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Zusammenfassung 
 
Die altersbedingte Makuladegeneration (AMD) ist eine komplex genetische und 

multifaktorielle degenerative Erkrankung der zentralen Netzhaut, die in der Spätphase zu einem 

dramatischen Sehverlust führt. Bei allen bis heute untersuchten erblichen 

Netzhautdegenerationen, einschließlich der AMD, liegt dem Erkrankungsverlauf eine 

schädliche chronische Aktivierung des angeborenen Immunsystems zugrunde. Vor allem 

residente Mikrogliazellen, die Gewebsmakrophagen der Netzhaut, spielen eine wichtige Rolle 

bei der Gewebsintegrität. Durch ihre proinflammatorischen und neurotoxischen Eigenschaften 

tragen chronisch aktivierte Mikroglia maßgeblich zum Fortschreiten der retinalen Degeneration 

bei und stellen somit ein Ziel für therapeutische Ansätze dar. Immunmodulatorische, 

mikrogliagerichtete Therapieansätze zielen dabei darauf ab, die neurotoxischen Eigenschaften 

zu unterdrücken bei gleichzeitigem Erhalt der homöostatischen Funktionen. Eine Zielstruktur 

für einen solchen mikrogliagerichteten Therapieansatz stellt das Translokatorprotein (18 kDa) 

(TSPO) dar. TSPO ist ein mitochondriales Transmembranprotein, das von reaktiven 

Mikrogliazellen exprimiert wird und als Biomarker für Gliosen dient. In verschiedenen 

Modellen neurodegenerativer Erkrankungen wie Alzheimer, Parkinson, multiple Sklerose und 

Netzhautdegenerationen zeigte die Behandlung mit TSPO-Liganden entzündungshemmende 

und neuroprotektive Effekte. Die zugrunde liegenden molekularen Mechanismen der TSPO-

vermittelten Immunmodulation sowie seine biologischen Funktionen sind jedoch noch gänzlich 

unbekannt. 

 
Die in dieser Arbeit vorgestellten Ergebnisse im laserinduzierten Mausmodell der choroidalen 

Neovaskularisierung (CNV) als etabliertes Modell für die neovaskuläre Form der AMD, zeigen, 

dass sowohl die Behandlung mit dem TSPO-Ligand XBD173 als auch die Deletion von TSPO 

in residenten Mikrogliazellen durch die Erzeugung von Tamoxifen-induzierbaren 

Cx3cr1CreERT2:TSPOfl/fl Mäusen, eine hemmende Wirkung hinsichtlich der Mikrogliareaktivität 

als auch der CNV haben. Durch die Analyse von verschiedenen NADPH-Oxidase (NOX)-

defizienten Mäusen, konnte TSPO als Schlüsselprotein der NOX1-abhängigen neurotoxischen 

ROS Produktion in der Netzhaut identifiziert werden. Dabei reguliert TSPO den Einstrom von 

Ca2+-Ionen aus dem extrazellulären Milieu in das Cytosol, welcher nicht nur für die NOX1 

Aktivierung, sondern auch für die NOX1 Expression in Mikrogliazellen notwendig ist. 

Ebenfalls zeigen wir die Neurotoxizität der NOX1-abhängigen ROS auf Photorezeptorzellen 
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und damit übereinstimmend eine positive Auswirkung einer NOX1-Defizienz auf den 

Krankheitsverlauf im laserinduzierten Mausmodell der CNV. 

 
Zusammenfassend zeigt diese Arbeit eine distinkte Rolle für TSPO in retinalen Phagozyten als 

regulatorisches Schlüsselprotein auf, dass die Funktionen der Mikrogliazellen sowohl durch 

NOX1-abhängige als auch -unabhängige Mechanismen reguliert und somit TSPO als 

Zielstruktur zur immunmodulatorischen und antioxidativen Therapie für AMD hervorhebt. 
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Summary 
 

Aberrant immune responses including reactive phagocytes are implicated in the etiology of age-

related macular degeneration (AMD), a major cause of blindness in the elderly. Microglia, the 

resident phagocytes of the retina, play an active role in driving disease onset and progression 

and thus represent a broad target for therapy. Pharmacological approaches of microglia-related 

immunomodulation aim at dampening the harmful microglia response while preserving their 

homeostatic functions. The translocator protein (18kDa) (TSPO) is described as a biomarker 

for reactive gliosis and specific TSPO ligands have been shown to potently modulate microglia-

related inflammatory responses and improved disease outcome in various preclinical model 

systems including Alzheimer’s, Parkinson’s, multiple sclerosis and degenerative diseases of the 

retina. However, the underlying molecular mechanisms of TSPO-mediated immunomodulation 

and its biological functions in health and disease remain elusive. 

 
In this study, we report that tamoxifen-induced conditional deletion of TSPO in resident 

microglia using Cx3cr1CreERT2:TSPOfl/fl mice or targeting the protein with the synthetic ligand 

XBD173 prevents reactivity of retinal phagocytes in the laser-induced mouse model of 

neovascular AMD. Concomitantly, the subsequent neoangiogenesis and vascular leakage are 

also prevented by microglia-specific TSPO knockout or XBD173 treatment.  

Using different NADPH oxidase (NOX)-deficient mice, we show for the first time that TSPO 

is a key regulator of NOX1-dependent neurotoxic ROS production in the retina. Here, TSPO 

regulates the Ca2+ influx from the extracellular milieu into the cytosol that is required for 

stimulation of NOX1 activity and expression in microglia. We also demonstrate that NOX1-

derived ROS induce photoreceptor cell death in a paracrine manner and accordingly, NOX1 

knockout mice show the same beneficial effects on CNV and wound healing as XBD173 

treatment or microglia-specific TSPO knockout. 

 
Taken together, we showed that TSPO acts as a regulatory node and regulates microglia 

functions through both NOX1-dependent and independent mechanisms, defining a distinct role 

for TSPO in retinal phagocyte reactivity and highlights the protein as a drug target for 

immunomodulatory and antioxidant therapies for AMD.   
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1.  Introduction  
 
1.1  The structure and function of the mammalian retina 
 
The eye is one of our most important sensory organs responsible for one of the five senses – sight– 

which enables us to adapt to our environment. Its function is to receive and focus incoming light 

and transduce it into nerve signals that are sent to the brain for processing. The visual system 

responds to a narrow spectrum of electromagnetic rays at wavelengths ranging from 400-750 nm 

also referred to as visible light (Eysel, 1998). Initially, light enters through the transparent cornea 

and passes through the aqueous humor and the pupil, which will then contract or dilate to control 

the amount of light passing through the lens and onward towards the retina. Both the cornea and 

lens are important for focusing the incoming light onto the central area of the retina, the macula. 

Within the macula lies the fovea centralis which represents the center of highest visual acuity 

(Chader and Taylor, 2013).  

 

 
Figure 1: Anatomy of the eye and cross-section of the human retina. a Schematic anatomy of the eye. The retina 
lines the back of the eye and lies on top of the retinal pigment epithelium (RPE). b Schematic overview of the retinal 
cross-section and the organization of the retinal cells. The retina comprises three distinct cell body layers (nuclear 
layers) that are separated by synaptic layers (plexiform layers). OS, outer segment; IS, inner segment; ONL, outer 
nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell 
layer; NFL, nerve fiber layer. The outer retina contains the light-sensitive photoreceptor cells: rods (R) and cones (C), 
whereas the inner retina comprises the bipolar cells (B), Müller glial cells (M), amacrine cells (A), horizontal cells (H) 
and ganglion cells (G). Microglia (MG) are located in the plexiform layers. c A H&E-stained cross-section of the 
human retina. Adapted from Sung and Chuang, 2010. 

 
The retina is one of the most important parts of the eye as it initiates basic visual processing before 

the brain receives the information. It converts the light received into chemical and electrical signals 

which are then transferred to the brain by the optic nerve. Together with the brain and spinal cord, 

the retina is a part of the central nervous system (CNS) as it derives from the embryonic 
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diencephalon (Varga et al., 1999). The retina lines the back of the eye adjacent on top of the retinal 

pigment epithelium (RPE) with a thickness ranging up to 300 µm (Figure 1a). The complexity of 

the retina is represented by its unique cellular structure bearing more than 55 different highly 

specialized cell types (Masland, 2001). It is divided into three cellular layers that are separated by 

synaptic layers. Because of the inverse structure of the retina, incoming light has to pass through 

all retinal layers in order to stimulate the light-sensitive photoreceptors (Figure 1b, c). In general, 

we can distinguish between two types of photoreceptors: rods and cones. Both types differ in their 

sensitivity to specific wavelengths of light, with rods being responsible for dim-light and night 

vision (scotopic vision) and cones for bright-light and color vision (photopic vision) (Baylor et al., 

1979; Brown and Wald, 1964). The human retina contains approximately 130 million 

photoreceptors of which 95 % represent rods (Sung and Chuang, 2010). The rod population thus 

exceeds the cone population by 20-fold over the entire retina. Worthy of note is the fact that rods 

are predominantly found in peripheral areas of the retina but are strikingly absent in the fovea 

centralis, where cones are enriched. In this region the other layers of the retina are displaced 

concentrically. In contrast to the peripheral retina where one bipolar cell receives stimuli from up 

to 50-100 rods, the relationship of cones to bipolar cells to ganglion cells within the fovea is 1:1:1, 

thus representing the locus of highest visual acuity within the macula (Alters, 2000). 

 
The photoreceptor nuclei constitute the tightly packed outer nuclear layer (ONL) and are connected 

to their outer segments (OS) by the connecting cilium (Horst et al., 1990). The photoreceptor OS 

are enriched with light-sensitive G-protein-coupled receptors, called opsins. Visual perception 

begins with the absorption of a photon by an opsin pigment, inducing the isomerization of its 11-

cis-retinal chromophore to an all-trans configuration that triggers the phototransduction cascade 

including hyperpolarization of photoreceptor cell membranes (Radu et al., 2008). The signal is then 

forwarded to the inner retinal cells such as bipolar cells via synapses in the outer plexiform layer 

(OPL). The cell bodies of the inner retinal cells constitute the inner nuclear layer (INL). Signals 

from these cells are further relayed to the ganglion cells in the ganglion cell layer (GCL) via 

synapses in the inner plexiform layer (IPL). Two other types of neurons present in the retina are 

horizontal and amacrine cells. Their cell bodies reside in the INL and are primarily responsible for 

lateral interactions within the retina. The synaptic transmission of photoreceptors and bipolar cells 

is modulated by horizontal cells whereas amacrine cells regulate transmission to ganglion cells 

(Purves et al., 2001). The axons of the ganglion cells converge at the exit of the optic nerve from 

the eyeball, forming the nerve fiber layer (NFL) that projects into the brain. This exit region is 

devoid of photoreceptor cells resulting in the so-called blind spot of the retina. Although there is 

no retinal input in the “blind spot”, it is filled with the same visual attributes as its surround 
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(Komatsu, 2006). In addition to the neuronal cell types, three different types of glia cells are found 

in the mammalian retina namely astroglia, microglia and Müller glia. Müller cells are the principal 

glia cells in the retina that serve as support structures. They span radially throughout the entire 

retina thus connecting the inner with the outer retinal surface. Their terminations form the inner 

and outer limiting membrane, while their cell bodies are located in the INL. Müller cells contribute 

to the regulation of the retinal microenvironment and have been described to function as optic fibers 

conducting light from the retinal surface to the photoreceptors (Franze et al., 2007). Astroglia cells 

are only found in vascular zones and play a role in constructing the blood-retina barrier (BRB) 

(Castellano et al., 2012). Microglia cells are the immune cells of the CNS, including the retina 

which serve as sensors and play important roles in the innate immune system (Karlstetter et al., 

2015; Streit, 2002). 

 
Since the retina has a high metabolic turn over, it has to be supplied with nutrients. Neurons within 

the inner retina are nourished by blood vessels originating from the central retinal artery that span 

through the INL and GCL, whereas photoreceptor cells depend on the choroidal vasculature for 

their supply of nutrients (Nau and Blaner, 2012). However, the choroidal vasculature and the 

photoreceptors are separated by the RPE that forms a component of the BRB. Thus, it controls the 

flow of nutrients from the choroidal vascular system to the retina. The RPE consists of a single 

layer of epithelial cells that are highly polarized and play an important role in vitamin A metabolism 

and maintenance of the retina (Raymond and Jackson, 1995). RPE cells continuously phagocytose 

the shed discs of photoreceptor outer segments, and recycle the visual pigment (Bok, 1985; Clark, 

1986).  

 
Despite the overall consistency of the basic organization of the retina across vertebrates, there are 

certain distinctions to be considered between humans and mice. In the murine retina, only 3 % of 

the photoreceptors are cones thus mice predominantly rely on rod-mediated scotopic vision 

(Dawson and Lavail, 1979). Moreover, while humans are physiologically trichromats, whose cones 

are separated into three types depending on the expression of different opsins that make the cells 

either sensitive to short- (S), middle- (M), or long- (L)-wavelength light (Nathans et al., 1986), 

mice are dichromats expressing only S and M-opsin variants (Jacobs et al., 1991). Lastly, unlike 

their human counterparts, the murine retina does not have a macula or fovea. 
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1.2   Age-related macular degeneration (AMD) 
 

1.2.1  Epidemiology and pathophysiology of AMD 
 

Age-related macular degeneration (AMD) is a heterogeneous, complex and progressive chronic 

disease of the central retina that leads to severe vision loss among the elderly in the industrialized 

countries (Figure 2). In general, AMD affects 10 % of people older than 65 years with the highest 

prevalence occurring after the age of 80 (la Cour et al., 2002; Swaroop et al., 2009). Globally, 

AMD ranks third among the causes of legally blindness, turning into a major medical and 

socioeconomic challenge since the number of patients is expected to reach 196 million worldwide 

by 2020 and increase to 288 million by 2040 (Pascolini and Mariotti, 2012; Wong et al., 2014).  

 

 
Figure 2: Symptoms of AMD. Early signs of vision loss include slight central distorted vision (metamorphopsia) and 
this area grows larger as the disease progresses, resulting in blind spots and thus in difficulties in seeing colors and 
fine details until complete central vision loss. Images from https://www.pro-retina.de/simulation/makuladegeneration.  

 
Clinically, early stages of AMD are characterized by pigmentary changes in the macula and the 

accumulation of insoluble extracellular material, called drusen, at the interface between RPE and 

Bruch’s membrane (BM) (Figure 3) (Fritsche et al., 2014). Drusen deposits contain proteins, lipids, 

nonfibrillar amyloid oligomers, complement factors and other cellular components and vary in 

shape, size and distribution (Johnson et al., 2001; Mullins et al., 2000). Hard drusen appear as 

discrete whitish yellow spots and are commonly found in the population, whereas the presence of 

larger and less distinct soft drusen is age-related and associated with a higher risk for development 

of advanced AMD (Cohen et al., 2007; Klein et al., 1992). The appearance of drusen is a hallmark 

and the earliest visible clinical sign of AMD, which is often found with or proceeded by elastin and 

collagen degeneration within the BM and its thickening and calcification (Green et al., 1985). 

Although early AMD is usually asymptomatic, these changes can aggravate and may cause a 

gradual decline in visual acuity over years (Fritsche et al., 2014).  

Late-stage or advanced AMD can manifest either as geographic atrophy (GA) (dry form) or as the 

wet form characterized by choroidal neovascularization (CNV) (Figure 3). GA is the most common 
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form, comprising about 90 % of all diagnosed cases and is defined by the presence of well-

demarcated atrophic lesions due to loss of RPE cells, followed by degeneration of adjacent 

photoreceptors and choriocapillaris (Figure 3) (McLeod et al., 2009). Disease progression of GA 

is slow, and the visual deficits highly depend on the extent of foveal involvement (Danis et al., 

2015). Wet AMD is the less common (10 %) but more severe form as vision loss can occur very 

rapidly. The hallmark of wet AMD is the ingrowth of new blood vessels, known as CNV, from the 

choriocapillaris through BM into the sub-RPE space. These new vessels, unlike normal ones, are 

very fragile and leaky, resulting in subretinal fluid, sub-RPE hemorrhage and scarring within the 

macula (Figure 3) (Colijn et al., 2017; McLeod et al., 2009). Although dry and wet AMD are 

clinically very different, both forms are not mutually exclusive and are likely to be bilateral 

(Joachim et al., 2017).  

 

 
Figure 3: Clinical stages and signs of AMD. a Fundus photographs of the right eye from healthy patients and patients 
with early or late AMD. b Schematic illustrations of photoreceptor-RPE-choroid region depicting features of AMD. 
Early AMD shows yellow extracellular drusen deposits surrounding macular area (M) that cause a slight RPE 
detachment. The two forms of late AMD are not mutually exclusive and differ in their clinical appearance. Geographic 
atrophy is characterized by large drusen and confluent regions of RPE and photoreceptor degeneration centered on the 
macula. Neovascular (wet) AMD is featured by choroidal neovascularization, resulting in vascular leakage and macular 
edema. BM, Bruch’s membrane; M, macula; ONH, optic nerve head; PR, photoreceptors; RPE, retinal pigment 
epithelium; VEGF, vascular endothelial growth factor. Fundus pictures adapted from (Swaroop et al., 2009) and 
schematic illustrations adapted from https://www.webrn-maculardegeneration.com/bruchs-membrane.html. 



Introduction 

6 
 

 
Angiogenic growth factors like vascular endothelial growth factor A (VEGF-A) promote the 

formation of abnormal leaky blood vessels (Witmer, 2003) and the treatment of wet AMD currently 

relies on intravitreal injections of anti-VEGF inhibitors (Ba et al., 2015). However, these anti-

VEGF therapies have significant limitations such as the burden of frequent intravitreal injections 

and resistance to treatment (Yang et al., 2016). In contrast, dry AMD has no approved treatment 

so far and basically depends on documentation and surveillance of changes in the central visual 

field. Nevertheless, several promising therapeutic approaches for dry AMD are in progress such as 

the concept of targeting inflammasomes (Gao et al., 2015), complement factors (Geerlings et al., 

2017; Rhoades et al., 2015), modulators of the visual cycle (Kubota et al., 2012) or stem-cell 

therapy (Schwartz et al., 2015). 

 

1.2.2  Risk factors associated with AMD 
 
The etiology of AMD is still not fully understood due to complex interactions of environmental 

and genetic factors that influence the susceptibility to risk (Chakravarthy et al., 2010). Age is one 

of the strongest predictors of AMD as the risk of acquiring the disease is threefold higher in patients 

older than 75 compared to patients at the age of 65 (Chakravarthy et al., 2010; Klein et al., 1992). 

The retina is among the most metabolically active tissues of the body, which requires excessive 

amounts of adenosine triphosphate (ATP) to support its functions (Hurley et al., 2015; Sung and 

Chuang, 2010; Winkler, 1981). Due to the high metabolism and oxygen consumption rates, the 

RPE is constantly exposed to insults and damage as it is responsible for the rapid clearance of 

metabolic by-products of the retinal metabolism and heterophagy of the photoreceptor outer 

segments (POS) (Winkler et al., 1999). Advanced age is accompanied with increased oxidative 

stress and a decline in function of photoreceptors and RPE cells resulting in increased vulnerability 

of the retina and RPE to injury (Beatty et al., 2000; Winkler et al., 1999).  

Besides aging, smoking is one major modifiable risk factor of AMD that is known to increase 

oxidative damage and reduce the antioxidant defense (Espinosa-Heidmann et al., 2006; Khan et 

al., 2006). Other controllable risk factors, such as high fat diet and obesity, are associated with gut 

dysbiosis that has been shown to exacerbate CNV (Andriessen et al., 2016; Parekh et al., 2009). In 

addition to the impact of the individual lifestyle on the prevalence of AMD, gender and ethnicity 

play also an important role. Women are 1.3 times at greater risk for developing AMD with 

Caucasians having the greatest disease burden (Rudnicka et al., 2015; Wong et al., 2014). 
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Heritability has been shown to have a major role in determining AMD risk, as there is an increased 

susceptibility in individuals with a positive family history of AMD (Maller et al., 2006; Priya et 

al., 2012). There are a plethora of genome-wide association studies (GEWAS) elucidating the 

genetic architecture of AMD. To date, 52 common and rare genetic variants across 34 genetic loci 

have been linked to AMD (DeAngelis et al., 2017; Fritsche et al., 2016). Many of these culprit 

genes are involved in retinal homeostasis, inflammatory processes and code for various 

components of the alternative complement pathway (Francis et al., 2009). Two major loci, 

harboring coding and non-coding variants at chromosome 10q in the two nearby genes, high-

temperature requirement A serine peptidase 1 (HTRAl) and age-related maculopathy susceptibility 

2 (ARMS2) and at chromosome 1q in the complement factor H (CFH) gene, have demonstrated 

the strongest replicable associations with AMD (Fritsche et al., 2008; Klein et al., 2005; Rivera et 

al., 2005).  

