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Dedicated to Juliette and Janek

Why believe in others

We have to be idealists in a way, because then

we wind up as the true, the real realists. [...]

If we take man as he is, we make him worse,

but if we take man as he should be,

we make him capable of becoming what he can be.

So, if you don’t recognize a young man’s

will to meaning, man’s search for meaning,

you make him worse, you make him dull,

you make him frustrated, you still add

and contribute to his frustration.

While, if you presuppose in this man, [...]

there must be a spark of search for meaning.

Let’s recognize this! Let’s presuppose it!

And then you will elicit it from him,

and you will make him become

what he in principle is capable of becoming.

Viktor Frankl, 1972
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Kurzzusammenfassung

Wettbewerb zwischen Geweben tritt häufig in lebenden Systemen auf. Gut untersuchte

Beispiele sind der Wettbewerb zwischen verschiedenen Klonen während der Entwicklung

in der Flügelscheibe der Drosophila und Krebs, wo der Tumor mit dem umliegenden

Wirtsgewebe konkurriert. Der Wettbewerb ist durch verschiedenste biochemische und

physikalische Faktoren beeinflusst, einschließlich Konzentrationen von Nährstoffen und

anderen Chemikalien, Zell-Zell-Kommunikation und geometrischen Einschränkungen.

In dieser Dissertation untersuchen wir rein mechanisch regulierten Wettbewerb zwis-

chen verschiedenen Geweben, mit Krebs als biologischem Beispiel im Kopf. Dabei

fokussieren wir uns auf die Rolle der Grenzfläche und der Wechselwirkung zwischen

verschiedenen Zellpopulationen, einschließlich evolutionärer Aspekte. Für mechanisch

regulierten Wettbewerb wurde vorgeschlagen, dass das Ergebnis allein vom homeostatis-

chen Druck bestimmt wird - dem Druck an dem sich Zellteilungen und Zellapoptose

ausgleichen. Das Gewebe mit dem höheren homeostatischen Druck gewinnt gegen das

Schwächere. Demzufolge besteht die Tumorentwicklung aus aufeinander folgenden Run-

den der Übernahme des Gewebes durch eine Zellpopulation mit einem höheren homeo-

statischen Druck. Experimente mit wachsenden Gewebesphäroiden zeigen jedoch, dass

Oberflächeneffekte eine dominante Rolle im Gewebewachstum spielen können. Zellen

teilen sich bevorzugt an der Oberfläche und vollziehen Apoptose im Kern. Es stellt

sich heraus, dass ähnliche Effekte eine Rolle im Wettbewerb zwischen Zellpopulationen

spielen und die Evolution des Gewebes ändern.

Um die Mechanik des Gewebewettbewerbs zu untersuchen benutzen wir ein teilchen-

basiertes Simulationsmodell, in welchem eine Zelle durch zwei Teilchen dargestellt wird,

welche sich mit einer aktiven Wachstumskraft abstoßen. Zellen teilen sich, wenn der Ab-

stand zwischen den beiden Teilchen einen bestimmten Schwellenwert erreicht, während

Zelltod zufällig mit einer bestimmten Rate erfolgt. Zellen wechselwirken miteinan-

der wie weiche, klebrige Kugeln und ein ”dissipative particle dynamics” Thermostat

berücksichtigt Energiedissipation und zufällige Fluktuationen.

Wir untersuchen zuerst die Rolle der Adhäsion zwischen verschiedenen Geweben, in-

dem wir einen Extremfall betrachten: verschwindende Adhäsion zwischen Zellen ver-

schiedener Gewebe (”cross-adhesion”). Die resultierende starke Grenzflächenspannung
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führt zu einer Trennung der konkurrierenden Gewebe. In der Nähe der Grenzfläche

ist die Teilungsrate beider Gewebe stark erhöht. Die erhöhte Zahl an Teilungen erzeugt

einen Fluss von Zellen von der Grenzfläche ins Volumen, ähnlich zu wachsenden Gewebe-

sphäroiden. Um den Zustrom an Zellen von der Grenzfläche zu kompensieren ist der

Systemdruck immer größer als der individuelle homeostatische Druck beider Gewebe;

im Mittel sterben im Volumen mehr Zellen als sich teilen. Dies resultiert in einer sta-

bilen Koexistenz beider Gewebe mit einer Vielfalt verschiedener Strukturen, selbst bei

ungleichem homeostatischen Druck.

Als Nächstes untersuchen wir die evolutionäre Entwicklung eines Gewebes unter dem

Einfluss von Mutationen, welche die mechanischen Eigenschaften einer Zelle verändern.

Für unabhängige Mutationen entwickelt sich das Gewebe in Richtung von Populationen

mit niedriger interner Adhäsion und hoher Wachstumskraft, was beides den homeostatis-

chen Druck erhöht. Motiviert von den Resultaten des vorherigen Kapitels und biologis-

cher Evidenz führen wir eine Kopplung zwischen den beiden Parametern ein, so dass

eine höhere Wachstumskraft eine höhere interne Adhäsion bedingt. Interessanterweise

kann dies zu einer divergierenden evolutionären Entwicklung führen, während der sich

das Gewebe in Richtung einer sehr heterogenen Verteilung an Populationen entwickelt.

Das Gewebe besteht dann aus Zellen mit sehr unterschiedlichen Eigenschaften, die in

einem dynamischen Zustand koexistieren. Überraschenderweise kann dieser Zustand von

der Zellpopulation mit dem niedrigsten homeostatischem Druck dominiert werden. Der

Wettbewerb zwischen nur zwei Zellpopulationen und ein passendes phänomenologisches

Modell liefern eine qualitative Erklärung dieser Resultate. Des Weiteren zeigen wir, dass

die Rate mit der Mutationen erfolgen nur eine untergeordnete Rolle im Wettbewerb spielt

und lediglich die evolutionäre Zeitskala beeinflusst.

Drittens studieren wir Wettbewerb auf einem Substrat, wobei wir uns auf die Sta-

bilität der Grenzfläche fokussieren. Zellen wechselwirken mit dem Substrat durch Rei-

bung, was eine endliche Abfalllänge mechanischer Spannungen bedingt. Aufgrund von

Diffusion ist die Grenzfläche zwischen zwei identischen Geweben instabil. Jedoch sind

schon kleine Unterschiede zwischen den konkurrierenden Geweben ausreichend für eine

stabile, fast flache Grenzfläche, welche sich mit konstanter Geschwindigkeit fortbewegt.

Eine reduzierte Apoptoserate bedingt eine erhöhte Gewebeviskosität. Bei einer höheren

Viskosität des Gewebes mit dem niedrigeren homeostatischen Druck entsteht eine Fin-

gerinstabilität, welche an das viskose Fingern der Saffman-Taylor-Instabilität erinnert.

Außer durch homeostatischen Druck kann der Wettbewerb auch von kollektiver Motilität

eines Gewebes in Richtung des anderen Gewebes getrieben werden. Kleine Motilitätskräfte

genügen für eine Fortbewegung mit stabiler Grenzfläche. Jenseits einer kritischen Stärke
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der Motilität bilden sich jedoch Ausbuchtungen des beweglichen Gewebes in das Nicht-

bewegliche mit wohldefinierter Wellenlänge. Das resultierende, beinahe sinusförmige

Muster der Grenzfläche ist zeitlich erstaunlich stabil, im Gegensatz zur zuvor disku-

tierten, sehr dynamischen Fingerinstabilität.

Zusammengefasst führt das Zusammenspiel von Mechanik, evolutionären Kräften und

Wechselwirkungen zwischen Zellen verschiedener Gewebe zu interessanten Grenzflächen-

phänomenen. Diese reichen von stabiler Koexistenz zwischen zwei oder mehreren Zell-

populationen in einer Vielfalt von Strukturen bis zu einer instabilen Front während der

Fortbewegung auf einem Substrat.
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Abstract

Competitions between tissues occur frequently in living systems. Well-studied examples

are the competition between different clones during development in the Drosophila wing

disc and cancer, in which the tumor competes with the surrounding host tissue. The com-

petition is affected by various biochemical and physical factors, including concentrations

of nutrients and other chemicals, cell-cell communication, and geometrical constraints.

In this thesis, we study the competition between different tissues regulated solely by

the mechanical interactions between cells, with cancer as the biological example in mind.

In particular, we focus on the role of the interface and the interactions between different

cell populations including evolutionary aspects. For mechanically-regulated competi-

tion, it has been proposed that the outcome is solely determined by the homeostatic

pressure, the pressure at which division and apoptosis balance. The tissue with the

higher homeostatic pressure outcompetes the weaker one. Accordingly, tumorigenesis

consists of subsequent rounds of takeover of the tissue by a cell population with a higher

homeostatic pressure. However, experiments on growing tissue spheroids reveal that

surface effects can play a dominant role in tissue growth. Cells divide preferentially

at the surface and undergo apoptosis in the bulk. It turns out that similar interfacial

effects play a role in the competition between cell populations and alter the evolution of

a tissue.

To explore the mechanics of tissue competition we employ a particle-based simulation

model, in which a cell is represented by two particles which repel each other via an active

growth force. Cells divide when the distance between the two particles reaches a certain

threshold, while cell death occurs randomly at a constant rate. Cells interact with each

other like soft sticky spheres and a dissipative particle dynamics thermostat accounts

for energy dissipation and random fluctuations.

First, we study the role of the adhesion between different tissues by looking at an

extreme case: vanishing cross-adhesion strength. The resulting strong interfacial tension

leads to segregation of the competing tissues. In a small region near the interface, the

division rate of both tissues is enhanced. The enhanced division leads to a flux of cells

from the interface towards the bulk, similar to growing tissue spheroids. To compensate

for the influx of cells from the interface, the system pressure is always larger than each

ix
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individual homeostatic pressure and both tissues undergo net apoptosis in the bulk. This

results in stable coexistence between the two tissues in a variety of different structures,

even for a difference in homeostatic pressure.

Next, we study the evolution of a tissue under the influence of mutations which change

the mechanical properties of a cell. For independent mutations, the tissue evolves to-

wards populations with low internal adhesion and high growth-force strength, which both

increase its homeostatic pressure. Motivated by the results from the previous chapter

and biological evidence, we impose a coupling between the two parameters, such that a

higher growth force comes at the cost of a higher adhesion strength. Interestingly, this

can result in a diverging evolution in which the tissue evolves towards a very heteroge-

neous distribution of populations. The compartment is than occupied by cells with very

different properties, coexisting in a highly dynamic state. Surprisingly, this state can be

dominated by the cell population with the lowest homeostatic pressure. Competitions

between two cell populations alone and a phenomenological model provide a qualitative

explanation of these results. We further reveal that the rate at which mutations occur

plays a minor role in the competition and only affects the evolutionary time scale.

Third, we study competition on a substrate, in which we focus on the stability of the

interface between the competing tissues. Cells interact with the substrate via friction,

resulting in a finite stress-decay length. The interface between two identical tissues is

unstable due to diffusion. Already small differences between the competing tissues suffice

to arrive at a stable, almost flat interface which propagates at constant velocity. A

reduced apoptosis rate results in an increased tissue viscosity. For larger viscosity of the

tissue with the lower homeostatic pressure, a fingering instability emerges, reminiscent of

Saffman-Taylor viscous fingering. Besides homeostatic pressure, the competition can also

be driven by collective motility of one tissue directed towards the other. Small motility

forces suffice to result in propagation with a stable interface. However, above a critical

motility strength, protrusions of the motile tissue into the non-motile one form at a

well-defined wavelength. The resulting almost sinusoidal interface pattern is remarkably

stable over time, contrary to the highly dynamic fingering instability discussed before.

In summary, the interplay between mechanics, evolutionary forces, and cross-interactions

gives rise to interesting interfacial phenomena. This includes stable coexistence between

two or many cell populations in a variety of structures and an unstable front during

propagation on a substrate.
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1 Introduction

1.1 From condensed to soft, from soft to active, from active to

growing matter

The study of matter itself is one of the oldest studies mankind has carried out through-

out its history. The question what constitutes matter at the smallest scale dates back

to ancient Greece. However, the answer to this question, that all matter is made up of

atoms, has only been proven at the beginning of the twentieth century. Since then, tech-

nological advance has greatly broadened our understanding how macroscopic properties

of a material arise from the atomistic scale, which is what defines the field of condensed

matter.

As fundamental as the question of what constitutes matter is the question of what

holds these constituents together. Of the (up to the current day) four known fundamental

interactions, only the electromagnetic force is important for the answer to this question

(at least above the scale of single atoms, besides some astronomical objects). This

force binds atoms together and mediates interactions between molecules and is thus

responsible not only for the electric and magnetic, but also the mechanical properties

of a material. The strength of the bonds formed by these interactions varies over many

orders of magnitude, which constitutes different subfields of condensed matter. It is the

softness of the underlying interactions which gives the field of soft matter its name. The

strength of the relevant interactions, e.g. hydrogen bonds or van-der-Waals interactions,

is on the order of the thermal energy in the system and thermal fluctuations thus play an

important role in soft matter. Classical examples of soft matter are colloidal suspensions,

polymer networks, and liquid crystals.

These classical soft matter systems can be studied in and out of thermodynamic

equilibrium. Biology provides us with a particular type of non-equilibrium soft matter

systems. What distinguishes these systems from classical non-equilibrium systems, such

as earths atmosphere or the stirring of a cup of coffee, is that the forces which drive

the system out of equilibrium are generated by the constituents of the system itself.

The non-equilibrium character is thus an inherent property of these systems, as they

1



2 Introduction

are constantly driven away from equilibrium. Examples of such systems can be found

at strikingly different lengths scales, ranging from the cytoskeletal network inside a

cell over bacterial colonies to schools of fish. Together with synthetic and simplified

model systems, such as self-propelled colloids or active Brownian particles, these systems

comprise the field of active matter.

Cells and multicellular tissues form a special kind of soft, active matter. Not only

do cells consume energy, generate stresses and move through their environment, but

they also grow, divide, and die and thus generate new material, which distinguishes

multicellular tissues from most other active matter systems and defines the name growing

matter. Another example of growing matter are bacterial colonies, in which growth

typically takes place on a shorter time scale. The self-renewing character of multicellular

tissues is one of the main, but by far not the only reason why they are an interesting

system to be studied not only from a biological, but also from a physical point of view.

Already the simplest arising questions, e.g. how tissues maintain a finite size, how

different tissues develop into well-defined, segregated compartments, or how mechanics

feeds back onto growth, bear surprisingly rich and complex answers.

1.2 Mechanical aspects of cells and tissues

An early example of modern statistical and thermodynamical principles applied to mul-

ticellular systems is the differential adhesion hypothesis (DAH). The DAH originates

from the work of Townes and Holtfreter from the fifties, who found that cells from

different germ layers rearrange from a mixture into the developmentally correct posi-

tions [1]. Building up on this, Steinberg proposed that multicellular tissues can be

treated as immiscible liquids. Accordingly, cell sorting is governed by differences in the

adhesiveness (or, respectively, surface tensions) of different cell types and minimization

of the free energy in the system [2]. In vitro experiments have confirmed several pre-

dictions of the DAH, e.g. tissue surface tension being proportional to the number of

adhesion molecules [3, 4]. However, a simple order of magnitude comparison between

the energy associated with tissue surface tension (≈ 10−3 J/m2), for example measured

by parallel-plate compression, and the adhesion energy per unit area (≈ 10−7 J/m2),

obtained via force measurement during membrane separation, shows that the DAH does

not capture the whole picture [5, 6, 7, 8, 9]. More recent experiments indicate that tis-

sue surface tension is dominated by mechanical polarization of cells at the outer tissue

boundary, increasing the cortical tension along this boundary relative to internal cell-

cell junctions [10, 11]. The scaling of tissue surface tension with the number of adhesion
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molecules can be explained by their additional function as signaling molecules [12]. These

results show that cells are able to actively change their mechanical properties in response

to external signals, in this case by changing the actomyosin contractility locally [13].

Cell response to external signals also works in the opposite direction, i.e. cells are able

to change their biochemical properties as a reaction to a mechanical signal, a mechanism

termed mechanotransduction. One way for cells to convert mechanical stimulus into a

chemical signal are mechanosensitive membrane channels, which open or close in response

to tension in the membrane [14, 15].

Mechanosensing is involved in signaling processes connected to various different cell

behaviors such as cell division, differentiation, or programmed cell death (apoptosis) [16,

17]. It has been shown that the application of cyclic mechanical strain to the underlying

substrate of vascular smooth muscle cells leads to an increase in cell number compared to

unstrained cells, with the largest increase occurring at zones of maximal strain [18, 19].

The observed delay between the onset of strain and increased DNA production (as

a determinant for cell growth) hints at the conclusion that strain does not directly

activate growth receptors, but leads to the production and secretion of growth factors,

induced by interactions between matrix proteins coated on the substrate and integrins.

Similar results have been obtained for other cell types such as embryonic chick heart

cells, pulmonary endothelial cells, or epithelial cells [20, 21, 22]. In a somewhat different

experimental approach, mechanical strain has also been shown to increase proliferation

in the Drosophila wing disc [23]. Experiments focusing on the opposite direction, i.e.

studying growth under mechanical compression, have mostly been carried out for growing

tissue spheroids. Stress is exerted either indirectly by putting the spheroids into an

elastic medium, which is compressed due to growth and thus exerts a solid stress back

onto the spheroid, or directly by an osmotic pressure [24, 25, 26, 27]. The growth rate

has consistently been found to decrease with growing compressional stress.

Interestingly, mechanical compression does not only reduce the proliferation rate, but

has also been shown to increase the apoptosis rate. Thus, both effects have to be

distinguished in experiments on the effects of stress onto growth [28, 29, 30]. For osmotic

stress, proliferation is already significantly decreased for stresses as small as 500 Pa [29,

30], while apoptosis is only affected at way higher stresses, of the order of 1 MPa [31, 32].

These findings hint at the idea that different mechanisms are behind the effect of osmotic

stress on proliferation and apoptosis. Indeed, osmotic stress enhances the activity of the

MAPK pathway, which is connected to the regulation of apoptosis [33, 34, 35, 36]. The

effect of mechanical compression on growth, on the other hand, can be explained by

purely mechanical arguments, which do not invoke complex biochemical pathways: the
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growing tissue spheroid needs to deform its environment in order to grow, leading to a

pressure exerted back onto the spheroid, which stalls growth when the spheroid can not

overcome this pressure anymore. The growth of tissue spheroids is discussed in more

detail in section 1.4.1.

The ability of cells to sense the mechanical properties of their environment also plays

an important role in cell migration [37]. Cell migration is crucial in biological processes

such as wound healing, immune response, or development, but can also have severe

consequences in tumor progression when cancer cells metastasize [38]. In order for cells to

move in a directed fashion, they need to be able to react to some cue in their environment.

This cue can be a chemical, e.g. morphogens or nutrients, which is termed chemotaxis.

However, the cue can also be of physical origin, for instance fluidic shear stress [39].

A particularly interesting form of mechanically-guided cell migration is durotaxis, in

which cells migrate according to gradients in rigidity, i.e. cells are able to sense the

mechanical properties of their environment and react to it accordingly [40, 41]. Cells

form focal adhesions, large protein complexes which connect the actin cytoskeleton (a

dynamic network of filaments inside the cell) with the extracellular matrix (ECM) or the

underlying substrate. Focal adhesions are crucial in the understanding of cell migration,

as they anchor the cell to the substrate, exert pulling forces to it, and act to sense

mechanical forces [42, 43]. These signals are transmitted to the interior of the cell,

where they ultimately result in changes of the cytoskeleton, i.e. its contractility, as a

response [44]. The rigidity sensing seems to be achieved by fluctuations in the pulling

forces exerted by the focal adhesions to the ECM [45].

Cell migration also takes place at the tissue level, where it gives rise to collective

phenomena. Collective cell migration is studied by different experimental approaches

under the use of in vitro and in vivo model systems, reflecting its importance in various

distinct biological processes. One of the best studied in vitro systems, in combination

with modern experimental techniques such as traction force microscopy, are confluent

cell monolayers during migration into empty regions on a substrate [46, 47, 48]. This

model allows for the tracement of individual cells and the local measurement of stresses

at subcellular resolution, which gives quantitative insight into the physical mechanisms

at play. For example, in a radially expanding colony of epithelial Madin-Darby Canine

Kidney (MDCK) cells, it has been shown that traction forces driving the migration are

not generated by leader cells at the front alone, but also by cells in the bulk many rows

behind the front. The colony as a whole is under tension, with tension being strongest at

the center [33]. However, leader cells can give rise to a fingering instability, even for the

same cell type, in wound healing assays, in which cell monolayers are grown to confluency
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before removing a barrier, upon which cells start to migrate into the free space [47, 50].

These experiments reveal further that, upon wound creation, the average cell velocity

rapidly increases both at the front and in the bulk, with long-range correlations in the

velocity field. These correlations are less pronounced for more independently moving

fibroblast-like NRK cells, which do not form strong cell-cell adhesions, in contrast to

MDCK cells.

