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Abstract

The present theoretical work is organized in two independent parts:

Part I belongs to the field of condensed matter theory and deals with the spectral signatures
of collective states in one dimensional (1D) metals.
In ordinary metals, electrons behave like free particles in many aspects. The excitations

are characterized by a certain Fermi velocity as described by Fermi-liquid theory. In contrast,
electrons in 1D metals fractionalize into spin and charge degrees of freedom, giving rise to a
different state of matter: a Tomonaga-Luttinger liquid (TLL). The spin-charge separation leads
to a splitting of the dispersion which reflects the distinct velocities of collective spin and charge
excitations. A further collective phenomenon which can occur in 1D metals is the formation
of a macroscopic charge-density wave, a periodic modulation of the electron density due to the
electron-phonon interaction.
Several experimental realizations of 1D metals and TLLs are known so far. More recent

candidates are 1D grain boundaries in two-dimensional surface systems. In our work, we re-
port on the spectral signatures of a TLL found in mirror-twin boundaries of monolayer MoS2.
This result was obtained by a collaboration between experimentalists and theorists. Scanning
tunneling spectroscopy (STS) was used to record the local density of states along the grain
boundaries. The STS spectrum of a short grain boundary indicates a doubling of energy levels
which are well-separated in energy due to the finite length of the boundary. As a part of the
collaboration, we calculated the local density of states as predicted by three different models: a
model of non-interacting electrons, a charge-density-wave model and a TLL model. As a result
of the comparison of measured and theoretical spectra, we identify the doubling of the energy
levels as signature of spin-charge separation and, thus, the presence of a TLL in the short grain
boundary. We also include the analysis of longer grain boundaries into our discussion and show
how the Luttinger-liquid parameters can be estimated from the Fourier transformed spectra.
To conclude, we address further questions or points of criticism regarding our work.

Part II belongs to the field of non-equilibrium physics and deals with the effective description
of equilibration in macroscopic systems at late times.
Isolated interacting many-body systems are expected to relax to a thermal equilibrium state

after a sudden perturbation. In the last stage of this relaxation process, the approach of
the equilibrium state is hampered by the diffusive transport of locally conserved quantities as
described by fluctuating hydrodynamics. As a consequence, the buildup of the characteristic
equilibrium fluctuations occurs only algebraically slowly, giving rise to hydrodynamic long-
time tails ∝ t−d/2 in d dimensions. The standard Boltzmann equation is tailored to transport
problems of various kinds, but fails to describe the relaxation process in the hydrodynamic
stage as it omits crucial correlations. Exponentially fast relaxation is predicted wrongly. This
problem can be solved by adding a noise term which results in a stochastic Langevin-type
Boltzmann equation. As the full Boltzmann equation is difficult to solve numerically, we
propose a simplified version: a fluctuating relaxation-time approximation (fRTA). In our work,
we derive the form of the required noise term. We also show that the numerical solution
involves a further noise term if the integration scheme is stabilized by an artificial diffusion
term. Finally, we demonstrate that the numerical solution of the fRTA is in agreement with
the predictions of fluctuating hydrodynamics.

As an addition, we discuss slow changes of system parameters in time tq. The adiabatic limit
tq →∞ is characterized by a vanishing entropy production. We show that the adiabatic limit
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Abstract

is reached only algebraically ∝ t−αq due to the presence of hydrodynamic slow modes. Thus,
the ideal case of adiabatic state preparation cannot be realized with exponential accuracy for
arbitrarily slow changes of state. In our calculation, we employ the Fokker-Planck equation of
fluctuating hydrodynamics.
Our work also includes a more general review of the linear theory of irreversible processes

which is then applied to derive fluctuating hydrodynamic equations and the fluctuating Boltz-
mann equation as well.
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Kurzzusammenfassung

Die vorliegende theoretische Arbeit gliedert sich in zwei unabhängige Teile:

Teil I fällt in den Bereich der Theorie der kondensierten Materie und beschäftigt sich mit den
spektralen Merkmalen kollektiver Zustände in eindimensionalen (1D) Metallen.
In gewöhnlichen Metallen verhalten sich Elektronen in vielerlei Hinsicht wie freie Teilchen.

Die Anregungen sind durch eine Fermigeschwindigkeit gekennzeichnet, wie von der Fermiflüs-
sigkeitstheorie beschrieben. Im Gegensatz dazu zerfallen die Elektronen in 1D-Metallen in
Spin- und Ladungsfreiheitsgrade, wodurch ein andersartiger Vielteilchenzustand entsteht: eine
Tomonaga-Luttinger-Flüssigkeit (TLF). Die Spin-Ladungstrennung führt zu einer Aufspaltung
der Dispersion, die die unterschiedlichen Geschwindigkeiten der kollektiven Spin- und Ladungs-
anregungen widerspiegelt. Ein weiteres kollektives Phänomen, das bei 1D-Metallen auftreten
kann, ist die Bildung einer makroskopischen Ladungsdichtewelle, eine periodische Modulation
der Elektronendichte aufgrund der Elektron-Phonon-Wechselwirkung.
Bisher sind einige experimentelle Realisierungen von 1D-Metallen und TLFs bekannt. Neue-

re Kandidaten sind 1D-Korngrenzen in zweidimensionalen Oberflächensystemen. In unserer
Arbeit berichten wir von spektralen Merkmalen einer TLF, die in Zwillingskorngrenzen einer
MoS2-Monolage gefunden wurden. Dieses Ergebnis wurde durch eine Zusammenarbeit zwi-
schen Experimentalphysikern und Theoretikern erzielt. Mit Hilfe der Rastertunnelspektrosko-
pie (engl. scanning tunneling spectroscopy, STS) wurde die lokale Zustandsdichte entlang der
Korngrenzen aufgezeichnet. Das STS-Spektrum einer kurzen Korngrenze lässt eine Verdop-
pelung der Energieniveaus erkennen, die aufgrund der endlichen Länge der Grenze bezüglich
ihrer Energien deutlich voneinander getrennt sind. Im Rahmen der Zusammenarbeit berechne-
ten wir die lokale Zustandsdichte, wie sie von drei verschiedenen Modellen vorhergesagt wird:
ein Modell nicht-wechselwirkender Elektronen, ein Model einer Ladungsdichtewelle und ein
TLF-Modell. Als Ergebnis des Vergleichs von gemessenen und theoretischen Spektren identi-
fizieren wir die Verdoppelung der Energieniveaus als Kennzeichen der Spin-Ladungstrennung
und damit als die Realisierung einer TLF in der kurzen Korngrenze. Wir beziehen auch die
Analyse längerer Korngrenzen in unsere Diskussion ein und zeigen, wie die Luttingerflüssigkeit-
sparameter aus den fouriertransformierten Spektren abgeschätzt werden können. Abschließend
gehen wir auf weitere Fragen bzw. Kritikpunkte zu unserer Arbeit ein.

Teil II gehört zum Gebiet der Nichtgleichgewichtsphysik und beschäftigt sich mit der effektiven
Beschreibung der Äquilibrierung von makroskopischen Systemen zu späten Zeiten.
Isolierte, wechselwirkende Vielteilchensysteme neigen dazu sich nach einer plötzlichen Stö-

rung in einen thermischen Gleichgewichtszustand zu begeben. In der letzten Phase dieses Re-
laxationsprozesses wird die Annäherung an den Gleichgewichtszustand durch den diffusiven
Transport lokal erhaltener Größen erschwert, ein Vorgang, der durch die fluktuierende Hydrody-
namik beschrieben wird. In Folge dessen vollzieht sich der Aufbau der charakteristischen Gleich-
gewichtsschwankungen nur algebraisch langsam, was zu hydrodynamischen Langzeitschwänzen
∝ t−d/2 in d Dimensionen führt. Die Standard-Boltzmann-Gleichung ist auf verschiedenartige
Transportprobleme zugeschnitten, kann jedoch den Relaxationsprozess in der hydrodynami-
schen Phase nicht vollständig erfassen, da sie wichtige Korrelationen außer Acht lässt. Fälschli-
cherweise wird eine exponentiell schnelle Relaxation vorhergesagt. Dieses Problem kann durch
Hinzufügen eines Noise-Terms gelöst werden, der auf eine stochastische Boltzmann-Langevin-
Gleichung führt. Da die volle Boltzmann-Gleichung numerisch schwer zu lösen ist, schlagen
wir eine vereinfachte Version vor: eine fluktuierende Relaxationszeitnäherung (engl. fluctuating
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Kurzzusammenfassung

relaxation-time approximation, fRTA). In unserer Arbeit leiten wir die Form des erforderlichen
Noise-Terms ab. Wir zeigen auch, dass die numerische Lösung einen weiteren Noise-Term erfor-
dert, wenn das Integrationsschema durch einen künstlichen Diffusionsterm stabilisiert werden
soll. Schließlich zeigen wir, dass die numerische Lösung der fluktuierenden Relaxationszeitnä-
herung mit den Vorhersagen der fluktuierenden Hydrodynamik übereinstimmt.
Als Ergänzung diskutieren wir langsame Änderungen der Systemparameter innerhalb einer

Zeitspanne tq. Der adiabatische Grenzfall tq → ∞ ist durch eine verschwindende Entropie-
produktion gekennzeichnet. Wir zeigen, dass der adiabatische Grenzfall aufgrund langsamer
hydrodynamischer Moden nur algebraisch ∝ t−αq erreicht wird. Der Idealfall einer adiabati-
schen Zustandsänderung lässt sich also bei beliebig langsamen Zustandsänderungen nicht mit
exponentieller Genauigkeit realisieren. In unserer Berechnung verwenden wir die Fokker-Planck-
Gleichung der fluktuierenden Hydrodynamik.
Unsere Arbeit umfasst auch eine allgemeinere Betrachtung der linearen Theorie der irrever-

siblen Prozesse, die dann zur Ableitung fluktuierender hydrodynamischer Gleichungen und der
fluktuierenden Boltzmann-Gleichung verwendet wird.
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Preface

The purpose of this preface is to briefly outline the scope of the present thesis and to show
how its various subjects may be linked by the concept of scale invariance. We touch upon
several concepts here, but introduce them carefully in the main text to the extent that they are
needed.

One of the remarkable phenomena observed in condensed-matter or many-particle systems is
the emergence of scale invariance [1]. A scale invariant state of matter may be detected by
considering the correlations of fluctuations in space and time. Correlation functions measure
how strongly the fluctuations at a given point in space and time affect the fluctuations at a
distance or at a later time. In many-particle systems, correlations are often expected to decay
exponentially fast on short microscopic scales in space and time. In a fluid, typical scales
are given by the time elapsing between the collisions of the particles or the mean-free path,
respectively. For larger distances or longer times the fluctuations are essentially uncorrelated.
In more interesting situations, the correlations are long-ranged and their decay follows a power-
law. Here, characteristic scales are absent. Rescaling of time or space coordinates is equivalent
to multiplying the correlation function with a scale factor, i. e. the correlation function is a
homogeneous function of space and time coordinates [2]. Owing to this property, we recognize
a scale invariant state. We want to highlight three examples of emergent scale invariance:

• The paradigmatic example of scale invariance is critical points of continuous phase transi-
tions. According to Landau’s theory of phase transitions the free energy can be expanded
in terms of an order parameter φ close to the transition [2].1 The scenario of a second-
order phase transition is described by the free energy F [φ] =

∫
x[rφ2 + c2(∂x φ)2 + uφ4]

with u > 0. F [φ] is minimized by 〈φ〉 = 0 in the disordered phase for r > 0 and by
〈φ〉 =

√
−r/2u 6= 0 in the ordered or symmetry broken phase for r < 0. The continuous

transition occurs at the critical point r = 0. When the critical point is approached from
the disordered side of the transition, the order parameter still vanishes on average, but its
fluctuations are enhanced. Within the Gaussian approximation u = 0, the fluctuations
of the order parameter decay as

〈φ(x)φ(x′)〉 ∝ 1
|x− x′|d−2+η exp

(
−|x− x′|

ξcorr.

)
, (0.1)

in d dimensions [2–4]. As the correlation length diverges as ξcorr. ∝ r−ν for r → 0,
the correlations follow a power-law directly at the critical point. The divergence of the
correlation length is driven by the softening of the φ(q = 0) Fourier mode. The values of
the critical exponents, η = 0 and ν = 1/2, are predicted wrongly when the fluctuations
loose their Gaussian character, e. g. in low dimensions d < 4. The true values are less
universal than Landau’s theory suggests. Still, critical systems that fall into a certain
universality class share the same exponents. Apart from this refinement, the power laws
at and in the approach of critical points remain.

• Fermions in one dimensions loose their identities as single particles that are merely dressed
with particle-hole excitations. Instead, they form collective density excitations. The
resulting long-ranged correlations of the original fermions are reflected in the power-law

1We restrict ourselves to classical criticality with scalar order parameters, e. g. the Ising ferromagnet.
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behavior of the fermionic Green’s function [5]. For spinless, right-moving fermions close
to the Fermi momentum kF , the time-ordered Green’s function is of the form

〈TΨ(x, t)Ψ†(x′, t′)〉 ∝ 1[
(x− x′)− vF (t− t′) + ia

]α2
1[

(x− x′) + vF (t− t′) + ia
]β2 ,

(0.2)
with exponents α = 1 and β = 0 in the non-interacting case. a denotes a short cutoff
scale. Most prominently, the power-law behavior of the Green’s functions entails a power-
low suppression of the density of states at the Fermi level. The expression (0.2) is valid at
zero temperature and in the thermodynamic limit. The power laws are cutoff at higher
temperature at a scale ∝ vF /T which diverges for T → 0 [6]. At T = 0, the fermion
system can be viewed as exactly at a critical point. More specifically, the fermions
tend to order in a density-wave pattern, but the order is suppressed by strong quantum
fluctuations [5]. Similarly to critical exponents, the values of α and β change when
interactions are included. They are non-universal and depend on the actual interaction
strength.2

• Scale invariance is not only restricted to isolated points in phase diagrams where the
temperature or other parameters have to be fine tuned to a critical value. Besides critical
points, an ubiquitous source of scale invariance is conservation laws. In the ultimate long-
wavelength and low-frequency limit, the transport of conserved quantities is described by
the equations of fluctuating hydrodynamics [7]. In the simplest case, we think of a
single conserved quantity

∫
x ρ(x) and its density ρ(x), governed by a fluctuating diffusion

equation ∂tρ − D∂2
xρ = ∂x · ζ. Here, D is the diffusion constant. The correlations

of the fluctuating current ζ are determined by a fluctuation-dissipation relation. The
equilibrium correlations of the conserved density in d dimensions,

〈δρ(x, t)δρ(x′, t′)〉 ∝ 1
|t− t′|d/2

exp
(
− |x− x′|2

4D|t− t′|

)
, (0.3)

exhibit a so-called hydrodynamic long-time tail ∝ |t − t′|−d/2 for long time intervals.
Similar to classical criticality, the source of the long-ranged temporal correlations is a
soft q = 0 Fourier mode: As the total quantity ρ(q = 0) =

∫
x ρ(x) is conserved, the

correlations of Fourier modes decay arbitrarily slowly for q → 0.

The present thesis covers two subjects which are discussed largely independently of each other.
Still, they have in common that they are more or less closely related to the scale invariant
phases mentioned above. The following aspects are addressed:

• We mentioned that the power-law correlations related to criticality and the ones in low
dimensions are cutoff at a length scale essentially set by temperature or some other control
parameter. The system size introduces an further length scale L. As a consequence, the
spectrum of the fluctuations exhibits a gap of size ∝ 1/L. The softening of any mode
stops at this scale. The related power-laws eventually turn into exponentials at scales
comparable with L. Strictly speaking, critical behavior – and scale invariance in general –
is only possible in the thermodynamic limit of infinite system size, i. e. 1/L→ 0. However,
this fact is not particularly relevant for macroscopic systems.
In Part I of the thesis, we deal with the opposite extreme case, a one-dimensional
metal of small finite length. Such systems were recently realized as mirror-twin bound-
aries (MTBs) of MoS2 monolayer crystals [8, 9]. These nm-sized line defects host one-
dimensional metallic states which are well-isolated from the surrounding bulk crystal.

2Additionally, for spinful fermions, the Green’s function factorizes into contributions of the charge and spin
sector. The exponents are replaced as α→ (αc + αs)/2, β → (βc + βs)/2.
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Due to the short length of the MTBs the energy levels are separated by gaps ∝ 1/L. The
separation is large enough that isolated levels are resolved in scanning tunneling spec-
troscopy (STS) at low temperatures. Away from the thermodynamic limit, the power-law
suppression of the density of states related to (0.2) is hard to detect. Instead, the distri-
bution of energy levels in the finite-size spectrum is more informative. We calculate the
local density of states of a one-dimensional metallic wire of finite length. Comparison of
the theoretical spectra of three different models with the STS data allows us to identify
the precise nature of the one-dimensional states hosted by MTBs.

• The correlation functions (0.3) characterize fluctuations of thermodynamic equilibrium
states. These states are completely defined by the total amount of the conserved quanti-
ties of the system, e. g. the total energy. When a system is prepared in a non-equilibrium
state, our generic expectation is that the initial correlations will relax to their equilibrium
form.
Part II dwells on the formation of hydrodynamic equilibrium correlations (0.3). The long-
ranged equilibrium correlations build up only slowly, hampered by the diffusive transport
of the conserved quantities. As a consequence, long-time tails 〈δρ2(x, t)〉−〈δρ2(x, t)〉eq ∝
t−d/2 also emerge in the approach of the equilibrium state as a function of the absolute
time t. A microscopic theory has to reproduce the algebraic buildup of fluctuations in
the hydrodynamic regime. The Boltzmann theory is a first step in this direction. It
provides an equation of motion for a general momentum distribution function of particles
fk(x, t) which can also assume a non-equilibrium form. The Boltzmann equation in its
standard textbook form [3, 10, 11] neglects correlations and, therefore, does not comprise
the scale-invariant stage of the relaxation. However, close to equilibrium the missing piece
of information is restored by a fluctuation-dissipation relation, similar to the equations
of fluctuating hydrodynamics. Here, we derive a simplified version of the fluctuating
Boltzmann theory: a fluctuating relaxation-time approximation. We show how it can be
solved numerically and demonstrate the consistency with fluctuating hydrodynamics.
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1 Chapter 1

Introduction I

A beginner’s course on quantum mechanics often starts by discussing particles in one dimen-
sion (1D). One of the first problems to be solved is a particle confined to a 1D box of given
length. At first glance, this seems to be a rather artificial scenario, intended only for a smooth
introduction. One might think that the 1D case is trivial from a theoretical point of view and,
more importantly, irrelevant in a three-dimensional world. The study of 1D metals leads to a
different conclusion: The interacting electron gas in 1D metals is predicted to behave very dif-
ferently from electrons in ordinary, higher dimensional metals, which is already an interesting
aspect from theory side. Moreover, the scientific interest in 1D metals is significantly increased
by the fact that they can actually be produced and investigated in the lab.

1D metals and ordinary higher-dimensional metals are distinguished by the role of interac-
tions. In ordinary metals electrons, behave essentially like free fermions despite the fact that
they strongly interact. This remarkable fact is explained by Fermi-liquid theory [12, 13]: The
low-energy excitations of the interacting system are long-lived fermionic quasiparticles. The
quasiparticle states are in a one-to-one correspondence to the states of free fermions. There-
fore, interactions do not have much impact. Interacting fermions in 1D behave differently. It
turns out that no stable quasiparticles exist in 1D which invalidates the Fermi-liquid concept.
Instead, the single-particle excitations fractionalize into spin and charge degrees of freedom.
The elementary excitations are no longer fermionic quasiparticles. They are replaced by non-
interacting spin- and charge-density waves with bosonic statistics. This many-particle state is
called Tomonaga-Luttinger liquid (TLL). Similar to a Fermi liquid, the TLL is characterized by
a small number of parameters: the velocities of spin- and charge-density waves uc, us and two
further Luttinger-liquid parameters (LLPs) Kc, Ks which encode the interaction strength of
the of electron system. The fact that spin and charge appear as independent entities is referred
to as spin-charge separation. It was first realized by Tomonaga [14] that fermions in 1D can be
described in terms of bosonic degrees of freedom. Later, Luttinger [15] came up with a model
of interacting fermions in 1D and showed that the model can be solved exactly. Haldane [16]
recognized that the TLL model is the effective low-energy theory of the 1D interacting electron
gas. The exact solution of this model shows that the low-energy excitations are bosonic density
waves and the Fermi liquid is replaced by the Luttinger liquid in 1D. Still, one could suspect
that solving a 1D problem is a purely academic exercise. Luttinger himself regarded the 1D
model as “unrealistic” [15].

Meanwhile there are quite a few examples of 1D metals which could be realized and Luttinger-
liquid behavior was observed. Prominent examples are anisotropic crystals which conduct
electrons primarly along one crystal direction (quasi 1D materials), e. g. purple bronze [17, 18]
or Bechgaard salts [19, 20], carbon nanotubes [21, 22], the edge channels in quantum Hall
systems [23–26], semiconductor nanowires (fabricated by cleaved edge overgrowth) [27, 28], or
self-assembled wires of metallic atoms on semiconductor surfaces [29]. More recently, a further
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1 Introduction I

possibility of realizing a 1D metal has been found: grain boundaries in monolayer materials.
Monolayers of transition metal dichalcogenides (TMDs) MoSe2 and MoS2 are two-dimensional
(2D) semiconductor materials which exhibit one-dimensional line defects [30]. These line de-
fects are identified as mirror-twin boundaries (MTB) where two grains of the 2D crystal merge.
The band structure of MoSe2 and MoS2 was calculated using density-functional theory (DFT)
[31–33]. The band structure calculations indicate that a single electron band crosses the Fermi
level localized at the MTB. This implies that MTBs host 1D electronic states in an otherwise
insulating environment. Thus, MTBs in MoSe2 and MoS2 are predicted to resemble 1D metal-
lic wires. However, the precise nature of the 1D states has been under debate.

Liu et al. [34] studied a dense network of MTBs in MoSe2 with scanning tunneling microscopy
(STM) and spectroscopy (STS). They observed a standing-wave pattern in the STM signal
with approximately linear relation between wavelength and energy. The authors explained the
dispersing behavior by the confinement of electrons to MTBs of finite length. Following their
argument, the result can basically be understood with a model of particles in a 1D box. Barja
et al. [35] came to a different conclusion. They performed similar measurements on MTBs in
MoSe2 and found a pronounced gap in the energy spectrum at the Fermi energy, accompanied
by a periodic modulation of the electron density close to an integer multiple of the lattice
constant. They attributed their findings to a Peierls instability. An instability of this type is
induced by electron-phonon coupling and leads to a gapped state with broken translation sym-
metry. The symmetry-broken ground state is characterized by a macroscopic charge-density
wave (CDW) in real space. The explanation of the standing-wave pattern as a result of ele-
mentary quantization was rejected. In general, a CDW state is not necessarily commensurate
with the underlying lattice as reported there. Ma et al. [36] extended the STM measurements
to a broader temperature range. They detected CDW transitions at T = 235K and T = 205K
related to incommensurate and commensurate CDW states, respectively. Furthermore, they
studied the dispersion of the 1D states above the CDW transitions at T = 300K by means
of angle-resolved photoemission spectroscopy (ARPES). In order to predict the ARPES signal
a refined 1D model was used which is valid also at high energies and converges to the TLL
model at low-energies. The theoretical modeling allowed the authors to identify split bands of
spin and charge excitations in the ARPES signal. They argued that the observed spin-charge
separation proves the 1D nature of the electronic states even at high energies.

The results of the above-mentioned DFT calculations suggest that MTBs in the related com-
pound MoS2 also represent 1D metals. The questions arises what kind of 1D state is realized
in MTBs of MoS2. We pursued this question within the framework of a collaboration between
experiment and theory [9]. The 1D states localized at the MTBs were investigated by STM and
STS measurements. STS was used as a tool for recording the local density of states (LDOS).
The LDOS is a very informative quantity which can be seen as the fingerprint of the 1D system.
We contributed the theoretical calculation of the LDOS as predicted by different models. The
comparison between the theoretical LDOS and the STS signal provides strong evidence that
the 1D state is a TLL. In the present work, we explain how this conclusion was drawn. We
discuss three possible scenarios for the 1D states:

• non-interacting electrons,

• a Peierls-type CDW, and

• a TLL.

For each scenario, we present the calculation of the LDOS and discuss the agreement between
the predicted LDOS and the STS data.
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Structure Ch. 2 provides an introduction to the peculiarities of the 1D electron gas. We
start by reviewing the quasiparticle concept of Fermi-liquid theory and its breakdown in 1D.
Subsequently, we present two collective phenomena which occur in 1D metals: First, we discuss
the possibility of a symmetry-broken CDW state as a result of electron-phonon coupling. Here,
we analyze the CDW transition on the mean-field level. We then turn to the phenomenon of
spin-charge separation. To this end, we introduce the low-energy model of the 1D metal, the
TLL model, and show how it can be solved exactly using the bosonization technique. The ele-
mentary excitations are found to be independent spin- and charge-density waves. We include
a derivation of the so-called bosonization identity which relates fermionic and bosonic degrees
of freedom. The identity is an important tool in the calculation of the LDOS of the TLL model.

In Ch. 3, we turn to the experimental platform, the MTBs in MoS2. We briefly discuss the
experimental conditions, the preparation of monolayer MoS2, and the formation of MTBs. We
continue to explain the working principle of STM and STS and relate the LDOS of the sample
to the tunnel current in an STM measurement. Finally, we summarize the electronic properties
of the MTBs as known from DFT calculations and STS measurements.

The main chapter Ch. 4 contrasts the STM signal of a short MTB of length L = 6nm with
the theoretical LDOS of three models: non-interacting electrons in a box, a CDW model, and
a TLL model. We proceed in the following way: We write down the respective model for a
finite geometry of length L. For the non-interacting and the CDW model, we obtain the LDOS
directly in terms of the energy spectrum and the wave functions. In order to calculate the
LDOS of the TLL model, we use the Green’s function method and employ the bosonization
identity. For each model, we discuss the similarities and discrepancies between the calculated
LDOS and the measured LDOS. Finally, we find that the TLL model describes the experimen-
tal findings best. We will interpret the doubling of energy levels in the measured LDOS as a
signature of spin-charge separation. After the discussion of the short MTB, we consider longer
MTBs. Here, we argue that the Fourier transform of the LDOS is better suited for detecting a
splitting of the dispersion. We also use the Fourier transform to estimate the value of Kc. We
conclude the chapter by discussing possible objections that could be raised against our TLL
interpretation.

Ch. 5 summarizes our conclusions about the nature of the 1D states in MoS2 MTBs.
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2 Chapter 2

Collective Phenomena in
One-Dimensional Metals

In previous studies of MTBs in MoSe2, two different types of 1D collective states were re-
ported: a CDW and a Luttinger liquid. In the present chapter, we discuss the theoretical
concepts which are needed to describe such 1D states from a general perspective. Through-
out the chapter, we consider periodic boundary conditions. In Sec. 2.1, we start by reviewing
the quasiparticle concept of Fermi-liquid theory which describes the properties of ordinary
metals. With this background, we show that the quasiparticle concept breaks down in 1D,
indicating that 1D metals deserve a special treatment. In the following sections, we deal with
the collective states of 1D metals: In Sec. 2.2, we introduce the CDW state using a minimal
model of a fermionic chain. We continue to develop the BCS-type mean-field theory of the
CDW transition which relies on an attractive interaction channel. Finally, we explain how the
attractive interaction is mediated by optical phonons and point out the relation to the Peierls
structural instability of the underlying lattice. The CDW order breaks translation symmetry. In
Sec. 2.3, we turn to the generic, translation symmetric many-particle state of 1D metals: the
Luttinger liquid. We set up the TLL model which describes the low-energy excitations of the
1D metal and show that the elementary excitations are independent spin- and charge-density
waves using the bosonization technique. We conclude by deriving the bosonization identity
which provides the relation between fermionic and bosonic operators.

2.1 What is a one-dimensional metal and why is it different?

2.1.1 Definition of a 1D metal

In classical mechanics, the usual way to confine the motion of particles to one-dimension is
to apply suitable forces perpendicular to the desired one-dimensional trajectory. Such forces
appear in the Lagrange equations of first kind. In a more realistic modeling the restoring force
is generated by some steep potential barrier. Already small deviation from the one-dimensional
trajectory are charged with a large potential energy. Only particles with large kinetic energy
can move significantly in the perpendicular direction, which happens in an oscillatory way.
Low-energy particles follow almost perfectly the one-dimensional channel with vanishing per-
pendicular oscillations.

For a quantum mechanical system, one has to argue differently, see e. g. Refs. [37, 38]: Here, we
consider the wave functions of the particles, 1

2m(−∂2
x−∂2

y−∂2
z )ψ(x, y, z) = E ψ(x, y, z). For an

infinite wire with cross-section w × w, the eigenvalues are Eny ,nz(kx) = k2
x

2m + 1
2m

π2

w2 (n2
y + n2

z),
where kx is the momentum of the particle moving along the wire and nx, ny ∈ N label the
standing-wave states which extent in the perpendicular directions. In a generic situation,
many standing-wave bands cross the Fermi energy EF at a multitude of Fermi points. As a
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2 Collective Phenomena in One-Dimensional Metals

consequence, many perpendicular degrees of freedom are excited. In the limit of a thick wire,
w → ∞, the Fermi points merge to a continuous two-dimensional Fermi surface of a three-
dimensional metal. In the opposite case of a very thin wire, only the lowest-lying standing-wave
band E1,1 crosses the Fermi energy, giving rise to two Fermi points ±kF .1 The bands higher
in energy are gapped out with the band gap ∆E = E1,2 − E1,1 = 3

2m
π2

w2 . The wire is a 1D
metal if the higher bands are energetically inaccessible for low-energy electrons close to the
Fermi points, which is fulfilled for sufficiently low temperatures, T � ∆E. In this situation,
the transverse dynamics is frozen out. So far, we described an electron system in the nearly-
free electron picture where essentially the band structure is responsible for the emergence of a
1D metal. This is very similar to the situation encountered in MTBs which we will describe
in Ch. 3. Further examples of 1D metals created by gapping out the transverse degrees of
freedom are heterostructures or carbon nanotubes, see Ch. 1. A different mechanism for the
creation of 1D metals is present in highly anisotropic materials which can be described by a
tight-binding Hamiltonian [39, 40]. Here, many 1D wires are realized in the direction of the
dominant hopping amplitude tx. The coupling to neighboring wires ty, tz can be regarded as a
small perturbation.

2.1.2 Fermi-liquid theory and its breakdown in 1D

The properties of ordinary high-dimensional metals are qualitatively well-described, assuming
that the electrons form an ideal Fermi gas. At the same time, the Coulomb interaction between
the electrons is strong and far from being a small perturbation compared to their kinetic energy.
This seeming contradiction is resolved by Landau’s Fermi-liquid theory which is based on the
principle of adiabaticity together with Pauli’s exclusion principle for fermions [12]. Our brief
discussion of Fermi-liquid theory and its breakdown is based on the textbooks by Coleman [4]
and Bruus and Flensberg [37].

Fermi-liquid theory states that interacting fermions essentially behave like non-interacting
fermions: At low energies, the elementary excitations of the interacting fermion system are
fermionic quasiparticles which are labeled by the same quantum numbers, momentum and
spin (k, σ), but their mass is renormalized and they acquire a finite life-time.2 The life-time
diverges at the Fermi surface and, therefore, low-energy excitations of the Fermi liquid are
well-described as quasiparticles states. In the following, we briefly summarize Landau’s argu-
ment: Consider the time-dependent many-body Hamiltonian H(t ≥ 0) = H0 + (1− e−λt)H int,
where we switch on electron-electron interactions at t = 0 at a rate λ.The principle of adia-
baticity states that if the interaction H int is switched on slowly enough the eigenstates of the
non-interacting Hamiltonian at t = 0 evolve to the eigenstates of the interacting Hamiltonian
at t = ∞, |ψint〉 = U(∞, 0) |ψ0〉, with the time-evolution operator U(∞, 0). From this notion
we can infer that the non-interacting ground state |ψ0

GS〉 is equivalent to the ground state of
the interacting system.3 The filled Fermi sea is the ground state of the Fermi liquid. The
relation between the excited states of the non-interacting and the interaction system is estab-
lished through the fact that an electron with energy εk close to the Fermi sea is a long-lived
object since the phase space of the decay process is restricted by Pauli’s exclusion principle.
To rationalize the argument one considers the decay of an electron |pk〉 on top of the Fermi
sea to a state closer to the Fermi surface |pk+q〉. Due to energy (and momentum) conservation
a particle-hole pair |pk′−qhk′〉 has to be created. According to Fermi’s Golden Rule the decay

1We assume inversion symmetry.
2There are residual interactions, but they preserve the (infinite) number of conservation laws.
3The statement is true unless no level crossing occurs which would be related to spontaneous symmetry break-
ing.
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rate of the process |pk〉 → |pk+qpk′−qhk′〉 can be estimated by

Γk = 2π
~

∫ d3k′

(2π)3

∫ d3q

(2π)3 |Vq|2δ(εk + εk′ − εk+q − εk′−q) fk′
(
1− fk+q

) (
1− fk′−q

)
.

(2.1)
Vq denotes the momentum conserving electron-electron interaction. The factors (1 − fk+q),

(1− fk′−q) express the Pauli principle: The particles can only scatter to an empty state. For
clarity, we neglected the spin quantum number. At T = 0, we have fp = θ(−εp) and the decay
rate for a particle above the Fermi sea εk > 0 can be estimated as

Γk ∼ |V |2ρ3
F

0∫
−∞

dε′
∞∫
0

dε′′ θ(εk + ε′ − ε′′) = |V |2ρ3
F

ε2k
2 . (2.2)

The Pauli principle enforces the initial electron states to decay to a final state within a shell
of width εk above the Fermi level. Due to energy conservation an electron-hole pair is created
in the decay process, where the hole is created in a shell εk below the Fermi energy. Therefore,
the phase space of the decay is restricted by the factor ∼ ε2k.4 Interpreted in terms of a single-
particle wave function, ψ(r, t) ∼ eik·reiεkte−Γkt, (2.2) states that the wave function oscillates
many times before it is damped out, i. e. the excited particle can propagate for a long time
before it decays due to the interactions. Thus, it is possible to choose the switching rate λ in
the window Γk ∼ ε2k � λ � εk, slow enough that ground state and excited states do not mix
and fast enough that excited states do not decay during the switching process. Therefore, the
low-energy states of the interacting Fermi liquid are again described by fermionic particles, the
so-called Fermi-liquid quasiparticles, which are in a one-to-one correspondence with the physical
electrons. They are labeled by the same quantum numbers α = (k, σ). The relation between
quasiparticles and physical electrons is also reflected in the finite overlap of the corresponding
operators. The quasiparticle operator has the expansion

d†α = U †λ(∞, 0)c†αUλ(∞, 0)
∣∣∣∣
λ→0

=
√
Zαc

†
α +

∑
βγδ

Aαβγδc
†
βc
†
γcδ +O(c†, (c†c)2) . (2.3)

The quasiparticle weight 0 < Zα ≤ 1 indicates that the one-to-one relation holds. Still, it is
not a perfect identity: The quasiparticle is not just an electron, but an electron surrounded by
a cloud of particle-hole excitations. The heuristic argument outlined above is also confirmed
by diagrammatic perturbation theory of the fermionic Green’s function. Here, the effective
mass, decay rate, and quasiparticle weight are derived from the expression of the (one-particle
irreducible) self-energy. Close to the pole at ω = ε∗k, the (retarded) Green’s function is modified
as

GR,0k = 1
ω − εk + iδ → GRk = 1

ω − εk − Σk(ω)
ω≈ε∗k= Zk

ω − ε∗k − iΓk
. (2.4)

The δ peak of the non-interacting electrons is replaced by

A0
k(ω) = δ(ω − εk) → Ak(ω) = Zk δΓk(ω − ε∗k) +Ainc.

k (ω) . (2.5)

Compared to the spectral function of free particles A0
k(ω), the quasiparticle peak is broadened

by the finite decay rate Γk and its weight is reduced to Zk < 1. The remaining fraction of the
spectral weight, 1−Zk is absorbed by so-called incoherent excitations. Close to the Fermi sur-
face the quasiparticle peak becomes very sharpand is clearly distinguished from the incoherent
background, indicating well-defined quasiparticles.

4For finite temperatures T � εk, (2.2) gives Γk ∼ T 2 which is relevant to transport in a Fermi liquid at finite
temperatures.
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2 Collective Phenomena in One-Dimensional Metals

Already in the classical framework, one can understand that the dynamics of particles in 1D
is different from higher dimensions since interaction have a dramatic impact: Particles with
different velocities cannot avoid each other. They always encounter central collisions with
maximum momentum transfer, while in higher dimensions only a fraction of the momentum
is exchanged, depending on the scattering angle. The motion of the individual particles is
replaced by a collective dynamics of a “stop-and-go” wave. Similarly, the individual nature of
Fermi-liquid particles with single-particle quantum numbers (k, σ) is lost in a 1D metal. In
the calculation of the Golden-Rule decay rate Γk, the angular average over the momentum
conservation is missing. The continuous angular integral is replaced by a summation over two
isolated Fermi points ±kF . Formally, the δ function of the momentum conservation remains
as a prefactor,

Γk ∝
∑

k′,p,p′=±kF

δ(k + k′ − p− p′) ?= ∞ . (2.6)

Indeed, it can be shown that Γk ∼ εk, indicating that the decay rate can never be regarded
as small in d = 1. Interactions are always strong perturbations. Stable quasiparticles do not
exist, even close to the Fermi surface.

In order to gain further insight, we consider the polarization operator or electronic susceptibility
in d dimensions,

Πq(ω) = gS

∫ ddk
(2π)d

f(εk+q)− f(εk)
ω − εk+q + εk + i0+ . (2.7)

The polarization operator describes how the electron system reacts to charges and is also a
central building block of the self-energy diagrams in diagrammatic perturbation theory. The
factor gS = 2 results from the spin-degeneracy. In the following, we focus on the static suscep-
tibility Πq(ω = 0) ≡ Πq. For small momenta |q| � kF , the polarization operator evaluates to
a constant, yielding the density of states at the Fermi level Πq = ρF , in arbitrary dimensions.
Its constant value leads to static screening of the Coulomb potential. For momenta |q| ≈ 2kF ,
the polarization operator shows an interesting behavior, which has profound physical conse-
quences. For d = 3, 2 the polarization operator has a logarithmic singularity in its derivatives.
This weak singularity is called Kohn anomaly and adds slowly decaying 2kF oscillations to the
effective interaction potential, ∼ cos(2kF r+δ)

rd
, known as Friedel oscillations [41, 42].5 In d = 1,

the polarization operator itself diverges logarithmically at |q| = 2kF . The reason for the di-
vergence lies in the simple topology of the Fermi surface in 1D, consisting only of two isolated
points ±kF which are exactly connected by a q = ±2kF scattering process. This situation is
referred to as perfect nesting.6 The singularity has important consequences:

• As the polarization operator appears as central building block in the perturbation theory
of the Fermi liquid, the logarithmic divergence enters the expansion of the self-energy
and invalidates the quasiparticle concept: The quasiparticle weight, derived from the
self-energy, vanishes, Zk = 0.

• As the polarization operator describes the response of the electrons to external charges,
the divergence of the polarization operator signals an instability of the electron system
towards spatial modulations of the charge with period 2π

2kF = π
kF

.7

The analysis of the polarization operator at T = 0 suggests that the 1D interacting electron gas
forms a density wave with spontaneously broken translation symmetry and its ground state is
characterized by the corresponding order parameter, at least at sufficiently low temperatures.
According to this line of reasoning, Fermi-liquid theory is replaced by a theory of the density-
wave state and its fluctuations around the new ground state. We discuss the mean-field theory
5δ is a phase shift.
6In higher dimensions only small patches of a spherical Fermi surface are connected by 2kF and the divergence
is removed.

7The nature of the density wave also depends on the sign of the 2kF amplitude, see Sec. 2.2.
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2.2 Charge-density-wave transition

of the density wave in Sec. 2.2.

On the other hand, it is well-known that 1D systems of any kind cannot develop long-range
order at any finite temperature by breaking a continuous symmetry according to the Mermin-
Wagner theorem. Strong fluctuations of the order parameter destroy the ordered phase [43].
Thus, a 1D electron gas has a strong tendency towards density-wave order, but cannot or-
der. In summary, a strictly one-dimensional metal is a highly correlated electron system, but
neither is a Fermi liquid with well-defined quasiparticles nor orders to a densitywave. Fortu-
nately, it turns out that the problem of interacting low-energy fermions in 1D can be mapped
to non-interacting bosons at low energies and can be solved exactly. The elementary bosonic
excitations of the 1D electron gas are identified as collective spin and charge excitations. In this
way, it can be shown that the electrons fractionalize into spin and charge degrees of freedom.
As we mentioned in Ch. 1, the theory of the low-energy excitations is provided by Tomonaga-
Luttinger-liquid (TLL) theory and the corresponding many-particle state is called a Luttinger
liquid. Similarly to a Fermi liquid, the Luttinger liquid is characterized by a small number of
parameters. In Sec. 2.3, we choose the constructive bosonization approach to introduce TLL
theory.

2.2 Charge-density-wave transition

2.2.1 Minimal model: fermions on a lattice with nearest-neighbor repulsion

Let us consider a model of NF spinless fermions on a N -site chain with lattice constant a. As
a special ingredient, we add a term of nearest-neighbor repulsion,

H = −J
N∑
j=1

(
c†j+1cj + c†jcj+1

)
+ V

N∑
j=1

ρj ρj+1 , (2.8)

with hopping J > 0 and nearest-neighbor repulsion V > 0. ρj = c†jcj is the occupation number
operator of site j. We assume periodic boundary conditions, i. e. the fermions hop on a ring
with c†N+1 = c†1, cN+1 = c1. In order to determine the T = 0 ground state of the fermionic
chain, we have to find the configuration {ρi} which minimizes the energy 〈{ρi}|H |{ρi}〉 for a
fixed number of lattice sites N and fermions NF . For general N and NF , the solution is not
unique, i. e. the ground-state manifold is degenerate. The ground state configuration avoids
nearest-neighbor relations since they come with an extra interaction energy V for each pair
of adjacent fermions. A configuration with minimal number of nearest-neighbor relations is in
the ground state manifold. Here, we want to consider a chain with even number of sites at
half-filling, N = 2NF . In this case, the ground state manifold is doubly-degenerate. Empty and
occupied sites alternate along the chain with periodicity 2a and without any nearest-neighbor
relations for both of the two possible ground state configurations. Anticipating that an oc-
cupied site is related to an accumulation of charge, we may call this alternating pattern a
charge-density wave (CDW).

In the following, we analyze the requirements for a CDW. Translating the hopping Hamiltonian
to momentum space,

cj = 1√
N

∑
k

eikajck , c†j = 1√
N

∑
k

e−ikajc†k , (2.9)

leads to the dispersion εk = −2J cos(ka) with the Brillouin zone −π
a < k ≤ π

a . At half-filling,
the cos band is occupied up to the Fermi momentum kF = π

2a . The full Hamiltonian reads as

H =
∑
k

εkc
†
kck + 1

N

∑
k,k′,q

Vqc
†
k+qck c

†
k′−qck′ , (2.10)

15



2 Collective Phenomena in One-Dimensional Metals

with Vq = 2V cos(qa). Interestingly, there are attractive interaction channels for |q| > kF , de-
spite the fact that we started with a repulsive interaction. The attractive interaction channel
is strongest for the scattering channel q = 2kF = π

a , which is just the wavenumber of the CDW
state. We will see that having an attractive 2kF channel is crucial for the emergence of the
CDW.

Before we continue, we briefly discuss how the situation changes if we add spin degrees of
freedom, σ = ±. Eventually, we want to describe electrons which are spin 1/2 particles.
Each site can be occupied by two fermions now. Therefore, it is natural to include an on-site
repulsion U

∑
j ρj,+ρj,− = U

∑
q ρq,+ρ−q,− now competing with the nearest-neighbor repulsion.

In order to limit the modifications, we still restrict the discussion to an even number of sites at
half-filling, N = N+ +N−, and an unpolarized ground state, N+ = N−. Now, half-filling refers
to one particle per site. For U � V , the nearest-neighbor repulsion ∼ V

∑
σσ′,j ρj,σρj+1,σ′ =∑

σσ′,q Vqρq,σρ−q,σ′ favors a CDW configuration. In this state, the charged sites are occupied
by two fermions of different species σ = ±. Charged and empty sites again alternate with
the wave vector 2kF . In the opposite limit of U � V , the on-site repulsion enforces an
occupation of one fermion per site and destroys the charge-density wave. We recover the
standard Hubbard model [44]. The ground state configuration is known to be antiferromagnetic.
We can regard the antiferromagnetic configuration as two spin-polarized waves which are shifted
by one site to satisfy the on-site repulsion and realize a spin-density wave. Indeed, the Hubbard-
U only affects the interaction between densities of opposite spin,

∑
q(U + Vq)ρq,+ρ−q,−, while

interaction between densities of same spins,
∑
q Vq(ρq,+ρ−q,+ + ρq,−ρ−q,−), remain unchanged.

The antiferromagnetic state also minimizes the interaction energy of the latter term since the
spin-polarized density waves remain.8 In the following, we only cover the CDW case, i. e. a
situations with net interaction V2kF < 0.

2.2.2 Continuum model and mean-field analysis

We will show that an attractive 2kF channel is indeed responsible for an instability towards
the CDW ground state. The mean-field analysis presented here is inspired by the BCS theory
of superconductivity [4].

We focus on the low-energy sector of the fermionic chain in (2.10). Only states in a narrow re-
gion around the Fermi points are relevant, ±kF + k, where −Λ ≤ k ≤ Λ. The cutoff momentum
Λ is a small momentum scale which plays the role of an effective band width. Fermions near
±kF are identified as right- and left-moving particles. We introduce the notation c†−kF+k ≡ c

†
L,k,

c†kF+k ≡ c
†
R,k for operators creating left- or right-moving particles, respectively. Furthermore,

we may linearize the bands of left and right movers as εR/L,k ≡ ε±kF+k = ±vFk with the Fermi
velocity vF = ∂kεk|k=kF in the low-energy region. Here, we assume symmetric bands. Adding
spin degrees of freedom,

∑
k →

∑
k,σ, does not affect the form of the final expressions. The

density of state is then understood to include both spin species.

The restriction to two isolated bands around the Fermi points implies that the low-energy
fermions only interact via the q = 0 and q = 2kF scattering channels. The low-energy Hamil-
tonian derived from the lattice Hamiltonian (2.10) reads as

H =
Λ∑

k=−Λ
vFk

(
−c†L,kcL,k + c†R,kcR,k

)
+ V2kF

N

Λ∑
k,k′=−Λ

c†L,kcR,kc
†
R,k′cL,k′ +

V0
N
N2
F . (2.11)

We neglect the global energy shift∝ N2
F caused by the q = 0 channel.9 A CDWwith periodicity

8We expect a quantum phase transition between the CDW and the AFM phase, for U + V2kF = 0, if the
attractive channel vanishes due to large on-site repulsion.

9Note that the total number of fermions is conserved, [H,NF ] = 0.
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2.2 Charge-density-wave transition

Q appears if the expectation value of the respective Fourier mode of the density operator,
〈ρQ〉 = 〈 1

N

∑
k c
†
k+Qck〉, is finite in the ground state. Thus, 〈ρQ〉 serves as an order parameter

for the CDW phase. Considering the Hamiltonian (2.11), we expect to find Q = 2kF order
with finite expectation value 〈ρ2kF 〉 = 〈 1

N

∑
k c
†
k+2kF ck〉 = 〈 1

N

∑
k c
†
R,kcL,k〉. This motivates to

apply the mean-field approximation,

AB = 〈(A− 〈A〉)(B − 〈B〉)〉︸ ︷︷ ︸
≈0

+A 〈B〉+B 〈A〉 − 〈A〉 〈B〉 , (2.12)

to the quartic interaction term (2.11) with A = c†L,kcR,k and B = c†R,k′cL,k′ . We obtain the
mean-field Hamiltonian

HMF =
∑
k

εk

(
−c†L,kcL,k + c†R,kcR,k

)
+
∑
k

(
∆∗c†L,kcR,k + ∆c†R,kcL,k

)
− 1
V2kF

∆∗∆

=
∑
k

(
c†L,k c†R,k

)(εk ∆∗
∆ −εk

)(
cL,k
cR,k

)
− 1
V2kF

∆∗∆ .

(2.13)
Here, we defined the CDW order parameter as

∆ = V2kF 〈ρ2kF 〉
∗ = V2kF

N

∑
k

〈c†L,kcR,k〉 , (2.14)

which has to be determined self-consistently.

After the mean-field decoupling we encounter the situation that the Hamiltonian is quadratic
in the operators, but not diagonal. In order to find the ground state, we have to diagonalize
the Hamiltonian matrix in (2.13). This can be done by means of a Bogoliubov rotation, mixing
left- and right-moving fermions,

d†+,k = akc
†
L,k + bkc

†
R,k , d†−,k = −b∗kc

†
L,k + akc

†
R,k . (2.15)

The values of ak, bk are chosen such that the fermion algebra is preserved, i. e. {dα, d†β} = δαβ.
The new fermions are called Bogoliubov quasiparticles. They represent quantum fluctuations
beyond the collective dynamics of the mean-field. The Bogoliubov quasiparticles defined similar
to (2.15) also appear as quantum excitations in mean-field theories of various phase transitions,
e. g. in BCS superconductors [4], Bose-Einstein condensates [13], or antiferromagnets [43]. In
BCS theory, the Bogoliubov quasiparticles are superpositions of electrons and holes. Here, they
are superpositions of left- and right-moving electrons. In the following, we summarize the main
results of the Bogoliubov theory applied to CDW. The details of the calculations are given in
App. A.1.

After a suitable Bogoliubov rotation, the mean-field Hamiltonian (2.13) takes a diagonal form,

HMF =
Λ∑

k=−Λ

(
E+,kd

†
+,kd+,k + E−,kd

†
−,kd−,k

)
− 1
V2kF

|∆|2 , (2.16)

with the new bands
E±,k = ∓ sign(k)

√
ε2k + |∆|2 . (2.17)

Assuming that |∆| 6= 0, the quasiparticle bands exhibit a gap of size 2|∆| which opens at
the Fermi energy or at the Fermi points ±kF , respectively. Away from the gap, the bands
coincide with the original bands of left and right movers. For energies, |vFk| � |∆|, we have
d†+,k ≈ c†L,k and d†−,k ≈ c†R,k, i. e. creation of a ± quasiparticle is equivalent to the creation of
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2 Collective Phenomena in One-Dimensional Metals

left- or right-moving physical fermions. Close to the Fermi points the left and right movers hy-
bridize as d†+,k = 1√

2

(
c†L,k + sign(k)c†R,k

)
, d†−,k = 1√

2

(
c†R,k − sign(k)c†L,k

)
. The quasiparticles

close to the Fermi points can be identified as standing waves. In BCS superconductors, the
ground state is the vacuum of quasiparticles while the physical fermions form a condensate of
Cooper pairs. In contrast, the CDW ground state is the Fermi sea of fermionic quasiparticles,
|GS〉 =

∏
±
∏
E±,k<EF

d†±,k |0〉, i. e. the bands are filled below the gap. This can be understood
by noticing that the CDW ground state with 〈c†LcR〉GS 6= 0 has a well-defined fermion number.
The number of quasiparticles and the number of physical fermions in the ground state is iden-
tical. In BCS theory, we have 〈c†↑c

†
↓〉GS 6= 0. Thus, the fermion number of the ground state is

not defined since the condensate is macroscopically occupied.

Finally, we find the self-consistent equation for ∆, see App. A.1:

∆ = V2kF
N

∑
k

〈c†L,kcR,k〉 = −V2kF ρF

EΛ∫
0

dε
∆ tanh

(
1

2T
√
ε2 + |∆|2

)
√
ε2 + |∆|2

. (2.18)

In the small energy window −EΛ ≤ ε ≤ EΛ, we approximate the density of states by its value
at the Fermi level, ρF = 1

N

∑
k δ(EF − εk). Note the crucial minus sign after the second equality

sign in (2.18). From the gap equation (2.18) we find:

• ∆ = 0 is always a solution of the gap equation.

• There is a solution |∆| 6= 0 only if V2kF < 0 (since the integral is manifestly positive.)
The low-energy analysis shows that the attractive 2kF channel is indeed crucial for the
existence of the CDW solution.

• The phase of ∆ is not fixed by the gap equation.

The gap equation shows that there is a CDW solution for arbitrarily small attractive interac-
tions, indicated by the finite gap. For T = 0 we obtain:

|∆(T = 0)| = 2EΛ exp
(
− 1
|V2kF |ρF

)
. (2.19)

The finite mean-field ∆ 6= 0 can also be found be minimizing the ground state energy. For
small gap ∆� EΛ, the ground state energy is given by〈

H
〉
MF

N
= −2ρF

EΛ∫
0

dε
√
ε2 + |∆|2 − |∆|

2

V2kF

= −ρFE2
Λ + ρFE

2
Λ

−1
2 − log

(
2EΛ
|∆|

)
+ 1
|V2kF |ρF

( |∆|
EΛ

)2

.

(2.20)

From this expression, it is obvious that it possible to find solutions ∆ 6= 0 which are en-
ergetically more favorable than a vanishing gap ∆ = 0. In App. A.1, it is shown that the
self-consistent solution (2.19) indeed minimizes the ground state energy. Hence, the electrons
are unstable towards CDW formation. The full temperature dependence of the gap ∆(T ) is
determined by the equation

1 = −V2kF ρF

EΛ∫
0

dε
tanh

(
1

2T
√
ε2 + |∆(T )|2

)
√
ε2 + |∆(T )|2

. (2.21)

At the critical temperature, the gap has to vanishes, ∆(T = Tc + 0+) = 0+. We find that

Tc = 2EΛ
eγE

π
exp

(
− 1
|V2kF |ρF

)
. (2.22)
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2.2 Charge-density-wave transition

As a result, we recover the famous BCS ratio of Tc and ∆(T = 0):

Tc
∆(T = 0) = eγE

π
≈ 0.567 . (2.23)

As the occupation of the band by standing-wave quasiparticles suggests, the existence of a
finite gap ∆ = |∆|eiφ∆ = V2kF 〈ρ2kF 〉

∗ implies a periodic modulation of the electron density
with period 2π

2kF = π
kF

:

〈ρ(x)〉 = NF

L
+ 〈ρ2kF 〉 ei2kF x + 〈ρ−2kF 〉 e−i2kF x = NF

L
+ 2|∆|
V2kF

cos
(
2kFx− φ∆

)
.

(2.24)
Unlike in the minimal model with nearest-neighbor repulsion, the low-energy analysis yields
a CDW that does not have to be commensurate with an underlying lattice: The gap opens
for arbitrary values of kF , i. e. for arbitrary filling of the original electron band. The only
prerequisite is the existence of the attractive interaction channel V2kF < 0. Additionally, the
phase of the gap can take any value 0 ≤ φ∆ < 2π since the ground state is degenerate,
〈GS|HMF |GS〉 6= E(φ∆). The phase degeneracy carries over to a continuous translation sym-
metry in real space: If φ∆ is varied, the undistorted CDW is shifted along the chain without
leaving the ground state manifold. Below the transition temperature, the continuous transla-
tion symmetry of the ground state is broken and the CDW spontaneously chooses a particular
phase.10

2.2.3 Electron-phonon coupling: mutual dependence of CDW instability and
Peierls structural instability

From the mean-field analysis in Sec. 2.2.2, we see that an attractive interaction channel is
mandatory to stabilize the CDW ground state. A natural source of an attractive electron-
electron interaction in solids is the coupling to excitations of the underlying atomic lattice, the
phonons. So far, we discussed the CDW transition as a purely electronic instability, driven by
an attractive interaction channel at perfect nesting q = 2kF . We omitted the fact that the
electronic instability is accompanied by a structural instability of the underlying lattice if the
attractive interaction is induced by electron-phonon coupling. The instability of the lattice
is also called Peierls instability. Both instabilities are interdependent: A modulation of the
electron density gives rise to a new periodic potential for the atoms, resulting in a periodic
distortion of the lattice. On the other hand, a periodic distortion of the lattice leads to a
redistribution of the electrons. A CDW emerges, following the modulation of the bond length
in the lattice [46]. In the discussion of the interplay between instabilities in the ionic (Peierls
structural instability) and electronic sector (CDW instability), we present aspects from the
textbooks of Gruener [45] and Khomskii [44], and the review by Rossnagel [46].

The classical argument for the existence of a structural instability goes back to Peierls [47, 48]:
Consider electrons hopping on a 1D chain of atoms with lattice constant a. The Brillouin zone
extents over [−π

a ,
π
a ]. Peierls asked the question what happens to the electron-atom system

if the lattice xj is distorted in a periodic manner, xj → xj + u cos
(

2π
b xj

)
, such that a new

superstructure with larger period emerges. Shifting the positions of the atoms with period
b > a shrinks the Brillouin zone to [−π

b ,
π
b ]. The induced periodic potential opens gaps of

size ∆ ∼ u in the electronic bands at the new Brillouin edges ±π
b . The electron states above

the gap are shifted to higher energies and the states below the gap to lower energies. For an
arbitrary modulation b the distortion is energetically unfavorable as the elastic energy cost,
δElattice ∼ K

2 u
2 ∼ ∆2, has to be payed. However, if the new Brillouin edges coincide with the

10The collective excitations of the CDW condensate are amplitude |∆(x, t)| and phase fluctuations φ∆(x, t).
The phase fluctuations are the Goldstone modes with linear dispersion associated with the broken translation
symmetry. The amplitude fluctuations are gapped since the ground state energy depends on ∆ [45].
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2 Collective Phenomena in One-Dimensional Metals

Fermi wave vector, kF = π
b , the occupied states with E ≤ EF are lowered in energy. Since the

increased energy of the empty states does not contribute to the electron energy, the electron
sector gains energy from the lattice distortion. As stated in Sec. 2.2.2, the energy gain by
opening a gap at kF scales logarithmically with the size of the gap, δEband ∼ ∆2 log(∆), see
(2.20). Therefore, the elastic energy, δElattice ∼ ∆2, is overcompensated for an exponentially
small, but finite gap. As a consequence, the 1D chain always favors a finite distortion with
period b = π

kF
, for arbitrary kF , i. e. for arbitrary filling of the band. The electron density

shows the same periodicity with high density for shorter bonds and lower density for longer
bonds, which gives rise to a CDW.

Peierls argument is based on the classical treatment of the ions and also omits their dynamics.
Given that the phenomenon occurs at low temperatures, a quantum mechanical description
including the dynamics of the phonons seems to be more appropriate. Within this framework,
we are also able to identify the phonons as the origin of an attractive electron-electron inter-
action which we found to be mandatory for the formation of a CDW. On the mean-field level
the result will be identical.

The interdependence between electronic and ionic instability can be studied on a more micro-
scopic level starting from the Fröhlich Hamiltonian [49] which describes an electron gas weakly
coupled to the phonon excitations of the atomic lattice.11 The electron-phonon coupling orig-
inates from the fact that the displacements uj of the atoms create an extra potential for the
electrons near site j. For small displacements the potential is proportional to uj+1−uj , giving
rise to the electron-phonon interaction of the form He-ph ∝

∑
j c
†
jcj(uj+1−uj). In the language

of second quantization the full electron-phonon Hamiltonian reads as

H0,e +H0,ph +He-ph =
∑
k

εkc
†
kck +

∑
q

ωqa
†
qaq + 1√

N

∑
k,q

gq c
†
k+qck (a†−q + aq)

→
Λ∑

k=−Λ
vFk

(
−c†L,kcL,k + c†R,kcR,k

)
+
∑
q

ωqa
†
qaq

+ 1√
N

Λ∑
k=−Λ

[
g2kF c

†
R,kcL,k

(
a†−2kF + a2kF

)
+ h.c.

]
.

(2.25)

where we added the kinetic terms of the electron gas and the phonons, H0,e + H0,ph.12 The
bosonic operators, [aq, a†q′ ] = δqq′ , create or annihilate phonons, respectively. gq = vq

iq√
2Mωq

denotes the electron-phonon coupling constant with the ionic potential vq and the mass M
of the ions. In the last line of (2.25), we focus on the low-energy sector of the electrons, see
Sec. 2.2.2. Here, only 2kF scattering between left and right movers is relevant. To see that
the electron-phonon coupling leads to an attractive electron-electron interaction, we integrate
out the phonon fields from the partition function which can be done analytically due to the
quadratic form of the Hamiltonian. The exclusion of the phonon degrees of freedom from the
low-energy theory produces an effective electron-electron interaction which is mediated by the
phonon propagator D0

q(ω) = 2ωq
ω2−ω2

q+i0+ |q=2kF . For optical phonons much higher in energy than
low-energy electrons, ω2kF � EΛ, we can neglect the frequency dependence and approximate
the propagator by the typical inverse energy scale of the phonons, D0

q=2kF ≈ −
2

ω2kF
. We obtain

the effective electron-electron interaction

Hee = −2|g2kF |2

ω2kF

∑
k,k′

c†R,kcL,kc
†
L,k′cR,k′ . (2.26)

11In his original paper, Fröhlich’s goal was to reveal the mechanism of superconductivity.
12We use the harmonic or non-interacting approximation.
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2.2 Charge-density-wave transition

From this exercise, we see that high-energy phonons typically induce attractive electron-
electron interactions, V2kF = −2|g2kF |

2

ω2kF
.

The procedure of integrating out phonons is straight forward and can explain the origin of an
attractive interaction. It is legitimate if the energy of the phonons are much larger than the
effective band width of the electrons, ω2kF � EΛ. In this picture, the electrons can undergo
a CDW transition while the high-energy phonons are unaffected. However, the electrons act
back on the phonons: The phonon propagatorD0

q(ω) acquires a correction from the polarization
of the electrons gas. As a consequence, the pole of the phonon propagator is shifted by the
polarization operator Πq (2.7) [see Sec. 2.1.2] and the phonon dispersion is renormalized as

ω̃2
q = ω2

q

(
1− 2|gq|

ωq
Πq

)
. (2.27)

In the present case of a 1D metal, the polarization operator has a logarithmic divergence at
q = 2kF and for low temperatures, Π2kF (T ) ≈ ρF log

(
2EΛ
T

)
. At sufficiently low temperatures,

the renormalized phonon frequency ω̃2kF crosses ω̃ = 0 and becomes imaginary, i. e. the 2kF
phonon mode softens. This dramatic change in the phonon spectrum at q = 2kF is called
giant Kohn anomaly and signals the onset of a second-order phase transition. The complete
softening of the q = 2kF mode implies a macroscopic occupation, 〈a2kF 〉 6= 0, since phonons
with this wave vector are created without energy cost. We observe that the softening occurs at
the same critical temperature Tc as the CDW transition (2.22). Indeed, we can derive the same
mean-field Hamiltonian as in (2.13) if we replace the phonon operators by their macroscopic
expectation values a2kF → 〈a2kF 〉, a

†
2kF → 〈a

†
2kF 〉 in (2.25). We then can identify the order

parameters as ∆ ≡ g2kF 〈a2kF 〉 = V2kF 〈ρ2kF 〉
∗. This leads to conclusion that the electronic

CDW is accompanied by a lattice distortion 〈u2kF 〉 ∝ ∆ with the same wavenumber 2kF and
the same phase φ∆.

Finally, we want to comment on the range of applicability of the mean-field approach in low
dimensions. So far, we discussed the theory of the CDW transition on the mean-field level,
neglecting fluctuation effects. In higher dimensions, fluctuations lead to corrections to the
mean-field results, e. g. to critical exponents or to the value of the transition temperature.
Still, the mean-field theory of the phase transition predicts the existence of an ordered phase
below some transition temperature correctly. Fluctuation effects are more pronounced in low
dimensions. Below the lower critical dimension, the fluctuations are strong enough to destroy
the ordered phase completely. The mean-field description fails as it predicts the existence
of order wrongly. The Mermin-Wagner theorem states that no continuous symmetry can be
broken spontaneously in d ≤ 2 at finite temperatures [43, 50], see also Ref. [51]. In strictly
1D metals, the theorem rules out incommensurate CDWs, i. e. CDW with arbitrary filling kF .
The continuous translation symmetry would be broken when the CDW selects a certain phase
φ∆, which is forbidden in d = 1. Strictly speaking, the mean-field theory presented in this
section is not applicable. However, in realistic situations, completely isolated 1D system are
hard to produce. There may be some kind of small coupling between the 1D metal and its
higher dimensional environment or many 1D wires are coupled in a network [35, 36, 39]. In
these situations, the effective dimensionality is not strictly d = 1 which may allow for a CDW
transition at a finite critical temperature.

A further option is the spontaneous breaking of the discrete translation symmetry by a com-
mensurate CDW. The period of a commensurate wave, b = π

kF
, and the lattice constant a

obey, mb = na, m,n ∈ N. This condition is fulfilled for a half-filled band. There, kF = π
2a

and the period is 2a. If the commensurability relation is obeyed, the coupling to the periodic
lattice potential is enhanced. Due to the strong local interaction with the lattice, the con-
tinuous translation symmetry is broken explicitly. The ground state energy depends on the
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2 Collective Phenomena in One-Dimensional Metals

phase of the order parameter, EGS = EGS(φ∆), such that phase fluctuations are gapped out.
Minimization of the ground state energy fixes the phase φ∆ and pins the CDW to an optimal
position with respect to the lattice. In contrast, our description of incommensurate CDWs in
terms of the Fröhlich Hamiltonian only considered the coupling to lattice excitations, leading
to translation symmetric, degenerate ground-state manifold, EGS 6= EGS(φ∆). The influence
of the static lattice potential was ignored. Thus, commensurate CDWs are distinguished from
incommensurate CDWs by the absence of Goldstone modes, i. e. the absence of massless phase
fluctuations. Still, both kinds of CDWs form due to perfect nesting of the two Fermi points,
giving rise to the CDW instability in the 2kF channel. The formation of CDWs is essentially a
Fermi surface effect. Correspondingly, the CDW gap opens at ±kF while the rest of the spec-
trum remains unaffected. The picture only changes for very strong electron-phonon coupling
and large atomic displacements such that the electronic states loose their metallic character
and are better described by molecular wave functions [52]. Ultimately, the electron wave func-
tions are localized at covalent bonds and the electronic bands flatten out in momentum space.
There, the energy gain is rather proportional to the gap ∆.

2.3 Spin-charge separation

In the previous section, we discussed the Peierls instability caused by electron-phonon coupling
and we developed the mean-field theory of the resulting CDW state. We also discussed that
an incommensurate CDW (which breaks the continuous translation symmetry) cannot exist
in a perfectly isolated, strictly 1D metal since strong fluctuations destroy the CDW order and
restore the translation symmetry. In the present section, we deal with these fluctuations and
present the theory of the translation invariant, highly correlated electron state.

It might seem that correlations in 1D metals are much harder to treat than in higher dimensions
as the concept of quasiparticles does no longer apply and Fermi-liquid theory breaks down, see
Sec. 2.1.2. Fortunately, Fermi-liquid theory is replaced by an other low-energy theory, the
Tomonaga-Luttinger liquid (TLL) theory [14–16, 53]. The theory describes the correlated,
translation symmetric many-particle state of the 1D metal. This state is called Luttinger liq-
uid. The excitations in a Luttinger liquid turn out to be soft collective density waves of charge
and spin. TLL theory makes use of the fact that the interacting fermionic problem maps to
non-interacting bosonic charge- and spin excitations at low energies, i. e. to quantum harmonic
oscillators.13 In this way, it can be shown that the electrons fractionalize into charge- and
spin-density waves which appear as the fundamental excitations of the 1D metal. In contrast
to Sec. 2.2, the “density waves” do not refer to a macroscopic, frozen-in density pattern. They
are dynamical quantum degrees of freedom.

