2 term. There, the additional degree of freedom appears due to

the R2 term which can be shown to mimic a scalar field with a certain potential (referred

to as the Starobinsky potential). This solution is, however, stable. The situation

is more sever if other curvature terms resulting in four derivatives of the metric are

included as the first necessary counter-terms, as mentioned in the previous section; few

years before Starobinsky’s paper Stelle addressed the most general quadratic curvature

effective action containing the EH term in two papers [134, 135], i.e. the EH action with

most general combination of curvature terms containing four derivatives of the metric.

Stelle showed that such an action — unlike pure EH gravity — is renormalizable3 [134].

Furthermore, in [135] the same author considered this action as purely classical and

looked at linearized solution to its fourth order differential equations of motion in the

context of a static spherically symmetric ansatz. Apart from the usual Newtonian 1/r

term in the potential, he obtained a Yukawa-like term as well as terms exponentially

increasing and decaying with r. They compete with the Newtonian potential (because

some of them have an opposite sign and thus behave as anti-gravity) and at r = 0

conspire to give a finite result. Furthermore, if the linearized theory is discussed in the

context of general perturbations of the metric, it is found that it has eight dynamical

degrees of freedom: apart from the usual two associated with a massless spin-2 state

associated with the gravitational waves in GR, one ends up with five degrees of freedom

associated with a massive spin-2 and one degree of freedom associated with a massive

spin-0 (scalar) component. If even higher order terms were included as counter-terms

in the action (which is necessary with increasing energies) there would be even more

degrees of freedom and one would need to make sense of them.

Now, the problem is not only the increased number of dynamical degrees of freedom.

The problem is that some of these additional solutions are unstable and diverge. An ex-

ample of this phenomenon is given by a theory which is made of C2 term (which we refer

to as the Weyl-tensor term), whose linearized version gives a wave whose amplitude lin-

early increases with time, as shown in [119], which thus diverges for t→∞. This issue

is not unique to higher-derivative theories of gravity. In a generic (non-gravitational)

higher derivative theory that contains interactions, the corresponding Hamiltonian is

3It is not possible in some theories to introduce a finite number of counter-terms to absorb the
divergencies appearing in the theory as one approaches the high energies. The EH action describing
GR is one such an example as shown in [64] and such theories one calls non-renormalizible. Non-
renormalizibility of GR is one additional motivation to pursue alternative theories to GR.
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necessarily unbounded [152], i.e. such a theory contains unstable, run-away solutions.

In particular, for a quite generic higher-derivative theory of gravity it can be shown

[101] that it necessarily suffers from unstable solutions, thereby representing a serious

generic problem of higher-derivative theories of gravity that aim to substitute GR as

exact classical theories. Furthermore, if quantization is performed, this pathological

feature is manifested as negative norms [59], thus breaking unitarity, which may be an

important drawback of quantum versions of higher-derivative theories. These unstable

solutions or modes are called “ghosts” (not to be confused with Fadeev-Popov ghosts)

or “poltergeists”. However, it is interesting that in spite of these problems, classical

higher-derivative theories of gravity are quite popular and a considerable effort is made

to make sense of them (see e.g. [8]), mostly because the general hope is that these

models can explain dark matter and dark energy beyond the GR [33, 90]. A rather

general effective action with non-local terms has been considered by Calmet at al. [31]

at the linearized level to pave the way for possible methods of measuring the involved

coupling constants β, γ, α individually via gravitational wave experiments. They found

that no fine tuning of coupling constants and parameters could eliminate ghosts, but

they also claim that ghosts are not a problem as long as one only speaks of classical

gravitational fields — they simply contribute to the repulsive gravitational potential

(as was also found by Stelle [135]). Indeed, classical gravitational waves other than

the standard “cross” and “plus” transversal modes are perfectly acceptable as solu-

tions to the linearized higher-derivative gravity formulated as an extension of GR, as

shown in e.g. [20, 65], where in the former reference also prospects of their detection

in LIGO and VIRGO observatories has been discussed. These solutions simply stretch

the space in several additional ways other than “cross” and “plus” modes of the pure

GR. Furthermore, recently in [32] it is shown that the massless spin-2, massive spin-2

and massive spin-0 modes are a relevant model-independent prediction of the effective

action (the same one used in their earlier paper [31]) that needs to be taken into ac-

count in future simulations of black hole mergers. They estimate (based on data from

[67]) that in order for the massive spin-2 mode to be produced (taking into account

its constraints which they also discuss) the centers of two black holes would have to

be apart from one another at most of the order of 10 cm, which is well inside any

astrophysical black hole’s Schwarzschild radius. This provides an expected length scale

at which higher-derivative terms would be relevant.

On one hand, it seems that it is the conflict between the appeal of robustness

of classical higher-derivative theories and the plague of their ghost solutions that is

usually motivating the methods of “how to deal with ghosts” in quantization of higher-

derivative theories, e.g. by alternative ways of quantization [9, 10]. On the other

hand, we think that crucial importance of higher-derivative extensions of GR does not

lie in the hope for providing alternatives to dark matter and dark energy but in the

hope for bridging the low energy scales (where GR is an appropriate classical theory)

and high energy scales at which the full theory of quantum gravity is expected to
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rule the description of gravity-matter interactions. For example, if one thinks that it

is important to discuss classical gravitational waves in higher-derivative theories then

one must admit that it is also important to discuss these theories in the very early

universe as well, in the context of inflation, because the tensor (gravitational wave)

modes and their quantization are predicted in pure GR with inflation [132]. This is

why one would eventually have to deal with ghosts and issues with higher-derivative

theories, if they are taken seriously, as it was recently emphasized by Matsui (see

[93] and references therein) in the context of instability of spacetime in the presence

of higher-derivative terms. For example, in [40] the inflationary power spectrum of

quantized ghost gravitational modes in a theory with a C2 term was inspected and

it was found that it is indeed relevant and that its behavior, remarkably, depends

on a coordinate system employed. Thus it seems that a special care is necessary in

order to treat and understand this problem. That is one reason why we do not take

higher-derivative theories as exact classical theories of gravity seriously in this thesis.

Another reason — which actually follows from cautiously interpreting the effective

action — is that higher-derivative terms should be treated as perturbations of the

classical action, as they indeed are, being proportional to the powers of ~. This fact

seems to have been largely missed in most of the references we have stated so far on the

topic, including [31, 32] (and many other, which can be found therein)4. If these terms

are local perturbations of the EH action, then the corresponding equations of motion

(i.e. the SEE) are to be treated as perturbed EE. But that means that the spacetime

metric, as the solution to these equations, has no valid meaning as an exact solution

but only as a perturbative solution. This simply follows from adopting the perturbative

method of solving differential equations. The essential consequence of this is that

the additional solutions arising from the presence of the higher-derivative terms are

automatically excluded and thus there are no extra degrees of freedom, no massive or

ghost modes, independently of the order of derivative terms included in the action. The

recognition of the perturbative nature of higher-derivative terms in general was first

recognized by Bhabha [12] already in 1946 in the case of the Lorentz-Dirac equation

for an electron and what is know as the Abraham-Lorentz force, which describe the

influence of the electron’s own electromagnetic field back on the electron’s own motion.

This equation, if treated exactly, leads to exponentially increasing acceleration, but

if treated perturbatively such a runaway solution is excluded [98] and no problems

occur. Furthermore, the perturbative nature of the quadratic terms in the effective

gravitational action and their solutions was first emphasized by Simon almost three

decades ago in [129, 130] and further boosted in a short series of research during the

4An exception must be mentioned [14, 15, 30], which is concerned with formulation of non-local
theories of gravity, that can be rewritten as an infinite sum of infinitely increasing order of derivatives;
these theories do not suffer from ghosts or extra degrees of freedom. We think that infinite-derivative
formulations deserve more attention as theories with higher derivatives, especially because they aim to
abridge the low energy and high energy end of a theory of gravity in a consistent way. Also, Donoghue
[44] acknowledges promises of perturbative methods described below.
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1990’s starting with [105], in which the second order form of the SEE was derived using

the perturbative reduction of the fourth order equations. This method is referred to as

the method of perturbative constraints (MPC) or perturbative order reduction. MPC

has recently been concisely and clearly reviewed by Cheng et al. [36], who, among their

results, showed on a higher-derivative toy model of two masses coupled through two

springs that unstable solutions are perturbatively excluded at low energy (one spring

much stiffer than the other). For gravity, this means that MPC enables one to take the

β, γ, α→ 0 limit without any issues. To quote Bhabha [12]:

“The exact equations of motion of point particles possess two types of so-

lutions; the first type, called the physical solutions, are continous functions

of the interaction constants at the point where the values of these constants

are zero, and hence can be expanded as series in ascending powers of the

constants; the second type, called the non-physical solutions, have an essen-

tial singularity at the point where the values of the interaction constants is

zero, and hence cannot be expanded as series in ascending powers of the

interaction constants.”

Therefore, in this thesis we take the position that higher-derivative actions make

sense as classical actions only if the higher-derivative terms are treated consistently

as perturbation terms thus giving rise only to the solutions of the SEE which are

perturbatively expandable (i.e. analytic) in their coupling constants. At energies where

these terms are relevant, one must abandon the perturbative interpretation of the

higher-derivative terms and quantize the theory, thereby pushing the additional degrees

of freedom to the quantum regime, which then requires a separate analysis that we do

not go into here. This systematically eliminates all problems in the low energy limit

mentioned above. Let us now review how do the SSE arise from a particular approach

to quantum gravity.

I.4 On quantum geometrodynamics and its semiclassical

limit

The context among the approaches to quantum gravity we put this thesis into is the

approach of quantum geometrodynamics or QGD, in short. It was introduced by De-

Witt [41] in 1967 and is one of the conservative approaches to quantum gravity because

it is based on Dirac quantization of the Hamiltonian formulation of GR [3] in an anal-

ogous way as Dirac quantization of classical mechanics, without adding any additional

mathematical structure. We shall refer to this theory as quantum geometrodynamics of

GR or QGDGR in short5. In the focus of QGDGR [82] is the Wheeler-DeWitt equation

5Such more precise nomenclature is necessary because we are concerned in this thesis with quan-
tization of theories based on actions containing quadratic curvature terms in addition to the EH term
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(WDW), an equation of motion for the wave functional of the three-dimensional metric

field and non-gravitational fields. As mentioned before, it is important to have a semi-

classical approximation scheme at one’s disposal, leading to the SEE and quantum field

theory on curved spacetimes, determined by those SEE. This is achieved in a combina-

tion of a Born-Oppenheimer-type and WKB-like approximation which comes with an

expansion of the wave functional in powers of G−1 (or equivalently m2
p or l−2

p [78, 131]).

(As we argued further above, we think it is more meaningful to use dimensionless pa-

rameter l0/lp � 1 as the expansion parameter; the results will not change.) This was

shown on a number of occasions [6, 78, 131] to lead at the highest order in the ap-

proximation to a semiclassical picture of gravity: the Einstein-Hamilton-Jacobi (EHJ)

equation [109] (which is equivalent to the Einstein equations, as shown by Gerlach

[53]) and the quantum field theory on a fixed curved background spacetime formulated

as the functional Schrödinger equation in terms of an emerging evolution parameter

referred to as the “semiclassical time” (which has nothing to do with the coordinate

time at first). However, as we reviewed before, one still must employ regularization and

renormalization procedures that will take care of divergences in the emerging SEE and

the functional Schrödinger equation — these procedures are not automatically included

in the semiclassical approximation nor QGDGR and this is why one needs to introduce

the counter-terms by hand. It would be preferable that counter-terms somehow emerge

from the full QGDGR so that one simply has to take the l0/lp � 1 limit leading to

the semiclassical approximation and things should take care of by themselves. But

since introducing these counter-terms changes the action, QGDGR — in its present

state — can no longer be an adequate starting point for a quantum gravity theory that

aims to derive a consistent semiclassical limit because its gravitational part is based

only on the EH term without the counter-terms. To investigate the possibility of a

quantum gravity theory based on the approach of QGD that is able to give rise to

the SEE with counter-terms, there are at least two ways of proceeding. The first is to

deal with ill-defined second functional derivatives with respect to the fields evaluated

at the same point, since these produce divergencies; according to a recent work by Feng

[49], these ill-defined objects can be remedied by a certain procedure which formally

produces nothing other than the quadratic curvature terms arising in the SEE; it would

be interesting to investigate the interplay of this procedure with the regularized and

renormalized SEE and understand the role of these additional terms derived in [49].

The second way — which we adopt in this thesis — is to simply quantize an action that

already contains the counter-terms and analyze the consequences to the semiclassical

approximation.

Let us thus summarize the discussion in the following two important points that

must be taken into account, given the state of matters and our chosen approach in this

thesis:

and we shall refer to “QGD” as a tool for quantizing an arbitary theory of gravity.
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• QGDGR is based on the EH action. However, if we take the point of view that any

quantum gravity theory has to recover the SEE in its semiclassical approximation,

then QGDGR is expected to produce the mentioned higher order counter-terms,

which the standard approach to QGDGR [82] fails to achieve. One needs to add

counter-terms by hand after the semiclassical approximation and because of this

we think that QGDGR — in the present state of affairs — is unlikely to be a

valid method of quantizing gravity.

• Suppose that one indeed has at one’s disposal a potential quantum gravity theory

based on the QGD of the EH action extended by the counter-terms. Now suppose

that a valid semiclassical approximation can be obtained using l0/lp � 1 as an

expansion parameter such that the SEE with all necessary counter-terms arise.

Then one is faced with the fact that these equations are at least of the fourth order,

thereby changing the nature of classical gravity solutions. But since the counter-

terms are perturbative in nature, the solutions must be treated perturbatively as

well. This necessarily invites a modified semiclassical approximation scheme by

means of which the perturbative nature of the quantized counter-terms must be

taken into account.

The work in this thesis aims to provide one possible remedy for the above two points.

We shall seek a formulation of a QGD based on an action containing the EH term, R2

term and the C2 term, with non-minimally coupled scalar field. An example of such

theory was studied by the author in his Master thesis Quantum Geometrodynamics of

Conformal Gravity [99], where the EH action extended by the C2 term was considered.

The resulting semiclassical approximation was performed in terms of the dimensionful

ratio c3m2
p/~α, where α is the coupling of the C2 term and it was shown that the clas-

sical Einstein gravity emerges. However, despite the significance of the latter result,

two important points were not realized at the time: the fact that conformal and non-

conformal degrees of freedom become explicit if one employs the so-called unimodular

decomposition of the metric, and the fact that a concrete formulation of the MPC in

the context of the (quantized) higher-derivative theories is available in the literature

and is indeed well-defined line of attacking the problem. The former is not directly re-

lated to the semiclassical approximation scheme but it does considerably help to clearly

separate and understand at a deeper level the contributions of the R2 term from the

contributions of the C2 term. It also demonstrates the reward of an effort to seek a

relatively more elegant formulation of a theory in terms of symmetry-motivated new set

of variables and thus is also of a great pedagogical and inspirational value for a daring

young theorist. The latter fact is crucial for achieving some intermediate steps in this

thesis and is motivated not only by the mentioned works of Simon [129, 130] but also

and especially by the work of Mazzitelli [94] from 1992. Mazzitelli was the first to com-

bine the perturbative approach with QGD based on the quadratic curvature extensions

of the EH action and he has shown that the correct SEE with counter-terms arises in
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the semiclassical limit to the perturbed WDW equation so the only thing one was left

to do in addition was to perform the regularization and renormalization of the coupling

constants, which he successfully realized. Thus it seems at first that aims of this thesis

repeat the already established results of [94]. But this is not the case. Namely, the sub-

tlety of Mazzitelli’s result is that he employed the MPC before the quantization (which

we shall refer to as “perturbation before quantization”, PbQ), whereas the results of

the present author’s Master thesis have shown (on a more restricted example of EH plus

C2 action) that the same result could be expected if one employs (what is now known

to the author as) the MPC formalism after the quantization (which we shall refer to as

“quantization before perturbation”, QbP). The difference is not in the mathematical

aspect of the two approaches (which does remind one of the chicken-and-egg question),

which prevents one from favoring either of the approaches over the other. The differ-

ence is in the physical aspect of this apparent ambiguity. Indeed, as argued above,

there is a way to motivate the QbP in a very simple way: the higher-derivative terms

can be allowed to overcome the EH term only at high energies, while at low energies

(i.e. in the SEE) they have purely classical but perturbative nature; that is the reason

why it does not seem reasonable to us to quantize the higher-derivative terms after

they have already been identified as low-energy perturbations (as Mazzitelli [94] did).

That is the point of view we adopt in this thesis and is one of the main motivations for

pursueing the quantization of higher-derivative theories of gravity. Moreover, we would

like to show that pure GR does not necessarily arise only in the QGDGR approach or

in QGD of the EH plus C2 action, but may arise from the more general local quadratic

curvature gravity with the EH term. This may also have significant implications for

other (especially canonical) approaches to quantum gravity.

This thesis also has a couple of side-endeavours which seem useful for both classical

and quantum contexts of theories of gravity and thus are worth spending few sections

on. Namely, we employ a decomposition of the metric and matter fields based on

their conformal properties. The decomposition isolates the part of variables invariant

under conformal field transformations in a new set of conformally invariant variables,

while allowing only one single variable to transform under conformal transformations

— the scale density, defined as (
√
g)1/4, where g is the absolute value of the metric

determinant. The consequence of this rather simple trick is that any metric theory of

gravity reveals its conformal features manifestly: conformally invariant theories — such

as C2 gravity, electromagnetism and conformally coupled scalar field — take a mani-

festly conformally invariant form, while conformally non-invariant theories — such as

GR, R2 gravity or minimally coupled scalar field — take a manifestly conformally non-

invariant form. Such formulation not only significantly simplifies both the Lagrangian

and Hamiltonian formulations of a theory but also provides one with a clear physi-

cal insight into conformal degrees of freedom of a theory. Why is this so important

to emphasize? Because, as will be shown in one part of this thesis, if we consider

coordinates as dimensionless (which is not usually done), then the scale density car-
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ries the meaning of a length scale which we introduced above as l0 (that one uses as

“rods” and “clocks”), that ties the interpretation of a characteristic length scale with

the notion of the length defined with the spacetime metric. Consequently, by defining

a generator of conformal field transformation, we shall show that an action is invariant

under conformal transformations if it possesses no functional dependence on the scale

density variable and is thus unable to give rise to a meaningful notion of the length

scale. Definition of conformal invariance in terms of our generator could provide a very

useful tool for studying gravity and matter at high energies since it seems reasonable to

expect that conformal symmetry may be unbroken at very high energies both in matter

and gravitational sector [63]. Due to its theory-independent formulation and off-shell

validity, its can be envisioned as a very useful tool in other approaches to high-energy

formulation of theory of gravity.

The thesis is organized as follows. Chapter 1 is a pedagogical warm-up exercise

on coordinate transformations in which we take a relatively novel approach to under-

standing the basic coordinate transformations and their effect on the metric compo-

nents. This serves to motivate the unimodular decomposition of the metric in a rather

smooth way by investigating conformal and non-conformal (shear) coordinate transfor-

mations. We also review some old results on the group of general linear transformations

which are not usually mentioned in standard textbooks on GR. In chapter 2 we intro-

duce the unimodular decomposition of the metric and extend it to field theory and

3 + 1 decomposition of spacetime. We also introduce the notion of the characteristic

length scale l0 by demanding the coordinates be dimensionless. The definition of the

generator of conformal transformation and definition of conformal invariance in terms

of the scale density are presented in chapter 3. In chapter 4 the higher-derivative terms

are introduced into the EH action and their perturbative nature with consequences

on the equations of motion is discussed. This sets up the stage for chapter 5 where a

canonical quantization of the action based on the EH term extended by R2 and C2 with

non-minimally coupled scalar field is presented. Such quantum gravity theory is com-

pared to the QGDGR in a general context. The emphasis will be on the semiclassical

approximation and emergence of the SEE. Each chapter is ended by some final remarks

which summarize the main insights and provide some further ideas. The summary and

outlook is presented in Conclusions, and the Appendix gives several calculations or def-

initions which would otherwise interfere with the flow of the main text. The references

are organized alphabetically and cited by a numerical system.

∞ � ∞
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I.4. On quantum geometrodynamics and its semiclassical limit

Notation

• lP =
√

(8π)~G
c3
∼ 10−35 m → the (reduced) Planck length;

• tP =
√

(8π)~G
c5
∼ 10−44 s → the (reduced) Planck time;

• mP =
√

~c
(8π)G ∼ 1019 GeV

c2
→ the (reduced) Planck mass;

• unless otherwise specified, throughout the thesis we adopt c = 1 units;

• l0→ characteristic length scale measured by the four- or three-dimensional metric;

• l := l0
lP
→ dimensionless length scale relative to the Planck length scale;

• the metric signature convention is (−,+,+,+);

• greek indices designate spacetime components and run as µ = 0, 1, 2, 3..., d − 1,

while latin ones designate spatial components and run as i = 1, 2, 3, ..., d− 1;

• the Riemann tensor convention is Rαµβν = ∂βΓαµν + ..., and Rµν = Rαµαν =

∂αΓαµν + ... for the Ricci tensor;

• g := |det gµν | → the absolute value of the determinant of an n-dimensional metric,

so the usual minus sign does not appear in the volume element, which we write

as
√
g;

• A(µν) and A[µν] → symmetrization and antisymmetrization of the enclosed pair

of indices, respectively;

• AT
µν := Aµν − 1

dgµνA
α
α → the traceless part of Aµν ;

• 1µναβ := δµαδνβ → the identity matrix on the space of second-rank tensors;

• 1Tµν
αβ := δµαδνβ −

1
dgαβg

µν → the identity matrix on the space of traceless second-

rank tensors
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Chapter 1

A fresh look on general coordinate

transformations

The term “conformal transformations” can be encountered in several different contexts

with various meanings: conformal coordinate transformations, scale transformations,

local and global Weyl rescaling, as well as the related symmetries. Therefore, it is of

crucial importance to spend some time elaborating precisely what one means by a “con-

formal transformation” in this thesis, especially in order to avoid misunderstandings.

Independent of which kind of conformal transformations one is referring to, they all

have one thing in common: they are such transformations that leave angles and shapes

invariant, while affecting only volumes, areas and scales. This chapter is a plunge into

defining features of conformal transformations, offering an alternative, yet more valu-

able approach (compared to what is usually found in textbooks about them) to intuitive

understanding of what conformal transformations actually are. In short, if one would

like to use mathematical language to say “let observers at each point have their own

measure of unit length” (be that using coordinates or fields) one would use nothing

other than conformal transformations to describe the change of units from a point to

a point. But is this somehow related to the underlying geometry? We shall see that a

careful inspection of coordinate transformations and thereby induced transformations

of the metric reveals that only some pieces of the geometry are affected by conformal

transformations. Much like the discussion above, there is a notion of “shape” that

can be attributed to the metric describing the part left invariant under any kind of

conformal transformation. Identifying this “shape” part of the metric and separating

it from what we shall call the “scale” part of the metric is what one calls unimodular

decomposition and the thesis relies heavily on this point of view.

17



1. A fresh look on general coordinate transformations

1.1 Active and passive coordinate transformations, Lie

derivative

We start this chapter by discussing the notion of general coordinate transformations

and their interpretation. General Relativity belongs to a class of theories invariant

under reparametrization, i.e. reparameterization-invariant theories1. It is equivalent

of saying that all equations describing the laws of interaction of matter with spacetime

are written using tensors and therefore do not change their form under any change of

coordinates xα → x̃µ = x̃µ(xα). These changes of coordinates are described by the

following matrix (and its inverse)2,

Aµ
ν :=

∂x̃µ

∂xν
, Ã

µ
ν :=

∂xµ

∂x̃ν
, Aµ

αÃ
α
ν = δµν , (1.1.1)

It is obvious that after such an arbitrary change of coordinates the line element, for

example, remains invariant3

ds2 = gµν(x)dxµ ⊗ dxν = g̃µν(x̃)dx̃µ ⊗ dx̃ν = ds̃2 , (1.1.2)

even though the components of the metric have changed to g̃µν(x̃) = Ã
α
µÃ

β
νgαβ(x) and

the expanded line element might not resemble the original one in these new coordinates,

ds̃2 still refers to one and the same distance. The same is with any other tensor. For

example, components of a vector field V change according to

V = V µ(x)∂µ = Ṽ α(x̃)Aµ
αÃ

β
µ∂̃β = Ṽ µ(x̃)∂̃µ = Ṽ (1.1.3)

where ∂̃µ := ∂
∂x̃µ and Ṽ refers to the same vector field but expressed in different coordi-

nates. Similarly with a scalar field X, except that a scalar field is determined by a single

“component”, so matrix given by eq. (1.1.1) is not involved and “the only component

of a scalar field” remains unchanged,

X = φ(x) = φ̃(x̃) = φ(x̃) = X̃ . (1.1.4)

1In classical mechanics a Lagrangian which is not explicitly dependent on time belongs to this class.
In field theories, the same holds except there are four parameters (as four coordinates) instead of just
one.

2These are in general functions of coordinates but we suppress the dependence for clarity of notation.
3We write explicitly tensor product ⊗ here, but allow ourselves to suppress this explicit notation

for simplicity. In the definition of the metric as a symmetric bilinear form it is often left out.
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1.1. Active and passive coordinate transformations, Lie derivative

However, we ought to make statements in eqs. (1.1.2), (1.1.3) and (1.1.4) more precise.

Namely, a vector field (as an example of a general tensor field) can be thought of as

a collection of arrows each attached to one point uniquely 4, each pointing at certain

direction and having their own certain magnitude, but if one writes V µ(x)∂µ, one refers

to a single arrow, thereby attached to a single point. Therefore, in order to remedy the

notation, if V is evaluated at a point P to which one attaches a set of four numbers

xP ≡ {xµ} in one coordinate system and a set of some other four numbers x̃P ≡ {x̃µ}
in another coordinate system, then one refers to its components with respect to a basis

defined at point P and one writes accordingly,

ds2|P = ds̃2|P , V|P = Ṽ|P , X|P = X̃|P . (1.1.5)

In simple words, eq. (1.1.3) says that a collection of arrows representing a vector field

exists on its own and is independent of the choice of coordinates that one uses to

represent these arrows, which then implies eq. (1.1.5) according to which a particular

arrow (its magnitude and direction) at a particular point is not affected by a change of

the coordinate system. For the example of a vector field, this means that eq. (1.1.3) is

more precisely written as

V|P = V µ
P (xP )∂Pµ = Ṽ µ

P (x̃P )∂̃Pµ = Ṽ|P (1.1.6)

and similarly for other tensor fields. Based on these conclusions, we say that if we

interpret a coordinate transformation which does not “move the point” or does not

“move an arrow” from the point P , i.e. does not describe “picking another arrow at

another point”, as the passive transformation.

What if we wanted to compare two neighbouring arrows of a vector field located at

two infinitesimally close points P and Q? Then we are looking for

V|P −V|Q = V µ
P (xP )∂Pµ − V

µ
Q (xQ)∂Qµ , (1.1.7)

4This is a very simplified way of referring to a vector flow. On a differentiable manifold M , at a
point P one constructs a tangent space TPM which hosts all vectors tangent to all smooth curves on
M passing through that point. The studied vector field will always have a representative “arrow” that
lives in TPM that is a tangent to some curve through that point. This curve is the flow of the vector
field that passes through point P : along this curve the arrows will change the magnitude but all the
arrows that are tangent to that curve belong to the same vector field. We might as well pick another
point Q, with another tangent space TQM then the same vector field will be represented by another
flow, this time through point Q. Thus, a vector field is a collection of all arrows that one attaches
to each point on M and is thus an entity independent of which arrow one picks to keep track of via
its flow; one can always pick another arrow without disturbing the vector field itself. The vector field
can therefore be thought of as a distribution (in a differential geometry context, not in the context of
analysis!) of d-tuplets (where d is the dimension of the manifold) over points on a manifold.

19



1. A fresh look on general coordinate transformations

i.e. the difference between the vector field evaluated at P and the same vector field

evaluated at Q. However, since coordinate values at points P and Q are related by

xµQ = xµP + ξµP , ξµP � 1 , (1.1.8)

where ξµP is a coordinate-dependent5 vector that designates the distance and direction

from P to Q and whose components are given with respect to the basis at P , this

seems to be just an infinitesimal coordinate transformation version of6 eq. (1.1.1). But

we saw that eq. (1.1.1) implies eq. (1.1.3), i.e. the vector field (the abstract object

itself) does not care about which coordinate system it is represented in, so V|P −V|Q.

This might seem a bit odd, but that is only because of a not so ideal notation for

certain abstract concepts. An abstract entity designated by V|P and an abstract entity

designated by V|Q refer to the same distribution of arrows; the suffix “|P” and “|Q” only

have a meaning once one looks into what this vector field is made of — and it is made of

a bunch of arrows, each attached to a point, each having their own components. Thus,

that one arrow is different from another can be told only by inspecting and comparing

the components of each arrow with one another, while these different arrows with their

components (with respect to the corresponding basis) encode the information about the

same vector field, i.e. the same distribution of arrows. Then, we know that expression

in eq. (1.1.7) vanishes identically from its LHS. But in order to make this explicit in

the RHS as well, we have to evaluate each term with respect to the same basis.

Suppose now we are located at point P and we have all the information about

the magnitude and components V µ
P (xP ) of the arrow at point P with respect to chosen

coordinates and basis we constructed there. Let us then express the second term in basis

∂Pµ . Then we see that we need to obtain information about the arrow at infinitesimally

close point Q but in terms of our own coordinate system at P . That means that we

need to change from V µ
Q (xQ) to V µ

Q (xP ) and from ∂Qµ to ∂Pµ . How do we do that? The

former is simply a Taylor expansion around the point P , so using eq. (1.1.8) in the

second term in eq. (1.1.7), we can describe the “motion” from P to Q and express the

value of components V µ
Q (xP ) with respect to P ,

0 = V µ
P (xP )∂Pµ − V

µ
Q (xP )∂Qµ − ξαP ∂PαV

µ
Q (xP )∂Qµ . (1.1.9)

The latter is done by

∂Qµ = Aα
µ∂

P
α = ∂Pµ − ∂Pµ ξαP ∂Pα . (1.1.10)

5We suppress the notation for its dependence on xµ in order to keep the notation clean.
6Plugging eq. (1.1.8) into eq. (1.1.1) produces δµν + ∂Pν ξ

µ
P and δµν − ∂Qν ξµQ, respectively.
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1.1. Active and passive coordinate transformations, Lie derivative

Keeping only terms up to the first order in ξµ and its derivatives, plugging eq. (1.1.10)

into eq. (1.1.9) results in

0 = V µ
P (xP )∂Pµ − V

µ
Q (xP )∂Pµ + V µ

Q (xP )∂Pµ ξ
α
P ∂

P
α − ξαP ∂PαV

µ
Q (xP )∂Pµ , (1.1.11)

We can now drop the labels “P” from coordinates and ξµP and the following result is

obtained component-wise,

δξV
µ(x) := V µ

P (x)− V µ
Q (x) = ξα∂αV

µ
Q (x)− V α

Q (x)∂αξ
µ = LξV µ(x) . (1.1.12)

We can recognize from the above equation that we have just derived the expression for

the Lie derivative of the contravariant vector field. Actually, there is a slight abuse of

notation when one writes LξV µ(x), because the Lie derivative acts on the field itself

and then we pick the µ component of the result, so an honest notation states

LξV =
(
ξα∂αV

µ(x)− V α(x)∂αξ
µ
)
∂µ , (1.1.13)

LξV µ(x) ≡
(
LξV

)µ
= ξα∂αV

µ(x)− V α(x)∂αξ
µ (1.1.14)

and in the last line we wrote the source of imprecise notation. Due to its common use

in physics, we stick to this imprecise notation in this thesis, but must keep in mind the

correct reading and writing of the Lie derivative of tensors (and non-tensorial objects

such as the connection) as explained above.

To illustrate further more clearly that transformation from P to Q introduced by

eq. (1.1.8) is interpreted differently than the passive coordinate transformation that

gives rise to eqs. (1.1.2)-(1.1.4), we take a look at the transformation of the scalar field

under a “motion” given by eq. (1.1.8). As with the vector field, the field X itself is one

and the same field, be it is expressed at a point P or at a point Q, so again we have

0 = X|P −X|Q = φP (xP )− φQ(xQ)

= φP (xP )− φQ(xP )− ξµP∂PµφQ(xP ) , (1.1.15)

where we used the Taylor expansion around Q in the second line. From here it follows

that the Lie derivative with respect to ξµ is

δξφ(x) = Lξφ = ξµ∂µφ(x) . (1.1.16)
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1. A fresh look on general coordinate transformations

Again, note the difference between this result and eq. (1.1.4): in the latter the scalar

field is evaluated at the same point in two different sets of coordinates (cf. eq. (1.1.5)),

while in the former is the scalar field is evaluated at two different points, which is

why φP (xP ) 6= φQ(xP ). Furthermore, we can also arrive in the same way at the Lie

derivative of the metric. The only difference is that we have one additional term as

compared to the vector case because the metric tensor is rank 2 tensor and we have to

use eq. (1.1.10) two times. We state it here without the proof

ds2|P − ds2|Q = 0 → Lξgµν(x) = ξα∂αgµν(x) + gµα(x)∂νξ
α + gαν(x)∂µξ

α ,

which is just the standard result.

To get a better feeling of the difference between a passive and an active view of

coordinate transformations, compare the coordinate transformation from Cartesian to

polar coordinates in two dimensions with rotations in two dimensions,

x = r cos θ y = r sin θ (1.1.17)

x = x̃ cosφ− ỹ sinφ y = x̃ sinφ+ ỹ cosφ . (1.1.18)

The transformation to polar coordinates in (1.1.17) does not require introduction of

any parameter: it is enough to know which coordinates we would like to transform

to and this transformation replaces one grid of coordinate line with another, globally

(of course there are points which cannot be included by the new system but that is

irrelevant now). However, for rotations in (1.1.18), what we basically do is that we not

only replace the coordinate lines, but we also give a direction to which they are pointing

using parameter φ. Stated as they are, these rotations introduce the new coordinates

globally. Now, these two coordinate transformations indeed look quite different, but

let us take a look how do their differentials change7,

dx = cos θ dr − sin θ(r dθ) dy = sin θ dr + cos θ(r dθ) (1.1.19)

dx = cosφ dx̃− sinφ dỹ dy = sinφ dx̃+ cosφ dỹ . (1.1.20)

And now we see that locally, i.e. if we focus on the transformation of (co)frames

which are defined at a point and not globally, these two transformations look the

same, provided we introduced a local orthonormal frame θ1 = dr , θ2 = r dφ. That

is, they both act like a rotation of frames. Indeed, even though (r, φ) are curvilinear

coordinates this coordinate system is an orthogonal one so the basis vectors at each

7Similarly for the transformation of ∂µ.
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1.1. Active and passive coordinate transformations, Lie derivative

point are orthogonal to each other, but their orientation depends on θ. Therefore, if one

would like to relate a frame in Cartesian coordinates to an orthonormal frame in (r, φ)

coordinates one would use the rotation of frames by θ. But this is just the same as if

we started with rotation (1.1.20) in the first place, except that dỹ is integrable but r dθ

is not, so the curvilinear coordinate axes are straight only in a small neighbourhood of

a point in which the frame is defined and one can approximate them with a Cartesian

coordinate system with Eucliedan metric only locally. This introduction of locally

orthonormal frames can be extended to curved spaces as well in the same way. Then

we have that the metric can locally be represented by

ds2 = ηABθ
AθB , (1.1.21)

where θA = ẼA
µdxµ is the orthonormal coframe, i.e. an arbitrary linear combination

of dxµ encoded in a matrix ẼA
µ (that in general has nothing to do with a coordinate

transformation in eq. (1.1.1)) called vielbein, and ηAB is the constant diagonal metric

with ±1 as its entries (Minkowski metric, if we are talking about spacetime). Then

one can always find a coordinate system valid around a small neighbourhood of a

point called Riemann normal coordinate system, whose axes measure geodesic distance

and that gives rise to the flat metric ηµν and vanishing of the Christoffel symbols at

that point. More generally, one can introduce a coordinate system around a timelike

geodesic (i.e. at each point along a chosen geodesic) such that the metric is ηµν and the

Christoffel symbols vanish along this geodesic (this is called Fermi normal coordinate

system). This is a rough mathematical version of what Einstein essentially did in order

to formulate his Equivalence Principle: it is the active view of transformation that

describes the switching from a non-inertial to an inertial frame, describing a freely-

falling observer along a timelike geodesic. Moreover, one can also formulate Fermi

normal coordinate systems for null geodesics [17], the so-called null Fermi coordinates,

which are suitable for tracking null rays along geodesics; this is the closest as one would

get to transforming into “a frame attached to a photon” and is more appropriate to

think of it as being attached to a wave front.

In summary, the active transformation can distinguish among the observers found

in different physical situations. It describes switching among different “points of view”

(local frames). This induces a transformation of the frame, meaning that the point of

view needs to be updated with information about the new frame, as if the observer has

to keep reconstructing their original frame (by means of eq. (1.1.10)) at each next point

as they advance, in order to evaluate this change. As we saw, the resulting change is

encoded in the components of the Lie derivative with respect to a single frame, i.e.

with respect to a single point of view of choice. This interpretation gives rise to a

visualization of “instantaneous motions”, e.g. one says “let us boost into a freely falling

frame”; what is meant here is that we use a transformation of a frame at one point, i.e.

not globally, which may or may not be associated with a coordinate transformation (in
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1. A fresh look on general coordinate transformations

a small neighbourhood around that point) and is thus more fundamental.

In the following sections we are interested in the change of fields’s components from

an active point of view on coordinate transformations. It should be noted that since

we are working in Riemannian geometry8 all the above-stated expressions for the Lie

derivatives can be written in terms of the covariant derivatives in place of the partial

derivatives, and we do so whenever the need arises in this thesis.

1.2 General coordinate transformations

Before we familiarize ourselves with conformal transformations it is of great use to

analyze general coordinate transformations. We shall focus on active infinitesimal

coordinate transformations (i.e. point transformations) because we would like to inspect

the local so-called physical change of tensor components expressed by the means of a

Lie derivative, as explained in the previous section. Namely, restating eq. (1.1.8), a

general infinitesimal coordinate transformation is given by

x̃µ = xµ + ξµ , (1.2.1)

where ξµ is a d-dimensional vector with each component being a function of coordi-

nates and ξµ � 1, induces a change of the metric components in the form (valid for

Riemannian spaces)

δξgµν = Lξgµν = 2∇(µξν) (1.2.2)

and the change of the Christoffel symbols of the form9

δξΓ
α
µν = gαβ

(
∇µ∇(βξν) +∇ν∇(βξµ) −∇β∇(µξν)

)

= gαβ

(
∇(µ∇ν)ξβ − ξρRρ(µν)β

)
(1.2.3a)

= ∇(µ∇ν)ξ
α −Rα(µν)βξ

β . (1.2.3b)

Note that this variation can be derived even if there were no metric — it too is more

generally defined as the Lie derivative of the connection10 in the direction of ξµ; then

8In Riemannian geometry the metricity condition ∇αgµν is satisfied and torsion (antisymmetric
part of the connection) is set to vanish, thus leaving the Levi-Civita connection (Christoffel symbols).

9See the proof in appendix A.1.
10As mentioned in the previous section, one keeps in mind that notation δξΓ

α
µν means “αµν-

component of the Lie derivative of the connection”.
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1.2. General coordinate transformations

the covariant derivative is unrelated to the metric and the proof is slightly different.

Equation (1.2.3a) is more convenient for our purposes. One is familiar with isometries,

i.e. those coordinate transformations which do not change the metric components, the

consequence of which are the following two equations

δξgµν = 2∇(µξν) = 0 , (1.2.4a)

δξΓ
α
µν = 0 ⇒ ∇(µ∇ν)ξβ = ξρR

ρ
(µν)β , (1.2.4b)

then we call eq. (1.2.4a) the Killing equation and vector ξµ is referred to as the Killing

vector, while equation11 (1.2.4b) is usually referred to as the integrability condition for

ξµ. To warm up for the approach presented below, one can read the above equation

as follows: if the symmetric part of tensor ∇µξν vanishes, ξµ is a Killing vector. But

conformal transformations, which we are aiming to talk about here, are not isome-

tries; they are simply a class of general coordinate transformations with certain special

properties.

Coming back to general coordinate transformations, great insight into various trans-

formations may be gained if one decomposes ξµ into directions orthogonal to “vector”12

xµ and parallel to it13. To define these directions, introduce projectors Pµ⊥ν and Pµ‖ν

which obey

Pµ⊥νx
ν = 0 , Pµ‖νx

ν = xµ , Pµ⊥νP
ν
‖α = 0 , Pµ⊥νP

ν
⊥α = Pµ⊥α , Pµ‖νP

ν
‖α = Pµ‖α ,

(1.2.5)

such that ξµ is split in the following way

ξµ = ξ⊥
µ

+ gµν∇νσ , ξ⊥
µ

:= Pµ⊥νξ
ν , gµν∇νσ := Pµ‖ νξ

ν , (1.2.6)

and

∇µξ⊥µ = 0 , ξ⊥
µ∇µσ = 0 . (1.2.7)

We call ξ⊥µ and ∇νσ transversal and longitudinal component, respectively. This de-

composition is encouraged by Presnov [115] where it was introduced in the context

of studying chaotic systems. It was noted there that the two conditions: vanishing

11Note that this equation can be derived even if there were no metric; thus it is a statement inde-
pendent of eq. (1.2.4a) and is necessary for finding all Killing vectors.

12Note that this not a tensorial object that transforms as a vector under coordinate transformations.
It is just a set of d scalar functions.

13To the author’s knowledge the following approach to describing coordinate transformations is not
introduced in textbooks.
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1. A fresh look on general coordinate transformations

divergence of ξ⊥µ is one and its orthogonality to xµ is another, may or may not imply

one another and it is a matter of choice what would one like to do and what kind of

situation one has. We choose both because for the matters discussed here it seems to be

advantageous for an intuitive understanding of coordinate transformations. If one does

not introduce transverse-longitudinal projectors, but stays with decomposition into di-

vergence and divergence-less parts, one has the usual Helmholtz-Hodge decomposition.

So established point of view will help us understand conformal coordinate trans-

formations in a way that is not found in textbooks, to the best of author’s knowledge.

Now, we already have some intuition about transversal and longitudinal components

that we can borrow from our understanding of electrodynamic potential Aµ associated

with a vacuum electromagnetic field. There the transversal component carries the two

remaining gauge invariant degrees of freedom after the gauge freedom has been used.

The longitudinal component is missing because the mass term is missing — mass, or

inertia, acts like a kind of friction to suppress the propagation of waves, thus its absence

means the waves propagate with the maximum possible velocity. In other words, mass

acts like the spring to which a body is suspended: non-vanishing ellasticity coefficient

induces oscillations in the body’s position; these oscillating modes are akin to the lon-

gitudinal mode of wave propagation. We could also think of the mass term as being

related to field’s longitudinal effects on charges: its absence inhibits any changes to

charge distributions in the longitudinal direction of the wave propagation. It is use-

ful to keep in mind this relationship between a mass term and longitudinal degree of

freedom for later on.

Let us give an example to obtain some further intuition about the transversal and

longitudinal components of ξµ. Consider a spatial rotation. Let us write the position

vector as ~r instead of xµ for a moment. Then a spatial rotation of ~r in a certain

plane will shift the tip of that vector in the direction orthogonal to it, while keeping

its length fixed and keeping its stem fixed to the origin. Hence this is an orthogonal

transformation — it adds to ~r an infinitesimal displacement vector14 ϕ~n orthogonal to

it, such that

~r
′

= ~r + ϕ~n , ~n · ~r = 0 , (1.2.8)

where ϕ is the small rotation angle. This can be generalized to spaces of any number

of dimensions. Wherever xµ is pointing, a rotation always changes xµ in the direction

orthogonal to it, such that its length remains invariant,

ηµν x̃
µx̃ν ≈ ηµνxµxν + 2ηµνx

µξν
!

= ηµνx
µxν , (1.2.9)

14Iwth conditions ϕ << 1, ~n · ~n = 1.
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1.2. General coordinate transformations

from which it follows that ηµνx
µξν = 0. Extending this to an example of Lorentz

transformation and using the language of transversal-longitudinal decomposition, we

may describe ξµ associated with a Lorentz transformation as being orthogonal to xµ,

that is,

if ξµ is a Lorentz transformation then ηµνξ
µxν = 0 ⇒ ξµ = ξµ⊥ , (1.2.10)

that is, Lorentz transformations are described by ξµ whose longitudinal component

vanishes. Let us examine this statement more closely. Act with xα∂α on ηµνξ
µxν = 0

in eq. (1.2.10) to get

0 = xαξα = −xαxµ∂αξµ = −xαxµ∂(αξµ) ⇒ ∂αξµ = ∂[αξµ] ⇒ ξµ = ξ⊥µ
(1.2.11)

since partial derivatives on σ commute. This proves that general Lorentz transfor-

mations are described by the antisymmetric part of ∂αξµ and thus by the transversal

component ξ⊥µ only. Note, in passing, that condition ∂(αξµ) = 0 is just what follows from

eq. (1.2.4a) for Minkowski spacetime, pointing to the equivalence of the two approaches.

The form of the vector which satisfies these conditions is given by

ξµL = mµ
νx

ν , (1.2.12)

where mµν is an antisymmetric matrix of constant parameters.

What about translations? Translations are described by ξµ = aµ = const. and

this means that a vector V µ(x) can be translated in any direction while its length is

preserved, that is,

Ṽ µṼµ ≈ V µVµ + 2V µV ν∂µξν
!

= V µVµ ⇒ ∂(µξν) = 0 , (1.2.13)

and we see that this trivially includes the case of ξµ = aµ = const. Hence, we have

a choice to say ξµ⊥ = aµ, ξµ‖ = aµ or that both components contribute to aµ. Note

that condition in eq. (1.2.13), in accordance with Minkowski spacetime versions of

eq. (1.2.4a) and eq. (1.2.4b), also includes Lorentz transformations, i.e. it determines

Poincare symmetries of the Minkowski spacetime.

The transverse-longitudinal decomposition used here is based on the Helmholz de-

composition theorem which states that any vector can be decomposed into divergence-

free part (ξ⊥µ) and curl-free part (σ). Here this theorem is used in the context of a

general coordinate system. The second equation in (1.2.7) can be read as: derivative of

the longitudinal scalar degree of freedom along the transversal direction vanishes, which
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1. A fresh look on general coordinate transformations

is just a consequence of Helmholz decomposition being orthogonal.

What about the interpretation of the longitudinal part? What sort of a change of

coordinates may be done along the direction of xµ? The simplest example to think of is

dilations, while still in Minkowski spacetime. dilations are such transformations which

change the length of a position vector by some constant factor Λ. For this to happen,

we must have that

ηµν x̃
µx̃ν ≈ ηµνxµxν + 2ηµνx

µξν
!

= Λ ηµνx
µxν (1.2.14)

from where it follows that

ξµ = λxµ (1.2.15)

such that Λ = 1+2λ and we see that dilations transform the coordinates in the following

way

x̃µ = (1 + λ)xµ , (1.2.16)

where λ is a constant parameter of dilation transformation. Since ξµ is proportional

to xµ, it is obvious that dilations cannot be described by the transversal component.

Hence,

if ξµ describes dilations then ξµ = ηµν∂νσ (1.2.17)

and one may even find that σ = ληµνx
µxν/2 up to a constant, but for our discus-

sion there is no need for such detail. What is more interesting is to realize that λ is

determined from eq. (1.2.15) by taking a divergence of both sides,

λ =
1

d
∂µξ

µ =
1

d
�σ , (1.2.18)

where � is the d’Alambertian. But ∂µξ
µ is just the trace of the Minkowski spacetime

version of eq. (1.2.2)! Therefore, one can relate the trace of ∂µξν with dilations. Indeed,

dilations belong to the class of conformal coordinate transformations which are defined

with such a ξµ which obeys

δξgµν = 2∇(µξν) = 2ωgµν , (1.2.19)

where ω is a function of coordinates and we wrote the most general definition of

conformal transformations in arbitrary space (for a moment moving away from the

Minkowski spacetime). In textbooks with standard treatment of conformal transfor-

mations eq. (1.2.19) is usually read as: conformal transformations leave the metric
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1.2. General coordinate transformations

components invariant up to an arbitrary scaling function ω(x). However, such a defini-

tion puts somewhat misleading attention to a sort of a deviation from isometry rather

than on features of conformal coordinate transformations.

Instead of such a definition of conformal (or any other non-isometry) coordinate

transformations, we would like to look at general coordinate transformations as com-

prised of three classes (or subgroups) of transformations, described by the following

conditions

1. δξgµν = 2∇(µξν) = 0

2. δξgµν = 2∇(µξν) = 2ωgµν

3. δξgµν = 2∇(µξν) = 2ST
µν , such that gµνST

µν = 0

Class 1. clearly determines the Killing vectors; isometries do not change the metric

components and are described by the remaining part: the antisymmetric part ∇[µξν].

Class 2. should be read as: conformal coordinate transformations are defined by the

trace part of δξgµν . We are quite familiar with the first two classes. However, it now

becomes clear that Class 3. can be introduced, describing those coordinate transforma-

tions that do not fall into the first two classes. These transformations are the remaining

set of transformations complementary to the conformal transformations; they are de-

fined by the tracelss part of δξgµν . Therefore, we may split the d2-component tensor

∇µξν into three orthogonal sets of components:

∇µξν︸ ︷︷ ︸
d2

= Mµν︸︷︷︸
d(d−1)

2

+ ST
µν︸︷︷︸

d(d+1)
2
−1

+
1

d
gµνS︸ ︷︷ ︸

1

, (1.2.20a)

Mµν := ∇[µξν] , (1.2.20b)

S := ∇αξα , (1.2.20c)

ST
µν := ∇(µξν) −

1

d
gµν∇αξα . (1.2.20d)

In 4 dimensions this split amounts to 16 = 6 + 9 + 1 components. But these compo-

nents are somehow determined by the transversal and longitudinal parts of ξµ and it

is interesting to see in which way. To see this, simply apply decomposition given in

eq. (1.2.6) to eqs. (1.2.20b)-(1.2.20d), obtaining the following expressions,

Mµν = ∇[µξ
⊥
ν] , (1.2.21)

S = �σ , (1.2.22)
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1. A fresh look on general coordinate transformations

ST
µν = ∇(µξ

⊥
ν) +

[
∇(µ∇ν) −

1

d
gµν�

]
σ . (1.2.23)

In eq. (1.2.21), which describes 6 parameters of isometries (Class 1.), the longitudinal

component drops out because the covariant derivatives commute in Riemannian geom-

etry15. From eq. (1.2.22) we can see that only the longitudinal component contributes

to the trace component of the metric variation, describing conformal transformations.

Both longitudinal and transversal components feed the traceless part, eq. (1.2.23).

For the end of this section it is instructive to state what is the variation of Christoffel

symbols and curvature tensors induced by general coordinate transformations in terms

of eq. (1.2.20a). Plugging this equation in the first line of eq. (1.2.3a) we see that

isometries drop out, while the rest can be grouped into two independent coordinate

variations

δξΓ
α
µν = gαβ

(
∇µST

βν +∇νST
βµ −∇βST

µν

)
+

1

d

(
δαµδ

β
ν + δαν δ

β
µ − gµνgαβ

)
∂βS

= gαβ

(
∇(µ∇ν)ξβ − ξρRρ(µν)β

)
. (1.2.24)

Besides the above, one can further calculate δξR
α
µβν = 2∇[ν|δξΓ

α
µ|β] by using eq. (1.2.24).

In particular, for Minkowski spacetime, all Christoffel symbols and curvatures vanish

and one may wonder what is the meaning of the above equations and why are they

even necessary. The meaning of δξR
α
µβν in Minkowski spacetime is that no coordinate

transformation can change the fact that all curvatures vanish at each point — this

follows from the covariant (tensorial) nature for curvature. The reason why they are

necessary is that they provide differential equations for finding ξµ in any spacetime,

including Minkowski spacetime, as we shall see in the next section.

Now the question is: which components of the metric are affected by conformal

transformations encoded in the trace S and which by those (yet to be named) transfor-

mations encoded in the traceless part ST
µν? The question is essentially concerned with

the nature of trace and traceless parts of δξgµν to which we turn to in the following

sections.

15It would be interesting to study isometries and other coordinate transformations in non-
Riemannian geometry in terms of transversal and longitudinal components.
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1.3. Conformal (shape-preserving) coordinate transformations

1.3 Conformal (shape-preserving) coordinate

transformations

Apart from the fact that conformal transformations are defined by eq. (1.2.19), they

are also described as those transformations that change the lengths, areas and volumes,

but leave the angles invariant. We shall describe what does this mean on an example.

A thorough review with lots of clarifications of subtleties usually omitted elsewhere can

be found in a paper by Kastrup [75] devoted to all kinds of conformal transformations.

For all known results regarding conformal transformations one can refer to that paper,

as we do here.

We start by visualizing the Mercator mapping. Take a flat sheet of paper whose

width is equal to the circumference of the globe and height equal to its half. Draw a

Cartesian grid, identify the equator line across the middle of the paper along the width

and try to cover a globe with that sheet of paper by aligning the equators — it is not

possible, there is some excess surface of the paper which is a signature that the surface

of the globe is positively curved.

But now imagine that this piece of paper is elastic and can be stretched or contracted

at each point however we like along some chosen direction (with even more special

ability that once we stretch it or contract it, it stays “frozen” that way without returning

to its original state).

With this new property of the paper we would like to think of the excess areas of

the paper as the ones which are “stretched too much” compared to the corresponding

area on the globe and we would like to correct this mismatch. Let us then contract

these areas of this elastic paper in such a way (that means choose the directions of

stretching appropriately) that the excess area disappears and the sheet of paper covers

the globe in such a way that the grid on the paper aligns precisely with the grid on the

globe. To describe that in some points (infinitesimally close to the equator) we do not

need to contract the paper and that in some other points (more and more as we move

to the poles) we need to contract a lot, we use a coordinate-dependent function ω(x).

What has happened as a result? First of all, all points on the upper edge (parallel

to the equator) of the paper had to be identified: the area excess infinitesimally close

to that edge was the greatest, thus maximal contraction had to be performed there

with a result that all points of the edge have been identified — all these points have

become the north pole. The same thing happens with the lower edge — they are

identified with the south pole on the globe. Furthermore, the side edges of the paper

(the ones orthogonal to the equator) are identified one with another — this enables us

to travel around the world, literally, as we are confined to the sheet of paper. These

identifications mean that the same topology as the globe’s had to be imposed on the

finite sheet of paper before identifying it with the globe — otherwise there would be no

smooth lines across the edges on the paper. This is a topology of a 2-sphere. Lastly,

since the necessity for contraction increases as we move from the equator towards each
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1. A fresh look on general coordinate transformations

of the poles, 2 adjacent coordinate lines orthogonal to the equator which were parallel

to each other on the uncontracted sheet of paper converge to a single point in both

directions, the north and south pole. To visualize what this means, draw a square with

one edge aligned with the equator initially, then drag this square towards the upper

edge of the paper such that the mentioned edge is always parallel to the equator. On

the uncontracted sheet of paper the square remains of the same size during the whole

dragging process. But on the globe the dragging along the same path towards the pole

between the two adjacent meridians makes the square shrink in size, with a greater rate

around its edge closer to the pole, only to degenerate into a point at the pole itself.

However, even though the square has been deformed in a certain way, the four inner

angles which make this square a square have been left unchanged during the process

of conformal transformation. In other words, the angles — for which we say they

characterize the shape of a figure — are invariant under conformal transformations.

To see this more clearly, recall the simple dilation we described by eq. (1.2.14), but

now generalize Λ to a coordinate-dependent function Λ = Λ(x) = 1 + 2ω(x),

ηµν x̃
µx̃ν ≈ (1 + 2ω(x)) ηµνx

µxν . (1.3.1)

Note that we cannot claim that a coordinate-dependent version of eq. (1.2.15) is valid

in this case — things are a bit more complicated and we shall soon see why. Now, that

the angles are invariant can be witnessed from a more general definition of an “angle”

ηµν x̃
µỹν

|ηµν x̃µx̃ν |1/2|ηµν ỹµỹν |1/2
≈ (1 + 2ω)ηµνx

µyν

|(1 + 2ω)ηµνxµxν |1/2|(1 + 2ω)ηµνyµyν |1/2

=
ηµνx

µyν

|ηµνxµxν |1/2|ηµνyµyν |1/2
, (1.3.2)

where xµ and yµ are some arbitrary position “vectors”. Thus we see that particular

ratios of lengths (i.e. the generalization of a cosine of an angle between two vectors

in Euclidean space) are invariant under conformal transformations since any change

cancels out. If one repeats the whole procedure described in our example above by

using a very fine resolution grid, one would indeed witness the preservation of shape and

inflation/deflation of areas and volumes under conformal transformations. Actually,

this fact is where the name conformal comes from16: same + shape. Therefore, in

some way angles (or shapes) and lengths, volumes (or scales) are complementary to

each other, much in the same way that eq. (1.2.20d) is complementary to eq. (1.2.20c).

It is of crucial interest to move away from a two-dimensional example above to a

general d-dimensional spacetime, because we would like to generalize the notions of

16In latin con – same; forma – shape, form
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1.3. Conformal (shape-preserving) coordinate transformations

“shape” and “scale” to some geometric objects that one can refer to instead of cubes or

squares or triangles and their sizes. Since conformal transformations affect only scales

and volumes, it is natural to start by looking at how conformal transformations change
√
g, which one usually calls a bit imprecisely “the volume”17. We immediately see this

upon taking the trace of the variation of the metric components given by eq. (1.2.19),

gµνδξgµν =
2
√
g
δξ
√
g = 2∇µξµ = 2ω d , (1.3.3a)

δξ
√
g = ∂µξ

µ = ω d (1.3.3b)

where ξµ :=
√
gξµ and ω :=

√
g ω are vector and scalar density, respectively. The

second equation above is more suitable for general spacetimes due to the absence of

covariant derivatives. We can somewhat simplify the above equations by introducing

an object which caries the meaning of coordinate-dependent length scale, similar to
√
g

that carries the meaning of coordinate-dependent volume,

A := (
√
g)

1
d , (1.3.4)

which we shall call the scale density ; its weight is 1/d. Then eq. (1.3.3a) can be

equivalently written as

δξA = ωA , (1.3.5)

from which we see that δξA/A is a scalar; also note that eq. (1.3.5) can easily be

interpreted as local rescaling of lengths (see section 2.1). Furthermore, the scale density

is a single degree of freedom of the metric tensor and, according to eq. (1.3.3a), is

the only degree of freedom affected by conformal transformations. Let us isolate this

degree of freedom from the metric components by decomposing the metric tensor into

A and something else, in such a way that a conformal transformation changes only A,

leaving the remaining part manifestly invariant. This remaining part then has to have

d(d+ 1)/2− 1 components, which are put into an object defined by18

ḡµν := A−2gµν (1.3.6)

which we shall call the shape density. We can now define conformal coordinate trans-

17It is more precise to refer to it as the component of the invariant volume form, defined in four
dimensions as dvol =

√
g dx0 ∧ dx1 ∧ dx2 ∧ dx3, where ∧ is the antisymmetric exterior product.

18Also called “unimodular metric”, for reasons that we shall elaborate more on in 2.2. Note that
Fulton et al. [52] have noticed the relevance of ḡµν in the context of conformal transformations and
their relevance in physics.
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1. A fresh look on general coordinate transformations

formations as those that leave the shape density invariant, or, equivalently, those that

change only the scale density.

One says that two sets of metric components g̃µν and gµν are conformal to each

other if they are related by a conformal transformation. An important well-known fact

related to this concerns the Weyl tensor Cµανβ defined as the totally traceless part of

the Riemann tensor

Cαµβν = Rαµβν −
2

d− 2

(
δα[βRν]µ − gµ[βR

α
ν]

)
− 2

(d− 1)(d− 2)
δα[νgβ]µR . (1.3.7)

introduced by Herman Weyl in [149]. Namely, Weyl tensor is that part of the Riemann

tensor which is invariant under conformal transformations 19 given by eq. (1.2.19).

Therefore, one may say that Weyl tensor does not “see” the conformal factor ω(x), it

simply cancels out. It follows that a Lie derivative of the Weyl tensor along a vector

generating conformal transformations vanishes [153],

if ξµ generates conformal trnasformations, then δξC
µ
ανβ = LξCµανβ = 0 .

(1.3.8)

Then Weyl tensor calculated from g̃µν and Weyl tensor calculated from gµν are equal

and one says that the two metrics are conformal to each other. But since conformal

transformations affect only the scale density according to eq. (1.3.5), we can now make

an educated guess that the Weyl tensor is completely determined actually only by the

shape density defined above with eq. (1.3.6). We shall come back to this important

remark in section 2.2.

We note here without proof that the variation of ḡµν is traceless (cf. eq. (2.2.4)),

meaning that whatever coordinate transformation gives rise to a change in ḡµν it will

be encoded in the traceless symmetric part described by eq. (1.2.20d) and it would be

something other than a conformal transformation. Therefore, substituting eq. (1.2.20c)

and eq. (1.2.20d) into the variation δξ ḡµν based on eq. (1.3.6) one can finally deduce

A2δξ ḡµν = 2ST
µν = 0 for conformal transformations , (1.3.9)

δξA

A
=
S

d
. (1.3.10)

Since conformal transformations have ST
µν = 0, clearly some non-conformal transfor-

mations describe the variation of the shape density and we come back to them in

section 1.5.

19Moreover, Weyl tensor is invariant under a general local rescaling of the form g̃µν(x) = Ω(x)gµν(x)
with no reference to a coordinate transformation but we leave this important detail for section 2.1.
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1.4 Conformal coordinate transformations in Minkowski

spacetime

In Minkowski spacetime the metric tensor ηµν does not contain any dependence on

coordinates. According to eq. (1.3.4) and eq. (1.3.6) the Minkowski metric has constant

scale and shape density, i.e. A = 1 and ḡµν = ηµν . Since conformal transformations

change only the scale density, the result will be a new scale density A′(x) = 1 + ω(x).

It is our task now to find function ω(x).

In the literature on conformal field theories (see e.g. chapter 2 in [19]) one usually

starts from Minkowski spacetime version of eq. (1.2.19), that is,

∂(µξν) = ωηµν (1.4.1)

and interprets conformal transformations as “the ones that leave the Minkowski metric

invariant up to an overall function”. Then one proceeds to take a derivative of the

above equation and seek a rather specific sum of terms with permuted indices that

gives a useful equation relating the second derivatives of ξµ and a derivative of ω,

∂µ∂νξα = (ηµα∂ν + ηνα∂µ − ηµν∂α)ω (1.4.2)

Furthermore, one finds a second-order equation for ω,

(d− 2)∂µ∂νω + ηµν�ω = 0 (1.4.3)

by using the freedom to contract index of the vector with any of the derivative indices

acting on it because the Minkowski metric commutes with partial derivatives. From

the above equations one deduces �ω = 0 and therefore ∂µ∂νω = 0 in d > 2. Now, it is

interesting that in the literature on conformal coordinate transformations in Minkowski

spacetime one cannot find an explanation of why eqs. (1.4.2) and (1.4.3) need to be

sought by taking a very specific combination of derivative terms and why the need

for taking another derivative. But the reason why this specific combination of ∂µ∂νω

works is the same as the one used for deriving the non-isometry integrability condition

(see appendix A.1) encountered in eq. (1.2.3b). Hence, instead of guessing the specific

sum of index permutations of some expressions, simply demand that the variation

of the Christoffel symbols has to be proportional to the second term in eq. (1.2.24).

(In quantum field theory on Minkowski background one is usuall not familiar with

Christoffel symbols because one’s attention is always on the Minkowski metric. Then it

is expected that the only way to arrive at eq. (1.4.2) is to guess it as it is usually done,

if one wants to avoid introducing geometrical concepts relevant to theories of gravity.)
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In any case, one arrives at the conclusion that for20 d > 2

∂µ∂νω = 0 ⇒ ω = λ+ 2bµx
µ , (1.4.4)

where λ = const. and bµ are covariant components of a arbitrary constant vector (or

they can be thought of as components of a differential one-form); we chose the factor of

2 for mere convenience. Recalling that ω = ∂µξ
µ/d, it follows that ξµ itself is at most

quadratic (thus non-linear!) in coordinates,

ξµ = λ+ cµαβx
αxβ (1.4.5)

where cµαβ contains bµ in some combination that can be deduced by plugging the above

equation into eq. (1.4.2), after which one finds

cµαβ = δµαbβ + δµβbα − ηαβb
µ , (1.4.6)

ξµ = λxµ + 2bαx
αxµ − bµx2 (1.4.7)

where x2 = ηαβx
αxβ. The above vector describes infinitesimal conformal coordinate

transformations21. Note that one could freely add to this vector translations and

Lorentz transformations aµ +mµ
νx

ν , because the former is just a constant vector and

the latter has an antisymmetric constant matrix such that eq. (1.4.2) is trivially satis-

fied for ω = 0, without contradiction. But we keep the focus on ω 6= 0 transformations

only. We see that eq. (1.4.7) consists of d + 1 constant parameters and thus there are

d+ 1 independent vectors,

ξµD := λxµ , (1.4.8)

ξµK := 2bαx
αxµ − bµx2 , (1.4.9)

one for λ, which we see from eq. (1.2.15) describes dilations, and one for each component

of bµ. The latter describes special conformal transformations, which are non-linear.

The special conformal transformations are most easily understood by inspecting

their finite version. This is given by (see [147, 148] for the conformal transformations

20For d = 2, term ∂µ∂νω drops out from eq. (1.4.3) and one has that infinitely many coordinate
transformations can conformally transform the metric.

21In the literature it is referred to as conformal Killing vector, but we reserve the attribute “Killing”
only for isometry transformations.
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and symmetry in the context of quantum field theory)

x̃µ =
xµ − bµx2

1− 2bµxµ + b2x2
, (1.4.10)

from which one can deduce that the norm of the position vector gets rescaled at each

point differently by a local conformal factor (compare with eq. (1.2.14)),

x̃2 = Λ2(x)x2 , Λ2(x) =
1

1− 2bµxµ + b2x2
. (1.4.11)

One can now divide eq. (1.4.10) by the above norm and introduce new coordinates

yµ = xµ/x2, then eq. (1.4.10) reduces to

ỹµ = yµ − bµ , yµ =
xµ

x2
, ỹµ =

x̃µ

x̃2
(1.4.12)

which is just a translation. If we pay attention to the order of introducing new co-

ordinates, special conformal transformations are just a composition of an inversion,

translation, and another inversion. The inversion is the part that makes it non-linear

in the original coordinates. To get some (relatively!) intuitive picture of what special

conformal transformations in 3D Euclidean space do, see Fig. 1.4.

Figure 1.4.1: A cube before (left) and after (right) a special coordinate transformation of
the form given by eq. (1.4.10) with bµ = (0.5, 0, 0). Note how the the edges stretch differ-
ently in every point but the right angles are preserved if measured infinitesimally close to the
corresponding vertices. [generated in Wolfram Mathematica]

Another way to understand this is to think of eq. (1.4.12) as rules for translations
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which have to be employed if one would like to talk about a special conformal trans-

formation in eq. (1.4.10) of a point at infinity: in order to render the result finite,

one needs to divide this equation by another quantity that blows up, the norm of the

position vector, which as a result lets one interpret eq. (1.4.12) as translations of points

near infinity. For this reason it is sometimes said that translations are dual to special

cofnormal transformations (and vice versa), as well as that the point around at the

origin (of a chosen coordinate chart) is dual to the point at infinity22. It thus is ex-

pected that translations and special conformal transformations have the same number

of generators. These are well-known results.

The example of special conformal transformations is very illuminating for under-

standing the meaning of transversal and longitudinal components of the transformation

vectors. What is the character of bµ vector — transversal or longitudinal? We now

have to distinguish between the infinitesimal and finite transformations because the

answer will be different. For non-small bµ we have

bµ = b⊥µ + b‖µ , bµx
µ = b‖µx

µ , b2 = b⊥µb
µ
⊥ + b‖µb

µ
‖ (1.4.13)

and we see from eq. (1.4.11) that both longitudinal and transversal components of bµ

contribute to the change of the length. One can interpret this as: a finite special confor-

mal transformation acts to change the length of a straight distance not only by simple

rescaling along the line but also by bending the line in the direction orthogonal to it.

This is precisely what one sees with a coarse grid that we used as an example in the

previous section to illustrate a conformal transformation — a square deforms in such

a way that its angles are preserved but its edges are bent and deformed differently on

different parts of the map. But if one used a finer grid, having smaller (say, infinitesi-

mally small) squares, an infinitesimal square stays an infinitesimal square, but slightly

larger or smaller, which is described by δξηµν = 2(λ+2bµx
µ), based on eq. (1.4.4). The

longitudinal and transversal components of the transformation vector are

ξµ‖ = λxµ + 2b‖αx
αxµ − bµ‖x2 , (1.4.14)

ξµ⊥ = −bµ⊥x2 , (1.4.15)

from which we can see that bµ⊥ does not contribute to the infinitesimal change of length

along the given direction xµ. (The longitudinal component of the conformal trans-

formation vector is shared by dilations and special conformal transformations, while

the transversal is determined only by the special conformal transformation.) One

22These are notions that have a rigorous definition and clear geometrical meaning in projective
geometry, (see [42] for insightful exposition on relationship with special relativity), into which we do
not go into in this thesis.
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1.5. Shear (volume-preserving) coordinate transformations

can visualize this in three dimensions23 in spherical coordinates in the following way.

For the given direction choose the radial direction. Then bi⊥, i = 1, 2, 3 at a point

along the radial direction is tangential to a 2-sphere drawn through that point. Thus

bi⊥ = (0, bθ⊥, b
φ
⊥). This explanation fits quite nicely to the spirit of [115]. Hence we

can say that the role of changing the length of vectors is played by the longitudinal

component ξµ‖ , which confirms the expectations we made in the previous section.

Much more could be said and explored about conformal coordinate transformations,

but we wanted merely to offer an intuitive explanation of what the consequences of their

action on the components of the metric are. One could talk about consequences such

as conserved currents, but that is not of main interest here. Instead, we turn to shear

transformations.

1.5 Shear (volume-preserving) coordinate

transformations

Let us now make sense of ST
µν , the “complement”24 of conformal transformations. These

transformations are described by a traceless matrix of d(d+1)
2 − 1 coordinate-dependent

entries. However the problem with volume-preserving transformations is that there

are infinitely many generating vectors ξµ, because, as we shall see, one is not able to

determine these vectors from the procedure that we used to obtain conformal trans-

formations. There is nothing inconsistent about this fact — there are infinitely many

coordinate transformations and indeed it is expected that if one finds only five of them

in conformal transformations, the complement set has infinite number of them. How-

ever, in spite of this fact, we can focus on some special cases which will illuminate the

nature of shear transformations as a special case of volume-preserving transformations.