Let us close this section with a discussion on the question under which conditions the

underlying assumption of the DAH, namely that tissues behave like a liquid, is actually

valid. Intuitively, one might actually expect an elastic characterization of multicellular

tissues. This gives rises to various further questions: What is the appropriate rheological

model for multicellular tissues? On which time scales do tissues show viscous behavior?

How do cell division and apoptosis affect tissue rheology?

In order to measure macroscopic material properties of multicellular tissues, such

as viscosity, surface tension, or the elastic modulus, the length scale at consideration

in an experimental setup has to be sufficiently larger than the size of a single cell.

Additionally, the time scale at which these quantities are measured strongly affects the

results, as the time it takes to form saturated adhesive bonds between cells can be of

the order of an hour, e.g. due to bond strengthening after initial adhesion [51, 52]. For

example, in studies on the aggregation of cells in sheared suspension, the development

of slowly forming adhesive bonds is prevented, as cells are only in contact for about

a second [53], which might yield misleading results. The time it takes for adhesive

bonds to rupture and reform sets the time scale above which tissues can be expected

to show liquid-like behavior. At shorter times (order of seconds to minutes), tissues

have commonly been found to show an elastic response to an applied mechanical force.

Thus, tissues can be best described as viscoelastic materials [54, 55]. The existence

of a yield stress and the corresponding rheological models have been discussed, but the

former, if existent, appears to be rather small, such that stresses which arise from surface

tension can overcome it [56, 57, 58]. The viscoelastic character of multicellular tissues

has motivated different experimental setups to determine the corresponding macroscopic

material properties. This includes aggregate centrifugation, parallel-plate compression,

detachment experiments, and micropipette aspiration, all of which track the deformation

of a tissue aggregate in response to an external force over time [54, 55, 59, 60]. The

viscoelastic properties are then obtained by fitting a certain rheological model to the

measured deformations.

At the time scale of growth, division and apoptosis locally relax stress and, at the same

time, remodel the tissue, which gives rise to a diffusive motion of cells. The presence of
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diffusion corresponds to a liquid-like behavior, even when the tissue is otherwise consid-

ered as an elastic solid, i.e. no other mechanisms of stress relaxation are present [61].

Additionally, proliferation gradients, for instance observed in experiments on the growth

of tissue spheroids (see section 1.4.1 for a detailed discussion), yield convective flows [62].

Hence, as long as cells divide and die, tissues can be characterized as liquids on long

timescales.

All of the experiments underlying the discussion on tissue rheology so far were per-

formed on three-dimensional tissue aggregates without geometrical constraints, for which

a viscoelastic model appears to be the appropriate description. In two dimensions, how-

ever, a limitation of the available space can give rise to interesting phenomena for con-

fluent cell monolayers. In experiments on MDCK cells, once confluency is reached, the

average velocity drops, while collective motility patterns arise [47]. With increasing cell

density (as cells continue to proliferate after reaching confluency), the length scale of

these collective motility patterns grows, while the average velocity further decreases.

Below a critical density ρg the monolayer is best described as a fluid, while it undergoes

a glass transition to a more solid-like state when approaching ρg. In a similar study

on human bronchial epithelial cells (HBEC), the authors found that the glass transi-

tion (also termed jamming transition) is not necessarily driven by increasing cell density

alone. Adhesive bonds maturate over time and thus increasing cell-cell and cell-substrate

adhesion affect the transition as well [63]. Hence, it has been suggested that the phase

space for the jamming transition is spanned by cell density, adhesion, and motility, in

analogy to classical jammed materials such as foams, for which the phase diagram is

spanned by temperature, density, and mechanical load [64, 65].

In this section, we have gained an overview of the mechanics of multicellular tissues

and individual cells as their constituents, described the material properties of tissues, and

discussed how mechanics affect cell processes such as growth, division, and migration.

In the next section, we take a closer look at cancer cells and tumors and discuss different

fields of cancer research in which physical methods have shown to be useful.

1.3 Physics of cancer

The contribution of physics to the field of cancer research has grown quite extensively

over the past decades. The questions addressed by physicists cover a broad range of

scales, ranging from the level of single cancer cells to that of the whole host tissue.

Additionally, physical knowledge is essential for certain treatments, such as radiation

therapy. Furthermore, methods of statistical physics are employed when studying com-
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plex signaling networks or the evolutionary nature of cancer.

At the cellular level, several studies address the question whether cancer cells have

altered mechanical properties in comparison to healthy cells [66], as this opens up the

possibility to diagnose cancer by measuring these properties of a sample of cells. A

second field where the mechanics of cancer cells play an important role is their migration

through the tumor microenvironment, especially during the metastatic process.

Over various different cancer types, cancer cells have commonly been found to have

a lower elastic modulus than their healthy counterparts and are thus softer and more

deformable [67, 68, 69]. This softening is associated to a reduction of actin polymers

in the cytoskeleton, and thus a less dense network of actin filaments, whose structure

determines the mechanical properties of a cell to a large degree [70, 71, 72]. It is tempting

to assume that a larger deformability is beneficial for cancer cells in the metastatic

process, during which cancer cells often have to migrate through a dense network of

ECM fibers, which poses a steric hindrance. Indeed, a larger deformability has been

shown to be correlated with higher invasiveness [73, 74]. In cancer diagnosis, the larger

deformability of cancer cells has successfully been used to distinguish malignant from

healthy cells, e.g. in oral squamous cell carcinomas [75, 76].

Deformability is not the only mechanical property of cancer cells which affects their

migration during the metastatic process. Another property which is believed to be crucial

for cancer cell migration is their ability to generate strong traction forces. For migration

on a substrate, it has indeed been shown that metastatic cells are able to generate higher

forces than non-metastatic cells. These results are consistent over various different cell

lines, varying substrate stiffness, and collagen density [77]. However, when turning to

migration in a three-dimensional matrix, it has been found that it is the directionality of

traction forces and not their strength alone which correlates with higher invasiveness [78].

More recently, it has been recognized that the properties of the tumor microenvi-

ronment, especially the ECM, are as important as those of the migrating cancer cells

themselves [79]. The ECM consists of several macromolecules, e.g. collagen, which form

a complex network and provide structural support to tissues. As for cell migration on

a two-dimensional substrate, the stiffness of the ECM similarly affects cell migration

in three dimensions, e.g. the migration speed and direction [80, 81]. Additionally, the

structure of the ECM network becomes important. Cancer cells migrate along colla-

gen fibers and thus alignment of these fibers leads to more persistent migration, which

correlates with higher invasiveness [82, 83]. On the other hand, migration becomes ef-

fectively stalled when the average pore size of the collagen network is of the order of

the size of the cell nucleus [84, 85]. However, cancer cells can overcome such restric-
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tions by secretion of matrix-degrading proteins and are thus able to actively remodel the

ECM network [86, 87]. Lastly, increased ECM stiffness has been shown to be involved

in phenotypical changes in cells towards more malignant phenotypes, e.g. inducing the

epithelial-mesenchymal transition (EMT) [88, 89]. During the EMT cells change from a

non-motile, epithelial to an invasive, mesenchymal phenotype. The transition is accom-

panied by a loss of cell-cell adhesion and cell polarity.

An apparent contradiction arises when comparing the mechanical properties of single

cancer cells to the properties of the whole tumor. As discussed before, cancer cells are

typically softer than their healthy counterparts, while tumors, however, are found to be

stiffer than the surrounding host tissue. Indeed, tumors are often detected via palpation

as a rigid mass. This contradiction can be resolved by looking at the composition of

tumors, which do not consist of cancer cells alone. The enhanced rigidity is attributed

to an increase in ECM density, which stiffens the tumor as a whole [90, 91]. These obser-

vations are used in more sophisticated cancer diagnosis than simple palpation. Magnetic

resonance elastography yields local stiffness maps of tumors and the surrounding host

tissue at high resolution in a non-invasive way [92]. More recently, tomoelastography

has been developed, which allows to measure the complex shear modulus as an indicator

of the fluidity of a tissue. For the liver, it has been shown that malignant lesions can be

distinguished from benign ones by their higher fluidity [93].

So far, we put a focus on experimental research of cells and tissues in general and cancer

in particular. Another major contribution which physics can provide to cancer research

is based on theoretical analysis and numerical calculations. Theoretical approaches aim

at extraction of general physical laws which underlie the experimental observations.

Computational modeling can span the bridge between the two worlds, as it provides a

possibility to test experimental hypotheses and theoretical predictions in a clean and

reproducible fashion.

1.4 Continuum mechanics of tissue growth and competition

The study of tissue growth from a theoretical perspective can be very broadly distin-

guished into two categories: (i) continuum-mechanics descriptions, which focus on the

behavior at the mesoscopic scale and do not take single cell properties into account

explicitly, and (ii) discrete models, which account at least for some of the mechani-

cal properties of a single cell. We will discuss the latter in section 1.5 and focus on

continuum-mechanics descriptions in this section.
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1.4.1 Tissue growth

In order to introduce growth into continuum mechanics, the probably simplest way is

the addition of a source term to the continuity equation

∂tρ+∇(ρv) = kρ, (1.4.1)

with cell density ρ, velocity field v, time t, and net growth rate k = kd−ka, the difference

between division rate kd and apoptosis rate ka. In order to introduce a coupling between

mechanics and growth, the growth rate k can be made dependent on the local mechanical

environment. Equation (1.4.1) obviously violates mass conservation, as one expects for

growing matter. In order to restore mass conservation, a two- or multi-component

description needs to be employed [94]. Equation (1.4.1) is than recovered in the limit of

large permeation lengths.

Allowing for a spatially varying growth rate k in equation (1.4.1), without further as-

sumptions about the origin of these variations, suffices to arrive at already quite complex

behavior. This can be motivated by in vitro experiments on growing tissue spheroids,

which reveal an enhanced growth rate at the spheroids surface, while the bulk growth

rate may be negative [29, 30, 62, 95] (see figure 1.1(a)). Biochemistry explains this obser-

vation with the higher concentration of nutrients at the surface due to limited diffusion

into the core, while mechanics point out a different explanation: in order to grow, a cells

needs to increase its volume and thus deform its surrounding, i.e. it imposes a strain

dipole. At the surface of the spheroid, a part of the necessary strain field is cut away,

which in turn favors proliferation locally.

The enhanced surface growth rate and the spherical symmetry motivate a two-rate

growth model of the form

k(r) =

{
kb for r < R− a
kb + ∆ks for r > R− a

, (1.4.2)

with radial distance r, spheroid size R, bulk growth rate kb, and surface growth rate

enhancement ∆ks within a small region of width a� R (see figure 1.1(b) for a sketch).

Integration of equation (1.4.2) over space yields a differential equation for the spheroid

volume V , given by

∂tV = kbV + a∆ks(36π)1/3V 2/3, (1.4.3)

assuming constant density ρ and neglecting terms O(a2). For kb < 0 and kb + ∆ks > 0,

i.e. a negative bulk and a positive surface growth rate, equation (1.4.3) has a steady
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Figure 1.1: Cryosection and two-rate growth model sketch. (a) Tissue spheroid
cryosection, with (right) and without (left) external pressure. ”Cryosections and im-
munofluorescence of the spheroids are used to label the cell divisions [antibody against
Ki-67 in light gray (cyan)] and apoptosis [antibody against cleaved Caspase-3 in dark
gray (red)]. (Left) Half section of a spheroid grown in a normal medium for 4 days.
(Right) Half section of a spheroid grown with a stress of 1 kPa for 4 days.” Taken with
permission from [29]. (b) Sketch of the two-rate growth model motivated by the exper-
imental results displayed in (a).

state solution for the radius Rss = −3a∆ks/kb . The steady state is sustained by a flow

of cells from the proliferative rim towards the apoptotic core of the spheroid. This flow

of cells can actually be ”visualized” by tracer particles inserted into surface cells [96].

The analytic solution to equation (1.4.3) is given by (with V (0) = 1)

V (t) =

[(
1 +

(36π)1/3a∆ks
kb

)
exp(kbt/3)− (36π)1/3a∆ks

kb

]3
. (1.4.4)

In [30], the growth of tumor spheroids has been studied under varying compressional

stress by adding a polymer of high molecular weight to the growth medium. The poly-

mer is not able to diffuse into the spheroid and thus causes an osmotic pressure. Equa-

tion 1.4.4 has been fitted with very good agreement to the obtained growth curves (see

figure 1.2(a)), which allows the extraction of numerical values for kb and ∆ks (see fig-

ure 1.2(b)). While the surface growth rate enhancement is basically independent of the

external pressure, the bulk growth rate decreases in a linear fashion.

The idea that the growth rate of a tissue depends on the external pressure has been

formulated in the concept of homeostatic pressure [97]. This concept can be understood

as follows. A growing tissue increases its volume, which, by simple thermodynamic
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(a) (b)

Figure 1.2: Growth dependence on pressure. (a) Normalized tissue spheroid vol-
ume V as a function of time t in experiments for different external pressures. Solid lines
represent fits to equation (1.4.4). The inset shows the normalized spheroid diameter for
two exemplary pressure values. (b) Values for surface growth rate enhancement (red)
and bulk growth rate (green) obtained by the fits in (a) as a function of pressure. Both
taken with permission from [30].

arguments, is connected to a pressure which the tissue exerts onto its surrounding.

Figure 1.3(a) depicts a gedankenexperiment, in which the tissue grows inside a chamber

which provides a constant biochemical environment. One side of this chamber is a

movable piston, which is connected to a spring. As the tissue grows, it will start to

compress the spring, which exerts a pressure back onto the tissue, until it reaches a

steady state at which the tissue and the spring pressure balance each other. At this

state the division rate equals the apoptosis rate and thus the total growth rate vanishes

on average. This state is termed the homeostatic state and thus the pressure at this

state defines the homeostatic pressure PH. The homeostatic state is stable because any

perturbation drives the system back to this state: further growth compresses the spring

and the resulting excess pressure causes net apoptosis of the tissue, until the system

reaches the homeostatic state again. This motivates the expansion of the growth rate

to linear order in terms of the difference of the external pressure P to the homeostatic

pressure

k = κ(PH − P ) +O((PH − P )2), (1.4.5)

with the pressure response coefficient κ. In the growth experiments displayed in fig-

ure 1.2, the bulk growth rate is negative for a vanishing external pressure. This indicates

that the homeostatic pressure is actually negative. A linear extrapolation to the home-

ostatic state, i.e. a vanishing growth rate, estimates a homeostatic pressure of about
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(a) (b)

Figure 1.3: Gedankenexperiment homeostatic pressure and tissue competi-
tion. (a) A growing tissue in a box with a movable piston connected to a spring on
one side. The growing tissue exerts a pressure onto its surrounding and compresses the
spring until the tissue pressure balances the spring pressure. (b) Spring in (a) replaced
by a second tissue, leading to a pressure-driven competition between the two. With
permission from Markus Basan.

−5 kPa [98]. In order to arrive at a steady state spheroid size in the two-rate growth

model, a negative homeostatic pressure is necessary for zero external pressure. This can

be seen by plugging equation (1.4.5) into the expression for the steady state spheroid

size Rss, which yields Rss = −3a∆ks/(κPH).

1.4.2 Tissue competition

The concept of homeostatic pressure has originally been proposed in order to explain

the competition for space between two different tissues, e.g. tumor and host [97]. Fig-

ure 1.3(b) extends the discussed gedankenexperiment by replacing the spring by a second

tissue (termed tissue B), which has a higher homeostatic pressure PB
H > PA

H than the

original tissue A. If we assume incompressibility, the total cell number Ntot is conserved,

i.e.

∂tNtot = kANA + kBNB = 0. (1.4.6)

Plugging equation (1.4.5) into equation (1.4.6) under the assumption of an identical

pressure response coefficient κ for both tissues yields the pressure

P = PA
H φ+ PB

H (1− φ), (1.4.7)

with the fraction φ = NA/Ntot of cells of tissue A. Thus, the system pressure balances

between the two homeostatic pressures. According to equation (1.4.5), tissue B will start

to grow at the expense of tissue A and finally take over the compartment. Inserting

equation (1.4.7) into equation (1.4.5) yields

∂tφ = κ∆PHφ(1− φ) (1.4.8)
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for the dynamics, with the difference in homeostatic pressure ∆PH = PB
H − PA

H between

the two tissues. Hence, the takeover of the compartment by tissue B occurs in a lo-

gistic fashion and the outcome of this tissue competition is solely determined by the

homeostatic pressures of the competing tissues.

In a circular or spherical geometry, an additional Laplace pressure due to interfacial

tension may act on the tumor. The Laplace pressure causes a critical radius, which

the tumor needs to overcome in order to grow further [97]. This provides a tentative

explanation for metastatic inefficiency, i.e. the relatively small amount of metastatic cells

that actually manage to grow to a secondary tumor of macroscopic size in comparison

to the number of cells which detach from the primary tumor [99]. Metastases usually

start to grow from a single or very few cells. As division and apoptosis are at least to

some extent stochastic processes, the metastasis might be able to grow above the critical

size threshold by chance. This chance, however, may be very small depending on the

strength of interfacial tension.

The homeostatic pressure concept has since then been employed to study interface

propagation between two competing tissues [100, 101, 102]. In [100], a generalized

Fisher-Kolmogorov equation is derived (originally proposed to describe the expansion of

an advantageous allele in a population [103]), which takes into account diffusion and con-

vection. Accordingly, they find two regimes of interface propagation, a diffusive regime

and one in which convective fluxes due to tissue growth dominate. In a circular geome-

try, diffusion leads to a broadening of the interface, which reduces the additional Laplace

pressure and thus helps the invading tissue to overcome the critical radius, even if its

initial radius is smaller than it.

The broadening of an interface due to diffusion raises the question whether the inter-

face between two competing tissues is stable and which mechanisms determine its stabil-

ity. Obviously, the interface between two identical tissues will grow indefinitely just by

diffusion alone. Interfacial tension as in the DAH favors a well-defined, sharp interface.

Reference [101] shows that interfacial tension can also be active due to anisotropic cell

growth. They find that a difference in homeostatic pressure suffices to arrive at a stable

propagating interface between two otherwise identical tissues. Reference [102] employs

a linear stability analysis of interface propagation on a substrate. Three possible insta-

bilities are found which could arise due to a difference in homeostatic pressure or cell

motility between the competing tissues. We will explore the competition on a substrate

and the stability of the interface by numerical means in chapter 4.
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Figure 1.4: Evolutionary adaptation in cellular automaton model. Temporal
evolution of a cellular automaton model with multiple cell phenotypes. Transport and
conversion of nutrients and chemicals are taken into account by a reaction-diffusion
model. Colors depict epithelial (gray), hyperplastic (pink), glycolytic (green), and
glycolytic-acid-resistant (yellow) cells. Other phenotypes are depicted in black. (a)
Initial condition of a single-layered epithelium connected to the basement membrane.
(b)-(d) display the system after 100, 200, and 300 generations, respectively. Taken with
permission from [104].

1.5 Computational modeling approaches

With growing computational power and increasing interest in the mechanics of multicel-

lular tissues, a variety of computational models have been developed, based on different

simulation techniques. The major complexity in the development of a cell-based model

lies in the broad range of length and time scales which are present in tissue growth and

tumorigenesis. Intracellular processes occur on the scale of nanometers and seconds,

while tumors grow over years at the scale of the whole organ. For this reason, most

models focus on a specific step during tumorigenesis, e.g. the formation of blood vessels

during vascularisation of a tumor or the migration of cells through the ECM during the

metastatic process. We will discuss different simulation techniques and describe certain

models in more detail, with a special focus on cancer and tumorigenesis.

Broadly, cell-based models can be distinguished into lattice-based and off-lattice mod-
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els. Most lattice-based models are cellular automata adapted to model tissue growth (CA).

CA can be further distinguished by whether a single lattice site holds at most one or

more than one cell. We limit our discussion here to the former. According to a set of

rules, at each time step cells can remain at their lattice site, migrate to a neighboring

one, undergo apoptosis, or divide. The rules typically consist of transition probabilities

which depend on the current state of the lattice site and that of its local environment.

CA models are thus solved by Monte-Carlo methods. The state of a lattice site can fur-

ther contain information about the local concentrations of fields of nutrients and other

chemicals, which in turn affect the transition probabilities. The dynamics of these fields

are governed by partial differential equations (PDE), e.g. a reaction-diffusion model,

which are solved numerically on the lattice. Such CA are hybrids between discrete

and continuum models and have for example been employed to study tumor growth

under oxygen limitation (hypoxia). Figure 1.6 displays snapshots at different times of

the model of [104, 105]. In there, a constant oxygen level is imposed at the basement

membrane (lower boundary). One cell might become hyperplastic due to a mutation or

epigenetic changes. Hyperplastic cells are highly proliferative and start to grow away

from the basement membrane, which induces hypoxic regions due to limited diffusion of

oxygen from the basement membrane. In these regions, an evolutionary selection of those

cells which can adopt their metabolism and switch to anaerobic glycolysis takes place.

