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1. Abbreviations 

°C Degree Celsius 
ΔΨm Mitochondrial membrane potential 
7H9c 7H9 complete medium 
ADC Albumin dextrose catalase 
AIM Absent in melanoma 
AKT Protein kinase B 
ANT Adenosine translocase 
ASC Apoptosis-associated speck-like protein 
ASK Apoptosis signal-regulating kinase 
ATP Adenosine triphosphate 
BCA Bicinchoninic acid 
Bcl-2 B cell lymphoma 2 
BMDM Bone marrow-derived macrophage 
BSA Bovine serum albumin 
Ca2+ Calcium  
CARD Caspase activation and recruitment domain 
Casp Caspase 
CCCP Carbonylcyanid-m-chlorophenylhydrazon 
CCL Chemokine (C-C motif) ligand 
CD Cluster of differentiation 
cDNA Complementary DNA 
CFP-10 Culture filtrate protein of 10 kDa 
CFU Colony-forming unit 
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 
CsA Cyclosporine A 
CXCL Chemokine (C-X-C motif) ligand 1 
CypD Cyclophlin D 
CytoC Cytochrome C 
DAMP Danger-associated molecular pattern 
DAPI 4’,6-Diamidin-2-phenylindol 
DC Dendritic cell 
DISC Death-inducing signaling complex 
DMEM Dulbecco’s modified eagle’s medium 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
EDTA Ethylenediaminetetraacetic acid 
ELISA Enzyme-linked immunosorbent assay 
EMB Ethambutol 
ER Endoplasmic reticulum 
ERK Extracellular signal-regulated kinase 
ERS ER stress 
ETC Electron transport chain 
FBS Fetal bovine serum  
FCS Fetal calf serum 
FSA Fibroblast survival assay 
g Acceleration of gravity 
GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
Gpx Glutathione peroxidase  
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GSDMD Gasdermin D 
GSH Glutathione 
h Hours 
HBSS Hank’s balanced salt solution 
HDT Host-directed therapy 
HEPES 4-(2-hydroxyethyl) -1-piperazineethanesulfonic acid 
HIV Human immunodeficiency virus 
HMBS Hydroxymethylbilane synthase 
HMGB1 High-Mobility-Group-Protein B1 
HRP Horseradish peroxidase 
IFN Interferon 
IL Interleukin  
IMM Inner mitochondrial membrane 
INH Isoniazid  
iNOS Inducible nitric oxide synthase 
IRAK Interleukin receptor-associated kinase 
JNK c-Jun N-terminal kinase 
KD Knockdown  
kDA Kilo Dalton 
KI Knockin 
KO Knockout 
LDH Lactate dehydrogenase 
LPS Lipopolysaccharide 
LTA4H Leukotriene A4 hydrolase 
LTBI Latent tuberculosis infection 
M-CSF Macrophage colony-stimulating factor 
Mᴓ Macrophage  
MACS Magnetic activated cell sorting 
ManLAM Mannose-capped lipoarabinomannan 
MAP Mitogen-activated protein 
MAP2K MAP kinase kinase 
MAPK MAP kinase 
MDR-TB Multi-drug resistant TB 
MEM Minimum Essential Medium 
min Minutes 
MKP-1 Mitogen-Activated Protein Kinase Phosphatase 1 
MLKL Mixed lineage kinase domain-like pseudokinase 
MOI Multiplicity of infection 
MOMP Mitochondrial outer-membrane permeabilization 
MOPS 3-(N-morpholino)propanesulfonic acid 
MPT Mitochondrial permeability transition 
mPTP Mitochondrial permeability transition pore 
mRNA Messenger RNA 
Mtb Mycobacterium tuberculosis 
mTOR Mammalian target of rapamycin 
MW Molecular weight 
MyD88 Myeloid differentiation primary response 88 
NDH NADH-hydrogenase 
NK cell Natural killer cell 
NLR NOD-like receptor 
NOD Nucleotide oligomerization domain 

https://www.sigmaaldrich.com/catalog/product/sigma/m5650?lang=en&region=US
https://www.ncbi.nlm.nih.gov/pubmed/30387369
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OD Optical density 
OMM Outer mitochondrial membrane 
OXPHOS Oxidative phosphorylation 
PAMP Pathogen-associated molecular patterns 
PBMC Peripheral blood mononuclear cells 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PDE2 Prostaglandin E2 
PDIM Phthiocerol dimycocerosate 
PFA Paraformaldehyde 
PGL Phenolic glycolipid 
pH potenia Hydrogenii, negative decadic logarithm of the H3O+  

concentration 
PRR Pattern recognition receptors 
PZA Pyrazinamide 
RD1 Region of difference 1 
RIF Rifampicin 
RIPA Radio immunoprecipitation assay 
RIPK Receptor‐interacting protein kinase 
RNA Ribonucleic acid  
ROS Reactive oxygen species 
rpm Revolutions per minute  
RPMI Roswell Park Memorial Institute 
s Seconds 
SDS Sodium dodecyl sulfate 
T7SS Type VII secretion system 
TB Tuberculosis 
TBS Tris-buffered saline 
TBST TBS Tween 20 
TCA Tricarboxylic acid 
TDM Trehalose di-mycolate 
TIR Toll/interleukin receptor 
TLR Toll- like receptor 
TMM Trehalose mono-mycolate 
TMRM Tetramethylrhodamine 
TNF Tumor necrosis factor 
TNFR TNF receptor 
TNT Tuberculosis necrotizing toxin 
TRADD TNFR-associated death domain 
TRAIL TNF‐related apoptosis‐inducing ligand 
TRIF TIR-domain containing the adapter-inducing interferon 
VDAC Voltage-dependent anion channel 
w/o Without  
WT Wild type 
VDAC Voltage-dependent anion channel 
XDR-TB Extensively-drug resistant TB 
  

https://en.wikipedia.org/wiki/Roswell_Park_Memorial_Institute
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2. Introduction 

2.1 Tuberculosis 

Tuberculosis (TB) is an airborne disease which is spread through the inhalation of 

droplets containing Mycobacterium tuberculosis (Mtb). According to the WHO Global 

Tuberculosis Report approximately 1.7 billion people are infected with Mtb and 1.5 

million people died in 2018 (WHO, 2019). Hence, Mtb is the major killer among 

infectious agents and the ninth cause of death worldwide. TB can infect most organs 

within the body, including the bones, the central nervous system, the lymph nodes and 

the genitourinary tract. However, the most common form of active TB is pulmonary TB 

(Kaufmann, 2001). 

Following inhalation of the bacteria, Mtb migrates through the respiratory tract to settle 

in the host alveoli. The bacteria are engulfed by alveolar macrophages (Mᴓ) and 

restrained within the phagosome in a process called phagocytosis (Mack et al., 2009). 

However, phagocytosis of Mtb by Mᴓ does not lead to complete clearance of the 

bacteria. Therefore, Mᴓ recruit other immune cells through the secretion of pro- 

inflammatory cytokines and chemokines, like tumor necrosis factor (TNF), to the site 

of infection to induce a local immune response (Russell, 2007). Potentially, novel 

recruited immune cells represent a new host for Mtb. Subsequently, a secondary 

immune response is triggered in the lymph nodes to recruit and activate T cells, 

resulting in the formation of granuloma. Granuloma consist of Mᴓ, B cells, T cells and 

fibroblasts surrounding the infected Mᴓ (Fig. 1). Hence, the bacteria are contained 

within the granuloma, preventing dissemination of the disease. Simultaneously though 

the bacteria cannot be eliminated by the immune system of the host (Russell, 2007). 

This homeostasis can exist for decades until an immunosuppressive condition, such 

as an infection with the human immunodeficiency virus (HIV), causes an immune 

imbalance and a reactivation of the disease. Therefore, the role of the granuloma is 

either protective by containing the bacteria or detrimental by allowing the survival of 

the bacteria and persistence of infection (Russell, 2007).  



  Introduction 

10 
 

 

Figure 1. Pathology of Mycobacterium tuberculosis (Mtb) infection. Inhalation of droplets 
containing Mtb leads to phagocytosis by alveolar macrophages (Mᴓ) and induction of a local 
immune response. The recruitment of other immune cells, such as lymphocytes, results in the 
formation of granuloma. These consist of infected Mᴓ surrounded by mononuclear cells and 
lymphocytes as well as a fibrous cuff of extracellular matrix structures. At later stages of 
infection, a fibrous sheath is built while the amount of blood vessels is reduced, creating a 
hypoxic environment in which the infection is contained. Immunosuppressive conditions can 
reactivate the disease leading to caseating granulomas and the release of the bacteria 
(Russell, 2007). 

 

A latent, asymptomatic infection (LTBI) is developed in approximately 90% of infected 

people, while only 10% develop an active primary TB. Thus, a TB infection has three 

possible outcomes. An active disease (primary TB), an asymptomatic LTBI or a 
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reactivation of a LTBI and progression to an active form of the disease even months to 

years after infection (post-primary TB) (Kaufmann, 2001). The treatment period for 

drug-susceptible TB strains lasts 6 months in most cases and results in cure of the 

disease in up to 95% of the cases. During the first two months, four first-line drugs, 

namely rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB), 

are administered to the patients, followed by four months of RIF and INH (Yew et al., 

2011). A major problem in recent years has been the spread of multi-drug resistant 

(MDR-) and extensively-drug resistant (XDR-) TB strains. These MDR-strains are 

resistant to the first-line antibiotics RIF and INH. Approximately 484,000 cases of MDR-

TB were reported in 2018 and about 6.2% of them were caused by XDR-TB strains, 

which are in addition resistant to most second-line antibiotics. Therefore, the WHO 

declared TB a public health crisis (WHO, 2019).   

2.2 Mycobacterium tuberculosis  

Mycobacterium tuberculosis (Mtb), the causative agent of TB, is an aerobic, rod 

shaped, acid fast bacterium. Mtb belongs to a complex of mycobacterial species which 

causes TB in mammals. These include M. bovis and M. caprae (cattle), as well as M. 

microti (voles) and M. pinnipedii (pinnipeds). Other mycobacteria include 

Mycobacterium leprae, the causative agent of leprosy (Herdman and Steele, 2004). In 

addition there is large number of ubiquitous so called non-tuberculous mycobacteria 

(NTM) which may cause disease primarily in the immunocompromised patient 

population (Porvaznik et al., 2017). 

Mycobacteria have a unique cell wall, which consists of a peptidoglycan layer, 

arabinogalactan and mycolic acid (Fig. 2). The thick peptidoglycan layer resembles 

that of Gram-positive bacteria and the waxy outer layer resembles that of Gram-

negative bacteria. The peptidoglycan layer outside of the cytoplasmic membrane is 

covalently bound by phosphodiester bonds to the arabinogalactan layer, while the 

mycolic acids are attached between the arabinogalactan and trehalose, forming mono- 

or di-mycolate (TMM, TDM). Finally, the cell envelope is surrounded by a 

polysaccharide-rich capsule-like structure (Alderwick et al., 2015).  
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Figure 2. Mycobacterial cell wall. Schematic of the mycobacterial cell wall, containing 
peptidoglycan, arabinogalactan and mycolic acids.  

 

It has been reported that components of the mycobacterial cell wall are involved in the 

manipulation of the host immune response and the formation of granuloma. The 

lipoarabinomannan and the arabinomannan are released inside the infected cells by a 

passive, undirected process. These bacterial lipids are taken up by uninfected immune 

cells, allowing mycobacteria to influence host cells even beyond the actively infected 

cells (Beatty et al., 2000). Hence, the cell wall of mycobacteria is a major virulence 

factor. Furthermore, the cell wall is also important in intrinsic antibiotic resistance. For 

instance, the peptidoglycan layer covered by arabinogalactan is hydrophilic and 

thereby prevents the transport of hydrophobic molecules. Similarly, the mycolic acids, 

which are long chain fatty acids, build a waxy layer to limit the transport of hydrophilic 

molecules, such as the tetracycline antibiotics (Brennan and Nikaido, 1995). The 

manipulation of genes involved in cell wall synthesis by transposon mutagenesis has 

resulted in increased antibiotic sensitivity of Mtb (Gao et al., 2003). In addition to these 

passive resistance mechanisms, Mtb also possesses specialized mechanisms to 

actively neutralize antibiotics (Nguyen, 2016). One mechanism is the modification of 

the drug targets by a modulation in the methylation pattern of ribosomal ribonucleic 

acid (RNA), resulting in resistance to cyclic peptide antibiotics (Maus et al., 2005). 

Another mechanism is the enzymatic degradation of antibiotics, such as β-lactam 

antibiotics, which are hydrolyzed by β-lactamases (Chambers et al., 1995). Finally, 

mycobacteria use efflux pumps to actively expel antibiotics. Rv1473 is such an efflux 

pump encoding gene that is induced by the transcription regulator WhiB7 upon 

exposure to macrolides and tetracyclines (Duan et al., 2019).  
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These mechanisms as well as a robust cell wall and a slow replication rate of 

approximately 20 hours are essential for persistence of mycobacteria inside the host 

cell (Nguyen, 2016). 

2.2.1 ESX-1 secretion system 

Mycobacteria further evade and subvert the host immune system through the secretion 

of virulence factors via secretion systems. In mycobacteria five type VII secretion 

systems (T7SS; ESX-1 to ESX-5) have been identified (Shah and Briken, 2016). The 

first T7SS discovered, was the ESX-1 system, which is encoded by a genetic locus 

called region of difference 1 (RD1). This locus is deleted in the TB live vaccine strain 

M. bovis BCG resulting in attenuation of the bacterium (Pym et al., 2002). The ESX-1 

system is a multi-component translocation system consisting of transmembrane 

proteins, adenosine triphosphate (ATP)ases and accessory proteins. ESX-1 secreted 

proteins have been shown to be important for host-cell invasion, prevention of 

phagosome maturation and intracellular replication (Wong, 2017). One of the most 

essential ESX-1 substrates is the heterodimeric complex comprised of a 6 kDa protein 

EsxA (ESAT-6) and a culture filtrate protein of 10 kDa (CFP-10). Both proteins are 

responsible for induction of host cell death and subsequently dissemination of Mtb 

(Wong, 2017).  

2.2.2 Immune response to Mtb infection 

The host responds with both the innate and the adaptive immune system to TB 

infection. The bacterium is recognized by the immune cells via the expression of 

pathogen-associated molecular patterns (PAMP), such as lipoproteins and glycolipids, 

on the bacterial surface. These antigens are bound by pattern recognition receptors 

(PRR) (Ferraris et al., 2018). The most important PRR in Mtb infection are the Toll- like 

receptor (TLR) 2 and TLR4, which recognize different components of the bacterial cell 

wall, as well as the nucleotide oligomerization domain (NOD)-like receptors (NLR) 1 

and 2, which are cytoplasmic PRR (Ferraris et al., 2018). Upon recognition of a PAMP, 

TLR2 activates the myeloid differentiation primary response 88 (MyD88) and 

interleukin-1 receptor-associated kinase (IRAK) pathway, resulting in the release of 

pro-inflammatory cytokines. These pro-inflammatory cytokines (TNF) and chemokines 

(CXCL9,10 and CCL2,3,4,5) recruit Mᴓ and lymphocytes to kill the bacteria by 

phagocytosis and the production of reactive nitrogen intermediates (Ferraris et al., 

2018). 
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TLR4 can also trigger the toll/interleukin receptor (TIR)-domain containing the adapter-

inducing interferon-β (TRIF) pathway, leading to the secretion of interferon (IFN)-β, 

while NOD receptors mainly induce inflammation by activating mitogen-activated 

protein (MAP) kinase (MAPK) pathways (Shaw et al., 2008). MAPK are a family of 

serine/ threonine kinases, consisting of the extracellular signal-regulated kinase (ERK), 

the c-Jun NH2-terminal kinase (JNK) and p38 MAPK. MAPK are activated by dual 

phosphorylation of threonine and tyrosine residues by MAPK kinases (MAP2K) and 

are deactivated by MAPK phosphatases (MKP). Phosphorylation of these kinases is 

triggered in response to growth stimuli and environmental stresses, such as UV 

irradiation and inflammation (Johnson and Lapadat, 2002). p38 MAPK has four 

isoforms, p38α, p38β, p38γ and p38δ, which differ in their expression patterns and 

their specific substrates (Cuenda and Rousseau, 2007). The two main activators of 

p38 MAPK are the MAP2K MKK3 and MKK6. Downstream of the signaling cascade, 

p38 MAPK regulates the expression of many cytokines, such as TNF and interleukins 

(IL), as well as the expression of intracellular enzymes, like inducible nitric oxide 

synthase (iNOS), which are important in inflammation and host cell death (Zarubin and 

Han, 2005). p38 MAPK is postulated to play a role in the immune response against 

Mtb (Aguilo et al., 2013). However, the exact role in host defense and manipulation of 

host signaling pathways by Mtb is not well described so far. 