In the framework of TLL theory as presented here, density-density interactions of the form∫
x ρη(x)ρη′(x) are treated exactly. Similar to the robustness of the Fermi liquid in d > 1, the
Luttinger liquid is robust against adding further interactions, at least to some extent [37]. This
can be shown be renormalization group methods [5], see also Sec. 4.4.4. Our presentation of
TLL theory follows the contructive approach to bosonization as developed in Refs. [6, 38].

13Charge and spin excitations are non-interacting and independent of each other if the fermion dispersion is
linear which is approximately true for low energies. When the band curvature has to be taken into account,
additional interactions between the bosonic excitations emerge.
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2.3 Spin-charge separation

2.3.1 Tomonaga-Luttinger-liquid model

We start from the full Hamiltonian of interacting electrons in a 1D metal, consisting of a kinetic
and a general two-body interaction term:

H = Hkin +Hint ,

Hkin =
∑
σ=±

∑
k

εk c
†
σ,kcσ,k ,

Hint = 1
2
∑
{σi}

∑
{ki}

V σ1σ2σ3σ4
k1k2k3k4

δ∆k=0 c
†
σ1,k1

c†σ2,k2
cσ4,k4cσ3,k3 ,

(2.28)

We restored the spin quantum number σ = ±. εk denotes the dispersion of the relevant
band that cross the Fermi energy EF . We assume that the band is spin-degenerate. In the
expression of Hint, δ∆k ensures momentum conservation. In a 1D lattice model, momentum is
only conserved up to a reciprocal lattice vector G = 2π

b , where b is the lattice constant. We
postpone the discussion of the interaction term and focus on the kinetic term first.

Kinetic term As in Sec. 2.2, we are interested in the low energy behavior of the 1D metal
which is governed by states close to the two Fermi points ±kF . We build on our discussion of
the low-energy Hamiltonian in terms of left- and right-moving fermions with linear dispersion
and effective band width Λ, introduced in (2.11). Again, we denote the operators which create
left- or right-moving fermions as c†σ,R,k or c†σ,L,k, respectively. Right and left movers are treated
as independent fermion species. The bare kinetic part reads as

Hkin =
∑
σ=±

Λ∑
k=−Λ

vFk

(
−c†σ,L,kcσ,L,k + c†σ,R,kcσ,R,k

)
− E0 . (2.29)

For later reference, we remind the reader that the existence of two symmetric Fermi points
±kF was a consequence of the periodic boundary conditions.14 Particles can be thought of as
moving on a ring. Changing the boundary conditions affects the Fermi points as we will see in
Ch. 4.3. For a system of size L, the discrete momenta take the values

k = 2π
L
z , z ∈ Z , (2.30)

where the range of integers z is limited by the cutoff Λ. As the dispersion is assumed to be lin-
ear, i. e. monotonic, in the vicinity of the Fermi points, k also serves as an energy index. In our
later discussion, the discreteness of the momenta will be essential for bookkeeping of the states.

Effective band width It is in order to define the momentum cutoff Λ more precisely. In
Sec. 2.2, we merely introduced Λ to define the region where the dispersion can be considered
as linear. Now, we have to stress its role as high-energy cutoff of the low-energy theory: We
consider a situation where no perturbations excite fermions outside the low-energy region set
by Λ. Thus, Λ is the maximum momentum shift allowed to create a particle-hole excitation.
The occupation of the ground state is only changed in the momentum window −Λ ≤ k ≤ Λ
about the Fermi points, i. e. all states k < −Λ are occupied and all states k > Λ are empty.
The momentum cutoff also defines the shortest length scale a ∼ 1

Λ accessible in the low-energy
theory. This length scale can be taken of the order of the lattice spacing, but is not directly
related to this length scale and Λ is not related to the Brillouin-zone boundary [6, 16]. a can
14Similar to the formation of an incommensurate CDW, the value of kF is not essential in the following discussion.
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2 Collective Phenomena in One-Dimensional Metals

rather be interpreted as the effective width of the 1D wire in the transverse directions, which
is considered to be sufficiently small such that no transverse bands are excited. Λ is assumed
to be much larger than all perturbations, e. g. temperature T or applied voltage V , but much
smaller than the true bandwidth of the system ∼ kF [54], T, V � Λ� kF . If this hierarchy of
scales exists, the true bandwidth is not relevant for the low-energy behavior of the wire. The
existence of the cutoff is crucial to make the 1D model well-defined. Otherwise, divergences
would appear when calculating correlation functions. The fact that the fermion dispersion may
be linearized in the cutoff region is a useful byproduct which renders the model exactly soluble
at low energies.

The ground state of Hkin is the filled Fermi sea of nη fermions with η ∈ (+,−) × (R,L). For
each species η, all states are occupied from the bottom of the band until no fermions are left.
Since we only look at a small energy window of size 2vFΛ around the Fermi points, it is useful
to count the number of fermions relative to a reference ground state with nrefη fermions, as done
in Ref. [6]. We define |nη〉 as the nη-particle ground state, e. g. nη = 1,−1 indicates a state
with one fermion added or removed with respect to the reference ground state. Similarly, we
measure the ground state energy with respect to the reference ground state E(nrefη ). For the
ground state energy of nη fermions of kind η, we obtain

Enη = 〈nη|Hkin |nη〉 = 2πvF
L


nη+nrefη∑
z=1

−
nrefη∑
z=1

 z = πvF
L

n2
η + πvF

L

(
1− 2nrefη

)
nη .

(2.31)
The term ∝ n2

η measures the energy needed to add or remove particles due to the Pauli
principle. The term linear in nη can be absorbed in the definition of the chemical potential
and we neglect it in the following. It is convenient to introduce normal ordering of operators
with respect to the reference ground state,

: O : ≡ O − 〈O〉ref . (2.32)

The normal-ordered particle number operator,
∞∑

k=−∞
: Nη : =

∞∑
k=−∞

Nη −
∞∑

k=−∞
〈Nη〉ref =

∞∑
k=−∞

(
Nη − nrefη

)
, (2.33)

counts the relative particle number nη which we introduced above. In the following, we will
always consider normal-ordered particle number operators and we will not indicate normal-
ordering explicitly. From now on, Nη has the meaning of the normal-ordered operator : Nη :.
Normal-ordering is usually used to remove infinities which are related to an infinite number
of occupied states for unbounded summations

∑+∞
k=−∞. These infinities cancel out and we are

allowed to take Λ → ∞. Still, we will keep Λ explicitly when summations over momentum
states will appear.

Now, we turn to the excitations above the ground state which are obtained by changing to
a bosonic representation of the Hamiltonian. The essence of the bosonization technique is
the remarkable fact that the excited states of the fermion system can be created by a unique
combination of two basic operations acting on the reference ground state |nrefη 〉:

• The first operation is a simple shift of the Fermi level: The particle content is increased
or decreased by adding a number of nη (nη > 0) particles to the lowest empty states or
removing |nη| (nη < 0) particles from the highest occupied states, respectively.

• Additionally, a superposition of particle-hole excitations is created where fermions are
shifted by momentum q from an occupied state to an empty state.
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2.3 Spin-charge separation

A particle-hole excitation in the right-moving branch is created by the shift operator

ρσ,R,q =
Λ∑

k=−Λ
c†σ,R,k+qcσ,R,k , (2.34)

for q > 0 and is annihilated for q < 0. ρη,q is the Fourier transform of a slow density operator
ρη(x), see (2.42). In the left-moving branch, the particle-hole excitations are created by the
operator ρσ,L,q with q < 0, respectively. The operators ρη,q almost follow the bosonic algebra
as [ρη,q, ρη,−q′ ] = mqδηη′δqq′ with mq = qL

2π . In order to obtain the commutator for q = q′, one
has to be aware that the momenta are small compared to the cutoff, q � Λ, such that states
with k < −Λ + q are always occupied while states with k > Λ are always empty. Alternatively,
one can use normal-ordered operators. From this point, it is straight forward to define bosonic
operators [bη,q, b†η′,q′ ] = δηη′δqq′ by normalization of the density operatord,

b†σ,R,q = i
√
mq

ρσ,R,q , bσ,R,q = −i
√
mq

ρσ,R,−q ,

b†σ,L,q = i
√
mq

ρσ,L,−q , bσ,L,q = −i
√
mq

ρσ,L,q .
(2.35)

Since ρ†q = ρ−q, the operators b†q, bq are only defined for q = 2π
L m > 0, m ∈ N. The phase

factor i is set by convention. b†η,q applied to the ground state |nη〉 creates a superposition of
all particle-hole excitations in which a fermion is raised by vF q > 0 in energy. These super-
positions are collective excitations of the fermions and are identified as right- and left-moving
density waves.

The kinetic part (2.29) can be represented in terms of the bosonic operators: Evaluation of the
commutator [Hkin, b

†
η,q] = vF qb

†
η,q for η = (L,R)×(+,−) shows thatHkinb

†
η,q |nη〉 = vF qb

†
η,q |nη〉.

Therefore, all excited states of Hkin are obtained by applying b†η,q operators to the nη-particle
ground state. In addition, there is the ground state energy, which we have calculated in (2.31).
Thus, the kinetic part can be represented as the sum of two contributions:

Hkin =
∑
η

∑
q>0

vF qb
†
η,qbη,q +

∑
η

πvF
L

N2
η

=
∑
σ=±

∑
q>0

vF qb
†
σ,R,qbσ,R,q + πvF

L
N2
σ,R +

(
R↔ L

)
.

(2.36)

The oscillator modes ∼ b†η,q, bη,q describe the bosonic particle-hole excitations or density waves.
The zero modes ∼ N2

η account for the change in energy when the particle numbers are changed
without creating particle-hole excitations. The ground state of the free fermion system |nη〉
appears as the vacuum of the bosonic excitations. Before we continue with the discussion of
interactions, we want to appreciate the special form of the kinetic term. Expressed in terms of
the density operators, (2.36) reads as

Hkin =
∑
η

∑
q>0

vF qρη,qρη,−q +
∑
η

πvF
L

N2
η = πvF

L

∑
η

L∫
0

dx ρ2
η(x) , (2.37)

with ρη,q =
∫
x e

iqxρη(x) and ρη,q=0 =
∫
x ρη(x) = Nη

L , see (2.42). Remarkably, the kinetic term
is quadratic in the density operators and has the same form as a density-density interaction.
This unusual representation suggests that a model including density-density interactions can be
solved exactly since interactions and kinetic term are bilinear expressions of bosonic operators.
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2 Collective Phenomena in One-Dimensional Metals

Interactions As preparation for the representation of quartic fermion-fermion interactions,
we introduce fermionic field operators Ψ(x) and density operators ρ(x). Local interactions are
naturally written in terms of field operators,

Ψσ(x) = 1√
L

∑
k

eikxcσ,k , Ψ†σ(x) = 1√
L

∑
k

e−ikxc†σ,k . (2.38)

In order to analyze the structure of the interactions at low energies, it is convenient to start with
the low energy expansion of the field operators. For small perturbations about the (reference)
ground state we can restrict the summation to the vicinity of the Fermi points k ± kF with
−Λ ≤ k ≤ Λ. The fermion operators with ck+kF ≡ cR,k and ck−kF ≡ cL,k act on right- or
left-moving fermions, respectively. Therefore, we can expand the field operator as

Ψσ(x) = 1√
L

Λ∑
k=−Λ

ei(k+kF )xcσ,R,k + 1√
L

Λ∑
k=−Λ

ei(k−kF )xcσ,L,k

= eikF xΨσ,R(x) + e−ikF xΨσ,L(x) ,

(2.39)

where we defined slow right- and left-moving field operators

Ψη(x) = 1√
L

Λ∑
k=−Λ

eikxcη,k , (2.40)

with η ∈ (R,L) × (+,−). The full fermion density of spin σ is accessed through the density
operator

ρσ(x) = Ψ†σ(x)Ψσ(x) = ρσ,R + ρσ,L +
(

Ψ†σ,LΨσ,R e2ikF x + c.c.
)
. (2.41)

In the homogeneous ground state, the cross terms ∼ Ψ†LΨR do not contribute since right and
left movers are independent species. This changes if translation symmetry is broken by box-
like boundary conditions, see Sec. 4.3.1. The slow density operators of right and left movers
ρη(x) = Ψ†η(x)Ψη(x) are related to the shift operator ρη,q (2.34) by a Fourier transformation
defined as

ρη,q =
L∫

0

dx eiqxρη(x) ,

ρη(x) = 1
L

∑
q

e−iqxρη,q = 1
L

∑
q 6=0

e−iqxρη,q + Nη

L
.

(2.42)

Note the unusual sign convention. As the zero-mode ρη,q=0 counts the total number of η
fermions, normal-ordering of the density operator is achieved by employing the normal-ordered
particle number operator, ρη,q=0 → Nη, which counts the particles with respect to the reference
ground state.

Next, we add interactions to the kinetic term Hkin. Our starting point is the generic fermion-
fermion interaction in (2.28). Following the general philosophy of the whole chapter, we want to
distill an effective low-energy description from Hint. At low energies only scattering processes
between the low-energy sectors around the Fermi points ±kF are relevant which are defined by
the cutoff Λ. Therefore, the possible interaction channels should be expressed in terms of the
slow fields Ψ(†)

σ,R, Ψ(†)
σ,L (2.39). These channels can be found by expanding the quartic interaction

term in terms of the slow fields:

Ψ†σΨσΨ†σ′Ψσ′ =
(

Ψ†σ,RΨσ,R + Ψ†σ,LΨσ,L + Ψ†σ,RΨσ,Le−i2kF x + Ψ†σ,LΨσ,Re+i2kF x
)

×
(

Ψ†σ′,RΨσ′,R + Ψ†σ′,LΨσ′,L + Ψ†σ′,RΨσ′,Le−i2kF x + Ψ†σ′,LΨσ′,Re+i2kF x
)
.

(2.43)
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2.3 Spin-charge separation

Note that terms ∼ Ψ†η(x)Ψη(x + δx) ≈ δxΨ†η(x)∂xΨη(x) containing fields at different posi-
tions are suppressed in the low-energy limit of slowly varying fields. The interaction channels
obtained by this procedure are parameterized by the coupling constants g4, g3, g2, g1 [5]:

• forward scattering on the same branch with the same spins,

H4|| = g4||
∑
σ

L∫
0

dx
(

Ψ†σ,RΨσ,RΨ†σ,RΨσ,R + Ψ†σ,LΨσ,LΨ†σ,LΨσ,L

)

= g4||
∑
σ

L∫
0

dx
(
ρ2
σ,R + ρ2

σ,L

)
,

(2.44)

• forward scattering on the same branch with opposite spins,15

H4⊥ = g4⊥
∑
σ

L∫
0

dx
(

Ψ†σ,RΨσ,RΨ†−σ,RΨ−σ,R + Ψ†σ,LΨσ,LΨ†−σ,LΨ−σ,L
)

= g4⊥
∑
σ

L∫
0

dx
(
ρσ,Rρ−σ,R + ρσ,Lρ−σ,L

)
,

(2.45)

• forward scattering on opposite branches with the same spins,

H2|| = g2||
∑
σ

L∫
0

dxΨ†σ,RΨσ,RΨ†σ,LΨσ,L = g2||
∑
σ

L∫
0

dx ρσ,Rρσ,L , (2.46)

• forward scattering on opposite branches with opposite spins,

H2⊥ = g2⊥
∑
σ

L∫
0

dxΨ†σ,RΨσ,RΨ†−σ,LΨ−σ,L = g2⊥
∑
σ

L∫
0

dx ρσ,Rρ−σ,L , (2.47)

• backscattering,

H1|| = g1||
∑
σ

L∫
0

dxΨ†σ,RΨσ,LΨ†σ,LΨσ,R = −g1||
∑
σ

L∫
0

dx ρσ,Rρσ,L . (2.48)

• spin backscattering,

H1⊥ = g1⊥
∑
σ

L∫
0

dxΨ†σ,RΨσ,LΨ†−σ,LΨ−σ,R

= −g1⊥
∑
σ

L∫
0

dxΨ†σ,RΨ−σ,RΨ†−σ,LΨσ,L ,

(2.49)

15We intentionally introduce double counting to match the structure of H4||.
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• umklapp scattering with the same spins,

H3|| = g3||
∑
σ

L∫
0

dx
(

Ψ†σ,RΨσ,LΨ†σ,RΨσ,Le−i4kF x + h.c.
)
, (2.50)

• umklapp scattering with opposite spins,

H3⊥ = g3⊥
∑
σ

L∫
0

dx
(

Ψ†σ,RΨσ,LΨ†−σ,RΨ−σ,Le−i4kF x + h.c.
)
. (2.51)

• Further terms are of the form ∼ ρσ,RΨ†σ′,RΨσ′,Le−i2kF x.

The kinetic term (2.36) supplemented with the density-density interactions (2.44)–(2.48) defines
the Tomonaga-Luttinger liquid (TLL) model,

HTLL = Hkin +H4|| +H4⊥ +H2|| +H2⊥ +H1|| . (2.52)

One can argue that the channels g4||, g3|| do not contribute due to the Pauli principle. In
the following, we will keep g4|| for the sake of symmetry. We also note that the g1|| process is
equivalent to the g2|| process up to a sign. The ground state properties of the model are robust
against adding further interactions which cannot be cast into the density-density form [5, 37]:
Interaction terms with e−i2kF x, e−i4kF x do not conserve the number of right and leftmovers
separately. One can argue that the rapidly oscillating factors average the slowly varying fields
to zero. Indeed, a renormalization group procedure shows that these terms are irrelevant per-
turbations at low energies for generic values of kF and are exponentially suppressed. However,
the momenta are only defined up to a reciprocal lattice vector G = 2π

b , i. e. 4kF is equivalent to
4kF −G. Thus, in the special case of a half-filled band, kF = G

4 = π
2b , the phase factor e−i4kF x

is equivalent to e−i(4kF−G)x = 1. Therefore, umklapp scattering H3⊥ will become relevant at
(or close to) half-filling. This is the case for repulsive interactions. The new ground state is a
commensurate CDW, a gapped phase, where the charge field is locked to a certain value. It
turns out that spin backscattering H1⊥ is irrelevant in case of spin-rotation invariant interac-
tions, g1⊥ = g1||, see also Sec. 4.4.4. However, the term is only logarithmically suppressed. In
the following, we will neglect these more complicated interaction terms.

The interaction terms (2.44)–(2.48) are invariant under spin-rotation or time-reversal σ → −σ.
Therefore, it is natural to parameterize these interactions in terms of spin and charge densities,
defined as

ρc = ρ+ + ρ− ,

ρs = ρ+ − ρ− , ρσ = 1
2
(
ρc + σρs

)
,

(2.53)

for both left and right movers. Spin and charge densities are decoupled since a term ρcρs
would violate the symmetry. Using that

∑
σ ρσ,ηρ±σ,η′ = 1

2(ρc,ηρc,η′ ± ρs,ηρs,η′), the interaction
terms are transformed to

H4 = H4|| +H4⊥ =
∑
ν=c,s

L∫
0

dx g
(4)
ν

2
(
ρ2
ν,R + ρ2

ν,L

)
,

H2 = H2|| +H2⊥ =
∑
ν=c,s

L∫
0

dx g(2)
ν ρν,Rρν,L .

(2.54)
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with g(i)
c ≡ gi|| + gi⊥ − g1||δi2 and g(i)

s ≡ gi|| − gi⊥ − g1||δi2 for i = 2, 4. ν = c, s labels charge
and spin sector, respectively. In Fourier representation the interactions (2.54) take the form

L∫
0

dx ρηρη′ = 1
L

∑
q

ρη,qρη′,−q = 1
L

∑
q>0

(
ρη,qρη′,−q + ρη,−qρη′,q

)
+
N2
η

L
. (2.55)

for η ∈ (c, s)× (R,L). Like in the σ basis the density operators are bosonic, ρν,q ∝ b†ν,q,16 and
we can define the bosonic operators similarly as in (2.35). However, there is a minor subtlety:
We chose to define the densities ρc, ρs by a non-unitary transformation of ρ+, ρ− in (2.53). On
the other hand, we require that the bosonic operators are related by a unitary transformation,

b†c = 1√
2

(
b†+ + b†−

)
, b†s = 1√

2

(
b†+ − b

†
−

)
,

bc = 1√
2

(
b+ + b−

)
, bs = 1√

2

(
b+ − b−

)
,

(2.56)

in order to preserve the bosonic commutation relations. To avoid inconsistency between the
transformations of ρ (2.53) and b†, b (2.56) we add extra factors

√
2 in the definitions of b†ν,q,

bν,q,

b†ν,R,q = i
√

2
√
mq

ρν,R,q , bν,R,q = −i
√

2
√
mq

ρν,R,−q ,

b†ν,L,q = i
√

2
√
mq

ρν,L,−q , bν,L,q = −i
√

2
√
mq

ρν,L,q .

(2.57)

With these definitions the interactions terms take the form

H4 =
∑
ν

g
(4)
ν

2π
∑
q>0

q

(
b†ν,R,qbν,R,q + bν,R,qb

†
ν,R,q

)
+
∑
ν

g
(4)
ν

2
N2
ν,R

L
+
(
R↔ L

)
,

H2 = −
∑
ν

g
(2)
ν

π

∑
q>0

q

(
b†ν,R,qb

†
ν,L,q + bν,R,qbν,L,q

)
+
∑
ν

g(2)
ν

Nν,RNν,L

L
.

(2.58)

Finally, we treat the kinetic term Hkin (2.36) in the same way. In terms of charge and spin
operators, we have:

Hkin =
∑
ν

∑
q>0

vF qb
†
ν,R,qbν,R,q +

∑
ν=c,s

πvF
2L N2

ν,R +
(
R↔ L

)
. (2.59)

Note that the kinetic term is of the same form as the g(4) channel. In absence of the interaction
terms, the representation in terms of spin and charge degrees of freedom is an arbitrary unitary
transformation. In the following, we will demonstrate that interactions lift the degeneracy
between charge and spin sector. In this way, it becomes clear that the spin- and charge-density
waves are the elementary excitations of the interacting system.

Full TLL Hamiltonian and Bogoliubov transformation The full TLL Hamiltonian consists
of the kinetic part and the density-density interactions,

HTLL = Hkin +H4 +H2 ≡ Hosc +Hz . (2.60)

The oscillator part Hosc collects the terms containing bosonic operators while the zero modes
gathered in Hz are described by particle number operators. We first discuss the oscillator part.
So far, Hosc is not in the diagonal oscillator form, b†b, as the contribution from H2 mixes right-
and left-moving operators ∼ b†Rb

†
L. The Hamiltonian is diagonalized by a standard Bogoliubov

16We suppress the indices R/L for readability.
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transformation. The structure of Hosc is most transparent if the bosonic operators are arranged
in a matrix form,

Hosc =
∑
ν

∑
q>0

q

b†ν,R,q
bν,L

T
vF + g

(4)
ν
π −g

(2)
ν
π

−g
(2)
ν
π vF + g

(4)
ν
π


bν,R,q
b†ν,L

 . (2.61)

The coupling of left- and right-moving sector is now described by the off-diagonal elements of a
2×2 matrix. We neglect trivial shifts ∝

∑
q>0 q that result from commuting bosonic operators,

[b, b†] = 1. The cutoff Λ restricts the summation to the effective bandwidth and thus prevents
infinite energy shifts. The key idea of the Bogoliubov transformation is to introduce new
bosonic operators by a unitary transformation:aν,R,q

a†ν,L

 =
(
αν βν
βν αν

)bν,R,q
b†ν,L

 , (2.62)

We choose αν , βν ∈ R. The transformation is required to preserve the bosonic commutation
relations, i. e. [a, a†] = α2

ν − β2
ν = 1. The normalization of the matrix elements is achieved

by the parameterization αν = cosh(θν), βν = sinh(θν). The value of the rotation angle θν is
determined by the condition that the matrix (2.61) is diagonal in the new basis. In terms of
the operators a†,a, the Hamiltonian involves a new matrix,

Hosc =
∑
ν

∑
q>0

q

a†ν,R,q
aν,L

T ( αν −βν
−βν αν

)(
Aν Bν
Bν Aν

)(
αν −βν
−βν αν

)aν,R,q
a†ν,L


=

∑
ν

∑
q>0

q

a†ν,R,q
aν,L

T (A′ν B′ν
B′ν A′ν

)aν,R,q
a†ν,L

 .

(2.63)

with Aν = vF + g
(4)
ν
π , Bν = −g

(2)
ν
π and A′ν = Aν cosh(2θν) − Bν sinh(2θν), B′ν = Bν cosh(2θν)

−Aν sinh(2θν). Thus, the matrix is diagonal, if B′ν = 0 or tanh(2θν) = Bν/Aν . Evaluation of
the diagonal element at this value of θν yields the standard oscillator form

Hosc =
∑
ν

∑
q>0

uνq a
†
ν,R,qaν,R,q , (2.64)

with the renormalized velocities

uν =


vF + g

(4)
ν

π

2

−

g(2)
ν

π

2


1/2

. (2.65)

As the kinetic term and the g(4) processes are equivalent, the ratio Bν/Aν of g(2) (interaction
between left and right movers) and πvF + g(4) indicates the effective interaction strength. The
rotation angle θν or the Luttinger liquid parameter (LLP), defined by the exponential

Kν = e2θν =
[
cosh(θν) + sinh(θν)

]2

=
(
Aν +Bν
Aν −Bν

)1/2

=

vF + g
(4)
ν
π −

g
(2)
ν
π

vF + g
(4)
ν
π + g

(2)
ν
π


1/2

,

(2.66)

are usually used to measure the effective interaction strength. Repulsive electron-electron inter-
actions (g(i)

c > 0 and g(i)
s ≤ 0) are characterized by an increased charge velocity, uc > vF ≥ us,
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and the LLPs with Kc < 1 and Ks ≥ 1.

In principle, the Bogoliubov transformation (2.62) can also be applied to the zero modes
(Nν,R, Nν,L) → (Ñν,R, Ñν,L) in order to decouple the contributions of left and right movers
in H2 [38]. We choose a different representation in terms of the total charge or spin (added to
the reference ground state) and the net charge and spin currents [37],

Nν = Nν,R +Nν,L , Jν = Nν,R −Nν,L , (2.67)

respectively. Summing up the contributions from Hkin, H4, and H2 yields

Hz = 1
2L

∑
ν

[(
πvF + g(4)

ν

) (
N2
ν,R +N2

ν,L

)
+ 2g(2)Nν,RNν,L

]
= 1

4L
∑
ν

[(
πvF + g(4)

ν

) (
N2
ν + J2

ν

)
+ g(2)

(
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ν − J2

ν
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= π

4L
∑
ν
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π
+ g
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ν

π
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π
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π

 J2
ν


= π

4L
∑
ν

uν

(
N2
ν

Kν
+KνJ

2
ν

)
.

(2.68)

In the last line, we used that the prefactors can be expressed in terms of the velocities uν and
LLPs Kν . In summary, the full TLL Hamiltonian (2.60) is

HTLL = Hosc +Hz =
∑
ν=c,s

∑
q>0

uνq a
†
ν,R,qaν,R,q + π

4L
∑
ν=c,s

uν

(
N2
ν

Kν
+KνJ

2
ν

)
. (2.69)

The analysis of the TLL model shows that the low-energy excitations of interacting electrons
in 1D are collective charge-density and spin-density waves, traveling with the velocities uc,us,
respectively. An other way to phrase this insight is that interacting electrons in 1D fractionalize
into emergent spin and charge excitations. A system described by the TLL model (2.69) is
called a Luttinger liquid. The Luttinger liquid has a similar status in 1D as the Fermi liquid in
higher dimensions: Both are characterized by similar (phenomenological) parameters: While a
Fermi liquid is characterized by the renormalized Fermi velocity v∗F of the quasiparticles and
Fermi-liquid parameters [4], the Luttinger liquid is determined by the velocities uν of collective
excitations and the LLPs Kν . As we discussed earlier, a Luttinger liquid is to some extent
robust against further interactions (e. g. spin backscattering and umklapp scattering), similar
to a Fermi liquid in higher dimensions. In Sec. 4.4.4, we will discuss limitations of this picture
for small systems. The oscillator modes are fully decoupled into charge and spin excitations as
they are the fundamental excitations of the electron system. Note, however, that zero modes
of charge and spin are still coupled. Since their sum, Nc + σNs = 2Nσ, σ = ±, is even, both
Nc and Ns must be either even or odd.

For non-interacting electrons, uc = us = vF , the representations in terms of fermionic single-
particle and bosonic density excitations are equivalent since Hkin is quadratic in both repre-
sentations. Interactions lift the degeneracy between charge and spin sector, uc 6= us. The
dispersion splits into two branches. Thus, the observation of two velocities in a 1D metal can
be an indication of spin-charge separation and Luttinger-liquid behavior.

2.3.2 Bosonization identity

The bosonized form of the TLL Hamiltonian shows that the bosonic spin and charge operators
are the natural language to describe the low-energy properties of a 1D metal. Thermodynamic
properties can be calculated without reference to the physical electrons. The electronic prop-
erties become important when a 1D metal is coupled to a source or sink of electrons, i. e. when
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2 Collective Phenomena in One-Dimensional Metals

electrons are injected or removed. This situation is met for STM measurements. Here, the
tunnel current between a tip and the 1D wire depends on the electronic LDOS A(E, x) of the
1D metal, see Sec. 3.2. In order to make predictions about the outcome of an STM measure-
ment, the bosonic degrees of freedom have to be translated back to the fermionic language.

When we introduced the shift operator in (2.34), we already anticipated that an arbitrary
fermionic state can be reached by increasing or lowering the particle number and by sub-
sequently creating a superposition of particle-hole excitations using bosonic operators. This
highly non-trivial statement is made rigorous by the bosonization identity. The identity es-
tablishes the desired relation between the fermionic operators Ψη(x) (2.40) and the bosonic
operators b†η,q, bη,q (2.35) and is the key tool in the study of the electronic properties of a 1D
metal. In the following, we give a short derivation of the exact operator identity, similar to
Ref. [6]. In addition, we derive an identity of the time-evolved Heisenberg operators.

The derivation of the bosonization identity builds on the observation that the state Ψη(x) |n〉
is an eigenstate of the operator bη,q, where |n〉 = |n1〉× ...×|nη〉× ... is the joined ground state
of all fermion species. From the definitions of both operators [(2.40) and (2.35)] follows that
[bη,q,Ψη(x)] = δηη′αq(x)Ψη(x) with αq(x) = i√

mq
eiqx. Furthermore, bη,q |n〉 = 0 implies that

bη,qΨη(x) |n〉 = αq(x)Ψη(x) |n〉, i. e. Ψη(x) |n〉 is an eigenstate of bη,q with eigenvalue αq(x).
Therefore, it can be represented as a coherent state, Ψη(x) |n〉 ∝ e

∑
q>0 αq(x)b†η,q |n〉. However,

it is obvious that Ψη(x) cannot be expressed in terms of b†η,q alone since bosonic operators
conserve the particle number. Complementary operators Fη, F †η are needed which lower or
raise the particle number without creating particle-hole excitations. These operators are called
Klein factors and are defined

• by their action on the particle number of a given Fock state,

Fη |n1, ..., nη, ...〉 = (−1)lη |n1, ..., nη − 1, ...〉 ,

F †η |n1, ..., nη, ...〉 = (−1)lη |n1, ..., nη + 1, ...〉 ,
(2.70)

with the number of fermions lη =
∑η−1
i=1 ni (The factors (−1)lη ensure fermionic anticom-

mutation relations, {Fη, Fη′} = δηη′),

• and by their “non-action” on a superposition of particle-hole excitations. Thus, the Klein
factors commute with all bosonic operators,

[b†η,q, F †η ] = [bη,q, F †η ] = [b†η,q, Fη] = [bη,q, Fη] = 0 . (2.71)

When applied to the ground state |n〉, F †η or Fη add a fermion in the lowest empty state or
remove a fermion from the highest occupied state, respectively. With help of the Klein factors
the bosonization identity assumes the form

Ψη(x) = e
∑

q>0 αq(x)b†η,qFηN (x) , αq(x) = i√
mq

eiqx . (2.72)

This is a remarkable statement: The standard Fourier representation of the fermionic opera-
tor Ψη(x) ∝

∑
k eikxcη,k creates a superposition of hole states where one fermions is removed.

(2.72) states that the same superposition can be achieved by removing a fermion from the
highest-occupied state, using Fη, and by creating a different superposition of particle-hole ex-
citations ∼ e

∑
q>0 αq(x)b†η,q . The extra contributions created by the exponential, i. e. those with

large momenta q, cancel each other.
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2.3 Spin-charge separation

The operator N (x) is required to “normalize” the exponential. N (x) is found by considering
the action on the ground state, Ψη(x) |n〉 = e

∑
q>0 αq(x)b†η,qFηN (x) |n〉. Applying 〈n|F †η on both

sides of this equation yields the equalities:

〈n| N (x) |n〉 = 〈n|F †η e
∑

q>0 αq(x)b†η,qFηN (x) |n〉 = 〈n|F †ηΨη(x) |n〉 . (2.73)

We used that 〈n| e
∑

q>0 αq(x)b†η,q = 〈n|. To evaluate (2.73) further, we note that Fη |n〉 is a hole
state, where the fermion in the highest occupied state, k = 2π

L nη, is removed. This particular
state is the only one that contributes to the overlap of Fη |n〉 and the superposition of hole
states Ψη(x) |n〉. Thus, inserting the definition (2.40) yields 〈n| N (x) |n〉 = 1√

L
e−i 2π

L
nηx. As a

consequence, the normalization operator is expressed by the particle number operator Nη,

N (x) = 1√
L

ei 2π
L
Nηx . (2.74)

The complete derivation of the operator identity also requires to examine the action of Ψη(x)
on an arbitrary (excited) state f({b†η,q}) |n〉. It can be shown that one has to replace (2.74)
by N (x)→ 1√

L
ei 2π

L
Nηe

∑
q>0 α

∗
q(x)bη,q for an arbitrary state [6]. Thus, we arrive at the complete

bosonization identity:

Ψη(x) = Fη
1√
L

ei 2π
L
Nηx e

∑
q>0 αq(x)b†η,q e

∑
q>0 α

∗
q(x)bη,q , αq(x) = i√

mq
eiqx . (2.75)

Since (2.75) is an exact operator identity, it proves that the fermionic Hilbert space can be
mapped to a bosonic one in 1D. The correspondence does not rely on the assumption of low
energies and linear dispersions. An alternative way to formulate the identity is by introducing
a slow bosonic field operator :

φη(x) =
∑
q>0

e−aq/2
(
αq(x)b†η,q + α∗q(x)bη,q

)
=

∑
q>0

e−aq/2
√
mq

(
eiqxb†η,q + e−iqxbη,q

)
. (2.76)

Similar to the definition of slow fermionic field operators in (2.40), the maximum momentum
q of a particle-hole excitation is limited by the cutoff Λ ∼ 1

a . This step is important to
make the low-energy theory well-defined. The short-distance cutoff a has the meaning of
the shortest length scale allowed by this theory, as explained in Sec. 2.3.1. In (2.76), we
introduced the cutoff as an exponential damping factor e−aq/2, for technical reasons. In order
to express (2.75) in terms of the bosonic field, we consider the commutator of the operators
A =

∑
q>0 e−qa/2αq(x)b†η,q and B =

∑
q>0 e−qa/2α∗q(x)bη,q, yielding

[
A,B

]
=

∑
q>0

e−qa|αq(x)|2 =
∞∑
m=1

e−
2πa
L
m

= − log
(

1− e−
2πa
L

)
a�L= − log

(
2πa
L

)
.

(2.77)

The cutoff 0 < a� L keeps the commutator finite.17 This result allows us to apply the trun-
cated Baker-Campbell-Hausdorff formula, eAeB = eA+B e[A,B]/2, which leads to the bosoniza-
tion identity in the form

Ψη(x) = Fη√
2πa

ei 2π
L
Nηxeiφη(x) , (2.78)

where the cutoff a enters explicitly.18

17We also used that
∑∞

m=1
e−xm
m

= − log(1− e−x).
18The bosonization identity in (2.75) is more rigorous since the cutoff can be omitted [6].
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Our next goal is to derive the bosonization identity for the Heisenberg operators

Ψη(x, t) = eiHTLLtΨη(x)e−iHTLLt . (2.79)

Here, we assume that the time-evolution is controlled by the TLL Hamiltonian HTLL in (2.69).
In Sec. 4.3.3, we will use the Heisenberg operators to calculate the LDOS of a similar TLL model
for fermions in a box. In the following, we will only consider the right-moving fields, η = (σ,R),
with

Ψσ,R(x) = Fσ,R√
2πa

ei 2π
L
Nσ,Rxeiφσ,R(x) . (2.80)

In order to understand the action of the time-evolution operator e−iHTLLt, we transform the
operators Nσ,R, φσ,R to the basis of HTLL: First, we split the operators into spin and charge
degrees of freedom, Nσ,R = 1

2(Nc,R + σNs,R), bσ,R = 1√
2(bc,R + σbs,R) [see (2.53) and (2.56)].

In the zero mode sector, we use the representation in terms of total charge and spin and the
respective total currents, Nν,R = 1

2(Nν + Jν) [see (2.67)]. The bosonic operators are then ex-
pressed in terms of the Bogoliubov-rotated ones, bν,R = ανaν,R−βνa†ν,L, b

†
ν,R = ανa

†
ν,R−βνaν,L

[see (2.62)]. Using these relations in (2.80) yields

Ψσ,R(x) = Fσ,R√
2πa

eiπx2L (Nc+Jc+σNs+σJs)e
i√
2

(αcϕc,R−βcϕc,L)e
iσ√

2
(αsϕs,R−βsϕs,L)

, (2.81)

with the rotated fields

ϕη̃(x) =
∑
q>0

e−aq/2
(
αq(x)a†η̃,q + α∗q(x)aη̃,q

)
=

∑
q>0

e−aq/2
√
mq

(
eiqxa†η̃,q + e−iqxaη̃,q

)
,

(2.82)
for η̃ ∈ (c, s)× (R,L). Now, we apply the time-evolution operator e−iHTLLt = e−iHoscte−iHzt to
(2.81). The zero modes, e−iHzt, add a time dependence to the Klein factors:

eiHztFσ,Re−iHzt = e
iπt
4L
∑

ν
(vνN2

ν+wνJ2
ν ) Fσ,R e−

iπt
4L
∑

ν
(vνN2

ν+wνJ2
ν )

= Fσ,R e
iπt
4L [vc(Nc−1)2+wc(Jc−1)2+vs(Ns−σ)2+ws(Js−σ)2]

×e−
iπt
4L
∑

ν
(vνN2

ν+wνJ2
ν )

= Fσ,R ei πt4L
∑

ν
(vν+wν)e−

iπt
2L (vcNc+wcJc)e−σ

iπt
2L (vsNs+wsJs) .

(2.83)

We introduced the notation vν = uν
Kν

and wν = uνKν and we used that Fσ,RNc |n〉 =
(Nc− 1)Fσ,R |n〉 and Fσ,RNs |n〉 = (Ns− σ)Fσ,R |n〉. The same commutation relations hold for
Jν . e−iHosct acts on the bosonic operators:

eiHosctaη̃,qe−iHosct = eiων,qa†η̃,qaη̃,qtaη̃,qe−iων,qa†η̃,qaη̃,qt = aη̃,qe−iων,qt , (2.84)

with η̃ = (ν,R/L) and ων,q = uνq. As a consequence, the bosonic fields acquire a shift of uνt:

eiHosctϕη̃(x)e−iHosct =
∑
q>0

e−aq/2
√
mq

(
eiq(x−uνt)a†η̃,q + e−iq(x−uνt)aη̃,q

)
= ϕη̃(x− uνt) .

(2.85)

Using a compact notation, the bosonization identity for the Heisenberg operators can be
written as

Ψσ,R(x, t) = Fσ,R(x, t)√
2πa

eiΦc,R(x,t)eiσΦs,R(x,t) , (2.86)

where we interpret the terms containing Nν , Jν as (x, t) dependence of the Klein factors,

Fσ,R(x, t) ≡ Fσ ei πt4L
∑

ν
(vν+wν)e

iπ
2L [(x−vct)Nc+(x−wct)Jc]eσ

iπ
2L [(x−vst)Ns+(x−wst)Js] . (2.87)
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2.3 Spin-charge separation

Furthermore, we define the “mixed” bosonic fields

Φν,R(x, t) ≡ αν√
2
ϕν,R(x− uνt)−

βν√
2
ϕν,L(x− uνt) , (2.88)

for ν = c, s, respectively. The coefficients are determined by the LLPs,

αν = 1
2

(
√
Kν + 1√

Kν

)
, βν = 1

2

(
√
Kν −

1√
Kν

)
. (2.89)

with βν < 0 if Kν < 1. Note that the Heisenberg identity (2.86) is no longer a rigorous
operator identity in Fock space [unlike (2.75)] since it depends on the specific form of the TLL
Hamiltonian HTLL (2.69) with a linear dispersion.
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3 Chapter 3

One-Dimensional Metallic States in
MoS2 Mirror-Twin Boundaries

This chapter describes the contributions of colleagues within the collaboration [9], which were
the starting point of our theoretical work. In Sec. 3.1, we describe the crystallographic prop-
erties of MoS2 monolayers and mirror-twin boundaries (MTBs) and how these line defects
appear in the synthesis of the material. Sec. 3.2 briefly introduces the method of scanning
tunneling spectroscopy which was used to examine the electronic properties of the MTBs.
Sec. 3.3 states the electronic properties of MTBs as predicted by DFT calculations. Further-
more, we describe the spectral signatures of 1D states, apparent in an STS map. We will
interpret these signatures in the subsequent chapter. The sample preparation and measure-
ments were performed by Wouter Jolie, Clifford Murray, and Joshua Hall under supervision
of Carsten Busse and Thomas Michely. Arkady Krasheninnikov and Hannu-Pekka Komsa
supplied the DFT calculations. Our brief survey also draws on the rewiev by Batzill [30] and
Refs. [8, 55].

3.1 Crystal structure and formation of mirror-twin boundaries

MoS2 belongs to the class of transition metal dichalcogenides (TMDs) which are composed of
atoms from group 6 (Cr, Mo, W,...) and group 16 (O, S, Se, Te,...) of the periodic table of
the elements. The compound appears as a layered crystal whose layers are weakly bound by
van-der-Waals forces. A monolayer of MoS2 consists of three sublayers: One sublayer of the
transition metal atoms (Mo) is sandwiched between two sublayers of chalcogen atoms (S). In
each monolayer, the sublayers of Mo and S atoms are strongly bound by covalent (and partly
ionic) bonds and form a hexagonal or honeycomb lattice, see Fig. 3.1 (a). The staggered ar-
rangement of atoms in different sublayers give rise to a trigonal prismatic crystal structure.

Within our collaboration, MoS2 monolayers were produced on a composite substrate of an
Iridium(111) single crystal, covered by a graphene monolayer, as illustrated in Fig. 3.2. The
method of molecular beam epitaxy [8] was used for growing the 2D crystal: In this method,
the substrate is prepared in an ultra-high vacuum chamber and exposed to beams of elemen-
tary Mo and S from the vapor phase such that they react directly on the substrate (in situ).
The hexagonal symmetry of the Iridium crystal stimulates the epitaxial growth of the MoS2
monolayer, i. e. the grown crystal is aligned with the crystal lattice of the substrate. Still, the
monolayer MoS2 is only weakly bound to the substrate by van-der-Waals forces and can be
regarded as quasi-freestanding.

The growth of the MoS2 monolayer on the substrate starts with isolated islands or grains
which merge as the growth continues. The 2D MoS2 crystal possesses a 120◦ in-plane ro-
tational symmetry. Therefore, the coalescence of two grains give rise to a 1D line defect if
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(a) MoS2 monolayer (b) 4|4P MTB (c) 4|4E MTB

Fig. 3.1: Ball-and-stick models of the MoS2 crystal and of both types of MTBs (a) In
the defect-free crystal, Mo and S atoms form a honeycomb lattice. (b,c) When two
grains merge, MTBs are created (marked by the shaded areas). Both types of MTBs
introduce mirror lines into the 2D crystal. The 4|4E type involves an additional
translation. Red triangles indicate the mirrored building blocks. (a,b,c) Reprinted
with permission from [32]. Copyright (2015) American Chemical Society. (b,c) Copy-
right IOP Publishing. Reproduced with permission from [30]. All rights reserved.
Permission conveyed through Copyright Clearance Center, Inc.

they are rotated by only 60◦ relative to each other. As a rotation by 60◦ is equivalent to
mirroring the crystal structure, these grain boundaries correspond to mirror lines and, there-
fore, are called mirror-twin boundaries (MTBs). In MoS2 monolayers two kinds of MTBs are
found, termed 4|4P and 4|4E. In the 4|4P configuration four atoms form rings which are con-
nected at one point (P) (i. e. by one atom), while for 4|4E the four-membered rings share one
edge (E). The mirror-symmetric configurations of both types of MTBs are sketched in Fig. 3.1
(b),(c). In the 4|4E case a translation of the lattice is involved, i. e. the MTB is described by
a glide reflection in 2D. While the 2D crystal lacks inversion symmetry, both types of MTBs
are inversion symmetric along the mirror line. We will come back to this point in Sec. 4.4.2.
Within the scope of the present work, we focus on the electronic properties of 4|4E-type MTBs.

3.2 Scanning tunneling microscopy and spectroscopy

Scanning tunneling microscopy (STM) is an experimental technique to access the electronic
density of states at the surface of a metallic sample with high spatial resolution [56–58]. There-
fore, it is well-suited to probe the local density of states of monolayer materials like MoS2.
Here, its main use was to gain insight into the nature of the states hosted by MTBs. In this
section, the basic principle of STM is outlined. For a more detailed discussion, we refer the
reader to the textbooks by Coleman [4] and by Chen [59], for a more theoretical or a more
experimental point of view.

The basic procedure is to bring a sharp tip close to the surface of the sample. The remaining
distance d between tip and sample leads to a high potential barrier which electrons cannot
overcome following a classical trajectory. However, due to their quantum nature, electrons can
tunnel through this barrier. Assuming a constant potential barrier U , the tunnel amplitude
decays as t ∼ exp

(
−κd

~

)
with κ =

√
2m(U − E). Here, U − E > 0 is the height of the potential

barrier seen by electrons of energy E and mass m.1 Since the tunnel amplitude is exponentially
1For non-constant potentials, the Wentzel-Kramers-Brillouin (WKB) approximation can be applied to estimate
the tunnel amplitude [60].

38



3.2 Scanning tunneling microscopy and spectroscopy

Fig. 3.2: Schematic profile of MoS2 monolayer on a graphene/Iridium(111) substrate
with mirror-twin boundary During the growth of the MoS2 monolayer mirror-
twin boundaries (MTBs) emerge (see main text). The electronic properties of theses
special line defects were studied with scanning tunneling microscopy, see Secs. 3.2,
3.3.

suppressed with distance d, the main contribution of the tunnel current comes from electrons
tunneling from or to the atom closest to the sample. Therefore, the tunnel current can be
mapped out with atomic resolution.

The tunnel current depends on the densities of states in the tip and the sample. At low
temperatures, all electron states are occupied below the Fermi energy E < EF and empty for
E > EF . Thus, the net tunnel current I vanishes if the Fermi level of tip and sample are
equal. If a bias voltage V is applied, the electron spectra are shifted relative to each other.
Now, electrons can tunnel from occupied to empty states. The tunnel current I derived from
Fermi’s Golden Rule is approximately given by

I(eV, x, d) ≈ 2πegS
~

∫ EF+eV

EF

dE |t(E, eV, d)|2As(E, x)At(E − eV ) . (3.1)

The resulting tunnel current depends on the tunneling amplitude |t(E, eV, d)|2 and on the num-
ber of electronic states available in the energy interval [EF , EF +eV ]. The tunneling amplitude
depends on the energy of the electrons E and the bias voltage V , both of which determine the
value of the inverse decay length κ [61]. The available states are given by the density of states
of the tip At(E) and the local density of states (LDOS) of the sample As(E, x) at the position
x of the tip, respectively. The factor of gS = 2 accounts for the spin-degeneracy and e is the
electron charge. Depending on the sign of V , electrons are injected or removed from the sample.

Assuming that At(E) is approximately constant in the energy range of interest, the differential
conductance derived from (3.1),

dI(eV, x, d)
d(eV ) ≈ 2πegS

~
At

[
|t(eV, eV, d)|2As(EF + eV, x)

+
∫ EF+eV

EF

dE d|t(E, eV, d)|2

d(eV ) As(E, x)
]
,

(3.2)

measures the LDOS of the sample As(eV, x) at energy EF + eV .2 (3.2) provides the basis
2Note that the tunneling amplitude depends on E and eV . It is favorable to ”normalize” the differential
conductance as dI(V )/dV

I(V )/V in order to cancel the dependence on |t(E, eV, d)|2 approximately, see Ref. [61] for
the details. Without normalization the direct relation to the local density of states of the sample would be
corrupted.
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Fig. 3.3: STM topography of the sample surface Numerous MoS2 grains are visible. MTBs
appear as bright lines. Some of them are marked with green arrows. Used with
permission of Thomas Michely from [62].

of the method of scanning tunneling spectroscopy (STS). Here, the tip is moved to a certain
position x of the sample surface. The differential conductance is recorded by sweeping the bias
voltage V while keeping the distance constant d (constant height mode). The LDOS of the
surface is mapped out by repeating this procedure on a close 2D grid. An STS spectrum of a
MTB is presented in Sec. 3.3.

Fig. 3.3 shows an STM image of the sample after the growth of MoS2 recorded in constant
current mode. Here, the distance between tip and surface is adjusted to keep the tunnel
current at a constant value. The resulting STM map corresponds to a height profile of the
surface. The flat MoS2 islands appear with constant intensity. The MTBs peak out as bright
lines, as if they were higher than the environment. The increased intensity indicates that the
electronic properties of the MTBs differ from the rest of the crystal. The prominent electronic
properties of the MTBs are presented in the following section.

3.3 Electronic properties of mirror-twin boundaries

Monolayer MoS2 is a band semiconductor which exhibits a band gap between valence and con-
duction band of about 2.5 eV on the graphene/Iridium(111) substrate [8]. DFT calculations
[9, 33] show that the electronic properties of the MTBs are different from the 2D bulk crystal.
Fig. 3.4 shows the band structure for a 4|4E-type MTB as obtained from DFT. The calcula-
tion indicates the existence of a hole-like band localized at the MTB. The band crosses the
Fermi energy at kF = 5nm−1 ≈ π

2a (a = 3.15Å) giving rise to metallic states. Furthermore,
the metallic band is approximately linear near the Fermi energy, which allows us to linearize
the dispersion as Ek = vF (k − kF ) in an energy window −0.5 eV ≤ E − EF ≤ +0.5 eV. We
obtain the Fermi velocity |vF | = 0.25 nm·eV from the slope of an interpolation function at kF .
The bands in the 2D bulk crystal appear at significantly higher and lower energies. Thus,
low-energy electrons cannot tunnel from the MTB to the bulk crystal due to the large energy
barrier. As a consequence, the electrons are confined to the 1D geometry of the MTB and we
expect that a 1D metallic wire is realized. It is important to note that these wires have a finite
length L. The MTBs terminate at the edges of the merged grains, as can be seen in the STM
topography of Fig. 3.3. Thus, the length is determined by the distance between the edges. We
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3.3 Electronic properties of mirror-twin boundaries

(a) DFT
geometry

(b) Calculated band structure

Fig. 3.4: Band structure of a MoS2 layer with a MTB added as predicted by DFT cal-
culations (a) For the calculations, a stripe-like geometry was used. (b) The band
structure shows a clear separation between the bands in the bulk and the metallic
band localized at the MTB. Further bands belong to edge states. Reprinted from [9].

expect that the electrons behave like fermions confined to a 1D box of size L, which is the
starting point of our theoretical modeling in Ch. 4.

The DFT calculations are based on a non-interacting single-electron picture. Correlations due
to electron-electron or electron-phonon interactions do not enter. Therefore, the precise na-
ture of the 1D metallic states remains unclear. To gain further insight into the nature of the
electronic states, the LDOS A(E, x) of MTBs was measured using STS [9]. Here, x denotes
a position on the 1D scanning path, where x = 0 and x = L denote the edges of the MTBs.
Fig. 3.5 shows the resulting STS spectrum of a MTB of length L = 6nm. The large level
spacing is attributed to the short length of the MTB. The measurements were performed at
T = 5K. The energy resolution of the STS map is about ∆E = 10meV.

The LDOS obtained from STS can be regarded as the fingerprint of the 1D states. A theory of
the 1D states should be able to predict the intensity distribution of the STS map. We identify
the following key features of the measured LDOS in Fig. 3.5:

• a standing-wave pattern along the MTB for each energy level, where the number of
beatings decreases with energy,

• a pronounced gap of size Egap = 0.24 eV around the Fermi energy E = 0 (an order of
magnitude smaller than the band gap),

• and a doubling of levels above and below the gap, recognized by the identical numbers
of maxima.

In Ch. 4, we will compare the predicted LDOS of three theories with box-like boundary condi-
tions to the experimental results: non-interacting electrons, a CDW model, and a TLL model.
We will evaluate the applicability of these models based on the listed features of the LDOS.
The large separation of energy levels simplifies the comparison with the theoretical models as
the individual levels are clearly distinguished despite their finite width. Finally, we will argue
that only the TLL description can explain all key features. Longer MTBs are discussed in
Sec. 4.3.5.
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3 One-Dimensional Metallic States in MoS2 Mirror-Twin Boundaries

Fig. 3.5: STS spectrum of a MTB with L = 6 nm Blue areas correspond to zero intensity,
red areas to the maximum intensity. Clearly separated energy levels are visible. Each
energy level exhibits a standing-wave pattern along the MTB. E = 0 denotes the
Fermi level. We count n = 10 maxima for the highest occupied level and n = 9
maxima for the lowest empty level. Arrows indicate further prominent features: the
gap around the Fermi energy (black arrows) and the doubling of levels (blue and red
arrows).
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4 Chapter 4

Theoretical Models for 1D States in
MoS2 Mirror-Twin Boundaries

Our goal is to reveal the nature of the confined electronic states found by the STM measure-
ments, see Ch. 3. In the subsequent sections, we compare the STS signal to the local density
of states as predicted by three different 1D models: non-interacting electrons [Sec. 4.1], a
CDW model [Sec. 4.2], and a TLL model [Sec. 4.3]. To achieve this, we compare the STS
signal of the MTB in Fig. 3.5 to the LDOS as predicted by these models. The common feature
of these models is that they assume box-like boundary conditions that reflect the finite length
of the MTBs. It turns out that the Luttinger liquid description reproduces the key features while
the non-interacting model or the CDW model only capture a subset. The most striking evi-
dence of a Luttinger liquid is the doubling of certain energy levels which we attribute to the
emergence of spin-charge separation. We then continue to analyze the LDOS of longer MTBs.
Here, we use the Fourier transform of the LDOS which is more suitable for close lying energy
levels. We discuss how the LLP Kc can be estimated from the distribution of Fourier peaks. In
Sec. 4.4, we evaluate the Luttinger-liquid interpretation of our results. We also discuss further
related aspects: the relevance of spin-orbit coupling, the appearance of inelastic peaks in the
LDOS, and finite-size effects due to spin backscattering.

4.1 Non-interacting electrons in a box

We start with the most simplistic model of a 1D metallic wire of finite length: non-interacting
electrons with box-like boundary conditions. All observables are determined by the single-
particle wave functions, an exercise from a beginner’s quantum mechanics course. We also use
this example for later reference when interactions are included.

We consider a particle confined to a box of length L. The energy eigenfunctions are solutions
of the stationary Schrödinger equation with fixed boundary conditions:

−∂2
x

2m ϕk(x) = Ekϕk(x) , ϕk(0) = ϕk(L) = 0 . (4.1)

We parameterized the eigenenergies as Ek = k2/(2m). We have to solve the equation

∂2
xϕk(x) + k2ϕk(x) = 0 , ϕk(0) = ϕk(L) = 0 . (4.2)

The solutions to this equation are linear combinations of cos(kx) and sin(kx). Due to the
left boundary condition ϕk(0) = 0 the cos contributions vanish. The right boundary condition
ϕk(L) = sin(kL) = 0 only allows for discrete k values for the remaining sin(kx) terms. In this
way, the finite length L of the system leads to the discreteness of the quantum numbers. The
energy eigenfunctions are given by

ϕk(x) =
√

2
L

sin(kx) , k = π

L
n , n ∈ N . (4.3)
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4 Theoretical Models for 1D States in MoS2 Mirror-Twin Boundaries

We note that k is restricted to positive (or negative) values: Since ϕ−k = −ϕk = eiπϕk, the
functions with k < 0 are linearly dependent on function with k > 0. Therefore, the fixed
boundary conditions lower the dimension of the Hilbert space by half compared to the case of
periodic boundary conditions. As k is identified as the momentum of the particles, ϕk>0, ϕk<0
describe right-moving and left-moving particles, respectively. The left movers differ from the
right movers by a phase shift of π due to the reflection at the boundary. ϕk=0 = 0 corresponds
to an empty box. It does not contribute and is omitted in (4.3).

Before continuing to calculated the LDOS – the desired observable throughout this part of
the thesis –, we define the fermionic field operators in terms of non-interacting, box-like basis
states. The fact that left- and right-moving wave functions are not independent for confined
particles, is also transferred to the left- and right-moving field operators. Let ck (c†k) be the
annihilation (creation) operator which annihilate (create) a particle in momentum state |k〉.
Similarly, the field operators annihilate (create) a particle in the position state |x〉. Ψ(x) and
ck are related through the basis transformation

Ψ(x) =
∑
k>0
〈x|k〉 ck =

∑
k>0

ϕk(x)ck , (4.4)

where 〈x|k〉 = ϕk(x) is the single-particle wave function of a particle in state |k〉. For the case of
particles in a box, ϕk(x) are given by (4.3). The summation runs over all single-particle states.
These states are parameterized by discrete k > 0 as we argued above. In case of electrons
(i. e. spin-1/2 fermions), the single-particle quantum numbers are (σ, k) with σ = ± for up and
down spin states. The single-particle wave function for up and down spin states are identical.
Thus, we can define field operators for both species as

Ψσ(x) =
∑
k>0

ϕk(x)cσ,k , σ = ± . (4.5)

We build on the above representation of the fermionic field operators in Sec. 4.3.

Having the wave function at hand, we can immediately write down the LDOS A(E, x): The
energy levels are located at E = Ek, which leads to the structure ∼

∑
k δ(E −Ek). In order to

spatially resolve the density of states, we have to weight each energy level with the probability of
finding a particle of energy Ek at point x given by

∣∣∣ϕk(x)
∣∣∣2. The single-particle wave functions

for both spin species are identical. Therefore, we have

A(E, x) =
∑
σ=±

∑
k>0

∣∣∣ϕk(x)
∣∣∣2 δ(E − Ek) . (4.6)

The spin degeneracy leads to the prefactor
∑
σ=± = 2. Note that the spin degrees of freedom

are also not resolved in the STM measurements, see Ch. 3. Integrating over the length of the
wire, we obtain the total density of states ν(E) =

∑
k,σ δ(E − Ek).

Comparison of the LDOS of the non-interacting model with STS signal Before we com-
pare the theoretical LDOS (4.6) with the experimental data, we have to consider the result of
the DFT calculation. The relevant band is not parabolic, but hole-like with quite linear behav-
ior in the energy window under consideration. In order to adjust our non-interacting model,
we linearize the dispersion around the Fermi energy as Ek → vFk. vF < 0 is the negative slope
of the hole-like band at Fermi energy as obtained from DFT. A linear fit of the band around
the Fermi momentum yields |vF | = 0.25 nm·eV, see Ch. 3.

In Fig. 4.1, we compare the measured LDOS for the MTB of length L = 6nm with the cal-
culation in the non-interacting picture, plotted in the same energy window. In the STS signal
the energy levels are not sharply localized. The broadening is mainly caused by the energy
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4.1 Non-interacting electrons in a box

E/eV n E/eV

Fig. 4.1: Comparison of the LDOS of non-interacting electrons in a box with the STS
signal The particle-in-a-box model with linearized dispersion (left plot) leads to a
similar standing-wave pattern as measured in STS (right plot). Here, we used the DFT
value of the Fermi velocity vF = 0.25 nm·eV. The overall trend of a decreasing number
of maxima with increasing energy (due to the hole-like band) is correctly described.
The arrows indicate the most significant deviations from the non-interacting model:
the pronounced gap (black arrows) and a doubling of levels, recognized by the same
number of maxima (adjacent blue and red arrows).

resolution ∆E ≈ 10− 25meV of the STM measurements due to the lock-in amplifier used [55].
The broadening is not due to the finite temperature of the sample. The measurements were
performed at T = 5K which corresponds to an energy width of ∆E = 0.4meV, well below the
experimental resolution. Some of the intensity at E > 0 is also spread over a larger range of
∆E ≈ 40meV, indicating a shorter life-time of these states. We will discuss these features in
Sec. 4.4 in more detail. Moreover, we also expect that tunneling of electrons to the substrate
contributes to the finite width of the energy levels. For the theoretical plot we replaced the
sharp energy levels with a Lorentz profile, δ(E − Ek) → 1

π
Γ

(E−Ek)2+Γ2 with Γ = 6meV. This
is not to be understood as a fit to the experimental data, but as a workaround to display the
energy levels in a comparable way.

The theoretical plot exhibits a sequence of discrete energy levels. The number of maxima along
the wire decreases with energy due to the hole-like band. This trend is also visible in the STS
signal. Moreover, the level spacing is of the same order of magnitude. This agreement suggests
that the discrete energy levels are basically caused by the confinement of electrons within the
MTB of length L, i. e. the level spacing is a finite-size effect. Therefore, the electrons-in-a-box
picture seems to be good starting point for further modeling. However, there are significant
discrepancies: The energy levels are not equidistant like in the non-interacting model. In
particular, we observe an opening of a gap at the Fermi energy which exceeds the spacings
among the other energy levels (indicated by black arrows in Fig. 4.1). We also note that some
of the adjacent energy levels come with the same number of maxima (red and blue arrows
in Fig. 4.1). This is not the case for non-interacting electrons where the number of maxima
changes by ∆n = ±1 for adjacent energy levels. The doubling of some levels is not captured
by the non-interacting picture.

In the following, we improve our theory by adding interactions, on the mean-field level in
Sec. 4.2 and in the framework of the TLL model in Sec. 4.3.
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4 Theoretical Models for 1D States in MoS2 Mirror-Twin Boundaries

4.2 Charge-density-wave model

The next improvement beyond the non-interacting model is to include electron-electron in-
teractions on the mean-field level, i. e. a single electron is subject to an interaction potential
created by all other electrons. In Sec. 2.2, we found that the interaction of the electrons with
their mean-field potential leads to the formation of a CDW. There, we also discussed that the
opening of an energy gap at the Fermi energy indicates the presence of CDW order. Since the
experimental spectra exhibit a pronounced gap around the Fermi energy, the CDW state seems
to be a promising candidate.

The derivation of the gap equation in Sec. 2.2.2 was carried out in the language of second
quantization. Here, we want to build directly on the discussion of the non-interacting case and
supplement the kinetic term of the stationary Schrödinger equation by the mean-field potential.
This method is also known as Hartree-Fock approximation [60]:(

−∂2
x

2m + Vmf,σ(x)
)
ψn,σ(x) = En,σψn,σ(x) , (4.7)

where σ = ± labels the spin degrees of freedom. The mean-potential Vmf,σ(x) is given by

Vmf,σ(x) =
∫ L

0
dx′ Vint(x− x′)

∑
σ′

ρσ′(x′)− ρσ(x, x′)

 ,
ρσ(x) =

N0∑
m=1
|ψm,σ(x)|2 ,

ρσ(x, x′) =
N0∑
m=1

ψ∗m,σ(x′)ψm,σ(x)ψn,σ(x′)
ψn,σ(x) .

(4.8)

Vint(x−x′) denotes the electron-electron interaction. The Hartree term ∼
∑
σ′ ρσ′(x) describes

the interaction of single electrons with the collective charge density. The density ρσ(x) is
calculated by summing up the probability densities of energy levels which are occupied by
electrons with spin σ in the ground state. N0 corresponds to the momentum quantum number
of the highest-occupied state. We assume that the total spin of the ground state is zero,
N0 = N+ = N−. The additional Fock term or exchange term ∼ −ρσ(x, x′) takes into account
that the electrons are fermions and indistinguishable. To simplify our discussion, we choose a
short-ranged interaction potential Vint(x− x′) = Uδ(x− x′), yielding

Vmf,σ(x) = Uρ−σ(x) . (4.9)

Here, the Pauli principle is active: an electron with spin σ can only meet and interact with
electrons with opposite spin −σ. The mean-field potential or the single-particle wave func-
tions ψn,σ(x) have to be determined self-consistently. In the following, we focus on the case
of an attractive electron-electron interaction, U < 0. A possible source of attractive interac-
tions are optical phonons, see Sec. 2.2.3. In this case, a configuration with ρ−σ(x) = ρσ(x)
is energetically favorable. The accumulation of electrons with both spins in the same region
gives rise to an unpolarized CDW state.1 This allows us to replace the mean-field potential
as Vmf,σ(x) → Uρσ(x) in our further calculations. As this substitution decouples the self-
consistent equations for σ = ±, we omit the spin index in the remainder of this section.

When we solve the self-consistent Schrödinger equation, we have to take care that we satisfy
the box-like boundary conditions. This is easily achieved, noticing that the new ψn(x) must
1For repulsive interactions U > 0, electrons of opposite spins try to avoid each other. Therefore, a spin-polarized
state or spin-density wave, is favored.
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4.2 Charge-density-wave model

have an expansion in term of the non-interacting standing-wave ϕm(x) (instead of plain waves
∼ eikx for periodic boundary conditions):

ψn(x) =
∑
m∈N

bnmϕm(x) , ϕm(x) =
√

2
L

sin
(
πm

L

)
, (4.10)

with quantum numbers m ∈ N. The Hilbert space remains unchanged. Expanding the
Schrödinger equation in the standing-wave states, we end up with an eigenvalue problem for
the coefficients bnm. In this way, the set of solutions is restricted to the subset which respect
the box-like boundary conditions. We use that the standing waves form an orthonormal basis,∫ L

0
dxϕm(x)ϕm′(x) = δmm′ , (4.11)

in order to rewrite the Schrödinger equation (4.7) as eigenvalue problem for the coefficients
bnn′ :

H(x)ψn(x) = Enψn(x)

⇔
∑
n′

H(x)bnn′φn′(x) =
∑
n′

Enbnn′φn′(x)

⇔
∑
n′

∫ L

0
dxϕm(x)H(x)ϕn′(x)bnn′ =

∑
n′

∫ L

0
dxϕm(x)ϕn′(x)Enbnn′

⇔
∑
n′

Hmn′bnn′ = Enbnm .

