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Chapter 1

Introduction

“Amorphous materialper se, are not new:
the iron-rich silicious glassy materials re-
covered from the moon by the Apollo
missions are some billions of years old,
and man has been manufacturing glassy
materials for thousands of years. What
is new, however is thescientific studyof
amorphous materials and there has been
an explosion of interest recently as more
new materials produced in an amorphous
form, some of which have considerable
technological promise.”
S. R. Elliott,Physics of Amorphous Ma-
terials (1984).

1
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1.1 Amorphous Materials

"Amorphous" meaning "structureless" describes all those states of matter whose prop-
erties do not show a preferential direction unlike crystals. The range of disordered
structures is far wider than that of crystalline phases, as seen from Fig.1.1 (repre-
senting a phase diagram of a typical pure compound). By increasing pressure and
temperature under conditions which sufficiently delay spontaneous transition into the
crystalline state, amorphous solids can be continuously transformed into melts, and
the latter can further be transformed into the gaseous state if the critical temperature is
exceeded. It is not possible, however to change from the ordered crystalline phase to
one of the disordered states of aggregation without provoking discontinuous variation
of certain variables of state, such as volume, enthalpy or entropy.

Figure 1.1: P, T diagram of ordered and disordered state of a typical pure compound

(Adapted from Ref. [2]).

The methods of X-ray, neutron and electron diffraction are helpful in distinguish-
ing the amorphous substances from those that are crystalline. Instead of the distinct
discrete diffraction maxima occurring for crystalline substances, only a few circular
fringes are observed in amorphous solids. These circular fringes indicate a non-random
distribution of interatomic distances, in other words, a degree of order that has been
carried over to the amorphous state. Hence, amorphous substances, like crystals, are
usually characterized by certain areas ofshort-range order. These often correspond
to the structural units of crystalline states, or at least are associated with them through
a clear relationship in terms of chemical structure. As distance increases, the diver-
sity of structural configurations also increases rapidly owing to a certain variablity in
bond lengths, and especially in bond angles mainly due to the twisting of units rela-
tive to each other, through partial rotation about the axes of chemical bonds. Hence, a
long-range order, as in crystals, does not exist in amorphous substances.
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The world ofquasi-crystallinesolids occupies a position between crystalline and
amorphous matter. These materials seem to represent a fundamentally different phase
of solids, exhibiting symmetries that are impossible for ordinary solids. They ex-
hibit the long-range orientational order rather than the translational one. This quasi-
periodicity leads to well-defined X-ray diffraction pattern.

Figure 1.2: Path of formation of vitreous and amorphous solids from melts or solu-

tion, vapors and crystalline states of substances (Adapted from Ref. [2]).

Amorphous solids can be obtained from the liquid state, i.e., from a melt or solu-
tion, or from the gas phase, provided that the formation of a periodic arrangement of
units through the process of nucleation and crystallization is prevented. On the other
hand , by supplying energy to crystalline solids they can be converted to the amorphous
state directly without passing through the liquid or gaseous phases. A collection of the
methods are summarized in Fig.1.2. Refer to Ref. [1,2] for further details. Glasses,
a special class of non-crystalline solids, are obtained by sufficiently rapid quenching
of melts [3,4,5] or by drying of gels from solutions [6]. The process of precipitation
of solutions often leads to amorphous precipitates [7]. Electrolytic separation using
a high current density also gives rise to the formation of amorphous layers [8]. With
regards to the methods starting from the gaseous phase, the most important of these
are thermal evaporation and condensation in high vacuum [9], cathode sputtering [10]
and deposition of amorphous layers in chemical and glow discharge processes [11].
Amorphous films or layers can also be generated by direct oxidation of crystals at the
surface [12]. Crystalline solids are also converted to amorphous solids by the influence
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of mechanical treatment [13], shock waves [14] or intense radiation with neutrons or
ions [15].

1.2 Amorphous Materials Derived From Zeolite

1.2.1 Zeolites

The wordzeoliteis Greek in origin, coming from the words "zein" and "lithos" mean-
ing to boil and rock. It was first used by the Swedish chemist and mineralogist A. F.
Cronstedt in his paper announcing the discovery of a new class of tectosilicates [16].
There was little interest in zeolites until the late 1930’s when the modern founder
of zeolite chemistry, R. M. Barrer began the characterization of zeolite structure and
chemistry [17]. His work gave details of the first method of laboratory synthesis of
zeolites from silicate alumina gels, the changes that occur upon ion exchange and their
use as environmental friendly, shape selective catalysts. These discoveries sparked
huge interest in the synthesis of shape selective zeolite catalysts in companies such as
Union Carbide and Mobil.

Chemically, zeolites are microporous solid-state crystalline materials having chan-
nels, cages and windows of molecular dimensions. The zeolite framework consists of
an infinite array of corner-sharing TO4 tetrahedra. The tetrahedral atom T can be a
wide range of combinations of elements, e.g., Si and Al, B and Si, Ga and Si, etc. In
cases where the T atoms cause a charge imbalance in the system, the charge neutrality
is maintained by the incorporation of protons or extra-framework cations. The cations
usually occupy sites of relatively low coordination number in the structure and as a
consequence, are easy to ion-exchange. Although the tetrahedra are quite rigid, there
is considerable flexibility in the bond angles about the O atom (bond angle ranges from
125◦ to close to 180◦ throughout the many known zeolite structures).

Zeolites are normally synthesized hydrothermally from basic reaction gels at tem-
peratures between 60◦C and 200◦C under an autogenous pressure. Most of the highly
siliceous zeolites are formed in the presence of organic bases known as templates,
introduced in the early 1960’s [18]. These ranges from simple hydrated cations to
complex organic amines and crown ethers.

Due to their unique porous properties, zeolites are used in a variety of applications,
with a global market of several million tons per annum. Following lists main applica-
tions of zeolites.
(i) Heterogenous catalysis: One of the most important applications of zeolites is in
the field of industrial catalysis. There are several factors which dictate the catalytic
properties of zeolites. Firstly, their large internal surface area (typically 300-700 m2/g
or more than 98% of the total surface area) provides a high concentration of active
sites, usually the Brønsted acid sites found in protonated zeolites. These are generally
located as bridging hydroxyl group. The high thermal stability of many zeolite struc-
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tures makes them ideal for use in an industrial environment where many processes
operate in conditions of high temperature and pressure. The shape selective properties
of zeolites also control the results of many reactions inside the pore, either by allowing
reactant or product molecules to selectively diffuse through the channels, or by the
stabilization of the transition states.
(ii) Adsorption and separation: The shape-selective properties of zeolites are also the
basis for their use in molecular adsorption. The ability preferentially to adsorb certain
molecules, while excluding others, has opened up a wide range of molecular siev-
ing applications. The size and shape of pores and also chemical nature of diffusing
molecules control the access into the zeolite, e.g., as in the purification ofpara-xylene
by silicalite. Cation-containing zeolites are extensively used as desicants due to their
high affinity for water. These also find application in gas separation, where molecules
are differentiated on the basis or their electrostatic interactions with the metal ions.
(iii) Ion exchange: The presence of loosely bound extra-framework cations in the ze-
olite structure allows efficient ion exchange to occur in aqueous solution. This is
exploited in many commercial applications. For example, Na Zeolite-A is used to
soften water by exchanging Na+ from the zeolite with Ca2+ in hard water. This is also
a major component of concentrated washing powder formulations, where it replaces
sodium tripolyphosphate to reduce the environmentally hazardous phosphate concen-
tration. Another important use of zeolites as ion-exchangers has been as radioactive
decontaminants. Clinoptilolite, for example, was used extensively after the Chernobyl
nuclear disaster to absorb radioactive ions such as90Sc and137Cs from the water sup-
ply.

1.2.2 Zeolite-based amorphous materials

Zeolites undergo amorphization by mechanical [19, 20], high-pressure [21] and ther-
mal [22] treatments. They also become amorphous when they are exposed to high-
radiation doses and electron irradiation [23, 24]. Zeolite-based amorphous materials
are also proposed to be important for technological applications.

In order to quantify extent of amorphization, experimentalist use the percentage
of X-ray diffractogram (XRD) crystallinity [28] based on the ratio of the major peak
intensities of the sample relative to those of a highly crystalline reference material, i.e.,

% XRD crystallinity=
sum of peak intensities of sample

sum of peak intensities of reference
×100. (1.1)

Pore size and shape, Si/Al ratio or other modifications such as extra-framework
cation exchange, isomorphous substitution, pore blockage, elimination of external sites
etc., are varying parameters for determining the product selectivity of zeolitic cataly-
sis [26]. One of the reactions that has received considerable attention over the last
decade is the skeletal isomerization of 1-butene to yield isobutene. The interest in
this reaction arises from the fact that the branched alkene can subsequently be reacted
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with methanol for the synthesis of methyl-tertiary-butyl ether [27]. It was shown that
ZSM-5 and ferrierite-based ZSM-5 materials with XRD crystallinity level as low as
2% exhibited superior catalytic performance (higher selectivities and yields) in this
skeletal isomerization reactions compared to their conventional highly crystalline ana-
logue. This was attributed to be a consequence of decreased zeolite pore lengths that
are presumably present in these amorphous materials [28]. Another industrially rele-
vant reaction is the conversion of light alkanes into aromatic compounds which offers
a useful route into high octane fuels [29,30]. ZSM-5 type materials have been used for
this type of reactions [31]. Recently, Zn and Ga incorporated novel aluminosilicates,
comprising ZSM-5-based structures having XRD crystallinities ranging from substan-
tially amorphous (XRD crystallinity lower than 30%) to the partially crystalline (XRD
crystallinity between 30% and 70%) and their highly crystalline (XRD crystallinity
higher than 70%) ZSM-5 analogues were studied [25]. Experiments show that the op-
timum activity and the BTX (benzene, toulene and xylenes) selectivity are found for
XRD crystallinity in the range 50%-85%.

Reversible cation exchange property is the basis for using zeolites in the selective
removal of radionuclides from high-level liquid nuclear waste. Amorphous forms de-
rived from zeolites are proposed to be better back fill material for heavy metals [24].
For example, amorphized zeolite Na-Y loses approximately 95% of its ion exchange
capacity for Cs due to loss of exchangeable cation sites and/or blockage of access to
exchangeable cation sites. The Cs-exchanged zeolite Na-Y phase has a slightly higher
thermal stability than the unexchanged zeolite Na-Y. A desorption study indicated that
the amorphization of Cs loaded Na-Y zeolite enhances the retension capacity of ex-
changeable Cs ions due to closure of structural channels.

1.3 About this Work

This thesis deals with the simulation of amorphous forms derived from zeolite. Exper-
imental studies of mechanical treatment on zeolites show that amorphization causes
remarkable changes in vibrational IR spectra and XRDs [19,20]. This implies that the
amorphization process, i.e, the transformation from long-range to short-range ordering
of the framework, is caused by structural changes at the molecular level. Thus, studies
of structural and dynamic aspects in these amorphous zeolite-based systems and their
correlation to microscopic properties presents a fascinating challenge. Hence, under-
standing the dependence of physical and chemical properties on the microstructure is
critical for designing new materials suitable for specific applications.

This work features as one of the projects under Sonderforschungsbereich 408 at the
University of Bonn, which deals with the investigation of structure and properties of
inorganic amorphous materials. All silica ZSM-5, i.e.,silicalite was chosen as a model
system for the preparation of the amorphous state, since it is experimentally a well
studied system. Details of structure of zeolite silicalite (silicious ZSM-5) is presented
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in chapter 6 (section 6.1.2). Despite of the significant interest of chemists to investigate
the chemical properties of the zeolite ZSM-5-based amorphous materials [28,25], the
investigation of detailed structural and dynamic properties are lacking. To the best of
our knowledge this work is the first theoretical investigation on these lines.

