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Abbreviations

The following abbreviations will be used throughout this dissertation:

TI: Topological insulator

TSC: Topological superconductor

SC: Superconductor

MBS: Majorana bound state

MZM: Majorana zero-mode

PHS: Particle hole symmetry

ABS: Andreev bound state

FCS: Full counting statistics

BdG: Bogoliubov-de Gennes

BCS: Bardeen-Cooper-Schrieffer

1D: one-dimensional

ZBCP: zero-bias conductance peak

SM: Semiconductor



Abstract

Majorana bound states in topological superconductors exhibit exotic non-Abelian braid-

ing statistics and hold promise for particularly robust qubits with natural built-in mech-

anisms against decoherence. The theme of this dissertation is the theory of novel ap-

proaches to realization and identification of such Majorana qubits.

Towards the realization of Majorana qubits, we present architectures based on topolog-

ical insulator nanoribbons, e.g. made of Bi2Se3, and proximitized by an s-wave super-

conductor. Piercing of proximitized nanoribbons with an axial uniform magnetic flux of

suitably adjusted strength has been previously predicted to give rise to one-dimensional

topological superconductors with robust Majorana bound states. We propose qubit de-

signs that incorporate two such topological superconductors connected by a constricted

topological nanoribbon segment. This constriction is non-proximitized and its lesser

cross section results in a local gap opening. We present theoretical results showing

the possibility to conveniently tune the coupling of a pair of Majorana states localized

across the constriction via gating. Moreover, we discuss proof-of-principle experiments

for initialization, manipulation, and readout of the floating version of the device, which

is dominated by charging effects. We compare the platform to other Majorana qubit

proposals and give an outlook on applications such as the Majorana surface code.

The experimental identification of Majorana bound states represents one of the out-

standing goals of contemporary condensed matter physics. Towards identification, we

present the theory of novel transport spectroscopic approaches geared to qubits in the

Coulomb blockade regime. In particular, we propose a scheme in which three normal-

conducting leads are weakly coupled to three different Majorana bound states of the

qubit. The protocol relies on the simultaneous continuous weak measurement of two

noncommuting, nonlocal Pauli operators of the Majorana qubit and results in a phe-

nomenon of surprisingly strong current cross-correlations. This is the prime signature

containing information that enables to identify the nonlocal Pauli algebra, which is
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intimately related to the celebrated non-Abelian braiding statistics. The latter is a

property notoriously hard to demonstrate and of large attractiveness from the fun-

damental as well as applied perspective. The conditions under which the pronounced

current cross-correlations are observable depend on the device configuration, a fact that

leads to several experimentally verifiable predictions that allow to test the authenticity

of the Majorana qubit. Beyond that, we put forward two further detection methods in

this thesis. First, a shot noise scheme which is viable for a single floating topological

Majorana wire. Second, a protocol relying on projective current measurements. Beyond

the usefulness of these protocols, we identify the aforementioned protocol of monitoring

a nonlocal Pauli algebra as the scheme accessing the most information related to the

constitutive nature of Majorana bound states.



Zusammenfassung

Gebundene Majorana-Zustände in topologischen Supraleitern weisen exotische nicht-

abelsche Statistik auf und versprechen besonders robuste Qubit-Realisierungen mit

Schutzmechanismen gegen Dekohärenz. Das Thema der vorliegenden Dissertation ist

die Theorie neuer Methoden zur Realisierung und Identifizierung solcher Majorana-

Qubits.

Im Hinblick auf die Realisierung von Majorana-Qubits stellen wir Designarchitek-

turen vor, die auf topologischen Isolator-Nanodrähten beruhen. Letztere können etwa

aus dem Material Bi2Se3 bestehen. Vorangegangene Arbeiten haben derartige Nano-

drähte in Proximität zu s-Wellen-Supraleitern untersucht und vorhergesagt, dass ein

gleichmäßiger axialer magnetischer Fluss von der Stärke eines halben Flussquantums

einen eindimensionalen topologischen Supraleiter mit gebundenen Majorana-Zuständen

entstehen lässt. In unseren Qubit-Designentwürfen werden zwei solche topologische

Supraleiter durch einen verengten Abschnitt aus topologischem Nanodraht verbun-

den. Der geringe Querschnitt dieser Verengung führt lokal zu einer Energielücke.

Wir präsentieren theoretische Resultate, die die Möglichkeit einer bequem manipulier-

baren Kopplung der Majorana-Zustände demonstrieren. Des Weiteren diskutieren wir

Proof of Principle Experimente zur Initialisierung, Manipulation und Auslesung un-

serer Qubit-Platform unter Bedingungen der Coulomb-Blockade. Wir vergleichen die

Plattform mit anderen Ansätzen der Majorana-Qubit Realisierung und geben einen

Ausblick auf weitergehende Anwendungen wie etwa den Majorana-Oberflächencode.

Die experimentelle Identifizierung von Majorana-Zuständen gehört zu den herausragen-

den Zielen der gegenwärtigen Festkörperphysik. Zu diesem Zweck stellen wir neuartige

transportspektroskopische Methoden vor, die auf Majorana-Qubits unter Bedingungen

der Coulomb-Blockade ausgelegt sind. Es ist Teil der Methode, dass drei normallei-

tende Elektroden schwach an drei verschiedene Majorana-Zustände des Qubits gekop-

pelt werden. Das Protokoll stützt sich auf die simultane kontinuierliche schwache Mes-
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sung zweier nicht-kommutierender, nicht-lokaler Pauli-Operatoren des Majorana-Qubits

und führt zu einem Phänomen überraschend starker Strom-Kreuzkorrelationen. Diese

experimentell messbare Größe enthält Informationen, die es ermöglichen, die nicht-

lokale Pauli-Algebra zu identifizieren, welche eng mit der nichtabelschen Statistik ver-

wandt ist. Die nichtabelsche Statistik ist eine Eigenschaft, die berüchtigt dafür ist, dass

sie schwer nachzuweisen ist, und sowohl aus fundamentaler als auch aus angewandter

Perspektive eine große Attraktivität besitzt. Die Bedingungen, unter denen die aus-

geprägten Kreuzkorrelationen vorherrschen, hängen von der Gerätekonfiguration ab;

eine Tatsache, die zu mehreren experimentell nachprüfbaren Vorhersagen führt. Diese

Vorhersagen erlauben es, die Authentizität des Majorana-Qubits zu testen. Darüber

hinaus schlagen wir in dieser Arbeit zwei weitere Methoden vor, um Majorana-Zustände

zu detektieren. Erstens Schrotrausch-Messungen an einem nicht geerdeten, topolo-

gischen Majoranadraht und zweitens ein Protokoll, das sich auf projektive Strommes-

sungen stützt. Über die Nützlichkeit dieser beiden Protokolle hinaus macht das oben

beschriebene Monitoring einer nicht-lokalen Pauli-Algebra mehr Information über die

Natur der Majorana-Zustände zugänglich.
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Chapter 1

Introduction

In 1928, Paul Dirac published the relativistic quantum wave equation [1], which in his

honor is known as the Dirac equation and constitutes one of the pillars of our modern

scientific world view. This fundamental contribution enabled a unified view of quantum

mechanics and the special theory of relativity, laid the groundwork of quantum field

theory, and inspired Dirac himself to make an important prediction about nature

the existence of antimatter. Ettore Majorana made a landmark contribution in 1937

proving the existence of a representation of the Dirac equation with a purely real wave

function, Ψ = Ψ∗, thus, postulating a neutral fermionic excitation [2]. Ever since, the

notion of a neutral fermion being its own antiparticle became reputable from the vantage

point of established theoretical physics. Whether nature chooses implementation of this

scenario in the form of an elementary particle is still experimentally undecided with the

neutrino being the most prominent suspect [3].

Interestingly, the time-dependent quantum fields Ψ(r, t) describing Bogoliubov quasi-

particles in superconductors within the framework of the well established Bardeen-

Cooper-Schrieffer (BCS) theory share the mathematical properties of the neutral

fermions studied by Majorana [3]. This becomes less surprising when we recall that

these quasiparticles constitute superpositions of electrons and electron holes, which play

a role analogous to that of matter and antimatter particles in the discussion above. This

thesis is centered around the closely related concept of the Majorana zero-mode (MZM)

[4], which is the cause for great activity and interest in the field of condensed matter

physics. The particle hole symmetry (PHS) of the superconductor is described by an

anti-unitary operator P which satisfies Φ−E(r) = PΦE(r) when we express the quasi-
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1.1. THIS THESIS AND ITS STRUCTURE

particle as Ψ(r, t) = e−iEtΦE(r). Hence, the PHS dictates that the spectrum exhibits

symmetry around zero energy. A MZM Φ0(r) = PΦ0(r) in the presence of a finite en-

ergy gap ∆ and remote from other MZMs is therefore protected by symmetry: it cannot

move away from zero energy. This protection is very robust and a consequence of non-

trivial topology of the bulk of the special host systems, which are known as topological

superconductors (TSCs) [5]. A paradigmatic example of TSCs is the Kitaev model [6].

The second quantized operator creating a MZM localized at the domain walls or vor-

tices of TCSs is identical to the operator annihilating it, i.e. γ† = γ. Disappointingly,

topological insulators are rarely occurring in nature [4], but inventive ideas to engineer

them by forming heterostructures have been put forward. This approach was initialized

by an innovative proposal of Fu and Kane [7]. The latter led to prominent proposals

involving proximitized semiconducting nanowires with spin-orbit coupling [8, 9] making

the above mentioned Kitaev model experimentally accessible. We emphasize that, in

contrast to the neutral fermions studied by Majorana in 1937, MZMs in TSCs come

into existence as an emergent phenomenon caused by the constituent electrons of the

material. The most noteworthy difference, however, is that MZMs bound to defects

adhere to a special kind of statistics known by the scholars of theoretical physics as

non-Abelian anyonic. The exchange of identical non-Abelian anyons is radically differ-

ent from that of identical fermions or bosons it can result in a different quantum state

at the same energy which may pave the way to topological quantum computation [10].

Hence, such exotic properties are not only intriguing from the point of view of funda-

mental physics, but also because of the prospect of technological advances in quantum

information processing hardware.

1.1 This thesis and its structure

The theme of this dissertation is the theory of novel approaches to realize and de-

tect Majorana qubits, which have been envisioned and deemed attractive due to their

topological protection as the building blocks of quantum information processing im-

plementations. This is founded on the hope that at low energies Majorana qubits

may provide for natural built-in mechanisms against detrimental decoherence and de-

cay [10, 11, 12]. Towards realization of such systems, we propose device designs of

Majorana qubits relying on previously proposed MBS platforms based on topological

insulator (TI) nanowires proximitized by an s-wave superconductor (SC) in the pres-
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CHAPTER 1. INTRODUCTION

ence of a longitudinally aligned magnetic field [13, 14]. Towards detection, we note that

platforms that are predicted to contain unpaired MBSs are studied in several labora-

tories around the world, including but not limited to superconductor–semiconductor

heterostructures in Copenhagen and Delft [15]. This in itself is a testament to the

intense efforts in the condensed matter community in recent years. Although a wealth

of accumulated measured data consistent with MBS predictions exists, the unambigu-

ous demonstration of topological MBSs has proven to be difficult as we will discuss in

more detail in Section 2.4. The three main aspects which have to be investigated to

demonstrate MBSs are broadly speaking the following: (a) verification of non-Abelian

braiding properties, (b) corroboration that two MBSs constitute a vastly nonlocal Dirac

fermion, and (c) demonstration of localized Majorana bound states in TSCs. Property

(a) is the ultimate goal but also the most demanding. In this thesis, we provide theoret-

ical blueprints for a next generation of experiments to detect the Majorana qubit which

can as well be understood as detecting the sought-after unpaired MBS itself. First, we

are guided by the requirement that the protocols should substantiate aspects (a) and

(b) by going beyond local probes. Second, reliance on presently available hardware is

important for experiments that can be implemented realistically in the short term to

avoid stalling of progress in the field. We make the argument that a good balance of

information gain and experimental feasibility is found in transport spectroscopy where

we propose protocols that lie within the scope of present day experimental physics. The

protocols aim at the core property of the Majorana qubit, its nonlocal Pauli algebra, by

accessing information closely related to the celebrated non-Abelian braiding statistics.

The thesis is organized in six chapters:

� Chapter 2: In this chapter, we review several aspects of the physics of MBSs

in solid state quantum devices aiming to make this thesis self-contained. We

briefly explain the broader context of topological matter and discuss the quest for

MBSs in 1D condensed matter systems. We go on to discuss Majorana box qubits

and their associated nonlocal Pauli algebra as well as the celebrated non-Abelian

braiding statistics. Finally, we discuss the state of the presently accumulated evi-

dence for MBSs as well as existing proposals for a next generation of experiments.

� Chapter 3: In this chapter, we propose new architectures for the realization of

Majorana qubits based on platforms of topological insulator (TI) nanowires in

proximity to s-wave superconductors (SCs). We show quantitatively that the
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1.1. THIS THESIS AND ITS STRUCTURE

coupling of the robust MBSs in these architectures is conveniently manipulable.

We then go on to discuss proof-of-principle experiments and applications for the

proposed platforms. Moreover, we analyze design advantages and drawbacks in

comparison to other approaches to Majorana qubit realization.

� Chapter 4: This chapter is central to the thesis and details novel detection pro-

tocols for MBSs. The protocols are based on simultaneous weak measurement of

the nonlocal Pauli operators of the Majorana qubit. We discuss in great detail a

predicted strong effect of current cross-correlations, which allows the identifica-

tion of genuine Majorana qubits. The protocols yield information similar to that

of a full braiding protocol.

� Chapter 5: In this chapter, we discuss two further new variants of MBS detection

protocols. The discussion at the end of the chapter reveals that the aforemen-

tioned protocol presented in Chapter 4 accesses the most information related to

the fundamental nature of MBSs.

� Chapter 6: In the last chapter, we provide an overall conclusion and outlook.
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Chapter 2

Majorana bound states in solid

state quantum devices

2.1 Topological Majorana nanowires

The field of topological insulators (TIs) and topological superconductors (TSCs) is

one of the most vibrant and active fields in contemporary condensed matter physics

[16, 17]. In this section, we put 1D Majorana wires in the context of topological matter,

discuss an important model of 1D p-wave superconductivity and subsequently discuss

its implementation. For further reading, we note that numerous informative review

articles are available [3, 4, 5, 18, 19, 20].

2.1.1 Majorana wires in the framework of topological matter

Topological Majorana wires are quasi one-dimensional superconducting representatives

of a celebrated form of matter known as symmetry-protected topological matter, which

provides a theoretically unified view on topological insulators (TIs) and topological

superconductors (TSCs) [21]. Conceptually, topological matter is founded on the topo-

logical classification of noninteracting gapped fermionic Hamiltonians based on their

symmetry. According to a fundamental result of Altland and Zirnbauer, there are

generically precisely ten symmetry classes that the system can belong to [22]. This

result is also known as the “tenfold way” for disordered fermions. In the presence of

a gap, these free fermion systems are topologically classified in the “periodic table for
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2.1. TOPOLOGICAL MAJORANA NANOWIRES

topological insulators and superconductors” [23]. An excerpt of this table is shown in

Table 2.1. For given spatial dimension and symmetry class, the table predicts whether

a topological material with bulk invariant either of Z or Z2 type is possible or not.

Every TI or TSC generically features gapless surface states that are robust against

perturbations which are not gap closing.

AZ Class TRS PHS 1D 2D 3D

BDI +1 +1 Z 0 0
D - +1 Z2 Z 0

DIII −1 +1 Z2 Z2 Z

Table 2.1: Excerpt of the “periodic table for topological insulators and superconduc-
tors” [21, 23] showing TSCs in up to three dimensions with PHS squaring to the identity.
The entry “0” for a given Altland-Zirnbauer (AZ) symmetry class and dimension im-
plies that every ground state is a member of the same phase, which is topologically
trivial.

Based on the discussion so far, one might wonder how superconductivity fits into a

scheme of noninteracting fermions. After all, superconductivity is rooted in attractive

phonon mediated quantum interactions of electrons near the Fermi surface. This can

be understood by recalling that within a standard mean field approximation a SC is

described as a noninteracting system of fermionic Bogoliubov quasiparticles which is

gapped due to the superconducting order parameter [5]. The BCS mean field Hamilto-

nian (up to a constant) is given by [24]

HBCS =
∑
σ,k

ξkc
†
kσckσ +

∑
k

[
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑

]
, (2.1)

where ∆k is the superconducting order parameter and ckσ creates an electron with

spin σ, momentum k and dispersion ξk = ~2k2
2m
− µ. Introducing the spinor Ψ †k =

(c†k↑, c
†
k↓, c−k↑, c−k↓), we can write the Hamiltonian in the first quantized form up to a

constant as

HBCS =
1

2

∑
k

Ψ †kHBdG(k)Ψk, (2.2)

which is well known as the Bogoliubov-de Gennes (BdG) Hamiltonian [24]. The anti-

unitary particle hole symmetry P = UPK, with UP a unitary operator and K the

complex conjugation operation, is a generic feature of superconducting BdG Hamilto-
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CHAPTER 2. MAJORANA BOUND STATES IN QUANTUM DEVICES

nians [5],

UPH∗BdG(k)U−1
P = −HBdG(−k). (2.3)

In the absence of time-reversal symmetry and for P2 = 1, a SC is placed in the Altland-

Zirnbauer symmetry class D. In spatial dimension d = 1 there exists a Z2 topological

invariant (see Table 2.1) also referred to as the “Majorana number” M = ±1 [6].

The principle of bulk-boundary correspondence states that nontrivial bulk topology,

M = −1, manifests itself holographically in protected states on the surface. The

“surface” of a finite wire is defined by the two end points, and the protected surface

states are the Majorana bound states γα which this thesis is focused on. Creation and

annihilation are achieved with the same operator γ†α = γα, the Majorana operators obey

the Clifford algebra [20]

γαγα′ + γα′γα = 2δαα′ . (2.4)

Furthermore, γα squares to the identity, i.e. γ2
α = 1.

2.1.2 Kitaev’s p-wave superconducting lattice model

Kitaev’s paradigmatic chain model [6] is discussed in great detail in many excellent

reviews, e.g. Refs. [3, 4, 19, 20]. Hence, we discuss it here only briefly. The one-

dimensional lattice contains N sites and a spinless fermion is created on the site i by

the operator c†i . The Hamiltonian of the 1D SC reads

H =
N−1∑
i=1

[
−µc†ici − t

(
c†ici+1 + c†i+1ci

)
+ ∆

(
c†ic
†
i+1 + ci+1ci

)]
, (2.5)

and includes an onsite chemical potential µ as well as a nearest neighbor hopping

term with amplitude t. The pairing is of p-wave type coupling nearest neighbors with

amplitude ∆. Furthermore, we assume that a global phase rotation has been performed

to achieve ∆ ∈ R. How can we see that this model is indeed an example of a 1D

topological superconductor? To this end, it is instructive to consider the special point
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2.1. TOPOLOGICAL MAJORANA NANOWIRES

t = ∆ and µ = 0 in parameter space, where the Hamiltonian takes on the form

H(t = ∆, µ = 0) =
N−1∑
i=1

[
−∆

(
c†ici+1 + c†i+1ci

)
+ ∆

(
c†ic
†
i+1 + ci+1ci

)]
=

N−1∑
i=1

∆
(
c†i + ci

)(
c†i+1 − ci+1

)
. (2.6)

We take note that two Majorana operators represent the Hermitian and anti-Hermitian

part of a conventional Dirac fermion ci since we may define them as γi = c†i + ci and

γ̃i = i(c†i − ci). The Hamiltonian then takes on the form

H(t = ∆, µ = 0) = −i∆
N−1∑
i=1

γiγ̃i+1. (2.7)

This means that two of the Majorana operators represent zero-modes, i.e. [H, γ̃1] =

[H, γN ] = 0, that are PHS protected and locked in at zero energy. Thus, the Majoranas

γ̃1 and γN are unpaired and can be arbitrarily far apart depending on the wire length.

We can define a highly nonlocal Dirac fermion created by

f † =
1

2
(γ̃1 − iγN) (2.8)

which can be occupied at vanishing energy cost. The ground state of topologically

trivial SCs is unique and accommodates all electrons in the form of Cooper pairs. The

presence of the fermion (2.8) changes this picture: consider that |0〉 with f |0〉 = 0 is a

ground state. Then, we have a two-fold degenerate ground state because |1〉 ≡ f † |0〉
is another ground state with different fermion parity. The Majorana number for the

simple model can then be derived [6] to be

M = sign
(
µ2 − 4t2

)
. (2.9)

A nontrivial TSC configuration (µ, t,∆) in parameter space is characterized by a finite

gap and M = −1. All nontrivial TSC configurations, of which the special point (t =

∆, µ = 0) is merely an example, can be smoothly deformed into each other without

closing the gap (as long as PHS is preserved). For general parameters in the topological

phase, a MBS γ1 localized at one wire end satisfies [H, γ1] ∼ exp (−L/ξ), with ξ the

parameter dependent size of the MBS and L the length of the wire [4]. It follows that
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CHAPTER 2. MAJORANA BOUND STATES IN QUANTUM DEVICES

γ1 becomes an exact zero-mode in the limit L→∞ of an infinite wire. The associated

topological phase is signified by weak pairing. In order to reach a topologically trivial

configuration by smooth deformation of the Hamiltonian, then requires necessarily to

close and reopen the gap and to undergo a topological phase transition.

2.1.3 Physical realization of 1D p-wave SC

The lesson learned in the previous subsection can be summarized as follows: in order to

realize the Kitaev chain model an effectively spinless SC with p-wave pairing is required.

Unfortunately, intrinsic p-wave SCs are exceedingly scarce in nature [4]. However,

Fu and Kane came up with the idea to synthetically engineer TSCs by putting TIs

and s-wave SCs in proximity [7]. This important contribution led to many further

proposals, two of which are particularly important in this thesis. One of them proposes

to proximitize TI nanowires to give rise to 1D TSCs [13, 14], which we will review and

apply to realize qubits in Chapter 3.

Another particularly promising approach involves spin-orbit coupled semiconductor

(SM) nanowires [8, 9], which we are going to discuss in the remainder of this sub-

section. In the presence of a strong magnetic field, such systems can be tuned to a

regime where only one longitudinal band is important and the system is effectively

spinless. In proximity to an s-wave superconductor, the spin polarized electrons are

endowed with a pairing term allowing them to be driven into the topological phase.

The experimental activity based on these proposals led to the probably most advanced

Majorana platform [15]. The noteworthiness of this approach stems for the fact that

it provides a way to accomplish a Majorana wire in realistic systems with the help of

well studied components such as semiconductors and s-wave SCs. The Hamiltonian

describing such systems is given by [4, 15]

H = HSM +HSC, (2.10)

HSM =
∑
σ,σ′

ˆ L

0

dxψ†σ(x)

(
− ~2

2m
∂2
x − µ+ i~αRσ2∂x + Γσ1

)
σσ′

ψσ′(x), (2.11)

HSC =

ˆ L

0

dx (∆ψ↑(x)ψ↓(x) + H.c.) . (2.12)

Here Γ = gµBB is the external magnetic field with g the effective Landé g-factor, B

the applied magnetic field and µB the Bohr magneton. Furthermore, µ is the chemical
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potential, m the effective mass and αR the Rashba spin-orbit coupling constant. The

field operator ψ†σ(x) creates an electron at position x with spin σ. We assume that the

magnetic field and the spin-orbit field are oriented orthogonally to each other. In that

case, the energy eigenvalues for momentum k and ∆ = 0 are given by [4]

Ek =
~2k2

2m
− µ±

√
Γ2 + α2

Rk
2 (2.13)

as shown in Fig. 2.1. If the chemical potential µ is located within the gap opened by

Γ, the fermions are effectively spin-polarized. Proximity coupling of a s-wave SC to the

SM endows the effectively spinless fermions with Cooper pairing. For Zeemann field

Γ > Γc with

Γc =

√
|∆|2 + µ2, (2.14)

the Refs. [8, 9] have ingeniously predicted that the system is in a topological supercon-

ducting phase. The experimental implementation of this approach will be discussed in

more detail in Section 2.4.

μ
Εso

k

E

Figure 2.1: Schematic form of the energy spectrum as a function of momentum k
of a SM wire in the presence (black) and absence (red) of a TRS-breaking Zeemann
field, respectively. The spin-orbit-coupling is characterized by the energy scale Eso =
m
2
α2
R [4, 15]. For suitable chemical potential values µ, the system displays effective

spinlessness.
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2.2 Topological Majorana qubits

The Majorana qubit in the most elementary incarnation can be conceptualized as a

topological superconductor of mesoscopic size hosting four MBSs γ0, . . . , γ3 [25, 26].

Two MBSs are not sufficient for a useful qubit since the quantum information would be

stored in the parity of a single fermionic mode and could be read out by the Coulomb

interaction, which is long ranged. Two nonlocal fermionic modes on the other hand

enable to perform parity-protected quantum computation.

Now, we would like to think about the mesoscopic SC island or “box” as being not

grounded a situation that we will also refer to as “floating”. The N island electrons

affect each other by means of the Coulomb interaction giving rise to an energy HC =

ECN
2. The effective interaction strength is set by the charging energy EC = 2e2/C

with C the linear capacitance of the device regions in good electrical contact with each

other. A capacitively coupled gate can regulate the electrostatic potential locally on

the island. This modifies the ground state energy according to HC = ECN
2 +eNV [27].

Up to a constant and with N̂ the electron number operator we obtain the Hamiltonian

HC = EC(N̂ − ng)2, (2.15)

with the dimensionless back-gate parameter ng = eV/2EC controlling the energetically

ideal island charge. This charging Hamiltonain has been used in the context of topolog-

ical systems e.g. in Refs. [25, 26, 28, 29]. We point out that due to the MBSs an odd

number of electrons can also be accommodated. Under Coulomb valley conditions, or

more generally far away from the charge degeneracy point ng = 1/2, the fermion parity

is fixed [25],

γ0γ1γ2γ3 = ±1. (2.16)

The charging physics provides a mechanism alleviating the harm caused by quasiparticle

poisoning events from outside the island in the regime of low energy [29, 30], because it

assigns an energy cost to these detrimental processes. The QP poisoning time has been

studied in the SM devices and was found to be of order & 1µs [31]. According to Eq.

(2.16), the degeneracy of the ground state is broken down from four-fold to two-fold,

which we identify with our Hilbert space. The topologically protected Majorana qubit
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2.2. TOPOLOGICAL MAJORANA QUBITS

operating in this Hilbert space is characterized by a nonlocal Pauli algebra [25]

σ1 = iγ1γ0, σ2 = iγ2γ0, σ3 = iγ2γ1. (2.17)

These Pauli operators are “fractionalized” into Majorana bilinear operators.

A practical implementation scheme is based on two one-dimensional (1D) proximitized

nanowires which are driven in the topological phase by an applied magnetic field with

MBSs at their terminations [11, 12]. Parallely aligned, the wires are joined with the

help of a conventional s-wave superconducting bridge, see Fig. 2.2. Here, we assume

the charging energy of each wire to be small compared to the Josephson coupling so

that the composite object forms a single island with a single charging energy typically

of the order of 1meV [15].

SC
γ0γ2

γ3 γ1

Figure 2.2: The “Majorana box qubit” or “tetron” [11, 12] is made from two one-
dimensional, proximitized nanowires (gray-green) hosting MBSs γα at their ends. The
linear dimension of the two wires is assumed to vastly exceed the superconducting
coherence length ξ so that the MBSs effectively represent zero-modes. A trivial s-wave
SC (gray) connects the wires to form a superconducting “Cooper pair box” that is
effectively characterized by a single charging energy EC .

The geometry displayed in Fig. 2.2 has been referred to in the literature as “tetron” [12]

or “Majorana box qubit” [11]. Closely related and also important in the context of this

thesis is the “hexon” [12] structure with six MBSs, which is analogously constructed

from three parallel 1D TSCs forming a single island.

In Chapter 3 of this thesis we describe another Majorana box qubit construction based

on topological insulator nanowires which are coated with a superconductor.

22



CHAPTER 2. MAJORANA BOUND STATES IN QUANTUM DEVICES

2.2.1 Majorana qubit interferometric readout

The step of readout and initialization of quantum information encoded in the Majo-

rana qubit is indispensable for its functionality. Extracting the occupation from a pair

of completely decoupled MZMs is not possible [6]. Therefore, one requires a tunable

coupling term that can be strongly suppressed to protect the information and turned

on during the readout phase enabling an observable to couple to it. There are multiple

different approaches to reading out Majorana qubits, e.g. involving the inductive cou-

pling to a flux qubit [30, 32]. Another approach requires to couple the Majorana qubit

capacitively to quantum dots [11, 12].

