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Abstract

This thesis explores the marine trade-wind convection and the clouds forming within
by using spatial-high-resolution airborne remote sensing observations taken from
the German High Altitude and LOng range research aircraft (HALO). The nadir-
pointing HALO Microwave Package (HAMP) is the central tool of this thesis.
HAMP comprises a cloud radar and a 26-channel microwave radiometer (MWR, 22–
183 GHz), for which the atmosphere and clouds are semitransparent. The shallow
cumulus clouds, like they regularly occur in the trade-wind region, are of particu-
lar interest for better understanding the climate. Several studies (e.g., Bony and
Dufresne, 2005; Schneider et al., 2017) identified such clouds as a main source of
model spread in climate projections. The challenge of this kind of ubiquitous clouds
in the models is partly due to large spread in global observations which can be re-
lated to the small scale of shallow cumuli and the coarse-scale observations from
satellites. This thesis combines three studies around HAMP from the characteriza-
tion of the HAMP MWR, over the development of MWR retrievals for liquid clouds
to the application by evaluating two cloud-resolving simulations.

The HAMP MWR is characterized by investigating the random noise of each chan-
nel, the covariance within each of the five frequency bands, the brightness temper-
ature (BT) offset, the offset stability, and by suggesting an offset correction. The
offset and stability of the HAMP BT acquisitions are studied by comparing the mea-
sured BTs to synthetic measurements based on forward-simulated dropsondes. Off-
sets between −11 and +6 K show a spectral dependency, which repeatedly appears
but is shifted between flights. The offsets are most likely caused by uncertainties in
the calibration method and changing environmental conditions of the MWR in the
belly pod during take-off and ascending. However, an offset correction based on the
dropsondes can be developed for each channel as a function of the flight.

To better interpret the HAMP BT observations, novel retrievals are developed based
on a realistic database of synthetic measurements and corresponding atmospheric
profiles. Retrievals of the liquid water path (LWP), rainwater path (RWP), and
integrated water vapor (IWV) are developed to describe the clouds and their envi-
ronment. The retrieved IWV using the offset-corrected BTs agrees with coincident
dropsondes and water vapor lidar measurements by 1.4 kg m−2. The theoretical
assessment of LWP shows that the LWP error is below 20 g m−2 for LWP below
100 g m−2. The absolute LWP error increases with increasing LWP, but the relative
error decreases from 20 % at 100 g m−2 to 10 % at 500 g m−2. The RWP retrieval,
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which uses the radar in addition to the MWR, can reliably detect RWP larger than
10 g m−2 with a Gilbert skill score > 0.75.

The retrieval results are summarized in a comparison of the clouds and their moisture
environment in the two tropical seasons, which are represented by the field experi-
ments in December 2013 (dry season) and in August 2016 (wet season). Clouds were
more frequent, and their average LWP and RWP were higher in the dry season than
in the wet season. However, deeper convection with the formation of large frozen
particles was less frequent in the dry season. It is hypothesized, that the lower
degree of cloud organization in the dry season led to smaller systems with more
overall cloud cover. The higher degree of randomness in the dry season comes along
with less extremes and is reflected by a narrower distribution of IWV. The variabil-
ity between (especially the wet-season) flights shows, how statistics from airborne
campaigns are affected by the choice of the individual flight pattern.

The more homogeneous and cloudy statistics of the dry season are used to assess
the representation of shallow cumulus convection and the cloud formation over the
ocean in two cloud-resolving simulations generated with the ICON model. The
HAMP radar and a backscatter lidar are used for detecting cloud top height (CTH),
base height, and precipitation, and the MWR stratifies the cases by LWP. Forward
simulators are used to derive the same measurements synthetically from the model
data while applying the same instrument-specific cloud-detection thresholds. The
analysis reveals a bimodal structure of the CTH. The lower mode relates to boundary
layer driven clouds, while the upper mode is driven by moist shallow convection,
trapped under the trade inversion at about 2.3 km above sea level. The storm-
resolving model (SRM) with 1.25 km horizontal grid spacing resolves the two cloud
layers to a limited extend. Most CTHs in the SRM are above the observed lower
CTH mode, and top height increases with LWP. The second model with a 300 m
grid (large-eddy model, LEM) represents better the observed bimodal distribution
of CTH. However, the microphysical schema of neither model can produce in-cloud
drizzle-sized particles that were often observed by the radar. This application study
shows, how HAMP on HALO provides insightful data to help closing the uncertainty
in the models, if interpreted thoroughly.
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Zusammenfassung

Diese Arbeit untersucht konvektive maritime Wolken im Passat. Dazu wurden Mess-
flüge mit dem deutschen Forschungsflugzeug HALO (engl. High Altitude and LOng
range) durchgeführt. Das in Nadirrichtung schauende HALO MikrowellenPaket
(HAMP) ist dabei das zentrale Instrument dieser Arbeit. HAMP kombiniert ein
Wolkenradar und ein Mikrowellenradiometer (MWR, 22–183 GHz) mit 26 Kanälen.
Für beide sind Atmosphäre und Wolken halb-transparent. Die Untersuchung der
niedrigen Cumulus Wolken, die sich regelmäßig in der Passatregion bilden, ist vor
allem für ein besseres Klimaverständnis relevant. Verschiedene Studien (z.B. Bony
and Dufresne, 2005; Schneider et al., 2017) identifizierten diese Wolken als einen
Hauptgrund für die Vorhersagespannweite von Klimamodellen. Die Herausforderung
diesen weit verbreiteten Wolkentyp zu modellieren, liegt zum Teil in der Variabilität,
die globale Beobachtungsdaten geben. Diese Variabilität lässt sich auf die geringe
räumliche Ausdehnung dieser Wolken im Verhältnis zur räumlichen Auflösung von
Mikrowellensatelliten zurückführen. Die vorliegende Arbeit vereint drei Studien mit
HAMP, beginnend mit der Charakterisierung der HAMP MWR, über die Entwick-
lung von MWR Retrievals für Flüssigwasserwolken bis hin zur Anwendung in der
Bewertung von wolkenauflösenden Simulationen.

Das HAMP MWR wird durch die Untersuchung des Kanalrauschens, der Kovari-
anz in jedem der fünf Frequenzbänder, des Versatzes der Helligkeitstemperaturen
(BT, brightness temperature) und der Versatzstabilität charakterisiert. Der HAMP-
BT-Versatz und seine Stabilität werden untersucht, indem die gemessenen BT mit
synthetischen BT aus Vorwärtsrechnungen basierend auf Fallsonden verglichen wer-
den. Die Abweichungen zwischen −11 und +6 K zeigen eine spektrale Abhängigkeit,
die sich, zwar mit Versatz, von Flug zu Flug wiederholt. Höchstwahrscheinlich wird
dieser Versatz durch Unsicherheiten im Kalibrationsverfahren sowie Änderungen
der Umgebungsparameter in der Instrumentenverkleidung des MWR hervorgerufen.
Dennoch kann eine Korrektur für den BT-Versatz in jedem Kanal in Abhängigkeit
vom Flugtag entwickelt werden.

Um die HAMP-BT-Beobachtungen einfacher zu interpretieren, werden neue Re-
trieval entwickelt, die auf einer Datenbank mit realistischen Fällen synthetischer
Messungen und dazugehörigen Atmosphärenprofilen basieren. Um die Wolken und
ihre Umgebung zu beschreiben, werden Retrievals für den Flüssigwasserpfad (LWP,
liquid water path), den Regenwasserpfad (RWP, rain water path) und den integrier-
ten Wasserdampf (IWV, integrated water vapor) entwickelt. Der gewonnene IWV,
basierend auf um den BT-Versatz korrigierten BT, zeigt eine Übereinstimmung mit
Fallsonden und Wasserdampflidarmessungen besser als 1.4 kg m−2. Die theoretische
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Untersuchung der LWP-Genauigkeit ergibt, dass für einen LWP unter 100 g m−2 der
Fehler kleiner als 20 g m−2 ist. Der absolute Fehler nimmt mit zunehmenden LWP
zu, der relative Fehler verringert sich jedoch von 20 % bei 100 g m−2 zu 10 % bei
500 g m−2. Das RWP Retrieval nutzt zusätzlich zum MWR auch das Radar und er-
kennt verlässlich Regen mit RWP größer als 10 g m−2 mit einem Gilbert-Skill-Wert
von über 0.75.

Die Retrievalergebnisse werden in einem Vergleich der Wolken und ihrer Wasser-
dampfumgebnung in den zwei tropischen Jahreszeiten zusammengefasst. Die Jah-
reszeiten sind durch Feldexperimente im Dezember 2013 (Trockenzeit) und August
2016 (Regenzeit) vertreten. Der Bedeckungsgrad und der LWP und RWP in den
Wolken waren höher in der Trockenzeit als in der Regenzeit. Tiefe Konvektion mit
der Bildung von großen Eispartikeln war jedoch seltener in der Trockenzeit. Es wird
vermutet, dass eine geringere Selbstorganisation der Wolken in der Trockenzeit ge-
nerell zu kleineren, aber mehr Wolken führte. Die größere Grad an Zufälligkeit in
der Trockenzeit geht mit weniger Extrema einher und stellt sich durch eine schma-
lere IWV-Verteilung dar. Die Variabilität zwischen den Flügen, vor allem jenen der
2016er Messungen, zeigen, wie die Statistik von Flugzeugmessungen durch die Wahl
der Flugmuster beeinflusst wird.

Die homogenere und wolkenreichere Statistik der Trockenzeit wird genutzt, um die
Wiedergabe von niedriger Konvektion und Wolken über dem Ozean in zwei wolken-
auflösenden Simulationen des ICON Modells zu untersuchen. Das HAMP Radar und
ein Rückstreulidar werden zur Erkennung von Wolkenoberkanten, -unterkanten und
Niederschlag genutzt. Zusätzlich erlaubt das MWR die Klassifikation nach LWP.
Vorwärtsrechnungen werden genutzt, um vergleichbare synthetische Messungen aus
den Modelldaten zu erzeugen und um anschließend die gleichen instrumentenspe-
zifischen Wolkenschwellwerte anzusetzen. Die Beobachtungen zeigen eine bimodale
Verteilung der Wolkenoberkantenhöhen. Grenzschichtprozesse erzeugen die Wolken
der niedrigeren Mode, während Wolken der oberen Mode mit feuchter Konvektion
in Verbindung stehen und nach oben durch die Passatinversion bei etwa 2.3 km
beschränkt sind. Das Modell mit einem horizontalen 1.25 km-Gitter kann die zwei
Moden nur bedingt auflösen. Die meisten Wolkenoberkanten in diesem Modell sind
etwas über der beobachteten niedrigen Mode der Wolkenoberkanten. Das Modell
mit einem 300 m-Gitter gibt die beobachtete Bimodalität deutlich besser wieder.
Jedoch ist das mikrophysikalische Modell in keiner der Simulationen in der Lage,
Nieseltröpfchen, die häufig beobachtete Radarsignale erzeugen könnten, in den Wol-
ken abzubilden. Diese Anwendungsstudie zeigt, wie HAMP Daten helfen können,
Unsicherheiten in Modellen zu aufzuzeigen, wenn die Daten sorgfältig interpretiert
werden.
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Chapter 1.

Introduction

Clouds are fascinating atmospheric phenomena and play a remarkable role in the
Earth climate system. Among them, maritime cumulus clouds, that are frequently
triggered by shallow convection in the trade-wind regimes, are of particular impor-
tance. Reliable measurements are the key to foster our understanding expressed
in models, but the enormous range of cloud sizes over several orders of magnitude
defies all encompassing observations. From the wide range of in-situ to remote sens-
ing observations in different spectral regimes, microwave remote sensing stands out,
because clouds are semitransparent to microwaves such that the whole cloudy profile
can be studied at once. This thesis contributes to the understanding of maritime
convection using the airborne active and passive microwave package HAMP by char-
acterizing the instrument, developing and assessing its retrievals, and by confronting
cloud-resolving simulations with HAMP observations.

1.1. Motivation

Clouds cover on average about two thirds of our globe (Stubenrauch et al., 2013).
Through their presence, they strongly regulate the incoming and outgoing radiation
(e.g., Lohmann et al., 2016). Cloud-related processes redistribute energy in the
atmosphere and control the water cycle (e.g., Bony et al., 2015). Therefore, clouds
are an important component of the climate system. To better understand global
warming, one must know the cloud feedbacks to global warming. Especially the
shallow cumulus clouds over the oceans and in the trade-wind regimes were identified
as a major source of uncertainty in climate simulations for cloud feedbacks (Bony and
Dufresne, 2005; Schneider et al., 2017). Those clouds form over the vast tropical
and subtropical oceans. Barbados is a particularly suitable, though not unique,
location to study them, as it is a remote island in the undisturbed trades with well
developed infrastructure (Medeiros and Nuijens, 2016). Shallow cumulus clouds
form in various sizes and patterns, as shown in Fig. 1.1, within the lowest kilometers
of the atmosphere. They are fed with moisture from the moist and warm surface
layer at their base, and are capped by the dry free troposphere above. Many of
these clouds are just a few hundred meters deep while others, especially those that
precipitate, penetrate deeper and form outflow layers as depicted in Fig. 1.1d (see
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CHAPTER 1. INTRODUCTION

also Nuijens et al., 2014). While condensation warms the layer the cloud forms
in, evaporation of precipitation and droplets transported out of the cloud core cool
the sub-cloud and detrainment layers. This sustains the trade-wind temperature
inversion. The small size and low optical thickness of shallow cumuli make their
impact on radiative fluxes particularly sensitive to changes in the microphysics, i.e.,
on the droplet scale (Turner et al., 2007). However, the radiative fluxes of a shallow
cumulus field are not only controlled by the microphysics within an individual cloud,
but also by the clouds’ interdependency and organization on the mesoscale (Bony
et al., 2020).

(a) (b)

(c) (d)

Figure 1.1.: Different sizes and patterns of shallow cumulus clouds. Scattered shal-
low cumulus (a, b). Shallow cumuli forming a ring around a cold
pool (c). Shallow cumuli forming cloud streets in the front and a few con-
vective updrafts flowing out into a shallow stratus cloud in the back (d).

The response of the cloud cover to a warming climate is predicted differently by cur-
rent climate and process models. In general, warmer air can sustain higher amounts
of water vapor especially in the boundary layer (Stevens and Bony, 2013). Also,
evaporation in the marine boundary layer can increase with warming temperatures,
and satellite data showed that the vertically integrated waver vapor path (IWV) al-
ready increased by 0.4 kg m−2 per decade on average over the ice-free oceans during
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1.1. MOTIVATION

the last 30 years (Mears et al., 2018). The increase over the tropical oceans (20° S to
20° N) of 0.6 kg m−2 per decade is even higher. But whether increased water vapor
acts as a negative feedback on global warming by also increasing the shallow cloud
coverage and with it the Earth’s albedo, or whether the positive feedback of mois-
ture acting as the strongest greenhouse gas dominates, is still subject to research.
While the different responses of the clouds to warming are found to explain most of
the spread in climate sensitivity among different climate models, the shallow cloud
fraction in process based large-eddy simulations (LES) tends to be less sensitive to
environmental changes like boundary layer temperature (Rieck et al., 2012). How-
ever, other large-eddy simulation studies over large domains show that the shallow
cumulus cloud fraction especially depends on how the clouds self-organize in pat-
terns, i.e., the mesoscale organization (Jeevanjee and Romps, 2013; Vogel et al.,
2016). These differences in model predictions are due to uncertainties related to
assumptions and parametrizations of cloud processes on the micro scale that cannot
be resolved directly, even in cloud-resolving large-eddy models. These assumptions
are various (e.g., van Zanten et al., 2011) and observations are necessary to assess
the models’ abilities to reproduce reality.

Mesoscale organization is visible from satellite images (Stevens et al., 2020b), but
also with the naked eye when flying with an aircraft. Such patterns can be evenly
scattered like in Figs. 1.1a and b, form rings (Fig. 1.1c) around potential cold pools,
or form cloud streets, and several convective updrafts can feed one veil-like cloud cov-
ering lots of seemingly independent clouds (Fig. 1.1d). A wide range of in-situ to re-
mote sensing measurement principles are available to observe clouds more objectively
on various size and time scales (Glackin, 2014). Most of the in-situ measurements
are rather direct, but are in general limited to the availability of a measurement
platform and thus have a limited spatial coverage. Remote sensing methods, in con-
trast, are generally more indirect as they measure the electromagnetic radiation or
acoustic waves emitted, scattered, and/or absorbed by the phenomenon of interest.
In atmospheric science, electromagnetic remote sensing uses a wide spectral range
from ultraviolet over the visible and infrared to microwaves. Different frequencies
or wavelengths are used for different purposes. Their main differences are the sen-
sitivity to different components in the atmosphere, the opacity of the atmosphere
related to sensing-depth or -range, and the technically feasible beamwidths, which
correspond to spatial resolution. Visible and infrared sensors have the highest spa-
tial resolution and can provide images with meter resolution even from 10 km or
more distance. The atmospheric gases are mostly transparent or partially opaque to
visible and infrared wavelengths, but cloud particles interact with electromagnetic
radiation at these wavelengths, such that the most of the received information comes
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CHAPTER 1. INTRODUCTION

from a thin sensor-facing layer of the cloud. In contrast, clouds are semitransparent
to microwaves, such that the information content of microwave sensors comes from
the whole cloud depth (e.g., Ulaby and Long, 2015). However, larger wavelengths
require larger antennas limiting the spatial resolution.

Besides wavelengths, remote sensors are also categorized into active and passive sen-
sors. Active instruments transmit radiation and receive the time-delayed scattering
signal of atmospheric components. Thereby, ranging of the backscatterers is possi-
ble. Passive sensors measure the emitted radiation and radiation that is scattered
from a natural source. Differential spectral absorption is exploited to separate differ-
ent sources, i.e., components and ranges, with passive instruments. Remote sensing
sensors can be deployed to multiple moving and stationary platforms on the ground
like super sites, trucks, and ships, in the air on planes, kites, and balloons, and in
space. The small size of shallow cumulus – 70 % having a length of less than 2 km in
the Barbados region (Schnitt et al., 2017) – challenges spaceborne observations. The
predominant existence of these clouds over the oceans complicates detailed ground-
based observations. Island-based experiments like the Barbados Cloud Observatory
(BCO; Stevens et al., 2015) provide useful data, although the special influence of
the island has to be considered (Giangrande et al., 2019). However, airborne remote
sensing can extend the spaceborne observations to finer scales, survey cloud fields
and thus fill an observational gap.

The liquid water path (LWP), for example, is an important cloud characterization,
as it describes the vertical integral of all liquid in an atmospheric column. However,
for climate studies, only a few global LWP observational datasets exist and their
mean zonal values differ by a factor of 2 with a maximum deviation in the tropical
regions (Lohmann and Neubauer, 2018). The differences are partially due to different
sensor designs with their advantages and disadvantages. One dataset is derived
from visible to near-infrared spaceborne sensors, including the Moderate Imaging
Spectroradiometer (MODIS) with a high spatial resolution, but these sensors mostly
see information from cloud top (Zhou et al., 2016), while the considered microwave
satellites see through the whole column, but have a coarse spatial resolution. The
considered Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP;
Elsaesser et al., 2017) also includes an estimation of the rain water path (RWP)
to LWP ratio. However, the RWP in their study is derived with a rather simple
parametrization based on the rain-shaft height estimation and microwave retrieved
rain rate. Greenwald et al. (2018) reported on LWP biases of more than 50 %
due to rain contributions in the MAC-LWP by using reference data from MODIS,
the spaceborne CloudSat Profiling Radar (CPR; Stephens et al., 2002) and the
spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker
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1.2. HISTORICAL PERSPECTIVE ON TROPICAL CAMPAIGNS

et al., 2007a), i.e., using additional passive and active measurements. Therefore one
can ask, how a combination of active and passive microwave sensors available on a
common platform could be used directly for a more elaborated RWP estimation.

Atmospheric models have to represent the effects of individual cloud and rain drops
with variables that are resolved on the model grid. Vertically resolved models, for
example, often consider the mass of all liquid cloud droplets within a unit volume
of a cloud, which is the liquid water content (LWC) – a key parameter in many
microphysical cloud parametrizations. Unfortunately, the instantaneous and direct
observation of the LWC profile is difficult (Crewell et al., 2009). But, LWC can be
estimated by distributing the LWP along the vertical using cloud boundary observa-
tions from a cloud radar (Frisch et al., 1998). This rather simple method resulting in
a basically linearly increasing LWC can be improved by using Doppler radar spectra
(Küchler et al., 2018). However, both methods were developed for ground-based
radiometer measurements, but cannot be used to study precipitating clouds due to
water on the radome. The radome of an airborne radiometer flying high above the
raining clouds, however, is not affected by precipitation and thus its vertically inte-
grated LWP estimates have the potential to be used during and after rain events.
However, the method by Küchler et al. cannot be applied to airborne radar data,
because the Doppler radar spectra are affected by Doppler broadening due to the
platform movement (Mech et al., 2014). Therefore, the LWP has to be used di-
rectly instead of LWC, but cloud top and base height estimates with different cloud
detection sensitivities from different instruments can be considered for a valuable
synergistic model assessment. The transition from cloud to non-cloud is smooth in
modeled clouds as well as in observed clouds. Modeled LWC is often mathemati-
cally different from zero due to numerical diffusion and sensors are limited by their
sensitivity. Also with the naked eye it is hard to tell the exact boundary of a cloud.
Therefore it is important to apply the same cloud detection thresholds on model
data and observations for a fair comparison.

1.2. Historical Perspective on Tropical Campaigns

Already 65 years ago, Byers and Hall (1955) pioneered airborne tropical shallow-
cumulus expeditions and found, that half of the 466 surveyed clouds with top height
above 1.8 km precipitate with a strong correlation of cloud top height and precipi-
tation probability. Byers and Hall studied clouds in the vicinity of Puerto Rico and
reported temperatures at cloud top from 2 to 12.5 ∘C. Thus they showed that also
warm over-water clouds with temperatures clearly above the freezing point precip-
itate at a time, when it was broadly assumed, that seeding with frozen particles is
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CHAPTER 1. INTRODUCTION

required for precipitation to form. Subsequent initiatives like the Barbados Oceano-
graphic and Meteorological Experiment (BOMEX; Holland, 1970) focused more on
vertical transports of water vapor, heat, and momentum from the sea surface into the
boundary trade-wind layer, on radiation, and on the general assessment of cloudi-
ness. BOMEX did not include detailed cloud observations and also spaceborne
observations were not ready at that time to support BOMEX with advanced cloud
parameters. However, the deployment of satellites with active microwave radars like
in the Tropical Rainfall Measuring Mission (TRMM), for example, allowed Short
and Nakamura (2000) to study similar relations like Byers and Hall (1955) but
considering the whole tropics. Short and Nakamura used TRMM data over several
months and found two modes of precipitating cloud top heights with a shallow mode
at about 2 km and a congestus mode near 5 km, where the rain top height of the
shallow mode showed a linear relation to the rain rate. As sensitivity and spatial
resolution like a 5 km footprint limit the use of spaceborne instruments for the study
of individual shallow cumulus clouds, the Rain in Cumulus over the Ocean (RICO)
field campaign (Rauber et al., 2007) was initiated. RICO took place during the
winter trades in the western Atlantic near the Caribbean islands of Antigua and
Barbuda to measure processes related to the rain formation in shallow cumuli and
the subsequent modification of the cloud field by precipitation on scales from aerosol
particles (µm) and cloud droplets to cloud organization (tens of kilometers). A LES
reference case was created with RICO measurements to assess simulations (e.g., van
Zanten et al., 2011). Van Zanten et al. showed that the 12 considered models with
different microphysical parametrizations produce a variety of different cloud micro-
physical structures and emerging surface rainfall. The representation of the vertical
structure of cloudiness and cloud water, and rain were plausible in all simulations.
However, the simulated case is a composite constructed from several days during a
less intense phase of the fieldwork. Further, airborne observations were biased to
larger clouds by the desire to sample active clouds. Therefore, the sampled RICO
data impeded further assessment of the model differences.

In order to better characterize and understand the distribution and structure of
shallow convective clouds and precipitation in the trade-wind region and in the cold
sector of developing winter storms, the Next-generation Aircraft Remote sensing for
VALidation studies (NARVAL; Klepp et al., 2014) took place in December 2013 and
January 2014. NARVAL-South and NARVAL-North were the first two campaigns to
demonstrate the capability of the novel German research High Altitude and LOng
range research aircraft (HALO; Krautstrunk and Giez, 2012) as a remote sensing
platform for observing the state of the atmosphere with a focus on moist processes
and water distribution. During NARVAL, HALO was equipped with a comprehen-

6



1.2. HISTORICAL PERSPECTIVE ON TROPICAL CAMPAIGNS

sive suite of active and passive remote sensing instruments ranging from the visible
to microwave spectrum which supplement each other. The microwave spectrum was
covered by HAMP. This NARVAL payload on HALO was also designed as a testbed
for novel retrievals and synergetic measurement systems which could be later used
on satellites. NARVAL-South targeted the trade-wind region east of Barbados and
NARVAL-North targeted North Atlantic post frontal systems. In August 2016, the
NARVAL series was extended by NARVAL2 (Stevens et al., 2019) using the simi-
larly equipped HALO remote sensing platform to contrast the observations of the
dry-season trades in December 2013 with observations of the warm-season trades.
During NARVAL-South and NARVAL2, HALO was deployed to the eastern most
Caribbean island of Barbados to probe the undisturbed trade-winds to the East and
to make use of the long-term ground-based observations at BCO. NARVAL2 was
also used to test methods to study the large-scale vertical motion with dropsondes
released in circles. The area-averaged vertical motion is an important driver of the
cloud environment and can be derived from the horizontal mass divergence estimated
from the wind measurements of the sondes along the circle (Bony and Stevens, 2018).
Following NARVAL2, the same instrumentation was used during the North Atlantic
Waveguide and Downstream Impact Experiment (NAWDEX; Schäfler et al., 2018)
to study diabatic processes in mid-latitude frontal systems over the North Atlantic
in September and October 2016.

To follow up on the air-sea interaction studied during BOMEX, cloud and rain
process investigated during RICO, and to facilitate the ultra-low-orbit satellite-like
remote-sensing cloud-observatory established during NARVAL, the field campaign to
Elucidate the Couplings between Clouds, Convection, and Circulation (EUREC4A;
Bony et al., 2017) took place at the beginning of 2020. EUREC4A was the most
recent deployment of HAMP. A timeline overview of the campaigns during which
HAMP was deployed to HALO is shown in Fig. 1.2.
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NARVAL-North
KEF, Island
January 2014

NARVAL-South
BGI, Barbados
December 2013

NARVAL2
BGI, Barbados
August 2016

EUREC4A
BGI, Barbados
Jan./Feb. 2020

Radiometer upgrade
Fall 2018

NAWDEX
KEF, Island
Sep./Oct. 2016

Introduction of closed
vertical calibration targets

Figure 1.2.: Timeline of HAMP deployments to HALO. HALO was based in the
Keflavík Airport (KEF) and the Grantley Adams International Airport
(BGI) for the mid-latitude and tropical campaigns, respectively.
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1.3. HALO as Flying Cloud Observatory

The NARVAL instrumentation of HALO includes a dropsonde system and a suite of
active and passive remote-sensing instruments as depicted in Fig. 1.3. The dropsonde
system allows for human-assisted launches of radiosounding-like probes attached to
small parachutes to measure the wind and thermodynamic profiles. The remote
sensing suite includes the water vapor and aerosol backscatter lidar WALES (WA-
ter vapor Lidar Experiment in Space; Wirth et al., 2009) and spectral radiometer
systems measuring up- and downwelling radiation at visible to near-infrared wave-
lengths. These instruments are complemented by the HALO Microwave Package
(HAMP; Mech et al., 2014) comprising a cloud radar, and a suite of microwave ra-
diometers (Fig. 1.4) at millimeter to centimeter wavelengths. The radar operates at
36 GHz and the radiometers have a total of 26 channels from 20 to 200 GHz. This
wide spectral range and high number of channels makes HAMP unique compared to
other airborne and spaceborne microwave instruments (Wendisch et al., 2013; Ulaby
and Long, 2015).

Figure 1.3.: Cross section of HALO with the NARVAL payload. Figure derived from
Stevens et al. (2019). Courtesy of the American Meteorological Society.

The HAMP radar has been used, for example, by Oertel et al. (2019) to investigate
embedded convection in warm conveyor belts associated with a mid-latitude cyclone
and by Wolf et al. (2019b) to assess the ECMWF (European Centre for Medium-
Range Weather Forecasts) radiation scheme analyzing another mid-latitude system
during NAWDEX. Furthermore, the HAMP radar and radiometers have been used
in a comparison study for different cloud masks during NARVAL-North by Albern
(2014). Schnitt et al. (2017) developed the first HAMP radiometer retrievals of LWP
and IWV using a simplified training dataset based on dropsonde data for NARVAL-
South. Wolf et al. (2019a) used retrievals from HAMP, that were developed following
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1.3. HALO AS FLYING CLOUD OBSERVATORY

(a)

(b)

Figure 1.4.: HALO with closed belly pod (a) and remote sensing instruments in-
side the belly pot underneath the HALO fuselage (b). From left (front)
to right in (b): HAMP-G, HAMP-KV, HAMP-WF, lidar window, and
HAMP cloud radar antenna. Picture (b) by Mech et al. (2014) is dis-
tributed under Creative Commons Attribution 3.0 License.

the method by Schnitt et al. (2017) for NARVAL2, to improve the estimation of cloud
droplet number concentration of trade wind cumuli based on spectral solar radiation
measurements.

In general, the characterization and calibration of an instrument are unquestionable
prerequisites for geophysical retrievals. The HAMP radar has been calibrated by
Ewald et al. (2018). However, an in-depth characterization of the radiometer, a
quality control of the calibration, and a refinement and assessment of the retrievals
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CHAPTER 1. INTRODUCTION

have been missing. The calibration of microwave radiometers is especially sensitive
as the radiance of the measured thermal emission is rather low compared to the
emission of the radiometer itself. The accurate microwave radiometer calibration is
a research subject on its own (e.g., Hardy, 1973; Han and Westwater, 2000; Küchler
et al., 2016).

The signals detected by the HAMP radiometers are, like for every passive sensors,
the sum of all sources and sinks of the radiation along the observation path. Different
channels are affected by different features of the atmosphere. Forward simulators
can simulate HAMP measurements given the state of the atmosphere and using
radiative transfer equations. However, the challenge is to generalize and invert the
forward simulator to retrieve geophysical quantities from the simultaneous signals
seen by several sensors. Novel and specialized retrievals have to be developed to get
the best of HAMP with its unique set of channels and supported by the special suite
of further observations from HALO.