This section is motivated by [23, 58] and discussions with Kaća Bradonjić [26].

We start with a question, what is ξµ such that the Minkowski metric transforms

according to

S = 0 ⇒ δξηµν = 2ST
µν ? (1.5.1)

The answer is sought in the same way as in the case of conformal transformations:

in addition to the above, one demands that Christoffel symbols vary as the first term

in eq. (1.2.24). (Note that, again, there is no need to guess the necessary sum of

index permutations because a clear geometric statement eq. (1.2.24) is available.) For

23Which is actually more valid than the two-dimenisonal case because the results derived are valid
in d > 2. However, one could do some naive counting of components: in 2D special conformal trans-
formation vector has 2 parameters; these are distributed as one component to each of the longitudinal
and transversal parts, and one can think of them as one component in the given direction to change
the length while the other in the direction orthogonal to it to bend the line.

24In the next section we clarify why is this word under a quote.
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1. A fresh look on general coordinate transformations

Minkowski metric this gives the following equation for ξµ

∂µ∂νξα = ∂µS
T
αν + ∂νS

T
αµ − ∂αST

µν . (1.5.2)

Taking a derivative ∂β, then taking two different traces, over µν and over αβ indices

and using ∂αξ
α = 0 for the definition of the volume-preserving transformations, one

obtains

2∂α∂(µS
T

ν)α −�S
T
µν = 0 , (1.5.3)

∂α∂βST
αβ = 0 . (1.5.4)

Equation (1.5.3) is analogue of eq. (1.4.3). So let us take its trace; but as a result one

trivially finds eq. (1.5.4), which cannot be used in eq. (1.5.3) anyhow. This is in drastic

contrast the case of conformal transformations: there the trace of eq. (1.4.3) provided

some new information which could be used back into that same equation, allowing one

to derive eq. (1.4.4). But in the case of volume-preserving transformations this is not the

case, since one could have any transversal vector ξµ⊥ giving rise to such transformations.

Therefore, one can conclude that while there are only d independent ways of chang-

ing only the volume, i.e. the scale A, there are infinitely many ways of changing only the

shape, i.e. ḡµν . This makes sense, because there are infinitely many general coordinate

transformations with respect to which the total metric tensor is covariant.

In spite of this, we can look at some special cases in order to obtain some intuition

about these transformations. The first guess is that ST
µν is a matrix of constant param-

eters, which surely satisfies the above conditions. This is analogous to Lorentz transfor-

mations, where one encounters an antisymmetric matrix mµν of constant parameters.

With the assumption ST
µν = sµν and remembering that this matrix is traceless, we have

ξµS = sµνx
ν . (1.5.5)

Since this vector is linear in xµ, we can think of the dilation parameter λ as the missing

trace piece that complements sµν to form a symmetric matrix of constant parameters.

If we added translations and Lorentz transformations, one would obtain a matrix with

symmetric traceless, antisymmetric and trace parts amounting in total to d2 parameters

plus d parameters of translations. In four dimensions this is 20 parameters and one

has described all possible choices for linear transformations. Thus, it makes sense to

consider the matrix of constant elements.
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1.5. Shear (volume-preserving) coordinate transformations

Another example is to impose the following condition,

∂βST
αβ ∼ cα (1.5.6)

where cα is a constant vector and any proportionality constant is irrelevant and can be

absorbed. Then we can show that ST
µν takes the form

ST
µν = cµηναx

α + cνηµαx
α − 2

d
ηµνcαx

α , (1.5.7)

plus the already introduced matrix constant sµν which we do not include here. From

eq. (1.5.2) one then derives

ξµQ := cµx2 − 2

d
cαx

αxµ +
1

d
cµx2 , (1.5.8)

which we may call the generating vector of special shear transformations, because of

its similarity with the special conformal vector given by eq. (1.4.9). An interesting

feature of these transformations is observed when we recall the analysis in eqs. (1.4.14)-

(1.4.15). Namely, vector bµ describing the special conformal transformations has all d

components since both longitudinal and transversal components contribute. But special

shear transformations given by eq. (1.5.7) may equally be described by

ST
µν = cµηναx

α + cνηµαx
α ⇒ ξµQ = cµ⊥x

2 , c⊥µ x
µ = 0 , (1.5.9)

in which case one does not need to worry about dimensional dependence. If described in

such a way, special shear transformations are manifestly transversal and are determined

by d− 1 parameters only.

Independently of the fact that volume-preserving transformations can be repre-

sented in infinitely many ways, they are all volume-preserving and this fact is valid in

a general space and dimension, by definition

A2δξ ḡµν = 2ST
µν , δξA = 0 , (1.5.10)

based on eq. (1.3.6). Thus, enough evidence is gathered for motivating the split of

the metric tensor into scale and shape density. But shape and scale density can be

recognized by other transformations than coordinate transformations, see section 2.1.
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1. A fresh look on general coordinate transformations

1.6 Generators of coordinate transformations and their

algebra

In this brief section we talk about group-theoretical observations regarding the gen-

eral coordinate transformations and their subsets that we mentioned in the previous

sections.

In group-theoretical language one says that in d dimensions matrices given by (1.1.1)

have d2 independent real elements and they, together with an operation of multipli-

cation among them, form the general linear group over real numbers25 denoted by

GL(d,R). In d = 4 dimensions each matrix has 16 independent elements and we have

GL(4,R). So far we have looked at conformal transformations (sections 1.3-1.4) and

shear transformations (section 1.5) and only in passing we mentioned translations and

Lorentz transformations. We have found their explicit form only in Minkowski space-

time, see eqs. (1.4.8), (1.4.9) and (1.5.5), with an important remark that there are

infinitely many shear transformations of which one example was given by eq. (1.5.8).

In addition to the stated, we have translations and rotations given by

ξµP = aµ , (1.6.1)

ξµL = mµ
νx

ν . (1.6.2)

There are two questions to be asked. How do all these transformations fit into GL(d,R)

and how do they generalize to curved spaces?

The answer to the first question was given in a remarkable paper by Ogievetsky

[102] (see also [21] for an important application of this result) as follows and we shall

focus now on the relevant case of d = 4 dimensions. First of all, since matrix Aµν can

be expanded around the identity, i.e.

Aµ
ν ≈ δµν + ∂νξ

µ , (1.6.3)

where ∂νξ
µ contains small real parameters, we are in the realm of Lie groups. We

shall need the notion of those matrices Aµ
ν that have unit determinant. Since de-

terminant of the matrix in eq. (1.6.3) is roughly a fourth power of its RHS then

J ≡ det Aµ
ν ≈ 1 + ∂µξ

µ (this is just the Jacobian matrix determinant), so a unit

determinant requires ∂µξ
µ = 0 (we shall soon see that this is indeed related to volume-

preserving transformations). Then we can decompose the transformation matrix Aµ
ν

25Meaning that elements of a matrix are real numbers.
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1.6. Generators of coordinate transformations and their algebra

into its determinant J and unit-determinant26 Ā
µ
ν parts,

Aµ
ν = J

1
4 Ā

µ
ν , Ā

µ
ν := J−

1
4 Aµ

ν . (1.6.4)

Now, in Lie groups one deals with generators of the corresponding transformations

and their algebra (i.e. commutation relations). The generators of translations Pµ,

rotations Lµν , shears Sµν , dilations D and special conformal Kµ transformations can

be represented as differential operators as [102]

Lµν = −i (ηµαx
α∂ν − ηναxα∂µ) , Pµ = −i∂µ (1.6.5)

Sµν = −i
(

1

2
(ηµαx

α∂ν + ηναx
α∂µ)− 1

4
ηµνx

α∂α

)
, (1.6.6)

D = −ixµ∂µ , Kµ = −i
(

2ηµαx
αxβ∂β − x2∂µ

)
. (1.6.7)

If we act on xρ with these generators contracted by the correscponding parameters we

recover the corresponding coordinate transformations. This might look complicated but

the matter is much simpler than it seems. Namely, as it was shown by Ogievetsky [102],

it can be recognized that the sum of Lorentz and shear transformations is just the sum

of the antisymmetric and symmetric traceless parts of the following generator 27

1

2
Lµν + Sµν = L̄µν := −i

(
ηµαx

α∂ν −
1

4
ηµνx

α∂α

)
, (1.6.8)

which is a generator of the special linear group SL(4,R). This is a group of all matrices

Aµ
ν with a unit determinant and is a subgroup of GL(4,R). For its infinitesimal version

in eq. (1.6.3) this means

∂µξ
µ = 0 , (1.6.9)

which just means that matrices of SL(4,R) are described by Ā
µ
ν , i.e. the unimodular

piece of eq. (1.6.4). But now recall the split of ∂µξν into antisymmetric, symmet-

ric traceless and trace parts, i.e. the Minkowski spacetime version of eqs. (1.2.20a)-

(1.2.20d): eq. (1.6.9) is nothing other than S = 0, which is the requirement for ex-

cluding conformal transformations, leaving us with volume-preserving transformations.

26If an object has a unit determinant it is often referred to as “unimodular”.
27Factor 1/2 is added because of the definition of antisymmetrization on the Lorentz transformations

piece. However, the following definition is independent on how are such factors distributed among the
generators.
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1. A fresh look on general coordinate transformations

The generators of SL(4,R) obey the following algebra

[
Lµν , Lαβ

]
= −2i

(
η[µ|αL|ν]β − η[µ|βL|ν]α

)
, (1.6.10)[

Lµν , Sαβ

]
= −2i

(
η[µ|αS|ν]β + η[µ|βS|ν]α

)
, (1.6.11)[

Sµν , Sαβ

]
= −2i

(
η(µ|αL|ν]β + η[µ|βL|ν)α

)
. (1.6.12)

Now observe what happens if we add dilations to the generator of shear transformations,

Sµν +
1

4
ηµνD = Dµν := −iη(µ|αx

α∂|ν) , (1.6.13)

and check the algebra with Lorentz transformations: the algebra is identical to eq. (1.6.11)

because dilations commute with Lorentz transformations

[
Lµν , D

]
= 0 . (1.6.14)

Furthermore, translations have the following algebra with the mentioned generators:

[
Pµ, Lαβ

]
= −i (ηµαPβ − ηµβPα) , (1.6.15)[

Pµ, Dαβ

]
= −i (ηµαPβ + ηµβPα) . (1.6.16)

while they obviously commute with itself. This means that the algebra of Lµν , Dµν and

Pµ closes and they all form the linear realization of the rigid affine group A(4,R) which is

a semidirect product of translation group and the linear group, A(4,R) = R4oGL(4,R),

i.e. the group of transformations which acts on coordinates linearly28

x̃µ = aµνx
ν + aµ , (1.6.17)

where aµν = mµ
ν + sµν + λδµν are 16 constant parameters consisting of Lorentz trans-

formations given by eq. (1.6.2), shear transformations given by eq. (1.5.5) and dilations

given by eq. (1.4.8), in addition to four translations given by eq. (1.6.1). Therefore, not

only that the Poincaré group in eq. (1.6.15) is a subgroup of A(4,R), but dilations and

28A remark on wording is of use here: even those transformations which act non-linearly on coor-
dinates are transformations which act linearly on vectors and these are precisely the matrices Aµν of
GL(4,R). In a linear realization of the rigid affine group we have only linear coordinate transformations,
meaning that the coefficients aµν and aµ below are constant.
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1.6. Generators of coordinate transformations and their algebra

the linear realizaton of SL(4,R) are also subgroups of A(4,R).

What about the special conformal transformations given by eq. (1.4.9) and their

generators in eq. (1.6.7)? Their algebra with other transformations is given by

[
Kµ, Pν

]
= −2i (ηµνD − Lµν) , (1.6.18)[

Kµ, Lαβ

]
= i (ηµαKβ − ηµβKα) , (1.6.19)[

Kµ, D
]

= −iKµ ,
[
D,D

]
= 0 , (1.6.20)[

Kµ, Dαβ

]
= −i (ηµαKβ + ηµβKα)− 2iηµρηασx

ρxσ∂β . (1.6.21)

We see from eqs. (1.6.18)-(1.6.20) and eqs. (1.6.15)-(1.6.16) that the algebra of Poincare,

dilations and special conformal group of transformations closes into algebra of confor-

mal group C(4,R) that has 15 generators in total. However, from eq. (1.6.21) we see

something odd: there is a piece xρxσ∂β which does not belong to any of the so far found

generators (see Table 1.6.1). Therefore, if one takes into account the algebra of special

linear group SL(4,R) and conformal group C(4,R) and demands their closure, one can

produces new kinds of generators and this was Ogievetsky’s main observation. This

P L S D K ⊥ ‖

P 0 P P P D+L + +

L L S 0 K + -

S L 0 K+xx∂ + -

D 0 K - +

K 0 + +

Table 1.6.1: Left : Schematic representation of the Lie algebra given by
eqs. (1.6.10) - (1.6.12), (1.6.15), (1.6.16), (1.6.18) - (1.6.21) of generators of
translations (P), Lorentz transformations (L), linear shear transformations (S),
dilations (D) and special conformal transformations (K). Note how K-S com-
mutator extends the algebra of conformal group and shear group to include
more general second order generators. Right : Presence (+) and absence (-)
of transversal ⊥ and longitudinal ‖ components of the vector corresponding to
each generator.

means that if one takes xρxσ∂β as the generator of some transformations and commutes

it with the generator, say, Kµ, one obtains a generator proportional to xαxρxσ∂β. He

showed by mathematical induction that if one continues with such a procedure one can
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write any n-th order generator of general covariance group GL(4,R)

nLgn0,n1,n2,n3
µ = −i(x0)n0(x1)n1(x2)n2(x3)n3∂µ , (1.6.22)

where n = n0 +n1 +n2 +n3 is the sum of non-negative integers and denotes the order of

non-linearity, i.e. the total power of xµ, as a linear combination of commutators of the

generators of the special linear SL(4,R) and conformal C(4,R) groups. Therefore, all

coordinate transformations described by eq. (1.1.1) and all kinds of motions which we

interpreted as active coordinate transformations can be constructed from the generators

of the linear coordinate transformations given by eq. (1.6.17) and the generators of

conformal transformations given by eq. (1.6.20). There are of course infinitely many

ways to construct generators in given by eq. (1.6.22) which is expected because there

are infinitely many coordinate transformations at one’s disposal to represent physical

objects in. But conformal transformations (which contribute only to the scale and

volume variation expressed with eq. (1.3.10)) have only 5 parameters, so conformal

group is not the place to look for this freedom. We have already caught a glimpse of

the freedom that is “missing” — in “special shear transformations” given by eq. (1.5.8)

in section 1.5. Namely, that was only one “guessed” example of, as it was stated there,

infinitely many volume-preserving transformations. One can see that term xρxσ∂β that

is produced in eq. (1.6.21) can be related to a part of eq. (1.5.8). It can also be checked

that the commutator of ξµQ∂µ with Kµ gives terms of third order in xµ. This example

agrees with Ogievetsky’s results and therefore we conclude that the infinite freedom is

found in the special linear group SL(4,R) represented by non-linear volume-preserving

transformations. This answers our first question.

The second question was how does one generalize these transformations to curved

spaces? The problem is that this depends on the metric. Even in flat spacetime, in coor-

dinates other than Cartesian, things become more complicated because the Christoffel

symbols no longer vanish. In curved spacetimes, in addition, the curvatures do not

vanish. Therefore one needs to solve equations (1.2.24), which can be tricky. However,

one can still talk about the special linear and conformal groups locally. Then one takes

the affine group and promotes the 20 constant parameters to functions of coordinates

and demands that the matter action in question is invariant under such local transfor-

mations, leading to various variations of a gauge theory of gravity [16, 60, 61]. But this

goes beyond the scope of this thesis.

The important thing to take away from this section is the understanding of the

definitions of the scale density and shape density given by eq. (1.3.4) and eq. (1.3.6),

respectively, in terms of the groups we mentioned here. Namely, metric can be split into

irreducible components with respect to the conformal group C(4,R) or with respect to

the special linear group SL(4,R); the result is the same, that is, the scale density A

is defined up to a conformal transformation and shape density ḡµν is defined up to a
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volume-preserving transformation. Perhaps it is illustrative to collect the results in the

following,

GL(4,R) = C(4,R) n SL(4,R) , (1.6.23)

Aµ
ν = J

1
4 Ā

µ
ν , (1.6.24)

gµν = A2ḡµν . (1.6.25)

Then conformal transformations of C(4,R) are characterized by Ā
µ
ν = δµν , while

volume-preserving transformations of SL(4,R) are characterized by J = 1. In the

following chapter we shall see that this decomposition can be motivated by means

other than with respect to coordinate transformations.

1.7 Final remarks

This chapter offers one way of motivating the separation of the metric into the scale

and shape densities: by examining the subsets of general coordinate transformations

and how their action affects the metric in several nonequivalent ways. Our aim was to

carefully describe the details around the meaning of the conformal coordinate transfor-

mations, because in the next chapter we contrast them with another kind of “conformal”

transformation and we shall then be able to define clearly which kind of “conformal

transformation” is the important one in this thesis and why.

It is author’s hope that this chapter also has a pedagogical value, because the way

that the GL(d,R) group and the algebra of its subgroups are represented motivates the

introduction of the scale and shape density parts of the metric, which may be under-

stood in terms of shape-preserving and volume-preserving coordinate transformations,

respectively. Their introduction was achieved with the aim of painting an intuitive pic-

ture with the help of transversal and longitudinal parts of the generating vector, while

still smoothly wrapping these concepts into the language of group theory and thereby

offering an invitation to a more rigorous considerations if one would like to pursue so

further. This makes the material of the current chapter suitable for those who would

otherwise be discouraged from pursuing the mentioned concepts starting from the more

abstract mathematics necessary to define them. It is thus author’s opinion that it can

provide a good starting point for conceiving a complementary material for a course

of General Relativity that seems not to have been encountered in standard textbooks

about the topic.

∞ � ∞
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Chapter 2

Conformal field transformation and

unimodular-conformal decomposition

Unlike coordinate transformations, we can also perform transformations directly on

fields. Of main interest in this thesis is not a conformal coordinate transformation but

a conformal field transformation, also known more precisely as Weyl transformation or

Weyl rescaling. We shall show in this chapter that decomposition of the metric with

respect to this transformation leads to an equivalent definition of the scale density and

the shape density that we met in the previous chapter, thus allowing us to investigate

conformal properties of a theory in a much more general sense in terms of the scale

density A, without any reference to any specific kind of conformal transformations —

coordinate or field one. Of particular importance will be the identification of a physical

length scale solely through the scale density A, which will allow one to keep track of the

dimensions of all fields simply by keeping track of the scale density. We also dive into

more detail by looking at the implications of such a decomposition for curvature tensors

and apply the decomposition to the 3+1 formalism, thus setting the grounds for the

material in the following chapters. The power of unimodular-conformal decomposition

will be demonstrated on the example of a non-minimally coupled scalar field with an

arbitrary potential. This also serves as a motivation for reformulating the notion of

conformal invariance with respect to the scale density, which is an invitation for the

upcoming chapter.
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2. Conformal field transformation and...

2.1 Conformal field transformation and a local change of

length scale

A conformal field transformation, also known more precisely as local Weyl rescaling or

simply Weyl transformation, consists of transforming the metric tensor and any field by

multiplying them with an arbitrary function of coordinates (Ω(x) > 0) to some power,

without any reference to a coordinate transformations. It is given by

gµν(x) → g̃µν(x) = Ω2(x)gµν(x) , φI(x) → φ̃I = ΩnI (x)φI(x) , (2.1.1)

where nI is usually called “conformal weight” of any kind of field (scalar, vector,

spinor...) labeled by index I that transforms homogeneously under this transforma-

tion. There are also fields which transform inhomogeneously under conformal transfor-

mation. An example is the extrinsic curvature, Christoffel symbols, Weyl gauge vector.

Where necessary, we shall generalize the above definition to such a field, but for scalar

fields and some vector fields this definition is enough.

What is the meaning of such a transformation? The meaning can be understood

immediately if we make an analogy with dilations, described by eq. (1.2.16). Namely,

with respect to the space of coordinates xµ, λ is a constant. In analogy, we can talk

about configuration space — the space of all components of fields in consideration —

and introduce an operation that multiplies each field with a constant with respect to

configuration space, but not constant with respect to spacetime. So if we introduce

fields defined on spacetime, then the action behind dilations and all other coordinate

transformations are logically extended — they can now act on fields. Metric trans-

formations in eq. (2.1) relate two sets of metric tensor components that describe two

different geometries — Riemann tensor “sees” the difference between the two metrics,

but Weyl tensor does not because Weyl tensor is conformally invariant (for similar rea-

sons as in eq. (1.3.8), see section 2.2). One says that two metrics are conformal to each

other (i.e. belong to the same conformal class) if they are related by eq. (2.1), except

that this conformal correspondence is not generated by coordinate transformations. To

be more precise, the line element itself is transformed under this transformation:

ds2(x) → ds̃2(x) = Ω2(x)ds2(x) , (2.1.2)

from which the metric components transformation in eq. (2.1.1) follows.

Since the physical content is inscribed in the space of field configurations, not in the

space of coordinates, any transformation in configuration fields is called internal and

any transformation due to a change in coordinates is called external, since coordinates

are parameters which have nothing to do with the features of the field theory in question;

then, a symmetry transformation is called internal or external, respectively.
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2.1. Conformal field transformation and a local change of length scale

One should be aware that a general variation of a given field is then a sum of two

variations: external and internal, i.e. δφI(x) = δξφI(x) + δεφI(x), where ξ and ε are

infinitesimal parameters of external and internal transformation. Therefore, in general,

one takes into account both and then investigates various behavior of a field theory at

hand, including derivation of conserved currents that have both internal and external

characteristics. A very detailed treatment of such variations and related symmetries

can be found in [16, 61]. However, through the rest of this chapter we argue that it

is justified for one to not take into account external transformations in the part of the

thesis where we use a toy model to study conformal symmetry. This is because both

conformal coordinate transformations and conformal field transformations change only

the geometric volume
√
g, or equivalently, the scale density A, and leave the shape

density ḡµν invariant; it is for this reason that the two are easily confused under the

less precise term “conformal transformations”. Since we are interested in conformal

invariance in field theory, this ultimately invites investigation of whether the scale

density A is present in the theory or it is not. If it is, a conformal transformation

— be that internal or external — will affect the theory (as well as the equations of

motion) and any resulting dynamics of the fields in question. If it is not present, we

expect the theory to be invariant under conformal transformations of any kind. We find

support for this idea in [52] (see also section 4.2 of [16]), where it was established that

the invariance under Weyl rescaling in curved spacetime implies conformal coordinate

invariance in flat spacetime. Therefore, when necessary, we shall restrict our reference

only to conformal field transformations1 and from now on we refer to them simply as

conformal transformation.

Therefore, based on the previous sections and arguments presented above, our tools

will comprise of mechanisms of keeping track of the scale density A throughout the

calculations, not of a particular conformal transformation that should otherwise be

specified.

We shall mainly deal with infinitesimal version of eq. (2.1.1) in this thesis. That

means that the stated transformation should be expanded around identity Ω(x) ≈
1 + ω(x) and then we have,

δωgµν(x) = 2ω(x)gµν(x) , δωφI(x) = nIω(x)φI(x) , ω(x)� 1 . (2.1.3)

Let us note that the nI = 2 for the metric is a choice, but we justify it further below.

It is by now clear that a conformal transformation of the metric field in eq. (2.1.1)

produces the same effect as an active conformal transformation of coordinates: the

1Another reason for taking into account only internal transformations is that a canonical quan-
tum theory of gravity that we are concerned with in this thesis explicitly depends only on the three-
dimensional metric field and other, non-gravitational fields, so that one is concerned directly with field
transformations.
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metric is rescaled by a function of coordinates. Recalling eq. (1.3.5), that a conformal

coordinate transformation affects only the scale density A, it follows that conformal field

transformation affects only the scale density A, leaving the shape density ḡµν invariant.

Indeed, if we calculate the determinant of the metric in eq. (2.1.1), we obtain that the

d-dimensional volume transforms under conformal field transformation as

√
g̃ = Ω4√g . (2.1.4)

Taking the fourth root, we can see that a transformation of the metric by an Ω2 can be

“explained” as a transformation of the square of the scale density Ã2 = Ω2A2, defined

by eq. (1.3.4). That is, using the decomposition on both sides of the equation, we have

g̃µν = Ω2gµν

Ã2 ¯̃gµν = Ω2A2ḡµν = (ΩA)2ḡµν (2.1.5)

and it follows that

Ã = ΩA , ¯̃gµν = ḡµν , (2.1.6)

i.e. the shape density is invariant under conformal transformations. This completes

the evidence that the scale density and shape density behave under conformal field

transformations in the same way as under conformal coordinate transformations, as we

anticipated. Thus our focus on scale density instead on a conformal transformation is

justified.

If the scale density produces a factor Ω under a conformal transformation, then

could one look at other fields in a similar way as on the decomposed metric? There is

nothing stopping us from defining some new fields χI such that

χI := A−nIφI , (2.1.7)

and in this way χI are conformally invaraint, if φI transforms homogeneously under

conformal transformations2. In other words, the idea is to introduce a set of new fields

rescaled appropriately by the scale density A such that the conformal transformation

of the old fields is compensated for. We shall refer to such decomposition of fields

as conformal decomposition. Note that these new fields are not absolute tensors but

tensor densities of weight wI = nI/d, but since we shall not encounter
√
g explicitly, it

2The new field can be defined even if the old field transforms inhomogeneously, in order to at least
compensate the scaling by Ω.

52



2.1. Conformal field transformation and a local change of length scale

is justifiable to introduce a scale weight, defined by

w̄I := wId = −nI (2.1.8)

such that the scale weight is equivalent to the negative of the conformal weight of

the original field and the negative length dimension of the original field, that we shall

explain shortly. Note that introduction of the scale weight enables one to define ḡµν

as a “tensor density of scale weight −2” and to define A as a “scalar density of scale

weight 1”. Moreover, one may call fields χI “tensor density of scale weight w̄I”.

One could have chosen any other convention for ng in the conformal transformation

of the metric, but ng = 2 is convenient because we would like to think of the set of the

metric tensor components as a dimensionful object that carries information about the

measureable length and size of things, that is,

[gµν ] = L2 , [xµ] = 1 , (2.1.9)

where L is the unit of length, while coordinates are kept dimensionless. This is equiva-

lent to the argument that coordinates are only helpful set of labels with no measurable

physical meaning and thus they should be dimensionless. One thus says that the length

dimension of the metric components is two. Similarly, length dimensions of other fields’

components are introduced based on the form of their Lagrangians. Here, we related

the length dimension to the conformal weight (which is for non-gravitational fields also

deduced from their Lagrangians). In that way conformal transformation using ω(x)

means “let us change the unit length scale at each point in spacetime differently”,

while coordinates are kept fixed. Choosing the metric tensor components as carriers of

length units raises a question “what is the length scale which provides meaningful units

to gµν?” and this question is important to be asked. This actually depends on a context.

One usually compares relevant scales and here it is of interest for the discussion of the

quantum-gravitational phenomena to measure physically relevant scales with respect

to the Planck length lp. By physically relevant scales we mean those that are measured

by observations, which can take place only with the help of interactions among non-

gravitational fields. These observable interactions are essentially events in spacetime

that are separated by spacetime distances. These spacetime distances are said to be

“large” or “small” only with respect to some other physically relevant length scale —

any other non-relative notion of “large” or “small” has no clear meaning. Therefore, if

the metric carries the units of length then the scale density A is the piece of the metric

that describes the “size” of the region in which the observed physical phenomena are

taking place. Nowadays, any physical phenomena that we study in experiments take

place across sizes which are much greater than the Planck scale. Thus we may say that
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for relevant non-quantum-gravitational phenomena

l0
lp
� 1 , (2.1.10)

where l0 is a number measured by the spacetime distance, or equivalently, by A, ac-

cording to our new language. But in the very early Universe, this ratio was closer to 1

as compared to today, which is why it is important to have it at disposal. Note that

because this ratio is dimensionless, it is suitable for any approximations that involve

the Planck scale. Having this in mind, we shall make the scale density A dimensionless,

by formally redefining it as

A→ l0A , (2.1.11)

such that any expression that containsA also has a dimensionful constant accompanying

it. Apart from the metric components, non-gravitational fields are also dimensionful

in general but this depends on a particular theory. Separating the length in this way

is particularly useful in exposing the dimensions of all coupling constants in a given

theory, as we shall see in the next section. This may also be important for discussions

about the renormalization group equations for quantum fields on curved spacetime, but

this is beyond the scope of the thesis.

2.2 Unimodular-conformal decomposition: scale and

shape parts of geometry

The definition of the scale density and the shape density which we arrived at in previous

sections is equivalent to demanding a decomposition of the metric under the action of

the conformal group C(d,R) or under the action of conformal field transformation given

by eq. (2.1.1). There is nothing new in this definition compared to the information

given in the previous sections and one can take the previous sections as a pedestrian

way of motivating what usually goes under a name unimodular decomposition and can

be stated as a starting point as

gµν = A2ḡµν , gµν = A−2ḡµν , A = (
√
g)

1
d , |det ḡµν | = 1 , (2.2.1)

such that δḡµν = 0 for variations due to any kind of conformal transformation. Also

note that ḡµαḡ
αν = δνµ. The new piece of information that we haven’t mentioned so far

is the unit determinant of ḡµν (thus the name “unimodular” decomposition). It can be

checked easily from the definition of A that this is indeed the case. Alternatively, one

could have defined unimodular decomposition by the requirement that |det ḡµν | = 1,

from which it would follow that the power of
√
g that enters the definition of A has to

54



2.2. Unimodular-conformal decomposition: scale and shape parts...

be 1/d. Consequentially, the shape density is invariant under C(d,R) and conformal

field transformation in eq. (2.1.1), while the scale density is invariant under SL(d,R).

Together with eq. (2.1.7), we shall refer to this decomposition as unimodular-conformal

decomposition.

An important feature of the shape density that follows from here is that its variation

is traceless. Namely, a general variation of the metric splits according to

δgµν = A2δḡµν + 2ḡµνAδA , (2.2.2)

and after taking the trace with respect to gµν , one arrives at

2
δ(
√
g)

√
g

= A2gµνδḡµν + 2d
δA

A
, (2.2.3)

but because δ
√
g = dAd−1δA according to the definition in eq. (2.2.1), it must be that

gµνδḡµν = A−2ḡµνδḡµν = 0 . (2.2.4)

This means that the shape density does not change under a conformal variation defined

in eq. (2.1.3), i.e. its conformal variation vanishes. A consequence of this is that since

δḡµν may stand for any derivative of ḡµν , its trace is identically vanishing. For example,

ḡµν∂αḡµν = 0 , ḡµν∂α∂β ḡµν − ḡµν ḡρσ∂αḡµρ∂β ḡνσ = 0 , (2.2.5)

where the second identity follows from the first one by differentiating and lowering

indices on ḡµν within the derivative, as shown in the work by Katanaev [76]. Katanaev

calls ḡµν “metric density”. They apply unimodular split only to the Ricci scalar and

Einstein Equations and emphasize the latter’s resulting polynomial form in ḡµν and its

derivatives, as well as the difference between using A and using a scalar field to model

the non-conformal degree of freedom of geometry. But here we go further than their

work and inspect what is the consequence of eq. (2.2.1) to other curvature tensors.

2.2.1 Scale and shape connection

First, let us emphasize that both A and ḡµν are tensor densities. We can understand

that the determinant is a kind of an object that carries information about conformally

non-invariant properties of spacetime. The shape density, on the other hand, has a

fixed determinant in every coordinate system and carries information about conformally

invariant properties of the spacetime. But since they transform — as gµν does — under

coordinate transformations, they do not uniquely denote a feature of a geometry in a
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coordinate invarint way. Namely, one can find a coordinate transformation (which will

be a conformal one) which changes A to A′ = 1 for any given metric. Therefore if one

would like to make some physically relevant statements in terms of scale and shape

density one needs to look into curvature tensors and curvature scalar invariants.

To this purpose, let us plug eq. (2.2.1) into Christoffel symbols. One then has that

they split into two parts3

Γαµν = Γ̄αµν + Σα
µν , (2.2.6)

Γ̄αµν =
1

2
ḡαρ (∂µḡρν + ∂ν ḡρµ − ∂ρḡµν) , (2.2.7)

Σα
µν =

(
2δα(µδ

β
ν) − ḡµν ḡ

αβ
)
∂β logA , (2.2.8)

which the following properties (taking into account eq. (2.2.4) for the third term in

eq. (2.2.7)),

Γ̄ααν = 0 , ḡµνΓ̄αµν = −∂µḡµα , (2.2.9)

Σα
αν = d ∂ν logA , ḡµνΣα

µν = (2− d)ḡαν∂ν logA , (2.2.10)

Σβ
(µ|αgβ|ν) −

1

d
gµνΣβ

βα = 0 . (2.2.11)

We see that Γ̄αµν , which we call the shape connection, is the traceless in the up-down

indices and Σα
µν , which we call the scale connection, seems to be the trace of the

Christoffel symbols. The last identity, eq. (2.2.11), basically means that the symmetric

traceless part with respect to the first two indices of Σα
µν vanishes.

(However, it should be noted that splitting the connection into traceless and trace pieces does

not imply the same split under the unimodular decomposition in the case of non-Riemannian

geometry, i.e. if ∇αgµν 6= 0. Namely, there is a connection called projective connection [140]

denoted by Πα
µν and defined by

Γα
µν = Πα

µν +
1

d+ 1
(δαµΓν + δαν Γµ) , Πα

αν = 0 , (2.2.12)

where no metric compatibility has been assumed. It too is relevant in the context of the

group SL(4,R) and in discussions about unparametrized geodesics [23, 26, 46, 140] and can be

defined independently of the metric. This means that Γµ above a priori has nothing to do with

the trace in the first equation in (2.2.10) which is determined from the metric. One can also

define projective curvature tensor (see [88] for comparison with the Weyl tensor) based on the

3Note that the last term in eq. (2.2.8) can also be written in terms of the metric, because A simply
cancels out.
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2.2. Unimodular-conformal decomposition: scale and shape parts...

projective connection and this curvature is invariant under projective transformations that are

a subset of SL(4,R), which we do not speak of in this thesis.)

At this point it is important to relate general variation of the shape and scale den-

sities with general variation of the Christoffel symbols and understand this relationship

in the context of variations of Christoffel symbols with respect to coordinate transfor-

mations that we derived in eq. (1.2.24). The variation of the Christoffel symbols due

to the variation given in eq. (2.2.2) splits in the following way,

δΓαµν = δΓ̄αµν + δΣα
µν

=
1

2
ḡαρ (∂µδḡρν + ∂νδḡρµ − ∂ρδḡµν) +

(
2δα(µδ

β
ν) − ḡµν ḡ

αβ
)
∂β log δA . (2.2.13)

Now compare the above equation with eq. (1.2.24). One concludes that conformal

transformations (of any kind) give rise to δΣα
µν and variations with respect to the

volume-preserving transformations give rise to δΓ̄αµν , thus agreeing with eq. (1.3.10)

and eq. (1.3.9), respectively. This conclusion nicely fits the content of section 1.6.

2.2.2 Shape covariant derivative

The split of connection induced by the unimodular decomposition means that the co-

variant derivative splits as well. It is then of interest to inspect the metricity condition.

Using the fact that ḡµν is a tensor density of scale weight w̄ = −2 and definitions in

eqs. (2.2.6)-(2.2.8) and (2.2.11), the metricity condition on the metric implies

∇αgµν = A2∇αḡµν = 0

= A2

(
∂αḡµν − 2Γ̄β(µ|αḡβ|ν) − 2Σβ

(µ|αḡβ|ν) + 2∂α logAḡµν

)

= A2

(
∂αḡµν − 2Γ̄β(µ|αḡβ|ν)

)

= A2∇̄αḡµν = 0 , (2.2.14)

where we have defined ∇̄α to be the “covariant derivative” built from Γ̄αµν only. Note

that all derivatives of A cancel out. From this one deduces an interesting conclusion:

the metricity condition with respect to the metric and the connection is equivalent to

the metricity condition with respect to the shape density and shape connection. Thus,

the metricity condition is conformally covariant (since A2 can be cancelled). This could

be important in the context of non-Riemannian geometry with a projective connection

[23].
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A covariant derivative of a covariant vector density Vα of scale weight w̄ splits in

the following way,

∇µVα = ∂µVα − Γ̄βαµVβ − Σβ
αµVβ − w̄Vα∂µ logA

= ∇̄µVα −
(

(1 + w̄)δβαδ
ρ
µ + δβµδ

ρ
α − ḡµαḡβρ

)
Vβ∂ρ logA , (2.2.15)

and upon taking the trace to form a covariant divergence one gets

gµα∇µVα = gµα∂µVα + (d− w̄ − 2)gµαVα∂µ logA (2.2.16)

= ∂µVµ + (d− w̄)Vµ∂µ logA , (2.2.17)

where we used the traceless property of the shape connection in eq. (2.2.9) and wrote

in the second line the expression for the contravariant vector density. In eq. (2.2.15)

we defined the shape covariant derivative

∇̄µVα := ∂µVα − Γ̄βαµVβ , (2.2.18)

and similarly for the contravariant version. In Bradonjić & Stachel [23] this is called

“conformal covariant derivative”. The shape covariant derivative therefore “does not

see” the difference between a vector and a vector density; this definition easily gen-

eralizes to a tensor density of arbitrary rank. From eq. (2.2.17) one concludes that a

vector density of scale weight w̄ = d eliminates the explicit scale connection from this

derivative. It is for this reason that for the special case of divergence of vector density

of weight w = w̄/d = 1 simplifies, see eq. (2.2.17). We can also ask what is the traceless

part of eq. (2.2.15)? In fact, we shall also impose symmetrization on the two indices

since such case appears in this work in section 2.3; we obtain the following answer

[
∇(µVν)

]T
=
[
∇̄(µVν)

]T − (2 + w̄)
[
V(µ∂ν) logA

]T
. (2.2.19)

We see from here that for the special case of covariant vector density of scale weight

w̄ = −2 there is no difference between the usual covariant derivative and the shape

covariant derivative because any scale density dependence cancels out in that case4.

We will encounter one such example in this thesis (the shift vector, see section 2.3).

Shape covariant derivative is useful only if one makes a restriction from GL(d,R)

4This does not mean that the expression is conformally invariant, because this depends on the
conformal properties of Vν . Conformal invariance holds of course in the special case when Vν is
conformally invariant itself.
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to SL(d,R), i.e. if one excludes conformal transformations from the original generally

covariant theory. Such an example is the case of unimodular gravity, see e.g. [1, 47, 50,

142] and thereby cited references. In unimodular gravity one imposes a constraint on

the metric itself that its determinant is fixed
√
g = 1 (which can also be thought of as

gauge fixing) and one must follow the consequences of this constraint. This eventually

leads to interesting dynamics which is related to the solutions of the Einstein vacuum

equations with cosmological constant [1, 47, 142]. It can also be used in theories

of matter quantum fields on a dynamical curved spacetime background together to

study regimes of the very early Universe (energies above 102GeV ) in which the matter

content enjoyed conformal symmetry, see [29]. However, in a more recent paper [103]

it has been claimed that locally there is no difference between classical unimodular

gravity and classical GR, since the former is just a locally gauge-fixed version of the

latter. It is also claimed that the previously claimed “new perspective” of the problem

of cosmological constant were not formulated carefully because one needs to study

the cosmological constant within the context of semiclassical gravity and take into

account necessary renormalization requirements. The paper also argues that there is an

equivalence between quantum theory based on unimodular gravity up to an arbitrarily

high energies within the framework of path integral approach. Therefore the notion of

unimodular gravity as a theory distinct from GR has to be taken with care.

Here, however, we do not impose any constraint on the metric: the number of its

independent components is still d(d + 1)/2 except that with the help of unimodular

decomposition we look at them as 1 + (d(d+ 1)/2− 1) components instead. Therefore,

no constraint must be added if we would like, for example, to look at the Einstein

equations — one simply implements the consequences of such decomposition, such as

eqs. (2.2.6)-(2.2.11). One only needs to be careful not to interpret objects built from

the shape and scale connection as general-covariant tensors, but rather as tensors with

respect to the restricted group of volume-preserving coordinate transformations.

2.2.3 Curvatures in terms of the scale and shape densities

Scale and shape density, like the metric, take on a different form in different coordinate

systems. The same is with scale and shape parts of the Christoffel symbols. For given

A(x) and ḡµν(x) one can always find a coordinate transformations such that the scale

density becomes equal to one,

Ã(x̃) = J
1
d (x)A(x) = 1 , (2.2.20)

where J is the determinant of the transformation matrix, recall eq. (1.6.24). But one

cannot always find a coordinate transformation that transforms the shape density into

the constant matrix. This is just a consequence of the fact that if the space is curved

then there is no global coordinate transformation that will bring the metric into the
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Minkowski/Euclidean form. Thus we see that there is a certain asymmetry between the

scale density and the shape density. This is roughly speaking reflected in the semidirect

product of SL(d,R) with C(d,R), as discussed in section 1.6. Since the only way to tell

if the space is flat or curved is to ask if the Riemann tensor vanishes at every point of

space or not, one expects this asymmetry to be reflected in the Riemann tensor as well,

once we look at how it decomposes as a consequence of the unimodular decomposition.

Riemann tensor is defined in terms of the Christoffel symbols as

Rαµβν = ∂βΓαµν − ∂νΓαµβ + ΓαβρΓ
ρ
µν − ΓρµβΓανρ , (2.2.21)

and we immediately see that there is going to be cross terms Γ̄ · Σ once one uses

eq. (2.2.6). This is a signal that scale density interacts with the shape density and the

Riemann tensor cannot be separated as a direct sum of tensors dependent only on A

and tensors dependent only on ḡµν . But since we have learned, as mentioned above,

that one can always find a coordinate transformation which eliminates the scale density,

there must be at least one tensorial piece of the Riemann tensor which does not care

about such transformations (i.e. conformal transformations) because it has to survive

to tell us about the curvature of the space. We know that Γ̄αµν is invariant under

conformal transformations. We also know that the Weyl tensor, defined by eq. (1.3.7)

and alternatively by

Cαµβν = Rαµβν − 2
(
δα[βPν]µ − gµ[βP

α
ν]

)
, (2.2.22)

where in the second line we used the Schouten tensor defined by

Pµν =
1

d− 2

(
Rµν −

1

2(d− 1)
gµνR

)
, (2.2.23)

is invariant under conformal transformations. But we could pretend that we do not

know about the Weyl tensor and ask what is the tensor that is built solely from Γ̄αµν?

This is the question asked by Thomas [139, 141] in 1925-26. They call Γ̄αµν “conformal

connection”5 and they showed that it is not enough to simply take the structure of the

Riemann tensor’s definition in eq. (2.2.21) and substitute Γαµν → Γ̄αµν because such an

expression is not a tensor. However, only when one subtracts all the traces from such

an expression one obtains a tensorial object, which he showed is equivelant to the Weyl

tensor. We will only sketch this result with the following line of reasoning. Take a look

at the first two terms in eq. (2.2.21), pretending for a moment that all Γαµν → Γ̄αµν .

5Note that this is the the same as “trace-free Christoffel symbols” of [23].
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In the second term, the α = β component is missing because Γ̄αβα = 0. But that

means that a coordinate transformation will give rise to a non-tensorial term from the

α = β trace in the first term which will not have a counterpart to be cancelled with.

Therefore, α = β trace must be subtracted from the potential definition, which from

the LHS means that one needs to subtract Ricci tensor. Repeating this argument for

all problematic traces, one can find that the resulting definition is given by eq. (1.3.7)

or eq. (2.2.22) with all Γαµν → Γ̄αµν in it. In other words, all terms containing Σα
µν

cancel out in those equations. We shall not prove this, but we shall inspect how Ricci

tensor and Ricci scalar look like under unimodular decomposition. Contracting with

α = β in eq. (2.2.21) and using eqs. (2.2.6)-(2.2.10) one obtains

Rµν = R̄µν + 2 ∂[αΣα
µ]ν + 2Σβ

µ[νΣα
α]β − 2Γ̄αβ(µΣβ

ν)α + Γ̄βµνΣα
αβ

= R̄µν − (d− 2)

(
1αβ(µν) +

1

d− 2
ḡµν ḡ

αβ

)
∇̄α∂β logA

+ (d− 2)
(

1αβ(µν) − ḡµν ḡ
αβ
)
∂α logA∂β logA , (2.2.24)

where R̄µν is defined by6

R̄µν := ∂αΓ̄αµν − Γ̄ρµαΓ̄ανρ . (2.2.25)

Taking the trace of eq. (2.2.24), the Ricci scalar decomposes as

R = gµνRµν = A−2

[
R̄− 2 (d− 1) ḡµν

(
∇̄µ∂ν logA+

d− 2

2
∂µ logA∂ν logA

)]

= A−2

[
R̄− 2 (d− 1)A

2−d
2 ∂µ

(
A
d−2

2 ḡµν∂ν logA

)]

= A−2

[
R̄− 2 (d− 1)A−2

(
A∂µ (ḡµν∂νA) +

d− 4

2
ḡµν∂µA∂νA

)]

= A−2

[
R̄− 2 (d− 1)A

2−d
2 ∂µ

(
A
d−4

2 ḡµν∂νA

)]
if d 6=2

= A−2

[
R̄− 4 (d− 1)

d− 2
A

2−d
2 ∂µ

(
ḡµν∂νA

d−2
2

)]
, (2.2.26)

6This is the so-called “November tensor” [117] that Einstein ended up with in one of his attempts
on deriving his field equations, using the gauge condition

√
g = 1, which corresponds to A = 1 here.
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where R̄ := ḡµνR̄µν is the conformaly invariant part of the Ricci scalar. We have

presented above several different ways of writing the decomposed Ricci scalar that may

be useful for various purposes. For example, from the expression in the second line

it follows that in d = 2 dimensions
√
gR is a total divergence. Third and fourth line

contain useful expressions for d = 4 dimensions. Furthermore, a rule of thumb can be

used to quickly determine the conformally transformed Ricci scalar: simply add a term

which is obtained from the A-dependent term in the first line of eq. (2.2.26) by making

a substitution A → Ω and ∇̄µ → ∇µ, or from the A-dependent term in the third line

of eq. (2.2.26) by making a substitution A→ Ω and ∂µ → ∇µ. The result is

R̃ = R− 2 (d− 1)

Ω2

(
∇µ (gµν∂ν log Ω) +

d− 2

2
gµν∂µ log Ω ∂ν log Ω

)

= R− 2 (d− 1)

Ω4

(
Ω∇µ (gµν∂νΩ) +

d− 4

2
gµν∂µΩ ∂νΩ

)
(2.2.27)

and note that A−2 has been absorbed into gµν = A−2ḡµν . Indeed, this is the correct

conformal transformation [48]. On the other hand, the last line in eq. (2.2.26) is useful

when discussing non-minimally coupled scalar field. Now, the same manipulation could

be done with the Riemann tensor, but for our purposes it is enough to say that the

A-dependent terms are exactly cancelled by A-dependent terms in the Schouten tensor

in eq. (2.2.22), leaving the A-independent and therefore conformally invaraint Weyl

tensor. Based on eq. (2.2.23), eq. (2.2.24) and eq. (2.2.26) Schouten tensor decomposes

as

Pµν = P̄µν − (d− 2)

(
∇̄µ∂ν logA−

(
1αβ(µν) −

1

2
ḡµν ḡ

αβ

)
∂α logA∂β logA

)
. (2.2.28)

where P̄µν is defined as the conformally invariant part of the Schouten tensor

P̄µν :=
1

d− 2

(
R̄µν −

1

2(d− 1)
ḡµνR̄

)
. (2.2.29)

Note that the A-dependent part in eq. (2.2.28) has the same form in any dimension,

unlike Ricci tensor and scalar. Finally, our educated guess takes the form:

Cαµβν = R̄αµβν − 2
(
δα[βP̄ν]µ − ḡµ[βP̄

α
ν]

)
(2.2.30)

where R̄αµβν is an object that has the same structure as the Riemann tensor given in

eq. (2.2.21) with Γαµν → Γ̄αµν . This makes the Weyl tensor manifestly conformally
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2.2. Unimodular-conformal decomposition: scale and shape parts...

invariant and allows one to call it “the shape curvature tensor”. Manifest conformal

invariance is a guiding principle for the choice of tools in this thesis and we shall use it

whenever possible.

There are two more tensors worth mentioning, the traceless part of Ricci tensor and

the Einstein tensor. The former is given by

RT
µν := Rµν −

1

d
gµνR = R̄T

µν − (d− 2)
(
∇̄(µ∂ν) logA− ∂µ logA∂ν logA

)T
, (2.2.31)

where R̄T
µν is the traceless part of eq. (2.2.25). The Einstein tensor is given by

Gµν := Rµν −
1

2
gµνR = Ḡµν − (d− 2)

[(
1αβ(µν) − ḡµν ḡ

αβ
)
∇̄α∂β logA

−
(

1αβ(µν) −
3− d

2
ḡµν ḡ

αβ

)
∂α logA∂β logA

]
, (2.2.32)

where Ḡµν := R̄µν − 1
2 ḡµνR̄.

Extracting the A-independent parts from GL(d,R)-tensors using unimodular de-

composition only offers a suitable method for dealing with various cordinate choices,

unless one is especially interested in restricting to SL(d,R). For example, one may

choose a coordinate gauge in which the A-dependent term of the Einstein tensor van-

ishes (the simplest is A = 1). Or one can look for conformally flat spaces by demanding

that ḡµν = ηµν . Of course, only for the latter one has a generally covariantly expressed

condition, i.e. the vanishing of the Weyl tensor. For the former condition there is no

generally covariant condition. The only generally covariant thing one could do to make

sure the scale density A does not contribute to the curved space is to require vanishing

of the Ricci tensor. We give here a remarkably simple and intuitive proof of this fact.

Namely, consider the metric components expressed in a neighbourhood of a geodesic

(measured by |ζµζµ| < 1), i.e. in Fermi normal coordinates, given by the usual Taylor

expansion [89],

gµν(ζ) = ηµν +
1

3
Rµανβζ

αζβ +O(ζγζτζσ) . (2.2.33)

In the above expression the metric components and the components of the Riemann

tensor are evaluated along a chosen geodesic at a point which belongs to it. The

meaning of this equation is that the Riemann tensor measures deviation of a metric

from the flat one in a small neighbourhood along a geodesic. So which pieces of the
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2. Conformal field transformation and...

Riemann tensor measure deviation of the shape and scale parts of the metric then7?

Consider the difference δ0gµν(ζ) := gµν(ζ) − ηµν , which has nothing to do with a Lie

derivative but we may consider it to be a type of a variation at a point on a manifold

due to a coordinate transformation. Using eq. (2.2.2) and eq. (2.2.4) in eq. (2.2.33) and

separating the trace from traceless parts one obtains8

A2δ0ḡµν =
1

3
Cµανβζ

αζβ +
1

3(d− 2)

[
ζ2RT

µν − 2
(
ζ(µR

T

ν)β −
1

d
gµνR

T
αβζ

α
)
ζβ
]

− 1

3d(d− 1)
R
(
ζµζν −

1

d
gµνζ

2
)
, (2.2.34a)

δ0A

A
=

1

6d
Rµνζ

µζν =
1

6d

(
RT
µνζ

µζν +
1

d
Rζ2

)
, (2.2.34b)

where ζ2 = ζµζµ and we have additionally split the Ricci tensor into its traceless and

trace parts. Equation (2.2.34b) proves that the Ricci tensor is that part of the Riemann

tensor which measures the effect of the spacetime curvature on the d-dimensional vol-

ume (expressed here in terms of scale density). Therefore, the only covariant statement

regarding the constancy of the volume is the vanishing of the Ricci tensor, meaning

that all vacuum solutions of GR have the property that along the freely-falling trajec-

tories an observer measures a constant four-dimensional volume. On the other hand,

we see that even for conformally flat spacetimes the absence of the Weyl tensor in

eq. (2.2.34a) does not mean that the shape part of the metric is not curved. As we

have stated earlier in this subsection, this is because the Riemann tensor does not split

into scale-independent and shape-independent pieces under unimodular decomposition

— there is “mixing” between A and ḡµν in the Ricci tensor, which is just a consequence

of the non-linear nature of the Riemannian curvature. Furthermore, one can see that

for Einstein spaces (RT
µν = 0, R = const.) we have that both the shape and the scale

parts of the metric experience the curvature of spacetime.

Is it possible to have such a metric that in Fermi normal coordinates only its scale

density experiences the curvature but not the shape? This is not possible, because,

as one can see from eq. (2.2.34a), that would mean that all Cµανβ , R
T
µν and R have

to vanish9, which implies that the space is flat and δ0A = 0 as well. This is the

same asymmetry between the scale and shape parts of the metric that we discussed

earlier in this subsection regarding the decomposition of the Riemann tensor under

the unimodular decomposition. It is the property of the Riemannian geometry itself

7In [87] it is shown what is the interpretation of the Riemann and Ricci tensor and Ricci scalar.
However, we find their derivation for the interpretation of the Ricci tensor is cumbersome and therefore
offer here, based on the unimodular decomposition, a much simpler proof of the same claim that follows
below.

8We found that eq. (2.2.34b) agrees with Corollary 2.3 in [146].
9Since ζµ is arbitrary along the geodesic.
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2.2. Unimodular-conformal decomposition: scale and shape parts...

that the roles of the scale and shape parts of the metric are non-trivially rooted in

the Riemannian curvature tensor and its traces. Said simply, the asymmetry could

mean that the concept of shape could be defined without the concept of scale, while

the concept of scale could not be defined without the concept of shape10.

Does the flat spacetime have a meaningful notion of a scale density? Even though

this kind of question is valid, in the light of discussion presented so far this question

needs to be made a bit more precise. As mentioned in the previous paragraph, only flat

spacetime gives rise to zero change of both scale and shape parts across the manifold.

However, this does not mean that A = 0 but it does not even mean A = const.

(otherwise metric would not be defined). Indeed, in spherical coordinates the volume is

A4 =
√
g = r2 sin θ, while in Cartesian coordinates A4 = 1, so it depends on coordinate

system. But one would like to have a coordinate-independent answer to the asked

question and that answer is given again by eq. (2.2.34b), which vanishes at every point

for the flat spacetime case. It simply means that an observer does not measure a

curvature-induced deviation of a small volume along a geodesic. The same is with the

shape density: eq. (2.2.34a) vanishes identically, so the shape density of a flat spacetime

does not deviate from the flat metric as measured by the observer along a geodesic.

These two statements are independent of a coordinate system used. But now we can ask

where is l0 in the flat spacetime metric? Indeed, this is an important question, especially

if one is interested in studying some field theory on a flat background. Since we have

just established that even the flat spacetime has a scale, although that is not obvious

in Cartesian coordinates, one simply needs to use eq. (2.1.11) and make coordinates

dimensionless. Then in spherical coordinates the volume is A4 =
√
g = l40r

2 sin θ and

in Cartesian coordinates A4 = l40, and with this that the scale density always has the

meaning of a length is made clear in our formalism. Then the Minkowski metric takes

the form ds2 = l20ηµνdxµdxν . (This way of thinking might have a lot of interesting

consequences for quantum field theories on Minkowski background especially in the

context of dilation invariance.) Note that now eq. (2.2.33) has to be rewritten with l0

appearing explicitly,

gµν(ζ) = l20ηµρ

(
δρν +

1

3
Rρανβζ

αζβ
)
, (2.2.35)

where we raised the index on the Riemann tensor using ηµρ, which is valid at the

approximation order we are considering. With this writing we have that the Riemann

tensor and ζµ are manifestly dimensionless and the second term describes corrections

to the Minkowski metric (that is, its scale and shape parts) such that dimensionless

10This might be a part of a more general geometric relationship among p-dimensional hypersurfaces.
Namely, the basis of 3-forms dxµ ∧ dxν ∧ dxα in d dimensions (i.e. a 3-volume) can only be defined if
the bases of 1-forms (lines) and 2-forms (planes) have already been defined, while the definition of the
basis of 2-forms does not require the definition of the basis of 3-forms nor any higher forms.
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numbers

Rρανβζ
αζβ � 1 , (2.2.36)

which means that the approximation in eq. (2.2.33) is valid as long as the size of the

neighbourhood of the point of interest is a much smaller fraction of l0 compared to the

size of the curvature radius (which is roughly the inverse of the curvature squared).

Thus, extracting the characteristic length scale naturally gives dimensionless numbers

which control “sizes”. The similar thing will take place with comparisons that involve

relative strengths of coupling constants, as we shall see in the next chapter.

2.3 Application to the 3+1 decomposition of spacetime

So far we have only referred to the full d-dimensional metric and its unimodular-

decomposition. But we will also need to consider the three-dimensional unimodular

decomposition since the approach to quantum gravity that we are taking in this the-

sis is based on the 3+1 decomposition of spacetime. Space + time splitting is briefly

summarized in appendix A.2 where the relevant references are also mentioned. The au-

thor has also written about it in detail in his Master thesis [99]. However only during

the work on the current thesis has the author derived the material presented in this

section11.

2.3.1 Unimodular-conformal decomposition and 3 + 1 decomposition

First we take a look at all relevant elementary variables used in 3 + 1 decomposition.

Conformal transformation of the 3 + 1-decomposed metric is given by

g̃µν = Ω2gµν = Ω2hµν − Ω2nµnν =

 −Ω2N2 + Ω2NiN
i Ω2Ni

Ω2Ni Ω2hij

 , (2.3.1)

√
g̃ = Ω4√g = ΩN Ω3

√
h , (2.3.2)

based on which one can deduce the following transformation of the individual objects

hij → h̃ij = Ω2hij , (2.3.3)

√
h →

√
h̃ = Ω3

√
h , (2.3.4)

nµ → ñµ = Ωnµ = Ω (−N, 0) , (2.3.5)

11This is a part of the relevant paper [84].
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2.3. Application to the 3+1 decomposition of spacetime

nµ → ñµ = Ω−1nµ = Ω−1

(
1

N
,
−N i

N

)
, (2.3.6)

N → Ñ = ΩN , (2.3.7)

N i → Ñ i = N i and Ñi = h̃ijÑ
j = Ω2Ni . (2.3.8)

Here N is the lapse function, N i is the shift vector, while nµ is a timelike vector orthog-

onal to the three-hypersurface whose metric is hij . Furthermore, based on eqs. (2.3.3)-

(2.3.8), (A.2.8) and (A.2.9), it can be deduced that the extrinsic curvature transforms

non-covariantly under conformal transformation,

Kij → K̃ij = ΩKij + hijLn log Ω, (2.3.9)

which is thanks to the inhomogeneous transformation of its trace,

K → K̃ =
1

Ω
(K + 3LnΩ) . (2.3.10)

Now, in complete analogy to eq. (2.2.1) we define

a := (
√
h)

1
3 , (2.3.11)

such that a is the only geometric variable that transforms under conformal transforma-

tion. We call it the three-scale density but if the context allows we shall simply refer

to it as the scale density and we shall make sure there is no ambiguity. Then, instead

of referring to the four-dimensional scale and shape densities, the focus shifts to the

three-dimensional scale and shape densities. Based on eq. (2.3.11) the three-metric

decomposes as

hij = a2h̄ij , h̄ij = a−2hij , det h̄ij = 1 . (2.3.12)

This decomposition is now with respect to the conformal group C(3,R), i.e. with

respect to three-dimensional conformal coordinate transformations, or, equivalently,

with respect to the same group of the field conformal transformation eq. (2.1.1). Ac-

cordingly, the scale density a is invariant under SL(3,R) group of three-dimensional

volume-reserving transformations. It is important to note that the Levi-Civita ten-

sor density components εijkl have a conformal weight of 3 because it represents the
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three-volume. Therefore we could write

ε̄ijk := a−3εijk (2.3.13)

as the conformally invariant Levi-Civita tensor components and this is just the Levi-

Civita symbol itself which has, of course, zero conformal weight. This is important to

keep in mind for the definition of the magnetic part of the Weyl tensor, see eq. (2.3.32).

In order to cancel the effect of conformal transformation in eqs. (2.3.3)-(2.3.8) we define

the corresponding rescaled objects as

N̄ := a−1N , N̄ i = N i , N̄i = a−2Ni , (2.3.14)

n̄µ := a−1nµ , n̄µ := anµ . (2.3.15)

Due to this rescaling, we have

LnT = a−1Ln̄T (2.3.16)

for a tensor density T of any weight.

Extrinsic curvature deserves special care. The time derivative ḣij will give a term

proportional to ˙̄hij and to hij ȧ, which immediately reminds us of the split into traceless

and trace parts in analogy to eq. (2.2.2). This can be seen once we use eqs. (2.3.12)

and (2.3.14) in the explicit definition of Kij given by eq. (A.2.8),

Kij =
a

2N̄

(
˙̄hij − 2

[
D(iN̄j)

]T)︸ ︷︷ ︸ + a−1hij
1

N̄

(
ȧ

a
− 1

3
DiN

i

)
︸ ︷︷ ︸ (2.3.17)

1

2
Lnhij =

1

2
aLn̄h̄ij + a−1hijLn̄a (2.3.18)

where Ln̄ denotes the projected Lie derivative with respect to n̄µ. From these we can

read off the following expressions

Kij = KT
ij +

1

3
hijK (2.3.19)

KT
ij =

1

2
aLn̄h̄ij =

a

2N̄

(
˙̄hij − 2

[
D(iN̄j)

]T)
(2.3.20)

K = 3a−1Ln̄a = 3a−1 1

N̄

(
ȧ

a
− 1

3
DiN

i

)
. (2.3.21)
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We can see that in both expressions above there is a factor of a that appears on both

sides in the second equality of each equation. This is precisely the source of conformal

covariance of extrinsic curvature which is witnessed from eq. (2.3.9). Factoring this

scale density out, we can define

K̄T
ij := a−1KT

ij =
1

2
Ln̄h̄ij

=
1

2N̄

(
˙̄hij − 2

[
D(iN̄j)

]T)
=

1

2N̄

(
˙̄hij − 2

[
D̄(iN̄j)

]T)
, (2.3.22)

K̄ :=
aK

3
= Ln̄a

=
1

N̄

(
ȧ

a
− 1

3
DiN

i

)
=
n̄µ∂µa

a
− ∂iN

i

3N̄
. (2.3.23)

Note that in the second line in eq. (2.3.22) we have used eq. (2.2.19) and the fact that N̄i

is a vector density of scale weight w̄ = −2 according to eq. (2.3.14) to write
[
D(iN̄j)

]T
=[

D̄(iN̄j)

]T
, thus showing that this expression, and therefore K̄T

ij , is independent of a and

hence manifestly conformally invariant. With these definitions the extrinsic curvature

can now be compactly expressed as

Kij = a
(
K̄T
ij + h̄ijK̄

)
. (2.3.24)

Since conformal transformation affects only the scale density a, we have that only the

following two objects transform under conformal transformation,

a→ Ωa ⇒ δωa = ωa (2.3.25)

K̄ → K̄ + n̄µ∂µ log Ω ⇒ δωK̄ = n̄µ∂µ logω, (2.3.26)

from which the conformal transformation of eq. (2.3.24) is rather obvious,

Kij → K̃ij = Ωa
(
K̄T
ij + h̄ijK̄

)
+ n̄µ∂µ log Ω ⇒ δωKij = ωKij + n̄µ∂µ logω

(2.3.27)

where the last term is just Ln̄ logω, as in eq. (2.3.10), coming from K̄. We refer to K̄T
ij

as the “shear density”, while we refer to K̄ as the “expansion density”. Note that KT
ij is

usually called “shear” and K “expansion”. With definitions given by eqs. (2.3.22) and

(2.3.23) it becomes clear that the shear is the change of the three-dimensional shape,

while the expansion is the change of the three-dimenional scale in time: shapes shear

and scales expand (or contract).
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Of all these newly introduced rescaled variables only two are not conformaly invari-

ant: the scale density a and the expansion density K̄, which is built form a. Therefore,

one can expect great simplifications in investigation of conformal properties of various

expressions. In the same way that we proposed that conformal properties of four-

dimensional covariant expressions are encoded in terms dependent on scale density A,

conformal properties of 3 + 1-decomposed expressions is encoded in terms depending

on the scale density a and its space and time derivatives, that sit in the expansion

density K̄. Indeed, these variables will prove very powerful for this purpose. Note

that some of the variables introduced here have already been used, mostly in studies

on numerical relativity in relation to the Cauchy initial value problem, e.g. in the

so-called BSSN formalism12 [7, 128]. One introduces a new metric conformal to the

physical one and requires its determinant to be equal to one — this is analog to h̄ij ; in

[27, 28] BSSN formalism has been recast in a conformally invariant form by relaxing the

unit determinant condition before the evolution equations for the metric and traceless

part of the extrinsic curvature have been found. These examples show that unimodu-

lar decomposition in 3 + 1 formalism has a very useful application. It can already be

anticipated that in a genuinely conformally invariant theories this decomposition can

simplify investigations of their Hamiltonian formulation considerably.

If there are some conformally covariant non-gravitational fields φI present in a

theory under consideration, its conformally invariant part is defined in analogy to

eq. (2.1.7),

χI := a−nIφI , (2.3.28)

which is a three-dimensional scalar density of scale weight w̄I . Note that the difference

between definitions in eq. (2.3.28) and eq. (2.1.7) arises from eq. (A.2.6) and eq. (2.3.14)

since

A = N̄
1
4a , (2.3.29)

which means that the scale weight is unchanged after unimodular decomposition of 3+1

variables. The factor of certain power of N̄
1
4 that enters definition in eq. (2.1.7) only

complicates things if one would stick with that four-dimensional definition of rescaled

fields and it does not change the interpretation of the rescaled field. Namely, note that

length scale l0 that we introduced by redefining A with eq. (2.1.11) is now found in the

scale density a. Therefore we have

a→ l0a , (2.3.30)

12Baumgarte-Shapiro-Shibata-Nakamura formalism.
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which makes sense because it tells about the size of the spatial three-dimensional line

element as well. Then it is clear that scale density a is the only variable that has

physical dimension. All barred variables (including N i) and all non-gravitational fields

eq. (2.3.28) are dimensionless. Therefore, in accordance to the analogous conclusion

about the scale density A, we expect that the physical dimension of coupling constants

and fields in a theory which is decomposed in 3 + 1 formalism can be uncovered and

tracked with the scale density a.

2.3.2 Electric and magnetic parts of the Weyl tensor

Let us use the so far presented formalism to prove that electric and magnetic parts of

the Weyl tensor given by eq. (A.2.11a) and eq. (A.2.11b) are conformally invariant13.

This will be our first direct application of the unimodular-conformal decomposition for

the purpose of exposing conformal invariance of an object in 3 + 1 formalism and to

our knowledge such a formulation does not exist in the literature.

Since the Weyl tensor (with one upper index) is conformally invariant, we expect

it to be independent of a and K̄. For the magnetic part eq. (A.2.11b) let us first use

the traceless-trace split of Kij in eq. (2.3.19),

CB
ij = εkl(i|DkK|j)l = εkl(i|DkK

T

|j)l +
1

3
εkl(ihj)l∂kK = εkl(i|DkK

T

|j)l , (2.3.31)

from which we already see that the term with trace K drops out because εkl(ihj)l =

εk(ji) = 0. Therefore, the only stem of conformal transformation is now hidden in

the Christoffel symbols and in the conformal weight of KT

j)l. Expanding the covariant

derivative, using eq. (2.2.6) and the rescaling defined in the first line of eq. (2.3.22) we

have,

CB
ij = εkl(i|∂kK

T

|j)l − ε
kl

(iΓ̄
b
j)kK

T
bl − εkl(iΣb

j)kK
T
bl − εkl(i|Γ̄blkKT

|j)b − ε
kl

(i|Σ
b
lkK

T

|j)b

= a
(
εkl(i|∂kK̄

T

|j)l − ε
kl

(iΓ̄
b
j)kK̄

T
bl

)
− a
(
εkl(iΣ

b
j)kK̄

T
bl − εkl(i|K̄T

|j)l∂k log a
)

= aεkl(i|D̄kK̄
T

|j)l , (2.3.32)

where the entire second term in the middle line vanishes due to antisymmetrization

of the symmetric shape and scale parts of Christoffel symbols over indices kl; in the

second equality we used eq. (2.3.22) to expose the scale density a; in transition to the

13That these objects should be independent not only of K but equivalently of a and K̄ was not
noticed by authors in any of previous more detailed works [22, 69, 73, 86] that contain 3+1 formulation
of the Weyl-tensor action.
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third equality the second parentheses from the second equality cancels out using the

definition of the scale part of Christoffel symbols in eq. (2.2.8), i.e. this term is equal

to

εkl(iδ
b
j)∂k log a K̄T

bl + εkl(i∂j) log a K̄T
kl − εkl(ihj)khbc∂c log aK̄T

bl︸ ︷︷ ︸
=εkl(iΣ

b
j)kK̄

T
bl

−εkl(i|K̄T

|j)l∂k log a = 0 .

(2.3.33)

The first and the last term above cancel out, the second term vanishes due to the anti-

symmetrization of the symmetric pair of indices on K̄T
kl, while the third term vanishes

because εkl(ihj)k = 0. Now, recall eq. (2.3.13) which says that there is a3 hidden in the

Levi-Civita tensor density in eq. (2.3.32) and note that two indices are raised by two

inverse three-metric tensors which also hide a−2 each. Exposing all this, we have

C̄B
ij = CB

ij = a a3a−2a−2h̄kbh̄kcε̄bc(i|D̄kK̄
T

|j)l = h̄kbh̄kcε̄bc(i|D̄kK̄
T

|j)l , (2.3.34)

which completes our proof that the magnetic part of the Weyl tensor is conformally

invariant, since the only fields affected by a conformal transformation cancel out. We

write an overbar in C̄B
ij to denote this fact explicitly.