Now, we review another approach founded on Majorana interferometry, where the ob-

servable is the electrical conductance, see Ref. [11]. The approach relies on a striking

nonlocal transport phenomenon, which forms the basis for the weak measurement pro-

tocols that we will discuss in Chapter 4. The Majorana qubit is strongly Coulomb

blockaded, and tunable tunneling barriers connect two electrodes with two different

spatially separated MBSs. The strong charging effects hinder the electrons from tun-

neling onto the SC island. However, quantum charge fluctuations permit cotunneling

through the island [33]. At energy scales small compared to EC and the superconduct-

ing gap ∆, the box qubit device is equivalent to two fermionic levels with support at

the four ends of the two TSC wires. The nonlocal transport through the box from lead

α to lead α′ due to Coulomb charging is described by the Hamiltonain [29, 30]

H = t1(iγαγα′)c
†
α,kcα′,k′ + H.c., (2.18)

with the fermionic creation operators c†α,k for lead α and momentum k. The phase and

absolute value of the transmission amplitude t1 is independent of the tunneling distance

a fact that Fu has labeled as “teleportation” of electrons [29]. We will refer to the

transport as phase coherent and note that there is experimental evidence consistent

with such a long distance phenomenon [34]. The foundation of various interferometric

schemes is the observation that a flip of the parity iγiαγ
j
α′ causes a π phase shift in the

transmission amplitude. This mechanism allows to obtain a parity dependent conduc-

tance (current) by devising a second path for the electrons to tunnel through, see Fig.

2.3. This interference path serves as a reference and may be realized using a low density

SM or a second Majorana island with fixed parity [11]. The interferometric purpose

of the link dictates that its length should be short enough to enable phase coherent
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γ0γ2

γ3 γ1

V

Φ

Figure 2.3: Electron interferometric scheme for Majorana qubit [11, 12, 30] readout of
the occupancy of the nonlocal Dirac fermion (γ0 + iγ1)/2 by measuring the tunneling
conductanceG = dI/dV . The first path goes through the Coulomb blockaded Majorana
qubit, while the second path is a tunneling link, e.g. realized by a low-density semi-
conductor with a sufficient phase-coherence length (vertical dashed line). Furthermore,
there is an external magnetic flux Φ present which is enclosed by the two paths.

electron transport. When we further assume that there is a magnetic flux Φ piercing

in between the two paths, the conductance depends on the parity according to [11, 30]

G(Φ) = g0 + iγ0γ1g(Φ), (2.19)

with g(Φ) = g(Φ + h/e), i.e. exhibiting Aharonov-Bohm oscillations. We emphasize

that without the interference path, the conductance is not parity dependent. The

conductance measurement hence amounts to a projective readout of the parity iγ0γ1.
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2.3 The non-Abelian nature of Majorana zero-

modes

We will now discuss the physical meaning of the non-Abelian properties of MZMs [10],

highlighting the connection to the nonlocal Pauli algebra of a Majorana qubit, which

will be of crucial importance in Chapter 4.

2.3.1 Non-Abelian braiding statistics

It was first shown by Ivanov in 2001 that MZMs bound to vortices in 2D p-wave

Superconductors behave as non-Abelian anyons when the vortices are exchanged [35].

It has been put forward that 1D TSCs can in principle be used in branched Y- or T-

geometries by manipulating the MBS carrying domain walls [36, 37]. To understand

the term anyon, we recall that in three dimensions, quantum particles are either bosons

or fermions. In two dimensions, a quantum particle can be neither a fermion nor a

boson but a third option called anyon [10]. Under the exchange of identical particles α

and β, the wavefunction can pick up a general phase factor, i.e. |. . . , ψα, . . . , ψβ, . . .〉 =

exp (iθ) |. . . , ψβ, . . . , ψα, . . .〉. For real statistical angle θ /∈ {0, π}, such particles are

called Abelian anyons [10]. If the many body ground state has multiple degeneracies,

the exchange of identical particles can even cause a change of the quantum state, a

scenario which is known as non-Abelian statistics. This term is motivated by the fact

that the phase factor exp (iθ) is replaced by a unitary operator Tαβ in the space spanned

by the degenerate ground states [10],

|. . . , ψα, . . . , ψβ, . . .〉 = Tαβ |. . . , ψβ, . . . , ψα, . . .〉 . (2.20)

In general, unitary operators are noncommutative, implying that the final quantum

state can depend on the order in which the indistinguishable particles have been ex-

changed. MZMs bound to defects represent a special type of non-Abelian anyon known

as Ising anyon and we now discuss how braiding implements a unitary evolution in

the degenerate ground state manifold. Drawing on our discussion of Majorana based

qubits, we again consider four MZMs γ0, . . . , γ3 and we may think of the associated

Hilbert space as our computational space. For a start, we determine the form of the

unitary operator corresponding to the adiabatic exchange of two of the Majoranas in
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counter-clockwise direction following the heuristic discussion given in Ref. [38]. De-

noting this transformation γ0 → γ̃0 = T †01γ0T01 and γ1 → γ̃1 = T †01γ1T01, we conclude

γ̃1 = λ0γ0 and γ̃0 = λ1γ1 from the fact that the Majoranas are simply swapped. The new

operators γ̃α are evidently required to obey γ̃†α = γ̃α and γ̃2
α = 1, which implies λα = ±1.

Since the adiabatic exchange cannot result in a change of the parity P = iγ0γ1, we know

that iγ0γ1 = iγ̃0γ̃1. This implies two possible choices for the sign:

γ0 → ±γ1, (2.21)

γ1 → ∓γ0. (2.22)

This is a gauge freedom and we choose to work with the lower sign choice in the

following. It is straightforward to check that the unitary transformation of counter-

clockwise exchange of the defects α and β is given by [36]

Tαβ = e
iπ
4 exp

(π
4
γαγβ

)
=
e
iπ
4

√
2

(1 + γαγβ) . (2.23)

The second equation can be shown using the properties of the Majorana operators.

The collection of all braiding operations forms a group the so called braid group [10].

One can identify the Pauli operators σ1 = iγ1γ0, σ2 = iγ2γ0 and σ3 = iγ2γ1 (see Ref.

[25] and Subsection 2.2) as the generators of the braid group, because according to Eq.

(2.23) we may write

T10 = e
iπ
4 exp

(
−π

4
σ1

)
, T20 = e

iπ
4 exp

(
−iπ

4
σ2

)
, T21 = e

iπ
4 exp

(
−iπ

4
σ3

)
. (2.24)

This reveals a deep connection between the nonlocal Pauli operators and the braiding

statistics. In Fig. 2.4, we see an example of the graphical representation of the exchange

operation T12. Using the Clifford algebra relations, it is straightforward to prove that

Tαβ =
√
iγαγβ [36]. Thus, by exchanging the Ising anyons twice, which is equivalent to

one Ising anyon encircling the other, we obtain the Pauli operators:

T 2
10 = σ1, T 2

20 = σ2, T 2
21 = σ3. (2.25)

An exchange of e.g. 1 and 2 transforms a state Ψ, defined in the ground state manifold,

according to Ψ → exp
(
iπ

4
σ2

)
Ψ, while the encircling operation implements Ψ → σ2Ψ

[18]. As an example, we may consider the state Ψ = |001, 123〉 with nij the occupancy
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γ1γ0 γ3γ2

Figure 2.4: Geometrical representation of the elementary braiding operation of adia-
batic and counter-clockwise exchange of the defects which bind the MZMs γ1 and γ2.
The horizontal and vertical axes denote the spatial and temporal direction respectively.
Braidings are equivalent if they can be smoothly deformed into each other without
moving the start and endpoints (black dots) or crossing the strands [38].

of the fermion number operator n̂ij ≡ 1
2
(1+ iγiγj). The exchange of MBSs belonging to

different fermions creates a maximally entangled Bell state in the given basis [3], e.g.

T12 |001, 123〉 =
e
iπ
4

√
2

[|001, 123〉+ |101, 023〉] , (2.26)

whereas the qubit state (with fixed odd fermion parity) is flipped: T 2
12 |001, 123〉 =

|101, 023〉. The exchange of Majoranas constituting the same fermion on the other hand

results in a parity dependent phase factor being multiplied to the state.

2.3.2 Non-Abelian fusion rules

Braiding implies a time evolution in the degenerate ground state space due to the mo-

tion of indistinguishable anyons. To understand Majorana fusion rules, consider two

Majorana zero-modes γ1 and γ2, bound e.g. to vortices of 2D TSCs or the termina-

tions of 1D TSCs wires, which due to large separation have exponentially suppressed

overlap. When the spatial distance between the associated MZMs carrying defects gets

reduced, a hybridization term gradually appears. The degenerate ground state splits

and the fusion may or may not give rise to an unpaired fermion. The case of a fermion
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corresponds to an excited state commonly denoted ψ, while the case of no fermion

corresponds to the ground stated denoted 1. Hence, one writes [10, 36]

γ1 × γ2 → 1 + ψ. (2.27)

One can view this as the projective measurement of the fermionic particle state that

forms when the two MBSs are brought together, which can be empty or occupied at the

cost of a finite energy. The two options illustrated in Eq. (2.27) are also known as fusion

channels. Detection of the fusion rule (2.27), amounts to establishing the non-Abelian

nature of MZMs, because the fusion of Abelian particles always exhibits just a single

fusion channel [10]. In Chapter 3, we briefly mention a fusion rule detection scheme

based on charge sensing [39] applied to Majorana qubit architectures in proximitized

topological insulator nanowires.

2.3.3 Topological quantum computation

The idea to build topological quantum computers based on non-Abelian anyons gen-

erated great excitement in the quantum information community [10, 40], partially ex-

plaining the interest in MBSs. 2N + 2 mutually far separated MZMs form a degenerate

ground state manifold of dimension 2N corresponding to N qubits if we restrict our-

selves to a well defined charge parity. However, drawing on the Majorana box qubit

discussion in subsection 2.2, we rather would like to think of 4N MZMs encoding N

qubits with N constraints on the parities γ1γ2γ3γ4, γ5γ6γ7γ8,... which is known as

“sparse” encoding [41].

A quantum computation is defined as a sequence of unitary operations called quantum

gates. A set of gates is esteemed to be “universal” if an arbitrary computation can

be performed. The unitary operations performed by braiding of Ising anyons, like e.g.

T01 = ei
π
4

(1+σ1) (see Eq. (2.24)), do not meet this requirement. In fact they are elements

of the Clifford group. Remarkably only a single gate, e.g. the so called T-gate

T =

(
1 0

0 e
iπ
4

)
(2.28)

is missing to make it universal [41]. The latter would however be unprotected unlike

the braiding unitary operations which are completely specified by the topology of the
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braid. Thus, by employing MBSs an element of the Clifford group can in principle

be applied exactly to all decimal places while the T-gate can only be approximated.

The finite excitation pairing gap ∆ causes further limitations [42]. The timescale on

which the braiding is performed is important. It has to be slower than ~/∆0 because

otherwise quasiparticles could be excited. On the other hand, the coherence time of

the Majorana qubit clearly represents an upper limit on operation times.
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2.4 Experimental identification of Majorana bound

states

MBSs are neutral and spinless objects that do not couple to electric and magnetic

fields. Due to electron non-conservation of the U(1) → Z2 broken superconducting

state, electrons provide a way to couple to the MBSs by using tunneling spectroscopy

[40]. Probing the density of states of one end of a topological wire locally by means

of conductance spectroscopy is therefore the most straightforward approach to obtain

MBS signatures. To understand this point, first recall what happens for a trivial SC: the

application of a voltage between a normal contact and the superconducting part leads to

Andreev processes [27]. In such processes, the electron incoming from the normal metal

is reflected as a hole from the tunnel barrier, while the current in the superconductor

is carried by Cooper pairs. For a topological SC wire, in contrast, there is a resonant

Andreev process at zero bias voltage when the energy of incoming electrons matches

that of the Majorana zero-mode at the interface. In the zero temperature limit, the

MBS gives rise to perfect Andreev reflection resulting in a robust zero-bias conductance

peak (ZBCP) with a quantized maximum height of G = 2e2/h [43]. By investigating SM

nanowires with proximity induced superconductivity, a 2012 Delft experiment provided

the first experimental ZBCP evidence consistent with Majorana bound states [44]. In

these experiments, a NbTiN superconductor was used to proximitize an InSb nanowire

and the device as a whole was grounded. A recent success was that the height of the

ZBCPs was confirmed to be 2e2/h quantized [45, 46].

Naively, one might expect that a genuine topological superconducting wire reveals itself

through the robustness and persistence of the quantized ZBCP signature for sufficiently

strong magnetic field. In a similar spirit, the early experiments where partially cele-

brated as MBS verification implying that proximitized nanowires have been driven into

the topologically superconducting regime. However, in this context, the results of fur-

ther research implied that different alternative scenarios could also explain the same

signatures. In light of these results that we will summarize now, the ZBCP is a neces-

sary but not yet conclusive observation of MZMs.

First, disorder has been shown to be a possible origin of quantized zero-bias conductance

peaks with unit spectral weight and robust to magnetic fields [47, 48]. This highlights

the need to achieve fabrication of cleaner materials and devices and concerted endeavors

already led to substantial progress in this regard [15].
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Second, topologically trivial Andreev bound states (ABS) have been shown to be able

to cause the same phenomenology as genuine (single) MBSs when they are detected on

the basis of zero-bias conductance peaks [49, 50]. Andreev bound states are fermionic

in nature implying that their creation operator c = (γ1 + iγ2)/2 can be split into a pair

of Majorana operators γ†1 = γ1, γ†2 = γ2. The corresponding MBS component wave

functions may actually have only a small overlap due to spatial displacement [50]. In

the same reference it is shown that these so-called “partially separated Andreev bound

states” (denoted ps-ABS in the same Ref.) are generic for low-energy spin-orbit cou-

pled SM-SC heterostructures in the presence of a suitably oriented magnetic field [50].

These generic midgap ABSs in nanowires originate in inhomogeneities of the chemical

potential or individual impurities behaving as quantum dots. Also the combination of

spin-orbit coupling and Zeeman splitting permits Andreev bound states to reside close

to the band center for finite values of the Zeemann field [51]. These ps-MBSs mimic

topological unpaired MBSs so accurately that it has been pointed out that they may

be useful for quantum computation because their non-Abelian braiding properties may

be accessible [52]. We also point out that for the experimentalist it is not possible to

know the value of the critical magnetic field independently, making it difficult to decide

whether a measured ZBCP is seen on the topological or trivial side of the topological

phase transition [51].

In summary, it is fair to say that the advances so far consist to a large extent of lo-

cal probes and are consistent with the predictions for MBSs made by theory. But

a false-positive interpretation is not yet ruled out. Nevertheless, the existing experi-

mental observations represent crucial steps bringing us closer to topological quantum

computation. Non-observation of a zero-bias peak in experiments would have falsified

the Majorana wire hypothesis already some time ago. We also mention that there

are many further experiments that have been performed which we have not mentioned

here. E.g. another noteworthy breakthrough was achieved on Coulomb blockaded is-

lands in 2016 at the University of Copenhagen [53]: the first systematic measurement of

the finite-size exponential suppression of the ground-state degeneracy associated with

overlapping Majorana bound states.
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2.4.1 Next generation of experiments beyond local probes

As briefly stated in the introduction, the main aspects that must be investigated in

order to demonstrate Majorana physics are broadly speaking the following: (a) verifi-

cation of non-Abelian braiding properties, (b) corroboration that two MBS constitute

a vastly nonlocal Dirac fermion, and (c) demonstration of unpaired Majorana bound

states localized in TSCs. As discussed above, there is mostly a consensus in the con-

densed matter community that signatures of local probes such as ZBCP measurements

(belonging to category (c)) are not able to unambiguously identify genuine MBSs. It

thus seems clear that a next generation of experiments is needed to clarify the situation.

There are various theoretical proposals available on how to achieve this goal [54]:

� For SC islands with more than two MBSs, a non-perturbative topological Kondo

effect as discussed in Refs. [25, 26, 28, 55] is present. This could provide a

smoking gun signature, also in light of related low-energy transport proposals for

two-box setups [56]. The characteristic nonlocal transport features are expected

at low temperatures T < TK and are predicted to disappear when a far-away lead

is decoupled. However, reaching this regime is very challenging in experiments

since the Kondo temperature TK is predicted to be extremely low.

� In trijunctions formed from three TSCs, a single MZM is expected at the junction.

Ref. [57] has shown that this state causes giant shot noise peaks when choosing

commensurate voltages, like for instance V1 = −V/2, V2 = 0, V3 = +V/2, on

the TSC terminals. This effect disappears in the absence of such a protected

zero-energy state.

� Another proposal made in Ref. [58] is to use interferometry by embedding a

Coulomb-blockaded Majorana wire into a ring and then probe Aharanov-Bohm

h/e-periodic conductance oscillations with the magnetic flux piercing the ring,

see also Ref. [59]. For Andreev states, interference is argued to be suppressed,

while for genuine MBSs one expects h/e oscillations, see also Refs. [29]. A related

proposal is to study the Josephson current phase relation across a Majorana box

with two MBSs [60]. For ABSs, the authors of this reference predict a phase shift

when the gate parameter is shifted according to ng → ng + 1, which in fact is

absent for authentic MBSs.
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� The detailed time dependence of the transient current after switching on the

tunnel couplings in the standard ZBCP setting has been proposed as a signature

allowing to distinguish genuine MBSs and ABSs in Ref. [61]. The fact that short-

time transients can be affected by various other effects could make implementation

of this proposal challenging in practice.

� Measuring the zero bias peaks at both ends of a TSC wire by studying the end-

to-end correlations could provide a signature for authentic MBSs because one

expects the ZBCPs to appear at both ends simultaneously [51]. In practice,

this suggestion might be difficult to implement because it requires different gate

settings at both ends of the wire. Furthermore, it is challenging to probe the same

fermionic zero-mode.

� Thermoelectric noise due to the interplay of electric fields and temperature gra-

dients has been proposed in Ref. [62] as a means to distinguish genuine MBSs

and ABSs.

� Microwave spectroscopy of a Majorana wire could in principle also prove useful

for distinguishing genuine MBSs and ABSs as discussed in Ref. [63]. The system

requires spectroscopic measurement in the microwave regime and is thus more

complicated to implement than a DC setup.

In light of the challenging nature of most of these experiments, the need to move on to

a next generation of experiments on Majorana devices that go beyond local probes and

are as simple as possible is quite substantial. This serves as an important motivation

for this thesis. We believe that the simplicity can be found in transport spectroscopy

concretely, by measurements of currents and shot noise as will be discussed in Chapters

4 and 5.
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Chapter 3

Majorana qubits in proximitized TI

nanoribbon device architectures

This chapter contains a detailed study of the realization of Majorana based qubits built

in platforms of TI nanoribbons in proximity to s-wave SCs [13, 14]. The chapter is

structured as follows: Section 3.1 reviews TI nanoribbons and the emergence of MBSs

in proximity to an s-wave SC. In Sections 3.2 and 3.3, we model and analyze the

novel Majorana box qubit device setups which allow for gate tunable hybridization of

MBSs and proof-of-principle experiments to test the devices. Finally, in Section 3.4, we

give an outlook on long-term applications of the proposed qubit devices. Our research

presented in this chapter has previously been published in Ref. [64].

3.1 TI nanoribbons and the emergence of MBSs in

proximity to an s-wave SC

3.1.1 TI nanoribbons and surface Dirac theory

Let us start by introducing TI nanowires with a focus on their transport properties and

reviewing the well established description in terms of Dirac surface models, which we

will work with subsequently. In this subsection, we will see that topological insulator

nanoribbons exhibit a finite-size gap. This gap can be closed to generate a single gapless

helical 1D mode in the presence of an axial magnetic flux Φ = Φ0/2, where Φ0 is the
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magnetic flux quantum [65, 66, 67, 68, 69, 70]. A reader familiar with this subject may

move on the next subsection.

The main ingredient are three-dimensional topological insulators (TIs) [16, 17], a type

of matter which, as discussed in Chapter 2, exhibits the celebrated bulk-boundary

correspondence. The nontrivial topology of the bulk matter goes hand in hand with

a robust gapless Dirac-type surface state circumventing the fermion doubling theorem

[71]. In this chapter, we consider nanowires made out of such topological insulator

materials. The term ‘wire’ indicates effective one-dimensionality, i.e. the typical (nano)

length scale of the width is small compared to the length of such a wire. Because of their

layered structure, the nanowires of 3D TI materials commonly grow in a tape-like shape

with rectangular cross sections of order 40× 100nm2 [72, 73], explaining why the wires

are referred to as nanoribbons. The Dirac fermion surface state governs the transport of

three-dimensional topological insulator materials [16, 17] for chemical potential values

within the bulk band gap Eg. The latter sets a length scale on which the surface Dirac

fermion decays into the bulk, which is typically of the order of several nanometers.

Quantum transport of bulk insulating TI nanowires with a width exceeding this length

scale is therefore approximately accounted for by relying on surface theories (see e.g.

Refs. [65, 66, 67, 68, 69, 70]). As explained in Refs. [65, 74], the surface theory can be

obtained e.g. by starting from a massive Dirac Hamiltonian in three dimensions

HBulk =

(
−Eg σ · p
σ · p Eg

)
, (3.1)

with Eg being the bulk band gap, p = −i~∇ the momentum operator and σ ≡
(σ1, σ2, σ3) the vector of Pauli spin matrices. This Hamiltonian is defined in the space

of the spin and pseudospin (sublattice) degrees of freedom and neglects other bands of

the 3D TI energy spectrum. Let us assume that the interface of TI and the vacuum is

defined by a position dependent normal vector n̂. Formally, one can derive the surface

Hamiltonian by sending the mass parameter Eg to infinity away from the surface. In

this way, one obtains the Hamiltonian [65]

HSurface =
~υ
2
∇ · n̂+

υ

2
(n̂ · [p× σ] + [p× σ] · n̂) , (3.2)

with υ the Dirac velocity. This Hamiltonian describes a single species of a two-

dimensional massless Dirac fermion. In the topology dominated transport of TI
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nanowires, accounting for the precise details of the wire geometry is often inessen-

tial in predicting transport properties. Indeed, the obtained low-energy band structure

is very similar when the idealization of a cylindrical nanowire is invoked to describe a

nanoribbon with the same cross section [14, 69, 70]. Assuming a cylindrical nanowire

with radius R and in alignment with the z-axis, the Eq. (3.2) yields the TI wire

Hamiltonian

H0 = −i~υ1σy∂z +
~υ2

R
σzi∂θ, (3.3)

with the coordinate θ parametrizing the wire circumference [14, 75, 76]. The parameters

υ1 and υ2 are the Fermi velocities in the longitudinal and circumferential direction. In

deriving this Hamiltonian, a unitary transformation (spin rotation) has been performed,

which implies antiperiodic boundary conditions for the spinor wave function, i.e.

ψ(z, 0) = −ψ(z, 2π). (3.4)

An immediate consequence of the antiperiodic boundary condition (3.4) is a gap in

the spectrum, physically originating in the necessary finite transverse momentum. The

energy scale ∼ ~υ2/R characterizes the transversal confinement.1

Now, we imagine that a homogeneous axial magnetic field B is being turned on. Ac-

cording to the standard procedure of minimal substitution, the dimensionless magnetic

flux

ϕ ≡ Φ

Φ0

(3.5)

longitudinally threading the wire appears as an azimuthal vector potential in Eq. (3.3),

yielding

H0 = −i~υ1σy∂z −
~υ2

R
σz(−i∂θ + ϕ). (3.6)

It is instructive to understand the qualitative features of the corresponding spectrum

for a translationally invariant wire. We may perform a Fourier transformation of the

spinor wave function, i.e.

ψ(z, θ) =

ˆ
dz

∑
j∈(Z+ 1

2)

eikze−ijθψk,j, (3.7)

1In Ref. [76], a TI nanowire with arbitrary smooth, constant cross section perpendicular to the
z-axis was considered. Hence, the surface of such a wire has no intrinsic Riemannian curvature. The
corresponding Hamiltonian can be transformed to coordinates (s, z) in which it takes on the flat space
form [76], H = −iυ~ [σz∂z + σy∂s]. Consequently, the use of the Hamiltonian (3.3) is not as restrictive
as it may seem.
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where we introduced the axial momentum k and the quantized angular momentum

j [76]. The fact that the summation is performed over half-integers accounts for the

antiperiodic boundary conditions. The Hamiltonian separates into blocks of the form

Hk,j = ~υ1kσy+ ~υ2
R

(j+ϕ)σz. The spectrum is obtained by squaring Hk,j, which results

in [14]

Ek,j = ±~
√
υ2

1k
2 +

υ2
2

R2
(j + ϕ)2. (3.8)

This spectrum has been plotted in Fig. 3.1.1, where the qualitative differences for

different values of the dimensionless flux are being displayed. One of the key takeaways

from the spectrum is that for ϕ = 1/2 there is a non-degenerate gapless linear band.

This is precisely the condition for the underlying normal state of a TSC [6, 7]. The

spectrum makes it intuitive to anticipate that the system in proximitiy to an s-wave

SC will give rise to MBSs.

k

E

k

E

k

E

k

E

φ=1/2 φ=0.35 φ=0.15 φ=0

Figure 3.1: Energy spectrum (schematic) of a TI nanoribbon as a function of the
longitudinal momentum k for different values of the threading dimensionless flux ϕ.
For ϕ = 1/2 (left), the system is effectively time reversal symmetric and there is a non-
degenerate linear gapless band. All the other bands have twofold degeneracy. Hence, for
any value of the chemical potential there is an odd number of Fermi points for k > 0. In
the absence of magnetic flux ϕ = 0 (right), there is a gap in the spectrum as discussed
in the main text and every band has a twofold degeneracy. In the intermediate cases
ϕ = 0.35 (center left) and ϕ = 0.15 (center right), the system is gapped and every band
is nondegenerate. (The plot has been created with Mathematica.)

3.1.2 Dirac fermion model of proximitized TI nanoribbons

In the previous Subsection 3.1.1, we have seen that TI nanowires with half-integer axial

flux quantum ϕ = 1/2, e.g. made of the strong TI Bi2Se3, exhibit an odd number of
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Fermi points for k > 0 for any value of the chemical potential within the bulk band

gap. According to Kitaev [6], in proximity to an s-wave SC, MBSs should emerge in

such a situation if the superconductivity gaps the spectrum. For the proximitized TI

nanowire system, topological superconductivity was first predicted by Cook and Franz

in Refs. [13, 14] and subsequently analyzed e.g. in Refs. [77, 78, 79, 80]. We now

discuss the proximitized system again using a surface Dirac fermion model, which is

wrapped around the nanowire. For a cylindrical wire, due to its rotational symmetry

with respect to the z-axis, the total angular momentum is conserved with half-integer

eigenvalue j. According to the discussion in the previous subsection (see Eq. (3.6)),

the effective Dirac surface Hamiltonian of the j-branch is given by

H0 = −i~υ1σy∂z −
~υ2

R(z)
(j + ϕ(z))σz − µ(z)σ0, (3.9)

where we now explicitly included a chemical potential µ. For given angular momentum

quantum number j ∈ Z + 1/2, the surface state in spin space is generally of the form

[14]

ψj(z, θ) =
eijθ√

2π

(
e−iθ/2fj(z)

eiθ/2gj(z)

)
, (3.10)

where θ is again the azimuthal coordinate parametrizing the circumference of the cylin-

der. The functions fj and gj are subject to the normalization condition

ˆ
dz(|fj(z)|2 + |gj(z)|2) = 1. (3.11)

Expressed in this way, the Hamiltonian effectively acts on spinor states (fj(z), gj(z))T

in a reduced 1D description. We now add the superconducting term needed to account

for the proximity effect with induced pairing ∆, which yields the description of the

system via the Bogoliubov-de Gennes (BdG) Hamiltonian in Nambu space [14]

HBdG =

(
H0(z) iσ2∆(z)

−iσ2∆∗(z) −H0(z)

)
. (3.12)

Surface states inside the gap of the bulk TI are then found as eigenstates of the BdG

Hamiltonian. In Subsection 3.1.3 and Section 3.2, we will apply the Hamiltonian (3.12)

to describe proximitized nanowire systems where ∆, ϕ and µ are functions of the coor-

dinate z defined along the wire axis.
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For an infinite, translationally invariant system with a uniform flux ϕ, the BdG solu-

tions are plane waves with axial momentum k. Under these assumptions, the dispersion

relation is given by [14]

Ek,j,σ,σ′ = σ
√

(~υ1k)2 + (Mj + σ′∆)2, (3.13)

where σ, σ′ ∈ {±1}. The parameter characterizing the size quantization gap is defined

as

Mj =
~υ2

R
|ϕ+ j| . (3.14)

The gap associated with the mode j = −1/2 is denoted

M− 1
2
≡M(ϕ) ≡ ~υ2

R
|ϕ− 1/2| (3.15)

and is zero for half a flux quantum, i.e. for ϕ = 1/2. We consider TI nanoribbon

cross sections that are sufficiently small such that ∼ ~υ2/R is a large energy scale

and modes with angular momentum j 6= −1/2 can be neglected within a low-energy

approximation scheme. We discuss possible causes and effects of flux mismatch away

from ϕ = 1/2 in our discussion in Subsection 3.3.3. Note that a gapless branch exists

for Mj = ±∆, signaling a topological phase transition [4]. We will see in more de-

tail in the next subsection how an interface of both types of gaps gives rise to MBSs

localized at the ensuing domain walls. These MBSs emerge under the circumstances

of Altland-Zirnbauer symmetry class D with broken spin SU(2) symmetry and broken

time reversal symmetry (TRS). This is despite the fact that the infinite proximitized TI

nanoribbon with flux ϕ = 1/2 gives rise to an effective time reversal invariance placing

it in symmetry class DIII, because the non-quantized magnetic flux at the wire ends

breaks TRS [14].

