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Abstract. The course of an epidemic can be often successfully described mathematically using
compartment models. These models result in a system of ordinary differential equations. Two well-
known examples are the SIR and the SEIR models. The transition rates between the different
compartments are defined by certain parameters which are specific for the respective virus. Often,
these parameters can be taken from the literature or can be determined from statistics. However, the
contact rate or the related effective reproduction number are in general not constant and thus cannot
easily be determined. Here, a new machine learning approach based on physics-informed neural
networks is presented that can learn the contact rate from given data for the dynamical systems
given by the SIR and SEIR models. The new method generalizes an already known approach for
the identification of constant parameters to the variable or time-dependent case. After introducing
the new method, it is tested for synthetic data generated by the numerical solution of SIR and SEIR
models. Here, the case of exact and perturbed data is considered. In all cases, the contact rate can
be learned very satisfactorily. Finally, the SEIR model in combination with physics-informed neural
networks is used to learn the contact rate for COVID-19 data given by the course of the epidemic
in Germany. The simulation of the number of infected individuals over the course of the epidemic,
using the learned contact rate, is very promising.

Key words. machine learning, physics-informed neural networks, SIR model, SEIR model,
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1. Introduction. In December 2019 the new and previously unknown coron-
avirus SARS-CoV-2 appeared for the first time in Wuhan, China from where it has
spread all over the world. Due to the effects of globalization and a high frequency
of private and business travel, the virus and COVID-19, the infectious disease caused
by the coronavirus, spread rapidly within Asia and only shortly after in Europe and
America. On March 11, 2020, the World Health Organization (WHO) declared the
outbreak as a pandemic; see [2].

Mathematical modeling of virus epidemics is a well-known field in applied math-
ematics and compartment models are well-established approaches to simulate the
course of an epidemic within a population. A simple but yet powerful model is the
SIR model, which was introduced by Kermack and McKendrick in [14] already in
1927. In the SIR model, the population is divided into three disjoint groups denoted
as compartments. The susceptible individuals are denoted by S, the infected and
infectious individuals are denoted by I, and the recovered or removed individuals
are denoted by R. Then, in the course of the epidemic, there is a transition of the
individuals first from the compartment for S to that for I and then from there to
the compartment for R; see Figure 1. The flow from one compartment to another
is determined by a number of parameters which are characteristic for the modeled
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disease. This model yields a system of three ordinary differential equations (ODEs)
where the unknowns are the number of individuals in each compartment. Given the
initial values in each compartment, the course of the epidemic can be simulated by
numerically solving the system of ODEs. An extension of the SIR model is obtained
by dividing the compartment I into two subgroups. Those who are exposed to the
virus and thus infected but not yet infectious are gathered in the compartment E,
and those who are already infectious are put into the compartment I; see Figure 2.
Again, this results in a system of ordinary differential equations for the - now four
- unknown numbers of individuals in each compartment. This model is denoted as
SEIR model. There exist many excellent introductions and surveys to the field of
modeling infectious dieseases using compartment approaches; see, e.g., [13, 6, 7] and
the references cited therein.

In practice, modeling the spread of a specific virus using a compartment model
requires the knowledge of the parameters defining the flows from one compartment to
another. Some of the parameters can be estimated from medical data using statistical
methods, some cannot be so easily obtained this way. For instance, the parameter
which is denoted as the contact rate β is time-dependent and is usually not so easily
estimated directly from the available data; see, e.g., the remark in [6, Section 2.3.2].
Here, parameter indentification methods have to be applied; see, e.g., [21] where
numerical methods are discussed to compute the parameters of a dynamical system
by a least squares fit.

Here, we present an approach to estimate the time-dependent contact rate in SIR
and SEIR models using a new method based on physics-informed neural networks
(PINNs). This approach has been introduced in [20] for partial differential equations
and constant parameters to be learned. In the present paper, we extend this approach
to time-dependent parameters and apply it to compartment models from mathemat-
ical epidemiology. The main idea of PINNs is to combine the potential of neural
networks to approximate a (nonlinear) functional relation based on data with domain
knowledge, here, from epidemic modeling. More precisely, we integrate a priori knowl-
edge in form of ordinary differential equations into the loss function of deep neural
networks. The construction of hybrid models, which combine black-box modeling and
the use of scientific domain expertise, is one core area of scientific machine learning. In
contrast to a number of existing methods, we are especially able to estimate a contact
rate which is variable in time. This is achieved by decomposing the global parameter
identification problem on the complete time interval into a number of shorter time
intervals. For each time interval, we then apply our machine learning techniques and
obtain a separate estimate of the contact rate. We verify the potential of our new
method by testing it first on several different scenarios with synthetic data for both
SIR and SEIR models. In these cases, we generate the synthetic data by numerically
solving the systems of ODEs of the SIR and SEIR models, using both exact data
and data with noise. Finally, as a proof of concept, we apply our new parameter
identification algorithm based on PINNs to estimate the time-dependent contact rate
of an SEIR model for the real data of the COVID-19 pandemic in Germany.

The remainder of the paper is organized as follows. In the next section, we provide
a brief introduction of the SIR and SEIR compartment models. In section 3, we
introduce the parameter identification problem for compartment models in a general
form. In section 4, we then first introduce PINNs, describe how to use them for
parameter identification, and apply them to SIR and SEIR models. In section 5, we
introduce our new approach for learning time-dependent parameters using PINNs by
decomposing the problem in shorter time intervals and learning local contact rates.
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Next, in section 6, we describe our data preprocessing and the training procedure.
Finally, in section 7, we first provide numerical results for a set of experiments with
synthetic data. This data has been generated by solving the SIR and SEIR models,
respectively, numerically. We use exact data and data with noise to prepare ourselves
for realistic data from real epidemics. Then, as a proof of concept for real data, we
apply our new method to an SEIR model and data of the COVID-19 pandemic in
Germany.

2. Compartment models in mathematical epidemiology. In this section,
we provide a brief description of two compartment models common in mathematical
epidemiolgy, the SIR and the SEIR model; see [13, 7, 6]. Here, the entire population
of a region is divided into a fixed number of suitable groups which are referred to
as compartments [14]. For a more detailed introduction to compartment models in
mathematical epidemiology, we refer the reader to [13, 7, 6] and the references therein.