The electric part defined by eq. (A.2.11a) requires a bit more manipulation. The

main problem here is that the traceless part of LnKij is not equal to the Lie derivative

of the tracless part of Kij . Starting from the split of LnKij into its traceless and trace

part,

LnKij = (LnKij)
T +

1

3
hijh

abLnKab , (2.3.35)

using the traceless-trace decomposition of the extrinsic curvature in eq. (2.3.19) as well

as the following identity,

LnK = habLnKab − 2KabK
ab, (2.3.36)

where Kab = −Lnhab/2, one can show that the traceless part of LnKij can be expressed

in terms of the Lie derivative of KT
ij ,

(LnKij)
T = LnKT

ij +
2

3
KT
ijK −

2

3
hijK

T
abK

abT. (2.3.37)
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Subtracting KT
abK from both sides we get

(LnKab)
T −KT

abK = LnKT
ij −

1

3
KT
ijK −

2

3
hijK

T
abK

abT . (2.3.38)

Note that by taking the trace of eq. (2.3.38) we obtain

hijLnKT
ij = 2KT

ijK
ijT , (2.3.39)

which actually simply follows also from LnhijKT
ij = 0. These manipulations allow us

to trade (LnKab)
T for LnKT

ij in eq. (A.2.11a) using eq. (2.3.38), leaving us with

CE
ij = LnKT

ij −
1

3
KT
ijK −

2

3
hijK

T
abK

abT − (3)RT
ij −

1

N
DT
ijN . (2.3.40)

This expression is still not manifestly conformally invariant and there is still an explicit

dependence on K, which should somehow cancel out. To make conformal invariance ev-

ident we apply the unimodular-conformal decomposition by using eqs. (2.3.14), (2.3.22)

and (2.3.23) in eqs. (A.2.12a) and (A.2.12b) with KT
ij instead of Kij , in order to separate

any scale-dependent pieces in the first term in eq. (2.3.40). This results in

LnK̄T
ij =

1

N

(
K̇T
ij − L ~NK

T
ij

)
=

=
1

aN̄

(
a ˙̄KT

ij − aN b∂bK̄
T
ij − aK̄T

ik∂jN
k − aK̄T

kj∂iN
k + K̄T

ij ȧ− K̄T
ijN

b∂ba︸ ︷︷ ︸
=aN̄K̄T

ij n̄
µ∂µa

)

=
1

N̄

(
˙̄KT
ij −N b∂bK̄

T
ij − K̄T

ik∂jN
k − K̄T

kj∂iN
k
)

+ K̄T
ij

n̄µ∂µa

a

eq. (2.3.23)
=

1

N̄
˙̄KT
ij −

1

N̄

(
N b∂bK̄

T
ij + K̄T

ik∂jN
k + K̄T

kj∂iN
k − 1

3
K̄T
ij∂kN

k

)
︸ ︷︷ ︸

=L ~N K̄
T
ij

+K̄T
ijK̄

=
1

N̄
˙̄KT
ij −

1

N̄
L ~NK̄

T
ij + K̄T

ijK̄ , (2.3.41)

from which it follows

Ln̄K̄T
ij = LnK̄T

ij − K̄T
ijK̄ , (2.3.42)
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where

Ln̄K̄T
ij :=

1

N̄
˙̄KT
ij −

1

N̄
L ~NK̄

T
ij . (2.3.43)

Note that L ~NK̄
T
ij is the Lie derivative of a tensor density of weight −1/3 (corresponding

to scale weight −1). Furthermore, from now on we shall write

K̄T ≡ K̄T
ij , (2.3.44)

K̄T · K̄T := K̄T
ij h̄

iah̄jbK̄T
ab , (2.3.45)

where “·” denotes a contraction over all available pairs of indices14. We thus obtain

C̄E
ij = CE

ij = Ln̄K̄T
ij −

2

3
h̄ijK̄

T · K̄T − (3)R̄T
ij −

1

N̄

[
D̄i∂jN̄

]T
, (2.3.46)

from which a and K̄ have cancelled out, as expected, and we put an overbar as we did

for the magnetic. The last two terms in eq. (2.3.40) still seemingly contain a and its

first and second derivatives, however, we have proved in appendix A.3.1 that the scale

density cancels out, see eq. (A.3.4), resulting in the last two terms in eq. (2.3.46). (It

should be kept in mind that since these two terms separately are not GL(3,R) tensors

but only SL(3,R) tensors, they should always be considered together.) We have thereby

exposed the manifest conformal invariance of both the electric and the magnetic parts

of the Weyl tensor. For chapter 4 we will need the square of the Weyl tensor, whose

decomposition in 3+1 formalism can be found in appendix A.2 resulting in eq. (A.2.14)

in terms of the electric and magnetic parts. Then, using the results of this subsection,

the following holds,

√
gCµνλρC

µνλρ = 2N̄
(
C̄E · C̄E − 2C̄B · C̄B

)
(2.3.47)

where

C̄E · C̄E ≡ C̄E
ij h̄

ikh̄jlC̄E
kl , C̄B · C̄B ≡ C̄B

ij h̄
ikh̄jlC̄B

kl , (2.3.48)

since the scale density a cancels out, thus showing the manifest conformal invariance

of the weighted square of the Weyl tensor.

14This bold-font notation will be used on more occasions in this thesis.
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2.3.3 Ricci scalar

The Ricci scalar is important for the Hamiltonian formulation of not only General

Relativity but also of non-minimally coupled scalar field theory and semiclassical gravity

in which terms such as R2 usually appear in the action. Its explicit dependence on

derivatives of K signals that this object is not conformally invariant. But we can still

simplify it in the spirit of the material presented so far.

Using eqs. (2.3.14), (2.3.15), (2.3.16) and (2.3.23) the Lie derivative of K along the

timelike normal vector nµ decomposes as follows,

LnK = 3a−1Ln̄
(
a−1K̄

)
= 3a−2Ln̄K̄ − a−2K̄

Ln̄a
a

= 3a−2Ln̄K̄ − a−2K̄2

= 3a−2

(
1

N̄
˙̄K − N i

N̄
∂iK̄ −

1

3

∂iN
i

N̄

)
− 3a−2K̄2

= 3a−2n̄µ∂µK̄ −
1

3

∂iN
i

N̄
− 3a−2K̄2 , (2.3.49)

Ln̄K̄ :=
1

N̄
˙̄K − 1

N̄
L ~NK̄ . (2.3.50)

The above result can also be written as

LnK = a−2

(
3

N̄
˙̄K − 3

N̄
L ~NK̄ − 3K̄2

)
= 3a−2Ln̄K̄ − 3a−2K̄2 , (2.3.51)

where L ~N is the Lie derivative of the scalar density K̄ of weight 1/3 (corresponding to

scale weight 1) with respect to shift vector N i,

L ~NK̄ = N i∂iK̄ +
1

3
∂iN

iK̄ . (2.3.52)

Then using the unimodular-conformal variables and eq. (2.3.49) in eq. (A.2.10a) we

obtain

R = a−2
(
6Ln̄K̄ + 6K̄2 + K̄T · K̄T

)
+ (3)R− 2a−2

N̄
D ·DN̄ , (2.3.53)

where we leave the last two terms undecomposed because a cannot cancel out from

there. Therefore, we have exposed manifest conformal non-invariance of the Ricci

scalar in 3+1 formalism. A more suitable form of the Ricci scalar will be of use for the
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Hamiltonian formulation of GR in section 4.3, namely, the one given by eq. (A.2.10b)

but in unimodular-conformal variables,

R = a−2
(
a2 (3)R+ K̄T · K̄T − 6K̄2 + 6∇µ

(
n̄µK̄

)
− 2

N̄
D ·DN̄

)
(2.3.54)

which is obtained by simply using eqs. (2.3.14) and (2.3.24) in eq. (A.2.10b). Other

curvature tensors could be dealt with in a similar way but such a complete treatment

would take more than intended space of this thesis.

2.4 An example: non-minimally coupled scalar field

The Lagrangian of a non-minimally coupled scalar field with a potential is an excellent

example for demonstrating the power of unimodular-conformal decomposition. It is

given [13] by

Lϕ = −1

2

√
g
(
gµν∂µϕ∂νϕ+ ξRϕ2 + 2V (ϕ)

)
, (2.4.1)

where ξ is a dimensionless non-minimal coupling and V (ϕ) is the potential term (e.g.

V (ϕ) = m2ϕ2/2). For ξ = (d − 2)/4(d − 1) and a potential either vanishing or pro-

portional to ϕ2d/(d−2) Lagrangian in eq. (2.4.1) is conformally invariant up to a total

divergence. However, this is not at all apparent from the form of eq. (2.4.1). The same

is true for the Klein-Gordon (KG) equation, which is derived by varying the above

action with respect to ϕ and has the following form

1
√
g
∂µ
(√
−ggµν∂νϕ

)
− ξRϕ− V ′(ϕ) = 0 (2.4.2a)

1

2
√
g
∂µ
(√
−ggµν∂νϕ2

)
− 1

4ϕ2
gµν∂µϕ

2∂νϕ
2 − ξRϕ2 − ϕV ′(ϕ) = 0 , (2.4.2b)

where the prime denotes its derivative with respect to ϕ and we gave it in another form

by eq. (2.4.2b) as well because some expressions we encounter later simplify if they are

expressed in terms of ϕ2. It is the purpose of this section to show how can conformal

features of this action be exposed using the unimodular-conformal decomposition in

both d-dimensional and 3 + 1 formulation.
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2.4.1 Covariant formulation in d dimensions

Using eq. (2.1.7) with s = nϕ = −w̄ being the negative of the scale weight w̄ of the

new field χ yet to be determined:

√
ggµν∂µϕ∂νϕ = Ad−2(1−s)ḡµν

[
∂µχ∂νχ+ sA−1∂µA∂νχ

2 + s2A−2∂µA∂νAχ
2

]
,

(2.4.3)

ξ
√
gRϕ2 = ξAd−2(1−s)

[
R̄− 2(d− 1)A−1∂µ (ḡµν∂νA)

− (d− 1)(d− 4)A−2ḡµν∂µA∂νA

]
χ2 , (2.4.4)

√
gV (ϕ) =: Ad−2(1−s)V̄ (χ,A) . (2.4.5)

We may choose to use partial integration either on the second term in eq. (2.4.3) or in

the second term in eq. (2.4.4). Since terms in eq. (2.4.4) come from the Ricci scalar,

it is advisable to stay as close to its original form as possible as we have split it into

non-tensorial quantities using the fourth line in eq. (2.2.26). That means it is better to

chose the former possibility, for which we obtain the following form,

sAd−3+2s∂µA∂νχ
2 = s∂µ

(
Ad−3+2sχ2ḡµν∂νA

)
− χ2∂ν

(
Ad−3+2sḡµν∂νA

)
= s∂µ

(
Ad−3+2sχ2ḡµν∂νA

)
− sAd−2(1−s)

[
A−1∂µ (ḡµν∂νA) + (d− 3 + 2s)A−2ḡµν∂µA∂νA

]
χ2 ,

(2.4.6)

where the first term is a total divergence and will contribute to a boundary term in the

action. Now, summing red and green underlined terms together, the Lagrangian of the

scalar field ϕ is reformulated as Lagrangian of the scalar density field χ and is settled

into the following form

Lϕ = Lχ = −1

2
Ad−2(1−s)

[
ḡµν∂µχ∂νχ+ ξR̄χ2 + 2V̄ (χ,A)

− aA−1∂µ (ḡµν∂νA)χ2 + bA−1ḡµν∂µA∂νAχ
2

]
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− s

2
∂µ

(
χ2Ad−3+2sḡµν∂νA

)
, (2.4.7)

where the coefficients resulting from the addition of terms are correspondingly marked

with red and green colors and they are given by

a = s+ 2ξ(d− 1) , b = s2 − ξ(d− 1)(d− 4)− s(d− 3 + 2s) . (2.4.8)

These two terms and the potential are the ones responsible for breaking the conformal

symmetry of the non-minimally coupled scalar field, apart from the total divergence

term and an overall factor of d− 2(1− s) powers of A.

Let us now determine the length dimension (and therefore the scale weight) w̄ = −s.
This can be done by demanding that the kinetic term is A-independent. This ensures

that the kinetic term explicitly has dimension of [~] and is conformally invariant. Such

a demand is satisfied if d− 2(1− s) = 0, which sets the scale weight of χ to be

s =
2− d

2
⇒ w̄ =

d− 2

2
. (2.4.9)

Then coefficients in eq. (2.4.8) reduce to

a = 2(d− 1)(ξ − ξcf ) , b = −(d− 1)(d− 4)(ξ − ξcf ) , (2.4.10)

so we can write down the final form of the Lagrangian

Lχ = −1

2

[
ḡµν∂µχ∂νχ+ ξR̄χ2 + 2V̄ (χ,A)

− 2(d− 1)ξc

(
A−1∂µ (ḡµν∂νA) +

d− 4

2
A−2ḡµν∂µA∂νA

)
χ2

]

+
d− 2

4
∂µ
(
χ2A−1ḡµν∂νA

)
, (2.4.11)

where ξcf and ξc are defined by15

ξcf :=
d− 2

4(d− 1)
, ξc := ξ − ξcf . (2.4.12)

15We have assumed d 6= 1, which is a trivial case of no interest here.
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The importance of eq. (2.4.12) is obvious: all interaction terms between A and χ

disappear for the special case ξc = 0 ⇔ ξ = ξcf (except the potential term and the

total divergence). This value of ξ is called conformal coupling [27]. Moreover, compare

that A-dependent expression with the one given in eq. (2.4.4); exposing A in the kinetic

term changes the coefficient of these terms in eq. (2.4.4) from ξ to ξc.

How does the KG equation for the scalar density χ look like now? We derive it

from Lagrangian eq. (2.4.11) to be

δSχ
δχ

= 0 ⇒ ∂µ (ḡµν∂νχ)− ξR̄χ− ∂V̄ (χ,A)

∂χ

+ 2(d− 1)ξc

(
A−1∂µ (ḡµν∂νA) +

d− 4

2
A−2ḡµν∂µA∂νA

)
χ = 0 . (2.4.13)

Comparing eq. (2.4.13) with eq. (2.4.2a), as well as eq. (2.4.11) with eq. (2.4.1), we

witness the isolation of all conformally-variant terms and complete decoupling of A

from the scalar density χ in the case of conformal coupling and vanishing ∂V̄ /∂A.

Note that any coupling constant related to the interactions with χ appears only in

V̄ . Moreover, eq. (2.4.13) might be simpler to handle in certain models due to the

simplification of the d’Alambertian. We shall see the advantages of using this KG

equation in the upcoming chapters.

Formulation of the scalar field theory in terms of the unimodular-conformal vari-

ables shows that any breaking of conformal symmetry must come from the presence of

A, the scale degree of freedom of the metric as the only field responsible for conformal

transformation. In fact, the whole purpose of the unimodular-conformal decomposition

could be motivated with the single example of non-minimally coupled scalar field: for-

mulate the theory in terms of such variables that only the scale A (and objects derived

from it) is affected by a conformal transformation. But does this result generalize to

other theories as well?

To prepare an answer this question, it is useful to first formalize this result. How

can we formally state the dependence of an action on the scale density A? The key is

to use the notion of variational derivative of the action or the Lagrangian with respect

to the scale A,

A
δSχ
δA

= A
δLχ
δA

= −A∂V̄
∂A
− ξc(d− 1)×

×

(
∂µ
(
ḡµν∂νχ

2
)
− (d− 2)

[
A−1∂µ

(
ḡµν∂νA

)
+ ḡµνA−1∂µA∂ν

]
χ2

)
. (2.4.14)

The reason for multiplying the variational derivative with A will become clear in

the next chapter. For now, assume first that the potential is independent of A, i.e.
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the first term in the above expression vanishes. Then we notice that variation given

by eq. (2.4.14) is identically zero if we have conformal coupling ξc = 0 and an A-

independent potential

∂V̄

∂A
≡ 0 (2.4.15)

simultaneously. Some obvious examples where this can be tested are the mass term

and the ϕ4 term in d = 4 dimensions,

√
−gV =

1

2

√
−gm2ϕ2 → V̄ =

1

2
l20m

2A2χ2 , (2.4.16)

√
−gV =

1

4

√
−g λϕ4 → V̄ =

1

4
λχ4 , (2.4.17)

whereas a d > 2-dimensional generalization of eq. (2.4.17) is given by

√
−gV =

1

n

√
−g λϕn → V̄ =

λ
2d
d−2

χ
2d
d−2 , (2.4.18)

and is A-independent for n = 2d/(d−2), λ being a dimensionless constant. Potential in

eq. (2.4.16) has explicit dimensionful coupling m and thus breaks conformal symmetry

and it is important to observe that l0 explicitly appears together with this dimensionful

coupling. In contrast to this term, potential in eq. (2.4.18) does not depend on A

and thus l0 cancels out, so λ is dimensionless and this term preserves the conformal

symmetry. Therefore, if one wants to have a conformally invariant Lagrangian for the

scalar field, the potential needs to be conformally invariant, which translates to an

independence on dimensionful coupling constants, allowing only eq. (2.4.18). One can

anticipate that this conclusion is quite general and we will address this in the next

chapter.

2.4.2 3+1 formulation

For practical purposes we need also the 3 + 1 decomposition of the previous section’s

result. It is not straightforward to simply apply the results of appendix A.2 and sec-

tion 2.3 to Lagrangian in eq. (2.4.11) and KG eq. (2.4.13), because one ends up with

many derivatives of N̄ due to definition ϕ = χ/Aw̄ = χ/(aN̄)w̄. In other words, one

has to be careful whether N̄ is included in the definition of the new field χ or not

because these two are not the same. These two definitions coincide only for N̄ = 1,

which corresponds to the choice of the so-called “conformal time”. We shall choose to

work with

χ := aϕ (2.4.19)
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2.4. An example: non-minimally coupled scalar field

because such a definition does not depend on the choice of N̄ . We use the same letter

to designate this new field as in the covariant case, but make sure to make it clear

within the context in question (it will be clear which one because we shall not mix

covariant with 3 + 1 formalism within one section/derivation). But we anyway have

to go through a tedious but straightforward calculation in order to express conformal

features manifestly in 3 + 1 formalism. We have done so in appendix A.3.2 where it

can be observed that independence of the Lagrangian on the scale density a and the

expansion density K̄ is achieved precisely for conformal coupling, as these are the only

objects which transform under conformal transformation.

However, the final expression for the Lagrangian presented in eq. (A.3.22), is not so

easy to work with and for this reason we here rewrite it in a more familiar and compact

form which is particularly suitable for studying perturbations of χ on a spatially ho-

mogeneous background spacetimes (but we do not assume spatial homogeneity here).

The only difference will be in the second line of eq. (A.3.22), which we trace back to

the combination of eqs. (A.3.15) and (A.3.16) on one hand and eq. (A.3.18) on the

other. Namely, here we do not decompose a2 (3)R as in eq. (A.3.18) but only collect

a-dependent terms from the former two equations. Doing so, the Lagrangian takes the

following form

Lϕ = Lχ =
1

2
N̄

[(
n̄µ∂µχ+ 6ξcK̄χ−

∂iN
i

3N̄
χ

)2

− V χ

]
− ξ∂B + ξBT (2.4.20)

where we defined the potential as

V χ := Uχ + 36ξξcK̄
2χ2 + ξK̄T · K̄Tχ2 (2.4.21)

Uχ := ξa2 (3)Rχ2 + h̄ij∂iχ∂jχ

− h̄ij∂i log a ∂jχ
2 + χ2h̄ij∂i log a∂j log a+ ξDj

(
h̄ijDjχ

2
)
, (2.4.22)

and where ξc = ξ − 1/6, recalling eq. (2.4.12), and the total divergence term now has

the form:

BT = ∂i
(
χ2h̄ijDjN̄ − N̄ h̄ijDjχ

2
)
, (2.4.23)

while ∂B is given by eq. (A.3.24). This total divergence and the last term in the

third line of eq. (2.4.20) arise from expanding
√
hhijDiDjN ϕ2 in terms of unimodular-

conformal variables but in a different way than in eq. (A.3.16) and this term vanishes

if N does not depend on spatial coordinates, as it is the case in spatially homogeneous

spacetimes. Therefore, only the first two lines of eq. (2.4.20) survive for spatially

homogeneous models.
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Even though it is not so obvious from eq. (2.4.20) that conformal invariance is

achieved for conformal coupling ξ = ξcf = 1/6, ξc = 0, we can use that form of the

Lagrangian straightforwardly in calculations for this case. However, for this thesis

only spatially homogeneous models will be relevant and in that case the Lagrangian

simplifies significantly and conformal invariance is manifest.

2.5 Final remarks

We give a few final general remarks on the conformal symmetry and unimodular-

conformal decomposition introduced in the current chapter. This chapter was a slow-

paced invitation for introducing the unimodular-conformal decomposition in four (see

eq. (2.2.1)) and 3+1 dimensions (see eqs. (2.3.12)-(2.3.23)) including the recipe for its

utilisation in basic geometric objects used in Riemannian geometry. The main point

to take away from this chapter is that separating the scale density as the geometrical

meaning of dimensionful “size” not only from the metric but also from the other fields

exposes any implicit conformal properties of any expression by revealing them as A-

dependent (in full covariant treatment) or a- and K̄-dependent (in 3 + 1 treatment)

terms. This also exposes physical length dimension of a field by an appropriate rescaling

with a scale density such that the conformal weight (and therefore the length dimen-

sion) is compensated for. Then “a test” of conformal invariance of any expression could

be formulated as a test of whether or not expressions depend on the only conformally

non-invariant fields in a theory: A or a and K̄. The example of non-minimally coupled

scalar field presented in section 2.4 clearly supports this conclusion. A concrete formu-

lation of such test is precisely the topic of the upcoming chapter. Then, based on the

fact that the vanishing of eq. (2.4.14) eliminates any A is equivalent to the claim that

in such a case the action is confromally invariant, we anticipate that the variational

independence of an action on A can be read as: if an action does not respond to the

variations of the scale A then such an action is conformally invariant. A remarkable

consequence of this and the fact that we consider coordinates as dimensionless but the

metric dimensionful is that independence on A clearly implies the absence of dimen-

sionful coupling constants and we shall revisit this important observation as well. This

asks for a concrete definition of conformal invariance that can quite generally be applied

to any field theory, as we shall see in the next chapter. A few more side remarks are

given below before we move on.

A note on Weyl gauging. It should be kept in mind that there is a way of

implementing true local invariance under the choice of units and this is referred to as

the Weyl gauging, initiated by Weyl himself [149]. A modern formulation within the

context of gauge theory of gravity can be found in [61]. This and more general varia-

tions of this idea are recently becoming again important [127] and one of the reasons is

the search and discovery of the Higgs particle in LHC as the only known neutral scalar

field, which is responsible for giving a definite scale in the Standard Model of particle
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physics (∼ 125GeV) and giving mass to other fields through interactions with them.

At the energies above the scale of the Higgs symmetry breaking mechanism, the formal

Lagrangian of the Standard Model enjoyed conformal symmetry with an exception of

the formal mass term of the Higgs field. With the appearance of a definite dimensionful

scale, this symmetry is formally broken. Therefore, it is rather important to study the

role of local conformal invariance and its breaking by implementing it in a theory in

a certain way. Weyl gauging is one way to do it and it basically consist of promoting

the Riemannian geometry to the so-called Weyl geometry [150] in which the affine con-

nection is conformally invariant (unlike the Levi-Civita connection). This “deviation”

from the Levi-Civita connection is expressed in terms of the non-metricity such that

instead of eq. (2.2.14) one has ∇αgµν = −2Qαgµν , where Qα is called the Weyl vector.

Weyl vector serves a similar purpose as the U(1) connection of electromagnetism Aµ

— to establish the local Weyl gauge symmetry, i.e. the symmetry under local confor-

mal rescaling, which is ambiguously referred to as the conformal or scale symmetry.

One thus has the possibility to explore the interactions and relationships of the Weyl

vector (especially in a particular case where it is described as the gradient of a scalar

field) with the Higgs field and basic ideas are reviewed in [125, 126]; see also [54] for a

recent and representative treatment of quadratic curvature16 gravity within the Weyl

geometry in relation to the spontaneous symmetry breaking and the Higgs mechanism.

In contrast to Weyl gauging, in this thesis we talk about conformal symmetry without

leaving the Riemannian geometry, but we think that the context of Weyl geometry

would be a reasonable next step in which one could study a quantum gravity theory.

A note on the use of unimodular decomposition in renormalization meth-

ods. One could imagine that there is certain hope that unimodular decomposition can

simplify calculations not only in classical theories but also in covariantly formulated

quantum field theory as well. Namely, as mentioned in the Introduction, if one advances

any classical field theory towards higher energies, one requires perturbative modifica-

tions due to quantum corrections [13]. One is then faced with tools of renormalization,

a method of redefining coupling constants and fields in a theory such that they de-

pend on the energy scale and are able to absorb divergent terms that appear when one

takes into account the quantum fields. It turns out that this is a necessary procedure

if the coupling constants and involved fields have non-zero length dimension and this

has to do with coordinate dilation and conformal invariances (since this is effectively

a change of unit of length). Now, it is shown in Kalmykov and Kazakov [74] on a

general model of quadratic gravity that the use of unimodular decomposition (they call

it “conformal parametrization”) simplifies certain results of renormalization. Namely,

in the standard approach Newton gravitational constant G needs to be renormalized

and this procedure is not gauge-independent, but repeating the procedure with the use

16Terms such as R2 and CµανβC
µανβ enter the action, beside the EH term. Quadratic curvature

gravity in Reimannian geometry context is the topic of this thesis.
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of unimodular decomposition it turns out that renormalization of G is not necessary

in a spacetime without a boundary to all orders of the perturbation theory both with

and without massless fields interactions. The renormalization procedure shifts to the

metric, in particular to the scale density (“conformal mode” in their paper). Hence,

the “dimensionfulness” of G is taken care of through the renormalization of the scale

density if one uses the unimodular decomposition of the metric. This makes sense

because the scale density is the one that carries the geometric meaning of a scale and

length in any field theory and we think that by using eq. (2.1.11) this becomes clear

because G, which sits in front of the Ricci scalar in the EH action, can be rescaled by

l0 to be dimensionless, meaning that the necessity for renormalization can be thought

of in relation to the dependence on the scale density A. It seems suggestive then to

push ideas of [74] further and rescale also the non-gravitational fields in a given the-

ory according to eq. (2.1.7), taking into account eq. (2.1.11), bringing about our full

unimodular-conformal formalism. Then we expect that the need for renormalizing all

dimensionful coupling constants and fields in the matter sector is completely shifted to

the renormalization of the scale density, in a similar way that is suggested by Kalmykov

and Kazakov for the case of the metric. A good and simple example to study this would

be the non-minimal scalar field presented in section 2.4, but this is, however, beyond

the topic of this thesis.

∞ � ∞
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Chapter 3

Definition of conformal invariance

In this chapter we shall pursue a general definition of conformal invariance of a field

theory in terms of the scale density A. This is a different approach than the usual

definition which says that a conformally invariant matter field theory (in the Weyl

rescaling sense) is that which has an identically vanishing trace of the corresponding

Hilbert energy-momentum tensor. Nevertheless, the two definitions do share some

important points. The new definition will be motivated on the example of a non-

minimally coupled scalar field with a general potential that we met in section 2.4

and then formulated independently of a theory in terms of the variational derivative

with respect to the scale density. This motivates the introduction of a generator of

conformal field transformation much alike the generator of dilations D that we met in

eq. (1.6.7). The generator is formulated independently of a theory in question and we

argue why it should be so. The use of unimoduar-conformal decomposition of the metric

tensor and the non-gravitational fields established in chapter 2 plays a crucial role in

establishing these statements. The new definition of conformal invariance in terms of

this generator is then compared with the standard definition of conformal invariance

and the equivalence between the two established. Its application and consequences are

demonstrated on some well-known theories in d-dimensions: Einstein-Hilbert action,

vacuum electromagnetic field theory (EM) and Weyl-tensor action, the latter of which

is an important part of this thesis.
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3. Definition of conformal invariance

3.1 Energy-momentum tensor and the definition of

conformal invariance

The usual definition of conformal invarince of a given action is given with a reference to

the trace of the corresponding variation with respect to the metric gµν . A general matter

action, expressed either through Lagrangian density Lm or Lagrangian Lm = Lm/
√
−g,

is defined as

Sm =

∫
ddxLm =

∫
ddx
√
−g Lm . (3.1.1)

The variation of the action with respect to the metric components (denoted by δg)

defines the energy-momentum tensor1,

δgS
m =

∫
ddx

δLm

δgµν
δgµν =: −1

2

∫
ddx
√
−g Tµνδgµν , Tµν =: − 2√

−g
δLm

δgµν
.

(3.1.2)

Alternatively one could work with energy-momentum tensor density defined as

δgS
m =

∫
ddx

δLm

δgµν
δgµν =: −1

2

∫
ddx Tµνδgµν , Tµν =: −2

δLm

δgµν
, (3.1.3)

whose weight is one. This density is not only useful for expressing covariant conservation

laws in terms of partial derivatives, but it is also remarkably directly related to the

variation with respect to the scale and shape, as we shall see in this chapter.

Now, the usual definition of conformal invariance [145] states that an action is

invariant under conformal transformations iff the trace of the corresponding energy-

momentum tensor vanishes, i.e. if T := gµνTµν = 0, on-shell. “On-shell” means “taking

into account the equations of motion”, hence, only if one uses the equations of motion

in T can one obtain that T = 0. The reason why the trace of the energy-momentum

tensor lies in the core of this statement is that conformal variations given by eq. (2.1.3)

are proportional to the metric itself. Then from eq. (3.1.2) we have,

δωS =

∫
ddxω

δLm

δgµν
gµν = 0 , (3.1.4)

δLm

δgµν
gµν |on-shell = 0 ⇔ S is conformally invariant , (3.1.5)

by using δωg
µν = −2ωgµν . If S is a matter action then this just means that the trace

1This is the Hilbert definition of the energy-momentum tensor. The canonical energy-momentum
tensor is defined as a Noether current but we do not use that definition in this thesis, since we are in
the curved Riemannian geometry.
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T of the energy-momentum tensor vanishes if the action is conformally invariant and

we say that we are dealing with conformal matter. Now, there are two challenges in

this standard formulation of conformal invariance that we want do pursue:

1. we would like to extend the definition to any action by shifting the emphasis from

the trace T to the variation of the action with respect to the metric,

2. statement of conformal invariance of an action should not depend on whether

equations of motion are satisfied or not.

This essentially boils down to reformulating eq. (3.1.4), eq. (3.1.5) and the following

statement in terms of the scale density A: if for any action the trace of its variation

with respect to the metric vanishes identically, that action is conformally invariant.

In order to do that we propose here a general recipe for applying unimodular-

conformal decomposition and exposing conformal properties of a given theory. This

recipe is given as follows. We first prepare a given theory in the following way:

1. Decompose the metric into scale and shape density according to eq. (2.2.1).

2. Determine the length dimension of all fields (recalling that the dimension of the

action is [~]) and apply conformal decomposition into appropriately defined den-

sities according to eq. (2.1.7), such that the scale weight equals length dimension.

3. Use eq. (2.1.11) to extract the length dimension form each A-dependent term in

the resulting action. The result of this is that it will become obvious that each

term with a dimensionful coupling constant is necessarily A-dependent. The last

step is to redefine the coupling constants into their dimensionless versions, by

absorbing factors of l0 which appear in the correpsonding terms.

After an action has been prepared according to these steps we have the following

theorem:

An action prepared as above is conformally invariant iff its variation with

respect to the scale density identically vanishes up to a boundary term.

In what follows, we shall test this theorem on several field theories and in the end

propose a concrete formulation of this theorem.

3.2 Energy-momentum tensor revisited

Before we turn to the formulation of the generator, we ask for a more obvious interpre-

tation of the variation in eq. (2.4.14): since A is just a degree of freedom of the metric,

then isn’t expression (2.4.14) somehow related to the energy-momentum tensor? We
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3. Definition of conformal invariance

are therefore motivated to formulate the definition of the energy-momentum tensor in

terms of the unimodular-conformal decomposition and to ask what can we learn about

its relationship with the variational derivative with respect to A. We shall study this

topic again on the example of the non-minimally coupled scalar field that we met in

section 2.4 and understand the meaning of eq. (2.4.14).

Using unimodular variation in eq. (A.4.3a), the variation of the action is split into

two parts:

δgS
m =

∫
ddx

[
A−2 δLm

δgµν
δḡµν − 2ḡµνA−3 δLm

δgµν
δA

]

= −1

2

∫
ddxAd

[
A−2Tµνδḡ

µν − 2A−1Tµνg
µνδA

]
= −1

2

∫
ddx

[
A−2Tµνδḡµν − 2A−1TµνgµνδA

]
, (3.2.1)

from which definitions of the tracelss and trace part of the energy momentum tensor

(density) follow directly,

T ≡ Tµνgµν := A1−d δS
m

δA
, TT

µν := −2A2−d
(
δSm

δḡµν

)T

, (3.2.2a)

T := A
δSm

δA
, T T

µν := −2A2

(
δSm

δḡµν

)T

(3.2.2b)

where we explicitly indicate with superscript “T” that the variation with respect to

ḡµν results in a traceless object, as a direct consequence of eq. (A.4.2). Now we can

conclude: the variation of an action with respect to the conformally invariant part

of the metric defines the traceless part of the energy momentum tensor (density) and

variation with respect to the scale part of the metric defines its trace part. Note again

the theme of unimodular decomposition → traceless-trace decomposition.

Let us first calculate the energy-momentum tensor of the non-minimally coupled

scalar field based on the usual definition given by eq. (3.1.2) with Lagrangian in

eq. (2.4.11). Calculating its trace and traceless parts as well, we have,

Tµν = (1− 2ξ)∂µϕ∂νϕ+ 2

(
ξ − 1

4

)
gµνg

αβ∂αϕ∂βϕ− 2ξϕ (∇µ∇ν − gµν�)ϕ

+ ξ

(
Rµν −

1

2
gµνR

)
ϕ2 − gµνV (ϕ) , (3.2.3)
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3.2. Energy-momentum tensor revisited

T =
2− d
8ϕ2

ξc g
αβ∂αϕ

2∂βϕ
2 + 2(d− 1)ξ

(
1

2
�ϕ− ξcfRϕ2

)
− dV (ϕ)

(2.4.2a)
= (d− 1)ξc�ϕ

2 +
(d− 2)

2
ϕV ′(ϕ)− dV (ϕ) (3.2.4)

TT
µν =

1

4ϕ2

(
∂µϕ

2∂νϕ
2 − 1

d
gµνg

αβ∂αϕ
2∂βϕ

2

)
− ξ

(
∇µ∇ν −

1

d
gµν�

)
ϕ2 + ξRT

µνϕ
2

(3.2.5)

and similarly for they densitized versions. It is important to observe that in the second

line in eq. (3.2.4) we have used the KG equation to eliminate �ϕ as is usual and nec-

essary. This results in two terms that in general break conformal invariance according

to definition in eq. (3.1.5). Apart from already familiar condition ξc = 0, at the same

time one has to have the following condition,

ϕ
V ′(ϕ)

V (ϕ)
=

2d

d− 2
(3.2.6)

such that conformal invariance of the action is established. But eq. (3.2.6) is just

previously derived eq. (2.4.18) in disguise, i.e. for a potential of the form V (ϕ) ∼ ϕn it

implies n = 2d/(d− 2). Only in this case can the trace vanish.

On the other hand, using our unimodular-conformal decomposition the trace and

traceless parts defined by eq. (3.2.2b) are calculated to be2

T = −ξc(d− 1)

(
∂µ
(
ḡµν∂νχ

2
)
− (d− 2)A−1

[
∂µ
(
ḡµν∂νA

)
+ ḡµν∂µA∂ν

]
χ2

)

−A∂V̄
∂A

, (3.2.7)

T T
µν = A2

{
1

4χ2
∂µχ

2∂νχ
2 + ξ

(
R̄µν −

(
δαν ∂µ − Γ̄αµν

)
∂α

)
χ2

+ 2ξc(d− 1)

(
A−1∂(µA∂ν) −

d− 2

2
A−2∂µA∂νA

)
χ2

}T

, (3.2.8)

where we recognize eq. (2.4.14) as the trace of the energy-momentum tensor given by

2One has to keep in mind that none of the terms are individually tensorial objects under GL(d,R).
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eq. (3.2.7). It is interesting to observe that eq. (3.2.7) contains second order derivatives

of the scale density A, while eq. (3.2.8) contains only first derivatives. For conformal

coupling ξc = 0 the energy-momentum tensor density pieces reduce to

T = −A∂V̄
∂A

, (3.2.9)

T Tα
ν = ḡαµ

{
1

4χ2
∂µχ

2∂νχ
2 + ξcf

(
R̄µν −

(
δαν ∂µ − Γ̄αµν

)
∂α

)
χ2

}T

, (3.2.10)

where we have raised an index to T T
µν in order to get rid of the factor of A2 in its defini-

tion. We see that, completely equivalent to the discussion around eq. (2.4.14), the trace

of the energy-momentum tensor (density) in eq. (3.2.9) for conformally coupled scalar

density field vanishes identically if the potential satisfies eq. (2.4.18) (or eq. (2.4.15),

equivalently), without using the KG equation. Note also that all A-dependent terms

from eq. (3.2.10) have canceled, leaving it manifestly conformally invariant, whereas

this is not evident from eq. (3.2.5) for conformal coupling ξ = ξcf . Therefore, we ar-

rive at one of the most important results in this thesis: variational independence of an

action on the scale density A implies its conformal invariance off-shell :

A
δS

δA
= 0 ⇔ S is conformaly invariant . (3.2.11)

This is the reason why the trace of the energy-momentum vanishes for such matter

actions. Since a conformally invariant action does not depend on A up to a boundary

term it also does not contain any length scale, i.e. dimensionful coupling constant. But

the converse is not true: an action might have the property that l0 cancels out (which

would mean that it does not have dimensionful coupling constants) but this does not

necessarily imply that it is conformally invariant. An example is the kinetic term of a

minimally coupled scalar field, as can be seen from eq. (2.4.3) for s = (2− d)/2.

Comparing eq. (3.2.11) with the generator of dilationsD in eq. (1.6.7) it is suggestive

to think of eq. (3.2.11) as some kind of generator acting on the space field configurations

and functionals that depend on them. This is the topic of the next section.

3.3 Generator of conformal field transformation and

conformal invariance

Recall that the generator of dilations in conformal coordinate transformations given

by eq. (1.6.7) is ∼ xµ∂µ. All coordinates xµ enter this generator because all of them

are affected by dilation by definition. To draw an analogy, lift the general meaning of

“xµ” to configuration space of metric and matter fields. Since dilations are rescaling of

coordinates by a constant, this would correspond in field theory precisely to a conformal
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field transformation in eq. (2.1.3) (since the conformal factor Ω(xµ) is constant in

configuration fields, even though it depends on coordinates) with an exception that

each field has its own way of rescaling, i.e. conformal weight. But after applying

unimodular-conformal decomposition, the scale density is the only field that transforms

under conformal transformation and its conformal weight is one, which represents a

departure from the analogy with coordinates. In a later chapter we shall mention

the 3 + 1 formulation of the generator of conformal transformation first recognized by

Irakleidou et al. [69] on the example of the Weyl-tensor gravity. Our formulation of

the generator in this chapter is a covariant formulation, valid in any dimension.

3.3.1 Formulation

Let us propose the form of a generator of conformal field transformations. In general, if

there are N fields φI , I = 1, 2, ...N , in a theory out of which M have conformal weight

nI as assumed in eq. (2.1.1) but N −M are conformally invariant, then we define the

generator of conformal transformation in a configuration space as (summation over J

implied)

Ĝ · := nJ

∫
ddxω(x)φJ(x)

δ ·
δφJ(x)

, J = 1, 2...M , (3.3.1)

where the dot “·” is to be replaced by whatever functional the generator acts on, as

an operator, such as an action or a field. This is in almost complete analogy to the

generator of dilations, except that we have to consider the integral because we are

dealing with functional derivatives; we have also included the infinitesimal parameter

of conformal transformation ω(x) into the generator3. To see how would this work, let

us produce a conformal transformation of the metric tensor gµν , whose conformal weight

is ng = 2. We could imagine that the exponential of the generator in eq. (3.3.1) is an

element of a Lie group, but the problem is that we are dealing with a functional space

and it is not clear to us how to proceed rigorously. Nevertheless, one could imagine that

a finite and infinitesimal conformal transformations of the metric by Ω(x) = exp(ω(x))

can be defined using eq. (3.3.1) with a demand ng = 2 and then proceeding by expanding

around the identity transformation as follows,

(
eĜgµν

)
(x) := Ω2(x)gµν

≈ 1 +
(
Ĝgµν

)
(x) = (1 + 2ω(x)) gµν

gµν(x) + 2

∫
ddy ω(y)gαβ(x)

δgµν(x)

δgαβ(y)
= (1 + 2ω(x)) gµν

3Otherwise by “generator” we would have to call only φJ(x) δ ·
δφJ (x)

which would not have much
meaning without the integral.
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gµν(x) + 2

∫
ddy ω(y)gαβ(x) 1αβ(µν)δ(x− y) = (1 + 2ω(x)) gµν , (3.3.2)

where

δgµν(x)

δgαβ(y)
= 1αβ(µν)δ(x− y) , (3.3.3)

and δ(x − y) is d-dimensional delta-function which cancels the integral over y and

leaves only 2ω(x)gµν(x) as it should. Note that in the third line only one term from

the sum over J in eq. (3.3.1) has survived — the metric. The action of this generator is

similar to the U(1) group of transformations (i.e. the phase transformation in quantum

mechanics or the local gauge group of electromagnetism) except that the group element

is real, not complex, which is why it is a scale transformation. This kind of formulation

seems to work in principle also for any other field in a similar way. However, if we

use unimodular-conformal decomposition, none of the fields except the scale density

transforms under infinitesimal conformal transformations,

(
ĜA
)

(x) = nA

∫
ddy ω(y)A(y)

δA(x)

δA(y)
:= ω(x)A(x) , (3.3.4)

by demanding nA = 1. Then one could use the generator formalism to define not

only conformal field transformation but also the unimodular-conformal decomposition

itself by asking for a set of tensor field densities χI(x) of scale weight w̄I such that the

generator annihilates them, that is,

(
ĜχI

)
(x)

!
= 0 (3.3.5)

nJ

∫
ddxω(y)φJ(y)

δ (Aw̄IφI) (x)

δφJ(y)
= 0

nJ

∫
ddxω(y)

(
φJ(y)

δAw̄I (x)

δφJ(y)
φI(x) + φJ(y)Aw̄I (x)

δφI(x)

δφJ(y)

)
= 0

∫
ddxω(y)

(
w̄IA(y)Aw̄I−1(x)φI(x) + nJφJ(y)Aw̄I (x)δIJ

)
δ(x− y) = 0

(w̄I + nI)A
w̄I (x)φI(x) = 0 , (3.3.6)

from which it follows

w̄I = −nI , (3.3.7)
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i.e. that the scale weight of the conformally invariant tensor density field χI has to

be negative of the conformal weight of the original field in order for the new fields to

be conformally invariant, which agrees with our original definition given by eq. (2.1.7)

and eq. (2.1.8). This is how one can define all new rescaled and conformally invariant

fields, including the shape density.

An important consequence of introducing unimodular-conformal variables for the

generator of conformal transformations is that only one term from the sum over J in

its definition in eq. (3.3.1) survives: the scale density. This means the generator of

conformal transformations in any dimension in any field theory defined on Riemannian

geometry can be defined as

Ĝω · :=
∫

ddxω(x)A(x)
δ ·

δA(x)
, (3.3.8)

which simply comes from

− 2gµν
δ

δgµν
= A

δ

δA
. (3.3.9)

The analogy with dilations can be taken further. We could introduce the notion of the

Lie derivative of any functional of scale density, shape density and conformally invariant

non-geometric fields F [qI ], qI(x) = (A(x), ḡµν(x), χI(x)) along the “direction” of a

vector analogous to the generating vector of dilations in eq. (1.4.8),

δΞF [qI ] ≡ LΞF [qI ] : =

∫
ddxΞJ(x)

δF [qI ]

δqJ(x)

=

∫
ddxω(x)A(x)

δF [qI ]

δA(x)
, ΞJ(x) := (ω(x)A(x), 0, 0...) ,

(3.3.10)

where qJ=A(x) = A(x). This shows that F [qI ] is analogous to a scalar field on spacetime.

We see that “direction” ΞI(x) in the space of fields in which the conformal transforma-

tion happens has only the first component non-vanishing — this is the direction along

the sale density A and in the future we shall write δω instead of δΞ for the variation,

just for simplicity. Do we have something similar among cordiante transformations?

We have something close to it. Namely, if one would rewrite the generators of dilations

D in spherical coordinates in spacetime, one would have left with only two coordinates

which are affected by dilations: the time coordinate and the radial coordinate. An-

gles are, as was explained in chapter 1, invariant under dilations or special conformal

transformations because they are silent about the notion of size or length. It can be

indeed shown (we skip the straightforward proof here) that the generator reduces to

D ∼ t∂t + r∂r. If we further introduced hyperbolic polar coordiantes (i.e. Rindler
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coordinates) t = v sinhu, r = v coshu it can be shown that D ∼ v∂v, i.e. only one com-

ponent4, because u is the hyperbolic angle. This would roughly correspond to what

happened in our case with unimodular-conformal decomposition except that the kind

of transformation we are using here is rather different compared to coordinate transfor-

mations to polar coordinates. To finalize, the discussion of this paragraph paints “the

big picture” of what conformal field transformation is. In the special case where F [qI ]

is an action, this interpretation of conformal transformation and invariance relates to

the question of whether A is a dynamical field or not. Namely, if A is dynamical,

that means there exists an equation of motion for A. An equation of motion for A

would arise from extremization of the action with respect to A, i.e. from its first order

variation. This equation of motion holds for arbitrary variations δA. On the other

hand, conformal invariance requires the vanishing of the first order variation given by

eq. (3.3.10) of the action with respect to a specific variation δA = δωA = ωA and thus

needs to hold for arbitrary ω and arbitrary A. The two cases side by side are compared

as follows,

δS[qI ]

δA(x)
= 0 , ∀δA(x) ⇒ E.O.M. for A(x) (3.3.11)

δS[qI ]

δA(x)
= 0 , ∀A(x) ⇒ conformal invariance , (3.3.12)

where eq. (3.3.12) basically means that the vanishing is identical. This should be kept in

mind in order not to confuse validity of equations of motion and conformal invariance;

conformal invariance stated by eq. (3.3.12) does not require A to obey equations of

motion (thus ∀A(x)), i.e. it holds off-shell, as we showed in the previous section on the

example of the non-minimally coupled scalar field. This should actually be expected

because conformal invariance of an action concerns only the structure of the action

itself, not the equations of motion. And if an action is conformally invariant then it

follows that A is not dynamical, i.e. it is arbitrary. All information about conformal

properties is contained in the action already and we have the restatement of the theorem

proposed in section 3.1: An action is invariant under conformal transformation iff it

is annihilated by the action of the generator of conformal transformations,

δωS[qI ] = ĜωS[qI ] =

∫
ddxω(x)A(x)

δS[qI ]

δA(x)
= 0 , (3.3.13)

implying eq. (3.3.12). This is one of the main results of this thesis. Condition in

eq. (3.3.13) is valid for any theory in any dimension and essentially completes the

4This situation speaks for itself in favor of using polar coordinates in order to study conformal
coordinate transformations.
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formulation of the theorem proposed in section 3.1. We hope that this formulation

might inspire some more rigorous treatment of the notion of generator of conformal

transformation in the space of fields. We would next like to see this generator in action

on some well-known examples.

3.3.2 Einstein-Hilbert action

Because of conformal transformation of the Ricci scalar in eq. (2.2.27) the Einstein-

Hilbert action

SEH =
1

2κ

∫
ddx
√
g(R− 2Λ) (3.3.14)

is not conformally invariant unless d = 2 and Λ = 0. Note that Λ has dimensions of

L−2 and that dimension of κ depends on the spacetime dimension. GR, which is the

special case of the above for d = 4, is also not conformally invariant. Unimodular-

conformal decomposition makes this obvious. Namely, let us see under which circum-

stances eq. (3.3.12) holds. Because of eq. (3.3.9) and eq. (2.1.11) we have

ĜωSEH ?
= 0 ⇒ δSEH

δA
=
−2

κ

∫
ddx
√
g

[(
Rµν −

1

2
gµνR

)
gµν + dΛ

]

=
−2

κ

∫
ddxAd

[
ld−2
0

2− d
2

R+ dld0Λ

]
?≡ 0 . (3.3.15)

If we demand conformal invariance of this action then the following has to hold

2− d
2

R ≡ 0 ∧ Λ = 0 , (3.3.16)

for all A, but we see that this is possible only if d = 2, so only in two dimensions the

EH theory is conformally invariant. Reacall that we claim that conformal invariance is

related to the absence of dimensionful coupling constants from the action. In the EH

action in eq. (3.3.14) the gravitational coupling κ has units which depend on dimension.

To see this explicitly, observe from the second line in eq. (3.3.15) that the following

dimensionless ratio

l :=
ld−2
0

κ[SEH]
(3.3.17)

where [SEH] is the unit of action, has to be dimensionless (we avoid referring to ~ in the

case of arbitrary dimension because the relationship between length, time, mass and

G, c, ~ depends on the dimension of spacetime). It follows that [κ] = Ld−2/[SEH] and κ

may be rewritten in terms of another constant with the meaning of length to the power

of d − 2. Hence, in d = 2 dimensions [κ] = 1/[SEH], i.e. dimensionless in the inverse
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units of action.

In d = 4 dimensions, where we have GR, a natural length scale is given by the

Planck length5 lp defined [82] as

lp :=
√
κ~ , (3.3.18)

where κ has dimensions of L2/[~] (in c = 1 units). Then from eq. (3.3.17) it follows

that eq. (3.3.17) is given by

l =
l0
lp
, (3.3.19)

and we call it the relative length scale or the relative gravitational coupling constant.

Recalling the discussion around 2.1.10, this number has a clear meaning: it measures

how big or small the observed physically relevant region of spacetime is as compared to

the Planck length or, alternatively, it can be thought of as the dimensionless measure

of the strength of gravity in a given finite region of spacetime. It is thus obvious

that it plays a crucial role in the transition from quantum to classical gravity. Using

eq. (3.3.19) in eq. (3.3.15) for d = 4, we obtain

SEH =
~
2

∫
d4xA4

(
l2R− 2l2(l20Λ)

)
(3.3.20)

and it is now clear that [Λ] = L−2. Now l2~ is what determines “classicallity” of the

action and we have l� 1 if the EH action is classical, which agrees with the definition

in eq. (3.3.19) and the claim in eq. (2.1.10). This alternative interpretation of l is useful

to keep in mind if matter and quantum corrections predicted by quantum field theory

are taken into account. Furthermore, it is interesting that expression l2(l20Λ) can be

given a familiar interpretation. Namely, we can identify l0 with a relevant cosmological

scale measured by the Hubble horizon as l0 ≡ c/H0 and then we have 6

l20Λ = 3 Ω0,Λ
l20H

2
0

c2
= 3 Ω0,Λ ≈ 2.1 , (3.3.21)

where Ω0,Λ is the dimensionless density parameter for the energy density of Λ. Then

using l2 ≈ 2.8 · 10120 one concludes that l2l20Λ ∼ 10120. This may be referred to

as the “dimensionless cosmological constant”. We think that one should tend to use

the such dimensionless, relative coupling constants in calculations and any kind of

5To be precise, this is the reduced Planck length, which is defined with a factor of 8π hidden in κ.
6Using the values from Table XXXIII in [95] for the Planck length lp =

√
8π~G/c3 = 1.616229 ·

10−35
√

8πm and the speed of light c = 299792458 ms−1 and the value for the Hubble constant H0 =
2.1928 · 10−18 s−1 from [108].
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approximations because it is independent of the choice of units and has a direct physical

interpretation.

3.3.3 Massive vector field and electromagnetic field

A massive vector field Vµ (as a prototype of massive weak gauge vector bosons) is

described by the following action in d dimensions,

SV = −
∫

ddx
√
−g

(
1

4
FµνF

µν +
1

2
m2VµV

ν

)
, (3.3.22)

which is not invariant under gauge U(1) transformation due to the mass term where

the dimensionful coupling constant m breaks it. The kinetic term is constructed from

the field strength:

Fµν = ∂µVν − ∂νVµ . (3.3.23)

Now, using unimodular-conformal decomposition and bearing in mind that A hides the

length scale according to eq. (2.1.11), we use Vµ = AsV̄µ and the action becomes

SV = −
∫

ddx (l0A)d−4+2s

(
1

4
ḡµαḡνβF̄µνF̄αβ +

1

2
m2l20A

2ḡµαV̄µV̄α

)
, (3.3.24)

F̄µν := Fµν − s ls0As−1
(
V̄µ∂νA− V̄ν∂µA

)
. (3.3.25)

We see that the kinetic term has units of action if we set s = (4 − d)/2. Fixing such

an s, the action becomes

SV = −
∫

ddx

(
1

4
ḡµαḡνβF̄µνF̄αβ +

1

2
m2l20A

2ḡµαV̄µV̄α

)
, (3.3.26)

but we still do not have a conformally invariant F̄µν as can be seen from eq. (3.3.25)

and its dependence on A. This dependence can be elliminated if s = 0, which would

then imply that conformall invariance is possible only in d = 4. But we see that even

in four dimensions conformal invariance could only be achieved if the vector field is

massless m = 0. If these conditions are assumed, we have the well-known case of

electromagnetism and the vector potential does not require any rescaling, i.e. V̄µ = Vµ

and its conformal weight is zero. This is in accordance with the well-known fact that

the trace of the energy-momentum tensor for a massless vector field given in standard
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formulation

T = −d− 4

4
FµνF

µν (3.3.27)

vanishes only in d = 4 dimensions, assuming that Vµ has zero conformal weight. It

is unnecessary to bother ourselves with calculating the trace of the energy-momentum

tensor as defined in our approach with eq. (3.2.2a) because (apart from being a bit

tedious and non-illuminating) we only want to have eq. (3.3.12) fulfilled and it is already

been deduced that this can happen only if s = 0, d = 4 and m = 0. Only in that case

the generator of conformal transformation defined by eq. (3.3.13) annihilates the action.

Some comments about the comparison of this case with the case of the scalar field

treated in section 2.4. From the kinetic term of the scalar field given by eq. (2.4.3) we

see that there is only one gµν since there is only one pair of indices to be contracted,

unlike the kinetic term in eq. (3.3.22), which requires two gµν . Since in our approach

coordinates are dimensionless and inverse metric has units of L−2 there is already

enough units of length in four dimensions to cancel L4 unit of volume and that is

why Vµ is already dimensionless and need not be rescaled, unlike the scalar field ϕ.

Note, however, that if coordinates are the ones which are dimensionful, as is usually

assumed, then both kinetic terms give L−2 dimension from the derivatives, which then

implies that [Vµ] = L−1 as well. Therefore, the length dimension of a field depends on

whether or not one considers coordinates dimensionful. We think that “length-less” Vµ

rhymes well with its conformal invariance in d = 4 dimensions and motivates the use

of dimensionless coordinates in this case7.

3.3.4 Weyl-tensor gravity

An action formed by the invariant made of the Weyl tensor,

SW = −αW

4

∫
ddx
√
−g CµναβCµναβ , (3.3.28)

in d = 4 dimensions will be the topic of a part of this thesis and we shall refer to

it the Weyl-tensor action/theory. Note that αW is a coupling constant whose length

dimension depends on the actual dimension of spacetime (for similar reasons as κ in

section 3.3.2) because the square of the Weyl tensor has a fixed dimension of L−4. To

see this, apply unimodular decomposition with eq. (2.1.11) as before; the action takes

7Note, however, that under active conformal coordinate transformations given by eq. (1.4.7) the
kinetic term in eq. (3.3.22) requires Vµ to transform as well, unlike with conformal field transformation
discussed here.
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the following form

SW = −αWl
d−4
0

4

∫
ddxAd−4ḡµρḡ

νσ ḡατ ḡβδCµναβC
ρ
στδ , (3.3.29)

from which we conclude that the coupling constant has to have a dimension of [αW] =

L4−d. Since we showed in eq. (2.2.30) that the Weyl tensor is determined solely by the

shape ḡµν and is thus conformally invariant in its up-down-down-down index version,

we can easily see that this action is conformally invariant only in d = 4 dimensions,

as only then the scale density then disappears. The action of the generator of the

conformal transformation in eq. (3.3.13) is then

ĜωSW = −αWl
d−4
0

∫
ddxω

(
d− 4

4
Ad−4

)
ḡµρḡ

νσ ḡατ ḡβδCµναβC
ρ
στδ (3.3.30)

which identically vanishes only for d = 4 and only in this case αW is dimensionless in

units of action. This example is quite similar to the electromagnetic field action, but

the fact that the Weyl tensor is A-independent in any dimension made things simpler.

Just for amusement, we could ask if there is a higher-dimensional conformally in-

variant action based on the Weyl tensor. The answer is yes, but the dimension has to

be even. In d = 6 dimensions three Weyl tensors will suffice

SW = −αW

4

∫
d6x
√
g CµναβC

αβ
εζC

εζ
µν , (3.3.31)

and by counting the number of gµν we see that there is exactly A−3·2 factor which

cancels the six-dimensional volume.

3.4 Final remarks

The most important message from this chapter concerns the definition of conformal

invariance stated in the theorem given in section 3.1 and further elaborated on with

the definition of the generator of the conformal transformation in eq. (3.3.13). We have

shown that conformal invariance of an action is achieved iff none of the terms in the

action depend on the scale density A, up to a boundary term (a total divergence in

the Lagrangian). Apart from this, an important improvement compared to the old

definition given by eq. (3.1.5) is that our definition holds off-shell, i.e. independently

of equations of motion. In the case of the non-minimally coupled scalar field we think

that this is because our proof involves partial integration in eq. (2.4.6) in order to

be able to cancel the A from the Lagrangian which is what happens in the standard

approach when one derives the KG equation. Thus, using the KG equation in the old

99



3. Definition of conformal invariance

approach to show that T = 0 for conformally invariant scalar field only appears to

be necessary because no partial integration in derivation of Tµν was necessary. But

such partial integration was necessary for our approach in the derivation of eq. (3.2.7)

and this was enough for it to vanish for a confomally coupled χ. One simply needs

to apply the unimodular-conformal decomposition according to the steps presented in

section 3.1 and inspect whether or not A cancels out. Such an achievement greatly

increases the significance of the unimodular-conformal decomposition and encourages

further applications.

It is important to keep in mind that the identification of the physical length scale l0

in A allows one to rather evidently relate the conformal invariance with the absence of

dimensionful coupling constants in a theory. This might have important implications

for studying the behavior of a quantum field theory at high energies, as mentioned in

section 2.5, while the generator of the conformal transformation could have certain rela-

tionship with the so-called beta functions which are central in renormalization methods

used there. Furthermore, in the case of conformally non-invariant theories, such as

GR, or conformally coupled massive scalar field, we saw that the length dimension of

dimensionful coupling constants is “compensated” by a certain power of l0 which arises

in those terms, which invites a redefinition of these couplings as dimensionless ratios

that can be used to distinguish among different regimes of a theory independently of the

choice of units. One example is the dimensionless gravitational coupling in eq. (3.3.19)

which has a very useful and clear interpretation: it measures the strength of gravity or

the size of the region in which the gravitational phenomena occur, as compared to the

Planck length. Other dimensionless couplings could be introduced based on the mass

parameter m of any field and the cosmological constant Λ. In the former case, the nat-

ural length scale associated with m could be the corresponding Compton wavelength

λm = h/m which can then be absorbed into a dimensionless coupling constant λm/l0.

This ratio could be interpreted as the relative size of the region within which the field

is localized, for example, and might have useful applications in studying cosmological

perturbations. In the case of Λ, the resulting number l2l20Λ ∼ 10120 can be used to

distinguish between matter- and Λ-dominated era of the Universe, if compared to l2R

in the EH action.

Even though the generator of conformal transformation introduced in this chapter

seems to be formally viable and will play an important role in the following chapters

(especially when we discuss the quantization procedure), more care would have to be

taken in order to make its definition in terms of functional derivatives mathematically

rigorous and consistent, but we leave it here as it is.

∞ � ∞
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Chapter 4

Classical higher derivative theories

and their perturbative interpretation

Classical GR is modified at higher energies by the presence of quantum matter fields

in a way that requires to change the Einstein-Hilbert action by adding terms quadratic

in curvatures (R2, RµνR
µν , CµανβC

µανβ ≡ C2) and terms which are non-local. We are

interested in the interpretation of such an effective theory and justification for its use

as a base for the quantum theory, which we study in the following chapter. We shall

restrict ourselves only to two quadratic curvature terms, R2 and C2; this will be enough

to study the general features of the theory and its implications for the quantum theory.

To investigate the meaning of higher-derivative terms in gravity, a toy model will be pre-

sented in which a one-dimensional harmonic oscillator is modified by a term quadratic

in second order time derivatives. It is argued, based on already existing results, that if

higher-derivative terms are small corrections becoming relevant towards higher energies

of the system then this implies that they are perturbations to the first order, low energy

theory and should be mathematically treated that way. The conclusions are directly

applicable to the theory of gravity with higher derivatives and they provide hints to

formulate the guidelines for the quantization. We shall also review some important

basic features of the quadratic curvature actions with non-minimally coupled scalar

field using the approach of the unimodular-conformal variables both in covariant and

3 + 1 Hamiltonian formulation, which shall set the stage for the canonical quantization

in the following chapter. A particular attention is paid to the conditions under which

the conformal symmetry could be established. This will necessitate a discussion on

3 + 1 formulation of the generator of conformal transformation we defined in chapter 3.

Throughout the chapter we demonstrate a rather natural use of dimensionless coupling

constants as introduced in section 3.3.2.
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4.1 Why higher-derivative theories?

The shortest answer must not be anything less than “it depends on what is meant by

higher-derivative theory”. Namely, if these theories are motivated by the results of an

effective theory approach — a high-energy extension of a purely classical theory — then

such theories are better referred to as “theories with higher derivatives”. The terms

giving rise to higher derivatives appear as corrections to the purely classical action due

to the effects of high energies, while at low energies they are negligible. If, on the

other hand, these theories are aimed to substitute GR as alternative classical theories

of gravity, usually with an intention to provide alternative understanding of the dark

matter problem and accelerating expansion of the Universe, then they deserve a name

“classical higher derivative theories” and their motivation from the effective approach

is irrelevant and outside the context. The problem is that the latter theories, the purely

classical ones — which dominate the literature — are almost exclusively motivated by

the results of the effective theories and this inconsistency has a price.

4.1.1 Semiclassical Einstein equations and higher-derivative

counter-terms

Let us sketch the main points of the SEE and its features. The classical Einstein

equations, following from the EH action given by eq. (3.3.14) supplemented by a matter

action, take the following form

1

κ

(
Rµν −

1

2
gµνR+ gµνΛ

)
= Tµν . (4.1.1)

If the matter action describes quantum matter then instead of Tµν on the RHS of

eq. (4.1.2) we have

1

κ

(
Rµν −

1

2
gµνR+ gµνΛ

)
= 〈T̂µν〉 . (4.1.2)

where 〈T̂µν〉 is the expectation value of the energy-momentum tensor operator with

respect to some state. If we were in flat spacetime, a simple normal ordering procedure

would make 〈T̂µν〉 a finite value by eliminating the divergences appearing upon summa-

tion of all modes of a given matter field, without any problems encountered. But since

the normal ordering procedure is essentially a subtraction of the vacuum contribution

from 〈T̂µν〉 and because the notion of vacuum in curved spacetime is ambiguous (but

already in flat spacetime in some coordinates which do not refer to an inertial observer,

see Unruh effect in [13, chapter 4]) due to the lack of appropriate symmetries that the

Minkowski spacetime enjoys, it is impossible to define the normal ordering procedure

in quantum field theory in curved spacetimes and one must work a little harder.

Upon evaluation of the backreaction term [13, 105, 106, 130, 145] it turns out
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4.1. Why higher-derivative theories?

that it can be separated into a finite term and a divergent term in the process called

regularization,

〈T̂µν〉 = 〈T̂µν〉fin + 〈T̂µν〉∞ . (4.1.3)

The issue here is the divergent term 〈T̂µν〉∞, for which it can be shown [51, 106], to the

first order in ~, that it is proportional to a linear combination of covariantly conserved

tensors

〈T̂µν〉∞ = a0gµν + a1Gµν + c1H
(1)
µν + c2H

(2)
µν , (4.1.4)

where Gµν is the Einstein tensor; a0, a1, c1, c2 are constants proportional to ~ which

depend on the regularization scheme employed and they all diverge upon the completion

of such procedure. The last two terms turn out to be obtainable from the variational

principle from the R2 and Rµν terms, respectively1,

H (1)
µν = − 2

√
g

δ

δgµν

∫
d4x
√
gR2

= 4
(
RT
µνR− (∇µ∇ν − gµν�)R

)
, (4.1.5a)

H (2)
µν = − 2

√
g

δ

δgµν

∫
d4x
√
gRµνR

µν

= 4

(
[RµαR

α
ν ]T +

1

2

(
gµν∇α∇β − δαµδβν�

)
Rαβ

)
, (4.1.5b)

where “T” denotes the traceless part with respect to the free indices of a tensor. One

can see that these terms contain fourth order derivatives of the metric. It is remarkable

that the divergent terms only depend on the metric and its derivatives, independently

of which matter is considered. This could be understood as an effect of a consider-

able energy density of quantum matter on spacetime: the spacetime at smaller scales

(probed by higher derivatives, just like in a Taylor expansion of a function in a small

neighborhood of a point) curves locally because it “feels” the presence of high-energy

quantum effects of matter fields. It is then expected that spacetime will be modified

at small scales by quantum corrections as a response to the presence of high energy

quantum matter.

Now, the first two terms in eq. (4.1.4) can be absorbed into κ and Λ which are

already introduced by the EH action in eq. (4.1.2). This is done by renormalizing or

1These expressions were checked with xAct package [92] in Wolfram Mathematica.
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redefining the “bare” coupling constants κ and Λ as

1

κ
=

1

κphys
− a1 , Λ = Λphys − a0 , (4.1.6)

after which the divergences in a0 and a1 are cancelled. We can thus say that two

“counter-terms” — which counter the divergences in the backreaction — are already

included in the Einstein equations. It is then κphys and Λphys which are the physical

coupling constants that we measure in experiments. A priori, κ and Λ in the EH action

have no physical meaning. Since a0 and a1 depend on an energy scale, κphys and Λphys

shall depend on it too2. On the other hand, terms in eqs. (4.1.5a)-(4.1.5b) do not

appear in the original action and one is thus faced with the following fact: high-energy

description of gravity interacting with quantum matter must deviate from the pure

EH action in order for divergences in c1 and c2 to be cancelled. The cancellation is

done by redefining the couplings β1, β2 similarly to eq. (4.1.6) to include c1 and c2.

The remaining term 〈T̂µν〉fin is finite and does not depend on geometric terms but

on the quantum state in question (which one does not know a priori). Only in certain

cases, such as massless minimally or conformally coupled scalar field on conformally flat

backgrounds is 〈T̂µν〉 determined entirely by the geometric terms. This modification

rests upon accepting that at high (but considerably lower than Planck) energies the

gravitational action takes the following form:

Sg =

∫
d4x
√
g

(
1

2κ
(R− 2Λ) + β1~R2 + β2~RµνRµν

)
(4.1.7)

where β1, β2 are dimensionless bare coupling constants. We have made the coupling of

the quadratic terms explicit in order to emphasize that they are relevant only at rela-

tively small scales. Stelle [134] has estimated that the physical value of these constants

are very weakly bounded by Solar system scale observations, i.e. βphys1 , βphys2 . 1074 in

~ = 1 units, and this means that these terms have little effect for classical (low energy)

gravity [44, 45]. So far we think there is enough evidence to consider these quadratic

curvature terms what they literally are: perturbations of the EH action relevant at

increasing energies. This point of view agrees with those of [44, 45], who recalled the

works of Simon [129, 130] where it was clearly shown that classical solutions to the

equations of motion based on eq. (4.1.7) make sense only as solutions to the Einstein

equations perturbed by the fourth-order terms. In the language of our formalism intro-

duced in chapter 2, we choose the coordinates to be dimensionless and put the length

dimension in the metric tensor components through the characteristic length scale l0.

2The exact form of energy dependence depends on the matter content and the specific spacetime
model. However, such details — which can be found in e.g. [13, 106] — are not relevant for this thesis
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Then eq. (4.1.7) becomes (cf. eqs. (3.3.18), (3.3.19) and (3.3.20))

Sg =

∫
d4x
√
g

(
l2~
2

(
R− 2Λ̄

)
+ β1~R2 + β2~RµνRµν

)
(4.1.8)

where we wrote Λ̄ ≡ l20Λ. There are no changes to already dimensionless β1, β2 couplings

because l0 cancels out from the corresponding terms. It should not be confusing that ~
appears explicitly with the EH term because this is an artefact of our choice of writing

the coupling constant as l2~: there is an ~ hidden in the denominator of l2 due to the

definition of the Planck length in eq. (3.3.18), but its dimension is not visible because

l2 is dimensionless. This allows us to compare the terms in the basis of dimensionless

constants l2, β1, β2 instead with respect to ~, so now the classical GR is recovered if

l2 � β1, β2. We shall spend some time in the next subsection using a toy model to

explain how one must deal with theories with higher derivatives in a given energy scale.

This will clarify and motivate our treatment of quantization of such theories in the next

chapter.

As explained in the Introduction, in spite of their perturbative nature, it has been

overwhelmingly more popular in the literature (starting from [134, 135] in late 1970’s)

to treat eq. (4.1.7) and its variations as an exact classical theory, even though the

same exemplary works from the literature motivate such theories from the point of

view of quantum field-theoretical corrections, as done here. If indeed there is any

classical signature of these exact theories, these terms could only be relevant in strong

gravity regimes such as black hole mergers [32, 65] and it was pointed out in [20]

and [31] that their signature should be included in future simulations of gravitational

waves generation from such events. Note, however, that potential future searches for

stochastic gravitational wave background contain model-dependent features which are

not yet taken into account [71].

4.1.2 An example: simple harmonic oscillator with a

higher-derivative term

We shall first recall the action of the simple harmonic oscillator in one dimension and the

corresponding real solutions and then introduce a higher-derivative theory toy model

based on that example. There are a lot of higher-derivative toy models but they all

share features which are originally met in the Pais-Uhlenbeck oscillator, the prototype

of a higher derivative theory; see [107] for a concise overview of its features. This

section is motivated by works of Bhabha [12] and Simon [129, 130] who discussed few

such examples of a higher-derivative theory in the context of perturbative approach

to its solutions. We construct our own example here which is equally well suited for

demonstration of peculiar features of theories with higher derivatives. This choice does

not delete any of the main features shared with other higher-derivative models and

only enriches the spectrum of higher-derivative Lagrangians which one could examine
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in order to understand them.