The derivation of a detailed microscopic structure of any non-crystalline system
represent a big scientific challenge even today. Special experimental techniques need
to be employed. Even when such techniques are used, only a limited amount of local
structural information is generally obtainable, and the construction of structural mod-
els can be a most useful route to a further understanding of the structure, particularly
the medium-range order. The absence of translational symmetry and the requirement
to treat rather large model clusters cut out from the infinite system makes the study
of amorphous materials using the availableab initio methods of quantum chemistry
and solid state physics a very difficult, if not an unmanageable task. Whereas these
approaches rely on the finite or periodic character of the investigated systems, a large
number of real systems does not fall into these two categories but rather shows only a
partially crystalline or even completely amorphous character. In such cases simulation
techniques like molecular dynamics (MD) and Monte Carlo (MC) have become widely
used tools to explore complicated amorphous systems. MC methods are applied to ex-
plore configuration space, i.e, to search for minimum energy structures and to establish
their properties as well as to study relaxation from a global point of view. However,
sometimes the move-classes may be unphysical and do not give reliable insight into
the microscopic dynamics of the systems. MD is widely used to construct models of
the amorphous state by rapid quenching of structures at high temperature and analyz-
ing the dynamics of the model on a microscopic scale. The success of MD depends
crucially on the quality of the interaction potentials used to determine the energy and
the forces between interacting particles. The advantage of MD over MC is that it gives
a route to study dynamic properties of systems.

In this thesis we have studied the structural (chapter 6) and dynamic (vibrations
and relaxations, chapter 7& 8) properties mainly on the basis of MD simulations. Our
simulations show presence of small percentage of edge-sharing connectivity of SiO4

tetrahedra depending on the extent of amorphization. We used wavefunction-basedab
initio methods for determining stability and structure of these unusual features (chapter
9). We choose W-silica as a model system for edge-sharing tetrahedra silicate system
and compared our results with existing theoretical results.

The organization of the thesis is as follows:

• Part I: Theoretical Background−→ Basics of MD, local-optimization methods,
modeling of solid-state and electron-correlation treatment of solid-state as needed in
context of this thesis.
• Part II: Applications−→ Results concerning structural, vibrational and relaxational
properties of amorphous form derived from zeolite ZSM-5.





Part I

Theoretical Background
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Chapter 2

Classical Molecular Dynamics

2.1 From the Schrödinger Equation to Classical Molec-

ular Dynamics

The dynamical evolution of the wavefunction with time is given by thetime-dependent
Schrödinger equation:

i~
∂
∂t

Φ({r i},{RI}; t) = HΦ({r i},{RI}; t) (2.1)

in its position representation with the standard non-relativistic Hamiltonian,

H =−∑
I

~2

2MI
∇2

I −∑
i

~2

2me
∇2

i + ∑
i< j

e2

|r i− r j | −∑
I ,i

e2ZI

|RI − r i | + ∑
I<J

e2ZIZJ

|RI −RJ| (2.2a)

=−∑
I

~2

2MI
∇2

I −∑
i

~2

2me
∇2

i +Vn−e({r i},{RI}) (2.2b)

=−∑
I

~2

2MI
∇2

I +He({r i},{RI}) (2.2c)

for electronic and nuclear degrees of freedom. The total wave functionΦ({r i},{RI}; t)
depends onRI andr i , the nuclear and electronic coordinates, respectively. An elegant
derivation of the classical molecular dynamics derived by Tully [32,33,34] is presented
below. In order to separate the nuclear and electronic contributions to the wavefunction
a product ansatz

Φ({r i},{RI}; t)≈Ψ({r i}; t)χ({RI}; t)exp
[ i
~

Z t

t0
dt′Ẽe(t ′)

]
(2.3)

11
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is introduced, where the nuclear and the electronic wavefunctions are separately nor-
malized to unity at every instant of time.

Inserting the ansatz Eq. (2.3) into Eq.(2.1) yield (after multiplying from the left by
〈Ψ| and〈χ| and imposingd〈H〉/dt ≡ 0) the following equations,

i~
∂Ψ
∂t

=−∑
i

~2

2me
∇2

i Ψ+
{Z

dRχ∗({RI}; t)Vn−e({r i},{RI})χ({RI}; t)
}

Ψ (2.4)

i~
∂χ
∂t

=−∑
I

~2

2MI
∇2

I χ+
{Z

drΨ∗({r i}; t)He({r i},{RI})Ψ({r i}; t)
}

χ. (2.5)

Eq. (2.4) and Eq. (2.5) are the basic equations of the mean-field time-dependent self-
consistent field (TDSCF) method, where the fast moving electrons move in an average
field of the slow moving nuclei andvice versa.

Following Messiah, the nuclear wavefunction can be factored into amplitude and
phase terms,

χ({RI}; t) = A({RI}; t)exp[iS({RI}; t)/~] (2.6)

whereA andSare real-valued [35]. Substituting Eq. (2.6) into Eq. (2.5) and separating
the real and imaginary parts, the TDSCF equation for nuclei becomes

∂A
∂t

+∑
I

1
2MI

(∇IA)(∇IS)+∑
I

1
2MI

A(∇IS)2 = 0 (2.7)

and

∂S
∂t

+∑
I

1
2MI

(∇IS)2 +
Z

drΨ∗HeΨ = ~2∑
I

1
2MI

∇IA
A

. (2.8)

Eq. (2.7) describes the flow of probability on the potential energy surface determined
by the velocity field∇IS. For the derivation of classical molecular dynamics consider
Eq. (2.8). In the classical limit this becomes

∂S
∂t

+∑
I

1
2MI

(∇IS)2 +
Z

drΨ∗HeΨ = 0. (2.9)

Eq. (2.9) is known as quantum Hamilton-Jacobi equation, which is identical to the
equation in Hamilton-Jacobi formulation of classical mechanics [35,36]

∂S
∂t

+H({RI},{∇IS}) = 0 (2.10)

with the classical Hamilton function

H({RI},{PI}) = T({PI})+V({RI}) (2.11)
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defined in terms of generalized coordinates{RI} and their conjugate momenta{PI}.
T andV refer to the classical kinetic energy and the potential energy, respectively.S(t)
is the ’classical action’, i.e.,S(t) =

R t L(t ′)dt′ and

PI ≡ ∇IS, (2.12)

whereL(t ′) is the classical Lagrangian. Considering the Newtonian equation of motion
ṖI =−∇IV({RI}), the Eq. (2.9) becomes

dPI

dt
=−∇I

Z
drΨ∗HeΨ (2.13)

or

MI R̈I (t) =−∇I

Z
drΨ∗HeΨ (2.14)

=−∇IV
E
e ({RI (t)}). (2.15)

Thus the nuclei move according to the classical mechanics in an effective potentialVE
e

due to electrons and its motion is a function of only the nuclear positions at timet.
However the nuclear wavefunction still occurs in the TDSCF equation for the elec-

tronic degrees of freedom. In the classical limit Eq. (2.4) becomes a time-dependent
wave function for the electrons

i~
∂Ψ
∂t

=−∑
i

~2

2me
∇2

i Ψ+Vn−e({r i},{RI})Ψ (2.16)

= He({r i},{RI})Ψ({r i},{RI}; t) (2.17)

which evolve self-consistently as the classical nuclei are propagated via Eq. (2.14).
The approach relying on solving Eq. (2.14) together with Eq. (2.17) is calledEhrenfest
molecular dynamics.

A further simplification can be invoked by restricting the wavefunctionΨ to be the
ground state wavefunctionΨ0 of He at each instant of time. In this limit the nuclei
move according to Eq. (2.14) on a Born-Oppenheimer potential energy surface

VE
e =

Z
drΨ∗

0HeΨ0≡ E0({RI}) (2.18)

which can be obtained by solving thetime-independentelectronic Schödinger equation

HeΨ0 = E0Ψ0, (2.19)

for the ground state only.
To perform classical trajectory calculations on the global potential energy surface,

it is conceivable to decouple the task of generating the nuclear dynamics from the task
of generating the potential energy surface. In a first stepE0 is computed for many
nuclear configurations by solving Eq. (2.19). In a second step, these data points are
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fitted to an analytical functional form to yield a global potential energy surface [37],
from which analytical gradients can be obtained. In the third step, the Newtonian
equation of motion Eq. (2.15) is solved on this surface for many different initial con-
ditions. However, calculation of the global potential energy surface is the limiting step
for large systems. There are3N−6 internal degrees of freedom that span the global
potential energy surface of an unconstrained N-body system. Using for simplicity
10 discretization points per coordinate implies that of the order of103N−6 electronic
structure calculations are needed. Thus, computational workload increases roughly
like ∼ 10N with increasing system size. This is also referred to as thedimensionality
bottleneckof calculations that rely on global potential energy surfaces [38]. One tra-
ditional way out of this dilemma is to approximate the global potential energy surface

VE
e ≈V = Vapprox

e ({RI}) =
N

∑
I

υ1({RI})+
N

∑
I<J

υ2({RI ,RJ})+ · · · (2.20)

in terms of a truncated expansion of many-body contributions [39, 40]. Hence, the
electronic degrees of freedom are replaced by the interaction potentialsυn and are not
featured as explicit degrees of freedom in the equations of motion. From the above
derivation the essential assumption underlying the classical molecular dynamics (MD)
become clear: the electrons follow adiabatically the classical nuclear motion and can
be integrated out so that the nuclei evolve on single Born-Oppenheimer potential en-
ergy surface, which is in general approximated in terms of few-body interactions. For
details of above derivation also refer Refs. [41,42,43].

2.2 Equations of Motion

Consider system ofN particles interacting via a potentialV as in Eq. (2.20). While the
Newton’s second law suffices for the dynamics of the atoms, there exist various other
forms to write equations of motion.

2.2.1 Lagrange equations of motion

Consider the Lagrangian functionL(R, Ṙ) as a function of generalized coordinates and
their time derivative with Lagrange equations

d
dt

( ∂L

∂ṘI

)
− ∂L

∂RI
= 0, I = 1, ....,N (2.21)

ConsideringL = 1
2 ∑I MI Ṙ2

I −V(RI ), Eq. (2.21) becomes Newtonian equation of mo-
tion.

MI R̈I = FI , (2.22)

where FI = ∇IL =−∇IV (2.23)

is the force on atom I.
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2.2.2 Hamilton equations of motion

An alternative formulation of the equations of motion is the Hamilton form. Replacing
the generalized velocitieṡRI in the Lagrange formulation by generalized momenta
PI = ∂L/∂Ṙi and considering the HamiltonianH = H(R,P, t), one obtain equations of
motion

Ṙi =
∂H
∂Pi

(2.24)

Ṗi =− ∂H
∂Ri

, (2.25)

where the Hamiltonian is defined as

H(R,P) = ∑
I

ṘIPI −L(R, Ṙ). (2.26)

For Cartesian coordinates, Hamilton equations become

ṘI = PI/M (2.27)

Ṗi =−∇IV = FI . (2.28)

If H has no explicit time-dependence, thenḢ = 0 andH, the total energy is a conserved
quantity.

2.3 General Procedure for Molecular Dynamics

Figure 2.1: Procedure for molecular dynamics.
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In MD one calculates explicitly the forces between the atoms and the motion is com-
puted with a suitable numerical integration method using Newton’s equation of mo-
tion [39, 43, 44, 45, 46, 47]. Fig. 2.1 summarizes the MD procedure in the form of
a flow chart. The starting conditions are the positions and the velocities of the con-
stituent atoms. The starting geometry can be taken from a known crystal structure or
from a previous simulation. The velocities can be generated from a previous run or
by using random numbers and later scale to the desired temperature. The Maxwell-
Boltzmann distribution is rapidly established by molecular collisions typically within
few hundreds of time steps. Calculation of atomic forces in a MD simulation is usually
the most expensive operation. If there areN atoms in the system, there will be at most
N(N−1)/2 unique atom pairs, each with an associate force to compute. For the force
calculation at least for the short-range potential, the use of a cut-off applied at a certain
interatomic separation allows more efficiency in computing the forces. For simulating
the bulk of the system periodic boundary conditions are applied.

A production period in which trajectory of the atoms are stored follows after an
equilibration period. In the equilibration period the system is coaxed towards the de-
sired thermodynamic state point. In the production period the properties of the bulk
material are drawn out of the mass of trajectory data and this is known as ensemble
averaging.

