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Abstract 

The prevalence of overweight (BMI >25 kg/m²) and obesity (BMI >30 kg/m²) are increasing on a global 

scale, and as a consequence, obesity among women of reproductive age has also increased within the 

last decades. Obesity before and during pregnancy is associated with a higher risk for the mother and 

the unborn child to develop pregnancy related complications, including gestational diabetes and 

disturbed fetal growth. Abnormal fetal growth has been linked to placental dysfunction and can translate 

into childhood and adolescence health issues, resulting in high socio-economic costs.  

Obesity and pregnancy are both linked to a state of increased inflammation and oxidative stress, which 

in case of pregnancy may be relevant to initiate the birth process at the end of pregnancy, but 

concomitant with obesity, can also attribute to placental dysfunction. The placenta provides essential 

tasks during pregnancy in both oxygen and nutrient supply, as well as waste removal and contributes 

to the success of pregnancy also by the production of hormones. In order to properly fulfill its function, 

placental cell homeostasis, structure and vascularization are of tremendous importance. However, it is 

still not fully understood how maternal obesity (MO) affects placental cells and processes like 

vascularization and placental transfer capacity. Therefore, we aimed to decipher the effects of MO on 

the placental feto-maternal transfer zone which constitutes the interface for transport of oxygen, 

nutrients and removal of waste products between maternal and fetal circulation. 

In order to address these questions, we induced obesity in C57BL/6N mice via feeding a high fat diet 

(HFD) after weaning until the end of the experiment and collected serum, placentas and epigonadal 

white adipose tissue (egWAT) for analyses at various gestation days (E11.5, E15.5 and E18.5). Lean 

mice, receiving a standard diet (SD), served as control.  

We discovered that in obese dams, gestation was prolonged for about 1 day compared to lean dams, 

and speculate that this might be due to a reduced leukocyte-infiltration of placentas and pro-

inflammatory factor expression in egWAT of obese dams compared to lean dams shortly before 

parturition (E18.5). Furthermore, in our mouse model of maternal obesity, embryos of obese dams 

developed an intrauterine growth restriction (IUGR) at the beginning of the third trimester of gestation 

(E15.5). At the same time, protein and mRNA level of endothelial cell (EC) marker were reduced in 

placentas, and stereological analysis revealed impaired vascularization in placentas of obese dams. 

This was accompanied by increased EC senescence in the transfer zone of placentas under MO. We 

also found elevated interleukin-6 (IL-6) level in maternal serum and observed a trend towards an 

increase in IL-6 mRNA and protein level in egWAT of obese dams compared to controls, suggesting 

this tissue as the source of elevated circulating IL-6 level. In cell culture assays using human placental 

EC, we then confirmed that stimulation with IL-6 can induce senescence, suggesting a link between 

elevated serum IL-6 level, placental EC senescence and impaired placental vasculature.  

Based on the findings regarding IL-6 induced EC senescence in vitro and altered placental 

vascularization in vivo, we subjected obese dams to an anti-IL-6 signaling antibody therapy. We found 

that under this therapy, placental IL-6 protein level were elevated and down-stream signaling marker 

level seemed reduced, which indicates successful IL-6 signaling blockade. However, antibody therapy 
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did not prevent lower fetal weight at E15.5, and placental vascular marker level were reduced compared 

to obese controls without antibody therapy. In summary, anti-IL-6 signaling therapy may not alleviate 

HFD-induced defects in placental vascularization and IUGR, and warrants further investigation with 

additional dosing. 

Proteomic profiling of the feto-maternal transfer zone moreover revealed a reduced level of the adherens 

junctions (AJ) marker E-cadherin in obese compared to lean dams at E15.5. This was confirmed in 

whole placenta lysates of obese compared to lean dams concomitant with a strong tendency towards 

reduced β-catenin level, an intracellular adaptor protein of AJ. These changes persisted until the end of 

pregnancy (E18.5) in placentas of obese dams, while at mid-gestation (E11.5) we could not observe 

altered AJ marker level. In addition, it was found that at E15.5 the ultrastructure and cell homeostasis in 

the transfer zone were affected by MO, as demonstrated by defective syncytial fusion and a disrupted 

basement membrane. In functional assays we then showed that passive transfer across the placenta 

was significantly increased under MO, while active glucose transport was unaltered at E15.5. Moreover, 

our in vitro studies suggest that fatty acids, present in excess in our HFD, can alter trophoblast cell layer 

permeability and cause reduced β-catenin level. Collectively, these findings strongly suggest that MO 

causes disruptions in the feto-maternal transfer zone via disturbed EC and trophoblast homeostasis, 

leading to a “leaky” placental barrier while embryos develop an IUGR.  

A healthy lifestyle with limited intake of fatty acids and prevention of obesity in women of childbearing 

age could therefore, in case of pregnancy, support proper placental function and reduce the risk of fetal 

growth restriction. 
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Zusammenfassung 

Die Prävalenz von Übergewicht (BMI >25 kg/m²) und Adipositas (BMI >30 kg/m²) haben in der 

Bevölkerung weltweit deutlich zugenommen, und infolgedessen sind über die letzten Jahrzehnte auch 

immer mehr Frauen im gebärfähigen Alter von Übergewicht betroffen. Übergewicht und Adipositas vor 

und während der Schwangerschaft sind mit einem höheren Risiko für die Mutter und das ungeborene 

Kind verbunden Schwangerschafts-Komplikationen wie beispielsweise Gestationsdiabetes und ein 

gestörtes fötales Wachstum zu entwickeln. Anormales fötales Wachstum wird dabei oft mit einer 

Funktionsstörung der Plazenta in Verbindung gebracht und kann zu langfristigen gesundheitlichen 

Problemen bis ins Erwachsenenalter führen, was hohe sozioökonomische Kosten zur Folge hat. 

Übergewicht und Schwangerschaft sind jeweils mit einem Zustand erhöhter systemischer Inflammation 

und oxidativem Stress verbunden, die, im Fall einer Schwangerschaft allein, für das Einsetzen des 

Geburtsvorgangs von Bedeutung sein können, doch in Verbindung mit Übergewicht auch zu einer 

plazentaren Dysfunktion führen können. Die Plazenta erfüllt wesentliche Aufgaben, insbesondere die 

Versorgung des Fötus mit Sauerstoff und Nährstoffen sowie den Abtransport von Abfallstoffen und trägt 

durch die Produktion von Hormonen und anderen Faktoren zu einer gesunden Schwangerschaft bei. 

Für eine optimale Funktion der Plazenta sind Faktoren wie die Homöostase der plazentaren Zellen 

sowie die Vaskularisierung und der korrekte Aufbau der plazentaren Struktur von enormer Bedeutung. 

Es ist jedoch noch nicht hinreichend bekannt, wie mütterliches Übergewicht (MÜ) die Zellen und 

Gefäßentwicklung der Plazenta nebst der plazentaren Transferkapazität beeinflusst. 

Aus diesem Grund ist es Ziel der vorliegenden Arbeit, die Effekte des MÜ auf die plazentare feto-

maternale Transferzone, welche die entscheidende Schnittstelle für den Transfer von Sauerstoff, 

Nährstoffen und Abfallstoffen zwischen mütterlichem und fötalem Kreislauf darstellt, zu entschlüsseln. 

Zur Erforschung dieser Fragestellung wurde mütterliches Übergewicht mittels Hochfett-Diät (HFD) in 

C57BL/6N-Mäusen induziert, um Blutserum, Plazenten und epigonadales weißes Fettgewebe (egWAT) 

von verschiedenen Trächtigkeitstagen (E11.5, E15.5, E18.5) für Analysen zu gewinnen. 

Normalgewichtige Mäuse, die eine Standard-Diät (SD) erhielten, dienten als Kontrollgruppe. 

Wir konnten feststellen, dass sich, verglichen mit schlanken Kontrolltieren, in übergewichtigen 

Muttertieren die Trächtigkeit um einen Tag verlängerte. Unsere Daten lassen den Schluss zu, dass eine 

verminderte Leukozyten-Infiltration der Plazenten sowie eine verminderte Expression pro-

inflammatorischer Faktoren im egWAT übergewichtiger Muttertiere kurz vor Ende der Trächtigkeit 

(E18.5) als Ursache für diese Beobachtung in Frage kommen.  

Embryos der übergewichtigen Muttertiere zeigten zu Beginn des letzten Trimenon der Trächtigkeit 

(E15.5) eine intrauterine Wachstumsretardierung (IUGR). Zeitgleich waren Protein- und mRNA-Level 

von Endothelzellmarker herunterreguliert und stereologische Analysen zeigten eine gestörte 

Gefäßentwicklung in Plazenten übergewichtiger Muttertiere. Dies wurde begleitet von erhöhter 

Endothelzell (EC)-Seneszenz in der plazentaren feto-maternalen Transferzone. Wir fanden ebenso 

erhöhte Interleukin-6 (IL-6) Level im mütterlichem Serum und konnten einen deutlichen Trend hin zu 

erhöhten IL-6 mRNA- und Protein-Leveln im egWAT der übergewichtigen Muttertiere, verglichen mit 
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schlanken Kontrolltieren, erkennen. Dies deutet auf das egWAT als Quelle der erhöhten IL-6 Level in 

übergewichtigen Muttertieren hin. Wir konnten ferner bestätigen, dass eine Stimulation von humanen 

plazentaren EC mit IL-6 eine Seneszenz induziert, was eine Verbindung zwischen erhöhten IL-6 

Serumlevel, plazentarer EC-Seneszenz und gestörter Gefäßentwicklung suggeriert.  

Ausgehend von diesen Ergebnissen, dass IL-6 in EC eine Seneszenz in vitro herbeiführen kann und 

die plazentare Gefäßbildung in vivo gestört erscheint, wurde mittels Antikörper-Therapie eine Blockade 

des IL-6-Signalwegs in übergewichtigen Muttertieren induziert. Wir konnten zeigen, dass unter dieser 

Therapie die plazentare IL-6-Proteinmenge signifikant anstieg und nachgeschaltete Signalwege 

beeinträchtigt waren, was auf eine erfolgreiche Blockade des IL-6-Signalwegs hindeutet. Jedoch kam 

es auch unter der Antikörper-Therapie zu einem verringerten Körpergewicht der Föten an E15.5, und 

plazentare Gefäßmarker-Level waren im Vergleich zu den nicht-therapierten, übergewichtigen HFD-

Kontrolltieren reduziert. Insgesamt deutet dies darauf hin, dass die Antikörper-Therapie die HFD-

induzierten Schädigungen in der plazentaren Gefäßentwicklung nicht abschwächen kann und es 

weiterhin zu einer IUGR kommt, so dass weitere Untersuchungen mit alternativen Dosierungen 

angebracht sind. 

Eine Proteom-Analyse der feto-maternalen Transferzone zeigte darüber hinaus, dass eine Reduktion 

des Adherens Junction (AJ)-Markers E-cadherin in Plazenten übergewichtiger Tiere, verglichen mit 

schlanken Kontrolltieren, an E15.5 vorliegt, was wiederum auf eine Destabilisierung der AJ hinweist. 

Die Reduktion von AJ-Markern wurde in Analysen von Gesamtplazenta-Lysaten übergewichtiger 

Muttertiere gegenüber Kontrolltieren bestätigt. Außerdem zeigte sich eine starke Tendenz hin zu einem 

reduzieren β-catenin Level, einem intrazellulären Adapterprotein der AJ. Diese Veränderungen wurden 

ebenso in Plazenten von übergewichtigen Muttertieren kurz vor Ende der Trächtigkeit gemessen 

(E18.5), während zur Mitte der Trächtigkeit hin (E11.5) keine Veränderungen der AJ-Marker Level 

festgestellt wurden. Ferner zeigte sich, dass an E15.5 die Ultrastruktur und Zell-Homöostase der 

Transferzone unter MÜ verändert sind, wie anhand der defekten „Synzytialfusion“ und der geschädigten 

Basalmembran zu erkennen ist. Wir konnten anhand funktionaler Untersuchungen zeigten, dass an 

E15.5 unter MÜ der passive Transfer über die Plazenta signifikant zunahm, während ein aktiver 

Glukose-Transport unverändert blieb. Ebenso lassen in vitro-Studien vermuten, dass Fettsäuren, die 

auch in der HFD im Übermaß vorhanden sind, die Durchlässigkeit der Trophoblasten-Zellschicht 

verändern sowie zu erniedrigten β-catenin Level führen können. Dies deutet darauf hin, dass MÜ über 

die vermehrte Aufnahme von Fettsäuren zu einer gestörten Integrität der feto-maternalen Transferzone 

beitragen könnte. Insgesamt lassen unsere Ergebnisse vermuten, dass MÜ die Transferzone durch 

Störung der EC-Homöostase und Trophoblasten-Differenzierung schädigt und es zu einer 

durchlässigeren Plazentabarriere kommt, während Föten eine IUGR entwickeln.  

Ein gesunder Lebensstil mit einer begrenzten Aufnahme von Fettsäuren sowie die Prävention von 

Übergewicht und Adipositas könnten dementsprechend zu einer uneingeschränkten Plazentafunktion 

und einem geringeren Risiko einer IUGR beitragen. 
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1. Introduction 

 

1.1 Development and function of the placenta 

At the beginning of mammalian, rodent and all human life occurs conception, the fusion of gametes from 

male and female which is the initiation of development of one or multiple new organisms [1]. Subsequent 

to this fertilization event, the development of a zygote starts which can divide by mitosis into a multi-

cellular blastomere. During this process in humans, the blastomere travels towards the uterus which is 

the implantation site, and implantation takes place at about day 5 after conception in the form of a 

blastocyst. The attachment and subsequent implantation of the blastocyst into the endometrial tissue 

are crucial events for gestation and the development of a placenta to occur. During this process, cells 

of the trophectoderm, the outer cell layer of the blastocyst, anchor to the endometrium and give rise to 

the developing placenta, while the inner cell mass of the blastocyst gives rise to the embryo [2, 3]. 

Though the mammalian placenta is an impermanent organ only required during development of the 

conceptus in utero, its formation and function are tightly regulated and pivotal for a healthy development 

of the embryo [2].  

In humans, just about 2 days after the blastocyst reaches the endometrium, trophoblast cells which are 

cells of the outer cell layer of the blastocyst, invade maternal tissue with finger-like formations. These 

trophoblast cells ultimately reach maternal blood vessels by migrating through extracellular matrix 

(ECM), a prerequisite to establish blood supply to the forming placenta and therefore the embryo [4, 5]. 

Trophoblast invasion during implantation and placenta development is crucial and if impaired, it may 

cause stress during early pregnancy which can lead to placental dysfunction later and result in maternal 

and fetal complications [6]. Alterations in the endometrial lining as a consequence of blastocyst adhesion 

and trophoblast invasion lead to the formation of a decidual structure which is only present during 

pregnancy. Decidualization, as the formation of this structure from the endometrium between maternal 

and fetal tissues is called, limits trophoblast invasion, protects the endometrium and myometrium from 

invasion by trophoblasts, and permits preliminary supply for the developing embryo. Later, the maternal 

portion of the placenta consists of the decidua basalis (Db) which harbors a vascular network of spiral 

arteries that are invaded by the trophoblast cells to enable blood supply of the placenta [2]. These tightly 

controlled steps are very similar in human and murine placental development, and many studies in 

murine animal models have contributed substantially to the understanding of molecular and genetic 

aspects of placental development [7, 8]. Since both fetal and maternal cells are involved in the 

development of the placenta, it is considered a feto-maternal organ. A schematic overview of the human 

and murine placenta is shown in Figure 1.1.1. 

Mouse strains used in the laboratory have proven valuable, even if gestation takes only about 20 days 

in these animals, to study gene function, embryogenesis and placental development; and it is especially 

the genetic manipulation that also revealed placental defects often as cause of lethality of the embryo. 

While about one in three knock-outs of individual genes cause fetal death, it is not known how many of 

those are due to placental defects, and the contribution of the placenta to lethality could thus frequently 

be underestimated or even misinterpreted [9-11]. The placenta in mice starts to form at about day 4 of 
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embryonic development (day 0.5 being the next morning when mating takes place overnight) as seen 

by the formation of extraembryonic cell lineages and the yolk sac. At embryonic day 8.5 (E8.5) 

chorioallantoic fusion which forms the placenta has occurred, branching morphogenesis starts taking 

place and highlights in full materno-fetal material exchange at around E12.5 [12, 13]. Roughly 2 days 

later, at E14.5, placental development and peak velocity of the vitelline artery have reached their 

maximum. At the same time, the exponential embryo weight-gain reaches the steepest phase as the 

organogenesis is completed. Technically, the embryo would from then on be called “fetus”, however it 

is convention to refer to the fetus as embryo also after E14.5 or use both terms interchangeably from 

E14.5 onwards [12]. 

The growing embryo requires nutrients and oxygen during its development, and the placenta is 

responsible for the transfer of such nutrients and oxygen additional to the removal of carbon dioxide 

(CO2) and other waste products from fetal metabolism. This is achieved by supplying the embryo with 

oxygenized blood through the umbilical vein and removing waste-containing deoxygenized blood 

through two umbilical arteries. Both arteries spiral around the larger vein, and these three vessels 

together form the umbilical cord. In the umbilical cord, the vessels are embedded in what is called 

Wharton’s jelly. The vessels reach the placenta and enter into the chorionic plate where the arteries 

branch and ultimately form an arteriovenous system [2]. This system and thus the interior 

compartmentalization of the placenta differs among mammalian species and shows distinct 

architectures in human and mice [3, 14]. In murine placentas, trophoblasts of chorionic origin begin 

differentiation and fuse to give rise to the multinucleated syncytiotrophoblast (SynT), organized in two 

layers, which engulfs fetal endothelium of capillaries. A forth cell layer is situated on the other side of 

the SynT, i.e. the mononuclear trophoblast which is in contact with maternal blood sinuses carrying the 

oxygenated blood. In total, these 4 cell layers form the placental transfer barrier with markedly branched 

villi, giving the murine placenta its labyrinthine appearance (Figure 1.1.1 G). This interface for material 

exchange and transfer zone of the murine placenta is therefore called the labyrinth zone (Lz) [7, 8]. In 

humans, the transfer zone corresponds to the villous part of the placenta and comprises a 

multinucleated SynT, followed by a layer of villous mononuclear cytotrophoblast. Each of the so-formed 

floating villi can contain multiple fetal capillaries (Figure 1.1.1 D). In both human and mice, maternal 

blood on one side of the placental barrier and fetal blood in the fetal capillaries flow counter-currently to 

increase nutrient transport in the transfer zone, making both murine and human placentas hemochorial. 

Another similarity of murine and human placentas is the discoid shape (Figure 1.1.1 A & E) which adds 

to the value of mouse models to study the placenta and extrapolate to human placentas.  In contrast, 

horse and pig have a diffuse epitheliochorial placenta, and cats, dogs and other carnivores have a 

zonary endotheliochorial placenta [14]. The flow characteristics within the transfer zone of the placenta 

underpin that adequate vascularization is necessary for appropriate nutrient and oxygen transfer [15, 

16]. As a consequence, disturbances in trophoblast differentiation and defects in Lz or human villous 

development can severely impact on embryonic development and even lead to pregnancy termination 

[4, 17]. 
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In both humans and mice, regulation of material exchange in the placenta is achieved by a variety of 

mechanisms and can be divided in passive and active transfer. In murine placentas, the SynT expresses 

specific nutrient transporters for glucose, amino acids, free fatty acids and other molecules, therefore 

actively mediating supply across the placental barrier to the fetus. Regarding glucose, the transporters 

GLUT1, GLUT3 and GLUT4 are found in the murine transfer zone and facilitate active glucose transport 

towards the fetal circulation [8, 18]. Additionally, fetal growth depends on the ability of the placenta to 

provide glucose, and for periods of glucose shortage the placenta can utilize glycogen which is stored 

in clusters within the murine placenta [19]. Passive transfer of substances without active carriers or 

transporters mediates oxygen supply and also transfer of predominantly hydrophobic molecules with a 

size of 600 Da or less. As pregnancy progresses, increased placental blood flow, increased transfer 

zone surface area and reduction in the SynT cell layer thickness lead to enhanced passive transfer [20]. 

Transporter expression on the surface of SynT and fetal endothelial cells (EC) determine active carrier-

mediated transport. These placental cells also form junctions between each other, which have been 

implicated in vascular permeability and intestinal barrier function and thus in the transfer of substances 

[21, 22]. However, to best of our knowledge, the influence of these junctions on placental passive 

transfer capacity has not been described. 

A third tissue layer in murine placenta, the so called junctional zone (Jz), is present between the maternal 

Db and the Lz consisting of spongiotrophoblasts and trophoblast glycogen cells, as well as arterial and 

venous channels of trophoblastic origin, but the Jz contains no fetal blood (vessels). The 

spongiotrophoblast layer is analogous to the placental column cytotrophoblasts in humans [8]. 

Spongiotrophoblasts and (trophoblast) glycogen cells are collectively forming the Jz of the murine 

placenta. The glycogen cells probably derive from spongiotrophoblasts and form clusters that can be 

seen from the second trimester of murine gestation in the Jz. Though the precise function of this zone 

and its inhabitant cells are not fully understood today, it is known that the Jz produces hormones and is 

absolutely required for placental function and successful pregnancy [3]. Primary trophoblast giant cells, 

originating from mural trophectoderm, do not contribute to the mature placenta, however a secondary 

trophoblast giant cell layer which derives from polar trophectoderm is located at the boundary between 

the Jz and the Db. Furthermore, the relative extent of the three layers, Lz, Jz and Db change during the 

course of gestation to meet fetal demands. This includes an increase in the size of the Lz for example, 

concomitant with enhanced complexity to allow exponential fetal growth towards the end of pregnancy. 

Exponential fetal growth similarly requires a drastic increase in nutrient transfer capacity by upregulation 

of transporters and morphological changes to enhance passive transfer [3, 23]. Conversely, the Jz starts 

decreasing in size from the third trimester onwards and has its maximum size before this time-point [24, 

25]. 

 

1.2 The placental transfer zone 

As mentioned above, the murine placental transfer zone consists of various cell types: the mononuclear 

trophoblasts which are in contact with maternal blood; the two layered SynT which lies beneath 

mononuclear trophoblasts and is in contact with the basement membrane (BM). Opposite of the BM is 
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the fetal endothelium with EC that are in contact with fetal blood, and the development of all these cell 

layers is precisely regulated (Figure 1.1.1) [7, 24]. The SynT can be described as a form of epithelium 

in human placentas which separates maternal and fetal blood while being heavily involved in transport 

of substances, oxygen and waste products in addition to producing certain hormones [8, 26, 27].  

 

 

Figure 1.1.1: Comparative appearance of the human and murine placenta. (A) Photograph of a human placenta 

at term from a cesarean section. (B) Schematic drawing of the human placenta showing a villous tree in the black 

frame (close up in C) perfused by maternal spiral arterial blood. The FV are surrounded by a continuous layer of 

SynT that is in contact with maternal blood, and the extravillous trophoblasts invade from AV in order to anchor the 

villi within the decidua. (D) The human hemodichorial transfer zone with SynT towards maternal blood, vCTB 

underneath, and fetal EC of capillaries containing fetal blood. (E) The murine placenta has a disc-like shape similar 

to human placentas, however the placental layers are distinct as there is a labyrinth of villi (F). The black frame in 

(F) is shown in (G) and highlights the Lz, over which the Jz can be seen with its boundary of trophoblast giant cells. 

Additionally, the murine hemotrichorial transfer zone of maternal trophoblasts, two layers of SynT and fetal EC 

becomes evident in (H). AV: anchoring villi; FV: floating villi; iCTB: invasive cytotrophoblast; vCTB: villous 

cytotrophoblast; SpT: spongiotrophoblasts; TGC: trophoblast giant cell. Adapted and modified from Maltepe et al. 

[7]. 

 

The SynT and EC in the transfer zone are interconnected by adhesion molecules to the BM, but also to 

other SynT or EC, respectively, by the formation of adherens junctions (AJ). AJ contain molecules of 

the cadherin family of proteins to form cell-cell adhesions. In contrast, cell-BM or cell-ECM contact is 

mediated by other forms of adhesion, e.g. integrin binding and focal adhesion. The epithelial cadherin, 

E-cadherin, is mostly found on epithelial cells but also on villous trophoblasts in human placentas. 
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Already before the definitive placenta is formed, cells of the trophectoderm rely on the formation and 

distribution of AJ [7]. In the placenta and other organs, vascular cells, like fetal EC, rather express 

vascular endothelial cadherin, VE-cadherin [28, 29]. The cadherin molecules in EC and epithelial cells 

establish polarity of cells by forming AJ and creating cell-cell contacts which are required for vascular 

lumen formation and permeability regulation by EC [30, 31]. VE-cadherin clusters in human placentas 

on EC have been reported to co-localize and then bind to β-catenin, which is an intracellular adaptor 

molecule. Catenins are important anchoring proteins for cadherins to peri-junctional actin and thus, the 

cytoskeleton [32]. It has been shown that β-catenin knock-out specifically in EC can lead to altered 

vascularization in the placenta and embryos, and that in vitro β-catenin knock-out led to disorganized 

junctions in EC [33]. Furthermore, catenins can be released from these junctions and are then involved 

in regulation of transcription in the nucleus [32]. In this regard, β-catenin is part of canonical Wnt 

signaling which plays a relevant role in trophoblast development and other reproductive functions. 

Impaired Wnt signaling has been associated with infertility and placental defects, however there is still 

much to be discovered in pathological circumstances regarding involvement of β-catenin [34].  

As mentioned above, EC and SynT together form an important barrier in the transfer zone to regulate 

material exchange between mother and fetus. Both cell layers express transport molecules that 

influence resource allocation. The placenta’s ability to alter efficiency of resource allocation due to 

environmental conditions has been suggested to maintain fetal growth with consequences for the health 

of the offspring after birth [23]. This concept of inadequate fetal supply during intrauterine development, 

mediated by the placenta for a great part, has been termed fetal programming and affects not only 

metabolic health [35, 36], but also e.g. cardiovascular pathology [37] in later life.  

 

1.3 Maternal obesity and placental pathologies 

Since healthy fetal development requires a proper functioning placenta and the placenta is partially 

made up of maternal tissue and transports maternal blood, maternal health translates to placental 

physiology and ultimately fetal health. Numerous studies of the past decades have looked into factors 

of maternal origin and their influence on development and function of the placenta on the one hand, as 

well as perinatal outcome and offspring health on the other hand [4, 38-40]. Among those factors 

associated with adverse consequences on the placenta and fetal health is maternal obesity (MO), i.e. 

obesity before and during pregnancy. In Germany and worldwide, numbers of women at child-bearing 

age with overweight, defined by the World Health Organization by a body mass index (BMI) ≥25 kg/m², 

or obesity, defined by a BMI ≥30 kg/m², have increased since the 1990s [41, 42]. Depending on the 

severity of obesity, the associated complications for mothers differ and fall into a spectrum of 

pathologies, including decreased probability of conception, increased relative risk for preeclampsia and 

gestational diabetes mellitus (GDM), but also the risk for intrauterine death of the fetus [38, 43, 44]. 

Moreover, research in recent years showed that maternal nutrition and its effect on offspring health 

extent beyond pregnancy by fetal programming. Fetal programming occurs for example as a 

consequence of epigenetic changes in the offspring and may contribute to an increased obesity 

prevalence. Various tissues in the offspring can be affected by epigenetic changes, leading to an 
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involvement of multiple organs and the development of diabetes and the metabolic syndrome [45]. In 

the US as well as Europe, the increase in such diseases linked to obesity from an early age has been 

estimated to cost the health care systems between $100 billion to $200 billion per year [46]. Additionally, 

diagnosed obesity among pregnant women is associated with longer hospitalization and impacts the 

hospitalization costs [47]. These findings show the relevance for understanding and limiting adverse 

factors for maternal health before and during pregnancy to improve offspring health and reduce the 

potential burden on healthcare systems. The concept of developmental origins for/of health and disease 

(DOHaD) has reached many disciplines of biomedical science and has generated novel insight from 

many research fields to further public leadership for healthier life-style [48]. As a result, it is often 

collectively advised for obese women to adapt a healthy lifestyle before and during pregnancy to mitigate 

potential negative effects of obesity. However, it is still a matter of debate how this can be achieved 

most effectively, and many studies are difficult to compare due to variations in e.g. diets and study 

endpoints [49, 50]. Furthermore, such cohort studies provide limited insight into the direct effect on 

placental function and mechanisms of placental defects. As a result, studies with established and novel 

animal models are required to decipher mechanisms of placental function under MO.  