1.4. Research Questions and Outline

This thesis makes use of the unique capabilities of HAMP with a focus on the
passive component and is structured around three major topics: instrument char-
acterization, retrieval development, and application. Primarily, the data from the
NARVAL-South and NARVAL2 campaigns are used, focusing on tropical clouds and
convection. The latest observations from EUREC4A are considered as an outlook.
The thesis starts with an introduction into the theoretical background on microwave
remote sensing, including the spectral features covered by HAMP as well as its mea-
surement quantity brightness temperature (BT) in Chapter 2. That chapter also
introduces the forward simulation of HAMP using the radiative transfer simulator
PAMTRA. The subsequent three chapters address the three major topics, which are
further refined by the following research questions.

1. How accurate are the HAMP brightness temperature BT measurements? This
question involves a ground-based and airborne instrument characterization of
the BT noise, its drift, and an assessment of the absolute calibration.

2. How can geophysical quantities be retrieved from HAMP observations? The
focus is on the liquid hydrometeors, i.e. LWP and RWP, but also the cloud en-
vironment in terms of water vapor, i.e. IWV, matters. What is the uncertainty
of LWP, RWP, and IWV retrievals from HAMP? Which differences between
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the dry season in December 2013 (NARVAL-South) and the wet season in
August 2016 (NARVAL2) can be identified from the retrieved products?

3. How can HAMP be used to assess cloud-resolving model simulations and how
good are the considered models in representing the convective dry-season trade-
wind clouds? Two different cloud-resolving simulations are confronted with
HALO observations to tell their differences with respect to clouds and precip-
itation.

The instrument accuracy is studied at the processing level of BTs in Chapter 3
by analyzing measurements on reference targets as well as forward-simulated syn-
thetic measurements based on dropsonde data. The analysis provides an uncertainty
estimate and an offset correction with are subsequently considered in the retrieval
development. Cloud-resolving models and forward simulations are used to developed
novel retrievals of IWV, LWP, and RWP. Their description, accuracy assessment,
and summary in a seasonal comparison are embraced in Chapter 4. The application
of HAMP with its active and passive component is completed by using it to assess
the clouds simulated by two cloud-resolving simulations in Chapter 5. Finally, the
conclusion of using HAMP to characterize maritime trade-wind convection and an
outlook on future possibilities are presented in Chapter 6.
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Chapter 2.

Airborne Microwave Radiometry

This chapter gives a brief background on the principles that apply to airborne mi-
crowave remote sensing in general and on HAMP in particular.

2.1. Microwave Cloud Property Measurement

An advantage of microwave remote sensing compared to visible or infrared methods
is the semitransparency of cloud droplets to microwaves such that microwave meth-
ods can also be used in cloudy scenes to retrieve information on the whole vertical
column (Smith et al., 1994). The spectrum of microwave absorption coefficients
(Fig. 2.1) shows how oxygen and water vapor affect the microwave radiation differ-
ently. Emission lines of water vapor and oxygen are broadened by the atmospheric
pressure and thus influence certain frequency bands with decreasing intensity fur-
ther away from the line centers. As scattering can be neglected due to the small
molecule sizes compared to the wavelength, extinction is purely due to absorption
and thus absorptivity equals emissivity by Kirchhoff’s Law (Wendisch et al., 2013).
Based on the absorption features or emissivity complexes, the sensing depth into
the atmosphere of a passive sensor with a narrow channel bandpass depends on the
position of the channel frequency relative to the absorption complex (e.g., Ulaby and
Long, 2015). This means different microwave channels get most of their informa-
tion from different altitudes and some are more sensitive to changes of water vapor
while others are more sensitive to temperature changes due to changes in oxygen
emission. Therefore, HAMP was designed with 26 channels related to 5 different
spectral features as described in a following section.

The non-resonant emission from liquid droplets adds to the gaseous emission and
depends on the amount of liquid and its temperature. This additional emission can
be observed best in the so-called window channels around, e.g., 30 or 90 GHz, where
gaseous emission is low. Frozen hydrometeors have a negligibly small emissivity,
but scatter upwelling radiation and therefore reduce radiation observed from above
(Kneifel et al., 2010). The radiation depression through scattering of ice generally
increases with increasing frequency and particle size. The emission from the Earth’s
surface is also seen by downward looking air- and spaceborne sensors as the total
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Figure 2.1.: Microwave absorption spectrum due to water vapor (H2O), gaseous
oxygen (O2), and gaseous nitrogen (N2) based on Rosenkranz (1998),
Turner et al. (2009), and Liljegren et al. (2005).

atmosphere is especially transparent at microwave frequencies below 100 GHz and
in window channels. However, the microwave emissivity of the ocean is about 0.4
to 0.6 such that the ocean provides a relatively cold background signal compared
to atmospheric emissions. The ocean emissivity depends mostly on the frequency,
roughness, foam formation, salinity, temperature, and observation angle and is there-
fore spatially rather homogeneous. In the end, the signal seen by a passive sensor is
the sum of all sources and sinks of the radiation along the observation path.

2.2. Radiative Transfer Equation

The quantitative amount of radiation received at a sensor, i.e., the radiative flux,
can be derived from the radiative transfer equation (RTE). In general, the RTE
describes the change of radiation as it is propagating through a medium like the
atmosphere by interacting with its constituents like gas molecules or hydrometeors.
The radiative transfer theory is well explained in textbooks (e.g., Liou, 2002; Petty,
2006) and is briefly described in the following.

14



2.2. RADIATIVE TRANSFER EQUATION

Electromagnetic radiation propagating through the atmosphere is dampened by ex-
tinction. The extinction is quantified by the extinction coefficients 𝛽e (in m−1) and
is the result of absorption (𝛽a) and scattering (𝛽s) as

𝛽e = 𝛽a + 𝛽s. (2.1)

Absorption is the energy uptake by the medium and scattering the change of the
propagation direction of an incident wave. 𝛽a and 𝛽s are intrinsic attributes of
the medium and in principle functions of frequency and atmospheric temperature,
pressure, and composition. For microwaves, the most important and variable part in
the atmospheric gas composition is the water vapor. Also homogeneously distributed
hydrometeors can be described with 𝛽a and 𝛽s coefficients. The following assumes
the monochromatic case and that scatterers are small compared to the wavelength 𝜆.
This is the case for the gas molecules and cloud droplets at the considered microwave
wavelengths and simplifies the RTE to one dimension as scattering can be neglected
(𝛽s = 0).

The spectral radiance 𝐼𝜈 (in W sr−1 m−2 Hz−1) of the incident radiation of frequency
𝜈 is reduced by absorption when propagating through an infinitesimal thin layer of
air with thickness 𝑑𝑠 by the amount

𝑑𝐼𝜈,absorption = −𝛽a,𝜈 𝐼𝜈 𝑑𝑠. (2.2)

The subscript 𝜈 is omitted in the following. At the same time, 𝐼 increases through
thermal emission of the layer. The emission is related to the air temperature 𝑇 .
According to Kirchhoff’s Law, the emissivity of the air in thermodynamic equilibrium
is equal to the absorptivity and the emitted radiance 𝑑𝐼emission is proportional to the
black body radiance 𝐵(𝑇 ), which is explained later on.

𝑑𝐼emission = 𝛽a 𝐵(𝑇 ) 𝑑𝑠. (2.3)

Combining the equations above, the monochromatic non-scattering form of the RTE
describing the change of radiance is

𝑑𝐼 = 𝑑𝐼absorption + 𝑑𝐼emission = −𝛽a 𝐼 𝑑𝑠 + 𝛽a 𝐵(𝑇 ) 𝑑𝑠

= 𝛽a (−𝐼 + 𝐵(𝑇 )) 𝑑𝑠.
(2.4)

This equation can be integrated and a solution can be found for the radiance 𝐼(𝑠)
at a point 𝑠 by knowing the radiance at a reference point 𝑠0. The solution is

𝐼(𝑠) = 𝐼(𝑠0) 𝑒−𝜏(𝑠0,𝑠) +
∫︁ 𝑠

𝑠0
𝛽a(𝑠′) 𝐵(𝑇 (𝑠′)) 𝑒−𝜏(𝑠′,𝑠) 𝑑𝑠′, (2.5)

with the optical depth 𝜏(𝑠1, 𝑠2) between 𝑠1 and 𝑠2 being defined as

𝜏(𝑠1, 𝑠2) =
∫︁ 𝑠2

𝑠1
𝛽a(𝑠) 𝑑𝑠. (2.6)
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A black body is an idealized physical body that absorbs all incident radiation re-
gardless of frequency or incident angle. In thermal equilibrium, i.e., at a constant
temperature, the emitted radiation 𝐵(𝑇 ) is described by Planck’s law as

𝐵(𝑇 ) = 2ℎ𝜈3

𝑐2
1

𝑒
ℎ𝜈

𝑘B𝑇 − 1
, (2.7)

where ℎ is the Planck constant (ℎ = 6.626 070 15 × 10−34 J s), 𝑐 is the speed of light
in the medium (𝑐 ≈ 3 × 108 m s−1 in air), and 𝑘B is the Boltzmann constant (𝑘B

= 1.380 649 × 10−23 J K−1). The black body radiation is reduced by the surface-
material-dependent emissivity factor 𝜖 < 1 for real bodies like the sea surface. Such
bodies are called gray. As a gray body does not absorb all incident radiation, the
remaining part (1 − 𝜖) is scattered or transmitted.

The theory above provides enough background to derive a simple form of the RTE for
the airborne application. In this example a nadir looking radiometer with a narrow
field of view is assumed in a non-scattering atmosphere. The radiometer is flying at
the altitude 𝐴 above the calm ocean surface at altitude 𝑎 = 0, for which specular
reflection is assumed. In this setup, the radiometer receives not only an atmospheric
signal but also the emission of the sea surface with temperature 𝑇sea. However,
as the sea is a gray body (𝜖 ≈ 0.4 . . . 0.6), it also reflects radiation and cannot be
used as background at 𝑠0. Instead the downwelling radiance at the sea surface 𝐼sea

has to be considered. This can be directly derived from Eq. 2.5 knowing the cosmic
microwave background radiation at 𝑠0 = ∞ which emits with a temperature of about
𝑇∞ = 2.7 K (Noterdaeme et al., 2011). Therefore,

𝐼sea = 𝑇∞ 𝑒−𝜏(𝑎,∞) +
∫︁ ∞

𝑎
𝛽a(𝑠′) 𝑇 (𝑠′) 𝑒−𝜏(𝑎,𝑠′) 𝑑𝑠′ (2.8)

where 𝐼(∞) = 𝐵(𝑇∞).

The radiance 𝐼(𝐴) received at the airborne radiometer is the sum of the upwelling
radiation emitted by the atmosphere between 𝐴 and the sea surface 𝑎, the sea surface
emission and the radiation reflected at the sea surface. The latter two terms are
dampened by the atmospheric absorption between 𝑎 and 𝐴 by 𝑒−𝜏(𝑎,𝐴). Thus

𝐼(𝐴) =
∫︁ 𝐴

𝑎
𝛽a(𝑠′) 𝐵(𝑇 (𝑠′)) 𝑒−𝜏(𝑠′,𝐴) 𝑑𝑠′

+ 𝜖 𝐵(𝑇sea) 𝑒−𝜏(𝑎,𝐴)

+ (1 − 𝜖) 𝐼sea 𝑒−𝜏(𝑎,𝐴).

(2.9)

In the microwave regime, ℎ𝜈
𝑘B𝑇 ≪ 1. Thus, the Rayleigh-Jeans approximation can be

used which simplifies Eq. 2.7 to

𝐵(𝑇 ) = 2𝑘B𝜈2

𝑐2 𝑇. (2.10)
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This equation shows the linear relation between the black body radiation and the
physical temperature. In microwave remote sensing, it is convenient to use this lin-
earity to translate the incident radiance into its radiatively-equivalent black body
temperature called brightness temperature (BT) by inverting 𝐵(𝑇 ). In this thesis,
BT is defined by inverting the exact Planck equation (Eq. 2.7), but also the inversion
of the Rayleigh-Jeans (Eq. 2.10) approximation is common in the literature. Equa-
tion 2.9 can be simplified with the Rayleigh-Jeans approximation to an equation
that is related to physical temperatures directly:

BT(𝐴) =
∫︁ 𝐴

𝑎
𝛽a(𝑠′) 𝑇 (𝑠′) 𝑒−𝜏(𝑠′,𝐴) 𝑑𝑠′

+ 𝜖 𝑇sea 𝑒−𝜏(𝑎,𝐴)

+ (1 − 𝜖) 𝑒−𝜏(𝑎,𝐴)
(︂

𝑇∞ 𝑒−𝜏(𝑎,∞) +
∫︁ ∞

𝑎
𝛽a(𝑠′) 𝑇 (𝑠′) 𝑒−𝜏(𝑎,𝑠′) 𝑑𝑠′

)︂
.

(2.11)

2.3. Radiative Transfer Simulator

The radiative transfer equation (Eq. 2.11) presented in the section before is the ide-
alized theory to calculate microwave BTs. Much complexity is hidden in parameters
like 𝛽 and 𝜖 which depend on atmospheric and surface attributes. Furthermore,
the scattering by larger hydrometeors should be considered as well. Therefore, the
comprehensive Passive and Active Microwave TRAnsfer package (PAMTRA; Mech
et al., 2020) is used to forward simulate microwave radiometer measurements. PAM-
TRA components provide the necessary estimates of, for example, 𝛽 and 𝜖.

Within PAMTRA, gaseous absorption coefficients 𝛽a of oxygen, water vapor, and
nitrogen are calculated according to Rosenkranz (1998) with corrections of the water
vapor continuum absorption by Turner et al. (2009) and the modification of the
22.235 GHz water vapor line width proposed by Liljegren et al. (2005) as depicted
in Fig. 2.1. The ocean surface emissivity (𝜖) and reflectivity are calculated using
the FAST microwave Emissivity Model version 5 (FASTEM5; Liu et al., 2011).
FASTEM5 is a modification of the Fresnel coefficients and considers corrections for
ocean surface roughness and foam building as a function of wind speed.

2.4. Microwave Radiometer Design

The objective of a microwave radiometer is to measure the radiative flux at a specified
microwave frequency. The radiometer antenna defines the field of view, from which
the radiation is received. Generally, a narrow field of view is desired for high spatial
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resolution. The power of the radiative flux can be interpreted as thermal noise
emitted by the observed scene, and is often expressed in terms of the flux-equivalent
BT (cf. Eq. 2.10). Thus, the power output of an antenna can be related to the
equivalent antenna temperature 𝑇A. In case of an ideal, lossless antenna, 𝑇A is the
average BT of the field of view weighted by the antenna response pattern (Ulaby
and Long, 2015). As the power of natural microwave radiation on Earth is low,
the power is amplified with the amplification gain 𝐺 before it can be measured by
a detector. The most simple design of a microwave radiometer is the total power
radiometer as depicted in Fig. 2.2.
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Figure 2.2.: Principal schematic of a one-channel total power radiometer. After Skou
and Vine (2006) and Ulaby and Long (2015).

In a real radiometer, its components will generate noise, which can be expressed with
the receiver noise temperature 𝑇rec (Skou and Vine, 2006). Therefore, the detector
output voltage 𝑈det can be expressed as

𝑈det = 𝐺 (𝑇A + 𝑇rec). (2.12)

The noise fluctuation is smoothed by a final integrator over the observation period
𝜏 . Two reference points with different 𝑇A and corresponding 𝑈det are necessary to
determine 𝐺 and 𝑇rec. Subsequently, Eq. 2.12 can be inverted to obtain 𝑇A from a
measured 𝑈det.

The simple total power radiometer assumes constant 𝐺 and 𝑇rec in Eq. 2.12. How-
ever, a stability of 𝐺 of a thousandth is required when a signal of 1 K should be
measured on top of 𝑇A + 𝑇rec which is on the order of 1000 K. Therefore two ad-
ditional components can be added to the schematic as shown in Fig. 2.3 following
Rose (2009) and Radiometer Physics GmbH (2015). First, a so called Dicke switch
is installed as close as possible to the antenna. The Dicke switch can switch the ra-
diometer input between the antenna and a resistor, with has a radiative-equivalent
temperature 𝑇DS. As waveguides guide the received radiation, the Dicke switch has
to be realized as waveguide circuit. Such switch can potentially leak some of the
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received power from the antenna into the detector when switched to the resistor.
Therefore, the detector output of the closed Dicke switch is

𝑈DS = 𝐺 ((1 − 𝛼) 𝑇DS + 𝛼 𝑇A + 𝑇rec) (2.13)

with the Dicke switch leakage parameter 𝛼, which is typically below 0.005. The
radiometric Dicke switch temperature 𝑇DS is close to its physical temperature 𝑇DSp

and can be described as
𝑇DS = 𝑇DSp + Δ𝑇DS. (2.14)

The second additional component is the noise injection. When the noise diode is
connected via the noise injection, extra noise power is added onto the detected
signal. The noise diode emits with an equivalent temperature of 𝑇noise on the order
of 1000 K or higher. The measured voltage on a scene with 𝑇A is then

𝑈A+noise = 𝐺 (𝑇noise + 𝑇A + 𝑇rec). (2.15)
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Figure 2.3.: Principal schematic of a one-channel radiometer with Dicke switch and
noise injection. After Rose (2009).

Equations 2.13, 2.14, and 2.15 introduce the additional three parameters 𝛼, Δ𝑇DS,
and 𝑇noise which have to be calibrated. 𝑇DSp can be monitored with a physical
thermometer. Δ𝑇DS can be determined using Eqs. 2.13 and 2.14 by ignoring the
influence of 𝛼. Such condition is established when 𝑇A of a reference target is close
to 𝑇DS. When the radiometer is operated approximately at ambient temperature,
it is convenient to use a hot target at ambient temperature. Subsequently, 𝛼 can
be determined from Eq. 2.13 with a target, that is significantly different from 𝑇DS.
Such a target can be a cold target, which is for example cooled with liquid nitrogen.
𝑇noise can be derived from Eq. 2.15 after determining 𝐺 and 𝑇rec from Eq. 2.12 by
using two known reference pairs of 𝑈det and 𝑇A.

19



CHAPTER 2. AIRBORNE MICROWAVE RADIOMETRY

𝑇noise is the most significant parameter of the three additional parameters. Noise
diodes with much better stability compared to the amplifier gain can be built. There-
fore, injecting known noise and closing the Dicke switch can be used to constantly
calibrate the values of 𝐺 and 𝑇rec during operation. To do so, the voltage is mea-
sured at a scene with alternately closing the Dicke switch and injecting the noise,
such that Eqs. 2.13 and 2.15 can be solved for 𝐺 and 𝑇rec by assuming 𝑇A being
constant for a short time.

2.5. The HALO Microwave Package (HAMP)

HAMP is a combined active and passive microwave instrument designed for the air-
borne operation in the belly pod of the HALO research aircraft. It was developed
to study cloud and precipitation processes, test retrieval algorithms, motivate fu-
ture satellite instrument proposals, and to validate and better understand already
operating spaceborne instruments. HAMP comprises a 35.56 GHz Ka-band cloud
radar and a suite of microwave radiometers (MWRs) measuring in five frequency
bands between 22.24 and 183.31 ± 12.5 GHz. The radar antenna as well as the three
radiometer modules are mounted in the belly pod under the front part of the HALO
fuselage in nadir pointing orientation as depicted in Figs. 1.3 and 1.4. HAMP was
operated at flight altitudes ranging between 6.4 and 15.0 km while HALO was flying
with an average speed above ground of 237 and 207 m s−1 during NARVAL-South
and NARVAL2, respectively. The radiometers were custom-manufactured by Ra-
diometer Physics GmbH (RPG) and technical details are provided by Rose (2009).
Mech et al. (2014) describes the design of HAMP and illustrated its potential. This
section gives a brief overview on the passive part of HAMP with the features impor-
tant for this thesis. The term “HAMP” will in general be used to refer to the three
MWRs forming the passive part of HAMP, whereas the active part of HAMP will
either be referred to as “active” or as “radar”.

The passive part of HAMP is a microwave radiometer composed of three independent
modules. Their main and name-giving distinction are the frequency bands observ-
able with each module. The module in the front of the belly pod is called HAMP-
WF and measures in a W-band window channel and in four double-sideband F-band
channels along the 118.75 GHz oxygen line. The center module called HAMP-KV
operates in seven K-band channels along the water vapor line between 22.24 and
31.40 GHz, and in seven V-band channels along another oxygen line from 50.3 to
58.0 GHz. The HAMP-G module in the rear has seven double-sideband channels
around another water vapor line at 183.31 GHz in the G band. The center fre-
quencies and bandpasses of each channel are presented in Table 2.1. The modules
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2.5. THE HALO MICROWAVE PACKAGE (HAMP)

are referred to as “HAMP-x” here instead of “HALO-x”, which is the term Mech
et al. (2014) use as a deviation from the manufacturer’s nomenclature (Rose, 2009),
which is HALO-KV, HALO-11990, and HALO-183 for HAMP-KV, HAMP-WF, and
HAMP-G, respectively.

Table 2.1.: HAMP radiometer attributes and receiver noise temperatures (𝑇rec)
(Rose, 2009; Mech et al., 2014).

Band
Channels Bandwidth

Abs. feat.
𝑇rec

(GHz) (MHz) (K)

K 22.24, 23.04, 23.84, 25.44, 26.24,
27.84, 31.40

230 H2O 380–520

V 50.30, 51.76, 52.8, 53.75, 54.94,
56.66, 58.00

230 O2 570–720

W 90.0 2000 window ≈ 1000

F 118.75 ± 1.4, 2.3, 4.2, 8.5 400 O2 1800–2300

G 183.31 ± 0.6, 1.5, 2.5, 3.5, 5.0 200 H2O 1800–2800
183.31 ± 7.5, 12.5 1000

The double-sideband channels measure the averaged BT at two frequencies with
symmetric offset around the center frequency, i.e., around 118.75 and 183.31 GHz
in the F and G band, respectively. This is realized by a superheterodyne receiver
that tunes the received frequency 𝜈RF down to an intermediate frequency 𝜈IF using
a subharmonic mixer and a local oscillator at central frequency 𝜈LO. Subsequent
bandpasses filters centered at 𝜈IF filter the mixed signal such that the signals with
frequencies around 𝜈LO + 𝜈IF and 𝜈LO − 𝜈IF are combined. Further details can be
found in the literature (e.g., Skou and Vine, 2006; Ulaby and Long, 2015).

The four antennas of HAMP-KV and -WF are realized by corrugated feed-horn
aperture-lens combinations. HAMP-G uses an off-axis parabolic mirror in addition
to the feed-horn antenna. This mirror can rotate to change the beam direction of
the HAMP-G antenna on a temperature monitored internal target. This mirror and
internal target replace the magnetically controlled Dicke switches (Sect. 2.4), which
can close the receiver waveguides in the other modules. In addition, a noise diode
signal can be injected into the receiver path in all modules. The noise diodes emit
at a constant equivalent temperature between 1000 and 1500 K depending on the
channel. The noise diode and Dicke switch or turning the mirror to the internal
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target are used for a frequent and continuous update of the gain and receiver noise
temperature.

After NARVAL2 and NAWDEX, HAMP was upgraded for improved performance
during EUREC4A. This upgrade included a software update for a higher temporal
resolution of 4 instead of 1 Hz. Also, the radiometers were upgraded to RGPs latest
G5 technology which includes the change from a Dicke type radiometer to a noise-
switching radiometer. The reader is referred to Skou and Vine (2006) for further
details on the radiometer principles. Furthermore, the outermost G-band channel
at 183.31 ± 12.5 GHz was removed with the upgrade.

2.6. HAMP’s Sensitivity to the Atmosphere and Sea
Surface

PAMTRA can be used so simulate HAMP measurements, given an atmospheric
profile and sea surface attributes. This section demonstrates the sensitivity of the
different HAMP channels to changes in the clear-sky atmosphere and input. The
influence of liquid hydrometeor emissions will be discussed in Sect. 4.2.2.

The forward-simulated BT spectrum with unmodified input serves as reference and
is depicted in Fig. 2.4. The related thermodynamical profile was measured with
the sonde released from an altitude of 9633 m at 18:59:12 UTC on August 12, 2016.
The BT spectrum reflects the features of the absorption coefficients (Fig. 2.1). This
means, low BTs are simulated in regions of low absorption coefficients like in the
K band. The emission of water vapor generates a local maximum at about 22 GHz
of about 184 K. The BT increases with increasing absorption as the radiometer
receives more atmospheric emission above the less-emitting sea surface. However,
BT at frequencies close the center of the absorption features at 60, 119, and 183 GHz
decreases again as the atmosphere becomes so opaque that all the received radiation
originates in layers close to radiometer. These layers are colder than the lower layers.
The higher emission of lower layers is almost completely absorbed before reaching
the simulated radiometer.

To test the sensitivity of HAMP channels to the PAMTRA input, the input parame-
ters are altered in individual simulations as summarized in Table 2.2. Modifications
of gaseous emissions by modifying the air temperature and humidity inputs change
the BT spectra (Fig. 2.5) as it can be expected from the gaseous absorption features
(Fig. 2.1). This means, increased humidity increases the humidity absorption coeffi-
cient. Thus, increased humidity increases BTs at the water vapor absorption line in
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Figure 2.4.: Microwave brightness temperature spectrum simulated for a nadir point-
ing radiometer at 9633 m altitude. Input data is from the dropsonde
profile of the sonde released during the third NARVAL2 flight at 18:59
UTC on August 12, 2016. The integrated water vapor (IWV0) of the
profile, the assumed sea surface temperature (SST0), and near surface
wind (𝑢0) are given in the legend.

the K band and in low-frequency V-band channels with little oxygen absorption, the
W-band window, and the transparent outer F-band channels due to the water vapor
continuum emission. An increase of the whole relative humidity profile by 0.05, in-
creases the innermost K-band channel by 5.5 K and the 31.4 GHz channel by 1.8 K.
The lowest-frequency HAMP-V channel at 50.3 GHz, the HAMP-W channel, and
the outermost HAMP-F channel would increase by 1.5, 4.3, and 3.7 K, respectively.
The G-band BTs decrease with increased humidity as the sensing depth decreases
with lower opacity due to more water vapor. An increase of the relative humidity
by 0.05 would decrease channels near the G-band line center stronger (−3.4 K) than
those on the wings (−1.2 K).

Decreasing temperature, decreases the BT at channels with high oxygen absorption
like in the V-band and central F-band channels. But also the G-band BTs decrease
as the temperature of water vapor molecules is decreasing as well. For example,
decreasing the temperature by 2 K decreases the strongest absorption in V- and
F-band channels by 2.1 and 1.8 K, respectively, while leaving the least absorbing
channels almost unaffected (0.2 and 0.0 K). HAMP-G BTs decrease by 2.0 to 2.2 K
and interestingly, some HAMP-K channels would decrease by up to 0.3 K while
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Table 2.2.: Modifications of the input to test the dropsonde-forward-simulation sen-
sitivity in Fig. 2.5.

Experiment Explanation

Reference Unmodified profiles of temperature, relative humidity, pres-
sure, altitude, sea surface temperature (SST), and surface
wind.

Humidity Decrease and increase relative humidity (RH) in all layers
by 0.10 (−10 %) and 0.05 (+5 %), respectively. Minimum
of relative humidity is 0.

Temperature Decrease temperature (T) in all layers by 2 and 4 K. Keep
Water vapor mixing ratio constant by modifying RH.

Wind Set surface wind (u) to 0 and 10 m s−1.
SST Decrease and increase SST by 4 K.

others would slightly increase by up to 0.3 K and the HAMP-W channel would
increase by 0.4 K as well. The BT increase is probably related to a slight increase of
the water vapor absorption coefficients. Changes of temperature or humidity with
opposite sign would result in BT changes of similar magnitude with opposite sign.

The influence of the surface roughness controlled by the surface wind is most promi-
nent in the transparent channels. Calm wind conditions would reduce the HAMP-K
BTs by 2.4 K (at 22.24 GHz) to 3.4 K (at 31.4 GHz), HAMP-V BTs by up to 2.1 K in
the most transparent channels, HAMP-W by 2.5 K, HAMP-F by 0.2 K in the inner-
most and 1.5 K in outermost channels, and HAMP-G by less than 0.1 K. The BT
decrease is related to a decreased ocean emissivity in the surface model FASTEM5
as less formation of foam, which has in general a high emissivity (Kazumori et al.,
2008), is assumed at low wind speed. There is also a weak influence of the sea surface
temperature (SST) on BT of less than 0.25 K K−1 in the transparent channels.

The sensing depth into the atmosphere of each channel depends on the position of
the channel relative to the spectral absorption features. The sensitivity of the HAMP
channels for differential temperature and humidity variations is calculated by Mech
et al. (2014) and is shown in Fig. 2.6. The sensitivities are also called weighting
functions (WFs) and were calculated for the US 1976 Standard Atmosphere over
a black surface. The WFs emphasize findings discussed before. For example, the
sensitivity to water vapor of the HAMP-G channels is by a factor of up to 100 higher
than the sensitivity of the HAMP-K. The innermost HAMP-G channels have their
WF maximum close to the aircraft, while channels further away from the central
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frequency also sense lower layers. Likewise the temperature WFs in the V band have
their maximum in higher layers the higher the frequency is. This shows that the BT
at 58.0 GHz originates from higher and colder layers than the BT at 53.75 GHz.
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Figure 2.5.: Brightness temperature (BT) changes for slightly modified input to the
forward simulation. The absolute BT of reference simulation is shown in
Fig. 2.4. For the explanation of the sensitivity experiments see Table 2.2.

.
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Figure 2.6.: “HAMP clear air weighting functions (nadir downward looking). Shown
are the water vapor (top row) and the temperature (bottom row) weight-
ing functions for a HALO ceiling height of about 13 km. The US 1976
Standard Atmosphere over a black surface was assumed for the calcu-
lations.” The 22, 183, 54 and 118 GHz channels are from HAMP-K,
-G, -V, and -F, respectively. Figure and quoted caption by Mech et al.
(2014) are distributed under Creative Commons Attribution 3.0 License.
The sub-figures have been rearranged.
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Chapter 3.

Characterization of the HAMP
Microwave Radiometer

3.1. Introduction

The HALO Microwave Package, HAMP, comprises a cloud radar and a multi-band
microwave radiometer as described in Sect. 2.5. While the radar has been calibrated
by Ewald et al. (2018), the characterization and assessment of the calibration quality
of the radiometer during airborne operations was still missing.

The proper characterization and calibration is an unquestionable prerequisite for
geophysical retrievals from any instrument. The quality of MWR acquisitions de-
pends on the instrument’s stability, noise level and calibration accuracy (Fig. 3.1).
The MWR calibration procedure estimates the parameters that are needed to trans-
form measured receiver voltages and counts into brightness temperatures (BTs) as
introduction in Sect. 2.4. Whether these parameters are reliable over time depends
on the instrument’s thermal stability. The continuous internal gain calibration cor-
rects for gain drifts. It has to be noted, that the HAMP radiometers are thermally
stressed during airborne operations, as the belly pod is unpressurized and has air
ventilation slots. This means, that the rapid change of ambient conditions during
climb and descent could impact the instruments and influence the measurements.
However, instrument housings with thick walls, insulation, and build-in Peltier el-
ements are used to counteract ambient influence such that receiver temperature is
stabilized at a fixed temperature between 36 and 43 ∘C with a thermal stability
better than 0.1 K according to the manufacturer (Rose, 2009).