2.1. The SIR model. For the SIR model, the population of size N is divided
into three disjoint groups or compartments, respectively: susceptible (S), infectious
(I), and removed (R) members of the population; see also Figure 1. The individuals are
transferred between compartments as indicated in the flow diagram shown in Figure 1
with the transition rates occuring in the differential equation (2.1). In epidemiological
compartment models, it is assumed that all individuals in the same group have the
same characteristics and thus that all groups are homogeneous. Mathematically, the
SIR model is given by the initial value problem

dS

dt
= −β S I

N
dI

dt
= β

S I

N
− γ I(2.1)

dR

dt
= γ I

with given initial values S(t0) ≥ 0, I(t0) ≥ 0, and R(t0) ≥ 0 at some initial time
t0. Here, the parameter γ, also denoted as mean infective period, represents the
proportion of infected individuals recovering in unit time. Hence, γ can be computed
as 1/D, where D denotes the number of time units an infected person carries and can
spread the disease. The parameter β is the contact rate, the number of contacts an
average infectious person makes in unit time. Thus, N · β is the expected number of
people an infected person infects in unit time. The model preserves the total number
of individuals, and hence, the functions S(t), I(t), and R(t) satisfy the condition
S(t) + I(t) + R(t) = N at any time t ≥ 0. Let us note that this is a feasible
assumption since, in general, an epidemic has a relatively short time scale (compared
to the lifespan of an individual) for which new births as well as deaths can be neglected,
and additionally, travel restrictions are often enforced during an epidemic.

2.2. The SEIR model. In the basic SIR model, each individual is considered
to be infectious as soon as it becomes infected. However, for many epidemic infections,
there is a significant exposed period during which an individual that has been infected
is not yet infectious itself. In order to incorporate this exposed phase within the SIR
model (see subsection 2.1), a fourth compartment for an exposed population is added,
denoted by (E). More precisely, the SIR model is extended by letting infected but not
yet infectious individuals first move from susceptibles (S) to exposed (E) members of
the population. Only after an exposed phase, they are transferred from the exposed
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Fig. 1: Schematic representation of the SIR model.
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Fig. 2: Schematic representation of the SEIR model.

(E) to the infectious (I) compartment; see also Figure 2. The resulting SEIR model
is then given by the initial value problem

dS

dt
= −β S I

N
dE

dt
= β

S I

N
− κE(2.2)

dI

dt
= κE − γ I

dR

dt
= γ I

with given initial values S(t0) ≥ 0, E(t0) ≥ 0, I(t0) ≥ 0, and R(t0) ≥ 0. The param-
eters β and γ are defined as before, in the SIR model. The additional parameter
1/κ denotes the exposed period, defined as the time each individual spends in the
compartment E. In analogy to the SIR model, the SEIR model is also based on the
assumption of a constant population size N with S(t) + E(t) + I(t) + R(t) = N at
any time t ≥ 0.

3. Parameter identification problem. The SIR and SEIR compartment
models described in section 2 are systems of first-order ordinary differential equations
of the general form

∂Up
∂t

(t) + Fp(U(t)) = 0, t ∈ [t0, T ](3.1)
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with

Up(t) =

u
1
p(t)
...

unp (t)

 and Fp(U) =

f
1
p (U)

...
fnp (U)


where uip ∈ C1(R) and f ip ∈ C(R), i = 1, . . . , n. In particular, the function Fp depends

on certain parameters p ∈ Rk, and therefore, the solution Up depends on p as well.
Moreover, t0 is the initial time and T the final time.

Now, let p = (pt, pf ) be partitioned into trainable parameters pt ∈ Rkt and fixed

parameters pf ∈ Rkf with k = kt + kf . Furthermore, let Ûj be given data at times
t1, . . . , tM . Then, we would like to solve the inverse problem

arg min
pt

1

M

M∑
j=1

‖Up(tj)− Ûj‖2.(3.2)

In other words, we seek to determine the optimal vector of trainable parameters pt,
such that the resulting solution Up is the best fit to our given data in a least squares
sense.

In the context of our epidemiological models, we obtain

U(γ,β) =

SI
R

 and F(γ,β) =

 −βIS/N
βIS/N − γI

γI

 ,

for the SIR model and

U(κ,γ,β) =


S
E
I
R

 and F(κ,γ,β) =


−βIS/N

βSI/N − κE
κE − γI
γI


for the SEIR model. Note that the equations for S, E, and I are independent of R,
and hence, the last equation can be decoupled in both models. In a post-processing
step, for the SIR model, R(t) can then be computed as R(t) = N −S(t)− I(t) for all
time points where S(t) and I(t) are known. Using additionally the compartment E,
we can proceed analogously for the SEIR model, having R(t) = N−S(t)−E(t)−I(t).
Hence, we only consider the reduced systems

U(γ,β) =

(
S
I

)
and F(γ,β) =

(
−βSI/N

βSI/N − γI

)
,(3.3)

and

U(κ,γ,β) =

SE
I

 and F(κ,γ,β) =

 −βSI/N
βSI/N − κE
κE − γI

 ,(3.4)

respectively, in the inverse problem (3.2).
In practice, the recovery rate γ and the exposure rate κ can be assumed to be

roughly constant for all individuals and in time. They can typically be estimated
based on statistical data and are often available in the medical literature. On the other
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Fig. 3: Graphical representation of a PINN. The derivatives needed for the evaluation
of the residual are computed using automatic differentiation in a backward propa-
gation (red). The parameters to identify pt are trainable parameters of the neural
network, the parameters pf are fixed.

hand, the contact rate β is subject to many external influences such as governmental
policies (e.g., school/university closures, lockdown, social distancing, etc.) or changing
behavior of the population (life style, hygiene standards, etc.) and thus can vary
significantly over time. Hence, we will use values of γ and κ from the literature,
and therefore, fix those parameters, whereas we select β as a trainable parameter. In
particular, in our set of numerical experiments, we will consider both cases: a constant
β and a β(t) which varies over time in the inverse problem

arg min
β

1

M

M∑
j=1

‖Up(tj)− Ûj‖2.

As a discretization for the SIR and the SEIR models, we will apply physics-informed
neural networks.

4. Physics-informed neural networks. The basic idea of physics-informed
neural networks (PINNs) is to integrate a priori knowledge in form of physical laws
or domain expertise modeled by ordinary or partial differential equations into a deep
learning model. In particular, this is done by differentiating neural networks with
respect to their input variables and model parameters; see [20] for more details. Then,
in addition to the data error, the residual of the differential equation is minimized in
a least squares sense as part of the loss function.