Intrauterine growth restriction (IUGR) is occurring in approximately 3% to 8% of human pregnancies 

worldwide and the defined growth potential at a certain gestational age is not reached by fetuses 

suffering from IUGR. IUGR is, amongst others, associated with preeclampsia, a serious hypertensive 

disorder occurring during pregnancy [51] and can be caused by various factors like embryo genetics 

combined with maternal factors. In the majority of cases, it is assumed that placental dysfunction is the 

leading cause of IUGR, where the nutrient supply to the fetus is inadequate despite sufficient maternal 

nutrition [52-56]. Not only IUGR has been associated with insufficient placental function and 

vascularization, MO itself was associated with negatively affected placental vascular development in 

humans [57, 58], as well as mice [44] and rats [59, 60]. Furthermore, induction of obesity and diabetes 

in mice through feeding of a specific diet led to a reduction in placental trophoblast and EC density 

resulting in vascular changes [44] which could also affect the Lz development.  

The effects of MO on the placenta are manifold and comprise exaggerated saturated fatty acid profiles 

that can e.g. cause inflammatory responses in the placenta and altered mitochondrial function which in 

turn may lead to oxidative stress in the placenta. Moreover, the metabolic environment in the placenta 

of obese mothers probably affects the epigenome of placental cells, thereby influencing placental 

function [36]. Additionally, human and primate studies have shown excessive macrophage accumulation 

and reduced blood flow in placentas of obese individuals [61, 62]. In obese mice, elevated placental 

cytokine level and macrophage infiltration were described in placentas [63]. Regarding inflammatory 

responses, obesity and pregnancy are both associated with systemic inflammation of low grade, which 

may constitute the underlying mechanism of adverse placenta function [63, 64]. Longitudinal studies 

have reported that level of pro-inflammatory cytokines, like Interleukin-6 (IL-6), are elevated during 

pregnancy concomitant with higher BMI especially after the first half of pregnancy [65-67]. IL-6 is a 

cytokine that can have both pro-inflammatory and anti-inflammatory effects which are dependent on 

either classic IL-6 receptor (IL-6R)-mediated signaling or trans-signaling, respectively. The trans-
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signaling is dependent on coupling of a soluble IL-6R (sIL-6R) with the membrane-bound gp130 receptor 

for its pro-inflammatory activities on cells of various types, e.g. EC [68, 69]. Furthermore, trans-signaling 

of IL-6 could also affect placental EC via gp130 receptor. It has been shown that IL-6 stimulation of EC 

is associated with lower VE-cadherin level and reduced AJ expression [70], and IL-6 may regulate AJ 

in breast cancer cells [71]. Other inflammatory markers, like IL-1β and TGF-β have been suggested to 

affect placental tight junctions and weaken the placental barrier by regulating the tight junction marker 

occludin [72, 73]. Under obesity, such systemic pro-inflammatory factors like IL-6 are elevated, may 

arise from adipose tissue and be secreted into the circulation to reach and affect different organs 

including the placenta [64, 74]. The placenta is highly vascularized and molecules of many kinds that 

are found in the circulation of the mother will pass the vasculature and thus, may reach and affect cells 

within the placenta. Adipokines and hormones, like leptin and insulin, are associated with MO and could 

play important regulatory roles in the placenta, since they can be produced both here and in adipose 

tissue from which they reach the placenta via the circulation. These substances affect signaling in 

placental cells such as Stat3 and Akt/mTOR pathway activation which translates to regulation of 

placental nutrient transport and ultimately fetal supply and growth [75]. However, in pregnant mice it 

was shown that leptin was not involved in inflammatory responses in the placenta [76]. Nevertheless, it 

could be important to further investigate mechanisms of placental function mediated by inflammatory 

molecules. 

The chain of evidence more and more pinpoints towards placental dysfunction under MO as a cause for 

maternal and fetal health consequences, which makes it worthwhile to study placenta function and 

develop strategies to mitigate adverse effects of MO on the placenta. Studies on the mechanisms of 

placental dysfunction in many contexts, including MO, have however, not yielded sufficient results to 

elucidate the precise origin of IUGR and other complications under MO. As a consequence, further 

studies are required on placental dysfunction. 

 

1.4 Study aims and hypothesis 

The association of MO with placental dysfunction, together with possible implications for fetal health and 

development, permit investigations into the mechanisms behind these clinically relevant effects. 

Previous studies of our group showed that it is possible to induce MO by feeding a high fat diet (HFD) 

after weaning [76, 77]. Herein, we aimed to advance our insight into placental dysfunction and the 

placenta-associated programming effects on offspring health under MO. 

The inflammatory responses in adipose tissue and the placenta during pregnancy in obese women are 

still not understood in great detail and we aimed to elucidate the inflammatory response in adipose 

tissue and the placenta of both obese and lean mice before the onset of parturition.  

Since the placenta is a highly vascularized organ and its main function is the exchange of nutrients and 

waste via blood circulation to ensure proper fetal growth, we aimed to elucidate the effects of MO on 

placental vascularization together with EC homeostasis. Based on previous reports and preliminary data 

from our group, we hypothesize that MO affects maternal serum level of the pro-inflammatory marker 
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IL-6 and in this study we aimed to clarify the effects of IL-6 on placental EC. To this end, obese dams 

were also assigned to an antibody therapy in order to block IL-6 signaling and study potentially positive 

effects on the placenta under MO. An obese mouse model in which IL-6 was genetically knocked-out 

was used to gain further insight into IL-6 signaling related processes in placental and fetal development 

under MO. 

Previous studies suggest that HFD consumption could cause reduced expression level of cell junction 

markers [21, 22] which might also translate to placental cells and therefore affect integrity and function 

of the transfer zone. We hence aimed to analyze the proteome of the transfer zone to find new hints 

regarding altered marker level of cell junctions and AJ. Moreover, localization of such markers was 

investigated, and the morphology and ultrastructure of the transfer zone was studied in detail. We 

furthermore hypothesized that morphological and molecular changes in the transfer zone could have an 

impact on materno-fetal transfer of substances and aimed to determine the transfer capacity across the 

placental barrier in obese dams. 

Collectively, it is assumed that MO can disrupt the placental transfer zone and cause structural and 

molecular changes in the cells of the transfer zone, resulting in adverse placental function and impaired 

fetal development.  
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2. Materials 

 

2.1 Chemicals, materials and reagents 

Table 2.1: Chemicals, materials and reagents used in this work. 

Chemical / material / reagent Company 

1-tetradecanoic acid-d27 Sigma-Aldrich, Steinheim, Germany 

2-Chloroacetamide Sigma-Aldrich, Steinheim, Germany 

2-mercaptoethanol Carl Roth, Karlsruhe, Germany 

2N H2SO4 Carl Roth, Karlsruhe, Germany 

4′,6-diamidino-2-phenylindole, DAPI Sigma-Aldrich, Steinheim, Germany 

6-, 24- and 96-well plates Sarstedt, Nümbrecht, Germany 

Acetic acid Carl Roth, Karlsruhe, Germany 

Aceton Carl Roth, Karlsruhe, Germany 

Acetonitril, 80%, 20% water with 0.1% formic acid, Optima 

LC/MS (Puffer B) 

Fisher Scientific, Waltham, Massachusetts, USA 

Acrylamide (30%) and bisacrylamide (0.8%) mix 

ROTIPHORESE® Gel 30 (37.5:1) 

Carl Roth, Karlsruhe, Germany 

AdipoRed reagent Lonza, Walkersville, Maryland, USA 

Agarose Sigma-Aldrich, Steinheim, Germany 

Albumin bovine fraction V, BSA SERVA Electrophoresis GmbH, Heidelberg, 

Germany 

Ammonium persulfate, APS Sigma-Aldrich, Steinheim, Germany 

Antibody diluent DAKO Agilent, Santa Clara, California, USA 

Aprotinin from bovine lung Sigma-Aldrich, Steinheim, Germany 

Aqueous mounting medium, Fluoromount™ Sigma-Aldrich, Steinheim, Germany 

Bepanthen® Bayer Vital GmbH, Leverkusen, Germany 

Biosol National Diagnostics, Atlanta, Georgia, USA 

Buprenorphine Bayer Vital GmbH, Leverkusen, Germany 

CellStain®, from ECM642 Merck, Darmstadt, Germany 

Chloroacetamide, CAA AppliChem, Darmstadt, Germany 
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Chloroform Merck, Darmstadt, Germany and Sigma-Aldrich, 

Steinheim, Germany 

Citrate buffer pH 6, target retrieval solution DAKO, Glostrup, Denmark 

cOmplete EDTA-free Protease Inhibitor Cocktail Roche, Basel, Schweiz 

Deoxycholic acid sodium salt Carl Roth, Karlsruhe, Germany 

Diethyl pyrocarbonate, DEPC ≥ 97% Sigma-Aldrich, Steinheim, Germany 

Dithiothreitol, DTT AppliChem, Darmstadt, Germany 

D-Mannitol, [1-14C]-250 µCi, 14C-mannitol Hartmann Analytic, Braunschweig, Germany 

DNA ladder Thermo Scientific, Vilnius, Lithuania 

dNTP mix for genotyping and RT-qPCR (10 mM) Thermo Scientific, Vilnius, Lithuania 

(Genotyping) 

Thermo Scientific, Massachusetts, USA (RT-

qPCR) 

Dulbecco’s phosphate-buffered saline (1X and 10X), D-

PBS, Ca2+/Mg2+-free 

Gibco, Life Technologies Ltd. Paisley, UK 

ECL™ Prome Western Blot Detection Reagent GE Healthcare, Solingen, Germany 

Eosin G-solution 0.5% Carl Roth, Karlsruhe, Germany 

Ethanol ≥ 99.8% Carl Roth, Karlsruhe, Germany 

Ethanol absolute Merck, Darmstadt, Germany 

Ethylenediaminetetraacetic acid disodium salt dehydrate, 

EDTA 

Sigma-Aldrich, Steinheim, Germany 

Fetal calf serum, FBS Biochrom GmbH, Berlin, Germany 

Fibronectin from bovine plasma Sigma-Aldrich, Steinheim, Germany 

Flexi Green (5X) Promega, Madison, Wisconsin, USA 

Fludeoxyglucose ((18)F), 18F-FDG Life Radiopharma GmbH, Bonn, Germany 

Formaldehyde, phosohate-buffered 

Roti®-Histofix 4% 

Carl Roth, Karlsruhe, Germany 

Formic acid, puriss. p.a., ≥ 98% Sigma-Aldrich, Steinheim, Germany 

Gelatin, G1393 Sigma-Aldrich, Steinheim, Germany 

Glutaraldehyde, 50% Electron Microscopy Sciences, Hatfield, 

Pennsylvania, USA 
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Glycerol Carl Roth, Karlsruhe, Germany 

Glycine Carl Roth, Karlsruhe, Germany 

goTaq polymerase (5 u/µL) Promega, Madison, Wisconsin, USA 

Heparin, 5000 IE/mL B. Braun Melsungen AG, Melsungen, Germany 

Hexane Sigma-Aldrich, Steinheim, Germany 

Hoechst 33342 stain Fisher Scientific, Waltham, Massachusetts, USA 

HPLC 

Water for chromatography LiChrosolv® 

Merck, Darmstadt, Germany 

Hydrogen chloride Sigma-Aldrich, Steinheim, Germany 

Hydrophobic pen, Liquid Blocker Daido Sangyo Co. Ltd., Japan 

hyperIL-6, recombinant human IL-6/IL-6R Chimera, #8954-

SR 

R&D Systems, Minneapolis, Minnesota, USA 

IGEPAL® CA-630 Sigma-Aldrich, Steinheim, Germany 

Inserts 0.4 µm for 24-well plates Sarstedt, Nümbrecht, Germany 

Isoflurane Primal Healthcare, Northumberland, UK 

Isopropyl alcohol (2-Propanol) 

≥ 99.95% 

Carl Roth, Karlsruhe, Germany 

Leupeptin, ≥ 90% Sigma-Aldrich, Steinheim, Germany 

Linoleic acid sodium salt Sigma-Aldrich, Steinheim, Germany 

Liquid nitrogen Linde AG, Köln, Germany 

Lysyl Endopeptidase, Lys-C WAKO, Neuss, Germany 

Matrigel, growth factor reduced #356230 BD Biosciences, Bedford, Massachusetts, USA 

Mayer’s hematoxylin Carl Roth, Karlsruhe, Germany 

Methanol, ≥99.8% VWR, Radnor, Pennsylvania, USA 

Methanol, 250 ppm BHT 

(equals 0.025%) 

Sigma-Aldrich, Steinheim, Germany 

MgCl2 ≥98,5% (water-free) Carl Roth, Karlsruhe, Germany 

MgCl2, 25 mM Promega, Madison, Wisconsin, USA 

Micro(µ-)slide angiogenesis, #81506 Ibidi GmbH, Graefelfing, Germany 
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Midori Green Advance DNA Stain Nippon Genetics Europe GmbH, Düren, 

Germany 

Milk powder, non-fat Carl Roth, Karlsruhe, Germany 

M-MLV Reverse Transcriptase (200 U/µL) Promega, Mannheim, Germany 

M-MLV RT 5X Buffer Promega, Mannheim, Germany 

Moloney Murine Leukemia Virus Reverse Transcriptase (M-

MLV RT), DNA polymerase 

Promega, Mannheim, Germany 

N,N,N’,N’-Tetramethylethylendiamin, TEMED Sigma-Aldrich, Steinheim, Germany 

Neo-Clear® Sigma-Aldrich, Steinheim, Germany 

Neo-Mount® Sigma-Aldrich, Steinheim, Germany 

Nitrocellulose Blotting Membrane GE Healthcare, Solingen, Germany 

Oil Red O Sigma-Aldrich, Steinheim, Germany 

Oligo-dT primer Eurofins Genomics, Ebersberg, Germany 

PEN-Membrane slides (No. 11600288) Leica, Herborn, Germany 

PenStrep Sigma-Aldrich, Steinheim, Germany 

Pepstatin A ≥ 75% Sigma-Aldrich, Steinheim, Germany 

Phalloidin, fluorescein isothiocyanate labeled, P5282 Sigma-Aldrich, Steinheim, Germany 

Phenylmethylsulfonyl fluoride, PMSF ≥ 98.5% Sigma-Aldrich, Steinheim, Germany 

Phosphate-buffered saline, PBS Biochrom GmbH, Berlin, Germany 

Platinum® qPCR SuperMix-UDG with ROX Invitrogen, Carlsbad, California, USA 

Ponceau S Carl Roth, Karlsruhe, Germany 

Procaine hydrochloride Merck, Darmstadt, Germany 

Protein ladder, PageRuler™ Thermo Scientific, Vilnius, Lithuania 

Proteinase K Thermo Scientific, Vilnius, Lithuania 

Random primer Roche, Basel, Switzerland 

RNasin® Ribonuclease Inhibitors (40 U/µL) Promega, Mannheim, Germany 

RQ1 DNase 10X Reaction Buffer Promega, Mannheim, Germany 

RQ1 DNase Stop Solution (20 mM EGTA) Promega, Mannheim, Germany 
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RQ1 RNase-Free DNase 

(1 U/µL) 

Promega, Mannheim, Germany 

Sea Blocking buffer Thermo Fisher, Rockford, Illinois, USA 

Sodium chloride 0.9% solution Fresenius Kabi Deutschland GmbH, Bad 

Homburg Germany 

Sodium chloride, NaCl Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate, SDS Carl Roth, Karlsruhe, Germany 

Sodium fluoride, NaF ≥ 99% Sigma-Aldrich, Steinheim, Germany 

Sodium oleate Sigma-Aldrich, Steinheim, Germany 

Sodium orthovanadate, Na3VO4 ≥ 99% Sigma-Aldrich, Steinheim, Germany 

Sodium palmitate Sigma-Aldrich, Steinheim, Germany 

Streptavidin-HRP R&D Systems, Minneapolis, Minnesota, USA 

SYBR® Green Master Mix Thermo Scientific, Vilnius, Lithuania 

Tissue-Tek® OCT Sakura Finetek, California, USA 

TMB substrate solution Sigma-Aldrich, Steinheim, Germany 

Toluidine blue Sigma-Aldrich, Steinheim, Germany 

TRI Reagent® Sigma-Aldrich, Steinheim, Germany 

Triethylammonium bicarbonate, TEAB Sigma-Aldrich, Steinheim, Germany 

TRIS (hydrochloride) Carl Roth, Karlsruhe, Germany 

Trypan blue Sigma-Aldrich, Steinheim, Germany 

Trypsin (1 µg/µL) Serva, Heidelberg, Germany 

Trypsin-EDTA Sigma-Aldrich, Steinheim, Germany 

Tween 20 Sigma-Aldrich, Steinheim, Germany 

Urea ≥ 99.5% Sigma-Aldrich, Steinheim, Germany 

Urea-hydrogen peroxide (tablets) Carl Roth, Karlsruhe, Germany 

Water with 0.1% Formic Acid (v/v), Optima LC/MS Grade 

(Puffer A) 

Fisher Scientific, Waltham, Massachusetts, USA 

ZytoChem Plus HRP One-Step Polymer anti-

Mouse/Rabbit/Rat 

Zytomed Systems, Berlin, Germany 
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2.2 Buffers, gels and solutions 

Table 2.2: Buffers made in lab and used in this work. 

Buffer Ingredients Amount/Concentration 

10X Laemmli 

pH 8.3 

TRIS-Hydrochloride 

Glycerine 

SDS 

Water (de-ionized) 

0.184 M 

1.564 M 

34.7 mM 

 

5X Western blot loading 

buffer 

Stacking gel buffer 

SDS 

Bromphenol blue 

Glycerol 

2- mercaptoethanol 

Water (de-ionized) 

16.4% (v/v) 

2.06% (v/v) 

2.6% (v/v) 

10% (v/v) 

25% (v/v) 

 

Main gel buffer 

pH 8.8 

TRIS 

Water (de-ionized) 

1.5 M 

 

Modified RIPA TRIS-Hydrochloride 

NaCl 

IGEPAL® 

Deoxycholic acid sodium salt 

EDTA 

Aprotinin  

Pepastatin A 

Leupeptin 

PMSF 

NaF  

Na3VO4 

50 mM 

150 mM 

1% (v/v) 

0,25% (v/v) 

1 mM 

1 µg/mL 

1 µg/mL 

1 µg/mL 

1 mM 

1 mM 

1 mM 

SP3 lysis buffer SDS 

PBS 

5% (w/v) 

 

Stacking gel buffer 

pH 6.8 

TRIS 

Water (de-ionized) 

0.5 M 

 

Stripping buffer TRIS 

2-mercaptoethanol 

SDS 

50 mM 

100 mM 

2% (v/v) 

TAE buffer 

pH 8 

TRIS 

EDTA 

Acetic acid 

2 M 

50 mM 

variable, pH-dependent 

Tail lysis buffer 

pH 8 

TRIS 

EDTA 

 

100 mM 

5 mM 
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NaCl 

SDS 

 

200 mM 

0.2% (v/v) 

Towbin buffer TRIS 

Glycin 

Water (de-ionized) 

250 mM 

1.92 M 

 

Urea buffer 

(made by Proteomics 

core facility, CECAD) 

Urea ≥ 99.5% 

TEAB 

8 M 

50 mM 

 

Table 2.3: Gels made in lab and used in this work. 

Gel Ingredients Amount 

Agarose gel Agarose 

Midori Green  

TAE buffer 

1.5% (w/v) 

10% (v/v) 

 

Main gel (SDS-PAGE)  

(8% to 12%) 

Acrylamide mix (30%) 

Main gel buffer 

SDS 

APS 

TEMED 

Water (de-ionized) 

27% to 40% (v/v) 

25% (v/v) 

0.1% (v/v) 

0.1% (v/v) 

0.04% to 0.06% (v/v) 

 

Stacking gel Acrylamide mix (30%) 

Stacking gel buffer 

SDS (10%) 

APS (10%) 

TEMED 

Water (de-ionized) 

5.1% (v/v) 

13% (v/v) 

0.1% (v/v) 

0.1% (v/v) 

0.01% (v/v) 

 

 

Table 2.4: Solutions made in lab and used in this work. 

Solution Ingredients Amount/Concentration 

AdipoRed staining solution AdipoRed reagent 

D-PBS 

0.5% (v/v) 

 

Beta-gal staining solution X-Gal 

Potassium ferricyanide 

Potassium ferrocyanide 

MgCl2 

PBS (pH 6) 

1 mg/mL 

5 mM 

5 mM 

2 mM 

variable amounts 
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EM fixation solution Formaldehyde, phosphate-

buffered 

Glutaraldehyde 

Cacodylate buffer, pH 7.35 

2% (v/v) 

 

2% (v/v) 

0.1 M 

Eosin G staining solution Eosing G-solution 0.5% 

acetic acid 

200 mL 

one drop, approx. 50 µL 

Oil Red O staining solution Oil Red O 

2-Propanol 

0.5% (w/v) 

100 mL 

PBS-T PBS 

Tween20 

9.55 g/L 

0.05% (v/v) 

PCR Mastermix 5X Flexi Green 

25 mM MgCl2 

10 mM dNTP’s 

10 µM oIMR-0212 primer 

10 µM oIMR-0213 primer 

10 µM oIMR-0214 primer 

5 u/µL goTaq DNA polymerase 

Water (de-ionized) 

4 µL per sample 

1.6 µL per sample 

0.4 µL per sample 

1 µL per sample 

1 µL per sample 

1 µL per sample 

0.2 µL per sample 

9.8 µL per sample 

Ponceau S solution Ponceau S 

Trichloroacetic acid 

Water (de-ionized) 

0.2% (w/v) 

3% (v/v) 

 

Pre-perfusion solution Procaine hydrochloride 

Heparin 

Sodium chloride 0.9% solution 

5 g/L 

2 mL/L 

 

TBST 

pH 7.45 

TRIS 

NaCl 

 

Tween20 

Water (de-ionized) 

0.1 M 

1 M 

0.1% (v/v) 

 

Toluidine blue staining solution  Toluidine blue 

Water (de-ionized) 

1% (w/v) 
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2.3 Kits 

Table 2.5: Commercial kits used in this work. 

Kit Company 

Cell Proliferation ELISA, BrdU Roche Diagnostics GmbH, Mannheim, Germany 

IL-6 ELISA kit, EZMIL6 Merck Millipore, Darmstadt Germany 

ImmPACT™ DAB Substrate kit Vector Laboratories, Burlingame, California, USA 

In Situ Cell Death Detection Kit, Fluorescein, 

TUNEL kit 

Roche Diagnostics GmbH, Mannheim, Germany 

Lipid Peroxidation (MDA) assay kit Sigma-Aldrich, Steinheim, Germany 

Mouse SAA2 (Serum Amyloid A2) ELISA kit, 

E-EL-M1349 

Elabscience Biotechnology Inc., Houston, Texas, USA 

Pierce™ BCA Protein Assay Kit Thermo Scientific, Rockford, Illinois, USA 

Tyramide SuperBoost™ kit with AlexaFluor™ Invitrogen, Eugene, Oregon, USA 

Caspase-GLO® 3/7 Assay Systems assay Promega, Madison, Wisconsin, USA 

 

2.4 Antibodies 

Table 2.6: Antibodies used in this work. 

Antibody Isotype/species Company 

BrdU, #5292 mouse Cell Signaling Technology 

Caspase 3, #9661 rabbit Cell Signaling Technology 

CD31, ab28364 rabbit Abcam 

CD45, ab10558 rabbit Abcam 

Cleaved Caspase 3, #9662 rabbit Cell Signaling Technology 

Cy3-conjugated, 111-165-003 (anti-rabbit), 115-

165-003 (anti-mouse) 

goat Jackson Immuno Research 

CyclinD1, ab134175 rabbit Abcam 

DyLight488-conjugated, 115-485-003 (anti-

mouse), 111-485-003 (anti-rabbit) 

goat Jackson Immuno Research 

E-cadherin, #3195 rabbit Cell Signaling Technology 

ERK1/2, #4696 mouse Cell Signaling Technology 

HPRT, ab10479 rabbit Abcam 
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HRP-conjugated anti-mouse IgG, #7076 horse Cell Signaling Technology 

HRP-conjugated anti-rabbit IgG, #7074 goat Cell Signaling Technology 

IL-6, MAB406 rat R&D Systems 

mMR16-1, anti-IL6R rat Chugai Pharmaceutical Co. Ltd. 

PARP, #9542 rabbit Cell Signaling Technology 

P-cadherin, ab190076 rabbit Abcam 

PCNA, M0879 mouse DAKO 

phospho-ERK1/2, #4370 rabbit Cell Signaling Technology 

phospho-S139-γH2A.X, ab11174 rabbit Abcam 

phospho-Stat3, #9145 rabbit Cell Signaling Technology 

phospho-Y654-β-catenin, E-AB-20830 rabbit Elabscience, Biozol, Eching, Germany 

Rat IgG, isotype control, 10700 rat Thermo Fisher Scientific 

SOCS3, ab16030 rabbit Abcam 

Stat3, #9139 mouse Cell Signaling Technology 

VE-cadherin, ab33168 rabbit Abcam 

β-actin, #3700S mouse Cell Signaling Technology 

β-catenin, #8480 rabbit Cell Signaling Technology 

 

2.5 Apparatus 

Table 2.7: Apparatuses used in this work. 

Apparatus Software Company 

BioDoc Analyze BioDoc Analyze Biometra, Analytik Jena, Germany 

BX43F equipped with DP80 dual 

CCD camera 

cellSens Dimension V1.8 Olympus, Germany 

ChemiDOC™ XRS+ ImageLab v5.2.1 Bio-Rad Laboratories, Munich, Germany 

Cryostat CM3050 S - Leica, Germany 

EASY nLC 1000 - Thermo Scientific™, USA 

EVOS FL Auto2 Evos software, Celleste Thermo Scientific™ Invitrogen™, USA 
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Fully-enclosed tissue processor 

ASP300 

Built-in Leica, Germany 

GloMax® Multi Detection 

System 

Built-in Promega, USA 

Histoscan SCN400 ImageScope 12.3.3 Leica, Germany 

Infinite M200 pro Tecan i-control 2.0 Tecan, Austria 

LMD7000 Leica AVC Standard Leica, Germany 

Meta 510 Zeiss LSM software Zeiss, Jena, Germany 

Microtome RM2 - Leica, Germany 

Mixer mill MM 400 - Retsch GmbH, Germany 

Packard TriCarb 1900 TR Liquid 

Scintillation Analyzer 

Built-in Perkin Elmer, USA 

Paraffin embedding module 

EG1150 H 

- Leica, Germany 

PCR Biometra Tone Built-in Analytik Jena, Germany 

PerfectBlue blot chamber - PeqLab, VWR, Germany 

Q Exactive Plus Orbitrap - Thermo Scientific™, USA 

Sonopuls HD - Bandelin electronic GmbH, Berlin, 

Germany 

Steam heater FS 20 - Braun, Germany 

Taqman 7500 7500 Software v2.0.6 AppliedBiosystems, Life Technologies 

GmbH, Germany 

TCS SP8 LAS X Leica, Germany 

 

2.6 Software 

ImageJ-Fiji version 2011 (“Madison”), ImageLab 5.2, GraphPad Prism 6, Microsoft Paint, Omero web 

v5.4.10, Microsoft Office 2013, QuPath v0.2.0-m8 and EndNote were used for this work. 

 

2.7 Animals 

In this work, C57BL/6N mice from Janvier Labs, La Genest-Saint-Isle, France were purchased and 

animal handling and procedures for this work were performed in accordance with German regulations, 

legal requirements and animal welfare guidelines. Animals were housed at the Department of 
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Pharmacology, University of Cologne, Germany. The project was approved by local authorities, 

Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-Westfalen and the Bezirksregierung 

Köln, Germany under the licenses and identification codes 84-02.04.2014.A057 (project A057, organ 

harvest at E15.5 and E18.5) and 84-02.04.2016.A046 (project A046, organ harvest at E11.5, E15.5, 

E18.5, in vivo studies at E15.5, mMR16-1 or IgG therapy at E15.5 and interleukin-6 knock-out (IL-6-/-) 

on HFD). IL-6-/- BL/6N mice were generated from B6.129S2-IL6tm1Kopf/J mice [78] purchased from 

The Jackson Laboratory, Bar Harbor, Maine, USA which were housed in the Center for Molecular 

Medicine Cologne (CMMC). Since wild type mice for HFD and SD groups were from a BL/6N strain, the 

B6.129S2-IL6tm1Kopf/J were backcrossed over 10 generations with wild type BL/6N mice. Preferably 

male IL-6+/- offspring were mated with wild type females and all offspring were genotyped to confirm 

knock-out of one allele. After 10 generations of backcrossing, IL-6+/- male offspring from one parent pair 

and IL-6+/- female offspring from another parent pair were mated to generate IL-6-/- animals that were 

used for experiments and received HFD. 
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3. Methods 

 

The following sections have been partially published in (Appel, Schulze-Edinghausen, Kretschmer et al. 