MWRs are typically calibrated with a so-called hot-cold absolute calibration using
two reference points that ideally span the full atmospheric measurement range of
BTs (Küchler et al., 2016). These references are created by targets which behave like
a black body at the respective radiometer frequency. This means, a target has to be
a perfect absorber and emits radiation with a BT equal to its physical temperature
following the Planck equation (Eq. 2.7) in the direction of the radiometer antenna.
Often, the “hot” target is at ambient temperature, while the “cold” is cooled down
with liquid nitrogen (LN2), but also other references are used. For example, the
airborne International SubMillimeter Airborne Radiometer (ISMAR) is permanently
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True BT without noise

Measurement with offset

Measurement with drift

Time

Brightness 
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                   Offset

                  Drift
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Figure 3.1.: Illustration of error types involved in brightness temperature (BT) mea-
surements. The noise level of the signal is characterized by its standard
deviation, also called noise-equivalent delta temperature (NeDT). The
offset of the measurement is controlled by the radiometer calibration,
while receiver instability results in a drift.

monitoring a cold target at aircraft ambient temperature and a hot target that is
electrically heated (Fox et al., 2017). Similarly, spaceborne MWRs use the cosmic
background radiation of about 2.7 K as cold reference. For ground-based MWRs,
the cold reference can also be realized with the so-called tipping curve calibration
involving measurements in clear sky with different elevation angles, including zenith
pointing and almost horizontal measurements (Han and Westwater, 2000; Küchler
et al., 2016).

3.1.1. HAMP Radiometer Calibration Method

External hot and cold targets are used for the absolute calibration of HAMP ra-
diometers before flight as no cold targets are embedded and a tipping curve cali-
bration is impossible with the radiometers mounted on the aircraft. The continuous
gain calibration using Dicke switches and noise diodes does not provide enough ref-
erence points for an absolute calibration. The five radiometer bands are pointed
subsequently at the hot and cold targets following the manufacturer’s method for
the absolute calibration. The targets are enclosed such that their containers can be
filled with LN2 and cooled down to the LN2 boiling point, which is at 77.35 K under
standard pressure. The boiling point increases with increasing atmospheric pres-
sure following the Clausius–Clapeyron relation; but also impurities due to mixed-in
oxygen can increase the temperature by a few Kelvin (Dodge and Dunbar, 1927;
Lemmon et al., 2000). Targets with a horizontally oriented absorber and an open
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air-LN2 interface were used during NARVAL-South and -North as shown in Fig. 3.2.
However, the handling of these rather large open targets filled with LN2 was not
ideal on a windy airport apron. Further, Küchler et al. (2016) identified a negative
influence on the calibration by an additional signal due to standing waves reflecting
on the air-LN2 interface. The standing waves add an oscillating offset to the ob-
served cold target temperature. This offset changes as a function of the LN2 filling
level, which changes through evaporation. To suppress the reflection, targets em-
bedded in novel closed containers developed by RPG were used in later campaigns
starting with NARVAL2. The containers are mainly made from foam that has a
very low microwave emissivity and does not reflect such that it is considered trans-
parent. The sides of the containers act as windows. The windows are milled at the
Brewster’s angle on the inside, such that no microwave emission of the antenna itself
is reflected at the foam-LN2 interface. As the absorber is oriented vertically in the
new targets, a metal mirror at a 45° angle is used to direct the MWR field of view
on the targets. The new calibration setup is depicted in Fig. 3.3.

Antenna Horn

Liquid nitrogen
Microwave absorber
Black body

Foam insulation
Foam window

Wind protector

Belly pod

Figure 3.2.: Schematic and picture of calibration targets used during NARVAL-
South and -North under the HAMP belly pod. In the picture, left target
contains hot load, right target cold load. The picture is a courtesy of
Heike Konow, 2014.

3.1.2. Goals and Structure

A preliminary study by Barrera Verdejo (2016) and the work by Schnitt et al. (2017)
showed discrepancies between synthetic BT measurements form forward-simulated
dropsonde profiles and the actual radiometer BT measured during the dropsonde
releases during NARVAL-South. As new data was acquired during NARVAL2, a re-
assessment and deeper analysis of BT offsets are important steps before NARVAL2
and NAWDEX radiometer data can be used for further meteorological studies. Be-
sides that, the instrument noise of the radiometers in practice has not been analyzed
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Liquid nitrogen
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Figure 3.3.: Schematic and picture of calibration targets used during NARVAL2,
NAWDEX, and EUREC4A under the HAMP belly pod. The absorber
target in the white container emits through the foam window of the
container. A metal mirror directs the emission into the radiometer an-
tenna, which is located behind the white foam window in the gray frame
in the belly pod.

yet. Therefore, the noise in terms of BT fluctuations (Sect. 3.2) as well as the ab-
solute calibration and its stability (Sect. 3.3) are investigated in this preparatory
study. A discussion and summary of both aspects will be presented in Sect. 3.4.

3.2. Noise Characterization

The noise-equivalent delta temperature (NeDT) is an important characterization
of microwave radiometers. The NeDT is the standard deviation of a radiometric
measurement due to the thermal noise of the observed scene with its temperature
𝑇sc and the components of the radiometer like the antenna, amplifiers, and detector
characterized by the receiver noise temperature 𝑇rec. The ideal NeDT is defined as

NeDTideal = 𝐶
𝑇sc + 𝑇rec√

𝐵 𝜏
(3.1)

with the width of the channel bandpass 𝐵, and the integration time for each ac-
quisition 𝜏 (Ulaby et al., 1981). The ideal NeDT is modified for different kind of
radiometers by the term 𝐶, which is about 2 to 3 in the case of HAMP (see Ulaby
et al., 1981, Tab. 6.4). The bandpasses are different for different HAMP channels
(Table 2.1). The NeDT is the lower limit of random errors that must be considered
in the retrieval development to avoid overfitting and enable a reasonable retrieval
error estimation when using synthetic measurements (Chapter 4).
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The calibration setup provides two stable 𝑇sc conditions which can be used to char-
acterize the true NeDT. The NeDT can be estimated as the standard deviation over
a several minutes long acquisition on the target under the assumption that the tem-
perature of the scene, i.e., calibration target, and receiver are constant. At the same
time, such a setup can be used to investigate covariances or correlations between the
channels within each frequency band. The covariances are important for advanced
retrieval methods like optimal estimation (Rodgers, 2000). Most of the amplify-
ing and filtering waveguides circuits are independent components for each channel.
Therefore, low correlation coefficients are expected, because the noise coming from
most of the redundant circuits should be uncorrelated (Skou and Vine, 2006). A
quantitative correlation expectation cannot be given beforehand, as the noise depen-
dence of the specific components is unknown and their individual characterization
would require a breakdown of the instrument which is beyond the scope of this
study. However, high or irregular correlation patterns can either point to external
variation of the reference target during the acquisition or to unreliable channels due
to hardware malfunction. In addition to ground-based characterization using the
calibration targets, also airborne measurements over very homogeneous scenes will
be used in the following noise analysis.

3.2.1. Ground-based and Airborne Experiment Setup

To investigate the HAMP radiometer noise and channel correlations, the three mod-
ules were set up for a laboratory experiment in the HALO aircraft hanger in Oberp-
faffenhofen, Germany. The modules were turned 90°, such that antennas were point-
ing sideways and targets could be placed into the beam without any external mirrors
as shown in Fig. 3.4. Each antenna was subsequently pointed toward the cold and hot
targets, and BTs were acquired using the standard measurement mode for at least
five minutes. The data for the characterization of the dual-band modules HAMP-KV
and -WF on the hot target were recorded at once, while the cold characterization
was acquired for each band separately due to the polarization of the radiometers
and targets. The corrugation on the inside of both sides of the target container
is rotated by 90° to minimize microwave reflections at different polarization angles
when filled with LN2.

The NeDTs can also be estimated from atmospheric measurements in addition to the
laboratory experiment. This requires as little change as possible of the atmospheric
and surface emissivity and absorption during a scene as the NeDT estimation re-
quires a stable signal source. It is expected to find such conditions in a cloud free
scene. The NARVAL2 flights from August 15, 19, 21, and 27, 2016 have the lowest

31



CHAPTER 3. CHARACTERIZATION OF THE HAMP MWR

Figure 3.4.: Setup of HAMP radiometer modules for the ground-based noise char-
acterization experiment. White containers in the front contain the cal-
ibration targets. Behind are the 3 HAMP modules from left to right:
HAMP-G, HAMP-WF, and HAMP-KV. The fan in the back on the
right hand side provides an air stream to avoid condensation on the
LN2-filled right-most big target.

overall cloud cover regarding the cloud radar data. Therefore, radiometer data from
those flights is used to determine the in-flight NeDT as the smallest lowest standard
deviation of BT measurements in each channel within any five-minute interval.

3.2.2. Results

The ground-based experiment for the NARVAL HAMP configuration took place in
March 2017 after all instruments that were used during NAWDEX were dismantled
from HALO (see also Fig. 1.2). The integration time was set to 1 s during the
considered flight campaigns. The experiment was repeated in May 2019 after the
hardware upgrade for EUREC4A (last paragraph in Sect. 2.5). As this upgrade
included a software update for a higher temporal resolution, data was recorded
with 4 Hz during EUREC4A. The results for the individual radiometer bands are
shown in Fig. 3.5 for NARVAL/NAWDEX and Fig. 3.6 for EUREC4A. The standard
deviations shown on the main diagonal of each of the presented matrices are the
NeDT for each channel.

32



3.2. NOISE CHARACTERIZATION

22
.24

23
.04

23
.84

25
.44

26
.24

27
.84

31
.40

22.24 GHz

23.04 GHz

23.84 GHz

25.44 GHz

26.24 GHz

27.84 GHz

31.40 GHz

0.37

0.35 0.20

0.41 0.35 0.35

0.34 0.29 0.32 0.29

0.28 0.24 0.36 0.24 0.37

0.26 0.28 0.30 0.32 0.34 0.30

0.14 0.07 0.07 0.08 0.07 0.07 0.07

0.09 0.04 0.06 0.06 0.05 0.06

0.09 0.06 0.06 0.06 0.06

0.10 0.06 0.05 0.06

0.12 0.07 0.07

0.11 0.06

0.13

50
.30

51
.76

52
.80

53
.75

54
.94

56
.66

58
.00

50.30 GHz

51.76 GHz

52.80 GHz

53.75 GHz

54.94 GHz

56.66 GHz

58.00 GHz

0.28

0.26 0.25

0.23 0.27 0.21

0.28 0.29 0.20 0.17

0.24 0.31 0.26 0.32 0.25

0.34 0.27 0.24 0.27 0.35 0.36

0.19 0.10 0.09 0.10 0.09 0.09 0.11

0.19 0.09 0.11 0.10 0.10 0.10

0.17 0.09 0.08 0.09 0.08

0.22 0.08 0.11 0.10

0.17 0.09 0.10

0.18 0.11

0.18

90
.00

90.00 GHz 0.53

± 1.
4

± 2.
3

± 4.
2

± 8.
5

(118.75 ± 1.4) GHz

(118.75 ± 2.3) GHz

(118.75 ± 4.2) GHz

(118.75 ± 8.5) GHz

0.26

0.34 0.15

0.20 0.17 0.35

0.29 0.15 0.18 0.14

0.30 0.12 0.13

0.35 0.20

0.34

± 0.
6

± 1.
5

± 2.
5

± 3.
5

± 5.
0

± 7.
5

± 12
.5

(183.31 ± 0.6) GHz

(183.31 ± 1.5) GHz

(183.31 ± 2.5) GHz

(183.31 ± 3.5) GHz

(183.31 ± 5.0) GHz

(183.31 ± 7.5) GHz

(183.31 ± 12.5) GHz

0.04

-0.15 -0.01

-0.10 0.11 0.45

-0.15 -0.01 0.14 0.72

0.04 0.19 -0.34 -0.23 -0.22

0.44 -0.13 -0.42 -0.35 -0.21 0.13

0.62 0.11 0.22 0.16 0.20 0.08 0.28

0.47 0.04 0.15 0.05 0.15 0.13

0.49 0.30 0.17 0.21 0.24

0.41 0.36 0.16 0.20

0.43 0.16 0.16

0.27 0.10

0.28

G band

F band

W band

V band

K band(a)   

(b)   

(c)   

(d)   

(e)   

22
.24

23
.04

23
.84

25
.44

26
.24

27
.84

31
.40

22.24 GHz

23.04 GHz

23.84 GHz

25.44 GHz

26.24 GHz

27.84 GHz

31.40 GHz

0.26

0.18 0.31

0.17 0.24 0.23

0.14 0.21 0.17 0.12

0.09 0.10 0.15 0.15 0.17

0.09 0.07 0.15 0.12 0.20 0.31

0.15 0.07 0.06 0.06 0.05 0.04 0.05

0.11 0.07 0.06 0.06 0.04 0.03

0.12 0.06 0.05 0.05 0.05

0.13 0.05 0.05 0.05

0.13 0.05 0.06

0.12 0.08

0.15

50
.30

51
.76

52
.80

53
.75

54
.94

56
.66

58
.00

50.30 GHz

51.76 GHz

52.80 GHz

53.75 GHz

54.94 GHz

56.66 GHz

58.00 GHz

0.29

0.32 0.28

0.30 0.32 0.39

0.23 0.38 0.20 0.14

0.29 0.23 0.28 0.35 0.33

0.27 0.26 0.25 0.26 0.39 0.32

0.24 0.12 0.14 0.13 0.11 0.12 0.11

0.21 0.12 0.13 0.13 0.10 0.10

0.24 0.15 0.10 0.12 0.11

0.24 0.08 0.14 0.11

0.20 0.12 0.12

0.22 0.11

0.19

90
.00

90.00 GHz 0.43

± 1.
4

± 2.
3

± 4.
2

± 8.
5

(118.75 ± 1.4) GHz

(118.75 ± 2.3) GHz

(118.75 ± 4.2) GHz

(118.75 ± 8.5) GHz

0.34

0.24 0.15

0.16 0.14 0.05

0.34 0.19 0.17 0.14

0.31 0.13 0.12

0.37 0.08

0.34

± 0.
6

± 1.
5

± 2.
5

± 3.
5

± 5.
0

± 7.
5

± 12
.5

(183.31 ± 0.6) GHz

(183.31 ± 1.5) GHz

(183.31 ± 2.5) GHz

(183.31 ± 3.5) GHz

(183.31 ± 5.0) GHz

(183.31 ± 7.5) GHz

(183.31 ± 12.5) GHz

0.17

-0.29 0.26

-0.25 0.16 0.60

0.44 0.16 -0.05 -0.13

0.02 0.17 0.56 0.49 0.14

0.14 0.25 0.33 0.35 0.34 0.40

1.23 0.33 0.44 0.34 0.39 0.09 0.20

0.54 0.28 0.18 0.16 0.18 0.17

0.56 0.35 0.09 0.34 0.20

0.37 0.12 0.26 0.17

0.29 0.12 0.14

0.37 0.18

0.22

G band

F band

W band

V band

K band(f)   

(g)   

(h)   

(i)   

(j)   

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Correlation Coefficient

0.0 0.1 0.2 0.3 0.4 0.5 0.6
|covariance|  (K)

Figure 3.5.: Matrices of correlation and covariance of all HAMP bands. Entries on
the diagonal show the standard deviation (i.e., NeDT) in Kelvin K.
Entries above (green colors) are the square roots of the covariance in K
and entries below (blue to red colors) the correlation coefficients. Left
column (a-e) shows characteristics on cold load (77 K), right column (f-
j) on hot load (293 K). Data shown from the experiment with HAMP
in the NARVAL configuration recorded with 1 Hz sampling rate.
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In the K band the NeDT is smaller than 0.16 K for each channel in the NARVAL
configuration. The NeDT is slightly smaller when estimated using the cold target.
This follows the relation of the ideal HAMP-K NeDT (Eq. 3.1), which is 0.08 and
0.11 K for a cold (77 K) and warm scene (300 K), respectively, when assuming an
ideal Dicke radiometer with 𝐶 = 2 and 𝑇rec = 520 K. The difference between the
ideal NeDT and the observed NeDT is due to non-ideal hardware components. The
correlation coefficients and covariances between different channels are rather homo-
geneous with correlation coefficients on the order of 0.1 to 0.4. Higher correlations
were registered on the cold target. Likewise, the V-band NeDT is below 0.25 K for
all channels and also slightly smaller on the cold target. The correlation between
V-band channels is also rather homogeneous with correlation coefficients between
0.2 and 0.4 for the hot and cold target experiment, respectively. In contrast to the
K- and V-band channels, the 90 GHz channel NeDT is higher on the cold target
(0.53 K) than on the hot target (0.43 K). The F-band NeDT is below 0.38 K for all
channels, and is again slightly lower when estimated at the cold target. Correla-
tion coefficients range between 0.05 and 0.35 without a clear hot and cold target
difference nor spectral order. The G-band channels give a rather mixed impression
in contrast to the bands discussed before. All channels showed standard deviations
below or equal to 0.6 K as specified by the manufacturer (Rose, 2009) for the cold
load measurement. But all but one channel also showed standard deviations smaller
than 0.6 K on the hot target. However, some standard deviations were again lower
than on the cold target and the 183.31 ± 0.6 GHz channel showed a rather high
standard deviation of 1.23 K on the hot target. Judging from the respective 20 min-
time series of the hot target data acquisition, most of the variance of this channel
seems to be coming from variations and drifts on rather a one-minute time scale
than from second-to-second noise. In principle, the NeDT of the 183.31 ± 7.5 GHz
and ± 12.5 GHz channels should be smaller than the NeDT of the other G-band
channels. However, this was not observed. Further, the covariance of the G-band
channels is rather heterogeneous. While some channels have rather high correla-
tion coefficients up to 0.72 others are negatively correlated with coefficients up to
−0.42. As some channel pairs showed positively correlated measurements on the
one and negatively correlated measurements on the other target, the behavior of
the G-band channels is different to the other bands, where all measurements were
slightly positively correlated.

With the EUREC4A upgrade the purity of the K- and V-band channels improved
a lot (compare Figs. 3.5 and 3.6). The correlations between channel pairs basically
vanished and individual correlation coefficients are now between −0.15 and +0.07
except for the two highest-frequency channels of the V band on the hot target. Their
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Figure 3.6.: Like Fig. 3.5 but with the EUREC4A upgraded radiometers recorded
with 4 Hz sampling rate. Left column (a-e) shows characteristics on
cold load (77 K), right column (f-j) on hot load (296 K).

35



CHAPTER 3. CHARACTERIZATION OF THE HAMP MWR

correlation coefficient on the hot target was estimated 0.50, while it was 0.02 on the
cold target. This prominent correlation cannot be explained by slow changes of
the hot target temperature, as this should also increase the correlation with other
channels. But also shorter subsets of the hot-target time series show correlation
coefficients between 0.3 and 0.5. However, also systematic internal issues in the
radiometer are unlikely as the cold-target measurements showed no correlation. The
HAMP-K NeDT estimated on the cold and hot target is 0.13 to 0.29 and 0.22 to
0.34 K after the EUREC4A upgrade, respectively. This is a strong improvement
considering that the EUREC4A NeDT is estimated at a four times higher resolution,
which means, that these numbers have to be divided by 16 before comparing the
numbers with the NARVAL setup. The upgraded V-band NeDT is smaller than
0.3 and about 0.4 K on the cold and hot targets, respectively. For the K and V
band, the hot-target NeDTs are clearly higher which shows an increased influence
of the scene temperature on NeDT relative to the receiver noise temperature, as
the hot target temperature was about the same in the NARVAL and EUREC4A
characterization experiments. The NeDT of the 90 GHz channel decreased to about
0.14 K after the upgrade to the 4 times higher sampling rate. The F-band noise is also
reduced such that the NeDT is now below 0.3 K for all channels at 4 Hz. However,
the linear correlation of F-band channels stayed the same or increased even slightly
with coefficients between 0.2 and 0.5. The wide variety of the G-band covariances
and correlations is more uniform after the EUREC4A upgrade. All correlations are
now at least slightly positive with correlation coefficients up to 0.33. The NeDT of
all but one channel is 0.4 K or smaller. The 183.31 ± 2.5 GHz shows an exceptional
high NeDT of 0.63 K on the hot target while the cold-target NeDT of 0.26 K is within
the range of the other channels.

The NeDT can also be estimated from in-flight observations as an alternative to the
ground-based experiments. The comparison of in-flight and ground-based NeDT
estimates is important to assess the applicability of the ground-based noise charac-
terization to airborne measurements. To estimate the in-flight NeDT, scenes with
very little atmospheric variation are needed as the atmosphere replace the reference
target of the ground-based experiments. Thus, the in-flight NeDT is investigated
by analyzing the scenes with the lowest variability in each channel. Five-minute
intervals of four NARVAL2 flights are considered. The estimated in-flight NeDTs
match the NeDTs determined in the NARVAL2 ground-based experiment quite well
as shown in Fig. 3.7. The HAMP-KV and HAMP-WF NeDT are clearly below 0.3
and 0.5 K, respectively. Only the in-flight NeDT of the HAMP-G deviates signifi-
cantly from the ground-based estimates. This might be related to the irregularities
of the HAMP-G during the ground-test that were indicated by the varying and in-
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homogeneous channel correlations. The ground-based estimates after the EUREC4A
upgrade correspond better to the in-flight HAMP-G noise, considering that a cer-
tain increase of the NeDT for the EUREC4A is expected due to the higher sampling
rate. Overall, this comparison demonstrates the applicability of the ground-based
characterization to the airborne measurements.

22
.24

 GHz

23
.04

 GHz

23
.84

 GHz

25
.44

 GHz

26
.24

 GHz

27
.84

 GHz

31
.40

 GHz

50
.30

 GHz

51
.76

 GHz

52
.80

 GHz

53
.75

 GHz

54
.94

 GHz

56
.66

 GHz

58
.00

 GHz

90
.00

 GHz

(11
8.7

5 ±
 1.

4) 
GHz

(11
8.7

5 ±
 2.

3) 
GHz

(11
8.7

5 ±
 4.

2) 
GHz

(11
8.7

5 ±
 8.

5) 
GHz

(18
3.3

1 ±
 0.

6) 
GHz

(18
3.3

1 ±
 1.

5) 
GHz

(18
3.3

1 ±
 2.

5) 
GHz

(18
3.3

1 ±
 3.

5) 
GHz

(18
3.3

1 ±
 5.

0) 
GHz

(18
3.3

1 ±
 7.

5) 
GHz

(18
3.3

1 ±
 12

.5)
 GHz

HAMP Channel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ne
DT

 (K
)

K band V band W F band G band

EUREC4A at hot load, 4 Hz
EUREC4A at cold load, 4 Hz
NARVAL2 at hot load, 1 Hz
NARVAL2 at cold load, 1 Hz
NARVAL2 in-flight, 1Hz

Figure 3.7.: Noise-equivalent delta temperature (NeDT) of HAMP. Derived from
ground-based experiments using hot and cold targets (main diagonals
from Figs. 3.5 and 3.6), and from the scenes during NARVAL2 flights
with lowest variability.

3.3. Brightness Temperature Offset

Besides the sensor’s noise (sensitivity) also absolute calibration (accuracy) is im-
portant. The HAMP radiometers were absolute calibrated with the manufacturer’s
calibration procedure before almost every flight. The temperature of the hot target
was read manually using a handheld thermometer and the readings were inserted
into the software. The boiling point temperature of LN2 𝑇LN2 was assumed as cold
target temperature and derived from an internal atmospheric pressure measurement
following the Clausius–Clapeyron relation (Radiometer Physics GmbH, 2015):

Δ𝐻

𝑅

(︂ 1
77.35 K − 1

𝑇LN2

)︂
= ln

(︂
𝑝

1013.25 hPa

)︂
(3.2)

𝑅 is the universal gas constant, Δ𝐻 is the enthalpy of LN2 vaporization, and 𝑝

is the atmospheric pressure. Equation 3.2 was the best available 𝑇LN2 estimator
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during NARVAL-South, -North, NARVAL2, and NAWDEX. However, a cryogenic
thermometer was available during EUREC4A to measure the physical temperature
of the LN2 and the cold target. The measured temperatures of the cold target and
LN2 available in Barbados were about 1.2 to 3.5 K warmer than calculated from
pressure. These discrepancies indicate impure LN2 due to low-grade production
quality and oxygen mixing. It is likely, that LN2 of the similar quality has been used
for calibrations in Barbados before EUREC4A as well, which could partly explain the
NARVAL-South BT offsets indicated in the preliminary study by Barrera Verdejo
(2016) and the work by Schnitt et al. (2017).

Please note, that BT offsets were observed during the noise characterization exper-
iment (Sect. 3.2). Even though, the radiometers have been calibrated before that
experiment using the manufacturer’s method, deviations of the brightness tempera-
tures from the expected cold and hot load temperatures of up to ± 5 K were observed
(Fig. 3.8). As that experiment was conducted to investigate the noise and covari-
ances of HAMP, absolute offsets were tolerated. However, these observations of BT
offsets after proper hot-cold calibration motivate a closer examination of BT offsets
during the airborne observations.

The reported differences between simulated BTs from clear sky dropsondes and si-
multaneous BT measurements (Schnitt et al., 2017) are further investigated with a
unified method considering also the NARVAL2 observations. All NARVAL-South
and NARVAL2 dropsondes are forward simulated and compared to HAMP measure-
ments in clear sky. Comparisons of the midlatitude campaigns NARVAL-North and
NAWDEX are provided in Appendix A (pp. 123) for completeness, but are excluded
here as this thesis focuses on the tropical clouds. The latest EUREC4A acquisitions
are not considered here as their data processing is just starting and the detailed
analysis of them is beyond the scope of this thesis.

The increased number of dropsonde released during NARVAL2 flights (9 to 50 son-
des with an average of 18 per flight) compared to NARVAL-South (6 to 14, average
9.5) allows for a more robust comparison and offers the opportunity to also analyze
the stability over time during one flight. The following research questions are in-
vestigated: What are the differences between synthetic and measured BTs in each
channel? Does the offset drift over the course of a flight? Is there an offset difference
between NARVAL-South and NARVAL2 which can be related to the new calibration
targets? Can sources of the offset be identified?
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Figure 3.8.: Brightness temperature (BT) offset on cold (a) and hot (b) load after
the calibration during the noise experiment using the HAMP in the
NARVAL configuration in March 2017 (Sect. 3.2. Box-and-whiskers
plots show the quantiles (box), and 5th and 95th percentiles (whiskers)
of the data recorded with a 1 Hz sampling.

3.3.1. Methods

Radiative transfer models simulate microwave radiometer measurements based on
thermodynamic profiles and further background information as presented in Sect. 2.3.
Here, PAMTRA is used as a brightness temperature simulator, which simulates the
nadir-pointing HAMP radiometer measurements. Most of the required input can be
acquired by dropsondes as long as no hydrometeors emit nor scatter any radiation
along the measurement path. Temperature, humidity, and pressure profiles, as well
as surface parameters are the essential input parameters to a 1D clear-sky microwave
radiative transfer simulation. The sea surface emissivity depends on the near surface
wind speed and sea surface temperature. The wind speed is taken from the lowest
available measurement of the dropsonde, which is typically 10 to 50 m above the
sea surface. The sea surface temperature is taken from the Advanced Very High
Resolution Radiometer (AVHRR) infrared satellite product (Reynolds et al., 2007;
Reynolds, 2009). Temperature, humidity, and pressure profiles are taken from every
dropsonde respectively. These profiles are extrapolated to the top of the available
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profiles, as the sondes provide no data within the first few hundred meters of their
descent.

The forward simulation of the sondes does not include any emission of rain or cloud
droplets. Therefore, forward-simulated sondes can only be used to assess clear-
sky measurements of HAMP. Thus a clear- and cloudy-sky discriminator is needed.
Even though the WALES lidar or the spectrometer of the Munich Aerosol and Cloud
Scanner (specMACS; Ewald et al., 2016) have proven to be the most sensitive cloud
detector (Stevens et al., 2019, Fig. 5 therein), their measurements are not used as
a discriminator to avoid dependencies on instrument co-availability. Instead, the
variability of the HAMP radiometer channels themselves and the HAMP radar are
used as a cloud detector. This radiometer approach is similar to the method by
Albern (2014). The idea is, that the BT change due to hydrometeors emissions has
a high spatial variability compared to other signals like a change in water vapor. The
clear-sky variability filter is basically determined by a standard-deviation threshold
and a temporal window relative to the dropsonde release. A scene is considered clear
sky, if the following two statistics in the given time window are smaller than chosen
thresholds: the maximum of the standard deviation in all channels but the G band,
and the number of radar range gates with a signal above the noise level.

The G-band standard deviations are only considered when comparing the G-band
acquisitions with dropsondes. This general exclusion of HAMP-G from the clear sky
filter has two reasons. First, the usability of the HAMP-G was limited as it suffered
from instabilities due to a broken receiver component during some flights which
caused a sawtooth pattern in the BTs (Konow et al., 2019). The jumps of the BTs
caused artificial variance in the data. Second, the other channels are more sensitive
to liquid water droplets, such that they work better as a liquid-cloud detector, but
they are less sensitive to scattering of large (precipitating) ice particles. This means,
filtering for precipitating ice is only needed in G-band comparisons.

Tests with different parameter sets showed the best agreement of forward-simulated
sondes and simultaneous radiometer measurements when filtering with 10 s and 1 K,
which is about two to three times the radiometric noise NeDT. “Best” is considered
here, when offsets between measured and simulated BTs are smallest and mostly
constant within one flight. Sondes released during a turn of HALO cannot be use
either, as the beam orientation of HAMP is changing quickly in off-nadir directions.
The numbers of considered clear-sky sondes with stable aircraft orientation of each
NARVAL-South and NARVAL2 flight is given are Table 3.1. During NARVAL-South
3 to 8 clear-sky sondes are available per flight, while there are 5 to 37 clear-sky
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sondes for each NARVAL2 flight except for research flight 5, where a thick cirrus
layer covered the whole study area.

Table 3.1.: Number of all released dropsondes and those released in clear sky with
available measurements by the HAMP-KV, -FW, and -G module.

