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A B S T R A C T

The second decade of the 21st century has seen significant ad-
vances in the nascent field of Topological Data Analysis (TDA),
both from the theoretical and applied standpoints. The subject of
this dissertation is the investigation, by topological means, of the
spatial structure of turbulent convection in the planetary bound-
ary layer (PBL) of the Earth. It thus serves a dual purpose: first, to
introduce atmospheric science as a source of rich and challenging
problems to the applied topology community; second, to intro-
duce topological ideas and methods to the atmospheric science
community, as a complement to commonly applied methods such
as global bulk measurements and spectral transforms.

The first problem considered here is the interaction of the at-
mosphere with complex land surface patterns, where the limita-
tions of classical approaches are known. Low-order topological
invariants, the Betti numbers, are computed for the vertical wind
velocity fields of Large-Eddy Simulation (LES) models, and used
to quantify the structural changes in convective flow induced by
different surface patterns. These invariants are also shown to cap-
ture structural properties of the boundary layer and its temporal
evolution, as they induce a physically meaningful partition of the
model domain into the corresponding boundary layer subregions.
Here, the results obtained from LES model data are compared
with those from a direct numerical simulation (DNS).

Next, the connectivity of updrafts in an LES is determined
algorithmically, and used in the quantitative analysis of the hierar-
chical organization of convective flow. An empirical law of updraft
scaling is derived, which agrees with the expected Kolmogorov
scaling. A tree-like representation is used to quantify the rate of
plume coalescence, and its dependence on land surface hetero-
geneity. This representation is then used to assess the relative
efficiency of different land surface types in sustaining convection.
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Finally, the spatial distribution of shallow cumulus clouds is
analyzed. To this end, the stable rank invariant from persistent
homology is interpreted as a homological density function, which
justifies its use as a spatially descriptive statistical measure. This al-
lows direct comparison of the spatial pattern of a cloud field with
different spatial point processes. An index for spatial organization
is introduced based on persistent homology, and comparison with
the classical Iorg index shows it is more resilient to spatial noise.
Finally, a morphological classification of cloud fields based on the
persistence contour formalism is described.
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Z U S A M M E N FA S S U N G

Topological Data Analysis (oder Topologische Datenanalyse), ein
neuer Forschungsbereich der Angewandten Mathematik, hat im
zweiten Jahrzent des XXI. Jahrhunderts rapide Fortschritte aufge-
wiesen, sowohl in der Theorie als auch in der Anwendung. Das
Ziel dieser Dissertation ist, die räumliche Struktur turbulenter
Konvektion in der planetaren Grenzschicht der Erde mit topologi-
schen Werkzeugen zu untersuchen. Sie dient also einem doppelten
Zweck: erstens, der Einführung der Meteorologie als reiche Quelle
von praktischen Problemen für die Angewandte Topologie; und
zweitens, der Einführung von Ideen und Methoden topologischer
Natur in die Meteorologie, als Ergänzung anderer, gewöhnlicher
Datenauswertungsmethoden.

Als erstes Problem wird ist die Interaktion zwischen Atmo-
sphäre und die Erdoberfläche, bei der die Einschränkungen der
gängigen Analysemethoden schon bekannt sind, betrachtet. Topo-
logische Invarianten niedriger Ordnung, die Bettizahlen, werden
für Datensätze aus Large-Eddy Simulationen (Grobstruktursimu-
lationen) und Direct Numerical Simulations (Direkte Numerische
Simulationen) berechnet. Anhand dieser Zahlen können struk-
turellen Veränderungen in der turbulenten Strömung gemessen
werden, die durch die Einflüsse der Landoberfläche entstehen.
Darüber hinaus kann auch die inhärente Struktur der planeta-
ren Grenzschicht ausschließlich durch diese Bettizahlen bestimmt
werden.

Als nächstes wird eine räumliche Aufspaltung der Aufwinde,
die im Modell entstehen, in Zusammenhangskomponenten algo-
rithmisch bestimmt. Diese Partitionierung beschreibt quantitativ
die hierarchische Organisation der Strömung. Ein empirisches
Skalengesetz wird abgeleitet, welches mit der Kolmogorovtheorie
für den Inertialbereich des turbulenten Spektrums übereinstimmt.
Eine baumartige Darstellung der Aufwinddaten ermöglich die
Quantifizierung der Koaleszenzrate konvektiver Strukturen und
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deren Zusammenhang mit der Heterogeneität der Landoberfläche.
Damit kann auch die relative Effektivität einzelner Landoberflä-
chentypen in der Erhaltung der Kovektion quantifiziert werden.

Danach wird die räumliche Verteilung von Schönwetterwolken
(Cumulus humilis/ Cumulus mediocris; Cu hum/med) analyi-
siert. Hierfür wird die stabile Ranginvariante aus der persistenten
Homologie als eine Homologiedichtefunktion interpretiert, wo-
durch die Invariante als räumliche Statistik benutzt werden kann.
Damit kann die Raumverteilung von Wolkenfeldern mit der von
Punktprozessen verglichen werden. Ein Index für die räumliche
Organisation von räumlichen Objekten wird, basierend auf der
Ranginvariante, definiert, und mit dem gängigen Iorg Index ver-
glichen. Die topologische Version weist eine höhere Resilienz
gegnüber Rauschen auf. Schließlich wird eine morphologische
Klassifikation diverser Wolkenfelder mittels des persistenten Kon-
turformalismus definiert.
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Algebra is the offer made by the devil to the mathematician. The devil
says: I will give you this powerful machine, it will answer any

question you like. All you need to do is give me your soul: give up
geometry and you will have this marvelous machine.

— Sir Michael Atiyah

P R O E M I U M

There exist within mathematics different sources of tension be-
tween disparate modes of thought: between the discrete and the
continuous, between the pure and the applied, or between the
algebraic language of structures and the geometric language of
shapes, to name but a few. This dissertation, in some sense, strad-
dles the diffuse boundaries between all of these, which is a rather
strange place to be in, but at the same time a very exciting one.

This project was born out of my fascination with the subject of
applied topology, which on first impression can sound somewhat
like an oxymoron. Topology is, after all, regarded as one of the
more esoteric areas of mathematics. A quick review of the liter-
ature, however, reveals that topology is the source of applicable
ideas and methods, in particular algebraic topology with its em-
phasis on finite and computable (sometimes even in reasonable
time) invariants. One finds that different people, working in dif-
ferent scientific fields, can and do use these concepts in problems
of data analysis, and derive new insights from them. This arcane
field thus springs forth bearing a new language to talk about data.
Thus, when I was faced with a new, challenging problem in the
form of pattern analysis in turbulent convection, the temptation
of attacking it with these techniques proved irresistible for me.

A work such as this, spanning several years, has inevitably been
influenced by many people, both directly and indirectly. Here I
will attempt to recount those people.

Firstly, I thank my family in Mexico for their continuous support
and encouragement. This goes especially for my parents, Araceli
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and José Luis, who have been a guiding example and inspiration
throughout my life.

On this side of the ocean, I would like to express my gratitude
to my supervisor, Prof. Angela Kunoth, for placing the trust in
me to undertake this project, even when the subject matter was
a departure from her usual field of work. In the end I came
to appreciate the immense intellectual freedom she gave me to
determine my own path, as it has been an invaluable learning
experience. I would also like to thank Dr. Cedrick Ansorge, with
whom I spent many hours in detailed discussions which were
always a great aid in formalizing my ideas and interpreting the
results obtained. In the process I learned a lot, not only about
boundary layer meteorology and fluid mechanics, but also about
good scientific practice. For this I am also deeply grateful. I also
thank Prof. Yaping Shao for his input and comments on my work,
and for the inspiration behind one of the methods discussed in
this dissertation. My gratitude goes also to Prof. Roel Neggers,
who has agreed to review this work on relatively short notice (and
provided some of the simulation data studied here), and to Prof.
Kathrin Bringmann, president of my examination committee.

I would like to acknowledge the German Research Foundation
(DFG) for the funding granted to me during most of my work on
this project, through the SFB/TR32 research initiative “Patterns in
Soil–Vegetation–Atmosphere Systems: Monitoring, Modelling and
Data Assimilation”. The Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) is gratefully acknowledged for funding
this project by providing computing time through the John von
Neumann Institute for Computing (NIC), project ID HKU24 on the
GCS Supercomputer JUWELS at Jülich Supercomputing Centre
(JSC).

My gratitude goes to the TDA community at large, and espe-
cially to the organizers of all the conferences and workshops I had
the privilege of attending in the past years, namely
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I also thank the many wonderful people I met during these events,
with whom I could share my enthusiasm for applied and compu-
tational topology: Dejan, Siargey, Oliver, Barbara, Grzegorz, Janis.
And especially my dear friend Henri Riihimäki for all the valuable
time spent together, be it working out mathematical issues or at a
pool table (sometimes even at the same time). Besides, cruising
along the Finnish countryside while computing pullbacks is no
doubt among the most memorable moments of my whole PhD
experience, thank you for that!
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ingly unquenchable desire for adventure and discovery never
failed to arouse my own: Thirza, thank you for your love and
encouragement, which have done more for me than I will ever be
able to express.

Darmstadt, December 7th, 2019

José Luis Licón-Saláiz

xi





C O N T E N T S

1 introduction 1
1.1 Atmospheric patterns and topology 1
1.2 Outline and contributions 9

2 meteorological background 13
2.1 Planetary Boundary Layer 13
2.2 Structure of the PBL 14
2.3 Boundary layer clouds 19
2.4 Turbulence in the PBL 21
2.5 Modeling of the PBL 24

3 topological background 29
3.1 Historical remarks 30
3.2 General topology 32
3.3 Simplices, Cubes, and Complexes 37
3.4 Simplicial Homology 41
3.5 On the computability of homology 49
3.6 Persistent Homology 53

4 homological signature of land surface–atmosphere
interaction 61
4.1 Related work 63
4.2 Geometric representation 66

4.2.1 Variable selection 66
4.2.2 Thresholding and anchor points 67

4.3 Betti numbers for the vertical wind velocity field 70
4.3.1 Betti profiles 75
4.3.2 Classification of land surface patterns 78
4.3.3 Time series of Betti numbers 86

4.4 Topological characterization of the planetary bound-
ary layer (PBL) 92
4.4.1 Supervised learning 94
4.4.2 Unsupervised learning 95
4.4.3 Semi-supervised learning 102
4.4.4 Model comparison 109

xiii



xiv contents

5 connectivity and the spatial organization
of convective flow 113
5.1 The Union-Find data structure 115
5.2 Component–size distribution 117

5.2.1 Power-law distributions 120
5.2.2 Parameter fitting 122
5.2.3 Scaling parameter 125
5.2.4 Goodness-of-fit 127
5.2.5 Comparison with the updraft Betti number,

�
+
0

133
5.3 Merge tree representation 137

5.3.1 Height function 137
5.3.2 Methodology 140
5.3.3 Results 142

6 spatial distribution of shallow cumulus clouds 149
6.1 Related work 150
6.2 Stable rank invariant 155
6.3 Application to regular point patterns 158
6.4 Geometric representation of cloud fields 161

6.4.1 General methodology 162
6.4.2 Data 165

6.5 Estimation of cloud cover 166
6.5.1 Methodology and experimental setup 167
6.5.2 Results and Interpretation 174

6.6 Measuring the spatial randomness of cloud fields 176
6.6.1 Methodology 176
6.6.2 Results and Interpretation 179

6.7 Morphological classification of cloud fields 180
7 final discussion and outlook 195

7.1 Discussion 195
7.2 Outlook 198

a list of symbols 201



1
I N T R O D U C T I O N

1.1 atmospheric patterns and topology

The idea of patterns and pattern formation has long played an
important role in natural science, and has experienced a renewed
interest during the first decades of the XXIst century, as quantita-
tive investigations into the nature of patterns in natural systems
become more prevalent. A pattern in the sense discussed here
is understood as a connected region of the spacetime domain
with similar characteristics, and which exhibits a certain degree of
spatial and temporal coherence. There are two important aspects
involved in this definition: The first is the geometric aspect, ac-
cording to which we expect a pattern to exhibit regularity in space
which makes its presence visually and intuitively clear, even if
it escapes a precise geometric definition. From mathematics we
know of spatial patterns which exhibit regularity, for example
sphere packings and tessellations of the plane. We can hardly
hope to find such perfect patterns in nature, however—after all,
clouds are not spheres and rocks are not cubes. Yet, as we will see,
there is much that can be known about patterns in nature without
need for this degree of geometric precision. The second aspect
in the definition is a statistical one, where we expect the values
of a given quantity, such as temperature or wind velocity, to be
regular in a statistical sense within the region of spacetime that is
spanned by a pattern. This is a manifestation of the underlying
dynamics which result in pattern formation.

The importance of patterns stems from several factors: 1) their
simplicity, which contrasts with the complexity of the systems
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2 introduction

in which they emerge; 2) their universality, insofar as dissimilar
systems will exhibit the same patterns close to their respective
bifurcation regimes; and finally, 3) the resilience of patterns to
environmental noise [Goehring, 2013]. Patterns are understood
as a manifestation of self-organization in a non-linear dynam-
ical system driven away from equilibrium, or as an emergent
phenomenon [Vereecken et al., 2016]. In either case they aid in
understanding the dynamics and interactions of the underlying
systems. A classic example of patterns as a characteristic of self-
organization is given by the ideal situation of Rayleigh-Bénard
or Bénard-Marangoni convection, where the interplay of buoy-
ancy and fluid viscosity leads to stable configurations which
display characteristic spatial patterns (Figure 1.1 shows an exam-
ple of this). This idealized setting has been extensively studied
from a theoretical [Mizushima, 1994; Golovin et al., 1995], empir-
ical [Meyer et al., 1987; Cerisier et al., 1996], and numerical [Lee
et al., 1989; Mizushima, 1995; Gelfgat, 1999] perspective, and is
indeed the expression of a more general phenomenon: convective
systems will naturally tend to form such geometrical patterns,
whether the convective medium is oil on a hot pan, the Earth’s
atmosphere, or the surface of the Sun, to name a few examples.

This dissertation will focus on the special case of convection
in the Earth’s atmosphere. A key component in this study is
the presence of turbulence. Atmospheric turbulence is associated
by many of us with a bumpy airplane ride, but it is a much
richer and deeper subject than this anecdotal association would
suggest. It is not only one of the great open problems in classical
physics, but has also attracted the attention of numerous people
in the mathematical community. Some notable examples of this
include the pioneering work by Hopf [1948], who advanced the
hypothesis that, as the Reynolds number1 of a fluid increases, its
flow undergoes a large, possibly infinite, number of bifurcations
in phase space, each adding different periodic modes. The result
of this process is the seemingly random, chaotic motions of fully-
developed turbulence. An equivalent theory was independently
proposed by Soviet physicist Lev Landau [1944].

1 The Reynolds number of a fluid is defined as the ratio of its velocity to its viscosity.
See Section 2.4.
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Figure 1.1: Cellular structure observed experimentally in Bénard-
Marangoni convection when uniformly heating a thin layer of
oil from below (Figure from Cerisier et al. [1996]).

Another notable example is the work of Ruelle and Takens
[1971], who instead of an infinite sequence of bifurcations, pro-
posed only three: from steady flow to periodic flow, followed by
quasi-periodic flow, and thence to turbulent flow. This approach
would prove to be more successful and longer-lived than the Hopf-
Landau theory, not least because it is easier to test experimentally.
Of special significance in the mathematical study of turbulence is
the name of A.N. Kolmogorov, who developed a statistical theory
of turbulence which we will briefly comment on in Chapter 2.

Returning now to the setting of atmospheric convection, we
find that atmospheric turbulence exists almost exclusively in the
vicinity of the Earth’s surface. This part of the atmosphere is the
planetary boundary layer (PBL), sometimes also called the atmo-
spheric boundary layer (ABL). Assuming a day with fair-weather
conditions, two distinct regimes will exist in the PBL: first, a stable
surface layer during nighttime and in the early morning hours.
Then, after sunrise, the surface is continuously fed with energy
via sunlight, and this energy is then reflected or radiated into
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the atmosphere. This energetic forcing initiates convection, and
the system rapidly transitions from the stable regime to an un-
stable one characterized by fully-developed turbulence, which
destroys the simple, elegant patterns seen in idealized convection
illustrated in Figure 1.1, but gives rise to new ones: vortex streets
in wake turbulence [Henderson, 1997], hairpin vortices [Adrian,
2007], convective plumes [Bizon et al., 1997], or large-scale or-
ganized motion Jiménez [2012]. These are examples of coherent
structures: connected regions of the flow domain with similar
characteristics, which exhibit spatiotemporal coherence, i.e. they
occupy relatively large volumes of space and exist for a significant
time span [Antonia, 1980; Shah and Bou-Zeid, 2014]. Such large-
scale structures also play an important role in the atmosphere
system, and are of central importance in meteorology [Agee, E.
M. and Chen, T. S. and Dowell, 1973; Rosmond, 1973; Ray, 1986].
Being able to characterize and describe these structures and their
dynamics in an objective, quantitative fashion is essential in order
to improve current understanding of the Earth’s changing climate
and its future.

Given the fact that the land surface acts as an energy source
for atmospheric convection, it is to be expected that the precise
configuration and features of the surface will have a direct impact
on the structure of the resulting turbulent flow. It is known that
the structure and shape of convective plumes in isolated settings
is modulated by the shape of the heat source driving convection
[Kondrashov et al., 2016]. More generally, the PBL is not merely
forced by surface conditions, but is in a state of constant feedback:
atmospheric turbulence affects the conditions of the land surface,
which responds and in turn affects the state of the turbulent flow,
and so on. Since the land surface is not a collection of simple geo-
metric shapes but rather a mosaic of diverse land types arranged
in intricate patterns, we can expect that its effect on atmospheric
convection will reflect this complexity. Indeed, the effect of land
surface heterogeneity has been studied for realistic Shao et al.
[2001, 2013] and idealized set-ups Rieck et al. [2014]; van Heer-
waarden et al. [2014]. In all these scenarios, another crucial feature
is the hierarchical organization of the turbulent flow, in the sense
that smaller convective plumes merge into larger plumes close
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to the surface, and this merging process continues as positively
buoyant air moves up. This process eventually gives rise to large,
dominant structures Mellado et al. [2016], and is also influenced
by surface conditions.

A very different source of complexity is another phenomenon
which is familiar to us all: the formation of clouds. These, par-
ticularly shallow cumulus clouds, are an important component
in the climate system, due to their feedback with the rest of the
land-atmosphere system. They form when convective updrafts
have enough energy to transport moist air beyond the lifting con-
densation level. The presence of cloud will then shade a part of
the land surface and reflect some of the incoming solar radiation
back into space, thus reducing the total influx of energy into the
atmosphere and decreasing the potential for future cloud forma-
tion. The representation of these shallow cumuli in climate models
remains a major source of error [Bony and Dufresne, 2005]. This
is due to the fact that these clouds exist at spatial and temporal
scales smaller than the resolution of current models, therefore
they need to be parametrized. Such parametrization depends on
a correct description of the spatial structure and dynamical behav-
ior of cloud fields. This covers different scale ranges, from small
cloud fields over areas no larger than a few square kilometers to
large domains hundreds of kilometers across, where mesoscale
circulations can produce spatial patterns of great complexity (see
for example Figure 1.2). In this respect the study of spatial cloud
patterns is an area of active research [Pankiewicz, 1995; Heinle
et al., 2010; Seifert and Heus, 2013], as well as the influence exerted
on these patterns by the land-surface [Garcia-Carreras and Parker,
2011; Gentine et al., 2013; Rieck et al., 2014].

We can now appreciate that the PBL, characterized by the com-
plexity of turbulent flow and the presence of exquisitely intricate
patterns, is a fertile field for the applied mathematician. The start-
ing point for this dissertation can be formulated thus: the search
for a mathematical representation of patterns in the PBL, and
of its interaction with the underlying land surface. The focus is
especially on spatial patterns, which are often neglected in mod-
elling these systems, but are nevertheless important sources of
variability in the resulting models [Koch et al., 2017]. It quickly
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Figure 1.2: A cloud pattern resulting from open-cell mesoscale convection over
the tropical Atlantic. Open-cell refers here to the fact that rising mo-
tion happens at the border of convective cells, while sinking motions
happens in their interior. This results in the cloudy areas mirroring
the network structure of cell boundaries, as seen here. Mesoscale is, as
the name implies, the range that lies between the microscale, where
small and localized systems such as storms exist, and the synoptic
scale, where weather systems that span thousands of kilometers exist.
For reference, the island of Cuba can be seen in the lower part of
the picture. Image credit: Jacques Descloitres, MODIS Land Rapid
Response Team, NASA/GSFC.
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becomes clear that, given the complex geometries displayed by
these patterns, we will need a very general and flexible language
to describe them. Consider, by way of example, the cloud field
shown in Figure 1.2: a certain regularity is apparent in the spatial
arrangement of the individual clouds, owing to the open-cell con-
vection mechanism at work here. This regularity is a consequence
of clouds forming in the updraft regions, which in this regime
correspond to the boundaries of convective cells. These cells are,
as in the ideal case, arranged in a hexagonal cell pattern, which is
perturbed here by atmospheric dynamics. Owing to this perturba-
tion, any attempt to draw meaningful conclusions from the precise
metric relationships between the clouds appears futile—the cells
are far from being perfect hexagons, and their sizes and side
lengths vary seemingly at random. Yet spatial coherence exists,
even if it escapes a simple geometric definition. This brings us to
the one word in the title of this dissertation we must yet elucidate:
topology.

Topology is a classical field in mathematics, concerned with the
study of abstract properties of space which are invariant under
smooth transformations, such as twisting or bending. One of the
most common examples is that of a donut and a coffee mug
being topologically equivalent, since (assuming a sufficiently soft
material) each can be obtained from the other via a continuous
deformation, without needing to tear or puncture the material. It
would not be possible, however, to obtain a donut from a solid
ball: this would require carving out a hole from its center. The
property of having a hole is one of many possible topological
invariants.

Topology traces its origins to the late XVIIth century, and has
remained for most of its existence strongly anchored in the realm
of abstract mathematics. It is only in the early XXIst century that
it has experienced a renaissance as a viable part of applied math-
ematics. This evolution has been made possible largely by the
computable nature of some topological invariants, but also be-
cause numerous researchers, working independently in different
scientific fields, have found striking and unexpected relationships
between topological invariants which can be computed from data,
and the underlying physical systems. Some notable examples are
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Dataset

Computational
Representation

Topological
Invariants

Features

Statstical Inference

Machine Learning

Figure 1.3: The different components of the Topological Data Analysis
pipeline.

its applications to chaotic dynamics [Gameiro et al., 2004], plasma
physics [Garcia et al., 2009], biology [Chan et al., 2013; Nanda and
Sazdanović, 2014; Máté et al., 2014], materials science [Dłotko and
Wanner, 2016; Lee et al., 2017], cosmology [Pranav et al., 2017],
neurology [Bendich et al., 2016], and medicine [Ellis and Klein,
2014; Wu et al., 2017]. These are all comprised within the emerging
discipline of topological data analysis (TDA), and this dissertation
is to be seen as one step in its development. More precisely, the
research question at the core of this work is:

can topology be leveraged to represent PBL patterns, and if so,
does it offer any new information not provided by classical
methods?

Crucially, TDA does not offer a unified approach to attack a
given research problem, given the many different topological
invariants that exist and the multiple representations which can
be chosen for a given dataset. The general program in TDA is as
follows: given a pair of topological spaces X, Y, and a finite set of
points S ⇢ Y sampled with noise from X, to recover the topology
of X using the information contained in S [Zomorodian, 2012].
The analysis pipeline is illustrated in Figure 1.3. At each step of
this process several questions face the practitioner, namely:
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1. Which computational representation to use? This amounts
to translating data defined in continuous space and time to
a discrete data structure that can be stored and processed
by a computer.

2. Which topological invariants can be computed efficiently
from that representation?

3. How can these be mapped to meaningful features for use as
inputs in further analysis?

The answers to these questions are largely domain-dependent.
Throughout this dissertation we will provide the answers for
the case of pattern analysis in land–atmosphere systems, thus
formalizing an analysis pipeline which allows for an objective and
quantitative representation of spatial patterns in the data, and the
use of these in studying the underlying system’s dynamics.

1.2 outline and contributions

The main focus of this work is bridging the divide between ap-
plied topology and meteorology, by introducing ideas from the
former into the latter and vice versa. As this is in essence an in-
terdisciplinary enterprise, the first thing we need is to establish a
common language. After this introduction, Chapters 2 and 3 begin
by presenting the necessary background information from both
fields. Chapter 2 covers boundary layer meteorology, in particular
the case of the radiatively-driven convective boundary layer (CBL).
Chapter 3 covers some elementary aspects of algebraic topology,
namely simplicial and cubical homology, as well as persistent
homology. Both chapters are intended as reference material for
non-specialists in either area.

After the necessary definitions have been established, 3 research
chapters with original work form the core of the dissertation.
Chapter 4 focuses on the analysis of spatial patterns in coupled
land–atmosphere systems by using specific topological invariants,
the Betti numbers. We show that these invariants constitute more
informative features than descriptors obtained from bulk analysis
of the flow, when used in the task of discriminating between
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different land surface patterns. They also allow us to classify
the different subregions of the PBL with high accuracy, which
can be shown by training an unsupervised classification model
on the topological data and comparing the results with physical
definitions.

In Chapter 5 we specialize the analysis to flow connectivity. Con-
nectivity is, perhaps, the most elementary topological property,
and is often neglected in the TDA community in favor of other,
more sophisticated invariants. Nevertheless, its computation is
simple, and can be very informative. Here we use this property to
offer a quantitative description of the effect of land surface hetero-
geneity on the hierarchical organization of the flow. Most notably,
this allows us to recover a key element of the Kolmogorov the-
ory of turbulence alluded to earlier, without needing to compute
spectral transforms of the data. This is a significant advantage
of the methods introduced here, and as a further illustration we
show how land surface heterogeneity also impacts the relative
effectiveness of different land types in sustaining convection.

Chapter 6 addresses the description of spatial patterns, both
regular and random, by means of persistent homology, more
specifically, of the stable rank function, which will be defined later.
We show how this function differs from classical first- and second-
order statistics, in the sense that it provides different information
about the underlying spatial distributions. Using this we can then
describe the spatial distribution of shallow cumulus cloud fields,
and derive from it conclusions regarding the cloud size distri-
bution which agree with recent studies on the subject. Further,
we introduce a persistent-homology based index for spatial or-
ganization and compare it with the Iorg index. Finally, we show
how the persistence contour formalism can be used to produce a
morphological classification of cloud fields.

Chapter 7 contains an overview and discussion of the main
results, closing remarks, and an outlook on future avenues of
research.

The main contributions of this dissertation are:

1. The use of the normalized quotient of Betti numbers as a
descriptive parameter for the dynamics of a system, in this
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case a convective boundary layer. In a purely mathematical
sense, this is a coarser descriptor than the individual Betti
numbers, as some information is lost when considering
their quotients. In the physical sense, however, this quantity
has the advantage of being adimensional. This simplifies
analysis by reducing the number of parameters needed to
describe the state of the system.

2. The use of the stable rank invariant as the analogue of a
cumulative distribution function for persistent homology.
The result of computing persistent homology is a collection
of persistence intervals, each described by a pair of real num-
bers. The values in these pairs are not distributed uniformly
at random, but rather respond to the spatial distribution
of the point cloud from which they were computed. This
fact allows us to use the stable rank invariant to express
higher-order relationships between points in space. This
functional summary is shown to be strictly more informa-
tive than first-order (e.g. nearest-neighbor distances) and
second-order (e.g. Ripley’s K function) statistics.





2
M E T E O R O L O G I C A L B A C K G R O U N D

Outline
This chapter gives an overview of the general information con-
cerning the planetary boundary layer (PBL) needed throughout
this dissertation (Section 2.1). The structure and temporal evolu-
tion of the PBL is described in Section 2.2, and the appearance
of boundary layer clouds is discussed in Section 2.3. Section 2.4
recounts some key aspects of turbulent motion in the PBL, and
Section 2.5 discusses different numerical simulations used to gen-
erate the data used for analysis in later chapters. The presentation
of PBL structure and dynamics is based on Stull [1988], while the
overview of turbulent dynamics draws from Pope [2000].

2.1 planetary boundary layer

The planetary boundary layer (PBL), also called atmospheric
boundary layer (ABL), is the part of the Earth’s atmosphere closest
to its land or ocean surface. It is therefore here that the surface
exerts greatest influence upon atmospheric dynamics. The PBL
is a subset of the troposphere, which is the lowest layer of the at-
mosphere. The troposphere has an average height of 11 km, out
of which the PBL occupies anywhere between a few hundred
meters and a few kilometers. The rest of the troposphere is the
free atmosphere. The difference between the PBL and the free atmo-
sphere above it is precisely that the former responds directly to
forcings from the Earth surface, such as those induced by friction

13
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Figure 2.1: Diagram showing the structure and temporal evolution of the
planetary boundary layer (PBL) over a day with fair-weather
conditions over land. During daytime, a convective bound-
ary layer (CBL) develops, with fully-developed turbulence
occurring in the mixing layer, and separated from the free
atmosphere by an entrainment zone located at a height of
1–2 km above the surface. At night, a stable surface layer
forms adjacent to the land surface, with a layer of residual
turbulence aloft (based on Stull [1988]).

with terrain, thermal radiation, and evaporation. This response
happens within short time scales (in the order of a few hours).

The most important of these processes in the case studied here
is energetic forcing as a result of solar heating. This results in
the existence of strong gradients in air velocity within the PBL,
which in turn produce turbulence. This is a crucial component
of PBL dynamics, and is the main driver of molecular transport
and mixing in the atmosphere. This turbulence-driven transport
happens primarily in the vertical direction, that is, orthogonally
to the land surface.

2.2 structure of the pbl

As mentioned above, the structure of the PBL depends largely
on surface forcings. The clearest example of this is the boundary
layer at mid-latitudes over land, which will be the case studied
in this dissertation. In this situation, PBL structure varies peri-
odically with time in what is termed the diurnal cycle, which is a
consequence of the presence or absence of sunlight. The general
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Figure 2.2: Horizontal cross section of the vertical wind velocity field (W)
within the surface layer of a CBL. Data is taken from a direct
numerical simulation (DNS). The characteristic surface layer
structures, namely updraft curtains, can be clearly seen here.
The dashed line indicates the location of the vertical cross
section in Figure 2.3.

form of this cycle is shown in Figure 2.1. In the early morning
hours, solar radiation begins to heat the ground, and this heat is
gradually radiated into the atmosphere. As time progresses, the
amount of heat fed into the system increases as well, which in
turn increases the temperature gradient between land surface and
atmosphere. This gradient results in heat being transferred to the
atmosphere, which gives positive buoyancy to the air adjacent to
the surface. This buoyancy is the main driving force behind turbu-
lence, and is responsible for the formation of an unstable surface
layer, where convective structures begin to form. These structures
assume the form of updraft curtains arranged in a honeycomb-like
pattern which is reminiscent of Rayleigh-Bénard convection. At
the intersection of these curtains we find greater buoyancy and
thus a stronger rising motion of air. An example of these struc-
tures is shown in Figure 2.2, which depicts a horizontal section of
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Figure 2.3: Vertical cross section of the vertical wind velocity field (W)
from direct numerical simulation (DNS) of a convective bound-
ary layer (CBL). Horizontal lines indicate the location of the
cross sections for the surface layer (dashed line, Figure 2.2)
and the entrainment zone (solid line, Figure 2.5). The space
between those lines corresponds to the turbulent mixing layer.

the vertical wind velocity field from a direct numerical simulation
(DNS, see Section 2.5).

Assuming no mixing with its surrounding environment hap-
pens, this positively buoyant, rising air gradually cools down as it
travels upward. If it is buoyant enough, it continues its upward
motion until encountering an area with a strong gradient in tem-
perature and moisture: the inversion layer. The positive buoyancy
of rising air is lost here, but given enough momentum it can break
through the inversion layer and penetrate the free atmosphere
aloft, where it mixes with drier, cooler air before descending back
through the inversion layer. This is the entrainment process, and is
a key factor behind boundary layer growth. This part of the PBL
is sometimes also called the entrainment zone.

The space between surface layer and entrainment zone is where
rising, positively buoyant air meets the descending, negatively
buoyant air being entrained. This region is aptly called the mixing
layer. We can therefore distinguish three main boundary layer
subdomains during the day: the surface layer, the mixing region,
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Figure 2.4: Mean profiles of temperature (left), mean horizontal wind
(center, M̄2 = ū

2 + v̄
2), and water vapor mixing ratio (right)

in the daytime PBL.

and the entrainment zone. Together these constitute the convective
boundary layer (CBL). Figure 2.3 shows a vertical cross section of
a CBL from the same DNS as before.

The diurnal cycle consists of boundary layer growth throughout
the day, as a continuous influx of solar radiation increases the en-
ergy available for air rising from the surface layer to rise through
the inversion and feed the entrainment process. Boundary layer
depth (i.e., its height) increases as additional air from the free
atmosphere is entrained, and in the first hours of the morning this
happens very rapidly due to a weaker stable layer capping at the
top. Boundary layer growth gradually slows down and eventually
stops after reaching a maximum height of 1–1.5 km. After sunset
the influx of energy into the system stops, and the land surface
stops being an energy source to become an energy sink. The tem-
perature gradient between land and atmosphere thus begins to
dissipate, and a stable surface layer or nocturnal stable layer forms,
where turbulent convection is replaced by weaker motion of air.
Higher up, however, the mixing layer becomes a region where
residual turbulence, feeding off the energy still stored in the sys-
tem, can continue for several hours after sundown, now decoupled
from the surface layer. The energy in the residual layer gradually
decays and the inversion height with it. The cycle recommences
on the following morning at sunrise, with convection starting
again beneath the nocturnal stable layer.
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As a consequence of turbulent mixing, physical quantities such
as wind velocity and temperature are relatively homogeneous
with height in the mixing layer. This can be seen in Figure 2.4,
which also shows how the remaining PBL subregions can be
characterized by the gradients of these quantities. The turbulent
conditions in the mixing layer destroy the updraft patterns that
arise within the surface layer, as some individual structures are
absorbed by their neighbors, which then grow in size. This gives
rise to a new type of coherent structure, the convective plume. The
size of these structures is significantly larger, as they can span
the entirety of the mixing layer, and are thus responsible for most
of the momentum exchange in the CBL, as well as for boundary
layer growth through entrainment.