The basic machineries for a program for a MD simulation are:
(i) As already mentioned, a model for interaction between system constituents is needed.
Often it is assumed that the particles interact only pair-wise, which is exact for non-
polarizable particles with fixed partial charges. This assumption greatly reduces the
computational effort.
(ii) An integrator in needed, which propagates particle positions and velocities from
time t to t +dt. It is a finite difference scheme which moves trajectories discretely in
time. The time-stepdt has to be chosen properly to guarantee stability of the integra-
tor, i.e., there should be no drift in the system’s energy.
(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like
pressure, temperature or the number of particles are controlled.

2.4 Interaction Potential

In classical simulations the atoms are most often described by point-mass like centers
which interact through pair- or many-body interaction potentials. Hence, a highly
complex description of electron dynamics is abandoned and an effective picture is
adopted where the main features like the hard core of a particle, electric multi-poles
or internal degrees of freedom of a molecule are modeled by a set of parameters and
(most often) analytical functions which depend on the mutual positions of particles
in configuration. Since the parameters and the functions give a complete information
of the system’s energy as well as the force acting on each particle, the combination
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of parameters and functions is also calledforce field. Different types of force fields
were developed during the last decade. For example the most popular ones are MM3
[48], MM4 [ 49], Dreiding [50], SHARP [51], VALBON [ 52], UFF [53], CFF95 [54],
AMBER [55], CHARMM [ 56], OPLS [57] and MMFF [58].

There exist major differences among interaction potentials. The first distinction is
to be made between pair- and multi-body potentials. In a system with no constrains, the
interaction is most often described by pair-potentials, which is simple to implement.
In the cases where multi-body potentials come into play, the counting of interaction
partners becomes increasingly more complex and dramatically slows down the exe-
cution of the program. The next difference is with respect to the spatial extent of the
potential classifying it into short- and long-range interactions. If the potential drops
down to zero faster thanR−d, whereR is the separation between two particles andd
the dimension of the problem, it is called short-ranged, otherwise it is long-ranged.

2.4.1 Short-range potential

Bonded interactionsmodel rather strong chemical bonds, and are not created or bro-
ken during a simulation. For this reason, these interactions may be evaluated by run-
ning through afixed listof groups of particle numbers, where each group represents a
bonded interaction between two or more particles. The three most widely used bonded
interactions are the covalent interaction, the bond-angle interaction and the dihedral
interaction.

The covalent interaction is a bonded interaction between two particlesI andJ with
the interaction potential

Vcovalent(RIJ) =
1
2

Kb(RIJ−b0)2. (2.29)

This interaction may be thought of as a very stiff linear spring betweenI andJ. The
spring has a natural lengthb0 with a spring constantKb.

The bond-angle interaction is a three particle interactions betweenI ,J,K, with the
interaction potential

Vbond−angle(Θ) =
1
2

KΘ(Θ−Θ0)2, (2.30)

with

Θ = arccos

(
RIJ.RKJ

RIJRKJ

)
. (2.31)

This interaction may be thought of as a torsion spring between the linesI ,J andK,J.
The spring has a natural angleΘ0 with spring constantKΘ.

The dihedral-angle interaction is a four particle interaction betweenI ,J,K,L. Two
often used expressions for this kind of potentials are

Vdihedral(φ) = Kφ(1+cos(nφ−δ)) (2.32)
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and

Vdihedral(φ) =
1
2

Kφ(φ−φ0)2, (2.33)

whereδ andφ0 are constants.
Besides these internal degrees of freedom of molecules which may be modeled

with short-range interaction potentials, it is also important to consider theexcluded
volumeof the particles and thenon-bonded interactions. A finite diameter of a particle
may be represented by a steep repulsive potential acting at very short distances. This
is either described by an exponential function or an algebraic form,∝ R−n, where
n≥ 9. Another source of short-range interaction is the van der Waals interaction. For a
neutral molecule these are London forces arising from the induced dipole interactions.
Fluctuations of the electron distribution of a particle give rise to fluctuating dipole
moments, which on average compensate to zero. But the instantaneous created dipoles
induce dipoles also on neighboring particles which attract each other asR−6. The two
commonly used forms of the resulting interactions are the Buckingham potential

VB
αβ(RIJ) = Aαβ exp(−BαβRIJ)−

Dαβ

R6
IJ

(2.34)

and the Lennard-Jones potential

VLJ
αβ (RIJ) = 4εαβ

[(σαβ

RIJ

)12
−

(σαβ

RIJ

)6
]
. (2.35)

The indicesα,β indicate the species of the particles and parametersA,B,D in Eq.
(2.34) andε,σ in Eq. (2.35) are parameters for inter- and intra-species interactions.
For the Lennard-Jones potential the parameters have a simple physical interpretation:
ε is the minimum potential energy, located atR= 21/6σ andσ is the diameter of the
particle and whenR < σ the potential becomes repulsive. Often the Lennard-Jones
potential gives a reasonable approximation as a true potential. However, fromab initio
calculations it is found that an exponential type repulsive potential is more appropriate.
The Lennard-Jones potential has a very steep repulsive potential part and is not suitable
for dense systems. The too steep repulsive part often leads to an overestimation of the
pressure in the system.

The short-range interactions offer the possibility to take into account only neigh-
bored particles up to a certain distance for the calculation of interactions. In that way
a cutoff radiusRC is introduced beyond which mutual interactions between the parti-
cles are neglected. Due to this truncation, simulations can provide only a portion of
those properties, such as the internal energy and pressure, that are directly related to
the potential. Simulation results for such properties must be corrected for long-range
interactions (R> RC) that are neglected. Truncating the potential atRC introduces a
similar truncation into the force which, in turn, causes small impulses on atomsI andJ
whenever their separation distanceRIJ crossesRC. Consequently, instead of a strictly
constant total energyE, we may observe small fluctuations inE. These fluctuations
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have little effect on the values computed for equilibrium properties, and of course, the
effect can be made negligible by simply increasingRC at the expense of increased com-
puter time for the simulation. As an approximation one may introduce ashifted-force
potentialandlong-range correctionsto the potential.

2.4.1.1 Shifted-force potential

The step change in the potentialV(R) and forceF(R) atRC can be removed by shifting
F(R) vertically so that the force goes continously to zero atRC. Hence, a shifted force
Fs(R) is defined [59] by

Fs(R) =
{ −dV

dR +∆F R≤ RC

0 R> RC
(2.36)

where∆F is the magnitude of the shift,

∆F =−F(RC) =
(dV

dR

)
RC

. (2.37)

The shifted potentialVs(R) corresponding toFs(R) can be derived from

Fs(R) =−dVs(R)
dR

(2.38)

or Z Vs

0
dVs =−

Z R

∞
Fs(R)dR. (2.39)

Substituting Eq. (2.36) into Eq. (2.39) and integrating gives

Vs(R) =

{
V(R)−V(RC)− [R−RC]

(
dV
dR

)
RC

R≤ RC

0 R> RC

(2.40)

The shifted-force correction removes the energy fluctuations that occur because of the
truncations ofV andF .

2.4.1.2 Long-range correction

One may introducelong-range correctionsto the potential in order to compensate for
the neglect of explicit calculations. The whole potential may then be written as

V =
N

∑
I<J

V(RIJ|RIJ < RC)+Vlrc. (2.41)

The long-range correction is thereby given as

Vlrc = 2πNρ0

Z ∞

RC

R2g(R)V(R) dR (2.42)
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whereρ0 is the number density of the particles in the system andg(R) = ρ(R)/ρ0 is
the radial distribution function. For computational reasons,g(R) is most often only
calculated up toRC. However beyondR> RC the system is assumed to be uniform.
This amounts to the mean-field approximation for the long-range portion of the poten-
tial. Thus at a fixed number density, the long-range correction is merely a constant that
is added.

2.4.2 Long-range potential

In the case of long-range potentials, like the Coulomb potential, interactions between
all the particles in the system must be taken into account, if treated without any ap-
proximation. Consider a classical system ofN bodies with chargesqi and massesmi

at position vectorsr i interacting via a Coulombic potential V. The equations of motion
are

mi
d2r i

dt2
=−qi∇iV for i = 1,2,3, · · · ,N (2.43)

where

V(r i) =
N

∑
j 6=i

q j

|r i− r j | . (2.44)

These lead to anO(N2) problem, which is computationally quite expensive for large
systems. For systems with open boundary conditions this method is straightforwardly
implemented and reduces to a double sum over all pairs of particles. In the case where
periodic boundary conditions are applied, the interactions not only within the parti-
cles in the central cell are important but also those with all periodic images must be
taken into account. And hence, a lattice sum has to be evaluated and the potential is
expressed as:

Vs(r i) = ∑
n

′
N

∑
j=1

q j

|r i j +n| (2.45)

wherer i j = r i − r j andn = (i x̂, iŷ, iẑ)L, with iα = 0,±1,±2· · ·±∞. The prime in the
summation ofn indicates thati = j term is omitted for the primary celln = 0. The
summation over image boxes as in Eq. (2.45) makes theO(N2) problem toNbox×N2

operations! This sum is also a conditionally convergent series. A method to overcome
this limitation was introduced by Ewald [60]. The characterization of convergence is
given in Refs. [61,62]. In the Ewald summation technique the potential is recasted into
the sum of two rapidly converging series: one in real space; the other in reciprocal, or
k-space:

VE(r i) = ∑
n

′
N

∑
j=1

q j
erfc(α|r i j +n|)

|r i j +n| +
4π
L3 ∑

k 6=0
∑
j=1

q j exp
(−|k|2

4α2

)
exp{ik.(r i j )}

− 2α
π1/2

qi , (2.46)
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where erfc(x) = 2√
π
R x

0 exp(−t2)dt. The termα governs the relative convergence rates
of the two main series. The last term is a "self-potential" which cancels an equivalent
contribution in thek-space sum. A physical interpretation of this decomposition of the
lattice sum given in Eq. (2.46) follows. Each point charge in the system is viewed as
being surrounded by a Gaussian charge distribution of equal magnitude and opposite
sign with charge distribution

ρ(r) = Aexp(−α2r2) (2.47)

This introduced charge distribution screens the interaction between neighboring point-
charges, effectively limiting them to a short-range. Consequently, the sum over all
charges and their images in real space converges rapidly. To counteract this induced
Gaussian distribution, a second Gaussian charge distribution is added and the sum is
performed in the reciprocal space using Fourier transformation. The choice of charge
distribution is actually not too critical and mainly influences the convergence of the se-
ries. Refer to Ref. [64] where the Ewald sum has been cast with various non-Gaussian
charge distributions.

The equivalent expression for the force (or more correctly the electric field) can
be obtained by direct differentiation with respect to the vector between the reference
particlei and particlej:

F(r i) =−∂VE(r i)
∂r i j

= ∑
n

′
N

∑
j=1

q j r i j ,n

r3
i j ,n

[
erfc(αr i j ,n)+

2αr i j ,n

π1/2
exp(−α2r2

i j ,n)
]

+
4π
L3 ∑

k 6=0
∑

j
q j

k
k2 exp

(−k2

4α2

)
sin(k.r i j ). (2.48)

In the above expressionr i j ,n ≡ r i j + n. Refer to Refs. [61, 62, 64, 65, 63] for more
details on lattice sums through Ewald summation.

2.5 Integrators

For a given potential model which characterizes the physical system, it is the integrator
which is responsible for the accuracy of the simulation. The integrator is the routine
which actually moves the atoms, depending on the current forces and velocities. The
basic criteria for a good integrator for molecular simulations are as follows:
(i) It must show good conservation of energy and momentum and small perturbations
should not lead to instabilities. It must be time-reversible.
(ii) It should permit the use of a relatively long time step in order to propagate the
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system efficiently through the phase space.
(iii) It should require little computer memory.
(iv) It should be fast, ideally requiring only one energy evaluation per time step.
(v) It should duplicate the classical trajectory as closely as possible.