This change in metabolism causes an acidic environment due to production of hydrogen

ions and thus another selection of those cells which are immune to this environment.

These results show how evolutionary forces shape a more malignant phenotype of cancer

cells, as glycolytic-acid-resistant cells create an environment toxic to other cells, but not

harmful to themselves. Inclusion of a static microvessel network into the model allows

for transport of the hydrogen ions away from their production site, which minimizes the

advantage of cancer cells in comparison to normal cells [106].

One of the limitations of CA is that the shape of a cell is fixed by the lattice structure.

Cellular Potts Model (CPM) account for varying cell shapes by using multiple lattice

sites to represent a single cell. CPM use an energy functional, which allows to represent

biological and physical behavior, e.g. cell-cell adhesion or a target cell volume, directly

in the model. Cell growth can be implemented by changing the target volume of a cell

in response to its environment, e.g. the local nutrient concentration. CPM are solved

by Monte-Carlo methods under use of the Metropolis algorithm and allow for explicit

representation of the microenvironment, e.g. ECM or vasculature. Cells can remodel

the microenvironment and interact with it, e.g. migrate along ECM fibers or induce

formation of new blood vessels [108, 109]. Reference [107] employs a CPM to study
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Figure 1.5: Cellular Potts Model with angiogenesis. Initial growth of a tumor
and onset of angiogenesis in a Cellular Potts Model. The tumor starts to grow and
deform the vasculature. Oxygen is the only nutrient in the system. Hypoxic cells se-
crete angiogenesis promoting factors, which attract endothelial cells. Different cell types
are normal cancer cells (green), hypoxic cancer cells (yellow), vascular endothelial cells
(red), and neovascular endothelial cells (purple). (a) Initial condition with a pre-existing
vasculature and a single tumor cell. (b)-(d) display the system after 15, 30, and 75 days,
respectively. Taken from [107].

the initial growth of an avascular tumor and the following onset of angiogenesis (see

figure 1.5 for snapshots displaying the temporal evolution). Oxygen is the only nutrient

in the system, assuming that other nutrients are not growth limiting and cancer cells

do not change their metabolism. Only a single cancer cell type exists, which, however,

can become hypoxic or necrotic depending on the supply with oxygen. Initially, the

tumor starts to grow from a single cell in a pre-existing vascular network. The avascular

tumor first grows exponentially, but saturates at a finite size once a lack of oxygen

limits further growth. At the surface of the tumor, oxygen levels are still sufficient to

sustain proliferation, while the core becomes necrotic (compare two-rate growth model

in section 1.4.1). Hypoxic cells produce angiogenesis promoting factors, which attracts

endothelial cells via chemotaxis and induces the formation of new blood vessels. This
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Figure 1.6: Tumor invasion in center-based model. Temporal evolution of the
invasion of a tumor through the basement membrane into the stroma in a center-based
model. Tumor cells (gray circles) invade the stroma (blue mesh) through the basal
membrane in reaction to signaling molecules secreted by the stromal fibroblasts (red
ellipse). Taken with permission from [110].

neovasculature then promotes further growth of the tumor.

Lattice-based models have an intrinsic lower length scale given by the size of a lattice

site, while the lattice itself can give rise to artifacts, e.g. reflection of its structure in

the shape of a large cell colony [111]. Such artifacts can be overcome by abandoning the

discretization of space, the basis which all off-lattice models have in common. Off-lattice

models can be further distinguished into models focusing on cell volume and those which

focus on cell boundaries. Among the former are center-based models (CBM), in which

cells are represented by one or very few centers of spheres or other simple objects. Most

CBM are force-based and integrate Newton’s equations of motion in order to evolve the

system in time, while, however, Monte-Carlo methods are employed as well [112, 113].

The former has the advantages of a well-defined time scale and direct representation of

physical laws. Force-based models consist of interactions between different cells, usually

accounting for an excluded cell volume and cell-cell adhesion, and between cells and

the environment, e.g. friction with the underlying substrate. Other forces regard the

motility of cells, usually modeled by an active, propulsive force, and their growth, e.g. by

increasing the volume of a cell over time. Reference [110] employs a CBM to study the

interactions between a tumor and the surrounding stroma, including the initial steps of

invasion. The stroma is modeled as a viscoelastic continuum which contains fibroblasts



18 Introduction

at low density, while the ECM is given by a density field. Fibroblasts and migratory

tumor cells secrete different proteinases. The fibroblast-secreted proteinase activates

migration in tumor cells above a given threshold concentration, while tumor-associated

proteinase degrades the basal membrane and the ECM. Once the first cells have become

invasive, a positive feedback loop is created, as degradation of the basement membrane

exposes more cells to fibroblast-secreted proteinase, causing more tumor cells to become

migratory and more degradation, finally leading to collective invasion of tumor cells into

the stroma.

Among the models which focus on the boundaries rather than the volume of cells are

vertex-based models (VM). Cells are described as polygons (polyhedra in 3D) whose

edges form the boundary to neighboring cells. Hence, VM are employed to study tightly

packed, confluent tissues with negligible space between cells. The mechanics of cells

and the interactions between different cells consist of a preferred cell area (volume in

3D) and cell perimeter (area in 3D), resulting in line tensions along cell edges. Line

tensions consist of two competing terms, contractility of the actomyosin cortex, which

acts to reduce the edge length, and the opposing cell-cell adhesion. Cell division and

apoptosis can be included by insertion and removal of edges and vertices from the net-

work. Epithelial tissues are the common example when VM are employed. Epithelial

cells show a polarization between their apical and basal surface, which can be accounted

for in 3D by different tensions along apical and basal edges. Reference [114] shows how

such an imbalance can affect cancer morphogenesis in tubular ducts. Motivated by the

experimentally observed loss of apical-basal polarization in transformed cells, the model

has been employed in order to test whether this change suffices to explain the observed

tumor morphology. Depending on the radius of the tube, the cancerous lesions expanded

outwards for small and inwards for large tube size. The simulations revealed that pro-

liferation of the transformed cells alone always results in outward growth of the lesion,

irrespective of the tube radius, while inward expansion is only possible for additional

loss of polarization.

In this section, we have seen how different models can be used to study very distinct

stages and aspects of tumor growth, ranging from initial growth of cancerous lesions to

invasion into the stroma. With the advance in experimental techniques, which nowadays

allow for measurements of forces at the single-cell level and tumor growth in vivo, as

well as the growth of available computational power, simulations of agent-based mod-

els provide a great tool to test experimental hypotheses and span the bridge between

experiments and theoretical modeling, as we have seen in the paragraph on VM.

For the rest of this thesis we employ a center-based model of growing tissues, which
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Figure 1.7: Growth mechanism of the simulation model used in this thesis.
Sketch of the mechanisms regarding growth of the center-based model used in this thesis.
A cell is constituted by two particles, which repel each other via an active growth force.
When the distance reaches a certain size threshold, the cell divides and two new particles
are placed close to the particles of the mother cell, which then constitute the two daughter
cells. Cells are removed at a constant rate from the simulation box in order to model
apoptosis.

we adapt in each chapter in order to study different aspects of tissue competition, while

the basics of the model stay the same throughout the thesis. Figure 1.7 displays a sketch

of the growth mechanism used in this model. Briefly, a cell is represented by two point

particles which interact via a repulsive growth force. Cells divide when the distance

between the two particles reaches a certain size threshold, while apoptosis is modeled by

removing cells randomly at a constant rate. Cells interact via a volume-exclusion force on

short distances and a constant adhesive force on intermediate distances and thus behave

like soft sticky spheres. Additionally, a dissipative particle dynamics thermostat accounts

for energy dissipation and random fluctuations. This model has first been developed to

study the rheology of growing tissues and test the predictions regarding the competition

for space between different tissues made by the homeostatic pressure concept [61, 115].

It has since then been employed to study different systems of collectively growing cells,

ranging from wound healing assays over growing tissue spheroids to bacterial colonies

under nutrient limitations in microfluidic devices [29, 116, 117].

1.6 Structure of the thesis

As we have seen in the previous sections, multicellular tissues are an example of active,

growing matter. We have discussed several experimental results, which show how me-

chanics influence the behavior of single cells and tissues, as well as how growing tissues

can be studied theoretically under the use of continuum mechanics and computationally

by simulations of cell-based models. Furthermore, we looked at cancer as an example

of tissue competition for space, how this competition is affected by mechanics, and dis-

cussed the contributions of physics to cancer research, as for instance in cancer diagnosis.

In this thesis, we study the mechanically-regulated competition for space between tissues

with different mechanical properties, with a focus on the role of the interface between
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different tissues and the evolutionary nature of tumorigenesis.

In chapter 2 we study three-dimensional bulk competition between tumor and host

and focus on the cross-adhesion between them. A strongly reduced cross-adhesion leads

to segregation of the competing tissues and an enhanced growth rate at the interface

between them. This growth enhancement leads to stable coexistence between host and

tumor in a variety of different structures, even when the two differ in their respective

homeostatic pressures. In chapter 3 we focus on the evolutionary aspect of tumorigenesis

by introducing a mutation rate with which cells change their mechanical properties. In

the simplest case, the tissue evolves to a strongly-growing, low-adhesive phenotype.

Motivated by biological evidence, we couple mutations changing growth and adhesion

strength by introducing a tradeoff between the two. In a certain parameter range we find

highly dynamic coexistence between multiple cell populations with distinct mechanical

properties. We switch from three- to two-dimensional tissue competition in chapter 4 in

order to study the stability of the interface between the competing tissues. We find that a

small motility force of one tissue suffices to stabilize the interface between two otherwise

identical tissues, while larger motility forces cause a finite-wavelength instability of the

interface. A different instability arises above a critical difference in homeostatic stress

between the two tissues when the weaker tissue has a higher viscosity than the stronger

tissue, while the interface is remarkably stable otherwise. The final chapter contains a

summarizing discussion of this thesis and gives an outlook on possible future studies.
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2 Mechanics of tissue competition:

interfaces stabilize coexistence

2.1 Abstract

Mechanical forces influence the dynamics of growing tissues. Computer simulations are

employed to study the importance of interfacial effects in tissue competition. It was

speculated previously that mechanical pressure determines the competition, where the

determining quantity is the homeostatic pressure - the pressure where division and apop-

tosis balance; the tissue with the higher homeostatic pressure overwhelms the other. In

contrast, we find that a weaker tissue can persist in stable coexistence with a stronger

tissue, if adhesion between them is small enough. An analytic continuum description

can quantitatively describe the underlying mechanism and reproduce the resulting pres-

sures and cell-number fractions. Furthermore, simulations reveal a variety of coexisting

structures, ranging from spherical inclusions to a bicontinuous state.

2.2 Introduction

Mechanical forces influence the growth of cells and tissues in several ways, via mechan-

otransduction [1] or mechanical feedback as regulator of growth and shape[2, 3]. This

occurs in systems ranging from plants adapting their growth patterns to mechanical

loads [4, 5], all the way to tumors responding in their growth to the pressure of the embed-

ding medium[6, 7, 8]. Cells have been shown to differentiate according to substrate stiff-

ness [9], and divide according to mechanical stress and strain [10, 11, 12, 13, 14, 15, 16].

Spheroids of many cells, grown in elastic gels [17, 18, 19] or shells [20, 21], or even in

suspension with osmotic stress [22, 23, 24, 25], show strong dependence of growth on the

properties of the embedding medium.

Given the evidence of the effect of mechanical stress on growth, it seems clear that

mechanics should also influence tissue competition, such as the competition between

different mutants in the imaginal wing disk of Drosophila [26, 27], or clonal expansion

in multistep cancerogenesis [28, 29]. Several theoretical studies support and quantify

31
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this idea for both, competition [2] and size determination [30] in the wing, and tumor

growth [8, 31].

A tissue grown in a finite compartment exerts a certain pressure onto its surrounding.

When reaching a steady state - the homeostatic state - this is the homeostatic pressure

PH. Under an external pressure P below PH, the tissue grows; whereas it shrinks if the

pressure is above it. This can be formulated as a linear expansion of the bulk growth

rate kb around the homeostatic pressure [31],

kb = κ(PH − P ) (2.2.1)

with the pressure response factor κ. To study the role of pressure on growth, cell-culture

experiments and computer simulations have been developed to explore this effect [22, 23,

24, 32, 33, 34]. While confirming the general picture - that mechanical pressure reduces

growth - these experiments and simulations have revealed that tissues preferentially

divide at the surface, even to the extent that they die (on average) in the bulk and sustain

a finite size only by surface growth. While consideration of nutrient transport may be

necessary for quantitative description of certain experiments [35, 36], mechanics alone

already results in enhanced surface growth, and matches other experiments [33]. For

tissue competition in general, and metastatic inefficiency in particular, it has been argued

that metastases need to reach a critical size, below which the Laplace pressure from

the interfacial tension exceeds the homeostatic pressure difference, and the metastasis

disappears [31].

In this work, we study the role of interfacial effects on mechanical tissue competition

by numerical simulations, in particular the effect of the strength of adhesive interactions

between different tissues. We find that similar to free surfaces, cells divide preferentially

at the low-adhesive interfaces. This interfacial growth in turn can stabilize coexistence

of two tissues with different homeostatic pressures. Interfaces in tissue competition have

been studied mostly from a theoretical perspective. Besides the above mentioned critical

size threshold due to interfacial tension, existing studies focus mainly on the propagation

of interfaces driven by a difference in homeostatic pressure [34, 37, 38], while the role of

an enhanced interfacial growth rate and of interactions across the interface has not yet

been considered.

2.3 Model

Agent-based modelling has been very successful in studying various aspects of tissue

growth, such as buckling and stem cell distribution in mammalian skin [39], formation
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of vascular networks [40] or wound healing [41]. For tumor growth, existing models focus

on different stages of tumor progression, e.g. avascular growth [42], angiogenesis [43], or

formation of metastasis [44, 45]. We follow the approach of [32] and model growing and

dividing cells by two point-like particles, which repel each other with a growth force

FG
ij =

G

(rij + r0)2
r̂ ij , (2.3.1)

with the growth strength factor G, the distance rij and unit vector r̂ij between the two

particles and a constant r0. FG
ij is applied during the whole life time of a cell. Cells

divide when rij reaches a certain size threshold rct. After division, a new particle is

placed randomly near each of the particles of the divided cell within a short distance

rd. Apoptosis is modeled by a constant rate of cell removal ka. Both processes occur

instantaneously. Volume exclusion is maintained by a relatively soft repulsive force FV
ij ,

while adhesion between cells is modeled by a constant attractive force FA
ij , given by

FV
ij = f0

(
R5

PP

r5ij
− 1

)
r̂ ij (2.3.2)

FA
ij = −f1r̂ ij , (2.3.3)

with the strength of volume exclusion and adhesion force f0 and f1, respectively. RPP

is the cut-off length of pairwise particle interactions. Division threshold rct , the con-

stant r0 in equation (4.3.1) as well as RPP are all of the order of the typical cell size.

A dissipative particle dynamics (DPD)-type thermostat is employed to account for dis-

sipation of energy and random fluctuations, which mimics the stochasticity of many

biological processes, e.g. the dynamic structure of the cytoskeleton or interactions with

the extracellular matrix. The thermostat consists of a dissipative force

FD
ij = −γωD(rij)(r̂ ij · v ij)r̂ ij , (2.3.4)

with the strength γ, a weight function ωD(rij) and the relative velocity v ij = v j − v i,

as well as a random force

FR
ij = σωR(rij)ξij r̂ ij , (2.3.5)

with strength σ =
√

2kBTγ, a Gaussian random variable ξij with zero mean and unit

variance and a weight function ωR(rij) =
√
ωD(rij). T is an effective temperature which

characterizes the strength of the fluctuations. Its value is chosen such that cells do not
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(a) (b) (c)

Figure 2.1: Snapshots of various structures of tissue coexistence. Both tissues are iden-
tical (reference tissue), interacting via fc = 0. (a) Spherical inclusion. (b) Cylindrical
inclusion. (c) Schwarz-P like bicontinuous structure. Other structures observed include
flat interfaces, perforated lamellar, combinations (e.g. perforated lamellar together with
a spheroid), and inverted (e.g. inverse spheroid) structures.

get stuck in local minima but has no noticeable effect otherwise.

The dynamics of particle i is then determined by

mir̈i = FG
ik + FD

ik + FR
ik +

∑
j 6=i,k

(
FA
ij + FV

ij + FD
ij + FR

ij

)
+ FB

i , (2.3.6)

with mass mi of particle i, particle k that forms a cell with particle i, and the back-

ground dissipation force FB
i = −γbvi. We integrate the equations of motion with a

self-consistent velocity-Verlet algorithm. Note that the division rate kd is not fixed, but

is obtained from the simulations and depends on the other model parameters.

This model results in pressure-dependent growth, in reasonable agreement with exper-

iments [22, 23, 24, 32, 33, 34]. For two competing tissues A and B, parameters for each

tissue can be set independently. In this work, we only vary the growth strengths GA and

GB, the self adhesion strengths fAA
1 , fBB

1 and the cross-adhesion strength fAB
1 := fc.

We define a reference tissue (see SI for numerical values) and report parameters in terms

of this reference tissue, denoted by a dagger, e.g. G† = G/G0. We measure space in

units of the pair potential interaction range RPP, time by the inverse of the apoptosis

rate ka, force in units of G0/R
2
PP and thus stress by G0/R

4
PP. Quantities measured in

these units are denoted by an asterisk ∗.
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Figure 2.2: Planar interface between two competing tissues. (a) Simulation snapshot.
(b) Net growth rate k∗ = (kd − ka)/ka as a function of the distance from the interface
s∗ for the competition between two identical (reference) tissues with fc = 0 for various
box lengths L∗z.

2.4 Results

Very small cross-adhesion strengths fc between cells of different tissues (i.e. fc �
min(fAA

1 , fBB
1 )) result in fundamentally different outcomes of the tissue competition

than predicted from simply assuming increased surface tension [31]. Instead of one tissue

overwhelming the other for different homeostatic pressures or the existence of a critical

size threshold explained above, we observe stable coexistence in a variety of segregated

structures depending on initial conditions (see figure 2.1). While segregation of the

tissues can be expected because of the high interfacial tension (γAB � γAA,γBB) [46],

the stable coexistence comes at a surprise. Even for two identical tissues (i.e the same

tissue parameters but dissimilar cells, with cross-adhesion different from self-adhesion)

a single A cell in a host of B grows into a stable spheroid occupying about a third of the

volume. Similarly, a random 1:2 mixture of stronger A cells in a host of B can result in a

stable 3:1 Schwarz-P bicontinuous structure. Movie 1 and 2 in the SI show the temporal

evolution during simulations similar to these two scenarios.

2.4.1 Flat interfaces - origin of coexistence

In order to understand the underlying physical mechanism of this behavior, we turn to a

simpler geometry of a slab-like tissue arrangement and develop an appropriate analytic

model. Cells are confined to a finite (periodic) compartment of size Lx × Ly × Lz. All



36 Mechanics of tissue competition: interfaces stabilize coexistence

cells in the left half (z < Lz/2) are type B cells, all others type A. Due to the periodic

boundary conditions, the system contains two interfaces. Large adhesion between cells

of the same tissue and no adhesion between cells of different tissues leads to a large

interfacial tension, stabilizing the flat interface with nearly vanishing roughness. This

allows the measurement of the division rate kd as a function of the distance to the

interface. The growth rate profile (see figure 2.9(b)) reveals that cells divide more in

a small region of width a (roughly the cut-off length RPP, with a weak dependence on

other model parameters) at the interface. In the bulk of the tissue, the net growth rate

is negative due to an elevated pressure. These results motivate a two-rate growth model

[22, 23, 24, 32, 33]

∂tρ(s) +∇ · (ρ(s)v) = kbρ(s) + ∆ksΘ(s− a)ρ(s), (2.4.1)

where ρ(s) is the cellular density of either tissue, Θ the Heaviside step function, s the

distance to the nearest interface and v the cell-velocity field. The additional growth at

the interface is modeled as a growth rate enhancement ∆ks near the interface (less than

a away).

Division and apoptosis events locally relax stress and thus lead to a liquefaction of

the tissue on long timescales [47, 48, 49]. Indeed, some experiments on tissue rheology

suggest liquid behavior on long timescales [50, 51, 52], while some other experiments

on Drosophila wing discs suggest that not all stress is relaxed by growth [53, 54, 55].