The complement system, as a part of the innate immune system, consists of a series of soluble 

proteins that interact in a highly regulated manner to eliminate foreign pathogens. Although the 

three complement pathways, classical, alternative and mannose-binding lectin pathway, differ in 

their initiation, all result in complement activation and the formation of the membrane attack 

complex (MAC). Despite these complement factors circulate through the body, the retina also 

expresses a variety of these factors and receptors that have also been found in drusen of AMD 

patients (Anderson et al., 2010; Crabb et al., 2002; Mullins et al., 2000). There is now ample 

evidence that AMD is connected to a dysregulation of the innate immune system, mainly involving 

the complement system and reactive mononuclear phagocytes (MNPs), including microglia 

(Fritsche et al., 2014; Gupta et al., 2003). 

 
 
1.3   Microglia – immune regulators of the retina 

1.3.1 Origin and maintenance of microglia 
 
Microglia represent the primary resident immune cell population of the CNS, including the retina, 

where they constitute 5-12 % of all CNS cells. Beside their traditional role as representatives of the 

innate immune system, microglia play pivotal roles during development and proper functioning of 

the CNS (Kettenmann et al., 2011; Streit, 2002). Initially described by Pío del Río Hortega in 1919 

as distinct cells with small cell bodies and long cellular processes within the brain parenchyma, 

this cell type was termed microglia based on their morphology. He was the first to provide evidence 

of their mesodermal origin, their surveillance function and phagocytic capacity as mobile cells 

during pathology (Sierra et al., 2016). The origin of microglia in the CNS has been discussed for 
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many years but recent studies based on fate mapping confirmed that they derive from primitive 

hematopoietic progenitors from the yolk sac (Figure 4a) (Kierdorf et al., 2013; Perdiguero et al., 

2015). These progenitors colonize the CNS from embryonic day (E) 8.5-9 before the blood-brain 

barrier (BBB) is established at E13.5 (Tay et al., 2017) and represent a self-maintaining and long-

lived cell population that persists for months or even the entire life span of the organism (Figure 

4b) (Ajami et al., 2007; Lawson et al., 1992). Microglia development highly depends on colony-

stimulating factor 1 receptor (CSF1R) signaling but PU box binding 1 (PU.1)- and interferon 

regulatory factor 8 (IRF8)-dependent pathways are also essential, as either blockage of CSF1R 

(Elmore et al., 2014) or deficiency in the factors PU.1 (Mezey et al., 2000) and IRF8 (Kierdorf et 

al., 2013) resulted in microglia depletion in the CNS (Figure 4b). 

 

 

 
Figure 4: The origin and cell lineage of microglia. a Microglia originate from primitive erythromyeloid progenitors 
in the yolk sac (embryonic hematopoiesis, indicated in orange) distinct from the definitive hematopoiesis (indicated in 
green) from which the majority of macrophages are derived. b Microglia originate from PU.1-dependent precursors in 
the yolk sac that proliferate and invade the neuroectoderm-derived developing CNS, as indicated by an increase in the 
markers CX3CR1 and Iba1. Adapted from Salter and Beggs, 2014. 

 
The idea of microglia having self-renewal ability was challenged by a study showing that latent 

Nestin+ non-microglial precursors in the brain can differentiate into microglia and repopulate the 

brain after pharmacological ablation of microglia (Elmore et al., 2014). However, this concept was 

recently shattered by a study from Huang et al., demonstrating that all repopulated microglia were 

solely derived from few surviving microglia after acute depletion (Huang et al., 2018b). 

Interestingly, the same group could show that retinal microglia are also not derived from Nestin+ 

non-microglial precursors but rather have a dual extra-retinal origin (Huang et al., 2018a). The 

majority (85 %) of new microglia derive from residual microglia in the optic nerve, which 

repopulate the retina along the center-to-periphery axis, whereas the periphery-emerging less 

ramified microglia derive from macrophages in the ciliary body/iris (Huang et al., 2018a). 
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1.3.2  Microglia in the retina: Roles in development and homeostasis  

 
Microglia fulfill significant functions in the retina across different stages of life (Figure 5). During 

development, microglia are present in the mouse retina around E11.5 and are thought to invade by 

either crossing the vitreal surface or by migrating from peripheral non-neural ciliary regions 

(Santos et al., 2008). Microglia entry into the retina coincides spatiotemporally with events of 

programmed cell death (PCD), which eliminates the superfluous number of neurons that are 

generated during development, such as retinal ganglion cells (RGC) (Bodeutsch and Thanos, 2000; 

Marín-Teva et al., 2004). As phagocytic cells, microglia migrate to different regions in the retina 

and engulf dead neurons, enabling a clean removal without inducing inflammation and tissue 

necrosis (Ravichandran, 2003). Besides their clearance function, microglia can actively promote 

PCD of developing neurons (Frade and Barde, 1998; Marín-Teva et al., 2004), as the depletion of 

microglia with clodronate liposomes decreased developmental apoptosis (Marín-Teva et al., 2004). 

Not only do microglia play a role in shaping neuronal development and populations in the retina 

but also in sculpting neuronal circuits by a process called “synaptic pruning” (Katz and Shatz, 

1996; Schafer et al., 2012). In the retina, microglia eliminate excessive synaptic connections from 

the RGCs into the dorsal lateral geniculate nucleus of the thalamus, in an activity- and complement-

dependent manner (Schafer et al., 2012). Notably, the complement factors C1q and C3 

differentially tag RGC synapses based on their activity, promoting their recognition by microglia 

via complement receptor C3aR  and subsequent elimination by phagocytosis (Schafer et al., 2012). 

During development of the retinal vasculature, microglia have been found in close proximity with 

endothelial tip-cells at the vascular front and are thought to play supportive and guidance roles 

during vasculogenesis (Checchin et al., 2006; Fantin et al., 2010). These roles have been 

corroborated by studies showing that microglia depletion reduces intraretinal vessel growth and 

density, while microglia replenishment by intravitreal injection restored the vessel pattern 

(Checchin et al., 2006; Kubota et al., 2009; Ritter et al., 2006). Interestingly, a two-way 

communication between microglia and endothelial cells via secreted soluble factors have been 

identified to shape vascular growth and branching (Rymo et al., 2011) by either promoting (Chen 

et al., 2017) or limiting vessel sprouting (Stefater et al., 2011).  

Taken together, microglia colonization and the absolute number are spatiotemporally coordinated 

with key events of retinal development. Consistent with this idea, localization and morphology of 

developmental microglia is dissimilar to those found in the mature retina. At birth, amoeboid 

microglia are predominantly found at the basal side of the retina but become progressively ramified 

as the retina matures (Li et al., 2019). 
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Figure 5: Diverse roles of microglia in the retina. Yellow and red boxes show schematic representation of microglia 
roles in the retina during developmental stages and general homeostatic and immune-related functions, respectively. 
RGC, retinal ganglion cells. Modified from Casano and Peri, 2015. 

 
In the adult retina, microglia form a network of non-overlapping cells that are distributed 

throughout the plexiform layers (Figure 6a). Under homeostatic conditions, microglia have a 

ramified morphology with small somata and highly dynamic and long motile cellular protrusions 

that are continuously surveying the integrity of the surrounding environment (Figure 6b) (Hume et 

al., 1983; Karlstetter et al., 2015; Langmann, 2007; Nimmerjahn et al., 2005). Beyond acting as 

immune sentinels, microglia are necessary for maintaining neuronal activity, synaptic function and 

plasticity in the mature retina, as prolonged microglia depletion results in synaptic degeneration 

that leads to deficits in visual perception (Figure 5) (Wang et al., 2016).  

In the healthy retina, a continuous bi-directional crosstalk between microglia and neurons is 

required to limit microglia activation and to maintain retinal homeostasis (Marinelli et al., 2019; 

Szepesi et al., 2018). Therefore, microglia express a large variety of different receptors, whose 

activation modulates microglia sensing and housekeeping functions. The CD200/CD200R axis, 

together with CX3CL1/CX3CR1, are among the most studied signaling pathways in the context of 

microglia regulation (Broderick et al., 2002; Cardona et al., 2006; Liang et al., 2009; Manich et al., 

2019). Retinal neurons express the transmembrane glycoprotein CD200 and the chemokine 

CX3CL1 (fractalkine) and binding to their corresponding receptors CD200R and CX3CR1, 

expressed on microglia, regulates immune vigilance by controlling key microglial functions such 

as cytokine production, motility and phagocytosis (Cardona et al., 2006; Carter and Dick, 2009; 

Hernangómez et al., 2012; Hoek et al., 2000; Liang et al., 2009). During pathological conditions, 

these complex cell interactions fail and cause an activated microglia immune response that drives 

retinal degeneration. 
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Figure 6: Localization and morphology of microglia in the mature retina. a Immunohistochemical analysis of 
Iba1+ microglia in retinal cross sections shows the distribution of ramified cells throughout the plexiform layers (OPL, 
IPL) of the healthy retina. Using their long cellular protrusions (white arrowheads), microglia constantly screen their 
microenvironment and crosstalk with other retinal neurons. Nuclei were counterstained with DAPI. Scale bar: 50 µm. 
b Iba1-stained retinal flat mount shows a highly ordered network of microglia in the OPL of the retina. This view 
allows the detailed characterization of the microglia phenotype including analysis of cell density, ramification and 
relative position. Scale bar: 50 µm. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; 
IPL, inner plexiform layer. Modified from Karlstetter et al., 2015. 

 
 

1.3.3 Microglia in the diseased retina: Key players in neuroinflammation  
 

A tightly controlled immune system has evolved in the retina to protect it from external and internal 

noxious insults. Apart from the immune privileged status, mediated by an intact BRB and an 

immunosuppressive microenvironment, the retina is protected by its own specialized innate 

immune defense composed of the complement system and microglia (Chen et al., 2019). In order 

to mediate the host defense, microglia express dedicated pattern recognition receptors (PRRs), such 

as Toll-like receptors (TLRs), that sense and recognize pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs) (Hickman et al., 2013). In addition 

to PRRs, microglia express various purinergic receptors that are activated by nucleotides secreted 

by damaged neurons (Burnstock et al., 2011; Calovi et al., 2019; Davalos et al., 2005). Once 

microglia detect danger signals, they convert from a ramified homeostatic cell into an activated 

amoeboid-shaped phagocyte and migrate towards the site of damage, e.g. to the degenerating ONL 

and subretinal space (Figure 7) (Karlstetter et al., 2015; Karperien et al., 2013). Simultaneously, 

microglia not only enhance their phagocytic capacity to eliminate cellular debris and dead neurons, 

but also release a variety of pro-inflammatory cytokines and chemokines (Jurgens and Johnson, 

2012; Karlstetter et al., 2015; Wynn and Vannella, 2016). Among them, the chemokine (C-C motif) 
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ligand 2 (CCL2), plays a crucial role during microglia activation and inflammation, as it attracts 

other mononuclear phagocytes to the lesion site, that are activated in a paracrine manner by released 

cytokines like interleukin-6 (IL-6) and IL-1b (Ferreira et al., 2012; Hinojosa et al., 2011; Krady et 

al., 2008). In addition, microglial reactive oxygen species (ROS) production is considered a major 

contributor to neuronal damage and death (Block and Hong, 2007; Gao et al., 2012; Haslund-

Vinding et al., 2017). Under physiological conditions, ROS are generated in a regulated manner by 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) or by mitochondria as by-

products during oxidative phosphorylation. This regulated ROS generation contributes to tissue 

homeostasis as it plays important roles in host defense, oxygen sensing and signal transduction 

(Geiszt and Leto, 2004; Holmstroem and Finkel, 2014; Lambeth, 2004; Nayernia et al., 2014). 

However, when exaggerated ROS production overwhelms the cellular antioxidant defense 

capacity, oxidative stress occurs that results in cellular toxicity (Halliwell, 2006; Haslund-Vinding 

et al., 2017).  

Microglia, in collaboration with Müller cells mediate and shape the magnitude of retinal immune 

response through reciprocal interactions. Here, microglia-derived neurotrophic factors directly 

trigger or inhibit the release of secondary trophic factors from Müller cells either to support 

photoreceptor survival or mediate apoptosis (Harada et al., 2003; 2000; Shen et al., 2013; Wang 

and Wong, 2014; Wenzel et al., 2005). Conversely, activated Müller cells secrete the diazepam 

binding inhibitor (DBI) protein, a ligand for the translocator protein (18 kDa) (TSPO), expressed 

in activated microglia, to limit microglia reactivity (Wang et al., 2014b). 

While a short period of controlled microglia activation is considered to be neuroprotective (Shastri 

et al., 2013) excessive or chronic activation lead to degeneration of healthy neuronal tissue and 

irreversible cell damage (Karlstetter et al., 2010).  
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Figure 7: Microglia reactivity in a moue model of retinal degeneration. a Schematic 3D skeleton analysis of 
microglia in Iba1-stained brain sections show the progressive morphological changes in microglia after activation. 
b-g Immunohistochemical analysis of Iba1+ microglia in retinal cross-sections (b, c) and flat-mounts (d-g) in retinas 
from healthy and degenerated retina. In the healthy retina, microglia are located in the IPL, OPL and GCL, where they 
form a network of evenly distributed non-overlapping cells and exhibit a surveillant ramified phenotype. In retinal 
degeneration microglia transform into an amoeboid-shaped full blown phagocyte, that is either completely devoid of 
processes or has very few unbranched processes, and start to migrate towards the degenerating ONL and the subretinal 
space where they are not only involved in the phagocytic clearance of cellular corpses and debris, but also actively 
contribute to the degenerative processes. Scale bar: 50 µm. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, 
inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; SRS, subretinal space. Panel a modified from 
Martyanova et al., 2015. 
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1.3.3.1 Microglia reactivity in AMD 
 
Retinal microglia and recruited macrophages play an important role in the maintenance of tissue 

homeostasis and the clearance of debris from the subretinal space. However, age is one of the main 

factors that induce changes in the immune system leading to increased tissue stress and damage 

(Nikolich-Žugich, 2018). Indeed, aged microglia are primed and show an exaggerated response to 

homeostatic disturbances compared to naïve microglia, favoring age-related para-inflammation 

(Buchanan et al., 2008; Perry and Holmes, 2014; Sierra et al., 2007; Xu et al., 2009). While the 

etiology of AMD is still not well understood, GEWAS and experimental animal models have 

unequivocally shown dysregulated innate immune responses in AMD. Retinal transcriptome 

analysis from AMD and healthy human donor eyes revealed the involvement of inflammatory 

genes along with increased levels of chemokines and complement factors in all AMD phenotypes 

(Newman et al., 2012). In line with this, bloated phagocytic microglia have been shown to 

accumulate in the subretinal space and are closely associated with drusen and CNV in AMD 

patients (Figure 8) (Combadière et al., 2007; Gupta et al., 2003). It is suggested that the widespread 

accumulation of drusen represents a potent pro-inflammatory stimulus and attracts macrophages 

and microglia (Buschini et al., 2011; Doyle et al., 2012; Killingsworth et al., 1990). Apart from 

microglia accumulation within the subretinal space, retinas from AMD patients with GA also show 

microglia reactivity in the ONL, where they phagocytose apoptotic photoreceptors (Gupta et al., 

2003). However, activated microglia and other mononuclear phagocytes can also execute 

photoreceptor death by phagocytosing stressed but living photoreceptors in their vicinity (Zhao et 

al., 2015). This indicates that microglia reactivity is a driving force in photoreceptor demise and 

disease progression and cannot be simply regarded as bystander.  
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Figure 8: Schematic representation of microglial activity in AMD. In the healthy retina, microglia reside in the 
plexiform layers where they continuously scan their environment and phagocytose cell debris. Early signs of AMD 
including drusen formation or RPE dysfunction rapidly alert microglia, which transform into amoeboid phagocytes 
and migrate to the subretinal space in an attempt to restore homeostasis. In both types of late AMD, geographic atrophy 
and choroidal neovascularization, chronically activated microglia contribute to tissue damage and exacerbate disease 
progression. BM, Bruch’s membrane; RPE, retinal pigment epithelium; OS, outer segments; IS, inner segments; ONL, 
outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion 
cell layer; NFL, nerve fiber layer. Figure modified from Karlstetter et al., 2015. 

 

1.3.4  Microglia as targets for therapy 
 
Microglia reactivity is not a phenomenon unique to AMD, it is a common hallmark in many 

neurodegenerative diseases and broadly independent of the underlying genetic defect or cause 

(Amor et al., 2014; Karlstetter et al., 2015; Langmann, 2007). Thus, microglia-directed 

immunotherapy could represent an early and feasible strategy to attenuate progression of a variety 

of retinal degenerative diseases. 

Microglia depletion via pharmacological CSF1R inhibition has been found to reduce 

neuroinflammation in distinct diseases (Kokona et al., 2018; Li et al., 2017a; Rice et al., 2015). 

However, ablation of microglia does not always result in tissue homeostasis, as shown in the 

context of Parkinson’s disease (PD), brain ischemia and encephalitis (Jin et al., 2017; Rubino et 

al., 2018; Szalay et al., 2016; Wheeler et al., 2018; Yang et al., 2018). Due to the variation of 

beneficial or detrimental effects of microglia depletion, a microglia-replacement strategy would be 

more suitable (Rice et al., 2017). The self-renewal ability of microglia after depletion enables them 

to repopulate the CNS niche within a short time with the new cells still able to surveille the 
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environment and to respond to injuries (Varvel et al., 2012; Zhang et al., 2018). Nevertheless, the 

potential side-effects of microglia depletion have to be considered, as the ablation may induce a 

transient immunodeficiency and elicit secondary effects that could be harmful to the CNS 

(Parkhurst et al., 2013). In the mature retina, prolonged microglia cessation results in synaptic and 

photoreceptor degeneration that leads to deficits in visual perception (Wang et al., 2016). 

Therefore, therapy concepts of microglia-related immunomodulation should dampen the harmful 

microglia response while preserving their homeostatic functions. Such treatment strategies involve 

the targeting of microglia surface receptors or the modulation of intracellular molecules, as their 

activation induces signaling pathways that play essential roles in controlling microglia functions 

(Akhtar-Schäfer et al., 2018; Karlstetter et al., 2015).  

For instance, ATP-mediated purinergic signaling evokes an excess inflammatory response by 

releasing cytokines via the protein kinase c (PKC)/mitogen-activated protein kinase (MAPK) 

pathway, while its inhibition with the selective P2X7 receptor antagonist A438079 delayed the 

death of retinal neurons and ganglion cells after optic nerve injury (He et al., 2017; Nadal-Nicolás 

et al., 2016). In addition, blocking TLR2 and TLR4 signaling with the semi-synthetic tetracycline 

derivative minocycline via inhibition of IkBa degradation, prevents microgliosis and preserves 

photoreceptor function in the light-damaged retina (Nikodemova et al., 2006; Scholz et al., 2015b; 

Zhang et al., 2004). Apart from that, interferon-b (IFN-b), polysialic acid and natural compounds 

like curcumin and docosahexaenoic acid (DHA) show also immunomodulatory effects on 

microglia (Ebert et al., 2009; Karlstetter et al., 2017; 2011; Lückoff et al., 2016). 

Thus, markers for microglia activation may serve as a tool for evaluating and monitoring the 

efficacy of these therapeutic interventions during the course of disease. Among them, TSPO is a 

key biomarker for measuring neuroinflammation via positron emission tomography (PET), as it is 

highly and specifically expressed in activated microglia (Karlstetter et al., 2014; Vivash and 

O’Brien, 2016). The fact that Müller cell-microglia interactions via TSPO-mediated signaling 

negatively regulates features of microglial activation, makes TSPO also an attractive target for 

therapy (Karlstetter et al., 2014; Wang et al., 2014b). Indeed, several TSPO ligands are under 

investigation as treatment options for neurological disorders (Rupprecht et al., 2010). 
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1.4 Translocator protein (18 kDa) (TSPO)  
 

1.4.1  Structure and expression of TSPO 
 
The translocator protein (18 kDa) (TSPO), formerly known as the peripheral benzodiazepine 

receptor (PBR), was first identified in 1977 as a high affinity benzodiazepine binding site in 

peripheral tissues that was distinct from the central benzodiazepine receptor as it was not coupled 

to gamma-aminobutyric acid (GABA) receptors (Braestrup et al., 1977; Gavish et al., 1999).            

The Tspo gene is composed of four exons, while exon 1 and half of exon 4 remain untranslated 

(Casalotti et al., 1992; Lin et al., 1993). It encodes a five α-helical transmembrane protein 

composed of 169 amino acids that is primarily located in the outer mitochondrial membrane 

(OMM) (Figure 9a-b) (Anholt et al., 1986). From the cytosolic view, these five transmembrane 

helices (TM1-5) are tightly packed together in a clockwise order TM1-TM2-TM5-TM4-TM3, with 

the longest loop located in between TM1 and TM2 (Jaremko et al., 2015). The C-terminal part in 

TM5 resides in the cytoplasm and harbors a cholesterol-recognition amino acid consensus (CRAC) 

motif (residues 147–159) that binds cholesterol in nanomolar concentration (Figure 9b) (Jamin et 

al.; Li et al.). TSPO is a highly conserved protein found in many Archae, Bacteria and Eukarya 

(Balsemão-Pires et al., 2011; Fan et al., 2012). Both human and mouse TSPO share an 81.1 % 

sequence homology (Figure 9a) (Selvaraj and Stocco, 2015). Together with the fact that 

mammalian TSPO can compensate for the loss of function of the TSPO homolog in the 

proteobacterium Rhodobacter sphaeroides, suggests that its functions are, at least in part, 

evolutionarily conserved (Yeliseev et al., 1997). 

