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I. Abstract 

Geodynamics on Earth are active since more than 4 billion years and have 

continuously lead to differentiation and homogenization of mantle and crust. However, 

evidence from short-lived nuclide decay systems (e.g. 129I – 129Xe and 146Sm – 142Nd) 

suggest that primordial heterogeneities, which formed in the early Hadean Eon (i.e. 

during the first ca. 100 million years after formation of the Earth), survived for a long 

period of time – in some cases for Eons and until present day. Studying rocks that 

display variations in the decay products of short-lived nuclide decay systems offer two 

intriguing perspectives: (1) The cause for their formation refers to processes that must 

have had operated at a time when no other witnesses preserved in the geological rock 

record. (2) Understanding the mechanisms that allowed for their long-term 

preservation provides important insights into the temporal evolution of the bulk silicate 

Earth (BSE) and into the processes that lead to the present-day state of the mantle, 

including the onset of plate tectonic processes on Earth.   

One of the short-lived decay series that has increasingly been applied in geochemistry 

is the 182Hf-182W decay system with a half-life of 8.9 million years (Vockenhuber et al., 

2004)). Over the past decade, several studies investigated W isotope systematics in 

terrestrial rocks and found differences in the relative abundance of 182W. While 

Archean rocks were found to exhibit predominantly elevated 182W isotope compositions 

compared to the modern depleted mantle, modern oceanic island basalts (OIBs) and 

one Archean komatiites system (the ca. 3.55 Ga Schapenburg komatiite suite from the 

Kaapvaal Craton, southern Africa) were shown to display negative anomalies. These 

findings were interpreted as evidence for the preservation of early-formed 

heterogeneities in the sources of Archean rocks and taken as evidence for the 

presence of primordial mantle components that participate to the provenance of 

modern igneous reservoirs. However, the processes that lead to the formation of these 

reservoirs remained ambiguous. These processes include (1) incomplete equilibration 

of the mantle source with late accretionary material (late accretion hypothesis), (2) 

early fractionation of Hf from W by silicate crystal-liquid fractionation, e.g., in an early 

magma ocean, or (3) core-mantle interaction. Matters are further complicated because 

secondary processes (fluid-mediated alteration) often obscured primary W budgets of 

metamorphosed Archean rock assemblages and the analytical standards to obtain 
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high-precision 182W isotope measurements turned out to be challenging.   

In this study, an analytical protocol is presented to obtain high-precision 182W isotope 

measurements on samples with low bulk-rock W concentrations (several ng/g). In three 

chapters we report high-precision 182W isotope data for Archean rocks from the ca. 

3.9-3.6 Ga Itsaq Gneiss Complex of southern West Greenland (chapter 1), the ca. 

3.6-3.2 Ga Pilbara Craton, NW Australia (chapter 2), and the ca. 3.6-3.2 Ga Kaapvaal 

Craton, southern Africa (chapter 3). In all studies, we combine 182W isotope analysis 

with high-precision isotope dilution measurements for high field strength element 

(HFSE), U, and Th abundances, to assess the elemental W systematics in our 

samples. This allows us to obtain a precise understanding of the primary and 

secondary processes that modified the W abundances and isotope compositions. As 

we demonstrate, the elemental W budgets of many mantle-derived rocks are 

dominated by metasomatic agents that mix reservoirs of variable 182W isotope 

compositions and obscure primary signatures (chapters 1 and 2). If not taken into 

consideration, this can lead to ambiguous interpretations of 182W isotope compositions 

observed in Archean lithostratigraphic successions. Our studies on rocks from different 

Archean cratons reveal that several processes are responsible for the origin of 182W 

isotope anomalies. Excesses of 182W in rocks from the Pilbara Craton (chapter 2) are 

best explained by missing late accreted additions in their mantle sources. Anomalies 

in rocks from the Itsaq Gneiss Complex (chapter 1) and the Kaapvaal Craton (chapter 

3) instead were inherited from mantle sources that underwent early silicate 

differentiation during the lifetime of 182Hf (i.e. in the first ca. 60 million years after Solar 

System formation). Our results demonstrate that these Hadean signatures remained 

isolated in the mantle for several hundred million years. Understanding the evolution 

of 182W isotope systematics in the BSE through time requires comprehensive studies 

of lithostratigraphic successions that cover relatively long time frames of Archean 

geodynamic evolution, as shown by our study on the geological rock record of the 

Pilbara Craton (chapter 2). We further demonstrate that information about the 

temporal evolution of 182W isotope systematics of individual cratons is archived in 

Archean shales, which provide an average of the 182W isotope composition of the upper 

crust (chapter 2). These findings allow for observational constraints, which have 

important implications for understanding timescales of geodynamic processes on the 

early Earth (e.g. mantle stirring rates). As reported in chapter 3, rocks from the 

Kaapvaal Craton display correlations between 182W isotope compositions and initial 



Abstract 

 

3 
 

εNd(t) and εHf(t) values. To our knowledge, this is the very first co-variation observed 

between 182W isotope systematics and long-lived radiogenic nuclides (147Sm-143Nd and 

176Lu-176Hf systematics). The only plausible model to explain these patterns is the 

presence of recycled mafic restites from Hadean protocrust in the ancient mantle 

beneath the Kaapvaal Craton. As further demonstrated by our model, the striking 

isotopic similarity between recycled restites from Hadean protocrust and the low 182W 

endmember of modern OIBs might also be the missing link bridging 182W isotope 

systematics in Archean and young mantle-derived rocks. This finding offers important 

constraints on the geodynamic evolution of Earth’s mantle through time, indicating 

inefficient homogenization of Hadean silicate reservoirs. 

 

 

II. Kurzzusammenfassung 

Seit über vier Milliarden Jahren haben geodynamische Prozesse kontinuierlich zur 

Homogenisierung und Differenzierung des Erdmantels und der kontinentalen Kruste 

geführt. Allerdings gibt es Hinweise von kurzlebigen Zerfallssystemen (z.B. 129I – 129Xe 

und 146Sm – 142Nd), das primordiale Heterogeneitäten, welche sich im Hadaikum 

gebildet haben (d.h. während der ersten ca. 100 Millionen Jahre nach Entstehung der 

Erde), über sehr lange Zeiträume erhalten geblieben sind – in einigen Fällen über 

Äonen und bis zum heutigen Tag. Die Untersuchung von Isotopenvariationen von 

Nukliden kurzlebiger Zerfallssysteme an terrestrischen Gesteinen sind in zweierlei 

Hinsicht von Bedeutung: (1) Die Ursache für die Entstehung der Variationen verweist 

auf Prozesse die zu einem Zeitpunkt stattgefunden haben müssen von dem keine 

weiteren geologischen Zeugen erhalten geblieben sind. (2) Das Verständnis der 

Mechanismen, welche für die Erhaltung dieser primordialen Signaturen verantwortlich 

sind, erlaubt Rückschlüsse über die zeitliche Entwicklung der Silikaterde und über 

Prozesse welche den Zustand des heutigen Erdmantels herbeigeführt haben (z.B. 

Einsetzen moderner Plattentektonik).  

Ein kurzlebiges Zerfallssystem welches in der Geochemie intensiv verwendet wird ist 

182Hf-182W (Halbwertszeit 8.9 Millionen Jahre (Vockenhuber et al., 2004)). Innerhalb 

des letzten Jahrzehnts fanden mehrere Studien in terrestrischen Gesteinen 

Unterschiede in den  relativen Häufigkeiten von 182W.
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Während Gesteine aus dem Archaikum im Verhältnis zum heutigen verarmten Mantel 

vorwiegend erhöhte 182W Zusammensetzungen aufweisen, finden sich für moderne 

Ozean Inselbasalte (OIB) und eine Suite archaischer Komatiite (die 3.55 Milliarden 

Jahre alten Schapenburg Komatiite aus dem Kaapvaal Kraton im südlichen Afrika) 

negative Anomalien. Dies wurde als Nachweis für die Erhaltung von primordialen 

Domänen im Erdmantel und deren Partizipation bei der Bildung moderner 

Mantelschmelzen interpretiert. Allerdings besteht Uneinigkeit darüber welche 

Prozesse für die Bildung dieser Manteldomänen verantwortlich sind. Diskutiert wird (1) 

die unvollständige Äquilibrierung mit Material aus der Spätphase der Akkretion (late 

accretion hypothesis), (2) frühe Fraktionierung von Hf und W während Kristall – 

Silikatschmelz Fraktionierung, z.B. zu Zeiten eines frühen Magma-Ozeans, oder (3) 

Interaktion zwischen Erdkern und Erdmantel. Weiterhin kommt erschwerend hinzu, 

dass die W Gehalte metamorph überprägter archaischer Gesteine durch sekundäre 

Prozesse verändert wurden (fluidkontrollierte Alteration) und die analytischen 

Standards für Hochpräzisionsmessungen von 182W höchst anspruchsvoll sind.   

In dieser Studie präsentieren wir ein analytisches Protokoll, welches die Durchführung 

von Hochpräzisionsmessungen von 182W an Gesteinen ermöglicht die eine geringe W 

Konzentration aufweisen (wenige ng/g). In drei Kapiteln stellen wir die Ergebnisse 

unserer 182W Isotopenstudien vor die wir an Archaischen Gesteinen durchgeführt 

haben. Dies umfasst den 3.9-3.6 Milliarden Jahren alten Itsaq Gneiss Complex von 

SW Grönland (Kapitel 1), den ca. 3.6-3.2 Milliarden Jahre alten Pilbara Kraton, NW 

Australien (Kapitel 2), sowie den ca. 3.6-3.2 Milliarden Jahre alten Kaapvaal Kraton 

im südlichen Afrika (Kapitel 3). In allen drei Studien kombinieren wir unsere 182W 

Daten mit hoch präzisen Konzentrationsbestimmungen 

(Isotopenverdünnungsanalysen) für Elemente hoher Feldstärke (high field strength 

elements, HFSE), U und Th um das elementare Verhalten von W in unserem Proben 

zu evaluieren. Dies dient dem Verständnis von primären und sekundären Prozessen 

welche eine Veränderung der W Gehalte und W Isotopenzusammensetzungen 

herbeiführen können. Wie wir zeigen werden sind die W Konzentrationen in vielen 

Mantelgesteinen von metasomatischen Prozessen dominiert. Dadurch können 

primäre Signaturen überprägt werden, da Reservoire unterschiedlicher W 

Isotopenzusammensetzung miteinander gemischt werden (Kapitel 1 und Kapitel 2). 

Wenn dies nicht berücksichtigt wird kommt es zu falschen Interpretationen von 182W 

Isotopendaten an archaischen Gesteinen. Unsere Studien an Gesteinen aus 
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verschiedenen archaischen Kratonen bezeugen, dass unterschiedliche Prozesse als 

Ursache für 182W Isotopenanomalien verantwortlich sind. Erhöhte 182W 

Isotopenhäufigkeiten in Gesteinen aus dem Pilbara Kraton (Kapitel 2) lassen sich 

durch die unvollständige Äquilibrierung mit Material der späten Akkretionsphase der 

Erde erklären. Anomalien in Gesteinen aus dem Itsaq Gneiss Complex (Kapitel 1) und 

dem Kaapvaal Kraton (Kapitel 3) hingegen sind auf Mantelquellen zurückzuführen 

welche zu Lebzeiten von 182Hf (d.h. innerhalb der ersten 60 Millionen Jahre nach 

Entstehung des Sonnensystems) eine Silikatdifferenzierung erfahren haben. Unsere 

Ergebnisse zeigen auf, dass Reservoire, welche diese primordialen Signale 

archivieren, für mehrere hundert Millionen Jahre isoliert wurden.  Wie unsere Analysen 

der geologischen Formationen aus dem Pilbara Kraton zeigt (Kapitel 2), sind 

umfangreiche Studien an Gesteinsformationen erforderlich, welche lange Zeiträume 

archaischer geodynamischer Prozesse archivieren, um die zeitliche Entwicklung der 

182W Isotopenzusammensetzung der Silikaterde verstehen zu können. Unsere 

Forschung kann weiterhin darlegen, dass archaisches Schiefergestein Informationen 

über die zeitliche Entwicklung der 182W Isotopenzusammensetzung für einzelne 

Kratone liefert, da Schiefergestein repräsentativ für die obere kontinentale Kruste ist. 

Diese Erkenntnisse ermöglichen die Erhebung wissenschaftlicher Daten welche für 

das Verständnis von Zeiträumen geodynamischer Prozesse (z.B. Zeiträume der 

Mantelkonvektion), wie sie in der frühen Erde abgelaufen sind, von großer Bedeutung 

sind. Wie in Kapitel 3 aufgezeigt, weisen archaische Gesteine aus dem Kaapvaal 

Kraton Korrelationen zwischen ihren 182W Isotopenzusammensetzungen und initialen 

εNd(t)- sowie εHf(t)-Werten auf. Nach unserem Kenntnisstand ist eine solche 

Korrelation zwischen 182W und langlebigen Radionukliden (in diesem Fall die 

Isotopensysteme 147Sm-143Nd und 176Lu-176Hf) bislang einmalig. Die Partizipation 

recycelter mafischer Restite hadaischer Protokruste während der Petrogenese ist das 

einzige Modell welches diese Korrelation erklären kann. Weiterhin zeigen unsere 

Modellierungen, dass es eine auffallende Ähnlichkeit in der isotopischen 

Zusammensetzung zwischen den recycelten Restiten hadaischer Protokruste und 

einem Endglied moderner OIBs gibt welche besonders negative 182W 

Isotopenanomalien aufweist. Dies kann den missing link für die 182W 

Isotopensystematik zwischen archaischen und rezenten Gesteinen darstellen. Unsere 

Forschungsergebnisse bezeugen die ineffiziente Homogenisierung
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hadaischer Reservoire und liefern bedeutende Erkenntnisse für die geodynamische 

Entwicklung des Erdmantels.  

 

III. Introduction 

Origin and evolution of the Earth 

Studying the oldest terrestrial rocks allows us to address important questions not only 

to the primordial stages of our planet, but also to the early evolution of our Solar System 

and planetesimals in general. Knowledge about the initial stages of terrestrial planets 

is an important prerequisite to understand how planets became habitable, and how life 

evolved and became sustainable.   

Models for Solar System and terrestrial planet formation were summarized in previous 

review papers (Chambers, 2004; Williams and Cieza, 2011; Norman, 2019) and mainly 

rely on astronomical observations from other solar systems, the geochemical 

properties of the Earth and meteorites, and the structure of our Solar System. Based 

on these constraints terrestrial planetary formation is the result of multistage processes 

that began with the collapse of a solar nebula within a cold and dense molecular cloud 

into a rotating protoplanetary disk. After the dust became concentrated in the midplane 

of the disk, it accreted to bodies that were dubbed planetesimals (~10 – 100km 

diameter). This happened during the very first few million years of the Solar System. 

Witnesses of these early stages are meteorite fragments of large parent bodies that 

accumulated from earliest formed detritus. Thus, components from meteorites offer 

important insights into nebular and asteroidal processes such as absolute age 

constraints for earliest formed solids (calcium-aluminium-rich inclusions) of our Solar 

System that date back to 4.568 billion years (Bouvier and Wadhwa, 2010). 

Subsequently, the accretion of material in the protoplanetary disk evolved to planetary 

embryos (~100 – 5000km diameter) mainly as a result of gravitational interactions 

(runaway growth) that culminated in oligarchic growth, where the largest planetary 

embryos grew at the expanse of smaller planetary embryos. The final stage of 

accretion from embryos to planets was highly chaotic and slower than the initial 

material coagulation processes because the mechanics of growth were mainly caused 

by gravitational perturbations between a few dozen embryos, where the outcome of 

individual events dictated the evolutionary pathway for a solar system. This last stage 

of terrestrial planet formation was characterized by multiple highly energetic collisions 
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(O’Brien et al., 2006) that caused a series of magma ocean events with fundamental 

consequences for core formation (Rubie et al., 2007; Rubie et al., 2011). Most likely, 

one of these highly energetic collisions was responsible for the formation of the Earth-

Moon system (Canup, 2012).   

 

Early Earth Processes (Moon-forming impact, accretion history, late 

veneer) 

Many dynamical scenarios have been considered to explain the formation of the Earth-

Moon system, for instance loss of material from a fast-spinning proto-Earth (Ćuk and 

Stewart, 2012) or being the product of multiple impacts (Rufu et al., 2017). However, 

most models are in favor of a giant-impact hypothesis which assumes that the Moon 

grew gravitationally from debris in a circumterrestrial disk that remained after a large 

collision between the proto-Earth and a Mars-sized planetesimal named Theia 

(Hartmann and Davis, 1975; Cameron and Ward, 1976; Cameron, 1997; Canup and 

Asphaug, 2001). The giant Moon-forming impact seems to be the most plausible 

scenario as it can reconcile for many observations such as the nearly identical isotopic 

composition between the Earth and Moon, the angular momentum of the Earth-Moon 

system, the level of lunar volatile depletion and the depletion in Fe-Ni as implied by the 

Moon´s low bulk density (Melosh, 2014). The timing of the Moon-forming impact is still 

highly debated but was probably close the end of primary accretion, maybe as early 

as 50 Ma after the formation of the Solar System (Thiemens et al., 2019).  

It is in general challenging to estimate the exact timing for the formation of the terrestrial 

planets of our Solar System because it is difficult to disentangle the processes of core 

formation and accretion. As already mentioned, planetesimal accretion and core 

formation most likely represent protracted periods that occurred contemporaneously 

(Kramers, 1998). One chronometer that was often applied to date core formation on 

asteroids and Earth is the extinct 182Hf – 182W system (half-life 8.9 million years 

(Vockenhuber et al., 2004)). The short half-life provides an excellent time resolution to 

determine the timescale for Earth´s core formation. Furthermore, its parent and 

daughter isotopes show markedly different geochemical affinities during metal-silicate 

differentiation. Hafnium behaves strongly lithophile and mainly remained in the bulk 

silicate Earth (BSE), while W is a moderately siderophile element that was strongly 

sequestered into the metallic core (e.g. Rammensee and Wänke, 1977; Palme and 
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Rammensee, 1981). Thus, the early BSE (< 60 Ma after solar system formation) had 

elevated Hf/W, which caused a stronger radiogenic ingrowth of 182W when compared 

to the Earth´s core or Chondrites, a meteorite group that remained undifferentiated and 

is taken as a canonical reference for the bulk Earth composition (Harper and Jacobsen, 

1996; Kleine et al., 2002; Schoenberg et al., 2002b; Yin et al., 2002). Therefore, 

accretion and metal-silicate fractionation chronologies on planetary bodies are 

calculated relative to the chondritic 182Hf – 182W isotope evolution. Assuming that core 

formation was a single stage process that took place in a short, “catastrophic” event, a 

maximum age of 38 Ma after Solar System formation is obtained (König et al., 2011). 

This maximum age for core formation probably also constrains the final stages of 

accretion as the latter process was shown to sustain core formation (Kramers, 1998). 

  

Elements that behave chalcophile or siderophile should be highly depleted in the BSE 

as they were nearly completely removed by segregating into Fe-alloys during core-

formation (McDonough, 2013). However, the absolute abundances for highly 

siderophile elements (HSE, e.g. platinum-group elements (PGE), Re, Au) are 

substantially higher than expected from their metal-silicate partitioning behavior during 

core-formation (Walker, 2009; Mann et al., 2012; Siebert and Shahar, 2015). Even 

more surprising, HSE display near-chondritic relative abundances, although their 

experimentally derived metal-silicate partitioning behavior would suggest strong 

fractionation during core-formation (Walker, 2009; Mann et al., 2012; Siebert and 

Shahar, 2015) (see Fig. III.1). Based on these observations it has been proposed that 

the Earth accreted material with chondritic bulk HSE compositions after equilibrium 

partitioning and chemical interexchange between mantle and core had ceased (Kimura 

et al., 1974; Chou, 1978; Wänke et al., 1984). This late accretion of a small fraction 

(~0.5% of the mass of the mantle (Walker, 2009)) of material with bulk chondritic 

composition has been termed late veneer (Chou, 1978). The replenishment of HSE 

during the final stages of Earth´s accretion was also related to the late heavy 

bombardment (Chou, 1978), which was a period of intense cratering and basin 

formation. This bombardment continued for several hundred million years after 

formation of the Solar System as inferred from age constraints in lunar impact rocks 

and “photogeological” observations on other bodies such as Mars, Mercury, Mimas 

and Callisto (Tera et al., 1974; Kring and Cohen, 2002). However, but this is only my 

personal view, both terms are grounded on different observational constraints and it 
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should be allowed to discuss if the late veneer falls (at least in part) in the period of the 

late heavy bombardment, but for semantics the terms should always be kept 

separately.  Moreover, it has been pointed out that both terms (late veneer and late 

heavy bombardment) are not synonymous (Carlson et al., 2015) because constraints 

from recent studies (Norman et al., 2010; Miljković et al., 2013) suggest that the 

contribution from the late heavy bombardment, was too small to have any 

consequences for the bulk composition of Earth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides elemental systematics from HSE abundances in terrestrial rocks there are 

also isotopic constraints on the contribution and nature of a putative late veneer. Since 

analytical improvements have improved the precision for 182W isotope measurements 

into a range of <5ppm (Willbold et al., 2011; Touboul et al., 2012) it has been 

documented that Archean rocks are predominantly enriched in the isotope 182W 

relative to the modern mantle. The modern-mantle value is inferred from certified 

Figure III.1: Highly siderophile element concentrations, normalized to CI chondrite, predicted for 
the primitive upper mantle (PUM) as a result of metal-silicate partitioning at various P-T 
conditions in a magma ocean. Taken from Mann et al. (2012). 
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standard solutions, either NIST SRM 3163 or AMES W-metal, which both have similar 

182W isotope abundancies (Peters et al., 2014). Primitive meteorites of bulk chondritic 

composition display 182W isotope deficits of around 200 ppm (Kleine et al., 2004). Thus, 

missing late accretionary additions of chondritic compositions provide an explanation 

for elevated 182W isotope abundancies observed in Archean rocks (Willbold et al., 

2011). Considering the effect of missing late accreted material on the HSE budget of 

the Earth, the parental sources of these mantle reservoirs should also display markedly 

lower HSE abundances than the modern-mantle. Indeed, these conceptual 

assumptions are in agreement with observational constraints for Archean rocks from 

the Abitibi Greenstone Belt, Canada (Puchtel et al., 2018) or the Pilbara Craton, 

Australia (Maier et al., 2009; Archer et al., 2019, chapter 2 this study). For other 

locations, however, combined HSE – 182W isotope systematics are incompatible with 

the late veneer hypothesis (Touboul et al., 2012; Rizo et al., 2016b) requiring different 

processes to explain 182W isotope anomalies (e.g. early silicate differentiation, see 

below). The investigation of mass-independent ruthenium isotopic variations within 

Archean rocks might provide an unambiguous test of whether mantle domains did not 

receive the full complement of late veneer material (Fischer-Gödde et al., 2020). In a 

very recent study, ruthenium isotopic variations within Archean rocks reveal that 

primordial mantle heterogeneities arise from missing late accretionary additions to the 

sources of Archean rocks (Fischer-Gödde et al., 2020).  

 

Tectonic Regimes, Archean rocks and their spatial distribution 

The vast majority of the Earth’s early rock record and therewith an important archive 

that can provide geological evidence for Early Earth processes was lost due to active 

plate tectonics. The oldest rocks on Earth that remained isolated from the convective 

mantle are preserved in cratons (kratos is Greek for strength), which represent nuclei 

of early Archean rocks that are often found within the cores of continents (see Fig. 

III.2).   
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This Archean (2.5-4.0 Ga) embryonic crust is exposed in about 35 cratons (Bleeker, 

2003) and accounts for around 7-15% of the present continental surface area (Bowring 

and Williams, 1999; Hawkesworth et al., 2010). Small areas within these crustal 

fragments have preserved Paleoarchean lithologies, for example ~4 Ga old tonalitic 

gneiss units in the Acasta Gneiss Complex within the Slave Craton of the Northwest 

Territories of Canada (Bowring and Williams, 1999; J. R. Reimink et al., 2016), the 

3.85-3.60 Ga Itsaq Gneiss Complex, Greenland (Nutman et al., 1996; Nutman and 

Friend, 2009), or the Napier Complex, Antarctica (3.98-3.8 Ga (Black et al., 1986; 

Harley et al., 2019). The Hadean Eon (4.0-4.5 Ga) is almost devoid of available rock 

samples except from reputed 4.4-4.3 Ga mafic rocks from the Nuvvuagittuq 

greenstone belt in northern Quebec, Canada (O´Neil et al., 2008; O’Neil et al., 2012). 

Other available samples older than ~4 Ga have been destroyed, probably as a result 

of recycling into the mantle, leaving no direct samples of Earth´s primordial crust. Thus, 

little is known of the first ca. 500 million years after accretion. The only undisputed 

material from the Hadean Eon and physical evidence from the earliest phase of Earth´s 

evolution are rare xenocrystic zircon grains that have been identified in orthogneisses 

from West Greenland (Mojzsis et al., 2001) and Northern Canada (Iizuka et al., 2006). 

Figure III.2: Spatial distribution of Archean cratons (shown in red), Precambrian (>540 Ma), 
and Phanerozoic (<540 Ma) basement. Taken from Lee et al. (2011). 
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Detrital zircon grains found in the Jack Hills conglomerate within the Narryer Complex 

from the Yilgarn Craton in Western Australia date back to ~ 4.4 Ga (Wilde et al., 2001; 

Valley et al., 2014). Trace element systematics, isotopic compositions and mineral 

inclusions within these zircons provide insights into Early Earth processes and into the 

conditions extant on our planet at that time. For example, oxygen isotope ratios on 

zircons indicate the early evolution of an Hadean hydrosphere and the presence of 

liquid surface water (Mojzsis et al., 2001; Wilde et al., 2001) as well as the emergence 

of habitability (Valley, 2008). Trace element compositions refer to the type of host rock 

that a zircon crystallized in (Iizuka et al., 2006) and mineral inclusion studies provide 

information about the ancient tectonic environment (Hopkins et al., 2008; Hopkins et 

al., 2010).    

The recognition that Komatiites and rock samples from the so-called tonalite-

trondhjemite-granodiorite series (TTGs (Jahn et al., 1981; Moyen and Martin, 2012)) 

are almost exclusively restricted to the Archean has caused considerable interest in 

the geological community.   

Komatiites are most abundant in the Archean (Sossi et al., 2016) but Proterozoic 

(Waterton et al., 2017) and Phanerozoic occurrences (Echevarria, 1980; Alvarado et 

al., 1997) are also reported. The type locality of komatiites is the Komati Formation in 

the Barberton Greenstone Belt in the Kaapvaal Craton, Southern Africa (Viljoen and 

Viljoen, 1969). Komatiites are ultramafic volcanic rocks with high MgO content (>18 

wt% (Arndt and Nisbet, 1982)). They typically display diagnostic spinifex textures (see 

Fig. III.3) that are elongated crystals of olivine and pyroxene with a dendrititc 

morphology, commonly considered to have been rapidly crystallized by quenching at 

a high thermal gradient (Faure et al., 2006). It has been proposed that the melting 

conditions to produce komatiitic lavas require high degrees of partial melting 

(Herzberg, 1992) at high temperatures and pressures (Green, 1981; Nisbet et al., 

1993; Puchtel et al., 2013). The most accepted petrological model for the generation 

of komatiitic lavas suggest adiabatic decompression melting of relatively anhydrous, 

anomalously hot mantle plumes (Green, 1975; Ohtani, 1984; Nisbet et al., 1993; 

Herzberg and O’hara, 2002; Arndt, 2003; Robin-Popieul et al., 2012; Sossi et al., 

2016). As summarized by Barnes and Arndt (2019), the frequent occurrence of 

komatiites in the Archean rock record and a temporal change in the sub-types of 

komatiites through the Archean can be attributed to higher potential mantle 

temperatures that slightly declined with time. The association of komatiitic rocks with 



Introduction 

 

13 
 

basalts that display geochemical characteristics of basalts from modern oceanic 

plateau settings and the lack of coexisting rocks that display petrological and 

geochemical features of modern arc lavas indicate that horizontal plate tectonics with 

active subduction were only (if at all) of subordinate importance in the Archean Eon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other group of rocks that is typical for the Archean are granitoids from the TTG 

suite which are the most dominant members of grey gneisses that make up to 90% of 

the Archean crust (Hoffmann et al., 2019). As TTGs are highly evolved felsic rocks, 

most studies focused on questions about craton formation, the emergence of Earth´s 

earliest continental crust and temporal changes of these processes. Previous studies 

showed that geochronology (e.g. Kröner et al., 1989), geochemistry (Hoffmann et al., 

2011a; Hoffmann et al., 2014; Hoffmann et al., 2016; Champion and Smithies, 2019), 

Figure III.3: Komatiite from the Ruth Well Formation (Pilbara Craton, NW Australia) with 
diagnostic spinifex textures. The term spinifex refers to the spinifex grass, which has a similar 
appearance and is endemic to Western Australia (visible in the right-hand corner). Photo taken by 
Jonas Tusch 



Introduction 

 

14 
 

phase and geochemical modeling (Nagel et al., 2012; Johnson et al., 2017; Wiemer et 

al., 2018) are excellent tools to investigate the early geological archive of felsic rocks 

in order to infer the tectonic setting of felsic crust formation and the geodynamic 

environments on early Earth. Although many questions (e.g. their petrogenesis and 

the tectonic environment) still remain unsolved after more than 40 years (Moyen and 

Martin, 2012), it is widely accepted that the source rocks for Archean TTG magmas 

were hydrous mafic rocks. The dehydration melting of such basaltic protoliths can be 

explained by a variety of conditions and geodynamic environments. While several 

studies presented evidence for the formation of TTGs in settings that involve 

subduction-like processes (Bindeman et al., 2005; Nair and Chacko, 2008; Polat, 2012; 

Wyman, 2013) other models assume a non-uniformitarian origin for Archean TTGs that 

do not require active subduction (Bédard, 2006; Bédard, 2013; Zhang et al., 2013; 

Johnson et al., 2017; Smit et al., 2020). Thus, the study of Komatiites and TTGs offers 

important insights into the genesis of the Archean mantle and the formation 

mechanisms of early continental crust. 