However, our model tissue clearly behaves as a liquid [47]. With the low velocities (cells

move a few cell diameters at most during their lifetime) and no external forcing, we can

thus assume a constant pressure across the system. Within a sharp-kink approximation

with constant density ρ(s) = ρ0 we integrate equation (2.4.1) over space, which gives for

the total cell number NA of tissue A

∂tNA = kAbNA + ∆kAs ρ02aLxLy, (2.4.2)

and similarly for tissue B. We define the cell number fraction φ = LA/Lz = NA/(NA +

NB) of type A cells, and divide equation (2.4.2) by (NA +NB) = ρ0LxLyLz and obtain

∂tφ = kAb φ+ 2a∆kAs /Lz, (2.4.3)

for tissue A, and

∂t(1− φ) = kBb (1− φ) + 2a∆kBs /Lz, (2.4.4)
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Figure 2.3: (a) Solid cyan and red lines show the time evolution of the cell number
fractions φA/B in a competition with zero cross-adhesion fc = 0 between two identical
(reference) tissues for a box length L∗z = 100. Dashed black lines show equation (2.4.6)
for both tissues with parameters fixed by independent simulations. (b) Average pressure
measured in competition as in (a) in terms of the inverse box length L∗z. Dashed purple
line shows equation (2.4.5), with parameters as in (a). Errors are determined by block
averaging method (see. [56]).

for tissue B. The homogeneous pressure motivates the linear dependence of kb on (PH−P )

as in equation (2.2.1), and similarly ∆ks ' ∆k0s + ∆k1s (PH − P ).

For simplicity, we first explore two identical tissues. Insertion of the linear pressure

dependence of kb and ∆ks in equation (2.4.3) and (2.4.4) yields the pressure

P = PH +
4a∆k0s

(4a∆k1s + κLz)
, (2.4.5)

i.e. the additional growth at the interface elevates the pressure above the homeostatic

pressure, which in turn causes the negative net growth rate in the bulk. Similarly, from

equation (2.4.3) and equation (2.4.4), we obtain

φ(t) =
1

2
+ (φ0 −

1

2
)e−κ(P−PH)t, (2.4.6)

with the initial number fraction φ0. Thus, the number fractions of two tissues with

identical parameters, but no cross-adhesion, will relax exponentially towards 1/2.

We determine the bulk parameters PH, κ from bulk simulations as in [33] by using the
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virial stress

σαβ = − 1

V

∑
i

miv
i
αv

i
β +

∑
i,j

rijα f
ij
β

 . (2.4.7)

Here,
∑

i sums over all particles, viα is the α component of the velocity of particle i,∑
i,j sums over all interacting pairs of particles, rijα is the α component of the distance

vector between i and j and f ijβ the β component of the force on particle i due to j.

The mean pressure is P = −1/3Tr〈σαβ〉. The pressure response coefficient κ is obtained

as the slope of a linear fit to the growth rates k for different pressures P around the

homeostatic pressure PH. We use a constant-pressure ensemble to impose a pressure Pi

[33], where the pressure is imposed by periodic rescaling of the volume of the simulation

box by a factor

χ = 1− βT
∆t

tP
(P − Pi), (2.4.8)

with isothermal compressibility βT, simulation time step ∆t and relaxation time tP. In

order to measure the interface growth coefficients a∆k0s , a∆k1s we make use of mirror

boundary conditions. Particles closer to the boundary than RPP/2 interact with the

mirrored image of themselves as they would with a particle of the other tissue. We

employ the mirror boundary conditions in z-direction and measure the average pressure

for different box lengths Lz. a∆k0s , a∆k1s are obtained by fitting equation (2.4.5) to sim-

ulation results. As shown in [33], the homeostatic pressure grows approximately linearly

with G, and decreases linearly with f1. κ is essentially independent of f1, but decreases

linearly with G. The interface growth coefficient a∆k0s is only weakly dependent on G,

but grows linearly with f1, while a∆k1s does not show a clear dependence on tissue pa-

rameters (see figures in SI). With the parameters determined independently, equations

(2.4.5) and (2.4.6) reproduce the simulations without further parameter adjustment (see

figure 2.3).

2.4.2 Competition with flat interface

Next, we explore the competition between two tissues with different homeostatic pres-

sures with a planar interface. We balance the pressures on both sides of the interface

and obtain

P = PA
H +

2a∆k0As
(2a∆k1As + κALA)

= PB
H +

2a∆k0Bs
(2a∆k1Bs + κBLB)

, (2.4.9)
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Figure 2.4: (a) Cell number fractions φ for various homeostatic pressure differences
∆P ∗H. Tissue B is fixed (as reference tissue (blue bullets) and as one with a higher
growth-force strength and a higher cell-cell adhesion coefficient (yellow squares)) and
the homeostatic pressure of tissue A is varied. Symbols are simulation results while the
solid lines are predictions by the two-rate model according to equation (2.4.10), using the
parameters of tissue B. See table S2 in the SI for numerical values of the simulation and
model parameters of the two fixed tissues. (b) Average pressure measured during the
simulations shown in (a) together with a plot of equation (2.4.9), using the parameter
of tissue B. The results are not symmetric around ∆PH = 0 because tissue B is fixed.
Dashed lines are lower bounds from LA,B < Lz. Boxsize L∗x = L∗y = 7; L∗z = 40. Errors
are determined by block averaging method.

where LB and LA(= Lz − LB) are the lengths occupied by tissue A and B. Note that

the insertion of LA,B < Lz in equation (2.4.9) gives a lower bound for the pressure: The

system pressure is always larger than the homeostatic pressure of the stronger tissue, plus

a system-size-dependent constant. Indeed, this lower bound describes the pressure rather

well. The stronger tissue occupies the larger part of the system, and thus L”stronger” ≈ Lz.
Thus, for fixed host tissue B, the pressure is almost constant for ∆PH ≡ PB

H − PA
H < 0,

and grows almost linearly for ∆PH > 0 (see figure 2.4(b)). The weaker tissue supports

the higher pressure by decreasing in size, and thus its apoptotic volume, sustained by

interface growth. In simulations, tissue B is fixed and the growth-force strength G

of tissue A is varied in order to change its homeostatic pressure. Simulations for two

different fixed tissues are performed, the reference tissue and one with a higher growth-

force strength and a higher cell-cell adhesion coefficient, which results in a negative

homeostatic pressure. For the simulated tissues, the parameter κ, ∆k0s and ∆k1s only

show small variations with G (see SI). We therefore assume them to be the same for
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both tissues to obtain

φ =
1

2
+

2a∆k0s
κ∆PHLz

±
[(

2a∆k0s
κ∆PHLz

)2

+

(
1

2
+

2a∆k1s
κLz

)2
] 1

2

. (2.4.10)

Note that for ∆PH → 0, equation (2.4.10) reproduces φ = 1/2 as expected. Around

∆PH = 0, φ grows linearly with ∆PH and then slows down (see figure 2.4(a)). For large

differences in homeostatic pressure, the model predicts two interfaces less than 2a apart,

thus violating its assumptions, and consequently fails to predict the simulation results

properly. Equations (2.4.9) and (2.4.10) reproduce simulation results well (see figure 2.4)

in a broad parameter range. Note that this also holds true for negative homeostatic bulk

pressures.

2.4.3 Non-planar interfaces

These results show that indeed the enhanced growth at the interface lies at the heart of

tissue coexistence observed in our simulations. However, a flat interface is not the only

stable structure for two competing tissues. Depending on initial conditions and param-

eters, a large range of other structures can be found (see figure 2.1). These different

structures result in different interface-to-volume ratios (and possibly other interfacial ef-

fects, e.g. due to curvature of the interface), changing the steady-state volume fractions

and pressures. We present simulation results for these structures in figure 2.5. Simula-

tions are started from initial conditions morphologically similar to the final structure,

but with an initial number fraction different than that at steady state.

Compared to flat interfaces, the number fraction φ of tissues in spherical or cylindrical

configuration is smaller, with spheroids being smaller than cylinders. Spheroids become

unstable with growing homeostatic pressure difference (around ∆P ∗H ≈ 0.2). They then

transform into cylinders, which again become unstable with further increasing homeo-

static pressure difference around ∆P ∗H ≈ 0.3 and turn into a slab-like structure, which

becomes unstable as well at even larger ∆P ∗H and turns into inverted structures. Vice

versa, cylinders turn into spheroids if the difference in homeostatic pressure is very neg-

ative (∆P ∗H ≈ −0.3). The number fraction of the bicontinuous phase is roughly the

same as for flat interfaces, but the bicontinuous phase is only stable in a small regime

(∆P ∗H ≈ [−0.15,0.15] for PB
H < 0). For larger ∆PH, the bicontinuous structure turns into

a perforated lamellar phase of the weaker tissue inside the stronger tissue. The stability

limits of the individual phases can be estimated in figure 2.5, where data is only shown

within the respective stability regime. In general, the number fraction φ of all structures



2.4 Results 41

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Homeostatic pressure difference ∆P ∗H

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
fr

a
ct

io
n
φ

(a)
Spheroid

Cylinder

Flat

Bicontinuous

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Homeostatic pressure difference ∆P ∗H

0.0

0.2

0.4

0.6

P
re

ss
u

re
P
∗

(b)

Figure 2.5: Cell number fractions φ for different homeostatic pressure differences ∆P ∗H
and different structures, as indicated by color. Circles correspond to a positive home-
ostatic pressure of tissues B and squares to a negative one (same parameters as in
figure 2.4, except cubic box size L∗ = 10). (b) Average pressure measured in the sim-
ulations shown in (a). L∗x = L∗y = L∗z = 10. Errors are determined by block averaging
method.

changes sigmoidally with homeostatic pressure difference.

While all of these structures are very stable over time, the question arises how stable

they are when the interfacial effects become smaller. We study this effect numerically, by

observing the structures for two identical tissues formed under zero cross-adhesion and

continuously increase the cross-adhesion strengthfc to the value of self-adhesion strength

(i.e. fc = fAA
1 = fBB

1 ). Figure 2.6 shows that all structures remain almost unchanged

up to a cross-adhesion fc approximately two thirds of the self adhesion f1. For higher fc,

only a mixed, sponge-like state remains. Mixing occurs before cross-adhesion strength

reaches self-adhesion strength because of the active growth. The total adhesion force

FA,tot
i =

∑
j F

A
ij on a particle i close to the interface acts perpendicular to the interface

towards the tissue species of i. The amplitude of this force decreases linearly towards

zero when cross-adhesion strength approaches self-adhesion strength, thus, at some value

fc < f1 the active growth force FG
i overcomes the total adhesive force and the interface

becomes unstable.
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Figure 2.6: Variation of cell number fraction φ with time with increasing cross-adhesion
fc/f1 = t∗/240 between two identical (reference) tissues. Simulations are started from
spherical (blue) and cylindrical inclusions (green) of tissue A in B as well as from flat
interfaces (yellow) and a bicontinuous phase (red). Solid vertical lines are marking
transition points after which cells start to detach from the initial structures. Cubic box
size L∗ = 10. Simulation snapshots at the sides show initial and final configurations.

2.5 Conclusions

In summary, the interface between two tissues plays an important role in the competition

between them. The enhanced growth at the interface can stabilize coexisting phases even

when one tissue has a higher homeostatic pressure. The coexisting phase appears in a

variety of different structures, ranging from a spherical inclusion over a flat interface to

a bicontinuous structure.

Interesting future directions are interfacial dynamics, roughness, and shapes, as previous-

ly explored for tissues on substrates and without additional interfacial growth [34, 37, 38].

Vice versa, it would be interesting to add interfacial growth to tissues growing on sub-

strates.

Finally, our results tentatively suggest an explanation for tumor heterogeneity and the

abundance of occult tumors: small symptom-free micro-tumors that are frequently found

in the human body [57]. For the thyroid, it might even be ’normal’ to find microscopic

lesions [58]. Our results provide a possible mechanical explanation how coexistence

of different tissues can be stabilized. For example, a mutation might downregulate

cadherins - an important cellular adhesion protein - as it often happens in tumors [59].

While this might reduce survival signaling [60], the lack of adhesion could favour our

mechanism of coexistence, even for weaker tissue growth.
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2.7 Supplementary Informations: Mechanics of tissue

competition: interfaces stabilize coexistence

We define a set of reference simulation parameters, which we refer to as reference tissue

parameters. Table 3.1 shows the values in simulation units. Figure 2.7 displays the

dependence of the bulk growth rate k∗ on the imposed pressure P ∗. The pressure

response coefficient κ∗ is obtained by a linear fit to the data. In principle, the homeostatic

pressure P ∗H could be obtained from extrapolation to the point where the growth rate

vanishes. However, we choose to measure it independently via the virial stress in a

simulation box with full periodic boundary conditions, without rescaling the volume

periodically. Both procedures yield similar values. Figure 2.8 shows the dependence of

κ∗ on the model parameters. While κ∗ decreases with increasing growth-force strength

G†, it is basically independent of the cell-cell adhesion coefficient f †1 . Figure 2.9 shows the

dependence of the average pressure P ∗ measured in simulations with mirror boundary

conditions on the simulation box length L∗z. The interface growth coefficients a∆k0∗s
and a∆k1∗s are obtained by a fit of equation (2.4.5) to the simulation data. Figure 2.10

displays the dependence of a∆k0∗s and a∆k1∗s on simulation parameters. a∆k0∗s grows

slowly with increasing growth-force strength G† and more strongly with growing cell-

cell interaction coefficient f †1 , as can be seen by the slope and the shift of the linear

regressions. On the other hand, a∆k1∗s does not show a clear dependence on model

parameters within the errors of the linear regressions parameters. In the main text, we

fixed two different tissues. Table 2.2 shows their simulation parameters and measured

tissue properties.
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Table 2.1: Simulation parameters of the reference tissue

Parameter Symbol Value

Time step ∆t 10−3

Pair potential interaction range Rpp 1
Cellular expansion pressure constant r0 1
Cell division distance threshold rct 0.8
New cell particle initial distance rd 0.00001
Growth force strength G 40
Mass m 1
Intracell dissipation coefficient γc 100
Intercell dissipation coefficient γt 50
Background dissipation coefficient γb 0.1
Apoptosis rate ka 0.01
Noise intensity kBT 0.1
Repulsive cell-cell potential coefficient f0 2.39566
Attractive cell-cell potential coefficient f1 6.0
Isothermal compressibility βT 1
Relaxation time constant tP 1

Table 2.2: Simulation parameters and measured properties of the two fixed tissues dis-
cussed in the main text. Errors of κ∗, a∆k0∗s and a∆k1∗s are fit uncertainties determined
by scipy. Errors of P ∗H are determined by block averaging method.

Parameter Fixed tissue 1 Fixed tissue 2

G† 1 1.125

f †1 1 1.166
P ∗H 0.1321± 0.0005 −0.0830± 0.0028
κ∗ 2.676± 0.080 2.632± 0.088
a∆k0∗s 2.43± 0.13 3.44± 0.19
a∆k1∗s 6.24± 0.88 6.56± 0.88
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Figure 2.7: Growth rate k∗ = k/ka as a function of the pressure P ∗ = PR4
PP/G0, shifted

by the homeostatic pressure PH, for one exemplary tissue (G† = 1.125, f †1 = 1.166). Blue
squares display simulation results and the dashed line a fit of equation (2.2.1) to them.
The errors bars are determined by block averaging method.
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Figure 2.8: Pressure response coefficient κ∗ = κG0/(kaR
4
PP) dependence on growth-

force strength G† for various cell-cell adhesion coefficients f †1 . Error bars are fit uncer-
tainties determined by scipy. The solid lines are linear regressions, taking the errors into
account.
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Figure 2.9: Average pressure in simulations with mirror boundary conditions as a
function of the simulation box length Lz for the reference tissue. The dashed line shows
a fit of equation (2.4.5) and the solid line the homeostatic pressure of the tissue. Error
bars are obtained by block averaging method.
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Figure 2.10: (a) Dependence of the interface growth coefficient a∆k0∗s = a∆k0s /ka on

growth-force strength G† for various cell-cell adhesion coefficients f †1 . (b) Same as in
(a), but for a∆k1∗s = a∆k1sG0/(kaR

4
PP). Error bars are fit uncertainties determined by

scipy. The solid lines are linear regressions, taking the errors into account



3 Tissue evolution: mechanical interplay of

adhesion, pressure, and heterogeneity

3.1 Abstract

The evolution of various competing cell types in tissues, and the resulting persistent

tissue population, is studied numerically and analytically in a particle-based model of

active tissues. Mutations change the properties of cells in various ways, including their

mechanical properties. Each mutation results in an advantage or disadvantage to grow

in the competition between different cell types. While changes in signaling processes and

biochemistry play an important role, we focus on changes in the mechanical properties by

studying the result of variation of growth force and adhesive cross-interactions between

cell types. For independent mutations of growth force and adhesion strength, the tissue

evolves towards cell types with high growth force and low internal adhesion strength, as

both increase the homeostatic pressure. Motivated by biological evidence, we postulate

a coupling between both parameters, such that an increased growth force comes at the

cost of a higher internal adhesion strength or vice versa. This tradeoff controls the

evolution of the tissue, ranging from unidirectional evolution to very heterogeneous and

dynamic populations. The special case of two competing cell types reveals three distinct

parameter regimes: two in which one cell type outcompetes the other, and one in which

both cell types coexist in a highly mixed state. Interestingly, a single mutated cell alone

suffices to reach the mixed state, while a finite mutation rate affects the results only

weakly. Finally, the coupling between changes in growth force and adhesion strength

reveals a mechanical explanation for the evolution towards intra-tumor heterogeneity, in

which multiple species coexist even under a constant evolutionary pressure.

3.2 Introduction

Mutations change the cell fitness and thus its chance to survive and proliferate [1]. Ad-

vantageous mutations are more likely to persist due to natural selection, which drives

the evolution of a tissue towards fitter cells [2]. Cancer represents an example of evolu-

53
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tion on a short time scale [3]. Furthermore, cancer is a multistep process, i.e. several

mutations are needed for a tumor in order to develop and become malignant [4]. Hence,

tumorigenesis might be expected to happen in a serial manner, i.e. a cell acquiring a

”beneficial” mutation and taking over the whole tissue. After some time, a daughter cell

acquires another mutation and again takes over. Interestingly, however, tumors do not

consist of a single cell type, but instead several subpopulations coexist within the same

tumor. This is called intra-tumor heterogeneity [5].

Each mutation changes certain biochemical properties of a cell. This ranges from

misfunction in the error correction machinery during DNA replication and disruptions

in signaling pathways to epigenetic changes in the expression level of certain proteins [1,

6, 7]. All these changes can also affect the mechanical properties of the mutated cell,

e.g. mutated cells which express less adhesion proteins might be able to detach from

the primary tumor more easily [8], a necessary step for the formation of metastases.

However, the metastatic process seems to be more complex, as adhesion proteins such

as E-cadherin are still found in metastatic cells, while a recent study points out that

E-cadherin might even be necessary in order to form metastases [9]. On the other hand,

mechanics feeds back onto growth in several ways, e.g. increased apoptosis rate due

to mechanical stresses [10, 11] or dependence of the growth of tissue spheroids on the

properties of the surrounding medium [12, 13, 14].

It is the mechanical contribution to tissue development that we want to focus on in

this work. For mechanically regulated growth, homeostatic pressure plays an important

role [15]. In the homeostatic state, when apoptosis and division balance each other, a

tissue exerts a certain pressure onto its surrounding, the homeostatic pressure PH. The

tissue is able to grow as long as the external pressure P is smaller than PH. For the

competition between different tissues for space, it has been suggested that the tissue

with the higher homeostatic pressure grows at the expense of the weaker tissue. Several

theoretical studies employ this concept in order to describe interface propagation between

two competing tissues [16, 17, 18]. A metastasis would need to reach a critical size,

below which the additional Laplace pressure due to surface tension would cause the

metastasis to shrink and disappear [15]. However, reduced adhesion between tissues,

which increases surface tension, leads to an enhanced growth rate at the interface between

them, stabilizing coexistence even for differing homeostatic pressures [19].

The evolutionary aspect of tumor development has been studied extensively under

the viewpoint of resistance to chemotherapy [20]. Heterogeneities can contribute to the

evolution of resistance to certain drug treatments not only in the cancer cell phenotypes

but also in the tumor microenvironment[21]. A main research focus is the design of
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treatment strategies which take already existing resistances and the development of

new resistances into account [21, 22]. Resistance may come at the cost of a fitness

disadvantage in the absence of therapy. This lead to the proposal of adaptive therapy,

in which a stable, non-resistant population is maintained by low-dose treatment, which

then suppresses proliferation of resistant phenotypes [23, 24].

A related system of clusters and swarms of growing and dividing cells with a significant

mutation rate are bacterial colonies and biofilms [25, 26]. These are interesting model

systems, because they can easily be cultured and studied in vitro experimentally. For

example, the gene expression in various cell types can be detected by fluorescent fusion

proteins [27]. Therefore, detailed studies of bacterial colonies can help to understand

how properties of microscopic cellular components determine macroscopic, multicellular

biological function.

In this work, we study the influence of mutations that change the mechanical properties

of cells on the competition dynamics, especially the interplay between changes in the

adhesive properties and the strength with which a cell pushes onto its surrounding.