2017 [79], Nüsken et al. 2019 [80], Kretschmer et al. 2020 [81] or in revision for publication by 

Kretschmer et al. Biology of Reproduction, 2020). 

 

3.1 Animal models, handling and in vivo studies 

In this work, mice were maintained at 20 – 24°C, 45 – 65% humidity, 12 hours light/dark cycles, at a 

maximum of 4 control diet or 3 HFD mice per cage. Mice either received a control / standard diet (SD, 

R/M-H, Ssnif®, Soest, Germany) or HFD (C1057 modified, Altromin, Lage, Germany) ad libitum from 

week 3 of age and until the end of experiments, schematized in Figure 3.1.1.1. Mice were considered 

obese when they reached a body weight of more than 23.5 g. Male mice for mating were received at 

week 8 of age and kept solely on SD. For mating, one non-obese SD dam lighter than 23.5 g or one 

obese HFD dam was mated overnight (O/N) for approximately 20 hours, with a male mouse, while 

further receiving the respective diet ad libitum. The next morning was considered as E0.5. Dams were 

weighed once per week and before the section day to assess pregnancy, together with visual 

examination of the belly. Several SD and HFD dams (project A046) were allowed to give birth to 

determine pregnancy duration. Pregnant dams were transferred to the experimentation site at 

embryonic day E11.5, E15.5 or E18.5 for sacrifice and organ harvest, or at E15.5 for in vivo studies with 

18F-FDG or 14C-mannitol. One and a half hour before sacrifice for organ harvest, dams from A046 

projects were injected with 10 mg/mL BrdU dissolved in D-PBS. For in vivo studies and sacrifice for 

organ harvest, dams from A046 projects received subcutaneously 0.1 mg/kg bodyweight buprenorphine 

dissolved in sodium chloride 0.9% solution 30 minutes prior to sacrifice. For organ harvest, mice were 

euthanized under CO2 and subsequently blood was drawn by cardiac puncture. The body was then 

opened along the linea alba to perform a caesarian section and retrieve the feto-placental units. 

Additionally, epigonadal white adipose tissue (egWAT) and other organs were collected by one dissector 

and egWAT weight as well as number of alive and resorbed fetuses were documented. At the same 

time, fetuses were removed, decapitated, weighed (only E15.5 and E18.5 fetuses) and collected by 

another dissector. Next, placentas were removed, weighed (if collected in total and removed of amniotic 

and uterus tissue for biochemical analysis) and collected. Some placentas were cut in halves and one 

of the resulting halves was either embedded in Tissue-Tek® OCT on dry ice or fixed in 4% (v/v) 

formaldehyde O/N. From the other placenta half, amnion sac and connective tissue were carefully 

removed and this half was snap frozen in liquid nitrogen. Placentas for stereological analysis were 

removed as a whole, thus undamaged with parts of the uterus and attached tissues, and immediately 

fixed in formaldehyde. After formaldehyde fixation, organs were stored for at least one additional night 

in 70% (v/v) 2-propanol in de-ionized water before paraffin-embedding in an ASP300. 
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3.1.1 In vivo studies involving radioactive tracers 18F-FDG and 14C-mannitol 

For in vivo studies, pregnant dams were transferred to the experimentation site at E15.5 under adequate 

transportation conditions. Positron emission tomography (PET) was performed at the Department of 

Nuclear Medicine, University Hospital of Cologne with the help and under the supervision of PD Dr. 

Heike Endepols. Dams were put under general anesthesia using isoflurane inhalation (1,5 – 5% 

isoflurane, 30% O2 and up to 70% medicinal air) which took place 30 minutes after dams received 

subcutaneously 0.1 mg/kg bodyweight buprenorphine dissolved in sodium chloride 0.9% solution. Mice 

were kept on warm plates (37°C), breathing was visually controlled and Bepanthen® was applied to the 

eyes. Starting with the injection of 125 µL with 10 MBq 18F-FDG dissolved in 125 µL sodium chloride 

0.9% solution via a tail vein catheter and subsequent scanning for 60 minutes. After the emission scan, 

a transmission scan with a 57Co point source was performed for attenuation correction. Afterwards, the 

tail vein catheter was removed while a tourniquet was gently applied to the base of the tail. The resulting 

drop of blood was used to determine blood glucose concentration of dams. After the procedure, dams 

were allowed to wake up and afterwards were kept in their cages for 24 hours to achieve almost 

complete decay of 18F-FDG which has a half-life time of ~110 minutes [82]. On the next day, dams were 

injected with buprenorphine as described above, euthanized by CO2 inhalation and the fetuses were 

subsequently removed and decapitated. 

For 14C-mannitol clearance experiments, dams were relocated to the isotope laboratory of the CMMC 

and handled and anesthetized as described above. A similar procedure was performed as described by 

Sibley [83]. During the procedure, the jugular vein was exposed and injected with 100 µL of 3.5 µCi of 

14C-mannitol. Roughly 3 minutes after injection, the animal was opened along the linea alba to expose 

the uterus and access the inferior vena cava from which blood was drawn 4 to 4.5 minutes after tracer 

injection. Subsequently, feto-placental units were collected, viable and resorbed fetuses counted and 

each decapitated fetus and placenta was weighed. Next, placentas were discarded and fetuses were 

minced in biosol at 56°C O/N. On the next day, 10 mL of scintillation liquid was added to 100 µL of 

maternal serum and to each dissolved fetus. Both were put in a Packard TriCarb 1900 TR Liquid 

Scintillation Analyzer for beta decay counting. Materno-fetal clearance (Kmf) expressed as µL per minute 

per gram of placenta was calculated from collected data on beta decay in maternal serum and minced 

fetuses. 

 

3.1.2 mMR16-1 and IgG interventions 

The antibody mMR16-1, a mousenized anti-IL-6R antibody, was kindly provided by Chugai 

Pharmaceutical Co. Ltd. (Japan), and used according to manufacturer’s suggestions and agreement. 

HFD dams were injected intraperitoneally (i.p.) with concentrations of antibody as suggested by Chugai 

Pharmaceutical and as reported by Wu et al. [84] of 25 mg/kg bodyweight of mMR16-1 at E0.5, E7.5 

and E14.5 or 10 mg/kg bodyweight of rat IgG isotype control (IgG) antibody to investigate the effect of 

IL-6 signaling blockade. Pregnant dams were sacrificed at E15.5 after injection of BrdU and 

buprenorphine, and organs were collected, as described above. 
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Figure 3.1.1.1: Mouse model and interventions used in this work. C57BL/6N wild type mice were randomly 

assigned to SD or HFD after weaning at the age of 3 weeks. Mice were mated at an age of 12 to 16 weeks. When 

obese (body weight > 23.5 g), HFD mice were mated and afterwards for several mice mMR16-1 therapy or control 

IgG therapy were conducted by injections on E0.5, E7.5 and E14.5. SD and HFD dams were dissected at E11.5, 

E15.5 and E18.5 to retrieve blood and organs (placentas, egWAT, etc.). Several SD and HFD dams were allowed 

to give birth to determine pregnancy duration. Further, mMR16-1, IgG and IL-6-/- mice were dissected only at E15.5. 

IL-6-/- mice received HFD after weaning and when obese, they were mated and were dissected only at E15.5 to 

collect blood and organs (placentas, egWAT, etc.). 

 

3.2 Histochemical, immunohistochemical and immunofluorescence methods 

The microscopic analysis of tissues and organs requires the segmentation of these biological specimens 

in micrometer-thin sections. The staining of such sections enables detection of structures and, when 

using epitope-specific antibodies, even the identification of many (macro-)molecules, such as proteins 

[85]. As mentioned above, organs and tissues gathered for this work were embedded either in Tissue-

Tek®OCT or in paraffin after dissection from animals. Paraffin-embedded tissues were molded in blocks 

on a heated EG1140 H and, after hardening, were sectioned on a RM2 microtome at various 

thicknesses, i.e. 7 µm for stereology immunohistochemistry (IHC), 5 µm for other IHC, or 3 µm for 

immunofluorescence (IF). For stereology IHC [81], the tissue blocks were exhaustively sectioned and a 

random section between the first 40 sections was determined. This random section and the following 2 

sections comprised one interval, and every 40th following section of this interval were also collected, e.g. 

sections 17, 18, and 19 (interval 1), then sections 57, 58, and 59 (interval 2), then sections 97, 98, and 

99 (interval 3), and so on until the placenta was completely sectioned. One section from interval 1 and 

all 40th consecutive sections, e.g. sections 17, 57, 97, etc., were stained by hematoxylin and eosin. 

Another section from the first interval and all 40th consecutive sections, e.g. sections 18, 58, 98, etc., 

were stained by IHC with CD31 primary antibody. The use of IHC protocols permits the specific 

identification and localization of epitopes bound by a primary antibody. Staining signals originate after 

incubation with a secondary antibody conjugated with a horseradish peroxidase (HRP) that catalyzes 
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the specific reaction of DAB to a brown-colored staining product at the site of reaction which is thus 

specific to the primary antibody. Staining protocols for histochemical, IHC or IF of paraffin-embedded 

sections always comprised de-waxing in 3 changes of NeoClear® for 15 minutes, 1 change of each 

100%, 96%, 80%, 70% ethanol and de-ionized water for 1 minute each. Subsequently, re-hydrated 

sections were either subjected to a) hematoxylin staining (histochemistry) or b) heat-induced epitope 

retrieval (HIER) for IHC and IF. For a) hematoxylin staining, sections were incubated in Mayer’s 

hematoxylin for 5 minutes, rinsed in de-ionized water, blued under running tap water for 10 minutes and 

rinsed again in de-ionized water. Afterwards, eosin staining was performed in eosin G staining solution 

for 2 minutes. Slides were then rinsed in de-ionized water twice and de-hydrated in ascending 

concentrations of ethanol (70 – 100%) for 1 minute each. Lastly, slides were kept in 2 changes of 

NeoClear® for 5 minutes each and were mounted in NeoMount®. Sections that received b) HIER for 25 

minutes in citrate buffer pH 6 were subsequently cooled for at least 30 minutes. Tissues on the slides 

were outlined with a hydrophobic pen, rinsed in PBS-T and blocked in urea-hydrogen peroxide (1 tablet 

per 5 mL) for 10 minutes. Urea-hydrogen peroxide was discarded and slides were then incubated with 

Sea Blocking buffer for 1 hour. Sea Blocking buffer was discarded and primary antibody (Table 3.1) was 

incubated O/N at 4°C. Next, sections were washed for 5 minutes in PBS-T, 3 changes, and ZytoChem 

Plus HRP One-Step Polymer anti-Mouse/Rabbit/Rat was incubated subsequently for 30 minutes at 

room temperature (R/T). Sections were then washed in PBS-T and treated with ImmPACT™ DAB 

substrate according to manufacturer instructions. Reactions were stopped by immersing sections in de-

ionized water. Then, sections were counterstained with Mayer’s hematoxylin for 2 minutes, rinsed in de-

ionized water and put under running tap water for 10 minutes. After a rinse in de-ionized water, sections 

were de-hydrated in ascending concentrations of ethanol, kept in NeoClear® and mounted in 

NeoMount® as described above. 

 

Table 3.1: Antibody dilutions used in this work for IHC and IF. 

Antibody IHC/IF Dilution (in antibody diluent) 

BrdU IF 1:1000 

CD31 IHC & IF 1:300 

CD45 IHC 1:2000 

Cy3-conjugated IF 1:400 

DyLight488-conjugated IF 1:400 

E-cadherin IHC & IF 1:1000 (IHC), 1:100 (IF) 

HRP-conjugated-goat anti-rabbit 

(Tyramide SuperBoost™) 

IF 1:500 

Lamininγ1 IF 1:100 

P-cadherin IHC & IF 1:1000 (IHC), 1:100 (IF) 

VE-cadherin IHC & IF 1:1000 (IHC), 1:100 (IF) 

β-catenin IHC & IF 1:200 (IHC), 1:100 (IF) 

γH2A.X IF 1:4000 
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IF was performed on sections close to the placental mid-line where the cord was present and sections 

were treated similarly to b) HIER. Briefly, after urea-hydrogen peroxide treatment, sections were 

incubated with 300 mM glycine in de-ionized water for 30 minutes before Sea blocking for 1 hour. 

Primary antibodies (Table 3.1) were incubated O/N at 4°C. Then, sections were washed 3 times in PBS-

T for 5 minutes and the secondary antibody was applied for 1 hour, i.e. either a Cy3-conjugated, 

DyLight488-conjugated, or HRP-conjugated-goat anti-rabbit from Tyramide SuperBoost™ kit according 

to manufacturer instructions. Afterwards, sections were washed in PBS-T and Tyramide SuperBoost™ 

(Table 2.5) treated sections were further treated with working solution and stop solution. For 

multiplexing, Tyramide SuperBoost™ treated sections were again subjected to HIER, blocking, primary 

and secondary antibody incubation as described above. Note that multiplexing with primary antibodies 

of different host species, e.g. rabbit and mouse, was performed without the use of Tyramide 

SuperBoost™ secondary antibodies, but utilized a Cy3-cunjugated secondary antibody against rabbit 

and a DyLight488-conjugated secondary antibody against mouse or vice versa. Sections were 

subsequently washed in PBS-T and nuclear-counterstained with DAPI (1:1000 in antibody diluent). 

Lastly, sections were washed in PBS-T, rinsed in de-ionized water and mounted using Fluoromount™. 

Since paraffin-embedding disposes tissues of lipids that were once inside tissues and cells, 

histochemical staining protocols for lipids, such as Oil Red O staining, are best performed on native 

tissue [85]. To this end, placentas were embedded in Tissue-Tek® OCT immediately after dissection, 

stored at -80°C and sectioned on a Cryostat CM3050 S. For Oil Red O, 5 µm thick non-consecutive 

sections were prepared, transferred on dry ice and fixed promptly in -20°C cold methanol for 1 minute. 

After a short rinse in de-ionized water, sections were treated with 60% (v/v) 2-propanol in de-ionized 

water for 5 minutes at R/T and were subsequently stained in Oil Red O staining solution for 20 minutes 

at R/T. Sections were then rinsed twice in de-ionized water and counterstained with Mayer’s hematoxylin 

as described above before mounting with Fluoromount™. Sections were scanned on a Histoscan 

SCN400. 

 

3.2.1 Quantitation of IHC and IF stained sections 

The analysis and quantitation of IHC and IF stained tissue sections was performed by blinded 

investigators to avoid bias. 

CD45-IHC stained placental and egWAT sections were counted as follows: three or five randomly 

chosen pictures of 343.43 µm by 258.59 µm from placental or egWAT sections, respectively, were used 

for CD45-positive cell counting. Cells were counted in ImageJ Fiji using the cell counter tool. Positive 

cell counts were normalized to the tissue area analyzed and expressed as positive cells per mm². Five 

sections from independent dams per group were stained and analyzed. 

To quantify IF stained BrdU, γH2A.X, TUNEL-positive and EC nuclei in placental sections, scanned 

sections were divided in 10 equally sized frames and 3 frames were manually counted using the cell 

counter tool in ImageJ Fiji. The first frame that was counted originated close to the middle section of the 

Lz, the second frame lied on the distal end of the Lz and the third frame lied in between the other 2 
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frames, schematized in Figure 3.2.1.1. Total cell nuclei number per frame was automatically counted in 

the DAPI channel by Fiji using particle analysis. Positive cell counts were normalized to the total number 

of cell nuclei for CD31 stained EC and expressed as percentage of positive cells. Typically, 6 to 7 

sections from independent dams per group were analyzed. 

 

 

Figure 3.2.1.1: Scheme of framing for cell counting analysis of placenta Lz. This example of a hematoxylin 

and eosin stained placenta visualizes the frame segmentation by 10 equally sized green rectangles of the Lz, of 

which 3 were chosen for cell counting, indicated by black arrows. One frame is on the distal end, one frame is in 

the center of the Lz and the third lies between those other two. For better visualization, a hematoxylin and eosin 

stained placenta is shown, however the framing was applied in the same way on IF stained sections for cell counting. 

 

3.2.2 Quantitation of Oil Red O sections 

Analysis of scanned Oil Red O stained sections was done with QuPath. Using unstained and Oil Red O 

stained placental tissue regions virtually extracted from multiple sections, a random forest pixel classifier 

was trained to predict positive and negative pixels. The labyrinth zone was manually annotated in each 

section and afterwards the classifier was used to detect Oil Red O positive pixels. Subsequently, stain-

positive area fraction per section was calculated and normalized to total placenta area. During the 

procedure, the investigator was blinded for sample affiliation. 

 

3.3 Stereological analysis of the placenta 

The three-dimensional (3D) properties of tissues and organs can be estimated by calculating these 3D-

properties from 2D-histo sections [86]. To this end, placentas and adjacent tissue were stained as 

mentioned above. After sections were digitalized on a Histoscan SCN400, they were processed into 

4096 by 4096 pixel tiles with a scale of 3.96 µm/pixel. Line and point grids were superimposed on these 

tiles and points falling on placental strata, i.e. labyrinth zone (Lz), junctional zone (Jz), decidua or 

chorionic plate, as well as fetal capillary profiles and intersections of a line with fetal capillaries (FC) or 

maternal blood sinuses (MBS) were counted in ImageJ Fiji (see Figure 4.2.2.2 and Figure 4.3.5.1). 
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Densities of volumes, surface area and others were calculated using the following equations published 

by Coan [24]: 

V(Obj) = t × a(p) × Σ P         (1) 

S(structure) = (2 × Σ I(structure)/I(p) × Σ P(reference)) × V(reference)     (2) 

Vv(struc,ref) = P(struc)/P(total)         (3) 

LV(cap) = 2QA          (4) 

d = 2[(VV(struc)/LV(cap))/π]1/2        (5) 

 

Where V(Obj) equals the assumed placental volume, t is the number of sections multiplied by their 

thickness, a(p) is the area attributed to a grid point, Σ I(structure) equals the sum of intersections of the line 

with the structure (MBS or FC), Σ P(reference) is the total number of points on the Lz, I(p) equals the length 

of the line associated with each grid point, Vv(struc,ref) denotes the volume fraction of a placental stratum 

(e.g. Lz, Jz) within the placental reference space, P(struc) equals the number of points attributed to the 

stratum and P(total) is the number of points falling on the reference structure, i.e. the placenta, and the 

respective stratum, QA represents the numerical density of capillaries per unit area of Lz, LV(cap) is the 

length density of fetal capillaries, and d represents the mean diameter of these capillaries. The 

calculated values were then multiplied by the absolute placental volume to generate absolute quantities. 

Values were further weight-averaged for each placenta [81]. 

 

3.4 Laser-capture microdissection and proteomics profiling 

The placental halves embedded in Tissue-Tek® OCT were further used to generate 16 µm thick 

placental sections which were transferred onto PEN-Membrane slides for laser-capture microdissection 

(LCM). This procedure utilizes a LMD7000 microscope equipped with a laser that can be controlled to 

dissect specific fractions of a tissue section. To differentiate between placental Lz which was aimed to 

collect by LCM and other placental zones, sections were stained with toluidine blue. In brief, sections 

were first fixed in 70% (v/v) ethanol in de-ionized water supplemented with cOmplete EDTA-free 

Protease Inhibitor Cocktail at 4°C for 1 minute. Subsequently, sections were rinsed in de-ionized water 

and stained in toluidine blue for 1 minute followed by a rinse in de-ionized water and 70% (v/v) ethanol. 

Sections were then dried for at least 1 hour at R/T before LCM was performed [80]. The settings used 

on the LMD7000 for dissection can be found in Table 3.2. During LCM, between 8 and 12 mm² of 

dissected placental tissues were collected from 3 sections per placenta, 5 placentas per group, 1 

placenta per dam. After collection, SP3 lysis was performed as described by Hughes [87]. In brief, SP3 

buffer was added to each tube at a volume similar to the volume of collected placental tissue. Samples 

were then heated at 95°C for 10 minutes and chromatin degraded in a Diagenode Bioruptor for 10 

minutes (cycle 30/30 seconds) at R/T. Afterwards, DTT was added to a final concentration of 5 mM, 

vortexed and incubated for 30 minutes at 55°C. Then, CAA was added to a final concentration of  
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40 mM, vortexed and incubated for 30 minutes in the dark at R/T. Samples were frozen at -20°C until 

mass spectrometry and proteomics data analysis by the staff of the CECAD Proteomics Facility.  

Table 3.2: Settings on LMD7000 for LCM of placental sections. 

Power 16 – 18 

Aperture 20 

Velocity 7 

Specimen Balance 23 

Head Current 100% 

Pulse Frequency 201 

 

3.4.1 Mass Spectrometry 

To analyze samples, Q Exactive Plus Orbitrap (Thermo Scientific) mass spectrometer coupled to an 

EASY nLC 1000 (Thermo Scientific) was used. Peptides were loaded with solvent A (0.1% (v/v) formic 

acid in de-ionized water) onto an in-house packed analytical column (50 cm — 75 µm I.D., filled with  

2.7 µm Poroshell EC120 C18, Agilent). Chromatographical separation of peptides was done at a 

constant flow rate of 250 nL/minute with the following gradient: 3 – 5% solvent B (0.1% formic acid in 

80% acetonitrile) within 1.0 minute, 5 – 30% solvent B within 119.0 minutes, 30 – 50% solvent B within 

19.0 minutes, 50 – 95% solvent B within 1.0 minute, followed by washing and column equilibration. The 

mass spectrometer was set to data-dependent acquisition mode. The MS1 survey scan was acquired 

from 300 – 1750 m/z at a resolution of 70,000. Isolation of the top 10 most abundant peptides was done 

within a 2.1 Th window and peptides were subjected to HCD fragmentation at a normalized collision 

energy of 27%. A maximum injection time of 60 milliseconds was applied, as the AGC target was set to 

5e5 charges. Product ions were detected at a resolution of 17,500 in the Orbitrap. Dynamic exclusion 

of precursors was set for 25.0 seconds [80]. 

 

3.4.2 Proteomics data analysis 

Maxquant (version 1.5.3.8) with default parameters was utilized to process raw data from mass 

spectrometry. Briefly, MS2 spectra were searched against the Uniprot MOUSE.fasta database with a 

list of common contaminants included. False discovery rates (FDR) on protein and PSM level were 

estimated by the target-decoy approach to 1% (Protein FDR) and 1% (PSM FDR), respectively. A 

minimal peptide length of 7 amino acids was set and carbamidomethylation at cysteine residues was 

considered as a fixed modification. Oxidation (M) and Acetyl (Protein N-term) were included as variable 

modifications. The match-between runs option was enabled. LFQ quantification was enabled using 

default settings. Further analysis was carried out with Perseus (version 1.5.5.3). Briefly, LFQ values 

were log2-transformed, and proteins flagged as “potential contaminants”, “reverse” and “only identified 

by site” were removed from the data set. Only proteins which have been quantified in all samples were 

retained after filtering the data. A two-sample Student’s t test was used to determine statistically 

significant changes [80]. 
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3.5 Electron microscopy 

To obtain placentas for electron microscopy, pregnant dams were perfusion fixated at E15.5. First, dams 

were injected subcutaneously with 0.1 mg/kg bodyweight buprenorphine dissolved in sodium chloride 

0.9% solution 30 minutes prior to perfusion. Then, perfusion was performed in deep isoflurane 

anesthesia as mentioned above under 3.1.1. The animal was opened along the linea alba, the uterus 

was carefully placed outside the belly to ensure perfusion of uterine vessels, and the heart was exposed 

by incision of the thorax and removal of several ribs. A cannula was carefully inserted into the left 

ventricle while pre-perfusion solution (Table 2.4) was running which was placed about 1.2 m above the 

animal. Once the cannula was placed, this solution ran for 2 minutes after which it was switched to 

formaldehyde Roti®-Histofix 4% for another 10 minutes. Successful fixation was determined by 

inspecting the liver, which appeared light brown, and a kidney, which appeared pale with dark stains. 

Next, uteri and feto-placental units were removed to collect placentas. These were cut in 2 mm by 2 mm 

by 2 mm sized tissue cubes from the center of the organ and transferred into EM fixation solution for  

4 hours at 4°C. Afterwards, tissues were transferred to 10X D-PBS until epon-embedding by Mojgan 

Ghilav of the Research Group of Prof. Wilhelm Bloch, at the Department of Molecular and Cellular Sports 

Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 

Cologne, Germany. Mrs. Ghilav also prepared semi- and ultra-thin sections for EM at the Department 

of Anatomy I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 

Germany, which was performed by Tim van Beers.  

 

3.6 Protein isolation and detection 

Approximately 25 mg of placental tissue, that was snap frozen in liquid nitrogen after dissection, was 

manually ground using a 1.5 mL-reaction tube mortar in modified RIPA buffer. Lysed tissues were kept 

on ice and were sonicated for 20 seconds at 50% energy and 3 × 10% cycle on a Sonopuls HD, then 

incubated on ice for 1 hour and subsequently centrifuged at 18,500 g for 5 minutes at 4°C. Supernatants 

were collected and protein concentration was determined using Pierce™ BCA Protein Assay kit 

according to manufacturer instructions on an Infinite M200 pro at 562 nm. For protein detection, 20 to 

30 μg of protein was added to 5X western blot loading buffer and de-ionized water and separated on 

8% to 12% acrylamide SDS-PAGE under reducing conditions, followed by transfer onto a nitrocellulose 

membrane by blotting for 2 hours at 1.3 mA/cm2, and at R/T using Towbin buffer. After blotting, 

membranes were shortly rinsed in de-ionized water and stained for 2 minutes in Ponceau S solution. 

Afterwards, membranes were washed 3 times in TBST and were blocked with 2% BSA, 5% non-fat dry 

milk powder (w/v) in TBST for 1 hour on a shake plate at R/T. Next, membranes were incubated with 

primary antibodies for 30 minutes at R/T followed by incubation O/N at 4°C. On the next day, membranes 

were washed 3 times for 7 minutes in TBST and secondary antibodies against primary antibody species 

were applied for 1 hour at R/T. Membranes were washed in TBST and subsequently incubated for 

detection with ECL for 1 minute. Images were taken on a ChemiDoc XRS+. From those images, 

densitometric analysis was performed using ImageLab software.  
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3.7 Enzyme-linked immunosorbent assays of serum proteins 

 

3.7.1 IL-6 ELISA 

The concentration of IL-6 in undiluted maternal serum from E15.5 was measured by IL-6 ELISA kit 

EZMIL6. Manufacturers’ protocols were followed to perform IL-6 ELISA. Plates were read on an Infinite 

M200 pro at the respective wavelengths. 

 

3.7.2 Serum amyloid A2 (SAA2) ELISA 

SAA2 concentration was measured in undiluted maternal serum, from E15.5 dams from which received 

i.p. injections of mMR16-1 or IgG, by mouse SAA2 ELISA kit in animals. The ELISA was performed 

according to manufacturer instructions and plates were read on an Infinite M200 pro at the respective 

wavelengths. 

 

3.8 Genotyping 

Table 3.3: Genotyping primers used in this work 

Name Type Sequence Company 

oIMR0212 Primer (common) 5’-TTCCATCCAGTTGCCTTCTTGG-3’ Eurofins Genomic 

oIMR0213 Primer (wild type 
reverse) 

5’-TTCTCATTTCCACGATTTCCCAG-3’ Eurofins Genomic 

oIMR0214 Primer (mutant 
reverse) 

5’-CCGGAGAACCTGCGTGCAATCC-3’ Eurofins Genomic 

 

3.8.1 DNA extraction 

Backcrossing of B6.129S2-IL6tm1Kopf/J IL-6+/- to BL/6N background with BL/6N IL-6 wild type mice 

required genotyping of offspring before weaning in order to select IL-6+/- offspring for subsequent 

backcrossing. To this end, ear tags from 3 week old mice were collected and lysed in 500 µL tail lysis 

buffer pH 8 supplemented with 5 µL Proteinase K per sample O/N at 55°C on a shake plate. Next,  

500 µL of 2-propanol was added and incubated for 10 minutes at R/T after which samples were 

centrifuged at 20,000 g for 15 minutes at 4°C. Supernatant was removed and the DNA-pellets washed 

with 500 µL of 70% ethanol of -20°C before repeating centrifugation for 10 minutes. Again, supernatant 

was removed and the DNA-pellets were air-dried for 1 hour before adding 50 µL de-ionized water and 

vortexing thoroughly. Samples were kept at 4°C from that point on. 