The action of a simple harmonic oscillator reads

S =

∫
dt

(
m
ẋ2

2
− kx

2

2

)
, (4.1.9)

where m and k are positive constants. The Euler-Lagrange equations of motion are

given by

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 ⇒ ẍ+ ω2

mx = 0 , (4.1.10)

where ωm :=
√
k/m. Note that we have obtained this equation after dividing by m,

which is why we must assume m 6= 0. For this simple harmonic oscillator — where there

would be no dynamics at all if m = 0 — it is a trivial condition. But as we shall see

later, the coefficient in front of the highest order term in the equation of motion needs

to be treated with care if it is multiplied by a small parameter and one is interested in

an approximate solution. A general real solution may be written in the form of

x = A cos(ωmt− φ) , (4.1.11)

where A, φ are two arbitrary constants (amplitude and phase) parametrizing a solution

to the second order differential equation. Our discussion will not be affected by limiting

ourselves to this real solution.

Now let us modify the oscillator in the following way

S =
1

2

∫
dt
(
mẋ2 − kx2 − g (ẍ− fx)2

)
, (4.1.12)

where g and f are real positive3 constants. The choice of signs in this new term does

not affect the conclusion and the choice of the term itself could be different, as long as,

more importantly, we have a Lagrangian which contains second time derivatives in a

way that cannot be reduced to depend on the first derivatives only. Formally, we could

say that if the Lagrangian L = L(x(t), ẋ(t), ẍ(t)) is nonlinear in second and higher

derivatives,

∂2L

∂(x(i))2
6= 0 , (4.1.13)

3The positivity assumption can be relaxed but for the main point of this section it is enough to
assume only positive values.
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for at least one i > 1, where x(k) is the k-th time derivative of x, then Lagrangian

L describes a higher derivative theory. In that case no boundary term can be added

to reduce it to a first order Lagrangian 4. In this thesis we shall take an approach to

theories containing higher derivatives based on the following discussion.

Let us imagine a weighing balance (weighing scale) instrument as a metaphor of

comparison of two terms in a given action: the kinetic term on one plate and the

non-linear second derivative term on the other plate. The role of weights for each of

these terms is played by their respective coupling constants: the coupling constant m

for the kinetic term and the coupling constant g for the higher derivative term. If

we choose units such that [t] = [x] = T , i.e. units of time, and interpret the action as

dimensionless ([S] = 1) then we see that the two coupling constants cannot be compared

because they have different dimensions: [m] = T−1 and [g] = T , while we also note

that [k] = T−3 and [f ] = T−2. But we could introduce a certain characteristic physical

time scale (in analogy way as we introduced characteristic length scale l0 in chapter 2)

in terms of which g can be expressed. Then we could extract the characteristic time

scale from coordinates as t→ t0t after which t and x become dimensionless. We could

think of this characteristic time scale as the period
√
m/k of the simple oscillator, for

example. Now we can see that t0m → m and g/t0 → g can be compared because

they are dimensionless (and similar can be done for the other two coupling constants).

Dimensions of the original g suggest that it could be interpreted as a kind of a time

scale. This time scale can be thought of as a characteristic time scale over which the

higher-derivative effects are relevant. Regarding the value of the new, dimensionless g

itself, if g < 1 then this time scale is shorter than the characteristic time scale t0 and

if g > 1 then it is longer. If m > g the balance is in favor of the kinetic term and

the effects of the second derivative term in the equation of motion dominate over the

fourth derivative term. In the opposite case m < g the balance is in favor of the fourth

derivative term. Now let us imagine that m and g are non-constant weights, i.e. that

their value decreases in time for an unknown and for our discussion irrelevant reason,

such that g decreases relatively faster compared to m. Let us also assume that this

change happens over a much greater time period compared to t0. We need this last

assumption because we cannot implement the unknown time dependence of m and g

and we will make sure that Emmy and Richard — two physicists from two very distant

periods of time — run their experiment over timescales within which both m and g are

approximately constants. Let Emmy and Richard model an oscillator according to the

Lagrangian in eq. (4.1.12) and let the values of m and g be known to them at the time

of their respective experiments (and let Emmy’s and Richard’s value of k and f be the

same). Let Emmy know with certainty that m� g as a result of some independent set

of measurements from her time. On the other hand, let Richard know with certainty

4An example of a first order Lagrangian which contains second derivative term that can be elimi-
nated by an addition of a boundary term is the Einstein-Hilbert Lagrangian describing GR.
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that g � m as a result of some independent set of experiments from his time and

that g = 0 is a good approximation to the relevant observed phenomena. Both Emmy

and Richard use the following Euler-Lagrange equation of motion for describing the

problem,

∂L

∂x
− d

dt

∂L

∂ẋ
+

d2

dt2
∂L

∂ẍ
= 0 , (4.1.14)

⇒ g

(
d2

dt2
− f

)(
d2

dt2
− f

)
x+mẍ+ kx = 0 , (4.1.15)

where ẍ denotes the second derivative and we shall also use in the future ¨̈x ≡ x(4) to

designate the fourth derivative. But they will treat this equation differently. What are

the solutions for the equations of motion that Emmy and Richard can use and what

assumptions are Emmy and Richard allowed to make in order to find approximate

solutions? This is the most important question that we believe sits in the core of

understanding which methods can be used in dealing with a theory containing higher

than second derivatives.

Let us first examine what is the solution to Emmy’s problem. Since the weight

balance is tipped in favor of a higher derivative term for Emmy, as she knows that

m � g, she can implement this assumption in eq. (4.1.15) by dividing by g 6= 0 to

obtain

¨̈x−
(

2f − m

g

)
ẍ+

(
f2 + ω2

g

)
x = 0 , (4.1.16)

where ωg :=
√
k/g and solve this equation exactly with an ansatz x ∼ exp ω̃t to obtain

four solutions

ω̃1,2 = ±

(
m

2g
− f −

√
m2

4g2
− mf

g
− ω2

g

) 1
2

, (4.1.17a)

ω̃3,4 = ±

(
m

2g
− f +

√
m2

4g2
− mf

g
− ω2

g

) 1
2

. (4.1.17b)

Since m < g, it can be inferred from the above that the exponents of Emmy’s solutions

are always complex. This means they contain both oscillatory (coming from the imag-

inary part) and exponentially decaying/increasing (coming from the real part) factor.

This is the main feature of a higher-derivative theory: it always contains more than two

independent solutions and always contains solutions which are so called “runaway”, i.e.

the norm of the amplitude diverges with time. Emmy can expand her four solutions in

the extreme case of m� g, or use this approximation as a tool for finding an approxi-
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mate solution to her problem. One says that her solutions are perturbatively expandable

in perturbation parameter m/g; it means that using the limit m� g does not produce

inconsistency. Then Emmy could write5 x ≈ x0 + mx1 and use this in eq. (4.1.16),

summing all terms with the same power of m to zero. She would obtain

¨̈x0 − 2fẍ0 +
(
f2 + ω2

g

)
x0 = 0 , (4.1.18a)

¨̈x1 − 2fẍ1 +
(
f2 + ω2

g

)
x1 +

1

g
ẍ0 = 0 . (4.1.18b)

The first equation determines x0, which is the solution one would obtain if Lagrangian

in eq. (4.1.12) did not have the kinetic term (i.e. m = 0) to start with. Emmy would

solve for x0 and plug this solution into eq. (4.1.18b) and then solve for x1, thus finding

the solution to the full equation of motion with precision of up to O(m). The same

solution could be found by simply Taylor-expanding eq. (4.1.17a) and eq. (4.1.17b)

around m = 0 (or m/g = 0); the two methods give identical results, as expected.

In summary, Emmy finds four independent solutions to the fourth order equation of

motion for x and this means she needs to impose four initial conditions: position,

velocity, acceleration and the first derivative of acceleration. This is also true for the

approximate solution, taking m� g.

Richard, on the other hand, has a different problem. The observations from his time

give with certainty g � m and the weight balance for him takes the opposite position

compared to Emmy’s. He thinks of eq. (4.1.15) as a second order equation of motion

which has a small correction in the form of the fourth derivative of x and he tries to

proceed by finding a solution to the following equation of motion

ẍ+ ω2
mx+

g

m

(
¨̈x− 2fẍ+ f2x

)
= 0 , (4.1.19)

where ωm =
√
k/m, i.e. he divides eq. (4.1.15) by m. But now he is in a dilemma:

does he treat eq. (4.1.19) as a fourth order equation or does he treat it as a second

order equation with a small perturbation proportional to g/m? If he treats it exactly

then the solutions are found in the same way as in Emmy’s case and lead to four of

them, given by eqs. (4.1.17a)-(4.1.17a). But if one is not careful then one could miss

an important fact: solutions in eqs. (4.1.17a)-(4.1.17a) are found under the assumption

g 6= 0 (since one must divide by g) and m � g, so even though the latter can be

relaxed, these solutions are thus not perturbatively expandable in powers of g around

g = 0. To emphasize: dividing by g is forbidden if one is looking for perturbative

5Or x ≈ x0 + m
g
x1, but if we assume that all constants except m are of the order 1 then the stated

approximation suffices, since m is dimensionless.
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solutions [129, 130]. Indeed, the limit of g → 0 in eqs. (4.1.17a)-(4.1.17b) diverges.

On the other hand, if he tries to find the solution perturbatively he would expand the

solution as

x ≈ x0 + gx1 , (4.1.20)

and end up with

ẍ0 + ω2
mx0 = 0 , (4.1.21a)

ẍ1 + ω2
mx1 +

1

m

(
¨̈x0 − 2fẍ0 + f2x0

)
= 0 . (4.1.21b)

The second derivative of eq. (4.1.21a) can be used to eliminate the fourth order deriva-

tives from eq. (4.1.21b), which results in

ẍ1 + ω2
mx1 +

1

m

(
ω2
m + f

)2
x0 = 0 . (4.1.22)

Now let Richard assume that his solution is of the form x = A cos(ω̃t) (choosing a

vanishing phase). Then according to eq. (4.1.20) one has

x ≈ A cos((ωm + gω1)t)

≈ A cos(ωmt)︸ ︷︷ ︸
=x0

−g Aω1t sin(ωt)︸ ︷︷ ︸
=x1

(4.1.23)

with terms of order O(g2) and above neglected and with initial conditions

x0(0) = A , ẋ0(0) = 0 , gx1(0) = 0 , gẋ1(0) = 0 , (4.1.24)

compatible with x(0) = A and ẋ(0) = 0. In other words, Richard must impose the

initial conditions at each perturbative order. It is important to note that the first line

in eq. (4.1.23) is valid for all values of t, while the approximation in the second line

is valid only if |gω1t| � 1 is assumed in addition; if the system is observed during a

time beyond t ∼ 1/|gω1| the second approximation in eq. (4.1.23) breaks down. Solving

eq. (4.1.22) with x1 ansatz from eq. (4.1.23) gives ω1 = (f + ω2
m)2/2mωm. In this way

Richard has found a perturbative solution

x ≈ A cos

(
ωmt+

g

m

(f + ω2
m)2

2ωm
t

)
(4.1.25)
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which, as expected, reduces to the solution of a simple harmonic oscillator once g → 0

limit is taken and which he may expand as in the second line of eq. (4.1.23) if careful

about its validity only up to some timescale t ∼ 1/|gω1|. The fact that the correction is

proportional to t should not worry Richard if he is using the model over a finite period

of time. Otherwise, the solution given by eq. (4.1.25) is valid for all times.

In order to obtain more intuition about the perturbative approach, Richard comes

up with another way of deriving his perturbative solution. Namely, if he claimed that

eq. (4.1.21a) holds before even deriving the full equations of motion, he could use this

zeroth order equation in the higher-derivative terms directly in his Lagrangian, i.e.

substituting ẍ→ ω2
mx directly in eq. (4.1.12), obtaining

S =
1

2

∫
dt
(
mẋ2 − kx2 − g

(
ω2
m + f

)2
x2
)
,

=
1

2

∫
dt
(
mẋ2 −

(
k + g

(
ω2
m + f

)2)
x2
)
, (4.1.26)

from which the following equation of motion and its solution in the g/m� 1 limit can

be derived

ẍ+ ω̃2
mx

2 = 0 ⇒ ω̃m ≈ ωm

(
1 +

g

m

(
ω2
m + f

)2
2ω2

m

)
. (4.1.27)

Comparison of the above solution with eq. (4.1.25) shows that this is an identical result.

This procedure might be the most straightforward one: substitute all higher-derivatives

in the Lagrangian by derivatives of the zeroth-order solution.

In summary, we see that Richard’s perturbative approach is the one which gives him

consistent results and he cannot use the exact solution to the fourth order theory. The

consistency is reflected in the fact that Richard’s Lagrangian is not exact because as-

sumption g � m makes the kinetic term dominate the higher-derivative term; therefore

the corresponding equation of motion cannot be exact and the corresponding solution

cannot be exact, but they must be treated perturbatively. This is why Richard has

only two degrees of freedom instead of four like Emmy. Moreover, it can be shown [130]

that perturbative solution does not make sense if it is truncated at the order higher

than the highest order of the higher-derivative term in the Lagrangian; in other words,

if Lagrangian contains higher-derivative terms up to order gn then the solution makes

sense only if it is expanded up to order n and not above, otherwise one obtains again

non-perturbative solutions as g → 0 is taken.

There is a question of origin of this higher-order perturbation in Richard’s case.

Suppose Richard discovers Emmy’s theoretical and experimental results in a paper

written long before his time. At first, he is confused because they both used the

same Lagrangian but soon he discovers (by investigating the observational data from
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Emmy’s time) that Emmy’s constantsm and g differ drastically from the same constants

measured in his time. This is based on the fact that (according to the dimensional

analysis of the action in eq. (4.1.12) which is discussed at the beginning of this section)

m couples a term which is proportional to the characteristic time scale, while g couples

a term which is inversely proportional to the characteristic time scale: they cannot

contribute in the same way for small characteristic time scales as for the large ones

and from this one may deduce that the higher-derivative term “resolves” effects of a

high-frequency (fast oscillator with a low period) oscillator. The higher the frequency,

the shorter the characteristic time scale and the more important the higher-derivative

term is; this can be easily seen from eq. (4.1.25). Alternatively, one can say that the

slower the oscillator, the less important the higher-derivative term is. This reminds

one of a Taylor series: an analytic function in a small neighborhood of a point can be

expanded in an infinite Taylor series in powers of a ε� 1 parameter that measures the

size of the point’s neighbourhood. Each next order of the series is of a higher and higher

derivative term and gives a finer and finer modification to the value of a function at

the point — and this is what we mean by “resolving” (in this case the smaller patches

of the point’s neighborhood). Then one can imagine that in Richard’s case the fourth

derivative term in the Lagrangian is just the first term of an infinite series of higher

and higher derivatives which converge to form some non-local contribution. We will

only briefly here mention how Simon [129, 130] has shown this very elegantly. Namely,

consider the following equation of motion (we use Simon’s notation and come back to

ours only after presenting his findings)

ẍ+ ω2

∫ +∞

−∞
ds
e−|s|

2
x(t+ εs) = 0 . (4.1.28)

We shall soon explain what this integral term actually means. If one expands x(t+ εs)

in Taylor series around ε = 0, by direct integration one obtains an infinite sum of even

derivatives of x,

ẍ+ ω2
∞∑
n=0

ε2n
d2n

dt2n
x = 0 . (4.1.29)

The crucial point here is that eq. (4.1.28) is a second order equation and eq. (4.1.29) is

also a second order equation, since the latter is derived from the former. That means

that there are only two degrees of freedom, independently of the fact that eq. (4.1.29)

contains infinite number of terms with forever-increasing number of derivatives! The

next crucial point is that this fact would not change if we chose to truncate the series at
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some order εk. One may choose to keep terms only up to ε2 in which case one obtains6

(1 + ε2ω2)ẍ+ ω2x2 + ε2 ¨̈x = 0 , (4.1.30)

which corresponds by analogy to eq. (4.1.19) in our case. It is also possible, as Simon

showed in equation (34) in [129], to find a Lagrangian from which eq. (4.1.28) can

be derived. We will not write the Lagrangian here, but only note that it contains

a similar integral as in eq. (4.1.28). The main point is that these terms containing

integrals are non-local in the sense of “action-at-a-distance”: according to the values

of integration boundaries in eq. (4.1.28), contributions from infinitely distant past and

infinitely distant future are contributing to the acceleration at time t — this is the

feature of non-locality. The moral of the story is that one does not need to know which

non-local theory a higher-derivative term is derived from in order to solve the problem at

the given order. But if one finds — like Richard has inferred from the available data on

values of m and g — that a higher-derivative term in the Lagrangian is relatively small

compared to the kinetic term, then it needs to be treated that way (i.e. perturbatively)

and this ensures that the theory has two degrees of freedom independently of how many

small higher-derivative terms contribute to the Lagrangian.

One can indeed deduce that even if terms of order higher than ẍ appear in the

Lagrangian they would even more finely “resolve” the time scales than the term pro-

portional to g because the corresponding coupling constant would be proportional to

a higher power of the g-timescale. Note that in Emmy’s case (where g > 1) inclu-

sion of higher and higher-order terms would give rise to more and more solutions and

degrees of freedom. It would be hard to motivate increasing number of independent

solutions and one would need increasing number of initial conditions in order to solve

the problem. This is, however, not the problem with the infinite sum but the price to

pay is non-locality. But the bigger issue is that such a hypothetical theory does not

converge and cannot be reformulated as some non-local theory (or its truncation) as

is with Richard’s case. This summarizes the most important problem with treating

a higher-derivative theory as an exact one. It is for this reason that we think that

Richard’s approach is the correct one for treating classical higher-derivative theories,

which in the case of this thesis refers to a theory of gravity: any theory of gravity

containing higher derivatives of the metric tensor components in addition to the EH

action is to be treated perturbatively with respect to higher derivatives, preserving the

second order nature of SEE. We shall review this approach in the next subsection.

We have made sense of Richard’s approach to his Lagrangian but what is then

the interpretation of Emmy’s Lagrangian? In this thesis we take the approach that

6The following equation is based on Simon’s notation and the corresponding Lagrangian L =
1
2

(
(1 + ε2ω2)ẋ2 − ω2x2 − ε2ẍ2

)
.
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if the couplings behave relative to one another to tip the balance towards the higher-

derivative term as in Emmy’s case, then the Lagrangian does not make sense as a

classical one but must describe the quantum version of the theory. In other words,

until the value of g decreases below m, the Lagrangian is to be quantized and describes

high-frequency (high-energy), short time scale oscillations. Only when m� g Richard

may recognize the Lagrangian as describing a classical theory, which describes the low-

frequency, long time scale oscillations, while no additional solutions arise; otherwise,

Richard interprets Emmy’s Lagrangian within the context of a quantum theory. It

should be kept in mind that this line of thought implies that any classical theory

derived from such a quantum theory in a semiclassical approximation would have to

involve invoking the assumption of a frequency-dependent (or scale-dependent or energy-

dependent) couplings g and m, possibly through the methods of renormalization, as

reviewed in the previous section. (However, we do not seek an implementation of

energy-depending couplings in this thesis.) This is in accordance with our discussion

above on the relation between the size of coupling g and the “resolution” of time scales:

the more influential the higher order derivative terms are, the closer one is to the

requirement to shift to the quantum description because the physics of small scales

then becomes more important and perturbative approach breaks down for g ∼ m and

high frequencies.

4.1.3 Semiclassical Einstein equations and their perturbative

solution

We shall take Richard’s situation described in the previous subsection as the analog

of the scales and energies we consider today as the domain of validity of GR and its

higher-derivative corrections. Towards higher energies it is required — as explained in

section 4.1.1 — to include quadratic curvature terms in the EH action and renormalize

the coupling constants. As in the case of the toy model used above, the quadratic

curvature terms in the gravitational action give rise to fourth order derivatives. Such

an action is the basis of the effective approach [24, 45] and we ought to have learned

from Richard’s perturbative way of going about making sense of the solutions to such a

theory. In the case of gravity the perturbative treatment of the SEE was introduced by

Simon [129, 130] and Parker and Simon [105] where it was shown that if the order of

the SEE based on eq. (4.1.8) is reduced perturbatively the theory does not suffer from

unstable solutions and spacetime metric is perturbatively expandable in powers of ~,

giving a sensible classical limit. We shall sketch their procedure here but use a slightly

different form of eq. (4.1.8).

In principle one could have included the term RµανβR
µανβ in eq. (4.1.8) in the

integral but it turns out that in four dimensions there is an identity among the metric

variation of the three curvature terms in the action (see e.g. Appendix B in [64]

or a recent review on quadratic gravity by Salvio [122, section 2.1]). Namely, the

Gauss-Bonnet term in four dimensions is a topological invariant, being a total covariant
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divergence and takes the following form,

G =
1

4
εµαρσενβτγRµανβRρστγ = RµανβR

µανβ − 4RµνR
µν +R2 = cov. div. , (4.1.31)

where ενβτγ is the Levi-Civita tensor density. Its metric variation therefore does not

contribute to the equations of motion and one can use it to express the Riemann tensor

squared in terms of RµνR
µν and R2 up to a divergence

RµανβR
µανβ = 4RµνR

µν −R2 +G . (4.1.32)

On the other hand, Riemann tensor squared can be expressed in terms of its irreducible

pieces based on eq. (2.2.22),

RµανβR
µανβ = CµανβC

µανβ + 2RµνR
µν − 1

3
R2 . (4.1.33)

Using eq. (4.1.32) in eq. (4.1.33) one obtains7

RµνR
µν =

1

2
CµανβC

µανβ +
1

3
R2 − 1

2
G , (4.1.34)

which can be used in the action given by eq. (4.1.8) to get (using C2 ≡ CµανβCµανβ)

Sg =

∫
d4x
√
g

(
l2~
2

(
R− 2Λ̄

)
+
βR~

4
R2 − αW~

4
C2

)
(4.1.35)

where we define the new coupling constants βR := 4β1 + 4β2/3 and αW := −4β2/3;

we subtract the Gauss-Bonnet term since we are not concerned with spacetimes with

a boundary and assume there are no topological issues, for simplicity. Recall that all

couplings in the Lagrangian have no physical meaning until renormalization procedure

is taken care of. Only then one could make sensible predictions of the theory both in

high-energy and low-energy limits. We do, however make a constraint that αW, βR >

0 in order to incorporate indications that such choice ensures non-tachyonic modes

[135, 122]. It looks like the R2 and C2 terms are the only ones in four dimensions which

contribute to the equations of motion to the order of ~; they are also two independent

pieces of the Riemann tensor. We shall see in section 4.4 that this has a deeper meaning.

If eq. (4.1.35) is supplemented by a matter action containing both quantized and

7 It is interesting to see that 1
2
CµανβC

µανβ − 1
2
G = RµνR

µν − 1
3
R2 = GµνP

µν where Pµν is the
Schouten tensor introduced in eq. (2.2.23).
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classical matter, its variation gives the following equations of motion

l2~
(
Rµν −

1

2
gµνR+ gµνΛ̄

)
+ βR~Hµν − 2αW~Bµν = T clµν + 〈T̂µν〉 (4.1.36)

where T clµν is the classical energy-momentum tensor and recall that 〈T̂µν〉 = O(~).

Tensors Hµν and Bµν are defined as

Hµν =
1

4
H (1)
µν = RT

µνR− (∇µ∇ν − gµν�)R , (4.1.37)

Bµν =

(
∇(α∇β) +

1

2
Rαβ

)
Cαµ

β
ν . (4.1.38)

Tensor Bµν is called the Bach tensor [4] and arises from the variation of the Weyl-tensor

term C2. Since the Weyl-tensor term is conformally invariant (cf. eq. (3.3.30)), Bach

tensor is also conformally invariant, i.e. variation with respect to the scale density

vanishes. Using the unimodular-conformal decomposition this is shown explicitly in

eq. (A.3.7). Because of this, Bach tensor contribution changes only the traceless part

of the Einstein equations, while Hµν changes also its trace:

l2~RT
µν + βR~HT

µν − 2αW~Bµν = TTcl
µν + 〈T̂T

µν〉 (4.1.39)

l2~
(
4Λ̄−R

)
+ 3βR~�R = T cl + 〈T̂µµ 〉 , (4.1.40)

where

HT
µν = RT

µνR−
(
∇µ∇ν −

1

4
gµν�

)
R . (4.1.41)

Depending on a specific spacetime model and type of matter, there could be certain

simplifications, but also some additions to eq. (4.1.36). For example, for conformally

flat and Einstein spacetimes Bµν = 0. For conformal classical matter one has T = 0, but

for conformal quantum matter it turns out that 〈T̂µµ 〉 6= 0, which means that quantum

corrections of a massless conformally coupled scalar field or pure electromagnetic field,

for example, break conformal symmetry. The latter is named conformal anomaly [13,

24, 106] and is a very important subject, especially in relation to the possibility of

having a conformal symmetry in a quantum gravity theory. It is given by

〈T̂µµ 〉 ∼ C2 +

(
G− 2

3
�R

)
, (4.1.42)

with each their own finite constants proportional to ~ that can be calculated for a
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specific matter field theory. Where does eq. (4.1.42) come from? It can be shown (see

e.g. [96, section 2]) that certain non-local terms must be added to the action in order to

generate the conformal anomaly via the variational principle. These local terms have

their local version [96, eq. (2.14)] but only if one introduces an additional scalar field

— which represents the dynamical degree of freedom that appears because the broken

conformal symmetry in the matter sector introduces a non-vanishing 〈T̂µµ 〉. The local

version of the action is the an action for a fourth order derivative theory of a scalar field

which is non-minimally and conformally coupled to gravity. This makes the resulting

theory a sort of a scalar-tensor theory but with a lot more complicated interaction

terms. Due to its complicated nature we shall not consider conformal anomaly terms

in the action in this thesis, but we stress that they should be included in the further

research on the topic in this thesis. Nevertheless, the conformal anomaly in eq. (4.1.42)

would contribute to eq. (4.1.36) in addition to the quadratic curvature terms, after

calculating 〈T̂µν〉 explicitly. Another special case are classical vacuum spacetimes, i.e.

Tµν = 0. In vacuum spacetimes there are no corrections because both Bµν and Hµν

vanish (the latter vanishes because the Bianchi identity for the Riemann tensor reduces

to ∇αCαµβν = 0).

What is the solution to eq. (4.1.36)? Before we set on this endeavour let us agree

that we have already regularized 〈T̂µν〉 according to eq. (4.1.3) and absorbed 〈T̂µν〉∞
into couplings l2, αW and βR by renormalizing them into physically meaningful and

energy-scale dependent couplings l2phys, α
phys
W and βphysR , but that we drop the “phys”

label in order to simplify the notation. So from now on, all couplings are renormalized

and in the future equations we write 〈T̂µν〉fin in place of 〈T̂µν〉∞. As we have argued so

far in the current chapter, the SEE should not be solved exactly for the metric because

Hµν and Bµν are suppressed by their couplings compared to l2. If one uses 1/κ instead

of our l2~ then one says that the two tensors are suppressed by O(~), this was the way

Parker and Simon approached the problem [105]. But since we have turned 1/κ into

l2~, we have to work with relative strengths of l2, αW, βR instead of ~ This is required

because we have multiplied and divided 1/κ by ~ in order to transform to l2 and hence

~ → 0 is not a valid thing to do8. This represents another departure from [105]. To

make a connection to Richard’s story form the previous subsection, l2 is analogous to

m, while αW, βR are analogous to g. Therefore, we are allowed to divide by l2 but not

with αW, βR, since we have to make sure it is possible to take the limit αW, βR → 0.

The perturbative solution can be constructed in the following way. First, assume

that T clµν is of the order l2~. This is necessary in order to make the perturbative

treatment compatible with the classical interpretation of T clµν and it ensures that ~ is

explicitly eliminated from it. We have to keep in mind that in the scales at which the

8This can be understood as a consequence of the fact that ~, c, G form one set of independent
coupling constants while lp, tp,mp form another set of independent coupling constants, which means
their limits cannot be mixed.

117



4. Classical higher derivative theories and their perturbative...

geometry of spacetime is classical we have l2 � 1, which already means that we are in

the domain of validity of eq. (4.1.36), i.e. well above the Planck length scale, so only

classical matter can curve the spacetime. (Also, note that if T clµν/l
2~ � 1 then this

means that we are in nearly vacuum spacetimes, which is a trivial case. Furthermore,

in some cases the entire T clµν could emerge from the O(~0) terms in 〈T̂µν〉 in the limit

of large number of “particles” (as excitations of the quantum fields). Moreover, the

quantum matter could represent the quantized perturbations of a scalar field, whose

background component is classical and generates T clµν .) Secondly, divide eq. (4.1.39)

and eq. (4.1.40) by9 l2~, and multiply both equations by10 βR/l
2 to obtain

βR

l2
RT
µν +

βR

l2

[
βR

l2
HT
µν − 2

αW

l2
Bµν

]
=
βR

l2
1

l2~
TTcl
µν +

βR

l2
1

l2~
〈T̂T
µν〉fin (4.1.43a)

βR

l2
(
4Λ̄−R

)
+ 3

(
βR

l2

)2

�R =
βR

l2
1

l2~
T cl +

βR

l2
1

l2~
〈T̂µµ 〉fin (4.1.43b)

Next, take the following approximation,

αW

l2
� 1 ,

βR

l2
� 1 ,

αW

l2
βR

l2
� 1 . (4.1.44)

by which one essentially assumes that higher-order terms do not contribute to the

Einstein equations arising from the classical gravitational (EH) action. Furthermore,

note that the last term both in eq. (4.1.43a) and eq. (4.1.43b) is of the order of ~, not

l2~, because it contains no information about the classical matter (assuming it is all in

T clµν).

Then one neglects all terms of the order O
(
βR/l

2
)

and arrives at

βR

l2
RTcl
µν =

βR

l2
1

l2~
TTcl
µν +O(

βR

l2
,
βR

l4
) (4.1.45a)

βR

l2
(
4Λ̄−Rcl

)
=
βR

l2
1

l2~
T cl +O(βR/l

2, βR/l
4) (4.1.45b)

These are just Einstein equations and the label “cl” refers to the fact that these tensors

are evaluated with the purely classical metric, the usual metric that one would obtain

9In [105] it was not allowed to divide by ~ as this was their perturbation parameter. In our case
perturbation parameters are αW/l

2 and βR/l
2, so we must refrain from dividing by these parameters.

10In [105] the equation was multiplied by ~, their perturbation parameter. As we progress towards
the next chapter, we shall obtain an intuition that our choice of perturbation parameters makes things
a bit more transparent due to their dimensionless nature and compatibility with the meaning of the
semiclassical approximation to the quantum version of the theory, which we give in the following
chapter.
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if there were no higher-derivative terms, which we denote as gclµν . The same discussion

with exact same result is valid for multiplying the equations with αW instead of βR.

What is the meaning of eqs. (4.1.45a)-(4.1.45b)? The meaning is: at the perturbation

order of αW/l
2 and βR/l

2 impose the classical Einstein equations as a constraint — this

is where the name perturbative constraint derives from. Then the total metric makes

sense to be determined only up to O(αW/l
2, βR/l

2) and it has to be expanded as

gµν = gclµν +
αW

l2
hαµν +

βR

l2
hβµν . (4.1.46)

This is completely analogous to eqs. (4.1.20) and (4.1.21a) where the zeroth order

solution is the usual simple harmonic oscillator. The next thing to do is to either

plug eq. (4.1.46) back into to eqs. (4.1.39) and (4.1.39) (keeping in mind our agree-

ment concerning the renormalized couplings), expand all tensors (including T clµν) up to

O(αW/l
2, βR/l

2), sum one set of all terms with the same power αW/l
2 and another with

all terms with the same power βR/l
2 and solve for hαµν and hβµν , using already solved

Einstein equations for gclµν . Somewhat formally, these equations would in principle read

δRT
µν

[
gcl,

αW

l2
hα,

βR

l2
hβ
]

+
βR

l2
HT
µν [gcl]− 2

αW

l2
Bµν [gcl]

=
1

l2~
δTTcl

µν

[
gcl,

αW

l2
hα,

βR

l2
hβ
]

+
1

l2~
〈T̂T
µν〉fin (4.1.47a)

−δR
[
gcl,

αW

l2
hα,

βR

l2
hβ
]

+ 3
βR

l2
�R =

1

l2~
δT cl

[
gcl,

αW

l2
hα,

βR

l2
hβ
]

+
1

l2~
〈T̂µµ 〉fin

(4.1.47b)

where tensors δRT
µν , δR, δT

Tcl
µν and δT cl with arguments in the square brackets [...] are

to be understood as the first order perturbations in hαµν and hβµν of the correspond-

ing tensors, while for the rest of the tensors [gcl] means that they depend only on

the classical solution, found at the previous order. This procedure ensures that the

SEE equations are second-order and thus do not suffer from runaway solutions. There-

fore, all terms in the above two equations are O(αW/l
2, βR/l

2), with one exception:

〈T̂T
µν〉fin and 〈T̂µµ 〉fin. But this shouldn’t be confusing because at this order there is no

relative coupling multiplying these terms which would determine whether the size of

〈T̂T
µν〉fin/l2~ and 〈T̂µµ 〉fin/l2~ is comparable to the rest of the terms in the respective

equations. This reflects the high non-linearity of the SEE: perturbations hαµν and hβµν
cannot be in general determined unless 〈T̂µν〉fin is known, but the latter is not known

until one solves for the quantum state with respect to which it is evaluated; however the

quantum state is not known a priori, because it depends on the spacetime geometry on
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which it propagates and this complicates the issue considerably. Only in special cases,

such as e.g. conformally coupled massless scalar field on conformally flat backgrounds

〈T̂µν〉fin = 0, Bµν [gcl] = 0 could one explicitly write down the solution [105] and in that

case there is another term (cf. eq. (4.1.42)) which contributes to the trace eq. (4.1.47b)

that we did not include.

There is another way of solving the SEE which is achieved in direct analogy with the

method that led to eq. (4.1.26) in section 4.1.2. Namely, we showed there that Richard

could simply substitute the zeroth-order solution directly into the higher-derivative

part of the Lagrangian, which lead to the perturbed second-order equations of motion.

Richard could do the same with the presently discussed higher-order gravity, since the

form of the SEE (4.1.39)-(4.1.40) is conveniently given in terms of the Ricci curvature:

using Einstein equations (A.4.6), i.e. RTcl
µν = TTcl

µν /l
2~ and R = (4Λ̄−T cl)/l2~, eliminate

the Ricci curvature appearing in the higher-derivative terms from either the action in

eq. (4.1.8) or the equations of motion (4.1.39)-(4.1.40) themselves. The result is the

following gravitational part of the perturbatively constrained semiclassical action,

Sg =

∫
d4x
√
g

[
l2~
2

(
R− 2Λ̄

)

+
β1

l2
(
4Λ̄− T cl

)2
+
β2

l2

(
TTcl
µν T

Tµν
cl + 4

(
4Λ̄− T cl

)2)]
. (4.1.48)

Variation of the total action (i.e. with the additional matter contributions) results in

perturbed SEE, but their form depends on the form of T clµν . Alternatively, but similarly,

the zeroth order solution could simply be substituted into the higher-derivative term

in the equations of motion themselves and then proceed by solving the resulting second

order differential equation. All these procedures reduce the order of the equations of

motion and give the same result [105].

We shall not go into more details, because the perturbative treatment of the SEE

has already been studied extensively in [105] for several spacetime models with ~-

corrections to the classical solutions to GR. Let us only copy here the result of one

of the models discussed in [105], namely the spatially flat Friedman model filled with

radiation, without cosmological constant. The perturbative procedure described in the

present subsection leads to the following solution (after suitably rescaling the involved

quantities to absorb irrelevant constants) for the scale factor as a function of time,

a(t) = (t− τ0)
1
2 − ~α3(t− t0)−

3
2 − ~τ1(t− τ0)−

1
2 , (4.1.49)

where τ0 and τ1 are integration constants (note that τ1 is relevant only at the order

of ~) while α3 is the coupling of the Gauss-Bonnet term in the conformal anomaly in
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eq. (4.1.42), which we did not include in our equations. The first term is the purely

classical term, with a familiar t1/2 behavior of radiation-dominated universe. Terms

proportional to ~ are semiclassical corrections. It can be seen that for late times t→∞,

away from the initial singularity, one has t ≈ τ0 and the scale factor behaves as in the

classical case without any abnormalities. The solution is thus perturbatively expandable

in ~. But close to the initial singularity the solution diverges. This is expected, because

the perturbative treatment breaks down at very early times and very high energies.

We find it of considerable significance to have reviewed this subject because it has

gone almost unnoticed in the classical higher-derivative theory communities for a cou-

ple of decades, while research within the classical gravity context has been going mostly

in the direction of making sense of actions such as eq. (4.1.35) in the purely classical

non-perturbative approach and trying to tackle the issue of runaway solutions. In the

light of the recent detection of the gravitational waves we think that the perturbative

approach to the SEE should be revived as a physically more meaningful treatment of

strong gravity regimes in black hole mergers. It was concluded in [32] that exact ef-

fects of the higher-derivative terms in the gravitational sector should be implemented

into numerical simulations of merges of compact objects since these terms could have

observational signatures. However, we think that one should at least in parallel try to

implement the perturbative treatment of higher-derivative terms into not only numer-

ical simulations of these mergers but also the physics of the primordial fluctuations of

spacetime and matter and the inflationary universe.

4.2 Hamiltonian formulation of a simple harmonic

oscillator with higher derivatives

In the rest of this chapter we shall present the Hamiltonian formulation of the action

in eq. (4.1.35) in unimodular-conformal variables introduced in section 2.3. This is

necessary for the canonical quantization. But since canonical quantization of an action

implies its quantum interpretation instead of the classical one and thus assumes its va-

lidity at short length scales/high energy scales, this contradicts the initial assumption

that the action is perturbative and semiclassical. This motivates us to make a clear

distinction between two approaches to the Hamiltonian formulation of theories with

higher derivatives. The perturbative nature of the action must be taken into account

if the action is treated as a classical one. On the other hand, if the action is treated

as a quantum action, such perturbative nature cannot be assumed. In these two cases

one ends up with two qualitatively different Hamiltonian formulations. In the present

section we clarify this difference on the example of our model of a simple harmonic

oscillator with higher derivatives from section 4.1.2. We explain the Hamiltonian for-

mulation in two ways. First we assume that Emmy treats action in eq. (4.1.12) as

an exact action. Then we show how Richard must treat the same action if he takes

the perturbative approach. The comparison of the two cases will give us guidelines to
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choose the approach which is the appropriate one for quantization of theories of gravity.

4.2.1 Exact interpretation of the higher derivative theory

Let us find Emmy’s momentum. Since eq. (4.1.12) is currently treated as an exact

action, i.e. recall that in this case g/m > 1 makes sense, the system has four genuine

degrees of freedom. In the Hamiltonian approach this means that one needs two have

two pairs of canonical variables. Furthermore, Hamiltonian formalism is a first order

formalism, which means that the extra variables must be utilized in a way to reduce the

higher order nature of the theory to the second order (but not by means of perturbative

approach). This is usually referred to as the method of Ostrogradski order reduction

and is well explained in [152], whose line of thought we incorporate in our toy model.

The method consists of defining a new set of variables

q1 = x , p1 =
∂L
∂ẋ
− d

dt

∂L
∂ẍ

, (4.2.1)

q2 = ẋ , p2 =
∂L
∂ẍ

(4.2.2)

and performing a Legendre transform to find the Hamiltonian. Equation (4.2.1) for

the momentum is simply the variation of the Lagrangian with respect to velocity ẋ —

another term appears due to the higher-derivative nature of the theory. The momenta

are given as follows,

p1 = mẋ+ g
(

˙̈x− fẋ
)

= mq2 + g (q̈2 − fq2) , (4.2.3)

p2 = −g (ẍ− fx) = −g (q̇2 − fq1) . (4.2.4)

Now, the important thing is to be able to invert for the velocities, i.e. the highest

appearing derivatives. This can be done easily form the above equations,

q̈1 =
1

g
(p1 −mq2) + fq2 , (4.2.5)

q̇2 = −1

g
p1 + fq1 . (4.2.6)

The condition for inverting the velocities is that at least one of the highest order

variables satisfy

∂2L
∂(qAN )2

6= 0 (4.2.7)
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where N is the highest order derivative (non-linear) term appearing in the Lagrangian

and A runs from 1...M where M is the dimension of the configuration space. In our

case this reduces to

∂p2

∂q̇2
= −g 6= 0 , (4.2.8)

which indeed is the case. Let us at this point pause for a moment and reflect on

what happens to the condition given by eq. (4.2.8) if one takes the limit g → 0. We

immediately see that this is inconsistent with the assumption that the phase space

has four degrees of freedom, because p2 then vanishes and becomes a constraint and

equation of motion for q2 does not exist, thus reducing the number of degrees of freedom

to two. This observation is crucial to remember if one would like to suppose that this

higher-derivative theory has a small g limit equivalent to the simple harmonic oscillator,

because from eq. (4.2.5) and eq. (4.2.6) it can be seen that such a limit, taken after

the velocities are inverted, renders these equations ill-defined. This means that current

treatment of the theory is incompatible with the perturbative approach, as expected

based on the discussion so far in this chapter.

One now proceeds to define the total Hamiltonian via the Legendre transform,

substituting all velocities for the momenta,

H = p1q2 + p2q̇2 − L(q1, q2, p1, p2) = −p
2
2

2g
+ fq1p2 + q2p1 −

m

2
q2

2 +
k

2
q2

1 , (4.2.9)

where q̇1 = q2 was used in the first term in the first equality. It is clear that g → 0 limit

is meaningless, i.e. the theory and its solutions are not perturbatively expandable in

g. But that is alright since we have assumed from the beginning that g/m > 1. If one

would like to use this theory to describe a classical system, then one derives Hamilton’s

equations of motion from the Poisson brackets as usual,

q̇1 =
∂H
∂p1

= q2 , ṗ1 = −∂H
∂q1

= −kq1 , (4.2.10)

q̇2 =
∂H
∂p2

= −p2

g
+ fq1 , ṗ2 = −∂H

∂q2
= mq2 − p1 . (4.2.11)

The first equation in (4.2.10) is just the definition of the new variable q2. The second

equation in eq. (4.2.10) is the Euler-Lagrange equation of motion, cf. eqs. (4.2.1) and

(4.1.14). The first equation in (4.2.11) is just the inverted velocity, eq. (4.2.6). The

second equation in (4.2.11) is equivalent to the second equation in (4.2.1).

There is another approach to the Hamiltonian formulation, which gives the same

results and this is the approach we are going to use in the subsequent sections for the

Hamiltonian formulation of gravity. Namely, instead of introducing the new variables
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after the variation to find the momenta, one could introduce the new variables already

at th elevel of the Lagrangian, i.e. before the variation, in order to find the momenta.

This is done by introducing a constraint λ (Y − ẋ) into the Lagrangian, where λ is a

Lagrange multiplier, and substituting all ẋ for Y in it, thus obtaining the constrained

Lagrangian,

Lc =
1

2

(
mY 2 − kx2 − g

(
Ẏ − fx

)2
)
− λ (Y − ẋ) . (4.2.12)

There are now actually three variables in the system, but λ does not have any kinetic

term, nor velocities, so its momentum vanishes (it will turn out that this is just the

statement of Y = ẋ). The conjugate momenta are

px =
∂L
∂ẋ

D
= λ ⇒ px − λ

D
= 0 , (4.2.13)

PY =
∂L
∂Ẏ

= −g
(
Ẏ − fx

)
, (4.2.14)

pλ =
∂L
∂λ̇

D
= 0 . (4.2.15)

Equation (4.2.15) is a primary constraint and “
D
=” is Dirac’s “weak equality”, which we

rename here as the “delayed equality”, that delays setting pλ to zero until all Poisson

brackets have been calculated; Appendix A.5 should be consulted for the details on

the constraint analysis and the used definitions. It just says that λ is an arbitrary

variable. Equation (4.2.13) is also a primary constraint. It is an interesting contrast to

the momentum of the first-order theory, p = mẋ, since it says that ẋ cannot be inverted

from it. This should not be alarming, since ẋ has been moved into the new variable Y ,

so px has only an auxiliary meaning, until one decides to restore to the original variables

when the Hamiltonian formulation is complete. The total Hamiltonian is formed by

the Legendre transform

H = pxẋ+ PY Ẏ + pλλ̇− Lc

= −
P 2
Y

2g
+ fxPY + Y px −

m

2
Y 2 +

k

2
x2 + pλλ̇ , (4.2.16)

where pλ is not yet set to zero, as Dirac’s “delayed equality”
D
= implies. This is the only

difference compared to the Hamiltonian in eq. (4.2.9) (apart from a trivial relabeling

of variables), so there has to be a way to safely set pλ = 0. The time preservation of

primary constraint in eq. (4.2.15) must be required and leads to

ṗλ = {pλ,H} = Y − ẋ D
= 0 , (4.2.17)
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which is just the constraint we added to the Lagrangian. The important thing here

is that px − λ
D
= 0 and pλ

D
= 0 are second-class constraints (cf. eq. (A.5.17)) and the

discussion around eq. (A.5.21) in appendix A.5.2 shows that these constraints can be

set strongly to zero, thus eliminating λ explicitly from the theory. This makes the last

term in eq. (4.2.16) vanish, leaving us with

H = −
P 2
Y

2g
+ fxPY + Y px −

m

2
Y 2 +

k

2
x2 , (4.2.18)

which coincides with eq. (4.2.9).

Let us now take a closer look at the Hamiltonian in eq. (4.2.18) to consider its

features. First of all, we see that there is no kinetic term of q1; the only kinetic

term is the one of q2. The negative sign in front of it does not matter, because one

could simply change the sign of g, if the theory allows it. If one imagines a theory

with even higher order derivative terms, the corresponding Hamiltonian would always

contain only one kinetic term, corresponding to the highest order variable, unless one

mixes the momenta and coordinates via special canonical transformation [152]. But

the bigger problem is the term linear in p1. Namely, as explained in [152], according

to the theorem of Ostrogradski any higher-derivative theory exhibits runaway solutions

because of this type of terms. (The other term fq1p2 is just the artefact of the particular

model we are considering; this term could be eliminated by setting f = 0.) Tracing

the steps backwards, it can be concluded that this term arises always if one wishes

to do the Hamiltonian formulation of a higher-derivative theory. It allows to counter

the kinetic term and drive the energy of the system (which is essentially the value of

H) arbitrarily high positive or low negative values. This property is imprinted on the

solutions as well, in accordance with our discussion in section 4.1.2. It can be shown

that a specific canonical transformation and quantization of the system implies that the

system is equivalent to two coupled harmonic oscillators whose total energy is indefinite

[152], because there appears another pair of creation and annihilation operators which

turn out to act on a state in such a way to give a negative energy spectrum. The

associated particle excitations are named “ghosts” (not to be confused with Faddeev-

Popov ghosts) and they can be shown to break unitarity [59], if one opts for keeping

the positive energy interpretation. There are ways to tackle this problem by a variety

of alternative quantization procedures [9, 59, 122] but they are aimed at systems whose

Hamiltonian does not vanish, such as the one discussed in our toy model. However,

we shall see in the next chapter that quantization procedure of theories with vanishing

Hamiltonian, followed by a carefully tailored semiclassical approximation could suggest

that ghosts remain in the realm of quantum gravity and beyond Planck energies, which

are practically unobservable. As a hint of how does this happen, notice that since the

only kinetic term is the one of the highest order variable, the dynamics of the wave

function is established by the evolution of that variable. Moreover, note that if one
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4. Classical higher derivative theories and their perturbative...

would set m = 0, no issues would arise and one would still have the mentioned kinetic

term in the Hamiltonian, thus ensuring that the evolution with respect to the higher-

order variable continues. In short, Emmy’s theory cannot be considered as an exact

classical theory whose limit g → 0 is a well defined low-energy limit and thus we can

expect that Emmy’s theory makes sense only as a full quantum theory. Thus we will not

be interested in the corresponding equations of motion and its classical interpretation.

4.2.2 Perturbative interpretation of the higher derivative theory

For Richard’s theory, on the other hand, we claim that it makes no sense to be inter-

preted as a quantum theory while g/m� 1 if the higher-derivative term is expected to

become important at high energies (which we have shown in section 4.1.2 that it does).

Rather, his theory is semiclassical, in analogy to the SEE. The only way Richard could

make the Hamiltonian formulation of his theory legal is to implement the perturbative

nature in eqs. (4.2.3) and (4.2.4) before inverting these equations for the velocities.

This is done in the similar way as imposing the Einstein equations at the first order of

perturbation in eqs. (4.1.45a) and (4.1.45b): multiply the first equalities in eqs. (4.2.3)

and (4.2.4) by g and neglect all terms of O(g2) order. The result is:

gp1 = gmẋ+O(g2) , (4.2.19)

gp2 = 0 +O(g2) . (4.2.20)

As one can see, p2 = 0 has to be imposed at order g at each step of the derivation,

thus ensuring that the extra degree of freedom (i.e. Emmy’s q2) is excluded from the

theory. Equation (4.2.19) is just another way of saying the same: it means “impose the

definition of the ’classical’ momentum p0 = mẋ at order O(g)”. The already known

Hamilton equation of motion for the ‘classical’ momentum is also imposed at this order,

gṗ1 = gmẍ = −gmω2
mx , (4.2.21)

and one can take as many derivatives of this equation as necessary to eliminate the

higher derivatives from the Lagrangian, which then takes the form we met before in

eq. (4.1.26). Only from that “perturbatively reduced” Lagrangian can one derive the

correct momentum, as pointed out by Mazzitelli [94], and this momentum coincides

with the unperturbed case in eq. (4.2.21) (in a more general case of a higher-derivative

theory it is possible the momentum differs from the zeroth order form). This is the

meaning of the method of perturbative constraints. The Hamiltonian is found by a
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Legendre transform,

H = p1ẋ− L(x, p) =
p2

1

2m
+
mω2

m

2

(
1 +

g

m

(
f + ω2

m

)2
ω2
m

)
x2 . (4.2.22)

The most important point is that it can be written as a sum of the “classical”, zeroth

order Hamiltonian (evaluated for g = 0 in the above equation) and the perturbation

term

Hpert =
g

2

(
f + ω2

m

)2
x2 , (4.2.23)

which vanishes in g → 0 limit, validating the method of perturbative constraints. The

Hamilton equations of motion derived from this perturbative approach agree with the

Euler-Lagrange equation of motion we derived in eq. (4.1.27).

Note the drastic difference between Richard’s (eq. (4.2.22)) and Emmy’s (eq. (4.2.18))

Hamiltonians. These are essentially two distinct theories. If Richard would like to quan-

tize this theory, there has to be a good reason to do so, which in this case would lie in

the assumption that g is unrelated to a quantum correction. There could be systems

in which that might indeed be the case, but if we suppose that g ∼ ~ then the higher

derivative term is interpreted as a quantum correction and mimics the role of the Hµν

and Bµν tensors in the SEE (valid under the assumption of l2 � 1), implying that

there is no much sense in assuming that the full quantum theory would be obtained by

quantizing what is supposed to be its semiclassical limit. In other words, “perturbation

before quantization” (PbQ) is not a meaningful way to proceed in constructing the full

quantum theory if the higher-derivative terms are the large length scale perturbative

corrections of the small-scale quantum effects. Hence, we conclude that it makes sense

to quantize only Emmy’s version of the theory, i.e. to approach with “quantization be-

fore perturbation” (QbP). The classical treatment of the Lagrangian valid at Emmy’s

energies is disregarded and is reserved for the classical perturbative treatment of the

Lagrangian at Richard’s energies.

4.3 Hamiltonian formulation of General Relativity

Before we go into Hamiltonian formulation of theories with higher derivatives we make

a short detour in order to present the Hamiltonian formulation of GR [18, chapter

20],[104, chapter 12]. In its Hamiltonian formulation, GR is a theory that describes how

three-dimensional spatial hypersurface, described by the three-metric metric, evolves

in time. Even though things are a bit more subtle than, say, a particle in spacetime

with a potential, one could think of the dynamics of the three-metric in an analogous

way. Instead of just restating the Hamiltonian formulation of GR here, we shall employ

our unimodular-conformal variables defined in section 2.3 and present thus resulting
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4. Classical higher derivative theories and their perturbative...

Hamiltonian formulation. In that way, the evolution of the three-metric is split into

the evolution of its conformally invariant part h̄ij and its scale-full part a. We shall

also add a non-minimally coupled scalar field (cf. section 2.4.2) to the EH action.

4.3.1 Unimodular-conformal variables

The EH action without the cosmological constant and with a scalar (density) field reads

SEχ =

∫
dt d3x (LE

ADM + Lχ)− l2
∫

dt d3x a2N̄

(
∇µ
(
n̄µK̄

)
− 2

N̄
D ·DN̄

)
(4.3.1)

where

LE
ADM =

l2~N̄a2

2

(
a2 (3)R+ K̄T · K̄T − 6K̄2

)
(4.3.2)

is called the ADM Lagrangian [3] and is based on eq. (2.3.54), while Lχ is given by

eq. (2.4.20). The last term in eq. (4.3.1) is the boundary term [104, section 12.4] and

will be disregarded (i.e. we assume no issue with boundaries of spacetime and space),

along with all divergences in the matter field Lagrangian in eq. (2.4.20). This boundary

term effectively eliminates the second derivatives of the metric from the Lagrangian and

shows that the Lagrangian of GR is not a genuine higher derivative theory. Note that

since GR is a first order theory there is no need to consider the extrinsic curvature

components as independent variables, so in this section they are treated merely as

labels in order to simplify notation.

At first glance, one notices that there are no velocities ˙̄N and Ṅ i in the Lagrangian.

According to the constraint analysis (cf. appendix A.5), one should expect constraints,

because this implies that the lapse density N̄ and shift vector N i are arbitrary. The

momenta are defined as11

pχ =
∂LEχ

∂χ̇
= n̄µ∂µχ+ 6ξcK̄χ−

∂iN
i

3N̄
χ

⇒ χ̇ = N̄
(
pχ − 6ξcK̄χ

)
+
∂iN

i

3
χ+N i∂iχ , (4.3.3a)

pa =
∂LEχ

∂ȧ
= −6l2~a

l̃2
K̄ + 6ξc

χ

a
pχ (4.3.3b)

⇒ K̄ = − l̃2

6l2~a

(
pa − ξc

χ

a
pχ

)
(4.3.3c)

11Note that the all momenta have dimensions of [~], except pχ, whose dimension is [~]1/2.
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⇒ ȧ = − N̄ l̃
2

6l2~

(
pa − 6ξc

χ

a
pχ

)
+

1

3
aDiN

i , (4.3.3d)

p̄ =
∂LEχ

∂ ˙̄h
=
l2~a2

2

(
1− ξ χ2

l2~a2

)
K̄T
]

⇒ K̄T =
2

l2~a2

(
1− ξ χ2

l2~a2

)−1

p̄[ (4.3.3e)

⇒ ˙̄h =
4

l2~a2
N̄

(
1− ξ χ2

l2~a2

)−1

p̄[ + 2
[
D̄(iN̄j)

]T
, (4.3.3f)

where we have introduced a χ- and a-dependent dimensionless coupling

l̃2 :=
1

1 + 6ξξc
χ2

l2~a2

. (4.3.4)

The bold notation is defined as follows. Objects such as p̄ and K̄T stand for p̄ := p̄ij and

K̄T := K̄T
ij ; then p̄ ·p̄ ≡ h̄ikh̄jlp̄ij p̄kl and K̄T ·K̄T ≡ h̄ikh̄jlK̄ijK̄kl. The musical notation

designates that object’s indices are lowered ([) or raised (]) by h̄ij ’s: p̄[ := p̄kl =

h̄ikh̄jlp̄
ij and K̄T

] := K̄Tkl = h̄ikh̄jlK̄T
ij . We allow to mix the bold notation with the

index notation, since the use of the bold notation is just a matter of convenience. Note

that pχ, pa and p̄ij are tensor densities of scale weight two, two and five, respectively.

We also have two vanishing momenta, i.e. two primary constraints (see appendix A.5)

due to Lagrangian’s independence of ˙̄N and Ṅ i,

pN̄ =
∂LEχ

∂ ˙̄N

D
= 0 , pi =

∂LEχ

∂Ṅ i

D
= 0 . (4.3.5)

The Poisson bracket defined in eq. (A.5.10) in unimodular-conformal variables reads

{A(x), B(y)}

=

∫
d3z

(
δA(x)

δh̄ij(z)

δB(y)

δp̄ij(z)
+
δA

δa

δB

δpa
+
δA

δχ

δB

δpχ
+
δA

δN̄

δB

δpN̄
+

δA

δN i

δB

δpi
−A(x)↔ B(y)

)
.

(4.3.6)

Then the canonical pairs obey the following equal-time Poisson brackets,

{
h̄ij(x), p̄ab(y)

}
= 1Tab

(ij)δ(x,y) , (4.3.7)
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{
qA(x),ΠB(y)

}
= δABδ(x,y) , (4.3.8)

where qA = (a, χ) and ΠB = (pa, pχ). Note that in eq. (4.3.7) the result is the traceless

identity 1abTij because the variation of the shape parts of the metric and its momentum

are traceless, cf. eq. (A.4.2). Lapse density and shift vector obey analogous Poisson

brackets to eq. (4.3.8), while all other Poisson brackets vanish.

The preservation of primary constraints in eq. (4.3.5) in time will give two more

constraints as we shall soon see. First one needs to find the total Hamiltonian via

the Legendre transform by expressing the velocities in terms of the momenta with

eqs. (4.3.3a)-(4.3.3f). To that purpose we need to apply the product rule for derivatives

in three terms: the next-to-last term in eq. (4.3.3a) multiplied by pχ, the last term in

eq. (4.3.3d) multiplied by pa and the last term in eq. (4.3.3f) contracted with p̄ij . The

first two cases are trivially treated and they produce the following surface terms,

1

3

∫
d3x ∂i

(
N iχpχ +N iapa

)
. (4.3.9)

We focus on the third case now. Recall that symmetrization on ij indices and subtrac-

tion of trace ensures that
[
D̄(iN̄j)

]T
is scale-less (cf. eq. (2.2.19)). For this reason we

can drop the symmetrization and traceless notation if this term is contracted with p̄ij ,

which is symmetric and traceless, i.e. we have the following,

∫
d3x p̄ij

[
D̄(iN̄j)

]T
=

∫
d3x p̄ijD̄iN̄j =

∫
d3x D̄i

(
Nkh̄kj p̄

ij
)
−
∫

d3xNkD̄i

(
h̄kj p̄

ij
)

=

∫
d3x ∂i

(
Nkh̄kj p̄

ij
)
−
∫

d3xNkD̄i

(
h̄kj p̄

ij
)
. (4.3.10)

Substituting velocities in eqs. (4.3.3a)-(4.3.3f) into the following Legendre transform

and using eq. (4.3.10) and other product rules, the resulting total Hamiltonian is given

by

HEχ =

∫
d3x

(
ȧpa + ˙̄hij p̄

ij + χ̇pχ + λN̄pN̄ + λip
i − LADM

)

=

∫
d3x

{
N̄H̄Eχ

⊥ +N iH̄Eχ

i + λN̄pN̄ + λipi
}

+HEχ
surf , (4.3.11)

where the surface terms

HEχ
surf =

∫
d3x ∂i

(
2Nkh̄kj p̄

ik +
1

3
N iχpχ +

1

3
N iapa

)
, (4.3.12)
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which arise from product rules will be left out. Note that we have already named λN̄ ≡
˙̄N and λi ≡ Ṅ i as Lagrange multipliers. Expressions H̄Eχ

⊥ and H̄Eχ

i are independent of

N̄ and N i which follow from the demand that primary constraints in eq. (4.3.5) are to

be preserved in time,

ṗN̄ = {pN̄ , H}
D
= 0

⇒ H̄Eχ

⊥ = − l̃2

12l2~

(
pa − 6ξc

χ

a
pχ

)2
+

1

2
p2
χ +

2

l2~ a2

1(
1− ξ χ2

l2~a2

) p̄ · p̄

− l2~a4

2
(3)R+

1

2
Uχ D

= 0 , (4.3.13a)

ṗi =
{
pi, H

} D
= 0

⇒ H̄Eχ

i = −2D̄j

(
h̄ikp̄

kj
)
− 1

3
Di (a pa)−

1

3
(χ∂ipχ − 2∂iχpχ)

D
= 0 . (4.3.13b)

where Uχ was defined in eq. (2.4.22). Constraint in eq. (4.3.13a) is called the Hamil-

tonian constraint and (4.3.13b) is called the momentum constraint12. The constraints

represent relations among the phase space variables which are to hold at every moment

in time.

4.3.2 Original, ADM variables

Before we say more on these constraints, let us consider the constraints in the original

variables in vacuum GR [104, chapter 12], [138, chapter 1], [82, chapter 4], [18, chapter

20],

HE
⊥ = 2κ Gikjlp

ij
ADMp

kl
ADM −

√
h

2κ
(3)R

D
= 0 , (4.3.14a)

HE
i = −2Dj

(
hikp

kj
ADM

)
D
= 0 , (4.3.14b)

where

pijADM =
1

2κ
GikjlKkl =

√
h

2κ

(
Kij − hijK

)
, (4.3.15)

12Technically speaking, there are three constraints in what is called the “momentum constraint”,
i.e. one for each value of the index.
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is called “the ADM momentum” and Gikjl is called DeWitt supermetric and is defined

by

Gikjl :=

√
h

2

(
hikhjl + hilhjk − 2hijhkl

)
. (4.3.16)

It is the metric on the space of symmetric rank-2 tensors with an inverse

Gikjl :=
1

2
√
h

(hikhjl + hilhjk − hijhkl) , Gikjl Gkmln = 1ij(mn) . (4.3.17)

It is important to note that simple lowering of indices with hij does not define the

inverse of the DeWitt metric from eq. (4.3.16),

h Gikjl 6= hiahkchjbhldG
acbd =

√
h

2
(hachbd + hadhbc − 2habhdc) . (4.3.18)

In terms of the DeWitt supermetric the kinetic term of the ADM Lagrangian can be

written as

KijK
ij −K2 =

1√
h
GikjlKikKjl . (4.3.19)

Now, the constraints obey what is called “the hypersurface foliation (or deforma-

tion) algebra”. Namely, if one defines a smeared version of a constraint CA(x) as a

functional of a smearing function η(x),

CA[η] =

∫
d3x η(x) · CA(x) , (4.3.20)

the Hamiltonian and the momentum constraints close the following algebra

{HE
⊥[ε1],HE

⊥[ε2]} = HE

||[ε1∂
iε2 − ε2∂

iε1] , (4.3.21){
HE

||[~η],HE
⊥[ε]

}
= HE

⊥[L~ηε] , (4.3.22){
HE

||[~η1],HE

||[~η2]
}

= HE

||[L~η1
~η2] , (4.3.23)

where HE
⊥[ε1] is the smeared version of the Hamiltonian constraint and HE

||[~η] is the

smeared version of the momentum constraint. Addition of matter contribution to HE
⊥

and HE

|| does not spoil the algebra. The meaning of this algebra is that GR is a

reparametrization-invariant theory. In particular, eq. (4.3.23) says that the theory is

invariant under three-dimensional diffeomorphisms and it is usually said that the mo-

mentum constraint is the generator of spatial coordinate transformations. As for the
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Hamiltonian constraint, it is related to the reparametrizations of time coordinate and

is usually referred to as the generator of time translations. However, eq. (4.3.21) and

eq. (4.3.22) show that one cannot simply transform the time coordinate without affect-

ing the way the spatial hypersurfaces have been chosen — which is expected because

the hypersurfaces are defined in terms of the time function t. For this reason one must

think of these four constraints not as separate generators but as 3 + 1 decomposition

of some generator of four-dimensional coordinate transformations related to GL(4,R)

group. This was clarified by Castellani [34], Pons et al. [113], Pitts [110] and others; we

come back to this in section 4.6. On the other hand, in relation to the reparametriza-

tion invariance, it was shown by Hojman et al. [62] (cf. [82, chapter 4]) that the form

of the Hamiltonian and the momentum constraint of GR can be derived from dynamics

of three-hypersurfaces if one starts from an assumption that the three-metric and its

conjugate momentum is the only gravitational pair of canonical variables defined on the

three-dimensional hypersurface. As remarked in a textbook by Thiemann [138, section

1.5] and shown by Deruelle et al. [39] for a class of actions whose Lagrangian is a gen-

eral function of the Riemann tensor f(Rµανβ), any reparametrization-invariant theory

of spacetime obeys such an algebra, regardless of the specific form of the Hamiltonian

and momentum constraints13.

Coming back to our formulation, let us establish the relationship with the usual

ADM formulation. There are three things to consider: the relationship between the

momenta, the comparison of the constraints and their algebra, and the DeWitt super-

metric. Let us write down constraints in eqs. (4.3.13a) and (4.3.13b) for χ = 0 and

pχ = 0, i.e. for vacuum,

H̄E
⊥ = − 1

12l2~
p2
a +

2

l2~ a2
p̄ · p̄− l2~a4

2
(3)R

D
= 0 , (4.3.24a)

H̄E
i = −2D̄j

(
h̄ikp̄

kj
)
− 1

3
Di (a pa)

D
= 0 . (4.3.24b)

The relationship between the momenta can be found by making use of the decomposed

extrinsic curvature given by eq. (2.3.24),
√
h = l30a

3, hij = l−2
0 a−2h̄ij and κ = l2p/~ in

eq. (4.3.15), which results in

pijADM = a−2p̄ij +
a−1

6
h̄ijpa , (4.3.25)

13This general result implies that there might be a possibility that more general theories than only
GR could be derived from the dynamics of three-hypersurfaces if one negates the condition of [62] that
the three-metric and its conjugate momentum are the only gravitational pair of canonical variables
defined on the three-dimensional hypersurface.
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pa = 2a−1pADM = −6l2~aK̄ , p̄ij = a2pijTADM =
l2~a2

2
h̄ikh̄jlK̄T

kl , (4.3.26)

i.e. pa and p̄ij are rescaled trace pADM and traceless pijTADM parts of the ADM momentum.

Comparison of eq. (4.3.24a) with eq. (4.3.14a) shows that they differ by HE
⊥ = a−1H̄E

⊥,

but since it must be that NHE
⊥ = N̄H̄E

⊥ so the total Hamiltonian does not change in

transition to the unimodular-conformal variables. This is related to the fact that the

unimodular-conformal variables can be derived by a canonical transformation from the

usual ADM variables, as we prove in appendix A.3.3. Because of this, we claim without

proof that the hypersurface algebra in eqs. (4.3.21)-(4.3.23) holds for the constraints

in unimodular-conformal variables in eqs. (4.3.13a) and (4.3.13b), or eqs. (4.3.24a) and

(4.3.24b). This should not change if the matter is present, as in eqs. (4.3.13a) and

(4.3.13b). Therefore, the Hamiltonian formulation of GR in unimodular-conformal

variables is equivalent to the ADM formulation of GR.

4.3.3 DeWitt supermetric

The final note should be on the DeWitt supermetric. First of all, note that h̄ij and p̄ij

have five independent components. This means that the second term in eq. (4.3.24a) can

be transformed into a sum of five terms. In relation to this, DeWitt [41] has shown that

the supermetric has a signature (−,+,+,+,+,+), i.e. as if the supermetric describes

the line element in a six-dimensional pseudo-Riemannian space where one direction

is the direction of pure dilations (i.e. conformal transformations) — the direction of

the scale density — and other five orthogonal directions are the directions of shear

(volume-preserving) deformations of the three-metric. This space is the space of all

three-geometries, whose evolution can be described by the evolution of each of the six

three-metric components. Such space is usually referred to as the superspace and one

can study its geometry [41, 56]. Now, denote with another index I, J = a, 1, ..., 5 the

scale component and the five shape components of the three-metric and with index

Ī , J̄ = 1, ..., 5 only the five shape components. Then we can define the inverse of the

DeWitt metric as

GIJ :=
(− 1

12 0

0 2a−2¯ḠIJ̄

)
, (4.3.27)

where Gaa = −1/12, and write the kinetic term in eq. (4.3.24a) as

1

l2~
GIJp

IpJ . (4.3.28)

Note that formulation of the theory in the unimodular-conformal variables automati-

cally exposes the minus sign in front of the kinetic term of the scale density. DeWitt
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[41] has done a similar unimodular transformation14 which does the same. The “time-

like” direction of the scale density should not be understood as having something to

do with the timelike direction of the spacetime. This minus sign in the DeWitt super-

metric in eq. (4.3.16) is just a simple geometrical consequence which is independent of

the dimension. It has to do with the minus sign in the term K2 −KijK
ij in the ADM

Lagrangian in eq. (4.3.2). Namely, by considering a D+ 1 formulation of the d = D+ 1

dimensional spacetime it can be shown [151, eq. (23a)] that the form of the D + 1

Hamiltonian constraint remains unchanged; in the vacuum case it takes the following

form

KijK
ij −K2 − (D)R = 0 , i, j = 1, ..., D . (4.3.29)

where Kij is the extrinsic curvature of the D-dimensional spatial hypersurface and (D)R

is its intrinsic Ricci scalar. To an intuitive eye this should not be surprising because

the form K2 −KijK
ij is nothing other than the second scalar invariant of matrix Kij :

the term K2 − KijK
ij for D = 2 dimensions is just the determinant of the extrinsic

curvature, while in higher dimensions is always the coefficient in front of the D − 2-

th order term in the latter’s characteristic polynomial for the eigenvalue problem for

Kij . This is a consequence of Gauss’ theorema egregium that relates the intrinsic with

extrinsic curvature of a D-dimensional hypersurface embedded in a D+ 1-dimensional

space. Hence, the DeWitt supermetric in eq. (4.3.16) is unchanged in D-dimensions

and it is important to understand that this is just a geometrical consequence of the

generalization of Gauss’ theorema egregium. However, a better insight is gained if one

interprets the DeWitt supermetric as the metric on superspace: one can define a line

element on this space. Before we show this line element, for the purposes of later

discussions, it is also instructive to define a more general supermetric and its inverse

Gikjlζ :=

√
h

2

(
hikhjl + hilhjk − 2ζhijhkl

)
=

1

2a

(
h̄ikh̄jl + h̄ilh̄jk − 2ζh̄ij h̄kl

)
, (4.3.30)

Gζikjl :=
1

2
√
h

(
hikhjl + hilhjk −

2ζ

ζD − 1
hijhkl

)

=
a

2

(
h̄ikh̄jl + h̄ilh̄jk −

2ζ

ζD − 1
h̄ij h̄kl

)
(4.3.31)

where in the second lines in both equations above we exposed the scale and shape

parts of the three-metric. If ζ = 1, one recovers the DeWitt supermetric of GR. One

14In [41, 56] a variable τ defined as τ := 4|ζ − 1/3|1/2(
√
h)1/2 was used instead of the scale density

a := (
√
h)1/3 as we do here.
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may investigate the consequences of other values of ζ, as done in [41, 55, 56]. The

most important point is that for the critical value ζc = 1/D the inverse supermetric

cannot be defined. Now, the line element on superspace — the distance between two

three-metrics — is defined as follows [41, 56]

dS2 := Gikjlζ dhij ⊗ dhkl = Gikjlζ

(
4a2h̄ij h̄klda⊗ da+ a4dh̄ij ⊗ dh̄kl

+ 2a3h̄ijda⊗ dh̄kl + 2a3h̄kldh̄ij ⊗ da
)
,

= a3

[
−4D(ζD − 1)

da

a
⊗ da

a
+ h̄ikh̄jldh̄ij ⊗ dh̄kl

]
,

= a3

[
−4D(ζD − 1)

da

a
⊗ da

a
+ ḠĪJ̄dbĪ ⊗ dbJ̄

]
, (4.3.32)

where bĪ are the five independent shape components of h̄ij and ḠĪJ̄ is the “shape part”

of the supermetric (whose inverse appears in eq. (4.3.27)), which depends only on h̄ij .