Any finite-difference integrator is an approximation for a system developing con-
tinuously in time. These methods are explicit and use the information available at time
t to predict the system’s coordinates and velocities at timet + dt, wheredt is a short
time interval. These methods are based on a Taylor expansion of the position at time
t +dt:

r(t +dt) = r(t)+v(t)dt+
a(t)
2

dt2 + · · · , (2.49)

wherev(t) is the first derivative of the positionr(t), a(t) is the second derivative of the
position etc.

A finite-difference method leads to two types of errors:truncation errorandround-
off error. Truncation error refers to the accuracy with which a finite-difference method
approximates the true solution to a differential equation. When a finite-difference
equation is written in Taylor series form as in Eq. (2.49), the truncation error is mea-
sured by the first non-zero term that has been omitted from the series. In contrast,
the round-off error encompasses all errors that result from the implementation of the
finite-difference algorithm. For example, the round-off error is affected by the number
of significant figures kept at each stage of the calculations which are actually per-
formed, and by any approximations used in evaluating square roots, exponentials and
so on.

In the following different types of integration schemes are presented.

2.5.1 Verlet integrator

The most basic and most common integration algorithm is the Verlet integrator, which
is based on the expansion of position in a Taylor series. For a small enough time step
dt the expansion gives

r(t +dt) = r(t)+v(t)dt+
F(t)
2m

dt2 + · · · (2.50)

In the same way the expansion may be performed fordt→−dt, which gives

r(t−dt) = r(t)−v(t)dt+
F(t)
2m

dt2−·· · (2.51)

Adding up Eqs.2.50and2.51gives new positions

r(t +dt) = 2r(t)− r(t−dt)+
F(t)
m

dt2 +O(dt4) (2.52)

Advantages:
(i) Integration does not require the velocities, only position information is taken into
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account.
(ii) Only a single force evaluation per integration cycle is necessary. (The force evalu-
ation is the computationally most expensive part in the simulation).
(iii) This formulation, which is based on forward and backward expansions, is natu-
rally reversible in time (a property of the equation of motion).

Disadvantages:
(i) The velocities, which are requited for the kinetic energy evaluation, are calculated
only in an approximate manner through the equation

v(t) =
r(t +dt)+ r(t−dt)

2 dt
(2.53)

This is, however, one order less in accuracy than Eq. (2.52).
(ii) From the point of view of storage requirement Eq. (2.53) is not optimal, since
information is required from positions not only at timet but also at timet−dt.

2.5.2 Leap Frog integrator

The Leap Frog integrator is a variation of the Verlet algorithm designed to improve the
velocity evaluation. Its name comes from the fact that the velocities are evaluated at
the mid-point of the position evaluation and vice versa. The algorithm is as follows:

v(t +dt/2) = v(t−dt/2)+a(t)dt (2.54)

r(t +dt) = r(t)+v(t +dt/2)dt (2.55)

This means that each integration cycle involves three step:
(i) Calculatea(t)dt based onr(t), i.e.,a(t) =−(1/m)∇V(r(t)).
(ii) Calculatev(t +dt/2)
(iii) Calculater(t +dt)

The instantaneousvelocity at timet is then calculated as

v(t) = (v(t +dt/2)+v(t−dt/2))/2 (2.56)

Advantages:
(i) Improved evaluation of velocities.
(ii) Direct evaluation of velocities gives a useful handle for controlling the temperature
in the simulation.

Disadvantages:
(i) The velocities at timet are still approximate.
(ii) Computationally more expensive than the Verlet algorithm.
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2.5.3 Velocity Verlet integrator

An even improved integrator is this algorithm which is designed to further improve on
the velocity evaluations. The algorithm is as follows:

r(t +dt) = r(t)+v(t)dt+
1
2

a(t)dt2 (2.57)

v(t +dt) = v(t)+
1
2
(a(t)+a(t +dt))dt (2.58)

This means that each integration cycle involves four steps:
(i) Calculater(t +dt) using Eq. (2.57).
(ii) Calculate the mid-point velocity:v(t +dt/2) = v(t)+a(t)dt/2
(iii) Calculatea(t +dt) =−(1/m)∇V(r(t +dt))
(iv) Calculatev(t +dt) = v(t +dt/2)+a(t +dt)dt/2

Advantage: Best evaluation of velocities.

Disadvantage: Computationally more expensive than the Verlet or Leap Frog algo-
rithms.

2.6 Simulations in Different Ensembles

2.6.1 Sampling from an ensemble

The thermodynamic state of a system is usually defined by a small set of parameters
(such as the number of particlesN, the temperatureT and the pressureP) and not by
the very many atomic positions and momenta that define the instantaneous mechanical
state. These positions and momenta can be thought of as coordinates in a multidimen-
sional space: phase space. For a system ofN particles this space has6N dimensions.
The state of the classicalN−body system at any timet is completely specified by the
location of one point in phase space denoted asΓ. One can write the instantaneous
value of some propertyA as functionA(Γ). As the system evolves in time,Γ and
A(Γ) will change. Hence, one can assume the experimentally observable macroscopic
propertyAobs is an average ofA(Γ) taken over a long interval of timetobs:

Aobs= 〈A〉time = lim
tobs→∞

1
tobs

Z tobs

0
A(Γ(t))dt. (2.59)

In MD the equations of motion are usually solved approximately by a step-by-step
procedure, i.e., a large finite numberτobs of time steps, of lengthdt = tobs/τobs. The
Eq. (2.59) becomes then

Aobs= 〈A〉time =
1

τobs

τobs

∑
τ=1

A(Γ(τ)). (2.60)
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Hence, integration of the equations of motion should then yield a trajectory that de-
scribes how the positions, velocities and accelerations of the particles vary with time,
and from which the average values of the properties can be determined using Eq.
(2.60). However, there exists the difficulty that for ’macroscopic’ numbers of atoms
or molecules it is not even feasible to determine an initial configuration of the system,
let alone integrate the equations of motion and calculate a trajectory. Recognizing this
problem, Boltzmann and Gibbs developed statistical mechanics, in which a single sys-
tem evolving in time is replaced by a large number of replications of the system that
are considered simultaneously and are known as ensemble. An ensemble is a collec-
tion of pointsΓ in phase space. The points are distributed according to a probability
densityρens(Γ). Hence the time average in Eq. (2.60) is then replaced by an ensemble
average:

Aobs= 〈A〉ens= ∑
Γ

A(Γ)ρens(Γ) (2.61)

One can use a weight functionwens(Γ), instead ofρens(Γ) satisfying the following
equations:

ρens(Γ) = Q−1
enswens(Γ) (2.62)

Qens= ∑
Γ

wens(Γ) (2.63)

Aens= ∑
Γ

wens(Γ)Aens(Γ)/∑
Γ

wens(Γ). (2.64)

The partition functionQens is a function of the macroscopic properties defining the
ensemble. One can define a thermodynamic potentialΨens

Ψens=− lnQens, (2.65)

which has a minimum at the thermodynamical equilibrium.

2.6.2 Common statistical ensembles

2.6.2.1 The micro-canonical ensemble

The probability density for the micro-canonical ensemble is proportional to

δ(H(Γ)−E),

whereH(Γ) is the Hamiltonian. The delta function selects those states of anN particle
system in a container of volumeV that have the desired energyE. In a computer
simulation this theoretical condition is generally violated, due to the limited accuracy
in integrating the equation of motion and due to round-off errors resulting from a
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limited precision of number representation. The micro-canonical partition function
may be written as,

QNVE = ∑
Γ

δ(H(Γ)−E). (2.66)

The corresponding thermodynamic potential is the negative of the entropy

−S/kB =− lnQNVE. (2.67)

kB represents the Boltzmann constant.

2.6.2.2 The canonical ensemble

The density for the canonical ensemble is proportional to

exp(−H(Γ)/kBT)

and the partition function is

QNVT = ∑
Γ

exp(−H(Γ)/kBT). (2.68)

The corresponding thermodynamic potential is the Helmholtz free energyA

A/kBT =− lnQNVT. (2.69)

In a canonical ensemble, all values of the energy are allowed and energy fluctuations
are non-zero. The time evolution occurs on a set of independent constant-energy sur-
faces, each of which is appropriately weighted by the factorexp(−H(Γ)/kBT). Hence
the algorithm for this ensemble should allow the generation of a succession of states
and must make provision for transitions between the energy surfaces so that a sin-
gle trajectory can probe all the accessible phase space, and yield the correct relative
weighting.

2.6.2.3 The isothermal-isobaric ensemble

The probability density for the isothermal-isobaric ensemble is proportional to

exp(−(H +PV)/kBT).

Upon averaging the quantity in the exponent, the thermodynamic enthalpyH =< H >
+P < V > is obtained. The partition function is

QNPT = ∑
Γ

∑
V

exp((−H +PV)/kBT) = ∑
V

exp(−PV/kBT)QNVT. (2.70)

The corresponding thermodynamic function is the Gibbs free energyG

G/kB =− lnQNPT. (2.71)

For a constant NPT ensemble the algorithm should allow for changes in the sample
volume as well as the energy.
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2.6.2.4 The grand canonical ensemble

The density for the grand canonical ensemble is proportional to

exp(−(H−µN)/kBT)

whereµ is the chemical potential. Here the number of particlesN is a variable, along
with the coordinates and momenta. The grand canonical partition function is

QµVT = ∑
Γ

∑
N

exp(−(H−µN)/kBT) = ∑
N

exp(µN/kBT)QNPT. (2.72)

The corresponding thermodynamic function is just−PV/kBT:

−PV/kBT =− lnQµVT. (2.73)

Hence the algorithm in the grand canonical ensemble must allow for addition and re-
moval of particles. In this kind of ensemble the extensive parameters show unbounded
fluctuation, i.e., the system size can grow without limit. Hence this ensemble is not so
common for simulations using MD.

In the MD simulation it is possible to realize different types of thermodynamic en-
sembles by controlling certain thermodynamic quantities. In the following we describe
different algorithms to control temperature and pressure.

2.6.3 Molecular dynamics at constant temperature

The instantaneous kinetic energy is given by

K(t) =
1
2

N

∑
i

mi(vi(t))2 (2.74)

The temperatureT is directly related to the kinetic energy by the well-known equipar-
tition formula, assigning an average kinetic energykBT/2 per degree of freedom:

K =
3
2

NkBT (2.75)

An estimate of the temperature is therefore directly obtained from the average kinetic
energyK. For practical purposes, it is also common practice to define aninstantaneous
temperatureT(t), proportional to the instantaneous kinetic energyK(t) by a relation
analogous to Eq. (2.75).

2.6.3.1 Velocity rescaling

The temperature change is achieved by rescaling the velocities in order to bring the
system to a desired temperature. In the framework of the velocity Verlet algorithm this
may be accomplish by replacing the step

v(t +dt/2) = v(t)+a(t)dt/2
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with

v(t +dt/2) =

√
Tdes

T(t)
v(t)+a(t)dt/2, (2.76)

whereTdes is the desired temperature andT(t) is the instantaneous temperature.

2.6.3.2 Gaussian thermostat

Another way to control the temperature is to use a constrain on the equation of motion.
Gauss’ principle of least constraint states that a force added to restrict a particle motion
on a constraint hypersurface should be normal to the surface of the realistic dynamics
[66]. The constant temperature constraint has the form

1
2

N

∑
i=1

miv2
i −

3
2

NkBTdes= 0. (2.77)

Gauss’ principle yields (differentiation of Eq. (2.77) with respect tot)

N

∑
i=1

miviai =
N

∑
i=1

Fivi = 0. (2.78)

To derive the Gaussian equation of motion,miai is substituted byFi − ξ̇mivi . The
resulting equation is then solved for the time derivative of the friction coefficient,ξ̇,
which yields

ξ̇ =
∑N

i=1Fi .vi

∑N
i=1miv2

i

(2.79)

The Gaussian thermostat can be easily combined with the velocity Verlet integrator as:
(i) Calculate the thermostat variableξ̇(t) = [∑N

i=1miai(t).vi(t)]/[∑N
i=1miv2

i (t)].
(ii) Evaluate velocities:vi(t +dt/2) = vi(t)+ [ai(t)−vi(t)ξ̇(t)]dt/2.
(iii) Evaluate positions:r i(t +dt/2) = r i(t)+vi(t +dt/2)dt.
(iv) CalculateFi(t +dt) andai(t +dt) and repeat from (i) fort +dt.