2.3 Mtb and its host cell 

Unlike many other bacteria Mtb is highly dependent on the human host for survival, 

growth and spread. Therefore, a host-pathogen adaptation was essential for the 

survival of Mtb. The bacterium exploits, evades and modulates the immune system to 

persist inside the host (Cambier et al., 2014).   

After reaching the alveolar spaces in the lung, Mtb uses phthiocerol dimycocerosate 

(PDIM) on its surface to evade recognition by PRR. Simultaneously, the bacterium 

expresses phenolic glycolipid (PGL) to trigger CCL2 expression in Mᴓ for further 

recruitment of additional Mᴓ that can be infected (Cambier et al., 2014).  

Moreover, Mtb is highly adapted to survive inside Mᴓ by preventing phagosome 

acidification and phagolysosomal fusion (Deretic et al., 2006). Phagocytosis, a form of 

endocytosis, is an important mechanism of the innate immunity. Under normal 

conditions, the pathogen is engulfed by the phagosome, which subsequently fuses with 

the lysosome to form the phagolysosome. The phagolysosome is acidified to pH 5.2 

and enzymes are activated to degrade bacteria. However, Mtb is able to interfere with 
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this process. The cell wall component mannose-capped lipoarabinomannan (ManLAM) 

inhibits phagolysosomal fusion, possibly via the secretion of EsxA, and allows Mtb to 

reside in non-acidified endosomes (Cambier et al., 2014). Similarly, Mtb uses proteins 

secreted through the ESX-1 secretion system, such as EsxA, to permeabilize the 

phagosomal membrane, which enables Mtb to be released out into the cytosol (Wallis 

and Hafner, 2015). Furthermore, EsxA is involved in the inhibition of autophagy, a 

process that normally leads to bacterial killing (Romagnoli et al., 2012). Nevertheless, 

prior activation of the Mᴓ can overcome the interference of Mtb, resulting in 

phagosome acidification and death of the bacteria (Schaible et al., 1998). At later 

stages of infection, the adaptive immune system is induced to help to control the 

disease. However, Mtb also has mechanisms to evade adaptive immunity. For 

instance, the bacterium delays the priming and activation of T cells by reducing the 

migration of dendritic cells (DC) to the lymph nodes, as well as limits the 

responsiveness of Mᴓ to IFN-γ secreted by T cells at the site of inflammation (Pagan 

and Ramakrishnan, 2014). IFN-γ signaling is also responsible for intracellular 

tryptophan starvation, which restricts bacterial growth. Mtb responds with production 

of its own tryptophan and thereby is not dependent on the host (Zhang et al., 2013). 

Taken together, these mechanisms enable Mtb to survive inside the Mᴓ and the 

granuloma. 

2.4 Apoptosis, programmed host cell death 

In order to escape the granuloma, the bacterium is depended to induce host cell death. 

TB-infected Mᴓ die either by apoptosis or necrosis. Apoptosis is an immunologically 

silent process, which results in the uptake of dead cells by other immune phagocytes 

(Ramakrishnan, 2012). In general, the two pathways of apoptosis, the intrinsic and the 

extrinsic pathway, induce the activation of effector cysteine proteases (caspases) 

leading to the degradation of cellular organelles and fragmentation of deoxyribonucleic 

acid (DNA). The extrinsic or death receptor pathway, is activated in response to 

extracellular stimuli recognized by TLR or the TNF receptor superfamily. After 

recognizing a ligand the receptors recruit caspase 8 to form the death-inducing 

signaling complex (DISC) and to complete apoptosis (Elmore, 2007). Subsequently, 

the components of the apoptotic cell are engulfed by apoptotic bodies and 

phagocytosed by other Mᴓ (Fig. 3). Therefore, these Mᴓ represent new potential hosts 

for Mtb, allowing the bacterium to avoid extracellular host defenses and to spread via 

cell-to cell spread (Hotchkiss and Nicholson, 2006). 
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Most intracellular pathogens, including Mtb, have developed strategies to modulate 

host cell death to their own benefit. The role of apoptosis in Mtb infection has been a 

matter of debate for years. Evidence for both, the inhibition (Divangahi et al., 2009) or 

activation (Aporta et al., 2012) of apoptosis has been provided. It has been shown that 

Mtb may trigger apoptosis through the secretion of EsxA. EsxA induces an intracellular 

increase of reactive oxygen species (ROS) and calcium (Ca2+) to promote the 

activation of endoplasmic reticulum (ER)-stress-associated pathways. These 

pathways are regulated by apoptosis signal-regulating kinase 1 (ASK1) and p38 MAPK 

and result in intrinsic apoptosis (Davis and Ramakrishnan, 2009). The phosphorylation 

of p38 MAPK leads to the activation of pro-apoptotic B-cell lymphoma 2 (Bcl-2) family 

proteins, such as Bim and Bcl-2 associated X protein (Bax). The proteins of the Bcl-2 

family are essential for maintaining the mitochondrial function and integrity. Upon 

phosphorylation of Bim or the tumor-suppressor protein p53, the expression of pro-

apoptotic proteins is promoted, while anti-apoptotic proteins are repressed, resulting 

in the accumulation of pro-apoptotic proteins at the mitochondria (Marchenko and Moll, 

2014; Perfettini et al., 2005). Subsequently, intrinsic apoptosis induces mitochondrial 

outer-membrane permeabilization (MOMP) leading to the release of cytochrome c 

(CytoC), the activation of the initiator caspase 9 and finally the activation of the effector 

caspases 3,6 and 7 (Elmore, 2007).  

In contrast, it has been shown that Mtb encodes anti-apoptotic genes, like nuoG, which 

expresses the NuoG subunit of NDH-1, a type I NADH-hydrogenase. NDH-1 inhibits 

phagosomal ROS and TNF secretion and thereby abrogates apoptosis (Miller et al., 

2010). In addition, recently published data show that only attenuated Mtb strains 

promote apoptosis and that virulent Mtb strains favor necrotic cell death, making Mtb 

an ideal model organism to study the effects of different cell death pathways (Gräb et 

al., 2019; Zhao et al., 2017). 
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Figure 3. Pathways of apoptosis. Extrinsic apoptosis is triggered by pathogen-associated 
molecular patterns (PAMP) on the bacterial surface, which are recognized by pattern 
recognition receptors (PRR). Subsequently, caspase (Casp-) 8 is recruited to activate Casp-3 
and 7 to complete apoptosis. Intrinsic apoptosis is mediated by cytochrome c (CytoC) released 
after mitochondrial outer membrane permeabilization (MOMP). CytoC recruits Casp-3 and 7 
via Casp-9. Finally, the apoptotic cell is engulfed by apoptotic bodies and phagocytosed by 

Mᴓ.  

 

2.5 Necrosis 

Necrosis was first described as an accidental form of cell death in response to 

environmental insults, clearly separating necrosis from the regulated and programmed 

apoptosis. Cells undergoing necrosis are characterized by a swollen morphology and 

random degradation of DNA, resulting in the release of cellular contents into the 

surrounding tissues (Fig. 4). Therefore, necrosis is considered a highly pro-

inflammatory and energy independent form of cell death (D'Arcy, 2019). Unlike 

apoptosis, no distinct markers have been identified in necrotic cells, leading to the 

assumption that necrosis is an unstoppable and undruggable process (Ying and 

Padanilam, 2016). However, in recent years many advances have been made in the 

research field of cell death, challenging the perception of necrosis. By now, 

programmed forms of necrosis have been identified, such as necroptosis, pyroptosis 

and ferroptosis (Abe and Morrell, 2016; Shimada et al., 2016). These types of cell 

death demonstrate that regulated cell death is not restricted to apoptosis and that the 

different cell death pathways are interconnected. Furthermore, regulated necrosis may 
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present new opportunities to pharmacologically intervene with necrotic cell death 

(Conrad et al., 2016).  

Mtb promotes necrosis by impeding the synthesis of prostaglandin E2 (PGE2) and 

thereby influences the plasma membrane repair mechanisms. These are especially 

important for the repair of lysosomal membranes, which rupture during necrosis 

(Divangahi et al., 2009). Lysosomes contain around 80 hydrolases that upon release 

into the cytoplasm inhibit energy metabolism in the cytoplasm and reduce ATP 

production and oxidative phosphorylation of the mitochondria (Ferri and Kroemer, 

2001). Thus, virulent Mtb delays host cell death at an early stage of infection to hide 

from the host immune system and promotes cell death at later stages to escape from 

the confines of the Mᴓ into the residing tissues and start a cycle of re-infection (Russell, 

2007). 

 

Figure 4. Necrosis. Environmental stress leads to opening of the mitochondrial permeability 
pore (mPTP) and the release of mitochondrial reactive oxygen species (ROS), as well as the 
depletion of adenosine triphosphate (ATP). Necrotic cell death is accompanied by nuclear 
swelling and rupture of the cell membrane resulting in the release of all cellular content into 
residing tissues.  

 

2.5.1 Necroptosis 

Until recently necrosis was only described as an unregulated form of cell death. By 

now, other forms of cell death have been described, which are regulated but have 

characteristics of necrosis. One such form is called necroptosis. Necroptosis is 
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mediated either by TNF receptor 1 (TNFR1) or by TNF‐related apoptosis‐inducing 

ligand (TRAIL) and Fas receptors. Afterwards, the receptor‐interacting protein kinase 

(RIPK)1 and RIPK3 are activated. TNFR1 recruits RIPK1 to the TNFR-associated 

death domain (TRADD) to build complex I (Fig. 5). De-ubiquitination of RIPK1 normally 

activates caspase 8 and subsequently apoptosis. However, if caspase 8 is inhibited, 

RIPK1 and RIPK3 are phosphorylated and trigger the formation of the necrosome. The 

phosphorylated RIPK3 recruits and phosphorylates the mixed lineage kinase domain-

like pseudokinase (MLKL). This kinase oligomerizes and migrates to the cell 

membrane where it binds to cardiolipin and phosphatidylinositol lipids, resulting in 

membrane permeabilization (Vandenabeele et al., 2010). 

The role of necroptosis in Mtb-mediated host cell death is still a matter of debate. While 

proof for the induction (Roca and Ramakrishnan, 2013; Zhao et al., 2017) of 

necroptosis has been provided, others have demonstrated that Mtb-induced host cell 

death is independent of MLKL activation (Gräb et al., 2019; Stutz et al., 2018). 

However, the different findings regarding the role of necroptosis in Mtb-mediated host 

cell death are potentially influenced from cell-type-specific differences, such as the 

origin of the cells and their maintenance of molecular pathways in culture, and 

therefore need to be further investigated (Stutz et al., 2018). 

 

 

Figure 5. Necroptosis. Recognition of tumor necrosis factor (TNF) by the TNF receptor 
(TNFR) leads to the assembly of the necrosome. The necrosome consists of the TNFR-
associated death domain (TRADD), the receptor‐interacting protein kinase (RIPK)1 and 3 and 
the mixed lineage kinase domain-like pseudokinase (MLKL). Oligomerized MLKL migrates to 
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the cell membrane and leads to membrane permeabilization. Deubiquitination of RIPK1 
activates caspase 8 and triggers apoptosis. 

2.5.2 Pyroptosis 

Pyroptosis is a caspase-dependent and pro-inflammatory form of cell death. This form 

of cell death is characterized by swelling of the cells, formation of pores on membranes 

and finally the release of pro-inflammatory cytokines, such as IL-1β and IL-18 (Abe and 

Morrell, 2016). The canonical pathway is triggered by PAMP or danger-associated 

molecular patterns (DAMP), like increasing levels of ROS or bacterial peptidoglycan, 

which result in the activation of inflammasomes. Inflammasomes consist of a PRR, the 

adapter protein apoptosis-associated speck-like protein (ASC), the caspase activation 

and recruitment domain (CARD) of ASC and pro-caspase 1. Following caspase 1 

activation, gasdermin D (GSDMD) cleavage results in membrane pore formation and 

finally, in the release of cytokines from the pyroptotic cell (Fig. 6). Recruitment of other 

immune cells to the site of inflammation is also a characteristic of pyroptosis (Liu et al., 

2016).  

The role of pyroptosis in Mtb infection is still under investigation. Although it has been 

proven that mice deficient for IL-1β and IL-18 cytokine production are more susceptible 

to the infection. Therefore, the activation of inflammasomes in response to 

endoplasmic reticulum stress (ERS) might play an important role in Mtb infection 

(Wawrocki and Druszczynska, 2017).  

 

Figure 6. Canonical pathway of pyroptosis. Recognition of danger-associated molecular 
patterns (DAMP) or PAMP activate the inflammasome, which consists of PRR, adapter protein 
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apoptosis-associated speck-like protein (ASC) and caspase 1 (Casp-1). The inflammasome 
activates gasdermin D (GSDMD) resulting in membrane pores and the release of the pro-

inflammatory cytokines interleukin (IL)-1β and IL-18. 

2.5.3 Ferroptosis 

Ferroptosis is a regulated form of necrosis that is induced by an overload of iron. Iron 

is essential in the Fenton reaction, which leads to the production of ROS in antibacterial 

immune reactions. Under normal conditions, the toxic lipid peroxides generated by an 

interaction between Fenton reaction-mediated hydrogen peroxides and membrane 

lipids would be degraded by glutathione peroxidase-4 (Gpx4). However, a dysfunction 

of Gpx4 causes an accumulation of lipid peroxides and results in membrane disruption. 

Gpx4 is a lipid repair enzyme that reduces lipid peroxides through glutathione (GSH) 

oxidation. Therefore, ferroptosis is characterized by reduced Gpx4 activity and GSH 

levels, as well as increased iron and lipid peroxide levels (Stockwell et al., 2017). 

Ferroptosis can be inhibited by lipid peroxidation inhibitors, such as ferrostatin-1.  

The role of ferroptosis in Mtb-mediated host cell death is not well described. Iron is an 

important bioactive metal for bacterial growth. Limited iron levels reduce the growth of 

most pathogens (Schaible et al., 2002). Mtb infection induces heme oxygenase-1, an 

enzyme responsible for the degradation of heme to free iron, to increase the production 

of iron and thus the growth of the bacteria (Shiloh et al., 2008). 

2.5.4 Necrotic cell death and mitochondria 

Another form of regulated necrosis is mitochondrial-driven necrotic cell death. The 

permeabilization of the inner mitochondrial membrane (IMM) causes mitochondrial 

permeability transition (MPT). The opening of the mitochondrial permeability transition 

pore (mPTP) disrupts the mitochondrial membrane potential (ΔΨm) by an influx of ions 

and finally results in a loss of mitochondrial integrity. By now, the only identified 

regulator of the mPTP is the mitochondrial protein cyclophilin D (CypD). It has been 

shown that virulent Mtb induces MPT in a CypD-dependent manner (Gräb et al., 2019; 

Zhao et al., 2017).  

2.6 Aim 

The emergence and prevalence of drug resistant Mtb strains remains a public health 

crisis and has intensified research efforts to develop alternative therapeutic 

approaches, including host-directed therapies (HDT) to assist antibiotic treatment. As 

a pathogen, Mtb is highly adapted to humans as a host and continuously evades and 
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exploits the human immune system. Therefore, Mtb strongly influences gene 

expression and signaling pathways of the host cell using different virulence factors. A 

major mechanism of pathogenesis in a TB infection is the induction of host cell death. 