There is still no consensus in the scientific community on how continental crust formed 

in the Archean and what tectonic regime was operating. Both types of models 

(subduction vs. non-subduction) have their shortcomings in reconciling all 

observations. For example, higher Archean mantle temperatures probably inhibited the 

subduction of oceanic lithosphere (Sizova et al., 2010). Moreover, important products 

of horizontal plate tectonics (e.g. paired metamorphic belts (Brown, 2010)) are not 

preserved in the Archean rock record, although the associated rock types have a high 

preservation potential. However, some geological features that are preserved in early 

Archean successions (e.g. terrane juxtaposition in Greenland (Friend et al., 1988)) 

seem to require modern-style horizontal tectonics. Such findings led to observation-

based models which are able to demonstrate that different tectonic modes can coexist 

(Capitanio et al., 2019) and that the Archean Earth was largely stagnant, perhaps with 

short-lived intermittent periods of horizontal tectonic activity (O’Neill and Debaille, 

2014). 

 

Application of short-lived isotope systems 

Considering the aforementioned conditions, many dynamics of the Hadean and early 

Archean Earth remain enigmatic, mainly because the terrestrial rock record is highly 
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fragmented for the Archean and almost completely lost for the Hadean Eon. Moreover, 

most ancient geological events were strongly overprinted by the continuing geological 

activity of the planet. Consequently, our knowledge about the Hadean Eon does not 

come from classical geological approaches but rather indirect conclusions drawn from 

geochemical observations. From the geochemists toolbox, short-lived nuclide series 

such as 129I – 129Xe, 146Sm – 142Nd, and 182Hf – 182W have proven particularly useful to 

improve our knowledge about processes that happened during the earliest stages of 

planetary evolution. The big advantage of such isotope systems is that parent/daughter 

isotope fractionation within their relatively short half-life periods, cause comparatively 

large variations in the relative abundances of their radiogenic nuclides. In contrast to 

long-lived decay-series that remained analytically inactive within the first ca. 100 Ma, 

relative large variations in the decay products of short-lived nuclide decay series can 

be measured with extraordinary precision which translates into a high resolution power 

for constraints that address primordial processes (e.g. decreasing errors for absolute 

age determinations (Allègre, 2008)). As such, short-lived nuclide series like 129I – 129Xe 

(15.7 Ma (Audi et al., 2017)), 146Sm – 142Nd (half-life 103 Ma (Marks et al., 2014)), and 

182Hf – 182W (half-life 8.9 Ma (Vockenhuber et al., 2004)) can help to constraint the 

timing of early outgassing, planetary silicate differentiation, or core formation. Taking 

into consideration the current precision of isotope ratio measurements and the 

magnitude of parent/daughter isotope fractionation, by 6 half-life periods a radionuclide 

can be considered functionally extinct, so after ~ 100 Ma for 129I, ~ 600 Ma for 146Sm, 

and ~ 60 Ma for 182Hf.   

The detection of variabilities in the relative abundances of the decay products 129Xe, 

142Nd, and 182W in terrestrial rocks provided firm evidence that primordial reservoirs 

were not fully homogenized by mantle-dynamics, but played a significant role during 

the formation of the first continental crust (Allègre et al., 1987; Caro et al., 2003; 

Willbold et al., 2011). The very recent discovery of 182W, 142Nd, and 129I anomalies in 

modern mantle-derived rocks (Mukhopadhyay, 2012; Mundl et al., 2017; Peters et al., 

2018) demonstrate that primordial reservoirs are still accessible and that their 

investigation provides new perspectives on the origin of short-lived nuclide isotope 

heterogeneities throughout Earth´s history. While anomalous 129I and 142Nd isotope 

compositions in mantle-derived rocks can primarily be assigned to early planetary 

outgassing and early silicate crystal-liquid fractionation, respectively, the presence of 

182W isotope anomalies in terrestrial rocks can mirror multiple processes (see below).  
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Mobility and secondary overprint of W and the implication for 182W 

anomalies 

It has been demonstrated that W concentrations in silicate rocks can be strongly 

modified by alteration and metamorphism (König et al., 2008; König et al., 2011). 

During silicate crystal-liquid fractionation, W behaves highly incompatible, similar to Th 

and U (e.g. Palme and Rammensee, 1981; Adam and Green, 2006; König et al., 2011). 

Hence, ratios of W/Th in both, fresh OIB (oceanic island basalt) and MORB (mid-

ocean-ridge basalt) samples, are confined to a canonical range between 0.04 and 0.23 

(OIB) and between 0.09 and 0.24 (MORB) (König et al., 2011; Jenner and O’Neill, 

2012). In contrast to MORBs and OIBs, samples from arc environments display mainly 

elevated W/Th ratios (König et al., 2008; König et al., 2011). This has been ascribed 

to the higher fluid-mobility of W in subduction zone fluids (König et al., 2008; Bali et al., 

2012). Based on these observations, elemental W systematics in Archean rocks 

revealed that the elemental W budgets of many samples were affected by fluid-

mediated second stage enrichment (Touboul et al., 2014; Liu et al., 2016; Rizo et al., 

2016b; Tusch et al., 2019, chapter 1). In particular, ultramafic rocks were shown to be 

extremely susceptible for second stage enrichment of W (Tusch et al., 2019, chapter 

1). Such an elemental re-distribution of W on the whole rock scale might also affect 

accompanying 182W isotope systematics. Therefore, high-precision concentration 

measurements for W, U, and Th are required to identify samples with primary W 

abundances to restrict further consideration primarily to samples with 182W isotope 

composition unmodified by secondary processes.  

 

182W isotope systematics of the terrestrial mantle 

The discovery of anomalous 182W isotope compositions in Archean rocks was not a 

chance find. Pioneering studies that investigated the 182W isotope systematics of 

Archean rocks (Schoenberg et al., 2002b; Willbold et al., 2011) rather expected to find 

anomalous 182W isotope compositions as HSE systematics on Archean mantle-derived 

rocks documented the preservation of pre-late veneer mantle domains and suggested 

a progressive in-mixing of late accretionary additions during the Archean Eon (Maier 

et al., 2009). Recent analytical improvements in multicollector inductively coupled 
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plasma - and thermal ionization mass spectrometry (MC-ICP-MS and TIMS, 

respectively) allowed high-precision 182W isotope measurements with analytical 

uncertainties below 5 ppm (Willbold et al., 2011; Touboul and Walker, 2012). The 

findings of positive 182W isotope anomalies in Archean mantle-derived rocks (Willbold 

et al., 2011; Touboul et al., 2012) spurred many studies to investigate 182W isotope 

systematics in rocks from other ancient terranes. Over the past ca. 10 years, 14 studies 

reported 182W isotope compositions for Archean rocks. The rocks that were analyzed, 

predominantly display positive 182W anomalies. As already mentioned above some 

studies interpret this prevalence as evidence for disproportional accretion of late 

veneer (Willbold et al., 2011; Archer et al., 2019). Others however have pointed out 

that this view may be a simplification as constraints from HSE abundances (Touboul 

et al., 2012) and 142Nd isotope systematics (Puchtel et al., 2016a; Rizo et al., 2016b) 

suggest other processes to be involved. These studies suggest that anomalous 182W 

isotope compositions within the terrestrial mantle could have been also produced in-

situ during the lifetime of 182Hf (i.e., during the first ca. 60 Ma after solar system 

formation). Following their arguments, Hf could have been substantially fractionated 

from W during silicate crystal-liquid fractionation, thus explaining 182W isotope 

heterogeneities within the Archean mantle. Further evidence for such ancient 

signatures comes from anomalies in the relative abundances of 142Nd which is the 

decay product of the short-lived 146Sm (half-life 103 Ma (Marks et al., 2014)). As for 

182Hf-182W, the incompatibility is higher for the radiogenic nuclide – so positive 

correlations between 182W and 142Nd are expected if silicate differentiation is involved. 

However, even in cases where missing late veneer contributions can be excluded on 

the basis of HSE systematics, correlations between 182W and 142Nd are not always 

observed (Touboul et al., 2014). Therefore, in many cases the origin of 182W isotope 

anomalies in Archean rocks remains ambiguous.   

Irrespective of what caused 182W isotope anomalies in Archean rocks, the temporal 

evolution from predominantly positive 182W isotope anomalies in the Archean to 

modern depleted upper mantle (no 182W isotope anomaly) is only poorly constrained. 

Most studies have only provided snapshots within the 182W isotope evolution of 

individual Archean cratons (Touboul et al., 2012; Touboul et al., 2014; Liu et al., 2016; 

Puchtel et al., 2016a; Puchtel et al., 2018). Moreover, only 15 out of 118 Archean 

samples (ca. 13%), which were analyzed for their W isotope composition, have 

preserved their pristine W budged (canonical W/Th). As demonstrated by our study on 
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rocks from the Pilbara Craton (chapter 2), the W isotope composition of mantle-

derived rocks with supracanonical W/Th ratios are dominated by metasomatic agents 

that re-mix reservoirs of variable W isotope compositions. This might indicate that the 

scatter seen for Archean rocks in Fig. III.4 does not necessarily represent analytical 

noise. Secondary overprint might cause ambiguous models on the time-scales of  

 

 

mantle convection that progressively homogenize early formed mantle 

heterogeneities. Furthermore, the evolution of 182W isotope anomalies through time is 

further complicated by the scarcity of data for the Proterozoic Eon. There is little known 

about the W isotope composition of the terrestrial mantle at that time. The only 

available data comes from 2.4 Ga old komatiitic basalts from the Vetreny Belt 

(Fennoscandian Shield) that were strongly affected by crustal contamination (Puchtel 

et al., 2016b).  

Figure III.4: Compilation illustrating the secular 182W isotope evolution of the Archean 
terrestrial mantle. This dataset includes all available 182W isotope literature data for mantle-derived 
rocks (for references see Table B2, appendix B). For Nuvvuagittuq we assume a minimum 
emplacement age of 3.75 Ga (Cates and Mojzsis, 2007), being well aware that it might be older 
(O´Neil et al., 2008). The literature data are subdivided into samples with overprinted elemental W 
budgets (grey) and samples with canonical W/Th (black). 
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Surprisingly, recent studies revealed that some modern OIBs display extremely 

variable 182W isotope anomalies (Rizo et al., 2016a; Mundl et al., 2017) ranging from 

excesses of up to +48 ppm (Rizo et al., 2016a) to deficits of up to ca. -20 ppm (Mundl 

et al., 2017). While the extreme positive anomalies are controversial and could not be 

confirmed by a later study (Kruijer and Kleine, 2018), combined 3He/4He – 182W 

systematics indicate that different mantle reservoirs contribute to the geochemical 

heterogeneity of modern OIBs. These reservoirs include an un-degassed component 

(Mundl et al., 2017) that may have underwent metal-liquid silicate equilibration at the 

core mantle boundary (Mundl-Petermeier et al., 2020). A partially molten silicate layer, 

either representing a remnant of an ancient basal magma ocean or recycled oceanic 

lithosphere, might have inherited the negative 182W isotope composition of the outer 

core via chemical and isotopic equilibration (Mundl-Petermeier et al., 2019; Mundl-

Petermeier et al., 2020). The presence of such mantle reservoirs and the role of mantle 

plumes in the Archean is poorly constrained yet but is investigated in chapter 3 using 

the W isotope composition of Archean rocks from the Kaapvaal Craton, southern 

Africa.  

 

Significance of constraints on the dynamics of Early Earth 

processes  

The presence of seismically detectable large low-shear-wave velocity provinces 

(LLSVPs (Torsvik et al., 2016)) combined with trace element and radiogenic isotope 

data on basalts from ocean island basalts and oceanic plateaus (Hofmann, 1997) 

provide clear evidence that the present-day Earth mantle exhibits domains with strong 

geophysical and geochemical differences. However, direct geophysical observations 

to constrain the Earth´s interior dynamics back in geological time are missing. Thus, 

we only know very little about the evolutionary histories of the Earth´s present-day 

heterogeneous mantle (see Fig. III.5). The only data available come from the 

geological rock record that comprise mantle-derived rocks. These “messengers from 

below” provide important observational constraints, which constitute boundary 

conditions for and define the evolutionary pathway of computational numerical models. 

Therefore, cross-disciplinary efforts that integrate geochemical observations, 

computational models, and geophysical data are required to resolve the relationship 

between modern observed and the past heterogeneity, respectively.  
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Figure III.5: Time-depth diagram for the availability of data for constraining geodynamic 
relationships for the Earth. Size of data points reflect abundance of available data. Taken from Gerya 
(2019). 
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IV. Sythesis 

For our first project (chapter 1) we developed a new ion exchange separation scheme 

that permits W isotope measurements on samples with W abundances in the lower 

ng/g range, where gram-sized amounts of samples need to be processed. This is of 

particular importance for high precision 182W isotope measurements on rocks such as 

peridotites or depleted basalts, that often exhibit W concentrations in the range of only 

several ng/g. As demonstrated in our first project our analytical approach allows for 

high precision 182W isotope measurements with uncertainties typically better than ± 5 

ppm (95% confidence interval (CI), n > 5). Over the course of our projects (see chapter 

2 and 3) we continuously developed our separation and measurement protocols, which 

resulted in markedly improved analytical precision and accuracy. This is demonstrated 

by repeated measurements of three in-house reference materials that were always 

passed through our separation protocol (LP1 - historical 1480 OIB from La Palma 

(Kurzweil et al., 2019), AGC 351 - a 3455 Ma grey gneiss from the Kaapvaal Craton, 

Southern Africa (Kröner et al., 2014), and sample 160245 – a 3.27 Ga Komatiite from 

the Pilbara Craton, NW Australia (chapter 3)). The analytical uncertainty of our 

measurements significantly improved over the course of my PhD project.   

To ultimately test our analytical approach we analyzed lithostratigraphic units from the 

Eoarchean Itsaq Gneiss Complex (IGC), SW Greenland, that has previously been 

subject to detailed 182W studies (Willbold et al., 2011; Rizo et al., 2016b; Dale et al., 

2017). In order to cross-reference with these previous studies, we included 

lithostratigraphic units with known 182W isotope compositions. In part, we even 

analyzed the same powder aliquots that were previously investigated by others (Rizo 

et al., 2016b). In addition, we provided the W isotopic composition for recently 

recognized mantle-like peridotites from several Eoarchean key units, that were shown 

to display the full inventory of HSE found in modern mantle peridotites (van de Löcht 

et al., 2018a). Throughout our projects (chapter 1-3) we always combined our W 

isotope composition analyses with isotope dilution measurements for U, Th, W, and 

other high-field strength elements (Zr, Nb, Ta) to get high precision concentration data 

that allow for the inspection of the whole-rock elemental W budget. In case for rocks 

from the IGC it turned out that redistribution of W, as shown by non-canonical W/Th 

and W/Ta ratios in most samples, is the most plausible explanation for a homogeneous 

182W isotope excess of +12.8 ± 1.0 ppm (95% CI). The magnitude of this excess is in 
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line with previous studies (Willbold et al., 2011; Rizo et al., 2016b; Dale et al., 2017). 

Although HSE and 182W isotope systematics are clearly decoupled in the mantle-like 

peridotites we argue that missing late veneer additions are unlikely to be the only cause 

of the 182W excesses in rocks from SW Greenland. Rather, the formation of an early 

silicate reservoir by >4.50 Ga is a more plausible explanation, as previously suggested 

by 142Nd studies in the Isua region (e.g. H. Rizo et al., 2016b; Saji et al., 2018). 

For our second project (chapter 2) we examined Paleo- to Neoarchean rocks from the 

Pilbara Craton, Western Australia. As already outlined in the introduction, surprisingly 

few studies have assessed the 182W record of lithostratigraphic successions that span 

a relatively long time frame of Archean geodynamic evolution. Rather, most studies 

have only provided snapshots within the 182W isotope evolution of individual Archean 

cratons. In order to assess the 182W isotope evolution of a particular region over a long 

time period, we analyzed rocks from the Pilbara Craton, that preserve a unique 

geological archive covering 800 Ma of Archean history (3.58-2.76 Ga). To allow for a 

more comprehensive understanding of Archean geodynamic evolution, we employed 

two strategies in selecting our samples. Firstly, we analyzed mafic-ultramafic rocks that 

tapped the ambient asthenospheric mantle. Secondly, to understand the evolution of 

the lithospheric mantle and to obtain average crustal compositions we analyzed mafic 

dikes, sediments and granitoids of different ages.   

We found that pristine 182W signatures are only preserved in unaltered samples with 

near canonical W/Th ratios. The oldest samples, early Paleoarchean, juvenile, igneous 

rocks from the East Pilbara Terrane, display a uniform 182W excess of 12.6 ± 1.4 ppm 

(95% CI), a magnitude similar to rocks from other Archean cratons (Willbold et al., 

2011; Touboul et al., 2014; Willbold et al., 2015; Liu et al., 2016). These pristine 182W 

isotope signatures progressively vanish from ca. 3.3 Ga onwards and are only 

preserved in younger igneous rocks of the craton that tap stabilized ancient lithosphere 

and that integrate the W isotope composition of the average Pilbara Craton. The origin 

of 182W isotope anomalies and their decline to modern-mantle like values is in line with 

previous findings that found evidence for an incomplete late veneer contribution to the 

mantle sources of rocks from the Pilbara Craton (Maier et al., 2009; Archer et al., 

2019). Collectively, our data indicate that Hadean, pre-late veneer mantle was 

preserved for more than 1 billion years, much longer than evident from other cratons 

(Touboul et al., 2014; Rizo et al., 2016b). These are important observational 

constraints on the Archean mantle, which are indispensable for numerical simulations 
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as such input parameters define the evolutionary pathway of computational convection 

models (Weller and Lenardic, 2012). Moreover, our detailed investigation of the 

elemental W systematics demonstrate that metasomatic agents progressively 

redistributed W from different reservoirs and thereby re-mixed variable W isotope 

compositions.  We argue that prevalent 182W isotope excesses reported in the literature 

and the scatter observed is not a pervasive signature with its associated analytical 

noise but rather an integrated dataset of 182W isotope compositions of a transient 

Archean mantle. Consequently, the long-standing apparent mismatch between 

virtually constant 182W isotope excesses and progressively vanishing 142Nd anomalies 

through Archean time (Rizo et al., 2016b) is therefore well explained by the larger 

mobility of W compared to Nd and its re-distribution during secondary processes.  

In our third project, we investigated Paleoarchean samples from the eastern Kaapvaal 

Craton, southern Africa, to further evaluate the processes that account for 182W 

anomalies in Archean rocks. Lithologies from this craton are well suited to search for 

vestiges of early silicate differentiation, because they were shown to display both 

heterogeneous 142Nd and 182W anomalies (Touboul et al., 2012; Puchtel et al., 2016a; 

Schneider et al., 2018). We performed high-precision 182W isotope analyses on a 

comprehensive suite of 17 samples.  

Interestingly, our dataset reveals a co-variation of 182W isotope composition with initial 

ε143Nd(t) and ε176Hf(t). To our knowledge, this is the very first discovery of a co-variation 

between 182W anomalies and long-lived radiogenic nuclides. The observed co-variation 

for our samples is further strengthened by literature data for komatiites from the 

Schapenburg Greenstone Remnant (SGR, Puchtel et al., 2016) and the Komati 

Formation from the Barberton Greenstone Belt (BGB, Touboul et al., 2012; Puchtel et 

al., 2013). As the observed co-variations of 182W with ε143Nd(t) and ε176Hf(t) are largely 

defined by ultramafic-mafic samples, the observed trend reflects the mixing of different 

mantle-source reservoirs. One mantle endmember exhibits no resolvable 182W isotope 

anomaly at near chondritic initial ε143Nd(t) and ε176Hf(t) values, most likely representing 

the near primitive mantle. The other endmember is best characterized by komatiites 

from the SGR that exhibit the largest 182W isotope deficits of up to -11.4 ppm and 

strongly elevated initial ε143Nd(t) and ε176Hf(t) values of up to +2.6 and +6.2 ε units, 

respectively (Puchtel et al., 2016a).  

As we demonstrate in chapter 3, the only plausible model to explain these patterns is 

the presence of recycled mafic restites from a Hadean protocrust in the ancient mantle 
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beneath the Kaapvaal Craton. Moreover, our proposed geodynamic model for the 

Kaapvaal Craton also provides an intriguing explanation for 182W isotope variations in 

modern OIBs. As we show in chapter 3, modern OIBs and our samples from the 

Kaapvaal Craton show striking similarities in their combined 182W – 143Nd-176Hf isotope 

patterns. We therefore speculate, that lower crustal restites from a Hadean protocrust 

were delaminated and ultimately recycled into the lower mantle, where they might be 

part of large low shear-wave velocity provinces (LLSVPs) in the present day mantle 

that were interpreted to contribute to rising mantle plumes (Burke et al., 2008). In this 

regard, our model provides an alternative explanation for the origin of negative 182W 

isotope anomalies in modern OIBs and bridges 182W isotope systematics in Archean 

mantle derived rocks with observations from modern-day mantle plumes.  
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Chapter 1 

 

1 Uniform 182W isotope compositions in Eoarchean rocks 

from the Isua region, SW Greenland: the role of early 

silicate differentiation and missing late veneer 

 

1.1 Abstract 

Eoarchean rocks from the Isua region in southern West Greenland are known to exhibit 

isotope anomalies of 182W and 142Nd. The excess 182W in many rocks from the Isua 

region have been explained by two endmember models: (1) missing late veneer or (2) 

silicate differentiation shortly after Earth’s formation. Furthermore, it has been 

proposed that pristine W isotope systematics in rocks from the Isua region (herein the 

Isua supracrustal belt and adjacent area) have been obscured by metamorphic 

disturbance. To address these issues, we present a comprehensive dataset, 

combining high precision 182W isotope data with trace element data, including high 

precision elemental W-Th-U abundance data. We present an improved analytical 

protocol that allows processing gram-sized samples with W abundances in the lower 

ng/g range. This protocol also results in markedly improved ion exchange column 

yields and cleaner W fractions, thereby minimizing nuclear volume effects on 183W. To 

compare with previous studies, our dataset includes some samples from previously 

investigated units in the Isua region (Isua Supracrustal Belt (ISB) mafic-ultramafic 

assemblages and Ameralik dikes). In addition, several Eoarchean key units in the 

Isukasia terrane (Isua region) and the Færingehavn terrane (Nuuk region) have been 

examined for their W isotope composition in this study for the first time. These newly 

investigated units include recently recognized mantle-like peridotites from both 

terranes that display PGE abundances and patterns similar to modern depleted mantle 

peridotites, felsic lithologies from the ISB, as well as key amphibolite and TTG localities 

from low-strain domains south of the ISB. Virtually all rocks from the Isua region show 

significant W enrichment with W/Th of up to 160 in mafic to ultramafic samples. None 

of the samples from SW Greenland that were object of 182W isotope analysis in this 

study and virtually all previous studies appear to have preserved near canonical W/Th 
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ratios (i.e., between 0.09 and 0.24). Independent of W enrichment, however, it can now 

be shown that there is a uniform 182W isotope excess in the different rock types from 

the Itsaq Gneiss Complex (IGC) (average 12.8 ppm ± 1ppm, 95% confidence interval). 

Importantly, none of the rock suites investigated exhibit modern mantle-like 182W 

isotope signatures of µ182W = 0. By combining 182W signatures in the different 

lithologies with elemental W systematics, we therefore can infer that the 182W excess 

in Eoarchean rocks from the Isua region is widespread, and independent of W 

enrichment. Hence, we regard the 182W excess as an intrinsic feature of the Eoarchean 

assemblages in the Isua region. Notably, mantle-like peridotites from both the Isukasia 

and Færingehavn terranes display the same 182W excess, as all other units, although 

they have been shown to display the full inventory of Highly Siderophile Elements 

(HSE) found in Phanerozoic mantle peridotites. Evidently, the W isotope budget in 

these rocks is clearly decoupled from HSE systematics, which hampers a 

straightforward explanation for182W isotope excesses in terms of the missing late 

veneer model. As Platinum Group Element (PGE) patterns in mantle-like Eoarchean 

peridotites from the Isua region are similar to those in Phanerozoic rocks, we rather 

propose that to a large extent the 182W excesses are a vestige of early silicate 

differentiation processes, in line with positive 142Nd anomalies found in rocks from the 

Isua region, suggesting initial silicate differentiation prior to 4.50 Ga.  

 

1.2 Introduction 

The short-lived 182Hf – 182W isotope system (half-life = 8.9 Ma, Vockenhuber et al., 

2004) has become a key tool in understanding differentiation processes in the Early 

Earth. Since analytical improvements have allowed resolution of 182W compositions at 

the lower ppm (0.01 ε-unit) level, the 182Hf – 182W decay system has not only provided 

insights to processes such as early planetary core formation, but also into early silicate 

differentiation processes, or late veneer addition. The discovery of small-scale 

anomalies in Archean (e.g. Willbold et al., 2011; Touboul et al., 2012) and modern 

rocks (Rizo et al., 2016a; Mundl et al., 2017) have spurred a discussion about the origin 

of terrestrial 182W anomalies. These 182W isotope excesses have been explained as 

either vestige of a missing late veneer component (Willbold et al., 2011; Willbold et al., 

2015) or as the result of early silicate differentiation (e.g. Touboul et al., 2012; Touboul 

et al., 2014; Rizo et al., 2016b) during the lifetime of 182Hf. This issue is still under 
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debate, largely because the results from other geochemical tracers like 142Nd or HSE 

systematics are apparently contradictory (e.g. Puchtel et al., 2016) and the 

geochemical behavior of W in Archean rocks is still poorly understood.  

Interpreting the origin of 182W anomalies with respect to a missing late veneer hinges 

on tightly constraining the Archean mantle abundances of highly siderophile elements 

(HSE). However, most HSE estimates for Archean mantle composition are based on 

their mafic derivatives, an approach with large uncertainties (Maier et al., 2009; Dale 

et al., 2017). Many 182W isotope studies do not include HSE measurements (e.g. 

Willbold et al., 2011; Willbold et al., 2015). Coupled HSE and 182W compositions have 

only been measured on mafic-ultramafic assemblages (e.g. Touboul et al., 2014; Rizo 

et al., 2016b; Dale et al., 2017), in which the ultramafic rocks were not mantle 

peridotites or of ambiguous origin. Other geochemical studies proposed that the fluid-

mobility of W (e.g. König et al., 2008) can lead to selective W enrichment and obscure 

the elemental W budget, in particular in Archean rocks (Rizo et al., 2016b). Such an 

overprint may severely hamper the understanding of the origin of anomalous W isotope 

compositions. While pioneering 182W studies focused on Eoarchean rocks from the 

Isua region (Schoenberg et al., 2002a; Iizuka et al., 2010; Willbold et al., 2011), 

anomalous 182W patterns have now been found in several other Eoarchean cratons 

(e.g. Superior Province, Touboul et al., 2014; Slave Craton, Willbold et al., 2015; 

Kapvaal craton, ; Puchtel et al., 2016), now also including rock suites that show deficits 

in 182W (Schapenburg komatiites of the Kaapvaal craton, Puchtel et al., 2016). Yet, the 

origin of the 182W anomalies has remained contentious. 