Particularly interesting is the case where loss of adhesion comes at the cost of lower

growth strength. This is motivated by the observed down-regulation of E-cadherin, an

adhesion protein in epithelia, in many types of cancer [28]. Interestingly, E-cadherin

is also involved in signaling processes connected to cell growth [29]. We find that in

this case several cell types with different mechanical properties can coexist and that

the cell type with the highest homeostatic pressure does not necessarily dominate the

competition.

3.3 Simulation model

Several models have been developed previously in order to study tissue growth [30], in

combination with different simulation techniques, including vertex [31, 32] and particle-

based [33, 34] models as well as Cellular Potts models [35, 36]. We employ the two

particle growth (2PG) model of [19, 37, 38]. A cell is described by two particles which

repel each other via a growth force

FG
ij =

G

(rij + r0)2
r̂ ij , (3.3.1)

with strength G, unit vector r̂ ij , distance rij between the two particles and a constant r0.

Different cells interact via a soft repulsive force FV
ij on short distances, maintaining an

excluded volume, and a constant attractive force FA
ij on intermediate distances, modeling
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cell-cell adhesion, with

FV
ij = f0

(
R5

PP

r5ij
− 1

)
r̂ ij

FA
ij = −f1r̂ ij

 for rij < RPP, (3.3.2)

with exclusion coefficient f0, adhesion strength coefficient f1, and cut-off length RPP. A

cell divides when the distance between its two particles reaches a size threshold rct. A

new particle is then placed close (randomly within a short distance rd) to each of the two

particles of the divided cell. Each of these pairs then constitutes a new cell. Apoptosis

is modeled by removing cells randomly at a constant rate ka.

In real cells, the cell cycle and the cell division process are correlated with mechanical

forces, but not fully determined by it [39]. Hence, in order to study the influence of

the details of the division mechanism, we also employ a division mechanism, where cells

divide with a finite rate kdiv after reaching a smaller size threshold r′ct < rct. The growth

force equation 4.3.1 is set to zero when the distance between the two particles exceeds rct.

This mechanism leads to a broader distribution of cell sizes at division and an additional

source of randomness [40, 41]. Unless otherwise mentioned, the sharp threshold division

mechanism is employed.

We employ a dissipative particle dynamics-type thermostat, with an effective temper-

ature T , to account for energy dissipation and random fluctuations. We choose the value

of T such that cells can escape local minima, but other thermal effects are negligible.

Note that all parameters can be set individually for each cell type as well as between

different cell types for inter-cell interactions. We only vary the growth-force strength

Gα and adhesion strength fαβ1 between cells of the same (α = β) and different (α 6= β)

cell types, respectively, where α and β are cell-type numbers. We report simulation

parameters relative to a standard host cell type (see SI for numerical values), denoted

with a dagger, e.g. G† = G/G0. Time is measured in terms of the inverse apoptosis

rate ka, distance in units of the pair potential cut-off length RPP and stresses in units

of G0/R4
PP. Quantities reported in these units are denoted by an asterisk ∗. All simula-

tions are performed in a cubic box with edge length L = 12 ·RPP and periodic boundary

conditions in all directions, unless stated otherwise.

Tumor cells even within the same tumor are not all identical, but vary in terms of

all kind of attributes, e.g. expression levels of different proteins [42] or their reaction to

certain treatments [43]. Hence, there is not only a competition between the tumor and

the host, but also between cell-subpopulations of the tumor. Different models exist to

describe tumor heterogeneity, e.g. cancer stem cells [44] or clonal evolution [45]. In the
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latter case, a tumor originates from a single mutated cell, which can acquire additional

mutations over time, yielding additional subpopulations. We model this behavior by

defining a fixed number n of different ”genotypes”, each having a different growth-force

strength Gα and adhesion strength fαα1 . Mutations are implemented by offering each

daughter cell after a division event the chance to change its genotype with a certain

probability. Cancer cells typically have much higher mutation rates than healthy cells,

e.g. due to misfunction of the error correction machinery during DNA replication [6, 46,

47]. Even for a moderate mutation rate a cell can acquire many mutations over several

generations [48]. However, how many of these mutations actually lead to phenotypic

variations and changes of the mechanical properties of a cell remains an open question.

We therefore study the influence of the mutation rate on our results systematically.

In tissues, several adhesion mechanisms exist, serving a variety of different functions

to maintain tissue integrity. Between epithelial cells, the strength of cell-cell adhesion

is to a large degree regulated by anchoring junctions, e.g. adherens junctions, which

connect the actin cytoskeletons of neighbouring cells. Adherens junctions are mediated

by cadherins, which form homophilic bonds between cells. Thus, the strength of adhesion

between cells is limited by the cell expressing less cadherin, or, in terms of our simulation

model fαβ1 = min(fαα1 , fββ1 ). A reduced adhesion strength yields a higher homeostatic

pressure [38], which is otherwise dominated by the growth-force strength G.

Naturally such a minimalistic model can not cover the full complexity of real tumor

development. How random are mutations? How likely do these mutations alter the

mechanical properties of a cell? What is the role of the biochemical microenvironment?

Instead our model focuses on generic aspects of mechanics alone. The two key aspects

underlying this work, the evolutionary nature of cancer and the observed mechanical

alterations of cancer cells, are well established in the literature [1, 2, 49, 50]. Our aim

is to study the combined action of these two aspects of cancer, while the complexity of

real tumors will have to be integrated stepwise in future studies.

3.4 Results

For free parameter evolution, the tissue evolves to a strong-growing and low-adhesive

genotype (see figure 3.1), as predicted by the homeostatic pressure approach [15].

However, E-cadherin also plays a role in signaling processes connected to cell growth,

and thus a reduced expression might come at the cost of a lower growth-force strength

G, which in turn yields a lower homeostatic pressure. We thus turn our attention to

the case where an increase in growth-force strength Gα comes at the cost of a higher
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Figure 3.1: Evolution of a tissue with mutations altering growth-force strength G† and
adhesion strength f †1 independently. Heatmaps displaying cell-number fractions after
(a) zero generations (initial condition), (b) 50 generations, (c) 100 generations and (d)
125 generations. See Video S1 for a movie of the time evolution of the heatmap.

self-adhesion strength fαα1 . We assume the relations as

Gα = (1 +Dα)G0 (3.4.1)

fαα1 = (1 +Dα · τ)f01 , (3.4.2)

with genotype number α in the range [−(n − 1)/2, (n − 1)/2], evolutionary distance

Dα = d · α, distance d between neighbouring genotypes and tradeoff parameter τ (with

Gα, fαα1 > 0 ∀ α). After a division event, each daughter cell might mutate into a new

genotype with probability pm. If the cell mutates, its genotype number is changed to

αmother ± 1 randomly. This yields a mutation rate km = 2pmka.

Figure 3.2 displays results of such simulations for four different cases: only variation

of growth-force strength (τ = 0), balanced tradeoff (τ = 1), adhesion strength varied

twice as much as growth-force strength (τ = 2) and only variation of adhesion strength

(τ → ∞). Without tradeoff (figure 3.2(a)), the tissue evolves towards the strongest

growing genotype or, equivalently, the one with the highest homeostatic pressure. Simi-

larly, for τ →∞ (figure 3.2(d)), the system evolves towards the lowest adhesive genotype

(again, the one with the highest PH). We find the most dynamic evolution for a balanced

tradeoff (figures 3.3 and 3.2(b)). At first, the system evolves to stronger growing and

more adhesive genotypes. Over time a noticeable fraction of cells evolves also towards

weak-growing, less adhesive genotypes. The genotype number fractions φα = Nα/N

(with individual and total number of cells, Nα and N), show large fluctuations (see

figures 3.3(b) and (c)), with individual genotypes not being populated at all for certain

time periods. Besides this highly dynamic temporal evolution, after an initial time pe-

riod the system is dominated by genotypes with increased growth force and adhesion

strength at all times, with the one at the upper boundary having the highest number
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Figure 3.2: Time evolution of the genotype number fractions φα for tradeoff parameter
(a) τ = 0, (b) τ = 1, (c) τ = 2 and (d) τ → ∞, d → 0. Simulations start from a host
(standard) tissue at homeostasis, with n = 21 genotypes, pm = 0.01 in all and d = 0.025
in (a)-(c). White space corresponds to times where no cells of the genotype exist. Color
is coded on a logarithmic scale. Curves above display homeostatic pressure Pα∗H (black

solid), growth-force strength Gα†(red dashed) and self adhesion strength fαα†1 (green
dotted) of the corresponding genotype number α. See Video S2 for a visualization of the
temporal evolution of a tissue with τ = 1.25.

fraction for most of the time (see figure 3.3(a)). This result comes at a surprise, as this

is also the genotype with the lowest homeostatic pressure, while the one at the lower

boundary, which is basically never populated, has the highest PH. For a higher tradeoff

(figure 3.2(c)), we still find a broad distribution of genotypes, with less adhesive geno-

types dominating over the stronger growing ones, i.e. the loss in growth-force strength

is overcompensated by a lower adhesion strength. Interestingly, these results are not

altered qualitatively by additional randomness in the division mechanism or a reduced

mutation probability (see SI).

In order to gain insight into the underlying mechanism of this dynamic evolution, we

study the competition between two genotypes and no mutations (pm = 0). Simulations

are started from a single mutated cell (with increased/decreased growth force and ad-

hesion strength) in a host tissue at the homeostatic state (we label the mutant with M

and the host (wild type) with W). Even in this simplified case, we find one parameter

regime in which the mutant is not able to grow, one regime with stable coexistence in

a highly mixed state and another regime in which the mutant outcompetes the host.

Figure 3.4 shows the averaged number fractions of the mutant at the steady state. For

reduced growth force and adhesion strength (figure 3.4(a)), the mutant can only grow

against the host if its adhesion strength is reduced below a critical f crit1 . In terms of
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(a) (b) (c)

Figure 3.3: Simulation snapshots obtained from the simulation shown in figure 3.2(b).
(a) The dominating genotype (φ10 = 0.283) after 1000 generations. (b) Genotype α = −6
(blue) and α = 6 (green) after 485 generations (φ−6 = 0.027, φ6 = 0.002). (c) Same as
(b), but after 910 generations (φ−6 = 0.003, φ6 = 0.045).

equation (3.4.2), the value of f crit1 roughly corresponds to a balanced tradeoff (τ ≈ 1).

Already for fMM
1 > f crit1 , the homeostatic pressure of the mutant exceeds the one of the

host, i.e. a parameter regime exists in which the mutant is not able to grow, despite

of the higher PH. The reverse happens when growth force and adhesion strength are

increased. The mutant completely takes over the compartment, although its homeo-

static pressure is smaller than that of the host. Again, coexistence is only found when

the adhesion strength is increased above f crit1 . In the coexistence regime, the mutant

number fraction scales as φM ∝ 1/(fMM
1 − fWW

1 ).

Altogether, the competition between two genotypes alone yields the same qualitative

results as the more complex multi-genotype case discussed before. Still, the question

remains how a genotype with a lower homeostatic pressure can outcompete a genotype

with a higher homeostatic pressure. The answer can only lie in the adhesion strength

fMW
1 = min(fMM

1 , fWW
1 ) between mutant and host cells. This choice of cross-adhesion

strength breaks symmetry, as the stronger adhering genotype has more free space at the

interface, which favors divisions [19].

To address this question, we develop a phenomenological model which incorporates

pressure-dependent growth as well as interfacial effects, in order to obtain a qualitative

explanation of the simulation results.

We start with the expansion of the bulk growth rate kb around the homeostatic pres-

sure,

kb = κ(P − PH), (3.4.3)

with the pressure response coefficient κ. Due to the high degree of mixing, the number
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Figure 3.4: (a) Average number fraction φM of the mutant in terms of its adhesion

strength fMM†
1 for various (reduced) growth-force strengths GM†. Error bars are obtained

via block-averaging method (hidden behind markers) [51]. Dashed vertical lines indicate
the points below which the mutant has a higher homeostatic pressure, solid lines are
fits to equation (3.4.8). (b) Same as in (a) but for increased growth force and adhesion
strengths of the mutant.

fractions φM/W and hence the strength of interfacial effects vary locally. In a mean-field

approximation, we take the interfacial effects to be proportional to φM(1 − φM), with

individual prefactors ∆k
M/W
s for each genotype. The time evolution is then given by

∂tφ
M = κ(PM

H − P )φM + ∆kMs φ
M(1− φM) (3.4.4)

∂t(1− φM) = κ(PM
H + ∆PH − P )(1− φ)

+ ∆kWs φ
M(1− φM),

(3.4.5)

with the difference in homeostatic pressure ∆PH = PW
H − PM

H . Addition of equa-

tions (3.4.4) and (3.4.5) yields the pressure

P = PW
H −∆PHφ

M +
∆kMs + ∆kWs

κ
φM(1− φM). (3.4.6)

Thus, the pressure is given by the homeostatic pressures of the two genotypes weighted

by their number fraction plus an interfacial term. A figure displaying the pressure

measured during the simulations shown in figure 3.4 can be found in the SI. Insertion

of equation (3.4.6) into equation (3.4.4) yields a differential equation for the number

fraction with three fixed points (∂tφ
M = 0), φM1 = 0, φM2 = 1, and

φM3 =
−κ∆PH + ∆kMs

∆kMs + ∆kWs
. (3.4.7)
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Figure 3.5: (a) Average number fractions of the mutant (same simulations as shown in
figure 3.4(a)) as a function of the tradeoff τ of equation (3.4.2) for different evolutionary
distances Dα. (b) Same as in (a) but with results from figure 3.4(b). Error bars are
obtained via block-averaging method (hidden behind markers).

We discuss this result for the case of reduced growth force and adhesion strength of the

mutant. ∆kMs might be expected to vanish, as fMM
1 = fMW

1 and mutant cells thus would

not feel whether neighbouring cells are mutant or host cells. However, in order to grow, a

cell needs to impose a strain on its surrounding. Host cells adhere more strongly to each

other, thus it is harder for a mutant cell to impose a strain when surrounded by host

cells. Hence, ∆kMs is actually negative and the homeostatic pressure of the mutant needs

to exceed the host pressure by −∆kMs /κ in order to be able to grow against the host.

At this point, φM3 becomes positive, as long as ∆kMs + ∆kWs > 0. Host cells can impose

a strain more easily when surrounded by mutant cells and, additionally, have more free

space than when surrounded by other host cells. Hence, |∆kMs | < ∆kWs and the above

mentioned condition is fulfilled. Similarly, coexistence can be found for increased growth

force and adhesion strength when ∆PH > −∆kWs /κ. The above mentioned scaling of

the mutant number fraction can be obtained by an expansion of ∆PH and ∆k
M/W
s to

linear order in terms of ε := (fMM
1 − fWW

1 )/fWW
1 in equation (3.4.7),

φM3 =
−κ∆P 0

H

(∆kM1
s + ∆kW1

s )ε
+
−κ∆P 1

H + ∆kM1
s

∆kM1
s + ∆kW1

s

. (3.4.8)

The zeroth order terms of ∆k
M/W
s vanish as there are no interfacial effects when the

adhesion strength between host and mutant cells is equal to their self-adhesion strength,

while ∆P 0
H can be non-zero due to a changed growth-force strength. Indeed, equa-

tion (3.4.8) reproduces the simulation data reasonably well (see figure 3.4). A discussion

of the numerical values of the fitted parameters and additional results can be found in

the SI.
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Figure 3.6: (a) Average number fraction φM of the mutant as a function of the mutation
rate k∗m for different values of the tradeoff τ , for evolutionary distances Dα = 0.025
(circles) and Dα = −0.025 (triangles). Horizontal dotted lines display results for a
single mutation event. Vertical black dashed line indicates standard mutation rate.
Solid lines are a guide to the eye. (b) Average number of clusters of the weaker genotype
Nc measured in the same competitions in (a). Horizontal dotted lines display results for
a single mutation event. Error bars are obtained via block-averaging method.

Figure 3.5 displays similar results as shown in figure 3.4, but now as a function of

the tradeoff τ in equation (3.4.2). For τ < 1 the genotype with higher growth-force

strength outcompetes the weaker genotype, for 1 < τ < 2 a transition towards the

less adhesive genotype occurs, while for even higher values of the tradeoff τ > 2 the

less adhesive genotype outcompetes the second genotype. This transition from strongly

growing, adhesive to weakly growing, less adhesive genotypes is found in the same range

of τ as in the competition between many genotypes. Hence, the simplified case of two

competing genotypes captures the essential physics to explain the coexistence between

many competing genotypes and, additionally, provides a quantitative description.

Next, we turn our attention to the effect of a finite mutation rate on the evolution

of the system. Figure 3.6(a) shows the number fraction of the mutant as a function of

km for different combinations of evolutionary distance Dα and tradeoff τ , in comparison

to the number fraction reached for a single mutation event. As expected, the number

fraction converges towards 1/2 with increasing km for all combinations. For moderate

mutation rates, however, the number fraction largely fluctuates around the same average

as of a single mutation event. The single mutation leads to a stable coexistence of the two

genotypes - additional mutations quickly relax back to this state. Significant deviations

occur only if in the steady state of the single mutation event the number fraction of one

genotype is close to zero (in the following termed the weaker genotype, while, vice versa,
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Figure 3.7: (a) Probability ps of a single mutated cell to grow to macroscopic size as

a function of its (reduced) adhesion strength fMM†
1 for several values of the (reduced)

growth-force strength GM†. Error bars are a 1σ binomial confidence interval obtained
by Clopper-Pearson. Solid lines are linear fits. (b) Same as in (a), but with a constant
fitted in the plateau regime and increased growth force and adhesion strength. Box size
L∗ = 8.

the genotype with number fraction close to one is termed the stronger genotype). In

that case, the weaker genotype consists only of one or very few small cohesive clusters

of cells, because cells of the weaker genotype need to detach from the primary cluster

in order to form new clusters, but are likely to die when they do so, as they are only

surrounded by cells of the stronger genotype. Hence, the distribution of cells is highly

non-homogeneous. Compared to the single mutation event, even a small mutation rate

leads to the formation of multiple small cluster all over the system, thus increasing the

number fraction of the weaker genotype (see figure 3.6(b) for comparison in terms of

number of clusters and SI for further discussion). This result explains why at least

two genotypes, in addition to the dominating genotype, are populated as well in the

cases shown in figures 3.2 (a) and (d). When the number fractions of both genotypes

are sufficiently large (for 1 ≤ τ ≤ 2), deviations from the average of a single mutation

are still small for the standard mutation probability. Additionally, in the competitions

between many genotypes, mutations change the genotype to α ± 1 randomly and not

in a preferred direction. Hence, we conclude that the precise value of the mutation

probability does not play an important role in the regime where we find a heterogeneous

distribution of genotypes, as long as it is reasonably small (km � ka).

Given that a single mutated cell can grow to tissue of macroscopic size in a certain

parameter regime for fMW
1 = min(fMM

1 ,fWW
1 ), the question arises how likely it is to

actually reach this state. In order to study this probability, we mutate again a single cell

in a host tissue at its homeostatic state. A mutation that reaches a certain threshold
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Nt = 20 of cells counts as a survival event (the chance to die after reaching this threshold

becomes extremely small), apoptosis of the last mutant cell as a death event. Figure 3.7

shows the averages of many such simulations. For reduced growth force and adhesion

strength, the survival probability ps is only non-zero below the critical adhesion strength

f crit1 . For fMM
1 < f crit1 , ps increases linearly with further decreasing adhesion strength.

On the other hand, when growth force and adhesion strength are increased, the survival

probability first shows a plateau, whose value increases with increasing growth force

strength, from which it will probably drop to zero with further increase. Simulations

in this regime are difficult, because a mutated cell can easily grow to a few cells, but

will hardly reach the number threshold nor completely vanish again. Due to the high

self-adhesion strength on the one hand, it becomes hard to detach from the other cells,

but on the other hand easy to grow against the host when only few or no other mutant

cells are around. This explains the larger error bars at the highest values of the adhesion

strength, where the sample size is small.

3.5 Discussion

We have shown how intra-tumor heterogeneity, the existence of multiple subpopulations

within the same tumor, can arise due to mechanical interactions alone, while most stud-

ies on evolutionary dynamics in tumors focused on the adaptation to chemotherapy and

development of resistance to certain drugs [20, 21]. The simultaneous change of the ad-

hesion and growth-force strength stabilizes the coexistence of multiple subpopulations,

in a highly dynamic state. A higher growth-force strength alone, as well as a lower

adhesion strength, favor proliferation of a single subpopulation and the evolution of the

system to cell types with the highest growth-force strength, or lowest adhesion strength,

respectively. A tradeoff between the two, however, yields coexistence between multiple

subpopulations of different cell types. Interestingly, the expression of the adhesion pro-

tein E-cadherin, which also affects cell growth, has been found to be down-regulated in

many real tumors [28].