4.1. Discretizing systems of ODEs using PINNs. In order to solve (3.2), we
first discretize (3.1) using a PINN and then solve the inverse problem simultaneously
while training the neural network. A PINN for discretizing (3.1) is based on a standard
neural network

NNW,b
p : R→ Rn(4.1)
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approximating the solution

Up : R→ Rn

of the system of first-order ODEs. Here, the superscript indices indicate that the neu-
ral network is determined by its weights W and biases b. In particular, we use a dense
neural network with the scaled exponential linear unit (SELU) [16] activation func-
tion; this network is marked as neural network in Figure 3. In order to discretize (3.1)
by the neural network NNW,b

p , the weights W and biases b can now be optimized

such that NNW,b
p fits the data Ûj , j = 1, . . . ,M , in a least squares sense, solving

arg min
W,b

1

M

M∑
j=1

‖NNW,b
p (tj)− Ûj‖2︸ ︷︷ ︸

=:MSEW,b
U

.(4.2)

In order to extend NNW,b
p to a PINN, we enhance the loss function MSEW,bU

from (4.2) by the additional term

Fp(NNW,b
p , t) =

∂NNW,b
p

∂t
(t) + Fp(NNW,b

p (t)),

which corresponds to the residual of our system of ODEs (3.1). The evaluation of the
residual requires the computation of the time derivative of the neural network output
∂NNW,b

p

∂t . This can be done using the backward propagation algorithm and automatic
differentiation [4], which is also the standard algorithm used to compute gradients in
deep neural networks in gradient-based optimization schemes.

Now, satisfying

Fp(NNW,b
p , t) = 0 ∀t ∈ [t0, T ](4.3)

is equivalent to NNW,b
p solving (3.1) exactly. Since, in practice, we cannot en-

force (4.3) exactly on the entire interval [t0, T ], we enforce this condition at certain
points in time t1, . . . , tL in a least squares sense; we also call these collocation points.
More precisely, we add the mean squared residual error

MSEW,bFp
:=

1

L

L∑
j=1

‖Fp(NNW,b
p , tj)‖2(4.4)

to our loss function (4.2). In summary, the neural network NNW,b
p of the form (4.1)

becomes a PINN by simply adding the term (4.4) to the loss function. Hence, a PINN
discretizing (3.1) is obtained solving the minimization problem

arg min
W,b

(MSEW,bU + MSEW,bFp
).(4.5)

4.2. Choosing the data and collocation points. Even though, the points in
time t1, . . . , tM , where data are available, and the collocation points t1, . . . , tL are, in
principle, independent of each other, a common choice is {t1, . . . , tL} = {t1, . . . , tM}.
Later, we will also consider the case {t1, . . . , tL}⊃{t1, . . . , tM}. In order to ensure
that, in a batch stochastic gradient algorithm (SGD), ti and tj are always in the same
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batch if ti = tj , we reformulate (4.5) as follows. In particular, we choose a single
set of points in time {t1, . . . , tN} := {t1, . . . , tL} ∪ {t1, . . . , tM} and introduce, for
each specific ti, binary data and residual flags αdi and αri , respectively. These flags
specify which loss terms are enforced for time ti. Consequently, we use a modified
loss function to obtain a minimization problem equivalent to (4.5)

arg min
W,b

N∑
j=1

(
αdj
Md
‖NNW,b

p (tj)− Ûj‖2 +
αrj
Mr
‖Fp(NNW,b

p , tj)‖2
)
,(4.6)

where Md =
N∑
j=1

αdj and Mr =
N∑
j=1

αrj . Note that, in this paper, we will only consider

the cases αdj = αrj = 1 or αdj = 0 and αrj = 1. In other words, the ODE residual (4.3)
is always enforced in all points of time, even if no data fit is enforced. For the sake of
brevity, we did not include a full study on the influence of αdj and αrj on the training
performance of the PINN.

4.3. Parameter identification using PINNs. Now, in order to solve the in-
verse problem (3.2), we release the parameters pt in the minimization problem (4.6)
and obtain

arg min
W,b,pt

(MSEW,bU + MSEW,bFp
).(4.7)

Therefore, we do not solve the discrete inverse problem exactly but in a weak sense.
The optimization of (4.7) may be improved by introducing a weighting factor ω

which balances the loss terms, yielding

arg min
W,b,pt

(MSEW,bU + ωMSEW,bFp
);(4.8)

see subsection 6.3 for more details on choosing ω.

4.4. Application to SIR and SEIR models. In this section, we apply PINNs
in order to solve the inverse problem (3.2) for the SIR and SEIR models using tempo-
ral epidemiological data for the number of susceptible, exposed, and infected individ-
uals. Here, we consider the SIR and SEIR models as systems of ODEs and neglect
the removed individuals as described in section 3. In particular, we consider (3.3)
and (3.4) for the SIR model and the SEIR model, respectively. The respective
PINN is obtained by training a neural network (4.1) on this data using the composed
loss function (4.6).

SIR model. For the SIR model, we employ a dense neural network

NNW,b
p : R→ R2

t 7→
(
SW,bp

IW,bp

)
=:

(
S
I

)
approximating (S (t) , I (t))

T
, where S and I follow the SIR model; cf. (3.3) and sub-

section 2.1. In order to enforce this in a least squares sense, we minimize the mean
residual error MSEW,bFp

defined in (4.4), where

Fp(NNW,b
p , t) =

(
∂S
∂t (t) −β S(t)I(t)N
∂S
∂t (t) +β S(t)I(t)N − γI(t)

)
.
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At the same time, we want to minimize the mean squared data error

MSEU = MSES + MSEI

where

MSES =
1

M

M∑
i=1

(
SW,bp (ti)− Ŝi

)2
, MSEI =

1

M

M∑
i=1

(
IW,bp (ti)− Îi

)2
,

and Ŝi and Îi is given data at time ti. Please refer to subsection 6.3 for additional
information on where we minimize the residual error and how we select the collocation
points. Then, the inverse problem

arg min
W,b,β

(MSEW,bU + MSEW,bFp
)

is solved, and we obtain the model parameters W and b as well as an estimate of the
contact rate β.

SEIR model. The extension to the SEIR model is straightforward. In particular,
we consider the neural network

NNW,b
p : R→ R2

t 7→

SW,bp

EW,bp

IW,bp

 =:

SE
I


approximating (S(t), E(t), I(t))T ; see also (3.4) and subsection 2.2. Then, we again
minimize the loss function

arg min
W,b,β

(MSEW,bU + MSEW,bFp
),

where the residual is given by

Fp(NNW,b
p , t) =

 ∂S
∂t (t) −β S(t)I(t)N
∂S
∂t (t) +β S(t)I(t)N − κE(t)
∂S
∂t (t) +κE(t)− γI(t),


and the mean squared data error is the sum of

MSES =
1

M

M∑
i=1

(
SW,bp (ti)− Ŝi

)2
,

MSEE =
1

M

M∑
i=1

(
EW,bp (ti)− Êi

)2
, and

MSEI =
1

M

M∑
i=1

(
IW,bp (ti)− Îi

)2
.