40



CHAPTER 3. MAJORANA QUBITS IN PROXIMITIZED TI NANORIBBONS

3.1.3 MBS at the interface of TI wire segments of different

width

A novel idea that will play a prominent role in our discussion of qubit architectures is

to consider an interface separating TI nanowire segments of different radius such that

the thicker right half with flux Φ = Φ0/2 is proximitized and the thinner left half is not

(see Fig. 3.2). We derive now the Jackiw-Rebbi zero-mode solution corresponding to

a localized MBS at the interface. We treat the problem analogously to Refs. [13, 14],

where a MBS arising at the interface with a magnetically gapped domain has been

considered. In this subsection, we follow the presentation in these references using the

effective BdG Hamiltonian (3.12) discussed in the previous subsection. The respective

energy gaps M and ∆ on the two sides are rooted in the size quantization2 and the

superconducting pairing. A radius smoothly varying in the interface region leads to a

Figure 3.2: TI nanowire (gray) divided into two halves of different radius such that
only the thicker right half is in proximity to an s-wave SC (gray-green). An axially
aligned magnetic field B is adjusted in strength to generate a flux Φ = Φ0/2 in the
proximitized half (right). Consequently, the flux in the left half is Φ < Φ0/2, implying
the occurrence of a size quantization gap. This gap as well as the pairing gap may
be approximated by real, smooth functions M(ϕ(z)) and ∆(z) describing the effective
gaps of different origin in the effective BdG Hamiltonian given in Eq. (3.12). This leads
to a Jackiw-Rossi Majorana zero-mode (red) localized at the interface z = z0, where
the two kinds of gaps coincide, i.e. ∆(z0) = M(ϕ(z0)).

2As discussed in Subsection 3.1.2, we assume that modes with angular momentum j 6= −1/2 can
be neglected at low energies.
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smooth flux profile3 ϕ(z) and we assume ∆(z0) = M(ϕ(z0)) at the interface point

z = z0, which is the condition for a gapless branch in the dispersion relation of Eq.

(3.13). Furthermore, we assume the flux to vary only in the vicinity of the interface

z = z0 such that ϕ(z � z0) ' ϕ0 < 1/2 and ϕ(z � z0) ' 1/2. Moreover, the gap

function

M(ϕ(z)) =
~υ2

R
|ϕ(z)− 1/2| (3.16)

and the (assumed to be real) pairing gap ∆(z) vary only around z = z0 as well. On

the non-proximitized half we assume ∆(z � z0) ' 0 and M(ϕ(z � z0)) ' M0 > 0.

On the other hand, for the proximitized half it holds that ∆(z � z0) ' ∆0 > 0 and

M(ϕ(z � z0)) ' 0.

In accordance with general principles, under such conditions a localized Jackiw-Rossi

zero-mode comes into being in between the two domains. In the present case it corre-

sponds to a localized Majorana zero-mode and can be approximated as the zero energy

solution of the Hamiltonian (3.13) with the smooth, real gap functions discussed above.

In the language of second quantization this solution can be expressed as [13, 14]

Ψ̂0(z) =
1

2

ˆ
dz
(
f(z)− g(z) + f †(z)− g†(z)

)
u(z), (3.17)

which is localized at z = z0 with

u(z) = u0 exp

 zˆ

z0

dy

νF
[M(ϕ(y))−∆(y)]

 . (3.18)

Hence, 1/M0 and 1/∆0 define length scales of exponential decay of u(z) in the left and

right region respectively. The operators f and g correspond to the functions defined in

Eq. (3.10). Due to the reality property u(z) = u∗(z), the field operator is Hermitian

Ψ̂0 = Ψ̂†0. (3.19)

Thus, Ψ̂0 represents a Majorana zero-mode, because creation and annihilation are rep-

resented by the same operator. The topological nature of this Majorana zero-mode is

reflected in the fact that the precise form of M(ϕ(z))−∆(z) does not matter, as long

as the sign of this expression changes at z = z0. Since the total number of unpaired

MBSs in an electronic system must be even, there must exist another unpaired MBS in

3We neglect flux channelling effects due to the smallness of the magnetic susceptibility.
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a finite system. It can neither be on the non-proximitized half nor in the gapped bulk

of the proximitized half. Hence, it must exist on the other end independently of the

details of the boundary condition [14].

43



3.1. GATE TUNABLE COUPLING OF MAJORANA STATES

3.2 Gate tunable coupling of Majorana states

across a constriction

In this section, we quantitatively analyze the following idea: A weak link between two

proximitized TI nanoribbons is engineered by means of a narrower, non-proximitized

nanowire segment (see Fig. 3.3). For suitably adjusted flux, MBSs form at both sides

of this central constriction, which is characterized by a local gap due to the lowered

local flux. As will be quantitatively analyzed in detail below, this allows creation

and annihilation of MBSs localized across the constriction, because two TSCs can be

electrically disconnected by means of gating. In contrast to the discussion in Subsection

3.3.3, where the narrow wire segment was infinite, it now has finite length W .

Φ = Φ0 /2Φ < Φ0 /2
B

Gate

γ1 γ2 γ3 γ4

Figure 3.3: A narrow non-proximitized TI nanoribbon segment of length W is fabricated
in between two thicker outer sections of the TI nanoribbon. These outer sections are
proximitized by an s-wave SC (gray-green) and enclose a flux Φ = Φ0/2 due to a fine
tuned magnetic field B giving rise to four MBSs γα (red dots). The central constriction
results in a local gap opening in the one-dimensional surface mode due to the enclosed
magnetic flux ϕ < 1/2. As is quantitatively analyzed below, the top gate (center) allows
to manipulate the hybridization of the MBSs γ2 and γ3 localized across the constriction.
We assume the proximitized sections are long compared to the length scale ξ∆ = ~υ1/∆
such that the outer red dots are effective MZMs.

For convenience, we model the device depicted in Fig. 3.3 with system parameters that

exhibit a step-like dependence on the z coordinate along the wire. To derive the finite

wavefunction overlap of the inner MBSs γ2 and γ3 (see Fig. 3.3), we assume for the

moment the length L of the two outer TSCs to be infinite. Hence, we model the radius

of the cylindrical wire as a Heaviside step function,

R(z) = R0 + (R−R0)Θ(|z| −W/2) (3.20)
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with R the radius of the outer part and R0 < R the smaller radius of the inner part. It

assumes interfaces with extension over a few lattice sites which are of order of 3nm [17].

The axial magnetic field B is fine tuned such that the dimensionless flux ϕ(z) ≡ Φ(z)/Φ0

takes on the value 1/2 in the outer parts. Thus, as a function of the z parameter, we

model ϕ as

ϕ(z) = ϕ0 +

(
1

2
− ϕ0

)
Θ(|z| −W/2). (3.21)

The dimensionless flux through the constriction ϕ0 is calculated to be ϕ0 ≡ R2
0/(2R

2) <

1/2. The associated size quantization gap is denoted by

M0 ≡M(ϕ0) =
~υ2

R
|ϕ0 − 1/2| . (3.22)

The relation (3.21) neglects the effect of magnetic screening (flux channeling) in the con-

striction, which is justified because the magnetic susceptibility is small, especially since

the surface state spectrum is gapped. For the superconducting gap ∆(z) induced by the

proximitized s-wave SC in the outer regions of the device, we make the assumption that

its absolute value is the same on the left and right segments, i.e. |∆(|z| > W/2)| = ∆,

with ∆ ∈ R. We include a difference between the superconducting phases on both sides

denoted by φ, i.e.

∆(z) = ∆e−sgn(z)iφ/2Θ(|z| −W/2). (3.23)

This relation neglects the breaking of rotational symmetry due to the s-wave supercon-

ductors, which has been discussed in Ref. [77]. We mention that φ will be a dynamical

quantity in a Coulomb blockaded device. We also include an electrochemical potential

term µ in the constriction which is induced by means of the gate electrode on top of

the constriction (see Fig. 3.3)

µ(z) = µΘ(W/2− |z|). (3.24)

Despite this convenient choice, we note that finite µ in the outer region |z| > W/2 is

not predicted to result in qualitatively different physics.
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To construct the solution of the 1D BdG equation [5],

HBdGΨ = EΨ, (3.25)

we take note that the interface points, z = ±W/2, define three regions in which the

problem is effectively uniform. For large energies, the solution is obtained via a plane-

wave ansatz. But we are interested in the low-energy subgap regime |E| < min (∆,M0),

where angular momentum modes with j 6= 1/2 are negligible for moderate values of

the chemical potential µ < M0. Making an appropriate evanescent state ansatz in the

three regions, we can write the requirement of continuity of the spinor wave function

Ψ(z) in the form of a corresponding condition of a vanishing determinant

D(E) = 0. (3.26)

Further details on the derivation and the specific form of the determinant D(E) for

|E| < min (∆,M0) are provided in Appendix A. The relation (3.26) contains the infor-

mation about the low-energy spectrum, which for general parameter values is obtained

via numerical solution. We find the robust existence of subgap states at E = ±ε, which

can be confirmed to constitute the expected pair of MBSs. With the self-consistent

assumption |ε| < min (∆,M0), a formula for ε can be derived from Eq. (3.26) by

second-order expansion of D(E) in E. The Majorana hybridization energy associated

with the inner two MBSs γ2 and γ3 is then given by

ε(φ) = ε(0) cos

(
φ

2

)
, (3.27)

where the energy at vanishing phase difference, φ = 0, is given by

ε(0) =
2∆

M0

(~υ1/ξ)
2

∆ + ~υ1/ξ
e−W/ξ. (3.28)

Here, we have introduced the localization length scale

ξ (µ) =
~υ1√
M2

0 − µ2
(3.29)

of wave function decay into the non-proximitized part. The central constriction of width

W realizes an insulating tunneling barrier between two 1D TSCs with MBSs at their
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terminations. The dependence of the splitting ε(φ) of the ground state degeneracy on

the difference in the SC phases φ exhibits 4π-periodicity, according to Eq. (3.27). This

is a consequence of the fractional Josephson effect [4, 40] and, hence, in agreement

with the theoretical predictions for a Josephson junction with MBSs. The exactness

of the 4π-periodicity is an artifact of the fact that only the j = −1/2 mode has been

included in the derivation. The surface states with j 6= −1/2 cause small conventional

2π-periodic contributions.

The size of the hybridization ε is mainly determined by the length of the constriction W

in units of the length scale ξ (µ). In particular, the splitting is exponentially suppressed,

ε ∼ exp (−W/ξ), and thus negligible for sufficient spatial distance W � ξ between the

MBSs. In the limit W → ∞, a pair of exact Majorana zero modes is present and the

approximate ground state degeneracy becomes exact. The Bogoliubov-de Gennes solu-

tion (see Appendix A) Ψ(z) describing the Majorana states localized at the interfaces

decays exponentially into the outer segments |z| > W/2 on the length scale

ξ∆ =
~υ1

∆
. (3.30)

We now consider the example of a Bi2Se3 nanowire with radius R = 35nm in the outer

regions and an inner radius of R0 = R/2. The Fermi velocities of Bi2Se3 along the

ez direction is given by ~υ1 = 226meV × nm and along the azimuthal direction it is

υ2 = 1.47υ1 [68]. The size quantization gap M0 ' 7.14meV reigning in the constriction

is large compared to the proximity gap, which we assume to be ∆ = 0.18meV in

the outer regions. In Fig. 3.4, we plot the Majorana hybridization energy ε = ε(0)

depending on the constriction length W for different fixed values of the electrochemical

potential µ. This plot has been obtained by numerical solution of Eq. (3.26) and is in

agreement with the exponential suppression ε ∼ exp (−W/ξ) for W � ξ predicted in

formula Eq. (3.28). Moreover, the length scale ξ = ξ(µ) of decay in Fig. 3.4 is consistent

with Eq. (3.29). We infer from Fig. 3.4 that in the limit of a short constriction, W → 0,

we find ε → ∆. This behavior is expected since the MBSs increase their overlap and

eventually reach the quasiparticle continuum of the spectrum.
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Figure 3.4: Hybridization ε (in units of µm) of the two inner Majorana states γ2 and
γ3 for φ = 0 plotted (semi-logarithmically) as a function of the length W (in nm) of
the unproximitized central part for the device displayed in Fig. 3.3. The proximity gap
and the size quantization gap are assumed to be ∆ = 0.18meV and M0 ' 7.14meV
respectively. Furthermore, we consider the TI nanoribbon to be made of Bi2Se3. We
display the result for several values of the electrochemical potential µ in the central
region. The corresponding length scale ξ is shorter for smaller values of µ. In the case
that W � ξ, the plots are in agreement with the prediction ε ∼ e−W/ξ of Eq. (3.28).
On the other hand, for ε→ ∆ we obtain W → 0 as expected. The plot was taken from
our publication Ref. [64].

In practice, the constriction width W is constant, but the experimentalist can tune the

effective length scale ξ (µ) in Eq. (3.29) by changing the local chemical potential using

a local gate, see Fig. 3.3. Hence, the gating allows to manipulate the effective distance

between the two inner Majorana states. Increasing the electrochemical potential µ

makes the weak link more transparent and the coupling ε is enhanced. The coupling

is at its minimum for µ = 0. In Fig. 3.4, the hybridization ε is numerically plotted

as a function of µ. These numerical plots are consistent with the analytical formulas

stated in Eq. (3.28). Thus, the results displayed in Fig. 3.5 indicate that ε can be

conveniently controlled.

48



CHAPTER 3. MAJORANA QUBITS IN PROXIMITIZED TI NANORIBBONS

W=200nm

W=250nm

W=300nm

0 1 2 3 4 5 6 7
0

1

2

3

4

5

μ [meV]

ε
[μ
eV

]

Figure 3.5: Hybridization ε (in units of µm) between the inner Majorana states γ2

and γ3 for φ = 0 plotted as a function of the electrochemical potential µ (in units of
meV). The plots are displayed for the constriction widthsW = 200nm, W = 250nm and
W = 300nm. Like in Fig. 3.4, we consider Bi2Se3 and use the parameters ∆ = 0.18meV
and M0 ' 7.14meV. The hybridization ε is minimal for µ = 0 and remains close to this
value for µ� M0. However, at some point ε begins to grow at a bigger rate upon the
increase of µ. The plot shows that the coupling of the MBSs can be manipulated via
local gating in the constriction. The plot was taken from our publication Ref. [64].

49



3.3. MAJORANA BOX QUBITS FROM TI NANORIBBONS

3.3 Majorana box qubits from TI nanoribbons

The Subsection 3.3.1 is inspired by the Refs. [11, 12] and analyzes the Coulomb block-

aded version of the proposed device presented in the previous section to perform read-

out and initialization. In Subsection 3.3.2, we study the options to realize devices with

switchable grounding of the TI nanoribbon platform following Ref. [39]. Finally, in

Subsection 3.3.3, we compare the TI nanoribbon based approach to Majorana qubits

to the SM based approach.

3.3.1 Floating box qubit and elementary quantum operations

To encode topologically protected qubits, we consider the floating version of the TI

nanoribbon device, as shown in Fig. 3.6, with four MBSs on the box defining the

corresponding Hilbert space. We assume the outer MBSs γ1 and γ4 to be effective zero-

modes. This means that the length L of the proximitized segments is large compared to

ξ∆ = ~υ1/∆ such that the wave functions of the outer MBSs γ1 and γ4 have negligible

overlap with all other MBSs hosted by the floating island.

t0

σ1

γ1 γ4γ3γ2

Figure 3.6: Floating version of the quantum device shown in Fig. 3.3 with four localized
MBSs γα (red dots). The s-wave SCs (gray-green) coating the TI nanoribbon (gray)
on the outer regions have a SC bridge in between them so that the Majorana island
is characterized by a single charging energy EC . Normal leads (thick black lines) are
tunnel coupled to MBSs, and coupled amongst themselves by an interference link t0.
This is to make use of interferometric readout schemes [11, 12] of the nonlocal Pauli
operators, here σ1 = iγ1γ2.

Note that the two superconducting halves are connected by a superconducting bridge

(see Fig. 3.6) such that the box is characterized by a single charging energy EC . In
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this case, the effective Hamiltonian of the qubit device capturing the physics on energy

scales small in comparison to ∆ and EC is dominated by the hybridization energy ε

given in Eq. (3.27). It reads

Heff = ε(iγ2γ3) + EC

(
N̂ − ng

)2

, (3.31)

where a side-gate controls the charging term via the back gate parameter ng. The

operator N̂ = 2N̂s + n̂12 + n̂34 counts the number of electrons on the island, where

N̂s counts the island Cooper pairs, and n̂12 + n̂34 yields the number of fermions in

the Majorana domain. Here, n̂ij ≡ d†ijdij is the occupation of the nonlocal fermion

d†ij = γi − iγj. Physically, the low-energy Hamiltonian Heff neglects quasiparticles

above the topological gap ∆ as well as the high lying surface states with j 6= −1/2.

The degree to which the inner Majoranas at the two sides of the constriction hybridize

sets the qubit lifetime due to dephasing. On time scales below this dephasing time

and below the characteristic poisoning time, the state of the qubit is restricted to the

almost degenerate low-energy ground state manifold. For ng close to an integer value,

the charge quantization on the box implies that global fermion parity is fixed [25]. For

concreteness, we assume the parity to be odd, i.e.

P ≡ γ1γ2γ3γ4 = −1. (3.32)

Analogously to the box qubits based on SM nanowires discussed in Section 2.2, the box

degrees of freedom are given by the fractionalized Majorana bilinears [25]

σ1 = iγ1γ2, σ2 = iγ3γ2, σ3 = iγ3γ1. (3.33)

Since fermion parity is conserved, the identification of a bilinear, e.g. formed from the

pair γ2 and γ3, always automatically determines the bilinear formed from the remaining

two Majoranas, e.g. iγ1γ4 = −iγ2γ3. Labeling eigenstates based on the eigenvalues nij,

the nonlocal logical qubit state |ψ〉 can be encoded in the 2D Hilbert space spanned

by the states |↑〉 ≡ |012, 134〉 and |↓〉 ≡ |112, 034〉. Qubit states can now be defined

as |ψ〉 = α |↑〉 + β |↓〉 with α, β ∈ R. Hence, it holds e.g. that σ1 |↑〉 = |↑〉 and

σ1 |↓〉 = − |↓〉. To readout and initialize the qubit, the interferometric projective con-

ductance measurement scheme [11, 12] reviewed in Chapter 2 can be applied. In this

way, all bilinears in Eq. (3.33) can be addressed via electrodes tunnel-coupled to the
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corresponding pair of MBSs. We point out that the interference link required to read

out σ2 = iγ3γ2 does not have to be realized as an additional structure, because the

superconducting bridge (see Fig. 3.6) can be used for this purpose [12].

3.3.2 Devices with switchable grounding

We now discuss the option to switch the devices from the grounded to the non-grounded

regime and vice versa. This has been discussed to be useful for “parity-to-charge”

conversion protocols, as well as for fusion rule or braiding confirmation, by Aasen et

al. in Ref. [39]. The discussion in this reference is geared to the semiconductor based

platform but can be applied to the TI nanoribbon based platform as well.

The switchable grounding requires to connect the proximitized nanoribbon which hosts

MBSs, to a grounded superconducting bulk reservoir. To implement such a coupling,

we again employ a non-proximitized TI nanoribbon with a lesser cross section than the

proximitized nanoribbon, as shown in Fig. 3.7. The principle is the same as for the

weak link connecting the two poximitized TI nanowire segments discussed in Section

3.2: Due to geometric confinement, the connecting section is gapped and, therefore,

constitutes a tunnel junction.

Φ = Φ0 /2Φ < Φ0 /2

γ1 γ2Bulk SC

Figure 3.7: Switchable grounding [39] can be achieved by once again employing a non-
proximitized TI wire segment of smaller cross section. In the present case, this segment
is used to couple a proximitized TI nanoribbon realizing a TSC to a grounded bulk
superconducting reservoir. A local top gate is installed at the narrowed segment and
allows to control the Josephson coupling between the reservoir and the TSC. In this way,
the ratio of charging energy EC and Josephson energy EJ can be tuned. Switching from
the grounded regime (EJ � EC) to the floating regime (EC � EJ) makes it possible to
achieve “parity-to-charge conversion” and to read out the corresponding charge states
using a charge sensor [39].
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The Hamiltonian of the device shown in Fig. 3.7 contains not only the charging energy

EC , but also the Josephson energy EJ describing the coupling to the bulk supercon-

ductor due to Cooper pair tunneling [25, 28, 39],

Heff = ε(iγ2γ3) + EC

(
2N̂s + n̂12 + n̂34 − ng

)2

− EJ cos φ̂s. (3.34)

The hybridization energy ε of the inner MBSs γ2 and γ3 has already been stated in Eq.

(3.27). Furthermore, N̂s and n̂12+n̂34 are defined as in 3.3.1. Note that N̂s is canonically

conjugate to the phase difference φ̂s between the left and right superconductors. The

tunneling strength and, thus, the Josephson energy EJ can now be influenced by a

gate placed on top of the narrow TI wire segment. This makes it possible to tune

from the grounded regime (EJ � EC), where two SCs behave essentially like a single

SC, to the floating regime (EC � EJ) and vice versa. The tuning of the ratio EJ/EC

provides a way to read out iγ1γ2 by converting the corresponding parity eigenstates into

charge states [39]. The latter can be read out by a capacitively coupled single electron

transistor acting as a charge sensor. For nanowires of length of a few µm, a typical

charging energy is EC ' 0.1K. We then expect a tunable parameter range of order

0.1 . EJ/EC . 10 [64].

3.3.3 Majorana qubit comparison: TI nanoribbon vs SM plat-

form

In this section, we critically discuss and evaluate the proximitized TI nanoribbon plat-

form and compare it to other approaches to Majorana qubits. Moreover, we discuss po-

tential challenges of the devices e.g. due to harmful physical mechanisms. The MBSs in

the TI nanoribbon construction derive from the protected surface states of a topological

insulator. Those surface states are endowed with robust protection from pair-breaking

disorder as well as from elastic impurity scattering [75]. The device cleanliness of the

semiconducting nanowire platform is presently more pure [15, 64]. Thus, advances in

the experimental physics of TI nanoribbons are required for proof-of-principle demon-

stration of the platforms practicability, e.g. towards QIP applications.

An important property of the MBSs is their typical localization length scale. For the

TI nanoribbon platform the decay of the Majorana wavefunction into the proximitized

segment is characterized by the length scale ξ∆ = ~υ1/∆, which is vastly longer than
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that for the decay into the constriction. If we assume a Bi2Se3 nanowire and a proximity

gap ∆ = 0.18meV, we obtain ξ∆ = 1.25µm. This estimate reveals that the proximitized

TI nanowires have to be of substantial length & 5µm in order to have sufficiently small

overlap of γ1 and γ2 (γ3 and γ4). We note in this context that nanoribbons of such

length are already available [72, 73]. Nevertheless, the required wire length is a slight

disadvantage in comparison to the semiconductor nanowires, where a spin-orbit coupling

energy of order ~α ≈ 20eV × nm corresponds to a localization length of 125nm [81].

The MBS localization length scale reigning in the inner, non-proximitized segment is

given by ξ (µ) = ~υ1/
√
M2

0 − µ2 and is typically shorter than ξ∆ for realistic system

parameters, as discussed in Section 3.2.

Experimentally, it may be challenging to arrange the magnetic flux in such a way that

it realizes the desired value ϕ = 1/2 in the proximitized segments. Despite the fact that

magnetic fields can be fine tuned with great precision, a mismatch of the flux could be

caused for several reasons:

1. The area of cross section is not completely homogeneous. Such imperfections

imply that the flux will display small variations as a function of z.

2. The spatial orientation of the TI nanoribbon has to be completely parallel to the

applied magnetic field. This is another source of error which also causes slight

breaking of the rotational symmetry leading to admixtures of the higher-energy

states with j 6= −1/2.

3. The different segments of the device have to be aligned along a common axis,

which constitutes another source of error.

Despite these factors, we expect that the discrepancy in magnetic flux can be limited

to be a rather weak perturbation. A flux ϕ = 1
2

+ δϕ with small constant mismatch

δϕ� 1 results in a finite mass parameter M(ϕ) = ~υ2
R
|δϕ| in the proximitized regions.

We note that in this case a finite electrochemical potential µS = µ(|z| > W/2) in the

proximitized regions is required, i.e. Eq. (3.24) has to be modified. More precisely,

M(ϕ) < |µS| < ~υ2/R is necessary for well-defined 1D surface states for ∆ = 0, which is

the condition for MBSs at finite pairing. In summary, we anticipate that the inevitable

flux discrepancy is not detrimental to the robustness of the MBSs. The electrochemical

potential µS (focusing on the case ϕ = 1/2) does not change the qualitative results: the

quantity µS manifests itself mainly in the difference µ− µS which enters the formulas.
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This is expected since the dispersion of the j = −1/2 states is linear in the absence of

a proximitized superconductor.

In view of quantum hardware applications, the maximal time scale τ0 on which the

Majorana box quit is operational is an important characteristic property. As discussed

above, in our proposed platform the qubit splitting due to the wave function overlap of

the two inner MBSs eventually dephases the state of the qubit. Thus, the time scale is

given by

τ−1
0 = ε(0) (3.35)

with ε(0) as given in Eq. (3.28). For a given device this scale can be maximized

by designing the constriction section W as long as possible. For W = 300nm an

electrochemical potential within the window |µ| < 0.2meV keeps the hybridization

bounded as follows: ε(0) < 0.027µeV. This corresponds to coherence time scales longer

than τ0 > 2.4µs. Notably, the time scale for semiconductor nanowires is shorter [39],

i.e. this is a clear advantage of the proximitized nanoribbon architecture. While the

maximum of τ0 is achieved for µ = 0, there is reasonable range for the chemical potential

set by the parameter M0 in Eq. (3.22) in which the hybridization is not affected too

much. For the proximitized semiconducting nanowires on the other hand, the workable

interval is smaller. Indeed, the chemical potential needs to be tuned to the bottom of

the band. This makes the states more sensible to disorder.

Semiconducting nanowires currently represent the experimentally most advanced plat-

form toward MBS realization. In such devices the QP poisoning time has been studied

and was found to be & 1µs [31]. Similar investigations still have to be performed for the

proximitized TI devices. This is another important aspect in a comprehensive platform

comparison. Regarding the links that provide a way to interferometrically read out and

initialize the qubit, the TI nanoribbon platform offers the perspective to forge these

links from the TI itself (see Fig. 3.3). This may be another advantage compared to SM

devices, where the need for separate links has proven to be challenging [82].
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3.4 Conclusions and outlook

In this chapter, we have presented new design architectures for Majorana qubits that

are based on TI nanoribbons, e.g. made of Bi2Te3 or Bi2Se3. In proximity to an s-wave

SC and in the presence of a fine tuned axial magnetic field, TI nanoribbons realize a 1D

TSC. In the proposed layouts, shown e.g. in Fig. 3.3, two linearly aligned TSCs of this

kind are connected by a non-proximitized narrow TI constriction, effectively dividing

the TSC into two halves. Due to lowered magnetic flux in the TI element connecting

the two halves, a size quantization gap is opened locally. As discussed in Sections

3.1 and 3.2, MBSs are localized at the two domain walls that separate regions either

dominated by the pairing gap ∆ or by the size quantization gap M0. In Section 3.2, we

have calculated the coupling of the two MBSs (γ2 and γ3 in Fig. 3.3) localized across a

constriction of finite length W , with the result being stated in Eqs. (3.27) and (3.28).