In particular the Isua region within the Eoarchean Itsaq Gneiss Complex (IGC) has 

been subject to detailed 182W studies that were combined with 142Nd studies and HSE-

systematics (Willbold et al., 2011; Rizo et al., 2016b; Dale et al., 2017). The pioneering 

study by Willbold et al. (2011) reported the first positive 182W isotope excesses in 

Archean rocks from the Isua Supracrustal Belt (ISB) and proposed that the magnitude 

of 182W excesses (ca.10-20 ppm) is consistent with a pre-late veneer mantle that is 

largely devoid of chondritic material added after core formation. For the Isua region 

this hypothesis was supported by 182W studies that included HSE systematics (Rizo et 

al., 2016b; Dale et al., 2017). Both studies however have come to markedly different 

conclusions on the origin of 182W anomalies. Most importantly, the studies by Rizo et 

al. (2016b) and Dale et al. (2017) reported heterogeneous 182W excesses in Eoarchean 
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rocks from the Isua region. Recently, van de Löcht et al. (2018a) confirmed previous 

studies (Bennett et al., 2002; Friend et al., 2002; Nutman et al., 2007) that >3.800 Ma 

ultramafic inclusions in the IGC from South of the ISB and from the Narssaq peninsula 

in the Nuuk region are residual mantle peridotites. The authors have shown that the 

HSE concentrations in these mantle-like peridotites overlap with the modern mantle, 

which clearly demonstrates that the ambient mantle beneath the North Atlantic Craton 

has received a nearly complete late veneer contribution (60 – 100%). These peridotites 

are good candidates to investigate the origin of 182W isotope anomalies.  

Here, we report a comprehensive 182W dataset covering several Eoarchean 

lithostratigraphic units from the IGC. To enable high precision 182W measurements in 

samples with W abundances at the lower ppb level we developed a new separation 

technique that allows processing of large sample quantities. We analyzed 26 samples 

from a variety of Eoarchean lithologies, including mafic-ultramafic assemblages, TTGs, 

and Paleoarchean samples from the Ameralik dike swarm (3.5 -3.26 Ga, Nutman et 

al., 2004). In order to cross-reference with other studies, we included lithostratigraphic 

units with known 182W isotope compositions. Beyond these samples, several 

Eoarchean key units in the Isukasia terrane (Isua region) and the Færingehavn terrane 

(Nuuk region) have been examined for the first time, and our dataset also includes 

182W data for the mantle-like peridotites from Narssaq peninsula (Nuuk region) and the 

region south of the ISB (SOISB) reported by van de Löcht et al. (2018a). The high 

precision 182W isotope data are combined with trace element data that for the first time 

includes high precision elemental W-Th-U-Ta data, obtained by isotope dilution. The 

combined high precision 182W and trace element dataset now allows for better 

evaluation of the effects of secondary W redistribution and the role of missing late 

veneer contributions.   

 

1.3 Methods 

All samples were cleaned of visibly weathered surfaces and veins using a rock saw. 

Subsequently, the samples were crushed to rock chips with a steel hand mortar or 

steel jaw crusher. A representative powder aliquot of these chips was prepared in an 

agate mill for bulk rock analyses. 
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1.3.1 Whole rock major, trace element and isotope dilution measurements (HFSE, 

Th & U) 

For most samples, major elements were analyzed by XRF on melt tablets after Li-

tetraborate-fusion using a Philips PW 2400 spectrometer at Cologne. Trace element 

concentrations were determined after high-pressure acid digestion by quadrupole 

ICPMS using an Agilent 7500cs mass spectrometer at University of Kiel, following the 

analytical protocol of Garbe-Schönberg (1993) and Hoffmann et al., (2011a). 

Replicates and reference material BHVO-2 were measured during the analytical 

sessions. Results for major and trace elements are shown in Table A1 (appendix A). 

For the majority of the major and trace elements, the reproducibility for the reference 

material and replicates were better than ± 10%. Whole rock major and trace element 

abundances for samples from a magma mingling association from the ISB were 

measured by ACME labs/Bureau Veritas in Vancouver, Canada by XRF and ICP-MS, 

with precisions of ±5% and ±15%, respectively.   

The abundances of W, Th, and U in all samples, as well as Zr, Hf, Nb, Ta, and Lu in 

the majority of samples, were determined by isotope dilution using a Thermo Fisher® 

Neptune Plus Multicollector ICP-MS at University of Cologne. Analytical details 

followed the protocols given in Münker et al. (2001), Weyer et al. (2002), Kleine et al. 

(2004), and Luo et al. (1997). Prior to sample digestion in Savillex PFA vials, all vials 

were cleaned with HNO3, reverse aqua regia, concentrated HF, and 1mM DTPA,  

respectively (Peters et al., 2015). To ensure the complete digestion of the samples, 

our protocol includes a Parr® bomb digestion step, in which the Savillex vials are 

placed for 24 hours at 180°C in closed steel containers to ensure complete dissolution 

of residual phases during high pressure acid digestion (e.g. Hoffmann et al., 2010). 

According to Kleine et al. (2004) Savillex vials may contain significant amounts of W 

that can be released during high pressure bombing. Therefore, we assessed the 

individual beaker - blank contribution of older Savillex vials that were bombed in 

advance (24 hours at 180 °C). Inadequate vials with high W blanks (> 80 pg) were 

rejected to ensure low blank contributions (≤ 0.5 %) from bombing.  

For the isotope dilution measurements, sample splits of ~100 mg were spiked with 

mixed 233-236U – 229Th and 183W – 180Ta – 180Hf – 176Lu – 94Zr  tracers (Weyer et al., 

2002; Münker, 2010). Complete digestion of the samples was achieved by several 

steps. First, samples were dissolved in a 1:1 concentrated HF – concentrated HNO3 
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mixture (6 ml) in closed pre-bombed Savillex vials on a hotplate for at least 12 hours 

(120° C) and subsequently dried down, before they were placed for 24 hours at 180° 

C in Parr® bombs using a 3:1 HF – HNO3 mixture (6 ml). Subsequently, 1 ml of HClO4 

was added to each sample prior to a progressive dry down (Yokoyama et al., 1999). 

The residues were then evaporated to dryness in 2 ml concentrated HNO3 and trace 

HF (0.024 M) before they were dissolved in 6 ml 6 M HCl – 0.06 M HF for 5-6 hours at 

120° C to achieve full sample-spike equilibrium. In case of complete HFSE separation, 

a 20% aliquot was taken from the 6 ml of 6 M HCl – 0.06 M HF solution for W 

separation. For the elements Lu, Hf, Ta, Zr, and Nb we applied a three step ion 

exchange chromatography procedure (Münker et al., 2001), in which a U-Th aliquot 

was taken during loading on the  second stage ion exchange column. Tungsten 

separation followed a shortened procedure described by Kleine et al. (2004), while 

separation of Th and U was achieved on TRU-Spec following Luo et al. (1997). In 

cases where only W, Th and U were separated, the fully digested samples were divided 

into two splits before W and U-Th separations were each performed separately, 

following the protocols described above. All isotope dilution measurements were 

conducted on the Thermo Fisher Neptune MC-ICP-MS at Cologne, analytical 

uncertainties and further references are given in Münker (2010). For 229Th/232Th 

measurements, we used an SEM ion counter equipped with an RPQ system on mass 

229Th. Our external precision and accuracy for elemental ratios determined by isotope 

dilution involving U and Th typically is better than ± 1% for both U/W and Th/W (2 SD). 

Total blanks during ID measurements were generally 1 – 66 pg/g (Th), 9 – 19 pg (U), 

and 50 – 65 pg/g (W). For W this translates to propagated errors of blank uncertainties 

≤ ± 0.5%.  

 

1.3.2 Ion exchange protocol for high precision W isotope measurements 

To improve existing protocols for separation of W from rock samples, we developed a 

new separation procedure that permits W isotope measurements on samples with W 

contents in the lower ppb range, where gram-sized amounts of sample need to be 

processed. In addition, we aim to better understand the origin of artificial mass 

independent isotope effects that were previously reported in the literature (Shirai and 

Humayun, 2011; Willbold et al., 2011; Kruijer et al., 2012; Cook and Schönbächler, 

2016).  
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As reagents, we used blank tested Teflon-distilled HCl, HF and HNO3 as well as 

commercial Suprapur® H2O2 (Merck KGaA) throughout the chemistry. To prevent 

cross-contamination and associated isotope anomalies, all Savillex vials that were 

used for sample digestion, and during the separation procedures, have never been 

used for isotope dilution (ID) measurements. All beakers were cleaned with HNO3, 

reverse aqua regia, concentrated HF, and DTPA/HCl. Sample splits of ≥ 1g were 

digested in several steps, starting with dissolution in a 1:1 cHNO3 – cHF mixture (30 

ml) in closed Savillex vials on a hotplate at 120° C for 3-4 days. After evaporation to 

dryness, samples were treated 3 times with 5 ml cHNO3 at 120° C to remove fluorides 

before dissolving the residues in 30 ml 6 M HCl at 120° to 150° C. In case of incomplete 

dissolution after 48 hours, the HCl digestion step was repeated. Usually, a visibly clear 

solution without precipitates was obtained after this repetition. Finally, the samples 

were dried down and dissolved in 20 ml 1 M HCl for ≥ 12 hours. Before loading onto 

ion exchange columns, the solution was centrifuged and occasionally occurring 

precipitates were washed repeatedly in 1 M HCl. The loading solution was adjusted to 

1 M HCl – 1 vol% H2O2 by adding 30% H2O2. The separation of W for high precision 

W isotope measurements follows a three-stage ion-exchange chromatography, which 

is outlined below and shown in Table 1.1. 

Our separation protocol consists of three stages in the following order: A cation 

exchange stage after Patchett and Tatsumoto (1981), an anion exchange stage, and 

a final stage using TEVA resin after Peters et al. (2015). As for the first cation stage, 

we observed that conventional matrix separation on 7ml of AG 50W-X8 and loading in 

1 M HCl – 0.1M HF, (Patchett and Tatsumoto, 1981) is insufficient for sample quantities 

exceeding 700 mg. For this amount of sample, incomplete matrix separation leads to 

overloading of the columns during the following ion exchange steps (particularly stage 

II, see Table 1.1), thus changing the elution behavior of the elements of interest. 

Increasing the column volume to 15ml of resin and loading sample solutions in 1 M 

HCl – 1 vol% H2O2 causes the HFSE along with W and Ti to not adsorb on the resin, 

while most matrix elements and trace elements including REE are efficiently retained. 

Moreover, similar to HF, H2O2 serves as a complexing agent and promotes the 

quantitative dissolution of W  in form of peroxy complexes, similar to the formation of 

fluoride complexes (see Korkisch, 1989).The big advantage by making use of H2O2 is, 

that it lacks the unfavorable property to form fluoride-precipitates with alkaline-earth 

metals that may lead to co-precipitation of trace elements of interest (Yokoyama et al., 
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1999). Admittedly, the presence of H2O2 can lead to hydrolysis and precipitation of 

other HFSE (Münker, 1998) if the solution step is prolonged. Low yields of other HFSE, 

however, were not observed in our protocol. Subsequently, separation of matrix 

elements from REE is achieved by rinsing with different HCl molarities. The W-bearing 

cut in HCl – H2O2 can now be directly loaded onto an anion exchange column (2 ml 

BioRad AG 1-X8 in Poly-Prep® columns) to further remove potentially remaining matrix 

elements and to isolate W from Ti and the other HFSE. The HFSE and Ti immediately 

pass through the columns, and after 3 rinsing steps with HCl – H2O2 absolute yields of 

nearly 100% were obtained for these elements. Subsequently, remaining matrix 

elements, in particular Fe and Zn, are eluted in 2 M HF. After this step, W is eluted 

together with Mo and Sn in 3 M HNO3 – 0.2 M HF. Peters et al. (2015) already utilized 

the capability of EichromTM TEVA resin to separate Hf, Ti, and Zr from W at high 

efficiency. Additionally, the elution of W in HCl media allows for a separation of W from 

Mo (Komori et al., 2015). We developed a slightly modified TEVA resin step as third 

stage column to further improve the separation of W from remaining Hf, Ti, and Zr. In 

contrast to the protocol by Peters et al. (2015), our columns have a different geometry, 

we slightly increased the resin volume (rv) to 0.65 ml and elute remaining HFSE in only 

1 ½ rv of 6 M HCl, followed by the elution of W in further 9 rv of 6 M HCl and 9 rv of 4 

M HCl. By employing this modified protocol, Mo and Sn are completely retained on the 

column and can subsequently be eluted in 12 rv 3M HNO3. Our separation procedure 

was already successfully used in the study by Kurzweil et al. (2018) who performed 

high-precision stable W isotope measurements.  
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Our absolute yields for W were mostly > 75%, which is within range of other studies 

(Rizo et al., 2016a of 60-90%, Cook and Schönbächler (2016) of 60-80%, Touboul et 

al. (2012) of ca. 80%). Exceptionally low yields below 50% (16 out of 131 

measurements) occurred during the early stage of this study and were probably 

caused by the formation of insoluble W oxide compounds during re-dissolution after 

dry-down, as previously suggested by Willbold et al. (2011). Such a formation of 

insoluble compounds could be avoided by repeated dry-down in cHNO3 – 30% H2O2 

(1:1), which consistently improved yields and, most importantly, also removed artificial 

effects on measured 183W abundances (see below). 

Total procedural blanks for W IC measurements were typically below 350 pg and 

usually contributed less than 1% of the total analyte. Some erratic blank values 

exceeded 4ng (ca. 5% of the total W). Most likely, these values are not representative. 

However, even if these erratic blank values were representative and had a µ182W = 0, 

the associated decrease in µ182W for typical excesses of 13 ppm in Isua samples would 

Table 1.1: Separation procedure of W from gram-sized 
samples (minimum 1 g per column) for measurements of 
182W in natural rock samples. 
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propagate into the measured value by less than 1 ppm, which is still analytically 

insignificant.  

 

1.3.3 Mass spectrometry for high precision 182W isotope measurements 

High precision measurements were performed over an eleven-month interval, using 

the Thermo-Fisher® Neptune MC-ICPMS at Cologne. The analytical protocol for high-

precision W isotope measurement mainly followed Peters et al. (2015), with the 

exception that 182W was measured on the center cup to add 177Hf as an additional 

interference monitor for 180W measurements. 

 

 

The Thermo-Fisher® Neptune MC-ICPMS at the University of Cologne can 

simultaneously measure signals in 9 faraday collectors that each can be connected to 

one of ten amplifiers, three of which have a 1013 Ω, six that have 1011 Ω and one that 

has a 1010 Ω resistor. Table 1.2 lists the collector configurations used for our W isotope 

measurements including amplifiers. The low-abundance isotope 180W and the 

interference monitors 177Hf and 188Os were measured in Faraday collectors connected 

to 1013 Ω resistor amplifiers, while all other isotopes were measured using 1011 Ω 

resistor amplifiers. For 1011 Ω resistor amplifiers, the automated internal gain 

calibration routine of the mass spectrometer was used. Gain values for 1013 Ω resistor 

amplifiers were obtained by analysis of the synthetic reference material JNdi-1 

following Trinquier (2014). The associated reproducibility (2 SD) of the gains for the 

1013 amplifiers over the time period of our measurements was better than ± 330 ppm 

with an internal precision (2 SE) better than ± 210 ppm on each amplifier. The low 

precision is probably caused by individually differing response and decay times of high-

ohm amplifiers (Hirata et al., 2003; Günther-Leopold et al., 2005; Cottle et al., 2009; 

Pfeifer et al., 2017). Note that our analytical routine expresses unknown isotope 

compositions relative to a terrestrial reference material (W NIST SRM 3136) or 

Table 1.2: Collector configurations on the Thermo-Fisher® Neptune MC-ICPMS at Cologne. 

Faraday collectors connected to 1013 Ω are in bold text, interfering isotopes are shown in red. 
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terrestrial in-house rock standards that are analyzed at the same run conditions along 

with the samples. As we always alternate samples and standards at relatively short 

measurement periods (when compared to TIMS), any inaccuracy in gain values of 

amplifiers that are used for measuring isotopes of the element of interest cancels out. 

Moreover, inaccuracy in gain values at the level observed here is generally insignificant 

when associated with interference monitors for small magnitudes of interference 

correction. The magnet settling time was set to 1 s. Baselines of 1200 s were taken 

before every measurement session, following the gain calibration with a break of at 

least 10 minutes, in order to permit signal decay on the 1013 Ohm amplifiers. 

The solution was introduced into the MC-ICP-MS by a self-aspirating Cetac AridusII 

PFA nebulizer with an average uptake rate of 70 µl/min. By installing a stable sample 

introduction dual quartz chamber between the desolvator system and the torch we 

increased the expansion volume of the inlet system, which significantly increased 

signal stability. A washout time of 300 s was interspersed between measurements.  

Analyses were performed in static and low-resolution mode (M/ΔM ~ 1850), using a 

combination of an H-type sample and an X-type skimmer cone. Using 1011 Ohm 

amplifiers, a signal of 5.3 V was typically obtained on 182W for a ~50 ng/ml W sample 

solution at an uptake rate of ca. 70 µl/min. High precision W isotope measurements 

were typically run at intensities of 2.7 – 22 V on 182W, corresponding to 32-161 ng/ml 

solutions. We found an optimized reproducibility (relative 2 SD) for 60 – 100 cycle 

analysis. Furthermore, shorter measurements at higher intensities resulted in better 

reproducibility than longer measurements at lower intensities, most likely due to 

instrumental drift. Therefore, a single high precision W isotope measurement typically 

comprised 60 cycles of 8.39 s integration time each. All samples were measured at 

least five times and µ182W values are reported with corresponding 95% confidence 

intervals (95% CI). To perform multiple measurements on samples with lower ppb-level 

W concentrations, up to ten powder aliquots per sample were dissolved, individually 

passed through our separation procedure, and individually measured. During the 

course of measurements, samples were always bracketed by a reference material (W 

NIST SRM 3136). Results for 182W isotope compositions are always reported in the µ 

notation (equivalent to ppm) relative to NIST SRM 3136. 

For W isotope analysis, small isobaric Os interferences on mass 184 and 186 were 

monitored by measuring 188Os. Corrections for Hf and Ta interferences on mass 180 
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were done monitoring 177Hf, 178Hf, and 181Ta. Corrections for isobaric 180Hf always used 

the 177Hf monitor, because erratic 178Hf results have previously been observed (e.g. 

Sprung et al., 2010). Final W cuts had 177Hf/183W ≤ 6*10-5, allowing for accurate 

interference corrections for 180W (Schulz et al., 2013). Mass bias corrections used the 

exponential law (Russell et al., 1978), normalizing either to 186W/184W = 0.92767 

(denoted ´6/4`) (Völkening et al., 1991) or 186W/183W = 1.9859 (denoted (´6/3`). As 

these ratios are both affected by Os interferences, the final mass bias correction for all 

isotope ratios of W is done after first subtracting Os interferences from 186W/184W and 

186W/183W and using their measured ratios for an initial estimate of the mass bias. 

Using two isotope ratios (186W/184W and 186W/183W) for mass bias correction allows to 

check for analytical artifacts, e.g., mass independent fractionation effects (e.g. Shirai 

and Humayun, 2011) or interferences by organic species. In section 5.1 we show, that 

several of our samples are affected by a mass-independent fractionation of the odd 

isotope 183W relative to the even isotopes 182W, 184W, and 186W, as previously 

described by Willbold et al. (2011) and Kruijer et al. (2012). This observation can be 

described by what is predicted for a nuclear field shift (NFS) effect (Cook and 

Schönbächler, 2016). It has recently been demonstrated for MC-ICP-MS 

measurements, that correcting for the instrumental mass bias by using an internal 

normalization to 186W/183W can create analytical artifacts (Kruijer and Kleine, 2018). 

Therefore, we initially make use of the 186W/184W ratio to correct for instrumental mass 

bias. After applying a correction for 183W however, measurements normalized to 6/4 

and 6/3, respectively, agree within uncertainty. Typical deficits of µ 183W after 

normalization to 6/4 were always smaller than -16 ppm. By modifying the dry-down 

protocol during the course of the study (cHNO3 – 30% H2O2) the mass independent 

effects on 183W could be completely removed within typical analytical uncertainty (± 

3ppm).   

Average external reproducibilities achieved for samples are ± 10.9 ppm (2 SD). Given 

that each sample was analyzed 5 – 18 times, this translates to 95% CI from ± 2.7 to ± 

6.8 ppm, on average ± 4.3 ppm. The high accuracy and reproducibility of our analytical 

routine is further demonstrated by repeated measurements (18 sessions) of two in-

house reference materials that were individually passed through our separation 

protocol (historical La Palma basalt “LP1” and a 3455 Ma grey gneiss from the Mtimane 

river, southwest Swaziland, labeled “AGC 351”, Kröner et al., 2014). Despite variable 

procedural yields during separation and analyses at different beam intensities (2.8 – 
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27.2 Volts on 182W), the session averages for µ182W for LP 1 (n = 8) and AGC 351 (n 

= 10), 181 single measurements if taken together, perfectly overlap within their 95% 

CI (+0.3 ± 0.7 ppm and +0.3 ± 0.8 ppm, respectively) and are indistinguishable from 

the NIST reference material (Fig. 1.1). The reproducibility of our two in-house rock 

standards relative to the NIST reference material is given by the 2 SD of the pooled 

average µ182W of 0.3 ppm for all LP 1 and AGC 351 analyses which amounts to ± 2 

ppm. The high level of accuracy of our analytical approach is given by the 

corresponding 95% CI of ±0.5 ppm (n = 18). All single measurements (n = 181) are 

confined by a 2 SD of ±12.1 ppm and give a mean µ182W of +0.1 ppm with a 

corresponding 95% CI of ±0.9 ppm.  

 

1.4 Geological background and samples 

As opposed to many remnants of Paleo- to Mesoarchean terranes, the 3890-3650 Ma 

old IGC (e.g., Nutman et al., 1996; Horie et al., 2010; Næraa et al., 2012) in Southern  

Fig. 1.1: Long-term reproducibility for µ182W (6/4), inferred from the repeated analysis of multiple 
digestions for our in-house rock standards LP1 and AGC 351 reported relative to W NIST SRM 
3136. Small symbols refer to single measurements and larger symbols give the corresponding session 
mean values. Error bars for single measurements and session mean values refer to the internal error 
(2se) and the corresponding 95% CI, respectively. The long-term reproducibility for rock samples with 
variable composition (mafic LP1 and felsic AGC 351) passed through our chemical separation and exhibit 
modern mantle-like 182W isotope composition is given by the 2 SD of the session mean values. With 
proceeding time individual measurements show larger scatter, as samples with low W concentrations 
were run at the end of our study, and internal precision depend on beam intensities 
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West Greenland underwent a less complex tectono-metamorphic history, resulting in 

good preservation potential of primary textural and geochemical features (Moorbath et 

al., 1977; Nutman et al., 1984; Appel et al., 1998; Nutman et al., 1999; Polat et al., 

2002; Polat and Hofmann, 2003; Hoffmann et al., 2014). The IGC was formed by 

several terrane assembly events and is subdivided into the Isukasia and Færingehavn 

terranes (Friend and Nutman, 2005). Volumetrically, the IGC is dominated by 

polyphase TTG gneisses that are intercalated with supracrustal fragments of various 

sizes (Nutman and Friend, 2009), of which the Isua Supracrustal Belt (ISB) is the 

largest (Figs. 1.2 and 1.3). This arcuate association of meta-volcanic and meta-

sedimentary rocks has been suggested to consist of two unrelated packages, an older 

ca. 3800 Ma outer part, and a younger 3720-3690 Ma inner sequence (Nutman et al., 

1997). These ages are given by two generations of meta-tonalites adjacent to the ISB, 

which form intrusive sheets into the supracrustal assemblage (Nutman et al., 1997; 

Nutman et al., 1999). Therefore, Nutman and Friend (2009) subdivided the Isua region 

into a southern ca. 3800 Ma and a northern ca. 3700 Ma terrane, with a tectonic 

boundary located within the belt.    

We have analyzed the W isotope composition from a variety of representative samples 

from the Isua- and Nuuk region and discuss their W elemental behavior, in order to 

better constrain the geochemical significance of previously reported 182W isotope 

anomalies. For this study, (1) three tholeiitic amphibolites, (2) one TTG, (3) three 

Ameralik dikes, (4) a variety of samples from a mafic-felsic magma mingling 

association within the western limb towards the outer arc of the ISB and (5) various 

types of ultramafic rocks were selected for W isotope composition and concentration 

analysis. Most samples are from the northern and southern belt within the ISB, from 

South of the ISB (Isukasia terrane), and a few samples originate from the southwestern 

coast of the Færingehavn terrane. Figure 1.2 provides a simplified overview of the 

geology of southern west Greenland and the sampling areas. Figures 1.3 a-c show 

detailed sample localities.    
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(1) Sample 2000-10, previously described in studies by Polat and Hofmann (2003) and 

Hoffmann et al. (2011), was collected in the SW part of the ISB and is representative 

for ~3720 Ma amphibolites (Nutman and Friend, 2009) from the northern terrane. 

Samples 10-17 and 10-37 (Fig. 1.3b), described by van de Löcht et al. (2018b) were 

sampled from amphibolite enclaves within the ca. 3800 Ma gneiss area south of the 

ISB. The emplacement of their protoliths is dated to ≥ 3800 Ma, as inferred from 

crosscutting relationships with younger tonalite dikes (Nutman et al., 1996; Nutman et 

al., 2002; Crowley, 2003).   

(2) Sample 10-38 (Fig. 1.3b) is a homogeneous TTG from a low-strain domain 

southwest of the ISB and representative for the TTG suite of the IGC. Similar TTGs 

nearby the sample locality have been dated at 3806 Ma (Nutman et al., 1999).  For 

more details of this sample see Hoffmann et al. (2014).   

Fig. 1.2: Simplified geological map of southern west 
Greenland Sample localities are indicated by black boxes 
and shown in detail in Figs. 1.3 a-c. Taken from van de Löcht 
et al. (2018a) and modified after Naeraa et al. (2012). 
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Fig. 1.3: Simplified geological maps of (a) the western limb of the Isua Supracrustal Belt ISB, (b) 
the area South of the Isua Supracrustal Belt SOISB, and (c) the Narssaq Ultramafic Body NUB, 
showing the sample localities of this study. Sample JEH-SG-03 is located approx. 1km south of Fig. 
1.3a. There is no GPS data available for sample 2000-10. Map (a) taken from Szilas et al. (2015) and 
modified after Nutman and Friend (2009), map (b) taken from Hoffmann et al. (2014) and modified after 
Nutman et al. (2009), (c) taken from van de Löcht et al. (2018a) and modified after Nutman et al. (2007). 
Age data in (b) and (c) are compiled from Amelin et al. (2010) and Nutman et al. (1996, 1999, 2007, 2009). 
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(3) Samples from the Ameralik dike swarm postdate all rock types of the ISB and the 

adjacent Itsaq gneisses. As revealed by U-Pb zircon ages the emplacement of the 

basic dikes span a time period of ca. 250 Ma (3500 Ma to 3260 Ma, Nutman et al., 

2004) and show a diversity in composition, ranging from noritic, doleritic to ultramafic. 

Noritic dikes mainly intrude the IGC and show trace element systematics that suggest 

an origin from mantle sources that had assimilated crust-like material (Gill and 

Bridgwater, 1979; Chadwick, 1981) or underwent metasomatism by fluid phases that 

were released from tonalitic host rocks (Rizo et al., 2016b).  Rizo et al., (2016b) 

analyzed one doleritic dike from within the ISB (00-015) and one noritic dike intruding 

the gneisses north of the belt (AM019). They found positive 182W isotope anomalies for 

both types of Ameralik dikes, whereas Dale et al., (2017) could not confirm the 

presence of 182W excesses in doleritic dikes.  The heterogeneous 182W isotope 

composition likely reflects the diverse petrogenesis of the dike swarm as indicated by 

their variable composition and intrusion ages (Gill and Bridgwater, 1979; Chadwick, 

1981; Nutman et al., 2004). We took a comparative approach and analyzed three 

doleritic Ameralik dikes for cross reference (Fig. 1.3a). All three samples have similar 

major and trace element compositions when compared to the metadolerite dikes that 

were analyzed by Rizo et al. (2016b) and Dale et al. (2017) (see Fig. A1, appendix A) 

and show retrograde greenschist facies mineral assemblages that are dominated by 

amphibole and plagioclase. Samples JEH-2007-04 and JEH-SG-03 are medium-

grained dikes, which  intrude the adjacent orthogneisses of the IGC in the northern and 

southern periphery of the belt, respectively. Sample 10-41 is a medium-grained dike 

with that was collected within the ISB.   

(4) We analyzed various rock types from a newly discovered low deformation outcrop 

within the outer periphery of the western limb of the ISB, where mafic-felsic magma 

mingling textures were observed (Fig. 1.3a). The outcrop and all rock samples have 

been described in Boyd (2018). The authors interpret this suite as a well-preserved 

mafic-felsic magma mingling-zone, indicating that mafic mantle melts and crustal melts 

were coeval during the formation of the ISB. Moreover, the Boyd (2018) study 

demonstrates that there is a petrogenetic relationship to other felsic rocks in the ISB, 

and that felsic rocks from the magma mingling association are analogues to the 

protoliths of the prominent central massive felsic unit, which occurs along the central 

part of the ISB. This unit has yielded U-Pb zircon ages constraining the minimum age 

of  the ISB as ca. 3800 Ma (e.g. Baadsgaard, 1976; Michard-Vitrac et al., 1977; 
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Baadsgaard et al., 1984). Samples that were investigated in this study are three 

granular felsic rocks (74B felsic, 74C felsic, and 75), three mafic enclaves (72, 73, and 

74C mafic) and one leucosome at a mafic-felsic contact (74C white) that is interpreted 

as an anatectic melt that formed due to reheating associated with mafic melt intrusion 

(Boyd, 2018). Samples from the magma mingling association were differently affected 

by secondary W enrichment, and therefore could be of great significance for assessing 

the impact of elemental W redistribution in rocks from the Isua region. 

