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Abstract

We extended the idea of Euler structures and the Euler chain representation of Weyl
semimetals within the framework of disordered free fermions to all ten symmetry classes.
Euler structures are very useful in understanding the global topology of a Weyl semimetal
and provide additional topological information besides the local invariant given by the
Weyl charge. This additional information is encoded in the Euler chain and defines the
Euler chain representation of a WSM. They also show a deep connection to surface Fermi
arcs which are a direct experimental evidence of Weyl points. Moreover, we work out
the effects of symmetries on the presence of Weyl points and corresponding Euler chains.
In a second part we study the effects of disorder on Weyl points and try to derive a field
theoretic description for Weyl semimetals. We use the methods of superbosonization
and non-abelian bosonization to gain some insights to what a bosonic field theory of a
WSM should look like. A three dimensional model of stacked two dimensional networks
is constructed and we show that it describes a WSM phase. Further analysis of the
model leads to a proposal of a potential field theory for the model.



Kurzzusammenfassung

Wir haben die Idee der Euler-Strukturen und die Euler-Kettendarstellung der Weyl-
Halbmetalle im Rahmen ungeordneter freier Fermionen auf alle zehn Symmetrieklassen
ausgedehnt. Euler-Strukturen sind sehr nützlich für das Verständnis der globalen Topolo-
gie eines Weyl-Halbmetalls und liefern neben der lokalen Invariante, die durch die Weyl-
Ladung gegeben ist, zusätzliche topologische Informationen. Diese zusätzlichen Informa-
tionen sind in der Euler-Kette kodiert und definieren die Euler-Kettendarstellung eines
Weyl Halbmetalls. Weiterhin hat die Euler-Kette eine tiefe Verbindung zu Fermi-Bögen
auf der Oberfläche, welche ein direkter experimenteller Nachweis für Weyl-Punkte sind.
Darüber hinaus arbeiten wir den Effekt von Symmetrien auf das Vorhandensein von
Weyl-Punkten und entsprechenden Euler-Ketten heraus.
In einem zweiten Teil untersuchen wir die Auswirkungen von Unordnung auf Weyl-
Punkte und versuchen, eine feldtheoretische Beschreibung für Weyl-Halbmetalle abzuleiten.
Wir verwenden die Methoden der Superbosonisierung und der nicht-abelschen Boson-
isierung, um zu einem besseren Verständnis, wie eine bosonische Feldtheorie eines Weyl
Halbmetalls aussehen sollte, zu gelangen. Es wird ein dreidimensionales Modell gestapel-
ter zweidimensionaler Netzwerke konstruiert und wir zeigen, dass es eine Weyl Halbmetall-
Phase beschreibt. Die weitere Analyse des Modells führt zu einem Vorschlag einer po-
tentiellen Feldtheorie für das Modell.
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1 Introduction

The story of topology and condensed matter probably begins with the discovery of the
quantum Hall effect [21] in 1980. The introduction of topology into the topic of con-
densed matter systems led to a revisit of band theory in insulators and superconductors
and the idea of a topological insulator was born. The quantum Hall effect was the first
example of such a novel phase of matter. Soon afterwards many more topological phases
were found and also the introduction of symmetries led to some new predictions.
All of this then culminated in the attempt to provide a classification of topological phases.
In [19] algebraic methods alongside K-theory were used to derive a pattern among topo-
logical insulators and superconductors, the periodic table of topological insulators and
superconductors. Soon after that different approaches derived similar results in different
settings [32],[1]. Moreover, the connection between the topological nature of the bulk
and states on the surface, the so-called bulk-boundary correspondence, was shown in [1]
with some tools from non-commutative K-theory.

The success of topological considerations in the framework of topological insulators
and superconductors stimulated the search for similar phenomena in other fields. The
extension from insulators and superconductors to semimetals and metals was the logical
next step and anticipated for example in [13],[23] and later established theoretically and
experimentally in [7],[30],[31],[28].
Since, unlike insulators and superconductors, semimetals and metals do not have an en-
ergy gap at the Fermi energy in their spectrum topology has to be studied in a different
way in that case. One of the most prominent topological invariant that can be defined on
the Fermi surface is for example the flux of Berry curvature through the Fermi surface.
A particular interesting feature of a topological semimetal is the presence of Fermi arcs
on the surface. Fermi arcs were for example also used to verify the topological phase in
TaAs in [30].

In this thesis we introduce some tools from topology that can be used to understand
semimetals. We will be focusing on a certain class of semimetals, Weyl semimetals. A
Weyl semimetal gets its name from the spectrum of low-energy excitations. The points
where the band gap closes can be understood to be sources and sinks of Berry curvature.
Due to the spectrum in the vicinity of these points they are called Weyl points and they
are the main subject of study throughout this work.
In recent years Weyl points and Weyl semimetals became a research topic of much in-
terest as they are a prime example of a topological semimetal.

This thesis comprises two main parts and is organized in the following way. The first
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1 Introduction

chapter gives a short overview and introduction to important tools from topology. It
does not contain any physics and can as well be skipped and returned to if needed.
An introduction to the framework used to describe semimetals is given in the second
chapter. It also introduces symmetries and their action in the presented framework.
Moreover, Weyl points and some basic properties are considered.
In the third chapter we define Euler structures and the Euler chain representation of a
Weyl semimetal. Furthermore, we show in what sense these tools capture and describe
the topology of Weyl semimetals. Then we include symmetries to the picture and work
through the ten symmetry classes to understand Euler structures in the presence of
symmetries. In the end we give a short discussion on the connection of Euler chains to
Fermi arcs.
In the second part we are concerned with Weyl semimetals in the presence of disorder.
We set out from a quite general model and try to derive a field theoretic description of
it. To achieve this we follow three different approaches with various success. In the end
we discuss the success and issues of all three approaches and give an outlook to open
questions.
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2 Mathematical preliminaries

The goal of this chapter is twofold. On the one hand, it lays the mathematical founda-
tions for this work and introduce various tools from different fields in mathematics that
are used in the remainder; on the other hand, it introduces notation and terminology
used throughout this work. It is not supposed to contain a full introduction to these
topics, but rather a brief introduction of the relevant aspects. This includes basic def-
initions and notations as well as some examples. For more general and more extensive
discussions on the introduced topics, there will be references to the respective literature
given.
The tools introduced here range from the fields of homotopy theory and homology the-
ory over obstruction theory to vector bundles and vector fields. Each of which will be
discussed in a separate section. The application to physical situations will not be part
of this introductory chapter, but instead will be given in detail in the following chapters.

2.1 Homotopy theory

Homotopy theory provides a vast collection of tools that have a useful application in
physics. We will begin with the very basics of homotopy theory: the definition of
homotopy, homotopy groups and as a more specific example the homotopy groups of
spheres, as they are quite important and will come up frequently.
The main ingredients for homotopy theory are topological spaces and the notion of
continuity. Therefore, all spaces and maps mentioned in this introduction are, unless
stated otherwise, considered to be at least topological spaces and continuous maps.

Homotopies. Let us begin with the definition of a homotopy:

Definition 1. Let X and Y be two topological spaces and f0, f1 : X → Y two con-
tinuous maps. Then a homotopy F is a continuous map F : X × [0, 1] → Y , such that
F |X×{0} ≡ f0 and F |X×{1} ≡ f1.
The two maps f0 and f1 are said to be homotopic if there exists such a homotopy. We
write f0 ' f1.

Next, we define equivalence classes of maps f : X → Y with the equivalence relation
being a homotopy. Since this idea of forming equivalence classes will be used frequently
throughout this work, we give a brief definition of an equivalence relation.

Definition 2. A binary relation ∼ is called equivalence relation if it fulfills the following
three properties for any three objects a, b, c :

3



2 Mathematical preliminaries

• reflexive a ∼ a,

• symmetric a ∼ b ⇔ b ∼ a,

• transitive a ∼ b and b ∼ c ⇒ a ∼ c.

These three properties can easily be observed for homotopic maps. We immediately
see that f is homotopic to itself, that f ' g is equivalent to g ' f and finally that if
f ' g and g ' h then also f ' h, simply by concatenating two homotopies. Taking
these properties together shows that the relation of being homotopic defines an equiv-
alence relation. And we call the resulting equivalence class [f ] := {g : X → Y | f ' g}
the homotopy class of f . We denote the set of all homotopy classes of maps from X to
Y by [X,Y ].

In the category of topological spaces with morphisms being continuous maps, isomor-
phisms are called homeomorphisms. A homeomorphism between two spaces X,Y is a
continuous function f that has a continuous inverse g.
However, there is a slightly weaker relation for two topological spaces based on the no-
tion of a homotopy. Two spaces X and Y are said to be homotopic equivalent if there
exist two maps f : X → Y and g : Y → X, such that f ◦ g ' IdY and g ◦ f ' IdX .
We can easily see that this is a slightly weaker relation than being homeomorphic, i.e.
every homeomorphism is a homotopy equivalence, but not every homotopy equivalence
is a homeomorphism.

To give a specific example which also plays an important role in the remainder, we
consider the homeomorphism between the sphere and the quotient of the disc(square)
and its boundary. The explicit map will not be given here, we instead give a sketch of
the intuitive idea behind the homeomorphism (see fig.2.1). In the remainder we use all
three representations of the d-dimensional sphere

Sd ' Dd/∂Dd ' Id/∂Id .

The definition of homotopy groups in the following section requires to extend the def-
inition of a homotopy to pairs (X,A) of a topological space and a subspace. Consider
pairs (X,A) and (Y,B) with A ⊆ X and B ⊆ Y , a map f : (X,A) → (Y, b) is a map
f : X → Y with the property that f(A) ⊆ B. In the definition of homotopy groups the
subspace will be just a distinguished point, called base point, x0 ∈ X.
A map f : (X,x0)→ (Y, y0) is map f : X → Y , such that f(x0) = y0 and a homotopy F
between two such maps is called base point preserving if F (x0, t) = y0 for all t ∈ [0, 1].
More generally, a homotopy between two maps f0, f1 : (X,A) → (Y,B) respects the
subset structure and F (A, t) ⊆ B ∀t ∈ I.
We denote the set of equivalence classes of maps f : (X,x0) → (Y, y0) with the equiva-
lence relation given by base point preserving homotopies by [(X,x0), (Y, y0)].

4



2.1 Homotopy theory

Figure 2.1: Sketch of the idea behind the homeomorphism between Sd and Dd/∂Dd.
The blue point and the orange circle are mapped to the north and south
pole of the sphere, respectively.

Homotopy groups. With the definitions of equivalence classes from the previous section
we now want to distinguish a special set of equivalence classes, the so called homotopy
group. As the name suggests, a well-defined group structure can be given to this set. The
homotopy group will be associated to a space with base point (X,x0) and it turns out
to be very useful tool in topology. Some applications will be discussed here as examples.
Throughout this work, more applications will become apparent.

Definition 3. Let (X,x0) be a topological space with base point x0. The homotopy
group πd(X,x0) is defined as

πd(X,x0) := [(Sd, s0), (X,x0)] .

This defines the homotopy group as a set. Furthermore, we can define a group structure
for πd(X,x0). This will be done in the following in detail.

Remark 1. The base point x0 will often be dropped from the notation since it can
easily be shown that the homotopy group does not depend on either base point s0 or
x0. However, it is important to choose one and use the base point preserving property
of homotopies. Which specific base point is chosen does not matter.

The group structure of πd(X) can probably best be understood in the representation
of Sd ' Id/∂Id. Set I = [0, 1] and consider two maps f, g : (Id/∂Id, o)→ (X,x0). Their
product is then defined by the concatenation along any one of the coordinates:

(f ∗ g)(x1, . . . , xd) :=

{
f(2x1, . . . , xn) for 0 ≤ x1 ≤ 1/2

g(2x1 − 1, . . . , xn) for 1/2 ≤ x1 ≤ 1
. (2.1)
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2 Mathematical preliminaries

This definition descends to the level of homotopy classes and defines a group multipli-
cation on πd(X). For a formal proof of this statement see for example [14].
This multiplication turns out to be abelian for higher homotopy groups d ≥ 2, for d = 1,
however, this is not the case. The first homotopy group π1(X), also known as the fun-
damental group, is the space of based loops in X and the multiplication is given by
concatenation of loops, which is not abelian in general.
Figure 2.2 should give an idea of how the group structure looks in dimensions d ≤ 2 and
why it is abelian.

Figure 2.2: Series of homotopies between f ∗ g and g ∗ f which suggests that the group
multiplication really is abelian for dimension d ≥ 2.

Homotopy groups of spheres. Homotopy groups are a great tool to understand the
topology of a space X and one of the central tasks in homotopy theory is to compute
the homotopy groups of spheres πd(S

n). While this question is not very rich for d ≤ n
it becomes more interesting for d > n. The more important case for this work, however,
is d ≤ n, or more precisely d = n since πd(S

n) = 0 for 0 < d < n and πn(Sn) ' Z.

The simplest case n = 1 is very intuitive and serves as a good example. So for π1(S1)
we are looking for the homotopy classes of maps from S1 → S1. These can be under-
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2.2 Homology theory

stood quite intuitively since each one can be characterized by the number of times the
circle gets wrapped around another circle. The key observation for this visualization is
that the identity map is not homotopic to the constant map to the base point. This
shows that π1(S1) is generated by the homotopy class [idS1 ] and thus π1(S1) = Z.
The argument for the higher dimensional spheres is the same and each πn(Sn) = Z is
generated by the homotopy class of the identity map.

Given a map f : Sd → Sd, the integer defined by the homotopy class [f ] ∈ πd(Sd) is
called the mapping degree deg(f) of f . In the case d = 1 this is sometimes called winding
number as well.

2.2 Homology theory

The theory introduced in this section, homology theory, and its dual theory are very
important tools in topology and have a wide range of applications in theoretical physics.
There are various different versions of homology theory. We will focus on the definition
and discussion of singular homology here and roughly follow the introduction of Hatcher
in [14] (Sec. 2.1). However, all different versions are based on the general concept of
a chain complex. We begin with the very basics and general definitions for homology
groups, which are the same for all different versions of homology theory. It will also be-
come clear how there can be different versions of homology theories arising from the same
basic idea. In the next sections the notions of cohomology and relative (co)homology
are introduced.

Definition 4. A chain complex is a sequence of abelian groups A0, A1, A2, . . . connected
by homomorphisms ∂n : An → An−1, such that ∂n−1 ◦∂n = 0 for all n. It may be written
in the form

· · · ← A0
∂1←− A1

∂2←− A2
∂3←− A3 ← . . . .

We will also write (Ai, ∂i) in short.

Elements in the kernel of ∂ are called cycles (or closed elements) and elements in the
image of ∂ are called boundaries (or exact elements). By definition every exact element
is closed, i.e. im(∂n+1) ⊆ ker(∂n). And with that the homology group Hn(Ai, ∂i) of a
chain complex is defined as

Hn(Ai, ∂i) := ker(∂n)/ im(∂n+1) . (2.2)

Note that Hn is always a well defined group since we started by considering abelian
groups Ai.
As stated above, the notion of a chain complex can be defined for different objects Ai
and this gives rise to different notions of homology.

We take this opportunity to mention the somewhat related notion of an exact sequence,
which is frequently used in algebraic topology. Consider a sequence of groups Ai (not

7



2 Mathematical preliminaries

necessarily abelian) and group homomorphism fi : Ai → Ai+1. Such a sequence is called
exact if for all i

im(fi) = ker(fi+1) . (2.3)

Note that this definition can be made for other algebraic structures as long as kernel
and cokernel make sense.
Exact sequences have a wide range of application in algebraic topology and they . More
details will be discussed when needed and we leave it with the general introduction at
this point.

Now, to introduce the notion of singular homology, we start with the basic building
blocks:

Definition 5. The standard n-simplex is defined as the set

∆n := {(t0, . . . , tn) ∈ Rn+1 |
∑

i

ti = i and ti > 0 ∀i} . (2.4)

Note that the ordering of indices determines an orientation on the edges according to
increasing indices.

The (n− 1)-simplex ∆n−1
i obtained by omitting the i-th vertex of ∆n is a face of ∆n

and is (canonically) isomorphic to ∆n−1. The boundary ∂∆n of ∆n is given by the union
of all n− 1 faces and the open n-simplex ∆̊n is ∆n − ∂∆n.

A singular n-simplex in a topological space X is a continuous map σ : ∆n → X.
Let Cn(X) be the free abelian group with the singular n-simplices in X as a basis. An
element of Cn(X) is called (singular) n-chain and is a finite formal sum

∑
i niσi with

ni ∈ Z and σi : ∆n → X. The boundary map ∂n : Cn(X) → Cn−1(X) is defined in the
following way:

∂n : Cn(X)→ Cn−1(X)

σ 7→ ∂n(σ) =

n∑

i=0

(−1)iσ|∆n−1
i

.

This definition implies the canonical isomorphism ∆n−1
i ' ∆n−1 mentioned before, so

that σ|∆n−1
i

is indeed a singular (n− 1) simplex.

Lemma 1. The composition of two boundary maps ∂n−1 ◦ ∂n : Cn(X) → Cn−2(X) is
zero.

Proof. Consider σ ∈ Cn(X). Then

∂n(σ) =

n∑

i=0

(−1)iσ|∆n−1
i

8



2.2 Homology theory

Figure 2.3: Sketch of the standard 1-simplex and the standard 2-simplex.

and

(∂n−1 ◦ ∂n)(σ) =

n∑

j<i

(−1)i(−1)jσ|∆n−1
ji

+

n∑

j>i

(−1)i(−1)j−1σ|∆n−1
ij

= 0 .

These two sums cancel since exchanging i and j in the second sum gives the negative of
the first sum. �

This Lemma tells us that the singular chains Cn(X) with the boundary map ∂ define
a chain complex and we can define the homology group Hsing

n (X) of that chain complex.

Remark 2. The standard n-simplex ∆n is homeomorph to the n-disk Dn and its bound-
ary to Sn−1. We mention this here, as it might be sometimes more intuitive to consider
maps Dn → X, and furthermore a (singular) n-chain is often written as a linear combi-
nation of maps ci : Dn → X in the following sections.

Example. Let us discuss a simple example at this point. Consider the three dimensional
space X = R3 \ {0} with the origin removed. Now, in order to compute the homology
group Hsing

n (X), we need to find a closed (singular) n-chain, which is not the boundary
of a singular (n+ 1)-chain in X.
For n = 1 this is not possible, given any closed 1-chain we find a 2-chain, such that its
boundary is the considered 1-chain. For n = 3 this is trivial as well, since there are no
4-chains in R3 \ {0}, but there also is no closed 3-chain and therefore Hsing

3 (X) = 0 =

9



2 Mathematical preliminaries

Hsing
1 (X).

But for n = 2 things are a little more interesting. There exists a closed 2-chain, which
is not the boundary of a 3-chain, namely the 2-chain, which contains the origin on the
inside. To be more precise, consider the boundary of the 3-simplex that is located in
R3 \ {0} such that the origin is on the inside of the tetrahedron. Now, even though you
can think of this 2-chain as the boundary of a 3-chain, this 3-chain is not a valid 3-chain
in X and this 2-chain generates the homology group Hsing

2 (X) = Z.
One might even go further and show that X ' S2 and see that we have just computed
the homology groups of the 2-sphere – even though we did not worry to much about the
details here and a proof of this fact would need a more careful discussion.

An example of a topological invariant based on homology that will be important later
on, is the so called Euler characteristic of a topological Space X.

Definition 6. Let X be a d-dimensional topological space and bn := rank(Hn(X))
the so called n-th Betti number. Then is the Euler characteristic χ(X) defined as the
alternating sum

χ(X) :=

d∑

i=0

(−1)ibi .

The homology group of a topological space measures topological information in a
similar way as the homotopy group, but it is often much easier to compute. This comes
with a price, as the homotopy group is the finer tool and can detect information, that
the homology group can not detect. The most famous example for this would be the
Hopf map S3 → S2. But we will not go into more detail here. Nonetheless, the next
theorem states a connection between homology and homotopy groups of a space X.

2.2.1 The Hurewicz theorem

The Hurewicz theorem is one of the central results in algebraic topology and builds
a connection between homotopy theory and homology theory. We will only state the
theorem and refer for example to Hatcher [14] for a proof of the statement.

Theorem 2. Let X be a topological space. Then there exists a group homomorphism
for every k ∈ N

h∗ : πk(X)→ Hk(X) .

Now, let n be another positive integer and if X is path connected and πk(X) = 0 for all
k < n then h∗ is an isomorphism for all k ≤ n (for n ≥ 2 and the abelianization for
n = 1.

We do not go into more detail on this topic as it is not of importance for this work, but
it still worth to mention the established connection between the two topics introduced
before.

10



2.2 Homology theory

2.2.2 Cohomology groups

Cohomology groups are another different invariant that can be assigned to a topological
space and are closely related to homology groups. As it was the case for homology there
exist various different versions of cohomology. Even more as for homology. As the name
suggests, some of them can be obtained from a homology theory by dualizing. We will
start with the basic idea and the general definition of cochain complex (very similar to
chain complexes).

Definition 7. A cochain complex is a sequence of abelian groups A0, A1, A2, . . . con-
nected by homomorphisms dn : An → An−1, such that dn+1 ◦ dn = 0 for all n. It may
be written in the form

· · · → A0
d0−→ A1

d1−→ A2
d2−→ A3 → . . . .

Elements in the kernel of d are called cocycles (or closed elements) and elements in
the image of d are called coboundaries (or exact elements). By definition every exact
element is closed, i.e. im(dn) ⊆ ker(dn+1). And with that the cohomology group Hn of
a cochain complex is defined as

Hn := ker(dn)/ im(dn−1) . (2.5)

As it was the case for a chain complex, the notion of a cochain complex can be defined
for different objects and gives rise to the different notions of cohomology.

Example. A first example of this is the cochain complex of differential forms on a man-
ifold M with the exterior derivative d : Ωn(M)→ Ωn+1(M). The cohomology associated
to this cochain complex is usually called deRham cohomology Hn

dR(M).

For any chain complex there exists a cochain complex, obtained by dualizing. That
means replacing every group Ai by its dual group A∗i := Hom(Ai, R), for a fixed abelian
group R, and every homomorphism ∂i by the dual homomorphism

di−1 : A∗i−1 → A∗i ,

f 7→ f ◦ ∂ .

Singular cohomology. Starting from n-chains (Cn(X), ∂), a singular cochain can be
defined as Cn(X;R) := Hom(Cn(X), R). The coboundary operator d is then defined as
the dual of the boundary operator ∂ and the cohomology group as

Hn
sing(X;R) := ker(dn)/ im(dn−1) . (2.6)

We usually work with the coefficients being R = Z. However, in the section on obstruc-
tion theory, the obstruction cochain will be constructed as a cochain with coefficients in
some homotopy group πk(Y ). In that case one needs to have the restriction k ≥ 2 for
the homotopy group to be abelian.