Importantly, we identified the length scale ξ (µ) = ~υ1/
√
M2

0 − µ2, with υ1 being the

Fermi velocity in longitudinal direction. This length scale sets the effective distance

between the inner MBSs γ2 and γ3. Tuning of the local electrochemical potential µ

in the constriction therefore enables to control the hybridization of the pair of MBSs.

This tuning can be conveniently performed via gating and allows to switch from a

regime where the Majoranas are coupled, to a regime where the coupling is suppressed

and the quantum information is (better) protected from decoherence. Furthermore, the

derived result for the hybridization exhibits 4π-periodicity in the superconducting phase

difference φ, which is in agreement with the theoretical predictions for the fractional

Josephson effect [4, 40].

Throughout this analysis, several approximations have been made. First, the results

have been derived under the assumption that the two outer MBSs (γ1 and γ4 in Fig. 3.3)

are far enough away to have negligible wavefunction overlap. Moreover, we worked in

a low-energy approximation scheme throughout this chapter. Thus, we have neglected

modes with angular momentum j 6= −1/2 under the assumption that the energy scale ∼
~υ2/R is large. Perturbative inclusion of the bands with j 6= −1/2 leads to corrections,

e.g. 2π-periodic admixtures are expected in the result for the Majorana coupling stated

in Eq. (3.27). Moreover, we neglected any contributions from the bulk of the TI

nanoribbon. The effects of flux mismatch were discussed in Subsection 3.3.3. Despite

the simplifications, we are confident that the most essential low-energy features were

captured in the modeling.

We note that an alternative technique to describe the device consists in the use of
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k · p-theory. This approach is based on the low-energy bulk Hamiltonian and requires

imposition of Dirichlet boundary conditions on the nanoribbon surface (see e.g. Ref.

[68]). The problem posed in this way can be approached numerically. The general

expectation is that the essential theoretical results described above can be reproduced

with this method.

As long as functional Majorana qubits are not at our disposal, it is important that

different promising proposals are being actively pursued, because it is difficult to predict

a priori which approach will work best. The comparison to the semiconducting quantum

wire platform, performed in Subsection 3.3.3, has shown that, in fact, TI nanoribbon

Majorana qubits represent a promising and viable alternative. The reasons for this

include but are not limited to the fact that the TI nanoribbon surface states can be

anticipated to yield MBSs of reasonably high robustness, possibly more so than for

SM wire platforms, because of the linear spectrum of the 1D modes. Moreover, the

only requirement for the chemical potential is that it lies within the bulk band gap.

In contrast to other TI based proposals, a ferromagnetic insulator is not necessary to

realize an edge localizing Majorana states.

Overall, we believe the platform could prove to be versatile and accommodating for

the purpose of demonstrating and ultimately using Majorana qubits. However, further

experimental progress has to be made regarding the material platform. TI nanoribbons

of sufficient length are already available [72, 73]. And moreover, experiments have

reported Andreev reflection from the surface states in a TI nanowire Josephson junction

based on the TI material BiSbSeTe2 [83, 84]. This gives further credence to the prospect

that the achievement of topological superconductivity in these platforms is realistic (as

was also pointed out in Ref. [76]). A proximitized nanowire could initially be checked

by making point contacts at the ends so that the ZBCPs and their dependence on the

flux can be measured. In the next subsection, we discuss applications of the device

platforms that can be envisioned once they are under experimental control.

3.4.1 Outlook: Majorana surface code and beyond

We now turn to more ambitious long-term applications of the TI nanoribbon qubit

devices. We start by a discussion of a particularly attractive application, namely, the

Majorana surface code. This code holds promise for efficient quantum information pro-

cessing and its theory has been developed in the Refs. [85, 86, 87, 88]. Majorana surface
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code implementations require to manufacture extended 2D network structures compris-

ing many tunnel coupled Majorana box qubits, see Fig. 3.8. Hence, a precondition for

the Majorana surface code is that the qubits are established and under experimental

control.

A

B

Figure 3.8: Majorana surface code (see Refs. [86, 87, 88]) relying on Majorana box
qubits made of two parallel proximitized TI nanoribbons connected by a SC bridge.
Each of the boxes is therefore described in terms of its own charging energy, and hosts
four MBSs (red dots). Neighboring qubits are tunnel coupled, where the tunneling can
be formed by using the TI material itself. In the two-dimensional network structure,
stabilizer operators of two types, denoted A and B, are defined as products of eight
Majorana operators belonging to MBSs (red dots) going around minimal plaquettes of
type A or B as indicated. The figure was taken from our publication Ref. [64].

For the purpose of serving as the building block in a Majorana surface code, we expect

that it is convenient to realize the TI based Majorana qubit in a “H”-shaped geometry,

see Fig. 3.8. This is achieved by having two parallel, proximitized TI nanoribbons

connected by a superconducting bridge. In contrast, in the Sections 3.2 and 3.3, we

considered two 1D TSCs aligned on the same axis (see Figs. 3.3 and 3.6). Moreover, the

necessary tunneling links to connect MBSs on neighboring boxes (as well as interference

links for the interferometric readout) could be realized from the TI material itself.

The network fabrication itself is a challenging task that may be achieved using refined
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lithographic and wet etching techniques.

The operational principle of the Majorana surface code is founded on the so-called

stabilizer operators of which there are two types denoted A and B. These operators are

defined as the products of the eight Majorana operators corresponding to the minimal

loops of type A and B displayed in Fig. 3.8. The mutually commuting stabilizer

operators have eigenvalues ±1, defining the so called physical qubits of the system. All

stabilizer operators are now repeatedly measured, hence, projecting the code onto a

well-defined highly entangled simultaneous eigenstate of the system. The logical qubits

are formed by a few qubits that are not being measured. The access elements for

initialization, readout and manipulation can be realized by tunnel conductance probes

and charge pumping by means of single-electron transistors [87].

Another perspective for the TI nanoribbon platform is the confirmation of Majorana

fusion rules using the protocol of Aasen et al. [39]. It may be possible to apply this

protocol to a proximitized TI nanoribbon device as shown in Fig. 3.9. This qubit

device is connected on both ends with a bulk superconducting reservoir as described

in Subsection 3.3.2. Additionally to the two non-proximitzed constrictions serving for

this purpose, the device contains a third narrow TI constriction connecting the two

proximitized halves of the nanoribbon as discussed in Section 3.2. As outlined before,

the manipulation of the three junctions can be achieved via gates placed at the three

constrictions.

γ1 γ2 γ3 γ4Bulk
SC

Figure 3.9: The TI nanoribbon qubit device (see Fig. 3.3) is connected with bulk
superconducting reservoirs at both ends, as described in Subsection 3.3.2. The three
non-proximitized constrictions constitute barriers that can be regulated via gates. Fol-
lowing the protocol of Aasen et. al may make it possible to confirm Majorana fusion
rules [39] by reading out the charge on the two floated halves after the necessary steps
of the protocol are performed. The time-dependent steps of the protocol involve the
lowering and raising of the three barriers in a certain order.

Following the steps of the aforementioned protocol, could make it possible to confirm

Majorana fusion rules. At the end of this protocol, the two fusion channels of the Ising
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anyons manifest themselves in a probabilistic readout of the charge in the two floated

halves of the device [39].

Another perspective is that as soon as lithographically defined TI nanoribbons are

demonstrated, fabrication efforts could concentrate on T-junction geometries [37] to

carry out braiding experiments [39]. In summary, there are multiple exciting directions

to pursue once the platform is under experimental control.
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Chapter 4

Majorana qubit detection via

simultaneous weak measurement of

its nonlocal Pauli operators

In this chapter, we introduce a novel weak measurement approach to Majorana qubit

detection based on the shot noise of tunneling current probes. We formulate protocols

that lie within the scope of present day experimental physics and provide experimen-

tally verifiable, quantitative predictions that allow to test the genuineness of MBSs.

The protocols aim at a core property of the Majorana qubit, its nonlocal Pauli algebra,

which is closely related to the non-Abelian braiding.

The remainder of this chapter is structured as follows: In Section 4.1, we give an expla-

nation and qualitative discussion of the envisioned experiments. The Sections 4.2 and

4.3 describe the theoretical modeling of the corresponding devices. The phenomenology

of the Majorana box qubit is presented in detail in Section 4.4, and to draw a contrast

the corresponding signatures for Andreev bound states (ABSs) are discussed in Section

4.5. These results are condensed into experimental protocols that allow for the clear

identification of MBSs and Majorana qubits in Section 4.6. Throughout this chapter,

we work in units of

~ = e = kB = 1. (4.1)

Most results presented in this chapter are published in Ref. [89]. The present chapter

also contains additional details and results in comparison to the published material,

e.g. in Subsections 4.4.2, 4.4.3, 4.4.4 and 4.4.5.
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4.1 Experimental setting and qualitative discussion

According to fundamental quantum physics, it is impossible as a matter of princi-

ple to simultaneously perform projective measurements of noncommuting observables.

Nevertheless, simultaneous measurements are, in fact, possible using weak continuous

quantum measurements [90]. It is at the heart of our proposal to study the Majorana

box qubit to simultaneously realize continuous weak measurement of its two nonlocal

Pauli components σ1 and σ2. This approach is illustrated in the schematic of Fig. 4.1

where two tunneling currents I1 and I2 are sensitive to σ1 and σ2, respectively. For

an introduction to weak continuous measurement we refer to Refs. [91, 92, 93]. The

simultaneous weak measurement of orthogonal qubit components was previously con-

sidered in Refs. [90, 94, 95]. The observables σ1 and σ2 cannot be known sharply at

Figure 4.1: Bloch sphere for a qubit described by the density matrix ρ. The variables
Iα(t) with α = 1, 2 are the outputs of detectors weakly continuously measuring the
qubit component σα yielding a time continuous noisy signal (e.g. voltage but in the
realizations discussed below it is current). The interaction between the qubit and the
detectors is assumed to be sufficiently weak so that it takes time to accumulate infor-
mation and distort the qubit. For the simultaneous monitoring of the noncommuting
pseudospin components the different imprecise (weak) readouts are incompatible. This
figure was inspired by Ref. [95].

the same time. Instead, there is a competing tendency to partially collapse the system

state over time. This implies a random diffusion of the density matrix in the Bloch

sphere [95]. Furthermore, the information about the initial state of the qubit is lost

62



CHAPTER 4. MAJORANA QUBIT DETECTION

on the timescale of the dephasing rate [94]. However, as we will see the statistics of

the detector outcomes encode valuable information about the underlying Pauli algebra.

The latter is a unique property of the Majorana qubit, which is alternatively verified

by means of a more elaborate braiding protocol.

How can the situation abstractly illustrated in Fig. 4.1 be realized in terms of concrete

devices? The experimental setup we propose contains a Coulomb blockaded topolog-

ical superconductor island with three normal-conducting leads weakly coupled with

amplitudes λα to different Majorana states, see Fig. 4.2. If the neighboring leads

are coupled amongst themselves with weak tunnel links t0, a two-sided interferomet-

ric setting is realized. As discussed in Section 2.2, the effective low-energy tunnel-

t0

λ2

λ1

V

I1

I2

t0

gate
λ0γ0

γ1

γ2

Figure 4.2: Floating Majorana island realized from three parallel Majorana quantum
wires (gray-green) connected by a topologically trivial SC backbone (gray). The three
Majorana states γα localized at the right ends of the wires (red dots) are tunnel coupled
to normal-conducting electrodes (thick black lines) with amplitudes λα. To realize a
two-sided interferometer, direct tunneling links t0 are installed in between neighboring
leads. The central lead (α = 0) is operated as a source of electrons by means of
an applied bias voltage V driving the currents I1 and I2 to ground, which couple to
σ1 = iγ1γ0 and σ2 = iγ2γ0 respectively. The MBSs localized at the left wire ends
may or may not be fused into a single Majorana, and are not displayed since they are
uncoupled and do not influence the transport.

ing between the leads 0 and 1 is known to be described by the effective Hamiltonian

H̃T = (t0 + t1(iγ1γ0)) c†1c0+H.c. with cα =
∑

k cα,k the lead fermions [11]. For decoupled

lead 2 and applied bias V , the measurement of the tunneling current I1(t) effectively

constitutes a continuous weak measurement of iγ1γ0. The latter becomes projective

after a time of order ∼ 1/V . Depending on the eigenstate of iγ1γ0 that the system gets
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projected to, one finds two outcomes (in units of e2/~) [11]

〈I1〉 = 2πν2V
(
|t0|2 + |t1|2 + 2Re(t∗0t1)(iγ1γ0)

)
. (4.2)

Because of the symmetry of the setting, the same thing can be said about the average

current 〈I2〉 if lead 1 is decoupled instead of lead 2. When all three leads are coupled

and the bias is applied, the two readouts of the tunneling current Iα=1,2(t) are therefore

incompatible. No simultaneous eigenstate of σ1 = iγ1γ0 and σ2 = iγ2γ0 exists and the

qubit is conflicted and cannot approach a pure state. Strong Coulomb blockade is a

crucial ingredient for this physics, because in a grounded device an electron tunneling

into γ0 would be approximately uncorrelated with an electron tunneling out of the

island via γ1 or γ2. Our strategy is to look for signatures in the shot noise of the two

currents that reflect the continuous monitoring of the nonlocal Pauli operators [25],

σ1 = iγ1γ0, σ2 = iγ2γ0, σ3 = iγ2γ1. (4.3)

Note that the algebra is not of the Pauli type anymore in the competing case of ABSs,

which, as we will show, has profound consequences that allow to distinguish such bound

states. The prime observable of interest is the current cross-correlation amplitude,

S12 =

tˆ

0

dt 〈〈I1(t)I2(0)〉〉 , (4.4)

where we define the second cumulant in the standard way as 〈〈AB〉〉 = 〈AB〉−〈A〉 〈B〉.
In this chapter, we study the observable S12 in the long time limit, both in the presence

and absence of interference links (see the vertical dashed lines in Fig. 4.2) connecting

the electrodes coupled to the island amongst themselves. The structure defined by these

links can be controlled via gate electrodes during an experiment and makes a detailed

noise profile of MBSs clearly accessible as we will see. The signatures are qualitatively

unique to the fluctuating current for a device with either MBSs or Andreev bound

states.
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4.1.1 Device geometries

γ0γ4
γ5 γ1

γ3 γ2

SC

I1

I2

V

Figure 4.3: The envisioned experiment can be carried out on a wide range of possible
device layouts with the hexon geometry [12] being a viable and advantageous option.
This system consists of three parallel Majorana wires (gray-green) joined by a trivial
SC (gray) to form a single island. Of the six MBSs present in the system, only those
localized on the right ends are being addressed by coupled leads (here: γ0, γ1 and γ2).
The three MBSs on the other side (here: γ3, γ4 and γ5) are far enough away to be
decoupled and irrelevant for the transport. In this geometry as well as in the geometry
displayed in Fig. 4.2, it is possible to have sufficiently short interference paths (vertical
dashed lines) to maintain phase coherence.

The envisioned effects and experiments can be carried out on a wide range of de-

vice geometries as well as different condensed matter platforms that give rise to zero-

dimensional MBSs. For concreteness in this chapter, we have the semiconducting wire

platform in mind. The geometry displayed in Fig. 4.2 represents a one-sided hexon.

The topologically trivial SC backbone connects three parallel SM wires that are driven

into the topological phase. The MBSs to the left are either fused into a single un-

coupled Majorana or not, but are in any case uncoupled and inconsequential for the

physics of interest. Instead, one can also use the hexon geometry, see Fig. 4.3. Of

the six Majoranas present in this system, we are only addressing three of them that

are localized on one side. Another possible option is to use geometries where only two

topological superconducting wires are connected by a trivial superconductor to form a

single island. For a genuine Majorana qubit, the charge quantization on such islands

implies the parity constraint γ0γ1γ2γ3 = ±1 [25]. The first example of such a device

is shown in Fig. 4.4 where one uses the “tetron” or “Majorana box qubit” geometry

[11, 12] discussed in 2.2. The second option displayed in Fig. 4.4 arranges the two SM

wires on the same axis connected by a U-shaped s-wave superconducting bridge. This

can also be seen as a close relative of the device discussed in Chapter 3. The drawback
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γ0γ2
γ3 γ1

SC

I2

I1

V

Figure 4.4: The schematic gives another example for a realistic geometry where only
two topological superconducting wires (gray-green) are connected by a trivial super-
conductor (gray) to form a single island, in this case a “tetron” or “Majorana box
qubit” [11, 12]. Compared to the geometries based on three parallel Majorana wires
forming a single island the displayed geometry has an important drawback: one of the
interference links has to transport electrons phase coherently along the entire length of
the Majorana wire. It has been proposed to use another Coulomb blockaded Majorana
wire to realize a long phase coherent interference link [11].

of the geometries shown in Fig. 4.4 and 4.5 is the fact that one of the interference links

has to transport electrons along the entire length of the Majorana wire. The latter have

to be of the order of one micrometer for the MBSs to have sufficiently small overlap,

which clearly exceeds typical phase coherence lengths of e.g. a semiconductor. It has

therefore been proposed, e.g. in Ref. [11], to use another Coulomb blockaded SM wire

in the topological phase to realize a sufficiently long phase coherent interference path.

γ1 γ0 γ2 γ3

I2I1 V

Figure 4.5: The schematic gives a second example for a realistic geometry where only
two topological superconducting wires (gray-green) are connected by a trivial super-
conductor (gray) to form a single island and are positioned on the same axis. One can
also think of the qubit geometry based on proximitized TI nanoribbons proposed in
Chapter 3. Once again, this geometry makes it necessary to have a reference arm of
length of the 1D TSC itself.
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4.2 Effective Hamiltonian for the weak measure-

ment settings

In this section we discuss the low-energy effective Hamiltonian description of the three-

terminal Majorana devices (see Figs. 4.2, 4.3, 4.4 and 4.5). Assuming the parallel

proximitized nanowires are driven into the topological regime by a sufficiently strong

magnetic field (Γ > Γc), MBSs emerge at the wire terminations. The topological gap

∆ separating the corresponding (almost) zero energy states and the quasicontinuum of

extended states as well as the charging energy EC shall define much larger energy scales

than temperature and the applied bias, i.e.

V, T � ∆, EC . (4.5)

The charge conservation on the mesoscopic island implies that the conjugate variables

of island electron number N and superconducting phase φ are described by operators

with commutation relation [φ,N ] = 2i. Exponentiation of the phase operator e±iφ/2

yields an operator which adds (removes) an electron charge [29]

e±iφ/2 |N〉 = |N ± 1〉 , (4.6)

where |N〉 is the charge state of the island. Now, consider the field operator Ψα which

annihilates an electron on the SC close to the nearby lead α. In general, Ψα is ex-

panded in terms of all MBSs on the island as well as the Bogoliubov quasiparticles of

the SC. However, we are now interested in the low-energy physics where the quasipar-

ticles above the gap are not important. Furthermore, in the considered geometries the

MBSs localized near leads α′ 6= α have exponentially suppressed amplitudes and do not

contribute. Thus, the field operator Ψα affords the low-energy representation solely in

terms of the Nα MBSs localized close to lead α [29, 30]

Ψα =
Nα∑
j=1

ξ∗α,je
−iφ/2γjα + . . . , (4.7)

where ξ∗α,j is related to the wavefunction belonging to γiα. This relation encapsulates the

break-up of the electron statistics and its charge degree of freedom after it has tunneled

into the superconductor. Its fermionic anticommutation relations are maintained within
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the neutrally charged localized MBSs while its charge is spread over the whole SC island.

By inserting the low-energy approximation (4.7) of the electron field operators into the

tunneling Hamiltonian HT =
∑

k

∑2
α=0 λ̃αc

†
α,kΨα+H.c. between the leads and Majorana

island [30], we obtain the low-energy tunnel Hamiltonian

HT '
Nα∑
j=1

∑
k

2∑
α=0

λjαc
†
α,kγ

j
αe
−iφ/2 + H.c. (4.8)

with λiα ≡ λ̃αξ
∗
α,i and cα,k the respective lead fermions. According to (4.8), the zero mode

operators γiα are tunnel coupled with amplitude λiα to the respective lead fermions cα,k.

Such a Hamiltonian is by now standard and has been considered e.g. in the following

Refs. [25, 26, 29, 28].

Hence, we model the three-terminal Majorana devices (see Figs. 4.2, 4.3, 4.4 and 4.5)

using the Hamiltonian

H = HLeads +HT +HC , (4.9)

with the charging term

HC = Ec

(
N̂ − ng

)2

, (4.10)

and the backgate parameter ng. The metallic leads are described by the Hamiltonian

HLeads to be specified later. We assume that we are far away from the charge degeneracy

point. Throughout this chapter, the charging energy is assumed to be a large energy

scale. The significant size of the charging energy scale means that a low-energy electron

will be merely virtually present in the island and has to tunnel out again immediately.

As discussed in Chapter 2, the MBSs enable a highly nonlocal electron transfer pro-

cess where an electron tunneling into γiα tunnels out from γjα′ while sustaining phase

coherence even when the pair of MBSs is separated by a sizable distance [29]. We

expand around the unique charge ground state |N0〉 taking into account fluctuations to

the next higher charge states |Q0 ± 1〉 with energy of order of the charging energy EC .

Neglecting the frequency dependence of the self-energy, we can write a series expansion

of the effective Hamiltonian [96]

Heff =
∞∑
n=1

H
(n)
eff , (4.11)
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with the n-th order term

H
(n)
eff = P0HT

(
1

−HC

HT

)n−1

P0. (4.12)

Here P0 is the projection operator onto the charge ground state |N0〉. This proce-

dure yields the effective low-energy Hamiltonian (see e.g. Refs. [87, 88] for similar

derivations)

HC +HT → H̃T ≡ Heff . (4.13)

As shown in Appendix B, the leading order contribution to the effective tunneling in

our case is given by

H̃T =
1

2

∑
α 6=α′
Oαα′

∑
k,k′

c†α,kcα′,k′ + H.c., (4.14)

where the operator Oαα′ is a linear combination of Majorana bilinears

Oαα′ =
Nα∑
j=1

Nα′∑
j′=1

tjj
′

1,αα′(iγ
j
αγ

j′

α′). (4.15)

Here we have introduced the cotunneling amplitudes

tjj
′

1,αα′ '
2iλjα(λj

′

α′)
∗

EC
. (4.16)

The next higher terms contributing to the Hamiltonian in the expansion (4.11) are of

order O
(
E−2
C |λjα|

3
)

and thus strongly suppressed in the relevant limit of weak tunnel-

ings and large charging energy. We further note that from the definition (4.15) we read

off that tjj
′

1,αα′ = −(tjj
′

1,α′α)∗ and therefore

Oαα′ = O†α′α. (4.17)

This operator will play the role of a jump operator in a quantum master equation later

in this chapter.
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4.3 Formalism for weak measurement protocols ap-

plied to Majorana devices

In this subsection, we describe an efficient formalism to access the signatures of electron

transport in the three-terminal Majorana devices introduced in subsection 4.1, see Figs.

4.2, 4.3 and 4.4. To this end we start by introducing some necessary background on the

methodology of full counting statistics (FCS). In particular, we derive a variant of the

Liouville-von Neumann equation, which is modified by counting fields [27]. Based on

this equation as well as on the effective Hamiltonian derived in Subsection 4.2, we go

on to derive quantum master equations augmented with counting parameters. Finally,

we take a Markovian limit and explicitly state the resulting equation for the conditions

of practical importance for us, namely the limit in which temperature is low compared

to the applied bias voltage V .

4.3.1 Method of full counting statistics

The experimental scenario introduced in section 4.1 realizes a three-terminal structure.

We argued that the crucial information regarding MBS detection is contained in the

noise, or more generally the statistics of electron transport. To prepare for the de-

tailed analysis of this statistics, we introduce the necessary elements of the theory of

full counting statistics (FCS). For a general M -terminal structure we introduce the

probability [97]

Pτ (Q) ≡ Pτ (Q1, . . . , QM) (4.18)

that Qα electrons transfer to terminal α ∈ {1, . . . ,M} during the time interval [0, τ ].

Hence, a negative value of Qα implies that charges have left the terminal α during this

time interval. The probability distribution can be written as the Fourier transformation

Pτ (Q) =

ˆ π

−π

dχ1

2π
. . .

ˆ π

−π

dχM
2π
Z(χ, τ)e−iχQ (4.19)

of the characteristic function Z(χ, τ) [27, 98], also called moment generating function,

which is the central quantity of interest to us. For the Fourier variables we introduced

the shorthand notation χ ≡ (χ1, . . . , χM)T with the parameter χα counting electrons

in lead α. Moreover, we have defined Q ≡ (Q1, . . . , QM)T . Now let ρ(t) be the density
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operator of the system which is governed by the Liouville-von Neumann equation [24]

∂

∂t
ρ(t) = −i [H, ρ(t)] , (4.20)

where H is the Hamiltonian. Quantum mechanically, the probability Pτ (Q) can be

expressed using the projection postulate which states that Pτ (Q) = Tr
(
ρ(t)P̂ (Q)

)
,

where P̂τ (Q) is the projection operator onto the subspace with eigenvalues {Q1, Q2, . . .}.
This can be rewritten in the following way [98]

Pτ (Q) = Tr

(
ρ(t)

∞∑
n1=0

. . .
∞∑

nM=0

δn1Q1 . . . δnMQM P̂ (n)

)

=

ˆ π

−π

dχ1

2π
. . .

ˆ π

−π

dχM
2π

e−iχQTr

(
ρ(t)

∞∑
n1=0

. . .
∞∑

nM=0

eiχnP̂ (n)

)

=

ˆ π

−π

dχ1

2π
. . .

ˆ π

−π

dχM
2π

e−iχQTr
(
ρ(t)eiχQ̂

)
, (4.21)

with n ≡ (n1, . . . , nM)T . In the third equality we have used the spectral represen-

tation eiχQ̂ =
∑∞

n1=0 . . .
∑∞

nM=0 e
iχnP̂ (n). We assume ρ(t = 0) ≡ ρ0 to be the ini-

tial time density operator describing a state where each terminal α is in a definite

charge state Qα,0. The operators Q̂α count the net difference of electrons added and

hence satisfy Q̂αρ(0) = 0. The moment generating function, which is inferred to be

Z(χ, t) = Tr(ρ(t)eiχQ̂) by comparing (4.21) and (4.19), in this case yields the statistics

of transported electrons during the time interval [0, τ ] [99]. We now use the cyclic in-

variance of the trace, the fact that ρ(0) = e−iχQ̂ρ(0) and [Q̂α, ρ(0)] = 0, to rewrite the

moment generating function in a more symmetric form [98]:

Z(χ, t) = Tr
(
U(t)ρ(0)U †(t)eiχQ̂

)
= Tr

(
e
i
2
χQ̂U(t)e−

i
2
χQ̂ρ(0)e−

i
2
χQ̂U †(t)e

i
2
χQ̂
)

≡ Tr
(
Uχ(t)ρ(0)U †−χ(t)

)
. (4.22)

Here we defined the time evolution operator [27, 98]

Uχ(t) ≡ e
i
2
χQ̂U(t)e−

i
2
χQ̂ = exp

− i
~

tˆ

0

dsHχ(s)

 (4.23)
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with the Hamiltonian

Hχ ≡ e
i
2
χQ̂He−

i
2
χQ̂ (4.24)

modified by the counting parameters. Note that Eq. (4.22) implies that the forward and

backward time evolution is generated by a different Hamiltonian. We also mention in

passing that Hχ is Hermitian. We now define a generalized density operator according

to

ρ(χ, t) = Uχ(t)ρ(0)U †−χ(t). (4.25)

Unlike for a real density operator its trace is not unity, but in fact yields the moment

generating function, i.e. Z(χ, τ) = Tr (ρ(χ, τ)). Moreover, its time evolution obeys the

following modified Liouville-von Neumann equation [27, 98],

∂

∂t
ρ(χ, t) = −iHχρ(χ, t) + iρ(χ, t)H−χ. (4.26)

The equation is solved with the initial condition ρ(χ, 0) = ρ(0). The generating function

of irreducible moments is given by the logarithm of the moment generating function

evaluated at the final time τ after the measurement, F(χ, τ) = ln Tr (ρ(χ, τ)). By

differentiation with respect to the counting fields all cumulants (irreducible moments)

of the charge Qα in lead α = 1, 2 can be obtained via

〈〈(Qα)n (Qα′)
m . . .〉〉 =

(
−i ∂

∂χα

)n(
−i ∂

∂χα′

)m
. . . ln Tr (ρ(χ, τ))

∣∣∣∣
χ=(0,0,...)