Let us note that solving the inverse problem (4.4) is denoted as data-driven dis-
covery of differential equations in [20]. In this work, our aim is to use such data-driven
discovery, i.e., parameter identification, and PINNs to estimate the the contact rate
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Fig. 4: Estimates for β(t) for an SIR model for a synthetic contact rate with a sharp
jump (marked in black). We show comparative results for different timeframe lengths,
i.e., ∆t ∈ {2, 3, 4, 5, 10} and 10 runs per timeframe.

β of an SIR model or an SEIR model for the COVID-19 pandemic in the year 2020.
In particular, using PINNs for the data-driven discovery, i.e., parameter estimation,
of ordinary differential equations means that we use PINNs for the solution of an
inverse problem. In contrast to the more common solution of forward problems, here,
we do not have a typical offline training phase and a subsequent online testing phase
for the neural network. Instead, when solving an inverse problem, we use separate
neural networks for each course of the parameter β(t) which are explicitly trained
using the corresponding training data for the compartments S, E, and I. Let us note
that in contrast to [20], we will establish a procedure that enables us to estimate
a time-dependent parameter β(t) in (2.1). This is a clear novelty compared to [20]
where the data-driven discovery of partial differential equations is used to estimate a
model parameter which remains constant in time. Here, our main idea is to partition
the entire interval [t0, T ] for the parameter identification into a number of shorter
time intervals. Within each of these time intervals, we assume a constant contact rate
β for which we compute an estimate using the machine learning approach described
in this section. In particular, our proposed method can trivially be executed in par-
allel for all time intervals and can thus be relatively quickly updated any time new
data becomes available. Subsequently, we assemble the different estimates for β for
all time intervals and thus obtain an estimated contact rate β(t) which is variable in
time. Please refer to section 5 for more details.

5. Learning a time-dependent contact rate. In the inverse problems intro-
duced in subsection 4.4, we have assumed a constant contact rate β in the SIR and
SEIR models. This is the simplest case, which is, in reality, an inappropriate assump-
tion most of the time. In particular, the contact rate β depends on several external
factors and circumstances, such as governmental policies (e.g., school/university clo-
sures, lockdown, social distancing, etc.) or changing behavior of the population (life
style, hygiene standards, etc.). Therefore, it can vary significantly over time such
that using a constant β is not appropriate for modeling the entire course of the on-
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going pandemic. Instead, we now consider a time-dependent contact rate β(t). This
is an extension of the parameter estimation in [20], where solely a constant model
parameter is estimated using PINNs.

In order to learn a time-dependent parameter β(t) at a given time ti, we consider
a short time interval containing ti; we denote this short time interval as a timeframe.
More precisely, we define the timeframe tfi corresponding to ti as

(5.1) tfi = [ti −∆t, ti + ∆t]∩[t0, T ],

where ∆t determines the timeframe length 2∆t; in practice, we only consider full days,
i.e., ti ∈ Z and ∆t ∈ N. Under the assumption that β(t) does not vary drastically on
each timeframe tfi, we can approximate β(t) on tfi by a constant βi and solve the
corresponding inverse problem (3.2) on that timeframe. Using this approach, we can
find values βi approximating β(ti) for any ti ∈ [t0, T ], and thus, for a whole time grid
discretizing [t0, T ]. Note that the problems on the timeframes are completely local
and can be computed independently of each other.

For stability reasons, we train a batch of separate PINNs estimating β(ti) on
each timeframe tfi instead of just a single PINN. To finally obtain βi, we compute
the median of all estimates of all PINNs in the batch corresponding to tfi. Let us
note that we deliberately have chosen the median instead of the mean of all resulting
estimations, since the median is more robust with respect to outliers and thus a more
reliable approximation for β(t). Furthermore, the median is always an actual estimate
generated by one of the networks, in contrast to the mean.

Let us briefly comment on the effect of the specific value of ∆t on the estimate of
the contact rate β. We can observe that with an increasing ∆t, the smoothing effect
with respect to short-term variations in the parameter β increases. This is caused
by our assumption that β(t) is constant on each local timeframe. The importance of
choosing an appropriate value for ∆t is clearly visible in Figure 4. If ∆t is too small, we
lack sufficient data about the development of the epidemic to obtain robust predictions
from training the PINNs; this is visible for the cases ∆t = 2, 3, where the estimate
of β is highly volatile in the second half of the course of β(t) and the respective
results are thus not feasible. On the other hand, if ∆t is too large, the estimate
of β is fairly inaccurate in the area of the sharp jump for β(t) and we are unable
to replicate the sudden change in the values of β; cf. the purple line corresponding
to ∆t = 10 in Figure 4. Additionally, an increasing timeframe length is directly
related to an increasing computational effort as more training data are used for each
timeframe. Therefore, in our computations, we aim at using a rather small ∆t while
still obtaining satisfying estimates. For the computations in Figure 4, the choices
∆t = 4, 5 both provide satisfying estimates, obtaining a good trade-off between the
two above mentioned aspects. For our numerical computations in section 7, we have
decided to use ∆t = 5.

6. Data preprocessing and training procedure. In this section, we describe
the different steps of our training procedure for the parameter estimation for epidemic
models using PINNs; cf. sections 4 and 5. In particular, training a PINN to estimate
the contact rate β of an epidemic model is not straightforward and cannot be done
out-of-the-box. It requires, amongst others, an appropriate scaling of the training
data as well as of the loss terms. Moreover, since the number of data points is rather
low for our timeframes, we use an additional set of collocation points.

6.1. Rescaling the data. In preliminary experimental results, we have noticed
that extreme differences in the magnitude of the training data for S and I or S,E,
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and I, respectively, can deteriorate the convergence in the optimization process of a
PINN. Therefore, before starting the iterative training, we always apply a logarithmic
scaling followed by a min-max scaling. The min-max scaling is applied separately for
each compartment. As a result, all training data only take on values in [0, 1], which
is considered to be beneficial for the convergence of the model parameters W and b
of a neural network; see, e.g, [5, Sect. 8.1] or [17].

Let us note that we reverse both types of scalings in the forward call of the PINN.
Otherwise, we would have to explicitly consider the scaling of the training data when
computing the derivatives for the residual terms in each step of the training procedure.
To obtain standardized magnitudes of the residuals we further divide them by the size
of the population N .

6.2. Additional collocation points. As described subsection 4.2, we do not
necessarily use the same points of time to fit the data and the residuals. In particular,
due to the rather small ∆t (cf. section 5) and the resulting low number of data points
within each timeframe, we use additional collocation points in order to improve the
robustness of the training. More precisely, we evaluate the residual in the original data
points, i.e., at each full day, and in eight additional, equidistant points in between.
Hence, the number of collocation points is approximately nine times larger than the
number of data points.