The simulations also reveal that the homeostatic pressure of a cell type is not necessar-

ily the only quantity that determines the result of a competition. Interactions between

different cell types, in our model determined by the adhesion between them, can lead

to a completely reverse outcome, i.e. a cell type with a lower homeostatic pressure can

outcompete a cell type with a higher homeostatic pressure completely. A phenomeno-

logical model explains the results on a qualitative level. The evolution of each cell type

is governed by mechanically-regulated growth, while mutation rates only play a minor
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role in the dynamics.

We have focused here on tissue evolution driven by mechanics alone, neglecting other

possible selection forces which determine the overall fitness of a subpopulation in a

real tumor, which consequently affects its evolution. Possible examples are spatially

varying distributions of growth-limiting resources or presence of chemotherapeutic drugs.

This could be included into our simulation model by making certain model parameters,

e.g. growth-force strength or apoptosis rate, dependent on the local concentration of

these substances [52]. An interesting future aspect for competition regulated purely by

mechanics is the influence of open boundaries. A tissue with a negative homeostatic

pressure then naturally grows to a spheroid of finite size, with an enhanced rate of

division at the surface [38]. For competing cell types, this would lead to an interplay

between surface and interfacial effects.
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[53] Jülich Supercomputing Centre (2018), “JURECA: Modular supercomputer at
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3.7 Supplementary Informations: Tissue evolution: mechanical

interplay of adhesion, pressure, and heterogeneity

3.7.1 Standard (host) tissue and simulation parameters

We define a set of reference simulation parameters, which we refer to as host parameters.

Table 3.1 shows the values in simulation units. In simulations we keep the host W fixed

and vary the parameters of the mutant M around the values of the host.

Table 3.1: Simulation parameters and measured properties of the standard (host) tissue.

Parameter Symbol Value

Time Step ∆t 10−3

Pair potential interaction range RPP 1
Cellular expansion pressure constant r0 1
Cell division distance threshold rct 0.8
Reduced cell division distance threshold r′ct 0.4
New cell particle initial distance rd 0.00001
Growth-force strength G 40
Mass m 1
Intracell dissipation coefficient γc 100
Intercell dissipation coefficient γt 50
Background dissipation coefficient γb 0.1
Apoptosis rate ka 0.01
Division rate kdiv 0.1
Mutation probability pm 0.01
Noise intensity kBT 0.1
Repulsive cell-cell potential coefficient f0 2.39566
Attractive cell-cell potential coefficient f1 6.0
Isothermal compressibility βT 1
Relaxation time constant tP 1
Homeostatic pressure P ∗H 0.1321± 0.0005
Pressure response coefficient κ∗ 2.676± 0.080

3.7.2 Additional Results

Additional randomness in division mechanism

Figure 3.8 displays results of simulations similar to figure 3.2, but with the altered

division mechanism, in which cells only divide with a pre-defined rate once exceeding the

size threshold. Both division mechanisms yield qualitatively identical results, especially

the heterogeneous coexistence between many subpopulations does not depend on the
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Figure 3.8: Time evolution of the genotype number fractions φα with altered division
mechanism and otherwise identical parameter as in figure 3.2. White space corresponds
to times where no cells of the genotype exist. Color is coded on a logarithmic scale.
Curves above display growth-force strength Gα†(red dashed) and self adhesion strength

fαα†1 (green dotted) of the corresponding genotype number α.

details of the division mechanism. In order to test whether both mechanisms also show

quantitative agreement, we also performed pair competitions between two genotypes.

The steady state number fraction of the mutant is similar for both mechanisms (see

figure 3.9, compare also figure 3.4 of the main text).

Reduced mutation rate

In order to test the dependence on the mutation rate for the case of many genotypes,

we performed evolution simulations with tradeoff, with a tenfold reduced mutation rate

(see figure 3.10, compare figure 3.2 of the main text). While the dynamics are somewhat

slowed down, as expected, the steady state heterogeneity after many generations is

unaltered.

Pressure

Figure 3.11 displays the average pressure P at the steady state. The pressure converges

towards the homeostatic pressure of the host when the number fraction of the mutant

becomes small.

Numerical values model

According to equation (3.4.8), the values for ∆k
M/W
s when fitted to the simulation results

displayed in figure 3.4 should be similar for all curves. Looking at the actual values
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Figure 3.9: Average number fraction φM of the mutant in terms of its adhesion strength
fMM†
1 for GM† = 0.875, for the sharp threshold division mechanism (blue circles) and

the constant division rate mechanism (yellow triangles). Error bars are obtained via
block-averaging method (hidden behind markers).

displayed in tables 3.2 and 3.3, this is not perfectly true. For increased growth force

and adhesion strength, the values for ∆kM1
s are indeed very similar and for ∆kW1

s only

the value for G† = 1.025 deviates noticeably. For reduced growth force and adhesion

strength, however, both, ∆kM1
s and ∆kW1

s decrease with decreasing G†.

Table 3.2: Values obtained for ∆kM1
s and ∆kW1

s by fitting the simulation results dis-
played in figure 3.4(a) to equation (3.4.8) for reduced growth force and adhesion strength
of the mutant.

GM† ∆kM1
s ∆kW1

s

0.750 −1.709± 0.010 2.432± 0.006
0.825 −2.106± 0.013 3.132± 0.008
0.875 −2.130± 0.015 3.588± 0.010
0.925 −2.241± 0.015 4.138± 0.008
0.975 −2.647± 0.028 4.549± 0.013

We can only speculate what the reason for this is. One thing we did not consider in the

derivation of equation (3.4.8) is a varying degree of mixing. As genotypes have different

adhesion strengths, they segregate to a certain degree due to an interfacial tension. A

way to measure the degree of mixing is to look at the number of neighbouring (within

interaction range) mutant and host cells for each cell. If the genotypes were perfectly



74 Tissue evolution: mechanical interplay of adhesion, pressure, and heterogeneity

Figure 3.10: Time evolution of the genotype number fractions φα for tenfold reduced
mutation probability pm = 0.001 and otherwise identical parameter as in figure 3.2.
White space corresponds to times where no cells of the genotype exist. Color is coded
on a logarithmic scale. Curves above display homeostatic pressure Pα∗H (black solid),

growth-force strength Gα†(red dashed) and self adhesion strength fαα†1 (green dotted)
of the corresponding genotype number α.

Table 3.3: Values obtained for ∆kM1
s and ∆kW1

s by fitting the simulation results
displayed in figure 3.4(b) to equation (3.4.8) for increased growth force and adhesion
strength of the mutant.

GM† ∆kM1
s ∆kW1

s

1.025 4.798± 0.040 −1.809± 0.045
1.075 4.865± 0.022 −2.178± 0.028
1.125 4.808± 0.028 −2.313± 0.027
1.175 4.712± 0.029 −2.328± 0.027
1.250 4.641± 0.041 −2.340± 0.027

mixed, one would expect

N
exp
MW = φWN

tot
M ,

with the expected number of neighbouring host cells for mutant cells N
exp
MW and the

total number of neighbours N
tot
M of mutant cells, with the average taken over all mutant

cells. However, the measured value N
sim
MW is substantially smaller. Hence, we define the

mixedness degree c = N
sim
MW/N

exp
MW and expand ∆k

M/W
s = ∆k

M/W1
s cε in equation (3.4.7).

Fitting again with the measured values of c yields the values for ∆kM1
s and ∆kW1

s for

reduced growth force and adhesion strength shown in table 3.4. They are nearly identical

for ∆kW1
s and vary only by about 25% for ∆kM1

s . Hence, taking into account the
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Figure 3.11: (a) Average pressure P ∗ measured at the steady state in the competitions
displayed in figure 3.4 for reduced growth force and adhesion strength of the mutant.
Error bars are obtained via block-averaging method (hidden behind markers). Dashed
horizontal line displays the homeostatic pressure of the host. (b) Same as in (a) but for
increased growth force and adhesion strength of the mutant.

Table 3.4: Values obtained for ∆kM1
s and ∆kW1

s by taking into account the degree of
mixedness c for decreased growth force and adhesion strength of the mutant.

GM† ∆kM1
s ∆kW1

s

0.750 −2.729± 0.170 5.588± 0.080
0.825 −2.918± 0.060 5.517± 0.033
0.875 −2.832± 0.054 5.499± 0.033
0.925 −2.700± 0.036 5.638± 0.020
0.975 −3.247± 0.080 5.684± 0.035

degree of mixing seems to explain the deviation to a large degree. However, the hereby

obtained values for increased growth force and adhesion strength differ more than the

ones displayed in table 3.3.

Stability analysis

The right hand side of the differential equation from which we obtained the fixed point

equation (3.4.7) is given by (dropping the index of φM)

F(φ) = φ3(∆kMs + ∆kWs ) + φ2(−2∆kMs −∆kWs

+κ∆PH) + φ(∆kMs − κ∆PH).
(3.7.1)
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A fixed point φi of an autonomous differential equation is stable if F ′(φi) < 0. Insertion

of the three fixed points into F ′(φ) yields

F ′(φ1 = 0) = ∆kMs − κ∆PH (3.7.2)

F ′(φ2 = 1) = ∆kWs + κ∆PH (3.7.3)

F ′(φ3) = −(∆kWs + κ∆PH)φ3. (3.7.4)

With the arguments discussed in the main text for the case fMW
1 = min(fMM

1 ,fWW
1 ), the

regime of ∆PH in which F ′(φ1/2) > 0 and F ′(φ3) < 0 is the same as the one in which

0 < φ3 < 1. Hence, φ3 is a stable fixed point there.

We test our phenomenological model by looking at the case fMW
1 = max(fMM

1 ,fWW
1 ).

For increased growth force and adhesion strength, host cells have less space when sur-

rounded by mutant cells, while mutant cells do not feel a difference in that regard. Hence,

the advantage of mutant cells at the interface is smaller than for fMW
1 = min(fMM

1 ,fWW
1 ),

while the disadvantage of host cells is bigger. Thus, the condition ∆kMs +∆kWs > 0 is not

fulfilled anymore. The difference in homeostatic pressure needs to be bigger than ∆kWs /κ,

such that φ3 becomes bigger than zero. Contrary to the case fMW
1 = min(fMM

1 ,fWW
1 ),

in the regime of ∆PH where 0 < φ3 < 1, φ1 and φ2 are stable and φ3 is an unstable fixed

point. Hence, we should not find stable coexistence and a single mutated cell should

take over the whole compartment as long as φ3 < 0 and not be able to grow otherwise.

Furthermore, when starting the simulation from an initial number fraction φMinit of mu-

tant cells, the mutant should only win when φMinit > φ3 and vanish when started below.

Figure 3.12 shows results of such competitions for different initial number fractions,

with random initial mutation of cells. For each parameter combination, five indepen-

dent competitions were performed. The initial number fraction needed such that the

mutant wins in all cases increases with growing adhesion strength, as expected. Most

of the time we find a finite regime in which both genotypes can win the competition

instead of a sharp transition, which is mainly due to the random initial conditions.

Cluster analysis

As explained in the main text, a constant rate of mutation leads to an enhanced formation

of clusters when the weaker genotype is barely able to grow against the stronger genotype

and consists of only one or few clusters for a single mutation event. We define a cluster

as all cells of the same genotype that are in interaction range to at least one other

member of the cluster (DBSCAN clustering algorithm with number of minimal points

equal to one). Figure 3.6(b) displays the number of clusters of the weaker genotype
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Figure 3.12: Result of competitions with adhesion strength fMW
1 = max(fMM

1 ,fWW
1 )

between host and mutant cells for GM† = 1.075 (circles) and GM† = 1.25 (triangles) for
different initial number fractions φMinit of the mutant in terms of its adhesion strength

fMM†
1 . For each combination five simulations were performed. Colors show whether

all competitions are won by the mutant (red), the host(cyan) or both win at least one
competition (yellow).

in the competitions displayed in figure 3.6(a), in comparison to the result of a single

mutation event. Indeed, when the number fraction of the weaker genotype is small for a

the single mutation event (τ = 1), we find significant deviations even for small mutation

rates. In this case, the number of clusters first strongly increases with mutation rate,

with roughly a tenfold increase at the peak. For even higher mutation probability,

the number of clusters decreases again, due to merging of clusters, finally leading to

percolation.

3.7.3 Additional material

S1 Video. Free evolution. Time evolution of a tissue for the free evolution case

displayed in Fig 3.1. Mutations can alter growth-force strength G† and adhesion strength

f †1 independently.

S2 Video. Heterogeneity. Time evolution of a tissue with tradeoff τ = 1.25 between

mutations of growth-force strength G† and adhesion strength f †1 . Visualizations of the

trajectory and of the individual cell-number fractions φα are displayed.
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4 Instability and fingering of interfaces in

growing tissue

4.1 Abstract

Interfaces in tissues are ubiquitous, both between tissue and environment as well as be-

tween populations of different cell types. The propagation of an interface can be driven

mechanically. Computer simulations of growing tissues are employed to study the stabil-

ity of the interface between two tissues on a substrate. From a mechanical perspective,

the dynamics and stability of this system is controlled mainly by four parameters of the

respective tissues: (i) the homeostatic stress (ii) cell motility (iii) tissue viscosity and

(iv) substrate friction. For propagation driven by a difference in homeostatic stress, the

interface is stable for tissues which differ in their substrate friction even for very large

differences of homeostatic stress; however, it becomes unstable above a critical stress

difference when the tissue with the larger homeostatic stress has a higher viscosity. A

small difference in directed bulk motility between the two tissues suffices to result in

propagation with a stable interface, even for otherwise identical tissues. Larger differ-

ences in motility force, however, result in a finite-wavelength instability of the interface.

Interestingly, the instability is apparently bound by nonlinear effects and the amplitude

of the interface undulations only grows to a finite value in time.

4.2 Introduction

Interfaces of tissues, their propagation as well as their stability, play an important role in

various biological contexts, ranging from tissue development [1] to wound healing [2, 3]

and cancer [4]. In many of these processes, the interface propagates, driven by cell

proliferation and/or motility. This leads to the question how the tissue maintains a stable

interface, as this is crucial e.g. in development in order to arrive at the desired distinct

cell populations, while interface instabilities can have severe consequences, as in cancer

metastasis. Several mechanisms act simultaneously in this problem, where each of them

can either have a stabilizing or destabilizing effect on the interface. Interfacial tension,

79
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e.g. caused by differential adhesion between cell populations [5], stabilizes an interface,

as it penalizes increase of interface area. On the other hand, increase of interfacial area

can be further amplified, e.g. due to enhanced growth rates in the protruding region,

where cells have more free space and access to nutrients, as commonly observed during

wound healing [2, 6, 7].

Interface instabilities in systems far from equilibrium are well known in solid-state

physics, where several instability mechanisms have been found and studied [8]. Exam-

ples are the Saffman-Taylor instability (also known as viscous fingering), which occurs

during the injection of a low-viscosity fluid into one of a larger viscosity, the Mullins-

Sekerka instability in unidirectional solidification, which arises from the unstable diffu-

sive transport of the latent heat of solidification, and leads to dendritic growth at later

stages, and the Rayleigh-Taylor instability between two immiscible fluids when the fluid

with higher density is placed on top of the lighter one. Also, in vapor deposition flat

interfaces are unstable to roughening, in which the interface width initially grows slowly,

but monotonically with time and saturates at a finite value at late times. For tissues,

or bacterial colonies as a related example, growth and division of cells can give rise to

new instability mechanisms. For example, an undulation instability of an incompress-

ible epithelium adjacent to a viscoelastic stroma has been found, where the instability

is driven by enhanced growth in the protruding region, which creates a shear flow that

builds up pressure at the bottom of the protrusion [9]. Coupling cell growth to nutrient

diffusion leads to an additional instability, as cells in the protruding region have access

to more nutrients, reminiscent of the Mullins-Sekerka instability [10]. In growing bac-

terial colonies of E. coli inside a microfluidic device, a streaming instability has been

observed due to steric interactions between large, slow-moving and small, fast-moving

cells [11]. During growth of bacterial colonies on a petri dish, instabilities of the ad-

vancing front arise, displaying different levels of complexity, which range from a small

number of fingers to densely-branched, dendritic structures [12, 13, 14, 15].

Mechanically-regulated propagation of tissues has been studied by employing the con-

cept of homeostatic stress [16, 17, 18]. The homeostatic stress is defined as the stress

a tissue exerts onto its surrounding at the state when apoptosis and division balance

each other. It has been proposed that in a competition for space between two tis-

sues, the tissue with the lower homeostatic stress (higher homeostatic pressure) grows

at the expense of the other [19]. Furthermore, motility forces generated by cells mi-

grating on a substrate can generate stresses on neighboring tissues and affect the com-

petition [18]. This has recently been studied by in vitro experiments. Two different

confluent cell-layers were initially separated by a fixed gap. Upon release, the two tis-
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sues migrate towards each other and collide ”head on”. Interestingly, Ras-transformed

Madin-Darby Canine Kidney (MDCK) cells where pushed back by the corresponding

wild type cells [20], while conversely Ras-transformed Human Embryonic Kidney (HEK)

cells outcompeted the corresponding wild type. The cell population which generates

larger collective stresses displaces the other population and drives the propagation of

the interface between them [21].

The stability of a propagating interface, driven by homeostatic stress and/or bulk

motility differences, between two competing tissues on a substrate has recently been

studied theoretically by a linear stability analysis [18]. Three instability criteria are

obtained, where two yield a critical homeostatic stress difference and one a critical dif-

ference in motility-force strength above which the interface becomes unstable.

Using a particle-based model of growing tissues [17], we study the mechanically-

regulated competition of two tissues and explore the stability of the interface. Our

simulations suggest that nonlinearities provide a strong stabilizing effect on the inter-

face. Contrary to linear-stability analysis, we find a stable interface when the two tissues

differ in their respective substrate friction, even for large homeostatic stress differences.

On the other hand, for different viscosities of the two tissues, an instability arises above

a critical difference in homeostatic stress. However, the instability does not grow forever;

instead, a finger-like protrusion of the weaker tissue is left behind in the stronger tissue,

which otherwise advances with a broad front. For a difference in motility-force strength,

we find that a small motility has a stabilizing effect onto the interface, causing a decrease

of the interface saturation width with growing difference in motility force, while large

motility forces cause an unstable interface above a critical point. Beyond the instability,

distinct modes grow strongly in amplitude, but saturate at finite values depending on

the strength of motile forces. Hence, the instability due to motility forces seems to be

bound by nonlinearities.

Our results demonstrate that the structure of the interface between two competing

tissues may serve as a key observable in characterizing mechanical properties of the

competing tissues. Indeed, it is often the interfacial properties that reveal malignancy

in tumor biology [22, 23].

4.3 Simulation model

Several models have been developed in order to study mechanical properties and growth

of cell monolayer in general and interfaces between different cell types in particular [24,

25, 26]. For example, vertex-based models are commonly employed , e.g. to study
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physical properties such as shear and compression modulus, or jamming transitions [27,

28, 29, 30]. We employ the well-established particle-based growth model of [17, 31],

which has been mapped onto various systems of growing cell sheets, such as wound

healing assays or growth of bacterial colonies in microfluidic devices [2, 32]. A cell is

represented by two particles which repel each other via an active growth force

FG
ij =

G

(rij + r0)2
r̂ ij , (4.3.1)

with growth-force strength G, unit vector r̂ ij and distance rij between the two particles

and a constant r0. When the distance between the particles exceeds a threshold rct

the cell divides. A new particle is then placed in close vicinity of each particle of the

mother cell. These pairs constitute the two daughter cells. Particles between different

cells interact via a soft repulsive force FV
ij on short distances and a constant attractive

force FA
ij on intermediate distances, where

FV
ij = f0

(
R5

PP

r5ij
− 1

)
r̂ ij

FA
ij = −f1r̂ ij

 for rij < RPP, 0 otherwise, (4.3.2)

with volume exclusion coefficient f0, adhesion strength f1 and cut-off length RPP. These

forces and the corresponding interaction potentials are shown in Fig. 3.1(a) and (b). The

discontinuity of the adhesion force FA
ij at r = RPP reflects the contact interaction of

cellular adhesion molecules such as E-cadherin. We model apoptosis by removing cells

randomly at a constant rate ka. Interactions with the underlying substrate are given by

a friction force

FB
i = −γbv i, (4.3.3)

with velocity v i. Forces in migrating cell monolayers do not solely arise at the front, but

collectively over the whole monolayer [21, 33]. In a simplified picture, this is modeled

by a homogeneous bulk motility force [18], given by a constant force perpendicular to

the interface

FM
i = fm · êx, (4.3.4)

with motility-force strength fm and direction êx perpendicular to the interface. This

choice of motility model further facilitates comparison of results with [18]. Other choices

for the motility model are possible, for instance by orienting the motility force towards

the local interface. Such an orientation could be important once protrusions start to

form. For simplicity and consistency with [18], we restrict the analysis to the simple
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Parameter Symbol Value

Time step ∆t 10−3

Pair potential range RPP 1
Cell expansion constant r0 1
Division distance threshold rct 0.8
New cell particle distance rd 10−5

Growth-force strength G 50
Mass m 1
Intracell dissipation γc 2G
Intercell dissipation γt 50
Background dissipation γb 10
Apoptosis rate ka 0.01
Noise intensity kBT 0.1
Repulsive potential coef. f0 2.3956
Attractive potential coef. f1 5.0

Figure 4.1: (a) Sketch of the cell-cell interaction force. (b) Corresponding potential to
the force displayed in (a). (c) Simulation parameters of the reference tissue.

motility model of equation (4.3.4). A dissipative particle dynamics thermostat is em-

ployed in order to account for energy dissipation and random fluctuation, satisfying the

fluctuation-dissipation theorem. It consists of a dissipative force

FD
ij = −γωD(rij)(r̂ ij · v ij)r̂ ij , (4.3.5)

with the strength γ (which can be chosen independently for intra- and intercell as well

as background dissipation) and the relative velocity v ij = v j − v i as well as a random

force

FR
ij = σωR(rij)ξij r̂ ij , (4.3.6)

with strength σ2 = 2kBTγ, a Gaussian random variable ξij with zero mean and unit vari-

ance. The weight functions ωD(rij) and ωR(rij) are related to each other via ωD(rij) =

ωR(rij)
2 to fulfill the fluctuation-dissipation theorem. For intracell dissipation, we use

uniform weighting with cutoff ωD(rij) = Θ(rij − RPP), with the Heavyside step func-
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Figure 4.2: Simulation snapshots in competitions with different motility-force strengths
fA†m of tissue A. The tissues are otherwise identical. The interface moves towards tissue B.
From left to right: fA†m = [0,0.002,0.045,0.08]. The length of the arrows corresponds

to the distance the interface moves over one generation (too small for fA†m = 0.002).
System size L∗y = 80 and time t∗ = 80 in all. The scale bar is 10 cell sizes. Note that for

fA†m ≥ 0.002 the snapshots are representative of the steady state and the undulations do
not grow further.

tion Θ(r). For intercell dissipation, we employ ωD(rij) = ωR(rij)
2 = (1 − rij/RPP)2.