11
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2.2.3 Relative (co-)homology

There also is a relative version of homology. Consider a pair (X,A) with A ⊆ X. Since
chains in A are obviously also chains in X, we have that Cn(A) is a subgroup of Cn(X)
and therefore define

Cn(X,A) := Cn(X)/Cn(A) . (2.7)

The boundary operator ∂ descends to a map ∂ : Cn(X,A) → Cn−1(X,A) and is still a
well defined boundary map. The homology group of this chain complex is then defined
as

Hsing
n (X,A) := ker(∂|Cn(X,A))/ im(∂|Cn+1(X,A)) . (2.8)

With the definition of Cn(X,A) (2.7) there is an intuitive way to picture representatives
of elements in Hsing

n (X,A) as chains c in X whose boundary ∂c lies in A. This means el-
ements in Cn(X,A) do not need to be closed, but their boundary needs to be in Cn−1(A).

The relative version of cohomology can be introduced in a similar way as before by
dualizing the relative homology. And even for cohomologies, such as deRham cohomol-
ogy, which are not obtained by dualizing, a relative version can usually be defined. For
more details on the relative version of deRham cohomology consider for example Bott
and Tu [4], chapter 1.6.

With the definition of relative n-chains Cn(X,A) (2.7) comes a (short) exact sequence

0→ Cn(A)
i−→ Cn(X)

p−→ Cn(X,A)→ 0 , (2.9)

with the inclusion i : Cn(A) ↪→ Cn(X) and the projection on equivalence classes
p : Cn(X)→ Cn(X)/Cn(A).
This is indeed an exact sequence. To see this, note that the inclusion is injective and
therefore ker(i) = 0. The projection p is surjective which proves the exactness at
Cn(X,A). The missing part is to show that ker(p) = im(i) which is clear from the
definition of Cn(X,A) = Cn(X)/Cn(A).

2.3 Obstruction theory

Obstruction theory does not play a major role in the remainder of this work, but it is,
however, quite a useful tool to prove, for example, the existence of a homotopy. It is
necessary to give a brief introduction to CW complexes for the definition of obstruction
theory due to Eilenberg [12]. Nonetheless, CW complexes are an interesting topic on
their own and they have many applications in algebraic topology. After the definition
of CW complexes and an example of the torus as CW complex, the notion of cellular
homology is introduced and followed by the basic idea of obstruction theory in terms of
an extension problem.

12
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CW complexes. A CW complex X is often defined by an inductive construction pro-
cess. This is quite instructive and gives a good intuitive understanding of CW complexes
and therefore it is presented here. The idea is to build up a space X with cells of in-
creasing dimension. Vice versa, one could think of this as the decomposition of a space
X into cells.

Let us begin with a set of 0-cells X0. We call it the 0-skeleton of a space X.
Now, we continue with one dimensional cells and attach any number of 1-cells via con-
tinuous maps fi : ∂D1 → X0 to obtain the 1-skeleton X1. In other words, we can think
of this as the process of

”
gluing“ 1-cells c ' D1 = [0, 1] into the 0-skeleton by assigning

to each endpoint of the 1-cell one point in X0 via the maps fi. If both endpoints are
mapped to the same point x ∈ X0 the result is homeomorphic to the circle S1 based at
the point x. In general on could say that the 1-skeleton is a graph.
Next, we obtain the 2-skeleton by attaching 2-cells to the 1-skeleton, again via continu-
ous maps fi : ∂D2 → X1.
By continuing in this way, we obtain an n-dimensional space X0 ⊂ X1 ⊂ · · · ⊂ Xn, which
we call a (finite dimensional) CW complex. This process can even continue infinitely to
define an infinite-dimensional CW complex as the direct limit of the n-skeleta.
The name CW complex refers to the topology defined for such a space, where C stands
for closure finite and W for weak topology. The technical details are not of importance
here and can, alongside an introduction and further examples, be found for example in
[14].

Example. One example of a CW complex that plays a central role in this work is the
torus Td. To consider a tangible example let us set d = 2. The construction works
similarly for all dimensions d.
The 0-skeleton of the 2-torus is just a single point {x0} = X0. The 1-skeleton consists of
two 1-cells attached to X0 by the continuous map f : S0 → X0 which maps both points
of S0 to x0 ∈ X0. Finally, one 2-cell is attached via a continuous map f : S1 → X1. The
attaching map f can best be understood visually in figure 2.4. The gluing map f maps
the boundary of the disc D2 to the boundary of the square in the left figure of fig. 2.4.
And since the boundary is build out of two 1-cells, it would first follow the blue 1-cell,
then the orange 1-cell, then the blue 1-cell, but in reverse direction and finally the orange
1-cell also in reverse direction. In this fashion the interior of the square represents the
two cell of the CW structure of the torus. In the right figure of fig.2.4 the torus is shown
in its usual representation (embedded in R3).

Cellular homology. Given a CW complex we can define a chain complex associated to
it. To this chain complex we can define the homology in the usual way and this is called
cellular homology. The definition of this chain complex makes use of the construction of
the n-skeleton from the (n− 1)-skeleton and it turns out that cellular homology groups

13
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Figure 2.4: CW structure of the torus. The green dot represents the 0-skeleton, the two
1-cells are shown in orange and blue (in the left figure two opposite edges
are identified) and the 2-cell is given by the interior of the square.

are quite easy to compute. To demonstrate this, the example of the torus comes up again
and its homology groups are computed in this context. For a somewhat more detailed
discussion of this topic consider again for example the book of Hatcher [14]

Let X be a CW-complex and consider the short exact sequence associated to the
relative chain group Cn(Xn, Xn−1):

0→ Cn(Xn−1)
i−→ Cn(Xn)

p−→ Cn(Xn, Xn−1)→ 0 . (2.10)

To any short exact sequence of chain complexes C∗(Xn) there exists a long exact sequence
in homology, if i and p are chain maps, i.e. commute with with the boundary operator:

· · · → Hk(Xn−1)→ Hk(Xn)→ Hk(Xn, Xn−1)→ Hk−1(Xn−1)→ Hk−1(Xn)→ . . . .
(2.11)

Arranging parts of the long exact sequences for the pairs (Xn+1, Xn), (Xn, Xn−1) and
(Xn−1, Xn−2) in the correct way lets us define the cellular chain complex

· · · → Hn+1(Xn+1, Xn)→ Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2)→ . . . . (2.12)

The concatenation of two maps is zero, because it contains two successive maps in one
of the long exact sequences. Therefore, it is indeed a chain complex and the homology
groups of this chain complex are called cellular homology groups HCW

n (X). In fact the
following theorem holds.
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Theorem 3. Let X be a CW-complex. Then the homology groups Hn(X) = HCW
n (X)

for all n.

Note, that if X has k n-cells, then Hn(Xn, Xn−1) is a free abelian group generated
by k elements and therefore also HCW (X) is generated by at most k elements. Also,
since elements in Hn(Xn, Xn−1) are equivalence classes of n-cells in Xn it often becomes
fairly easy to explicitly compute the cellular homology groups as many CW complexes
of interest have only finite skeleta. This becomes more clear in the following example.

Before we return to the example of the torus, there is another interesting fact for CW
complexes worth mentioning here: The Euler characteristic of a CW-complex can be
defined as the alternating sum χ(X) = k0 − k1 + k2 − k3 + . . . , where kn is the number
of n-cells in the complex. This is not really a definition, but it can be deduced from the
previous definition of the Euler characteristic.

Example. Consider again the example of a torus, but this time the 3-torus T3 = S1 ×
S1 × S1. Its CW structure is given by one 0-cell, three 1-cells, three 2-cells and one
3-cell. The cellular chain complex is thus of the form

0→ Z→ Z3 → Z3 → Z→ 0 .

It turns out that all three maps in this chain complex are the zero map and the homology
groups of the torus are therefore given by Hi(T3) = Z, for i = 0, 3 and Hi(T3) = Z3, for
i = 1, 2.
Recall the definition of the Euler characteristic from the previous section: χ(X) =∑

i(−1)ibi. Now, that we have computed the homology groups of the three torus, we
can as well compute the Euler characteristic of the three-torus as χ(T3) = 1−3+3−1 = 0.
As it turns out this is true for any dimension and χ(Td) = 0 for all d.

We want to take the opportunity at this point to introduce a notion which will be
important for later. A subtorus of a torus Td is a (d− 1)-dimensional torus Td−1 ⊂ Td.
In case of d = 3, consider a parametrization

(0, 2π)3 → T3 = S1 × S1 × S1

(θ1, θ2, θ3) 7→ (eiθ1 , eiθ2 , eiθ3) .

Then a subtorus can for example be obtained by fixing one of the angles. For later pur-
poses we call a subtorus, where θ1 is fixed, a 23-subtorus (or a yz-torus). Analogously
for the zx- and xy-subtori.

Extension problem. The basic question we seek to answer is wether a continuous map
f , defined on a subset A ⊂ X, can be extended to a continuous map f̃ on all of X with
f̃ |A ≡ f or not. If X and A are CW complexes, we can first look at the simpler case,
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where f is defined on the n-skeleton and the question can be if it can be extended over
the (n+1)-skeleton. In other words, we are looking for an inductive process of extending
f over the n-skeleta of X.

Assume that f : Xn → Y is a continuous map defined on the n-skeleton of X. The
(n + 1)-skeleton Xn+1 is constructed from Xn by attaching some (n + 1)-cells to it via
continuous maps ϕi : (Dn+1, Sn)→ (Xn+1, Xn) (i = 1, . . . , k). Note, that f◦ϕi : Sn → Y
and [f ◦ ϕi] ∈ [Sn, Y ] = πn(Y ) is a collection of elements of the n-th homotopy group
of Y . Therefore, one can define a (n + 1)-cochain by assigning to each (n + 1)-cell the
homotopy class of the map defined on its boundary. This defines an (n + 1)-cochain
θn+1(f) with values in πn(Y ), so θn+1(f) ∈ Cn+1(X;πn(Y )). In fact, if θn+1(f) is
defined this way, the following Lemma holds.

Lemma 4. Let f : Xn → Y be a continuous map defined on the n-skeleton of X. Then
the above defined cochain θn+1(f) is a cocyle, i.e. δθn+1(f) = 0.

Returning to the question in the beginning, assume that f : A → Y is defined on a
subset A ⊂ X. We can follow the inductive process from above, but in the definition of
θn+1(f) we define it to be 0 on (n+ 1)-cells in Cn+1(A), since f is already defined on A.
This way θn+1(f) defines a cocyle in the relative cohomology group Hn+1(X,A;πn(Y )).

With this the main theorem of obstruction theory can be formulated:

Theorem 5. Let (X,A) be relative CW complex. Let f : Xn → Y be continuous map.
Then the cellular cocycle θ(f) ∈ Cn+1 (X,A;πn(Y )) which vanishes if and only if f
extends to a map Xn+1 → Y .
If and only if [θ(f)] ∈ Hn+1(X,A;πn(Y )) vanishes, there exists a map g with g|Xn−1 =
f |Xn−1 and homotopic to f on Xn such that g extends over Xn+1.

2.4 Vector bundles and vector fields

Vector bundles and vector fields are the key ingredients in the Euler chain representation
of a Weyl semimetal. Therefore, we give a brief introduction to the topic and the basic
definition for the concepts that will be discussed in the main chapter of this work. Vector
bundles in general play a very important role in many areas of theoretical physics and
give a good mathematical description of various physical phenomena. The introduction
here is for the purpose of this work and is probably not a sufficient basis for all physics
literature. There are various mathematical and also physics textbooks on this topic that
give a more detailed introduction see for example [4] or [15].

2.4.1 Vector bundles

We start with a slightly more general definition of vector bundles, even though we will
only consider vector bundles over manifolds.
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Definition 8. Let M and E be topological spaces. A vector bundle (E,M, π) is given by
a base space M , the total space E and the continuous surjection π : E →M (projection)
and the condition that for every p ∈ M the fiber π−1(p) has the structure of a finite
dimensional real (or complex) vector space. Furthermore, there exist an open neighbor-
hood U for every p, a natural number k and a homomorphism φ : U × Rk → π−1(U),
such that

• π ◦ φ(p, v) = x ∀v ∈ Rk

• v 7→ φ(p, v) is a linear isomorphism for all p ∈M .

The open set U and the map φ are called a local trivialization (U, φ).

Given two charts (Ui, φi) and (Uj , φj) there is a linear isomorphism for every p ∈ Ui∩Uj
gji(p) := φj ◦ φ−1

i |p : Rk → Rk ,

Which is called transition function. Note, that these transition functions have the prop-
erty

gii ≡ 1 , gij ◦ gjk = gik . (2.13)

Given two vector bundles (E1,M1, π1) and (E2,M2, π2) a morphism between two vec-
tor bundles is a pair of maps f : E1 → E2 and g : M1 → M2, such that π2 ◦ f = g ◦ π1

and that for every p ∈M1 the map π−1
1 (p)→ π−1

2 (g(p)) induced by f is a linear map of
vector spaces.

E1 E2

M1 M2

f

g

π1 π2

Next, we introduce two operations on vector bundles, the Whitney sum (or direct sum)
and the tensor product of two vector bundles. For that let (E1,M, π1) and (E2,M, π2)
be two vector bundles over M .

A prominent example of a vector bundle is the tangent bundle TM of a manifold M .
This bundle is defined as the collection of all tangent spaces TpM at all p ∈M and it is
usually one of the first examples one encounters.

Definition 9. Let (E,M, π) be a vector bundle. A (global) section of a vector bundle
is a map s : M → E such that (π ◦ s)(p) = p , for all p ∈M .
The set of all (global) sections of a vector bundle is denoted by Γ(E). This set contains
at least one section, the zero section.

Remark 3. In the case of a (more general) fiber bundle there does not need to exist a
global section. It makes sense to define the notion of local section in this case.
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2.4.2 Vector fields

Returning to the previous example of the tangent bundle of a manifold TM , a section
v ∈ Γ(TM) associates a tangent vector v(p) to every point p ∈M , so sections in Γ(TM)
are (tangent) vector fields on M .
There are many results on vector fields on a manifold M . The most important results
for this work will be stated here.

Definition 10. Let v ∈ Γ(TM) be a vector field with an isolated zero at p ∈ M . The
index of v at p indexp(v) is defined to be the degree of the map

Sd−1
p → Sd−1, x 7→ v(x)

|v(x)| ,

where Sd−1
p is the boundary ∂Dp of a small ball centered around p ∈ M , such that

v(x) 6= 0∀x ∈ Dp \ p.

There is a famous theorem which relates the index of vector field on M to the Euler
characteristic of M .

Theorem 6. (Poincaré-Hopf). Let M be a compact differentiable manifold. Let
v ∈ Γ(TM) be a vector field on M with isolated zeroes. Then

∑

i

indexpi(v) = χ(M) ,

where the sum is over all isolated zeroes and χ(M) is the Euler characteristic of M .
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This chapter gives an introduction to the topic of Weyl semimetals and Weyl supercon-
ductors and sets the stage for the main part of this work. We introduce the setting which
is used in the classification of disordered fermion systems with a quadratic Hamiltonian.
Even though the framework and classification addresses disordered fermions, disorder
is not introduced explicitly in this first part of this work. In the second part, disorder
will play a more prominent role and it will be introduced accordingly there. But even
if disorder is not explicitly considered in this first part, it is always considered as an
important part of physical systems and should be kept in mind.
The introduction to the general setting is split into three parts, first the step from the
single-particle Hilbert space to the many body Fock space is done. Next, the notion of
symmetry and symmetry groups and their action in the many body framework are intro-
duced. The third part then explicitly introduces the translation group of the lattice and
consequences for translationally invariant systems, since we will assume translational
invariance throughout this first part.
This chapter then closes with a short overview over so called Dirac materials, which are
materials where the low energy excitations are Dirac or Weyl fermions. Furthermore,
the notion of Dirac and Weyl points are introduced and a few remarks on their basic
properties are made.

3.1 Many-body framework

The systems under consideration are semimetals and superconductors and they consist
of a vast number of interacting particles (of the order 1010− 1025). The theory of many-
body quantum mechanics introduces a formalism to treat such systems in a satisfactory
way. As was already mentioned we will focus on quadratic Hamiltonians and thus we are
only considering interactions described by mean-field theory and neglecting all further
contributions. In the Physics literature and more specific in the context of insulators,
semimetals and superconductors this is known as the Hartree-Fock-Bogoliubov approx-
imation.
Another central ingredient is the symmetry group G. Symmetries play a very important
role in all areas of physics and they obviously are very important for the idea of a sym-
metry classification. Dyson’s threefold way [10] is a very famous result of a symmetry
classification for free fermions and the extension done by Heinzner, Huckleberry and
Zirnbauer [16] is inspired by Dyson’s original approach. Besides the general frameork,
the symmetry group G and its action will be part of this introduction and the overall
framework. The introduction given here is somewhat based on [16] since the framework
is similar, it is however still very useful to give a detailed overview of the basic definitions
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3 Weyl semimetals

here, as some specifics and details of the framework are different.

The first important step to extend the setting introduced in Dyson’s threefold way
[10] is the passing from single-particle quantum mechanics to the framework of many-
body quantum mechanics. This usually goes under the name of second quantization.
Here, we want to lay out the mathematical foundation of this procedure in a concise way.

Our starting point is the single-particle Hilbert space V with Hermitian scalar product
〈·, ·〉V . For simplicity only finite-dimensional vector spaces V = CN will be considered
here. The Hermitian structure defines an isomorphism between V and its dual space
V ∗, which is given by φ : V → V ∗, v 7→ 〈v, ·〉V (also known as Frechet-Riesz isomor-
phism). Furthermore, it determines a unitary group U(V ), which is the group of C-linear
operators g satisfying 〈v, w〉 = 〈g(v), g(w)〉 for all v, w ∈ V .

Remark 4. The finite-dimensional Hermitian vector space and its unitary group are
two ingredients for Dyson’s threefold way [10] – the missing ingredient is an anti-unitary
transformation such as time-reversal. There are more details on that in the section on
symmetry classification later on.

Now, let us pass from the single-particle setting V to the fermionic Fock space
∧

(V )
of many-body quantum mechanics. The Fock space is graded by the particle number∧

(V ) =
⊕

n

∧n(V ) and the n-particle subspace
∧n(V ) carries an induced Hermitian

structure, given by

〈v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn〉 := Det



〈v1, w1〉 · · · 〈v1, wn〉

...
. . .

...
〈vn, w1〉 · · · 〈vn, wn〉


 .

With this, the fermionic Fock space itself has the structure of a Hilbert space.

There are two important operations on the Fock space: exterior multiplication by
v ∈ V

ε(v) :
∧n

(V )→
∧n+1

(V )

and contraction by ϕ ∈ V ∗

ι(ϕ) :
∧n

(V )→
∧n−1

(V )

with the physical interpretation of creating and annihilating a particle.
Let {ei}i=1,...,N be a basis of V and {fi}i=1,...,N be the dual basis of V ∗ with fi(ej) = δij
then the standard physics notation is to write c†i := ε(ei) for creation operators and
ci := ι(fi) for annihilation operators. Some algebra reveals that these operators satisfy
the so called Canonical Anti-commutation Relations (or CAR for short)

c†ic
†
j + c†jc

†
i = 0 = cicj + cjci , c†icj + cjc

†
i = δij . (3.1)
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These relations are in fact the representation of the underlying Clifford algebra relations
of the Clifford algebra Cl(W,B) of the vector space W := V ⊕ V ∗ with the symmetric
bilinear form

{v + ϕ, v′ + ϕ′} = ϕ′(v) + ϕ(v′) . (3.2)

This representation of the Clifford algebra Cl(W, {, }) on the Fock space
∧

(V ) defined
above is called Spinor representation. The vector space W = V ⊕ V ∗ in this context is
often known as the Nambu space, or the space of field operators ψ.

Besides the symmetric bilinear form {·, ·} there is another important structure on
W , which is the real structure γ. A real structure (C-antilinear involution) on W is
determined by the Hermitian scalar product 〈 ·, ·〉V on V

γ : W →W, v + ϕ 7→ φ−1ϕ+ φv . (3.3)

In physics language the space WR := fixW (γ) is usually called the space of Majorana
fields. It is the real vector space spanned by the Majorana operators ek+fk and iek−ifk.

Each of these to structures induces an action on the linear transformations L ∈
End(W ). For γ this is given by

L 7→ γ ◦ L ◦ γ ,
which defines an anti-linear involution on End(W ). And we can define a linear anti-
involution L 7→ LT called transposition and defined through the relation

{ψ,LTψ′} = {Lψ,ψ′} , ∀ψ,ψ′ ∈W .

Using these two structures, we can define a Hermitian structure on the the Nambu space
〈·, ·〉W . Let w,w′ ∈W , then

〈w,w′〉 := {γw,w′}
defines a natural Hermitian scalar product on W .

The reason to introduce the Nambu space is to simplify the process of classification.
The classification according to the tenfold way is guided by the question

”
what is the

structure of the set of one-body time evolutions of
∧

(V ) which commute with a given
G-action?“[33]. Therefore, we are interested in one-body, or quadratic (in the creation
and annihilation operators), self-adjoint Hamiltonians H:

H =
1

2

∑

lm

Ylm(c†l cm − cmc
†
l ) +

1

2

∑

lm

Zlmc
†
l c
†
m + Z̄lmcmcl . (3.4)

It makes much more sense to consider the anti-hermitian operators iH instead of H. This
might seem like a trivial modification, but unlike hermitian operators the anti-hermitian
operators are closed under the commutator and Hamiltonians iH of the form (3.4) form
the Lie algebra Cl2(WR) of skew-symmetrized elements of degree 2. This can easily be

verified as WR is spanned by Majorana operators ck + c†k and ick − ic†k and a general
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skew-symmetrized product of two elements X,Y ∈ WR ⊂ Cl(WR) can be written in the
form iH with H as in eq.(3.4). Exponentiating this Lie algebra gives the Spin group
Spin(WR) and therefore time evolutions U = e−iHt/~ are elements in Spin(WR).
The isomorphism of the Lie algebras Cl2(WR) ' so(WR) exponentiates to a mapping on
the level of Lie groups ρ : Spin(WR) → SO(WR), given by ρ(g)v = gvg−1 for v ∈ WR.
This mapping, however, is not an isomorphism, but is a 2:1 cover, i.e. ρ(−g) = ρ(g).
Nonetheless it is a representation of Spin(WR) on the real vector space WR, which can
be extended to a representation on W by C-linearity. This fact allows us to study rep-
resentations of Spin(WR) on the Nambu space W instead of the full Fock space

∧
(V ).