6.3. Balancing the loss terms. In addition to the aforementioned data pre-
processing, we also incorporate certain scaling strategies in order to balance the loss
terms in (4.5). Let us note that all described techniques are equally valid for both
the SIR as well as the SEIR model.

Weight routines. As explained in section 4, the loss function of our PINN consists
of two components, the data loss MSEW,bU and the residual loss MSEW,bFp

. In order to
control the ratio of these two components, we introduced a weighting factor ω for the
residual-loss; cf. (4.5) or (4.8).

We divide the training process into several phases, which are defined as follows.
In each phase of the training process marked with index i, we choose a specific value
for the weighting factor ωi in (4.5) or (4.8). Thus, for the first phase in our training
process, we always set ω1 = 0, exclusively minimizing the loss function with respect to
the data. For the subsequent phases of the training, we found the following procedure
to be a good choice: we set ω2 = 10−2 and then reduce ωi recursively by a factor of
10 until we obtain ω13 = 10−13 in the last phase. In each of the resulting 13 phases,
we train the neural networks for 500 epochs using an early stopping criterion ([18]
or [12, Sect. 7.8]) with a patience of 10 epochs with respect to the total loss (4.5).

α-scaling. In preliminary experiments, we have noticed a strong tendency to un-
derestimate the parameter β(t) on “flat” parts of the curves for S, (E,) and I. When
examining the different components of the loss function, we observed a strong cor-
relation between these “flat” parts and significantly low residual loss terms for the
respective variables. In order to align the magnitudes of the data and the residual
loss, we adaptively scale the residual loss to the same order of magnitude as the data
loss. In particular, after the first phase of our training process, we compute the ratio

(6.1) α :=
MSEW,bFp

MSEW,bU

and multiply all subsequent weights ωi by this ratio α. We denote this process by
α-scaling for the remainder of this paper.
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Fig. 5: PINN for the SEIR model: the neural network is partitioned into three de-
coupled networks discretizing S, E, and I. For the SIR model, the E is omitted.

7. Numerical results. In this section, our aim is to extract the presumably
unknown parameter β(t) from daily data for S, E, and I. As the neural network of
our PINN for the SIR and SEIR models, we use a neural network that is composed
of two or three, respectively, decoupled neural networks discretizing S, E, and I;
see Figure 5 for a graphical representation of the network structure. In particular,
we use a dense feed-forward neural network with ten layers, consisting of 100 neurons
per layer for each variable. As the activation function we use the scaled exponential
linear unit (SELU) [16] in combination with the LeCun normal initialization [17].
Furthermore, we use a batch size of one and a learning rate of 1e-7 to minimize the
loss function with the Adam optimizer [15]. For stability reasons, we always train
5 PINNs estimating β for each timeframe and use the obtained median as the final
estimate βi for the respective timeframe; cf. also section 5 and Figure 22 at the end
of this section for an exemplary investigation of the robustness of our method. All
computations were performed on NVIDIA V100-GPUs with CUDA 10.1 using python
3.6 and tensorflow-gpu 2.3 [3] in double precision.

7.1. Synthetic data with constant contact rate. For our first numerical
experiments, we apply our proposed parameter identification procedure to the simplest
case possible, which is assuming a constant contact rate β over the entire course of
the epidemic. For this purpose, we have generated synthetic data as a solution of the
system of ordinary differential equations (ODEs) of the SIR model (2.1) for realistic
and constant values of the model parameters β and γ. We solve the ODEs using an
adaptive Runge-Kutta-4-5 method provided by the python package scipy [22] with
initial values S(0) and I(0). Specifically, we have used the initial values I(0) = 50,
R(0) = 0 and the parameters N = 80 000 000, β = 0.5, and γ = 1

4 in our simulation.
The resulting curves for S and I are shown in Figure 6.

As a first sanity check to prove that our proposed method works appropriately,
we consider the inverse problem with constant contact rate β as described in subsec-
tion 4.4 on the whole interval [t0, T ] at once. Hence, we train a batch of five PINNs
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estimating β and compute the final estimate for β as the median value. We obtain the
final constant estimate 0.5019 compared to the true value β = 0.5. This corresponds
to a relative error of 3.8e-3 and is thus fairly accurate. The resulting curves for the
obtained simulation for I using the learned estimate of β as well as the respective
training data are shown in Figure 7. We additionally show the effective reproduction
number Rt in Figure 7; see, e.g., [10] for a definition of Rt. For any time t ≥ t0, it
can be computed as

Rt =
β(t)

γ
∗ S(t)

N
.

As we can observe from Figure 7, our computed estimate of Rt (denoted by learned
Rt) is almost identical to the actual values of Rt (denoted by synth Rt).

In the next set of experiments, we already apply our proposed procedure for learn-
ing a time dependent contact rate using timeframes of smaller length; see section 5.
However, for the SIR model, we use the same training data as before; see Figure 6.
To generate a second data set for S, E, and I, we perform simulations using the
SEIR model and the parameters γ = 1/11, κ = 1/3 and β = 0.5. This means that,
for both data sets, we learn a time-dependent contact rate β(t) which, in the training
data, is actually constant in time. For all presented results, we have used ∆t = 5.
We show the learned estimates of β and the resulting simulated curves for I, using
the estimates β, as well as the resulting estimates for Rt in Figure 8 and Figure 9
for the SIR model and the SEIR model, respectively. As we can observe from both
figures, our estimate of β is sufficiently good, since both the SIR and the SEIR
model deliver curves for I and Rt which are fairly close to the synthetic training data.
However, the obtained simulation using the SEIR model is more accurate compared
to the SIR model. Thus, even if we allow for a time-dependent contact rate in our
proposed procedure using timeframes, we are able to recover the constant contact rate
β quite accurately. Let us remark that, for the first ∆t days and the final ∆t days, the
length of the timeframe is always shorter than the usual timeframe length of 2∆t+1;
see (5.1) for the definition of a timeframe. Using a short timeframe, the estimate of
β(t) can sometimes be deteriorated; see also Figure 4 and the corresponding discussion
in section 5 on different timeframe lengths. Hence, in some of our experiments, the
etimates of β(t) for the first and/or last few days are deteriorated due to the reduced
timeframe length; see, e.g., the last few days in Figure 9 or Figure 14 for this effect.
We will not further discuss this effect for all following examples explicitly to avoid
redundant discussions.