 

3.8.2 PCR and agarose gel electrophoresis 

First, an adequate amount of PCR mastermix was made with specific primers (Table 3.3). After mixing, 

1 µL of extracted DNA was added to 19 µL PCR mix. Reaction tubes were placed in a PCR Cycler 

Biometra Tone and the protocol from Table 3.4 was applied. 
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Table 3.4: Steps in the PCR cycling program 

Step Time Temperature 

Denaturation  3 minutes 94°C 

36 cycle Denature 30 seconds 94°C 

Anneal 1 minute 62°C 

Extend 1 minute 72°C 

Extension  10 minutes 72°C 

Cool and hold  indefinitely 4°C 

 

For gel electrophoresis, a 1.5% agarose gel was made with Midori Green. Then, samples were added 

and the electrophoresis was run at 110 V. The gel was removed and imaged on a BioDoc Analyze. An 

example of genotyping can be found in Appendix 6.1 (Figure 6.1.1). 

 

3.9 Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

 

3.9.1 qPCR oligonucleotides 

Table 3.5: Oligonucleotides used in this work. IL6 and TNFα primer have been published elsewhere [79, 88], MCP1 

to CAT primer have been published elsewhere [79]. 

Name Type Sequence Company 

E-cadherin 

(CDH1) 

Forward primer 

Reverse primer 

Taqman probe 

5’-CAGTCATAGGGAGCTGTCTACCAAA-3’ 

5’-GGGTACACGCTGGGAAACAT-3’ 

5’-CACCACCACCGCGACCCTGC-3’ 

Eurofins Genomics 

P-cadherin 

(CDH3) 

Forward primer 

Reverse primer 

Taqman probe 

5’-GACATGGATGGAGAGGGCTCTA-3’ 

5’-CTCATACTTCTGCGGCTCAAACT-3’ 

5’-CCTTGATGCCAACGATAACGCTCCG-3’ 

Eurofins Genomics 

VE-cadherin 

(CDH5) 

Forward primer 

Reverse primer 

Taqman probe 

5’-TGGCCAAAGACCCTGACAAG-3’ 

5’-TCGGAAGAATTGGCCTCTGT-3’ 

5’-CTCAGCGCAGCATCGGGTACTCCAT-3’ 

Eurofins Genomics 

β-catenin 

(CTNNB1) 

Forward primer 

Reverse primer 

Taqman probe 

5’-GGACGTTCACAACCGGATTG-3’ 

5’-GGACCCCTGCAGCTACTCTTT-3’ 

5’-CCATTGTTTGTGCAGTTGCTTTATTCTCCC-3’ 

Eurofins Genomics 

β-actin (ACTB) Forward primer 

Reverse primer 

Taqman probe 

5’-TGACAGGATGCAGAAGGAGATTACT-3’ 

5’-GCCACCGATCCACACAGAGT-3’ 

5’-ATCAAGATCATTGCTCCTCCTGAGCGC-3’ 

Eurofins Genomics 

HPRT (HPRT1) Forward primer 

Reverse primer 

Taqman probe 

5’-TGGCCATCTGCCTAGTAAAGCT-3’ 

5’-TAGGCTCATAGTGCAAATCAAAAGTC-3’ 

5’-TTTTTAGAAATGTCAGTTGCTGCGTCCCC-3’ 

Eurofins Genomics 
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GAPDH Forward primer 

Reverse primer 

Taqman probe 

5’-ATGTGTCCGTCGTGGATCTGA-3’ 

5’-TGCCTGCTTCACCACCTTCT-3’ 

5’-CCGCCTGGAGAAACCTGCCAAGTATG-3’ 

Eurofins Genomics 

IL6 Forward primer 

Reverse primer 

Taqman probe 

5‘-ACAAAGCCAGAGTCCTTCAGAGA-3‘ 

5‘-CACTCCTTCTGTGACTCCAGCTTA-3‘ 

5’-AGTCCTTCCTACCCCAATTTCCAATGCTC-3’ 

Eurofins Genomics 

TNFα Forward primer 

Reverse primer 

Taqman probe 

5’-GGCTGCCCCGACTACGT-3’ 

5’-GACTTTCTCCTGGTATGAGATAGCAA-3’ 

5’-CCTCACCCACACCGTCAGCCG-3’ 

Eurofins Genomics 

MCP1 Forward primer 

Reverse primer 

Taqman probe 

5’-GGCTCAGCCAGATGCAGTTAAC-3’ 

5’-CTTGGTGACAAAAACTACAGCTTCTT-3’ 

5’-CCCCACTCACCTGCTGCTACTCATTCA-3’ 

Eurofins Genomics 

CXCL1 Forward primer 

Reverse primer 

Taqman probe 

5’-AGACCATGGCTGGGATTCAC-3’ 

5’-AGCCTCGCGACCATTCTTG-3’ 

5’-CTGCACCCAAACCGAAGTCATAGCCAC-3’ 

Eurofins Genomics 

CXCL10 Forward primer 

Reverse primer 

Taqman probe 

5’-CATCCCTGCGAGCCTATCC-3’ 

5’-CCCTTTTAGACCTTTTTTGGCTAA-3’ 

5’-CCCACGTGTTGAGATCATTGCCACG-3’ 

Eurofins Genomics 

IL1A Forward primer 

Reverse primer 

Taqman probe 

5’-TGGCAACTCCTTCAGCAACA-3’ 

5’-TCGGGAGGAGACGACTCTAAATA-3’ 

5’-TCAGATTCACAACTGTTCGTGAGCGCTC-3’ 

Eurofins Genomics 

IL1B Forward primer 

Reverse primer 

Taqman probe 

5’-TGACAGTGATGAGAATGACCTGTTC-3’ 

5’-GGACAGCCCAGGTCAAAGG-3’ 

5’-ACCCCAAAAGATGAAGGGCTGCTTCC-3’ 

Eurofins Genomics 

CYBA Forward primer 

Reverse primer 

Taqman probe 

5’-CGTCTGGCCTGATTCTCATCA-3’ 

5’-GATAGAGTAGGCGCCGAAATACC-3’ 

5’-CATCGTGGCTACTGCTGGACGTTTCAC-3’ 

Eurofins Genomics 

CYBB Forward primer 

Reverse primer 

Taqman probe 

5’-CCCAACTGGGATAACGAGTTCA-3’ 

5’-TCAGGGCCACACAGGAAAAC-3’ 

5’-ACCATTGCAAGTGAACACCCTAACACCACA-3’ 

Eurofins Genomics 

NCF1 Forward primer 

Reverse primer 

Taqman probe 

5’-CACCTTCATTCGCCATATTGC-3’ 

5’-ACAGGTCCTGCCACTTAACCA-3’ 

5’-CATCCCCAGCCAGCACTATGTGTACATGT-3’ 

Eurofins Genomics 

NCF2 Forward primer 

Reverse primer 

Taqman probe 

5’-CCGATATTCCACCACCTCCTAA-3’ 

5’-CATAGGCACGCTGAGCTTCA-3’ 

5’-TCACCAGGTCACAAGCAAAAAGAGCCC-3’ 

Eurofins Genomics 

NOX4 Forward primer 

Reverse primer 

Taqman probe 

5’-GAAGGTCCCTAGCAGGAGAACA-3’ 

5’-ACTGAAAAGTTGAGGGCATTCAC-3’ 

5’-TCTCAGGTGTGCATGTAGCCGCCC-3’ 

Eurofins Genomics 

GPX Forward primer 

Reverse primer 

Taqman probe 

5’-GACACCAGGAGAATGGCAAGA-3’ 

5’-TTCTCACCATTCACTTCGCACTT-3’ 

5’-TGAATTCCCTCAAGTACGTCCGACCTGG-3’ 

Eurofins Genomics 
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SOD Forward primer 

Reverse primer 

Taqman probe 

5’-GTACCAGTGCAGGACCTCATTTTA-3’ 

5’-GTCTCCAACATGCCTCTCTTCAT-3’ 

5’-CTCACTCTAAGAAACATGGTGGCCCGG-3’ 

Eurofins Genomics 

CAT Forward primer 

Reverse primer 

Taqman probe 

5’-CCATCCTTTATCCATAGCCAGAA-3’ 

5’-GAATCCCTCGGTCACTGAACAA-3’ 

5’-TCGTCCCGAGTCTCTCCATCAGGTTTCT-3’ 

Eurofins Genomics 

 

3.9.2 RNA isolation 

Approximately 100 mg of snap frozen tissue, stored at -80°C, was added to 1.5 mL TRI Reagent® and 

homogenized in a Mixer mill MM 400 at 30 Hz for 30 seconds. Depending on tissue rigidity, 

homogenization was repeated up to 4 times. Then, lysates were incubated for 5 minutes at R/T before 

adding 300 µL of chloroform, vortexing and incubating again for 3 minutes. Subsequently, samples were 

centrifuged at 13,680 g for 15 minutes at 4°C to achieve phase-separation of RNA, DNA and debris. 

The topmost phase containing RNA was transferred to a fresh tube and added with 750 µL 2-propanol 

and mixed. Samples were then incubated on ice for 20 minutes and subsequently centrifuged at  

21,000 g at 4°C for 15 minutes. Afterwards, supernatant was removed and the remaining RNA pellet 

washed 2 times with 75% ethanol with centrifugation in between at 21,000 g at 4°C for 5 minutes. The 

supernatant was removed and the pellet was air-dried after which DEPC-H2O was added to resuspend 

the pellet and stored at -80°C. RNA purity and concentration were determined by spectrophotometry on 

an Infinite M200 pro. RNA has an absorption maximum at an optical density (OD) of 260 nm which was 

used to determine RNA concentration, while protein OD of 280 nm was used to calculate RNA purity by 

dividing OD260/OD280. If this ratio is between 1.8 and 2.0, the purity was high and RNA was used for 

generating cDNA. 

 

3.9.3 Generating cDNA stocks 

RNA was reverse transcribed to double-stranded cDNA from 0.5 µg RNA dissolved in DEPC-H2O. The 

resulting amount of cDNA stocks proved sufficient for the estimated number of qPCR assays required. 

RNA samples were first treated according to manufacturer’s instruction with RQ1 DNAse (1u/µL) plus 

RQ1 DNAse buffer for 15 minutes at R/T after which reactions were stopped with RQ1 DNAse stop 

solution and incubation for 15 minutes at 65°C. Next, oligo-dT and random primer in DEPC-H2O were 

added and heated to 70°C and incubated for 5 minutes before cool-down on ice for 1 minute. As a 

consequence, oligo-dT primers bind to the poly-A tail at the 3’-end of RNA molecules and random 

primers further bind at several random locations on the RNA strand. Then, reverse transcription was 

achieved by adding DNA polymerase, reaction buffer, dNTP mix, RNasin® and DEPC-H2O and 

incubating for 1 hour at 37°C. At the end, the reaction was stopped by incubating samples on ice for  

1 minute. Resulting cDNA stocks were kept at -20°C.  
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3.9.4 RT-qPCR assays 

RT-qPCR assays utilizing cDNA stocks (2.5 µL for Platinum® or 1 µL for SyBR®) and oligonucleotide 

primers (Table 3.5) were prepared with Platinum® qPCR SuperMix-UDG with ROX or SYBR® Green 

Master Mix. qPCR plates were run on a Taqman 7500 using TAMRA quencher and FAM reporter. The 

delta-delta Ct method was used to calculate gene expression fold changes for each assay [89]. For 

normalization, housekeeping genes ACTB, HPRT1 and GAPDH were used. Graphs in the result section 

show results after normalization to the housekeeping gene that was most homogeneously expressed in 

both tested groups. Normalized data were similar among housekeeping genes (data not shown). 

Table 3.6: Platinum ® Taqman temperature and cycling. 

Step Cycles Stage Time Temperature 

Step 1  Holding stage 2 minutes 50°C 

Step 1  Holding stage 10 minutes 95°C 

Step 1 

40 cycles 

Cycling stage 15 seconds 95°C 

Step 2 Cycling stage 1 minute 60°C 

 

Table 3.7: SyBR® temperature and cycling. 

Step Cycles Stage Time Temperature 

Step 1  Holding stage 2 minutes 95°C 

Step 1 

40 cycles 

Cycling stage 15 seconds 95°C 

Step 2 Cycling stage 1 minute 60°C 

Step 1  Melt curve stage 15 seconds 95°C 

 

3.9.5 Lipid peroxidation assay 

A marker for lipid oxidation and thus oxidative stress, malondialdehyde (MDA), was detected utilizing 

the Lipid Peroxidation (MDA) assay kit. In brief, 10 mg of placental tissue were homogenized in MDA 

lysis buffer and processed further according to manufacturer’s instructions. Basically, the assay 

measures the production of a colorimetric product from the reaction of MDA with TBA and this reaction 

product can be quantitated by spectrophotometry at an absorbance maximum of 532 nm, measured on 

Infinite 200 pro.  

 

3.10 Cell culture studies 

Culturing of cells was done in humid incubators at 37°C and 5% CO2. For handling, cells were 

transferred to a cell culture hood with laminar flow which was decontaminated with ethanol and UV-light 

on a daily basis to provide as sterile working conditions as possible. Media were supplemented with 

PenStrep to avoid bacterial contamination, and mycoplasma contamination tests of culture media were 
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regularly performed. All solutions from non-sterile source added to cell cultures were either autoclaved 

or sterile-filtered prior to use. 

 

3.10.1 Cell culture medium 

Table 3.8: Cell culture media purchased and used in this work. 

Medium Company 

DMEM/F12, HEPES #11039-021 Gibco®, Carlsbad, California, USA 

Endothelial cell medium #1001 ScienCell, Carlsbad, California, USA 

 

3.10.2 Cell lines 

Table 3.9: Commercial cell lines used in this work. 

Cell line Company 

BeWo, ACC-No. 458 Deutsche Sammlung von Mikroorganismen und Zellkulturen 

(DSMZ), Braunschweig, Germany 

HPVEC, #7100 ScienCell, Carlsbad, California, USA 

 

3.10.3 Maintenance of cell lines 

Human trophoblast-derived choriocarcinoma cells (BeWo) were purchased from DSMZ and cultured 

according to manufacturer instructions. Briefly, cells were thawed carefully in a 37°C water bath until 

completely thawed and then transferred to 9 mL fresh DMEM/F-12 HEPES medium. This medium was 

supplemented with 1% (v/v) PenStrep and 10% (v/v) FBS. Cells in medium were centrifuged at 125 g 

for 3 minutes, supernatant was removed and cells were resuspended in 1 mL medium before plating in 

flasks. Typically, every 48 hours, the cell medium was changed and cells were split shortly before 

reaching 100% confluence by removing the medium, washing with D-PBS and incubating with trypsin-

EDTA for 3 to 5 minutes at 37°C. Fresh medium with FBS and PenStrep was subsequently added to 

block trypsin-EDTA. Cells in suspension were centrifuged at 125 g for 3 minutes to remove supernatant 

and 1 mL of fresh medium was added to resuspend. Either 1/4 or 1/5 of cell suspension were then plated 

in 75 cm² flasks filled with approximately 10 mL of fresh medium. 

Human placental vein endothelial cells (HPVEC), which are primary placenta cells from one placenta/lot, 

were purchased from ScienCell and cultured in accordance with manufacturer instructions. In brief, cells 

were received at passage one, thawed and then plated in flasks filled with 10 mL fresh endothelial cell 

medium supplemented with 1% (v/v) endothelial cell growth supplements, 5% (v/v) FBS and 1% (v/v) 

PenStrep. Flasks were coated with 0.2% (v/v) gelatin in de-ionized water on the day before plating cells. 

To this end, gelatin was diluted with de-ionized water to 0.2% and 7.5 mL gelatin solution was incubated 

in a 75 cm2 flask for 1 hour. When cells were seeded, the medium was changed 16 hours after first 

plating to remove residual DMSO. From there, medium was changed every 48 hours and cells were 
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split before reaching confluence similar as described above, however, 1/2 of cell suspension was plated 

per 75 cm² flask. After 8 passages, HPVEC were not further split or used for assays, since they are 

primary cells.  

 

3.10.4 Stimulation of cells 

The influence of cytokines or fatty acids on cell behavior and protein expression was studied by applying 

cell medium supplemented with either a dissolved fatty acid or hyperIL-6 (description below) to cells in 

culture. Fatty acids were purchased as sodium palmitate (PA), sodium oleate (OA) and linoleic acid 

sodium salt (LA) and were first dissolved in de-ionized water to a final concentration of 50 mM and mixed 

in a heated shaker at 70°C. For cell stimulation, fatty acids were further diluted in cell medium 

supplemented with 5% (w/v) protease-free and fatty acid-free BSA to a final concentration of 2.5 mM. 

To enhance dissolution, these 2.5 mM stocks were heated to 40°C for 15 minutes on a shake plate. 

Stimulation of cells with IL-6 was done with a fusion protein of IL-6 and its soluble IL-6R. The bioactive 

fusion protein hyperIL-6 is constructed by recombinant human IL-6 (Val30 – Met212) which is ligated to 

a small glycine and serine-rich peptide chain with the sequence ‘GGGSGGGSGGGS’ to the IL-6 

receptor-alpha (Leu20 – Asp358) [90]. HyperIL-6 was received at a concentration of 500 µg/mL and was 

diluted 1:100 in culture medium to generate a stock solution before further diluting to the required final 

concentrations. 

 

3.10.5 Cell culture for protein detection 

Cells were seeded in 6-well plates at a density of 300,000 cells per well. To achieve this density, cells 

were counted in a Neubauer chamber after splitting. After seeding in wells, cells were maintained in 

medium O/N, approximately 16 hours. Then, medium was removed and cells were either stimulated 

with a) medium plus FBS plus PenStrep or b) medium plus FBS plus PenStrep with 5% (w/v) protease-

free and fatty acid-free BSA or c) various concentrations of fatty acids (PA, OA or LA) dissolved in 

medium as described above or d) medium plus FBS plus PenStrep with hyperIL-6. To assess 

phosphorylation of Stat3 after hyperIL-6 stimulation, cells were incubated for 15 minutes with hyperIL-6 

in medium at 37°C. Stimulation with fatty acids was performed for 24 hours at 37°C. After stimulation, 

medium was removed and cells were put on ice after adding 1 mL of 4°C cold PBS. Cells were collected 

in D-PBS, centrifuged at 125 g for 3 minutes, washed in D-PBS twice and supernatant was removed. 

Pellets were then frozen and stored at -80°C. After four repetitions per stimulation, frozen pellets were 

thawed on ice and 40 µL modified RIPA buffer was added, vortexed and incubated on ice for 1 hour. 

Next, samples were centrifuged at 18,500 g for 5 minutes at 4°C and supernatant was transferred to 

fresh tubes. Supernatant was used in a Pierce™ BCA Protein Assay to determine protein abundance in 

duplicate and for protein detection, 20 µg of protein were used as described above (section 3.6). 
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3.10.6 Permeability assay 

BeWo cells were split and seeded in inserts with a pore size of 0.4 µm at a density of 50,000 cells/insert 

in a 24-well plate filled with 800 µL medium per well and 300 µL medium per insert. Typically, medium 

was replaced after 48 hours and cells took 48 to 72 hours to reach confluence which was confirmed by 

staining cells with CellStain® and inspection under a microscope. When confluent, medium was 

removed and cells were treated with fatty acids for 24 hours. Afterwards, medium was carefully removed 

from inserts and inserts were transferred to a fresh 24-well plate filled with 800 µL plain DMEM/F12 

medium (without FBS, PenStrep). Subsequently, 300 µL of Streptavidin-HRP diluted 1:20 in plain 

medium was added to each insert and incubated for 30 minutes at 37°C. Next, inserts were removed 

and 30 µL from each underlying well was transferred on a 96-well plate in triplicates. Then, 50 µL of 

TMB substrate solution was added to each well and incubated for 20 minutes at R/T on a shake plate. 

Reaction was stopped by applying 25 µL of 2N H2SO4 to each well and absorption was subsequently 

measured at 450 nm on an Infinite M200 pro. 

 

3.10.7 AdipoRed assay 

The intracellular accumulation of triglycerides can be quantified by AdipoRed assays. To this end, 

15,000 cells per well were plated in 96-well plates and allowed to sit O/N, approximately 16 hours. Then, 

medium was removed and 100 µL medium plus fatty acids was added as described above and incubated 

for 8 hours. After incubation, medium with fatty acids was removed, cells were rinsed in D-PBS and  

100 µL of AdipoRed staining solution was added to each well and incubated for 10 minutes at 37°C. 

Immediately afterwards, fluorescence was read with excitation/emission 485/572 nm on a GloMax® 

Multi Detection System. 

 

3.10.8 Tube formation assay 

The formation of vessel structures, so called tubes, is a characteristic of several cells and cell lines, like 

HPVEC. In order to assess their tube formation capacity and changes in tube formation due to 

stimulation with hyperIL-6, HPVEC were subjected to this assay. A µ-slide was coated with 10 µL 4°C 

cold, growth factor-reduced matrigel and incubated for 45 minutes to 1 hour at 37°C. Afterwards, 5,000 

HPVEC per well were seeded directly in stimulation (10 ng/mL or 50 ng/mL hyperIL-6) or control medium 

(without hyperIL-6). The seeded µ-slide was placed in an incubator for 1 hour at 37°C after which it was 

transferred to a pre-heated confocal Zeiss Meta 510 microscope equipped with an incubator chamber 

set to 37°C and 5% CO2. After 12 hours of incubation with stimulants or control medium, images of the 

wells were taken to manually count closed tubes using ImageJ Fiji. The number of such tubes was then 

normalized to the total analyzed area.  

 

3.10.9 Caspase-GLO® 3/7 apoptosis assay 

HPVEC apoptosis was detected by a commercial Caspase-GLO® 3/7 assay. After coating a 96-well 

plate with 0.2% gelatin, 15,000 cells per well were seeded and allowed to attach for 12 hours. 
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Afterwards, cells were stimulated without, with 10 ng/mL or 50 ng/mL hyperIL-6 for 12 hours. 

Subsequently, Caspase-GLO® 3/7 assay was used to detect caspase activity following manufacturer’s 

instructions. 

 

3.10.10 Cell proliferation assay with BrdU 

Proliferation of HPVEC was determined by cell proliferation ELISA with BrdU from commercial source. 

To this end, a 96-well plate was coated with 0.2% gelatin and 10,000 cells/well were seeded and cultured 

for 12 hours. Afterwards, cells were stimulated without, with 10 ng/mL or 50 ng/mL hyperIL-6 for  

12 hours before removing stimulants and added fresh stimulation medium with BrdU and incubating for 

24 hours. BrdU incorporation in HPVEC was measured according to manufacturer’s instructions.  

 

3.10.11 Cell senescence by beta-galactosidase assay 

Senescence of HPVEC was assessed by seeding 10,000 cell per well in a gelatin-coated 96-well plate 

after which cells were allowed to attach for 12 hours. Next, cells were stimulated with, i.e. 10 ng/mL or 

50 ng/mL of hyperIL-6, or without hyperIL-6 for 48 hours. Afterwards, the senescence-associated  

beta-galactosidase activity was determined as previously published [91]. In brief, after incubation with 

stimulants for 48 hours, cells were washed twice with D-PBS and fixed in 2% formaldehyde plus 

0.2% glutaraldehyde in D-PBS solution. Next, cells were washed twice with D-PBS and fresh beta-gal 

staining solution was added and incubated O/N at 37°C. On the next day, cells were washed with  

D-PBS and transferred to a BX43F microscope to scan wells and take images (DP80 dual CCD camera 

and cellSens Dimension V1.8 software). Using ImageJ Fiji, blue-colored beta-gal positive cells were 

counted and relative senescence rate was calculated. 

 

3.11 Statistical analyses 

Statistical analyses were performed with GraphPad Prism software. D’Agostino and Pearson test was 

used to determine normality distribution of the data. Sets of normally distributed data were analyzed by 

two-tailed Student’s t test or one-way ANOVA followed by Tukey’s multiple comparison test (indicated 

in figure description) and non-normally distributed data were analyzed by two-tailed Mann-Whitney test 

(indicated in figure description). Significant difference was determined by a p value of <0.05. Graphs of 

data calculated or published before May 2019 are shown as mean ± SEM independent of normal 

distribution or non-normal distribution. Later, after consulting a statistician, graphs of data are shown as 

mean ± SEM if normally distributed and as median ± interquartile range if non-normally distributed. Due 

to the large dataset in proteomics profiling, Student’s t test p values were post-tested by the method of 

Benjamini-Hochberg correction [92] and significant difference after correction was determined by a  

q value of <0.05. Further details are shown in the figure descriptions. 
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4. Results 

 

4.1 The pre-delivery inflammatory reaction is mitigated by MO in C57BL/6N mice 

Note: This part of the results section, i.e. “The pre-delivery inflammatory reaction is mitigated by MO in 

C57BL/6N mice”, was published in the Journal of Reproductive Immunology in the article “Maternal 

obesity attenuates predelivery inflammatory reaction in C57BL/6N mice” [79]. Sarah Appel, Merle 

Schulze-Edinghausen and Tobias Kretschmer contributed equally to this work with the help of several 

others: 

Animal handling and tissue collections was performed by Ruth Janoschek, Inga Bae-Gartz, Marion 

Handwerk and Sarah Appel. The qPCR assays were prepared and performed by Merle Schulze-

Edinghausen, Tobias Kretschmer and Maria Wohlfarth, while data calculation was done by Merle 

Schulze-Edinghausen and Sarah Appel. Histological stainings (IHC for CD45) were performed by 

Tobias Kretschmer, while picture processing for cell counting was done by Merle Schulze-Edinghausen 

and Tobias Kretschmer. Lipid peroxidation assay was performed by Merle Schulze-Edinghausen and 

Maria Wohlfarth. Malte Heykants performed multiplex cytokine assays. Statistical analyses were 

performed by Merle Schulze-Edinghausen, Sarah Appel and Tobias Kretschmer. The project was 

supervised and supported by technical input and advice by Kai-Dietrich Nüsken, Eva Hucklenbruch-

Rother, Esther Mahabir, Jörg Dötsch and Sarah Appel. 

 

4.1.1 Inflammation, leukocyte infiltration and oxidative stress in placental tissue and egWAT 

Two time-points of murine gestation, E15.5 which represents the beginning of the third trimester of 

pregnancy and E18.5 which represents the end of the third trimester shortly before parturition, were 

investigated on placental and egWAT level. While SD dams usually gave birth around E19, HFD dams 

took about an extra day before giving birth (Figure 4.1.1.2 D). Gene expression of IL-6 and TNFα, two 

pro-inflammatory cytokines, was significantly increased in placentas of SD dams on E18.5 compared to 

E15.5. MCP1 and the murine IL-8 homologue CXCL1 were not significantly altered and CXCL10, IL-1α 

and IL-1β were down-regulated without reaching statistical significance (Figure 4.1.1.1 B). On E18.5 in 

placentas of obese dams, TNFα was significantly up-regulated compared to E15.5 and IL-6, MCP1, and 

IL-1β were unaltered in expression. CXCL1, CXCL10 and IL-1α on the other hand appeared down-

regulated, but without reaching statistical significance (Figure 4.1.1.1 C). Concomitantly, with an 

increase in IL-6 and TNFα gene expression at E18.5 compared to E15.5 in SD dams, there was 

significant infiltration of leukocytes (CD45-positive) in the Lz. This increase in leukocytes towards the 

end of pregnancy was not observed in HFD dams (Figure 4.1.1.1 A). Further, in both, SD and HFD 

placentas, lipid peroxidation, a marker for oxidative stress, as assessed by MDA assay was significantly 

increased at E18.5 compared to E15.5, however MDA level were also significantly higher in HFD 

placentas at E18.5 compared to SD (Figure 4.1.1.1 D). Anti-oxidative genes GPX and CAT were 

significantly down-regulated at E18.5 compared to E15.5 in SD placentas, whereas pro-oxidative stress 

genes remained largely unaltered (Figure 4.1.1.1 E).  
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The pro-oxidative genes CYBB, NCF1 and NCF2 were significantly up-regulated in placentas of obese 

dams at E18.5 compared to E15.5 and the anti-oxidative CAT gene expression was significantly reduced 

(Figure 4.1.1.1 F). 