Beyond the mixing layer lies a stable layer, which is where the
entrainment zone is located. The precise location of this layer
changes both in space and time. Temporal changes occur in accor-
dance to the diurnal cycle of the PBL. Spatial variations are due
to the nature of the entrainment process, whereby rising thermals
from the mixing layer go through the capping inversion in the
entrainment zone, only to later sink back into the mixing layer
carrying air from the free atmosphere with them. We then see a
core of positively buoyant air overshooting the capping inversion,
surrounded by a region of negatively buoyant air going into the
mixing layer from the free atmosphere. The boundary layer height
(or depth), denoted in the meteorological literature1 by zi, is the
average height of the inversion layer base, with the average com-
puted over the horizontal extent of the domain. A cross section
of the inversion layer base is shown in Figure 2.5, where we can
see the tops of at least three distinct overshooting thermals, sur-
rounded by downdrafts. The vertical wind velocity in a large part
of the domain exhibits much smaller fluctuations than it does in
the up- and downdraft areas, which would suggest that it belongs
to the free atmosphere.

1 Contrary to its use in mathematics, the subscript i refers here to the word inversion,
and is not to be understood as an index ranging over a discrete set of values.
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Figure 2.5: Horizontal cross section of the vertical wind velocity field (W)
in the entrainment zone of a CBL, showing the qualitative
difference between regions of overshooting thermals and the
stably stratified free atmosphere. The solid line indicates the
location of the vertical cross section in Figure 2.3.

2.3 boundary layer clouds

Our discussion so far has assumed a dry boundary layer, which
has as a consequence the absence of cloud. If we now assume
the presence of a significant amount of water vapour in the at-
mosphere, the same basic dynamics of the CBL still apply: solar
radiation heats the land surface, and radiation of this heat into the
atmosphere powers buoyancy-driven convection. Given enough
buoyancy, the air will rise adiabatically (and thus cooling) until
the water vapour it contains condenses and produces a boundary
layer cloud. The height at which this happens is the cloud base
height, or lifting condensation level, and for boundary-layer cloud, it
is in general close to the top of the mixing layer. The type of clouds
formed by this process are shallow cumulus clouds (Cumulus hu-
milis/ Cumulus mediocris; Cu hum/med), sometimes also called
fair-weather clouds due to their occurrence at daytime in otherwise
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clear skies. There is another important type of boundary layer
cloud, namely stratocumulus. In this dissertation, however, we
will only encounter shallow cumulus clouds. These can be treated
as discrete spatial objects, on which the methods we will develop
later (see Chapter 6) can be then applied. Stratocumulus, on the
other hand, tend to form large unbroken sheets in diverse spatial
arrangements. The topological methods developed here can be
extended to deal with such spatial patterns as well, but such an
extension lies beyond the scope of this dissertation.

Shallow cumuli start their existence atop a convective plume,
where the air is taken to a sufficient height that condensation
of its water vapor content can take place. In some cases this can
happen after the plume has overshot the inversion layer and is now
therefore negatively buoyant. In either case, a cloud formed by
this process remains coupled to the land surface by this convective
plume. Their continued existence of a shallow cumulus cloud thus
depends initially on the plume’s ability to supply moist air from
below. In this state it is still a forced cloud. Condensation is an
exothermic process, and in some cases the increase in temperature
caused by condensing water vapor is sufficient to make the cloud
positively buoyant again. This causes the cloud to draw in more air
through its base, and can thus now exist and grow independently
of the plume that created it. The cloud thus reaches the active state.
This type of clouds directly impact CBL dynamics by transferring
mass and energy from the mixing layer into the free atmosphere.
When the cloud is no longer able to draw in air through its base,
it can retain positive buoyancy for some time, but it begins to
dissolve from the base upwards. The cloud is now decoupled from
the surface, and this passive state is the last step in its existence
[Stull, 1985].

The significance of shallow cumuli lies in the impact they can
have on boundary layer dynamics via feedbacks. For example,
such a cloud will both absorb and reflect solar radiation and thus
reduce the energy available to heat the land surface, and therefore
to drive convection. The net result is that the existing convective
plumes will be weakened, and new ones will be less likely to form,
which has a negative impact on further cloud formation. Clouds
which have reached an active state can also inhibit further cloud
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formation, as the process by which they transport air from the
turbulent mixing region into the free atmosphere weakens bound-
ary layer growth, thus reducing the likelihood that convective
plumes will reach the point where they can produce new clouds.
On the other hand, the air taken from the mixing layer will tend
to increase the environmental humidity in the free atmosphere,
which will result in a slower dissipation rate for the clouds already
there.

Shallow cumuli are also an important subgrid-scale process
for regional or global climate models. These processes occur over
spatial and temporal scales which are too small to be explicitly
resolved by these models, and therefore must be approximated by
using a parametrization scheme. An important component in de-
signing an accurate parametrization scheme for shallow cumulus
clouds is an accurate representation of the organization of their
spatial distribution, as well as of the cloud size distribution.

2.4 turbulence in the pbl

The dynamics in the PBL are governed by the Navier-Stokes
equations of fluid mechanics. When studying convection it is
common to employ a simplified version of these equations, the
so-called Boussinesq approximation, which amounts to neglecting
differences in density throughout the fluid (for an overview of this
approximation and its derivation from the equations of motion,
see Stull [1988, §3.3]). The equations then become

@u
@t

+ (u ·r)u = -rp+ ⌫r2u + bk,

r · u = 0,
@b

@t
+r · (ub) = r2

b,

(2.1)

where u(X, t) is the velocity field; b(X, t) is the buoyancy; ⌫ is
the kinematic viscosity of the fluid,  is its molecular diffusivity.
Here we denote vectors by boldface letters, and in particular
X = (x,y, z) denotes the three coordinates of Euclidean space. In
conformity with the common practice in physics, we will use x,y
for the two horizontal directions, and z for the vertical direction
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(perpendicular to the surface). The two horizontal (i.e., parallel to
the boundary) components of the velocity field are conventionally
denoted by u(X, t) and v(X, t), whereas the vertical component
of the velocity field is denoted by . We will similarly follow this
convention throughout the present text. The velocity field can be
written as

u(X, t) =

0

BB@

u(X, t)
v(X, t)
w(X, t)

1

CCA . (2.2)

A fundamental quantity which characterizes flows governed
by these equations is the ratio of inertial forces to viscous forces,
known as the Reynolds number and defined as

Re =
UL

⌫
,

where U and L are characteristic velocity and length scales of the
fluid, and ⌫ its kinematic viscosity [Pope, 2000]. For very high
values of Re, that is, high fluid velocity coupled with relatively
low viscosity, turbulent motions arise. The appearance of turbu-
lence has a dramatic effect on the complexity of the flow when
compared to non-turbulent (i. e., laminar) flows, as turbulent mo-
tions occupy a wide range of spatiotemporal scales. This fact is
expressed by the principle of energy cascading in turbulent motion,
whereby the energy put into the fluid by external forcings is first
transferred to the largest eddies2, which in turn transfer their
energy to smaller eddies and so on, until the effects of viscosity
stop this process and force the dissipation of energy into heat.
The scale of the largest eddies, the so-called integral scale L, is
determined by the domain size. On the other end of the spectrum

2 An eddy in fluid mechanics “eludes precise definition, but it is conceived to be a
turbulent motion, localized within a region of size `, that is at least moderately
coherent over this region. The region occupied by a large eddy can also contain
smaller eddies.” [Pope, 2000]
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is the Kolmogorov scale ⌘, which was derived by A. N. Kolmogorov
as

⌘ =

✓
⌫
3

"

◆1/4

,

where " is the rate of dissipation of kinetic energy and ⌫ is again
the kinematic viscosity of the fluid [Kolmogorov, 1941b,a]. It can
be shown that these scales are related:

L

⌘
⇠ Re

3/4,

where Re is the fluids Reynold’s number. The separation between
the two extreme scales can thus be significant: several orders of
magnitude for large Reynolds numbers. In the space between
these two extremes, viscosity does not play a significant role, and
the dynamics are thus dominated by inertial effects. This space is
known as the inertial subrange.

Another fundamental result of the Kolmogorov theory of tur-
bulence concerns the distribution of kinetic energy across these
various spatial scales. The energy, it turns out, is not dispersed
uniformly at random throughout the inertial subrange, but fol-
lows the distribution dictated by an energy spectrum function E(k),
which can be expressed as

1

2
hu2 + v

2 +w
2i =

Z1

0

E(k)dk.

The left hand side represents the turbulence kinetic energy3, com-
puted as the average over the three directional components of the
velocity field. The wavenumber k corresponds to spatial frequency,
with small wavenumbers associated with the largest eddies in the
flow. Kolmogorov then showed, via dimensional analysis, that the
spectrum function E(k) must have the form

E(k) = C"
2/3

k
-5/3, (2.3)

for some constant C. The key component in this expression is the
exponent -5/3, which has been subject to numerous experimental
verifications [Pope, 2000].

3 The expression hQi is used here to represent the expectation or the average of a
variable Q, for consistency with the literature on fluid mechanics and meteorology.



24 meteorological background

Analogously for the temporal scales, we can go from the large-
eddy turnover time tL, defined as tL = L/U for the mean velocity
U, to the Kolmogorov time scale t⌘, which is

t⌘ =
⇣
⌫

"

⌘1/2
.

These two extremes are again connected by the Reynold’s number:

tL

t⌘
⇠ Re

1/2.

As a consequence of these fundamental principles, the compu-
tational cost for performing direct numerical simulations (DNS) of
a turbulent PBL, where all the necessary spatiotemporal scales are
explicitly resolved, is prohibitive. It is thus common practice to
employ different approximations and simplifications of the under-
lying equations. One of the most widely-used approximations is
the large-eddy simulation (LES), which is obtained by taking the
convolution of the prognostic variables of the model (e.g. velocity,
temperature) with a filtering kernel, which is usually taken to
be a compactly-supported or rapidly-decaying smooth function.
The resulting model equations are then discretized and solved.
This has the effect of removing the smallest scales from the flow,
which greatly reduces the computational cost. In order to main-
tain a realistic behaviour, however, the information contained in
those scales must still be included. This is done by subgrid-scale
modelling.

2.5 modeling of the pbl

In this dissertation we will limit the data used for analysis to
datasets obtained from numerical simulations of the PBL. These
simulations solve a discretized version of the Boussinesq approx-
imation to the Navier-Stokes equations (Equations 2.1), either
directly or after applying a filtering kernel for an LES.

In all, data from three different simulations will be used: one
DNS of a CBL growing into a linearly stratified atmosphere [Gar-
cia and Mellado, 2014], and two LES models: the first is the Large-
Eddy Simulation Atmosphere–Land-Surface Model [LES-ALM,
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Table 2.1: Description of LES land-surface patterns.

surface pattern land use dominant scale

SP1 Original 360 m
SP2 SP1 without

small-scale
features

1500 m

SP3 SP1 randomized �x (=60m)
SP4 Uniform pasture 1

Figure 2.6: Surface patterns for the three cases SP1-SP3 with heteroge-
neous land use.

Shao et al., 2013], which models a dry boundary layer coupled with
an underlying land surface of varying degrees of heterogeneity.
The second one is the Dutch Atmospheric Large-Eddy Simulation
[DALES Heus et al., 2010], which models a moist boundary layer
and in this case is used to study the diurnal evolution of cloud
size distribution for shallow convection over land. In all cases, the
space discretization used is a sixth-order finite difference scheme.
Both LES models use a third-order Runge-Kutta scheme for time
discretization, while the DNS uses a fourth-order Runge-Kutta
scheme.

We now briefly summarize the main model parameters of each
simulation.



26 meteorological background

0.44

0.88

1.32

1.76

H
e
i
g
h
t
 
[
k
m
]

Figure 2.7: Evolution of potential temperature ✓ and water vapor mixing
ratio qv for simulation SP1.

dns These simulations are carried out on a Cartesian grid of
5120⇥5120⇥840 points, that is, 5120 points in each of the
horizontal directions and 840 in the vertical. This grid has
been subsampled and coarse-grained for our analysis. We
will consider a subset of the grid formed by 512⇥512⇥234
points. Out of the original 5000 timesteps computed, only
256 are used. These are taken at intervals of 20 close to
the end of the simulation, which features a fully-developed
CBL. The system is non-dimensionalized, so all time and
space coordinates are given in relation to a characteristic
length L0 =

p
B0N

-3 and characteristic time T0 = N
-1,

where N
2 is the background stratification and B0 is the

surface buoyancy flux. The initial conditions are thus a small
random perturbation on the velocity, used to trigger the
instability that will lead to turbulence, and the background
profile b(z) = N

2
z for the buoyancy (here the symbol z again

denotes the vertical dimension in the grid, i.e. orthogonal
to the direction of gravity). The simulations were ran by
Cedrick Ansorge, with initial and boundary conditions as
specified by Garcia and Mellado [2014].
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les-alm The simulation domain features a cube of (7.5 x 6.0
x 2.2) km

3, discretized on a cubical grid of 125x100x100
cells, with horizontal resolution of 60m, and the lowest
grid point located at z ' 2m. Periodic boundary conditions
are prescribed for the lateral boundaries. The simulation
period is 0800-2000 UTC, Aug. 5th 2009, with a timestep
of 0.2 s, of which a regular subset of 720 timesteps is used
(one for every 15 minutes). The LES simulations were ran
by Michael Hintz using the surface model developed by
Liu et al. [2017], using an implementation of the surface
closure taking into account the fast response of the surface
to atmospheric eddies. The initial state of the atmospheric
model (wind speed, potential temperature, water mixing
ratio, etc.) is estimated from a sounding at 08:00 UTC, 5 Aug
2009 and is characterized by a capping inversion around z '
1600m with dried air aloft. At the surface, a weak inversion
is found below z ' 300m corresponding to weakly stable
conditions preceding the onset of convection. Four different
model runs are used, each with a different land surface
pattern. These patterns, which we will denote by SP1-4,
feature different degrees of heterogeneity as described in
Table 2.1. SP1 is the original land use pattern from the
Selhausen site in Western Germany, and was one of the
designated study sites for the TR32 project; SP2 is as SP1
but with the small-scale features filtered out; SP3 is a fully
randomized pattern. These three land surface patterns are
illustrated in Figure 2.6, and all three have the same relative
proportion of each land surface type. The fourth pattern, SP4,
is a uniform grassland pattern (not shown here). Figure 2.7
shows the evolution of temperature and water vapor mixing
ratio for SP1, averaged over horizontal slabs, throughout the
entire simulation. The changes in these quantities, expressed
as a function of height and time, illustrate the process of
boundary layer growth over time (cf. Figure 2.1).

dales The domain size is (12.8 x 12.8 x 5) km
3, with hori-

zontal resolution of 50 m, vertical resolution of 40 m, and
periodic boundary conditions in the lateral directions. The
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land surface conditions are specified as a homogeneous
land surface (grassland). Each simulation covers one day,
and the data are saved at 15min time intervals for analysis.
The simulations were performed by Roel Neggers with a
model setup as described by van Laar et al. [2019]. Several
days are simulated, and the location corresponds to a site
at mid-latitude, over land (continental Europe). Additional
forcings were added to each model run, corresponding to
large-scale weather processes affecting the model site at var-
ious points throughout each simulation day. The DALES
model also features a coupled land–atmosphere scheme, but
unlike LES-ALM this model is not designed to account for
the effect of land surface heterogeneity on energy transfers
between land surface and atmosphere. It does, however, in-
clude different cloud microphysics schemes, which allow it
to model cloud formation, in contrast to the dry (i.e., no liq-
uid water content) boundary layer simulated by LES-ALM.
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T O P O L O G I C A L B A C K G R O U N D

Outline
This chapter gives an overview of the topological concepts used
throughout the thesis, with an emphasis on breadth of scope
rather than depth. After some historical remarks (Section 3.1) the
basic definitions from point-set topology are reviewed in Sec-
tion 3.2. Some important geometrical constructions are introduced
in Section 3.3, which will form the basis for the discussion of ho-
mology theory in Section 3.4. Section 3.5 gives a brief discussion
on the computable nature of homology, and Section 3.6 closes
with an overview of persistent homology.

Topology is the branch of mathematics that deals with the abstract
properties of space which remain unchanged through continuous
transformations. Its main subfields are:

point-set topology The study of the main properties of con-
nectivity, compactness, and continuity from the perspective
of set theory.

algebraic topology As its name implies, it is a hybrid of
algebra and topology: the study of topological properties of
abstract spaces by using algebraic structures associated with
these.

differential topology The study of topological properties
of smooth manifolds, and differentiable maps defined on
them.

29
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computational topology This field of study is concerned
with the study and development of algorithms for topologi-
cal problems, as well as their application to other areas of
mathematics and science.

3.1 historical remarks

Topology has a long history: its genesis is usually traced back
to the negative solution given by Leonhard Euler to the Seven
Bridges of Königsberg problem. This solution was first presented
in 1735 but published six years layer [Euler, 1741]. The problem
setting is as follows: consider the layout of the Prussian city of
Königsberg (now Kaliningrad, Russia) in the early 17th century,
as shown in Figure 3.1. The city was built on both sides of the
Pregel river (now Pregolya river), and included two islands. A
total of seven bridges joined the islands with the mainland and
each other. Is it then possible to walk through the city in such a
way that each bridge is crossed once, and only once? The only
admissible way to cross the river is by using one of the bridges,
that is, swimming or sailing across the river are not allowed.
The solution given by Euler to this problem rests on a key idea:
all the information relevant to the problem is contained in the
connections between the land masses and the seven bridges. In
other words, the exact shape of the land masses and bridges, their
sizes and relative positions do not matter. The paths traced out
over land when moving from bridge to bridge are also irrelevant.
In modern terms, we can model the city as a graph, shown in
Figure 3.1 (right), and thus the question on the existence of a
path through the city can be reformulated in terms of a question
regarding the structure of this graph. Specifically, Euler showed
that such a path exists on a graph G if and only if all vertices of G
have even degree, which is not the case for the Königsberg graph.

The solution to the Seven Bridges problem was thus an impor-
tant step towards the formalization of one of the key ideas in
topology: connectivity. Further work in this direction centered on
extending this idea to the study of geometric surfaces. The birth of
algebraic topology, the subfield which we will concentrate on in this
dissertation, only happened in the time between the 19th and 20th
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Figure 3.1: Left: map of Königsberg in 1652 showing the seven bridges
that join the mainland and the two islands (image credit:
Merian Erben, public domain). Right: graph representation of
the seven bridges problem.

centuries, in the work of Henri Poincaré. The subject first devel-
oped along two directions: first, it was noted by Poincaré that all
possible loops on a manifold can be given a group structure, with
loop addition defined by traversing both loops in sequence. This
group, called the fundamental group, turned out to be a topologi-
cal invariant of the manifold [Poincaré, 1895], and this direction
later developed into homotopy theory. The second direction, also
explored by Poincaré, centered on the study of polyhedra, and un-
der which conditions these can be used to approximate arbitrary
closed manifolds. The polyhedra can thus provide a combinatorial
representation of manifolds, which can be used to define a dif-
ferent type of topological invariant [Poincaré, 1895]. This second
direction eventually led to homology theory. Both homotopy and
homology are closely related, although the former tends to convey
more topological information, while the latter has less intuitive
definitions but is more amenable to computation. It is this relative
ease of computation which makes homology one of the corner-
stones of topological data analysis as it exists today. Consequently,
we will only focus on homology in the sequel.
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3.2 general topology

For the basic concepts of topology we refer to the book by Munkres
[2000], on which the following presentation is based.

Definition 3.2.1. A topology on a set X is a collection ⌧ of subsets
of X satisfying the following properties:

1. ?, X 2 ⌧.

2. The arbitrary union of elements of ⌧ is again an element of
⌧.

3. The finite intersection of elements of ⌧ is again an element
of ⌧.

The pair (X, ⌧) is a topological space; the elements of ⌧ are the open
sets of X.

Definition 3.2.2. Let X be a set, and B an arbitrary collection of
subsets of X which satisfies the following conditions:

1. For all x 2 X, there exists at least one set B 2 B such that
x 2 B.

2. If x 2 B1 \B2 for some x 2 X, B1, B2 2 B, then there exists
B3 2 B such that x 2 B3 ⇢ B1 \B2.

Then B generates a topology ⌧B on X, defined as the collection of
all unions of elements of B. The collection B is also referred to as
a basis for the topology ⌧B.

This concept generalizes familiar properties of open sets in R,
the real line, to arbitrary spaces. Recall that an open interval (a,b)
on the real line is the set of real numbers x such that a < x < b.
These are the fundamental open sets in R, in the sense that any
generic open set can be expressed as a union of open intervals.
Indeed, the set of all open intervals on R,

B = {(a,b) | a, b 2 R, a < b},

can be used to generate a topology on R, the standard topology.
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This simple characterization of a topology in terms of open
sets allows us to state one of the most fundamental topological
properties a space can have, and which will play a very important
role in the remainder of this dissertation.

Definition 3.2.3. A set X that can be written as the union of
two disjoint open sets, X = U

S
W and U

T
W = ?, is called

disconnected. A set is connected if it is not disconnected.

Example. Let X = (-1, 0)[ (0, 1). Since X is clearly the union of
two open sets with no points in common, it is a disconnected
space.

Definition 3.2.4. Let (X, ⌧) be a topological space, and Y ⇢ X a
subset. The collection of sets defined by

⌧Y = {Y \U | U 2 ⌧}

is the subspace topology on Y inherited from X.

Example. Let (R, ⌧) be the real line with the standard topology,
and Y = [0, 1] ⇢ R. The subspace topology on Y is generated by
the collection

{(a,b)[ [0, 1] | (a,b) 2 ⌧}.

Topologies defined in these terms appear very abstract, but
there is another way of defining a topology which is more intu-
itively clear.

Definition 3.2.5. Let X be a set. A metric on X is a function d :
X⇥X ! R such that

1. d(x,y) > 0 for all x, y 2 X; d(x,y) = 0 if and only if x = y.

2. d(x,y) = d(y, x) for all x, y 2 X.

3. d(x,y) 6 d(x, z) + d(z,y) for all x, y, z 2 X.

A common example of such a function is the Euclidean distance
on Rn, defined by

d(x,y) =

 
nX

i=1

|xi - yi|
2

!1/2
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for x, y 2 Rn. An important set defined in terms of a metric is
the open "-ball centered on a point x 2 X. This set is defined as

B"(x) = {z 2 X | d(x, z) < "}.

The importance of open balls lies in the fact that they generate
a topology on their ambient space X, called the metric topology
induced by d. In the special case of R, the open balls are all the
sets of the form

B"(x) = (x- ", x+ ").

The metric topology generated by these sets, ⌧d, can be shown
to be equivalent to the standard topology, ⌧s, in the following
sense: if (a,b) is a basis element in the standard topology, we can
always find a basis element in the metric topology, B"(x), such
that B"(x) ⇢ (a,b). Specifically, we only need to set x = b-a

2
and

" <
b-a

4
. Conversely, given any basis element B"(x) in the metric

topology, we can always find an open interval (a,b) such that
(a,b) ⇢ B"(x), for example (x- "/2, x+ "/2). Thus, by showing
that both collections of basis elements are each one contained by
the other, we show that each topology is finer than the other one,
therefore both are equivalent.

We come to another way of constructing topological spaces
which will be of importance in the sequel. These are the so-called
identification spaces, which we can imagine as the result of taking
a topological space and “gluing” several of its points together
to obtain a new space. For example, if we take a line segment
and glue its endpoints together, we would obtain a circle. The
mathematically precise statement of this fact requires several
concepts to be defined.

Definition 3.2.6. Let X be a set. A binary relation on X is a subset
of its Cartesian product, R ⇢ X⇥X.

Example. If X is the set of integers, Z, define a relation R on it
as follows: aRb, meaning a is related to b by R, if and only if
a = 2 b. This is the same as saying that the relation is the set of
ordered pairs

{(a,b) | a = 2 b}.
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Definition 3.2.7. Let X be a set, and ⇠ a binary relation on X. ⇠ is
an equivalence relation if the following conditions hold:

1. a ⇠ a for all a 2 X (reflexivity).

2. a ⇠ b ) b ⇠ a (symmetry).

3. If a ⇠ b and b ⇠ c ) a ⇠ c (transitivity).

Such a relation forms a partition of the set X into equivalence
classes, with each element a 2 X belonging to one and only one
equivalence class.

Example. Consider again the set of integers Z, and the equiva-
lence relation defined by congruence modulo 3, namely a ⇠ b if
and only if a ⌘ b (mod 3). This relation forms three equivalence
classes:

0̄ = {. . . ,-3, 0, 3, 6, 9, . . .} = {3k | k 2 Z}

1̄ = {. . . ,-2, 1, 4, 7, 10, . . .} = {3k+ 1 | k 2 Z}

2̄ = {. . . ,-1, 2, 5, 8, 11, . . .} = {3k+ 2 | k 2 Z}.

The symbol ā in this case signifies that a is the representative of its
equivalence class.

Definition 3.2.8. Given a topological space (X, ⌧), define a relation
⇠ on X by x ⇠ y if there exists a connected subspace of X which
contains both x and y. This is an equivalence relation, and its
equivalence classes are the connected components of X.

Definition 3.2.9. Let (X, ⌧) be a topological space, and ⇠ an equiv-
alence relation on X. The quotient space X/⇠ is defined as the set of
equivalence classes of ⇠ on X equipped with the quotient topology
⌧⇠. This is the topology formed by all sets with an open preimage
under the map

q : X ! X/⇠

which sends a point x to its equivalence class in X/⇠:

⌧⇠ = {U ⇢ X/⇠ | q-1(U) 2 ⌧}.
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Figure 3.2: A merge tree (right) obtained from a scalar function on R

(left).

Example. Consider the space X = [0, 1] with the subspace topol-
ogy inherited from the real line R with its standard topology.
Define the following equivalence relation on X: x ⇠ x for all
0 < x < 1, and 0 ⇠ 1. Each point x 2 (0, 1) is its own equivalence
class, and there is a two-point equivalence class formed by {0, 1}.
By effectively reducing these two points to a single entity, this has
the same effect as the “gluing” of the endpoints referred to above,
and indeed the quotient space [0, 1]/⇠ is homeomorphic to the
unit circle, S1, via the map exp(2⇡i) : [0, 1] ! S

1.

0 1

10't

exp 2⇡it

Example. Consider now the space X = [0, 1] ⇥ [0, 1], the unit
square, and define an equivalence relation on it by (x,y) ⇠ (x,y)
for all (x,y) such that 0 < x, y < 1, (x, 0) ⇠ (x, 1) for all x 2 [0, 1],
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and (0,y) ⇠ (1,y) for all y 2 [0, 1]. We again have the interior
points of X as their own equivalence classes, and now identify
each pair of opposite sides of the square with one another. We
obtain the quotient space [0, 1]2/⇠ ⇠= (S1)2, via the map

�(↵,�) = ((sin(2⇡↵), cos(2⇡↵)), (sin(2⇡�), cos(2⇡�)),

and as illustrated here, the two pairs of opposite sides become
two independent loops on the surface of the torus. Independent
here means that they cannot be continuously deformed into one
another, in a sense to be made more precise in Section 3.4.

'

The last example of a quotient space presented here is of a
different nature than the previous ones, as the starting object is
different, but the idea behind it is the same as before.

Example. Consider a smooth scalar function, f : Rn �! R, and
the graph of f, defined by

gr(f) = {(x, f(x)) | x 2 Rn}.

Define an equivalence relation on gr(f) by x ⇠ y if and only if both
points belong to the same level set of f, namely f(x) = f(y), and to
the same connected component of the sublevel set f-1(-1, f(x)].
The quotient space gr(f)/⇠ is the merge tree of the function f. This
is illustrated in Figure 3.2.

3.3 simplices , cubes , and complexes

We now describe two ways to construct combinatorial representa-
tions1 of geometric objects, which depend on the joining of simpler

1 The use of the word combinatorial in this context refers to two key properties of
the representation we seek: first, the geometric object must be represented by a
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pieces under adequate conditions. These simpler pieces can be
either simplices, which are the n-dimensional generalizations of
triangles, or elementary cubes, the n-dimensional generalizations
of cubes. The resulting representations are the simplicial or cu-
bical complexes, respectively. For a more detailed treatment of
these concepts, we refer to Munkres [1984, Ch. 1] for the case of
simplicial complexes, and Kaczynski et al. [2004, Ch. 2] for the
cubical case.

We first give the definitions of the atomic components.

Definition 3.3.1 (Simplex). Let u0,u1, . . . ,uk 2 Rd. An affine
combination of the ui is a point of the form x =

P
i
�i ui, with

�i 2 R such that
P

i
�i = 1. The ui are affinely independent if two

affine combinations, x =
P

i
�i ui, y =

P
i
µi ui, are equal if and

only if �i = µi for i = 0, 1, . . . ,k. An affine combination is a convex
combination if �i > 0 for all i. The convex hull of a set of points is
the set of its convex combinations. A k-simplex is the convex hull
of k+ 1 affinely independent points, u0,u1, . . . ,uk. We say that
the k-simplex is spanned by the ui, and write it as

� = [u0,u1, . . . ,uk].

Example. We illustrate k-simplices, for k = 0, . . . , 3. The 0-simplex
[v0] is the one-point set {v0}. The 1-simplex [v0, v1] is a line, the
2-simplex [v0, v1, v2] is a triangle, and the 3-simplex [v0, v1, v2, v3]
is a tetrahedron.

v0 v0

v1a

v0
a

v1

b

v2

c

v0
v1

v2

v4

countable set of element, indeed a finite countable set if we intend to perform
computations with it. Second, in this set we will have not only individual, point-
like elements (i.e. the vertices of the object), but also combinations or permutations
of these, which will represent structures such as edges, faces, and so on. This will
become clearer once the definition of an abstract simplicial complex is introduced
(Definition 3.3.7).
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Definition 3.3.2 (Elementary cube). An elementary interval is a
closed interval I ⇢ R, with I = [l, l+ 1] or I = [l, l] = [l], for some
l 2 Z. The latter is referred to as a degenerate elementary interval.
An elementary cube is a product of elementary intervals,

Q = I1 ⇥ I2 ⇥ . . .⇥ Id ⇢ Rd.

Example. We now illustrate the cubical analogues of the low-
dimensional simplices shown above. A 0-cube is again a one-point
set, [0] = {(0, 0)}. A 1-cube is an interval, in this case [0, 1]. A 2-
cube is a square, here [0, 1]2, and a 3-cube is a geometrical cube,
in this case [0, 1]3.

(0, 0) (0, 0) (1, 0)

(0, 0) (1, 0)

(0, 1) (1, 1)

Definition 3.3.3. Let � = [u0,u1, . . . ,uk] be a k-simplex. The
points ui that span � are the vertices of �. The number k is the
dimension of �. A face of � is a simplex spanned by any non-empty
subset of the ui. If this is a proper subset, the spanned simplex is
a proper face. The union of all proper faces of � is the boundary of
�, and is denoted by @� or Bd�.

Definition 3.3.4. Let Q ⇢ Rd be an elementary cube. The dimen-
sion of Q is defined as the number of non-degenerate intervals
that constitute Q. If P is any elementary cube such that P ⇢ Q,
then P is a face of Q. If P is a proper subset of Q, then it is a proper
face.

Definition 3.3.5 (Simplicial complex). Let K be a (finite) collection
of simplices in Rn. K is a simplicial complex in Rn if the following
two conditions hold:
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1. If ⌧ is the face of any simplex � 2 K, then ⌧ 2 K.

2. If �1, �2 2 K, then �1 \ �2 is either empty or a face of both
�1 and �2.

If a subcollection L ⇢ K is also a simplicial complex, it is a sub-
complex of K. The collection of all simplices of K of dimension at
most j is the j-skeleton of K. The points of the 0-skeleton of K are
the vertices of K.

The picture shows a simplicial complex (left), formed by differ-
ent simplices with vertices as their intersection points. The right
figure shows a set formed by simplices which is not a simplicial
complex, since the individual simplices intersect along proper
subsets of their faces.

Definition 3.3.6 (Cubical complex). A cubical complex X is a finite
union of elementary cubes Qi: X =

S
k

i=1
Qi. A subcomplex A of

a cubical complex X is a subset A ⇢ X that is a cubical complex
on its own, that is, it can again be expressed as a finite union of
elementary cubes.

Observe that, by construction, the intersection of any pair of
elementary cubes within a cubical complex is either empty or is a
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face of both of them, since they all must lie on an integer-valued
grid. This is illustrated in the following figure.

Finally, we define a concept which will become important soon.

Definition 3.3.7. An abstract simplicial complex is a finite collec-
tion of sets A such that � 2 A and ⌧ ⇢ � implies ⌧ 2 A. If K

is a simplicial complex, and V its vertex set, let K be the col-
lection of all subsets {u0,u1, . . . ,uk} ⇢ V that span any simplex
of K. K is an abstract simplicial complex, the vertex scheme of K.
Correspondingly, K is the geometric realization of K.

3.4 simplicial homology

We will now present the main ideas behind homology theory for
simplicial complexes. It is possible to define different homology
theories emanating from different types of fundamental objects;
for example, cubical homology for cubical complexes, or cellular
homology for CW complexes. We will only present the simplicial
version here for ease of exposition and to avoid repetition. The
other case of interest to us, cubical homology, is developed along
very similar lines, and can actually be shown to be equivalent to
simplicial homology [for more details on this, see Kaczynski et al.,
2004, §11.2].

As was mentioned in the previous section, homology is easier
to compute than homotopy, but this comes at the cost of a less
intuitive mathematical machinery, which we will now go into.
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Since the ultimate goal is to produce an algebraic structure associ-
ated with a given topological space, we start by defining how to
operate on a simplicial complex. This requires us to, first of all,
orient our simplices.

Definition 3.4.1. Let � = [u0,u1, . . . ,uk] be a k-simplex, k > 0.
An orientation of � is a total order on its vertex set. Two orienta-
tions of � are defined to be equivalent if they differ by an even
permutation. This results in two different orientations being pos-
sible for any k-simplex if k > 0. If k = 0, only one orientation is
possible.

Example. Here we show an oriented one-simplex as the directed
line from v0 to v1, and the two simplex [v0, v1, v2] with its two
possible orientations. Each one of these orientations corresponds
to one of the two possible directions in which we can travel
through the vertices of the triangle.

v0

v1a

�1 = [v0, v1]
v0 v1

v2

�2 = [v0, v1, v2]

 
v0 v1

v2

�
�3 = [v0, v2, v1]

Definition 3.4.2. Let K be a simplicial complex, and p 2 N. A
p-chain on K is a formal sum of p-simplices of K. Technically speak-
ing it is a function c going from the set of oriented p-simplices of
K to the integer numbers, such that the following two conditions
hold:

1. If �, � 0 are opposite orientations of the same simplex, then
c(�) = -c(� 0).

2. c(⌧) = 0 for all but a finite number of oriented p-simplices
⌧.