As a next step, we investigate the quality of the parameter identification for
synthetic data when the data are perturbed. For this purpose, we have added a
normally distributed noise ε with mean zero to the original values I for the infectives
for both the SIR and the SEIR model as well as to the original values E for the
exposed for the SEIR model. More precisely, we have added the term ε ∗ (I(t)/15)
and ε ∗ (E(t)/15) to each value of I(t) and E(t) with t ∈ [t0, T ] respectively. The
respective pertubed training data for I and the simulation results obtained when using
the learned estimates of β, together with the corresponding estimated values of Rt
are presented in Figure 10 for the SIR model and in Figure 11 for the SEIR model,
respectively. For both epidemic models, we obtain satisfactory results in terms of
the parameter estimation of β. Thus, our proposed method seems to be robust for
data with and without inaccuracies in the reported numbers of the infectives, when
assuming a constant contact rate β. Again, the resulting estimates for β and Rt are
even more accurate when using the SEIR model compared to the SIR model.
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(a) Raw Data (b) Min-Max-scaled Data (c) Min-Max-scaled ln(Data)

Fig. 6: Synthetic training data for the SIR model for N = 80 000 000, I(0) = 50,
R(0) = 0, β = 0.5, γ = 1

4 .

Fig. 7: Simulation result considering the SIR model using the constant learned
estimate 0.5019 without timeframes (tf0 = [t0, T ]) and the corresponding synthetic
training data. The obtained estimate of β corresponds to a relative error of 3.8e-3.

7.2. Synthetic data with time-dependent contact rate. For the numerical
experiments considered so far, the contact rate β was always constant in time. How-
ever, for real-world applications, using real data of the Corona pandemic in 2020, we
need to be able to approximate values for a parameter β(t) which varies over time.
For this purpose, we explicity integrated the procedure of using timeframes into our
workflow; see section 5.

7.2.1. Discontinuous contact rate with jumps. For the first set of numerical
experiments with a time-dependent contact rate, we construct a synthetic training
dataset that differs from the dataset in Figure 6 predominantly in the values and
the course of β(t). In particular, we now use a contact rate β(t) with a single jump
defined by

(7.1) β(t) =

{
0.5 t ≤ 40

0.4 elsewhere
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Fig. 8: Results for the SIR model with a constant contact rate β = 0.5. Left:
Estimate of β with ∆t = 5. Right: Comparison of simulation results for the SIR
model using the learned estimates of β per timeframe (denoted by sim data I ) or
using β itself (denoted by synth data I ), i.e., using the learned β versus the synth β
from the left figure. We further show the computed estimates of Rt per timeframe
(denoted by learned Rt) versus Rt for the training data (denoted by synth Rt)

Fig. 9: Results for the SEIR model with a constant contact rate β = 0.5. Left:
Estimate of β with ∆t = 5. Right: Comparison of simulation results for the SEIR
model using the learned estimates of β per timeframe or using β itself, i.e., using the
learned β versus the synth β from the left figure. See Figure 8 for the labeling.

for both the SIR and the SEIR model. We obtain the corresponding new training
datasets by running simulations of the epidemic models (see subsection 2.1 and sub-
section 2.2) with the initial values N = 80 000 000, I(0) = 50, R(0) = 0, and the
parameters γ = 1

4 for the SIR model and γ = 1/11, κ = 1/3 for the SEIR model,
respectively. The resulting curves for S and I for the SIR model are presented in Fig-
ure 12. Let us note that the discontinuity in the contact rate β(t) leads to a notable
kink in the curves for S and I at the time interval 40 < t < 41. This kink is particu-
larly visible in the plot of the logarithmized and min-max-scaled data in Figure 12b.
We show the learned estimates of β for all timeframes in Figure 13 (left) and in Fig-
ure 14 (left) in comparison to the true value of β (see (7.1)) for the SIR model and
the SEIR model, respectively. For both models we can observe that in the area
around the jump, we obtain a ’smoothed’ estimate of the contact rate β(t). Please
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Fig. 10: Results for the SIR model with a constant contact rate β = 0.5 and normally
distributed noise. Left: Estimate of β with ∆t = 5. Right: Comparison of simulation
results for the SIR model using the learned estimates of β per timeframe or using β
itself, i.e., using the learned β versus the synth β from the left figure. See Figure 8
for the labeling.

Fig. 11: Results for the SEIR model with a constant contact rate β = 0.5 and
normally distributed noise. Left: Estimate of β with ∆t = 5. Right: Comparison of
simulation results for the SEIR model using the learned estimates of β per timeframe
or using β itself, i.e., using the learned β versus the synth β from the left figure.
See Figure 8 for the labeling.

refer to section 5 and especially to Figure 4 for a more detailed analysis of this effect.
Additionally, we present the obtained simulated values for the infectives I and the
exposed E in Figure 13 (right) and Figure 14 (right), respectively, when using the
corresponding estimates of β as generated by the PINNs. In both cases, the resulting
curves are fairly close to the true training data. Again, using the SEIR model yields
a more accurate parameter estimate than using the SIR model.

In correspondence to subsection 7.1, we additionally perform our parameter iden-
tification procedure on perturbed synthetic training data. In particular, we generate
the noise, which is added to the number of infectives and exposed, for both the SIR
and the SEIR model in exactly the same way as in subsection 7.1. The results ob-
tained by training the PINNs for the perturbed training data are shown in Figure 15
and Figure 16. For both epidemic models, our proposed approach is clearly able to
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provide a satisfactory estimate of the time-dependent contact rate β, even for an
perturbed training data set.

(a) Raw Data (b) Min-Max-scaled ln(Data)

Fig. 12: Synthetic training data for the SIR model for N = 80 000 000, I(0) = 50,
R(0) = 0, γ = 1

4 and discontinuous β(t) as defined in (7.1).

7.2.2. Synthetic data for a second wave. As a more realistic but still syn-
thetic example for the development of an epidemic disease, we tested our procedure for
synthetic data which emulate a second wave; see [7, Section 9.6.2]. This means that,
after a temporary decrease of the number of infectives and an intermediate rather
flat part of the curve for I, the absolute number of infectives increases again. This
kind of periodic behavior can be observed for real-world pandemics, e.g., as for the flu
outbreak in 1918 (”Spanish flu”); see, e.g., [7, Section 9.6.2]. To model such a behav-
ior for the infectives I, we use an extended approach to compute the time-dependent
reference value for the contact rate β(t) for the SIR and the SEIR model inspired
by the periodic function given in [7, Sect. 9.6.2].