In terms of h̄ij , one can define the traceless DeWitt supermetric as

Ḡikjl :=
1

2

(
h̄ikh̄jl + h̄ilh̄jk

)
− 1

D
h̄ij h̄kl , (4.3.33)

which may also be called the shape DeWitt supermetric. Note that the last term above

vanishes identically when contracted with dh̄ijdh̄kl. We shall hear more about it in

the next section. One can clearly identify what we shall from now on call the scale-

like and the shape-like direction in superspace, which are the analogues of the timelike

and the spacelike directions in spacetime. The shape “subspace” on which the shape

part ḠĪJ̄ of the supermetric defines distances can be shown to be an Einstein space

with a negative constant scalar curvature whose Ricci curvature is proportional to the

negative of the shape part of the supermetric [41, eq. (5.15)]. This space is inert to

the spatial conformal transformations as the shape supermetric and the “coordinates”

on this space are SL(3,R) tensors. Note that the shape subspace is independent of

ζ. But we again see that the critical value ζc = 1/D plays an important role in the

scale-like direction: for ζ > ζc the supermetric is indefinite, while for ζ < ζc the sign

of the scale-like direction becomes positive15. For the critical case we see that the

scale-like direction drops out and one has a singularity there. DeWitt supermetric has

a more complicated form in the presence of matter. This can be seen on an example

of the non-minimally coupled scalar (density) field that we used at the beginning of

this section, i.e. from eq. (4.3.13a). From there one can clearly see that the signature

15The value of ζ can be studied in the context of theories generalizing GR [55] and it also has
consequences on the geometry of superspace [56].
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depends on the evolution of the matter field and the scale density, and on the value

of involved coupling constants. This was investigated by Kiefer in [77] in the context

of the initial value problem16: for a critical value χcrit for which eq. (4.3.4) vanishes,

the scale-like direction disappears and the DeWitt metric becomes positive-definite,

whereas for values l̃2 > 0 or l̃2 < 0 the DeWitt metric has an indefinite signature.

However, we are not interested in the features of the DeWitt supermetric appearing in

GR, nor its general extensions such as ζ 6= 1. We are interested in an object of similar

role and features as the DeWitt supermetric that could appear in higher-derivative

theories and the identification of the scale-like part of such a supermetric. There, other

parameters than ζ or dimension D could conspire to change the signature of such a

supermetric and the behavior of the scale-like direction. The important thing to keep

in mind from the present discussion is that the existence of the scale-like direction in

superspace is related to the fact that the theory (in this case GR) is not conformally

invariant.

It was already mentioned that the scale-like direction is analogous to the timelike

direction in classical relativistic mechanics. The scale density as an evolution parameter

is referred to as the intrinsic time [41]. This becomes obvious if one compares the

Hamiltonian constraint of GR with the Hamiltonian of the relativistic particle with

mass m:

H = −p2
t + p2

i +m2 = 0 . (4.3.34)

In GR’s Hamiltonian constraint in eq. (4.3.24a) the potential (the Ricci scalar and the

cosmological constant) would be a kind of a “mass” term in the relativistic particle

language, but it would be a “space”- and “time”-dependent mass term because it

depends on the shape and the scale parts of the three-metric. But because of this

indefinite signature it is tempting to think of the scale density as directly related to

the notion of coordinate time t itself, but even though there are implications of the

hyperbolic nature of the kinetic term in the Hamiltonian constraint of GR to the

observed dynamics, one should distance oneself from direct identification of the scale

density being the clock with respect to which we measure coordinate time [82]. It is

more appropriate to think of it as one of many choices for an evolution parameter with

respect to which the dynamics of variables within the configuration space itself may

be expressed. To connect the notion of time with the notion of intrinsic time (or any

other evolution parameter defined in terms of the configuration space variables of an

underlying theory of gravity) one must address the contradiction that quantum field

theory on curved spacetime refers to the spacetime as a fixed background, while in GR

the spacetime itself is a dynamical object [83]. Therefore, one needs to be careful what

16There the scalar field is rescaled as ϕ = a−6ξχ so the equations are different and simpler, but l̃2

in eq. (4.3.4) is of the same form up to differences in notation and the critical value of χ is the same
up to an appropriate rescaling by a.
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one means by “t”. It is hoped that quantum gravity may address this issue, and indeed

the notion of the problem of time arises there [70] as one of the most important unsolved

questions about the observable Universe.

4.4 Hamiltonian formulation of a general quadratic

curvature theory

With this section we start the Hamiltonian formulation of higher-derivative theories

of gravity that we discuss in this thesis. Kaku [73] was first to open this field on the

example of an action in which only the Weyl-tensor term is present. Later, the same

theory was addressed by Boulware [22]. Hamiltonian formulation of the most general

quadratic curvature theory akin to the one discussed in this thesis was analysed by

Szczyrba [137] using the symplectic formalism; Szczyrba’s work seems to be the first

account of its kind and is rather detailed on the matter of features and number of

degrees of freedom of the theory. Another work which shows a great detail into features

and symmetries of the theory is by Odintsov et al. [25]. Some exact solutions of this

theory were obtianed by Demaret et al. [37, 38] using the Hamiltonian formulation

of quadratic curvature gravity [116]. More recently, Deruelle et al. [39] discussed

the Hamiltonian formulation of a general f(Riemann) theory of gravity and pointed

out some important features that were not mentioned elsewhere. Kluson̆ et al. [86]

have presented the Hamiltonian formulation of a theory based on the same action as

we are using here, except with a conformally coupled scalar field added to the case

of the Weyl-tensor gravity only. The author’s Master thesis [99] covers the Weyl-

tensor (W) and Weyl-Einstein (WE) gravity with their canonical quantization. The

case of the W gravity was further considered in [69] where the notion of the generator

of conformal transformations was introduced for the first time correctly. These are

the most important examples of Hamiltonian formulation of generic higher-derivative

theories of gravity. Other examples of the Hamitlonian formulation of higher-derivative

theories mainly deals with specific models, see e.g. [66, 124] and comprehensive list of

references in [116, chapter 4].

In none of the aforementioned works except [25, 137] the idea to use variables similar

to the unimodular-conformal variables has appeared. The fact that the conformal

invariance of the 3+1-decomposed C2 term should be manifest in terms of the absence

of K and
√
h from the Hamiltonian and momentum constraints was left unnoticed

except in the two cited references (to our knowledge). Szczyrba [137] has noticed

that the extrinsic curvature separates naturally into its traceless and trace parts if one

uses what we call here the shape density h̄ij and
√
h as independent variables. They

have also analysed the constraints and the number of degrees of freedom for various

special combinations of the terms in the action. Odintsov et al. [25] have used the

Hamiltonian formulation for the purpose of the path integral formulation of higher-

derivative theories (covered in greater detail in [24]). The recent work which is closest
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to suggesting that another set of variables can reveal the conformal features of the C2

theory is [39], who mentioned at the end of their analysis that a reformulation of their

approach to the Hamiltonian formulation of the C2 theory could show that
√
h could

be eliminated from the constraints due to its conformal invariance. Kluson̆ et al. [86],

despite their very detailed constraint analysis, have only realized that the velocities

hijK̇ij cannot be inverted for in the C2 theory. Their result — and likewise the results

of Kaku [73] and Boulware [22] — fails to recognize that
√
h has to be absent from

the theory. They do, however, notice that the traceless part of the extrinsic curvature

KT
ij and its conjugate momentum appears to be the only dynamical variable from the

extrinsic curvature sector, although their form of constraints still depended on the trace

K. In the author’s Master thesis [99] the Hamiltonian formulation of the W gravity was

achieved by using KT
ij and K as independent canonical variables, but the Hamiltonian

and momentum constraints of the theory still had the form that depends on
√
h. The

author was unaware of the results of [25, 137] at the time of working on [99] and

[99]. With the introduction of the unimodular-conformal variables that we presented

in chapter 2 we are able to formulate a Hamiltonian version of the W and WE theories

in which the constraints manifestly exhibit conformal properties [84], such that a and

K̄ are completely eliminated from the Hamiltonian and momentum constraints. In

this section we aim to extend the application of the unimodular-conformal variables

employed in [84] to the more general action given by eq. (4.1.35). We show that

the choice of unimodular-conformal variables — as motivated in chapters 1-3 — can

completely and clearly separate the degrees of freedom which are introduced by the R2

and the C2 terms into conformally invariant and conformally non-invariant ones. The

upcoming sections will focus on particular cases, one of which is covered in [84], such

that features of the R2 and the C2 terms are presented in a manner not yet encountered

in the literature.

4.4.1 Hamiltonian formulation in unimodular-conformal variables

The Lagrangian we are working with in this section is based on eq. (4.1.35) plus

the action for a non-minimally coupled scalar field whose Lagrangian was derived in

eq. (2.4.20). In unimodular-conformal variables the action takes the following form,

SERWχ =

∫
dtd3xLERWχ ≡

∫
dt d3x (LE + LR + LW + Lχ) , (4.4.1)

where

LE =
l2~N̄a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T − 6K̄2
)
, (4.4.2)

LR =
βR~
72

N̄

[
6Ln̄K̄ + 6K̄2 + K̄T · K̄T + a2 (3)R− 2

N̄
D ·DN̄

]2

, (4.4.3)
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LW = −αW~N̄
(

1

2
C̄E · C̄E − C̄B · C̄B

)
. (4.4.4)

The R2 term is derived using eq. (2.3.54), the Weyl-tensor term comes from eq. (2.3.47),

while the scalar density field Lagrangian is given by eq. (2.4.20). For convenience, we

have redefined the coupling of the R2 term as βR → βR/18. For simplicity we shall

assume that all divergences giving rise to boundary terms are subtracted.

There are two important features of this higher-derivative Lagrangian. Firstly, un-

like in GR, this Lagrangian depends on velocities ˙̄N, Ṅ i, through ˙̄K and ˙̄KT
ij . One

might be tempted to think that this fact prevents one from deriving the correspond-

ing Hamiltonian and momentum constraints, thereby obscuring the diffeomorphism

invariance of the theory, but this is not the case, as we shall soon see. Secondly, the

Lagrangian depends not only on the first but also on the second time derivatives of the

three-metric17, and so one can write

LERWχ = LERWχ

(
N̄ ,N i, a, h̄ij , χ,

˙̄N, Ṅ i, ȧ, χ̇, ˙̄hij , ä,
¨̄hij

)
. (4.4.5)

The second time derivatives cannot be partially integrated away (since, unlike the EH

Lagrangian, the Lagrangian satisfies eq. (4.1.13)).

Now, since we are dealing with a higher-derivative Lagrangian, one needs to reduce

the order of the theory in order to arrive at the Hamiltonian formulation. The method

for doing this was explained on an example of a simple harmonic oscillator with a higher

derivative term in section 4.2: define a new set of variables such that all first derivatives

are the new independent variables themselves and add the necessary constraints to the

Lagrangian which ensure that the new variables are treated independently only until the

constraints are enforced18. In the present case, one uses the components of the extrinsic

curvature as the new variables, which “hide” the velocities of the components of the

three-metric. The constraints can be introduced by the following “delayed equalities”

(cf. appendix A.5),

K̄T
ij := 2N̄K̄T

ij − ˙̄hij + 2
[
D̄(iN̄j)

]T D
= 0 , (4.4.6)

K := N̄K̄ − ȧ

a
+
DiN

i

3

D
= 0 , (4.4.7)

17It depends on the first and second space derivatives as well, but for the statement in the text only
time derivatives are relevant so we suppress the notation of explicit dependence on the former.

18One may also choose the second derivatives of the three-metric components as the new variables,
as in [22, 66], for example. The difference between the two sets of variables amounts to a canonical
transformation of exchanging the variables with its conjugate momenta.
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which are based on definitions of the traceless and trace extrinsic curvature density in

eqs. (2.3.22) and (2.3.23), respectively. In analogy to eq. (4.2.12), these constraints are

added to the initial Lagrangian in eq. (4.4.1),

LERWχ
c

(
N̄ ,N i, a, h̄ij , χ, K̄, K̄

T
ij , χ̇; ȧ, ˙̄hij , λ̄, λ̄

ijT
)

:=

LERWχ

(
N̄ ,N i, a, h̄ij , χ, K̄, K̄

T
ij , χ̇,

˙̄K, ˙̄KT
ij

)
− λ̄ijTK̄T

ij − aλK , (4.4.8)

where λ̄ijT and λ̄ are Lagrange multipliers which are tensor densities of scale weight

five and two, respectively. One can see now that all the dependence on ȧ and ˙̄hij in

eq. (4.4.8) comes only through the constraints. Furthermore, the first term on the right

hand side of eq. (4.4.8) is the same Lagrangian as in eq. (4.4.1), except that K̄ and

K̄T
ij are not just mere labels but the actual independent, but auxiliary variables. They

are the analog of q2 in the first equation in (4.2.2). The additional degrees of freedom

are thus made explicit. Moreover, observe that all time derivatives of the lapse density

and the shift have been absorbed into the new variables; in conclusion, reformulating a

higher-derivative gravity theory as a first order theory eliminates explicit dependence

of the Lagrangian on the first time derivatives ˙̄N and Ṅ i.

The conjugate momenta are now derived from the constrained Lagrangian in eq. (4.4.8)

and they take the following form

pχ =
∂LERWχ

∂χ̇
= n̄µ∂µχ+ 6ξcK̄χ−

∂iN
i

3N̄
χ , (4.4.9)

pN̄ =
∂LERWχ

c

∂ ˙̄N

D
= 0 , pi =

∂LERWχ
c

∂Ṅ i

D
= 0 , (4.4.10)

pa =
∂LERWχ

c

∂ȧ
= aλ̄ , (4.4.11)

p̄ij =
∂LERWχ

c

∂ ˙̄hij
= λ̄ijT , (4.4.12)

P̄ =
∂LERWχ

c

∂ ˙̄K
= βR~R

=
βR~

6

[
6Ln̄K̄ + 6K̄2 + K̄T · K̄T + a2 (3)R− 2

N̄
D ·DN̄

]
, (4.4.13)

P̄ ij =
∂LERWχ

c

∂ ˙̄KT
ij

= −αW~h̄ikh̄jlC̄E
kl
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= −αW~h̄iah̄jb
[
Ln̄K̄T

ij −
2

3
h̄ijK̄

T · K̄T − (3)R̄T
ij −

1

N̄

[
D̄i∂jN̄

]T]
, (4.4.14)

pλ =
∂LERWχ

c

∂ ˙̄λ
= 0 , p̄λij =

∂LERWχ
c

∂ ˙̄λijT
= 0 , (4.4.15)

where pa, p̄
ij , P̄ and P̄ ij are tensor densities of scale weight three, five, two and four;

note that pχ is the same as eq. (4.3.3a) derived in GR, except that there K̄ was expressed

in terms of pa and pχ. Note that we have 2 × 6 = 12 additional variables compared

to the original theory: the Lagrange multipliers and their conjugate momenta. But as

explained in section 4.2 and appendix A.5.2, equalities in eqs. (4.4.11), (4.4.12) and

(4.4.15) can already be set to zero without delays, since the introduction of λ̄ijT and

λ̄ does not interfere with the dynamics of the original theory [86]. This is expected

because they are introduced via a simple internal relabeling of objects which does not

give rise to any additional structure in the theory. This means that these 12 additional

variables can be eliminated even before the calculation of the Poisson brackets. This

leaves one with only seven invertible velocities — χ̇, which is the same as eq. (4.3.3a):

˙̄K = N̄

[
P̄

βR~
− 1

6

(
6K̄2 + K̄T · K̄T + a2 (3)R− 2

N̄
D ·DN̄

)]
+ L ~NK̄ , (4.4.16)

˙̄KT
ij = −N̄

[
h̄iah̄jbP̄

ab

αW~
− 2

3
h̄ijK̄

T · K̄T − (3)R̄T
ij −

1

N̄

[
D̄i∂jN̄

]T]
+ L ~NK̄

T
ij , (4.4.17)

where in eq. (4.4.17) we used eq. (2.3.43). It is now obvious that the dynamics will be

contained in the extrinsic curvature sector. Note in passing that the trace of eq. (4.4.17)

does not vanish, because the fourth term in there survives upon contraction with h̄ij .

Furthermore, observe that each term in eq. (4.4.16) has a pair in eq. (4.4.17): the first

terms in eq. (4.4.16) and eq. (4.4.17) are the trace and traceless part of what would be

the momentum conjugate to Kij up to scaling with a; the second term in eq. (4.4.17)

represents subtraction of the trace of Ln̄KT
ij which is just the third term in eq. (4.4.16);

the fourth term in eq. (4.4.16) is the trace of the Ricci tensor, while the latter’s traceless

piece is the third term in eq. (4.4.17); the fifth term in eq. (4.4.16) and the fourth term

in eq. (4.4.17) are the traceless and trace pieces of DiDjN̄ ; the last term in eq. (4.4.16)

together with the second term, correspond to the last term in eq. (4.4.17).

We would like to make an important observation at this point. It was men-

tioned earlier in this chapter that R2 and C2 (or RµνR
µν − R2/3, cf. footnote 7 on

page 115) terms are the only quadratic curvature terms in four dimensions which can

appear as the counter-terms, up to a reformulation done in transition from eq. (4.1.7)

to eq. (4.1.35) due to identity in eq. (4.1.31) valid only in four dimensions. Using

unimodular-conformal decomposition in this section, these two terms may be inter-

preted as two independent kinetic terms of the conformally invariant and conformally
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variant part of the extrinsic curvature. Namely, observe that the R2 term hosts the time

derivative of the expansion density K̄ only, while the C2 term hosts the time derivative

of the expansion density K̄T
ij only. This is related to the fact that the Weyl tensor and

the Ricci scalar are orthogonal pieces of the Riemann tensor. An analogy can be drawn

with the kinetic term of the EH action: there the kinetic term splits into the scale part

and the shape part in an orthogonal way, because the expansion density K̄ and the

shear density K̄T
ij are orthogonal pieces of the extrinsic curvature. Furthermore, we can

observe a certain asymmetry between the two quadratic curvature kinetic terms: the

term C2 is completely deprived of a and K̄, while the term R2 necessarily contains K̄T
ij .

In other words, this asymmetry shows that the kinetic term of K̄T
ij is independent of the

scale, but the kinetic term of K̄ is not independent of the shape. We have already met

this asymmetry in section 2.2.3. There we have seen that the Riemann tensor cannot

be split into scale-independent and shape-independent pieces in an orthogonal way and

that this fact is reflected in the behavior of the shape and scale parts of the metric in

a small neighbourhood of a geodesic; the asymmetry in the mentioned kinetic terms

— which are the independent pieces of the Riemann tensor — follows from this. This

has certain implications to the dynamics of the higher-derivative theory that we shall

come back to in the following sections.

Compared to GR, the phase space of the presently discussed higher-derivative theory

is extended by six canonical pairs of the extrinsic curvature sector. The Poisson brackets

in eq. (4.3.6) therefore contain six more terms and their antisymmetrized counterpart.

The canonical pairs thus obey the following Poisson brackets,

{
h̄ij(x), p̄ab(y)

}
= 1Tab

ij δ(x,y) ,
{
K̄T
ij(x), P̄ ab(y)

}
= 1Tab

ij δ(x,y) , (4.4.18)

{a(x), pa(y)} = δ(x,y) ,
{
K̄(x), P̄ (y)

}
= δ(x,y) , (4.4.19)

{χ(x), pχ(y)} = δ(x,y) , (4.4.20)

which is similar to eq. (4.3.7) and eq. (4.3.8), except that now we have six additional

pairs in the extrinsic curvature sector. Lapse density and shift vector again obey Poisson

brackets analogous to eq. (4.4.19). All other Poisson brackets vanish.

For the Legendre transform, which takes the following form,

HERWχ =

∫
d3x

(
ȧpa + ˙̄hij p̄

ij + ˙̄KT
ijP̄

ij + ˙̄KP̄ + χ̇pχ + λN̄pN̄ + λip
i − LERWχ

c

)
,

(4.4.21)

we need to deal with a few partial integrations on the last two terms in eq. (4.4.16) mul-

tiplied by P̄ and the last two terms in eq. (4.4.17) contracted by P̄ ij . Using eq. (2.3.52)
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and partial integration we can deal with the following term,

∫
d3x P̄L ~NK̄ =

∫
d3x

(
P̄Nk∂kK̄ +

1

3
K̄P̄ ∂kN

k

)

=

∫
d3x

(
P̄N i∂kK̄ +

1

3
∂k

(
NkK̄P̄

)
− 1

3
∂k
(
K̄P̄

))

=
1

3

∫
d3xNk

(
P̄ ∂kK̄ − ∂k

(
K̄P̄

))
+

1

3

∫
d3x ∂i

(
N iK̄P̄

)
. (4.4.22)

The last term in the above equation is a boundary term. Using the expression for

L ~NK̄
T
ij in eq. (2.3.41) and partial integration in a similar way as above, the following

term is treated as well,

∫
d3x P̄ ijL ~NK̄

T
ij =

∫
d3x

(
P̄ ijNk∂kK̄

T
ij + 2∂i

(
NkK̄T

jkP̄
ij
)
− 2Nk∂i

(
K̄T
jkP̄

ij
)

− 1

3
∂k

(
NkK̄T

ijP̄
ij
)

+
1

3
Nk∂k

(
K̄T
ijP̄

ij
))

=

∫
d3xNk

(
P̄ ij∂kK̄

T
ij − 2∂i

(
K̄T
jkP̄

ij
)

+
1

3
∂k
(
K̄T
ijP̄

ij
))

+

∫
d3x

(
2∂i

(
NkK̄T

jkP̄
ij
)
− 1

3
∂k

(
NkK̄T

ijP̄
ij
))

, (4.4.23)

where the symmetrization on lower indices ij is dropped because P̄ ij is symmetric. The

same contraction picks up only the traceless parts of the objects contracted with it.

The last two terms in the above equation are boundary terms. Furthermore, the fifth

term in eq. (4.4.16) multiplied with P̄ can be partially integrated as follows,

∫
d3x P̄DiDiN̄ =

∫
d3x

(
Di
(
P̄DiN̄

)
−DiP̄DiN̄

)
=

∫
d3x

(
Di
(
P̄DiN̄

)
−Di

(
N̄DiP̄

)
+ N̄DiD

iP̄
)

=

∫
d3x

(
∂i
(
P̄DiN̄ − N̄DiP̄

))
+

∫
d3x N̄DiD

iP̄ . (4.4.24)

A similar partial integration can be done with the fourth term in eq. (4.4.17) con-

tracted with P̄ ij , but it is easier to do it if we undo the cancellation of the scale-
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dependent terms by (3)Rij due to the unimodular-conformal decomposition for a mo-

ment. We then have the following,

∫
d3x P̄ ijDiDjN̄ =

∫
d3x

(
Di

(
P̄ ijDjN̄

)
−DiP̄

ijDjN̄

)

=

∫
d3x

(
Di

(
P̄ ijDjN̄

)
−Dj

(
N̄DiP̄

ij
))

+

∫
d3x N̄DjDiP̄

ij

=

∫
d3x ∂i

(
P̄ ijDjN̄ − N̄DjP̄

ij

)
+

∫
d3x N̄DjDiP̄

ij , (4.4.25)

where in the last equality we used renaming of indices in the second term and the

fact that P̄ ijDjN̄ and N̄DjP̄
ij are both vector densities of weight 1 (corresponding to

scale weight 3) to turn the covariant derivative into the partial one. Those two terms

are thus just boundary terms. But now it is not obvious that the sum of (3)R̄ijP̄
ij

and eq.(4.4.25) is conformally invariant. However, we can prove that in the following

indirect way. Expand the derivatives in the total divergence in the first two terms in

eq. (4.4.25) and observe that the scale a cancels out,

P̄ ijDjN̄ − N̄DjP̄
ij = P̄ ij∂jN̄ + N̄ P̄ ij∂j log a− N̄D̄jP̄

ij

− N̄Σj
jkP̄

ik − N̄Σi
kjP̄

kj + 4N̄ P̄ ij∂j log a

= P̄ ij∂jN̄ + N̄ P̄ ij∂j log a− N̄D̄jP̄
ij

− N̄Σj
jkP̄

ik − N̄Σi
kjP̄

kj + 4N̄ P̄ ij∂j log a

= P̄ ij∂jN̄ − N̄D̄jP̄
ij . (4.4.26)

The sum of the second and the last term above cancels with all terms containing the

scale connection due to eq. (2.2.8) and eq. (2.2.10) applied to three dimensions and

using the fact that h̄ijP̄
ij vanishes. Therefore, the boundary term in eq. (4.4.25) is

conformally invariant. Now, adding
∫

d3x (3)RijP̄
ij to the integrand in both sides of

eq. (4.4.25),

(3)RijP̄
ij+

[
DiDjN̄

]T
P̄ ij = (3)RijP̄

ij+N̄DjDiP̄
ij+∂i

(
P̄ ij∂jN̄ − N̄D̄jP̄

ij
)
, (4.4.27)

we can conclude that since the LHS of the equation is conformally invariant (cf. ap-

pendix A.3.1) and the divergence term on the RHS is also conformally invariant, then

the first two terms together on the RHS must be conformally invariant as well and we
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can simply relabel (3)RijP̄
ij → (3)R̄ijP̄

ij , DjDi → D̄jD̄iP̄
ij . Furthermore, since D̄iP̄

ij

is a vector density, D̄jD̄iP̄
ij = ∂jD̄iP̄

ij because D̄j derivative does not recognize the

non-zero weight of a tensor density it acts on and we also have Γ̄iij = 0 (cf. eq. (2.2.9)).

Finally, we have

(
N̄ (3)RT

ij +
[
Di∂jN̄

]T)
P̄ ij = N̄

(
(3)R̄T

ij + ∂jD̄i

)
P̄ ij + ∂i

(
P̄ ij∂jN̄ − N̄D̄jP̄

ij
)
.

(4.4.28)

Plugging eq. (4.4.16) and eq. (4.4.17) into the Legendre transform in eq. (4.4.21),

using eq. (4.4.22), eqs. (4.4.23), (4.4.24) and (4.4.28) in it, and substituting all velocities

and Lagrange multipliers, we obtain the total Hamiltonian of the quadratic curvature

higher-derivative theory of gravity with a non-minimally coupled scalar (density) field,

HERWχ =

∫
d3x

{
N̄H̄ERWχ

⊥ +N iH̄ERWχ

i + λN̄pN̄ + λipi
}

+HERWχ
surf , (4.4.29)

with a rather different Hamiltonian and momentum constraints compared to the case

of GR (cf. eqs. (4.3.13a) and (4.3.13b)),

H̄ERWχ

⊥ =
1

2βR~
P̄ 2 − 1

2αW~
P̄ · P̄−D2

RP̄ + D2
W · P̄ + aK̄pa + 2K̄T · p̄

− αW~C̄B · C̄B − l2~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T − 6K̄2
)

+
1

2
p2
χ − 6ξcK̄χpχ +

1

2
V χ D

= 0 , (4.4.30)

H̄ERWχ

i = −2D̄j

(
h̄ikp̄

kj
)
− 1

3
Di (a pa)−

1

3
(χ∂ipχ − 2∂iχpχ)

+ P̄ jkD̄iK̄
T
jk − 2D̄j

(
K̄T
ikP̄

jk
)

+
1

3
∂i

(
K̄T
jkP̄

jk
)

+ P̄ ∂iK̄ − ∂i
(
K̄P̄

)
(4.4.31)

where we defined

D2
RP̄ :=

1

6

(
6K̄2 + K̄T · K̄T + a2 (3)R− 2D ·D

)
P̄ , (4.4.32)

D2
W · P̄ :=

(
(3)R̄T

ij +
[
∂jD̄i

]T )
P̄ ij (4.4.33)

in order to simplfy the equations and recall that V χ is given by eq. (2.4.21). The term

HERWχ
surf contains, in addition to the surface term appearing in the total Hamiltonian

of GR with χ-field given by eq. (4.3.12), surface terms from eqs. (4.4.22), (4.4.23) and
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(4.4.28), and is given by

HERWχ
surf = HEχ

surf +
1

3

∫
d3x ∂i

(
N iK̄P̄ + 2NkK̄T

jkP̄
ij −N iK̄T

jkP̄
jk

+ P̄DiN̄ − N̄DiP̄ + P̄ ij∂jN̄ − N̄D̄jP̄
ij
)
, (4.4.34)

which, when integrated, shows that not only canonical variables in the three-metric

and scalar (density) field sector contribute to the surface term, but the extrinsic cur-

vature sector contributes as well. Before we go into details about similarities and

differences between the constraints of this theory and the constraints of GR, we would

like to mention that the constraint algebra of the quadratic curvature higher-derivative

theory or gravity with matter discussed here should be the same as in GR, given by

eqs. (4.3.21)-(4.3.23). This expectation is based on the fact that we are dealing with

a reparametrization-invariant theory [138, section 1.5] and is further supported by the

results of Deruelle et al. [39] who showed that a generic metric theory of gravity whose

Lagrangian is an arbitrary function of the Riemann curvature tensor obeys the hy-

persurface foliation algebra, in accordance to its reparametrization invariance. The

addition of matter and the formulation in another set of canonical variables (such

as the unimodular-conformal variables in our case) should not change this outcome.

Therefore, we think that there is enough evidence to claim without proof that the

constraints in eqs. (4.4.30) and (4.4.31) are first class constraints and that they satisfy

{
HERWχ

⊥ [ε1],HERWχ

⊥ [ε2]
}

= HERWχ

|| [ε1∂
iε2 − ε2∂

iε1] , (4.4.35){
HERWχ

|| [~η],HERWχ

⊥ [ε]
}

= HERWχ

⊥ [L~ηε] , (4.4.36){
HERWχ

|| [~η1],HERWχ

|| [~η2]
}

= HERWχ

|| [L~η1
~η2] . (4.4.37)

Let us now take a closer look at the Hamiltonian and the momentum constraints.

The momentum constraint contains in the second line of eq. (4.4.31) contributions from

the extrinsic curvature sector. This is expected because the theory must ensure that not

only the metric components but also the extrinsic curvature components are allowed

to transform under spatial coordinate transformations, since the latter are treated as

auxiliary independent variables. However, because of the constraints in eqs. (4.4.6) and

(4.4.7), the spatial coordinate transformation of the extrinsic curvature components

is induced and not truly independent. The aspect of Kij ’s independence is encoded

through the phase space and dynamics.

On the other hand, there is no little difference between the Hamiltonian constraint

in eq. (4.4.30) and its counterpart in GR given by eq. (4.3.13a) or in vacuum by
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eq. (4.3.24a). The most striking departure from GR is that the presence of the EH

term in a higher-derivative theory induces only a potential term and does not give rise

to any kinetic term. It shows that the Hamiltonian formulation of a theory of gravity

based on higher-derivative extensions of the EH action does not “add corrections” to

the Hamiltonian of pure GR but completely alters the theory, making lower-order con-

tributions — the EH action — playing the role of a potential. Related to this is the fact

that the limit αW, βR → 0 in eq. (4.4.30) in hope of recovering the pure GR makes no

meaning unless the momenta P̄ and P̄ are set to zero as constraints. This is in accor-

dance with what we learned form the Hamiltonian formulation of a higher-derivative

toy model in section 4.2. Furtehrmore, if one started with this higher-derivative theory

without the EH term, i.e. l = 0, the kinetic terms of this theory would not change

and the matter part of the Hamiltonian constraint (the third line in eq. (4.4.30)) would

remain unchanged. Contrast this with the case of the non-minimally coupled scalar

(density) field in GR: as can be seen from eq. (4.3.13a), the kinetic terms of the scalar

(density) field and the three-metric are entwined in a non-trivial way. The reason for

this simplification compared to GR is that K̄T and K̄ are not conjugate momenta of the

three-metric field components in a higher-derivative theory and thus the second term

in the third line of eq. (4.4.30) does not represent mixing between pa and pχ, as is the

case in the kinetic term of GR in eq. (4.3.13a). This term is one of the signatures that

the conformal symmetry is broken, since it contains K̄; we shall revisit the importance

of this term in the next section.

4.4.2 DeWitt supermetric on the extended superspace

Let us now inspect the gravitational kinetic term in eq. (4.4.30) itself. It consists of

a conformally invariant part P̄ · P̄ from the Weyl-tensor term in the action and the

conformally non-invariant part P̄ 2 — the scale part — arising from the conformally non-

invariant R2 term in the action. The signs in front of these two terms are opposite, but

αW and βR might have negative values in general, since these are unknown couplings.

Yet, as mentioned in the beginning of this chapter, we choose these couplings to be

strictly positive. Nevertheless, the values of these couplings determine “the relative

strength” of the negative-definite and positive-definite terms and it is interesting to

draw an analogy with the DeWitt supermetric in GR. Namely, the P̄ 2 term is analogous

to p2
a term in eq. (4.3.13a), while the P̄·P̄ term is analogous a−2p̄·p̄ term in eq. (4.3.13a).

The former could be called the expansion-like direction and the latter could be called

the shear-like direction in the extended superspace. The big difference is that these

expansion density and shear density kinetic terms have different coupling constants,

whereas in GR the scale and the shape kinetic terms come with the same coupling

constants. Because of this it is more appropriate to draw analogy with eq. (4.3.30),

i.e. with a generalized DeWitt supermetric whose parameter ζ is now a function of

αW, βR in a fixed dimension of three. To see this clearly, we state here the form of the

DeWitt supermetric and its inverse in original variables, which was derived in [86, eqs.
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(4.76) and (4.77)], but which we state here based on eqs. (4.3.30) and (4.3.31), with

ζ = (3αW + βR)/9,

GikjlαW,βR
=
a3

2

(
αWh

ikhjl + αWh
ilhjk − 3αW + βR

9
hijhkl

)
, (4.4.38)

GαW,βR

ikjl =
1

2αWa3

(
hikhjl + hilhjk −

3αW + βR

3βR

hijhkl

)
, (4.4.39)

where we have adopted our notation. The kinetic term that appears in [86, eq. (4.81)]

has the following form

− GαW,βR

ikjl P ijP kl , (4.4.40)

where P ij is the notation of [86] for the momentum conjugate to Kij . Terms pro-

portional to αW come from the C2 term and terms proportional to βR come from the

R2 term. Equation (4.4.39) was derived assuming αW 6= 0 and βR 6= 0. The case

βR = 0 achieves in eq. (4.4.38) the elimination of trace because one is then left with

αW/3. This case is problematic for the definition of the inverse supermetric for the

same reason that ζc = 1/D is problematic for the definition of the DeWitt supermetric

in eq. (4.3.31). Namely, we see that ζ = (3αW + βR)/9 = αW/3 for βR = 0 which is just

ζc = 1/3 up to a redefinition by a coupling constant. Therefore, by this reasonining, we

see that in a theory with the Weyl-tensor term alone in the gravitational sector would

prevent one from defining the inverse of the DeWitt metric and thus would suggest that

the velocities K̄T are not invertible. However, we have just derived these velocities in

eq. (4.4.17) so it should be possible to reconcile these apparently contradicting results.

Furthermore, the authors of [86] have claimed (without explanation) in equations (4.9)

and (4.10) in their section 4.1, that the inverse of the traceless DeWitt supermetric is

well-defined,

GαW,0
akbl G

ikjl
αW,0 =

(
hi(khl)j − 1

3
hijhkl

)(
hk(ahb)l −

1

3
hijhkl

)
= 1Tij

(ab) , (4.4.41)

but note that on the right-hand side one does not have an identity rank-2 tensor, yet its

traceless version. Similarly, in present author’s master thesis [99] the same conclusion

was reached. How can one make sense of these apparently contradicting results?

The proper way of interpreting the DeWitt supermetric in the case βR = 0 is

to say that such DeWitt supermetric lives in a space of traceless rank-2 symmetric

tensors. How does one reduce the space of all symmetric rank-2 tensors to the space of

traceless symmetric rank-2 tensors? — with two steps: one, by interpreting GαW,0
akbl as

the projector, since eq. (4.4.41) can be interpreted as the idempotency relation; this is

possible because — unlike in the case of the DeWitt supermetric in GR, cf. eq. (4.3.18)
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— here lowering the indices of GikjlαW,0 by hij does give the “inverse” GαW,0
akbl ; two, by

noticing that 1Tij
(ab) must be the unit element in the space of all traceless symmetric

rank-2 tensors. The situation can be compared to that of the 3 + 1 decomposition of

the metric, in which one defines the spatial metric from the projector onto the three-

hypersurface, cf. eqs. (A.2.3) and (A.2.4). This becomes much more clear if one uses

unimodular-conformal decomposition and refers to section 4.3.3. Namely, recall from

eq. (4.3.32), which defines the line element between two points in the superspace of

GR, that one loses the scale-like direction for the critical value of ζc = 1/3 in three

dimensions and the six-dimensional supermetric has a singularity at that point. But

one could simply interpret this as a restriction to the shape-like superspace as the space

of all unimodular metrics which are positive definite and five-dimensional. In a similar

way, one can interpret GαW,0
akbl as the projector onto the five dimensional sub-superspace

of all shear densities K̄T. The direction of the expansion density K̄ in the superspace

would be analogous to the direction of the scale density in the superspace of GR.

Then one might imagine investigations of the geometry of the extended superspace,

which was discussed in [99], in a similar way as was done in [56] and mentioned in

the end of section 4.3.3. We shall not go into such discussions here; we only want

to emphasize that the dynamics in this extended superspace that appears in higher-

derivative theories bears some similarities with the superspace of GR but also brings

novelties that so far do not seem to have been explored. This conclusion is of relevance

mainly for the quantum gravity context, but not only in canonical approach such as

geometrodynamics: it could be of importance to keep this in mind even if one would like

to study the non-perturbative behavior of higher-derivative theories of gravity in the

context of the program of asymptotic safety for gravity [11]. There, the couplings αW

and βR are redefined to depend on the energy scale and could affect the signature of the

DeWitt supermetric, which could in turn dictate which degrees of freedom introduced

by the higher-derivative terms appear at high energies.

4.4.3 The significance of terms linear in momenta

Recall that a higher-derivative theory suffers from instabilities. In the Hamiltonian

formulation, these instabilities manifest themselves as terms linear in momenta in the

Hamiltonian constraint.

In the first line of eq. (4.4.30), there are four terms linear in momenta that can be

divided in two groups. One consists of the first two terms and another consists of the

other two terms. The first group follows simply because of the non-trivial form of the

higher-derivative terms in the action — these are analogues of the term proportional

to f in the Hamiltonian of our toy model given by eq. (4.2.16). The second group is

the one which is responsible for the instabilities in a generic case. Those terms are the

analogues of the third term in eq. (4.2.16). In our toy model these terms can go to

arbitrarily negative values and thus drive the energies to its negative values without

bounds. However, in geometrodynamics of higher-derivative theories the Hamiltonian
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constraint vanishes at each moment in time and because of that whichever term evolves

towards negative energies, the rest of the terms necessarily “keep the balance” by

countering with positive values. The situation become more clear if one demands that

the matter part of the Hamiltonian H̄χ

⊥ is positive (corresponding to the positive energy

density). If this demand is taken seriously then the rest of the terms must add up to its

negative, no more and no less. This is of course, very loose argumentation, but we do

not intend to go deeper into it because the instabilities at the classical level are of no

importance to us, as we interpret the higher-derivative theory in the quantum context

only. In the quantum context, however, one must be more careful, since the problem

of instability might reflect badly on the nature of the quantum state and give rise to

a negative norm, thus forcing one to integrate away the additional degrees of freedom

[59]. However, we are not aware of such a discussion in the context of constrained,

reparametrization invariant theories of gravity, where the Hamiltonian is constrained to

vanish. The vanishing of the Hamiltonian constraint might have different consequences

to the notion of the norm of a quantum state in a higher-derivative theory of gravity

compared to quantum theory based on classical models in which no such constraints

exist.

The linear terms arise due to introduction of the additional degrees of freedom,

which can be seen by inspecting the constrained Lagrangian in eq. (4.4.8). One might

be tempted to say that pa and p̄ij are arbitrary since the Lagrange multipliers λ̄ and

λ̄ijT are arbitrary. But it turns out — as shown by Kluson̆ et al. [86] — that one

ends up with equations of motion for pa and p̄ij . It is not clear from their result that

one would end up with the equations of motion for the ADM momentum in the case

of αW, βR → 0, which is expected because such limit is impossible without further

restrictions. Since we are not interested in the equations of motion, we do not pursue

the possibility to derive the equations of motion for the ADM variables from the higher-

derivative theory of gravity. However, we would like to point out that in this thesis

we are ultimately seeking a way of deriving the Einstein equations from a semiclassical

approximation in a quantized theory, in which case the linear terms play crucial role

and therefore are not to be dismissed or sought to be eliminated for any reason, as we

shall see in the next chapter.

4.5 Hamiltonian formulation of Weyl-Einstein and

Weyl-tensor theory

An important special case of the theory covered in the previous section is the case of

Weyl-tensor (W) gravity (βR = l2 = 0) and Weyl-Einstein (WE) gravity (βR = 0),

both supplemented by a non-minimaly coupled scalar field. Compared to the general

theory discussed in the previous section, the novelty about the W and the WE theory is

that two additional constraints appear due to the absence of the velocities ˙̄K from the

Lagrangian. As emphasized in the Introduction and throughout the present chapter,
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we do not take W and WE theories seriously as classical theories. We are merely

interested in the possibility of exploring conformal symmetry in quantum gravity and

W and WE theories are suitable for this. Moreover, on the example of these theories

one can motivate the 3+1 version of the generator of conformal transformations, which

we introduced in the full d-dimensional spacetime in chapter 3. Most of the material

from this section is a central topic of [84] — which represent a significant improvement

compared to [99] — but contains a few minor corrections which were missed there.

4.5.1 Weyl-Einstein theory, Weyl-tensor theory and conformal

symmetry

We would first like to understand the conformal properties of the Weyl-Einstein grav-

ity with non-minimally coupled scalar field from a convariant perspective. The most

important property of the pure Weyl-tensor theory coupled with a non-minimally cou-

pled scalar field is that the trace of the equations of motion demands that the trace

of the energy-momentum tensor of the matter (in our case the non-minimally coupled

scalar field) vanishes. If the EH term is added to the theory, the trace of the equations

of motion is the same as the trace of the Einstein equations. From the variation of

the covariantly written Weyl-Einstein action with respect to the four-dimensional scale

density A we have (cf. appendix A.4 and eq. (A.4.6) in there)

−R+ 4Λ̄ = l2~T = l2~A−4T (4.5.1)

where T is given by eq. (3.2.7). This equation is the same as in GR because the Bach

tensor Bµν is identically traceless and contains no scale density A. From chapter 3

we have learned that vanishing of T has something to do with the matter action being

conformally invariant and that some caution must be taken with such a claim. The usual

conclusion in Weyl-tensor theory of classical gravity, see e.g. [90], is that the energy-

momentum tensor must be identically traceless, i.e. that only conformal matter can be

allowed in the Weyl-tensor theory, if the latter is to be interpreted as a classical theory.

We think that there are some issues with this conclusion and we shall explain below

why. We shall find some evidence for challenging this conclusion in the Hamiltonian

formulation of the theory.

Suppose now that we are dealing with a pure Weyl-tensor theory so R = 0, Λ̄ = 0.

In chapter 3 we have explained the difference between T = 0 holding for an arbitrary

variation δA and T = 0 holding for an arbitrary scale density itself. We think that

interpreting eq. (4.5.1) correctly in terms of this difference reveals a problem with

claims of [90]. Namely, condition in eq. (4.5.1) is on-shell, i.e. it determines the nature

of the solutions and holds for arbitrary variations δA. According to our discussion

in chapter 3, this would correspond to eq. (3.3.11), not eq. (3.3.12). Therefore, the

condition for conformal invariance in eq. (3.3.12) is not implied by the equation of
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motion (4.5.1). For the same reason one does not say that solutions to the Einstein

equations having a vanishing Ricci-scalar, R = 0, imply conformal invariance of the

EH action; or equivalently, one never encounters a demand “conformal matter is not

allowed in GR because it implies identical vanishing of the Ricci scalar, which is not

possible”19. However, R = 0 in Einstein equations is usually interpreted as a demand

that the matter must be conformally invariant and therefore independent of A. Hence,

one again makes an ambiguity between the conditions in eqs. (3.3.11) and (3.3.12). But

if one understands that there is no ambiguity between the conditions in eq. (3.3.11)

(which holds on-shell) and eq. (3.3.12) (which holds off-shell) themselves, then one has

to accept that R = 0 (which follows as an on-shell condition) does not exclusively

necessitate conformal matter in Einstein equations but demands that T = 0 exists

as a condition (an on-shell condition!) between the scale density A and the rest of

the variables for any kind of matter. In some cases, such as non-minimally but not

conformally coupled scalar field, T = 0 actually has the meaning of an equation of

motion for the scale density A, as can be seen from eq. (3.2.7), which contains a second

time derivative of A. That means that even though the scale density is absent from the

geometry side of the equations of motion the scale density does become dynamical by the

non-minimally (but not conformally) coupled scalar (density) field. The consequence of

this kind of reasoning is that non-conformal matter may be allowed to be coupled to the

conformally invariant gravity sector, in this case determined by the Weyl-tensor term.

This is in contrast to the usual conclusions, which say that only conformal matter can

be allowed in Weyl-tensor theory of classical gravity. (The conclusion is generalized for

the case of Weyl-Einstein theory, in which eq. (4.5.1) holds on-shell as well.) The point

is that one may or may not require conformal invariance of the total action based on

the Weyl-tensor term; only in the case where one does require it should one restrict the

form of matter in Weyl-tensor theory to only conformal one.

We think that our reasoning can be justified by the evidence arising from the Hamil-

tonian formulation of the theory: as a consequence of constraint analysis, an equation

arises which determines the second time derivative of the scale density a, cf. eq. (4.5.14).

This result was not realized at the time of writing of [99] and [84].

4.5.2 Hamiltonian formulation

The Hamiltonian formulation shall be based on the following Lagrangian,

SWEχ =

∫
dtd3xLWEχ ≡

∫
dtd3x (LW + LE + Lχ) . (4.5.2)

19A more careful investigation of such a statement could actually lead to some interesting implica-
tions for the meaning of interaction between matter and spacetime which deserves further inquiry. For
example, one may start with a hypothesis the scale density and the notion of length are impossible to
define if the only matter considered is the conformal matter, relying on a postulate points of spacetime
have no meaning without interacting matter.
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All conjugate momenta are the same as eqs. (4.4.9)-(4.4.15), except the momentum P̄ ,

conjugate to the expansion density K̄. The theory is characterized by the vanishing of

this momentum,

P̄ =
∂LWEχ

c

∂ ˙̄K

D
= 0 , (4.5.3)

which means that ˙̄K cannot be determined from it and one has to consider eq. (4.5.3)

as a constraint. Note that Lχ depends on K̄, except in the conformally coupled case

ξc = 0. In deriving the Hamiltonian constraint from the total Hamiltonian one needs

to take some care. The total Hamiltonian can preliminary be written as

HWEχ =

∫
d3x

{
N̄

[
− 1

2αW~
P̄ · P̄ + D2

W · P̄ + aK̄pa + 2K̄T · p̄− αW~C̄B · C̄B

− l2~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T − 6K̄2
)

+
1

2
p2
χ − 6ξcK̄χpχ +

1

2
V χ

]

+N iH̄WEχ

i + λN̄pN̄ + λipi + λK̄P̄

}
+HWEχ

surf . (4.5.4)

First of all, note the new term λK̄P̄ . It appears because ˙̄K cannot be inverted from

eq. (4.5.3), so it is then rewritten as λK̄ , a Lagrange multiplier. The term multiplying

N̄ is not the Hamiltonian constraint [99], in contrast to the claim of [86]. The reason

is that within this term another constraint hides. It appears as a demand that P̄ is

preserved in time,

˙̄P =
{
P̄ ,HWEχ

}
= −∂H

WEχ

∂K̄
= −N̄

(
apa − 6ξcχpχ + 36ξξcK̄χ

2 + 6l2~a2K̄
)

= −N̄
(
apa − 6ξcχpχ +

6l2~a2

l̃2
K̄

)
D
= 0 , (4.5.5)

where l̃ was defined in eq. (4.3.4). The last term in the above equation results from the

EH term and from the only K̄-dependent term in the potential V χ given by eq. (2.4.21).

Note that this is a new secondary constraint. It is usually called the conformal con-

straint [22, 69, 73, 86, 99], since it is claimed that it generates conformal transformations

[22, 86]. We shall keep the name, but we must point out that it is incorrect to claim

that it is a generator of conformal transformations because it generates only a part of

conformal transformation [69, 84, 99]; we shall give more detail on this in section 4.6.
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The conformal constraint20

Q̄WEχ := apa − 6ξcχpχ +
6l2~a2

l̃2
K̄

D
= 0 (4.5.6)

and P̄ are of second-class because they do not commute; using the smeared version of

these constraints (cf. eq. (4.3.20)), one obtains

{
P̄ [ε], Q̄WEχ[ω]

}
= −6l2~

l̃2

∫
d3x εωa2 . (4.5.7)

One further has to demand that Q̄WEχ is preserved in time, but before we look for ˙̄QWEχ,

we can see that eq. (4.5.6) can be found in the term multiplied by N̄ in eq. (4.5.4),

which is just the condition for preservation of the first constraint in eq. (4.4.10),

ṗN̄ = {pN̄ , HWEχ}

= −N̄
[
− 1

2αW~
P̄ · P̄ + D2

W · P̄ + 2K̄T · p̄− αW~C̄B · C̄B

+
1

2
p2
χ +

1

2
Ṽ χ − l2~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T + 6K̄2
)]

− N̄K̄
(
apa − 6ξcχpχ +

6l2~a2

l̃2
K̄
)

D
= 0 . (4.5.8)

In the above equation the term 2 · 36K̄2χ2 has been subtracted from the potential Vχ

and the term 6l2~a2K̄2 has been subtracted from the last term in the second line in

order to form the conformal constraint in the parentheses K̄ (...), which vanishes upon

releasing the delayed equality. What remains is

Ṽ χ := V χ − 2 · 36K̄2χ2 , (4.5.9)

which effectively means that Ṽ χ is equal to V χ with an opposite sign in front of the

K̄2χ2 term. Also note the sign change in the last term in the third line of eq. (4.5.8).

Therefore, one only needs to demand that terms in [...] in the first line in eq. (4.5.8) van-

ish with delayed equality; this is the Hamiltonian constraint in unimodular-conformal

20We use an overbar to distinguish our result from the result of the previous works for the conformal
constraint, since it does have a different form in unimodular-conformal variables.
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variables,

H̄WEχ

⊥ = − 1

2αW~
P̄ · P̄ + D2

W · P̄ + 2K̄T · p̄− αW~C̄B · C̄B

+
1

2
p2
χ +

1

2
Ṽ χ − l2~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T + 6K̄2
)

D
= 0 . (4.5.10)

Note that this equation does not correspond to the usual definition of the Hamiltonian

constraint, which would be given by eq. (4.5.8) and which is usually found (in original

variables) in the literature, e.g. [69, 86]. It should be kept in mind then that the matter

terms in the second line in eq. (4.5.10) do not correspond to the matter Hamiltonian.

This is because we choose to demand the delayed vanishing of only those terms which

do not already vanish according to the other constraints in the theory. That this makes

sense, we draw attention to the fact that the authors of [86] have added the conformal

constraint21 to the total Hamiltonian with a new Lagrange multiplier and found that

this Lagrange multiplier vanishes, thus eliminating the constraint they had just added

to the total Hamiltonian. They did not notice that the conformal constraint is already

present within what they derived to be the Hamiltonian constraint. Based on our

result in eq. (4.5.8) and claim that the conformal constraint is already in the total

Hamiltonian, hidden in what [86] call the Hamiltonian constraint, it is not surprising

that the Hamiltonian formulation of the theory did not let the authors of [86] add

the additional conformal constraint. This situation is similar to the case of a massive

vector field whose constraint analysis we presented in appendix A.5. As we shall see

soon below, there are no further constraints and this will allow us to write the total

Hamiltonian in the following form,

HWEχ =

∫
d3x

{
N̄H̄WEχ

⊥ +N iH̄WEχ

i +
(
N̄K̄

)
Q̄WEχ + λN̄pN̄ + λipi + λK̄ P̄

}
+HWEχ

surf ,

(4.5.11)

where

H̄WEχ

i = −2D̄j

(
h̄ikp̄

kj
)
− 1

3
Di (a pa)−

1

3
(χ∂ipχ − 2∂iχpχ)

+ P̄ ijD̄kK̄
T
ij − 2D̄i

(
K̄T
jkP̄

ij
)

+
1

3
∂k
(
K̄T
ijP̄

ij
)

(4.5.12)

is the momentum constraint. Note that the momentum constraint does not contain K̄

and P̄ terms, in contrast to eq. (4.4.31). Equation (4.5.11) is written as a sum of pairs

21Even though we refer to the particular case of the vacuum WE theory in their work, the properties
of the conformal constraint are the same in the general non-vacuum case since conformal symmetry is
in that case broken as well, see further below the case of vacuum WE theory.

156



4.5. Hamiltonian formulation of Weyl-Einstein and Weyl-tensor theory

of primary constraints (last three terms) plus the corresponding secondary constraints

(first three terms).

Now we come back to the demand that eq. (4.5.7) is preserved in time. It is enough

to assume for a moment that we are dealing with spatially homogeneous variables.

Then the Poisson bracket of Q̄WEχ with the total Hamiltonian reduces to

˙̄QWEχ =
{
Q̄WEχ, HWEχ

}
=
{
Q̄WEχ, H̄WEχ

⊥ [N̄ ]
}

=
{
apa, H̄WEχ

⊥ [N̄ ]
}
− 6ξcχ

{
pχ, H̄WEχ

⊥ [N̄ ]
}
− 6ξc

{
χ, H̄WEχ

⊥ [N̄ ]
}
pχ

+
6l2~a2

l̃2

{
K̄, λK̄P̄

}
+ 72ξξcK̄χ

{
χ, H̄WEχ

⊥ [N̄ ]
}

= l2~N̄a2
(
a2 (3)R+ K̄T · K̄T + 6K̄2 − 4a2Λ̄

)

+ 12ξcN̄

(
1

2
p2
χ − 6ξχK̄pχ +

1

2
Ṽ χ

)
+

6l2~a2

l̃2
λK̄

D
= 0 . (4.5.13)

The first line in the above equation is due to Q̄WEχ commuting with itself. The first

term in the second line produces the first term in the last equality — arising from the

derivative of the EH potential term with respect to a, where a2 (3)R = (3)R̄ for homo-

geneous case and no additional terms appear in the general case other than complete

a2 (3)R term, up to surface terms which we disregarded in the calculation. Note that

the cosmological constant term contributes twice as much compared to other terms

from the EH potential. The same first term in the second line contributes with the

inhomogeneous terms in the potential Ṽ χ in the general case, up to surface terms. The

Poisson brackets in the second and third term in the second line evaluate to −N̄ Ṽ χ/χ

and −N̄pχ in homogeneous case, or the same up to surface terms in the inhomogeneous

case. This condition determines Lagrange multiplier λK̄ which is, as we mentioned be-

fore, velocity ˙̄K,

6l2~a2

l̃2
1

N̄
λK̄ =

6l2~a2

l̃2
1

N̄
˙̄K = −l2~a2

(
a2 (3)R+ K̄T · K̄T + 6K̄2 − 4a2Λ̄

)

− 12ξc

(
1

2
p2
χ − 6ξχK̄pχ +

1

2
Ṽ χ

)
. (4.5.14)

Now, from this equation one can see that ˙̄K cannot be determined if

l2

l̃2
= l2 + 6ξξc

χ2

~a2
= 0 , (4.5.15)
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which leads to four possible cases:

1. Vacuum Weyl-tensor gravity: l = 0 and χ = 0 (which also implies pχ = 0)

2. Weyl-tensor gravity with conformally coupled scalar field: l = 0 and ξc = 0

3. Weyl-tensor gravity with minimally coupled scalar field: l = 0 and ξ = 0

4. Weyl-Einstein gravity with non-minimally coupled scalar field χ2

a2 = − l2~
6ξξc

, for

some critical value of the ratio χ/a if ξ is fixed.

Also note that eq. (4.5.7) vanishes in these cases, since the K̄-dependent term in the

conformal constraint in eq. (4.5.6) disappears. In each of these cases the constraint

analysis must be repeated if one is to completely understand the details of their im-

plications. We shall not do so here. We shall only point out the differences compared

to the key equations in the general case, because most of the derivations are the same.

To this purpose it is important and also interesting to ask, what is the meaning of

eq. (4.5.14)? This equation has been derived in a vacuum WE theory by [86], but they

did not notice its importance nor have interpreted it, which we think is a crucial step

in the light of our discussion in the previous subsection. It has also been derived in

[84], equation (106), but its meaning was not understood in there at the time. Namely,

the equivalence between Hamiltonian and Lagrangian formulation implies that they

contain the same information in the equations they consist of. This means that there

has to be an equation in the covariant, Lagrangian formulation which corresponds to

eq. (4.5.14). The correct equation is the trace of the equations of motion, given by

eq. (4.5.1) in the previous subsection. Hence, the trace of the covariant equations of

motion in a theory based on the Weyl-tensor term emerges from Lagrange multiplier

λK̄ . This is most easily seen in the case of vacuum WE gravity (χ = 0), as we shall see

further below.

We turn now to Dirac brackets of the theory. Since the theory contains second-

class constraints, one needs to substitute Poisson brackets with Dirac brackets after

implementing the second-class constraints strongly (i.e. the delayed equality “
D
=” is

set to strong equality), if one would like to proceed to find equations of motion once

the Lagrange multiplier has been determined. Using Dirac brackets instead of Poisson

brackets is equivalent to using Poisson brackets after the second-class constraints have

been implemented. Substituting the second-class constraints means eliminating the

canonical pair of variables which one thought was arbitrary but which turned out that

one can express them as a function of other canonical variables. This pair K̄, P̄ , so

one can expect non-trivial Dirac brackets of K̄, P̄ with other canonical variables. Dirac

brackets in the presently discussed theory were derived in [84] using the recipe from

appendix A.5.2. But here we would like to show that one can derive Dirac brackets

more intuitively, by directly translating the following sentence we stated above
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Substituting the second-class constraints means eliminating the canonical

pair related to an apparent arbitrary variable,

in the sense of nomenclature introduced in appendix A.5. Namely, the conformal

constraint in eq. (4.5.6) set strongly to zero means that K̄ is not an independent and

true arbitrary variable but is given as a function of other canonical variables by

K̄ =
l̃2

6l2~a2
(−apa + 6ξcχpχ) . (4.5.16)

The primary constraint P̄
D
= 0 trivially becomes P̄ = 0. Then one can implement

this information by substituting the following Poisson brackets involving K̄ and P̄ by

Poisson brackets with eq. (4.5.16) implemented22,

{
K̄, P̄

}
→
{
K̄, P̄

}
D

=

{
l̃2

6l2~a2
(−apa + 6ξcχpχ) , 0

}
= 0 , (4.5.17)

{
K̄, a

}
→
{
K̄, a

}
D

=

{
l̃2

6l2~a2
(−apa + 6ξcχpχ) , a

}

= − δ

δpa

l̃2

6l2~a2
(−apa + 6ξcχpχ) =

l̃2

6l2~a
, (4.5.18)

{
K̄, pa

}
→
{
K̄, pa

}
D

=
δK̄

δa
=

l̃2

6l2~a2
pa −

2l̃2ξc
l2~a3

χpχ
D
= −K̄

a
− l̃2ξc
l2~a3

χpχ , (4.5.19)

{
K̄, χ

}
→
{
K̄, χ

}
D

= − δK̄
δpχ

= − l̃2ξc
l2~a2

χ , (4.5.20)

{
K̄, pχ

}
→
{
K̄, pχ

}
D

=
δK̄

δχ

D
=

l̃2ξc
l2~a2

(
pχ + 12ξχK̄

)
, (4.5.21)

which are then just the Dirac brackets. Up to notation differences the Dirac brackets

above are equal to the ones derived in [84] in equations (154). Note that in eqs. (4.5.19)

and (4.5.21) we used the conformal constraint to introduce K̄, which is marked by using

the delayed equality, but this is not necessary. All other Dirac brackets are equal to

the corresponding Poisson brackets.

It is interesting to observe the conformal constraint n eq. (4.5.6) in a little bit more

detail. According to the interpretation from the constraint analysis perspective, this

22In what follows we suppress the Dirac delta function and the explicit dependence on spatial
coordinates
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equation is a second-class constraint and says that one of the variables pa, pχ, a and K̄

is not an independent variable. But there is another way of looking at this equation:

as the definition of pa. Namely, recall that pa is just a Lagrange multiplier λ̄ — there is

no information about ȧ that could be retrieved from it. But we see that the conformal

constraint has the role of determining this Lagrange multiplier.

For the simplest case of vacuum Weyl-tensor gravity (which we shall visit soon

below in more detail), χ = 0 and l = 0 in eq. (4.5.6) gives trivially Q̄W = apa = 0.

This means that a is arbitrary, which makes sense because this theory is conformally

invariant. Constraints Q̄W = 0 and P̄ = 0 are in this case of first class and there are

trivially no further constraints.

If conformal matter ξc = 0 is present in the Weyl-tensor gravity, from eq. (4.5.6) we

again have apa = 0, meaning again that there is no scale in the theory and conformal

symmetry holds in this case as well, with no further constraints.

However, if a minimally coupled scalar field is present in the Weyl-tensor gravity,

even though eq. (4.5.7) vanishes, there appear further constraints which could severely

constrain the scalar field, but we do not calculate them here. Note that in that case the

trace of the energy-momentum tensor of the non-minimally coupled scalar is required to

vanish (so we expect that the additional constraint shall eventually lead to the another

equation that determines the Lagrange multiplier λK̄), thus putting a condition on the

allowed solutions for the scalar field.

In the non-vacuum case of the WE theory we see that eq. (4.5.6) defines pa, since

the conformal symmetry is broken and the scale density a is not arbitrary anymore,

becoming dynamical. One could then look at eq. (4.5.6) as the definition of momentum

pa. The resulting equation is remarkably nothing other than the ADM momentum

in non-vacuum GR, cf. eq. (4.3.3b). This outcome is independent on whether or not

one has conformal coupling ξc = 0. This is a very interesting observation because one

could imagine a theory in which pure Weyl-tensor gravity is valid at high energies, and

then as the energies become lower (through the change of balance of the respective

couplings) the EH term starts being important, breaks the conformal symmetry of the

theory which generates the dynamical scale. With Of course, we do not claim that this

is necessarily so but we rather point out the “big picture” that the conformal constraint

paints.

It is the conformal constraint that could play a crucial role in Hamilton-formulated

theories in determining whether a dynamical scale could emerge from a broken confor-

mal symmetry of a theory. In relation to this, since the conformal constraint plays a

crucial role in the definition of the generator of conformal transformations 4.6, further

studies of this generator could provide some novel tools for studying the generation of

dynamical scale in conformally invariant theories, both classical and quantum.

160



4.5. Hamiltonian formulation of Weyl-Einstein and Weyl-tensor theory

4.5.3 Vacuum Weyl-Einstein gravity

In this case the Hamiltonian constraint is given by

H̄WE
⊥ = − 1

2αW~
P̄ · P̄ + D2

W · P̄ + 2K̄T · p̄− αW~C̄B · C̄B

− l2~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T + 6K̄2
)

D
= 0 , (4.5.22)

the momentum constraint is given by eq. (4.5.12) with χ = 0. The conformal constraint

in eq. (4.5.6) reduces to

Q̄WE := apa + 6l2~a2K̄
D
= 0 , (4.5.23)

while the Poisson bracket stating that in vacuum WE theory conformal constraint and

its primary ancestor are second-class constraints is given by eq. (4.5.7) with l̃ = 1,

{
P̄ [ε], Q̄WE[ω]

}
= −6l2~

∫
d3x εωa2 . (4.5.24)

Assuming spatial homogeneity of the theory, the equation for Lagrange multiplier λK̄

derived in eq. (4.5.14) reduces to

6

N̄
˙̄K = −

(
a2 (3)R+ K̄T · K̄T + 6K̄2

)
+ 4a2Λ̄ , (4.5.25)

which can be recognized as the four-dimensional Ricci scalar in unimodular-conformal

3 + 1 variables (cf. eqs. (2.3.50) and (2.3.53) without spatial derivatives) plus the

cosmological constant,

−R+ 4Λ̄ = 0 , (4.5.26)

which is precisely the covariant equation of motion for the trace density stated in the

previous subsection given by eq. (4.5.1). This conclusion should hold even if spatial

homogeneity requirement is relaxed, but this we claim without pursuing a proof.

Dirac brackets in the vacuum WE theory can be derived from the general case given

by eqs. (4.5.17)-(4.5.19) by setting χ = 0, l̃ = 1, which results in the following,

{
K̄, P̄

}
→
{
K̄, P̄

}
D

= −
{

1

6l2~a
pa, 0

}
= 0 , (4.5.27)

{
K̄, a

}
→
{
K̄, a

}
D

= −
{

1

6l2~a
pa, a

}
=

1

6l2~a
, (4.5.28)
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{
K̄, pa

}
→
{
K̄, pa

}
D

=
pa

6l2~a2

D
= −K̄

a
, (4.5.29)

and these Dirac brackets are equal to the ones derived in [84, eq. (118)] using the recipe

from appendix A.5.2.

As mentioned in the previously discussed general theory, in the vacuum WE theory

one can interpret the conformal constraint in eq. (4.5.23) as the defining equation of

the ADM scale momentum. Thus we see that the term linear in momentum pa has

indeed a significant role, as anticipated in section 4.4.3. Nothing less is to be expected

in the quantum version of the theory.

4.5.4 Weyl-tensor gravity with matter

If the EH term is absent (l = 0) but matter is present we have the Weyl-tensor gravity

with matter. The Hamiltonian constraint is in this case given by

H̄Wχ

⊥ = − 1

2αW~
P̄ · P̄ + D2

W · P̄ + 2K̄T · p̄− αW~C̄B · C̄B +
1

2
p2
χ +

1

2
Ṽ χ D

= 0 . (4.5.30)

The momentum constraint is the same as eq. (4.5.12). The conformal constraint is

obtained by setting l2/l̃2 = 6ξξcχ
2~a2 in eq. (4.5.6), leaving

Q̄Wχ := apa − 6ξcχpχ + 36ξξcχ
2K̄

D
= 0 . (4.5.31)

As mentioned earlier above, this equation may be rewritten as a definition of the mo-

mentum pa

pa := 6ξc
χ

a
pχ + 36ξξc

χ2

a
K̄ , (4.5.32)

which tells us that the scale density a is dynamical in this theory. The preservation of

Q̄Wχ in time gives an equation for ˙̄K that we obtained in eq. (4.5.14) with the first line

eliminated and l2/l̃2 = 6ξξcχ
2/~a2 substituted in there. As we explained earlier, this

is just the trace of the equations of motion.

The Dirac brackets in this theory can be found from eqs. (4.5.17)-(4.5.21) by setting

l2/l̃2 = 6ξξcχ
2/~a2 in eq. (4.5.16) before starting their calculation. The result is given

by the following set of equations

{
K̄, P̄

}
→
{
K̄, P̄

}
D

= 0 , (4.5.33)

{
K̄, a

}
→
{
K̄, a

}
D

= −δK̄
δpa

=
a

36ξξcχ2
, (4.5.34)

162



4.5. Hamiltonian formulation of Weyl-Einstein and Weyl-tensor theory

{
K̄, pa

}
→
{
K̄, pa

}
D

=
δK̄

δa
= − pa

36ξξcχ2
, (4.5.35)

{
K̄, χ

}
→
{
K̄, χ

}
D

= − δK̄
δpχ

= − 1

6ξχ
, (4.5.36)

{
K̄, pχ

}
→
{
K̄, pχ

}
D

=
δK̄

δχ
= − pχ

6ξχ2
. (4.5.37)

For conformal coupling the whole action is conformally invariant. The scale density

a and the expansion density K̄ completely disappear from the theory (as we learned in

chapter 3). Setting ξc = 0 in eq. (4.5.31) completely eliminates K̄ from constraints and

implies the vanishing of the momentum pa, agreeing with the absence of the scale den-

sity from a conformally invariant theory. Moreover, this makes P̄ and Q̄Wχ first-class

constraints, since eq. (4.5.7) vanishes. Dirac brackets are thus equal to the Poisson

brackets and λK̄ remains undetermined. The latter means that the trace of the equa-

tions of motion is identically zero.

Of course, if mass term m2a2χ2 were present in the potential of the conformally

coupled scalar (density) field the conformal symmetry would have been broken by the

appearance of the scale density. However, something interesting happens in that case.

The constraint Q̄Wχ would not change (since the mass term does not depend on K̄), but
˙̄QWχ would give a further secondary constraint. Assumming homogeneous case, this

new constraint is N̄Q̄Wχ

1 := − ˙̄QWχ = N̄m2a2χ2 D
= 0. Its preservation in time gives23

˙̄QWχ

1 = 2m2
{
a2χ2, HWχ

}
= 2N̄m2a2χ2

(
K̄ +

pχ
χ

)
D
= 0 . (4.5.38)

But we see that Q̄Wχ

1
D
= 0 implies m = 0 or a = 0, which produces no further constraints

from above. Furthermore, m = 0 simply eliminates the mass term and thus forbids it in

the Weyl-tensor theory with conformally coupled scalar (density) field. This invites a

curious question: why is the mass term forbidden, but non-conformal coupling is allowed

in the Weyl-tensor theory, if they both break conformal symmetry? We think that

the question is only obscured and its answer might be straightforward: the condition

m = 0 in the conformal but massive case is the same as requiring that the trace of

the corresponding energy-momentum tensor vanishes (cf. chapter 3). This condition

on trace is already achieved upon derivation of Q̄Wχ

1
D
= 0 constraint. In the massless

but non-conformally coupled case the trace T contains K̄ in the non-minimal coupling

term and in the kinetic term. This makes eq. (4.5.14) for the Weyl-tensor gravity to

pick up the Lagrange multiplier λK̄ = ˙̄K which necessarily appears in the trace of

23Recall that we are using conformal coupling ξc = 0.
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the equations of motion. The point is that in both case the trace of the equations

of motion is recovered, but from two different terms, since the trace itself is different.