Although TSPO is expressed in every mammalian tissue including heart; lung; spleen; kidney; 

liver; skin; bone marrow; adipose tissue; brain and retina, highest expression levels are found in 

steroidogenic tissues such as adrenal glands, gonads, placenta and testis (Anholt et al., 1985; De 

Souza et al., 1985; Gehlert et al., 1985; Wang et al., 2012). In the healthy CNS, TSPO expression 

is extremely weak but increases predominantly in activated microglia and astrocytes during 

neuropathological conditions (Daugherty et al., 2013; Maeda et al., 2007; Rupprecht et al., 2010). 

In the retina, apart from the damage-induced TSPO expression specifically in microglia, the RPE 

shows a constitutive expression of TSPO (Figure 9c) (Karlstetter et al., 2014; Scholz et al., 2015a). 
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Figure 9: TSPO structure and retinal expression. a TSPO protein sequence homology. TSPO sequence comparisons 
showing relatively conserved consensus sequences (black shaded) in various model organisms. Percentage identity 
with Homo sapiens: Rhodobacter sphaeroides, 33.5 %; Drosophila melanogaster, 42.6 %; Danio rerio, 54.3 %; 
Xenopus laevis, 57.3 %; Gallus gallus, 60.4 % and Mus musculus, 81.1 %. b Structure of TSPO in the OMM membrane 
(side view) showing the five a-helix transmembrane structure (TM1–5). The location of the cholesterol-recognition 
amino acid consensus (CRAC) motif at the C-terminus in TM5 (residues 147–159) point outside the TSPO structure. 
IMS, intermembrane space. c Immunohistochemical analysis of retinal cross sections stained with TSPO. In the healthy 
retina, TSPO is constitutively expressed in the RPE but not in microglia. Upon retinal degeneration, TSPO is 
upregulated in activated microglia present in the subretinal space. Nuclei were counterstained with DAPI. Scale bar: 
100 µm. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; 
RPE, retinal pigment epithelium. Subpanel a and b adopted from Selvaraj and Stocco, 2015. 

 
 

1.4.2  TSPO and its elusive functions 

The robust TSPO expression in steroidogenic tissues and the discovery as a high-affinity 

cholesterol binding protein suggested a link between TSPO and steroidogenesis (Midzak et al., 

2015; Mukhin et al., 1989; Papadopoulos et al., 1997a). Thereby, TSPO has been described as 

indispensable for cholesterol transport across the mitochondrial membrane, which is the rate-

limiting step of steroid formation. First evidence came from studies which showed that TSPO 

ligands stimulate steroid synthesis in steroidogenic cells in vitro, while this process was impaired 
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in TSPO-deficient cells (Mukhin et al., 1989; Papadopoulos et al., 1997a). The fact that TSPO full-

body knockout (KO) mice were embryonic lethal, reinforced the role of TSPO in steroidogenesis 

and pointed towards a broader role in basic functions that are critical for embryonic development 

(Papadopoulos et al., 1997b). However, recent findings from independent research groups using 

steroidogenic-tissue-specific or global TSPO-KO mice have challenged the previous literature and 

refuted the involvement of TSPO in steroidogenesis (Banati et al., 2014; Morohaku et al., 2014; 

Tu et al., 2014). These studies revealed that global TSPO-KO mice are viable and showed no 

phenotypic abnormalities nor changes in steroid production (Banati et al., 2014; Tu et al., 2014). 

In addition, conditional TSPO-KO in testicular Leydig cells also showed that TSPO is not required 

for steroidogenesis (Morohaku et al., 2014). Indeed, it was shown that the pharmacological effect 

of the TSPO ligand PK11195 on steroid production in TSPO-deficient Leydig cells is not mediated 

through TSPO but rather represent off-target effects (Tu et al., 2015). Of note, the human 

adrenocortical cell line H295R, which has no endogenous TSPO expression, is still capable of 

producing steroids (Tu et al., 2014). Moreover, a recent high-resolution nuclear magnetic resonance 

(NMR) structure of TSPO refuted the previously assumed channel-like core formation of TSPO 

for cholesterol binding (Rupprecht et al., 2010), as the side chains of the CRAC motif are located 

on the outside pointing towards the membrane (Jaremko et al., 2014). Altogether, this led to a 

reappraisal of the essential role of TSPO in steroidogenesis and its importance throughout the body 

(Selvaraj and Stocco, 2015).           

TSPO has also been considered as a component of the mitochondrial permeability transition pore 

(MPTP), as it was co-purified with voltage-dependent anion channel (VDAC) and adenine 

nucleotide translocator (ANT), two core components of the MPTP (McEnery et al., 1992). This 

conclusion was strengthened by the findings that the TSPO ligands PK11195 and Ro5-4864 were 

able to induce mitochondrial permeability transition (MPT) in vitro (Chelli et al., 2001; Kinnally 

et al., 1993). However, a recent study using TSPO-deficient mitochondria revealed that TSPO is 

neither involved in the regulation of MPT nor do TSPO ligands regulate MPTP activity through 

TSPO (Sileikyte et al., 2014). Additional genetic analysis of the putative MPTP components also 

excluded a role for VDAC (Baines et al., 2007) and ANT (Kokoszka et al., 2004) while recent 

findings indicate that the MPTP is formed by dimers of F0F1 ATP synthase (Giorgio et al., 2013). 

Interestingly, TSPO ligands have been shown to interact with the F0F1 ATP synthase suggesting 

that the observed effects on MPT are indeed TSPO independent (Cleary et al., 2007; Johnson et 

al., 2006). Other functions where TSPO has been implicated include regulation of mitochondrial 

metabolism (Gatliff et al., 2017; Liu et al., 2017); tetrapyrrole biosynthesis (Batoko et al., 2015), 

ROS production (Gatliff et al., 2014) and more general cellular processes such as proliferation, 
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survival, and apoptosis (Caballero et al., 2013; Rechichi et al., 2008; Veenman and Gavish, 2012). 

However, some of these effects were evidenced by means of TSPO ligands, which were proven to 

have off-targets effects, thus further experiments are needed to conclude that these effects reflect a 

direct involvement of TSPO. 

Despite the lack of a precise molecular function, TSPO has emerged as an important biomarker, as 

it is specifically upregulated in activated microglia in a variety of neurodegenerative diseases 

including multiple sclerosis (MS) (Daugherty et al., 2013), Alzheimer's disease (AD) (Edison et 

al., 2008), PD (Ouchi et al., 2005) and Huntington's disease (Meßmer and Reynolds, 1998). Thus, 

numerous TSPO PET ligands have been developed and used to monitor the dynamics of 

neuroinflammation (Banati et al., 2014). Similar to the brain, TSPO is also highly induced in 

microglia during retinal pathologies, which marks the duration and extent of retinal inflammation 

(Scholz et al., 2015a; Wang et al., 2014b). Although the significance of TSPO induction and 

especially its role during these pathologies is still not fully clear, it has been shown to play a role 

during inflammation. In the retina, the synchronously regulated expression of TSPO in microglia 

and its ligand DBI in Müller cells provides a mechanism of reciprocal modulatory microglia-

macroglia interactions that drive the resolution of inflammatory responses and facilitate a return to 

quiescence (Wang et al., 2014b). 

 

1.4.2.1 TSPO as a target for immunomodulation  

Increased TSPO density has been observed in various neurodegenerative diseases and colocalizes 

to reactive microglia and astrocytes. Although TSPO ligands have mostly been used for non-

invasive diagnostic imaging in vivo, several studies have also demonstrated their ability to mitigate 

microglia reactivity and to promote neuronal survival (Ferzaz et al., 2002; Ryu et al., 2005; Veiga 

et al., 2005). Hence, TSPO may be relevant as a disease-modifying gene and represents an attractive 

target for therapeutic interventions.                    

Several endogenous TSPO ligands exist such as cholesterol (Li et al., 2001) and porphyrins (Verma 

et al., 1987), which bind TSPO in nanomolar and micromolar affinity, respectively. Other TSPO 

ligands including endozepines such as DBI and its proteolytic products octadecaneuropeptide 

(ODN) and triakontatetraneuropeptide (TTN) have been shown to bind both TSPO and the GABAA 
receptor and to stimulate mitochondrial steroid synthesis (Costa and Guidotti, 1991; Mocchetti and 

Santi, 1991; Papadopoulos et al., 1991). In the retina, Müller cell-derived DBI was shown to 
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negatively regulate microglial reactivity by suppression of ROS production, pro-inflammatory 

cytokine expression and microglia proliferation (Figure 10) (Wang et al., 2014b). 

Classical synthetic TSPO ligands such as the isoquinoline carboxamide PK11195 and the 

benzodiazepine derivative Ro5-4864, that bind TSPO with nanomolar affinity, have been shown 

to exert anti-inflammatory effects in two mouse models with autoimmune arthritic conditions 

(Torres et al., 2000). Additionally, in a mouse model for late-stage AD, PK11195 treatment was 

effective in reducing both soluble and deposited β-amyloid, thus improving	 behavioral and 

pathological disease outcomes (Christensen and Pike, 2018). Another established TSPO ligand is 

the benzoxazine etifoxine, which is not only selective for TSPO, but also binds to GABAA receptors 

(Hamon et al., 2003). In a mouse model for MS, administration of etifoxine before disease onset 

was protective and improved symptomatic recovery. Notably, in this model etifoxine reduced pro-

inflammatory cytokine expression and peripheral immune cell infiltration in the spinal cord 

(Daugherty et al., 2013). Moreover, other studies have shown beneficial effects of etifoxine on 

reducing microglial reactivity and promoting neural survival after intracerebral hemorrhage or 

traumatic brain injury (Li et al., 2017b; Simon-O’Brien et al., 2016).  

The phenylpurine XBD173, also termed AC-5216 or Emapunil, is a selective and high-affinity 

second generation TSPO ligand that has a more beneficial side-effect profile than benzodiazepine 

derivatives (Kita et al., 2004; Rupprecht et al., 2009). Treatment with XBD173 reduced 

degeneration of dopaminergic neurons and recovered motor dysfunction in a mouse model of PD 

(Gong et al., 2019). In addition, we recently exploited the endogenous TSPO ligand-mediated 

immunomodulation in the retina and showed that XBD173 has immunomodulatory and 

neuroprotective effects in a mouse model of light-induced retinal degeneration. Here, XBD173 

administration reduced the expression of pro-inflammatory cytokines and the accumulation of 

reactive microglia in the outer retina with concomitant preservation of photoreceptors (Figure 10) 

(Scholz et al., 2015a).  

Taken together, these findings highlight TSPO as an immunomodulatory target and emphasize the 

anti-inflammatory and neuroprotective properties of TSPO ligands and their potential as 

pharmacological therapies in the treatment of neurodegenerative diseases. However, how TSPO 

and its different ligands exert these beneficial effects is still not fully clear and further experimental 

approaches are needed to elucidate the underlying mechanisms. 

 



Introduction 

22 
 

 
Figure 10: Immunomodulatory effects of endogenous and synthetic TSPO ligands. Specific signals from dying 
photoreceptors strongly induce TSPO expression in microglia and signal to Müller cells, resulting in upregulation of 
the expression and secretion of endogenous TSPO ligand diazepam binding inhibitor (DBI) protein. 1 Secreted DBI 
is subsequently taken up by microglia and binding of DBI limits the magnitude and duration of microglia inflammatory 
responses and promotes their return to baseline quiescence. 2 Exploiting this endogenous TSPO ligand-mediated 
immunomodulatory mechanism using the specific synthetic TSPO ligand XBD173 also negatively regulates features 
of microglial activation. Figure modified from Rashid et al., 2018. 
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1.5 Aim of the study 
 

Microglia cells are the resident phagocytes of the CNS, including the retina, and play pivotal roles 

in innate immune responses and regulation of homeostasis in the healthy and degenerating CNS. 

Microgliosis is a common hallmark of neurodegenerative diseases and chronic pro-inflammatory 

microglia reactivity negatively contributes to disease progression. Thus, pharmacological 

approaches of microglia-related immunomodulation that inhibit dysregulated microglia 

inflammatory responses while preserving their beneficial neuroprotective functions, represent 

promising therapeutic strategies to attenuate progression of a variety of neurodegenerative diseases. 

We and others have previously shown, that TSPO is a biomarker for reactive microglia and an 

attractive target for microglia-directed immunotherapy in degenerative diseases of the retina. 

However, the underlying molecular mechanisms of TSPO-mediated immunomodulation and 

neuroprotection remain largely elusive. 

Thus, in this study we aimed on elucidating the molecular function of TSPO in retinal immune 

homeostasis and angiogenesis using the laser-induced CNV model, an established system to study 

key aspects of neovascular AMD. Based on the concept of endogenous TSPO ligand-mediated 

immunomodulation of retinal microglia, we investigated whether the synthetic TSPO ligand 

XBD173 possesses immunomodulatory and neuroprotective effects in the mouse model of 

neovascular AMD. Additionally, we aimed to assess the direct function of TSPO in retinal immune 

cells using conditional microglia-specific knockout mice. 
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2.     Material and methods 
 

2.1  Mouse experiments 

2.1.1  Mouse husbandry  
 
All animal procedures were conducted in compliance with protocols approved by the local 

government authorities (Tierschutzkommission acc. §15 TSchG of the Landesamt für Natur, 

Umwelt und Verbraucherschutz Nordrhein-Westfalen) and were in accordance with the National 

Institutes of Health (NIH) guidelines. Mice were housed in individually ventilated caging (IVC) 

systems (GM 500, Tecniplast® Greenline) with a maximum cage density of five adult mice per 

cage. Light was adjusted to a 12h/12h light/dark cycle with light on at 6 am, temperature and 

relative humidity were regulated to 22 ± 2°C and 45-65 % relative humidity. Mice were fed 

irradiated phytoestrogen-free standard diet for rodents (Altromin 1314; 59 % carbohydrates, 27 % 

protein, 14 % fat) and had access to food and acidified water ad libitum. 

 

2.1.2  Experimental mouse lines 
 
Cx3cr1CreERT2:Tspofl/fl mice (TSPODMG) were generated by crossing Cx3cr1CreERT2 mice (Yona et 

al., 2013) to TSPOfl/fl mice (Sileikyte et al., 2014). Nox1- (Gavazzi et al., 2006), Nox2- (Pollock 

et al., 1995), Nox4- (Carnesecchi et al., 2011) and p22phox -KO (Nakano et al., 2008) mice were 

kindly provided by M. Schramm (Institute for Medical Microbiology, University of Cologne). 

C57BL/6J mice and homozygous transgenic knockout mice and corresponding wild type 

littermates, eight to ten-week-old with an averaged body weight of 19 g ± 1.5 g for females and 

25 g ± 2 g for males, were used for experiments.   

 

2.1.3  XBD173 administration 
 
The phenylpurine XBD173 (AC-5216, Emapunil) was obtained by custom synthesis from APAC 

Pharmaceuticals. The mice received intraperitoneal (i.p.) injections of XBD173 at a dose of 10 

mg/kg dissolved in DMSO or DMSO as a vehicle control daily starting one day before laser 

photocoagulation, while the first two days the mice received twice a day XBD173 or DMSO. 
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2.1.4  Tamoxifen administration 
 
The tamoxifen dependent Cre recombinase (CreERT2) is used for the generation of conditional 

somatic mouse mutants, that allows one to control gene activity over the location and time. After 

tamoxifen administration, the synthetic estrogen receptor ligand is metabolized in the liver to 4-

OH tamoxifen, resulting in the translocation of CreERT2 into the nucleus. For this, tamoxifen 

powder was partially dissolved in 100 % ethanol and vortexed for 5 minutes (min). Filter-sterilized 

corn oil was added to a 9:1 oil:ethanol mixture ratio to a final concentration of 20 mg/ml tamoxifen 

and incubated at 37°C until complete dissolution. The prepared tamoxifen working solution was 

stored at -20°C protected from light. For induction of Cre recombinase activity, 4−6-week-

old TSPODMG mice and littermates carrying the respective loxP-flanked alleles but lacking 

expression of Cre recombinase (TSPOfl/fl), were treated with 4 mg tamoxifen injected i.p. twice 

two days apart. 

 

2.1.5  Laser photocoagulation 
 
Laser photocoagulation was carried out as described previously (Balser et al., 2019). In brief, mice 

were anesthetized with a mixture of ketamine (100 mg/kg body weight, Ketavet) and xylazine 

(5 mg/kg body weight, 2 % Rompun) diluted in 0.9 % sodium chloride by i.p. injection and their 

pupils dilated with a topical drop of phenylephrine 2.5 %–tropicamide 0.5 %. A slit-lamp-mounted 

diode laser system (Quantel Medical Vitra, 532 nm green laser, power 100 mW, duration 100 ms 

and spot size 100 µm) was used to generate three equal laser burns around the optic nerve in each 

eye with a cover glass as a contact lens. For gene expression and protein analysis, 20 laser burns 

were applied to both eyes. To validate rupture of Bruch’s membrane, infrared (IR) images were 

recorded using SpectralisTM HRA/OCT device to analyze post-laser retinal structure and laser 

lesion size in vivo. In case of cataract and corneal epithelial edema before laser photocoagulation, 

unsuccessful laser burns without Bruch’s membrane rupture or severe choroidal hemorrhages, 

eyes were excluded from further analysis.  

 

2.1.6  Fundus photography and fundus fluorescein angiography (FFA) 
 
Vascular leakage was analyzed 3, 7 and 14 days after laser photocoagulation. After anesthesia and 

pupil dilatation, mice received i.p. injection of 0.1 ml of 2.5 % fluorescein diluted in 0.9 % sodium 

chloride. Late phase angiograms were recorded 10 min after fluorescein injection using 
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Spectralis™ HRA/OCT. Simultaneously, IR fundus images were acquired to analyze the laser 

lesion size.  

 

2.1.7  Isolation and immunomagnetic enrichment of primary microglia 
 
Brains from 8-10-week-old mice were harvested in cold HBSS without Ca2+ and Mg2+ and after 

removal of the meninges enzymatically dissociated into single cell suspensions with a papain-

based Neural Tissue Dissociation Kit on the GentleMACS® Dissociator according to the 

manufacturer’s instructions. The single cell suspension was passed through a 70 μm cell strainer 

and depleted of myelin by suspension in 30 % isotonic Percoll® followed by a 10 min 

centrifugation at 700 x g at 4°C. The cell pellet was resuspended in MACS buffer (97.5 µl per 

brain) and CD11b-specific monoclonal antibodies conjugated to paramagnetic beads (2.5 µl per 

brain) were added and cells labeled on ice for 15 min with 300 rpm. After labeling, cells were 

washed three times and sorted in combination with LS columns (Miltenyi Biotec) and 

QuadroMACSTM magnetic separator according to the manufacturer’s instructions. After elution 

from the LS columns, cells were resuspended in DMEM high glucose supplemented with 10 % 

heat-inactivated FCS and counted using Trypan Blue exclusion in a Neubauer chamber. 

 

2.1.8 Trans-well co-culture of photoreceptor cells and primary microglia 
 
2.1.8.1 Culturing of 661W photoreceptor cells 

661W photoreceptor cells were a gift from Prof. Muayyad Al-Ubaidi (Department of Cell Biology, 

University of Oklahoma Health Sciences Center, USA). Cells were grown in a monolayer in 

DMEM high glucose supplemented with 10 % heat-inactivated FCS and 1 % Penicillin-

Streptomycin (P/S) and maintained at 37°C in a humidified atmosphere of 5 % CO2. At about 90 

% confluency, 661W cells were washed twice with 1x PBS and incubated with 1x trypsin-EDTA 

for 3 min at 37°C to detach the adherent cells from the culture surface. The reaction was stopped 

by addition of an equal volume of serum containing DMEM high glucose medium. Cells were 

collected, centrifuged at 300 x g for 5 min and the cell pellet resuspended in DMEM high glucose 

supplemented with 10 % heat-inactivated FCS and 1 % P/S and counted using Trypan Blue 

exclusion in a Neubauer chamber. 
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2.1.8.2 Trans-well co-culture of 661W cells and primary microglia 
 
Primary microglia at the bottom and 661W photoreceptor cells on top were separated in a trans-

well culture with 0.4 μm inserts (Corning). As a basal culture medium, DMEM supplemented with 

10 % FCS, 1 % P/S, was used. Primary microglia were seeded at a density of 2.5 x 105 cells/well 

in a 24 well-plate and 661W photoreceptor cells at a density of 2.5 x 104 cells/well in 0.4 µm trans-

well inserts. After 4 h, trans-wells with 661W cells were removed, placed in a new sterile 24 multi 

well-plate (Corning) and primary microglia were stimulated with 661W photoreceptor cell debris 

by synchronization at 450 x g for 5 min at 4°C. Where indicated, primary microglia were treated 

with 50 mM XBD173. After incubation for 15 min at 37°C, trans-wells with 661W cells were 

transferred back to the primary microglia and the trans-well co-culture incubated for another 24 h. 