(5) Samples S30, S31, and S33 are dunites  interpreted to be 3710 to 3720 Ma old 

(Friend and Nutman, 2010) from the northwestern part of the ISB (Fig. 1.3a). These 

ultramafic rocks were sampled from a locality referred to as “lens A” (after Friend and 

Nutman, 2011) one of two large ultramafic slivers that are associated with tholeiitic 

basalts and boninite-like volcanic rocks in the ISB. Szilas et al. (2015) have shown that 

the protoliths of these ultramafic rocks rather represent igneous cumulates of the local 

subduction-related volcanic rocks than tectonic slivers of subarc mantle, as suggested 

by previous studies (e.g. Friend and Nutman, 2011). For samples S31 and S33 Rizo 

et al. (2016b) already performed W isotope measurements on the same sample 

powder splits and only found slightly enriched µ182W values that could not be resolved 

from the present day terrestrial W isotope composition (µ182W = 0). Beside these 

dunitic samples, there are only three other Archean samples from the Isua region not 

showing an anomalous W isotope composition (cf. Rizo et al., 2016b; Dale et al., 2017). 

In addition to the samples descibed above, we analyzed ultramafic rocks from (A) the 

> 3800 Ma (Nutman et al., 2007) Narssaq ultramafic body (NUB), which is located in 

the southwest of the Færingehavn terrane (Figs. 2 and 3b), and (B) from ca. 3800 Ma 

old (Nutman et al., 1996; Friend et al., 2002) enclaves 15 km south of the ISB (SOISB), 

which is part of the Isukasia terrane (Figs. 1.2 and 1.3b). As recently described by van 

de Löcht et al. (2018a), these dunites and harzburgites can be divided into two 

subgroups, based on their Iridium-like Platinum Group Elements (IPGE = Os, Ir, and 

Ru), Platinum-like Platinum Group Elements (PPGE = Pt and Pd), and Re contents. 

Group 1 peridotites share similarities with residual upper mantle peridotites (strong 

depletion of PPGEs relative to IPGEs), whereas group 2 peridotites underwent 

metasomatic enrichment processes (higher PPGE concentrations). Both groups 

partially preserved their primary mineralogy. According to van de Löcht et al. (2018a), 

the HSE systematics of group 1 peridotites demonstrate that the Isua mantle was 
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virtually fully replenished by a putative late veneer prior to the time of their formation. 

Our study includes both group 1 and group 2 peridotites.   

 

1.5 Results 

The measured elemental concentrations for W, Th & U together with average 182W 

isotope compositions are given in Table 1.3, other high precision HFSE and 

conventional trace element data are given in Table A1 (appendix A). Tungsten 

concentrations are highly variable ranging from 0.0473 to 5.05 µg/g. With reference to 

the canonical W/Th range for MORB (0.09 to 0.24) and OIB (0.04 to 0.23) (König et 

al., 2011), most of the samples show highly elevated W/Th ratios of up to 160, which 

is even higher than W/Th ratios found in arc lavas (W/Th up to 1.9, König et al., 2011). 

In particular, the ultramafic samples from SOISB, NUB and lens A from the western 

limb of the ISB show the strongest W enrichments.  One mafic sample from the magma 

mingling association (73 mafic), all felsic samples and the amphibolites from the ISB 

and SOISB have preserved near canonical W/Th. Tungsten whole-rock concentrations 

do not show a correlation with Zr abundances as it would be expected for magmatic 

systems (Fig. 1.4a), arguing for secondary disturbance. As shown in Figure 1.5a and 

1.5b, ratios of W/Th display clear negative correlations with Th contents and less 

pronounced positive co-variations with W contents. In this regard, elevated W/Th ratios 

may either be explained by secondary W enrichment or by the variable depletions of 

Th. In section 1.6.2 we further address this issue and combine W and Th systematics 

with those of Ta and Zr, as these elements show markedly lower solubilities than W in 

hydrothermal environments (McCulloch and Gamble, 1991; Pearce and Peate, 1995; 

Keppler, 1996; Münker et al., 2004; Bali et al., 2012).  

 

 

 

 

 



Chapter 1 

 

44 
 

Table 1.4 lists measured W isotope ratios that were corrected for instrumental mass 

bias by applying the exponential law, either involving the measured 186W/184W (6/4) or 

186W/183W (6/3). Many samples show significantly different µ182W/184W (6/4) and 

µ182W/183W (6/3) values, usually with larger apparent excesses when 6/3 is used for 

normalization (Fig. 1.6a). Such samples are characterized by negative 183W/184W (6/4) 

(Fig. 1.7), probably indicating a mass-independent deficiency of the odd isotope 183W 

relative to the even isotopes 182W, 184W, and 186W (Cook and Schönbächler, 2016). If 

the NFS effect is corrected the 182W results for both normalization schemes (6/4 and 

6/3) become indistinguishable (Fig. 1.6b, see discussion for details). Below, we always 

quote our 182W isotope compositions using the 6/4 normalization scheme.  

Table 1.3: Measured 182W isotope compositions and concentrations for W, Th, and U obtained 
by high precision measurements. All concentration measurements for W, Th, and U were performed 
by isotope dilution except for samples S30, S31, and S33 from lens A. The W-enrichment factor W/W* 
(W/Thsample/W/Thcanonical) gives the deviation from the max. W/Th ratio observed in unaltered MORB 
glasses (W/Th = 0.24 (König et al., 2011)) . Age data for the lithostratigraphic units are taken from [1] 
Nutman et al. (2004), [2] Baadsgaard et al. (1976), [3] Friend and Nutman, (2010), [4] Nutman and 
Friend (2009), [5] Nutman et al. (1996), [6] Nutman et al. (1999), [7] Nutman et al. (2007). 
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As shown in Table 1.3 and illustrated in Fig. 1.8, all samples from the Isua and Nuuk 

regions are characterized by similarly elevated µ182W values relative to the present-

day mantle, ranging from µ182W +9.5 ± 3.5 ppm to +19.9 ± 4.1 ppm. Figure A2 

(appendix A) also comprises the results for 182W isotope analysis of individual 

digestions. The multiple measurements (n = 5 to 18) for all samples allow for 182W 

isotope measurements at uncertainties typically better than ± 5ppm (95% CI). Even at 

this high level of analytical precision, the results for all analyzed subgroups reveal no 

statistical difference and constitute a mean µ182W of +12.8 ± 1 ppm (95% CI), which is 

in accordance with previous studies (Willbold et al., 2011; Rizo et al., 2016b; Dale et 

al., 2017). Only sample 10 – 27, a peridotite cumulate sample south of the ISB displays 

a significantly higher 182W excess of +19.9 ± 4.1 ppm as compared to the average 

µ182W. Figure A3 (appendix A) provides a supplementary compilation of 182W isotope 

data that combines previous results with our study.  

 

 

 

 

 

Fig. 1.4: Bulk rock W (Fig. 1.4a) and Th (Fig 1.4b) concentrations (µg/g) plotted versus bulk 
rocks Zr contents (µg/g). The absence of a correlation in Fig. 1.4a argues for second stage W 
mobility. Data for other mafic and ultramafic rocks from the Isua region taken from Rizo et al. (2011, 
2012, 2013, 2016b), and Dale et al. (2017). 
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Fig. 1.5: Combined element-concentration and element-ratio diagrams (using W, Th, and Ta) 
for rock samples from this study (blue symbols) and previous studies that report 182W isotope 
systematics for rocks from SW Greenland (grey symbols). Compared to modern mantle-derived 
rocks (MORB and OIB) Th (Fig. 1.5c) and W (Fig. 1.5d) are relatively enriched compared to Ta, 
presumably reflecting their derivation from a subduction-modified mantle source. Beyond this source 
enrichment the elemental W budgets were subject to post-emplacement W redistribution, probably 
during late-stage metamorphism and/or alteration (Fig. 1.5f). As a result W/Th ratios are 
systematically enriched (Fig. 1.5e).   
Data for other mafic and ultramafic rocks from the Isua area were taken from Rizo et al. (2011, 2012, 
2013, 2016b) and Dale et al. (2017). Data for MORB, OIB and Arc fields were taken from König et 
al. (2011 and references therein). 
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Table 1.4: Tungsten isotope composition of Greenland samples and in-house rock standards.  
*These samples have been treated with the strong dry-down procedure involving cHNO3 – 30%H2O2 
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1.6 Discussion 

 

1.6.1 Methodology 

Our newly developed three-stage ion exchange chromatography has the capability to 

separate W from large sample quantities exceeding 1g per column. This is of particular 

importance for high precision W isotope measurements on rocks such as peridotites 

or depleted basalts, where W whole rock concentrations are only in the range of 

several ng/g. Our procedure ensures a robust purification of W from interfering 

elements (basaltic matrix: Hf/W < 10-5, and Ta/W < 10-2) and from elements that exert 

a strong influence on the mass bias behavior of W during mass spectrometry (basaltic 

matrix: Zr/W < 10-4, and Ti/W < 10-3) (cf. Peters et al., 2015). Unlike previously used 

analytical protocols, our method only comprises three column steps, circumvents 

loading in HF media and also avoids repeated dry down steps between individual ion 

exchange columns, which improves absolute column yields, and largely avoids the 

formation of insoluble W-rich compounds. Furthermore, our procedure has the 

advantage to provide matrix-free cuts for elements that are of interest for further 

element and isotope analysis (REEs, Ti, Zr, Nb, Mo, Sn, Hf, Ta).   

 

Fig. 1.6: Measured µ182W (6/4) versus (a) measured µ182W (6/3) and (b) NFS corrected µ182W (6/3). 
After correction for the NFS following Cook and Schönbächler (2016), samples and in-house rock 
standards that show NFS affected µ182W (6/3) (see Fig. 1.7) fall on a 1:1 correlation line (see Fig. 1.7b). 
Strong dry-down (green color coding) refers to a threefold treatment with 80 µl of cHNO3 – 30%H2O2 
at max. 60°C before re-dissolution steps. The weak dry-down procedure (red color coding) made use 
of a single treatment with 1ml 6 M HNO3  - 0.2 M HF : H2O2 (9:1). Error bars are omitted for visual 
clarity, but uncertainties are given in Table 1.4 
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We confirm a mass-independent fractionation effect of the odd isotope 183W from the 

even isotopes 182W, 184W, and 186W, as first suggested by Willbold et al. (2011) and 

Kruijer et al. (2012). Measured 183W/184W values (6/4) for both samples and reference 

materials that passed through the separation procedure reveal strong 183W deficits, 

relative to NIST SRM 3136 (µ183W (6/4) as low as -16.1 ppm, see Table 1.4).This 

observation has been ascribed to a nuclear field shift (NFS) effect that is consistent 

with available nuclear charge radii for W (Angeli, 2004; Cook and Schönbächler, 2016). 

In a µ184W (6/3) - µ182W (6/3) diagram, most measured samples and reference 

materials fall on a line with a slope of ~ 2 (dashed lines in Fig. 1.7), as previously 

described by Kruijer et al. (2012) and predicted for samples that are affected by the 

NFS ((Cook and Schönbächler, 2016), solid line in Fig. 1.7). This correlation allows to 

correct for the NFS by using the measured µ184W (6/3) and µ182W (6/3) values and the 

relation µ182W (6/3)corr = µ182W (6/3)meas – (1.962 x µ184W (6/3)) (Cook and 

Schönbächler, 2016). After correcting for the NFS effect, µ182W (6/3)corr are in good 

agreement with measured µ182W (6/4) values. In a µ182W (6/3)corr - µ182W (6/4) diagram 

samples and reference materials now fall on a 1:1 correlation line (see Fig. 1.6b). 

Reference material AGC 351 seems to be less affected by the NFS effect (see Table 

1.4). This could be explained by its high whole rock W concentration (11.02 µg/g) which 

buffers the NFS effect. However, other samples with high W concentrations in the 

range of 4.26 – 6.36 µg/g (72 mafic, 74C mafic, 10-34) display significant offsets for 

µ183W (6/4) as low as -7.4 ppm (see Table 1.4).  

 

 

Fig. 1.7: Measured µ182W (6/3) and µ184W (6/3) 
for samples and in-house reference 
materials. Including one outlier the measured 
values for our reference materials show a 
correlation (indicated by dashed line) that is 
similar to what has previously been described by 
Kruijer et al., (2012) and predicted for samples 
that are affected by the nuclear field shift (NFS) 
effect (Cook and Schönbächler, 2012, solid line). 
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Before correcting for the NFS effect, the average µ182W (6/3) value for all Isua samples 

is +19.1 ± 2.7 ppm (95% CI). The NFS corrected value of +12.5 ± 1.1 ppm (95% CI) is 

in perfect agreement with the average µ182W (6/4) of +12.8 ± 1.0 ppm (95% CI). It has 

been demonstrated that the observed NFS effect is introduced during the chemical 

separation of W and can be explained best by isotope fractionation during incomplete 

re-dissolution of insoluble compounds that formed during dry-down steps (Willbold et 

al., 2011; Kruijer et al., 2012; Cook and Schönbächler, 2016). We can now confirm 

these conclusions, as stronger NFS effects, as expressed by highly negative µ183W 

(6/4) ratios, tend to be associated with lower procedural yields of the W purification 

process (see Fig. 1.9). To reduce NFS effects, we changed our dry-down procedures 

during the course of our study. The dry-down step between columns II and III as well 

as for the final W cut now involved a threefold treatment with 80 µl of cHNO3 – 

30%H2O2. This threefold dry-down was done at max. 60°C to prevent vigorous 

disproportionation of H2O2, which would increase cross contamination. This 

modification dramatically improved yields and, most importantly, also removed NFS 

effects on measured 183W abundances. Before we applied our new dry-down protocol 

with concentrated HNO3 and H2O2 (strong dry-down), µ183W (6/4) reached negative 

values up to -16.1 ppm when samples were dried down with only 6 M HNO3 – 0.2 M 

HF : H2O2 (weak dry-down, see Fig. 1.10), which is in the range of previous studies 

(Willbold et al., 2011; Dale et al., 2017; Kruijer and Kleine, 2018). By applying our new 

dry-down procedure, we were able to remove the mass independent effects on 183W 

completely within typical analytical uncertainty (± 4.2ppm). Our new dry-down 

procedure allows us to directly employ measured 183W for high-precision 182W isotope 

analysis. This is justified by µ182W (6/3) values for samples and reference materials 

that now overlap within uncertainty with measured µ182W (6/4) values (see table 1.4). 

Average yields after modifying our dry-down procedure were 81% and are thus 

significantly higher than before (60%).   
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Fig. 1.8: High precision µ182W isotope measurements for rocks from southern West 
Greenland (upper panel) and our in-house rock standards (lower panel). Each 
datapoint corresponds to the average for repeated measurements (n) of multiple 
digestions. Uncertainties are given by the corresponding 95% CI. The grey shaded areas 
defined by the rock standards correspond to the 2 SD and 95% CI of the repeated analysis 
of our in-house rock standards LP1 and AGC 351. The grey bar defined by the Greenland 
samples defines the average µ182W for Eoarchean rocks and Paleoarchean Ameralik 
dikes and gives the corresponding 95% CI for all 26 samples (+12.8 ± 1.0 ppm). 
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We can exclude that the extremely high W concentrations found in our samples (in 

particular in ultramafic rocks) are the result of contamination introduced during sample 

preparation with the steel jaw crusher at the University of Cologne. Trace element 

measurements of the jaw crusher at the University of Cologne revealed a concentration 

of 13.14 µg/g W, and 2.42 wt. % Cr: During sample preparation, we usually process at 

least 1 kg of sample. If we assume a whole rock W concentration of 0.5 µg/g and 

attribute higher concentrations (e.g. sample 72 mafic with 4.3 µg/g W) to contamination 

by the jaw crusher (i.e., contamination by a factor of ~9), about 350g of the jaw crusher 

would have been abraded. This amount would shift the Cr whole rock concentration to 

0.85 % (which is not observed) and the blade of the jaw crusher (6.6 kg) would 

completely disappear after 19 runs. Therefore, we argue that W concentrations in the 

jaw crusher material are too low to have an effect on the whole rock W concentrations. 

Moreover, we analyzed the 182W isotope composition of our jaw crusher and found a 

modern mantle like 182W isotope composition of µ182W = 0.9 ± 1.4 ppm (see Fig. A4, 

appendix A). Any samples that were affected by a W contamination would therefore 

lack measurable 182W isotope excesses. In fact, extremely high W concentrations in 

Isua samples were previously reported by Rizo et al. (2016b), who found W 

concentrations up to 3.084 µg/g (3.8 Ga old amphibolite 460219). Tungsten 

concentrations in the range of µg/g were also reported in other 182W isotope studies on 

Archean rocks (Touboul et al., 2014; Willbold et al., 2015; Liu et al., 2016; Puchtel et 

al., 2016a).  

 

 

Fig. 1.9: Measured µ183W (6/4) versus 
procedural yields. Before we applied 
our strong dry-down protocol using 
cHNO3 – 30%H2O2, procedural yields 
were always below 80% and affected by 
the NFS as a function of the yield. This 
dependence is not observed for samples 
that were exposed to the strong dry-
down procedure, even in cases of 
exceptionally low yields. 
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1.6.2 Elemental behavior of W in rocks from the Isua region 

Understanding the origin of 182W isotope anomalies requires samples of which the 

elemental W budget is pristine, i.e., it was solely controlled by silicate crystal-liquid 

partitioning and was not affected by secondary W enrichments. The strong modification 

of W concentrations in samples that underwent alteration or metamorphism has been 

described in detail in studies by König et al. (2008) and König et al. (2011). During 

crystal-liquid fractionation in silicate systems, W behaves highly incompatible, similar 

to Th and U (e.g. Palme and Rammensee, 1981; Adam and Green, 2006; König et al., 

2011). Hence, W/Th ratios in both, fresh OIB and MORB samples, are confined to a 

canonical range between 0.04 and 0.23 (OIB) and between 0.09 and 0.24 (MORB) 

(König et al., 2011; Jenner and O’Neill, 2012). In arc lavas, W/Th ratios can range to 

higher values of up to 1.9 by the selective addition of W-rich subduction components 

(König et al., 2011). The majority of samples analyzed in this study, in particular the 

ultramafic samples from SOISB, NUB and lens A from the western limb of the ISB, 

reveal highly elevated W/Th ratios that fall outside the range for silicate melting as 

described above, in many cases even significantly above values for young arc lavas. 

Samples with unusually high W/Th ratios systematically exhibit lower concentrations 

of Th and higher concentrations of W (Figs. 1.5a and 1.5b) being clearly the result of 

preferential W mobilization during second stage processes. For comparison we 

included previously published data (Rizo et al., 2011; Rizo et al., 2012; Rizo et al., 

2013; Dale et al., 2017) for mafic and ultramafic rock samples from the Isua region, 

which were previously target of 182W isotope measurements (Willbold et al., 2011; Rizo 

et al., 2016b; Dale et al., 2017). Moreover, we grouped our samples in Figs. 1.4 and 

Fig. 1.10: Measured µ182W (6/4) 
versus µ183W (6/4), clearly 
illustrating that our strong dry-down 
procedure is able to remove the 
mass independent effects on 183W 
within typical uncertainty (± 4.2ppm, 
95% CI). Error bars are omitted for 
visual clarity, but uncertainties are 
given in Table 1.4. 
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1.5 (ultramafic, mafic, and intermediate-felsic) to provide a better overview. Generally, 

the literature data for the Isua region display broadly similar elemental W systematics 

as our samples, although these trace element data are of lower accuracy. Trace 

element variation diagrams versus Zr (Fig. 1.4) clearly demonstrate the conservative 

and non-conservative behavior of Th and W, respectively. While Th correlates with 

fertility indicators, such as Zr content (Fig. 1.4b), W does not (Fig. 1.4a). This non-

conservative behavior of W also becomes evident when Th and W concentrations of 

the samples are plotted against Ta contents (Figs. 1.5c and 1.5d). Tantalum is 

regarded as one of the most immobile elements in fluid-dominated regimes (e.g. 

McCulloch and Gamble, 1991; Keppler, 1996; Münker et al., 2004) and displays a 

similar compatibility than W and Th (e.g. König et al., 2011). A comparison of W and 

Th contents with those of Ta can therefore reveal fluid-controlled overprints that 

superimpose magmatic processes. To better illustrate the elemental behavior of W, 

Th, and Ta, we included the arrays defined by MORB, OIB, and arc lavas in Fig. 1.5 

(König et al., 2011 and references therein). In Th-Ta space (Fig. 1.5c), most of the 

samples from SW Greenland fall within the array of modern arc rocks that runs parallel 

to the MORB-OIB arrays at lower Ta concentrations. Such a selective enrichment of 

Th in the vast majority of present-day arc rocks is usually explained by magma-felsic 

crust interaction or by derivation from a subduction-modified mantle source (Pearce 

and Peate, 1995). Indeed, many rocks from Isua have island arc affinities and their 

origin can be plausibly explained by melting metasomatized mantle that has been 

modified in a supra-subduction zone-like setting (Polat et al., 2002; Polat and 

Hofmann, 2003; Nutman et al., 2007; Jenner et al., 2009). The variations in degree of 

melting and subsequent fractional crystallization then define the elevated array at 

constant Th/Ta ratios in Fig. 1.5c. Collectively, the preservation of this Th-Ta array 

provides independent evidence that (1) the inventory of Th and Ta was little affected 

by metamorphism and (2) mafic rocks from the Isua region likely originate from mantle 

sources overprinted by subduction-like processes. 

Opposite to Th-Ta patterns, however, variations in W-Ta space (Fig. 1.5d) provide 

evidence that at least the ultramafic rocks have been affected by an additional process 

that significantly increased W concentrations while Th and Ta remained largely 

unaffected. This effect is more pronounced in the depleted residual mantle peridotites 

(highest W/Th), whereas it is somewhat buffered by higher W concentrations in more 

differentiated rocks (lower W/Th). Importantly, none of the samples from SW 
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Greenland that were subject of 182W isotope measurements displays an elemental W 

budget that has solely been controlled by mantle melting. This is because as W/Th 

and, more important, W/Ta ratios are always systematically higher than observed for 

mantle melts (Fig. 1.5e). This demonstrates the absence of pristine, unmetasomatized 

mantle sources, and a subduction-like modified mantle is the most plausible source for 

metavolcanic rocks from SW Greenland. An additional, post-magmatic W enrichment 

is required for the samples that display extremely modified elemental W budgets (Fig. 

1.5f). The enrichment factor W/W* (W/Thsample/W/Thcanonical) can provide an estimate 

for the secondary W re-distribution subsequent to the source enrichment. This 

enrichment factor is only a minimum estimate as it makes use of the maximum W/Th 

ratio observed for MORB (0.24) (König et al., 2011). Ratios of W/Th in samples from 

this study range up to 160, corresponding to an enrichment factor W/W* of up to 666 

(Table 1.3), much higher than found in Phanerozoic arc lavas. 

In summary, our high precision isotope dilution data for W, Th, U, and Ta can clearly 

demonstrate that W is selectively enriched relative to elements of similar 

incompatibility. Disturbed elemental W patterns in all of our samples, therefore, hamper 

a straightforward linkage of measured W isotope compositions to their respective 

mantle sources. Similar observations were already tentatively described in previous 

studies that investigated W isotope compositions in Archean rocks (Touboul et al., 

2014; Willbold et al., 2015; Liu et al., 2016; Rizo et al., 2016b; Dale et al., 2017).  

Liu et al. (2018) have shown that mineral reactions of W-bearing phases during 

metamorphism and metasomatism may exert a strong influence on the elemental W 

bulk composition, whereby the formation of secondary grain-boundary mineral 

assemblages, the presence of sub-micron W-rich phases, or break-down reactions 

affect elemental W-systematics differently. Therefore, a clear assignment of the 

secondary W enrichment in samples from the Isua region to a distinct geological 

process is difficult. The elemental overprint could either have taken place during initial, 

subduction-related mantle source metasomatism, or during younger metamorphic 

overprint. For Isua, Rizo et al. (2016b) have attributed the secondary W-enrichment to 

late-stage metamorphic events, during which W-rich  fluids overprinted the elemental 

W budgets and may now dominate the W isotope budget. According to their study, 

abundant scheelite mineralizations could tap representative metamorphic fluid 

compositions in Isua. In their 182W isotope study, a scheelite from the southern part of 
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the ISB did indeed reveal an excess of +15.5 ppm ± 3.6 ppm, consistent with excesses 

found in samples that are characterized by secondary W enrichments. However, Rizo 

et al. (2016b) also reported the absence of 182W excesses for samples, in which pristine 

whole rock W concentrations were clearly overprinted. Therefore, Rizo et al. (2016b) 

came to the conclusion that different metasomatic agents must have been present with 

both anomalous and modern mantle-like 182W isotope signatures.  

In further evaluating the 182W isotope record of secondary scheelite, it is important to 

note that these mineralizations are spatially related to mafic-ultramafic rocks and they 

are thought to be the product of post-emplacement alteration within the subseafloor 

crust (Appel, 1986; Appel, 1994). We might also consider the possibility that the 

scheelite mineralizations are linked to one or more of the late Archean metamorphic 

and metasomatic events that caused the 147Sm-143Nd system to re-equilibrate in many 

lithologies in the region at around 2900-2800 Ma during a regional thermal overprint at 

amphibolite-facies conditions (Gruau et al., 1996; Blichert-Toft and Frei, 2001; Frei et 

al., 2002; Polat et al., 2003; Rizo et al., 2011). In this case the W could be derived from 

the regional TTG as well as from the supracrustal assemblages. Several sources of W 

in the scheelite are therefore possible. If W was derived solely from the supracrustal 

assemblages, it was either locally derived from the sea-floor host-rocks, or, 

alternatively, from Archean seawater. In the case of a seawater origin, its W budget 

could be dominated by either submarine volcanic exhalations or by continental 

weathering. In modern seawater W is regarded as being conservative, which means 

that its oceanic residence time exceeds the mixing time of the oceans, the reaction 

with particles is not very strong and its solubility is relatively independent of salinity 

(e.g. Bruland et al., 2014). If submarine volcanic exhalations were the major contributor 

of W in Archean seawater, scheelites would therefore likely reflect the global 182W 

isotope composition of the convective mantle at the time of their formation. If 

continental weathering dominated the W budget of the Archean seawater the isotopic 

composition would provide integrated information about the exposed Archean 

lithosphere. Therefore, 182W isotope anomalies in rocks from southern west Greenland 

that were affected by secondary W re-distribution might be a vestige of average crust-

mantle composition rather than a signature of the ambient mantle. These 

considerations clearly call for a better understanding of the behavior of W in Archean 

seawater and the elemental W cycle during sea-floor alteration or weathering.  
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1.6.3 Significance of uniform 182W isotope compositions 

All measured samples (N=26) reveal positive 182W anomalies between +9.5 and +19.9 

ppm with most samples clustering in their composition from +9.5 ± 5.3 ppm to +15.5 ± 

7.1 ppm. Eoarchean samples from the Isua region (n = 21) display a uniform 182W 

excess of +12.5 ppm (± 1.2 ppm, 95% CI). This is broadly in accordance with previously 

reported 182W isotope anomalies for Eo- to Paleoarchean samples from the Isua region 

(Willbold et al., 2011; Rizo et al., 2016b; Dale et al., 2017). All three Paleoarchean 

Ameralik dikes display similar 182W isotope excesses and yielded a mean µ 182W of + 

13.9 ppm (± 1.8 ppm, 2 SD), confirming the results from Rizo et al. (2016b). Our 

multiple measurements for samples S30, S31, and S33 from lens A reveal uniform 

excesses for 182W between +10.1 and +15.2 ppm which overlap within uncertainty. 

These results stand in marked contrast to those of Rizo et al. (2016b), who performed 

measurements on the same powder splits of samples S31 and S33. They only found 

minor excesses that could not be resolved from the present-day mantle composition. 

Our data for Lens A peridotites from Rizo et al. (2016b) and this study does not overlap 

within uncertainty. However, our multiple measurements for our Lens A samples (N ≥ 

14) have a significant statistical power (95% CI ≤ ±4 ppm) and yield consistent results 

with other samples that were affected by secondary W enrichment.  

There is no correlation between 182W isotope compositions and W/Th ratios (Fig. 1.11). 