. (4.27)

The fact that the probability adds to unity
∑
{Qα} Pτ (Q) = 1 implies that F(χ =

0, τ) = 0. Moreover, the cumulant generating function generally is 2π periodic in each

χα [97],

F(. . . , χα + 2π, . . . , τ) = F(. . . , χα, . . . , τ). (4.28)

This is related to the fact that the transferred charge physically is an integer multiple of

the charge of the electron. The conservation of charge now implies that the moment and

the cumulant generating function only depend on counting field differences [97]. More

concretely, the difference χα − χα′ is associated with the charge transfer between the

terminals α and α′. Therefore, there is a redundancy in the counting fields χ1, . . . , χM

and we may choose a gauge with χM ≡ 0 and keep M − 1 independent counting fields

which we denote by χ ≡ (χ1, . . . , χM−1) [97].
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4.3.2 Modified Liouville-von Neumann equation

As argued in section 4.1 the correlations of the currents coupled to the Majorana Pauli

algebra contain considerably more information than is contained in simple current aver-

ages. To formalize this we now draw on our discussion of full counting statistics in the

previous subsection 4.3.1 and apply it to our present problem. The setup introduced in

subsection 4.1 is a three-terminal structure that can be described using two counting

fields χ ≡ (χ1, χ2) by setting χ0 ≡ 0. We want to work with the generalized density

matrix governed by the modified Liouville-von Neumann equation in the interaction

picture. To this end we split the effective Hamiltonian of the full system including the

interference links into two contributions

H = H0 +HI . (4.29)

The unperturbed part is the Hamiltonian,

H0 =
2∑

α=0

∑
k

(ξk − V δα0)c†α,kcα,k (4.30)

describing metallic leads and has a continuum of states with dispersion ξk = k2

2m
. Here

m is an effective mass and k the momentum quantum number. The voltage bias V in

the central lead α = 0 is applied such that it acts as the source of electrons that are

transmitted either to the leads α = 1 or α = 2. The interaction part of the Hamiltonian

is given by

HI = Href + H̃T , (4.31)

with H̃T as defined in Eq. (4.14) and Href the interference link Hamiltonian defined as

Href =
2∑

α=1

∑
k,k′

(t0,αc
†
α,kc0,k′ + H.c.). (4.32)

Thus, the gate tunable tunnel couplings t0 introduce a direct link between the source

and drain leads. The modified Liouville-von Neumann equation [27] discussed in the

previous subsection 4.3.1 now stated for the interaction picture density matrix ρI(χ, t)

takes on the form

73



4.3. FORMALISM FOR WEAK MEASUREMENT PROTOCOLS

∂

∂t
ρI(χ, t) = −iHI,χ(t)ρI(χ, t) + iρI(χ, t)HI,−χ(t) (4.33)

and is solved with the initial condition ρ(χ, 0) = ρ(0). With the time evolution operator

U0(t) = e−itH0 generated by the lead Hamiltonian Eq. (4.30) we define the interaction

picture operators

HI,χ(t) = U †0(t)HI,χU0(t). (4.34)

The Hamiltonian modified with the counting fields (4.24) is given by

HI,χ =
1

2

∑
α 6=α′

e
i
2

(χα−χα′ )(t0,αδ0α′ +Oαα′)
∑
k,k′

c†α,kcα′,k′ + H.c. (4.35)

where the operators Oαα′ were defined in Eq. (4.15).

4.3.3 Derivation of the quantum master equation

We use the quantum master equation to study the electronic transport through the

weakly coupled mesoscopic Majorana island with Coulomb blockade. In this section,

we will provide a detailed weak coupling limit derivation of the Bloch Redfield equation,

which we use to model the Majorana devices and from which we obtain the full counting

statistics (FCS). The microscopic derivation of quantum master equations in the weak

coupling limit is a well established method in the theory of open quantum systems

[24, 100]. In this subsection, we will apply this method. In our context, the role of

the environment, which will be traced out, is played by the weakly coupled fermionic

reservoirs. The starting point is the modified Liouville-von Neumann equation (4.33)

from the previous section. We continue to work in the interaction picture and reiterate

the equation in its integrated form

ρ̃total(χ, t) = ρ̃total(0) +

tˆ

0

dsLs[ρ̃total(χ, s)], (4.36)

where ρ̃total is the interaction picture density matrix (we omit the index I) of the

total system. The total system consists of the Majorana island, the metallic leads

and the tunnel couplings between the two. In Eq. (4.36) we have defined a Liouville-

74



CHAPTER 4. MAJORANA QUBIT DETECTION

superoperator by its action on an arbitrary density operator ρ according to

Lt[ρ] := −iHI,χ(t)ρ+ iρHI,−χ(t). (4.37)

By plugging this relation into Eq. (4.33) we obtain

∂

∂t
ρ̃total(χ, t) = Lt[ρ̃total(0)] +

tˆ

0

dsLt [Ls[ρ̃total(χ, s)]] , (4.38)

which governs the time evolution of the density operator of the full system ρ̃total(χ, t).

We define the generalized reduced density matrix in the low-energy subspace defined

by the Majorana operators γiα via the partial trace TrL over the fermionic reservoirs

ρ(χ, t) := TrL (ρ̃total(χ, t)) . (4.39)

The integro-differential evolution equation obeyed by the reduced density operator reads

∂

∂t
ρ(χ, t) = TrL (Lt[ρ̃total(0)]) +

tˆ

0

dsTrL (Lt [Ls[ρ̃total(χ, s)]]) . (4.40)

This exact equation can be treated within the framework of perturbation theory. In

the case of weak coupling between the quantum system and the fermionic reservoirs,

the Born approximation of a factorized total density matrix

ρ̃total(χ, s) = ρ(χ, s)⊗ ρL (4.41)

(for s > 0) is permissible. This applies to our setting since we envision the reservoirs

to be weakly coupled to the mesoscopic superconducting island. The master equation

in Born approximation is then given by

∂

∂t
ρ(χ, t) = TrL (Lt[ρ(0)⊗ ρL]) +

tˆ

0

dsTrL (Lt [Ls[ρ(χ, s)⊗ ρL]]) . (4.42)

Physically, the Born approximation is well justified if the back action of the system

on the fermionic reservoirs is negligible such that the latter effectively remain in the

state ρL. Naively, it may seem a bit contradictory to neglect the back action on the
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fermionic reservoir, given that we are interested in the changes of particle number in

those reservoirs. However, it is valid since Eq. (4.42) does not describe the fermionic

reservoirs but the reduced density matrix in the low-energy subspace of the mesoscopic

island.

We now apply a Markovian approximation which involves two steps. First, we assume

that the density matrix varies on a slower time scale than the typical decay time of the

correlation functions of the fermionic leads. This assumption justifies the replacement

ρ(χ, s)→ ρ(χ, t), (4.43)

which makes the master equation time-local. For χ = (0, 0) the equation preserves

Hermiticity as well as unit trace of the density matrix. The coefficients still exhibit a

time dependence. Thus, we substitute s → t − s and extended the time integration

to infinity. This is justified by the assumption that the correlation functions of the

fermionic reservoirs decay quickly. We arrive at the Markovian master equation

∂

∂t
ρ(χ, t) = TrL (Lt[ρ(0)⊗ ρL]) +

∞̂

0

dsTrL (Lt [Lt−s[ρ(χ, t)⊗ ρL]]) , (4.44)

where according to (4.37) the operator on the right hand side reads

Lt [Lt−s[ρ]] = HI,χ(t)ρHI,−χ(t− s) +HI,χ(t− s)ρHI,−χ(t)

−HI,χ(t)HI,χ(t− s)ρ− ρHI,−χ(t− s)HI,−χ(t). (4.45)

The next step is to trace out the fermionic reservoirs. We approximate the latter to be

in thermal equilibrium,

ρL ∼ e−
1
T
H0 (4.46)

with respect to the lead Hamiltonian (4.30) since the coupling due to Href and H̃T is

weak. One finds that the following term vanishes, TrL (Lt[ρ(0)⊗ ρL]) = 0. Hence, we

arrive at the equation

∂

∂t
ρ(χ, t) =

∞̂

0

dsTrL (Lt [Lt−s[ρ(χ, t)⊗ ρL]]) . (4.47)
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Using Eq. (4.14), we write the integrand on the right hand side in the following form:

TrL (Lt [Lt−s[ρ(χ, t)⊗ ρL]]) =
2∑

α=0

L̃α,s [ρ(χ, t)] . (4.48)

With the shorthand notation

Qαα′ =
∑
k,k′

c†α,kcα′,k′ (4.49)

the Liouvillians L̃α,s [ρ] are given by

L̃0,s [ρ] =
(
ei(χ2−χ1)O†12ρO12 −O12O

†
12ρ
)

TrL

(
ρLQ12,tQ

†
12,t−s

)
(4.50)

+
(
ei(χ2−χ1)O†12ρO12 − ρO12O

†
12

)
TrL

(
ρLQ12,t−sQ

†
12,t

)
+
(
e−i(χ2−χ1)O12ρO

†
12 − ρO

†
12O12

)
TrL

(
ρLQ

†
12,t−sQ12,t

)
+
(
e−i(χ2−χ1)O12ρO

†
12 −O

†
12O12ρ

)
TrL

(
ρLQ

†
12,tQ12,t−s

)
and

L̃α=1,2,s [ρ] = t0,α[O†α0, ρ]TrL

(
ρLQα0,t−sQ

†
α0,t − ρLQ

†
α0,tQα0,t−s

)
+t∗0,α[Oα0, ρ]TrL

(
ρLQ

†
α0,t−sQα0,t − ρLQα0,tQ

†
α0,t−s

)
+
(
e−iχαO†α0ρOα0 −Oα0O

†
α0ρ
)

TrL

(
ρLQα0,tQ

†
α0,t−s

)
+
(
e−iχαO†α0ρOα0 − ρOα0O

†
α0

)
TrL

(
ρLQα0,t−sQ

†
α0,t

)
+
(
eiχαOα0ρO

†
α0 − ρO

†
α0Oα0

)
TrL

(
ρLO†α0,t−sQα0,t

)
+
(
eiχαOα0ρO

†
α0 −O

†
α0Oα0ρ

)
TrL

(
ρLO†α0,tQα0,t−s

)
+(e−iχα − 1)

[
t∗0,αρOα0 + t0,αO†α0ρ+ |t0,α|2ρ

]
×TrL

(
ρLQα0,t−sQ

†
α0,t + ρLQα0,tQ

†
α0,t−s

)
+(eiχα − 1)

[
t∗0,αOα0ρ+ t0,αρO†α0 + |t0,α|2ρ

]
×TrL

(
ρLQ

†
α0,tQα0,t−s + ρLQ

†
α0,t−sQα0,t

)
. (4.51)
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Furthermore, we make the assumption that the bandwidth of the reservoirs Λ is large

compared to the energy scales V and T . Exemplarily, this yields relations that can be

obtained by standard techniques [101] like e.g.

∞̂

0

ds
〈
Q†α0,t−sQα0,t −Qα0,tQ

†
α0,t−s

〉
= ν2(iΛ + πV ), (4.52)

where Λ is the bandwidth of the leads and ν the density of states and 〈. . .〉 ≡ TrL (ρL . . .).

Analogously, we obtain, for instance,

∞̂

0

ds
〈
Qα0,t−sQ

†
α0,t +Qα0,tQ

†
α0,t−s

〉
= 2πν2V nB(V ), (4.53)

where nB(V ) is the Bose function which is negligible in the limit T � V . The terminals

α = 1, 2 are at the same potential such that thermal cotunneling processes are relevant

here,
∞̂

0

ds
〈
Q12,t−sQ

†
12,t +Q12,tQ

†
12,t−s

〉
= 2πν2T. (4.54)

Further technical details concerning the tracing out of the leads are found in Appendix

C. We now go on to discuss the master equation, which emerges from the outlined

procedure in the next subsection.
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4.3.4 Resulting quantum master equation for weak measure-

ment setup

The resulting quantum master equation is a Lindblad equation modified with counting

parameters. It is valid for arbitrary number of Majoranas Nα coupled to reservoir α.

The equation governs the time evolution of the reduced density matrix ρt in the Hilbert

space corresponding to the Majorana operators γiα. Without the assumption T � V ,

it reads

∂

∂t
ρt = −i[H̃q, ρt] + 2πν2V

2∑
α=1

(eiχα − 1)
(
t∗0,αOα0ρt + t0,αρtO†α0 + |t0,α|2ρt

)
+2πν2T (D12(ρt) +D21(ρt)) + 2πν2V nB(V )

2∑
α=1

D0α(ρt)

+2πν2V (1 + nB(V ))
2∑

α=1

Dα0(ρt). (4.55)

Here we have defined the superoperator

Dαα′(ρ) ≡ ei(χα−χα′ )Oαα′ρO†αα′ −
1

2
{O†αα′Oαα′ , ρ}. (4.56)

The jump operator Oαα′ is again defined as

Oαα′ =
Nα∑
j=1

Nα′∑
j′=1

tjj
′

1,αα′(iγ
j
αγ

j′

α′), (4.57)

and describes the tunneling of an electron from the terminal α′ to α. The coherent part

of the evolution in Eq. (4.55) is described by a Hamiltonian H̃q which we will specify

below in the limit T � V .

Throughout this chapter, we mostly focus on the low temperature limit T � V � Λ,

with Λ the lead bandwidth. In this limit, the Bloch Redfield equation (4.55) takes on

the form

∂

∂t
ρt = −i[Hq, ρt] + 2πν2V

2∑
α=1

(eiχα − 1)
(
t∗0,αOα0ρt + t0,αρtO†α0 + |t0,α|2ρt

)
+2πν2T (D12(ρt) +D21(ρt)) + 2πν2V

2∑
α=1

Dα0(ρt), (4.58)
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where the Hamiltonian part of the dynamics in the limit V � Λ (see Appendix C) is

generated by

Hq = −Λν2

2∑
α=1

(
t∗0,αOα0 + H.c.

)
− ν2Λ

2

∑
α<β

{O†αβ,Oαβ}

+ν2V ln(Λ/2V )
2∑

α=1

[Oα0,O†α0]. (4.59)

The Eq. (4.58) is of the Lindblad form but modified with counting parameters. The

equation is time-local and for zero counting parameters it preserves Hermiticity and unit

trace. Similar equations have been studied in Refs. [94, 102, 103]. We are interested

in obtaining the statistics of charge transported during the time interval t ∈ [0, τ ].

To this end, we solve (4.58) with the initial condition ρ(χ, 0) = ρ0 and obtain the

generating function of the charge variables [27, 98] by performing the trace in the

reduced generalized qubit space Z(χ, τ) = Trq (ρτ (χ1, χ2)). The equation is valid in

the weak coupling limit defined by νt0,α, νt
jj′

1,αα′ � 1. Its Markovian property implies

that we are neglecting memory effects.
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4.4 Phenomenology of the Majorana box qubit

In this section, we present the resulting weak measurement phenomenology of the Ma-

jorana box qubit. We start by providing instructive details on the derivation of the

generating function in Subsection 4.4.1. In Subsection 4.4.2, we analyze the obtained

current statistics and describe a remarkable effect of strong current cross-correlations.

We present results on the effects of finite temperature in Subsection 4.4.3 and then

go on to study the outcome distribution and the statistics of rare current outcomes in

Subsection 4.4.4. Finally, we consider finite hybridizations of MBSs on the box qubit

in Subsection 4.4.5.

This entire section is founded on the evolution equation for genuine MBSs governing

the time evolution of the qubit density matrix ρt ≡ ρt(χ1, χ2). To obtain the equation,

we have to set Oαα′ = t1,αα′(iγαγα′) in Eq. (4.58). Where possible, we use the simplified

notation t0,α = t0 and t1,αα′ = t1 throughout this chapter. The resulting equation reads

∂

∂t
ρt = −i[H̃q, ρt] +

∑
α>α′

Γαα′

2
(zαα′(iγαγα′)ρt(iγαγα′)− ρt)

+2πV
2∑

α=1

(eiχα − 1) (t∗0t1(iγαγ0)ρt + t0t
∗
1ρt(iγαγ0)) (4.60)

with the rates defined as Γα0 = 4πV ν2|t1|2, Γ21 = 4πν2T |t1|2 and with zα0 = eiχα ,

z21 = 2 cos(χ1 − χ2). The Hamiltonian evolution is generated by

H̃q = −2ν2(ΛRe(t∗0t1) + πV Im(t∗0t1))
2∑

α=1

(iγαγ0). (4.61)

Notice that the splitting (4.61) of the qubit energy is due to the presence of the interfer-

ence paths. The splitting term leads to precession physics and will play an important

role for the counting statistics.
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4.4.1 Derivation of the generating function for the Majorana

qubit

To solve the evolution equation (4.60) and derive the generating function, we

reparametrize the time variable, ρt = eθtρ̃t, with

θ = 2πν2(|t0|2 + |t1|2)V
2∑

α=1

(eiχα − 1)

+4πν2|t1|2T (cos(χ1 − χ2)− 1). (4.62)

Furthermore, we define the rates as Γ̃α0 = 4πV ν2|t1|2eiχα and Γ̃21 = 8πν2T |t1|2 cos(χ1−
χ2). To solve the Bloch Redfield equation, we parametrize the density matrix as

ρt =
3∑

µ=0

ρµ,tσµ. (4.63)

Thus, we obtain a first order system of four coupled equations for ρ̃ given by

∂

∂t
ρ̃µ,t(χ1, χ2) =

3∑
µ=0

Ωµν ρ̃ν,t(χ1, χ2). (4.64)

The matrix Ω of coefficients reads

Ω =


0 a1 a2 0

a1 −Γ̃20 − Γ̃21 0 h2

a2 0 −Γ̃10 − Γ̃21 −h1

0 −h2 h1 −Γ̃10 − Γ̃20

 (4.65)

with

aα = 4πV ν2Re(t∗0t1)(zα − 1), (4.66)

hα = −4ν2ΛRe(t∗0t1)− 4πν2V Im(t∗0t1)eiχα . (4.67)

The Eq. (4.60) is solved with the initial condition ρ(χ, 0) = ρ0 where ρ0 is the initial

reduced density matrix of the qubit [27, 94, 98]. Moreover, we assume the counting

fields χ1 and χ2 to be constant in the time interval (0, τ) of measurement. The solution
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is given by a matrix exponential

ρµ,τ (χ1, χ2) = eθτ
3∑

ν=0

exp(τΩ)µνρν,0, (4.68)

where ρ0 is the initial reduced density matrix of the qubit and thus in particular ρ0,0 = 1
2
.

We obtain the statistics of the currents by considering the logarithm of the generating

function

lnZ(χ, τ) ≡ ln Trq (ρτ (χ1, χ2)) . (4.69)

In the long time limit Γτ � 1 the cumulant generating function reads

lnZ(χ) = τθ(χ1, χ2) + τλ0(χ1, χ2). (4.70)

Here θ is defined as in (4.62) and λ0(χ1, χ2) is the (unique) solution of the characteristic

polynomial of Ω

λ4 + c1(χ)λ3 + c2(χ)λ2 + c3(χ)λ+ c4(χ) = 0, (4.71)

which satisfies

λ0(0, 0) = 0. (4.72)

Here the ci(χ) are counting parameter dependent coefficients. Such a solution always

exists because c4(χ1 = 0, χ2 = 0) = 0. The other eigenvalues λi=1,2,3 of Ω have a

negative real part at (χ1, χ2) = (0, 0). In the limit T � V � Λ, we expand Eq.

(4.70) to first order in V to obtain the counting statistics. This results in the cumulant

generating function

ln Trρτ (χ1, χ2) =
Γτ

2

2|t0|2 + |t1|2

|t1|2
z − 1 +

√
(z + 1)2 +

8 [Re(t∗0t1)]2

|t1|4
z2

 (4.73)

with

z ≡ 1

2
eiχ1 +

1

2
eiχ2 − 1. (4.74)
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The two physical observables can now be obtained by taking derivatives according to

Eq. (4.27). E.g. the current α = 1, 2 is calculated via

〈Iα〉 = −iτ−1 ∂

∂χα
ln Trq (ρτ (χ1, χ2))

∣∣∣∣
(χ1,χ2)=(0,0)

. (4.75)

The cross-correlations are obtained by means of the relation

S12 = − τ−1 ∂2

∂χ1∂χ2

ln Trq (ρτ (χ1, χ2))

∣∣∣∣
(χ1,χ2)=(0,0)

. (4.76)

4.4.2 Pronounced shot noise cross-correlations and qubit evo-

lution

In this subsection, we present the results for the shot noise as well as the evolution of

the Majorana qubit density matrix. In particular, we discuss below that positive cross-

correlations S12 = F 〈I〉 with a Fano factor F = O(1) characterize the Majorana system

in the limit of low temperature T � V and weak tunnel couplings. First, however, it

is insightful to take a closer look at the dynamics of the qubit density matrix in the

absence of the counting parameters. Completely independent of the initial qubit state,

the qubit density matrix ρt approaches the maximally mixed state

ρt�Γ−1 ' 1

2
σ0 (4.77)

on the time scale Γ−1 with Γ ≡ 4πν2|t1|2V . We take note that this time scale is set

by voltage and the dimensionless conductance contribution due to cotunneling. The

associated loss of quantum information regarding the qubit state is reflected in the

averages of the currents passing through the outer barriers as well. In fact, on time

scales larger than Γ−1, these averages (in units of e2/~)

〈Iα〉 = 〈I〉 ≡ 2πν2V (|t0|2 + |t1|2) (4.78)

do not depend on the qubit state anymore. This is a striking feature since it is in sharp

contrast to the individual readout of a single current Iα (see Eq. (4.2)), which couples to

the parity iγαγ0 [11] if the other drain terminal is completely decoupled. Nevertheless,

it is expected for the simultaneous measurement of noncommuting operators that the
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quantum information of the initial state of the qubit gets wiped out. Now we turn our

attention to the study of the second cumulant Sαα′ =
´ t

0
dt 〈〈Iα(t)Iα′(0)〉〉 for α, α′ ∈

{1, 2} and 〈〈AB〉〉 = 〈AB〉 − 〈A〉 〈B〉, in the long time limit Γτ � 1, and under the

assumption T � V � Λ. The shot noise in the current signals α = 1, 2 can then be

derived to be

Sαα = 〈Iα〉+
4πV ν2 [Re(t∗0t1)]2

|t1|2
. (4.79)

The first term is the standard Schottky contribution with 〈Iα〉 ≡ 2πν2V (|t0|2 + |t1|2)

being the average current as discussed above. The second term shows that the noise

level is enhanced whenever the currents I1 and I2 couple to the underlying Pauli algebra,

because Re(t∗0t1) 6= 0 is precisely the condition for Pauli dependent current averages, see

Eq. (4.2). The most noteworthy observable signature is the current cross-correlation

amplitude S12, which is given by

S12 =
4πV ν2 [Re(t∗0t1)]2

|t1|2
. (4.80)

We point out that this result is derived under the assumption that t1 6= 01. We may

conveniently reexpress Eq. (4.80) by defining the Fano factor F which characterizes the

correlations via the relation

S12 = F 〈I〉 , (4.81)

with Ī as given in (4.78). The corresponding Fano factor again for T � V is then given

by

F =
2 [Re(t∗0t1)]2

|t1|2 (|t0|2 + |t1|2)
= O(1). (4.82)

This result is interesting for a multitude of reasons, one of them being that the cur-

rents are positively correlated. The most important aspect of this result, however, is

the largeness of the shot noise correlations, F = O(1). To appreciate this point, it

is instructive to draw the contrast with noninteracting electrons in a T -shaped junc-

tion [104]. In this case, negative correlations are observed due to processes involving

two electrons and the Fano factor is parametrically suppressed in the dimensionless

tunnel conductances2. This makes it clear that rather different physical mechanisms

1The maximally mixed state 1
2σ0 is reached after the timescale Γ−1. Hence, for t1 = 0 this state is

never reached and the contribution (4.80) does not arise.
2Consider e.g. three leads with a central lead α = 0 and drain leads α = 1, 2 tunnel coupled
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must be active to give rise to the striking result (4.82). Indeed, the competing weak

measurements of the Pauli operators σ1 = iγ1γ0 and σ2 = iγ2γ0 cause a frustration in

the system. The large positive cross-correlations in the two incompatible currents I1

and I2 coupled to the underlying Pauli algebra are the observable consequence of this

frustration. Consistent with this interpretation is the fact that the cross-correlation

contribution (4.82) vanishes only for Re(t∗0t1) = 0, in which case the currents do not

measure the Pauli operators on average. Since Re(t∗0t1) = 0 implies a considerable

amount of fine tuning generically one will observe F (V � T ) = O(1). The fact that in

the absence of the reference links, t0 = 0, the Fano factor is parametrically suppressed,

i.e. F � 1, will turn out to be useful for the formulation of measurement protocols.

A complementary physical interpretation of (4.82) is that an electron incoming from

the source which contributes to I1 helps to project iγ1γ0 onto a definite state. This,

in turn, introduces more uncertainty in the expectation value of iγ2γ0 and, therefore,

affects the current I2. This physical picture conveys how an electron can exert influence

on a subsequent electron that might be incoming much later.

according to Href =
∑2
α=1

∑
k,k′(t0c

†
α,kc0,k′ + H.c.). With a bias V applied to operate lead 0 as source,

the average current is given by 〈Iα〉 = 2πναν0|t0|2V with α = 1, 2. In a symmetric situation where
each lead has the density of states ν, the cross-correlations are given by Fnon−interacting = −ν2|t0|2
[104] and thus |Fnon−interacting| � 1. The minus sign is a result of the fact that a single electron is
either transmitted to lead 1 or 2.
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4.4.3 The effects of finite temperature

For the most part of this chapter we neglect finite temperature contributions assuming

that temperature is much smaller than the applied bias. For completeness, we now take

a look at corrections due to a small3 finite temperature T > V in the all-important result

(4.82) for the Fano factor F . As before, we still assume V, T � EC ,∆. Physically, the

corrections originate in direct cotunneling processes back and fourth from the two drain

terminals 1 to 2 with the amplitude t1,12. For clarity, we distinguish this parameter from

the cotunneling amplitudes from the source to the drains, which we again assume to be

equal, t1,10 = t1,20. The finite temperature corrected current shot noise (4.79) is given

by

Sαα = 〈Iα〉+ 4πν2|t1,12|2T +
4πV 2ν2 [Re(t∗0t1,10)]2

V |t1,10|2 + 2T |t1,12|2
. (4.83)

The current cross-correlation formula in the long time limit is given as a sum of two

contributions

S12 = −4πν2|t1,12|2T +
4πV 2ν2 [Re(t∗0t1,10)]2

V |t1,10|2 + 2T |t1,12|2
. (4.84)

The first term is negative and proportional to the temperature T . This term originates

in the above mentioned processes where electrons thermally cotunnel via the Majorana

states on the box from lead 1 to lead 2 or vice versa. The second term can be identified

with the finite temperature version of the formula (4.82). It shows that finite temper-

ature has the effect of weakening the positive F = O(1) Fano factor, but confirms that

in the regime of interest T � V the positive second term in Eq. (4.84) is the dominant

contribution and results in pronounced positive cross-correlations.