 

 
2.2  Molecular biology 

2.2.1   Isolation of genomic DNA 
 
Genomic DNA was isolated from ear punches obtained between P18 - P21 using the HotSHOT 

method as described previously (Truett et al., 2000) with some modifications. Briefly, the samples 

were incubated 15 min in alkaline lysis buffer (Table 7) at 95°C followed by 5 min on ice. An 

equal volume of neutralization buffer (Table 7) was added, mixed and the DNA diluted to a 

working concentration of 25 ng/μl. 

 

2.2.2   Quantification of nucleic acids 
 
Nucleic acid concentration was assessed by measuring the sample absorption at 260 nm with a 

NanoDrop® ND-2000 UV-Vis Spectrophotometer. The 260/280 nm absorbance ratio was used as 

a measure of purity of nucleic acid samples. Ratios of approximately 1.8 and 2.0 were accepted as 

pure DNA and pure RNA, respectively. 

 

2.2.3   Genotyping and DTSPO PCR 

 
Genotyping was performed by PCR with customized primers (purchased from IDT) listed in table 

1. Reactions were performed in a thermocycler PCR machine. All amplifications were performed 

in a total reaction volume of 25 μl containing a minimum of 50 ng DNA template, 25 pmol of each 
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primer, 25 μM dNTP Mix, 1 x reaction buffer S and 1 unit of Taq Polymerase. Standard PCR 

programs started with 5 min of denaturation at 94°C, followed by 35 cycles consisting of 

denaturation at 94°C for 40 seconds (s), annealing at oligonucleotide-specific temperatures for 44 

s and elongation at 72°C for 45 s, and a final elongation step at 72°C for 5 min. Amplified DNA 

fragments were analyzed on 1-2 % (w/v) agarose gels which were electrophoresed at 120 mV. 

 
Genotyping for the NMF333 mutation (p22phox mouse strain) was done with PCR amplification 

and subsequent BslI digestion (New England BioLabs) of a fragment of the Cyba gene according 

to the manufacturer’s instructions. The WT allele produces digestion products of 202 and 89 bp 

and the NMF333 allele products of 162, 89, and 40 bp. 

 

Table 1: Genotyping primer. 

Mouse line Primer Sequence 5’ – 3’ Orientation Annealing site 

Cx3cr1CreERT2 
Cx3cr1-A cctctaagactcacgtggacctg forward Intron 1 
Cx3cr1-B gacttccgagttgcggagcac reverse Exon 1 
Cx3cr1-C gccgcccacgaccggcaaac reverse CreERT2 

 
Nox1 

N1WT-F tagcctggctgttccctcacccaaa forward Intron 2 
N1WT-R gggacagcttcctgcatccctctgt reverse Intron 2 
N1neo-R tcggatcgagcgctctgaagttcct reverse NEO cassette 

 
Nox2 (gp91phox) 

N2WT-F aagagaaactcctctgctgtgaa forward Intron 2 
N2WT-R cgcactggaacccctgagaaagg reverse Exon 3 
N2neo-R gttctaattccatcagaagcttatcg reverse NEO cassette 

 
Nox4 

N4WT-F gttgctggcttctgcttctt forward Intron 2 
N4WT-R ctttgtgtggttgcttaggaga reverse Intron 2 
N4neo-R aagcttccgattcccattct reverse NEO cassette 

NMF333 (p22phox) 
(Point mutation Y121H) 

P22-F cagatgcccactgactgcta forward Intron 4 
P22-R cgagccacagtacagcttca reverse Intron 5 

TSPOfl/fl 
Tspo_loxp-F ggattaccacacccaaccag forward Intron 1 
Tspo_loxp-R taggagtgcaaagccagtca reverse Intron 1 

 

The DTSPO PCR were performed with primers spanning the loxP-flanked exons 2 and 3 of the 

Tspo gene (Table 2) using the above-mentioned conditions. PCR amplification of complementary 

DNA (cDNA) isolated from retina and RPE/choroidal tissues from tamoxifen-treated TSPOfl/fl 

mice resulted in a 526 bp fragment and from TSPODMG mice in 526 bp and 176 bp fragments, 

respectively.  
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Table 2: DTSPO PCR primer. 

Target Primer Sequence 5’ – 3’ Orientation Annealing site 

Tspo  Tspo-P1 taccaacctctgtgcgcag forward Exon 1 
Tspo-P2 atgctctaagggcatgcctg reverse Exon 4 

 

2.2.4   RNA isolation, cDNA synthesis and qPCR 
 
RNA was isolated from retinal and RPE/choroidal tissue or primary microglia using the RNeasy 

Micro Kit according to the manufacturer’s instructions. First-strand cDNA was synthesized 

from the total mRNA using the RevertAid™ H Minus First strand cDNA Synthesis Kit. 

Transcript levels were analyzed by quantitative real-time PCR performed in LightCycler® 480 

II with either SYBR® Green (Takyon No Rox SYBR Master Mix dTTP blue) or probe-based 

(Takyon No ROX Probe MasterMix blue dTTP) detection according to the manufacturer’s 

instructions with the primers listed in table 3 and table 4, respectively. Actin and Atp5b were 

used as housekeeping genes. Measurements were performed in technical duplicates and delta 

delta CT threshold calculation was used for relative quantification of results. UPL probes used 

for probe-based detection were purchased from Roche. 
 

Table 3: Primer for probe-based quantitative real-time PCR. 

Gene NM accession number Forward primer (5’ – 3’) Reverse primer (5’ – 3’) UPL Probe  

Atp5b NM_016774.3 ggcacaatgcaggaaagg tcagcaggcacatagatagcc 77 

Cd68 NM_001291058.1 ctctctaaggctacaggctgct tcacggttgcaagagaaaca 27 

Nox1 NM_172203.2 ggatggatctctcgcttctg aatgctgcatacatcactgtca 19 

Tspo NM_009775.4 actgtattcagccatggggta accatagcgtcctctgtgaaa 33 

 
 
Table 4: Primer for SYBR® Green. 

Gene NM accession number Forward primer (5’ – 3’) Reverse primer (5’ – 3’) 

Actin NM_007393.5 aggaggagcaatgatcttg agacctgtacgccaacacag 

Duox1 NM_001099297.1 agcccctgaaagaaccctac tccccatgcgggatgtaaatg 

Duox2 NM_177610.2 tccattagtgagtctgattgtc gtttgtcaaggacctgcagact 

Nox2 NM_007807 ggttccagtgcgtgttgct gcggtgtgcagtgctatcat 

Nox3 NM_198958.2 gtgataacaggcttaaagcagaaggc ccactttcccctacttgactt 

Nox4 NM_015760.5  ggagactggacagaacgattc tgtataacttagggtaatttctagagtgaatga 
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2.3  Biochemistry 
 

2.3.1   Immunohistochemistry of retinal and RPE/choroidal flat mounts 
 
Mice were euthanized by cervical dislocation and the eyes enucleated and fixed in 4 % of Roti 

Histofix for 2 h at room temperature (RT). The dissected retinal and RPE/choroidal flat mounts 

were permeabilized and blocked overnight in Perm/Block buffer (Table 7) at 4°C. The flat mounts 

were subsequently incubated with anti-IBA1 antibody for 48 h at 4°C (Table 5). After washing 

three times with PBST-X, the flat mounts were incubated 1 h with donkey anti-rabbit 

AlexaFluorTM 488 (Table 5). RPE/choroidal flat mounts were stained in addition with TRITC-

conjugated isolectin B4 from Bandeiraea simplicifolia (Table 5). After several washing steps, 

retinal and RPE/choroidal flat mounts were mounted on a microscope slide and embedded with 

Vectashield HardSet H-1400 fluorescence mounting medium. Images were taken with a Zeiss 

Imager.M2 equipped with an ApoTome.2.  
 

Table 5: List of antibodies and stains used for immunohistochemistry. 

Antibodies / Stains Species Dilution Manufacturer,  
Cat. No. 

anti-IBA1 Rabbit, polyclonal 1:500 Wako, 019-19741 

Alexa Fluor® 488  Donkey anti-rabbit IgG 1:1000 Invitrogen, A21206 

 
Isolectin B4-TRITC conjugate 

 
Bandeiraea simplicifolia 

 
1:100 

 
Sigma, L5264 

 
 

2.3.2  Mitochondrial staining of primary microglia 
 
For fluorescence microscopic analysis of the mitochondrial network of primary microglia, 

mitochondria were stained with 100 nM of the mitochondrial membrane potential-sensitive dye 

MitoTracker Red CMXRos for 15 min at 37°C. Primary microglia were also stained with 

recombinant monoclonal anti-TSPO/PBR antibody (Abcam, ab109497; rabbit), diluted 1:1000 in 

PBST-X and nuclei were counterstained with DAPI. Where indicated, primary microglia were 

treated with 200 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) as a positive control 

for mitochondrial network fragmentation. 

 

 



Material and methods 

31 
 

2.3.3  Protein extraction  
 
Shock-frozen tissue samples and primary microglia were lysed by sonication in ice cold PBS 

supplemented with protease and phosphatase inhibitors (Complete protease inhibitor cocktail) 

followed by centrifugation at 12,000 x g at 4°C for 30 min. Supernatants were transferred to new 

tubes and protein concentration was determined by BCA Protein Assay according to the 

manufacturer’s instructions and lysates stored at -80°C. 

 

2.3.4   Western blot  
 
Isolated proteins extracts were diluted to 0.6-0.8 µg/µl with PBS and 6x non-reducing Laemmli 

buffer, incubated at 95°C for 5 min and separated by size via SDS-PAGE. Resolving gels 

contained 12 % and stacking gel 5 % acrylamide (Table 6). Equal amounts of samples were loaded 

onto the 0.75 mm gels and gel electrophoresis was carried out in 1x Running buffer at 120 V for 

2 h.  

 
Table 6: SDS-PAGE gel recipes. 

SDS-PAGE Gel  Ingredients 

Resolving gel 12 % v/v Acrylamide 
400 mM w/v TRIS pH 8.8 
0.1 % w/v SDS 
0.1 % w/v APS 
0.01 % v/v TEMED 

Stacking gel  
 

5 % v/v Acrylamide 
125 mM w/v TRIS pH 6.8 
0.1 % w/v SDS 
0.1 % w/v APS 
0.005 % v/v TEMED 

 

For immunoblotting, proteins were electrophoretically transferred onto a 0.45 µm nitrocellulose 

membrane in 1x Transfer buffer at 100 V for 1 h. Membranes were blocked in M-TBST for 1 h at 

RT before incubation with primary antibodies (Table 7) for 1 h at RT or overnight at 4°C. After 

several washing steps in TBS-T, membranes were incubated with horseradish peroxidase (HRP)‐

conjugated secondary antibodies (Table 7). Membranes were washed thrice and the immune 

complex was visualized using SignalFireTM Elite ECL Reagent and a MultiImage II system. 

PageRuler pre-stained protein ladder was used for identification of protein size. Band intensities 

were quantified using ImageJ. 
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Table 7: List of antibodies used for Western blot. 

Antibodies, 1st and 2nd  Species Dilution Manufacturer,  
Cat. No. 

anti-Actin  Mouse, monoclonal 1:1000 Sigma, A5441 

anti-PBR (TSPO) Rabbit, monoclonal 1:1000 Abcam, ab109497 

IgG-HRP conjugate Goat anti-mouse, polyclonal 1:4000 Dako, P0447 

IgG-HRP conjugate Goat anti-rabbit, polyclonal 1:4000 Dako, P0448 

 
 

2.3.5   Enzyme-linked immunosorbent assays (ELISA) 
 
The concentration of cytokines in total retinal and RPE/choroidal lysates (see 2.3.3) were 

measured by ELISA as per manufacturer’s instructions (Table 10). Absorbance was measured with 

a TECAN infinite M 1000. 

 

2.3.6   Quantification of ROS 
 
Primary microglia (see 2.1.7) were plated out at a density of 1 x 105 cells/well as triplicates in 

DMEM supplemented with 10 % FCS in sterile 96F plates. White or black closed bottom 96F 

plates were used for luminescence or fluorescence measurements, respectively. Primary microglia 

were pre-treated with either 50 µM XBD173 or DMSO as vehicle control for 1 h at 37°C as 

indicated. Cells were centrifuged at 650 x g at 4°C and washed once with HBSS with Ca2+ and 

Mg2+ to remove non-adherent cells and added substances for pre-treatment. Primary microglia 

were stimulated with 661W photoreceptor cell debris by synchronization at 850 x g for 5 min at 

4°C or with 100 ng/ml ultrapure LPS from E. coli O111:B4. After three washing steps, cells were 

covered in HBSS with or without Ca2+ and Mg2+ supplemented with 5 % heat-inactivated normal 

mouse serum (NMS) as indicated. As a positive control for extra- and cytosolic ROS 

measurements phorbol 12-myristate 13-acetate (PMA), a chemical stimulator of ROS, was added 

with a final concentration of 1 ng/ml. For ROS measurement in the mitochondrial matrix rotenone, 

an inhibitor of complex I of the electron transport chain, was used as a positive control with a final 

concentration of 100 μM. Where indicated, 100 μM of the Ca2+ ionophore ionomycin was added 

to the medium after stimulation with 661W photoreceptor cell debris to raise intracellular Ca2+ 

levels. 
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2.3.6.1 Extracellular ROS production 
 
For detection of extracellular ROS, ice-cold solution of 50 μM cell-impermeable isoluminol and 

3.2 U/ml HRP in HBSS with Ca2+ and Mg2+ was used (Herb et al., 2019). The enzyme HRP uses 

the produced ROS to catalyze the conversion of isoluminol to the excited 3-aminophtalate. This 

product decays to lower energy state and emits light during the process. After stimulation with 

661W photoreceptor cell debris and treatment with different substances (see 2.3.6) 

isoluminol/HRP solution was added to the wells and chemiluminescence was recorded for 120 

min with 60 s intervals at 37°C in TriStar2 LB 942 Multimode Plate Reader. To calculate cell-

specific luminescence, the luminescence of cell-free wells containing HBSS with or without used 

substances was subtracted. 

 

2.3.6.2 Cytosolic ROS production 
 
For detection of cytosolic ROS, the substance 5,6-carboxy-2’,7’-dichlorodihydroflurescein 

diacetate, di(acetoxymethyl ester) (DCF) was used (Herb et al., 2019). Primary microglia were 

incubated in 20 µM DCF in HBSS with Ca2+ and Mg2+ at 37°C for 15 min. DCF is a hydrophilic 

molecule, which readily enters cells by diffusion during incubation. After reaching the cytosol, 

ester groups of the DCF molecule are cleaved by cytosolic esterases, leading to the loss of 

hydrophilicity. Lipohilic DCF is trapped in cytosol as dihydrofluorescein. Cleaving of the ester 

groups also leads to the exposure of functional groups that are able to react with ROS. After 

reaction with ROS, dihydrofluorescein is converted to its oxidized and fluorescent derivate 

fluorescein. After incubation, cells were centrifuged and washed for two times with ice cold HBSS 

with Ca2+ and Mg2+ and primary microglia were stimulated as described in 2.3.6. After stimulation 

with 661W photoreceptor cell debris and treatment with different substances, cells were covered 

with ice cold HBSS with Ca2+ and Mg2+ supplemented with 5 % heat-inactivated NMS. Fluorescein 

was excited at 495 nm and emitted fluorescence at 520 nm was recorded for 120 min with 60 s 

intervals at 37°C in TriStar2 LB 942 Multimode Plate Reader. To calculate cell-specific 

fluorescence, the fluorescence of cell-free wells containing HBSS with or without used substances 

was subtracted. 

 

2.3.6.3 Mitochondrial matrix-derived ROS production 
 
ROS production in the mitochondrial matrix was detected by using the fluorescence probe 

MitoSOX Red (Herb et al., 2019). Primary microglia were incubated with 5 µM MitoSOX Red in 
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HBSS with Ca2+ and Mg2+ at 37°C for 15 min. MitoSOX Red accumulates in the mitochondrial 

matrix and is oxidized exclusively by superoxide. After incubation, cells were centrifuged and 

washed for two times with ice cold HBSS with Ca2+ and Mg2+ and primary microglia were 

stimulated as described in 2.3.6. After stimulation with 661W photoreceptor cell debris and 

treatment with different substances, cells were covered with ice cold HBSS with Ca2+ and Mg2+ 

supplemented with 5 % heat-inactivated NMS. MitoSOX Red was excited at 510 nm and emitted 

fluorescence at 580 nm was recorded for 120 min with 60 s intervals at 37°C in a TECAN infinite 

M 1000 microplate reader. To calculate cell-specific fluorescence, the fluorescence of cell-free 

wells containing HBSS with or without used substances was subtracted.  

 

2.3.7   Quantification of calcium levels 

 
2.3.7.1 Mitochondrial calcium levels 
 
Primary microglia were seeded at a density of 1 x 105 cells/well in triplicates in DMEM + FCS in 

black 96-well plates. To analyze mitochondrial calcium levels, primary microglia were incubated 

in 2 μM Rhod-2-AM in HBSS with Ca2+ and Mg2+ supplemented with 5 % heat-inactivated normal 

mouse serum for 15 min at 37°C before stimulation with 661W photoreceptor cell debris and 

treatment with different substances (see 2.3.6). Rhod-2-AM fluorescence was measured at 1-min 

intervals using a Tecan Infinite M 1000 microplate reader. 

 

2.3.7.2 Cytosolic calcium levels 
 
Primary microglia were seeded at a density of 1 x 105 cells/well in triplicates in DMEM + FCS in 

black 96-well plates. To analyze mitochondrial calcium levels, primary microglia were incubated 

in 2 μM Fura-2-AM in HBSS with Ca2+ and Mg2+ supplemented with 5 % heat-inactivated NMS 

for 15 min at 37°C before stimulation with 661W photoreceptor cell debris and treatment with 

different substances (see 2.3.6). Fura-2-AM fluorescence was measured at 1-min intervals using a 

Tecan Infinite M 1000 microplate reader. 

 

2.3.8  Analysis of mitochondrial membrane potential 
 
Primary microglia were seeded at a density of 1 x 105 cells/well in triplicates in DMEM + FCS in 

black 96-well plates, incubated in 1 µM tetramethylrhodamine, ethyl ester (TMRE) in HBSS with 

Ca2+ and Mg2+ for 20 min at 37°C and then stimulated with 661W photoreceptor cell debris (see 
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2.3.6). TMRE accumulates in the mitochondrial matrix due to its cationic properties and the 

negative charge of the matrix. The negative charge is stable as long as protons are pumped across 

the inner mitochondrial membrane and the charge separation across the membrane causes the 

mitochondrial membrane potential (MMP). Accumulated TMRE shows a red shift in its 

fluorescence properties and represents stable membrane potential, while loss of the MMP results 

in release of TMRE from mitochondria and thus in a decreased fluorescence signal. The proton 

shuttling substance CCCP at a final concentration of 200 µM was used as a positive control. TMRE 

fluorescence was measured for 300 min at 60-min intervals using a Tecan Infinite M 1000 

microplate reader. 

 

2.3.9 Analysis of cellular ATP levels 
 
Primary microglia were seeded at a density of 1 x 105 cells/well in triplicates in DMEM + FCS in 

white 96-well plates and stimulated with 661W photoreceptor cell debris or treated with 200 µM 

CCCP as a positive control. Where indicated, 500 µM 2-Deoxy-D-glucose or 10 µM oligomycin 

A was added to the medium after stimulation with 661W photoreceptor cell debris. Cellular ATP 

levels were determined by using the CellTiter-Glo® Luminescent Cell Viability Assay in 

accordance with the manufacturer’s instructions. Chemiluminescence was measured for 120 min 

at 60-min intervals using a TriStar2 LB 942 Multimode Plate Reader. 

 

2.3.10 Flow cytometry 
 
Medium of 661W cells from the inlays (see 2.1.8.2) was collected, cells were washed with 1x PBS 

and harvested using 1x trypsin-EDTA for 20 s at RT. Collected medium and cells were centrifuged 

at 650 x g at 4°C for 5 min and resuspended in MACS buffer. To assess cell death of 661W cells 

after trans-well co-culturing with stimulated or unstimulated primary microglia, Annexin 

V/Propidium iodide staining was performed according to the manufacturer’s instructions.  

Cells were analyzed via flow cytometry with a BD FACSCantoTM Flow Cytometer (BD 

Biosciences) and data were obtained and analyzed with BD FACSDivaTM software (BD 

Biosciences). 
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2.4  Computational analysis 
 

2.4.1  Image analysis  
 
Morphological analysis of Iba1+ mononuclear phagocytes in lasered retinas and RPE/choroidal 

flat mounts was done using a grid system as previously described (Lückoff et al., 2017) and the 

evaluation of Iba1+ area per laser lesion was performed using ImageJ. The average grid crossing 

points and Iba1+ area per laser lesion was calculated.  