A general p-chain is denoted by c =
P

i
ai�i, whence it follows

that c assigns the value ai 2 Z to the oriented p-simplex �i.
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Two p-chains, c =
P

i
ni�i and d =

P
i
mi�i, can be added

componentwise:

c+ d =
X

i

ni�i +
X

i

mi�i =
X

i

(ni +mi)�i.

With this operation, the set of all p-chains on K is a group, denoted
by Cp(K). If p < 0, or p is larger than the dimension of K, the
group Cp(K) is trivial.

An important observation must be made at this point. We have
just defined p-chains on a simplicial complex K as functions going
from the set of oriented p-simplices of K to Z, the integer numbers.
This is indeed the usual definition of p-chains, and using it will
lead us to homology with coefficients in Z. This is not the only
possibility, as we can use coefficients in any ring or field. Here, as
we are ultimately looking for a computational use of homology,
we will use Z2 coefficients. Z2, sometimes also denoted Z/2Z, is
the set of integers modulo 2, and greatly simplifies computations2.

Recall (Definition 3.3.3) that the boundary of a simplex is the
union of its proper faces. We now formalize this using p-chains.

Definition 3.4.3 (Boundary map). Let � = [u0,u1, . . . ,uk] be a
k-simplex. The union of its proper faces can be expressed as the
sum of the (k-1)-chains defined on these faces, namely

@k� =
kX

i=0

[u0, . . . , ûi, . . . ,uk],

where [u0, . . . , ûi, . . . ,uk] represents the (k-1)-simplex spanned
by the vertices of � with ui deleted or “left out”. Being a sum of
(k-1)-simplices, the boundary of � is a (k-1)-chain. Moreover, for a
general k-chain

P
ai�i, its boundary is the sum of the boundaries

of its components,
@kc =

X
ai@k�i,

2 That is, Z2 = {0,1}, with addition defined as

0+ 0 = 0

0+ 1 = 1+ 0 = 1

1+ 1 = 0
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and it holds that @k(c+ d) = @kc+ @kd for any k-chains c, d. The
map @k : Ck ! Ck-1 thus defines a group homomorphism, the
boundary map.

Example. We can illustrate the computation of the boundary
of a 2-simplex, namely @ [v0, v1, v2] = [v1, v2]- [v0, v2] + [v0, v1].
The minus sign amounts to a change of orientation (see Defini-
tion 3.4.2).

v1

v2

-

v0

v2

+

v0 v1

=
v0 v1

v2

We were able to disregard the orientation of all simplices in-
volved in this by virtue of the Z2 coefficients being used.

Proposition 3.4.1. @k-1 � @k = 0.

Proof. Consider an arbitrary k-simplex, � = [v0, v1, . . . , vk]. By
definition, its boundary is

@k� =
kX

i=0

(-1)i[v0, . . . , v̂i, . . . , vk].

Thus

@k-1@k� =
kX

i=0

(-1)i@k-1[v0, . . . , v̂i, . . . , vk],

and in general we have that

@k-1[v0, . . . , v̂i, . . . , vk] =
X

j<i

(-1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vk]

+
X

j>i

(-1)j-1[v0, . . . , v̂i, . . . , v̂j, . . . , vk].
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Therefore

@k-1@k� =
X

j<i

(-1)i(-1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vk]

+
X

j>i

(-1)i(-1)j-1[v0, . . . , v̂i, . . . , v̂j, . . . , vk],

where summing over both indices results in each term appearing
twice, each time with opposite sign.

The geometric notion of boundary allows us to distinguish two
important types of chains, which also play a central role in the
algebraic construction of the homology group.

Definition 3.4.4. Let K be a simplicial complex, and c 2 Cp(K).
If c has an empty boundary, that is if @pc = 0, it is a p-cycle.
The set of all p-cycles on K is the kernel of the boundary map
@p : Cp(K) ! Cp-1(K), and as such is a subgroup of Cp(K),
denoted by Zp(K)= ker@p.

Example. The boundary of a 2-simplex, as computed above, is an
example of a cycle.

v0 v1

v2

Definition 3.4.5. Let K be a simplicial complex, and c 2 Cp(K).
If there exists d 2 Cp+1(K) such that c = @k+1d, then c is a
p-boundary. The set of all p-boundaries on K is the image of the
boundary map @p+1 : Cp+1(K) ! Cp(K), and as such is a sub-
group of Cp(K), denoted by Bp(K)= im@p+1.

Example. The following picture illustrates a simplicial complex
K formed by a 2-simplex and a 1-cycle intersecting at a point. The
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cycle is not a boundary of anything, whereas the boundary of the
2-simplex would be an element of the group B1(K).

v0

v1

v2

v3

v4

 

Proposition 3.4.2. The group of p-boundaries, Bp(K), is a subgroup
of the group of p-cycles, Zp.

Proof. Follows immediately from Proposition 3.4.1.

We now define an important relationship between p-chains as
follows.

Definition 3.4.6. Let c, c 0 2 Cp. If there exists d 2 Cp+1 such that
c- c

0 = @p+1d, the two chains c and c
0 are said to be homologous.

If c = @p+1d, then c is homologous to zero. Alternatively, we say
that c is a bounding cycle.

Example. Consider the following simplicial complex K:

v0 v1

v2

v3

v4

v5

a

b c

d

e f

g

h i

 
�1  

�2

 
�3

which is formed by three 2-simplices joined pairwise at different
vertices. The group of 1-boundaries, B1, is generated here by the
three boundaries of these 2-simplices. These are also elements of
the group of 1-cycles, Z1. We also have a 1-cycle, c+ g+ e, which
is not the boundary of anything. Moreover, if we form the new
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cycle (c,g, e) + (d, e, f), which can be seen as traversing first the
non-bounding cycle and then the boundary of a 2-simplex, we can
see that this is homologous to c+ g+ e, since their difference is an
element of B1. This is the algebraic expression of the geometrical
fact that we can continuously deform the cycle (c+ g+ e) + (d+
e+ f) to c+ g+ e within the simplicial complex K.

Proposition 3.4.3. The relation ⇠, with c ⇠ c
0 if they are homologous,

is an equivalence relation.

Proof. Reflexivity follows from the fact that, for any k-cycle z 2 Zk,
z = z+ 0, where 0 represents the trivial boundary. If two k-cycles
are homologous, z1 - z2 = @d for some d 2 Bk+1. But then

z2 - z1 = -@d = @(-d),

which shows the symmetry. Finally, if z1- z2 = @d1 and z2- z3 =
@d2, then

(z1 - z2)- (z2 - z3) = z1 - z3 = @d1 - @d2 = @(d1 - d2).

Since the p-boundaries of a simplicial complex K are a subgroup
of its p-cycles, we can form the quotient group Zp/Bp. We have
thus arrived at the central concept in this section:

Definition 3.4.7. The p-th homology group of a simplicial complex
K is

Hp(K) = Zp(K)/Bp(K).

The elements of the p-th homology group Hp(K) are, by def-
inition, the cosets of Bp in Zp. One such coset would have the
form

z+Bp = {z+ d | d 2 Bp},

for an arbitrary z 2 Zp. If we take a second cycle belonging
to the same coset, say z

0 = z + d
0 with d

0 2 Bp, then we can
see that z

0 + Bp = z+ d
0 + Bp = z+ Bp, thus we get the same

coset. But z- z
0 = d

0 2 Bp, so z and z
0 are homologous, as per

Definition 3.4.6. We can thus see that the elements of the p-th
homology group are equivalence classes of p-cycles which differ
by a p-boundary.
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Example. Let the simplicial complex K now be as illustrated here:

v0 v1
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v3

v4
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There are now two 2-simplices joined at a face, and a series of
1-simplices which form two different 1-cycles: z1 = e+ f+ d and
z2 = h+ i+ j. If we consider the boundaries of the 2-simplices,
namely bi = @�i (i = 1, 2), we can see that z1 ⇠ z1 + b1 ⇠ z1 + b2,
and similarly that z2 ⇠ z2 + b1 ⇠ z2 + b2. It is not the case,
however, that z1 is homologous to z2. We have thus shown that
each of the non-bounding cycles has its own homology class, and
thus they are both generators of the first homology group H1.

For a finite simplicial complex K, the p-chain group has finite
rank, where the rank of a group G is defined as the number of
generators of G. This then implies that the p-cycle group Zp, being
a subgroup of Cp, also has finite rank. The p-th homology group
is thus a finitely generated abelian group. These groups are fully
characterized in the following sense:

Theorem 3.4.4. Let G be a finitely generated abelian group. Then G is
isomorphic to

(Z � Z � . . .� Z)� Zt1
� Zt2

� . . .� Ztk
.

Proof. See Theorem 4.3 in Munkres [1984, §1.4].

Based on this result, we can define a very important concept:

Definition 3.4.8. Let G be a finitely generated abelian group, with
decomposition given by

G ' (Z � Z � . . .� Z)� Zt1
� Zt2

� . . .� Ztk
.
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Then the number of copies of Z in the decomposition, denoted by
�, is the Betti number of G. The t1, . . . , tk are the torsion coefficients
of G, and are such that t1 | t2 | . . . | tk.

The Betti number of a homology group Hp(K), denoted by �p,
indicates the number of generators of p-dimensional homology
in the simplicial complex K. Referring to our discussion above, a
generator of p-dimensional homology is to be understood as the
equivalence class corresponding to a non-bounding p-cycle in the
complex. In this sense, 1-dimensional homology is generated by
the holes or loops present in K; 2-dimensional homology is gener-
ated by the voids or cavities enclosed by K; higher-dimensional
homology is harder to interpret geometrically, but the underlying
principle is the same.

The zero-dimensional homology group is special, in the sense
specified by the following result:

Theorem 3.4.5. Let K be a simplicial complex. Its zero-dimensional
homology group H0(K) is a free abelian group. If {vi} is a set consisting
of one vertex from each connected component of K, then the homology
classes of the chains vi are a basis for H0(K).

The zeroth Betti number, �0, is thus a count of the connected
components that make up K. Together, the set of Betti numbers
of a simplicial complex K are topological invariants of K: if K 0 is
another simplicial complex homeomorphic to K, then their Betti
numbers coincide. These numerical invariants are usually not the
most important property of a space in algebraic topology, but for
us they will be a central object of study. It is also important to
note here the fact that, for any simplicial complex K, its homol-
ogy is completely determined by its vertex scheme, which is a
combinatorial object, and therefore independent of its geometric
realization.

3.5 on the computability of homology

In the previous section we were intentionally vague regarding the
actual computation of homology groups. As mentioned before, we
are not so much interested in the algebraic structure of homology
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groups, but rather on their numerical invariants represented by
the Betti numbers. Computing these numbers can be simpler than
computing the group itself, as we will now show.

Let K be a finite simplicial complex. Recall that we are using Z2

coefficients, so that a p-chain on K is a sum
P

ai�i, where ai 2
{0, 1}. Suppose, moreover, there are a total of n p-simplices in K.
The group of p-chains on K, Cp(K), will then have cardinality 2

n.
This is easy to see: imagine the set of p-simplices as a collection of
binary flags or switches, which then makes a p-chain into a specific
setting of the switches, with individual simplices being either “on”
or “off”. Each of the p-simplices of K is thus a generator of Cp(K).
The cardinality of the group is its order, and we denote it by
ordCp(K).

The group Cp(K) is isomorphic to Zn

2
, which is an n-dimensional

vector space. Its dimension, also called its rank, is then the number
of its generators, namely

rankCp(K) = log
2

ord Zn

2
= n.

Recall that a homology class in Hp(K) is of the form z+ Bp(K)
for some z 2 Zp(K). The number of cycles in this class is equal to
the number of p-boundaries, that is, ordBp. Since each element
of Zp(K) appears in exactly one of the cosets of Bp (by definition
of the quotient group), we then have

ordHp(K) = ordZp(K)/ordBp(K),

or equivalently,

rankHp(K) = log
2

ordHp(K)

= log
2
(ordZp(K)/ordBp(K))

= log
2

ordZp(K)- log
2

ordBp(K)

= rankZp(K)- rankBp(K)

= �p.

We thus see that the Betti numbers of a simplicial complex can
be computed as the difference in the rank of its p-cycle group and
its p-boundary group.
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Example. To illustrate this, we consider again the simplicial com-
plex K we encountered before:

v0 v1

v2

v3

v4

v5

a

b c

d

e f

g

h i

 
�1

 
�2

It contains nine 1-simplices, thus

ordC1 = 2
9

rankC1 = 9.

These simplices form four 1-cycles, thus

ordZ1 = 2
4

rankZ1 = 4,

and each 1-simplex has a boundary, thus

ordB1 = 2
2

rankB1 = 2.

But then

ordH1 = ordZ1/ordB1 = 2
4
/2

2 = 4

rankH1 = rankZ1 - rankB1 = 4- 2 = 2.

This tells us that there must be four homology classes in the
first homology group of K. Two of these, as we saw before, are
those corresponding to each of the two non-bounding cycles. The
third one is the trivial class, and the fourth one is that formed by
the addition of the two cycles, z1 + z2. There are thus only two
generators of H1, namely z1 and z2 themselves. Thus the Betti
number, �1 = 2, corresponds to the number of “holes” in K, each
one represented by one of these two cycles.
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Suppose now that there are np p-simplices and np-1 (p-1)-
simplices in a simplicial complex K, thus making Cp(K) and
Cp-1(K) vector spaces of dimension np and np-1 respectively.
The boundary map between them, @p : Cp(K) ! Cp-1(K) is a
linear map between two finite-dimensional vector spaces, and
as such can be represented by a matrix. Assume an arbitrary
ordering on both the set of p-simplices, {�1, . . . ,�p} and the set
of (p-1)-simplices, {⌧1, . . . , ⌧p-1}. The boundary matrix for @p is
defined by Dp = (dij), where

dij =

8
<

:
1 if ⌧i is a face of �j,

0 otherwise.
(3.1)

The boundary of an arbitrary p-chain c =
P

ai�i, represented by
its vector of coefficients ā = (a1, . . . ,anp

) can then be computed
by multiplication: @pc = Dpā. The number of columns of Dp is
equal to the rank of Cp(K)), and its number of rows is equal to
the rank of Cp-1(K).

We recall the following fundamental result from linear algebra:

Theorem 3.5.1 (Rank-nullity theorem). Let V , W be finite-dimensional
vector spaces, and T : V ! W a linear transformation. Then

dimV = dim(im T) + dim(ker T).

In particular, this result implies that, if zp = rankZp(K) and
bp-1 = rankBp-1(K), then

np = zp + bp-1. (3.2)

It is possible to reduce the boundary matrix Dp to Smith normal
form, which in the case of Z2 coefficients is

D
0
p =

2

666664

1 0
. . . 0

0 1

0 0

3

777775
. (3.3)

This matrix has bp-1 non-zero columns to the left, one for each
basis element of the vector space Bp-1(K), and zp zero columns to
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Figure 3.3: 85 points drawn with noise from a manifold M, two circles
joined at a point. When taking the union of balls of radius
" centered at these points, for various values of ", different
approximations to M can be obtained.

the right, one for each basis element of Zp(K). Obtaining the Betti
numbers of a simplicial complex K thus amounts to constructing
the necessary boundary matrices, and reducing them to their
normal forms.

3.6 persistent homology

One of the guiding ideas behind topological data analysis is that
we can think of a point cloud in Rn not only as a set of discrete
points with trivial homology, but we can also see it as representing
a higher-dimensional object, and use its associated topological
information to make inference about the processes and structure
underlying noisy data.

This is the original idea behind persistent homology (PH),
which first appeared in the seminal works of Robins [2002] and
Edelsbrunner et al. [2002], and it is based on finding not a sin-
gle representation for this higher-dimensional object, but rather
a large collection of representations, such that the necessary in-
formation can be inferred from the relationships between them.
Before giving the formal definitions, we will give a motivating
example.

Consider the manifold M ⇢ R2 shown in Figure 3.3, the wedge
sum of two circles. Also shown is a set of points {xi} sampled
with noise from M. As before, the first step is to convert the set
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of points to a geometric object from which topological invariants
are actually computable. The difference is that now there is no
recourse to the concept of anchor points in order to build a cubi-
cal complex, because the points no longer lie on a regular grid.
Instead, we consider the union of closed balls of radius " centered
on each of the points xi, for a given value " > 0:

B" =
n[

i=1

B"(xi).

In this case the distance parameter " will play the same role played
by the threshold value in the construction of a cubical complex
from point data. For " = 0.4, the set B" consists of mostly non-
intersecting balls, save for a few cases in which the points in
{xi} are pairwise closer than r = 0.4. B" therefore still has the
homotopy type of a finite set of points, and would therefore give
us no useful information about the underlying manifold M. With
" = 2 we can see that B" is now a single connected component
which overlaps the smaller circle, and indeed it is no longer a
contractible space. There is a small gap in the lower right part of
the larger circle, so we still don’t recover the true homotopy type
of M. Increasing the parameter to " = 4 now yields a topologically
correct representation of the larger circle, but the smaller one is
destroyed. One might ask what the optimal value of " is in this
case: a value "⇤ 2 R such that the corresponding set B"⇤ has
exactly the same homotopy type as M. This is in general unknown
for arbitrary datasets, and depending on the structure of the noise
in the sampling process such an optimal value can be very hard
or impossible to find. The answer given by PH is that it is not
necessary to find this optimum, and that the relevant information
can be inferred by computing the topological features at different
scales, as well as the relationships between them.

It can be computationally prohibitive to work with unions of
closed balls, but it is possible to use other, simpler geometric
representations in the form of abstract simplicial complexes.

Definition 3.6.1 (Čech complex). Let P = {x1, x2, . . . , xn} be a
set of points in a metric space (X,d), and " > 0. Construct an
abstract simplicial complex by taking the points xi 2 P as the
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0-simplices, and adding all k-simplices [xi0 , . . . , xik ] such that
\k

j=0
B"(xij) 6= ?, for k = 1, . . . ,n. This is the Čech complex for P

and ", denoted by C(P, ").

The following classical result shows the utility of the Čech com-
plex in manifold reconstruction. For a more thorough discussion,
see [Edelsbrunner and Harer, 2010, §III.2].

Theorem 3.6.1 (Nerve theorem). Let E = {E1, . . . ,Em} be a finite
collection of closed, convex subsets of Rn. Then the abstract simplicial
complex defined by all non-empty subcollections of E, {Ei0

, . . . ,Eik
},

such that \k

j=0
6= ?, has the same homotopy type as [m

i=1
Ei.

Proof. See McCord [1967].

In particular, the sets used in the definition of the Čech complex,
closed balls in Rn, are convex sets. Thus the Čech complex has the
same homotopy type as the union of these balls. This implies that,
if the points in P are sampled from an underlying manifold X

with sufficient density, and if the value of " is chosen judiciously,
then we can indeed recover the homotopy type of X from the
associated Čech complex.

This result is in the same spirit as the discussion surrounding
the relationship between abstract simplicial complexes and their
geometric realizations given in Section 3.4, in the sense that the rel-
evant topological information about a given space X is contained
in a combinatorial structure, in this case a Čech complex. In prac-
tice, however, computing this complex can be a challenging task,
as we would require to keep track of a very large number of point
subsets for high-dimensional simplices. Another combinatorial
structure which is computationally simpler is the following:

Definition 3.6.2 (Vietoris-Rips complex). Let P = {x1, x2, . . . , xn}
be a set of points in a metric space (X,d), and " > 0. Construct
an abstract simplicial complex by adding the points of P as its 0-
simplices, and all k-simplices [xi0 , . . . , xik ] whenever d(xil , xim) <
", for all 0 6 l < m 6 k, and k = 1, . . . ,n. This is the Vietoris-Rips
complex, or simply Rips complex, for P and ", denoted by R(P, ").

The main advantage of the Rips complex over the Čech com-
plex is the fact that the former is fully specified by the pairwise
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distances of points in P, even if the number of simplices in the
total complex can still be very large. In general, given a set of
points P and a value " > 0, the complexes C(P, ") and R(P, ") will
be different, but can coincide in some cases, such as when the
metric space is Rn equipped with the L

1 metric instead of the
usual Euclidean metric [Adler et al., 2010]. In light of the Nerve
Theorem, we can see that the Rips complex will tend to introduce
gratuitous homological information. There is a positive result that
connects the two kinds of complexes:

Theorem 3.6.2. Let P be a finite set of points in Euclidean space Rn,
and C(P, "), R(P, ") its associated Čech and Rips complexes for some
" > 0. Then, if " 0 > 0 is such that

"
0

"
6
r

2 d

d+ 1
,

the following chain of inclusions holds:

R(P, ") ,! C(P, " 0) ,! R(P, " 0).

Proof. See de Silva and Ghrist [2007].

The idea behind this result is that, despite sacrificing topological
accuracy for computational simplicity in going from the Čech
complex to the Rips complex, it is still possible to recover the
”true” homology represented by the Čech complex by taking an
appropriate sequence of Rips complexes. Specifically, we know
that any homology class that appears in both R(P, ") and R(P, " 0)
must also be present in C(P, ") under the inclusions shown above.
This brings us to the central idea behind persistence: knowing
the changes in homology induced by an inclusion, in this case
R(P, ") ,! R(P, " 0), can be more informative than merely knowing
the homology of either complex independently.

Recall that for a given simplicial complex K, its chain complex
is

· · ·
@p+2���! Cp+1

@p+1���! Cp

@d��! Cp-1

@p-1���! · · · ,

and its p-th homology group is defined as Hp(K) = Zp(K)/Bp(K).
The elements of the Hp(K) are the equivalence classes of non-
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bounding p-cycles in K. Consider now a nested sequence of sim-
plicial complexes indexed by a parameter i,

K0 ⇢ K1 ⇢ K2 ⇢ . . . ⇢ Kn = K.

This is a filtration or a filtered complex, and at each step we will
have an inclusion ◆ : Ki-1 ,! Ki. More generally, for p 2 N and
i 6 j, the inclusion ◆ : Ki ,! Kj induces a homomorphism of the
homology groups:

f
i,j
p : Hp(Ki) ! Hp(Kj).

Definition 3.6.3 (Persistent homology group). The p-th persistent
homology groups for a filtered complex K, denoted by H

i,j
p , are the

images of the induced homomorphisms,

H
i,j
p = im f

i,j
p .

The ranks of these groups are the persistent Betti numbers �i,j
p ,

�
i,j
p = rank H

i,j
p .

This definition makes sense because a continuous map be-
tween topological spaces maps cycles to cycles and boundaries
to boundaries (cycles can become boundaries, all boundaries are
cycles). The inclusion is a continuous map. For a simplicial map
f : |K| ! |L|, p 2 N, there is an induced homomorphism between
chain groups

f# : Cp(K) ! Cp(L),

which in turn induces a homomorphism on homology groups

f⇤ : Hp(K) ! Hp(L).

Observe that Hi,i
p = Hp(Ki), so the persistent homology groups

generalize the ordinary homology groups.
Assume a homology class ↵ 2 Hp(Ki). If it happens that it is the

first time that it appears in the filtration, that is to say ↵ /2 H
i-1,i
p ,

then we say that ↵ is born at i. Similarly, if ↵ is born at i and
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merges with an older class when passing from j- 1 to j, then both
of the following hold:

f
i,j-1

p (↵) /2 H
i-1,j-1

p (↵ is born at i)

f
i,j
p (↵) 2 H

i-1,j
p (↵ merges into the image of an older class).

The first condition ensures that j- 1 is indeed the last moment in
which ↵ exists as an independent class.

Definition 3.6.4. The persistence of a given homology class ↵ that
is born at i and dies entering j is defined as j- i. The persistence
interval of ↵, denoted by [b↵,d↵), is equal to [i, j). The endpoints
are the birth and death points of ↵ respectively.

The number of homology classes that are born at Ki and die
upon entering Kj is given by

µ
i,j
p = (�i,j-1

p -�i,j
p )- (�i-1,j-1

p -�i-1,j
p ).

The topological information provided by the persistent homology
groups is usually represented in either a persistence diagram or a
barcode. A persistence diagram is a dot plot of pairs (bi,di) for
each homology dimension p 2 N, with their multiplicities µ

i,j
p . A

persistence barcode is a diagram in which each homology class
occurring throughout the filtration is represented by a line, span-
ning the filtration interval during which it exists independently.
To put all these definitions together, we revisit the example shown
in Figure 3.3 at the beginning of this section. Figure 3.4 shows
the same point sample from M, and the Vietoris-Rips complexes
VR" for the three values " = 1.0, 2.0, , 4.0. The full barcode repre-
senting the persistent homology groups H

i,j
1

is also shown. This
representation of the persistence of homology classes makes the
existence of two cycles in the underlying manifold clear, appearing
here as long bars, as opposed to three much shorter-lived cycles
which can be disregarded as topological noise introduced by the
sampling.

The significance of the barcode (or persistence diagram) repre-
sentation is given by the following result:
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Figure 3.4: Barcode representing the persistent homology of the Vietoris-
Rips filtration built from the set of points in Figure 3.3. The
blue lines represent the 1-skeleta of the Vietoris-Rips com-
plexes at each filtration step.

Theorem 3.6.3. The rank of the persistence homology group H
i,j
p is

equal to the number of intervals in the barcode of Hp spanning the
parameter interval [i, j]. The value of �p(Ki) is equal to the number of
intervals containing i.

Proof. See Zomorodian and Carlsson [2005, §3.3] on the correspon-
dence between the algebraic structure of a persistence module
and decomposition theorems in commutative algebra.

This implies that the barcode representation, for all its simplic-
ity, does contain all the homological information about the filtered
complex. It thus offers a quick and reliable way to separate true
topological features from noise. Both the barcode and the persis-
tence diagram, however, have a significant disadvantage: since
they both represent a multiset of pairs of numbers, doing any
kind of statistics on them becomes unwieldy.

A further and very important property of persistence is its
stability: small perturbations of the input data will lead to small
changes in the output, either as persistence diagram or barcode.
This crucial fact was shown by Cohen-Steiner et al. [2007].





4
H O M O L O G I C A L S I G N AT U R E O F L A N D
S U R FA C E – AT M O S P H E R E I N T E R A C T I O N

Outline
This chapter applies techniques from cubical homology to the
analysis of three- and four-dimensional data from numerical sim-
ulation of atmospheric flow. Section 4.1 provides an overview of
similar applications of these techniques to the analysis of scien-
tific data found in the literature. Section 4.2 details the analysis
methodology, which is then applied to extract topological invari-
ants, the Betti numbers, from model datasets in Section 4.3. These
invariants are used as features in the problem of classifying land
surface patterns based on known properties of atmospheric flow.
Section 4.4 uses the Betti number data to furnish a structural clas-
sification of the planetary boundary layer, based on topological
information only. Part of this chapter was published in the journal
Boundary-Layer Meteorology as Licón-Saláiz et al. [2020].

As discussed in Chapter 1, a central issue in this dissertation is
the investigation of the effect of land–atmosphere interaction on
the flow structure of the daytime planetary boundary layer (PBL).
This system is sometimes also referred to as a radiatively-driven
convective boundary layer (CBL). Throughout this chapter we
will use both terms, so it is important to keep the distinction in
mind. The CBL is energetically forced by solar heating of the land
surface. This energy is then radiated or reflected back into the
atmosphere, and it drives the convective process. A land surface
is in general not homogeneous, but it is made up by different

61
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components, such as soils, vegetation, water, ice, and so on, and
these also adopt various spatial configurations. Each surface type
has its own heat transfer capacity, and thus impacts differently on
the convective system as a whole. The total effect exerted by the
surface on the atmosphere is determined not only by the different
surface types present, or their relative sizes, but as it turns out,
also by the specific spatial arrangement of these surface types.
Here we will analyze the effects produced on the structure of
turbulent flow in the PBL by the different land surface patterns
introduced in Section 2.5 (see Figure 2.6).

The dynamics in a convective boundary layer (CBL) are char-
acterized by distinct vertical profiles of the momentum exchange
in the vertical direction which is caused by convective plumes.
A plume is a connected region of the space domain with posi-
tive buoyancy, and thus upwardly accelerating air, with positive
vertical velocity. In relation to their substantial horizontal extent,
such plumes persist for a significant interval of time and can
be understood as a coherent structure. These structures have
proven important in reducing the complexity inherent to turbu-
lent flows, and thereby improving our ability to understand and
model them [Adrian, 2007; Shah and Bou-Zeid, 2014]. Methods
to detect and quantify such coherent structures in model datasets
most often rely on computing a spectral transform of the data, and
performing the necessary analysis in spectral space. We present
here a novel approach that constructs a geometric representation
of flow structures, based on three- and four-dimensional data.
This geometric representation is then characterized by topological
descriptors, which can then be used as features in a statistical
learning problem. To this end we apply methods from compu-
tational topology, specifically computational homology, to study
the effects of land surface heterogeneity on the PBL. With these
we obtain a a representation of the structure of the turbulent
convective flow found in the PBL in terms of morphological flow
features, and use this to parametrize the effects of land surface
heterogeneity. As we will see, some of the questions that arise are
topological in nature, giving good cause for using these methods.
We identify the following components in the analysis pipeline:



4.1 related work 63

dataset This is the output of numerical simulations of the PBL.

representation The numerical methods used to generate the
data use cubical grids, therefore the most natural combina-
torial representation to use is the cubical complex.

invariant Two different topological invariants that can be effi-
ciently computed from the datasets as described here: Betti
numbers and merge trees.

4.1 related work

The idea of building a geometrical object from the scalar fields
produced by the numerical model of a nonlinear physical system
is at the heart of many of the earliest applications of topology to
data analysis in the natural sciences. Some examples of this are:

Gameiro et al. [2004] The existence of chaotic spatiotemporal
dynamics in non-linear systems, such as those described
by the Gray-Scott and FitzHuhg-Nagumo models, can be
ascertained by computing the Lyapunov exponents (see for
example Strogatz [2014]). These chaotic dynamics are usu-
ally associated with the existence of intricate geometric pat-
terns. Gameiro et al. thus propose a technique based on
homology: cubical complexes are created by thresholding
the computational domain, and topological invariants are
computed from these complexes, the Betti numbers. The
Lyapunov exponent can then be measured by using the time
series of Betti numbers, specifically that of �1. The other
Betti numbers are not relevant, since �0 shows a very stable
behavior and �2 = 0 in these cases.

Gameiro et al. [2005] Chemical phase separation in alloys is
described by the Cahn-Hilliard equation:

u

t
= -�

✓
��u-

@ 

@u
(u)

◆
,

where u measures the relative concentration difference of
the materials, and  is the bulk free energy, given by a
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double-well potential. This is another example of a non-
linear system where intricate geometric patterns emerge,
and the authors again propose a technique based on the
computation of Betti numbers to characterize the system’s
behavior via pattern morphology. As in Gameiro et al. [2004],
the first step is to build a cubical complex by thresholding
the computational domain. The authors find that these topo-
logical invariants provide a quantitative method to describe
the effect of ambient noise on pattern morphology. They also
allow for a comparison of the different patterns observed
when the mass parameter changes.

Krishan et al. [2007] This study was the first to use topology to
characterize the geometric patterns emerging in a system
both in laboratory experiments and in numerical simulations.
Specifically, the system under study is thermal Rayleigh-
Bénard convection, in the state known as spiral defect chaos
[Morris et al., 1993].

The presence of non-Boussinesq effects in the system is re-
flected in the behavior of the first two Betti numbers for
plane domains in both experiments and simulations. As the
reduced Rayleigh number " is increased, the time series for
the Betti numbers of hot and cold regions become asym-
metric, which is consistent with the known effects of the
breakdown of the Boussinesq approximation.

Carreras et al. [2008] The authors study the behavior of turbulent
plasmas in a toroidal domain, specifically the effect on trans-
port induced by turbulence. The system is described by a
set of reduced magnetohydrodynamic equations, so that the
flow is determined by a velocity stream function �(⇢, ✓, ⇣) in
toroidal coordinates. Then the velocity field is V = r�⇥ b,
with b = B/|B| being the direction of the magnetic field.

A three-dimensional plasma flow is simulated, and the nu-
merical data are analyzed using computational homology
on the three-dimensional cubical complexes obtained by
thresholding. These Betti numbers for the regions of space
thus obtained give a good geometric characterization of the
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number and type of structures present in the flow. In this
case, since the model is three-dimensional and of high reso-
lution, the authors need to devise a scheme to approximate
the value of the Betti numbers, as computing on the full
domain is impractical due to memory limitations. This de-
pends on the possibility of deriving an analytical expression
for the Betti numbers from the � function, something which
is unique to this problem and does not generalize.

Garcia et al. [2009] This study builds on the techniques presented
by Carreras et al. [2008], addressing the limitations in resolu-
tion which were brought up there. The approach presented
here permits to distinguish between topological features of
the flow which influence the transport process, and those
that do not. Specifically, the authors observe the existence
of dominant large-scale connected components and cycles,
which can be taken to indicate a lack of homogeneity in the
turbulent flow. The frequency distribution of these large-
scale components is found to be in close agreement to the
probability distribution given by a stochastic particle trans-
port model, although no analytical relationship is given.

Muszynski et al. [2019] The focus of this study is again the char-
acterization of geometric features in numerical simulations
of a non-linear system. The scope is significantly larger than
in the previous references in at least two ways: first, the
volume of data involved is much larger, as the system under
study is the Earth’s atmosphere; second, the methodology
developed here does not have the extraction of topological
features as an end in itself, but they are used as input to
a machine learning algorithm. The goal is the automated
identification of atmospheric rivers, long, narrow connected
regions in the atmosphere with a large water vapor content.
Another implicit limitation of the method is addressed here:
the dependence on the choice of threshold. The way around
this is to extract the connected components for all possi-
ble threshold values, and track their size as the threshold
changes. The result is then vectorized and used as features
for an SVM classifier.
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In all these studies, the notion of “shape” plays a central role.
More precisely, topological invariants associated with the complex
shapes that emerge naturally from the physical systems under
consideration are shown, firstly, to display a strong regularity.
Such regularity is especially surprising given the fact that some
of these systems are archetypal examples of chaotic dynamics.
Second, a relationship can be established between the numerical
values of these invariants and dynamical properties of the un-
derlying system. Thus, if we look at complex dynamics through
the lens of topology, it is possible to cut through the seemingly
chaotic motions and recover important information about the
physical processes involved. In this chapter we show how topolog-
ical characteristics of convective PBL flow change in response to
different land surface patterns. To this end, we use data from sim-
ulations produced by a large-eddy simulation atmosphere–land
model (LES-ALM) developed by Shao et al. [2013], forced by four
different land surface patterns [Liu et al., 2017].