However, the type of cell death triggered by Mtb and its role during the infection is still 

a matter of debate. Further knowledge of the host-pathogen interaction could thereby 

provide new targets for therapies. These targets include the promotion of 

phagolysosomal fusion, or the inhibition of the pro-inflammatory pathways triggered by 

Mtb. Several drugs can be re-purposed for adjunct immunotherapies in TB treatment. 

The promotion of phagolysosomal fusion has been reported to be enhanced by 

metformin, a type 2 diabetes drug (Oglesby et al., 2019), while the tyrosine kinase 

inhibitor imatinib has been shown to reduce the bacterial load in Mtb-infected patients 

(Napier et al., 2011). Another potential drug for a HDT are the immunosuppressive 

corticosteroids, which reduce the mortality of TB meningitis patients (Schutz et al., 

2018). So far, host cell death induced by Mtb has not been exploited as a target for 

HDT. 

Thus, the aim of this thesis is to investigate the role of different host cell death pathways 

induced by virulent Mtb and to find potential candidates for therapeutic interventions. 
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3. Materials 

3.1 Equipment 

Table 1. Equipment 

Equipment Manufacturer 

Centrifuge Z 446 Hermle Labortechnik 

CKX41 inverted microscope Olympus 

CO2 Incubator with SafeCell Sanyo 

Cytation 3 Cell Imaging Multi-Mode Reader Biotek 

Curix 60 AGFA 

GENESYS™ 20VIS spectrophotometer Thermo Fisher Scientific 

Heraeus™ Fresco™ 21 centrifuge Thermo Fisher Scientific 

Hidex Sense multimodal microplate reader Hidex 

IX81 inverted microscope Olympus 

Class II biological safety cabinet Golden Line Kojair 

Light Cycler Roche 

LC Carousel Centrifuge 2.0 Roche 

MACS Multistand Miltenyi Biotec 

MACSxpress Separator Miltenyi Biotec 

MACSmix™ Tube Rotator Miltenyi Biotec 

MidiMACS Separator Miltenyi Biotec 

MultiskanTM FC Microplate Photometer Thermo Fisher Scientific 

MyCyclerTM thermal cycler system Bio-Rad 

NanoDrop spectrophotometer Thermo Fisher Scientific 

OctoMACSTM Separator Miltenyi Biotec 

ScanLaf Mars Pro class 2 safety cabinet LaboGene 

Thermomixer Eppendorf comfort Thermo Fisher Scientific 

Trans-Blot® Turbo™ Transfer System Bio-Rad 

Water bath SW22 Julabo GmbH  

Vortexing device Scientific Industries, Inc. 
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3.2 Chemicals 

Table 2. Chemicals and solutions 

Chemicals and solutions Manufacturer 

Acetoxime Sigma-Aldrich 

Adalimumab InvivoGen 

BI-653048 Boehringer Ingelheim 

BMS-582949 Selleckchem 

Bromopyruvic acid Sigma-Aldrich 

CHAPS Thermo Fisher Scientific  

Cyclosporin A Cayman Chemicals 

DAPI Invitrogen 

Dexamethasone acetate Sigma-Aldrich 

Dimethyl sulfoxide Sigma-Aldrich 

Doramapimod  Axon Medchem 

Etanercept Sigma-Aldrich 

Etoposid Cayman Chemicals 

Fetal bovine serum PAN-Biotech 

Fetal calf serum Biowest 

Ficoll-Paque GE Healthcare  

HBSS Merck 

HEPES Biochrom 

Losmapimod Abcam 

M-CSF Miltenyi Biotec 

MCC950 Sigma-Aldrich 

Methyljasmonate Sigma-Aldrich 

MitoSOXTM Red  Invitrogen 

Mitotempo Sigma-Aldrich 

Necrostatin-1  Cayman Chemicals 

Necrostatin-5 Cayman Chemicals 

Pamapimod Selleckchem 

PBS Invitrogen 

PFA Carl Roth 

Pifithrin α Sigma-Aldrich 
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PrestoBlueTM Cell Viability Reagent Thermo Fisher Scientific 

Puromycin dihydrochloride Carl Roth 

Resazurin sodium salt Sigma-Aldrich 

Rifampicin AppliChem 

Ru-360 Sigma-Aldrich 

SDS Sigma-Aldrich 

Staurosporine Sigma-Aldrich 

Tacrolimus (FK506) Cayman Chemicals 

Thalidomide Sigma-Aldrich 

TMRM Sigma-Aldrich 

Triton X Sigma-Aldrich 

Trypan blue Invitrogen 

Z-VAD-FMK Selleckchem 

3.3 Consumables 

Table 3. Consumables 

Consumables Manufacturer 

Adhesive gas permeable seal Thermo Fisher Scientific 

Bottle-top-filter 0.2 µm Thermo Fisher Scientific  

CellBIND microplate (96-well) Corning 

Cell scraper Corning 

Cell strainer Corning 

Conical centrifuge tube (15 and 50 ml) Greiner Bio-One 

Cryo vial Greiner Bio-One 

LS and MS columns for MACS Miltenyi Biotec 

Microcentrifuge tube (1.5 and 2 ml) Eppendorf 

Microtiter plate (6- and 96-well) TPP 

SealPlate® sealing films Excel Scientific 

Sterile filter storage bottle Thermo Fisher Scientific 

Tissue culture dish and flask  TPP 

Adhesive gas permeable plate seals Thermo Fisher Scientific 

Transfer pipette (5, 10 and 25 ml) Sarstedt 
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3.4 Media and buffer 

7H9 complete medium (7H9c) Middlebrook 7H9 Broth Base 

10% albumin dextrose catalase (ADC) 

0.05% Tween 80 

0.2% glycerol 

7H10 complete medium Middlebrook 7H10 Agar Base  

10% ADC 

0.5% glycerol 

DMEM/ FBS DMEM 

10% FBS 

MACS buffer PBS 

2% FBS 

2 mM EDTA 

MEM complete medium (MEMc) MEM with GlutaMAXTM 

10% FBS 

1% sodium pyruvate 

1% non-essential amino acids 

RPMI 1640/ FBS RPMI 1640 with L-glutamine 

10% FBS 

RPMI 1640/ FBS/ M-CSF RPMI 1640 with L-glutamine 

10% FBS 

50 ng/ ml M-CSF  

VLE-RPMI 1640 complete medium 

(RPMIc) 

VLE- RPMI 1640 

10% FCS 

10 mM HEPES 

2 mM L-glutamine 

1 mM sodium pyruvate 

10 µg/ ml penicillin/ streptomycin 

15% M-CSF 

TBST 

 

10 mM Tris 

150 mM NaCl  

1% Tween 20  
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3.5 Kits and reagents 

Table 4. Commercial kits and reagents 

Kit Manufacturer 

20X LumiGLO® Reagent and  

20X Peroxide 

Cell Signaling Technology 

Caspase-Glo® 3/7 Assay Promega 

CellTiter-Glo® 2.0 Assay Promega 

CD14 MicroBeads, human Miltenyi Biotec 

Fluo-4 NW Calcium Assay Kit Thermo Fisher Scientific 

Halt™ Protease and Phosphatase Inhibitor 

Cocktail 

Thermo Fisher Scientific 

HMGB1 ELISA IBL International GmbH 

Light Cycler Fast Start DNA MasterPLUS SYBR 

Green 

Roche 

Mitochondria Isolation Kit for Mammalian Cells Thermo Fisher Scientific 

Pierce™ BCA Protein Assay Thermo Fisher Scientific 

Pierce™ LDH Cytotoxicity Assay Thermo Fisher Scientific 

PrestoBlue™ Cell Viability Reagent Thermo Fisher Scientific 

RIPA lysis and extraction buffer Thermo Fisher Scientific 

RNeasy Mini Kit Qiagen 

SuperScript III First-Strand Synthesis SuperMix Thermo Fisher Scientific 

Trans-Blot® Turbo™ RTA Mini PVDF Transfer Kit Bio-Rad 

 

3.6 Primer 

Table 5. Primers for quantitative real-time polymerase chain reaction (PCR) 

Target gene Forward primer (5’- 3’) Reverse primer (5’- 3’) 

GAPDH GGTATCGTGGAAGGACT GGGTGTCGCTGTTGAA 

HMBS TGCACGATCCCGAGAC CGTGGAATGTTACGAGC 

Hexokinase II TCTAAGCGGTTCCGCA AGAAGGGTCATACCTGG 

MKP-1  GGAATCTGGGTGCAGT CTGGTAGTGACCCTCAA 

p38 MAPK GCCCGAACGATACCAG CTGAAACGGTCTCGACA 
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3.7 Antibodies 

Table 6. Western blot antibodies 

Target protein Manufacturer 

β-Actin Cell Signaling Technology 

Caspase 3 Cell Signaling Technology 

Cleaved caspase 3 Cell Signaling Technology 

Cyclophilin D Abcam 

ERK Cell Signaling Technology 

Hexokinase II Cell Signaling Technology 

JNK Cell Signaling Technology 

p38 MAPK Cell Signaling Technology 

Phosphor ERK Cell Signaling Technology 

Phosphor JNK Cell Signaling Technology 

Phosphor p38 MAPK Cell Signaling Technology 

VDAC-1 Cell Signaling Technology 

3.8 Cell lines 

Table 7. Cell lines 

Cell line Provider 

J774A.1: mouse Mᴓ ATCC - LGC Standards 

J774.2: mouse Mᴓ Sigma-Aldrich 

MRC-5: human lung fibroblast Coriell Institute for Medical Research 

p38 MAPK knockdown J774A.1 Christian Pallasch, University of Cologne 

p53 knockdown J774A.1 Christian Pallasch, University of Cologne 

3.9 Primary mouse cells  

Cells from various knockout mice (MLKL−/−, TNFR1−/−) or knockin mice (Bcl-2) were a 

kind gift of Hamid Kashkar and Manolis Pasparakis (University of Cologne, Cologne, 

Germany). 

3.10 Bacteria 

Mycobacterium tuberculosis Erdman 
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3.11 Software 

Table 8. Software 

Software Provider 

Adobe creative suit 5 Adobe 

cellSens Standard  Olympus 

Fiji, ImageJ 1.46h Wayne Rasband 

Gen3 Software BioTek 

GraphPad Prism 5.04 GraphPad Software 

Office 365 Personal Microsoft 
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4. Methods 

4.1 Cell biology methods  

4.1.1 Culturing of cell lines 

All cell lines were grown in tissue culture flasks at 37 °C with 5% CO2. For frozen cell 

stocks, the cells were resuspended in medium containing 5% DMSO and 95% FBS 

and stored in cryo-vials at -150 °C.  

4.1.1.1 J774A.1 and J774.2 macrophages 

J774A.1 Mᴓ and J774.2 Mᴓ were grown in DMEM supplemented with 10% FBS. Both 

cell lines were passaged twice a week at a ratio of 1:4. 

4.1.1.2 MRC-5 fibroblasts 

MRC-5 human lung fibroblasts were cultured in MEMc medium. Cells were sub-

cultured when reaching 100% confluency. After culturing the cells for 10 days, the cells 

were passaged by seeding 1.5 x 106 cells per culture flask. 

4.1.2 Isolation of single cell suspensions 

Single cell suspensions were gained from human peripheral blood and mouse bone- 

marrow as follows. Primary cells were cultured at 37 °C with 5% CO2. 

4.1.2.1 Isolation of peripheral blood mononuclear cells 

Blood samples were obtained from healthy volunteers as well as patients with active 

TB before therapy was initiated. The study was approved by the University of Cologne 

Ethics Committee (18-079). Patients as well as healthy volunteers participated after 

giving written informed consent 

Human peripheral blood mononuclear cells (PBMC) were isolated from venous blood 

using density centrifugation. Briefly, blood was diluted with RPMI supplemented with 

10% FBS at a ratio of 1:1 and layered over Ficoll-Paque. After centrifugation (540 x g, 

20 min), the interphase, containing lymphocytes (B cells, T cells and NK cells), 

monocytes and dendritic cells (DC), was collected and centrifuged (650 x g, 10 min). 

PBMC were washed three times with RPMI supplemented with 10% FBS (300 x g, 10 

min). Following Ficoll-Paque separation of PBMC from granulocytes and erythrocytes, 

the number of PBMC was determined using the hemacytometer as described in 4.2.3. 

Monocytes were isolated by magnetic separation of CD14+ cells from unlabelled cells. 
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Therefore, CD14 micro beads were added to gain a defined number of monocytes from 

the PBMC population. CD14+ monocytes were counted and seeded in RPMI medium 

supplemented with 10% FBS and 50 ng/ml human macrophage colony-stimulating 

factor (M-CSF) at a density of 1 x 105 cells per well in 96-well plates. Following 

differentiation of monocytes into Mᴓ, the growth medium was changed to RPMI 

supplemented with 10% FBS. 

4.1.2.2 Isolation of bone marrow-derived macrophages from mice 

Bone marrow-derived Mᴓ (BMDM) were isolated from C57BL/6 mice by expelling the 

bone marrow from femurs and tibia with RPMI by needle. Following centrifugation (400 

x g, 10 min) cells were plated in dishes and incubated at 37 °C and 5% CO2. BMDM 

were differentiated in RPMIc for 7 days with fresh medium being added after 5 days. 

Cells were seeded at a density of 8 x 104 cells per well in 96-well plates. 

4.1.3 Determination of cell numbers 

The cell suspensions were diluted with Trypan blue and the numbers of cells were 

counted using a hemocytometer. The total number of cells was determined by 

multiplying the number of living cells with the volume of the cell suspension, the dilution 

factor, and the volume expansion factor of the hemocytometer (104).  

4.1.4 Survival Assay 

4.1.4.1 Fibroblast survival assay 

MRC-5 lung fibroblasts were analyzed using the fibroblast survival assay (FSA). 

Therefore, compounds were pre-plated into 96-well plates at different concentrations. 

MRC-5 fibroblasts were harvested and seeded at a density of 2 x 104 cells per well and 

could adhere for 2 h. Afterwards, cells were infected with multiplicities of infection (MOI 

of 10) for three days. Cell survival was analyzed by measuring the fluorescence signal 

of PrestoBlueTM (10% final concentration) in a Cytation 3 Cell Imaging Multi-Mode 

Reader. 

4.1.4.2 Macrophage survival assay 

Survival of Mᴓ was assessed using fluorescence microscopy. Primary cells were 

plated as mentioned beforehand (4.1.2) and J774A.1 and J774.2 Mᴓ were plated at a 

density of 2 x 104 cells per well in 96-well plates containing different compounds. 

Following 2 h of pre-treatment, J774 and BMDM were infected with Mtb Erdman with 
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a MOI of 3 and human Mᴓ were infected with a MOI of 1. After 48 h, cells were washed 

several times with PBS, fixed with 4% PFA and stained with DAPI.  

4.1.5 Fluorescence microscopy 

Images were acquired on an IX81 inverted microscope using cellSens standard 

software and the number of surviving cells was determined using Fiji processing 

software to count the number of stained nuclei. Mtb-infected cells were fixed with 4% 

PFA prior to microscopy. 

4.1.5.1 Measurement of mitochondrial membrane potential 

J774.2 Mᴓ were seeded at a density of 2 x 104 per well in a 96-well plate and infected 

with Mtb Erdman (MOI 5) for 24 h and 48 h, respectively. Cells were washed several 

times with PBS before adding Tetramethylrhodamine-methyl ester (TMRM) at a final 

concentration of 100 nM. Cells were incubated at 37 °C in 5% CO2 for 30 minutes and 

washed with PBS. For microscopy, cells were covered with PBS. The accumulation of 

TMRM in the mitochondrial matrix represents a stable mitochondrial membrane 

potential, while a loss of membrane potential results in a release of TMRM from 

mitochondria.  

4.1.6 Isolation of mitochondria 

Mitochondria were isolated from infected MRC-5 lung fibroblasts or J774.2 Mᴓ using 

the Mitochondria Isolation Kit for Cultured Cells (Thermo Fisher Scientific). After 5 h 

and 24 h of infection, cells were washed twice with PBS and detached from the culture 

flask with a cell scraper. Mitochondria of 1 x 107 cells were isolated using the reagent-

based method. Separation of the mitochondrial and the cytosolic fraction of samples 

was achieved by centrifugation (12 000 x g, 15 min, 4 °C). Thereafter, the mitochondria 

were lysed with 2% CHAPS in TBS (25 mM Tris, 150 mM NaCl, pH 7.2), containing 

Halt™ Protease and Phosphatase Inhibitor Cocktail. Both fractions were stored at -80 

°C and the purity of the mitochondrial fraction was analyzed by Western blotting. 