2.6.3.3 Andersen thermostat

In the constant-temperature method proposed by Andersen [67] the system is coupled
to a heat bath that imposes the desired temperature. The coupling to the heat bath is
represented by stochastic forces that act occasionally on randomly selected particles.
To perform the simulation one must first choose two parameters: the desired temper-
ature,Tdes, and the mean rate at which each particles suffers stochastic collisions,ν.
The probability that a particular particle suffers a stochastic collision in timedt is νdt.
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The times at which each particle suffers a collision is decided before beginning of the
simulation. This can be done by using random numbers to generate the values for the
time intervals between successive collisions of a particle. Such intervals are distributed
according to

P(t) = νexp(−νt), (2.80)

whereP(t)dt is the probability that the next collision will take place in the interval
[t, t +dt]. Hence, as the calculations proceed, random numbers can be used to decide
which particles are to suffer collisions in time intervaldt.

A constant-temperature involving Andersen thermostat consists of the following
steps:
(i) Start with an initial set of positions and momenta and integrate the equations of
motion for a timedt.
(ii) A number of particles are selected to undergo a collision with the heat bath.
(iii) If particle i has been selected to undergo a collision, its new velocity will be taken
from a Maxwell-Boltzmann distribution corresponding toTdes. All other particles are
unaffected by this collision.

The Andersen thermostat is consistent with the canonical ensemble and quite good
for the algorithms used for investigating static properties. However it is risky to use this
method when studying dynamical properties. The reason for this is that this method is
based on stochastic collisions and disturbs the dynamics of the systems in an unrealistic
way, which may lead to sudden random de-correlation of particle velocities.

2.6.3.4 Nosé-Hoover thermostat

This is an extended system method as it introduces additional degrees of freedom into
the system’s Hamiltonian. They are integrated in line with the equations for the spatial
coordinates and momenta. According to the Nosé-Hoover thermostat, the effect of an
external system acting as heat reservoir to keep the temperature of the system constant,
is reduced to one additional degree of freedom [68]. The thermal interactions between
a heat reservoir and the system result in a change of the kinetic energy, i.e., the veloci-
ties are subjected to scaling. There exist two sets of variables: real and virtual. In the
following the relations between real and virtual variables are given. Real variables are
indicated by a prime, to distinguish them from their unprimed virtual counterparts.

r ′ = r (2.81)

p′ = p (2.82)

dt′ = dt/s, (2.83)

wheredt is the virtual time interval ands is a scaling factor. An effective mass,Ms,
is introduced as an additional degree of freedom with momentumπs. The resulting



30 CHAPTER 2 CLASSICAL MOLECULAR DYNAMICS

Hamiltonian, expressed in virtual coordinates, gives:

HNH =
N

∑
i

p2
i

2mis2 +V(r)+
π2

s

2Ms
+gkBT lns, (2.84)

whereg = 3N + 1 is the number of degrees of freedom (system of N free particles).
One gets the equations of motion in real variables (dropping primes) as:

ṙ i = pi/mi (2.85)

ṗi =−dV(r)
dr i

−ξpi (2.86)

ξ̇ =
1

Ms

(
∑
i

p2
i /mi−gkBT

)
(2.87)

ξ =
d lns
dt

. (2.88)

This method provides a way to keep the temperature constant more gently than the
Andersen’s method where particles get new, random velocities.

2.6.4 Molecular dynamics at constant pressure

The measurement of the pressure in a MD simulation is based on the Clausius virial
function

W(r) =
N

∑
i=1

r i .Ftot
i , (2.89)

whereFtot
i is the total force acting on an atomi. Its statistical average〈W〉 is obtained

as an average over the molecular dynamics trajectory:

〈W〉= lim
t ′→∞

1
t ′

Z t ′

0
dt

N

∑
i=1

r i(t).mi r̈ i(t). (2.90)

By integrating by parts,

〈W〉=− lim
t ′→∞

1
t ′

Z t ′

0
dt

N

∑
i=1

mi |ṙ i(t)|2. (2.91)

This represents twice the kinetic energy. Therefore by the equipartition law of statisti-
cal mechanics we get,

〈W〉=−3NkBT. (2.92)

The total force can be decomposed into two contributions:

Ftot
i = Fi +Fext

i , (2.93)
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whereFi is the internal force arising from the interatomic interactions, andFext
i is the

external force exerted by the container’s wall. If the particles are enclosed in a rectan-
gular container of sidesLx,Ly,Ly with volumeV = LxLyLz, and with the coordinates’
origin on one of its corners.〈Wext〉 due to the container can be evaluated using Eq.
(2.89):

〈Wext〉= Lx(−PLyLz)+Ly(−PLxLz)+Lz(−PLxLy) =−3PV (2.94)

where for instance−PLyLz is the external forceFext
x applied by theyzwall along thex

direction, etc. Eq. (2.92) can be written as

〈
N

∑
i

r i .Fi〉−3PV =−3NkBT

or PV = NkBT +
1
3
〈

N

∑
i

r i .Fi〉. (2.95)

This equation is known asvirial equation. All the quantities except P are easily ac-
cessible in a simulation and therefore it provides a way to calculateP. Note that Eq.
(2.95) reduces to the well-known equation of state of the ideal gas if the particles are
non-interacting.

2.6.4.1 Andersen’s method

Andersen originally proposed a method for constant pressure MD, which involves cou-
pling to an external variableV, the volume of the simulation box [67]. This coupling
mimics the action of a piston on a real system. The piston has a massQ and is associ-
ated with the kinetic energy

KV =
1
2

QV̇2. (2.96)

The potential energy associated with the additional variable is

VV = PV (2.97)

whereP is the specified pressure. The positions and velocities of the atoms are given
in term of scaled coordinates as:

r = V1/3s (2.98)

v = V1/3ṡ. (2.99)

The potential and kinetic energies associated with the particles areV(r) = V(V1/3s)
andK = 1

2mV2/3∑i ṡ
2. The equations of motion become:

s̈= f/(mV1/3)− (2/3)ṡV̇/V (2.100)

V̈ = (P −P)/Q (2.101)
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whereP represents the netinstantaneous pressuredue to the external and internal
forces. BothP andf are calculated using normal, un-scaled coordinates and momenta.
The equations of motion generate trajectories which sample the isobaric-isoenthalpic
ensemble.

The parameterQ is an adjustable parameter. Asmall mass will result in rapid
oscillations in box size, whereas alarge mass will give rise to slow exploration of
volume-space. Andersen recommends that the time scale for box-volume fluctuations
should be roughly the same as those for a sound wave to cross the simulation box.

2.6.4.2 Parrinello’s and Rahman’s method

The constant pressure method of Andersen allows for isotropic change in the volume
of the simulation box. Parrinello and Rahman have extended this method to allow the
simulation box to change shape as well as size [69,70,71]. In this method the scaled
coordinates are introduced through the equation

r = Hs (2.102)

whereH = (h1,h2,h3) is a transformation matrix whose columns are the three vectors
hα representing the sides of the box. The volume of the box is given by

V = |H|= h1.h2×h3. (2.103)

The potential energy associated with the box is

VV = PV (2.104)

and the corresponding kinetic energy term is

KV =
1
2

Q∑
α

∑
β

Ḣ2
αβ. (2.105)

The equations of motion are:

ms̈= H−1f−mG−1Ġṡ (2.106)

qḦ = (P −1P)V(H−1)T (2.107)

whereG = HTH is a tensor. The pressureP plays the same role as in Andersen’s
method.

2.7 Periodic Boundary Conditions

One can perform two kinds of treatment for simulating the boundaries of the system.
One possibility is doing nothing special. Here the system simply terminates and atoms
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near the boundary would have less neighbors than atoms inside. In other words, the
system is surrounded by surfaces. This kind of simulation is realistic only when we
want to simulate clusters of atoms. In order to simulate bulk one usesperiodic bound-
ary conditions (PBC).

When using PBC, particles are enclosed in a box and this box is replicated to
infinity by translation in all the three Cartesian directions, completely filling the space.
Hence, if one of the particles is located at the positionr in the box, this particle really
represents an infinite set of particles located at

r + la+mb+nc, l ,m,n∈ (−∞,∞),

wherel ,m,n are integers anda,b,c are the vectors corresponding to the edges of the
simulation box.

Apparently, the number of interacting pairs becomes infinite as an effect of PBC.
In practice this is not true because for a given accuracy the potentials usually have a
short interaction range. Theminimum image criterionis followed in order to reduce
the level of additional complexity introduced by the use of PBC. Consider a potential
with a finite range, i.e., when separated by a distance equal or larger than a cutoff
distanceRc, two particles do not interact with each other. Therefore it is sufficiently
accurate to chose a box size larger than2Rc along each Cartesian direction.

When these conditions are satisfied, it is obvious that almost one among all the
pairs formed by a particlei in the box and the set of all the periodic images of another
particle j will interact. When we work under these conditions, we can safely use the
minimum image criterion, i.e., among all possible images of a particlej, the closest
one is selected. This condition greatly simplify the set up of a MD program and is
commonly used. Of course, one must make sure that the box size is at least2Rc along
the directions where PBC’s are in effect.





Chapter 3

Large-Scale Optimization

3.1 Basic Approach to Large-Scale Optimization

The (partially) amorphous systems are characterized by various configurations and
interconversions between them are possible due to the internal vibrations and bond
changes. By relating the changes in these motions to the potential energy function,
it is possible to regard changes in the system as movements on the multidimensional
surface that describes the relationship between the value of the energy function and
the configurations. Stable configurations of the system correspond to the local minima
on the potential energy surface. The relative population of the minima depends on
their statistical weight, which includes contributions from both the potential energy
and the entropy. The global energy minimum on the potential energy surface does not
necessarily correspond to the structure with the highest statistical weight. To perform a
"configurational search" it is therefore necessary to determine those minimum energy
configurations that are believed to contribute to the overall configurational partition
function. This requires some methods for determining minima on the surface described
by the potential energy function.

A common strategy is to use the method of MD to search the configurational space
and select configurations at regular time intervals from the trajectory and minimizing
them to the associated minimum energy structures. If sufficiently large numbers of
time steps are used and the temperature is high enough to enable the barriers to be
overcome, then in principle, all the potential energy minima could be identified. How-
ever, in MD the time step must be smaller than the period of the highest frequency
motion of the constituting molecules. For this reason a time step on the order of 1 fs
must be used, and with current available hardware only relatively short simulations are
possible, often far too small to ensure that the whole configurational space has been
covered.

Hence, one of the typical optimization applications in MD is to minimize the po-
tential energy functions for seeking favorable configurational states of a system. The

35
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sheer size of the configuration space and the complexity of the system introduce ex-
tensive computational requirements and the multiple-minima problem.

The multiple-minima problem is a big problem for the large-scale optimization
methods. For reasonable small problems suitable algorithms exist for finding all the
local minima for linear and nonlinear functions. For large problems, however many
trials are required to locate the local minima and finding of the global minima cannot
be ensured. These unfavorable features have prompted development in conformational
search techniques along with minimization.

Local optimization methods are essentially descent methods. They are defined as
an iterative procedure: {x0,x1, · · · ,xk, · · · } that attempts to find one local minimumx∗
from a givenx0. In each step a search vectorpk is computed by a given strategy so that
the function f is minimized approximately along that direction. The performance of
these methods is sensitive to the choice of the starting point in addition to the search
direction and algorithmic details.

Global optimization methods in contrast to the local methods, explore larger re-
gions of the function space. These methods can be classified as deterministic and
stochastic methods. In deterministic methods, a sequence of points is constructed con-
verging towards lower and lower local minima. Ideally, they attempt to tunnel through
the local barriers. Computational effort tends to be very large and guarantee of success
can only be obtained under some specific assumptions. Local minimization methods
are often required repeatedly. This field of deterministic global optimization is still in
its infancy, however, there exist algorithms for this approach [72,73,74,75].