In the massive conformal case the trace does not have any other terms to help a be

determined so the only remaining possibility is m = 0. It is a coincidence that in this

case the on-shell and off-shell conditions in eqs. (3.3.11) and (3.3.12) mean the same

thing: that T must vanish identically. We expect that in the inhomogeneous case the

conclusion is the same but we do not test that claim here. A similar discussion is

expected in the case of the Weyl-tensor gravity with minimally coupled scalar field but

we do not pursue it here.

4.5.5 Vacuum Weyl-tensor gravity

The situation in vacuum Weyl-tensor is very similar to the case of the Weyl-tensor

gravity with a conformally coupled massless scalar (density) field described above,

except that Hamitlonian and momentum constraints do not have any matter terms. All

constraints are trivially of first class: there is no a or pa or K̄ or P̄ in the Hamiltonian

constraint, which is given by

H̄W
⊥ = − 1

2αW~
P̄ · P̄ + D2

W · P̄ + 2K̄T · p̄− αW~C̄B · C̄B D
= 0 , (4.5.39)

so the conformal constraint

Q̄W := apa
D
= 0 (4.5.40)

trivially commutes with it. The momentum constraint is given by

H̄W
i = −2D̄j

(
h̄ikp̄

kj
)
− 1

3
(χ∂ipχ − 2∂iχpχ)

+ P̄ ijD̄kK̄
T
ij − 2D̄i

(
K̄T
jkP̄

ij
)

+
1

3
∂k
(
K̄T
ijP̄

ij
)
, (4.5.41)

from which we have excluded and partially integrated the term −Di (a pa) /3 within the

total Hamiltonian, because this term can be written as −Di

(
Q̄W
)
/3, which vanishes

with delayed equality. Therefore, writing

N iDiQ̄W = Di

(
N iQ̄W

)
−DiN

iQ̄W , (4.5.42)
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we can put this term with the conformal constraint into the total Hamiltonian, which

can be written as follows

HW =

∫
d3x

{
N̄H̄W

⊥ +N iH̄W
i +

(
N̄K̄ +

1

3
DiN

i

)
Q̄W + λN̄pN̄ + λipi + λK̄ P̄

}
+HW

surf ,

(4.5.43)

where the surface term is given by

HW
surf =

∫
d3x ∂i

(
2Nkh̄kj p̄

ik+2NkK̄T
jkP̄

ij−N iK̄T
jkP̄

jk+P̄ ij∂jN̄−N̄D̄jP̄
ij
)
, (4.5.44)

which is missing the termDi

(
N iapc

)
, because it cancels with the first term in eq. (4.5.42).

But doesn’t the term in front of Q̄W look familiar? It is equal to ȧ/a, according to

eq. (2.3.23), which defines the expansion density K̄. Things now fall into place like

the few last missing pieces of a puzzle by interpreting the term in front of pa (which

vanishes, just as P̄ vanishes and ˙̄K is its Lagrange multiplier) as a Lagrange multiplier:

(
N̄K̄ +

1

3
DiN

i

)
Q̄W = ȧpa ≡ λapa , (4.5.45)

which accompanies the term λK̄ P̄ . (This could have been done in the case of Weyl-

tensor gravity with conformally coupled scalar field as well.) Let us rewrite the total

Hamiltonian with this new notation,

HW =

∫
d3x

{
N̄H̄W

⊥ +N iH̄W
i + λapa + λN̄pN̄ + λipi + λK̄ P̄

}
+HW

surf . (4.5.46)

Reading the above equation, whose simple and straightforward form we remind is a

result of the use of the unimodular-conformal variables in the Hamiltonian formulation,

it is clear that the scale density a and the expansion density K̄ are true arbitrary

variables, their velocities being Lagrange multipliers.

We finish this section by stating the algebra of constraints. Namely, in previous

works, e.g. [86, 69], the algebra of constraints for the vacuum Weyl-tensor theory

was rather involved. This is due to the use of the original variables and the fact

that the conformal constraint had a more complicated form compared to the one in

the present work. In the original variables the conformal constraint is given by the

following expression [86]

Q = 2hijp
ij + P ijKij

D
= 0 , (4.5.47)

which cannot be reduced to our form in eq. (4.5.40) by a direct change of variables.
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This constraint contains a relationship between 24 canonical variables! If one were to

substitute one of these variables in terms of the others in the rest of the equations upon

implementing the conformal constraints one would end up with a rather complicated

expression. Contrast this to our form of the conformal constraint given by eq. (4.5.40):

a single variable is constrained to vanish. This statement refers to a single degree of

freedom, i.e. the scale density a. Similar simplification is seen in P̄
D
= 0 constraint,

which in original variables reads hijP
ij D

= 0, thus relating 12 canonical variables. In

contrast, P̄
D
= 0 is a constraint for a single variable. The use of unimodular-conformal

variables thus significantly simplifies the form and improves the interpretation of con-

straints. It also simplifies the constraint algebra, which is given by the following,

{
H̄W
⊥ [ε1], H̄W

⊥ [ε2]
}

= H̄W

|| [ε1∂
iε2 − ε2∂

iε1] , (4.5.48){
H̄W

|| [~η], H̄W
⊥ [ε]

}
= H̄W

⊥ [L~ηε] , (4.5.49){
H̄W

|| [~η1], H̄W

|| [~η2]
}

= H̄W

|| [L~η1
~η2] , (4.5.50){

H̄W
⊥ [ε], P̄ [ω]

}
= 0 , (4.5.51){

H̄W

|| [~η], P̄ [ω]
}

= 0 , (4.5.52){
H̄W
⊥ [ε], Q̄W[ω]

}
= 0 , (4.5.53){

H̄W

|| [~η], Q̄W[ω]
}

= 0 , (4.5.54){
P̄ [ω1], Q̄W[ω2]

}
= 0. (4.5.55)

Equations (4.5.48)-(4.5.50) are given without proof because they should be equivalent

to eqs. (4.4.35)-(4.4.37) and eqs. (4.3.21)-(4.3.23), which all express the hypersurface

foliation algebra. Note, however, that in the case of a general higher-derivative theory

and pure GR the Hamiltonian and momentum constraints contain the conformally non-

invariant terms depending on the scale density a and the expansion density K̄, so the

foliation algebra takes into account the freedom to perform both spatial conformal and

spatial shear transformations. In contrast, the hypersurface foliation algebra of the

pure Weyl theory refers only to SL(3,R) transformations because the Hamiltonian and

momentum constraints are already conformally invariant. The remaining information

about conformal invariance must be accounted for in some way and it indeed is, in

the through eqs. (4.5.51)-(4.5.55) in a rather trivial way. That these equations convey

the meaning of conformal invariance has to with the interpretation of the first-class

constraints (in this case P̄ and Q̄W) as the generators of symmetry transformations (ini

this case the conformal transformation), as noted by Dirac [43, page 21]. However, as

we shall review in the following section, this interpretation needs more rigor. For now,

it is enough to take this information as it is and conclude that conformal invariance
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of the pure Weyl-tensor gravity is conveyed by commutation of P̄ and Q̄W with the

Hamiltonian and momentum constraints.

As a last note, which will visually sum up the strength of using the unimodular-

conformal variables, we state here the same algebra of constraints of the pure Weyl-

tensor theory as derived in [69, eq. (23)-(30)] (using our notation and sorting the

equations in parallel to the above),

{HW
⊥ [ε1],HW

⊥ [ε2]} = HW

|| [ε1∂
iε2 − ε2∂

iε1]

+ P [(ε1D
iε2 − ε2D

iε1)(DjK
j
i −DiK)] , (4.5.56)

{
HW

|| [~η],HW
⊥ [ε]

}
= HW

⊥ [L~ηε] , (4.5.57)

{
HW

|| [~η1],HW

|| [~η2]
}

= HW

|| [L~η1
~η2] , (4.5.58)

{HW
⊥ [ε], P [ω]} = QW[εω] + P [εωK] , (4.5.59)

{
HW

|| [~η], P [ω]
}

= P [L~ηω] , (4.5.60)

{HW
⊥ [ε],QW[ω]} = HW

⊥ [εω] + P [DiD
i(εω) + ωDiD

iε−DiεD
iω] , (4.5.61)

{
HW

|| [~η],QW[ω]
}

= QW[~ηω] , (4.5.62)

{P [ω1],QW[ω2]} = P [ω1ω2]. (4.5.63)

Compared to eqs. (4.5.48)-(4.5.55), the additional terms in eqs. (4.5.56), (4.5.59),

(4.5.60) and (4.5.61) are due to the fact that [69] — and the same is with [86] —

did not isolate the conformal constraint from what they call the Hamiltonian con-

straint and due to the fact that they did not use the unimodular-conformal variables,

as mentioned earlier in this section. It is obvious that unimodular-conformal variables

reveal manifest conformal invariance of the Weyl-tensor gravity. The same is expected

for other conformally invariant theories.

4.5.6 DeWitt supermetric in Weyl-tensor theory

In sections 4.3.3 and 4.4.2 we discussed the DeWitt supermetric in the superspace (of

GR) and in the extended superspace (of a general higher-derivative theory). As a

particular case, we mentioned the DeWitt metric which is missing the trace term, i.e.

eq. (4.4.41), which introduces the DeWitt metric in the pure Weyl-tensor gravity as

discussed in [86]. This supermetric arises if βR = 0 in eq. (4.4.38).
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From the previous subsection — the kinetic term in eq. (4.5.39) — it can be deduced

that using unimodular-conformal variables reveals that DeWitt supermetric and its

inverse in Weyl-tensor theory could simply be defined as

ḠikjlαW
=
αW

2

(
h̄ikh̄jl + h̄ilh̄jk

)
− αW

3
h̄ij h̄kl , (4.5.64)

¯G
αW
ikjl =

1

2αW

(
h̄ikh̄jl + h̄ilh̄jk

)
− 1

3αW

h̄ij h̄kl , (4.5.65)

¯G
αW
akblḠ

ikjl
αW

= 1Tij
(ab) . (4.5.66)

Note that there is no problem with defining the inverse supermetric because this metric

is defined on the space of all traceless rank-2 symmetric tensors. Now, it is interesting

to observe that the traceless DeWitt metric is actually the same as the shape part of

the DeWitt supermetric discussed in GR, cf. eq. (4.3.33). Moreover, the scale part,

i.e. the trace part, of the DeWitt supermetric in the superspace is related to the

scale-like part of the DeWitt supermetric in the extended superspace. This is expected

because the kinetic term of GR splits in a similar way as the kinetic term of a general

quadratic higher-derivative theory in unimodular-conformal variables: the scale part of

the DeWitt supermetric in GR determines the scale-like direction in superspace, while

the scale part of the DeWitt supermetric in the higher-derivative theory determines

the expansion-like direction in the extended superspace; the shape part of the DeWitt

supermetric in GR determines the shape-like direction in superspace, while the shape

part of the DeWitt supermetric in the higher-derivative theory determines the shear-

like direction in the extended superspace. The two supermetrics have the exact same

properties, the only difference being the factor of a2 in the shape part of the DeWitt

supermetric, which arises because the shape momenta and shear momenta have different

scale weight. This is expected since the expansion density is built from the scale density

and the shear density is built from the shape density. But what is the metric of the

complete extended superspace? Such a metric should have 12 independent elements.

But one may then wonder, where is the DeWitt supermetric part which defines distances

in the three-metric sector of the extended superspace? It would have been obvious that

there is such a part if the Hamiltonian constraint in eq. (4.4.30) had a kinetic term of

a and p̄ij as well. But we do think that the same supermetric is hiding in the last two

terms in the first line of eq. (4.4.30) — the terms linear in momenta. To see this, recall

the form of the ADM momenta in unimodular-conformal variables given by eq. (4.3.26)

and express the expansion density and the shear density from there; then using the

DeWitt metric in unimodular-conformal variables given by eq. (4.3.27), which gives

aK̄pa + 2K̄T · p̄ = − 1

l2~
p2
a +

4

l2~a2
p̄ · p̄ , (4.5.67)
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which is nothing else than twice the kinetic term of vacuum GR, cf. eq. (4.3.24a).

Of course, there is no justification to substitue the extrinsic curvature in eq. (4.4.30).

But it is interesting to see that there is some relationship between these terms linear

in momenta and the kinetic term of GR (which also appears in the EH potential in

the second line of eq. (4.4.30)). These linear terms are of crucial importance for the

quantum theory and its semiclassical approximation, as we shall see in the next chapter.

4.6 Generator of conformal transformations in 3 + 1

formulation

In several works over the past few decades [2, 34, 110, 112, 113, 114] it has been pointed

out and proven that first-class constraints are not each by themselves generators of

symmetry transformations in a theory (as was proposed by Dirac [43, page 21]), but

that only a “tuned sum” [110] of them forms the correct generator. This has been shown

on examples of both GR and Yang-Mills theories [34, 114] and also on the example of

electromagnetism [110].

Now let’s think about the Hamiltonian and momentum constraints. Their meaning

is usually interpreted as: the momentum constraints generate spatial coordinate trans-

formations, while the Hamiltonian constraint generates time transformation. From the

algebra given by eq. (4.4.37), the former is true if taken by itself. However, GR and

other reparametrizaton invariant theories of spacetime are four-dimensionally covariant

theories, which implies that separating spatial from temporal coordinate transforma-

tions is artificial and is bound to lead to inconsistencies. It can be seen from eq. (4.4.35)

that two “temporal” transformations mix into a spatial coordinate transformation, if

the constraints are interpreted as generators of symmetry transformations. Therefore,

the spatial and temporal coordinate transformations mix, but this is expected since it

is a 3 + 1 decomposition of a full four-dimensional diffeomorphisms. That the interpre-

tation of each individual first class constraint as a generator of a gauge symmetry leads

to inconsistencies in GR can be found in the work of Pitts [111]. This inconsistency

can be observed also in the case of vacuum electromagnetism [110], where it can be

shown that Gauss’ constraint in eq. (A.5.14), with m = 0, by itself and its primary

constraint Πt by itself generate a wrong gauge transformation because they only picks

up the spatial part and temporal part, respectively, of the full gauge transformation

Aµ → Aµ + ∂µf . The result is that Fµν is not invariant under the action of individual

primary and secondary constraints, which can be seen on the example of the Gauss’

constraint (using its smeared version with an arbitrary function f(t, ~x))

δAµ =

{
Aµ,

∫
d3x ∂iΠ̄

if

}
= −δiµ∂iε+ surf.

⇒ δFµν = ∂µδAν − ∂νδAµ = −δiν∂µ∂if − δiµ∂ν∂if , (4.6.1)
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where “surf” denotes surface terms24. The magnetic field ∼ Fij is unchanged, but the

electric field ∼ F0j obviously is not invariant under the action of the Gauss’ constraint

alone

δF0j = −δij∂0∂iε = −∂0∂jε 6= 0 . (4.6.2)

Similar result is obtained for the action of the primary constraint. The issue is resolved

if a particular linear combination of primary and secondary constraints is “tuned” such

that it gives the correct gauge transformation. Namely, if one considers

δAµ =

{
Aµ,

∫
d3x

(
−Πt∂tε+ ∂iΠ̄

if
)}

= −δtµ∂tε− δiµ∂iε+ surf. = −∂µf + surf.

(4.6.3)

The electromagnetic field strength is of course invariant under this transformation.

Hence, one can define the generator of U(1) transformation for vacuum electromag-

netism as

GU(1)[f ] :=

∫
d3x

(
−Πt∂tf − Π̄i∂if

)
+ surf.

= −
∫

d3xΠµ∂µf + surf. , (4.6.4)

which commutes with the field strength,

δFµν = {Fµν ,GU(1)[f ]} = 0 . (4.6.5)

Note that in the second line of eq. (4.6.4) a partial integration is used to write the

generator in a more intuitive, covariant form, which to our knowledge is not often

met in the literature. In fact, we think that attempting to rewrite generators in 3 +

1 formulation into their covariant form is a good exercise towards the definition of

generators in other decompositions of spacetime than 3+1 decomposition, starting from

their covariant form. A covariant notation of generators related to reparametrization

invariance was to some extent achieved by [34, 113], see below.

But we think that definitions of this and other generators can be generalized to be

independent of the theory from which it was derived, which is something we already

attempted and succeded with the generator of conformal transformation in chapter 3

but in the full covaraint formalism. In other words, suppose that the form of eq. (4.6.4)

24All definitions further below related to the generators are valid up to surface terms.
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were given and one would like to define an object, say a tensor field, which is invariant

under the action of this generator. Then one would use eq. (4.6.4) as a condition, from

which it would follow that Fµν must be antisymmetric and therefore expressible as a

curl of a covector. In order to have such a generator at one’s disposal independent of a

theory in question, one needs to start by an attempt to understand the meaning of the

known generators without the bias of a particular theory within which the generator

is considered. So let us see what is the U(1) generator doing without reference to

the theory of electromagnetism. What this generator is doing is that it makes a shift

of a given four-vector field by a gradient of a scalar function. It seems at first that

all components of the vector field change. But let us use the wisdom accompanying

the search for a set of variables which separate into those that change and those that

do not change under this transformation. This is already known as the transverse-

longitudinal decomposition of the electromagnetic potential, see e.g. [110, 136], and it is

the decomposition that we used in chapter 1 to understand the difference between those

transformations which change lengths and those that do not. This guiding principle is

the same as the one used to formulate the unimodular-conformal variables, by looking

for those variables which change under a conformal transformation and isolating them

from those variables which do not. Splitting a vector field as Vµ = V ⊥µ + V
‖
µ with

a condition that25 ∂µV
µ
⊥ = 0 and V µ

⊥V
‖
µ = 0, which defines the transversality of this

component, it follows that the longitudinal component has only one degree of freedom

in four dimensions. This component can also be defined as the curl-free part of Vµ

and therefore can be written as V
‖
µ = ∂µφ, φ being a scalar function which carries a

single degree of freedom. The conjugate momenta to these components may be found

by splitting Πµ = Πµ
⊥ + Πµ

‖ , whose transversal and longitudinal components obey the

same relations as their corresponding configuration variables. Now, let us define a

transformation which makes a shift of the longitudinal component as φ → φ + f by a

function f , while it leaves the transversal component invariant. Using that a Fourier-

dual version of the condition ∂µV
µ
⊥ = 0 is kµV

µ
⊥ = 0, where kµ is the momentum along

the direction of propagation of V µ, it follows that the integrand Πµ∂µf in eq. (4.6.4)

reduces to Πµkµf = Πµ
‖kµf , i.e. it does not depend on the transversal component

of the momentum. Therefore, a U(1) transformation of a vector field is just a shift

in its longitudinal component, leaving the transversal component invariant, so δVµ =

δV
‖
µ ∼ kµf under a U(1) transformation. This is a heuristic way of explaining why

the generator of U(1) transformation in the second line of eq. (4.6.4) has such a form;

the Poisson bracket for V µ
⊥ component vanishes. But the point is that we think that

this generator could be defined by itself, based on the underlying Lie group itself.

Just as the generator of rotations in space exists by itself, so does any other generator

which is related to some Lie group. Then such generator could be used in any theory,

independently of whether a theory is invariant under its action or not. One only needs

25We are assuming Minkowski metric here.
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to find a suitable new set of variables which exposes the relevant variables that are

affected by this transformation, such as the longitudinal component of each starting

variable, in the case of U(1) transformation. In the case of vacuum electromagnetism,

the action of U(1) on the Lagrangian gives a zero change because of eq. (4.6.5), but if

a mass term is present, as is in Proca field theory (cf. appendix A.5.1), the action of

the U(1) generator gives

1

2

{
m2ηµνAµAν , GU(1)[f ]

}
= −m2ηµνAµ

{
Aν ,

∫
d3xΠµ∂µf

}
= −m2Aµ∂µf (4.6.6)

which means that Proca field theory is not invariant under a U(1) transformation.

Hence, the longitudinal component in the Proca field theory does not vanish due to the

mass term and shows that the generator in eq. (4.6.4) makes sense to be defined in a

theory with second-class constraints as well, which does not enjoy the U(1) symmetry.

An algorithm for constructing the generator of a symmetry transformation for a

given Hamiltonian formulation of a particular theory has been developed by Castellani

[34], but the idea of generators constructed from first-class constraints was initiated

by Anderson and Bergmann [2]; see also historical remarks in [110, 111]. We refer to

this algorithm as the “ABC algorithm” and it is important to keep in mind that this

algorithm works with first-class constraints only. Let us review it. The ABC algorithm

consists of the following steps [34]:

1. Define the following sum

G[ε] =

∫
d3x

m∑
k=0

ε(k)Gk (4.6.7)

where m is the total number of first-class constraints appearing in a chain starting

with a particular primary constraint; ε(k) := dkε/dtk is the k-th time derivative

of an arbitrary scalar function ε which is the parameter of the symmetry transfor-

mation26. This sum defines the generator of a symmetry transformation related

to a set of first-class constraints in a given theory.

2. Identify all primary first class constraints and form the following sum:

PFC ≡
∫

d3x
n′∑
k=1

ρkPk , (4.6.8)

26It may happen that this parameter is a tensor density of any rank and weight but that does not
affect the essence of the algorithm.
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where Pk are primary constraints (not necessarily momenta) and ρk are arbitrary

functions to be determined. Choose one primary first-class constraint or a linear

combination given by the above equation and set it equal to Gm. The generator

that is based on this constraint gives one particular symmetry transformation: one

primary first-class constraint leads to one generator of symmetry transformation.

If we think of each primary constraint as an equation telling us that a certain

variable is a true arbitrary variable, then each symmetry generator arises due to

appearance of one true arbitrary variable in a theory.

3. Apply the following iteration procedure:

Gm = PFC ,

Gm−1 + {Gm, HTOT} = PFC ,

...

G0 + {G1, HTOT} = PFC ,

{G0, HTOT} = PFC , (4.6.9)

where HTOT is a total Hamiltonian of the theory in question.

4. From the resulting set of equations the coefficients in eq. (4.6.8) can be determined

and Gk found.

This procedure works for any kind of symmetry — intrinsic or extrinsic, see e.g. the

example of Einstien-Yang-Mills theory [114] — as long as these symmetries can be

found in a given theory. Using this procedure Castellani [34] has constructed gener-

ators of four-dimensional diffeomorphisms in their 3 + 1 decomposed version within

the Hamiltonian formulation of GR. Later, Pons et al. [113] have polished the ABC

procedure and have given more details on the construction of these generators based

on the idea that gauge transformations of configuration variables in Lagrangian for-

malism should induce a particular transformation of the phase space variables in the

Hamiltonian formalism. They derived a concise version of the generator of the four-

dimensional coordinate transformations within the 3 + 1 Hamiltonian formulation of

any four-dimensional reparametrization invariant theory of spacetime in the following

form

G[ξν ] =

∫
d3x

(
ξ̇µpµ + (Hµ +NαCνµαpν) ξµ

)
, (4.6.10)

where ξµ are arbitrary functions of space and time that describe the transformation in

the phase space and are called “descriptors”; one also writes concisely Nα = (N,N i),

pν = (pN , pi), Hµ = (H⊥,Hi), while Cνµα are the structure functions (“coefficients”)
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of the hypersurface foliation “algebra”, see e.g. [113] and [18, section 20.7],

Ci00 =
(
hij(x) + hij(x′)

)
∂jδ(x,x

′) , (4.6.11a)

C0
i0 = ∂iδ(x,x

′) = −C0
0i , (4.6.11b)

Cijk =
(
δij∂k + δik∂j

)
δ(x,x′) , (4.6.11c)

where derivatives are with respect to x and all other components vanish. These struc-

ture functions would appear if one would have derived eqs. (4.3.21)-(4.3.23) in terms

of the constraints themselves instead of their smeared versions. This is in agreement

with the claims about the general validity of hypersurface foliation algebra for any

reparametrization-invariant theory of spacetime [40, 138], because this algebra arises

from the algebra of generators, as shown in [34, 113]. The gauge generator generates

any coordinate transformation and is given for each diffeomorphism class of metrics.

The explicit form of the generators is achieved by plugging eqs. (4.6.11a)-(4.6.11c) into

eq. (4.6.10) and it has the following form [34, 114],

G⊥[ξ0] =

∫
d3x

(
ξ0
(
H⊥ + hijpi∂jN + ∂i

(
Nhijpj

)
+ ∂i

(
pNN

i
))

+ ξ̇0pN

)
, (4.6.12a)

G‖[ξi] =

∫
d3x

(
ξi
(
Hi + pj∂iN

j + ∂j
(
N jpi

)
+ ∂iNpN

)
+ ξ̇ipi

)
. (4.6.12b)

Then the sum of these generators G[ξµ] = G⊥[ξ0]+G‖[ξi] generates a general coordinate

transformation xµ → xµ + εµ of the four-dimensional metric components, i.e. it gives a

Lie derivative of gµν along εµ,

δgµν = Lεgµν = {gµν ,G[ξµ]} = εα∂αgµν + gαν∂µε
α + gµα∂νε

α , (4.6.13)

if arbitrary functions εµ and ξµ are related by

εµ = δµi ξ
i + nµξ0 , (4.6.14)

as shown in [34, 114]. The meaning of the above equation is just that εµ is decomposed

into a piece parallel to the three-hypersurface (the first term) and a piece which is

orthogonal to the hypersurface (the second term). For a special case of translations

in time (only the second term above is present and εµ = δµ0 ) one expects that this

generator coincides with the total Hamiltonian, the latter being the generator of a

global evolution in time; indeed, as shown by [113], for a specific form of descriptors
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ξµ = Nµ one recovers the total Hamiltonian

G[Nν ] = HTOT =

∫
d3x

(
Ṅµpµ +NµHµ

)
, (4.6.15)

which is just a sum of primary-secondary pairs of first-class constraints (as derived in

the original variables).

From all this we see that the generators as derived by the ABC algorithm have

a more important fundamental role than each individual first-class constraints — the

first class constraints are just pieces of generators which do not have a clear mean-

ing on their own, in terms of symmetry transformations. Now, the novelty that we

propose here is that one could look for generators of various transformations outside

the ABC algorithm, because the group of transformations that they belong to exists

independently of the theory in question — as we argued, the existence of the U(1)

generator given by eq. (4.6.4) is independent of the formulation of electromagnetism.

The diffeomorphism generator in eq. (4.6.10) is also defined for any theory in 3 + 1

formalism with first-class constraints27. In a similar way, we can look at the generator

of conformal transformations that arises in the pure Weyl-tensor theory (or the same

with conformally coupled scalar field). It was claimed in [22, 73, 86] that the confor-

mal constraint in eq. (4.5.47) by itself is the generator of conformal transformations.

However, this is not correct. The conformal constraint alone does not give the correct

conformal transformation, as shown in [99] and [84]. It is a simple matter to prove this

by commuting eq. (4.5.47) with the extrinsic curvature,

{Kij ,Q[ω]} = ωKij . (4.6.16)

Comparing with the actual conformal transformation of Kij given by eq. (2.3.27) it is

obvious that the inhomogeneous part is missing. If instead of Kij one considers the

action Q on its traceless part only, then the result is correct. But the trace K cannot

be correctly transformed using only Q. This problem is the direct analog of the case

of Gauss’ constraint in electromagnetism. Furthermore, the authors of [86] wondered

what is the physical interpretation of the “generator” hijP
ij and left the question open.

The reason why they did not notice the relevance of this primary first-class constraint

is that they followed Dirac’s definition of gauge transformation generators, which is

incorrect, as explained above. Therefore, in the light of the present discussion, the only

physical interpretation that could be found is the one that lies in a particular linear

combination of the primary-secondary pair of constraints hijP
ij and Q. It was in [69]

that the correct generator of conformal transformation has been derived using the ABC

27An interesting side quest would be to look for these generators in other types of spacetime decom-
positions, such as e.g. the double-null decomposition [144]
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algorithm. Its form is given by [69, eq. (39)]

GILP[ω] =

∫
d3x

(
ω̇

N
P + ω

(
Q+NpN + L ~N

P

N

))
. (4.6.17)

It can be checked easily that a Poisson bracket of eq. (4.6.17) with Kij gives the correct

infinitesimal conformal transformation. The inhomogeneous part is generated by the

term with the primary constraint P in eq. (4.6.17). On the other hand, in [84] it was

shown that the correct generator can be guessed in unimodular-conformal variables

by “tuning the sum” of P̄ and Q̄W such that its Poisson bracket with a and K̄ gives

eqs. (2.3.25) and (2.3.26) the correct conformal transformation. This can be done by

asking for the following action of the generator of conformal transformation G[ω],

δωa = {a,G[ω]} !
= ωa , (4.6.18)

δωK̄ =
{
K̄,G[ω]

} !
= n̄µ∂µω , (4.6.19)

and noticing that from the first equation it must be that G[ω] ∼
∫

d3xωapa and that

from the second equation it must be that G[ω] ∼
∫

d3x n̄µ∂µω P̄ . Since there is no other

variables which transform under conformal transformation, the generator of conformal

transformation can be written as a sum of these

G[ω] =

∫
d3x

(
ωapa + n̄µ∂µω P̄

)
, (4.6.20)

where apa ≡ QW is the secondary, conformal constraint. We think that this generator

can be derived using the ABC algorithm as well, but we were unable to show that.

The problem is that the ABC algorithm can generate only ωapa + ω̇P̄ , if G1 = P̄ /N̄ is

used, where the spatial derivatives of ω are missing. This could be remedied perhaps

by using Ln̄ω in eq. (4.6.7) instead of ω̇ but we leave this problem open in this thesis

and take eq. (4.6.20) for granted as it is.

As can be seen, if unimodular-conformal variables are used, the form of the generator

of conformal transformations is rather trivial and intuitive: it is built from the only

two variables that are affected by a conformal transformation. Its action on all other

unimodular-conformal variables vanishes. This is why this generator can be used in

any other theory as well, including GR and a general higher-derivative theory that we

described in the previous two sections. Despite the fact that the generator of conformal

transformations cannot be derived in a general higher-derivative theory or pure GR

using the ABC algorithm because there are no first class constraints P̄
D
= 0 or pa

D
= 0,

one could easily study Poisson brackets of the Hamiltonian and momentum constraints

in those theories with the generator in eq. (4.6.20). The result will be non-vanishing
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and would give the outcome of an infinitesimal conformal transformation due to the

presence of a and K̄. There is no reason why the notion of such generators would not

exist in a theory which does not possess the corresponding symmetries.

If one were to combine the information from this section with the results of chapter 3,

where we defined the covariant generator of conformal transformation, one would be

tempted to attempt to derive eq. (4.6.20) from the covariant form of the generator

of conformal transformation in eq. (3.3.8) using 3 + 1 decomposition and unimodular-

conformal variables. We believe that this is indeed possible. One would have to make

the following substitutions

pa →
δ

δa
P̄ → δ

δK̄
, (4.6.21)

such that eq. (4.6.20) would have the form

Ĝω· :=
∫

d3x

(
ωa

δ ·
δa

+ n̄µ∂µω
δ ·
δK̄

)
, (4.6.22)

in any theory formulated with the 3 + 1 decomposition (not as a Hamiltonian theory).

Then one would have to show that variational derivative with respect to A gives rise

to variational derivative with respect to a and variational derivative with respect to

K̄, using a chain rule due to the change of variables from A to a and ȧ to K̄. We

shall not pursue the investigation of this hypothesis, but we do think this would be

an interesting and important line of research that could be applied to other generators

as well. The result should be the following. Let S[qI ] be a functional (say, an action)

of fields qI defined on spacetime and S[zI ] is the same functional but expressed in

3 + 1 decomposition formalism where zI are the 3 + 1 configuration variables defined

on spatial hypersurface Σt parametrized by a time function t. Then the definition of

conformal invariance of this functional should ensure that

ĜωS[qI ] =

∫
d4xω(x)A(x)

δS[qI ]

δA(x)

!
=

∫
dt

∫
d3x

(
ω(t, ~x)a(t, ~x)

δS[zI ]

δa(t, ~x)
+ n̄µ∂µω(t, ~x)

δS[zI ]

δK̄(t, ~x)

)

=

∫
dtĜωS[zI ] = 0 . (4.6.23)

The additional integral over t is necessary because eq. (4.6.22) is defined on the spatial

hypersurface at each instant of parameter t, but it acts on a functional of fields zI(t, ~x)

which are evaluated at a particular t. In other words, eq. (4.6.22) should be derivable

from eq. (3.3.8) using the 3 + 1 formalism and unimodular-conformal variables, since
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the two equations should convey the same information.

We mention an interesting observation as a final note of this section. Since the gen-

erator of conformal transformation in its covariant form eq. (3.3.8) can be interpreted

as the generator of changes along a single direction in the configuration space of all

metrics gµν , in the 3 + 1 formulation of higher-derivative theories of gravity the gener-

ator in its 3 + 1 form eq. (4.6.22) should express changes along directions of a and K̄ in

the extended superspace. The dynamics of a conformally invariant theory can then be

thought to take place in the hypersurface of the extended superspace which is orthog-

onal to these two directions. Since the dynamics of the Weyl-tensor theory takes place

on this hypersurface, we can think of the traceless DeWitt supermetric in eq. (4.5.64)

as the projection of the dynamics of the general higher-derivative theory in the entire

extended superspace onto the hypersurface which is invariant under conformal transfor-

mations. Hence, using the notion of the traceless DeWitt supermetric and the notion

of the generator of conformal transformations one could have a way of constructing the

dynamics of three-hypersurfaces whose volume is preserved in time. Now, recall that

we mentioned in section 4.3.2 that the Hamiltonian formulation of GR could be de-

rived as a unique outcome of the assumption that the three-hypersurface is completely

described by the canonical pair hij , p
ij
ADM. If this assumption were relaxed, would it be

possible to derive other theories that describe dynamics of three-hypersurfaces? We

think so, because: 1.) any reparametrization-invariant theory obeys the hypersurface

foliation algebra, cf. eqs. (4.4.35)-(4.4.37); 2.) higher derivative theories of gravity are

mathematically without issues, the only difference is that they have a richer structure

than GR and “live” on an extended superspace where the extrinsic curvature sector

adds six more directions; 3.) one is able to specify additional symmetries, such as

conformal symmetry, using the algebra of the generator of conformal transformations

with other generators in the theory. Taking this into account, it is natural to attempt

to derive a dynamics of three-hypersurfaces starting from an assumption that hyper-

surfaces are described not only by the pair (hij , p
ij) but also (Kij , P

ij). This could be

worth investigating, but is beyond the aims of this thesis.

4.7 Einstein-Hilbert action as a higher-derivative theory

without higher derivatives

The EH Lagrangian does not contain second order time derivatives of the three-metric

(after the partial integration), and it is not necessary to introduce the extrinsic curva-

ture components as independent canonical variables. But it is not harmful, either. Let

us therefore make a short excursion and ask what can one learn if one treats the EH

theory as if it were a higher-derivative theory. The contents of this section are slight

revision, reformulation and extension of [100], with few corrected typos.

Starting from the ADM Lagrangian in eq. (4.3.2), we add to it constraints in

eq. (4.4.6) and eq. (4.4.7) with Lagrange multipliers λ̄ijT and aλ to obtain a constrained
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Lagrangian similar to eq. (4.4.8) in a general higher-derivative theory,

LEH
c

(
N̄ ,N i, a, h̄ij , χ, K̄, K̄

T
ij , χ̇; ȧ, ˙̄hij , λ, λ̄

ijT
)

:=

LEH
(
N̄ ,N i, a, h̄ij , χ, K̄, K̄

T
ij , χ̇

)
− λ̄ijTK̄T

ij − aλK . (4.7.1)

Note that since there is no ˙̄K or ˙̄KT
ij in the Lagrangian, the corresponding momenta

both vanish as primary constraints, while the rest of the momenta are as in a higher-

derivative theory,

pN̄
D
= 0 , pi

D
= 0 , pa = λ̄ , p̄ij = 2λ̄ijT , (4.7.2)

P̄
D
= 0 , (4.7.3)

P
D
= 0 . (4.7.4)

It is obvious that something strange is happening here, since neither of the momenta

seems to be invertible in terms of their velocities. Nevertheless, let us proceed. Legendre

transform is similar to the one used in a higher-derivative theory in eq. (4.4.21) except

that we have Lagrange multipliers instead of the exstrinsic curvature velocities,

HEH =

∫
d3x

(
ȧpa + ˙̄hij p̄

ij + λ̄T
ijP̄

ij + λ̄K̄P̄ + λN̄pN̄ + λip
i − LEH

c

)
. (4.7.5)

The result is the following total Hamiltonian,

HEH =

∫
d3x

{
N̄H̄EH

⊥ +N iH̄EH
i + (2N̄K̄T

ij)Y
ij
EH +

(
N̄K̄

)
Q̄EH (4.7.6)

+ λN̄pN̄ + λipi + λijP̄
ij + λK̄P̄

}
, (4.7.7)

where the secondary constraints Y ijEH and Q̄EH follow from the preservation of constraints

in eq. (4.7.3) and eq. (4.7.4) and their form is given by

˙̄P
D
= 0 ⇒ Q̄EH ≡ apa + 6l2~a2K̄

D
= 0 , (4.7.8)

˙̄P
D
= 0 ⇒ YEH ≡ 2p̄− l2~a2K̄T

]
D
= 0 . (4.7.9)
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Preservation in time of the first equation in eq. (4.7.2) — after extracting eq. (4.7.8)

and eq. (4.7.9) in a very similar way that Hamiltonian constraint in the WE theory is

derived in eq. (4.5.10) from eq. (4.5.8) — gives the Hamiltonian constraint,

ṗN̄
D
= 0 ⇒ H̄EH

i = − l
2~a2

2

(
a2 (3)R− K̄T · K̄T + 6K̄2

)
D
= 0 . (4.7.10)

The momentum constraint follows from the time derivative of the second equation in

eq. (4.7.2) and is the same as eq. (4.3.13b) without χ-dependent terms, since we are

considering the vacuum case.

The interesting fact about this formulation is that it seem that there is no kinetic

term in eq. (4.7.10). Extrinsic curvature is only in the original ADM formulation

related to the ADM momenta and makes up the kinetic term, but here things seem to

be “frozen”. But let us not jump into conclusions. Now, didn’t we meet eq. (4.7.8)

earlier? In the WE theory, in eq. (4.5.23) we met the exact same constraint. There

the constraint led to eq. (4.5.24) because it is a second-class constraint. In the present

case of the EH gravity treated in a strange, higher-derivative way, the same is true; in

fact, both eq. (4.7.8) and eq. (4.7.3) are second-class constraints becasue they do not

commute with their primary constraint pair,

{
P̄ , Q̄EH

}
= −6l2~a2 , (4.7.11)

{
P̄ ij , YmnEH

}
= l2~a2

(
h̄imh̄jn − 1

3
h̄ij h̄mn

)
. (4.7.12)

What is the meaning of eq. (4.7.8) and eq. (4.7.3)? First of all, since they are second-

class constraints, they fix certain canonical variables to make them a function of the

other canonical variables which remain independent. Rewriting the equations to express

the extrinsic curvature leads to28

K̄ = − 1

6l2~a
pa , (4.7.13)

K̄T
] =

2

l2~a2
p̄ , (4.7.14)

which we can recognize from eq. (4.3.26) as none other than ADM momenta. Secondly,

since they are second-class constraints, their preservation in time should eventually lead

to fixing of Lagrange multipliers λK̄ and λ̄T
ij . Indeed, λK̄ is fixed in the same way is

28In [100] in equation (32) the first expression should contain “a” instead of a2 on the RHS and the
second expression should contain a2 instead of a onthe RHS, as in equation (19).
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in the WE theory in eq. (4.5.14) and eq. (4.5.25), which we showed (assuming spatial

homogeneity) that it is just the trace of the EE. In the present case the calculation is

the same (up to neglecting the cosmological constant from the start) and eq. (4.5.25)

as the trace of the EE follows — the calculation is exactly the same, because the Weyl-

tensor part of the WE theory has a vanishing trace. What is the meaning of the other

second-class constraint, in eq. (4.7.9)? Since that constraint contains K̄T, it will pick

up the Lagrange multiplier λ̄T
ij form the following Poisson bracket

{
2p̄− l2~a2K̄T

] , H
EH
T

}
∼ λ̄T

ij + ...
D
= 0 , (4.7.15)

whose vanishing stops the constraint analysis and determines the λ̄T
ij , which is just the

velocity ˙̄KT
ij . Which part of the EE might eq. (4.7.15) be? The only remaining equation

is the traceless part of the Ricci tensor, but we only claim this as an educated guess

without calculation and leave it as it is.

Finally, to recover the ADM Hamiltonian constraint, use eq. (4.7.13) and eq. (4.7.14)

in eq. (4.7.10). The result is given by

H̄EH
⊥ = − 1

12l2~
p2
a +

2

l2~ a2
p̄ · p̄− l2~a4

2
(3)R

D
= 0 , (4.7.16)

which is exactly the same as eq. (4.3.24a).

It is interesting to wonder about a “broken symmetry” behind the second-class

constraint YmnEH

D
= 0. The question is motivated from what we learned about Q̄W D

= 0,

Q̄WE D
= 0 and Q̄WEχ D

= 0 constraints — these are related to an established or broken

conformal symmetry. We can therefore definitely say that the conformal symmetry is

broken in the EH theory, even in vacuum. This is in accordance with our discussion in

section 3.3.2 and section 4.6: there exists a theory-independent generator of conformal

transformation which can tell if an object it acts on is conformally invariant or not. It is

thus natural to ask if there a generator related to p̄ and YmnEH which is obviously broken

in any theory which contains velocities of ˙̄h. Note that this hypothetical generator is

expected to be related to all transformations except conformal transformations. So the

question can be reformulated as: is there a theory which is independent of the shape

density? As we have discussed in chapter 2, there exists an asymmetry between the

scale and the shape degrees of freedom, such that one can find spacetimes in which the

scale density is unaffected by curvature, but one cannot ever find spacetimes in which

the shape density is unaffected by curvature while the volume is. The tensorial degrees

of freedom of the metric in order to related the points in space — without it there is no

meaning to distance. So the answer to the question is no. It would still be interesting

to see how can one go about investigating the nature of transformations related to p̄

and YmnEH .
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4.8 Final remarks

Three main messages are to be remembered from this section. Firstly, exact classical

higher-derivative theories introduce additional degrees of freedom which in general ex-

hibit a runaway behavior. Secondly, the interpretation of the higher-derivative terms in

the context of their role at different energy/length scales determines whether a theory

containing such terms shall be treated as an exact classical higher-order theory or a

classical first-order theory with the higher-derivative terms reduced pertrubatively to a

form of perturbative corrections. This also depends heavily on the context. The Hamil-

tonian formulation of these two cases differs significantly because in the latter case one

introduces the additional degrees of freedom, while in the former case the degrees of

freedom is unchanged compared to the first order theory but their dynamics is affected

by the perturbative corrections due to the higher-derivative terms. For our purposes it

is necessary to Hamilton-formulate the exact higher-derivative theory, because we are

guided by the principle of quantization before perturbation, as explained in the Intro-

duction. Therefore, our main interest was to explore the form of the constraints and

not to derive classical equations of motion because the latter make no sense within

the proposed context of this thesis. Thirdly, despite our omission of a lot of details of

the exact classical higher-derivative theory of gravity, we think that this chapter also

serves as a testimony of the power of the unimodular-conformal variables. It is clear

that without the application of the results in chapter 2 to the Hamiltonian-formulation

of the higher-derivative theories of gravity would not illuminate the subtleties of confor-

mal features of the theory. Using unimodular-conformal variables has proven of crucial

significance in identifying the conformal degrees of freedom and interpreting the roles

of the R2 and C2 terms in the action, but also in the GR itself. We hope that these

results will motivate further applications of unimodular-conformal variables in other

fields of classical and quantum gravity.

Of particular importance is the generator of conformal transformations formulated

in 3 + 1 formalism. It was already introduced in [69], but our formulation presented in

section 4.6 is in unimodular-conformal variables, which makes the interpretation and

the action of the generator much more clear compared to its formulation in [69]. Since

the derivation of the generator of conformal transformation using the ABC algorithm

is tied to the first-class theory in question, it becomes impossible to talk about the

derivation of the generator of conformal transformation in a theory whose conformal

invariance is broken, such as the WE theory. However, we have argued already in

chapter 3 that the existence of the generator should be independent of the theory and

the same should be true for the 3 + 1 version of the generator appearing in constrained

systems. For this reason we think it is important to understand if there is a possibility

to generalize the ABC algorithm to theories which contain second-class constraints.

Moreover, we think that it is worth pursuing the derivation of the 3 + 1 form of the

generator of conformal transformation from its covariant form defined in 3.
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4.8. Final remarks

As a final note we would like to encourage the use of the method of perturbative

constraints on classical and semiclassical considerations of theories of gravity. With

the ongoing observations through the lens of gravitational waves one might hope for

signatures of semiclassical gravity in the gravitational wave signals. There are already

proposals for testing the higher-derivative theories of gravity as exact theories, but we

think one should in parallel consider tests of such theories treated perturbatively.

∞ � ∞
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Chapter 5

Quantum geometrodynamics

of higher derivative theories

Quantum geometrodynamics of General Relativity (QGDGR) is an approach to quan-

tum gravity which is based on the canonical (Dirac) quantization of the Hamiltonian

formulation, which we reviewed in the previous chapter. The main questions about

this approach to quantum gravity revolve around the resulting Wheeler-DeWitt equa-

tion, which is a dynamical equation for the wave functional that formally describes a

quantum state of an entire universe, including both gravity and matter. The results of

the full theory are rather formal and there are several issues that are still unresolved.

One of those issues concerns the semiclassical approximation and the derivation of the

renormalized semiclassical Einstein equations (SEE). Although methods of semiclassical

approximations have been established in the past, it is of our interest in this chapter to

question the absence of the quadratic curvature terms in the SEE which are otherwise

necessary for the renormalization of the expectation value of the energy-momentum

tensor operator can take place. After presenting the QGDGR in unimodular-conformal

variables — a mere reformulation of the already established results in the literature in

terms of unimodular-conformal variables — we shall address the issue of the unrenor-

malized SEE and what one should expect from it. We suggest a way of dealing with

this by formulating QGD of a higher-derivative theory instead of the sole EH term. It

will be shown what one can expect if such an approach is adopted and what are the

properties of such a quantum gravity theory. Moreover, independently of the theory

in question, a quantization procedure based on the generators of diffeomorphisms shall

be argued for.
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5.1 Quantum geometrodynamics of General Relativity

QGDGR1 was introduced by DeWitt [41] and it is the most conservative approach

to direct quantization of gravity [82]. It is formulated as a Dirac quantization of the

constrained theory of GR (presented in section 4.3). The main consequence of canonical

quantization of gravity is that the three-metric field itself is quantized and one talks

about superpositions of states that refer to different three-geometries. In such a theory

space and time seize to exists, as we shall review. That means that the notions of space

and time need to emerge from the quantum gravity theory, as the energies become lower

and lower. Since one does not know which quantum gravity theory is the correct one and

whether QGD based on GR, in particular, makes sense (as straightforward as it appears

to be), one needs to investigate various semiclassical approximation schemes with an

aim to derive a meaningful low-energy limit to quantum gravity in which the classical

spacetime described by GR emerges. In doing this, one meets several issues that may

be relevant for the interpretation of the results of a semiclassical approximation. We

shall point out some existing problems which we think are relevant for the aim of this

thesis.

5.1.1 Wheeler-DeWitt equation

We shall quantize GR in a similar way as is presented elsewhere (see [82, eq. (5.21)]

for vacuum case and [41, 77, 80] for the case with non-minimally coupled scalar field).

The difference will be that we use the theory formulated in the unimodular-conformal

variables in this thesis. The difference with our work is that instead of the three-volume

element as a variable we use the scale density a and in our treatment the scalar density

field is defined in a different way, cf. eq. (2.4.19). Moreover, in our treatment the use

of the lapse density N̄ brings a certain extra factor of a in the Hamiltonian constraint,

as compared to the usual formulation.

The central object in canonical quantum gravity is the wave functional

Ψ ≡ Ψ
[
a, h̄, χ

]
, (5.1.1)

which is a functional of both gravitational and non-gravitational (matter) fields defined

on the three-dimensional space. The wave functional should in principle also have

dependence on N̄ and N i, but it turns out that it is independent of them due to

their arbitrary nature (cf. eq. (5.1.10) below). One then adopts the following Dirac

1Since this quantization procedure is quite general and independent on the theory in question, we
choose to use “QGD” as the name of a method, while we reserve “QGDGR” for quantum geometro-
dynamics of General Relativity in particular.
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quantization rules,

ˆ̄N(x)Ψ = N̄(x) ·Ψ, p̂N̄(x)Ψ =
~
i

δ

δN̄(x)
Ψ, (5.1.2)

N̂ i(x)Ψ = N i(x) ·Ψ, p̂i(x)Ψ =
~
i

δ

δN i(x)
Ψ, (5.1.3)

ˆ̄h(x)Ψ = h̄(x) ·Ψ, ˆ̄p(x)Ψ =
~
i

δ

δh̄(x)
Ψ, (5.1.4)

â(x)Ψ = a(x) ·Ψ, p̂a(x)Ψ =
~
i

δ

δa(x)
Ψ, (5.1.5)

χ̂(x)Ψ = χ(x) ·Ψ, p̂χ(x)Ψ =
~
i

δ

δχ(x)
Ψ (5.1.6)

such that Poisson brackets in eqs. (4.3.7) and (4.3.8) are promoted to the following

commutators

[ˆ̄hij(x), ˆ̄pab(y)
]
Ψ = i~1Tab

(ij) δ(x,y)Ψ , (5.1.7)[
q̂A(x), Π̂B(y)

]
Ψ = i~ δAB δ(x,y)Ψ , (5.1.8)

where q̂A = (â, χ̂) and Π̂B = (p̂a, p̂χ). From now on we suppress labeling the dependence

on space coordinates, unless an explicit need arises. Then the wave functional is defined

as the state which is annihilated by the total Hamiltonian,

ĤEχΨ =

∫
d3x

(
N̄ ˆ̄HEχ

⊥ Ψ +N i ˆ̄HEχ

i Ψ + λN̄ p̂N̄Ψ + λip̂iΨ
)

+ ĤEχ
srufΨ = 0 , (5.1.9)

for which could be argued that is equivalent to the statement that each constraint by

itself annihilates the wavefunction as ˆ̄HEχ

⊥ Ψ = 0 and ˆ̄HEχ

i Ψ = 0. This is the usual

assumption in the canonical quantization procedure [41, 43, 82], but there are sev-

eral important remarks regarding this procedure that one must be at least aware of

and which we shall breifly discuss further below. Let us first write out each term in

eq. (5.1.9),

∫
d3xλN̄ p̂N̄Ψ ⇒ δΨ

δN̄
= 0 ∧

∫
d3xλip̂iΨ = 0 ⇒ δΨ

δN i
= 0 ,

(5.1.10)

∫
d3x N̄ ˆ̄HEχ

⊥ Ψ =

∫
d3x N̄

{
~2

12 (l2~a2 + 6ξξcχ2)

(
a
δ

δa
− 6ξcχ

δ

δχ

)2

− ~2

2

δ2

δχ2
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− 2~2

(l2~a2 − ξχ2)

δ

δh̄
· δ
δh̄
− l2~a4

2
(3)R+

1

2
Uχ

}
Ψ = 0 ,

(5.1.11)

∫
d3xN i ˆ̄HEχ

i Ψ = i~
∫

d3xN i

{
2D̄j

(
h̄ik

δΨ

δh̄kj

)
+

1

3
Di

(
a
δΨ

δa

)

+
1

3

(
χ∂i

δΨ

δχ
− 2∂iχ

δΨ

δχ

)}
= 0 . (5.1.12)

The first term in the second line of eq. (5.1.11) is understood as

δ

δh̄
· δ
δh̄
≡ h̄ikh̄jl δ

δh̄ij

δ

δh̄kl
. (5.1.13)

We color the relative dimensionless coupling l in red in order to be able to later keep

track of equations with ease. Equation (5.1.9) is equivalent to stating that the wavefunc-

tion is invariant under spacetime reparametrizations, because ĤEχ is just the quantized

generator of four-dimensional diffeomorphisms derived by Pons et al. [113] that we

reviewed in section 4.6. Interpretation of each of the above individual equations is as

follows: equations (5.1.10) express the independence of Ψ on the true arbitrary variables

— the lapse density and the shift density — meaning that the quantum state should

not depend on the way the three-hypersurfaces are defined; eq. (5.1.12) expresses the

independence of the wave functional on the choice of spatial coordinates, i.e. the wave

functional is three-diffeomorphism invariant; eq. (5.1.11) is the dynamical equation for

Ψ and is called the Weeler-DeWitt equation (WDW equation). According to Dirac [43],

the reason to impose the quantization conditions as annihilation of Ψ by each individ-

ual first class constraint is that each of these constraints has the meaning of a gauge

generator of a symmetry transformation — so the interpretation of the above equations

is that each symmetry generator produces a vanishing change of the wave functional.

Such wave functional (in analogy to wave functions in ordinary quantum mechanics) is

usually referred to as “the physical state”. However, recall from section 4.6 that it is

incorrect to state that each individual first class constraint is a generator of a symmetry

transformation. Instead, as we have reviewed there, the true symmetry generators are

a specific linear combination of first class constraints. Practically, this does not matter

for a system such as GR because, as follows from eq. (5.1.9), the result is the same. It

is, however, misleading and care should be taken in more complicated systems.

Equation (5.1.11) plays the central role in QGDGR. The WDW equation is an

equation that resembles the Klein-Gordon equation in its form, the scale density di-

rection being analogous to the time direction; the scalar (density) field behaves like

an additional “spatial” direction. The hyperbolic form of this equation is reflected in
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the opposite signs of the first kinetic terms. By inspection of eq. (5.1.11) one can see

that the addition of non-minimally coupled scalar matter gives rise to an ambiguity in

the signature of the kinetic term because ξ and ξc may in principle be negative and

overcome l2~a2 term in the kinetic term, as studied by Kiefer [77]. Note that the situ-

ation becomes more complicated if factor ordering ambiguity (see further below) were

taken into account. In any case, it is not possible to solve this equation except in some

very special cases [41, 82], such as the minisuperspace, where one deals with spatially

homogeneous fields and imposes the homogeneity conditions before quantization, avoid-

ing functional derivative altogether. Therefore, all further discussion concerns only the

equation itself, not the solutions.

As mentioned in section 4.3.3, the problem of time arises in quantum gravity and one

is able to see that from the WDW equation: this equation does not resemble the usual

differential equations in quantum mechanics and quantum field theory which contain

derivatives with respect to space and time. Time and space are meaningless concepts

and the evolution of Ψ is with respect to the changes of the three-metric in the directions

of scale density and shape density, but also in the direction of the non-gravitational

fields, such as χ in our treatment. The wave functional thus lives on the configuration

space of gravitational and matter fields. All derivatives are with respect to fields which

are functions of space and these fields play the role of “coordinates”. Since these fields

are tensors and tensor densities, a change of coordinates affects the form of components

of these fields but does not affect the wave functional itself, due to eq. (5.1.12) — the

wave functional is a timeless and spaceless object and thus provides no information

on them. Therefore, with respect to the spacetime parameters, eq. (5.1.9) expresses

the so-called “static” nature of the quantum state, as in a time-independed Schrödinger

equation. But this is where the hyperbolicity of the WDW equation becomes important:

it tells one that it is possible to talk about the initial value problem and express the

evolution of Ψ in terms of the scale density. This discussion becomes non-trivial if the

matter is coupled to ȧ. Namely, such coupling leads to a much more complicated kinetic

term as in eqs. (5.1.11) whose signature depends on the value of the involved fields [77],

i.e. only for l2~a2 +6ξξcχ
2 > 0 and l2~a2−ξχ2 > 0 the WDW equation is of hyperbolic

nature (cf. equations (2.16a) and (2.16b) in [77]), which could then be achieved only

in certain regions of the configuration space. We mentioned in section 4.3.3 that the

absence of the scale-like direction in the superspace would imply conformal invariance,

but that this is not possible in GR because GR by itself is not conformally invariant.

But we have seen in chapter 4 that higher-derivative theories offer the possibility of

having conformal invariance within the gravitational sector itself. We shall see in the

remaining of this chapter that this raises very interesting questions in the corresponding

quantum gravity theory and the hyperbolic nature of the kinetic terms in the respective

equations.

It was mentioned earlier that there are some important issues to be aware of. One is

the problem of the definition of the Hilbert space. Namely, since there is no time in the
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usual sense in quantum gravity, the usual notion of probability is ill defined, because

there is no time evolution parameter with respect to which the measure in a potential

Hilbert space could be conserved. But it may be argued that it is also unnecessary

since there is also no space in which potential observers would sit and measure this

probability. (However, this is just one point of view.) In relation to this, one also

speaks about the issue of unitarity. One may try to find a way to impose a Hilbert

space structure and a well-defined measure, but there are many ways to do this [70]

and we shall not go into it. The approach that we take is that the concept of time and

Hilbert space as we use in ordinary quantum mechanics is understood to be only of an

emergent, approximate nature. The implications of the WDW equation — if its form

is taken literally — are observationally inaccessible due to its timeless and spaceless

nature. One is then led to seek a meaningful semiclassical approximation scheme from

which one could recover the concepts of space and time, as well as quantum field

theory on a fixed background, in a meaningful way. Only then can one hope to have

some observational signatures of quantum gravity at one’s disposal. The semiclassical

approximation is the problem of our concern here.

Other problems are related to the factor ordering ambiguity — the problem of non-

commutation of momenta and “coordinate” operators. There are at least two aspects of

this problem. One is that there is no empirical indication which factor ordering should

one choose, in contrast to quantum mechanics where different factor ordering choices

can be distinguished by the experimental results. The simplest and most naive choice is

“momenta to the right”, so that they are the first objects to act on the wave functional

in a sequence of operator actions. One may instead opt for the Laplace-Beltrami-like

factor ordering, in which case one speaks of the notion of covariance in the superspace [5]

or for the conformal factor ordering [120]. In both cases it is important to understand

the implications to the quantization of the hypersurface foliation algebra, because not

only the constraints themselves but also the structure functions play a role in factor

ordering ambiguity and may affect the formulation of the quantum theory. In relation

to this, we think that the notion of generators of symmetry transformations as discussed

by [113] (cf. section 2.3) might be a better starting point to tackle this problem. By

including N̄ and N i in eqs. (5.1.11)-(5.1.12) we wanted to emphasize that point, as well

as to encourage one to be aware of the subtleties that are easily obscured if one writes

down only the integrand in eq. (5.1.9). An example of the factor order ambiguity can

be observed already by comparing the WDW equation derived in the original variables

with the WDW equation in the unimodular-conformal variables, if one recalls that the

Hamiltonian constraints in the two approaches differ by a factor of a; the change of

variables in the quantum theory would produce inconsistencies of the two approaches

if this rescaling is not taken into account. More generally, one could take into account

that N̄ can be rescaled by an arbitrary function of configuration space variables in
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which case one could use the conformal factor ordering2 [120] that ensures (in some

limiting and simplified scenarios) that the difference disappears. In spite of these issues,

we proceed with naive factor ordering and are aware of the possible limitations of the

results.

Another issue is that one often neglects (as we do) the surface terms arising form

the Hamiltonian formulation, cf. eq. (4.3.12). These are again easily overlooked if one

writes only the integrand in eq. (5.1.9).

The last issue with QGD that one has to bear in mind is the fact that the sec-

ond functional derivatives in the kinetic terms in the WDW equation are evaluated

at the same point in space, which gives rise to some terms proportional to delta func-

tion of vanishing argument δ(0), which is ill-defined even under an integral. This has

been rather recently addressed by Feng [49], who hinted that regularization of the

three-volume (which formally diverges) apparently may lead to the elimination of δ(0)

problem of the second functional derivatives. This problem persists independently of

factor ordering ambiguity. One consequence of their work which we find interesting and

possibly relevant in relation to the topic of the thesis is that the regularized form of the

WDW equation gives rise to quadratic curvature terms in the WDW equation itself.

This may be an important topic of an interesting, alternative and less “artificial” line

of inquiry to address the problem of the missing quadratic curvature terms that the

renormalization of the backreaction requires one to introduce in the SEE at this point

by hand, cf. section 4.1.1.

In the remainder of this whole chapter we assume a naive factor ordering (momenta

act first), neglect the possibility of rescaling N̄ (or changing N i in any way) and neglect

the surface terms. We focus on the structure of the WDW equation and general,

although formal, implications of the semiclassical apporximation.

5.1.2 Semiclassical approximation: general remarks

The semiclassical approximation is a topic in quantum gravity of a particular interest

because it is the means by which one can obtain the observable classical universe with

classical theory of gravity. It is reasonable to expect that the SEE given by eqs. (4.1.39)

and (4.1.40) have to arise in the semiclassical approximation to QGDGR. What kind

of approximation scheme should one employ? There are few steps and assumptions

that are made in the preparation of the semiclassical approximation, which are taken

by analogy to the quantum mechanics with atoms and molecules [82, section 5.4]. Let

us briefly sketch it here and leave more details for the upcoming subsection. The

standard approach is to combine the Born-Oppenhemer (BO) type of approximation

with the WKB-like approximation. This has been studied on a number of occasions,

2A non-minimal coupling term proportional to the Ricci scalar of the configuration space appears,
akin to the KG equation for a conformally coupled scalar field.
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e.g. in [6, 41, 78, 131], see also an overview in [79] and [82, section 5.4]. We proceed

by using the existing methods but using our own notation.

The BO part of the approximation consists of writing the quantum system as a

product state of a part which dominates at scales l2 � 1 and a part which is suppressed

at these scales. The WKB-like part of the approximation is an ansatz for Ψ expressed in

terms of a rapidly oscillating phase and a slowly oscillating amplitude Ψ ∼ A exp(iS/~),

which both are then expanded in a series of inverse powers of l2 � 1, S = l2S0 + S1 +

l−2S2+... and similarly for the amplitude. The point is to notice that l2 � 1 diminishes

the kinetic term in the WDW equation, compared to the gravitational potential and

to the kinetic and potential terms of the matter:

δ2Ψ

δχ2
∼
(
l2
)2(δS0

δχ

)2

Ψ +O
(
l2
)
, (5.1.14)

1

l2
δ2Ψ

δa2
∼ l2

(
δS0

δa

)2

Ψ +O
(
l0
)
, (5.1.15)

1

l2
δ

δh̄
· δΨ
δh̄
∼ l2 δS0

δh̄
· δS0

δh̄
Ψ +O

(
l0
)
. (5.1.16)

From the above equations and upon inspection of the WDW equation (5.1.11) one

can see that eq. (5.1.14) is the only term that survives at
(
l2
)2

order. Since the RHS

of the WDW equation equates to zero, this implies that S0 is independent of χ and

this information is used at each subsequent order of the approximation. With this,

the part of the quantum system which dominates at the l2 � 1 scales is recognized

and referred to as the “heavy” part. The “heavy” part is determined only by the

gravitational background. The “light” part is significant only at orders lower than

O(l2) and is determined by both matter and gravitational background. Taking into

account this discrepancy in orders of magnitude, the BO+WKB approximation scheme

can be employed. But the result is that in the highest order of the approximation

(where the “heavy” part dominates), one obtains vacuum Einstein-Hamilton-Jacobi

(EHJ) equation, which is equivalent to the EE, not to SEE. Then in the subsequent

order, l0, one obtains the functional Schrödinger equation for the “light” part, along

with the backreaction contribution to the EHJ — which is equivalent to the SEE without

classical matter and counter-terms, i.e. to eq. (4.1.36) with αW = βR = 0 and T clµν = 0.

This establishes the quantum field theory on a classical vacuum curved spacetime,

without the counter-terms (which is indeed consistent). At even lower orders of l2 the

quantum gravitational corrections to the functional Schrödinger equation are derived.

In order to obtain a more general, non-vacuum result for the EHJ and therefore

the SEE given by eq. (4.1.36), additional matter field action needs to be added to

the theory. But this must be done in such a way that this additional matter is not

suppressed at the order l2. It has to enter the “heavy” part at order l2 because it
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needs to contribute to the EHJ. Assuming one has introduced an additional matter

field designated by χ0, the situation in eqs. (5.1.14)-(5.1.16) should look like this:

δ2Ψ

δχ2
∼
(
l2
)2(δS0

δχ

)2

Ψ +O
(
l2
)
, (5.1.17a)

1

l2
δ2Ψ

δχ2
0

∼ l2
(
δS0

δχ0

)2

Ψ +O
(
l0
)
, (5.1.17b)

1

l2
δ2Ψ

δa2
∼ l2

(
δS0

δa

)2

Ψ +O
(
l0
)
, (5.1.17c)

1

l2
δ

δh̄
· δΨ
δh̄
∼ l2 δS0

δh̄
· δS0

δh̄
Ψ +O

(
l0
)
. (5.1.17d)

How can a contribution in eq. (5.1.17b) be implemented in the WDW equation? Com-

paring with eq. (5.1.17a), we see that a formal replacement of the form χ → lχ elim-

inates the l4 order, preventing one to conclude that S0 is independent of χ and thus

putting the field χ into the “heavy” part, side by side with a and h̄. Therefore, adding

another copy of the scalar density field Lagrangian and changing χ→ lχ0 would do the

trick. But this needs to be done with a good enough justification at the level of the

action before the quantization. Authors of [80], which deals with a background scalar

field and its pertubration in the EH theory, have done this by simply rescaling the

background scalar field by the Planck mass to make it dimensionless (in ~ = 1 units,

which they use), ϕ→ m−1
p ϕ. This produces a coupling constant 1/κ of the background

scalar field action — the same coupling as the EH action. The consequence is that the

kinetic terms of the gravitational and matter ϕ sectors in the Hamiltonian constraint

(and therefore in the WDW equation) appear at the same order in m2
p, leading to terms

similar to eq. (5.1.17b). This redefinition seems a bit ad-hoc assumption but it achieves

the goal. But in the context of this thesis where fields are deprived of their lenght/mass

dimensions and we deal with dimensionless scales, we think that such rescalings could

be safely reformulated using the dimensionless parameter l. Hence, we give here an

alternative justification for such rescaling. Namely, let us imagine a system consisting

of the EH action plus an action for a scalar (density) field X and before quantization

let us perturb3 the field X with respect to l:

X = lχ0 + χ , (5.1.18)

3Note that in a realistic scenario perturbations of matter induce perturbations in spacetime. In [80]
this was taken into account. Here we do not take this into account (which is unrealistic) and claim
that it does not affect the discussion in an essential way.
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interpreting χ0 as the background and χ as an independent perturbation. Compared to

[80], we have simply explicitly stated at which order of l do χ0 and χ appear, without

rescaling the fields into their dimensionless versions. If one demands that the classical

EE make sense at the order of l2, the above ansatz achieves this explicitly, because it

generates a “coupling constant” l2 in the kinetic term of the χ0 Lagrangian. Recalling

eqs. (4.1.43a)-(4.1.45b), which argue that T clµν is of the order of l2~, this implies that

T clµν is determined solely by χ0, thereby pushing dependence on χ into
〈
T̂µν

〉
. We see

that eq. (5.1.18) is compatible with that claim and makes it explicit. Let us therefore

implement an additional scalar density field χ0 into the classical GR Lagrangian in

eq. (4.3.1) described in section 4.3 and then repeat the quantization. This consists of

adding another copy of Lχ to eq. (4.3.1) with χ → lχ0, changing pa from eq. (4.3.3b)

into4

pa = −
6
(
l2~a2 + 6l2ξξcχ

2
0 + 6ξξcχ

2
)

a
K̄ + 6ξc

χ0

a
pχ0 + 6ξc

χ

a
pχ , (5.1.19)

⇒ K̄ = − a

6
(
l2~a2 + 6l2ξξcχ2

0 + 6ξξcχ2
) (pa − 6ξc

χ0

a
pχ0 − 6ξc

χ

a
pχ

)
(5.1.20)

changing p̄ from eq. (4.3.3e) to

p̄ =
1

2

(
l2~a2 − l2ξχ2

0 − ξχ2
)
K̄T
] , (5.1.21)

⇒ K̄T =
2(

l2~a2 − l2ξχ2
0 − ξχ2

) p̄[ (5.1.22)

and adding another copy of eq. (4.3.3a) with pχ → pχ0/l
2 in it,

pχ0 = l2
(
n̄µχ0 + 6ξcK̄χ0 −

∂iN
i

3N̄
χ0

)
, (5.1.23)

⇒ χ̇0 = N̄

(
1

l2
pχ0 − 6ξcK̄χ0

)
+
∂iN

i

3
χ0 +N i∂iχ0 . (5.1.24)

With these additions, the new Hamiltonian constraint can be derived in the following

4In principle, one could attribute independent non-minimal couplings ξ (and therefore ξc) for χ0

and χ. This depends on a physical situation one has at hand and presents a separate question that we
shall not pursue here. Therefore, for simplicity we assume that both fields have the same non-minimal
coupling constant.
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form,

H̄Eχoχ

⊥ = − (apa − 6ξcχ0pχ0 − 6ξcχpχ)2

12
(
l2~a2 + 6l2ξξcχ2

0 + 6ξξcχ2
) +

1

2l2
p2
χ0

+
1

2
p2
χ +

2p̄ · p̄
l2~ a2 − l2ξχ2

0 − ξχ2

− l2~a4

2
(3)R+

l2

2
Uχ0 +

1

2
Uχ

D
= 0 . (5.1.25)

Note how more complicated the kinetic term — and therefore the DeWitt metric, cf.

eq. (4.3.27) — is now. It shows that there is certain mixing between the two matter

fields because both fields are coupled to the scale density and its time derivative (K̄).