4.2 Molecular biology methods 

4.2.1 Culture conditions of Mycobacterium tuberculosis 

Mtb was grown in Middlebrook 7H9 broth or 7H10 agar plates. Freezer stocks were 

thawed and grown in 7H9c medium at 37 °C and 100 rpm until reaching an optical 

density of 1 at a wavelength of 560 nm (OD560). Cells were infected with washed 

logarithmic-phase Mtb at varying MOI.  
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4.2.2 Determination of colony-forming units 

The colony-forming unit (CFU) of Mtb-infected J774.2 Mᴓ was determined 5 days post 

infection. 5 x 103 cells were seeded in 96-well plates, pretreated with different 

compounds for 2 h, and infected with Mtb Erdman (MOI 2) for 24 h. The CFU of Mtb-

infected BMDM was also analyzed 5 days post infection. Therefore, 8 x 104 BMDM 

were seeded in 96-well plates and infected with Mtb Erdman (MOI 1) for 5h. 

Subsequently, cells were washed twice with PBS to remove unphagocytosed bacteria 

and fresh medium containing the different compounds was added. Plates were 

incubated at 37 °C in 5% CO2 for 5 days and the cells were lysed with 0.1% SDS. 

Viable bacteria were grown in serial dilutions on 7H10 agar plates and colonies were 

counted after 10 to 14 days of incubation at 37 °C. 

4.2.3 Lactate dehydrogenase release assay 

The release of lactate dehydrogenase (LDH) was measured utilizing the Pierce™ LDH 

Cytotoxicity Assay Kit conducted according to the manufacturer’s recommendations. 

Therefore, MRC-5 lung fibroblasts or J774.2 Mᴓ were harvested, seeded in a 96-well 

plate (2 x 104 cells per well) containing different compounds. After 2 h of pre-treatment, 

cells were infected with Mtb Erdman at a MOI of 10 and 5, respectively. Following 24 

h, 48 h and 72 h of infection, the release of LDH into the supernatant was detected by 

measuring the reduction of tetrazolium salt to a red formazan product in a BioTek 

Cytation™ 3 Cell Imaging Multi-Mode Reader. 

4.2.4 Caspase activity assay 

The activity of caspase 3 and caspase 7 was measured with the Caspase-Glo® 3/7 

Assay according to the manufacturer’s instructions. Compounds were pre-plated into 

white-walled 96-well plates, before MRC-5 or J774.2 Mᴓ were seeded at a density of 

2 x 104 cells per well. Following adherence of the cells, MRC-5 lung fibroblasts (MOI 

10) and J774.2 Mᴓ (MOI 5) were infected with Mtb Erdman. Infected cells were 

incubated up to 48 h at 37 °C in 5% CO2. The Caspase-Glo® Reagent was added to 

the wells 24 h and 48 h post infection and luminescence was measured in a 

BioTek™ Cytation™ 3 Cell Imaging Multi-Mode Reader. 

4.2.5 Adenosine triphosphate assay 

The CellTiter-Glo® 2.0 Assay was conducted according to the manufacturer’s 

recommendations to measure the level of intracellular ATP. Harvested MRC-5 lung 

fibroblasts and J774.2 Mᴓ were seeded in white-walled 96-well plates at a density of 2 
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x 104 cells per well and pretreated for 2 h with different compounds. Afterwards, MRC-

5 fibroblasts (MOI 10) and J774.2 Mᴓ (MOI 5) were infected with Mtb Erdman and the 

amount of ATP was quantified by adding the CellTiter-Glo® 2.0 reagent 24 h and 48 h 

post infection. The luminescent signal was measured in a BioTek Cytation™ 3 Cell 

Imaging Multi-Mode Reader. 

4.2.6 Quantification of calcium 

Intracellular calcium concentration was determined using the Fluo-4 NW Calcium 

Assay Kit according to the manufacturer’s instructions. Cells were plated at a density 

of 2 x 104 cells per well in black-walled 96-well plates and pre-treatment of the given 

compound was applied 2 h prior to infection with Mtb Erdman at varying MOI for up to 

24 h. Cells were washed once with HBSS and incubated with Fluo-4 NW for 30 min at 

37 °C. Fluo-4 NW (Ex/ Em 488 nm/ 530 nm) was immediately detected following 

incubation using a BioTek Cytation™ 3 Cell Imaging Multi-Mode Reader. Calcium was 

quantified by calculating the ratio of the ion-bound (Ex 340 nm) and ion-free indicators 

(Ex 380 nm). 

4.2.7 Quantification of reactive oxygen species 

ROS production in the mitochondria was detected by MitoSOX Red, a superoxide 

indicator. Cells were plated at a density of 2 x 104 cells per well in black-walled 96-well 

plates and pre-treatment of the given compound was applied 2 h prior to infection with 

Mtb Erdman at varying MOI for up to 24 h. Rotenone (50 µM), an inhibitor of the 

complex I of the electron transport chain, was used as a positive control. The medium 

was removed, and cells were washed with HBSS. Afterwards, cells were incubated 

with MitoSOX Red (5 µM in HBSS) at 37 °C for 15 min. Following incubation, cells 

were washed three times with HBSS and fluorescence was detected in a 

BioTek Cytation™ 3 Cell Imaging Multi-Mode Reader. Cell-specific fluorescence was 

calculated by subtracting the fluorescence of cell-free wells containing HBSS. 

4.2.8 Isolation of RNA 

RNA was isolated from whole cell lysates. Therefore, 1 x 106 MRC-5 lung fibroblasts 

or J774.2 Mᴓ were seeded in a 6-well plate and infected with Mtb Erdman at a MOI of 

10 and 5, respectively. Following 5 h and 24 h of infection, cells were washed twice 

with PBS and lysed with RLT buffer containing β-mercaptoethanol. Total RNA was 

isolated with the RNeasy Mini Kit according to the manufacturer’s instructions and 
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quantification of RNA was done using a NanoDrop spectrophotometer. All samples 

had A260/ A280 ratios of 1.90 to 2.10. 

4.2.9 Synthesis of cDNA  

Following isolation of total RNA, first-strand cDNA was synthesized with the 

SuperScript III First-Strand Synthesis SuperMix for qRT-PCR. Reaction mix, 

containing random hexamers, oligo(dT) and magnesium chloride, as well as enzyme 

mix, containing M-MLV RT and a recombinant ribonuclease inhibitor (RNaseOUT™), 

was added to the RNA. The samples were first incubated at room temperature for 10 

min prior to cDNA synthesis conducted at 50 °C for 30 min. The reaction of the reverse 

transcriptase was stopped by heating the samples for 5 min at 85 °C. Finally, 

Escherichia coli RNase H was added, and the cDNA was incubated for 20 min at 37 

°C. The cDNA was transferred into 1.5 ml tubes and stored at -20 °C until further use. 

4.2.10 Quantitative real-time PCR 

Quantitative real-time PCR was conducted to compare the relative amount of the 

expression of different genes. Therefore, the Light Cycler Fast Start DNA MasterPLUS 

SYBR Green Kit was used. SYBR Green is a DNA binding fluorescent probe, which 

integrates itself into double stranded DNA, causing a fluorescent signal. The 

fluorescent signal generated during each cycle is proportional to the amount of 

generated PCR product. The relative quantification was done by comparative Cp 

method. Hence, the Cp values of each sample were normalized against the Cp values 

of the house-keeping genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or 

hydroxymethylbilane synthase (HMBS). Additionally, a melting curve analysis was 

performed to eliminate non-specific amplification. 

4.3 Biochemical methods 

4.3.1 Enzyme-linked immunosorbent assay 

The HMGB1 ELISA kit (IBL International) was utilized to measure the release of the 

protein HMGB1. 1 x 106 MRC-5 lung fibroblasts were seeded in a 6-well plate and 

allowed to adhere overnight. The following day cells were infected with Mtb Erdman 

(MOI 10) and incubated for 48 h at 37 °C in 5% CO2 prior to collecting the supernatant. 

The samples were processed according to the manufacturer’s protocol. Briefly, the 

samples were transferred into a 96-well plate pre-coated with polyclonal anti-HMGB1 

and incubated for 24 h at 37 °C. Thereafter, HMGB1 conjugated to peroxidase was 
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added to the samples, the plate was incubated for 2 h at 25 °C, and TMB substrate 

solution was used for detection. The absorbance was measured and analyzed using 

the Multiskan™ FC Microplate Photometer with internal software. 

4.3.2 Immunoblot analysis 

For immunoblot analysis whole cell lysates were gained from MRC-5 lung fibroblasts 

or J774.2 Mᴓ. 1 x 106 cells were seeded in 10 cm culture dishes and allowed to adhere 

for at least 24 h. Prior to infection with Mtb Erdman cells were pretreated with different 

compounds for 2 h. Whole cell lysates were obtained 5 h, 24 h and 48 h post infection 

from MRC-5 lung fibroblasts and 5 h, 24 h and 30 h post infection from J774.2 Mᴓ 

using RIPA lysis and extraction buffer containing Halt™ Protease and Phosphatase 

Inhibitor Cocktail. The samples were detached from the culture flask with a cell scraper 

and incubated on ice for 20 min. Subsequently, the samples were centrifuged (12000 

x g, 10 min, 4°C) and the supernatant containing the proteins was stored at -80 °C until 

further use. The protein concentration was measured with the Pierce™ BCA Protein 

Assay Kit and equal amounts of protein (15–20 µg) were loaded onto a SDS-

polyacrylamide gel and separated by gel electrophoresis. Afterwards, the proteins 

were transferred to a PVDF membrane using the Trans-Blot® Turbo™ Transfer 

System. The membrane was blocked with 5% dried milk or 5% BSA in TBST buffer 

and was incubated with primary antibodies at 4 °C overnight. The following day, the 

membranes were washed three times for 5 minutes with TBST and incubated for 1 h 

at room temperature with the corresponding secondary, horseradish peroxidase-

conjugated, antibody. Visualization of the transferred proteins was achieved with the 

20X LumiGLO® Reagent, and X-ray films were processed in a Curix 60. 

4.4 Statistical analysis 

Data are displayed as mean ± standard error of the mean (SEM). The data were 

analyzed with the Graphpad Prism version 5 software program. The unpaired t-test 

was used to compare two matched groups and the One-Way analysis of variance 

(ANOVA) with Bonferroni posttests was used to compare more than two groups. 

Differences with the following p values p < 0,05 (*), p < 0,01 (**) and p < 0,001 (***) 

were defined as statistically significant.  
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5. Results 

5.1 Inhibition of Mtb-induced cell death by corticosteroids  

Infection of Mᴓ with Mtb leads to the phagocytosis of the bacterium and ultimately to 

host cell death by the secretion of virulence factors through the ESX-1 secretion 

system of Mtb. Death of the Mᴓ allows the spread of the bacteria and causes tissue 

damage and hyperinflammation (Bold and Ernst, 2009). Therefore, host cell death is a 

major mechanism of Mtb pathogenesis and a potential drug target for Mtb treatment. 

In recent years, efforts in finding a suitable compound that abrogates mycobacterial 

cytotoxicity and promotes host cell survival have increased. Especially, the re-purpose 

of already approved drugs that are pharmacologically active has become of high 

interest (Tsenova and Singhal, 2020). 

I performed a high-throughput screen of Food and Drug Administration (FDA)-

approved drugs to find a compound that inhibits host cell death. For that purpose, 

MRC-5 human lung fibroblasts were infected with wild type Mtb and host cell survival 

was monitored by fluorescence, in a FSA. Interestingly, corticosteroids were potent hit 

compounds and nearly as effective in promoting host cell survival as the antibiotic 

rifampicin, which was used as a positive control (Fig. 7A). The most efficient compound 

was the corticosteroid dexamethasone with a half maximal inhibitory concentration 

(IC50) of 15 nanomolar (Fig. 7B). Additionally, cell death was reduced in primary human 

Mᴓ (Fig. 7C) isolated from blood and in the mouse Mᴓ cell line J774.2 (Fig. 7D). These 

data illustrate that dexamethasone is highly effective in reducing mycobacterial 

cytotoxicity independent of different phagocytes.  

However, corticosteroids have many off-target and adverse effects, such as diabetes 

mellitus (Blackburn et al., 2002) or corticosteroid-induced lipodystrophy (Hasselgren et 

al., 2010). Thus, I wanted to decipher the pathway that dexamethasone induces to 

promote host cell survival to find a suitable alternative for the treatment of TB patients. 
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Figure 7. Corticosteroids reduce cytotoxicity in Mtb-infected cells. Protective effect of 
corticosteroids (10 µM; A) and dose-response curve of dexamethasone (B) in MRC-5 lung 
fibroblasts infected with wild type Mtb Erdman with a multiplicity of infection (MOI) of 10. Host 
cell survival was measured by PrestoBlueTM. The data is derived from a high-throughput screen 
using duplicate assay plates. Representative fluorescent microscopy images and survival of 
Mtb-infected primary human Mᴓ (MOI 1; C) and J774.2 Mᴓ (MOI 5; D) treated with 
dexamethasone (5 µM), rifampicin (5 µM) or DMSO (0.1% or 0.5%). Nuclei were stained with 
4’,6-diamidino-2-phenylindole (DAPI) 48 h post infection (scale bar: 100 µm). Data from one 
experiment with duplicates are shown in A and B; data were pooled from three (C) or two (D) 
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independent experiments with multiple replicates. Results are expressed as the mean ± SEM. 
Statistical analysis were performed by One-Way ANOVA (**, p≤ 0.01; ***, p≤ 0.001). 

 

5.2  Activation of p38 MAPK initiates host cell death 

Corticosteroids have been used in the clinic to treat TB meningitis and it has been 

shown that dexamethasone reduces the mortality rate of such TB-patients (Schutz et 

al., 2018). However, not much is known about the exact mechanism, which is 

responsible for the protective effect in TB patients. So far, only the MAPK phosphatase 

1 (MKP-1; DUSP1) has emerged as a key regulator for corticosteroid-dependent 

effects (Abraham et al., 2006). Hence, I hypothesize that the inhibition of MKP-1 should 

reverse the protective effect of dexamethasone in Mtb-infected cells.  

In order to validate this hypothesis, MRC-5 lung fibroblasts were co-treated with 

dexamethasone and the MKP-1 inhibitor (E/Z)-Bcl. While (E/Z)-Bcl had no cytotoxic 

effects on MRC-5 fibroblasts, the inhibitor fully diminished the protective effect of 

dexamethasone (Fig. 8A). Similarly, the co-treatment of MRC-5 fibroblasts with 

dexamethasone and the glucocorticoid receptor (GR) inhibitor Ru-486 lead to 

increased host cell death (Fig. 8A). In addition, the treatment of human Mᴓ with the 

non-steroidal GR agonist BI653048 lead to increased survival of the Mᴓ (Fig. 8B). 

These findings suggest that dexamethasone protects the cells from cell death by 

activation of the GR and upregulation of MKP-1. The upregulation of MKP-1 in Mtb-

infected MRC-5 fibroblasts was confirmed by qRT-PCR indicated by a significant 

increase upon treatment (Fig. 8C).  

MKP-1 is a known regulator of MAPK and can inactivate the kinases p38 MAPK, ERK 

and JNK (Abraham et al., 2006). Therefore, the activation of all three kinases was 

analyzed by detecting their corresponding phosphorylated forms via Western blot. 