Campaign Research Date Sondes Clear-sky sondes
flight released KV WF G

NARVAL-South RF01 2013-12-10 15 4 4 4
RF02 2013-12-11 6 2 2 0
RF03 2013-12-12 9 8 8 0
RF04 2013-12-14 11 6 6 3
RF05 2013-12-15 9 5 5 3
RF06 2013-12-16 10 6 6 4
RF07 2013-12-19 9 4 4 4
RF08 2013-12-20 8 3 3 0

NARVAL2 RF01 2016-08-08 9 7 7 7
RF02 2016-08-10 30 19 19 11
RF03 2016-08-12 50 37 37 18
RF04 2016-08-15 10 7 7 1
RF05 2016-08-17 12 0 0 0
RF06 2016-08-19 50 33 33 19
RF07 2016-08-22 13 5 5 1
RF08 2016-08-24 12 8 8 2
RF09 2016-08-26 12 11 11 3
RF10 2016-08-30 17 14 14 0

3.3.2. Temporal Stability of the Radiometer Measurements

The NARVAL2 research flight on August 12, 2016, provides a good opportunity to
study the radiometer stability over the course of a whole flight, as 50 sondes were
released during an 8-hour flight. Most of the sondes were released during two intense
phases of 24 sondes each lasting about 95 minutes. The flight track and locations
of the sonde releases are depicted in Fig. 3.9. The 24th, 37th, and 49th sonde of
the flight were launched while HALO was turning. This means, these sondes cannot
be used in the following analysis. One more sonde was launched during the 135
minutes break between the intense phases and another one shortly before starting
the final descent. In total, 47 sondes are available with simultaneous near-nadir
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measurements of HAMP-K, -V, -W, and -F. The HAMP-G data is only available in
the second half of the flight with 24 usable sondes as hardware instabilities imprinted
an artificial sawtooth pattern with decreasing amplitude on the data during the first
half of the flight. Ten of the 47 sondes are considered cloudy and are not considered
in the following discussion (Fig. 3.11 e).

Figure 3.9.: HALO flight track and dropsonde locations from NARVAL2 research
flight 3 on top of the MODIS corrected reflectance image from 16:40
UTC. Image retrieved from NASA Worldview.

The forward-simulated sondes should agree with the HAMP acquisition at the time
of the release assuming perfectly calibrated and stable radiometers, a perfect forward
simulation, and perfect dropsonde sensors with infinite falling velocity. A real sonde,
however, needs about 10 minutes to sample one profile. HALO flies about 130 km in
this time, while the sonde drifts typically about 4 km in a horizontal direction which
likely differs from the flight track. An example of a forward-simulated dropsonde
and the corresponding HAMP measurements are shown in Fig. 3.10. The HAMP
measurements follow the simulated BTs according to the absorption features of the
humid atmosphere. The water vapor absorption around 22 GHz increases the BTs
of the lower-frequency channels in the K band. The HAMP-V has the highest BTs
in the central channels, as the absorption of the 60 GHz oxygen line is intermediate
at these frequency (Fig. 2.1) such that the received temperature mostly comes from
warm layers of the lower troposphere but less from the ocean. Lower-frequency V-
band channels would see more of the cold ocean, while the high-frequency V-band
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channels are so opaque, that most of the signal comes from the atmosphere close to
the aircraft. Likewise, high oxygen and water vapor absorption causes low BTs close
to the 118.75 and 183.31 GHz lines, respectively. Therefore, the innermost F-band
channel can be colder than the second F-band channel. Water vapor absorption
around 183.31 GHz is so strong that the HAMP-G BTs even monotonously increase
with distance to the line center. These simulated features are also present in the
HAMP measurements shown in Fig. 3.10. However, some channels show offsets of
up to 8 K. In addition to the offsets, the measured K- and G-band spectra (Fig. 3.10
a and e) are spiky compared to the simulated spectra. In both spectra, the middle
channels seem a bit off.
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Figure 3.10.: Synthetic forward-simulated dropsonde and corresponding HAMP
brightness temperature (BT) measurements measured during 10 sec-
onds after the release of the sonde. All 10 HAMP measurements per
channel are depicted as overprinted × markers. The sonde 27 was
released at 18:59:12 UTC on August 12, 2016. The F- and G-band
simulations are averaged around the central frequency to simulate the
double-sideband receivers.
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All remaining 46 dropsondes are forward simulated like the test case of sonde 27 in
Fig. 3.10 and their differences to the observed BTs are analyzed in the following for
more statistical evidence. Similar to the sonde discussed before, also the forward-
simulated BTs from the other sondes deviate from the HAMP measurements and
many channels are persistently offset as shown in Fig. 3.11. HAMP-K measurements
in the off-line channels at 27.84 and 31.40 GHz are up to 11.1 K lower than the
corresponding forward-simulated sondes, while channels on the water vapor line
at 23.04 GHz are 3.7 K higher. Cloudy-sky sondes like the 42nd show even more
positive deviations from the dropsonde, but these deviations are due to the additional
emission of cloud droplets, which are not considered in the forward simulation.
Therefore sondes that are identified as cloudy are excluded in the following. The
offset of each HAMP-K channel variates with a mean standard deviation of 1.3 K.
Parallel shifts of all channel offsets with time are the prominent pattern in the
HAMP-K offsets and linear relations can explain most (minimum, median, maximum
squared correlation coefficients 𝑟2: 0.53, 0.88, 0.99) of the offset variation among the
channels. However, no general offset drift over time is evident in any channel. Every
channel’s mean offset ranges between −1.9 and −8.6 K.

The offsets of other HAMP receivers are similar to HAMP-K, however, mean abso-
lute offsets are typically smaller. The more transparent channels of the other HAMP
receivers like 50.30, 51.76, 90.00, and 118.75 ± 4.2 and ± 8.5 GHz show offset vari-
ations with similar curves like the HAMP-K. The offsets of the 90 GHz channel can
linearly explain 59 % to 88 % (median 𝑟2: 80 %) of the K-band offset variation in
any channel. The less transparent channels and those with higher sensitivity to the
atmosphere closer to the aircraft show less variation between sondes. The HAMP-
G channels are rather constant over time and show little variation among sondes.
Their variations are rather uncorrelated with HAMP-K. This indicates that most of
the offset variations in the transparent channels are not due to internal instabilities
within one HAMP receiver or module. These variations rather depend on the lower-
tropospheric input to the forward simulation and are probably mostly related to the
humidity profiles. It has to be considered here, that the temporal matching between
sonde and the remote sensing is better directly after the sonde release than when
it is reaching the ground after approximately 10 minutes. Therefore we conclude,
that discrepancies in the remote-sensed and in-situ-measured profiles are most likely
related to the spatiotemporal mismatching of HAMP nadir measurements and the
drifting sondes.

No general offset drift between any HAMP channel and the sondes can be noted.
Thus, the mean and standard deviation can summarize the offset of the individual
sonde comparisons for each channel. The mean and standard deviation are summa-
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Figure 3.11.: Offset between HAMP brightness temperature (BT) and forward-
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rized and discussed for all flights of NARVAL-South and NARVAL2 to set them in
the broader picture, in the next section.

3.3.3. HAMP–Dropsonde Offset during NARVAL-South and NARVAL2

The analysis of offsets between forward-simulated clear-sky dropsondes and HAMP
for all NARVAL-South and NARVAL2 flights is important in order to identify sys-
tematic and variable error patterns. The offset and its sign are defined by

offset = BTHAMP − BTsonde. (3.3)

The mean offset and offset standard deviation for each flight and channel are depicted
in Fig. 3.12. The number of considered dropsondes in given in Table 3.1. The offset in
each band has a typical spectral shape, that is more or less evident in all flights. For
example, the second, third and fifth K-band channels typically have the strongest
positive offset, while the first and fourth channel offsets are a bit lower and the
sixth and seventh channels have the most negative offset. The spikes in the offset
spectra are similar to the spikes in Fig. 3.10. The range between the highest and
lowest offset within one flight is about 6 K. The offset is spectrally speaking similar
among different flights, but shifted in absolute terms. This means, that the spectral
dependence of the offset is systematic, especially in the K band discussed for one
flight in the section before.

The HAMP-V offsets are generally more positive in the lower-frequency channels
and more negative in the high-frequency channels. The spectral offset amplitude
is about 2 to 6 K, but the offset pattern is spectrally less persistent than in the
K band. The mean 90 GHz offset ranges between −4 and 4 K in the NARVAL-
South dataset and −4 and 0 K in the NARVAL2 dataset. The 118.75 ± 1.4 GHz
has in general the most negative offset in the F band, while the second channel
offset is higher and the third and fourth channel show the highest offsets, which
are often about 2 to 6 K warmer. The spectral offset shape has a similar degree
of consistence between flights in the F band as in the V band. HAMP-G BTs
were almost always lower than the respective dropsonde forward simulation during
NARVAL-South. The inner most channel has the most negative offset. The offset
generally increases in absolute terms with distance to the line center. The spectral
amplitude of the offset is about 7 to 10 K. The HAMP-G pattern is a bit different for
NARVAL2. During NARVAL2, most channels have a mostly negative offset as well,
but the 183.31 ± 3.5 GHz channel reported warmer BTs than simulated during most
flights. The inner most channel has again the most negative offset and the HAMP-
G offset amplitude during NARVAL2 is about 3 to 8 K. The NARVAL2 flight on
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Figure 3.12.: Mean brightness temperature (BT) offset for each flight of NARVAL-
South (left column, a-e) and NARVAL2 (right column, f-j). Offsets
are HAMP BT minus forward-simulated dropsonde BT in clear-sky
scenes. Error bars denote twice the standard deviation over all clear
sky dropsondes within each flight. Number of considered sonde for
each flight is given in Table 3.1.
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the 26 August 2016 is an exception to the values reported before. Three clear-sky
dropsondes with simultaneous HAMP-G acquisitions are available and these show
the strongest positive offset of about 1 K in the innermost and the most negative
offset of about −6 K in the 183.31 ± 2.5 GHz channel.

The standard deviation (shading in Fig. 3.12) of the offset in each channel of all
sondes per flight is mostly below 2 K. The standard deviations also show some spec-
tral features. For example, the 53.75, 54.94, and 118.75 ± 1.4 and 2.3 GHz channels
always have the smallest offset variance in their bands. However, significance of the
variance is limited in many cases due to the small sample size during the flights.

In the comparison of NARVAL-South and NARVAL2 offsets it becomes clear, that
the NARVAL-South offsets are generally higher in absolute terms than the respective
NARVAL2 offsets in all but the G band. The mean absolute K-, V-, W-, and F-
band offset of NARVAL-South is about 5, 1, 1, and 2 K higher than the respective
NARVAL2 offset. This offset shifts could be related to the exchange of the calibration
targets, which would provide a more reliable cold calibration reference, but it cannot
be determined form the dropsonde comparison alone with absolute certainty. If
the old cold target had a warmer BT due to reflection than it was assumed by the
calibration routine, colder than real BTs would have been recorded by the software in
cold scenes, in principle. Consequently, a cold offset could be expected for NARVAL-
South. However, the software also included a correction function to account for the
mean reflection, but not the oscillation caused by standing waves. Therefore, one
could speculate, that strong wind drag could rough the LN2 surface such that the
reflection at the air-LN2 interface would be effectively reduced turning the reflection
correction in the software into a positive offset. This could at least partially explain,
why NARVAL-South offsets were generally more positive than NARVAL2 offsets.
An experiment with both target types under real condition could probably spread
more light on the issue, but practical reasons have hindered further experiments
and there are other factors which influence the radiometer stability similarly or even
stronger. Finally from the practical side it has to be noted, that the new closed
targets improved the handling of the LN2 cooling during calibration a lot.

3.3.4. Influence of the Forward Simulation on the Offset

Besides the hardware and calibration method, offsets could also be caused by the
forward simulation itself. The forward model is driven the by dropsonde measure-
ments, but dropsonde, like radiosondes, are consumable devices. Therefore, their
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sensors are rather simple. Studies have reported on measurement biases and espe-
cially on dry biases (e.g., Vömel et al., 2007, 2016). Such biases could cause offsets
between HAMP and the forward-simulated dropsondes.

The sensitivity analysis in Sect. 2.6 uses the same dropsonde profile as shown with
Fig. 3.10 in Sect. 3.3.2. In the sensitivity analysis in Sect. 2.6 it is shown, that an
increase of the whole relative humidity profile by 0.05, would increases the innermost
K-band channel by 5.5 K and the 31.4 GHz channel by 1.8 K, i.e., would imprint a
spectral difference of 3.7 K on the K band. Increasing humidity would imprint
a spectral difference of 1.5, 4.3, and 3.7 K on the HAMP-V, -W, and -F channels,
respectively. The channel with the lowest frequency in the V band and the outermost
F-band channel would be increased the most. The G-band BTs would decrease
with increased humidity with the strongest decrease of −3.4 K near the line center
compared to a decrease of (−1.2 K) at the wings.

An assumed warm measurement bias of the sonde of 2 K, i.e., the simulation with
decreased temperature by 2 K, would decrease the strongest absorption in V- and
F-band channels by 2.1 and 1.8 K, respectively, while leaving the least absorbing
channels almost unaffected (0.2 and 0.0 K). HAMP-G BTs would decrease by about
2.1 with no strong spectral dependency. HAMP-K and -W BTs would be less af-
fected by a temperature bias. The spectral sensitivity to the surface parameters is
comparably small in all channels.

Comparing Fig. 3.12 – the general spectral patterns of the offset – and Fig. 2.5 –
possible variations of the forward simulations due to dropsonde sensors biases – is
presumptuous on which dropsonde sensors biases could explain some of the spectral
offsets. For example, a dry bias – compensated by the relative humidity +5 % simu-
lation – could explain the general shape of the spectral offset in the K and F band,
partially in the V band and G band, excluding the central G band channels during
NARVAL2. However, the spectral amplitude of the humidity increase is smaller than
the spectral offset amplitude in all channels. Further, the 0.05 increase in relative
humidity would also result in warmer measurements at 90 GHz which is opposite
to most of the offsets that are negative in the W band. Also, the simulated BT
increase in the outermost F-band channels objects the NARVAL2 offsets observed
for those channels. Spectrally, a warm bias of about 4 K could explain the shape of
the V-band and F-band offsets, but would also yield an almost constant negative
offset in the G band. This contradicts the observed offsets of the outermost G-band
channels, which are around 0 K. Apart from this, such a significant temperature
bias of several Kelvin or a serious humidity bias larger than 0.05 would somehow be
the minimum to partially explain the BT offsets. Such dropsonde biases, are larger
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than reported issues and also the comparison of integrated water vapor from the
differential absorption lidar WALES with dropsonde indicates no severe humidity
error as it will be shown in Sect. 4.3.

Furthermore, the sensitivity study does not show any similarity to the spectral
spikes in the offsets observed in the mid-K- and -G-band channels during all flights
and in other channels during some flights. In general, this sensitivity study is not
able to completely explain the apparent offset of the offset patterns between flights,
especially since no clear systematic in the offset order of the flights among the
different bands could be identified yet. This indicates a strong offset component
that is rather band-dependent and independent of any possible dropsonde sensors
bias. In addition the sensitivity of absorption models (e.g., Rosenkranz (1998) v.s.
Liebe et al. (1993)) was tested but could not explain the offsets.

3.3.5. Results and Discussion

Brightness temperature offsets and their stability were analyzed using forward-
simulated dropsonde measurements in clear-sky scenes. Positive and negative offsets
of up to +6 and −11 K in certain channels and flights were found. Typical spectral
distributions of the offset are evident in most HAMP receivers. One flight with
intense dropsonde deployment is used to investigate the temporal stability. No drift
could be found. Although the offset during one flight seems to be stable, the mean
offset spectrum is offset between different flights. This might be related to the reg-
ular execution of the absolute calibration procedure before most flights. However,
the offsets of certain flights without pre-flight calibration, i.e., using the calibration
parameters from the previous flights, are different from those of the previous flight.
It has to be kept in mind, that the radiometer were turned off between those flights
and cooled down, which might have caused changes. An underestimation of the
cold target temperature due to impurities of the LN2 could explain warm offsets in
principle as sketched out in Fig. 3.13. Similarly, Maschwitz et al. (2013) identified
a warm calibration offset related to a overestimation of the LN2 temperature. The
magnitude of such a calibration bias should be similar in all bands. However, there
is no systematic offset order from different flights that applies to the offsets in all
HAMP bands. This points to independent offset shifts in all bands and all flights as
well. The sensitivity study shows that severe dropsonde sensor biases could explain
some of the spectral offset shapes, but not in all channels at once. Further more, the
crosscheck with other instruments make the required large dropsonde sensor biases
rather unrealistic.
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The spectral spikes in the offset patterns and the underlying observed spiky BT
spectra (e.g., Fig. 3.10a) involve the same K-band channels that stood out from
the offsets observed during the noise experiment (Fig. 3.8), where those channels
had offsets in the same direction. This indicates issues related to the radiometer
hardware and/or calibration software. It is speculated (Thomas Rose, RPG, per-
sonal communication, 2017), that different switching frequencies of the Dicke or
noise diode switch in normal operation and the calibration mode could cause offsets
directly after the calibration. The switching frequency could play a role in relation
to the time constant of the low-pass filter which is used in the temporal integration
of the radiometer. However, the software code is not accessible and further analysis
is impeded. Maschwitz et al. (2013) investigated the ground-based calibration tech-
niques of a HATPRO-G2 (RPG’s Humidity And Temperature Profiler – Generation
2), which is similar to the HAMP-KV. In their study, they found discrepancies be-
tween the hot-cold and tipping-curve calibration methods with differences in certain
channels of up to 1.5 K. Furthermore, a slight variation of the amplifier gain between
the calibration reference measurement on the cold target and on the hot target could
play a role for the HAMP offsets. Nevertheless, the apparent repeatability of those
BT offsets inspires the confidence to correct them with an additive offset correction.
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Figure 3.13.: Calibration diagram showing the influence of an underestimation 𝑇 ′
cold

of the true cold-calibration-target temperature 𝑇cold. (E.g., 𝑇cold >

𝑇LN2 calculated from Eq. 3.2 due to impurities mixed in the LN2.) The
receiver voltages 𝑈det at the cold and hot targets are registered during
the absolute calibration. The solid line is the assumed calibration
curve based on the underestimated 𝑇 ′

cold, while the dashed line is the
true calibration, that could be achieved with an unbiased cold-target
temperature 𝑇cold. The voltage measured at an atmospheric scene 𝑈atm

is related to an underestimated brightness temperature (BT′
atm) when

using the assumed calibration curve compared to the true curve.
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It is suggested to subtract the spectral mean offset (Fig. 3.12) from the correspond-
ing BTs of each flight. The campaign averaged offset should be used as best guess for
flights with three or less clear-sky sondes. It cannot be excluded, that the forward
simulation and used absorption models themselves have errors, which could explain
the spectral shape of the offsets. However, as the same forward simulator will be
used in the retrieval development (Chapter 4) the same offsets would be assumed
by the retrieval, i.e., the forward model offsets would cancel out.

3.4. Summary and Conclusions

The HAMP radiometer sensitivity, i.e., sensors noise, and accuracy, i.e., absolute
calibration, are analyzed using a ground based experiment with calibration targets,
forward-simulated dropsondes and in-flight HAMP acquisitions. The NeDT esti-
mates from ground-based sampling on reference targets agree with noise estimate
from radiatively-homogeneous atmospheric scenes. The NeDT of HAMP-KV and
HAMP-WF are clearly below 0.3 and 0.6 K, respectively, in the NARVAL configu-
ration, which was used during NARVAL-South and NARVAL2 before the HAMP
was upgraded for EUREC4A. The ground-based NeDT estimates of the HAMP-G
deviate from the in-flight estimated. The in-flight HAMP-G NeDT is lower than
0.5 K, but a variability up to 1.2 K was observed during a ground experiment. In
addition, high positive and negative correlation coefficients were observed in the
ground based noise experiment. These were probably related to failing hardware
components, which were replaced with the upgrade for EUREC4A, such that the
new covariance is smoother.

The absolute accuracy of HAMP, which is necessary for a bias-free retrieval applica-
tion, is assessed by comparing synthetic HAMP measurements based on dropsonde
data with actual HAMP measurements in clear-sky scenes. Systematic channel-
dependent offsets are found between forward-simulated dropsondes and simulta-
neous HAMP measurements. The offsets cannot be explained by a realistic and
systematic error in the dropsonde measurements. The offset of each channel does
not drift during one flight, but varies similarly in channels with similar sensitivity
to the atmosphere. This random covariance can be attributed to the spatiotemporal
mismatching of HAMP nadir measurements and the drifting sondes.

More-positive warm offsets are found in the NARVAL-South data, while NARVAL2
offsets are more negative and have a slightly smaller absolute offset. This could
be due to the upgraded calibration targets, but unfortunately no meaningful di-
rect comparisons of the two targets were feasible under real conditions. However,
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ground-based measurements indicate discrepancies in the calibration routine as some
offsets, even though with significantly smaller amplitude, were already seen after the
calibration. Nevertheless, the in-flight offsets are larger and most likely result from
changes within the ventilated belly pod during takeoff. For example, an environmen-
tal influence on the foam windows in the belly pod through condensation cannot be
excluded. However, the stability of the offset indicates, that the condensate wouldn’t
have changed much during one flight. In addition, impurities in the LN2 used during
the absolute calibration in Barbados probably caused a bias in the assumed temper-
ature of the cold calibration reference. Hardware issues of HAMP-G resulted in gain
instabilities which are visible as BT sawtooth patterns (Konow et al., 2019). These
instabilities limit the availability of HAMP-G data, such that less dropsonde com-
parisons are possible to assess the absolute accuracy. However, those comparisons
that are possible show no general drift of HAMP-G BTs. The stability of the offset
during a flight and its systematic spectral shape allow for an offset correction of each
channel based on the mean offsets of each flight. The mean standard deviation of
the offsets within one flight is below 1.4 K in the K-, W-, and F-band channels and
below 0.9 K in the V- and G-band channels. More than 80 % (derived from Fig. 3.11)
of this variation in the K- and W-band channels is attributed to the spatiotemporal
mismatching of HAMP nadir measurements and the drifting sondes. The results
presented here allowed the author to contribute an offset correction to the HAMP
datasets published by (Konow et al., 2019) in the Climate and Environmental Re-
trieval and Archive (CERA) (Konow et al., 2018a,b,c,d). The random uncertainty of
the offset-corrected BT data in the K- and W-band, which are the essential channels
used by the retrievals in Chapter 4, is estimated 0.5 K on average for all channels
considering the low NeDTs and strong contribution of the sonde drifting error to the
offsets.
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Chapter 4.

Microwave Radiometer Retrievals of
Hydrometeors and Water Vapor

The content of the following Chapter has been published by Jacob et al. (2019). It
investigates the research question 2 posted in the introduction (Sect. 1.4):

2. How can geophysical quantities be retrieved from HAMP observations? The
focus is on the liquid hydrometeors, i.e. LWP and RWP, but also the cloud en-
vironment in terms of water vapor, i.e. IWV, matters. What is the uncertainty
of LWP, RWP, and IWV retrievals from HAMP? Which differences between
the dry season in December 2013 (NARVAL-South) and the wet season in
August 2016 (NARVAL2) can be identified from the retrieved products?

Novel retrievals are developed for liquid water path (LWP), which is the main charac-
teristic of trade-wind clouds that is observable with HAMP. In addition, the separate
contribution by raindrops, in terms of the rain water path (RWP), and cloud droplets
to the LWP is studied, and the moisture environment of the clouds is characterized
by newly developed retrievals of the integrated water vapor (IWV).

The present thesis focuses on trade-wind convection. Therefore we compare retrieval
results from the first two field experiments NARVAL-South and NARVAL2 during
which HAMP was used in the tropics. Thus the northern part of the first set of
NARVAL campaigns in 2013–2014 is not considered and NARVAL-South is simply
referred to as “NARVAL1”. Furthermore, the HAMP-W channel is simply referred
to by its frequency (90 GHz). On page 70, a footnote is added, which refers the BT
offset correction published by Konow et al. (2019) to Chapter 3.

The author of this thesis conceptualized the study together with advice from Su-
sanne Crewell. Furthermore, he developed the HAMP retrievals and a corresponding
retrieval database, conducted retrieval assessments and the analysis of the two sea-
sons, and wrote the paper with support and input from all co-authors. Felix Ament
and Susanne Crewell contributed to the design of the field experiments by initiating
the DFG HAMP project. Martin Wirth and Manuel Gutleben contributed the lidar
water vapor profiles and cloud mask, respectively. The lidar water vapor profiles are
used to asses the newly developed IWV retrieval, while the cloud mask is used to
enhance the LWP retrieval by identifying clear-sky scenes. Heike Konow organized
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the quality controlled HAMP data, considering the BT offset correction developed
in Chapter 3, and dropsonde data in a unified file format. The latter is used to
asses the IWV retrieval as well. Mario Mech designed the principle of the PAMTRA
simulations, which are used to create the retrieval database.

Investigating the liquid water path over the tropical Atlantic
with synergistic airborne measurements

Marek Jacob1, Felix Ament2, Manuel Gutleben3, Heike Konow2, Mario Mech1,
Martin Wirth3, Susanne Crewell1
1Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923
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Abstract. Liquid water path (LWP) is an important quantity to characterize
clouds. Passive microwave satellite sensors provide the most direct estimate on
a global scale but suffer from high uncertainties due to large footprints and the
superposition of cloud and precipitation signals. Here, we use high spatial reso-
lution airborne microwave radiometer (MWR) measurements together with cloud
radar and lidar observations to better understand the LWP of warm clouds over the
tropical North Atlantic. The nadir measurements were taken by the German High
Altitude and LOng range research aircraft (HALO) in December 2013 (dry season)
and August 2016 (wet season) during two Next-generation Advanced Remote sensing
for VALidation (NARVAL) campaigns.

Microwave retrievals of integrated water vapor (IWV), LWP, and rainwater path
(RWP) are developed using artificial neural network techniques. A retrieval database
is created using unique cloud-resolving simulations with 1.25 km grid spacing. The
IWV and LWP retrievals share the same eight MWR frequency channels in the range
from 22 to 31 GHz and at 90 GHz as their sole input. The RWP retrieval combines
active and passive microwave observations and is able to detect drizzle and light pre-
cipitation. The comparison of retrieved IWV with coincident dropsondes and water
vapor lidar measurements shows root-mean-square deviations below 1.4 kg m−2 over
the range from 20 to 60 kg m−2. This comparison raises the confidence in LWP
retrievals which can only be assessed theoretically. The theoretical analysis shows
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that the LWP error is constant with 20 g m−2 for LWP below 100 g m−2. While the
absolute LWP error increases with increasing LWP, the relative one decreases from
20 % at 100 g m−2 to 10 % at 500 g m−2. The identification of clear-sky scenes by
ancillary measurements, here backscatter lidar, is crucial for thin clouds (LWP <
12 g m−2) as the microwave retrieved LWP uncertainty is higher than 100 %.

The analysis of both campaigns reveals that clouds were more frequent (47 % vs.
30 % of the time) in the dry than in the wet season. Their average LWP (63 vs.
40 g m−2) and RWP (6.7 vs. 2.7 g m−2) were higher as well. Microwave scattering
of ice, however, was observed less frequently in the dry season (0.5 % vs. 1.6 %
of the time). We hypothesize that a higher degree of cloud organization on larger
scales in the wet season reduces the overall cloud cover and observed LWP. As to
be expected, the observed IWV clearly shows that the dry season is on average
less humid than the wet season (28 vs. 41 kg m−2). The results reveal that the
observed frequency distributions of IWV are substantially affected by the choice of
the flight pattern. This should be kept in mind when using the airborne observations
to carefully mediate between long-term ground-based and spaceborne measurements
to draw statistically sound conclusions.

4.1. Introduction

Clouds and precipitation are a fundamental part of the Earth’s climate system and
significantly contribute to the water and energy cycle. However, the great variability
of clouds, the complex interaction of small-scale processes involved, and their cou-
pling to atmospheric circulation make them a major source of uncertainty in numer-
ical climate and weather models (e.g., Bony et al., 2015; Boucher et al., 2013). Sher-
wood et al. (2014) attribute especially shallow marine clouds to contribute largely
to the intermodel spread of climate models. Such clouds are particularly difficult to
assess from spaceborne sensors due to their small size, with about 70 % appearing
in sizes of less than 2 km over the tropical North Atlantic (Schnitt et al., 2017). The
accurate observation of thin liquid clouds is an ongoing and important challenge as
they cover more than a quarter of the globe and are an important contribution to
Earth’s energy balance (Turner et al., 2007).

Liquid water content (LWC) is the key parameter to describe clouds in atmospheric
models. Due to the even higher difficulty in observing LWC profiles (Crewell et al.,
2009), we focus on the liquid water path (LWP). It describes the total mass of all
liquid water droplets in an atmospheric column above a unit surface area. However,
care has to be taken as to whether LWP only denotes the contribution by cloud
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droplets, later on called CLWP, or whether it also includes the contribution by
liquid precipitation, i.e., drizzle and raindrops (rainwater path, RWP). Thus, we
define LWP as the sum of CLWP and RWP. Furthermore, the observed LWP per
se is an average over the sensors’ field of view, which is affected by cloud and rain
inhomogeneity, and the clear-sky contribution. Therefore, the spatial resolution is
key information to interpret LWP statistics.

Few global (C)LWP datasets exist, and differences in global mean (C)LWP of a
factor of 2 are reported by Lohmann and Neubauer (2018). These findings reflect
the different sensing principles, i.e., microwave radiometry and visible–near-infrared
techniques. Satellite microwave imagers such as the Special Sensor Microwave Im-
ager (SSM/I) provide CLWP estimates for several decades but are limited to the
ice-free oceans where the background signal is low. (C)LWP is mainly derived from
the thermal emission signal in window regions with low water vapor contribution.
Microwave receivers also sense rainwater within the satellite footprint which can be
as large as several tens of kilometers. Recently, the Multisensor Advanced Climatol-
ogy of Liquid Water Path (MAC-LWP; Elsaesser et al., 2017) covering the period
1988 to 2016 has been generated. Elsaesser et al. (2017) additionally estimate the
contribution of RWP to the total LWP by a simple parametrization and recommend
only using those values with a ratio RWP : LWP of less than 0.2. The average MAC
RWP : LWP ratio in our area of interest is 0.23 and 0.30 in December 2013 and
August 2016, respectively. Therefore, a more detailed assessment of the rain cloud
partitioning is important to better interpret satellite measurements in our study
area. Greenwald et al. (2018) evaluate MAC-LWP using measurements by the Mod-
erate Imaging Spectroradiometer (MODIS), the CloudSat Profiling Radar (CPR;
Stephens et al., 2002), and the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP; Winker et al., 2007b). They found in some cases a net LWP bias of more
than 50 percent of the mean CLWP due to the combined effects of the in-cloud and
adjacent precipitation biases as well as the cloud–rain partition.

Visible–near-infrared techniques such as those applied to MODIS exploit the spec-
tral response of reflected sunlight to derive CLWP from optical depth and effective
radius retrievals and are therefore limited to daytime. As the signal mainly relates
to the upper part of the cloud, assumptions of the cloud vertical structure intro-
duce uncertainties (Zhou et al., 2016). The horizontal MODIS resolution of about
1 km is much better than that of microwave satellites. Therefore, MODIS data
have also been used to assess the clear-sky bias of microwave retrievals (Greenwald
et al., 2018), to combine them with microwaves for a better assessment of low clouds
(Masunaga et al., 2002), and to detect the ratio of rainwater and cloud water in low-
latitude shallow marine clouds via combination with CPR (Lebsock et al., 2011).
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In summary, quantifying the accuracy of CLWP and RWP observations is a major
challenge as no absolute reference exists. While shipborne microwave observations
have potential for satellite CLWP evaluation (Painemal et al., 2016), they fail during
precipitation events, due to a wet radome.