3.2 Symmetries

Symmetries play an important role in the understanding of physical systems and they
are the fundamental building blocks of the classification of disordered fermions in the
so called tenfold way. This approach as well as the name are based on Dyson’s original
threefold way. Now, we want to understand how the symmetries are introduced into the
many-particle framework established in the previous section and thus build the setting
for the tenfold classification.
We already mentioned the unitary group U(V ) determined by the Hermitian structure
of our Hilbert space V . Now, let G0 be the group of unitary symmetries. That means
there is some group G0 which acts on V by unitary operators ρV (g) ∈ U(V ) (we will
simply write ρV (g) ∼= g). Since the group action is defined on V we equip the Nambu
space W with the induced G0-representation. That means that V is equipped with the
given representation and for f ∈ V ∗ and g ∈ G0

(g−1)tϕ = ϕ ◦ g−1 . (3.5)

The group G0 is a normal subgroup of a larger group, the full symmetry group G. The
group G contains G0 as a subgroup and, furthermore, elements gT which act as anti-
unitary operators T : W → W . These are referred to as distinguished

”
time-reversal“

symmetries. In fact, modulo G0 there exist at most two such distinguished operators
and they satisfy T 2 = ±1.
Every element in the set of anti-unitary elements in the full symmetry group can be
written as the right multiplication of a distinguished element, here one of the time rever-
sal operators T , with an element of G0 and we can write the enlarged symmetry group
as G0 ∪ TG0.

Thus far we introduced the setting of Dyson’s threefold way. However, the Fock
space structure allows us to define another anti-unitary operator, that of particle-hole
conjugation C, and extend the setting of Dyson
Let Ω be a generator of

∧N (V ) with N = dim(V ) and normalization 〈Ω,Ω〉 = 1. Then
the particle-hole conjugation is the anti-unitary operator C :

∧n(V )→ ∧N−n(V ) defined
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by the relation
(Cψ) ∧ ψ′ = 〈ψ,ψ′〉Ω .

A simple calculation shows that for a T -invariant choice of Ω, which we can always do,
the two operators C and T commute, CT = TC, and also that Cg = gC for all g ∈ G0

under the assumption that the vacuum and the fully occupied state are invariant under
G0.
Now, we can enlarge the symmetry group even further by allowing a twisted version of
particle hole conjugation. This twist can be achieved by an unitary operator S ∈ U(V ),
such that S2 = Id, SΩ = Ω and SG0S

−1 = G0. A twisted particle-hole conjugation then
refers to the operator C̃ := SC = CS. Note, that with the conditions on S we also have
C̃GoC̃

−1 = G0 and C̃T = TC̃.

This lets us now write the full symmetry group G as G = G0 ∪ TG0 ∪ C̃G0 ∪ TC̃G0,
with TC̃ = C̃T , and we call it a minimal extension of Dyson’s setting.

Now, since we want to work on the space of field operators W , we need to understand
how C̃ acts on W . For G0 and T this is clear from eq.(3.5), but for C̃ it takes a little

bit more effort. Let ψ ∈ ∧n(V ) and ψ′ ∈ ∧n+1(V ) and ck, c
†
k annihilation and creation

operators for some state k. We want to know what the particle-hole conjugate C̃c†kC̃
−1

of c†k is. Therefore, we do the following calculation

(C̃c†kψ) ∧ ψ′ = 〈Sc†kψ,ψ′〉Ω = 〈Sψ, SckS−1ψ′〉Ω
= (C̃ψ) ∧ (SckS

−1)ψ′ = (−1)N−n+1(SckS
−1C̃ψ) ∧ ψ′ .

Thus we see that C̃c†kC̃
−1 = ±SckS−1 ∈ V ∗, where the sign alternates with the particle

number.

Remark 5. Note that for the untwisted particle-hole conjugation this is nothing else
than the Frechet-Riesz isomorphism φ : V → V ∗ and the full particle-hole symmetry C̃
is equivalent to γ.

3.3 Lattice model and translational invariance

In this section the model used to describe the physical systems under consideration is
presented. The more general setting that was laid out in the previous sections will
become more specific.

We assume there is periodic lattice in d spatial dimensions, which describes the real
systems, for example the position of atoms in a crystal, in some approximation. The
lattice spacing is assumed to be uniform and, unless explicitly stated otherwise, we
assume it to be normalized to 1. Mathematically this lattice can be described by Zd.
To begin again with the single particle-picture, we associate a Hilbert space Cn, which
describes a number n of complex degrees of freedom, to every point in the lattice. In the
tight binding model this leads to the single-particle Hilbert space V = `2(Zd)⊗Cn. For
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3 Weyl semimetals

the following considerations it might be useful to fix a basis for V . We write |x, l〉 ∈ V as
the basis elements, where l labels some orthonormal basis of Cn and x labels the series
with a 1 at the position x ∈ Zd and 0 anywhere else.
First, we want to introduce the translation operator ty, which is a unitary operator
defined as

ty|x, l〉 := |x + y, l〉 .
For the majority of the remainder we will assume that translations by Zd are a symmetry,
i.e. that the Hamiltonian commutes with ty for all y ∈ Zd. In the setting of the tenfold
way, that means that Zd ⊂ G0 is a subgroup of the unitary symmetries.
A translation invariant Hamiltonian will be of the general form

H |x, l〉 =
∑

y,m

hml(y) |x + y,m〉 ,

with a matrix h(y) : Cn → Cn.
From quantum mechanics we know, that we can find a simultaneous eigenbasis of all ty
and the Hamiltonian defined in terms of the Fourier transform

|k, l〉 :=
1√

2πV

∑

x

eik·x |x, l〉 .

Here k is an element of the d-dimensional torus Td and we introduced a volume V in
order to make {|k, l〉} into an orthonormal basis.
As a quick check, we can compute

ty|k, l〉 =
1√

2πV

∑

x

eik·x |x + y, l〉 = e−ik·y|k, l〉 . (3.6)

And furthermore, H has to leave the eigenspaces of ty invariant

H|k, l〉 =
1√

2πV

∑

x,y,m

eik·xhml(y) |x + y,m〉

=
1√

2πV

∑

x,y,m

eik·(x−y)hml(y) |x,m〉

=
∑

m

h̃ml(k) |k,m〉 ,

with h̃ml(k) := 1√
2π

∑
y e
−ik·y hml(y). This form of the Hamiltonian is often known as

the Bloch Hamiltonian and we will write h̃(k) simply as h(k), as it should be clear from
the context. This also means that the Hilbert space V decomposes into the eigenspaces
Vk corresponding to the eigenvalue e−ik·y of the translation operator ty

V =
⊕

k

Vk .
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3.3 Lattice model and translational invariance

Now, adapting this procedure to the Nambu space W = V ⊕V ∗, recall the action of the
translation operator ty on the dual space V ∗ is given by (t−1

y )t. With this in mind, the
construction of an eigenbasis of the translation operator on the Nambu space works in
a similar fashion

|k, l〉+ 〈−k,m| := 1√
2πV

∑

x

eik·x |x, l〉+ e−ik·x 〈x,m| .

With a calculation similar to (3.6) it is relatively easy to check that this defines an
eigenstate of the translation operator with the eigenvalue e−ik·y.

Following the arguments on the single-particle level, the Nambu space has a decom-
position into eigenspaces with eigenvalue e−ik·y as well

W =
⊕

k

Wk =
⊕

k

Vk ⊕ V ∗−k .

With the Nambu space in momentum representation established, we can take quick look
back to the structures introduced in the previous section and give more details on their
specific forms in this context.
Let c†l (k) be the operator that creates a particle in the state |k, l〉 ∈ Vk and cl(k) the
corresponding annihilation operator. With these we can write a field operator ψ ∈ Wk

as
ψ =

∑

l

ulc
†
l (k) + vlcl(−k) .

The action of the real structure γ is now given by

γ : Wk →W−k∑

l

ulc
†
l (k) + vlcl(−k) 7→

∑

l

ūlcl(k) + v̄lc
†
l (−k) .

On the other hand we have the CAR bracket {·, ·} : Wk ⊗W−k → C, which is defined
by the anti-commutator of two field operators ψ and ψ′. As we have seen before, if we
take these two structures together, we obtain a Hermitian scalar product on Wk.

A general one-body Hamiltonian in this setting will be of the form

H(k) =
1

2

∑

l,m

Ylm(k)
(
c†l (k)cm(k)− cm(k)c†l (k)

)
(3.7)

+
1

2

∑

l,m

Zlm c
†
l (k)c†m(−k) + Z̄lm cm(−k)cl(k) . (3.8)

Note, that the form of the Hamiltonian is restricted by the condition that it commutes
with translations, which in their momentum space representation look like:

ty =

∫

T
ddk

∑

l

e−ik·y c†l (k)cl(k) .
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3 Weyl semimetals

From a physical perspective this condition seems reasonable, since translational invari-
ance is associated to momentum conservation and the momentum can only be conserved
if the terms in (3.8) which create/annihilate pairs of electrons create/annihilate electrons
with opposite momenta.

Similar to the Bloch Hamiltonian, there is an endomorphism HBdG(k) : Wk → Wk,
called the Bogoliubov – de Gennes Hamiltonian, associated to the quadratic Hamiltonian
(3.8). Let

(
c†(k) , c(−k)

)
:= ψ†(k) ∈W ∗k and

(
c(k)

c†(−k)

)
:= ψ(k) ∈Wk

denote field operators in Wk, then H(k) can be written as

H(k) = ψ†(k) ·
(

1
2h(k) ∆(k)
∆†(k) −1

2h(−k)t

)
· ψ(k) =: ψ†(k) · HBdG (ψ(k)) . (3.9)

The notation for HBdG here adopted the standard notation from physics and wrote ∆
for the off-diagonal terms. These off-diagonal terms ∆ allow for the description of su-
perconductors in mean-field theory and denote the superconducting gap in BCS theory.
Due to the CAR the relation ∆(k) = −∆(−k)T holds.

If we consider translations to be a symmetry, the group of unitary symmetries G0

contains at least the group of translations as a subgroup in all cases. However, as
demonstrated in the previous section, the Hamiltonian becomes block-diagonal and ev-
erything decomposes over the momentum space. This can actually be thought of as a
general reduction procedure, which will not be explained in more detail here, but can
be found for example in [16].
Since translations are symmetries, all other symmetries in G need to commute with
translations ty. This holds for all elements g ∈ G and since there can be unitary and
anti-unitary symmetries in G this implies for any v ∈ V

ty g(v) = g ty(v) = g e−ik·y v =

{
e−ik·y gv for g unitary
eik·y gv for g anti-unitary

.

That means that a unitary symmetry maps g|Wk
: Wk → Wk, whereas an anti-unitary

symmetry maps g|Wk
: Wk →W−k.

Besides translations, there are more symmetries which define the ten symmetry classes.
These are the unitary symmetries of charge conservation U(1)Q and spin rotations
SU(2)spin defining G0 and the anti-unitary symmetries of time-reversal T and (twisted)
particle-hole conjugation C̃. All of these generate the full symmetry group G.
In the grand scheme of topological insulators and superconductors there exists a sequence
of introducing these symmetries systematically and build up the ten symmetry classes
one by one. The starting point of this so-called Kitaev sequence is symmetry class D
with no symmetry at all. Followed by class DIII, which has a time-reversal symmetry
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3.4 Dirac materials

T . The next class in this sequence is class AII, which has a time-reversal symmetry T
and a charge conservation symmetry Q and so on. The names of these symmetry classes
derive from the fact that the set of time evolution operators e−iHt/~ commuting with the
respective symmetries defines an irreducible classical symmetric space of compact type
and their respective label in Cartans classification [8] gives the name for the symmetry
class.
We do not follows this sequence in a strict sense here, but we divide the ten classes
into two subclasses. In this case it makes sense to distinguish between Weyl semimetals
and Weyl superconductors, or speaking in terms of the mathematical model, distinguish
between systems with particle number conservation and systems without.
Particle number conservation goes along with charge conservation and the unitary sym-
metry is represented by the operator eiθQ ∈ U(1). It is generated by the charge operator
Q and acts on Wk by

eiθQ : v + ϕ 7→ eiθ v + e−iθ ϕ .

We can use the fact that commuting with eiθQ is equivalent to commuting with Q which
acts as +1 on Vk and as -1 on V−k.

The general form of the Hamiltonian is given in (3.8) and its matrix representation is

H =

(
Y Z
Z† −Y t

)
.

In order for a Hamiltonian to commute with the action of Q it must be of the form

H =

(
Y 0
0 −Y t

)
(3.10)

and it is sufficient to consider Y .

For systems without charge conservation (Weyl superconductors) the form of the gen-
eral Hamiltonian is not constraint, but we adapt the notation to connect to common
physics literature and replace Z by ∆ as it is usually written in the mean field theory of
superconductivity (compare to (3.9)).

There will be a detailed discussion on systems in all of the ten symmetry classes in
the next chapter and concrete realizations of the symmetries and the conditions they
put on the Hamiltonian will be discussed there.

3.4 Dirac materials

The framework introduced in this chapter is quite general. It describes fermion systems
within the approximation of one-body Hamiltonians. It hosts, for example, topological
insulators as well as superconductors in the mean field approximation.
In the study of topological properties of insulators and superconductors without disor-
der the vector bundle structure of the translational invariant Nambu space Wk is very
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3 Weyl semimetals

essential. Ground states can be identified as sub-vector bundles of the so called Bloch
bundle W → M . However, if we want to include (Weyl) semimetals in the discussion,
we are out of luck. This is due to the fact, that the vector bundle description relies very
much on the existence of an energy gap. In an insulator the Fermi energy µ defines a
clear distinction between energy levels above µ (conduction states) and energy levels be-
low µ (valence states). This is what makes the system insulating towards perturbations
smaller than the energy gap and thus gives insulators their name. Moreover, the gap
between valence and conduction states allows for a mathematically rigorous description
by vector bundles.
A semimetal describes a system without such an insulating energy gap, but with a small
number of states close to the Fermi energy. In fact, the systems studied in this work
have a certain spectrum of low energy states close to the Fermi energy; these excitations
are described by the Weyl equation. In an idealization we assume that there is a band
crossing exactly at the Fermi energy µ.
Since the vector bundle description does not work in the case of semimetals, there are
a lot of different questions that need further inspection: What are the effects of such
isolated band crossings in general? Is there a good mathematical model to describe such
a system in a similar way as for insulators and superconductors? Does such a model
allow for a topological classification of Weyl semimetals?
These are some very basic questions that ask for a good mathematical model for such sys-
tems. Even though there are already many questions with regard to such band crossings
and their properties answered, there is not really any systematic approach to understand
them. To be able to take some steps towards answers to some of these questions, this
section gives a more detailed introduction to the topic of Weyl semimetals.

We will focus on a very prominent example of such band crossings, the so called Dirac
nodes. Dirac materials or Dirac matter is a term describing such materials, which exhibit
such Dirac nodes in their low-energy spectrum. They can have different origin, but since
the low-energy excitations are similar in these materials, many of their properties are
similar as well. And since the linear dispersion close to the Dirac nodes is qualitatively
different from the quadratic dispersion in conventional metals and semiconductors, they
form a unique class of materials. They are also not restricted to metals and semimetals,
but also a superconductor can have Dirac nodes in its energy spectrum.
The Name Dirac node comes from the fact that these low-energy excitations can be
described by the Dirac equation

i~
∂

∂t
ψ = Dψ =

(
cα · p + β mc2

)
ψ (3.11)

and these fermionic excitations are often called Dirac fermions.

3.4.1 Dirac and Weyl points

We assume that the band gap closes only at finitely many (isolated) points, but remains
everywhere else. This assumption is fairly reasonable and it is a good place to start. So,
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3.4 Dirac materials

we assume that at a single Dirac node two energy bands overlap precisely at the Fermi
energy. Or in other words: Unlike in a metal, where the Fermi energy lies in one of the
bands, for a semimetal the Fermi energy still lies between two bands, but the two bands
closest to the Fermi energy may have an overlap at finitely many, isolated points.
We will begin here with some local considerations in the vicinity of such points and
continue with some basic properties of these.

Weyl points. Consider the most simple case of only two energy bands (or as an ap-
proximation, only the two bands closest to the Fermi energy can be considered). This
situation can be described by a (2× 2) Hamiltonian of the form

H(k) = h0(k)1 + h(k) · σ =

(
h0 + hz hx − ihy
hx + ihy h0 − hz

)
. (3.12)

The two eigenvalues of this Hamiltonian are then given by

E±(k) = h0(k)±
√
h2
x(k) + h2

y(k) + h2
z(k) .

That means the band gap closes at points where h2
x+h2

y+h2
z = 0. In the vicinity of such

a point the Hamiltonian has the form of the massless Weyl Hamiltonian H ≈ vFk ·σ and
such a point is therefore called Weyl point. The term h01 only shifts the band crossing
in energy, and since we are looking for band crossings close to (or at) the Fermi level, it
will not be important for further considerations.
In 1929 von Neumann and Wigner considered general systems as in (3.12) and deduced
that in the absence of symmetries all three parameters hi have to be tuned to obtain a
(2×2) matrix with the same eigenvalue twice. Without further reducing the parameters
this can only be expected in three spatial dimensions. From these considerations it also
becomes clear why a single Weyl point should be stable to small perturbations of the
Hamiltonian, because a perturbation proportional to 1 only shifts the Weyl point in en-
ergy and any other perturbation (proportional to σ) only shifts it in momentum space.
There is also a topological argument that a Weyl point is stable under small perturba-
tions. If we consider a Weyl point at an isolated k0 there is a small neighborhood of
k0 ∈ U ⊂M where the energy gap is finite and therefore the vector bundle well defined.
By choosing a sphere around k0 in such a way that the energy gap is finite for all k ∈ Sk0
we can define a vector bundle E → S2

k0
. Now, the Chern number determines wether that

bundle is trivial or not and we call the Chern number of that vector bundle the Weyl
charge q(k0) of the Weyl point at k0.
A more physically motivated view of this would be in terms of the Berry curvature. The
singular points in the band structure can be thought of as sources and sinks of Berry
curvature, which is closely related to the Chern number. Another interesting viewpoint
might be that the Berry curvature of the energy bands behaves like a magnetic field, but
with the possibility of monopoles (Weyl nodes).
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3 Weyl semimetals

In a similar approach, the Weyl charge can be defined as the index of the vector field
describing the Hamiltonian in the vicinity of k0. In detail this works as follows: Consider
a vector field h on the 3D Brilluoin zone M parameterizing a two-band Hamiltonian as
in eq (3.12). As mentioned above, Weyl points occur at zeroes of the vector field. So,
let h(k0) = 0 for k0 ∈ M and choose a sphere S2

ko
surrounding k0, but not enclosing

any other zeroes of h. Since h is non-zero on all of S2
k0

we can define the map

S2
k0
→ S2 ,

k 7→ h(k)

|h(k)| .

The degree of this map is an integer and defines the Weyl charge associated to the Weyl
point at k0. The Weyl charge of the Weyl point at k = 0 of 3.12 is the degree of the
identity map, which is +1. If the Weyl charge is zero, the gap can be opened and a
transformation to an insulating system is possible. However, if the Weyl charge is non-
zero, there does not exist such a transformation and the Weyl node is protected against
small perturbations.

Besides these local considerations, there is also a global statement on the topology of
these Weyl nodes. They can only occur with a total charge of zero. This was first formu-
lated by Nielsen and Ninomyia [24] in the context of lattice gauge theory and originally
it was formulated as a no-go theorem.
In the vector field description it is known as the statement of the Poincaré -Hopf theo-
rem, which relates the Euler-characteristic of a manifold with the total index of a tangent
vector field with isolated zeroes. And because the Euler-characteristic of the torus is
zero, that means that only vector fields with total index equal to zero are possible on
the momentum torus.

Remark 6. The Poincaré -Hopf theorem for vector fields v on a manifold M relates the
index of a vector field to the Euler characteristic of the manifold

∑

i

INDv(xi) = χ(M) . (3.13)

Since the vector field parameterizing the Hamiltonian is a vector field on the torus (and
χ(T) = 0), only zeroes with a total index of 0 can appear. The argument by Nielsen and
Ninomiya [24] to prove their no-go theorem, which says that Weyl fermions can only
come in pairs with an opposite handedness (in our terms: Weyl charge) is based on the
Poincaré-Hopf theorem, or on some analog statement in algebraic topology.

Now, if a Hamiltonian commutes with a given symmetry group, there are some con-
straints on the form of the Hamiltonian and therefore there will be constraints on the
Weyl points in such systems. The symmetry of time-reversal will be of most interest
here, as the discussion of time-reversal and inversion symmetry are very general and
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are usually the symmetries discussed in the literature. There will be more detailed dis-
cussions on the interaction of the different symmetries and Weyl points in the following
chapter, however, this is more dependent on the specific framework used in that chapter.
The effect of time-reversal and inversion can be discussed on more general grounds and
we will see in the following chapter, that the discussion here is still valid.

Consider a Weyl point at k0, then the Hamiltonian describing the bands close to that
Weyl point k ≈ k0 is

H(k) ≈ ±vF (k− k0) · σ ,
where the sign depends on the Weyl charge of the Weyl point. Now, under the operation
of time-reversal, T = iσy ◦K could be a concrete realization, the momentum and also σ
reverses sign: k 7→ −k and σ 7→ −σ. In the vicinity of the Weyl point this means

H(k) 7→ H(−k) ≈ ±vF (−k− k0) · (−σ) = ±vF (k + k0) · σ .

We see, that time-reversal symmetry implies, that for every Weyl point at k0, there is
a Weyl point at −k0 with the same Weyl charge. This means that there have to be
two more Weyl points with the opposite Weyl charges due to the Poincaré-Hopf, or the
Nielsen-Ninomiya theorem. So in total, there is a minimum of four Weyl points if the
system is time-reversal symmetric.
The reasoning for inversion symmetry is very similar. But under inversion it is only the
momentum which reverses the sign k 7→ −k and σ 7→ σ. Therefore, for every Weyl point
at k0 there is a Weyl point at −k0 but the Weyl charge is opposite, q(k0) = −q(−k0).
If a system has time-reversal and inversion symmetry, then by the above argument, for
a Weyl point at k0 there has to be a Weyl point with opposite Weyl charge by inversion
symmetry and a Weyl point with the same Weyl charge by time-reversal symmetry. This
cannot both be true, thus there cannot be any Weyl points in systems with time-reversal
and inversion symmetry.

Dirac points. From the relativistic Dirac theory we know, that the massless Dirac equa-
tion can be decomposed into two equations, the so-called Weyl equations with opposite
chirality. Something similar can happen here. Consider the situation of four energy
bands and a Hamiltonian of the form (written in a (2× 2)-block decomposition):

H =

(
vF k · σ m
m −vF k · σ

)
.