4.2 geometric representation

The numerical models used in the study of CBL structure contain
several physical variables, so a first step in the methodology
described here is to select a variable or group of variables that
appropriately relate to the phenomenon under study, namely free
convection.

4.2.1 Variable selection

As the system is dominated by the exchange of information in the
vertical direction, we will consider model variables for which this
physical direction is especially important:

vertical wind velocity In an idealized convective system,
energy and momentum are primarily exchanged in the verti-
cal direction. The velocity of wind in this direction is thus an
immediate representative of convective motion, and it will
be useful in studying the structural properties of the flow,
as the existence and spatial distribution of flow elements are
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expressed by this variable. In the case of inhomogeneous
convection the vertical wind velocity will carry informa-
tion from the boundary condition at the surface into the
atmosphere [Kondrashov et al., 2016].

enstrophy The magnitude of the rotational field of velocity is
a good representation of the local intensity of turbulence.
It is, however, not computed by most atmospheric models,
and its direct measurement in the atmosphere is very hard.
Additionally, it can also confound the effects of the three
velocity components.

buoyancy This is only non-zero in the case of background strat-
ification, thus might not be very informative in general. Like
the vertical velocity, it also provides a direct view of energy
transfer in the convective system.

Figure 4.1 shows the empirical probability density functions
(PDF) of two of these variables, for both LES and DNS data. As
can be seen in the accompanying table, the first and second order
statistics of these variables are very similar, with the probable ex-
ception of those corresponding to the wind velocity at 14:00 h, 880
m for the LES data, for which the standard deviation is an order
of magnitude higher than the rest. The corresponding statistics for
the air temperature anomaly (not shown) exhibit the same pattern.
All this highlights the existence of statistical regularities in the
midst of complex turbulent motion, the phenomenon represented
by both simulation datasets. The reasons behind the seemingly
arbitrary choice of these data points will become clearer towards
the end of this chapter, once we have developed different tools to
better characterize the data shown here.

4.2.2 Thresholding and anchor points

To obtain the kind of geometrical representation we need, the
first necessary step is to form a binary array from the original
data which represents those regions of the spacetime domain
that fulfill a given condition. In other words, we want to select
areas of the domain based on a predefined threshold value. In
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LES-ALM µ �

08:51h, 88m 6.64e-4 1.59e-1

14:00h, 880m 1.97e-4 1.32

09:54h, 814m 2.19e-4 7.54e-1

10:42h, 2002m 9.21e-5 5.19e-2

17:32h, 22m 5.92e-6 1.17e-2

17:54h, 220m -4.10e-6 8.13e-2

DNS µ �

(t,z)0 3.39e-4 3.61e-2

(t,z)1 6.98e-3 9.53e-2

(t,z)2 7.83e-3 8.29e-2

(t,z)3 3.83e-3 5.86e-2

(t,z)4 -6.78e-4 2.52e-2

(t,z)5 2.16e-5 1.30e-2

Figure 4.1: Empirical probability density functions (PDFs) of vertical
wind velocity and temperature anomaly for the LES-ALM
SP4 simulation (top) and DNS (bottom) datasets, measured at
different time points and heights. The table below shows mean
and standard deviation for all the vertical velocity densities
shown.
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the case of vertical wind velocity and buoyancy, the choice of
value for this threshold can be motivated physically: a value
of 0 separates the spatial domain into regions of air moving or
accelerating upwards from those where it moves or accelerates
downwards. This will result in an array of points representing the
physical locations of the convective plumes discussed above, and
we will investigate the characteristics of this structure. Moreover,
since the data from these numerical simulations have a natural
representation in a cubical grid, the choice of cubical complex as
the geometric representation is also natural.

We denote the computational domain of a given numerical
simulation by ⌦ ⇢ Z4. In general, we have

⌦ = {1, 2, . . . ,Nt}⇥ {1, 2, . . . ,Nx}⇥ {1, 2, . . . ,Ny}⇥ {1, 2, . . . ,Nz},
(4.1)

where Nt represents the number of grid points in the time di-
mension, Nx, Ny, and Nz the number of grid points in each of
the three spatial dimensions. We will consider the subsets of this
domain formed by fixing the value of one or more of the four
coordinates, for example Mz⇤,t⇤ = {(t, x,y, z) 2 ⌦ | z = z

⇤, t = t
⇤}

will represent the two-dimensional grid formed by points in the
x, y directions for fixed z, t. We can then consider the values of
a model variable, for example vertical wind velocity w, on this
subset: {w(i, j) 2 R | (i, j) 2 Mz⇤,t⇤ }. We can now make a condi-
tional selection by using a threshold value ✓ and extracting the
points of Mz⇤,t⇤ where the value of w is greater than this thresh-
old, P = {(i, j) | w(i, j) > ✓}. This set of points can be used as the
anchor points of a cubical complex: for each anchor point (i, j) in
this set, include the elementary cube defined by [i, i+ 1]⇥ [j, j+ 1].
We can then denote the cubical complex associated to this set of
points by M+ = {[i, i+ 1]⇥ [j, j+ 1] | (i, j) 2 P}.

As mentioned above, a threshold value of ✓ = 0 is a natural
choice when using vertical wind velocity, since this has a very
direct physical interpretation in terms of splitting the domain
M = Mz⇤,t⇤ into updrafts, M+, and downdrafts, M-. For the latter
case, the steps are similar but we will take a negative threshold,
and obtain the anchor points from the condition {(i, j) | w(i, j) 6 ✓}.
Having done this we will end up with two distinct geometrical
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Figure 4.2: An example of cubical complexes built from data points on
a grid. Left panel shows two distinct sets of anchor points,
right panel shows the two-dimensional cubical complexes
generated by each of these sets.

objects corresponding to each two-dimensional slice of the original
scalar field. Figure 4.2 shows an example of this. It is by using
these objects that we will describe the structural properties of
updraft and downdraft regions. Specifically, we will compute the
first two Betti numbers for these objects, �0 and �1.

4.3 betti numbers for the vertical wind velocity
field

Once we have built geometric objects that represent domains of
interest, in this case the regions of space associated to updrafts and
downdrafts, we seek a quantitative description of their properties
relevant to the physical problem at hand. Homology provides us
with topological descriptors, the Betti numbers (see Section 3.4),
which are inexpensive to compute in a setting such as the one dealt
with here, and are conceptually simple to understand, as they
quantify the connectivity of a space in terms of its components,
loops, holes, and similar structures in higher dimensions. We will
then show how these low-level topological descriptors can be used
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to analyze the structure of the CBL, as well as its interaction with
the underlying land surface. The Betti number computations were
performed using CHomP, a C++ code library for computational
homology [Mischaikow et al., 2019].

We will compute the Betti numbers for two-dimensional hor-
izontal cross sections. The motivation behind this is not only
computational simplicity, but also the fact that it is possible to
understand a given object of dimension n by understanding its
components of dimension n- 1, as well as the relationships be-
tween them. A well-known example of this is a computed tomog-
raphy scan of the brain, where a three-dimensional volume can be
reconstructed from two-dimensional slices. Concretely, assume we
have the three-dimensional cubical complexes M±

t
defined above,

which correspond to the volume of space associated with updrafts
and downdrafts at simulation timestep t. These objects will play
the role of the brain in our analysis, although we will not deal
with the issue of its three-dimensional structure until Chapter 5.
In this section we focus on the slices obtained from this object by
fixing a height z, and building from them the two-dimensional
cubical complexes described in Section 4.2.2 to represent the ar-
eas covered by up- and downdrafts at time t and height z, as
illustrated in Figure 4.4. The Betti numbers we compute are the
ranks of the first two homology groups, H0 and H1, for these
subcomplexes.

As mentioned in Section 4.2.2, an important advantage of using
a variable like vertical wind velocity is that the value of 0 gives
us a physically meaningful threshold. However, for a number of
reasons it might be advantageous to consider a value " > 0, and
from it construct a ternary partition by thresholding symmetrically
around 0.

0-" "

Figure 4.3: Symmetric thresholding of values around 0.



72 homological signature of land surface–atmosphere interaction

As shown in Figure 4.3, the positive domain (in red) is formed
by all values w > ", the negative domain (in blue) by w < ",
and the gray area around zero is left out. The first reason why
this might be a good idea has to do with the fact that the data
analyzed originates from numerical simulation: values small in
magnitude could well be due to numerical error. Secondly, such
values are also not significant from a physical perspective and can
be ignored. Finally, leaving out those values also has the effect
of simplifying the boundaries of the regions we are considering.
Throughout this section we will be using threshold values of
(-", ") = (-0.01ms

-1, 0.01ms
-1).

We will then associate four numbers to each two-dimensional
cross section: �+

0
and �+

1
for the subcomplex obtained from the

positive region, �-
0

and �
-
1

for the corresponding subcomplex
from the negative region. Figure 4.4 shows an example of the par-
tition into disjoint sets induced by the thresholding, and Table 4.1
shows the respective values of the Betti numbers.

Figure 4.4: Left: vertical wind velocity w, in ms
-1, within a horizontal

cross section of the DNS domain. Center: binary partition
based on values of w. Right: ternary partition of the same
field, corresponding to the domains M- (blue), M+ (red), and
M⇠0 (grey).

The physical interpretation of these numbers is clear: �±
0

counts
the number of connected updrafts (resp. downdrafts), while �±

1

is the number of “holes” enclosed by these updrafts (resp. down-
drafts). In general, one would expect that �+

0
= �

-
1

, since every
connected component in the positive domain will necessarily cor-



4.3 betti numbers for the vertical wind velocity field 73

Table 4.1: Betti numbers for the spatial regions shown in Figure 4.4 (right
panel).

M+ M- M⇠0

�0 149 309 2245
�1 233 93 183

respond to a “hole” in the negative domain, and �
-
0

= �
+
1

for
the same reason. In this case we observe that neither of these
relationships holds. A possible explanation for this is the fact that
we are using a ternary partition, and indeed we can see cycles
within the positive domain in Figure 4.4, right panel, which do
not enclose any connected components of the negative domain
M-, but only of the white domain M⇠0. We could think that
equality would hold in case we had a binary partition of the
domain, but this is again not true, as shown in Figure 4.5. The
reason for this is a subtle but important point, consequence of
the definitions in the framework of cubical homology. By way of
example, let X = [0, 7]⇥ [0, 7] be represented as a cubical complex
generated by the elementary 2-cubes in its interior, and consider
the two cubical subcomplexes M+ and M- generated by the sets
of anchor points P

+ and P
- shown in Figure 4.5 as red and blue

dots respectively. We can see that on the one hand, P = P
+ [ P

-

as a set of anchor points would also generate X, and P
+ \ P

- = ?.
On the other hand, M+ [M- = X, but M+ \M- 6= ?, since both
sets have elementary 0- and 1-cubes in common. This means that
M- � X \M+, and X \M+ would not even be a proper cubical
complex, as it would contain 2-cubes which would lack some of
their boundary 0- and 1-cubes. Each of the constituent squares of
M+ share a 0-cell, hence M+ has a unique connected component,
and �+

0
= 1. The same 0-cells are also part of M-. But this then

implies that that the four cycles shown in Figure 4.5 as �1, . . . ,�4
are four generators for the first homology group H1(M

-), hence
�
-
1

. The “hole” that we would expect to get when carving out
M+ is then a linear combination of these four independent cycles,
� =

P
i
�i.
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Figure 4.5: Binary partition of a rectangular domain. The black region
on the left panel represents M+, the black region on the right
panel is M-. Also shown on the right panel are the four
generators of the first homology group H1 for M-, �1, . . . ,�4,
and the cycle � formed as a linear combination of them, which
would correspond to “cutting M+ out” of M-.

The two-dimensional slices shown in Figure 4.6 are more illus-
trative of the general situation. Here we can see that the different
surface patterns, with different characteristic length scales, induce
vertical velocity fields which also exhibit clear qualitative differ-
ences. The intuition behind this is as follows: a large, contiguous
area of common land type, for example forest, will tend to have a
roughly constant heat flux into the atmosphere. If the scale of this
patch of forest happens to be commensurate with that of a char-
acteristic CBL plume, we would expect to find a correspondingly
large plume above the forest patch, with its return circulation
extending to the surface and merging smaller plume structures
originating from the patch into the dominant plume [van Heer-
waarden et al., 2014]. If this forest patch is now broken up into
many smaller, disjoint patches, each significantly smaller than
the characteristic CBL length scale, this merging process does not
necessarily occur, and we might expect to see a larger number of
smaller, more localized plumes. Thus, we expect the value of �+

0

to be negatively correlated to the characteristic length scale of the
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Figure 4.6: Comparison of land surface patterns from the four LES-ALM
datasets (bottom), and two horizontal cross sections of vertical
wind velocity w for each dataset (red: w > 0, white: w ⇠ 0,
blue: w < 0). Middle row: vertical wind velocity at 220 m
height. Top row: 1760 m. All slices show the state at 13:00 h.

surface pattern, at least close to the surface. This is the case in the
example shown here. In the next section we will show how this
statement can be made more precise.

4.3.1 Betti profiles

Definition 4.3.1. Let (t, z) be a pair of time and height values
in the computational domain ⌦, such that M±

(t,z) are the two-
dimensional cubical complexes for up- and downdrafts at time t

and height z, both in grid units. Then �+
0
: {0, . . . ,Nt}⇥ {0, . . . ,Nz} �!

Z is a function of time and height which maps the pair (t, z) to the
Betti number �0 for the cubical complex M+

(t,z). Its corresponding
Betti profile at time ⌧ is the function of z obtained when condition-
ing on t = ⌧, that is �+

0
(t, z)|t=⌧. The functions �+

1
, �-

0
, and �-

1

are defined analogously, as well as their corresponding profiles.
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Figure 4.7: Vertical profiles for the LES-ALM datasets. First panel: tem-
perature. Each of the following panels shows the four Betti
numbers, �±

0
and �±

1
, for one of the four simulations. Each

profile is a one-hour average centered at 12:00h.

The use of the name profile is akin to that in meteorology, where
it denotes the function of height that describes variables such
as temperature, water vapor, or velocity. This is motivated by
the boundary layer hypothesis, whereby the effects of viscosity on
a fluid are significant only in close proximity to a solid barrier
and are negligible away from it. This hypothesis, first proposed
by Prandtl [1905], allows for the following approximation in case
that the boundary layer thickness, in the direction normal to the
solid barrier (z), is significantly smaller than the spatial extent of
the domain parallel to the barrier (in the directions x and y):

@u

@x
⌧ @u

@z
and

@
2
u

@x2
⌧ @

2
u

@z2
,

with the same relationship between the derivatives with respect
to y and z. Therefore we can assume that first- and second-order
statistics change significantly only in the z and t coordinates. In
this sense, Figure 4.7 shows the temperature profile for the LES-
ALM datasets, as well as the corresponding Betti number profiles
of them.

betti feature matrices Given a simulation dataset, we
calculate four different arrays of Betti numbers, each containing
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the numerical values of the functions given in Definition 4.3.1. We
can represent each of these as a matrix of dimension Nt ⇥Nz,
where Nt is the number of simulation timesteps, and Nz is the
number of vertical grid levels. For example, corresponding to
the Betti number �+

0
we have the matrix (B+

0
)ij, which has as its

(i, j)-th entry the number �0 for the positive vertical wind velocity
domain at the i-th timestep and j-th height level. We create a
feature matrix via the following steps:

1. Select a range of timesteps to use, and a sampling frequency.
Each timestep will be one observation. For example: in the
LES-ALM simulations it would be reasonable to consider
the time window between 10:00h and 18:00h as separate
from the window between 18:00h and 21:00h, as these repre-
sent two different physical regimes. Additionally, since the
simulation timesteps are of one minute, taking only every
k-th timestep would reduce the temporal autocorrelation
between the observations.

2. Select the range of height levels to use. Each height level z
will be a feature, representing all the values of a given Betti
number at height z throughout the simulation time.

3. This results in a matrix of dimension N
0
t
⇥N

0
z, with N

0
t
6 Nt

and N
0
z 6 Nz being the dimensions of the computational

domain (see Equation 6.13). In case the model to be con-
sidered uses the information from both Betti numbers, �0

and �1 (from either the positive or the negative domain),
we concatenate these two matrices column-wise, effectively
doubling the number of features, and resulting in a matrix
of size N

0
t
⇥ 2N

0
z.

4. Concatenate the matrices from all available simulations row-
wise. In the case of LES-ALM, this would mean the four
simulations SP1 to SP4. This results in a 4N

0
t
⇥N

0
z matrix (

or 4N 0
t
⇥ 2N

0
z if using both Betti numbers).

5. Normalize the features: for each column in the matrix, center
and rescale it so that its mean is 0 and its standard deviation
is 1.
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4.3.2 Classification of land surface patterns

We proceed by classifying the four different land surface patterns
in the LES-ALM simulations by using only the information con-
tained in the vertical Betti number profiles. In other words, if all
we know is the geometric information given the Betti numbers for
a certain region of the space-time domain, what can we conclude
about the land surface pattern that generated it? Moreover, how
does this information compare to the information provided by
the physical variables? Using the same set of four simulations
discussed here, Liu et al. [2017] show that the bulk profiles of
temperature can distinguish between homogeneous and inhomo-
geneous surface pattern, but they cannot distinguish between the
three inhomogeneous surface patterns. This subsection will show
to which extent the Betti numbers of the vertical velocity fields
are better descriptors for this task.

We will try to answer this question by using the feature ma-
trices X described in the previous paragraph. In total, we will
use eight of these matrices: four corresponding to the four sets
of Betti numbers �±

0
and �

±
1

, one for the concatenation of the
two positive Betti numbers, �+

0,1, one for the concatenation of the
two negative Betti numbers, �-

0,1. Finally, we also use the two
matrices corresponding to the profiles for vertical wind speed, W,
and temperature, T .

The response variable will be the label indicating the simulation
each observation corresponds to, y = SP1, SP2, SP3, SP4. For
constructing the feature matrices, we focus here on the quasi-
stationary period, 10:00h - 17:00h, after the rate of boundary layer
growth has stabilized, and before the evening transition begins.
Timesteps are selected in 5min intervals, to diminish the effect of
temporal autocorrelation. This results in N

0
t
= 1684 observations.

Two different classification schemes will be considered: a k-nearest
neighbors classifier, and a multinomial logistic regression. In both
cases we use the implementations available in the Python library
scikit-learn [Pedregosa et al., 2011].

k-nearest neighbor classification The k-nearest neigh-
bor (k-NN) classifier is a well-known method in machine learning
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[Hastie et al., 2001, §13.3]. Let Z = {(Xi,yi)}Ni=1
denote the training

data set, with each Xi being an observation of the M explanatory
variables, Xi = (xi,1, xi,2, . . . , xi,M), and the response Yi being a
categorical variable with values in a finite set, yi 2 {1, 2, . . . ,K}.
Given a new observation X0, the method finds the k training
points xi closest to x0, and assigns to it the value ŷ to x by major-
ity vote, i.e. the most common label within the set {xi}ki=1

, with
ties being broken at random in case two or more labels have the
same frequency within the group of k nearest neighbors. This
method requires the features to be embedded in some metric
space, which is the case here since we have translated the geo-
metric properties of the flow into a vector of natural numbers.
The value of k is commonly determined by cross-validation. The
metric we use is the Euclidean metric, and the k observations are
given uniform weight.

multinomial logistic regression We give a brief sum-
mary of the method here. We follow the presentation given
in Hastie et al. [2001, §4.4]. Let Z = {(Xi,yi)}Ni=1

be the train-
ing data set as before. If we let pi,j = P(Yi = j) be the probability
that the i-th observation falls into category j, and Yi,j be the in-
dicator variable for observation i being in category j, the joint
probability density of the response is given by

P(Yij = yij, . . . , YiK = yiK) =
KY

j=1

p
yij

ij
. (4.2)

The values of the pij are unknown, and we want to obtain an
estimate for them conditioned on the data X = (X1, . . . ,XM).
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Logistic regression estimates this via a linear model of the log-
odds for class membership of observation xi, as given by

log
P(yi = 1 | Xi = xi)

P(yi = K | X = xi)
= �10 +�T

1
Xi

log
P(yi = 2 | Xi = xi)

P(yi = K | X = xi)
= �20 +�T

2
Xi

...

log
P(yi = K- 1 | Xi = xi)

P(yi = K | X = xi)
= �(K-1)0 +�T

K-1
Xi.

(4.3)

The model is completely determined by this set of K- 1 equations
due to the additional restriction that

P
j
pij = 1. It can be shown

that these equations are equivalent to

P(yi = k | Xi = xi) =
exp (�k0 +�T

k
Xi)

1+
P

K-1

`=1
exp (�`0 +�T

`
Xi)

P(yi = K | Xi = xi) =
1

1+
P

K-1

`=1
exp (�`0 +�T

`
Xi)

(4.4)

We denote the set of parameters by⇥ = {�10,�T

1
, . . . ,�(K-1)0,�T

K-1
}.

These should not be confused with the Betti numbers, also de-
noted by �i, i 2 N. We use the � symbol for the linear model
parameters here for consistency with the statistical literature. Us-
ing Equation 4.2 and Equation 4.4 we can obtain the log-likelihood
function for a given parameter vector �:

`(⇥) =
NX

i=1

logP(yi = k | Xi = xi;⇥)- �
KX

j=1

|�j|, (4.5)

where we have added an additional term for L2-regularization.
This is especially important in high-dimensional problems, as
using larger values of the penalization parameter � will tend to
shrink the magnitude of the estimated parameters, thereby re-
ducing model complexity. The estimates for the � parameters are
obtained by maximizing the log-likelihood function, something
typically done in practice by using an iterative optimization algo-
rithm. For this work we used a L-BFGS solver, with the number
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of iterations capped at 1000, and a tolerance value of 1e-10. Once
we have obtained the parameter estimates, we can compute the
posterior probabilities of class membership from Equation 4.4.

F1 score The F1 score is a classical evaluation metric for clas-
sifiers [Powers, 2011]. It is based on the notions of precision and
recall, which we now state:

Definition 4.3.2. Let {Yi} be a set of binary observations, and {bYi}
the corresponding set of labels assigned to it by a classifier f. The
precision of f is

pr =
|{Yi = 1}\ {bYi = 1}|

|{Yi = 1}\ {bYi = 1}|+ |{Yi = 0}\ {bYi = 1}|
, (4.6)

that is, the proportion of true positive results out of all the results
produced by the classifier. The recall of f is

rec =
|{Yi = 1}\ {bYi = 1}|

|{Yi = 1}\ {bYi = 1}|+ |{Yi = 1}\ {bYi = 0}|
, (4.7)

the proportion of true positive results returned by f out of all
the positive values in the population. The F1 score (also called F

measure) for f is the harmonic mean of precision and recall:

F1 =
2 · pr · rec
pr + rec

. (4.8)

For multiclass classification, we will use the weighted average F1
score: the F1 score is computed for each class individually, and
they are averaged with a weight equal to the number of true
instances of the class.

results We compared 8 Betti feature matrices, obtained from
the following variables as described above: the four Betti numbers
from the vertical wind velocity fields,�+

0
, �+

1
, �-

0
, �-

1
. Also �+

0,1
and �

-
0,1, the concatenation of both Betti numbers for the posi-

tive and negative wind velocity domain respectively. Finally, also
the physical variables W (vertical wind velocity profile), and T

(temperature profile). For each feature matrix X:
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1. Split the rows of X into Xtrain and Xtest, where we use 70%
of all rows as training set. A corresponding partitioning of
the response Y into Ytrain and Ytest is also performed.

2. Obtain a bootstrap estimate of the F1 score for both the
k-NN and the multinomial logistic classifier: take n samples
with replacement from the rows of Xtrain, and compute the
weighted average F1 score on the holdout set, (Xtest, Ytest).
In our experiments, n = 1000.

Each classifier has a complexity parameter: for the k-NN classi-
fier it is k, the number of neighboring points, whereas for the
multinomial logistic classifier it is C = 1/�, the inverse of the
regularization parameter � specified in Equation 4.5. The boot-
strap estimation was performed over a range of parameter values,
the results are shown in Figure 4.8. As can be seen, the classifiers
trained on the combined feature sets of �0 and �1 tend to perform
better than all other feature sets, especially the one corresponding
to �+

0,1, which achieves the maximum F1 score in both cases: 0.65
for k-NN and 0.85 for logistic regression. Table 4.2 shows the max-
imum scores for all variables. This performance advantage shows
that the updrafts, and in particular their geometric characteristics
represented by their Betti numbers, are better at characterizing the
state of the PBL than the vertical profiles of either wind velocity or
temperature. Recalling the structure of the vertical profiles them-
selves, as seen in Figure 4.7, we note that their variation is greatest
close to the surface, whereas their behavior for the higher regions
of the boundary layer appears more similar. This motivates the
use of subsets of the profile data, to see if this variation in the
surface region indeed translates to a better classification of surface
patterns by the corresponding features.

Following the same logic described before, a bootstrap estimate
of the F1 score was obtained for classifiers trained not on the full
feature matrix using the 100 height levels of simulation data, but
using only subsets of size 10, starting from ground level. That is,
the values of the vertical profiles for levels 1 to 10 were used to
train a set of classifiers, then the values for levels 11 to 20, and so
on. The results of this are shown in Figure 4.9, where we show
only the models for the combined Betti numbers, �+

0,1 and �-
0,1.
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Figure 4.8: Bootstrap estimates for the F1 score of k-NN (left) and multi-
nomial logistic (right) classifiers, given the 8 feature matrices
computed from vertical profile data.

Table 4.2: Maximum weighted average F1 scores in 1000 bootstrap sam-
ples computed from the feature matrices for all 8 variables.

Variable k-nearest neighbors Mult. logistic regression
k Max. F1 C Max. F1

�
+
0

1 0.58 1.30 0.76
�
+
1

10 0.54 0.60 0.70
�
-
0

3 0.45 0.30 0.59
�
-
1

1 0.57 0.40 0.69
�
+
0,1 1 0.65 0.30 0.85

�
-
0,1 3 0.62 1.40 0.79

W 1 0.51 2.00 0.83
T 1 0.52 1.20 0.81
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Figure 4.9: F1 scores for k-NN and multinomial classifiers trained on
subsets of size 10 of the 100 features available for LES-ALM
datasets. The models at height 10 were trained using features
corresponding to height levels 1 to 10, and so on.

Unsurprisingly, performance is significantly better close to the
surface, and it degrades rapidly for higher levels. The models
based on Betti number data display better performance up to
level 70, where the models based on vertical wind velocity and
temperature see an improvement in their F1 scores. In the last
region (levels 91 to 100) it is actually the classifiers based on
temperature data which have the best scores overall (0.565 and
0.495), whereas for the most part they tend to perform worse than
those based on the other three variables.

We can simplify the classification problem further, to obtain a
better view of the difference in information carried by the Betti
numbers on one hand, and the physical variables such as vertical
velocity or temperature on the other. Figure 4.10 shows an example
of this. Here we compare three variables: temperature, �+

0
, and

�
+
0,1. For each variable, we have reduced the number of features

to only two, which in the case of temperature and �
+
0

are the
values of their profiles in the first two horizontal layers, and for
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Figure 4.10: Classification models trained with data from the first two layers of
the temperature profile (top row), from the first two layers of the
�

+
0

profile (middle row), and from the first layer of �
+
0

and �
+
1

(bottom row). Left column shows a k-NN classifier, right column
a multinomial logistic regression classifier, each with its respective
decision boundaries. Each point in the plot represents one simulation
timestep, with the axes showing the standardized feature values in
each of the profile layers.
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�
+
0,1 they are the values of both �+

0
and �+

1
in the first horizontal

layer. Each point in the figures represents one of the simulation
timesteps used as training set, where we again have sampled the
time window between 10:00h and 17:00h at a 5 minute interval.
The decision boundaries for each classifier are also shown. By
looking at what happens close to the surface in this way, we can
clearly see the significant differences in how the Betti numbers
of the vertical velocity fields respond to different land surface
patterns in a CBL regime. This confirms our earlier observation
that the geometric-topological notions of connected components
and “loops” or cycles quantified by these numbers are adept at
characterizing the structural properties of turbulent flow, as well
as the dependence of these properties on the forcing induced by
land surface patterns of different heterogeneity. This is in line with
the intuitive observation, made in Section 4.3, that if we break up
a connected region of uniform land type and length scale L ⇠ µ0,
with µ0 representing the characteristic scale of a convective plume,
then the spatial coherence of the turbulent flow above this surface
region will also be broken. This breakup will result in a larger
number of connected updraft regions than would be the case for
a uniform land surface type. Indeed, as shown in the middle and
bottom rows of Figure 4.10, the ordering of the �+

0
values tends

to agree with ordering the four simulations by increasing level of
land surface heterogeneity, namely SP4, SP2, SP1, and SP3.

This is also in line with the findings reported by Liu et al. [2017],
where data from the vertical temperature profiles are seen to rep-
resent the difference between the homogeneous case (SP4) and the
three heterogeneous cases (SP1, SP2, and SP3). These temperature
profiles, however, do not reveal any difference between the three
heterogeneous cases (cf. [Liu et al., 2017, Fig. 4] and our own
Figure 4.7).

4.3.3 Time series of Betti numbers

It is also possible to use the information expressed in the Betti
numbers to study the temporal evolution of the system they
describe. We can, for example, fix a value z = ⇣ and look at the
time series of values �i(t, ⇣). Given the existence of three distinct
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Figure 4.11: Time series of the 10-minute moving averages of �+
0

and �+
1

measured at 100 m above the surface, for all four LES-ALM
simulations.

regions within a CBL, namely the surface, mixing, and inversion
layers, it will be instructive to study time series which show the
temporal evolution of the Betti numbers in each of these regions.
For the case of the LES-ALM simulations we choose a height
of z1 = 100 m for the surface layer, z2 = 800 m for the mixing
layer, and z3 = 1600 m for the inversion layer. As before, we
compute four Betti numbers in each two-dimensional layer, one
pair for both the positive and negative vertical wind subdomains.
The time series for the Betti numbers measured at 100 m show a
strong influence of the surface pattern, especially for the positive
wind velocity domain (see Figure 4.11). The number of updrafts,
�
+
0

, becomes stationary throughout the CBL regime, which is in
agreement with the observation made by Krishan et al. [2007]
for the case of Rayleigh-Bénard convection. The mean value is
similar for all simulations except SP3, which has a higher mean. At
around 18 h the evening transition takes place as solar irradiation
ceases, and the land surface is no longer an energy source for the
convective system. The regularity with which convective plumes
originated in the surface layer throughout the day is thereby
destroyed, and the behavior of this part of the PBL now displays
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Figure 4.12: Time series of the 10-minute moving averages of �+
0

and �+
1

measured at 800 m above the surface, for all four LES-ALM
simulations.

a strong sensitivity to the land surface pattern. This is reflected
in a sharp increase in the value of �+

0
, and the magnitude of this

increment is strongly dependent on surface conditions: the surface
patterns with a smaller characteristic length scale will cause the
convective structures to break down into a larger number of
smaller components at surface level than those surface patterns
with larger scales. The value of �+

1
, on the other hand, is not

stationary but appears to follow a broad parabolic curve, peaking
after noon and decaying towards the evening. Here again the
surface conditions play an important role: more heterogeneous
surface patterns will be associated with larger values of �+

1
, on

average.
By comparison, the time series for the horizontal layer at an

altitude of 800 m show a negligible effect of the surface pattern
on the behavior of the Betti numbers (see Figure 4.12), which is
not surprising given the scale of land surface heterogeneity in
the model. They do show one salient feature, which was absent
closer to the surface: a sharp peak in the value of �+

0
, happening

at around 10 h. After this, both �
+
0

and �
+
1

become stationary
for the remainder of the day. The reason for this peak, as we will
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Figure 4.13: Time series of the 10-minute moving averages of �+
0

and �+
1

measured at 1600 m above the surface, for all four LES-ALM
simulations.

see at the end of this section, is clear: it is a signal for the time at
which the inversion layer grows past the altitude represented in
this time series (800 m).

Finally, there is a negligible effect of surface pattern on the
Betti number time series for the layer at 1600 m altitude (see Fig-
ure 4.13). For �+

0
, a transient peak at around 09:30 h is followed by

a steep increase in value towards 10:30h, with all four time series
reaching their maximum values between 11:00 h and 12:00 h. The
rate of increment for SP4 is smaller than that observed in the
other three simulations, hence the maximum value for this time
series is observed later than for the other three. After reaching
their maximum values, all four time series decrease during the
afternoon. Thus, in contrast to what happens at 100 m and 800
m, the time series for �+

0
is not stationary. Neither is �+

1
, with

its variance increasing throughout the day, and a slight upwards
trend noticeable in its 10-minute moving average.

In summary, the PBL system undergoes significant regime
changes throughout its diurnal evolution. These changes in turn
become manifest in qualitative differences in the convective struc-
ture present in the system at different times. The set of time series



90 homological signature of land surface–atmosphere interaction

Figure 4.14: 5-minute moving averages of the time series for �+
0

, evalu-
ated at different altitude levels. Two LES-ALM simulations
are shown: SP3 (top) and SP4 (bottom). The vertical lines
show the time at which the thermal inversion reached the
altitude at which each time series was measured.

obtained here from the values of the Betti numbers give us a first
glimpse at how these structural changes, product of a shift in the
underlying physics, are reflected in the geometrical properties of
the scalar field associated with vertical wind velocity. This is even
clearer if we restrict ourselves to time series within the mixing
layer, as seen in Figure 4.14. This shows time series of �+

0
for five

different altitude levels, in the case of SP3 and SP4: 600 m, 700 m,
800 m, 900 m, and 1000 m, between 08:00 h and 11:00 h. Here it
is easy to see how the increasing altitude is reflected in the time
at which the time series reaches its maximum: this happens at
a later time for higher altitudes. The corresponding value of the
maximum is also lower at higher altitudes, although this differ-
ence is more pronounced for the uniform case SP4, where the
maximum goes from 2.93 km-2 at 600m down to 1.93 km-2 at
1000m, compared to the SP3 case where the change is between
1.91 km-2 at 600m to 1.71 km-2 at 1000m. As observed before,
the time at which this value is achieved bears a close relation to
the time at which the inversion layer grows to that altitude. This
time is indicated by the vertical lines in Figure 4.14.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: (a) and (b) The partitioning of the CBL into its components
subregions by bulk analysis of the flow is shown in (a) for the
LES dataset SP4, and in (b) for the DNS dataset. The contour
plots show the height-time sections of `+ = log(�+

1
/�

+
0
)

and `
- = log(�-

1
/�

-
0
) for LES in panels (c) and (e). The

corresponding sections for DNS are shown in (d) and (f)
(Figure from Licón-Saláiz et al. [2020]).