 

 

Figure 4.1.1.1: Inflammation, leukocyte infiltration and oxidative stress measurements in placentas at E15.5 

and E18.5. (A) Quantitation of CD45-positive leukocytes in the Lz of the placenta of obese and lean dams at E15.5 

and E18.5, n = 5 placentas for both groups and both gestations days. (B) Gene expression measurement by qPCR 

of pro-inflammatory factors in placentas of SD dams normalized to ACTB at E15.5 and E18.5. Expression was set 

to 1 for E15.5 and the fold change on E18.5 relative to E15.5 is shown. For SD at E15.5 n = 16 placentas from  

5 dams, at E18.5 n = 25 placentas from 5 dams. (C) Gene expression measurement by qPCR of pro-inflammatory 

factors in placentas of HFD dams normalized to ACTB at E15.5 and E18.5. Expression was set to 1 for E15.5 and 

the fold change on E18.5 relative to E15.5 is shown. For HFD at E15.5 n = 21 placentas from 5 dams, at E18.5  

n = 25 placentas from 5 dams. (D) Lipid peroxidation assay to determine oxidative stress level as assessed by 

change in MDA in placentas of SD and HFD dams at E15.5 and E18.5. For SD n = 11 placentas from 11 dams of 

E15.5 and n = 9 placentas from 9 dams of E18.5. For HFD n = 10 placentas from 10 dams of E15.5 and n = 10 

placentas from 10 dams of E18.5. (E) Gene expression measurement by qPCR of oxidative stress markers in 

placentas of SD dams normalized to ACTB at E15.5 and E18.5. Expression was set to 1 for E15.5 and the fold 

change on E18.5 relative to E15.5 is shown. For SD at E15.5 n = 21 placentas from 5 dams, at E18.5 n = 25 

placentas from 5 dams. (F) Gene expression measurement by qPCR of oxidative stress markers in placentas of 

HFD dams normalized to ACTB at E15.5 and E18.5. Expression was set to 1 for E15.5 and the fold change on 

E18.5 relative to E15.5 is shown. For HFD at E15.5 n = 21 placentas from 5 dams, at E18.5 n = 25 placentas from 

5 dams.  ns = not significant; * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001, calculated by two-tailed Student’s 

t test (for normally distributed data) or a Mann-Whitney test (for non-normally distributed data). Graphs show  

mean ± SEM. Figure was published in Appel, Schulze-Edinghausen, Kretschmer et al. [79] Figure 1 and was 

modified. 
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We further investigated inflammatory markers in the egWAT of both diet groups and gestation days, 

since we hypothesized that the egWAT might produce higher amounts of inflammatory markers that 

could affect uterine tissues due to its proximity to these tissues. Significantly elevated expression of  

pro-inflammatory genes IL-6, TNFα, CXCL1, CXCL10, MCP1 and IL-1β were measured in egWAT of 

SD dams at E18.5 compared to E15.5 (Figure 4.1.1.2 B). By contrast, these genes remained unaltered 

in egWAT of obese dams (Figure 4.1.1.2 C). Additionally, the amount of leukocytes was not significantly 

altered in egWAT in either diet group at E15.5 or E18.5 (Figure 4.1.1.2 A).  

 

 

Figure 4.1.1.2: Leukocyte infiltration, inflammatory factor expression in egWAT at E15.5 and E18.5, and 

duration of gestation. (A) Quantitation of CD45-positive leukocytes in the egWAT of SD and HFD dams at E15.5 

and E18.5, n = 5 egWAT for both groups and both gestation days. (B) Gene expression measurement by qPCR of 

pro-inflammatory factors in egWAT of SD dams normalized to ACTB at E15.5 and E18.5. Expression was set to 1 

for E15.5 and the fold change on E18.5 relative to E15.5 is shown. For SD at E15.5 n = 8, at E18.5 n = 5. (C) Gene 

expression measurement by qPCR of pro-inflammatory factors in egWAT of HFD dams normalized to ACTB at 

E15.5 and E18.5. Expression was set to 1 for E15.5 and the fold change on E18.5 relative to E15.5 is shown. For 

SD at E15.5 n = 8, at E18.5 n = 8. (D) Duration of gestation expressed as the “birth date at Gx” in SD and HFD 

dams. n = 8 for SD and n = 11 for HFD. ns = not significant; * p <0.05, ** p <0.01, calculated by two-tailed Student’s 

t test (for normally distributed data) or a Mann-Whitney test (for non-normally distributed data). Graphs show  

mean ± SEM. Figure was published in Appel, Schulze-Edinghausen, Kretschmer et al. [79] Figure 1 and was 

modified. 
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4.2 MO affects EC homeostasis and causes elevated IL-6 serum level which could cause EC 

senescence 

Note: This part of the results section, i.e. “MO affects EC homeostasis and causes elevated IL-6 serum 

level which could cause EC senescence”, was recently published in parts in Nutrients in the article 

“Effect of Maternal Obesity in Mice on IL-6 Levels and Placental Endothelial Cell Homeostasis” [81]. 

This work was made possible with the help of several others: 

Animal handling and tissue collections was performed by Eva-Maria Turnwald, Ruth Janoschek, Inga 

Bae-Gartz, Marion Handwerk, Sarah Appel and Tobias Kretschmer. The qPCR assays were prepared 

and performed by Merle Schulze-Edinghausen and Maria Wohlfarth, while data calculation was done 

by Sarah Appel and Tobias Kretschmer. Protein isolation and detection were performed by Maria 

Wohlfarth, densitometric analysis was contributed by Sarah Appel and Tobias Kretschmer. Histological 

stainings (IHC) were performed by Merle Schulze-Edinghausen and Tobias Kretschmer (IHC, IF and 

Stereology), while picture processing for stereology was done by Peter Zentis and analysis of IF and 

stereology sections was conducted by Tobias Kretschmer. The IL-6 ELISA on serum samples was 

conducted by Merle Schulze-Edinghausen. Cell culture assays and analyses (apoptosis, BrdU, 

senescence-associated beta-galactosidase and tube formation assay) were performed by Merle 

Schulze-Edinghausen and Tobias Kretschmer (tube formation assay). Statistical analyses were 

performed by Merle Schulze-Edinghausen, Sarah Appel and Tobias Kretschmer. The project was 

supervised and supported by technical input and advice by Astrid Schauss, Eva Hucklenbruch-Rother, 

Jörg Dötsch and Sarah Appel. 

 

The significant reduction of fetal weight (0.3786 ± 0.004382 g in HFD vs. 0.4482 ± 0.008337 g in SD,  

p < 0.0001) in HFD offspring of this animal cohort (project A057) at E15.5 was previously reported by 

Appel et al. [93]. In this work, fetal IUGR was also observed (Figure 4.4.1.1 B, Figure 4.6.1.1 B). In the 

work of Kretschmer et al. [81], the aim was to elucidate if a defective vascularization of the placenta 

under MO might contribute to the observed IUGR phenotype. 

 

4.2.1 Significant reduction in EC marker expression in placentas under MO 

Gene activity (mRNA expression) and protein level of EC markers in whole placental lysates of E15.5 

were determined to study the effect of MO on vascularization of the placenta (Figure 4.2.1.1). The qPCR 

assays revealed significant down-regulation of the EC markers CD31, vWF and Tie-1 in placentas of 

HFD dams. Expression level were normalized to ACTB and HPRT. Data is shown for normalization to 

HRPT (Figure 4.2.1.1 A). For normalization to ACTB, similar results were obtained (data not shown). 

The marker CD31 is primarily found in the Lz of placentas which harbors the transfer zone for nutrient 

and gas exchange (Figure 4.2.1.1 B). Additionally, CD31 protein level was significantly lower (p 0.03) in 

whole placental lysates from HFD dams. Interestingly, a similar, significant reduction (p 0.0006) in CD31 

protein level was observed in placentas of dams of project A046 (Figure 4.2.1.1 F). Hence, data 

indicates an effect of MO on ECs of the transfer zone. 
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Figure 4.2.1.1: EC marker level under MO. (A) Gene expression in placentas of SD and HFD of vascular EC 

markers CD31, vWF and Tie-1 detected by qPCR and normalized to HPRT; n = 21 placentas from 5 dams in SD, 

n = 21 placentas from 6 dams in HFD group. The p value is indicated above graphs and was calculated by  

Mann-Whitney test. (B) Representative images showing placental sections stained for CD31 by IHC. Left panel 

(scale bar: 200 µm) shows the 3 main zones, Lz, Jz and Db, and CD31 to be primarily expressed in fetal capillaries 

in the Lz as detailed in the right panel (scale bar: 10 µm). (C) Western blot detection of CD31 in SD and HFD 

placentas (project A057). HPRT was detected as loading control. n = 15 placentas from 5 dams for SD and n = 19 

placentas from seven dams for HFD. (D) Densitometric analysis of CD31 signal from western blot in (C) normalized 

to HPRT. (E) Western blot detection of CD31 in SD and HFD placentas (project A046). HPRT was detected as 

loading control. n = 7 placentas, 1 per dam for both SD and HFD. (F) Densitometric analysis of CD31 signal from 

western blot in (E) normalized to HPRT. All graphs show mean ± SEM. The p value is displayed above the graph, 

calculated by Mann-Whitney test. Figure was published in Kretschmer et al. [81], Figure 1 and was modified. 

 

4.2.2 Disturbed EC homeostasis and placental vascular morphology 

Assessing EC homeostasis, i.e. EC proliferation, apoptosis and senescence, was done by means of IF 

staining for BrdU-positive (proliferation), TUNEL-positive (apoptosis) and γH2A.X-positive (senescence) 

EC which were detected specifically by co-staining for the EC marker CD31 (Figure 4.2.2.1 A – C). The 

stainings were performed on sections close to the placental midline and quantitation by cell counting of 

scanned sections in ImageJ Fiji revealed the number of positively stained EC. No difference in BrdU-

positive or TUNEL-positive cell count was observed in the Lz for HFD placentas compared to controls 

(Figure 4.2.2.1 D & E). However, the amount of γH2A.X-positive EC was significantly larger in placentas 

under MO compared to controls (p 0.0262, Figure 4.2.2.1 F). This indicates elevated level of senescence 

in EC as assessed by γH2A.X-positive staining. 
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Figure 4.2.2.1: Placental EC homeostasis under maternal obesity. (A – C) Representative images of placental 

Lz with IF stainings for proliferation marker BrdU (A, green), apoptosis by TUNEL (B, green) and senescence/DNA-

damage marker γH2A.X (C, green). Co-staining was performed for CD31 (red) and nuclei by DAPI (blue). Scale 

bar = 50 µm. (D – F) Quantitation of IF-positively stained EC nuclei by BrdU (D, n = 6 placentas, 1 placenta per 

dam for both groups SD & HFD), by TUNEL (E, n = 6 placentas, 1 per dam for both SD & HFD) and by γH2A.X  

(F, n = 7 placentas, 1 per dam for both SD & HFD). Graphs show mean ± SEM. The p value is denoted above 

graphs in the figure, calculated using Mann-Whitney test. Figure was published in Kretschmer et al. [81], Figure 2 

and was modified. 

 

Vascularization and vessel morphology of the Lz was studied by stereological means and to this end, 

placental section were stained by IHC against CD31 after exhaustive sectioning (Figure 4.2.2.2 A & B). 

Quantitation of FC surface area revealed a significant reduction (p 0.038) in placentas under MO 

concomitant with a significantly decreased total capillary length (p 0.002) and a tendency towards an 

increased capillary diameter (p 0.072) in those placentas compared to controls (Figure 4.2.2.2 C – E). 

These results strongly suggest an impaired vascularization of the placentas in obese dams. 
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Figure 4.2.2.2: Vascular morphology assessed by stereology under MO. (A) Representative image showing 

the Lz in a SD placenta stained with antibodies against CD31 and DAB. A grid for stereological analysis of fetal 

capillary surface area was superimposed on the image. Scale bar = 50 µm. (B) Representative image showing the 

Lz in a SD placenta stained similar to (B) for CD31. A grid was superimposed on the image to assess fetal capillary 

length and diameter. Scale bar = 50 µm. (C – E) Quantitation of fetal capillary surface area (C), fetal capillary length 

(D) and fetal capillary diameter (E) after stereological analyses. Graphs show mean ± SEM. For SD n = 8 placentas 

from 8 dams, for HFD n = 7 placentas from 7 dams, the p values are denoted above graphs in the figure, calculated 

using Mann-Whitney test. Figure was published in Kretschmer et al. [81], Figure 2 and was modified. 

 

4.2.3 Change in level of IL-6 inflammatory marker 

We hypothesized that IL-6 can influence EC homeostasis in placentas of our obese mouse model and, 

as a consequence, determined IL-6 level in the serum of dams at E15.5. Serum IL-6 level was 

significantly elevated (p 0.048) in dams at E15.5 under MO by a margin of nearly 4-fold (Figure 4.2.3.1 

A). Conversely, qPCR assays showed no difference in IL-6 gene expression (p 0.286) in placentas of 

obese dams (Figure 4.2.3.1 B). In addition, detection of IL-6 mRNA in egWAT revealed a 3-fold increase 

compared to control dams that was not statistically significant (p 0.204, Figure 4.2.3.1 D). However, 

weight of the egWAT pad dissected from obese dams was significantly elevated (p <0.0001, Figure 

4.2.3.1 C) and IL-6 protein level detected in egWAT were increased about 2.5-fold (Figure 4.2.3.1 E & 

F), but again without falling below the border of statistical significance (p 0.057). Nonetheless, these 

results suggest that the placenta is not the source of IL-6 production released in the serum and increased 

IL-6 serum level could rather originate from augmented fat pads in obese dams.  
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Figure 4.2.3.1: Interleukin-6 expression level in serum, placentas and egWAT under MO. (A) Serum level of 

IL-6 determined by ELISA in SD (n = 9) and HFD (n = 10) dams. (B) IL-6 gene expression in placental lysates  

(n = 16 from 4 dams in SD and n = 25 from 7 dams in HFD) analyzed by qPCR and normalized to HPRT. (C) Weight 

of dissected egWAT pad, n = 12 for SD and n = 14 for HFD. (D) IL-6 gene expression in egWAT, n = 8 for SD and 

HFD, analyzed by qPCR and normalized to ACTB. (E) Western blot for the detection of IL-6 and HPRT as loading 

control in n = 4 samples of egWAT for SD and HFD. (F) Densitometric analysis of relative IL-6 protein level from 

(E) normalized to HPRT. Graphs show mean ± SEM. The p value is denoted above graphs in the figure, calculated 

using Mann-Whitney test. Figure was published in Kretschmer et al. [81], Figure 3 and was modified. 
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4.2.4 Effect of IL-6 stimulation on placental EC homeostasis 

It has been stated that serum IL-6 is able to pass over the placental barrier and to reach fetal ECs in the 

transfer zone [94, 95]. Furthermore, it was noted that IL-6 also is capable of causing EC activation and 

apoptosis [69], which led us to test the hypothesis that IL-6 can affect placental EC homeostasis 

(proliferation, apoptosis and/or senescence) and tube formation capacity in vitro. To this end, human 

placenta vein endothelial cells (HPVEC) were treated with various concentrations (without IL-6, with  

10 ng/mL or 50 ng/mL) of IL-6 (i.e. hyperIL-6, a bioactive fusion protein of IL-6 and the IL-6R, see 

Methods 3.10.4). To verify the activity of IL-6 in HPVEC cultures, p-Stat3 level as a well-known target 

of IL-6 signaling was assessed, and we found p-Stat3 level to be clearly increased upon IL-6 stimulation 

(Figure 4.2.4.1 A). The effect of IL-6 stimulation of HPVEC on proliferation was determined by BrdU 

assay (Figure 4.2.4.1 B). For quantitation of apoptosis, the Caspase-GLO® 3/7 assay was used and 

senescence was estimated by quantifying senescence-associated beta-galactosidase activity (Figure 

4.2.4.1 C & D). Neither BrdU, nor Caspase-GLO® 3/7 assays showed significant differences after 

treatment with IL-6, indicating no effect of IL-6 on EC proliferation and apoptosis. Conversely, IL-6 

showed a concentration-dependent effect (10 ng/mL, p 0.057; 50 ng/mL, p 0.029) on senescence of EC 

deduced from significantly elevated senescence-associated beta-galactosidase activity (Figure 4.2.4.1 

D). No clear effect was detected for tube formation capacity after IL-6 stimulation (Figure 4.2.4.1 E). 
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Figure 4.2.4.1: The effect of IL-6 stimulation on HPVEC. (A) Analysis of HPVEC after 15 minute-stimulation 

without (-), with 10 ng/mL or 50 ng/mL of IL-6 by western blot. The level of p-Stat3, total Stat3 and ACTB were 

detected. (B) Relative proliferation rates were measured with a BrdU assay after HPVEC were stimulated with 

similar concentrations as in (A) and n = 6 replicates. (C) Relative apoptosis rates were assessed by Caspase-GLO® 

3/7 assay after HPVEC were stimulated similarly to (A) and n = 5 replicates. (D) Relative senescence rates were 

determined with senescence-associated beta-galactosidase activity assays after HPVEC were stimulated similarly 

to (A) and n = 5 replicates. (E) Tube formation capacity was determined after HPVEC were stimulated similarly to 

(A) and n = 5 replicates. Graphs show mean ± SEM. The p value is denoted above graphs in the figure, calculated 

using Mann-Whitney test. Figure was published in Kretschmer et al. [81], Figure 4 and was modified. 

 

4.2.5 No difference in expression of markers for proliferation, apoptosis and senescence, but 

significant reduction in p-Stat3 in placentas of obese dams 

Since increased EC senescence and reduced EC marker expression due to MO were found in 

placentas, molecular marker expression for proliferation, apoptosis and senescence were also assessed 
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in whole placental lysates (Figure 4.2.5.1). Results of western blots and densitometric analyses showed 

no difference for cyclin D1, PCNA (proliferation), γH2A.X (senescence) or cleaved-caspase 3 and PARP 

(apoptosis) expression between placentas of obese and controls dams. However, p-Stat3 was found to 

be significantly reduced in placentas of obese dams. 

 

 

(Figure caption on the next page) 
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Figure 4.2.5.1: Level of markers for proliferation, senescence, apoptosis and IL-6 signaling/transcription in 

placentas at E15.5. (A) Western blotting of placental lysates (SD and HFD: n = 7 placentas, 1 per dam) showed  

p-Stat3, total Stat3, Cyclin D1, PCNA, γH2A.X, PARP, Caspase 3, cleaved caspase 3 and HPRT (loading control) 

protein level. (B) Densitometric analyses of western blots of proliferation markers Cyclin D1 and PCNA normalized 

to HPRT. (C) Densitometric analyses of western blots of the senescence marker γH2A.X normalized to HPRT.  

(D) Densitometric analyses of western blots of apoptosis markers cleaved caspase 3 normalized to total  

caspase 3 and cleaved PARP (~89 kDA) normalized to total PARP (~116 kDA). (E) Densitometric analyses of 

western blots of p-Stat3 normalized to total Stat3. Graphs show median ± interquartile range and * p <0.05, 

calculated using Mann-Whitney test. 

 

4.3 MO impairs trophoblast differentiation, disrupts basement membrane integrity and affects 

cell-cell interactions 

Note: This part of the results section, i.e. “MO impairs trophoblast differentiation, disrupts basement 

membrane integrity and affects cell-cell interactions”, was recently in parts submitted for publication to 

Biology of Reproduction in the article “Maternal, high fat diet-induced obesity affects trophoblast 

differentiation and placental function in mice”. The prospective first author is Tobias Kretschmer and the 

work presented was made possible through the assistance of several others: 

Animal handling and tissue collections was performed by Eva-Maria Turnwald, Marion Handwerk, Sarah 

Appel and Tobias Kretschmer. LCM procedure and protein extraction was conducted by Tobias 

Kretschmer. Quantitation after SP3 lysis was done by the staff of the Cologne Proteomics Facility 

(CECAD), supervised and statistically analyzed by Christian K. Frese. The qPCR assays were prepared 

and performed by Maria Wohlfarth, while data calculation was done by Tobias Kretschmer. Protein 

isolation, detection and densitometric analysis were performed by Tobias Kretschmer. Placenta 

collection by perfusion fixation was conducted by Marion Handwerk and Tobias Kretschmer, while tissue 

embedding and sectioning was done by Mojgan Ghilav. Electron microscopy was performed by Tim van 

Beers and Wilhelm Bloch and observations were interpreted by Wilhelm Bloch and Tobias Kretschmer. 

Histological stainings (IHC, IF, Oil Red O and Stereology) were performed by Tobias Kretschmer, while 

picture processing and scripting for Oil Red O and stereology was done by Peter Zentis and analysis of 

Oil Red O and stereology sections was conducted by Tobias Kretschmer. Cell culture assays and 

analyses (AdipoRed and permeability assays) were performed by Tobias Kretschmer. Data collection 

and statistical analyses were performed by Peter Zentis and Tobias Kretschmer. The project was 

supervised and supported by technical input and advice from Inga-Bae Gartz, Eva Hucklenbruch-

Rother, Jörg Dötsch and Sarah Appel. 

 

4.3.1 The proteomics profile of the Lz is altered regarding cell adhesion and AJ markers in obese 

dams 

LCM was used on cryo-preserved tissue sections of placentas to specifically dissect and collect the Lz 

for the analysis of its proteome profile. Studying the proteomics profile of the Lz permits detection of a 

high number of proteins and can drive a hypothesis-generating approach. In placentas of obese and 

control dams, proteomics profiling revealed two distinct component clusters for each group SD and HFD 

(Figure 4.3.1.1 A) and 1619 proteins were detected. Among these, 126 proteins were significantly 
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different in expression between both groups. For the 126 proteins, q value was below 0.05 and the Log2 

difference was ≤ -0.454 (< 0.73-fold) and ≥ 0.406 (> 1.33-fold) (Appendix 6.2, Table 6.1). These detected 

proteins were put into String database (version 11) and a network of protein clusters was generated in 

which functional pathways and the confidence of protein interactions can be displayed [96].  

 

 

Figure 4.3.1.1: Proteomics profiling revealed altered protein level and clustering under MO. (A) Clustering 

and principal component analysis revealed two different clusters for control (blue, n = 5 placentas, 1 placenta per 

dam) and obese (magenta, n = 4 placentas, 1 placenta per dam) dams. (B) Protein quantitation by proteomics 

profiling of markers for adhesion and cell junction in the Lz from obese compared to control dams. To represent 

halving in expression level, a dotted line was added at a Log2 difference of -1.0. Graphs show mean values.  

(C) String database-generated network of protein interactions in which red-colored nodes (Cdh1, Flot2, Ptk2, 

Lamb2, and Lamc1) are markers of cell adhesion processes, green-colored nodes (Cdh1, Flot2, Iqgap1, Ptk2, and 

Sdc4) are related to adherens junctions, blue-colored nodes (Iqgap1, Rock2, Ptk2, and Sdc4) are related to the 

regulation of cell junction assembly, and magenta-colored nodes (Ptk2, Rock2, Lamb2, and Lamc1) are proteins of 

the KEGG pathway of focal adhesion. The graphic was made in String v11 with the thin lines between nodes 

representing a low interaction and low confidence score (0.150) and the thick lines between nodes representing a 

medium to high interaction and confidence score (>0.400) [96]. All proteins denoted in this figure were significantly 

altered as determined by Student’s t test and Benjamini-Hochberg correction [92] with a q value <0.05. Figure is in 

revision for publication in Kretschmer et al. Biology of Reproduction 2020, Fig. 1 and was modified. 

 

 

From the list of 126 significantly altered proteins, 78 proteins were categorized as protein binding by 

String database, 60 proteins were involved in cellular component organization, 13 were related to cell 
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junctions, and 4 proteins were related to focal adhesion. Among the set of 126 proteins detected in the 

Lz, E-cadherin was found to be the most prominent of the down-regulated cell junction and cell 

adhesion-related proteins (Figure 4.3.1.1 B). According to String database, E-cadherin could share 

protein-interactions with Ptk2, Flot2 and Iqgap1 which are also down-regulated junction and adhesion-

related proteins. Furthermore, two subunits of the major basement membrane protein laminin, i.e. 

Lamb2 and Lamc1, were also found to be significantly decreased in expression (Figure 4.3.1.1 B & C). 

These results suggest altered cell-cell and cell-basement membrane adhesion in placentas of obese 

dams as a consequence of down-regulation of these proteins. 

 

4.3.2 Localization of AJ markers in the Lz 

IHC and IF were used to identify the localization of AJ markers within the Lz and Jz. First, staining for 

β-catenin revealed its intracellular expression in cells of the Lz and Jz. In the Jz, β-catenin was 

particularly present in larger trophoblasts and the staining pattern suggests accumulation primarily at 

the cell membrane boundary and thus the site of cadherin-catenin interaction (Figure 4.3.2.1 A & B). 

Besides, in SynT of the Lz and fetal ECs, β-catenin was also observed (Figure 4.3.2.1 C). In the Lz, 

both E-cadherin and P-cadherin were found (Figure 4.3.2.1 D & G), while in the Jz only P-cadherin was 

weakly stained by IHC and IF (Figure 4.3.2.1 G – I). The transition from Jz to Lz could be well-observed 

by E-cadherin staining which indicates that this cadherin is exclusively and most prominently expressed 

in the Lz (Figure 4.3.2.1 D – F). Using confocal microscopy, the localization of E-cadherin towards the 

SynT cell boundary where cell junctions between SynT layer I and II are present could be highlighted 

(Figure 4.3.2.1 E). Towards the fetal endothelium, there were yellow artifacts of signal overlay. On the 

other hand, P-cadherin expression seemed limited to the apical face of SynT (Figure 4.3.2.1 H).  

VE-cadherin expression was not clearly possible to denote from IHC and IF stains and green staining 

artifacts were observed in fetal blood vessels (Figure 4.3.2.1 J – L). These observations were similar in 

placentas from obese and control dams. 
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Figure 4.3.2.1: AJ marker localization in murine placentas by IF and IHC. Representative images are derived 

from control placentas since HFD had no influence on staining patterns. (A, D, G, J) IHC showed localization of  

β-catenin (A), E-cadherin (D), P-cadherin (G) and VE-cadherin (J) and dotted lines in these panels A, D, G and J 

denote the transition from Lz to Jz. (B, C, E, F, H, I, K, L) IF staining showed β-catenin (B & C, green) in SynT (B, 

vertical arrow heads) and in trophoblasts of the Jz (B, horizontal arrow head) and co-localization to fetal capillary 

CD31-positive (red) ECs (C, arrow head). SynT in the transfer zone were E-cadherin-positive (E & F, green) 

highlighting SynT cell boundaries (E, arrow heads) with minor yellow artifacts (F) towards the endothelial side.  

P-cadherin was localized towards maternal blood sinuses (H & I, green), probably in MTB (H, arrow heads).  

VE-cadherin staining was very poor with green dotted artifacts (K, arrow heads) and indicated no specific IF signal 

and no clear IHC staining pattern (J – L). Scale bars: 50 µm. Figure is in revision for publication in Kretschmer et 

al. Biology of Reproduction 2020, Fig. 2A and was modified. 
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4.3.3 Significant reduction of AJ markers expression under MO at E15.5 

Next, the integrity of AJ was examined by protein quantitation of AJ markers in whole placental lysates. 

We previously reported down-regulation of β-catenin in placentas of obese dams at E15.5 [93], however 

in this work, total β-catenin was down-regulated without reaching statistical significance (p 0.053) in 

whole placenta lysates. The β-catenin phosphorylated at tyrosine 654 (phosphorylated Y654-β-catenin) 

is a marker for reduced E-cadherin to catenin-binding and is observed at ~88 kDa by a fade band in our 

western blots (Figure 4.3.3.1 A) together with a second band at ~92 kDa which is the size of total β-

catenin. Western blot with an antibody specific to total β-catenin confirmed that the 92 kDa band 

detected by the phosphorylated Y654-β-catenin-antibody belongs to total β-catenin. The data showed 

a trend towards up-regulation in placentas of obese dams of phosphorylated Y654-β-catenin, again with 

a certain degree of variability in expression level (Figure 4.3.3.1 A & B). Among the cadherins, E-

cadherin was found significantly reduced, P-cadherin and VE-cadherin showed no clear change in 

expression level compared to controls, but displayed high variability in expression level. Similar to 

observations from western blotting, proteomics profiling specifically of the Lz also showed a significant 

reduction in E-cadherin and a strong tendency for β-catenin down-regulation (Log2 difference -1.2 in 

obese vs. control, q 0.059). On mRNA level, no difference in E-cadherin and VE-cadherin expression 

level were measured in whole placental samples, however, β-catenin expression was strongly reduced 

(p 0.016) when normalized to any of the two housekeeping genes (HPRT and ACTB) in placentas from 

obese dams. P-cadherin expression was only significantly reduced when normalized to ACTB (p 0.031), 

but not HPRT (Figure 4.3.3.1 C). 