Stochastic global methods, on the other hand, involve systematic manipulation of
randomly selected points [72]. Success can be guaranteed only in stochastic sense. The
simulated annealing method is a popular and effective technique for small to medium
molecular systems. Simulated annealing is very fast to implement and requires no
derivative computation [76,77,78,79,80]. This method has already established itself
as a powerful method for solving combinatorial optimization problems, in which the
"best" or "optimum" solution must be discovered from a large number of possible
solutions. This method uses a control parameter to play the role of the temperature
and a stochastic algorithm is used to generate a sequence of solutions to the problem
(a process equivalent to a physical system coming to thermal equilibrium). The value
of the control parameter is steadily decreased and by the application of the stochastic
algorithm at each stage, the system reaches "thermal equilibrium" at each temperature.
If this is achieved, then an analogy can be drawn with the Boltzmann distribution,
which gives the most probable population of a statei with energyEi at the temperature
T:

ni = [Nexp(−Ei/kT)]/∑
j

exp(E j/kt) (3.1)

As the temperature is reduced, the lower energy states become more probable until at
absolute zero the system occupies the lowest possible energy state. In practice the sim-
ulated annealing algorithm is only approximate because convergence to the globally
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optimal solution would require an infinite number of time steps, at each of which the
system must be allowed to come to the thermal equilibrium.

In contrast to the global methods, the local methods have experienced far more
extensive developments and produced a range of robust and reliable techniques tailored
to the problem size, smoothness, complexity and memory consideration. Refer to
Refs. [81,82,83,84] for details. The following sections are mainly concerned with this
class of methods.

3.2 Basic Descent Structure of Local Methods

The fundamental structure of local iterative techniques for solving unconstrained min-
imization problems is simple. Letf (x) be the function for which one tries to find the
minimum. An unconstrained optimization starts by choosing a starting point, an initial
guess for the values of the unknown parameters inf (x), x0. A substantial amount of
computing time can be saved by choosingx0 with some care. In practice one should
use whatever information available on the behavior off (x), so that the initial guess is
not far from the stationary point. Once the initial point is chosen, two decisions have
to be taken before the next points can be generated.
(i) One must first pick a direction along which the next point is to be chosen.
(ii) One must decide on the step size to be taken in that direction.
Then the following iterative procedure has to be considered:

xk+1 = xk +λkdk k = 0,1, · · · , (3.2)

wheredk is the direction and|λkdk| is the step size. Different optimization methods
differ in the choice ofdk andλk. One can classify these methods in three categories:
(1) The methods using only the functional values.
(2) The methods making use of the first-order derivatives.
(3) The methods which also requires the knowledge of the second-order derivatives.
The first category refers to the nonderivative methods and last two are considered as
gradient methods. Category (3) will generally generate points that are sufficiently
close to the minimum in the least numbers of steps, however, the computational costs
of computing and handling the second derivatives can be substantial. Hence, method
(2) is often a preferable method of choice.

For illustrative purpose, a quadratic function of a vector with the form

f (x) =
1
2

xT .A.x+bTx+c, (3.3)

is considered. Here, matrixA is apositive-definitematrix,x andb are vectors and c is
a scalar constant. A matrixA is positive-definite if, for every nonzero vectorx,

xT .A.x > 0. (3.4)

The eigenvalues of a positive-definite matrix are all positive.
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3.3 Nonderivative Methods

Minimization methods that incorporate only function values generally involve some
systematic method to search the configurational space. In coordinate descent methods,
the search directions are the standard basis vectors. A sweep through thesen search di-
rections produces a sequential modification of one function variable at a time. Through
repeated sweeping of then-dimensional space, a local minimum might ultimately be
found.

A well known variant of the basic coordinate descent scheme is Powell’s method
[85], which is more efficient and reliable. Rather than specifying the search vectors a
priori, the standard basis directions are modified as the algorithm progresses. Consider
initially n linearly independent directions as coordinate directionsd1,d2, · · · ,dn start-
ing from the best known approximation to the minimum,x0. The start of the method
is identical to an iteration method which changes one parameter at a time. Later the
method is modified to generate conjugate directions by making each iteration define
a new direction,d, and choosing the linearly independent directions for the next it-
erations to bed2,d3, · · · ,dn,d. If a quadratic function is being minimized, afterk
iterations the lastk of the n directions chosen for thek+ 1th iteration are mutually
conjugate. Powell’s method guaranteed that in exact arithmetic (i.e., in the absence of
round off error), the minimum of a convex quadratic function is found aftern sweeps.

Nonderivative minimization methods are generally easy to implement but some-
times encounter convergence problems. In general, the computational cost, dominated
by the number of function evaluations, can be excessively high for the functions of
many variables and can far outweigh the benefit of avoiding derivative calculations.
If obtaining the analytic derivatives is difficult, the gradient can be approximated by
finite differences of function values, as

gi ≈ 1
hi

[ f (x+hiei)− f (x)], (3.5)

for suitably chosen intervalshi .

3.4 Gradient Methods

This class of methods uses the analytic-derivative information, which clearly possess
more information about the smooth objective function. Gradient methods can use the
slope of a function, for example, as the direction of the movements toward extreme
points. The second derivative can also incorporate curvature information from the
Hessian to find the regions where the function is convex. The common gradient meth-
ods are steepest descent, conjugate gradient, Newton-Raphson methods.

3.4.1 Steepest descent method
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The method of steepest descent is the simplest of the gradient methods. In this method
one starts at an arbitrary pointx0 and then take a series of steps to the pointsx1,x2, · · ·
until convergence is achieved. The choice of the descent direction is wheref decreases
most quickly, which is the direction opposite tof ′(x(i)). According to Eq. (3.3), for a
quadratic function, this direction is−∇ f (x(i)) =− f ′(x(i)) = b−Ax(i).

Figure 3.1: The method of steepest descent approaches the minimum in a zig-zag

manner, where the new search direction is perpendicular to the previous

one. The step size gets smaller and smaller as it approaches the minimum.

Consider the following definitions. The errorei = x(i)− x is the vector that indi-
cates how far the approximate value is away from the solution. The residualr (i) =
b−Ax(i) =− f ′(x(i)), indicates the deviation from the correct value ofb which is also
the direction of steepest descent. In this method a step is taken fromx0 according to
the equation:

x(1) = x0 +λr0. (3.6)

In order to chooseλ a line search procedure is applied.λ minimizes f when the di-
rectional derivatived

dλ f (x(1)) = 0. By the chain rule d
dλ f (x(1)) = f ′(x(1)) d

dλx(1) =
f ′(x(1))Tr0. Hence, one finds thatλ must be chosen so thatr0 and f ′(x(1)) are or-
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thonormal. To determineλ one considers:

− f ′(x(1))
Tr0 = 0

rT
(1)r0 = 0

(b−Ax(1))
Tr0 = 0

(b−A(x0 +λr0))Tr0 = 0

(b−Ax0)Tr0 = λ(Ar 0)Tr0

λ =
rT

0 r0

rT
0 Ar 0

. (3.7)

Putting it all together the algorithm for the steepest descent is:

r (i) = b−Ax(i), (3.8)

λ(i) =
rT
(i)r (i)

rT
(i)Ar (i)

, (3.9)

x(i+1) = x(i) +λ(i)r (i). (3.10)

Fig. 3.1 illustrates the method of steepest descent. This method is very stable, if the
minimum points exist. However this method suffers from low convergence problems.
For badly scaled systems, the method can end up spending an infinite number of itera-
tions before locating a minimum.

3.4.2 Conjugate gradient method

As seen in the previous subsection, the reason why the method of steepest descent con-
verges slowly is that it has to take a right angle turn after each step, and consequently
search in the same direction. The method of conjugate gradient is an attempt to mend
this problem by "learning" from experience.

Conjugacymeans that two unequal vectors,di andd j , are orthogonal with respect
to any symmetric positive definite matrix,A, i.e.,

dT
i .A.d j = 0. (3.11)

This can be looked upon as a generalization of orthogonality, for whichA is the unity
matrix. The idea is to let each search directionsdi be dependent on other search direc-
tions searched to locate a minimum off (x) through Eq. (3.11). A set of such search
directions are referred to asA-orthogonal, or conjugate set. It will take for a positive
definiten-dimensional quadratic function to its minimum point in, at most,n exact
linear searches. The method is often referred to asconjugate directions.

The best way to visualize the working of conjugate directions is by comparing the
space we work in with a stretched space as shown in Fig.3.2. Fig. 3.2(a) demonstrates
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(a) (b)

Figure 3.2: The method of conjugate directions.(a) Lines that appear perpendicular

are orthogonal. (b) The same problem in a "stretched" space. Lines that

appear perpendicular areA-orthogonal.

the shape of a contour of a quadratic function in real space, which is elliptical (forb 6=
0). Any pair of vectors that appear perpendicular in this space, would be orthogonal.
Fig. 3.2(b) shows the same plot in a space that is stretched along the eigenvector axes
so that the elliptical contour from Fig.3.2(a) becomes circular. Any pair of vectors
that appears to be perpendicular in this space, is in factA-orthogonal. The search for
a minimum of the quadratic functions starts atx0 and takes a step in the directiond0

and stops atx1. This minimum point along that direction, determined by the same
way as for the steepest descent method, i.e., the minimum along a line where the
directional derivative is zero. The essential difference between the steepest descent
and the conjugate direction lies in the choice of the next search from this minimum
point. While the steepest descent would search in the directionr1 in Fig. 3.2(a), the
conjugate direction method would choosed1. In the stretched space, the directiond0

appears to be a tangent to the now circular contour at the pointx1. Since the next
search directiond1 is constrained to beA-orthogonal to the previous, they appear
perpendicular in "stretched space". Hence,d1 will find directly the minimum point of
the quadratic functionf (x). To avoid searching in directions that have been searched
before, the conjugate direction guarantees that the minimization of thef (xk) along one
direction does not "spoil" the minimization along another, i.e., afteri stepsf (xi) will
be minimized over all searched directions. The conjugate gradient method is a special
case of the method of conjugate directions, where the conjugate set is generated by
the gradient vectors. This seems to be a good choice since the gradient vectors have
proven their applicability in the steepest descent method, and they are orthogonal to
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the previous search direction. For a quadratic function, the procedure is as follows.
The initial step is in the direction of the steepest descent:

d0 =− f ′(x0) =−g0, (3.12)

whereg is the gradient. Subsequently, the mutually conjugate directions are chosen so
that

dk+1 =−gk+1 +βkdk k = 0,1, · · · , (3.13)

where the coefficientβk is given by, for example, the so called Fletcher-Reeves for-
mula:

βk =
gT

k+1.gk+1

gT
k .gk

. (3.14)

The step length along the directions is given by

λk =
dT

k .gk

dT
k .A.dk

, (3.15)

and the resulting iterative formula is identical to Eq. (3.2).
The direct use of Eq. (3.15) will most likely not bring us to the solution inn

iterations either, the reason being the limited numerical accuracy in the computations
which will make the search vectors lose their conjugacy. It should also be mentioned
that if the matrixA is badly scaled, the convergence will be slowed down considerably,
as it was for the steepest descent method.

The conjugate gradient method is often employed to problems where the number of
variablesn is large, and it is not unusual for the method to start generating nonsensical
and inefficient directions of search after a few iterations. For this reason it is important
to operate the method in cycles, with the first step being the steepest descent step. One
example of a restarting policy is to restart with steepest descent step aftern iterations
after the preceeding restart.

3.4.3 Newton-Raphson method

The method of Newton-Raphson differs from the steepest descent and conjugate gra-
dient methods in that the information of the second derivative is used to locate the
minimum of a functionf (x). This results in faster convergence, but not necessarily
less computing time. The computation of the second derivatives and the handling of
their matrix can be very time consuming, especially for large systems.