The 182W isotope composition of samples that show a selective W enrichment are 

strongly dominated by their contaminant. This feature can be illustrated by a simple 

two endmember mixing-model (see dashed curves in Fig. 1.11). Hypothetically, one 

can assume that the elemental W budget of a sample initially characterized by modern 

mantle-like 182W isotope composition would be contaminated by an agent with excess 

182W of +15.5 ppm. In such a model, an increase in W concentration by 100% would 

raise the µ182W to +7.7 ppm. Therefore, when considering the average uncertainty for 

our multiple 182W measurements (± 4.3 ppm, 95% CI), samples with a W/W* of only 2 

would already be analytically indistinguishable from the µ182W of the metasomatizing 

agent. Hence, the possibility cannot be ruled out that samples with elevated W/Th 

ratios had modern mantle-like, or even lower 182W isotope composition before they 

were affected by secondary W enrichment. Alternatively, a homogeneous 182W isotope 

composition could already have prevailed prior to elemental W disturbance, i.e., the 
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two mixing endmembers both carried the 182W excess. This scenario is very plausible, 

as samples with canonical W/Th ratios show no discernible variations in their W isotope 

composition, when compared to samples that are strongly enriched in W (Fig. 1.11). 

 

The uniform 182W excesses found here for rocks from the Isua region calls for an 

inspection of previous data, based on which a heterogeneity of 182W isotope excesses 

was claimed. Disregarding the controversial ultramafic rock samples S31 & S33 from 

lens A, the presence of heterogeneous 182W sources appears to be indicated by 3.7 

Ga amphibolites with µ182W ranging from +5.4 to +21.3 ppm (Rizo et al., 2016b). Other 

rocks with modern mantle-like 182W isotope compositions include a 3.8 Ga amphibolite 

Fig. 1.11: µ182W (6/4) versus W/Th ratios for samples analyzed in this study. Error bars 
correspond to the 95% CI for multiple measurements. High W/Th are indicative of secondary W-
enrichment. There is no correlation between µ182W and W/Th ratios, Also included is a scheelite 
that is representative for the W isotope composition of local metasomatic agents (Rizo et al., 2016b). 
These metasomatic agents might account for the disturbed elemental W budgets and the uniform 
182W isotope composition in rocks from the Isua- and Nuuk regions. The primary W isotope 
composition of samples that show a selective W enrichment remains ambiguous (see text for 
discussion).   
Dashed lines indicate the range of 182W isotope composition expected for a two endmember mixing-
model between modern mantle-like 182W isotope composition and a metasomatic agent carrying a 
µ182W of +15.5 ppm.   
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(Rizo et al., 2016b) and a Paleaoarchean Ameralik dike (Dale et al., 2017). However, 

the modern mantle-like µ182W of +5.4 ± 7.2 ppm for the 3.7 Ga amphibolite 00-008 

(Rizo et al., 2016b) also overlaps with our proposed average for rocks from the Isua 

region (+12.8 ± 1.0 ppm). Likewise, the 3.8 Ga amphibolite (sample 460217 of Rizo et 

al., 2016b) and the Paleoproterozoic Ameralik dike (sample 242774 of Dale et al., 

2017) are only barely resolvable from our average (+3.7 ± 6.9 ppm and +5 ± 6ppm, 

respectively) and overlap within uncertainty with 3.8 Ga amphibolites and Ameralik 

dikes measured in our study. This clearly demonstrates that the previously reported 

heterogeneity of 182W isotope compositions in rocks from the Isua area are most likely 

only a result of a larger scatter in previously published datasets.   

Based on 142Nd anomalies, it has been suggested, that primordial heterogeneities in 

the Isua mantle progressively disappeared from the Eo– to the Paleoarchean, between 

~ 3.7-3.8 Ga and 3.4 Ga (Bennett et al., 2007; Saji et al., 2018) and diminish between 

3.4 Ga and 3.3 Ga (Rizo et al., 2012; Rizo et al., 2013). Unfortunately, 3.3 Ga old 

amphibolites that are the oldest rocks in the region not showing resolvable 142Nd 

excesses (Rizo et al., 2013) exhibit disturbed elemental W systematics (cf. Rizo et al., 

2013; Rizo et al., 2016b) and are still characterized by positive 182W excesses (Rizo et 

al., 2016b). So, in summary, there is presently no sufficient evidence for decreasing 

182W isotope excesses with age in rocks from the Isua region, as shown for 142Nd. We 

conclude that the widespread 182W excess in rocks from the Isua region, which is 

independent of W enrichment, can be regarded as an intrinsic feature of Eoarchean 

and possibly younger units. This finding calls for high precision 182W isotope 

investigations on younger (i.e., < 3.3 Ga old) rocks from the Isua region with 

undisturbed elemental W systematics.  

 

1.6.4 Significance of the 182W and W/Th signatures in mantle-like peridotites 

The mantle-like peridotites from the Isukasia and Færingehavn terranes (Friend et al.,  

2002; Bennett et al., 2002; van de Löcht et al., 2018a) provide a unique opportunity to 

directly combine the information from both 182W isotope compositions and HSE 

systematics. It has been previously shown that these mantle-like peridotites from the 

Isukasia and Færingehavn terranes display the full inventory of HSE and chondritic Os 

isotope compositions (Bennett et al., 2002; Friend et al., 2002; van de Löcht et al., 

2018a). Previous estimates on HSE abundances in the mantle sources for rocks from 
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Isua were only indirect, as they were based on compositions of metabasalts (Rizo et 

al., 2016b; Creech et al., 2017; Dale et al., 2017). Our mantle-like peridotites can now 

provide direct information on HSE systematics, which avoids uncertainties induced by 

extrapolating back from the metabasalts. In the original study of van de Löcht et al. ( 

2018a), two groups of peridotites were discriminated, with group 1 peridotites 

representing compositions depleted in PPGE and group 2 peridotites representing 

metasomatized composition replenished in PPGE. Importantly, both group 1 and 2 

peridotites described by van de Löcht et al. (2018a) show indistinguishable excesses 

for 182W that also overlap those of other mafic rocks from the Isua region (between 

+10.9 and +15.5 ppm). However, both groups exhibit manifold W enrichments with 

W/W* ranging from 7.12 to 666. This feature illustrates that the records of 182W and 

HSE are clearly decoupled in these rocks. The excesses in 182W in the peridotites may 

therefore be inherited from the surrounding lithologies, mainly TTGs and amphibolites 

(e.g. Nutman and Friend, 2009).  

  

1.6.5 Origin of 182W isotope anomalies in SW Greenland 

Although we have shown above that HSE and 182W isotope systematics are clearly 

decoupled in the mantle-like peridotites, the study by van de Löcht et al. (2018a) 

reveals that the ambient mantle in the Isua region was nearly fully replenished with 

HSE. As for modern mantle peridotites, however, the scatter of IPGEs (Os-Ir) in the 

Greenland peridotites allows for a deficit in HSE of up to 40% to be accommodated 

within this scatter. There are other estimates on the contribution of the late veneer in 

the Isua region (Rizo et al., 2016b; Creech et al., 2017; Dale et al., 2017) that are 

substantially lower, but overlap with the lower bound of the estimate by van de Löcht 

et al. (2018a). However, unlike in the van de Löcht et al. (2018a) study, these previous 

estimates are based on extrapolations from mafic rocks or ultramafic suites that are 

definitively not mantle peridotites (cf. Szilas et al., 2015) and therefore have an even 

larger uncertainty. Likewise, propagated uncertainties of the primitive upper mantle 

abundances of HSE (Becker et al., 2006) and for rock types that are taken for reference 

(e.g., modern dunites and harzburgites, Becker and Dale, 2015) need to be 

considered. Hence, it cannot unambiguously be ruled out that somewhat less than 

100% of the late veneer was indeed present in the ambient Eoarchean mantle at Isua. 

Consequently, it cannot be excluded, that small proportions of the late veneer were 
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missing in the Archean Isua mantle and thereby part of the 182W excess could be 

explained this way. However, due to the complete overlap in PGE concentrations 

between the Isua peridotites and Phanerozoic peridotites, the extent of this contribution 

can only be very small, which limits missing late veneer effects on 182W isotope 

excesses in the Isua region. Even if the lower estimates for late veneer contribution to 

the Isua mantle are taken into consideration (Creech et al., 2017; Dale et al., 2017) the 

excess of 12.8 ppm 182W cannot be explained by the incomplete addition of material 

with bulk carbonaceous chondritic composition (Fig. 1.12). The maximum excess 

expected in µ182W for a mantle that is missing 50% of a chondritic late veneer (with W 

concentrations up to 200 ng/g and a 182W deficit of -190ppm) would not exceed +7.5 

ppm. To account for the relatively high 182W isotope excess found in Isua rocks that 

evidently formed from mantle sources rich in HSEs, the late veneer must have had a 

rather extreme composition with a significant portion of iron meteorites with high W 

concentrations and even larger 182W deficits than chondrites (Dale et al., 2017).  

Instead of simple missing late veneer models that are clearly not plausible, formation 

of the 182W excess by silicate differentiation in an early depleted reservoir appears to 

be more plausible. This putative depletion event must have occurred within the lifetime 

of 182Hf (i.e., during the first ca. 60 Myrs after solar system evolution). Such an early 

silicate differentiation event is also supported by rather uniform 142Nd excesses found 

in Eoarchean and old Paleoarchean (>3.4 Ga old) rocks from the Isua region (Caro et 

al., 2003; Boyet and Carlson, 2006; Caro et al., 2006; Bennett et al., 2007; Rizo et al., 

2011; Rizo et al., 2012; Rizo et al., 2013; Rizo et al., 2016b; Saji et al., 2018) and by 

the fact that elevated initial εHf values in some Isua rocks are in support of a depleted 

Hadean mantle reservoir (Hoffmann et al., 2010). Typically, the short-lived 146Sm – 

142Nd (half-life between 68 and 103 Ma, Meissner et al., 1987; Kinoshita et al., 2012) 

and 182Hf – 182W (half-life 8.9 Ma,  Vockenhuber et al., 2004) should be coupled during 

early silicate differentiation as in both cases the parent isotope is more compatible than 

the daughter isotope. Indeed, Bennett et al. (2007) calculated a 142Nd-143Nd model age 

of >4.50 Ga based on Nd isotopes, in line with 182W considerations. A decoupling of 

142Nd-182W patterns, however, would be expected for silicate differentiation events 

younger than 60 Myrs after solar system formation, when 182Hf was extinct, but 146Sm 

was not. 
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When looking at a recent compilation of 182W and 142Nd data (Rizo et al., 2016b) it 

becomes obvious, that samples older than 3.4 Ga exhibit coupled excesses in both 

isotopes, once the typical 182W excess of ca. +12 ppm is used for samples S31 and 

S33 (this study) and the 3.8 Ga old amphibolite analyzed by Rizo et al. (2016b). A 

decoupling between 142Nd and 182W patterns is observed for rocks younger than 3.4 

Ga (Rizo et al., 2016b). This can be explained twofold. First, these rocks may originate 

from mantle sources that underwent differentiation after 182Hf became extinct. 

Secondly, the strongly disturbed elemental W systematics in many lithostratigraphic 

units may mirror W redistribution that might have homogenized the 182W but not the 

142Nd isotopic patterns. For 142Nd, a recent study (Saji et al., 2018) now demonstrated 

Fig. 1.12: Model calculation illustrating the evolution of the 182W isotope composition of the 
BSE as a function of late veneer contribution during the final stages of Earths accretion. The 
relative late veneer addition reports the fraction of the mass that was added to the mantle (0.5 mass-
% of the present-day mantle) after core formation. The evolution lines give the µ182W of the BSE 
after admixing of different proportions of late veneer material with bulk carbonaceous chondritic 
composition, i.e. µ182W = -190 (Kleine et al., 2002; Kleine et al., 2004) and estimated chondritic W 
concentrations that range from ~100 to 200 ppb (Wasson and Kallemeyn, 1988; Anders and 
Grevesse, 1989; Kleine et al., 2004). An updated estimate for the composition of the ambient mantle 
in the Isua region is illustrated by the blue box, being defined by the 182W isotope composition 
reported in this study, and the range of late veneer contributions to the Isua region ambient mantle, 
as previously estimated by other studies ((Rizo et al., 2016b; Creech et al., 2017; Dale et al., 2017; 
van de Löcht et al., 2018a). 
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that anomalies decreased from the Eo – to Paleoarchean rocks and began to diminish 

between 3.4 Ga and 3.3 Ga (Rizo et al., 2012; Rizo et al., 2013). Correspondingly, a 

decrease of 182W excesses in these rocks (Ameralik dikes) would be expected, but this 

is not evident from our data for Ameralik dikes. As one explanation, the preservation 

of an evolution trend for 182W in rocks from southern west Greenland may have been 

obscured by second stage alteration, resulting in a pervasive homogenization of the 

182W isotope signatures in Eoarchean and Paleoarchean rocks. Even though the REE 

are considered to be largely immobile during alteration (Ludden et al., 1982; Arndt, 

1994), modeling calculations by Rosing (1990) and geochemical studies of 

metamorphic systems (e.g. Marshall and Futa, 1991; Frost and Frost, 1995) 

demonstrated that metasomatism can cause REE mobility and may therefore also 

have an impact on the Sm-Nd decay systems. The susceptibility of the Sm-Nd system 

to secondary disturbances has also been demonstrated for poly-metamorphic rock 

assemblages from the Isua area (e.g. Gruau et al., 1996; Blichert-Toft et al., 1999; 

Polat et al., 2003). In contrast, it has been demonstrated by Polat et al. (2002), and 

Polat and Hofmann (2003), that the REE in some of the rocks from the ISB were not 

significantly disturbed by alteration. Accordingly, subsequent 142Nd studies on rocks 

from the Isua area combined their results with 147Sm-143Nd systematics to assess the 

possible re-equilibration of the radiogenic 142Nd-143Nd budgets (Caro et al., 2006; Rizo 

et al., 2011; Rizo et al., 2012) and to demonstrate that in spite of open system behavior 

ε143Nd and µ142Nd values do decrease similarly with time (Rizo et al., 2013).As positive 

182W isotope anomalies were found in our study in 3.7 - 3.8 Ga old rocks with canonical 

W/Th ratios, it can be confidentially assumed that the 182W excess was ubiquitous in 

the Eoarchean units of the Isua region, as previously demonstrated for 142Nd (Saji et 

al., 2018). This is less certain for the Paleoarchean units, and future W isotope 

investigations on samples with near canonical W/Th are required to evaluate this issue 

further. In summary, there now appears to be growing evidence, that the 182W isotope 

excesses in the ambient Isua mantle is to a large extent a vestige of early silicate 

differentiation, particularly when considering the coupling with 142Nd excesses and the 

PGE systematics in 3.8 Ga old mantle- like peridotites.  
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1.7 Conclusion 

Our study presents a high precision dataset combining 182W isotope measurements 

and elemental W, Th, U, Ta systematics obtained from isotope dilution measurements 

for several lithostratigraphic units from the Eoarchean Isukasia and Færingehavn 

terranes and for the Paleoarchean Ameralik dikes. The dataset also includes samples 

with W abundances in the lower ppb range, that now could be analyzed following the 

development of a new ion exchange separation scheme for gram-sized samples. This 

separation procedure allows for high precision 182W isotope measurements with 

uncertainties typically better than ± 5 ppm (95% CI, n > 5). Factors that particularly 

affect the accuracy of high precision 182W isotope measurements are mass 

independent fractionation effects during chemical separation, such as nuclear field shift 

(NFS) effects for 183W. We can circumvent this analytical artifact by applying a new ion 

exchange protocol also involving modified dry-down procedures prior to re-dissolution 

during the chemical separation and immediately after final W purification. This now 

allows involving 183W in order to correct for the instrumental mass bias by using an 

internal normalization to 186W/183W. As demonstrated by Kruijer and Kleine (2018) this 

can be important for high precision 182W isotope measurements by NTIMS when 183W 

is used for oxygen fractionation correction (Touboul and Walker, 2012).   

Our study reveals that 182W isotope excesses amongst rocks from the Isua region 

display a homogenous µ182W composition of +12.8 ± 1ppm (95% CI). The magnitude 

of this excess is in line with previous studies (Willbold et al., 2011; Rizo et al., 2016b; 

Dale et al., 2017). The ubiquitous 182W isotope excesses are most plausibly explained 

by the redistribution of W, as shown by non-canonical W-Th and W-Ta in most 

samples. Importantly, rocks in which elevated W abundances were mainly controlled 

by source enrichment also carry the characteristic 182W excess, now suggesting that 

the Eoarchean ambient mantle in SW Greenland originally carried the 182W excess.  

Amongst the units analyzed here for the first time are mantle-like peridotite enclaves 

from the region south of the ISB that exhibit HSE patterns similar to Phanerozoic 

peridotites but they still carry the characteristic 182W excess. Based on combined trace 

element and isotope information, HSE and 182W isotope systematics are clearly 

decoupled in these peridotites. Even within uncertainties, their HSE systematics 

illustrate that missing late veneer additions are unlikely to be the only cause of the 182W 

excesses in Isua rocks. Rather, the formation of an early silicate reservoir by >4.50 Ga 
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is a more plausible explanation, as previously suggested by 142Nd studies in the Isua 

region (Boyet et al., 2003; Caro et al., 2003; Boyet and Carlson, 2006; Caro et al., 

2006; Bennett et al., 2007; Rizo et al., 2011; Rizo et al., 2012; Rizo et al., 2013; Rizo 

et al., 2016b; Saji et al., 2018) and also by highly radiogenic initial εHf values in igneous 

rocks from SW Greenland (Hoffmann et al., 2010). 
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Chapter 2 

 

2 Convective isolation of Hadean mantle reservoirs 

through Archean time 

 

2.1 Abstract  

Although Earth is a convecting planet with active plate tectonics, ancient mantle 

reservoirs that formed within the first hundred million years of Earth’s history (Hadean 

Eon) appear to have been preserved through geologic time. Evidence for this is based 

on small anomalies of isotopes such as 182W, 142Nd and 129Xe that are decay products 

of short-lived nuclide systems which were together only active during the first ca. 100 

million years of Earth’s history. Studies of such short-lived isotopes have typically 

focused on geological units with a limited age range and therefore only provide 

snapshots of regional mantle heterogeneities. Here we present for the first time a 

dataset for short-lived 182Hf-182W (half life = 9 million years) in a rock suite that covers 

a longer geological record and that provides a better understanding of timescales of 

convective homogenization in Earth’s early mantle. Our study focuses on rocks from 

the Pilbara Craton, Western Australia that preserve a unique geological archive 

covering 800 million years of Archean history. Pristine 182W signatures are only 

preserved in unaltered samples with near canonical W/Th (0.07-0.26). Early 

Paleoarchean, juvenile, igneous rocks from the East Pilbara Terrane display a uniform 

pristine µ182W excess of 12.6 ± 1.4 ppm. From ca. 3.3 billion years onwards, the pristine 

182W signatures progressively vanish and are only preserved in younger igneous rocks 

of the craton that tap stabilized ancient lithosphere. Given that the anomalous 182W 

signature must have formed by ca. 4.5 billion years, the mantle domain that was tapped 

by magmatism in the Pilbara Craton must have been convectively isolated for nearly 

1.2 billion years. This finding puts lower bounds on timescale estimates for convective 

homogenization in early Earth’s interior and on the widespread emergence of plate 

tectonics that are important input parameters in many physical models. 

 



Chapter 2 

 

67 
 

2.2 Introduction 

Among the terrestrial planets, Earth is unique in that plate tectonic processes efficiently 

mix and homogenize its silicate mantle. Surprisingly, however, recent geochemical 

studies have revealed that both Archean and Phanerozoic mantle reservoirs still carry 

primordial geochemical signatures, thus escaping efficient convective homogenization 

as also predicted by geodynamic models (Labrosse et al., 2007; Ballmer et al., 2017). 

The main evidence for such ancient geochemical heterogeneities stems from noble 

gas systematics (Craig and Lupton, 1976) and from short-lived nuclide decay-series 

that became extinct after the Hadean eon (>4.0 Ga) (Bennett et al., 2007; Willbold et 

al., 2011). For instance, the relative abundance of daughter isotopes from short-lived 

nuclide-series such as 142Nd and 182W show significant variations in ancient rocks 

when compared to the Earth’s modern mantle composition (Bennett et al., 2007; 

Willbold et al., 2011). From these short-lived isotope systems, the 182Hf – 182W decay 

system has proven particularly useful in constraining the timing of planetary core 

formation (Kleine et al., 2002), timescales of late accretion, and silicate differentiation 

(Kruijer et al., 2015; Touboul et al., 2015).  

There are two competing explanations for the origin of 182W isotope anomalies found 

in the terrestrial rock record, arising from the markedly different geochemical behavior 

of Hf and W during both core formation and silicate differentiation in planetary bodies. 

As primitive meteorites exhibit strong 182W isotope deficits (µ182W = -190, Kleine et al., 

(2002)), the observation of positive anomalies in Eoarchean rocks was interpreted as 

evidence that these rocks lacked a late veneer component (Willbold et al., 2011). 

Conversely, the presence of late accreted material was inferred to explain the elevated 

abundances of highly siderophile elements (HSE) in Earth’s modern silicate mantle 

(Chou, 1978). However, Archean rocks with apparent pre-late veneer like 182W isotope 

excesses were shown to display HSE concentrations that are indistinguishable from 

modern mantle abundances (Touboul et al., 2012), which is difficult to reconcile with 

the missing late veneer hypothesis. An alternative suggestion is that early silicate 

differentiation during the lifetime of 182Hf might have caused the formation of mantle 

reservoirs with anomalous 182W signatures (Touboul et al., 2012; Rizo et al., 2016b). 

In addition, recent studies have revealed variable 182W isotope deficits in the mantle 

plume sources of ocean island basalts (OIBs, Mundl et al., (2017)). In line with noble 

gas systematics and seismic properties of such deep-rooted mantle plumes, these 

182W anomalies have been taken as evidence for the presence of mantle domains that 
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have been convectively isolated since Earth’s earliest history (Mundl et al., 2017). This 

requires interpreting the temporal evolution of the terrestrial 182W isotope composition 

as a bimodal distribution, with increasing homogenization via mantle convection 

through geologic time. 

 Surprisingly few studies have assessed the 182W record of lithostratigraphic 

successions that span a relatively long time frame of Archean geodynamic evolution. 

Rather, most studies have only provided snapshots within the 182W isotope evolution 

of individual Archean cratons (see method section). In order to allow for a more 

comprehensive understanding of Archean geodynamic evolution, studies are required 

to assess the 182W isotope evolution of a particular region over a long time period. An 

apparently successful example of this approach is from the Acasta Gneiss Complex 

(AGC) of Northern Canada, where 182W excesses appear to diminish throughout the 

Eoarchean (Willbold et al., 2015). However, it was later proposed that some of this 

variability may result from metamorphic overprint of primordial W isotope signatures 

(Reimink et al., 2018). Similar observations were made for rocks from the Isua region 

(southern W-Greenland) that span an age range from 3.8 – 3.4 Ga. These rocks show 

uniform 182W excesses but decreasing 142Nd anomalies through time in the same 

lithostratigraphic successions (Rizo et al., 2016b; Tusch et al., 2019), suggesting that 

an original decrease in 182W may have been obscured by secondary W redistribution 

during metamorphism (Tusch et al., 2019), as also shown for other Archean rocks from 

the North Atlantic Craton (Liu et al., 2016) and the Superior Province (Touboul et al., 

2014). These examples illustrate that robust information on the 182W isotope evolution 

of the Archean mantle with time is scarce and often ambiguous due to secondary 

disturbance. In fact, only 16 percent of all available samples previously analyzed for 

182W display pristine W abundances (see method section).  

 

2.3 Geological background and samples 

Here we present for the first time a nearly continuous 182W isotope record for an 

Archean craton that spans an age range of 800 Ma, from the Paleo- to the Neoarchean. 

We investigated the 182W isotope evolution of the exceptionally well preserved 3.58 – 

2.76 Ga old Pilbara Craton (Western Australia). Since much of this craton is only little 

affected by metamorphism (Van Kranendonk et al., 2007), many units within the 

lithostratigraphic successions are more likely to have preserved their primary W 
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systematics than other more deformed cratons of similar age. Therefore, our new data 

may allow a much more robust assessment of 182W isotope evolution through the 

Archean. A detailed outline of the geologic evolution of the Pilbara Craton is provided 

in the method section. In short, mantle-derived (mafic and ultra-mafic) magmatic 

sequences in the east [East Pilbara Terrane (EPT); Warrawoona, Kelly, and Sulphur 

Springs groups] and west [West Pilbara Superterrane (WPS); Ruth Well Formation] of 

the craton cover an age range from 3.52 – 3.23 Ga and tapped rather undepleted 

mantle sources that were emplaced during distinct mantle plume events, similar to 

modern plateau basalts (Smithies et al., 2007). Burial of these mafic sequences, 

together with older protocrust, caused melting to form four supersuites of sodic 

(tonalites, trondhjemites and granodiorites) and potassic granitoids (felsic rocks) that 

can be regarded as probes of early mafic crust. The younger evolution of the EPT 

involved plume-initiated rifting (Soanesville Group) at 3.18 Ga and subsequent 

accretion (3.07 Ga) of the younger WPS that also includes ~3.1 Ga subduction related 

mafic lithologies (Whundo Group, Smithies et al., (2005); Van Kranendonk et al., 

(2010)). After amalgamation, post-orogenic, lithosphere-derived magmatism included 

mafic rocks from the Bookingarra Group (Opaline Well Intrusion, Louden -, and Mount 

Negri Volcanics) and crust-derived post-tectonic granites (e.g., Split Rock Supersuite, 

Van Kranendonk et al., (2007)).  

We employed two strategies in selecting our samples. Firstly, we analyzed mafic 

volcanic rocks that tapped the ambient asthenospheric mantle of the EPT (plume-

derived) and the WPS (subduction related). Secondly, to understand the evolution of 

the lithospheric mantle and to obtain average crustal compositions we analyzed mafic 

dikes, sediments and granitoids of different ages. We studied a total of 56 samples 

from more than ten major stratigraphic units of the two different terranes (see Fig. 2.4, 

method section), also covering different tectonic regimes (vertical tectonics in the EPT 

and horizontal tectonics in the WPS). For all these samples, selected trace element 

abundances (Zr, Hf, Nb, Ta, W, Th & U) were obtained by isotope dilution 

measurements (details in the method section). Ten ultra-mafic (komatiite) samples 

were also previously analyzed for HSE (Maier et al., 2009). For high-precision W 

isotope measurements on a subset of 30 mostly pristine samples, we followed a slightly 

modified analytical protocol of Tusch et al. (2019). Results for high-precision 182W 

isotope analysis are given in Table 2.1, major- and trace-element composition and 
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isotope dilution measurements are reported in Table B3 (appendix B). 

  

 

 

Table 2.1: Tungsten isotope composition of Pilbara samples and in-house rock reference materials. 
Values for µ182Wcorr were corrected for the nuclear field shift (NFS) effect on 183W, when normalized to 
186W/183W (6/3), using the measured µ184W (6/3) and µ182W (6/3) values and the relation µ182W (6/3)corr = 
µ182W (6/3)measured – (1.962 x µ184W (6/3)) (Cook and Schönbächler, 2016). Notably, our analytical protocol 
(Tusch et al., 2019) ensures that in most of the cases (93%), NFS effects for µ182W in our study were within 
the range of the analytical uncertainty (for µ182W (6/3) on average ± 3.0ppm) as opposed to previous 
studies that reported massive NFS effects during 182W isotope measurements with MC-ICP-MS (Kruijer 
and Kleine, 2018; Archer et al., 2019). 
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High-precision concentration measurements are required to identify samples with 

primary W abundances, because W is strongly fluid-mobile when compared to 

elements of similar incompatibility (e.g. Th, U, Ta, König et al., (2011)). Thus, W 

mobility during fluid alteration results in non-canonical W/Th ratios (König et al., 2011) 

whereas in undisturbed magmatic systems, the similarly high incompatibility of W and 

Th results in canonical W/Th ratios between 0.09 and 0.24 over a wide range of mafic 

to felsic melts (König et al., 2011). Our Archean rock samples display pristine trends 

for Th versus Zr (Fig. 2.1a), but not for W versus Zr, as W was enriched in many 

samples (Fig. 2.1b). Samples with canonical W/Th ratios, however, define a pristine 

magmatic trend (Fig. 2.1b) allowing us to restrict further consideration primarily to 

samples with 182W isotope composition unmodified by secondary processes. 

 

2.4 Results 

The oldest plume-related mafic volcanic samples from the EPT (Warrawoona Group) 

all display resolvable 182W excesses. However, Warrawoona Group rocks, and a 

slightly older gabbroic enclave from the Shaw Granitic Complex (Mount Webber 

Gabbro; Pil 17-07), with supracanonical W/Th ratios, display markedly lower µ182W 

compositions when compared to samples with undisturbed elemental W budgets. 