(4.12)

We can read the equation as follows: The n-th row of coefficient matrix b̂ is the n-th eigenvector
bn of the Hamiltonian matrix (Ĥ)mn = Hmn with eigenvalue En. The m-th column is the m-th
component of this vector (bn)m = bnm. The coefficients of the Hamiltonian matrix are given
by

Hmn =
∫ L

0
dxϕm(x)

(
−∂2

x

2m + Vmf(x)
)
ϕn′(x) = εnδmn + Vmn , (4.13)

with the non-interacting dispersion and the potential matrix

εn = 1
2m

(
πn

L

)2
, Vmn =

∫ L

0
dxϕm(x)Vmf(x)ϕn(x) , (4.14)

respectively.2

To complete the self-consistent description, we express the potential matrix by the coefficients
bnm. We insert the mean-field potential Uρ(x) = U

∑N0
m=1 |ψm(x)|2 and expand the eigenfunc-

tion ψn(x) in the standing-wave basis:

Vmn = U
N0∑
p=1

∑
p1,p2

bpp1bpp2

∫ L

0
dxϕm(x)ϕn(x)ϕp1(x)ϕp2(x)

= U

(
2
L

)2

L
N0∑
p=1

∑
p1,p2

bpp1bpp2Amnp1p2 = 4U
L

N0∑
p=1

[
b̂Âb̂T

]
pmnp

.

(4.15)
Inserting the explicit expression for ϕn(x), we introduced the totally symmetric 4th-order
tensor,

Am1m2m3m4 =
∫ 1

0
dy sin(πm1y) sin(πm2y) sin(πm3y) sin(πm4y) . (4.16)

2Since the Hamiltonian matrix is real and symmetric, its eigenvectors bn are real and form an orthogonal basis
of Rdim(Ĥ) (or can be can orthogonalized in case of degenerate subspaces).
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4 Theoretical Models for 1D States in MoS2 Mirror-Twin Boundaries

In our further calculation, we use the analytic expression Am1m2m3m4 to lower the numerical
afford of solving the eigenvalue problem.

Now, the mean-field Schrödinger equation (4.7) is cast into a self-consistent eigenvalue problem
of the form

Ĥ(b̂)bn = Enbn . (4.17)

The Hamiltonian matrix and its eigenvectors are infinite dimensional, n ∈ N. In order to
solve the eigenvalue problem numerically, we have to truncate the Hilbert space. From our
discussion of the CDW transition in Sec. 2.2.2, we expect that the states close to the Fermi
energy are modified while states away from it are unaffected. The gap opens between the
highest occupied state with quantum number N0 and the lowest-empty state N0 + 1. Based
on this knowledge, we choose a window of quantum numbers symmetrically around the gap,
N0−M ≤ n ≤ N0 + 1 +M , M ≤ N0−1, and restrict the Hamiltonian matrix to this subspace.
Furthermore, we define a smaller target window, N0 −M ′ ≤ n ≤ N0 + 1 + M ′, M ′ ≤ M in
which we aim for the physical solution of the problem. We increase the size of the Hamiltonian
matrix (for fixed M ′) until our solution for the energy levels and wave functions in the target
window does no longer depend onM . We can find the self-consistent solution of this eigenvalue
problem iteratively:

• Initialize the eigenvectors of non-interacting standing waves, i. e. b(0)
mn = δmn.

• In the j-th iteration step, compute the potential matrix and the full Hamiltonian matrix,

[
Ĥ(b̂(j))

]
mn

= εmδmn + 4U
L

N0∑
p=1

[
b̂(j)Â(b̂(j))T

]
pmnp

. (4.18)

In case of convergence issues, the iteration step is slightly modified by only adding a
smaller admixture of the potential α < 1.3

• Diagonalize the Hamiltonian matrix Ĥ(b̂(j)) and find the eigenvalues and eigenvectors,
i. e. solve

Ĥ(b̂(j))b(j+1)
n = E

(j+1)
n b(j+1)

n , (4.19)

and obtain the new eigenvectors b(j+1)
n .

• Use the new eigenvectors b(j+1)
n to update the Hamiltonian matrix in the next iteration

step j + 1.

• Iterate these steps until a stopping criterion is fulfilled. The convergence of the Hamilto-
nian matrix is a safe stopping criterion: If the Hamiltonian (or the potential) converges
all eigenvalues E(j)

n and wave functions b(j)
n converge.4

3If we run the recursion relation as described above the eigenvalues and eigenfunctions might not converge if we
choose the interaction strength U too large. Instead their values oscillate wildly about their true values. We
can improve convergence by adding only a small admixture α of the updated Hamiltonian in each recursion
step, i. e. we replace the (4.18) by

[
Ĥ(b̂(j))

]
mn

= (1− α)
[
Ĥ(b̂(j−1))

]
mn

+ α

εmδmn + 4U
L

N0∑
p=1

[
b̂(j)Â(b̂(j))T

]
pmnp

 ,

where α ∈ [0, 1] and b̂(j<0) ≡ b̂(0).
4We detect the convergence by the quantity

||H(j+1) −H(j)||
||H(j)||

=

√∑
n,n′

∣∣∣H(j+1)
nn′ −H

(j)
nn′

∣∣∣2√∑
n,n′

∣∣∣H(j)
nn′

∣∣∣2 < ε ,
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4.2 Charge-density-wave model

nE/eV E/eV

Fig. 4.2: Comparison of the LDOS of the CDW model with the STS signal The CDW
model (left plot) reproduces the gap around the Fermi energy by construction. The
doubling of energy levels in the STS signal (right plot) is not captured by the effec-
tively non-interacting model.

The level spacing between the highest occupied level EN0 and the lowest empty level EN0+1 in-
creases for attractive interactions U < 0. We interpret this behavior as the opening of the CDW
gap. Away from the Fermi level the spacings are not changed compared to the non-interacting
model as expected. Within this mean-field approach, the states of the non-interacting model
and the nominally interacting electrons are in a one-to-one correspondence. The electrons ba-
sically behave like non-interacting particles exposed to an external potential ∝ sin(2kFx). The
quantum numbers k ≡ π

Ln, n ∈ N, remain unchanged, but the dispersion acquires a correction
close to the Fermi energy where the gap opens.

Comparison of CDW model with STS signal As the exact wave functions and energy levels
are available, we calculate the local density of states of the CDW state using the same expression
as for the nominally non-interacting electrons. Wave functions and energy levels can simply be
replaced:

A(E, x) =
∑
σ=±

∑
n∈N

∣∣∣ψn(x)
∣∣∣2 δ(E − En) . (4.20)

In order to fit the CDW model to the experimental data, we perform the following steps:

• We input the linear dispersion with the Fermi velocity from DFT, E(0)
k = vFk.

• We count N0 = 10 maxima for the highest occupied energy level below the Fermi energy
E = 0 in the STS signal and N0 − 1 = 9 maxima for the lowest empty level due to the
hole-like band.

• We use U < 0 as a fitting parameter to adjust the size of the gap EN0−1 − EN0 between
the states N0 and N0 − 1.

• We note that the energy levels in the STS signal are not symmetrically distributed around
E = 0. We include this additional shift E → E + (EN0−1 + EN0)/2 into the theoretical
LDOS to match the positions of the states N0 and N0 − 1.

In Fig. 4.2, we show the theoretical LDOS with the gap fitted to the STS signal. The location
and the size of the gap is described correctly, by construction. However, discrepancies remain
that cannot be lifted in the framework of the CDW model:

where ε� 1 is a small number.
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4 Theoretical Models for 1D States in MoS2 Mirror-Twin Boundaries

• The level spacings above and below the gap are approximately equidistant in the CDW
model which is not the case for the STS signal.

• Most importantly, the CDW approach cannot explain the doubling of energy levels with
the same number of maxima, most clearly visible for the adjacent levels above the gap.
The mean-field potential essentially shifts the energy levels.

Therefore, a mean-field theory like our CDW model cannot explain the experimental findings.
This indicates that electron-electron interactions have to be treated in more detail in order to
make further progress. For electrons in 1D, the interacting problem can be solved analytically
in the framework of the TLL model, to be discussed in Sec. 4.3. There, we will set up the
TLL model for electrons in a box to overcome the remaining discrepancies between theory and
experiment.

4.3 Luttinger liquid in a box

As we discussed in Secs. 4.1, 4.2, the measured LDOS of the MTB cannot be described by
the confinement of electrons alone. A mean-field CDW model does also not capture the char-
acteristic features of the LDOS. It is not possible to label the energy levels by the quantum
numbers n ∈ N of the non-interacting system. In this section, we extent our model by density-
density interactions ∼

∫
x ρσρσ′ and treat them in the framework of TLL theory as developed

in Sec. 2.3. Similarly to the non-interacting case, we have to implement box-like boundary
conditions, but now transferred to the language of second quantization. In Ch. 3, we discussed
that the hole-like band localized at the MTB is linear close to Fermi energy. This allows us to
use a TLL model with linear dispersion, similar to Sec. 2.3. As the interacting fermion problem
with linear dispersion can be mapped to non-interacting bosons, we are able to calculate the
LDOS analytically. The TLL theory for box-like boundary conditions has been worked out by
Fabrizio and Gogolin [63] and Anfuso and Eggert [64]. In the following, we review this theory
and draw on their results.

4.3.1 TLL model with box-like boundary conditions

We consider an unpolarized state of fermions confined to a box with a number of n+ = n−
fermions for both spin species σ = ±. According to our discussion of non-interacting fermions
in a box in Sec. 4.1, the single-particle states |k〉 are standing-waves, ϕk(x) =

√
2
L sin(kx), with

k = πn
L , n ∈ N. Each single-particle state |k〉 can only be occupied by a one fermion due to the

Pauli principle. In the ground state, nσ single-particle states are occupied which correspond
to the lowest energy levels , see (4.1). As the dispersion εk = k2/(2m) is monotonic for k > 0,
the Fermi momentum and the Fermi energy are given by kF = nσ π/L and EF = k2

F /(2m),
respectively. In contrast to the case of periodic boundary conditions in Sec. 2.3, there is only
one Fermi point for a box-like boundary conditions. Excitations above the ground state are
described by particle-hole pairs. They are created by shifting a fermion from an occupied state
k ≤ kF and to an empty state k > kF .

The fermions resemble electrons in a 1D wire of length L as realized by MTBs in MoS2. Since
we aim at the local electronic properties of the wire, the fermionic field operator Ψσ is our
object of interest. Our first goal is to find the low-energy expansion of the field operator (4.4),
defined in the standing-wave basis. As explained in Sec. 4.1, the box-like boundary conditions
are then obeyed by construction. Shifting the momenta relative to the Fermi point kF , we
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4.3 Luttinger liquid in a box

write the fermionic field in the form:5

Ψσ(x) =
∞∑
k=0

ϕk(x)cσ,k
k→k−kF=

∞∑
k=−kF

ϕk+kF (x)cσ,k+kF . (4.21)

At low energies, only states with k � kF are relevant. We can restrict the summation to the
effective band width Λ, in the same spirit as in the construction of the TLL model in Sec. 2.3.
Similarly, we introduce a fermionic operator c̃k ≡ ck+kF which acts on the fermions close to the
Fermi point kF and expand the field operator as

Ψσ(x) =
Λ∑

k=−Λ
ϕk+kF (x)c̃σ,k =

√
2
L

Λ∑
k=−Λ

1
2i
(
ei(k+kF )x − e−i(k+kF )x

)
c̃σ,k

≡ eikF xΨ̃(x)− e−ikF xΨ̃(−x) .

(4.22)

Following Ref. [63], we define the slow right-moving field operator as

Ψ̃σ(x) ≡ 1√
2Li

Λ∑
k=−Λ

eikxc̃σ,k . (4.23)

Obviously, we have to define Ψ̃σ(x) for x ∈ [−L,L] since we want the full field operator Ψσ(x)
to be defined for x ∈ [0, L].

The standing-wave basis enforces Ψσ(0) = Ψσ(L) = 0 for the full field operator. The box-like
boundary conditions for Ψσ(x) imply periodic boundary conditions for the slow field Ψ̃σ(x)
which is expressed by the equality:6

Ψσ(L) = 0 ⇐⇒ e−ikFL
(
Ψ̃σ(L)− Ψ̃σ(−L)

)
= 0 . (4.24)

The periodic boundary conditions for Ψ̃σ(x) with x ∈ [−L,L] imply that the discrete k values
are given by k = 2π/(2L)z = (π/L)z, n ∈ Z, consistent with the kvalues we obtained from the
expansion of the full field Ψσ(x), x ∈ [0, L] in terms of standing waves.

The representation in (4.22) also has an interpretation in terms of left and right movers. We
can write the expansion in the same form as the translation invariant case (2.39),

Ψσ(x) = eikF xΨσ,R(x) + e−ikF xΨσ,L(x) , with Ψσ,L(x) = −Ψσ,R(−x) . (4.25)

The relation Ψσ,L(x) = −Ψσ,R(−x) has an elementary physical origin: Left and right movers
are not independent fermion species since they are transformed into each other when they
scatter off the boundary. Left movers are “reflected right movers”. When a right-moving par-
ticle hits the right boundary of the box, it scatters off as a left-moving particle. Thereby, its
momentum is inverted, k+ kF → −k− kF , and its wave function acquires an additional phase
factor of eiπ = −1.7 This is described by the relation between left- and right-moving field
operators in (4.25). As a consequence, there is only one fermion species in the box and there
is only one Fermi point. This is directly related to the existence of only one Fermi point if the
natural standing-wave basis is used. By introducing the new field Ψ̃σ(x) with Ψσ,R(x) = Ψ̃σ(x)
and Ψσ,L(x) = −Ψ̃σ(−x) the problem of left and right movers trapped in a box is mapped
to a problem of the field Ψ̃σ(x) with periodic boundary conditions as described above. The
mapping is illustrated in Fig. 4.3. This is very convenient on the technical side since we can
5We include k = 0 as ϕk=0(x) = 0 does not contribute anyway.
6The boundary condition at x = 0 is trivially fulfilled. At x = L we use that ei2kFL = ei2πnσ = 1.
7The phase shift of π, related to the scattering from a fixed boundary, is very well known, not only in quantum
mechanics. It also appears in the scattering of classical waves.

51



4 Theoretical Models for 1D States in MoS2 Mirror-Twin Boundaries

Fig. 4.3: Mapping of box-like to periodic boundary conditions A right-moving electron
scatters at the right boundary and is transformed into a left-moving one, thereby pick-
ing up a phase-shift of π. At the left boundary, the left-moving electron is transformed
back to a right-moving one and the phase-shift is undone. Left and right movers are
no longer independent. Therefore, the confined particles are described by a right-
moving field only satisfying periodic boundary conditions, ΨR(x) = ΨR(x+2L). The
standard interaction term ∼ ρR(x)ρL(x) appears as an unusual nonlocal interaction
∼ ρR(x)ρR(−x). Based on Fig. 2 of Ref. [63].

draw on the results for periodic boundary conditions developed in Sec. 2.3.

The superposition of right-moving and reflected left-moving waves give rise to a standing-wave
pattern in the fermion density and the LDOS. Consider the particle density of free fermions in
box: 〈

Ψ†σΨσ

〉
=

〈
Ψ†σ,RΨσ,R

〉
+
〈

Ψ†σ,LΨσ,L

〉

+ei2kF x
〈

Ψ†σ,LΨσ,R

〉
+ e−i2kF x

〈
Ψ†σ,RΨσ,L

〉 (4.26)

The oscillating contributions ∝ e±i2kF x vanish for a translation invariant system (i. e. for peri-
odic boundary conditions) since right and left movers are independent species in this case, see
our comment below (2.41). If fermion-fermion interactions are absent they are not transformed
into each other and 〈Ψσ,R(x)Ψ†σ,L(x)〉 = 0. However, for box-like boundary conditions R,L are
no longer independent and 〈ΨR(x)Ψ†L(x)〉0 6= 0. As consequence, the standing-wave pattern
∼ sin(2kFx) appears, caused by the interference of incoming and reflected fermions. In the
context of impurity scattering in a dirty metal 2kF oscillations are known as Friedel oscilla-
tions. There, Friedel oscillations are also described as result of scattering and interference of
non-interacting electrons: The incident plain wave of electrons is scattered by the impurity.
The superposition of the incident and the outgoing spherical wave produce the 2kF oscillations
in the electron density [65].8

8Further electrons scatter off the Friedel oscillations surrounding the impurities due to electron-electron in-
teractions. This process leads to temperature-dependent interaction corrections to the Drude conductivity
[65].
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4.3 Luttinger liquid in a box

TLL Hamiltonian for box-like boundary conditions Having established the mapping be-
tween left and right movers in a box and rightmovers subject to periodic boundary conditions,
we continue by incorporating interactions. Here, we draw on our derivation of the TLL model
for periodic boundaries in Sec. 2.3. Again, we assume that the dispersion can be linearized
close to the Fermi energy. In the following, we use the description in terms of operators with
periodic boundary conditions in the interval 2L. The kinetic term contains only contributions
from right-moving operators which we denote by b̃†ν,q, b̃ν,q in order to remind the reader of the
mapping procedure. In terms of spin and charge operators, the kinetic term in (2.59) translates
to

H̃kin =
∑
ν=c,s

∑
q>0

vF qb̃
†
ν,q b̃ν,q +

∑
ν=c,s

πvF
4L N2

ν . (4.27)

The summations run over momenta q = 2π
2Lm = π

Lm, m ∈ N due to the doubling of the length,
L→ 2L. The particle number operator Nν counts the total amount of charge and spin in the
box for ν = c, s, respectively. In the spirit of Sec. 2.3, we add density-density interactions to
the kinetic term. In order to translate the interaction terms (2.54), we use that the density op-
erators with box-like boundary conditions map to operators with periodic boundary conditions
according to ρR(x)→ ρ̃(x), ρL(x)→ ρ̃(−x). Thus, we consider interactions of the form:

H4 =
∑
ν=c,s

g
(4)
ν

2

L∫
0

dx
[
ρ2
ν,R(x) + ρ2

ν,L(x)
]
→

∑
ν=c,s

g
(4)
ν

2

L∫
−L

dx ρ̃2
ν(x) ,

H2 =
∑
ν=c,s

g(2)
ν

L∫
0

dx ρν,Rρν,L →
∑
ν=c,s

g
(2)
ν

2

L∫
−L

dx ρ̃ν(x)ρ̃ν(−x) .

(4.28)

where ρ̃ν denotes the right-moving density operator with periodic boundary conditions. The
mapping of the interaction terms is also illustrated in Fig. 4.3.

Our goal is to derive the diagonal form of the total Hamiltonian H̃TLL = H̃kin + H̃4 + H̃2

equivalent to (2.69). Despite the fact theH2 term transforms to a strange, non-local interaction,
we can draw on our results in Sec. 2.3: In Fourier representation the density operators transform
as ρR,q → ρ̃q, ρL,q → ρ̃−q. The relations between the density operators and the bosonic
operators in (2.57) imply that both bR,q → b̃q and bL,q → b̃q. Therefore, the oscillator part
has the same matrix as in (2.61) and the Hamiltonian is diagonalized by the same Bogoliubov
transformation as in (2.63). The doubling of the length is encoded in the allowed values of q.
To derive the corresponding form of the zero mode term, we can use a short-cut: For box-like
boundary conditions the total currents Jν vanish, while Nν denotes the total charge and spin
as before. Thus, the zero mode term is identical to (2.68), but we have to set Jν = 0. In
conclusion, the TLL Hamiltonian for box-like boundary conditions can be written as

H̃TLL = H̃osc + H̃z =
∑
ν=c,s

∑
q>0

uνq ã
†
ν,qãν,q + π

4L
∑
ν=c,s

vνN
2
ν , (4.29)

with the short-hand vν = uν
Kν

. As the TLL Hamiltonian consists of decoupled harmonic
oscillators, its eigenstates and energy levels are known:

H̃TLL |{nν}, {nmν}〉 = E({nν}, {nmν}) |{nν}, {nmν}〉 , (4.30)

The eigenstates |{nν}, {nmν}〉 are labeled by two sets of quantum numbers, {nν}, {nmν}. nν
denotes the amount of spin or charge added with respect to the reference ground state. The
occupation numbers nmν ∈ N ∪ {0} count the number of bosonic spin or charge excitations
with momentum qmν = π

Lmν , mν ∈ N. The corresponding eigenenergies are

E({nν}, {nmν}) = π

4L
∑
ν=c,s

vνn
2
ν + π

L

∑
ν=c,s

uνmνnmν . (4.31)
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The different contributions of the Hamiltonian determine the tunneling LDOS in the following
way: The zero modes give rise to an energy gap Egap = π

2L
∑
ν=c,s vν in the spectrum around the

Fermi energy. Egap
2 is the minimum energy required for adding an electron without creating

further excitations. The same amount of energy is gained if an electron is removed. If an
electron is injected at higher energies or removed at lower energies, additional spin and charge
excitations are created.

Bosonization identity for box-like boundary conditions To calculate the electronic LDOS
of the confined electrons, we require the analog expression to (2.86): the bosonization identity
of the Heisenberg operators for box-like boundary conditions. Our starting point is the exact
operator identity for the right-moving fermions (2.80):

Ψ̃σ(x) = Fσ√
2πa

ei π
L
Nσxeiφ̃σ , (4.32)

with the corresponding slow bosonic field

φ̃σ(x) =
∑
q>0

e−aq/2
√
mq

(
eiqxb̃†σ,q + e−iqxb̃σ,q

)
. (4.33)

Aside from the new notation ΨR → Ψ̃, the only relevant change is the replacement L → 2L
in (4.32). Expressed in terms of the Bogoliubov-rotated operators, (4.32) reads

Ψ̃σ(x) = Fσ√
2πa

eiπx2L (Nc+σNs)e
i√
2

(αcϕ̃c(x)−βcϕ̃c(−x))e
iσ√

2
(αsϕ̃s(x)−βsϕ̃s(−x))

, (4.34)

with
ϕ̃ν(x) =

∑
q>0

e−aq/2
√
mq

(
eiqxã†ν,q + e−iqxãν,q

)
. (4.35)

The Heisenberg operator is defined by Ψ̃σ(x, t) = eiH̃TLLtΨ̃σ(x)e−iH̃TLLt. In the bosonic sector,
the calculation is identical to (2.85) and again leads to a shift uνt of the bosonic field. For
the zero-mode part, those contributions in (2.87) are absent that are produced by the current
operator

∑
ν wνJν . Thus, we obtain the final result:

Ψ̃σ(x, t) = Fσ(x, t)√
2πa

eiΦ̃c(x,t)eiσΦ̃s(x,t) , (4.36)

with
Fσ(x, t) ≡ Fσ ei πt4L

∑
ν
vνe

iπ
2L (x−vct)Nceσ

iπ
2L (x−vst)Ns , (4.37)

and
Φ̃ν(x, t) = αν√

2
ϕ̃ν(x− uνt)−

βν√
2
ϕ̃ν(−x− uνt) . (4.38)

4.3.2 Charging energy

The standard TLL model considers only short-ranged interactions between the electrons and
ignores the interaction with the environment. However, a realistic model of a 1D wire has also
to include the effect of long-ranged interactions. Before we proceed to calculate the LDOS
of the TLL model, we have to consider an contribution to the Hamiltonian which we did
not take into account so far: the charging energy of a 1D wire [66]. In the reference ground
state, the negative charge of the electron is compensated by positively charged ions. If an
electron is added or removed, the charge of the wire becomes non-zero. The charged wire
induces electric fields in the environment. The charging energy or Coulomb energy required
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4.3 Luttinger liquid in a box

to create the electrostatic field gives rise to a further contribution to the charge sector of the
Hamiltonian. Since tunneling of electrons is blocked if their energy is smaller than the charging
energy, the phenomenon is called Coulomb blockade [67]. The charging energy is determined
by the capacitance C of the wire. In the experimental set-up, the 1D wire is realized by the
MTB in MoS2 which is embedded in a 2D crystal on metallic substrate. In this situation, the
capacitance can be written as C = cL where c denotes the capacitance per length. Thus, the
charging energy leads to the contribution

HC = Q2

2C = (eNc)2

2cL , (4.39)

in the charge sector of the zero modes. The shape of the corresponding electric field is
influenced by several unknown factors, e. g. by the presence of 2D crystal and the STM tip.
The sum of all zero-mode contributions reads as

H̃z =
(
e2

2cL + πvc
4L

)
N2
c + πvs

4L N
2
s , (4.40)

with vν = uν
Kν

. In the following, calculation of the LDOS, we will encounter the situation that
only one electron is injected or removed, thus, N2

c = N2
s =

∑
σN

2
σ . It is convenient to simplify

the previously derived expressions accordingly: The zero mode sector can be written in terms
of the total energy difference Egap between nσ = ±1,

H̃z = Egap
2

∑
σ

N2
σ ,

〈
Nσ
〉

= ±1 , (4.41)

with the zero mode gap

Egap =

e2

c
+ π

2
∑
ν=c,s

vν

 1
L
. (4.42)

We cast the full TLL model (4.29) into the form

H̃TLL =
∑
ν=c,s

∑
q>0

uνq ã
†
ν,qãν,q + Egap

2
∑
σ

N2
σ ,

〈
Nσ
〉

= ±1 . (4.43)

In this situation, we can replace the quantum numbers in (4.30), (4.31) as nν → nσ = ±1.
The energies of the eigenstates |{nσ}, {nmν}〉 are now given by

E({nσ}, {nmν}) = Egap
2 n2

σ + π

L

∑
ν=c,s

uνmνnmν , nσ = ±1 . (4.44)

Using (4.41), the time dependence of the Heisenberg operator Fσ(x, t) (4.37) is replaced by

Fσ(x, t) → Fσ e
Egapt

2 e
(
π
L
x−Egapt

)
Nσ
. (4.45)

As the unknown capacitance contributes to the zero-mode gap, it is convenient to regard Egap
as a phenomenological parameter.

4.3.3 Evaluation of the local density of states

In this section, we derive an analytic expression for the LDOS A(E, x) of the TLL model, using
the Green’s function method [64]:

A(E, x) =
∑
σ=±

∞∫
−∞

dt
2π eiEt

[〈
Ψσ(x, t)Ψ†σ(x, 0)

〉
+
〈

Ψ†σ(x, 0)Ψσ(x, t)
〉]

. (4.46)
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A derivation of this formula is found in App. A.2. The expectation value in (4.46) is understood
with respect to the reference ground state where no extra particles are added and no bosonic
excitations are present. Using the notation of Sec. 4.3.2, we denote the reference ground state by
|{0σ}, {0mν}〉. Ψσ, Ψ†σ are the full fermionic field operators. The LDOS contains contributions
from particle-like and hole-like excitations

A(E, x) = A(p)(E, x) +A(h)(E, x) , (4.47)

with

A(p)(E, x) =
∑
σ=±

∞∫
−∞

dt
2π eiEt

〈
Ψσ(x, t)Ψ†σ(x, 0)

〉
,

A(h)(E, x) =
∑
σ=±

∞∫
−∞

dt
2π eiEt

〈
Ψ†σ(x, 0)Ψσ(x, t)

〉
.

(4.48)

A(p)(E, x), A(h)(E, x) are probed by adding or removing a particle with respect to |{0σ}, {0mν}〉,
respectively. We start with the low-energy expansion of the correlation functions in terms of
the periodic field Ψ̃(x) (4.22),

〈Ψσ(x, t)Ψ†σ(x, 0)〉 = 〈Ψ̃σ(x, t)Ψ̃†σ(x, 0)〉+ 〈Ψ̃σ(−x, t)Ψ̃†σ(−x, 0)〉

−ei2kF x 〈Ψ̃σ(x, t)Ψ̃†σ(−x, 0)〉 − e−i2kF x 〈Ψ̃σ(−x, t)Ψ̃†σ(x, 0)〉 ,

〈Ψ†σ(x, 0)Ψσ(x, t)〉 = 〈Ψ̃†σ(x, 0)Ψ̃σ(x, t)〉+ 〈Ψ̃†σ(−x, 0)Ψ̃σ(−x, t)〉

−ei2kF x 〈Ψ̃†σ(−x, 0)Ψ̃σ(x, t)〉 − e−i2kF x 〈Ψ̃†σ(x, 0)Ψ̃σ(−x, t)〉 .

(4.49)

The correlations functions of the slow fields, 〈Ψ̃σ(x, t)Ψ̃†σ(x′, 0)〉 and 〈Ψ̃†σ(x′, 0)Ψ̃σ(x, t)〉, are
evaluated with help of the bosonization formula (4.36), using (4.45):

Ψ̃σ(x, t) = 1√
2πa

Fσ e
Egapt

2 e
i
(
π
L
x−Egapt

)
NσeiΦ̃c(x,t)eiσΦ̃s(x,t) , (4.50)

with the bosonic fields

Φ̃ν(x, t) = αν√
2
ϕ̃ν(x− uνt)−

βν√
2
ϕ̃ν(−x− uνt) . (4.51)

and

ϕ̃ν(x) =
∑
q>0

e−aq/2
√
mq

(
eiqxã†ν,q + e−iqxãν,q

)
. (4.52)

We proceed with the evaluation of A(p)(E, x). The results of this calculation can be transferred
directly to A(h)(E, x).

In the evaluation of the correlation functions we use the fact that Fσ and Nσ only act on
the particle content of the ground state, |{0σ}〉, but do not create bosonic excitations. The
bosonic operators ã†ν , ãν only change the occupation numbers of charge and spin |{0mν}〉
without changing the particle number. Therefore, the correlation function factorizes into a
contributions from zero modes and oscillator modes,

〈Ψ̃σ(x, t)Ψ̃†σ(x′, t′)〉 = C
(p)
z (x, x′, t− t′) · C(p)

osc(x, x′, t− t′) , (4.53)
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with

C
(p)
z (x, x′, t− t′) = eiEgap

2 (t−t′)

2πa 〈{0σ}|Fσ e
i
(
π
L
x−Egapt

)
Nσe

−i
(
π
L
x′−Egapt′

)
Nσ
F †σ |{0σ}〉 ,

C
(p)
osc(x, x′, t− t′) = 〈{0mν}| eiΦ̃c(x,t)eiσ Φ̃s(x,t)e−iσ Φ̃s(x′,t′)e−iΦ̃c(x′,t′) |{0mν}〉 ,

(4.54)
which can be evaluated independently. Using that f(Nσ)F †σ |{0σ}〉 = f(1)F †σ |{0σ}〉 and
〈{0σ}|FσF †σ |{0σ}〉 = 1, we obtain

C
(p)
z (x, x′, t− t′) = 1

2πa e−
iEgap

2 (t−t′)eiπ(x−x′)
L . (4.55)

Unlike the zero modes, the bosonic charge and spin excitations are completely independent
from each other, i. e. the correlation function factorizes into spin and charge contributions:
As the oscillator modes are completely decoupled, |{0mν}〉 = |{0mc}〉 |{0ms}〉, the correlation
function C(p)

osc further factorizes into contributions from the charge and the spin sector:

C
(p)
osc(x, x′, t− t′) = 〈{0mν}| eiΦ̃c(x,t)eiσ Φ̃s(x,t)e−iσ Φ̃s(x′,t′)e−iΦ̃c(x′,t′) |{0mν}〉

=
∏
ν=c,s

〈{0mν}| eiσν Φ̃s(x,t)e−iσν Φ̃s(x′,t′) |{0mν}〉

=
∏
ν=c,s

 ∑
{nmν }

〈{0mν}| eiσν Φ̃s(x,t) |{nmν}〉 〈{nmν}| e−iσν Φ̃s(x′,t′) |{0mν}〉

 ,
(4.56)

where we used the short-hand σc = 1, σs = σ = ±1. For technical reasons, we inserted
a resolution of unity in the occupation number representation to further evaluate the ex-
pression. Our next task is to calculate the matrix elements 〈{nmc}| e−iΦc(x′,t′) |{0mc}〉 and
〈{nms}| e−iσΦs(x′,t′) |{0mc}〉. We use the definition of the bosonic field operators (4.51), (4.52)
and collect the annihilation and creation operators:

Φ̃ν(x′, t′) = αν√
2
ϕν(x′ − uνt′)−

βν√
2
ϕν(−x′ − uνt′)

=
∞∑
m=1

e−aqm/2√
m

[
αν√

2

(
eiqm(x′−uνt′)ãν,m + e−iqm(x′−uνt′)ã†ν,m

)

− βν√
2

(
eiqm(−x′−uνt′)ãν,m + e−iqm(−x′−uνt′)ã†ν,m

)]

=
∞∑
m=1

1√
m

[
χν,m(x′)e−iων,mt′ ãν,m + χν,m(−x′)eiων,mt′ ã†ν,m

]
,

(4.57)

with the bosonic momenta qm = π
Lm, m ∈ N and frequencies ων,m = uνqm. Furthermore, we

introduced the “mixed waves” [64],

χν,m(y) =
(
αν√

2
eiqmy − βν√

2
e−iqmy

)
e−aqm/2 . (4.58)

with the property χν,m(−y) = χν,m(y)∗. We proceed with the action of the exponential e−iΦc(x′,t′)
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on the ground state |{0mc}〉 in the charge sector. We find that

e−iΦc(y,t′) |{0mc}〉 = e−
∑∞

mc=1
|χc,mc (y)|2

2mc

×
∑
{nmc}

∞∏
mc=1

1√
nmc !

[
−i
√
mc

χc,mc(−y)eiωc,mc t′
]nmc

|{nmc}〉 .

(4.59)
Details of the calculation are given in App. A.3. From (4.59) we obtain the matrix elements:

〈{nmc}| e−iΦ̃c(y,t′) |{0mc}〉 = e−
∑∞

mc=1
|χc,mc (y)|2

2mc

∞∏
mc=1

1√
nmc !

[
−i
√
mc

χc,mc(−y)eiωc,mc t′
]nmc

,

〈{nms}| e−iσΦ̃s(y,t′) |{0ms}〉 = e−
∑∞

ms=1
|χs,ms (y)|2

2ms

∞∏
ms=1

1√
nms !

[
−iσ
√
ms

χs,ms(−y)eiωs,ms t′
]nms

,

〈{0mc}| eiΦ̃c(x,t) |{nmc}〉 =
(
〈{nmc}| e−iΦc(y,t′) |{0mc}〉

)∗∣∣∣∣
y→x, t′→t

,

= e−
∑∞

mc=1
|χc,mc (x)|2

2mc

∞∏
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1√
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i
√
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χc,mc(x)e−iωc,mc t
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)∗∣∣∣∣
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2ms

∞∏
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1√
nms !
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iσ
√
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χs,ms(x)e−iωs,ms t
]nms

.

(4.60)
The matrix elements with spin σ are obtained by exchanging the variablesmc → ms, χc → σχs,
and ωc → ωs. Combining the contributions of C(p)

osc and C(p)
z yields the correlation function

〈Ψ̃σ(x, t)Ψ̃†σ(x′, t′)〉

= 1
2πa e−

iEgap
2 (t−t′)eiπ(x−x′)

L

∏
ν=c,s

e−
∑∞

m=1
|χν,m(x)|2+|χν,m(x′)|2

2m

×
∑
{nmc}

∞∏
mc=1

1
nmc !
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χc,mc(x)χc,mc(−x′)

mc
e−iωc,mc (t−t′)

]nmc

×
∑
{nms}

∞∏
ms=1

1
nms !

[
χs,ms(x)χs,ms(−x′)

ms
e−iωs,ms (t−t′)

]nms

= 1
2πa e−

iEgap
2 (t−t′)eiπ(x−x′)

L

∏
ν=c,s

e−
∑∞

m=1
|χν,m(x)|2+|χν,m(x′)|2

2m

×
∏
ν=c,s

exp

 ∞∑
m=1

χν,m(x)χν,m(−x′)
m

e−iων,m(t−t′)

 .

(4.61)

The correlation function is independent of the spin index σ since we assumed an unpolarized
ground state. The infinite sums of the time-independent prefactor lead to an envelop of the
form:

∏
ν=c,s

e−
∑∞

m=1
|χν,m(x)|2+|χν,m(x′)|2

2m

∣∣∣∣∣∣
x′=±x

=
∏
ν=c,s

(
L

πa

)−α2
ν+β2

ν
2

2−ανβν
∣∣∣∣∣sin

(
π

L
x

)∣∣∣∣∣
−ανβν

,

(4.62)
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see App. A.3 for the details. We anticipated that we will evaluate the correlation function only
for x′ = ±x in order to simplify the expression. (4.62) is only valid if we keep at least a distance
of a from the boundary. The correlation function (4.61) can now be written as

〈Ψ̃σ(x, t)Ψ̃†σ(x′, t′)〉
∣∣∣
x′=±x

= C e−
iEgap

2 (t−t′)eiπ(x−x′)
L

∏
ν=c,s

∣∣∣∣∣sin
(
π

L
x

)∣∣∣∣∣
−ανβν

×
∏
ν=c,s

exp

 ∞∑
m=1

Xx,−x′
ν,m e−iων,m(t−t′)

 .
(4.63)

where we defined the dimensionless constant

C = 1
2πa

∏
ν=c,s

(
L

πa

)−α2
ν+β2

ν
2

2−ανβν . (4.64)

The constant suppresses the correlation functions and, thus, the spectral density in the inter-
acting case. We also defined a new function,

Xx,y
ν,m = χν,m(x)χν,m(y)

m
, (4.65)

with the properties:

Xx,−x
ν,m = χν,m(x)χν,m(−x)

m
= |χν,m(x)|2

m
= X−x,xν,m ,

X−x,−xν,m = χν,m(−x)χν,m(−x)
m

= χν,m(x)∗χν,m(x)∗

m
=

(
Xx,x
ν,m

)∗
.

(4.66)

The correlation function for the hole-like excitations,〈
Ψ̃†σ(x′, t′)Ψ̃σ(x, t)

〉
= C

(h)
z (x, x′, t− t′) · C(h)

osc (x, x′, t− t′) , (4.67)

is found by commuting the exponentials of the bosonic fields and the Klein factors. From (4.55),
we see that commuting leads to direct cancellation of the Klein factors factors, F †σFσ = 1.
Therefore, (4.55) becomes:

C
(h)
z (x, x′, t− t′) = e

iEgap
2 (t−t′)

2πa 〈{0σ}| e
−i
(
π
L
x′−Egapt′

)
Nσ
F †σFσ e

i
(
π
L
x−Egapt

)
Nσ |{0σ}〉

= 1
2πae

iEgap
2 (t−t′) .

(4.68)
For the oscillator contribution, we have to commute the exponentials eiΦ, which is equivalent to
interchanging the global prefactor i↔ −i (not changing the result) and the coordinates x↔ x′,
t↔ t′ in (4.56):

C
(h)
osc (x, x′, t− t′) = 〈{0mν}| e−iσΦs(x′,t′) e−iΦc(x′,t′) eiΦc(x,t) eiσΦs(x,t) |{0mν}〉

=
∏
ν=c,s

e−
∑∞

m=1
|χν,m(x′)|2+|χν,m(x)|2

2m

×
∏
ν=c,s

exp

 ∞∑
m=1

χν,m(x′)χν,m(−x)
m

eiων,m(t−t′)

 .
(4.69)
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Again using (4.62) we find

〈Ψ†R,σ(x′, t′)ΨR,σ(x, t)〉
∣∣∣∣
x′=±x

= C e
iEgap

2 (t−t′) ∏
ν=c,s

∣∣∣∣∣sin
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−ανβν

×
∏
ν=c,s

exp

 ∞∑
m=1

Xx′,−x
ν,m eiων,m(t−t′)

 , (4.70)

with C and Xx,y
ν,m defined in (4.64) and (4.65), respectively.

Having the correlation functions at hand, we can evaluate the time integrals ∼
∫
tdt eiEt in

(4.48) to obtain the expression of the LDOS. Here, it is useful to consider the integral,

Ix,y(ω) =
+∞∫
−∞

dt
2π eiωt ∏

ν=c,s
exp

 ∞∑
k=1

Xx,y
ν,k e−iων,kt


=

∞∑
mc=0

∞∑
ms=0

Ix,ymc,msδ
(
ω − ωc,mc − ωs,ms

)
,

(4.71)

with

Ix,ymc,ms =
∏
ν=c,s

Tν∫
0

dt
Tν

eiων,mν t exp

 ∞∑
k=1

Xx,y
ν,k e−iων,kt

 , Tν = 2L
uν

. (4.72)

Ix,ymc,ms inherits the properties of Xx,y
ν,k (4.66):

Ix,−xmc,ms = I−x,xmc,ms ∈ R , I−x,−xmc,ms =
(
Ix,xmc,ms

)∗
. (4.73)

The identities (4.71) and (4.72) are derived in App. A.3. Ix,y(ω) appears as a building block
in the expressions of A(p)(E, x) and A(h)(E, x). The LDOS for particle-like excitations can be
written as

A(p)(E, x) = gS

∫ +∞

−∞

dt
2π eiEt 〈Ψσ(x, t)Ψ†σ(x, 0)〉
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)
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(4.74)
We used that Ix,−xmc,ms = I−x,xmc,ms . A

(p)
xx (ε) is manifestly real due to the properties of Ix,ymc,ms as
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required for the LDOS. The hole-like part of the LDOS has a similar expression:

A
(h)
xx (ε) = gS

∫ +∞

−∞

dt
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(4.75)

The locations of the energy levels are mirrored at E = 0. To see the particle-hole symmetry in
the calculation, we performed t→ −t in the time integral and then used (4.71) again. In our
present notation, kF denotes the highest occupied single-particle state. The spin summation
leads to a factor of gS =

∑
σ=± = 2.

In summary, we derived the LDOS of the TLL model for box-like boundary conditions,

A(E, x) =
∑
σ=±

∞∫
−∞

dt
2π eiEt

[〈
Ψσ(x, t)Ψ†σ(x, 0)

〉
+
〈

Ψ†σ(x, 0)Ψσ(x, t)
〉]

= gS
∑

mc,ms∈N

[
A(p)
mc,ms(x) δ(E − Emc,ms) +A(h)

mc,ms(x) δ(E + Emc,ms)
]
,

(4.76)

with the electronic tunneling spectrum

Emc,ms = Egap
2 + π

L
ucmc + π

L
usms . (4.77)

and the local spectral weights

A
(p)
mc,ms(x) = 2Ix,−xmc,ms − ei2k+

F xIx,xmc,ms − e−i2k+
F xI−x,−xmc,ms ,

A
(h)
mc,ms(x) = 2Ix,−xmc,ms − ei2k−F xI−x,−xmc,ms − e−i2k−F xIx,xmc,ms .

(4.78)

We denote the momenta of the zero modes by k+
F ≡ kF + π

L and k−F ≡ kF . In principle,
the integrals Ix,ymc,ms defined in (4.72) can be solved analytically and expressed in terms of the
mixed waves χν,m (4.58). However, this calculation has to be repeated for each level (mc,ms).
In the following, we will compare the prediction of the LDOS (4.76) and the measured LDOS
of a MTB. Since the energy range of STS spectra can vary among different MTBs, we want
to have a flexible routine for an arbitrary number of energy levels. Therefore, we compute the
integrals Ix,ymc,ms numerically.

4.3.4 Comparison of the TLL model with the STS signal

Now, we want to judge the validity of the Luttinger-liquid picture by comparing the LDOS
A(E, x) of the TLL model (4.76) with the STS signal. In the following discussion, we refer to
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(mc,ms)E/eV E/eV

Fig. 4.4: Comparison of the LDOS of the TLL model with the STS signal The TLL model
(left plot) reproduces the key features of the STS signal (right plot): the standing-
wave pattern along the MTB, the opening of the gap around the Fermi energy (black
arrows). Most importantly, the TLL model predicts the doubling of energy levels
with the same number of maxima which we identify as spin (red arrows) and charge
(blue arrows) excitations.

Fig. 4.4. In our calculation of A(E, x), we assumed that the ground state is not spin-polarized,
i. e. kF = π

LN+ = π
LN−. The value of N+ = N− ≡ N0 = 10 is then determined by counting

the number of maxima of the highest occupied level in the STS signal. This level is identified
as the highest level below the Fermi energy E = 0. The lowest empty level above the Fermi
energy exhibits N0 − 1 = 9 maxima due to the hole-like band. These states are caused by
the zero modes H̃z of TLL Hamiltonian. They are probed by removing or adding an electron
without creating spin or charge excitations. We shift all energy levels of the theoretical LDOS
A(E, x) by E → E + (EN0−1 + EN0)/2 to match the positions of the energy levels with the
STS signal in the same way as we did for the CDW model.

The TLL Hamiltonian (4.43) contains five independent parameters: the velocities uc, us, the
LLPs Kc, Ks, and the gap size Egap. They can be used to fit the model to the STS signal.
Four degrees of freedom, uν , Kν , are due to the independent interaction parameters of the
model, g(4)

ν , g(2)
ν , ν = c, s. Here, we assume repulsive interactions with uc > us = vF and

Kc < 1, Ks = 1. Thus, the spin velocity is fixed to the bare Fermi velocity known from DFT,
us = vF = 0.25 nm·eV. uc and Kc are free fit parameters, except for the restriction to the re-
pulsive range of values. The unknown contribution from the Coulomb blockade adds a further
degree of freedom, Egap.

Fig. 4.4 contrasts the LDOS of the fitted model and the STS signal where we used the value
Egap = 0.24 eV, uc = 0.38 nm·eV, and Kc = 0.5. The value of Egap = EN0−1 − EN0 is directly
obtained from the measured gap, visible in the STS signal around the Fermi energy E = 0.
The position of levels next to the gap is already fixed by the smaller velocity us. uc is de-
termined from the position of the adjacent levels which exhibit the same number of maxima.
The agreement between the theoretical and the measured LDOS is particularly convincing:
The energy level indicated with red arrows are reproduced from the spin dispersion with the
DFT value us = vF . The levels indicated by blue arrows are obtained by choosing uc > us, in
agreement with the assumption of repulsive interactions. Furthermore, the number of maxima
for these energy levels is reproduced correctly. The first two excited levels (adjacent red and
blue arrows) show the same number of maxima as predicted by the TLL model. The standing-
wave pattern also agrees very well in position and in the number of the maxima for higher and
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4.3 Luttinger liquid in a box

Fig. 4.5: Length dependence of zero mode gap for 4|4E-type MTBs The point plot displays
the measured value of Egap for MTBs of various lengths L. The TLL model predicts
a shrinking gap Egap ∝ 1

L with increasing length L. A fit with Egap(L) = A/L + B
yields A = (1.37± 0.07) nm·eV and B = (10± 6)meV (solid line). The value of A is
consistent with the TLL model. The offset energy Egap(L→∞) = B = (10± 6)meV
is of the order of the experimental energy resolution [9]. Therefore, a CDW state can
be excluded. Reprinted from [9].

lower energies. This allows us to label the energy levels by charge and spin quantum num-
bers, see Fig. 4.4. Given the remarkable agreement between theory and experimental data, we
conclude that the electrons confined to the 6 nm MTB form a Luttinger liquid. The doubling
of energy levels with the same number of maxima is a strong evidence of spin-charge separation.

The LLP Kc can hardly be obtained from a real-space image of the LDOS. The modulations
of the standing-wave pattern induced by Kc are not visible by eye over a large range of values.
In Sec. 4.3.5 we discuss how a Fourier analysis can give further insight for longer MTBs. The
results obtained there are consistent with our choice of Kc = 0.5 in Fig. 4.4.

4.3.5 Analysis of longer MTBs

Our analysis in the previous section revealed that the STS signal of a short MTB of length
L = 6nm shows clear signatures of spin-charge separation. The excellent agreement with the
TLL model indicates that the electronic state of the MTB is a Luttinger liquid. Now, there
are two more questions to address:

• Do further longer MTBs also realize a Luttinger liquid? Are there signatures of spin-
charge separation for longer MTBs?

• How can we determine the value of the LLP Kc?

A first question can be partly answered by measuring the zero mode gap Egap for MTBs of dif-
ferent length. The TLL model predicts that Egap ∝ 1

L , see (4.42). The experimental findings,
shown in Fig. 4.5, indicate that the finite-size scaling of the gap is in agreement with the TLL
prediction within the limits of error [9]. On the other hand, the results are inconsistent with the
CDW state where Egap = const. is expected to be independent of L. There are no indications for
a residual energy scale for L→∞ which could be attribute to a CDW contribution. Of course,
the scaling of the gap cannot prove the existence of a Luttinger liquid in all MTBs, see Sec. 4.4.

For longer MTBs, the energy levels in the LDOS are more dense due to the overall level spacing
∝ 1

L . In the following, we analyze a MTB of length L = 20nm. Due to the finite width of the
levels, the individual levels overlap and are difficult to identify in a real space image of A(E, x).
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(a) Kc = 1.0 (b) Kc = 0.1

Fig. 4.6: Dependence of theoretical Fourier spectra on the interaction strength (a) For
weak interactions, Kc → 1, two lines of bright peaks reflect the linear dispersions
of spin and charge excitations. (b) Strong interactions activate further peaks which
are allowed by momentum conservation and give rise to more symmetric, cone-like
distribution of the intensity. Not all levels are labeled for clarity.

Thus, spin-charge separation cannot be detected by a doubling of energy levels as for the short
MTB. We found that the Fourier transform is a more informative quantity in this case. We
define the discrete Fourier transform of the LDOS A(E, x) as

Fpm
{
A(E, x)

}
= 1√

Nx−1

Nx−1∑
n=0

e−ipmxnA(E, xn) . (4.79)

We used a spatial grid with Nx points xn = ∆xn, n = 0, ...Nx − 1 with ∆x = L
Nx−1 . This

leads to the discrete Fourier modes pm = 2π
L m, m = 0, ..., Nx − 1. In general, we expect to

see peaks in the spectrum if p matches twice the total momentum of the spin-charge excita-
tions that are created, p = k±F +±2

∑
{mν} qmνnmν , where qmν are the momenta and nmν the

number of the excitations. These peaks appear at the energies ∓(Egap
2 + uν

∑
{mν} qmνnmν ).

The zero modes contribute k±F and the sign ± indicates particle or hole-like excitations. Note
that the Fourier transform is not equivalent to the spectral function of a translation invari-
ant system, Fp{A(E, x)} 6= Ap(E). Therefore, the peaks appear at the twice the momenta
of the translation invariant spectrum. The doubling of the momenta is related to the stand-
ing wave sin2(kx) ∼ cos(2kx). Before comparing the Fourier spectra of the STS signal and
the theoretical prediction, we demonstrate how the parameters uc, us, Kc of the TLL model
affect the Fourier spectrum. We consider situations where spin-charge separation is present,
uc > us. Furthermore, we tune Kc to two extreme values: Fig. 4.6 (a) shows the Fourier spec-
trum |Fp{A(E, x)}| in the non-interacting limit, Kc = 1.9 The zero modes (mc = 0,ms = 0)
induce the brightest peaks at k±F with energies ±Egap

2 . Two further lines of bright peaks are
visible, resembling the linear dispersions of spin and charge excitations, ∓(Egap

2 + uνqmν ).
These peaks are caused by pure spin or pure charge excitations with momenta ±2(k±F + qmν ),
e. g. (mc = 1,ms = 0) or (mc = 0,ms = 3). The additional peaks between the lines of bright
peaks correspond to “mixed” excitations that involve both spin and charge degrees of freedom,
e. g. (mc = 1,ms = 1) or (mc = 3,ms = 2). Thus, most of the allowed peaks are not visi-
ble. In opposite the limit of strong repulsive interactions, Kc = 0.1, the distribution of peaks
is changed to a more symmetric, cone-like structures, see Fig. 4.6 (b). Now, the intensity is
9Having uc > us and a vanishing interaction strength, Kc = 1, at the same time is unphysical. We choose
these values only to demonstrate the effect of Kc on the Fourier spectrum.
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(a) STS signal (b) LDOS of TLL model
with Kc = 0.5

(c) Fourier STS signal (d) Fourier LDOS of TLL model
with Kc = 0.5

Fig. 4.7: Comparison between Fourier spectra of the STS signal and of the theoretical
LDOS (a) In the real space image, the energy levels of the STS signal are difficult to
identify. (b) The real space image of the LDOS predicted by the TLL model exhibits
spatial modulation of the standing-wave pattern caused by Kc = 0.5 < 1. (c) In the
Fourier STS signal, a splitting of the intensity profile is observed, in particular, at
negative energies. (d) The distribution of intensity is reproduced by the TLL model
with the parameters uc = 0.45 nm·eV, us = 0.27 nm·eV, and Kc = 0.5.

distributed over many of the allowed peaks. The brightest peaks appear in the center of these
cones at the momenta of the zero modes. The pure excitations lose their intensity. Therefore,
the emergence of two dispersions is not clearly visible.

We contrast the Fourier spectrum of the STS signal of the 20 nm MTB and the prediction of
TLL model. The Fourier STS signal is shown in Fig. 4.7 (c). The distribution of intensity
at negative energies can be interpreted as two lines of Fourier peaks. At positive energies the
splitting into to dispersions is not clearly visible, but the Fourier intensity is still compatible
with two velocities. We took these values to calculate the theoretical LDOS in Fig. 4.7 (d).
From the observed distribution of the intensity we estimate Kc = 0.5 ± 0.1. The value of Kc

can only be roughly estimated since the Fourier spectrum of the STS signal is too blurred. We
also note that the distribution of the intensity is sensitive to the length L of the MTB. An
uncertainty in L leads to an error ∼ 2π

L in the position of the Fourier peaks. As the edge of
an MTB is not perfectly sharp, the electrons are confined by a potential which is smooth on a
certain length scale. Electrons at different energies are then confined to different 1D geometry
of different lengths.
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4.4 Discussion of the Luttinger-liquid interpretation

The analysis carried out in the previous section led us to the conclusion that the electrons
confined in MTBs of a MoS2 monolayer fractionalize into spin and charge degrees of freedom.
We argued that MTBs are new realizations of Luttinger-liquid physics. In this section, we
confront the positive findings with objections that can be raised against this interpretation.
The interpretation of the experimental data is questioned, but also the theoretical modeling.

Our Luttinger-liquid interpretation is essentially supported by the analysis of the 6 nm MTB
and by the behavior of the gap size ∼ 1

L . The strongest evidence of Luttinger-liquid behavior
is found for the short MTB. Direct comparison of the LDOS of the TLL model and the STS
signal shows a high agreement: The positions of the first energy levels can be fitted with two
velocities uc, us. In particular, the agreement in the beating patterns along the MTB allows us
to identify a doubling of levels with the same number of maxima, supporting the labeling with
quantum numbers of spin and charge. The analysis of MTBs of different length shows that
Egap ∝ 1

L , in agreement with the TLL model. This finding excludes the possibility of CDW
states for which we expect a gap size independent of L. However, the scaling of the gap cannot
prove that all MTBs considered here host Luttinger liquids.

We have to state that a quantitative one-by-one agreement between the LDOS of the TLL
model and the experimental data cannot be achieved expect for the prominent case of the
short 6 nm MTB. Assigning individual quantum numbers is more difficult for longer wires with
smaller level spacing due to the finite width of the energy levels. Here, the Fourier analysis is
more suitable to reveal a splitting of the dispersion which may be fitted to the velocities uc, us
of the TLL model. In Sec. 4.3.5, we showed that there are indications for the splitting of the
band for a 20 nm MTB. However, the Fourier transformed STS signal is very blurred and, thus,
not fully conclusive in this respect. The smearing of the Fourier peaks also makes it difficult to
evaluate the further MTBs. For the same reason, it is also hard to read off the LLP Kc from
the observed distribution of Fourier peaks.

Determining LLPs is a general problem for small-sized systems: LLPs characterize the power-
law behavior of the density of states ρ(E) ∝ E(Kc+K−1

c −2)/4 in the continuum of energy levels
that emerges in thermodynamic limit L → ∞ [68]. For small system sizes the power-law
method fails: Fitting a power-law to a sequence of only few isolated energy levels will lead to
a wrong exponent. The intensity distribution for L <∞ is only a precursor of the power-law.
Furthermore, one has to be aware that the exponents at the edges are different from exponents
of the 1D bulk, ρedge(E) ∝ E(K−1

c −1)/2 [68]. For short 1D wires, the power-law will mix both
exponents since the regions of bulk and edges are not clearly separated. Thus, the relation
between the fitted exponents and the true Luttinger-liquid parameters is not obvious. There
is also an energy-dependent background contribution which has to be filtered out from STS
signal before a fit can be done. Even if the power-law method fails, the STS method can still
be used to detect a Luttinger liquid by its finite-size spectrum, provided that individual energy
levels can be identified. The cleanest way is to extract the LLPs from the spatial modulations
of the LDOS as done by our Fourier analysis. However, this requires a high resolution of the
STS signal both in energy and in space. In the following, we discuss some issues that are often
raised in this context.

4.4.1 Tunneling to the substrate

The agreement between the STS signal of the short 6 nm MTB and the TLL model provides
clear evidence of Luttinger-liquid behavior. For longer wires, the signatures of spin-charge
separation are not obvious since the finite width of the energy levels leads to blurred Fourier
spectrum. However, the distribution of intensity in the Fourier spectrum is compatible with
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the Luttinger-liquid interpretation and cannot be fitted by a non-interacting model. The fi-
nite width of the energy levels mainly results from tunneling of electrons from the MTB to
the substrate. Therefore, tunneling of electrons seems to be the most serious issue for our
Luttinger-liquid interpretation. As we discussed earlier, the broadening of the energy levels by
finite temperature T = 5K cannot be resolved in the measurements. For a Luttinger liquid to
form, we require that electrons in the MTB scatter sufficiently often before they tunnel to the
substrate. Thus, a Luttinger liquid can only be realized if the tunneling rate is much smaller
than the scattering rate. This corresponds to a situation when the width of the energy levels
is small compared to the level spacing. One can object that these conditions are not realized
for longer wires where the width and the level spacing are of the same size.

4.4.2 Spin-orbit coupling

It is important to note that the emergence of two dispersions in itself is no proof of spin-charge
separation and Luttinger-liquid physics. In principle, spin-orbit coupling can also lead to a
splitting into two bands, E+(k), E−(k), by lifting the degeneracy between spins σ = ±. The
spin-orbit interaction results from a relativistic correction to the single-particle Hamiltonian,

HSOC = ~
4mc2

(
∂x U × p

)
· σ , (4.80)

caused by an external electric field ∂x U [69]. p is the momentum of the electrons and
σ = (σx, σy, σz) are the Pauli matrices. For central potential, the interaction is of the form
HSOC ∝ L · S with angular momentum L and spin S. Thus, the two-fold spin-degeneracy
for electrons with spins parallel and antiparallel to L is generically lifted. However, spin-split
bands are sometimes forbidden by symmetry. The following symmetry considerations are help-
ful to find out whether spin-splitted bands are to be expected [70, 71]: Time-reversal symmetry
requires that Eσ(k) = E−σ(−k) as (σ → −σ,k → −k) under a time-reversal transformation,
which is known as Kramer’s degeneracy. In case of inversion symmetry, we also have that
Eσ(k) = Eσ(−k) as (σ → σ,k→ −k) under inversion. As a consequence, the dispersion fulfills
Eσ(k) = E−σ(−k) = E−σ(k), i. e. the bands have to be spin-degenerate if inversion symmetry
is present.

Spin-orbit coupling is particularly relevant for heavy transition-metal atoms. For bulk MoS2 the
bands are spin-degenerate by inversion symmetry. However, a single monolayer lacks inversion
symmetry. Thus, spin-split bands are allowed in general, except for high symmetry directions in
the Brillouin zone which are introduced by mirror planes. Indeed, DFT calculations prove that
spin-orbit coupling induces spin-splitting for monolayer MoS2 away from the high-symmetry
points [71]. MTBs in MoS2 also introduce a high symmetry direction for electrons localized
within the MTB. As MTBs in MoS2 (both types) are inversion symmetric, no spin-splitting is
expected for the bands of the confined electrons [55]. DFT calculations confirm that the bands
within the MTB are spin-degenerate [33, 55], see Fig. 3.4 in Ch. 3. Thus, we conclude that the
observed splitting of energy levels cannot be explained by the electronic band structure in the
nearly-free electron picture. In particular, spin-orbit coupling cannot explain the findings.

4.4.3 Phonon excitations and life-time of the states

We did not assign a quantum number to all states that are visible in the STS signal. The
main peaks are shadowed by broader satellite peaks which are symmetrically distributed for
occupied and empty states. We indicate the additional peaks by the circles in Fig. 4.8. They
are particular pronounced at E > 0 where two rows of satellite peaks are visible (pink and
green circles). Satellite peaks in STS spectra of MTBs were studied in detail by Jolie [55].
They are likely to be caused by an inelastic tunneling process where phonons are excited. The
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E/eV

Fig. 4.8: Inelastic peaks in the STS signal Pink circles indicate inelastic peaks of phonon
excitations with Eex. ≈ 20meV. Green circles point to assumed inelastic peaks with
Eex. ≈ 60meV. Only satellite peaks of the zero mode levels and of the adjacent main
peaks are marked.

additional tunneling channel appears at E′ = Eex. + Emc,ms where Emc,ms is the energy level
(mc,ms) and Eex. is the energy of the phonon. The extracted energies Eex. ≈ 20meV of the first
inelastic peaks lead to the conclusion that they are caused by bulk phonons of MoS2 [72]. This
conclusion is also supported by the fact that the same excitations energies are found for both
types of MTBs, 4|4E and 4|4P [55]. Besides tunneling of electrons to the substrate, electron-
phonon coupling provides a further decay channel. While the width of the main peaks is close
to the experimental resolution, the width of the inelastic peaks is typically larger, indicating a
shorter life-time of these states.

4.4.4 Spin backscattering

The treatment of interactions and the calculation of the LDOS of the MTB in Sec. 4.3 were
based on a TLL model. The model is restricted to density-density interactions

∫
x ρη(x)ρη′(x),

encoded by the interaction constants g2||, g2⊥, g4||, g4⊥, g1||, see Sec. 2.3. The analytic solution
of the TLL model via Bogoliubov transformation relies on the density-density form of the in-
teractions. Spin backscattering ∝ g1⊥ and umklapp scattering ∝ g3⊥ cannot be cast in this
form and were neglected. While the relevance of umklapp scattering is suppressed away from
half-filling, the relevance of spin backscattering cannot be controlled easily, in particular, in a
spin-rotation invariant situation where g1⊥ = g1||. Therefore, one should expect that the effect
of spin backscattering cannot be neglected. In the following, we briefly discuss the result of a
renormalization group treatment of spin backscattering in order to rationalize the limitations
of our TLL approach. We refer the reader to Ref. [5] for the details of the calculation.

The spin-backscattering term can be compactly written in terms of the bosonic field φs by
means of the bosonization formula (2.75):10

H1⊥ = g̃1⊥

L∫
0

dx cos
(√

8Φs(x)
)
, (4.81)

with the coupling constant g̃1⊥ = g1⊥
2(πa)2 and Φs = 1√

2(φ+,R + φ+,L − φ−,R − φ−,L). Hence,
only the spin sector is affected by H1⊥ and the spin-charge separation is still intact. The
resulting Hamiltonian in the spin sector is referred to as sin-Gordon Hamiltonian. It can no
longer be solved analytically. However, it is intuitively clear that the cos term tends to lock
10Contributions from Klein factors ∼ 1

L
are neglected.
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the field Φs into one of its minima and to suppress fluctuations of the field. The locked field
configuration describes a macroscopic spin-density wave, a frozen-in modulation of the spin
density, similar to a CDW. Lacking an exact solution, the true low-energy behavior is revealed
by a renormalization group analysis. The resulting flow equation of g̃1⊥ and Ks are

dg̃1⊥
d lnλ = (2− 2Ks)g̃1⊥ ,

dKs

d lnλ = −g̃2
1⊥Ks . (4.82)

The low-energy behavior of the system is obtained in the limit λ → ∞. For Ks < 1 the cou-
pling constant flows to a strong coupling regime, i. e. spin backscattering is always a relevant
perturbation. For repulsive interactions Ks > 1, the flow depends on the initial value of g̃1⊥.
If the initial coupling g̃1⊥ is sufficiently small, spin backscattering is irrelevant, g̃1⊥ → 0. The
initial Ks flows to a renormalized value K∗s > 1. In this case, the low-energy state is a Luttinger
liquid as described by the bosonic Hamiltonian in (2.69). In contrast, if the initial coupling g̃1⊥
is large enough, the system again flows to the strong coupling regime. The separatrix between
weak and strong coupling regime represents the marginally irrelevant case. It corresponds to
the line in a flow diagram where g1⊥ = g1||, i. e. to spin-rotation symmetric couplings. During
the flow the spin-rotation symmetry is preserved. Most importantly, the system flows to the
non-interacting spin sector K∗s = 1.

The result of the renormalization group analysis can be used to justify our choice of parameters
in Sec. 4.3.4: As we argued in Sec. 4.4.2, we can think of a MTB as a spin-rotation invariant
system. Therefore, it seems to be reasonable to choose Ks = 1 when fitting the TLL model
to the experimental data. However, one can object that spin backscattering is only marginally
irrelevant and the non-interacting fixed point is approached only logarithmically in the scaling
parameter,

1−Ks ∝
1

log(λ) . (4.83)

The logarithmic scaling could potentially alter the value of Ks as the flow is cut off by the
finite system size L. For small L, the true value K∗s is expected to be larger than 1 by
1 − K∗s ∝ 1

log(L/a) . However, the blurred Fourier spectra of the STS signal do not allow to
detect Ks > 1. Of course, the cutoff of the flow is only a first approximation to the finite-size
effects related to spin backscattering. From the theoretical perspective, it would be worthwhile
to consider the finite-size spectrum and the finite-size LDOS of the sine-Gordon Hamiltonian.11

11Only the levels of spin excitations are affected by spin-backscattering. One expects to observe more energy
levels in the finite-size spectrum since degeneracies are lifted by the cos term. However, the additional
separation in energy only grows logarithmically ∼ 1/ log(L) with decreasing system size (while the separation
of the main energy levels of the Luttinger liquid grow ∼ 1/L). Therefore, the effect of spin-backscattering
should be hard to observe in the STS signal.
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Conclusions

We studied the electronic properties of MTBs in a 2D MoS2 monolayer which are predicted
to host 1D metallic states. To reveal the nature of these states, we considered the LDOS
which was obtained by STS measurements. We calculated the LDOS as predicted by three
models: non-interacting electrons, a CDW model, and a TLL model. To account for the finite
length of the MTBs, we set up models with box-like boundary conditions. We compared the
predictions of these models to the measured LDOS of a short MTB of length L = 6nm. We
found an excellent agreement with the TLL model: The model correctly predicts a doubling
of some energy levels and we were able to fit these levels with two different velocities uc, us.
The first two models cannot explain the observed splitting of energy levels. Since spin-orbit
coupling can be excluded, we identified the splitting as emergent spin-charge separation caused
by electron-electron interactions. The observation of spin-charge separation provides strong
evidence for the presence of a Luttinger liquid in the MTB. The finite-size LDOS can be re-
garded as more reliable signature of a Luttinger liquid than the power-law suppression of the
density of states which is often hunted for. The comparison with the TLL model allowed us to
reveal the finite-size spectrum of the Luttinger-liquid spectroscopically. To our knowledge, our
theoretical work contributed to the first observation of a Luttinger liquid in a self-assembled
surface material [9, 73].