The idea behind the Newton-Raphson method is to approximate the given function
f (x) in each iteration by a quadratic function as given in Eq. (3.3) and then move to
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the minimum of this quadratic approximation. The quadratic function for a pointx in
a suitable neighborhood of the current pointxk is given by a truncated Taylor series:

f (x)≈ f (xk)+(x−xk)T .gk +
1
2
(x−xk)T .Hk.(x−xk), (3.16)

where both the gradientgk and the Hessian matrixHk are evaluated atxk. The deriva-
tive of Eq. (3.16) is

∇ f (x) = gk +
1
2

Hk.(x−xk)+
1
2

HT
k .(x−xk). (3.17)

The Hessian is always symmetric if the functionf (x) is twice continously differen-
tiable everywhere. Hence Eq. (3.17) reduces to

∇ f (x) = gk +Hk.(x−xk). (3.18)

If we assume that the functionf (x) has a minimum atx = x∗, the gradient off is zero,
i.e.,

Hk.(x∗−xk)+gk = 0, (3.19)

which is a linear equations system. The Newton-Raphson method uses thex∗ as the
next current point, resulting in the iterative formula,

xk+1 = xk−H−1
k .gk k = 0,1, · · · , (3.20)

whereH−1
k .gk is referred to as the Newton direction. The performance of the method

is dependent on certain qualities of the Hessian. One of these qualities is the positive
definiteness. If the Hessian is not positive definite, the method is no longer guaranteed
to proceed towards a minimum and may end up at other critical points, which may be
either saddle point or a maximum point. The size of the Hessian can also be crucial
to the effectiveness of the Newton-Raphson method. For systems with a large dimen-
sions, i.e., that the functionf (x) has a large number of variables, both the computation
of the matrix and the calculations that include it, will be time consuming. This can be
mended by either just using the diagonal terms in the Hessian, i.e., ignoring the cross
terms or just not recalculating the Hessian at each iteration.





Chapter 4

Solid State Properties

There has been great burst of interest in the subject of amorphous solids, however this
area has yet to develop any unifying principles, which can be comparable to that pro-
vided by the consequence of a periodic array of atoms or ions. Many of the concepts
used in the modeling of amorphous solids are borrowed from the theory of crystalline
solids, even though they are only well understood as a consequence of lattice period-
icity. In this chapter solid state properties are illustrated with some reference to the
crystals. For details refer to Refs. [1,2,86,87,88,89]

4.1 Structural Properties

4.1.1 Diffraction by crystals

Usually the structure of solids is studied through the diffraction of photons, neutrons
and electrons. The diffraction depends on the structure and on the wavelength. When
the wavelength of the radiation is comparable with or smaller than the lattice constant,
the diffracted beams are in direction quite different from the incident direction. The
famous Bragg’s diffraction law, i.e.,2dsinθ = nλ, gives the condition for the construc-
tive interference of waves scattered from the lattice points. However, in order to get
deeper understanding, one need to determine the scattering intensity from the basis
atoms, i.e., the spatial distribution of the electrons.

A crystal is invariant under any translation of the formT = u1a1 + u2a2 + u3a3,
whereu1,u2,u3 are integers anda1,a2,a3 are the crystal axes. The reciprocal lattice

45
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comprises of the primitive axis vectorsb1,b2,b3, defined as

b1 = 2π
a2×a3

a1.a2×a3
, (4.1)

b2 = 2π
a3×a1

a1.a2×a3
, (4.2)

b3 = 2π
a1×a2

a1.a2×a3
. (4.3)

Each vector in Eq. (4.1)- Eq. (4.3) is orthogonal to two axis vectors of the crystal
lattice, thus

bi .a j = 2πδi j . (4.4)

A reciprocal lattice vector,G is defined as

G = ν1b1 +ν2b2 +ν3b3, (4.5)

whereν1,ν2,ν3 are integers.
Any local property of a crystal is invariant underT. For example, the electron

densityn(r) is a periodic function ofr and

n(r +T) = n(r). (4.6)

The Fourier analysis of this function gives

n(r) = ∑
G

nG exp(iG.r), (4.7)

and for a set of reciprocal lattice vectorsG. The Fourier coefficientsnG determine the
X-ray scattering amplitude. The inversion of Eq. (4.7) gives

nG = V−1
c

Z
cell

dVn(r)exp(−iG.r), (4.8)

whereVc is the volume of a cell in the crystal.
The set of reciprocal lattice vectorsG determines the possible X-ray reflections.

The amplitude of the electric or magnetic field vectors in the scattered electromagnetic
wave is given by the scattering amplitude,F defined as

F =
Z

dVn(r)exp[i(k−k′).r ] =
Z

dVn(r)exp(−i∆k.r), (4.9)

where

k +∆k = k′. (4.10)
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Herek,k′ represent the wave vectors of the incident and diffracted waves, respectively.
The diffraction condition is given by when the scattering vector∆k is equal to a par-
ticular lattice vector, i.e.,

∆k = G. (4.11)

Hence, under the diffraction condition, the scattering amplitude for a crystal ofN cells
is given by

FG = N
Z

cell
dVn(r)exp(−iG.r) = NSG (4.12)

Here,SG is called the structure factor and is defined over a single cell. The electron
concentrationn(r) can be considered as the superposition of electron concentration
functionsn j associated with each atomj of the cell. Hence, the structure factor can be
written over all atoms of a cell as

SG = ∑
j

Z
dVnj(r − r j)exp(−iG.r) = ∑

j
exp(−iG.r j)

Z
dVnj(ς)exp(−iG.ς),

(4.13)

whereς = r − r j . The atomic form factor is defined as

f j =
Z

dVnj(ς)exp(−iG.ς), (4.14)

which is integrated over all space. This factor measures the scattering power of thejth
atom in the unit cell. Hence, the structure factor is given by

SG = ∑
j

f j exp(−iG.r j). (4.15)

4.1.2 Investigation of structures of non-crystalline solids

In contrast to the situation with crystalline materials, the absence of periodicity means
that the structure can no longer be reduced to considering the smallest repeat element,
the unit cell. It is only possible to estimate the probability of the distribution of atoms
in the vicinity of any reference atom. Diffraction methods can be used to determine
the frequency with which given interatomic distances occur in an amorphous sample.

For non-crystalline solids, in Eq. (4.12) instead of writing the structure factor of
the basis, one can sum for all the atoms in the specimen. Further, instead of specifying
the scattering to the reciprocal lattice vectorsG, one can consider arbitrary scattering
vectors∆k = k′−k. This is done because scattering from amorphous materials is not
limited to the reciprocal lattice vectors, which are not defined. Therefore the scattering
amplitude from an amorphous material is described by using Eq. (4.12) and Eq. (4.14)
as

F(∆k) = ∑
j

f j exp(−i∆k.r j). (4.16)
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Here the summation runs over all the atoms in the material. The scattered intensity at
the scattered vector∆k is given by

I = F ∗F∗ = ∑
i

∑
j

fi f j exp[i∆k.(r i− r j)]. (4.17)

If α is the angle between∆k andr i− r j , then

I = ∑
i

∑
j

fi f j exp(iKr i j cosα), (4.18)

whereK andr i j are the magnitude of∆k andr i− r j , respectively.
In an amorphous specimen the vectorr i− r j may take on all orientations and there-

fore by averaging the phase factor over a space one obtain the scattered intensity

I = ∑
i

∑
j

fi f j
sinKr i j

Kr i j
. (4.19)

For one-component system the scattered intensity is given by

I = N f2∑
j

sinKr i j

Kr i j
, (4.20)

where fi = f j = f for only one type of atom andN is the number of atoms. With the
approximationsr i j → 0, sinKr i j /Kr i j → 1, and with the introduction of the density
functionρ(r), this leads to

I = N f2
[
1+

Z ∞

0
4πr2ρ(r)

sinKr
Kr

dr
]
. (4.21)

Here,ρ(r) is the volume density of atoms at distancer from the reference atom, and
4πr2ρ(r)dr is the number of atoms in a spherical shell of radiusr and thicknessdr.
The functionρ(r) is thus essentially a pair correlation function and4πr2ρ(r) repre-
sentsradial distribution function(RDF), g(r). This function is specially averaged
one-dimensional representation of a three-dimensional structure. Introducingρ0, the
average density of atoms in the sample investigated, the second integral in the equation

I = N f2
{

1+
Z ∞

0
4πr2[ρ(r)−ρ0]

sinKr
Kr

dr +
Z ∞

0
4πr2ρ0

sinKr
Kr

dr
}

(4.22)

can be neglected in the range of values ofK acquired in a wide-angle measurement.
Amorphous solids possess no long-range order, i.e., the density functionρ(r) tends to
ρ0. Thus the quantity[ρ(r)− ρ0] tends to zero at distances greater than a few atom
separations and hence the first integral is dominated by the scattering mainly from
close scattering centers. The RDF is obtain by the application of the Fourier’s integral
theorem, which eventually lead to

g(r) = 4πr2ρ(r) = 4πr2ρ0 +
2r
π

Z ∞

0
K

( I
N f2 −1

)
sin(Kr) dK. (4.23)
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4.2 Vibrational Properties

The vibrational properties of amorphous solids are very similar to that of the corre-
sponding crystalline forms, with the exception that selection rules for transitions are
relaxed and sharp features in the density of vibrational modes are broadened due to
lack of periodicity. The next sections are devoted to the discussion of vibrational ex-
citations in crystals followed by anomalous properties shown by amorphous solids.
This anomalous nature is more pronounced in the low temperature regime and is quite
unique to the non-crystalline phase.

4.2.1 Phonons

Figure 4.1: The Brillouin zones for a two-dimensional square lattice. The reciprocal

lattice is also a square lattice of sideb. All Bragg planes (lines, in two

dimensions) that lie within the square of side 2b centered on the origin.

These Bragg planes divide that square into regions belonging to zones 1

to 6. [Adapted from Ref. [88].]

Eq. (4.1)-Eq. (4.3) define the primitive vectors of a reciprocal lattice vectorG. The
first Brillouin zoneis theWigner-Seitzprimitive cell of the reciprocal lattice, i.e., the
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set of points lying closer toK = 0 than to any other reciprocal lattice point. Since
Bragg planes bisect the lines joining the origin to points of the reciprocal lattice, one
can equally well define the first zone as the set of points that can be reached from the
origin without crossing any Bragg planes. In this definition the points lying on Bragg
planes are excluded, which turn out to be common to the surface of the two or more
zones. Higher zones are simply other regions bounded by the Bragg planes defined as
follows:
The first Brillouin zone is the set of points in reciprocal space that can be reached from
the origin without crossing any Bragg plane. The second Brillouin zone is the set of
points that can be reached from the first zone by crossing only one Bragg plane. The
(n+1)th Brillouin zone is the set of points not in the(n−1)th zone that can be reached
from thenth zone by crossing only one Bragg plane. These definitions are illustrated
in Fig. 4.1 for a simple two-dimensional square lattice. These Brillouin zones are
essential for the analysis of vibrational properties for crystals.

Consider elastic vibrations in a crystal. If there arep atoms in the primitive cell,
there are3pbranches to the dispersion relations: 3 acoustic branches and3p−3 optical
ones. The atoms vibrate against each other, but their center of mass is fixed in optical
modes. Hence if they are ions, these motions will interact with the electric field of a
light wave. However, in acoustical branches the atoms move together along with their
center of mass.

Consider a diatomic crystal structure with massesM1, M2 connected by force con-
stantC between adjacent planes. The displacements of atom of massM1 are denoted
by us−1,us,us+1, · · · , and of atoms of massM2 by ϑs−1,ϑs,ϑs+1. The repeated dis-
tance isa in the direction of the wave vectork. The equations of motion under the
assumption that each plane interacts only with its nearest planes:

M1
d2us

dt2
= C(ϑs+ϑs−1−2us);

M2
d2ϑs

dt2
= C(us+1 +us−2ϑs). (4.24)

One can obtain a solution in the form of a traveling wave with different amplitudesu,
ϑ on alternate planes:

us = uexp(iska)exp(−iωt);
ϑs = ϑexp(iska)exp(−iωt). (4.25)

Eq. (4.24) and Eq. (4.25) lead to the dispersion relation:

M1M2ω4−2C(M1 +M2)ω2 +2C2(1−coska) = 0. (4.26)

For the following limiting cases the roots are:

• ka¿ 1 (very small values ofk).
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Case I:ω2≈ 2C
(

1
M1

+ 1
M2

)
(optical branch);

Case II:ω2≈ C
2(M1+M2)

K2a2 (acoustical branch).