The energy eigenvalues of this Hamiltonian are E± = ±
√
v2
F |k|2 +m2, which reveals

that there are two doubly degenerate bands and a band gap of the order 2m. If m goes
to 0, the band gap closes at k = 0 and there is a so called Dirac point, a crossing of four
bands. A closer inspection of the Hamiltonian in a basis of Weyl fermions reveals, that
there are two Weyl fermions present a k = 0 and they are of opposite chirality. If m 6= 0
it couples the two Weyl fermions and opens up the gap. There are many more ways to
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introduce a perturbation of the Dirac point (m = 0) which splits it into two Weyl points.
This can be achieved for example with a perturbation of the form m12 ⊗ σz:

H =

(
vFk · σ +mσz 0

0 −vFk · σ +mσz

)
.

The energy eigenvalues of this Hamiltonian are then given by

E± = ±vF
√
k2
x + k2

y + (m± kz)2

and we see that there are two Weyl points at k0 = (0, 0,±m).
In the case where m = 0 is forced by a symmetry (for example time-reversal) the Dirac
node is topologically stable. This can, however, only happen at time-reversal invariant
momenta (TRIM).

In the following chapters a more detailed discussion about Weyl semimetals in the
different symmetry classes is given. Moreover, there are many more examples of vector
fields describing Weyl semimetals and how Weyl nodes appear in the band structure in
the these classes.
Disorder will then be a major agent in the final chapter of this work. There we present
a few considerations on three dimensional Weyl semimetal with disorder and we explore
some routes towards a field theoretic description of such systems.
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4 Euler chain representation of Weyl
semimetals and Weyl superconductors

In recent years Dirac materials became a very interesting and active field in condensed
matter theory. The most characteristic feature of these materials, i.e. Weyl points,
are usually studied with the focus on local considerations close to the node. Moreover,
nodes are studied in specific cases and concrete examples. There seems to be no good
mathematical description or systematic approach as there exists for the case of topo-
logical insulators (TI) and superconductors (TS). Even more so, there is no attempt to
use symmetries as a guiding principle in a classification scheme in the studies of Weyl
semimetals. This is probably due to the fact that the theory of topological insulators
and superconductors relies very much on the existence of an energy gap to model TI’s
and TS’s as a vector bundle or equivalently the classifying map. Therefore, the situation
in a Weyl semimetal (WSM) is strikingly different, since (at least) two energy bands
have to overlap at the Fermi energy for the low-energy excitations to be described by
the Dirac equation.
Therefore, if one would begin in the framework of topological insulators and start with
a vector bundle description, there is no way to introduce these band crossing anywhere,
because at that point the vector bundle would not be well-defined. It is still possible to
make some sense out of this description, this is however more of a local study of these
nodes. One can for example define the vector bundle everywhere in the momentum space
M \W away from the Weyl points W . And one would find that on a sphere surround-
ing a Weyl point (in a 3d momentum space) the vector bundle has a non-trivial Chern
number corresponding to the Weyl charge of the Weyl point. So, one can still obtain
some topological information from this description of a WSM, but since a Weyl point
in this model is a discontinuity it is not easy to work with. For example: Consider a
second WSM which simply has its Weyl point located at a slightly different momentum.
It is not obvious how to relate these two WSMs even though the physics should not be
that different.
The power of topological studies in insulators and superconductors allowed to avoid
these difficulties, because topological invariants do not change under continuous trans-
formation, which from a physics standpoint is quite reasonable.

In this chapter an approach to understanding the topology of WSMs is presented,
which tries to avoid a treatment of Weyl points as a discontinuity of the model. So
that it is possible to perform continuous transformations on a WSM and use tools from
topology. The idea used here was first introduced by Mathai and Thiang [22]. The
mathematical concepts, however, go back to Turaev in 1990 [27]. It is based on the
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notion of vector fields where a Weyl point will correspond to a zero of a vector field.

The essence of the idea is summarized in the remainder of this introduction while the
details will be presented in the following sections. Essentially, we consider Hamiltonians
of the form

H = h · σ , (4.1)

with a vector field h and Pauli matrices σ. We call such a Hamiltonian a Dirac type
Hamiltonian. This allows us to consider Hamiltonians of a more general form than intro-
duced in the previous section on Dirac materials, as the local description of Weyl points
by the Dirac equation will be replaced by a global description by a vector field. Close to
a Weyl point the Hamiltonian will have the form of the usual Dirac/Weyl Hamiltonian
(up to linear order). Moreover, this includes a certain class of topological insulators and
superconductors as well.
Nevertheless, this approach still follows Dyson’s guiding principle, as these Hamiltoni-
ans are considered to commute with a given symmetry group G. Therefore, they can be
divided into the ten different symmetry classes known from the framework of topological
insulators and superconductors.
The introduction of symmetries will put some constraints on the Hamiltonian, which
will in turn translate to constraints on the vector field parameterizing the Hamiltonian.
Furthermore, symmetries will also put constraints on the existence of Weyl points and
their corresponding Weyl charges. Besides these symmetries, also the Poincaré-Hopf
theorem gives a relation between the Weyl points with their Weyl charge and the Euler
number of the base manifold (in our case the torus).

4.1 Euler structures - abstract definition

The goal of this section is to give an introduction of Euler structures for vector fields
on manifolds. Euler structures were first introduced in the context of vector fields by
Turaev [27] in 1990. The introduction in this section follows an article by Mathai and
Thiang [22], who first used this idea in the context of Weyl semimetals, and a compre-
hensive introduction to Euler structures given by Burghelea and Haller [6]. This section
will focus on the mathematical definition of Euler structures starting from a vector field
on a manifold. How these ideas can be used in the analysis of WSMs and WSCs will be
the content of the next section.

LetM be a closed connected manifold of dimension d with Euler characteristic χ(M) =
0 and let h be a vector field on M with a finite number of isolated zeros. Denote the
zero set of h by Wh and define the singular zero-chain Wh :=

∑
w∈Wh

INDh(w)w. This
zero-chain is called the chain of local charges and the indexw(h) ∈ Z is the local charge
at w ∈W .

Definition 11. Let Wh be a 0-chain in M whose coefficients sum to zero. Then an
Euler chain is a 1-chain l ∈ C1(M,Z) such that ∂l = Wh. An Euler chain l defines
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a relative homology class [ l ] ∈ H1(M,W ; Z) where W is the set of points that Wh is
defined on. Let Eul(M,Wh) ⊂ H1(M,W ; Z) denote the subset of relative homology
classes of 1-chains in M whose boundary is Wh.

Figure 4.1: Two examples of Euler chains for two different 0-chains W .

Remark 7. All definitions can be adjusted to the case of non-zero Euler characteristic.
In this case we add a term χ(M)x0 toWh with some fixed base point x0 ∈M . But since
we are interested in a physical application and the torus is the only manifold considered,
the treatment will follow the assumption χ(M) = 0.

Note, that the set of all Euler chains a priori does not have a group structure, since
the sum of two Euler chains is not an Euler chain. This can easily be verified, as the
boundary of the sum of two different Euler chains is twice the 0-chain Wh. We can
nonetheless define an action of the group H1(M) on Eul(M,Wh) by

H1(M)× Eul(M,Wh)→ Eul(M,Wh)

([σ], [l]) 7→ [σ] + [l] := [σ + l] .

It is easy to check that this defines a free and transitive action, i.e. for any two elements
[l], [l′] ∈ Eul(M,Wh) there exists an element [σ] ∈ H1(M), such that [σ] + [l] = [l′], and
if [σ] + [l] = [l] holds, then [σ] has to be equal to the identity element (the constant
loop). In this sense Eul(M,Wh) is a coset of H1(M) in H1(M,W ).

Another way to think about this is to consider the exact sequence associated to the
relative homology group H1(M,W ):

0 = H1(W )→ H1(M)→ H1(M,W )→ H0(W )→ H0(M)→ · · · . (4.2)
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

At first we note that H1(W ) = 0 since W only consists of points and therefore there are
no non-trivial 1-chains on W .
This leads to the next observation, namely, that the first map H1(M) → H1(M,W )
has to be injective due to the exactness of the sequence. That means, we can identify
H1(M) as a subgroup of H1(M,W ). This fact is easily understood since the boundary
of an element in H1(M) is zero and hence it is contained inW .
So, let [l] be any element in Eul(M,Wh). Then we can write Eul(M,Wh) as the coset
H1(M) + [l] ⊂ H1(M,W ). In particular this means that the difference of [ l ] and
[ l′] ∈ Eul(M,Wh) is an element of H1(M); see for an example fig4.2.

Figure 4.2: Two different Euler chains (l0 and l1) for the same 0-chain W . The difference
l1 − l0 is a closed loop, which represents an element in the first homology
group H1(M).

The pair (h, [l]) of a vector field h onM and an associated Euler chain [l] ∈ Eul(M,Wh)
is called Euler structure of M .

The goal of the following paragraph is to introduce an equivalence relation for these
Euler structures; the so-called non-degenerate homotopy. This is not only needed to
define the set of Euler structures of a manifold M but it also gives a way to understand
how pairs of zeroes can be created and annihilated.
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Definition 12. Let h0,h1 be two smooth vector fields. And let p∗TM be the pullback
of the tangent bundle TM → M under the projection p : [0, 1] ×M → M . A non-
degenerate homotopy f between h0 and h1 is a section transverse to the zero section of
p∗TM , which restricts to h0 on {0} ×M and to h1 on {1} ×M .

A definition like this might arise the question how to find such a non-degenerate ho-
motopy, or at least, if there exists one. To answer this question we can use the tools
from obstruction theory and ask wether a section f , coinciding with h0 on {0}×M and
with h1 on {1} ×M , can be extended over all of [0, 1]×M .
To see that there always exists such a homotopy over the torus, we need the fact that
the tangent bundle of Td is trivial. Such a manifold with trivial tangent bundle is called
parallelizable and the following is true for all parallelizable manifolds: Any function
h : M → Rd defines a vector field on M . With this we are now in a position to apply
the tool from obstruction theory and deduce the existence of such a homotopy.
Let us assume that M has a CW structure and is parallelizable. Then [0, 1]×M has a
canonical CW structure given by the product of cells and the usual CW structure of [0, 1]
with two 0-cells and one 1-cell. Now, the obstruction in (n+1)-dimensions is an element
of Hn+1

(
[0, 1]×M,∂[0, 1]×M ;πn(Rd)

)
, where πn(Rd) = 0. Therefore, all obstruction

classes vanish and there exists an extension f of h0 and h1 over all of [0, 1] ×M . And
even though this extension might not be transverse to the zero section, it is possible to
perturb f in such a way that the result will be transverse.

We can make use of a non-degenerate homotopy f to define a map between Euler
structures associated to two vector fields h0 and h1. Moreover, this homotopy allows for
the movement of zeroes of vector fields as well as the creation and annihilation of pairs
of zeroes with equal and opposite charges in a continuous way. Note that when a pair of
charges is created/annihilated the transversality of the intermediate vector field ft and
the zero set fails. However, the full section f is still transverse to the zero set of p∗TM
and by the transversality theorem the zero set Wf of f is a 1-dimensional submanifold

in [0, 1]×M with boundary W(1)
h1
−W(0)

h0
.

Now, for some [l0] ∈ Eul(M,Wh0) the 1 chain Wf + l0 is a 1-cycle in the relative
homology group H1([0, 1]×M, {1}×M) and since H1([0, 1]×M, {1}×M) = 0 there exists
a 2-chain Σ whose boundary relative to {1}×M isWf+l0. Then we set l1 :=Wf+l0−∂Σ.
From this definition follows that ∂l1 =Wh1 and [l1] ∈ Eul(M,Wh1).
The assignment

φ10 : Eul(M,Wh0)→ Eul(M,Wh1)

[l0] 7→ [l1]

is well defined and does not depend on the choice of the homotopy f , the 2-chain Σ or
the representative of [l0].
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

Figure 4.3: Sketch of a non-degenerate homotopy f with the homotopy parameter in-
creasing from left to right. The zero set Wf (orange) has as boundary the
difference of the two Euler chains l1−l0 and together they form the boundary
of Σ (blue).

To summarize: For every vector field h the set of Euler chains is a coset of H1(M)
and for two vector fields h0 and h1 there is a map φ10 with the properties φ11 = id and
φ32 ◦ φ21 = φ31.

These properties are easily verified: i) A vector field h is homotopic to itself by the
trivial homotopy ft ≡ h. Therefore, for any 1-chain l0 ∈ C1(M,W ) we can choose
Σ = [0, 1]× l0 and then ∂Σ = [0, 1]× ∂l0 + ∂[0, 1]× l0. And finally l1 := [0, 1]×W + l0−
([0, 1]×W + {0} × l0 − {1} × l0) = {1} × l0. We therefore can write φ11 = id.
ii) Let hi with i = 1, 2, 3 be three vector fields on M and ft and gt be two homotopies
with f0 = h1, f1 = g0 = h2 and g1 = h3. Then we know that

Ht =

{
ft for t ∈

[
0, 1

2

]

gt for t ∈
[

1
2 , 1
]

defines a homotopy between h1 and h3. Using this fact one can easily see that φ32◦φ21 =
φ31.
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These properties allow us to associate a vector field h with a fixed Euler chain by
choosing a reference vector field href. In our case the reference href can be for example
the constant vector field along one of the torus cycles. Since the constant vector field
has no zeroes, it has no associated Euler chain. Following the construction above, we
then define the Euler chain l for h by a homotopy between href and h.
There is an intuitive way to understand the Euler chain associated to h in this way.
Starting from the constant vector field with no zeroes, the Euler chain traces out the
history of creation of two zeroes with opposite charges.
Adopting this picture, we can think about the following process: Start from the constant
vector field with no zeroes. Then create two zeroes with opposite charges, move them
along a non-trivial loop and finally annihilate them again. This leaves the final vector
field with no zeroes. Even though the final vector field does not have any zeroes, it has
a non-trivial

”
winding“.

That means the notion of a non-degenerate homotopy describes a continuous way to
deform one vector field to another and it allows for the continuous movement of zeroes
as well as creation and annihilation of two zeroes with opposite charges. If the two
vector fields h1 and h2 have the same zero chains Wh1 = Wh2 , then Eul(M,Wh1) ≡
Eul(M,Wh2) and the endomorphism φ21 ∈ End(Eul(M,Wh1)) gives the homological
change in the Euler chains l1 and l2 under the non-degenerate homotopy f taking h1 to
h2.
If h1 and h2 have different zero chains, then a homotopy f taking h1 to h2 defines the
map φ21 and allows us to identify the pairs (h1, [ l1]) and (h2, φ21([ l1])). Due to the
properties of φij this defines an equivalence relation and we can form equivalence classes
[h, [l]] and define the following.

Definition 13. Let h be a vector field on M with a finite set of non-degenerate zeroes
and [ l ] ∈ Eul(M,Wh) an Euler chain of h. Then the pair (h, [ l ]) is called an Euler
structure of M .
Two Euler structures (h1, [ l1]) and (h2, [ l2]) are said to be equivalent if there exists a
non-degenerate homotopy f between h1 and h2 and [ l2] = φ21([ l1]). We denote the
equivalence classes by [h, l] and the set of equivalence classes of Euler structures of M
by Eul(M).

When Turaev first introduced the idea of Euler structures, he used a different notion
of equivalence for vector fields, which nonetheless results in the same equivalence classes.
Moreover, he proved an interesting relation between vector fields and Euler structures of
M , which is particular interesting in the case of χ(M) = 0. The relation for this special
case, which is also the case of our interest, and his definition of the equivalence relation
are briefly presented in this final paragraph

Let X0(M) denote the set of non-singular vector fields on M – vector fields with no
zeroes. If χ(M) = 0 and d > 2, one can show that the map π0(X0(M)) → Eul(M),
h 7→ [h, 0] is surjective (see Burghelea and Haller [6]). Furthermore, this map is even
injective if a slightly different equivalence relation on the set of non-singular vector fields
is used.
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

Definition 14. Two smooth non-singular vector fields h1 and h2 on M are said to be
homologous iff for some open ball D ⊂M the vector fields h1 and h2 are homotopic on
M \D in the class of non-singular vector fields on M \D. Denote the set of equivalence
classes by vect(M).

With this equivalence relation one can show that the above mapping h 7→ [h, 0] is
bijective. For a proof of this, we refer for example to the article by Burghelea and Haller
[6]).

4.2 Euler chain representation of Weyl semimetals and
superconductors

This section introduces the previously defined Euler structures in the context of Weyl
semimetals and superconductors. However, considering the ten symmetry classes in the
framework, it is not immediately obvious that Hamiltonians in all of the ten classes can
be parameterized by a vector field on M . In the remainder of this section we will discuss
the cases for which it is possible and how the introduction of Euler structures gives some
new insights into the topology of WSMs/WSCs in these symmetry classes.

Consider a Hamiltonian realizing one of the the ten symmetry classes (labeled by
s = 0, . . . , 7 for the eight real classes and just A and AIII for the two complex classes)
that is parameterized by a vector field h on M in the following way.

Definition 15. The vector field h describes a normal insulating or superconducting
state if it is non-vanishing. If h has a set of isolated zeroes Wh, it describes a Weyl
semimetal or Weyl superconductor and we call Wh the set of Weyl points of h. To each
Weyl point w ∈Wh we associate an integer, the Weyl charge q(w) = INDh(w).

From this data we can define the 0-chain Wh =
∑

w∈Wh
INDh(w)w ∈ C0(M) and the

one chain l ∈ C1(M) such that ∂l =Wh.

Next, we want to assign an Euler structure to a given semimetal Hamiltonian/vector
field. In order to do this in a well-defined way, a choice of a reference vector field href

has to be made. In this context it makes sense to choose a representative of the trivial
insulating class, for example the constant vector field along one of the torus cycles. Note
that the reference vector field hsref has to be chosen for every symmetry class separately
(as it has to fulfill the symmetry constraints). We will see that it will not always be pos-
sible to choose a non-vanishing vector field that fulfills the symmetry constraints, as
for example time-reversal symmetry forces the vector field to have zeroes at the TRIM.
Therefore, there will be a short discussion on the reference vector field in each paragraph.

Choosing the trivial insulator as reference leads to an interesting interpretation of
Euler chains. In this case Euler chains can be thought of as the

”
history of creation“ of

two Weyl points as was discussed in the previous section: A non-degenerate homotopy
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between href and h has a zero set, that indicates how Weyl point are created and con-
tinuously moved apart.

We will close this section with a few more general remarks on Euler structures and
how to understand them as topological invariants. The next section will then deal with
more specific discussions on WSMs and WSCs in all symmetry classes and what the set
of Euler structures is in all cases.

Euler structures and topological invariants. The chains Wh and l describe different
topological invariants that can be associated to a Weyl semimetal/superconductor. The
0-chain Wh describes the local charges of Weyl points, while the Euler chain l contains
some global topological information. Probably the best way to view these topological
invariants and how they are connected is by looking at the long exact sequence associated
to the relative homology group H1(M,Wh):

· · · → 0 = H1(Wh)→ H1(M)→ H1(M,Wh)→ H0(Wh)→ H0(M)→ · · · . (4.3)

Here the homology group H0(M) contains the local charge information Wh while the
Euler chain l is an element in H1(M,Wh). As mentioned before, the total sum of all
charges q has to be zero and therefore the set of possible Weyl charges is equal to the
equivalence class of zero element in H0(M). In that sense Wh contains only local infor-
mation, namely the integer given by π2(S2) defined in the neighborhood of each Weyl
point. If this integer is zero, it is possible to open the band gap without changing the
topology and the Weyl point can be gaped out. On the other hand, if the Weyl charge
is non-zero, it is still not sufficient to distinguish different Weyl semimetals, as there can
be different Euler chains associated to a single 0-chain Wh; see fig. 4.2.

There exists a long exact sequence, dual to the on in (4.3). In their article Mathai
and Thiang call it the cohomological semimetal MV (Mayer-Vietoris) sequence:

. . . 0→ Hd−1(M)→ Hd−1(M \Wh)→ Hd−1(SWh
)→ Hd(M)→ 0 . (4.4)

This is the Mayer-Vietoris sequence for the two open set M \Wh and DWh
, where DWh

is a disjoint union of open discs, where each disc contains one Weyl point w ∈ Wh and
SWh

is the disjoint union of boundaries of DWh
.

The interpretation of this long exact sequence is very similar to the interpretation of
(4.3). Here Hd(M) is the group of total charge and as mentioned above and the
dual of the 0-chain Wh is the zero element in Hd(M). The group Hd−1(SWh

) =⊕
w∈Wh

Hd−1(Sw) contains the local charge information of the Weyl points at w and

the map Σ : Hd−1(SWh
) → Hd(M) is the sum of the local charges. Therefore, a Weyl

semimetal defines an element in the kernel ker Σ. The group Hd−1(M) contains the
Poincaré-dual of Euler chains l. Moreover, from the theory of topological insulators
and superconductors we know that (d− 1)-dimensional weak invariants are elements in
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Hd−1(M). For example for class A in d = 3 these invariants are two dimensional Chern
invariants cij(m) ∈ H2(M), defined on two dimensional submanifolds S ⊂ M (usually
2D subtori in T3).
This gives us another way to view the Euler chain in terms of weak topological invariants
H2(M) given as Chern classes on subtori T2 ⊂ T3. Starting from the trivial insulator, all
(weak and strong) invariants are zero. Now, creating a pair of Weyl points with opposite
charges at some point in the momentum space and moving them slightly apart, changes
the weak invariants between the two Weyl points.
To make this statement more precise, consider a closed 2-dimensional surface S ⊂ M
away from the two Weyl points. Integrating the Berry curvature of the associated vector
bundle (which is well-defined on M \W ) over S yields an integer. This integer is zero if
the surface S does not enclose any Weyl point – or both Weyl Points, which is actually
the same situation due to the periodicity of M . If S encloses only one of the Weyl points
the integral is equal to the Weyl charge ±q associated to the Weyl point. On the other
hand integrating the Berry curvature over one of the 2-dimensional subtori gives the 2D
Chern numbers associated to the weak invariants.

Returning to the previous thought: If we move the two Weyl points further apart
along one of the torus cycles until they are close to each other again and then annihilate
them, leaves the whole system in a topologically different state. Previously we called
this a

”
winding“ . Now we can understand how the final state is topologically different

from before, as a change in one of the weak invariants (the one, which is Poincaré dual
to the resulting 1-cycle) has occurred. However, if the two Weyl points are moved back
along the way they were created and annihilated again, the system will be in the same
state as before.