In this study, we use the Next-generation Advanced Remote sensing for VALidation
studies (NARVAL; Stevens et al., 2019) expeditions for investigating LWP and its un-
certainty over the tropical North Atlantic. The NARVAL missions aim at improving
the understanding of clouds, their role in the distribution of water in the atmosphere,
and their interaction with the environment (Bony et al., 2015). Within NARVAL,
the German High Altitude and LOng range research aircraft (HALO; Krautstrunk
and Giez, 2012) was configured as an airborne cloud observatory combining active
and passive microwave instruments with water vapor lidar, solar reflectance measure-
ments, and dropsondes. Measurements taken during two campaigns in December
2013 (dry season) and in August 2016 (wet seasons) allow the study of clouds with
similar, but more sensitive and higher spatially resolving instrumentation than that
available on satellites.

Schnitt et al. (2017) demonstrate the ability of the HALO NARVAL 2013 instru-
mentation to characterize shallow clouds over the tropical North Atlantic in terms
of size, integrated water vapor (IWV), CLWP, and surface reaching precipitation
using classical regression algorithms. Their study uses the 1 km resolution HAMP
data to show the sub-footprint variability of spaceborne CLWP estimation of about
30 km resolution. Further they illustrate how MODIS products at 1 km resolution
likely underestimate CLWP of thick clouds due to MODIS’ sensitivity towards the
upper part of the cloud. In this study, we refine the (C)LWP retrieval by making
use of high-resolution simulations that start to resolve cloud-scale circulations and
were performed over the full tropical North Atlantic with the ICON (ICOsahedral
Non-hydrostatic) weather model to support the analysis (Klocke et al., 2017). We
further assess the total LWP retrieval accuracy over a wide range of cases, extend
the retrieval towards a separation of rain and clouds, and reanalyze the dry season
measurements in relation to the wet season campaign.

First, we aim to provide an accurate LWP dataset including uncertainty estimates to
support the NARVAL overall goals. For this purpose, we develop retrieval algorithms
using multi-channel microwave radiometer measurements as input for LWP and –
based on the similar principle – IWV. The novel cloud-resolving ICON simulations
serve as a training dataset (Sect. 4.2). In contrast to LWP, IWV can be evalu-
ated using simultaneous measurements by dropsondes and water vapor lidar. The
evaluation is presented in Sect. 4.3. The assessment of LWP (Sect. 4.4) reveals the
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importance of using ancillary measurements, e.g., lidar measurements, for low LWP
values and cloud radar measurements for lightly precipitating cases. For the latter
an RWP retrieval is developed and assessed (Sect. 4.5). Finally, the campaign data
are analyzed to investigate differences between dry and wet seasons (Sect. 4.6).

4.2. Material and Methods

This section presents the data and methods used in this study. That includes an
introduction to the two NARVAL campaigns and the relevant measurements that
were conducted during both campaigns. Furthermore, the generation of the retrieval
database and the subsequent retrieval development are presented.

4.2.1. Campaign Overview

During the NARVAL expeditions HALO was operated out of Grantley Adams Inter-
national Airport in Barbados to observe trade wind cumuli and their environment
over the tropical North Atlantic (Fig. 4.1). Different flight patterns were chosen to
perform satellite underflights, survey the area, probe the environment of a tropical
cyclone, and to determine the large-scale vertical motion by launching several drop-
sondes within circles of approx. 170 km diameter (Bony and Stevens, 2018). In total
eight research flights were performed during NARVAL1-South in December 2013
and 10 flights during NARVAL2 in August 2016. NARVAL1 also included research
flights in the northern sector of the Atlantic which are not considered here. For
simplicity we refer to the southern part as NARVAL1 in the following.

Flights were scheduled during local daytime. Flight altitudes varied between 6.4 and
15.0 km with an average speed above ground of 237 and 207 m s−1 during NARVAL1
and NARVAL2, respectively. All further analyses refer to the area from 37 to 60° W
and 7 to 20° N. A detailed description of the different research flights can be found
in Klepp et al. (2014) for NARVAL1 and Stevens et al. (2019) for NARVAL2.

4.2.2. Measurements

The microwave radiometer (MWR) being part of the HALO Microwave Package
(HAMP Mech et al., 2014) provides the key measurements for this study. HAMP
was installed in a belly pod below the HALO fuselage in nadir-looking configuration.
While the 26-channel MWR includes channels from 22 tp 195 GHz, we only use the
seven K-band channels (22.24–31.40 GHz) and the 90 GHz channel to retrieve LWP
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Figure 4.1.: NARVAL1 (thick lines) and NARVAL2 (thin lines) flight patterns. The
study area of interest is depicted by subsampled ICON LWP from Au-
gust 19, 2016 14:00 UTC. A grid point is shown every 0.5° as present in
the retrieval database.

or IWV in the present work. At these frequencies ice particles do not influence the
microwave signal substantially with the exception of precipitation sized particles.

As we focus on warm clouds only, cases of ice precipitation are filtered using the
differential response of two frequencies along the 60 and 118 GHz oxygen lines. The
channels at 53.75 and 118.75±1.4 GHz have similar temperature weighting functions
but the higher frequency is more affected by ice scattering. The difference between
a moving median of differential brightness temperature (BT) to the instantaneous
differential BT is used to define the "ice flag". This procedure flags 1.2 % of the
measurements of both campaigns.

Both liquid water and water vapor emit microwave radiation across the full mi-
crowave spectrum albeit with different spectral sensitivity (Fig. 4.2). BTs around
the 22.235 GHz water vapor rotational line increase with increasing water vapor.
The effect is strongest at the line center and decreases along the pressure-broadened
wing of the absorption line. However, due to water vapor continuum absorption,
BTs at window frequencies near 30 and 90 GHz are still affected. In contrast, the
influence of liquid water is more dominant in the higher-frequency window channels
than in absorption channels due to increasing emission with frequency. This can
be best seen under low-humidity conditions by the increasing BT with increasing
frequency. The near-surface wind speed slightly alters the BTs through modification
of surface reflectivity and emissivity, as also shown in Fig. 4.2. This influence will
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act as a random source of error on the LWP and IWV retrievals as no independent
information to correct for wind influence is available.

Figure 4.2 illustrates the difficulty of retrieving LWP and IWV as in certain channels
(e.g., 90 GHz) it is indistinguishable whether BT changes result from changes in IWV
or LWP. Therefore, a combination of at least two channels is needed for retrieving
IWV or LWP. Note that measurement errors in any of the channels affect both
IWV and LWP retrievals (Crewell and Löhnert, 2003). This means that a good
retrieval of either IWV or LWP indicates a good retrieval capability of the other.
Thus, an accurate IWV retrieval is a prerequisite of a good LWP retrieval. Note
that in most LWP retrievals (e.g., Wentz and Meissner, 2000) the liquid is assumed
to consist of cloud droplets only, and therefore bulk approaches to calculate the
liquid water absorption coefficients are used. However, for raindrops the Rayleigh
approximation is not valid anymore, and Mie effects need to be considered, though
the discrimination of the cloud and rain signal using MWRs is difficult.

Figure 4.2.: Sensitivity of brightness temperatures in the K band and around 90 GHz
to integrated water vapor (IWV), cloud liquid (CLWP), and rain water
path (RWP), and 10 m surface wind (𝑢). Dashed, dotted, and solid lines
show variations in IWV and LWP (CLWP or RWP) and 𝑢, respectively.
Bandpasses of the HALO Microwave Package (HAMP) channels are
indicated by gray bars. Calculations are based on a thermodynamic
dropsonde profile and a synthetic cloud in nadir geometry above the
ocean.

The HAMP MWR measures BT with 1 s integration time and a noise level of less
than 0.5 K in the considered channels. Despite ground calibration using hot/cold tar-
gets on the air field, BT offsets were identified by comparison with forward simulated
dropsondes. Flight-dependent corrections were developed (Konow et al., 2019), and
corrected BTs are available in the Climate and Environmental Retrieval and Archive
(CERA) (Konow et al., 2018a,c).
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HAMP also includes a 35.5 GHz cloud radar with a sensitivity of −30 dBZ at 13 km
distance in the NARVAL setup. Profiles of the radar reflectivity factor (𝑍) and
the linear depolarization ratio are recorded with 30 m vertical and 1 s temporal
resolution. To supplement HAMP, Vaisala RD94 dropsondes were launched from
HALO to provide the thermodynamic conditions of the environment. In total 76
and 215 sondes were released during NARVAL1 and NARVAL2, respectively.

To distinguish between clear-sky and cloudy conditions as well as possible, Schnitt
et al. (2017) derive a cloud mask for NARVAL1 based on the nadir spectral solar
radiance measurements by HALO-SR (HALO Solar Radiation; Fricke et al., 2014).
Unfortunately, sun glint in August deteriorated the cloud mask retrieval during
NARVAL2. Therefore, Gödde (2018) developed a cloud mask product using the
imaging spectrometer specMACS (spectrometer of the Munich Aerosol and Cloud
Scanner Ewald et al., 2016) which overcomes the sun glint problem. However, spec-
MACS was not installed during NARVAL1. In order to have similar cloud mask
performance during both campaigns the aerosol backscatter profile measured by the
WAter vapor Lidar Experiment in Space (WALES) airborne demonstrator (Wirth
et al., 2009) is used instead to provide an along-track cloud mask with 1 s resolu-
tion.

WALES also provides profiles of water vapor molecular number density based on
the differential absorption lidar (DIAL) principle. These profiles are converted to
volume mixing ratio profiles using temperature and pressure data from ECMWF
analyses. A resolution of about 200 m vertical and 12 s temporal was chosen as a
compromise between accuracy and resolution. The water vapor data are given on
the vertical grid of the raw backscatter data which is 15 m but smoothed with an
averaging kernel of 200 m width (full width at half maximum, FWHM). Water vapor
profiles are provided down to about 250 m in cases with no or optically thin clouds,
which can be penetrated by the lidar beam. Water vapor information is available
below thin clouds, but the cloud itself is masked out in the profile.

The requirement of simultaneous measurements by all sensors reduces the dataset.
While all research flights during NARVAL1 can be used, no data is available for
some NARVAL2 flight days due to hardware issues as summarized in Table 4.1. The
spatial sampling differs even with the same temporal sampling due to footprints
differences. The HAMP MWR has the largest beamwidth in its lowest-frequency
channel of 5.0° (FWHM). The corresponding surface footprint at 10 km altitude is
about 870 m across and 1090 m along track. The HAMP radar beamwidth is 0.6°
whereas WALES has a field of view of 1.6 mrad. The respective footprints are about
105 m × 335 m and 16 m × 216 m. We reduce the along-track sampling differences
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by averaging temporally, but the cross-track sampling issues remain. This means a
cloud covering a lateral part of the MWR footprint might be missed by the lidar
or even the radar. Cross-track imagers such as specMACS could be used to assess
these issues. However, specMACS was only installed on HALO for NARVAL2, and
the detailed analysis of HAMP beam filling is beyond the scope of this study. The
problem of different footprints and sensitivities of different NARVAL instruments
for cloud masking is illustrated by Stevens et al. (2019).

Table 4.1.: Dataset availability. Days of research flights from which the datasets are
used for the study of NARVAL1 and NARVAL2, respectively.

Dataset
NARVAL1 NARVAL2
Day in December 2013 Day in August 2016

HAMP radiometer 10, 11, 12, 14, 15, 16, 19, 20 8, 10, 12, 15, 17, 19, 22, 24, 26, 30
HAMP radar 10, 11, 12, 14, 15, 16, 19, 20 8, 10, 12, 15, 17, 19, 22
Dropsondes 10, 11, 12, 14, 15, 16, 19, 20 8, 10, 12, 15, 17, 19, 22, 24, 26, 30
WALES water vapor 10, 11, 12, 14, 15, 16, 19, 20 10, 12, 15, 17, 19, 22, 24, 26, 30
WALES cloud mask 10, 11, 12, 14, 15, 16, 19, 20 8, 12, 15, 19, 22, 24, 26, 30

4.2.3. Retrieval Database

Recently, high-spatial-resolution simulations with the storm-resolving ICON model
were able to show how resolved convection and its associated circulation interact with
and form the larger-scale circulation within the Atlantic intertropical convergence
zone (Klocke et al., 2017). These simulations serve as training and testing data for
the retrieval algorithms. The simulations were performed on a triangular grid, with a
horizontal spacing of about 1.25 km and 75 vertical levels. The simulations cover the
area of 4° S to 18° N and 64 to 42° W. The data were spatially subsampled to reduce
the computational effort while still covering the variability of atmospheric profiles.
To eliminate atmospheric columns with a high degree of correlation, columns are
selected on a 0.5° × 0.5° longitude–latitude grid, so that each time step includes 849
cases over the ocean as indicated in Fig. 4.1. Data from 24 days with hourly outputs
each, spanning the period of each campaign, are alternately separated into test and
training data. In general, the training and test data exclude cases with LWP greater
than 1000 g m−2, and cases with ice. This means 86 % of all profiles over the ocean
are used. This limitation is done as our focus is on liquid clouds and their transition
to rain. Note that classical satellite algorithms (e.g., Wentz and Meissner, 2000) are
trained with an upper LWP limitation of 300 g m−2.
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Synthetic HAMP measurements, i.e., BTs and radar reflectivity profiles in nadir
view, are simulated for each model column based on its thermodynamic profile and
hydrometeors (cloud liquid water, rain, cloud ice, snow, and graupel). The Pas-
sive and Active Microwave TRAnsfer code (PAMTRA Maahn et al., 2015; Cadeddu
et al., 2017) is used. It is configured with 27 output levels to mimic different flight
altitudes (6–15 km). The ICON model was set up with a one-moment microphysics
scheme (Baldauf et al., 2011). In PAMTRA, cloud and rain particles and their size
distributions are described according to the microphysical scheme of ICON and the
single scattering properties for each particle are approximated by the Lorentz–Mie
theory. Cloud and rain particles are simulated with a 20 µm diameter monodisperse
and exponential distribution of water spheres, respectively. The exponential dis-
tribution has its intersect 𝑁0 classically fixed to 0.08 cm−4 (Marshall and Palmer,
1948). Absorption coefficients of atmospheric gases (i.e., oxygen, water vapor, ni-
trogen) are calculated according to Rosenkranz (1998) with corrections of the water
vapor continuum absorption according to Turner et al. (2009) and the line width
modification of the 22.235 GHz water vapor line as proposed by Liljegren et al.
(2005). The emissivity and reflectivity of the sea ocean surface are calculated using
the FAST microwave Emissivity Model version 5 (FASTEM5 Liu et al., 2011), which
is a modification of the Fresnel coefficients including corrections for ocean surface
roughness and foam building as a function of wind speed.

To test the realism of the retrieval database, histograms of BTs were compared
with their observed counterparts. Joint histograms of an absorption (22 GHz) and
a window channel (31 or 90 GHz) show that the relations between channel pairs are
depicted in the model and observations in the same way (Fig. 4.3). In clear-sky con-
ditions absorption and window channels are highly correlated with both increasing
with increasing moisture albeit the increase is less in the window channels. Clear-sky
cases with low BT31 and BT90 are visible as a line of high occurrence and reveal the
linear relation between absorption and window channel BTs as a function of IWV.
The simulations and measurements show the same relations but differ slightly in
terms of the BT combination distribution within this line as the underlying IWV
sampling is slightly different. If liquid water clouds occur, the window channel BTs
increase compared to clear-sky cases (solid lines in Fig. 4.3). The window channel
at 90 GHz has a higher sensitivity towards LWP compared to BT31 as it can be seen
by the increased LWP line spread. Rainy cases show higher emissions in all channels
(dotted lines in Fig. 4.3). For thick clouds and rain the most-liquid-sensitive channel
(90 GHz) experiences saturation effects with BT90 approaching cloud temperatures.
The joint histograms reveal the major signals by liquid and water vapor which are
exploited within retrieval algorithms. However, multiple influence factors like the ex-
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act vertical structure lead to the variability illustrated in Fig. 4.3. Minor deviations
between observations and simulations are visible in the frequency of combinations
of BT31 and BT90 with high BT22. Those combinations are associated with heavy
precipitation and were observed less frequently than present in the model as flight
patterns avoided the heaviest precipitation.

Figure 4.3.: Relation between brightness temperatures (BT) in an absorption chan-
nel (22.24 GHz) and two window channels, i.e., 31.40 GHz (a, b) and
90.00 GHz (c, d). Two-dimensional histograms of occurrences in simu-
lations (a, c) and HAMP measurements (b, d). Solid contours highlight
BT combinations in simulations that mostly occur with LWP higher
than 50 g m−2, 250 g m−2, and 500 g m−2. Dotted lines highlight combi-
nations of which RWP mostly exceeds the respective threshold. LWP
contours in (b) and (d) are taken from (a) and (c) for guidance. HAMP
data from all NARVAL2 flights and ICON–PAMTRA data of the cor-
responding dates are used. Profiles and measurements with ice are ex-
cluded.

4.2.4. Retrieval

The atmosphere emits radiation depending on the atmospheric state as illustrated in
Fig. 4.2. In general, the retrieval of the atmospheric state from MWR measurements
is under-determined as multiple atmospheric states can lead to the same set of BTs.
Statistical relations have to be established to link the measurement to the most
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common atmospheric state that can provide those measurements. To account for
nonlinearity in this inverse modeling problem, we use an artificial neural network
(NN) model similar to Cadeddu et al. (2009) to relate BTs to IWV and LWP. The
NN is configured with eight input neurons and 15 hidden neurons in one hidden
layer.

For testing and training the retrievals, Gaussian noise of 0.5 K is added to the sim-
ulated BTs to account for uncertainties of the HAMP MWR, the radiative transfer,
and absorption model. The database is separated by alternating days into test and
training data. Retrieval parameters are derived for each PAMTRA output level to
account for the altitude dependence of the microwave signal. The output levels are
chosen such, that a HALO flight level never deviates more than 90 m from the next
output level. The parameters at output levels closest to HALO’s altitude are inter-
polated to HALO’s altitude in the retrieval application. Retrieval parameters are
derived separately for both campaigns. For testing, each retrieval is applied to the
test data of the campaign it is trained for.

In the retrievals, IWV and LWP, and later CLWP and RWP are the integrals of the
water vapor and liquid water over the whole column as seen from space. Despite
the fact that HALO flies lower, we chose the total integrals as they prevent artificial
flight-level-depended biases in statistics and allow a comparison with satellite and
model data. According to ICON model data, typically less than 0.1 kg m−2 water
vapor is above a flight altitude of 10 km. About 1 kg m−2 of IWV is not seen by
the MWR at the lowest NARVAL2 flight altitude of 6.4 km but is included in the
retrieval. The LWP retrieval is trained with the integral of all liquid water, that is
given by the model either as cloud water or rainwater. The sum of both is used due
to the difficulty of MWRs to distinguish clouds and rain (Fig. 4.2).

Neural network LWP retrievals are compared with linear regression (REG) mod-
els as used by Schnitt et al. (2017). The regression relates measured brightness
temperatures BT𝑖 to LWP including the quadratic terms of BT𝑖

LWP = 𝑐 +
∑︁

𝑖

(︁
𝑏𝑖BT𝑖 + 𝑎𝑖BT2

𝑖

)︁
, (4.1)

where 𝑎𝑖, 𝑏𝑖, and 𝑐 are regression coefficients. Such REGs are less susceptible than
NNs to extrapolation towards unforeseen input data, i.e., data values or combi-
nations that are not covered by the training data. However, NNs are better in
representing nonlinear effects that are apparent in microwave radiative transfer and
thus can better adjust to the extremes of the LWP target space. The applica-
tion of the retrievals to test data reveals overall uncertainties between 0.5 kg m−2

and 0.6 kg m−2 for IWV for both approaches, i.e. NN and REG, and 22 g m−2 and
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26 g m−2 for LWP using the NN and REG, respectively. For LWP the uncertainty
strongly depends on atmospheric conditions as it will be investigated in Sect. 4.4.

When retrieval algorithms are applied to HALO measurements, slight biases of LWP
from 0 with slow changes over time are observed during clear-sky scenes. To reduce
these biases and to improve the retrieval of low LWP values, we follow the synergistic
approach by van Meijgaard and Crewell (2005). Herein, we use the WALES cloud
mask for clear-sky identification. HAMP measurements are considered clear sky if no
cloud is detected by WALES within ± 2 seconds flight time. The distance-weighted
average clear-sky LWP within ± 30 minutes is then subtracted from each a priori
retrieved LWP value.

In thick clouds we occasionally observed, that while the REG retrieval gave LWP
> 1000 g m−2, the NN LWP time series showed a sudden decline. This is likely
caused by the clipping of the NN retrieval at 1000 g m−2, which is expected as the
retrieval database is limited to LWP < 1000 g m−2 and thus BTs associated with
higher amounts of liquid are unknown to the retrieval. To avoid this behavior, we
use a second NN retrieval trained with an extended database up to 4000 g m−2 to flag
scenes that are potentially above 1000 g m−2. Overall, 0.76 % of the measurements
were masked in this way. Note that these measurements often coincide with ice
scattering depressions in channels at higher frequencies.

To retrieve the contribution of raindrops (RWP) to the total LWP, the vertically
integrated radar reflectivity is used in addition to the MWR channels in another
NN retrieval. The aim is separating the LWP into CLWP and RWP, i.e., splitting
the contributions from small cloud droplets and larger raindrops by estimating the
fraction

𝑓 = RWP
LWP = RWP

RWP + CLWP . (4.2)

This retrieval is based on the hydrometeor classes of rain and cloud liquid water in
the ICON model. The RWP is calculated by multiplying 𝑓 and the retrieved total
LWP.

4.3. Assessment of Integrated Water Vapor

Three independent methods to derive IWV are available from HALO: the MWR
retrieval, vertically integrated humidity from dropsondes, and vertically integrated
humidity from WALES. Each of the three methods has its advantages and short-
comings. The microwave radiometry can not provide profile information but gives
continuous IWV under nearly all-sky conditions. The dropsondes provide in situ
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measurements, but no valid data up to about the first half kilometer below the air-
craft because of the sensor’s adjustment from the aircraft cabin conditions to the
outside. Furthermore, wind drifts sondes out of the aircraft nadir with a typical hor-
izontal drift during the decent of 4 km. The dropsonde relative humidity sensor has
a repeatability of 2 % according to the manufacturer (Vaisala, 2017). This relates to
an IWV accuracy of about 1.4 kg m−2. WALES provides water vapor profiles, but
they are only available when no cloud extinguishes the laser beam. This limits the
application of WALES for the IWV retrieval to clear-sky scenes.

To compute the numerical derivative in the DIAL equation, the first data point is at
about 250 m above the sea surface and centered at the retrieval interval. Therefore,
in the vertical integration, the missing near-surface information is filled with the
median mixing ratio in the lowest five range bins. The median is chosen to reduce
any surface artifacts which can occur, when the first raw data signal point used in the
retrieval contains the surface reflex. We estimate that the error of this assumption
is about 0.3 kg m−2 by analyzing dropsonde humidity profiles. The IWV estimation
is discarded if information of more than 400 m above sea level is missing or there is
a gap due to a thin cloud. Also, stability of the estimated WALES IWV is required,
which means that the differences to the preceding and succeeding IWV estimations
have to be smaller than 2 kg m−2.

An example of water vapor retrievals on August 19, 2016 is shown in Fig. 4.4. An
elevated moisture layer between 3 and 4 km altitude is visible in the first half of
the scene. Around 14:53 a plume of moist air reaching up into even higher levels
causes an IWV gradient of nearly 10 kg m−2 (26–35 kg m−2) over a distance of about
110 km. This gradient is captured well by WALES and HAMP. The two dropsondes
that were released between 14:45 and 14:55 reconstruct this gradient, but both
have a dry offset. This offset might be due to drifting of the sonde towards the
drier air mass. After a short outage of WALES at around 15:00, shallow clouds
below 2 km prevent the determination of lidar IWV frequently. Most of the IWV
measurements from dropsondes agree with the coincident remote sensing estimates
within the sondes’ uncertainty.

A more quantitative comparison is achieved by considering all measurements from
both campaigns which cover a wide variety of water vapor conditions (Fig. 4.5).
Overall, the sondes agree well with HAMP over the whole observed range from
very low (20 kg m−2) to very high (60 kg m−2) values of IWV (Fig. 4.5a). The
root-mean-square deviation (RMSD) is 1.39 kg m−2 (1.28 kg m−2) with a mean bias
of 0.28 kg m−2 (0.47 kg m−2) during NARVAL1 (NARVAL2) as summarized in Ta-
ble 4.2. The positive biases of HAMP are most likely caused by the retrieval, which
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Figure 4.4.: Water vapor time series from NARVAL2 research flight 6 on August 19,
2016. Top: IWV time series by HAMP, WALES, and dropsondes with
their uncertainties. Bottom: WALES water vapor profiles. White areas
denote masked lidar data. The scene represents a circle around 14.8° N
and 51.0° W over a distance of 520 km.

is trained with the whole column IWV, whereas the sonde IWV is only integrated
along its measurement path. Most sondes were released above 9 km which would
miss an IWV of about 0.2 kg m−2 according to ICON data. Note that dropsondes
released from below 6.5 km are discarded in the comparison to avoid an artificial
bias. The random error between HAMP and sondes (1.2 kg m−2) is smaller than
the estimated uncertainties of the dropsonde (1.4 kg m−2) and the MWR retrieval
(0.6 kg m−2), which indicates the high quality of the measurements as uncertain-
ties due to spatiotemporal mismatch are included in the RMSD as well. Note that
uncertainties due to MWR calibration are largely compensated for as offsets be-
tween measured BT and those derived by radiative transfer calculations based on
dropsondes have been corrected by Konow et al. (2019)1.

WALES IWV can be used for continuous comparison to HAMP IWV along the flight
track in clear-sky scenes. A comparison of all coincident measurements during NAR-
VAL2 is depicted in Fig. 4.5b. The average bias between HAMP and WALES IWV
is −0.59 kg m−2. The bias is cut in half when considering only the 40 simultaneous
measurements during which a dropsonde was launched (Table 4.2). The random
error is smaller in contrast to the HAMP–dropsonde comparison. This is likely due
to the better spatial match between the two nadir measurements compared to a
drifting sonde. However, higher RMSD between HAMP and WALES IWV can be
found during NARVAL1, which is mostly related to a higher bias. The bias increases

1This offset correction is described in Chapter 3.
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Figure 4.5.: IWV comparison of HAMP MWR and dropsondes (a), HAMP MWR
and WALES (b), and WALES and dropsondes (c) during NARVAL2.
The colors indicate the flight days in August 2016. Scores are given in
Table 4.2.

to 1.70 kg m−2 in the HAMP–WALES comparison when only considering measure-
ments during which a sonde was released. A bias of similar magnitude is apparent
between WALES and the dropsondes. Most likely the dry bias of WALES is due to
the method of how the 12 s water vapor profiles are derived. The profiles only con-
tain raw profiles (within the 12 s), that are not blocked by a cloud. For small-scale
boundary layer convection, this means preferred sampling of downdraft regions. In
these downdraft regions dry air is entrained from the rather dry free troposphere
into the convection layer during NARVAL1 (Stevens et al., 2017). This results in
biased sampling of rather dry profiles. During NARVAL2 humidity was reaching
higher altitudes, which resulted in less entrainment of dry air in cloud gaps.

A small confounding effect from liquid water in cloudy scenes can be derived from
the separation of the HAMP–dropsonde comparison into all (“observed pairwise”)
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Table 4.2.: Comparison of IWV retrieved from HAMP, WALES, and dropsondes.
Pairwise observations of two instruments and the subsets of the obser-
vations for that all instruments were available. Bias, root-mean-square
deviation (RMSD), and bias-corrected RMSD (standard deviation, SD)
in kilograms per square meter (kg m−2). “Observed by all” implies only
small or no clouds.

HAMP - HAMP - WALES -
sondes WALES sondes

NARVAL1
observed
pairwise

bias 0.28 0.92 −1.21
RMSD 1.39 1.36 1.60
SD 1.38 1.01 1.07
count 43 2482 24

NARVAL1
observed

by all

bias 0.32 1.70 −1.37
RMSD 1.21 2.20 1.70
SD 1.20 1.41 1.03
count 21 21 21

NARVAL2
observed
pairwise
(Fig. 4.5)

bias 0.47 −0.59 0.73
RMSD 1.28 1.21 1.38
SD 1.19 1.06 1.19
count 146 1632 47

NARVAL2
observed

by all

bias 0.32 −0.25 0.57
RMSD 1.16 0.82 1.23
SD 1.12 0.79 1.11
count 40 40 40

and clear sky (“observed by all”, i.e., when WALES is also available) in Table 4.2.
In the NARVAL1 dataset, the bias for cloudy-sky sondes (0.24 kg m−2) is somewhat
smaller than that for clear sky (0.32 kg m−2). However, RMSD and SD in cloudy
scenes are about 0.3 kg m−2 larger than in clear sky. NARVAL2 also shows a larger
bias in cloudy sky of about 0.53 kg m−2 in comparison to clear sky (0.28 kg m−2).
The cloudy-sky RMSD and SD of 1.32 kg m−2 and 1.21 kg m−2, respectively, are only
slightly larger than their clear-sky counterparts. An increase of the random error
for cloudy scenes is expected as also higher water vapor variations are expected in
heterogeneous cloud fields.

With the exception of the HAMP–WALES comparison during NARVAL1, the RMSD
between the different instrument pairs is found between 0.8 kg m−2 and 1.4 kg m−2
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(Table 4.2). This corresponds to an error of 2 % to 7 % over the observed range of
20 to 60 kg m−2. For comparison, Mears et al. (2015) found random IWV deviations
between different spaceborne MWR and ground-based GPS (Global Positioning Sys-
tem) instruments of 1.7 to 2.0 kg m−2 over a similar IWV range using 26 small island
stations located mainly in the tropics.

The HAMP IWV retrieval has a theoretical uncertainty of about 0.6 kg m−2, which
is derived by applying the IWV retrieval to simulated measurements from the test
database (Sect. 4.2.4) and is constant over a wide IWV range (not shown). This is
well in line with the RMSD derived in the pairwise comparisons taking into account
the estimated uncertainties of WALES and dropsondes as well as uncertainties due
to the spatiotemporal mismatch. In summary, the pairwise comparisons in rela-
tion to the individual uncertainties indicate high HAMP IWV performance and the
suitability of our retrieval approach.

4.4. Assessment of Liquid Water Path

There are no independent measurements of sufficient quality to assess the quality
of the LWP product. However, the large retrieval database (173 339 ice-free cases
in the test dataset) allows a theoretical in-depth analysis of the retrieval perfor-
mance. This approach is supported by the good consistency between the BTs in the
database and the HAMP measurements in terms of relation resemblance (Fig. 4.3)
and performance of IWV retrieval (Sect. 4.3). We analyze the retrieval error as a
function of the true LWP as well as of the retrieved LWP using the database.