The temporal evolution of Betti numbers shows a limited sensi-
tivity to land surface pattern, and this sensitivity is evident only
at some points throughout the entire simulation. It also shows
something which is hard to see if we consider vertical profiles:
this temporal evolution differs, depending on which part of the
boundary layer we look at. Some features are evident from the
time series, such as the evening transition away from a CBL into
stable stratification close to the surface, and the time of inversion
crossing at higher altitudes. With this in mind, we can now think
about what the topological data at our disposal reveal about the
global structure of the PBL.
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4.4 topological characterization of the PBL

The general situation is more clearly visible in Figure 4.15 (c-f).
Here we do not show the Betti numbers individually, but the
value of their log-quotients, `±= log(�±

1
/�

±
0
). The use of this

quantity follows the observations made in Section 4.3.2, where the
combination of �0 and �1 was shown to have more explanatory
power than either number on its own. The quotient �1/�0, which
can be understood as a normalization of the number of generators
in the homology group by the number of data points, has been
used successfully as a descriptor in the classification of plane
shapes [Chacholski and Riihimäki, 2020]. In the present case, a
further advantage of �1/�0 is that it is a dimensionless quantity.
Furthermore, we also visualize the values of `± for both the
LES (panels c and e) and DNS (panels d and f). Based on this
visualization, the following observations can be made:

• The global structure for the four LES simulations (only SP4
is shown here) is similar. The radiatively-driven CBL struc-
ture is also similar in both the LES and DNS models. In
the former, boundary layer growth starts in each at around
09:30h, slowing down at 11:00h, and persists until the late
afternoon. Then, at around 17:30h, the inversion layer dis-
appears. The time period between the start of boundary
layer growth and the collapse of the thermal inversion cor-
responds to the quasi-stationary CBL regime. For the DNS
dataset, only the CBL regime is shown here.

• Within the CBL, four distinct regions are apparent from the
values of `+: the surface layer, the mixing layer, the inversion
layer, and the free atmosphere.

• After the collapse of the inversion layer, and especially after
18:00h, the transition to a stably stratified boundary layer
occurs. This is reflected in the increasing values of �+

0
, and

as is clear from Figure 4.11, the magnitude of this increase is
closely related to the length scale of the underlying surface
pattern heterogeneity. Above this, the mixing layer becomes
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a region of residual turbulence, decoupled from the surface
layer as the energy input from the land surface disappears.

• In the LES, the white region at the top indicates the free
atmosphere, characterized by an absence of large, turbu-
lent fluctuations. In terms of the ternary partitioning of W
introduced before, this means that no connected regions
where vertical wind speed has a magnitude larger than the
threshold " =0.01ms

-1 are observed. In DNS this abrupt
change does not happen.

Also shown are four different measurements of boundary layer
height:

1. Inversion height, zi: where the mean buoyancy gradient, @hbi
@z

,
becomes positive.

2. Zero-crossing height, zi,0: where the total buoyancy flux, B,
becomes negative. B is defined as

B = Cov(b,w)- 
@hbi
@z

.

3. Variance-based height, zi,v: where the buoyancy variance, Var(b)
is maximum away from the surface region.

4. Flux-based height, zi,f: where the total buoyancy flux B is
minimized [Garcia and Mellado, 2014].

The inversion layer is then considered to be the space between the
minimum and the maximum of these different values.

At this point we also note the qualitative agreement between the
values of the log-quotients of the Betti numbers on the one hand,
and the structure and diurnal evolution of the PBL (see Figure 2.1).
This motivates a qualitative classification of the regions of the
(t, z) plane based on the values of `±. More precisely, we want
to know if it is possible to recover a partitioning of the PBL into
its component subregions, such as the one shown in Figure 4.15
(a,b), from knowledge of the Betti number log-quotients only. This
partitioning, obtained from bulk measurements of the flow, again
shows the characteristic diurnal evolution of the PBL, at least
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for the LES: starting at 9:30 h, and until the thermal inversion
disappears in the afternoon, the first 300 meters above the surface
constitute the surface layer (shown in red). Above this is the well-
mixed layer (green), followed by the inversion layer (dark blue)
and the free atmosphere above (yellow). The lower (resp. upper)
bound of the inversion layer is given by zi,0 (resp. zi,v). Finally,
after the inversion disappears and the atmosphere transitions to a
stably stratified regime, we are left with residual turbulence (light
blue). After this point in time, the height of the residual layer
decreases gradually, we model this using an exponential decay
function of the form

f(t) = z0 + �e- t.

In view of this clear structural partitioning, we can now leave
aside the issue of determining the discriminative power of the
Betti numbers with respect to the different land surface patterns,
and focus instead on their capacity to distinguish between the
different regions of the PBL shown above. In other words, we
want to find out whether knowing only the two numerical values
`
± at a point (t, z) is enough to decide whether this point belongs

to the surface layer, or the well-mixed layer, or any of the other
regions.

4.4.1 Supervised learning

The first approach is again supervised learning, where we build
a feature matrix X with one row for each pair (t, z) of time and
height, excluding the first 90 minutes of simulation time. For sim-
plicity, we will only focus on the LES case in this subsection. X
will have two feature columns with the value of `+ or `- respec-
tively. The response variable y will be the label of the boundary
layer region to which the pair (t, z) belongs according to the par-
titioning shown in Figure 4.15 (a, b). In this case we consider a
single feature matrix containing all data from the four LES-ALM
simulations, which results in a matrix with 231869 rows. 70% of
these were selected at random as training set, the remaining 30%
as test set. The k-NN classifier (with k=15 in this case) has a F1

score of .71 on the test set, while the multinomial classifier (with
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Figure 4.16: Normalized confusion matrices for k-NN and multinomial
logistic classifiers, for the task of predicting the region of the
PBL corresponding to a pair of values (`+, `-).

regularization parameter C=1.5) has a F1 score of 0.67 on the test
set. The classification results are summarized in Figure 4.16, which
shows the confusion matrices for both classifiers.

We can see that both classifiers perform best at classifying both
the surface and mixing layers, which makes sense since the surface
layer appears well-defined by the values of `+ in Figure 4.15 (c),
with its transition to the mixing layer being clearly defined and
regular across time. Classification accuracy drops significantly in
distinguishing the inversion layer from the mixing layer, and the
free atmosphere from the residual layer. This is again reflected
in the fact that the boundaries between these regions are more
diffuse, as seen in Figure 4.15 (c, e).

4.4.2 Unsupervised learning

Supervised learning gives a good result in terms of classification
accuracy. However, it is not especially surprising since we are
imposing our previous knowledge on the classification model, in
some sense, by defining what the values of the target variable
y must be from looking at the values of the Betti numbers, and
how these change over time. A more interesting question to ask
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Figure 4.17: Left: set of 2400 points drawn from a mixture of three bi-
variate normal densities. The colors represent the cluster
membership as determined by the K-means algorithm. Right:
silhouette scores obtained from performing K-means cluster-
ing with k = 2, . . . , 10.

would be: is it possible to recover this structural partition of the
space-time domain by using only the values `±, and not using any
predefined labels? This is, of course, a problem of unsupervised
learning. In contrast to the situation we had before, where the
response variable y is defined by the values (t, z) that determine a
two-dimensional slice from which Betti numbers were computed,
we will now attempt to characterize the probability density of
observations in our feature matrix X without an explicit reference
to the underlying values of (t, z). Only after obtaining this abstract
model for the probability density of X will we then compare it to
our ground truth, which in this case is the classification of (t, z)
values into the different regions of the PBL.

What kind of model this might be is already hinted at by the
terminology used: what is needed is a partitioning of the available
values of `± into groups, according to some similarity measure,
and then we can compare this partition with the known partition-
ing of (t, z) space (see Figure 4.15 (a, b)). This is an example of
cluster analysis, one of the most common techniques in unsuper-
vised learning [Hastie et al., 2001, §14.3]. A simple and popular
technique for cluster analysis is the K-means algorithm, which
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we briefly review here. Given a set {xi} of N observations, and k

points x̄j chosen as initial centroids at random:

1. Assign each point xi to cluster j, where x̄j is the centroid
closest (in Euclidean metric) to xi.

2. After assigning all observations to a cluster, update each x̄j

to be the centroid of the new clusters,

and this is repeated until convergence is achieved. Incidentally, we
note that cluster analysis has been considered to be a technique
in topological data analysis [Carlsson, 2009], as it amounts to
determining the connected components that underlie a given
data sample. While this is certainly a legitimate interpretation of
cluster analysis, the technique is actually more general. Consider,
for example, the situation illustrated in Figure 4.17 (left), which
shows 2400 points drawn from

3X

i=1

wiNi(µi,�2i I2),

a mixture of three bivariate normal densities, with µ1 = (0, 0),
µ2 = (3, 0), µ3 = (-3, 0), and �2

1
= 1, �2

2
= �

2

3
= 1/2. The weights

wi are (2/3, 1/6, 1/6). The colors indicate the result of applying
the K-means algorithm to this pointcloud, with k = 3. This also
illustrates an important feature of K-means clustering: the decision
boundaries found by the algorithm are linear (and indeed coincide
with the Voronoi tessellation induced by the centroids x̄j). The
right panel shows the silhouette score [Rousseeuw, 1987] for a
clustering with k centroids, k = 2, . . . , 10. The silhouette coefficient
for observation xi is defined as

s(i) =
b(i)- a(i)

max{a(i),b(i)}
,

where a(i) is the mean distance from xi to all other points in its
own cluster, and b(i) the minimum mean distance from xi to all
points in one cluster, with the minimum taken over all clusters
C except for the one to which xi belongs. The silhouette score
is then the mean silhouette coefficient over all observations xi,
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Figure 4.18: Silhouette scores for clustering of LES (left) and DNS (right)
data.

and serves as a metric to evaluate a cluster assignment, since the
coefficient s(i) encodes both the proximity of xi to other elements
in its own cluster, which we would expect to be small, and the
dissimilarity between xi and all other clusters, which we would
expect to be large. If indeed b(i) � a(i), then we consider obser-
vation xi “well-clustered”, and s(i) ⇡ 1. In the example shown
in Figure 4.17, the maximum silhouette score is achieved with
k = 3 clusters, which agrees with the fact that 3 different centroids
(corresponding to the means of the mixture component) underlie
the pointcloud, even though it is hard to argue for the existence
of three disconnected components. After this short parenthetical
remark, we return to the problem of classifying the points in
(t, z)-space from the values of their corresponding Betti numbers
alone. This is similar to the situation in Figure 4.17, where instead
of the mixture density we now have X1 = `

+, and X2 = `
-. As

observations we use the 5-minute rolling means of the variables,
and perform a K means clustering with k = 6. The choice of
k = 6 is motivated by two considerations. First, the silhouette
score for different values of k only shows a clear difference for
k = 3 (see Figure 4.18), in the case of K-means clustering, and for
k = 3, 7, 8 for gaussian mixture clustering. Second, we know that
we would need more than 3 clusters if we hope to capture the
structural differences in the data, if only because the transition
from a convective boundary layer regime, with three distinct com-
ponents, to a stably stratified regime already necessitates at least 4
clusters. We then focus on k = 6, with the result as shown in Fig-
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Figure 4.19: K-means clustering of the (t, z) domain based on values of
`
+ and `-.

ure 4.19. We can go one step further, and obtain a slightly more
refined clustering by replacing K-means with another, closely
related algorithm: Gaussian mixture estimation. In this method,
the starting point is again an arbitrary assignment of k centroids,
which now correspond to the means of the k components of a mix-
ture of Gaussian densities. The observations xi are then assigned
to each cluster probabilistically. After assignment, the centroids
are recomputed, and the process is iterated until convergence is
achieved [Hastie et al., 2001, §14.3.7] The result for this is shown
in Figure 4.20, this time for k = 7 clusters.

We can draw two conclusions from the results obtained by both
algorithms. In the first place, the fact that both classifications of
points in (t, z) space are qualitatively similar, insofar as both ex-
hibit regions which can be construed as a well-defined surface
layer and mixing layer which transitions into an inversion layer,
beyond which a more irregular behavior is observed. Both classifi-
cations also show a structural change for values of t after about
550min, characterized by the vanishing of the three well-defined
regions. The agreement of both classification schemes points to the
fact that there exist regions of the `+, `--plane in which the data



100 homological signature of land surface–atmosphere interaction

Figure 4.20: Gaussian mixture clustering of the (t, z) domain based on
values of `+ and `-.

points tend to cluster together, and the data points in each of these
regions correspond to points in each of the known PBL regions
in (t, z) space. The second conclusion is that, since the different
clusters obtained from GMM have clearer, less noisy boundaries
in (t, z) space than the clusters obtained from K-means, we we
can infer that the boundaries between the putative regions in the
`
+, `--plane are actually non-linear. To get a clearer understand-

ing of this, the distribution of values for the two variables `+

and `- is shown in Figure 4.21. Here we visualize the individual
values classified according to our ground truth (Figure 4.15 (a, b)),
and the corresponding decision surfaces obtained from a k-NN
classifier as described above. We can see that, as in the example
with three normal densities we discussed before, there is no clear
separation of the data into disjoint sets, but there do appear to be
regions of higher data density. Moreover, at least three of these
regions coincide with physical regions in the PBL: surface, mixing,
and inversion layers. The clearest feature of the distribution is
doubtlessly the scattering of data points about the line X2 = -X1,
especially for points in the mixing layer, inversion layer, and resid-
ual turbulence. Most of the points from the surface layer sit within
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a convex region in the semiplane {`- > -`+}, whereas points from
the free atmosphere and a small part of the residual layer lie on
the opposite semiplane, {`- < -`+}. We also indicate six points
on this figure, labeled A-F, which correspond to each one of the
six two-dimensional slices shown in Figure 4.23.

In addition, we can also consider the division into quadrants
according to the signs of X1 and X2, and what this means in terms
of the geometry encoded by the corresponding Betti numbers.
By definition, `+ > 0 implies that �+

1
/�

+
0

> 1, or equivalently
�
+
1

> �
+
0

. Accordingly, `+ < 0 implies that �+
1

< �
+
0

. The same
relations hold for `-. Recalling the geometric meaning of the
Betti numbers, �1/�0 > 1 can then be interpreted as the exis-
tence of many “holes” or “loops” in the corresponding domain,
whereas �1/�0 < 1 would indicate that most of the connected
components in the domain are acyclic (they are contractible, or
loop-free). The correspondence between these geometrical char-
acteristics and flow morphology in the different PBL regions is
illustrated in Figure 4.23. As can be seen in Figure 4.21, the points
from each of the PBL regions are not scattered randomly, but tend
to cluster in different parts of the `+, `--plane. This tendency to
form clusters points to the different flow morphology present in
each PBL region being represented by the two values `+ and `-.
This is best illustrated by comparing the six points A-F from Fig-
ure 4.21 with the two-dimensional slices they represent, shown
in Figure 4.23. Point A, representing the first quadrant, has both
`
+

> 0 and `
-

> 0. This means that for both the positive and
negative wind velocity domains, it is the case that �1 > �0, i.e.
that the number of cycles is larger than the number of components.
Geometrically this means that both domains are intertwined in
a complex network-like pattern as seen in Figure 4.23, panel A.
For points B and C in the second quadrant, we have �-

1
> �

-
0

,
but �+

1
< �

+
0

. Most of the components in the positive domain
can thus be expected to be acyclic, which means that the network
pattern has been replaced by a small number of large components,
which do not tend to encircle areas of negative wind velocity.
Physically this can be interpreted as the coalescence of updrafts
into large convective plumes, which is especially clear in the mix-
ing layer (Figure 4.23, panel B). For points in the fourth quadrant
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the opposite will be true: most of the components in the nega-
tive domain are acyclic, which is especially clear in the residual
layer (Figure 4.23, F). Here we can see that the negative domain
is made up by many small acyclic components (�-

1
/�

-
0
< 1), all

of which are surrounded by the positive domain, itself consist-
ing of one large dominant component and many smaller, acyclic
ones (�+

1
/�

+
0
> 1). Physically this would mean that the convective

plumes, deprived of energy from the surface, are now being slowly
degraded by cooling air from above. Finally, the point E is located
in the region with `± < 0, which implies that most components
of both domains are acyclic. Geometrically this is only possible
if neither domain tends to encircle the other, but rather both are
surrounded by the region consisting of near-zero values. We see
that this is indeed the case in Figure 4.23, panel E. This also makes
physical sense, as point E corresponds to the stable stratification
close to the surface, where the velocity fluctuations have become
very small. Figures 4.22 and 4.24 show the log-quotient scatter-
ing and representative two-dimensional slices for the DNS data,
where the differences between the main CBL subregions are also
expressed by changes in the mean log-quotient values found in
each subregion.

4.4.3 Semi-supervised learning

The qualitative agreement exhibited by the unsupervised learn-
ing techniques with the expected structure of the atmospheric
boundary layer is significant, yet two important questions remain:

1. How to give a quantitative evaluation of the clustering, in
terms of classification accuracy?

2. Is it possible to improve on the automatic cluster assignment
by leveraging our knowledge of the physical constraints on
the data points? For example, since it is clear which clusters
correspond to the inversion layer in Figure 4.20, we can
merge all other clusters which are above it in physical space
into a new cluster, and declare this to be the free atmosphere.
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Figure 4.21: Scatterplot of the two Betti number log-quotients for the
LES-ALM simulation SP4. The decision surfaces shown are
computed using a k-NN classifier with k = 15 trained on the
feature matrix X containing all observations of the two vari-
ables, with the response variable being the PBL subregion
assigned by bulk analysis of the flow. The 6 points A-F corre-
spond to the two-dimensional slices shown in Figure 4.23.



104 homological signature of land surface–atmosphere interaction

Figure 4.22: Scatterplot of the two Betti number log-quotients for the
DNS dataset. The clustering was obtained using a gaussian
mixture model with k = 5 components. The decision sur-
faces are then computed using a k-NN classifier with k = 5,
trained on the feature matrix X containing all observations,
and the response variable is the unsupervised classification
induced by GMM clustering, for k = 5 clusters.
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Figure 4.23: Two-dimensional slices of the vertical wind velocity field
taken from LES-ALM simulation SP4. The values have been
discretized according to the thresholding scheme discussed
in Section 4.2.2. A: 08:51 h at 88 m, surface layer. B: 14:00 h
at 880 m, mixing layer. C: 09:54 h at 814 m, inversion layer.
D: 10:42 h at 2002 m, free atmosphere. E: 17:32 h at 22 m,
residual layer, stably stratified. F: 17:26 h at 330 m, residual
turbulence layer. These slices correspond to the same data
shown in Figure 4.1.
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Figure 4.24: Two-dimensional slices of the vertical wind velocity field
taken from the DNS dataset, with the same thresholding
scheme as in Figure 4.23. A: surface layer. B: Mixing layer. C:
Inversion 1. D: Inversion 2. E: Free atmosphere. F: Viscous
layer.
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Figure 4.25: Confusion matrix for semi-supervised classification of CBL
regions in LES (left) and DNS (right).

This process of mixing an unsupervised learning method with
a small set of labeled data is aptly named semi-supervised learning
in the machine learning literature. We can take as starting point
any of the clusterings produced by either k-Means or GMM. We
choose the latter (as shown in Figure 4.20), since it produces a
less noisy cluster assignment, and shows a clearer separation
of the surface, mixing, and inversion layers. The first task is to
identify those clusters which can be reliably assigned to one of
the known regions of the PBL, as shown in Figure 4.15. In the
example shown here, this is the case for the surface, mixing, and
inversion layers, as well for the residual turbulence during the
evening. For each region, the correspondence of the different
clusters is given by the percentage of (t, z) pairs for that region
assigned to each cluster. If this percentage is high enough, we
assign that cluster to the corresponding region. In this example
we see that cluster 5 corresponds to the surface layer, cluster 2 to
the mixing layer, cluster 4 to the inversion layer, and cluster 6 to
the residual layer. It remains to be seen what to do with clusters
1, 3, and 7, which is where the physical considerations come into
play. Clusters 3 and 7 include part of the inversion layer in the
first part of the simulation. The first rule is therefore to merge
these components into cluster 4. With this we can identify the
inversion uniquely as cluster 4. The next step is to classify every
data point above the top of the inversion layer as free atmosphere
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Figure 4.26: Result of applying semi-supervised classification to the log-
quotient variables for the LES dataset SP4.

for that part of the simulation which corresponds to the CBL
regime, represented here by the existence of well-defined surface,
mixing, and inversion layers. For the second part of the day, after
buoyancy-driven convection ceases, we classify everything above
the already identified residual layer as free atmosphere as well.
Finally, we merge the components of clusters 1 and 3 that sit
beneath the residual layer into the residual layer itself.

We can see the result of these modifications to the original clus-
tering in Figure 4.26. Figure 4.25 (left) shows the confusion matrix
for this classification, which has a weighted average F1 score of
0.82, which is even better than the supervised approach discussed
earlier. This good performance can be attributed to the strong
relationship of the two variables used, `±, with morphological
properties of the vertical wind velocity field in different regions
of the PBL. In other words, these two features can be understood
as strong descriptors of the physical state of the system. Further,
this approach does not suffer from the ambiguities introduced by
the ad-hoc partitioning sketched in Figure 4.15 (a, b).
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Figure 4.27: Unsupervised classification for DNS dataset, induced by
GMM clustering with k = 5 clusters.

4.4.4 Model comparison

As a last step in the analysis of the Betti numbers as descriptors for
a CBL, we will compare the results obtained in Section 4.4.2 using
data from a large-eddy simulation, with those obtained from
applying the same techniques to data from a direct numerical
simulation (DNS). In this model all spatial and temporal scales of
the turbulent flow are resolved, hence we should obtain a much
more detailed picture of its structural properties than from a
large-eddy representation. The dataset used here comprises 256
timesteps, with a spatial domain of 512 ⇥ 512 gridcells in the
horizontal direction, and 235 gridcells in the vertical direction.
This translates to 60160 two-dimensional slices of the vertical
velocity field from which we then compute the same four Betti
numbers as before, after applying the symmetric thresholding at
-0.01 and 0.01. Figure 4.28 shows the vertical profiles for these
four Betti numbers, averaged over 60 timesteps. As was also the
case for the LES data, we again see that the largest variation
amongst these numbers happens close to the surface. Throughout
the mixing layer they are, on average, very similar, and start to
diverge again as we approach the inversion layer. Taking this as



110 homological signature of land surface–atmosphere interaction

Figure 4.29: Two-dimensional histogram showing the two Betti number
log-quotients for LES (left) and DNS (right) data. As before,
the LES dataset is simulation SP4.

starting point, we might conjecture that clustering on the values
of these Betti numbers would also yield sensible results.

Figure 4.28: Betti number
profiles for
DNS data.

We proceed as before and compute
the two log-quotients, `±, which will be
used as features to be fed into the clus-
tering algorithm. In this case, however,
we do not compute the 5-minute moving
average. The distribution of these two
variables is illustrated in Figure 4.29. The
most striking feature in this scatterplot
is again the strong negative relationship
between `

+ and `
-. This is similar to

what happened in the LES case (see Fig-
ure 4.21), but the relationship here is
more clearly non-linear. The LES data
also had as a salient feature a clearly de-
fined “lobe” which accumulated most of
the values of `+, `- for the surface layer, but no such feature is
apparent for the DNS data.
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The figure shows a large accumulation of points around the
origin. Two “arms” stretch out of this putative centroid into each
of the two semiplanes defined by `+ > 0 and `- < 0. The latter
“arm” exhibits a more irregular shape, with the data points be-
coming more loosely scattered towards its end. Finally, we can
also see three distinct accumulations of points that go from the
lower left part of the diagram towards the bottom part of the
right “arm”. These features are visually clear, and the shape ap-
parent in the diagram is indeed very suggestive. We will now
make these empirical observations more precise. We consider to
this end the silhouette scores for different clusterings of the data,
shown in Figure 4.18. According to this, a sensible clustering of
the data would feature anywhere between 2 and 5 clusters. As
a first approach, we compute a K-means clustering for k = 3

clusters (not shown here). The result is as we would expect: a
division of the (t, z) space into a surface layer, a turbulent region,
and the inversion layer. However, the qualitative features observed
in the scattering of the variables suggest using a larger number of
clusters. The result of running a gaussian mixture clustering with
k = 5 components is shown in Figure 4.22 as decision surfaces
on the `+, `- plane. We can see that the distinct regions of the
bivariate scattering discussed above do agree with a physically
meaningful partitioning of (t, z) space, as shown in Figure 4.27.
Here we have declared the blue region as the inversion layer, and
the yellow region above it as the free atmosphere. This has a signif-
icant impact in classification performance for the inversion layer
(cf. Figure 4.25, right). Figure 4.27 also shows 6 points, labeled
A-F, which correspond to the six two-dimensional slices of the
vertical wind velocity field in Figure 4.24. As can be seen from
the scatterplot, starting from the lower left there is a broad coun-
terclockwise ordering of the distinct clusters, and this ordering
corresponds to a bottom-up motion in the vertical direction in
physical space. This again reveals how the different values of `+

and `- encode the structural properties of the various PBL sub-
regions, and how the partitioning of the domain by these values
alone broadly agrees with a partitioning obtained by bulk analysis
of the flow (cf. Figure 4.15). We also find significant qualitative
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agreement between the partitioning obtained for LES and DNS.
The most salient differences encountered are:

1. The appearance, for DNS, of a viscous layer directly adjacent
to the surface.

2. Ambiguity of the definition of the entrainment zone in DNS,
as the unsupervised algorithm produces two distinct clusters
for this region, and the transition between entrainment zone
and free atmosphere is not very clear. This is actually in line
with the two-layer structure of the entrainment zone as de-
scribed by Garcia and Mellado [2014], and is a consequence
of the explicit representation of small-scale entrainment in
DNS, a process which cannot be explicitly represented by
an LES model.

3. The values of `- in the surface layer are negative for DNS,
but positive for LES. This reflect the presence of wind shear
in the LES simulation, which changes the interspersion pat-
tern between up- and downdrafts close to the surface. A
quick comparison of Figure 4.23 (A) and Figure 4.24 (A)
shows that, indeed, in the LES case the number of updrafts
completely enclosed by downdrafts is greater than in DNS.

4. A more abrupt transition from the entrainment zone to the
free atmosphere in LES. This fact reflects the strong capping
inversion which is imposed as an initial condition in this
model, and is absent from DNS.



5
C O N N E C T I V I T Y A N D T H E S PAT I A L
O R G A N I Z AT I O N O F C O N V E C T I V E F L O W

Outline
We now focus on the special case of zero-dimensional homology,
which requires simpler computational tools than the matrix oper-
ations necessary for its higher-dimensional counterparts. These
tools are first introduced in Section 5.1, where it is shown how
they can be applied to the case of data analysis for atmospheric
models, by identifying the connected components that make up
a given domain in space (updrafts in this case). Once we have
identified these components, their sizes are found to exhibit self-
similar scaling, and this scaling interacts with the underlying
land-surface patterns (Section 5.2). A comparison of the predic-
tive power of these scaling laws with that of the Betti numbers
found in Chapter 4 is also made. Furthermore, another kind of
topological invariant is introduced here, the merge tree, which
makes use of connectivity information to furnish a representa-
tion of the three-dimensional coherent structures that form in the
CBL (Section 5.3). The conference paper Licón-Saláiz and Ansorge
[2019] is based on this chapter.

In Chapter 4, we study the interaction between land surface and
atmosphere as well as the structure of the atmospheric boundary
layer based on the numerical values of topological invariants: the
Betti numbers. These invariants are coarse, in the sense that they
only quantify the number of structures present, but give no fur-
ther information regarding their properties, such as their size or
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location. From the Betti numbers we can know that there are 2
cycles present in our domain, but we cannot know where in the
domain or of what size they are. In technical terms, this would
require identifying representatives for them. As it turns out, this is
still a major open problem in computational topology, and subject
of ongoing research [Escolar and Hiraoka, 2014, 2016; Obayashi,
2018]. At the heart of this problem lies the very definition of ho-
mology groups as equivalence classes of cycles. This means that
the currently available algorithms for the computation of homol-
ogy compute arbitrary representations of the cycles involved. This
is sufficient to provide the ranks of the involved groups, i.e. the
Betti numbers, but sheds no light on what structures those cycles
could correspond to.

An example of this is shown in Figure 5.1, where we show a
cubical complex X with �0(X) = 1, �1(X) = 2. Also shown are
two cycles which both belong to the same equivalence class in
the first homology group of X, H1(X). One of them corresponds
exactly to the boundary of the hole that is one of the generators
of H1. Yet when using a matrix reduction algorithm to compute

Figure 5.1: Cubical complex (grey) with two 1-cycles homologous to each
other (green and magenta). Both are representatives of the
same feature in the complex, yet only one (magenta) can be
thought of as being “optimal” in terms of area or volume.
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Betti numbers, there is no guarantee that such a representative
will be obtained. It could also be the other cycle, shown in green,
or indeed any other cycle homologous to it.

With this in mind, we can consider the special case of 0-homology,
which turns out to be more amenable to computations. To see
this, we recall the result stated in Section 3.4 according to which
the zero-dimensional homology group of a complex X is a free
abelian group with basis

{x̂i 2 C0(X) | i = 1, . . . ,n},

where {xi | i = 1, . . . ,n} is a collection of vertices such that there
is one, and only one, vertex for each connected component of
X (see Theorem 3.4.5). What this means is that computation of
H0(X) is then equivalent to separating the connected components
of X. This is a classical problem in computer science, which has a
very efficient algorithmic solution as described by Hopcroft and
Ullman [1973], making use of the Union-Find (UF) data structure.

5.1 the union-find data structure

For this dissertation, we implement the UF data structure in
Python (see Listing 5.1), making use of the NumPy library. This
allows us to work directly with the cubical complex representa-
tion of numerical simulation data. An additional component that
needs to be implemented is the special case of periodic boundary
conditions, since the two-dimensional slices obtained from LES
models with doubly periodic boundary conditions are essentially
cubical complexes embedded in the flat two-dimensional torus.
Our implementation of the UF algorithm (see Algorithm 1) and
data structure is based on the description given in Edelsbrunner
and Harer [2010, §I]. It consists of a linear array of parent pointers
of the same size as the cardinality of our vertex set V , together
with a Find and a Union operation. The Find operation finds the
parent node for a given vertex x; the Union operation, given two
nodes puts them in the same connected component by pointing
both to the same parent node. The algorithm starts from an array
where each node is its own parent, i.e. it points to itself. All nodes
are then visited sequentially, updating the parent pointers with
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Listing 5.1: Python implementation of the Union-Find data structure.

class UnionFind:
import numpy as np
def __init__(self, n):

"""
n : int
"""
self.parent = np.array(range(n), dtype=np.uint32)
self.size = np.ones(n, dtype=np.uint32)

def find(self, i):
"""
i : int
return p : int
"""
a = i
b = self.parent[i]
if a == b:

# Node is its own parent, do nothing.
return i

# Go up the hierarchy until root is found.
while a != b:

a = b
b = self.parent[a]
# Root is now stored in b.
p = b
# Return to starting level, go back up pointing everything to the root along the way.
a = i
b = self.parent[i]

while a != b:
self.parent[a] = p
a = b
b = self.parent[a]

# Return root.
return p

def union(self, i, j):
"""
i : int
j : int
return : void
"""
a = self.find(i)
b = self.find(j)
if a == b:

return
if self.size[a] > self.size[b]:

self.parent[b] = a
self.size[a] += self.size[b]
self.size[b] = 0

else:
self.parent[a] = b
self.size[b] += self.size[a]
self.size[a] = 0
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the Union operation according to node connectivity. An example
of this is shown in Figure 5.2, where the top part shows a cubi-
cal complex, with its 2-cells labeled by numbers. In this case the
2-cells play the role of nodes, and we define them to be connected
if they are adjacent to one another, that is, if they share an edge.
The bottom part shows the state of the parent pointer array after
visiting all nodes.

This algorithm is optimized in two ways:

1. Paths are compressed when they are traversed: when run-
ning Find(x), the corresponding root node found is also
declared to be the parent node of x if it is not already.

2. Smaller sets are always absorbed by large sets. When calling
Union(x,y), the sizes of the components they belong to are
compared and the root of the largest component becomes
the root of the new merged component. In a set with k

distinct nodes, the length of paths will then be bounded
above by log

2
k.

Thanks to point 2 above, when running the UF algorithm to
separate the connected components of a set, we get their sizes
essentially “for free”. Next we will look at the information carried
by these sizes for a population of connected components, with
respect to the problem of land–atmosphere interaction.

5.2 component–size distribution

Consider a two-dimensional cubical complex C built from thresh-
olding the values of w (vertical wind velocity) in a two-dimensional
slice corresponding to a pair (t, z) of time and height coordinates,
as described in Section 4.2. The starting point is the empirical ob-
servation that the sizes of the connected components that make up
the complex C are not distributed uniformly at random. Instead,
they follow a specific pattern characterized by the existence of one
large component, which accumulates most of the domain area,
and a large number of much smaller components, as is shown
in Figure 5.3.
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Figure 5.2: An example of the Union-Find algorithm.

This type of size distribution turns out to be a more general
phenomenon. More formally, let C be a two-dimensional cubical
complex as described above, and denote its connected components
by ci. Denote the size of a component by j, and the fraction of
components with size equal to j by pj. We can measure component
size in grid cells, in which case j 2 Z+, or rescale it to a physical
dimension such as m

2 or km
2. Irrespective of the choice made

in this regard, pj as defined here is a discrete variable, as is the
underlying grid on which the cubical complexes are built. The
distribution of the quantity pj, expressed here in km

2 is shown
in Figure 5.4 for two different slices. In each case all component
sizes observed in the 30 timesteps between 13:00 h and 13:30
h are shown, for the 4 LES-ALM simulations. The left panel
shows data for the horizontal slice at a height of 44m (surface
layer), the right panel at a height of 1100m (mixing layer). The
general pattern becomes clear in these figures: the smallest sizes
accumulate most of the density for pj. This density then decreases
regularly as size increases, until it is several orders of magnitude
smaller for the very largest components. This regular behavior
is clearer in the data from the surface layer (left panel), and
especially in the sizes for simulation SP3 (randomized land surface
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Algorithm 1: Separate connected components in an array
using Union-Find

Function ConnectedComponents(A) /* separate the

connected components in binary array A */

n = number of True cells in A

UF = UnionFind(n)
foreach cell x 2 A do

N = neighbors of cell x
foreach xn 2 N do

if xn then
UF.union(x, xn)

pattern). The distribution appears to decay linearly in a log-log
scale. There is a marked difference between the density curve
for SP4 (homogeneous land surface pattern) and SP1-3, but the
three heterogeneous surface patterns exhibit a mostly similar
curve. This serves to illustrate an important difference between
the homogeneous and heterogeneous cases, namely a change in
the dominant physical mechanism. For SP1-3, heterogeneity in
the PBL is maintained as a consequence of forcing over a range of
spatial scales, whereas in SP4 structures are produced only as a
consequence of turbulence internal to the boundary layer. In other
words, the absence of forcing at the largest spatial scales in the
case of SP4 becomes manifest here as a scale break at ⇠0.7 km2.