Specifically, for our experiments with the SIR model, we compute the contact
rate β(t) as

(7.2) β(t) = β
(
1 + c · cos(π(t+ t0)/45))

)
;

with the parameters N = 10 000, I(0) = 150, t0 = 11, c = 0.45, and β = 0.35. We
further set the parameter γ in (2.1) as γ = 1

4 and compute the respective simulation
for S and I for 120 days starting from t0. The resulting solution for the infectives I
for this specific parameter set is shown in Figure 17. When applying our parameter
estimation procedure to this specific set of training data, we obtain the results shown
in Figure 18. In the top row on the left, we show the obtained estimate for the contact
rate β for all timeframes. As we can observe the estimation for β is fairly accurate for
the entire course of the epidemic, even though it is slightly perturbed within the last
part of the curve, i.e., for approximately t ≥ 75. Moreover, the resulting simulation for
the infectives when using the estimated values for β(t) is very accurate. In particular,
we are able to replicate the second increase in the number of infectives which is fairly
moderate compared to the first increase at the beginning of the curve; cf. the figure
in the bottom row in Figure 18.
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Fig. 13: Results for the SIR model and a contact rate β(t) with a jump. Left:
Estimate of β(t) with ∆t = 5. Right: Comparison of simulation results for the SIR
model using the time-dependent estimate of β(t) or using β(t) itself, i.e., using the
learned β versus the synth β from the left figure. See Figure 8 for the labeling.

Fig. 14: Results for the SEIR model and a contact rate β(t) with a jump. Left:
Estimate of β(t) with ∆t = 5. Right: Comparison of simulation results for the SEIR
model using the time-dependent estimate of β(t) or using β(t) itself, i.e., using the
learned β versus the synth β from the left figure. See Figure 8 for the labeling.

Additionally, we tested our procedure for the same set of training data with
additional noise added. Again, the noise, i.e., the pertubation in the data, is generated
in the same way as in subsection 7.1. The corresponding estimate of β(t) as well
as the resulting simulated solution for the infectives are shown in Figure 19. As
already in subsections 7.1 and 7.2.1, the proposed method is robust with respect to
perturbations in the data and does still deliver satisfactory estimates for the contact
rate.

For the numerical experiments obtained by using the SEIRmodel, we have chosen
a slightly different set of model parameters since using the same set of parameters as
for the SIR model did not result in a course of infectives that emulates a second wave.
In particular, for the simulations with the SEIR model, we compute a time-dependent
contact rate β(t) by

(7.3) β(t) = β
(
1 + c · cos(π(t+ t0)/35))

)



20 V. GRIMM, A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

Fig. 15: Results for the SIR model, a contact rate β(t) with a sharp jump and
normally distributed noise on the training data. Left: Estimate of β(t) with ∆t = 5.
Right: Comparison of simulation results for the SIR model using the time-dependent
estimate of β(t) or using β(t) itself, i.e., using the learned β versus the synth β from
the left figure. See Figure 8 for the labeling.

Fig. 16: Results for the SEIR model, a contact rate β(t) with a sharp jump and
normally distributed noise on the training data. Left: Estimate of β(t) with ∆t =
5. Right: Comparison of simulation results for the SIER model using the time-
dependent estimate of β(t) or using β(t) itself, i.e., using the learned β versus the
synth β from the left figure. See Figure 8 for the labeling.

and set the remaining parameters as follows: N = 10 000, I(0) = 50, t0 = 10, c = 0.75,
and β = 0.2. We further set the parameters γ and κ in (2.2) as γ = 1

4 and κ = 1
5 and

compute the respective simulation for S, E, and I for 120 days starting from t0. We
show the results in Figure 20. Here, we observe that the learned β is very accurate
for the complete course of the epidemic, even during the second wave with very low
numbers of infected individuals.

We also present results for noisy SEIR data in Figure 21; the noisy data have
been generated as described in subsection 7.1. Again, we observe that our method
is robust against perturbations visible both from the learned β as well as from the
resulting simulations using the learned β.

Let us note that the sets of experiments in this section are the closest to reality in
in the sense that they resemble a typical course of an epidemic disease. Thus, these
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Fig. 17: Visualization for an exemplary curve for I for an SIR model with a second
wave. Set of parameters for this simulation: N = 10 000, I(0) = 150, t0 = 11,
c = 0.45, β = 0.35, and γ = 1

4 .

results serve as a proof of concept that we are able to estimate a time-dependent
contact rate within epidemic models fairly accurately using PINNs as long as the
data are in conformity with the underlying epidemic model. Moreover, the proposed
method is also robust with respect to moderate perturbations in the reported numbers
of infectives.

Finally, let us briefly comment on the robustness of our approach. As already
mentioned in section 5, we always train a batch of PINNs for each timeframe and select
the median of all corresponding parameter estimates as the final learned estimate of
β for the respective timeframe. However, a priori it is not clear how many runs per
timeframe are appropriate to obtain a fairly reliable estimate of the contact rate. To
further investigate the robustness of our approach and to decide for a suitable number
of runs per timeframe, we have tested our procedure for a single run as well as for 5 and
10 runs per timeframe; see Figure 22. For this set of experiments, we have trained the
PINNs for an SIR model using a time-dependent contact rate β(t) as defined in (7.2)
with the same set of the parameters as before. As we can observe in Figure 22, using 5
as well as 10 runs per timeframe both deliver fairly similar results. We obtain a fairly
accurate estimate of the reproduction number Rt and do not observe any extreme
fluctuation within the parameter estimation. However, selecting only one randomly
chosen run per timeframe results in larger perturbations of the estimate of Rt in the
later course of the epidemic. Therefore, we have decided to always compute a batch
of 5 runs for each timeframe for all the experiments presented in this paper.

7.3. Realistic contact rate for COVID-19 data in Germany. As a final
proof of concept for our approach to estimate the contact rate β(t) and the related
effective reproduction number Rt within epidemic models, we consider the real data
for the COVID-19 epidemic in Germany, based on the number of infected individuals
as reported by the Johns Hopkins University; see [11]. Since individuals infected with
COVID-19 are not infectious immediately and a significant exposed period exists, we
consider the SEIR model here. However, the parameter κ needed for the transition
rate from the exposed to the infectious compartment is difficult to obtain directly
from the available COVID-19 data. Thus, we first take the incubation period defined
as the time from infection or exposure to the virus until the onset of symptoms and
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Fig. 18: Results for the SIR model and a contact rate β(t) with a second wave. Top,
left: Estimate of β(t) with ∆t = 5. Top, right and bottom: Complete simulation
for the SIR model using the obtained estimate of β(t) and a zoom to the second wave
(bottom).