Upon infection of J774.2 Mᴓ with Mtb, p38 MAPK was phosphorylated at different time 

points (Fig. 8D). Treatment of the cells with dexamethasone prevented the 

phosphorylation of p38 MAPK 24 h and 30 h after infection.  
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Figure 8. The cytoprotective effect of dexamethasone is mediated by mitogen-activated 
protein kinase (MAPK) phosphatase (MKP)-1 activation. Inhibition of the glucocorticoid 
receptor (GR) by Ru-486 or inhibition of MKP-1 by (E/Z)-Bcl hydrochloride (A) reduces the 
protective effect of dexamethasone (5 µM) on Mtb-infected MRC-5 lung fibroblast (MOI 10) 
survival. Viable fibroblasts were quantified 72 h post infection using the fibroblast survival 
assay (FSA). Treatment of Mtb-infected human Mᴓ (MOI 1) with the GR agonist BI653048 (10 
µM) lead to increased cell survival. Mᴓ were stained with DAPI and the number of surviving 
cells was assessed 48 h post infection (B). Dexamethasone (5 µM) treatment increases MKP-
1 expression in infected MRC-5 lung fibroblasts 5 h after infection. Relative expression of MKP-
1 was measured by quantitative real-time (qRT-)PCR (C). Infection of J774.2 Mᴓ with Mtb 
(MOI 5) leads to p38 MAPK phosphorylation. Whole cell lysates were obtained at indicated 
time points after infection and subjected to Western blot analysis. β-Actin was used as a 
loading control (D). Data from one experiment with multiple replicates (A, B), data pooled from 
four individual experiments (C) or data from three individual experiments (D) are shown as 
mean ± SEM. Analysis was done using One-Way ANOVA (*, p≤ 0.05; ***, p≤ 0.001). 
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In addition, the phosphorylation of JNK and ERK was investigated in Mtb-infected 

J774.2 Mᴓ in the presence or absence of dexamethasone. No significant difference in 

the phosphorylation status of JNK (Fig. 9A) or ERK (Fig. 9B) could be observed at 5 

h or 24 h post infection compared to the uninfected cells. Though dexamethasone 

treatment of Mtb-infected J774.2 Mᴓ lead to a slight reduction of phosphorylation for 

both kinases 24 h post infection. Thus, p38 MAPK was identified as the sole target of 

corticosteroid treatment in Mtb-infected phagocytes. 

 

Figure 9. Infection with Mtb does not lead to phosphorylation of c-Jun N-terminal kinase 
(JNK) or extracellular signal-regulated kinase (ERK). Infection of J774.2 Mᴓ with Mtb (MOI 
5) does not induce JNK (A) or ERK (B) activation. Whole cell lysates were obtained at indicated 
timepoints from J774.2 Mᴓ in the presence or absence of 5 µM dexamethasone and equal 
amounts of protein were subjected to Western blot analysis to determine the levels of 
phosphorylated and total JNK and ERK. β-Actin was used as a loading control. Data from two 
independent experiments (A, B) are shown as mean ± SEM. Analysis was done using One-

Way ANOVA (ns, not significant). 
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Subsequently, different p38 MAPK inhibitors were tested for their cytoprotective effect 

in Mtb-infected cells to determine whether direct p38 MAPK inhibition is as protective 

as corticosteroid treatment. These inhibitors include doramapimod (BIRB796) and 

BMS-582949. The inhibitor doramapimod was as efficient in promoting host cell 

survival as dexamethasone in Mtb-infected human Mᴓ (Fig. 10A). However, BMS-

582949 was not able to prevent host cell death (data not shown). To decipher the 

divergent data regarding different p38 MAPK inhibitors, the phosphorylation status of 

p38 MAPK was quantified. While doramapimod fully suppressed p38 MAPK 

phosphorylation 24 and 48 h after infection, BMS-582949 did not achieve the same 

effect (Fig. 10B). Hence, doramapimod was used as an exclusive p38 MAPK inhibitor 

in the following experiments. To further verify the role of p38 MAPK in TB infection, 

p38 MAPK expression was knocked down in J774A.1 Mᴓ (p38KD) with selective small 

interfering RNA (siRNA; Fig. 10C). The downregulation of p38 MAPK lead to increased 

J774A.1 Mᴓ survival (Fig. 10D). Although, both dexamethasone and doramapimod are 

potent inhibitors of host cell death, they have no impact on the intracellular bacterial 

load in J774.2 Mᴓ (Fig. 10E). These data show that dexamethasone and doramapimod 

only impact on the host cell and not on the bacterium. In summary, both compounds 

mediate host cell survival by the inhibition of p38 MAPK activation.  
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Figure 10. Inhibition of p38 MAPK by doramapimod increases host cell survival. 
Cytoprotective effect of the p38 MAPK inhibitor doramapimod (10 µM) in Mtb-infected human 
Mᴓ (MOI 1). Mᴓ were stained with DAPI and the number of living cells was determined 48 h 
post infection (A). Phosphorylation status of p38 MAPK was detected by Western blot in MRC-
5 lung fibroblasts infected with Mtb (MOI 10) and treated with the p38 MAPK inhibitors BMS-
582949 (10 µM) or doramapimod (B). Expression of p38 MAPK in J774A.1 Mᴓ and J774A.1 
p38 MAPK knockdown (KD) Mᴓ analyzed by qRT-PCR (C). Survival of Mtb-infected p38 MAPK 
KD J774A.1 Mᴓ (MOI 3 and 5) 48 h after infection (D). Dexamethasone or doramapimod 
treatment has no effect on intracellular bacterial burden. Determination of the colony-forming 
units (CFU) of Mtb-infected J774.2 Mᴓ treated with dexamethasone (1 or 5 µM) or 
doramapimod (E). Data from three independent experiments with multiple replicates are shown 
(A, D); representative data of two experiments are shown in B and E;  data from one 
experiment with multiple replicates are shown in C. Data are expressed as mean ± SEM. 
Analysis was done using One-Way ANOVA (ns, not significant; *, p≤ 0.05; **, p≤ 0.01; ***, p≤ 
0.001). 
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5.3 Apoptosis in Mtb-mediated host cell death  

p38 MAPK plays a crucial role in different forms of cell death (Gräb and Rybniker, 

2019). To decipher the pathway induced by Mtb, several cell death pathways were 

dissected. One of the major forms of cell death p38 MAPK has been associated with 

is apoptosis (Aguilo et al., 2014).  

First, the activation of caspase 3, one of the executioner caspases, was analyzed by 

detecting the cleaved form of caspase 3 by Western blot. The infection of J774.2 Mᴓ 

with Mtb triggered a slight proteolytic cleavage of caspase 3 at several time points, 

which was inhibited upon dexamethasone treatment (Fig. 11A). This could be 

confirmed in a more sensitive caspase 3 and 7 activity assay in Mtb-infected MRC-5 

lung fibroblasts, using a luminescent probe (Fig. 11B). Though, not significant, 

dexamethasone and doramapimod were able to reduce caspase activation. Therefore, 

I assume that Mtb potentially triggers apoptosis in phagocytes. To confirm this, cells 

were treated with the pan-caspase inhibitor Z-VAD-FMK, which fully abrogates 

caspase activation (Fig. 11B). In contrast, neither MRC-5 lung fibroblasts (Fig. 11C) 

nor human Mᴓ (Fig. 11D) were protected from Mtb-induced host cell death upon Z-

VAD-FMK treatment. These data indicate that although apoptosis might be activated 

in TB-infected cells, it is a secondary event, rather than the major form of cell death 

induced upon Mtb infection.  
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Figure 11. Mtb-induced host cell death is independent of caspase 3 and 7 activation. 
Western blot analysis of cleaved caspase 3 in Mtb-infected J774.2 Mᴓ (MOI 5) in the presence 
or absence of dexamethasone (5 µM). β-Actin was used as a loading control and staurosporine 
(1 µM) as a positive control (A).Caspase 3 and 7 activity was assessed in Mtb-infected MRC-
5 lung fibroblasts (MOI 10) treated with dexamethasone (5 µM), doramapimod (10 µM) or the 
pan-caspase inhibitor Z-VAD-FMK (10 µM) 48 h post infection using a luminescent probe. 
Uninfected and staurosporine (1 µM) treated cells were used as controls (B). Effect of caspase 
3 and 7 inhibition by Z-VAD-FMK on survival of infected MRC-5 lung fibroblasts (C) and human 
Mᴓ (D). Viable fibroblasts were detected using PrestoblueTM and Mᴓ were quantified by DAPI 
staining. Representative data from at least two experiments with multiple replicates are shown. 
Results are expressed as mean ± SEM. Analysis was done using One-Way ANOVA (ns, not 
significant; ***, p≤ 0.001). 
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5.4 Induction of necrosis in Mtb-infected cells 

5.4.1 Mtb infection triggers the secretion of necrotic markers 

Based on my results indicating that apoptosis is not the major cell death pathway, I 

want to further dissect other potential pathways involved in TB-mediated host cell 

death. In recent years, it has been suggested that virulent Mtb strains rather induce 

necrotic host cell death. Necrosis is accompanied by hyperinflammation and allows the 

cell to cell spread as well as a dissemination of the disease (Zhao et al., 2017). There 

are several markers to detect necrosis of infected cells, including LDH and HMGB1. 

Following Mtb infection of MRC-5 lung fibroblasts (Fig. 12A) and human Mᴓ (Fig. 12B) 

large amounts of LDH were found in the supernatant of the infected cells compared to 

rifampicin treated controls. Moreover, infected MRC-5 fibroblasts showed enhanced 

secretion of the chromatin protein HMGB1 (Fig. 12C). The treatment of Mtb-infected 

cells with doramapimod (Fig. 12) or dexamethasone (Fig. 12C) blocked the release of 

both LDH and HMGB1 and thereby links p38 MAPK activation to necrotic cell death.   

 

Figure 12. Mtb promotes necrotic host cell death. Quantification of lactate dehydrogenase 
(LDH) in the supernatant of MRC-5 lung fibroblasts (A) 72 h post infection and human Mᴓ 48 
h post infection in the presence or absence of doramapimod (10 µM; B). Dexamethasone (5 
µM) and doramapimod (10 µM) reduce the release of the necrosis marker High-Mobility-Group-
Protein B1 (HMGB1) in Mtb-infected MRC-5 lung fibroblasts measured by enzyme-linked 
immunosorbent assay (ELISA; C). Representative data from two experiments with multiple 
replicates are shown in A and B. Data pooled from eight independent experiments are shown 
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in C. Results are expressed as mean ± SEM and analysis was done using One-Way ANOVA 
(ns, not significant; *, p≤ 0.05; **, p≤ 0.01; ***, p≤ 0.001). 

 

5.4.2 Necroptosis is not relevant in TB infection 

Necrosis is mainly known as an uncontrolled form of cell death. However, regulated 

necrosis has become of high interest in recent years, in particular necroptosis. 

Necroptosis is a TNF-mediated cell death pathway, which results in the formation of 

the necrosome, a complex consisting of TNFR, RIPK1, RIPK3 and MLKL 

(Vandenabeele et al., 2010). The role of necroptosis in connection to TB-induced host 

cell death will be evaluated since TNF is a major player in Mtb pathogenesis and 

corticosteroids inhibit the release of the pro-inflammatory cytokine. Therefore, RIPK1, 

TNF and TNRF were chemically inhibited in Mtb-infected human Mᴓ. Neither the 

inhibition of RIPK1 by necrostatin-1 or necrostatin-5 (Nec-1 and Nec-5) nor the 

inhibition of TNF by thalidomide, etanercept or adalimumab was cytoprotective (Fig. 

13A). Additionally, the knockout (KO) of MLKL (Fig. 13B) or TNFR1 (Fig. 13C) failed 

to promote host cell survival in mouse BMDM. Necroptosis can only take place if 

caspase 8 is inhibited (Vandenabeele et al., 2010). To create a pro-necroptotic 

environment, human Mᴓ were treated with the pan-caspase inhibitor Z-VAD-FMK in 

addition to Nec-1. However, the co-treatment failed to prevent Mtb-induced host cell 

death. Collectively, the data show that corticosteroid treatment and p38 MAPK 

inhibition is independent of necroptosis.  
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Figure 13. Mtb triggers receptor-interacting serine/threonine-protein kinase 1 (RIPK1) 
independent necrotic cell death. Effect of necrostatin (Nec; 10 µM), etanercept (10 µg/ ml), 
adalimumab (50 µg/ ml) and thalidomide (10 µM) in Mtb-infected human Mᴓ (MOI 1). Cell 
survival was quantified by DAPI staining 48 h after infection. The control rifampicin was set to 
100 percent (A). Bone marrow-derived Mᴓ (BMDM) from WT and MLKL-/- (B) or TNFR-/- (C) 
mice were infected with Mtb (MOI 10) and cell survival was assessed 48 h after infection using 
DAPI staining. Mtb-infected human Mᴓ (MOI 1) were treated with Z-VAD-FMK (10 µM) and 
Nec-1 (10 µM) and viable cells were detected 48 h post infection using DAPI staining (D). Data 
from at least two experiments with multiple replicates are shown. Results are expressed as 
mean ± SEM. Analysis was done using One-Way ANOVA (ns, not significant; ***, p≤ 0.001). 

 

5.5 Opening of the mitochondrial permeability transition pore results in host 

cell death 

After excluding necroptosis as a mechanism of Mtb-induced and p38 MAPK-mediated 

host cell death, alternative pathways of cell death were analyzed. The original high-

throughput screen of FDA-approved drugs also identified the CypD and calcineurin 

inhibitor cyclosporin A (CsA) as a potent hit compound. Intriguingly, CypD is a regulator 

of the mPTP (Vanden Berghe et al., 2014). The mPTP plays a key role in mitochondria-

driven necrosis and mitochondrial damage (Zhao et al., 2017). Thus, the role of the 

mPTP in Mtb-induced host cell death was studied in more detail.  

Treatment of Mtb-infected MRC-5 fibroblasts with CsA was as cytoprotective as the 

treatment with dexamethasone or doramapimod. Since CsA is an inhibitor of CypD and 

calcineurin, a specific calcineurin inhibitor (FK-506) was also used, to determine which 

effect is responsible for host cell survival. FK-506 treatment had no effect on MRC-5 

fibroblasts infected with Mtb, thereby indicating that MPT is necessary for Mtb-driven 

host cell death (Fig. 14A). Opening of the mPTP disrupts the ΔΨm and subsequently 

leads to a loss of mitochondrial function and integrity (Biasutto et al., 2016). A change 

in the ΔΨm can be detected with TMRM, a reporter-dye only visible in cells with intact 

mitochondrial membranes. The dye accumulated in uninfected human Mᴓ, while it was 

nearly invisible in Mtb-infected Mᴓ (Fig. 14B). Furthermore, the mPTP regulator CypD 

was analyzed by immunoblots. Treatment of Mtb-infected MRC-5 lung fibroblasts with 

CsA lead to an accumulation of CypD in the cytosol and a decrease in mitochondrial 

CypD (Fig. 14C). Since dexamethasone and doramapimod prevent necrotic host cell 

death, it was assumed that they also decrease mitochondrial CypD levels. However, 

both compounds had no effect on CypD expression, suggesting that they have a 

mechanism independent of CsA (Fig. 14C). Furthermore, a significant decrease in 

intracellular ATP was observed after Mtb infection in J774.2 Mᴓ (Fig. 14D) and MRC-
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5 lung fibroblasts (Fig. 14E), which could be reversed with dexamethasone or 

doramapimod treatment. Hence, the data show that Mtb triggers host cell necrosis by 

opening of the mPTP and disrupting the ΔΨm, resulting in a loss of intracellular ATP.  

 

Figure 14. p38 MAPK dependent necrosis opens the mitochondrial permeability 
transition pore (mPTP). Cytoprotective effect of cyclosporin A (CsA; 10 µM) in Mtb-infected 
MRC-5 lung fibroblasts (MOI 10). Viability was determined 72 h after infection using the FSA 
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(A). Mitochondrial membrane potential was quantified using tetramethylrhodamine-methyl 
ester (TMRM) staining in Mtb-infected human Mᴓ (MOI 1) 48 h post infection (scale bar: 100 
µm; B). Western blot analysis of cytosolic and mitochondrial cyclophilin D (CypD) 5 h after Mtb 
infection in MRC-5 lung fibroblasts (MOI 10), treated with dexamethasone (5 µM), 
doramapimod (10 µM) or CsA (10 µM). Voltage-dependent anion-selective channel 1 (VDAC-
1) was used as a loading control (C). Intracellular ATP levels in Mtb-infected J774.2 Mᴓ (D) 
and MRC-5 lung fibroblasts (E) 24 h and 48 h after infection, respectively. Cells were treated 
with dexamethasone (5 µM) or doramapimod (10 µM). Data from at least two experiments with 
multiple replicates are shown in A, D and E. Representative data from 2 experiments are 
shown in B and C. Results are expressed as mean ± SEM and experiments were analyzed 

using One-Way ANOVA (ns, not significant; **, p≤ 0.01; ***, p≤ 0.001). 