The situation is less clear for longer MTBs with more dense energy levels. We used the Fourier
transform of the LDOS to detect a splitting of the band and to estimate the LLP Kc. It turned
out that the signature of two bands is less convincing due to the blurred Fourier spectrum. For
the same reason, the estimate for Kc is not very precise. Furthermore, it is also dubious to
extract its value from a power-law fit due to the separated energy levels. On the other hand,
the observed scaling of the zero mode gap ∝ 1

L excludes the possibility of CDW states for which
a constant gap is expected. The distribution of intensity in the Fourier spectrum is compatible
with our Luttinger-liquid interpretation. Still, a better energy resolution would be desirable
in order to obtain a clearer signature of spin-charge separation for longer wires. This could
possibly be achieved by choosing an insulating substrate to increase the life-time of spin and
charge excitations [73]. From the theoretical perspective, the TLL model could be extended to
the sine-Gordon model in order to study the finite-size effects of spin backscattering.
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Introduction II

Irreversible processes are omnipresent in the immediate perception of our environment: moving
objects eventually come to rest, a droplet of ink spreads in a glass of water, and a hot body
heats up a cold body. The characteristic feature of these processes is their directionality. They
describe the relaxation towards distinguished states of rest, i. e. a homogeneous distribution of
ink or bodies at equal temperature. No further changes occur if the final state is reached. It is
very understandable that Aristotle concluded that “a thing moves naturally to a place in which
it rests without constraint, and rests naturally in a place to which it moves without constraint”
[74], i. e. that all objects seek their states of rest, and a cause is required to drive objects away
from this state. Without external intervention, the reversal of the above-mentioned relaxation
processes, e. g. the spontaneous concentration of ink at one spot, is not observed. According to
Planck [75] the irrecoverability of the initial state without compensation in the outside world
qualifies a process as irreversible in a stricter sense.1

The attraction towards a definite final state is particularly striking for isolated macroscopic
systems of certain geometrical volume which are totally decoupled from their environment and
left to themselves. Such systems are typically attracted by a special state, called thermal state
or thermodynamic equilibrium state. The equilibrium state is determined by a small number
of parameters, including the energy of the system. These so-called conserved quantities or
conserved charges, are set by the initial state and are not changed in the relaxation process by
definition. Aside from the conserved charges the memory of the initial state is lost. The rela-
tion between the equilibrium states of different conserved charges is the subject of equilibrium
thermodynamics [76]. The thermodynamic treatment presumes that the system approaches
thermal equilibrium if prepared in an arbitrary non-equilibrium state [77]. The Second Law of
thermodynamics postulates the required stability of the thermodynamic equilibrium state: It
states that there is a function of state, called entropy, which can never decrease for an isolated
system [75] and reaches its maximum in the equilibrium state [78]. Assuming that the concept
of entropy can be extended to non-equilibrium states, irreversible processes such as the relax-
ation to equilibrium, thus, are characterized by the increase of entropy [75].

Aristotle’s world view was definitely abandoned by Newton [79]. Later, the molecular structure
of matter on microscopic scales became widely accepted, influenced by the work of Einstein
[80]. Since then, there has been a certain tension between the Second Law and the microscopic
description of matter: The Newtonian equations of motions of rigid molecules are time-reversal
invariant. Later, quantum mechanics was recognized as the fundamental theory of matter,
“the theory of everything” [81]. The unitary dynamics driven by interacting Hamiltonians
follows the Schrödinger equation and maintains the time-reversal symmetry of the Newtonian
description. This raises the obvious questions: How can any function of state show time-
reversal non-invariant behavior? How does irreversible behavior emerge from the microscopic
1Non-existence of the reverse processes in nature is not sufficient.
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dynamics, i. e. quantum mechanics? Such questions point to the problem how to rationalize
the existence of an “arrow of time” [82].

Already in 1872 Boltzmann [83] claimed to have found the solution for a classical gas of
molecules. He assumed that the state of the gas is described by a continuous distribution
of their velocities or momenta fk and that the distribution changes due to binary collisions.
From these assumptions, he derived an irreversible equation of motion for fk, the Boltzmann
equation. He then showed that an arbitrary initial distribution of momenta converges to the
known thermal distribution. In his proof, he used that the quantity H = −

∫
k fk log fk cannot

decrease under the time-evolution of the Boltzmann equation, later identified as the entropy of
the gas.2 However, the so-called H theorem does not count as a derivation of the Second Law
from classical mechanics. Instead, the Boltzmann theory provides an effective description of
the relaxation which relies on a probabilistic treatment of the system’s state. Despite the fact
that Boltzmann did not achieve his original goal, his work opened the field of non-equilibrium
physics.

In today’s research, the above-raised questions are often made more concrete in the framework
of quench set-ups [84, 85]. Here, a quantum system is typically prepared in the ground state
|ψ0〉 of a local Hamiltonian H(λ) at times t < 0. For t > 0, the system parameter λ is changed
as function of time according to a prescribed quench protocol λ(t) and the time-evolution of
some observable O is tracked. The so-called sudden global quench is a typical quench protocol
used to study the relaxation dynamics. Here, the Hamiltonian parameter is globally and
instantaneously changed from λ→ λ′ at t = 0. The initial state is no longer an eigenstates of
the H(λ′), but is promoted to a superposition |ψ0〉 =

∑
m cm |m〉 where |m〉 are the eigenstates

of the new Hamiltonian H(λ′). The change of the system parameter activates the unitary
time-evolution of an observable O. For t > 0 its expectation value evolves as〈

O(t)
〉

=
∑
m,n

c∗mcnOmn ei(Em−En)t , (6.1)

with Omn = 〈m|O |n〉. The previous questions related to the Second Law boil down to whether
〈O(t)〉 relaxes in any sense or whether 〈O(t)〉 approaches a constant value compatible with the
thermal one. This is a non-trivial problem if the eigenstates of H(λ′) are unknown, which is
typically the case for interacting systems.

The emergence of thermal behavior did not remain a purely philosophical question: When
Boltzmann struggled to find a convincing solution to the problem during the 1870s–1890s, the
existence of atoms still was the subject of a controversial debate [86]. In contrast to that time,
nowadays quench protocols can be realized in ultracold atom systems [87] in order to examine
the relaxation process experimentally: An atomic gas of alkali atoms is cooled to low tempera-
tures T ≈ 100 nK...1µK and trapped in the potential created by the oscillating electric field of
a laser beam. At these temperatures the de-Broglie wavelength of the atoms λdB is much larger
than the inter-atomic distances which makes it possible to study quantum phenomena. The
superposition of counterpropagating lasers beams form a standing-wave pattern. In this way,
the atoms are trapped in the periodic potential of an optical lattice. The depth of the potential
controls the tunnel or hopping amplitude between the lattice sites. This opens the possibility
to simulate lattice Hamiltonians. Remarkably, also the interaction strength between the atoms
can be tuned in a broad range, from attractive to repulsive interactions. This is achieved by
employing Feshbach resonances in two-atom collisions. The resonance occurs between a closed
scattering channel of a bound state and an open channel in the scattering continuum. The
interaction strength is enhanced when the atoms temporarily form a bound state. Since the
closed and open channel have different magnetic moments, their energy can be shifted relative
2Boltzmann defined the quantity with the opposite sign.
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to each other by applying a magnetic field. Depending on this energy shift, the enhancement of
the interaction is more or less pronounced. Optical trapping and Feshbach resonances allow to
simulate model Hamiltonians where the hopping and interaction strength can be tuned at will.
Furthermore, depending on the choice of atoms, bosonic or fermionic models can be realized.
This high degree of control and tunability cannot be achieved in condensed matter systems.
A nice overview about ultracold atom systems (with focus on bosonic atoms) is also found in
Ref. [88]. A quantum quench in an ultracold atom system can be performed e. g. by either
changing the hopping or the interaction strength rapidly. However, reaching the thermal state
as a result of the coherent quantum dynamics requires isolation of the atoms for relatively long
times. The equilibration dynamics of an effectively isolated Bose gas after a quantum quench
was studied by Trotzky et al. [89]. They report the relaxation to a thermal state arguing that
the nearest-neighbor correlations in the lattice reach their thermal values.

The theoretical research roughly revolves around three variants of the fundamental question,
giving rise to different modes of research:

(A) Conditions for equilibration and thermalization Under what conditions does a system
equilibrate, i. e. under what conditions does it reach a stationary state? And if it does so:
Does the system also thermalize, i. e. is the stationary state a thermodynamic equilibrium
state? The goal is to derive the emergence of thermal equilibrium from first principles,
solely based on pure-state quantum mechanics and without probabilistic assumptions
from statistical mechanics. Only mathematically rigorous proofs are acceptable in the
derivation. The unitary dynamics of a finite-sized quantum system is time-reversal sym-
metric and recurrent in the first place [85]. Still, there is the notion of equilibration on
average: Under reasonable assumptions on the initial state |ψ0〉 and the energy spectrum
En, it can be shown that many observables 〈O(t)〉 stay close to their time-averaged value
〈O(t)〉 = limT→∞ T

−1 ∫ T
0 dt 〈O(t)〉 for most times until recurrence occurs [85, 90, 91].3

If energy is the only conserved quantity the system is said to thermalize if the equilib-
rium value 〈O(t)〉 is indistinguishable from the thermal ensemble, 〈O(t)〉 → Tr{e−βHO},
with the inverse temperature β. The eigenstate-thermalization hypothesis [92] states that
thermalization occurs in this sense if the eigenstates are indistinguishable from thermal
states of the same average energy. This is the case for quantum systems of high com-
plexity and for local observables [85]. Rigorous proofs of dynamical thermalization are
possible under stronger conditions [93]. Counterexamples are also known: If there are
many locally conserved quantities Cj , the system is expected to relax to a generalized
Gibbs ensemble 〈O(t)〉 → Tr{e−

∑
j
λjCjO} which is the state of maximum entropy under

these constraints [94, 95]. Here, λj are Lagrange multiplier of the conserved quantities
Cj . In particular, these conditions are met for integrable systems which are character-
ized by a macroscopically large number of conserved quantities. Disorder can lead to a
localization of the eigenstates and the absence of thermalization [96]. A further example
of non-thermalization on reasonable time scales are glasses. They are characterized by
astronomically large relaxation times [97, 98].

(B) Relaxation dynamics From the perspective of pure-state quantum mechanics (A), not
much can be said about the time-scales of the relaxation process in the same rigor-
ous manner [85]. Given that the eigenstates of the Hamiltonian cannot be constructed
analytically, numerical techniques are used to calculate the time-evolution of observ-
ables. Thermalization after quantum quenches has been studied with a broad range
of numerical methods including exact diagonalization [99–102], tensor-network methods
[103], density-matrix renormalization group method for one-dimensional lattice systems
(DMRG) [104, 105], and dynamical mean field theory (DMFT) [106]. Aside from nu-
merical approaches, real-time quantum field theory (RQFT) and renormalization group

3For non-degenerate spectra the time-average leads to the diagonal ensemble 〈O(t)〉 =
∑

m
|cm|2Omm.
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methods are powerful analytical tools to study the relaxation after a quantum quench
[107–109].

(C) Effective descriptions What is the effective description, i. e. the minimal set of ingredi-
ents needed to describe the time-evolution of observables on all time scales? The definite
answer to this question is likely to be found in the framework of RQFT. One can also
take a different perspective, guided by the phenomenology of the relaxation process at
late times. While the afore-mentioned approaches start from the initial quantum state,
the final equilibrium state can serve as a point of reference in the development of effective
descriptions.

Our work contributes to the field of effective descriptions at intermediate and late times (C).
The development of effective descriptions is facilitated by the fact that the relaxation process
exhibits certain stages which are associated to the emergent time scales of an interacting quan-
tum system [102, 109]. Some of these stages are very reminiscent of Bogoliubov’s hypothesis
about the temporal stages of equilibration [110, 111]. The sequence of temporal stages and the
related time scales are illustrated in Fig. 6.1. A non-integrable system typically runs through
four stages after a quantum quench:

(1) Formation of quasiparticles As stated before, the exact eigenstates of an interact-
ing Hamiltonian are usually unknown. However, the low-energy excitations may be ap-
proximately described by long-lived quasiparticles. A prominent example is interacting
fermions in high dimensions which constitute a Fermi liquid. The low-energy excitations
are approximately given by fermionic quasiparticles whose life-time diverges at the Fermi
energy [4], see also Sec. 2.1.2 of Part I. Assuming that the quasiparticle picture applies,
we can regard a quasiparticle state |α〉 as an approximate eigenstate of the interacting
Hamiltonian. After a sudden quench, the initial state is promoted to a superposition of
excited quasiparticles, |ψini〉 =

∑
α cα |α〉, with coefficients cα = 〈α|ψini〉. At t = 0, the

expansion seems to be an arbitrary choice. We can rationalize how the quasiparticles
emerge as physical objects by considering the time-dependent expectation value of an
observable O (6.1) in the quasiparticle basis,〈

O(t)
〉

=
∑
α

fαOαα +
∑
α6=β

c∗αcβOαβei(ε∗α−ε∗β)t , (6.2)

where ε∗α are the quasiparticle energies and Oαβ = 〈α|O |β〉. In particular, we identify
the contributions of the diagonal elements fα = |cα|2 = | 〈α|ψini〉 |2 as the quasiparticle
distribution. Given that the phase factors ei(ε∗α−ε∗β)t oscillate rapidly for α 6= β, the off-
diagonal contributions are suppressed after a short time. This process is called dephasing
[112–114]. The diagonal contributions are time-independent and persist. After a certain
dephasing time τφ, the expectation value of an observable O is fully determined by the
statistical average over the distribution of quasiparticles in the initial state. This shows
that the behavior of the quasiparticle distribution plays the dominant role in the further
time-evolution. By dephasing of the superposition of |α〉, formerly fine-tuned to the initial
state, the quasiparticles become the relevant physical objects. Therefore, we refer to the
dephasing stage t . τφ as the formation of quasiparticles.

(2) Initial stage Once a quasiparticle is created, it propagates ballistically with the group
velocity associated with its wave packet. The first scattering event happens after the
single-particle scattering time τsct which is related to the mean-free path. In the initial
stage τφ � t� τsct the behavior of the system is determined by the non-interacting part
of the quasiparticle Hamiltonian. If the separation of time-scales is sufficiently large, a
transient prethermal state [115–117] can emerge which is often characterized by a GGE
with a larger number of conserved quantities than the final state reached at later times.
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Fig. 6.1: Hierarchy of emergent time scales and stages of the relaxation process after a
sudden quench The temporal stages, time scales, and the associated theories are
explained in the main text. Hydrodynamics and Boltzmann theory are coarse-grained
effective descriptions. They describe irreversible processes and, thus, must include
fluctuations of the respective variables. The hydrodynamic stage is characterized by
scale invariant relaxation.

(3) Kinetic stage When quasiparticles start to scatter, equilibration begins. Here, the con-
cept of a local quasiparticle distribution is suitable [118, 119]. fk(x) denotes the momen-
tum distribution of quasiparticle in a small region around x. The exchange of momenta
gives rise to the evolution of the distribution function. The related transport in phase-
space is the subject of so-called kinetic theories [111]. The Boltzmann equation is the
prototype of kinetic equations. It provides an equation of motion for fk(x) and describes
the convergence to the equilibrium distribution f0

k. The state of local equilibrium is
reached after a characteristic relaxation time or transport scattering time τ that corre-
sponds to a few scattering times [102]. The local equilibrium distribution is parameterized
by the densities of the conserved quantities ρi(x) which are not changed in the scatter-
ing of quasiparticles. In general, to each region in local equilibrium the same conserved
quantities can be attributed as to the total system. Hence, the system is determined by
the distribution of the conserved quantities ρi(x).

79



6 Introduction II

(4) Hydrodynamic stage The last stage of the relaxation process is governed by the diffu-
sive transport of the conserved quantities between different regions of the system which
have already reached a local equilibrium state [102]. The balancing of the local equi-
libria is described by hydrodynamic equations for the densities ρi(x) [7]. The endpoint
of the relaxation process is reached when global equilibrium is established, i. e. the con-
served quantities are homogeneously distributed over the volume of system. The global
equilibrium state is solely determined by the total amount of the conserved quantities.
Complete equilibrium is ultimately reached after the diffusion time τdiff ∼ L2

D with D
being the diffusion constant.

The effective description in the last stage builds on the thermodynamics of irreversible pro-
cesses [51, 120–125]. It combines the traditions of hydrodynamic or transport equations with
the principles of thermodynamics. The basic assumption is that the system is in a state of local
equilibrium. Knowledge about the microscopic dynamics in terms of some underlying Hamilto-
nian is not required since the macroscopic theory only refers to the conserved quantities of the
system. The conservation laws imply the existence of hydrodynamic slow modes which relax
arbitrarily slowly for large enough system sizes. It was realized by Einstein [126] that the global
equilibrium state is not only characterized by homogeneous densities ρi(x) = ρi. The densities
undergo thermodynamic fluctuations which give rise to fluctuating local currents. The state of
the system deviates from thermal equilibrium if the fluctuations do not take their characteristic
values. As a consequence, the time-evolution is not only determined by the imbalance between
different regions in space. The hydrodynamic equations must also contain a stochastic element,
called fluctuating term or noise term, to simulate the thermodynamic fluctuations. This has
important consequences for the approach of the equilibrium state at late times following a
global quench: After a homogeneous change of system parameters, the distribution of the con-
served quantities is not changed on average. Still, the fluctuation pattern is altered. Due to the
emergence of hydrodynamic slow modes the fluctuations 〈ρi(x)ρj(x)〉 only relax algebraically
slowly ∝ t−d/2 to their thermal values where d denotes the spatial dimension. This behavior is
entitled hydrodynamic long-time tail and is regarded as the “bottleneck for thermalization” [88]
after a quench. A microscopic description is only valid if it reproduces the power-law relaxation.
The scale invariant regime is eventually cut off at the diffusion time τdiff. However, for macro-
scopic systems this time scale plays no role since τdiff →∞ in the thermodynamic limit L→∞.

The Boltzmann theory is a more fundamental theory than hydrodynamics in the sense that it
deals with microscopic entities, the quasiparticles. Boltzmann’s original goal was to design an
equation that describes the equilibration of a classical gas of molecules. Since then, different
variants of the original Boltzmann equation were developed and were successfully applied to a
large variety of systems, ranging from traditional condensed matter systems [10] to ultracold
atoms [118, 127], periodically driven [128] and weakly open systems [129]. The Boltzmann
equation is tailored to transport problems, but it requires a modification when applied to the
relaxation process of isolated systems. The standard form of the equation is purely determin-
istic and predicts an exponentially fast relaxation ∼ e−t/τ of the quasiparticle distribution to
its equilibrium shape. The reason is that the deterministic equation misses crucial correlations
between quasiparticles that have already scattered. Thus, the standard Boltzmann equation
is only valid in the kinetic stage, but does not capture the physics of hydrodynamic long-time
tails. Close to equilibrium, the missing piece of information can be restored by adding a suit-
ably correlated noise term [130]. The fluctuating Boltzmann equation is able to reproduce the
correct form of the hydrodynamic long-time tails.

Our work has the following objectives:

• The full fluctuating Boltzmann equation is a stochastic integro-differential equation and
cannot be solved analytically. Calculating the relaxation rates involves at least two
integrals in momentum space. Approximation schemes are required in order to reduce
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the numerical complexity of the solution. A very popular approximation scheme replaces
the integral expression by a single relaxation rate and is therefore called relaxation-time
approximation. We transfer this approximation scheme to the fluctuating Boltzmann
equation and derive a fluctuating relaxation-time approximation by applying the general
framework of Onsager’s theory [120–123].

• The fluctuating Boltzmann equation has to be discretized on a space-time grid to make it
accessible to the numerical solution on a computer. As the equation is of the “conserved-
flux” type, a term of artificial diffusion has to be added for stability reasons. We show that
the diffusion term must be accompanied by an additional fluctuating term of diffusion
noise in order to obtain the proper correlations of the distribution function.

• We demonstrate that the fluctuating relaxation-time approximation reproduces hydro-
dynamic long-time tails in agreement with fluctuating hydrodynamics.

• In addition to the work related to the Boltzmann equation, we deal with the opposite
limit of a sudden quench: a quasi-static change of system parameters in time tq. In the
limit tq → ∞, one expects to reach the ideal case of an adiabatic change of state, i. e. a
change with vanishing entropy production. As hydrodynamic long-time tails appear in
various observables, we also expect them to hamper the approach of the adiabatic limit,
giving rise to a power-law decay of the entropy production ∼ t−αq for tq →∞. We address
this question in the framework of fluctuating hydrodynamics. In this context, we also
demonstrate the role of the Fourier modes ρi,q as the proper hydrodynamic slow modes
in the Onsager sense.

The further discussion is organized as follows:

Structure In Ch. 7, we start by introducing the concept and relevance of fluctuating dynam-
ics using the example of Brownian motion. After the conceptual foundation we elaborate on the
close-to-equilibrium theory of irreversible processes and fluctuations developed by Onsager and
Machlup [120–123]. Here and in the following sections, we derive expressions valid in arbitrary
spatial dimensions d.

The subsequent chapter Ch. 8 continues the discussion of the last stages of the relaxation when
local equilibrium has been established. The general theory is employed in order to review the
foundation of fluctuating hydrodynamics. Besides the emergence of hydrodynamic long-time
tails, we emphasize the role of the Fourier modes as the natural non-equilibrium coordinates,
a major aspect of our review in this chapter.

As an intermezzo, Ch. 9 is devoted to the entropy production after a slow quench in time tq
as predicted by linear fluctuating hydrodynamics. We first explain the method of deriving
the entropy production by means of the Fokker-Planck equation. To this end, we perform
a temperature quench to the bath of a Brownian particle. We then apply the Fokker-Planck
method to the hydrodynamic set-up in order to obtain the power-law approach of the adiabatic
limit. Here, the role of Fourier modes as the true hydrodynamic slow modes becomes apparent.

In Ch. 10, we move on to the effective description on intermediate times when local equi-
librium is not available: the Boltzmann theory. After a brief introduction to the standard
Boltzmann equation, we follow the general framework of Onsager’s theory again and supple-
ment the irreversible content of the Boltzmann equation by a fluctuating term. We obtain
a linearized fluctuating Boltzmann equation or Boltzmann-Langevin equation in the spirit of
Refs. [130, 131]. Using perturbation theory, we derive the form of the Boltzmann long-time
tails of the fluctuations 〈δfkδfk′〉. Finally, we use the linearized Boltzmann equation to derive
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6 Introduction II

the fluctuating hydrodynamic equations.

Guided by the insights of the previous chapter, we develop the fluctuating relaxation-time
approximation in Ch. 11. In particular, Sec. 11.2 addresses the numerical implementation of
the obtained set of stochastic differential equations. Here, we strict ourselves to the one-
dimensional case. The key step is to introduce an artificial diffusion term into the Boltzmann
equation which is accompanied by additional current noise, similar to hydrodynamic equations.
These ingredients are required to ensure numerical stability. In Sec. 11.3, we benchmark the
time-evolution of correlation functions obtained by numerical integration against the prediction
of linear fluctuating hydrodynamics.

The concluding Ch. 12 highlights perspectives for applications of the fluctuating relaxation-
time approximation.
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7 Chapter 7

Macroscopic Theory of Fluctuations
and Irreversible Processes

The purpose of this introductory chapter is to provide the general Langevin formalism that
we will follow throughout Part II. In Sec. 7.1 we discuss the example of Brownian motion to
introduce the concept of a fluctuating equation or Langevin equation. We explain that the
irreversible equation of motion must include a noise term in order to describe the relaxation
to the equilibrium state. Furthermore, we derive the relation between observables and the
fluctuating quantity. We also define the probability distribution of this quantity. In Sec. 7.2, we
develop the general macroscopic description of the relaxation process in isolated systems.
Here, we restrict ourselves to the relaxation close to equilibrium where linear macroscopic
laws are applicable. We show how the relaxation process is described by fluctuating equa-
tions similar to Brownian motion. We present two derivations of the noise correlation function:
The first derivation is based on the properties of correlation functions and the entropy balance,
and the second one on the explicit solution of the corresponding Langevin equation. The gen-
eral expressions for the noise correlation functions and the buildup of equilibrium correlations
provided here will be used in the subsequent chapters.

7.1 Brownian motion: prototype of fluctuating dynamics

In 1828 the botanist Robert Brown reported on the irregular motion of pollen grains suspended
in water [132, 133]. About eighty years later, the phenomenon attracted attention in physics
when Einstein [80] and Smoluchowski [134] showed that the observation can be explained by
the thermal motion of the fluid molecules. In the debate at that time, the results of their
works were interpreted as strong indication of the molecular structure of matter. Shortly after,
Langevin gave a simple description of Brownian motion in terms of a fluctuating equation of
motion, now termed Langevin equation [135].1 For the sake of a smooth introduction, we
restrict ourselves to Brownian motion in one dimension: Consider a heavy particle of mass
m and velocity v suspended in a fluid of light particles at temperature T . The heavy particle
experiences collisions with the light particles in an irregular manner. The effect of the collisions
can be described phenomenologically by two forces:

• On average, the heavy particle is exposed to a higher rate of decelerating collisions in the
direction of motion, which is described by a friction force −γv.

• Additionally, the collisions can be regarded as a fluctuating force, giving rise to fluctua-
tions of the velocity around that average as illustrated in Fig. 7.1. The fluctuating term
is described by a stochastic variable ξ.

1For a translation of Langevin’s original paper, see Ref. [136].
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7 Macroscopic Theory of Fluctuations and Irreversible Processes

Fig. 7.1: Fluctuating force acting on a Brownian particle The random collisions with fluid
particles are described by a fluctuating force ξ to the equation of motion, imprinting
thermal fluctuations to the velocity v of the Brownian particle.

The systematic effect of friction and the fluctuating driving force ξ are intimately related owing
to their common microscopic origin. The existence and properties of ξ can be deduced from
thermodynamic arguments on very general grounds. Detailed knowledge about the properties
of molecules and their interactions with the Brownian particle is not required. A similar dis-
cussion of Brownian motion is found in Refs. [11, 137].

Naively one could start with the Newtonian equation of motion of the Brownian particle as

∂tv = −γv , (7.1)

with some friction coefficient γ > 0.2 According to (7.1), the velocity relaxes to the equilibrium
state v = 0 for t → ∞. However, in the thermodynamic equilibrium state at finite temper-
ature T , the velocity is only zero on average, 〈v〉eq = 0. 〈...〉eq can be regarded as temporal
average over a large number of collisions with the molecules. In the collisions, kinetic energy
is transferred and the velocity is increased from time to time without directional preference.
Therefore, the average of the squared velocity is finite, 〈v2〉eq 6= 0. More precisely, the equipar-
tition theorem of classical statistical mechanics [138] tells us that 〈v2〉eq = kBT

m . Clearly, the
fluctuations of the velocity are not captured by (7.1). Therefore, we should read (7.1) as an
equation of the mean velocity, ∂t 〈v〉 = −γ 〈v〉. The equation of motion can be corrected ad
hoc by adding a fluctuating force or noise term ξ which accounts for the accelerating (and
decelerating) collision events. (7.1) turns into a stochastic differential equation, the so-called
Langevin equation:

∂tv = −γv + ξ . (7.2)

In principle, the above-mentioned relation between the friction coefficient γ and the statistical
properties of ξ can be derived form a microscopic theory of the fluid and its coupling to the
heavy particle, see e. g. Ref. [139]. Here, we follow a phenomenological approach: The solution
of (7.2),

v(t) = v(t0)e−γ(t−t0) +
t∫

t0

ds e−γ(t−s)ξ(s) , (7.3)

is found using the corresponding Green’s function, G(t− t′) = θ(t− t′)e−γ(t−t′). The statistical
properties of ξ have to be determined such that they translate to the thermal fluctuations of
2We absorbed the particle mass m into the coefficient γ.
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7.1 Brownian motion: prototype of fluctuating dynamics

the velocity for large times t→∞ when the memory of the initial state v(t0) is lost. In order
to match limt→∞ 〈v(t)〉 to the equilibrium 〈v〉eq = 0, we have to choose〈

ξ
〉

= 0 . (7.4)

Here, 〈...〉 denotes the average with respect to the unknown noise distribution P [ξ(t)] while
〈...〉eq denotes the average value in the equilibrium state as introduced above. In order to
determine the second moment of the noise distribution, i. e. the noise correlations, we calculate

〈
v2(t)

〉
= v2(t0)e−2γ(t−t0) +

t∫
t0

ds
t∫

t0

ds′ e−γ(t−s)e−γ(t−s′)
〈
ξ(s)ξ(s′)

〉
. (7.5)

To make further progress, we have to choose an ansatz for the noise correlation function. The
duration of the collisions τc and the memory of the fluid are critical factors. Here, we can
argue that a particle of the fluid that had scattered with the heavy particle experiences a large
number of collisions from particles that where not involved so far. The information about the
first collision is lost after a very short time. Thus, the correlations of the fluctuating force
〈ξ(t)ξ(t′)〉 are only sizable for times |t− t′| < τc. We are only interested in the time evolution
of the Brownian particle on time scales |t− t′| � τc, much larger compared to the correlation
time of the fluctuating force. It is convenient to approximate the temporal correlations by a
δ function. We set 〈ξ(t)ξ(t′)〉 = Aδ(t−t′). The fluid is then regarded as a source of memoryless
or Markovian noise. Under this assumption (7.5) can be evaluated to〈

v2(t)
〉

= v2(t0)e−2γ(t−t0) + A

2γ
(
1− e−2γ(t−t0)

)
. (7.6)

In the long-time limit, i. e. for times much larger than the relaxation time (t− t0)γ � 1, the
term ∝ v2(t0) has decayed. Comparison of the quantities limt→∞ 〈v2(t)〉 = A

2γ and 〈v2〉eq = kBT
m

fixes the noise strength to A = 2γ kBT
m . We find that the fluctuation strength is determined

by the dissipative content in the equation of motion. The relation A ∝ γkBT is an instance
of a fluctuation-dissipation theorem. Kubo showed that such relations generically appear in
the regime of linear response, both in classical and in quantum systems [140–142]. Here, the
linearity enters through the assumed form of the friction force.3 As a result, the Langevin
equation (7.2) with the noise correlations〈

ξ(t)ξ(t′)
〉

= 2γ kBT

m
δ(t− t′) , (7.7)

describes the relaxation of the velocity correctly, i. e. in agreement with the mean and the
fluctuations of the velocity in equilibrium.

So far, we determined the correlation functions 〈ξ(t)〉 and 〈ξ(t)ξ(t′)〉, i. e. the first and the
second moment of the noise distribution P [ξ(t)]. With an additional piece of information,
we can reconstruct the full noise distribution: In thermal equilibrium, the velocity of the
Brownian particle obeys a Gaussian distribution: the Maxwell-Boltzmann distribution Peq(v) ∝
e−v

2/(2 〈v2〉eq). Due to the linearity of the Langevin equation, the fluctuating velocity v(t) and
the fluctuating force are related by a linear transformation. In equilibrium the relation reads as
v(t) =

∫ t
−∞ds e−γ(t−s)ξ(s) with the initial time sent to the infinite past t0 → −∞.4 Therefore,

3Consider a Brownian particle subject to a time-independent external force f . We can quantify its response
to the applied force by a non-zero average velocity 〈v〉 = γ−1f . As long as the external force is sufficiently
small, the linear form of the friction term is appropriate. If the response coefficient γ−1 is unknown, it can be
obtained from the inverted fluctuation-dissipation theorem as γ−1 = 2

A
〈v2〉eq. Therefore, the linear response

〈v〉 to an external drive is expressed by the equilibrium correlations 〈v2〉eq of the same quantity. This is the
basic idea of linear-response theory.

4This just an other way to express the fact that the equilibrium state does not depend on the initial state v(t0).
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the noise distribution P [ξ(t)] must be Gaussian in equilibrium [138]. From the first (7.4) and
the second moment (7.7) the Gaussian distribution is fully determined as

P [ξ(t)] = 1√
2πA

exp
(
−
∫

dt ξ
2(t)
2A

)
, (7.8)

with A = 2γ kBT
m . A stochastic variable distributed according to (7.8) is usually referred to as

Gaussian white noise [137]. The Langevin equation (7.2) can be rewritten in a slightly different
form by factoring out the fluctuating strength as ξ(t) = bW (t) with b =

√
A. The noise term

W (t) is normally distributed according to P [W (t)] = (2π)−1/2 e−
∫
t
W 2(t)/2. The alternative

form of the equation,
∂tv = −γv + bW (t) , (7.9)

is sometimes more appealing since it contains both macroscopic parameters that determine
the time-evolution of v: the friction coefficient γ and the fluctuation strength b. The micro-
scopic input, i. e. the short-ranged correlated noise W (t), appears as “universal” feature for all
Langevin equations.

The velocity in (7.2) or (7.9) is itself a stochastic quantity as its time evolution depends on
the stochastic forces. To emphasize this fact, we denote the solution of the Langevin equation
(7.3) by vξ in the remainder of this section. When a Brownian particle is tracked in an ex-
periment, an irregular motion is observed. However, the Langevin equation does not predict
the individual path or the sequence of the observed velocities. The stochastic force is only
defined by its statistical properties, i. e. by the distribution P [ξ(t)]. The realization of the
stochastic force in a particular experiment is unknown and is obviously not included in the
Langevin description. We have to accept that we can only compare the averaged quantities
to the outcome of the experiment, e. g. 〈vξ〉, 〈v2

ξ 〉, or any observable 〈O(vξ)〉. 〈...〉 denotes
the expectation with respect to the probability distribution P [ξ(t)] as before. The theoretical
quantity vξ alone is meaningless in this sense: Only the averaged values are predicted for a
given experiment, but the observed realizations of vξ are not predicted.5 In an experiment or a
computer simulation, the Brownian particle has to be observed for sufficiently long times and
the time-averaged quantities are then compared to the equilibrium prediction of the Langevin
theory, assuming that the time-average is equivalent to the noise average. Alternatively, one
can track the motion of many Brownian particles under the same conditions and perform an
ensemble average. In this way, the equilibration of the ensemble of particles can be studied.

As implied by the previous paragraph, the expectation value of an arbitrary observable O(v)
can be calculated by inserting the explicit solution vξ into the expression of the given observable.
In the second step, the resulting expression O(vξ) is averaged with respect to the distribution
P [ξ(t)]. Thus, the expectation is given by 〈O(vξ)〉. Alternatively, one can ask for the probability
distribution of the velocity P (v, t). P (v, t)dv is the probability of finding the velocity in the
interval [v, v+dv] at time t. When P (v, t) has been calculated the expectation of any observable
O(v) is obtained without invoking the explicit solution vξ ever again. Both methods are linked
in the following way:

〈
O(vξ)

〉
=

+∞∫
−∞

dv
〈
δ
[
v − vξ(t)

]〉
O(v) ≡

+∞∫
−∞

dv P (v, t)O(v) . (7.10)

Therefore, the probability distribution of the velocity is given by

P (v, t) =
〈
δ
[
v − vξ(t)

]〉
, (7.11)

5The situation is similar in quantum mechanics: Here, a quantum state |ψ〉 and its time evolution are purely
theoretical objects. The connection to an observable O is established by the expectation value 〈ψ|O |ψ〉 of
the corresponding operator in that state.
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7.2 Relaxation of isolated systems close to equilibrium

We know that P (v, t) will approach the Maxwell-Boltzmann distribution for long times t→∞.
The equation of motion of P (v, t) is found to be the Fokker-Planck equation [137, 143]. It can
be cast into the form of a continuity equation of the conserved probability density,

∂tP (v, t) = −∂vJ(v, t) , (7.12)

with the current density

J(v, t) = −γvP (v, t)− A

2 ∂vP (v, t) . (7.13)

The Fokker-Planck equation is derived from the Langevin equation (7.2) with Gaussian white
noise (7.8) in a straightforward manner. A compact derivation of the Fokker-Planck equation
is given in App. B.1. The Maxwell-Boltzmann distribution appears as a stationary solution
as it nullifies the current density. The solution of (7.12) converges to the Maxwell-Boltzmann
distribution in the long time limit for an arbitrary initial distribution P (v, t0), as one should
expect [11, 137].

The general steps of Langevin’s approach can be summarized as follows:

• A macroscopic irreversible law of some quantity v is interpreted as the equation of motion
of 〈vξ〉, the average of a fluctuating quantity vξ.

• In order to construct the Langevin equation of vξ, a noise term ξ is added. The noise cor-
relations are determined such that the correlations (or the full distribution) of equilibrium
fluctuations vξ are reproduced in the long-time limit.

The method is pursued unambiguously for linear macroscopic laws like (7.1). In the subsequent
section, we will show how Langevin’s approach can be applied to the relaxation of isolated sys-
tems close to equilibrium in a very general fashion.

7.2 Relaxation of isolated systems close to equilibrium

The Brownian particle exemplifies a type of fluctuating irreversible dynamics that is also found
in other physical quantities: Further examples of fluctuating quantities are:

• the conserved densities in hydrodynamics [7, 51],

• the single-particle distribution in Boltzmann theory [see Chs. 10,11], and

• the order parameter in the vicinity of a critical point [144].

The first two examples are relevant theories describing the relaxation of systems to equilibrium
as introduced in Ch. 6. Before we discuss these specific examples in Ch. 8 and Ch. 10, we
consider the fluctuations in an isolated thermodynamic system close to equilibrium. The linear
theory of “fluctuations and irreversible processes” reviewed here was worked out by Onsager
and Machlup [120–123]. Our discussion is mainly inspired by the first two sections of Ref. [122]:
We adopt the notion that the fluctuations of macroscopic variables are controlled by the en-
tropy and that the dynamics of these variables is described by a Langevin equation. We also
use their definition of thermodynamic forces. However, our discussion of the Langevin theory
proceeds independently of Ref. [122]: We start with two different interpretations of the Second
Law of thermodynamics by Gibbs and by Planck. Based on these interpretations, we conclude
that the Langevin equation is derived from the condition of vanishing entropy production in
equilibrium. In particular, in Sec. 7.2.2, we show how the Langevin theory can be derived from
few assumption on the equilibrium correlation functions. In Sec. 7.2.3, we add a derivation of

87
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the fluctuation-dissipation theorem in the spirit of Sec. 7.1. The benefit of the general treat-
ment is that it can be applied to any irreversible description of the relaxation process. We
will become more concrete in the subsequent sections. An extension of Onsager’s theory to
nonlinear hydrodynamic equations and non-equilibrium steady-states was proposed by Bertini
et al. [145, 146], but will not be considered here.

The final goal of the relaxation process is a macroscopic equilibrium state. Thus, we start our
discussion with the thermodynamics of equilibrium states. We then follow the guide of the
Second Law of thermodynamics in order to introduce dynamics into that static theory.

7.2.1 Basic principles

Equilibrium thermodynamics (or thermostatics) is concerned with macroscopic systems in ther-
modynamic equilibrium states. The equilibrium state is fully determined by the set of conserved
quantities or conserved charges

C = (C1, ..., Cm) , (7.14)

e. g. the total energy C1 = E or the total particle number C2 = N . The quantities C are regarded
as “conserved” if the change is exactly given by the exchange with the environment, e. g. by
performing work or by heating the system. If the system is isolated from its environment,
C are constant in time. Therefore, C serve as equilibrium state coordinates in equilibrium
thermodynamics. The total energy E is an equilibrium state coordinate for all thermodynamic
systems, i. e. the energy is conserved. This is the content of the First Law of thermodynamics
[76]. The Second Law of thermodynamics combines two statements: The first part postulates
the existence of an extensive function of state, the entropy S(C). According to the statistical
interpretation of thermodynamics brought up by Boltzmann [147], the entropy measures the
number of microscopic realizationsN (C) compatible with the constraints set by C: The entropy,
defined by

S(C) = kB log
[
N (C)

]
, (7.15)

is the basis of statistical mechanics and the so-called microcanonical representation [76]. The
Boltzmann constant kB brings in the unit of entropy and defines the typical entropy scale. The
fundamental assumption behind (7.15) is that the system rapidly passes through all accessible
microscopic configurations in a way that every microstate occurs with the same probability
when the system is observed for a long time period. The details about the microscopic dynamics
are not relevant as long as a “statistical equilibrium” [121] is established by this mechanism. The
number of conserved quantities or constraints m is assumed to be very small compared to the
accessible microscopic states. The second part of the Second Law of thermodynamics appears
in many different ways in literature, see Refs. [77, 148] for an overview. A very influential
formulation by Planck connects the increase of entropy to the irreversibility of processes,

“Every process occurring in nature proceeds in the sense in which the sum of
entropies of all bodies taking part in the process is increased.” [75].6

For isolated systems, it states that internal irreversible processes increase the entropy of that
system. In marked contrast, Gibbs proposed a variational principle which directly draws on
the concept of equilibrium states without reference to processes,

“For the equilibrium state of any isolated system it is necessary and sufficient
that all possible variations of state of the system which do not alter its energy
[or conserved quantities C], the variation of its entropy shall either vanish or be
negative.” [78]

6English translation is taken from Ref. [77].
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We may take the liberty of generalizing Gibbs’s principle and replace the conservation of “en-
ergy” by a set of conserved quantities C. Following Gibbs, the stable equilibrium state realized
in nature is selected by the principle of maximum entropy. A very modest interpretation re-
gards the variation as purely virtual as it is done for the principle of least action in classical
mechanics [77]. Due to a more ambitious interpretation shared by Onsager those variations of
state can be produced by physical processes, thereby, realizing non-equilibrium states. In this
sense, Gibbs’s principle makes a statement beyond equilibrium thermodynamics as it compares
the entropy of equilibrium and non-equilibrium states of an isolated system. In the following
we adopt the latter interpretation.

Macroscopic states and their fluctuations We consider a macroscopic system in a state
slightly distorted from its thermodynamic equilibrium state. In order to define the non-
equilibrium state, we introduce non-equilibrium state coordinates,

X = (X1, ...Xn) , (7.16)

measuring the distance from the reference equilibrium state. The generalizedmacroscopic state
of the system is now given by the pair (C,X ). We define the equilibrium state as (C,X = 0)
with X ≡ (X1 = 0, ...,Xn = 0) in our coordinate system. In contrast to the conserved quantities
C, the non-equilibrium displacement X will change in time. The number of non-equilibrium
modes n can be large compared to the number of conserved quantities m, but not macroscop-
ically large: X describes a macroscopic state of the system, in a similar fashion as C. The
description in terms of (C,X ) is remains to be incomplete from a microscopic point of view
as the macroscopic state is realized by a large number ∼ 1023 of microscopic configurations.
Thus, Boltzmann’s principle (7.15) is still applicable.

We extent the definition of the microcanonical entropy (7.15) to the space of non-equilibrium
states by writing

S(C,X ) = kB log
[
N (C,X )

]
. (7.17)

N (C,X ) is the number of microscopic realizations of macroscopic state (C,X ).7 For an
isolated system, the value of C are fixed, but the system may explore non-equilibrium states
X 6= 0 when passing through all accessible microstates. However, one should expect that
the equilibrium state X = 0 is realized by almost all microscopic configurations and large
deviations are extremely unlikely to occur. It follows that the entropy reaches its maximal
value S0(C) ≡ S(C,X = 0) in the equilibrium state and drops exceedingly fast for X 6= 0, in
accordance with our interpretation of Gibbs’s principle. It was pointed out by Einstein that a
relation like (7.17) is meaningless without resort to a microscopic theory which allows to count
the number of microstates N (C,X ). Still, (7.17) can be inverted,

N (C,X ) = eS(C,X )/kB , (7.18)

and the statistical properties of the system may be deduced, given that the entropy function
is known [126]. The probability P (X |C) of finding the system in state X under the constraint
of C can be estimated by the ratio

P (X |C) = N (C,X )
Ntot(C) = const.× e[S(C,X )−S0(C)]/kB , (7.19)

where Ntot(C) is the total number of microstates compatible with the conserved quantities C.
The normalization constant has to be very close to 1 since large deviations from equilibrium are
7The definition of the non-equilibrium entropy in (7.17), also used as a starting point in Ref. [122], was already
introduced by Einstein [126].
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very improbable. For a continuous variable X , we require the probability density p(X |C). The
expression p(X |C)dnX ≈ e[S(C,X )−S0(C)]/kBdnX is an acceptable estimate for the probability
of finding the system in an infinitesimal region of size dnX .8 (7.19) tells us that states X
with sizable deviations from the maximum entropy S(C,X )− S0(C) & kB are very unlikely to
occur.9 As we only consider small deviations from equilibrium with ∆S < kB, it is sufficient
to expand10 S(X ,C) about the equilibrium state to the lowest order in X ,

S(C,X )− S0(C) = −1
2
∑
ij

[C−1]ijXiXj +O(X 3) . (7.20)

The matrix C−1 ∈ Rn×n is symmetric and positive definite. The latter property is required to
ensures the stability of the equilibrium state as postulated by Gibbs’s principle. Furthermore,
the matrix is a function of the conserved quantities C. The expansion of the entropy (7.20) is
equivalent to the Gaussian approximation applied to the probability distribution:

p(X |C) ∝ exp

− 1
2kB

∑
ij

[C−1]ijXiXj

 . (7.21)

Our analysis implies that Gibbs’s “variations of the state” occur spontaneously and the fluctu-
ations about the equilibrium state are controlled by a Gaussian distribution. The correlations
of the fluctuations are given by kBCij = 〈XiXj〉 = 〈XjXi〉 = kBCji. 〈...〉 denotes the expecta-
tion with respect to the distribution (7.21). The equilibrium expectation 〈Xi〉 = 0 follows from
our choice of the coordinate system.

Since the state variables X fluctuate, all observables depending on them must fluctuate about
their equilibrium values. This is also true for the entropy itself. For the equilibrium expectation
of the entropy, we obtain〈

S(C,X )
〉
− S0(C) = −1

2
∑
ij

C−1
ij 〈XiXj〉 = −kB

2 Tr1n = −nkB
2 , (7.22)

with n the number of non-equilibrium modes. We note that the fluctuations of X reduce the
expectation of the equilibrium entropy. Expressed in the unit of the Boltzmann constant each
non-equilibrium mode contributes −kB

2 , a result which is very reminiscent of the equipartition
theorem in classical statistical mechanics. We also find that the magnitude of the fluctuations
about the mean entropy 〈S(C,X )〉 is〈[

S(C,X )−
〈
S(C,X )

〉]2
〉

= 1
4
∑
ijkl

C−1
ij C

−1
kl

(
〈XiXjXkXl〉 − 〈XiXj〉 〈XkXl〉

)
= nk2

B
2 .

(7.23)
We employed Wick’s theorem, using the Gaussian approximation. The relative magnitude of
entropy fluctuations decays as (〈S2〉−〈S〉2)1/2

〈S〉 ∝ n−1/2 such that fluctuations are less pronounced
if many non-equilibrium modes contribute. However, the entropy itself does not fluctuate about
its maximal value S0, but about the reduced value S0 − kBn

2 . The reduction of entropy (7.22)
was also noted in Ref. [125].

8By performing the limiting procedure for small regions, we obtain the expression p(X |C)dnX =
P (X |C)
(∆X )n (∆X )n ≈ const. × e[S(C,X )−S0(C)]/kB−n log(∆X )dnX . Even if ∆X is very small, well below the res-
olution of an experiment, the exponential relation ensures that the entropy acquires a negligible correction,
i. e. log(∆X ) does not change the order of magnitude of the exponent [126].

9The Planck constant h plays a similar role in quantum mechanics: While kB controls the smallness of thermal
fluctuations, h controls the smallness of quantum fluctuations.

10We assume that the entropy is an analytic function of X .
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7.2 Relaxation of isolated systems close to equilibrium

In the remainder of this section we will simplify our notation and suppress the dependence of
the entropy on C. We will also neglect the trivial shift S0. From now on and in all subsequent
chapters, we will use units of kB = 1.

Irreversible dynamics and entropy production So far, we considered fluctuations about
the equilibrium state into non-equilibrium states X 6= 0, which was inspired by Gibbs’s prin-
ciple. Now, we want to pursue Planck’s view on the irreversible content of the Second Law:
For an isolated system irreversible processes increase the entropy. The description of a process
P adds a dynamical element to the theory. It requires an additional time coordinate t which
parameterizes the sequence of states, P = {X (t) : t ≥ t0}, the system passes through in the
process. X (t0) denotes the initial state of the process. The maximum entropy is reached in
the equilibrium state X = 0. As a consequence, irreversible processes eventually recover the
equilibrium state lim

t→∞
X (t) = 0, a process we referred to as relaxation in Ch. 6. In contrast,

Gibbs’s principle does not make a statement about the time evolution of states and does not
contain a time coordinate.

We want to describe the relaxation towards the equilibrium state by setting up an equation of
motion for X (t). The essential prerequisite of attaching a time coordinate is that X can be
regarded as an “incomplete” equilibrium state, established on a short time scale before X (t)
relaxes to the “complete” equilibrium X = 0 on a much longer time scale [7]. After comple-
tion of this earlier stage of relaxation, the non-equilibrium content of the state is completely
determined by the macroscopic variable X . Hence, it is natural to assume that the relaxation
rates are given by a macroscopic law of the form Ẋi = ai(X ). Before we proceed it worthwhile
recalling how irreversibility is reflected by the absence of time-reversal symmetry [77]: The
process P and the reversed process P−1 = {RX (−t), t ≤ −t0} are allowed if the equation of
motion is invariant under the time-reversal transformation t → −t, X → RX . R denotes
the time-reversal operator acting on the state variable X . P and P−1 are equivalent in this
sense. However, if the process P is irreversible, the reversed process P−1 has to be excluded
by our theory. Therefore, we require that the equation of motion is not time-reversal invariant
in order to make this distinction. In this thesis, we limit ourselves to the following situations:

• The systems under consideration are described by state variables which are invariant
under time-reversal, i. e. RX = X . In Ch. 8, we discuss the examples of the parti-
cle number density and the energy density which fall into this class of variables. The
momentum density represents a counterexample as momentum changes sign under time-
reversal, Rp = −p.11

• Furthermore, we focus on small displacements from equilibrium. The smallness of X
allows us to expand the functions ai(X ) to leading order in X . The zeroth order vanishes
since equilibrium X = 0 is a stationary state with Ẋ = 0. We assume that the linear
order is the leading contribution.

Under these assumptions, the macroscopic law can be written in the form

Ẋi = −
∑
j

DijXj . (7.24)

Given that D ∈ Rn×n is positive definite, (7.24) describes the relaxation to the equilibrium
state X = 0. In contrast to the symmetric correlation matrix C of the previous paragraph, D
does not possess any symmetry properties. It is easily seen that (7.24) is not invariant under
a time-reversal transformation as Ẋ TR−−→ −Ẋ , but X TR−−→ X . Due to the lack of time-reversal
11If we think of the macroscopic state variables as being derived from a microscopic theory, we allow for state

variables with are even functions of the particle momenta and exclude those which are odd functions.
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symmetry, the reversed process (the departure from equilibrium) can be excluded from this
theory.

In order to derive a macroscopic equation of motion Onsager and Machlup [122] argued that the
relaxation is driven by the gradients of the entropy landscape, which they called thermodynamic
forces:

Fi = −∂S(X )
∂Xi

. (7.25)

The “restoring forces” vanish if the equilibrium state X = 0 is reached. Furthermore, they
assumed that a linear relation between the relaxation rates (which they refer to as “fluxes”)
and the thermodynamic forces:

Ẋi = −
∑
j

LijFj . (7.26)

The expansion of the entropy (7.20) leads to Fi =
∑
j [C−1]ijXj implying the identity

L = DC . (7.27)

Finally, we consider the entropy production rate to check the consistency of the macroscopic
laws (7.24), (7.26) with the Planckian view on the Second Law: The temporal derivative of
(7.20) yields

Ṡ(X ) = −
∑
i

ẊiFi = +
∑
ij

FiLijFj . (7.28)

The benefit from this line is twofold: The first identity states that entropy production rate
is the inner product of the relaxation rates Ẋi and the conjugate thermodynamic forces Fi.
Therefore, we gain an alternative way of determining Fi by factoring out Ẋi in the entropy
production rate. The second identity shows that the entropy production rate is a quadratic
form of the thermodynamic forces. It follows that L = DC has to be positive definite in or-
der to satisfy Planck’s relation between the increase of entropy Ṡ > 0 and irreversible processes.

The existence of a macroscopic law like (7.24) can be regarded as an “extra-thermodynamic
hypothesis” [125]. Still, the irreversibility on macroscopic scales can be understood by a statis-
tical argument by taking the microscopic point of view [126]: Consider a system initialized in
a macroscopic state X 0 with a number of N (X 0) microscopic realizations. The system passes
through these microstates on very short time scales, but also explores the vicinity of X 0 since
the initial condition X 0 does not impose constraints for the dynamics. Most of the adjacent
macroscopic states are realized by a number of microstates of the same order as N (X 0). But
one of these states, X 1, peaks out since N (X 1) exceeds N (X 0) by an order of magnitude,
N (X 1)/N (X 0) = e∆S/kB � 1. After short time, we will find the system in state X 1 with over-
whelming probability. The exponential relation tells us that the order-of-magnitude difference
appears for states with ∆S > kB. Thus, we expect that time-reversal symmetry is broken on
macroscopic time scales and that the system will evolve towards the maximum entropy state
X = 0. The macroscopic law (7.24) describes this trend by the phenomenological coefficient
D.

7.2.2 Langevin equation I: unequal-times correlation functions

In the precedent paragraphs of Sec. 7.2, we discussed the fluctuations 〈XiXj〉 and the irre-
versible dynamics of the macroscopic state X (t) separately. Now, we want to combine both
ideas. We find ourselves in a conceptually equivalent situation to that of Brownian motion: We
do not track the full microscopic dynamics, but focus on a small subset of macroscopic quan-
tities X . The rapid transitions between the microscopic states lead to a damping effect. The
most probable transition entails the relaxation towards the macroscopic equilibrium state. But
this is only true on average. Besides this main tendency, further microscopic transitions occur
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7.2 Relaxation of isolated systems close to equilibrium

that induce spontaneous fluctuations of the macroscopic state. As long as the displacement
X (t) is large compared to the range of fluctuations (〈X 2

i 〉)1/2, the description of the average
behavior in terms of the macroscopic law (7.24) may be sufficient. But if X (t) eventually enters
the regime of spontaneous fluctuations (7.21) requires modification. In Sec. 7.1, we saw that
fluctuations and damping are then tied together by a fluctuation-dissipation theorem.

In terms of formulae (the equation of motion and the correlation function 〈XiXj〉) there is com-
plete agreement between the description of Brownian motion and the behavior of macroscopic
states. Thus, we can perform the steps of the Langevin approach directly as summarized at the
end of Sec. 7.1: We add a noise term ξ to (7.24) and determine the noise correlation function by
the fluctuation-dissipation relation which emerges in the long-time limit. In doing so, we have
to solve the Langevin equation explicitly as in Sec. 7.1. We will postpone this procedure to the
next paragraph. First, we will present a method of deriving the Langevin equation without
resorting to the explicit solution: We will derive the Langevin equation from the properties of
the correlation functions in equilibrium and from consistency considerations. The benefit of
this method is that we see more clearly what principles are operative.

The equal-times correlations of state 〈XiXj〉 ≡ 〈Xi(t)Xj(t)〉 are fully determined by their
distribution (7.21). By adding an equation of motion, unequal-times correlation functions
〈Xi(t+ ∆t)Xj(t)〉 will necessarily become important. In deriving correlation functions from
consistency considerations, we will use the following properties:

• The correlation functions are time-translation invariant. They only depend on the relative-
time coordinate, i. e. 〈Xi(t+ ∆t)Xj(t)〉 ≡ Cij(∆t). The dependence on the absolute time
t is excluded as the equilibrium state is a stationary state.

• Furthermore, we draw on the notion of microscopic reversibility [120, 121]: We assume
that the fundamental theory of the microscopic constituents is symmetric under a time-
reversal transformation. If we observe that the macroscopic state Xi(t) = Y1 is followed
by Xj(t + ∆t) = Y2 after some time ∆t, we should expect that we observe the reversed
process [Xj(t) = Y2 followed by Xi(t + ∆t) = Y1 after the same time ∆t] with the same
frequency. In other words: The correlation functions of X are time-reversal invariant,
Cij(−∆t) = Cij(∆t).

• The fast microscopic modes enter the macroscopic description as fluctuating forces or
noise ξi(t). As the dynamics of the fast modes happens on a very short time scale
compared to the slow evolution of the macroscopic variables Xi, we argue that the noise
correlations are very short-ranged in time and can be approximated as 〈ξi(t+ ∆t)ξj(t)〉 ∝
δ(∆t).

• Soon we will be confronted with cross-correlations between fluctuating forces ξi and the
state coordinates Xj . Causality requires that 〈ξi(t)Xj(t+ ∆t)〉 ∝ θ(∆t), i. e. the force
ξi(t) cannot be the cause of a fluctuation Xj(t−∆t) with ∆t > 0 in the past.

• As an important consequence of time-translation invariance, the derivatives with respect
to the absolute-time coordinate vanish. In particular, the entropy production rate vanishes
on average, 〈Ṡ(X )〉 = 0.

It is instructive to calculate the equilibrium expectation of the entropy production rate using
the irreversible equation of motion (7.24):〈

Ṡ(X )
〉

= −
∑
ij

C−1
ij 〈ẊiXj〉 =

∑
ijk

C−1
ij Dik 〈XkXj〉 = Tr(D) > 0 . (7.29)

At this point, we clearly see that the joint theory of fluctuations (7.21) and the irreversible
equation of motion (7.24) is inconsistent since the entropy production must vanish in equi-
librium. The reason is that the equation of motion only describes the relaxation towards the
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maximum-entropy state X = 0 at a rate of Tr(D). However, it does not contain the sponta-
neous fluctuations of X which lead to the distribution of states in (7.21). We conclude that
there must be compensating counter forces which actively drive the system away from equilib-
rium and, thereby, lower the entropy. The inconsistency can be healed by adding fluctuating
counter forces ξi on the right-hand side. We arrive at the multidimensional generalization of
the Langevin equation introduced in Sec. 7.1:

Ẋi = −
∑
j

DijXj + ξi . (7.30)

The crucial assumption in combing the fluctuations and the irreversible equation of motion
is that the displacements X 6= 0, generated by the fluctuating forces ξ, relax according to the
same macroscopic law as if displaced by external manipulation [121]. Our alternative view in
Sec. 7.1 was that in the presence of fluctuations the macroscopic laws have to be regarded as
equations for averaged quantities in the first place. In addition, we assume that the range of
fluctuations is smaller than (or at most equal in size to) the range of validity of the linearized
macroscopic law. As we argued below (7.19), deviations from the average behavior are very
rare if they exceed the range of spontaneous fluctuations set by kB. Therefore, the fluctuating
forces ξi may be neglected as long as 〈Xi(t)〉 � (〈X2

i 〉)1/2. In this case, we are back to (7.24).
As a consequence, entropy increases with the rate given by (7.29) until the regime of sponta-
neous fluctuations is reached.

First, we note that averaging (7.30), ˙〈Xi〉 = −
∑
j Dij 〈Xj〉+〈ξi〉, enforces 〈ξ〉 = 0 since 〈Xj〉 = 0

(and therefore ˙〈Xi〉 = 0) in equilibrium. Inserting the Langevin equation (7.30) into 〈Ṡ(X )〉,
the entropy production rate acquires an extra contribution ∼ 〈ξiXj〉,〈

Ṡ(X )
〉

= −
∑
ij

C−1
ij 〈ẊiXj〉 = Tr(D)−

∑
ij

C−1
ij 〈ξiXj〉 . (7.31)

Our next goal is to determine the cross-correlation function such that the entropy production
is balanced as illustrated in Fig. 7.2. The vanishing of 〈Ṡ(X )〉 is a consequence of the fact that

0 = dCij
dt = d

dt 〈Xi(t)Xj(t)〉 = 〈ẊiXj〉+ 〈XiẊj〉 . (7.32)

This essential equilibrium condition is simplified in presence of time-reversal symmetry: To
show that, let us perform a time-reversal transformation ∆t→ −∆t to the correlation function
Cij(∆t):

Cij(−∆t) = 〈Xi(t−∆t)Xj(t)〉
t→t+∆t= 〈Xj(t+ ∆t)Xi(t)〉 = Cji(∆t) . (7.33)

We observe that the composite transformation of time-reversal and transpose operation is a
symmetry transformation in the most general case. If the equilibrium state is time reversal
symmetric it holds that

Cij(∆t) = Cij(−∆t) = Cji(∆t) . (7.34)

Both, time-reversal and the transpose operation, are symmetry transformations in this case.12
The derivative of (7.34) with respect to ∆t is

〈Ẋi(t+ ∆t)Xj(t)〉 =
〈
Ẋj(t+ ∆t)Xi(t)

〉
. (7.35)

12In presence of an external magnetic field, the time-reversal transformation also includes the inversion of the
magnetic field, B → −B. (7.34) becomes Cij(∆t,B) = Cij(−∆t,−B) = Cji(∆t,−B). We do not consider
this case here.
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7.2 Relaxation of isolated systems close to equilibrium

Fig. 7.2: Fluctuations of the entropy S(X ) The maximum value of the entropy is reduced by
−nkB

2 on average by the fluctuations of n non-equilibrium modes Xi. The equilibrium
value results from a balance between entropy production by dissipation ∼ −D 〈X2〉
and the reduction of entropy by fluctuating forces ∼ 〈ξX〉. The dashed vertical lines
indicate the range of fluctuations of Xi.

Performing the limit ∆t→ 0 yields 〈ẊiXj〉 = 〈ẊjXi〉. Therefore, (7.32) simplifies to 〈ẊiXj〉 =
0. The equal-times cross-correlations are determined by the condition

0 = 〈ẊiXj〉 = −
∑
k

Dik 〈XkXj〉+ 〈ξiXj〉 = −[DC]ij + 〈ξiXj〉 . (7.36)

As a result, the problem of finite entropy production (7.29) is resolved. In conclusion, a
macroscopic irreversible equation of motion must include a fluctuating term to be consistent
with equilibrium thermodynamics.

The Langevin description would be incomplete without knowledge about the noise correlation
function 〈ξi(t)ξj(t+ ∆t)〉. In order to derive its form, we extrapolate the equal-times results
using the principle of causality for the cross-correlation function and short-rangedness for the
noise correlation function. Causality suggest the ansatz 〈ξi(t)Xj(t+ ∆t)〉 = θ(∆t)fij(∆t).
From the equal-times correlation function (7.36) follows that fij(0) = 2[DC]ij .13 The deriva-
tive with respect to ∆t can be written in two ways: On the one hand, our ansatz yields
〈ξi(t)Ẋ (t+ ∆t)〉 = θ(∆t)f ′ij(∆t)+fij(0)δ(∆t). Alternatively, we can insert the Langevin equa-
tion and obtain 〈ξi(t)Ẋ (t+ ∆t)〉 = −θ(∆t)

∑
kDikfkj(∆t) + 〈ξi(t)ξj(t+ ∆t)〉. From these

identities, we read off the expression for the noise correlation function,

〈ξi(t)ξj(t+ ∆t)〉 = θ(∆t)

f ′ij(∆t) +
∑
k

Dikfkj(∆t)

+ 2[DC]ijδ(∆t) . (7.37)

Here, we demand that 〈ξi(t)ξj(t+ ∆t)〉 is δ correlated on macroscopic time scales. The vio-
lating term ∝ θ(∆t) vanishes for fij(∆t) =

∑
k[e−D∆t]ikfkj(0).14 This leads to the conclusion

that L = DC is the noise correlation matrix and, thus, has to be symmetric. The symmetry of
L is the content of the famous reciprocal relations found by Onsager [120, 121]. In the language
of thermodynamic forces (7.25)–(7.28), it states that the force Fj (conjugate to the variable
13We define θ(t) =

∫ t
−∞d t′δ(t′) with θ(0) = 1

2 .
14eX =

∑∞
p=0

Xp

p! denotes the matrix exponential.
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Xj) causes the same change in Xi as the force Fi in Xj since they share the same kinetic coeffi-
cients, Lij = Lji. The reciprocal relations explain the existence of thermalelectric effects [76].
In the context of our work, we refer to L as the noise correlation matrix. Similarly, we can also
derive the unequal-times correlations of state Cij(∆t) = 〈Xi(t+ ∆t)Xj(t)〉 from its temporal
derivative for ∆t 6= 0,

C ′ij(∆t) = −
∑
k

Dik 〈Ẋk(t+ ∆t)Xj(t)〉+ 〈ξi(t+ ∆t)Xj(t)〉

= −
∑
k

DikCkj(∆t) + θ(−∆t)fij(−∆t) .
(7.38)

Unlike in (7.36), we do not consider the limit ∆t → 0. For ∆t > 0, the contribution of the
inhomogeneity of the differential equation ∝ θ(−∆t) vanishes. Extrapolation to the equal-
times result C(∆t→ 0+) ≡ C leads to C(∆t ≥ 0) = e−D∆tC. Finally, time-reversal symmetry
C(−∆t) = C(∆t) fixes the correlation function for ∆t < 0, C(∆t) = e−D|∆t|C.15 The case of
∆t = 0 was covered by (7.36).

In summary, we obtain the following unequal-times correlation functions:

〈ξi(t)Xj(t+ ∆t)〉 = 2θ(∆t)
∑
k

[
e−D∆t

]
ik

[
DC

]
kj ,

〈ξi(t)ξj(t+ ∆t)〉 = 2
[
DC

]
ij δ(∆t) ,

〈Xi(t)Xj(t+ ∆t)〉 =
∑
k

[
e−D|∆t|

]
ik
Ckj .

(7.39)

Similar to our discussion of Brownian motion, the fluctuating forces ξ are not strictly δ cor-
related. The noise correlation function is broadened on a small time scale τc, related to the
formation of the “incomplete equilibrium” X [7]. The non-analytic cusp of C(∆t) at ∆t = 0
is smeared out on this time scale, respectively. As variations of state X (t) evolve on much
larger time scales set by D−1, the limit τc → 0 is taken for convenience. We can find an upper
limit for τc using that 〈ẊiẊj〉 = −(DL)ij + 〈ξiξj〉. The non-negativity of 〈Ẋ 2

i 〉 implies that
〈ξ2
i 〉 ≥ (DL)ii. The temporal correlations are now described by 〈ξ2

i 〉 = Liiδτc(∆t = 0) with
δτc broadened on the scale τc. It follows that the correlation time has to be at least as small
as τc . Tr(L)/Tr(DL). As a result, the short-rangedness of noise correlations τc → 0 fits
consistently into the macroscopic theory. τc > 0 also implies that the cross-correlation function
〈ξi(t)Xj(t+ ∆t)〉 in (7.39) is finite for −τc/2 . ∆t < 0, i. e. the system pretends to react to
a noise event from the future. The principle of causality is softened on the time scale ∼ τc.
The reason is that there can be a noise event ξi(t0) at time t0 which affects the state Xj(t1) at
time t1 > t0, but is also correlated with a late noise event ξi(t2) with t0 < t1 < t2. Hence, the
resulting correlation between Xj(t1) and ξi(t2) is due to their individual correlations with the
initial noise event ξi(t0).

The specification of the correlation function 〈ξi(t)ξj(t+ ∆t)〉 in (7.39) concludes our description
of the relaxation process. In the next paragraph, we turn to the explicit solution of the Langevin
equation (7.30) which we will construct by decoupling the non-equilibrium modes Xi.

7.2.3 Langevin equation II: decoupling of modes and buildup of equilibrium
correlations

In this last section, we follow the steps of the Langevin approach that we developed in Sec. 7.1,
i. e. we solve the Langevin equation (for given ξ) and consider the long-time limit of the cor-
relation functions. We re-derive the result that we obtained by considering the properties of
15The result can be checked for ∆t 6= 0 using the explicit expressions C′(∆t) = sign(∆t)e−D|∆t|DC and

f(∆t) = 2e−D∆tDC. C(∆t) is non-analytic at ∆t = 0, i. e. C′(0) is ill-defined.
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unequal-times correlation functions in equilibrium. As a bonus, we learn how the equilibrium
correlations 〈Xi(t)Xj(t+ ∆t)〉 build up as functions of the absolute-time coordinate t.