4.2.1 Weyl semimetals

We begin with the assumption of a band structure in such way, that we can simplify the
situation and just consider the two closest bands to the Fermi energy. This assumption
is justified if we consider a band structure in which the two closest bands are somewhat
separated from the rest of the bands, meaning that if the band gap closes at isolated
points, the overlap is between the two bands closest to the Fermi energy and there is no
additional overlap of other bands.
Under this assumption we arrive at a description of Weyl semimetals in terms of a
Hamiltonian H of the form (3.12) if we just describe the behavior of the two relevant
bands. The eigenenergies of such a Hamiltonian are given by

E±(k) = h0(k)±
√
h2

1(k) + h2
2(k) + h2

3(k) . (4.5)

The energy offset h0 can be neglected, because it does not have any influence on the
eigenstates and the band gap of H. Therefore, we are only interested in the three com-
ponents hi. In a three dimensional system we can think of these three parameters as
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a vector field h on the momentum space M . This is always the case, because the tan-
gent bundle of the torus T is trivial and any triple of well-defined and smooth functions
defines a vector field on M . However, there is a requirement on the three parameters
wether the defined vector field is a reasonable choice or not. This is due to the fact,
that we would like to associate Weyl points in the band structure to zeroes of the vector
field. This requirement is definitely fulfilled in the case of a Dirac-type Hamiltonian as in
eq (4.1). It might be the case though that the Hamiltonian is not precisely of this form,
but there is still a reasonable vector field parameterizing the Hamiltonian in the required
way. Such a case can easily be included into this framework. We will nonetheless focus
on the case of a Dirac-type Hamiltonian.
If we now assume that the Hamiltonian is of Dirac-type, and the vector field h vanishes
for some value of k = k0, the eigenspaces for E+ and E− are degenerated and the band
gap closes at k0. This describes a Weyl point and we define the Weyl charge q at the
Weyl point k0 as before as the index of the vector field at k0.

In the remainder of this chapter symmetries are introduced and all ten symmetry
classes will be discussed. We will introduce symmetries in a certain sequence which will
roughly follow the Kitaev sequence. However, there was already one change mentioned,
as systems with charge conservation and without charge conservation are grouped to-
gether. We begin with the classes of Weyl semimetals, i.e. with systems that have
charge conservation as a symmetry. After that also Weyl superconductors will be dis-
cussed. Recall, that translations are always considered a symmetry in this section.

Class A. The first class is the complex symmetry class A. A Hamiltonian in class A
has only one symmetry, namely that of charge conservation. Therefore, the (reduced)
group of symmetries is just the unitary group

G ≡ G0 = U(1)Q .

As already mentioned the group U(1)Q acts as eiθQ with the generator

Q =

(
−1n 0

0 1n

)
.

Now, a Hamiltonian in this symmetry class has to commute with Q and hence is of the
form H = diag(Y,−Y t). Since we are only focusing on the two bands closest to the Fermi
energy, we set n = 2. Thus we write the Hamiltonian with Y (k) = h(k) · σ for some
vector field h(k) on M = T3. Both of the two non-zero blocks in H are parameterized
by the same vector field h and the vector field h does not need to fulfill any further
symmetry constraints.

Remark 8. The framework that was introduced earlier, is quite general and with the
introduction of the space of field operators W the single-particle Hilbert space was
basically doubled. This is necessary to describe superconductors in the mean field ap-
proximation, but for insulators/semimetals it is not. This fact can be seen in the form
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of the Hamiltonian H = diag(Y,−Y t). It just adds another copy of Y and it is sufficient
to just consider Y instead of H. One could think, that there are now four energy bands
for H, but this is not true. The rewriting of the single-particle Hamiltonian Y in the
form of H does not create any new energy bands.

Since there are no symmetry constraints on h we know from the Poincaré-Hopf the-
orem that any vector field on M has to have a total index of zero. This means Weyl
points wi ∈ Wh can occur with a minimum number two and the sum over all Weyl
charges

∑
wi∈Wh

q(wi) = 0 has to vanish while each individual Weyl charge can be any
integer q(wi) ∈ Z. Let the number of Weyl points be r ∈ N0, r ≥ 0 and r 6= 1. Then the
invariant given by the Weyl charges at these r Weyl points is a collection of r integers,
but because the Weyl charge of the r-th Weyl point has to equal the (negative) sum of
first (r−1) Weyl points are r−1 independent integers and therefore an element in Zr−1.
The set of Euler chains l in d = 3 is given by Z3 ∼= H1(M). To obtain the a 1:1 corre-
spondence the reference frame hAref has to be chosen. In this symmetry class this can be
chosen as the constant vector field along one of the torus cycles.

At this point we can revisit the connection between Euler chains and the weak 2D
invariants of topological insulators. As already mentioned, due to the existence of Weyl
points (or any band touchings in general) the 3D topological invariants are not defined
for semimetals. However, lower dimensional weak invariants can still be defined on a
2D surface away from the Weyl points. For topological insulators in class A these weak
invariants are 2D Chern numbers cij (i, j = x, y, z , i 6= j), where cij is defined on an
ij-subtorus. For semimetals they can be defined on subtori away of M \Wh.
Consider the simplest case with two Weyl points (as for example in fig. 4.4). With an
Euler chain connecting these two Weyl points. Now, the Chern number, computed on a
2D surface, which intersects with the Euler chain of the two Weyl points, is non-trivial.
On the other hand, Chern numbers computed on a surface, which does not intersect
with the Euler chain, is zero. An analogy of this can be seen in fig. 4.4. The figure shows
an exemplary vector field for a Weyl semimetal in class A on the xz-subtorus. It shows
two Weyl points and their connecting Euler chain.
The analog of the 2D Chern number is the winding number of the vector field along a
non-trivial cycle. Following a cycle, which does not cross the Euler chain, the vector
field has a winding number of zero. On the other hand, following the vector field along
a cycle, which does cross the Euler chain, it has a winding number of 1.
The situation in 3D is very similar with winding numbers replaced by Chern numbers.
The Chern number on a surface jumps by the Weyl charge of the Weyl point when the
surface crosses a Weyl point.

One of the most prominent examples of such a system in the current literature is
the Weyl semimetal phase in a topological insulator multilayer structure. This was first
introduced by Burkov and Balents [7] as a simple realization of a 3D Weyl semimetal.
The case for an insulating vector field h describing a topological insulator in class A was
for example studied in a paper by Kennedy [18]. In his paper he discussed the special
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situation of insulators with only two energy bands as this is different form the general
situation in systems with many bands. Also more details on the weak topological invari-
ants corresponding to H1(M) ∼= H2(M) can be found there. Note that the situation is
slightly different, as it is not possible to define a truly 3D invariant if the vector field
has a zero. However, the discussion on the 2D invariants applies to our case as well and
corresponds to the set of Euler chains H1(M) ' Z3.

The idea of Burkov and Balents in [7] is to build up a 3D system by the stacking
of 2D topological insulators and normal insulators. The Hamiltonian describing such
a multilayer heterostructure consisting of layers of topological insulators and normal
insulators can be written as

H =
∑

k,i,j

vF τ
z(ez×σ) ·kδi,j +mσzδi,j +∆Sτ

xδi,j +
1

2
∆Dτ

+δi,j+1 +
1

2
∆Dτ

−δi,j−1 . (4.6)

The two surface states of the top and bottom surface of a topological insulator layer
are labeled by i and j and Pauli matrices σ act on the spin degrees of freedom while
Pauli matrices τ act on the top/bottom pseudospin degree of freedom. The tunneling
between the surfaces of the same layer and different layers is described by ∆S and ∆D.
Block-diagonalization of this Hamiltonian leads to

H± = vF (ez × σ) · k + [m±∆(kz)]σz ,

with ∆(kz) =
√

∆2
s + ∆2

D + 2∆s∆D cos(kzd). In this case there are four energy bands

and a Dirac semimetal phase (m = 0) appears if the ratio of the two tunneling amplitudes
∆S
∆D

= ±1 with a Dirac point at k = (0, 0, π/d). The explicit breaking of time reversal
invariance due to a magnetic term proportional to m, leads to a separation of the two
Weyl points, which are forming the Dirac point at kz = π/d, into the bulk along the kz
axis and yields a stable Weyl semimetal phase with two Weyl points.
Two of the four bands do not have zeroes (described by H+), the other two bands,
however, host the Weyl points and the Hamiltonian H− describing these two bands is of
the form H− = h ·σ with h(k) = (vFky, vFkx, (m−∆(kz))) a vector field in class A. A
slice of the vector field h in the xz-plane is plotted in fig 4.4.

Class AIII. The second complex symmetry class AIII has an anti-unitary (twisted)
particle-hole symmetry C̃ besides charge conservation U(1)Q. The full symmetry group
is thus given by

G = G0 ∪ C̃G0 ,

with G0 = U(1)Q.
We know that C̃ induces an anti-unitary involution V ↔ V ∗ on W and

”
twisting“ refers

to an operator S = S† = S−1 : Vk → Vk with transpose St : V ∗k → V ∗k . We can define a
representation of C̃ on W which is given by the operator C̃ : Wk →W−k:

C̃ = K ◦
(

0 S
St 0

)
. (4.7)
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Figure 4.4: A 2D exemplary vector field in the xz-plane in class A. This example resem-
bles the prime example given by Burkov and Balents in a multilayer structure
[7]. The Euler chain (blue arrow) connecting the two Weyl points indicates
that the two Weyl Points are created at kz = π and are separated along kz
into the bulk.

This is, however, not the full story, because this representation of C̃ has to anti-commute
with the matrix representation of H. This can be most easily understood for the case
with no twisting S = 1. The particle-hole conjugation is then equal to the operation of
Hermitian conjugation γ : Wk → W−k. We also know that H does commute with the
Hermitian conjugation γ, which is due to the canonical anti-commutation relations for
the second quantized Hamiltonian. However, if we write H as a matrix as in eq (3.9)
and also C̃ = γ as in eq(4.7) for S = 1, we do not account for the CAR and therefore the
relation Hγ = γH on the level of operators on W translates to the matrix representation
as

σx H̄σx = −H ,

with H̄ standing for the operation of complex conjugation. This relation is often stated
as particle-hole symmetry in the literature, even though it is simply a constraint result-
ing from the CAR and the chosen matrix representations.

For the situation at hand this means that untwisted particle-hole conjugation is actu-
ally not a meaningful symmetry. To obtain a meaningful symmetry we need to introduce
a non-trivial S. The exact form of such a non-trivial twisting obviously depends on the
situation at hand. It could be given for example as a sub-lattice symmetry or something
similar, but its exact form is not too important. We can for example just make a choice
of basis, where for n = 1 the twisting S takes the form S = σz.
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4.2 Euler chain representation of Weyl semimetals and superconductors

For H = h · σ the symmetry relation then reads

σz (hx(k)σx − hy(k)σy + hz(k)σz)σz = −h(−k)σ ,

where the sign of σy on the left hand side is reversed due to complex conjugation. And
thus we deduce the following relation for h:

hx(k) = hx(−k) , hy(k) = −hy(−k) , hz(k) = −hz(−k) . (4.8)

Assuming this symmetry and considering that h vanishes at some k0 ∈ M it follows
that h also vanishes at −k0 and the Weyl charge at −k0 is opposite to the Weyl charge
at k0, so q(k0) = −q(−k0). A possible reference vector field in this class would be the
constant vector field along the kx-cycle. The constant vector fields along the ky- or the
kz-cycle would not fulfill the symmetry constraint (4.8).
The Weyl charge at a single Weyl point is q ∈ Z. Note, that Weyl points always come
in pairs at opposite momenta. Hence, let the number of Weyl points be 2r, r ∈ N0. The
invariant associated to the Weyl charges is then given by Nr as we can only consider the
Weyl points with positive Weyl charge.
The group of Euler chains is again given by Z3 ∼= H1(M). An example for vector field
in class AIII can be seen in fig. 4.5.

(a) Vector field plotted on the Fermi sphere.
(b) Slice of the Vector field at z = 0.

Figure 4.5: (a) Plot of an exemplary vector field on the Fermi sphere. A Weyl point with
Weyl charge +1 can be seen on the left hemisphere. In figure (b) a slice of
the same vector field in the z = 0 plane is shown. The corresponding Weyl
point with charge +1 is the one on the left. The Weyl point on the right is
the corresponding partner at opposite k and with the opposite Weyl charge.
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

Class AII. The first real symmetry class AII is the class of time-reversal symmetric
systems with charge conservation. The unitary symmetry group G0 is still given by
U(1)Q and additionally there is the anti-unitary time-reversal symmetry T with T 2 = −1.
The full symmetry group is then given by

G = G0 ∪ TG0 .

As before, the Hamiltonian H is of the form (3.10), but now the vector field h param-
eterizing H has to be time reversal symmetric. To make this more precise, consider a
concrete realization of the time-reversal operator T = K ◦ iσy ⊗ 1, with complex conju-
gation K. A choice like that can always be made, by a choice of basis vectors that come
in Kramers pairs. Now, if we assume that H and T commute,

(
iσy 0
0 iσy

)(
h(k)σ 0

0 −(h(−k)σ)T

)(
−iσy 0

0 −iσy

)
=

(
h(−k)σ 0

0 −(h(k)σ)T

)
,

we get to the constraint for h:
h(k) = −h(−k) . (4.9)

This has some implications on possible Weyl points. First, we notice that the vector
field vanishes at the time-reversal invariant momenta (TRIM), where k = −k. These
zeroes are, however, fixed by time-reversal symmetry and can not be moved or lifted
from these points. Second, if we consider a Weyl point at k = k0, then from (4.9) we
get that there is a second Weyl point at −k0. Computing the Weyl charge q(k0) and
q(−k0), we find that the Weyl charges are equal q(k0) = q(−k0). And since the total
Weyl charge has to be zero, this means that there have to be two more Weyl points with
the opposite charges and hence there has to be a minimum of four Weyl points.
Note, that one of the differences to the situation in the previous paragraph (class AIII)
is that the vector field is zero at the TRIM (k0 = −k0). Another difference is the inter-
action of Euler chains and strong topological invariants of topological insulators in this
symmetry class.
Thiang, Sato and Gomi [25] worked out this interaction of Euler structures and Fu-Kane-
Mele invariants of 3D time-reversal-invariant topological insulators in time-reversal-
invariant Weyl semimetals (T-WSMs). The interaction is similar to the interaction
between Euler chains and weak topological invariants in previous discussions, but for a
more detailed discussion consider the original article [25].

Class CII. The real symmetry class CII has the unitary symmetry group G0 = U(1)Q
and two anti-unitary symmetries. The time reversal symmetry T with T 2 = −1 as in
class AII and, further, particle-hole conjugation C̃ with C̃2 = +1. All this leaves the full
symmetry group to be

G = G0 ∪ TG0 ∪ C̃G0 ∪ C̃TG0 .

The action of T, C̃ and Q were introduced before and their action constraints the form of
the Hamiltonian H and therefore the form of the vector field h. As seen for class AIII the
particle-hole symmetry constraints h to be of the form (4.8). Time-reversal symmetry
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4.2 Euler chain representation of Weyl semimetals and superconductors

constraints the vector field to be of the form (4.9). Combining these two relations one
obtains the following constraint:

hx(k) ≡ 0, hy(k) = −hy(−k), hz(k) = −hz(−k) .

Since there are only two components of the vector field non-zero, it is not a reason-
able vector field on M and it makes more sense to consider a two dimensional sys-
tem. In that case the relation is very much like the relation for time-reversal symmet-
ric systems. A good reference vector field for this class in two dimensions might be
hCII

ref (kx, ky) = (sin(kx), sin(ky)) (see fig 4.6.a).

A two dimensional vector field in class CII is then very similar to a time-reversal
symmetric vector field in 3D. Weyl points can only occur with a minimum number of
four, since for every Weyl point at k0, there is a partner Weyl point at −k0 with the
same Weyl charge.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Reference vector field for class CII. (b) Possible vector field for a 2D WSM.

Figure 4.6: Plots of two 2D vector fields in class CII. Figure a) shows a possible reference
vector field, where the vector field needs to vanish at the TRIM. In figure b)
a vector field for a Weyl semimetal with Weyl points away from the TRIM
is shown.

Class BDI. Symmetry class BDI is usually the last one in the sequence of topological
insulators and superconductors and therefore has the largest total symmetry group. As
before the group of unitary symmetries consists of the U(1)Q charge conservation group
and the SU(2)spin spin-rotation group, G0 = U(1)Q × SU(2)spin. The full symmetry
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

group is then given by

G = G0 ∪ TG0 ∪ CG0 ∪ CTG0 ,

which is similar to class CII, but with a larger group of unitary symmetries.
The constraints put on a vector field parameterizing a Hamiltonian realizing this sym-
metry class are

hx(k) ≡ 0, hy(k) ≡ 0, hz(k) = −hz(−k) .

Now, this is not a reasonable vector field in three dimensions, but the system could be
considered in one spatial dimension.
The situation in one dimension is quite restricted. The vector field needs to vanish at
TRIM (k = 0, π) and the situation is mirrored for k 7→ −k. Resulting in the fact that
such a system is already uniquely described by its number of Weyl points 4r ∈ 4N0 which
come in groups of 4.

Remark 9. There might be a possible way to realize this symmetry class in a super-
conductor with an odd time reversal symmetry. Where

”
odd“ refers to the fact that

T would need to square to +1 instead of −1. This is connected to the periodicity of
eight in the framework of topological insulators and superconductors, which relates the
symmetry classes for s = 7 and s = −1. Therefore, this could be thought of constructing
class s = −1 from class s = 0 by going in the opposite direction.

4.2.2 Weyl superconductors

Similar to Weyl semimetals a Weyl superconductor is a system in the class of a topo-
logical superconductor, where the band gap closes at isolated points. However, it is not
immediately clear which of these systems can be parameterized by vector fields. As the
particle number (and with it the total charge) is no longer conserved in superconductors
and the general form of the Hamiltonian in the Bogoliubov-deGennes (BdG) formalism
is given by

H =
1

2

∑

k

(
c†k,l, c−k,l

)( h
′

∆

−∆∗ −h′T
)(

ck,l
c†−k,l

)
. (4.10)

The 2n × 2n matrix H associated to such a Hamiltonian can usually not be described
by three real components and therefore is not in general parameterized by a vector field.
There are, however, cases where it is still possible and we consider these cases in the
remainder of this section.

Class D. The real symmetry class D is the usual starting point in the Kitaev sequence
of topological insulators and superconductors as it is the class with no symmetries (be-
sides translations). The full symmetry group is therefore given by G = G0 = {e}.
A realization of this symmetry class is given by a general Hamiltonian of the form (4.10).
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4.2 Euler chain representation of Weyl semimetals and superconductors

Consider the special case of spinless or, equivalently, fully spin-polarized fermions. In
this case the Hamiltonian is given by a 2× 2-matrix (n = 1) of the form

H(k) = ε(k)σz + ∆x(k)σx + ∆y(k)σy , (4.11)

with ∆ =: ∆x + i∆y.
This Hamiltonian already has the form of the Weyl Hamiltonian with a vector field given
by h(k) = (∆x(k),∆y(k), ε(k)). The eigenenergies are given by E± = ±

√
ε2 + |∆|2 and

Weyl nodes can appear as zeroes of the vector field h. Even though there are no con-
straints due to symmetries, the CAR still put some constraints on this Hamiltonian.
First, the normal-state dispersion ε(k) needs to be symmetric ε(−k) = ε(k) and second
the superconducting order parameter ∆ needs to be anti-symmetric ∆(−k) = −∆(k).
For a vector field of this form we can derive the following properties concerning possible
Weyl points. Consider a Weyl point at k0, i.e. h(k0) = 0, then there has to be a second
Weyl point at −k0 with the opposite Weyl charge q(k0) = −q(−k0). Therefore, Weyl
points can only occur in pairs. A possible reference vector field in this class could be
of the form hDref(k) = (sin(kx), sin(ky), 1). The vector field is constant in z-direction,
while being anti-symmetric in the x- and y-direction. Note, that hx ≡ 0 ≡ hy would
also be a choice which is anti-symmetric in x and y, but the vector field would no longer
parametrize a superconductor since ∆ ≡ 0.

These considerations lead to the topological classification of Weyl superconductors in
class D to be Z3 ⊕ Zr, where 2r ∈ N is the number of Weyl points in M . The Z3 factor
describes the possible Euler chains in this symmetry class Z3 = H1(M), which can be
obtained from the Euler chain which connects the two partners of a pair and then acting
with H1(M) on it.

Let us consider an explicit example in this class. The Anderson-Brinkman-Morel
(ABM) state [3], which is believed to occur in the A-phase of superfluid 3He, is one
of such examples. It is a state of a three dimensional superfluid of fermions with a
(px± ipy)-wave pairing. The Hamiltonian describing the low energy physics of the ABM
state is given by

H(k) = ε(k)σz +
∆0

kF
(kxσx + kyσy) , (4.12)

with the Fermi momentum kF and the amplitude of the superconducting order parameter
∆0. The two eigenvalues of this Hamiltonian are

E±(k) = ±
√
ε2(k) +

∆2
0

k2
F

(k2
x + k2

y) .

We see that this spectrum has two Weyl points at w± = (0, 0,±kF ) ∈M .

In figure 4.7 a vector field of the type (4.12) is plotted on the fermi sphere. There are
two Weyl points, one on the north and the other one on the south pole of the sphere. In
figure b) we can see a plot of the (projection of the) vector field in the xz-plane. The two
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4 Euler chain representation of Weyl semimetals and Weyl superconductors

Weyl nodes are shown with their respective Weyl charge an the Euler chain connecting
the two Weyl points. The situation is similar to the one shown in fig 4.4. However, there
is still a significant difference between the two vector fields, as one can for example see
by the fact, that the difference of the respective Euler chains is a representative of a
non-trivial element in H1(M).
Another feature that can be mentioned again at this point is the fact of the non trivial
winding number of the vector field (in the 2D figure of fig 4.7.b) along a cycle which
intersects with the Euler chain.

(a) Vector field plotted on the Fermi sphere. (b) Slice of the Vector field at y = 0.

Figure 4.7: Vector field of the ABM state. In (a) the vector field is plotted on the Fermi
sphere S2

F in the BZ. It vanishes on the north and on the south pole of S2
F .

In (b) a slice of the vector field at y = 0 is shown. The two Weyl points and
their Weyl charge are indicated. The light blue 1-chain is the Euler chain
associated to the two Weyl points (with the reference vector field being hDref).

Class C. Symmetry class C can be realized in superconductors with only spin-rotational
symmetry of the group SU(2)spin. The requirement that the Hamiltonian commutes with
the three generators of spin rotations Ji (i = x, y, z) allows us to reduce the Hamiltonian
to a (4n× 4n)-matrix of the form

H =




a 0 0 b
0 a −b 0
0 −c −aT 0
c 0 0 −aT


 . (4.13)

Furthermore, this decomposes into two commuting (2n× 2n)-blocks corresponding to a
spin-singlet state and it is sufficient to consider one of them. The BdG-Hamiltonian to
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consider in this symmetry class then is of the form

H(k) =

(
ε(k) ∆(k)

∆∗(k) −ε(k)

)
. (4.14)

Note, that the CAR again constrain the form of ε and ∆. In this case both of these
terms have to be symmetric: ε(−k) = ε(k) and ∆(−k) = ∆(k).