3To be precise we keep terms linear in temperature in the Bloch Redfield equation, but approximate
coth(V/2T ) ' 1.
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4.4.4 Outcome distribution and extreme value statistics

In this section we examine the joint probability distribution P (I1, I2) of the current

outcomes. In particular, we address the statistics of extreme values and show that there

are large fluctuations in the currents. Furthermore, we will plot the joint distribution

for several parameters. The probability for the current values (I1, I2) is given as the

Fourier transformation of the generating function

P (I1, I2) =

πˆ

−π

dχ1

2π

πˆ

−π

dχ2

2π
Trq (ρτ (χ1, χ2)) e−i(χ1I1+χ2I2)τ . (4.85)

In the limit of a measurement duration τ � Γ−1, where again Γ ≡ 4πν2|t1|2V , we

can make a saddle point approximation and write the logarithm of the probability

distribution in the form [89]

lnP (I1, I2)

Γτ
' min
{µα}

[
ln Trq (ρτ (iµ1, iµ2))

Γτ
+

1

2

(
|t0/t1|2 + 1

) 2∑
α=1

µα(Iα/Ī)

]
. (4.86)

According to (4.73), we here have

ln Trq (ρτ (iµ1, iµ2))

Γτ
=

1

4

√
(e−µ1 + e−µ2)2 +

8 [Re(t∗0t1)]2

|t1|4
(e−µ1 + e−µ2 − 2)2

+
1

2

(
|t0/t1|2 +

1

2

)
(e−µ1 + e−µ2)−

(
|t0/t1|2 + 1

)
. (4.87)

For simplicity of discussion, we again choose system parameters such that I1 and I2 have

the same average value Ī = 2πν2V (|t0|2 +|t1|2) for long times Γτ � 1. According to the

relation (4.86), the probability distribution is found by minimization. For atypically

large current outcomes Iα � Ī, this minimization can be done analytically. In fact, the

minimum is located at µα ' ln
(
Ī/Iα

)
and as a result, the probability for these rare

events is given by [89]

P (I1, I2)
Iα�Ī'

2∏
α=1

(
Ī

Iα

)Iατ
. (4.88)

We thus see that that there are large fluctuations and rare events occur more often than

a Gaussian model would predict. The formula (4.88) derived under the assumption
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Figure 4.6: Logarithm of the outcome distribution for the Majorana box qubit in the
long time limit Γτ � 1 as a function of I1/Ī for several the fixed values of I2. We choose
the parameters |t0/t1|2 = 1 and Re(t∗0t1) = |t0t1|. For fixed I2 = Ī, the maximum is
located at I1 = Ī as expected. For fixed I2 > Ī, the maximum shifts to I1 > Ī consistent
with the predicted strong positive cross-correlations stated in Eq. (4.82)

Iα � Ī factorizes, which means that the distributions are independent in this case.

In general, the two tunnel current outcomes are strongly conditioned to each other,

because of the simultaneous incompatible measurement. This is visualized in Fig. 4.6

where the probability distribution is plotted based on Eq. (4.86) as a function of I1

for several fixed values of I2. There it can be seen that for fixed I2 > Ī the maximum

of the distribution as a function of I1 shifts to a value bigger than its average as well.

This is consistent with the positive cross-correlations, see Eq. (4.82). In contrast,

at the fine tuned point Re(t∗0t1) = 0 the probability distribution (4.86) factorizes in

fact for all values of the currents I1 and I2. Accordingly, all maxima are located at

I1/Ī = 1 independent of the value of I2. This is because in this case the current Iα does

not couple to σα on the average and the strong cross-correlation effect (4.82) vanishes.

Finally, in Fig. 4.7 we plot the distribution Eq. (4.86) for a larger range of outcomes to

illustrate the probability distribution for rare events. This plot is consistent with the

formula (4.88) and also goes beyond it by showing the full regime in which e.g. only I1

is large and I2 = Ī fixed.
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Figure 4.7: Logarithm of the outcome distribution in the case of authentic Majorana
states as a function of I1/Ī for several fixed values of I2 in the limit Γτ � 1. The
parameters are chosen such that |t0/t1|2 = 1. Furthermore, we choose arg(t∗0t1) = 0,
which means that the strong positive cross-correlations, Eq. (4.82), characterizing the
Majorana box qubit are present. For fixed I2 = Ī, the maximum is located at I1/Ī = 1
as expected. For fixed I2 > Ī, the maximum shifts to I1/Ī > 1, which is consistent
with the latter result. For bigger values of I1/Ī, the probability for rare events can be
inferred.
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4.4.5 The effects of finite MBS coupling on the box qubit

The overlap of the Majorana wave functions results in additional finite coupling terms

in the Hamiltonian H̃q given in Eq. (4.61),

H̃q → H̃q +
3∑

α=1

εασα. (4.89)

Finite ε1 6= 0 or ε2 6= 0 does not affect the main result for F given in formula (4.82)

as long as it does not approximately cancel the splitting due to the interference links,

see Eq. (4.61). Consequently, there is a high degree of robustness with respect to

finite hybridizations ∼ iγαγ0 coupling source and drain MBSs. However, the cross-

correlations exhibit sensitivity with respect to the addition of the term ε3 6= 0 to the

Hamiltonian H̃q. More precisely, such hybridizations of the MBSs γ1 and γ2 coupled

to the drain leads cause a modification of the Fano factor F in the formula (4.82). As

shown in Appendix D, this modification is given by

F ′ = η
2 [Re(t∗0t1)]2

|t1|2 (|t0|2 + |t1|2)
(4.90)

with

η =
Λ2 [ν2Re(t∗0t1)]

2

Λ2 [ν2Re(t∗0t1)]2 + ε2
3

. (4.91)

Hence, F = O(1) is generically maintained as long as the finite coupling ε3 fulfills

ε2
3 > Λ2 [ν2Re(t∗0t1)]

2
with Λ the bandwidth of the leads. We note that in our proposed

geometries γ1 and γ2 are localized on different topological wires such that it is reasonable

to expect that the corresponding hybridization |ε3| is sufficiently small.
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4.5 Counting statistics for Andreev bound states

λ0

t0

λ2

V

I1

I2

t0

gate

λ1γ1

γ0

γ2

Figure 4.8: Illustration of the device setting where Andreev states are represented as
pairs of MBSs γiα with i = 1, 2. The respective couplings are denoted by λiα and faded
red dots represent the i = 2 states in each wire α. The cross-correlation shot noise
Fano factor F of the currents I1 and I2 enables to distinguish whether a single MBS or
multiple MBSs are coupled to the leads.

In this section, we analyze the full counting statistics assuming that low-energy Andreev

bound states (ABSs) are coupled to the nearby leads. The latter are equivalent to a

pair of Majorana components whose overlap can be generically quite small, see e.g. Ref.

[50]. We adopt the simplified notation

tjj
′

1,αα′ ≡ tjj
′

αα′ , (4.92)

and distinguish the two MBSs γj=1,2
α which may be coupled to lead α. To this end, the

effective amplitude (4.92) is endowed with indices which according to Eqs. (4.14) and

(4.15) refer to cotunneling processes from the i-th Majorana operator in lead α to the

j-th Majorana operator in lead α′. Generally, we assume that both MBSs couple to the

adjacent lead with a strength of the same order of magnitude, i.e. O(|λiα|) = O(|λjα′ |),
such that the same is true for the effective cotunneling parameters, i.e. O(|tijαα′|) =

O(|tklδδ′ |). These assumptions are discussed in detail in Section 4.7. In the analysis that

follows, we are again interested in the low temperature regime defined by T � V . It is

not important, though, that voltage is small compared to lead bandwidth.

In terms of the Majorana operators γiα and the effective tunneling amplitudes tijαα′ ,

the general evolution equation (4.58) governing the generalized density matrix ρt ≡

92



CHAPTER 4. MAJORANA QUBIT DETECTION

ρt(χ1, χ2) takes on the form

∂

∂t
ρt = −i[H̃q, ρt] + 2πν2V

(
2∑

α=1

2∑
i,j=1

|tijα0|2[eiχα(iγiαγ
j
0)ρt(iγ

i
αγ

j
0)− ρt]

+
2∑

α=1

eiχα
∑

(i,j)6=(k,l)

[tijα0(tklα0)∗(iγiαγ
j
0)ρt(iγ

k
αγ

l
0) + tklα0(tijα0)∗(iγkαγ

l
0)ρt(iγ

i
αγ

j
0)]

+
2∑

α=1

2∑
i=1

[
Im(ti1α0(ti2α0)∗){iγ1

0γ
2
0 , ρt}+ Im(t1iα0(t2iα0)∗){iγ1

αγ
2
α, ρt}

]
−

2∑
α=1

Re
(
t11
α0(t22

α0)∗ − t21
α0(t12

α0)∗
)
{γ1

αγ
2
αγ

1
0γ

2
0 , ρt}

)
. (4.93)

Here the Hamiltonian evolution is generated by

H̃q = 4ν2V (1 + ln(Λ/2V ))
2∑

l,α=1

[
Im((tl1α0)∗tl2α0)iγ1

0γ
2
0 + Im((t1lα0)∗t2lα0)iγ1

αγ
2
α

]
−2ν2Λ

∑
α<α′

Re
(
(t11
αα′)

∗t22
αα′ − (t21

αα′)
∗t12
αα′

)
γ1
αγ

2
αγ

1
α′γ

2
α′ . (4.94)

4.5.1 Counting statistics for source lead coupled to ABS

In this subsection, we will show that the shot noise cross-correlation amplitude is ex-

tremely sensitive to an ABS coupled to the source lead. In fact, the cross-correlations

are characterized generically by a Fano factor |F | = O(1) whenever more than a single

MBS is coupled to the source lead, i.e. N0 > 1. For this statement it does not matter

whether the drain leads are coupled to MBSs or ABSs and whether the interference

links are present or not.

We demonstrate this by first considering the case N0 = 2, N1,2 = 1 in the absence

of the interference links, i.e. for t0 = 0. After times Γ̃ατ � 1 with the rates Γ̃α =

2πν2(|t11
α0|2 + |t12

α0|2)V and at low temperature, T � V , we obtain (see Appendix E) the

cumulant generating function τ−1 lnZ as the eigenvalue of θ̃I + M̃ which vanishes at

(χ1, χ2) = (0, 0). Here we have defined

θ̃ = 2πν2V

2∑
α=1

2∑
i=1

|t1iα0|2(eiχα − 1) (4.95)
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and the matrix

M̃ = 4πν2V

2∑
α=1

(
0 −ηα(eiχα − 1)

ηα(eiχα + 1) −(|t11
α0|2 + |t12

α0|2)eiχα

)
(4.96)

as well as an interference parameter ηα = Im(t11
α0(t12

α0)∗). By performing the derivatives

we obtain the second cumulant

S12 = 2πν2V

[
[Im((t11

10)∗t12
10)]

2
+ [Im((t11

20)∗t12
20)]

2

|t11
10|2 + |t12

10|2

−2Im(t11
10(t12

10)∗)Im(t11
20(t12

20)∗) [Im(t11
10(t12

10)∗) + Im(t11
20(t12

20)∗)]
2

(|t11
10|2 + |t12

10|2)
3

]
. (4.97)

This contribution is of the same order of magnitude as the current and hence the Fano

factor is of order unity,

|F | = O(1), (4.98)

despite the absence of the interference links. This is in stark contrast to the case of the

Majorana box qubit where interference links t0 (of the order of t11
1,α0) were essential to

the observation of |F | = O(1). We can see from the formula (4.97) how the gradual

decoupling of just one of the two MBS components belonging to the ABS causes this

contribution to diminish. We stress that |F | = O(1) as long as the couplings tjj
′

αα′ are of

the same order of magnitude, even when the couplings are made arbitrarily small. Let

us further analyze the formula (4.97): It is straightforward to see that the first term is

always positive, while the second term can have either sign. The second term vanishes

when Im((t11
1,10)∗t12

1,10) = −Im((t11
1,20)∗t12

1,20) in which case the Fano factor characterizing

the cross-correlations takes on the simple form

F =

[
Im((t11

1,10)∗t12
1,10)

]2(
|t11

1,10|2 + |t12
1,10|2

)2 = O(1). (4.99)

Moreover, it follows from Eq. (4.97) that |F | = O(1) is predicted to persist upon the

inclusion of interference links, t0 6= 0, or the coupling of additional MBSs to either one of

the leads as long as more than a single MBS is coupled to the source lead, N0 > 1. This

can be understood because additional MBSs or interference links result in additional

parameters in the problem which are independent and hence generically cannot cancel

the O(1) contribution displayed in Eq. (4.97).
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Physically, despite being robustly energetically low-lying, the ABSs typically are are

not exactly at zero energy. Rather, due to small overlap of the MBS components a

finite term of the form

H̃q → H̃q +
3∑

α=1

ε̃α(iγ1
αγ

2
α) (4.100)

arises. The parameters ε̃α are small compared to the induced gap. We show in Ap-

pendix E that the inclusion of such a term does not affect the results discussed in this

subsection. In fact, e.g. the formulas (4.97) and (4.99) are unaffected by it.

4.5.2 Counting statistics for drain leads coupled to ABSs

In this subsection we will show that the shot noise cross-correlation amplitude is unaf-

fected if ABSs are coupled only to the drain leads, but not to the source lead. Therefore,

we now analyze the case N1,2 = 2 and N0 = 1 first in the absence of the interference

links, t0 = 0. We find that τ−1 ln Trρτ is given by the unique eigenvalue of θ′I + M ′

which vanishes at (χ1, χ2) = (0, 0), with

θ′ = 2πν2V
2∑

α=1

2∑
i=1

|ti11,α0|2(eiχα − 1) (4.101)

and the matrix

M ′ =


0 c1,− c2,− 0

−c1,+ −d1 0 c2,−

−c2,+ 0 −d2 c1,−

0 −c2,+ −c1,+ −d1 − d2

 . (4.102)

The quantities cα,± are defined as

cα,± = 4πν2V Im(t11
1,α0(t21

1,α0)∗)(eiχα ± 1). (4.103)

Furthermore, dα is defined as

dα = 4πν2V
2∑
j=1

|tj11,α0|2eiχα . (4.104)
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At zero temperature we obtain to the leading order of the current

S12 = 0. (4.105)

In conclusion, this result shows that without interference links (t0 = 0) one has a

strongly suppressed Fano factor if the ABSs are only coupled to the drain leads. Hence,

the key requirement for the observation of the signature F = O(1) for t0 = 0 is that

multiple MBSs couple to the source lead, i.e. N0 > 1. On the other hand, forN0 = 1 and

more than a single MBS coupled to either or both of the drain leads, the predicted order

of magnitude of F coincides with the Majorana qubit case. As we will discuss below,

this fact can be effectively addressed by variation of the bias voltage configurations. We

also remark that for finite ABS energy (4.100) the result stated in Eq. (4.105) remains

unchanged.
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4.6 Weak measurement protocols for MBS detec-

tion

The effect of remarkably pronounced current cross-correlations is an observable con-

sequence of the underlying Pauli algebra of the Majorana box qubit. The conditions

under which this effect occurs depend on the chosen device configuration. This leads

to several qualitative and experimentally verifiable predictions that allow to test the

genuineness of the Majorana qubit. Regarding the device configuration we have two

choices in mind: First, the way in which the bias is applied and, second, whether the

device is interferometric or not meaning whether electrons have a second direct tun-

neling bridge t0 available to reach either of the two leads. The prime observable is the

Fano factor F , which characterizes the cross-correlations via the relation

S12 = F Ī, (4.106)

with the average current Ī = 〈Iα〉. The distinctive predictions for setups containing

genuine MBSs and local fermionic states are summarized in Table 4.1.

t0 6= 0 t0 = 0

Majorana bound states (Nα = 1) |F | = O(1) |F | � 1
Andreev bound states (N0 = 2, N1,2 = 1, 2) |F | = O(1) |F | = O(1)
Andreev bound states (N0 = 1, N1,2 = 1, 2) |F | = O(1) |F | � 1

Table 4.1: The results are shown for the Fano factor, |F |, depending on the number of
MBSs coupled to each terminal α. A functional Majorana qubit is characterized by its
underlying Pauli algebra and by single MBSs localized at the ends of the 1D TSCs. By
measuring the Fano factor, both in the presence and absence of interference links t0, the
Majorana box qubit is clearly identified. It is important that for the non-interferometric
configuration (for t0 = 0) each terminal serves as source lead at least once, see Fig. 4.9.
This addresses the fact that the Fano factor is sensitive only to Andreev states coupled
to the source lead, α = 0, which can be seen by comparing the first and the third row.

The continuous monitoring of a Majorana Pauli operator algebra reflects itself in strong

positive cross-correlations with F = O(1) for the interferometric setting in which t0 6= 0.

If a single Majorana state is coupled to the source lead (and the drain terminals either to

MBSs or ABSs), the Fano factor is parametrically suppressed |F | = O(T/V, ν2|tijαα′ |2)�
1 in the absence of these interference paths, t0 = 0. If an ABS is coupled to the source
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lead (and either MBSs ore ABSs to the drain leads), there is a strong level of cross-

correlations independent of the absence or presence of the interference links t0. It

is this insensitivity of the cross-correlation profile to the presence of the interference

link which indicates the presence of an Andreev state coupled to the source electrode.

Thus, for pinched off interference links, t0 = 0, the cases of ABSs and MBSs coupled

to the source lead differ by a strong observable effect. All of this is to be contrasted

with noninteracting electrons in the limit T � V in a T-shaped junction. In this

case, the currents are approximately uncorrelated and the Fano factor is parametrically

suppressed in the dimensionless tunnel conductance [104] as previously mentioned.

t0

V

I1

I2

γ0

γ1

γ2

t0

V

I2

γ0

γ1

γ2

V

I1

I2

γ0

γ1

γ2

V

γ0

γ1

γ2

I0

I1

I0

a) b)

c ) d )

Figure 4.9: The four device configurations for which the Fano factor F has to be
measured to identify the nonlocal Pauli algebra. In a) the interferometric setting with
t0 6= 0 is shown, which allows to confirm the F = O(1) prediction for genuine MBSs.
In the non-interferometric (t0 = 0) settings b), c), d), each lead serves as source once,
while the currents flowing to the drains are being measured. Here in each case F � 1
is predicted for a genuine Majorana box qubit.

Since the sensitivity of the Fano factor is limited to distinguish single and multiple

MBSs that are coupled to the source terminal, it is important to exchange the role

of the drain and source to clearly identify the Majorana box qubit with Nα = 1 for

α = 0, 1, 2. This results in the following necessary measurement configurations, shown

in Fig. 4.9, for which the Fano factor has to be determined:
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t0 6= 0 : Measurement of |F | with the central lead α = 0 as source to confirm a

positive F = O(1).

t0 = 0 : Measurement of |F | with the bias V applied such that each lead α (for

α = 0, 1, 2) serves as source at least once to confirm |F | � 1. As soon as

one observes strong cross-correlations |F | = O(1) for lead α operated as

source, one can conclude that Nα > 1.

In addition, there are two control measurements that can be carried out to avoid mis-

interpretation: First, accidental fine tuning may be the origin of a |F | � 1 signature,

e.g. if arg(t∗0t1) = π/2 in Eq. (4.82). However, the suppression of the Fano factor

|F | � 1 for ABSs requires substantial fine tuning and is non-generic. Therefore, this

scenario can be ruled out by a modest number of measurement repetitions for different

strengths of the gate potentials regulating the tunneling amplitudes as well as magnetic

field values to change the microscopic details. Second, since all results hold to leading

order in the tunnel conductances, one can repeat the protocol for a sequence of several

decreasing conductance strengths. Contributions with entry |F | = O(1) in Table 4.1

remain unchanged parametrically, while the entries |F | � 1 are further suppressed.
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4.7 Conclusions and outlook

The weak measurement protocols proposed in Section 4.6 constitute a new method to

detect MBSs. For a given Majorana qubit candidate, several qualitative predictions can

be tested to unveil the genuineness of the device. The observable to be measured is the

current cross-correlation amplitude, which is characterized by a remarkably large Fano

factor |F | = O(1), see Eq. (4.82). The Fano factor is of order unity even for arbitrarily

small dimensionless tunnel conductances 2πν2t0,α and 2πν2t1,α0 as long as they are of

the same order of magnitude4.

These pronounced cross-correlations for a Majorana qubit arise due to the simultaneous

measurement of the nonlocal Pauli operators σ1 = iγ1γ0 and σ2 = iγ2γ0, which are cou-

pled to the two currents I1 and I2 respectively. The physical mechanism leading to this

effect is intimately related to the incompatibility of the two current readouts and the en-

suing frustration and conflictedness within the system. To better understand this point,

consider an electron which is incoming from the source and contributes to the current

I1. This electron helps to project iγ1γ0 onto a definite state. This, in turn, increases the

uncertainty in the expectation value of the operator iγ2γ0, which is noncommuting with

iγ1γ0. In this way, the aforementioned electron affects the transmission phase shift in

the cotunneling amplitude for a subsequent electron that contributes to the current I2.

This physical interpretation accounts for two important features: First, the occurrence

of correlations even when the subsequent electron is incoming much later. This is the

case in the weak tunneling limit of interest, where electrons tunnel one-by-one through

the barriers. And second, it explains that the observation of |F | = O(1) for the Majo-

rana qubit requires the setting to be interferometric, i.e. t0,α 6= 0. For completeness,

we also performed an analysis on how the result for the Fano factor is affected by finite

MBS hybridization on the box as well as finite temperature in the Subsections 4.4.3

and 4.4.5. There we found that both effects can cause a weakening of the Fano factor.

However, we anticipate that the Fano factor |F | = O(1) will remain identifiable despite

these effects due to the strength of the cross-correlations.

Several approximations have been made in our theoretical analysis. Generally, the

results were derived perturbatively in the dimensionless tunnel conductances 2πν2t0,α

4The dimensionless tunnel conductances are defined in the Hamiltonians given in Eqs. (4.14) and
(4.32). According to these definitions, ν is the density of states in the leads and t0,α describes the
tunneling link connecting lead 0 and lead α. On the other hand, t1,α0 describes the effective cotunneling
form lead 0 to lead α.
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and 2πν2t1,α0. Furthermore, the Lindblad equation augmented with counting param-

eters that we used to derive the results was subject to a Markovian approximation.

The latter amounts to neglecting possible memory effects. Moreover, the low-energy

Hamiltonian Eq. (4.14) does not include several features which are present in a real

experiment. Such features include the Zeemann field, spin-orbit coupling and the detri-

mental effects of quasiparticles above the gap (more on this point below). However, the

effective Hamiltonian accounts accurately for the essential physics on low energy scales

compared to charging energy EC and pairing gap ∆. And most importantly, the Fano

factor of order unity represents such a strong effect that it will remain identifiable also

upon the inclusion of further correction terms. Hence, we can draw the conclusion that

the qualitative properties of the predicted signatures will persist when more sophisti-

cated microscopic models are used.

We now turn in more detail to the in- and out-tunneling of quasiparticles through the

MBSs. The noise and decoherence caused by these processes could potentially com-

promise the interpretation of the cross-correlation amplitudes, which were derived in

the long time (zero-frequency) limit. The F = O(1) effect, Eq. (4.82), for genuine

MBSs appears after the time scale Γ−1 with Γ ≡ 2πν2|t1|2V. Therefore, we summarize

a protocol [11] geared to the characterization of the typical timescale of quasiparticle

poisoning processes. Consider both t0,2 = λj2 = 0 such that lead 2 remains decoupled.

The current I1 then depends on the state of the MBSs through the expectation value

of σ1 (or, more generally, that of an operator O10 if ABSs are present). Beyond a time

scale τproj ∼ 1/V , the measurement of I1 becomes projective, and a weakly fluctuating

result defined by one of the two values 〈σ1〉 → ±1 is approached. However, quasiparticle

tunneling accidentally switching the state σ1 → −σ1 will cause discrete jumps in the

readout. Monitoring of the current signal therefore allows to study the quasiparticle

poisoning processes.

We have shown that for Andreev bound states the Fano factor signatures generically

differ in a drastic way. This is due to the underlying operator algebra, which in this

case is different from the nonlocal Pauli algebra. We emphasize again that observation

of the ABS signatures discussed in Section 4.6 requires that both Majorana components

forming the ABS actually couple to the nearby lead. If one of the MBS components

of the ABS is invisible to the nearby electrode, MBSs and ABSs are in principle indis-

tinguishable. Note that there are studies stating that for smooth confining potentials,

in fact, only one MBS component effectively couples while the coupling of the other
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component is exponentially smaller (see e.g. Refs. [49, 50]). It has also been discussed,

however, that the coupled “fake” MBS could potentially still be used for braiding [52].

We reiterate that the protocol presented in Section 4.6 is tailor made to distinguish for

each lead α a single coupled MBS, Nα = 1, and multiple coupled MBSs, Nα > 1 . Hence,

the protocol does not distinguish the topological (Nα odd) from the non-topological (Nα

even) superconductor. However, we believe our protocol is highly useful in practice,

because it is desirable to identify a functional Majorana qubit with Nα = 1. This is

because a topologically nontrivial system in which a genuine MBS coexists with ad-

ditional low-lying Andreev states causes a reduced effective gap rendering the device

computationally less useful.

In summary, the proposed protocols rely on available experimental hardware and, there-

fore, may allow to detect the Pauli algebra of a Majorana box qubit in the near future.

The experiments have to be performed in the Coulomb blockade regime at low temper-

atures, T � V , and in the tunneling limit, i.e. 2πν2t0,α � 1 and 2πν2t1,α0 � 1. Here,

one must not underestimate the task of shot noise measurement in nanoscale devices

where the electrons tunnel one-by-one through the barriers. Despite that, the weak

measurement protocols may represent the operationally and practically most viable op-

tion to detect the Pauli algebra of the Majorana box qubit and the nonlocality of MBSs.

The successful completion of these experiments would constitute notable progress that

could erase the doubts about the MBS. Nevertheless, at some point in the future actual

braiding of MBSs has to be performed, which would constitute a landmark achievement

in condensed matter physics.
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Chapter 5

Further new approaches to MBS

detection

The theory of MBS detection is a major theme in this thesis and has been addressed

at length in Chapter 4. In the present chapter, we investigate two further transport

spectroscopic methods. First, in Section 5.1, we discuss detection based on current

cross-correlations for a single Coulomb blockaded Majorana quantum wire with three

tunnel coupled electrodes. Second, in Section 5.2, we study MBS identification based

on two terminal projective conductance measurements by means of a protocol that

accesses the number of distinct current outcomes. Beyond the usefulness of these de-

tection protocols, the discussion in Section 5.3 reveals that the aforementioned protocol

of simultaneous monitoring a nonlocal Pauli algebra of Chapter 4 accesses the most in-

formation related to the fundamental nature of MBSs.

5.1 Current cross-correlations for a single Majo-

rana quantum wire

5.1.1 Three-terminal device and theoretical model

We now explore current cross-correlation experiments based on a single TSC wire in the

Coulomb blockade regime. In particular, we consider that one end of the Majorana wire

is coupled to a source lead while two separate drain leads are coupled to the other end
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γRγL
λ0 λ2

λ1

I1

I2

V

Figure 5.1: Experimental setting of a topological superconducting nanowire (green)
coupled to three normal metal leads (thick black lines). A bias voltage V is applied to
operate the lead 0, which is tunnel coupled to the MBSs γiL localized at the left wire end
(red dots), as the source. At the right end of the wire the two drain leads 1 and 2, which
are electrically isolated from each other, are tunnel coupled to the MBSs γiR. The two
currents I1 and I2 are flowing to ground and the cross correlation amplitude S12 = F 〈I〉
gets measured with 〈Iα〉 = 〈I〉. The quantity F contains qualitative information on the
number of MBSs γiL/R that are coupled to the respective leads. The observation of

F � 1 is consistent with single genuine MBSs. On the other hand, F = O(1) implies
that ABSs are being present.

(see Fig. 5.1). The experiments are envisioned to be carried out at low temperature T

in comparison to the applied voltage bias V . The charging Hamiltonian is again given

by HC = Ec (N − ng)2 with a large charging energy EC . Let the equilibrium charge on

the floated wire be the integer N0 in units of the elementary charge with the tunable

backgate parameter ng = N0 + ∆ng that is weakly detuned, ∆ng � 1. The microscopic

tunneling Hamiltonian [30] for the system depicted in Fig. 5.1 reads

H = HLeads +HC +

NL∑
j=1

∑
k

[
λj0c
†
0,kγ

j
Le
−iφ/2 + H.c.

]
+

NR∑
j=1

∑
k

[
(λj1c

†
1,k + λj2c

†
2,k)γ

j
Re
−iφ/2 + H.c.

]
, (5.1)

with NL/R MBSs γiL/R being localized on the left and right end of the wire respectively.