Each parameter can be set independently for each cell type and between cell types for

inter-cell interactions. The dynamics of particle i is then determined by

mir̈i = FG
ik + FD

ik + FR
ik +

∑
j 6=i,k

(
FA
ij + FV

ij + FD
ij + FR

ij

)
+ FB

i + FM
i , (4.3.7)

with mass mi of particle i and particle k which forms a cell with particle i. We integrate

the equations of motion with a self-consistent velocity-Verlet algorithm.

We define a set of standard-tissue parameters and report simulation parameter relative

to these standard values, denoted with a dagger, e.g. G† = G/G0 (see table 4.1 for

numerical values). The choice of parameters is motivated by some basic requirements

and considerations. After division, the two daughter cells should be in contact with

each other (rct < RPP), roughly at the minimum of the cell-cell interaction potential

(rct ≈ 5
√
f0/(f0 + f1)) in order to minimize the sudden stress created after division.

The tissue as a whole should be expansive (σH < 0). The homeostatic stress increases

linearly with the adhesion coefficient f1 and decreases linearly with the growth-force

strength G [34]. As we keep f1 fixed, this sets a lower bound on G above which the

tissue is expansive. We choose a value larger than this lower bound for the reference

tissue, in order to be able to study positive and negative homeostatic stress differences.

For both tissues to have the same free growth rate, the intercell dissipation coefficient is

scaled accordingly (γc = 2G). This choice further ensures that the free growth rate (i.e.
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without neighbour cells)

kfreeg ≈ G

γc + γb

∫ rct

rd

(r0 + r)dr (4.3.8)

is significantly larger than the apoptosis rate (kfreeg � ka), such that the tissues can

easily replenish. The temperature T is chosen low enough that cells can escape local

minima, but other thermal effects are small. Time is measured in terms of the inverse

apoptosis rate ka of the standard tissue, distance in terms of the cut-off length RPP

and force in units of G0/R
2
PP. Thus, the length unit corresponds to the cell size, while

time is measured in generations. After one time unit, all cells have divided once on

average. Quantities reported in these units are denoted with an asterisk ∗. We vary the

growth-force strength G, the apoptosis rate ka, background friction γb, and motility-

force strength fm. The cross-adhesion strength between the two tissues is the same as

the adhesion strength within one tissue. Thus, no passive interfacial tension is present in

our simulations. A reduced cross-adhesion causes enhanced interfacial growth [35, 36].

This interfacial growth promotes a fingering instability [9], while the increased interfacial

tension favors a flattening of the interface, i.e. the two effects compete with each other.

To keep the model simple, we restrict the analysis to the case of vanishing passive

interfacial tension in this work.

We use the ”treadmilling simulation setup” introduced in [17] in order to obtain

steady-state interface progression, by keeping the interface position at the center of the

simulation box. All cells are shifted accordingly every 1000 timesteps; excess cells at one

end of the simulation box are removed while the weaker tissue replenishes on the other

end. In this way, both tissues reach their homeostatic state sufficiently far away from

the interface (with system size L∗x = 140 in all simulations), thus the interface properties

can be studied on long time scales in a computationally efficient way. We measure all

quantities in a comoving reference system s = x− x0, with interface position x0.

4.4 Results

It was shown in [17] that the competition between two tissues differing only in home-

ostatic stress results in a steady-state interface propagation, where the stronger tissue

invades the weaker one with a constant velocity. While only stable interfaces were ob-

served in [17], [18] proposes three different routes to instability for an interface between

two competing tissues: (A) For propagation driven by bulk motility, the interface be-

comes unstable above a critical difference in motility-force strength. For propagation
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driven by homeostatic stress, the interface is only unstable under the condition that

the two tissues either differ (B) in substrate friction or (C) viscosity. For both cases,

(B) and (C), the interface becomes unstable above a case-specific critical difference in

homeostatic stress. For a combination of both, bulk motility force f
A/B
m and homeostatic

stress difference ∆σH = σBH − σAH, the interface velocity

vint =
∆σH + lAf̂

A
m + lBf̂

B
m

ξAlA + ξBlB
(4.4.1)

is predicted, with substrate friction ξ = 2γbρ, cell density ρ, motility-force density

f̂
A/B
m = 2ρf

A/B
m , and stress decay length l =

√
χτ/ξ. Here, χ is the elastic modulus, τ the

time scale at which the tissue loses its elastic character due to cell division and apoptosis,

and the product χτ is an effective viscosity. The growth rate k is expanded to linear

order around the homeostatic stress as k = κ(σ − σH), with stress-response coefficient κ.

The viscosity is connected to the stress-response coefficient via κ = 1/χτ . For our

simulations, these coarse-grained tissue parameters are either direct input parameters,

or can be measured in independent single tissue simulations.

Figure 4.3(a) displays a comparison between equation (4.4.1), with parameters fixed

by independent simulations (see [17, 34] for details), and the measured interface velocity,

which shows very good agreement. In the following, we focus on the proposed instabilities

and study each of them individually.

4.4.1 Bulk motility force

We study first the effect of bulk motility without additional difference in homeostatic

stress, i.e. the two tissues are identical except that tissue A has a motility force fAm > 0

while tissue B is non-motile (fBm = 0). As predicted in [18], a prescribed motility force

can drive interface propagation and the motile tissue invades the non-motile one at

constant velocity. An instability is predicted for

∆vf >
2Γ(lAξA + lBξB)

lAlBξAξB(lA + lB)
, (4.4.2)

with difference in bulk velocity ∆vf = fAm/ξA − fBm/ξB and interfacial tension Γ [18].

Figure 4.2 displays simulation snapshots for increasing motility-force strength of tis-

sue A. For vanishing motility force, the two competing tissues are identical, including

the interaction between cells of different tissues, and thus the interface width w(t) =√
〈h2〉 − 〈h〉2 (with height field h(y,t), see [17] for more details) diverges as a function of

time (see snapshots in figure 4.2 and blue line in figure 4.3(b), as well as video S1 in the
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Figure 4.3: Interface velocity, interface (saturation) width, and order parameter depen-
dence on motility-force strength of tissue A in competitions with with a non-motile tissue.
System size L∗y = 80 in all, ∆σ∗H = 0 in (b)-(d). (a) Interface velocity vint as a function

of the motility-force strength fA∗m of tissue A for various homeostatic stress differences
∆σ∗H. Dashed lines represent theoretical predictions according to equation (4.4.1), with
parameters fixed by independent simulations. Error bars display standard deviations
(hidden behind markers). (b) Interface width w∗ as a function of time t∗ for different

values of motility-force strength fA†m of tissue A. Note the logarithmic time scale, the
interface width for non-vanishing motility is almost constant for 80% of the time. (c)
Saturation width w∗sat as a function of motility-force strength fA∗m of tissue A for different
peak wave vectors q∗peak. Note the logarithmic scale for fA∗m < 0.01. Error bars represent
standard deviations. (d) Nematic order parameter Qxx as a function of the position s∗

for various motility-force strengths fA∗m of tissue A. Peak wave vector q∗peak = 3 · 2π/L∗y
for all curves.
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SI). However, a rather small motility-force strength of tissue A (fAm ≈ 5 · 10−4G0/R
2
PP)

suffices to arrive at a finite interface saturation width wsat, i.e. small motility forces

have a stabilizing effect on the interface (see snapshots in figure 4.2 and green line in fig-

ure 4.3(b), as well as video S2 in the SI). For larger motility-force strengths, protrusions

of the motile into the non-motile tissue form at one particular finite wavelength. Over

the time course of the first cell generation the interface width grows slowly with time

(w ∼ t0.3). After the unstable wave mode has been selected, the interface width increases

linear with time (w ∼ t1.0). However, the mode amplitude does not grow indefinitely,

but saturates at a motility-force dependent plateau due to nonlinear effects after about

ten cell generations (see snapshots in figure 4.2 and orange and red line in figure 4.3(b),

as well as videos S3 and S4 in the SI).

The resulting wave pattern is remarkably stable over time once the steady state has

been reached. Figure 4.3(c) displays the saturation width wsat as a function of the

motility-force strength. The saturation width first decreases with increasing motility-

force strength, with wsat of the order of one or two cell layers at the minimum, i.e. an

almost flat interface. For higher motility-force strength, the saturation width starts to

increase and the aforementioned protrusions form, which we interpret as the onset of

instability. Interestingly, independent simulations for identical parameter yield different

wavelengths at the steady state. While the saturation width decreases with increasing

qpeak for identical fAm , the smallest motility-force strength at which a particular wave

mode is found increases with qpeak. This matches the predicted evolution of the most

unstable wave mode in [18]. In order to study the observed interface patterns quantita-

tively, we calculate the time-averaged structure factor

S(q) = 〈h̃(q,t)h̃(−q,t)〉, (4.4.3)

at the steady state, where h̃(q,t) denotes the spatial Fourier transform of the height

field h(y,t) (see [17] for further details). For self-affine surface growth the structure

factor displays a power-law decay at the steady state [26, 37]. Figure 4.4(a) shows the

structure factor for the same values of motility-force strength as in figures 4.2 and 4.3(b).

S(q) displays deviations from a power-law decay by a peak at a certain wave vector

larger than the system-spanning one (in figure 4.4(a) qpeak = 3 · 2π/L), which gets more

pronounced for increasing motility-force strength and corresponds to the wavelength of

the protrusions in figure 4.2. As mentioned above, for the same value of fAm , different wave

vectors can become the dominating mode at the steady state in independent simulations.

Figure 4.4(b) displays the structure factor for three different peak modes for identical

motility-force strength. The maximum decreases with increasing peak wave vectors,
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Figure 4.4: (a) Structure factor S(q∗) at the steady state for different values of the
motility-force strength fA∗m of tissue A for ∆σ∗H = 0 and q∗peak = 3 · 2π/L∗. The dashed

line is a guide to the eye. (b) Same as (a), but for fixed motility-force strength fA∗m = 0.55
and different peak wave vectors q∗peak. (c) Snapshots obtained in the simulations of (b)
at the steady state at t∗ = 80. Note that the different stable peak wave vectors arise by
chance from an initially flat interface. System size L∗y = 80 in all.
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Figure 4.5: Simulation snapshots in competitions with different homeostatic stress
differences ∆σ∗H and reduced apoptosis rate kB†a = 0.2 of tissue B. The interface moves
towards tissue B. From left to right: ∆σ∗H = [0.18, 0.36, 0.56, 0.78]. The length of the
arrows corresponds to the distance the interface moves over five generations. System
size L∗y = 80 and time t∗ = 80 in all. The scale bar is 10 cell sizes. The snapshots are
not representative of a steady state, as fingers detach, disappear and reform over time.

consistent with the higher saturation width for smaller qpeak (see figure 4.3(c)).

The stabilizing effect is accompanied by a preferred alignment of cells perpendicular

to the interface, quantified by the nematic order parameter Qxx = 2pxpx−1, with px the

x-component of the unit vector between the two cell particles. This leads to an active

interfacial tension Γ =
∫∞
−∞(σyy(s) − σxx(s))ds, due to cell growth [17]. Figure 4.3(d)

displays the order parameter for different motility-force strengths. The overall alignment

along the y-direction (i.e. negativeQxx) first increases with growing fAm , with a maximum

at the interface position. In the regime where protrusions start to form, the maximum

splits into two maxima located to the left and the right of the interface, where the

position of the maxima corresponds to the width of the protrusions. For even higher

motility-force strength, when the saturation width becomes large, we find an overall

alignment along the x-direction.

4.4.2 Homeostatic stress difference

As shown in [17, 18], interface propagation can be driven by homeostatic stress alone. For

two tissues that only differ by their homeostatic stress, a stable interface propagating

at constant velocity is found in the simulations [17]. Two instability conditions for

competition driven by a difference in homeostatic stress ∆σH have been proposed in [18],

given by

∆σH >
27

4
Γ

(ξAlB − ξBlA)2(ξAlA + ξBlB)

l2Al
2
B(ξB − ξA)3

, ξB > ξA (4.4.4)

∆σH >2Γ
(ξAlA + ξBlB)

κ−1B − κ−1A

, κ−1B > κ−1A (4.4.5)

While substrate friction ξ can be changed as an input parameter, the stress-response
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Figure 4.6: (a) Saturation width w∗sat as a function of substrate friction γA†b of tissue A
for various homeostatic stress differences ∆σ∗H. (b) Same as (a) but as a function of

the apoptosis rate kB†a of tissue B. System size L∗y = 80 in both. Error bars represent
standard deviations. Note the different scales on the y-axis between (a) and (b).

coefficient κ is a tissue property, which needs to be determined in simulations and can

not be controlled directly. In order to measure κ, we use a constant-stress ensemble and

measure the growth rate as a function of the applied stress. κ is then obtained by a linear

fit [17, 34]. Since κ = 1/χτ , with the characteristic time τ for cell turnover, κ can be

changed by varying the apoptosis rate ka. Reduction of ka yields a lower stress-response

coefficient and thus a higher viscosity.

For different substrate frictions, we do not observe any instabilities, even for large

differences in homeostatic stress. While the overall saturation width increases with

growing homeostatic stress difference, wsat does not show systematic variations with

substrate friction (see figure 4.6(a)).

According to equation (4.4.5), instabilities should only be obtained if the weaker tissue

(the tissue with the higher homeostatic stress, here tissue B) has a larger viscosity, i.e. a

lower apoptosis rate than the stronger tissue. Figure 4.5 displays simulation snapshots

for different homeostatic stress differences. With increasing difference, a finger of the

weaker tissue is found to develop into the stronger one. In contrast to the motility-

driven case, no steady state is reached. The finger occasionally detaches, leaving a

large island behind in the stronger tissue, moves along the interface and forms again

(see video S5 in the SI). However, we still find a mostly stable saturation width of the

interface. Figure 4.6(b) displays wsat as a function of the apoptosis rate kBa of tissue B for

various different values of ∆σH. We find that wsat increases for a reduced apoptosis rate

(compared to kBa = kAa ) above a critical homeostatic stress difference (∆σ∗H ≈ 0.4− 0.5),

while the saturation width decreases for increased kBa , i.e. an enhanced apoptosis rate

of the weaker tissue has a stabilizing effect.
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Figure 4.7: (a) Structure factor S(q∗) at the steady state for different values of the

apoptosis rate kB†a of tissue B for ∆σ∗H = 0.18 (below the critical stress difference). The
dashed lines are guides to the eye. (b) Same as (a), but for different values of ∆σ∗H and

fixed kB†a = 0.2. System size L∗y = 80 in all.

The structure factor reflects the increase in saturation width with growing homeostatic

stress difference (see figure 4.7). Below the critical stress difference, the structure factor

for reduced apoptosis rate does not deviate significantly from the case of identical apop-

tosis rates of the competing tissues (see figure 4.7(a)). However, for a fixed (reduced)

apoptosis rate of tissue B, the amplitude of all wave modes increases with growing ∆σH

(see figure 4.7(b)), which matches the increase of the interface saturation width.

4.4.3 Bulk motility force & homeostatic stress difference

Finally, we take a closer look at a combination of differences in motility and homeostatic

stress, with substrate friction and apoptosis rate identical for both tissues. For small

motility forces, the results of [17] are not altered, the interface is stable and propagates

at a constant velocity. In the regime where we find protrusions of the motile tissue into

the non-motile tissue for vanishing homeostatic stress difference, the interface saturation

width likewise starts to increase (see figure 4.8(a)). However, we do not observe protru-

sions at a particular wave length as for ∆σ∗H = 0, but a highly dynamic shape of the

interface (see snapshots in figure 4.8(b) for a comparison and video S6 in the SI).
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Figure 4.8: (a) Saturation width w∗sat as a function of the motility-force strength fA∗m of
tissue A for various homeostatic stress differences ∆σ∗H in competitions with the standard
tissue with fB∗m = 0 and system size L∗ = 80. Note the logarithmic scale for fA∗m < 0.01.
Error bars represent standard deviations. (b) Simulation snapshots for different motility-
force strengths fA∗m of tissue A, without (left) and with a homeostatic stress difference

∆σ∗H = 0.18 (right). From top to bottom: fA†m = [0.04,0.06,0.08] The interface moves to
the right. The tissues are otherwise identical. System size L∗y = 80 and time t∗ = 80 in
all. Note that the snapshots with a homeostatic stress difference are not representative
of the steady state, as the interface shape is highly dynamic.

4.5 Discussion

We have investigated the stability of a propagating interface between two competing

tissues over a broad parameter range in simulations of a particle-based model.

While the width of an interface between two tissues with identical properties diverges

as a function of time, we find that already a very small directed bulk motility force of

one tissue suffices to stabilize the interface at a finite width, similar to a homeostatic

stress difference [17]. Above a critical motility-force strength, a single mode with wave

length less than the system size becomes unstable. However, the amplitude of this mode

does not diverge, as expected by linear-stability analysis, but nonlinear effects limit its

growth, resulting in remarkably stable steady-state undulations of the interface. Cells

align preferentially parallel to the interface for small motility forces, which transits into

perpendicular alignment with growing motility-force strength. This parallel alignment

results in an active interfacial tension due to cell growth [17], which could explain the

stabilizing effect of small motility forces.

For interface propagation driven by a difference in homeostatic stress, an enhanced

viscosity of the weaker tissue results in an unstable interface above a critical homeostatic
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stress difference, reminiscent of a Saffman-Taylor instability (viscous fingering), where a

low-viscosity fluid is injected into a high-viscosity fluid. Contrary to the classical case,

viscosity here is the bulk viscosity due to cell turnover [18] rather than shear viscosity,

and is accordingly varied by changing the apoptosis rates of the competing tissues.

Displacement of the more viscous fluid does not take place by injection of the less viscous

fluid, but occurs naturally as the less viscous tissue grows at the expense of the more

viscous tissue. The resulting pattern in the homeostatic-stress-driven case is much more

dynamic than in the motility-driven case. A finger of the weaker tissue remains within

the propagating front. This finger constantly reforms, moves and disappears.

These two instabilities have recently been predicted by linear-stability analysis [18].

For both instabilities, our results match the predicted evolution of the most unstable

wave mode qualitatively. However, a quantitative comparison remains elusive, since

we do not consider interfacial tension due to differential adhesion, as this would cause

interfacial growth due to more free space for cells at the interface [35].

However, we do not observe the predicted instability for a difference in substrate

friction of the competing tissues, even for large differences in the homeostatic stress

between the competing tissues.

Our results suggest that interfacial patterns of competing tissues provide information

about the underlying mechanical properties of the competing tissues. For example, a

relatively regular — almost sinusoidal — undulation pattern would suggest a motility-

driven invasion, whereas a ”remaining finger” of the host in the invading tissue would

indicate a lower viscosity of the invader. However, experimental evidence of this kind

of structures and instabilities will be needed before definite conclusions can be drawn.