For the data from the mixing layer (right panel) the first part of
the distribution still appears to decay linearly on the log-log scale,
but there are now much larger fluctuations at the tail. We recall
from Section 4.3 that the Betti numbers of the positive vertical
wind velocity domains, especially �+

0
, have a strong relationship

with the underlying land surface pattern, and this is more clearly
seen closer to the surface. We now inquire whether this is also the
case for the size distribution of connected components. Specifically,
before showing how to represent the three-dimensional structure
of convection, we will address the following questions:
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Figure 5.3: The four largest connected components of the updraft domain
M+ in a two-dimensional cross section of LES-ALM simula-
tion SP1, at 13h, 44m height. The first panel shows the largest
connected component with an area of 7.88 km2. The next pan-
els show the second, third, and fourth largest components (in
black), each having sizes of 1.96 km2, 1.5 km2, and 0.82 km2

respectively. Figure from Licón-Saláiz and Ansorge [2019].

1. Does the empirical probability density of connected compo-
nent size also carry information about the underlying land
surface?

2. If so, how does this depend on time and height?

3. Does it provide a greater discriminating power than the
zeroth Betti number for the updraft domains, �+

0
?

To this end, we note that the empirical distributions shown in Fig-
ure 5.4 suggest using a heavy-tailed parametric distribution, such
as a log-normal or a power-law distribution, to analyze these data.

5.2.1 Power-law distributions

A power-law distribution is characterized by a probability density
of the form

p(x) = Cx
-↵, (5.1)

where ↵ is the scaling parameter and C a normalization constant.
A second parameter is the support of p(x), represented by a value
xmin which gives the lower bound for the power-law scaling. The
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Figure 5.4: Empirical PDF of the variable pj, the fraction of connected
components of size j, in the positive vertical wind velocity
domains for a two-dimensional cross section. Both panels
show data for the 30 timesteps between 13:00 h and 13:30
h. Left: 44m, right: 1100m. Figure from Licón-Saláiz and
Ansorge [2019].

exact value of C depends on whether the random variable X in
question is discrete or continuous:

C =

8
<

:
1/⇣(↵, xmin) x discrete,

(↵- 1)x↵-1

min x continuous.
(5.2)

In both cases xmin represents the lower bound for the power-law
scaling, and in the discrete case ⇣(↵, xmin) is the generalized zeta
function,

⇣(↵, xmin) =
1X

n=0

(n+ xmin)
-↵.

Distributions of this form are important in different areas of
science. Clauset et al. [2009] have proposed a statistical frame-
work based on maximum-likelihood parameter estimation and
the Kolmogorov-Smirnov goodness-of-fit test to study empirical
data and ascertain whether it conforms to a power-law distribu-
tion. For this chapter, we use the Python implementation of these
methods contained in the package powerlaw [Alstott et al., 2014].
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Figure 5.5: Values of �+
0

, four LES-ALM simulations.

5.2.2 Parameter fitting

The power-law distribution, Equation 5.1, has the scaling exponent
↵ as its only parameter when its support is known a priori. Fitting
a power-law distribution to given data then means to find the
value of this parameter which gives the best fit to the data. Doing
this with a classical least-squares approach involves fitting a line
of the form

logy = b+↵ log x,

and has been shown to be prone to different kinds of error [see
Clauset et al., 2009, Appendix A]. Hence we use maximum like-
lihood estimation, which is more computationally intensive but
free of such systematic sources of error.

Given the data for w in a two-dimensional slice at (t, z) we will
then obtain the optimal scaling parameter ↵ that best describes
the density of pj, the fraction of components of a given size. An
important consideration to keep in mind before doing this is the
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amount of data points available. Clauset et al. [2009] give n = 50 as
the minimum size to obtain reasonable fit results. If we look at the
values of �+

0
computed in Section 4.3, shown here in Figure 5.5,

we see that the number of connected components in the cubical
complexes for two-dimensional slices is less than 50 in most of the
domain, exceeding this number only in some parts of the surface
and inversion layers. This means that, by taking data from each
slice individually, we would not have a sample size large enough
to guarantee reasonable results for most of the domain. We will
need to aggregate the data to enlarge the sample size.

Denote the range of simulation timesteps by t = 0, 1, . . . ,Nt.
We begin by defining a time window tw, and splitting the time
range into the time intervals Ti defined as

T1 = {0, 1, . . . , tw - 1}

T2 = {tw, tw + 1, . . . , 2 tw - 1}

...
TM = {(M- 1) tw, . . . ,Nt}.

Given a height value z and a time interval Ti, we will have tw

two-dimensional slices, except perhaps for the last time interval,
TM. For each of these slices we filter the points for which w > ✓,
resulting in a set of anchor points for a cubical complex, which
we call C`, for ` 2 Ti. This cubical complex will be conformed by
n` connected components which we denote by ck,`, such that

C` =
n`-1[

k=0

ck,`.

Let s(ck) denote the size of component ck. We then define S` =
{s(ck) | ck conn. component of C`} as the set of all sizes of con-
nected components that make up C`. Define furthermore the
aggregate set

STi =
[

`2Ti

S`, (5.3)

which accumulates the sizes of all connected components ob-
served during the time interval Ti, at height level z. We then fit a
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power-law distribution to the values pj for this set, which repre-
sent the fraction of the n =

P
`2Ti

n` components with size equal
to j. Doing this increases the sample size used to fit the power-law
distribution, and further allows the time dependence of the power-
law scaling behavior to be observed. In what follows, we use a
time window of tw = 10min, and a threshold value of ✓ = 0.01
for w. The LES-ALM simulations have Nt = 721 timesteps, which
results in 73 different time periods for the specified time win-
dow. This means we will fit 7300 power law distributions for each
simulation dataset, each characterized by its scaling parameter ↵.

The role of xmin in Equation 5.2 must also be made clear. There
are two possibilities: either a fixed value is declared ab initio and
used for fitting all the distributions throughout, or a principled
method is used to determine a value of xmin for each distribu-
tion, essentially turning it into a second free parameter. This is
reasonable because, when dealing with heavy-tailed distributions,
random fluctuations at the smallest scales are not as important
as the behavior at the tail, and may even display non-power-law
behavior. Hence choosing a value of xmin that is strictly larger than
the minimal value of x would allow the fitting process to be driven
by tail behavior while disregarding the noise at the beginning of
the value range. This is the approach we take here. The method
for estimating the value of xmin, described by Clauset et al. [2007],
consists of selecting that value of xmin that minimizes the distance
between the empirical cumulative distribution function (CDF) of
the data and that of the power law model fit from the data. The
distance between the two CDFs is measured by computing the
Kolmogorov-Smirnov (KS) statistic, defined as

D(F,G; xmin) = max
x>xmin

|F(x)-G(x)|, (5.4)

where F is the empirical CDF of the data, and G is the power law
CDF. The estimated value for xmin is then

x̂min = arg min
xmin

D(F,G; xmin).

We now describe the results obtained from applying this method-
ology to the LES-ALM datasets.
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Figure 5.6: Normalized histograms of all power law exponent values.
Figure from Licón-Saláiz and Ansorge [2019].

5.2.3 Scaling parameter

Table 5.1: Mean value of ↵ for each simulation.

Simulation Mean ↵ Stddev. ↵

SP1 1.79 0.37
SP2 1.76 0.35
SP3 1.82 0.41
SP4 1.85 0.46

The values of the scaling parameter ↵ for all 7300 power law
densities fitted for the LES-ALM datasets are shown in Figure 5.6.
The distribution of these values is similar across the four simu-
lations, with the mean values of ↵ and the standard deviations
shown in Table 5.1. The only difference apparent between these
sets of values is that the distribution for SP4 has a more clearly
defined bimodal structure. The values of the scaling parameter
↵ appear reasonable, insofar as power law densities encountered
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Figure 5.7: Values of the power law exponent for all z, Ti. The color scale,
centered at 5/3, highlights the preponderance of this scaling
factor within the mixing layer.

in practice tend to have a scaling parameter within the range
1 6 ↵ 6 2 [Mitzenmacher, 2004]. We further note the fact that
the maximum of the PDF in all four cases occurs in a narrow
band around ↵ ⇡ 5/3, which is the value expected from the self-
similarity of eddies cascading throughout the spectrum of motion
(cf. Equation 2.3) [Kolmogorov, 1941b,a; Obukhov, 1941; Kaimal
and Finnigan, 1994].

The time-height sections of the scaling parameter ↵ are illus-
trated in Figure 5.7, as a function height and time. The distribution
of ↵ in the (t, z)-plane is clearly non-uniform, and displays a struc-
ture reminiscent of that encountered before in the Betti numbers
(see Figure 4.15). The qualitative features seen here are:

1. The existence of a well-defined surface layer, encompassing
the first 15 height levels closest to the land surface.
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2. The evening transition is apparent as a sharp increase in
the mean value of ↵ close to the surface, starting around
Ti = 57. This effect is most pronounced for SP3 and SP4.

3. The inversion layer is characterized by larger ↵ values than
those found either in the mixing layer below it, or in the free
atmosphere above.

The mean values of ↵ for each of the separate ABL regions
is shown in Table 5.2. Here we have used the classification into
distinct regions produced by the semi-supervised classification
algorithm defined in Section 4.4.3. As can be seen, the variation
across the 5 regions is greater than it is across the 4 simulations.
It is therefore not possible, by using the information at hand, to
state any conclusion regarding the effect of different land surface
patterns on the scaling of connected component size.

Table 5.2: Mean value of ↵ for each PBL region.

Region SP1 SP2 SP3 SP4

Surface layer 1.91 1.93 1.89 2.01
Mixing layer 1.68 1.65 1.65 1.66
Inversion layer 1.89 1.81 1.89 1.97
Free atm. 1.66 1.67 1.72 1.77
Residual layer 1.67 1.64 1.76 1.71

5.2.4 Goodness-of-fit

As was noted by Clauset et al. [2009], it is difficult to accurately
discriminate a power-law distribution from empirical data, due to
the possibility of error introduced by the appearance of very large
values at the tail of the distribution, which is one of the defining
characteristics of a power law. Therefore, an exercise in fitting
such distributions to data should be accompanied by a statistical
measure of the goodness-of-fit to the data, as well as a comparison
with alternative distributions.
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The goodness-of-fit of a power law to a given data set can be
obtained by the following procedure: let X = {x1, . . . , xn} be the
data set, and f(x) = f(x; ↵̂, x̂min) the power-law density fitted to
it, with corresponding CDF denoted by F(x).

1. Compute the Kolmogorov-Smirnov (KS) statistic for F(x)
and G(x), the empirical CDF for data set X.

2. Generate n sets of pseudo-random numbers, Si, each of size
m, distributed according to f(x; ↵̂, x̂min).

3. Fit a separate power-law density, f 0(x; ↵̂ 0, x̂ 0
min) to each of

the n data sets, and compute the KS statistic for the power-
law CDF F

0(x) and Gi(x), the empirical CDF for data set
Si.

4. Define the p-value of this test to be the fraction of the n

datasets for which its KS value is larger than the KS value
obtained for the original data set X and its power-law den-
sity.

This p-value represents the proportion of artificial datasets
which have a poorer agreement with their respective power-law
fits than does the original data set. If this proportion is “small
enough”, meaning that nearly all the random datasets display
better agreement with their respective fitted distributions than
does the original data set, we can rule out the power-law hypoth-
esis. Following Clauset et al. [2009] we take “small enough” to
be p < 0.1. According to Clauset et al., the number n of data sets
needed is a function of the desired precision. In particular, gener-
ating at least n = 2500 datasets gives a p-value that is accurate up
to 2 decimal places. This is the criterion we employ here.

Such a test allows us to conclude whether there is enough
evidence to reject the original hypothesis of power-law scaling in
the data. However, it does not say anything about whether the
hypothesis need be true. In order to get a clearer picture, it is
useful to compare the power-law fit with an alternative heavy-
tailed distribution, of which the most common are the exponential
and the lognormal distributions. Even if the goodness-of-fit test
gives no indication that we need reject the power-law hypothesis,
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Figure 5.8: P-values for the Kolmogorov-Smirnov statistic. The green line
at Ti = 57 marks the start of the evening transition.

it could well be the case that the alternative distribution gives a
better fit to the data. One way to carry out this comparison is to
evaluate the likelihood L0 = L0(X) of the data under the power-
law hypothesis, as well as the likelihood under the alternative
hypothesis, L1 = L1(X), and compute the log-ratio:

R = log
✓
L0

L1

◆
. (5.5)

If R > 0, the power-law hypothesis is then the more likely one. To
account for possible random fluctuations affecting the value of R,
its standard deviation can be estimated from the available data
to yield a p-value for the likelihood ratio test [Vuong, 1989]. In
this case, “small” p-values would indicate that the observed value
is unlikely to be the result of random fluctuations alone. If the
p-value is larger than a certain threshold, we consider the data to
be insufficient for this test.
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We first take a look at the p-values for the KS goodness-of-fit
test as a function of (z, Ti), as shown in Figure 5.8. These values
indicate that the original power-law hypothesis does not hold for
most of the domain, exception made of the surface layer. Outside
this region the p-values are well below 0.1 for all but very few
data points. Power-law scaling behavior, if it exists, is therefore
concentrated in the surface layer. The four LES-ALM simulations
also show a different behavior in this regard. The p-value for the
test on data within the surface layer surpasses 0.1 more often for
SP3, the randomized land surface pattern, than for the other three
simulations. Conversely, it is for the SP4 surface layer that this
happens least often. Overall this is in agreement with the data
shown in Figure 5.4, where the scaling for the data from surface
layer in case SP3 is the most regular of all four simulations. The KS
p-values show this to be the case in general, if we restrict ourselves
to the surface layer. This scaling behavior becomes less frequent, or
vanishes altogether in the case of SP4, after the evening transition
takes place (Ti = 57).

Evaluating the log-likelihood ratio R (Equation 5.5) for a power
law and exponential distribution shows that the exponential dis-
tribution is not favored by the data, in the vast majority of the
analysis domain (cf. Figure 5.9). Indeed, the p-values for the cor-
responding log-likelihood test (not shown here) are smaller than
0.01 for 79% of the (z, Ti) pairs from SP1, 82% for SP2, 78% for
SP3, and 76% for SP4. Moreover, the points where this happens
agree with those where the log-likelihood ratio is positive and
greatest in magnitude (i. e., the solid red area in Figure 5.9, top).

The log-likelihood test for a power law against a log-normal
distribution paints a more nuanced picture (Figure 5.9, bottom).
Here we find only a small subset of (z, Ti) points for which the
power-law hypothesis has greater likelihood, most of which are
concentrated in the surface layer. The magnitude of the ratio itself
is also lower than it was for the power law vs. exponential test.
Thus, it becomes necessary to separate those instances where the
test is actually conclusive based on the resulting p-value, which
we show in Figure 5.10. Here we see that, at a significance level
of 0.05, the test is actually not able to distinguish between either
of the two hypothesis for the vast majority of the domain. More
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Figure 5.9: Distribution of log-likelihood ratios for the comparison of a
power-law distribution with an exponential (top) and lognor-
mal (bottom) distributions.
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Figure 5.10: Value of the log-likelihood ratio for the power law vs. lognor-
mal test, where only the datasets for which the test p-value
is smaller than 0.05 are shown (i. e., gray represents a non-
significant result).

important for our current analysis is that most of the surface
layer points, for which the power-law hypothesis has the greater
likelihood, fall within the statistically significant tests (at the 0.05
level). We take this as further evidence supporting the original
hypothesis of power-law scaling in the distribution of sizes for
connected updrafts. We summarize the results of this subsection
so far:

1. The original observation made at the beginning, that the
logarithm of frequency at which connected updraft regions
appear in two-dimensional slices of the LES-ALM simu-
lations decreases linearly with the logarithm of their size,
finds limited evidential support across the totality of the
simulation data.

2. There is a strong indication of power-law scaling for the
size of connected updraft components within the surface
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layer, and the degree to which a power-law distribution is
a good fit for the data appears to be in direct relation to
the heterogeneity of the underlying land surface. In all four
simulations, the scaling parameter ↵ for the surface layer
data is, on average, in the range 1.9 6 ↵ 6 2.0.

3. Comparison of the power-law distribution with the alter-
native of an exponential or a log-normal distribution via a
log-likelihood ratio test shows that, for the surface layer, the
power law is in general the most adequate to describe the
distribution of connected component size.

4. The evening transition brings an end to the power-law scal-
ing behavior in the surface layer. After this point in time,
the power-law distribution appears only in one vertical level
adjacent to the land surface for SP3.

It is not yet apparent, beyond the observation made in point 2
above, to which extent the information provided by the power-
law scaling parameters can be used to separate the different land
surface patterns. We address this question in the next subsection.

5.2.5 Comparison with the updraft Betti number, �+
0

In order to determine whether or not knowing the values of the
power-law scaling parameter ↵ is sufficient to distinguish the
four land-surface patterns, we will follow an approach analogous
to that used in Section 4.3.2. That is, we will build a feature
matrix with the values of ↵ obtained for each of the vertical levels
in the computational domain, with each level being a different
feature vector. Each observation is the set of all features at time
interval Ti. In light of the discussion at the end of Section 5.2.4,
we will restrict the data to the surface layer, the 15 vertical levels
closest to the land surface, and to the CBL regime, time intervals
Ti = 1, . . . , 60. This results in the two feature matrices X↵ for the
power-law exponent data and X� for the zeroth Betti number,
each of dimensions 240⇥ 15.

We will use these data to train a classification model, with the
response variable y being the label SP1, . . . , SP4. As a reference,
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Figure 5.11: Vertical profiles of mean potential temperature T (left),
power-law scaling parameter ↵ (center), and zeroth Betti
number �+

0
(right) for the four LES-ALM simulations. The

values of ↵ correspond to time interval Ti = 40. For �+
0

and
T, the 10 corresponding one-minute timesteps are averaged.
Figure from Licón-Saláiz and Ansorge [2019].

we will also compare the performance of this classifier to one
trained on the values of �+

0
, which have already been shown to be

a powerful descriptor for this classification task, and to one trained
on mean potential temperature, averaged on horizontal slabs. In
order to have the same number of observations in all models, we
will use for �+

0
(z, Ti) the average of all �+

0
(z, t) values for t 2 Ti,

and analogously for the temperature data. Figure 5.11 shows a
comparison of these three sets of features. The middle panel shows
the values of ↵, and we note that, as was observed in the first
example of the size distributions shown in this section (Figure 5.4),
the scaling (i. e., the slope of the line in log-log scale) is different
for SP4 than for the three heterogeneous surface patterns, but the
difference in scaling between the three heterogeneous patterns is
not evident. This appears to be the case throughout the surface
layer. For the mean potential temperature, the similarity between
the three heterogeneous patterns is even greater. However, as
shown in the previous chapter, the values of �+

0
are in a direct

relationship to the heterogeneity scale of each land surface pattern,
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Table 5.3: Performance of k-NN classifiers, k = 3, trained with feature
matrices using the power law exponent ↵ (left) and the zeroth
Betti number �+

0
(center). The temperature data (right) was

used to train a k-NN classifier with k = 7.
↵ �

+
0 ✓

Precision Recall F1 Precision Recall F1 Precision Recall F1

SP1 0.42 0.45 0.43 0.72 0.74 0.72 0.18 0.22 0.19

SP2 0.53 0.52 0.52 0.63 0.68 0.65 0.18 0.19 0.18

SP3 0.60 0.61 0.60 0.97 0.96 0.96 0.16 0.14 0.14

SP4 0.83 0.77 0.80 0.89 0.81 0.85 0.88 0.80 0.83

avg. 0.60 0.58 0.59 0.81 0.79 0.80 0.35 0.33 0.34

especially close to the surface, which is reflected in a clearer
separation of the four simulations.

The classification model used for both datasets is a k-NN clas-
sifier. The weighted average F1 score for each is estimated by
bootstrapping, for k neighbors in each model, k = 2, . . . , 15. In
both cases the best performance was achieved by the classifier
with k = 3, as shown in Table 5.3 in terms of precision, recall, and
F1 score. The difference between the two models is significant,
with an average F1 score for X↵ of 0.59, compared to 0.80 for X�.
This shows that the scaling law found to describe the size of con-
nected updraft components is sensitive to the differences in land
surface patterns. It is not, however, more sensitive to these dif-
ferences than the number of connected components, �+

0
. In other

words, when trying to determine which surface pattern produced
a given set of surface-layer values, knowing how many connected
components are present in the two dimensional slices is more
informative than knowing how their sizes scale.

The classification metrics shown in the table also show that both
sets of features have greatest discriminatory power when it comes
to classifying the SP3 and SP4 data, with the power law model
having greatest F1 score for SP4, and the Betti number model
for SP3. Both facts are consistent with the differences in power-
law scaling across the four simulations, to wit: that the power law
densities fit to size data can distinguish between the homogeneous
land surface pattern SP4 and the three heterogeneous patterns,
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Figure 5.12: First two principal components of the surface layer values
of the power law scaling parameter ↵ (left) and the zeroth
Betti number �+

0
(right). Each point represents a row of

the X↵, X� matrices, projected onto the two dimensional
subspace generated by the first two principal components.
The time period Ti of each point is indicated by its level of
transparency, with darker points corresponding to later time
periods.

but do not distinguish between the latter three. They are also
consistent with the observation made in the previous chapter that,
throughout most of the day, the value of �+

0
for the surface layer of

simulation SP3 is on average higher than it is for any of the other
three simulations (see Figure 4.11). An interpretation of these facts
would be that land surface heterogeneity introduces an element
of scale invariance to the size distribution of connected updraft
regions, with this being clearest for the maximally heterogeneous
SP3. Conversely, a purely uniform land surface, SP4, breaks away
from this behavior, thus making its classification easier when only
the scaling parameter ↵ is known.

Another way to illustrate this is shown in Figure 5.12. Here
the 240 observations of the 15 features contained in X↵ and X�
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are projected onto the space generated by the first two principal
components of each dataset. In the case of X↵ (left panel) there
is no clear separation between the four simulations. For the X�,
on the other hand, we see a clear separation between the SP3
points and those of the remaining three simulations. The temporal
evolution of the projected Betti numbers, shown by the level of
transparency of each point in the figure, also appears regular
throughout the four simulations. This is not the case for the
projected power-law exponent data.

5.3 merge tree representation

The core idea of a dominant connected component accumulating
most of the updraft volume carries over when we pass from the
two-dimensional slices which have been analyzed so far to the
scalar field spanning the three spatial dimensions. In this section
we will introduce another topological invariant, the merge tree,
which will give us a representation of said dominant structure in
terms of its connectivity along the vertical direction.

This invariant serves a double purpose: first, it gives us a simpli-
fied representation of the geometric structure of three-dimensional
convective flow, which can be linked directly to the land surface.
Second, it allows us to record and quantify the spatial coalescence
of convective plumes. This is an important feature of free convec-
tion, which takes place in what has been called the plume-merging
layer (PML) [Mellado et al., 2016].

5.3.1 Height function

Recall from Section 3.2 the definition of the merge tree of a func-
tion: if f : X ! R is a smooth function defined on a manifold
X, and we define the equivalence relation ⇠ on X by x ⇠ y if
f(x) = f(y) and both x and y belong to the same connected com-
ponent of the sublevel set f-1(-1, f(x)]. The merge tree of f is
the quotient space X/⇠.

It is not immediately clear from the definition how this con-
cept can be applied to numerical data, such as that produced
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a

b

c

df(x) 2 R

Figure 5.13: Height function for an upright torus (left), and its topologi-
cally distinct level sets (right). Figure inspired by Edelsbrun-
ner and Harer [2010].

by an LES simulation. For this we need to introduce the idea of
a height function. Consider for example the manifold M shown
in Figure 5.13, an upright torus, depicted as resting on a plane.
Define the function f : M ! R by f(x) = z, where z is the height
of point x 2 M above the plane on which the torus rests. This
is an example of a height function. The right part of the figure
shows the level sets of f,

f
-1(r) = {x 2 M | f(x) = r}.

A key fact about this function is that, if we consider all its
possible values, then the topology of its level sets only changes at
a finite set of points, labeled a,b, c,d on the torus. The possible
cases are:

1. For r > f(d) or r < f(a), the level set is empty.

2. If r = f(a), the level set is a single point: f-1(a) = {a}, and
analogously for r = f(d).
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f(x) 2 R

a

b

Figure 5.14: Capped torus resting on a plane (left), its topologically dis-
tinct level sets (middle), and the merge tree for its height
function (right).

3. For f(a) < r < f(b), and f(b) < r < f(c), the level set
becomes a circle.

4. Finally, if f(b) 6 r 6 f(c), the level set is formed by two
circles.

If we look at the evolution of the sublevel sets of f instead,

f
-1(-1, r] = {x 2 M | f(x) 6 r},

it is also true that their topology changes only when passing
through the four points a, . . . ,d, which are called critical points.
Since there is only one connected component in all sublevel sets
throughout, however, the resulting merge tree is not very interest-
ing to look at. Consider therefore the capped torus standing on
a plane shown in Figure 5.14. In this case the sublevel sets have
two connected components until we reach point a, where both
components merge together, giving one connected component for
all r > f(a). The right part of the figure shows the merge tree
for the height function of this capped torus. It has three kinds of
nodes, according to the changes that occur in them: birth nodes,
shown in blue, one merge node, in orange, and one final node, in
green. Each of the edges of the graph is an element in the quotient
space X/⇠ defined above, that is, a connected component in the
corresponding sublevel set.
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5.3.2 Methodology

Having seen how the merge tree for a height function can repre-
sent the evolution of sublevel sets of a given manifold, we now
show how we can use it for the task of representing the geometric
structure of convection. We start as before with the computational
domain ⌦, and consider now the three-dimensional subsets with
a constant time coordinate, ⌦t = {1, 2, . . . ,Nx}⇥ {1, 2, . . . ,Ny}⇥
{1, 2, . . . ,Nz}⇥ {t}. We will proceed as before and take the sub-
set of points P ⇢ ⌦t such that w, the vertical wind velocity, is
greater than a threshold value at those points: P = {(x,y, z) 2
⌦t | w(x,y, z) > ✓}. These will be the anchor points for a three-
dimensional cubical complex C ⇢ R3 which represents the volume
of space covered by updrafts at time t. If we think of this as rep-
resenting a geometric object resting on the plane z = 0, we can
define a height function on this set by

f(x,y, z) = z.

That is, for any point (x,y, z) 2 C, f returns its third component,
which is its height above the ground. The level sets of this function
are then the binary two-dimensional cross sections of the vertical
velocity field which were studied in depth in the previous chapter.
The merge tree of this function will be a graph which encodes
the evolution of the sublevel sets of this geometric object C along
the vertical direction. In particular, it will record the merge events
which bring together two or more components at a given height.
The general methodology then has the following steps:

⌦ P C G

point grid set of points cubical set graph

The main distinction between this case and the one treated in
Chapter 4 is the fact that the topological invariant used here is not
the rank of a group or a vector space, but rather a graph. Although
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developing a full statistical methodology for analyzing such topo-
logical invariants lies beyond the scope of this dissertation, we
will still show how they can be used to yield information about
the physical problem at hand, namely the interaction between the
land surface and atmospheric convection.

The construction of the merge tree is carried out by Algorithm 2,
which operates on a binary three-dimensional array such as the
set of points P described above. This algorithm works as a nested
UF data structure on the anchor points of C: for each of the
level sets of the height function f, denoted here by Ct,z, a “local”
instance of UF, UFz, is created for that level, to store the connected
components of that level set. Then, for z > 2, the connectivity of
the components of Ct,z with those of Ct,z-1 is stored. For each
component ciz 2 CT ,z-1 one of the following will be true:

1. It still exists as an independent component in level z.

2. It no longer appears in level z as an independent component
because it has been merged into another component at level
z. This is the situation represented by the orange node in
Figure 5.14 (right).

3. It no longer appears at all in level z, since it has stopped
growing beyond level z- 1. This is represented by the green
node in Figure 5.14.

These events will be stored as nodes in the resulting graph G.
Event 2 will be a merge node, while event 3 will be a terminal node.
We will also store birth nodes to represent the appearance of a
new connected component when passing from level z- 1 to z. A
key point in our implementation is the selection of the new parent
node after a merge event takes place. The usual criterion used in
the UF algorithm is the so-called elder rule, where the oldest node
will always be chosen as parent from all potential candidates. Since
the ordering of the nodes depends on the direction the array is
traversed, this could result in different tree structures for different
directions. We hence choose a more physically meaningful rule,
and declare as parent the node associated to the component with
largest value of the variable being modeled (w in this case, so we
choose the component with largest total flux).
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Figure 5.15: Example of applying the merge tree algorithm on a vertical
two-dimensional slice. (a) shows the original values of ver-
tical wind velocity w; (b) the cubical complex obtained by
thresholding the data, together with its merge tree; G shows
the graph representation of the tree. Figure from Licón-Saláiz
and Ansorge [2019].

An example of this process is shown in Figure 5.15, where the
algorithm has been run on a two-dimensional (vertical) cross sec-
tion for clarity. The scalar field containing the values of w shown
in panel (a) is first converted to a cubical set, as shown in (b),
where the black region represents the area with w > 0. The verti-
cal green lines show the lifespan of connected components of the
sublevel sets f

-1(-1, z] as z goes through the range 1, 2, . . . ,Nz.
The horizontal lines link these components to merge nodes, shown
in orange, at the vertical levels where such mergers occur. The
complete graph representation of the merge tree for this cubical
set is shown as G, with birth, merge, and terminal nodes.

5.3.3 Results

The first step is to inspect the number of merge nodes in the
graphs produced for each timestep in the four LES-ALM simu-
lations. These values are shown as a time series in Figure 5.16.
It can be seen that the four time series exhibit a similar quali-
tative pattern: a brief initial transient, followed by a period of
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Algorithm 2: Build a merge tree from a binary three-
dimensional array
Function BuildMergeTree(A) /* function to build a merge

tree from a binary array */

Create a Union-Find data structure, UF
foreach level z do

Create a hash map B of below joins, (b : [p])
for ( x 2 z ) {

if x then
UF.Find(x)
if x connected behind then UF.Union(node

behind)
if x connected side then UF.Union(node side)
if x connected below then

Find the parent of x: xp = UF.Find(x)
Find the parent of cell below: bp =
UF.Find(below)

Add entry bp to B[xp]

Level is finished
Perform all the Union operations for elements in B

If lenB[xp] > 1, select the parent with maximum
value

Any new component at level z not joined to a parent
below: add a birth node

Any component from level z- 1 not present at z:
add either a merge node or terminal node
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Figure 5.16: Number of merge nodes at each simulation timestep. The
four LES-ALM simulations are shown. Figure from Licón-
Saláiz and Ansorge [2019].

growth until noon, after which the value stabilizes. There is a
second growth phase in the late afternoon, which intensifies at
the evening transition, with a marked decline afterwards. Also
noteworthy is the fact that the average values of the four series
are different, and stand in an inverse relationship with land sur-
face pattern heterogeneity. That is, SP3 has on average the largest
number of merge nodes, with SP4 having the smallest.

A closer view of the surface layer, where most of the merge
nodes are concentrated, is given by Figure 5.17. The clearest differ-
ence is again that between SP3 and SP4, with the former having
most of its surface layer merge nodes distributed throughout the
first 5 vertical levels. In the case of SP4, the merge nodes are
concentrated in the first level adjacent to the land surface. Recall
the size distribution shown in Figure 5.4, and the discussion sur-
rounding the KS goodness-of-fit test for these size distributions.
It was shown that the surface layer size distributions in SP4 have
the worst power-law fit out of all four simulations. This fact is
expressed in the empirical PDF (Figure 5.4, left) for SP4 having a
scale break followed by a gap of one order of magnitude, reflecting
the presence of the dominant component. What the distribution
of merge nodes suggests is that, in SP4, this dominant compo-
nent appears already at the first level, whereas for simulations
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Figure 5.17: Number of merge nodes for each vertical level within the
surface layer, for the four LES-ALM simulations. Figure from
Licón-Saláiz and Ansorge [2019].

with increasing levels of land surface heterogeneity the process
of component merging occupies a larger portion of the vertical
direction.

This merging process results in the formation of a large con-
nected structure which accumulates most of the volume in the
updraft domain, close to 99%. This also happens very rapidly,
within the first 30 simulation minutes in all four cases, as shown
in Figure 5.18, and once the structure forms it persists for the
remainder of the simulation. As a further point of interest, we
inspect the merge tree root nodes at surface level, for these four
simulations. Recall that each root node in a merge tree signals the
appearance of a new equivalence class in the quotient space X/⇠,
i. e.the appearance of a new connected component in a sublevel
set f-1(-1, z] for z 2 R. A root node at surface level, therefore,
simply represents a connected component in the first sublevel set,
f
-1(-1, 1] = f

-1(1).
An advantage of this explicit geometrical representation is that

it enables us to directly connect flow structures, in this case con-
vective plumes, to other features in physical space, as there is no
need to compute a spectral transform of the data. Thus, we can
identify those points in the land surface to which the convective
plume in connected. This is significant, as each cell in the land
surface is associated with an energy flux into the atmosphere
aloft. We can then assume that a land cell connected to the plume
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is directly contributing energy to it. We can define the relative
contribution of a given land surface type i as

pi =
#{cells of type i connected to plume}

#{cells of type i}
.

Since the total number of cells per land surface type are the
same in the three heterogeneous LES simulations, we can directly
compare the proportions pi for these three simulations, and take
them as a measurement of the effect of land surface heterogeneity
on the effectiveness of a given land type in supporting convection.
Figure 5.19 shows the 5-minute moving averages of the pi for all
land surface types throughout each of the three heterogeneous
simulations. For reference, the 5-minute average of pi for SP4 is
also shown, which in this case is simply the percentage of the
total land surface (grassland) that is connected to the dominant
plume. There are appreciable differences in the values of pi for
each simulation, with the most notable being the average increase
of purban as land surface heterogeneity increases. In SP2, urban
land cells actually have the smallest relative contribution to the
convective plume. In SP1 they are already the land type with the
second-highest contribution, and here a diurnal evolution of purban
also becomes clear: it gradually increases towards its maximum
around noon, after which a gradual decrease ensues. In SP3, both
urban and forest cells have the greatest relative contribution to
the plume.