then subtract the presymptomatic infectious period in order to define 1/κ. It has been
reported in the literature [9] that the mean presymptomatic infectious period can vary
between less than 1 and 4 days in different studies. As value for the incubation period,
we choose 7.76 days which is reported as the median estimate for the incubation time in
[19]. Combining this choice with 2.76 days as value for the presymptomatic infectious
period, yields κ = 1/5. Let us note that other estimates of the incubation period
are within the range of 5-6 days; see [1, Sect. 5]. Finally, we have to define γ which
is given by the duration of infectiousness of an indiviual. Following [8], we assume
that an individual is infectious for 8 days after the onset of symptoms. Let us note
that there are also other choices possible; see [1, Sect. 10], where, e.g., 9-10 days are
cited for mild to moderate courses of the disease. However, since in compartment
models we mix all individuals with different courses of the disease, we have to make a
certain choice within the range of published possibilities. Combining this choice with
the previously selected value of 2.76 days for the presymptomatic infectious period,
we decided to define γ = 1/11. Let us note that these values have been chosen to
carry out some experiments with realistic data. We are aware of the fact that more
experiments and a careful analysis with different sets of data are needed to make
reliable predictions in the future. In fact, we have tried a few more combinations of
κ and γ within the range of values given in the literature and have shown the results
for the best choice in Figure 23. The selection of the best pairs of parameters κ and
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Fig. 19: Results for the SIR model, a contact rate β(t) with a second wave and
normally distributed noise on the training data. Top, left: Estimate of β(t) with
∆t = 5. Top, right and bottom: Simulation for the SIR model using the obtained
estimate of β(t) and a zoom to the second wave (bottom).

γ should be automated, e.g., by using an outer loop and a global error measure. This
is left for future work.

While the data for I(t) and R(t) can easily be accumulated using the daily re-
ported new infections and recoveries, we have to generate the training data for E(t)
artificially. We therefore assume that each reported new infection actually entered
the compartment E five days earlier to compute an estimate of E(t) for the training
process of the PINNs. The resulting curves for I(t) and E(t) used as data are shown
in Figure 23. Furthermore, we use N = 83 149 300 as a constant approximation of the
population of Germany. Let us remark that we neglect births, deaths, and travelling
individuals in our computations.

We report the learned effective reproduction number Rt as well as the simulation
results for I(t) and E(t) using the SEIR model and the learned β(t) in Figure 23.
Especially for the first large wave of infections during April and May the simulation
results fit the real data very accurately. Obviously, the simulation is better for I(t).
Considering the data for July and August, the fit is less sufficient as well as for a
short period in late June. As we have shown in the previous sections, our approach
has always been able to produce quite accurate fits if the data are obtained by SEIR
simulations, even if they are disturbed. Hence, a likely conclusion is that the evolution
of the real COVID-19 epidemic in Germany in the summer is not in good accordance
with any SEIR model and the data might be disturbed by, e.g., many travellers
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Fig. 20: Results for the SEIR model and a contact rate β(t) with a second wave.
Top, left: Estimate of β(t) with ∆t = 5. Top, right and bottom: Simulation for
the SEIR model using the obtained estimate of β and a zoom to the second wave
(bottom).

during the summer holidays, bringing infections into Germany from abroad and thus
from outside of the respective compartment. This and the fact that less than 0.05%
of the total population is infected at all makes it hard to fit the data. Please also
note that the slight increase of infections in late June is due to a local outbreak of
COVD-19 in a slaughterhouse. Such an effect is also not covered by the assumptions
of the SEIR compartment model that we use. Of course also our assumptions might
be too strict and other parameter choices for κ and γ as well as different machine
learning related parameter choices have to be considered in the future.

8. Conclusion and future work. We have considered a machine learning ap-
proach, which is based on physics-informed neural networks, to estimate parameters
of dynamical systems. Previously, this method has been only applied to the case of
constant parameters. In the present work, we have generalized it to the case of vari-
able or time-dependent parameters and applied it to SIR and SEIR compartment
models from mathematical epidemiology. We have tested the new approach for sev-
eral sets of numerical experiments with synthetic data, which have been generated by
numerically solving the systems of ODEs defining the different compartment models.
In our numerical experiments, we have used both the exact data and data perturbed
with noise. In both cases and for different examples of contact rates (constant, dis-
continuous, time-dependent) as well as for the cases of a single and second wave, we
were able to identify the parameters satisfactorily. From this we conclude that the
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Fig. 21: Results for the SEIR model, a contact rate β(t) with a second wave and
normally distributed noise on the training data. Top, left: Estimate of β(t) with
∆t = 5. Top, right and bottom: Simulation for the SIR model using the obtained
estimate of β(t) and a zoom to the second wave (bottom).

Fig. 22: Comparative results for the SIR model with a time-dependent β(t) with a
second wave. Estimations with ∆t = 5 and different numbers of runs per timeframe,
i.e., one, 5 and 10 runs for each timeframe tfi.
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Fig. 23: Real data for I(t) for the COVID-19 outbreak in Germany and generated E(t)
using I(t) under the assumption that each individual is exposed for 5 days before it
gets infectious for 11 days. The corresponding parameters are κ = 1/5 and γ = 1/11.
Additionally, simulation results for the SEIR model using the learned parameter β
are shown as well as the resulting effective reproduction number Rt.

approach based on PINNs presented here, can identify parameters of SIR and SEIR
models as long as the training data are in agreement with the model assumptions.
For synthetic data, we consistently obtained more accurate parameter estimates for
the SEIR model compared to the SIR model.

Finally, we extended our tests to real data from the COVID-19 epidemic in Ger-
many and tested our approach using PINNs with an SEIR model. Here, we are also
able to identify the time-dependent contact rate and the resulting simulated number
of infectious individuals I is in good agreement with the real data, at least until early
or mid June. The simulated number of exposed individuals E is slightly underes-
timated. The local increase of infectious individuals in late June and the increase
in July and August has not been captured satisfactorily although an increase of the
contact rate and the related effective reproduction number can be seen in the learned
data; but the latter is below one and thus the number of individuals does not increase.
One possible explanation is that the real data at this stage of the course of the epi-
demic are not modeled well enough anymore by an SEIR model since, for instance,
in this period, many infections were caused abroad while traveling. Also, the slight
increase in late June occurred due to a local outbreak related to a slaughterhouse and
its workers. Thus, the assumption of homogeneous compartments was not satisfied
anymore. Also, the dark number of unreported cases has not been considered in this
model. Finally, we note that we have used the same incubation period for all age
cohorts and assumed a constant degree of infectiousness - in contrast to an age of in-
fection model. Overall, we nevertheless conclude that our new approach can be used
to identify parameters of dynamical systems in compartment models. However, to
obtain more accurate results for realistic epidemic data, we should extend our studies
to more detailed models from mathematical epidemiology and also refine our machine
learning approach. This will be the topic of future work.
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