 

(Figure caption on the next page). 
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Figure 4.3.3.1: Level of AJ markers on protein and mRNA level in placentas at E15.5. (A) Western blotting of 

whole placental lysates (SD and HFD: n = 7 placentas, 1 per dam) showed phosphorylated Y654-β-catenin (lower 

band at ~88 kDa), total β-catenin (~92 kDa), E-cadherin, P-cadherin, VE-cadherin and HPRT (loading control) level. 

(B) Densitometric analyses of western blots of phosphorylated Y654-β-catenin, total β-catenin, E-cadherin,  

P-cadherin, VE-cadherin normalized to HPRT. Two outliers were excluded from graph, i.e. phosphorylated  

Y654-β-catenin (~88 kDa band, HFD mouse 6) and VE-cadherin (SD mouse 7) indicated by brackets “( )”. Graphs 

show median ± interquartile range and * p value <0.05, ** p <0.01, or p value is shown above graph. (C) Analyses 

of gene expression of AJ markers in placentas by qPCR. Normalization was performed with housekeepings HPRT 

and ACTB and relative expression level of HFD normalized to SD (line at 1.0) are shown in graphs. n = 7 placentas, 

1 per dam, for SD and HFD. Graphs show median ± interquartile range and * p <0.05, calculated using  

Mann-Whitney test. Figure is in revision for publication in Kretschmer et al. Biology of Reproduction 2020, Fig. 2B, 

C and D, and was modified. 

 

4.3.4 MO affects cell homeostasis and cell junctions in the transfer zone and causes lipid 

accumulation in the Lz 

By means of electron microscopy, we aimed to examine ultrastructure and cell junctions in the transfer 

zone of placentas. Control placentas (Figure 4.3.4.1 A – C) displayed a regular phenotype of the transfer 

zone with SynT layer I and II. Both layers shared an undulated cell boundary and had intact cell-cell 

contacts and AJ showing syncytial fusion. Fetal ECs showed ordinary paracellular clefts with AJ and 

tight junctions as well as desmosomes which were identified by higher electron density. Additionally, the 

BM was found regular in thickness and a few segments displayed small deposits of ECM material. In 

SynT, lipid and lipoprotein deposits were rarely seen and their extent was rather small. As a 

consequence, the SynT developed normally and fused which was also evident from SynT II to BM 

contact which was continuous showing no detachments. In stark contrast to controls, placentas from 

obese dams (Figure 4.3.4.1 D – F) displayed major lipid and lipoprotein deposition which could be 

intracellular and extracellular of SynT. The BM was disrupted with excessive lipid and ECM 

accumulation also showing detachment of ECs on one side and SynT on the other side. Besides, both 

ECs and trophoblasts appeared condensed frequently and with irregular nuclei, while the SynT II 

seemed loose from the BM on its basal side. Furthermore, the SynT showed a defective differentiation 

by the absence of a defined cell boundary in electron density which was observed in control placentas. 

Although ECs and SynT showed damaged connection to the BM, there were no apoptotic cells visible. 

On some trophoblasts, entangled membrane deposits and lipoprotein structures were observed in 

placentas of obese dams, but not in control dams.  
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Figure 4.3.4.1: Ultrastructure of the maternal transfer zone of SD and HFD placentas. (A – C) The phenotype 

of control placentas shows the materno-fetal transfer zone with a fetal capillary (FC), endothelial cell (EC) and 

nucleus (n) in addition to the basement membrane (BM, black arrows in A, vertical black arrows in B & C). The 

condensed syncytiotrophoblast layer II (SynT II) and the fused SynT I were observed. The SynT I faces towards 

maternal blood sinus (MBS) on one side and the SynT II on the other side (horizontal white arrow in B). EC showed 

paracellular cleft with cell junctions (horizontal black arrows in B & C), i.e. with AJ and electron dense desmosomes. 

The separating BM between EC and SynT II sporadically showed extracellular matrix deposition (ECM, vertical 

black arrows in B & C). In (B), a small deposit of lipids can be seen (*). (C) A close-up of the framed area in (B).  

(D – F) The ultrastructure in HFD placentas. The BM was disrupted and enriched in ECM deposits (vertical black 

arrows) and ECs and their nuclei appeared condensed. The SynT accumulated high amounts of lipids and 

lipoproteins (*) and seemed undifferentiated and unfused, therefore a second SynT layer could not be observed. 

The connection of ECs and SynT to the BM was disrupted and discontinuous (vertical black arrows in E & F). Cell 

junctions of SynT were barely present (horizontal white arrows in E & F) and entangled cell debris (ß) was observed 

towards the MBS on SynT surface (F). The frame in (D) shows the close-up in (E). In total, 5 different placentas per 

group, 1 per dam, were analyzed and representative images are shown. Scale bar: A & D 5 μm; B, C, E & F 1 μm. 

Figure is in revision for publication in Kretschmer et al. Biology of Reproduction 2020, Fig. 3 A – F and was modified. 

Since extensive lipid deposition was observed in placentas of obese compared to control dams, lipid 

accumulation in the transfer zone was determined by a semi-quantitative approach using Oil Red O 

staining of placental sections. Sections were stained (Figure 4.3.4.2 A – D) and analyzed by pixel 

quantitation which showed a significant increase in Oil Red O-positive area fraction (p 0.004, Figure 

4.3.4.2 E) and thus, a significantly augmented lipid accumulation in the transfer zone of placentas of 

obese dams compared to controls. Red-stained lipid droplets were found in or between SynT which 

indicates a similar pattern of staining to the pattern of deposition observed under electron microscopy 

(Figure 4.3.4.1 A & D). 
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Figure 4.3.4.2: Lipid quantitation by Oil Red O staining of placental Lz. (A & B) In the Lz of SD placentas, small 

clusters of Oil Red O stained lipid deposits (arrows) were observed mostly in trophoblasts of the syncytium (A).  

(C & D) In HFD Lz, the staining pattern was more intense and deposits of lipids appeared larger than in SD, similar 

to what was observed under EM (arrows in D). Each panel shows a different placenta, in total 5 placentas from 5 

dams for SD and 6 placentas from 6 dams for HFD were analyzed. (E) Semi-quantitation of Oil Red O-positive pixel 

area fraction in the Lz of SD and HFD placentas (n = 5 placentas for SD and n = 6 placentas for HFD, 1 placenta 

per dam). Graph shows mean ± SEM, ** p <0.01, calculated using Student’s t test. Figure is in revision for publication 

in Kretschmer et al. Biology of Reproduction 2020, Fig. 3 G – K and was modified. 

 

4.3.5 MO affects placental morphology and impairs Lz development 

We previously reported that vascularization of the placenta was severely affected by MO, as assessed 

by stereology [81]. Further stereological assessment showed that total placental volume was 

significantly increased (p 0.029, Figure 4.3.5.1 A) in placentas from obese dams and Lz:total placental 

volume ratio was strongly decreased (p 0.021, Figure 4.3.5.1 C) under MO. However, there was no 

difference in the volume fraction of the Lz between control and obese dams, while there was a trend 

towards reduction of the Lz:Jz ratio (p 0.150, Figure 4.3.5.1 B). Therefore, the relations between the 

exchange zone for nutrients and oxygen, the Lz, total placental volume and probably Jz volume are 

disturbed which implies an impaired development of the Lz under MO. 
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Figure 4.3.5.1: Stereological assessment of placentas from SD and HFD dams. (A) Representative image of 

a total placenta stained with CD31-IHC to show the different placental zones (Lz = red outline, Jz = orange outline, 

Db = yellow outline). The yellow crosses represent an area of 250,000 µm². Scale bar: 1 mm. (B) Lz to Jz volume 

ratio and (C) Lz to total placenta volume ratio were determined in SD (n = 8 placentas from 8 dams) and HFD  

(n = 7 placentas from 7 dams). Ratios are shown in arbitrary units. Graphs display median ± interquartile range,  

* p <0.05, calculated using Mann-Whitney test. Figure is in revision for publication in Kretschmer et al. Biology of 

Reproduction 2020, Fig. 4 D – F and was modified. 

 

4.3.6 Fatty acid stimulation of BeWo cells reduces β-catenin protein level and affects lipid 

accumulation and cell layer permeability 

The HFD used in this study contains high amounts of fatty acids compared to the SD. Among these fatty 

acids are palmitic acid (PA), oleic acid (OA) and linoleic acid (LA) and these fatty acids were therefore 

used in cell culture studies with trophoblast-like BeWo cells. We aimed to determine the effect of PA, 

OA and LA on protein level of AJ markers, intracellular lipid accumulation and cell layer permeability 

(Figure 4.3.6.1). PA, OA and LA were used at two different concentrations, however, none had an effect 

on E-cadherin protein level. Conversely, stimulation with 1000 µM of LA significantly decreased total  
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β-catenin protein level (p 0.029) and also significantly increased the relative cell layer permeability  

(p 0.029). On the other hand, a significant decrease (p 0.029) in cell layer permeability was found after 

stimulation with 500 µM OA. Furthermore, when BeWo cells were stimulated with OA at a concentration 

of 1000 µM, a tendency towards increased lipid accumulation was observed, however, other fatty acids 

had no such effect. Therefore, isolated LA at high concentrations can affect intracellular β-catenin level 

and BeWo cell layer permeability. 

 

 

Figure 4.3.6.1: Effects of stimulation with fatty acids on AJ marker protein level, cellular lipid accumulation 

and cell layer permeability in BeWo cells. (A) Western blot after 24 hours stimulation of BeWo cells with various 

fatty acids (PA, OA, LA) at concentrations between 100 µM and 1000 µM (as indicated in the graphs). (B) Results 

of densitometric analyses of western blots for proteins E-cadherin and β-catenin normalized to ACTB. Bar graphs 

show median ± interquartile range, * p <0.05, calculated using Mann-Whitney test, n = 4 replicates (1 – 4 as 

indicated). (C) Results of AdipoRed assays showing relative lipid accumulation after 8 hours of stimulation with fatty 

acids at above-mentioned concentrations in BeWo cells. Bar graphs show fluorescence signal [AU], n = 5 replicates 

as mean ± SEM, and the p value for control versus OA 1000 μM is indicated above the graph, calculated using  

Mann-Whitney test. (D) Relative cell layer permeability normalized to control after 24 hours of stimulation with fatty 

acids. Bar graphs show median ± interquartile range, * p <0.05, calculated using Mann-Whitney test, n = 4 

replicates. Figure is in revision for publication in Kretschmer et al. Biology of Reproduction 2020, Fig. 5 and was 

adapted. 
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IF staining for E-cadherin after stimulation of BeWo cells with either fatty acid (PA, OA or LA) or control 

revealed no major differences in staining patterns (data not shown). In these examples, E-cadherin was 

localized to the cell boundary and in several cells, it was also observed diffusely in the cytoplasm. 

 

4.4 Passive transfer is significantly increased across the placental barrier, but glucose transport 

and metabolization rate seem unaltered under MO 

Note: The part under 4.4.1 of the results section, i.e. “Materno-fetal transfer capacity is significantly 

increased under MO”, was recently in parts submitted for publication to Biology of Reproduction in the 

article “Maternal, high fat diet-induced obesity affects trophoblast differentiation and placental function 

in mice”. The prospective first author is Tobias Kretschmer and the work presented was made possible 

through the assistance of several others: 

Animal handling for in vivo studies were performed by Marion Handwerk, Sarah Appel, Heike Endepols 

and Tobias Kretschmer. Placenta and fetus collection after isoflurane anesthesia was conducted by 

Marion Handwerk and Tobias Kretschmer. Positron emission tomography (PET) was conducted by 

Heike Endepols. Data collection and statistical analyses were performed by Heike Endepols and Tobias 

Kretschmer. The project was supervised and supported by Heike Endepols, Jörg Dötsch and Sarah 

Appel.  

 

4.4.1 Materno-fetal transfer capacity is significantly increased under MO 

Since AJ marker level were reduced in mice in vivo under MO and in BeWo cells in vitro after fatty acids 

stimulation, together with ultrastructural defects in the Lz and reduced cell layer permeability in vitro 

after stimulation with LA, we aimed to determine materno-fetal transfer capacity in vivo by means of  

14C-mannitol administration and liquid scintillation. 14C-mannitol is an inert radio-labeled tracer that 

crosses the placenta and reaches the fetal circulation without depending on active transporters and was 

therefore used as a marker of Lz integrity. Materno-fetal clearance (Kmf) was determined after 

accumulation of the non-metabolizable tracer 14C-mannitol in fetal lysates and liquid scintillation. The 

Kmf significantly increased in offspring of obese dams compared to controls (Kmf 166.4 vs 113.5, Effect 

size -52.93, CI -82.92 to -19.93, p 0.002) by a margin of 46.6% ± 14.6% (Figure 4.4.1.1 A). Additionally, 

fetal weight was recorded and significantly decreased by 8.5% ± 2.5% in offspring of obese dams  

(0.362 g vs 0.396 g, Effect size 0.0336g, CI 0.0136 to 0.0536, p 0.001, Figure 4.4.1.1 B), however, 

placental weight was unaltered (Figure 4.4.1.1 C). MO is thus associated with increased materno-fetal 

transfer capacity while offspring develop a growth restriction in utero as shown before in cohort A057 

[93]. 
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Figure 4.4.1.1: Materno-fetal clearance, fetal and placental weight under MO. (A) Materno-fetal transfer 

capacity (clearance) across the placental barrier of radiolabeled 14C-mannitol in SD and HFD dams. n = 39 fetuses 

from 5 dams for SD and n = 41 fetuses from 5 dams for HFD. (B) Fetal weight in SD and HFD offspring, n = 34 

fetuses from 5 dams for SD and n = 42 fetuses from 5 dams for HFD. (C) Placental weight of SD and HFD placentas, 

n equals n under (B). Graphs show mean ± confidence interval, ** p <0.01, calculated using Student’s t test. Figure 

is in revision for publication in Kretschmer et al. Biology of Reproduction 2020, Fig. 4 A – C and was modified. 

 

4.4.2 Glucose transport and metabolization rate are probably unaltered under MO 

The radio-labelled glucose analogue 18F-FDG was used to study glucose metabolization in control and 

obese dams and also to assess glucose transfer to fetuses via the placenta. PET was used to detect 

18F-FDG accumulation in maternal and fetal tissue and the signal in fetal tissues was normalized to the 

injected dose corrected for body weight (SUVbw). The Patlak-approach with a lumped constant of 0.6 

was used to calculate the glucose metabolization rate (GMR). Analyses of PET scans revealed the 

highest signal of 18F-FDG in fetal heart-liver area (Figure 4.4.2.1 A & B). Time-activity curve showed that 

directly after 18F-FDG injection, the signal in the aorta went to a maximum and subsequently plummeted. 

At the same time, the signals in fetal tissue and maternal spinal cord increased up until the end of the 

measurement at 60 minutes (Appendix 6.3, Figure 6.2.1). Based on these values, time-activity-curve 

rations (TAC ratios) were calculated with the signal from fetal tissue normalized to the signal from 

maternal spinal cord. The resulting TAC ratios showed no difference between obese and control dams 

(Figure 4.4.2.1 C). There was no significant difference in the data for relative 18F-FDG signal in fetal 

tissue when displayed as SUVbw (p 0.222, Figure 4.4.2.1 D). However, maternal blood glucose 

concentration significantly correlated with the signal in fetal tissue in control dams (p 0.021, R 0.83), but 

not in obese dams (p 0.25, R -0.63, Figure 4.4.2.1 E). These results indicate that net transfer of glucose 

across the placenta to fetal tissues is similar in obese and control dams. However, the positive 

correlation between maternal blood glucose and glucose supply to fetal tissues is absent in obese dams 

which indicates a disturbed regulation in glucose supply in obese dams. 
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Figure 4.4.2.1: 18F-FDG PET studies in SD and HFD dams. (A) PET scan of an obese dam 60 minutes after  
18F-FDG injection. Heart (H) and bladder (B) accumulated most of 18F-FDG, however, fetuses (F) and placentas (P) 

also accumulated 18F-FDG. The aorta of dams was used to normalize signals for Patlak analysis and calculate 

glucose metabolization rate (GMR). (B) PET scan image showed localization of 18F-FDG to the fetal heart-liver area 

and placentas. (C) Based on normalization of the injected dose (SUVbw) of 18F-FDG, TAC ratios were calculated 

for each dam over a course of 57.5 minutes (arbitrary units, AU). n = 5 dams for both SD and HFD. (D) Quantitation 

of 18F-FDG signal in fetal tissues normalized to SUVbw in SD and HFD dams. n = 5 dams for both SD and HFD. 

Bar graphs show mean ± SEM. The p value is indicated above graphs, calculated using Mann-Whitney test.  

(E) Linear regression of the 18F-FDG signal in fetal tissues normalized to the injected dose depending on maternal 

blood glucose in SD (black) and HFD (gray) dams. n = 7 dams for SD and n = 5 HFD. SD (black) p 0.021, R 0.83; 

HFD (gray) p 0.25, R -0.63, calculated using linear regression analysis. 
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4.5 Dynamics in AJ and EC marker expression during placental development 

Results in this section, i.e. “Dynamics in AJ and EC marker expression during placental development”, 

have not been published or submitted by the time of writing this thesis. The work described hereafter 

was made possible with the help of several others: 

Animal handling and tissue collection were performed by Eva-Maria Turnwald, Marion Handwerk, Sarah 

Appel and Tobias Kretschmer. Protein isolation, detection and densitometric analysis were performed 

by Tobias Kretschmer. Data collection and statistical analyses were performed by Tobias Kretschmer. 

The work was supervised and supported by Jörg Dötsch and Sarah Appel. 

 

4.5.1 Vascular and AJ marker dynamics in placentas of SD and HFD dams from E11.5 to E18.5 

The placenta is a temporary organ which needs to develop in close concert with the embryo and adapt 

to its demands by a dynamic expression pattern of various markers and other factors. Under 4.3.1 and 

4.3.3, it was reported that under MO at E15.5, various markers of the AJ are differentially expressed 

compared to control placentas. To assess the course of AJ marker and CD31 level from mid-gestation 

to shortly before term, E11.5, E15.5 and E18.5 placentas were analyzed by western blot (Figure 4.5.1.1). 

In placentas of obese dams, CD31 level was highest at E11.5 and declined gradually until E18.5 where 

it was significantly reduced (p 0.026) compared to E11.5. In control placentas, there was a trend of 

down-regulation from E11.5 to E18.5 (p 0.093) and further, a significant decrease between E15.5 and 

E18.5 which was not observed in placentas of obese dams. Moreover, VE-cadherin level significantly 

plummeted from E11.5 to E15.5 under both HFD and SD (both p 0.002). Again, a further significant drop 

in expression can be seen in control placentas from E15.5 to E18.5 (p 0.015) which was absent under 

MO, however a trend was still observed. Similarly, Y654-phospho-β-catenin level decreased significantly 

from E11.5 to E15.5 (SD p 0.009, HFD p 0.015) onto E18.5 in both HFD (p 0.026) and SD (p 0.002) 

placentas. Total β-catenin level did not change significantly from E11.5 to 16 or E18.5 under MO, but 

dropped significantly in SD placentas from E15.5 to E18.5 (p 0.004). Conversely, E-cadherin level was 

lowest at E11.5 in placentas of both groups and significantly increased between E11.5 and E15.5 (both 

p 0.002) prevailing on this level until E18.5 (both p 0.002). The expression dynamics of P-cadherin were 

opposite under HFD compared to SD in that the level gradually and significantly increased (p 0.041) 

from E11.5 to E18.5 in HFD placentas, but declined significantly (p 0.041) from E11.5 to E18.5 in SD 

placentas. This suggests that especially towards the end of pregnancy, AJ dynamics are significantly 

altered under MO. 
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Figure 4.5.1.1: Protein level dynamics of EC and AJ markers from E11.5, E15.5 and E18.5 in SD and HFD 

placentas. (A) Western blotting of SD placental lysates (n = 6 placentas, 1 per dam) showing CD31, E-cadherin, 

P-cadherin, VE-cadherin, phosphorylated Y654-β-catenin, total β-catenin and ACTB (loading control) level. (B) 

Densitometric analyses of SD western blots of CD31, E-cadherin, P-cadherin, VE-cadherin, phosphorylated  

Y654-β-catenin and total β-catenin normalized to ACTB. Graphs show median ± interquartile range and * p value 

<0.05, ** p value <0.01, or p value is shown above graph. (C) Western blotting of HFD placental lysates (n = 6 

placentas, 1 per dam) displaying CD31, E-cadherin, P-cadherin, VE-cadherin, phosphorylated Y654-β-catenin, total 

β-catenin and ACTB (loading control) level. (D) Densitometric analyses of HFD western blots of CD31, E-cadherin, 

P-cadherin, VE-cadherin, phosphorylated Y654-β-catenin and total β-catenin normalized to ACTB. Graphs show 

median ± interquartile range and * p <0.05, ** p <0.01, or p value is shown above graph, calculated using  

Mann-Whitney test. 

 

4.5.2 AJ marker level at E11.5 and at E18.5 in SD and HFD dams 

Under 4.3.1 and 4.3.3, it was demonstrated that MO led to a decrease in AJ marker E-cadherin and a 

tendency towards down-regulation of β-catenin at E15.5. Therefore, we tested whether MO also 

influences AJ marker expression earlier (E11.5) and later (E18.5) during gestation. At E11.5, AJ marker 

and vascular marker CD31 expression were similar in placentas of obese and control dams (Figure 

4.5.2.1 A & B). 

Interestingly, at E18.5 the AJ marker E-cadherin and total β-catenin expression were significantly down-

regulated in placentas of obese dams (Figure 4.5.2.1 C & D), which was also reported previously [93]. 

Furthermore, in those placentas, there was a tendency towards decreased EC marker CD31 expression. 

On the contrary, P-cadherin expression was significantly increased in placentas of obese dams at E18.5 
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compared to controls whereas there was no difference between both groups at E11.5. Taken together, 

these results suggest that under MO, placental development is marginally affected until E11.5 regarding 

vascularization and cell junction integrity. However, at the end of pregnancy, there are major differences 

in vascular and AJ marker expression which could translate to placental function under MO. 

 

 

Figure 4.5.2.1: Protein level of CD31 and AJ marker at E11.5 and E18.5 in SD and HFD placentas. (A) Western 

blotting of whole placenta lysates from E11.5 (SD and HFD: n = 7 placentas, 1 per dam) showing CD31, E-cadherin, 

phosphorylated Y654-β-catenin, total β-catenin, VE-cadherin, P-cadherin and HPRT (loading control) level.  

(B) Densitometric analyses of western blots from (A) of phosphorylated Y654-β-catenin, total β-catenin, CD31,  

E-cadherin, P-cadherin, VE-cadherin normalized to HPRT. (C) Western blotting of whole placenta lysates from 

E18.5 (SD and HFD: n = 7 placentas, 1 per dam) showing CD31, phosphorylated Y654-β-catenin, total β-catenin, 

E-cadherin, P-cadherin, VE-cadherin and HPRT (loading control) level. (D) Densitometric analyses of western blots 

from (C) of phosphorylated Y654-β-catenin, total β-catenin, CD31, E-cadherin, P-cadherin, VE-cadherin normalized 

to HPRT. Graphs show median ± interquartile range and * p <0.05, ** p <0.01, or p value is shown above graph, 

calculated using Mann-Whitney test. 
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4.6 Anti-IL-6R antibody therapy under MO causes similar maternal and fetal phenotype to HFD, 

but further increases placental IL-6 level and affects placental AJ and vascular marker 

expression 

Results in this section, i.e. “Anti-IL-6R antibody therapy under MO causes similar maternal and fetal 

phenotype to HFD, but further increases placental IL-6 level and affects placental AJ and vascular 

marker expression”, have not been published or submitted by the time of writing this thesis. The work 

described hereafter was made possible with the help of several others: 

Animal handling and tissue collection were performed by Marion Handwerk and Tobias Kretschmer. 

Protein isolation, detection, densitometric analysis and ELISA were performed by Tobias Kretschmer. 

Data collection and statistical analyses were performed by Tobias Kretschmer. The work was supervised 

and supported by Jörg Dötsch and Sarah Appel. 

 

4.6.1 mMR16-1 or IgG antibody therapy under MO causes similar phenotype as HFD alone in 

dams and offspring, but only mMR16-1 significantly increases placental IL-6 level 

We recently demonstrated that IL-6 serum level are increased in obese dams concomitant with EC 

damage and placental dysfunction [81]. Hence, we aimed to investigate effects of IL-6 signaling 

blockade by anti-IL6R therapy with mMR16-1 or IL-6 knock-out on placental vascular and AJ markers. 

Several of the dams that received HFD ad libitum after weaning and were obese at the time of mating 

(data not shown), were randomly selected after mating for IL-6 antibody therapy, i.e. IgG or mMR16-1. 

HFD dams without antibody therapy served as control together with IL-6-/- that also received HFD after 

weaning and were obese at the time of mating (data not shown). 

For the mMR16-1 therapy, obese dams were treated over a period of 16 days of gestation with 3 

injections of mMR16-1 on E0.5, E7.5 and E14.5 (see Methods section 3.1.2). As control, obese dams 

received an IgG antibody as described for mMR16-1. Similar to dams which received HFD without 

antibody therapy, IgG treated HFD dams had significantly more egWAT at section on E15.5 than SD 

dams. HFD dams that received mMR16-1 had about the same weight of egWAT as IgG and HFD without 

antibody therapy (not significant, but with a strong trend compared to SD, Figure 4.6.1.1 A). However, 

fetal weight was significantly reduced in both mMR16-1 and IgG treated dams compared to SD controls 

(Figure 4.6.1.1 B), as shown for HFD alone. Litter size alive and embryo resorption rate were unaltered, 

however there was a tendency towards increased resorption rates in HFD dams without antibody 

therapy compared to SD (Figure 4.6.1.1 C & D). In a small group (n = 4 dams) of IL-6-/- mice, however, 

there was no resorption of embryos observed at all, whereas litter size was similar compared to SD, 

HFD, mMR16-1 and IgG dams. Fetal weight of IL-6-/- offspring was significantly reduced and dams of 

this group also showed a drastic increase in egWAT weight similar to HFD wild type dams and compared 

to SD dams. These results show that HFD, independent of interventions with mMR16-1, IgG antibodies 

or IL-6-/-, has the strongest impact on maternal and fetal phenotypes. Also, similar to HFD alone, 

offspring of IL-6-/-, mMR16-1 and IgG treated dams developed an IUGR (Figure 4.6.1.1 B). 
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Figure 4.6.1.1: Phenotypic data of dams and offspring from SD, HFD, mMR16-1 and IgG antibody-treated 

and IL-6-/- animals at E15.5. (A) Weight of egWAT pads at section. SD n = 13, HFD n = 15, IgG n = 6, mMR16-1 

n = 5, IL-6-/- n = 4. (B) Fetal weight at E15.5. SD n = 97 (13 dams), HFD n = 115 (15 dams), IgG n = 61 (8 dams), 

mMR16-1 n = 47 (7 dams), IL-6-/- n = 27 (4 dams). (C) Number of alive litters per dam at E15.5. SD n = 14, HFD  

n = 20, IgG n = 8, mMR16-1 n = 7, IL-6-/- n = 4. (D) Ratio of resorptions per dam observed at E15.5. SD n = 14, 

HFD n = 20, IgG n = 8, mMR16-1 n = 7, IL-6-/- n = 4. All graphs show mean ± SEM, * p <0.05, ** p <0.01,  

*** p <0.001, **** p <0.0001, or p value is shown above graph, calculated using one-way ANOVA followed by 

Tukey’s multiple comparisons test. Dotted lines show either SD or HFD values for better orientation. 