A second significant difference is the presence, in SP3, of a
sharp upturn in pforest in the early evening. To a much lesser
extent, a similar increase in pforest is also present in SP1, and it
is entirely absent from SP2. This contrasts sharply with the case
of SP4, for which the land surface contribution to the dominant
plume actually vanishes before the simulation terminates, which
represents a much more rapid decoupling of the nascent stable
surface layer from the layer of residual turbulence (cf. Figure 5.16).
This goes to show how differences in land surface geometry can
modulate the effectiveness of diverse land types in the initiation
and sustenance of atmospheric convection.
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Figure 5.18: Formation time of dominant connected component.

(a) SP1 (b) SP2

(c) SP3

Figure 5.19: Proportion of each
land surface type
connected to the
dominant structure
at each timestep.
SP4 (uniform grass-
land) is shown on
each panel for com-
parison.





6
S PAT I A L D I S T R I B U T I O N O F S H A L L O W
C U M U L U S C L O U D S

Outline
This chapter introduces the use of persistent homology (PH) to
analyze spatial patterns. Applications of PH to various concrete
problems are reviewed in Section 6.1. We give the definition of
the stable rank invariant, which generalizes PH, in Section 6.2.
Section 6.3 illustrates the use of this invariant as a spatial statistic
for regular point patterns. Section 6.4 discusses how this can
be used to analyze the spatial distribution of shallow cumuli,
and concrete results concerning cloud cover and the cloud size
distribution are given in Section 6.5. Section 6.6 introduces a PH-
based index for spatial organization, and Section 6.7 introduces the
persistence contour formalism, and describes its use in obtaining
a morphological classification of cloud fields. Parts of this chapter
have appeared in Licón-Saláiz et al. [2018] and Riihimäki and
Licón-Saláiz [2019].

After having dedicated Chapters 4 and 5 to the analysis of ge-
ometrical properties of atmospheric flow, we will now turn our
attention to a direct manifestation of this flow, namely the forma-
tion of boundary layer clouds. More specifically, we will focus on
describing the spatial distribution of shallow cumulus clouds. To
this end we will introduce a new topological invariant, persistent
homology, which has its roots in manifold reconstruction but has
recently seen use in the study of spatial structure and distribution
of diverse kinds of objects. We will use these techniques to quan-
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tify and analyze properties of the spatial distribution of clouds,
which is a subject of ongoing research in atmospheric science
due to the fact that shallow cumuli are a significant source of
uncertainty in global climate models [Bony and Dufresne, 2005].
In order to be able to parameterize these clouds correctly it is espe-
cially important to understand aspects of their spatial distribution
such as how they cluster together, and what kind of characteristic
spatial patterns they tend to form.

6.1 related work

We distinguish two categories of related work: the use of PH to
study the spatial properties or configurations of diverse objects,
and the development of functional summaries of PH to be used
as statistical descriptors.

The notion of PH itself is tied from its origins to the analysis
of spatial data. The seminal paper by Edelsbrunner et al. [2002],
where the persistence algorithm is first described, also presents its
application to the extraction of topological features from molec-
ular dynamics simulations of several structures. Central among
these examples is that of the protein gramicidin-A, which has a
high bactericidal potential due to its effect on bacterial cell mem-
branes, increasing their permeability [Kelkar and Chattopadhyay,
2007]. This is possible because the protein has a physical hole
or tunnel going through it, or in topological terms, a generator
of 1-dimensional homology. The input to the algorithm is the
time-averaged molecular dynamics simulation of a gramicidin-
A molecule, which gives the locations of its atoms as points in
space. A metric filtration is computed for this point set, and its
corresponding persistent Betti numbers are computed. These are
shown to correctly represent the existence of this tunnel in the
molecule. Other features are discarded as extraneous topological
noise introduced by the filtration. This idea would determine the
program for the nascent field of topological data analysis (TDA)
in its first years: given a set of data points embedded in some
metric space, construct a filtered complex on them, and compute
its persistent Betti numbers. These numbers allow us to separate
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“real” features in the data from noise, if we assume that the former
will have large persistence values, whereas the latter will not.

Another now-famous example is provided by Carlsson [2009],
who focused on the analysis of digital images. Specifically, if we
think of an image with n pixels as a vector in Rn, we can ask
whether a given set of images can be modeled as a manifold
embedded in Rn. The dataset in this case consists of a set of
black-and-white photographs of the Dutch landscape taken in
and around Groningen [van Hateren and van der Schaaf, 1998].
From each image, patches of 3⇥ 3 pixels are extracted and rep-
resented as vectors in R9, with each entry of the vector being
the greyscale value in that pixel. 5000 such patches are chosen at
random from each image, and the 20% with the largest spread
in greyscale values out of the entire database are selected. These
vectors are then mean-centered and normalized to unit length, re-
sulting in 450 000 points lying on a 7-dimensional ellipsoid within
R8. Analysis of the persistent Betti numbers obtained from this
point set show it to be a subspace of the Klein bottle. This is in-
terpreted as a consequence of the predominant spatial structures
in the high-contrast regions of natural images: objects tend to be
mostly aligned vertically or horizontally, with the less frequent
diagonal positions appearing along a continuous spectrum. This
can indeed be modeled as a non-orientable 2-manifold (a Klein
bottle). This example would become a talking point within the
TDA community, as it is not immediately clear what can be done
with the knowledge that a given dataset is somehow part of a
Klein bottle embedded in a high-dimensional space. This gen-
eral difficulty in translating a topological fact into more concrete
properties of the data under analysis would be the cause for the
initially slow adoption of TDA methods in more applied areas of
science.

A significant drawback of PH in a data analysis context is
that its output, be it in barcode or persistence diagram form (see
Section 3.6), is a multiset of intervals. It is possible to perform
statistical analysis on these objects, but due to their nature as
arbitrary collections of intervals or pairs of real numbers, common
operations on them can be difficult, as for example the mean of
a set of persistence diagrams might not be unique [Turner et al.,
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2014]. A possible workaround is to either use a transformed
version of the persistence diagram or barcode, or to look at their
aggregate properties. For example, MacPherson and Schweinhart
[2012] define the following transformation

x([b,d)) =
d+ b

2

y([b,d)) = arcsec
✓
d

b

◆
,

where [b,d) is a persistence interval (Definition 3.6.4). They use
the density f(x,y) of points on the x,y-plane, what they call
the PH-density function, to define the PH-dimension and the PH-
self-similarity of an object. These measures are found to agree
with the Hausdorff dimension of branched polymers and self-
avoiding random walks, while they differ for Brownian trees.
The significance of this lies in the fact that ordinary measures of
shape for stochastic fractal structures are rare (these structures are
not even differentiable), but PH density is readily computable in
these cases. Moreover, this also gives an example where the main
goal is no longer the discovery of isolated topological features.
Indeed, this pursuit would be futile as these structures are all
topologically trivial. The entirety of the PH information is used as
a descriptive feature instead, and it is shown to detect properties
of these objects not attainable by standard methods.

Another advance in this direction is the persistence landscape
[Bubenik, 2015], which is defined as a rescaled version of the rank
function

�(b,d) =

8
<

:
�
b,d

b 6 d,

0 otherwise.
(6.1)

By casting these functions as random variables with values in a
Banach space, it is possible to perform statistical inference on PH
data. A similar approach is pursued by Robins and Turner [2016],
where they adapt a null hypothesis testing scheme from spatial
statistics to be applied on the rank functions (Equation 6.1). They
show how this can then be used in extracting physical information
from colloid point patterns, and in testing the hypothesis of com-
plete spatial randomness in spatial point processes. Again, this
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gives an example of the totality of the PH information being used
as a descriptive feature, now in the form of the rank function.

A different kind of summary are persistence images [Adams et al.,
2017]. Given a multiset of persistence intervals

B = {[bi,di) | i = 1, . . . ,n} ,

first transform the birth-death pairs to birth-persistence pairs by
the linear map T(b,d) = (b,d- b). These are used to define a
scalar function ⇢B : R2 ! R,

⇢B(z) =
X

u2T(B)

f(u)�u(z),

with f(u) being a weight function, and �u ⇠ N2(u,�2) a bivariate
normal density centered on u. The domain of ⇢B is discretized,
and from this an array containing the integral of ⇢B on each
of the discrete domain segments is obtained. This is used as
a vector representation of the PH decomposition. On a similar
vein, Reininghaus et al. [2015] use a multiscale kernel function,
motivated by the fundamental solution to the diffusion equation,
to discretize persistence diagrams. Kusano et al. [2018] propose the
persistence-weighted Gaussian kernel (PWGK) function, which
relies on expressing the persistence diagram decomposition of a
space as a weighted measure. These approaches provide a vector
representation of PH, as opposed to the functional representations
described above, and are as such designed to interact with kernel-
based machine learning methods.

On the applications side, Dłotko and Wanner [2016] use persis-
tence landscapes to recover physical information from a system
undergoing Cahn-Hilliard–type phase separation. They show that
this topological information alone is sufficient to determine total
mass in the system, as well as the precise moment during the
process that a specific snapshot is obtained.

Bendich et al. [2016] use diverse summaries of the PH infor-
mation to quantify the degree of branching and looping in brain
vessels, for a population of brain artery trees, and find strong
correlations between these physical shape properties and external
variables such as age and sex. These correlations are also shown
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to be stronger than those obtained by earlier analyses of the data,
using classical statistical methods. A crucial finding of their anal-
ysis is the fact that high-persistence features alone do not yield
the highest correlations. Moreover, only features with mid-range
persistence values are necessary to obtain a significant correlation.
This fact, seemingly at variance with the earlier interpretations of
PH, has been gradually accepted by the TDA community, where
the search for isolated, maximally-persistence features in the data
is no longer considered the ultimate goal.

Lee et al. [2017] use PH to quantify geometric similarity between
different porous materials. A point sample is obtained from the
pore surfaces of each material, and the PH barcodes for these
samples are computed. The structures that generated the sam-
ples can then be identified by computing the distances between
their barcodes and the precomputed barcodes of some reference
materials, which are taken as representatives of different pore
structures.

Pearson et al. [2015] show PH provides a qualitative method
to measure the degree of hexagonal order (i. e., the degree of
deviation from a purely hexagonal grid) exhibited by nanodot
arrays produced by ion bombardment. This method is contrasted
with the qualitative use of Fourier methods, for which the 2-
dimensional Fourier transform of the available data is computed
and visually inspected to verify the presence of hexagonal pat-
terns.

Robins and Turner [2016] consider the homology rank functions
of a persistent homology group H

i,j
k

, defined by

�k(i, j) = rank H
i,j
k

, (6.2)

as vectors in a Hilbert space and use functional principal compo-
nent analysis to summarize their values over different realizations
of a physical experiment. The setting here is that of a crystalline
structure which is held in place by a magnetic field, forming a
hexagonal pattern. As the magnetic force weakens, the crystal
melts and undergoes two phase transitions, first into a hexatic
phase, where its 6-fold rotational symmetry is retained, but the
long-range translational order is disturbed. Second, it enters the
isotropic liquid phase. The idea is that the persistent homology
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rank functions can serve as a measure of spatial order which can
detect both phase transitions, something no other known method
can do effectively. These functions are sensitive both to local spa-
tial patterns, and also to global topological features which emerge
from higher-order spatial correlations. The different point patterns
taken from the experiments can be correctly classified into their
different phases by using the homology rank functions. Another
application they present is the classification of spatial point pat-
terns, as well as a parametric null-hypothesis test for complete
spatial randomness using the functions �0(i, j) and �1(i, j).

The works of Pearson et al. [2015] and Robins and Turner [2016]
motivated the use of persistent homology to study the spatial dis-
tribution of cloud fields in this dissertation. The main difference in
the approach presented here is the use of the stable rank invariant,
to be defined in the next section, in place of the homology rank
function. We will show how this invariant can be used to quantify
specific properties of spatial point patterns, and link these to phys-
ical characteristics of the underlying cloud fields from which the
point patterns are generated. We also present a non-parametric
counterpart to the test for complete spatial randomness defined by
Robins and Turner, by defining an index for spatial randomness
based on the stable rank. Finally, we show how a generalization
of the stable rank via persistence contours allows the classification
of point patterns based on their morphology at specific spatial
scales.

6.2 stable rank invariant

Recent work in applied topology has focused on the problem of
multiparameter persistence, which is the generalization of persis-
tent homology when the filtered complex depends on two or more
parameters. This can be the case when not only distance is impor-
tant, but also local measures of density or curvature, for example.
The central issue in multiparameter persistence is that there is no
analogue to the decomposition theorem, Theorem 3.6.3 [Carlsson
and Zomorodian, 2009]. This means that there are no topological
invariants which can be computed efficiently. A current line of
research is therefore the introduction of new invariants which
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do not depend on the existence of such algebraic decomposition
results. One such invariant is the stable rank invariant, which we
will define in this section. A complete mathematical treatment of
the subject lies beyond the scope of this dissertation, so we will
simply state the basic definitions and quote the necessary results
without proof. For further information, the reader is referred to
Scolamiero et al. [2017].

First, a note on terminology. In the theory of vector spaces, the
rank of a space V is the number of elements in a basis of V . Finite-
dimensional vector spaces are completely characterized by this
invariant. When computing persistent homology, if we assume
the underlying coefficients lie in a field F ( as is the case with the
Z2 coefficients used here), then the persistent homology groups
H

i,j
k

are actually vector spaces, and the maps induced by inclusion

· · · ! Hk(Ki-1) ! Hk(Ki) ! Hk(Ki+1) ! . . .

are linear maps. Formally speaking, this is an R-parameterized
sequence of vector spaces. It is also possible to define the rank of
this sequence: it is simply the total number of distinct homology
generators that appear at each of the Hk(Ki). This invariant is not,
however, stable, in the sense that a small perturbation of the input
data can lead to large differences in the ranks of the resulting
homology sequences, as arbitrarily many generators can appear.

Stabilization of this invariant depends on being able to choose
a pseudometric µ between R-parameterized sequences of vector
spaces.

Definition 6.2.1. Let V• be an R-parameterized sequence of vector
spaces. Its stable rank is the function S(V•) : R �! R defined by

S(V•)(r) = min{rank(U•) | µ(U•,V•) 6 r}, (6.3)

where µ is a pseudometric.

This is a decreasing function of r, since as r increases the mini-
mization happens over larger balls. Moreover, since we are com-
puting persistent homology for finite datasets, it follows that
topological changes can occur only at a finite number of steps {ri}

in the filtration. This implies that the stable rank changes only at a
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Figure 6.1: Top: Points drawn with noise from the wedge sum of two
circles, and three steps in the Vietoris-Rips filtration. Bottom:
The resulting persistence barcode and stable rank functions
for H0 (left) and H1 (right).

finite number of points, hence making S(V•) a piecewise constant
function.

Furthermore, Scolamiero et al. [2017] showed the following facts
about the stable rank. First, it is stable with respect to variations
in the input data. Second, given the pseudometric µ, the map
V• 7! S(V•) is continuous. Third, the choice of pseudometric is
equivalent to choosing a contour function, which is a function
C : R ⇥ R �! R satisfying

1. v 6 w and " 6 ⌧) C(v, ") 6 C(w, ⌧)

2. C(C(v, "), ⌧) 6 C(v, "+ ⌧)

for all v, w, ", ⌧ 2 R. In the case of one-parameter persistence,
this simplifies the computation of the stable rank to

S(V•)(r) = |{[bi,di) | C(bi, ") < di}|. (6.4)

For the remainder of this chapter, we will use almost exclusively
the so-called standard contour, defined by

C(v, ") = v+ ". (6.5)

This results in the following stable rank function:

S(r) = |{[bi,di) | di - bi > r}|. (6.6)
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Applying this to the two circle example we saw before, we
obtain the functions shown in Figure 6.1. This simple example
shows how the stable rank encodes the structure of the persistence
barcode, namely, we can see how different bars/intervals are
expressed by S1(r).

The next section will illustrate the utility of this definition with a
simple example, and provide some intuition on what information
it expresses.

6.3 application to regular point patterns

We will describe the use of the stable rank invariant as a descriptor
for the spatial distribution of point sets on the plane. First, recall
that if � represents a k-cycle in the persistent homology of a
filtered complex K, it has an associated birth-death value pair,
(b�,d�), and its persistence is defined as d� -b�. The stable rank
invariant for persistent homology of order k, Sk, is then defined
as

Sk(r) = |{� 2 PHk | d� - b� > r}|, (6.7)

that is, its value at r is the number of k-cycles with persistence
greater than r. Here we use PHk to denote all persistent homology
classes in dimension k.

A key fact about the stable rank is, as its name implies, its
stability, which we will now illustrate. For this we consider three
different noisy grid patterns on the plane: a square grid, a trian-
gular grid, and a hexagonal grid. If these patterns are perfectly
regular, then the persistent homology of the filtered complex built
on them is trivial: all points being pairwise equidistant, with dis-
tance r

⇤, we have that for any r < r
⇤ the simplicial complex Kr

is the union of all points on the grid. For r > r
⇤, we obtain a

single connected component that encompasses all points on the
grid. This is the same fact that was used by Pearson et al. [2015] to
define a persistent-homology-based metric for measuring spatial
disorder in the case of a hexagonal grid. We will thus add random
noise to the point grids by perturbing each point with a small,
normally-distributed offset. Each noisy grid pattern is generated
1000 times, and for each one we compute its associated stable
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ranks, S0(r) and S1(r). The results are as shown in Figure 6.2.
Here we can clearly see the stability property at work, since even
if each individual realization of a grid pattern is different from
all others, the fact that random perturbations are small implies
that the differences between the stable ranks are also small. The
different functions are thus clustered together.

Figure 6.2: Top row: example of noisy grid point patterns. Middle row:
Stable rank functions for 1000 realizations of the noisy grid
patterns. Bottom row: Ripley’s K and L functions, and the
nearest neighbor distribution Ĝ(r).
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For comparison, we also show two classical descriptive statistics
for spatial patterns, Ripley’s K and L functions. The K function is
defined as

K(t) =
1

�
E[# points within circle of radius t centered on random point],

(6.8)
where � is the point density. A sample estimator of this function
is

K̂(t) =
1

�

X

i 6=j

I(dij < t)

n
, (6.9)

where dij is the pairwise distance between points i and j in a
spatial point pattern with a total of n points. The density is then
estimated as � = n/A, with A being the area of the spatial domain.
This function measures the distribution of the pairwise distances,
and summarizes second-order properties of the point process
[Ripley, 1976, 1977]. The L function is a variance-normalized K
function, with sample estimator given by

L̂(t) =

 
K̂(t)

⇡

!1/2

. (6.10)

These functions were also used by Robins and Turner [2016] in
their analysis of spatial point processes. Here we compare their
structure to that of the stable ranks for H0 and H1 homology. Also
shown is the empirical nearest-neighbor distribution function,
which is the cumulative distribution function of the inter-point
distances in a spatial point process. Concretely, its value is given
by

Ĝ(r) =
# {p 2 P | dp 6 r}

# {p 2 P}
. (6.11)

There is not a significant difference between the three nearest-
neighbor functions, and similarly for the H0 stable ranks. However,
the H1 stable ranks do exhibit important qualitative differences
for the three point patterns. Consider the value S1(0), which is the
number of cycles in each case with a persistence greater than 0,
in other words, it is simply the count of H1 features in each case.
It is significantly larger for the square grid, and smallest for the
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triangular grid. Since the filtration used to compute the persistent
homology uses the Vietoris-Rips complex, it is instructive to recall
the following fact: given a value r > 0, if there are three vertices
v1, v2, v3 such that their pairwise distances satisfy

d(vi, vj) 6 r, i 6= j, (6.12)

then the 2-simplex spanned by these vertices is added to the
complex. This explains why the value S1(0) is smallest for the
triangular grid: since the points are laid out in an approximately
triangular pattern, it is likelier that any 3 neighboring points will
satisfy condition 6.12, thus resulting in the addition of a 2-simplex
to the complex. As space gets filled by these simplices, it is thus
also less likely that non-bounding cycles will form.

The values of S1(.02) then show that, while almost all the fea-
tures appearing for the hexagonal grid have persistence at least
.02, the contrary is true in the case of the square grid, with its
S1(.02) value being less than half of its S1(0) value. The same is
true for the triangular pattern. From this point onwards, these two
patterns see a rapid decline in their feature counts with increasing
r. The count for the hexagonal pattern also decreases, as it must,
but at a markedly slower pace. In other words, the non-bounding
cycles formed throughout its filtration have, in general, a larger
persistence than those formed in the other patterns. Geometrically
this relates to both the number of vertices that span a cycle, as
well as to their physical size.

These differences can also be quantified by looking at the per-
sistence barcodes. However, the stable rank representation has the
distinct advantage of being a real-valued function, which is easier
to operate with than an arbitrary collection of number pairs. It
remains expressive enough to detect such properties of the spatial
distribution of the original dataset as shown here.

6.4 geometric representation of cloud fields

Recall that in previous chapters we needed to construct a cubical
complex representation for flow structures, represented by up-
and downdraft domains, and compute their associated Betti num-
bers. We could follow a similar strategy here and construct the
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cubical complex representation of a cloud field, and obtain its
first three Betti numbers: these would count the number of clouds
present in the field (�0), the number of holes or tunnels (�1) in
them, and the number of voids enclosed by them (�2). These
quantities, however, would not offer much information regarding
the spatial distribution of the clouds themselves. For this reason
we will use PH as the descriptive tool.

To this end, we will need to use a different type of geometric
representation. In this case, the representation will be that of a
pointcloud, that is, a finite set of point in Euclidean space R2 or
R3. This has an additional advantage: statistical methods and
concepts for studying spatial distributions of point-like objects
are well-developed, which is not true for objects with a spatial
extension (area or volume). In particular, we are interested in as-
sessing the spatial randomness of a set of clouds, which is termed
complete spatial randomness in the theory of spatial point processes
[Ripley, 1988]. The implicit geometric construction will then be a
filtered Vietoris-Rips complex (see Section 3.6) and the persistence
intervals will be computed by using the C++ implementation of
the persistence algorithm in Ripser [Bauer, 2017].

6.4.1 General methodology

The issue of variable selection in this case is simpler than when
investigating convective structure: we will use the values of liquid
water content (ql) produced by the numerical model. We also
note that, given the fact that we will be dealing with shallow
cumuli only, it is sensible to use a two-dimensional approximation
to describe their spatial distribution. Formally, we denote the
computational domain of the simulation as before by a cubical
grid

⌦ = {1, 2, . . . ,Nt}⇥ {1, 2, . . . ,Nx}⇥ {1, 2, . . . ,Ny}⇥ {1, 2, . . . ,Nz},
(6.13)
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and its subsets corresponding to a constant time coordinate are
denoted by

⌦t = {(t,a,b, c) 2 ⌦ | 1 6 a 6 Nz, 1 6 b 6 Ny, 1 6 c 6 Nx}

' {1, 2, . . . ,Nx}⇥ {1, 2, . . . ,Ny}⇥ {1, 2, . . . ,Nz}.

Each ⌦t thus corresponds to one simulation timestep. For each
such timestep, we will have a total of Nz ⇥Ny ⇥Nx cells, each
with its own ql value. This means we have a three-dimensional
array,

Qt = (ql[i, j,k])ijk,

where qlijk represents the ql value at grid coordinates z = i, y =
j, x = k. The first step in constructing the point representation is
then projecting these data to a plane, or equivalently, to construct
the two-dimensional array

Qt,0 = (ql[j,k])jk (6.14)

defined by

ql[j,k] = max{ql[i, j,k] | 1 6 i 6 Nz}. (6.15)

This array represents the cloud field as seen from above (or below).
We denote the subset of Qt,0 where ql > 0 (i. e.the cloudy cells)
by Pt. The next step in obtaining the geometric representation is
separating the connected components of the cloud field, which
is performed as before using the Union-Find (UF) algorithm (see
Section 5.1). This results in a collection of subsets of Pt, Ct ⇢ 2

Pt ,
each one of which represents a separate cloud. We denote the
individual components by ci, i = 1, . . . ,n.

Having arrived at this point, we can now consider different
strategies to obtain a point representation for the cloud field Pt:

1. Random sampling from Pt. This does not require us to know
which connected components make up Pt.

2. Connected component sampling. From each component ci,
we sample a number of points at random. The number of
sampled points is proportional to the size of each compo-
nent.
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Figure 6.3: Example of the two-dimensional approximation to a shallow
cumulus cloud field. Panel a) shows the horizontal section
of vertical wind velocity w at an altitude of 1.8 km, which
corresponds to the bottom of the cloud layer (red : w > 0,
blue : w < 0 ). Panel b) is the column liquid water content ql,
i. e.the maximum liquid water value in the vertical direction
for each grid cell. Panel c) is the point representation of this
cloud field, with each point indicating the location with the
maximum ql value in each cloud (only connected components
of size > 3 are considered). The lines are the 1-simplices in the
Vietoris-Rips filtration, at a distance scale of 1.5 km. Periodic
boundary conditions were not considered here for visual
clarity. Figure from Riihimäki and Licón-Saláiz [2019].

3. Geometric centroid. To each component ci we assign the
point on the plane which corresponds to the center of its
bounding box.

4. Maximum liquid water. To each component ci we assign its
point with the maximum ql value.

Applying any of these methods yields the desired pointcloud,
which can then be used as input to the PH algorithm to obtain the
corresponding persistence intervals (or equivalently, the persistent
Betti numbers). An example of this is shown in Figure 6.3, which
shows the vertical wind velocity at cloud base height (panel a)
and the corresponding two dimensional cloud field Pt (panel b).
The close relationship between the locations of both the individual
clouds and the strong updrafts in the domain is made clear by
the two figures. Panel c then shows both the pointcloud obtained
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from Pt by selecting the local maxima of ql (strategy number 4
above), as well as the 1-skeleton of the Vietoris-Rips complex built
on this pointcloud with a distance parameter of 1.5 km. Recall
from the definition that the 1-simplex spanned by two vertices
u, v is part of this complex if d(u, v) 6 1.5, where d represents the
Euclidean metric on the plane, and the 1-skeleton is the collection
of all 1-simplices in the complex. What it shows, then, is the set of
clouds (or, more precisely, their representative points) which are
pairwise closer than a specific distance, here 1.5 km, connected by
a line.

6.4.2 Data

For this study 10 simulation days from the DALES model (see
Section 2.5) were selected which display formation of boundary
layer cumulus clouds, no precipitation and small cloud cover
around noon. Furthermore, we focus on the time period with
shallow cumulus cloud activity, starting at 09:00h and continuing
into the afternoon. This is the part of the day when the convective
boundary layer dominates the system dynamics (cf. Chapter 4).
Conversely, cloud formation before sunrise or at night might obey
different processes (e.g larger-scale phenomena such as thunder-
storms), and would give rise to spatial patterns different from the
ones we are interested in here.

Figure 6.4 shows the cloud cover percentage for this time win-
dow in the 10 simulation days considered here. As can be seen,
the average value for all 10 days lies somewhere in the range
[0.08, 1.5], and the maximum values rarely exceed 0.25. Whenever
they do, this is only a transient phenomenon. Indeed, the 10 sim-
ulations have a qualitatively similar evolution: cloud cover starts
at small values in the morning, steadily increasing towards noon.
After reaching a maximum value, somewhere between 12:00h
and 13:00h, cloud cover gradually diminishes, finally vanishing at
18:00 in most of the cases shown here. This is the typical diurnal
cycle exhibited by shallow cumuli, and is connected with the di-
urnal evolution of the CBL as studied in Chapters 3 and 4. With
this in mind, the questions we will look at in this chapter can be
stated as follows:
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Figure 6.4: Time series showing the cloud cover for the 10 simulation
days considered here, within the time period 09:00h–18:00h.

1. Can the machinery of PH be used to inform conclusions
regarding the properties of a given cloud field? For exam-
ple, is it possible to estimate the value of cloud cover from
pointcloud data only?

2. Does PH allow for a principled assessment of the spatial
structure/randomness of a cloud field?

3. Given the qualitative similarity exhibited by the 10 simula-
tion days, and the fact that this is the normal behaviour we
would expect, are there any other properties of the field that
can be uncovered by using PH?

6.5 estimation of cloud cover

We begin by addressing the first of these questions, namely: what
kind of physical insights about cloud populations can we ob-
tain from the information contained in the persistent homology
groups computed from model data? This is analogous to the re-
sults presented in Chapters 3 and 4, where it was shown that the
(non-persistent) Betti numbers computed from the vertical wind
velocity data do show a close relationship with structural proper-
ties of the CBL. In this case, following the discussion in Section 6.1
regarding the use of persistent homology in the analysis of spatial
patterns, we will focus on applying it to the analysis of the spatial
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Figure 6.5: Top: Three steps in a filtration built from a sampled SCC
field (only the 1-skeleta are shown, i.e. only 1-dimensional
simplices; the domain C

+
t

is represented in black). Bottom: its
associated barcode. Figure from Licón-Saláiz et al. [2018].

distribution of the clouds themselves. We will connect the values
of the stable rank invariant obtained from point samples to the
cloud cover of the underlying cloud field, and show how this can
be used to infer the structure of the cloud size distribution.

6.5.1 Methodology and experimental setup

point representation Given an individual cloud field as
defined in Equation 6.15, the first step is to extract from it a
pointcloud representation as discussed in Section 6.4. To this end,
we obtain the binary array which is 1 for all grid points (i, j),
i 2 1, . . . ,Nx, j 2 1, . . . ,Ny with positive liquid water content
(ql(i, j) > 0), and 0 for the rest. We denote the set of grid points
with positive liquid water by Pt, but now use the physical coordi-
nates of these points instead of their indices. That is, for each grid
point (i, j) such that ql(i, j) > 0, the point (xi,yj) is added to Pt.
This set represents the cloudy cells in the two-dimensional grid.
We then obtain a random sample of points Pt ⇢ Pt by drawing
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random points from the connected components of Pt, that is, from
the individual clouds. The number of points sampled from each
component is proportional to its size in grid cells, but always
greater or equal than one. The idea behind this is to capture some
of the variability in the size and shape of individual clouds in
the distribution of sampled points by resampling from Pt, thus
yielding a set of samples {P(t,1), . . . ,P(t,ns)}.

barcode computation We next compute the persistence
barcode for each of these point clouds Pt,`. The necessary data for
this computation is the pairwise distance matrix D, which has as
its (i, j)-th element the distance between the points ur, us 2 Pt,`.
As was established in Section 6.4.2, the DALES simulations from
which these datasets were obtained are run with periodic lateral
boundary conditions. This implies that the pointcloud Pt,` is
embedded in the flat torus, which is the quotient space of R2

under the identifications

(x,y) ⇠ (x+ 1,y), (x,y) ⇠ (x,y+ 1)

for x, y 2 [0, 1]. Therefore, the distance between the points ur =
(xr,yr) and us = (xs,ys) on the flat torus is

d((xr,yr), (xs,ys)) =
p
dx2 + dy2,

where

dx = min {|xr - xs|, |(xr + 1)- xs|, |xr - (xs + 1)|} (6.16)
dy = min{|yr - ys|, |(yr + 1)- ys|, |yr - (ys + 1)|}. (6.17)

In this expression we consider the domain to be scaled to unit
area, but for our computations the distances obtained were then
rescaled to correspond to the true domain area of 12.8 km2. This
set of pairwise distances is used as input for building the filtration
and computing the corresponding barcode, Bt,`.

statistical analysis The barcode Bt (we omit the subscript
denoting the resampling for clarity) is the multiset of persistence
intervals [bi,di) of the different topological features that appear
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throughout the metric filtration on the point set Pt. Here, bi refers
to the birth value of a feature in the filtration, and di to its death
value. Moreover, we will have two distinct multisets, the first cor-
responding to the H0 features, and the second to the H1 features.
We denote these sets by B0

t
and B1

t
, respectively. As discussed

in Section 6.1, this dataset is not immediately amenable to statis-
tical analysis. We will therefore use the stable rank function for
the analysis, which in the case of one-dimensional persistence is
equivalent to a function which for each value r counts the number
of features with persistence greater than r (see Section 6.2):

Sk(r) = # {(bi,di) 2 Bk

t | di - bi > r}, (6.18)

where the subscript k refers to the dimension of the features being
counted.

We will make use of a further numerical descriptor in this
section, namely the multiplicative persistence of features appear-
ing in a filtration. Given a persistence interval (bi,di) 2 Bt, its
multiplicative persistence is defined as

⇡i =
di

bi

. (6.19)

This is only well-defined for persistent homology groups Hk of
dimension k > 1, since in the case k = 0 all features have a
birth value bi = 0, at least in the present case of a Vietoris-Rips
filtration. Multiplicative persistence has the property of being
scale-invariant, in the sense that it does not depend on the physical
size of the cycle, but only on its “shape” or stability [Bobrowski
et al., 2017]. The corresponding feature counting function for
multiplicative persistence is then

S
⇡

k
(r) = # {[bi,di) 2 Bk

t | di/bi > r}, (6.20)

and we will refer to the one defined in Equation 6.18 by S
↵

k
(r),

where the superscript ↵ represents the additive persistence ↵i =
di -bi. When there is no ambiguity, we will omit the superscripts
and refer to the stable rank functions simply as S0 and S1.

We have just described a method which computes a set of de-
scriptor functions, the stable rank invariants, for a given collection
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of objects in space (in this case, clouds). Moreover, we have seen in
Section 6.3 that these functions are effective in discriminating be-
tween different regular point patterns on the plane. We now look
at the relationship between these functions and cloud field struc-
ture in more detail. An example is shown in Figure 6.6, where the
top row shows three different cloud fields, each obtained from a
different simulation, but all three at the same time of day (12:00h).
Also shown in these panels are the resulting pointclouds obtained
by sampling from the connected components of each field. The
middle row shows the H1 barcodes for each pointcloud, com-
puted from the pairwise distance matrix,. The last row contains
the stable ranks S

↵

1
corresponding to the H1 barcodes.

The first observation we can make is that a field with larger
cloud cover will result in more sampled points than a field with
smaller cloud cover, hence the number of H1 features for that
sample will be larger, as will the values of S↵

1
(0). A more inter-

esting fact is that the three S
↵

1
curves shown here have a similar

structure: first, we see an interval where the values of S↵
1
(r) shrink

rapidly, followed by a much more gradual decline. The rate of
decrease appears similar across the three cases for the first part of
the domain; the second part shows a more noticeable difference.
This corresponds to the fact that the three H1 barcodes have a
large number of short bars, whereas the number of longer bars is
different for each, as well as their specific lengths. The cloud fields
from which these barcodes were derived give us a geometric inter-
pretation of these facts: most of the shorter bars would correspond
to small non-bounding cycles generated by the numerous sets of
points clustered together in a small area. The longer bars, on the
other hand, indicate larger non-bounding cycles generated by the
empty spaces between the clouds (see Figure 6.5). This means
that the H1 stable rank, as shown here, should be able to signal
differences in the interspersion patterns present in these clouds
fields, especially if we focus on its values for larger values of the
filtration parameter r.