Our first goal is to decouple the modes i of the Langevin equation (7.30). Although the matrixD
is not symmetric, we realize that it can be symmetrized in case of time-reversal symmetry. This
allows us to diagonalize the symmetric matrix D̃ by an orthogonal transformation. According
to Onsager’s reciprocal relations time-reversal symmetry implies that L = DC is symmetric
or DC = (DC)T [see text below (7.37)]. Multiplying this matrix equation by C−

1
2 gives

C−
1
2DC

1
2 = (C−

1
2DC

1
2 )T , i. e. the matrix

D̃ ≡ C−
1
2DC

1
2 (7.40)

is symmetric.16 This observation motivates the following change of basis:

Xi =
∑
j

(C
1
2 )ijX̃j , ξi =

∑
j

(C
1
2 )ij ξ̃j . (7.41)

After this transformation the modes X̃ are coupled by the symmetric matrix D̃. Due to its
symmetry D̃, is diagonalized by an orthogonal matrix U−1 = UT with UT D̃U = diag(d1, ..., dn).
Therefore, the subsequent transformation

X̃i =
∑
a

UiaXa , ξ̃i =
∑
a

Uiaξa , (7.42)

eventually decouples the modes. In summary, we find that in case of time-reversal symmetry
the non-symmetric matrixD is diagonalized byM ≡ C

1
2U ,M−1DM = diag(d1, ..., dn). da > 0,

1 ≤ a ≤ n, are the eigenvalues of D̃ and D. In order to decouple the modes in the Langevin
equation we have to perform the total base change:

Xi =
∑
a

MiaXa , ξi =
∑
a

Miaξa . (7.43)

Here and in the following equations, we use the indices a, b, ... if we refer to the eigenbasis of
D while indices i, j, ... indicate the original basis. As a result, we obtain n decoupled Langevin
equations,

Ẋa = −daXa + ξa . (7.44)

The equilibrium fluctuations of the new state variables Xa are given by〈
XaXb

〉
=

∑
ij

M−1
ai M

−1
bj 〈XiXj〉 =

∑
ij

(C
1
2U)−1

ai (C
1
2U)−1

bj Cij = δab . (7.45)

The first moment 〈Xa〉 = M−1
ai 〈Xi〉 = 0 trivially vanishes as 〈Xi〉 = 0. We observe that time-

reversal symmetry allows us to simultaneously diagonalize the matrix of damping coefficients
D and the equilibrium correlation matrix C.

The decoupled Langevin equations are solved by means of the Green’s function method in the
same fashion as the Langevin equation of the Brownian particle (7.2). The solution of (7.44)
reads as

Xa(t) = Xa(0)e−dat +
t∫

0

dsGa(t, s)ξa(s) = Xa(0)e−dat + e−dat
t∫

0

ds edasξa(s) . (7.46)

16The square-rooted matrix C 1
2 has the property C 1

2C
1
2 = C. C 1

2 is well defined since C is symmetric and
positive definite. Hence, STCS = diag(c1, ..., cn), ci > 0, with an orthogonal matrix S. The square-rooted
matrix can be constructed as C 1

2 = S diag(√c1, ...,
√
cn)ST . Obviously, C 1

2 is again symmetric and positive
definite. The negative exponent indicates its inverse, C− 1

2 ≡ (C 1
2 )−1.
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7 Macroscopic Theory of Fluctuations and Irreversible Processes

The principle of causality is operative through the choice of the retarded Green’s function,
Ga(t1, t2) = θ(t1 − t2)e−da(t1−t2). We chose the time-evolution to start at t = 0. We can re-
late the initial time to the onset of fluctuations during the time evolution: For earlier times
t . 0 the displacement Xa(t) exceeds the range of spontaneous fluctuations described by the
Gaussian distribution (7.21). Later, for t & 0, Xa(t) has relaxed to such an extent that it falls
within the range of spontaneous fluctuations. Being a remnant of the formation of the macro-
scopic state, the initial fluctuations 〈Xa(0)Xb(0 + ∆t)〉, however, will differ from its Gaussian
equilibrium form (7.21). Thus, the initial correlation have to be calculated from a microscopic
model of the system which is also valid in the early stages of the relaxation process. From
time t = 0 on, Xa(t) experiences significant drive by the fluctuating forces ξa and they start to
imprint the equilibrium correlations on Xa(t).17 Under permanent action of ξa, the fluctuations
〈Xa(t)Xb(t+ ∆t)〉 will relax to their equilibrium value following (7.46).

We can also reverse the relationship between state and noise as we did in Sec. 7.1: We de-
mand that the correlations of state match their equilibrium form (7.45) in the long-time limit,
〈Xa(t)Xb(t)〉 |t→∞

!= δab in order to determine the noise correlation function 〈ξa(t1)ξb(t2)〉. As
the modes are decoupled in (7.45), it is obvious that 〈ξa(t1)ξb(t2)〉 ∝ δab. We draw the addi-
tional knowledge about the temporal correlations from the previous section: The noise correla-
tions are time-translation symmetric and short-range in time. Also from a mathematical point
of view, white noise, 〈

ξa(t1)ξb(t2)
〉

= Aa δab δ(t1 − t2) , (7.47)

is the most practical choice. The noise strength Aa remains to be determined from the long-
time limit. For the state correlation function, we obtain:〈
Xa(t1)Xb(t2)

〉
=

〈
Xa(0)Xb(0)

〉
e−dat1e−dbt2

+ e−dat1e−dbt2
t1∫

0

ds1

t2∫
0

ds2 edas1+dbs2
〈
ξa(s1)ξb(s2)

〉

=
〈
Xa(0)Xb(0)

〉
e−dat1e−dbt2 + Aa δab e−da(t1+t2) e2da min(t1,t2) − 1

2da

=
(〈
Xa(0)Xb(0)

〉
e−dat1e−dbt2 − δab e−da(t1+t2) Aa

2da

)

+ δab
Aa
2da

e−da|t1−t2| .

(7.48)

We used that time integrals with 〈Xa(0)ξ(s)〉 ∝ θ(−s) vanish due to the causality princi-
ple. Aiming at equilibrium correlations, we consider the limit of the absolute-time coordinate
t1 + t2 → ∞ while keeping the relative-time coordinate ∆t ≡ t1 − t2 fixed. For ∆t = 0, the
equal-times correlation approaches 〈Xa(t)Xb(t)〉 |t→∞ = Aa

2da . Comparison with (7.45) leads to
the fluctuation-dissipation relation Aa = 2da or〈

ξa(t1)ξb(t2)
〉

= 2da δab δ(t1 − t2) . (7.49)

After reinserting this result into (7.48), we read off how the initial fluctuation decay and the
equilibrium fluctuations build up, where the spontaneous fluctuations are driven by the noise
term:〈
Xa(t1)Xb(t2)

〉
=

(〈
Xa(0)Xb(0)

〉
e−dat1e−dbt2 − δab e−da(t1+t2)

)
+ δab e−da|t1−t2| . (7.50)

17The instantaneous switching on of noise ξa at t = 0 is a simplification. We should rather think of a smooth
crossover to the fluctuating regime.
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7.2 Relaxation of isolated systems close to equilibrium

In particular, we reproduce the limit of the unequal-times equilibrium correlations of (7.39),
〈Xa(t1)Xb(t2)〉 |t1+t2→∞ = δab e−da|t1−t2| or [〈Xi(t1)Xi(t2)〉 |t1+t2→∞ = e−D|t1−t2|C]ij in the orig-
inal basis. We will employ the general form of the buildup of equilibrium correlation repeatedly
in the subsequent sections.

Finally, in order to transform the noise correlation function to the original basis, we use the
relation (7.43) and the definition (7.40):

〈ξi(t1)ξj(t2)〉 =
∑
ab

(C
1
2U)ia(C

1
2U)jb

〈
ξa(t1)ξb(t2)

〉
= 2(DC)ij δ(t1 − t2) . (7.51)

Using the linearity of Gaussian random variables as in Sec. 7.1, we deduce that the full noise
distribution has the form

P [ξ(t)] ∝ exp

−1
4

∫
dt
∑
ij

ξi(t)L−1
ij ξj(t)

 , (7.52)

with the inverse L−1 of the matrix L = DC.

Instead of tracking the time-evolution of the stochastic variables X ξ(t), we can also consider
the time-dependent joint probability distribution P (X , t) =

∏
i 〈δ(Xi −Xξ,i)〉ξ. P (X , t) is the

higher-dimensional generalization of the distribution P (v, t) in Sec. 7.1. The corresponding
multivariate Fokker-Planck equation [143] reads as

∂tP (X , t) = −
∑
i

∂Ji(X , t)
∂Xi

, (7.53)

with the probability current

Ji(X , t) = −
∑
j

DijXjP (X , t)−
∑
j

Lij
∂

∂Xj
P (X , t) . (7.54)

It is derived in the same way as for one variable, see App. B.1. We note that the noise
correlation function in (7.51) reflects the symmetry of the matrix DC. In a more general case,
if DC 6= (DC)T , the results is

〈ξi(t1)ξj(t2)〉 =
[
DC + (DC)T

]
ij
δ(t1 − t2) , (7.55)

see e. g. Ref. [7]. The derivation can be done in the same way as before, but we have to use
a general transformation matrix M−1DM = diag(d1, ..., dn) with M 6= C

1
2U to decouple the

modes Xi.
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8 Chapter 8

Fluctuating Hydrodynamics

Hydrodynamics describes the relaxation of systems caused by the diffusive transport of con-
served quantities. It is an instance of a macroscopic theory which necessarily involves noise
terms. In Sec. 8.1, we apply the general formalism developed in Ch. 7.2 to derive fluctuating
hydrodynamic equations. We choose a representation in terms of real-valued Fourier modes
to match with the general scheme. In Sec. 8.2, we show that hydrodynamic transport leads to
a slow algebraic approach to complete equilibrium ∝ t−d/2, known as hydrodynamic long-time
tails. The power-law behavior emerges for inhomogeneous as well as homogeneous initial
states. We derive the form of the prefactor of the long-time tails. We also introduce the notion
of the diffusion time which cuts off the long-time tails for finite-sized systems.

8.1 The fluctuating diffusion equation

8.1.1 Heuristic derivation of hydrodynamic equations

Hydrodynamics governs the transport of conserved quantities (e. g. energy or particle number)
on large length and time scales. It is an example of a coarse-grained description [7] which relies
on a certain hierarchy of scales, lsct � ∆x � lvar. The volume of the system is thought of as
divided into small cells of size (∆x)d, small compared to length scales under investigation, but
still macroscopic in extent such that they contain a large number of microscopic constituents,
e. g. (quasi)particles. On the one hand, their size is much larger than the mean-free path or the
scattering length lsct of the particles. Each cell is itself a thermodynamic system to which the
same thermodynamic, i. e. the same conserved quantities, are attributed as to the total system.
On the other hand, the cells have to be small on the length scale lvar of smooth variations
in the thermodynamic content of neighboring cells. One can turn to a continuum description
where the cells are treated as infinitesimal volume elements (∆x)d → ddx labeled by the space
coordinate x. Variations of the conserved quantities between different cells are then described
by the set of the corresponding coarse-grained densities ρi(x), 1 ≤ i ≤ n. Furthermore, hy-
drodynamics assumes that each cell is in a local-equilibrium state such that each cell – as well
as the total system – are fully characterized by the conserved densities ρi(x). Therefore, only
temporal variations on time scales ∆t � τ are considered, much larger than the typical time
scale τ on which local equilibrium is established. τ is given by typical transport scattering
time of the particles. In the coarse-graining procedure, we performed a transition from a mi-
croscopic picture to slow hydrodynamic variables. We chose to discuss coarse-graining and
the concept of local equilibrium assuming that the relevant microscopic degrees of freedom are
(quasi)particles. However, the hydrodynamic description does not depend on the validity of
the quasiparticle description, but only relies on the existence of n conservation laws, where n is
much smaller than the number of microscopic degrees of freedom. Under this condition hydro-
dynamics provides an effective description of the long-wavelength and low-frequency behavior
of the system.
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8 Fluctuating Hydrodynamics

Fig. 8.1: Fluctuating currents as a result of coarse-grained description A conserved den-
sity ρ in given volume cell is changed when particles cross the boundary of the cell.
A directed contribution to the current is driven by an imbalance between the neigh-
boring cells. Additionally, the irregular motion of particles gives rise to fluctuating
currents ζ when they randomly cross the boundary.

The further steps in our heuristic derivation run parallel to Ref. [88]. The value of conserved
quantities of any cell is only changed by a flow through its surface. In the limit of infinitesimal
volume elements this fact is expressed by the continuity equation,

∂tρi(x) + ∂x · ji(x) = 0 , (8.1)

which relates the change of the densities ρi to the current densities ji. By convention the
current densities are directed out of the volume element.1 The notion of small volume cells
also explains that there are two contributions to the current density:

ji = j(dir)i [∂xρ, ∂
2
xρ, ∂xρ

2, ...]− ζi . (8.2)

The first contribution is driven by the imbalance of the densities between adjacent cells which
induces a directed flow along the density gradients. If the homogeneous distribution is reached,
the directed flow vanishes. (8.2) is called a constitutive relation, required for setting up a
closed set of equations for the densities. For small density gradients and in the continuum
limit, the strong tendency towards a homogeneous distribution is expressed by Fick’s law [149]
j(dir)i = −Dij∂xρj . The elements Dij of the matrix D ∈ Rm×m are called diffusion constants
with m the number of the conserved charges. The continuity equation supplemented by Fick’s
law is an instance of a linear macroscopic law as introduced in (7.24). It states that a ho-
mogeneous distribution of the conserved quantities is by far the most probable configuration
among generic inhomogeneous distributions. Hence, the system will evolve to the more prob-
able homogeneous configuration of maximum entropy when it is prepared in an improbable
inhomogeneous configuration of lower entropy.2 The probability argument can be illustrated
by considering the binomial distribution of particles in a bipartite box: For large particle num-
bers ∼ 1023 the number of configurations related to an equal distribution exceeds the number
1The continuity equation can easily be rationalized by considering the change in a finite volume through the
flow at the surface, d

dt

∫
ddx ρi(x) = −

∫
dS · ji(x) = −

∫
ddx ∂x · ji(x). The continuity equation follows if the

relation holds for arbitrarily small volume elements.
2without external intervention
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8.1 The fluctuating diffusion equation

of imbalanced configurations by several orders of magnitude.

The second contribution ζi is the result of random transitions of particles between adjacent
cells, illustrated in Fig. 8.1.3 On average 〈ζ〉 = 0, i. e. 〈ji〉 = j(dir)i . The fluctuations of the
current density are directly related to the thermodynamic fluctuations in the system. From the
statistical mechanics’ point of view, each volume cell can be considered as an open system for
which the grand-canonical partition Z function can be calculated. The equilibrium fluctuations
〈ρiρj〉 are then derived from Z. These fluctuations are realized by a fluctuating current in order
to preserve the conservation laws. Inserting the fluctuating current density into the continuity
equation leads to a set of coupled hydrodynamic equations or diffusion equations, supplemented
by the fluctuating current density [7, 144, 150]:

∂tρi −Dij∂
2
xρj = ∂x · ζi . (8.3)

The appearance of the divergence term ∂x ·ζi indicates that the fluctuating diffusion equation
satisfies the local conservation laws.

8.1.2 Macroscopic state coordinates of hydrodynamics

In the following, we take a different route for deriving the fluctuating diffusion equation and
the correlations of the current density. We will directly apply the general expressions delivered
by Onsager’s general theory in Sec. 7.2. To this end, we identify the proper non-equilibrium
coordinates Xi. Once they are known, we are in the position to write down their equilibrium
correlations, as obtained from the expansion of the entropy (7.21), and the noise correlation
functions (7.51) of hydrodynamic Langevin equations. We consider the macroscopic law given
by the set of coupled linear diffusion equations,

∂tρi(x) = Dij∂
2
xρj(x) , (8.4)

ignoring the fluctuating currents to begin with. So far (8.4) does not match the standard form
of (7.24). A Fourier decomposition into discrete modes ρq,i, defined by

ρi(x) = 1
Ld

∑
q
ρi,qeiq·x , ρi,q =

∫
ddx ρi(x)e−iq·x , (8.5)

eliminates the coupling by spatial derivatives, ∂tρi,q = −q2∑
j Dijρj,q. For simplicity, we

choose periodic boundary conditions, yielding the discrete values q = 2π
L m, m ∈ Zd. The

Fourier modes ρi,q 6=0 are complex-valued. The reality of the densities ρi(x) implies that ρ∗i,q =
ρi,−q, reducing the number of independent modes by half. We choose the half-space qx > 0 in
the following discussion. We also note that the general variables Xi in Sec. 7.2 are taken to be
real. In order to achieve formal agreement, we split the complex Fourier modes into real and
imaginary part and define the real-valued modes ρ+

i,q ≡ Re{ρi,q} and ρ−i,q ≡ Im{ρi,q}, in the
half-space qx > 0. This step brings the macroscopic law into its standard form,

∂tρ
σ
i,q = − 1

Ld

∑
(j,q′,σ′=±)

Dσσ′
qq′,ijρ

σ′
j,q′ . (8.6)

Here, we defined the positive definite matrix Dσσ′
qq′,ij = q2DijL

dδqq′δ
σσ′ with q = |q|. Now we

are able to identify the elements of the general theory developed in Sec. 7.2:

• By our convention of the Fourier transformation (8.5), ρi,q=0 =
∫

x ρi(x) gives the total
conserved quantities of the system, denoted by C in Sec. 7.2. According to (8.6) all
modes ρσi,q 6=0 decay to zero while the total conserved quantities ρi,q=0 remain constant,
respectively. Fourier modes ρσi,q 6=0 6= 0 indicate an inhomogeneous distribution of the
conserved quantities i, i. e. a non-equilibrium state.

3The minus sign is set by convention.
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8 Fluctuating Hydrodynamics

• As the index i labels the (total) conserved quantities, a triple of indices (i,q 6= 0, σ) label
the non-equilibrium modes. Formally, there is an infinite number of Fourier modes q 6= 0
for each conserved quantity i. An infinite number of non-equilibrium modes is in conflict
with a macroscopic description which traces out a finite subset of the total degrees of
freedom. However, in the hydrodynamic setting only long-wavelength modes q < Λ are
activated. The cutoff Λ ∝ 1/λvar is set by the smallest length scale λvar compatible
with the hydrodynamic description. Therefore, the actual number of non-equilibrium
modes remains finite and is much smaller than the total number of microscopic degrees
of freedom.

We conclude that the set (C,X ) ≡ ({ρi,q=0}, {ρi,q 6=0,σ}) defines a macroscopic state in the
sense of Sec. 7.2. (C,X = 0) = ({ρi,q=0}, {ρi,q 6=0,σ = 0}) denotes the equilibrium state. The
states with coordinates X 6= 0 are non-equilibrium states with inhomogeneous distribution of
conserved quantities in space.

8.1.3 Entropy of hydrodynamic modes

At the beginning of Sec. 7.2, we stated that the state of complete equilibrium is fully determined
by the set of conserved quantities C and that the equilibrium entropy of the system S(C) is a
function of the conserved quantities. Consequently, an infinitesimal change in entropy is given
by the total differential dS =

∑
i λidCi. The quantities Ci can be expressed by the zero modes

of the conserved densities, Ci → ρiq=0. The coefficients λi are called conjugate thermodynamic
potentials or Lagrange parameters. If energy and particle number are conserved we have that
C1 = E, C2 = N and S = S(E,N) [76], and

dS = βdE + log(z)dN . (8.7)

The conjugate thermodynamic potentials are the inverse temperature β = 1
T and the logarithm

of the fugacity z = e−βµ. Here, log(z) replaces the more common parameterization in terms
of the chemical potential µ. In the derivation of (8.7) from the grand-canonical formalism β
and log(z) naturally appear as Lagrange multipliers. Obviously, there is no change in entropy
for an isolated system in equilibrium, Ṡ = 0 since Ċi = 0. So far, we described the situation
of equilibrium thermodynamics. Away from complete equilibrium, the state space is enlarged
and contributions of non-equilibrium modes Xi → ρσiq 6=0 add to the entropy.

Hydrodynamics deals with the most modest departure from complete equilibrium:

• As we discussed at the beginning of this section, hydrodynamics is based on the existence
of local equilibrium: The system can be divided into small cells of size (∆x)d located at
x which are themselves thermodynamic systems in complete equilibrium. Hence, a local
entropy S(x) or entropy density s(x) = S(x)

∆xd can be defined for each cell and the local
entropy density is a function of the conserved quantities in each cell or the conserved
densities, s(x) = s({ρi(x)}).

• Close to complete equilibrium, hydrodynamics implicitly assumes additivity of entropy
[7], i. e. the entropy is obtained by summing up the local entropies of the cells or by
integrating the entropy density in the continuum limit:

S = ∆xd
∑

x

Sx
∆xd →

∫
x
ddx s(x) . (8.8)

This implies that hydrodynamic fluctuations are completely uncorrelated at different
points in space. Long-range correlations and boundary effects are excluded.4

4The situation changes for non-equilibrium steady state, see Ch. 12.
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8.1 The fluctuating diffusion equation

We can attribute local thermodynamic potentials λi(x) to each cell and write the local change
in entropy density as

ds(x) =
∑
i

λi(x)dρi(x) . (8.9)

By (8.8), the total change in entropy is given by the sum of the local entropy changes,

Ṡ =
∑
i

∫
x
λi(x)∂tρi(x) = 1

Ld

∑
i,q

λ∗i,qρ̇i,q = 2
Ld

∑
i,qx>0,σ

λσi,qρ̇
σ
i,q . (8.10)

Here, we adopt the notation λ+
i,q = Re{λi,q}, λ−i,q = Im{λi,q}, for qx > 0. The zero modes do

not contribute since ρ̇i,q=0 = 0. Comparing the expression (8.10) to the general one in (7.28),
Ṡ = −

∑
i FiXi, we conclude that −2L−d λσi,q are the thermodynamic forces conjugate to the

non-equilibrium modes ρσi,q. A decomposition of the local entropy change into local entropy
production rates and entropy fluxes is given in App. B.2.

8.1.4 Hydrodynamic fluctuations

Now we turn to the expansion of the system’s entropy that controls the fluctuations of the
hydrodynamic modes ρσi,q. As suggested by (7.20), the most general form of the expansion
starts with

S = − 1
L2d

∑
ij

∑
qx,q′x>0

∑
σσ′

ρσi,q

[
C−1

]σσ′
ij,qq′

ρσ
′
j,q′ . (8.11)

where C−1 is symmetric and positive definite.5 We let the Fourier index run over the half-space
qx > 0 since only these modes are independent degrees of freedom. At the same time, we omit
the factor 1/2 by convention such that 〈ρσi,qρσ

′
j,q′〉 = 1

2 [C−1]σσ′ij,qq′ . The expansion immediately
simplifies if we consider a homogeneous system: The Fourier sector is forced to be diagonal,
[C−1]σσ′ij,qq′ → [C−1]ijδqq′δ

σσ′ . Otherwise, the correlation matrix would vary in real space. The
diagonal structure leads to the expression

S = − 1
Ld

∑
ij

∑
qx>0

∑
σ

[
C−1

]
ij
ρσi,qρ

σ
j,q

= − 1
2Ld

∑
ij

∑
q 6=0

[
C−1

]
ij
ρ∗i,qρj,q

= − 1
2Ld

∑
ij

[
C−1

]
ij

∑
q
ρ∗i,qρj,q − ρi,q=0ρj,q=0


= − 1

2Ld
∫

ddx
∑
ij

[
C−1

]
ij
δρi(x)δρj(x) ,

(8.12)

where δρi(x) = ρi(x)−ρ denotes the local deviation from the homogeneous densities ρ = ρi,q=0
Ld

.
From (8.12), we read off the equilibrium correlation functions〈

ρσi,qρ
σ′
j,q′
〉

= 1
2Cij L

d δqq′δ
σσ′ (qx, q′x > 0) ,

〈
ρi(x)ρj(x′)

〉
= Cij δ(x− x′) .

(8.13)

The short-rangedness of the hydrodynamic fluctuations (δ-like in the continuum limit) is a
direct consequence of the assumed additivity of the entropy, S =

∫
x s(x).

5We use to the convention that the summation over q modes is accompanied by a factor of
(

∆q
2π

)d
= 1

Ld
to be

consistent with our definition of the Fourier transform.
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8 Fluctuating Hydrodynamics

Relation between hydrodynamic fluctuations and generalized susceptibilities The cor-
relation matrix C can be related to measurable quantities. To achieve this, we consider the
thermodynamic forces associated with the hydrodynamic entropy (8.12),

F σq,i = − ∂S

∂ρσi,q
= 2

Ld

∑
j

[C−1]ijρσj,q . (8.14)

We used the symmetry of C−1. From (8.10), we also know that the thermodynamic forces are
given as the thermodynamic potentials, F σq,i = −2L−d λσiq. Thus, we have

λσi,q = −
∑
j

[C−1]ijρσj,q , or ρσi,q = −
∑
j

Cijλ
σ
j,q , (8.15)

for qx > 0. Inverse Fourier transformation of (8.15) takes us back to real space,

δρi(x) = −
∑
j

Cij δλj(x) , (8.16)

with δρi(x) = ρi(x)− ρi, δλi(x) = λi(x)− λi. (8.15) and (8.16) relate the correlation matrix
to the generalized susceptibility matrix χ [119],

Cij = −χρi,λj , with χρiλj = δρi(λ)
δλj

. (8.17)

The susceptibility matrix quantifies the effect on the densities caused by changes in the ther-
modynamic potentials to linear order. In case of energy and particle number conservation, the
Lagrange parameters are log(z) and β, respectively, see (8.7). Accordingly, the susceptibility
matrix reads:

χ =
(
χn log(z) χnβ
χe log(z) χeβ

)
=

(
∂log(z)n ∂βn

∂log(z)e ∂βe

)
. (8.18)

These more abstract objects are related to measurable quantities, e. g. χn log(z) = −T∂µn =
−Tn2κT and χeβ = −T 2∂T e = −T 2cV . Here, κT = − 1

V
∂V
∂P |T,N is the isothermal compressibility

and the cV = CV
V = 1

V
∂E
∂T |V,N is the isochoric heat capacity per volume.6 The symmetry of the

susceptibility matrix is guaranteed by the Maxwell relations that are derived from S(E,N) as
function of energy E and particle number N ,7(

∂e

∂ log(z)

)
β

=
(
∂n

∂β

)
log(z)

. (8.19)

In summary, the equilibrium correlations of the densities are given by〈(
n(x)n(x′) n(x)e(x′)
e(x)n(x′) e(x)e(x′)

)〉
eq

=
(
Tn2κT −χnβ
−χnβ T 2cV

)
δ(x− x′) . (8.20)

The equilibrium values of intensive variables T, κT , cV , χnβ entering the correlation matrix are
fixed by the total conserved quantities E and N .
6The relation ∂µn = n2κT follows from the Gibbs-Duhem equation Ndµ = − V

N
dP for constant temperature

T and from ∂
∂(V/N) = −N

2

V
∂
∂N
|V , ∂

∂(V/N) = N ∂
∂V
|N ; see, e. g. Ref. [151].

7We have that d
[
dS(U,N)

]
= 0 ⇒ dβdU = −d log(z)dN ⇒ ∂(β,U)

∂(log(z),N) = −1.
(

∂U
∂ log(z)

)
β

= ∂(β,U)
∂(β,log(z)) =

− ∂(log(z),N)
∂(β,log(z)) =

(
∂N
∂β

)
log(z)

. Note that the permutation involves a sign change. Alternatively, one can use the

Legendre transform S̃ = S − βU − log(z)N .

106



8.1 The fluctuating diffusion equation

Noise correlations Once the proper non-equilibrium coordinates ρσi,q and the their equilib-
rium correlations Cij are known, we can follow the general scheme developed in Sec. 7.2 in
order to set up the Langevin equation of the hydrodynamic modes: Adding the corresponding
noise term ξσi,q to the macroscopic law (8.6) yields the Langevin equation

∂tρ
σ
i,q = −q2

∑
j

Dijρ
σ
j,q + ξσi,q . (8.21)

The general form of the noise correlations in (7.51) implies that〈
ξσi,q(t)

〉
= 0 ,

〈
ξσi,q(t)ξσ′j,q′(t′)

〉
= q2(DC)ijδqq′δ

σσ′δ(t− t′) .
(8.22)

The factor q2 suppresses the noise for q → 0. It ensures that the total conserved charges ρi,q=0
do not fluctuate and are strictly constant in time. Note the missing factor of 2 compared to
(7.51) which is due to our convention in (8.11). The real-space representation of (8.21) is given
by the fluctuating diffusion equation in (8.3),

∂tρi −
∑
j

Dij∂
2
xρj = ∂x · ζi . (8.23)

Here, we expressed the noise term by the fluctuating current densities, ξi(x, t) = ∂x ·ζi(x, t) =∑
α ∂αζi,α(x, t). As the divergence term takes care of the conservation laws, the long-wavelength

suppression q → 0 is removed from the correlations of ζ. To achieve consistency with the
correlations of (8.22), the components of the fluctuating currents ζi,α, 1 ≤ α ≤ d, have to obey〈

ζi,α(x, t)
〉

= 0 ,

〈
ζi,α(x, t)ζj,β(x′, t′)

〉
= 2(DC)ijδαβδ(x− x′)δ(t− t′) .

(8.24)

Limitations To conclude, we want to comment on the limitations of the hydrodynamic frame-
work as presented in this section:

• The linearity of the fluctuating diffusion equation is based on the linear form of Fick’s
law. It has to be seen as the lowest-order term of a gradient expansion. Higher-order
terms in the expansion introduce nonlinear terms into the diffusion equation, e. g. ∂tρ =
D∂2

xρ+ cδ,γ∂
γ
xρδ with γ > 2 or δ > 1. A scaling analysis shows that most of the nonlinear

terms are irrelevant in the long-wavelength limit [88, 152]. Further terms are excluded
by symmetry for inversion symmetric systems, provided that the densities transform as
Iρ = ρ under inversion. If, however, there is a conserved density which is odd under
inversion, Iρ = −ρ, the term ∼ ∂xρ

2 is relevant in one spatial dimension and cannot be
treated as a small perturbation to the linear macroscopic law, even close to equilibrium.
As a consequence, the linear Langevin equations with Gaussian white noise, derived
in Sec. 7.2, are not applicable in such systems and have to be replaced by nonlinear
Langevin equations. An important example for this case are one-dimensional systems
with momentum conservation as the momentum density behaves as Ip = −p under
inversion [153, 154]. The long-wavelength behavior of these systems falls into the KPZ
universality class [155]. We excluded momentum conservation from our scope as we chose
to limit the discussion to time-reversal symmetric variables in Sec. 7.2.

• When using Fick’s law in the form ji = −
∑
j Dij∂xρj , we implicitly assumed that the

equilibrium state of the system is homogeneous and isotropic. In symmetry broken phases
[156] or close to a critical point [144] further slow modes appear, e. g. the Goldstone modes
of a broken continuous symmetry or a fluctuating order parameter. The coupling between
various slow modes has to be added to complete the picture.
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8 Fluctuating Hydrodynamics

8.2 Hydrodynamic long-time tails

8.2.1 Relaxation of hydrodynamic modes on average

Consider an inhomogeneous distribution of conserved quantities, e. g. an accumulation of par-
ticles or energy in some region of space. The corresponding densities ρi(x) are higher or lower
with respect to their average values ρi. As stated before in Sec. 8.1.2, we are dealing with a
non-equilibrium situation described by the Fourier modes ρσi,q 6=0 6= 0. If we are only interested
in the decay of the non-equilibrium modes on average, we can take the average of (8.21) with
respect to the noise distribution,

∂t
〈
ρσi,q

〉
= −q2

∑
j

Dij

〈
ρσj,q

〉
, (8.25)

using that 〈ξσi,q〉 = 0. We regain the macroscopic law (8.6) we started our analysis with.
Decomposed into the eigenmodes of Dij we have

∂t
〈
ρσa,q

〉
= −q2da

〈
ρσa,q

〉
, (8.26)

where we define da, 1 ≤ a ≤ m, as the eigenvalues of the diffusion matrix Dij in this con-
text.8 The modes 〈ρσa,q(0)〉 =

∫
x e−iq·x 〈ρa(x, 0)〉 |σ, that are populated in the inhomogeneous

initial state, decay exponentially fast with time, 〈ρσa,q(t)〉 = 〈ρσa,q(0)〉 e−q2dat. Inverse Fourier
transformation gives a different picture in real space:〈

ρa(x, t)
〉

= 1
Ld

∑
q

〈
ρa,q(t)

〉
eiq·x

=
∫
Ld

ddx′
〈
ρa(x′, 0)

〉 1
Ld

∑
q

e−q2dat+iq·(x−x′)

L→∞−−−−→
∫
Rd

ddx′
〈
ρa(x′, 0)

〉 ∫ ddq
(2π)d e−q2dat+iq·(x−x′)

=
∫
Rd

ddx′
〈
ρa(x′, 0)

〉 e−
(x−x′)
4dat(

4πdat
)d/2 .

(8.27)

As we consider systems of macroscopic extent, we took the thermodynamic limit L→∞. As
the spacing ∆q = 2π

L vanishes, we approximate the summation over discrete Fourier modes by
a continuous integral, 1

Ld
∑

q fq →
∫ ddq

(2π)d fq.

To make this behavior more transparent, we consider an idealized case of conserved charges,
initially concentrated at the origin, ρa(x, 0) = Caδ(x). The densities flatten in space,

〈
ρa(x, t)

〉
= Ca

e−
|x|2
4dat(

4πdat
)d/2 . (8.28)

From this expression, we see that the densities decay as 〈ρa(x, t)〉 ∝ t−d/2 at x = 0 and within
a increasing volume of x �

√
4dat around the origin. The missing charges are transported

to the shrinking region x �
√

4dat where the density grows at the beginning to satisfy the
conservation laws. Thanks to the unbounded Gaussian integral

∫
q e−q2dt+iq·x, the exponential

decay of the Fourier modes is replaced by a power-law or algebraic behavior in real space for
long times. This is an instance of emergent scale invariance due to conservation laws [1].
8Due to the block-diagonal structure of the full matrix Dσσ′

ij,qq′ = q2Dijδ
σσ′

qq′ ∈ Rn×n, we only have to diagonalize
the “pure” diffusion matrix Dij ∈ Rm×m, m < n, in the smaller subspace of the conserved quantities.
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8.2 Hydrodynamic long-time tails

8.2.2 Finite-sized systems: the diffusion time

According to (8.28), the densities will eventually decay to zero at each point in space since
the conserved charges are distributed over an infinite volume in the thermodynamic limit. Of
course, an infinite dilution cannot be realized in physical systems with finite size Ld. It is in-
structive to look at finite-sized systems from the perspective of the Fourier modes: For L <∞
the q values have to be taken as discrete. Now, there is a slowest mode with |q| = 2π

L ≡ Q > 0
for each direction in space. Eventually, all faster non-equilibrium modes with |q| > Q have
decayed and the relaxation is governed by the slowest mode Q alone. Hence, the power-law
behavior of 〈ρa(x, t)〉 will turn into an exponential decay ∼ e−Q2dat for large enough times.
In contrast, there is no slowest mode in the thermodynamic limit L → ∞ as Q ∝ 1

L → 0.
In other words: the slowest modes become soft. Therefore, the scale invariant regime extents
to arbitrarily large times. From this example, we can infer that the softening of the relevant
modes in a system is linked to the emergence of scale invariance.

For a more careful analysis of the finite-size effect, we employ the Poisson summation formula,∑
n∈Z f(n) =

∑
m∈Z

∫+∞
−∞ ds f(s)e2πimt [157], in the form

1
Ld

∑
q
fq =

∑
m∈Zd

+∞∫
−∞

ddq fq eiLq·m . (8.29)

For a box L× ...× L = Ld and for the δ-shaped initial condition, (8.27) becomes〈
ρa(x, t)

〉
= Ca

Ld

∑
q

e−q2dat+iq·x

= Ca
d∏
r=1

 ∑
mr∈Z

+∞∫
−∞

dqre−q
2
rdat+iqr(xr+Lmr)


= Ca

d∏
r=1

 1(
4πdat

)1/2 ∑
mr∈Z

e−
(xr+Lmr)2

4dat

 = Ca
Ld

d∏
r=1

ϑ

(
xrπ

L
, e−Q2dat

)
.

(8.30)
ϑ(u,w) denotes the Jacobi theta function. The function describes the relaxation from a peaked
distribution to a homogeneous value Ca

Ld
with periodic boundary conditions. Again, we place

ourselves at the origin x = 0: At the beginning of the time evolution, the density decays
algebraically 〈ρa(x = 0, t)〉 |t→0 = Ca(4πt)−d/2 as in the thermodynamic limit, but eventually
crosses over to an exponential decay 〈ρa(x = 0, t)〉 |t→∞ = Ca

Ld
(1 + e−Q2dat), dominated by the

slowest mode Q. The cross over happens at the diffusion time tL ≈ 0.07 L2

da
.9

On the one hand, the system size L gives rise to a slowest modes Q = 2π/L, but there is
also a small length scale l = 2π/Λ associated with the fastest modes |q| = Λ. As stated
in Sec. 8.1.2, l represents a microscopic scale where the hydrodynamic description in terms
of local equilibria with small fluctuations breaks down. Therefore, we should think of the
initial δ(x) peak as broadened on the scale l. In order to take also the existence of fastest
modes into account, we could multiply the cutoff function e−q2/Λ2 in (8.30) which leads to
the replacement dat → dat + Λ−2 in the final result. Thus, the algebraic relaxation of the
density ρa occurs for times tl � t � tL with tl ∼ l2

da
and tL ∼ L2

da
. For times t � tl or

t � tL the relaxation is determined by the characteristic microscopic or macroscopic time
scales, respectively. Here, we encountered a natural limitation of emergent scale invariance in
condensed matter systems: The scale invariant regime is sandwiched between a microscopic
and a macroscopic time or length scale. The standard example is a critical system [4]: Close to
9We obtain the numerical prefactor from the intersection of the limiting curves.
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8 Fluctuating Hydrodynamics

the critical point, the correlations of the order parameter decay algebraically with a universal
exponent, 〈δφ(x)δφ(x + ∆x)〉 ∼ 1

∆xd−2+η . However, scale invariance is limited to length scales
ξmic � ∆x � ξ, between a microscopic length scale ξmic and the correlation length ξ. At
larger distances ∆x � ξ the correlations decay exponentially ∼ e−∆x/ξ. At small distances
∆x � ξmic the concept of an order parameter breaks down and a theory of the underlying
microscopic degrees of freedom is required. The fluctuations of the order parameter become
soft exactly at the critical point where the correlations length diverges, ξ → ∞. Strictly
speaking, the softening can only happen in the thermodynamic limit. Otherwise the spacing
of critical modes ∼ 1

L unavoidably introduces a gap. Therefore, scale invariant behavior in
hydrodynamics and criticality is a phenomenon only emerging in macroscopic systems. From
now on, we will stick to the thermodynamic limit for which the slowest modes soften, Q→ 0,
and permit scale invariance for arbitrarily large times.

8.2.3 Relaxation of hydrodynamic fluctuations

As we pointed out in Sec. 7.2, the global equilibrium state of a thermodynamic system is not
fully defined by the average values of the relevant non-equilibrium modes, 〈Xi〉eq = 0. The
thermodynamic fluctuations around these mean values are represented by stochastic variables
Xi. The equilibrium state is characterized by a Gaussian distribution of the non-equilibrium
modes (7.21). The fluctuations are measured by the correlation functions 〈XiXj〉 with some
well-defined values 〈XiXj〉eq = Cij in equilibrium.

The fact that the equilibrium state is characterized by a characteristic fluctuation pattern al-
lows for homogeneous non-equilibrium states in the hydrodynamic description. These states are
characterized by 〈ρσa,q 6=0〉eq = 0 and 〈ρσa,qρσ

′
a′,q′〉 6= 〈ρσa,qρσ

′
a′,q′〉eq. The non-equilibrium conditions

are only reflected by the absence of the equilibrium fluctuations. Such a situation is generically
realized after a global quench, i. e. a global change of system parameters, H(λ) → H(λ′). An
homogeneous initial distribution of conserved charges 〈ρσa,q 6=0〉 = 0 will remain. However, the
equilibrium correlations are shifted to new values, C(λ)→ C(λ′) as they depend on the system
parameter λ. Similarly to the relaxation on average in inhomogeneous situations, the equilib-
rium fluctuations build up exponentially fast in mode space ∼ e−q2dat, but algebraically slowly
in real space ∼ t−d/2. This phenomenon is referred to as hydrodynamic long-time tail [158].

Hydrodynamic long-time tails are expected to emerge in the last stage of the relaxation process
after a global quench when local equilibrium has been established. The relaxation of hydro-
dynamic slow modes will ultimately dominate the time-evolution of local observables. On the
theoretical side, the hydrodynamic stage of the relaxation process after an interaction quench
in the Bose-Hubbard model was studied by Lux et al. [88, 102]. The authors used a semiclas-
sical simulation of the quasiparticle dynamics as well as exact diagonalization in order to track
the relaxation of various observables. Long-time tails were found in full agreement with the
prediction of fluctuating hydrodynamics. However, we are not aware of an experimental real-
ization of a quench in an ultracold atom system that reaches sufficiently long times to observe
hydrodynamic long-time tails.

Although inherent in hydrodynamics, no special attention was paid to the long-time behavior
of hydrodynamic fluctuations in modern research. Long-time tails were first observed in “com-
puter experiments” of the late 1960s by Alder and Wainwright and were perceived as a surprise
[159–161]. The authors simulated the Newtonian dynamics of hard spheres and found an al-
gebraic decay of the velocity autocorrelation function ∝ t−d/2 in d = 2, 3 spatial dimensions.
The observation triggered theoretical investigation of the phenomenon. The hydrodynamic
explanation was established by a series of publications [162–165]. Algebraic long-range correla-
tions also appear in very different fields of physics, such as critical systems [166] or cosmology
[167, 168]. In Ch. 12, we will comment on long-range correlations in non-equilibrium steady-
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8.2 Hydrodynamic long-time tails

states. Fluctuating hydrodynamics belongs to the class of mode-coupling theories [169] that
are capable of predicting the algebraic decay of correlations.

To be more concrete and to simplify our discussion, we consider a system with a single con-
served charge, the energy, which we represent by the zero Fourier mode eq=0 ≡ e0. The non-
equilibrium modes eσq are labeled by (q 6= 0, σ), respectively. The extra index for the conserved
charge can be dropped. In complete equilibrium, the energy density is homogeneous in space
or 〈eσq 6=0〉 = 0. According to (8.13), the equilibrium fluctuations of the energy density take the
form 〈eσqeσ

′
q′〉 = 1

2C(e0)Ldδqq′δ
σσ′ . The fluctuation strength C(e0) is a function of the conserved

charge e0. Now, we perform a rapid change of the energy e0 → e′0 on a time scale τf � tq � τs,
much shorter than the time scale of the fastest relevant hydrodynamic modes τs ∼ 1

Λ2D , but
much larger than the time scale τf for establishing local equilibria.10 The first condition charac-
terizes the quench as infinitely fast on hydrodynamic time scales. The second condition ensures
that the hydrodynamic description applies directly after the quench. If the energy gain or loss
is homogeneously distributed, the first moments are not activated 〈eσq 6=0

′〉 = 0. However, the
equilibrium correlations are shifted to new values C ini ≡ C(e0) → C(e′0) ≡ Cfin. The actual
fluctuations 〈eσq(t)eσ′q′(t)〉 follow the target fluctuations with the corresponding rates q2D. The
situation is described by the Langevin equation

∂te
σ
q = −q2Deσq + ξσq . (8.31)

with the diffusion constant D. The target correlations are imprinted on eσq by the noise term
ξσq with 〈

ξσq(t)ξσ′q′ (t′)
〉

= q2DCfinLdδqq′δ
σσ′δ(t− t′) . (8.32)

C ini enters as initial condition 〈eσq(0)eσ′q′(0)〉 = 1
2C

iniLdδqq′δ
σσ′ where t = 0 is the time when

the sudden quench is performed. The physical intuition behind is that the microscopic degrees
of freedom generating the noise term are excluded from the hydrodynamic description. The
dynamics of these fast modes follow the prescribed quench protocol without delay, assuming
tq � τf . On the time scale of the hydrodynamic slow modes τs � tq, the noise correlations
or the target fluctuations jump instantaneously at a given point in time, t = 0. The buildup
of the target correlations was derived in Sec. 7.2.3, (7.50). For a single conserved quantity the
matrix structure collapses to the diagonal elements and the fluctuations build up according
to11

〈
eσ1

q1(t1)eσq2(t2)
〉

= Ldδq1q2δ
σ1σ2

1
2

[(
C ini − Cfin

)
e−2q2

1dat + Cfine−q2
1da|∆t|

]
. (8.33)

t = (t1 + t2)/2 and ∆t = t1 − t2 denote the absolute time elapsed after the quench and the
relative time, respectively. The relaxation of the fluctuations shows the same features as the
relaxation on average for inhomogeneous initial conditions: The fluctuations of the hydrody-
namic modes 〈eσ1

q1(t1)eσq2(t2)〉 approach their target value exponentially fast as t→∞. This is
a general feature of non-equilibrium modes as defined in Sec. 7.

The q dependent relaxation rates q2D develop the same effect as in the inhomogeneous case:
The existence of infinitely slow or gapless modes q2D → 0 in the thermodynamic limit entail
the algebraic relaxation in real space. The fluctuations of the energy density δe = e− e around

10This is equivalent to a change of temperature T → T ′.
11The change of basis which preceded that general equation (7.50) acts as trivial normalization factor 1

Cfin in
case of a single conserved charge.
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their mean value e = e0/L
d are related to the Fourier modes by〈

δe(x1, t1)δe(x2, t2)
〉

= 1
Ld

∑
q1 6=0

e−iq1·x1 1
Ld

∑
q2 6=0

eiq2·x2
〈
e∗q1(t1)eq2(t2)

〉

= 1
Ld

∑
q 6=0

eiq·(x2−x1)
[(
C ini − Cfin

)
e−2q2Dt + Cfine−q2D|∆t|

]
.

(8.34)
We used that 〈e∗q(t1)eq′(t2)〉 = δqq′

∑
σ 〈eσq(t1)eσq(t2)〉. For L → ∞, the unbounded Gaussian

integral yields:12

〈
δe(x1, t1)δe(x2, t2)

〉
=

∫ ddq
(2π)d eiq·(x2−x1)

[(
C ini − Cfin

)
e−2q2Dt + Cfine−q2D|∆t|

]

= (C ini − Cfin)(
8πDt

)d/2 e−
(x1−x2)2

8Dt + Cfin(
4πD|∆t|

)d/2 e−
(x1−x2)2

4D|∆t| .

(8.35)
The unequal-times correlations show the expected long-time tails in real space ∝ t−d/2 or
∝ |∆t|−d/2 provided that t,∆t � D(x1 − x2)2, respectively. In particular, the buildup of
equilibrium fluctuations is tracked by the difference of the equal-times correlation function
from the target value,

〈
δe(x, t)δe(x, t)

〉
−
〈
δe(x, t)δe(x, t)

〉
eq

= (C ini − Cfin)(
8πD

)d/2 1
td/2

. (8.36)

where the equilibrium correlations
〈
δe(x, t)δe(x, t)

〉
eq

= δab are obtain from (8.35) in the limit
t→∞. In equilibrium, the fluctuations show similar long-range correlations with

〈
δe(x, t+ ∆t)δe(x, t)

〉
eq

= Cfin(
4πD

)−d/2 1
|∆t|−d/2

. (8.37)

For finite system sizes L < ∞, the long-time tails are cut off by the slowest mode ∼ e−Q
2Dt

like in the inhomogeneous case. In conclusion, the hydrodynamic fluctuations give rise to scale
invariant behavior in two aspects:

• Hydrodynamic long-time tails ∝ |∆t|−d/2 demonstrate that the thermodynamic equilib-
rium state is an extended scale invariant phase. In hydrodynamic systems, there is a
broad window of scale invariance between the time scale of local equilibration and the
diffusion time. In contrast, critical systems reach perfect scale invariance exactly at the
critical point in the phase diagram.

• Additionally, the long-time tails ∝ t−d/2 emerge in the approach of the equilibrium state.
As the hydrodynamic slow modes govern the relaxation process, thermal equilibrium is
reached very slowly after a quench. Importantly, this also includes quenches with non-
thermal initial correlations C ini. This is the generic situation after a quantum quench.
The buildup of thermal correlations of the final equilibrium state are still described
by (8.36), provided that the initial correlations are short-ranged, 〈e(x, 0)e(x′, 0)〉 =
C iniδ(x − x′). But even if they are of a different form and decay fast, the buildup
of the final equilibrium correlations is the limiting factor.13 Therefore, long-time tails
∼ t−d/2 are regarded as the “bottleneck for thermalization” [88].

12According to our convention of the Fourier transformation, the continuum limit is performed by the replace-
ments: 1

Ld

∑
q →

∫ ddq
(2π)d , L

dδq1q2 → (2π)dδ(q1 − q2).
13If the initial correlations are long-ranged with 〈e(x, 0)e(x′, 0)〉 ∝ (x − x′)−ν , ν < d, the approach of the

thermal state is also hampered by the slow decay of the initial correlations ∼ t−ν/2 [88].
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8.2 Hydrodynamic long-time tails

Besides the universal exponent −d/2 the prefactors of the long-time tails are of interest. The
prefactor of the equilibrium long-time tails in (8.37) only depends on the equilibrium correla-
tions Cfin of the final state. As can be seen from (8.36), the prefactor of the non-equilibrium
long-time tails also depends on both Cfin and C ini. In the remainder of this section, we provide
the prefactors of the long-time tails if m > 1 hydrodynamic modes are coupled by diffusion
equations.

In the general case, described by the Langevin equation (8.21), there are m > 1 conserved
charges which can be altered in a quench protocol, Cini = {ρa,q=0

ini} → Cfin = {ρa,q=0
fin}.

The correlations of hydrodynamic fluctuations are shifted to new values C ini → Cfin ≡ C.
The actual fluctuations will follow the target correlations with the corresponding rates q2da
which are determined by the eigenvalues of the diffusion matrix D. For our convenience, let
a indicate the eigenmodes of the diffusion matrix D while keeping the Fourier indices (q, σ)
explicitly in our notation. As shown in Sec. 7.2, the target correlation matrix is diagonal,
Cfin
ab ∝ δab, in the eigenbasis of D. The initial correlations can be written as 〈ρσ1

a,q1(0)ρσ2
b,q2

(0)〉 =
1
2C

ini
ab L

dδq1q2δ
σ1σ2 . On the technical side, we note that, in general, C ini and D cannot be

diagonalized simultaneously. Here, we provide the expressions for the special case of vanishing
initial correlations C ini = 0. Such a situation is approximately realized if the system is prepared
at a low initial temperature C ini ∼ T ini with small fluctuations. In the quench, the system is
heated up rapidly (but still homogeneously) to a much higher temperature Cfin ∼ T fin � T ini

such that the initial fluctuations can be neglected compared to the large fluctuations building
up in the final state. In the eigenbasis of the diffusion matrix, (7.50) translates to〈

ρσ1
a,q1(t1)ρσ2

b,q2
(t2)

〉
= Ldδq1q2δ

σ1σ2δab
1
2
[
−e−q2

1da(t1+t2) + e−q2
1da|t1−t2|

]

= Ldδq1q2δ
σ1σ2δab

1
2
[
−e−2q2

1dat + e−q2
1da|∆t|

]
,

(8.38)

with t = (t1 + t2)/2 and ∆t = t1 − t2. The long-time tails in real space are obtained from the
generalization of (8.34), (8.35):〈

δρa(x1, t1)δρb(x2, t2)
〉

= δab
Ld

∑
q 6=0

eiq·(x2−x1)
[
−e−2q2dat + e−q2da|∆t|

]
L→∞−−−−→ δab

∫ ddq
(2π)d eiq·(x2−x1)

[
−e−2q2dat + e−q2da|∆t|

]

= δab

− 1(
8πdat

)d/2 e−
(x1−x2)2

8dat + 1(
4πda|∆t|

)d/2 e−
(x1−x2)2
4da|∆t|

 ,

(8.39)

with δρa ≡ ρa − ρa,q=0/L
d. We performed the thermodynamic limit ∆q = 2π

L → 0 which is
essential for recovering a scale invariant expression. As a final step, we transform the correlation
matrices back into their original basis by applying the transformation rule (7.43). At a given
point in space, x1 = x2, we obtain the prefactors of the equilibrium long-time tails,〈

δρi(x, t+ ∆t)δρj(x, t)
〉
eq

= [D−d/2Cfin]ij
(4π)d/2

1
|∆t|d/2

, (8.40)

and the non-equilibrium long-time tails,〈
δρi(x, t)δρj(x, t)

〉
−
〈
δρi(x, t)δρj(x, t)

〉
eq

= − [D−d/2Cfin]ij
(8π)d/2

1
td/2

. (8.41)
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8 Fluctuating Hydrodynamics

The required symmetry of the coefficient matrix D−d/2Cfin is a consequence of Onsager’s
reciprocal relations DC = (DC)T , see Sec. 7.2.2.14

14The fractional exponent of the diffusion matrix is defined using the representation D = C1/2D̃C−1/2 with the
symmetric matrix D̃. Hence, D±d/2 = C1/2D̃±d/2C−1/2. The symmetry of D−d/2C follows immediately.
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9 Chapter 9

Hydrodynamic Bounds to the Entropy
Production for a Quasi-Static Quench

In the previous chapter Ch. 8, we argued that the Fourier modes of the conserved densities
are the proper non-equilibrium coordinates of hydrodynamics. Now, we use this represen-
tation to calculate the entropy production of hydrodynamic modes for a slow quench in time
tq. In Sec. 9.1, we point out the relevance of slow, quasi-static changes of state as a method
to minimize the entropy production, from a theoretical and an experimental perspective. In
Sec. 9.2, we introduce a method of calculating the entropy production of slow macroscopic
variables: We use the Fokker-Planck equation for Brownian motion to calculate the entropy
production of a Brownian particle induced by a temperature quench. Finally, in Sec. 9.3, we
transfer this method to slow quenches in the framework of fluctuating hydrodynamics. Starting
from the corresponding Fokker-Planck equation, we show that the relaxation of hydrodynamic
slow modes results in a power-law behavior: The entropy production vanishes ∝ t−αq in the
adiabatic limit tq →∞. The analytic calculations presented in this chapter complement numer-
ical simulations of slow quenches by Dennis Hardt under supervision of Achim Rosch [152].
He studied the entropy production in a one-dimensional diatomic classical gas under various
conditions. The analytic prediction of the exponent α = 1/2 is in agreement with the numerical
results.

9.1 Motivation: adiabatic state preparation

In the introductory chapter Ch. 6, we discussed the change of system parameters as a way
to induce the relaxation dynamics in interacting quantum systems: In a sudden quench, the
Hamiltonian of the system is changed rapidly, H(λ)→ H(λ′), by tuning a Hamiltonian param-
eter λ. The initially prepared ground state |ψ0〉 cannot follow the change of the Hamiltonian
on this short time scale. As a consequence, excited quasiparticles are created with respect to
H(λ′). Scattering among these quasiparticles finally leads to a thermal equilibrium state of
maximum entropy. The initial pure quantum state is destroyed. Thus, sudden quenches give
rise to finite entropy production.

Now, we consider a quench λ→ λ′ of finite duration tq. This process can be described by the
quench protocol

λ(t) = λinie−t/tq + λfin
(
1− e−t/tq

)
, (9.1)

with λ(t = 0) = λini and λ(t→∞) = λfin. In the limit tq → 0, we recover the quench protocol
of a sudden quench. In the opposite limit of an infinitely slow quench tq → ∞, we can argue
that the system remains in the instantaneous ground state |ψ0(λ(t))〉 of the time-dependent
Hamiltonian H(λ(t)) for all times. As a result, the state of the system is transformed from
|ψ0(λini)〉 of H(λini) to the ground state |ψ0(λfin)〉 of the new Hamiltonian H(λfin). Obviously,
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9 Hydrodynamic Bounds to the Entropy Production for a Quasi-Static Quench

the entropy production vanishes. In the context of our work, we refer to a change of state
with vanishing entropy production as adiabatic state preparation.1 The one-to-one correspon-
dence between the ground states, |ψ0(λini)〉 and |ψ0(λfin)〉, (and all other eigenstates) is called
adiabatic continuity. The concept of adiabaticity plays a major role in the understanding of
many-body or condensed matter systems [4, 37]: It provides the basis of Fermi-liquid theory
and T = 0 perturbation theory, see also Ch. 2.1.2 of Part I. There, the quench protocol is used
to turn on an interaction term Hint in the Hamiltonian by setting H(λ(t)) = H0 + λ(t)Hint
with λini = 0 and λfin = 1. The correspondence in the adiabatic limit tq → ∞ is exploited
to reduce the unknown ground state of the interacting system H0 +Hint to the known ground
state of a non-interacting system H0.

From a thermodynamic point of view, the quench protocol (9.1) corresponds to performing
work W to the system. Thereby, the energy E of the system and other quantities are altered.
These state variables correspond to the conserved quantities of an isolated system. However,
there is no entropy flux associated to the quench itself, i. e. no entropy exchange with some
heat bath. A change of the system’s entropy is only due to internal irreversible processes.
Thus, the quench protocol is clearly characterized by its entropy balance: In terminology of
thermodynamics, the adiabatic limit, tq → ∞, corresponds to a quasi-static2 change of state;
the entropy of initial and final state are the same, ∆S = 0. The adiabatic comparability or
adiabatic accessibility of equilibrium states by quasi-static processes is the corner stone of equi-
librium thermodynamics [76, 170]. For tq < ∞, we expect that the quench induces internal
irreversible processes which lead to a finite entropy production, ∆S > 0, in accordance with
the Second Law of thermodynamics.

The concept of adiabaticity is also relevant in experiments in which the Hamiltonian parameters
can be controlled such as in ultracold atom systems. Sometimes the desired state is not easily
produced by direct loading of atoms into an optical lattice and direct cooling The state can be
fragile and is destroyed by small amounts of entropy. Extremely low temperatures are required.
An alternative approach is to first generate an easily producable state and then perform a slow
quench to reach the desired state [171, 172]. Lubasch et al. [173] produced an insulating state
of fermionic atoms in an optical lattice and succeeded to realize a Heisenberg antiferromagnet
by switching on a second lattice with half the wavelength. If the spectrum of the final Hamil-
tonian is gapped with considerable gap size ∆, it is sufficient to choose the quench time as
tq & ∆−1. For such quench times, quasiparticle excitations and, thus, the entropy production
are exponentially suppressed. But for an ungapped spectrum, no intrinsic threshold exists.
In principle, tq should be chosen as large as possible, tq → ∞ in the ideal case. Of course,
the state preparation cannot be performed arbitrarily slowly in a real experiment: A quantum
system cannot be isolated perfectly for arbitrarily long times. The system will interact, at least
weakly, with the environment which plays the role of a thermal bath. As a consequence, the
system will heat up again. The finite heating rate leads to a finite coherence time. The optimal
ramping time tq is a compromise between minimizing the entropy production due to internal
processes (tq →∞) and minimizing the entropy flux due to external heating (tq → 0). In both
extreme cases, the system departs from its ground state towards a thermal equilibrium state.
Therefore, it is a relevant question how the entropy production scales with tq in the case of an
ungapped spectrum.

We address this question in the framework of fluctuating hydrodynamics. The quench will
continuously produce quasiparticles at the rate ∼ t−1

q which relax to a local equilibrium state
on a time scale τ . Assuming that tq � τ , local equilibrium is maintained during the quench
and the hydrodynamic description is applicable. The slow relaxation of hydrodynamic modes
1Note that, contrary to our definition, adiabatic changes of state are sometimes defined as changes without
entropy flux (changes without coupling to a heat bath), e. g. in the discussion of the Carnot cycle [76].

2Quasi-static changes of state are sometimes also called reversible [76].
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9.2 Temperature quench and entropy production for a Brownian particle

is expected to induce power-law behavior in various observables, similar to the long-time tails
of the density correlations. Here, we show that hydrodynamic slow modes also lead to a power-
law decay of the entropy production ∝ t−αq for slow quenches.

9.2 Temperature quench and entropy production for a Brownian
particle

Our method of calculating the entropy production is based on the partition into macroscopic
slow modes Xi and the microscopic fast modes which give rise to damping and fluctuating
forces. In the following, we will refer to the sector of the slow modes as system, and to the
sector of the fast modes as bath. The partition simplifies the description of the quench and
the calculation of the entropy production. The dynamics of the fast modes occurs on the time
scale τ . For tq � τ , the bath adjusts almost instantaneously to the quench protocol. Thus, its
contribution to the entropy production can be neglected. The relaxation of the hydrodynamic
slow modes lag behind the quench since their relaxation rate vanishes ∼ q2D as q → 0, see
Sec. 8.2. Therefore, the relaxation of the system gives rise to a finite entropy production. There
are two contributions to the entropy change of the system [125]:

∂tS(t) = Φ(t) + Π(t) . (9.2)

The entropy flux Φ results from the coupling to the bath of the fast modes. It is equivalent to
a heating rate ∂tE = TΦ. We use the convention that Φ > 0 if the entropy flux is directed from
the bath to the system. The entropy production Π > 0 is caused by the irreversible dynamics
of the slow modes. While Φ can have arbitrary sign, Π must be non-negative to comply with
the Second Law of thermodynamics. Both contributions are nonzero during the process of
relaxation.

In order to proceed, we have to separate the entropy production Π of the hydrodynamic slow
modes from the entropy fluxes Φ caused by the coupling to the bath of fast modes. Here, we
take advantage of Tomé’s discussion of this issue [174]. Before we turn to the actual calcula-
tion, we introduce our method of choice using the Langevin dynamics of Brownian motion as
an example. Here, we deal with a single slow mode: the velocity of the Brownian particle.

Temperature quench In Sec. 7.1, we introduced the Langevin equation of the Brownian
particle,

∂tv = −γv + ξ , (9.3)

with the noise correlations

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = 2γC0 δ(t− t′) . (9.4)

The parameter C0 = T0
m indicates the velocity correlations in thermal equilibrium for a Brow-

nian particle with mass m. It is controlled by the temperature T0 of the fluid in which the
Brownian particle is suspended. Now, we consider a temperature quench: a slow variation of
the temperature, T0 → T0(t). We assume that the variation of temperature on a time scale
tq is slowly enough to sustain an instantaneous equilibrium state of the fluid. If the equilib-
rium condition is fulfilled for the fluid, the temperature quench is described by time-dependent
Gaussian white noise,

〈ξ(t)ξ(t′)〉 = 2γC0(t)δ(t− t′) . (9.5)

The function C0(t) = T0(t)
m denotes the instantaneous velocity correlation 〈v2(t)〉0 at time t

which the Brownian particle is attracted to. We model the temperature quench by the analytic
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9 Hydrodynamic Bounds to the Entropy Production for a Quasi-Static Quench

function
C0(t) = C inie−t/tq + Cfin

(
1− e−t/tq

)
. (9.6)

where C ini (Cfin) denotes the target value of the equilibrium fluctuations before (after) the
quench. The actual correlations, Cv(t) ≡ 〈v2(t)〉, will follow on the time scale γ−1 set by the
friction coefficient. Cv(t) = Tv(t)

m defines the temperature of the Brownian particle which will
deviate from T0(t). The Brownian particle can be regarded as thermometer that senses the
temperature of the fluid, but only with a certain delay. Using the solution of the Langevin
equation,

v(t) = v(0)e−γt + e−γt
t∫

0

ds eγs ξ(s) , (9.7)

and the noise correlation in (9.5), we obtain the equal-times correlation function

Cv(t) = 〈v2(0)〉 e−2γt + e−2γt
t∫

0

ds1

t∫
0

ds1 eγ(s1+s2) 〈ξ(s1)ξ(s2)〉

=

C inie−2γt + 2γe2γt
t∫

0

dse2γsC0(s)

 .
(9.8)

Here, we assumed that the Brownian particle is in equilibrium with the fluid at t = 0 and
Cv(0) = C0(0) = C ini. Using the quench protocol defined by (9.6), we find the explicit expres-
sion

Cv(t) =

C inie−2γt + Cfin
(
1− e−2γt

)
+
(
C ini − Cfin

)
2γ e−t/tq − e−2γt

2γ − 1/tq

 . (9.9)

The difference between the actual fluctuations and the target fluctuations yields

Cv(t)− C0(t) =
(
C ini − Cfin

) 1/tq
1/tq − 2γ

(
e−2γt − e−t/tq

)
. (9.10)

The actual fluctuations lag behind for fast quenches γtq � 1, and follow instantaneously for
slow quenches γtq � 1.

Entropy balance We want to analyze the entropy change of the system. Following Tomé
[174], we start with the expression of the Gibbs entropy

S(t) = −
∫
v
P (v, t) log

(
P (v, t)

)
. (9.11)

We use the notation
∫
v ≡

∫∞
−∞dv . P (v, t)dv is the probability to find the system in a state

in the interval [v, v + dv] at time t. The probability distribution satisfies the normalization
condition

∫
v P (v, t) = 1. We find the change in entropy by performing the total time derivative

of the integral expression:

Ṡ(t) = − d
dt

∫
v
P (v, t) log

(
P (v, t)

)
= −

∫
v
∂tP (v, t) log

(
P (v, t)

)
, (9.12)

where we used that
∫
v ∂tP (v, t) = d

dt
∫
v P (v, t) = 0. As the entropy is given by an integral

over the time-dependent probability distribution P (v, t), it is natural to invoke its equation of
motion, the Fokker-Planck equation. In Sec. 7.1, we introduced the Fokker-Planck equation of
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9.2 Temperature quench and entropy production for a Brownian particle

the Brownian particle as derived from the Langevin equation (9.3). In case of time-dependent
Gaussian white noise (9.5), the Fokker-Planck equation reads as

∂tP (v, t) = − ∂

∂v

[
a(v)P (v, t)

]
+ b(t)∂

2P (v, t)
∂v2 = − ∂

∂v
J(v, t) , (9.13)

with a(v) = −γv and b(t) = γC0(t), see App. B.1 for the derivation. It takes the form of a
continuity equation with the probability current

J(v, t) = a(v)P (v, t)− b(t)∂P (v, t)
∂v

. (9.14)

We perform a short sequence of algebraic manipulations: We insert the continuity equation,
∂tP (v, t) = −∂vJ(v, t) (9.13), into (9.12), integrate by parts3, and finally use the definition of
the probability current (9.14) in the form ∂P (v,t)

∂v = 1
b(t)

(
a(v)P (v, t)− J(v, t)

)
. Finally, we are

able to separate the two contributions, Φ and Π:

Ṡ(t) = +
∫
v

∂J(v, t)
∂v

log
(
P (v, t)

)
= −

∫
v
J(v, t)

∂ log
(
P (v, t)

)
∂v

= −
∫
v
J(v, t) 1

P (v, t)
∂P (v, t)
∂v

= −
∫
v
J(v, t) 1

P (v, t)
1
b(t)

(
a(v)P (v, t)− J(v, t)

)

= Φ(t) + Π(t) ,
(9.15)

with
Φ(t) = − 1

b(t)

∫
v
a(v) J(v, t) , Π(t) = 1

b(t)

∫
v

J2(v, t)
P (v, t) ≥ 0 . (9.16)

The second contribution Π(t) is manifestly non-negative. Furthermore, it is proportional to
the squared current J2(v, t), very reminiscent of Joule heating. Thus, we identify Π(t) as the
rate of entropy production. It follows that the first contribution Φ(t) is the entropy flux from
the fluid to the Brownian particle. Reinserting the definition of J(v, t) (9.14), we obtain:

Φ(t) = − 1
b(t)

∫
v

a(v)
(
a(v)P (v, t)− b(t)∂P (v, t)

∂v

)

= −
∫
v

(
a2(v)
b(t) + a′(v)

)
P (v, t)

= −
〈(

a2(v)
b(t) + a′(v)

)〉
,

Π(t) = 1
b(t)

∫
v

1
P (v, t)

(
a(v)P (v, t)− b(t)∂P (v, t)

∂v

)

= 1
b(t)

∫
v

(
a2(v)P (v, t)− 2a(v)b(t)∂P (v, t)

∂v
+ b2(t) 1

P (v, t)
∂P (v, t)
∂v

)

=
〈(

a2(v)
b(t) + 2a′(v)

)〉
+ b(t)

∫
v

1
P (v, t)

(
∂P (v, t)
∂v

)2

.