In quantum theory, this adds even more drastic ambiguities of factor ordering, but we

shall ignore that. The important thing is that we have one matter field (χ0) at the

same order as the gravitational fields (both of which now comprise the “heavy” part)

and another matter field at one order lower than that (the “light” part), so that the

expansion scheme sketched with eqs. (5.1.17a)-(5.1.17d) is now achievable. It has to

be emphasized that the sum of the second and the next-to-last term in eq. (5.1.25) are

not the only parts of the χ0 Hamiltonian, because the non-minimal coupling term in

V χ mixes the potential of the χ0 field with the kinetic term of GR, which is reflected

in the first term and the fourth term. The same can be said for the terms related to

the χ field. This is the reason why we refrain from writing H̄χ0
⊥ and H̄χ

⊥ in eq. (5.1.25).

Let us now jump back to quantization. There is now another copy of eq. (5.1.6)

with χ → χ0, and similar additions to eqs. (5.1.7) and (5.1.8). The wave functional

obtains an additional dependence on χ0,

Ψ ≡ Ψ[qA, χ] , (5.1.26)

where we define qA := {a, h̄, χ0}, A = {a, h̄, χ0} the set of “heavy” fields. Having

presented the general formalism (with all its problems) of discussing non-minimally

coupled fields in unimodular-conformal variables in GR, there is no need for us to keep

things as general any further. We shall therefore assume that we are dealing with

conformal coupling, in order to simplify the discussion and prevent obscuring the main

point. Setting ξ = 1/6 and ξc = 0, eq. (5.1.25) results in

H̄Eχoχ

⊥ = − p2
a

12l2~
+

1

2l2
p2
χ0

+
1

2
p2
χ +

2p̄ · p̄

l2~ a2 − l2 χ
2
0

6 −
χ2

6

− l2~a4

2
(3)R+

l2

2
Uχ0
c +

1

2
Uχc

D
= 0 , (5.1.27)

where Uχ0
c = Uχ0(ξ = 1/6) and Uχc = Uχ(ξ = 1/6). We shall define the inverse metric
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of the “heavy” part using the concept of the inverse DeWitt metric as follows,

˜G
AB

:=


− 1

12 0 0

0
2h̄ikh̄jl

a2 − χ2
0

6~ −
χ2

6l2~

0

0 0 ~
2

 , (5.1.28)

such that it defines the kinetic term proportional to l−2,

1

l2~
˜G
AB
pApB , (5.1.29)

where pA = {pa, ph̄, pχ0}, in analogy to eq. (4.3.28). Note that upper indices of the

inverse DeWitt metric are merely labels, which we choose to employ because of con-

venience in writing the momenta and the functional derivatives with the lower index.

Repeating the quantization procedure, thereby focusing only on the Hamiltonian con-

straint itself by dropping the spatial integral, we have the following WDW equation

ˆ̄HEχoχ

⊥ Ψ =

[
− ~
l2

˜G
AB
δ2
AB +

l2~
2
U q − ~2

2
δ2
χχ +

1

2
Uχc

]
Ψ[qA, χ] = 0 (5.1.30)

where we use a short-hand notation δ2
AB ≡ δ2/δqAδqB and δ2

χχ ≡ δ2/δχδχ for second

functional derivatives and where we defined the (dimensionless) “heavy” potential by

U q := −a4 (3)R+
1

~
Uχ0
c . (5.1.31)

That χ0 appears at the same order as a and h̄ is now even more apparent. However, it

should be noted that the introduction of the DeWitt metric by eq. (5.1.28) was possible

because the matters were simplified by considering only the conformally coupled fields

— in a more general case there would be cross terms between “heavy” and “light”

kinetic terms, as is apparent from eq. (5.1.25). One should also keep in mind that these

cross terms emerge in the way they do because the unimodular-conformal variables were

used. In order to take into account different choices of variables while at the same time

having a somewhat clearer definition of the DeWitt supermetric in quantum theory it

is crucial to take into account the factor ordering. But as we said before, we stick to a

simple factor ordering choice. In order to bypass this ambiguity in the definition of the

DeWitt supermetric, we have used the “tilde” notation in eq. (5.1.28) as a temporary

notation, because the pure “heavy” or classical background DeWitt supermetric shall

be defined only at the classical level. The latter should emerge at the highest order of

the semiclassical approximation, to which we turn in the next subsection.
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5.1.3 Semiclassical approximation: the Born-Oppenheimer type and

the WKB-like approach

One of the main motivations for introducing the dimensionless coupling l in chapter 2

was to obtain a suitable dimensionless parameter with respect to which one could

formulate the semiclassical approximation and talk about different scales in a units-

independent way.

As hinted in the previous subsection, the approximation scheme consists of two

parts: one, separating the “heavy” part from the “light” part in the quantum state (the

BO-type approximation) based on the asymmetry of the kinetic terms in the WDW

equation with respect to l2; two, expanding the quantum state using the WKB-like

expansion in appropriate powers of l2.

The BO ansazt applied to the quantum state in eq. (5.1.26) reads as follows,

Ψ[qA, χ] = Φ[qA]ψ[qA, χ] = Φ[qA]eφe−φψ[qA, χ] = Φ′[qA]ψ′[qA, χ] , (5.1.32)

where Φ[qA] is referred to as the “heavy” part, which is independent of χ, and ψ[qA, χ] is

referred to as the “light” part of the wave functional. The second and the last equality

convey the fact that this separation into “heavy” and “light” parts is actually arbitrary

[35], because one can make an appropriate rescaling of the parts using the complex

functional φ ≡ φ[qA], which depends only on the set of “heavy” variables and behaves

as a gauge. The choice of φ affects all subsequent equations unless they are written

in a gauge-independent form. We shall not go into such details but simply assume a

choice of φ has been made such that the notation of the first equality in eq. (5.1.32)

is adopted and certain conditions on ψ[qA, χ] imposed which we shall come to shortly.

This will be enough for achieving the aim of the thesis. We emphasize, however, that

the work of this thesis should be revisited in the light of Chataignier’s work [35].

The second step is to employ a WKB-like approximation in the following form,

Ψ[qA, χ] = A[qA] exp

(
i

~
l2SEχ0 [qA]

)
ψ[qA, χ] , (5.1.33)

where A[qA] is the “slowly changing amplitude” and l2SEχ0/~ is the “rapidly oscillating

phase”. The “slow” and “rapid” refer to the fact that derivatives of A are neglected

compared to the derivatives of SEχ0 at the order l2. The amplitude and the phase in

eq. (5.1.33) are assumed to be expanded in power series in l−2 → 0, as l→∞,

SEχ0 [qA] = S
Eχ0
0 [qA] + l−2S

Eχ0
1 [qA] +O(l−4) , (5.1.34)

A[qA] = A0[qA] + l−2A1[qA] +O(l−4) , (5.1.35)
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while ψ is considered to be determined at the order l0, as we shall see. The remaining

steps consist of plugging into the WDW equation and equating to zero all terms coming

with the same power of l2.

First one plugs eq. (5.1.32) into eq. (5.1.30) and obtains5

~
l2

˜G
AB

[
ψδ2

ABΦ + 2δAΦδBψ + Φδ2
ABψ

]
− l2~

2
U qΦψ = −Φ

~2

2
δ2
χχψ +

1

2
Uχc Φψ , (5.1.36)

which was rewritten in a more convenient form. The aim is to multiply the above

equation from left by ψ∗, which is a complex-conjugate of ψ, and perform a functional

integration. To do so one has to impose an appropriate inner product in the “light”

sector, |ψ|2, and then divide eq. (5.1.36) by |ψ|2 after the functional integration, in

order to normalize. One can demand |ψ|2 to be

|ψ|2 :=

∫
D[χ]ψ∗[qA, χ]ψ[qA, χ] . (5.1.37)

By doing this one also says that ψ lives in a (Hilbert) space in which it is possible to

define such a measure. (Note that we have avoided claiming the same for the total

wave-functional Ψ.) The integration over matter fields only is related to the choice of

χ being the only “light” variable. It can be shown (see e.g. [35]) that eq. (5.1.37) arises

from the lowest non-trivial order of l−2 expansion of the Klein-Gordon inner product

of the total wave function Ψ, for a given choice of gauge φ. Nevertheless, we assume

(as is usually done) that ψ obeys eq. (5.1.37) up to the order to which we confine our

discussion here, without referring to the Klein-Gordon inner product. One is then able

to introduce the following definition of the expectation value of an arbitrary operator

Ô, 〈
Ô
〉

:=
1

|ψ|2

∫
D[χ]ψ∗Ôψ . (5.1.38)

These expectation values are called partial averages because they are calculated with

respect to the χ-subspace of the total configuration space [35, eq. (90)]. One is now

able to introduce the following two definitions,

〈δA〉 :=
1

|ψ|2

∫
D[χ]ψ∗δAψ , (5.1.39)

5We stress that a different factor ordering (e.g. Laplace-Beltrami) would yield a more complicated
equation involving derivatives of the DeWitt metric. Even if the most general factor ordering is consid-
ered, all these equations suffer from ill-defined delta functions evaluated at zero. Therefore we stress
that all semiclassical approximation schemes in full canonical quantum gravity must be revisited to
deal with these issues, see e.g. Feng [49].
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〈
δ2
AB

〉
:=

1

|ψ|2

∫
D[χ]ψ∗δAδBψ , (5.1.40)

which are in general complex functionals of the “heavy” variables.

One now has a choice how to normalize the inner product in eq. (5.1.37). It could

be assumed that it is just constant, i.e. independent of qA, and let us choose |ψ|2. It

can be shown that such an assumption is compatible with the demand that the real

part of eq. (5.1.39) is zero [35], because [35, eq. (13)]

Re 〈δA〉 =
1

2
δA

∫
D[χ] log |ψ|2 , (5.1.41)

which vanishes for constant norm |ψ|2. It can be shown that by appropriately choosing

the real part of the gauge φ one achieves |ψ|2 = 1, which eliminates eq. (5.1.41).

This is an example of utilizing the freedom in choosing ψ and Φ in the BO ansatz in

eq. (5.1.32). With these assumptions and definitions, eq. (5.1.36) can be integrated

over χ, assuming |ψ|2 = 1. (If the latter assumption were relaxed, one would simply

divide by |ψ|2 without affecting the derivation.) The result is given by

~
l2

˜G
AB

[
δ2
ABΦ + 2δAΦ 〈δB〉+ Φ

〈
δ2
AB

〉 ]
− l2~

2
U qΦ =

〈
−~2

2
δ2
χχ +

1

2
Uχc

〉
Φ , (5.1.42)

where on the RHS is the partial average of the operator in the angled brackets. The RHS

of the above equation is usually written as the expectation value of the χ Hamiltonian

constraint operator, but in our case it is not (yet) so because the part of the non-

minimally coupled term is stuck inside the kinetic term. This is actually a feature of

using the unimodular-conformal variables. Therefore, it is important to emphasise that

at this stage of derivation one cannot, in general, identify the RHS of eq.(5.1.42) with〈
ˆ̄Hχ

⊥

〉
.

Coming back to the derivations, eq. (5.1.42) can be thought of as an equation for

Φ component sourced by the second, third and the term in the RHS of the equation.

Now one multiplies eq. (5.1.42) by ψ and subtracts it from eq. (5.1.36), then divides

the whole result by Φ and gets

2~
l2

˜G
AB

[
1

Φ
δAΦ

{
δB − 〈δB〉

}
ψ

]
=

[
− ~2

2
δ2
χχ +

1

2
Uχc −

〈
−~2

2
δ2
χχ +

1

2
Uχc

〉]
ψ

− ~
l2

˜G
AB
{
δ2
AB −

〈
δ2
AB

〉}
ψ . (5.1.43)

Equations (5.1.42) and (5.1.43) are still just intermediate equations because we still
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need to expand Φ and ˜G
AB

in l−2.

Expanding ˜G
h̄h̄

element in eq. (5.1.28) up to O(l−2) order we obtain

~
l2

˜G
AB ≈ ~

l2

(
GAB0 + l−2˜G

AB

1

)
, (5.1.44)

GAB ≡ ˜G
AB

0 :=


− 1

12 0 0

0 2h̄ikh̄jl

a2−
χ2

0
6~

0

0 0 ~
2

 , ˜G
AB

1 :=


0 0 0

0 2h̄ikh̄jlχ2

6~
(
a2−

χ2
0

6~

)2 0

0 0 0

 . (5.1.45)

The object GAB defined in eq. (5.1.45) depends only on the “heavy” fields and will turn

out to be the classical DeWitt supermetric in the configuration space of qA variables.

The other object ˜G
AB

1 can be considered as a l−2 correction to the classical DeWitt su-

permetric. Now, using the WKB ansatz given in eqs. (5.1.33)-(5.1.35) and eq. (5.1.44),

we determine the following terms up to O(l0) order,

~
l2

1

Φ
˜G
AB
δAΦ =

~
l2

˜G
AB

(
δA logA+

il2

~
δAS

Eχ0

)
Φ

≈ i GABδAS
Eχ0
0 +O(l−2), (5.1.46)

~
l2

1

Φ
˜G
AB
δ2
ABΦ =

~
l2

˜G
AB

(
δ2
ABA
A

+
2il2

~
δA logA δBS

Eχ0

+
il2

~
δ2
ABS

Eχ0 − l4

~2
δAS

Eχ0δBS
Eχ0

)

≈ i
(
2 GABδA logA0 δBS

Eχ0
0 + GABδ2

ABS
Eχ0
0

)
− l2

~
GABδAS

Eχ0
0 δBS

Eχ0
0

− 2

~
GABδAS

Eχ0
0 δBS

Eχ0
1 − 1

~
˜G
AB

1 δAS
Eχ0
0 δBS

Eχ0
0 +O(l−2) , (5.1.47)

where we used δ2
AB logA + δA logA δB logA = A−1δ2

ABA. Note that the last term in

eq. (5.1.47) comes from the l−2 correction to the DeWitt supermetric in eq. (5.1.44);

this term must not be neglected because it obviously contributes to the WDW equation

at the relevant order l0. This term is the missing non-minimal coupling term in the

potential for the χ field in the RHS of eq. (5.1.42).

Plugging eq. (5.1.46) and eq. (5.1.47) into the equation for Φ given by eq. (5.1.42),
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neglecting all terms of O(l−2) order and lower, we end up with

− l2

~
GABδAS

Eχ0
0 δBS

Eχ0
0 − l2~

2
U q + i

(
2 GABδA logA0 δBS

Eχ0
0 + GABδ2

ABS
Eχ0
0

)
− 2

~
GABδAS

Eχ0
0 δBS

Eχ0
1 + 2i GABδAS

Eχ0
0 〈δB〉

=

〈
−~2

2
δ2
χχ +

1

2
Uχc

〉
+

1

~
˜G
AB

1 δAS
Eχ0
0 δBS

Eχ0
0 . (5.1.48)

Note that the last term in the RHS of the above equation is equal to its partial average

and comes at the same order as the first term on the same side. Hence, it can be

included into this first term, which adds to the potential Uχ
c . This hints that the

mentioned last term is the missing non-minimal coupling, but one can show that only

after a few more steps. Namely, there are three things to observe. First, recall that

〈δB〉 is purely imaginary because of the demand that |ψ|2 = 1; this means that the

last term in the second line in eq. (5.1.48) is real. Second, the parentheses containing

the last two terms in the second line is purely imaginary. Thirdly, and by taking the

previous two points into account, one can take the real part and imaginary part of the

equation and separate the orders l2 and l0.

Terms at order l2 are all real and they equate to

1

~
GABδAS

Eχ0
0 δBS

Eχ0
0 +

~
2
U q = 0 . (5.1.49)

This is the EHJ equation anticipated earlier in this section and it was shown by Ger-

lach [53] in vaccum case to be equivalent to the EE. Compare the above equation with

the Hamiltonian constraint given by eq. (5.1.27): if one writes the “heavy” momenta

via the HJ method,

pA → l2
δS

Eχ0
0

δqA
, (5.1.50)

and expands that equation in descending powers of l2, neglecting terms of order O(l0)

and lower just gives eq. (5.1.49), taking into account definitions in eq. (5.1.31) and

eq. (5.1.45). Hence, the classical non-vacuum GR has been recovered and its solution

is the highest order contribution to the phase of Φ, S
Eχ0
0 .

Taking the imaginary part of eq. (5.1.48) we have

2 GABδA logA0 δBS
Eχ0
0 = − GABδ2

ABS
Eχ0
0 ⇒ GABδA

(
A2

0δBS
Eχ0
0

)
= 0 . (5.1.51)

This equation determines A0, given the solution to the EHJ equation, S
Eχ0
0 . A0 is
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related to the van Vleck determinant which describes the density of classical trajectories

in the configuration space. It should resemble a continuity equation for a conserved

“current” GABA2
0δBS

Eχ0
0 describing the flow of points on classical trajectories, but the

reason why it does not lies in the fact that we do not work with Laplace-Beltrami

factor ordering. If such factor ordering were used then eq. (5.1.51) would take on the

following form

δA

(
1√
G
GABA2

0δBS
Eχ0
0

)
= 0 , (5.1.52)

where
√

Gis the square root of the determinant of the inverse DeWitt supermetric.

Then this equation could be interpreted as the continuity equation.

Lastly, defining

BB := Im 〈δB〉 , (5.1.53)

which is called the Berry connection, and taking the real part of eq. (5.1.48) at order

l0 one obtains

2

~
GABδAS

Eχ0
0

(
δBS

Eχ0
1 + ~BB

)
= −

〈
ˆ̄Hχ

⊥

〉
, (5.1.54)

where we have absorbed the missing potential term into

〈
ˆ̄Hχ

⊥

〉
≡
〈
−~2

2
δ2
χχ +

1

2
V χ
c

〉
, (5.1.55)

V χ
c =

1

2
Uχc +

1

~
˜G
AB

1 δAS
Eχ0
0 δBS

Eχ0
0 . (5.1.56)

By including the non-minimal coupling term into the potential we have recovered the

Hamiltonian constraint operator of the scalar density field χ. Equation (5.1.55) repre-

sents what is called backreaction and we shall come back to it shortly in more detail.

It should be noted that in a more general case of non-conformal coupling few other

terms contribute to recover the correct ˆ̄Hχ

⊥; these additional terms are all dependent

on δaS
Eχ0
0 because precisely those are eliminated by conformal coupling in the present

case. Hence we claim without proof that in the more general case one can still recover

eq. (5.1.55).

Let us now turn to eq. (5.1.43), i.e. the equation for ψ. Using eqs. (5.1.44)-(5.1.46)

and (5.1.53) in there and neglecting all terms of order O(l−2) and lower, we have

2i GABδAS
Eχ0
0

{
δB − iBB

}
ψ =

(
ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ , (5.1.57)

where we have also used eqs. (5.1.55) and (5.1.56), by adding and subtracting the
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missing non-minimal term in the RHS of the equation in order to complete the potential

V χ. Note that eq. (5.1.57) is invariant under the following phase transformation of ψ

ψ → eiφ[qA]ψ , (5.1.58)

where φ is real, because the Berry connection transforms as (cf. eq. (5.1.53))

BA → BA + δAφ , (5.1.59)

thereby ensuring that curly brackets in eq. (5.1.57) are unchanged. This motivates one

to treat the combination in the curly brackets in eq. (5.1.57) as a kind of a covariant

derivative [85]. Now, observe that the Berry connection term BB and the backreaction

term in eq. (5.1.57) precisely add up to eq. (5.1.54), which can be used to give

2i GABδAS
Eχ0
0

{
δB +

i

~
δBS

Eχ0
1

}
ψ = ˆ̄Hχ

⊥ψ . (5.1.60)

Hence, if eq. (5.1.57) is invariant under eq. (5.1.58), then eq. (5.1.60) is also invariant.

But if that is so, then it follows that S
Eχ0
1 must transform as

S
Eχ0
1 → S

Eχ0
1 − ~φ . (5.1.61)

This in turn implies that eq. (5.1.54) stays invariant under a unitary transformation

in eq. (5.1.58), because eq. (5.1.59) induces eq. (5.1.61) such that φ cancels. Looking

closely, one deduces that such a unitary transformation is just shifting a phase of ψ

at the expense of the phase of Φ in eq. (5.1.32). It is interesting that the choice of

qA-dependent phase of ψ requires S
Eχ0
1 to change but not S

Eχ0
0 . This shows that S

Eχ0
1 is

directly related to the presence of quantum matter. We now turn to the interpretation

of the main equations obtained in this subsection.

5.1.4 The Hamilton-Jacobi equation, the functional Schrödinger

equation and the WKB-evolution paramter

The semiclassical approximation leads to two equations relevant for the description of

quantum matter fields propagating on a curved spacetime background.

As already mentioned, eq. (5.1.49) is the EHJ equation, whose solution S
Eχ0
0 is

related to the action consisting of the EH action and χ0-matter action. Quantum

effects of the quantized matter χ do not contribute here. The classical Hamiltonian
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constraint is recovered if one identifies

p
(0)
A := l2δAS

Eχ0
0 (5.1.62)

with the classical momenta, as hinted around eq. (5.1.50), leading to

1

l2~
GABp

(0)
A p

(0)
B +

l2~
2
U q = 0 . (5.1.63)

This in principle recovers the classical GR. How does backreaction change the classical

momenta? Using eqs. (5.1.51) and (5.1.55) in eq. (5.1.48), adding and subtracting

~
l2

GAB
(
δAS

Eχ0
1 + ~BA

) (
δBS

Eχ0
1 + ~BB

)
(5.1.64)

from it and aiming to complete the square, one can rewrite eq. (5.1.48) as

l2

~
GAB
{
δAS

Eχ0

(1) + ~BA
}{

δBS
Eχ0

(1) + ~BB
}

+
l2~
2
U q = −

〈
ˆ̄Hχ

⊥

〉
, (5.1.65)

where

S
Eχ0

(1) := S
Eχ0
0 + l−2S

Eχ0
1 . (5.1.66)

One would be tempted to identify the corrected momenta as l2δAS
Eχ0

(1) , but this momenta

is not invarint under a phase transformation of ψ, see eq. (5.1.61). However, since the

Berry connection also transforms according to eq. (5.1.59), the entire curly bracket in

eq. (5.1.65) should be identified as the corrected momenta,

p
(1)
A := l2δAS

Eχ0

(1) + ~BA , (5.1.67)

so that p
(1)
A = p

(0)
A + δAS

Eχ0
1 + ~BA is invariant under the qA-dependent phase transfor-

mation of ψ. Equation (5.1.65) is correct if terms of order O(l−2) are neglected, and

can be written in terms of the corrected momenta as

1

l2~
GABp

(1)
A p

(1)
B +

l2~
2
U q = −

〈
ˆ̄Hχ

⊥

〉
. (5.1.68)

This equation is the EHJ equation with backreaction
〈

ˆ̄Hχ

⊥

〉
. It should correspond (up

to certain rescalings) to the 00 component of the SEE given by eq. (4.1.36).
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But it does not. Namely, if the methods of regularization are applied to
〈

ˆ̄Hχ

⊥

〉
in

order to isolate the divergent quantities as explained in section 4.1.1, these divergent

quantities cannot be absorbed into the corresponding counter-terms because eq. (5.1.68)

does not contain higher-derivative counter-terms. The problem stems from the same

issue that was encountered in eq. (4.1.2) and now we have seen how it carries over

into the semiclassical approximation of the quantized theory. We see that counter-

terms still need to be added by hand into otherwise (formally) consistent derivation

of the semiclassical EHJ equation, in order to absorb the divergencies. Furthermore,

divergences appear also in eq. (5.1.54) and eq. (5.1.57). These two equations have the

Berry connection in common, so it would be plausible that the Berry connection has

something to do with counter-terms. Since S
Eχ0
1 cannot be determined without the

Berry connection and the backreaction, and since it represents the correction to S
Eχ0
0

due to the backreaction, it seems that counter-terms could also be sought in S
Eχ0
1 too.

The other important equation is eq. (5.1.57), or equivalently eq. (5.1.60); this is the

equation for ψ. It can be read as: the rate of change of ψ with respect to qA variables

projected along δAS
Eχ0
0 is proportional to the Hamiltonian acting on ψ. (Let us not

forget that the derivations discussed here take place under the integral in eq. (5.1.9).

Therefore, eq. (5.1.60) should be accompanied by the contributions from the momentum

constraint, eq. (5.1.12). In order to keep things simple, we shall proceed as if N i = 0,

so that the additional terms are not included explicitly. This won’t affect the main

point of this review discussion.) This evolution of ψ is interpreted as the functional

Schrödinger equation if one defines a functional τ̄ in one of the following two ways,

Dτ̄ ′ :=
2N̄

~
GABδAS

Eχ0
0

{
δB − iBB

}
, (5.1.69)

δ

δτ̄
:=

2N̄

~
GABδAS

Eχ0
0 δB , (5.1.70)

with which eq. (5.1.57) and eq. (5.1.60) are rewritten as

i~Dτ̄ ′ψ = N̄
(

ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ , (5.1.71)

i~
δψ

δτ̄
− δS

Eχ0
1

δτ̄
ψ = N̄ ˆ̄Hχ

⊥ψ . (5.1.72)

Note that eq. (5.1.71) contains what may be called a “covariant derivative” defined by

eq. (5.1.69). Also note that the extra term in eq. (5.1.72) can be eliminated by defining

ψ̃ := e
i
~S

Eχ0
1 ψ , (5.1.73)
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which leads to

i~
δψ̃

δτ̄
= N̄ ˆ̄Hχ

⊥ψ̃ . (5.1.74)

Both eq. (5.1.71) and eq. (5.1.72) are invariant under the qA-dependent phase trans-

formation of ψ if one recalls that S
Eχ0
1 is also required to change accordingly, such

that the total wave functional in eq. (5.1.32) remains unchanged. Moreover, ψ̃ itself is

invariant under the phase transformation of ψ, so one must be careful in interpreting

it as the wave functional on the same footing as ψ. The τ̄ functional is interpreted as

the evolution parameter along a classical trajectory described by S
Eχ0
0 and is usually

called “WKB time” or “bubble time”. It has nothing to do with the coordinate time

and one must be careful not to mix the two before some more considerations have

been made. This evolution parameter is determined by the background (“heavy”) vari-

ables, intrinsic to the hypersurface itself. It is important to note that each observer

on the hypersurface has their own τ̄ (i.e. their own “bubble” in which they write their

own evolutions of ψ). Since there are infinitely many observers related by diffeomor-

phisms, there are infinitely many equations of the form of eq. (5.1.71), eq. (5.1.72)

and eq. (5.1.74). Only upon integration of eq. (5.1.71) or eq. (5.1.72) one obtains the

following forms of the Schrödinger equation

i~
∂ψ

∂t′
:= i~

∫
d3x Dτ̄ ′ψ =

∫
d3xN̄

(
ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ , (5.1.75)

i~
∂ψ

∂t
:= i~

∫
d3x

(
δψ

δτ̄
− δS

Eχ0
1

δτ̄

)
ψ =

∫
d3x N̄ ˆ̄Hχ

⊥ψ (5.1.76)

where one defines t′ or t to be the usual coordinate time, after fixing the coordinate

gauge by choosing N̄ (and N i, if the contribution from the momentum constraint is

properly included, as it should be). It is in this way that one recovers the notion

of time from a timeless quantum gravity theory. Time emerges from a semiclassical

approximation to QGDGR. It should be emphasized that dependency of definitions of

the WKB evolution parameter eq. (5.1.69) and eq. (5.1.70) on S
Eχ0
0 implies that each

classical solution to the EHJ equation (5.1.63) gives rise to its own time evolution.

These are then called the “WKB branches”. Furthermore, the full wave functional Ψ

is then a superposition of components such as eq. (5.1.33). That means there is, in

principle, interference between different WKB branches, which then raises the question

“how does this interference disappear to give the single observable classical Universe?”.

The answer can be given using the program of decoherence [72, 123], which explains

the emergence of a classical world from a quantum world in a continuous manner. We

shall not go into details of decoherence here.

It is not important whether equation eq. (5.1.71) or eq. (5.1.72) is integrated, be-

cause it is t that one ultimately uses as an evolution parameter. As for eq. (5.1.74), it
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is not clear to us what would be the meaning of ψ̃ in it and whether such a wavefunc-

tional conveys the same information as ψ in the integrated Schrödinger equation. The

important point is that the same problem appears here as in eq. (5.1.68): eq. (5.1.75)

gives rise to divergences on the RHS once one tries to evaluate the backreaction. In

order to absorb these divergencies using the methods of renormalization, one deduces

that counter-terms have to be contained in BB in eq. (5.1.69) or, equivalently, in S
Eχ0
1

in eq. (5.1.70). The current state of matters in the canonical quantum gravity and the

semiclassical approximation scheme does not offer means of formulating the EHJ and

the Schrödinger equation with counter-terms6.

The backreaction-corrected EHJ equation given by eq. (5.1.68) and the Schrödinger

equation given by eq. (5.1.75) constitute the two equations of quantum field theory on

curved spacetimes, i.e. the semiclassical theory of gravity and quantum fields. Since

we have not found the results of this semiclassical approximation scheme satisfactory

due to the absence of counter-terms, we would like to offer a way to address this issue

in the remainder of this chapter.

5.2 Quantum geometrodynamics of a general quadratic

curvature theory

In this section we shall apply canonical quantization on a general quadratic curvature

gravity in unimodular-conformal variables formulated as a Hamiltonian theory in sec-

tions 4.4 and 4.5. It was argued in the previous chapter that a higher-derivative theory

which is first perturbatively constrained at the classical level and then quantized is not

satisfactory. The reason is, we recall, that a quantum theory is a high-energy entity

while a perturbatively constrained theory is a low-energy entity and the two approaches

conceptually contradict each other. Recalling sections 4.1.2 and 4.2, Richard cannot

quantize his Lagrangian because it is perturbatively interpreted — on the other hand,

Emmy can only make sense of her Lagrangian if it describes a full quantum theory.

To make a transition from Emmy’s to Richard’s theory, a careful construction of semi-

classical approximation must take place. We are in Richard’s shoes and in this section

we are trying to make sense of the exact (i.e. not perturbatively constrained) higher-

derivative theory given by eq. (4.1.35) as a quantum gravity theory. Therefore, we shall

present what we’ll call quantization before perturbation (QbP) method of formulating a

quantum higher-derivative theory. This is in high contrast to what Mazzitelli [94] did:

he used perturbation before quantization (PbQ) approach to quantize Emmy’s higher-

derivative theory. His result — which he obtained directly after quantizing the already

perturbatively constrained theory — resembled the form of the WDW equation (i.e.

6We note again that Feng’s work [49] offers one way of staying with canonical quantum gravity
and still finding the counter-terms by dealing with the yet unsolved problem of regularizing the second
functional derivatives evaluated at the same point.
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eq. (5.1.11)) corrected by contributions from the quadratic curvature terms. These

corrections were non-linear in pA momenta (of third and fourth power), which means

that they turned into third and fourth order derivatives of the wave functional after the

quantization. He then applied a WKB-type approximation (of the form of eq. (5.1.34))

but in three perturbation parameters: l−2, αW and βR, and recovered the correct form

of the SEE with perturbatively reduced counter-terms. It is important to note that

Mazzitelli applied perturbative order reduction in αW and βR two times: once before

and once after the quantization. Nevertheless, on one hand, this is a remarkable result

and to our knowledge one of a kind in the literature. But on the other hand, this

results is expected because his WKB approximation simply follows what has already

been implemented in the unquantized classical theory. Hence, our alternative approach

of QbP avoids saying anything about the perturbative nature of the higher-derivative

terms before the quantization. We shall see that only a semiclassical approximation

(which also uses the same three perturbation parameters l−2, αW and βR) then has the

necessary power to tell us the meaning and rule of the higher-derivative terms.

5.2.1 Higher-derivative Wheeler-DeWitt equation

Canonical quantization of the higher-derivative theory proceeds much in the same way

as QGDGR. One may choose to quantize the constraints or to quantize the diffeomor-

phism generators given by eq. (4.6.10). These are equivalent procedures, as it is the

case with quantization of GR described in the previous section. However, the result of

the quantization of higher-derivative theories is quite different compared to QGDGR.

The most important fact, which underlays all of the differences, is that one is dealing

with an extended configuration space. This means that the wave functional contains

additional dependence on K̄ and K̄T, compared to the wave functional in QGDGR:

Ψ ≡ Ψ[a, h̄, K̄, K̄T, χ] . (5.2.1)

But before we continue with quantization, we shall modify the higher-derivative theory

slightly by adding another matter action, which will play the role of a background

matter field as one of the “heavy” variables. This is just the same thing we did in

QGDGR in section 5.1.2 in order to prepare the grounds for having a non-vacuum

“heavy” sector. The drastic difference with the cases of GR and QGDGR is that in

QGDHD there is no cross term that mixes the geometric and matter momenta. This

fact holds because K̄T
ij and K̄ are not related to p̄ij and pa, so terms such as ∼ K̄χ̇ turn

into ∼ K̄pχ, instead into ∼ papχ as in the case of GR (cf. kinetic terms in eq. (5.1.25)).

It is for this reason that one has V χ, instead of Uχ, in eq. (4.4.30). Hence, we simply

add the following term

1

2l2
p2
χ0
− 6ξcK̄χ0pχ0 +

l2

2
V χ0 (5.2.2)
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to extend eq. (4.4.30) with a background matter field Hamiltonian, and the following

term

− 1

3
(χ∂ipχ0 − 2∂iχ0 pχ0) (5.2.3)

to extend eq. (4.4.31) with the corresponding contribution to the momentum constraint.

We shall not assume conformal coupling for any of the matter fields in the present case

and this will allow for more general conclusions. Taking into account this additional

matter field, the wave functional can be written as

Ψ ≡ Ψ[qA, QI , χ] . (5.2.4)

where qA := {a, h̄, χ0}, QI := {K̄, K̄T} and indices A = {a, h̄, χ0}, I = {K̄, K̄T}. Vari-

ables QI are the components of the extrinsic which extend the “heavy” configuration

space spanned by qA.

Due to extended configuration space and the additional matter field χ0, in addition

to eqs. (5.1.2)-(5.1.8), one has the following quantization rules

ˆ̄KT(x)Ψ = K̄T(x) ·Ψ, ˆ̄P(x)Ψ =
~
i

δ

δK̄T(x)
Ψ, (5.2.5)

ˆ̄K(x)Ψ = K̄(x) ·Ψ, ˆ̄P (x)Ψ =
~
i

δ

δK̄(x)
Ψ, (5.2.6)

χ̂0(x)Ψ = χ0(x) ·Ψ, p̂χ0(x)Ψ =
~
i

δ

δχ0(x)
Ψ (5.2.7)

and the following commutation relations

[ ˆ̄KT
ij(x), ˆ̄P ab(y)

]
Ψ = i~ 1Tab

(ij) δ(x,y)Ψ ,
[ ˆ̄K(x), ˆ̄P (y)

]
Ψ = i~ δ(x,y)Ψ , (5.2.8)

[
χ̂0(x), p̂χ0(y)

]
Ψ = i~ δ(x,y)Ψ , (5.2.9)

all other commutators vanishing. It should be noted that the commutators in quantized

higher-derivative theory are just promoted Poisson brackets in eq. (4.4.18)-eq. (4.4.20)

if the theory contains first-class constraints only. If, however, a theory contained

second-class constraints, such as the WE theory described in section 4.5, then one

must promote Dirac brackets in eqs. (4.5.17)-(4.5.21) to commutators.

In the higher-derivative theory described in section 4.4 which contains both the R2

and the C2 term the quantization proceeds by quantizing the constraints in the same

way as in QGDGR. The Hamiltonian and momentum constraints given by eq. (4.4.30)

and eq. (4.4.31), extended by eq. (5.2.2) and eq. (5.2.3) respectively give rise to the
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following two quantum equations,

ˆ̄HERWχ0χ

⊥ Ψ :=
[

ˆ̄HQ

⊥ + ˆ̄Hq

⊥ + ˆ̄Hχ

⊥

]
Ψ = 0 , (5.2.10)

ˆ̄HERWχ0χ

i Ψ :=
[

ˆ̄HQ

i + ˆ̄Hq

i + ˆ̄Hχ

i

]
Ψ = 0 , (5.2.11)

where

ˆ̄HQ

⊥Ψ :=

[
−~˚GIJαW,βR

δ2
IJ −

~
i
DIδI − αW~C̄B · C̄B

]
Ψ , (5.2.12a)

˚G
IJ

αW,βR
:=

(
1
βR

0

0 − 1
2αW

h̄ikh̄jl

)
, (5.2.12b)

DI :=
(
D2

R −D2
W

)
, (5.2.12c)

ˆ̄Hq

⊥Ψ :=

[
~
i

(
aK̄δa + 2K̄T · δh̄

)
− ~2

2l2
δ2
χ0χ0
− 6~

i
ξcK̄χ0δχ0 +

l2~
2
V q

]
Ψ , (5.2.12d)

V q := −V E +
1

~
V χ0 , (5.2.12e)

V E := a2
(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T − 6K̄2
)
, (5.2.12f)

ˆ̄Hχ

⊥Ψ :=

[
−~2

2
δ2
χχ −

6~
i
ξcK̄χδχ +

1

2
V χ

]
Ψ , (5.2.12g)

and

ˆ̄HQ

i Ψ :=
~
i

(
δΨ

δK̄T
jk

D̄iK̄
T
jk − 2D̄j

(
K̄T
ik

δΨ

δK̄T
jk

)
+

1

3
∂i

(
K̄T
jk

δΨ

δK̄T
jk

)

+
δΨ

δK̄
∂iK̄ − ∂i

(
K̄
δΨ

δK̄

))
, (5.2.13a)

ˆ̄Hq

iΨ :=
~
i

(
2D̄j

(
h̄ik

δΨ

δh̄kj

)
+

1

3
Di

(
a
δΨ

δa

)
+

1

3

(
χ0∂i

δΨ

δχ0
− 2∂iχ0

δΨ

δχ0

))
,

(5.2.13b)

ˆ̄Hχ

i Ψ :=
~
3i

(
χ∂i

δΨ

δχ
− 2∂iχ

δΨ

δχ

)
. (5.2.13c)
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Equation (5.2.10) will be referred to as the higher-derivative Wheeler-DeWitt (HD-

WDW) equation. We separated the equation into three parts: eq. (5.2.12a) contains

the derivatives with respect to K̄ and K̄T only and the Weyl-tensor potential. Note

that we have introduced in eq. (5.2.12b) an upper-index inverse DeWitt supermetric

of the higher-derivative sector. The terms linear in momenta (here derivatives with

respect to a, h̄) — whose importance at the classical level has been emphasized in sec-

tion 4.4.3 — are grouped together with the Hamiltonian of the “heavy” χ0 field in

eq. (5.2.12d). Even though these terms are generated by constraints which came to

aid to Hamilton-formulate the higher-derivative theory (cf. eqs. (4.4.6)-(4.4.7)), the

crucial role that they play in semiclassical approximation will justify grouping them in

eq. (5.2.12d), as we shall see in the following subsections. Also note that V E — which

is proportional to the ADM Lagrangian of GR — is contained in the same equation.

The last component of the HDWDW equation is given by eq. (5.2.12g), which is just

the Hamiltonian constraint operator of the “light” sector χ field. Note that both mat-

ter fields have the full potential introduced in eq. (2.4.21), because the non-minimally

coupled extrinsic curvature terms do not participate in the formulation of the pa and p̄

momenta since they are treated as independent variables. Contrast this to the case of

GR, eq. (5.1.25), where these non-minimal coupling terms are migrated to the kinetic

term, leaving eq. (2.4.22) instead of eq. (2.4.21) for the potential of the matter fields.

In short — and this is important for later discussion — the presence of linear terms

made K̄ and K̄T explicitly appear in potentials V χ0 , V χ and V E, denying their relation

to the momenta pa and p̄.

Equation eq. (5.2.11), with individual terms in eqs. (5.2.13a)-(5.2.13c), is different

from eq. (5.1.12) only in that it contains additional terms referring to the higher-

derivative degrees of freedom K̄ and K̄T. Its interpretation is just a generalization

of diffemorphic invariance of Ψ from QGDGR, namely, that Ψ is invariant under the

spatial coordinate transformations not only in variables a, h̄, χ0 and χ but now also in

K̄ and K̄T.

QGDHD suffers from the same problems as QGDGR. However, the ordering am-

biguity has a slightly different flavor not ony because of the presence of terms linear

in momenta but also because the DeWitt supermetric does not depend on the extrin-

sic curvature so things seem a bit simpler as far as the kinetic term in the HDWDW

equation is concerned. Perhaps the most important “problem” is the interpretation of

dependence of Ψ on the additional degrees of freedom carried by K̄, K̄T. These are

true dynamical degrees of freedom in the full quantum gravity theory, but what does

this mean for the evolution of Ψ? Does it mean that this quantum gravity theory does

not “know” of the relationship between the intrinsic metric of the hypersurface and its

first order change in the timelike direction (as interpreted by a classical observer)? We

shall not go into this question, but we think that it could be worth investigating the

quantized version of the hypersurface algebra in order to gain some additional insight.

We now turn to the formulation of an appropriate semiclassical scheme with an aim
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to recover the semiclassical gravity and QFT in curved spacetime.

5.2.2 Semiclassical approximation: the Born-Oppenheimer type

ansatz

The most important difference between the HDWDW and the WDW is that there is

no l−2 parameter in the kinetic term of the HDWDW. In other words, the presence of

higher-derivative terms occurs at the same order as the matter field χ, i.e. their kinetic

terms enter the HDWDW at the same order. This would suggest one to separate

the part of the wave functional which depends on qA from a part which depends on

all variables, as one does in the case of QGDGR, cf. eq. (5.1.42). However, we have

concluded in the previous chapter (and the previous section would suggests the same)

that the HD terms act to correct the “heavy” part of the system. This means that

one cannot separate out the contributions of QI neither from the “heavy” nor from

the “light” sector — the higher-derivative terms play the role in both parts because

the backreaction appears in both eq. (5.1.42) and eq. (5.1.43). Hence, we do not put

restrictions on separating the dependency on QI — we shall see that certain restrictions

naturally follow from the semiclassical approximation we aim to construct.

That being said, we can only use l2 as the scale separation parameter at first, since

we still cannot say anything certain about the appearance of QI-dependent terms with

respect to αW and βR. (This important point had not yet been observed in the author’s

Master thesis [99].) Therefore, we assume the following BO-type ansatz,

Ψ[qA, QI , χ] = Φ[qA, QI ]ψ[qA, QI , χ] , (5.2.14)

Compared to eq. (5.1.32), it is quite a similar ansatz and it also holds that there is

freedom to choose this separation by choosing a rescaling factor φ ≡ φ[qA, QI ].

Using eq. (5.2.14) into the HDWDW equation given by eq. (5.2.10), i.e. into

eqs. (5.2.12a), (5.2.12d) and (5.2.12g), we obtain the following equations

ˆ̄HQ

⊥Ψ = −~˚GIJαW,βR

[
ψδ2

IJΦ + 2δIΦδJψ + Φδ2
IJψ
]

− ~
i
DI
[
ψδIΦ + ΦδIψ

]
− αW~C̄B · C̄BΦψ , (5.2.15a)

ˆ̄Hq

⊥Ψ =
~
i

[
ψ
(
aK̄δaΦ + 2K̄T · δh̄Φ

)
+ Φ

(
aK̄δaψ + 2K̄T · δh̄ψ

) ]

− ~2

2l2

[
ψδ2

χ0χ0
Φ + 2δχ0Φδχ0ψ + Φδ2

χ0χ0
ψ
]
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− 6~
i
ξcK̄χ0

[
ψδχ0Φ + Φδχ0ψ

]
+
l2~
2
V qΦψ , (5.2.15b)

ˆ̄Hχ

⊥Ψ = Φ ˆ̄Hχ

⊥ψ . (5.2.15c)

We shall continue to analyize the HDWDW equation by analyzing their three parts

separately.

In order to take a partial average of the HDWDW equation with respect to the

χ-field — in analogy to what was done in the previous section to obtain eq. (5.1.42) —

we assume that ψ is normalized as

|ψ|2 =

∫
D[χ]ψ∗[qA, QA, χ]ψ[qA, QA, χ] = 1 , (5.2.16)

in analogy to eq. (5.1.37). This assumption holds as long as we neglect any contributions

of order O(l−2) and lower, because all manipulations from now on shall hold at O(l0)

order. Moreover, it should be emphasized that eq. (5.2.16) is also assumed to hold as

a perturbative approximation up to order O(αW) and O(βR), i.e. terms with higher

powers of αW and βR are excluded from eq. (5.2.16). We shall soon define more clearly

what does this mean. Furthermore, in direct analogy to eqs. (5.1.38), (5.1.39) and

(5.1.40), we define the same partial averages but with respect to ψ corresponding to

the HDWDW equation. Therefore, we shall simply borrow those three definitions while

keeping in mind that ψ ≡ ψ[qA, QA, χ] and |ψ|2 = 1 there. In addition to those partial

averages, we have to introduce the following two definitions

〈δI〉 :=

∫
D[χ]ψ∗δIψ , (5.2.17)

〈
δ2
IJ

〉
:=

∫
D[χ]ψ∗δIδJψ , (5.2.18)

recalling that indices I, J = {K̄, K̄T}. These terms will appear in what follows.

We now take a partial average of eq. (5.2.10), i.e. of eqs. (5.2.15a)-(5.2.15c), divide

by Φ and obtain

1

Φ

〈
ˆ̄HQ

⊥Φ
〉

= −~˚GIJαW,βR

[
δ2
IJΦ

Φ
+ 2

δIΦ

Φ
〈δJ〉+

〈
δ2
IJ

〉 ]

− ~
i
DI
[
δIΦ

Φ
+ 〈δI〉

]
− αW~C̄B · C̄B , (5.2.19a)
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1

Φ

〈
ˆ̄Hq

⊥Φ
〉

=
~
i

[
1

Φ

(
aK̄δaΦ + 2K̄T · δh̄Φ

)
+
(
aK̄ 〈δa〉+ 2K̄T · 〈δh̄〉

) ]

− ~2

2l2

[
δ2
χ0χ0

Φ

Φ
+ 2

δχ0Φ

Φ
〈δχ0〉+

〈
δ2
χ0χ0

〉 ]

− 6~
i
ξcK̄χ0

[
δχ0Φ

Φ
+ 〈δχ0〉

]
+
l2~
2
V q , (5.2.19b)

1

Φ

〈
ˆ̄Hχ

⊥Φ
〉

=

〈
−~2

2
δ2
χχ −

6~
i
ξcK̄χδχ +

1

2
V χ

〉
=
〈

ˆ̄Hχ

⊥

〉
. (5.2.19c)

The sum of the three terms above is the equation for Φ, which we write in the following

concise form

1

Φ

〈
ˆ̄HQ

⊥Φ
〉

+
1

Φ

〈
ˆ̄Hq

⊥Φ
〉

= −
〈

ˆ̄Hχ

⊥

〉
. (5.2.20)

This equation is analogous to eq. (5.1.42) in QGDGR. Note that we have obtained

— without any additional assumptions — the expectation value of the χ-Hamiltonian

operator,
〈

ˆ̄Hχ

⊥

〉
. In the current HD quantum theory this expectation value is not

of the form in eq. (5.1.55), because of the explicit appearance of the non-minimally

coupled terms with extrinsic curvature instead of δh̄S
Eχ0
0 (and δaS

Eχ0
0 for non-conformal

coupling). Apart from this observation, the two equations differ drastically and leave

one to wonder if it is at all possible that they be related to each other.

The next step is to find an equation for ψ, the analog of eq. (5.1.43). Multiplying

eq. (5.2.20) by ψ and subtracting the result from eq. (5.2.15a), which is first divided

by Φ, we obtain

1

Φ
ˆ̄HQ

⊥Ψ− 1

Φ

〈
ˆ̄HQ

⊥Φ
〉
ψ = −~˚GIJαW,βR

[
2
δIΦ

Φ

{
δJ − 〈δJ〉

}
+
{
δ2
IJ −

〈
δ2
IJ

〉}]
ψ

− ~
i
DI
{
δI − 〈δI〉

}
ψ , (5.2.21a)

1

Φ
ˆ̄Hq

⊥Ψ− 1

Φ

〈
ˆ̄Hq

⊥Φ
〉
ψ =

~
i

[
aK̄
{
δa − 〈δa〉

}
+ 2K̄T ·

{
δh̄ − 〈δh̄〉

}]
ψ

− ~2

2l2

[
2
δχ0Φ

Φ

{
δχ0 − 〈δχ0〉

}
+
{
δ2
χ0χ0
−
〈
δ2
χ0χ0

〉}]
ψ

− 6~
i
ξcK̄χ0

{
δχ0 − 〈δχ0〉

}
ψ , (5.2.21b)
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1

Φ
ˆ̄Hχ

⊥Ψ− 1

Φ

〈
ˆ̄Hχ

⊥Ψ
〉
ψ =

(
ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ . (5.2.21c)

Adding the above three equations and putting eq. (5.2.21c) and all second derivatives

of ψ to the opposite side of the resulting equation, we obtain the following result

2~˚G
IJ

αW,βR

δIΦ

Φ

{
δJ − 〈δJ〉

}
ψ +

~
i
DI
{
δI − 〈δI〉

}
ψ

− ~
i

[
aK̄
{
δa − 〈δa〉

}
+ 2K̄T ·

{
δh̄ − 〈δh̄〉

}]
ψ

+
~2

l2
δχ0Φ

Φ

{
δχ0 − 〈δχ0〉

}
ψ +

6~
i
ξcK̄χ0

{
δχ0 − 〈δχ0〉

}
ψ

=
(

ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ − ~2

2l2

{
δ2
χ0χ0
−
〈
δ2
χ0χ0

〉}
ψ − ~˚G

IJ

αW,βR

{
δ2
IJ −

〈
δ2
IJ

〉}
ψ .

(5.2.22)

Compare this equation with eq. (5.1.43) in the case of QGDGR. The term on the LHS

of eq. (5.2.22) contains terms of order higher than the LHS of eq. (5.1.43), which is

strange because such terms are also of higher order than the quantum Hamiltonian on

the RHS, indicating that ψ and its evolution are not entirely determined by the matter

quantum Hamiltonian. These are very interesting observations which will shall address

in the following subsections in more detail.

5.2.3 Semiclassical approximation: the WKB-type expansion

In this subsection we shall merely derive the expanded equations order by order and

give some remarks and comparisons with the corresponding case in QGDGR. Then in

the following subsection, we shall engage into further formulation of the semiclassical

approximation and actual interpretation of the derived equations.

We proceed by applying the WKB approximation in terms of l2:

Ψ[qA, QI , χ] = A[qA, QI ] exp

(
i

~
l2SHD[qA, QI ]

)
ψ[qA, QI , χ] , (5.2.23)

where the superscript “HD” stands for HD = ERWχ0. We shall first calculate general

forms of the derivatives appearing in the equations of concern. To this purpose, let us

introduce general indices X,Y which can represent either X,Y = I, J = {K̄, K̄T} or

X,Y = A,B = {a, h̄, χ0}. This will help us manage the variety of terms in the main
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equations. We are interested in the following derivatives expanded up to order O(l0),

δXΦ

Φ
= δX logA+

il2

~
δXS

HDΦ

≈ il2

~
δXS

HD
0 +

i

~
δXS

HD
1 + δX logA0 +O(l−2), (5.2.24a)

δ2
XY Φ

Φ
=
δ2
XYA
A

+
il2

~
(
2δX logA δY S

HD + δ2
XY S

HD
)
− l4

~2
δXS

HDδY S
Eχ0

≈ δ2
XYA0

A0
− 1

~2
δXS

HD
1 δY S

HD
1

+
i

~

(
2δX logA0 δY S

HD
1 + 2δX

(
A1

A0

)
δY S

HD
0 + δ2

XY S
HD
1

)

− 2l2

~2
δXS

HD
0 δY S

HD
1 +

il2

~
(
2δX logA0 δY S

HD
0 + δ2

XY S
HD
0

)
− l4

~2
δXS

HD
0 δY S

HD
0 +O(l−2) , (5.2.24b)

where we again used δ2
XY logA+ δX logA δY logA = A−1δ2

XYA in the second equation.

These are very similar to eqs. (5.1.46) and (5.1.47), except that we are focusing on the

derivatives only, without any pre-factors or coefficients. This is because not all terms

— corresponding to the above expressions for different values of indices X,Y — come

with the same coefficients of certain power of l2 and this leads to non-trivial structure

of expanded HDWDW equation.

Let us first look at eq. (5.2.20), whose terms are given by eqs. (5.2.19a)-(5.2.19c). If

eqs. (5.2.24a) and (5.2.24b) with indicesX,Y = I, J = {K̄, K̄T} are used in eq. (5.2.19a),

none of the derivative terms is suppressed. This implies one of the most important

points of the semiclassical approximation to HDWDW: the term ∼ l4, i.e. the first

term in the last line of eq. (5.2.24b), is the only highest order surviving term in the

entire equation (5.2.20). We can confirm that by noting that this term comes from

the second functional derivative of Φ and the only other place in eq. (5.2.20) where

the second functional derivative of Φ appears is the first term in the middle line of

eq. (5.2.19b), corresponding to X,Y = χ0; but this term is suppressed by l−2 which

means that it reduces the order of each term in eq. (5.2.24b) by one. Hence, the highest

order term from the only other second functional derivative of Φ is only of the order

l2 (same order as the potential V q!). This further implies that we can already deduce

something without plugging everything we calculated so far into the equations: we have
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that the following holds,

OΦ(l4) : ˚G
IJ

αW,βR
δIS

HD
0 δJS

HD
0 = 0 , (5.2.25)

where OΦ stands for the order of the equation for Φ. The DeWitt supermetric in

eq. (5.2.25) is indefinite, so at first, it seems that one cannot conclude much from the

above equation. So let us keep this equation in mind and we shall come back to it when

we start dealing with perturbative interpretation of the final equations.

The next order brings the following. We need X,Y = {I, J} versions of terms

of order O(l2) in eq. (5.2.24b) and X,Y = I, J versions of terms of order O(l2) in

eq. (5.2.24a); these are to be used in the first and second term in the first line of

eq. (5.2.19a), as well as in the first term in the second line of the same equation. We

also need X,Y = χ0 versions of the same terms in eq. (5.2.24a) and eq. (5.2.24b) as

with X,Y = {I, J} versions; these are used in the first term in th emiddle line of

eq. (5.2.19b) and in the first term in the last line of the same equation. Lastly, we

need X,Y = {a, h̄} versions of order O(l2) term in eq. (5.2.24a); these appear in the

first two terms in eq. (5.2.19a). Note, in passing, that there are no contributions to the

second order derivative of Φ for index values X,Y = {a, h̄}, because there is no kinetic

term with respect to the metric variables. This is in drastic contrast to the case of

QGDGR and the semiclassical approximation in there, cf. eq. (5.1.42). In QGDGR, it

was precisely the second order derivative term which gave rise to the kinetic term of the

classical EHJ equation, cf. eq. (5.1.47) and eq. (5.1.49). It thus seems at the moment

that there is no hope of recovering the classical momenta in eq. (5.1.50) conjugate to a

and h̄ variables. Since there are no other terms of order O(l2), the resulting equation

at this order is given by

OΦ(l2) : 2˚G
IJ

αW,βR
δIS

HD
0 δJS

HD
1

− i̊ G
IJ

αW,βR

(
2δI logA0δJS

HD
0 + δ2

IJS
HD
0 + 2δIS

HD
0 〈δJ〉+DIδISHD

0

)
= 0 .

(5.2.26)

We can further split this equation into its real and imaginary parts:

ReOΦ(l2) : 2˚G
IJ

αW,βR
δIS

HD
0

[
δJS

HD
1 + Im 〈δJ〉

]
+ aK̄δaS

HD
0 + 2K̄T · δh̄SHD

0

+
1

2
δχ0S

HD
0 δχ0S

HD
0 − 6ξcK̄χ0δχ0S

HD
0 +

~
2
V q = 0 , (5.2.27a)

ImOΦ(l2) : ˚G
IJ

αW,βR

(
2δI logA0δJS

HD
0 + δ2

IJS
HD
0 + δIS

HD
0 Re 〈δJ〉+DIδISHD

0

)
= 0 .

(5.2.27b)
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We can see that the real part does not only contain SHD
0 , but also SHD

1 and Im 〈δJ〉, so

it seems that one needs the knowledge of both of the latter terms in order to determine

SHD
0 from that equation. Furthermore, the first term structurally reminds of eq. (5.1.54),

if Im 〈δJ〉 were interpreted as J-components of what we may call the extended Berry

connection,

BX = Im 〈δX〉 . (5.2.28)

This equation is thus invariant with respect to a phase transformation of ψ. Therefore,

solving eq. (5.2.27a) seems impossible because one must know both the next order

phase SHD
1 and the matter wave functional ψ. As for the imaginary part, we have only

temporarily written the term Re 〈δJ〉 as non-vanishing, only to remind that it plays a

role in these equations, even though it is eliminated for the same reasons as eq. (5.1.41),

i.e. due to the choice |ψ|2 = 1. Lastly, note that through DIδISHD
0 both extrinsic and

intrinsic curvature appear in eq. (5.2.27b), cf. eqs. (4.4.32) and (4.4.33).

The remaining equations of interest follow from the O(l0) order of eqs. (5.2.19a)-

(5.2.20). We use the O(l0) order terms in eq. (5.2.24b) and the O(l0) order terms in

eq. (5.2.24a) for X,Y = I, J in eq. (5.2.19a). Furthermore, the O(l0) order terms in

eq. (5.2.24a) for X,Y = {a, h̄} are used in the first line of eq. (5.2.19b). Lastly, we use

the X,Y = χ0 versions of the O(l0) order terms in eq. (5.2.24a) in the third line of

eq. (5.2.19b) and the O(l2) order terms in eq. (5.2.24a) and eq. (5.2.24b) in the second

line of eq. (5.2.19b). Note that eq. (5.2.19c) is already of the O(l0) order. Putting

all these terms into eq. (5.2.20), taking the real and imaginary parts of the resulting

equation, using eq. (5.2.28) and Re 〈δJ〉 = 0, we obtain the following two equations

ReOΦ(l0) : −˚G
IJ

αW,βR

[
~
δ2
IJA0

A0
− 1

~
δIS

HD
1 δJS

HD
1 − 2δIS

HD
1 BJ + ~Re

〈
δ2
IJ

〉]

−DI (δIS
HD
1 + ~BI)− αW~C̄B · C̄B

+ aK̄ (δaS
HD
1 + ~Ba) + 2K̄T · (δh̄SHD

1 + ~Bh̄)

+ δχ0S
HD
0 (δχ0S

HD
1 + ~Bχ0)− 6ξcK̄χ0 (δχ0S

HD
1 + ~Bχ0)

= −
〈

ˆ̄Hχ

⊥

〉
, (5.2.29a)

ImOΦ(l0) : −˚G
IJ

αW,βR

[
2δI logA0 (δJS

HD
1 + ~BJ) + 2δI

(
A1

A0

)
δJS

HD
0

+ δ2
IJS

HD
1 + Im

〈
δ2
IJ

〉 ]
+ ~DIδI logA0

− ~aK̄δa logA0 − 2~K̄T · δh̄ logA0

218



5.2. Quantum geometrodynamics of a general quadratic curvature theory

− ~δχ0 logA0δχ0S
HD
0 − ~

2
δ2
χ0χ0

SHD
0 = 0 . (5.2.29b)

Equation (5.2.29a) is analogous to eq. (5.1.54), while eq. (5.2.29b) is analogous to

eq. (5.1.51). Note the drastic difference due to the presence of terms from higher-

derivative contributions.

We now turn to implementation of the WKB expansion in the equation for ψ, given

by eq. (5.2.22). Unlike in the case of the semiclassical approximation to QGDGR, in

the present case we have contributions of order O(l2) in the equation for ψ, which we

get using the first term in eq. (5.2.24a) for X,Y = I, J in eq. (5.2.22).

Oψ(l2) : 2i̊ G
IJ

αW,βR
δIS

HD
0

{
δJ − iBJ

}
ψ = 0 , (5.2.30a)

Oψ(l0) : 2i̊ G
IJ

αW,βR

(
δIS

HD
1 − i~δI logA0

){
δJ − iBJ

}
ψ − i~DI

{
δI − iBI

}
ψ

+ i~

[
aK̄
{
δa − iBa

}
+ 2K̄T ·

{
δh̄ − iBh̄

}]
ψ

+ i~δχ0S
HD
0

{
δχ0 − iBχ0

}
ψ − 6i~ξcK̄χ0

{
δχ0 − iBχ0

}
ψ

=
(

ˆ̄Hχ

⊥ −
〈

ˆ̄Hχ

⊥

〉)
ψ − ~˚G

IJ

αW,βR

{
δ2
IJ −

〈
δ2
IJ

〉}
ψ . (5.2.30b)

Equation (5.2.30a) can be seen as a parallel transport of ψ along the direction δIS
HD
0 ;

in other words, ψ does not evolve along the changes of SHD
0 with respect to the extrinsic

curvature. There are two other possibilities for that equation to be satisfied automat-

ically. One is that eq. (5.2.25) gives δIS
HD
0 = 0 trivially. Another possibility is that ψ

is independent of K̄ and K̄T. Of course, since extrinsic curvature is definitely present

in the Hamiltonian operator for the χ field, cf. eq. (5.2.12g), one would at first think

that δIψ = 0 is too restrictive and unfounded an assumption. But given what we just

discussed above and the fact that one should expect that ψ evolves along the classical

background determined either by the EHJ equation or by the EHJ equation corrected

by perturbatively reduced counter-terms, there is no reason to expect that ψ explicitly

depends on the additional degrees of freedom. After all, the whole pint of this thesis

is to find a semiclassical limit to a QGDHD leading to a QFT on curved spacetime

with counter-terms but without additional degrees of freedom. This is what we aim to

finally achieve in the following subsection.
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5.2.4 Semiclassical approximation: implementation of perturbative

constraints

In QGDGR it is shown that the EHJ equation given by eq. (5.1.63) and eq. (5.1.62)

follows from a semiclassical approximation scheme based on the expansion of the WDW

equation in powers of l−2. It is also shown that this equation can be corrected by the

backreaction, resulting in eq. (5.1.68), with momenta corrected according to eq. (5.1.67).

The matter wave functional is determined at order O(l0) by the functional Schrödinger

equation given by eq. (5.1.71) or eq. (5.1.72). However, we argued that the problem is

that divergences which appear once the backreaction is calculated are “naked” because

there are no counter-terms which could absorb them. As we have argued in chapter 4,

a classical theory of gravity based on a higher-derivative extension of the EH action

must be interpreted as the EH theory plus perturbations. These perturbations are in

principle determined by making use of the first-order usual non-vacuum EE without

counter-terms, which lead to their consistent role as an integral part of the SEE in

absorbing the divergencies from the backreaction. The aim of the QGDHD is to recover

the SEE with counter-terms, as well as the functional Schrödinger equation, and we

present here few steps which could be taken in order to achieve that goal. There

are several difficulties that we encounter and these are left open, apart from some

suggestions and educated guesses. The main lines of thought that we are led by are:

that there has to be a way to derive the EHJ equation and, if possible, to determine the

form of the EHJ equation corrected by the counter-terms; that implementation of the

perturbative nature of the higher-derivative contributions plays a crucial role in this

endeavour. Only then one could address the equation for ψ which is expected to lead

to a functional Schrd̈inger equation.

The following important assumptions and observations are our starting point:

1. Parameters αW and βR are bare coupling constants and thus observationally mean-

ingless until all divergences from the backreaction are absorbed, which is a mean-

ingful method only within the BO-WKB approximation with respect to l2. In

other words, treating parameters αW and βR as “small” cannot be done until the

the BO-WKB semiclassical approximation with respect to l2 has been employed.

2. Parameters αW and βR are independent. They correspond to two different and

independent terms in the original action — C2 and R2 — which is a fact we

emphasized in the previous chapter. Recall that C2 does not depend on ˙̄K which

leads to eq. (4.5.3). Suppose a HJ functional SW were introduced for the W or

WE theory: then it would follow that P̄ = δSW

δK̄
= 0 at order αW, because no

contribution from ˙̄K enters the theory. Furthermore, the surviving momenta in

this theory is eq. (4.4.13) so δSW

δK̄T ∼ αW even in the presence of R2 term. A

similar argument can be made for the momenta in a theory with the R2 term

but without the C2 term. Therefore, setting δSHD

δK̄
= 0 to zero and βR = 0 leaves
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contributions of the C2 term only; setting δSHD

δK̄T = 0 to zero and αW = 0 leaves

contributions of the R2 term only.

3. It can be deduced from the previous statement and from the derivation of the

momenta P̄ and P̄ in eq. (4.4.13) and eq. (4.4.14) that the part of the action

coupled with αW gives terms ∼ αW as the highest non-vanishing contribution

to P̄ and that the part of the action coupled with βR gives terms ∼ βR as the

highest non-vanishing contribution to P̄. It is also important to emphasize that

these contributions appear at the order O(l0) in the action.

4. Given the above and the fact that the WKB phase l2SHD
0 is of order O(l2) (recall-

ing that l2 was factored out from SHD
0 in eq. (5.2.23) only for convenience) and

that SHD
1 is of order O(l0), it follows that any dependence of the WKB phase of

on K̄ and K̄T can enter only in SHD
1 . This conclusion is exactly compatible with

our expectation from eq. (5.1.54) that any counter-terms that may be needed for

absorbing the divergences from the backreaction must appear either through S
Eχ0
1

or through BA. Therefore, we may assume that SHD
0 = SHD

0 [qA] only, i.e. that

the highest order WKB phase contribution is not generated by the higher-order

contributions.

5. Perhaps the two most important technical difficulties encountered in the sub-

sequent analysis are found in the fact that the Hamiltonian formulation of the

classical (and therefore quantized) higher-derivative theory rests entirely on the

Legendre transform given by eq. (4.4.21), which introduces the additional de-

gree of freedom into the root of the canonical and canonically quantized theory.

Because of this the resulting Hamiltonian is not equivalent to the perturbatively

constrained Hamiltonian. Yet we are trying to perturb the exact higher-derivative

theory in the semiclassical approximation. This seems contradictory and in fact

it is, given what we have learnt from section 4.2: perturbatively reduced theory

given by the Hamiltonian in eq. (4.2.22) cannot be obtained by g → 0 pertur-

bation of the exact higher-derivative Hamiltonian in eq. (4.2.18). The only way

one could avoid blowing up the kinetic term is to assume in the latter equation

that PY is of the order ∼ g. This is indeed compatible with the definition of

momentum PY given in eq. (4.2.14), where it can be clearly seen that PY ∼ g

The situation with that toy model is in direct analogy with the situation we have

at hand here, as explained in the previous two points. Is then an expansion of

SHD
1 in terms of αW, βR enough? No, it is not, because such an expansion can-

not undo what a Legendre transform did: introduction of additional terms ˙̄KP̄

and ˙̄KT
ijP̄

ij to form the total Hamiltonian gives a different result as they would

in a perturbatively reduced case. In the perturbatively reduced theory modeled

by the Hamiltonian in eq. (4.2.22) the higher-order contributions transform (i.e.

they are not added through a Legendre transform) into additional potential terms

in the Hamiltonian, not kinetic terms. Hence, if perturbatively reduced higher-
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derivative gravity were formulated canonically, the ˙̄KP̄ terms would not even

enter the Legendre transform — the higher-order derivative terms would trans-

form into lower-order terms and woudl contribute to the kinetic term of pure

Hamiltonian GR and its potential. From this important observation it follows

that the Hamilton-Jacobi formulation of the exact higher-derivative theory is not

equivalent to the Hamilton-Jacobi formulation of the perturbatively reduced theory.

Unfortunately, this is an inevitable problem that we are encountering in the very

derivation this section is devoted to. Is there a way to turn the additional kinetic

terms of the exact theory into potential terms of the perturbatively constrained

theory we would like to have at the end? Since we are hopeful of the possibil-

ity that the answer is positive, we shall give possible directions and pitfalls that

would be important to be aware of in a future work.

With these observations and assumptions we are ready to analyze eqs. (5.2.25), (5.2.27a),

(5.2.27b), (5.2.29a), (5.2.29b), (5.2.30a) and (5.2.30b).

Let us start with eq. (5.2.25). Since we have argued above that contributions to the

WKB phase of order αW and βR are to be sought in SHD
1 , it follows that

SHD
0 [qA, QI ] = SHD

0 [qA] ≡ SHD
0 . (5.2.31)

Hence all its derivatives with respect to I, J vanish identically. Alternatively, we could

have deduced the same if we noticed in another way: observe that appearance of αW

and βR in the denominator inside the DeWitt supermetric prevents one from taking a

limit αW, βR → 0; then one could apply observation point 2. from the above, i.e. that

the contributions from C2 and R2 terms, proportional to αW and βR respecitvely, are

independent ; this would lead to the following two expansions of SHD
0 ,

SHD
0 [qA, QI ] = 0SHD

0 [qA] + αW
αSHD

0 [qA, K̄T] , (5.2.32)

SHD
0 [qA, QI ] = 0SHD

0 [qA] + βR
βSHD

0 [qA, K̄] . (5.2.33)

Equation (5.2.32) is plugged into eq. (5.2.25) with a condition
δSHD

0 [qA,QI ]

δK̄
= 0. Equation

(5.2.33) is plugged into eq. (5.2.25) with a condition
δSHD

0 [qA,QI ]

δK̄T = 0. Collecting the

powers of αW and βR in the respective equations leads to

αSHD
0 [qA, QI ] = αSHD

0 [qA] , βSHD
0 [qA, QI ] = βSHD

0 [qA] , (5.2.34)

i.e. both expressions in eq. (5.2.32) and eq. (5.2.33) are independent of QI and thus

deprived of higher-derivative degrees of freedom. We can now use information from
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eq. (5.2.31) in the subsequent orders of the WKB expansion. Note that we do not write

≈ in eq. (5.2.32) and eq. (5.2.33) and we neglect contributions of the higher powers

of couplings such as α2
W, αWβR, β

2
R ... because this expansion is exact and compatible

with the fact that there are only ∼ αW and ∼ βR contributions in the starting theory

(action). This is in accordance with the method of perturbative constraints and is just

an application of discussion in section 4.1.2, page 111.