The situation is again very similar to the one in class D. We can define the vector
field h(k) = (∆x,∆y, ε) and the constraint is given by h(k) = h(−k). This leads to the
fact that every Weyl point at k0 has a partner Weyl point at −k0 with opposite charge.
This is equivalent to the situation in class D. The Weyl charge can be any integer q ∈ Z
and for a total number 2r of Weyl points there are r independent Weyl charges which
leads to a Zr invariant. The group of Euler chains is again given by Z3 = H1(M).
A reference vector field in this class could be the constant vector field hCref(k) = (1, 1, 1).
Note, that by the same argument as before, the constant vector field along only one of
the cycle directions is not a good choice, as it does not parametrize a superconducting
Hamiltonian.

The prime example in this class is a spin-singlet superconductor. To give a concrete
example of this, consider the chiral (dx2−y2 ± idxy)-wave state. The low energy physics
of this is described by the Hamiltonian

H(k) = ε(k)σz +
∆0

k2
F

[
(k2
x − k2

y)σx + 2kxkyσy
]
. (4.15)

An exemplary vector field of this type is shown in figure 4.8. There are two Weyl
points, one at the north pole and one at the south pole of the Fermi sphere. The Weyl
charges of these two Weyl points are ±2, which can be seen in the right figure of 4.8.
The two dimensional weak invariants of a superconductor in class C are also Chern
numbers. In the example given here, these invariants are even integers and therefore the
Weyl charge also should be an even integer indicating the jump of the weak invariants
between two Weyl charges. This can also be seen in the right of fig.4.8. The two slices
show the profile of zeroes with an index of ±2.

Class CI. The third symmetry class is commonly realized in superconductors is class
CI, which have spin-rotation and time-reversal symmetry. The group of unitary sym-
metries is therefore G0 = SU(2)spin and the group of all symmetries is

G = G0 ∪ TG0 .

As before, we can reduce the Hamiltonian H to the form (4.13) with the use of spin-
rotational symmetry. Considering the situation n = 1, time-reversal symmetry T re-
quires c and b to be real numbers and hermiticity requires c = b. This leads to a
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(a) Vector field plotted on the Fermi sphere. (b) Slice of the Vector field at kz = ±kF .

Figure 4.8: Plot of an exemplary vector field in class C. In (a) the vector field is plotted
on the Fermi sphere in the BZ. (b) shows two slices of the vector at ±kF .
The Weyl charge of the two Weyl points is ±2 which can be seen from the
behavior of the vector field close to the Weyl points.

reduction of the matrix to a (2× 2)-matrix of the form

H =

(
a b
b −a

)
, (4.16)

with a, b ∈ R.
This constraints the vector field to be of the form

hx(k) = hx(−k), hy(k) ≡ 0, hz(k) = hz(−k) .

Again, this is not a good vector field on the three-dimensional torus. However, consid-
ering this as a vector field on the two-dimensional torus, Euler structures can be used
to understand the topology of WSM in this case. An example of such a vector field is
plotted fig.4.9. A reference vector field in this class is for example the constant vector
field hCI

ref(k) = (1, 0, 1).

In the example it is already visible that Weyl points come with a minimum number
of 4. This is due to the fact that for every Weyl point at k0 there is a partner Weyl
point at −k0 with the same Weyl charge. Therefore, in order to add up to a total Weyl
charge of zero, there has to be another pair of Weyl points with the opposite Weyl
charge. However, a fundamental difference to time-reversal symmetric WSMs is that
the vector field does not need to vanish at the TRIM. The set of Euler chains is again
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Z3 = H1(M), where Euler chains need to come in pairs. Let 2r be the number of Weyl
points (r ∈ N0, r 6= 1), then the local invariant associated to the Weyl points is given by
Zr−1.

Figure 4.9: Plot of a vector field for class CI. Weyl points opposite to each other have
the same Weyl charge and a minimum of four Weyl points is required. The
difference to a time reversal symmetric vector field can also be seen, as the
symmetry constraint in this class does not force the vector field to vanish at
the TRIM.

Class DIII. Symmetry class DIII is discussed somewhat separately in this final para-
graph since it is not clear in what sense superconductors in this symmetry class can be
parameterized by a vector field in a general sense. Systems realizing class DIII only
have time-reversal symmetry. This is not enough to reduce the number of parameters
to three. Nevertheless, there might be systems which can be parameterized by a vector
field and Euler structures can be used to understand the topology of these Weyl Super-
conductors.
From the considerations in all the other classes, we can already say, that due to time-
reversal symmetry, a Weyl point at k0 has a partner Weyl point at −k0 with the same
Weyl charge. Therefore, the minimum number of Weyl points for systems in class DIII
is four. Further analysis of any specific model is, however, necessary to give a more
detailed discussion about Euler structures in class DIII.
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4.2.3 Fermi arcs

A particularly interesting feature of Euler chains is their direct connection to the so
called Fermi arcs. Fermi arcs are well known in the study of Weyl semimetals, as they
are directly observable in experiments and give a direct indication of the existence of
Weyl points in the bulk. They can be observed on the surface of Weyl semimetals and
are usually measured with angle-resolved-photoemission-spectroscopy (ARPES).
The first experimental discovery of these Fermi arcs was on the surface of tantalum ar-
senide (TaAs) [30]. The group around Xu et al. used ARPES to measure the surface
states as well as the Weyl points in the bulk and therefore successfully identified TaAs
as a Weyl semimetal.
The measurement done with ARPES allows to directly measure the dispersion relation
of the electrons on the surface. The idea is based on the photoelectric effect. Photoe-
mission is generated by the illumination with X-rays or with ultraviolet light (ARUPS).
The valence electrons emitted from the surface by the photoelectric effect are detected
and measured at different angles. Measuring the energy of the emitted electron as well
as the angle allows to determine the dispersion relation of these surface electrons. Thus,
in the case of Weyl semimetals ARPES provides a direct indication of zero modes on
the surface. A picture of the experimental results can be found for example in [30].

We want to provide a somewhat qualitative argument why the Euler chain of a WSM
is connected to the surface Fermi arcs measured in an experiment. From the theory
of topological insulators and superconductors we know, that a topologically non-trivial
state admits zero modes on its surface. Fermi arcs are a direct result of this in the case
of a semimetal with at least two Weyl points in the bulk.
Consider two Weyl points in the bulk of the Brillouin zone, which are separated along
the z-direction. Then there will be zero modes in the spectrum of the surfaces, not
orthogonal to the separation of the two Weyl points. Or in other words: The Fermi arcs
connect the projection of the Weyl points on the respective surface.
If the projection of the two Weyl point coincides, there will be no zero mode on that
surface. In the example of a separation along the z-axis, this would be the case on a
xy-surface. The existence of these zero modes on any other surface is due to the fact
that the system is topologically non-trivial between the two Weyl nodes while trivial
outside. The surface states therefore do only exists between the projection of two such
Weyl points.
Recalling the definition of the Euler chain associated to a set of Weyl points and the dis-
cussion on the reference vector field href corresponding to some trivial class, these were
done in such a way, that the Euler chain (or its projection on some surface) corresponds
precisely to Fermi arcs. Recall, that weak topological invariants were only non-trivial
between the two Weyl points. Or following the more mathematical argument made in
the previous discussion for class A: The integral of the Berry curvature over a 2D closed
surface depends only on the total Weyl charge enclosed in the surface and its value is
proportional to the total Weyl charge.
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We conclude that the measurement of Fermi arcs is not only a good indication on
the existence of Weyl points, but it also already gives some information on the topol-
ogy of the respective WSM. Moreover, the deep connection between Euler chains and
their experimental counterparts make the study of Euler structures more interesting and
valuable.

4.3 Summary and discussion

We set out motivated by the idea to find a classification scheme for Weyl semimetals
and Weyl superconductors. Due to the fact that the vector bundle is not defined at
the Weyl points it is obvious that a new mathematical model was needed. In [22] the
authors introduced vector fields and Euler structures to describe Weyl semimetals in
class A and in a seminal paper [25] also class AII. The idea of introducing vector fields
as a description of the band structure avoids the issue of discontinuity, as Weyl points
are described by zeroes of the vector field. This allows to describe the band structure
of such systems in a mathematically well-defined way. Movement, creation and annihi-
lation of Weyl points can then also be described in a continuous way. Moreover, this
approach furnished the definition of a global topological invariant, which extends the
locally defined Weyl charges.
We laid out a general framework for semimetals and superconductors and introduced
Euler structures in all symmetry classes. Moreover, we discussed possible topological
invariants in form of Euler chains and how the action of the symmetry group constraints
them. From a physical point of view, these Euler chains or better their projection onto
the surface corresponds directly to experimentally observed Fermi arcs. These surface
states play an important role in the experimental verification of Weyl semimetals [30]
and the notion of Euler structures provides some theoretical insights into their struc-
ture.
Another interesting aspect of Euler structures is the interaction of Euler chains with
the topological invariants of insulators and superconductors – weak and strong. This
is particularly interesting in the case where time-reversal symmetry is present, as was
discussed in [25].

However, even though the introduction of Euler structures allowed us to discuss all
symmetry classes of Weyl semimetals and superconductors in a general framework, the
approach has its limitations. Probably the most striking limitation is that not all WSMs
and WSCs can be parametrized by vector fields and therefore can not be described by
Euler structures. Inspired by the initial success of the vector field description, we were
looking for a generalization which would not depend on a vector field, but still was
able to describe Weyl points continuously. The idea of co-Euler structures, in a sense
dual to Euler structures, was already mentioned in [22] and [6]. This seemed like a
promising notion that would allow for a generalization, but it turned out that it is not
so easy to generalize as similar restrictions as for vector fields hold. Also some other
ideas based on differential forms on the Bloch bundle were not fruitful and the question
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if a generalization of Euler structures is possible is left open.
Another drawback of the Euler chain representation of WSMs and WSCs is the absence
of disorder. The effects of disorder would break translational invariance and thus can
not be included. Of course disorder effects are anticipated to play a significant role in
general condensed matter systems and therefore should be included in a good model. As
already mentioned, the second part of this work is concerned with the effects of disorder
and will bring some more insights into the effects of disorder in a Weyl semimetal.
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5 Disordered Weyl semimetals

5.1 Introduction

In the second part of this thesis we want to work towards a better understanding of the
effects of disorder on Weyl points. Since disorder was not the main focus of the first part
and was only considered in the background but not truly implemented into the model,
we take a different route here. Disorder is quite an important factor in a more realistic
model for condensed matter systems such as semimetals, insulators or superconductors.
For this reason we want to include disorder in our mathematical description. However,
as was already mentioned before, this is not possible in the previously used framework.
We therefore now turn to a different approach which allows us to introduce different
models of disorder and study its effects.
We begin with a short introduction to the setting and give a few details on the mathe-
matical framework. After a short discussion of the model, we continue with the analysis
and perform the disorder average over all possible disorder configurations. In order to
work with the result of the disorder average there are different methods which can be
used. We will present three approaches to work with the disorder averaged result and
discuss advantages and problems of them. In the end we propose a potential result which
is strongly indicated by presented calculations.

5.2 General setting

In order to deal with disorder effects, quantum field theoretical methods have proven
valuable in many different occasions. We will specifically make use of the so-called su-
persymmetric method. The idea of supersymmetry is to introduce bosonic and fermionic
degrees of freedom simultaneously which has some advantages over introducing only one
kind. For more details on supersymmetry we refer to one of the many textbooks on the
topic. In the context of condensed matter quantum field theory the book by Efetov [11]
is for example a good reference and we will use his approach in this part.
The method of supersymmetry is particularly useful when we perform the disorder av-
erage and will be the starting point for all three approaches presented in the remainder.

5.2.1 Supersymmetry

We begin with the introduction of the so called Wegner-Efetov method of supersymmetry,
as for example described in the book

”
Supersymmetry in Disorder and Chaos“ by K.

Efetov [11]. There will be only a very brief introduction to the basic definitions and
the notation for the remainder. For a more detailed introduction consider for example
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[11]. The key idea is to introduce supervectors and supermatrices and express physical
quantities as integrals over supervectors. This makes it possible to perform the step of
disorder averaging and then continue with further calculations.
Let us introduce a supervector ψ as

ψ =

(
χ
S

)
,

with a vector χ of p Grassmann variables and S a vector of q complex numbers. We also
introduce the Hermitian conjugation

ψ̄ =
(
χ∗1 . . . χ

∗
p S
∗
1 · · ·S∗q

)
,

where S∗i is the complex conjugate of Si and χj , χ
∗
j are independent Grassmann variables.

A supermatrix is a linear transformation F of supervectors and is of the form

F =

(
a σ
τ b

)
,

where a and b are p× p and q× q square matrices with complex entries and σ and τ are
p× q and q × p rectangular matrices with Grassmann variables. There are analogues of
the conventional trace and determinant of a matrix for the super case:

STr F = Tr a− Tr b ,

SDet F = Det
(
a− σb−1τ

)
Detb−1 .

The analog relation to the non super case, Tr lnA = ln DetA, also holds here: ln SDetF =
STr lnF .

Furthermore, we introduce the Berezin superintegral form

Dψ̄Dψ :=
1

(2π)p
dS̄dS∂χ̄∂χ, dS̄dS =

q∏

l=1

2 dRe(Sl)dIm(Sl) ∂χ̄∂χ =

p∏

m=1

∂2

∂χm∗∂χm
.

At last we introduce the matrix Λ, which distinguishes between advanced and retarded
sector. We denote the number of retarded bosons by q+ and the number of advanced
bosons by q− (with q+ + q− = q). Then Λ is the diagonal matrix

Λ = diag
(
1p,1q+ ,−1q−

)
.

There is no need to introduce an additional minus sign in the fermion-fermion sector as
it can be absorbed in the definition of χ and we do not want to introduce an unnecessary
sign here.
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5.2 General setting

Now, let us state the two key results which justify the introduction of supervectors:
∫

exp
(
−ψ̄Fψ

)
Dψ̄Dψ = SDet F , (5.1)

∫
ψiψ

∗
j exp

(
−ψ̄Fψ

)
Dψ̄Dψ

SDetF
= (F−1)ij . (5.2)

The most important point of this is that the denominator in (5.2) is absent when used
for calculations in quantum field theory due to the fact that F is chosen to be unity in
the supersymmetry space. Another way to understand this is that the factors DetA and
Det−1A, usually appearing in such calculations, cancel each other out in the supersym-
metric method since we introduce fermionic variables alongside bosonic ones.

This leads to the generating functional

Z =

∫
DψDψ̄ exp

(∫
d3x STr

(
ψ̄ i(H − E)ψ − ε ψ̄Λψ

))
, (5.3)

with Λ distinguishing retarded and advanced sector, energy E and ε = 0+.
The name generating functional comes from the fact, that it is used to compute corre-
lation functions of the Greens function GR/A = (H − E ± i ε)−1.

5.2.2 Model - details and disorder average

We begin with the Hamiltonian describing the low-energy spectrum of two Weyl nodes
with opposite charges ±1

H =
∑

l

(σl ⊗ τ3) (−i∂l −Al) + (σl ⊗ 12) bl + V = H0 +Hdis , (5.4)

where σ are Pauli matrices in spinor space, τ3 distinguishes the two Weyl nodes and 2b
separates the two nodes in momentum space. The vector and scalar potential A and
V are two possible ways of introducing disorder to the model and their components are
meant to be random numbers.
As a starting point, we begin by considering only a Gaussian distributed scalar potential
and no vector potential A = 0. Also, we are interested in the system at Fermi energy
EF = 0.

We introduce supersymmetric integration variables ψ corresponding to the Wegner-
Efetov supersymmetry method. Supersymmetric integration variables in that case can
be written as variables with two indices s, r, where r goes over the super(replica) degrees
of freedom while s goes over the spinor degrees of freedom of the model Hamiltonian.
The advantage of the introduction of these supersymmetric variables becomes evident
when performing the disorder average. We assume a Gaussian distribution for V

〈V 〉 = 0 , 〈V (x)V (y)〉 = β2δ(x− y) .
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5 Disordered Weyl semimetals

Then the disorder averaged generating functional 〈Z〉 is
∫
d3xDψDψ̄ e

− 1
2β2

V 2(x)
exp

(∫
d3x STr ψ̄ iH0ψ − εψ̄Λψ + iV (x)ψ̄ψ

)
,

=

∫
DψDψ̄ exp

(∫
d3x STr ψ̄ iH0ψ − εψ̄Λψ − β2

2
(ψ̄ψ)2

)
.

Recalling the spinor structure of the variables ψ, the disorder contribution

β2

2

∫
d3x(ψ̄ψ)2

can also be written as an inter node and an intra node interaction, but we do not go
into more details on that here.

The usual way to continue at this point, is to decouple the quartic interaction by a
supermatrix field B. The introduction of B makes use of an integral identity similar to
the Fourier transformation of a normal distribution; for historical reasons this is usually
known as a Hubbard-Stratonovich transformation in physics literature:

e−
β2

2
(ψ̄ψ)2 =

∫
dB e−

1
2
B2−iβ B (ψ̄ψ) .

Applying this identity to our situation at hand yields an extended generating functional
Z[ψ, ψ̄, B]

∫
DψDψ̄DB exp

(∫
d3x STr ψ̄(iH0 − εΛ− iβB)ψ − 1

2
B2

)

and after integrating out the fermionic fields ψ, ψ̄ we obtain the effective action

Seff =

∫
d3x

1

2
B2 − ln SDet(Λε− iH0 + iβB) (5.5)

Remark 10. A word of caution might be needed at this point: Even though the
Hubbard-Stratonovich transformation is based on an exact integral identity, the result is
only valid for small disorder strength β due to the highly oscillatory nature of the result
for strong interactions.

A saddle point analysis gives a mean field solution with the diagonal ansatz B = iκΛ
similar to the result of the self consistent Born approximation (SCBA). We note that this
solution is not unique, but in fact there is a full manifold of saddle point solutions, since
the action is invariant under the supersymmetry group G = U(r, r|2r). Furthermore, we
note that there is a subgroup K ⊂ G of elements which commute with Λ and thus the
manifold of solutions is generated by fluctuations T ∈ G/K.
The strategy following this point will be to start from the manifold of saddle point
solutions M = imβ TΛT−1, with T ∈ U(r, r|2r) and m some constant, written in this
form to simplify the notation in the following section, where we want to expand the
effective action in terms of gradients of T .
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5.3 Gradient expansion

5.3 Gradient expansion

To make the notation and calculations a little simpler, we use the fact that the model
has a symmetry Lie supergroup U(r, r|2r). Therefore, we can focus on the non-compact
boson-boson sector U(r, r), where Λ can be written as Σ3, distinguishing between the
advanced and retarded sector. To return to the general setting we can then use the
supersymmetry of the model to infer the full action.
Before we begin with the expansion of the functional determinant, we want to bring the
expression in a form that will make the computations easier. First, we make a similarity
transformation

Det

(∑

l

σl(τ3∂l + ibl) + imTΣ3T
−1

)

= Det

(
T−1

(∑

l

σl(τ3∂l + ibl) + imTΣ3T
−1

)
T

)

= Det

(∑

l

σl(τ3(∂l +Al) + ibl) +mΣ3

)
,

with Al = T−1∂lT . Next, in order to simplify the following computation even further
we also multiply the operator under the determinant with Σ3 and define the generalized
Dirac operator

D := (σµ ⊗ 12 ⊗ Σ3)((∂µ ⊗ 12 + ibµ ⊗ τ3)⊗ 12r|2r + 14 ⊗Aµ) +m. (5.6)

In short we write

D = Σ3σ
µ(∂µ ± ibµ +Aµ) +m.

The goal is to expand the functional determinant Det−1D in powers of the gradient
of T . However, the determinant needs some way of regularization first due to some
UV divergencies. The method of choice here is the heat-kernel-regularization or zeta-
function-regularization.

For that we use the fact that we can rewrite Det−1D as

Det−1D = exp

(
−1

2
ln Det(DD∗) +

1

2
ln Det(D−1D∗)

)
= e−SR+SI

and apply the heat-kernel regularization to the first part:

SR =
1

2

∫ ∞

ε

dτ

τ
Tr e−τDD

∗
=

∫ ∞

ε

dτ

τ

∫
d3x

∫
d3k

(2π)3
Tr(e−ikxe−τDD

∗
eikx) . (5.7)

On the right hand side we already explicitly expressed the trace over position space in
terms of the two integrals. The latter expression is the one we are looking to expand in
gradients of T with the intention of extracting the singular part for the limit of the UV
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5 Disordered Weyl semimetals

regularization parameter ε→ 0.

The first step is to simplify the integrand and for that we begin with the hermitian
conjugate of D

D∗ = −Σ3σ
µ(∂µ ± ibµ +Aµ) +m.

This follows from the fact that Aµ ∈ LieU(r, r) and therefore A∗µ = −Σ3AµΣ3.
With this we can now simplify the expression DD∗ = −(σµ∇sµ)2 + m2 with ∇sµ =
Σ3 (∂µ + sibµ +Aµ) and s = ±1. Using the commutation relations of the Pauli matrices
and ∇sµ and introducing the notation

2A−µ := Aµ − Σ3AµΣ3

for the part of Aµ that anti-commutes with Σ3, we simplify the expression for the mo-
mentum shifted operator Tr e−ikxDD∗eikx:

e−τk
2
∑

s=±1

Tr((∂µ +Aµ + sibµ)(∂µ +Aµ + sibµ + 2ikµ) (5.8)

− 2A−ν σ
νσµ(∂µ +Aµ + i(s bµ + kµ))) . (5.9)

Here the sum over s comes from the fact that the 4×4-matrix is block diagonal with the
only difference between the two blocks being the sign of the momentum shift b. We also
took a factor of e−τk

2
out of the trace to compute the k-integral in (5.7). The integral

therefore has the form of a Gaussian integral with zero mean and variance 1/2τ .

Next, we want to expand this integrand in τ and express the effective action in terms
of gradients Aµ.
As stated above, the k-integral only allows for terms which are even in kµ to contribute,
since 〈kµ〉 = 0 and every quadratic term contributes 〈kµkν〉 = δµν/2τ .
With this, a short computation shows that the contributions from the first term (5.8)
cancel each other.
The second term (5.9) has a contribution and the expansion is as follows

∑

s

(
2− 4τ(TrA−µ (Aµ + sibµ) + 2τ2(A−ν σ

νσµ(∂µ +Aµ + sibµ + ikµ))2
)
.

Up to linear order in τ the contributions are

4− 8τTrA−µA
µ + 4τTrA−µA

µ +O(τ2) .

The second order contributions read

∑

s

2τ2(A−ν σ
νσµ(∂µ +Aµ + sibµ)2 .