 

SAA2 level were measured by ELISA in maternal serum of antibody-injected dams to assess successful 

IL-6 signaling blockade in mMR16-1 treated dams. Median SAA2 level was higher in mMR16-1 injected 

dams compared to IgG controls (p 0.063). From both groups about half of the dams had low level  

(<500 pg/mL) while the other half had higher level (>1500 pg/mL) of serum SAA2 (Figure 4.6.1.2 A) 

indicating no uniform response to either antibody therapy regarding SAA2 expression and/or no 

blockade of SAA2 by mMR16-1. 
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Figure 4.6.1.2: SAA2 concentration and placental IL-6 signaling-related protein level in mMR16-1, IgG and 

HFD dams. (A) SAA2 level in mMR16-1 and IgG treated dams at E15.5. For mMR16-1 n = 7 serums samples from 

7 dams, for IgG n = 8 serums samples from 8 dams were used for the analysis. Graphs show median ± interquartile 

range and p value was calculated using Mann-Whitney test. (B) Western blot of IL-6, p-Stat3, total Stat3, SOCS3, 

pErk1/2, total ERK1/2 and ACTB (loading control) in placentas of mMR16-1, IgG and HFD dams (n = 6 dams per 

group, 1 placenta per dam). (C) Densitometric analyses of protein level from western blots of IL-6, SOCS3 and total 

ERK1/2 normalized to ACTB, as well as p-Stat3 normalized to total Stat3 and pErk1/2 normalized to total ERK1/2. 

Graphs show median ± interquartile range and * p <0.05, ** p <0.01, or p value is shown above graph, calculated 

using Mann-Whitney test. 
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Next, IL-6 protein level were analyzed in placentas of mMR16-1, IgG and HFD control dams together 

with down-stream signaling molecules of the IL-6 signaling pathway (Figure 4.6.1.2 B &C), i.e. p-Stat3 

and SOCS3. The expression of IL-6 in placentas of mMR16-1 injected dams was significantly increased 

compared to IgG (p 0.004) and HFD control (p 0.002) dams. Furthermore, IL-6 was also significantly 

increased (p 0.009) in IgG compared to HFD placentas. SOCS3 protein level remained unaltered while 

p-Stat3 level were significantly reduced in placentas of IgG dams (p 0.041) and also in mMR16-1 without 

reaching statistical significance (p 0.065) compared to placentas from HFD dams. Expression of pErk1/2 

was also significantly decreased in placentas of mMR16-1 treated dams compared to IgG (p 0.015) and 

HFD (p 0.026) dams. Total ERK1/2 level were reduced in mMR16-1 placentas compared to IgG  

(p 0.026) and HFD (p 0.002), as well as in IgG placentas compared to HFD (p 0.004). These results 

suggest that mMR16-1 therapy over gestation increases IL-6 protein level in placentas and that either 

antibody therapy, mMR16-1 or IgG, might have an effect on growth and differentiation compared to HFD 

alone. However, classical readout marker SOCS3 for IL-6 feedback signaling was unaltered after 

antibody therapy over gestation. 

 

4.6.2 Vascular and AJ markers are significantly reduced in placentas after mMR16-1 

administration 

Next, AJ and EC marker protein level were determined in placentas of mMR16-1, IgG and HFD dams. 

CD31 level was significantly decreased in mMR16-1 (p 0.026) and IgG (p 0.041) treated dams compared 

to HFD dams. Furthermore, P-cadherin and VE-cadherin level were significantly reduced (p 0.026) in 

placentas of mMR16-1 treated dams compared to HFD. Protein level of E-cadherin and β-catenin 

remained unaltered in both mMR16-1 and IgG treated dams compared to HFD (Figure 4.6.2.1). Taken 

together, placental vascular development may be altered in dams which were administrated either 

mMR16-1 or IgG antibodies as seen by reduced level of CD31 and VE-cadherin whereas AJ marker 

level were unaffected. 
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Figure 4.6.2.1: Placental EC and AJ marker level in mMR16-1, IgG and HFD dams at E15.5. (A) Western blots 

of CD31, E-cadherin, P-cadherin, VE-cadherin, β-catenin and ACTB (loading control) in placentas of  

mMR16-1, IgG and HFD dams (n = 6 dams per group, 1 placenta per dam). (B) Densitometric analyses of protein 

level from western blots of CD31, E-cadherin, P-cadherin, VE-cadherin and β-catenin normalized to ACTB. Graphs 

show median ± interquartile range and * p <0.05 calculated using Mann-Whitney test. 
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5. Discussion 

 

5.1 Novel insights into maternal and fetal phenotypes under HFD-induced MO 

In this work, we induced an obese phenotype in C57BL/6N mice by feeding a HFD from week 3 of age, 

through adolescence and pregnancy until pregnancy was terminated at various gestation days, E11.5, 

E15.5 and E18.5. Even though feeding this diet rich in fatty acids and calories from fat makes our mouse 

model primarily a HFD-model, this HFD has been shown to induce obesity [93] and can cause a 

compromised glucose tolerance, increased serum leptin and insulin level [77, 97] in these mice, which 

we believe could largely be attributed to its composition. These effects show that we basically generated 

a diet-induced obesity mouse model by HFD nutrition which accompanies the translational character 

and several co-morbidities of obesity from mice to human. These crucial aspects have led to an 

acceptance of HFD in animal models to induce overweight and obesity, study their pathophysiologic 

effects (also during pregnancy) and extrapolate from these effects to humans [98-101]. Hence, in this 

work, HFD dams were synonymously referred to as obese dams. The HFD used in this work comprised 

a significant amount of fatty acids, i.e. saturated and mono-unsaturated fatty acids from palm oil (about 

4.5%) and animal lard (about 30.5%), of C-16:x and C-18:x carbon chain length (Appendix 6.4, Table 

6.2). The total metabolizable energy from these fatty acids together with the remainder of shorter and 

longer chain fatty acids sums up to about 60% [81]. There have been other diets discussed in literature 

to induce obesity, and these may more closely reflect the “western-style” type of diet that is rich in sugar 

and saturated fatty acids, preferably consumed by humans. However, results from animal studies with 

western diets and HFD displayed comparable effects, for example on dam weight and fetal weight [97, 

102-104]. In this work, ad libitum consumption of HFD led to a significantly higher weight-gain compared 

to control mice that received a SD for the same period of time, and typically the HFD dams reached 24 

to 26 g bodyweight by week 12 of age, compared to 20 to 22 g for SD dams [93]. Hence, mating of HFD 

and SD dams took place from week 12 to week 16 of age with already obese HFD dams. At section 

day, HFD dams displayed significantly heavier egWAT “fat pads” which were on average more than 2-

times heavier than in control dams and showed the obese phenotype persisted through pregnancy under 

HFD. Furthermore, offspring of HFD dams in this study developed an IUGR which was signified by lower 

embryo weight at E15.5 compared to offspring from SD dams. Towards the end of pregnancy, at E18.5, 

fetal weight was restored to a similar weight average in HFD and SD dams, indicating a catch-up growth 

during the third trimester of pregnancy under HFD which was mainly attributed to glucose stores of the 

placenta [93]. Conversely, in studies of human pregnancy of overweight and obese women, offspring 

had a higher risk of developing fetal macrosomia termed large for gestational age which was related to 

maternal body mass index (BMI) and gestational weight-gain [38, 105, 106]. Therefore, it seems more 

likely that in mice, HFD impacts on placental function and early fetal development rather than causing 

oversupply in mice offspring which would lead to overgrowth. Indeed, placental insufficiency and 

dysfunction are associated with fetal growth restriction in humans [107, 108], suggesting a primary role 

of the placenta in developing IUGR. Moreover, offspring of HFD dams displayed pathological effects 

early in life regarding body weight, egWAT and serum levels of insulin, indicating long-term effects and 

programming in offspring for obesity-associated pathologies [77]. 
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5.2 Pre-delivery inflammatory events are altered in obese dams 

Investigations on inflammatory events revealed that there is a significant increase in CD45-positive 

immune cell (leukocyte) infiltration, as well as an increased inflammatory marker expression in placentas 

of lean dams shortly before birth. While the increase in inflammatory marker expression was also 

present in placentas of obese dams, leukocyte infiltration was absent. However, there could be other 

relevant immune cells infiltrating the placenta which are not detected by CD45 staining, which suggests 

that further investigations are necessary to elucidate immune cell infiltration in placentas of normal and 

obese dams. Concomitant with the increase in CD45-positive immune cell infiltration in SD placentas 

was a lower anti-oxidative stress gene expression (of glutathione peroxidase and catalase) and an 

increase in oxidative stress, measured by lipid peroxidation, before parturition. This could be relevant to 

initiate birth and shedding of the placenta towards the end of pregnancy. In placentas of obese dams 

however, oxidative stress seemed enhanced compared to control dams at E18.5 since lipid peroxidation 

and pro-oxidative stress markers of the respiratory chain were elevated and occurred simultaneously to 

decreased catalase gene expression. Augmented oxidative stress can cause pre-mature aging and a 

decline in function of the placenta, which has been shown in placentas of obese women, together with 

an exaggerated inflammatory environment during pregnancy [36, 109]. Thus, increased oxidative stress 

in obese dams could harm placental function and might influence the immune cell infiltration observed 

in lean dams to initiate birth and placenta shedding. 

We also studied egWAT in lean and obese dams at E15.5 and E18.5 since its functional unit, the 

adipocyte, produces inflammatory cytokines and chemokines that can reach the circulation [110]. 

Additionally, it was reported that low grade inflammation in adipose tissue of dams is linked to a 

physiological increase in adipose tissue during pregnancy [111]. We could show that on E18.5 (data not 

shown) and on E15.5, obese dams had significantly heavier egWAT than lean mice. In lean mice,  

pro-inflammatory gene expression of a variety of genes (IL-6, TNFα, IL-1β, CXCL1 and 10 and MCP1) 

was significantly increased in egWAT towards the end of pregnancy (E18.5) compared to E15.5. This 

increase was not observed in egWAT of obese dams. These results indicate that the egWAT could play 

a role in the inflammatory response shortly before parturition in lean dams whereas in obese dams this 

response seems hampered. We could even speculate that there is a link between the endocrine roles 

of adipose tissue described by Coelho et al. [112] and the absence of leukocyte infiltration in the placenta 

and a rise in inflammatory markers in egWAT before parturition. However, further studies are required 

to decipher the mechanisms of egWAT and placenta interplay before birth.  

Lastly, the deficient leukocyte infiltration and slight change in pro-inflammatory gene expression in 

placentas of obese dams was accompanied by an attenuated inflammatory response in egWAT and an 

increase in the duration of gestation by about 1 day. Overall, our data suggest that these processes are 

relevant to initiate birth at about E19 in dams. Indeed, in human studies it was reported that obese 

women had prolonged pregnancy and that inflammation seems relevant at the end of pregnancy to 

initiate parturition [113, 114], however the mechanism remains unclear.  
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5.3 Impact of MO on placental EC homeostasis and vascularization 

Maternal BMI is associated with the risk for several pathologies during pregnancy and obesity has been 

reported to affect vascular function and vascular EC homeostasis [115, 116]. Both of these factors have 

direct implications for placental development and function, since the placenta forms around maternal 

blood vessel-invading trophoblasts, is a highly vascularized organ and provides the main interface for 

fetal supply via nutrient and waste exchange from maternal and fetal blood, respectively [7]. Studies in 

rodents have shown that HFD has direct effects on placental function and outcome of pregnancy and 

influences vascularization and hemodynamics in the placenta. These adverse effects include placental 

vasculopathy and EC damage in mice [44], altered placental labyrinth size in rats [117], and reduced 

placental blood flow in primates [62]. Moreover, stereological analysis showed compromised placental 

size and morphology in high-fat high-sugar treated mice [104] which led us to believe that placental 

vascularization and morphology could be altered significantly in our model of maternal obesity. Indeed, 

our stereological analyses of placental vascularization in SD and HFD dams at E15.5 provide evidence 

for a disturbed vascular development of the placenta under MO, and both gene expression as well as 

western blot analyses showed a significant reduction of vascular marker level. One of these vascular 

markers down-regulated on the mRNA-level is Tie-1, an EC specific receptor tyrosine kinase, which has 

been implicated in the maturation of vessels and angiogenesis, the de novo formation of blood vessels 

[118]. Furthermore, in inflammatory diseases like rheumatoid arthritis and atherosclerosis, Tie-1 was 

reported to be up-regulated. Overexpression of Tie-1 is probably capable to induce an inflammatory 

response in ECs and thus, might be a target for anti-angiogenesis treatments in cancer [119, 120]. 

However, in our study, a down-regulation of Tie-1 in placentas of obese dams was found, indicating that 

inflammatory effects observed herein are not mediated by Tie-1. Nonetheless, its down-regulation could 

be related to impaired vascularization observed by stereological analyses and this notion is further 

supported by simultaneous CD31 down-regulation on both mRNA and protein level, another well-known 

vascular marker. 

This work presents evidence that EC homeostasis is significantly affected in the placental transfer zone 

by MO at E15.5, not only by down-regulation of EC markers on protein and mRNA-level, but more so 

due to both ultrastructural changes observed under EM and the increase in EC senescence specifically 

in the Lz. The increased electron density and condensed appearance of EC nuclei may indicate EC 

damage, and there was detachment of ECs from the BM. In certain instances, loss of contact of cells, 

like ECs, from the ECM and the BM lead to a form of programmed cell death, called anoikis [121-123]. 

However, this was not observed in placentas of obese dams in this study and increased cell death by 

apoptosis was also not detected by staining assays conducted in vivo for the Lz or in vitro in placental 

EC (HPVEC). On the other hand, γH2A.X staining suggests a significant increase in DNA-damage [124] 

in ECs in the Lz of obese dams which could explain the observed ultrastructural appearance. Classically, 

γH2A.X is not considered a senescence marker and is found in case of damaged DNA regions, like 

double strand breaks, and was even reported to be increased in proliferating cells [125, 126]. However, 

we investigated proliferation and apoptosis marker in ECs which allows a better estimation of 

senescence by γH2A.X staining [127] and found no changes in proliferation and apoptosis under MO, 

which makes EC senescence more likely. In whole placenta lysates, we evaluated γH2A.X protein level 
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together with markers for apoptosis (cleaved caspase-3 and PARP) and proliferation (cyclin D1 and 

PCNA) by western blot, but reported no differences in protein level between SD and HFD dams. This 

indicates that HFD does not simply cause more apoptosis, proliferation or senescence/DNA-damage 

than SD in the whole placenta and that instead specifically the EC in the transfer zone are affected by 

increased senescence. Hence, analysis of the transfer zone may be particularly relevant to study 

consequences of HFD for placental function rather than evaluating apoptosis, proliferation or 

senescence marker in whole placental lysates.  

We showed that IL-6 serum level were increased under MO in our mouse model at E15.5 and previous 

reports showed that IL-6 can pass the placental barrier and reach the fetus [95, 128]. Therefore, we 

speculate that increased level of IL-6 from maternal serum in obese mice might affect placental EC 

homeostasis and cause the observed increase in senescence as well as alter EC appearance on the 

ultrastructural level. Cell culture studies indeed confirmed that IL-6 is capable to induce senescence, 

assessed in our work by senescence-associated beta-galactosidase activity in HPVEC [81], and others 

showed increased senescence in fibroblasts after IL-6 stimulation [129]. The IL-6R is the target of 

circulating IL-6 and is not expressed by ECs [130], yet IL-6 can still act on cells not harboring the IL-6R. 

In those situations, the cell surface receptor gp130 and IL-6 bound to the soluble IL-6R in the circulation, 

associate with each other and induce signaling. This way of signaling is called trans-signaling of IL-6 

and is the most prominent inflammatory pathway for most cell types without a classical IL-6R [68, 131]. 

Regarding the origin of increased circulating IL-6 in maternal serum, we tested IL-6 mRNA expression 

and protein level in egWAT of obese dams at E15.5 which showed enlarged fat pads on section 

concomitant with weight gain. We found increased mRNA expression, albeit not statistically significant, 

and a strong tendency towards increased protein level of IL-6 in egWAT of obese dams. Mohamed-Ali 

et al. [132] and Coppack [133] reported that white adipose tissue can produce inflammatory cytokines 

and be the origin of circulating IL-6, and increased egWAT could therefore attribute to the systemically 

inflamed state under MO. As a result, we believe that the egWAT in our HFD dams could cause 

increased serum IL-6 level by egWAT hypertrophy and production. Serum IL-6 subsequently can reach 

the placenta and hence, lead to a “WAT - maternal serum - placenta” axis [81] which denotes a possible 

route of MO-induced EC damage in the placenta, propelling placental insufficiency. We aimed to further 

investigate this proposed route by applying an IL-6 signaling antibody therapy as well as an IL-6-/- mouse 

model, which are both discussed further below. 

The formation of blood vessels is paramount for proper placental function and the above mentioned 

placental insufficiency due to EC damage could translate to an impaired placental vascular 

development. We investigated gross morphology and vascularization of the placenta by stereological 

means at E15.5. Placenta weight was similar between obese dams and controls, however total placenta 

volume was larger and the fraction of the Lz, which is the main vascularized part of the placenta, was 

significantly reduced in obese dams. Additionally, fetal vascular surface area and total capillary length 

were reduced under MO while capillary diameter seemed slightly increased. These results strongly 

suggest impaired vascular branching and development and a reduced area for materno-fetal exchange 

of nutrients, oxygen and disposal of waste [11, 24]. As a consequence, the placenta cannot fulfill its 
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function and the fetus might be undersupplied and develop the observed IUGR at E15.5, as there is a 

tight regulation of the three-dimensional development of the placenta and its strata. Indeed, deviations 

from this controlled growth processes were linked to placental insufficiencies and fetal development [11, 

24, 25]. Additionally, a study showed that a reduced surface area in the placental transfer zone and 

decreased materno-fetal transfer could cause fetal growth restriction [83]. Our data further indicate that 

surface area and capillary length of SD placentas closely resemble what others reported for control 

dams at E15.5, while HFD placentas displayed surface area and capillary length at E15.5 which others 

observed at E14.5 in control dams [24]. This further indicates a disturbed development of the transfer 

zone under MO with direct consequences for placental function. 

The catch-up in fetal weight development by E18.5 under MO could be attributed to enhanced glycogen-

storage utilization in the placenta and increased protein level of GLUT1 and GLUT4-transporters [93]. 

These effects may compensate for the decreased relative size of the Lz observed at E15.5 under MO. 

However, further studies on the developmental dynamics of morphology and vascularization by 

stereological techniques before and after E15.5 could generate valuable insight into placental effects of 

MO. In another study utilizing an obesogenic diet, it was reported that fetal weight was also normalized 

around day 19 of gestation after IUGR was present at day 16, and placental transport proteins for 

specific nutrients might contribute to this normalization in fetal growth trajectory, even though placentas 

were smaller and morphologically altered [104]. Nonetheless, these and our results show that the 

placenta is severely affected regarding vascularization and function on a morphological and protein 

marker level by MO.  

 

5.4 Impaired trophoblast differentiation, damaged placental basement membrane and AJ as well 

as lipid accumulation under MO 

Not only did we observe changes in EC homeostasis and vascular morphology, trophoblasts that lie 

opposite of the BM in the placental transfer zone seem also affected by MO at E15.5. Proteomics 

profiling revealed a list of proteins that relate to processes relevant for trophoblasts in the transfer zone 

to be altered. We found significantly reduced E-cadherin level, not only in the proteomics screen of the 

Lz, but also in western blots of whole placenta samples, and could show by immune-staining that this 

protein is exclusively found in trophoblasts of the Lz. Originally, E-cadherin was described on epithelial 

cells before it was also shown to be expressed in human villous trophoblasts [28]. Cadherin proteins 

function as transmembrane molecules that are calcium-dependent for their adhesive properties. By 

homophilic interactions of the extracellular domain of cadherins, they produce dimers which bind to other 

cadherin dimers from adjacent cells. On the intracellular side, cadherins form connections to the 

cytoskeleton via binding to catenin family proteins, for example β-catenin [134, 135]. Furthermore,  

E-cadherin was reported to have an important regulatory function in epithelial barriers and as its 

expression is inhibited, this could lead to epithelial barrier and AJ disruption [135, 136]. In our cell culture 

studies, there was no effect observed on E-cadherin level after BeWo stimulation with isolated fatty 

acids. However, cadherins can be internalized to mitigate their adhesive function which also destabilizes 

AJ structures [137], and this mechanism was briefly touched in our investigation by IF staining of cells, 
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but yielded no conclusive results (data not shown). However, E-cadherin has an important role in 

epithelial-to-mesenchymal transition and trophoblast cell behavior which it thusly regulates [138]. From 

both, mRNA and protein quantitation of E-cadherin and β-catenin it can be deduced that AJ stability is 

negatively affected by MO, specifically in the placental transfer zone, since E-cadherin was exclusively 

detected in the Lz by IHC and IF. Furthermore, proteomics profiling of the Lz revealed significantly lower 

level of E-cadherin and a strong trend towards reduced β-catenin level. Next to E-cadherin, P-cadherin 

and VE-cadherin are part of AJ and regulate cell adhesion, signaling pathways and placental transfer. 

Unfortunately, IHC staining of VE-cadherin and IF staining of VE-cadherin and P-cadherin could not 

precisely show the localization of these cadherins to a specific cell layer within the Lz. However,  

P-cadherin seems to localize to the maternal blood sinus surface of SynT while E-cadherin occurred 

between SynT layers more strongly in the Lz of our samples. This is interesting since E- and P-cadherin 

were reported to occur jointly in embryonic and other tissues and P-cadherin was mentioned to be 

expressed more strongly [139]. Staining patterns were similar between SD and HFD placentas which 

further indicates no tremendous difference in expression pattern or localization. 

The ultrastructure of the placenta in HFD dams at E15.5 showed that SynT homeostasis was affected 

and indicates a defect in SynT differentiation where the formation of two distinctly visible SynT layers is 

absent. This also implies that AJ could not form properly and cell-cell connections are disturbed, again, 

as mentioned above, indicating impaired placental development. Concomitantly, SynT exhibited altered 

cell-matrix interactions, as evidenced by the observed detachment from the BM in ultrastructure analysis 

and reduced level of focal adhesion marker Ptk2 detected by proteomics profiling, which is an important 

regulator of cell orientation and cell-matrix interaction [140, 141]. Furthermore, two subunits of laminin 

(Lamc1 and Lamb2) that were down-regulated under MO in the proteomics profile are relevant for BM 

integrity, further indicating disruption of the BM. These changes may have strong implications for 

permeability and transfer properties of the Lz [142]. Many of the detected proteins in proteomics profiling 

have not been characterized in expression, localization or function in the placenta, including Sdc4, 

Iqgap1/2 and Flot2, making it worthwhile to conduct further studies investigating the role of these 

proteins in the placenta. In the case of some focal adhesion-related proteins, they have already been 

mentioned to be involved in placental and embryonic development [143, 144]. Furthermore, the 

interaction between Ptk2 and VE-cadherin may be relevant for endothelial barrier function, and together 

with negative regulation of E-cadherin by Iqgap1 [141] might, in our eyes, have an effect on placental 

barrier integrity.  

Another major ultrastructural difference in placentas of obese dams compared to controls was the 

accumulation of lipids in the transfer zone at E15.5. EM analysis displayed lipid and ECM depositions 

on the BM, as well as lipid droplets intracellular and extracellular of SynT which could have negative 

effects on the barrier integrity and cell homeostasis. The amount of lipid deposition, as quantified by  

Oil Red O staining, throughout the Lz was significantly higher in placentas of obese dams than controls, 

indicating that the placenta has the capacity to store lipids and these stores are hypertrophic under MO. 

Indeed, other studies reported that, like other non-adipose tissues, the placenta is able to store lipids in 

obese animal models [145, 146]. However, these lipid accumulations may have lipotoxic effects on the 
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placenta and its environment, leading to elevated oxidative stress, inflammation and metabolic effects 

in the fetus [147, 148]. In addition, a trophoblast-like cell line (BeWo) showed a tendency towards 

increased lipid accumulation upon stimulation with the isolated fatty acid OA at high concentration. This 

may suggest that there is a mechanism for certain fatty acids to pile up in placental cells, and consuming 

diets in which fatty acids are present in high amounts could promote accumulation of lipids in the 

placenta. This may have serious implications for offspring developing within a placental environment 

associated with augmented inflammation and fat deposits in the transfer zone, leading to fetal 

programming for obesity and lipid accumulation in tissues and organs later in life [77, 146, 148]. The 

HFD used in this study was, amongst others, enriched with PA, OA and LA from palm oil and animal 

lard (Appendix 6.4, Table 6.2). PA was reported to cause inflammation in placental cells [149] and cell 

death concomitant with impaired invasion of trophoblastic HTR-8/SVneo cells [150, 151]. In addition, in 

western style diets LA is frequently found and has been associated with oxidative and pro-inflammatory 

effects [152, 153]. Furthermore, cell viability was decreased and inflammatory responses as well as 

mitochondrial function in trophoblasts were affected by LA, which could translate to altered placental 

function [154]. Within the last years, we tried to establish a protocol for the isolation of murine 

trophoblasts and EC from placentas of obese dams in order to stimulate these primary cells with 

maternal serum from obese dams to elucidate if and how factors from maternal serum could affect cell 

homeostasis. However, such an isolation protocol is not established to date and in the future we will turn 

to commercially available murine placental trophoblast which recently became available and are isolated 

murine trophoblasts (SM-9) [155, 156].  

Mid-gestation, days E10.5 to E12.5, in mice, where the definitive placenta is functional, has been 

suggested as equivalent to the end of first trimester in human pregnancy at which point organogenesis 

is completed [3]. Interestingly, we found that E-cadherin level in placentas of SD and HFD dams were 

lowest at E11.5, while VE-cadherin and CD31 level were highest at this point in mid-gestation. Lower 

level of E-cadherin early in placental development are associated with a more invasive and less 

epithelialized phenotype, and specific subsets of extravillous trophoblasts retain lower E-cadherin level 

to allow invasiveness [157]. At E11.5, the Lz already contains blood in its vessel system which is not 

observed 2 days prior [158]. From E11.5 to E15.5, E-cadherin level drastically increase and thus, it 

seems likely that trophoblast differentiation occurs, and trophoblasts of the syncytium intermit 

invasiveness. Vascular adhesion mediated by VE-cadherin is somewhat modified, causing a significant 

drop in VE-cadherin level from E11.5 to E15.5 in both SD and HFD placentas. This further supports that 

lower E-cadherin level at E15.5 in HFD placentas are a sign of impaired trophoblast and placental 

development, since E-cadherin expression is “behind schedule” in obese placentas. In line with the 

decrease in VE-cadherin from E11.5 to E15.5 is the decrease in phospho-Y654-β-catenin in both SD 

and HFD placentas. Phosphorylation of β-catenin at this tyrosine residue can lead to a reduction in 

cadherin-β-catenin interaction, increased WNT/β-catenin signaling and could thusly affect AJ stability 

[159, 160]. Similar to junction and focal adhesion markers Ptk2, Sdc4 and Iqgap1/2 mentioned above, 

phospho-Y654-β-catenin has not been functionally characterized in the placenta or trophoblast, making 

interpretations on its role in placental development difficult. However, one could carefully speculate that 

phospho-Y654-β-catenin mediates trophoblast invasiveness by inhibiting cadherin interaction between 
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cells on and before E11.5 to enable trophoblast migration and invasion. Once the placenta is fully 

functional and syncytial fusion has occurred, phosphorylation of β-catenin at Y654 is suppressed. At 

E15.5, phospho-Y654-β-catenin level appeared higher in placentas of obese dams, even with a 

considerable degree of variation between dams which could, nonetheless, support this speculation, 

since ultrastructure analysis showed the defect in syncytial fusion and trophoblast differentiation at 

E15.5. Total β-catenin expression was mildly affected by MO and displayed no change at E11.5 on 

protein level, but was down-regulated on mRNA and by tendency on protein level at E15.5 and on 

protein level at E18.5. These observations further indicate AJ destabilization, as β-catenin is a cadherin-

anchoring protein to the cytoskeleton [30]. Interestingly, we found that the fatty acid LA was able to 

reduce β-catenin protein level in trophoblast-like BeWo cells, suggesting that the HFD might be a 

causing factor for reduced β-catenin level during gestation once blood supply to the placenta is fully 

established. Thus, with maternal blood reaching trophoblasts and fetal EC after E9.5, there is also 

contact of placental cells with nutrients and fatty acids from maternal blood, and these fatty acids might 

then exert their potentially negative effects on cells of the transfer zone leading to observable changes 

at E15.5. However, it might also be relevant to study further gestation days between E11.5 and E15.5 

to elucidate these effects in more detail.  

 

5.5 Impact of MO on placental transfer capacity 

14C-mannitol is an inert, non-metabolizable radioactive tracer that readily crosses the placental barrier 

via passive diffusion and accumulates in fetal tissues, and hence is used to study integrity of the feto-

maternal transfer zone. This form of transfer of molecules across the placenta is responsible for a 

significant quantity of transfer, for example of up to 50% unidirectional flux of ions in humans. 