(9.17)

We evaluate these expressions using the fact that the probability distribution P (v, t) remains
Gaussian during the time evolution,

P (v, t) = 1√
2πCv(t)

exp
(
− v2

2Cv(t)

)
, (9.18)

3We use that J(v, t), P (v, t)→ 0 for |v| → ∞ (which is true for a Gaussian distribution P (v, t).)
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9 Hydrodynamic Bounds to the Entropy Production for a Quasi-Static Quench

(a) Entropy production and entropy flux for a Brownian particle

(b) Analogon: entropy production by heat conduction in a rod

Fig. 9.1: Entropy balance of slow and fast modes compared to heat conduction (a) The
entropy production Π only occurs in the sector of the slow mode v for sufficiently slow
quenches. In addition, there is an entropy flux Φ between slow and fast modes which
contributes to the change of entropy Ṡ of the slow mode. (b) The same expressions
for Π and Φ are found for a rod with heat conductivity γ. Here, the temperatures Tv,
T0 of the slow mode v and the fast modes correspond to the temperatures of coupled
heat baths.

given that the initial distribution P (v, 0) is Gaussian. It is easily verified that (9.18) is the
solution of the Fokker-Planck equation (9.13) and the actual correlations Cv(t) obey4

Ċv(t) = −2γ
[
Cv(t)− C0(t)

]
. (9.19)

Using the building blocks 〈a2(v)〉 = γ2Cv(t), 〈a′(v)〉 = −γ, and (∂vP (v, t))2 = v2

C2
v(t)P

2(v, t),
we find the rates

Φ(t) = γ
T0(t)− Tv(t)

T0(t) , Π(t) = γ

[
Tv(t)− T0(t)

]2
Tv(t)T0(t) . (9.20)

Here, Tv(t) = mCv(t) measures the actual temperature of the Brownian particle while
T0(t) = mC0(t) gives the temperature of the surrounding fluid.

Π takes common form of the entropy production in a rod with heat conductivity γ. The anal-
ogy to the entropy production by slow modes is illustrated in Fig. 9.1: We consider a rod in
contact with two heat baths at temperatures Tv < T0. The energy current jE through the
rod can be expressed in terms of the entropy fluxes Φv,Φ0 at the contacts to the heat baths.
The conservation of energy states that jE = TvΦv = T0Φ0. Given that Tv < T0, the entropy
flux arriving at the cooler bath is larger compared to the hotter one, i. e. Φv > Φ0. Hence,
4The validity of (9.19) can again be checked by inserting the Langevin equation into Ċv = 2 〈v∂tv〉.
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9.3 Entropy production of hydrodynamic modes after a quench

the entropy production in the rod is finite and Π = Φv − Φ0 = jE(T0−Tv)
TvT0

. Assuming that
the energy current is driven by the temperature difference according to Fourier’s law [175],
jE = γ(T0 − Tv), we reproduce the form of Π in (9.20). Furthermore, the entropy flux emitted
from the hot bath Φ0 = jE

T0
= γ T0−Tv

T0
, is consistently identified with the entropy flux Φ0 = Φ

in (9.20).

The total change in entropy yields

Ṡ(t) = Φ(t) + Π(t) = γ
T0(t)− Tv(t)

Tv(t)
. (9.21)

Using again the picture of heat conduction, we can identify the total change in entropy Ṡ with
the entropy flux Φv = Π + Φ0 arriving at the cold bath. The result is also in agreement with
the heat capacity of our system: The change in energy of the system is given by the heat rate
Ė = TvṠ and causes a change in temperature according to CV Ṫv = TvṠ. In the present case,
the system consists of a single harmonic mode: the kinetic energy of the Brownian particle,
E = 1

2mv
2. Thus, the heat capacity of the system is CV = 1

2 .
5 This leads to Ṡ = 1

2
Ṫv
Tv
. Taking

(9.19) into account, we arrive at (9.21).

We note that the entropy production, flux, and total change vanish if the system’s temperature
adjusts instantaneously to the bath’s temperature, Tv(t) = T0(t). If the bath’s temperature
is increased and the system lags behind (Tv(t) − T0(t) < 0), the entropy production is finite
Π(t) > 0. In addition, the entropy flows from the bath to the system (Φ(t) > 0). Thus, the
entropy of the system is increased, Ṡ > 0. If the bath’s temperature is lowered (Tv(t)−T0(t) >
0), the entropy production in the system is again finite Π(t) > 0, but there is an entropy flux
from the system to the bath (Φ(t) < 0), such that the system’s entropy is decreased Ṡ < 0. In
the following section, we will apply Tomé’s method to the hydrodynamic set-up.

9.3 Entropy production of hydrodynamic modes after a quench

After presenting our approach, we return to the entropy production of hydrodynamic modes
as it occurs after a slow change of parameters in the Hamiltonian. We explained before that
tuning the Hamiltonian is equivalent to performing work to the system. The internal energy
E of an otherwise isolated system will change in this process, ∆E = W . However, the quench
does not cause a heat transfer or entropy flux like an external bath. This is in marked contrast
to the example of the Brownian particle suspended in a fluid of varying temperature: Here, the
fluid (the sector of the fast modes) is heated or cooled. Thus, the entropy of the fast modes is
directly changed in the temperature quench. For a Hamiltonian quench only internal processes
are relevant to the change of entropy and can only lead to its increase. As stated earlier, the
most relevant contribution to the entropy production results from the irreversible dynamics of
hydrodynamic slow modes if the quench is performed sufficiently slowly.

Hydrodynamic quench We consider a system with energy being the only conserved quantity.
The hydrodynamic slow modes eσq are labeled by the Fourier index q and by σ indicating real
or imaginary parts, see Ch. 8. The corresponding Langevin equation reads as

∂te
σ
q = −q2Deσq + ξσq , (9.22)

where D denotes the diffusion constant and ξσq is again the noise term. Similarly to the
example of the Brownian particle, we assume that the fast modes instantaneously follow the
5We choose units of kB = 1.
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change of system parameters, giving rise to time-dependent noise correlations,〈
ξσq(t)ξσ′q′ (t′)

〉
= q2DC0(t)Ldδqq′δ

σσ′δ(t− t′) . (9.23)

Similar to the temperature quench, we choose the quench protocol

C0(t) = C inie−t/tq + Cfin
(
1− e−t/tq

)
. (9.24)

The target value of the equilibrium fluctuations is tuned from C ini to Cfin on the time scale tq.
The equations (9.22) and (9.23) are very similar to the Langevin equation (9.3) and the noise
(9.5) of the Brownian particle. The correlations 〈eσq(t)eσ′q′(t)〉 relax according to exponential
laws, but with q dependent rates γ → q2D. The solution of (9.22),

eσq(t) = eσq(0)e−Dq2t + e−Dq2t

t∫
0

ds eDq2s ξσq(s) , (9.25)

and the noise correlation (9.23) lead to the equal-times correlation function

〈eσq(t)eσ′q′(t)〉 = 〈eσq(0)eσ′q′(0)〉 e−D(q2+q′2)t

+e−D(q2+q′2)t
t∫

0

ds
t∫

0

ds′ eDq2seDq′
2s′ 〈ξσq(s)ξσ′q′ (s′)〉

= Ldδq,q′δ
σσ′ 1

2

C inie−2Dq2t + 2Dq2e2Dq2t

t∫
0

dse2Dq2sC0(s)

 .
(9.26)

Again, we assumed that the modes take their equilibrium correlations, 〈eσq(0)eσ′q′(0)〉 =
1
2C

ini Ldδqq′δ
σσ′ , at the beginning of the quench at t = 0. Inserting the quench protocol

(9.24) yields

〈eσq(t)eσ′q′(t)〉 = Ldδqq′δ
σσ′ 1

2

[
C inie−2Dq2t + Cfin

(
1− e−2Dq2t

)

+
(
C ini − Cfin

)
2Dq2 e−t/tq − e−2Dq2t

2Dq2 − 1/tq


≡ Ldδqq′δ

σσ′ 1
2C(q, t) .

(9.27)

We absorbed the q dependent terms in the square brackets into a new function C(q, t).6
The mismatch between the actual fluctuations and the target fluctuations 〈eσq(t)eσ′q′(t)〉0 =
1
2C0(t)Ldδqq′δ

σσ′ is described by the q dependent function

〈eσq(t)eσ′q′(t)〉 − 〈eσq(t)eσ′q′(t)〉0

= Ldδqq′δ
σσ′ 1

2
[
C(q, t)− C0(t)

]

= Ldδqq′δ
σσ′ 1

2
(
C ini − Cfin

) 1/tq
1/tq − 2Dq2

(
e−2Dq2t − e−t/tq

)
.

(9.28)

The discrepancy between the actual fluctuations and the target fluctuations is a measure of
the non-adiabaticity of the quench and indicates a finite rate of entropy production Π(t).

6Note that the pole at 2Dq2 − 1/tq = 0 is removed by the numerator.
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9.3 Entropy production of hydrodynamic modes after a quench

Fig. 9.2: Lag of hydrodynamic modes The hydrodynamic slow modes follow the quench
protocol exponentially fast ∼ e−Dq2 . However, for each quench time tq there are
slow modes q → 0 which lag behind in the thermodynamic limit. This leads to the
power-law behavior of the entropy production ∼ t−αq .

Fig. 9.2 shows how the slow modes lag behind the quench protocol for different values of q. The
relevance of the Fourier decomposition becomes particularly evident in this context: Since the
Fourier modes eσq relax with different rates q2D, their contributions to the entropy production
depend on q and have to be counted separately. This demonstrates that the Fourier modes eσq
are indeed the relevant hydrodynamic slow modes.

Entropy production from the multivariate Fokker-Planck equation Despite the fact that
only one conservation law is involved, we are dealing with a larger number of many non-
equilibrium modes or slow modes Xi ≡ eσq labeled by i ≡ (q, σ). Even in one spatial dimension
many Fourier modes contribute. In order to analyze the entropy balance, we start again from
the Gibbs entropy, but generalized for many degrees of freedom:

S(t) = −
∫

X
P (X , t) log

[
P (X , t)

]
. (9.29)

P (X , t) is the time-dependent probability distribution of the relevant slow modes X and
satisfies the normalization condition

∫
X P (X , t) = 1. The notation

∫
X ≡

∏
i

∫+∞
−∞ dXi is implied.

The change of entropy is then given by the temporal derivative

Ṡ(t) = −
∫

X
∂tP (X , t) log

[
P (X , t)

]
. (9.30)

As the number of slow modes is n > 1, we require the multivariate Fokker-Planck equation
(7.53) to track the time evolution of P (X , t).
We again cast it into the form of a continuity equation

∂tP (X , t) = −
∑
i

∂Ji(X , t)
Xi

, (9.31)

with the probability current (7.54)

Ji(X , t) = ai(X )P (X , t)−
∑
j

bij(t)
∂

∂Xj
P (X , t) . (9.32)
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9 Hydrodynamic Bounds to the Entropy Production for a Quasi-Static Quench

In the regime of linear hydrodynamics, we have that ai(X ) = −
∑
j DijXj . The quench

protocol enters through Lij → bij(t) = [DC0(t)]ij with the target correlation matrix C0(t).
Similar to the case of a single slow mode, we can identify to two contributions to the change
of entropy,

Ṡ(t) = Φ(t) + Π(t) , (9.33)

with the rates of entropy flux and the entropy production,

Φ(t) = −
∑
ij

∫
X

Ji(X , t)b−1
ij (t)aj(X ) ,

Π(t) =
∑
ij

∫
X

Ji(X , t)b−1
ij (t)Jj(X , t)

P (X , t) ≥ 0 ,
(9.34)

respectively. The steps of the calculation are identical to the case of a single slow mode, see
App. B.3. Since b−1 is a positive-definite matrix, the entropy production rate Π(t) of the slow
modes X can clearly be identified by its non-negativity. Again, Φ(t) > 0 corresponds to an
entropy flux from the bath of fast modes to the sector of slow modes X .

We focus on the evaluation of Π(t). As we argued earlier, the entropy production by the slow
modes is the only relevant contribution in the adiabatic limit tq → ∞. The entropy flux Φ(t)
describes the exchange between the sector of slow modes and fast modes, thus, not changing
the entropy of the total system that is composed of slow and fast modes. Similarly to the
example of the Brownian particle, we make use of the fact that the probability distribution is
Gaussian with a time-dependent kernel C−1(t),

P (X , t) = 1√
(2π)n det[C(t)]

exp
(
−Xi[C−1]ij(t)Xj

2

)
, (9.35)

where the correlation matrix 〈Xi(t)Xj(t)〉 = Cij(t) obeys the matrix equation

d
dtC(t) = −2D

[
C(t)− C0(t)

]
. (9.36)

We rearrange the expression of Π(t) as

Π(t) =
∫

X

[∑
ij

ai(X )b−1
ij (t)aj(X )P (X , t)−

∑
ijl

bilb
−1
ij

∂P (X , t)
∂Xl

aj(X )

−
∑
ijl

ai(X )b−1
ij bjl

∂P (X , t)
∂Xl

+
∑
ijkl

1
P (X , t)bilb

−1
ij bjk

∂P (X , t)
∂Xl

∂P (X , t)
∂Xk

]

=
∑
ij

b−1
ij (t)

〈
ai(X )aj(X )

〉
+ 2

∑
i

〈
∂ai(X )
∂Xi

〉

+
∑
ij

bij

〈
∂ log

[
P (X , t)

]
∂Xi

∂ log
[
P (X , t)

]
∂Xj

〉
,

(9.37)

using the short-hand 〈f(X )〉 =
∫

X f(X )P (X , t). The evaluation of the correlation functions
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9.3 Entropy production of hydrodynamic modes after a quench

yields7

Π(t) =
∑
ijkl

[b−1]ij(t)DikDjl

〈
XkXl

〉
− 2

∑
i

Dii +
∑
ijkl

bij [C−1]ik[C−1]jl
〈
XkXl

〉
= Tr

[
DT b−1DC

]
− 2 Tr

[
D
]

+ Tr
[
C−1bC−1C

]

= Tr
[
D
(
CC−1

0 − 2 + C0C
−1
)]

.

(9.38)

As a result, Π(t) is conveniently reduced to a trace operation if many slow modes contribute. A
similar expression is found for Φ(t). Note, however, that the matrices C, C0 are time-dependent
objects.

Application to hydrodynamic modes Having a sufficiently general expression for the en-
tropy production available, we apply (9.38) to the case of hydrodynamic slow modes Xi → eσq
with mode index i→ (qx > 0, σ) as defined before. Furthermore, the general scheme allows us
to perform the following replacements:∑

i

→ 1
Ld

∑
σ,qx>0

,

Dij → q2DLdδqq′δσσ′ ,

bij(t) → 〈ξσq(t)ξσ′q′ (t)〉 = 1
2 q

2DC0(t)Ldδqq′ δσσ′ ,

C0,ij(t) → 〈eσq(t)eσ′q′(t)〉0 = 1
2C0(t)Ldδqq′δσσ′ ,

Cij(t) → 〈eσq(t)eσ′q′(t)〉 = 1
2C(q, t)Ldδqq′δσσ′ .

(9.39)

The explicit expressions of the functions C(q, t), C0(t) are given in (9.27) and (9.24), respec-
tively. Due to the diagonal structure of the correlation matrices, the evaluation of Π(t) (9.38) is
straightforward. The trace operation translates to a summation over (q, σ). In the thermody-
namic limit L→∞, we transform the discrete summation of Fourier modes into a continuous
integral and we obtain the corresponding rate of entropy production as

Π(t) =
∑
qx>0

∑
σ=±

q2D

[
C(q, t)− C0(t)

]2
C(q, t)C0(t)

L→∞−−−−→
(
L

2π

)d ∫
ddq q2D

[
C(q, t)− C0(t)

]2
C(q, t)C0(t)

= Ωd

(
L

2π

)d Λ∫
0

dq qd−1q2D

[
C(q, t)− C0(t)

]2
C(q, t)C0(t) .

(9.40)

Ωd = 2πd/2
Γ(d/2) denotes the solid angle in d dimensions. When we switched to the isotropic integral,

we also absorbed the factor
∑
σ=± = 2. The UV cutoff Λ reminds us that the hydrodynamic

description breaks down at a small length scale ∼ 2π/Λ. We introduced Λ in Sec. 8.1.2 when
we argued that the number of macroscopic states or slow modes is much smaller than the
7We use that ∂ai(X )

∂Xi
= −Dii, ∂ log[P (X ,t)]

∂Xi
= −

∑
j
[C−1]ijXj , and the symmetry of the noise correlations

(DC0)T = DC0.
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9 Hydrodynamic Bounds to the Entropy Production for a Quasi-Static Quench

number of fundamental microscopic degrees of freedom or fast modes.8 Technically, Λ <∞ is
required for dimensions d ≥ 2 to keep the integral finite, preventing an “ultraviolet catastrophe”
of infinite entropy production. We observe that the contributions of the individual q modes
take the common form discussed in Sec. 9.2. However, the uniform damping is replaced by
γ → q2D. The actual quantity of interest is the total entropy production:

Πtot =
∞∫
0

dtΠ(t) = Ωd

(
L

2π

)d
D

∞∫
0

dt
Λ∫

0

dq qd+1

[
C(q, t)− C0(t)

]2
C(q, t)C0(t) . (9.41)

Πtot measures the total amount of entropy produced during the quench. We first consider the
case of d = 1 which allows us to set Λ → ∞. As the dimensionless integrand is of the form
[C(q,t)−C0(t)]2
C(q,t)C0(t) ≡ f(γt,Dq2t, C

fin

Cini ), it is possible to scale out the desired dependence on tq:

Πtot(tq) = 1
π
f̃

(
Cfin

Cini

)
L√
Dtq

∝ t
−1/2
q , (9.42)

with the scaling function

f̃(y) =
∞∫
0

ds
∞∫
0

du s−
3
2

√
u

2 f(s, u, y) . (9.43)

We find that the entropy production vanishes algebraically slowly, Πtot ∝ t−1/2
q . Thus, it turns

out that the exponent matches the value of the long-time tails 〈δe2(x, t)〉 − 〈δe2(x)〉eq ∝ t−1/2

in one dimension. There, a similar integration over q modes is involved to obtain the result.
Furthermore, the entropy production scales with the number of slow modes ∝ L, as expected.

Discussion In the calculation of the entropy production, the relevance of correct parame-
terization of the non-equilibrium modes becomes evident: We note that each slow mode eσq of
the energy density decays at a different rate ∼ Dq2. During the process of relaxation we can
attribute a temperature T (q, t) ∼ C(q, t) to each mode. In the regime of linear hydrodynam-
ics, the modes are completely decoupled during the relaxation and do not exchange entropy
among each other. Each temperature T (q, t) relaxes to the global target temperature T0 at
its individual rate. On the technical side, the individual temperatures are reflected in the
fact that we first take the square [C(q, t)− C0(t)]2, and only then integrate over all q modes.
Furthermore, the contributions of the slow modes are weighted by q2. Hence, the entropy
production of the modes is suppressed for q → 0. In the thermodynamic limit, the modes lie
dense around q = 0. There are always modes with q2D < t−1

q which lag behind, no matter
how large the quench time tq is. These modes will hamper the approach of the adiabatic limit:
Similar to the long-time tails of the density fluctuations, the softening of hydrodynamic modes
in the thermodynamic limit gives rise to the power-law behavior of the entropy production,
Πtot(tq) ∝ t

−1/2
q . There is no characteristic time scale as in a gapped system. Therefore, the

adiabatic limit cannot be reached with exponential accuracy for slow quenches. Nevertheless,
we can state that a quasi-static change of state is an adiabatic operation since Πtot |tq→∞ = 0,
as expected. Note that assuming a uniform temperature Te for all modes leads to a wrong re-
sult: Te would be tied to the fluctuations 〈δe2(x, t)〉 and, therefore, exhibits the same long-time
tails, i. e. Te − T0 ∝ t−1/2. Furthermore, the entropy production rate would be of the standard
quadratic form Π(t) ∝ (Te−T0)2 in this case, see Sec. 9.2. We are then forced to conclude that
a large amount of entropy is produced for time t > tq, giving rise to a logarithmically divergent
8Strictly speaking, we count an infinite number of q modes in the continuum limit. However, the number of q
modes scale ∝ Ld while the total number of microscopic states (dimension of the Hilbert space) scale ∝ eL

d

.
Thus, the cardinality of q modes is smaller.
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9.3 Entropy production of hydrodynamic modes after a quench

Fig. 9.3: Total entropy production of the q modes in d = 1, 2, 3 dimensions For d = 1,
the entropy is produced by the slowest q modes q → 0 while for d = 3 the fast modes
q → ∞ contribute most to the entropy production. In d = 2, 3 dimensions, a cutoff
Λ is required to avoid an “ultraviolet catastrophe”.

total entropy production, Πtot =
∫∞
tq

dt 1
t = ∞. This is in conflict to the fact that the system

converges to a definite equilibrium state after the quench.

If the unbounded integral would be finite for arbitrary dimensions d, the entropy production
would scale as Πtot ∝ t

−d/2
q . However, in higher dimensions d ≥ 2, we have to keep the

cutoff Λ explicitly.Despite the fact that the fast q modes decay faster than the slow ones, they
are more relevant for the entropy production in d ≥ 2, see Fig. 9.3. The likely reason for
this behavior is that the quench protocol C0(t) (9.24) is not smooth at t = 0. Therefore,
the true adiabatic limit cannot be reached for arbitrary slow quenches tq → ∞. In order to
find the exponent of the leading order in tq, we approximate the full integrand in (9.41) by
the numerator qd+1[C(q, t) − C0(t)]2 and replace the non-zero denominator C(q, t)C0(t) by a
constant C2. Analytical evaluation of the simplified integral yields [176]:

Πtot(tq) ∝ 1
8
√

2

(
L2

D

) 1
2

t
−1/2
q , d = 1

Πtot(tq) ∝ L2

32πD t−1
q log

(
2DΛ2tq

)
, d = 2

Πtot(tq) ∝ L3Λ
16π2D

t−1
q −

L3

32
√

2πD3/2 t
−3/2
q , d = 3

Πtot(tq) ∝ LdΛd−2

D
t−1
q + subleading, cutoff dependent corrections , d ≥ 3 .

(9.44)

We included the one-dimensional case as a benchmark and omitted the common prefactor
(Cfin − C ini)2C

−2. The leading-order dependence on tq is in agreement with the numerical
solution of the integral (9.41).
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10 Chapter 10

The Fluctuating Boltzmann Equation

After we have established the equations of fluctuating hydrodynamics, we turn to an effective
microscopic theory that considers the momentum-resolved distribution of particles: the Boltz-
mann theory. We start by pointing out that the Boltzmann theory is based on a coarse-grained
picture of the system in Sec. 10.1 before introducing the standard from of the Boltzmann
equation in Sec. 10.2. The standard Boltzmann equation is incomplete since it predicts an
exponential approach of the equilibrium state wrongly. Like for hydrodynamic equations, the
irreversible character of the Boltzmann equation requires to add a noise term. In Sec. 10.3,
we apply the general formalism of Ch. 7 to derive the corresponding noise correlations. We
then demonstrate that the fluctuating Boltzmann equation is able to predict the emergence of
hydrodynamic long-time tails. In Sec. 10.4, we address the buildup of fluctuations of the dis-
tribution itself and show that they exhibit long-time tails. Finally, we show that the fluctuating
hydrodynamic equations can be derived consistently in Sec. 10.5.

The hydrodynamic description is based on a set of slow variables that are directly linked to
the conservation laws as we discussed in Ch. 8: The non-equilibrium states described by the
hydrodynamic slow modes correspond to inhomogeneous distributions of the conserved quanti-
ties. The knowledge about the microscopic dynamics of the fundamental degrees of freedom of
the system is not required. However, the state and the dynamics of the system are fully defined
only for very mild deviations from complete equilibrium preserving local equilibrium. Now we
pass over to a finer resolution of the non-equilibrium state allowing for the departure from
local equilibrium. An extension of this kind is offered by the Boltzmann theory: The conserved
densities are replaced by its momentum-resolved analog, the phase-space density fk(x, t). Fur-
thermore, the theory provides an equation of motion of this quantity, the Boltzmann equation.

The theory is based on the major assumption that the system’s degrees of freedom are suffi-
ciently described by particles or quasiparticles which are defined by their momenta k and their
positions x. While the hydrodynamic description only relies on the existence of conserved
quantities, the Boltzmann treatment requires stable quasiparticles. From the perspective of a
given microscopic model, the stability of quasiparticles can be justified by a sharply peaked
spectral function, see Sec. 2.1.2 of Part I. These particles are treated in a semiclassical manner:
They are assumed to obey classical equations of motions except for scattering events when the
particles approach each other closely. Moreover, the Boltzmann theory takes a coarse-grained
perspective similar to hydrodynamics, unavoidably introducing an irreversible element.

10.1 Prerequisites

The above-mentioned semiclassical approach can be justified if the following conditions are
fulfilled:
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10 The Fluctuating Boltzmann Equation

• Particles are described by wave functions ψk(x, t) =
∫

k gk−k′e
i(k′·x−εk′ t) in the first

place. We assume that the weights gk−k′ exhibit a sharp peak at k with small width
δk.1 A Taylor expansion in δk shows that the wave function takes the form ψk(x, t) =
ei(k·x−εkt)g̃(x − vkt), see Ref. [119, 158, 177]. vk = ∂kεk denotes the group velocity of
the wave packet. Hence, the particle is described by a wave packet whose center of mass
moves according to the classical equation of motion ẋ = vk and we can attribute the
definite momentum k to the particle.

• On the other hand, the sharply peaked weight gk−k′ implies that the width of the wave
packet, δx ∼ 1

δk , is large in real space.2 The particles will interact if their wave packets
overlap. We refer to this configuration as scattering event or a collision. Here, the
quantum nature becomes relevant. Thus, the width of the wave packet defines the range
of interactions λc ≡ δx. The mean-free path λfree indicates the average distance a particle
propagates between two collisions. In order to distinguish periods of classical motion and
collisions, we require that they are separated by the corresponding scales, λc � λfree. The
duration of a collisions τc is much shorter than a typical scattering time τ , respectively.
Thus, the particles have to form a sufficiently dilute gas [11].

In the derivation of hydrodynamic equations we assumed that the total volume of the systems
can be divided into small volume cells (∆x)d, still large enough to provide local equilibrium.
The conserved charges in a volume cell are indicated by the corresponding densities ρi(x) as
ρi(x)(∆x)d. The existence of particles as prime degrees of freedom opens the possibility to
characterize the state of the system by the occupation of the single-particle states (k,x). The
Boltzmann theory extents the coarse-grained description to the d×d dimensional single-particle
phase space:3 The phase space is divided into small cells (∆k∆x)d, in a way that they contain
a macroscopic number of particles, but still appear very small on the scale on which their
particle content varies in phase space [3]. At this point, we are led to introduce the central
object of Boltzmann theory: the (single-particle) distribution function fk(x) indicating the
occupation of a phase-space cell. fk(x)(∆k∆x)d counts the number of particles in a phase-
space cell around (k,x). Hence, the distribution function fk(x) refers to the density in phase
space around the point (k,x) in the same fashion as ρi(x) indicates the density around x. In
Sec. 10.3 we will argue that we have to distinguish the actual density from the average density,
in full analogy with fluctuating hydrodynamics. The coarse-grained description is applicable
if a similar hierarchy of scales is in place as for hydrodynamics: To have a large number of
particles within a phase-space cell we require that λfree � ∆x. ∆k cannot be chosen smaller
than the spread of wave packet δk. On the other hand, variations of fk(x) are only allowed on
scales δxvar, δkvar with ∆x� δxvar and ∆k � δkvar, respectively. At this point, we emphasize
that the phase-space cells are not derived from the uncertainty principle, i. e. their size is not
given by hd [82].

Boltzmann theory provides a microscopic basis of hydrodynamics. The hydrodynamic densities
(particle density n, energy density e, momentum density p) are obtained by summing up the
occupation of all momentum states.4 Additional summation over the volume cells (∆x)d yields

1In a lattice system the width of the peak should be small compared to the extent of the Brillouin zone.
2The wave packet spans over many unit cells.
3The single-particle phase space is also referred to as µ space in the literature on kinetic theories [82].
4A momentum state is only defined up to ∆k.
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the total quantities (particle number N , energy E, momentum P):

n(x, t) =
∫

k
fk(x, t) , N =

∫
x

∫
k
fk(x, t) ,

e(x, t) =
∫

k
εk fk(x, t) , E =

∫
x

∫
k
εk fk(x, t) ,

p(x, t) =
∫

k
k fk(x, t) , P =

∫
x

∫
k

k fk(x, t) .

(10.1)

The smoothness of the distribution allows us to convert summations over phase-space cells into
integrals. We use the conventions (∆k)d

(2π)d
∑

k →
∫ ddk

(2π)d ≡
∫

k and (∆x)d
∑

x →
∫

ddx ≡
∫

x. The
local equilibrium condition of the hydrodynamic description appears as a special case of the
distribution function. In this case, the momenta of the particles in a volume cell around x are
distributed according to their local equilibrium distribution f0

k(x, t). Usually, f0
k ≡ f0

k[{λi}] is
parameterized by the Lagrange multipliers λi conjugate to the conserved charges ρi(∆x)d in the
volume cell. Since the content of the cells changes in space and time, our notation implies that
λi = λi(x, t). From now on, we restrict ourselves to the minimal set of conservation laws: energy
and particle number conservation. The energy is conserved as we consider isolated systems.
Particle number conservation is added since we treat the (quasi)particles as fundamental degrees
of freedom. The equilibrium distribution takes the form of the Fermi-Dirac, Bose-Einstein, or
Maxwell-Boltzmann distribution, f0

k(z, β) = (zeβεk + η)−1, with η = 1,−1, 0 for fermions,
bosons, and classical particles, respectively.5 Here, we replace the more common parameters,
chemical potential µ and temperature T , by the fugacity z = e−βµ and the inverse temperature
β = T−1. The particle density and the energy density are obtained by summing up the
occupation of all momentum states and their energies:

n(x, t) =
∫

k
f0

k

[
z(x, t), β(x, t)

]
, e(x, t) =

∫
k
εkf

0
k

[
z(x, t), β(x, t)

]
. (10.2)

For a given pair of densities (n, e) the local equilibrium distribution is calculated by inversion
of the functions n(z, β), e(z, β), see also Sec. 11.1.2. In Sec. 10.5, we will use (10.2) to derive
an explicit expression for the susceptibility matrix χ introduced in (8.17), Sec. 8.1.

10.2 The standard Boltzmann equation

Boltzmann proposed an equation of motion for fk(x, t) [83]. Here, we provide a heuristic
derivation, roughly following the structure in the textbook by Ziman [10], supplemented by
notions from the textbook by Brenig [158]. According to the Boltzmann equation the time-
evolution of the local distribution is driven by three contributions:

∂tfk =
(
∂fk
∂t

)
drift

+
(
∂fk
∂t

)
force

+ Ik[f ] . (10.3)

The first term states that the distribution changes if particles propagate freely between adjacent
volume cells. If there is an imbalance in the population of state k, ∼ ∂xfk, there will be a net
flow of particles in state k. (

∂fk
∂t

)
drift

= −vk · ∂xfk . (10.4)

The direction of the flow is determined by the relative orientation between the (group) velocity
of the particles vk and the gradient of the imbalance. The second term,(

∂fk
∂t

)
force

= −F(x, t) · ∂kfk , (10.5)

5The equilibrium distribution can be derived from the partition function of the grand-canonical ensemble.
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10 The Fluctuating Boltzmann Equation

describes how the distribution changes within a volume cells when an external force F(x, t)
is applied in the region around x. The appearance of these two terms can be understood by
tracking the positions (ki,xi), 1 ≤ i ≤ N , of N particles in phase space, see e. g. Ref. [3, 158]:
Let us consider the microscopic phase-space density defined as ρ(k,x, t) =

∑N
i=1 δk−ki(t)δx−xi(t).

We assume that the particles obey the classical equations of motion ẋi = vki and k̇i = F(xi, t)
where vk denotes the group velocity of the corresponding wave packet as before. For the change
of ρ(k,x, t), we obtain:

∂tρ(k,x, t) = −
N∑
i=1

ẋi · ∂x δk−ki(t)δx−xi(t) −
N∑
i=1

k̇i · ∂k δk−ki(t)δx−xi(t)

= −
N∑
i=1

vki · ∂x δk−ki(t)δx−xi(t) −
N∑
i=1

F(xi, t) · ∂k δk−ki(t)δx−xi(t)

= −vk · ∂xρ(k,x, t)− F(x, t) · ∂kρ(k,x, t) .

(10.6)

The equation of motion of ρ(k,x, t) is known as the Liouville equation of the single-particle
phase-space density from classical mechanics [111, 158]. The distribution function in the Boltz-
mann equation is related to ρ(k,x, t) through a coarse-graining procedure, i. e. we take averages
over small phase-space cells introduced before, fk(x, t) = (∆k∆x)−d

∫
(∆k∆x)d ddx′ddk′ρ(k′,x′, t).

The structure of the Liouville equation is transferred to the Boltzmann equation in the conti-
nuum limit and we arrive at the intermediate result:

∂tfk + vk · ∂xfk + F(x, t) · ∂kfk = 0 . (10.7)

The set of contributions discussed so far is called streaming term as it describes a flow in
the single-particle phase space. The streaming term is invariant under the time-reversal trans-
formation t → −t,k → −k.6 Hence, it represents the reversible content of the Boltzmann
equation. We emphasize again that the force F refers only to external forces. Interactions
between the particles are not discussed so far. Therefore, the N -particle phase space factorizes
into single-particle phase-spaces [158].

Boltzmann achievement was to include the effect of particle-particle interactions on fk by
counting the number of collisions (Stoßzahlansatz) in volume cell (∆x)d. If the semiclassical
picture is applicable, a collision only occurs at an isolated point in space when the wave packets
overlap for a short time interval τc. For most of the time, the particles are separated in space.
The local change in the occupation fk(x) of state k in a given volume cell around x can be
written in terms of gains Wk,in and losses Wk,out,

Ik[f ] = Wk,in −Wk,out . (10.8)

Assuming a dilute gas of particles τc � τ the rates of gain and loss are determined solely be
binary collisions. n-particle collision events with n > 2 are extremely rare and can be neglected.
The rates of gain and loss are determined by two factors:

• Wkk1,k2k3 denotes the probability that particles with incoming momenta (k,k1) scatter to
an outgoing momentum states (k2,k3) in the collision event. Such a process contributes
toWk,out. While the free propagation of well-isolated wave packets can be described clas-
sically between two collisions, the quantum nature of the particles cannot be neglected
when they approach each other and overlap. This condition defines the collision event. As
a consequence, Wkk1,k2k3 is obtained from a quantum-mechanical transition amplitude.
The reverse process Wk2k3,kk1 contributes to Wk,in, respectively. Microscopic reversibil-
ity – inherent in quantum mechanics – implies the collision symmetry of incoming and

6We do not consider magnetic fields.
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10.2 The standard Boltzmann equation

outgoing particles, Wkk1,k2k3 = Wk2k3,kk1 . To calculate the transition rates, one can
resort to the underlying Hamiltonian with two-particle interactions,

H =
∑

k
εkc
†
kck + 1

2
∑
{ki}

Vk1k2,k3k4c
†
k1
c†k2

ck4ck3 , (10.9)

with the dispersion εk and the interaction matrix Vk1k2,k3k4 . Fermi’s Golden Rule
[4] leads to the transition probabilities Wkk1,k2k3 = 2π

~ |Vkk1,k2k3 |2δ(εk + εk1 − εk2 − εk3).
They reflect energy conservation during the collisions.

• Despite collision symmetry, the rates do not vanish in general since they also depend on
the occupation of the involved states. A scattering event (k,k1) → (k2,k3) is realized
only if the incoming states are occupied. For the occupation of the final states, quantum
effects must again be considered. In particular, fermions can only scatter to empty states
due to Pauli’s principle. In this case, the outgoing states come with Pauli blocking factors
(1−fk). The contributions to the loss rate take the formWkk1,k2k3fkfk1(1−fk2)(1−fk3).
The gain rate is obtained by swapping incoming and outgoing states. For classical par-
ticles the occupation of the outgoing states is not relevant.

Integration over all scattering channels yields the so-called collision integral,

Ik[f ] =
∫

k1

∫
k2

∫
k3
Wkk1,k2k3

[
f̃kf̃k1fk2fk3 − fkfk1 f̃k2 f̃k3

]
. (10.10)

with the short-hand f̃k ≡ 1 − ηfk, η = 1,−1, 0 for fermions, bosons, or classical particles,
respectively. We used the convention

∫
k =

∫ ddk
(2π)d as introduced below (10.1). Combining the

contributions from the streaming term and the collision integral yields

∂tfk + vk · ∂xfk + F(x, t) · ∂kfk = Ik[f ] . (10.11)

We will refer to (10.11) as the standard Boltzmann equation. It is regarded as the prototype
of master equations [82]. As in the previous chapter, we restrict ourselves to isolated systems,
for which external forces are absent. We will omit the contribution ∼ ∂kfk in the remainder
of the text.

If we consider a certain volume cell with an arbitrary distribution fk, collisions will transform
fk to the equilibrium distribution f0

k, hence, Ik[f ] 6= 0. The local equilibrium is established
on a time scale τ related to the scattering time. Eventually, the collision integral vanishes in
equilibrium, Ik[f0] = 0, as f0 fulfills the detailed balance condition f̃0

kf̃
0
k1
f0

k2
f0

k3
= f0

kf
0
k1
f̃0

k2
f̃0

k3
,

i. e. all microscopic transition rates between the momentum states are balanced against each
other, see App. B.4. While the collision integral leads to the relaxation process in momentum
space, the complementary drift term reduces spatial inhomogeneities of the distribution func-
tion. The interplay between both terms results in complete equilibrium and is discussed in
Sec. 10.4 for the linearized Boltzmann equation.

Continuity equations and sum rules The conservation laws of the Boltzmann equation are
shown by deriving the corresponding continuity equations (8.1). Integrating both sides of the
Boltzmann equation (10.11)

∫
k or

∫
k εk yields:

∂tn+ ∂x · jn =
∫

k
Ik , ∂te+ ∂x · je =

∫
k
εkIk , (10.12)

with the particle density n, the energy density e, and the corresponding current densities,

jn =
∫

k
vkfk , je =

∫
k
εkvkfk . (10.13)
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10 The Fluctuating Boltzmann Equation

The local conservation of particle number or energy actually holds since Ik satisfies the sum
rules, ∫

k
Ik = 0 ,

∫
k
εkIk = 0 . (10.14)

The sum rules state that particle number and energy is not changed in the collisions that
occur in a given volume cell. The sum rules (10.14) are easily checked using that Wkk1,k2k3 ∝
δ(εk + εk1 − εk2 − εk3), see App. B.4. Further conservation laws may add, depending on the
precise form of the interactions (e. g. momentum conservation if Vkk1,k2k3 ∝ δk+k1−k2−k3) and
the existence of further quantum numbers (e. g. spin), but are not considered here. We will draw
on the continuity equation (10.12) in the derivation of hydrodynamic equations in Sec. 10.5.

Coarse-graining and irreversibility The collision integral breaks time-reversal symmetry
of the Liouville-type streaming term (10.7) and gives rise to the irreversible nature of the
Boltzmann equation [158]. This property is usually discussed in the context of Boltzmann’s H
theorem [83]. In our notation, it states that the quantity defined by

S = −
∫

x,k

[
fk log

(
fk
)

+ f̃k log
(
f̃k
)]

(10.15)

cannot decrease if fk(x, t) evolves according to the Boltzmann equation, i. e.
Ṡ = −

∫
x,k[∂tfk] log(fk/f̃k) ≥ 0. (10.15) can be identified as the coarse-grained entropy of

the system [147, 178]. The expression in terms of the coarse-grained single-particle distribu-
tion is reasonable as the phase-space density approximately factorizes. Summing or integrating
contributions from different volume cells yields to an extensive total entropy. The extensiv-
ity of the entropy is in line with the assumed short-ranged interactions of the particles. The
entropy (10.15) is maximized by the homogeneous equilibrium distribution f0

k under the con-
straint of the conservation laws, i. e. a fixed particle number

∫
x,k fk,x = N and a fixed energy∫

x,k εkfk,x = E.7 Note that the contributions of the streaming term in Ṡ can be written as
surface integral and, thus, vanishes. This is in accordance with the notion that reversible pro-
cesses do not change the entropy. The entropy production is only caused by the collisions,
i. e. by Ik[f]. Thus, S reaches its maximum in complete equilibrium when Ik[f0] = 0.

In general, irreversibility indicates the loss of information about part of the microscopic degrees
of freedom. Here, the apparent irreversibility demonstrated by the H theorem is rooted in the
coarse-grained description [82]. As stated earlier, the Boltzmann equation does not track the
trajectories of the particles in phase space. Instead, the Boltzmann equation treats the collisions
in a statistical manner by counting their number within finite volume cells. As a consequence,
the equation assumes its irreversible character, similar to the coarse-grained hydrodynamic
equations in Sec. 8.1. A generalized form of coarse-graining was developed by Zwanzig and
Mori [179, 180]. Here, the slow or coarse-grained variables are defined by a projection operator
acting in phase space. Their formalism can be used to derive general master equations. The
Boltzmann equation can be also be derived in the framework of real-time quantum field theory,
starting from a fully microscopic quantum-kinetic equation. There, the coarse-graining enters
as so-called Moyal expansion [181].

Correlations and long-time tails As we explained, the Boltzmann theory is a coarse-grained
description. Thus, the distribution function approaches its equilibrium shape in an irreversible
manner. Now, we address the time scale of the relaxation. As the Boltzmann theory deals with
the microscopic constituents, the hydrodynamic behavior on macroscopic scales should be pre-
dicted consistently. Indeed, hydrodynamic equations can be derived from the standard Boltz-
mann equation [119]. Note, however, that the fluctuating term is absent. In inhomogeneous
7In Sec. 10.3, we will consider fk,x as a fluctuating quantity. Still, N and E are conserved exactly (not only
on average).
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10.2 The standard Boltzmann equation

situations, the slow diffusive relaxation is predicted correctly. If the system is initialized in an
homogeneous non-equilibrium state, the standard Boltzmann equation predicts an exponential
relaxation of the distribution function, an obvious contradiction to fluctuating hydrodynamics.
In Sec. 8.2, we saw that the hydrodynamic correlations exhibit algebraic long-time tails ∝ t−d/2
even for homogeneous systems. Therefore, the standard Boltzmann theory is incomplete.

The standard Boltzmann equation neglects the correlation between particles. The form of the
collision integral is based on the assumption of molecular chaos [11, 82]: Colliding particles
are assumed to be uncorrelated before the scattering event. Only after the scattering event the
particles are correlated. This implies that particles are not allowed to collide again before they
lost their correlation. It is assumed that scattering events with other particles will lead to a very
rapid decay of correlations. This treatment neglects so-called ring collisions [11, 182]: After the
initial scattering event, the involved particles collide with different particles, but meet again
after a finite number of intermediate collisions. Thus, part of the correlation after the first
scattering event is retained before the second scattering event of the same particles. Ring col-
lisions lead to a slow algebraic behavior which replaces the exponential relaxation at late times.

In order to include the effect of correlations systematically one considers the Liouville equa-
tion of the full n-particle distribution functions f (n)

k1,...,kn . The equation of the single-particle
distribution f

(1)
k1
≡ fk1 is obtained by integrating over n − 1 momenta and will depend on

the two-particle distribution function f
(2)
k1,k2

that describes the correlations between two par-
ticles. In general, the equation of the m-particle distribution f

(m)
k1,...,km involves the higher-

order (m+ 1)-particle distribution, leading to the so-called BBGKY (Bogolyubov-Born-Green-
Kirkwood-Yvon) hierarchy of kinetic equations [111, 178]. The standard Boltzmann equation
is regained if we assume that the correlations can be neglected, i. e. if the higher-order distribu-
tions f (m)

k1,...,km factorize into single-particle distributions fk1 . In order to predict the emergence
of long-time tails due to correlation effects the two-particle distribution f (2)

k1,k2
should be kept

in the equation of fk1 [183, 184]. The infinite hierarchy is then truncated only after m = 2.

In the following, we will not take this route. Instead, we honor the Langevin approach which
we developed in Sec. 7.2. Similar to the derivation of fluctuating hydrodynamic equation, we
will imprint the missing correlations by adding a noise term. Close to equilibrium, the noise
correlations are then determined by a fluctuations-dissipation relation.

Range of validity of the standard Boltzmann equation To summarize our introduction to
the standard Boltzmann equation, we collect the properties that limit its range of validity:

• As we stated at the beginning of this section, the Boltzmann theory heavily relies on
the existence of quasiparticles if applied beyond the classical-gas setting, i. e. the spectral
function has to be peaked with non-vanishing quasiparticle weight. This condition is not
met, e. g. for one-dimensional fermion systems as we discussed in Sec. 2.1.2 of Part I.

• The interactions among the quasiparticles are calculated from Fermi’s Golden Rule to
second-order in perturbation theory in V . Thus, the form of the collision integral de-
pends on the validity of perturbation theory. The Boltzmann theory is not applicable for
strong interactions. Furthermore, the collision integral considers only binary collisions.
n-particle collisions with n > 2 are neglected which is usually justified by the diluteness of
the gas of the particles [11, 150]. If the two-particle contribution vanishes, three-particle
collision have to be taken into account, even for a dilute gas. This situation occurs for
a gas of identical particles in one dimension. Here, particles exchange their momenta in
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10 The Fluctuating Boltzmann Equation

binary collisions without changing the distribution function. The collision integral has to
be modified to incorporate three-particle collisions in this case [185, 186].

• Let us consider the time scales after a quantum quench: Hydrodynamics is limited to time
scales t � τ , where τ denotes the typical scattering time. This is required to fulfill the
local-equilibrium condition. The Boltzmann equation is valid for shorter times after the
quench when local equilibrium is not available, but quasiparticles have formed and start
to interact. We introduced this time period as kinetic stage in Sec. 6. Thus, Boltzmann
theory provides a finer resolution in time, τc � t . τ , where τc is the duration of the
collisions.

• At larger times t� τ the standard Boltzmann equation misses the buildup of correlations
among the particles. The long-time tails predicted by hydrodynamics are not captured.
Thus, the standard Boltzmann equation is incomplete and has to be modified for large
times.

In the following section, we extent the validity of the Boltzmann theory to the hydrodynamic
stage.

10.3 Collision noise

As we saw in the previous section, the Boltzmann equation is the irreversible equation of
motion of the coarse-grained single-particle distribution fk(x, t). Following the general theory
of irreversible processes in Sec. 7.2, the actual distribution must fluctuate about its average
value in a similar fashion as the densities ρ. Hence, the standard Boltzmann equation (10.11)
only describes the time-evolution of the average distribution and should include a noise term
ξk to account for the fluctuations. This gives rise to a fluctuating Boltzmann equation,(

∂t + vk · ∂x
)
fk = Ik[f ] + ξk . (10.16)

In this equation, the fluctuating quantity fk(x, t) has to be understood in the same way as the
velocity v(t) of the Brownian particle in (7.2) or the densities ρ(x, t) in fluctuating diffusion
equation (8.3). Alike in these examples, the noise correlation function 〈ξk(x, t)ξk′(x′, t′)〉 has
to be specified. Thereby, the conservation laws have to be respected. Fluctuating Boltzmann
equations have been repeatedly derived and discussed by many authors, e. g. in the framework
of the linear Onsager-Langevin theory [130, 131, 150, 187–189], but it was also derived from
the BBGKY hierarchy of kinetic equations or master equations [190–192], from the quantum
equation of motion ∂t[c†kck] [193, 194], and with methods of real-time field theory [195, 196].
This is certainly not an exhaustive list of contributions. We will add a further derivation based
on the explicit construction of the relevant non-equilibrium modes X . We stick closely to
Onsager’s general formalism in terms of non-equilibrium modes as exploited in the derivation
of the fluctuating diffusion equation in Ch. 8. Our derivation is partly inspired by the early
works of Bixon and Zwanzig [130] and of Fox and Uhlenbeck [131]. Gross et al. [189] gave a
compact summary of the their results.

The noise term ξk describes random transitions between the momentum states. In order to be
compatible with the continuity equation of fluctuating hydrodynamics (8.1), (10.12), ξk has to
fulfill the same sum rule as the collision integral in (10.14),

(∆k)d

(2π)d
∑

k
ξk = 0 , (∆k)d

(2π)d
∑

k
εkξk = 0 . (10.17)

Due to this similarity we will refer to ξk as collision noise. Here, we are interested in the
equilibrium form of the noise correlations. To simplify bookkeeping of the momentum states,
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10.3 Collision noise

we replaced the momentum integral with the explicit summation over the finite-sized momen-
tum cells again,

∫
k →

(∆k)d
(2π)d

∑
k. This will allow us to apply elementary linear algebra in our

further analysis. In the remainder of this chapter and in the subsequent chapter Ch. 11 we will
mostly omit the factors ∆k

2π for the sake of clarity, except for the final expressions. The missing
factors can be restored at any time by a dimensional analysis.

Equilibrium fluctuations of the distribution In the derivation of the fluctuating diffusion
equation, we started our analysis with the definition of the macroscopic state coordinates
(C,X ). After this step, we were able to write down an expansion of the entropy which gave
us access to the fluctuations of X around the equilibrium state. In the light of the preceding
discussion, we can anticipate the equilibrium correlations of the fluctuating distribution fk here:
We assume that the fluctuations of fk are controlled by the coarse-grained entropy (10.15),

S = −
∫
x

∑
k

[
fk log

(
fk
)

+ f̃k log
(
f̃k
)]

. (10.18)

In equilibrium the entropy fluctuates around its maximum value. The fluctuating distribution
deviates only little from the the homogeneous equilibrium distribution that maximizes the
entropy, S0 = S[f0]. From the expansion of the entropy, in the small displacements δf = f−f0,

S = S0 −
1
2

∫
x

∑
k

[
δfk(x)

]2
f0

kf̃
0
k

+O(δf3) , (10.19)

we read of the equilibrium correlations〈
δfk(x)δfk′(x′)

〉
eq

= ff0
kδkk′δ(x− x′) ≡ Ckk′δ(x− x′) . (10.20)

We introduced the notation ff0
k ≡ f0

kf̃
0
k for brevity. Again, the short-ranged correlations in

space are a consequence of the assumed additivity of the entropy of different volume cells, see
(8.8). The local correlation can also be obtained as the expectation value 〈c†kckc

†
k′ck′〉eq from

the grand-canonical ensemble.

Linearized Boltzmann equation and macroscopic state coordinates In order to apply
the general theory of Sec. 7.2, we require a linear macroscopic law that describes the relaxation
of the particles to their equilibrium distribution f0. From the macroscopic law, we then read
of the macroscopic state coordinates. To this end, we consider small local displacements from
complete equilibrium, δfk(x) � f0

k. In this situation, we can expand the collision integral
Ik on the r.h.s. of the Boltzmann equation (10.11). As f0 nullifies Ik, the first term in the
expansion is of linear order in δf . The linearized Boltzmann equation reads as(

∂t + vk · ∂x
)
δfk = −

∑
k′
Tkk′δfk′ + ξk . (10.21)

The expansion coefficient is given by the collision matrix,

Tkk′ = δkk′
∑

p1p2p3

Wkp1,p2p3(ηf0
p2f

0
p3 f̃

0
p1 + f̃0

p2 f̃
0
p3f

0
p1)

+
∑

p1p2

[
Wkk′,p1p2(ηf0

p1f
0
p2 f̃

0
k + f̃0

p1 f̃
0
p2f

0
k)− 2Wkp1,p2k′(f0

p2 f̃
0
kf̃

0
p1 + ηf̃0

p2f
0
kf

0
p1)
]
.

(10.22)
The sum rules of the full collision integral (10.14) have to be satisfied at each order of the
expansion and for arbitrary δfk. Therefore, collision matrix contains full information about
the conservation laws, inheriting the sum rules∑

k
Tkk′ = 0 ,

∑
k
εkTkk′ = 0 , (10.23)
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10 The Fluctuating Boltzmann Equation

see App. B.4. The space of the macroscopic states is obtained from the eigenmodes of the
collision matrix.

We observe that we can decompose the total displacement into two independent contributions:

δfk(x, t) = δf conk (x, t) + δfnck (x, t) . (10.24)

δf conk (x, t) denotes deviations from a spatially homogeneous equilibrium distribution that do
not change the their shape. f0

k + δf conk (x, t) ≡ f0,loc.
k (x, t) describes a local-equilibrium state,

where the inhomogeneous equilibrium distribution f0,loc.
k (x, t) varies in space. These are the

states of the local-equilibrium space that hydrodynamics deals with. Hence, δf conk (x, t) can be
parameterized in terms of the (inhomogeneous) conserved densities (n, e). Since Ik[f0] = 0,
δf conk (x, t) does not contribute to the collision integral. Additionally, δfnck (x, t) describes devi-
ations in the shape of distribution, i. e. the deviations from local equilibrium. This contribution
lies outside the scope of hydrodynamics. δfnck (x, t) gives rise to a finite collision integral as
collisions tend to restore local equilibrium. This suggests that δf conk and δfnck are vectors of
orthogonal subspaces in the vector space of displacements δfk. To summarize these thoughts,
we reformulate (10.21) as(

∂t + vk · ∂x
) (
δf conk + δfnck

)
= −

∑
k
Tkk′δf

nc
k′ + ξk . (10.25)

In the following, we will analyze the Euclidean space of distributions by constructing the
eigenbasis of T to verify the decomposition.

For the time being, we assume that we can switch off the drift term vk · ∂xδfk. The resulting
equation,

∂tδfk = −
∑

k
Tkk′δfk′ + ξk , (10.26)

takes the general form of the linear macroscopic law (7.24). To get further insight, we perform
a change of basis according to the recipe in Sec. 7.2.3, consisting in two steps: In the first step
the matrix T is symmetrized by a change of basis,

δfk =
∑
k′
C

1/2
kk′φk′ =

(
ff0

k

)1/2
φk ,

ξk =
∑
k′
C

1/2
kk′ ξ̃k′ =

(
ff0

k

)1/2
ξ̃k ,

(10.27)

where Ckk′ = ff0
kδkk′ denotes the (local) equilibrium correlation matrix (10.20). Indeed, the

matrix
T̃kk′ =

[
C−1/2TC1/2

]
kk′

= Tkk′
(
ff0

k′
)1/2 (

ff0
k

)−1/2
, (10.28)

is symmetric by virtue of the Onsager reciprocal relation, TC = [TC]T , see (7.37) and below.8
In App. B.4, we explicitly show that T̃ is symmetric and, therefore, the reciprocal relation is
fulfilled. The emergence of the symmetry tells us that the entropy (10.18) and the collision
integral (10.10) are defined consistently. From (10.23) follows that the T̃ satisfies the sum rules∑

k

(
ff0

k

)1/2
T̃kk′ = 0 ,

∑
k

(
ff0

k

)1/2
εkT̃kk′ = 0 . (10.29)

We obtain the intermediate result:

∂tφk = −
∑

k
T̃kk′φk′ + ξ̃k . (10.30)

8in absence of magnetic fields
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As a side remark, we note that the equilibrium distribution takes a “universal” form in the
new basis, φ0

k = z−1/2e−βεk/2 for fermions, bosons, or classical particlesas well. In the second
step, we change to the orthogonal eigenbasis {|m〉} of the symmetric matrix T̃ ,

φk(x, t) =
∑
m

φm(x, t) |m〉k , ξ̃k(x, t) =
∑
m

ξm(x, t) |m〉k , (10.31)

with
∑

k 〈m|k |m′〉k = δmm′ . We adopt the ket notation for clarity. |m〉k denotes the k element
of |m〉 ∈ RNk×1 and 〈m|k denotes the k element of 〈m| ≡ |m〉T ∈ R1×Nk where Nk is the total
number of cells in momentum space. The sum rules (10.29) indicate that there are exactly two
zero eigenvalues with eigenvectors T̃ |1〉 = 0, T̃ |2〉 = 0, and |m〉k = am(ff0

k)1/2 + bmεk(ff0
k)1/2,

m = 1, 2. We will calculate the coefficients in Sec. 10.5. |1〉 , |2〉 are conserved modes since they
are not affected by the action the collision matrix. All other eigenvalues 3 ≤ m ≤ Nk have to
be nonzero and positive as T̃ ≥ 0. Any further conservation law adds a new sum rule, i. e. a
zero eigenvalue to the spectrum of T̃ , thereby raising the dimension of the degenerate subspace
by 1. Therefore, we can write the symmetric collision matrix as

T̃kk′ =
∑
m≥3

|m〉k
1
τm
〈m|k . (10.32)

We identify τm > 0 as the relaxation time of the non-conserved modes |m〉, m ≥ 3.

The conserved modes m = 1, 2 span the Euclidean space of local-equilibrium distributions,
defined by the vanishing of the collision integral. The non-conserved modes m ≥ 3 describe the
deviation perpendicular to the equilibrium space. Both, conserved and non-conserved modes,
are non-equilibrium coordinates in the sense that they describe the deviations from complete
equilibrium. Thus, we verified the decomposition into contributions from orthogonal subspaces
in (10.24), δfk = δf conk + δfnck . We identify δf conk (x, t) = (ff0

k)1/2[φ1(x, t) |1〉k + φ2(x, t) |2〉k]
and δfnck (x, t) = (ff0

k)1/2∑
m≥3 φ

m(x, t) |m〉k. δf conk and δfnck are decoupled if the drift term
is dropped in (10.25). Then, all eigenmodes are decoupled in the Boltzmann equation, in
particular, conserved and non-conserved modes. The decoupled equation are:

∂tφ
1,2 = 0 ,

∂tφ
m = − 1

τm
φm + ξm m ≥ 3 .

(10.33)

We anticipated that ξ1,2 = 0: Noise is associated to the irreversible content of the Boltzmann
equation, i. e. to the non-conserved modes m ≥ 3. As they decay exponentially ∝ e−t/τm ,
the noise terms ξm 6= 0, m ≥ 3, are mandatory. In contrast, φ1,2 are conserved and are
not related to an irreversible process. Consequently, there is no noise term. We can also
argue with the noise correlation function: The equilibrium correlations (10.20) translate to
〈φmφm′〉eq = δmm′δ(x − x′) in mode space. Using this and the general form of the noise
correlations (7.47), we infer that 〈ξmξm′〉 = 2

τm
δmm′δx−x′δt−t′ . In the limit of infinitely long-

lived modes τm →∞, the noise correlation vanishes. Taken together with the general condition
〈ξm〉 = 0, the noise term is nailed to zero. This is similar to the hydrodynamic noise ∝ q2 in
(8.22) which vanishes in the long-wavelength limit q → 0. Transformed back into the original
basis, we obtain the noise correlations〈

ξ̃k(x, t)ξ̃k′(x′, t′)
〉

= 2T̃kk′δ(x− x′)δ(t− t′) . (10.34)

in (10.30) and, finally,〈
ξk(x, t)ξk′(x′, t′)

〉
= 2Tkk′ff

0
k′δ(x− x′)δ(t− t′) . (10.35)
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10 The Fluctuating Boltzmann Equation

in (10.26). The form of the correlations matches the general form (7.51).

The derivation given above is incomplete: We note that the equilibrium correlations in mode
space are O(1) for all modes, including the conserved ones, m = 1, 2, a seeming contradiction
to the noiseless equation of φ1,2 (10.33). The reason is that the drift term couples conserved
and non-conserved modes allowing for fluctuations of the conserved charges in space.

To obtain the full picture, we restore the drift term vk∂xφk in (10.30),(
∂t + vk · ∂x

)
φk = −

∑
k
T̃kk′φk′ + ξ̃k . (10.36)

Here, we encounter a minor complication: The drift term adds a reversible contribution
to the Langevin equation which did not exist in the previous examples. Motivated by our
analysis of the hydrodynamic mode space, we choose the Fourier representation to eliminate
the coupling by the drift term. We apply the discrete Fourier decomposition (8.5) φk(x, t) =
L−d

∑
q eiq·xφk,q and ξ̃k(x, t) = L−d

∑
q eiq·xξ̃k,q, to (10.36), yielding(

∂t + ivk · q
)
φk,q = −

∑
k′
T̃kk′φk′,q + ξ̃k,q . (10.37)

As previously in Ch. 8, we want to avoid complex variables and define the real-valued modes
φ+

k,q = Re{φk,q}, φ−k,q = Im{φk,q}. The states are now labeled by the triple (k,q, σ). The
modes q 6= 0 describe distributions that are inhomogeneous in space. These transformations
convert the Boltzmann equation into the standard form of a linear Langevin equation with
real-valued variables [see (7.30)],

∂tφ
σ
k,q = − 1

Ld

∑
(k′,q′,σ′)

Lσσ′kk′,qq′φ
σ′
k′,q′ , (10.38)

with

Lσσ′kk′,qq′ =
(

1 0
0 1

)
σσ′

T̃kk′L
dδqq′ +

(
0 −1
1 0

)
σσ′

vk · q δkk′L
dδqq′ . (10.39)

The irreversible part is again represented by a symmetric matrix. The reversible drift term
violates the symmetry [150, 189]: It maps to skew-symmetric matrix, MT = −M , that couples
σ = ± modes.9 The equilibrium correlations of the quantities φσk,q are given as

〈
φσk,qφ

σ′
k′,q′

〉
eq

= 1
2ff

0
kδkk′L

dδqq′δ
σσ′ ≡ Cσσ

′
kk′,qq′ , (10.40)

respectively. Now, we are again in the position to follow the prescriptions of Sec. 7.2.3 and
write down the noise correlation function. We note that, in contrast to the fully irreversible
hydrodynamic equations, the skew-symmetric drift term violates the Onsager symmetry, LC 6=
(LC)T . Therefore, we cannot use the expression (7.51) which was derived under the assumption
of this symmetry. Instead, the noise correlations are of the more general form (7.55) which also
holds if the symmetry is absent:

〈
ξσk,qξ

σ′
k′,q′

〉
eq
≡

[
LC +

(
LC

)T ]σσ′
kk′,qq′

δ(t− t′) = T̃kk′L
dδqq′δ

σσ′δ(t− t′) . (10.41)

The skew-symmetric part cancels out from the expression. This result is in accordance with
the notion that noise terms are required to balance the entropy production of irreversible
dynamics close to equilibrium. Reversible dynamics like drift does not contribute to the entropy
9The transpose operation is defined by swapping all indices, (k,q, σ)↔ (k′,q′, σ′)
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10.4 Boltzmann long-time tails

production and, thus, is not accompanied by noise. Inverse Fourier transformation yields the
same form of the noise correlations (10.34) and (10.35) as in absence of the drift term. The result
can also be stated in the following way: The noise term ξk drives the non-conserved modes δfnck
perpendicular to the equilibrium space while the collision integral acts as a restoring force. The
conserved modes δf conk also fluctuate: The fluctuating forces perpendicular to the equilibrium
space are transferred to fluctuations of the conserved modes with the equilibrium space by the
coupling of the drift term.

10.4 Boltzmann long-time tails

Coupling of conserved and non-conserved modes: qualitative behavior The drift term
∼ vk∂xδfk represents the reversible element in the Boltzmann equation that leads to a shift of
the distribution in phase space, δfk(x, t) = δfk(x − vkt, 0) in absence of collisions; for finite-
size systems pure drift eventually gives rise to an oscillating behavior. The drift term couples
conserved and non-conserved modes in (10.25),(

∂t + vk · ∂x
) (
δf conk + δfnck

)
= −

∑
k
Tkk′δf

nc
k′ + ξk . (10.42)

The interplay of drift term and collision integral results in a slow relaxation of the conserved
modes for inhomogeneous initial conditions. We will first give qualitative arguments based
on the orthogonality of conserved and non-conserved modes. The orthogonality of δf conk and
δfnck has profound consequences for the relaxation dynamics: While δfnck decays exponentially,
there is no finite decay rate for δf conk . The conserved modes can only relax indirectly through
the coupling to δfnck via the drift term. To clarify this statement we consider the relaxation
with two initial conditions: (1) an inhomogeneous local-equilibrium distribution [δf conk 6= 0,
δfnck = 0] and (2) a homogeneous non-equilibrium distribution [δf conk = 0, δfnck 6= 0].

(1) When the system is released from an inhomogeneous local-equilibrium distribution, the
collision integral vanishes in the initial state. Since the local equilibrium distribution
is even in k and the velocities vk are odd, the current densities (10.13) also vanish,
jn(x, 0) = 0, je(x, 0) = 0. The time-evolution is started by the drift term. When the
inhomogeneous local-equilibrium pattern is shifted in phase space, the local detailed-
balance condition is violated and finite non-equilibrium displacements δfnck 6= 0 emerge.
The non-equilibrium distribution activates the currents of conserved charges, e. g. the
particle current jn =

∑
k vkδf

nc
k . The currents reach a maximum when the action of the

drift term is balanced by collisions after a certain drift time. After the initial buildup
of the currents the conserved charges are transported according to the hydrodynamic
equations. Since the δf conk is parameterized by the local densities (n, e), it shows the
same diffusive relaxation in the equilibrium space. The approach of complete equilibrium
is accompanied by the decay of δfnck ∼ jn, je.

(2) If the time evolution starts from a homogeneous non-equilibrium distribution, the lin-
earized Boltzmann equation predicts that the homogeneous equilibrium state is reached
exponentially fast. The relaxation is not hampered by conserved modes. However, this
treatment of homogeneous systems is to naive. Nonlinear higher-order terms in the
expansion change the behavior since they induce a coupling between conserved and non-
conserved modes. We will further comment on the relaxation of homogeneous distribu-
tions in Ch. 12.

Perturbative results To support our statement about the slow diffusive relaxation of the
conserved modes δf conk , we analyze the spectrum of the full operator L, including the drift
term. Due to their complementary nature, drift term and collision matrix do not share a
common eigenbasis, i. e. the eigenvectors |m〉 of T̃ are not eigenvectors of L. We denote the
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10 The Fluctuating Boltzmann Equation

eigenvalues and eigenvectors of L by lmq,σ, |lmq,σ〉, respectively. Decomposition into eigenmodes
φσk,q(t) =

∑
m φ

m
q,σ(t) |lmq,σ〉k leads to the decoupled Langevin equations

∂tφ
m
q,σ = −lmq,σφmq,σ + ξmq,σ . (10.43)

In order to access the spectrum of L, we treat k · q as a perturbation to the bare collision
matrix T̃ . The perturbation series is controlled by the smallness of the wavenumbers q, i. e. by
the smoothness of the inhomogeneities. The spectrum of T̃ is recovered for q = 0.