We note that only even terms in b contribute due to the factor s in front of b and
the consequence that odd terms cancel each other in the sum. Moreover, we are more
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5.3 Gradient expansion

interested in contributions quadratic in A and ∂, hence we only look at the second term
containing two factors of b:

−4τ2Tr(A−ν σ
νσµbµ)2 = −16τ2Tr(A−3 A

3) b2 + 8τ2TrA−µA
µ b2 .

Following this, we take a look at the contributions from the mixed terms (of order τ2).
Terms with a quadratic term in k contribute to O(τ):

∑

s

2τ2(∂µ +Aµ + sibµ)kµ(A−ν σ
νσλkλ) = 8τTrAµA−µ .

The contribution of b cancels and the first term has a factor of two, because the contri-
bution is symmetric. The rest of the second order contribution is then given by

−
∑

s

τ2(∂µ +Aµ + sibµ)(∂µ +Aµ + sibµ)(A−ν σ
νσµ(∂µ +Aµ + sibµ) ,

where we can now again look at the terms quadratic in A, ∂:

∑

s

τ2(2bµ(∂µ +Aµ)(A−ν σ
νσλbλ) + bµbµA

−
ν σ

νσλAλ) ,

= 8b2τ2TrAνA−ν + 4b2τ2TrA−µA
µ .

Collecting all of the terms, we arrive at

4 + τ(4TrA−µA
µ + τ2(20b2TrA−µA

µ − 16b2Tr A−3 A
3) +O(τ2) . (5.10)

The effective action can now be written in terms of Aµ and the leading order reads

Seff =
1

2

∫ ∞

ε

dτ

τ
e−m

2τ

∫
d3k

(2π)3
e−k

2τ 4
(
1 + τ Tr A−µA

µ +O(τ2)
)
,

=
1

4
√
π3

∫ ∞

ε

dτ

τ5/2
e−m

2τ (1 + τTr (A−µA
µ +O(τ2)) .

And for small τ the integral has the expected singularity

Seff =
1

2
√
π3

(
ε−3/2 + ε−1/2 Tr

(
A−µA

µ
)

+ . . .
)
.

Note that TrA−µA
µ = 1

4 Tr[Σ3, Aµ]2 is equal to the known diffusive term

1

4
Tr[Σ3, Aµ]2 =

1

4
Tr(∂µM)2 ,

with M = imβ TΣ3T
−1 as before.

Even though we expected a diffusive term, this result cannot be the complete answer.
Since the heat-kernel regularization only works for a hermitian operator, we applied it
to 1/2ln DetDD∗, which only captures the absolute value of the determinant while the
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5 Disordered Weyl semimetals

angular information is lost in that case. Unfortunately, we do not have a solution for
this issue right now.
In the article [2] a similar analysis is done, but the method of regularization in that work
differs from the heat-kernel regularization we used here.

Due to the unsatisfactory result and the concerns about validity of the Hubbard-
Stratonovich transformation, we follow a different appraoch in the next chapter. The
method of superbosonization is often used in the case where the Hubbard-Stratonovich
transformation fails as it still works for strong disorder.

5.4 Cumulant expansion

Another common approach to define a bosonic field theory based on the supersymmetry
method is the so-called superbosonization method introduced in [5]. For this approach
we again begin with the model Hamiltonian (5.4) with a random vector potential A and
a random scalar potential V . After performing the disorder average as in the previous
section, the disorder part of the Hamiltonian can be written in terms of gauge invari-
ant expressions

∑
s ψ̄

r
sψ

s
r′ . At this point the superbosonization method rewrites such an

expression in terms of a supermatrix field M r
r′ :=

∑
s ψ̄

r
sψ

s
r′ . Based on these ideas we

study the model Hamiltonian with two opposite Weyl nodes in the remainder of this
section.

We begin the analysis with the disorder part of the Hamiltonian (5.4). The effects of
disorder are described by a random vector potential A and a random scalar potential
V =: A0, which we both assume as random variables with a Gaussian distribution
〈Aµ〉 = 0, 〈Aµ(x)Aν(y)〉 = β2δµνδ(x− y), with µ = 0, . . . 3.
The disorder average of the generating functional Z can be done as before and we obtain

〈Z〉 =

〈
exp

(
−i

∫
d3x STr ψ̄

∑

µ

(σµ ⊗ τ3)Aµψ

)〉

= exp

(
−β

2

2

∫
d3x

∑

µ

(STr ψ̄(σµ ⊗ τ3)ψ)2

)
,

where we used the convetion σ0 = 12.
Using the identity ∑

µ

(σµ)st(σµ)s
′
t′ = 2δst′δ

s′
t ,

the disorder average can further be evaluated to

〈Z〉 = e−β
2
∫
d3xSTrM2

, (5.11)

with the definition of the superbosonization field M r
r′ :=

∑
s ψ̄

r
sψ

s
r′ , or ⇔ ψ ⊗ ψ̄ = M .

The supermatrix M can be understood in terms of its four different blocks, where MBB
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5.4 Cumulant expansion

is positive Hermitian matrix, MFF is a unitary matrix and MBF ,MFB are matrices of
Grassmann variables.

Remark 11. Note that we avoided the decoupling of the disorder term with the Hubbard-
Stratonovich transformation, which was problematic in the limit of strong disorder.
Therefore, it is better to work with the superbosonization field M .

In the second step we would like to express the kinetic term of the Hamiltonian (5.4)
in terms of the superbosonization field M . It is, however, not immediately clear how this
can be done. Here we use a trick that is based on the observation that the expression
M =

∑
s ψ̄

r
sψ

s
r′ is invariant under transformations ψ 7→ uψ, ψ̄ 7→ ψ̄u−1 with u ∈ U(4).

In order to make use of such local gauge transformations, we average over all possible
gauge transformations and derive an effective action by expanding the average in terms
of cumulants. After taking the average over all gauge transformations, the result will
have a gauge invariant form and the superbosonization method can be applied to these
expressions.
In order for this trick to work, we need the model to be defined on a discrete lattice with
lattice constant a. With this the discrete kinetic term of (5.4) becomes

∫
d3x STr ψ̄

∑

l

(σl ⊗ τ3)∂lψ = a2
∑

x,y

STr ψ̄(x)
∑

l

(σl ⊗ τ3)∂l(x, y)ψ(y) ,

with the discrete differential operator a ∂l = ∂l(x, y).
If we now use the local gauge transformation u(x) ∈ U(4) and average over U(4), we
obtain the following generating functional

〈Z〉 =

∫
DψDψ̄ exp

∫
d3x STr

(
−εΛM − β2M2

)
· e−F [M ] ,

−F [M ] = ln

〈
exp a2

∑

x,y

STr ψ̄(x)u−1(x)(σl ⊗ τ3)∂l(x, y)u(y)ψ(y)

+ aψ̄(x)u−1(x)bµ(σµ ⊗ 12)u(x)ψ(x)

〉

U(4)

.

We expand the last term F [M ] in cumulants and then perform the integrals in the
unitary group. For the integrals in the unitary group we use the Haar measure and the
following integral property

∫

U(N)
duust(x)(u−1)s

′
t′(y) =

1

N
δxyδ

s
t′δ

s′
t . (5.12)

From the properties of integrals in the unitary group it is immediately clear that the
first order term vanishes. However, we are more interested in the second order and the
third order term and we will derive them here.
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5 Disordered Weyl semimetals

The second order term will be of the form (summation over twice occurring indices is
understood)

1

2

〈(
a2
∑

x 6=y
ψ̄rs(x)u−1(x)ss′(σ

l ⊗ τ3)s
′
t′ ∂l(x, y)u(y)t

′
t ψ

t
r(y)

+ aψ̄(x)u−1(x)bµ(σµ ⊗ 12)u(x)ψ(x)

)2〉

U(4)

. (5.13)

With (5.12), the identity ψ̄rsA
s
tψ

t
r = STr

(
ψ ⊗ ψ̄

)
A and a change of variables (ψ⊗ψ̄) 7→M

the first term becomes

a4

32

∑

x 6=y
STr M(x)M(y) Tr

∑

k,l

(σk ⊗ τ3)(σl ⊗ τ3)∂k(x, y)∂l(y, x) .

And with the properties of Pauli matrices σ we can further simplify the expression to

a4

8
STr M(x)M(y)

3∑

k=1

∂k(x, y)∂k(y, x) . (5.14)

The second term in (5.13) reads

bµb
µ

8
STr M(x)2 .

Since the fields in the second term are taken at the same position while the fields in the
first term are taken at different positions, mixed terms between the two contributions
vanishes.
In the final step, we can now complete the expression (5.14) to the square of the gradient
of M by the addition of a small diagonal term 1

4

∫
d3x STr M2

a4

8

3∑

k=1

∑

x 6=y
STr M(x) ∂k(x, y)M(y) ∂k(y, x) + diagonal term

=
a4

4

3∑

k=1

∑

x

STr M(x) ∂k(x, x+ ek)M(x+ ek) ∂(x+ ek, x) + diag.

=
a4

8

∑

x

3∑

k=1

STr
(
M(x)2 − 2M(x)M(x+ ek) +M(x+ ek)

2
)

=
a4

8

∑

x

3∑

k=1

STr (M(x+ ek)−M(x))2 ≈ a3

8

∫
d3x

3∑

k=1

STr (∂kM)2 ,

And with this the effective action 〈Z〉 takes the form
∫
dM exp

∫
d3x Str

(
−εΛM +

4

a3
lnM − β2M2

+ (~vF )2a
3

8

∑

k

STr(∂kM)2 + (~vF )2a6 b
2

8
M2

)
, (5.15)
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where we changed the integration variable toM and the change of the Berezin integration
measure

∏

r

4∏

s=1

dψsr′dψ
r
s = SDet4(M)

∏

r,r′
dM r

r′ ,

appears as lnM in the effective action.

Now, the third order term is expected to be of importance to the field theory as it
would break the chiral symmetry, which is expected for a field theory describing two
Weyl points with opposite chirality.
Turning now to the third order term

1

6

〈
a2

∑

x6=y
ψ̄rs(x)u−1(x)ss′(σ

l ⊗ τ3)s
′
t′ ∂l(x, y)u(y)t

′
t ψ

t
r(y)




3〉

U(4)

we look for non-zero contributions. We dropped the second term, proportional to the
separation of the Weyl points b, because there is no non-zero contribution from this
term. The cross terms vanish by the same argument as before and the cubic term of the
pauli matrices and the vector b vanishes.
Similar to the result above, we find

a6

384
STr M(x)M(y)M(z) Tr

(
(σk ⊗ τ3)∂k(x, y)(σl ⊗ τ3)∂l(y, z)(σ

m ⊗ τ3)∂m(z, x)
)
.

This term vanishes, because the two contributions comming from the two Weyl nodes
(distinguished by τ3) cancel each other. However, we can as well take a look at the
individual contributions

1

48
STr M(x)M(y)M(z) Tr

(
σk∂k(x, y)σl∂l(y, z)σ

m∂m(z, x)
)

=
i

24
εklm STr ∂k(z, x)M(x) ∂l(x, y)M(y) ∂m(y, z)M(z) .

Unfortunately, this term also vanishes. One can understand that this term vanishes
by the fact, that the difference vectors between the three positions x, y, z actually lie
in a plane (defined by x, y, z) and therefore this contribution vanishes due to the ε-tensor.

We set out from a discrete Hamiltonian with two Weyl nodes in the presence of disorder
in form of a random vector potential and a random scalar potential. After the disorder
average we applied the method of superbosonization to obtain an effective action (5.15)
in terms of the supermatrix field M . The result is still unsatisfactory, since it has a
chiral symmetry, which is expected to be broken for an action with two opposite Weyl
nodes.
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5.5 Stacked network model

In this section a 3D network model based on the well-known Chalker-Coddington model
is introduced. The idea is to start with stack of 2D network models and introduce
an interaction between neighboring layers. We derive the Hamiltonian of the network
model and see that for a certain choice of scattering between the layers the Hamiltonian
describes to Weyl nodes. This idea is inspired by similar considerations in the study of
Weyl semimetals, where Burkov and Balents show that a system of stacked topological
insulators and normal insulators hosts a WSM phase [7].
We begin with a short reminder of the 2D Chalker-Coddington model as it introduces
many of the ideas for the 3D case in a nice way. Afterwards the model of the 3D stacked
network is introduced and we derive the Hamiltonian of the 3D model in the clean case
without disorder. In a final step we reintroduce (weak) disorder to the system and derive
an effective Hamiltonian with a random vector potential and scalar potential.
After the introduction of the model, we use the explicit two dimensional structure of the
layers and apply the method of non-abelian bosonization introduced by Witten [29] in
1984 to the layers. The crucial part then is to understand the coupling of neighboring
layers in terms of the bosonic field theory.

5.5.1 Chalker-Coddington Model

The 2D Chalker-Coddington Model was introduced by Chalker and Coddington [9] to
simulate the single-particle dynamics of the integer quantum Hall effect (IQHE) by a
square lattice of directed links. It describes the physics of electrons in a two dimensional
plane with uniform perpendicular magnetic field and a slowly varying random potential.
Chalker and Coddington derive the details of the model by matching solutions of the
Schrödinger equation in different regions along common boundaries. The solution in a
certain Landau level along strip of an equipotential line can be fully described by an
amplitude Z ∈ C [26]. These are modeled by links in the model. In regions where two
strips come close to each other, quantum tunneling has to be considered and gives a
relation between the amplitudes in each strip before and after the tunneling. This can
be modeled by nodes, where each node has two incoming and two outgoing links at-
tached to it. We will formulate such a process in terms of a unitary scattering matrix as
introduced in [20], as opposed to the original formulation in [9] with a transfer matrix.
The following section gives a more detailed introduction to the 2D Chalker-Coddington
model and its relation to the 2D Dirac Hamiltonian.

Each link of the network carries a copy of the (link)-Hilbert space Cl ≡ C and the
total Hilbert space is given by H =

⊕
l Cl. The dynamics of the network are described

by the discrete time-evolution U = UrUs, which is composed of a random phase Ur and
a non-random scattering process Us. To define these operators consider a basis {|l〉} of
unit vectors |l〉 ∈ Cl for H. The random phase operator acts diagonal Ur|l〉 = eiφl |l〉,
with uniformly distributed and independent random phases φl.
To define Us, denote by l± the to links following l by a left turn (+) or a right turn (-).
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Then the scattering process is described by

Us|l〉 = e+iπ/4 sin(tn) |l+〉+ e−iπ/4 cos(tn) |l−〉 , (5.16)

where tn ∈ [0, π/2] defines the probability for a right/left turn at every node n.
A full rotation, i.e. taking four times a left (right) turn, should amount to a factor of
−1 due to the described particles being electrons with spin 1/2. This total factor of −1
can be distributed into four phases of e±iπ/4 for each left/right turn and highlights the
invariance of the model under a rotation of an integer multiple of π/2.

Figure 5.1: Chalker-Coddington model in a quasi-1D strip geometry. In the case tn = 0
(only left turns) the electrons circle around the elementary plaquettes as
indicated by the orange arrows and the model is in the trivial insulator phase.
For tn = π/2 (only right turns) the blue arrows indicate the circulation of
the electrons and the system is in the quantum Hall insulator phase with two
boundary channels.

Making a particular choice of unit cell and cartesian coordinates, we arrive at a de-
scription of the scattering process by a scattering matrix U : H → H of the form

U =

(
0 M
N 0

)
,

where N : C1⊕C3 → C2⊕C4 and M : C2⊕C4 → C1⊕C3. Now, with eq. (5.16) we can
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write down N and M explicitly

N =

(
e−iπ/4 cos(tn) eiπ/4 sin(tn) ei(kx+ky)

eiπ/4 sin(tn) e−i(kx+ky) e−iπ/4 cos(tn)

)
, (5.17)

M =

(
eiπ/4 sin(tn) ei(ky−kx) e−iπ/4 cos(tn)

e−iπ/4 cos(tn) eiπ/4 sin(tn) ei(kx−ky)

)
. (5.18)

The model becomes critical if the probability for a left turn and a right turn are equal,
i.e. cos(tn) = sin(tn) = 1/

√
2, which is equivalent to tn = π/4 for all nodes. In the

remainder we will be mostly interested in the model at the critical point and, hence,
replace sin(tn) and cos(tn) by 1/

√
2.

The critical behavior can be shown by computing the localization length at that point
and finding that it grows linearly. On the other hand, one can anticipate the critical
behavior for symmetry reasons. For that consider a finite open strip of the network
model, see fig 5.1. If tn = 0 (only left turns), electrons circle around elementary squares
in a clockwise rotation and thus are all strongly localized (orange squares in fig 5.1).
However, if tn = π/2 (only right turns), electrons circle around elementary squares anal-
ogously, but there appears a boundary state at the edge of the strip (blue squares and
boundary in fig 5.1). The appearance of this boundary state indicates a transition from
the normal insulating state to the quantum Hall insulator and therefore indicates the
existence of a critical point somewhere between tn = 0 and tn = π/2, which for symme-
try reasons should be at tn = π/4.
Since we are mainly interested in the model at the critical point, we will assume tn = π/4
in the remainder.

In order to decouple the two spinor spaces C1⊕C3 and C2⊕C4 we consider the two-step
time evolution U2. Taking the square of the time evolution U , we obtain a block-diagonal
matrix U2 = diag(MN,NM), where each of the blocks is an endomorphism of one of
the two spinor spaces MN ∈ End(C1 ⊕ C3) and NM ∈ End(C2 ⊕ C4). Let us first take
a look at MN . As a matter of fact, the other block NM is the same up to a rotation
by −π/2 in the momentum space {kx, ky}.

MN =
1

2

(
ei(ky−kx) + e−i(kx+ky) eiky

(
eiπ/2 eiky + e−iπ/2e−iky

)

e−iky
(
e−iπ/2eiky + eiπ/2 e−iky

)
ei(kx−ky) + ei(kx+ky)

)
(5.19)

And from that we can see that at the critical point MN = 1− iH +O(k2) with

H =

(
kx −iky
iky −kx

)
, (5.20)

which can be brought into the form of the Dirac operator H = kxσx + kyσy with the
unitary transformation of the spinor basis

T =
1√
2

(
1 −1
1 1

)
.
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5.6 Stacked Chalker-Coddington model

From the 2D Chalker-Coddington networks we no construct a 3D model in such a way
that two neighboring layers have opposite link direction. We construct the model with
the reversed link directions between two layers with the hindsight that we want to take
the continuum limit in the stacking direction in the end and the reversed link direction
will lead to a derivative in that limit. We show that the Hamiltonian obtained from this
3D model hosts a Dirac point at k = 0 and by introducing a splitting in the pseudospin
degree of freedom, this Dirac point can be split into two Weyl points separated along
the stacking direction of the 2D network models.
All of this will be explained in more detail in the following sections. However, we
begin with the introduction of the 3D model and follow with a more detailed analysis
afterwards.

5.6.1 The 3D model

We begin with the details of the three dimensional model. The in-plane scattering pro-
cess is the same as in the 2D model. So an incoming electron can scatter left and right
in the same layer or in forward and backward direction in the neighboring layers above
or below. We write again sin(tn) and cos(tn) for the amplitudes of a left and right turn,
to resemble the 2D network in the limit of vanishing tunneling probability between two
layers. We denote the amplitudes for a tunneling process between two layers a and b,
where a is the amplitude for scattering inside the unit cell and b for scattering out of
the unit cell.

Figure 5.2: Model of a 3D stacked Chalker-Coddignton model. (Left) Two layers of 2D
Chalker Coddington networks with opposite link directions. The unit cell
consists of four links in the lower layer – orange – and four links of the
upper layer – blue. (Right) Top view of the stacked 2D layers. The numbers
indicate a choice of a total of eight links in the unit cell, where the blue layer
is on top of the orange layer.
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There are two types of layers, A and B and we choose a unit cell consisting of four
links in each layer (A,B), which makes eight links in total, see fig 5.2. Also we chose
cartesian coordinates as indicated in fig 5.2.

The scattering at each node happens between four incoming and four outgoing links
and Us is described by a 4 × 4 unitary matrix. The in-plane scattering is just as in
the 2D model, but there are two different scattering phases tnA and tnB for the two
layers A and B. The scattering between two different layers is of the form a ei(kl+kz/2) +
b ei(kl−kz/2), where the center of the unit cell in kz direction is chosen to be in be-
tween two layers. In order to keep unitarity we multiply with a normalization N =√

1 + 2(a2 + b2 + 2ab cos(kz)), which becomes 1 in the limit of a, b→ 0.

As we have seen in the 2D case, there are two types of scattering processes, one from
the odd links to the even links and the second one from even links to odd links. A
common way to write it down is with the block decomposition of H = Hodd⊕Heven into
an even part Heven = H2 ⊕H4 ⊕H6 ⊕H8 and an odd part Hodd = H1 ⊕H3 ⊕H5 ⊕H7.
In this decomposition the unitary time evolution U is given by

U =
1

N

(
0 M
N 0

)
.

And as before we can decouple the even and odd part by considering the two-step time
evolution U2.

Since the full (4× 4)-matrices M and N would be too large to fully display here, we
only show the off-diagonal blocks. The diagonal blocks are exactly the same as in the 2D
network model (5.17) and (5.18), but with a rotation by π/2 in momentum space for one
of the blocks, as the two layers are rotated with respect to each other. The off-diagonal
blocks encode the scattering between two different layers and there are four (2×2)-blocks
NI,II : C1 ⊕ C3 → C6 ⊕ C8, NII,I : C5 ⊕ C7 → C2 ⊕ C4, MI,II : C2 ⊕ C4 → C5 ⊕ C7

and MII,I : C6 ⊕ C8 → C1 ⊕ C3. Similar to the e±iπ/4 phases in (5.17), there is a phase
e±iπ/2 for these four off-diagonal blocks. However, the phase is chosen in such a way,
that the Hamiltonian at the critical point becomes a Dirac Hamiltonian with a Dirac
point at k = 0. The phase is picked up for the scattering process in forward direction
one layer up or down. The four off-diagonal block matrices are then as follows (without
normalization):
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NI,II =


 aei(−ky+ kz

2
) + bei(−ky− kz2 ) e−iπ

2

(
aei(kx+ kz

2
) + bei(kx− kz2 )

)

e−iπ
2

(
aei(−kx+ kz

2
) + bei(−kx− kz2 )

)
aei(ky+ kz

2
) + bei(ky− kz2 )


 ,

NII,I =


 aei(ky− kz2 ) + bei(ky+ kz

2
) e−iπ

2

(
aei(kx− kz2 ) + bei(kx+ kz

2
)
)

e−iπ
2

(
aei(−kx− kz2 ) + bei(−kx+ kz

2
)
)

aei(−ky− kz2 ) + bei(−ky+ kz
2

)


 ,

MI,II =


 eiπ

2

(
aei(ky+ kz

2
) + bei(ky− kz2 )

)
aei(kx+ kz

2
) + bei(kx− kz2 )

aei(−kx+ kz
2

) + bei(−kx− kz2 ) eiπ
2

(
aei(−ky+ kz

2
) + bei(−ky− kz2 )

)

 ,

MII,I =


 −e

iπ
2

(
aei(ky− kz2 ) + bei(ky+ kz

2
)
)

−aei(−kx− kz2 ) − bei(−kx+ kz
2

)

−aei(kx− kz2 ) − bei(kx+ kz
2

) −eiπ
2

(
aei(−ky− kz2 ) + bei(−ky+ kz

2
)
)

 .