Let us next look at eqs. (5.2.27a) and (5.2.27b). We do not need to expand anything

there because each term is proportional to δIS
HD
0 [qA] = 0 and no information is obtained

from this equation. The real counterpart of that equation given by eq. (5.2.27a) contains

a derivative δIS
HD
0 in the first term only and thus this term is gone. The remaining

terms amount to (using eq. (5.2.12e) and eq. (5.2.12f)) the following equation

ReOΦ(l2) : aK̄δaS
HD
0 + 2K̄T · δh̄SHD

0 − ~a2

2

(
a2
(

(3)R− 2Λ̄
)

+ K̄T · K̄T − 6K̄2
)

+
1

2
δχ0S

HD
0 δχ0S

HD
0 − 6ξcK̄χ0δχ0S

HD
0 +

1

2
V χ0 = 0 , (5.2.35)

recalling that V χ0 is defined by eq. (2.4.21). Equation (5.2.35) is one of the most

important points in this thesis. There are terms explicitly depending on K̄ and K̄T but

the functional SHD
0 is independent of them and the equation seems to be an equation

that, in principle, determines SHD
0 . It seems that one needs to somehow fix K̄ and K̄T in

order to solve for SHD
0 . But it was shown already in [99] by the author that (in the case

of the WE theory without χ0 field) equation such as eq. (5.2.35) itself contains enough

information to fix K̄ and K̄T. Actually, it would be more precise to say that eq. (5.2.35)

is a constraint equation representing a relationship between K̄, K̄T and δAS
HD
0 . To see

this, we use the same procedure as we did in [99]: act with a functional derivative δI on

eq. (5.2.35) and use the result back in it. Taking into account eq. (5.2.31), for I = K̄

we have the following result of a functional derivation7,

aδaS
HD
0 + 6~a2K̄ − 6ξcχ0δχ0S

HD
0 + 36ξξcK̄χ

2
0 = 0 , (5.2.36)

where we have used (cf. eq. (2.4.21))

δK̄V
χ0 = 72ξξcK̄χ

2
0 . (5.2.37)

7We are being quite imprecise here with functional differentiation. Firstly, one must recall that all
equations that we are discussing in this section are under an integral

∫
d3xN̄ . Secondly, acting on a

functional derivative on a functional involves another integration which is cancelled once the functional
derivative has produced a delta function. If one then looks into the resulting integrand, one has what
we otherwise immediately write out in our derivations.
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For I = K̄T, the functional derivative of eq. (5.2.35) yields

2δh̄S
HD
0 − a2~K̄T

] + ξK̄T
] χ

2
0 = 0 , (5.2.38)

where we have used (cf. eq. (2.4.21))

δK̄TV χ0 = 2ξK̄T
] χ

2
0 . (5.2.39)

Don’t eqs. (5.2.36) and (5.2.38) remind us of something we have seen earlier? Let us

rewrite them in a slightly different form:

K̄ = − a

6
(
l2~a2 + 6l2ξξcχ2

0

) (l2δaSHD
0 − 6ξc

χ0

a
l2δχ0S

HD
0

)
, (5.2.40)

K̄T
] =

2

l2~a2 − l2ξχ2
0

l2δh̄S
HD
0 , (5.2.41)

where we multiplied and divided both equations with l2. Given the following definitions

p(0)
a := l2δaS

HD
0 , p̄(0) := l2δh̄S

HD
0 , p(0)

χ0
:= l2δχ0S

HD
0 , (5.2.42)

eq. (5.2.40) is nothing other than eq. (5.2.40), while eq. (5.2.41) is nothing other than

eq. (4.3.3e), if appropriate substitution χ → lχ0 is used. Equivalently, comparison of

eq. (5.2.40) with eq. (5.1.20) and comparison of eq. (5.2.41) with eq. (5.1.22) leads

to the same conclusion if only terms of order O(l−2) are kept. This means that we

have just recovered K̄ and K̄T in terms of the momenta for a classical non-vacuum GR

theory! If that is the case, then let us use eq. (5.2.40), eq. (5.2.41), eq. (5.2.42) and

eq. (2.4.21) back into eq. (5.2.35). After a straightforward algebra and multiplication

of the whole equation by l2, we obtain

−
(
ap(0)

a − 6ξcχ0p
(0)
χ0

)2
12l2

(
~a2 + 6ξξcχ2

0

) +
1

2l2
(
p(0)
χ0

)2
+

2p̄(0) · p̄(0)

l2
(
~ a2 − ξχ2

0

)
− l2~a4

2

(
(3)R− 2Λ̄

)
+
l2

2
Uχ0 = 0 , (5.2.43)

which is just the Hamiltonian constraint of GR given by eq. (5.1.25) with χ = pχ = 0,

or equivalently by eq. (5.1.63). If we use eq. (5.2.42) we obtain the EHJ equation,

meaning that SHD
0 ≡ SEχ0

0 . Hence, we derive the following important conclusion:

224
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The non-vacuum EHJ equation corresponding to the classical non-vacuum

GR arises not only in the semiclassical approximation to QGDGR but also

in a semiclassical approximation to a quantum gravity theory based on a

general quadratic curvature gravity with the EH term.

The correct classical gravity limit is therefore not unique to QGDGR (as anticipated

in [99]). It must be kept in mind that it is the nature of the approximation that

allows one to recover the first order classical theory, rather than a specific action for

gravity that we have chosen to work with. Precisely such generality of this result

encourages one to look for other theories where a similar semiclassical approximation

scheme may perturbatively exclude unwanted contributions which would otherwise spoil

the classical description of gravity in terms of GR, if GR is taken as a valid first order

classical theory. An example that immediately comes to mind is to investigate the action

containing terms related to conformal anomaly (cf. discussion following eq. (4.1.42))

within quantum geometrodynamics approach. Another example could be a quantized

truncated infinite-derivative theory of gravity based on [15, 30].

Next we address eqs. (5.2.29a), (5.2.29b), (5.2.30a) and (5.2.30b). It is, however,

not clear how to proceed from here. The difficulties arise mainly from point 5. stated

at the beginning of the current subsection. Here we only suggest certain directions and

explain our educated guess towards a Hamilton-Jacobi equation that would correspond

to the SEE with counter-terms.

First of all, it is important to understand the results obtained at order O(l2) given

by eq. (5.2.40) and eq. (5.2.41). What is their meaning? We think the proper way to

think about these two equations is to see them as constraint equations. In fact, an

equation similar to eq. (5.2.40) arises as a second-class constraint in the WE theory,

i.e. eq. (4.5.6). The latter equation could be interpreted within the Dirac constraint

analysis as a second-class constraint that eliminates K̄, as discussed in section 4.5.2.

We saw in the said section that this “elimination” has a price: the need for Dirac

brackets arises because Poisson brackets between K̄ and other canonical variables do

not necessarily vanish. Hence, eq. (5.2.40) could be treated in analogy with eq. (4.5.6),

i.e. as a statement of a broken conformal symmetry in classical GR which says that

K̄ is not an arbitrary independent variable but a function of other canonical variables

which arises as a solution to the EHJ equation. We therefore should continue with

K̄ → K̄(qA). A similar interpretation of equation eq. (5.2.41) is to be made, except

that we have not included in this thesis a Hamiltonian formulation of a EH+R2 gravity.

The EH+R2 theory would lead to P̄ = 0 (cf. eq (4.4.14)) and an associated second-

class secondary constraint ˙̄P
D
= 0. This second-class constraint would be equivalent

to eq. (5.2.41). Thus, eq. (5.2.41) means that K̄T is not an independent canonical

variable but is now fixed as a function of other canonical variables. Hence, we should

think of K̄T as K̄T → K̄T(qA). Then one of the main problems in the derivation of

the semiclassical approximation concerns with finding a consistent way of including
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eq. (5.2.40) and eq. (5.2.41) into subsequent orders of the approximation. Since SHD
1 is

a functional of qA and QI , one has to implement the following8

SHD
1 = SHD

1 [qA, QI(qB)] (5.2.44)

in the equations. This implies that all derivatives δIS
HD
1 have to be evaluated at QI =

QI(qB),

δIS
HD
1 → δIS

HD
1

∣∣∣∣
QI=QI(qB)

, (5.2.45)

while all derivatives δAS
HD
1 are still to be evaluated while QI is held fixed.

Secondly, we can write SHD
1 as

SHD
1 [qA, QI ] = 0SHD

1 [qA] + αW
αSHD

1 [qA, K̄T] + βR
βSHD

1 [qA, K̄] , (5.2.46)

and consider the contributions of αW and βR separately. 0SHD
1 [qA] is separated out such

that it corresponds to S
Eχ0
1 [qA] in eq. (5.1.54). Since the extended Berry connection

BI appears at the same order αW and βR, it is reasonable to expect that it too can be

written as

BX [qA, QI ] = 0BX [qA] + αW
αBX [qA, K̄T] + βR

βBX [qA, K̄] . (5.2.47)

Furthermore, we introduce

ΠX := δXS
HD
1 + ~BX , (5.2.48)

such that

ΠX [qA, QI ] = 0ΠX [qA] + αW
αΠX [qA, K̄T] + βR

βΠX [qA, K̄] . (5.2.49)

Now we look at eq. (5.2.29a) and for simplicity let us assume ξc = 0. We shall make

an assumption that δIA0 = 0. This assumption could be justified by demanding that

the amplitude of the wave function Ψ does not contribute to the SEE. Let us add and

subtract ~BIBJ inside the first square bracket in eq. (5.2.29b) and use the first order

8 We could expect that this substitution corresponds to using the EE in eq. (4.1.47a) and
eq. (4.1.45b) in the next order, i.e. in eq. (4.1.47a) and eq. (4.1.47b).
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solutions eq. (5.2.40) and eq. (5.2.41). Then, using eq. (5.2.48), eq. (5.2.29a) becomes

ReOΦ(l0) : ˚G
IJ

αW,βR

[
1

~
ΠIΠJ − ~BIBJ − ~Re

〈
δ2
IJ

〉]
−DIΠI − αW~C̄B · C̄B

− 1

6~
δaS

HD
0 Πa +

4

~a2 − χ2
0

6

δh̄S
HD
0 ·Πh̄ + δχ0S

HD
0 Πχ0 = −

〈
ˆ̄Hχ

⊥

〉
.

(5.2.50)

Next step could be to compress the last line using the DeWitt supermetric given in the

first of eq. (5.1.45),

ReOΦ(l0) : ˚G
IJ

αW,βR

[
1

~
ΠIΠJ − ~BIBJ − ~Re

〈
δ2
IJ

〉]
−DIΠI − αW~C̄B · C̄B

+
2

~
GABδAS

HD
0 ΠB = −

〈
ˆ̄Hχ

⊥

〉
. (5.2.51)

This concise result should be compared to eq. (5.1.54) in the semiclassical approxima-

tion to QGDGR — the difference is the entire first line of eq. (5.2.50). But we still

have a problem with αW, βR → 0 limit.

Let us now turn to making the limit αW, βR → 0 possible. Firstly, it should be

noted that Re
〈
δ2
IJ

〉
should in principle also be expanded, because BIBJ − Re

〈
δ2
IJ

〉
should be invariant under a phase transformation of ψ. So far we have assumed no

constraints on ψ regarding its dependence on QI . (Perhaps it could be possible to

set ~BIBJ = ~Re
〈
δ2
IJ

〉
but we cannot find a reasonable motivation, other than just a

convenient choice of gauge.) But from the first line of eq. (5.2.51) it can be seen that

ψ must contain a phase dependent on QI in order to keep that line invariant under a

phase transformation. Both ~BIBJ and ~Re
〈
δ2
IJ

〉
contain two derivatives of ψ, which

means that they contain two derivatives of the phase (recall that ψ is normalized to

one so its amplitude is independent on qA and QI); this implies that the phase θ[q,Q]

of ψ can be expanded to isolate the contribution at order αW and βR. In fact, this was

implicitly assumed in eq. (5.2.47). So one could imagine that the phase of ψ can be

separated as

θ[qA, QI ] = 0θ[qA] + αW
αθ[qA, K̄T] , (5.2.52)

and similarly for βR contribution. But this is where one needs to be cautious. Namely,

eq. (5.2.52) implies that also the backreaction is expanded in αW and βR. However,

constants αW and βR are bare at this point, which means that regularization and renor-

malization is yet to take place. Only after the divergences that appear from the back-

reaction upon its evaluation are taken care of can one make an expansion of the back-
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reaction in terms of renormalized αW and βR in order to solve the SEE equation. But

renormalization cannot yet be done because we do not have a correct form of the EHJ at

order OΦ(l0). Hence, assuming αW � 1 and βR � 1 or that αW/l
2 � 1 and βR/l

2 � 1

has no meaning before the renormalization has taken place. So it seems that this is

a problem. A possible way out would be to assume δIψ = 0, which could be justified

by thinking of ψ as evolving on a classical background described only by qA degrees of

freedom. This means BI = 0 and
〈
δ2
IJ

〉
= 0 as well. However, such assumptions put

constraints on the QI-dependent part of SHD
1 ; moreover, they eliminate any interesting

contribution from the higher-derivative terms in the equation for ψ, i.e. the entire first

line of eq. (5.2.30b) as well as the last term on the RHS of the equation vanish. We shall

assume δIψ = 0, only because we would like to simplify things and focus on remedying

the issue of treating αW and βR as expansion parameters before renormalization — an

issue which would persist even if δIψ = 0 were not assumed.

Recall that the whole point of treating αW and βR as perturbation parameters is

to solve the SEE as a second-order differential equation instead of the fourth order

one. This was achieved in e.g. [105] by treating ~ as an expansion parameter, as we

mentioned in the previous chapter, or in [94] in order to reduce the order of equations

before the quantization. But since αW and βR appear at the order l0 in a WKB ex-

pansion with l−2 as the expansion parameter, the WKB approximation has already

achieved the order reduction: as we have shown by deriving eqs. (5.2.40)-(5.2.43), the

classical non-vacuum GR arises without the need of approximations in terms of αW

and βR. This is a very important distinction between our derivation and treatments in

[94, 129, 130, 105]. Therefore, let us change the way we think about parameters αW

and βR and treat them simply as bare couplings, without any assumptions on their size

yet. We have already noted with eqs. (5.2.44) and (5.2.45) that one should implement

the O(l2) solution (i.e. eqs. (5.2.40)-(5.2.43) ) in the subsequent orders — without any

perturbation in αW and βR parameters. Namely, let us think of eqs. (5.2.46),(5.2.47)

and (5.2.49) only for indices X = I as sort of separation Ansätze, which tells us that

K̄ and K̄T appear within contributions that are coupled to αW and βR, respectively.

These Ansätze simply demand that αW = 0 and βR = 0 switches the dependence on K̄

and K̄T off. If we thought of eqs. (5.2.46),(5.2.47) and (5.2.49) in that way and if we

recall that K̄ and K̄T in those equations are functions of qA due to the classical EE (cf.

eqs. (5.2.40)-(5.2.43) ), then there is no need to talk about perturbative constraints

in terms of αW and βR parameters — the theory is already formally perturbatively

reduced.

Given this conclusion, we can demand eqs. (5.2.46), (5.2.47) and (5.2.49) for index

X = I only, while leaving X = A components unperturbed. Then we plug X = I

versions of these equations into eq. (5.2.51) and obtain the following,

βR

2~
βΠK̄

βΠK̄ −
αW

2~
αΠK̄T · αΠK̄T − βRD2

R
βΠK̄ + αWD2

W · αΠK̄T − αW~C̄B · C̄B
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+
2

~
GABδAS

HD
0 ΠB = −

〈
ˆ̄Hχ

⊥

〉
, (5.2.53)

where we remind that the entire equation is evaluated at the solution to the EHJ

equation obtained at the previous order O(l2) which determines the extrinsic curvature

in each term above through eq. (5.2.40) and eq. (5.2.41) in terms of a, h̄ and χ0. It can

finally be seen that coupling constants αW and βR are ready to absorb divergences that

might appear in
〈

ˆ̄Hχ

⊥

〉
. Equation (5.2.53) at the same time represents an equation for

ΠB, but one can solve for it (in principle) only after the renormalization has been done,

because only then one can employ the perturbative constraints approach in terms of

αphysW and βphysR running couplings.

Let us only mention that eq. (5.2.30b) resembles the functional Schrödinger equa-

tion eq. (5.1.57) after implementation of eq. (5.2.40) and eq. (5.2.41) and using the

assumption that δIψ = 0. As we said earlier, the latter assumption might be a severe

restriction. We do not go further into the details here.

Equation (5.2.29b) contains “corrections” to the amplitude even if assumption

δIψ = 0 is implemented. However, these corrections cannot be determined before

eq. (5.2.53) is solved.

There is one more issue that is encountered here and is perhaps the most important

technical one. As already mentioned in point 5. at the beginning of this subsection,

even though the first line of eq. (5.2.53) resembles the higher-derivative part of the

Hamiltonian constraint in eq. (4.4.30), one must not identify P̄ with βΠK̄ and P̄ with
αΠK̄T . The reason is the that βΠK̄ and αΠK̄T do not make sense as momenta because

there are no additional variables they are conjugate to — any additional variables are

removed through eq. (5.2.40) and eq. (5.2.41). More importantly, the reason for the first

line in eq. (5.2.53) resembling the part of the Hamiltonian constraint in eq. (4.4.30) is

the Legendre transform, which is rooted in the Hamiltonian theory and therefore in the

quantized theory. Because of this, one must find a way to relate βΠK̄ and P̄ with αΠK̄T

(or SHD
1 ) to a HJ functional that corresponds to a theory which is first perturbatively

constrained and after that Hamilton-formulated. Even though a Hamiltonian formula-

tion of perturbatively constrained theories exists in [94], the relationship between an

exactly formulated Hamiltonian theory and the perturbatively constrained Hamiltonian

theory does not seem to exist, to our knowledge. We do think it is possible to achieve

it through the Hamilton-Jacobi approach, but we are unsure how to proceed. The

most important point here that is certain is that relationship of the higher-derivative

momenta and the perturbatively constrained HJ functional must ensure that the ki-

netic term in the higher-derivative Hamiltonian is turned into the potential, i.e that

the Legendre transform in the sector of additional degrees of freedom is undone. We

hope that manipulations presented here may serve as a guideline to achieve such a goal

in the future.
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5.3 Final remarks

This chapter has shown opportunities and difficulties in QGDHD as compared to

QGDGR. The formulation of both theories was achieved in terms of unimodular-

conformal variables which to our knowledge does not exist in the literature to the

extent presented in here. The main concern was the semiclassical approximation to the

HDWDW equation and the derivation of the EHJ equation and its corrections which

take into account the backreaction and the possibility for absorbing the divergences

into couplings αW and βR. It was shown that — at least in principle — that it is possi-

ble to achieve this by performing a BO-WKB type of approximation to the HDWDW

equation in terms of inverse powers of l2. The result is the non-vacuum EHJ equation

obtained at the highest order of the expansion, given by eq. (5.2.42) and (5.2.53). This

proves that a canonically quantized general quadratic curvature gravity with higher-

derivative terms and the EH term gives a valid classical theory given by GR without

any contributions of the higher-derivative terms and the plague of additional degrees of

freedom they carry. The additional degrees of freedom were eliminated by eq. (5.2.40)

and eq. (5.2.41), which determine (or fix) K̄ and K̄T in terms of the first-order config-

uration variables a, h̄ and χ0. This information must be implemented in all subsequent

orders of the semiclassical approximation. This is enough to achieve the order reduction

which was argued for in the previous chapter.

However, unlike the usual entirely classical perturbative order reduction of the SEE

reviewed in the previous chapter, we have shown that order reduction happens already

with the BO-WKB expansion in terms of inverse powers of l2 from a quantum gravity

theory. Moreover, the approximation puts counter-terms automatically at the same

order as the backreaction, making them ready to absorb the divergences that stem form

the evaluation of the latter into couplings αW and βR. This tells in favor of interpreting

the higher-derivative terms as being relevant at high energies (or relatively small length

scales) instead of being genuine classical entities which introduce additional degrees of

freedom and spacetime instabilities.

The crucial role in deriving the semiclassical limit is played by the terms in the

Hamiltonian formulation of a higher-derivative theory which are linear in momenta.

The presence of these terms has led to eq. (5.2.35), from which the EHJ equation stems.

This equation resembles the Legendre transform in the usual Hamiltonian formulation

of GR — which is why the method works. However, of crucial significance was to apply

derivatives with respect to K̄ and K̄T to this equation, in order to fix the extrinsic

curvature. We stress that this could be a clear example of Dirac second-class constraint,

whose preservation in time eventually determines a Lagrange multiplier.

There were several pitfalls which we tried to point out. The most important one

is how to relate the Hamilton-Jacobi treatment of an exact higher-derivative theory

and its perturbatively constrained version. The problem revolves around expressing

the higher-derivative momenta in terms of the first-order HJ functional. We hope we
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gave some pathways on how to approach this problem.

The insights gained from our treatment might motivate a search of connections of

quantum geometrodynamics with other approaches to quantum gravity9. We think

that this question is important and we hope this thesis encourages its investigation.

∞ � ∞

9E.g. the program of asymptotic safety [11, 82, 118], where one investigates the possibility of finding
an effective action which in the limit of high energies has finite number of terms and non-divergent
couplings; moreover, the so-called “infinite-derivative” theories [15] where one considers a non-local
theory of gravity valid at high-energies. In both of these approaches it seems that additional and
runaway degrees of freedom are avoided.
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Chapter 6

Conclusions

The beauty of using the unimodular-conformal variables is that one can clearly identify

a single degree of freedom with a single variable. Its choice is driven by carefully

listening to the symmetry features inscribed in a given theory and then transforming

one “coordinate system” in the configuration space into another such that the new

“directions” are suitably tuned to these symmetry features.

In the case of metric theories of gravity which may or may not have conformal

symmetry, the suitable choice is the set of unimodular-conformal variables, because it

aligns the direction of conformal transformation with the “axis” of the scale density

(which is related to a volume) and the expansion density (which is related to volume’s

timelike evolution), while other directions are orthogonal to it and aligned to the shape

density (which encodes the conformally invariant metric degrees of freedom) and the

shear density (which represents the timelike evolution of the conformal degrees of free-

dom). This split into conformal and non-conformal degrees of freedom is motivated

not only by examining various coordinate transformations of the GL(4,R) group but

also by questioning the meaning of attributing units to coordinates themselves. The

latter led us to motivate a dimensionless relative measure of a length scale l which

encodes how large is the area of spacetime measured by the scale density compared to

the Planck length scale.

Introduction of the dimensionless relative length scale and formulation of geomet-

ric objects (Christoffel symbols, curvature tensors) in terms of unimodular-conformal

variables has allowed us to examine the conformal properties of any theory that lives

on Riemannian geometry. It has further led to a formulation of a generator of con-

formal transformation of fields (local Weyl rescaling) and the definition of conformal

invariance in terms of it. Furthermore, using unimodular-conformal variables in 3 + 1
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decomposition of spacetime, we have shown why the Weyl-tensor squared and the R2

terms independently contribute with conformal and non-conformal degrees of freedom,

which itself represents significant improvement compared to the previous works on the

topic. Moreover, the Hamiltonian formulation — and later the quantization — is also

made more clear using our methods, as compared to the existing formulations in the

literature. These tools have proven invaluable in understanding the higher-derivative

theories and they deserved a significant part of the thesis.

The higher-derivative theories are usually sought as alternatives to classical theory

of gravity described by GR, but they suffer from instabilities and increasing number

of degrees of freedom. They are motivated by requirements of semiclassical gravity,

which necessitates the introduction of quadratic curvature terms in Einstein equations

in order to absorb divergent terms that appear in the expectation value of the energy-

momentum tensor operator (the backreaction). The counter-terms of most significance

can be described by two pieces: the Weyl-tensor squared and the R2 term. In spite

of the usual discussion of these theories as exact classical theories of gravity, we have

embarked on an attempt to make sense of the quadratic curvature terms as perturba-

tions relevant at higher energies. Our work was inspired by [129, 130, 105] and [94],

who favoured the perturbative nature of the counter-terms over their interpretation as

an exact contribution to the theory of gravity. The main purpose of the thesis was to

quantize a higher-derivative theory of gravity and investigate the possibility to have

a meaningful semiclassical approximation where such a theory naturally gives rise to

the mentioned counter-terms — an outcome which is not met in QGDGR. We have

reviewed the quantization and the semiclassical approximation in canonical GR using

the unimodular-conformal variables and the dimensionless relative length scale l. The

latter is used as an expansion parameter and thus we avoided usual issues with limits of

dimensionful parameters. The formulation of a QGDHD was shown to be rather similar

to the formulation of the QGDGR: canonical quantization of the constraints derived in

the Hamiltonian formulation. The semiclassical approximation to QGDHD was based

on the same ansatz as in QGDGR, with the exception that the wave functional lives on

an extended configuration space which includes the extrinsic curvature as additional de-

grees of freedom. The approximation itself is a combination of the Born-Oppenheimer

type and a WKB-type of approximation. Two of the main questions of the approach

were how to eliminate the additional degrees of freedom in the semiclassical approxima-

tion to a higher-derivative quantum gravity and how to recover non-vacuum GR. The

answers turned out to follow without any additional assumptions because the higher-

derivative terms appear only at order O(l0), while the highest order of approximation

O(l2) produced equations which fixed the extrinsic curvature in terms of the first-order

variables. Manipulating this information we showed that classical non-vacuum GR in

the form of non-vacuum Einstein-Hamilton-Jacobi equation emerges from a QGDHD.

This proves that non-vacuum GR is not a classical limit unique to canonically quan-

tized GR. Furthermore, the higher-derivative terms appeared at the same order as the
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backreaction, thus introducing the correction to the EHJ equation due to the presence

of counter-terms. This was achieved without any use of the perturbative approach in

terms of couplings of the higher-derivative terms. This is important to emphasize be-

cause these couplings may only be constrained to be “small” if they have already been

redefined by absorbing the divergences. It is thus necessary to perturb the equations

in terms of these parameters only once the couplings are renormalized and one wishes

to solve the SEE with a regularized backreaction.

There are two main issues with the approach we pursued. One is that it involves

a few unclear assumptions which have left the question of deriving the functional

Schrödinger equation unresolved. The other is the lack of proof that our result corre-

sponds to the classical perturbatively constrained higher-derivative theory. The former

is an issue that requires more analysis of the semiclassical approximation. The latter

is an issue which would have to be addressed in a less complicated context, on a toy

model of a constrained system or a minisuperspace model.

In spite of the issues, we think that our work investigated promising possibilities

for considering QGDHD at least as seriously as QGDGR. Furthermore, we think that

quantum gravity community lacks investigations of interconnections among different

approaches to quantum gravity. Our work opens some doors in addressing this gap,

because the questions raised in this thesis may relate to infinite derivative theories [30]

and asymptotic safety approach to gravity [11, 118]. We therefore hope that our work

will inspire further investigations in various directions.

A single answer does not always correspond to a single question.
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A.1 Coordinate variation of Christoffel symbols

In order to derive the so-called integrability condition for the Killing vector field ξµ, that

is, equation (1.2.3a) or (1.2.3a) set to zero, one is usually referred (see e.g. Appendix

C.3 in [145]) to use a specific sum of cyclic permutation of indices of the definition of

the Riemann tensor via commutator of covariant derivatives of that Killing vector,

[∇µ,∇ν ] ξα = Rαβµνξ
β , (A.1.1)

and Bianchi identity for the Riemann tensor. However, one should be able to derive

such integrability condition from some principle which can be invoked in order to use

the specific sum of cyclic index permutations of the above expression. Of course, if one

is familiar with the Bianchi identity of the Riemann tensor (which one should be on

any course on General Relativity), an idea to use it may come to one’s mind and after

some trial and error, a correct answer is obtainable. But it is more satisfactory to know

the reason why this works.

The reason is simply the demand that the variation of curvature and the variation

of connection vanish under along a Killing vector. It is actually enough to demand that

the variation of the connection along the killing vector vanish. One can show that, if a

metric is present, the Lie derivative of the connection can be expressed as

δΓαµν =
1

2
gαβ

(
∇µ∇βξν +∇µ∇νξβ +∇ν∇βξµ +∇ν∇µξβ −∇β∇µξν −∇β∇νξµ

)
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= gαβ

(
∇(µ∇ν)ξβ +∇[µ∇β]ξν +∇[ν∇β]ξµ

)

= gαβ

(
∇(µ∇ν)ξβ +

1

2
ξρR

ρ
νβµ +

1

2
ξρR

ρ
µβν

)

= gαβ

(
∇(µ∇ν)ξβ −

1

2
ξρR

ρ
νµβ −

1

2
ξρR

ρ
µνβ

)
= gαβ

(
∇(µ∇ν)ξβ − ξρRρ(µν)β

)
.

(A.1.2)

Setting this expression to zero gives the integrability condition. The meaning behind

this requirement is understood if one thinks of what should happen to the curvature

along a motion in the direction of a Killing vector: the geometry of space does not

change under a symmetry transformation and all geometric objects should acquire a

zero physical change when evaluated at points along the direction of a Killing vector.

The above equation has a meaning even if it does not vanish. If ξµ is not a Killing

vector, then the above equation expresses the change of the Christoffel symbols along

the corresponding direction. For example, we have studied the form of this change

under a general infinitesimal coordinate transformation in section 1.2 and showed in

equation (1.2.24) that it can be split into two parts — the one due to the shear (volume-

preserving) transformations and the one due to the scale (shape-preserving) transfor-

mations. Imposing this explicit change of the Christoffel symbol on one side of the

equation and equating it with the result of (A.1.2) results in an expression which one

may call “non-isometry integrability condition”, which can (in principle) be used to find

transformation vectors in any geometry. This is how we found the relevant equations

for finding vectors that generate conformal transformations in the Minkowski spacetime

in section 1.4.

A.2 3+1 decomposition of spacetime

In this Appendix we briefly sketch the 3 + 1 decomposition of spacetime. It is the

basis of canonical quantization of theories of gravity [82] as well as numerical relativity

[57, 104].

In this formalism the four-dimensional spacetime is described by three-dimensional

spacelike hypersurfaces Σt embedded in four-dimensional spacetime as evolving in time.

Therefore a four-dimensional metric shall be descomposed into three-dimensional metric

parametrized by a scalar function t that governs distances on the three-hypersurface and

the rest of the components, which describe one’s choice of orienting this hypersurface

with respect to a defined timelike direction. This timelike direction is defined as a
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covariant derivative of the time function t

nµ = −N∇µt (A.2.1)

where N > 0 is the lapse function, and this vector (nµ = gµνnν) is normalized by

gµνn
µnν = −1. This vector is orthogonal to Σt at each point on it and one could

imagine that as one is walking along Σt the orthogonal vector (which therefore extends

into the time dimension) changes its orientation depending on how the hypersurface

curves into the time dimension due to embedding. In other words, variation of nµ will

describe the rate of change of the three-dimensional metric. A particular choice of

normalized vector (A.2.1) is given in Arnowitt-Deser-Misner (ADM) variables as

nµ = (−N, 0, 0, 0) , nµ =

(
1

N
,−N

i

N

)
, (A.2.2)

where N i is called the shift vector. The metric is then decomposed as

gµν = hµν − nµnν , (A.2.3)

where hµν is the metric induced on Σt, such that

hµνn
µ = 0 , hµαh

α
ν = hµν , gµνhµν = 3 . (A.2.4)

Therefore, the hµν and nµnν are just projection operators: they project any four-

dimensional index onto spacelike hypersurface and timelike orthogonal direction. Using

these projections, a four-tensor Tµν , for example, can be decomposed in the following

way:

Tµν =
(
hαµ − nαnµ

) (
hβν − nβnν

)
Tαβ

= ‖Tµν − ‖Tµ⊥ − ‖T⊥ν + T⊥⊥, (A.2.5)

where “‖” denotes that the greek indices are projected to the hypersurface using hαµ,

while “⊥” denotes the position of an index that has been projected along the orthogonal

vector nµ.

The four functions, the lapse N and the shift N i, describe the mentioned choice of

coordinates. This is seen explicitly from the decomposition (A.2.3) which implies that
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the four-metric and its determinant decompose as

gµν =

 −N2 +NiN
i Ni

Ni hij

 ,
√
g = N

√
h, (A.2.6)

where hij is now the three-metric as directly formulated with spatial indices, which is

used to raise and lower spatial indices; we also defined h := det hij . The inverse of the

four-metric has the form

gµν =


− 1

N2

N i

N2

N i

N2
hij − N iN j

N2

 . (A.2.7)

With these definitions, the time components of objects projected onto the hypersurface

vanish; in (A.2.5), for example, all components with “‖” are now spatial, and the “‖”

can be dropped with the understanding that greek indices can there be turned into

latin ones i, j, etc.: ‖Tµν → (3)Tij , ‖T⊥ν → T⊥j , etc., where objects denoted with a left

superscript “(3)” are intrinsic to the hypersurface.

We mentioned that the variation of nµ along the hypersurface will describe the rate

of change of the three-dimensional metric. More precisely this means that one forms

an object defined by Kαβ := hµαh
ν
β∇(αnβ) and uses the above-mentioned fact that

now the indices can be considered as spatial ones. The result can be shown [104, eq.

(12.14)-(12.21)] to be1

Kij := NΓ0
ij =

1

2
Lnhij =

1

2N

(
ḣij − 2D(iNj)

)
, (A.2.8)

K := hijKij =
Ln
√
h√
h

=
1

N

(√̇
h√
h
−DiN

j

)
, (A.2.9)

where Di denotes the covariant derivative with respect to the three-metric hij , i.e.

the covariant derivative which strictly speaks of parallel transport on Σt. Object Kij

is called the extrinsic curvature tensor and K is its trace. Therefore, the extrinsic

curvature is the Lie derivative of the three-metric along the timelike orthogonal vector

nµ. One must be careful to keep in mind that Lnhij is derived via projection of Lngµν
onto the hypersurface, which eliminates certain terms such as spatial derivatives of N .

It is important to note that the trace of the extrinsic curvature involves the three-

1Note, however the difference in the sign convention in the definition of the extrinsic curvature as
compared to [104].
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volume
√
h and thus can be interpreted as the rate of change of the three-volume.

The Riemann tensor, Ricci tensor, and Ricci scalar can be decomposed in a man-

ner similar to (A.2.5), but we are interested in the Ricci scalar only, for which one

obtains [104, chapter 12],

R = (3)R+KijK
ij +K2 + 2LnK −

2

N
DiDiN (A.2.10a)

= (3)R+KijK
ij −K2 + 2∇µ (nµK)− 2

N
DiDiN , (A.2.10b)

where (3)R is the intrinsic Ricci scalar curvature formed from traces of the three-

dimensional Ricci tensor2, describing the curvature of Σt.

The two versions of the Ricci scalar are equivalent but their use depends on the

context. For example, (A.2.10b) is more suitable for calculations in classical and quan-

tum GR because the second-to-last term manifestly represents a boundary term when

put into an action. However (A.2.10a) may be more useful for discussions based on the

action of the non-minimally coupled scalar field or R2 gravity. Thus it is important

to be aware of both forms and how can one switch from one to the other and this is

done by a simple manipulation ∇µ (nµK) = K∇µnµ + nµ∇µK = K2 + nµ∇µK, which

explains the change of the sign in front of K2 in (A.2.10b) compared to (A.2.10a).

The Weyl tensor has two relevant components: Ci⊥j⊥ and Cklj⊥. It has been derived

in [86] and [69] and already used in author’s Master thesis [99]. Here we only state the

final expressions that are relevant for this thesis given by

CE
ij := −2Ci⊥j⊥ = 1Tab

(ij)

(
LnKab − (3)Rab −KabK −

1

N
DaDbN

)
,

= (LnKij)
T − (3)RT

ij −KT
ijK −

1

N
(DiDj)

TN , (A.2.11a)

CB
ij := εiklC

kl
j⊥ = εkl(iDkKj)l . (A.2.11b)

Note that LnKab is an object that does not correspond to the Lie derivative of Kab

along the four-vector nµ because its derivation involves projection onto the hypersurface

which eliminates some terms [57, section 3.4]; this object has the following form:

LnKab :=
1

N

(
K̇T
ab − L ~NKab

)
, (A.2.12a)

L ~NKab = N i∂kKab +Kaj∂bN
j +Kbj∂aN

j , (A.2.12b)

2In three dimensions Weyl tensor identically vanishes so Ricci tensor components are the only
remaining non-zero set of components of the Riemann tensor.
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where L ~NKab is the Lie derivative of Kab along the three-dimensional vector N i. The

two objects in (A.2.11a) and (A.2.11b) are the “electric” and “magnetic” parts of the

Weyl tensor3 [69, 92], where 1Tab
(ij) is “three-dimensional traceless rank-two identity”

defined as

1Tab
(ij) := δa(iδ

b
j) −

1

3
hijh

ab, (A.2.13)

rendering each term traceless, (DiDj)
T ≡ 1Tab

(ij)DaDb and εikl is the three-dimensional

Levi-Civita tensor density. Both the electric and magnetic parts of the Weyl tensor are

traceless and they carry five degrees of freedom each, agreeing with a total of 10 for

the Weyl tensor. Also, each of these components is conformally invariant but this is

obvious only after applying unimodular-conformal decomposition, see subsection 2.3.2.

Finally, the Weyl invariant, constructed from the Weyl tensor contracted with itself,

then takes the form similar to the electromagnetic invariant FµνF
µν ∼ E2 −B2 and is

given [86, 69] by

CµνλρC
µνλρ = 2CE

ijC
ij
E − 4CB

ijC
ij
B . (A.2.14)

Note that the term CE
ijC

ij
E in (A.2.14) contains only traceless quantities and does not

contain velocities of the trace K, but seems to contain the trace K itself. As stated in

the main text of this thesis, if the Weyl tensor is invariant under conformal transfor-

mations the trace K should not appear in it due to its inhomogeneous transformation.

Moreover, the magnetic part Cij should also not contain the trace K. All this is made

manifest in section 2.3 by utilizing the unimodular-conformal decomposition.

A.3 Various proofs

A.3.1 Conformally invariant expressions with differential operators

We are interested in investigating conformal properties of the following expression

(
(3)Rij +

1

N
Dj∂jN

)T

(A.3.1)

which appears in (2.3.40), studied in subsection 2.3.2. Let us study the two terms

separately and it is instructive to do the calculation in d dimensions and thus switch

to greek indices and a d-dimensional metric and covariant derivatives.

3Note that in this thesis we choose to work with CB
ij instead of Cijk⊥ as we did in [99] and [84] due

to its simpler and more intuitive form. Also, the notation in definitions of electric and magnetic parts
may differ only up to a constant factor from the ones in the literature.
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Consider a scalar field φ of conformal weight nφ = 1. Then according to (2.1.7) the

corresponding conformally invariant scalar density is of the scale weight w̄ = −1 and

is defined by φ̄ := A−1φ. Then the second term in (A.3.1) evaluates to

∇µ∂νφ
φ

=
∇µ∇ν φ̄

φ̄

=
1

φ̄
∇̄µ∂ν φ̄+ ∇̄(µ∂ν) logA+ ḡµν ḡ

αβ∂α logA∂βφ̄

−
(

2δα(µδ
β
ν) − ḡµν ḡ

αβ
)
∂α logA∂β logA . (A.3.2)

Now observe that the second and fourth terms appear (up to d-dependent coefficients)

in Rµν in (2.2.24) with an opposite sign. However, the third term contains4 ∂βφ̄ and

cannot be found in there, and is present without an opposite-signed pair in Rµν to be

canceled with. But this term is in its totality a part of the trace of expression (A.3.2),

ḡµν
∇µ∇ν φ̄

φ̄
=

1

φ̄
ḡµν∇̄µ∂ν φ̄+ ḡµν∇̄µ∂ν logA+ d ḡαβ∂α logA∂βφ̄

− (d− 2) ḡαβ∂α logA∂α logA , (A.3.3)

which means that the traceless part of (A.3.2) does not contain it. Therefore, this

“coincidence” can be used to form a traceless operator from traceless parts (3)RT
µν and

(∇µ∂νφ)T/φ,

RT
µν + (d− 2)

1

φ
(∇µ∇ν)Tφ = R̄T

µν − (d− 2)
(
∇̄(µ∂ν) logA− ∂µ logA∂ν logA

)T

+ (d− 2)

(
1

φ̄
∇̄µ∂ν φ̄+ ∇̄µ∂ν log a− ∂µ logA∂ν logA

)T

= R̄T
µν + (d− 2)

1

φ̄

[
∇̄µ∂ν φ̄

]T
, (A.3.4)

which is indeed manifestly conformally invariant. In d = 3 dimensions and setting

φ̄ = N̄ we obtain the last two terms in (2.3.46), completing the proof of its manifest

conformal invariance.

4If one generalizes the calculation to an arbitrary scale weight w̄ then additional terms proportional
to (1 + w̄)∂µ logA∂ν φ̄ would appear. Then, for example, for the Klein-Gordon scalar field of conformal
weight nφ = −w̄ = −1 these terms cannot be eliminated unless one takes the trace and subtracts a
certain multiple of R, as in section 2.4.
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Let us multiply the above result by (d− 2)−1φ and switch the order of terms to get

(
(∇µ∇ν)T +

1

d− 2
RT
µν

)
φ = A

(
∇̄µ∂ν +

1

d− 2
R̄µν

)T

φ̄ . (A.3.5)

This equation is to some extent analogous to the Klein-Gordon operator for the con-

formally coupled scalar field of conformal weight nKG = (2 − d)/2 that is studied in

Section (2.4) with an exception that it is not derived from any Lagrangian. It does

testify, however, that not only the conformal weight of a field it acts on but also the

property of tracelessness is relevant to the notion of conformal invariance of differential

operators.

The same operator with d = 3 appears in the Weyl-tensor part of the Hamiltonian

constraint (4.4.30), cf. (4.4.33). Namely, the traceless momentum density P̄ ij of scale

weight ωa = 4, contracted with
(
DiDj + 1

d−2Rij

)
ensures that

(
(DiDj)

T +RT
ij

)
P̄ ij =

(
∂iD̄j + R̄ij

)T
P̄ ij , (A.3.6)

is conformally invariant. These derivations add to the power of the method of using

the unimodular-conformal decomposition.

We finally make the interesting observation that the very same operator considered

above is precisely the one that appears in the Bach equations, which are conformally

invariant. Setting d = 4, contraction of
(
∇µ∇ν + 1

d−2Rµν

)
with the Weyl tensor

ensures that the operator is traceless, thus eliminating all the scale-dependent terms

from it. That is why the Bach tensor (4.1.38) can be simplified to

A2

(
∇α∇β +

1

2
Rαβ

)
Cαµ

β
ν = ḡβρ

(
∇̄α∇̄β +

1

2
R̄αβ

)
Cαµρν , (A.3.7)

which is manifestly A-independent and thus conformally invariant.

A.3.2 3+1 decomposition of the non-minimally coupled scalar field

In subsection 2.4.2 we use the results of the current Appendix, where we derive in detail

the Lagrangian in unimodular-conformal variables in 3+1 formalism, using results from

section 2.3. Note that we shall use

ϕ = asχ (A.3.8)

decomposition, a is the three-dimensional scale density. This is because we want this

decomposition to be independent of the choice of lapse density and we put a general
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scale weight for now.

First we prepare the Lagrangian of the non-minimally coupled scalar field in the

following way:

Lϕ = −1

2

√
−g

[
gµν∂µϕ∂νϕ+ ξRϕ2 + V (ϕ)

]

=
1

2
N
√
h

[
(nµ∂µϕ)2 + ξ

(
2

3
K2 − 2∇µ (nµK)

)
ϕ2︸ ︷︷ ︸

I

−hij∂iϕ∂jϕ− ξ
(

(3)R− 2

N
DiDiN

)
ϕ2︸ ︷︷ ︸

II

− ξKT
ijK

ijTϕ2 − V (ϕ)

]
, (A.3.9)

where I and II are useful designations. Now we proceed with calculation of each term.

First we have the kinetic term and the last term in I:

N
√
h (nµ∂µϕ)2 = N̄a2(1+s)

[
n̄µ∂µχ+ s n̄µ∂µ log aχ

]2
(A.3.10)

∇µ (nµK) = K2 + nµ∂µK (A.3.11)

The last term in (A.3.11) can be partially integrated to extract K̄ from under the

derivative:

−6ξN̄a2(1+s)n̄µ∂µK̄χ
2 = −6ξ∂µ

(
N̄a2(1+s)n̄µK̄χ2

)
+ 6ξK̄∂µ

(
n̄µN̄a2(1+s)χ2

)
= −2ξ∂B + 12ξ(1 + s)N̄a2(1+s)K̄2χ2

+ 6ξ(2s− 1)N̄a2(1+s)∂iN
i

3N̄
K̄ χ2 + 6ξN̄a2(1+s)n̄µ∂µχ

2 ,

∂B ≡ 6

2
∂µ

(
N̄a2(1+s)n̄µK̄χ2

)
(A.3.12)

Note that this partial integration eliminates the second time derivative of a from the

Lagrangian. This is necessary only in GR in order to eliminate the second time deriva-

tives. But if the scalar field is considered within a higher derivative theory of gravity

one could leave this term alone and do the partial integration in the kinetic term in

order to generate the second time derivative of a (equivalently the first time derivative
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of K̄) such that the expressions are simplified in another way. For the purposes of this

thesis, the former is more convenient.

The expressions above are needed in order to calculate the following term:

ξN
√
h

(
2

3
K2 − 2∇µ (nµK)

)
ϕ2 = ξN

√
h

(
2

3
K2 − 2K2 − 2nµ∂µK

)
ϕ2

= −ξN
√
h

(
4

3
K2 + 2nµ∂µK

)
ϕ2

= −ξN̄a2(1+s)

(
12K̄2 − 6n̄µ∂µ log aK̄ + 6n̄µ∂µK̄

)
χ2

= 6ξN̄a2(1+s)

(
(1 + 2s)K̄2χ2

+ 2 s K̄
∂iN

i

3N̄
+ a2(1+s)n̄µ∂µχ

2

)
− 2ξ∂B

(A.3.13)

Finally, putting together (A.3.10)-(A.3.13), we obtain

I = N
√
h

(
(nµ∂µϕ)2 + ξ

(
2

3
K2 − 2∇µ (nµK)

)
ϕ2

)

= N̄a2(1+s)

[(
n̄µ∂µχ+ (s+ 6ξ)K̄χ+ s

∂iN
i

3N̄
χ

)2

+ 6ξ(1− 6ξ)K̄2χ2

]
− 2ξ∂B .

(A.3.14)

For expression II we will need the following expressions:

N
√
hhij∂iϕ∂jϕ = N̄a2(1+s)h̄ij

(
∂iχ∂jχ+ s ∂i log a ∂jχ

2 + s2 ∂i log a ∂j log aχ2
)
,

(A.3.15)

√
hhijDi∂jN ϕ2 = Di

(√
hhij∂jN

)
ϕ2 = ∂i

(√
hhij∂jN

)
ϕ2

= ∂i

(√
hhij∂jNϕ

2
)
−
√
hhij∂jN∂iϕ

2

= BT1− BT2 +N∂j

(√
hhij∂jϕ

2
)
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= BT1− BT2 + N̄a2(1+s)
[
2s ∂i

(
h̄ij∂j log a

)
χ2

+ 2s(1 + 2s)h̄ij∂i log a ∂j log aχ2

+ 2χ∂ih̄
ij∂jχ+ 2 h̄ij∂iχ∂jχ+ (1 + 4s)h̄ij∂i log a ∂jχ

2
]
, (A.3.16)

BT1− BT2 = ∂i

(√
hhij∂jNϕ

2
)
− ∂i

(√
hhijN∂iϕ

2
)

= (1− 2s)∂i

(
N̄a2(1+s)h̄ij∂j log aχ2

)
+ ∂i

(
a2(1+s)h̄ij

(
∂jN̄χ

2 − N̄∂jχ2
))

. (A.3.17)

Recalling the unimodular decomposition of the Ricci scalar in three dimensions (2.2.26),

we have

a2hijRij = h̄ijRij = R̄− 4h̄ij
[
D̄i∂j log a+

1

2
∂i log a ∂j log a

]

= R̄− 4∂i
(
h̄ij∂j log a

)
− 2h̄ij∂i log a ∂j log a . (A.3.18)

Collecting (A.3.15)-(A.3.18), we can calculate the second contribution,

II = −N
√
h

(
hij∂iϕ∂jϕ− ξ

(
(3)R− 2

N
DiDiN

)
ϕ2

)

= N̄a2(1+s)

[
4ξ∂i

(
χh̄ij∂jχ

)
− h̄ij∂iχ∂jχ− ξR̄χ2 + S (a; s, ξ)

]

+ 2ξBT1− 2ξBT2 (A.3.19)

where S (a; s, ξ) is the collection of a−dependent terms,

S (a; s, ξ) ≡ 4ξ(1 + s)∂i
(
h̄ij∂j log a

)
χ2 −

[
s2(1− 6ξ)− 2ξ(1 + s)2

]
h̄ij∂i log a ∂j log aχ2

− [s(1− 6ξ)− 2ξ(1 + s)] h̄ij∂i log a ∂jχ
2 . (A.3.20)

247



. Appendix

The Lagrangian in its final form is then given by

Lϕ = Lχ =
1

2
N̄a2(1+s)

[(
n̄µ∂µχ+ (s+ 6ξ)K̄χ+ s

∂iN
i

3N̄
χ

)2

+ 6ξ(1− 6ξ)K̄2χ2

+ 4ξ∂i
(
χh̄ij∂jχ

)
− h̄ij∂iχ∂jχ− ξR̄χ2 − ξK̄T2

ij χ
2 + S (a; s, ξ)

]

− ξ∂B + 2ξBT1− 2ξBT2 (A.3.21)

Now we can choose5 s = −1 as motivated in the previous subsection which sets the

scaling of the scalar field to be ϕ = a−1χ and the Lagrangian now reads

Lϕ = Lχ =
1

2
N̄

[(
n̄µ∂µχ− (1− 6ξ)K̄χ− ∂iN

i

3N̄
χ

)2

+ 6ξ(1− 6ξ)K̄2χ2

+ 4ξ∂i
(
χh̄ij∂jχ

)
− h̄ij∂iχ∂jχ− ξR̄χ2 − ξK̄T2

ij χ
2 + S (a; ξ)

]

− ξ∂B + ξBT1− ξBT2 (A.3.22)

with

S (a; ξ) ≡ (1− 6ξ)
[
h̄ij∂i log a ∂jχ

2 − h̄ij∂i log a ∂j log aχ2
]
, (A.3.23)

while the total divergences reduce to

∂B =
6

2
∂µ
(
N̄ n̄µK̄χ2

)
(A.3.24)

BT1− BT2 = 3∂i
(
N̄ h̄ij∂j log aχ2

)
+ ∂i

(
h̄ij
(
∂jN̄χ

2 − N̄∂jχ2
))

. (A.3.25)

Note that qualitatively only one term has dropped from the Lagrangian, namely the

one containing second spatial derivative of the scale density 4ξ(1 + s)∂i
(
h̄ij∂j log a

)
5 One could have also chosen s = −6ξ as in [77] which is suitable if one is dealing with conformally

coupled scalar field because the cross term K̄χ̇ ∼ ȧχ̇ term is gone and this eliminates mixing between
the momenta with respect to a and χ in GR. However, the price that one has to pay is that χ is no
longer conformally invariant for a general non-minimal coupling and the length dimension does not
coincide with the scale weight. This inconsistency is not what we want in this thesis, even though this
choice might have some calculational advantages.
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from (A.3.20). The rest of the terms have remained with simplified coefficient. These

coefficients now depend only on ξ, whose choice controls whether one will deal with

conformally coupled, minimally coupled, or general non-minimally coupled scalar field.

Observe now that for conformal coupling ξ = 1/6 Lagrangian (A.3.22) reduces to

Lϕ = Lχ =
1

2
N̄

[(
n̄µ∂µχ−

∂iN
i

3N̄
χ

)2

+
2

3
∂i
(
χh̄ij∂jχ

)
− h̄ij∂iχ∂jχ−

1

6
R̄χ2 − 1

6
K̄T2
ij χ

2

]

− 1

6
∂B +

1

6
BT1 (A.3.26)

since S (a; 1/6) = 0. Note that no a or K̄ appear in here and thus we have shown that

the Lagrangian is manifestly conformally invariant.

A.3.3 Canonical transformation from the ADM to the

unimodular-conformal variables

We prove here that a general Poisson bracket defined by (A.5.10) with respect to the

ADM variables hij , p
ij
ADM, N, pN and N i, pi gives rise to canonical pairs (a, pa) and

(h̄ij , p̄
ij), N̄ , p̄N , N i, pi in transition to the unimodular-conformal variables. For this

proof we shall suppress the coordinate and time dependence and consider all compo-

nents and functions evaluated at the same point (thereby formally substituting the

functional with partial derivatives).

Let us consider only the first term in the Poisson bracket involving the pair hij , p
ij
ADM.

We would like to see how should the ADM momentum transform in order for (2.3.12)

to be a canonical transformation. Let us first define the traceless pTij
ADM and trace p

parts of pijADM,

pTij
ADM := 1Tij

kl p
kl
ADM , pADM := hijp

ij
ADM , (A.3.27)

where 1Tij
kl is defined in (A.2.13). Then we use the unimodular decomposition of the

three-metric given by (2.3.12) along with the three-dimensional version of (A.4.3d) and

work out the following expression

δF

δhij

∂G

∂pijADM

=

(
a−21Tij

kl

∂F

∂h̄kl
+
a

6
hij

∂F

∂a

)
∂G

∂pijADM

= a−2 ∂F

∂h̄kl
1Tij
kl

∂G

∂pijADM

+
a

6

∂F

∂a
hij

∂G

∂pijADM

, (A.3.28)
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where now we see that the first term picks up only the traceless part while the second

term picks up only the trace part of the derivative with respect to pijADM. Using the

chain rule

∂G

∂pijADM

=
∂pTmn

ADM

∂pijADM

∂G

∂pTmn
ADM

+
∂p

∂pijADM

∂G

∂pADM

= 1Tmn
ij

∂G

∂pTmn
ADM

+ hij
∂G

∂pADM

=
∂G

∂pTij
ADM

+ hij
∂G

∂pADM

. (A.3.29)

Plugging (A.3.29) into (A.3.28) we obtain

δF

δhij

∂G

∂pijADM

= a−2 ∂F

∂h̄kl

∂G

∂pTij
ADM

+
a

2

∂F

∂a

∂G

∂pADM

, (A.3.30)

from which we see that the correct canonical transformation of the ADM momentum’s

pieces is

p̄ij = a2pTij
ADM , pa =

2

a
pADM , (A.3.31)

which agrees with (4.3.26).

A.4 Variational principle in terms of the scale and the

shape

Based on (2.2.1), the variation of the metric decomposes into variations of the scale δA

and variations of the shape δḡµν :

δgµν = A2δḡµν + 2ḡµνAδA , (A.4.1a)

δgµν = A−2δḡµν − 2ḡµνA−3δA . (A.4.1b)

An important property of the above decomposition is that the variation of the shape

is traceless,

gµνδḡµν = A−2ḡµνδḡµν = 0 , (A.4.2)

meaning that the two pieces of variation in (A.4.1a) are orthogonal to each other.

This is just another way of saying that scale and shape are orthogonal “directions” in

the configuration space of metric components. Based on the above decomposition the
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variational derivative with respect to the metric can be decomposed as follows:

δ

δgµν
=

δA

δgµν
δ

δA
+
δḡαβ

δgµν
δ

δḡαβ
= − A

2d
gµν

δ

δA
+A21Tαβ

µν

δ

δḡαβ
(A.4.3a)

= −A
3

2d
ḡµν

δ

δA
+A21Tαβ

µν

δ

δḡαβ
(A.4.3b)

δ

δgµν
=

δA

δgµν

δ

δA
+
δḡαβ
δgµν

δ

δḡαβ
=
A

2d
gµν

δ

δA
+A−21Tαβ

µν

δ

δḡαβ
(A.4.3c)

=
A−1

2d
ḡµν

δ

δA
+A−21Tαβ

µν

δ

δḡαβ
, (A.4.3d)

where we write several forms of equations with and without completely exposing the

shape and scale densities and where 1Tαβ
µν makes the contracted variational derivative

explicitly traceless. The most important equation to keep in mind throughout this work

is (A.4.2).

These are the variational tools for unimodular-conformal formulation. They are

used to re-derive equations of motion and energy-momentum tensor for various theories

in Chapter 3. We can give a small example here to show how can this tool be used to

look at the equations of motion for gravitational actions in a different way.

Let us take an example of the EH theory with a cosmological constant and some

matter described by action Sm,

S =
1

2κ

∫
ddx
√
g(R− 2Λ) + Sm . (A.4.4)

Using (A.4.1b), variation of the EH term with respect to gµν leads to

δSEH =
1

2κ

∫
ddx
√
g

(
Rµν −

1

2
gµνR+ gµνΛ

)
δgµν

=
1

2κ

∫
ddx
√
g

[
A−2

(
Rµν −

1

2
gµνR+ gµνΛ

)
δḡµν

− 2

(
Rµν −

1

2
gµνR+ gµνΛ

)
ḡµνA−3δA

]
, (A.4.5)

up to a boundary term. On the other hand, based on (3.2.2a) the variation induces a

split of the energy-momentum tensor into trace and traceless components because of

(A.4.2). For the same reason, the two terms above become the traceless and trace parts
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of the Einstein tensor. Putting all this information together, we arrive at

RT
µν = κTT

µν , −R+ 4Λ = κT , (A.4.6)

which are just Einstein equations split into traceless and trace parts. The traceless

part has been shown to arise in unimodular gravity [50] by a variation with respect to

the metric with a determinant constrained to be unity. As pointed out in [103], this

constraint is just a particular gauge fixing within the GR and we tend to agree their

claim. What we have in (A.4.6) are the equations of motion for the shape density and

the scale density, respectively. The approach to variation with respect to the scale and

shape can be applied to any theory.

A.5 Constraint analysis

A.5.1 Example: a massive vector field

In this Appendix we briefly introduce what is known as Dirac or Dirac-Bergmann

constraint analysis [43], although it is a collection of results by Rosenfeld, Anderson,

Bergmann and Dirac, see [121] and [136, Appendix C]. The procedure presented here on

an example of a massive vector field (so-called Proca field) theory on a general curved

spacetime. The treatment is reformulated in the unimodular-conformal variables, in-

troduced in section 2.3.

The Lagrangian density for a massive vector field is given by

LA = −1

2

√
g

(
1

2
FµνF

µν +m2AµA
µ

)
, (A.5.1)

where Fµν = ∂µAν − ∂νAµ and m mass parameter of the vector field Aµ. Only in the

special case m = 0 (which describes vacuum electromagnetism) is the theory invari-

ant under gauge transformations Aµ → Aµ + ∂µf , with f and arbitrary function on

spacetime.

Let us first use the 3+1 splitting of spacetime (cf. Appendix A.2) with unimodular-

conformal variables (cf. subsection 2.3.1) to decompose the Lagrangian and expose its

conformal properties. We shall assume that the vector field lives on a curved fixed

spacetime whose Lagrangian is of no interest here and does not interfere with the

derivations. The Lagrangian of a massive vector field is worked out to be

LA = −1

4
N̄a4Fµνa

−4
(
h̄µαh̄νβ + n̄µn̄αn̄ν n̄β − h̄µαn̄ν n̄β − n̄µn̄αh̄νβ

)
Fαβ

− N̄a4

2
m2a−2Aµh

µνAν +
N̄a4

2
m2a−2n̄µn̄νAµAν
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=
1

2
N̄

(
F̄⊥ih̄

ijF̄⊥j −
1

2
Fij h̄

iah̄jbFab −m2a2Aih
ijAj +m2a2A2

⊥

)

=
1

2
N̄

(
F̄⊥ · F̄⊥ −

1

2
F · F−m2a2A ·A +m2a2A2

⊥

)
, (A.5.2)

where F̄⊥ := n̄µFµi. The dot notation designates contraction of all indices with h̄ij

and its inverse. In the dot product of a vector and a 2nd rank tensor it matters if the

vector is on the left or on the right of the tensor. On the left side it is contracted with

the left index of the tensor, and if it is on the right side then with the right index of

the tensor, i.e. N · F := N iFij and F ·N := FijN
j = N jFij = −N jFji. Thus one has

to be careful with the position of indexes and the relative position of the object in this

simplified notation of contraction. Note that Aµ is already conformally invariant, so

Aµ = Āµ and Fµν = F̄µν . These objects are given by

F̄⊥ := F̄⊥ i = n̄µ∂µAi − n̄µ∂iAµ =
1

N̄

(
Ȧi −N jFji − ∂iAt

)
, (A.5.3)

F := Fij = ∂iAj − ∂jAi , (A.5.4)

A = Ai , Ā⊥ := Ā⊥ = n̄µAµ =
1

N̄

(
At −N iAi

)
. (A.5.5)

Note that in (A.5.2) only the last two terms — those with dimensionful coupling con-

stant m — depend on the scale. Therefore these terms break not only gauge but also

conformal symmetry of the Lagrangian.

Conjugate momenta are defined as

Π̄i =
∂LA

∂Ȧi
= h̄ijF̄⊥j ≡ Π̄ =

∂LA

∂Ȧ

⇒ F̄⊥i = h̄ijΠ̄
j ≡ F̄⊥ = h̄ · Π̄ (A.5.6)

⇒ Ȧi = N̄ h̄ijΠ̄
j + ∂iAt +N jFji

≡ Ȧ = N̄ h̄ · Π̄ + ∂At − F ·N , (A.5.7)

Π̄t =
∂LA

∂Ȧt

D
= 0 . (A.5.8)

These canonical pairs form the following equal-time Poisson brackets

{
Aµ(x, t), Π̄ν(y, t)

}
= δνµδ(x,y) , (A.5.9)

where δ(x,y) is the three-dimensional delta distribution. For a general set of canonical
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pairs qA(x, t) and pA(x, t), the Poisson bracket is defined as

{F (x), G(y)} :=

∫
d3z

(
δF (x)

δqA(z)

δG(x)

δpA(z)
− δG(x)

δqA(z)

δF (x)

δpA(z)

)
, (A.5.10)

for two functions F (x), G(x) on phase space and index A designates a phase space

variable, and is assumed to be summed over. In the presently discussed case qA(x, t) =

Aµ(x, t) and pA(x, t) = Πµ(x, t). From now on the time and space dependence shall be

implicitly assumed and only in Poisson brackets will the latter be recovered

Note that Ȧt is missing from the theory, which is why its momentum vanishes —

the corresponding velocity cannot be inverted for. In order to study properties of this

theory within the Hamiltonian formulation, Dirac introduced a “weak equality”, which

in this thesis we denote as “
D
=” and rename it as the “delayed equality”, whose purpose

is to delay setting the expression “strongly” to zero until all Poisson brackets have been

calculated. This prevents inconsistencies in Poisson brackets such as
{

Π̄t, .
}

= {0, .} 6=
0, in cases where such a bracket is indeed not zero under “

D
=” sign. A constraint which

directly follows from the Lagrangian and relates momenta with coordinates is called a

primary constraint. This usually point to an arbitrary degree of freedom, in this case

At, which does not have its own kinetic term and thus no equation of motion. Using

the above definitions the Lagrangian can then be written as

LA =
1

2
N̄

(
Π̄ · Π̄− 1

2
F · F−m2a2A ·A +m2a2Ā2

⊥

)
, (A.5.11)

which is manifestly conformally invariant. The total Hamiltonian is defined via the

Legendre transform,

H =

∫
d3x

(
ȦiΠ̄

i + ȦtΠ̄
t − LA

)
=

∫
d3x

{
N̄

2

[
Π̄ · Π̄ +

1

2
F · F−m2a2A ·A +m2a2Ā2

⊥

]
+ N ·

[
F · Π̄

]

−At∂ · Π̄ + λtΠ
t + ∂ ·

(
AtΠ̄

)}
. (A.5.12)

Now, we have included ȦtΠ̄
t in the Legendre transform, which is not the usual proce-

dure. One usually starts without this term — since the Lagrangian does not depend

on velocity Ȧt — and then defines another Hamiltonian (“primary Hamiltonian”) with

λtΠ̄
t term added, where λt is the Lagrange multiplier. We find such a procedure un-

necessary, because if one starts as we did in the above equation one is lead naturally
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to the conclusion that λt := Ȧt is a Lagrange multiplier. Hence, all information about

the theory is already contained in the theory itself and there is no need to add things

to it. Furthermore, from definition (A.5.7) the term Π̄i∂iAt is partially integrated to

produce the first and the third term (this is a total divergence) in the last line of the

above equation. Now, the primary constraint has to be preserved in time. In order to

simplify showing the point of this discussion, we shall choose N̄ = 1,N = 0 without

harm. So we look for time derivative ˙̄Πi and obtain

Π̇t =
{

Πt, H
}

= − ∂H
∂At

=
(
∂ · Π̄−m2a2At

) D
= 0 , (A.5.13)

where again one demands the “delayed equality”. This expression obviously does not

vanish automatically and therefore represents another constraint,

Gc := ∂ · Π̄−m2a2At
D
= 0 . (A.5.14)

Such constraints — derived from conditions for the time preservation of the primary

constraints — are called secondary constraints. The meaning of constraint (A.5.14) is

recognized in the case of electromagnetism when m = 0: this is the Gauss constraint.

So we see that breaking the conformal and gauge symmetry manifests itself as a source

term in the Maxwell equation for the divergence of the electric field. Now, there is a

way to tell that a theory enjoys some symmetry or if that symmetry is broken. Since

(A.5.14) is a condition that needs to hold at each moment in time, Dirac-Bergmann

procedure requires that one demands its time derivative to vanish as well,

Ġc = {Gc, H} =
{
∂ · Π̄, H

}
−m2a2 {At, H}

= −m
2a2

2
h̄ij
{
∂ · Π̄, AiAj

}
− λt

{
At,Π

t
}

= −m2a2∂iA
i −m2a2λt

D
= 0 ⇒ ∂tAt = −∂iAi . (A.5.15)

We see that by this last equation the Lagrange multiplier is not actually arbitrary but is

determined. Why is this so? Note that both surviving terms in the above calculation are

proportional to mass m. So in the case of electromagnetism Ġc ≡ 0 and Gc := ∂ · Π̄ D
= 0

and there are no more constraints, leaving λt undetermined. The information about

whether or not a Lagrange multiplier is determined is inscribed the the Poisson bracket

of the primary and secondary constraints (in the present case (A.5.8) and (A.5.14),

respectively), {
Π̄t(y),Gc(y)

}
= m2a2δ(x,y) , (A.5.16)
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which vanishes only ifm = 0, as in electromagnetism. In general, for the Poisson bracket

between two constraints φI(x) and φJ(x) we have the following cases, nomenclature

and meaning,

{φI(x), φJ(y)}

{D
= 0 ∨ ≡ 0 ⇒ φI(x), φJ(y) “1st class”⇒ symmetry

D

6= 0 ⇒ φI(x), φJ(y) “2nd class”⇒ broken symmetry

(A.5.17)

Let us explain this. It could happen that the Poisson bracket between φI(x) and

φJ(x) gives a linear combination of already existing constraints, in which case the

Poisson bracket vanishes once “
D
=” is promoted to “=”. Or it could happen that the

bracket vanishes identically (as is the case with (A.5.16) for m = 0). In both of these

cases the involved constraints are called the first-class constraint and they are related to

a symmetry of the theory. In electromagnetism (A.5.16) vanishes, the Gauss constraint

is first-class and the gauge symmetry holds, while At completely disappears from the

theory (one may call this a “true arbitrary variable”). In the second case in (A.5.17)

the Poisson bracket does not vanish even after all delayed equalities are set to strong

equalities; in this case the constraints are called the second-class constraints and are

a signal of a broken symmetry (either a gauge is fixed or a symmetry-breaking term

appears in a symmetric Lagrangian). This is the case with (A.5.16) because m2a2 is

not a constraint — a consequence of the symmetry breaking term m2AµA
µ. In this

case one may call At “an apparent arbitrary variable”, since it only seems arbitrary but

it turns out it can be fixed in terms of other variables. An important consequence of

the appearance of the second-class constraints in a theory is that Poisson brackets have

to be modified in order to accommodate the fact that a variable which was initially

undetermined turns out to be fixed in terms of other variables. The modified brackets

are called Dirac brackets but we postpone their calculation for the next subsection.

Once all Dirac brackets are calculated all second-class constraints can be strongly set

to zero and if one wishes to quantize the theory, then it is the Dirac brackets which are

quantized instead of the Poisson brackets.

A.5.2 Dirac brackets

Since we are dealing in this thesis with theories that have both first- and second-class

constraints the Poisson brackets should be replaced by Dirac brackets in order to make

equations of motion consistent. For a general function F (x) and G(x), and a system

with two second-class constraints the Dirac bracket reads [43]

{F (x), G(y)}D = {F (x), G(y)} −
∫

d3z d3z′ {F (x), φI(z)}MIJ
{
φJ(z′), G(y)

}
,

(A.5.18)
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where the sum is understood as running over the second-class constraints here labelled

by I, J = (1, 2) and MIJ is the inverse matrix to

MIJ =

{φ1(z), φ1(z′)} {φ1(z), φ2(z′)}

{φ2(z), φ1(z′)} {φ2(z), φ2(z′)}

 . (A.5.19)

Harmonic oscillator with higher derivatives. A simple example demonstrating

how Dirac brackets are calculated is met in subsection 4.2. It is at the same time an

explanation of why could those constraints be set to strongly vanish from the start6.

The above matrix and its inverse for constraints φ1 = px−λ and φ1 = pλ derived there

reads

MIJ =

0 −1

1 0

 , MIJ =

 0 1

−1 0

 . (A.5.20)

The Dirac bracket then reads

{F,G}D = {F,G} − {F, px − λ} {pλ, G}+ {G, pλ} {px − λ, F} , (A.5.21)

and it can be seen that only those Dirac brackets in which one of the F and G functions

depends on λ and the other depends on x or pλ is distinct from the corresponding

Poisson bracket. But after setting px = λ and pλ = 0 strongly, no function can depend

on λ so the Dirac bracket is the same as the Poisson bracket. Therefore, including λ and

its conjugate momentum is unnecessary. This is expected because adding a constraint

that simply relabels what is meant by velocity in a higher-derivative theory should not

affect the physics that theory describes.

The second-class constraints in the above example are not related to any broken

symmetry; they are demands put in by hand outside of theory. But more generally,

second-class constraints and Dirac brackets appear in a more fundamental context, such

as broken conformal symmetry or broken gauge invariance.

Massive vector field. In the previous subsection we discussed the example of a

massive vector field which turned out to be a system with second-class constraints. The

following Poisson bracket

{At(x), Ai(y)} (A.5.22)

6This explanation is a simplified version of that in Appendix C of [86].
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is expected to vanish, but At is a function of the momentum Πi if the second-class

constraint given by (A.5.14) is set to zero, which means that the above bracket actually

does not vanish and At is not an independent canonical variable. That is where Dirac

brackets come to help resolve the contradiction. Namely, the matrix inverse to (A.5.19)

for the case of constraints obeying (A.5.16) are

MIJ = − 1

m2a2

 0 1

−1 0

 δ3(x,y) (A.5.23)

and using this result in (A.5.18) with φ1 = Πt and φ2 = Gc, the Dirac bracket version

of (A.5.22) is straightforwardly calculated to be

{At(x), Ai(y)}D = − 1

m2a2
∂iδ

3(x,y) . (A.5.24)
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