 
The size of laser lesions and vascular leakage was determined using the measuring tool of the 

HEYEX software. The analysis of vascular leakage by measuring pixel intensities was performed 

as described previously (Lückoff et al., 2017). In brief, pixel intensity was quantified in two 

regions of interest (ROI) within and one ROI outside each laser lesion using FIJI. The background 

pixel intensity was then subtracted from the laser lesion values and the data of three laser lesions 

averaged to obtain the mean laser-induced leakage per eye. 

 
CNV area in RPE/choroidal flat mounts were measured with the spline function of the graphic tool 

included in the ZEN blue software. The average CNV area per eye was calculated.  

 
Morphometric parameters in retinal flat mounts were analyzed using MotiQ, a fully automated 

analysis software. MotiQ was developed as an ImageJ plugin in Java and is publicly available 

(https://github.com/hansenjn/MotiQ, V3.1.1). All segmentation and quantification were 

performed on 2D mean intensity projections (MIPs) of 3D image data. 

 

2.4.2  Statistical analysis   
 
Statistical analysis was conducted on data from at least three independent experiments. Western 

blots from XBD173-treated, microglia-specific TSPO and Nox1-KO retinas or RPE/choroids were 

performed two times with three biological different samples each time. All micrographs shown 

are representative images of at least three independent experiments. Statistical analysis was 

performed using GraphPad Prism 8 software. Differences between two groups were analyzed by 

a two-tailed unpaired Student’s t test. In order to analyze the data from the laser-induced CNV 

mouse model and to take into account simultaneously the correlation between measurements from 

the same mouse, assuming that eyes were exchangeable and the correlation for repeated 

measurements in the same eye (in case of repeated laser burns), a linear mixed model was used, 
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including treatment (or genotype) and time as fixed effects and mouse as random effect (Ando et 

al., 2002; Zhao et al., 2019). Data are presented as means ± SEM, * P< 0.05, ** P<0.01, *** P≤ 

0.001.  

 

2.5  Buffers, chemicals and kits 
 
All buffers and solutions used in this study are listed in table 8, chemicals and kits used in this 

study are listed in table 9 and table 10, respectively. 

 
Table 8: List of all buffers and solutions.  

Buffer / Solution Chemical composition / Manufacturer, Cat. No. 

Alkaline lysis buffer 25 mM NaOH 
200 mM EDTA pH 12 in ddH2O 

DMEM – high glucose Sigma, D1145 

DNA Loading dye (6x) 30 % w/v Glycerol 
0.25 % w/v bromophenol blue in ddH2O 

DPBS (1x) Gibco, 14190 

HBSS (1x, w/o Ca2+, Mg2+) Gibco, 14175 

HBSS (1x, with Ca2+, Mg2+) Gibco, 14025 

Laemmli buffer (6x), non-reducing 375 mM TRIS pH 6.8 
60 % Glycerol 
0.2 % SDS,  
0.01 % bromophenol blue in ddH2O 

M-TBST (Blocking buffer) 5 % milk powder in 1x TBS-T 

MACS buffer 0.5 % BSA  
200 mM EDTA pH 8.0 in PBS 

Neutralization buffer 40 mM TRIS-HCl pH 5 in ddH2O 

PBST-X 0.3 % Triton X-100 in PBS 

Percoll 100% (isotonic) 9 parts v/v Percoll 
1 part v/v 1.5 M NaCl  

Perm/Block buffer 5 % NDS 
0.2 % BSA 
0.3 % Triton X-100 in 1x PBS 

Running buffer (10x) 192 mM Glycine 
250 mM TRIS 
1 % w/v SDS in ddH20 

TBE buffer (10x) 1 M Boric acid 
1 M Tris pH 7.5 
20 mM EDTA pH 8.0 in ddH2O 

TBS (10x) 150 mM NaCl 
200 mM TRIS in ddH2O 

TBS-T (1x) 0.1 % Tween 20 in 1x TBS 
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Transfer buffer (10x) 192 mM Glycine 
250 mM TRIS pH 7.4 
0.1 % w/v SDS in ddH2O 

Transfer buffer (1x) 10 % Transfer buffer 10x  
70 % ddH2O 
20 % v/v Methanol  

Trypsin-EDTA (0.05 %, phenol red) Thermo Scientific, 25300054 

 

 
Table 9: List of chemicals and reagents. 

Name Manufacturer, Cat. No. 

b-Mercaptoethanol Sigma-Aldrich, M-7154 

2-Deoxy-D-glucose (2-DG) Sigma-Aldrich, D8375 

5,6-carboxy-2’,7’-dichlorodihydroflurescein diacetate, 

di(acetoxymethyl ester) (DCF) 

Thermo Scientific, C2938 

 

Acrylamide/Bis- solution 30 % (29:1) Roth, A124.1  

Agarose Biozym, 84004 

Ammonium persulfate (APS) Sigma-Aldrich, A3678 

Artelac® Splash EDO® Bausch + Lomb, PZN 07706996 

Boric acid Sigma-Aldrich, B6768 

Bovine Serum Albumin (BSA) Sigma-Aldrich, A9418 

Bromophenol blue Sigma-Aldrich, B-6131 

Bsl1, Restriction enzyme New England BioLabs, R0555S 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) Sigma-Aldrich, C2759 

Cd11b MicroBeads human/mouse Miltenyi biotec, 130-093-634 

cOmplete Mini, Protease Inhibitor Cocktail Roche, 11836153001 

Corn oil Sigma-Aldrich, C8267 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, D5879 

Ethanol, absolute  AppliChem, A3678 

Ethidium bromide Sigma-Aldrich, 46067 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, E9884 

Fetal Calf Serum (FCS) Gibco, 10270 

Fluorescein ALCON® 10 % Alcon®, PZN 01467007 

Fura-2-AM Sigma-Aldrich, F0888 

GeneRuler 100 bp plus Thermo Scientific, SM0332 

Glycerol Sigma-Aldrich, 49781 

Glycine Roth, 3790.2 

Horseradish peroxidase (HRP) Merck, 516531-5KU 

Hydrochloric acid (HCl), 37 % Roth, X942.1  

Ionomycin Sigma-Aldrich, I3909 



Material and methods 

39 
 

Isoluminol Sigma-Aldrich, A8264 

Isopropanol (2-propanol) ChemSolute, 1136  

Ketaset 100 mg/ml Zoetis, PZN 12467832 

LPS, ultrapure from E. coli O111:B4 InvivoGen, tlrl-eblps 

Methanol ChemSolute, 1437.2511 

Methocel® 2 % OmniVision, PZN 04682367 

MitoSoxTM Thermo Scientific, M36008 

MitoTracker Red CMXRos Thermo Scientific, M7512 

N, N, N', N'-Tetramethylethylendiamin (TEMED) Roth, 2367.1  

Normal donkey serum (NDS) Linaris, ADI-NDKS-10 

Normal mouse serum (NMS) Dunn Lab, N14010M 

Oligomycin A Sigma-Aldrich, 75351 

PageRuler, prestained Thermo Scientific, 31985 

PercollTM GE Healthcare, 17-0891-02 

Phenylephrine 2.5 % / Tropicamide 0.5 % University Hospital Cologne, Pharmacy 

Phorbol-12-myristate-13-acetate (PMA) Sigma-Aldrich, P1585 

Powdered milk Roth, T145.3 

Rhod-2-AM Enzo, ENZ-52010 

Rompun 2 % (Xylazine) Bayer, PZN 1320422 

Rotenone Sigma, R8875 

Roti Histofix 4 % Roth, P087.4 

Sodium chloride (NaCl) Sigma-Aldrich, S9888 

Sodium Chloride 0.9 %, injection Fresenius Kabi, PZN 06605514 

Sodium dodecyl sulfate (SDS) Serva, 20765.03 

Sodium hydroxide (NaOH) Merck, 1.06462 

Sucrose Roth, 4621.1 

Tamoxifen Sigma-Aldrich, T5648 

TRIS Roth, 4855.3 

Triton X-100 Sigma-Aldrich, X100 

Trypan Blue 0.4 % Thermo Scientific, 15250061 

Tween 20 Sigma-Aldrich, P1379 

Vectashield® HardSetTM Mounting Medium Vectashield®, H1400 

XBD173 (AC-5216, Emapunil) APAC Pharmaceuticals, 828072 

 
 
 
Table 10: List of all kits used in this study. 

Kit Manufacturer, Cat. No. 

BD OptEIATM TMB Substrate Kit for ELISA BD Biosciences, 555214 

CellTiter-Glo® Luminescent Cell Viability Assay Promega, G7570 

FITC AnnexinV/ Propidium iodide Detection Kit BD Pharmigen, 556547 
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Mouse Angiopoietin-1 ELISA MyBioSource, MBS727480 

Mouse CCL2/JE/MCP-1 DuoSet® ELISA R&D Systems, DY479 

Mouse IL-1 beta /IL-1F2 DuoSet® ELISA R&D Systems, DY401 

Mouse IL-6 DuoSet® ELISA R&D Systems, DY406 

Mouse TNF DuoSet® ELISA R&D Systems, DY410 

Mouse VEGF DuoSet® ELISA R&D Systems, DY493 

Mouse/Rat Angiopoietin-2 Quantikine® ELISA R&D Systems, MANG20 

Mouse/Rat IGF-I/IGF-1 DuoSet® ELISA R&D Systems, DY791 

Neural Tissue Dissociation Kit (P) Miltenyi Biotec, 130-092-628 

PierceTM BCA Protein Assay Kit Thermo Scientific, 23225 

RevertAid RT Kit Thermo Scientific, K1691 

RNeasy® Micro Kit Qiagen, 74004 

SignalFireTM Elite ECL Reagent Cell Signaling Technology, 12757 

TakyonTM No ROX Probe MasterMix blue dTTP Eurogentec, UF-NPMT-B0701 

TakyonTM No ROX SYBR® MasterMix blue dTTP Eurogentec, UF-NSMT-B0701 

Taq-S PCR Kit Genaxxon bioscience, M3313  

TMRE Mitochondrial Membrane Potential Assay Kit Abcam, ab113852 

 
 
 

2.6 Devices and software 
 
All devices used in this study are listed in table 11 and software are listed in table 12. 
 

Table 11: List of all devices used in this study. 

Device Manufacturer 

Adventurer Pro balance Ohaus® 

BD FACSCantoTM Flow Cytometer BD Biosciences 

BlueMarineTM 200 Electrophoresis unit  SERVA Electrophoresis GmbH 

Centrifuge 5415 R Eppendorf 

Centrifuge Mini Star  VWR International 

Cryostat CM3050 Leica 

Explorer R Ex 124 balance  Ohaus® 

Galaxy 170S CO2 incubator  Eppendorf  

GentleMACS® Dissociator Miltenyi Biotec 

Heraeus Megafuge 40R Centrifuge Thermo Scientific 

Infinite® F200 Pro plate reader Tecan Trading AG 

Intas Gel iX20 Imager Intas 

LightCycler® 480 Instrument II  Roche Applied Science 

MatrixTM Multichannel Pipette  Thermo Scientific 

Mini-Protean® Tetra System  Bio-Rad 
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MiniTrans-Blot® Cell Module  Bio-Rad 

MSC-Advantage hood  Thermo Scientific 

MultiImageII  Alpha Innotech 

NanoDrop 2000 Spectrophotometer Thermo Scientific 

Neubauer counting chamber OptikLabor 

PeqSTAR 2x cycler Peqlab 

PowerPacTM basic Bio-Rad 

QuadroMACSTM Separator Miltenyi Biotec 

See-saw rocker SSL4  Stuart® 

Slit lamp BQ900® Haag-Streit International 

SpectralisTM HRA+OCT  Heidelberg Engineering 

Thermomixer compact  Eppendorf 

Vibracell 75115 Sonicator  Fisher Bioblock Scientific  

Vitra Monospot Laser Quantel Medical 

Vortex-GenieTM  Scientific Industries  

Zeiss Stemi 508 Stereo microscope Zeiss 

 

 
Table 12: List of software used in this study. 

Software Manufacturer 

Adobe creative suite Adobe Systems 

AlphaView FluorChem FC2 Cell Biosciences 

BD FACSDivaTM software (V5.0.3) BD Bioscience 

FIJI/ Image J (V1.9.13.0) Wayne Rasband, NIH 

GraphPad Prism 8 (V8.4.1) GraphPad Software, Inc. 

Heidelberg Eye Explorer (HEYEX) Heidelberg Engineering 

i-control 1.9 Tecan Trading AG 

Intas Gel Documentation Software (V3.39) Intas Science Imaging 

LightCycler® 480 Software (V1.5.1) Roche Applied Science 

Microsoft Office 365 pro plus Microsoft Corporation  

Nanodrop 2000/2000c Software  Thermo Scientific 

Papers 3 Read Cube 

Zen blue 2012 (V3.1.0.00002) Zeiss 
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3. Results 
 
3.1 Immunomodulatory and neuroprotective effects of the TSPO ligand 

XBD173 in laser-induced CNV 
 

3.1.1 XBD173 alleviates MNP reactivity in laser-damaged retinas and 
RPE/choroids 

 
We have previously shown that microglia activation and light-induced retinal degeneration 

can be prevented by TSPO ligands. However, the underlying molecular mechanisms of TSPO-

mediated immunomodulation and neuroprotection remain largely elusive. To investigate if 

targeting TSPO with the synthetic ligand XBD173 has also immunomodulatory potential in 

an in vivo model of neovascular AMD, laser photocoagulation in C57BL/6J mice that were 

treated daily with intraperitoneal injections of XBD173 or vehicle DMSO, were performed. 

The laser-induced CNV mouse model is extensively used in retinal research since it 

recapitulates several main features of wet AMD (Lambert et al., 2013). The laser damage 

results in the rupture of BM and an acute local inflammatory response concomitant with a 

rapid recruitment of MNPs and ingrowth of choroidal capillaries into the avascular retina 

within a few days (Combadière et al., 2007; Karlstetter et al., 2017; Lückoff et al., 2016).  

First, the immune-related effects of XBD173 on laser-induced CNV were assessed. Here, 

confocal images of retinal flat mounts from DMSO-treated mice revealed massive 

accumulation of reactive ameboid-shaped Iba1+ cells within the lesions at 3d post-laser injury 

whereas retinas from XBD173-treated mice had less Iba1+ phagocytes and these cells showed 

mainly a ramified morphology (Figure 11a, b). The infiltration of immune cells in the retina 

7d after laser injury was overall less than at 3d, indicating an inflammation-related wound 

healing process. Nevertheless, XBD173 treatment significantly attenuated phagocyte 

reactivity at both time points (Figure 11b, c). The mRNA expression of Cd68 and Tspo itself 

were then quantified to determine the magnitude of immune cell activation. Indeed, retinal 

Tspo and Cd68 transcript levels strongly increased after laser injury compared to naïve mice 

and the XBD173-treated groups showed diminished activation marker expression especially 

at the earlier time points (Figure 11d). Since TSPO protein oligomerization has been reported 

in human and mouse cells (Delavoie et al., 2003), retinal TSPO levels under non-reducing 

conditions were analyzed. After laser injury, Western blot analysis revealed a higher TSPO-

specific molecular weight band at 25 kDa (referred to as higher molecular weight "HMW1"), 

that was absent in non-lasered naïve or XBD173-treated mice (Fig. 11e). In contrast, 

monomeric TSPO levels (referred to as lower molecular weight "LMW"), were significantly 
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lower compared to naïve mice. The ratio of HMW1 to LMW was higher after laser injury than 

in naïve mice and XBD173 prevented lesion associated formation of HMW1 TSPO (Figure 

11e, f). Next, secretion of pro-inflammatory cytokines was analyzed. Six hours after laser 

injury, increased levels of CCL2 and IL-6 were found in the retina, whereas levels of IL-1b 

and TNF did not change (Figure 11g). Notably, XBD173-injected mice had strongly reduced 

CCL2 and IL-6 secretion comparable to the level of naïve mice (Figure 11g). 

 

 
Figure 11: XBD173 dampens mononuclear phagocyte reactivity in the retina after laser-induced CNV in 
mice. a Representative images show accumulation of Iba1+ mononuclear phagocytes within the laser lesion in 
retinal flat mounts. Scale bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 13-17 spots. 
c Quantification of Iba1+ area of the laser lesions. n= 13 spots. d Cd68 and Tspo mRNA levels in retina from 
DMSO- or XBD173 treated mice at indicated time points after laser-induced CNV. n= 6 retinas. e TSPO protein 
levels in whole retinal lysates of naïve and lasered mice at indicated time points. Each lane represents an 
individual retina. Dotted line indicates individual blots, which were processed in parallel. f Densitometric 
analysis of Western blots. LMW TSPO (18 kDa) signals were normalized to b-Actin and HMW:LMW TSPO 
ratio determined. n= 6 retinas from two independent experiments. LMW, lower molecular weight; HMW, higher 
molecular weight; n.t., non-treated. g Pro-inflammatory cytokine levels in retinas of naïve and lasered mice at 
indicated time points. CCL2 (n= 8 retinas); IL-6 (n= 17-32 retinas), IL-1b (n= 17-33 retinas) and TNF (n= 17-
33 retinas). Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, 
** P<0.01, *** P≤ 0.001. 
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To explore the effects of targeting TSPO with XBD173 on subretinal and RPE-associated 

phagocytes, Iba1+ cells were imaged in RPE/choroidal flat mounts. Similarly, as in the retina, 

XBD173 treatment reduced phagocyte infiltration and reactivity in the RPE/choroid compared 

to DMSO treatment (Figure 12a-c). Laser-induced Cd68 and Tspo expression were also 

reduced after XBD173 treatment (Figure 12d). Of note, Western blot analysis of RPE/choroids 

revealed an additional TSPO-specific HMW band (36 kDa) (referred to as ”HMW2”) (Figure 

12e). Again, LMW TSPO levels were significantly lower and the ratio of HMW1 to LMW 

and HMW2 to LMW was higher after laser-injury than in naïve mice and significantly reduced 

in XBD173-treated mice (Figure 12f). Moreover, increased levels of CCL2, IL-6 and IL-1b 

were found in the RPE/choroids after laser-injury, while XBD173 treatment prevented their 

laser-induced secretion. Levels of TNF did not change after laser injury or XBD173 treatment 

(Figure 12g).  
 

 
Figure 12: XBD173 dampens mononuclear phagocyte reactivity in the RPE/choroid after laser-induced 
CNV in mice. a Representative images of Iba1+ cells within the laser lesion in RPE/choroidal flat mounts. Scale 
bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 13 spots. c Quantification of Iba1+ area  
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of the laser lesions. n= 13 spots. d Cd68 and Tspo mRNA levels in RPE/choroid from DMSO- or XBD173 treated 
mice at indicated time points after laser-induced CNV. n= 6 RPE/choroids. e Western blots showing TSPO 
expression in whole RPE/choroidal lysates of naïve and lasered mice at indicated time points. Each lane 
represents an individual RPE/choroid. Dotted line indicates individual blots, which were processed in parallel.     
f Densitometric analysis of Western blots. LMW TSPO (18 kDa) signals were normalized to b-Actin and 
HMW:LMW TSPO ratio determined. n= 6 RPE/choroids from two independent experiments. LMW, lower 
molecular weight; HMW, higher molecular weight; n.t., non-treated. g Pro-inflammatory cytokine levels in 
RPE/choroids of naïve and lasered mice. CCL2 (n= 8 RPE/choroids); IL-6, IL-1b and TNF (n= 17-30 
RPE/choroids). Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 
0.05, ** P<0.01, *** P≤ 0.001. 

 
 

3.1.2 XBD173 blocks stimulation-induced extracellular ROS production in 
microglia 
 

Since reactive MNPs are a rich source for ROS, which have been suggested as drivers of 

neurodegeneration, we next analyzed if targeting TSPO with XBD173 also affects ROS 

production of mouse primary microglia (pMG). ROS can be produced in different subcellular 

locations such as the lumen of phagosomes and the extracellular milieu (extracellular ROS), 

the cytoplasm (intracellular ROS) or in the mitochondrial matrix. Extracellular and 

phagosomal ROS can be assessed with the cell-impermeable dye isoluminol (Lundqvist and 

Dahlgren, 1996), while intracellular ROS levels are measured with the cell-permeable dye 

DCF derivative 5,6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl 

ester) that exclusively detects ROS in the cytosol (Hempel et al., 1999) (Figure 13a). ROS that 

is produced in the mitochondrial matrix as a by-product of the respiratory electron transport 

chain (ETC) can be analyzed with MitoSOX Red (Robinson et al., 2006) (Figure 13a). 

First, we analyzed extracellular and phagosomal ROS production in pMG after different 

stimuli (Figure 13b). Here, ROS levels strongly increased after stimulation of pMG with 

phorbol 12-myristate 13-acetate (PMA), a chemical stimulator of ROS, or after phagocytosis 

of photoreceptor cell debris but not after LPS treatment (Figure 13b). As phagocytic clearance 

of dead cells by microglia is a physiological process that is overreactive during disease, 

stimulation with photoreceptor cell debris was used for further experiments. 