First, we analyze the difference of retrievals developed with all ice-free cases of the
training database (all sky) and with cloudy cases only, which reduces the dataset size
to about one-quarter. A model profile is regarded as cloudy if LWP > 1 g m−2. REG
and NN retrievals are trained with the all-sky and the cloudy-sky datasets separately.
The errors of retrieved LWP from the test database are calculated for bins of the true
LWP. Both REG and NN show similar behavior of the RMSD between the retrieved
LWP and the model truth with increasing LWP (Fig. 4.6a). The RMSD is constant
for LWP below about 30 g m−2 and increases with LWP, e.g. 50 g m−2 at 500 g m−2.
For LWP values > ∼ 800 g m−2 the number of test cases reduces strongly, leading
to less robust results. For LWP < 30 g m−2, the errors are smaller for REG and NN
retrieval types if the clear-sky cases are included in the training (compare Fig. 4.6a
and 4.6b). Including clear sky in the training, the retrieval errors decrease slightly
for a REG model and are almost cut to half for an NN. This shows the ability of
an NN to nonlinearly relate a variety of BT combinations to zero LWP. However,
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retrievals that are especially trained for all-sky scenes have a considerably larger
RMSD for LWP > 20 g m−2 than those trained with cloudy cases only as clear-sky
cases make up 77 % of the data. Since we are targeting clouds and not clear sky, we
chose a retrieval trained with data excluding the clear-sky model profiles. Instead
of including clear sky directly in the retrieval, we make use of lidar measurements,
which are better suited than MWR for cloud masking.

Regarding cloudy-sky retrievals, the RMSD for a given (true) LWP less than 40 g m−2

is smaller when using the NN retrieval instead of a REG model (Fig. 4.6a). This
is related to a suppression of unphysical negative LWP values by the NN. Thus, in
contrast to a REG which has a nearly Gaussian error characteristic, the NN tends
to overestimate LWP. This results in a more negative mean LWP error (true minus
retrieved) of clouds with less than 10 g m−2 but also in a smaller interquartile range
of errors when using the NN instead of the REG. However, the retrieval error for
true LWP < 10 g m−2 remains on the order of 10 to 18 g m−2 even when using the
NN.

The bias errors visible in Fig. 4.6a can not be used to adjust the retrieved LWP
as the true LWP value is not known in practice. For the application of the error
analysis on measurements, it is important to analyze the LWP error as a function
of the retrieved LWP. The RMSDs of the NN and REG retrievals are larger than
100 % for a retrieved LWP below 12 g m−2, which can be regarded as a detection limit
(Fig. 4.7). Therefore, ancillary measurements with higher sensitivity are needed to
detect these thin liquid water clouds. The RMSD is below 20 g m−2 for REG LWP <
50 g m−2 and NN LWP < 100 g m−2 and moderately increases with increasing LWP.
Therefore, the relative RMSD decreases from 50 % for a retrieved LWP of about
40 g m−2 to 20 % for LWP > 100 g m−2 for both retrieval types. While the RMSD is
rather similar for REG and NN, the NN succeeds in capturing the nonlinear retrieval,
providing a nearly zero bias across the full LWP range, and is therefore preferred
over REG.

Analyzing the retrieved LWP distribution for clear-sky scenes is a widely used
method to assess an LWP retrieval (e.g., Liu et al., 2001; Greenwald et al., 2018)
because this characterization can be made from measurements using ancillary ob-
servations that define clear-sky scenes. We use WALES measurements for the in-
dication of cloud and clear sky. The distributions of LWP from HAMP MWR are
depicted in Fig. 4.8 for observed clear-sky scenes (blue lines) along the track for
both campaigns. The distributions are compared to the theoretical ones of retrieved
LWP from all clear-sky (true LWP < 1 g m−2) cases of the respective campaign in
the ICON–PAMTRA database (orange lines in Fig. 4.8). The latter distributions
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Figure 4.6.: Expected retrieval error as a function of true LWP for neural network
and linear regression LWP retrievals. Retrievals (a) trained for 1 g m−2

< LWP < 1000 g m−2. Retrievals (b) trained including clear-sky cases
(LWP < 1000 g m−2). Error measures (colored lines) for logarithmically
distributed bins with 10 bins per LWP power of 10. Gray dashed lines
denote the corresponding relative LWP error.

Figure 4.7.: As Fig. 4.6, but with errors shown as a function of retrieved LWP.
Retrievals are trained and tested with 1 g m−2 < LWP < 1000 g m−2.
The first bin contains all data with retrieved LWP < 2.5 g m−2 (including
negative).
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are closely related to the retrieval uncertainty of the lowest LWP bin in Fig. 4.6a as
this represents the retrieval uncertainty for true LWP < 2.5 g m−2. The distributions
roughly resemble Gaussian behavior, with mean values of about 10 g m−2 and widths
of about 9 g m−2. Some differences between NARVAL1 and NARVAL2 exist which
are even stronger for the measured distributions. During NARVAL1, the measured
distribution is skewed towards higher values. This might be caused by cloud patches
that were only present in a lateral part of the MWR footprint such that the scene
was falsely identified as clear sky by the lidar, which only slices though the center
of the MWR footprint. As this effect is not visible for NARVAL2 measurements, it
might be that clouds were generally smaller and more frequent during NARVAL1
(see Sect. 4.6).

For both campaigns the similar widths and standard deviations of the retrieved
LWP indicate a good agreement between simulations and measurements for clear
sky (Fig. 4.8). The apparent second mode at 20 g m−2 in the observed clear-sky LWP
distribution during NARVAL2 is caused by different mean deviations during different
flights, probably influenced by the calibration. Overall, the narrow Gaussian widths
(11.4 g m−2 and 8.3 g m−2 for NARVAL1 and NARVAL2) of the retrieved clear-
sky LWP distributions demonstrate the good performance of HAMP compared to
evaluation studies by Liu et al. (2001) (28 g m−2, airborne) and Greenwald et al.
(2018) (∼ 30 g m−2, satellite). The better HAMP performance is likely due to its
smaller footprint, additional frequency channels, and more recent technology. The
sensor synergy of using the lidar cloud mask for clear-sky bias correction (Sect. 4.2.4)
reduces the bias in clear-sky conditions to values barely above zero as small cloud
patches can still be in the outer area of the MWR footprint which is not transected by
the lidar beam. The bias correction further narrows the clear-sky LWP distributions.
Note that a good agreement (small bias) is expected as the lidar cloud mask is also
used to define clear sky. The deviations of the observed clear-sky LWP distributions
from delta distributions are due to the moving window in the bias correction.

In summary, the ICON–PAMTRA database allows the expected uncertainty of the
LWP retrieval to be estimated. This reveals a lower retrieval limit of about 12 g m−2

and an RMSD below 20 g m−2 for LWP below 100 g m−2 and below 20 % above
100 g m−2 for the NN retrieval. A narrow clear-sky distribution of HAMP mea-
surements (SD ∼ 10 g m−2) is found that is in good agreement with the theoretical
assessment, but a small bias on the order of 12 g m−2 remains which is eliminated
by the clear-sky correction. The synergy of MWR and lidar removes the bias and
reduces the clear-sky LWP noise to 5 to 7 g m−2.
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Figure 4.8.: LWP distributions retrieved during clear-sky scenes only. Shown are
the LWP retrieved with the neural network based on radiometer ob-
servations (blue lines) during (a) NARVAL1 and (b) NARVAL2, the
retrieved LWP from the test database (orange lines) for profiles with
LWP < 1 g m−2, and the observed LWP after applying the lidar clear-
sky correction (green lines). Mean (𝜇) and standard deviation (𝜎) are
given for each distribution in grams per square meter (g m−2).

4.5. Assessment of Rain

To investigate the formation of rain with HAMP measurements, this section extends
the applicability of the LWP retrieval to drizzle and light precipitation by combining
cloud radar with MWR. As described in Sect. 4.2.4, RWP is retrieved as the frac-
tion 𝑓 = RWP

LWP by a NN using eight BTs and integrated radar reflectivity as input.
Two physical effects are considered in the retrieval: hydrometeor scattering, which
becomes more important with increasing droplet size and microwave frequency, and
radar backscatter being sensitive to 𝐷6, where 𝐷 is the droplet diameter. The first
effect is considered by including the 90 GHz channel as proposed by Cadeddu et al.
(2017). For the latter effect, the vertically integrated (linear) radar reflectivity is
used as retrieval input in addition to the MWR channels also used in the LWP re-
trieval. This integrated reflectivity as a columnar quantity is more comparable to
a BT and less noisy than the reflectivity of a single range gate and is thus used as
retrieval input.

The Gilbert skill score (GSS) (Hogan et al., 2010), also known as equitable threat
score (ETS), is used to rate how well retrieval "yes" events correspond to true yes
events while accounting for hits due to chance. Yes events mark RWP above a given
threshold. The GSS is defined as

GSS = hits − hits_by_chance
hits + misses + false_alarms − hits_by_chance (4.3)
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using the common entries of the contingency table and the hits due to chance

hits_by_chance = (hits + misses) × (hits + false_alarms)
hits + misses + false_alarms + correct_negatives . (4.4)

GSS ranges from −1
3 to 1, with 1 being the perfect score.

The retrieval of RWP is evaluated for different RWP thresholds (Fig. 4.9). The GSS
shows good performance, being higher than 0.75 for RWP thresholds from 10 g m−2

to about 50 g m−2 and higher than 0.5 for RWP up to 250 g m−2. Note that 762, 295,
and 62 of the test cases have RWP greater than 10, 50, and 250 g m−2, respectively,
and only few samples with higher RWP are available. The hit rate is higher than 80 %
for thresholds between 10 and 250 g m−2, but the 250 g m−2 threshold also generates
37 % false alarms. Especially the high GSS for low RWP thresholds makes the 𝑓

retrieval a useful tool combining cloud radar and MWR for detecting measurements,
that contain warm precipitation.

Figure 4.9.: Scores for detecting an atmospheric profile with RWP higher than the
respective threshold. (a) Gilbert skill score (GSS), hit rate, and false
alarm ratio. (b) Median fraction of rainwater as a function of RWP
threshold. (c) Number of alarms and events for retrieved and true RWP
above the threshold, respectively.

A case study of two showering shallow cumuli is shown in Fig. 4.10 to illustrate the
capabilities of retrieving CLWP and RWP separately. The figure shows how HAMP
is able to resolve spatial features of showering cells, which were observed with a
cross section of several HAMP footprints. The precipitating core of both cells had
maximum RWPs of probably more than 200 g m−2. The stronger relative gradients

78



4.6. COMPARISON OF DRY AND WET SEASON

of RWP compared to CLWP indicate the narrowness of the precipitating core. Note
how the higher horizontally resolved information by radar (MWR footprints 3.3° to
5.0° vs. radar footprint 0.6°) contributes relatively stronger to the RWP retrieval
than to the CLWP retrieval. The RWP retrieval consistently indicates no rain except
for the time when the radar signal touches the surface or when there is a clearly
visible fallstreak (17:42:30). The two showering clouds reveal maximum total LWP
of more than 700 g m−2 and 1000 g m−2. The second shower core likely contains more
water than indicated, as the retrieval sets the clipping flag. This case study also
demonstrates the higher sensitivity of the lidar and the (C)LWP retrieval, which
shows cloud signals between 17:38:30 and 17:39:10 of clouds which are too thin to
be detected by the radar.

Figure 4.10.: Example scene of rain retrieval from NARVAL1 research flight 8 on
December 20, 2013. Retrieved CLWP (a), retrieved RWP (b), and
radar reflectivity profile (c). Note that the scale in (a) is piecewise
linear, with a scale change at 20 g m−2. The IWV varies around 31.5 ±
1.5 kg m−2 in this scene.

4.6. Comparison of Dry and Wet Season

The synergy of lidar, radar, and MWR is necessary to understand the difference of
clouds in the dry and wet season as all instruments have their specific limitations.
The lidar cloud mask indicates the more frequent occurrence of clear sky during the
wet season (70.0 %) compared to the dry season (53.3 %, Table 4.3), even though the
environment is characterized by less humid air in the dry season (Fig. 4.11a, b). The
IWV distribution is clearly confined to moderate values with a mean of 28 kg m−2 in
the dry season, which is mainly due to a rather dry middle troposphere seen in the
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lidar water vapor profiles. During the wet season, IWV values up to 60 kg m−2 were
observed, distributed into two modes around 35 and 52 kg m−2. These two modes
are clearly distinct from the single mode observed in the dry season and reveal
the expected humid characteristic of the wet season. The most-humid air during
NARVAL1 was sampled in a deep convective system on the southernmost leg of
research flight 2 on December 11, 2013. This was the NARVAL1 flight during which
HALO was closest to the intertropical convergence zone (ITCZ). The NARVAL2
IWV distribution seems to be driven by the vicinity of the flight track to deeper
convective systems and the ITCZ as it can be analyzed from satellite images and
thus also by the selection of flight patterns.

Interestingly, clouds show a higher mean LWP of about 63 g m−2 in the dry sea-
son compared to a mean LWP of 40 g m−2 in the wet season. Likewise, thicker
clouds (LWP > 50 g m−2) were more frequent in the dry season (Fig. 4.11c, d); i.e.,
27.1 % of the time when a cloud was seen in the dry season, it contained LWP >
50 g m−2, whereas only 18.6 % of the time in the wet season, clouds exceeded this
value. The dry-season clouds tend to produce light precipitation more frequently
than the wet-season clouds as indicated by the more frequent exceedance of RWP
thresholds (Table 4.3). The cumulative distributions of RWP occurrences of all
cloudy measurements with LWP > 50 g m−2 are depicted in Fig. 4.11e and f for each
flight in the two seasons, when radar measurements are available. The vast ma-
jority (NARVAL1: 91 %; NARVAL2: 96 %) of all these measurements show RWP
< 10 g m−2. Higher amounts of light rain seem to be more frequent in the dry
season dataset, although the small number of heavy RWP observations inhibits a
statistical sound statement as RWP > 100 g m−2 was only observed for 162 and 49 s
in the radar–radiometer datasets of the dry and wet season, respectively. These
time spans exclude measurements flagged as clipping (LWP > 1000 g m−2) or frozen
precipitation (ice scattering). While warm precipitation seems to occur less often,
clouds associated with frozen precipitation were more often observed in the wet sea-
son (1.6 % of the time) than in the dry season (0.5 %). Therefore, the lower LWP of
the wet season clouds might be due to a higher precipitation efficiency compared to
the dry season.

The higher LWP in the dry season might partly be explained by the choice of flight
patterns. However, an analysis of ground-based LWP measurements at the Barbados
Cloud Observatory (Stevens et al., 2015) over the years 2013-2018 confirms the
generally higher LWP values during December than August (not shown). Thus, also
changes in the organization of clouds could cause the differences in cloud fraction and
LWP. The fact that the medium LWP range from 100 to 400 g m−2 is less frequent
in the wet season could be due to the higher degree of organization causing more
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Figure 4.11.: Frequency distribution functions of IWV during the dry season (NAR-
VAL1, a) and wet season (NARVAL2, b), LWP during NARVAL1 (c)
and NARVAL2 (d), and cumulative distribution functions of RWP
during NARVAL1 (e) and NARVAL2 (f). Colors denote the day of
the month of the respective study. Colors in (a) and (b) denote the
contribution of each flight to the total distribution. The bin edges are
represented as minor ticks in (c) to (f). LWP distributions only include
measurements for which the lidar cloud flag reports a cloud within ±
2 seconds. RWP distribution is based on the non-clear-sky-corrected
LWP dataset (see note a in Table 4.3), where LWP > 50 g m−2.
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Table 4.3.: Comparing NARVAL1 and NARVAL2 cloud properties observed south
of 20° N and with HALO altitude above 6 km. Percentages of flight time
with available corresponding datasets during each study.

NARVAL1 NARVAL2
December 2013 August 2016

Dataset
radiometer, radiometer radiometer

lidar and radar and lidar and radar

Clear sky 53.31 % 69.95 % –
LWP > 20 g m−2 21.62 % 10.60 % –
LWP > 50 g m−2 12.63 % 5.26 % –
LWP > 500 g m−2 1.18 % 0.33 % –
LWP of clouds 63 g m−2 40 g m−2 –
RWP a > 10 g m−2 1.85 % – 0.30 %
RWP a > 50 g m−2 0.43 % – 0.07 %
Ice-flag 0.51 % 0.94 % 1.76 %
LWP clipping 0.97 % 0.45 % 0.53 %
Total hours 25:26:18 39:43:28 41:22:48

a Based on non-clear-sky-corrected LWP as radar and lidar cloud mask were only available during 5 of 10
flights during NARVAL2.

clear-sky areas and more intense clusters with higher amounts of precipitation. In
that sense the latter would be missed by our flight patterns as we avoided strongly
convective scenes with the formation of large ice particles.

4.7. Summary and Conclusions

Clouds play a critical role in the development of the future climate, and especially
marine low-level clouds have been identified as source of uncertainty. An important
cloud macrophysical quantity is LWP. Global observations are limited by satellite
resolution or accuracy, and ground-based observations over the oceans are few. To
fill this observational gap, the NARVAL studies were initiated to assess North At-
lantic trade wind clouds using the HALO research aircraft. We use a multichannel
microwave radiometer, a cloud radar, a lidar, and a dropsonde system deployed to
HALO to provide insights into clouds on the kilometer scale. For NARVAL1 (De-
cember 2013) and NARVAL2 (August 2016) a unique retrieval training and test
database was developed based on ICON simulations with 1.25 km grid spacing. The
database contains more than 350 000 physically consistent profiles that characterize
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the thermodynamic state of the atmosphere and the hydrometeor distributions dur-
ing each of the two campaigns. Synthetic HAMP measurements in terms of BTs and
radar reflectivity profiles in nadir view were simulated for each profile using PAM-
TRA. The synthetic BT measurements show bivariate relations that are consistent
with those observed and therefore show reliability that the database can be used to
develop retrievals and assess LWP quality.

To estimate IWV, LWP, and RWP from HAMP measurements, artificial neural
networks are trained with the retrieval database. BTs of seven K-band channels
and the 90 GHz channel are used for IWV and LWP; vertically integrated radar
reflectivity is used in addition for RWP.

Similar to LWP, an IWV retrieval is based on the spectral BT characteristics be-
tween the same water vapor absorption and window channels. A good retrieval of
either IWV or LWP is a prerequisite for the other. The IWV comparison to drop-
sonde measurements and the continuous along-track comparison to the water vapor
lidar WALES show good agreement with an RMSD smaller than 1.4 kg m−2 and no
distinct error dependence of IWV itself. Overall, the IWV assessment shows the
good practical performance of HAMP and the suitability of the ICON–PAMTRA
database for developing microwave retrievals for NARVAL1 and NARVAL2.

LWP retrievals are theoretically assessed as a functions of retrieved LWP and true
LWP. A slight advantage of the neural network compared to a linear regression
retrieval is evident, especially at the limits of the LWP range (1 to 1000 g m−2). Both
approaches show relative errors greater than 100 % for a retrieved LWP < 12 g m−2,
which can be regarded as detection limits. If more liquid water is contained in the
column, the random error decreases to 20 % at LWP ≈ 100 g m−2 and 10 % at LWP ≈
800 g m−2. Both retrievals show an offset error smaller than the random component
for LWP < 10 g m−2 with different signs depending on whether it is analyzed as a
function of true or retrieved LWP. Because of the ambiguity of the error sign, we
conclude that this bias can not be accounted for with the MWR retrieval alone, and
we developed a synergistic clear-sky offset correction using the WALES lidar cloud
mask. The cloud mask reduces the noise of clear-sky LWP to 7.1 and 5.0 g m−2 for
NARVAL1 and NARVAL2, respectively.

To allow the onset of precipitation to be investigated, a neural network retrieval
is trained to estimate the fraction between RWP and LWP from a combination of
integrated radar reflectivity factors and BTs. Using the test database, a Gilbert skill
score above 0.75 is found for RWP thresholds between 10 g m−2 and 50 g m−2, which
shows good applicability for detection of rain or drizzle onset.
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We used data from 36 flight hours in December 2013 (dry season, NARVAL1)
and 64 flight hours in August 2016 (wet season, NARVAL2) to investigate differ-
ences between the seasons. The analysis shows that although clouds were more
frequent and their LWP and RWP were higher during the flights in the dry sea-
son, more microwave scattering of ice was observed in the wet season indicating
strong precipitation events. The difference between LWPdry season ≈ 63 g m−2 and
LWPwet season ≈ 40 g m−2 is clearly larger than the LWP retrieval uncertainty. As
expected, the IWV histograms reveal the dry season as being drier and more uni-
form and the wet season as more humid. However, the IWV distributions also reveal
sampling biases due to flight track choices, especially for the wet season. Therefore,
the airborne measurements need to be combined with long-term ground-based and
spaceborne measurements to draw statistically sound conclusions. The fine-scale
airborne microwave observations such as the measurements obtained with HAMP
can be used to investigate the sub-satellite-footprint inhomogeneity of LWP and rain
for a better error characterization of satellite measurements. Sound conclusions on
the diurnal cycle can not be drawn from the data presented here, as the spatial vari-
ability of the clouds on the observed mesoscale was higher than an expected effect
of the diurnal cycle.

The synergy of active and passive microwave observations could further benefit from
using an optimal estimation approach including the full radar profile and all MWR
channels to improve the partition of rain and cloud droplets and frozen particles
(e.g Battaglia et al., 2016). With respect to trade wind cumuli, the products of the
present study in combination with cloud boundary estimations from the radar and
backscatter lidar will be used to evaluate the condensate loads of different shallow
trade wind cumulus types in large eddy simulations. For example, radar and lidar
both detect shallow convection or shallow outflow anvils as depicted in Fig. 4.10.
But in addition, the lidar also allows boundary-layer-driven clouds, which have tops
around 1 km and are below the radar sensitivity, to be detected.

An extension of the NARVAL observations is planned by the EUREC4A field study
in early 2020 (elucidating the couplings between clouds, convection, and circulation;
Bony et al., 2017), which among other objectives will investigate convective aggre-
gation. The algorithms presented here will be applied, and together with additional
measurements a better understanding of the governing processes that cause differ-
ences between the dry and wet season will be analyzed. For that, the campaign will
provide additional observations of large-scale dynamics, horizontally resolved remote
sensing, and in situ observations by additional aircraft in the cumulus layer. Also,
more locally targeted flights, distributed over the daytime, are planned to study the
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diurnal cycle. Together with ship, drone, and buoy measurements, a unique dataset
for a better understanding of precipitation onset will be generated.
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Chapter 5.

Application: Confronting Models with
Observations

The manuscript of the following Chapter has been submitted for publication in
Geoscientific Model Development on 13 January, 2020 and is available as discus-
sion paper since 6 March, 2020 (Jacob et al., 2020). This Chapter investigates the
research question 3 posted in the introduction (Sect. 1.4):

3. How can HAMP be used to assess cloud-resolving model simulations and how
good are the considered models in representing the convective dry-season trade-
wind clouds? Two different cloud-resolving simulations are confronted with
HALO observations to tell their differences with respect to clouds and precip-
itation.

A method of combined forward simulations and retrievals of active and passive
HAMP observations in combination with WALES lidar backscatter is developed.
The study demonstrates how the observations can spread light on the understand-
ing of trade-wind convection established in the model formulations. The presented
method is not limited to the two simulations assessed in the following, but can
be applied to cloud resolving simulations on hectometer to kilometer grid scales in
general.

The author of this thesis conceptualized the study together with advice from Pavlos
Kollias. Furthermore, the author performed the analysis, prepared all plots, and
wrote the manuscript with support and input from all co-authors. Felix Ament and
Susanne Crewell designed the observational experiment setup and supported the
interpretation of the measurements. Vera Schemann supported the interpretation of
the model data and the implementation of the microphysical scheme in the models.
The latter can cause differences in the cloud-life-cycle and will be identified as a
further distinction between the models besides the obvious grid-size difference.

Modifications: References to Jacob et al. (2019) are replaced by respective references
to Chapter 4 of this thesis and a comment on the dependence between the used
retrieval and model datasets is added as Appendix 5.B.
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Abstract. Airborne remote sensing observations over the tropical Atlantic Ocean
upstream of Barbados are used to characterize trade wind shallow cumulus clouds
and to benchmark two cloud-resolving ICON (ICOsahedral Nonhydrostatic) model
simulations at kilo- and hectometer scales. The clouds were observed by an airborne
nadir pointing backscatter lidar, a cloud radar, and a microwave radiometer in the
tropical dry winter season during daytime. For the model benchmark, forward oper-
ators convert the model data into the observational space for considering instrument
specific cloud detection thresholds. The forward simulations reveal the different de-
tection limits of the lidar and radar observations, i.e., most clouds with cloud liquid
water content greater than 10−7 kg kg−1 are detectable by the lidar, whereas the
radar is primarily sensitive to the “rain”-category hydrometeors in the models and
can detect even low amounts of rain.

The observations reveal two prominent modes of cumulus cloud top heights separat-
ing the clouds into two layers. The lower mode relates to boundary layer convection
with tops closely above the lifted condensation level, which is at about 700 m above
sea level. The upper mode is driven by shallow moist convection, also contains
shallow outflow anvils, and is closely related to the trade inversion at about 2.3 km
above sea level. The two cumulus modes are reflected differently by the lidar and
the radar observations and under different liquid water path (LWP) conditions. The
storm-resolving model (SRM) at kilometer scale reproduces the cloud modes barely
and shows the most cloud tops slightly above the observed lower mode. The large-
eddy model (LEM) at hectometer scale reproduces better the observed cloudiness
distribution with a clear bimodal separation. We hypothesize that slight differences
in the autoconversion parametrizations could have caused the different cloud devel-
opment in the models. Neither model seems to account for in-cloud drizzle particles
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that do not precipitate down to the surface but generate a stronger radar signal even
in scenes with low LWP. Our findings suggest that even if the SRM is a step forward
for better cloud representation in climate research, the LEM can better reproduce
the observed shallow cumulus convection and should therefore in principle represent
cloud radiative effects and water cycle better.

5.1. Introduction

The representation of low-level oceanic clouds contributes largely to differences be-
tween climate models in terms of equilibrium climate sensitivity (Schneider et al.,
2017). Global atmospheric models with kilometer-scale resolution are considered as
the way forward in forecasting future climate scenarios (Bony and Dufresne, 2005;
Satoh et al., 2019). The increased model resolution and better matching scales with
measurements allow for a more direct observational assessment by comparing the
present day representation in the models with atmospheric measurements and thus
anchoring models to reality. Recently, Stevens et al. (2020a) demonstrated the gen-
eral advantage of high resolution simulations compared to typical climate models
in terms of cloud representation using different versions of the ICOsahedral Non-
hydrostatic model (ICON). The progress in such novel large-area high-resolution
models and new capabilities of synergetic airborne measurements in the trades mo-
tivate the following guiding questions of this study. How do two cloud-resolving
versions of the ICON model represent shallow cumuli in comparison to observa-
tions? What is an appropriate approach to assess the model clouds? How does
the liquid water path (LWP) help to interpret differences between observed and
simulated cloud structures?

Increased model resolution facilitates the model-observation comparisons. However,
there are several other factors to be considered (Lamer et al., 2018). On the one
hand, particle size distributions (PSDs) in models are typically represented by bulk
and spectral microphysical schemes, or Lagrangian superparticles (e.g., Grabowski
et al., 2018). Bulk microphysics schemes predict changes in condensate using one to
three moments. These are usually the lower moments like particle number concen-
tration and mixing ratio (Khain et al., 2015). On the other hand, radars and lidar,
like those used in this study, observe different moments of the PSD. A backscatter
lidar, for example, is primarily sensitive to the second moment, while a radar is
sensitive to the sixth moment.

An objective definition of a cloud is required when comparing cloudiness in models
with observations. If one asks different instrument operators to provide “cloud
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fraction”, one can get different answers, e.g., 19 to 46 %, for the very same scene as
demonstrated by Stevens et al. (2019). This range is caused by different sensitivities
due to different measurement principles and sampling methods by the remote sensing
instruments involved. To find a common definition, it is favorable to compare clouds
in models and observations in terms of the same quantities. Here, forward simulators
can be used to simulate measurements as they would be recorded by a radar or lidar,
based on the atmospheric state and assumptions in the model (Lamer et al., 2018).

The observations used in this study were recorded with the research aircraft HALO
(High Altitude and LOng range; Krautstrunk and Giez, 2012) which was equipped
as a flying remote sensing cloud observatory during the NARVAL-South experiment
(Next generation Advanced Remote sensing for VALidation; Klepp et al., 2014) in
December 2013. A reason to initiate the NARVAL expeditions was that satellites
cannot provide sufficient resolution for multiple cloud variables. For example, the
spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) has fre-
quently been used to investigate marine low clouds. Leahy et al. (2012) observed
two modes of low clouds in the tropical Pacific trade wind, and reveal that CALIOP
misses small clouds ( < 1 km) and combines adjacent but separated clouds due to the
CALIOP sampling rate. Genkova et al. (2007) compared trade wind cumuli cloud
top heights from passive optical spaceborne instruments. They also observed bi-
modal distribution with data from three different satellites but found vertical biases
of 250 to 500 m due to different retrieval approaches and spatial resolutions.

Since active instruments are advantageous for observing cloud heights, the HALO
instrumentation included an aerosol backscatter lidar as part of the WALES (WAter
vapor Lidar Experiment in Space; Wirth et al., 2009) airborne demonstrator, and a
cloud radar. The radar is part of the HAMP (HALO microwave package; Mech et al.,
2014) together with a microwave radiometer. The latter provides the vertically inte-
grated LWP (Sect. 4.2.4), which helps approaching the liquid water content which is
a key quantity to describe clouds in models like the ICON. The direct observation of
the liquid water content profile is difficult (Crewell et al., 2009), but the LWP can be
used to estimate the water content when combined with estimates of cloud vertical
extend by lidar and radar either in a simple average approach or more sophisticated
as a profile (Frisch et al., 1998; Küchler et al., 2018). In addition, dropsondes were
released regularly during the flights to probe the temperature and humidity profile.
Compared to ground-based observations, the airborne remote sensing instruments,
especially the microwave radiometer, have the advantage of not being harmed by
precipitation or sea spray deposition on the instrument (Rose et al., 2005).
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The observations are used to confront the simulations of winter season trade wind
cumuli in the tropical west Atlantic Ocean. Such clouds are regularly subject in
idealized large-eddy simulation (LES) studies (e.g., Siebesma et al., 2003; van Zanten
et al., 2011) due to their high relevance for the climate. As it is difficult for small
domain LES models to generate realistic mesoscale cloud organization (Jeevanjee
and Romps, 2013), we use simulations by Klocke et al. (2017) that were run on large
domains (> 1500 x 900 km) with kilo- and hectometer horizontal grid spacings and
were forced by numerical weather prediction output. Simulations with 1.25 km grid
spacing were produced using the storm-resolving model (SRM) version of ICON,
while simulations with 3 hectometer grid spacing were produced using ICON large-
eddy model (LEM).