Pristine samples display an average of µ182W = +12.6 ± 1.4 ppm [95% confidence 

interval (CI), n=8, also including previously published data for two samples from the 

Apex basalt (Rizo et al., 2019), red bar in Fig. 2.2], whereas rocks affected by 

secondary W-enrichment display resolvably lower excesses of ~ +8.1 ± 1.4 ppm (95% 

CI, n=8; grey bar in Fig. 2.2). Interestingly, the average 182W excess in the 

metasomatized samples is indistinguishable from the long-term lithospheric average 

(see Fig. 2.2 and below). Samples from the younger, plume-derived ~3.35 Ga Kelly 

Group (Euro Basalt) exhibit a contrasting pattern. The altered sample Pil 16-39a 

displays a µ182W value of +8.5 ± 2.1 ppm, again indistinguishable from the long-term 

lithospheric average. However, the unaltered sample Pil 16-53a shows a remarkably 

lower excess of µ182W = +5.2 ± 2.6 ppm. The youngest sample from the EPT, a 3.18 

Ga Honeyeater basalt, displays no 182W isotope excess, overlapping the modern upper 

mantle value (Pil 16-51, µ182W = +1.1 ± 3.9 ppm). The eruption of the Honeyeater 

Basalt marks extension at the onset of clear plate tectonic style processes (the earliest 

recorded Wilson Cycle)  
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Fig. 2.1: Trace element variation diagrams showing Th and W vs. Zr contents in mafic-
ultramafic rocks from the Pilbara craton (a & b) and high-precision µ182W data for rocks from 
the Pilbara Craton versus W/Th ratios (c). All concentration measurements were conducted by 
isotope dilution. Also included are Pilbara samples that were previously analyzed for their 182W 
isotope composition (Archer et al., 2019; Rizo et al., 2019). (a) Nearly all Pilbara samples have 
preserved robust magmatic differentiation trends for Th vs. Zr, indicating that Th was not significantly 
affected by secondary processes. Only the post-orogenic samples from the Bookingarra Group were 
contaminated by crustal components, in line with previous studies (Smithies et al., 2004). (b) In 
contrast to Th, the scattered concentrations of W mirror post-magmatic W enrichment by secondary 
processes. Pristine differentiation trends are preserved in samples with canonical W/Th ratios. 
Notably, all samples from ref 26 display strongly elevated W concentrations that indicate post-
magmatic W enrichment.  (c) Samples with undisturbed elemental W budgets (red squares, W/Th 
lower than 0.30, see method section) display variable 182W isotope excesses that constitute a 
progressive diminishing with time (see Fig. 2.2). Samples with elevated W/Th ratios (grey squares) 
were affected by secondary W enrichment by metasomatic agents that integrate the 182W isotope 
composition of the whole Pilbara Craton. Accordingly, these samples display intermediate 182W 
isotope excesses yielding the same average as lithosphere derived samples (grey and blue bars, 
respectively). 
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in the Pilbara Craton (Van Kranendonk et al., 2010). Thus, decreasing µ182W values in 

the unaltered samples indicate a diminishing 182W isotope excess with time during a 

change in the tectonic regime. Additional evidence for change in geodynamic pattern 

is manifested in rocks from the 3.13-3.11 Ga Whundo Group (WPS), a sequence with 

geochemical characteristics that are consistent with derivation from a depleted mantle 

source that was variably affected by subduction components in an arc-like setting 

(Smithies et al., 2005). Samples from the Whundo Group exhibit consistently lower 

µ182W (Pil 16-67: µ182W = +5.3 ± 4.8 and Pil16-74: µ182W = +5.9 ± 3.2). Beside data for 

3.48 Ga komatiites from the Komati Formation of the Kapvaal Craton (Touboul et al., 

2012), our data provides the oldest evidence for modern upper mantle-like W isotope 

compositions in the early Archean rock record.  

The 182W isotope excesses also slightly decrease in granitoids, from ~+10 ppm in sodic 

granites (Pil 16-34 & -35, 3.47 Ga North Shaw Tonalite) to ~+7 ppm in younger and 

more evolved potassic granitoids (Pil 16-41, 3.47 Ga Homeward Bound Granite) and 

highly fractionated post-orogenic monzogranites (Pil 16-36A, 2.85 Ga Spearhill 

Monzogranite; blue squares in Fig. 2.2). Hence, the granitoids in the EPS mimic the 

182W isotopic evolution of the ambient mantle. Given that the oldest and most pristine 

sodic granites are directly derived from mafic protocrust, this protocrust must have had 

182W isotope excesses similar to those of the Warrawoona Group samples. Lower 182W 

isotope excesses in younger and more evolved granitoids mirror the temporal 

decrease in 182W as also observed for mantle-derived mafic rocks. This trend is also 

manifested by lower 182W excesses (µ182W between +7.1 and +7.6 ppm) in Meso- to 

Neoarchean shales (Pil 16-50B, 3.19 Ga Paddy Market Formation and Pil 16-38b, 2.76 

Ga Hardey Formation), a rift-related lithospheric-derived dolerite from the Fortescue 

Group (µ182W = +7.6 ± 3.1 ppm Pil 16-31, 2.78 Ga Black Range dolerite) and mafic 

rocks from the Bookingarra Group (ca. 2.95 Ga; Pil 16-63, -65 & -75), which derived 

from a metasomatized, lithospheric mantle source that was refertilized by subducted 

sediments in a subduction zone-like setting (Smithies et al., 2004) (µ182W between +8 

and +11 ppm; Fig. 2.2). The shales provide an average of the 182W isotope composition 

of the upper crust, and the lithosphere-derived mafic intrusion probes the composition 

of the subcontinental lithospheric keel. Unlike the shales, a Paleoarchean Algoma-type 

Banded Iron Formation (BIF) from the EPT (Pil 16-62B, 3.47 Ga Duffer Formation) has 

negligible detrital components (0.4% Al2O3), and carries a 182W excess of +9.0 ± 3.3 

ppm. We interpret this signature as being seawater-derived and reflecting the average 
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composition of the ambient hydrothermal input provided by local volcanism with similar 

W isotope composition. 

Fig. 2.2: High-precision µ182W analyses for rocks from the Pilbara Craton presented in 
stratigraphic order. Associated uncertainties refer to the corresponding 95% confidence intervals of 
multiple digestions (95% CI). Mantle-derived samples with undisturbed elemental W budgets (having 
canonical W/Th ratios) are represented by red squares, mantle-derived samples that were affected by 
secondary W-enrichment (supracanonical W/Th ratios) are shown as grey squares. Undisturbed 
Warrawoona Group samples display an average of µ182W = +12.6 ± 1.4 ppm (95% confidence interval 
(CI), n=8, red bar), whereas rocks that were affected by secondary W-enrichment display resolvably 
lower excesses of ~ +8.1 ± 1.4 ppm (95% CI, n=8; grey bar). Younger mantle derived rocks with 
undisturbed W budgets display significantly lower 182W excesses. Lithosphere-derived rocks are 
shown as blue symbols. Granitoid rocks (blue squares) include non-gneissic tonalites and more 
fractionated and post-orogenic granitoids. Shales (blue circles) provide information about the upper 
continental crust, whereas lithospheric mafic magmatism is recorded in samples from the Bookingarra 
and Fortescue Groups. The lithospheric samples provide an average µ182W of +8.3 ± 1.0 ppm (blue 
bar) which is significantly lower than the average µ182W of +12.6 ± 1.4 ppm for Warrawoona group 
samples with canonical W/Th (red bar). Notably, samples that were affected by secondary W 
enrichment (grey bar) display the same average as the lithosphere-derived rocks (blue bar). R = 
previously published data for two samples from the Apex basalt (Rizo et al., 2019) 

 



Chapter 2 

 

75 
 

2.5 Discussion 

Altogether, the integrated 182W isotope compositions recorded in granitoids, shales and 

lithosphere-derived rocks provide a lithospheric average µ182W of +8.3 ± 1.0 ppm (N = 

11, blue bar in Fig. 2.2), which is significantly lower than the average µ182W of +12.6 ± 

1.4 ppm for Warrawoona group samples with canonical W/Th (N = 8, red bar in Fig. 

2.2) but higher than the modern upper mantle-like µ182W of +1.1 ± 3.9 ppm for the 

Honeyeater Basalt. Thus, the lithospheric average seems to carry the integrated 182W 

isotope composition of different mantle reservoirs. Samples from the EPT that were 

affected by secondary W enrichment (grey bar in Fig. 2.2) show a similar average as 

the lithosphere-derived rocks, which is evidence for a craton wide homogenization of 

ambient 182W isotope compositions and the partial homogenization of primary 182W 

isotope variability. Hence, using elemental W-Th systematics is a key tool, as this can 

unambiguously clarify the origin of 182W isotope variability. In contrast to a previous 

study (Archer et al., 2019), where this tool has not been applied and altered samples 

were studied, we can now distinguish between diminishing 182W isotope anomalies in 

the ambient mantle and secondary processes that re-distribute 182W isotope anomalies 

(Fig. 2.1c).  

Our study demonstrates that the oldest mantle-derived rocks from the Pilbara Craton 

with canonical W/Th display 182W isotope excesses of a magnitude similar to other 

Archean cratons. As outlined above, however, there is no uniformly accepted 

explanation for the origin of these 182W excesses. For the Pilbara craton, the missing 

late veneer hypothesis provides a plausible explanation, as decreasing depletions of 

Platinum Group Elements (PGE) in komatiites with decreasing age are consistent with 

a progressive in-mixing of late veneer material (Maier et al., 2009). Amongst the ten 

komatiite samples previously analyzed for HSE (Maier et al., 2009) we found only one 

sample (179738) that preserved its primary W budget. This confirms previous evidence 

that ultramafic rocks are extremely susceptible to (fluid mediated) second stage 

enrichment of W (Tusch et al., 2019), which causes decoupling of HSE and 182W 

systematics. The pristine komatiite sample 179738 (3.46 Ga Apex Basalt of the 

Warrawoona Group) analyzed in this study is strongly depleted in PGE and displays 

an elevated 182W of +11.9 ± 2.9 ppm, consistent with a model assuming an incomplete 

late veneer contribution to the mantle source of this sample. Such an interpretation is 

also in line with the absence of 142Nd anomalies in Pilbara rock samples that show 

significant PGE depletions (Archer et al., 2019), thereby negating early silicate  
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differentiation as an additional explanation for the occurrence of 182W isotope 

excesses. Collectively, our data indicate that Hadean, pre-late veneer mantle was 

preserved in the mantle sources of Pilbara igneous rocks until ca. 3.3-3.1 Ga, much 

longer than evident from other cratons (Touboul et al., 2014; Rizo et al., 2016b). The 

long-standing apparent mismatch between virtually constant 182W isotope excesses 

and progressively vanishing 142Nd anomalies through Archean time (Rizo et al., 2016b) 

is therefore well explained by the larger mobility of W compared to Nd and its re-

distribution during secondary processes. By only considering samples with strictly 

canonical W/Th ratios, we show that the prevalence of 182W isotope excesses even in 

the younger Archean rock record (Fig. 2.3) may be a vestige of older rocks, from which 

Fig. 2.3: Compilation illustrating the secular 182W isotope evolution of the terrestrial mantle. 
This dataset includes all available 182W isotope literature data for mantle-derived rocks. For 
Nuvvuagittuq we assume a minimum emplacement age of 3.75 Ga( Cates and Mojzsis, 2007), being 
well aware that it might be older (O´Neil et al., 2008). The literature data are subdivided into samples 
with overprinted elemental W budgets (grey) and samples with canonical W/Th (red). Symbols with 
no color fill refer to samples with unknown W/Th ratios. Data for Pilbara rocks presented in this study 
are squares with thick black frames. References and information on the data compilation are provided 
in the method section and Table B2 (appendix B). Error bars are omitted for visual clarity, but 
uncertainties are given in Table B2 (appendix B). 
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W was progressively redistributed. Hence, we rather argue that mantle convection 

homogenized primordial 182W isotope anomalies during the Paleo- and Mesoarchean 

(Fig. 2.3) at the same timescales as 142Nd systematics (Debaille et al., 2013).      

 

2.6 Conclusion 

Our 182W results for the Pilbara Craton have important implications for understanding 

timescales of geodynamic processes on the early Earth and provide a future reference 

parameter for geodynamic models addressing mantle mixing in the early Earth. 

Geodynamic models addressing the Pilbara data have to account for the observations 

that (1) a Hadean pre-late veneer signature remains isolated for over more than 1 

billion years and (2) such an isotopically isolated mantle domain continuously triggered 

prolonged plume-driven magmatism with a distinct isotopic signature, most likely in a 

stagnant lid regime (Bédard, 2018). In contrast to present-day mantle plumes with 

negative 182W signatures (Mundl et al., 2017), Archean mantle plumes beneath the 

Pilbara Craton appear to have carried rather uniform 182W isotope excesses that were 

similar to the shallower mantle, thus arguing that compositionally distinct deep mantle 

sources such as LLSVPs or ULVZs may not have been involved or, alternatively, even 

may not have formed (Bédard, 2018; Mei et al., 2020).  

The marked geodynamic transition at 3.3 – 3.1 Ga in the Pilbara Craton with influx of 

modern-like, upper mantle material without 182W excess coincides with models 

claiming a global transition from stagnant lid-type regimes to modern plate tectonics. 

This transition is, for instance, postulated from crustal growth curves based on the 

zircon record (Belousova et al., 2010), from the increased occurrence of subduction-

like magmatism in the Archean (Pearce, 2008), the change of composition in the 

subcontinental lithospheric mantle (Shirey and Richardson, 2011), and from 

increasingly larger volumes of exposed felsic crust (Dhuime et al., 2015). It is therefore 

tempting to postulate that the initiation of plate tectonics caused a more efficient 

homogenization of Earth’s mantle than vertical, plume-driven dynamics that prevailed 

in a stagnant lid regime as proposed for the older units of the Pilbara Craton. Indeed, 

geodynamic models for a stagnant lid regime show that, contrary to expectation, the 

timescales of mantle mixing in the Archean were not accelerated due to a hotter 

thermal state of the mantle but were rather prolonged (Debaille et al., 2013). The 

Archean regime was possibly characterized by small, isolated convection cells and 
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episodic mantle overturn events that vertically homogenized discrete regions of the 

mantle (O’Neill et al., 2007; Bédard, 2018) but maintained lateral heterogeneities for 

billions of years (Ballmer et al., 2017). In summary, our study demonstrates that the 

Pilbara Craton preserved a natural laboratory for Archean geodynamics that may serve 

as a future test case for interdisciplinary studies assessing timescales of mantle 

dynamics through deep time. In particular, the rock record of the Pilbara Craton 

provides important observational constraints on the Archean mantle which are 

indispensable for numerical simulations as such input parameters define the 

evolutionary pathway of computational convection models (Weller and Lenardic, 

2012).  

 

2.7 Method Section 

2.7.1 Analytical protocol 

Concentration measurements for high-field-strength elements (HFSE), W, U, and Th 

were conducted by isotope dilution, using mixed isotope tracers that are enriched in 

229Th-233U-236U and 183W-180Ta-180Hf-94Zr, respectively. Around 120 mg of sample 

powder were spiked and digested using a previously described protocol (Tusch et al., 

2019). After sample-spike equilibration, we separated our sample solution (30% aliquot 

for U, Th, and W analyses and 70% for HFSE analyses). The chemical separation for 

HFSE followed a previously published protocol (Thiemens et al., 2019). The 30% 

aliquot for U, Th and W analyses was loaded onto BioRad Poly-Prep® columns filled 

with 1.6ml Eichrom TRU-Spec® resin (200-400 mesh) atop 0.4ml Eichrom prefilter® 

material. Tungsten and most matrix components of the 30% aliquot were eluted during 

loading (1.5N HNO3) and subsequent rinsing (2 x 5/8 resin volumes (rv) of 1.5 M 

HNO3). The subsequent separation of U and Th on TRU-Spec® resin followed a 

previously published protocol (Luo et al., 1997). In previous protocols (Thiemens et al., 

2019; Tusch et al., 2019), U and Th were first separated during an HFSE protocol in 2 

M HF prior to loading onto TRU-Spec® resin. By first loading our 30% aliquot onto 

TRU-Spec® resin, we avoid the formation of insoluble Th bearing fluorides. Tungsten 

was subsequently separated from residual matrix components using BioRad Poly-

Prep® columns filled with 2ml AG-1-X8 resin (Kleine et al., 2004). Tungsten 

concentration measurements for granites were performed differently, using a 180W-

183W double-spike technique (Kurzweil et al., 2017). All high-precision isotope dilution 
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analyses were performed on a Thermo Fisher® Neptune Plus Multicollector ICP-MS 

at Cologne (Weyer et al., 2002; Kleine et al., 2004; Thiemens et al., 2019).  For 

measurements of other trace elements we used the analytical protocol described by 

Tusch et al. (2019). Trace element concentrations were measured using a quadrupole 

ICP-MS at the Institut für Geowissenschaften at CAU Kiel (Garbe-Schönberg, 1993). 

  

The chemical purification of W for high-precision isotope composition analyses follows 

a previously published analytical protocol (Tusch et al., 2019) that was only slightly 

modified to be able to process up to 1.6 g rock powder per column. The final W bearing 

cut after the third stage column (EichromTM TEVA resin) was directly loaded onto 

TODGA resin (1ml TODGA resin in Spectra/Chrom® 45µm PP MiniColumns) that 

purifies W more efficiently from remaining matrix elements and Ti (Pourmand and 

Dauphas, 2010). During loading in 5 M HCl and subsequent rinsing with 2 x 6.5 rv 3 M 

HNO3 the remaining Ti and most other remaining matrix elements pass through the 

resin. By subsequently rinsing with 3 x 6.5 rv 8 M HNO3 residual Ca is also eluted. 

During these washing steps W is completely retained on the column and can be finally 

eluted in 3 x 5 rv 0.56 M HNO3 – 0.24 M HF. Remaining impurities in our final W cut 

after processing 1.6 g rock powder (felsic matrix) were 5 ng/ml Na, 11 ng/ml Mg, 4 

ng/ml Al, 2 ng/ml K, 21 ng/ml Ca, 0.1 ng/ml Ti, 1.2 ng/ml Ta, 2 ng/ml Nb and 0.5 ng/ml 

Mo. Considering the initial weight of sample material (1.6 g) this translates to fractions 

in the ppt range.   

The setup for high-precision 182W isotope measurements has also been described in 

detail in a previous study (Tusch et al., 2019). In short, the analyses of the Pilbara 

samples were run over a period of 22 months (February 2018 – November 2019) at an 

average signal sensitivity of 4.5 V on 182W (using 1011 Ohm amplifiers) for a ~50 ng/ml 

W sample solution at an uptake rate of ca. 60 µl/min. The measurements of sample 

solutions were run at intensities between 2.0 and 27.5 V on 182W, corresponding to 23 

– 274 ng/ml solutions. Samples were always bracketed by a concentration-matched 

certified reference material (NIST SRM 3163) to report relative 182W isotope 

compositions. For all samples we performed multiple measurements (n = 9-23) to 

obtain a statistically significant population, and uncertainties for average µ182W values 

are correspondingly reported as 95% confidence intervals (95% CI). The 95% CI for 

repeatedly measured samples (n = 9-23) ranged between ±1.6 ppm and ± 4.8 ppm 

(average of ±3.0 ppm). Differences in the 95% CI mainly result from differences in 
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beam intensities.  

Our long-term reproducibility is inferred from repeated measurements of two in-house 

rock reference materials (historical La Palma basalt “LP1” and a 3455 Ma gneiss from 

Swaziland, labeled “AGC 351” (Kröner et al., 2014)). Along with our samples, the in-

house rock standards were always passed individually through our separation protocol 

and measured in every session at different run-conditions (variable procedural yields 

at different signal intensities). In total, we performed 16 measurements for sample LP1 

(235 single measurements) and 11 measurements for sample AGC 351 (151 single 

measurements). The session averages for µ182W of both samples overlap within their 

95% CI (LP1 = -1.3 ± 1.1 ppm and AGC 351 = -0.1 ± 1.2 ppm) and are indistinguishable 

from the NIST reference material (Fig. 2.5) and previously reported long-term averages 

for the same sample powders (Tusch et al., 2019). The reproducibility of both in-house 

rock reference materials relative to NIST SRM 3163 is given by the 2 SD of the 

corresponding average µ182W (-1.3 ± 4.3 ppm for LP1 and -0.1 ± 3.5 ppm for AGC 

351). The somewhat poorer reproducibility of sample LP 1 stems from lower signal 

intensities (2.1 – 15.0 volts on 182W) when compared to sample AGC 351 (8.2 – 27.5 

volts on 182W).  

Our average procedural yields were 77% (70% of samples above 70%, 24% between 

60% and 70%) with only three samples below 60% (7% of all samples). Total 

procedural W blanks were measured on a Thermo Fisher® Neptune Plus Multicollector 

ICP-MS at the University of Cologne after adding  a 180W-183W double-spike tracer 

(Kurzweil et al., 2017). Blanks were typically below 500 pg (137-471 pg) which 

corresponds to less than 1 % blank contribution. Three erratic blank values were higher 

(1401, 1804 and 3427 pg) but only contributed up to 4.5 % to the total analyte. 

Considering the average excess for undisturbed samples from the Warrawoona Group 

(µ182W = +12.6 ± 1.4 ppm) and our average uncertainty on the sample averages (± 3.0 

ppm) a blank contribution of 4.5% carrying modern upper mantle like 182W isotope 

composition (µ182W = 0) would propagate into our µ182W values to less than 1ppm.   
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2.7.2 Geological background 

The Pilbara Craton of Western Australia has been subdivided into the East Pilbara 

Terrane (EPT), West Pilbara Superterrane (WPS, comprised of three separate 

terranes), and the Kuranna Terrane (Van Kranendonk et al., 2007). Rocks from the 

EPT and WPS display dissimilar geochemical, geochronological, and structural 

characteristics, reflecting markedly different processes of crust formation (Smithies et 

al., 2018). The 3.52-3.18 Ga East Pilbara Terrane is the ancient nucleus of the craton 

and a global type example for the dome-and-keel geometry that is unique to many 

Archean terranes (Van Kranendonk et al., 2004). Granitoid domes are ovoid, multi-

component intrusive complexes that are separated by narrow, mostly steeply dipping 

cuspate greenstone belts, and encircled by ring faults (Van Kranendonk et al., 2002). 

EPT greenstones comprise 3.52 – 3.18 Ga old, predominantly tholeiitic and lesser 

Fig. 2.5: Long-term reproducibility for µ182W (6/4), inferred from the repeated analysis of multiple 
digestions for our in-house reference materials AGC 351 and LP1 reported relative to W NIST SRM 
3136. Small symbols refer to single measurements and larger symbols give the average for the 
corresponding analytical session. For the single measurements, error bars refer to the internal run statistic 
(2 SE). The uncertainty for the session mean values are given by the corresponding 95% CI. The long-
term reproducibility for our two in-house reference materials with variable composition (mafic LP1 and 
felsic AGC 351) are given by the 2 SD of the session mean values. The poorer reproducibility and larger 
scatter of sample LP 1 stems from lower signal intensities when compared to sample AGC 351. 
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komatiitic volcanic rocks, with minor interbedded sediments, of the Pilbara Supergroup 

that is subdivided into four unconformity-bound groups (Warrawoona, Kelly, Sulphur 

Springs and Soanesville). The lower three volcanic groups were derived from 

undepleted mantle sources (R. H. Smithies et al., 2005) and emplaced during distinct 

mantle plume events (Arndt et al., 2001) similar to modern plateau basalts (Condie, 

2005; Van Kranendonk et al., 2007). The Honeyeater Basalt of the youngest 

Soanesville Group is interpreted as the product of plume-initiated rifting that caused 

intra-continental extension and magmatism at the start of a Wilson cycle (Van 

Kranendonk et al., 2010).  

A rifted fragment of the EPT is inferred in the WPS (Karratha Terrane) that, together 

with MORB-like rocks of the Regal Terrane, and subduction-related rocks of the Sholl 

Terrane, accreted to form the WPS at c. 3.07 Ga (Smithies et al., 2005; Van 

Kranendonk et al., 2007). The Sholl Terrane comprises the 3.13-3.11 Ga Whundo 

Group, a sequence with geochemical characteristics that are consistent with their 

derivation from a depleted mantle source that was variably affected by metasomatic 

enrichment in an arc-like setting (Smithies et al., 2005).  

The Pilbara Supergroup of the EPT erupted on a > 3.53 Ga proto-continental basement 

that was most likely a heterogeneous mix of mafic and felsic lavas and TTGs (tonalites, 

trondhjemites and granodiorites) with a common tholeiitic parental magmatic source 

(Smithies et al., 2019). Multiple lines of evidence for the presence of an older basement 

(Van Kranendonk et al., 2002) include the presence of older gabbroic-anorthositic 

enclaves (Mount Webber Gabbro) embedded in granitic rocks of the Shaw Granitic 

Complex (McNaughton et al., 1988; Petersson et al., 2019), older TTG enclaves, and 

abundant inherited zircons (Van Kranendonk et al., 2002). The burial of heat-producing 

ancient TTGs into the middle crust, together with conductive and convective heat 

brought by excessive mantle melting events, caused re-melting of early TTGs, which 

resulted in thermal softening of the middle crust (Sandiford et al., 2004). This lead to 

diapirism of granitoid melts ascending from the middle crust, and to the sinking of the 

dense volcanic rocks from the greenstone successions during partial convective 

overturn, which lead to the observed dome-and-keel geometry (Van Kranendonk et al., 

2004).  

Granitic rocks of the EPT have been divided into five supersuites that were emplaced 

during discrete intervals between 3.49 and 3.22 Ga (Van Kranendonk et al. (2007), 
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3.49-3.46 Ga Callina, 3.45-3.42 Tambina, 3.33-3.29 Emu Pool, 3.27-3.22 Ga Cleland 

supersuites). The large-scale granitoid domes are polyphase complexes that initially 

derived through melting from a mafic (tholeiitic) protocrust and earlier TTG rocks 

(Bickle et al., 1993; Smithies et al., 2019) and subsequently evolved to more evolved 

high-K granitic compositions (predominantly monzogranites) through successive 

melting events. Younger granitic phases were emplaced into the cores of the 

developing domes (Smithies et al., 2003) during partial convective overturn.  

 

After c. 3.07 Ga, when accretion of the WPS onto the EPT took place, volcanic and 

sedimentary rocks of the De Grey Supergroup were deposited from 3.02 Ga in several 

basins that formed in response to lithospheric extension (Van Kranendonk et al., 2007). 

Mafic volcanic rocks of the Bookingarra Group and associated intrusive rocks were 

emplaced between ~3.0 and 2.95 Ga. The Bookingarra Group unconformably overlies 

volcano-sedimentary rocks of the Whim Creek and Croydon Groups at the western 

end of the late-tectonic Mallina Basin. These older rocks derived from a 

metasomatized, lithospheric mantle source that was refertilized by subducted 

sediments during the formation of the Whundo Group in a subduction zone-like setting 

ca. 150 Ma earlier (Smithies et al., 2004). The tectono-magmatic history of the Pilbara 

Craton was completed by the emplacement of ca. 2.85 Ga post-tectonic granites of the 

Split Rock Supersuite (Van Kranendonk et al., 2007). Emplacement of ca. 2.78 Ga 

(Wingate, 1999) lithosphere-derived rift-related dikes of the Black Range Dolerite Suite 

record the onset of rifting and deposition of the unconformably overlying Fortescue 

Group.  

 

2.7.3 Sample selection 

Most mantle-derived samples from the EPT were collected in the Marble Bar 

greenstone belt and in the North Pole Dome area (Panorama greenstone belt) where 

rocks were only affected by low grade metamorphism and low strain (Van Kranendonk 

et al., 2007). Samples from the oldest Coonterunah Subgroup of the Warrawoona 

Group were collected in the East Strelley greenstone belt and samples from the 

Honeyeater Basalt from the Soanesville greenstone belt (see Fig. 2.4). The low 

metamorphic grade is most promising for preservation of primary elemental W 

budgets.  
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To expand our dataset for mantle-derived rocks from the EPT we also sampled a 

recently described 3.59 Ga magmatic suite (Mount Webber Gabbro, Pil 17-07) that 

was shown to predate the oldest rocks from the Warrawoona Group and that are 

thought to represent remnants of an early proto-crust (McNaughton et al., 1988; 

Petersson et al., 2019). Our sample was collected in an outcrop on the eastern bank 

of the Shaw River where anorthositic host rocks within the tonalites contain gabbroic 

enclaves (McNaughton et al., 1988).  

Mantle-derived rocks from the WPS comprise samples from the Sholl Terrane 

(Whundo Group, Pil 16-67, -74, -75) and Karratha Terrane (Ruth Well Formation, Pil 

16-66b). Our samples from the Whundo Group were collected in the same outcrop 

area as previously described in detail by pioneering studies on the Whundo Group 

(Smithies et al., 2005).  