Culture of pMG in the presence of XBD173 strongly diminished stimulation-induced ROS 

production (Figure 13c). In contrast, cytosolic ROS (Figure 13d) or ROS produced in the 

mitochondrial matrix (Figure 13e) was not detected in stimulated microglia. These data 

indicate that the TSPO ligand XBD173 blocks extracellular and phagosomal ROS production 

of microglia after stimulation. 
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Figure 13: XBD173 blocks stimulation-induced extracellular ROS production in primary microglia.                   
a Schematic representation of three different ROS detection methods. Isoluminol detects ROS in the lumen of 
phagosomes and the extracellular milieu (extracellular ROS). DCF detects cytosolic (intracellular) ROS and 
MitoSOX Red measures ROS inside the mitochondrial matrix. b Quantification of extracellular ROS production 
by primary microglia from WT mice. Primary microglia were stimulated with LPS, PMA or photoreceptor cell 
debris. Kinetics of ROS production and the area under the curve (AUC) are shown. n= 4 independent 
experiments. c Quantification of stimulation-induced extracellular ROS production by primary microglia from 
WT mice treated with XBD173. Kinetics of ROS production and the area under the curve (AUC) are shown. n= 
11 independent experiments. d Cytosolic ROS production in WT mice. Primary microglia were stimulated 
with LPS, PMA or photoreceptor cell debris. Kinetics of ROS production and the area under the curve (AUC) 
are shown. n= 4 independent experiments. e Matrix-derived ROS (mROS) production in WT mice. Primary 
microglia were stimulated with photoreceptor cell debris or rotenone as a positive control to induce ROS 
production into the mitochondrial matrix. Kinetics of ROS production and the area under the curve (AUC) are 
shown. n= 4 independent experiments. Data are presented as mean ± SEM; unpaired two-tailed Student’s t test; 
***P≤ 0.001. 

 
 

3.1.3 XBD173 limits laser-induced vascular leakage and neoangiogenesis 
 
To investigate the anti-angiogenic potential of XBD173, we assessed its effects on 

inflammation-induced vascular leakage with late‐phase fundus fluorescein angiography 

(FFA). While DMSO-injected mice showed prominent vascular leakage after laser injury, 

strongly reduced vascular leakage was seen in XBD173-treated mice at all analyzed time 

points (Figure 14a). Both, leakage intensity and area were significantly lower in the XBD173 

group than in controls (Figure 14b, c). These findings were confirmed by monitoring CNV 

formation using lectin staining of RPE/choroidal flat mounts. The CNV size was significantly 
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smaller in the XBD173 treatment groups compared to DMSO-treated control mice (Figure 

14d, e). To elucidate whether targeting of TSPO with XBD173 also affects angiogenic 

growth factors, the protein levels of VEGF-A, angiopoietin-1 (ANG-1), ANG-2, and 

insulin-like growth factor-1 (IGF-1) levels were measured in the retina and RPE/choroid. 

The secretion of all growth factors was significantly increased in both tissues after laser 

injury, but strongly reduced in XBD173-treated mice especially at early time points of the 

analysis (Figure 14f, g). As laser-induced CNV is also accompanied by a wound healing 

process, we monitored the lesion size and the formation of a fibrotic scar over time after laser 

injury in vivo using SD-OCT. Notably, XBD173 treatment attenuated the lesion-associated 

fibrosis significantly at all time points compared to controls, indicating a faster wound healing 

process (Figure 15a, b). These findings demonstrate that XBD173 attenuates both vascular 

leakage and neoangiogenesis. 
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Figure 14: XBD173 inhibits laser-induced vascular leakage and pathological CNV in mice.                                        
a Representative late phase fundus fluorescein angiography (FFA) images at indicated time points post laser 
injury. Scale bar: 200 µm; FA, fluorescein angiography. b Quantification of vascular leakage intensity after 
laser-induced CNV. n= 25-56 eyes. c Quantification of vascular leakage area after laser-induced CNV.              
n= 25-56 eyes. d Representative images of laser-induced CNV stained with isolectin B4 in RPE/choroidal 
flat mounts. Scale bar: 100 µm. e Quantification of laser-induced CNV area in RPE/choroidal flat mounts. 
n= 17-38 RPE/choroids. f Pro-angiogenic growth factor levels in retinas of naïve and lasered mice at indicated 
time points. n= 8 eyes. g Pro-angiogenic growth factor levels in RPE/choroids of naïve and lasered mice at 
indicated time points. n= 8 eyes. Data are presented as mean ± SEM. Linear mixed model was used for statistical 
analyses; * P< 0.05, ** P<0.01, *** P≤ 0.001. 
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Figure 15: XBD173 attenuates laser lesion size and promotes wound healing. a Representative infrared (IR) 
fundus images at indicated time points post laser injury. Lower panel shows OCT scan from one laser spot 
marked by a red line. Scale bar: 200 µm. b Quantification of laser spot size. n= 26-106 eyes. n.s., not 
significant. Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; ** P<0.01 
and *** P≤ 0.001. 

 
 
3.2 Effects of microglia-specific TSPO-KO on laser-induced CNV 
 

3.2.1   Validation of microglia-specific TSPO-KO 
 
Since we demonstrated a protective and immunomodulatory effect of XBD173 treatment in 

the mouse model of laser-induced CNV, we next assessed the direct function of TSPO in 

retinal immune cells. For this, we generated microglia-specific conditional TSPO-KO mice 

(referred to as TSPODMG) using the tamoxifen inducible Cre-LoxP system. TSPOfl/fl mice 

(Sileikyte et al., 2014) carrying loxP sites flanking exons 2 and 3 of the Tspo locus were 

crossed with mice heterozygous for Cre recombinase driven by microglia/macrophage-

specific Cx3cr1 promoter (Cx3cr1CreERT2) (Yona et al., 2013). As CX3CR1 is expressed by 

both microglia and macrophages, tamoxifen was applied four weeks before laser 

photocoagulation. This allows specific targeting of microglia based on their greater longevity 

and limited self-renewal when compared to the infiltrating myeloid cells (Bruttger et al., 

2015).  

Next, we assessed TSPO expression in the retina and RPE/choroid prepared from tamoxifen-

treated TSPOfl/fl and TSPODMG mice by two different methods. First, successful recombination 

at the Tspo locus was confirmed by PCR (Figure 16a). Second, the absence of TSPO protein 

in the retina were confirmed by SDS-PAGE and Western blotting (Figure 16b). However, 

microglia comprise only 0.2 % of total retinal cells and other glia cells such as Müller cells 
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and astrocytes also express TSPO, that mask the microglial TSPO-KO efficiency in total 

retinal lysates. Thus, we also validated the microglia-specific TSPO-KO in primary microglia 

isolated from TSPOfl/fl and TSPODMG mice using PCR (Figure 16c) and Western blot (Figure 

16d). 

 
 

 
Figure 16: Validation of microglia-specific TSPO knockout. a, c Genomic PCR products spanning exon 1 
and 4 of Tspo from retina or RPE/choroid (a) or from isolated primary microglia (c). WT band, 526 bp; Tspo 
deleted band, 176 bp; NTC, no template control. b, d TSPO protein levels from total retina or RPE/choroid 
lysates (b) or from isolated primary microglia (d) and densitometric analysis of Western blots. TSPO signals 
were normalized to b-Actin. n= 3 independent experiments or retinas and RPE/choroids from three independent 
experiments. Data are presented as mean ± SEM; unpaired two-tailed Student’s t test *P< 0.05 and **P< 0.01. 
 
 
 

3.2.2  Characterization of TSPO-deficient microglia 
 
Microglia-specific TSPO-KO mice were phenotypically unremarkable when compared with 

control mice. Notably, microglia from TSPODMG mice did also not show obvious 

morphological differences in their ramification or branching network compared with TSPOfl/fl 

mice (Figure 17). 
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Figure 17: Microglia of TSPO-KO mice exhibit a normal phenotype. a Analysis of microglia phenotype in 
retinal flat mounts. Three morphological parameters were analyzed: 1) total (area of green arbor) and spanned 
area (area circumscribed by the polygonal object defined by connecting the outer points of the dendritic arbor 
(green)); 2) total tree length (sum of all dendritic segments identified in the skeletonized arbor); 3) number 
of branches (blue dots), junctions (points where more than two branches meet, blue dots) and endpoints 
(orange dots) (identified in a skeletonized rendition of the arbor). b Skeleton analysis of microglia 
morphologies in Iba1-stained retinal flat mounts. Scale bar: 50 µm. Original photomicrographs (left panel) 
and skeletons (green) with associated convex hulls (white polygonal) (right panel). Data are presented as mean 
± SEM. n= 25 microglia cells from individual retinas, unpaired two-tailed Student’s t test. n.s., not significant. 
 
 
 
Since TSPO may be involved in basic mitochondrial functions (Gatliff et al., 2014; Liu et al., 

2017), we next analyzed the mitochondrial network, the mitochondrial membrane potential 

(MMP) and cellular ATP levels (Figure 18). Confocal image analysis of the mitochondrial 

network in TSPODMG microglia showed no mitochondrial fragmentation or other alterations 

in morphology compared to TSPOfl/fl microglia, where TSPO co-localized with mitochondria 

(Figure 18a). Interestingly, unstimulated TSPODMG microglia showed a slight 

hyperpolarization of the MMP compared to TSPOfl/fl cells, suggesting an increased activity of 

the ETC (Figure 18b). However, after stimulated phagocytosis of photoreceptor cell debris, 

the MMP was slightly reduced in both TSPODMG and TSPOfl/fl cells (Figure 18b). Microglia 

from TSPODMG mice showed no differences in cellular ATP levels compared to TSPOfl/fl 
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microglia neither in untreated conditions nor after stimulation with debris (Figure 18c). 

Inhibition of glycolysis through the glucose derivative 2-Deoxy-D-glucose (2-DG) showed 

that both resting and stimulated microglia depend to some degree on glycolysis for ATP 

generation (Figure 18d). However, inhibition of the mitochondrial ATP synthase by 

oligomycin A treatment showed that ATP is mainly generated through mitochondrial 

respiration (Figure 18e). Importantly, there was no difference between WT and TSPO-KO 

microglia. Thus, TSPO-deficient microglia are perfectly capable of generating ATP through 

mitochondrial respiration further indicating unimpaired mitochondrial function. Taken 

together, these data implicate that TSPO is not required for mitochondrial integrity, health or 

energy metabolism in unstimulated or stimulated microglia. 
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Figure 18: TSPO-KO microglia exhibit a normal energy homeostasis. a Representative images of TSPO- 
and Mitotracker Red-stained mitochondria in TSPOfl/fl and TSPODMG primary microglia. Nuclei were 
counterstained with DAPI. Scale bar: 6 µm. b Analysis of mitochondrial membrane potential in TSPOfl/fl and 
TSPODMG primary microglia. Where indicated, TSPOfl/fl and TSPODMG primary microglia were stimulated with 
photoreceptor cell debris and mitochondrial membrane potential was impaired with CCCP as a positive control. 
n= 4 independent experiments. c-e Analysis of total ATP levels. Where indicated, primary microglia from 
TSPOfl/fl and TSPODMG mice were stimulated with photoreceptor cell debris and treated either with 200 µM 
CCCP to impair the mitochondrial membrane potential (c), 500 µM 2-Deoxy-D-glucose (2-DG) to inhibit 
glycolysis (d) or 10 µM oligomycin A to inhibit complex V of the ETC (e). n= 3 independent experiments. 
Data are presented as mean ± SEM; unpaired two-tailed Student’s t test; *P< 0.01 when TSPOfl/fl compared to 
TSPOfl/fl + Photo. debris; #P< 0.01 when TSPOfl/fl compared to TSPODMG. n.s., not significant; n.t., non-treated. 
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3.2.3 TSPO-KO in microglia attenuates their reactivity in laser-damaged retinas 
and RPE/choroids  

 
We next determined if the absence of TSPO in microglia affects their behavior in the laser-

CNV model. TSPODMG retinas showed less infiltration of Iba1+ cells and reduced reactivity in 

the laser lesions at all time points analyzed compared to TSPOfl/fl mice (Figure 19a-c). The 

increased expression of Cd68 and Tspo was also prevented in TSPODMG mice (Figure 19d). 

Notably, naïve TSPODMG mice had lower LMW TSPO levels in the retina than TSPOfl/fl mice 

and the lesion-induced formation of HMW1 TSPO was only detected in TSPOfl/fl but not in 

TSPODMG mice (Figure 19e, f). Furthermore, the laser-induced secretion of CCL2 and IL-6 

was prevented in TSPODMG retinas, phenocopying the effects of XBD173 treatment (Figure 

19g). Again, levels of IL-1b and TNF did not change in the retina after laser damage (Figure 

19g).    

 

 

 
Figure 19: Absence of TSPO dampens mononuclear phagocyte reactivity in the retina after laser-induced 
CNV in mice. a Representative images show accumulation of Iba1+ cells within the laser lesion in retinal flat 
mounts. Scale bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 18-21 spots.                                
c Quantification of Iba1+ area of the laser lesions. n= 18-21 spots. d Cd68 and Tspo mRNA levels in retina from 
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TSPOfl/fl and TSPODMG mice at indicated time points after laser-induced CNV. n= 6 retinas. e TSPO protein 
levels in whole retinal lysates of naïve and lasered TSPOfl/fl and TSPODMG mice at indicated time points. Each 
lane represents an individual retina. Dotted line indicates individual blots, which were processed in parallel.             
f Densitometric analysis of Western blots. LMW TSPO (18 kDa) signals were normalized to b-Actin and 
HMW:LMW TSPO ratio determined. n= 6 retinas from two independent experiments. LMW, lower molecular 
weight; HMW, higher molecular weight. g Pro-inflammatory cytokine levels in retinas of naïve and lasered 
TSPOfl/fl and TSPODMG mice at indicated time points. CCL2 (n= 8 retinas); IL-6, IL-1b and TNF (n= 8-13 
retinas). Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; ** P<0.01 
and *** P≤ 0.001. 
 
 
 
Similar to the retina, the analysis of phagocytes in RPE/choroidal flat mounts showed reduced 

Iba1+ cell infiltration and reactivity in TSPODMG mice compared to TSPOfl/fl mice (Figure 20a-

c). Laser-induced Cd68 and Tspo expression were also prevented in TSPODMG mice but not in 

TSPOfl/fl mice (Figure 20d). In addition, laser-induced formation of HMW1 and HMW2 TSPO 

were absent in the RPE/choroid of TSPODMG mice (Figure 20e, f). Moreover, laser-induced 

secretion of CCL2, IL-6, and IL-1b in the RPE/choroid was blocked in TSPODMG mice (Figure 

20g). Together, these data demonstrate that microglia-specific TSPO-KO prevented laser-

induced MNP reactivity and ameliorates inflammation. 
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Figure 20: Absence of TSPO dampens mononuclear phagocyte reactivity in the RPE/choroid after laser-
induced CNV in mice. a Representative images of Iba1+ cells within the laser lesion in RPE/choroidal flat 
mounts. Scale bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 18 spots. c Quantification 
of Iba1+ area of the laser lesions. n= 18 spots. d Cd68 and Tspo mRNA levels in RPE/choroid from TSPOfl/fl and 
TSPODMG mice at indicated time points after laser-induced CNV. n= 6 RPE/choroids. e Western blots showing 
TSPO expression in whole RPE/choroidal lysates of naïve and lasered TSPOfl/fl and TSPODMG mice at indicated 
time points. Each lane represents an individual retina. Dotted line indicates individual blots, which were 
processed in parallel. f Densitometric analysis of Western blots. LMW TSPO (18 kDa) signals were normalized 
to b-Actin and HMW:LMW TSPO ratio determined. n= 6 RPE/choroids from two independent experiments. 
LMW, lower molecular weight; HMW, higher molecular weight. g Pro-inflammatory cytokine levels in 
RPE/choroids of naïve and lasered TSPOfl/fl and TSPODMG mice. CCL2 (n= 8 RPE/choroids); IL-6, IL-1b and 
TNF (n= 8-13 RPE/choroids). Data are presented as mean ± SEM. Linear mixed model was used for statistical 
analyses; * P<0.05, ** P<0.01 and *** P≤ 0.001. 
 
 

3.2.4  TSPO deficiency blocks stimulation-induced ROS production in primary 
microglia 

 

When analyzing extracellular ROS production of microglia after different stimuli, we found 

that ROS production after stimulation with the PKC activator PMA was not affected upon 

genomic deletion of TSPO specifically in these cells, whereas their capacity to produce this 

neurotoxin after stimulation with photoreceptor cell debris was completely abolished (Figure 
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21a). Notably, XBD173 treatment did not further reduce ROS levels in TSPODMG microglia 

suggesting a TSPO-specific inhibitory effect on ROS production (Figure 21b). As TSPO is a 

mitochondrial protein, we also analyzed the effects of TSPO deficiency on ROS levels 

originating from the mitochondria. Here, no differences in cytosolic ROS or ROS production 

into the mitochondrial matrix at basal levels or after stimulation were found in TSPODMG 

versus TSPOfl/fl microglia (Figure 21c, d). These data indicate that TSPO is necessary for 

microglial production of extracellular and phagosomal ROS upon stimulation. 

 

 
Figure 21: TSPO-KO blocks stimulation-induced extracellular ROS production in primary microglia.             
a Quantification of extracellular ROS production by primary microglia from TSPOfl/fl and TSPODMG mice. 
Primary microglia were stimulated with LPS, PMA or photoreceptor cell debris. Kinetics of ROS production 
and the area under the curve (AUC) are shown. n= 10 independent experiments. b Quantification of stimulation-
induced extracellular ROS production by primary microglia from TSPOfl/fl and TSPODMG mice treated with 
XBD173. Kinetics of ROS production and the area under the curve (AUC) are shown. n= 10 independent 
experiments, (+ XBD173, n= 3 independent experiments). c Cytosolic ROS production in TSPOfl/fl and 
TSPODMG mice. Primary microglia were stimulated photoreceptor cell debris. Kinetics of ROS production and 
the area under the curve (AUC) are shown. n= 4 independent experiments. d Matrix-derived ROS production in 
TSPOfl/fl and TSPODMG microglia. Primary microglia were stimulated with photoreceptor cell debris or rotenone 
as a positive control to induce ROS production into the mitochondrial matrix. Kinetics of ROS production and 
the area under the curve (AUC) are shown. n= 4 independent experiments. Data are presented as mean ± SEM; 
unpaired two-tailed Student’s t test, **P< 0.01 and ***P< 0.001. 
 
 

3.2.5  TSPO-KO in microglia prevents laser-induced vascular leakage and CNV  
 
Since deletion of TSPO in microglia strongly reduced their inflammatory potential, we 

invested their effects on vascular leakage and CNV. TSPOfl/fl mice showed typical laser-

induced vascular leakage that was strongly reduced in TSPODMG mice at all analyzed time 
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points (Figure 22a-c) and the overall CNV size was significantly smaller in TSPODMG mice 

than in controls (Figure 22d, e). While a prominent laser-induced secretion of VEGF-A, ANG-

1, ANG-2 and IGF-1 was found in the retinas and RPE/choroids of TSPOfl/fl mice, only basal 

levels of these pro-angiogenic factors were detected in TSPODMG mice (Figure 22f, g). 

 

 

Figure 22: Absence of TSPO inhibits laser-induced vascular leakage and pathological CNV in mice.                      
a Representative late phase FFA images at indicated time points post laser injury. Scale bar: 200 µm; FA, 
fluorescein angiography. b Quantification of vascular leakage intensity after laser-induced CNV. n= 22-85 
eyes. c Quantification of vascular leakage area after laser-induced CNV. n= 30-91 eyes. d Representative 
images of  laser-induced CNV stained with isolectin B4 in RPE/choroidal flat mounts. Scale bar: 100 µm. e 
Quantification of laser-induced CNV area in RPE/choroidal flat mounts. n= 22 RPE/choroids. f Pro-
angiogenic growth factor levels in retinas of naïve and lasered TSPOfl/fl and TSPODMG mice at indicated time 
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points. n= 8 retinas. g Pro-angiogenic growth factor levels in RPE/choroids of naïve and lasered TSPOfl/fl and 
TSPODMG mice at indicated time points. n= 8 RPE/choroids. Data are presented as mean ± SEM. Linear mixed 
model was used for statistical analyses; *P< 0.05, **P< 0.01 and ***P≤ 0.001. 
 
 
Finally, we assessed the wound healing process in TSPODMG mice. These mice showed 

attenuated laser lesion sizes and significantly reduced fibrosis compared to TSPOfl/fl mice 

(Figure 23a, b). Thus, TSPO-KO in retinal microglia considerably reduced inflammation-

associated vascular leakage and neovascular lesions. 