To assess vertically resolved cloudiness and shallow convection, we compare the
vertical cloud boundaries. As the backscatter lidar is quickly attenuated completely
by the presence of hydrometeors in a cloud, lidar measurements and their forward
simulations are considered for a cloud top height estimate only. The radar, however,
can penetrate through the cloud and precipitation layers and thus provides estimates
of cloud or precipitation base height in addition to cloud top height. As shallow
cumulus convection is not expected to trigger at the same time and place in a
model and reality, a statistical approach is adopted here, in which the airborne
observations are compared to their model counterpart for different LWP regimes.
The analysis in LWP space is similar to the studies in moisture space that first
have been published by Schulz and Stevens (2018) for ground-based observations
and by Naumann and Kiemle (2019) for airborne observations. In the LWP space
it is possible to study microphysical cloud processes like the transition from non-
precipitating to precipitating clouds.

This paper is structured as follows: The observations and their sensitivities in
Sect. 5.2 are followed by a brief description of the model data in Sect. 5.3. Then, the
forward simulations are presented in Sect. 5.4 taking into account the instrument
characteristics and specifications of model outputs. Finally, the model data of ICON
SRM and LEM are confronted with the airborne observations in Sect. 5.5 including
the analysis in LWP space. A summary and conclusions are given in Sect. 5.6.

5.2. Observations

The airborne measurements were taken during the NARVAL-South field experiment
in the tropical Atlantic east of Barbados. The NARVAL remote sensing package
(Stevens et al., 2019) recorded data during 8 research flights in the tropical domain
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south of 20° N from 10 to 20 December 2013. The flight tracks are depicted in
Fig. 5.1. A total of 22 000 km of HALO along track observations with about 91
thousand profiles were sampled at a frequency of 1 Hz from altitudes between 13
and 14.5 km. Further details of the experiment and flight planing are provided by
Klepp et al. (2014) and Konow et al. (2019). In this study we use the backscat-
ter lidar cloud top height time series, the radar reflectivity factor 𝑍, liquid water
path (LWP) retrieved from microwave radiometer, and the lifted condensation level
(LCL) estimated from dropsondes. The remote sensing lidar, radar, and microwave
radiometer were installed in a near-nadir pointing direction under the fuselage of
the aircraft.

This section briefly describes the measurement principles of the radar and lidar
and the respectively used thresholds for cloud detection. The LWP retrieval form
the microwave radiometer has a high accuracy, which is better than 20 g m−2 for
LWP < 100 g m−2 and better than 20 and 10 % for LWP greater than 100 g m−2

and 500 g m−2, respectively, as described in Chapter 4. The LWP is defined as
the integral of all liquid in the column comprising cloud liquid and rain water.
The LCL is derived from the dropsonde temperature and relative humidity (RH)
measurements closest to the surface using the code by Romps (2017). The LCL
measurement uncertainty is mostly affected by the RH measurement, such that
an overestimation on the order of the calibration repeatability of 2 % RH (Vaisala,
2017) would result in an about 60 m lower LCL. The LCL from dropsonde releases is
temporally interpolated to generate a continuous time series along the flight track.
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Figure 5.1.: Map showing research flight (RF) tracks and the model columns, which
are used in this study. The storm-resolving model (SRM, blue, original
model grid spacing: 1.25 km) is thinned to a 0.5° × 0.5° grid. From the
large-eddy model (LEM, orange, original model grid spacing: 300 m),
ten meteogram outputs are used.
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5.2.1. Radar Sensitivity

The radar reflectivity factor – short “reflectivity” – 𝑍 is measured by the HAMP
radar at 35.5 GHz. In case of small spherical liquid droplets, the radar is approxi-
mately proportional to the sixth moment of the PSD at a given range. This means
that larger raindrops show a higher reflectivity than smaller cloud droplets given
the same mass mixing ratio. The HAMP radar is calibrated following Ewald et al.
(2018) and was operated at a vertical resolution of about 30 m with 1 Hz sampling.
This sampling frequency corresponds to a surface footprint of about 136 m × 376 m
at a cruising speed of about 240 m s−1.

The instruments minimal detectable signal (MDS) in dBZ decreases with range 𝑟

and is estimated by Ewald et al. (2018) as

MDS(𝑟) = −39.8 + 20 log10

(︂
𝑟

5 km

)︂
. (5.1)

According to this equation, the MDS in the shallow cumulus layer is about −32 dBZ
when flying at 13 km. However, this does not include sensitivity reduction due to
Doppler broadening caused by the aircraft motion (Mech et al., 2014). To estimate
the practical sensitivity limit, HAMP radar statistics are compared to ground-based
measurements. The ground-based measurements were taken at the Barbados cloud
observatory (BCO) at the upstream eastern coast of Barbados at Ragged Point
(Stevens et al., 2015). The BCO radar operates at the same Ka-band frequency as
the airborne radar, but has a better sensitivity due to a larger antenna and longer
integration time (Lamer et al., 2015). Therefore, the lower MDS of the BCO radar
offers the opportunity to assess the practical sensitivity limit of the HAMP radar.

A comparison can only be made on a statistical basis as the BCO and HAMP
radars do not sample the same volume. To avoid statistical effects of the diurnal
cycle identified by Vial et al. (2019), BCO data are only considered roughly during
the time when HALO was flying, i.e., between 12:00 and 21:00 UTC (8:00 and 17:00
local time) on the 8 flight days.

The higher BCO sensitivity compared to HAMP is notable in the height-resolved
reflectivity histograms in Fig. 5.2. The BCO radar frequently measures reflectivity
signals down to −70 dBZ at around 500 m with a clear maximum below 1 km for 𝑍

up to −20 dBZ. Klingebiel et al. (2019) identify such weak signals at BCO below
−50 dBZ as originating from sea salt aerosols and only signals above −50 dBZ are
attributed to clouds. Clouds with reflectivity between the HAMP MDS ( −32 dBZ)
and −20 dBZ and within 4 km above sea level are observed in 8.5 % of the time at
BCO but only rarely (< 1.2 %) by HAMP. Only clouds with a reflectivity higher than
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about −20 dBZ are similarly or more often observed by HAMP than at BCO. Thus,
we use −20 dBZ as the practical cloud detection threshold of HAMP and use this
value in the further analysis to define “radar-detectable clouds” in the observations
and forward simulations.
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Figure 5.2.: Height-resolved radar reflectivity distribution of shallow cumulus from
(a) HAMP radar and (b) BCO radar during flight days of NARVAL-
South. Marginal distributions (c) show the probability density of re-
flectivity from HAMP and BCO below 4 km. BCO data are limited to
hours between 12:00 and 21:00 UTC (8:00 and 17:00 local time) on ev-
ery flight day to match aircraft operation time. The probability density
function of each height is normalized to the maximal possible number
of data points.

5.2.2. LIDAR

The lidar system WALES supplements the HAMP radar with optical active remote
sensing on HALO. WALES comprises a water vapor differential absorption lidar
system (DIAL) at different wavelengths and a high spectral resolution lidar (HSRL)
which measures molecular and aerosol backscatter at 532 and 1064 nm. The scatter-
ing of an emitted laser pulse on a liquid hydrometeor mostly follows the principles
of geometrical optics as the wavelength is much smaller than the particle. There-
fore, the back-scattered energy is in first order approximation proportional to the
hydrometeor diameter and thus to the second moment of the PSD (O’Connor et al.,
2005). This means, that a backscatter lidar is more sensitive to the number of small
droplets compared to a radar. Besides hydrometeors, also other aerosol particles
like dust scatter the lidar pulse back. However, the aerosol signal is much smaller
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than the hydrometeor signal. Therefore, we follow Gutleben et al. (2019) and use
a threshold of backscatter ratio (BSR) > 20 in the 532 nm channel to differentiate
cloudy scenes from clear-sky or dusty scenes. As hydrometeors attenuate the lidar
signal strongly, the WALES lidar is used only to detect cloud top height using that
threshold. The lidar top height is measured every second with a vertical accuracy
of 15 m and the lidar footprint width at the surface is at about 22 m.

5.3. ICON-NARVAL Model Data

Two different versions of the ICON model were run to supplement the NARVAL
experiment. The runs of the so called storm-resolving model (SRM) and the large-
eddy model (LEM) are described by Klocke et al. (2017) and Vial et al. (2019). The
most important aspects relevant for this study of the SRM and LEM are summarized
in this section.

5.3.1. ICON SRM

The SRM (Zängl et al., 2015) was run at 1.25 km horizontal grid spacing with a
stretched vertical grid of 75 levels up to 30 km which has 12 and 22 levels below
800 m and 3 km, respectively. The domain spans the western tropical North Atlantic
from 4° S to 18° N and from 64° W to 42° W. The SRM is one-way nested into a
coarser 2.5 km SRM which is initialized and nudged with lateral boundary data
from the European Centre for Medium-Range Weather Forecasts (ECMWF). The
SRM uses physical packages that are similar to those used in operational numeri-
cal weather prediction codes, but does not use a convection parametrization. The
cloud and precipitation microphysics are represented by a one-moment microphysics
scheme (Baldauf et al., 2011) that predicts the specific water contents of five different
hydrometeor classes including liquid cloud water (𝑞c) and rain (𝑞r). 17 modeled days
from 10 to 28 December 2013 are used and cover the whole NARVAL experiment.

The model output is archived hourly. This study only uses model output between
12:00 and 21:00 UTC to avoid influence of a diurnal cycle. This is analogous to the
ground-based data described in Sect. 5.2.1. The data are spatially subsampled on
a coarser 0.5° × 0.5° grid to reduce the computational effort while still conserving
the variety of atmospheric profiles. A compromise of domain overlap between all
available model data and observations is achieved by limiting the SRM data to the
area of 12 to 18° N and 60 to 43° W as marked in Fig. 5.1. The total number of
analyzed SRM columns in this study is 97 920.
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5.3.2. ICON LEM

The LEM (Dipankar et al., 2015; Heinze et al., 2017) with 300 m grid spacing was
run in a multi-step nested setup forced with the SRM. This means, that the LEM
also has a realistic, non-idealized setup. The LEM vertical grid also reaches up to
30 km but has 150 levels with 14 and 37 of them below 800 m and 3 km, respectively.
The LEM physics package differs from the SRM configuration. The most important
difference for this study is that the microphysics are represented by the two-moment
scheme of Seifert and Beheng (2001). This scheme predicts the hydrometeor number
concentrations in addition to the specific water contents and thus provides 𝑁c and
𝑁r for liquid cloud water and rain, respectively.

In contrast to the SRM, the LEM was only run for the six days of research flights
2 to 6 and 8. However, the full hydrometeor state including rainwater and the
number concentrations were only archived for four of the runs in the form of so
called “meteogram output”. This means that hydrometeor profiles are available
with high temporal resolution (every 36 s) but only at 12 model columns. Such
meteogram output was saved for the days of research flights 4, 5, 6, and 8. The
ten model columns east of Barbados are used for this study and are also marked in
Fig. 5.1. The LEM data are also limited to the time between 12:00 and 21:00 UTC.
The total number of analyzed LEM columns in this study is 37 030.

5.4. Forward Simulations

Forward simulators, also called forward operators, can simulate how the remote
sensing instruments presented in Sect. 5.2 would perceive a scene provided by an
atmospheric model. A forward simulator requires input like model variables and
the knowledge about the microphysical assumptions employed in the atmospheric
model. The basic variables are temperature, pressure, layer height, and humidity
for each model level in a column for a 1D vertical forward simulation. The vari-
ables describing the hydrometeors depend on the microphysical scheme. Typically,
these include mass mixing ratios (e.g., 𝑞c or 𝑞r) of different hydrometeor classes.
The forward simulator has to be configured such, that the PSD used to simulate
hydrometeor characteristics matches the PSD assumed in the atmospheric model as
accurately as possible. This means that for models with advanced microphysical
schemes, also the variables describing those aspects of the PSD are important input
parameters for the forward simulation and need to be saved during the model run.
In the case of the ICON LEM, the two-moment scheme by Seifert and Beheng (2001)
uses the particle number concentrations as additional variables.
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As this study focuses on the tropical shallow cumulus below freezing level, we confine
the following description and analysis to precipitating and non-precipitating liquid
hydrometeors, which are the raindrops and cloud droplets in the ICON microphysical
schemes. Both ICON models which are used in the subsequent Sect. 5.5 assume PSDs
with modified Gamma distributions. The number concentration 𝑁 of spherical drops
with diameter 𝐷 can be described as

𝑁(𝐷) = 𝑁0 𝐷𝜇 exp(−Λ 𝐷𝛾) (5.2)

with the scale parameters 𝑁0 and Λ and the shape parameters 𝜇 and 𝛾. These
parameters are either fixed or derived from the input variables as described in Ta-
ble 5.1.

Table 5.1.: Configuration of modified Gamma distribution (Eq. 5.2) for liquid hy-
drometeors in ICON one and two-moment microphysical schemes.

scheme hydrometeor 𝑁0 𝜇 Λ 𝛾 additional constrain

one moment (SRM) cloud droplets 𝑓(𝑞c) 8 𝑓(𝑞c) 3 𝑁c = 2 × 108 kg−1

one moment (SRM) raindrops 8 × 106 m−4 0 𝑓(𝑞r) 1
two moments (LEM) cloud droplets 𝑓(𝑞c, 𝑁c) 8 𝑓(𝑞c, 𝑁c) 3
two moments (LEM) raindrops 𝑓(𝑞r, 𝑁r) 2 𝑓(𝑞r, 𝑁r) 1

The lidar BSR is forward simulated using the Cloud Resolving Model Radar Simu-
lator (CR-SIM; Oue et al., 2019). The code has been slightly modified such that the
configuration for the two-moment ICON microphysics can be used for one-moment
microphysics following the relations in Table 5.1. Though CR-SIM can also simulate
radar reflectivity, the Passive and Active Microwave TRAnsfer package (PAMTRA;
Mech et al., 2020) is used to forward simulate the radar as it offers a higher degree
of flexibility.

The lidar forward simulations are used to detect the hydrometeors layer top and
not for quantitative retrievals or estimates. Furthermore, as the airborne lidar is
not affected by liquid collection on the telescope during raining conditions, there
is no need to account for such effects. Thus, we decided to simplify the forward
simulation of the backscatter lidar and assume that the raindrops are optically thin
and thus ignore their contributions. Therefore, the BSR is primarily a function of
𝑞c as shown in Figs. 5.3 a and b. One could further imagine that a raining cloud is
always topped by small droplets contributing to 𝑞c and that the lidar pulse hence
would be scattered back by those cloud droplets, which would very likely have a BSR
> 20, anyway and be thus identified as cloud top. However, this is not always true
as some grid cells in ICON LEM with enough rainwater to generate a radar signal 𝑍

> −20 dBZ were simulated above or horizontally attached to a precipitating cloud
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(e.g., Fig. 5.4b, at 20:11). Therefore, it has to be noted, that the cloud amount
reported below for the simulated lidar clouds slightly underestimates the cloudiness
and cloud top height seen by a real backscatter lidar.

(a) (b)

(c) (d)

Figure 5.3.: Simulated lidar and radar signals as a function of hydrometeor con-
tents. CR-SIM and PAMTRA simulate the observable lidar and radar
signals from drop size distributions in the one-moment ICON SRM and
two-moment ICON LEM microphysical models. Signals are simulated
without attenuation as they would be sensed at cloud top.

The approximated proportionality of the radar reflectivity to 𝐷6 makes 𝑍 especially
sensitive to larger raindrops. Therefore, 𝑞r (and 𝑁r) has to be considered in addition
to 𝑞c (and 𝑁c) when simulating the radar signal. The size difference between cloud
droplets and raindrops produces a two-modal relation between the total liquid water
concentration 𝑞t = 𝑞c + 𝑞r and 𝑍 as it can be deduced from Figs. 5.3 c and d. The
mode along a line of low 𝑞t corresponds to grid cells that predominantly feature
rainwater. In this mode, even low amounts of liquid water in the rain category
produce a reflectivity that can only by reached by cloud droplets with a three to
four orders of magnitude higher cloud water content. Grid cells with such high 𝑞c
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and no 𝑞r align in a second mode parallel to the rain mode. A mixture of cloud
and rain water accordingly results in an intermediate 𝑍 which populates the space
of 𝑞t >≈ 10−5 kg kg−1 between the two main modes in Figs. 5.3 c and d. By
setting the radar threshold to −20 dBZ, hardly any cloud-only grid cells in the lower
right high-𝑞t mode can be detected by the simulated radar. This means, that in
the forward-simulated dataset, all lidar-detectable hydrometeors are from the ICON
cloud category while the radar-detectable hydrometeors have to contain at least a
small amount of water from the ICON rain category.

The ICON LEM uses a two-moment scheme including 𝑁c and 𝑁r. Therefore, the
forward simulation broadens the relation between the water content and the forward-
simulated signals (compare Figs. 5.3 a to b and c to d). Especially the radar reflec-
tivity of rain is amplified compared to the one-moment simulation, such that also
some grid cells with lower 𝑞r are above the radar detection threshold.

5.5. Model – Observation Comparison

Observations and forward simulations of the SRM and LEM runs are used to assess
the vertical structures of the shallow clouds by focusing on the boundaries sensed by
different instruments. In the following, shallow clouds are analyzed in terms cloud
top heights estimated from lidar and radar measurements as well as the radar echo
base height. All heights in the different scenes are set in relation to the theoretical
cloud base of an adiabatic thermal-plume-driven boundary layer cloud by setting
the height in relation to the lifted condensation level (LCL). First, a case study
with example scenes from the observations and the LEM illustrates the approach.
The case study is followed by the statistical analysis of the full datasets and the
analysis stratified in the liquid water space to identify differences in microphysical
processes.

5.5.1. Case Study

An example scene observed from HALO during research flight 5 is depicted in
Fig. 5.4a. Here, several shallow clouds close to the LCL were observed first, followed
by a precipitating cloud with stratiform shallow anvil outflow. The shallow clouds
were only detected by the lidar, whereas the precipitating cloud was detected by
both the lidar and the radar. However, the lidar detected cloud top heights about
50 to 100 m, i.e., up to three radar range gates, above the upper most recorded
radar echo. Also, a larger part of the outflow layer was visible to the lidar. Thus,
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we conclude, that the precipitating shallow cumulus has a thin layer of very small
droplets on top which are only seen by the lidar due to its higher sensitivity (compare
Fig. 5.3).
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Figure 5.4.: Case study time series of observed (a) and modeled (b) radar reflec-
tivity, lidar-detectable cloud top height, lifted condensation level and
their vertical distribution. Shallow cloud fraction detected by lidar and
radar in each dataset is given in each legend. Observations (a) are from
research flight 5 on 2013-12-15 and also include lidar backscatter ratio
(BSR) plotted below the reflectivity. Model simulation is from an ICON
LEM meteogram station on 2013-12-16. The vertical distributions are
normalized by the number of time steps in each scene.

A joint standard grid for the radar and lidar observations and forward simulations
is used to facilitate additional analysis. A grid spacing of seven radar range gates is
chosen, so that histograms are calculated as counts in 210 m high bins normalized
by the bin width and the total number of cases in the total dataset. The histogram
statistics in the right part of Fig. 5.4a summarize the detected cloud layers in the
scene. The integral over the histogram equals the shallow-cloud cloud fraction de-
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tected by the respective sensor. In the particular scene depicted in Fig. 5.4, the lidar
sees a cloud in about 73 % of the time, while the radar cloud fraction is about 46 %.
Note that the histograms depict the vertical distribution of detected cloud tops or
base heights in a column and are therefore different from profiles of vertical cloud
fraction. In the case of multi-layer clouds, one layer is hidden by the other. To limit
the analysis to shallow clouds, an upper limit is set to 4 km above sea surface. The
histogram in Fig. 5.4a reveals the separation of the radar echo base into non raining
drizzle in the outflow layer and precipitation that falls out of the cloud base at LCL.
Note, that the lowest usable radar range bin is at about 100 m above the sea surface
to avoid any surface clutter artifacts.

Figure 5.4b displays an example time series from ICON LEM which also includes
precipitating clouds (beginning) and a few thermal-driven clouds (in the end). The
cloud tops seen by the lidar and radar are mostly in the upper mode about 2 km
above the LCL. The peak of the radar cloud top heights is about 400 m above most
of the lidar cloud tops. This order is contrary to the observed case study. The higher
reaching radar signal originates from grid cells at cloud top containing only rainwater
but no cloud water. This can be seen by the pixels with a radar reflectivity signal
above the lidar cloud top height, e.g., at 20:11. As only a few thin lidar-only-visible
clouds near LCL are present, the mode of lower clouds is not very pronounced.

Two short scenes illustrate the information content gained by analyzing the vertical
distributions of lidar- and radar-detectable cloud top, and radar-detectable cloud
base heights. More sound findings on the relative occurrence of upper- and lower-
mode clouds and their typical heights can be gained by applying this method to the
full dataset

5.5.2. Cloud Statistics

To investigate whether the findings of the case study apply generally, all observations
and simulations are analyzed in this section. The histograms of the observed lidar
cloud top heights (Fig. 5.5) reveal, similar to the case study, two modes of cloud
top heights. While the lower one is about 300 m above LCL, the upper one is about
1.3 km above LCL. Frequency wise, the upper mode dominates over the lower mode
by about 30 %. The lower mode of very shallow cumulus clouds on top of the well
mixed boundary layer (Stevens et al., 2017) is very likely to be thermal driven and
hardly produces precipitation. The radar, however, observes in principle just one
mode of top heights with its maximum at about 1.3 km above LCL, consistent with
the upper lidar mode. But, similarly to the example in Fig. 5.4, the distribution is
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shifted slightly towards lower top heights than the lidar-visible cloud top distribu-
tion. Overall, the lidar sees clouds more than twice as often as the radar (43.2 vs.
18.2 %) due to its higher sensitivity that even responds to low cloud water contents
of about 10−7 kg kg−1 (compare Fig. 5.3).
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Figure 5.5.: Cloud boundary statistics on all observed and forward-simulated lidar
and radar signals: (a) lidar cloud top, (b) radar cloud top, and (c) radar
echo base. Same thresholds for cloud detection are used for the observed
and simulated lidar and radar signals. Height is in relation to the lifted
condensation level (LCL). Shadings depict western (bright edge) and
eastern (dark edge) half of each dataset. The histogram bin edges are
depicted as ticks on y-axis. Shallow cloud fraction detected by lidar and
radar in each dataset is given in the legend.

We attribute the upper mode to shallow convection, precipitating clouds and their
shallow anvil outflow. This interpretation is supported by the distribution of reflec-
tivity bases detected by the radar. These bases are also bimodal with the upper
mode about 400 m below the mode of radar top heights. This upper mode of radar
base heights is related to the outflow anvils and not-yet precipitating clouds in which
the layer of radar-detectable hydrometeors is only a few hundred meters thick. The
lower mode of radar base heights is below the LCL, i.e., comprises clearly precip-
itating cases even if the precipitation occasionally evaporates before reaching the
surface.

A deepening of the shallow cumulus cloud layer in accordance with a sea surface
temperature increase is expected from the stratocumulus decks in the east tropical
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Atlantic to the cumulus regime in the west (e.g., Wyant et al., 1997). A temperature
increase of about 2 K from east to west in the flight area motives a separation of
our data by longitude. The deepening of the cumulus cloud layer can be seen in
the HALO observations as the lidar and radar detect the upper mode about 400 m
higher in the observations west of 51.5° W than east of it. However, the frequency
and height of the lower mode of the lidar-visible clouds is almost the same in the
western and eastern parts.

Better pronounced than in the case study, a bimodal distribution of cloud top heights
is also present in all available ICON LEM data (Fig. 5.5). The lower mode behaves
very similar to the observations. It has its maximum frequency at the same height
and is also detectable with the sensitivity of the lidar only. However, the frequency
of this mode and the overall shallow cloud fraction is only half the observed cloud
fraction (18.7 vs. 43.2 %). The height of upper mode is about 400 m above the
observed upper mode of the whole dataset but matches the upper mode of the
western part of observations very well. This is in line with the fact, that the LEM is
only represented by meteograms in the western flight area. The shallow clouds are
detected by the forward-simulated radar in only 5.6 % of the LEM scenes compared
to 18.2 % in the observations. In agreement with the observations, the radar cloud
tops are mostly modeled in the upper layer of the LEM, but with the maximum
higher than the lidar cloud tops – similar to the example discussed before. The
distribution of the modeled radar signal base heights indicates, that most clouds in
the LEM are precipitating if they are visible to the radar.

The ICON SRM represents the clouds rather differently than the LEM. The clouds
visible to the lidar generally form one broad mode with the most frequent lidar
cloud top heights around 500 to 700 m above LCL. The frequency of shallow cloud
tops decreases with altitude until they disappear at 2.6 km above LCL, which is
similar to the other two datasets. The clear separation of cloud tops into two layers,
however, is not evident in contrast to the observations and LEM. While a double
layer structure could be seen on individual days in the SRM data (not shown), this is
likely caused by the significantly varied altitude of the upper layer. Radar-detectable
clouds and precipitation are also modeled but only in about 3 % of the SRM scenes
which is much less than observed (18 %) and in the LEM (6 %). The radar top height
distribution, however, has a similar shape as the observed radar clouds. Even if less
frequent, the relative distribution of radar signal base heights in the SRM is similar
to the observations with one peak between LCL and LCL + 1 km and the second
peak few hundred meters below LCL. The distribution of the upper edge of the
upper mode is relatively more gentle than in the observations. The clear difference
of observed outflow and precipitating cloud layer between the eastern and western
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part of the data is not pronounced in the SRM data, even though the coverage of the
model fits better to the observations than the LEM. This indicates, that the shallow
convection and outflow process is not modeled as seen during the field experiment.

Bimodal distributions of cloud top heights were also observed from space by Genkova
et al. (2007) and Leahy et al. (2012). The former identified cloud top height maxima
at 650 and 1500 m above sea level in an area similar to this study from about 150
scenes between September 2004 and March 2005. Both modes seem to be lower than
observed in the present study, considering that the heights of the LCL is in the drop-
sonde, SRM, and LEM datasets in this study have means and standard deviations
of 720 ± 135, 763 ± 144, and (777 ± 121) m respectively. However, Genkova et al.
(2007) denote vertical uncertainty of 250 to 500 m. Leahy et al. (2012) observed the
upper layer around 2 km, the lower at about 0.8 km above the sea surface in tropical
Pacific trade wind cumulus (15° S, 155° W). These values are closer to the values in
the present study even though the similar cloud regimes are investigated in different
areas.

To conclude: Bimodal lidar cloud top height distributions were observed and their
clear separation is well reproduced by the LEM but not by the SRM. The lower
mode of thermal driven clouds is closely above the LCL, while the upper is closely
below the trade inversion (Stevens et al., 2017), i.e., about 1.5 km higher up. The
SRM, however, shows one prominent mode of cloud top heights with its maximum
at rather lower heights. However, the SRM also produces deeper clouds with their
frequency decreasing with height. Neither model reproduces the often observed
radar echoes embedded in the non-precipitating upper stratiform outflow mode. To
shed light on the conditions under which these clouds are simulated infrequently
compared to observations, comprehensive LWP observations refine the statistics in
the next section.

5.5.3. LWP Classes

The stratification of the observations and model data into different LWP classes
can give more detailed insight into the regimes under which the models perform
better or worse. LWP classes are chosen to represent barely detectable clouds (<
10 g m−2), clouds which are not completely optical thick (< 50 g m−2), classical
cumulus clouds (< 100 g m−2), thicker clouds which are still considered in satellite
retrievals (< 300 g m−2) (Wentz and Meissner, 2000), and even more water bearing
clouds. An overview of cloud top heights and radar base in the different datasets
and LWP ranges is presented in Fig. 5.6 and discussed in the following. To ease this
discussion, we define three layers in which the lidar and radar signals occur. Every
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signal below LCL is in the “precipitation” layer. Typically, only the radar base is
in this layer. Signals within 1 km above LCL are in the so called “thermal” cloud
layer. Signals above LCL + 1 km are called “outflow” which also includes the tops
of raining clouds as depicted in Fig. 5.4.

It is remarkable, that high cloud top heights in the outflow layer were often observed
by the lidar under low LWP conditions (below 10 g m−2). However, the lidar top
heights in the outflow layer are relatively more frequent, when extending the class
from LWP < 10 g m−2 to LWP < 50 g m−2. In all cases with LWP < 50 g m−2, the
outflow layer was observed more often by the lidar than the thermal layer clouds.
In general, it is no surprise that the distribution of lidar cloud tops in low LWP
conditions (Fig. 5.6a and d) is similar to those of the whole dataset (Fig. 5.5a),
as most of the scenes have a low LWP. For example, the statistics of the lidar-
detectable top-height of scenes with LWP < 50 g m−2 in the SRM with only one
mode and in the LEM with two modes is in general the same as discussed in the
previous Sect. 5.5.2. However, the classification by LWP shows the trend in both
the observations and the LEM data that outflow or precipitating clouds are more
likely with higher LWP. Likewise, the thermal mode disappears in the observation
and LEM datasets for higher LWP (> 100 g m−2).

The statistics of radar-detectable cloud top and base heights in scenes with LWP
< 10 and 50 g m−2 in Figs. 5.6b, c, e and f are different to the overall statistics
(Fig. 5.4b), as the radar is often not sensitive enough to detect clouds with such
little LWP. The lidar-detected clouds are about seven (three) times more frequent
than those detected by the radar on HALO in scenes with LWP < 10 g m−2 (<
50 g m−2). In the LEM simulations, this ratio is about five for both LWP limits. The
relative smaller increase of radar-detectable clouds means that clouds in the LEM
with 10 g m−2 < LWP < 50 g m−2 probably consist out of too small droplets and thus
miss a radar-detectable drizzle component. About a twelfth of the observed radar
clouds with LWP < 50 g m−2 are categorized as precipitating, while the LEM depicts
half of them as precipitating. No statement on the SRM precipitation fraction can
be made as only 0.2 % (i.e., less than 200 profiles) of the SRM scenes with LWP <
50 g m−2 show radar-visible cloud tops below 4 km at all.

The lidar detected a cloud in 96 % of the observed scenes with LWP > 50 g m−2. In
the remaining cases, the lidar probably missed clouds with only partially coverage
in the microwave radiometer footprint (≈ 1 km). Further, not all clouds in scenes
with LWP > 50 g m−2 contained radar-detectable hydrometeors. This difference
between lidar- and radar-detectable clouds with LWP > 50 g m−2 is in principle also
reproduced by both models. In the observations, about four of five clouds detected by
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Figure 5.6.: Like Fig. 5.5 but classified by liquid water path (LWP). Columns rep-
resent lidar cloud top, radar cloud top, and radar base of observed
and forward-simulated lidar and radar signals. Rows represent different
LWP ranges. Note the different x-scale used in the upper two rows.
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the lidar were also seen by the radar in the 50 to 100 g m−2 LWP class. However, only
a quarter of the lidar-detectable LEM clouds are also detectable by the simulated
radar. The ratio in the SRM simulations is even smaller. The radar base on the
other hand shows, that the LEM models about half of the radar-detectable clouds
as precipitating, while precipitation was only observed for a quarter of the observed
radar clouds with 50 < LWP < 100 g m−2.