Granitoid samples from the multi-phase dome complexes of the EPT include those 

from the low-strain North Shaw Suite (3.49-3.46 Ga Callina Supersuite) in the northern 

part of the Shaw Granitic Complex, which comprises exceptionally well preserved 

tonalites that still display igneous textures (Bickle et al., 1983). We sampled two 

undeformed to weakly-foliated tonalites from the North Shaw Suite (Pil 16-34 & -35), 

as well as younger (Pil 16-36a) and more fractionated gneissic TTGs (Pil 16-12, -36a, 

-41) to cover a suite of rocks that represent lithostratigraphic and petrological end-

members of the long-lived granitic complexes. Additionally, we sampled lithosphere-

derived mafic rocks from the Bookingarra (Pil 16-63, -65 & -75) and Fortescue Group 

(Black Range dolerite, Pil 16-31) to better constrain the 182W isotope composition of 

the subcontinental lithosphere within the Pilbara Craton.  
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Fig. 2.4: Simplified geological map of the Pilbara Craton, NW Australia showing the sample 
localities covered in this study. The map is modified from previous studies (Van Kranendonk et al., 
2007; Van Kranendonk et al., 2010). Shown are the main groups of the West Pilbara Superterrane and 
East Pilbara Terrane. Both terranes are unconformably overlain by sedimentary rocks of the De Grey 
Supergroup. LWSZ = Lalla Rookh-Western Shaw structural corridor; MB = Mallina Basin. The older 
greenstones are intruded by diverse granitoid complexes: M = Muccan; W = Warrawagine; E = Mount 
Edgar; CD = Corunna Downs; S = Shaw; Y = Yule; C = Carlindie; P = Pippingarra. 
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2.7.4 Secular evolution of 182W isotope anomalies 

To better understand the secular evolution of 182W isotope anomalies in Earth´s 

mantle, we compiled all literature data for 182W isotope compositions measured in 

mantle-derived rocks. Supplementary Table B2 (appendix B) provides an overview and 

lists all references for 182W data and elemental concentrations of W and Th. In total, 

19 studies reported 191 182W isotope compositions for mantle-derived rocks, with 122 

samples from the Archean, only 1 sample from the Proterozoic (Puchtel et al., 2016b) 

and 68 samples of Phanerozoic age. It becomes apparent that most studies have only 

provided snapshots within the 182W isotope evolution of individual Archean cratons 

(Touboul et al., 2012; Touboul et al., 2014; Liu et al., 2016; Puchtel et al., 2016a; 

Puchtel et al., 2018). We further screened this compilation for samples that were not 

substantially affected by secondary W-enrichment. Indeed, 95% of the Phanerozoic 

samples in our compilation that report elemental concentrations for W and Th display 

canonical W/Th ratios. Only two samples have slightly supracanonical W/Th ratios of 

0.26 and 0.27, respectively. The Phanerozoic samples with canonical W/Th ratios are 

characterized by an average deficit in µ182 of -5.4 ± 1.7 ppm and display an average 

W/Th of 0.152, which perfectly overlaps with the combined average for fresh MORB 

and OIB samples (W/Th = 0.150, König et al., 2011). It has been argued that elevated 

W/Th ratios in mantle-derived rocks from the Archean might be a non-uniformitarian 

Archean feature (Willbold et al., 2015). However, as demonstrated in this study the 

Archean suite analysed here comprises many rocks with primary W budgets as present 

day MORB and OIB.  

After screening the global dataset, it becomes apparent, that Archean rocks with 

canonical W/Th ratios display uniform excesses before ~3.4 Ga 13 ppm. Exceptions 

are two ~ 3.7 Ga old amphibolites from Isua (sample 00-044: µ182W = +21.3 ± 5.3 ppm; 

sample 00-008: µ182W = +5.4 ± 7.2 ppm, Rizo et al., 2016b). We regard these two 

samples as outliers for two reasons. First, it was not possible to reproduce results for 

182W isotope compositions on the same powder splits for other rocks that displayed 

markedly different 182W isotope compositions than typically observed for Isua rocks 

(samples S31 & S33, Tusch et al., 2019). Second, other ~ 3.7-3.8 Ga old amphibolites 

and metabasalts from Isua with canonical W/Th ratios display homogeneous excesses 

of ca. +13 ppm (Willbold et al., 2011; Dale et al., 2017; Tusch et al., 2019). As 

demonstrated by our study on rocks from the Pilbara Craton, the 182W isotope 

composition of mantle-derived rocks with supracanonical W/Th ratios are dominated 
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by metasomatic agents that re-mix reservoirs of variable 182W isotope compositions. If 

not taken into consideration, this can lead to ambiguous models on the origin of early 

formed mantle heterogeneities and on the time-scales of mantle convection. Moreover, 

overprinted elemental W budgets caused a decoupling of 182W isotope and HSE 

systematics, thereby also biasing conclusions on the late-accretion history of the Earth 

(Touboul et al., 2012; Archer et al., 2019). 
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Chapter 3 

 

3 Long-term preservation of Hadean protocrust in Earth´s 

mantle 

 

3.1 Abstract 

Due to plate tectonics operating on Earth, the preservation potential for mantle 

reservoirs from the Hadean Eon (>4.0 Ga) has been regarded as very small. The quest 

for such early remnants has been spurred by the observation that many Archean rocks 

exhibit excesses of 182W, which is the decay product of short-lived 182Hf. The exact 

causes for these 182W excesses, however, have remained ambiguous and proposed 

models involve missing late veneer additions or early silicate differentiation. Hence, it 

remains speculative, if the Archean isotope anomalies and also 182W deficits found in 

many young ocean island basalts (OIBs) mirror primordial Hadean mantle 

differentiation or just incomplete mixing of older meteorite building blocks delivered to 

the growing Earth. Here, we present a coherent high precision 182W isotope dataset for 

3.22-3.55 Ga old mafic and felsic rocks from the Kaapvaal Craton, Southern Africa. 

Some mafic rocks from the Schapenburg Greenstone Belt of the Kaapvaal Craton were 

the first Archean rocks reported to exhibit negative 182W anomalies, in fact similar to 

modern ocean island basalts. Our study reveals widespread 182W deficits in different 

rock units from the Kaapvaal Craton and also the very first discovery of an anti-

correlation between short-lived 182W and long-lived 176Hf-143Nd patterns. The only 

plausible model to explain these patterns is the presence of recycled mafic restites 

from Hadean protocrust in the ancient mantle beneath the Kaapvaal Craton. Hence, 

the data provide unambiguous evidence for the operation of silicate differentiation 

processes on Earth during the lifetime of 182Hf, i.e., the first 60 million years after solar 

system formation, thereby also providing a firm lower bound for the age of the Earth-

Moon system. The striking isotopic similarity between recycled protocrust and the low 

182W endmember of modern OIBs might also be the missing link bridging 182W isotope 

systematics in Archean and young mantle-derived rocks. This finding offers important 



Chapter 3 

 

89 
 

constraints on the geodynamic evolution of Earth’s mantle through time, indicating 

inefficient homogenization of Hadean silicate reservoirs.  

 

3.2 Introduction 

Due to plate tectonic processes, the accessible silicate reservoirs on Earth have lost 

most of their memory of the first ca. 500 Ma of Earth’s history. Hence, our 

understanding of this time period comes from indirect evidence, e.g., from geochemical 

tracers such as short-lived nuclide series that were active during the first ca. hundred 

million years after solar system formation (Harper and Jacobsen, 1992; Willbold et al., 

2011; Mukhopadhyay, 2012). The detection of terrestrial variability in the relative 

abundances of short lived nuclide decay products such as 129Xe, 142Nd, and 182W 

provided firm evidence that primordial reservoirs were not fully homogenized by 

mantle-dynamics, and played a significant role during the formation of the first 

continental crust (Allègre et al., 1987; Caro et al., 2003; Willbold et al., 2011). The very 

recent discovery of 182W, 142Nd, and 129Xe anomalies in modern mantle-derived rocks 

(Mukhopadhyay, 2012; Mundl et al., 2017; Peters et al., 2018) demonstrate that 

primordial reservoirs are still accessible. Whereas anomalous 129Xe and 142Nd isotope 

compositions in mantle-derived rocks can primarily be assigned to early planetary 

outgassing and early silicate differentiation, respectively, the presence of 182W isotope 

anomalies can mirror multiple processes. While some interpret the prevalence of 

positive 182W anomalies in Archean rocks as a result of disproportional accretion of 

late veneer (Archer et al., 2019), others have pointed out that this view may be a 

simplification as observations from other isotope systematics suggest other processes 

to be involved, such as metal-silicate segregation or silicate differentiation in an early 

magma ocean, or during crust-mantle differentiation (Touboul et al., 2012; Puchtel et 

al., 2016a). Isotope anomalies of 142Nd in Archean rocks that are coupled with 182W 

anomalies (Puchtel et al., 2016a; Rizo et al., 2016b) clearly provide evidence that early 

silicate differentiation must have operated during the first ca. 60 Ma. However, it has 

been demonstrated that pristine 142Nd-182W records are often obscured, either by 

multistage processes within the lifetime of 142Nd, while 182W was extant, or via fluid-

controlled second stage metasomatic overprint of primordial 182W patterns (Tusch et 

al., 2019).   
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3.3 Geological and methodological overview 

To further evaluate the processes that account for 182W anomalies in Archean rocks, 

we investigated samples from the eastern Kaapvaal Craton, southern Africa that are 

well suited to search for vestiges of early silicate differentiation, because they were 

shown to display both heterogeneous 142Nd and 182W compositions (Touboul et al., 

2012; Puchtel et al., 2016a; Schneider et al., 2018). We performed high-precision 182W 

isotope analyses on a comprehensive suite of 17 samples that range from mantle-

derived lithologies of mafic-ultramafic composition to different types of granitoids. 

These samples span an age range from ca. 3.55-3.22 Ga, represent the main 

lithological units of the Ancient Gneiss Complex (AGC) and also comprise the oldest 

rocks of the Barberton Granite-Greenstone terrain (BGGT). Moreover, most of these 

samples have previously been analyzed for their 142Nd compositions (Schneider et al., 

2018). More information about the regional geology and samples is provided in the 

method section. By combining 182W isotope analysis with high-precision isotope 

dilution measurements for high field strength elements (HFSE), U, and Th, we 

assessed the source budget of W in these samples. Measurements of 182W isotope 

compositions followed protocols (Tusch et al., 2019) that were slightly modified to yield 

strongly purified solutions for high-precision isotope measurements using a Thermo 

Fisher Neptune Plus MC-ICP-MS at Cologne. Uncertainties for averages of repeated 

analysis of sample solutions (95% confidence interval, n = 6-11) range between ±1.4 

ppm and ±5.1 ppm (average ±2.7 ppm). Our long-term external reproducibility is 

inferred from repeated analyses of in-house rock reference materials, here also 

including a 3.27 Ga old Komatiite from the Pilbara Craton (sample 160245, Ruth Well 

Formation), Western Australia that displays an excess of 182W. All in-house rock 

reference materials were always passed through our separation protocol and 

measured in every session, yielding 2 SD between ± 1.5 ppm and ± 2.7 ppm (Fig. 3.8, 

method section). More information about the analytical protocol is provided in the 

method section.  

 

3.4 Results 

Our results for 182W isotope analysis are summarized in Table 3.1. Major and trace 

element compositions are provided in Table C1 (appendix C). Irrespective of petrology 

and provenance (AGC or BGGT), all rock types display 182W isotope compositions that 



Chapter 3 

 

91 
 

range from modern mantle values (μ182W = 0) to deficits as low as -9.2 ± 3.2 ppm. Most 

of the mantle-derived rocks from the BGGT display moderate μ182W deficits, in some 

cases overlapping with the modern mantle value, whereas mantle-derived rocks from 

the AGC display μ182W deficits throughout, in most cases not overlapping with the 

modern mantle. The distribution and the range of isotope compositions for 182W in 

rocks from the Kaapvaal craton is similar to that for 142Nd, displaying both, negative 

and modern isotope composition (Schneider et al., 2018). However, combined 182W-

142Nd data for rocks from the eastern Kaapvaal Craton, also including literature data 

from the Schapenburg Greenstone Remnant (SGR) adjacent to the BGGT (Puchtel et 

al., 2016a), only reveal a vague co-variation (Fig. C1, appendix C), even when only 

considering samples with pristine W concentrations (i.e., canonical W/Th ratios). 

Interestingly, our dataset reveals a co-variation of μ182W with initial ε143Nd(t) and ε176Hf(t) 

for mantle-derived rocks and some granitoid gneisses (Fig. 3.1). To our knowledge, 

this is the first discovery of a co-variation between 182W compositions and long-lived 

radiogenic nuclides. The observed co-variation for our samples is further strengthened 

by literature data for komatiites from the SGR adjacent to the BGGT (Puchtel et al., 

2016a) and the Komati Formation from the BGB (Touboul et al., 2012; Puchtel et al., 

2013). Interestingly, co-variations with 182W compositions are also observed for 

incompatible trace element ratios, in particular Zr/Sm (Fig. 3.7. method section). 

 

3.5 Discussion 

As the observed co-variations of µ182W with ε143Nd(t) and ε176Hf(t) are largely defined by 

ultramafic-mafic samples, it is obvious that the observed trend reflects mixing between 

different mantle-source reservoirs. It is in fact surprising that felsic samples plot on the 

same trend. This finding suggests short residence times between emplacement of the 

protolith and formation of felsic orthogneisses. One mantle endmember exhibits no 

resolvable 182W isotope anomalies at near chondritic initial ε143Nd(t) and ε176Hf(t) values, 

most likely representing near primitive mantle. The other endmember is best 

characterized by komatiites from the SGR that exhibit the largest 182W isotope deficits 

of up to -11.4 ppm and strongly elevated initial ε143Nd(t) and ε176Hf(t) values of up to 

+2.6 and +6.2 ε units, respectively (Puchtel et al., 2016a). In the following discussion, 

we will largely focus on the origin of this low 182W endmember. As we will show, the 
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low 182W endmember in rocks from the Kaapvaal Craton may provide novel insights 

into the secular evolution of the 182W isotope composition of Earth´s mantle.  

Fig. 3.1: Measured µ182W vs. ε143Nd(t) (a) and µ182W vs. ε176Hf(t) (b) for mantle derived and TTG-
like mafic rock samples from the Kaapvaal Craton including literature data. The literature data 
include previously published data for komatiites from the Schapenburg Greenstone Remnant (SGR, 
Puchtel et al., 2016a) and the Komatii Formation (Touboul et al., 2012). The shaded field, referred to 
as Kaapvaal mantle array, is the 95% confidence intervall in which of all mantle derived samples are 
expected to fall. Note, that the anti-correlation displayed by the Kaapvaal mantle array does not follow 
the expected trend for early silicate differentation (indicated by dashed line in panel 3.1b). 
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Table 3.1: Tungsten isotope composition of Kaapvaal samples and in-house rock reference 
materials. Values for µ182Wcorr were corrected for the nuclear field shift (NFS) effect on 183W, when 
normalized to 186W/183W (6/3), using the measured µ184W (6/3) and µ182W (6/3) values and the relation 
µ182W (6/3)corr = µ182W (6/3)measured – (1.962 x µ184W (6/3)) (Cook and Schönbächler, 2016). 
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In particular, we evaluate, if present-day mantle plumes with their characteristic 182W 

deficit may be modern analogues of the low 182W endmember from the Kaapvaal 

Craton.  

The presence of negative 182W isotope anomalies within rocks from the Kaapvaal 

Craton could be the consequence of several processes. These processes include (1) 

equilibration of the mantle source with anomalously large amounts of late accretionary 

material (late accretion hypothesis), (2) early fractionation of Hf from W by silicate 

crystal-liquid fractionation, e.g., in an early magma ocean, or (3) core-mantle 

interaction.  

The late accretion hypothesis has been postulated to explain the relative and absolute 

abundances of highly siderophile elements (HSE) in the bulk silicate earth (BSE) by 

the addition of about 0.5% of chondritic material after core formation (Chou, 1978; 

Mann et al., 2012), likely with CI or CM like composition (Wang and Becker, 2013; 

Braukmüller et al., 2019). Late accretion would not only have affected the HSE budget 

of the BSE but also its 182W isotope composition (Willbold et al., 2011). Accordingly, 

even after the addition of the late veneer, some portions of the Archean mantle could 

have remained in disequilibrium (Marchi et al., 2018), and mantle domains that did not 

fully equilibrate with late accretionary components, would be characterized by positive 

182W isotope anomalies coupled with HSE abundances that are lower than the modern 

BSE. Consequently, negative 182W isotope anomalies would imply additional late 

accreted contributions that would be reflected in unusually high HSE contents. The 

absolute HSE abundances in the mantle source of the SGR-like endmember with its 

large 182W deficits, however, were estimated to be only ca. 30% of those in the present-

day BSE (Puchtel et al., 2009; Puchtel et al., 2016a), and, accordingly, a late accretion 

model can therefore be ruled out. If 182W isotope systematics were coupled to the HSE 

systematics by late accretion one would expect 182W isotope excesses and not deficits. 

Direct addition of core material to the source of the SGR komatiites also seems an 

unlikely explanation, as this would likely result in elevated PGE concentrations 

(Brandon and Walker, 2005). Again, the low absolute HSE abundances in the source 

of the SGR-like endmember rule out such a scenario and may be better explained by 

second-stage melting of an already sulfide exhausted mantle source (Puchtel et al., 

2009).  
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An alternative explanation for negative 182W isotope anomalies in Archean rocks like 

those from the Kaapvaal craton may be offered by insights from recent studies on 

OIBs. It has been proposed that the prevalent negative 182W isotope anomalies in 

modern, plume-derived OIBs result from chemical and isotopic equilibration between 

their mantle sources and the outer core (Mundl-Petermeier et al., 2019; Mundl-

Petermeier et al., 2020). Notably, it has been argued that Archean mafic-ultramafic 

sequences like those in the BGB also originate from mantle plumes (Robin-Popieul et 

al., 2012). Additional work from noble gas systematics in modern mantle-derived rocks 

provide evidence that  the source reservoirs must have had differentiated from the 

convecting mantle very early (pre 4.45 Ga) (Allègre et al., 1987; Parai et al., 2012; 

Tucker and Mukhopadhyay, 2014). The concurrent 182W isotope anomalies in the 

modern mantle could therefore also have been produced early by in-situ decay of 182Hf 

(i.e., during the first ca. 60 Ma after solar system formation). The presence of such 

ancient mantle reservoirs and the role of mantle plumes in the past, in particular their 

contribution to the secular evolution of the 182W isotope composition in the BSE has so 

far only poorly been constrained. In this regard, mantle derived rocks from the 

Kaapvaal Craton offer the possibility to combine insights from isotope constraints on 

the origin and preservation of ancient mantle heterogeneities through deep time.  

It has been postulated that Hadean protocrust or delaminated restites of early 

differentiated Hadean protocrust are responsible for the geochemical and isotopic 

variability of modern mantle plumes (Hofmann, 1997). In the case of the Kaapvaal 

craton, direct recycling of ancient protocrust formed during the first ca. 60 Ma appears 

unlikely, because in this case the negative 182W and 142Nd anomalies should be 

coupled with negative 143Nd and 176Hf anomalies. In this regard, the coupled depletions 

of 182W and 142Nd led a previous study (Puchtel et al., 2016a) to conclude that the 

komatiites from the SGR derived from a mantle domain that was enriched very early 

(ca. 30 Ma after solar system formation) in highly incompatible elements as a result of 

silicate crystal-liquid fractionation in an early magma ocean. Such an early enrichment 

in highly incompatible trace elements, however, should have resulted in negative initial 

ε143Nd(t) and ε176Hf(t) values in the parental source regions of the SGR komatiites, which 

is not observed (Puchtel et al., 2016a). Puchtel et al. (2016a) therefore suggested that 

this parental source must have experienced subsequent melt depletion, after 182Hf 

went extinct, to account for the observed radiogenic initial 143Nd and 176Hf in SGR 
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komatiites. However, this model cannot easily account for the trace element patterns 

of the SGR komatiites, as these are not depleted and relatively flat.  

 

Based on the considerations above, a two-stage process is clearly required where the 

negative 182W and 142Nd anomalies formed early and the radiogenic 143Nd and 176Hf 

compositions were established after the short-lived systems went extinct. Our 

preferred geodynamic model is illustrated in Fig. 3.2 and a detailed description is given 

in the method section. Our model is inspired by pioneering studies on the formation 

mechanisms of early continental crust (Zegers, 2001; Bédard, 2006), where after 

formation of mafic protocrust (Fig. 3.2a) intra-crustal fractionation lead to the formation 

of a felsic, TTG-like crust and mafic lower crustal restites that are recycled into the 

upper mantle (Fig. 3.2b). This process can account for hybrid mantle reservoirs, where 

ambient upper mantle mixes with lower crustal restites (Fig. 3.2c). Melting of such 

hybrid reservoirs might be triggered by ascending plume-like material from the lower 

mantle that might also account for the compositional trend observed for mafic rocks 

from the Kaapvaal Craton. In this scenario, the lower mantle endmember is 

characterized by the Barberton komatiites and the hybrid upper mantle endmember is 

characterized by the SGR komatiites. Hence, such mixing relationships are a plausible 

explanation for the anti-correlation between the short- and long-lived radiogenic 

Fig. 3.2: Preferred geodynamic model for the origin of crustal and mantle-derived rocks from the Kaapvaal 
Craton. (a) Formation of a mafic protocrust by ca. 50 Ma after solar system formation. (b) Formation of TTG-like 
batoliths (orange) and residual garnet – rich restites (green, labelled „R“) after partial protocrustal anatexis between 
ca. 4.35 and 4.25 Ga. (c) Recycling of lower crustal restites and plume initiated volcanism lead to melting of hybrid 
sources that involved delaminated restites, depleted ambient upper mantle and primitive mantle supplied by the 
ascending plume. Shades of grey visualize depleted upper mantle (DUM) and lower mantle (light grey). 



Chapter 3 

 

97 
 

systems. Moreover, our model can also explain the incompatible trace element 

systematics in our samples and the SGR komatiites (see method section).  

The model described above can also explain the somewhat obscured 142Nd patterns 

of the Kaapvaal craton samples. Following constraints from phase equilibrium and 

trace element modeling, melting of Archean TTG suites from mafic protocrust leaves 

behind residual assemblages of amphibolitic, garnet-amphibolitic or eclogitic 

composition (Zhang et al., 2013). Figure 3.3a illustrates that during a first stage mafic 

protocrust that formed 50 Ma after solar system formation developed strongly 

unradiogenic isotope compositions, in particular for the short-lived decay products 182W 

and 142Nd. Subsequent TTG melting (stage 2 in Fig 3.3a) leaves behind garnet-rich 

restites (Zhang et al., 2013), and depending on the timing of this second event, the 

residual restites will develop towards markedly different 142Nd isotope compositions 

with time. In contrast, the 182W isotope composition will be insensitive to the timing of 

TTG extraction, because 182Hf went extinct shortly after formation of the protocrust. 

Evidence for the presence of such ancient TTG precursors in the Kaapvaal Craton 

comes from Hf-in-zircon isotope data (Compston and Kröner, 1988; Zeh et al., 2011; 

Kröner et al., 2014) that suggest formation of a first felsic protocrust already by the 

Eoarchean or late Hadean. Due to the longer half-lifes of their parent nuclides, 143Nd 

and 176Hf isotope compositions in the restites integrate a larger time span and develop 

much more homogenous with time than that of 142Nd, which can only be formed over 

a smaller time interval until 146Sm becomes extinct. These considerations explain, why 

142Nd signatures could become quite variable, depending on the time of TTG 

extraction, unlike long-lived Hf-Nd compositions which would develop towards slightly 

radiogenic values over time. 
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Fig. 3.3: Isotope evolution graphs for the proposed geodynamic model, involving mantle recycling 
of lower crustal restites. (a) During stage (1), mafic protocrust formed ca. 50 Ma after solar system 
formation developed strongly unradiogenic isotope compositions, in particular for 182W and 142Nd. Stage 
(2) is set by restite formation during TTG extraction from mafic protocrust. The dashed lines ilustrate how 
prolonged TTG extraction (between 4.3 and 3.8 Ga) affects the isotope compositions of residual restites. 
Accordingly, the restites develop to markedly variable 142Nd isotope composition with time. In contrast, 
182W is insensitive to the timing of TTG extraction, because 182Hf went extinct shortly after formation of the 
mafic protocrust. Due to the longer half lifes and enriched composition of the parental source the variation 
for the long-lived radionuclides will be negligible. (b) Mixing calculations between delaminated restites and 
ambient depleted mantle, both forming a hybid source. Ca. 10-20% of admixed restite to a ambient 
depleted mantle reproduces the isotope compositions found in the SGR endmember. This hybrid source 
mixed with primitive material supplied by the mantle plume which is reflected in the Kaapvaal mantle array 
for 182W and long-lived radiogenic nuclides (see Fig. 3.1). 
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It becomes apparent from Fig. 3.3a that lower crustal restites from ancient protocrust 

in the sources of the SGR komatiites can explain why the 143Nd and 176Hf isotope 

compositions are so tightly correlated with 182W but not with 142Nd. Recycling into the 

upper mantle (stage 3) formed a hybrid source that is best approximated by the source 

of Schapenburg komatiites, which formed through high-degree melting. We found that 

10-20% of admixed restite to an ambient depleted upper mantle already reproduces 

the radiogenic isotope compositions found in the SGR endmember (Fig. 3.3b). Once 

this hybrid upper mantle source is mixed with primitive material supplied by ascending 

mantle plumes, it can account for the entire compositional spectrum and for the 

negative correlations between 182W and the long-lived radiogenic isotopes (Fig. 3.1). 

Our proposed model can also reproduce the incompatible trace element compositions 

and reconcile distinct trace element systematics that are diagnostic for the SGR 

komatiites. As shown in Fig. 3.6 (method section) our modelling results are in good 

agreement with the SGR komatiites originating from 20-30% batch melting of a hybrid 

source that consists of ambient depleted mantle and 10-20% lower crustal restites. 

Moreover, our model can reproduce distinctive Zr/Sm ratios prominent within SGR 

komatiites and its correlation with 182W isotope compositions (Fig. 3.7, method 

section). However, we attribute the highly variable absolute trace element abundances 

of the SGR komatiite suite to olivine accumulation, as indicated by co-variations 

between MgO content and incompatible trace element concentrations (not shown). 

The hybrid source model can also explain the Re-Os isotope data for the SGR 

komatiites (Puchtel et al., 2009). As shown in the method section the positive initial 

γ187Os of the SGR komatiites (γ187Os = +3.7 ± 0.3, Puchtel et al., 2009) is in accord 

with the addition of 10-20 % of garnet-rich restites from Hadean protocrust to a 

depleted mantle source that was previously exhausted in sulfides.  
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Fig. 3.4: Compilation of combined 182W and 143Nd isotope data available for modern OIBs. Data were 
compiled from Mundl-Petermeier et al. (2020) and references therein. Notably, the global compilation for 
modern OIBs displays a similar trend than the Archean mantle-derived rock assemblage from the Kaapvaal 
Craton. Also shown is the present 182W and 143Nd isotope composition calculated for Hadean restites that 
remained isolated in the mantle (red pale field). A similar OIB compilation for 182W and 176Hf is limited by the 
availability of 176Hf isotope data but shown for comparison in Fig. C2 (appendix C).  
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3.6 Conclusions 

Our proposed lower crustal restite model for the Kaapvaal craton also provides an 

intriguing explanation of 182W isotope variations in modern OIBs. Interestingly, a global 

compilation of combined µ182W vs. 143Nd/144Nd data for modern OIBs (Mundl-

Petermeier et al. (2020) and references therein) displays a similar trend in µ182W vs. 

143Nd/144Nd space than the Archean mantle-derived rock assemblage from the 

Kaapvaal Craton (Fig. 3.4). Remarkably, lower crustal restites, formed between 4.35 

and 4.25 Ga after partial melting of a mafic protocrust that formed between 40-50 Ma 

after solar system formation, constitute a viable endmember in the global OIB array 

(Fig. 3.4). We therefore speculate, that lower crustal restites from Hadean protocrust 

were delaminated and ultimately recycled into the lower mantle where they might be 

part of large low shear-wave velocity provinces (LLSVPs) in the present day mantle 

that were interpreted to contribute to rising mantle plumes (Burke et al., 2008). Indeed, 

geophysical studies demonstrated that LLSVPs represent mixtures of recycled dense 

material that accumulated at the core mantle boundary (Jones et al., 2019; Jones et 

al., 2020). In this regard, our model provides an alternative explanation for the origin 

of negative 182W isotope anomalies in modern OIBs and bridges 182W isotope 

systematics in Archean mantle derived rocks with observations from modern-day 

mantle plumes.   

Our discovery of long-term preservation of Hadean protocrust in Earth’s mantle has 

far-reaching implications as this requires silicate reservoirs on Earth to have already 

differentiated during the lifetime of 182Hf (Touboul et al., 2012). Hence, this finding is in 

support of previous studies (Barboni et al., 2017; Thiemens et al., 2019) that argued 

the Earth-Moon system to have formed within the first ~60 Ma of our solar system, 

much earlier than previously thought.  