As a first step we diagonalize the 2×2 blocks of the σ = ± basis which decouples those modes.
After that we arrange L into a block-diagonal form of two Nk ×Nk matrices T̃kk′ + iσvk · q,
σ = ±, and obtain their eigenvalues perturbatively. Due to the conservation laws the spectrum
of T̃ is degenerate; it contains two zero eigenvalues corresponding to particle number and
energy conservation. Therefore, we have to use the method of degenerate perturbation theory
[197] to find the decay rates of the conserved modes l1,2q,σ. In the following, {|m〉} denotes
the orthogonal basis of T̃ as before. We note that the matrix elements in the degenerate
subspace vanish,

∑
k 〈m|k vk |m〉k = 0 for m = 1, 2, since the eigenvectors are even function of

k, |m〉−k = |m〉k, and the velocity is an odd function v−k = −vk. As a consequence, the first
order in perturbation theory vanishes. The decay of the conserved modes is characterized as a
second-order process to leading order:

l1,2q,σ = 0 q0 + 0 q1 +
∑
m′≥3

(∑
k 〈m′|k iσq · vk |1, 2〉k

)2

0− 1
τm′

+O(q3)

=
∑
m′≥3

τm′

∑
k
〈m′|k q · vk |1, 2〉k

2

+O(q3)

= D1,2q
2 +O(q3) .

(10.44)

The second-order term appears with a unusually positive sign due to i2 = −1. Only the odd
non-conserved modes contribute. In the last line, we defined the diffusion constant in mode
space,

D1,2 = 1
d

d∑
α=1

∑
k,k′

∑
m′≥3

〈1, 2|k v
α
k |m′〉k τm′ 〈m

′|k′ v
α
k′ |1, 2〉k′

= 1
d

d∑
α=1

∑
k,k′
〈1, 2|k v

α
k [T̃ ]−1

kk′v
α
k′ |1, 2〉k′ .

(10.45)

The diffusion constants D1,2 > 0 will reappear in the derivation of hydrodynamic equations in
Sec. 10.5. There, we will see that they are the diagonal elements of the symmetrized diffusion
matrix D̃ = C

−1/2
hyd DC

1/2
hyd. In the second line, we defined the inverse of the (symmetric) colli-

sion matrix, [T̃ ]−1
kk′ =

∑
m≥3 |m〉k τm 〈m|k′ , as the inverse in the subspace of the non-conserved

modes. We also used the rotation symmetry to single out the factor q2. As a result, the drift
term induces diffusive decay of the conserved modes φ1,2

k,q 6=0 via coupling to the non-conserved
modes in a second-order process. The zero modes φ1,2

q=0 reflect the conservation of the total
conserved charges similar to hydrodynamic zero modes.

Assuming that the unperturbed spectrum of the non-conserved modesm ≥ 3 are non-degenerate,
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10.4 Boltzmann long-time tails

τm 6= τm′ , m 6= m′, the first terms of the perturbation series read as

lm≥3
q,σ = 1

τm
q0 + 0 q1

+
∑

m6=m′≥3

(∑
k 〈m′|k iσq · vk |m〉k

)2

1
τm
− 1

τm′

+
∑

m′=1,2

(∑
k 〈m′|k iσq · vk |m〉k

)2

1
τm
− 0

+O(q3)

= 1
τm

+Dm≥3q
2 +O(q3) ,

(10.46)
with

Dm≥3 =
∑

m6=m′≥3

1
τ−1
m′ − τ

−1
m

1
d

d∑
α=1

∑
k
〈m′|k v

α
k |m〉k

2

−τm
∑

m′=1,2

1
d

∑
α

∑
k
〈m′|k v

α
k |m〉k

2

.

(10.47)

The first order term ∝ iq vanishes,
∑

k 〈m|k vk |m〉k = 0, irrespective whether |m〉k is even or
odd. Hence, the diffusive term is a subleading correction to the exponential decay ∼ e−t/τm of
the non-conserved modes φm≥3

q,σ . The correction can also become anti-diffusive, Dm≥3 < 0.

Above we argued that the linearized Boltzmann equation wrongly predicts a fast relaxation of
the q = 0 modes since it neglects higher-order terms. Thus, we cannot treat the relaxation
of the average distribution 〈δfk〉 within the linear approximation. However, a slow relaxation
of the fluctuations of the distribution 〈δfkδfk′〉 is predicted to leading order. The decay rates
of the conserved modes ∼ D1,2q

2 imply that 〈δfk(t)δfk′(t)〉 exhibits Boltzmann long-time tails
∝ t−d/2, similar to the fluctuations of the conserved densities. Again drawing on (7.50), the
fluctuations in mode space follow〈

φmq,σ(t1)φm′q′,σ′(t2)
〉

= δmm
′
Ldδqq′δσσ′

1
2
[
−e−lmq,σ(t1+t2) + e−lmq,σ |t1−t2|

]
. (10.48)

For clarity, we assumed that the initial correlations vanish, 〈φmq,σ(0)φm′q′,σ′(0)〉 = 0. For the
conserved modes, we use the perturbative rate lmq,σ = D1,2q

2, independent of σ. Thus, the
fluctuations in real space behave as

〈
φ1,2(x1, t1)φ1,2(x2, t2)

〉
=

∫ ddq
(2π)d eiq(x2−x1)

[
−e−D1,2q2(t1+t2) + e−D1,2q2|t1−t2|

]

= − e−
(x1−x2)2
8πD1,2t

(8πD1,2t)d/2
+ e−

(x1−x2)2
4πD1,2|∆t|

(4πD1,2|∆t|)d/2
,

(10.49)

with 2t = t1 + t2 and ∆t = t1 − t2 [cf. (8.38)]. The fluctuations in momentum space are
obtained from

δfk(x, t) = (ff0
k)1/2

∑
m

φm(x, t) |m〉k
t�max(τm)
≈ (ff0

k)1/2
∑
m=1,2

φm(x, t) |m〉k , (10.50)

Here, the unperturbed eigenvectors |m〉 contribute to leading order. Corrections to the eigen-
vectors ∝ iq correspond to spatial derivatives, (iq)neiqx = ∂nx eiqx, acting on (10.50) and generate
terms that decay faster than t−d/2. We also used that for large time scales, t, |∆t| � max(τm),
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10 The Fluctuating Boltzmann Equation

only the conserved modes are relevant since the non-conserved ones reach the final equilibrium
value ∝ e−t/τm . For x1 = x2 = x, the leading contribution is given as〈

δfk(x, t1)δfk′(x, t2)
〉

= (ff0
k)1/2(ff0

k′)1/2
∑

m,m′=1,2
|m〉k 〈m

′|k′
〈
φm(x1, t1)φm′(x2, t2)

〉

= (ff0
k)1/2(ff0

k′)1/2
∑
m=1,2

|m〉k 〈m|k′
(
− 1

(8πDmt)d/2
+ 1

(4πDm|∆t|)d/2

)
,

(10.51)

In particular, we find the non-equilibrium long-time tail of the autocorrelations and its pref-
actor,

〈
δfk(x, t)δfk(x, t)

〉
−
〈
δfk(x)δfk(x)

〉
eq

= − ff0
k

(8π)d/2
∑
m=1,2

|m〉k 〈m|k
Dd/2m

1
td/2

. (10.52)

The prefactor of the Boltzmann long-time tails exhibits the same structure as the prefactor
of the hydrodynamic long-time tails in (8.41). It consists of the equilibrium correlations ∼ ff0

k
and the relevant diffusion constant ∼ D−d/2m . We will use (10.52) in the analysis of numerical
results in Sec. 11.3.4.

10.5 Derivation of fluctuating hydrodynamic equations

We discussed that Boltzmann theory adds new dimensions to the non-equilibrium space, per-
pendicular to the non-equilibrium space of hydrodynamics. These degrees of freedom are
activated if δfnck 6= 0. Hence, we recover the equations of fluctuating hydrodynamics in the
limiting case of δfnck → 0.

Before we enter the derivation, we verify that the hydrodynamic equilibrium fluctuations are
consistently determined by the thermodynamic susceptibilities. In equilibrium the particle and
energy densities are given by n(z, β) =

∑
k f

0
k(z, β) and e(z, β) =

∑
k εkf

0
k(z, β) with fugacity

z and inverse temperature β in (10.2). For the susceptibility matrix [defined in (8.17)] follows

χ =
(
∂log(z)n ∂βn

∂log(z)e ∂βe

)
= −

∑
k

(
ff0

k εkff
0
k

εkff
0
k ε2kff

0
k

)
. (10.53)

We used that ∂log(z)f
0
k = −ff0

k, ∂βf0
k = −εkff0

k. On the other hand, the fluctuations of the
distribution function 〈δfkδfk′〉 ∝ ff0

kδkk′ [see (10.20)] generate the hydrodynamic fluctuations〈δnxδnx′〉eq 〈δnxδex′〉eq
〈δexδnx′〉eq 〈δexδex′〉eq

 =
∑
k,k′

 〈δfkδfk′〉eq εk 〈δfkδfk′〉eq
εk 〈δfkδfk′〉eq ε2k 〈δfkδfk′〉eq


= −χδ(x− x′) ,

(10.54)

i. e. the hydrodynamic correlation matrix indeed obeys Chyd = −χ as required in equilibrium.
In this context, we recognize a practical representation of the orthonormal basis |1〉, |2〉 in the
subspace of the conserved modes: In Sec. 10.3, we saw that the basis vectors are given as

(
|1〉k
|2〉k

)
= S

 (ff0
k)1/2

εk(ff0
k)1/2

 , (10.55)
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10.5 Derivation of fluctuating hydrodynamic equations

where the 2× 2 matrix S ensures orthonormalization. If we choose S = ST , the condition

12 =
∑

k

(
〈1|k
〈2|k

)(
|1〉k
|2〉k

)T
= S

∑
k

 (ff0
k)1/2

εk(ff0
k)1/2

 (ff0
k)1/2

εk(ff0
k)1/2

T S
= SChydS ,

(10.56)

is imposed on S, thus, S = C
−1/2
hyd . We gain that the abstract basis vectors |1〉, |2〉 are

now fully determined by physically meaningful, measurable quantities, see Sec. 8.1.4. It is
also useful to define an operator P con which projects a function φk =

∑
m φ

m |m〉k onto the
conserved subspace spanned by |1〉, |2〉. The projection operator can be represented as

P con
kk′ =

(
|1〉k
|2〉k

)T (
〈1|k′
〈2|k′

)
=

 (ff0
k)1/2

εk(ff0
k)1/2

T C−1
hyd

 (ff0
k′)1/2

εk′(ff0
k′)1/2

 , (10.57)

which follows from (10.55) and (10.56). We note that the inverse correlation matrix can be
expressed by the inverse susceptibility matrix C−1

hyd = −χ−1. This symmetric matrix is defined
by the relation (8.17), δλi =

∑
j [χ−1]ijδρj , and describes the effects of changes in the conserved

densities on the associated thermodynamic potentials λi. In case of particle number and energy
conservation, it contains the partial derivatives:

−C−1
hyd = χ−1 =

(
∂n log(z) ∂e log(z)
∂nβ ∂eβ

)
. (10.58)

We will use these identities in the following calculations.

We complete the first step in the derivation of hydrodynamic equations by establishing the
continuity equations of the conserved densities (10.12), which are strictly fulfilled. In particu-
lar, they also remain preserved under strong non-equilibrium conditions. The remaining task
is to find the dependence of the currents on the densities: the constitutive equations of the
fluctuating currents ji({ρj , ζj}). Given those, we obtain a closed set of equations. Here, the
assumption of weak non-equilibrium conditions will enter. We follow the derivation of hydro-
dynamic equations in Ref. [119] concerning the main steps, but extend them by fluctuating
currents and add the notion of conserved and non-conserved modes.

We recall the decomposition of the distribution function into the conserved and the non-
conserved modes, δfk = δf conk + δfnck . Finite current densities are only caused by δfnck ,(

jn
je

)
=

∑
k

(
1
εk

)
vk
(
f0

k + δfk
)

=
∑

k

(
1
εk

)
vkδf

nc
k , (10.59)

since f0
k + δf conk = f0,loc.

k is even in k. As a consequence, the local equilibrium assumption of
the hydrodynamic description cannot be met in a strict sense as this would exclude transport.
We will quantify the deviation in the derivation of δfnck .

The hydrodynamic limit is defined by the smallness of δfnck in the first place, i. e. we are very
close to the local-equilibrium situation. The smallness of δfnck allows us to linearize the collision
integral. It is convenient to start from the linearized Boltzmann equation in the form (10.25),(

∂t + vk · ∂x
) (
φconk + φnck

)
= −

∑
k′
T̃kk′φ

nc
k′ + ξ̃k , (10.60)

with (δf conk , δfnck , ξ̃) = (ff0
k)1/2(φconk , φnck , ξk) such that the collision matrix is symmetrized,

T̃ = T̃ T . The idea is to isolate φnck on one side of the equation and, then, to perform a gradient
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10 The Fluctuating Boltzmann Equation

expansion. To make the inversion of the singular matrix T̃ more transparent we switch to the
orthogonal eigenbasis |m〉 of T̃ :

∂tφ
m +

∑
m′

V α
mm′∂αφ

m′ = 0 , m = 1, 2 (conserved modes)

∂tφ
m +

∑
m′

V α
mm′∂αφ

m′ = −φ
m

τm
+ ξm , m ≥ 3 (non-conserved modes)

(10.61)

We imply summation over α. The matrix elements V α
mm′ =

∑
k 〈m|k vα |m′〉k also appeared in

the perturbative expansion of the Boltzmann long-time tails in Sec. 10.4. φm, ξm are defined
as in (10.31). For the current densities only the non-conserved modes m ≥ 3 are relevant. By
multiplying (10.61) with τm > 0 and by reinserting φm on the r.h.s., we obtain an iterative
solution:

φm≥3 = −τm

∑
m′

V α
mm′∂αφ

m′ − ξm


= −τm
∑

m′=1,2
V α
mm′∂αφ

m′ + τmξ
m − τm

∑
m′≥3

(
δmm′∂t + V α

mm′∂α
)
φm
′

=
∞∑
l=0

∑
m′

[Al]mm′

−τm′ ∑
n=1,2

V α
m′n∂αφ

n + τm′ξ
m′

 ,

(10.62)

with Amm′ = −τm(δmm′∂t + V α
mm′∂α). The iterative solution is valid if the derivative op-

erator A introduces a small parameter such that the series in (10.62) converges. This is
the case if the local conserved modes vary slowly in time compared to the relaxation rates,
τm≥3∂αφ

1,2 � 1, and if they vary smoothly on the length scale of the corresponding mean-free
path, τm≥3(Vm1∂αφ

1 + Vm2∂αφ
2) � 1.10 Such relations are indeed expected to be required

for local equilibrium states. We anticipated these conditions when we discussed the scope of
hydrodynamics at the beginning of Sec. 8.1. To leading order in the derivatives, the solution is

φm≥3 = −τm
∑

m′=1,2
V α
mm′∂αφ

m′ + τmξ
m ,

φnck = −
∑
k′

[T̃−1]kk′v
α
k′∂αφ

con
k′ +

∑
k′

[T̃−1]kk′ ξ̃k′ .
(10.63)

The inverse collision matrix is defined with respect to the subspace of the non-conserved modes
[T̃−1]kk′ =

∑
m≥3 |m〉k τm 〈m|k′ as in Sec. 10.4.

In order to obtain a closed set of hydrodynamic equation we have to relate the conserved modes
φcon to the conserved densities (n, e). We write ∂αφconk as an expansion about the complete
equilibrium distribution φ0

k in the thermodynamic potentials log(z), β and use the chain rule:

∂αφ
con
k =

(
∂log(z)φ

0

∂βφ
0

)T (
∂α log(z)
∂αβ

)
= 1

(ff0
k)1/2

(
∂log(z)f

0
k

∂βf
0
k

)T
χ−1

(
∂αn
∂αe

)

=

 (ff0
k)1/2

εk(ff0
k)1/2

T C−1
hyd

(
∂αn
∂αe

)
.

(10.64)

We used the form of the inverse susceptibility matrix in (10.53). Inserting (10.63) and (10.64)
10Mandt [119] points out that the time derivative corresponds to a higher order correction with respect to the

spatial derivative by the scaling of the diffusion equation, ∂t ∼ ∂2
α.
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into the definition of the current densities yields the constitutive relations

(
jαn
jαe

)
=

∑
k

 (ff0
k)1/2

εk(ff0
k)1/2

vkφ
nc
k

= −
∑
k,k′

 (ff0
k)1/2

εk(ff0
k)1/2

 vαk [T̃−1]kk′v
α′
k′

 (ff0
k′)1/2

εk′(ff0
k′)1/2

T C−1
hyd

(
∂α′n
∂α′e

)

+
∑
k,k′

 (ff0
k)1/2

εk(ff0
k)1/2

 vαk [T̃−1]kk′ ξ̃k′ .

(10.65)

Finally, taken together with the continuity equations, we obtain the fluctuating diffusion
equations:

∂t

(
n
e

)
= −∂α

(
jαn
jαe

)
= D∂2

x

(
n
e

)
+ ∂α

(
ζαn
ζαe

)
, (10.66)

with the diffusion matrix D and the fluctuating currents ζn, ζe. The diffusion matrix can be
represented in different ways which may be more or less practical, depending on the context:11

D = 1
d

d∑
α=1

∑
k,k′

 (ff0
k)1/2

εk(ff0
k)1/2

 vαk [T̃−1]kk′v
α
k′

 (ff0
k′)1/2

εk′(ff0
k′)1/2

T C−1
hyd

= 1
d

d∑
α=1

∑
k,k′

C
1/2
hyd

(
〈1|k
〈2|k

)
vαk [T̃−1]kk′v

α
k′

(
|1〉k′
|2〉k′

)T
C
−1/2
hyd

= 1
d

d∑
α=1

∑
k,k′

vαk [T−1]kk′v
α
k′ff

0
k′

(
1
εk

)(
1
εk′

)T
C−1
hyd .

(10.67)

The representation in the second line shows that the diffusion constants D1,2, relevant for
the Boltzmann long-time tails in (10.45), are the diagonal elements of the symmetrized dif-
fusion matrix D̃ = C

−1/2
hyd DC

1/2
hyd. In the third line, the inverse collision matrix is given by

[T−1]kk′ = (ff0
k)1/2[T̃−1]kk′(ff0

k′)−1/2 in the original basis of δfk, ξk.

The fluctuating currents in (10.66) are defined by

(
ζαn
ζαe

)
=

∑
kk′

 (ff0
k)1/2

εk(ff0
k)1/2

 vαk [T̃−1]kk′ ξ̃k′ =
∑
kk′

(
1
εk

)
vαk [T−1]kk′ξk′ . (10.68)

The fluctuating currents vanish on average 〈ζαi 〉 = 0 as 〈ξ̃k〉 = 0. In order to complete
the derivation, we show that the correlations 〈ζαi ζα

′
j 〉 are also in agreement with the result of

fluctuating hydrodynamics (8.24). We use that 〈ξ̃kξ̃k′〉 = 2T̃kk′δ(x − x′)δ(t − t′), see (10.34).

11We used the rotation symmetry.
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10 The Fluctuating Boltzmann Equation

The correlation matrix is〈(
ζαn
ζαe

)ζα′n
ζα
′

e

T〉

=
∑
kk′

∑
pp′

vαkv
α′
p T̃
−1
kk′ T̃

−1
pp′

〈
ξ̃k′ ξ̃p′

〉 (ff0
k)1/2

εk(ff0
k)1/2

 (ff0
p)1/2

εp(ff0
p)1/2

T

= 2
∑
kk′

∑
pp′

vαkv
α′
p [T̃−1]kk′ [T̃−1]pp′ T̃k′p′

 (ff0
k)1/2

εk(ff0
k)1/2

 (ff0
p)1/2

εp(ff0
p)1/2

T δ(x− x′)δ(t− t′)

?= 2
∑
kp

vαkv
α′
p [T̃−1]kp

 (ff0
k)1/2

εk(ff0
k)1/2

 (ff0
p)1/2

εp(ff0
p)1/2

T δ(x− x′)δ(t− t′)

= 2
d

d∑
α=1

∑
kp

vαkv
α
p[T̃−1]kp

 (ff0
k)1/2

εk(ff0
k)1/2

 (ff0
p)1/2

εp(ff0
p)1/2

T δαα′δ(x− x′)δ(t− t′) .

(10.69)
Comparison with the expression for D (10.67) shows that the form of the current correlations
(8.24) is recovered:

〈(
ζαn
ζαe

)
x,t

ζα′n
ζα
′

e

T
x′,t′

〉
= 2DChydδαα′δ(x− x′)δ(t− t′) . (10.70)

The equality ? in (10.69) hides that the inverse T̃−1 is defined only on the subspace of the
non-conserved modes. Therefore, T̃−1T̃ is not a full resolution of unity. The subspace of the
conserved modes is projected out:∑

k′
[T̃−1]kk′ T̃k′p′ =

∑
m≥3
|m〉k 〈m|p′ =

[
1− P con]

kp′ . (10.71)

The contribution of P con produces vanishing terms ∝
∑

k v
α
kP

con
kp′ in (10.69) since P con

kp′ is even
in k, see (10.57). The first contribution δkp′ remains and leads to the equality ?.
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11 Chapter 11

The Fluctuating Relaxation-Time
Approximation

After we pointed out the relevance of the fluctuating Boltzmann equation, we change our per-
spective and focus on the numerical solution: In view of practical applications, we derive a
simplified version in Sec. 11.1: a fluctuating relaxation-time approximation (fRTA). Sec. 11.2
is devoted to the subtleties of the numerical solution. We show that the equations needs to
be stabilized by an artificial diffusion term which also alters the noise correlation function.
Furthermore, we discuss the peculiarities involved in the numerical integration of stochastic
equations and finally provide an integration scheme for the fRTA. In Sec. 11.3, we use this
integration scheme to compute time-dependent correlation functions of hydrodynamic densi-
ties and the momentum distribution. We benchmark the numerical results against the analytic
prediction of long-time tails in Sec. 8.2 and Sec. 10.4. We also include a detailed description
of the program used.

11.1 Derivation of noise correlations

The standard Boltzmann equation (10.11) is a nonlinear integro-differential equation which
cannot be solved analytically. On the other hand, the numerical integration of the Boltzmann
equation is hampered by the form of the collision integral Ik[f ] (10.10) involving a 2d dimen-
sional integral in momentum space.1 The integral has to be evaluated for all phase-space cells
(k,x) and at each time step of the integration scheme, which demands considerable computing
power. Therefore, approximation schemes are required to reduce numerical costs. Efficient
approximation schemes become even more relevant for the fluctuating Boltzmann equation,
when collision noise ξk is included:

• To simulate the fluctuating dynamics pseudo-random numbers are generated for each
coordinate (k,x, t), in addition to the evaluation of the collision integral.

• Within the Langevin approach observables are calculated as ensemble averages over inde-
pendent noise realizations or from temporal or spatial averages, as explained in Sec. 7.1.
The statistical errors of these averages decay ∝ N−1/2 [198], where N denotes the num-
ber of independent realizations. Therefore, the fluctuating equation has to be integrated
many times to obtain meaningful results. This behavior of the statistical error is indeed
present in the numerical results presented in Sec. 11.3.5.

1The collision integral contains three momentum integrals
∫

k1,k2,k3
. In case of momentum conservation one of

the momentum integrals is eliminated by the transition probability Wkk1,k2k3 ∝ δk+k1−k2−k3 . If umklapp
scattering is relevant, momentum conservation is replaced by “momentum conservation modulo a reciprocal
lattice vector G” and one of the integrals is again eliminated by Wkk1,k2k3 ∝ δk+k1−k2−k3−G.
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11 The Fluctuating Relaxation-Time Approximation

• Furthermore, the numerical effort increases if the noise correlations depend on the in-
stantaneous state of the system. Here, the noise correlation matrix has to be evaluated
for each pair (x, t).

The relaxation-time approximation (RTA) is a simple approximation scheme that is applied
to transport phenomena in solids [10]. The key idea is to express the collision integral by the
typical relaxation rate 1

τ in the problem. The naive RTA replaces Ik[f ] → − δfk
τ , with δfk =

fk − f0
k being the deviation from complete equilibrium. The resulting simplified Boltzmann

equation (
∂t + vk · ∂x

)
δfk = −δfk

τ
, (11.1)

is only acceptable if the system is coupled to a bath since it has no conservation law, e. g. the
energy conservation is violated,

∑
k εkδfk 6= 0. This situation is met for condensed matter

systems which are kept at a fixed homogeneous temperature or chemical potential, e. g. for
electrons in solids that scatter with phonons [10]. As we consider isolated systems, we have to
take care that the conservation laws are still in place.

11.1.1 Linear relaxation-time approximation

In order to set up a conserving relaxation time approximation, one can start from the linearized
Boltzmann equation. For convenience, we start with the symmetrized equation (10.36),(

∂t + vk · ∂x
)
φk = −

∑
k
T̃kk′φk′ + ξ̃k . (11.2)

with (δfk, ξk) = (ff0
k)1/2(φk, ξ̃k). The linearization is already an approximation for small

displacements from the equilibrium space spanned by the conserved modes. As a further step
of simplification, we replace all nonzero-eigenvalues of the collision matrix T̃ by the same
relaxation rate, 1

τm
→ 1

τ for m ≥ 3. Very crucially, we do not touch the zero eigenvalues of the
conserved modes, m = 1, 2. Considering the decomposition of T̃ into eigenvectors, we define
the new collision matrix T̃RTA as

T̃kk′ =
∑
m≥3
|m〉k

1
τm
〈m|k′ →

1
τ

∑
m≥3
|m〉k 〈m|k′ ≡ T̃RTA

kk′ , (11.3)

where m ≥ 3 only runs over the non-conserved modes. Therefore, the new collision matrix
can also be written as

T̃RTA
kk′ = P nc

τ
, (11.4)

with the projection operator on the subspace of non-conserved modes P nc =
∑
m≥3 |m〉k 〈m|k′ .

The linearized equation (11.2) becomes

(
∂t + vk · ∂x

) (
φconk + φnck

)
= −

∑
k′
T̃RTA

kk′ φ
nc
k′ + ξk = −φ

nc
k
τ

+ ξk . (11.5)

The last equality holds since φnck =
∑
m≥3 φ

m |m〉k. The conservation laws are fulfilled since
φnck has no overlap with the conserved modes |1〉, |2〉. As a result, all non-conserved modes
relax exponentially ∼ e−t/τ .

In order to complete the fluctuating relaxation-time approximation (fRTA), we determine the
correlation of the collision noise ξk. Obviously, the noise correlation function is obtained by the
replacement T̃ → T̃RTA in (10.34). T̃RTA is a matrix with finite elements in the large subspace
of non-conserved modes. Calculating the eigenvectors explicitly is impractical due to vast size
of the mode space. The projection operator P nc is complemented with the projection operator

150



11.1 Derivation of noise correlations

P con onto the conserved modes to a full resolution of unity. An explicit expression for P con in
terms of the equilibrium distribution was found in (10.57). As a consequence T̃RTA, is obtained
by subtracting the projection onto the low-dimensional subspace of the conserved modes with
the operator

P nc
kk′ =

[
1− P con]

kk′ = δkk′ −

 (ff0
k)1/2

εk(ff0
k)1/2

T C−1
hyd

 (ff0
k′)1/2

εk′(ff0
k′)1/2

 . (11.6)

The noise correlation function of the linearized Boltzmann equation (10.34) is replaced by

〈ξ̃k(x, t)ξ̃k′(x′, t′)〉 = 2T̃RTA
kk′ δ(x− x′)δ(t− t′) = 2

τ
P nc

kk′δ(x− x′)δ(t− t′) . (11.7)

In view of numerical simulations, it will be useful to write the noise term as ξ̃k = B̃kk′Xk′ with
independent stochastic variables Xk(x, t), following a Gaussian distribution with 〈XkXk′〉 ∝
δkk′ . The matrix B̃ ∈ RNk×Nk is determined by B̃B̃T = 2T̃RTA = 2

τ P
nc. Thanks to the

projection property [P nc]2 = P nc, we have B̃ = (2/τ)1/2P nc. In the symmetric basis, the
linearized Boltzmann equation is then compactly written as

(
∂t + vk · ∂x

)
φk = −

∑
k′
T̃RTA

kk′ φk′ +
∑
k′
B̃kk′Xk′ =

∑
k′
P nc

kk′

−φk′

τ
+
√

2
τ
Xk′

 .

(11.8)
As a last step, we formulate the fRTA in the original variables fk, δfk:

(
∂t + vk · ∂x

)
δfk = −δf

nc
k
τ

+ ξk = −δf
nc
k
τ

+
∑
k′
Bkk′Xk′ . (11.9)

The displacement perpendicular to the equilibrium space is obtained by the projection oper-
ator,

δfnck = (ff0
k)1/2∑

k′ P
nc
kk′(ff0

k′)−1/2δfk′ . (11.10)

The collision noise is defined by the correlation function

〈ξk(x, t)ξk′(x′, t′)〉 = 2TRTA
kk′ ff

0
k′δ(x− x′)δ(t− t′) , (11.11)

with TRTA
kk′ = (ff0

k)1/2Tkk′(ff0
k′)−1/2, see also (10.28) and (10.35). Alternatively, we can use the

decomposition into a prefactor,

Bkk′ = (ff0
k)1/2B̃kk′ = (ff0

k)1/2
(

2
τ

)1/2

P nc
kk′ , (11.12)

and Gaussian white noise,

〈Xk(x, t)〉 = 0 ,

〈Xk(x, t)Xk′(x′, t′)〉 = δkk′δ(x− x′)δ(t− t′) .
(11.13)

As for the full correlation matrix the projection operator ensures that the sum rules,
∑

k Bkk′ =
0,
∑

k εkBkk′ = 0, are obeyed. Note, however, that B is not symmetric.

11.1.2 Nonlinear relaxation-time approximation

The contribution of the non-conserved modes δfnck can also directly be obtained by subtracting
the local equilibrium distribution f0,loc.

k = f0
k + δf conk (an element of the equilibrium space)
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11 The Fluctuating Relaxation-Time Approximation

from the full distribution: δfnck = δfk − δf conk = fk − f0,loc.
k (ρ). This replacement transforms

the fRTA (11.9) into

(
∂t + vk · ∂x

)
δfk = −

fk − f0,loc.
k (ρ)
τ

+
∑
k′
Bkk′Xk′ . (11.14)

f0,loc.
k (ρ) is parameterized by the local conserved densities ρ = (n, e). By definition, the local

equilibrium distribution satisfies the sum rules

∑
k

(
fk − f0,loc.

k (ρ)
)

= 0 ,
∑
k

εk

(
fk − f0,loc.

k (ρ)
)

= 0 . (11.15)

These equations uniquely determine f0,loc.
k (ρ) for each point (x, t) in space-time. Note that

only d dimensional momentum integrals are involved when calculating the densities ρ in each
time step. Therefore, the numerical effort is significantly decreased compared to calculating the
full 2d dimensional collision integral for each point k on a momentum grid. On the technical
side, the displacement δfnck = fk − f0,loc.

k (ρ) is calculated as follows:

(1) For each point in space-time (x, t), the densities of the conserved quantities are calculated
from the full distribution:

n(x, t) =
∑
k

fk(x, t) , e(x, t) =
∑
k

εkfk(x, t) . (11.16)

(2) The local equilibrium distribution is of the form

f0,loc.
k (z, β) = 1

z exp
(
βεk

)
+ η

, (11.17)

with η = 1,−1, 0 for fermions, bosons, or classical particles, respectively. To satisfy
the local conservation laws (11.15) we have to solve a set of coupled equations for the
corresponding Lagrange multipliers (z, β):

n(z, β) =
∑
k

f0,loc.
k (z, β) , e(z, β) =

∑
k

εkf
0,loc.
k (z, β) , (11.18)

with the local densities n(z, β) = n(x, t), e(z, β) = e(x, t) calculated in step (1).

(3) The unique solution (z, β) determines f0,loc.
k (z, β) and the desired displacement δfnck =

fk − f0,loc.
k (z, β).

This construction is a generalization of the linear RTA. There, δfnck is calculated from a projec-
tion operation to the Euclidean space spanned by the eigenvectors |m〉 of the collision matrix
T̃RTA. The projection can only be done close to complete equilibrium where the linearization
of the collision integral is applicable. In contrast, f0,loc.

k (ρ) is a nonlinear function of ρ and
defines a curved equilibrium manifold. δfnck = fk − f0,loc.

k (ρ) gives the distance of an arbitrary
distribution fk to this manifold. The Euclidean space of the linear approximation appears
as the tangent space at the point of complete equilibrium. Indeed, for small displacements
from complete equilibrium f0, we recover the form of linear RTA: An expansion of the general
distance measure in δfk = fk − f0

k yields,

fk − f0,loc.
k (ρ) = −

∑
k1

T
(1)
kk1

δfk1 +O
[
(δf)2

]
, (11.19)
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11.2 Numerical solution of fluctuating flux-conserving equations

with the linear coefficient

T
(1)
kk1

=
∂

[
fk − f0,loc.

k (ρ)
]

∂fk1

∣∣∣∣∣∣∣∣∣
f=f0

=
[
δkk1 −

∂n

∂fk1

∂nf
0,loc.
k (ρ)− ∂e

∂fk1

∂ef
0,loc.
k (ρ)

]∣∣∣∣∣∣
f→f0

=
[
δkk1 − ∂nf0

k − εk1∂ef
0
k

]
.

(11.20)
We used that ∂n

∂fk1
= 1, ∂e

∂fk1
= εk1 , see the definition of the densities in (10.1). Applying the

chain rule, (
∂n
∂e

)
= χ−1

(
∂log(z)
∂β

)
, (11.21)

once more [similar to (10.64)], shows that the linear coefficient is equivalent to the projection
operator in (11.10), T (1)

kk′ = (ff0
k)1/2P nc

kk′(ff0
k′)−1/2.

Within the above described nonlinear RTA the distribution relaxes to a local equilibrium dis-
tribution at the rate 1

τ . Therefore, it seems reasonable to consider density-dependent noise
correlations, i. e. fluctuations about the local equilibrium distribution. The correlation ma-
trix is then calculated from the instantaneous densities in each time step. This gives rise to
multiplicative noise in (11.14),

(
∂t + vk · ∂x

)
δfk = −

fk − f0,loc.
k (ρ)
τ

+
∑
k′
Bkk′(ρ)Xk′ . (11.22)

where we introduced a density-dependent noise coefficient, Bkk′ → Bkk′(ρ), in order to real-
ized density-dependent fluctuations. Bkk′(ρ) is now determined by the instantaneous densities.
When solving a stochastic differential equation, multiplicative noise has to be treated more care-
fully, see our discussion in Sec. 11.2.2.

So far, we did not discuss the meaning of the uniform relaxation time τ . Strictly speaking,
replacing the spectrum of relaxation times τm by a single value τ is an uncontrolled approxima-
tion. The choice of τ is based on phenomenology. For practical applications, τ is determined
such that a given diffusion constant is reproduced correctly. The value of the defining diffusion
constant is calculated for a given microscopic model, e. g. with perturbative methods [118, 119].
We can also expect that the relaxation time depends on the densities, τ → τ(ρ). In high-density
regions, particles scatter more frequently than in low-density regions. The density-dependence
is particularly important in inhomogeneous situations [118]. However, that the collision term is
still linear in the distance from the equilibrium manifold, even with these dependencies added.
Within the scope of our work, we do not refer to a particular microscopic model and we will
regard τ as a constant. In the following, we will discuss the numerical implementation of the
fRTA.

11.2 Numerical solution of fluctuating flux-conserving equations

Having established the nonlinear fRTA, we turn to its numerical solution. An analytic solution
is not possible due to the nonlinearity introduced by the the reference equilibrium function
f0,loc.

k (ρ). We restrict ourselves to the one-dimensional case from now on, i. e. we consider the
equation

∂tfk + vk∂xfk = Ik[f] +
∑
k′

Bkk′(ρ)Wk′(x, t) , (11.23)
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11 The Fluctuating Relaxation-Time Approximation

with the space-time-local collision term Ik[f] = −τ−1[fk−f0,loc.(ρ)] and Gaussian white noise

〈Wk(x, t)〉 = 0

〈Wk(x, t)Wk′(x′, t′)〉 = δkk′δ(x− x′)δ(t− t′) .
(11.24)

The noise correlations are determined by the multiplicative term

Bkk′(ρ) =
(

2
τ

)1/2

(ff0
k )1/2

δkk′ −
 (ff0

k )1/2

εk(ff0
k )1/2

T C−1
hyd

 (ff0
k′)1/2

εk(ff0
k′)1/2



∣∣∣∣∣∣∣∣∣ (ρ) , (11.25)

which is evaluated for the instantaneous densities ρ = (n, e), see (11.12),(11.6), and our
discussion of (11.22).

The Boltzmann equation in 1D In the previous chapters, we derived fluctuating equations
for arbitrary spatial dimensions d, including the fRTA. For the numerical solution, we restrict
ourselves to d = 1. Some comments are in order: The one-dimensional case is different from
higher dimensions: Throughout our discussion of the Boltzmann theory, we referred to systems
of identical particles. In one-dimensional systems of identical particles, binary collisions do
not alter the momentum distribution fk since the scattered particles only exchange their mo-
menta. Thus, the number of particles in a given momentum state remains unchanged and the
distribution will not relax to its equilibrium form. As the standard collision integral (10.10)
only considers binary collisions, it cannot describe the relaxation of identical particles in one
dimension. In this case, the collision integral has to be extented to three-particle collisions
since these collisions change the distribution to leading order at low densities [186]. If there
are at least two different species of particles the binary collision between different species are
again sufficient for relaxation. This condition is met after an interaction quench for the bosonic
Hubbard model where two species of quasiparticles are created [102]. The RTA or fRTA do
not specify what kind of collisions are required to relax the distribution. It is only based on
the conservation laws. Therefore, it is also applicable for identical particles in d = 1. We also
note that the Boltzmann theory is not applicable for fermionic systems in one dimension since
the low-energy excitations are not fermionic quasiparticles, but spin- and charge-density waves
which form a Luttinger liquid, see Sec. 2.3 of Part I. The Luttinger liquid belongs to the class
of integrable models which do not relax to a thermal state after a sudden quench [199]. Instead,
a more complicated steady-state emerges which depends on the initial state.

Outline There are two issues to be discussed:

• In order to make the fRTA accessible to the numerical solution on a computer, we have
to discretize (11.23) on a space-time grid. Naive discretization leads to an unstable
integration scheme. The form of the collision term Ik[f] is not relevant in the discussion
of the stability issue.

• (11.23) is a stochastic differential equation. We have to deal with the convergence of the
integration scheme to a continuous stochastic equation in the limit of small time steps.

11.2.1 Numerical stability

Stability issue: artificial diffusion First, we consider the deterministic (noiseless) equation,

∂tfk + vk∂xfk = Ik[f] . (11.26)
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11.2 Numerical solution of fluctuating flux-conserving equations

In order to derive an discretization scheme, we choose an space-time grid (tn, xi) with 1 ≤
n ≤ Nt + 1, 1 ≤ i ≤ Nx and integrate the equation over the finite intervals ∆t = tn+1 − tn and
∆x = xi+1 − xi in space-time, yielding

fn+1
k,i = fnk,i + ∆t

[
−vk

fni+1,k − fni,k
∆x + Ink,i[f ]

]
. (11.27)

The naive discretization of the Boltzmann equation is notoriously instable: Numerical errors
propagate with the drift velocity and accumulate during the time evolution. Indeed, the error
grows exponetially as can be proven by the Neumann stability analysis [200]. The rate can only
temporarily be suppressed by choosing a very fine time discretization with |vk|∆t∆x � 1. This
numerically expensive approach was followed in Ref. [119]. Later, we will choose the symmetric
second-order difference in space ∂xfk →

fni+1,k−f
n
i−1,k

2∆x . We note that the symmetric difference
vanishes for a periodic zig-zag pattern. Thus, numerical error will lead to increasing roughness
of the distribution in space.

Artificial diffusion The scheme is stabilized by averaging out the roughness before performing
the next step of the time evolution:

fn+1
k,i =

fnk,i+1 + fnk,i−1
2 + ∆t

[
...

]
. (11.28)

The improved scheme is known as Lax method [200]. The stability analysis shows that the
scheme is stable if ∆t, ∆x fulfill the Courant condition ∆t ≤ ∆x

|vk| . Since all k modes evolve
simultaneously, we have to choose ∆t such that even the fast modes are stable, i. e.

∆t ≤ ∆tc ≡
∆x
vmax

. (11.29)

where vmax = max
(
|vk|

)
is the largest drift velocity in our simulation. The symmetric aver-

age is a source of numerical dissipation providing a damping mechanism to flatten out the
numerical roughness. It is equivalent to add a term of artificial diffusion −Dart∂2

xfk →
−Dart f

n
k,i+1+fnk,i−1−2fnk,i

(∆x)2 to the l.h.s. of (11.26) with the diffusion constant Dart = ∆x2

2∆t [200].
At this point, we note that the dissipation Dart ∝ 1/∆t becomes more and more important for
small ∆t The unphysical dissipation term eventually overshadows the drift term. This is also
obvious from (11.28). Therefore, we have to choose ∆t as large as possible in order to achieve
a high fidelity to the actual physical behavior [201]. On the other, we have to comply with the
upper bound for ∆t given by the stability criterion (11.29).

How to choose Dart properly? For the fastest |k| = kmax mode in our simulation, we have to
choose Dart

max = (∆x)2

2∆tc as ∆tc is the largest time step we are allowed to choose without losing
the stability, see (11.29). For the slower k modes, the drift term takes smaller values and
eventually vanishes for k = 0. When choosing a global diffusion constant Dart

max, the modes
|k| < kmax would be stabilized, but also overdamped. They would be completely damped out
within a short time. The continuity equation would be strongly violated [201]. For these modes
a smaller diffusion constant is sufficient . We suggest to avoid overdamping by introducing a k
dependent diffusion constant which linearly scales down with the drift velocity |vk|,

Dart
k ≡ Dart

max
|vk|
|vkmax |

= ∆x2

2∆tc
|vk|
|vkmax |

= ∆x|vk|
2 , (11.30)

In this way, the diffusion constant takes its optimal value (as small as possible, but as large
as necessary) for each k mode and does not dominate the solution of the Boltzmann equation.
We will continue to discuss the diffusive equation in its continuous form

∂tfk + vk∂xfk −Dart
k ∂2

xfk = Ik[f ] , (11.31)
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11 The Fluctuating Relaxation-Time Approximation

that corresponds to the stabilized difference equation

fn+1
k,i = fnk,i + ∆tc

[
−vk

fni+1,k − fni−1,k
2∆x +Dart

k

fni+1,k + fni−1,k − 2fni,k
(∆x)2 + Ink,i[f ]

]
. (11.32)

with ∆tc and Dart
k as defined in (11.29) and (11.30), respectively. In App. B.5, we perform the

Neumann stability analysis explicitly and show that the integration scheme is indeed stable.

Artificial diffusion noise We bring back a noise term Ξk(x, t) to the stabilized equation
(11.31). Before we deal with the problems related to the discretization of a stochastic differential
equation, we consider the continuum version,

∂tfk + vk∂xfk −Dart
k ∂2

xfk = Ik[f ] + Ξk . (11.33)

Ξk accounts for fluctuations related to the total dissipative content of the equation. Artifi-
cial diffusion, −Dart

k ∂2
xfk, introduces an additional damping mechanism which will alter the

fluctuation-dissipation relation. It is clear that the noise correlation 〈ΞkΞk′〉 will be different
from (11.11) where only the collision term Ik[f ] was present. In order to find the full noise
correlations we resort to the derivation in Sec. 10.3: We first linearize the collision term,(

∂t + vk∂x −Dart
k ∂2

x

)
δfk = −

∑
k′

TRTA
kk′ δfk′ + Ξk . (11.34)

with the collision matrix TRTA
kk′ as defined below (11.11). In the second step, we transform the

linearized equation to the standard form

∂tφ
σ
k,q = − 1

Ld

∑
(k′,q′,σ′)

Lσσ′kk′,qq′φ
σ′
k′,q′ + Ξσk,q , (11.35)

with

Lσσ′kk′,qq′ =
(

1 0
0 1

)
σσ′

(
T̃RTA
kk′ + q2Dart

k δkk′
)
Lδqq′ +

(
0 −1
1 0

)
σσ′

vkq δkk′Lδqq′ , (11.36)

in the same way as we did in (10.38) and (10.39). In the expression of L, the contribution of the
diffusion term shares the symmetry of the collision term since both terms are dissipative while
the reversible drift term maps to the skew-symmetric contribution as in (10.39). According to
(10.41), the noise correlations are then given as

〈Ξσk,qΞσ′k′,q′〉 ≡
[
LC +

(
LC

)T ]σσ′
kk′,qq′

δ(t− t′)

=
(
T̃kk′ + q2Dart

k δkk′
)
Ldδqq′δ

σσ′δ(t− t′) .

(11.37)

where the equilibrium correlations C are still of the form in (10.40). The inverse transformation
back to the original variables in (11.34) yields the correlation function2

〈Ξk(x, t)Ξk′(x′, t′)〉 = 2
[
Tkk′δ(x− x′) +Dart

k δkk′∂x∂x′δ(x− x′)
]
ff0
k′δ(t− t′) . (11.38)

The additive form of the noise correlation function shows that Ξ can be understood as the
sum of two independent stochastic variables.3 The spatial derivatives acting on the δ function
in (11.38) suggest to parameterize the total noise as Ξk ≡ ξk + ∂xθk. ξk denotes the collision
2The inverse Fourier transformation yields

∫
q
q2eiq(x1−x2) = ∂x1∂x2

∫
q

eiq(x1−x2) = ∂x1∂x2δ(x1 − x2).
3The variance of the sum of two independent stochastic variables X1, X2 is additive V (X1 + X2) =
V (X1) + V (X2).
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11.2 Numerical solution of fluctuating flux-conserving equations

noise related to the collision term as before in (11.11). Additionally, the diffusion term gives
rise to current noise θk as for the fluctuating diffusion equation in (8.23). We conclude that a
fluctuating Boltzmann equation supplemented with artificial noise can be cast into the form(

∂t + vk∂x −Dart
k ∂2

x

)
fk = Ik[f ] + ξk + ∂xθk , (11.39)

with two independent fluctuating quantities ξk and θk. From (11.38) we read off the noise
correlations:

〈ξk(x, t)ξk′(x′, t′)〉 = 2Tkk′ff0
k′δ(x− x′)δ(t− t′) ,

〈θk(x, t)θk′(x′, t′)〉 = 2Dart
k ff0

kδkk′δ(x− x′)δ(t− t′) ,

〈ξk(x, t)θk′(x′, t′)〉 = 0 .

(11.40)

Furthermore, we have that 〈ξk〉 = 〈θk〉 = 0. In the following, we will use the representations

ξk(x, t) =
∑
k

Bkk′Wk′(x, t) , θk(x, t) =
∑
k

Bart
kk′Vk′(x, t) , (11.41)

with Bart
kk′ = (2Dart

k ff0
k )1/2δkk′ and Bkk′ as defined in (11.12). The independent stochastic

variables Wk, Vk generate Gaussian white noise,

〈Wk(x, t)Wk′(x′, t′)〉 = 〈Vk(x, t)Vk′(x′, t′)〉 = δkk′δ(x− x′)δ(t− t′) ,

〈Wk(x, t)Vk′(x′, t′)〉 = 0 .
(11.42)

The noise terms ξk, θk do not interfere since we derived them from the linearized equa-
tion. The current noise preserves the local conservation laws, e. g. the continuity equation
of the particle density, ∂tn + ∂xjn = 0. However, the current density is now defined as
jn =

∑
k(vkfk − Dart

k ∂xfk − θk). It is complemented by a dissipative, diffusion-type current
−Dart

k ∂xfk and the corresponding fluctuating current θk.

11.2.2 Numerical integration of stochastic equations

So far, we addressed the stability of the integration scheme: We showed that the fluctuating
equation must contain an additional term of current noise if the artificial diffusion is used to
damp out numerical errors. Our derivation of the current noise was based on the continuous
equation. Before we re-discretize the stabilized equation (11.39), we have to point out the
subtleties in the numerical integration of stochastic differential equations. Our comments on
this point run parallel to the discussion in Refs. [137, 202].

For clarity, we start with a Langevin equation of one variable,

∂ty = a(y) + b(y)W (t) . (11.43)

a(y), b(y) are functions of y and 〈W (t)W (t′)〉 = δ(t − t′). In order to derive an integration
scheme, we integrate again over a small interval ∆t = tn+1− tn of the temporal grid. First, we
note that δ correlated noise W (t) corresponds to a sequence of δ peaks on the time axis placed
at random times. Therefore, it is not possible to evaluate the noise variable at a given time t.
The integral

∫ tn+1
tn dtW (t) cannot be approximated by W (tn). Instead, we keep the integral,

yn+1 − yn = ∆t a(yn) + b(yn)
tn+1∫
tn

dtW (t) ≡ ∆t a(yn) + b(yn)∆Wn , (11.44)
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11 The Fluctuating Relaxation-Time Approximation

and define a new stochastic variable on the temporal grid,

∆Wn =
tn+1∫
tn

dtW (t) , (11.45)

collecting contributions of all δ peaks during the interval [tn, tn+1]. It follows that the discrete
noise is correlated as 〈∆Wm∆Wn〉 = ∆t δmn.

Furthermore, it is not immediately clear how to evaluate the multiplicative term b(y). In
(11.44), we chose to evaluate the function before the arrival of the first δ peak as favored by
Ito [203]. A different interpretation is due to Stratonovich [204]: He chose to the mean of b(v)
before and after the noise event,

yn+1 − yn ≡ ∆t a(yn) + b(yn) + b(yn+1)
2 ∆Wn . (11.46)

In order to decide which interpretation should be followed, it is important to note that perfect
δ peaks do not occur in our physical situation. The arriving δ peaks are broadened on the short
time scale set by the correlation time τc. Wong and Zakai [205] showed that the Stratonovich
interpretation is recovered in the limit τc → 0, i. e. if the peaks are very sharp compared to
∆t. As a side remark, we note that the Stratonovich interpretation leads to the usual rules
of calculus while Ito’s choice implies a different form of calculus [206]. Thus, we will use the
scheme in (11.46).

There is still the problem that yn+1 is unknown and the r.h.s. of the equation (11.46) cannot
be evaluated directly. The solution to this problem is to use a two-stage Runge-Kutta scheme
[143, 207, 208], also known as Heun scheme. Here, a predictor ỹn+1 is calculated in the first
stage which is then used to calculate the mean value b(yn)+b(ỹn+1)

2 in the second stage:

ỹn+1 = yn + ∆t a(yn) + b(yn)∆Wn ,

yn+1 = yn + ∆t a(yn) + a(ỹn+1)
2 + b(yn) + b(ỹn+1)

2 ∆Wn .

(11.47)

In each time step, ∆Wn is drawn from a Gaussian probability distribution with variance ∆t.
Note that the same noise realization of ∆Wn enters in both stages of the Heun step. In the
limit of ∆t → 0, the Heun scheme converges to the unknown exact solution of the stochastic
differential equation in the sense of Stratonovich.

For a multivariate Langevin equation of N stochastic variables y = (y1, ..., yN ) and noise terms
∆W = (∆W1, ...,∆WN ) the Heun scheme is generalized to

ỹn+1
i = yni + ∆t ai(yn) +

∑
j

bij(yn)∆Wn
j ,

yn+1
i = yni + ∆t ai(y

n) + ai(ỹn+1)
2 +

∑
j

bij(yn) + bij(ỹn+1)
2 ∆Wn

j .

(11.48)

The multivariate Heun scheme can now be applied to the equation (11.39). However, in
contrast to (11.48), two independent noise terms are involved. We choose a (Nt+ 1)×Nk×Nx

grid with the discrete points xi = i∆x, 0 ≤ i ≤ Nx−1 in real space and a symmetric distribution
of points kp = p∆k, −Nk−1

2 ≤ p ≤ Nk−1
2 in momentum where Nk is odd. Nx ·∆x = L is the

size of the system. On the time axis, we choose (Nt + 1) points tn = n∆t with 0 ≤ n ≤ Nt.
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11.2 Numerical solution of fluctuating flux-conserving equations

Nt denotes the number of time steps to be performed between the initial time t0 = 0 and the
most advance time tNt = ∆tNt. The first stage of the Heun scheme takes the form

fn+1
k,i = fnk,i + ∆tc

[
−vk

fnk,i+1 − fnk,i−1
2∆x +Dart

k

fnk,i+1 + fnk,i−1 − 2fnk,i
(∆x)2 + Ink,i[f]

]

+∆ξnk,i + ∆θk,i+1 −∆θk,i−1
2∆x

= fnk,i + ∆tc

∑
j

(
− vk

2∆xM
(1)
ij + |vk|2∆xM

(2)
ij

)
fnk,j + Ink,i[fi]


+
√

∆tc
∆x

∑
p

Bkp[fi] ∆Wn
p,i +

√
∆tc|vk|
(∆x)2

∑
j

M
(1)
ij (ff0

k [fj ])1/2 ∆Vnk,j .

(11.49)

In the first line of (11.49), we used the definition∆ξnk,i
∆θnk,i

 = 1
∆x

∫ xi+1

xi

dx
∫ tn+1

tn
dt
(
ξk(x, t)
θk(x, t)

)
. (11.50)

In the second line of (11.49), we factored out all discretization factors from the derivative and
the noise terms. The realizations of the independent Nt×Nk×Nx stochastic variables ∆Wn

k,i,
Vnk,i are drawn from a standard normal distribution. The matrices M (1)

ij = δj,i+1 − δj,i−1 and
M

(2)
ij = δj,i+1 + δj,i−1 − 2δij encode the spatial derivatives. We chose the symmetric difference

to calculate the first-order derivatives. The matrix elements have to be adjusted depending
on the boundary conditions. Note that the time increment is fixed by the Courant condition
∆tc = ∆x/vkmax . The quantities with arguments “[fi]” are calculated from the local densities
at point xi. The full Heun scheme reads as

f̃n+1
k,i = fnk,i + ∆tc ak,i(fn) +

∑
p,j

[
bkp,ij(fn)∆Wn

p,j + bartkp,ij(fn)∆Vnp,j
]

fn+1
k,i = fnk,i + ∆tc

ak,i(fn) + ak,i(f̃n)
2 + 1

2
∑
p,j

[(
bkp,ij(fn) + bkp,ij(f̃n)

)
∆Wn

p,j

+
(
bartkp,ij(fn) + bartkp,ij(f̃n)

)
∆Vnp,j

]
,

(11.51)

with

ak,i(fn) =
∑
j

(
− vk

2∆xM
(1)
ij + |vk|2∆xM

(2)
ij

)
fnk,j + Ink,i[fi]

bkp,ij(fn) =
√

∆tc
∆x Bkp[fi] δij

(
2π
∆k

)1/2

bartkp,ij(fn) =
√

∆tc|vk|
(∆x)2 M

(1)
ij (ff0

k [fj ])1/2 δkp

(
2π
∆k

)1/2

.

(11.52)

fn is a container variable for all values fnk,i on the phase-space grid. We restored the factors
(2π/∆k)1/2 by dimensional analysis. At this point, we have to emphasize that the phase-space
grid is not related to the size of phase-space cells which we introduced to describe the coarse-
graining procedure in Sec. 10.1. The discretization is a tool to make a continuous differential
equation accessible to numerics. The scales on which we discretize the Boltzmann equation are
much larger than the scales of the coarse-graining.
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11 The Fluctuating Relaxation-Time Approximation

11.3 Numerical evidence of long-time tails

11.3.1 Objective

The fluctuating Boltzmann equation presented in Ch. 10, describes the relaxation dynamics
at intermediate and at late times. It captures the physics of hydrodynamic long-time tails
consistently, a feature that goes beyond the standard Boltzmann theory. The equations of
fluctuating hydrodynamics can be derived consistently as we demonstrated in Sec. 10.5. The
same also holds true for the newly proposed fRTA based on a conserving RTA by supplementing
a suitably correlated noise term, see Sec. 11.1. However, we also showed that the numerical
integration has a few subtleties: It requires an unphysical diffusion term in order to stabilize
the integration scheme. The diffusion term, in turn, comes along with a further noise term.
In view of the increased complexity, our prime objective is to check whether this method
actually delivers the expected long-time tails 〈δρ2(x, t)〉 ∝ t−d/2 as predicted by fluctuating
hydrodynamics. The density-density correlations inherit their asymptotic behavior from the
correlations of the distribution function. Therefore, we also expect to find Boltzmann long-time
tails with the same exponent 〈δf2

k (x, t)〉 ∝ t−d/2. Furthermore, we want to relate the numerical
results to the analytic prediction of the prefactor in Sec. 8.2 and Sec. 10.4, respectively. We
restrict ourselves to the numerical solution in d = 1 dimensions.

11.3.2 General conditions

We solve the fRTA for a gas of classical particles of mass m = 1 with quadratic dispersion

εk = k2

2m , vk = ∂kεk = k

m
. (11.53)

The equilibrium distribution is given by the Maxwell-Boltzmann distribution,

f0
k (z, β) = eβεk

z
. (11.54)

The quadratic dispersion is not be understood that we want to allow for momentum conser-
vation. We assume that only the particle number and energy are conserved since we derived
the fRTA for these two conservation laws.

Initial conditions We initialize the systems in a homogeneous uncorrelated state with
〈δfkδfk′〉 |t=0 = 0 and fk(x, t = 0) = f0

k (z0, β0). In this situation the system is in equilibrium
on average, but the equilibrium fluctuations take a wrong value. To observe the long-time tails
of the autocorrelation functions, we track the buildup of the equilibrium fluctuations in the
homogeneous system. We choose a equilibrium distribution at the inverse temperature β0 = 1
and use the fugacity z0 to tune the value of the mean densities. Here, we note the following:
Consider the fluctuations ∆N of the particle number N in the volume cell ∆x. For classical
particles and in equilibrium the fluctuations are determined by the mean number of particles,
〈(∆N)2〉 = N = ∆xn with the mean density n. The relative size of the fluctuations scales
as 〈(∆N)2〉1/2 /N = (n∆x)−1. In general, fluctuations of all quantities on the discrete spatial
grid scale with (∆x)−1. Thus, the fluctuations are large for small mean densities and small
volume cells ∆x. Large fluctuations are not compatible with the Gaussian distribution of the
fluctuating quantities, e. g. unphysical negative densities could occur. As we use a Gaussian
noise distribution to imprint the equilibrium fluctuations, we have to take care that the relative
size of the fluctuations is small. Given that we want to choose a rather fine discretization ∆x,
we are forced to initialize the system with high densities. We choose z0 = e−7.83β0 ≈ 0.0004
which corresponds to the mean densities n ≈ 1000 and e ≈ 500.
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11.3 Numerical evidence of long-time tails

Discretization parameters Our numerical solution is based on the Heun scheme (11.51),
(11.52): We choose a phase-space grid with Nk = 99, Nx = 1000, and ∆x = ∆k = 0.3. The
violation of the conservation laws due to discretization errors is negligible. The time increment
is fixed by the Courant condition to ∆tc = ∆x

vkmax
= 0.02τ . The system size Nx · ∆x = 300

is large compared to the mean free-path of the particles (Nx∆x)/(vkmaxτ) = 0.049. This
condition is important to observe diffusive behavior and, thus, long-time tails. We record the
time-evolution for Nt = 10, 000 time steps. The largest time reached is still smaller than the
diffusion time [see Sec. 8.2.2] tdiff/∆t = 560, 000 of the slowest diffusive eigenmode.

Collision term In each time step and at each position of the spatial grid, the collision term
Ik[f] = −τ−1[fk−f0,loc.

k (ρ)] is evaluated according to the recipe in Sec. 11.1.2, p. 152. In order
to calculate the local equilibrium distribution f0,loc.

k (ρ), the densities n(z, β), e(z, β) have to
be inverted. For classical particles with quadratic dispersion, the analytic result is

β(n, e) = d

2
n

e
, z(n, e) =

(
m

2π

)d/2 1
n[β(n, e)]d/2

, (11.55)

in d dimensions. For arbitrary dispersions and equilibrium distributions, a coupled set of
equations needs to be solved involving a numerical root search. However, the root search can
also be avoided by interpolation: The densities (n, e) are calculated on a grid of (z, β) values.
The obtained values are then interpolated as a function of (n, e).

Simulation of equilibrium noise The noise terms ξ, θ are simulated by pseudo random
numbers. We implement equilibrium noise and do not perform updates of the noise correlation
function with respect to the instantaneous densities. This is reasonable since the fluctuations
of the densities are small by the choice of parameters as we argued before. We calculate the
prefactors bkk′,ij and bartkk′,ij in (11.52) from the initial Lagrange parameters (z0, β0) since they
determine the equilibrium fluctuations of the homogeneous system.

Boundary conditions We implemented different boundary conditions:

• periodic boundary conditions, defined by fnk,Nx+1 = fnk,1 and fnk,−1 = fnk,Nx ,

• open boundary conditions, fnk,1 → 1
2(fnk,1+fn−k,1), fnk,Nx →

1
2(fnk,Nx+fn−k,Nx) (The currents

are set to zero at the edges by symmetrizing the distribution after each Heun step.) and,

• fixed boundary conditions, fnk,1 = fnk,Nx = f0
k (z0, β0) (The distribution at the edges is

fixed at the homogeneous initial value.).

We observe that the integration scheme develops an instability for periodic and open boundary
conditions for long times of the order of the drift time ∼ L/ 〈vk〉. We attribute this behavior
to the fact that numerical errors are not completely damped out by the artificial diffusion
term. These errors accumulate for periodic or open boundary conditions when they traverse
the system again and again. The instability occurs before the hydrodynamic stage is reached.
Therefore, we were not able to observe the emergence of long-time tails. For fixed boundary
conditions the instability does not occur since the the propagating errors eventually are ab-
sorbed at the edges. Using fixed boundary conditions resembles a one dimensional wire coupled
to leads with fixed chemical potential and temperature at µ0 = −T0 log(z0), T0 = 1

β0
. The fluc-

tuating currents at the edges exchange particles and energy between the wire and the leads.
Therefore, the total conservation laws are violated. The total particle number and the total
energy are only conserved on average and fluctuate around this average. As a consequence, the
value of the equilibrium fluctuations is altered compared to the isolated system. The numerical
results presented here are obtained for fixed boundary conditions.
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11 The Fluctuating Relaxation-Time Approximation

Observables The time evolution of the full distribution fnk,i is recorded. The values of den-
sities on the space-time grid are calculated from fnk,i by summations over the discrete k values.
The buildup of the equilibrium correlations is tracked by the correlation function of the par-
ticle density 〈δn2〉n, energy density 〈δe2〉n, and momentum density 〈δp2〉n for each time step
tn. Furthermore, the correlations of the distribution itself 〈δf2

k 〉
n are calculated. We execute

a number of Nsd = 1000 instances of the program with different seeds for the random number
generator. Thereby, we create statistically independent noise realizations and fluctuating dy-
namics for each instance. The remaining initial conditions are identical. In order to extract
the correlation functions from the noisy data we perform averages 〈...〉 on two levels: In a first
step, we calculate the correlation functions for each instance separately by averaging over the
spatial grid. In the second step, we gather the results from all instances and calculate the final
correlation functions by averaging over the intermediate results of the independent instances.

Computational resources We implemented the integration scheme in the program language
C++11. The random numbers were generated by the 64bit-Mersenne-Twister generator of the
numeric standard library random. Furthermore, we used templates for matrix operations and
special functions provided by the libraries Eigen and Boost. The C++-based program was
compiled and executed on the high-performance computer CHEOPS at RRZK, University of
Cologne. The functional scope of Mathematica [176] was used for the generation of input data
for the main program (e. g. the initial distribution) as well as for analysis and visualization of
the output data.

11.3.3 Detailed program flow

(A) Generating input data (Mathematica)

(1) Define phase-space grid (Nk, Nx), (∆k,∆x).
(2) Choose initial distribution and evaluate on phase-space grid.
(3) Define temporal grid Nt (number of time steps performed) and fix ∆tc by Courant

condition.
(4) Generate Nsd seeds for all runs.
(5) Choose boundary conditions (periodic, open, or fixed).
(6) In case of fixed boundary conditions: Define left and right boundary distributions

on the momentum grid.
(7) Choose equilibrium distribution. (Only the classical distribution was considered.)
(8) Switch noise terms on/off, and switch local updates of noise correlations on/off.

(Local updates were not considered.)
(9) Write input data to binary file.

(B) Time-evolution and spatial averages for a single run (C++)

(1) Read in initial distribution and other input parameters and initialize the random
number generator with seed s from seed list.

(2) If local noise updates are switched off: calculate the decomposed correlation matrices
bkk′,ij , bartkk′,ij (11.52) from the total conserved quantities (total energy and particle
number computed from the initial distribution).

(3) Truncate the matrices M (1)
ij , M (2)

ij (11.52) according to the chosen boundary condi-
tions.

(4) Perform Heun step tn → tn+1:
(4.1) Compute the conserved densities (nni , eni ) from fnk,i on the spatial grid xi.

162



11.3 Numerical evidence of long-time tails

(4.2) Compute the local Lagrange multipliers (zni , βni ) for each xi [local inversion of
the functions n(z, β), e(z, β)].

(4.3) Compute the local equilibrium function [f0,loc.
k,i ]n for each xi as well as the colli-

sion term Ink,i[fi] = τ−1[fk,i − [f0,loc.
k,i ]n]. In case of noise updates: Compute the

matrices bkk′,ij(fn), bartkk′,ij(fn) (11.52).

(4.4) Draw 2 × Nk × Nx random numbers ∆Wn
k,i, ∆Vnk,i from a standard normal

distribution.

(4.5) Heun step (first stage): Compute predictor f̃n+1
k,i using (11.51), (11.52).

(4.6) Repeat steps (4.1), (4.2), (4.3) for f̃nk,i.

(4.7) Heun step (second stage): Compute final result fn+1
k,i using (11.51), (11.52).

(4.8) In case of open boundary conditions: Replace fnk,1 → 1
2(fnk,1 + fn−k,1), fnk,Nx →

1
2(fnk,Nx + fn−k,Nx).

(5) Repeat step (4) Nt-times and store fnk,i in memory.

(6) Compute mean Xn = 〈On〉x and variance Y n = 〈(On − 〈On〉x)2〉x of observable
O = n, e, p, fk for each time step tn by averaging over the spatial grid, 〈On〉x =

1
Nx

∑Nx
i=1O

n
i .

(7) Save the time-evolution of Xn, Y n to binary file.

(C) Averaging over independent runs (C++)

(1) Import means Xn
s and variances Y n

s of Nsd runs with different seeds s.

(2) Compute final results for mean Xfin and variance Yfin for each time step tn using that
Xn

fin = 〈Xn〉sd and Y n
fin = 〈Y n〉sd + 〈(Xn − 〈Xn〉sd)2〉sd with 〈Xn〉sd = 1

Nsd

∑Nsd
s=1X

n
s .

(3) Save final results Xn
fin, Y n

fin to binary file.

(D) Analysis and visualization (Mathematica)

The expressions of the dispersion εk and the group velocity vk are hard-coded. If the dispersion
is changed, the method of inversion in step (4.2) has to be adjusted.

11.3.4 Analytic prediction

Linear hydrodynamics predicts that the correlations of the conserved densities and the dis-
tribution function approach their equilibrium value ∝ t−1/2 in one dimension, see Sec. 8.2.
The values of the prefactors are essentially determined by the diffusion constant D and the
equilibrium correlations Chyd. Since we start from a noiseless initial state, the dependence on
the initial correlations is removed. In order to calculate the diffusion constants, we resort to
(10.67) in our derivation of hydrodynamic equations in Sec. 10.5 where we insert the collision
matrix T̃RTA of the linear fRTA:

D =
∑
k,k′

 (ff0
k )1/2

εk(ff0
k )1/2

 vk[(T̃RTA)−1]kk′vk′

 (ff0
k′)1/2

εk′(ff0
k′)1/2

T C−1
hyd

= τ
∑
k

v2
kff

0
k

(
1 εk
εk ε2k

)
C−1
hyd .