Consequently, any reduction in passive permeability of the placental barrier to hydrophilic substances 

and nutrients would have a direct consequence on total transfer capacity, and therefore also fetal supply 

and growth capability [83, 161, 162]. Next to hydrophilicity, steric properties of the molecules to be 

transferred are also important, which in the case of mannitol are quite similar to glucose. Additionally, 

morphological characteristics of the placenta are relevant for transfer [83, 104] which we assessed by 

stereological means, i.e. surface area and volume fractions. Results from our in vivo studies showed 

that materno-fetal transfer capacity of 14C-mannitol was significantly increased in obese dams at E15.5, 

even though the Lz:Jz ratio was reduced and Lz development seemed delayed at this stage. This might 

seem counterintuitive and one might expect a smaller Lz and impaired vascularization to lead to reduced 

transfer capacity, however there are possible explanations for the increased transfer capacity. First, it 

was described in our mouse model and elsewhere [83, 93] that in dams with IUGR offspring a catch-up 

growth between E15.5 and E18.5 can occur, which would demand increased transfer of nutrients and 

oxygen to the fetus to enhance its growth. However, not all nutrients are transported by passive diffusion, 

and altered morphology to enhance unidirectional transfer by maybe a margin of 50% can probably not 

solely compensate for fetal demands under IUGR. Therefore, investigation into active transport of e.g. 

GLUT-mediated glucose transport was conducted and revealed similar GLUT1/3 level in placentas of 

SD and HFD dams and slightly elevated GLUT4 level in placentas of HFD compared to SD dams at 
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E15.5 [93]. However, at E18.5 GLUT1 and GLUT4 level were both elevated in placentas of obese dams 

as described above, while GLUT3 level were similar to controls. These finding support the hypothesis 

of increased glucose flux to enable a catch-up growth between E15.5 and E18.5. On the other hand, 

the increase in 14C-mannitol could be a consequence of the disturbed ultrastructure in the transfer zone. 

We observed down-regulation of BM and ECM proteins, e.g. Lamc1 and Lamb2, as well as AJ markers 

concomitant with lipid accumulation, trophoblast differentiation defects and EC damage. These aspects 

could constitute a weakened placental barrier that might be unable to limit diffusion and, as a 

consequence, 14C-mannitol passes more readily from maternal to fetal circulation (Figure 5.4.1). A 

possible mechanism for this increase in permeability was presented by cell culture studies. We could 

show that BeWo cell layer permeability was significantly increased by stimulation with a high 

concentration of LA, a fatty acid found in high levels in HFD. Therefore, trophoblast cell layers in the 

placenta may be more permeable to substrate diffusion as a result of fatty acids from HFD in obese 

dams.  

 

 

Figure 5.4.1: Schematic illustration of the observed changes in the placental transfer zone under maternal 

obesity. The figure illustrates damaged adherens junctions (AJ) and the differentiation defect in syncytiotrophoblast 

(SynT) concomitant with lipid and extracellular matrix (ECM) accumulation, also in the basement membrane (BM). 

Furthermore, endothelial cells (EC) were affected and might show disturbed AJ and increased γH2A.X staining 

which indicates a senescent phenotype. Additionally, stereology showed that the surface area of fetal capillaries 

was significantly reduced (not shown in this figure). These changes in cell homeostasis could lead to placental 

insufficiency and a defective placental barrier with increased materno-fetal transfer of inert hydrophilic substances. 

Trophoblast giant cells which are frequently observed superior to SynT were left out of this figure for simplification 

of the illustration and because they were not observed under EM in our HFD placentas. 

 

Active substrate transport across the placenta was also touched in this work. 18F-FDG is a commonly 

used radioactive tracer in the clinic to assess tumor stages in a variety of cancers by PET scans which 
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are coupled to either computer tomography or MRT for precise tumor localization [163-165]. Moreover, 

PET scans coupled to MRT have also been performed on pregnant women in the past and yielded 

valuable information on 18F-FDG distribution and signal quantitation in placental and fetal tissues [166-

168]. 18F-FDG PET scans have moreover been used in small animals, however studies in pregnant mice 

are very scarce [169]. Therefore, our 18F-FDG PET study is probably unique in that we investigated 

pregnant obese and control dams at E15.5. One challenge of determining accumulation of 18F-FDG in 

fetal tissues is the reference signal from maternal tissue [166]. We chose to apply the Padlak method 

and used maternal aorta as reference. We observed signal progression in the aorta of dams after 

injection into the tail vein and distribution in the circulation (Appendix 6.3, Figure 6.2.1) and normalized 

the signal in fetal tissues to the signal from the aorta. We could not find a significant difference in either 

18F-FDG transfer or glucose metabolization rate in obese dams compared to controls, and regarding 

previous reports [93] might expect altered transfer rather at E18.5 than E15.5. Also, linear regression 

analysis was performed with various parameters and we found a significant, positive correlation of signal 

in fetal tissue and maternal blood glucose in control dams. This correlation was absent in obese dams, 

which showed high signals in fetal tissues even when maternal blood glucose was low. This suggests 

that obese dams have altered glucose distribution and that control dams favored maternal glucose 

supply with glucose over fetal supply when blood glucose level were low. Glucose is also the main 

energy source for the fetus and the placenta harbors glucose transporters, mostly GLUT1 and GLUT3, 

to mediate glucose accumulation [170]. Interestingly, it was reported that placentas under HFD showed 

increased GLUT1 expression at E18.5, but not E15.5 compared to SD placentas, as well as decreased 

glycogen cluster size from E15.5 to E18.5 in HFD placentas [93]. This may suggest that glucose 

accumulation in fetal tissues could be elevated later during gestation and hence, it would be reasonable 

to investigate 18F-FDG transfer capacity around E18.5, as mentioned above. Nonetheless, it has to be 

noted that a catch-up growth, as described, may not only require glucose, but also amino acids and fatty 

acids, and therefore increases in and increased activity of their transporters. Thus, amino acid and fatty 

acid transfer across the placenta need to be studied as well to fully understand fetal growth under MO 

[104]. 

 

5.6 Effect of anti-IL-6 signaling therapy on AJ marker and vascular development 

We reported that IL-6 can induce EC senescence in vitro and proposed that this effect could lead to 

placental dysfunction, since IL-6 mRNA and protein level in egWAT and IL-6 serum level were increased 

and could potentially reach the placenta in obese dams. Hence, we aimed to determine whether IL-6 

signaling blockade has positive effects on placental EC homeostasis and consequently on fetal outcome 

under MO. To this end, obese mice on HFD received either the IL-6 signaling blocking antibody  

mMR16-1 or the control antibody rat IgG and moreover, obese IL-6-/- mice on HFD were generated. 

Similar to HFD dams without antibody therapy, in mMR16-1 and IgG treated, as well as IL-6-/- dams, 

maternal and egWAT weight were significantly increased and fetal weight was strongly reduced at E15.5 

compared to lean controls, showing an IUGR phenotype. Thus, the IL-6 signaling blockade by antibody 

therapy or IL-6-/- seem not to prevent an IUGR under MO. Also, litter size was not influenced by HFD 
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with or without mMR16-1 or IgG therapy or IL-6-/-. However, resorption rates increased by more than  

3-fold on average under HFD alone and mMR16-1 therapy when compared to SD, but this was without 

statistical significance. Nonetheless, absence of statistical significance does not prove absence of an 

effect [171] and hence, there might be an effect of HFD alone and mMR16-1 therapy on fetal resorption 

rate. Interestingly, up until now we could not show resorption of embryos in IL-6-/- dams which, of course, 

has to be interpreted with great care, since this cohort is very small, counting only 4 dams. Contrary to 

this observation is our personal experience and others (personal communication) that IL-6-/- dams 

became pregnant less frequently than HFD dams or antibody treated dams in this study, despite similar 

mating schemes with IL-6-/- males. However, there is some evidence in the literature that maternal 

immune activation modulates fetal development and further, knock-outs of cytokines in animal models 

have shown conflicting results in terms of fertility and pregnancy success, also regarding IL-6 knock-out 

[78, 172, 173]. Therefore, it is not surprising that pregnancy rate is somewhat lower in our IL-6-/- and a 

larger animal cohort might yield additional valuable insight. 

ECs in the placenta can only react to IL-6 by soluble-IL6R (sIL-6R)/gp130-mediated trans-signaling, as 

described above, because they do not express the IL-6R [174]. Inflammatory signaling in ECs is thus 

mainly mediated by sIL6R/gp130 trans-signaling and leads to the activation of JAK/STAT3 and 

PI3K/AKT pathways, which therefore can also serve as read-out pathway when IL-6 trans-signaling is 

blocked [175-177]. To block IL-6 signaling in EC, it is required to e.g. block the IL-6 binding site in  

sIL-6R which is achievable by using an anti-IL-6R antibody, like tocilizumab in humans or mMR16-1 in 

mice [178-180]. The rat anti-murine IL-6R antibody mMR16-1 was used in pre-clinical studies to achieve 

FDA approval for tocilizumab and has been used in various other studies with non-pregnant C57BL/6 

mice [84, 179, 181, 182]. 

Yoshida et al. [183] reported that MR16-1 induced an anti-rat IgG response after repeated administration 

in mice and hence, long-term application of MR16-1 could lead to antibody-mediated neutralization of 

MR16-1 and its effects. Therefore, MR16-1 was modified in the rat IgG1 FC part to generate a rat (Fab)-

mouse FC chimeric antibody, mMR16-1, that should be less immunogenic and remain potent to block 

IL-6R for a longer period [84]. Serum level of SAA2, which is frequently used to evaluate IL-6 signaling 

blockade [84, 184], were not reduced in mMR16-1 treated dams compared to IgG treated dams in our 

study. This suggests that success of blocking IL-6 signaling may not be evaluated by SAA2 level after 

long-term application of mMR16-1 as we performed, or that IL-6 blockade was not successful in our 

setting. Wu et al. [84] showed that 7 days after mMR16-1 application, the SAA2 level returned to baseline 

which is the time-point at which dams in our study received the second injection with mMR16-1. 

Furthermore, it was reported that after 7 weeks of weekly application of MR16-1 (not mMR16-1), SAA 

level were significantly reduced compared to PBS injected mice, but not after 4 weeks of weekly 

application [185]. Thus, it remains unclear how multiple applications of mMR16-1 change expression of 

read-out marker like SAA2. On the other hand, in our model administration of mMR16-1 therapy over 

several weeks showed a significant increase in placental IL-6 level but no increase in SOCS3 level, a 

negative feedback regulator of IL-6 signaling. If elevated IL-6 level led to increased IL-6 signaling, 

SOCS3 level would likely be significantly increased to induce a negative feedback and block IL-6 
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signaling. However, this was not observed in mMR16-1 treated dams, indicating successful IL-6 

signaling blockade and subsequent up-regulation of IL-6 level as compensation mechanism which was 

also reported elsewhere [84]. Moreover, we found suppression of Stat3 activation [182] and we also 

observed lower active p-Stat3 level in placentas of mMR16-1-treated dams. However, IgG therapy had 

a similar effect not only on p-Stat3 level, but also SOCS3 and total Erk1/2, which are also markers of 

JAK/STAT3 and PI3K/AKT pathways, respectively. Especially p-Stat3 remains difficult to evaluate as 

IL-6 signaling and blockade marker in vivo in our obesity model, since IL-6 serum level was elevated in 

HFD compared to SD dams, whereas p-Stat3 level were lower in placentas of HFD compared to SD 

dams (Figure 4.2.5.1). Nonetheless, mMR16-1 caused a strong increase in placental IL-6 protein level. 

We therefore believe that mMR16-1 does indeed block IL-6 signaling in parts, as the antibody is IL-6R 

specific, and suggest that p-Stat3 alone is not a sufficient in vivo marker for documenting blockade of 

IL-6 signaling after long-term mMR16-1 therapy. The use of a relevant control to the mMR16-1 antibody 

therapy is important for the study of mMR16-1-related effects and we chose a rat IgG antibody as control. 

Many other studies that utilized MR16-1 or mMR16-1 over variable time periods treated control animals 

with aqueous vehicles without an IgG antibody [182, 185, 186] or used an IgG similar to ours [84, 181, 

187], making it difficult to compare existing literature and results of others with our work. This 

necessitates further investigation into mMR16-1 and its effects on IL-6 signaling blockade read-out 

markers, other than SAA2 and markers of JAK/STAT3 and PI3K/AKT pathways. 

Administration of mMR16-1 or IgG led to a significant reduction of CD31 level in placentas compared to 

HFD dams without antibody therapy. In mMR16-1 treated dams, VE-cadherin and P-cadherin were also 

significantly decreased in placentas, compared to dams that received HFD without antibody therapy. 

This decrease of CD31 and VE-cadherin level may indicate a defect in placental vascularization that 

might be even further augmented under mMR16-1 therapy, when IL-6 signaling is blocked, than under 

HFD without antibody therapy compared to SD. The reduction in VE-cadherin and P-cadherin level in 

placentas of mMR16-1 treated dams indicates disturbed AJ compared to HFD dams without antibody 

therapy. Interestingly, level of VE-cadherin and P-cadherin in placentas of IgG treated dams seemed 

also reduced compared to HFD dams without antibody therapy, but failed to reach statistical 

significance. This suggests that IgG therapy causes less of an effect on AJ marker than mMR16-1 

compared to the HFD without antibody therapy, possibly due to control IgG not blocking IL-6 signaling 

but inducing other unspecific side effects. As mentioned above, mMR16-1 and IgG therapy caused a 

reduction in placental p-Stat3 level and p-Stat3 has been associated with pre-eclampsia which is a 

pathology associated with vascular defects [188] and seems to regulate trophoblast invasion [189] as 

well as being involved in pregnancy loss in mice [190]. Hence, lower p-Stat3 level in the placenta may 

indicate defective vascular and placental development in mMR16-1 and IgG treated dams. 

Taken together, the administration of either antibody, mMR16-1 or IgG control, in combination with HFD 

probably lead to an impaired placental development, placental dysfunction and fetal IUGR. 

Unfortunately, there is yet no data available on IL-6-/- placentas and level of these markers, together 

with stereological data that can be compared to data of mMR16, IgG and HFD without antibody therapy. 

Especially the stereological data would be particularly interesting, since these could show placental 
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vascularization and morphology under complete IL-6 knockout compared to temporary mMR16-1 

antibody therapy and further elucidate the functional role of IL-6 signaling. Furthermore, IL-6-/- placentas 

could serve to decipher some of the mechanisms that are IL-6-related under MO in the context of 

placenta and fetal development on different gestation days (E11.5 to E18.5) since the IL-6 knockout 

persists constantly before and during pregnancy. However, based on the phenotypical data, it is safe to 

say that HFD was always associated with an IUGR phenotype, independent of IL-6-/- or IL-6 signaling 

blockade by mMR16-1, which probably limits the therapeutic potential of anti-IL-6 signaling strategies in 

obese pregnant patients. Literature on IL-6 antibody (tocilizumab) therapy in human pregnancies is 

scarce and only few case reports and expert opinions exist, and these suggest that tocilizumab should 

best be discontinued before and during pregnancy [191, 192]. 

As mentioned above, IL-6 signaling is required for normal pregnancy [172, 173] and IL-6 and other 

cytokines might play relevant roles in immune and fetal development [78, 172] and placental function 

[75]. Furthermore, Jones et al. showed that IL-6 is capable to up-regulate Stat3 and via this mechanism 

is linked to amino acid transporter increase in the placenta, and suggested that this occurs in 

combination with other pro-inflammatory cytokine signaling and can lead to fetal growth alterations [193]. 

Hence, influencing cytokine signaling, like IL-6, probably alters a spectrum of processes in the placenta. 

Since obesity alone alters inflammatory cytokine expression [79, 194], the combination of anti-IL-6 

signaling therapy and obesity in our dams most certainly affected placental development and function. 

Hence, testing alternative concentrations of mMR16-1 antibody may be consequential, since the ideal 

concentration to allow healthy placenta development by simultaneously blocking negative effects in this 

organ due to increased IL-6 signaling under MO could not be determined herein, and the issue has not 

been addressed in this study. 

 

5.7 Future perspectives 

The impairment in placental development and function by HFD-induced MO was shown in this work, 

and it appears that EC as well as trophoblast homeostasis are affected during placental development 

under MO. Different markers of cell growth, differentiation and homeostasis were found to be altered, 

and ultrastructural changes fit the assumption of a disturbed cellular and extracellular environment. 

However, the ECM and especially the BM and cell-ECM interface were also affected by MO as indicated 

by proteomics profiling, and functional studies on markers of cell-ECM interaction like Ptk2 and Sdc4 

are not discussed in the literature, yet. Therefore, we are currently busy with investigating changes in 

focal adhesion markers in placentas of obese and control dams. Furthermore, the period between E11.5 

and E15.5 is probably very relevant for proper placental function and fetal development, since EC and 

AJ marker level that we investigated were unaltered at E11.5 between obese and control dams, however 

they were altered thereafter at E15.5. It might thus be possible that the placenta is fully functional in the 

first couple of days after first contact with maternal blood, between E9.5 and E11.5, but soon after 

develops insufficiencies and induces compensatory mechanisms. As a consequence, we observe the 

IUGR phenotype at E15.5 under MO, but lack valuable mechanistic insight on changes of placental 
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development that occur between E11.5 and E15.5, a period of 4 days out of about 20 days of total 

pregnancy duration. 

Insights and findings from our murine maternal obesity model can serve as a basis for clinical 

investigations and a better understanding of the human placental health, pathologies and development. 

Over the past 2 years, we have gathered placenta and blood samples from pregnant human patients 

with lean, overweight and obese phenotypes with and without gestational diabetes in cooperation with 

the Gynecology and Obstetrics Department of the University Hospital in Cologne. These samples will 

be used to analyze EC homeostasis, vascularization as well as gene expression and protein level of 

various markers that were altered under MO in our mouse model. Despite morphological and cellular 

differences between murine and human placentas, the mechanisms of placental health and 

development show some astonishing similarities [7]. Hence, we believe that a lot of translational aspects 

of clinical relevance can be obtained from studying murine placentas under various maternal conditions. 

Additionally, serum from our patient cohort can be utilized in in vitro assays for placental cell stimulation 

to further decipher mechanisms of regulation and signaling in the placenta under MO, which might also 

pave the way for novel therapeutic approaches.  
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6. Appendix 

 

6.1 Example of IL-6+/- genotyping 

 

Figure 6.1.1: Example of a genotyping agarose gel after electrophoresis. The left side shows the gene marker 

with 100 bp intervals. Lane 1 is the negative control without genomic DNA. Lanes 2 to 5 show wild type samples 

with bands of approximately 174 base pairs only. Lanes 6 and 7 show two heterozygous IL-6+/- samples with bands 

at approximately 380 base-pairs (IL-6 mutant) and 174 base-pairs (wild type). Compare to example of the Jackson 

Lab at: https://www.jax.org/Protocol?stockNumber=002650&protocolID=22373).  

 

6.2 Proteomics profile  

Table 6.1: List of the 126 significantly altered proteins from proteomics profiling in HFD vs. SD transfer zone. The 

proteins are listed according to their Log2 difference (-1.0 represents fold-change of 0.5; 0 represents fold-change 

of 1; 1.0 represents fold-change of 2). The thick line shows transition from down-regulated to up-regulated protein 

level in HFD compared to SD samples. The q value of <0.05 denotes statistical significance. 

Protein ID Gene names Log2 difference 

HFD vs.SD 

q value 

P07356 Anxa2 -2,6168 0,0333684 

Q9DCN2 Cyb5r3 -2,59906 0,0084 

P50543 S100a11 -2,5607 0,0094 

Q91VB8 haemaglobin alpha 2;Hba -2,17721 0,013375 

P19096 Fasn -1,89499 0,0264419 

Q9ER00 Stx12 -1,78543 0 

https://www.jax.org/Protocol?stockNumber=002650&protocolID=22373
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Q8BHN3 Ganab -1,71235 0,0396699 

Q6EDY6 Lrrc16a -1,69647 0,0218485 

P57787 Slc16a3 -1,6913 0,007 

P14733 Lmnb1 -1,63922 0,0454553 

Q99PL5 Rrbp1 -1,61566 0,0346912 

P62192 Psmc1 -1,60362 0,0351379 

Q8JZU2 Slc25a1 -1,58432 0,0266429 

O55111 Dsg2 -1,52494 0,0302222 

O54724 Ptrf -1,47945 0,009 

Q8BH61 F13a1 -1,47331 0,0283725 

P09803 Cdh1 -1,45957 0,0351196 

O54988 Slk -1,44695 0,0355465 

Q91ZJ5 Ugp2 -1,40693 0,0342338 

P51150 Rab7a -1,40441 0,02828 

Q99LC5 Etfa -1,36717 0,0317458 

P16045 Lgals1 -1,33354 0,048063 

Q91YK2 Rrp1b -1,33122 0,0127059 

Q8K4I3 Arhgef6 -1,32215 0,0348854 

E9QAX7 Cse1l -1,30902 0,011625 

Q9Z1T1 Ap3b1 -1,29593 0,0347742 

Q9WTR1 Trpv2 -1,2713 0,0340128 

Q61753 Phgdh -1,21717 0,0145909 

P48678 Lmna -1,19905 0,0454758 

F8VPU2 Farp1 -1,19074 0,023725 

Q3TWV4 Ap2m1 -1,18023 0,0165172 

P97351 Rps3a -1,17537 0,0400625 

Q921G7 Etfdh -1,17352 0,0147895 

Q9D881 Cox5b -1,16998 0,036802 

D3YUP1 Carm1 -1,1574 0,0236579 

Q8VBZ3 Clptm1 -1,15313 0,0362323 

Q6W4W7 Diap2;Diaph2 -1,14764 0 

Q8CH18 Ccar1 -1,14342 0,00763636 

Q3UQ44 Iqgap2 -1,10754 0 

Q6P5E4 Uggt1 -1,08886 0,0337123 

O08553 Dpysl2 -1,08026 0,0218235 

Q3U4W8 Usp5 -1,07322 0,0397547 

O88844 Idh1 -1,07236 0,0341884 

Q61292 Lamb2 -1,07222 0,0217429 

Q5SQG5 Phb -1,0642 0,0338485 

Q9JLV5 Cul3 -1,04271 0,0322931 

Q8VDN2 Atp1a1 -1,03661 0,0461032 

Q6P5H2 Nes -1,03493 0,0452269 

Q8BML9 Qars -1,0222 0,0296923 
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O08749 Dld -1,01181 0,0190323 

G3X971 Ank3 -0,986192 0,01416 

Q60634 Flot2 -0,982782 0,0305273 

E9Q6R4 Arid1b -0,981078 0 

P13707 Gpd1 -0,980603 0,034 

Q9D8N0 Eef1g -0,978909 0,0336716 

Q6P9R4 Arhgef18 -0,956909 0,0349091 

Q64521 Gpd2 -0,95459 0,0334634 

Q920Q4 Vps16 -0,954346 0,0393832 

Q810B6 Ankfy1 -0,941094 0,0386545 

P34152 Ptk2 -0,931865 0,0136154 

Q8VCQ8 Cald1 -0,911643 0,0428696 

Q9D0E1 Hnrnpm -0,909578 0,0328 

P70168 Kpnb1 -0,90501 0,0273673 

Q9JKF1 Iqgap1 -0,901555 0,0339125 

B2RX14 Zcchc11 -0,884978 0,0171667 

Q7TQ95 Lnp -0,856671 0,008375 

Q5H8C4 Vps13a -0,849888 0,0184375 

Q8CGB3 Uaca -0,833469 0,01405 

E9Q616 Ahnak -0,827819 0,0303585 

Q62318 Trim28 -0,817407 0,0341899 

Q9Z1G4 Atp6v0a1 -0,813168 0,0351222 

Q62383 Supt6h -0,802911 0,0340156 

Q3UMF0 Cobll1 -0,788507 0,0366275 

E9Q4K7 Kif13b -0,788062 0,0401333 

O35988 Sdc4 -0,762921 0,0390185 

J3QJX0 Cul4b -0,731063 0,0271875 

G5E898 Ppl -0,730015 0,0349278 

Q8R1K1 Ubac2 -0,721819 0,040018 

Q9Z0K8 Vnn1 -0,720036 0,0351905 

Q8BKG3 Ptk7 -0,718419 0,0342222 

P17156 Hspa2 -0,699641 0,0390092 

Q05793 Hspg2 -0,69063 0,0275111 

Q91V41 Rab14 -0,683975 0,0322807 

Q569Z5 Ddx46 -0,669953 0,03587 

Q8R0G9 Nup133 -0,66988 0,0349895 

Q99KI3 Emc3 -0,666976 0,0340714 

O35379 Abcc1 -0,654475 0,0347363 

Q9WVK4 Ehd1 -0,65194 0,0341231 

Q8C391 Exoc4 -0,651399 0,0336533 

Q9D2R0 Aacs -0,640354 0,0458279 

Q5SVG5 Ap1b1 -0,639239 0,0263404 

Q6PGF7 Exoc8 -0,620831 0,0253659 
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F7BPW6 Sec16a -0,61018 0,0341311 

Q62261 Sptbn1 -0,602572 0,0397404 

Q91V89 Ppp2r5d -0,59464 0,0299821 

Q6TXD4 Dnmbp -0,548996 0,0210541 

F8VPK5 Rock2 -0,546932 0,0339054 

P46460 Nsf -0,546922 0,0450171 

D3YX34 Dctn1 -0,543849 0,026913 

A2AWA7 Rabgap1 -0,513952 0,040177 

F8VQJ3 Lamc1 -0,511355 0,0347419 

Q99MR8 Mccc1 -0,510445 0,0341806 

Q8C8U0 Ppfibp1 -0,508217 0,0446356 

Q91W86 Vps11 -0,497033 0,0359647 

Q9QXZ0 Macf1 -0,476136 0,0430776 

Q6P9Q4 Fhod1 -0,454446 0,0345783 

Q9CYH2 Fam213a 0,406607 0,0353617 

O08677 Kng1 0,524401 0,045525 

P55065 Pltp 0,567094 0,0452562 

E9Q5B6 Hnrnpd 0,583015 0,0338765 

Q922U1 Prpf3 0,614512 0,024 

Q99JY9 Actr3 0,673098 0,0156111 

Q04447 Ckb 0,678408 0,0171071 

Q8BH95 Echs1 0,710599 0,0421754 

Q9DBM2 Ehhadh 0,753224 0,0139565 

Q61233 Lcp1 0,776454 0,045784 

Q3TQP6 Me1 0,822377 0,00933333 

Q3TC93 Hs1bp3 0,822602 0,0364184 

Q99KK9 Hars2 0,847471 0,0100714 

O70310 Nmt1 0,849706 0,0140952 

Q9CY58 Serbp1 0,953535 0,0171111 

P58774 Tpm2 1,10221 0,0277273 

Q61553 Fscn1 1,10559 0,00771429 

P68040 Gnb2l1 1,19011 0,0108462 

Q8K114 Ints9 1,24664 0,0347528 

Q61781 Krt14 1,50661 0,0211389 
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6.3 18F-FDG time activity curve example 

 

Figure 6.2.1: Time activity curve example of 18F-FDG study. The curve shows that first a signal from 18F-FDG is 

detected in the aorta (red curve) of dams directly after injection at minute 0 to 5 where the curve also has its peak. 

After some minutes, the signal increases in fetal tissue (green curve) and maternal spinal cord (blue curve) and 

reaches near maximum in spinal cord after about 10 minutes while the signal continuous to increase in fetal tissue 

until about minute 50. 

 

6.4 Fatty acids found in the HFD 

Table 6.2: Excerpt of the fatty acids found in the HFD used in this study. Table adapted from Kretschmer et al. [81], 

Table S1 and modified. 

Ingredient Unit Content 

Crude fat mg/kg 350,921 

Crude protein mg/kg 204,600 

Saccharides mg/kg 256,291.3 

Metabolizable Energy kcal/kg 5,297.347 

Palmitic acid C-16:0 mg/kg 84,800 

Palmitoleic acid C-16:1 mg/kg 10,401 

Stearic acid C-18:0 mg/kg 48,600 

Oleic acid C-18:1 mg/kg 139,135 

Linoleic acid C-18:2 mg/kg 31,550 

Linolenic acid C-18:3 mg/kg 3,565 

Arachidic acid C-20:0 mg/kg 5,200 

Eicosaenic acid C-20:1 mg/kg 2,595 

Arachidonic acid C-20:4 mg/kg 120 
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