 

3.7 Method section 

3.7.1 Geological background of our sample selection   

We analyzed a comprehensive set of rocks from the Kaapvaal craton that range from 

different types of grey orthogneisses (TTGs and more evolved granitoids) to mantle-

derived lithologies of mafic-ultramafic composition. This representative suite of 17 

samples span an age range from 3.55 to 3.22 Ga and represent the main lithological 
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units of the Ancient Gneiss Complex (AGC), also comprising the oldest mafic rocks 

(lower Onverwacht Group, 3.55 to 3.45 Ga) of the Barberton Granite-Greenstone 

Terrane (BGGT).  

The AGC is located in Swaziland and is a typical high-grade gneiss terrain that 

comprises 3.66-3.20 Ga old rocks (Hoffmann and Kröner, 2019). The oldest part of the 

AGC are polydeformed granitoid gneisses, heterogeneous in age and composition 

(Kröner et al., 1989; Kröner et al., 2014), that are interbanded with amphibolites. 

Together, they formed layered grey gneiss sequences in response to ductile 

deformation under high strain conditions (Hoffmann and Kröner, 2019). The different 

varieties of rocks from this sequence have been summarized as the Ngwane Gneiss 

(NG) (Wilson, 1982). The oldest generation of NG (NG sensu stricto) are 3.66 Ga to 

3.5 Ga granitoid gneisses (Compston and Kröner, 1988; Kröner et al., 1989; Schoene 

et al., 2008; Zeh et al., 2011; Kröner et al., 2014) that mainly belong to the tonalite-

trondhjemite-granodiorite (TTG) suite but also comprise granitic rocks. As indicated by 

trace element systematics (Compston and Kröner, 1988), whole rock Nd isotope 

systematics (Kröner et al., 1993) and Hf-in-zircon isotope data (Compston and Kröner, 

1988; Zeh et al., 2011; Kröner et al., 2014) the protoliths of the orthogneisses resulted, 

at least in part, from melting of a LREE enriched source with considerable residence 

time, most likely older continental crust of Eoarchean to late Hadean age. Younger 

generations of grey gneisses, which are mapped as NG, were emplaced after 3.45 Ga. 

These show the same field appearance as the 3.66-3.45 Ga NG but are as young as 

3.2 Ga (Kröner et al., 1993; Kröner, 2007). The oldest NG hosts scattered remnants of 

supracrustal assemblages with greenstone belts (e.g. Dwalile Supracrustal Suite, DSS 

(Jackson, 1984)). These remnants postdate the oldest NG, vary in size and are either 

infolded, occur as tectonically intercalated xenoliths of a few centimeters or even 

represent coherent blocks of several kilometers (Jackson, 1984; Kröner and 

Tegtmeyer, 1994). The origin of these remnants remains contentious. They were 

interpreted either as strongly flattened dikes (Hunter et al., 1984; Jackson, 1984) or as 

dismembered portions of the Dwalile Greenstone Remnant (DGR), which represents 

the largest of the greenstone remnants of the AGC (Kröner and Tegtmeyer, 1994; 

Kröner et al., 2014; Hoffmann and Kröner, 2019; Kröner et al., 2019). The DGR is 

located in SW Swaziland and the supracrustal rock assemblage (metavolcanics, 

metasediments) were shown to be extruded between 3.44 and 3.46 Ga, therefore 

postdating the oldest generation of NG (Kröner and Tegtmeyer, 1994; van Schijndel et 
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al., 2017; Hoffmann et al., 2020). Interestingly, the metavolcanic rocks from the DGR 

share geochemical similarities with volcanic assemblages from the Onverwacht Group 

which hints at a genetic link between the DGR and the BGB (Hunter et al., 1984; Kröner 

and Tegtmeyer, 1994; Hoffmann et al., 2020). Based on trace element systematics 

and variable whole-rock initial εNd and εHf values it has been argued that the mafic 

and ultramafic DGR rocks were derived from a mildly depleted mantle source and were 

in part contaminated by rocks from an ancient continental source, presumably crustal 

material of NG-like composition (Kröner and Tegtmeyer, 1994; Hoffmann et al., 2020). 

The oldest NG and intercalated members of the DSS were intruded by the texturally 

and compositionally distinct Tsawela Gneiss between 3.48-3.43 Ga (Jackson, 1984; 

Kröner, 2007; Zeh et al., 2011; Mukasa et al., 2013; Hoffmann et al., 2016) and 

younger generations of grey gneisses that date back to ca. 3.2 Ga (Kröner, 2007). 

All sample localities are shown in Fig. 3.5. We have analyzed two grey gneisses from 

the >3.45 Ga NG suite that were collected along the Mtimane River in the Mankayane 

area in central Swaziland, where granitoid gneisses of different ages were variably 

affected by intensive regional migmatization at ca. 3.2 Ga (Kröner and Tegtmeyer, 

1994; Kröner et al., 2018; Moyen et al., 2018). Both samples (AGC 351 and AGC 352) 

were previously described (Kröner et al., 2014; Hoffmann et al., 2016). AGC 351 is a 

3.455 Ga old, strongly migmatized grey gneiss of near granitic composition and 

interpreted to be derived from felsic crustal precursors that mixed with juvenile, 

depleted-mantle derived melts (Kröner et al., 2014; Kröner et al., 2018). AGC 352 is a 

3.442 Ga very homogeneous fine grained grey gneiss (Hoffmann et al., 2016).   

We have analyzed several samples from greenstone remnants that are interlayered 

with grey gneisses of the AGC. We investigated two komatiites and one amphibolite 

from the DGR (AGC 83, AGC 86 and AGC 38), one typical amphibolite fragment as 

found in the AGC (AGC 222) and a 3.455 Ga gabbroic enclave (AGC 350) from central 

Swaziland. The mafic-ultramafic rock samples from the DGR were previously 

characterized (Kröner and Tegtmeyer, 1994; Hoffmann et al., 2020). Sample AGC 222 

is a fragmented amphibolite enclave from Kubuta in central Swaziland with a minimum 

age of 3.4 Ga (Suhr et al., 2014). It is similar in composition to other greenstone 

remnants found in the AGC (Kröner et al., 2014; Hoffmann et al., 2016). Gabbroic 

enclaves like AGC 350 can be found along the Mtimane River in the Mankayane area 

close to the sample localities of AGC 351 and AGC 352. As described by Kröner et al. 
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(2018) the precursors of the gabbroic enclaves were emplaced together with granitoid 

gneisses at 3.455 Ga. At about 3.2 Ga, a tectono-magmatic-metamorphic event 

reworked the grey gneisses and greenstones (Moyen et al., 2018) which led to 

boudinage and local anatexis of the gabbros and migmatization of the grey gneisses 

(e.g. sample locality of AGC 351).  

 

Fig. 3.5: Simplified geological map of the Kaapvaal Craton, Southern Africa, showing the 
sample localities covered in this study. The map is taken from Schneider et al. (2018) and modified 
after van Schijndel et al. (2017). 
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The youngest samples from the AGC are two ca. 3.2 Ga gneisses. Sample AGC 473 

is a 3.24 Ga grey gneiss of trondhjemitic composition, which intruded into the oldest 

generation of NG northwest of the DGR. Based on structural considerations, the 

adjacent NG were interpreted as basement for the volcanic sequences of the DGR 

(Jackson, 1984). Our younger grey gneiss sample AGC 473 belongs to the youngest 

generation of NG but contains inherited zircon grains of 3.49 Ga and ca. 3.64 Ga 

(Schneider et al., 2018). This young generation of grey gneisses belongs to a 3.2 Ga 

magmatic event that is typically associated with indicators for strong deformation and 

high-grade metamorphism and therefore suggested to be the result of migmatization 

and crustal melting of older generations of crustal rocks (Kröner et al., 2018; Kröner et 

al., 2019). Sample AGC 445 is a 3.216 Ga old grey gneiss from the Piggs Peak area 

also belonging to the former 3.2 Ga NG generation (Kröner et al., 2019).  

The AGC is in faulted contact with the BGGT along the ca. > 3.2 Ga old Phophonyane 

shear zone northwest of Pigg´s Peak town (Schoene et al., 2008) and is spatially 

separated by sheet-like intrusions of the Mpuluzi and Piggs Peak batoliths. Rocks from 

the BGGT comprise a complex association of greenstone sequences and grey 

gneisses. The greenstone sequences in the BGGT (referred to as the Barberton 

Greenstone Belt, BGB) comprise a complex association of volcanic-sedimentary rocks 

that were deposited over more than 300 million years from < 3547 to > 3219 Ga (Byerly 

et al., 2018). The volcano-sedimentary sequence of the BGB (known as the Barberton 

Supergroup) has traditionally been divided (from base to top) into three main 

lithostratigraphic units: The Onverwacht, Fig Tree, and Moodies groups. The 

Onverwacht Group (OG) is the oldest greenstone succession of the BGB and 

comprises voluminous mafic to ultramafic metavolcanics successions with sparsely 

interbedded metasediments. As we only analyzed samples from the lower OG, we only 

provide a short overview about the lowest stratigraphy of the BGB. The OG is 

subdivided into the lower and upper Onverwacht Group, marked by a chert layer, 

known as the Middle Marker. The lower OG comprises the Sandspruit, Theespruit, and 

Komati Formations, the upper OG includes the Hoggenoeg, Noisy, Mendon, and 

Kromberg Formations (Armstrong et al., 1990). The oldest magmatic events preserved 

in the lithostratigraphic succession of the BGB are mafic-ultramafic and felsic 

metavolcanic rocks. This bimodal sequence (originally assigned to the Sandspruit and 

Theespruit Formations) comprises the oldest rocks of the lower Onverwacht Group. 

The metavolcanic rocks of the Sandspruit and Theespruit Formations were shown to 
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be time-equivalent and deposited during one single volcanic event at ca. 3530 Ma and 

therefore constitute a single lithostratigraphic unit (Kröner et al., 2016). The record of 

the somewhat younger 3.482 Ga Komati Formation (Armstrong et al., 1990) bears 

witness to a period of prolonged volcanic activity, as it comprises a continuous 

succession of alternating komatiitic, komatiitic basalt, and tholeiitic basalt lava flows 

without any intercalated sedimentary layers that would reflect a hiatus in the 

stratigraphy (Dann, 2000).  

The BGB is surrounded by 3.521 to 3.197 Ga old granitoid gneisses (Kröner et al., 

2019) that form a cluster of 12 diapiric plutons with a wide variety of compositional 

types that intruded into the lowermost formations of the BGB (Anhaeusser, 2010). They 

can be subdivided into two major compositionally families that were emplaced during 

two periods: The older (3.45-3.2 Ga) TTG group that was coeval with deposition of 

supracrustal sequences in the BGB, and the much younger (ca. 3.1 Ga) GMS group 

(granite-monzonite-syenite) which intruded after sedimentation and stabilization of the 

crust through continued deformation of the TTG basement and greenstone sequences 

at ca. 3.2 Ga (Byerly et al., 2018).   

Our samples were collected at the southwestern margin of the BGGT southeast of the 

town of Badplaas, in an area around the settlement of Tjakastad (see Fig. 3.5). Here a 

significant proportion of the metavolcanic rocks from the Sandspruit and Theespruit 

Formations occur as dismembered rafts and xenoliths in tonalitic-trondhjemitic 

gneisses of the Badplaas, Stolzburg and Theespruit Plutons in the southern part of the 

Barberton Mountain Land (Anhaeusser, 2010; Van Kranendonk et al., 2014).  

 

3.7.2 Lower protocrust delamination model 

In our model we assumed batch melting throughout (Shaw, 1970). Isotope 

compositions for 143Nd and 176Hf were modelled by using parent-daughter ratios from 

the calculated sources, the appropriate decay constants (Lugmair and Marti, 1977; 

Scherer et al., 2001; Söderlund et al., 2004) and assuming CHUR composition for the 

BSE (Bouvier et al., 2008). The isotope compositions for 142Nd and 182W were back 

calculated by using the appropriate decay constants (Meissner et al., 1987; 

Vockenhuber et al., 2004), present-day isotope composition for the BSE (Caro et al., 

2006; Kleine et al., 2009), elemental Hf/W and Sm/Nd ratios for the BSE (König et al., 

2011; Palme and O’Neill, 2014), and solar-system initials for the parent-daughter ratios 
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(Kleine et al., 2009; Marks et al., 2014). Formation of a mafic protocrust is stage 1 of 

our model (Fig. 3.2a). The older boundary for the timing of protocrust formation is set 

by core formation, which could have been completed as early as 38 Ma After solar 

system formation (König et al., 2011). We extract a mafic protocrust 50 Ma after solar 

system formation from a mantle with BSE composition (Palme and O’Neill, 2014). The 

timing of protocrust formation affects in particular the isotope compositions of the short-

lived isotope systems during further evolution of the protocrust (Fig. 3.3a). For 

protocrust formation, we applied partition coefficients for REE, HFSE, and Th that were 

experimentally conducted and, according to the experiments, assumed 20% batch 

melting at 2 GPa (Salters and Stracke, 2004). Partition coefficients for W are often 

incomplete in the literature. If not available, we calculated partition coefficients for W 

by using partition coefficients for mineral phases from experiments on garnet lherzolite 

(Adam and Green, 2006) that were adjusted to the melt conditions in our model by 

using appropriate partition coefficients for Th. Both elements were shown to behave 

similarly incompatible during silicate crystal-liquid fractionation (König et al., 2011). 

Hence, the W/Th ratio of our modelled melts extracted from the primitive mantle (W/Th 

= 0.14) is indistinguishable from the canonical range reported in the literature (König 

et al., 2011). During stage 2 (Fig. 3.2b) we remelt our modeled mafic protocrust and 

calculate (based on an experimental study (Zhang et al., 2013)) the composition of a 

typical garnet-rich restite that remained after lower crustal anatexis of a 

metamorphosed basaltic assemblage (estimated to be representative for the Hadean 

protocrust) at 12 kbar, in equilibrium with ca. 21% tonalitic melt. The timing of TTG 

formation as well as the residual mineral assemblage exerts a strong influence on the 

142Nd evolution. In contrast, the 182W isotope composition will not change because the 

182Hf-182W system went functionally extinct shortly after protocrust formation at ca. 60 

Ma. Due to the enriched composition of the precursor and the long half lifes of their 

parent isotopes, prolonged tonalite formation will only cause small ingrowths in the 

143Nd and 176Hf isotope compositions in the lower crustal restites (Fig. 3.3a). Therefore, 

prolonged tonalite formation caused decoupling of 142Nd from the other isotope 

systems in the residual garnet-rich restites and provide an explanation why 143Nd and 

176Hf correlate so tightly with 182W but not 142Nd. Indeed, Hf isotope data in zircon 

reported for Paleoarchean grey gneisses of the eastern Kaapvaal Craton reveal 

incorporation of older continental crustal rocks with Eoarchean to late Hadean age 

(Compston and Kröner, 1988; Zeh et al., 2011; Kröner et al., 2014). Assuming 
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prolonged tonalite formation initiated at ca. 4.35 Ga and continued for 100 Ma the 

variation of 142Nd isotope composition within their restites would be ca. 9 μ units at 3.55 

Ga. In contrast, 143Nd and 176Hf would not vary more than 1 ε unit.  

 

 

It has previously been shown that delamination of crustal restites into depleted mantle 

can cause melting of a hybrid source and that the resulting trace element signatures 

resemble typical komatiites (Bédard, 2006). Similarly, the mechanical introduction of 

10-20 % of the garnet-rich restite into an ambient depleted mantle at ca. 3.55 Ga and 

subsequent 20-30% batch melting of the hybrid source can reproduce the trace 

element compositions of the SGR komatiites (Fig. 3.6). We attribute the variation within 

the SGR komatiite suite and their partially more depleted trace element compositions, 

compared to the modelled patterns, to olivine accumulation as indicated by co-

variations between MgO content and incompatible trace element concentrations (not 

Fig. 3.6: Incompatibe trace element compositions for komatiites from the Schapenburg 
Greenstone Remnant (black lines) in comparison to our modeled hybrid sources (blue shaded 
arrays). Data for the SGR komatiites are taken from Puchtel et al. (2016a). In our model calculations 
10 – 20 % of garnet – rich lower crustal restite admixed to an ambient depleted mantle at 3.55 Ga and 
subsequent 20 – 30% batch melting of this hybrid source can reproduce the trace element 
compositions of the SGR komatiites. We attribute the variation within the SGR komatiite suite and 
their more depleted trace element compositions, compared to the modelled patterns, to olivine 
accumulation as indicated by covariations between MgO content and incompatible trace element 
concentrations (not shown). 
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shown). For the ambient mantle we assume 10% melt depletion at ca. 3.9 Ga, using 

coherent parameters during experimentally constrained melt conditions (Salters and 

Stracke, 2004) to calculate the isotope and trace element composition at 3.55 Ga. The 

modelled ambient mantle displays initial ε143Nd and ε176Hf values of +4.6 and +7.8, 

respectively, which is in perfect agreement with the modern terrestrial Hf-Nd array 

(Vervoort et al., 2011), within the range of the modelled DMM composition at 3.55 Ga 

(Griffin et al., 2000) and consistent with observational constraints from mantle derived 

rocks from the Kaapvaal Craton (Hoffmann and Wilson, 2017). The isotope 

compositions for 182W, 142Nd, 143Nd, and 176Hf of 20-30% melt extracted from a hybrid 

source, composed of 10-20% restite and appropriate fractions of ambient depleted 

mantle, is in accord with the range observed for SGR komatiites (see Fig. 3.3b). It is 

noteworthy that the 182W isotope composition of the melt is controlled by the restite 

because high modal abundances of garnet and amphibole, together with refractory Ti-

rich phases (rutile/ilmenite), result in high bulk partition coefficients. This buffers the 

182W isotope composition against possible variations in the Archean mantle (on 

average ca. +10 ppm, Archer et al., 2019). Considering rutile or ilmenite in the restites 

as a residual Ti-rich phase does not significantly affect the results of our model. Ratios 

of Nb/Ta have been proven to be valuable indicators to discriminate between rutile and 

ilmenite (Hoffmann et al., 2011a). Unfortunately, no Ta concentrations exist for the 

SGR komatiites. We expect ilmenite being present in the restites as this results in 

reasonable Nb/Th ratios that are similar (Nb/Th = 15.1-15.4) to the range observed in 

the SGR komatiites (Nb/Th = 11.2-14.6).  Evidence for the presence of a restite in the 

source of the SGR komatiites also come from Zr/Sm ratios that are best explained by 

fractionation of garnet. The correlation of Zr/Sm with 182W isotope composition is 

perfectly reproduced by our model (Fig. 3.7).   

The hybrid source model can also explain the Re-Os isotope data for the SGR 

komatiites. The positive initial γ187Os of the SGR komatiites (γ187Os = +3.7 ± 0.3) reveal 

that their mantle source evolved with a time-integrated suprachondritic Re/Os (Puchtel 

et al., 2009). In our model, the early formation of an enriched protocrust (at ca. 4.52 

Ga) with elevated Re/Os ratios caused strongly radiogenic ingrowth of 187Os for ca. 

150-250 Ma. As a result, the garnet-rich restites had strongly elevated initial γ187Os 

values at the time of TTG genesis (4.35-4.25 Ga). For Re/Os, the depletion of the 

restite during TTG melt formation is buffered by the high modal abundance of garnet 

that was shown to display high compatibility for Re (Righter and Hauri, 1998; 
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Westrenen et al., 2000). Therefore, the radiogenic 187Os isotope composition will be 

retained by relatively high Re/Os ratios in the garnet-rich restite. Moreover, overall PGE 

abundances should be low as sulfides are expected have melted out during TTG 

extraction. These conceptual assumptions are in good agreement with previous 

estimates that calculated the effects of incorporation of Hadean crust or restites into 

the source of the SGR komatiites on its Os isotopic composition (Puchtel et al., 2009; 

Aulbach et al., 2011).  

 

3.7.3 Analytical protocol 

Our analytical protocol for isotope dilution analysis follows procedures that were 

described in detail by previous studies (Thiemens et al., 2019; chapter 2). High-

precision 182W isotope analysis mainly follows established analytical protocols (Tusch 

et al., 2019; chapter 2) that were slightly modified to yield highly purified W solutions 

from large sample loads (up to 18g) and to improve our analytical uncertainty. Our 

protocol for the chemical purification of W for high-precision isotope composition 

analysis comprises four columns. During a cation (AG 50 W-X8 resin, column I) and 

Fig. 3.7: Plot of µ182W vs. Zr/Sm for rocks from the Kaapvaal craton. Data for komatiites from 

the Schapenburg Greenstone Remnant (SGR) are taken from Puchtel et al. (2016a). The combined 
data indicate a systematic correlation between 182W isotope composition and Zr/Sm ratios with one 

endmember defined by the SGR komatiites. The negative µ182W anomalies and low Zr/Sm ratios 

prominent in the SGR komatiites can be attributed to the presence of 10 – 20% garnet rich restites 
within a hybrid source that underwent 20 – 30% batch melting (green box). The grey shaded array 
refers to the 95% confidence intervall in which of all samples are expected to fall. 
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anion exchange stage (AG 1-X8 resin, column II) W is separated from matrix elements 

and HFSE & Ti, respectively. Columns III (TEVA resin) and IV (TODGA resin) are clean 

up columns to that yield purified W cuts. In this regard, the iteration of the final stage 

column during the chemical separation of W (chapter 2) improves the purification from 

remaining matrix elements. The final W-bearing eluate was directly loaded onto 

BioRad Poly-Prep® columns filled with 0.8ml Eichrom prefilter® material to hold back 

organic compounds. This, together with threefold treatments with 80 µl of cHNO3-

30%H2O2 at max. 60°C after dry-down steps during and after the chemical separation, 

strongly improved yields and removed mass independent effects on 183W (Tusch et al., 

2019). Prior to loading onto our final stage column, we combined (up to 10) cuts in 

case sample powders were split up into aliquots (up to 1.3g) during matrix separation. 

The combination of sample solutions during chemical separation does not affect the 

accuracy of our high precision 182W isotope analysis as demonstrated by 

indistinguishable results for sample solutions of our in-house rock reference material 

LP 1 (historical La Palma Basalt), that were either obtained from single column cuts 

(up to 1.3g) or combined solutions from 10 column cuts (in total 11.3 g). The purpose 

of combining the final cuts is to efficiently measure the cuts by reducing the cumulative 

volume of leftovers after multiple measurements of individual solutions. This allows to 

measure at the highest beam intensities possible and, together with our refined 

separation procedure, significantly improves the analytical uncertainty of our 

measurements. This is also reflected by our long-term external reproducibility of our 

in-house rock reference materials LP 1 and AGC 351 that were always measured in 

every session, yielding markedly improved 2 SD of ± 1.5 ppm and ± 2.7 ppm, 

respectively (see Fig. 3.8). The µ182W session averages for LP 1 (1480 OIB from La 

Palma) and AGC 351 (3455 Ma gneiss from Swaziland) overlap within their 95% CI 

(LP1 = -0.4 ± 1.0 ppm and AGC 351 = -0.2 ± 0.5 ppm) and are indistinguishable from 

the NIST reference material and previously reported long-term averages for the same 

sample powders (Tusch et al., 2019; chapter 2). Additionally, we also performed 

repeated analyses (n = 15) of a 3.27 Ga old Komatiite (sample 160245, Ruth Well 

Formation) from the Pilbara Craton Western Australia that exhibits highly elevated W 

concentrations of 19.1 μg/g (chapter 2). The µ182W session average for sample 160245 

(µ182W = +7.9 ± 0.7 ppm, 95% CI) is in agreement with previous results (chapter 2) 

and shows a good long-term reproducibility (2 SD of ±2.5 ppm). This, together with the 

elevated 182W isotope composition and high W concentration of sample 160245 
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validates the method for analytical campaigns that address 182W isotope systematics 

in Archean mantle derived rocks that often display anomalous 182W isotope 

compositions and elevated W concentrations.      

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8: Long–term reproducibility for µ182W (6/4), inferred from the repeated analysis of 
multiple digestions for our in – house reference materials AGC 351, LP 1, and 160245 that are 
reported relative to W NIST SRM 3136. Each symbol refers to the average value of multiple 
measurements conducted during an analytical session. The uncertainties for the session mean 
values are given by the corresponding 95% CI. The long–term reproducibility for our in–house 
reference materials are given by the 2 SD of the session mean values. 
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Fig. A1: Trace element patterns for noritic and doleritic Ameralik dikes that were analysed for 
their 182W isotope composition (red symbols for this study and open symbols for Rizo et al. 
(2016b) and Dale et al. (2017)). Bright and dark grey fields give the range of trace element 
patterns defined by doleritic and noritic Ameralik dikes, respectively (Rizo et al., 2012; Dale et 
al., 2017; Saji et al., 2018). (a): Incompatible trace element spidergram normalized to primitive 
mantle. (b): chondrite-normalized REE patterns. Values for primitive mantle and chondrite are 
taken from Palme and O’Neill (2014). 



Appendix A 

 

138 
 
 

Fig. A2: High precision µ182W isotope measurements for rocks from southern West Greenland (upper 
panel) and our in-house rock standards (lower panel). Larger symbols correspond to the average for 
repeated measurements (n) of multiple digestions, which are shown by smaller symbols. 
Uncertainties for the sample averages are given by the corresponding 95% CI. Uncertainties for 
individual digestions are omitted for visual clarity. The grey shaded areas defined by the rock 
standards correspond to the 2 SD and 95% CI of the repeated analysis of our in-house rock standards 
LP1 and AGC 351. The grey bar defined by the Greenland samples defines the average µ182W for 
Eoarchean rocks and Paleoarchean Ameralik dikes and gives the corresponding 95% CI for all 26 
samples (+12.8 ± 1.0 ppm). 
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Fig. A3: Compilation of 182W isotope data for rocks from SW Greenland from our and previous 
studies. Literature data taken from Rizo et al. (2016b) (dark grey symbols), Dale et al. (2017) 
(light grey symbols), and Willbold et al. (2011) (open symbols). 
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Fig. A4: 182W isotope composition of the jaw crusher material that is used in the rock-preparation facility 
at the University of Cologne. The bars in pale and bright blue colors represent the 2 SD and 95% CI of 
the repeated analysis (n=24), respectively.  
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Table A1: continued 

Table A1: Major and trace element data for rock samples from the Isua Supracrustal Belt (ISB), the 
area south of it (SOISB), the Narssaq Ultramafic Body (NUB), and international rock standard BHVO-
2. Data for sample 2000-10 are taken from Polat et al. (2003) and Hoffmann et al. (2011), for sample 
10 - 38 from Hoffmann et al. (2014). Data for the ultramafic rocks from NUB and SOISB are taken from 
van de Löcht et al. (2018a), and data for samples from the magma mingling association are taken from 
Boyd (2018). Data in italics were determined by isotope dilution. 
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Table A1: continued 
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Table A1: continued 
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Table A1: continued 
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Appendix B 

 

Table B1: Major, minor and trace element data as well as GPS coordinates of sample 
localities for rock samples from the Pilbara Craton. Data in bold and italic (Zr, Nb, Hf, Ta, W, 
Th, and U) were determined by isotope dilution. a major elements from Maier et al, (2009). n.d. = 
not determined 
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Table B2: Compilation of all available 182W isotope literature data available for mantle-derived 
rocks. Also given are elemental concentrations for W and Th. References for 182W isotope 
compositions, as well as for elemental W and Th concentrations are indicated by small letters and 
also reported. For every location, samples with pristine W concentrations are given first (by bold 
characters), followed by samples with overprinted elemental W budgets and samples where Th 
concentrations were not reported. 
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Table B2: continued 
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Table B2: continued 
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Fig. C1: Compilation of µ182W and µ142Nd for crustal and mantle derived rocks from the Kaapvaal 
Craton. The 142Nd isotope compositions for samples from our study were presiously reported in 
Schneider et al. (2018) and combined 182W – 142Nd systematics for komatiites from the Schapenburg 
Greenstone Remnant (SGR) were taken from Puchtel et al. (2016a). The combined data show a 
tendency towards negative anomalies but reveal no clear correlation due to the comparatively large 
uncertainties. 
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Fig. C2: Compilation of 182W and 176Hf isotope compositions for modern OIBs. Data were 
compiled from Mundl-Petermeier et al. (2020) and references therein. As for µ182W vs. 143Nd/144Nd 

(see Fig. 3.4) the global compilation for modern OIBs displays a similar trend for µ182W vs. 176Hf/177Hf, 

although only poorly constrained by less available  176Hf isotope data. Also shown is the present 182W 
and 143Nd isotope composition calculated for restites that remained after prolonged TTG formation 
(4.35 – 4.25 Ga) via partial anataxis of a mafic protocrust that formed between 40 and 50 Ma after 
solar system formation (red pale array).  
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Table C1: Compilation of major, minor and trace element data together with high-precision 
element concentration data obtained by isotope dilution and isotope compositions for rock 
samples from the Kaapvaal Craton. n.d. = not determined 
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Table C1: continued 
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Table C1: continued 
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Table C1: continued 
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