In this section, we will not look at these different patterns, but at
a question of a more general nature. Recall the observation that, as
cloud cover increases, we will in general see more H1 features. We
now take a closer look at the nature of this increment. Specifically,
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an increase in cloud cover can happen because the clouds are
larger, because there are more of them, or some combination of
these two factors. In terms of the pointclouds sampled from the
cloud field, the former case should result in a more uniformly
random scattering of the sampled points, whereas the latter case
would show more order, or clustering, as larger clouds will have
a greater likelihood of contributing several points to the random
sample. These differences should be reflected in the values of
the stable rank functions, specifically S

↵

1
and S

⇡

1
. The number of

features with a large persistence value should not decrease in this
case, representing the separation of large clouds by empty space.
In the uniformly random case, a denser distribution of points on
the plane would preclude the appearance of such geometrical
features.

In concrete terms, we will use the pointwise evaluation of the
functions S

↵

1
, S⇡

1
at fixed points {ri} in their domains as explana-

tory variables in two different linear models to explain the values
of cloud cover (cc) for the cloud fields under study. The models
will have the form

log(cc) = �0 +
n↵X

i=1

�i log
⇣
S
1

↵(ri)
⌘

, (6.21)

log(cc) = �
0
0
+

n⇡X

i=1

�
0
i

log
⇣
S
1

⇡(ri)
⌘

, (6.22)

with n↵ and n⇡ being the number of evaluations used in each
case.

The spatial randomness of a given set of points in space can also
be inferred by using the maximal persistence values found for the
metric filtration built from the point set. These values are defined
as

Ak = max{↵(z) | z 2 PHk},
⇧k = max{⇡(z) | z 2 PHk}., (6.23)

It was shown by Bobrowski et al. [2017] that, when the underly-
ing point distribution is a realization of a homogeneous Poisson
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point process on the unit square, the maximal persistence has
asymptotic behavior given by

⇧k(n) ⇠

✓
logn

log logn

◆1/k

,

with n being the number of points in a realization of the point
process. A similar result holds for the Poisson point process on
the flat torus, if we ignore the essential homology classes. A
deviation from this behavior as the number of points n grows
would thus indicate a deviation from complete spatial randomness
in the process that generated the points. We would take this as
an indication that the increase in cloud cover is produced by an
increase in cloud size, rather than cloud number.

experimental setup The starting point is the 10 DALES
simulation days, as specified in Section 6.4.2. From each day we
will use the 26 timesteps comprised between 09:00h and 15:30h,
which capture most of the variability in cloud cover induced
by the diurnal cycle (see Figure 6.4). The dataset thus contains
260 different cloud fields, each of which is reduced to a two-
dimensional representation as described in Section 6.4. Further,
we will consider 50 different values of the sampling ratio, s =
0.001, 0.002, . . . , 0.049, 0.05 (recall that a sampling ratio of s gives
us a sample with sN points, where N is the number of cloudy cells
in the field). For a given sampling ratio s, we generate 10 samples
per cloud field. These samples are then used in the computation of
the persistence barcodes and the associated stable rank functions
as described above.

Having computed these, we select the values of S
↵

1
(r) for

r = 0.25, 0.5, 1, 1.5, and the values of S
⇡

1
(r) at r = 2, 3, 4, 5 to

be used as explanatory variables in the linear models given by
Equation 6.21 and Equation 6.22. This is done in two separate
ways:

1. For a fixed sample ratio s, use the 2600 point samples to fit
the models.

2. Use the data for all sampling ratios at the same time, 130 000
point samples in total.



6.5 estimation of cloud cover 173

Additionally, for each point sample we also compute its maximal
persistence values, A1 and ⇧1. An analysis of the results of this
setup is given in the next subsection.

Two additional comparison datasets were generated: the first,
a dataset made of diverse realizations of a homogeneous Pois-
son point process, and the second one made of realizations of a
Thomas point process. A Poisson point process with rate param-
eter � is a spatial point process defined on R2 which fulfills the
condition that, if E ⇢ R2 is a measurable subset of the plane, then
the number of points within E, N(E), is a random variable with
probability density function given by

P[N(E) = n] =
(�µ(E))n

n!
e
-�µ(E), (6.24)

where µ(E) denotes the measure of E. In other words, the number
of points within a given set has a Poisson distribution, with inten-
sity parameter proportional to the measure of the set. This is the
condition of complete spatial randomness.

The Thomas point process is a type of Poisson clustering pro-
cess, and is defined as follows. Let C be a homogeneous Poisson
point process with intensity parameter . A realization of this pro-
cess, {c1, . . . , cn}, gives the parent points of the clustering process.
For each parent point ci, draw m points from the bivariate normal
density N2(ci,�2I2), where m is Poisson with parameter µ. The
Thomas point process then has three parameters: , which con-
trols the number of parent points; µ, which controls the number
of child points; and �2, which controls the dispersion of points
within each cluster.

For each point sample available in the original dataset, one
corresponding sample was generated for each of the Poisson and
Thomas datasets. In both cases the parameters were selected so
that the expected number of points would be the same as the
original point sample. In the case of the Thomas point process, the
number of parent points was generated from a Poisson distribu-
tion with rate parameter equal to the number of clouds times the
sampling ratio used, and � = 0.05. The edge effect was avoided
by wrapping sampled points around the boundaries (flat torus).
Examples of this are shown in Figure 6.7, where two samples from
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a cloud field are shown, obtained with sampling ratios of 1% and
3%. The corresponding realizations of the Poisson and Thomas
point processes are also shown.

6.5.2 Results and Interpretation

An exploratory analysis of the computed values for the stable rank
functions S

⇡

1
(ri) and S

↵

1
(ri) (in the rest of this subsection we omit

the subindex for simplicity) found that these have a strong positive
relationship with cloud cover, or equivalently, with the number
of points per sample. These relationships are shown in Figure 6.8
for S

⇡(2) (a) and S
↵(.5) (b). As expected from the discussion

above, the values of S⇡(2) increase with the number of points in
the sample, and this increase is monotonic and non-linear. For
S
↵(.5), there is also a positive relationship with sample size for

the smaller samples, but beyond that the values of S↵(.5) actually
appear to decrease. This effectively shows the scale invariance
property of multiplicative persistence: as the pointclouds become
denser, there will be less margin for larger, longer-lived cycles
to appear. Hence, looking only at bar length as an indicator of
structural importance would yield an incomplete picture in this
case. This does not happen if we look instead at the death/birth
ratio of multiplicative persistence. Further confirmation of this
fact is provided by the corresponding histograms for the Poisson
point process samples (Figure 6.8, c, d) and the Thomas point
process samples (Figure 6.8, e, f). In both cases the values of S⇡(2)
again increase monotonically with sample size, but for the case
of the Poisson process S

↵(.5) becomes a decreasing function of
sample size for sample sizes larger than 250 points. This is further
evidence for the fact that, under complete spatial randomness, an
increasing number of points will be in general associated with
less H1 features.

The models given in Equations 6.21 and 6.22 were fitted to
the data and evaluated as follows: for each sample ratio s, 10-
fold cross validation was performed on the dataset generated
with sampling ratio s, the coefficient of determination (R2) was
computed for each fold, and the 10 R

2 values were averaged.
These scores are shown in Figure 6.9. These results are consistent
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with the relationships described above, and we can see that the
model using the multiplicative stable rank values get better as
sample size increases, with an R

2 of almost 1 for sampling ratios
greater than 5%. On the other hand, the model that uses additive
stable rank values actually gets worse for increasing sample ratios.

A more informative experiment is to evaluate the same models
given by Equations 6.21 and 6.22, but this time using the data
for all sampling ratios at the same time, that is, the training
set will be a subset of the 130000 point samples which were
obtained from the 10 simulations. This is intended to make the
size of each point sample essentially random, thus giving us a
better notion of how stable these models are. The evaluation was
again conducted by 10-fold cross validation and averaging the R

2

score over the different folds. The final R2 values were 0.6645 for
the model using additive persistence, and 0.4947 for the model
using multiplicative persistence. For each model 50 runs of 10-
fold cross-validation were performed, and the accumulated errors
in % points are shown in Figure 6.10. Here a significant bias is
apparent in the errors for the S

⇡ model, which is to be understood
as a consequence of the small variability seen in the relationship
between pointcloud size and the values of S⇡ (see Figure 6.8, a),
which makes the model very brittle. For example, a point cloud
with 200 points can be the result of sampling a cloud field with
4000 cloudy cells (corresponding to a cloud cover of 6.1%) with
a sampling ratio of 5%, or of sampling a cloud field with 20000
cloudy cells (with a cloud cover of 30.5%) at a ratio of 1%. In both
cases, however, the values of S⇡ will be very similar. Conversely,
the S

↵ model turns out to be more stable.
We now turn to the question of the maximal persistence, ⇧1, ob-

served in each pointcloud. These values are shown in Figure 6.11
for random sampling at 5% from all cloud fields, as well as the
corresponding realizations of the Poisson and Thomas point pro-
cesses.

As was shown in Bobrowski et al. [2017], for a Poisson point
process we have

⇧1(n) ⇠
logn

log logn
= �1(n), (6.25)
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up to a constant factor, for large values of n. This result is consis-
tent with the experimental evidence shown here in the case of a
Poisson point process. The data from the Thomas point process
and the cloud field samples, however, do not display this behavior.
The result presented by Bobrowski et al. depends crucially on
establishing a relationship between the persistence of a cycle in a
filtered complex and the number of vertices that generate it, which
in turn depends on the spatial distribution of the vertices. Such
a relationship does not necessarily hold for a clustering process
such as the Thomas point process, or the points sampled from a
cloud field, hence the divergence shown here.

When taken together, the results in this section suggest that, de-
spite significant morphological differences observed in the cloud
fields that make up the dataset studied here, there are also under-
lying structural properties which are common throughout all of
them. Persistent homology is expressive enough to capture these
properties, which also allows for a comparison of the spatial dis-
tribution of points sampled from a cloud field with those obtained
by different spatial point processes (see Figure 6.8). Moreover,
this fact can be exploited to construct predictive models for cloud
cover using only point data. The performance of these models and
the asymptotic behavior of the maximal persistence values ⇧(z)
show that, for the cloud population considered here, increase in
cloud cover tends to be associated with larger clouds, and not
with more of them. This is consistent with the results of van Laar
et al. [2019] on cloud size evolution for the same population.

6.6 measuring the spatial randomness of cloud fields

6.6.1 Methodology

In the previous section, we have used points randomly sampled
from different cloud fields to compute a persistent homology
signature for these fields. These signatures have enabled us to
make conclusions about the nature of the processes that generated
the point samples. In particular, we could distinguish the point
samples as being produced by some form of clustering process as
opposed to a purely random scattering. This is an unsurprising
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conclusion, because sampling several points from the same cloud
will necessarily result in some form of clustering in space. In this
section, by contrast, we will look at the spatial distribution of
the clouds themselves. This is tied to an important issue in the
study of cloud formation, namely the quantification of spatial
organization, or lack thereof, in a given cloud field.

To do this, we will again need to obtain a point representation
for a given cloud field, to be used in computation of its persistence
barcode and the associated stable rank functions. The approach
will now be different, as we want to use only one point per cloud,
thus focusing the method more on the positions of the clouds and
not so much on their size or shape. Two of the strategies discussed
in Section 6.5.1 will be used here, namely: i) to assign to each
cloud its geometric centroid as representative point; ii) to assign
to it the point where its largest ql value is found. For this analysis,
only additive persistence will be used.

The stable rank function Sk(r), when normalized by its maxi-
mum value Sk(0), can be used to define a homological distribution
function, in the following sense: denote by S

⇤
k

the normalized sta-
ble rank, that is

S
⇤
k
(r) =

Sk(r)

Sk(0)
. (6.26)

Clearly, S⇤
k
(0) = 1, and it is a monotonically decreasing function

of r. If we now define the function

Gk(r) = 1- S
⇤
k
(r), (6.27)

this is a monotonically increasing function of r, and

lim
r!1

Gk(r) = 1,

so we can take Gk to be an empirical cumulative distribution func-
tion (CDF), as its value at r is the relative amount of homological
features that persist beyond r. This is illustrated in Figure 6.12
for one particular cloud field. Here we show the empirical CDF
values obtained for the H0 persistent homology, together with the
maximum-likelihood exponential and lognormal fits to them. This
interpretation of the stable rank will be used in defining a metric
to quantify the randomness in a spatial point pattern.



178 spatial distribution of shallow cumulus clouds

A common metric in the assessment of spatial organization is
the Iorg index [Tompkins and Semie, 2017], defined as follows.
For a two-dimensional cloud field we index the connected compo-
nents (the individual clouds) as ci, and compute their geometric
centroids, c̄i. We are interested in how the spatial distribution of
the c̄i compares to what we would expect under complete spatial
randomness, that is, if the centroids represent a realization of a
homogeneous Poisson point process. To that end, we consider the
nearest-neighbor distances di, which are defined as

di = min{d(c̄i, x) | x 2 C̄ \ {c̄i}},

where C̄ represents the set of all centroids. The cumulative distri-
bution function (CDF) of the di is

Gdi
(r) = P[di 6 r],

which in the case of a Poisson point process has the analytic
expression

GCSR(r) = 1- exp (-�⇡ r2),

where � is the Poisson intensity parameter. The value of Iorg

is then defined to be the area under the graph (GCSR(r), Ĝ(r)),
where

Ĝ(r) =
# {c̄i 2 C̄ | di 6 r}

# {c̄i 2 C̄}

is the empirical estimator of G(r). If Ĝ matches well with GCSR,
the value of Iorg will be close to 0.5. A value larger than this sug-
gests spatial clustering, while a smaller one suggests dispersion
or regularity.

For n realizations of a Poisson point process with intensity pa-
rameter �, we find that their normalized stable ranks S⇤

i
, and there-

fore also G
i

PH
, oscillate within a narrow band (see Figure 6.13).

At this point we do not have an analytic expression for the stable
rank functions obtained from a Poisson point process, but we
can define persistent homology analogues to the Iorg index via
a Monte Carlo procedure by taking the area under the curves
defined by (Gi

PH,CSR
(r),Gi

PH
(r)). Here we take G

i

PH,CSR
to be

the mean CDF computed for n realizations of a Poisson point
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process, as shown in Figure 6.13. In the case of a point process
in the plane we would then get two values IPH,0 and IPH,1. We
define the index as their arithmetic mean,

IPH =
IPH,0 + IPH,1

2
. (6.28)

6.6.2 Results and Interpretation

We tested the performance of the index IPH defined above, and
compared it to the corresponding values of Iorg in a dataset consist-
ing of 360 distinct cloud fields: we now consider the 36 timesteps
between 09:00h and 18:00h for every simulation day. The values
of both indices for these cloud fields are shown in Figure 6.14.
Each panel shows the 360 values of each index for all fields, com-
puted using 4 different point representations. Panel A shows the
values obtained from assigning to each connected component its
point with maximum ql value (local maxima); panel B shows the
indices obtained when using the local maxima but only of those
components with size at least 3 grid cells (all smaller components
are ignored). Panel C shows the results of using the geometric
centroid of each connected component. Finally, for panel D the
geometric centroids were used after discarding the smaller com-
ponents. These small components can be attributed to numerical
imprecisions in the underlying model, and hence are not physi-
cally meaningful.

As discussed above, if these indices have a value close to 0.5,
it would indicate that the point process that they are evaluated
on is close to complete spatial randomness, or a Poisson point
process. In the simulations used here, we have cause to expect
spatially random behavior: the domain size is too small to allow
for deep convection and spatial organization to happen. Moreover,
the lack of land surface features or patterns means there are no
forcings at different spatial scales. Thus the spatial distribution
of physical variables is dominated by the characteristic patterns
present in atmospheric turbulence, itself an essentially random
process. The values of the persistent homology index IPH strongly
support this hypothesis, while Iorg exhibits values in general
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larger than 0.5. This can be attributed to the fact that it is based on
nearest-neighbor distances only, whereas the stable rank functions
reflect the spatial relationships of the points throughout all spatial
scales. This is confirmed by the fact that removing the smaller
structures in the fields (those less than 3 grid cells in size) brings
the values of Iorg closer to 0.5 on average, whereas the average for
IPH is barely affected. This highlights the fact that, by virtue of
using all the spatial information available, the persistent homology
based method is inherently more robust than any nearest-neighbor
method.

6.7 morphological classification of cloud fields

The results from previous sections have been arrived at by using
the standard contour (Equation 6.5), which makes the stable rank
function Sk a feature-counting invariant, in the sense that its value
Sk(r) is the number of features with a persistence larger than r.
This means that all k-cycles that appear throughout the filtration
are given the same weight in computing this invariant, irrespective
of where in the filtration they appear. In particular, the indication
of spatial randomness from Section 6.6.2 is to be understood in
this sense.

The stable rank invariant is, however, a very flexible tool for
data analysis, since it depends on the choice of contour function.
A contour can be understood in this case as a weighting function
for different ranges of the filtration parameter. Figure 6.15 shows
the stem plot representation of the H1 barcode for the cloud field
in Figure 6.6, as well as three different contour functions. One is
the standard contour (Equation 6.5), defined as

C(v, ") = v+ ".

This results in the condition C(bi, ") < di in the definition of the
stable rank, Equation 6.4, being equivalent to " < di - bi. Thus, a
persistence interval [bi,di) will always count towards the value of
Sk(") if its persistence is larger than ". As shown in the stem plot,
this threshold grows uniformly with " across the entire filtration
parameter range.
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Also shown in Figure 6.15 is the exponential contour, defined as

C(v, ") = k
"
v, (6.29)

for some k > 1. This now results in the condition of Equation 6.4
being equivalent to di - bik

"
> 0, or in (b,d- b)-coordinates

C(bi, ")- bi < di - bi

bi(k
" - 1) < di - bi.

Thus, a persistence interval [bi,di) will now count towards the
value of Sk(") only if its length is greater than bi(k

" - 1), which
now clearly depends on the birth value of the interval. This is the
equation of a line through the origin in the (b,d- b)-plane, as
shown in Figure 6.15, so as we see, those intervals born later in
the filtration have a higher persistence threshold to be counted
than those born in the first part of the filtration. It is in this
sense, then, that the exponential contour gives greater weight to
this part of the filtration, as the features observed here will in
general have a greater weight in determining the values of S1(").
Furthermore, the degree of this effect can be controlled with the
parameter k. Here we show the contour lines for k = 1.1 and
k = 1.5, and we can see that larger values of k will cause the slope
of these lines to increase more rapidly for increasing values of ",
thus making the sifting out of features in the latter part of the
filtration more pronounced. Using different contours thus serves
a double purpose: First, it allows us to assign feature importance
in a more principled manner than by simply using bar length
as an absolute measure. Second, it also allows us to place focus
on specific subsets of the filtration parameter range, or in other
words, on specific spatial scales.

Indeed, Figure 6.15 also shows the H1 stable rank invariants
obtained by applying these three contours to the three barcodes
from Figure 6.6. The three stable ranks obtained from using the
standard contour are virtually indistinguishable from each other.
When using the exponential contours, however, a significant dif-
ference emerges for the cloud field from 2013/04/22, especially
clear for the exponential contour with k = 1.1. This difference
is best understood by comparing the three H1 barcodes. In par-
ticular, the 2013/04/22 barcode does show that the persistence
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intervals born in the first part of the filtration, [0, 0.25], have in
general larger persistence values than the intervals born in this
same region for the other two barcodes. More importantly, these
are not the longest intervals in the entire barcode, yet here we can
see how using a different contour has made them significantly
more expressive.

In this case, the existence of these features also has a geometrical
interpretation. When comparing the cloud field of 2013/04/22
with that of 2013/07/17, even though both have very similar
cloud cover (4.7 % and 4.6%, respectively), we can see in the
latter field that the smaller connected components are mostly
grouped together in few clusters. Thus, there is mostly empty
space between the larger components (i.e., the larger clouds),
space which then allows large cycles to form in the VR filtration.
In the former field, however, these small components are scattered
more sparsely throughout the domain, forming spatial patterns
of their own. It is these patterns, insofar as they allow for the
formation of cycles in the VR filtration, that the longer persistence
intervals in the early part of the filtration range represent.

We can take this idea further by using contours with more
detailed sifting properties, and applying them to the full cloud
field dataset. To this end, we will use the two contours C1 and C2

shown in Figure 6.16. Following the same logic as before, C1 will
give more weight to features in the latter portion of the filtration,
whereas C2 will do so for those features in the first part. These
contours will be used to induce different clusterings of the cloud
fields, based on the spatial distribution of clouds as characterized
by the H1 stable rank.

We again obtain 10 random samples drawn from each of the
360 cloud fields, this time using connected component sampling.
That is, we draw a random sample of points from each connected
component, of size equal to 5% of the original component size,
while guaranteeing that at least one point from each component
is always drawn. For each point sample, we compute its H- 1

stable rank with respect to the standard contour, and the two
contours C1 and C2. Given a contour function c, we can assign to
each cloud field the mean normalized stable rank S

⇤
1,c, where the
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averaging is performed over the 10 point samples drawn from the
field.

Starting from the dataset of 360 cloud fields, and removing
those without sufficient H1 features, we are left with 254 fields.
For a choice of contour c we can thus compute a similarity mea-
sure between cloud fields by computing the functional distance
between their stable ranks. For this experiment we used the L1

and L2 metrics, defined by

dLp
(f,g) =

✓Z1

0

|f(t)- g(t)|pdt

◆1/p

, (6.30)

and the interleaving metric, defined by

d./(f,g) = inf {" 2 R | f(t) > g(t+ ") and g(t) > f(t+ "), t 2 R}.
(6.31)

The pairwise distance matrices for all stable ranks can then
be used as input to a hierarchical clustering algorithm. The final
cluster assignment is then determined by visually inspecting the
resulting dendrograms. We thus obtain one cluster assignment
for each combination of contour function and functional metric.
The best results were obtained with the interleaving distance,
and the C1, C2 contours. These were found to produce cluster
assignments which reflect different characteristics of the spatial
distributions in the cloud fields contained in each cluster.

An example of diverging morphological characteristics educed
from the C1,2 clustering schemes is shown in Figure 6.17: (a)
and (b) are representatives of two different clusters obtained by
using contour C1, while (c) and (d) stem from clusters in the C2

classification. As expected from the shape of the contours, the
classifications they induce are influenced by different spatial scales.
Namely, despite the fact that cloud fields a) and b) have identical
cloud cover, and their Iorg values are very similar, the large-scale
distribution of the individual clouds is significantly different for
both. In similar fashion, both c) and d) are indistinguishable in
terms of cloud cover and Iorg, yet are distinguished by the spatial
pattern of smaller structures, even if the large-scale distribution is
similar in both.
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This study of cloud fields shows that the use of stable rank
functions as descriptors for spatial distributions can reveal mor-
phological properties which other methods cannot. Crucially, the
possibility of changing the contour enriches the scope for deter-
mining such properties. Future investigation in this direction will
address questions such as: what the optimal contour is for a given
problem, what these methods can reveal about the temporal evo-
lution of cloud formation, and how the homological properties
thus discovered can be related to different physical variables in
the system. From a more general data analysis point of view, the
optimal selection of contour functions is crucial for making our
pipeline an fully end-to-end machine learning approach.
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Figure 6.6: Top: Three cloud fields (in blue) with points drawn at random
from them (in green). Each cloud field corresponds to a dif-
ferent simulation day at 12:00h. Middle: H1 barcodes for the
point samples in the cloud fields above. Bottom: stable rank
function for the H1 barcodes above.
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Figure 6.7: Left: Point sets sampled from a cloud field, with sampling
rate of 1% (blue) and 3% (green). Middle: Realizations of a
homogeneous Poisson point process, with the same expected
number of points as the cloud field samples. Right: Realiza-
tions from a Thomas point process, with expected number of
points also matching the cloud samples.
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Figure 6.8: Two-dimensional histogram showing the mean number of
points per sample and mean value of S⇡(2) (a) and S

↵(0.5) (b).
The average is computed over the 10 samples per cloud field
and sample ratio. Also shown are the equivalent histograms
for the Poisson point process samples (c, d) and the Thomas
point process samples (e, f).



188 spatial distribution of shallow cumulus clouds

Figure 6.9: R2 scores for the linear models of cloud cover using additive
persistence features (S↵(r)) and multiplicative persistence
features (S⇡(r)).

Figure 6.10: Distribution of estimation errors accumulated in 50 runs of
10-fold cross-validation, for two linear models using values
of S↵ and S

⇡ as explanatory variables for cloud cover. Figure
from Licón-Saláiz et al. [2018].
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Figure 6.11: Scatterplots of ⇧z against pointcloud size, for all samples
with sample ratio s = 0.05, realizations of a Poisson point
process, and a Thomas point process (�2 = 0.05). Also shown
is the function �1(n) with three different scaling constants
ci. Figure from Licón-Saláiz et al. [2018].
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Figure 6.12: Homological density estimation for the H0 persistent homol-
ogy obtained from a point set sampled from one cloud field.
Top left: empirical PDF of bar length. Top right: Empirical
CDF. Bottom left: normalized stable rank for H0. Bottom
right: Empirical CDF with 1- S

⇤
0
(r).

Figure 6.13: Stable rank functions obtained from 100 realizations of a
homogeneous Poisson point process with � = 100. Left: S⇤

0
.

Right: S⇤
1

. Figure from Riihimäki and Licón-Saláiz [2019].
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Figure 6.14: Density histograms of the Iorg index and IPH (Equation 6.28)
for 360 distinct cloud fields. A: ql max, B: ql max removing
cloud structures with size smaller than 3 cells, C: Geometric
centroids, D: Geometric centroids removing cloud structures
with size smaller than 3 cells. Figure from Riihimäki and
Licón-Saláiz [2019].
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Figure 6.15: Top: H1 stem plot representation of the barcode in Figure 6.6,
bottom left. Also shown are level sets of the standard contour
function, and for two different exponential contours. Bottom:
Stable rank functions obtained from the standard contour
(left), and from the two forms of the exponential contour
illustrated in the stem plot (center, right).
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Figure 6.16: Examples of different persistence contours used in the mor-
phological clustering of cloud fields. Left: contour 1, giving
more weight to the last part of the filtration interval. Right:
contour 2, giving more weight to the first part. (Figure credit:
H. Riihimäki, from Riihimäki and Licón-Saláiz [2019].)
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Figure 6.17: Cloud fields which are classified into different clusters, ac-
cording to the methodology described in the text. We use
the H1 stable ranks and the interleaving metric to compute
the distances between them. a) and b) are classified using
contour C1, and have Iorg values of 0.45 and 0.53 respectively.
Cloud cover is similar at 14% for both. c) and d) are classified
with C2, and have Iorg values of 0.65 and 0.63 respectively,
and cloud cover for both is 9.2%. Figure from Riihimäki and
Licón-Saláiz [2019].
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F I N A L D I S C U S S I O N A N D O U T L O O K

7.1 discussion

The work presented in this dissertation has been focused around
one central research question: to develop a mathematical repre-
sentation, by means of topological descriptors, of spatial patterns
in the planetary boundary layer (PBL), and their interaction with
the land surface. To this end, we have used data from numerical
simulations of the PBL and computed topological invariants asso-
ciated to these objects by considering diverse geometrical objects
constructed from the data. We have explored the relationships be-
tween the numerical values of these invariants and the underlying
dynamics in the PBL, and we have found that these topologi-
cal quantities carry physically meaningful information, which in
some cases cannot be obtained from classical, i.e. non-topological,
methods.

In Chapter 4, we have analyzed the structural properties of
turbulent flow in the PBL through the Betti numbers of two-
dimensional slabs of vertical wind velocity. These numbers, which
in a sense capture the different patterns of interspersion between
up- and downdrafts, can discriminate between data from sim-
ulations with land surface patterns that have the same relative
composition of land types, but different levels of heterogeneity.
As a first approach, their vertical profiles are considered, and
a comparison is drawn with global measurements of the flow,
such as domain averages, which cannot detect these differences
(Section 4.3.1). When considering the temporal evolution of these
Betti numbers, the effect of land surface heterogeneity is also dis-
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cernible, as are other CBL features such as the inversion crossing
time (Section 4.3.3). When considering all values of the Betti num-
bers as they vary across height and time, a significant relationship
is found between them and the different subregions of the PBL.
This is shown by training an unsupervised classifier on the Betti
number data, which produces remarkable agreement with the
partitioning into subregions obtained from bulk measurements of
the flow (Section 4.4). We also show that this technique can reveal
other model aspects which have an impact on flow morphology,
such as the presence of wind shear in the surface layer, or the
unresolved small-scale entrainment in the LES model used here.
This approach thus allows us to capture, in a very precise and
compact form, the qualitative differences observed between flow
patterns that arise in the various PBL regimes.

In Chapter 5 we specialize the analysis to the spatial connectiv-
ity of turbulent flow, with the goal of representing its hierarchical
organization. To this end, we use an extended version of the
Union-Find data structure, which allows us to quantify the self-
similar scaling of updrafts in the radiatively driven PBL. We find
this pattern of self-similarity to be in agreement with the expected
value from Kolmogorov’s self-similar energy spectrum in the in-
ertial subrange of turbulent motion. This is especially true for
the fully-turbulent mixing layer, whereas the surface layer scaling
patterns show the effect of the land surface pattern (Section 5.2.3).
Comparison with the zeroth Betti number, �0, which counts the
number of connected components, shows that the effect of sur-
face heterogeneity is greater on �0 than on the scaling pattern
(Section 5.2.5). We then extend this approach to three-dimensional
space by introducing another topological invariant, the merge tree,
and show how we can isolate the region of space associated to
the dominant coherent structure, a convective plume (Section 5.3).
Some significant advantages of this approach over the classical
spectral methods are that no smoothness or periodicity assump-
tions are necessary, besides being able to connect these structures
directly to other features in physical space. We use this fact to
quantify the phenomenon of plume coalescence in the transition
between surface and mixing layers. It is also possible to identify
the evolution of this process throughout the PBL daily cycle, and
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to quantify the effect of surface heterogeneity on the spatial depth
of the plume-merging layer. Generally speaking, more heteroge-
neous surfaces will tend to produce larger numbers of individual,
disconnected plumes in the PBL surface layer, and these will re-
quire a larger vertical space to merge into a coherent convective
plume. The tree representation of this process also allows us to
identify those surface cells which underlie the points of origin
of this coherent structure at its base. With this we can measure
the relative contribution of each land type to the formation and
sustenance of the plume, and we again find that surface hetero-
geneity plays a role here: even if the total land area covered by a
given land type is the same across simulations, the likelihood of
its cells being connected to the plume strongly depends on the
overall surface heterogeneity.

Finally, in Chapter 6 we consider a different topological invari-
ant, persistent homology, and show how it can be interpreted as a
multiscale descriptor of spatial patterns. To this end, we use the
stable rank function as a measure of “homological density” over
different spatial scales. This invariant is shown to be better at dis-
tinguishing between diverse spatial point patterns, both regular
and random, than other first- and second-order spatial statistics,
such as nearest-neighbor distributions and the Ripley’s K and L
functions (Section 6.3). After establishing this, we use the same
invariant to analyze the spatial distribution of shallow cumulus
clouds. The first step in this direction is to find the relationship
between pointwise values of the stable rank and the cloud cover
of a given field (Section 6.5). Having established this relationship,
we proceed by comparing the stable rank values obtained from
cloud fields to those obtained from spatial point processes, in
order to asses the spatial randomness of the former. This leads us
to draw conclusions regarding the cloud size distribution which
agree with recent studies on the subject, which have used the same
data (Section 6.5.2). After this, we then define a homology-based
counterpart to the Iorg index for spatial organization, and use it to
quantify the degree of randomness or organization of cloud cores
(Section 6.6). We also show the topological version to be more
robust against noise than Iorg. Finally, we use the persistence con-
tour formalism to produce a morphological classification of cloud
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fields by focusing on spatial features at different scales, since the
contour functions provide a weighting scheme for these scales
(Section 6.7). This provides a framework for classifying spatial
patterns based on the features they present over a specific range
of scales.

We set out to answer a specific research question, namely: can
topology be leveraged to represent PBL patterns, and if so, does
it offer any new information not provided by classical meth-
ods? Throughout this dissertation we have presented diverse
topological invariants which can be readily and efficiently com-
puted from numerical simulation data. We have found significant
relationships between the numerical values of these invariants
and the dynamical state of the PBL, and with its response in
interaction with complex land surface patterns. In so doing, we
have shown that these invariants are more informative when used
as statistical descriptors than are bulk averaging or functional
summaries of spatial distributions, such as spectral analysis or the
Iorg index. In some cases, the topological descriptors recover the
information provided by spectral methods, without discarding the
additional information available in physical space. With all this in
mind, we can now give a positive answer to the research question,
as our investigations have shown the expressiveness and relevance
of topological information in analyzing and understanding the
quasi-chaotic dynamics in the turbulent PBL.

7.2 outlook

The field of TDA is expanding rapidly, both in regards to the
theory behind it and in concrete applications. In that sense, this
dissertation has been only the first approach to using techniques
from TDA in solving problems in atmospheric science. Despite (or
probably, because of) the success encountered in this endeavour,
many new pathways leading beyond our current vantage point
stand now open. These would involve a deeper exploration of the
topological aspects of boundary layer dynamics, and the relation
of these with the corresponding physical processes. Here we
enumerate but a few of these pathways.
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1. A clear limitation in the Betti-number based methodology
presented in Chapter 4 is its dependence on the selection
of a threshold value. It would be possible to sidestep this
limitation by using persistent homology, specifically the
stable rank invariant computed for the two-dimensional
scalar fields of vertical wind velocity, instead of the Betti
numbers. The Betti numbers are simply the value of the
corresponding stable rank functions at one point in their
domains.

2. The methodology of Chapters 4 and 5 can also be extended
if we consider not only connectivity in space, but also in
time. Coherent structures, after all, are defined as having
significant extent in both space and time.

3. Another extension of this methodology is adapting it to
work on observational data. Indeed, some of the related
studies recounted in Section 4.1 present results obtained
from both simulations and observations.

4. Developing a method for the optimal selection of persistence
contours, for example by optimizing over a space of basis
functions. This would also be applicable beyond the concrete
problems studied here.

5. Use persistence contours to study the effect of land-surface
features, such as heterogeneity or topography, on the spatial
distribution of shallow cumulus clouds.

6. Develop a null hypothesis testing framework for spatial
randomness, using the persistence contour formalism.
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