This model becomes critical at k = 0 for tnA = tnB = π/4 and a = −b.

Now, we can derive the Hamiltonian of this model as the linearized time evolution
at the critical point. Hence, if we square the time evolution U2 to decouple Hodd and
Heven, we get a block diagonal matrix and each one of the blocks is a (4 × 4)- matrix.
Looking again at MN : Hodd → Hodd, it can be written as MN = 1− iH +O(k2) with

H =




kx −iky
−1+i

2 αkz
−1−i

2 αkz
iky −kx −1−i

2 αkz
−1+i

2 αkz
−1−i

2 αkz
−1+i

2 αkz −ky −ikx
−1+i

2 αkz
−1−i

2 αkz ikx ky


 , (5.21)

with α = 2a introduced just to abbreviate the notation at this point.
This can be brought into the known form of a Dirac operator by a unitary transformation

S =
1

2




1 −1 i −i
1 1 1 1
−1 1 i −i
1 1 −1 −1


 .

With the transformation S this becomes

SHS† = vFk · σ ⊗ τ3 . (5.22)

Here vF is the Fermi velocity and as already discussed, this Hamiltonian has the spec-

trum E± = ±
√
k2
x + k2

y + α2k2
z with a Dirac point at k = 0.

Since we are interested in the model for a Weyl semimetal, the goal now is to split this
Dirac point into two Weyl points with opposite Weyl charge. This can for example be
achieved by introducing a perturbation which breaks time-reversal symmetry. There are
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several of such perturbations for this model. However, we can take inspiration from the
two dimensional network model and introduce a difference in the right and left turning
amplitudes tn 7→ tn+ m

2 . Replacing cos(tn) and sin(tn) with cos(tn+ m
2 ) and sin(tn+ m

2 )
in the diagonal blocks of M and N leads to the perturbation of MI,INI,I (up to linear
order of m):

1

2

(
ei(ky−kx) + e−i(kx+ky) ieiky

(
(1 +m) eiky − (1−m)e−iky

)

ieiky
(
(−1 +m)e−iky + (1 +m) eiky

)
ei(kx−ky) + ei(kx+ky)

)
(5.23)

The same is true for the lower right block of MN (up to a rotation by π/2 in momentum
space) and in total we obtain

H =




kx −iky −m −1+i
2 αkz

−1−i
2 αkz

iky −m −kx −1−i
2 αkz

−1+i
2 αkz

−1−i
2 αkz

−1+i
2 αkz −ky −ikx −m

−1+i
2 αkz

−1−i
2 αkz ikx −m ky


 . (5.24)

Following again the same transformations as for (5.21) we arrive at the Weyl Hamiltonian

H = vFk · σ ⊗ τ3 −mσz ⊗ 12 , (5.25)

with energy eigenvalues E2
± = k2

x + k2
y + (αkz ±m)2.

As we can now read off from eigenvalues, the Dirac point at k = 0 is now separated into
two Weyl points at kx = ky = 0 and k0

z = ±m
2a and the separation of the two nodes along

the z-axis is given by m
a .

Weak disorder. The above discussion is true for the case without disorder. But since
we are interested in understanding the effects of disorder on a Weyl semimetal, we
reintroduce it now. Recall, that disorder in this model is introduced through a random
phase Ur, which is diagonal in the link space. Reinstating the unitary operator Ur into
the full time evolution operator U = UrUs we multiply Us from the left with Ur

UrUs =

(
Uodd
r 0
0 U even

r

)
·
(

0 M
N 0

)
,

where U evenr = diag(φ2, φ4, φ6, φ8) and Uodd
r = diag(φ1, φ3, φ5, φ7). The upper left block

of U2 then becomes Uodd
r MU even

r N .

As a first step it seems reasonable to begin with the case of weak disorder. In our
model this means, that the random phases eiφl are not uniformly distributed over the
unit circle, but rather that they are close to unity. We assume that all of the phases
are independent random variables with a Gaussian probability distribution. This is only
an approximate statement, since the normal distribution is not defined on the circle.
However, there exists close analogue of the normal distribution on the circle, the so
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called von Mises distribution. In the limit of a small variance it resembles the usual
normal distribution and we can assume that the phases φl are random variables with
probability distribution functions

P (φl) = exp

(
− 1

2β2
φ2
l

)
.

In this approximation the model can be rewritten as a Dirac Hamiltonian with a
random vector potential, random scalar potential and mass term m – even though also a
possible random variable, the random phases do not lead to a random mass term in this
case. This was shown for the two dimensional Chalker-Coddington model in [17] and it
can be done in a similar fashion for our 3D model. Therefore, we consider the upper left
block of the two step time evolution operator Uodd

r MU even
r N and linearize the operator

to extract the Hamiltonian.
We moreover assume a continuum approximation to be valid and replace the translation
operators T±i ψ(r) = ψ(r ± ei) with

T±i → 1±∆i ∂i , i = x, y, z ,

with lattice constant ∆i for each direction i.
Nonetheless, we keep in mind that we set out from a discrete network model on a lattice
and, in fact, we will return to the discrete setting for the analysis of the kinetic term
of the Hamiltonian. The notation of the continuum approximation helps to keep the
notation concise and we can write the Hamiltonian as

H =




m −i∂− −AA− 2a i∂z 0
−i∂+ −AA+ −m+ γ 0 2a i∂z

2a i∂z 0 m −
(
−i∂− −AB−

)

0 2a i∂z −
(
−i∂+ −AB+

)
−m− γ


 + V , (5.26)

where we furthermore introduced the notation ∂± = ∂x± i∂y and equivalently for Aj± =

Ajx± iAjy. The random variables A, V and γ can be expressed in terms of the link phases
in the unit cell as follows:

AAx =
φ1 − φ3

2
, AAy =

φ4 − φ2

2
, ABx =

φ6 − φ8

2
, ABy =

φ7 − φ5

2
,

A0 = V =
VA + VB

2
=

1

4

8∑

l=1

φl , γ = VA − VB .

We assume these to be independent Gaussian variables with zero mean and variance
〈Aµ(x)Aν(y)〉 = β2δµν δ(x− y) and 〈γ(x)γ(y)〉 = (2β)2 δ(x− y). These derive from the
assumption above that the link phases φl are Gaussian variables with covariance β2 and
zero mean.
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In the first step we again use the supersymmetry method of Wegner and Efetov and
use a supersymmetric generating functional Z for the above Hamiltonian. With the
supersymmetric integration variables ψ we can then perform the disorder average. We
denote the part of the Hamiltonian containing random variables by H1 and the disorder
average of that part of the generating function is given by

〈
exp

(
i

∫
d3x STr ψ̄ H1 ψ

)〉
,

where H1 is the disorder part of (5.26) and can be written as

H1 =




V −AAx + iAAy 0 0

−AAx − iAAy V + γ 0 0

0 0 V ABx − iABy
0 0 ABx + iABy V − γ




Note, that the covariance of V and Ai is β2, while the covariance of γ is (2β)2. Fur-
thermore, the block structure of the Hamiltonian distinguishes between the two layers A
and B, but the result after disorder averaging is identical for both blocks and the result
can be written as the sum of those two terms. The two terms obtained after disorder
averaging are of the form

exp

(
−β

2

2

(∫
d3x STr (ψ̄ψ)2 + 2(ψ∗↓ψ↑)(ψ

∗
↑ψ↓) + 4(ψ∗↓ψ↓)

2

))
, (5.27)

where the Hermitian scalar product in spinor space is understood in the first term.

After discussing the disorder average, we now turn to the free part of the generating
functional:

Z = exp i
∑

j∈Z

∫
d2x STr ψ̄H0ψ with

H0 =




m −i∂− 2ai∂z 0
−i∂+ −m 0 2ai∂z
2ai∂z 0 m i∂−

0 2ai∂z i∂+ −m


 .

Using the 2× 2 block structure in spinor space, ψ̄ = (ψA↑
∗
, ψA↓

∗
, ψB↑

∗
, ψB↓

∗
), we can write

out Z as

Z = exp i
∑

j

∫
d2x STr

(
ψ̄AHA

0 ψ
A + ψ̄BHB

0 ψ
B + 2ai

(
ψ̄A∂z ψ

B + ψ̄B∂zψ
A
))
, (5.28)

with

Hj
0 = ±

(
m −i∂−
−i∂+ −m

)
, j = A,B .
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Now, if we write the generating functional in this way, we see that we add the two diag-
onal blocks describing the free Hamiltonian in each layer A and B and some interaction
part which couples the two neighboring layers. The goal of the next paragraph is to
introduce a bosonization method for two dimensional systems introduced by Witten and
apply this method to the 3D network model.

Non-abelian bosonization. The method of non-abelian bosonization in two dimensions
was introduced by Witten in 1984 [29]. Witten’s approach is based on an identification
of conserved currents in the fermionic and in the bosonic theory. This way it derives a
non-abelian bosonization formula in two dimensions and unfortunately it is restricted to
the case of two dimensions. However, we can make use of the structure of our network
model, which is stacking two dimensional networks to a 3D network. There is another
slight adaption we have to make, since we are using supersymmetric integration vari-
ables.
We first give a short recap of Witten’s approach for the to dimensional system and then
discuss the application to the three dimensional model at hand. In another reference
[34] a similar problem is considered. The discussion there is focused on the plateau
transition of the integer quantum Hall effect and also derives the bosonic field theory
for the 2D Chalker-Coddington network. One of the differences for example is that we
only consider the case of weak disorder here.

As the two diagonal blocks are of equivalent form, let us first focus on one of the
blocks

HA =

(
m −i∂− −AA−

−i∂+ −AA+ −m+ γ

)
+ V .

We introduce supersymmetric integration variables in the following way which slightly
differs from the previous definition

ψ =

(
ψ+

ψ−

)
, ψ̃ = ψ̄

(
0 1
1 0

)
=
(
ψ∗−, ψ

∗
+

)
.

In his original work Witten considers fermions in 1+1 dimensions and uses light cone
coordinates. In that case ψ− refers to a right-moving fermion, while ψ+ refers to a left-
moving fermion. This notation is usually adopted in the physics literature for example of
the integer quantum Hall effect. In the scenario of the IQHE right and left moving refers
to holomorphic and anti-holomorphic wave functions rather than left or right moving
fermions, see for example [34]. This comes from the fact, that these wave functions fulfill
the usual holomorphic/anti-holomorphic relation under the identification R2 ' C.

We are not going to follow the full derivation of the bosonic field theory here, but
rather state the identification rules and refer to the original article [29] for a more detailed
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discussion. Let us begin with the free theory of the 2D Dirac fermion as considered by
Witten

Sf [ψ̃, ψ] =

∫
d2x ψ̃

1

i

(
0 ∂−
∂+ 0

)
ψ .

The conserved currents in the fermionic theory translate to conserved currents in the
bosonic theory for some bosonic supermatrix field M :

J± = ψ∗±ψ± ↔ M−1∂±M . (5.29)

For the bosonic theory it turns out that the action is not the obvious one, but has an
additional term, the so called Wess-Zumino-Witten (WZW)-term. One argument for the
appearance of the WZW-term is that it is needed to give the same equations of motions
for the bosonic theory as the fermionic theory does. With this the bosonic action then
becomes

SmWZW [M ] =
im

4π

∫
d2x STr

(
M−1(∂−M) ·M−1(∂+M)

)
+ imΓ[M ] ,

Γ[M ] =
1

12π

∫

Σ
B , dB = STr(M−1dM)∧3 . (5.30)

We wrote the action here in terms of ∂± similar to the holomorphic and anti-holomorphic
derivative, as for example in [34]. To translate this to the notation in [29] recall the def-
inition of the exterior derivative d = ∂ + ∂̄ = 1/2(dw ∂− + dw̄ ∂+) = dx ∂x + dy ∂y with
w := x + iy to abbreviate the notation. Here Σ is some Riemann surface bounding a
three dimensional area on which the 3-form STr

(
M−1dM

)∧3
is defined. The constant

m has to be an integer, which can be understood by the fact that the third homotopy
group of the target manifold for M (in the fermion-fermion-sector the target is U(r)
and π3(U(r)) = Z for r ≥ 2) is non-trivial and hence there exist topologically different
choices for B which forces m to be integer valued. We further note that this integer, the
so-called level, will be m = 1 in our case.
Moreover, we note that the additional term Γ[M ] is no longer parity invariant. Thus it
will change its sign under a chirality transformation – such as reversing the link direc-
tions of the network model. Moreover, we observe that the expression of Γ[M ] contains a

potential of a 3-form B = d−1 STr
(
M−1dM

)∧3
, where d−1 should be understood locally.

And with these two considerations and the way the 3D model is constructed, we expect
the field theory to contain a term proportional to STr

(
M−1dM

)∧3
.

Before we continue, we mention another identification rule. Witten argues that an
expression like ψ∗−ψ+ in the fermionic theory should be identified with the bosonic su-
permatrix field M and analogously ψ∗+ψ− ∼ M−1. These are however not completely
rigorous arguments, but more like strong suggestions as both expression are character-
ized by the same relations. Witten also argues further in favor of these identifications
by their operator product expansions (OPE) and comparing the most singular parts of
the fermionic and the bosonic fields. For the full discussion consider [29].
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Transition to three dimensions. In order to use Witten’s result in two dimensions, we
begin with the scenario of completely decoupled layers of Chalker-Coddington networks.
We assume the continuum limit to be already taken in the 2D layers and assume the
non-abelian bosonization formula for the two different layers A and B as it was presented
above. Instead of labeling the layers by A and B, we introduce an integer n, where even
n represent layers of type B and odd n represent layers of type A. We also remind
ourselves that the layers are stacked in the z-direction and therefore the z-coordinate is
given by z = n ·∆z/2 with ∆z being the distance between two unit cells, i.e. the lattice
constant in z direction.
Recall that the 3D model was constructed in such a way that neighboring layers have
opposite link directions or opposite chirality. Up to this point that fact did not really
matter. However, it should be noticed that besides the Wess-Zumino-Witten term Γ[M ]
the rest of the action is invariant under the change of link directions.

Applying the non-abelian bosonization rules to the first two terms in (5.28) we obtain

S[M ] =
∑

n

i

4π

∫
d2x STr

(
M−1(∂+Mn) ·M−1(∂−Mn)

)
+ i(−1)nΓ[M ] ,

where we used the notation Mn for the bosonic field M in the layer n.
Turning to the first term and taking the continuum limit we obtain

i

4π

∑

n

∫
d2x STr

(
M−1(∂+M) ·M−1(∂−M)

)

=
i

2π∆z

∫
d3x STr

(
M−1(∂+M) ·M−1(∂−M)

)
.

Now, the second term can be rewritten as a difference

i
∑

n

∫
d2x (B2n −B2n−1) = i

∆z

2

∑

n

∫
d2x

B2n −B2n−1

∆z/2

≈ i

2

∫
dB =

i

2

∫
STr

(
M−1dM

)∧3
. (5.31)

We assumed a system without boundary in the xy-direction in order to write ∂zB dz =
dB. If the system has a boundary in xy-direction, we would need to subtract contribu-
tions from boundary terms in the full action.
Even though this already looks quite promising, we need to be cautious at this point.
We assumed that we can write difference Bn−Bn−1 in the continuum limit as derivative.
However, this relies on the fact that B or more precisely Mn varies only smoothly in
z-direction. But there is so far no indication for that.
Recall, that we started from completely decoupled layers A and B. In order to justify
the step in equation (5.31) we need a term which tells us that the difference Mn−Mn−1

is small and thus allows us to rewrite the finite difference as a differential.
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5 Disordered Weyl semimetals

In the search for such a term we turn to the coupling between two neighboring layers

2ai
∑

n

∫
d2x

(
ψ̄2n∂z ψ2n−1 + ψ̄2n+1∂zψ2n

)
. (5.32)

Unfortunately, Witten’s non-abelian bosonization can not tell us what term in a
bosonic field theory should be identified with a fermionic expression like this. Therefore,
we look for inspiration in the analysis of the cumulant expansion. There we used the
gauge invariance to average over all gauge transformations and expanded the result in
cumulants up to second order. The kinetic part of the Hamiltonian considered in that
expansion (5.4) is, up to a similarity transformation, the same as the one considered
above.
We might therefore return to the discrete setting and look at the second order term of
a cumulant expansion of (5.32). Due to the properties of the cumulant expansion, the
method of superbosonization, which of course differs from non-abelian bosonization, was
the preferred method to continue. So the question remains: In what sense can we com-
pare the two results? An answer to this question and with it a glimmer of hope might
come from the fact that such a cumulant expansion of the two dimensional (discrete)
Dirac Hamiltonian would yield the

”
obvious“ part of Witten’s bosonic action. This

treatment however does not lead to the WZW-term. This nonetheless suggests that we
can assume the result of a cumulant expansion of (5.32) to appear in the bosonic field
theory if translated properly.

Since the calculation and the result are very similar to the ones in the previous section,
we only state the result. The cumulant expansion was done for the full Hamiltonian, not
just the interaction term to make sure to not miss any contributions from mixed terms.
As it turns out, all mixed terms vanish and the (second order) result for the interaction
term is

〈(
2a
∑

x,y

(
ψ̄2nu

−1∂z(x, y)uψ2n−1 + ψ̄2n+1u
−1∂z(x, y)uψ2n

)
)2〉

U(2)

= −a
2

2

∑

x,y

STr
(
ψ∗rsψ

s
r′(2n)ψ∗r

′
τ ψ

τ
r (2n− 1) + ψ∗rsψ

s
r′(2n+ 1)ψ∗r

′
τ ψ

τ
r (2n)

)
.

Even though this result is in a form which usually suggests to proceed with the method of
superbosonization, we can as well use Witten’s identification rules

∑
s ψ
∗r
sψ

s
r′ = M+M−1

to rewrite this expression in terms of the bosonic field M . It can be written as

a2

2

∑

x,y

STr
(
M2n −M−1

2n−1

) (
M−1

2n −M2n−1

)
+ (M2n −M2n−1)

(
M−1

2n −M−1
2n−1

)

+
(
M2n+1 −M−1

2n

) (
M−1

2n+1 −M2n

)
+ (M2n+1 −M2n)

(
M−1

2n+1 −M−1
2n

)
− 8 .

(5.33)

The two latter terms are the discrete versions of STr ∂zM ·∂zM−1 = −STr
(
M−1∂zM

)2
,

whereas the other two terms support the somewhat heuristic argument given before that
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5.7 Discussion and Outlook

M changes its parity between two neighboring layers.
Based on the results of the cumulant expansion (5.33) we therefore propose the free part
of the field theory for our 3D network model to be

S[M ] =

∫
d3x

i

2π∆
STr

(
M−1∂−M ·M−1∂+M

)
+

ia2

2∆
STr

(
(M−1∂zM)2

)

+
i

24π
εklm STr(M−1∂kM)(M−1∂lM)(M−1∂mM) (5.34)

The disorder part for the field theory was derived above (5.27) and for the full action
we need to add all contributions.

The arguments for the kinetic term of the action provided in this section are not
mathematically rigorous and hence we can only make a proposal (5.34) for a bosonic field
theory of a Weyl semimetal described by our network model. We nontheless presented
some indications that support the proposal, but a rigorous proof of this statement is a
task left open for future work.

5.7 Discussion and Outlook

In this second part of the thesis we presented a model for a Weyl semimetal in class
A with disorder. We introduced disorder in terms of a random scalar potential and in
form of a random vector potential with independent Gaussian probability distributions.
With the introduction of supersymmetric integration variables we were able to average
the model over all disorder configurations.
From the disorder averaged generating functional we then set out to continue our anal-
ysis. In a first attempt we introduced a Hubbard-Stratonovich field to decouple the
interaction due to disorder which resulted in a manifold of saddle point solutions. After
regularization we were able to derive a diffusive term from the regularized part of the
effective action. Even though this could not be the full answer, we were not able to
continue the analysis in a satisfactory way.
Therefore, we turned again to the disorder averaged generating functional and tried a
different approach, superbosonization. In order to apply the method of superbosoniza-
tion we used a trick based on the gauge invariance of superbosonization formulas. We
discretized the continuum model and averaged over local gauge transformations. A sub-
sequent expansion in cumulants can then be expressed in terms of a supermatrix field
according to the rules of superbosonization. The result was more promising than our
first attempt, but it could still not be the full answer. The lack of a parity dependent
term is expected to appear in a field theory for a WSM since Weyl points are parity
dependent, but the cumulant expansion did not reveal such a term.
Inspired by Witten’s non-abelian bosonization result in two dimensions we tried a some-
what different approach. We developed a network model, build by stacking two di-
mensional Chalker-Coddington network in an appropriate way, which describes a WSM
phase. This is in close resemblance with WSM phases in multilayer structures.
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5 Disordered Weyl semimetals

In this three dimensional network model we could make use of Witten’s two dimensional
results and propose a potential field theory for a three dimensional Weyl semimetal with
disorder. However, we were not able to give a rigorous proof that it is the correct field
theory.

In fact, this is certainly one point where future work can continue the analysis. An-
other point, which might be worth to follow up on, is the gradient expansion. As was
pointed out, the regularization with a heat kernel did only work for the absolute value of
the determinant, but not for the angular part. A closely related regularization scheme,
the so-called zeta-function regularization, might help in that regard. This regularization
is well-known in the studies of anomalies in quantum field theory and it might be worth
to consider for our case. There is however still the issue of the Hubbard-Stratonovich
transformation for strong disorder. This problem is avoided when the method of super-
bosonization is applied, so this might generally be the better way to proceed.
Even though we were not able to provide a rigorous result for disordered Weyl semimet-
als, we still gained some insights and maybe laid the foundations for an approach that
turns out to be more successful.
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Wie es an dieser Stelle üblich ist, möchte ich kurz meine Dankbarkeit für die vergan-
genen Jahre ausdrücken. Zu aller erst natürlich meinem Betreuer Martin Zirnbauer, der
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fessoren, Übungsleiter, Kommilitonen, Kollegen oder Freunde waren, die ich während
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siv wie möglich zu gestalten. Dies ist auch dem Deutschlandstipendium zu verdanken,
dessen Förderung mir während meines Bachelorstudiums zuteil wurde.
Außerdem danke ich Simon Trebst und Katrin Krüttgen stellvertretend für den CRC
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