(11.56)

We used that T̃RTA = 1
τ P

nc, see (11.4). As the inverse matrix was defined in the subspace
of the non-conserved modes, we can write [T̃RTA]−1 = τP nc = τ [1 − P con]. The contribution
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11 The Fluctuating Relaxation-Time Approximation

of P con
kk′ vanishes since the projector is even in k and k′. The hydrodynamic correlations are

calculated from (10.53) and (10.54),

Chyd =
∑
k

ff0
k

(
1 εk
εk ε2k

)
. (11.57)

Note that ff0
k = f0

k for classical particles. The homogeneous equilibrium distribution f0
k =

f0
k (z0, β0) entering here is determined by the initial conditions (z0, β0). The prefactors of the
hydrodynamic long-time tails for particle and energy density n, e are given by the diagonal
elements of the matrix expression in (8.41):〈

δρi(x, t)δρi(x, t)
〉
−
〈
δρi(x, t)δρi(x, t)

〉
eq

= −αhydi t−1/2 , (11.58)

αhydi = [D−1/2Chyd]ii
(8π)1/2 , (11.59)

with ρi = (n, e). The expressions yield αhydn = 253 and αhyde = 77 for particle and energy
densities. The prefactor of the Boltzmann long-time tails is obtained from (10.52) in Sec. 10.5.
Using the representation of the eigenvectors |1〉k, |2〉k in (10.55), (10.56), we find:〈

δfk(x, t)δfk(x, t)
〉
−
〈
δfk(x)δfk(x)

〉
eq

= −αBk t−1/2 , (11.60)

with

αBk = ff0
k

(8π)1/2

∑
m=1,2

|m〉k 〈m|k
D
d/2
m

= (ff0
k )2

(8π)1/2

(
1
εk

)
[Chyd]−1/2

(
D̃nn 0

0 D̃ee

)−1/2

[Chyd]−1/2
(

1
εk

)T
.

(11.61)

Only the diagonal elements of the symmetrized diffusion matrix D̃ = [Chyd]−1/2D[Chyd]1/2
enter.

11.3.5 Numerical results

We compare the analytic expectation with the results obtained from the numerical solution
of the fRTA. Here, we have to take into account that we use fixed boundary conditions: The
final values of the correlations deviate from the equilibrium values of the isolated system,
i. e. 〈δρ2

i 〉∞ 6= 〈δρ2
i 〉eq. To correct the equilibrium values, we plot the time-dependent corre-

lations 〈δρ2
i 〉t as functions of t−1/2 and perform linear fits for times t > 10τ . The corrected

values are then obtain by extrapolation of the fitting function to t−1/2 = 0. We estimate that
〈δn2〉∞ = 0.999 〈δn2〉eq, 〈δe2〉∞ = 0.99 〈δe2〉eq.

Conserved densities In Fig. 11.1, p. 167, we show the buildup of the equilibrium correla-
tions of the particle and energy densities. For times t . 2τ , an exponential growth is observed
which is related to the fast local equilibration of the fluctuations. For larger times the relax-
ation slows down and eventually turn into a power-law behavior: Long-time tails emerge as
expected for the correlations of conserved densities. We plot the data on logarithmic scales
and use linear fit functions to find the prefactors and the exponents of the power-laws. The
exponents take the values −0.48 and −0.53 while the prefactors deviate by −7% and +10%
from the predicted values for particle and energy densities, respectively. The clear deviations
are very likely caused by our inaccurate extrapolation to the final equilibrium values 〈δn2〉∞,
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〈δe2〉∞ based on the assumption of a power-law decay ∝ t−1/2. We also did not take into
account that the prefactor itself has to be modified by the corrected equilibrium correlations.
Aside from the incomplete analysis, we suspect that statistical errors play a major role.

Statistical errors occur as the observables are calculated from averages over a finite number of
realizations or samples Xi of stochastic variables X. We take averages over a finite number spa-
tial grid points Nx and a finite number of independent realizations Nsd of the time-evolution.
In the following, we refer to averages over the statistically independent realizations. The av-
eraged quantities 〈X〉 = N−1

sd
∑Nsd
i=1 Xi fluctuate around their theoretical expectation values

E(X) from time step to time step. This statistical noise is clearly visible for large times in
Fig. 11.1. The standard deviation σ〈X〉 = [E(〈X〉2) − E(〈X〉)2]1/2 indicates the range of the
statistical fluctuations and can be used as a measure of the statistical error. For statistically
independent realizations it decays as ∝ N−1/2

sd . We examine the behavior of the statistical error
in the subsequent paragraph.

Non-conserved momentum density and statistical error The linear theory predicts that
long-time tails only show up in observables which exhibit a finite overlap with the conserved
modes |1〉k, |2〉k. The momentum density, defined as

p(x, t) =
∑
k

kfk(x, t) , (11.62)

is an example of a non-conserved quantity in our set-up. Conservation of momentum requires
a conserved mode |3〉k ∼ k which is odd in k, |3〉−k = − |3〉k. Since we only allow for conserved
modes |1〉k, |2〉k ∼ (1, εk) which are even in k, the momentum density cannot be conserved. As
a consequence, long-time tails are absent for the correlation function〈

δp(x, t)δp(x′, t)
〉

=
∑
k,k′

kk′(ff0
k )1/2(ff0

k′)1/2 ∑
m,m′≥3

|m〉k 〈m
′|k′
〈
φm(x, t)φm′(x′, t)

〉
︸ ︷︷ ︸

∝ δmm
′ e−t/τm

,
(11.63)

see also our discussion in Sec. 10.4, in particular, (10.51). Instead, an exponentially fast
approach of the equilibrium correlations,〈

δp(x)δp(x′)
〉
eq

=
∑
k,k′

kk′
〈
δfk(x)δfk′(x′)

〉
eq

=
∑
k

k2ff0
kδ(x− x′)

= 2m
〈
δe(x)δe(x′)

〉
eq
,

(11.64)

is predicted. We used the equilibrium correlation of the distribution 〈δfkδfk′〉eq in (10.20).
In case of a quadratic dispersion correlations of energy and momentum density are only dis-
tinguished by the factor 2m. On the other hand, nonlinearities in the Boltzmann equation
couple conserved and non-conserved modes. Therefore, we expect that our nonlinear fRTA
will produce long-time tails for the quantity 〈δp(x, t)δp(x′, t)〉 as well. We can also argue that
the fluctuations of the momentum density are related to the fluctuations of the current density
via 〈δp(x, t)δp(x, t)〉 = m2∂x∂x′ 〈δn(x, t)δn(x′, t)〉 |x=x′ ∝ t−3/2.4 Thus, the fluctuations of the
momentum density inherit the long-time tails from the fluctuations of the particle density.
However, these long-time tails are not visible in our numerical results since they are shadowed
4We have that p =

∑
k
kfk = m

∑
k
vkfk = mjn ≈ −m∂xn.
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by statistical errors as we will show in the following.

Fig. 11.2, p. 168, depicts the buildup of the fluctuations. As for the conserved densities we
used the corrected value of the final correlations 〈δp2〉∞ = 0.991 〈δp2〉eq. We observe that
the exponential decay levels off at ≈ 7 · 10−4, which is indicated by the horizontal line. This
behavior is the signature of statistical error on a logarithmic scale. This can be rationalized by
plotting a Gaussian probability distribution P(x) = e−(x−µ)2/(2σ2)

√
2πσ with mean µ and standard

deviation σ on a logarithmic x-axis: As long as µ � σ, the distribution is sharply peaked at
log(x) = log(µ). If the mean value of the observable decreases and reaches σ, the peak is fixed
at log(x) = log(σ) and smeared out towards smaller values log(x) < log(σ). For µ � σ, the
distribution vanishes at log(x) > log(σ) and jumps to a constant at log(x) < log(σ). Therefore,
σ can be estimated by the value where the jump occurs in the density of plotted points for
t > 10 τ in Fig. 11.2.

We use the correlations 〈(δp)2〉t to examine the scaling of the statistical error σ as a function of
Nsd. Fig. 11.3, p. 168, collects the estimated values σ for an increasing sample size. The agree-
ment with our expectation, σ ∝ N

−1/2
sd , indicates that the pattern of plotted points is caused

by statistical error. The results shown in Fig. 11.1 and Fig. 11.2 are obtained for Nsd = 1000.
If we assume that the relative error of all correlation function is of the same size, it also affects
the fitting of the long-time tails. We conclude that the sample size Nsd has to be increased
further in order to come up with a meaningful comparison. The slow decay of the statistical
error is a drawback of sampling Langevin equations [198].

Distribution function Finally, we turn the correlations of the distribution 〈δf2
k 〉t. It turns

out that the sampled correlation functions are distorted by the statistical error. In particular,
for larger momenta the statistical error exceeds the prefactors ∝ (ff0

k )2 of the expected long-
time tails by far. The emergence of a long-time tail is best seen for k = 0 when the prefactor
takes its maximal value. The time-evolution of 〈δf2

k=0〉t is is plotted in Fig. 11.4, p. 169. The
slowing down of the exponential decay is clearly visible. The predicted long-time tails are
consistent with the sampled data. However, quantitative comparison is not meaningful since
the correlation function is dominated by the statistical error as can be seen from the smeared
distribution of plotted points.

We conclude that the numerical solution of the fRTA is consistent with the analytic predictions
of the long-time tails. However, clear statements about the quantitative agreement cannot be
made so far. The number of averaged samples Nsd has to be increased significantly before
a further analysis is possible. Furthermore, it would be worthwhile to reduce the effect of
the fixed boundary condition by excluding grid points close to the edges from the spatial
average. Periodic boundary conditions are preferable since they allow for a direct comparison
of the predicted and calculated correlations in an isolated system. The instability for periodic
boundary conditions might be suppressed by a finer temporal grid, at the expense of increased
run-time and memory consumption.
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(a) Correlation of the particle density

(b) Correlation of the energy density

Fig. 11.1: Long-time tails of the density autocorrelation functions The relative devia-
tions from the final values are plotted as a function of time on logarithmic scales.
The linear fits apply to t > 10τ , marked by the gray-shaded area. We obtain
〈n2〉∞ − 〈n2〉t = 0.93αhydn t−0.483 and 〈e2〉∞ − 〈e2〉t = 1.1αhyde t−0.532. The predicted
long-time tails 〈n2〉∞− 〈n2〉t = αhydn t−1/2 and 〈e2〉∞− 〈e2〉t = αhyde t−1/2 are plotted
for comparison. The intersections with the vertical axis indicate the prefactors of
the long-time tails. The exponential growth for times τ ≤ t ≤ 2τ is extrapolated to
larger times to demonstrate the slowing down of the relaxation.
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11 The Fluctuating Relaxation-Time Approximation

Fig. 11.2: Exponential buildup of the fluctuations of the momentum density and sta-
tistical error An exponential growth of fluctuations is observed until the relative
deviation shrinks to the size of the statistical error. The value of the relative statis-
tical error is estimated as 7 · 10−4 by a constant fit for t > 10τ .

Fig. 11.3: Statistical errors extracted from the fluctuations of the momentum density
The estimated relative statistical error is plotted against the size of the ensemble on
a double-logarithmic scale. The power-law fit yields 0.02N−0.5

sd within the limits of
error.
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Fig. 11.4: Long-time tails of the correlations of the distribution function for k = 0
The exponential approach eventually turns into a power-law behavior. The pre-
dicted long-time tail αBk=0 t

−1/2 with αBk=0 = 2350 is contrasted with a power-law fit
≈ 0.47αBk=0t

−0.33 for t > 10 τ . The large deviations between the two are attributed
to the large relative statistical error whichthat overshadows the long-time tail.

169





12 Chapter 12

Outlook

We derived a fluctuating relaxation-time approximation (fRTA) that complements a conserving
relaxation-time approximation with hydrodynamic noise. The fRTA can be used to study the
relaxation dynamics of isolated systems with conservation laws at intermediate and at late times
when hydrodynamic fluctuations are relevant. The numerical effort is decreased compared to
the solution of the full Boltzmann equation. The fRTA was derived from a conserving RTA
by adding a noise term. The noise correlations are determined by the fluctuation-dissipation
relations within the linear-response regime. We suggested to stabilize the numerical integration
scheme by an artificial diffusion term which is accompanied by a further noise term.

The numerical solution exhibits long-time tails in the fluctuations of the conserved densities
and of the distribution function. Within the limits of error, the exponents and prefactors of
the long-time tails are consistent with the prediction of fluctuating hydrodynamics and pertur-
bation theory, respectively. In order to show full quantitative agreement, the statistical error
has to be minimized further. Then, it should also be possible to identify subleading corrections
∝ t−1 [88, 152] which arise from the nonlinear fRTA. Our numerical results were obtained for
fixed boundary conditions to suppress further numerical instabilities. Since fixed boundary
conditions alter the equilibrium correlations, a stable integration scheme with periodic bound-
ary conditions is desirable.

The fRTA can be applied to transport problems where conservation laws are important. Special
interest lies in problems where the nonlinearity of the collision term ∝ (fk − f0,loc.

k (ρ)) couples
the fluctuations and the average distributions 〈fk〉. Here, the nonlinear terms are responsible
for the leading order effect. In the following, we highlight two settings.

12.1 Long-time tails after a Fermi-liquid quench

To be more concrete, let us consider an interaction quench in a fermion system. We start
out from a gas of free fermions at T = 0. For t < 0, the system is prepared in the ground
state |FS〉 of the quadratic Hamiltonian H0 =

∑
k,σ εkc

†
k,σck,σ. |FS〉 denotes the filled Fermi

sea, all states are occupied up to the Fermi momentum. At t = 0, we suddenly switch on an
interaction term, H0 → H0 + U

2
∑
σ,σ′

∑
kk′,q c

†
k+q,σc

†
k′−q,σ′ck′,σ′ck,σ. The low-energy states of

the interacting fermion system are fermionic quasiparticles which form a Fermi liquid. The
non-interacting ground state |FS〉 is no longer an eigenstate of the interacting Hamiltonian.
Thus, |FS〉 maps to superposition of excited quasiparticle states. In this way, the relaxation
process is initialized. Our interest lies in the relaxation of the quasiparticle distribution fk itself.

The relaxation of the distribution function was studied by Moeckel and Kehrein [113, 114]. The
flow equation method [209], as applied by these authors, is limited to the dephasing stage of the
relaxation process when the quasiparticles are formed. The focus of their work was to calculate
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the time-dependent distribution of the physical fermions, but the quasiparticle distribution can
be deduced from their results. Dephasing generates an initial quasiparticle distribution f inik .
The subsequent relaxation of f inik upon scattering of the quasiparticles is described by Boltz-
mann theory. We expect that the system reaches a state compatible with the thermodynamic
equilibrium state at late times after the quench. This opens the stage for the fRTA. In contrast
to discussion in the preceding chapters, the object of interest is the noise-averaged distribution
〈fk(t)〉, i. e. the relaxation of the mean values. 〈fk(0)〉 = f inik represents the initial condition for
the Boltzmann description. The fRTA describes the relaxation of 〈fk(t)〉 to the Fermi-Dirac
distribution f0

k = (zeβεk + 1)−1 which is the equilibrium distribution in this case.1 After a
period of exponential relaxation, we expect to observe hydrodynamic long-time tails in the
approach of the thermal distribution, similar to relaxation of correlation functions.

Within the linearized Boltzmann equation the relaxation of the average distribution is insensi-
tive to the collision noise ξk,

(
∂t + vk · ∂x

) 〈
δfk

〉(1) =
∑

k
Tkk′

〈
δfk′

〉(1)
, (12.1)

where we used that 〈ξk〉 = 0. To linear order an exponential relaxation of the displacement
〈δfk〉(1) ∼ e−t/τ is predicted. However, this does not give the full picture: Expanding 〈fk(t)〉
about the final equilibrium distribution for small variations δρi of the conserved densities gives

〈
fk(t)

〉
− f0

k =
∑
ij

∂2f0
k

∂ρi∂ρj

∣∣∣∣∣
δρ=0

〈
ρi(t)ρj(t)

〉
+O(ρ3

j ) , (12.2)

where the first order vanishes since 〈δρi〉 = 0 in equilibrium. As explained in Ch. 8, the
fluctuations of the densities exhibit long-time tails 〈δρi(t)δρj(t)〉 ∝ t−d/2. Thus, the same
power law must show up in the relaxation of 〈fk(t)〉. The same result should be obtained if we
expand the nonlinear collision term τ−1[fk − f0

k(ρ)] to second order in δfk:

(
∂t + vk · ∂x

)
δfk = −

∑
k
Tkk1δfk1 −

∑
k1k2

T
(2)
kk1k2

δfk1δfk2 + ξk . (12.3)

Close to equilibrium, we can treat the second-order term as a small perturbation. In the
long-wavelength and low-frequency limit, the contribution of the derivative is small compared
to the relaxation rates Tkk1 . Thus, the leading-order correction to the exponential decay of
〈δfk(t)〉(1) is given by

〈
δfk(t)

〉(2)
= −

∑
k1k2k3

T−1
kk1

T
(2)
k1k2k3

〈
δfk2(t)δfk3(t)

〉(1)
∝ t−d/2 , (12.4)

where the fluctuations 〈δfk(t)δfk′(t)〉(1) ∝ t−d/2 are obtained from the linear Boltzmann equa-
tion to leading order, see Sec. 10.4. As a result, 〈δfk(t)〉 inherits the long-time tails from the
correlation function as a second-order effect. Interestingly, the nominally less relevant higher-
order correction 〈δfk(t)〉(2) ∝ t−d/2 dominates over the leading order 〈δfk〉(1) ∝ e−t/τ for long
times.2 It would be interesting to compare the analytic prediction to the numerical solution
of the fRTA and to prove that (12.2) and (12.4) lead to the same prefactors of the long-time tails.

1We expect a final temperature of the order of the interaction strength, T ∼ U [113].
2Dominant higher-order terms also appear in different physical contexts: The conductivity of a disordered
antiferromagnetic metal acquires an interaction correction ∝ − log2(T ) in the vicinity of the quantum critical
point which eventually dominates over the leading order correction ∝ T at low enough temperatures [210].
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12.2 Long-distance tails in a current-carrying wire

The fluctuating RTA also opens the possibility to revisit transport problems that were studied
only using the standard Boltzmann equation so far. One question that could be addressed re-
lates to the voltage drop in a one-dimensional wire. We saw that sudden δ(t)-like perturbations,
i. e. sudden quenches, induce long-time tails at late times. Injecting or removing particles at
two different points in space represents an analog δ(x)-like perturbation in space. If injection
and removal of particles happens with the same constant rates, the steady-state of a current-
carrying wire emerges. In the scope of linear fluctuating hydrodynamics, the steady-state is
characterized by a linear drop of the particle density. The density profile is not affected by
hydrodynamic fluctuations on average. This changes when we consider the density-dependence
of the diffusion constant D → D(n) which leads to the current density jn = −D(n)∂xn− ζ. In-
serting this form of the current into the continuity equation gives rise to a nonlinear fluctuating
diffusion equation ∂tn− ∂x[D(n)∂xn] = ∂xζ. In the nonlinear term couples the hydrodynamic
fluctuation to the average density. Similar to long-time tails, one expects to find long-distance
tails in the correction to the density profile. From the scaling of the diffusion equation, ∂t ∼ ∂2

x,
we expect that the long-time tail ∝ t−1/2 translates into a correction ∝ |x|−1 far away from a
δ−perturbation at x = 0.

Hydrodynamic long-range correlations in non-equilibrium steady-states are well-known in liter-
ature, see e. g. Refs. [146, 182, 211, 212] and references therein. Marcel Gievers [151] calculated
the fluctuation correction to the density profile perturbatively and indeed found correction
terms ∝ |x|−1 in the fourth order of perturbation theory. He modeled the connections of the
wire as δ-like sinks and sources for particles. Similar, but not fully convincing results were
obtained by Nils Bruch [213] who solved the diffusion equation numerically. An alternative
set-up would be to consider a wire coupled to leads at different voltages or temperatures,
which is closer to the experimental realization. The fRTA is a tool to numerically calculate
the fluctuating correction to the voltage or temperature drop. The fluctuating correction can
be understood as a correction to Ohm’s law caused by hydrodynamic fluctuations. The leads
can be modeled by fixing the equilibrium distribution at the right and left edge of the wire at
given chemical potentials and temperatures. The nonlinear collision term τ−1(fk − f0,loc.

k (ρ))
will induce the fluctuation corrections. No further modifications are required. However, there
is still an issue: For given boundary conditions, fk relaxes only algebraically slowly ∝ t−1/2 to
the final steady-state. Hence, the fluctuating dynamics has to be simulated for long times to
achieve the fluctuations corrections with high accuracy. The convergence to the fully relaxed
steady-state can be measured by the deviation of the current densities from their final homo-
geneous values [213].

It could also be worthwhile to implement a further conservation law: momentum conserva-
tion. With this at hand the problem of the voltage drop in clean 1D quantum wire can be
revisited [186]. The reference equilibrium distribution is then modified and takes the form
f0
k = (zeβεk−uk + η)−1, η = 1,−1, 0, where u is related to a simple Galilei shift of the distri-
bution. The shift is determined by the local momentum density p(x, t) =

∫
k kfk(x, t). Since

momentum conservation leads to the breakdown of linear hydrodynamics in one dimension, the
exponent of the long-time tails is changed to ∝ t−2/3 [214, 215]. In absence of hydrodynamic
fluctuations the voltage drop is mainly localized close to one of the contacts. Due to momentum
conservation there is no voltage drop in the bulk of the wire. A momentum conserving fRTA
can show how long-ranged hydrodynamic correlations change this picture.
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A Appendix A

Supplement to Part I

A.1 Mean-field theory of the CDW transition

The Hamiltonian matrix in (2.13) has the eigenvalues

E2
±,k = ε2k + |∆|2 , (A.1)

but we do not know immediately how their sign depends on k. The Hamiltonian matrix
is diagonalized by a unitary transformation or Bogoliubov rotation of left- and right-moving
fermions,

dα =
∑

β=L,R
(u†)αβcβ =

∑
β=L,R

u∗βαcβ ,

d†α =
∑

β=L,R
(u†)∗αβc

†
β =

∑
β=L,R

uβαc
†
β ,

(A.2)

with α = ±. The new d fermions with {dα, d†β} = δαβ – the elementary excitations of the
system (at mean-field level) – are superpositions of left- and right-moving c fermions. In
(A.2), we use the convention that the columns of the unitary transformation matrix û are the
eigenvectors of the Hamiltonian matrix. The inverse transformation reads as

cα =
∑
β=±

uαβdβ , c†α =
∑
β=±

u∗αβd
†
β . (A.3)

The unitary matrix û ∈ C2×2 is of the form

ûk =
(
ak −b∗k
bk ak

)
. (A.4)

From the condition ûkû†k = 1 follows that |ak|2 + |bk|2 = 1 (i. e. |ak| = cos(θk), |bk| = sin(θk))
and Im(ak) = 0). For the angle, we choose the interval θk ∈ [−π

2 ,
π
2 ]. Therefore, we have

ûk =
(

cos(θk) − sin(θk)e−iφk

sin(θk)eiφk cos(θk)

)
. (A.5)

Now, we find the rotation matrix by applying ûk to the Hamiltonian matrix. Choosing
φk = arg(∆), we get

û†k

(
−εk ∆∗
∆ +εk

)
ûk =

(
−εk cos(2θk) + |∆| sin(2θk) e−i arg(∆) (|∆| cos(2θk) + εk sin(2θk)

)
ei arg(∆) (|∆| cos(2θk) + εk sin(2θk)

)
+εk cos(2θk)− |∆| sin(2θk)

)
.

(A.6)
The off-diagonal elements are zero for the rotation angle tan(2θk) = −|∆|/εk. On the diagonal,
we generate the eigenvalues

E±,k = ±−εk + |∆| tan(2θk)√
1 + tan2(2θk)

= ∓ sign(k)
√
ε2k + |∆|2 . (A.7)
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It is also useful to calculate the product of the components of the eigenvectors, η = ±,

(uk)∗L,η(uk)R,η = η cos(θk) sin(θk)eiφk = η
sin(2θk)

2 ei arg(∆)

= η
tan(2θk)

2
√

1 + tan2(2θk)
ei arg(∆) = − sign(k) η|∆|e

i arg(∆)

2
√
ε2k + |∆|2

= − sign(k) η∆
2
√
ε2k + |∆|2

.

(A.8)

Thus, we found that the Hamiltonian takes the form

H =
∑
k

∑
η=±

Eη,kd
†
η,kdη,k −

|∆|2

V2kF
(A.9)

and its ground state is the Fermi sea of d fermions. With this information, together with the
rotation angle, we can write down the self-consistent equation for ∆:

∆ = V2kF
N

∑
k

〈c†L,kcR,k〉

= V2kF
N

∑
k

∑
α,β=±

(uk)∗L,α(uk)R,β 〈d†α,kdβ,k〉︸ ︷︷ ︸
=δαβ f(Eη,k)

= V2kF
N

∑
k

∑
η=±

− sign(k) η∆
2
√
ε2k + |∆|2

f(Eη,k)

= V2kF
N

∑
k

− sign(k)∆
[
f(E+,k)− f(E−,k)

]
2
√
ε2k + |∆|2

= −V2kF
N

∑
k

∆ tanh
(
β
2

√
ε2k + |∆|2

)
2
√
ε2k + |∆|2

,

(A.10)

where f(E) = 1/(eβE + 1), β = 1/T , is the Fermi-Dirac distribution. As the dispersion is as-
sumed to be particle-hole symmetric, we symmetrized the momentum summation, −Λ ≤ k ≤ Λ.
We also used that f(E+) − f(E−) = − tanh(βE+/2) = sign(k) tanh

(
β
√
ε2k + |∆|2/2

)
. We

rewrite the self-consistent equation (or gap equation as it is called in BCS theory),

∆ = −V2kF

EΛ∫
−EΛ

dε ρ0(ε)
∆ tanh

(
β
2
√
ε2 + |∆|2

)
2
√
ε2 + |∆|2

= −V2kF ρF

EΛ∫
0

dε
∆ tanh

(
β
2
√
ε2 + |∆|2

)
√
ε2 + |∆|2

,

(A.11)

with the density of states (per unit length), ρ0(ε) = 1
N

∑
k δ(ε− εk). For a linearized dispersion

in the energy window −EΛ ≤ ε ≤ EΛ, we approximate its value at the Fermi energy ρ(0) = ρF .
For T = 0, the value of |∆| 6= 0, is obtained by

− 1
V2kF ρF

=
EΛ∫
0

dε 1√
ε2 + |∆|2

=
EΛ/∆∫

0

dx 1√
x2 + 1

= arcsinh
(
EΛ
|∆|

)
|∆|�EΛ= ln

(
2EΛ
|∆|

)
+ |∆|

2

4E2
Λ

+O
(
|∆|
EΛ

)4

.

(A.12)

176



A.1 Mean-field theory of the CDW transition

It follows that

|∆(T = 0)| ≈ 2EΛ exp
(

+ 1
V2kF ρF

)
= 2EΛ exp

(
− 1
|V2kF |ρF

)
. (A.13)

The ground state energy is minimized by the exponentially small but finite gap. Finally, we
calculate the energy density for finite temperature (energy per site). The calculation is similar
to the derivation of the gap equation:〈

H
〉
MF

N
= 1

N

∑
k

∑
η=±

Eη,k

〈
d†η,kdη,k

〉
− |∆|

2

V2kF

= 1
N

∑
k

∑
η=±

Eη,kf(Eη,k)−
|∆|2

V2kF

= 1
N

∑
k

E−,k
[
f(E−,k)− f(−E−,k)

]
− |∆|

2

V2kF

= − 1
N

∑
k

E−,k tanh
(
βE−,k

2

)
− |∆|

2

V2kF

= −ρF
EΛ∫
−EΛ

dε
√
ε2 + |∆|2 tanh

β√ε2 + |∆|2
2

− |∆|2
V2kF

.

(A.14)

For zero temperature and small gap y = |∆|
EΛ
� 1, we find:

〈
H
〉
MF

N
= −ρF

EΛ∫
−EΛ

dε
√
ε2 + |∆|2 − |∆|

2

V2kF

= −ρFE2
Λ

 1∫
−1

dx
√
x2 + y2 − y2

V2kF ρF


y�1= −ρFE2

Λ + ρFE
2
Λ

−1
2 − log

(
2
y

)
+ 1
|V2kF |ρF

 y2 +O(y4) .

(A.15)

We used that V2kF < 0 for a finite gap. The first summand −ρFE2
Λ is the contribution of the

free electron gas, i. e. for |∆| = 0. Differentiation of (A.15) with respect to y yields:

∂

∂y

(〈
H
〉
MF

N

)
= 2y

− log
(

2
y

)
+ 1
|V2kF |ρF

 . (A.16)

The zeros of the derivative are y1 = 0 (no gap) and y2 = 2e−1/(|V2kF |ρF ) (finite gap). The
ground state energy is minimized by the solution y2 6= 0:〈

H
〉
MF

N

∣∣∣∣∣
|∆|=0

= −ρFE2
Λ ,

〈
H
〉
MF

N

∣∣∣∣∣
|∆|=EΛy2+δ∆

= −ρFE2
Λ

1 + 2e
− 2
|V2kF |ρF −

(
δ∆
EΛ

)2
+O(δ∆3) .

(A.17)

It follows that the formation of a CDW is energetically favorable. We added a small deviation
δ∆ from the the equilibrium value in order to derive the mass of the amplitude fluctuations,

177



A Supplement to Part I

δE = ρF (δ∆)2. From the T dependence of the gap ∆(T ),

1 = −V2kF ρF

EΛ∫
0

dε
tanh

(
1

2T
√
ε2 + |∆(T )|2

)
√
ε2 + |∆(T )|2

, (A.18)

we find the critical temperature for ∆(T = Tc + 0+) = 0+:

1 = −V2kF ρF

EΛ∫
0

dε
tanh

(
1

2Tc ε
)

ε

= −V2kF ρF

EΛ/(2Tc)∫
0

dx tanh (x)
x

= −V2kF ρF

tanh
(
EΛ
2Tc

)
ln
(
EΛ
2Tc

)
−

EΛ/(2Tc)∫
0

dx sech2(x) ln(x)


Tc�EΛ= −V2kF ρF

ln
(
EΛ
2Tc

)
− ln

(
π e−γE

4

) .

(A.19)

We find the critical temperature:

Tc ≈ 2EΛ
eγE

π
exp

(
+ 1
V2kF ρF

)
= 2EΛ

eγE

π
exp

(
− 1
|V2kF |ρF

)
. (A.20)

A.2 Local density of states via Green’s function method
(Lehmann representation)

We consider an N -particle fermion system. The T = 0 time-ordered, retarded, and advanced
Green’s function are defined as

GTx1x2(t, t′) = −i 〈0N |TΨx1(t)Ψ†x2(t′) |0N 〉 ,

GRx1x2(t, t′) = −iθ(t− t′) 〈0N |
{

Ψx1(t),Ψ†x2(t′)
}
|0N 〉 ,

GAx1x2(t, t′) = iθ(t′ − t) 〈0N |
{

Ψx1(t),Ψ†x2(t′)
}
|0N 〉 ,

(A.21)

respectively [4, 37]. Here, Ψx(t), Ψ†x(t) denote the fermionic field operators in the Heisenberg
representation. |0N 〉 denotes the N -particle ground state (Fermi sea) and T is the time-ordering
operator. In the following, we review the spectral representation of these Green’s function.

We start with the retarded Green’s function. We insert the resolution of unity in Fock space
1 =

∑
N,mN

|mN 〉 〈mN |, with the exact eigenstates of the N -particle Hamiltonian |mN 〉:

GRx1x2(t, t′) = −iθ(t− t′)

 ∑
mN+1

〈0N |Ψx1(t) |mN+1〉 〈mN+1|Ψ†x2(t′) |0N 〉

+
∑
mN−1

〈0N |Ψ†x2(t′) |mN−1〉 〈mN−1|Ψx1(t) |0N 〉

 .

(A.22)
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Since Ψx(t), (Ψ†x(t)) lower (increase) the number of particles, only states with particle numbers
N − 1, (N + 1) contribute. Next, use that the time evolution of the Heisenberg operators for
a time-independent Hamiltonian is given by

Ψx(t) = eiHtΨxe−iHt , Ψ†x(t) = eiHtΨ†xe−iHt . (A.23)

with Ψ(†)
x ≡ Ψ(†)

x (0). We can write the N -particle Hamiltonian in its eigenbasis as

H =
∑
N

∑
mN

(ENmN −Nµ) |mN 〉 〈mN | , (A.24)

with the exact eigenenergies EmNN and the chemical potential µ. We obtain:

GRx1x2
(t, t′) = −iθ(t− t′)

 ∑
mN+1

〈0N | eiHtΨx1e−iHt |mN+1〉 〈mN+1| eiHt′Ψ†x2
e−iHt′ |0N 〉

+
∑
mN−1

〈0N | eiHt′Ψ†x2
e−iHt′ |mN−1〉 〈mN−1| eiHtΨx1e−iHt |0N 〉


= −iθ(t− t′)

 ∑
mN+1

〈0N | ei(EN0 −Nµ)tΨx1e−i(EN+1
mN+1

−(N+1)µ)t |mN+1〉

× 〈mN+1| e
i(EN+1

mN+1
−(N+1)µ)t′Ψ†x2

e−i(EN0 −Nµ)t′ |0N 〉

+
∑
mN−1

〈0N | ei(EN0 −Nµ)t′Ψ†x2
e−i(EN−1

mN−1
−(N−1)µ)t′ |mN−1〉

× 〈mN−1| e
i(EN−1

mN−1
−(N−1)µ)tΨx1e−i(EN0 −Nµ)t |0N 〉

)

= −iθ(t− t′)

 ∑
mN+1

exp
[
−i(EN+1

mN+1
− EN0 − µ)(t− t′)

]
〈0N |Ψx1 |mN+1〉 〈mN+1|Ψ†x2

|0N 〉

+
∑
mN−1

exp
[
−i(EN0 − EN−1

mN−1
− µ)(t− t′)

]
〈0N |Ψ†x2

|mN−1〉 〈mN−1|Ψx1 |0N 〉

 .

(A.25)
We see that the Green’s function is time translation invariant for time-independent Hamil-
tonians. We identify the two terms as particle and hole excitations, respectively: The energy
needed for adding a particle (for removing a particle) with respect to the N -particle ground
state are given by

ε
(p)
m ≡ EN+1

m − EN0 > µ , ε
(h)
m ≡ EN0 − EN−1

m < µ . (A.26)

The particle (hole) energies ε(p)m (ε(h)
m ) are larger (smaller) than the chemical potential for µ

located between the highest occupied and the lowest unoccupied energy level. Thus, we write:

GRx1x2(t, t′) = GRx1x2(t− t′)

= −iθ(t− t′)

∑
m

e−i(ε(p)m −µ)(t−t′) 〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉

+
∑
m

e−i(ε(h)
m −µ)(t−t′) 〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉

 .

(A.27)
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Finally, we calculate the Fourier transform:

GRx1x2(ω) =
∫ +∞

−∞
dt eiωtGRx1x2(t)

=
∫ +∞

−∞

dε
2π

1
ε+ i0+

∫ +∞

−∞
dt

×

∑
m

ei[ω−ε−(ε(p)m −µ)]t 〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉

+
∑
m

ei[ω−ε−(ε(h)
m −µ)]t 〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉


=

∫ +∞

−∞
dε Ax1x2(ε)
ω − ε+ i0+ .

(A.28)
We used that

−iθ(t) =
∫ +∞

−∞

dε
2π

e−iεt

ε+ i0+ . (A.29)

In the last line of (A.28) we defined the spectral density as

Ax1x2(ε) =
∑
m

δ

(
ε−

(
ε(p)m − µ

))
〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉︸ ︷︷ ︸

=A(p)
x1x2 (ε)

+
∑
m

δ

(
ε−

(
ε(h)
m − µ

))
〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉︸ ︷︷ ︸

=A(h)
x1x2 (ε)

.
(A.30)

We note that
Ax1x2(ε) = A

(p)
x1x2(ε) +A

(h)
x1x2(ε) . (A.31)

Due to ε
(p)
m − µ > 0 (ε(h)

m − µ < 0), we have A(p)
x1x2(ε < 0) = 0 (A(h)

x1x2(ε > 0) = 0). The time-
ordered and the advance Green’s functions can also be written using the spectral density:

GRx1x2(ω) =
∫ +∞

−∞
dε Ax1x2(ε)
ω − ε+ i0+ ,

GAx1x2(ω) =
∫ +∞

−∞
dε Ax1x2(ε)
ω − ε− i0+ ,

GTx1x2(ω) =
∫ +∞

−∞
dε Ax1x2(ε)
ω − ε+ i0+ sign(ε) .

(A.32)

By virtue of the Dirac identity Im(x+ i0+)−1 = −iπδ(x), we have (Kramers-Kronig relations)

Ax1x2(ε) = −π ImGRx1x2(ε) = +π ImGAx1x2(ε) = −π sign(ε) ImGTx1x2(ε) . (A.33)

We can also extract the spectral density from a correlation function, slightly different from the
Green’s functions in (A.21). Let us consider

gx1x2(t, t′) = 〈0N |
{

Ψx1(t),Ψ†x2(t′)
}
|0N 〉 , (A.34)
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which is similar to the retarded Green’s function, but the step function −iθ(t) is absent. Now,
we replaceGRx1x2(t, t′)→ gx1x2(t, t′) and perform the same steps as in (A.22)–(A.25). We obtain:

gx1x2(t, t′) = gx1x2(t− t′)

=

∑
m

e−i(ε(p)m −µ)(t−t′) 〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉

+
∑
m

e−i(ε(h)
m −µ)(t−t′) 〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉

 .

(A.35)

with ε(p/h)
m as defined in (A.26). Fourier transformation of (A.35) yields:

gx1x2(ω) =
∫ +∞

−∞
dt eiωtgx1x2(t)

=
∫ +∞

−∞
dt

∑
m

ei[ω−(ε(p)m −µ)]t 〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉

+
∑
m

ei[ω−(ε(h)
m −µ)]t 〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉


= 2π

∑
m

δ
[
ω − (ε(p)m − µ)

]
〈0, N |Ψx1 |m,N + 1〉 〈m,N + 1|Ψ†x2 |0, N〉

+2π
∑
m

δ
[
ω − (ε(h)

m − µ)
]
〈0, N |Ψ†x2 |m,N − 1〉 〈m,N − 1|Ψx1 |0, N〉 .

(A.36)
Since −iθ(t) is absent, gx1x2(t) is not a retarded function and gx1x2(ω) does not posses poles in
the complex plane. Comparison with (A.34) shows that

Ax1x2(ε) = gx1x2(ε)
2π . (A.37)

We see that we can calculate the LDOS in the following way:

• We calculate the correlation function gxx(t) at equal positions,

gxx(t) = 〈0N |
{

Ψx(t),Ψ†x(0)
}
|0N 〉 , (A.38)

• and take the Fourier transform of this quantity:

Axx(ε) = gxx(ε)
2π = 1

2π

∫ +∞

−∞
dt eiεt 〈0N |

{
Ψx(t),Ψ†x(0)

}
|0N 〉 . (A.39)
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A.3 Evaluation of the LDOS of the TLL model

In this appendix, we provide some details of the calculation which we skipped in the main text:

Coherent states The action of e−iΦ̃c(y,t′) on the ground state is evaluated in the following
way:

e−iΦ̃c(y,t′) |{0mc}〉

= exp

−i
∞∑

mc=1

1
√
mc

[
χc,mc(y)e−iωc,mc t′ ãc,mc + χc,mc(−y)eiωc,mc t′ ãc,mc

] |{0mc}〉
=

∞∏
mc=1

exp
[
−i
√
mc

χc,mc(−y)eiωc,mc t′ ã†c,mc + −i
√
mc

χc,mc(y)e−iωc,mc t′ ãc,mc

]
|{0mc}〉

=
∞∏

mc=1
exp

−1
2

(
−i
√
mc

)2

χc,mc(y)χc,mc(−y) [b†c,mc , bc,mc ]︸ ︷︷ ︸
=−1


× exp

[
−i
√
mc

χc,mc(−y)eiωc,mc t′b†ν,mc

]
exp

[
−i
√
mc

χc,mc(y)e−iωc,mc t′bν,mc

]
|{0mc}〉︸ ︷︷ ︸

=|{0mc}〉

= exp

− ∞∑
mc=1

|χc,mc(y)|2

2mc

 ∑
{nmc}

∞∏
mc=1

1√
nmc !

[
−i
√
mc

χc,mc(−y)eiωc,mc t′
]nmc

|{nmc}〉 .

(A.40)
Here, we used the identity eA+B = eAeBe−[A,B]/2 (valid for [[A,B], A] = [[A,B], B]) with A =
−i/√mcχc,mc(−y)eiωc,mc t′ ã†c,mc and B = −i/√mcχmc(y)e−iωc,mc t′ ãc,mc . We also used the co-
herent state representation:

∞∏
m=1

eχmb
†
m |01, 02, ...〉 =

∞∑
n1=0

∞∑
n2=0

...
(χ1b

†
1)n1

n1!
(χ2b

†
2)n2

n2! ... |01, 02, ...〉

=
∞∑

n1=0

∞∑
n2=0

...
(χ1b

†
1)n1

√
n1!

(χ2b
†
2)n2

√
n2!

... |n1, n2, ...〉

=
∑
{nm}

∞∏
m=1

(χmb†1)nm√
nm!

... |{nm}〉 .

(A.41)
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Time-independent prefactor The time-independent envelope of the correlation function
(4.62) can be found in the following way: As the mixed waves (4.58) are superpositions of
plane waves, it is useful to calculate the sum s(x) =

∑∞
m=1 eiqm2x−aqm/m as done in Ref. [63].

Here, the small distance cutoff a is important for convergenceto cut off the log divergence:

s(x) =
∞∑
m=1

eiqm2xe−qma

m

=
∞∑
m=1

e πL (i2x−a)m

m

= − ln
(

1− e πL (i2x−a)
)

= −1
2 ln

[(
1− e− πLaei πL 2x

)(
1− e− πLae−i πL 2x

)]
− i arctan

 Im
(

1− e− πLaei πL 2x
)

Re
(

1− e− πLaei πL 2x
)


= −1
2 ln

(
e− πLa

[
e πLa + e− πLa −

(
ei πL 2x + e−i πL 2x

)])
− i arctan

 −e−πaL sin
(
π
L2x

)
1− e−πaL cos

(
π
L2x

)


= − ln
(

2 e− π
2La

√
sinh2

(
π

2La
)

+ sin2
(
π
Lx
))

+ i arctan

 sin
(

2π
L x
)

e πLa − cos
(

2π
L x
)


︸ ︷︷ ︸
≡f(x)

.

(A.42)
We separated real and imaginary part using ln(z) = ln(z∗z)/2 + i arctan(Im z/Re z). We also
used that

eπa/L + e−πa/L − (eiπ2x/L + e−iπ2x/L) = 2[cosh(πa/L)− cos(π2x/L)]

= 4[sinh2(πa/(2L)) + sin2(πx/L)] .
(A.43)

At the edges, x = 0, x = L, (when the distance from the edge is comparable to a) we encounter
the logarithmic divergence

s(x = 0, L) = − ln
[
2 e−

π
2La sinh

(
π

2La
)]

+ i f(x = 0, L)︸ ︷︷ ︸
=0

a�L≈ ln
(
L

πa

)
. (A.44)

which is cut off by a. Away from the edges (i. e. the distance from the boundary is larger than
a), we can set a = 0:

s(x, L− x� a) = − ln
(

2
∣∣∣∣sin ( πLx)∣∣∣∣

)
+ if(x) . (A.45)

The crossover between bulk and boundary is described by

s(x ≈ a� L) = − ln
(

2
√(

π
2La

)2
+
(
π
Lx
)2
)

+ i arctan
(

2x
a

)
,

s(L− x ≈ a� L) = − ln
(

2
√(

π
2La

)2
+
(
π
L(L− x)

)2
)

+ i arctan
(

2(L− x)
a

)
.

(A.46)
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We can then calculate the time-independent prefactor in the following sequence,

|χν,m(x)|2 = 1
2

[
α2
ν + β2

ν − ανβν
(
eiqm2x + e−iqm2x

)]
e−qma ,

∞∑
m=1

|χν,m(x)|2

2m = 1
4
[
(α2

ν + β2
ν)s(0)− 2ανβν Re{s(x)}

]
,

≈ 1
4

(α2
ν + β2

ν) ln
(
L

πa

)
+ 2ανβν ln

2
∣∣∣∣∣sin

(
π

L
x

)∣∣∣∣∣

 ,

exp

− ∞∑
m=1

|χν,m(x)|2

2m

 =
(
L

πa

)−α2
ν+β2

ν
4

2−
ανβν

2

∣∣∣∣∣sin
(
π

L
x

)∣∣∣∣∣
−ανβν2

,

(A.47)

which, finally leads to the expression (4.62). (Anfuso and Eggert [64] use the convention a→ 2a
and βν → −βν .)
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A.3 Evaluation of the LDOS of the TLL model

Local spectral weights Furthermore, the calculation of the LDOS involves the integrals:

Ix,y(ω) =
∫ dt

2π eiωt
∏
ν=c,s

exp

 ∞∑
k=1

Xx,y
ν,k e−iων,kt


=

∫ dt
2π eiωt exp

 ∞∑
k=1

(
Xx,y
c,k e−iωc,kt +Xx,y

s,k e−iωs,kt
)

=
∫ dt

2π eiωt
∞∏
k=1

exp
[
Xx,y
c,k e−iωc,kt +Xx,y

s,k e−iωs,kt
]
.

(A.48)

Note that ω ∈ R. We integrate over the whole real axis, but ων,k only take discrete values.
Therefore the result must be a discrete sum of Dirac-δ’s at these discrete energies. In the
following, we write the Dirac-δ’s explicitly and extract the expressions of their (x-dependent)
prefactors. To this end, we expand the outer exponential:

Ix,y(ω) =

∫
dt
2π

eiωt
∞∏
k=1

 ∞∑
nk=0

1
nk!

[
X
x,y
c,k

e−iωc,kt +X
x,y
s,k

e−iωs,kt
]nk

=

∫
dt
2π

eiωt
∞∑

n1=0

∞∑
n2=0

...

[
X
x,y
c,1 e−iωc,1t +X

x,y
s,1 e−iωs,1t

]n1

n1!
·

[
X
x,y
c,2 e−iωc,2t +X

x,y
s,2 e−iωs,2t

]n2

n2!
...

=

∫
dt
2π

eiωt
∞∑

n1=0

∞∑
n2=0

...

n1∑
jn1 =0

n2∑
jn2 =0

...

(
n1
jn1

) (Xx,yc,1 e−iωc,1t
)jn1

(
X
x,y
s,1 e−iωs,1t

)n1−jn1

n1!
...

=

∞∑
n1=0

∞∑
n2=0

...

n1∑
jn1 =0

n2∑
jn2 =0

...

 ∞∏
k=1

(
nk
jnk

) (Xx,y
c,k

)jnk (
X
x,y
s,k

)nk−jnk
nk!


×

∫
dt
2π

exp

i

ω −

∞∑
k=1

(
ωc,k · jnk + ωs,k · (nk − jnk )

) t


=

∞∑
n1=0

∞∑
n2=0

...

n1∑
jn1 =0

n2∑
jn2 =0

...

 ∞∏
k=1

(
nk
jnk

) (Xx,y
c,k

)jnk (
X
x,y
s,k

)nk−jnk
nk!


×δ

ω −

∞∑
k=1

(
ωc,k · jnk + ωs,k · (nk − jnk )

) .

(A.49)

Ix,y(ω) is a discrete sum of Dirac-δ’s and the weights are labeled with spin and charge quantum
numbers. To see this, we insert summations over the complete set of quantum numbers together
with Kronecker-δ’s:

Ix,y(ω) =
∞∑

n1=0

∞∑
n2=0

...

n1∑
jn1 =0

n2∑
jn2 =0

...

 ∞∏
k=1

(
nk
jnk

) (
Xx,y
c,k

)jnk (
Xx,y
s,k

)nk−jnk
nk!


×
∞∑

mc=0

∞∑
ms=0

δ
(
ω − ωc,mc − ωs,ms

)
︸ ︷︷ ︸

Dirac

× δ

ωc,mc , ∞∑
k=1

ωc,k · jnk

 δ

ωs,ms , ∞∑
k=1

ωs,k · (nk − jnk)


︸ ︷︷ ︸

Kronecker

≡
∞∑

mc=0

∞∑
ms=0

Ix,ymc,msδ
(
ω − ωc,mc − ωs,ms

)
.

(A.50)
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We find that the (spatially dependent) weights Ix,ymc,ms are given by

Ix,ymc,ms =
∞∑

n1=0

∞∑
n2=0

...
n1∑

jn1=0

n2∑
jn2=0

...

 ∞∏
k=1

(
nk
jnk

) (
Xx,y
c,k

)jnk (Xx,y
s,k

)nk−jnk
nk!


×δ

ωc,mc , ∞∑
k=1

ωc,k · jnk

 δ

ωs,ms , ∞∑
k=1

ωs,k · (nk − jnk)

 .

(A.51)

This expression does not look particular inviting, but we can transform it back to an integral
expression which is also suitable for further numerical evaluation. We use that

Tν∫
0

dt
Tν

eiων,mt =
Tν∫
0

dt
Tν

ei2πmt/Tν =
2π∫
0

dφ
2π ei2πmφ = δm,0 = δωm,ω0 , (A.52)

with the time scale Tν = 2L/uν (the time it takes for a spin-(charge-)density wave to travel
back and forth in the wire). Inserting (A.52) into (A.51) yields

Ix,ymc,ms =
Tc∫
0

dt
Tc

Ts∫
0

dt
Ts

∞∑
n1=0

∞∑
n2=0

...
n1∑

jn1=0

n2∑
jn2=0

...

 ∞∏
k=1

(
nk
jnk

) (
Xx,y
c,k

)jnk (Xx,y
s,k

)nk−jnk
nk!


× exp

i

ωc,mc − ∞∑
k=1

ωc,k · jnk

 t
 exp

i

ωs,ms − ∞∑
k=1

ωs,k · (nk − jnk)

 t


=
Tc∫
0

dt
Tc

eiωc,mc t
Ts∫
0

dt
Ts

eiωs,ms t

×
∞∑

n1=0

∞∑
n2=0

...
n1∑

jn1=0

n2∑
jn2=0

...
∞∏
k=1

(
nk
jnk

) (
Xx,y
c,k e−iωc,kt

)jnk (Xx,y
s,k e−iωs,kt

)nk−jnk
nk!

=
Tc∫
0

dt
Tc

eiωc,mc t
Ts∫
0

dt
Ts

eiωs,ms t
∞∏
k=1

 ∞∑
nk=0

[
Xx,y
c,k e−iωc,kt +Xx,y

s,k e−iωs,kt
]nk

nk!


=

∏
ν=c,s

Tν∫
0

dt
Tν

eiων,mν t exp

 ∞∑
k=1

Xx,y
ν,k e−iων,kt

 .
(A.53)

Note that ωm · n = ωm·n.
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Supplement to Part II

B.1 The Fokker-Planck equation derived from the Langevin
equation

The following derivation of the Fokker-Planck equation can be found in Ref. [11]. Here, we
slightly generalize the derivation: In view of the quench protocol considered in Ch. 9, we
allow for a time-dependent noise strength A(t). For notational clarity, we define a function
a(v) ≡ −γv that returns the linear damping term. We start from the Langevin equation

∂tv = a(v) + ξ , (B.1)

with Gaussian white noise

P [ξ(t)] = 1√
2πA(t)

exp
(
−
∫

dt ξ
2(t)

2A(t)

)
. (B.2)

We insert (B.1) into the temporal derivative of the probability distribution (7.11) and obtain:

∂tP (v, t) = − ∂

∂v

〈
δ
[
(v − vξ(t)

]
∂tvξ(t)

〉
= − ∂

∂v

〈
δ
[
(v − vξ(t)

](
a
[
vξ(t)

]
+ ξ(t)

)〉

= − ∂

∂v

[
P (v, t)a(v)

]
− ∂

∂v

〈
δ
[
v − vξ(t)

]
ξ

〉
.

(B.3)
The second term in (B.3) is evaluated using the property ξ(t)P [ξ(t)] = −A(t) δ

δξ(t)P [ξ(t)] of
the noise distribution (B.2):〈

δ
[
v − vξ(t)

]
ξ

〉
=

∫
D[ξ(t)]P [ξ(t)]δ

[
v − vξ(t)

]
ξ(t) = −A(t)

∫
D[ξ(t)]δ

[
(v − vξ(t)

] δP [ξ(t)]
δξ(t)

= A(t)
〈

δ

δξ(t)δ
[
v − vξ(t)

]〉
= −A(t) ∂

∂v

〈
δ
[
v − vξ(t)

] δvξ(t)
δξ(t)

〉

= −A(t)
2

∂

∂v
P (v, t) .

(B.4)
In the last step, we used that the explicit solution of the Langevin equation (7.3) gives

δvξ(t)
δξ(t) = 1

2 . Putting (B.3) and (B.4) together we arrive at the Fokker-Planck equation,

∂tP (v, t) = − ∂

∂v

[
a(v)P (v, t)

]
+ A(t)

2
∂2

∂v2P (v, t) . (B.5)
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B.2 Local entropy production and entropy fluxes

A slightly different way of deriving the total entropy production rate starts with (8.9) which
implies for the local change that

∂ts(x) =
∑
i

λi(x)∂tρi(x) . (B.6)

Using the ∂tρi = −∂x · ji (8.1), we find the continuity equation for the entropy density,
supplemented by the local entropy production rate:

∂ts(x) = −
∑
i

λi(x)
(
∂x · ji(x)

)
= −

∑
i

∂x ·
(
λi(x)ji(x)

)
+
∑
i

(
∂xλi(x)

)
· ji(x)

= −∂x · js(x) + Πs(x) ,

(B.7)

with the local entropy current and the entropy production rate,

js(x) =
∑
i

λi(x)ji(x) ,

Πs(x) =
∑
i

(
∂xλi(x)

)
· ji(x) ,

(B.8)

respectively. ∂xλi is the conjugate force which derives the current ji. Hence, the total change
in entropy (i. e. the total entropy production rate) is

Ṡ =
∫

x
Πs(x) =

∑
i

∫
x

(
∂xλi(x)

)
· ji(x) , (B.9)

which is equivalent to (8.10) for an isolated system (i. e. in absence of external currents).

B.3 Separating rates of entropy production and entropy flux
using the multivariate Fokker-Planck equation

In the multivariate case, we perform essentially the same steps as for a single mode, see Sec. 9.2:

Ṡ(t) = +
∫
X

[
∇X · J(X , t)

]
log

[
P (X , t)

]
= −

∫
X

J(X , t) · ∇X log
[
P (X , t)

]

= −
∑
i

∫
X

Ji(X , t) 1
P (X , t)

∂P (X , t)
∂Xi

= −
∑
ij

∫
X

Ji(X , t) 1
P (X , t)b

−1
ij (t)

[
aj(X )P (X , t)− Jj(X , t)

]
= −Φ(t) + Π(t) .

(B.10)

We find:
Φ(t) =

∑
ij

∫
X

Ji(X , t)b−1
ij (t)aj(X ) ,

Π(t) =
∑
ij

∫
X

Ji(X , t)b−1
ij (t)Jj(X , t)

P (X , t) ≥ 0 .
(B.11)
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B.4 Collision integral: Symmetry and sum rules

The full collision integral (10.10) reads as

Iα[f ] =
∑
λµν

Wαλ,µν

[
fµfν f̃αf̃λ − f̃µf̃νfαfλ

]
, (B.12)

with
Wαλ,µν ≡ 2π

~

∣∣∣Vαλ,µν ∣∣∣2 δ(εα + ελ − εµ − εν) , (B.13)

f̃α = 1− ηfα, (η = 1,−1, 0, for fermions, bosons, or classical particles, respectively) and

Wαλ,µν = Wλα,µν , Wαλ,µν = Wµν,αλ . (B.14)

Sum rules of the full collision integral We can explicitly show that particle number and
energy are conserved in the collisions which is the microscopic basis of continuity equations:∑

α

Iα[f ] =
∑
αλµν

Wαλ,µν

[
fµfν f̃αf̃λ − f̃µf̃νfαfλ

]
=

∑
αλµν

fµfν f̃αf̃λ
[
Wαλ,µν −Wµν,αλ

]
︸ ︷︷ ︸

=0

= 0 ,
(B.15)

∑
α

εαIα[f ] =
∑
αλµν

εαWαλ,µν

[
fµfν f̃αf̃λ − f̃µf̃νfαfλ

]
=

∑
αλµν

fµfν f̃αf̃λ
[
εαWαλ,µν − εµWµν,αλ

]
=

∑
αλµν

fµfν f̃αf̃λWαλ,µν

[
εα − εµ

]

= 1
2
∑
αλµν

fµfν f̃αf̃λ Wαλ,µν︸ ︷︷ ︸
∝δ(εα+ελ−εµ−εν)

[
εα + ελ − εµ − εν

]
= 0 ,

(B.16)

where we used (B.13) and (B.14).

Linearized collision integral We expand (B.12) in small deviations from the equilibrium
distribution f0:

Iα[f ] = I(0)
α︸︷︷︸
=0

+I(1)
α +O(δf2) . (B.17)

In equilibrium, the collision integral vanishes,

I
(0)
α =

∑
λµν

Wαλ,µν

[
f0
µf

0
ν f̃

0
αf̃

0
λ − f̃0

µ f̃
0
ν f

0
αf

0
λ

]
= 0 . (B.18)

We explicitly show that the equilibrium distribution f0
α = (zeβ(εα) + η)−1 nullifies the collision

integral as it fulfills a detailed balance condition:

Wαλ,µν

[
f0
µf

0νf̃0
αf̃

0
λ − f̃0

µ f̃
0
ν f

0
αf

0
λ

]

= Wαλ,µνf
0
µf

0
ν f

0
αf

0
λ

 f̃0
α

f0
α

f̃0
λ

f0
λ

−
f̃0
µ

f0
µ

f̃0
ν

f0
ν


∝ δ

(
(εα + ελ)− (εµ + εν)

)
z2
[
eβ(εα+ελ) − eβ(εµ+εν)

]
= 0 .

(B.19)
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We used that f̃0
α/f

0
α = zeβεα . Thus, Iα[f0] = 0, independently of the details of the interaction.

The first order in δf can be expressed in terms of a collision matrix Tαβ:

I
(1)
α [δf ] =

∑
λµν

Wαλ,µν

[
(δfµ) f0

ν f̃
0
αf̃

0
λ + f0

µ (δfν) f̃0
αf̃

0
λ − ηf0

µf
0
ν (δfα) f̃0

λ − ηf0
µf

0
ν f̃

0
α (δfλ)

+η(δfµ) f̃0
ν f

0
αf

0
λ + ηf̃0

µ (δfν) f0
αf

0
λ − f̃0

µf̃
0
ν (δfα) f0

λ − f̃0
µf̃

0
ν f

0
α (δfλ)

]
=

∑
λβν

Wαλ,βν

[
(δfβ) f0

ν f̃
0
αf̃

0
λ + η(δfβ) f̃0

ν f
0
αf

0
λ

]
+
∑
λµβ

Wαλ,µβ

[
f0
µ (δfβ) f̃0

αf̃
0
λ + ηf̃0

µ (δfβ) f0
αf

0
λ

]
−
∑
βµν

Wαβ,µν

[
ηf0
µf

0
ν f̃

0
α (δfβ) + f̃0

µf̃
0
ν f

0
α (δfβ)

]
−
∑
βλµν

δαβWαλ,µν

[
ηf0
µf

0
ν (δfβ) f̃0

λ + f̃0
µf̃

0
ν (δfβ) f0

λ

]
≡ −

∑
β

Tαβ δfβ ,

(B.20)

with

Tαβ = δαβ
∑
λµν

Wαλ,µν(ηf0
µf

0
ν f̃

0
λ + f̃0

µf̃
0
ν f

0
λ)

−
∑
λµ

[
2Wαλ,µβ(f0

µf̃
0
αf̃

0
λ + ηf̃0

µf
0
αf

0
λ)−Wαβ,λµ(ηf0

λf
0
µf̃

0
α + f̃0

λ f̃
0
µf

0
α)
]

= δαβ
∑
λµν

Wαλ,µν(ηf0
µf

0
ν f̃

0
λ + f̃0

µf̃
0
ν f

0
λ) +

∑
λµ

Wαβ,λµ(ηf0
λf

0
µf̃

0
α + f̃0

λ f̃
0
µf

0
α)︸ ︷︷ ︸

“out”
−2
∑
λµ

Wαλ,µβ(f0
µf̃

0
αf̃

0
λ + ηf̃0

µf
0
αf

0
λ)︸ ︷︷ ︸

“in”

.

(B.21)

Tαβ is not symmetric. Instead, we have that

Tαβ = δαβ
∑
λµν

Wβλ,µν(ηf0
µf

0
ν f̃

0
λ

f̃0
β

f̃0
β

+ f̃0
µf̃

0
ν f

0
λ

f0
β

f0
β

)

−
∑
λµ

2Wαλ,µβ(
f0
β

f0
β

f0
µf̃

0
αf̃

0
λ + η

f̃0
β

f̃0
β

f̃0
µf

0
αf

0
λ)−Wαβ,λµ(ηf0

λf
0
µf̃

0
α

f̃0
β

f̃0
β

+ f̃0
λ f̃

0
µf

0
α

f0
β

f0
β

)


= δαβ

∑
λµν

Wβλ,µνf
0
µf

0
ν f̃

0
λ f̃

0
β

 η

f̃0
β

+ 1
f0
β


−
∑
λµ

2Wαλ,µβf
0
βf

0
µf̃

0
αf̃

0
λ

 1
f0
β

+ η

f̃0
β

−Wαβ,λµf
0
λf

0
µf̃

0
αf̃

0
β

 η

f̃0
β

+ 1
f0
β




≡ T
(0)
αβ

1
f0
β f̃

0
β

,

(B.22)

with the symmetric matrix

T
(0)
αβ = δαβ

∑
λµν

Wβλ,µνf
0
µf

0
ν f̃

0
λ f̃

0
β −

∑
λµ

[
2Wαλ,µβf

0
βf

0
µ f̃

0
αf̃

0
λ −Wαβ,λµf

0
λf

0
µ f̃

0
αf̃

0
β

]
. (B.23)
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B.5 Neumann stability analysis of the streaming term: comparison of different discretization
schemes

We used that ηf0
α + f̃0

α = 1. The symmetry of T (0)
αβ follows from the detailed balance property

and the symmetry properties of Wαλ,µν . Furthermore, we see that the matrices

T
(s)
αβ ≡

T
(0)
αβ(

ff0
αff

0
β

)s =
Tαβff

0
β(

ff0
αff

0
β

)s = Tαβ(
ff0
α

)s (
ff0
β

)s−1 , (B.24)

are symmetric for arbitrary s ∈ R. In Sec. 10.3, we used that T (s=1/2) ≡ T̃ is symmetric.

Sum rules of the symmetric collision matrix T (0) fulfills the same sum rules as the full
collision integral: We start with the right sum rules:∑

β

T
(0)
αβ =

∑
λµν

Wαλ,µνf
0
µf

0
ν f̃

0
λ f̃

0
α −

∑
βλµ

[
2Wαλ,µβf

0
βf

0
µ f̃

0
αf̃

0
λ −Wαβ,λµf

0
λf

0
µ f̃

0
αf̃

0
β

]
=

∑
λµν

f0
µf

0
ν f̃

0
λ f̃

0
α

[
Wαλ,µν +Wαλ,µν − 2Wαλ,µν

]
= 0 ,

(B.25)

∑
β

T
(0)
αβ εβ =

∑
λµν

εαWαλ,µνf
0
µf

0
ν f̃

0
λ f̃

0
α −

∑
βλµ

εβ
[
2Wαλ,µβf

0
βf

0
µ f̃

0
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0
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0
λf

0
µ f̃
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0
β

]
=

∑
λµν

f0
µf

0
ν f̃

0
λ f̃

0
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[
εα + ελ − 2εν

]
=

∑
λµν

f0
µf

0
ν f̃

0
λ f̃

0
α Wαλ,µν︸ ︷︷ ︸
∝δ(εα+ελ−εµ−εν)

[
εα + ελ − εµ − εν

]
= 0 .

(B.26)
Due to the symmetry of T (0), the right sum rules are equivalent to the left sum rules,∑

α

T
(0)
αβ = 0 ,

∑
α

εαT
(0)
αβ = 0 , (B.27)

which are the same as for the full collision integral (B.15), (B.16). The eigenvectors with zero
eigenvalues follow from the definition of T (0) and T (s):∑

β

T
(s)
αβ (ff0

β)s = 0 ,
∑
β

T
(s)
αβ (ff0

β)sεβ = 0 . (B.28)

For the non-symmetric matrix T , we distinguish left and right eigenvectors:∑
α

Tαβ = 0 ,
∑
α

εαTαβ = 0 ,

∑
β

Tαβff
0
β = 0 ,

∑
β

Tαβff
0
βεβ = 0 .

(B.29)

B.5 Neumann stability analysis of the streaming term:
comparison of different discretization schemes

The eigenmodes of the difference equations are of the form [200]

unj = (uq)neiq∆xj , (B.30)

with integer powers of the amplification factor uq ∈ C. The numerical solution is stable if
|uq| ≤ 1 for all q modes and unstable otherwise.
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B Supplement to Part II

• For thenaive discretization for a single k mode,

un+1
j = unj −

v∆t
2∆x

(
unj+1 − unj−1

)
, (B.31)

we find the amplification factor

|uq|2 = 1 +
(
v∆t
∆x

)2

sin2(q∆x) . (B.32)

The scheme is unstable since max(|uq|2) = 1 +
(
v∆t
∆x

)2
> 1. We need to improve the

scheme.

• The Lax method for a single k mode is defined by

un+1
j =

unj+1 + unj−1
2 − v∆t

2∆x
(
unj+1 − unj−1

)
. (B.33)

The amplification factor,

|uq|2 = cos2(q∆x) +
(
v∆t
∆x

)2

sin2(q∆x) , (B.34)

leads to the Courant condition [200],

∆t ≤ ∆x
v
. (B.35)

• We have to adjust the method if many k modes evolve in time with different velocities
vk. We propose a modified Lax method for coupled k modes:

fn+1
k,j = (1− αk) fnk,j + αk

fnk,j+1 + fnk,j−1
2 − vk∆t

2∆x
(
fnk,j+1 − fnk,j−1

)
. (B.36)

The expression (B.36) is equivalent to (11.32) in absence of the collision term. Here, vk
is the drift velocity of the Boltzmann equation and αk = |vk|

vmax
suppresses the numerical

diffusion for smaller k modes. We parameterize ∆t = λ∆tc where ∆tc = ∆x
vmax

is the
Courant limit for the fastest modes. The absolute square of the amplification factor
reads as

|fk,q|2 =
[
(1− αk) + αk cos2(q∆x)

]2
+
(
vk∆t
∆x

)2

sin2(q∆x)

=
[
(1− αk) + αk cos2(q∆x)

]2
+ λ2α2

k sin2(q∆x)

= 1− 4αk(1− αk)︸ ︷︷ ︸
≥0

sin2
(
q∆x

2

)
+ α2

k(λ2 − 1) sin2(q∆x) .

(B.37)

We used that
(
vk∆t
∆x

)2
= λ2

(
|vk|∆tc

∆x

)2
= λ2α2

k. Again, we find that the scheme is stable
for all k modes if λ ≤ 1 or ∆t ≤ ∆tc.
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