 

5.5.1 Mitochondrial damage is crucial for Mtb-induced host cell death 

Opening of the mPTP is a result of mitochondrial damage and leads to a high influx of 

ions, which alters the ΔΨm and results in decreased ATP production and oxidative 

phosphorylation. Two indicators of mitochondrial damage are mitochondrial ROS and 

mitochondrial Ca2+ accumulation (Zorov et al., 2014). ROS are generated by the 

respiratory electron transport chain (ETC) in the mitochondria during energy production 

and can diffuse into the cytosol. Several intracellular bacteria, such as Listeria 

monocytogenes, are able to induce ROS production in the mitochondria (Stavru et al., 

2011; West et al., 2011). ROS production in the mitochondrial matrix can be quantified 

by MitoSOX Red (Mukhopadhyay et al., 2007). Infection of MRC-5 lung fibroblasts with 

Mtb triggered ROS production in mitochondria (Fig. 15A). While scavenging of 

mitochondrial ROS by MitoTEMPO, a mitochondrial matrix-targeting form of the 

superoxide scavenger TEMPO, lead to reduced ROS generation (Fig. 15A) and 

increased host cell survival in Mtb-infected human Mᴓ (Fig. 15B). Notably, treatment 

of MRC-5 lung fibroblasts with dexamethasone, doramapimod or CsA also decreased 

ROS production after Mtb infection (Fig. 15A).  

Another indicator of mitochondrial damage is Ca2+, which has specific binding sites in 

the IMM. Accumulation of Ca2+ in the mitochondria is mediated by the mitochondrial 

calcium uniporter (MCU), a transmembrane protein that allows the migration of Ca2+ 

from the cytosol into the mitochondria. The MCU complex consists of the MCU, the 

mitochondrial calcium uptake 1 (MICU1) and MICU2 (Tajeddine, 2016). The MCU can 

be specifically blocked by Ru-360, a dinuclear ruthenium ammine complex and analog 

of ruthenium red, which prevents the mitochondrial uptake of Ca2+. Mtb infection of 

J774.2 Mᴓ lead to increased Ca2+ levels and the treatment with Ru-360 reversed this 

effect (Fig. 15C). To study whether inhibition of the MCU influences host cell survival, 



   Results 

 

51 
 

human Mᴓ were treated with Ru-360 and cell survival was assessed 48 h post Mtb 

infection. The inhibition of the MCU was cytoprotective (Fig. 15D). Interestingly, the 

simultaneous inhibition of mitochondrial ROS and Ca2+ was even more protective than 

the monotreatment with MitoTEMPO or Ru-360. Thus, the infection with Mtb causes 

mitochondrial damage inside the host cell and results in increased mitochondrial ROS 

generation and mitochondrial Ca2+ uptake. 

 

Figure 15. Infection with Mtb increases the release of mitochondrial reactive oxygen 
species (ROS). Mitochondrial ROS was quantified in Mtb-infected MRC-5 lung fibroblasts 
(MOI 10) using MitoSOX Red 24 h after infection (A). Viability of Mtb-infected human Mᴓ (MOI 
1) in the presence or absence of MitoTEMPO (10 µM). Mᴓ were stained with DAPI and the 
number of surviving cells was determined 48 h post infection (B). Intracellular calcium (Ca2+) 
concentrations were measured 24 h after infection with Mtb (MOI 5) in J774.2 Mᴓ in the 
presence or absence of Ru-360 (C). Protective effect of the mitochondrial calcium uniporter 
(MCU) inhibitor Ru-360 in human Mᴓ infected with Mtb. Viability was assessed 48 h after 
infection using DAPI staining (D). Representative data from two experiments with multiple 
replicates are shown. Results are expressed as mean ± SEM. Analysis was done using One-
Way ANOVA (A, B, D) or unpaired t test (C) (*, p≤ 0.05; **, p≤ 0.01; ***, p≤ 0.001). 

 

5.5.2 Hexokinase II and p53 are potential regulators of the mPTP 

One of the potential regulators of mPTP opening is the OMM bound enzyme 

hexokinase II (HKII), an antagonist of ROS-induced mPTP opening. Although HKII is 

not directly involved in mPTP regulation, the accumulation of HKII at the mitochondria 

can prevent mPTP opening (Biasutto et al., 2016). Early in the infection, HKII was up-

regulated in Mtb-infected J774.2 Mᴓ compared to uninfected cells (Fig. 16A). 

However, at a later time point of infection (24h), HKII levels were reduced at the 

mitochondria of infected J774.2 Mᴓ, suggesting a dissociation of HKII into the cytosol 

(Fig. 16B). Interestingly, treatment of the Mᴓ with dexamethasone or doramapimod 
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resulted in prolonged accumulation of HKII at the mitochondria. While the treatment of 

TB-infected Mᴓ with the p38 MAPK inhibitor BMS-582949 had no effect on HKII 

expression. 

 

Figure 16. Mtb triggers mPTP opening by dissociation of hexokinase II (HKII) from the 
mitochondrium. Quantification of mitochondrial HKII following Mtb infection (MOI 5) at 
indicated time points. J774.2 Mᴓ were treated with dexamethasone (5 µM) or doramapimod 
(10 µM) and subjected to Western blot analysis. VDAC-1 was used as a loading control (A). 
Quantification of HKII expression in whole cell lysates of Mtb-infected MRC-5 lung fibroblasts 
(MOI 10) 48 h post infection. Lysates were obtained from untreated cells as well as from cells 
treated with the p38 MAPK inhibitors doramapimod (10 µM) or BMS-582949 (10 µM). HKII was 
quantified by Western blot analysis using β-Actin as a loading control. Representative data 

from two experiments are shown. Results are expressed as mean ± SEM. 

 

Additionally, HKII expression was significantly increased in Mtb-infected MRC-5 lung 

fibroblasts (Fig. 17A). HKII can be inhibited by 3-bromopyruvate (3BP). Co-treatment 

of J774.2 Mᴓ with dexamethasone and 3BP or doramapimod and 3BP reduced the 

protective effect of dexamethasone and doramapimod, detected by decreased levels 
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of intracellular ATP (Fig. 17B). Therefore, HKII is not only important in glucose 

phosphorylation and ATP generation (Biasutto et al., 2016), but also in p38 MAPK-

mediated host cell death.  

 

Figure 17. HKII as a regulator of mPTP opening. Expression of hexokinase II (HKII) in MRC-
5 lung fibroblasts 24 h after infection (MOI 10) measured by qRT-PCR (A). Intracellular ATP 
levels in Mtb-infected J774.2 Mᴓ in the presence or absence of dexamethasone (5 µM), 
doramapimod (10 µM) and bromopyruvic acid (3BP; 5 µM) following 24 h of infection. (B). 
Representative data from at least two experiments with multiple replicates are shown. Results 
are expressed as mean ± SEM and experiments were analyzed using unpaired t test (A) and 
One-Way ANOVA (B) (**, p≤ 0.01; ***, p≤ 0.001). 

 

Another potential regulator of mPTP opening is the tumor protein p53, which can either 

directly interact with the mitochondrial membrane or modulate the interaction of HKII 

with the mPTP (Marchenko and Moll, 2014). Additionally, the transcription factor p53 

is a target of p38 MAPK. Accumulation of p53 in the nucleus upon cell stress, initiates 

host cell death by activation of pro-apoptotic and suppression of anti-apoptotic Bcl-2 

family proteins. Thereafter, pro-apoptotic proteins migrate to the mitochondria and 

cause permeabilization of the OMM, resulting in mPTP opening (Perfettini et al., 2005; 
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Stramucci et al., 2018). p53 might be another protein involved in Mtb-mediated host 

cell death and a potential link between p38 MAPK and the mPTP.  

Mtb-infected human Mᴓ were treated with the p53 inhibitor pifithrin-α, which resulted 

in increased viability of the cells (Fig. 18A). To further clarify the role of p53 in Mtb-

mediated cell death, the expression of p53 in J774A.1 Mᴓ was downregulated (p53 

KD) by siRNA. Suppression of p53 expression significantly increased the viability of 

J774A.1 Mᴓ post infection (Fig. 18B). These data show that the role of p53 in Mtb-

driven host cell death is of similar importance as that of p38 MAPK.  

 

Figure 18. Chemical inhibition and knockdown of p53 is cytoprotective. Viability of Mtb-
infected human Mᴓ (MOI 1) in the presence or absence of the p53 inhibitor pifithrin α (10 µM; 
A) and viability of J774A.1 p53 KD Mᴓ (B) quantified by DAPI staining 48 h post infection. Data 
were obtained from three (A) or two (B) experiments with multiple replicates and are shown as 
mean ± SEM. Analysis was done using One-Way ANOVA (*, p≤ 0.05; **, p≤ 0.01; ***, p≤ 
0.001). 

 

5.5.3 Overexpression of Bcl-2 prevents mitochondrial damage 

The Bcl-2 family of proteins is mainly associated with apoptosis and consists of pro- 

and anti-apoptotic proteins. Pro-apoptotic proteins include, Bak and Bax, and anti-

apoptotic proteins include Bcl-2 and Bcl-xL. The pro-apoptotic Bak and Bax can cause 

MOMP by oligomerizing and the formation of pores at the OMM. Hence, the anti-
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apoptotic proteins are responsible for the inhibition of pro-apoptotic proteins to prevent 

MOMP (Lindsay et al., 2011). An overexpression of the anti-apoptotic protein Bcl-2 

should thereby inhibit cell death by directly suppressing pro-apoptotic Bcl-2 proteins. 

Moreover, it has been reported that Bcl-2 overexpression reduces p53 accumulation 

and therefore also indirectly inhibits pro-apoptotic Bcl-2 proteins (Marchenko and Moll, 

2014). 

Since Mtb induces host cell death in a p53 and MOMP dependent manner, the 

overexpression of Bcl-2 should promote host cell survival. To verify this, mouse BMDM 

overexpressing Bcl-2 upon stimulation with Cre were infected with Mtb. Figure 19A 

depicts the increased survival rate of Bcl-2 overexpressing BMDM compared to the 

unstimulated control (w/o Cre). To definitely clarify whether the increased survival rate 

of the mouse BMDM was due to reduced mitochondrial damage and not decreased 

phagocytosis of the bacteria, the bacterial load was determined. There was no 

significant difference in the intracellular mycobacterial load of mouse BMDM with Cre 

treatment compared to the untreated control (Fig. 19B). This illustrates that neither 

phagocytosis nor bacterial replication is impaired upon Bcl-2 overexpression. 

Furthermore, the overexpression of Bcl-2 is especially important in the protection of 

mitochondria from MOMP. Changes in the ΔΨm were detected by TMRM. Mouse 

BMDM without Cre failed to maintain the membrane potential and thereby showed a 

loss of TMRM. Simultaneously, mouse BMDM with Cre displayed a high accumulation 

of TMRM in the mitochondria, indicating that Bcl-2 overexpression suppressed MOMP 

(Fig. 19C). 

Thus, the protection of mitochondria by Bcl-2 overexpression prevents Mtb-mediated 

host cell death as efficiently as the inhibition of CypD by CsA or the suppression of p38 

MAPK by dexamethasone or doramapimod. 
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Figure 19. Overexpression of B cell lymphoma 2 (Bcl-2) promotes host cell survival in 
Mtb-infected BMDM. BMDM from Bcl-2 overexpressing mice were treated with Cre to induce 
Bcl-2 overexpression ex vivo. Viability of BMDM 24 h after infection (MOI 3) was quantified 
using DAPI staining (A). Determination of the CFU of Mtb-infected BMDM treated with or 
without (w/o) Cre prior to infection (B). Fluorescence microscopy of Bcl-2 BMDM infected with 
Mtb (MOI 3) and stained with TMRM 24 h post infection (scale bar: 100 µm). Images are 
representative of two independent experiments (C). Representative data from at least two 
experiments with multiple replicates are shown. Results are expressed as mean ± SEM. 

Analysis was done using One-Way ANOVA (ns, not significant; **, p≤ 0.01; ***, p≤ 0.001). 
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5.6 Model: A p38 MAPK dependent pathway is responsible for necrotic cell 

death induced by Mtb 

Based on the data generated in this thesis, the following model for Mtb-mediated 

necrotic host cell death is proposed (Fig. 20). The phagocytosis of Mtb by Mᴓ triggers 

the phosphorylation and activation of p38 MAPK. Thereafter, p53 promotes the 

dissociation of mitochondrial HKII and allows the opening of the mPTP induced by 

increasing levels of mitochondrial ROS and Ca2+. The opening of the mPTP leads to 

MPT and depletion of intracellular ATP. Finally, the cell enters necrosis, releasing the 

nuclear protein HMGB1 into the extracellular milieu. The pathway can be prevented 

using different inhibitors. The corticosteroid dexamethasone and the GR agonist 

BI653048 activate MKP-1 to indirectly deactivate p38 MAPK. Similarly, p38 MAPK can 

be directly inhibited by the p38 MAPK inhibitor doramapimod. The opening of the 

mPTP can be prevented by two different mechanisms. Either by chemical inhibition 

with CsA, an inhibitor of the mPTP regulator CypD, or by overexpression of Bcl-2. 

 

Figure 20. Model depicting Mtb-induced host cell death. Following phagocytosis of Mtb, 
p38 MAPK is phosphorylated and mediates the dissociation of HKII possibly via p53, resulting 
in mPTP opening. Necrosis of the host cell is characterized by an increase of mitochondrial 
ROS, a loss of intracellular ATP, and the release of HMGB1. Several compounds interfere with 
this pathway to promote host cell survival. Dexamethasone and BI653048 prevent p38 MAPK 
phosphorylation via the glucocorticoid receptor (GR) and MKP-1 activation, while 
doramapimod directly inhibits p38 MAPK. Further downstream cyclosporin A blocks mPTP 
opening by inhibition of cyclophillin D, a regulator of the mPTP. Opening of the mPTP can also 
be blocked by an overexpression of the protein Bcl-2 (adapted from (Gräb et al., 2019)). 
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6. Discussion 

Mtb is responsible for the highest mortality among single infectious agents worldwide 

(Ferraris et al., 2018; Seddon et al., 2019). The rapid emergence and prevalence of 

drug resistant Mtb strains, especially in Asia and Eastern Europe, as well as the 

difficulties in identifying and developing new antibiotics has led to a global health crisis 

(Köser et al., 2015). In addition, the limited amounts of putative drug targets have 

become a challenge in TB drug discovery. These challenges highlight the need to not 

only develop alternative therapeutic approaches, like HDT, in addition to antibiotic 

treatment (Tsenova and Singhal, 2020), but also to intensify the development of novel 

and highly potent antibiotics. To find a suitable drug for a HDT, further understanding 

of the host-pathogen interaction is necessary. One of the major mechanisms of 

pathogenesis in TB infection is the induction of host cell death. However, so far host 

cell death has not been exploited as a drug target due to limited knowledge on the type 

of cell death promoted by Mtb. Thus, different forms of cell death have to be studied in 

Mtb-infected cells, in order to identify a potential target for the development of future 

therapies. 

6.1 Identification and characterization of Mtb-mediated host cell death  

Mtb is a highly adaptable pathogen that relies on the human as a host. After the 

infection, the bacteria are phagocytosed by immune cells and contained within the 

granuloma, which represents a close environment for Mtb. The induction of host cell 

death allows the escape from granulomas and dissemination of the disease, often 

resulting in hyperinflammation and tissue damage (Zhai et al., 2019). Therefore, host 

cell death could be exploited for therapeutic approaches. However, the type of cell 

death induced by Mtb remains a matter of debate. In order to overcome this lack of 

knowledge, I analyzed the different paths of cell death in phagocytes infected with 

virulent Mtb.  