As before, the parameters λjα are tunnel couplings, the operator e−iφ/2 lowers the island

charge and HLeads describes the metallic leads. Using perturbation theory for the case

NL/R = 1 yields the effective tunneling Hamiltonian for single MBSs (see Appendix F)
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HMBS,eff =
∑
k,k′

[
η1c†1,kc2,k′ + iγ1

Rγ
1
L

2∑
α=1

t11
α0c
†
α,kc0,k′ + H.c.

]
, (5.2)

where the direct hopping amplitude from lead 1 to 2 is given by

ηj ' −4∆ngλ
j
1(λj2)∗

EC
(5.3)

and tjj
′

αα′ ' 2iλjα(λj
′

α′)
∗/EC . Note that ηj is proportional to ∆ng = ng −N0 � 1 and

originates in the tunneling process c2 → γjR → γjR → c1 with cα=1,2 the drain lead

fermions. For the case of ABSs NL/R = 2, we obtain the effective Hamiltonian (see

Appendix F)

HABS,eff = HLeads +
2∑

α=1

2∑
j=1

2∑
j′=1

∑
k,k′

[
tjj
′

α0(iγjRγ
j′

L )c†α,kc0,k′ + H.c.
]

+
∑
k,k′

[(
t12
12(iγ1

Rγ
2
R) + η1 + η2

)
c†1,kc2,k′ + H.c.

]
. (5.4)

In order to derive the counting statistics, we follow the same strategy as in Chapter 4.

The equation governing the time evolution of the reduced density matrix ρt(χ1, χ2) in

the Hilbert space corresponding to the Majorana operators γjL/R is given by

∂

∂t
ρt = −i[Hq, ρt] + 2πν2V

2∑
α=1

D̃α0(ρt)

+2πν2T
(
D̃12(ρt) + D̃21(ρt)

)
. (5.5)

The superoperator is defined as

D̃αα′(ρ) ≡ ei(χα−χα′ )Παα′ρΠ
†
αα′ −

1

2
{Π†αα′Παα′ , ρ} (5.6)

with the counting parameters χα defined as in Chapter 4 and again χ0 ≡ 0. The

operators Παα′ are defined according to

Πα0 =
2∑

j,j′=1

tjj
′

α0(iγjRγ
j′

L ) (5.7)
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and

Π12 = η1 + η2 + t12
12(iγ1

Rγ
2
R) (5.8)

with Π21 = Π†12. The Hamiltonian part of the dynamics for T � V � Λ is generated

by

Hq = ν2V ln(Λ/2V ))
2∑

α=1

[Πα0, Π
†
α0]− ν2Λ

2

∑
α<α′

{Π†αα′ , Παα′}. (5.9)

In the next subsection, we will discuss the resulting current cross-correlations.

5.1.2 Signatures of current cross-correlations

The cross-correlation amplitude S12 =
´ t

0
dt 〈〈I1(t)I2(0)〉〉 can be derived from the evo-

lution equation augmented with counting parameters stated in Eq. (5.5), which is

shown in Appendix F. In the case of genuine single MBSs, NL/R = 1, we obtain thermal

anticorrelations as the leading order contribution to the cross-correlations:

S12 = −4πν2|η1|2T. (5.10)

Assuming that the couplings are of the same order, i.e. O(λα) = O(λα′), we find that

the Fano factor for MBSs is small

|F | = O
(

∆ng
T

V

)
� 1. (5.11)

In fact, it is parametrically suppressed in temperature T/V � 1 and the small detuning

∆ng � 1. Experimental variation of the back gate parameter can, therefore, tune the

strength of the thermal anticorrelations.

In stark contrast to the result (5.11), in the ABS case there are generically strong cross-

correlations characterized by a Fano factor |F | = O(1). To demonstrate this point it

is sufficient to discuss the case NR = 2, NL = 1. Physically, this situation may be

realized when only one of the MBSs localized at the left wire end couples effectively to

the nearby lead, a situation that has been discussed e.g. in Ref. [50]. By solving the

corresponding master equation augmented with counting parameters (see Appendix F),
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we obtain the cross-correlation amplitude

S12 = 8πν2V


∑2

j=1

(
[Im(t11

10(t12
10)∗)]

2 |t1j20|2 + [Im(t11
20(t12

20)∗)]
2 |t1j10|2

)
(∑2

α=1

∑2
j=1 |t

1j
α0|2
)2

−4Im(t11
10(t12

10)∗)Im(t11
20(t12

20)∗) [Im(t11
10(t12

10)∗) + Im(t11
20(t12

20)∗)]
2(∑2

α=1

∑2
j=1 |t

1j
α0|2
)3

 . (5.12)

Hence, assuming again that the couplings are of the same order, i.e. O(λjα) = O(λj
′

α′),

we predict a generic Fano factor of order unity,

|F | = O(1). (5.13)

We point out that |F | = O(1) is generally the case whenever NR > 1 and NL ≥
1 is satisfied. The situation may also be realized in a topological Majorana wire,

where the genuine MBSs coexist with ABSs. Thus, the cross-correlations in this setting

provide another scheme to distinguish single MBSs, which are characterized by the

strong suppression F ∼ ∆ngT/V , from ABSs. This is summarized in Table 5.1.

Cross-correlation Fano factor

Majorana states |F | = O (∆ngT/V )� 1
Andreev bound states |F | = O(1)

Table 5.1: Qualitative behavior of the Fano factor, |F |, characterizing the cross-
correlations for single vs multiple MBSs localized at the ends of the nanowire. The
key observable distinguishing between the two cases is the large value |F | = O(1)
for Andreev bound states, which is to be contrasted with the strong suppression
|F | ∼ ∆ngT/V for MBSs. Observing the first line is a result consistent with MBSs
and the experimentalist can conclude that not more than single MBSs are coupled to
the respective terminals.

The main advantage of the protocol is its ability to rule out ABSs based on the distinc-

tive large cross-correlations that are present in this case. However, observing F � 1

(first line of Table 5.1) does not contain a direct signature of the MBSs. This can be

seen by replacing γ1
R/L by complex numbers in the Hamiltonian (5.2) in which case F

is suppressed as well. Thus, observation of F � 1 is consistent with single MBSs and

one learns from it that not more than single MBSs are coupled to the respective leads.
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5.2 MBS detection via number of projective cur-

rent outcomes

In this section, we consider projective current measurements on a Majorana qubit as

studied in Ref. [11]. As in this reference, we consider a floating Majorana qubit with

two normal-conducting leads coupled to two different Majorana states in the presence

of an applied bias, see Fig. 5.2. The idea is to investigate the extent to which MBSs

and ABSs can be distinguished based on the number of distinct projective current out-

comes.

The charging Hamiltonian of the Majorana box qubit is again given by HC =

Ec (N − ng)2. In order to practically identify different current outcomes (stationary

currents), one has to measure the current multiple times projectively. To this end, we

propose the option to run two currents simultaneously to reset the qubit by temporarily

coupling the box qubit to a third lead as well. Let Nα be the number of MBSs coupled

γ0γ3

γ2 γ1
SC

λ0

λ2
t0,1

λ1
I2

V2.)

I1

γ0γ3

γ2 γ1

λ0

t0,1

λ1

V1.)

I1

SC

Figure 5.2: The two alternating stages of the protocol are displayed. Top: Stage of
projective measurement of the current 〈I1〉 [11] in the box qubit geometry. Only the
source lead 0 and a single drain lead 1 (thick black lines on the right) are being coupled
to the island, a bias is applied and an interference link t0,1 serves as direct tunneling
link. Bottom: Resetting stage of the box qubit, which prepares for the next projective
measurement iteration. Three leads are being coupled such that due to the biasing on
average the two currents I1 and I2 flow simultaneously. The dynamics during this stage
brings the qubit density matrix in the maximally mixed state as discussed in Subsection
4.4.2. After a certain time lead 2 is detached again and step 1.) is repeated.

108



CHAPTER 5. FURTHER NEW APPROACHES TO MBS DETECTION

to lead α. According to the discussion of Section 4.2, the effective Hamiltonian during

the projective measurement stage (upper half of Fig. 5.2) is given by

H̃T = (t0,1 +O10)
∑
k,k′

c†1,kc0,k′ + H.c., (5.14)

with O10 =
∑N0

i=1

∑N1

j=1 t
ij
1 (iγi1γ

j
0) and an interference link t0,1 between lead 1 and 0. For

a Majorana qubit (N0 = N1 = 1) with interference links t0 the current can take on two

values [11]

〈I1〉 = 2πν2V (|t0,1|2 + |t11
1 |2 + 2Re(t∗0t

11
1 )(iγ1

1γ
1
0)) (5.15)

defined by the eigenvalue of iγ1
1γ

1
0 that can take on the values ±1. Note that the bias

V needs to be finite in order to have a Pauli dependent current average. In the absence

of the interference link, i.e. t0,1 = 0, the same current average 〈I1〉 = 2πν2|t11
1 |2V is

measured in each iteration, irrespective of the state of the Majorana qubit. Now we

have to address the fact that during the measurement the qubit has been projected to

the corresponding eigenstate of iγ1
1γ

1
0 . Thus, a reset has to be carried out by changing

the qubit state such that the subsequent projective measurement has a finite chance

to yield all possible outcomes again. We achieve this by coupling lead 2 to one of the

TSC ends on the other side of the box qubit (see Fig. 5.2), which is far separated.

We assume lead 2 to be at the same potential as lead 1, such that a simultaneous

average flow of the two currents I1 and I2 sets in. For genuine MBSs, the central island

constitutes a Majorana qubit and the coupling of lead 2 implies that the evolution

equation ∂tρt = Γ [(iγ1
1γ

1
0)ρt(iγ

1
1γ

1
0)− ρt] + . . . for the reduced qubit density matrix ρt

gets modified according to

Γ
[
(iγ1

1γ
1
0)ρt(iγ

1
1γ

1
0)− ρt

]
→

2∑
α=1

Γ
[
(iγ1

αγ
1
0)ρt(iγ

1
αγ

1
0)− ρt

]
(5.16)

with Γ ≡ 4πν2|t1|2V . The additional decoherence term in Eq. (5.16) ensures that

the state of the qubit cannot remain in an eigenstate of σ1 = iγ1
1γ

1
0 . In fact, after a

timescale τreset ≡ Γ−1 the qubit density matrix has approached the maximally mixed

state ρ0 = 1
2
σ0, as discussed in Subsection 4.4.2. This means that after both currents

have been flowing for some time, the observed average current is given by 〈I1〉 =

2πν2V (|t0,1|2 + |t11
1 |2), as discussed in Subsection 4.4.2. Moreover, the shot noise S11 is

increased according to Eq. (4.79), when both currents flow simultaneously. After some
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time, lead 2 gets decoupled and the projective measurement of I1 has a finite chance of

either of the two possible outcomes (5.15) again. In summary, we propose the following

two-step protocol:

1. Measurement: The tunnel coupling λ2 connecting drain 2 and the MBS γ2 is

turned off (e.g. controlled via a gate) and 〈I1〉 gets measured projectively resulting

in a well defined (projective) average current (upper half of Fig. 5.2).

2. Reset of qubit state: To enable a next measurement which has again a finite

probability to yield all the possible current outcomes, the drain 2 gets coupled

such that the currents I1 and I2 flow simultaneously on average for a sufficient

time τ > Γ−1 (bottom half of Fig. 5.2).

Hence, multiple repetitions of the two-step protocol for t0,1 6= 0 allow to identify two

different stable current averages for a genuine Majorana qubit, which do not change

because the protocol leaves the relevant tunnel couplings unaffected.

On the other hand, in the case of ABSs the dimension of the Hilbert space spanned

by the MBSs coupled to the two leads 0 and 1 is bigger. The projective current mea-

surement can then result in more possible outcomes. Let us illustrate this for the case

N0 = N1 = 2 where we simplify the discussion by assuming t0,1, t
ij
1 ∈ R. In this case

the current operator is given by

〈I1〉 = 2πν2V

(
t20,1 +

2∑
i,j=1

[
(tij1 )2 + 2t0,1t

ij
1 (iγi0γ

j
1)
]

+ 2(t21
1 t

12
1 − t11

1 t
22
1 )γ1

0γ
2
0γ

1
1γ

2
1

)
.

(5.17)

This current operator generically gives rise to four different current outcomes. If the

interference link is switched off, t0,1 = 0, we have

〈I1〉 = V (g1 + g2γ
1
0γ

2
0γ

1
1γ

2
1), (5.18)

where we define the dimensionless tunnel conductances g1 = 2πν2
∑2

i,j=1(tij1 )2 and g2 =

4πν2(t21
1 t

12
1 − t11

1 t
22
1 ). Since the quartic product of Majorana operators γ1

0γ
2
0γ

1
1γ

2
1 has the

two possible eigenvalues ±1 there are still two different outcomes, 〈I1〉 = V (g1 ± g2).

Hence, we can conclude that for ABSs we can have four outcomes in the presence

of the interference path and two outcomes in its absence. Now we look at the cases

N0 = 1, N1 = 2 and N0 = 2, N1 = 1, i.e. we ask whether a single additionally coupled
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MBS can be detetced. We find that there is a single outcome for t0,1 = 0 and two

outcomes for t0,1 6= 0, just as in the case Nα = 1 (see Appendix F). Thus, summarizing

this discussion we arrive at the Table 5.2.

Number of MBSs coupled to lead α t0,1 6= 0 t0,1 = 0

N0 = N1 = 1 2 current outcomes 1 current outcome
N0 = 1, N1 = 2 or N0 = 2, N1 = 1 2 current outcomes 1 current outcome

N0 = N1 = 2 > 2 outcomes > 1 outcome

Table 5.2: Projective current measurement of I1 as a way to distinguish genuine MBSs
from ABSs: By repeating the steps 1.) and 2.) outlined in the main text and Fig.
5.2, the number of outcomes can be obtained. There are qualitative differences in this
number, which enable the distinction. The first row shows the result consistent with
single MBSs coupled to the leads 0 and 1. If more different outcomes are observed, the
presence of ABS can be inferred (third row) and the device is not a Majorana box qubit.
However, the number of outcomes is blind to a single additional MBS, see second row.

The number of current outcomes differs qualitatively, when step 1.) and 2.) are iterated

many times, depending on whether the source lead 0 and the drain lead 1 are each

coupled to single MBSs or ABSs. In particular, one should repeat the two stages

multiple times for a single device with and without the interference link connecting

leads 0 and 1. When more different current outcomes than predicted for MBSs can

be identified, the presence of ABSs can be inferred (see Table 5.2). Importantly, the

couplings λj0 and λj1 (see Fig. 5.2) stay unchanged throughout the protocol since only

the amplitudes λj2 get tuned e.g. via gating, which means that the value of the current

average for a given state is indeed unaffected.

The time scale for which the projective measurement has to be conducted to identify

an outcome can be estimated by the time

τproj '
〈I1〉

(∆I)2
(5.19)

it takes to reach a signal to noise ratio of order unity. Here we made use of the fact

that the noise S11 is given by the Schottky formula, S11 = 〈I1〉. The quantity ∆I

represents the difference in the current outcomes, which can be nearly degenerate in

highly fine tuned situations. For the example given in Eq. (5.18), we have ∆I = 2g2V .

For a Majorana qubit, N0 = N1 = 1, the difference in currents is ∆I = 8πν2V Re(t∗0,1t1)

leading to the timescale τproj ' (|t0,1|2 + |t1|2)/(32π
[
Re(t∗0,1t1)

]2
V ).
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5.3 Conclusions and outlook

In this chapter, we introduced two further protocols geared to identify genuine MBSs

in topological SC wires. The first is a current cross-correlation measurement protocol

for a Coulomb blockaded Majorana quantum wire with three tunnel coupled terminals.

The second is a projective conductance measurement protocol based on the number of

distinct current outcomes. In the following, we discuss these two experimental protocols

and compare them with each other, as well as with the weak simultaneous measurement

protocol of noncommuting Pauli operators presented in Chapter 4. We argue that the

latter is more desirable to be executed, because it yields more information related to

the fundamental nature of MBSs.

The first detection protocol of Majorana qubits presented in Section 5.1 leads to strong

observable differences distinguishing genuine MBSs and ABSs that are coupled to the

respective leads. The main advantage of the protocol is its ability to rule out ABSs

based on the observation of |F | = O(1). However, observing the signature F � 1 is

merely consistent with MBSs but does not contain a direct signature of the Majorana

states. This is because for a setting of non-interacting electrons, F is suppressed as

well. Thus, observation of F � 1 has to be interpreted as a result that is consistent

with MBSs, which implies that not more than single MBSs are coupled to the respective

leads. In this sense, the information gained is not comparable to the protocol presented

in Chapter 4. Nevertheless, it is useful to rule out multiple MBSs coupled to the drain

leads.

A new feature of the second protocol discussed in Section 5.2 is the alternation of

two stages as displayed in Fig. 5.2. This addresses the fact that after a projective

measurement of a single current a reset of the qubit state is necessary. We achieve

this reset by temporarily coupling a second drain lead to another MBS on the box,

resulting in the simultaneous flow of the two currents I1 and I2. We emphasize that the

experimental demonstration of this reset procedure reveals evidence of noncommuting

degrees of freedom on the box. This is because of the way that the average of the

current I1 and its noise level is affected depending on whether I2 is flowing or not.

The main shortcoming of the protocol is that the number of outcomes for the cases

N0 = 1, N1 = 2 and N0 = 2, N1 = 1 is the same as for N0 = N1 = 1. In contrast, the

protocol outlined in Chapter 4 can clearly identify single MBSs. We also emphasize

that the current outcomes are obtained under the same conditions (density of states,
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shape of the contacts, etc.) and that constant contributions to the current due to

quasiparticles are always present in each measurement iteration. For the protocol of

Section 5.2, the timescale τproj (see Eq. (5.19)), on which the current measurement can

be considered to be projective, must be shorter than the typical time scale after which

a quasiparticle poisoning event takes place. Those events could either occur due to

thermal excitation or due to a tunneling event from outside the island. Quasiparticle

poisoning events would cause a flip of the Pauli operator and hence a jump in the

average of the noisy current signal. Therefore, the applied bias must be large enough

such that τproj is shorter than the characteristic timescale of both of these quasiparticle

poisoning processes.

Finally, we can draw the following conclusion regarding the MBS detection: When the

three detection protocols presented in this dissertation are compared, the simultaneous

weak measurement approach of noncommuting operators described in Chapter 4 yields

the most information about the fundamental nature of MBSs. Hence, it is the most

desirable approach when it comes to practical implementation.
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Chapter 6

Overall conclusion and outlook

Improvements in the ability to more accurately manufacture and control quantum de-

vices are likely to lead to disruptive technological developments. The Majorana bound

state has been pursued in topological SCs for a number of years now, but its unam-

biguous confirmation has proven to be a particularly challenging task up to this day.

An attractive application of the Majorana state is the Majorana qubit, but, so far,

no functional device of this kind has been realized in the laboratory. In this thesis,

we have addressed this situation and studied the Majorana qubit in a two-fold way:

Firstly, by a thorough investigation of new TI nanoribbon architectures of Majorana

qubits as alternatives to the qubit architectures based on semiconductors in Chapter 3.

And secondly, by proposing new experimental methods and corresponding observable

predictions to perform the identification of Majorana qubits in Chapters 4 and 5.

As shown in Chapter 3, Majorana qubit architectures building on proximitized TI

nanowire segments of differing width promise to represent a suitable and flexible plat-

form with robust Majorana states. The manipulation of local electrochemical potentials

in these systems allows to control the coupling of pairs of MBSs. In Chapters 4 and 5,

three methods have been put forward and studied theoretically in detail. The protocol

of simultaneous weak measurement of noncommuting operators presented in Section 4.6

enables to identify the Majorana qubit devices with single MBSs and allows to extract

a clear signature of the nonlocal Pauli algebra. This is a clear advantage and makes

this protocol more efficacious than the two methods put forward in Chapter 5. In that

chapter, we found that measuring the shot noise in a setting with three leads and a

single Majorana quantum wire can be used to rule out more than a single MBS at
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the wire ends. However, for a genuine Majorana wire no direct signature of the MBSs

is accessed in this way. In contrast, the protocol of simultaneous weak measurement

of noncommuting operators presented in Section 4.6 clearly allows to extract a direct

signature of genuine MBSs. Hence, the latter represents the more desirable goal that

would clearly constitute experimental progress in the pursuit of the Majorana state.

Due to the accessibility of the necessary hardware, the milestone of establishing that

a given quantum device is a genuine Majorana qubit is realistically achievable in the

near term future. This quantum device could be engineered using TI nanoribbons as

outlined in Chapter 3, it could be made of the semiconducting wires that are studied

in several laboratories around the world, or it could be based on any other physical

platform in which zero-dimensional Majorana states are predicted. The experiments

have to be carried out in the Coulomb blockade regime at low temperatures and in the

tunneling limit. Here, one must not underestimate the task of shot noise measurement

in nanoscale systems where electrons pass the tunneling barriers individually. Never-

theless, one could argue that the protocol of Section 4.6 represents the most viable

option to identify Majorana states and the nonlocal Pauli algebra of the Majorana

qubit from the operational and practical standpoint. Successful observation of the pre-

dicted Majorana signature would provide further impetus to move on to realize full

braiding protocols, whose completion would constitute a remarkable breakthrough for

fundamental science.

Once under full control, the Majorana qubit becomes a building block for higher-level

applications and further experiments. For instance, it would be noteworthy to realize

a Majorana surface code [86, 87, 88], which is a two-dimensional network structure

as briefly discussed in Section 3.4. In conclusion, we anticipate that this work will

stimulate much needed experimental and theoretical progress in the field and bring us

closer to Majorana based quantum computation.
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Appendix A: Analysis of spinor wave functions

This part of the appendix provides additional details on the derivation of the results

presented in Chapter 3. To keep the formulas compact, we work in units with ~υ1 = 1.

We start by providing the explicit form of the eigenstates of the BdG Hamiltonian

(3.12),

Ψ(z) =


ΨL(z) , z ≤ −W/2,

ΨC(z) , |z| ≤ W/2,

ΨR(z) , z ≥ +W/2,

(6.1)

for the Majorana qubit platform shown in Fig. 3.3. Since we are interested in con-

structing Majorana bound states, we only consider energies below the superconducting

gap, |E| < ∆. We shall first write down general solutions of the BdG equation in each

of the three regions defined by the constriction length W . Using parameters A
(±)
1,2 , the

solution for |z| > W/2 vanishing exponentially at |z| → ∞ reads

ΨL(z) = e−
√

∆2−E2|z|

A(−)
1


E√

∆2 − E2

0

∆e−iφ/2

+ A
(−)
2


√

∆2 − E2

−E
∆e−iφ/2

0


 , (6.2)

ΨR(z) = e−
√

∆2−E2|z|

A(+)
1


E

−
√

∆2 − E2

0

∆eiφ/2

+ A
(+)
2


−
√

∆2 − E2

−E
∆eiφ/2

0


 , (6.3)
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where the first and second (third and fourth) component refers to the spin structure of

the particle (hole) part of the Nambu spinor. In the central region |z| < W/2 and with

coefficients B
(±)
1,2 , the solution is given by

ΨC(z) = e
√
M2

0−(E+µ)2zB
(+)
1 u+(E) + e−

√
M2

0−(E+µ)2zB
(−)
1 u−(E)

+e
√
M2

0−(E−µ)2zB
(+)
2 v+(E) + e−

√
M2

0−(E−µ)2zB
(−)
2 v−(E), (6.4)

with

u±(E) =


± (M0 + E + µ)√
M2

0 − (E + µ)2

0

0

 , v±(E) =


0

0

± (M0 − E + µ)√
M2

0 − (E − µ)2

 . (6.5)

Now one has to demand continuity of the spinor wave functions at the points z =

±W/2 , which translates into the conditions ΨL(−W/2) = ΨC(−W/2) and ΨC(W/2) =

ΨR(W/2). For eigenenergies with |E| < min(∆,M0) these conditions can be cast into

a zero-determinant condition

D(E) = 0. (6.6)

Here the corresponding determinant reads

D(E) =
∑
±

[
(2E2 −∆2)

(
a+a− ± µ2 ∓ E2

)
±M2

0 ∆2
]

cosh[(a− ± a+)W ]

+2E
√

∆2 − E2
∑
±

[(E − µ)a+ ± (E + µ)a−] sinh[(a− ± a+)W ]

−2∆2a+a− cosφ, (6.7)

with

a±(E) ≡
√
M2

0 − (E ± µ)2. (6.8)

The determinant D(E) is a symmetric function of energy, i.e. D(E) = D(−E), as

required by the particle hole symmetry of the superconductor. A robust feature found

by solving the Eq. (6.6) is the presence of subgap state solutions at

E = ±ε. (6.9)
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Under the self consistent condition |ε| � min(∆,M0), we expand D(E) up to second

order in E. For this we use the relation

a+(E)a−(E) = M2
0 − µ2 − M2

0 + µ2

M2
0 − µ2

E2 +O
(
E4
)

(6.10)

and obtain

D(E) =− 4(~υ1/ξ)
2∆2 cos2 (φ/2) + 2E2(~υ1/ξ)

−2
[
M4

0 + ∆2(µ2 + 2W 2µ4)

−M2
0 (3 + 2W 2∆2 + 4W∆)µ2 + 2(1 + 2W∆)µ4 + ∆2(M2

0 + µ2) cos (φ)

+M2
0 (∆2 + (~υ1/ξ)

2) cosh(2W/ξ) + 2M2
0 ∆(~υ1/ξ) sinh(2W/ξ)

]
+O

(
E4
)
.

(6.11)

Assuming W � ξ we obtain the following explicit expressions for the energies of the

above mentioned subgap states as

ε =

√
2(~υ1/ξ)

2∆ cos (φ/2)

M0

√
(∆2 + (~υ1/ξ)2) cosh(2W/ξ) + 2∆(~υ1/ξ) sinh(2W/ξ)

' cos

(
φ

2

)
2∆

M0

(~υ1/ξ)
2

∆ + ~υ1/ξ
e−W/ξ. (6.12)

This concludes the derivation of the hybridization formula Eq. (3.28).
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Appendix B: Effective tunnel Hamiltonian of three-

terminal device

This part of the appendix provides details on the derivation of the effective Hamilto-

nian (4.14) presented in Section 4.2. The series expansion for the effective tunneling

Hamiltonian is given by [96]

Heff ≡
∞∑
n=1

H
(n)
eff =

∞∑
n=1

P0HT

(
1

−HC

HT

)n−1

P0, (6.13)

where HC is the charging Hamiltonian and P0 is the projection operator onto the

definite charge ground state |N0〉 (see below). Furthermore, the microscopic tunneling

is described by

HT =
2∑

α=0

∑
k

Nα∑
j=1

λjαc
†
α,kγ

j
αe
−iφ/2 + H.c.. (6.14)

This perturbative procedure HC +HT → Heff is valid in the weak tunneling limit λiα �
∆, EC . Similar Hamiltonians have been previously derived, see Refs. [29, 30, 87, 88].

The Hamiltonian HC has the eigenvalues E(N) = Ec(N − ng)
2 with N the number

of island electrons and we assume to be far away from the charge degeneracy points

ng ∈
(
Z + 1

2

)
. Then, the ground state has a definite charge which we denote by N0.

We take into account fluctuations to the sectors of higher energy defined by the charge

states N0 ± 1. In the same way as in Ref. [30], we define the energy differences

E± = E(N0 ± 1) − E(N0). Since the operator eiφ/2 causes the addition of an electron

on the island, it follows that the first order contribution in the series 6.13 vanishes, i.e.