From a theoretical perspective, possible future research directions on the stability of

interfaces could be to account for anisotropic cell growth or enhanced interfacial growth

rates [35].
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[26] M. Block, E. Schöll, and D. Drasdo (2007), “Classifying the expansion kinetics

and critical surface dynamics of growing cell populations”, Phys. Rev. Lett.,

99(24), 248101.

[27] S. Alt, P. Ganguly, and G. Salbreux (2017), “Vertex models: From cell mechanics

to tissue morphogenesis”, Phil. Trans. R. Soc. B, 372(1720), 20150520.

[28] D. B. Staple, et al. (2010), “Mechanics and remodelling of cell packings in

epithelia”, Eur. Phys. J. E, 33(2), 117–127.

[29] N. Murisic, V. Hakim, I. G. Kevrekidis, S. Y. Shvartsman, and B. Audoly (2015),

“From discrete to continuum models of three-dimensional deformations in

epithelial sheets”, Biophys. J., 109(1), 154–163.

[30] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning (2015), “A

density-independent rigidity transition in biological tissues”, Nat. Phys., 11(12),

1074–1079.

[31] A.-K. Marel, N. Podewitz, M. Zorn, J. O. Rädler, and J. Elgeti (2014),
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4.7 Supplementary Informations: Instability and fingering of

interfaces in growing tissue

4.7.1 Additional material

S1 Video. Two identical tissues. Interface dynamics between two identical tissues

without motility force over 270 generations, starting from an initially flat interface. The

interface position does not move besides fluctuations. The two tissues mix and thus the

interface width (purple bar) increases with time.

S2 Video. Small motility force. Interface dynamics between a motile (fAm = 0.1,

blue) and a non-motile (fBm = 0.0, red) tissue over 120 generations. The tissues are

otherwise identical. The interface position moves towards the right, as indicated by the

moving checkerboard pattern in the background. Note that the interface is stable and

the interface width saturates at a value between one and two cell layers.

S3 Video. Medium motility force. Interface dynamics between a motile (fAm = 0.4,

blue) and a non-motile (fBm = 0.0, red) tissue over 150 generations. The interface is

unstable and protrusions of the motile into the non-motile tissue form. The amplitude

of these protrusions saturates at a finite value and the pattern is stable afterwards.

S4 Video. Large motility force. Interface dynamics between a motile (fAm = 0.8,

blue) and a non-motile (fBm = 0.0, red) tissue over 150 generations. Protrusions with

large amplitude of the motile into the non-motile tissue form.

S5 Video. Fingering instability. Interface dynamics between two tissue with home-

ostatic stress difference ∆σH = 0.78 over 200 generations. The weaker tissue (red) has a

lower apoptosis rate and thus a higher viscosity than the stronger tissue (blue). A finger

of the weaker tissue is left behind in the stronger one. No steady state is reached, as the

finger moves, detaches, and reforms.

S6 Video. Motility force and homeostatic stress difference. Interface dynamics

between two tissue with homeostatic stress difference ∆σH = 0.18 and motility force of

the stronger tissue (blue) fAm = 0.4 over 80 generations. The interface pattern is highly

dynamic and no well-defined wave mode emerges.
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5.1 Summary

The competition between different tissues or cell populations is heavily affected by bio-

chemistry. For example, better access to limited resources necessary for growth, such as

nutrients or growth factors, or resistance to certain chemotherapeutic drugs, provide an

advantage for a certain cell population. This advantage may result in a higher growth

rate or reduced apoptosis rate of that population compared to others. The population

thus grows in size and increases its occupied volume. Hence, for densely packed tissues,

such as epithelia, and limited compartment size, the competition can be regarded as a

competition for space. Thermodynamic arguments suggest that such a competition can

be affected by mechanics. The conjugate force to volume is pressure, which the growing

cell population needs to exert onto its surrounding. From this, it is easy to see why

tissue growth, with and without competition, is affected by the mechanical properties of

the tissue environment. It is simply force balance which tells us that a tissue can only

grow as long as the pressure acting on it is smaller than the pressure it is able to exert.

It has thus been argued that the tissue which exerts the larger pressure dominates the

competition, which has been formulated in the concept of homeostatic pressure [1].

Such mechanically-regulated competitions for space between different tissues have

been the central theme of this thesis. However, we have seen that the outcome of the

competition can not be predicted by individual tissue properties such as the homeostatic

pressure alone, but that the cross-interactions between different tissues and the result-

ing interfacial effects can be of similar importance. As competition between different

populations is a central aspect of evolution, the interfacial effects consequently affect

the evolutionary dynamics. Phrased in terms of this perspective: the fitness of a cell

population is not a single scalar variable, but a complex function of the interactions with

the other cell populations against which it competes. The strength of the interfacial ef-

fects is naturally affected by the shape of the interface itself. Throughout this thesis, we

have encountered a rich set of interfacial structures. This ranges from sharp interfaces

in different geometrical arrangements, such as spherical and cylindrical inclusions, over

a mixed, sponge-like state to an instability similar to Saffman-Taylor viscous fingering.
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In this thesis, we focused on cell-cell adhesion as key interaction parameter. We have

started with the extreme case of vanishing cross-adhesion strength fc in chapter 2, in

which we studied bulk competition between two different tissues in three dimensions.

Reduced cross-adhesion, relative to the internal adhesion strengths of the competing

tissues, increases the interfacial tension. The two tissues thus segregate into two distinct

compartments in order to reduce the interfacial area or, equivalently, minimize the free

adhesion energy. This results in a well-defined and sharp interface between them. At

both sides of the interface, in a region of one or two cell layers, the division rate is

enhanced and several times larger than the apoptosis rate, i.e. both tissues proliferate

at the interface. This raises the pressure in the system, which reduces the division rate

in the bulk of each tissue, where the growth rate is actually negative. The excess of

cells from the interface creates a flux of cells towards the bulk. This mechanism suffices

to stabilize coexistence between the competing tissues, even when they differ in home-

ostatic pressure. The tissue with the larger homeostatic pressure does not overwhelm

the weaker one completely, contrary to the prediction made for competitions regulated

by homeostatic pressure [1]. Instead, the tissue with the lower homeostatic pressure de-

creases in size, thereby reducing its apoptotic volume, until the excess of cells generated

at the interface matches the loss of cells in the bulk. The interface plays a similar role

as the free surface during in vitro experiments of growing tissue spheroids, in which an

apoptotic core is sustained by proliferation at the surface [2, 3].

An analytic two-rate growth model, with a linear expansion of the growth rates around

the homeostatic state, matches the simulation results quite well, with model parameters

measured in independent simulations. This model accounts for the temporal evolution

of the cell number fractions as well as the system pressure at the steady state, which is

always larger than the two individual homeostatic pressures.

Due to the periodic boundary conditions, different structures can become stable, de-

pending on the initial conditions from which the competitions are started. Examples are

spherical and cylindrical inclusions, flat interfaces, and a bicontinuous structure. When

fc is increased towards the internal adhesion strength, all of these structures break apart

at roughly the same cross-adhesion strength. At this point, cells can overcome the forces

resulting from interfacial tension by their active growth and the two tissues start to mix,

ending up in a sponge-like state when the cross-adhesion strength matches the internal

adhesion strengths of the competing tissues.

Our results provide a mechanical explanation of how small, symptom-free lesions or

occult tumors (tumors unnoticed by the host) can exist. For instance, occult tumors are

commonly found in the prostate [4]. Our findings furthermore elucidate the role that
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adhesion molecules, which are often down-regulated in cancer cells, may play during

tumorigenesis [5]. Down-regulation of the expression of a protein or loss of its function

occur via epigenetic changes and mutations. Each mutation yields a new cell popula-

tion with distinct properties, including the mechanical ones as the example of adhesion

molecules such as E-cadherin shows. The new cell population may be fitter than the sur-

rounding populations and thus grows in size or be less fit and may vanishes accordingly.

Hence, mutations make tumorigenesis an example of Darwinian evolution, in which the

fittest cell populations are automatically selected as a result of the competition between

them. However, our results of chapter 2 suggest that loss of adhesion can also lead

to stable coexistence between two populations - at least for vanishing cross-adhesion.

We thus turned our attention to a more cancer-evolutionary perspective and shifted

our attention from the steady state to evolutionary dynamics in chapter 3. Motivated

by the homophilic binding between cadherins of different cells (which puts a limit on

the adhesion strength by the cell expressing less cadherin), the cross-adhesion strength

between cells of different populations has been set to the lower of the two internal ad-

hesion strengths. Besides its function in mediating adhesive interactions between cells,

E-cadherin is further involved in various signaling processes, some of which are connected

to cell growth [6]. This motivates a coupling between changes in adhesion and growth

strength. In this chapter, we thus introduced mutations changing the two parameters

connected to adhesion and growth, namely the growth-force strength G and the adhesion

strength f1.

For unconstrained evolution, the tissue quickly evolves towards a state dominated

by cells with a high growth-force strength and low adhesion strength. Both, increased

growth force and reduced adhesion, increase the homeostatic pressure of a cell popula-

tion [7], i.e. the evolution of the tissue follows the predictions made by the homeostatic

pressure concept [1]. As E-cadherin is involved in both, mediating inter-cell adhesion

and regulation of cell growth, we introduced a tradeoff τ , which couples changes in

growth force and adhesion strength, i.e. reduced adhesion comes at the cost of a lower

growth-force strength and vice versa. For the two extreme cases, vanishing and infi-

nite tradeoff, the tissue again evolves either to populations with strong growth force

(vanishing tradeoff) or weak adhesion strength (infinite tradeoff). However, between

the extremes, a parameter regime exists in which the evolution of the tissue shows a

highly dynamic behavior. The most interesting case is a diverging evolution. While the

majority of cells evolves into a preferred direction (either increase or decrease of both,

adhesion and growth-force strength), a substantial fraction of cells also evolves into the

opposite direction. The cell number fractions of individual cell populations show large
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fluctuations, while the overall coexistence between populations with very different me-

chanical properties is remarkably stable. Interestingly, this state of coexistence is not

dominated by the cell population with the largest homeostatic pressure. In fact, for a

balanced tradeoff, the cell population with the lowest homeostatic pressure occupies the

largest fraction of the available space. The underlying reason lies in the cross-adhesion

between different cell populations. The interfacial tension is small and the competing

tissues mix. Although no well-defined interface exists anymore, interfacial effects are

still present. Cells of a population with large internal adhesion strength have a growth

advantage when surrounded by less adhesive cells: it is then easier to create the neces-

sary strain needed to divide than when surrounded by cells with large internal adhesion.

The opposite effect occurs for cells of a low-adhesive population.

During tumorigenesis, the evolutionary nature of cancer leads to so-called intra-tumor

heterogeneity, the observation that cells of the same tumor are not all identical, but

several subpopulations coexist. Tumor heterogeneity is a major obstacle for cancer

treatment, for example by chemotherapy, as one subpopulation might have developed

a resistance to a specific drug. Our results show how tumor heterogeneity can arise by

mechanics alone and that the coexistence between many different cell populations may,

from an evolutionary point of view, be the most stable fixed point of the competition.

The fitness of a cell population, given by the chance of a cell to divide, depends strongly

on the interactions with the cell populations against which it competes, and the out-

come of the competition is not determined by individual tissue properties, such as the

homeostatic pressure, alone.

In chapters 2 and 3 we have studied competitions in three dimensions. However, most

cancers originate from epithelial tissues, which are often effectively two-dimensional [5].

Furthermore, three-dimensional competitions are difficult to study experimentally. Two

dimensional cell cultures are readily available, and indeed, competitions in two dimen-

sions have recently been realized: two monolayers, initially separated by a gap, migrated

into the empty space between them. After collision, the competition was driven by the

monolayer generating larger collective stresses [8]. In chapter 4 we have thus studied

competitions on a two-dimensional substrate, which may facilitate comparison with ex-

periments. Competitions on a substrate have already been studied for a difference in

homeostatic pressure between otherwise identical tissues [9], which results in a propa-

gation of the interface at constant velocity. Starting from a flat interface, the interface

initially roughens, but saturates at longer times at a width of a few cell layers.

The structure of the interface between tumor and host has been shown to provide

information about a tumors malignancy [10]. This can thus be used for cancer diagno-
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sis, for example in the oral cavity [11]. An unstable interface is often associated with

increased malignancy, as detachment of cells from the primary tumor is a necessary re-

quirement for the formation of metastases [12]. Given the importance of the interfacial

structure, the question arises which physical mechanisms determine the stability of the

interface between tissues. We have addressed this question for several mechanical prop-

erties of the competing tissues in chapter 4. We have studied two different mechanisms

which drive the competition, namely a difference in homeostatic pressure and collective

motility of one tissue directed towards the other.

The interface between two identical tissues is unstable, as cell death and division give

rise to a diffusive motion of cells [13, 14]. The interface width thus increases with time,

while the interface position itself does not move. A motility force fm of one tissue directed

towards the other leads to propagation of the interface at constant velocity in direction

of the non-motile tissue. Interestingly, already for a small motility-force strength the

interface width does not grow indefinitely anymore, but saturates at a finite value. With

increasing fm the saturation width wsat further decreases , i.e. moderate motility forces

stabilize the interface between two tissues during propagation. Above a critical motility-

force strength, however, the interfaces becomes unstable and protrusions of the motile

into the non-motile tissue form at a well-defined wavelength smaller than the system

size. The amplitude of these protrusions is bound by nonlinearities and the interface

width still saturates at a motility-force dependent value. In independent competitions

for identical fm, different wave modes can become unstable, with different saturation

widths at the steady state. The resulting interface pattern is very stable in time and

does not change over hundreds of cell generations.

For interface propagation driven by a difference in homeostatic pressure it has been

shown in [9] that the interface is stable when the tissues are otherwise identical. We

have studied the case in which the competing tissues additionally differ in their respective

substrate friction and viscosity. Here, viscosity denotes an effective viscosity due to cell

turnover and can be changed by varying the apoptosis rate ka, where a lower apoptosis

rate yields a higher viscosity. The interface becomes unstable when the tissue with the

lower homeostatic pressure has the larger viscosity. This instability is characterized by a

finger of the weaker tissue which is left behind in the stronger tissue during propagation

and is reminiscent of Saffman-Taylor viscous fingering during injection of a low viscosity

fluid into one of larger viscosity. Contrary to the motility-driven case, no steady interface

pattern emerges: the finger moves along the interface and occasionally detaches from

the weaker tissue, leaving a large island behind, which shrinks in size over time as

proliferation of these cells is suppressed by the surrounding stronger tissue.
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Different mechanisms can drive the instability of a tumor interface, for instance oxy-

gen and nutrient limitations [12]. Mechanics alone suffices to drive a fingering instability

between epithelium and stroma, which gets further amplified when cells inside the fin-

ger have access to more nutrients [15, 16]. Our results reveal that the pattern of the

interface can also yield information about the mechanical properties of the competing

tissues and the mechanism by which interface propagation is driven. They further show

that no interfacial tension due to differential adhesion is needed in order to arrive at a

stable interface during the competition. However, further comprehensive research will

be needed to explore how these different causes of structural patterning interact.

Overall, consideration of interfacial effects and the cross-interactions between different

tissues in mechanically-regulated competition for space reveal that such competitions

bear a richer and more complex behavior than expected. Interfacial growth acts to

stabilize coexistence between different tissues or cell populations, in a steady state fashion

with a well-defined interface as well as in a dynamic scenario in a mixed state of many cell

populations under the influence of evolutionary forces. Growth and motility forces affect

structure and shape of the interface, which is thus subject to mechanical instabilities.

5.2 Outlook

In chapter 2, we have found that the mechanism which stabilizes the coexistence between

two tissues is similar to the one acting in the growth of tissue spheroids. In both,

proliferation at the surface, or interface respectively, sustains an apoptotic bulk. The

next natural step would thus be to study the combined action of the two effects, surface

and interface growth. A necessary requirement would be a negative homeostatic pressure

of the competing tissues. A tissue with negative homeostatic pressure naturally grows to

a spheroid of finite size in open boundary conditions [17]. A promising question to study

would be the importance of the position where a mutation happens. Clearly, a mutated

cell would have a higher chance to grow at the surface than in the bulk. However, due to

the flux of cells from the surface towards the bulk, the mutated cell might be advected

away from the surface before it actually grows to a substantial size. In that case, the

outcome would probably be the same as if the mutation had initially occurred in the

apoptotic core. For mutations in the bulk region, we expect interfacial effects to play a

crucial role. A mutated cell with a larger homeostatic pressure, but cross-interactions not

affected, may not be able to grow at all inside the core. However, interfacial growth could

stabilize a small spheroid of the mutant inside the bigger host spheroid. Interestingly,

this would result in a larger overall spheroid size, as the apoptotic region is reduced.
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Another interesting scenario is based on the DAH. According to the DAH, when two

spheroids come in contact with each other, cells of the less adhesive tissue will start to

spread over the other spheroid, eventually enveloping it completely. During this process

the surface area of the less adhesive tissue gradually increases and, vice versa, decreases

for the strongly adhesive one. Accordingly, the enveloped spheroid may decrease in size

or vanish completely, even when the other tissue is weaker in growth.

On a broader perspective, a promising direction could be to extend our model by

coupling the mechanical interactions to concentration fields of nutrients, growth factors,

or chemotherapeutic drugs. The dynamics of the concentration fields would be given by

PDE, e.g. by a reaction-diffusion model. Such an approach has already been successfully

applied to study the growth of bacterial colonies in microfluidic devices [18]. This would

allow to address a variety of interesting questions with connections to a broad range of

fields, as it makes a step towards a more biological model. One example could be to

study the response to chemotherapy and the role of resistance of a certain cell population

to it. Such a resistance may come at the cost of reduced fitness of that cell population

compared to others in the absence of treatment [19], which could be modeled by a

reduced growth-force strength of that population.

Our results further provide input for future theoretical studies. For mechanically-

regulated tissue competition, interactions between the competing tissues have so far

only been taken into account as passive interfacial tension [1, 20, 21]. Consideration of

interfacial growth might alter the speed at which the interface propagates or its profile.

Regarding the stability of the interface, our mechanism of interfacial growth could further

introduce a fascinating competition between two opposing factors. While the resulting

interfacial tension favors minimization of the interfacial area, enhanced growth at the

interface could lead to a feedback loop which promotes further growth of an undulation.

It would be interesting to see in which parameter regime such an instability, if existent,

could be expected and how it depends on individual tissue properties such as viscosity

or substrate friction.

The diverging evolution of a tissue towards coexistence between cell populations with

very different mechanical properties could potentially be of interest for evolutionary stud-

ies of cancer. Interaction terms in the fitness function could account for the interfacial

effects studied here. However, these effects act only locally within a range of one or two

cell layers. This might make the evolution dependent on how much cells actually move

throughout their lifetime. So far, we have studied cells subject to diffusive motion due

to random cell death alone. Active motility of cells could thus have a surprising effect

on the evolution of a tissue.
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[9] N. Podewitz, F. Jülicher, G. Gompper, and J. Elgeti (2016), “Interface dynamics

of competing tissues”, New J. Phys., 18(8), 083020.

[10] Z. Hamdoon, et al. (2012), “Structural validation of oral mucosal tissue using

optical coherence tomography”, Head Neck Oncol., 4(1), 29.

[11] M.-T. Tsai, et al. (2008), “Effective indicators for diagnosis of oral cancer using

optical coherence tomography”, Opt. Express, 16(20), 15847–15862.

[12] V. Cristini, et al. (2005), “Morphologic instability and cancer invasion”, Clin.

Cancer Res., 11(19), 6772–6779.

[13] J. Ranft, et al. (2010), “Fluidization of tissues by cell division and apoptosis”,

Proc. Natl. Acad. Sci. U.S.A., 107(49), 20863–20868.



Bibliography chapter 5 107

[14] M. Basan, J. Prost, J.-F. Joanny, and J. Elgeti (2011), “Dissipative particle

dynamics simulations for biological tissues: rheology and competition”, Phys.

Biol., 8(2), 026014.

[15] M. Basan, J.-F. Joanny, J. Prost, and T. Risler (2011), “Undulation instability of

epithelial tissues”, Phys. Rev. Lett., 106(15), 158101.

[16] T. Risler and M. Basan (2013), “Morphological instabilities of stratified epithelia:

a mechanical instability in tumour formation”, New J. Phys., 15(6), 065011.

[17] N. Podewitz, M. Delarue, and J. Elgeti (2015), “Tissue homeostasis: A tensile

state”, Europhys. Lett., 109(5), 58005.

[18] R. Hornung, et al. (2018), “Quantitative modelling of nutrient-limited growth of

bacterial colonies in microfluidic cultivation”, J. R. Soc. Interface, 15(139),

20170713.

[19] R. A. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden (2009), “Adaptive

therapy”, Cancer Res., 69(11), 4894–4903.

[20] J. J. Williamson and G. Salbreux (2018), “Stability and roughness of interfaces in

mechanically regulated tissues”, Phys. Rev. Lett., 121(23), 238102.
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