I first performed a high-throughput drug screening of FDA-approved drugs to identify a 

compound which inhibits Mtb-mediated host cell death. One of the compounds that 

prevented host cell death of non-professional and professional phagocytes, such as 

lung fibroblasts and Mᴓ, was the corticosteroid dexamethasone. Dexamethasone 

exhibited no bactericidal or bacteriostatic effects, demonstrating that the drug only 

impacts on the host cell. This shows a so far undescribed effect of dexamethasone on 
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host cell death. Thus, I further characterized the protective effect of dexamethasone 

and analyzed the type of cell death triggered by virulent Mtb to identify new therapeutic 

targets. 

My detailed analysis identified a cell death pathway involving p38 MAPK as a key 

regulator in Mtb-mediated host cell death. Corticosteroids can inhibit MAPK 

phosphorylation by activating MKP-1 (Abraham et al., 2006). Using chemical inhibition 

and knock-down cells, I identified a highly druggable pathway involving the 

glucocorticoid receptor, MKP-1, and MAPK. MAPK, including p38 MAPK, JNK and 

ERK play a major role in many cellular processes, such as proliferation and cell survival 

(Johnson and Lapadat, 2002). I demonstrated that only p38 MAPK was activated in 

response to the TB infection in phagocytes. This observation was confirmed by Rand 

et al., who showed in histopathology of human biopsies activation of p38 MAPK in Mᴓ 

adjacent to granulomas (Rand et al., 2009). Hence, p38 MAPK activation represents a 

potential target for a HDT. Notably, p38 MAPK is of major interest in many inflammatory 

and autoimmune diseases, such as rheumatoid arthritis (RA). RA and the connection 

to p38 MAPK led to the development of several chemical p38 MAPK inhibitors (Arthur 

and Ley, 2013). I tested a series of commercially available p38 MAPK inhibitors in Mtb-

infected phagocytes and was surprised to see distinctive activity of each inhibitor. 

While all p38 MAPK inhibitors are active in the nanomolar range, they differ in their 

ability to inhibit the four isotypes of p38 MAPK (Cuenda and Rousseau, 2007). I 

analyzed the activity of BMS-582949 and doramapimod among other p38 MAPK 

inhibitors. BMS-582949 specifically blocks the α isotype of p38 MAPK, which was not 

sufficient to inhibit Mtb-induced host cell death. In contrast, the broad-spectrum 

inhibitor doramapimod (Pargellis et al., 2002), was able to inhibit p38 MAPK 

phosphorylation even at later time points of infection. Since both dexamethasone and 

doramapimod interfere with the activation of p38 MAPK to increase host cell survival, 

I wanted to further confirm the role of p38 MAPK by using Mᴓ with an introduced p38 

MAPK knockdown. The data obtained during the experiments verified the importance 

of p38 MAPK phosphorylation in Mtb-induced host cell death. Therefore, p38 MAPK 

inhibitors may present a therapeutic approach with less adverse and off-target effects 

compared to corticosteroids (Strambu et al., 2019).  

Since p38 MAPK is highly involved in different cell death pathways, such as apoptosis 

and necrosis, I continued to dissect the pathway downstream of p38 MAPK. Especially, 



  Discussion 

60 
 

stress-induced activation of p38 MAPK is mainly associated with apoptotic cell death 

(Cuenda and Rousseau, 2007). Thus, I first studied the role of apoptosis in my infection 

model. Notably, evidence for the activation (Aporta et al., 2012) and inhibition 

(Divangahi et al., 2009) of apoptosis in TB infection has been provided. Aguiló et al. 

suggested a key role of p38 MAPK in ER-stress-mediated intrinsic apoptosis by Mtb 

(Aguilo et al., 2013). In this model, Mtb triggers ER stress via the secretion of EsxA, 

leading to increasing levels of mitochondrial ROS and Ca2+ (Tajeddine, 2016; Zorov et 

al., 2014). One of the downstream targets of ER-stress is the ASK1-p38 MAPK 

pathway, which promotes the activation of pro-apoptotic Bcl-2 family proteins and p53. 

The accumulation of pro-apoptotic Bcl-2 proteins at the mitochondria causes MOMP 

and results in intrinsic apoptosis (Lindsay et al., 2011). In line with several publications, 

I detected increasing amounts of the ER-stress activators mitochondrial ROS and Ca2+ 

in Mtb-infected Mᴓ leading to the activation of the effector caspases 3 and 7 following 

the infection. Therefore, ER-stress-induced p38 MAPK activation may lead to 

apoptosis via the proteolytic cleavage of caspase 3 in my experimental setup. 

However, inhibition of caspases with the pan-caspase inhibitor Z-VAD-FMK had no 

effect on host cell survival, indicating that apoptosis is not utilized by Mtb to escape the 

host cell. Therefore, my data contradict those of Aguiló et al. who have shown that 

apoptosis is reduced in Mtb-infected J774 cells in the absence of caspases 3 and 7 

(Aguilo et al., 2014). These discrepancies might be due to different Mtb strains (virulent 

or avirulent), and different MOI used in the experimental setup. For instance, a varying 

MOI can lead to either apoptosis or necrosis in the same experimental setup (Aporta 

et al., 2012). In addition, the absence of standardized procedures and protocols have 

made it increasingly difficult to define specific cell death phenotypes in vitro (Aporta et 

al., 2012). Especially data obtained from virulent (Erdman, H37Rv) and avirulent (BCG) 

Mtb strains need to be distinguished from each other. Moreover, a clear definition of 

early and late phases of infection might help establish a better definition of Mtb-induced 

cell death in vitro.  

In line with my results, other research groups have indicated that apoptosis is induced 

by attenuated Mtb strains, whereas virulent Mtb strains rather suppress this form of 

cell death (Danelishvili et al., 2003; Martin et al., 2014). It has been reported that 

apoptotic cell death is more beneficial for the host cell than for Mtb by limiting bacterial 

viability and spread. Therefore, Mᴓ induce caspase-mediated apoptosis in response 

to attenuated Mtb strains, such as H37Ra, to control the infection (Martin et al., 2014) 
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However, virulent Mtb strains suppress apoptosis to maintain their replication niche 

and subsequently escape the Mᴓ by inducing necrosis (Lee et al., 2011). Inhibition of 

apoptosis by virulent Mtb is mediated via a reduced Fas expression on the surface of 

infected Mᴓ, preventing FasL-induced apoptosis (Oddo et al., 1998). In addition, a 

study of the expression profile of Mᴓ infected with H37Ra and H37Rv revealed that 

several pro-apoptotic genes involved in the TNFR1 signaling cascade are 

downregulated in H37Rv infected cells (Spira et al., 2003). In line with my results, these 

data demonstrate that apoptosis is only an incidental event rather than the major form 

of cell death induced by virulent Mtb.  

Taken together, these studies suggest that both apoptosis and necrosis can mutually 

occur during Mtb infection. The critical factor might be the Mtb strain, the stage of 

infection and the bacterial burden. At early phases of infection Mtb favors apoptotic cell 

death. The delayed adaptive immune response allows Mtb to colonize the host without 

resistance. During this stage of infection, Mtb reaches a high bacterial burden without 

being exposed to the immune system of the host (Cooper, 2009). However, at later 

stages of infection Mtb promotes necrotic cell death to escape the granulomas, 

allowing transmission of the disease to new hosts (Aguilo et al., 2013).  

6.2 Induction of necrosis in Mtb-infected cells  

Necrosis is a pro-inflammatory process which leads to the release of cellular debris, 

such as DAMP, into the extracellular space and results in tissue inflammation (D'Arcy, 

2019). Unlike the well-defined pathways of apoptosis, necrosis can be instigated by 

several stimuli triggering different pathways of necrotic cell death. Common features 

displayed by cells undergoing necrosis are mitochondrial membrane rupture, ATP 

depletion, increased ROS production and a loss of Ca2+ homeostasis as well as a loss 

of plasma membrane integrity. Contrary to the initial description of necrosis as an 

unregulated process, it is now well-known that necrosis can also be a programmed 

type of cell death (Vanden Berghe et al., 2014). 

Following my observation that apoptosis is not induced as the major type of cell death 

by virulent Mtb in vitro, it was important to further mechanistically dissect necrosis as 

a potential cell death pathway. Necrosis is highly beneficial for Mtb since it allows the 

pathogen to enter the extracellular space and to infect newly recruited cells. 
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So far, only a few biomarkers have been established to identify necrosis. These include 

the secretion of HMGB1 and release of LDH (Yang et al., 2014). Infection of fibroblasts 

and Mᴓ lead to an increased release of both HMGB1 and LDH, a process that could 

be prevented by treatment of the cells with the corticosteroid dexamethasone or the 

p38 MAPK inhibitor doramapimod. With this experiment, I was able to link p38 MAPK 

activation to necrotic cell death induced by virulent Mtb for the first time. Interestingly, 

HMGB1 also acts as a DAMP responsible for recruiting neutrophils to the site of 

inflammation (Berthelot et al., 2012). Therefore, HMGB1 could be a potential 

diagnostic marker for necrotic damage in TB patients (Chen et al., 2016).  

Following the verification of necrosis in Mtb-infected cells, I analyzed different necrotic 

pathways to further decipher the molecular pathway triggered in response to the 

infection. One of the best described necrotic pathways is that of necroptosis. Since 

TNF plays an important role for both Mtb and necroptosis, it has previously been 

associated with Mtb-induced cell death. The binding of TNF to its receptor activates a 

signaling cascade involving RIPK1, RIPK3 and MLKL, which in the presence of 

inactivated caspase 8 results in necroptosis of the cell (Vandenabeele et al., 2010). 

Therefore, the role of TNF and necroptosis in TB infection has been studied 

extensively. It has been shown that a deficiency of TNF leads to increased bacterial 

growth and results in death of the host cell and release of Mtb (Clay et al., 2008). The 

use of TNF inhibitors such as infliximab and etanercept in the clinic, has led to a 

reactivation of LTBI and disseminated TB. Furthermore, Wallis et al. showed that the 

conversion of sputum cultures of TB patients treated with etanercept as an adjuvant 

immunotherapy in addition to antibiotics was not as rapid as in patients treated with 

the corticosteroid prednisolone (Wallis, 2005). In comparison, increasing TNF 

production by the host cell has been reported to induce necroptotic cell death. An 

excess of TNF may activate RIPK1 and RIPK3, which stimulates mitochondrial ROS 

production and allows Mtb to escape from the Mᴓ (Roca and Ramakrishnan, 2013). 

This hypothesis was supported by Tobin et al., who have shown that a dysregulation 

of the leukotriene A4 hydrolase (LTA4H) induces an overproduction of leukotriene B4 

and finally an overproduction of TNF to promote necroptosis (Tobin et al., 2012). 

Contrary to these data, it has been shown that the deletion of MLKL and the inhibition 

of RIPK1 has no effect on Mtb-induced host cell death (Stutz et al., 2018). Furthermore, 

the main necroptosis-inducing factor of Mtb, the tuberculosis necrotizing toxin (TNT), 

has been reported to act independently of TNF and RIPK1 (Pajuelo et al., 2018). I was 
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able to confirm these data by using chemical as well as genetic targeting of TNF, 

RIPK1 and MLKL to provide further evidence that necroptosis does not play a role in 

p38 MAPK-mediated necrosis. Interestingly, these data show that the protective effect 

of dexamethasone is independent of TNF inhibition and further demonstrate that 

corticosteroid treatment is more beneficial than TNF inhibitors for TB patients (Wallis, 

2005). However, Newton et al. showed that RIPK3-induced necrosis only takes place 

in the absence of caspase 8 activation (Newton et al., 2014). To further clarify that 

RIPK3 signaling is not involved in Mtb-mediated host cell death I created a pro-

necroptotic environment by inhibiting caspase activation with the pan-caspase inhibitor 

Z-VAD-FMK. However, even in the absence of caspase activity, the inhibition of RIPK3 

had no cytoprotective effect on Mtb-infected cells. Therefore, I concluded that RIPK3 

signaling and necroptosis is not promoted by Mtb. 

Since necroptosis, a mitochondria independent form of cell death, is primed but not 

executed in Mtb-infected cells, other possible pathways were analyzed. As previously 

mentioned, one of the most commonly present cellular events in necrosis is damage 

to the mitochondrial membrane. This could also be shown in Mtb-infected cells. Chen 

et al. demonstrated that the infection of human Mᴓ with H37Rv caused MOMP and 

irreversible MPT via the translocation of Bax to the mitochondria, leading to a loss in 

the ΔΨm and finally to necrosis (Chen et al., 2006). I first investigated the influence of 

virulent Mtb infection on mitochondrial function and integrity using a TMRM staining as 

an indicator for the ΔΨm. A loss of TMRM translates to a loss of the ΔΨm (Creed and 

McKenzie, 2019). The infection of Mᴓ with virulent Mtb led to a decrease in the ΔΨm 

and thereby indicates a decrease in mitochondrial health. Furthermore, it has been 

reported that Mtb promotes the production of the eicosanoid LXA4, which inhibits PGE2 

and thereby inhibits membrane repair. However, the molecular mechanisms how Mtb 

influences mitochondrial function and integrity remain unclear. Therefore, I 

investigated the role of mitochondria in Mtb-mediated host cell death.  

6.3 Role of mitochondria in Mtb-induced necrosis 

Although I have provided evidence that Mtb triggers necrosis via p38 MAPK signaling 

and causes mitochondrial damage, the molecular mechanism remains elusive. Hence, 

I wondered whether there is a link between p38 MAPK and mitochondria dysregulation. 

I extended my studies to decipher the role of mitochondria in TB infection and possible 

regulatory proteins downstream of p38 MAPK. 
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Mitochondria are responsible for energy production and lipid synthesis among other 

functions. In recent years mitochondria have become the focus of many studies, 

especially in relation to aging and infectious diseases (Ramond et al., 2019). Many 

intracellular bacteria, including L. monocytogenes (Stavru et al., 2011) and Shigella 

flexneri (Lum and Morona, 2014), have developed strategies to manipulate 

mitochondrial function and integrity by disrupting the mitochondrial morphology. L. 

monocytogenes causes rapid mitochondrial fission by the release of the pore-forming 

toxin listeriolysin O, which results in the fragmentation of the mitochondrial network 

(Stavru et al., 2011). These bacteria target mitochondria as an important part of the 

immune response. Mitochondria take part in antibacterial defense by producing ROS, 

which results in the death of some bacteria (West et al., 2011). Moreover, mitochondria 

perform oxidative phosphorylation (OXPHOS) to generate ATP via the tricarboxylic 

acid (TCA) cycle and the electron transport chain (ETC) (Bratic and Trifunovic, 2010). 

Therefore, bacteria can also modulate the metabolism of their host cell by targeting 

these organelles. One such bacterium is Mtb. Mtb induces aerobic glycolysis in a TLR2 

and protein kinase B (PKB/ AKT)- mammalian target of rapamycin (mTOR) dependent 

pathway (Gleeson et al., 2016). It has been reported that the infection of Mᴓ with Mtb 

leads to an increase in glycolytic enzymes and a decrease in OXPHOS enzymes, 

resulting in an increased production of lactate. In addition, aerobic glycolysis increases 

the proliferation of host cells while reducing the ATP production in a process called the 

Warburg effect that was previously observed in cancer cells. Gillmaier et al. showed 

that L. monocytogenes had a higher replication rate in cancer cell lines compared to 

BMDM (Gillmaier et al., 2012). Thus, Mtb uses aerobic glycolysis to reduce pro-

inflammatory responses of the host cell and to increase its own growth (Gleeson et al., 

2016). This process might be of major importance at early stages of TB infection in 

which Mtb is mainly focused on reaching a critical bacterial burden. I also observed a 

low ATP production in Mtb-infected Mᴓ compared to the uninfected controls, indicating 

a shift to aerobic glycolysis in the host cell. Furthermore, previous studies have 

demonstrated that MPT triggers the release of pyridine nucleotides from mitochondria 

to further decrease the amount of ATP and mitochondrial respiration, resulting in 

necrotic cell death (Batandier et al., 2004). Therefore, intracellular bacteria modulate 

the metabolism of the host cell to their own advantage. Intriguingly, treatment of cells 

with doramapimod and dexamethasone restored the generation of ATP in Mᴓ and lung 

fibroblasts. Although, these data collectively indicate that the infection with Mtb highly 
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impacts OXPHOS and glycolysis of the host cell, further characterization is necessary 

to fully understand the influence of bacterial infection on mitochondrial function.  