H
(1)
eff = P0HTP0 = 0. The first non-vanishing contribution is H

(2)
eff and gives

H
(2)
eff = P0HT

(
1

−HC

HT

)
P0

= −
∑
k,k′

2∑
α,α′=0

Nα∑
j=1

Nα′∑
j′=1

(
P0λ

j
αc
†
α,kγ

j
αe
−iφ/2λ

j
α(λj

′

α′)
∗

E−
eiφ/2γj

′

α′cα′,k′P0

+P0e
iφ/2γj

′

α′cα′,k′
(λj

′

α′)
∗λjα

E+

c†α,k′γ
j
αe
−iφ/2P0

)
+ H.c.. (6.15)
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We may write

Heff = H
(2)
eff +O

(
E−2
C

∣∣λjα∣∣3) . (6.16)

Therefore, the higher order terms are strongly suppressed in the limit of interest. We

split the effective Hamiltonian (6.15) into three different types of terms,

H
(2)
eff ≡ H̃T + H̃L + H̃ABS. (6.17)

The first type arises from contributions with α 6= α′ and leads to tunneling terms

connecting the leads α and α′. The corresponding Hamiltonian term reads

H̃T =
∑
k,k′

∑
α 6=α′

Nα∑
j=1

Nα′∑
j′=1

iλjα(λj
′

α′)
∗(E+ + E−)

E+E−
(iγjαγ

j′

α′)c
†
α,kcα′,k′ + H.c.. (6.18)

The effective amplitude for the single electron tunneling processes from α′ to α is given

by

tjj
′

1,αα′ = iλjα(λj
′

α′)
∗E+ + E−
E+E−

=
2iλjα(λj

′

α′)
∗

EC(1− 4∆ng)

' 2i
λjα(λj

′

α′)
∗

EC
, (6.19)

where we have used the assumption |N0 − ng| � 1 and thus arrive at the Hamiltonian

stated in Eq. (4.14). These second order cotunneling processes, where electrons tunnel

in and out at different terminals, are the most relevant for our purposes. For complete-

ness, we mention the two other types of processes: First, for α = α′ and j = j′ the

term H̃L up to a constant reads

H̃L =
∑
k,k′

2∑
α=0

Nα∑
i=1

|λiα|
2

(E− − E+)

E+E−
c†α,kcα,k′ + H.c. (6.20)

and renormalizes the lead potentials. This renormalization of the leads vanishes for

ng ∈ Z. Physically, this term originates in the process in which an electron tunnels

from the lead into γiα and subsequently from the same MBS back into the same lead.

Second, there is a type of term that is only present for Andreev bound states. It

originates in processes where an electron tunneling into an island MBS is accompanied
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by an electron tunneling back into the same lead from a different MBS, i.e. contributions

with α = α′ and j 6= j′:

H̃ABS =
∑
k,k′

2∑
α=0

∑
j 6=j′

λjα(λj
′

α )∗γjαγ
j′

α

[
E−1

+ cα,k′c
†
α,k − E

−1
− c†α,kcα,k′

]
+ H.c.. (6.21)

After tracing out the leads, these terms weakly renormalize the energy of the ABSs,

which does not affect the qualitative conclusions drawn in the counting statistics cal-

culations as shown in Appendix E.
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Appendix C: Further details on the derivation of the

master equation

In this part of the appendix, we provide further details on the derivation of the Bloch

Redfield equation supplementing the Subsections (4.3.3) and (4.3.4). In the procedure

of integrating out the lead degrees of freedom, one is confronted with expressions like

∞̂

0

dsTr
(
ρLQα0(t− s)Q†α0(t)

)
= ν2

¨
dεdωnF (ε) [1− nF (ε+ ω − V )]

∞̂

0

dseiωs,

(6.22)

with Qαβ =
∑

k,k′ c
†
α,kcβ,k′ . To make progress, we use the relation

∞̂

0

dseiωs = πδ(ω) + p.v.(
i

ω
), (6.23)

where “p.v.” refers to the Cauchy principal value. The finite temperature integrals

ˆ
dεnF (ε) [1− nF (ε+ ω)] = ωθ(ω) + |ω|nB(|ω|) (6.24)

and ˆ
dε [nF (ε)− nF (ε+ ω)] = ω (6.25)

are useful as well for dealing with expressions like the one stated in Eq. (6.22). This

results in the exemplary relations (4.52), (4.53) and (4.54) stated in the main text.

Moreover, one obtains the following term which contributes to the “Lamb shift” (4.59)

in the Bloch Redfield Eq. (4.58):

ˆ
dsTr

(
ρLeads(Q

†
α0(t− s)Qα0(t)−Qα0(t)Q†α0(t− s))

)
= ν2(iΛ + πV ). (6.26)

The terms proportional to the bias in the Bloch Redfield Eq. (4.58) arise from

ˆ
dsTr

(
ρLeads(Q

†
α0(t)Qα0(t− s) +Q†α0(t− s)Qα0(t))

)
= 2πν2V (1 + nB(V )), (6.27)
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where nB(V ) is the Bose function which is negligible in the limit T � V . Terms

proportional to temperature in the Bloch Redfield equation arise from

ˆ
dsTr

(
ρLeads(Q

†
12(t)Q12(t− s) +Q†12(t− s)Q12(t))

)
= 2πν2T. (6.28)

The Hamiltonian Hq generating the unitary evolution term in the Markovian Master

Eq. (4.58) in the limit T � V � Λ is derived by noting that we can neglect the

expression

p.v.

ˆ
dω
|ω − V |

ω
nB(|ω − V |) ' p.v.

∞̂

0

dω

(
ω

V + ω
+

ω

V − ω

)
nB(ω)

' 2T 2

V

∞̂

0

dx
x

ex − 1
' 3.29

T 2

V
. (6.29)

Therefore, the contributions to the Hamiltonian evolution term in the Bloch Redfield

equation for t0 = 0 arise from terms such as

∂

∂t
ρ = iν2

¨
dεdω

(
[Oα0O†α0, ρ]

nF (ε) [1− nF (ε+ ω − V )]

ω

−[O†α0Oα0, ρ]
nF (ε+ ω − V ) [1− nF (ε)]

ω

)
+ . . .

= iν2

ˆ
dω

(
[Oα0O†α0, ρ]

ω − V
ω

θ(ω − V )

+[O†α0Oα0, ρ]
ω − V
ω

θ(−ω + V )

)
+ . . .

= i
ν2Λ

2
[{O†α0,Oα0}, ρ]− iν2V (1 + ln(Λ/2V ))

2∑
α=1

[[Oα0,O†α0], ρ] + . . .(6.30)

Thus, the Hamiltonian evolution in the master equation is generated by

Hq = −ν2

2∑
α=1

((Λ− iπV )t∗0Oα0 + H.c.)− ν2Λ

2

∑
α<β

{O†αβ,Oαβ}

+ν2V (1 + ln(Λ/2V ))
2∑

α=1

[Oα0,O†α0], (6.31)

which in the limit V � Λ leads to the Hamiltonian (4.58) stated in the main text.
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Appendix D: Counting statistics for Majorana box

qubit

Appendix D provides additional details on the derivation of Eq. (4.64) from the evolu-

tion Eq. (4.60) stated in Section 4.4. Starting from the parametrization ρ =
∑3

µ=0 ρµσµ,

we rewrite the right hand side of Eq. (4.60). The decoherence term can be cast in the

form

∑
α>α′

Γ̃αα′

2
((iγαγα′)ρ̃t(iγαγα′)− ρ̃t) = −(Γ̃20 + Γ̃21)ρ1σ1 − (Γ̃10 + Γ̃21)ρ2σ2

−(Γ̃10 + Γ̃20)ρ3σ3. (6.32)

Using

t∗0t1σαρ̃t + t0t
∗
1ρ̃tσα = Re(t∗0t1) {σα, ρ̃t}+ iIm(t∗0t1) [σα, ρ̃t] , (6.33)

we see that the remaining terms are commutator and anticommutator terms. The

former can be written as

− i
3∑

k=1

[hkσk, ρ] = 2
3∑

k,l,m=1

εklmhkρlσm, (6.34)

while the latter obey

∑
k

Ωk

2
{σk, ρ} = ρ0

∑
k

Ωkσk +
∑
k

Ωkρkσ0. (6.35)

By combining these relations, we obtain the matrix elements Ωµν as given by Eq. (4.65).

We now derive the Eqs. (4.90) and (4.91) showing the effect of the inclusion of a finite

hybridization

H̃q → H̃q + ε3σ3 (6.36)

on the current cross-correlations. The inclusion of this term leads to the modification

Ω → Ω̃ of the matrix given in Eq. (4.65) with

Ω̃ =


0 a1 a2 0

a1 −Γ̃20 − Γ̃21 2ε3 h2

a2 −2ε3 −Γ̃10 − Γ̃21 −h1

0 −h2 h1 −Γ̃10 − Γ̃20

 . (6.37)
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Here, ε3 is defined as in Eq. (6.36) and aα = 4πV ν2Re(t∗0t1)(zα − 1), hα =

−4ν2ΛRe(t∗0t1) − 4πν2V Im(t∗0t1)eiχα . The Fano factor derived from the corresponding

evolution equation defined by Ω̃ is given by

F ′ =
2Λ2ν4 [Re(t∗0t1)]4(

Λ2 [ν2Re(t∗0t1)]2 + ε2
3

)
|t1|2 (|t0|2 + |t1|2)

, (6.38)

which coincides with the result stated in Eq. (4.90) in Subsection 4.4.5.
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Appendix E: Counting statistics for ABSs

This part of the appendix is focused on giving additional details on the derivation of

the results presented in Section 4.5. To solve the Bloch Redfield Eq. (4.93), we use

Pauli matrices to parametrize the density matrix as

ρ =
3∑

µ=0

3∑
ν=0

3∑
λ=0

ρµνλσµ ⊗ σν ⊗ σλ. (6.39)

The density matrix is defined in the eight-dimensional Hilbert space corresponding to

three fermions. There are two MBSs γ1
α and γ2

α coupled to each lead α. We choose the

following matrix representation of the resulting Majorana bilinears:

iγ1
1γ

1
0 = σ0 ⊗ σ1 ⊗ σ0, iγ1

2γ
1
0 = σ2 ⊗ σ2 ⊗ σ0, iγ2

1γ
1
1 = σ0 ⊗ σ2 ⊗ σ2,

iγ1
0γ

2
1 = σ0 ⊗ σ3 ⊗ σ2, iγ1

0γ
2
2 = σ1 ⊗ σ2 ⊗ σ0, iγ1

0γ
2
0 = σ3 ⊗ σ2 ⊗ σ0,

iγ1
1γ

2
0 = σ3 ⊗ σ3 ⊗ σ0, iγ1

2γ
2
0 = σ1 ⊗ σ0 ⊗ σ0, iγ2

2γ
1
2 = σ3 ⊗ σ0 ⊗ σ0,

iγ2
1γ

2
0 = σ3 ⊗ σ1 ⊗ σ2, iγ2

2γ
2
0 = σ2 ⊗ σ0 ⊗ σ0. (6.40)

The products of four and six Majorana operators are then expressed by the matrices

γ1
1γ

2
1γ

1
0γ

2
0 = σ3 ⊗ σ0 ⊗ σ2,

γ1
2γ

2
2γ

1
0γ

2
0 = σ0 ⊗ σ2 ⊗ σ0,

γ1
1γ

2
1γ

1
2γ

2
2 = −σ3 ⊗ σ2 ⊗ σ2. (6.41)

For the product of all six Majorana operators we have

iγ1
0γ

2
0γ

1
1γ

2
1γ

1
2γ

2
2 = −σ0 ⊗ σ0 ⊗ σ2. (6.42)

The counting statistics follows from the trace of the generalized density matrix, which

is given by Trq (ρτ (χ1, χ2)) = 8ρ000,τ (χ1, χ2). This implies that soley the element ρ000,t

is important, which as we will see couples only to some of the other elements ρµνλ,t.

To express the Bloch Redfield equation in this parametrization of the density matrix,

we use relations of the following type (omitting the ⊗-symbols for brevity) for the
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anticommutators,

{γ1
1γ

2
1 , ρ} = 2(−ρ000σ0σ2σ2 − ρ022σ0σ0σ0 − ρ300σ3σ2σ2 − ρ322σ3σ0σ0 − ρ020σ0σ0σ2

−ρ002σ0σ2σ0 − ρ302σ3σ2σ0 − ρ320σ3σ0σ2 + . . . , (6.43)

{γ1
2γ

2
2γ

1
0γ

2
0 , ρ} = 2(ρ000σ0σ2σ0 + ρ020σ0σ0σ0 + ρ300σ3σ2σ0 + ρ320σ3σ0σ0 + ρ322σ3σ0σ2

+ρ302σ3σ2σ2 + ρ022σ0σ0σ2 + ρ002σ0σ2σ2 + . . . . (6.44)

Furthermore, we make use of relations like

(iγ1
2γ

1
0)ρ̃(iγ1

2γ
2
0)− (iγ1

2γ
2
0)ρ̃(iγ1

2γ
1
0) = 2i(−ρ000σ3σ2σ0 + ρ320σ0σ0σ0 + ρ300σ0σ2σ0

−ρ020σ3σ0σ0 + ρ322σ0σ0σ2 − ρ002σ3σ2σ2

−ρ022σ3σ0σ2 + ρ302σ0σ2σ2 + . . . . (6.45)

In analogy to our analytical treatment of the Majorana box qubit, it is convenient to

reparametrize the time variable according to ρt = eθtρ̃t with

θ = 2πν2V
2∑

α=1

2∑
i,j=1

|tijα0|2(eiχα − 1). (6.46)

For Nα = 2 without interference links, t0 = 0, we find that the element ρ000,t is coupled

only to seven of the other elements ρµνλ,t. The differential equation is given by

∂

∂t
ξ(t) = (θI +M)ξ(t), (6.47)

where we have defined the quantity

ξ(t) = (ρ000,t, ρ022,t, ρ300,t, ρ320,t, ρ302,t, ρ020,t, ρ322,t, ρ002,t)
T . (6.48)

Furthermore, we have defined

θ = 2πν2V
2∑

α=1

2∑
i,j=1

|tijα0|2(eiχα − 1). (6.49)
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Furthermore, we obtain M/2 =



0 c1,− c2,− −b1,− − b2,− a1,− a2,− 0 0

−c1,+ −d1 0 −a1,+ b1,+ − b2,− 0 c2,− a2,−
−c2,+ 0 −d2 −a2,+ 0 −b1,− + b2,+ c1,− a1,−

b1,+ + b2,+ −a1,+ −a2,+ −d1 − d2 −c1,+ −c2,+ 0 0

a1,− −b1,− + b2,+ 0 c1,− −d2 0 −a2,+ −c2,+
a2,− 0 b1,+ − b2,− c2,− 0 −d1 −a1,+ −c1,+
0 −c2,+ −c1,+ 0 −a2,+ −a1,+ −d1 − d2 b1,+ + b2,+
0 a2,− a1,− 0 c2,− c1,− −b1,− − b1,− 0



(6.50)

for the matrix defined in Eq. (6.47). Here, we have defined the following two quantities

for α = 1, 2

aα,± = 2πν2V Re
(
t11
1,α0(t22

1,α0)∗ − t21
1,α0(t12

1,α0)∗
)

(eiχα ± 1), (6.51)

bα,± = 2πν2V
2∑
j=1

Im(tj11,α0(tj21,α0)∗)(eiχα ± 1). (6.52)

Furthermore, we have defined

cα,± = 2πν2V
2∑
j=1

Im(t1j1,α0(t2j1,α0)∗)(eiχα ± 1), (6.53)

dα = 2πν2V
2∑

i,j=1

|tij1,α0|2eiχα . (6.54)

Taking derivatives of the resulting generating function Trq (ρτ (χ1, χ2)) generically yields

a Fano factor of order one as claimed in the main text.

In the special case N0 = 2 and N1,2 = 1 discussed in the main text, we find that

the Bloch Redfield equation couples the element ρ000,t only to ρ320,t. Concretely, this

is expressed by the relation ∂tξ̃(t) = (θ̃I + M̃)ξ̃(t), where we have defined ξ̃(t) =

(ρ000,t, ρ320,t)
T and the matrix θ̃I + M̃ is stated in the main text in Eqs. (4.95) and

(4.96). The eigenvalue of θ̃I + M̃ which vanishes at zero counting parameters yields

the cumulant generating function. In the case N0 = 1 and N1,2 = 2 discussed in

the main text, we find ∂tξ
′(t) = (θ′I + M ′)ξ′(t), where we have defined the quantity

ξ′(t) = (ρ000,t, ρ022,t, ρ300,t, ρ322,t)
T . The matrix θ′I+M ′ is the one stated in Eqs. (4.101)

and (4.102) in the main text and its eigenvalue vanishing at zero counting parameters

once again yields the cumulant generating function.
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Appendix F: Further new approaches to MBS detec-

tion

In this part of the appendix, we provide details on derivations supplementing Chapter

5. First, we derive the effective tunnel Hamiltonians stated in Eqs. (5.2) and (5.4) for

the device shown in Fig. 5.1 in Section 5.1. We start from the microscopic tunneling

Hamiltonian

HT =

NL∑
j=1

∑
k

[
λj0c
†
0,kγ

j
Le
−iφ/2 + H.c.

]
+

NR∑
j=1

∑
k

[
(λj1c

†
1,k + λj2c

†
2,k)γ

j
Re
−iφ/2 + H.c.

]
(6.55)

to derive the effective Hamiltonian along the lines of Appendix B. We again assume the

integer N0 in units of the elementary charge to be the equilibrium charge. The tunable

backgate parameter is given by ng = N0 + ∆ng with a small detuning, ∆ng � 1.

Furthermore, we again define E± = EC(N0 ± 1−∆ng)
2 − EC(N0 −∆ng)

2. Compared

to the derivation of Appendix B, a qualitatively different term arises due to the fact

that a single wire end is being coupled to two different leads. The new type of term is

denoted ηj (see below) and describes processes where an electron tunneling from lead 2

into γiR is accompanied by an electron tunneling out of γiR into lead 1. For the effective

tunneling Hamiltonian we obtain

Heff = P0HTP0 + P0HT

(
1

−HC

HT

)
P0 + . . .

=
∑
k,k′

[(
η1 + η2 + t12

12(iγ1
Rγ

2
R)
)
c†1,kc2,k′ + H.c.

]

+
2∑

α=1

NL∑
j=1

NR∑
j′=1

∑
k,k′

[
tjj
′

α0(iγjRγ
j′

L )c†α,kc0,k′ + H.c.
]

+ . . . (6.56)
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with

ηj = λj1(λj2)∗
E− − E+

E+E−

= −λ
j
1(λj2)∗

EC

4∆ng
1− 4∆ng

' −4∆ngλ
j
1(λj2)∗

EC
(6.57)

and tijαα′ ' 2iλiα(λjα′)
∗/EC . Thus, we arrive at the effective tunneling Hamiltonians (5.2)

and (5.4).

We now go on to derive the counting statistics. The equation governing the time

evolution of the reduced generalized density matrix ρt(χ1, χ2) in the Hilbert space cor-

responding to the Majorana operators γjL/R has been stated in the main text in Eq.

(5.5). In the case of the genuine topological Majorana wire, we have NL/R = 1 and the

evolution equation takes on the form

∂

∂t
ρt = 2πν2V

2∑
α=1

∣∣t11
α0

∣∣2 [eiχα(iγ1
Rγ

1
L)ρt(iγ

1
Rγ

1
L)− ρt

]
+4πν2T

∣∣η1
∣∣2 (cos (χ1 − χ2)− 1) ρt. (6.58)

The corresponding cumulant generating function reads

τ−1 ln Trqρτ (χ1, χ2) = 2πν2V
2∑

α=1

|t11
α0|2(eiχα − 1)

+4πν2T
∣∣η1
∣∣2 (cos (χ1 − χ2)− 1) (6.59)

and results in Eq. (5.10) as well as the Fano factor |F | = O
(
∆ng

T
V

)
.

Now, we turn to Andreev bound states in which case there are generically strong cross-

correlations with the Fano factor |F | = O(1). To demonstrate this, we consider NR = 2,

NL = 1, as discussed in the main text. Then, the zero temperature evolution equation
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takes on the form

∂

∂t
ρt = −i[Hq, ρt] + 2πν2V

(
2∑

α=1

2∑
j=1

|tj1α0|2
[
eiχα(iγjRγ

1
L)ρt(iγ

j
Rγ

1
L)− ρt

]
+

2∑
α=1

eiχα [t11
α0(t21

α0)∗(iγ1
Rγ

1
L)ρt(iγ

2
Rγ

1
L) + (t11

α0)∗t21
α0(iγ2

Rγ
1
L)ρt(iγ

1
Rγ

1
L)]

+
2∑

α=1

Im(t11
α0(t21

α0)∗){iγ1
Rγ

2
R, ρt}

)
. (6.60)

The unitary part of the dynamics is generated by an effective Hamiltonian Hq ∼ iγ1
Rγ

2
R.

We represent the Majorana bilinears using the Pauli matrices, σ1 = iγ1
Rγ

1
L, σ2 = iγ2

Rγ
1
L

and σ3 = iγ2
Rγ

1
R, and parametrize the density matrix via ρt =

∑3
µ=0 ρµ,tσµ. Here, the

element ρ0,t, which determines the trace, is coupled only to ρ3,t according to

∂

∂t
ξ̂(t) =

(
θ̂ I + M̂

)
ξ̂(t) (6.61)

with ξ̂(t) = (ρ0,t, ρ3,t)
T . The matrix M̂ is given by

M̂ = 4πν2V
2∑

α=1

(
0 (eiχα − 1) Im(t11

α0(t21
α0)∗)

− (eiχα + 1) Im(t11
α0(t21

α0)∗) −eiχα
∑2

j=1 |t
j1
α0|2

)
(6.62)

and we have defined θ̂ = 2πν2V
∑2

α=1

∑2
j=1 |t

j1
α0|2(eiχα − 1). We can find the generating

function, Z ≡ ln Trq (ρτ (χ)), by solving the linear system of differential equations

defined by (6.61). The resulting cumulant generating function in the long time limit is

given by

τ−1 ln Trq (ρτ (χ)) = 2πν2V

(
−

2∑
α=1

2∑
j=1

|tj1α0|2

+

√√√√( 2∑
α=1

2∑
j=1

eiχα|tj1α0|2
)2

− 4
∏
±

[
2∑

α=1

(eiχα ± 1) ηα

] ,(6.63)

where we have defined the interference parameter ηα = Im(t11
α0(t21

α0)∗). By performing

derivatives with respect to the counting parameters, we arrive at the cross-correlation

formula (5.12).
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Finally, we provide details on the derivation of the number of possible stationary current

values for N0 = 2, N1 = 1 for general parameters tjj
′

αα′ . To this end, we set tj120 = χ2 = 0

in Eq. (6.63). Calculating the stationary current 〈I1〉 = −iτ−1 ∂χ1 ln Trq (ρτ )|χ=(0,0),

shows that in the absence of an interference link there is a single current outcome as

claimed in Section 5.2. The same statement can be shown analogously for N0 = 2,

N1 = 1. When a reference arm is present, t0 6= 0, there are two distinct current

outcomes.

133



Appendices

134



Bibliography

[1] P. A. M. Dirac, "The Quantum Theory of the Electron", Proc. Roy. Soc. A117:

610-624 (1928).

[2] E. Majorana, L. Maiani, “A symmetric theory of electrons and positrons”, In:

Bassani G.F., Council of the Italian Physical Society (eds) Ettore Majorana Sci-

entific Papers. Springer, Berlin, Heidelberg (2006).

[3] S. R. Elliott and M. Franz, “Colloquium: Majorana fermions in nuclear, particle,

and solid-state physics”, Rev. Mod. Phys. 87, 137 (2015).

[4] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state

systems”, Rep. Prog. Phys. 75 076501 (2012).

[5] M. Sato and Y. Ando, “Topological superconductors: a review”, Rep. Prog. Phys.

80, 076501 (2017).

[6] A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires”, Usp. Fiz. Nauk

(Suppl) 171, 131 (2001).

[7] L. Fu and C. L. Kane, “Superconducting Proximity Effect and Majorana Fermions

at the Surface of a Topological Insulator”, Phys. Rev. Lett. 100, 096407 (2008).

[8] Y. Oreg, G. Refael, and F. von Oppen, “Helical Liquids and Majorana Bound

States in Quantum Wires”, Phys. Rev. Lett. 105, 177002 (2010).

[9] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana Fermions and a Topolog-

ical Phase Transition in Semiconductor-Superconductor Heterostructures”, Phys.

Rev. Lett. 105, 077001 (2010).

[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian

anyons and topological quantum computation”, Rev. Mod. Phys. 80, 1083 (2008).

135



BIBLIOGRAPHY

[11] S. Plugge, A. Rasmussen, R. Egger and K. Flensberg, “Majorana box qubit”,

New J. Phys 12, 012002 (2017).

[12] T. Karzig et. al., “Scalable designs for quasiparticle-poisoning-protected topolog-

ical quantum computation with Majorana zero modes”, Phys. Rev. B 95, 235305

(2017).

[13] A. Cook and M. Franz, “Majorana Fermions in Proximity-coupled Topological

Insulator Nanowires”, Phys. Rev. B 84, 201105(R) (2011).

[14] A. M. Cook, M. M. Vazifeh, and M. Franz, “Stability of Majorana Fermions in

Proximity-Coupled Topological Insulator Nanowires”, Phys. Rev. B 86, 155431

(2012).

[15] R. M. Lutchyn et. al., ”Majorana zero modes in superconductor–semiconductor

heterostructures”, Nature Reviews Materials 3, 52–68 (2018).

[16] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors”, Rev.

Mod. Phys. 83, 1057 (2011).

[17] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators”, Rev. Mod.

Phys. 82, 3045 (2010).

[18] C. W. J. Beenakker, “Search for Majorana fermions in superconductors”, Annu.

Rev. Con. Mat. Phys. 4, 113 (2013).

[19] M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and

Majorana fermions”, Semicond. Sci. Technol. 27, 124003 (2012).

[20] R. Aguado, “Majorana quasiparticles in condensed matter”, Riv. Nuovo Cim, 40,

523 (2017).

[21] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, “Topological insula-

tors and superconductors: tenfold way and dimensional hierarchy”, New J. Phys

12, 065010 (2010).

[22] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in mesoscopic

normal-superconducting hybrid structures”, Phys. Rev. B 55, 1142 (1997).

[23] A. Kitaev, “Periodic table for topological insulators and superconductors”, AIP

Conf. Proc. 1134, 22–30 (2009).

136



BIBLIOGRAPHY

[24] A. Altland and B. D. Simons, “Condensed Matter Field Theory”, Cambridge

University Press, second edition (2010).

[25] B. Béri and N. R. Cooper, “Topological Kondo Effect with Majorana Fermions”,

Phys. Rev. Lett. 109, 156803 (2012).

[26] A. Altland, B. Béri, R. Egger, and A. M. Tsvelik, “Multichannel Kondo Impurity

Dynamics in a Majorana Device”, Phys. Rev. Lett. 113, 076401 (2014).

[27] Y. V. Nazarov and Y. M. Blanter, “Quantum transport”, Cambridge University

Press (2009).

[28] B. Béri, “Majorana-Klein Hybridization in Topological Superconductor Junc-

tions”, Phys. Rev. Lett. 110, 216803 (2013).

[29] L. Fu, “Electron Teleportation via Majorana Bound States in a Mesoscopic Su-

perconductor”, Phys. Rev. Lett. 104, 056402 (2010).

[30] S. Vijay and L. Fu, “Teleportation-based quantum information processing with

Majorana zero modes”, Phys. Rev. B 94, 235446 (2016).

[31] S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen,

J. Nyg̊ard, P. Krogstrup, J. Danon, K. Flensberg, and C. M. Marcus, “Transport

Signatures of Quasiparticle Poisoning in a Majorana Island”, Phys. Rev. Lett.

118, 137701 (2017).

[32] D. Pekker, C.-Y. Hou, V. E. Manucharyan, and E. Demler, ”Proposal for Coherent

Coupling of Majorana Zero Modes and Superconducting Qubits Using the 4π

Josephson Effect”, Phys. Rev. Lett. 111, 107007 (2013).

[33] D. V. Averin and Yu. V. Nazarov, “Virtual electron diffusion during quantum

tunneling of the electric charge”, Phys. Rev. Lett. 65, 2446 (1990).

[34] A. M. Whiticar, A. Fornieri, E. C. T. O’Farrell, A. C. C. Drachmann, T.

Wang, C. Thomas, S. Gronin, R. Kalla-her, G. C. Gardner, M. J. Man-

fra, C. M. Marcus, and F. Nichele, “Interferometry and coherent single-

electron transport through hybrid superconductor-semiconductor Coulomb is-

lands”, arXiv:1902.07085 (2019).

137



BIBLIOGRAPHY

[35] D. A. Ivanov, “Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Su-

perconductors”, Phys. Rev. Lett. 86, 268 (2001).

[36] C. W. J. Beenakker, “Search for non-Abelian Majorana braiding statistics in

superconductors”, arXiv:1907.06497.

[37] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher , “Non-Abelian

statistics and topological quantum information processing in 1D wire networks”,

Nature Physics volume 7, pages 412–417 (2011).

[38] F. Hassler, “Majorana Qubits”, In "Quantum Information Processing. Lecture

Notes of the 44th IFF Spring School 2013", edited by D. P. DiVincenzo, Verlag

des Forschungszentrums Jülich (2013).
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