In scenes with LWP between 100 and 1000 g m−2, the radar-detectable clouds in both
models form two groups. They either precipitate or form an outflow like structure
with a base clearly above the LCL. Such a separation was not observed from HALO.
In the observations, about a third of the 100 to 300 g m−2 clouds precipitate, while
most others have base heights within 1 km above LCL. In the observed dataset with
LWP > 300 g m−2, about four fifths precipitate. The single mode of lidar-detectable
cloud top height in the SRM increases with LWP. Finally, radar-detectable clouds
appear more frequently in the SRM when LWP > 300 g m−2. However, in these
cases only a quarter of the radar-visible SRM clouds actually show a precipitating
signal below the LCL.

The mode of non-precipitating radar-visible clouds under high LWP conditions in
both models can also be explained by heavy clouds in the model consisting of cloud
droplets only. A model cloud with LWP > 300 g m−2, for example, which is 300 m
deep must on average contain at least about 10−4 kg kg−1 liquid. This means that
such cloud doesn’t need any contribution from raindrops to be radar-detectable
(compare Fig. 5.3). However, such heavy non-precipitating clouds are observed
rather infrequently.

The stratification of the data by LWP shows that both models cannot represent
non-precipitating but radar-visible drops that were observed under all LWP con-
ditions. These drops are probably larger than those represented by the Gamma
distributions of the cloud hydrometeor class in both models. Radar-visible model
clouds precipitate more often than observed, which means they consist of already
very large droplets, but the fraction of radar-visible clouds is in general too small.
Non-precipitating clouds, consisting presumably of cloud-type hydrometeors only,
were produced by both models under high LWP conditions (> 300 g m−2), but such
cases were not observed.

5.6. Summary and Conclusions

Observed statistics of hydrometeor profiles and liquid water path (LWP) of oceanic
shallow cumulus clouds are compared against those produced by two high resolution
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models. The observations and model runs were part of the NARVAL experiment
over the tropical Atlantic east of Barbados in the dry winter season 2013. The
instruments were operated from the research aircraft HALO at an altitude between
13 and 14.4 km in a nadir-pointing orientation. The two models from the ICON
family are the so called storm resolving model (SRM) and the large-eddy model
(LEM) with 1.25 km and 300 m grid-spacing, respectively. The SRM resolves the
shallow cumulus layer with 10 to 13 layers, while the LEM has 23 to 28 levels in
that layer.

The upper part of the hydrometeor profile is characterized by radar and lidar ob-
servations, while the lower part of the hydrometeor profile is characterized by the
radar only due to lidar extinction. The LWP is retrieved from microwave radiome-
ter measurements. When looking at the high occurrence of low-LWP scenes in the
models (83 and 88 % below 10 g m−2, Fig. 5.6), it becomes evident that common
sensitivity thresholds for the instruments and models are urgently needed to assess
clouds in this regime. Thus, forward simulations of the radar and lidar observa-
tions using instrument specific sensitivity thresholds and relationships between the
observables and the model output are used to allow an apples-to-apples compari-
son between the HALO observations and the ICON model output (Lamer et al.,
2018). A lidar backscatter ratio threshold of 20 suggested by Gutleben et al. (2019)
is applied to clearly distinguish between backscatter from dust aerosols and cloud
droplets. A comparison of the airborne measurements to ground-based radar records
reveals a reliable radar reflectivity detection threshold of −20 dBZ for the airborne
radar over the full column. The forward simulations show that most clouds with
𝑞c > 10−7 kg kg−1 in the model are detectable with the respective backscatter li-
dar threshold. The radar, in contrast, is primarily sensitive to the “rain”-category
hydrometeor in ICON. Only the highest amounts of liquid 𝑞c in a cloud-water-only
cloud in the model are detectable by the radar.

The observations reveal two prominent modes of cumulus cloud top heights sepa-
rating the clouds into two layers. The lower mode of cloud tops relates to shallow,
non-precipitating boundary layer clouds reaching up to a few hundred meters above
the lifted condensation level (LCL). The upper mode is mostly driven by shallow
moist convection and also contains stratiform shallow outflow anvils around 1.3 km
above LCL. The lower mode consists of mostly thin water clouds that are best seen
by the backscatter lidar and are frequently missed by the radar. In contrast, the up-
per mode clouds contain more and larger droplets that scatter sufficient microwave
radiation to be detected by the radar in addition to the lidar. Overall, the upper
mode was observed more frequently, but both modes are similarly frequent in scenes
with little condensate (LWP < 50 g m−2). In the outflow layer, the lidar detected
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the cloud tops slightly higher than the radar. This indicates that small particles
with low radar reflectivity are present at the upper part of the outflow layer. Higher
LWP values are associated with more precipitation echoes below the LCL and with
deeper outflow layers. Also, a clear trend with higher cloud tops in the upper mode
in the western part of flight tracks is observed that is probably related to higher sea
surface temperatures in that area enforcing convection.

The bimodal cloud top height distribution is reproduced by the LEM, although
the total cloud fraction is lower than observed. The radar forward simulations
suggest that the LEM produces less large particles in the outflow regimes. The
observed increase of radar-detectable clouds between LWP of 10 and 50 g m−2 is not
reproduced by the LEM. This is consistent with the overall trend of the models that
produce smaller than observed particle sizes. However, the LEM describes more of
the radar-detectable clouds as precipitating. This indicates that large radar-visible
drops probably cannot be kept long enough in the model cloud layer before falling
out. An observed cloud layer deepening with LWP can be also found in the LEM.

Different than the LEM, the SRM produces no clear separation between the two
cloud layers. Cloud tops are typically at 500 to 700 m above LCL. Small differences
in the warm autoconversion (AU) parametrizations might be a reason for the reduced
frequency of deeper shallow clouds. The AU formulation is similar in the LEM
and the SRM, but as the SRM cloud droplet number concentration 𝑁c is constant
(Table 5.1) but smaller than the average in-cloud 𝑁c in the LEM (not shown), and
as the AU rate increases with decreasing 𝑁c (Seifert and Beheng, 2001, eq. 16), the
AU in the SRM is expected to be stronger on average. Therefore rain could form
quicker in the SRM and thereby reduce the average cloud life time, cloudiness, and
also cloud top height. Indeed, especially the radar-visible cloud top heights of the
LWP heavy clouds in the SRM are in general lower than in the LEM (Figs. 5.6 k and
n). One could hypothesize further that a faster warm precipitation cycle reduces the
strength of the shallow convection, so than in consequence, less clouds would reach
the tropical inversion layer, which could create the shallow outflow, that is produced
by the SRM too seldom. However, there are other differences between the LEM and
SRM that could contribute to differences in cloudiness and rain production. For
example, the lack of a clear gap might be also due to the lower vertical resolution of
the SRM with 10 to 13 layers in the shallow cumulus layer (compared to 23 to 28 in
the LEM) as the gap would require that always the same few model layers contain
no cloud top. The clearly observed east-west difference in height of the upper cloud
layer is only weak in the SRM. This indicates that processes of the precipitating
shallow-convection cumulus clouds are not fully represented in the SRM. The SRM
cloud distribution is rather insensitive for different LWP classes except for a cloud
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deepening and precipitation increase with increasing LWP. This study primarily
considers the grid-resolved clouds in the SRM. This might an unfair comparison
as the SRM also contains a diagnostic scheme for sub-grid-scale cloudiness used in
the radiation calculations. Thus, the additional sub-grid-scale cloudiness is briefly
assessed in the Appendix 5.A. In summary, clouds modeled from diagnostic equations
would moderately increase the SRM cloudiness, but would not alter the vertical
structure significantly, i.e., the diagnosis does not solve the missing cloudiness in the
outflow layer.

Both models show clearly non-precipitating radar-visible clouds with LWP > 300 g m−2

which were not observed in that way and probably come from very high amounts of
pure cloud water. In other cases, both models tend to produce precipitation that is
also detectable below LCL once the cloud is visible to the radar and it seems that
large radar-visible but just slowly sedimenting non-precipitating drops like in drizzle
are missing. This is probably due to the size constraint in the ICON microphysics
(Seifert and Beheng, 2001), that implies a threshold between cloud PSD and rain
DSP at 40 µm, i.e., cloud PSD is assumed to not contain a significant number of
droplets with diameter larger than this threshold. Our observation of larger but
non-precipitating particles is in line with findings by Siebert et al. (2013) and Wolf
et al. (2019a) who observed cloud droplet effective radii on the order of this threshold
in the same region but in generally moister months, i.e., they also note the principle
presence of large cloud droplets.

Finally, it has to be noted that the available datasets have a great spatiotemporal
overlap but do not match perfectly. The consequences of this are probably less
severe than they would be for example in the mid-latitudes, a region that is heavily
influenced by synoptic systems, because the study area and period is characterized
as mostly undisturbed (Vial et al., 2019) and the variation from flight to flight in
the winter season is limited (Fig. 4.11). Nevertheless, the methods presented in this
study show high potential to benchmark realistically driven large-eddy simulations.
Even with slightly different underlying meteorological statistics the analysis provides
insight into processes that are well represented by the models and which phenomena
are difficult to model with the respective setup. However, absolute numbers of cloud
frequencies should be interpreted carefully.

Enhanced observations with several research aircraft, vessels, and autonomous plat-
forms and coordinated model applications during the upcoming EUREC4A field
study in early 2020 (ElUcidating the Role of Cloud-Circulation Coupling in Climate
Bony et al., 2017) will provide an even more comprehensive view on the trade wind
shallow cumulus clouds. For that, the methods presented here are ready to by ap-
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plied to future EUREC4A studies. Also, cloud-chasing ship-based observations can
observe individual cloud cycles including the transition from pure cloud to drizzle
onset and probably rain production, while airborne observations survey the cloud
field to report on the representativeness of the in-detail studied cloud. As shallow
cumulus clouds also will be probed in-situ in addition to the remote sensing setup
used in this study, a closer look into the drop size distributions in the outflow layers
will be enabled.

5.A. Appendix: Sub-grid Clouds in the SRM

The SRM vertical cloud structure deviates stronger from the observations than the
LEM, as discussed in Sect. 5.5. This might be because the forward simulations of the
SRM clouds and precipitation are analyzed based on the prognostic model equations
under the assumption that these clouds are resolved by the model grid. However in
addition to the prognostic cloud scheme, the SRM uses a diagnostic cloud scheme
to model the sub-grid-scale cloud distribution used in the SRM radiation scheme.
This appendix presents a rough estimation, whether the diagnostic cloud scheme
provides the missed outflow clouds.

The diagnostic cloud scheme uses a simple box probability density function of total
water content and provides the diagnostic cloud cover (CLC) and liquid cloud water
content (𝑞c,dia) (Martin Köhler, personal communication). In that scheme, the total
amount of water is conserved but redistributed between the vapor, and liquid and
solid cloud phases. In principle, the diagnostic clouds should be analyzed as filling
only their specific cloud fraction of each grid box. This means, that the diagnostic
in-cloud cloud water 𝑞c,dia

CLC covers the CLC fraction of a grid box. The lidar-detectable
cloud fraction cf in each height can then be calculated as

cf = 1
𝑁

𝑁∑︁
𝑖=1

𝑐𝑖 (5.A.1)

𝑐𝑖 =

⎧⎪⎨⎪⎩CLC, if 𝑞c,dia
CLC > 𝑡

0, else,
(5.A.2)

with 𝑁 being the number of model columns, 𝑖 the column index, and 𝑡 the detection
threshold. cf describes the spatial cover in each height that contains enough cloud
water to be detectable by the lidar. Analogous to the analysis in the previous
section, the prognostic cloud fraction is calculated as fraction of cells in one height
level, where 𝑞c > 𝑡. This is a binary assumption that implies full cloud cover, if the
cloud simulated from the prognostic equations is lidar detectable.
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The additional cloud fraction due to the diagnostic scheme is largest (about 3.5 %)
near the LCL (Fig. 5.A.1) using the sensitivity threshold 𝑡 = 10−7 kg kg−1 estimated
from Fig. 5.3a. However, sensitivity tests (not shown) indicated, that the diagnostic
and prognostic cloud fraction profiles derived from sensitivity thresholds between
10−5 and 10−8 kg kg−1 are not significantly different. The highest diagnostic cloud
fraction is at the same height as the prognostic cloud fraction at about 500 m above
LCL but about a third higher. Above its maximum, the additional cloud fraction
decreases until it approaches the prognostic cloud fraction. The diagnostic lidar-
detectable cloud cover profile follows the profile of diagnostic cloud cover (clc) from
the model very closely. This means, the lidar is so sensitive, that it detects all
(diagnostic) model clouds with meaningful spatial extent.
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Figure 5.A.1.: Mean cloud fraction profile with for resolved and diagnostic lidar-
detectable clouds in the SRM over all cases. Additionally the cloud
cover profile given by the diagnostic equations is shown.

As the profile shape of diagnostic clouds is very similar to the profile of prognostic
clouds, we do not expect the statistics of forward-simulated diagnostic clouds to differ
much from what is discussed in Sections 5.5.2 and 5.5.3 except for a somewhat higher
frequency of lidar-detectable cloud tops. However, a proper forward simulation
would have to take the sub-grid cloud overlap problem into account. The radar
cloud top and base statistics are almost unaffected by the diagnostic cloud water
content, as the maximum additionally diagnosed cloud water content in the SRM is
only 2.2 × 10−4 kg kg−1. Such contribution is insignificant for the radar-detectable
cloudiness in relation to the radar detection threshold (compare Fig. 5.3c).
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5.B. Appendix: Comment on Data Interdependence

The ICON SRM dataset is the day-time subset of the dataset which was used for the
LWP retrieval development and assessment. In consequence, the observational LWP
data, that is used to classify the radar and lidar observations by LWP, is not fully
independent from the SRM dataset. We are aware, that this may by a limitation
of this study. This independence could potentially increase the agreement between
the observations and the SRM, compared to the LEM. However, no such evidence is
found as the general agreement of the LEM is better. Thus, the data independence
should be kept in mind when developing retrievals from model data and assessing
model data, but the independence seems acceptable in this study.
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Chapter 6.

Conclusions and Perspectives

The thesis at hand presents a comprehensive study to better characterize tropi-
cal marine shallow-convection clouds using the HALO Microwave Package HAMP.
Shallow cumulus clouds are a globally ubiquitous and important component of the
climate system. Their characteristics are not yet fully understood in current cli-
mate, weather, and large-eddy models – partly due to lacking observations. Here,
the usefulness of airborne microwave remote sensing for studying these clouds is
shown. The general advantage of microwave techniques like those used by HAMP
is the semitransparency of the cloudy atmosphere to microwaves. In this thesis, the
passive component of the HAMP instrument is characterized and novel retrievals
based on artificial neural networks are developed. It is shown, that they can retrieve
characteristics over a wide range from clear sky over thin and at most slightly pre-
cipitating clouds with a LWP of less than 100 g m−2 to mostly precipitating scenes
with more than 1000 g m−2 of liquid. Subsequently, HAMP is used to demonstrate
an assessment method for cloud-resolving simulations.

Before HAMP data can be used for physical retrievals, the HAMP radiometers are
characterized in terms of sensitivity and accuracy. NeDTs, i.e., noisy BT variations,
are estimated for all channels and their results are considered in the retrieval devel-
opment. The estimated NeDT is well below 0.3 K for all HAMP-KV channels and
below 0.6 K for the HAMP-FW and -G channels. Significant offsets between syn-
thetic measurements from forward-simulated dropsondes and simultaneous HAMP
measurements of more than ten times the NeDT are found. The offsets are positive
as well as negative and systematic channel-dependent spectral patterns are observed
in different HAMP bands. No systematic errors of realistic magnitude in the drop-
sonde data and forward simulations can explain the offsets consistently. A bias in
the gaseous absorption model could also contribute to the spectral shape of the off-
set, however, such bias is assumed to cancel out, when the same model is used for
correcting the offset as well as for developing retrievals. It is concluded, that the
offsets are more likely caused by uncertainties in the absolute-calibration procedure
regarding the cold-load temperature and changes in the belly pod during take-off
and subsequent climbing to the final flight level. The offsets are stable during each
flight and are only randomly influenced by spatiotemporal mismatches between the
drifting sonde and the nadir observations. Because of this stability, a simple off-
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set correction is developed based on the mean offset in each channel during each
flight. The resulting offset-corrected HAMP BT data contributed to the dataset
published by Konow et al. (2019) in the Climate and Environmental Retrieval and
Archive (CERA) database for the tropical campaigns NARVAL-South, NARVAL2
and the two mid-latitude campaigns NARVAL-North and NAWDEX (Konow et al.,
2018a,b,c,d). The characterization study also revealed instabilities in HAMP-G,
one of the five HAMP bands, related to failing hardware. This failing is related to
the sawtooth pattern in the acquired HAMP-G data which was removed from the
data publication by Konow et al. (2019). Over all, the assumed accuracy of the
offset-corrected BT data in all but the G band is 0.5 to 1 K.

Novel retrievals of IWV, LWP and RWP are developed and applied to compare
HAMP observations from the tropical dry and wet seasons. The retrievals are based
on a database of atmospheric profiles from cloud-resolving ICON simulations at
1.25 km grid spacing and related synthetic HAMP measurements. The developed
IWV retrieval has a theoretical uncertainty of about 0.6 kg m−2 and root-mean-
square deviations to water vapor lidar and dropsonde data are below 1.4 kg m−2 over
the range from 20 kg m−2 to 60 kg m−2. For LWP and RWP, synthetic assessments
are necessary as no reference measurements of column integrated hydrometeor con-
tents are available. The LWP retrieval can be assessed as a function of LWP owing
to the comprehensive size of the ICON datasets. LWP uncertainty between 12 g m−2

and 20 g m−2 is found for LWP below 100 g m−2 and a relative uncertainty better
than 20 % is found for higher values. The RWP retrieval bases on the vertically inte-
grated radar reflectivity in addition to BTs of eight K- and W-band channels, which
are the sole input to the IWV and LWP retrievals. The RWP retrieval shows good
performance with Gilbert skill scores (GSS) being higher than 0.75 for RWP thresh-
olds from 10 g m−2 to about 50 g m−2 and higher than 0.5 for RWP up to 250 g m−2.
This is due to the high sensitivity of the radar reflectivity to the presence of any
rain.

The novel retrievals are first applied to contrast the tropical dry season in Decem-
ber 2013 (NARVAL-South) and the wet season in August 2016 (NARVAL2). The
contrast of IWV (NARVAL-South: 28 vs. NARVAL2: 41 kg m−2) clearly justifies
the differentiation of the two seasons. Regardless of more water vapor in the atmo-
sphere, clouds were seen less often (30 % vs. 47 % of the time) in the wet than in the
dry season. Their average LWP (40 vs. 63 g m−2) and RWP (2.7 vs. 6.7 g m−2) is
lower, too. However, deeper convection into layers above the freezing level was more
likely in the wet season, as microwave scattering of frozen precipitation was observed
more frequently in the wet season (1.6 % vs. 0.5 % of the time). In the respective
study, it is speculated, that a higher degree of cloud organization on larger scales in
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the wet season reduced the overall cloud cover and observed LWP. The organization
into larger cloud systems during wet season also caused an overall broader IWV dis-
tribution with higher inter-flight variability during NARVAL2. However it needs to
be noted that due to flight safety regions of deep convection were avoided especially
in the wet season.

The dry season with smaller clouds scales but more cloudiness seemed more typical
for shallow cumuli. Therefore the NARVAL-South dataset is used to assess the abil-
ity of two versions of the ICON model with different horizontal resolutions (0.3 and
1.25 km) to simulate theses clouds. Products from the active and passive HAMP
measurements are used together with the backscatter lidar in WALES to character-
ize cloud vertical extend statistics at different hydrometeor loads. For this model
benchmark, forward operators converted the model data into the observational space
for considering cloud detection thresholds. The forward simulations reveal the dif-
ferent cloud detection limits of the lidar and radar observations. It is shown, that
most clouds are detectable by the lidar, whereas the radar is primarily sensitive to
the “rain”-category hydrometeors in the models, and can detect rain of three to four
orders of magnitude lower water content than it could detect pure clouds.

Two prominent modes of the shallow cumulus cloud top heights were observed. The
lower mode is related to boundary layer convection with cloud tops closely above the
lifted condensation level, which is at an altitude of about 700 m. The upper mode,
however, is driven by deeper shallow convection and includes clouds with forming
precipitation and shallow outflowing anvils that cover a larger area like a veil. This
upper layer is close to the trade inversion at an altitude of about 2.3 km. The
different sensitivity of the lidar and radar results in different cloud statistics which
depend differently on the LWP. The kilometer-scale model reproduces the lower
cloud mode of lidar-visible clouds. The upper mode of radar- and lidar-visible clouds
is also reproduced in principle, but the observed gap between the layers and the
relative frequency of occurrence of both modes is simulated differently than observed.
Neither model accounts for drizzle sized drops, that do not precipitate but generate
a detectable radar signal which was observed even in scenes with low LWP. The
higher resolving model reproduces the bimodal distribution of clouds better. The
different cloud representations in the two models are thought to be partially related
to the different model resolutions. However, indirectly dependent on the resolution,
different parametrizations were used in the two model runs. These parametrizations
and especially the two-moment microphysics scheme help the higher resolved model
to better represent the two-layer cloud structure.
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In general, the presented studies demonstrate HAMPs suitability as a tool for re-
searching the clouds forming in maritime shallow convection. However, the full
potential of HAMP could only be utilized by combining HAMP with other instru-
ments on HALO. The dropsondes are an important tool to correct BT offsets of
the HAMP radiometers. The water vapor profiling capabilities of WALES are good
to assess the water vapor measurements of the sondes and the IWV retrieval from
HAMP. The backscatter channel in WALES helps to remove a slowly varying bias
component in the LWP retrieval. Further, the backscatter lidar supports the HAMP
radar capabilities to detect thin water clouds. The synergistic combination of instru-
ments like in the HALO NARVAL payload is the key to interpreting the observations
and providing insights into shallow cumulus convection.

Perspectives

The space of using HAMP for novel studies is still wide open. Further retrievals
can be developed and refined by finding new synergies between HAMP and other
instruments on HALO or even on separate platforms. Quantities that influence
HAMP measurements but that are too ambiguous for retrievals could be assessed
by further usage of forward simulators. But also the thorough documentation of
the clouds and their interaction in the current climate state should be continued by
adjusting and applying the techniques developed in this thesis or for example by
Wolf et al. (2019a) to new observations like those collected during EUREC4A. These
datasets could then be used for evaluating further datasets like those from cloud-
resolving models or microwave satellites which use the same principles as HAMP
but with larger footprints.

EUREC4A has gathered the largest continuous record of measurements of the at-
mospheric mass divergence profile together with comprehensive observations aiming
at a four-dimensional assessment of clouds. Besides the presented HAMP capabil-
ities, cloud observations include a horizontal and vertical cloud survey by multiple
radars and lidars, combined measurements of turbulence and cloud microphysics
throughout the whole boundary layer, water isotope characterization, study of ocean-
atmosphere interactions across mesoscale ocean eddies, and much more. To sample
all this, the multi-platform field experiment involved four research aircraft, four re-
search vessels, an unprecedented number of autonomous air- and seaborne vehicles
as well as satellites and ground-based observations, and the passion of hundreds
of scientists. Within this context, HAMP acquisitions aboard HALO can provide
the statistics on vertically integrated hydrometeor content. EUREC4A has a well
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defined core area of about 200 km × 200 km for atmospheric observations. HALO
was mostly flying large repetitive circles in this area to obtain an ideal sampling
of the clouds with the remote sensing instruments while releasing a total of 840 of
dropsondes in 13 research flights to measure the large-scale vertical motion. HALO
was sampling along the circles for about 6 to 8 hours during each flight. In this
time, an air parcel with the speed of the trade winds (about 7 m s−1) moves once
through the study area. This means, that HALO was sampling approximatively the
whole lower troposphere in the study area once within one flight. This repetitive
flight pattern could diminish statistical sampling issues raised in the comparison of
NARVAL-South and NARVAL2 (Sect. 4.6).

Novel EUREC4A datasets as well as the now available NARVAL-South and NAR-
VAL2 datasets cannot be used for assessing only cloud-resolving simulation datasets,
but also satellite records of clouds. Schnitt et al. (2017) made the first step by
comparing single cases of HAMP LWP to LWP from the MODIS and the Special
Sensor Microwave Imager and Sounder (SSMIS). They conclude that the space-
borne microwave radiometer misses quite some clouds due to it coarse resolution.
With now three successfully completed campaigns in tropical shallow cumulus, a
comprehensive dataset is gathered, firstly to assess more satellite overpasses in one-
to-one comparisons, and secondly also to study the spatial cloud variability more
in depth. Important questions to ask are whether there is a constant bias of the
mean LWP due to the cloud variability within the satellite footprint or to which
extent the satellite statistics are able to document light precipitation events. Again,
the repetitive EUREC4A flight patterns promise good sampling to assess the spa-
tial satellite-footprint inhomogeneity of the clouds. Seaborne observations from the
ships could be used as well to study the temporal cloud evolution at one point.
Furthermore, observations from the ships as well as from Barbados could be used to
assess the assumptions made in spaceborne retrievals. For example, the easily acces-
sible and widely used retrievals by Remote Sensing Systems (Wentz and Meissner,
2000) assume, that the rain water path depends on the rain column height, which is
related to the freezing level, which is parameterized as a function of sea surface tem-
perature (Wentz and Spencer, 1998). Related observations are now available from
micro rain radar (MRR; Peters et al., 2002) and atmospheric and oceanic in-situ
instruments.

The MRR might become handy also for verifying HAMP products of rain rate
estimates which could extend the IWV, LWP, and RWP products in the future. One
could also try to tackle the difficulties in retrieving the vertical liquid water content
profile by adjusting the optimal estimation based retrieval developed by Battaglia
et al. (2016) to HAMP acquisitions. The original algorithm has been developed for
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CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

multi-frequency radars and a four-channel microwave radiometer aboard the ER-2
aircraft and adjustments would have to made to a single radar frequency, but more
radiometer channels and probably also the backscatter lidar.

Improvements cannot only be achieved in vertical resolution but also in horizon-
tal resolution. The spectrometer of the Munich Aerosol and Cloud Scanner (spec-
MACS; Ewald et al., 2016) is a downward looking hyper-spectral imager aboard
HALO. Combining HAMP microwave observations (footprint 0.3 – 1 km) with the
visible–near-infrared passive sensors like the specMACS (ground resolution of about
10 m) provides the opportunity of fusing the cloud penetrating information with
high spatial resolution. For example, Höppler et al. (2020) started investigating
these possibilities by extending the method by Barker et al. (2011) and finding simi-
larities in the specMACS nadir and off-nadir pixels to map measurements from nadir
to the off-nadir swath. LWP retrieval results from Chapter 4 allowed the construc-
tion of a 2D LWP field through this approach. However, further refinements are
possible. The ability of specMACS to resolve the cloud filed within one footprint of
HAMP could be used to effectively increase the spatial HAMP LWP resolution by
distributing the LWP only among the area identified as cloudy by the imager.

In addition to the tropical campaigns NARVAL-South, NARVAL2, and EUREC4A,
which provide many possibilities for subsequent studies, also the mid-latitude cam-
paigns NARVAL-North and NAWDEX have great potential to foster knowledge by
analyzing HAMP acquisitions. However, those datasets are more challenging for
absolute retrievals, as the absolute BT offset correction is more uncertain due to
the small number of clear-sky dropsondes as there are only one or less usable sondes
for several flights (Table A.1). Therefore, data exploitation should rely stronger
on the temporal variation of the data and spectral BT difference changes. HAMP
capabilities for atmospheric soundings could facilitate humidity and temperature
profile retrievals from an ideal combination of passive microwave (HAMP), active
(WALES lidar), and in-situ (dropsondes) observations. Temperature and humid-
ity profiles are also of special interest for the upcoming deployment of HAMP and
HALO to the Arctic to study meridional warm air transport into the Arctic and ma-
rine cold-air outbreaks within the Transregional Collaborative Research Centre TR
172 (AC)3 (ArctiC Amplification: Climate relevant Atmospheric surfaCe processes
and feedback mechanisms; Wendisch et al., 2017; Brückner, 2020).

In general, retrieved HAMP products should be made available like the results
of Chapter 4 that were published in the CERA database (Jacob et al., 2019a,b).
In that way, the products support the broader community, for example, in cloud-
resolving model studies. The IWV retrievals already allowed Reilly et al. (2020) to
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study the representativeness of the local conditions in large-eddy simulations that
were partially forced with HALO dropsonde data. The published HAMP data also
strengthened the water vapor based assessment of cloud-resolving model simulations
by Naumann and Kiemle (2019). They combined HAMP and WALES water vapor
products to study the all-sky moisture range and assess the cloud representation
in covariation with humidity profiles in cloud-resolving simulations with different
grid spacings, including the two simulations also assessed here in Chapter 5. They
found a general good agreement of the observed and simulated water vapor profiles,
but also stress, that an agreement in the water vapor distribution does not need
to translate into an adequate cloud representation. These are just two examples of
how HAMP products support model assessments. Several model studies are planed
around the EUREC4A field experiment and methods like demonstrated in Chapter 5
or by Naumann and Kiemle (2019) are ready to test their cloud representations.
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Appendix A.

Brightness Temperature Offset During
NARVAL-North and NAWDEX

The mean offset of synthetic forward-simulated dropsondes and HAMP measure-
ments during NARVAL-North and NAWDEX are displayed in Fig. A.1. Signifi-
cantly less sondes per flight could be considered here than during NARVAL-South
and NARVAL2 (Sect. 3.3) due to less sondes released during clear-sky conditions
(Table A.1).

Table A.1.: Number of all released dropsondes and those released in clear sky with
available measurements by the HAMP-KV, -FW, and -G module during
NARVAL-North and NAWDEX.

Campaign Research Date Sondes Clear-sky sondes
flight released KV WF G

NARVAL-North RF01 2014-01-09 15 1 1 1
RF02 2014-01-12 6 1 1 0
RF03 2014-01-18 9 1 1 1
RF04 2014-01-20 11 1 1 1
RF05 2014-01-21 8 2 2 2

NAWDEX RF01 2016-09-17 10 0 0 0
RF02 2016-09-21 14 2 2 2
RF03 2016-09-23 21 7 7 7
RF04 2016-09-26 25 3 3 3
RF05 2016-09-27 20 7 7 6
RF06 2016-10-06 20 2 2 2
RF07 2016-10-09 1 0 0 0
RF08 2016-10-10 19 2 2 2
RF09 2016-10-13 24 1 1 0
RF10 2016-10-14 7 1 1 1
RF11 2016-10-15 12 1 1 0
RF12 2016-10-18 15 2 2 0
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APPENDIX A. BRIGHTNESS TEMPERATURE OFFSET DURING
NARVAL-NORTH AND NAWDEX
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Figure A.1.: As Fig. 3.12, but for NARVAL-North (a-e) and NAWDEX (f-j) flights.
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