Another reason why I was highly interested in the role of mitochondria in Mtb infection 

was that in my original high-throughput drug screening CsA was identified as a hit 

compound. CsA is an inhibitor of CypD, an essential regulatory component of the 

mPTP. Other components of mPTP include the voltage-dependent anion channel 

(VDAC), the adenosine translocase (ANT) and the ATP synthase (Biasutto et al., 

2016). Notably, CypD inhibition by CsA has already been established as a mechanism 

to inhibit Mtb-mediated cell death and mPTP opening (Roca and Ramakrishnan, 2013; 

Zhao et al., 2017). However, CsA as a non-selective inhibitor also blocks calcineurin 

activity in T cells. I excluded the potential protective effect of calcineurin inhibition in 

TB infection by treating cells with FK-506, a selective calcineurin inhibitor. As expected, 

the inhibition of CypD by CsA was responsible for preventing host cell death in Mtb-

infected cells. Nevertheless, the dual effect of calcineurin and CypD inhibition makes 

CsA not suitable for a HDT. Therefore, an alternative, more specific compound is 

required. To determine whether doramapimod and dexamethasone impact on 

mitochondrial CypD expression, I evaluated the effect of both compounds on Mtb-

infected Mᴓ. Surprisingly, neither p38 MAPK inhibition by doramapimod nor activation 

of the glucocorticoid receptor by dexamethasone had any effect on mitochondrial CypD 

expression. Thus, I wondered how doramapimod and dexamethasone prevent 

mitochondrial damage.  

Although, CypD is not a target of doramapimod and dexamethasone, both interfere 

with mitochondrial HKII expression. HKII is involved in glucose metabolism by 

phosphorylating glucose and acts as a signaling molecule (Roberts and Miyamoto, 

2015). Moreover, increased levels of HKII are cytoprotective, while low amounts of 

HKII sensitize cells to necrosis (Ahmad et al., 2002). The protective effect of HKII is 

dependent on the enzyme binding directly to CypD and VDAC on the mitochondrial 

membrane (Sun et al., 2008). However, the exact molecular mechanism by which HKII 

protects mitochondria from damage is not yet fully understood. For instance, it has 

been reported that the accumulation of HKII at the mitochondria protects the cells from 

ROS exposure by increasing the pentose phosphate pathway activity to prevent 

opening of the mPTP (McCommis et al., 2013). Consistent with these studies I found 

that both doramapimod and dexamethasone increase mitochondrial HKII levels and 
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simultaneously decrease mitochondrial ROS production. I next inhibited HKII with 3BP 

and thereby decreased the cytoprotective effect of doramapimod and dexamethasone. 

Hence, I provide indirect evidence that the inhibition of p38 MAPK blocks mitochondrial 

dissociation of HKII and thereby prevents MPT and ATP depletion to promote host cell 

survival. Surprisingly, HKII dissociation is a common target for intracellular pathogens, 

such as S. flexneri, and might represent a method of detecting bacterial peptidoglycan 

(Wolf et al., 2016). Collectively, my data represent a link between p38 MAPK and HKII, 

which I further evaluated.  

Since HKII has no p38 MAPK response element, it is unlikely that they directly interact 

with each other. Therefore, I next investigated a possible mediator between these two 

proteins. One such a candidate is the regulatory protein p53. p53 is not only a target 

of p38 MAPK but also directly interacts with the mitochondrial membrane (Marchenko 

and Moll, 2014). Upon bacterial infection, p53 ubiquitylation is blocked and p53 

accumulates in the nucleus. Subsequently, p53 promotes the expression of death 

receptors to activate pro-apoptotic Bcl-2 proteins, resulting in cell death (Perfettini et 

al., 2005). I have generated data showing that the chemical inhibition or knockdown of 

p53 has similar effects on host cell survival as p38 MAPK inhibition. In recent years, 

the role of p53 regarding bacterial infections, especially host-pathogen interactions, 

has become of high interest. During bacterial infection, p53 is responsible for the 

downregulation of the metabolism of the infected cell in order to limit bacterial growth, 

as well as initiating apoptosis. However, Galietti et al. demonstrated that the 

upregulation of p53 is not only beneficial for the host cell, but is also beneficial for Mtb 

to inhibit host cell death at early stages of infection (Galietti et al., 2001). In line with 

these results, it has been shown that the inhibition of p53 in Mtb-infected Mᴓ triggers 

an increase in Bcl2 levels, which prevents mitochondrial damage and thereby prevents 

host cell death (Cruz et al., 2015). Furthermore, p53 is able to translocate to the 

mitochondria and directly interact with HKII since HKII contains a p53 response 

element (Mathupala et al., 1997). These results indicate a possible connection of p38 

MAPK and mitochondrial HKII. Nevertheless, the exact link between p38 MAPK and 

opening of the mPTP as well as the role of the potential regulators HKII and p53 

requires further analysis in the future.  

Since modulation of the mitochondrial metabolism is important in Mtb infection, one 

could investigate the metabolic function in Mtb-infected Mᴓ by analyzing the OXPHOS 
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of mitochondria. This would provide further insight into the role of HKII and 

mitochondria in TB infection. In addition, one could analyze the influence of a p53 

knockdown on necrosis, using the necrotic marker LDH, and mitochondrial integrity by 

TMRM. Another possible target connecting immunity, inflammation and glycolysis is 

the NLRP3 inflammasome. Since HKII is involved in glycolysis, it was reported that 

HKII interacts with NLRP3 to activate caspase 1, resulting in the production of IL-1β 

and pyroptosis (Eisenreich et al., 2019). I have generated preliminary data showing 

that Mtb induces the secretion of the pyroptotic cytokines IL-1β and IL18. Additionally, 

I observed that the knockout of caspase 1 and ASC reduces Mtb-mediated host cell 

death. Thus, it would be interesting to decipher the molecular pathway of pyroptosis 

downstream of p38 MAPK activation.  

Another approach to confirm mitochondrial damage as a main driver of necrosis, is the 

evaluation of cells overexpressing the anti-apoptotic protein Bcl-2. Thus, I wondered 

whether Bcl-2 overexpression could protect the host cell from Mtb-induced cell death. 

When infecting Bcl-2 overexpressing cells, they displayed an increased survival rate 

without showing an altered phagocytotic ability. In addition, I could verify the data by 

Lindsay et al. that Bcl-2 is important for maintaining the ΔΨm  (Lindsay et al., 2011). 

Therefore, the overexpression of Bcl-2 is as protective as the inhibition of p38 MAPK 

or the inhibition of p53. 

Bcl-2 is localized at the OMM, the nuclear membrane and the ER. Pro-apoptotic Bcl-2 

family proteins, like Bax and Bak, are majorly responsible for the mitochondria-

mediated cell death pathway. Following activation, both Bax and Bak induce pore 

formation at the OMM, which allows the release of cell death factors, such as CytoC to 

induce host cell death (Tait and Green, 2013). Therefore, the anti-apoptotic protein 

Bcl-2 prevents cell death by inhibiting Bax and Bak. Surprisingly, it has been shown 

that mitochondrial HKII also protects the cells by antagonizing the pro-apoptotic Bcl-2 

proteins Bak and Bax (Lindsay et al., 2011). However, not much is known about the 

function of Bcl-2 except for the inhibition of pro-apoptotic Bcl-2 family proteins. 

Interestingly, Bcl-2 is regulated by post-translational modifications and a direct target 

of p38 MAPK. The phosphorylation of Bcl-2 by p38 MAPK at serine 87 and threonine 

56 leads to a conformational change in the protein, which decreases the anti-apoptotic 

activity of Bcl-2. Thereafter, mitochondrial damage is caused by Bax and Bak inducing 

the release of CytoC into the cytoplasm and finally causing host cell death. The 
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conformational changes in Bcl-2 might also compromise its ability to interact with the 

mPTP. The inhibition of p38 MAPK thereby restores the function of Bcl-2 (De Chiara 

et al., 2006). Similarly, overexpression of Bcl-2 reduces the activation of p38 MAPK to 

prevent host cell death (Cheng et al., 2001). Moreover, Bcl-2 also interacts with p53 

by limiting p53 accumulation at the mitochondria to prevent host cell death (Marchenko 

and Moll, 2014). Thus, Bcl-2 is an important regulator in mitochondrial damage and 

Mtb-mediated host cell death, which has to be further investigated.   

In summary, I was able to identify a novel cell death pathway of Mtb, which involves 

the activation of p38 MAPK and p53, leading to the mitochondrial dissociation of HKII 

and subsequently opening of the mPTP and ATP depletion. This pathway can be 

inhibited by the activation of MKP-1 by dexamethasone and BI653048 or by inhibition 

of p38 MAPK by doramapimod. Furthermore, mitochondrial damage and the opening 

of the mPTP can be prevented either by Bcl-2 overexpression or CsA. Therefore, I 

provide several novel targets for HDT in TB treatment. 

In a next step, research should focus on additional host cell death pathways induced 

by Mtb such as pyroptosis and the NLRP3 inflammasome. I have generated 

preliminary data indicating that the inflammasome is activated in response to the 

infection. There is increasing evidence linking NLRP3 activation to mitochondrial 

damage and pyroptotic cell death (Liu et al., 2018; Yu et al., 2014). These findings will 

provide further starting points for host directed therapies in TB. 
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8.  Summary 

The emergence and prevalence of Mycobacterium tuberculosis (Mtb) resistant strains 

requires the development of alternative therapeutic strategies, such as host-directed 

therapies (HDT), to treat tuberculosis (TB) infections. These HDT act on the host- 

response to a pathogen rather than directly on the pathogen itself. A HDT already 

applied to TB patients are corticosteroids, such as dexamethasone, which are 

combined with antibiotic treatment in a subset of patients. The exact mechanism of 

action of corticosteroids in TB remains elusive. Mtb is a highly adapted pathogen that 

continuously exploits the immune system of the host to ensure its own survival. A major 

mechanism of pathogenesis in TB is the induction of host cell death. Host cell death 

leads to the escape of Mtb from the phagocyte and results in dissemination of the 

disease. However, the exact cell death pathway induced by Mtb as well as the key 

regulators remain unknown. In-depth understanding of this cell death pathway and the 

protective mechanism of dexamethasone would provide valuable targets for HDT and 

may allow for a tailored therapy in patients with extensive tissue necrosis and 

inflammation.  

In this thesis, I decipher a novel host cell death pathway triggered by Mtb, which can 

be inhibited by dexamethasone. Infection of macrophages (Mᴓ) with Mtb induces the 

phosphorylation of p38 mitogen-activated protein kinase (MAPK). I show that p38 

MAPK signaling triggers necrosis rather than apoptosis in Mtb-infected phagocytes. 

The activation of p38 MAPK promotes the dissociation of hexokinase II (HKII) from 

mitochondria and allows the opening of the mitochondrial permeability transition pore 

(mPTP). The opening of the mPTP results in adenosine triphosphate (ATP) depletion 

and finally in necrosis of the host cell. I can show that dexamethasone inhibits this 

pathway by activating MAPK phosphatase 1 (MKP-1) to downregulate p38 MAPK 

activity. Moreover, a direct inhibition of p38 MAPK by the specific p38 MAPK inhibitor 

doramapimod has similar effects on host cell survival. Since corticosteroids are anti-

inflammatory drugs, which among others inhibit tumor necrosis factor (TNF) signaling, 

I further characterized TNF and necroptosis in Mtb-infected cells using mixed lineage 

kinase domain-like pseudokinase (MLKL) and TNF receptor 1 (TNFR1) knockout Mᴓ. 

I could demonstrate that the underlying mechanism of dexamethasone is independent 

from TNF and necroptosis. 
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Thus, my results link p38 MAPK inhibition by corticosteroids or p38 MAPK inhibitors to 

the abrogation of mitochondria-mediated host cell death in TB infection and provides 

new opportunities for research on novel HDT concepts. 
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9. Zusammenfassung 

Die Entstehung und Verbreitung von multiresistenten Stämmen des Mycobaterium 

tuberculosis (Mtb) erfordert die Entwicklung alternativer therapeutischer Strategien, 

wie zum Beispiel adjuvanter Therapieansätze (host-directed therapy, HDT), zur 

Behandlung von Infektionen mit Tuberkulose (TB). Diese HDT wirken auf die 

Immunantwort der Wirtszelle und nicht direkt auf den Krankheitserreger selbst. Eine 

bereits bei TB-Patienten angewandte HDT sind Kortikosteroide wie Dexamethason, 

die bei einer Untergruppe von Patienten mit einer Antibiotikabehandlung kombiniert 

werden. Der genaue Wirkmechanismus von Kortikosteroiden bei TB ist nach wie vor 

nicht bekannt. Mtb ist ein hochgradig angepasster Krankheitserreger, der das 

Immunsystem des Wirts kontinuierlich ausnutzt, um sein eigenes Überleben zu 

sichern. Ein Hauptmechanismus der Pathogenese bei TB ist die Induktion des 

Wirtszelltods. Der Tod der Wirtszelle führt zum Austritt von Mtb aus den Phagozyten 

und führt zur Verbreitung der Krankheit. Der genaue Zelltodweg, der durch Mtb 

induziert wird, sowie die wichtigsten Regulatoren bleiben jedoch unbekannt. Ein 

tiefgreifendes Verständnis dieses Zelltodweges und des Schutzmechanismus von 

Dexamethason würde wertvolle Angriffspunkte für HDT liefern und könnte eine 

maßgeschneiderte Therapie bei Patienten mit erheblichen Gewebeschäden und 

Entzündung ermöglichen. 

In dieser Doktorarbeit identifiziere ich einen neuartigen, durch Mtb ausgelösten 

Wirtszelltodweg, der durch Dexamethason gehemmt werden kann. Die Infektion von 

Makrophagen (Mᴓ) mit Mtb induziert die Phosphorylierung von p38-mitogenaktivierte 

Proteinkinase (MAPK). Ich zeige, dass der p38-MAPK-Signalweg in Mtb-infizierten 

Phagozyten eher eine Nekrose als eine Apoptose auslöst. Die Aktivierung von p38 

MAPK fördert die Dissoziation von Hexokinase II (HKII) aus den Mitochondrien und 

ermöglicht die Öffnung der mitochondrialen Permeabilitäts-Transitionspore (mPTP). 

Die Öffnung der mPTP führt zur Depletion von Adenosintriphosphat (ATP) und 

schließlich zur Nekrose der Wirtszelle. Ich kann zeigen, dass Dexamethason diesen 

Signalweg hemmt, indem es MAPK Phosphatase 1 (MKP-1) aktiviert, um die Aktivität 

der p38 MAPK zu verringern. Darüber hinaus hat eine direkte Hemmung der p38 

MAPK durch den spezifischen p38 MAPK Inhibitor Doramapimod ähnliche 

Auswirkungen auf das Überleben der Wirtszelle. Da Kortikosteroide 

entzündungshemmende Medikamente sind, die unter anderem den Signalweg des 
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Tumornekrosefaktors (TNF) blockieren, habe ich TNF und Nekroptose in Mtb-

infizierten Zellen weiter charakterisiert, indem ich MLKL (mixed lineage kinase domain-

like pseudokinase) und TNF Rezeptor 1 (TNFR1) knockout Makrophagen verwendet 

habe. Ich konnte zeigen, dass der zugrundeliegende Mechanismus von 

Dexamethason unabhängig von TNF und Nekroptose ist.   

So verknüpfen meine Ergebnisse die p38 MAPK Inhibierung durch Dexamethason 

oder p38 MAPK Inhibitoren mit der Aufhebung des mitochondrial vermittelten 

Wirtszelltods bei der Tuberkuloseinfektion und bieten neue Möglichkeiten für die 

Erforschung neuer HDT-Konzepte.         
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