 
 

 
Figure 23: Microglia-specific TSPO-KO attenuates laser lesion size and promotes wound healing.                                       
a Representative IR fundus images at indicated time points post laser injury. Lower panel shows OCT scan 
from one laser spot marked by a red line. Scale bars: 200 µm. b Quantification of laser spot size. n= 25-45 
eyes. Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; ***P≤ 0.001. 
n.s., not significant.  
 
 

3.3  TSPO as a regulator of phagocytic ROS production in the retina 
 

3.3.1 Targeting TSPO reduces laser-induced Nox1 expression 
 
Since our observations from XBD173 treatment and microglia-specific TSPO-KO indicate a 

novel role for TSPO in phagocyte ROS production, we further evaluated the molecular 

pathways. The enzyme family of NADPH oxidases (NOX) is mainly responsible for regulated 

ROS production and consists of the membrane-bound enzymes NOX1, NOX2, NOX3, NOX4, 

NOX5 and the dual oxidases DUOX1 and DUOX2. All isoforms transfer electrons from 

NADPH across biological membranes to molecular oxygen generating superoxide (O2.-) and 

subsequently H2O2 (Bedard and Krause, 2007).  
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Although NOX2 is often considered as the major source of ROS in phagocytes, including 

macrophages, we assessed the expression pattern of all NOX isotypes in the retina and RPE. 

Since NOX5 is absent in rodents (Cheng et al., 2001), its expression was not addressed in this 

study. In both tissues, all NOX family members except Nox3, which is mainly found in the 

inner ear (Banfi et al., 2004), were expressed at low basal levels (Figure 24a). Interestingly, 

only Nox1 expression was strongly increased in the retina and RPE 6h after laser-induced 

injury while the expression levels of Nox2, Nox4, Duox1 or Duox2 did not change compared 

with naïve mice (Figure 24b, c). Notably, the laser-induced expression of Nox1 was not only 

abolished after XBD173 treatment (Figure 24b, c) but also in TSPODMG mice after laser-CNV 

(Figure 25a, b). These findings indicate that in retinal microglia NOX1 could be the major 

source of ROS after laser-induced CNV. 

 

 
Figure 24: XBD173 reduces laser-induced NADPH oxidase 1 (Nox1) expression. a Relative expression of  
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Nox family members in WT retinas and RPE/choroids. Transcript levels for each enzyme were normalized to b-
Actin. n= 6 retinas/RPEs. b-c Laser-induced gene expression of Nox enzymes in retina (b) and RPE/choroid 
(c) of DMSO- or XBD173 treated mice. Transcript levels for each enzyme were normalized to b-Actin. n= 6 
retinas/RPEs. Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; 
***P≤ 0.001. N.d., not detected. 
 
 

 
Figure 25: Microglia-specific TSPO-KO reduces laser-induced Nox1 expression. a-b Laser-induced gene 
expression of Nox enzymes in retina (a) and RPE/choroid (b) of TSPOfl/fl and TSPODMG mice. Transcript 
levels for each enzyme were normalized to b-Actin. n= 6 retinas/RPEs. Data are presented as mean ± SEM. 
Linear mixed model was used for statistical analyses; ***P≤ 0.001. 
 
 

3.3.2 TSPO triggers ROS production in microglia via NOX1  
 
To validate the findings above, extracellular microglial ROS production was analyzed in 

different Nox-deficient mice. Microglia deficient for p22phox (p22phox-KO), the common 
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catalytic subunit of NOX1-4, were lacking stimulation-induced extracellular ROS production 

(Figure 26a). Thus, DUOX1 and DUOX2 can be excluded as ROS sources as both are not 

dependent on p22phox (Lambeth et al., 2007). When analyzing Nox1-deficient microglia, no 

stimulation-induced ROS production was detected (Figure 26b), while microglia from Nox2- 

and Nox4-deficient mice were still able to produce stimulation-induced extracellular ROS, 

which was abolished after XBD173 treatment (Figure 26c, d). These results indicate that 

NOX1 is the key enzyme for ROS production in retinal phagocytes and critically depends on 

the presence of TSPO. 

 
 

 
Figure 26: ROS production by primary microglia involves TSPO-dependent NOX1 activation.                            
a-d Quantification of extracellular ROS production by primary microglia from WT and p22phox-KO mice (a), 
Nox1-KO mice (b), Nox2-KO mice (c) and Nox4-KO mice (d). Kinetics of ROS production and the area under 
the curve (AUC) are shown. Where indicated, primary microglia were stimulated with photoreceptor cell debris. 
n= 3 independent experiments. Data are presented as mean ± SEM; unpaired two-tailed Student’s t test; *P< 0.05 
and ** P< 0.01. 
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3.3.3 TSPO associated increase in cytosolic calcium is essential for NOX1-
derived extracellular ROS production 

 

Next, we further investigated the functional coupling between TSPO and NOX1 in microglia. 

Calcium (Ca2+) is an important second messenger that regulates a variety of cellular functions 

(Berridge, 2012) and is responsible for the activation of ROS-generating enzymes (Gordeeva 

et al., 2003). As TSPO is assumed to be involved in Ca2+ homeostasis and to play a potential 

role in redox homeostasis, we first analyzed the effects of modulating Ca2+ levels on ROS 

production. Microglia from WT (Figure 27a), TSPOfl/fl and TSPODMG mice (Figure 27b) 

completely failed to produce ROS in the absence of extracellular Ca2+. Increasing cytosolic 

Ca2+ with the Ca2+-ionophore ionomycin was sufficient to induce extracellular ROS 

production in non-stimulated microglia (Figure 27a, b). This indicates that the influx of 

extracellular Ca2+ is essential for the induction of NOX1-dependent ROS production in 

response to stimulation with photoreceptor debris. Interestingly, not only stimulus-dependent 

NOX1 activity but also increased Nox1 expression in primary microglia was detected after 

phagocytosis of photoreceptor cell debris, which was strongly reduced by XBD173 or in 

microglia-specific TSPO-KO (Figure 27c). Notably, this upregulation of Nox1 gene 

expression was also depended on extracellular Ca2+ levels (Figure 27c), indicating that the 

increased ROS production is, at least in part, due to increased Nox1 expression in primary 

microglia. 

 
 

 

Figure 27: Lack of extracellular Ca2+ reduces NOX1 activity and expression in primary microglia.                      
a-b Quantification of extracellular ROS production by primary microglia from WT (a), TSPOfl/fl and TSPODMG 
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mice (b). Kinetics of ROS production and the area under the curve (AUC) are shown. Where indicated, primary 
microglia were stimulated with photoreceptor cell debris in the presence or absence of extracellular Ca2+ or 
cytosolic Ca2+ was increased with the Ca2+ ionophore ionomycin as a positive control. n= 4 (a), n= 3 (b) 
independent experiments. c Nox1 mRNA levels in pMG from TSPOfl/fl and TSPODMG mice 6h after stimulation 
with photoreceptor cell debris in the presence or absence of extracellular Ca2+. n= 6 for TSPOfl/fl pMG and 
n= 4 independent experiments for TSPODMG pMG. Data are presented as mean ± SEM; unpaired two-tailed 
Student’s t test; **P< 0.01, ***P≤ 0.001. w/o, without; w, with; n.t., non-treated. 
 
 
 
Mitochondria are not only the cellular organelles responsible for energy generation but also 

act as intracellular Ca2+ stores (Demaurex et al., 2009). Ca2+ storage within the mitochondrial 

matrix is mainly achieved by the formation of Ca2+ phosphate complexes (Prins and Michalak, 

2011). Thus, we next analyzed cytosolic and mitochondrial Ca2+ levels of microglia using 

synthetic fluorescent Ca2+ indicators.  

Fura-2-acetoxymethyl ester (Fura-2-AM) is a membrane permeable ratiometric fluorescent 

Ca2+ indicator that measures cytosolic Ca2+ levels (Figure 28a). Once it crosses the cell 

membranes, the AM form is hydrolyzed via cellular esterases, regenerating Fura-2. Binding 

of Ca2+ to Fura-2 causes a shift in the excitation spectrum which can be easily detected 

(Contreras et al., 2010). In order to measure mitochondrial Ca2+ levels Rhod-2-AM is used. 

Rhod-2-AM is also cell permeable and due to its delocalized positive charge and the 

negative MMP, it mainly accumulates inside the mitochondrial matrix (Figure 28a). In 

contrast to Fura-2, Rhod-2 responds to Ca2+ rises with an increase in fluorescence intensity 

(Contreras et al., 2010). When analyzing mitochondrial Ca2+ levels in primary microglia of 

TSPOfl/fl and TSPODMG mice, we did not detect a stimulation-induced increase in these Ca2+ 

levels (Figure 28b). Also, no difference in the basal mitochondrial Ca2+ levels between WT 

and TSPO-deficient microglia was observed (Figure 28b). In contrast, stimulated phagocytosis 

of primary microglia increased their cytosolic Ca2+ levels (Figure 28c). Notably, XBD173 

prevented the stimulation-induced increase in cytosolic Ca2+, as did the microglia-specific 

knockout of TSPO itself (Figure 28c).  
These results demonstrate that the TSPO-dependent increase of cytosolic Ca2+ after 

stimulation is essential not only for Nox1 expression but also for stimulated NOX1-dependent 

ROS production. 
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Figure 28: TSPO associated increase in cytosolic calcium is essential for NOX1-derived extracellular ROS 
production. a Schematic representation of different calcium detection methods. Rhod-2-AM detects calcium 
within mitochondria and Fura-2-AM detects cytosolic calcium levels. b Quantification of mitochondrial calcium 
levels in primary microglia from TSPOfl/fl and TSPODMG mice. Where indicated, primary microglia were 
stimulated with photoreceptor cell debris. n= 3 independent experiments. c Quantification of cytosolic calcium 
levels in primary microglia from TSPOfl/fl and TSPODMG mice. Where indicated, primary microglia were 
stimulated with photoreceptor cell debris. n= 3 independent experiments. Data are presented as mean ± SEM; 
unpaired two-tailed Student’s t test; **P< 0.01. n.t., non-treated. 
 
 
 

3.3.4 Microglia-derived extracellular ROS damage photoreceptor cells in a 
paracrine manner 

 

Excessive ROS production is often referred to as oxidative stress and associated with damage 

of cellular molecules such as DNA, lipids and proteins (Lambeth and Neish, 2014; 

Schumacher et al., 2008). However, a slight elevation of ROS levels has important signaling 

functions during immunological and biological processes (Finkel, 2012; Reczek and Chandel, 

2015). Thereby, not only the ROS-inducing stimuli, ROS sources and its subspecies play a 

role but also the compartmentalization of ROS production is an important factor that 

determines if it acts as a neurotoxin or signaling molecule (Kaludercic et al., 2014; Ushio-

Fukai, 2009). Recognition of PAMPs by phagocytes leads to a substantial and fast increase of 

extracellular and phagosomal ROS production catalyzed by NOX enzymes that damage 

invading pathogens (Gluschko et al., 2018). Here, we identified NOX1-dependent ROS 

production by microglia upon stimulated phagocytosis, which takes place at the plasma 

membrane resulting in extracellular and phagosomal ROS. Thus, we finally investigated the 

paracrine potential of microglia-derived extracellular ROS as damaging neurotoxins. 
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For this, 661W photoreceptor cells were co-cultured in a trans-well system with primary 

microglia stimulated with photoreceptor cell debris to induce their extracellular ROS 

production. 661W cells cultured alone were used to determine the ratio of dead cells that occur 

during the cell harvesting for flow cytometric analysis. Here, the number of propidium iodide 

positive (PI+) photoreceptor cells did not significantly increase when these cells were 

challenged with photoreceptor cell debris (Figure 29a, g). During co-culture with resting 

microglia only few PI+ photoreceptor cells were detected via flow cytometry while cell death 

of photoreceptor cells tremendously increased after induction of extracellular ROS production 

via photoreceptor cell debris stimulation of microglia (Figure 29b, e, g). Accordingly, a strong 

reduction of  PI+ photoreceptor cells could be observed when co-cultured with XBD173-

treated TSPOfl/fl microglia (Figure 29c, g), microglia deficient for TSPO (Figure 29d, g) or 

microglia deficient for NOX1 (Figure 29f, g), which all were incapable of producing 

extracellular ROS after stimulation (Figure 13b, 21c, 26b). These findings clearly indicate a 

paracrine damaging effect of microglia-derived extracellular ROS on photoreceptor cells. 
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Figure 29: Extracellular ROS damage photoreceptor cells in a paracrine manner. a-f Representative flow 
cytometric cytograms and histograms of PI-stained 661W photoreceptor cells. Cell death of 661W 
photoreceptor cells alone (a) or in trans-well co-culture with primary microglia (b-f) was determined by 
analyzing the percentage of PI+-photoreceptor cells isolated from the co-culture inlays. Photoreceptor cells 
and primary microglia were unstimulated (left panel) or treated with photoreceptor cell debris (right panel) 
to induce ROS production in microglia. Photoreceptor cells were co-cultured with TSPOfl/fl microglia treated 
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with the vehicle control DMSO (b), with TSPOfl/fl microglia treated with XBD173 (c) or with TSPOΔMG 
microglia (d). Photoreceptor cells were co-cultured with Nox1-WT microglia (e) or Nox1-KO microglia (f). 
g Bar chart showing the quantification of photoreceptor cell death. 5,000 cells were counted per sample.          
n= 3-5 independent experiments. Data are presented as mean ± SEM; unpaired two-tailed Student’s t test; 
*P< 0.05 and **P< 0.01. n.s., not significant, n.t., non-treated. 
 

 
3.4 Effects of NOX1 deficiency on laser-induced CNV 
 

3.4.1 NOX1 deficiency reduces MNP infiltration in laser-damaged retinas and 
RPE/choroids  

 

Based on the above results, showing that TSPO-deficient microglia failed to produce 

stimulation-induced ROS which was shown to damage photoreceptor cells in a paracrine 

manner, we next examined whether the protective effects in the laser-induced CNV model 

emerging from XBD173 and microglia-specific TSPO-KO were due to the blockade of NOX1 

activation. First, the expression levels of NOX enzyme family members after laser injury were 

analyzed in order to exclude compensatory upregulation of other Nox enzymes when NOX1 

is absent (Figure 30). Here, only Nox1 expression was strongly increased in WT retinas and 

RPE/choroids 6h after laser-induced injury compared with naïve mice, while in Nox1-KO 

mice neither Nox1 was expressed nor compensatory upregulation of other Nox enzymes was 

detected (Figure 30a, b). Thus, we next examined if the absence of NOX1 affects the 

phagocyte response in the laser-induced CNV mouse. Immunostaining of retinal flat mounts 

from Nox1-KO mice showed reduced accumulation of Iba1+ cells within the laser lesion 

compared to WT mice (Figure 31a-c) albeit no morphological differences in their ramification 

were detected (Figure 31b). Nox1-deficient mice also displayed lower Cd68 expression in the 

retina after laser injury while increased expression levels of Tspo were still detected (Figure 

31d). Moreover, the lesion-associated formation of HMW1 TSPO was slightly decreased in 

retinas from Nox1-KO mice compared to WT littermates (Figure 31e, f). While IL-6 secretion 

did not change in Nox1-KO retinas, CCL2 levels were significantly reduced compared to WT 

retinas (Figure 31g).  
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Figure 30: Laser-induced CNV does not induce compensatory Nox expression in Nox1-deficient mice.              
a-b Laser-induced gene expression of Nox enzymes in retinas (a) and RPE/choroids (b) of WT and Nox1-
KO mice. Transcript levels for each enzyme were normalized to b-Actin. n= 8 retinas/RPEs. Data are presented 
as mean ± SEM. Linear mixed model was used for statistical analyses; ***P≤ 0.001. n.d., not detected. 
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Figure 31: NOX1 deficiency reduces mononuclear phagocyte infiltration in the retina after laser-induced 
CNV in mice. a Representative images show accumulation of Iba1+ cells within the laser lesion in retinal flat 
mounts. Scale bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 18-22 spots.                                 
c Quantification of Iba1+ area of the laser lesions. n= 18-22 spots. d Cd68 and Tspo mRNA levels in retina from 
WT and Nox1-KO mice at indicated time points after laser-induced CNV. n= 8 retinas. e TSPO protein levels in 
whole retinal lysates of naïve and lasered WT and Nox1-KO mice at indicated time points. Each lane represents 
an individual retina. Dotted line indicates individual blots, which were processed in parallel. f Densitometric 
analysis of Western blots. LMW TSPO (18 kDa) signals were normalized to b-Actin and HMW:LMW TSPO 
ratio determined. n= 6 retinas from two independent experiments. LMW, lower molecular weight; HMW, higher 
molecular weight. g Pro-inflammatory cytokine levels in retinas of naïve and lasered WT and Nox1-KO mice at 
indicated time points. n= 8 retinas. Data are presented as mean ± SEM. Linear mixed model was used for 
statistical analyses; * P<0.05, ** P<0.01 and *** P≤ 0.001. n.s., not significant. 
 
 

Similar results were observed in RPE/choroidal flat mount analyses, where NOX1 deficiency 

reduced Iba1+ cell infiltration (Figure 32a-c) and disease-associated expression of Cd68 

(Figure 32d). Furthermore, the formation of HMW1 and HMW2 TSPO was reduced (Figure 

32e, f) and CCL2 levels were decreased in the RPE/choroids from Nox1-KO mice, while IL-

6 and IL-1b levels showed no differences (Figure 32g). Together, these data demonstrate that, 

Nox1-KO alleviates MNP infiltration in laser-damaged retinas and RPE/choroids. 
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Figure 32: NOX1 deficiency reduces mononuclear phagocyte infiltration in the RPE/choroid after laser-
induced CNV in mice. a Representative images of Iba1+ cells within the laser lesion in RPE/choroidal flat 
mounts. Scale bar: 50 μm. b Analysis of Iba1+ cell morphology within laser lesions. n= 18-22 spots. c 
Quantification of Iba1+ area of the laser lesions. n= 18-22 spots. d Cd68 and Tspo mRNA levels in RPE/choroid 
from WT and Nox1-KO mice at indicated time points after laser-induced CNV. n= 8 retinas. e Western blots 
showing TSPO expression in whole RPE/choroidal lysates of naïve and lasered WT and Nox1-KO mice at 
indicated time points. Each lane represents an individual retina. Dotted line indicates individual blots, which 
were processed in parallel. f Densitometric analysis of Western blots. n= 6 RPE/choroids from two independent 
experiments. LMW, lower molecular weight; HMW, higher molecular weight. g Pro-inflammatory cytokine 
levels in RPE/choroids of naïve and lasered WT and Nox1-KO mice. n= 8 RPE/choroids. Data are presented as 
mean ± SEM. Linear mixed model was used for statistical analyses; * P<0.05, ** P<0.01 and *** P≤ 0.001. n.s., 
not significant. 
 
 

3.4.2  NOX1 deficiency limits laser-induced vascular leakage and pathological 
CNV in mice 

 
 
Finally, we investigated the effect of NOX1 deficiency on laser-induced vascular leakage and 

CNV. Nox1-KO mice showed a strongly reduced vascular leakage (Figure 33a-c) and CNV 

size (Figure 33d, e). NOX1 deficiency did not affect laser-induced secretion of VEGF-A, 

ANG-1, ANG-2, and IGF-1 (Figure 33f, g). Moreover, analysis of the wound healing process 
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in Nox1-KO mice revealed attenuated laser lesion sizes and significantly reduced fibrosis 

compared to WT mice (Figure 34). Thus, NOX1 and NOX1-derived ROS are a critical 

modifier of disease progression and outcome in the laser-induced CNV mouse model. 

 

 

Figure 33: NOX1 deficiency limits laser-induced vascular leakage and pathological CNV in mice.                            
a Representative late phase FFA images at indicated time points post laser injury. Scale bar: 200 µm; FA, 
fluorescein angiography. b Quantification of vascular leakage intensity after laser-induced CNV. n= 22-32 
eyes. c Quantification of vascular leakage area after laser-induced CNV. n= 22-32 eyes. d Representative 
images of laser-induced CNV stained with isolectin B4 in RPE/choroidal flat mounts. Scale bar: 100 µm.              
e Quantification of laser-induced CNV area in RPE/choroidal flat mounts. n= 12-18 RPE/choroids. f Pro-
angiogenic growth factor levels in retinas of naïve and lasered WT and Nox1-KO mice at indicated time points. 
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n= 8 eyes. g Pro-angiogenic growth factor levels in RPE/choroids of naïve and lasered WT and Nox1-KO mice 
at indicated time points. n= 8 eyes. Data are presented as mean ± SEM. Linear mixed model was used for 
statistical analyses; * P<0.05, ** P<0.01 and *** P≤ 0.001.  
 

 

 
Figure 34: NOX1 deficiency attenuates laser lesion size and promotes a faster wound healing.                                   
a Representative IR fundus images at indicated time points post laser injury. Lower panel shows OCT scan 
from one laser spot marked by a red line. Scale bar: 200 µm. b Quantification of laser lesion size. n= 22-68 
eyes. Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; *** P≤ 0.001. 
n.s., not significant. 
  
 
 
 
3.5  Model of TSPO-mediated ROS production in reactive retinal 

phagocytes 
 

Based on the data described in this thesis, we postulate that TSPO is critical for the Ca2+ 

associated, NOX1-mediated production of extracellular ROS in retinal phagocytes and that 

targeting TSPO by gene knockout or by using the specific ligand XBD173 limits retinal innate 

immune cell responses and pathological angiogenesis.  

In response to pathological signals and damage, resident microglia transform into amoeboid 

phagocytes, migrate to the lesion sites and recruit macrophages from the periphery. They 

phagocytose cell debris of the damaged tissue and react with the release of                                            

pro-inflammatory and pro-angiogenic factors and with a robust production of NOX1-

derived ROS in a Ca2+ associated, TSPO-dependent manner. Targeting TSPO with its 

synthetic ligand XBD173 decreased not only the expression and secretion of pro-

inflammatory and pro-angiogenic factors but also prevented NOX1-derived ROS 
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production by blocking the TSPO-dependent increase of cytosolic Ca2+, thereby limiting 

photoreceptor cell death and pathological CNV (Figure 35). 

 

 
Figure 35: Model of TSPO-mediated ROS production in retinal phagocytes. a In the healthy retina, resident 
microglia reside in the plexiform layers, where they constantly scan their environment with their long protrusions 
and phagocytose cell debris. Different insults leading to abnormal cell functions or degeneration of the RPE and 
photoreceptors rapidly alert microglia. Resident microglia transform into amoeboid phagocytes, migrate to the 
lesion sites and recruit macrophages from the periphery. b In response to these pathological signals, microglia 
increase pro-inflammatory and pro-angiogenic cytokines expression to resolve neuroinflammation and promote 
tissue recovery. In addition, reactive microglia upregulate mitochondrial TSPO leading to increased cytosolic 
calcium levels, which is essential for NOX1-mediated extracellular ROS production. However, chronic 
activation of microglia is detrimental and promotes retinal degeneration. Binding of the synthetic ligand XBD173 
to TSPO limits the magnitude of inflammatory responses and inhibits the increase of cytosolic calcium levels 
thus preventing from ROS damage. XBD173 support the transition of reactive microglia towards a ramified 
neuroprotective phenotype, limiting pathological CNV. BM, Bruch’s membrane; OS, outer segment; IS, inner 
segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform 
layer; GCL, ganglion cell layer; NFL, nerve fiber layer.  
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4.   Discussion 
 

Chronic inflammation is a hallmark of many neurodegenerative diseases including AMD. 

Microglia, the resident phagocytes of the retina, represent a broad target for therapy as their 

chronic pro-inflammatory reactivity negatively contributes to disease progression. Thus, 

pharmacological approaches of microglia-related immunomodulation to preserve their 

homeostatic functions, are promising therapeutic strategies. Targeting TSPO, a reliable 

biomarker of gliosis, using different synthetic ligands improved disease outcome in various 

preclinical model systems including Alzheimer’s (Barron et al., 2013), Parkinson’s (Gong et 

al., 2019), MS (Daugherty et al., 2013) and degenerative diseases of the retina (Scholz et al., 

2015a). However, the underlying molecular mechanisms of TSPO-mediated 

immunomodulation and its precise molecular function has not been elucidated in these studies 

and remain largely elusive. 

In this study, the molecular function of TSPO in retinal immune homeostasis and pathological 

angiogenesis was examined using the laser-induced CNV model. Although rodents lack a 

macula, this mouse model recapitulates key pathological features of neovascular AMD in 

humans. The laser-induced rupture of BM results is an acute local inflammatory response 

concomitant with a rapid recruitment of MNPs and CNV formation (Lambert et al., 2013). 

Nevertheless, this model has some limitations as it does not recapitulate the aging aspect of 

AMD including drusen and the complex interplay between genetic and environmental factors. 

As an acute injury model, the wound healing process even leads to spontaneous disease 

regression (Gong et al., 2015; Lambert et al., 2013). However, the laser-induced CNV model 

remains one of the most commonly used mouse models to study neovascular AMD and to test 

the efficacy of anti-VEGF therapies. 

Based on the concept of endogenous TSPO ligand-mediated immunomodulation of retinal 

microglia, we investigated whether the synthetic TSPO ligand XBD173 possesses 

immunomodulatory and neuroprotective effects in this mouse model of neovascular AMD. 

Additionally, we aimed to elucidate the direct function of TSPO in retinal immune cells using 

conditional microglia-specific knockout mice. 
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4.1    Immunomodulatory effects of XBD173 on laser-induced CNV 
 
In this study we have shown that targeting TSPO by using the specific ligand XBD173 limits 

retinal innate immune cell responses and pathological angiogenesis in the laser-induced CNV 

mouse model. Previous studies have also shown immunomodulatory and neuroprotective 

effects of XBD173 in various neurodegenerative mouse models including light-induced retinal 

degeneration (Scholz et al., 2015a), retinal ischemia (Mages et al., 2019) and MPTP-induced 

parkinsonism (Gong et al., 2019). However, the effect of XBD173 in retinal ischemia was 

mainly confined to retinal Müller cells with less effect on microglia (Mages et al., 2019). We 

have demonstrated before that TSPO is constitutively expressed in the RPE and showed no 

inflammation-induced expression (Scholz et al., 2015a), suggesting that the TSPO increase 

after laser injury mainly derives from resident and invading mononuclear phagocytes.  

Interestingly, our Western blots revealed for the first time the presence of HMW TSPO in the 

retina and RPE after laser injury in vivo. While in the laser-damaged retina only one HMW 

TSPO band was detected, two appeared in the RPE/choroid, indicating a different cell-type 

specific reorganization of TSPO. The appearance of these HMW bands could be due to post-

translational modifications and subsequent oligomerization since a putative phosphorylation 

motif has been identified in the C-terminal domain of TSPO (Whalin et al., 1994). Also, a study 

using colonic cells showed that the TSPO ligand PK11195 can induce TSPO polymerization 

by stabilizing the dimeric form (Issop et al., 2016). However, our data showed that XBD173 

prevented the formation of these HMW TSPO bands. The current understanding of the TSPO 

structure at molecular level is based on the NMR structure of mouse TSPO (mTSPO) (Jaremko 

et al., 2014; 2015) and two crystal structures of the bacterial homologs from Rhodobacter 

sphaeroides and Bacilluscereus (Guo et al., 2015; Li et al., 2013). Mouse TSPO was mainly 

reported to be monomeric in detergent systems but there are also reports indicating that a 

fraction of mouse TSPO may exist as oligomers in lipid bilayers (Jaipuria et al., 2017; 

Papadopoulos et al., 1994; Teboul et al., 2012). This suggests that different oligomeric states 

of TSPO may be associated with different functions. However, a recent study showed that the 

lipid-mimetic system which is used to solubilize mouse TSPO for NMR studies, 

thermodynamically destabilizes the protein, introduces structural perturbations and in addition 

alters the characteristics of ligand binding (Xia et al., 2019). Therefore, the precise composition 

and role of these TSPO proteins in the retina and RPE/choroid after laser injury remain elusive 

and deserves further studies.  
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Concomitant with reducing TSPO expression, XBD173 treatment also reduced the secretion of 

pro-inflammatory cytokines after laser injury. This is in line with a previous mouse study on 

MPTP-induced parkinsonism, reporting that XBD173-specific transcriptional changes include 

pathways related to cytokine production (Gong et al., 2019).  

The fact that laser injury did not induce IL-1b levels in the retina but in the RPE suggests an 

important role of RPE cells and invading MNPs for inflammasome-dependent IL-1b secretion 

(Mohr et al., 2015). Of note, experimental data suggest that CCL2/CCR2 signaling contributes 

to the pathogenesis of wet AMD, as knockout of these factors prevents inflammatory MNP 

recruitment and CNV progression after laser injury (Luhmann et al., 2009; Tsutsumi et al., 

2003). Also, clinical studies support the possible involvement of CCL2 in the pathogenesis of 

wet AMD, as increased intraocular levels of CCL2 have been found in AMD patients (Jonas, 

2010; Newman et al., 2012). Here, we found that XBD173 treatment potently reduced laser-

induced CCL2 levels, resulting in diminished MNP recruitment to the subretinal space and 

neoganiogenesis, corroborating the critical role of MNPs in the development of CNV. 

In addition, we also showed that XBD173 reduced pro-angiogenic growth factor expression 

and subsequently diminished CNV via modulation of MNPs. Indeed, Iba1+ MNPs actively 

produced VEGF during laser injury (Balser et al., 2019) and macrophage depletion correlates 

with reduced VEGF expression and laser-induced CNV (Sakurai et al., 2003). Furthermore, 

autocrine IL-1b can potently induce VEGF production by RPE cells (Nagineni et al., 2012) and 

the reduced IL-1b levels found upon XBD173 treatment may also dampen RPE-derived VEGF 

levels indicating a complex paracrine interplay of pro-inflammatory and pro-angiogenic factors 

on the tissue and cellular level. A potential mechanism by which XBD173 acts anti-

inflammatory could be through inhibition of NF-κB and activator protein 1 (AP-1) signaling. 

Both transcription factors are important regulators of pro-inflammatory gene expression and 

vinpocetine, another TSPO ligand, have been shown to reduce their expression levels thereby 

limiting pro-inflammatory cytokine production and neurotoxicity of microglia in vitro (Zhao et 

al., 2011) and in vivo (Wang et al., 2014a). 

In summary, we have shown that XBD173 treatment in the laser-induced CNV mouse model 

improves disease outcome by reducing MNP reactivity and migration, thereby limiting 

phagocyte-triggered neoangiogenesis. 
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4.2  Immunoprotective effects of microglia-specific TSPO-KO on laser-
induced CNV 

 

Here, we generated a conditional microglia-specific TSPO-KO mouse in order to determine if 

TSPO function in MNPs modulates their reactivity during laser-induced CNV. Our data 

demonstrated that microglia lacking TSPO showed no morphological differences compared to 

control microglia. Furthermore, microglia from TSPODMG mice showed no alterations in 

predictors of mitochondrial health, including mitochondrial morphology or MMP. Analysis of 

total cellular ATP levels showed that microglia use both glycolysis and mitochondrial 

respiration to generate ATP. While inhibition of glycolysis through the glucose derivative 2-

DG showed that both non-activated and stimulated microglia to some degree depend on 

glycolysis for ATP generation, inhibition of the mitochondrial ATP synthase via oligomycin A 

treatment showed that ATP is mainly generated by mitochondrial respiration and this was not 

changed in TSPO-KO microglia. However, this is in contrast to studies reporting reduced 

mitochondrial metabolism in mouse and human microglia cell lines after TSPO knockdown or 

knockout (Bader et al., 2019; Milenkovic et al., 2019). This discrepancy could be due to the 

fact that endogenous levels from immortalized cultured cell lines and primary microglia differ 

in their TSPO expression levels and function. Thus, a report on liver-specific TSPO-KO mice 

also observed neither mitochondrial ultrastructural alterations nor membrane potential or ATP 

level differences (Sileikyte et al., 2014). Also, experiments using TSPO-deficient MA-10 

testicular Leydig cells (Tu et al., 2016) or isolated mitochondria from ventricles of cardiac-

specific TSPO-KO mice showed no signs of dysfunction (Thai et al., 2018). 

Although myeloid cells, such as retinal microglia and recruited monocyte-derived macrophages 

accumulate in areas of neovascularization, the extent to which these cells contribute to this 

process is not clear (Green, 1991; Sousa et al., 2017). In this study, we reported that conditional 

deletion of TSPO in long-lived retinal microglia phenocopied the beneficial effect of XBD173 

treatment on laser-induced CNV, pointing towards a significant contribution of this cell type 

on disease formation. This is in line with a recent study showing that resident retinal microglia 

are the predominant cell population in areas of retinal neovascularization whereas blood-

derived monocytes play a minor role in terms of quantity (Boeck et al., 2020). In addition, two 

studies demonstrated that astroglia-specific TSPO-KO was protective in a mouse model of MS  

(Daugherty et al., 2016) and that a cardiac-specific TSPO-KO protected from pressure overload 

induced heart failure (Thai et al., 2018).  
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Thus, our data have shown that TSPO is not required for mitochondrial integrity, health or 

energy metabolism in microglia and that microglia-specific TSPO-KO limits retinal innate 

immune cell responses and pathological angiogenesis in the laser-induced CNV mouse model. 

 

 
4.3  The TSPO-NOX1 axis controls phagocyte-triggered pathological CNV 

in the retina 
 

4.3.1 TSPO regulates NOX1-derived ROS production in a Ca2+-dependent 
manner 

 
In this study, we have shown that targeting TSPO with XBD173 or microglia-specific TSPO-

KO blocks stimulation-induced extracellular phagocyte ROS production. Involvement of TSPO 

in ROS production was suggested before (Gatliff et al., 2014; 2017; Guilarte et al., 2016) and 

deregulation of redox balance such as chronic ROS production is strongly linked to 

neurodegeneration (Tarafdar and Pula, 2018). The regulated production of ROS is mediated by 

members of the NOX enzyme family (Lambeth and Neish, 2014). Although NOX2 is the 

predominant source of ROS in phagocytes (Haslund-Vinding et al., 2017), several studies also 

described a role for NOX1- and NOX4-dependent ROS production in microglia (Bin Li et al., 

2009; Chéret et al., 2008). While animal studies with genetically modified NOX enzymes in 

eye diseases are scarce (Chan et al., 2016; Yokota et al., 2011) and only a few in vivo studies 

investigated the role of NOX2 or NOX4 in deficient mice (Hou et al., 2018; Ma et al., 2017; 

2018), most of the research on microglia was performed with cell lines. NOX enzymes were 

either knocked down (Cheng et al., 2018; Gatliff et al., 2017; Zeng et al., 2018) or ROS 

production was chemically inhibited with diphenyleneiodonium or apocyanin (Appukuttan et 

al., 2018; Chen et al., 2017; Gatliff et al., 2017; Hou et al., 2018). While commonly termed 

specific NOX inhibitors, these compounds show numerous side effects and their specificity is 

questioned (Altenhöfer et al., 2015).  

Here, we showed for the first time that Nox1 but no other Nox or Duox enzymes were up-

regulated in vivo after laser-injury and accordingly, by using different NOX-KO mouse strains, 

we revealed that microglia produce extracellular ROS exclusively via NOX1, while other NOX 

enzymes were dispensable for this response. Furthermore, we showed that TSPO was crucial 

for the induction of NOX1-derived ROS as both XBD173 treatment and microglia-specific 

TSPO-KO not only blocked laser-induced Nox1 expression but also extracellular ROS 
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production. TSPO was also implicated in mitochondrial ROS production before, which was 

associated with cellular signaling functions (Choi et al., 2010; Gatliff et al., 2014). However, 

we did not observe ROS production in the cytosol or the mitochondrial matrix after stimulation. 

This discrepancy could be due to the different methodological approaches and ROS detection 

probes used in these studies. Cytosolic ROS were either detected with 2’,7’-

dichlorohydrofluorescein diacetate (H2DCFDA) (Choi et al., 2010) or dihydroethydium (DHE) 

(Gatliff et al., 2014) and both approaches are unspecific in terms of compartmentalization of 

ROS production (Hempel et al., 1999; Dikalov and Harrison, 2014; Zielonka and 

Kalyanaraman, 2010). 

 
A TSPO-dependent regulation of NOX enzymes was described before and heme and/or 

cholesterol transport was suggested as a possible regulatory mechanism (Gatliff et al., 2017; 

Guilarte et al., 2016). However, after PMA stimulation, TSPO-KO microglia still showed a 

robust increase in extracellular ROS production, excluding non-functionality of NOX enzymes 

due to hampered heme or cholesterol transport in TSPO-KO microglia. Furthermore, two other 

studies demonstrated an interaction of TSPO with the channel VDAC1 and a potential role in 

redox homeostasis via Ca2+ (Gatliff et al., 2014; 2017). Therefore, we decided to analyze the 

role of TSPO in calcium homeostasis and subsequent NOX1-derived ROS production. In 

accordance with a former study demonstrating elevated cytosolic Ca2+ levels in TSPO-

overexpressing cells (Gatliff et al., 2017), we observed a strong reduction in cytosolic Ca2+ in 

TSPO-deficient microglia. Notably, the TSPO-mediated increase of cytosolic Ca2+ levels was 

prevented by XBD173, which subsequently abolished not only Nox1 expression, but also acute 

NOX1-derived ROS production after stimulation. This is in line with a previous study showing 

that the TSPO ligand PK11195 was able to reduce LPS-induced increase of intracellular Ca2+ 

in human microglial cells (Choi et al., 2002). Interestingly, in the absence of extracellular Ca2+, 

Nox1 expression and NOX1-dependent ROS production upon stimulation was significantly 

reduced in microglia, indicating that extracellular ROS production is regulated via both, Nox1 

expression and activation in a Ca2+-dependent manner.  

While DUOX1-2 and NOX5 are directly activated via their EF-hand calcium-binding domains 

(Görlach et al., 2015; Lambeth and Neish, 2014), ROS production in microglia depends on the 

catalytic subunit p22phox. This suggests that the rise in cytosolic Ca2+ indirectly activates NOX1 

via calcium-dependent signaling mechanisms in the cytosol. Indeed, it was shown that NOX1 

activity indirectly depends on cytosolic Ca2+ (Valencia and Kochevar, 2008) and that Nox1 

expression levels can also depend on cytosolic Ca2+ levels (Ge et al., 2010). The mechanisms 
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regulating the entry of Ca2+ into the cytosol that is required for NOX1 activation remained 

elusive, though.  

The identification of these signaling cascades in microglia will be a topic for further 

investigations. Here, receptors previously reported to be involved in ROS production in 

microglia such as complement receptor 3 (CR3), CD36, ionotropic and metabolic purinergic 

receptors are promising targets (Haslund-Vinding et al., 2017). Especially the latter are not only 

specialized in detecting ATP, a molecule released by damaged cells (e.g. PCD), but also require 

Ca2+ entry into the cytosol for the induction of ROS production after ATP binding (Kim et al., 

2007; Martel-Gallegos et al., 2013). 

In summary, our data revealed that influx of Ca2+ from the extracellular milieu into the cytosol 

is required for stimulation of NOX1 activity and expression in microglia and that this influx is 

regulated by TSPO. 

 

 

4.3.2 NOX1 deficiency improves disease outcome of laser-induced CNV 

 
Here, we identified NOX1-dependent ROS production by microglia upon stimulated 

phagocytosis that lead to a substantial and fast increase of extracellular ROS. Notably, we also 

showed that these NOX1-derived extracellular ROS induce photoreceptor cell death in a 

paracrine manner, confirming their potential as damaging neurotoxins.  

In Nox1-KO mice, no compensatory upregulation of other Nox or Duox enzymes after laser 

injury was detected and accordingly, NOX1 deficiency improved disease outcome in these 

mice, while other features of microglia reactivity were not affected. Our data show that NOX1 

is terminally in the TSPO-NOX1 axis and thus, the production of pro-inflammatory cytokines 

and angiogenic growth factors are mediated via TSPO-dependent but NOX1-independent 

mechanisms. Although some studies suggested that NOX2-derived ROS can influence the pro-

inflammatory response after infection (Deffert et al., 2012; Han et al., 2013), it was recently 

shown that NOX2-derived extracellular ROS are dispensable for cytokine secretion in infected 

macrophages (Herb et al., 2019). In a mouse model of amyotrophic lateral sclerosis (ALS), 

deletion of NOX1 was reported to increase the survival, while the cellular sources of NOX1 

remained undetermined in this study (Marden et al., 2007). In addition, another study showed 

that mice deficient in inducible nitric oxide-synthase (iNOS) develop less CNV after laser 
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injury (Ando et al., 2002), highlighting reactive nitrogen species (RNS)/ROS as drivers of 

disease progression. 

In summary, our data have shown that NOX1-mediated production of ROS can damage 

photoreceptor cells in a paracrine manner and that Nox1-KO mice show the same beneficial 

effects on CNV and wound healing as XBD173 treatment or microglia-specific TSPO-KO. 

 

 
4.4  Conclusion 
 

In this study, we demonstrated a critical function of TSPO signaling in phagocyte-triggered 

neoangiogenesis of the retina, a model system that recapitulates key pathological features of 

neovascular AMD. We showed that TSPO acts as a regulatory node and regulates microglia 

functions through both NOX1-dependent and NOX1-independent mechanisms. While TSPO 

mediates NOX1-derived extracellular ROS production that damage photoreceptor cells in a 

paracrine manner, its regulation of pro-inflammatory cytokines and angiogenic growth factors 

are independent from NOX1. Indeed, the TSPO-NOX1 axis is crucial in the laser-induced CNV 

model, as Nox1-KO mice showed the same beneficial effects on CNV and wound healing as 

XBD173 treatment or microglia-specific TSPO-KO.  

Collectively, this thesis defines a distinct role for TSPO in retinal phagocyte reactivity and 

highlights the protein as a drug target for immunomodulatory and antioxidant therapies for 

AMD. 
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