• ka±π (at the zone boundary).

Case I:ω2 = 2C
M2

(optical branch, whenM1 > M2);

Case II:ω2 = 2C
M1

(acoustical branch, whenM1 > M2 ).

The dependence ofω onk is shown in Fig.4.2.

π/a
k

[2
C

((
1/

M
1)

+
(1

/M
2)

)]
1/

2
ω

(2C/M1)
1/2

(2C/M2)
1/2

Optical phonon branch

Acoustical phonon branch

Figure 4.2: Dispersion relation for a diatomic linear lattice with lattice constanta

(M1 > M2), showing the limiting frequencies atk = 0 andk = kmax= π/a.

[Adapted from Ref. [87]].

4.2.2 Properties under harmonic approximation

In the harmonic approximation the normal modes, i.e., the phonons, are independent.
The total wavefunction is the product of the single mode wavefunctions and the total
energy and the thermodynamic functions are sums of the single mode contributions.
These sums can be expressed as averages over the frequency spectrum,g(ω), defined
such thatg(ω)dω is the fraction of eigenfrequencies in the interval [ω,ω+dω]:

g(ω) =
1

3N ∑
k, j

δ(ω−ω j(k)) (4.27)



52 CHAPTER 4 SOLID STATE PROPERTIES

and Z ∞

0
dω g(ω) = 1. (4.28)

At low frequencies the spectrum increases asω2 which is a direct consequence of
the linear dispersion of the long wavelength acoustic modes. Usually the spectrum
shows number of singularities known asvan Hove singularities, where the derivative
dg(ω)/dω is discontinuous. These singularities originate from the extrema of the
dispersion curves which are always present due to the periodicity.

The thermodynamic functions can be derived from the partition function

Q = tr{exp(−βH)} (4.29)

where tr stands for trace,H is the Hamiltonian andβ = 1/(kBT) with kB the Boltzmann
constant andT the absolute temperature. In the harmonic approximation the trace
can be evaluated for each mode separately, resulting in products of sums over the
occupation numbers giving

Z = Πk, j
exp[−1

2β~ω j(k)]
1−exp[−β~ω j(k)]

. (4.30)

The Helmholtz free energy per atom is given by:

A =− 1
N

kBT lnZ =
1
N

kBT ∑
k, j

ln{2sinh[~ω j(k)/(2kBT)]} (4.31)

= 3kBT
Z

dω ln{2sinh[~ω j(k)/(2kBT)]}g(ω). (4.32)

HereN represents number of atoms. From this expression the internal energyE, the
specific heat at constant volumeCV and the vibrational entropyS per atom, can be
calculated by standard thermodynamic relations:

E = A−T
(∂A

∂T

)
V

= 3
~
2

Z
dωcoth[~ω/(2kBT)]ωg(ω).

(4.33)

CV =
(∂E

∂T

)
V

= 3kB

Z
dω

( ~ω
2kBT

)2
{sinh2[~ω/(2kBT)]}−1g(ω).

(4.34)

S=−
(∂A

∂T

)
V

= 3kB

Z
dω

( ~ω
2kBT

coth[~ω/(2kBT)]− ln{2sinh[~ω/(2kBT)]}
)

g(ω).

(4.35)

At low temperatures the specific heat and entropy obey a∼T3 law, which is typical
for an ordered lattice. In amorphous solids a leading term∼ T is found which is
attributed to tunneling centers.
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The low temperature behavior can be approximated by the Debye spectrum. At
low temperature the thermodynamics will be dominated by the low frequency phonons.
The spectrum for low frequency is always proportional toω2, stemming from the linear
dispersion for smallk. In the Debye approximation one assumes a purely quadratic
behavior ofg(ω) up to a cutoff given by,

gD(ω) =

{
3

ω3
D

ω2 ω≤ ωD

0 ω > ωD
(4.36)

The Debye frequencyωD is often expressed in terms of a Debye temperatureΘD as

kBΘD = ~ωD. (4.37)

The Debye approximation is valid only for low temperature and the Debye frequency
can be determined from the low frequency part of the true spectrum or from the sound
velocity.

4.2.3 Anomalies in amorphous systems

Amorphous materials posses no long-range order. Their structure can be visualized
as that of a frozen-in liquid. Sound waves, the long wavelength limit of the phonons
still exist in these materials. With decreasing wavelength the sound waves will be in-
creasingly scattered by the inhomogeneity on an atomic scale. This damping of the
phonons by disorder is always proportional to some power ofω. When the wavelength
approaches the atomic scale, a description of the atomic vibrations in terms of phonons
(plane waves) is no longer sensible. Nevertheless there are well defined atomic vibra-
tions, but with rather complicated eigenvectors (structure factors). Usually the density
of states of these vibrations are similar to their counterpart in crystals. In particular the
maxima present for the crystalline form are also found in the amorphous material. The
maxima in the density of state of crystal stems from the zone boundary phonons. These
phonons probe the short-range order which is more or less preserved in the amorphous
phase. Disorder will of course broaden all features.

At low temperatures the properties of amorphous systems differ significantly from
those of crystals [90]. Best known is the anomalous low temperature behavior of the
specific heat. In crystalsCV ∝ T3 and the proportionality constant is determined by
the sound velocities. In amorphous materials for example in glasses there are addi-
tional contributions to the specific heat. BelowT ≈ 2 K the specific heat increases
approximately linearly withT. At T ≈ 2 K there is a crossover toT5 dependence. The
linear part in the specific heat is attributed to two-level systems, i.e., certain groups of
atoms can be envisaged as tunneling between two minimum configurations [91, 92].
The anomaly in the specific heat above 2K are attributed to the localized soft harmonic
vibrations [93]. A common description of the two-level systems and the soft vibra-
tions was proposed in the soft potential model [94]. Refer references [94,95,97,96]



54 CHAPTER 4 SOLID STATE PROPERTIES

for details. This model assumes that, for some reaction coordinate, disorder weakens
the harmonic restoring force due to local strains. For sufficiently large local strains
the original configuration can even become unstable, and the minimum configuration
turns into a maximum. Eventually, the always present anharmonic terms stabilize the
configuration in new minima on either side of the maximum. The maximum with two
adjoining minima forms a two-well system in the reaction coordinate. The simplest
description of such a scenario is given by the quartic potential,

V(x) = ε[η(x/a)2 + t(x/a)3 +(x/a)4]. (4.38)

Here the scale factora is an atomic length, about half the nearest neighbor distance.
For x = a and η = 1 the quadratic and quartic parts of the potential are equal. In
this formulation of the model the energy scale factorε is equal to the value for the
potential of a single atom,εa, times the number of atoms participating in the mode,
Ns. To ensure that in the two well case Eq. (4.38) represents an expansion around the
maximum,η has to be restricted toη < 9

32t2. Depending on the parameters, Eq. (4.38)
describes a variety of situations.

Consider first the pure symmetric case (t = 0). For η ≈ 1, V(x) is a good ap-
proximation of a harmonic potential, andx describes a vibrational degree of freedom.
For η < 0 we have a two-well potential with a maximum atx = 0 and minima at
x = ±

√
−η/2. For larger negative values ofη, when both minima are clearly de-

veloped but their distance and the barrier separating them are not too large, tunneling
transition from one minimum to the other becomes important. In the energy scheme
this corresponds to a splitting of the ground state level of one minimum into a symmet-
ric and an antisymmetric state regarding both minima, i.e., one has a two-level system.
The higher excited states are not important at the low temperatures considered. For
yet larger negative value ofη, i.e., increasing the separation of the minima and higher
barriers, the tunnel splitting goes to 0 and only thermally activated transitions from
one minimum to other are possible (relaxations). The asymmetry of the potential for
t 6= 0 changes the boundaries of the different regimes. For example a larger value oft
suppresses the influence of the second minimum.

In this model two- and one-well model are described, causing two-level systems
and soft vibrations, respectively, by a common distribution. A fit of the potential to
the experimental data gives numbers of 20 to 80 atoms participating in the tunneling
and the soft vibrations [97, 98]. The soft vibrations occur around atoms whose local
environment differs from the average one.

4.3 Elastic Constants

The elastic constants are of interest because of the insight they give into the nature of
the binding forces in solids, and they are also of importance for the thermal proper-
ties of solids. Polycrystalline and amorphous solids have isotropic elastic properties
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and may be approximately described by fewer elastic constants than a single crystal.
However the knowledge of the constants for single crystals are of fundamental signifi-
cance. The elastic properties of a crystal are generally anisotropic and defined in terms
of tensors.

4.3.1 Elastic strains and stresses

Consider three orthogonal axesf,g,h of unit length, embedded in an unstrained solid.
After a small uniform deformation the axes distort tof′,g′,h′, such as,

f′ = (1+ εxx)f + εxyg+ εxzh;

g′ = εyxf +(1+ εyy)g+ εyzh;

h′ = εzxf + εzyg+(1+ εzz)h. (4.39)

The fractional changes of length off,g andh areεxx,εyy,εzz, respectively. The strain
components are defined as

exx = εxx eyy = εyy ezz= εzz. (4.40)

The other non-diagonal component of the strain may be defined as the changes in the
angle between the axes and considering only the linear terms as,

exy = f′.g′ ≈ εyx+ εxy;

eyz = g′.h′ ≈ εzy+ εyz;

ezx = h′.f′ ≈ εzx+ εxz. (4.41)

Using Eq. (4.40) and Eq. (4.41), Eq. (4.39) becomes

f′− f = exxf +
1
2

exyg+
1
2

ezxh;

g′−g =
1
2

exyf +eyyg+
1
2

eyzh;

h′−h =
1
2

ezx+
1
2

eyzg+ezzh. (4.42)

Consider a particle at the position

r = xf +yg+zh. (4.43)

After the deformation the displacement is given by

ρ = x(f′− f)+y(g′−g)+z(h′−h). (4.44)

One can write the displacement as

ρ = uf +vg+wh, (4.45)
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where the expression for the strain components as:

exx =
∂u
∂x

; eyy =
∂v
∂y

; ezz=
∂w
∂z

; (4.46)

exy =
∂v
∂x

+
∂u
∂y

; eyz =
∂w
∂y

+
∂v
∂z

; ezx =
∂u
∂z

+
∂w
∂x

. (4.47)

The strain component of the typeexy as given in Eq. (4.47) can be interpreted as
made up two simple shears. In one of the shears, planes of the material normal to the
x axis slide iny direction; in the other shear, planes normal toy slide inx direction

4.3.2 Stress components

The force acting on a unit area in the solid is defined as the stress. There are nine
stress components:Xx,Xy,Xz,Yx,Yy,Yz,Zx,Zy,Zz. The capital letter indicates the direc-
tion of the force, and the subscript indicates the normal to the plane to which the force
is applied. Thus the stress componentXx represents a force applied in thex direction
to a unit area of a plane whose normal lies in thex direction. The number of inde-
pendent stress components is reduced to six by applying the condition that the angular
acceleration vanish, and hence that the total torque must be zero. Therefore, it follows
that

Yz = Zy; Zx = Xz; Xy = Yx;

and the independent stress components may be taken asXx,Yy,Zz,Yz,Zx,Xy.

4.3.3 Elastic compliance and stiffness constants

Hooke’s law states that for small deformations the strain is proportional to the stress.
Hence, the strain components are proportional to the stress components:

exx = s11Xx +s12Yy +s13Zz+s14Yz+s15Zx +s16Xy;

eyy = s21Xx +s22Yy +s23Zz+s24Yz+s25Zx +s26Xy;

ezz= s31Xx +s32Yy +s33Zz+s34Yz+s35Zx +s36Xy;

eyz = s41Xx +s42Yy +s43Zz+s44Yz+s45Zx +s46Xy;

ezx = s51Xx +s52Yy +s53Zz+s54Yz+s55Zx +s56Xy;

exy = s61Xx +s62Yy +s63Zz+s64Yz+s65Zx +s66Xy; (4.48)
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Conversely, the stress components are linear functions of the strain components:

Xx = c11exx+c12eyy+c13ezz+c14eyz+c15ezx+c16exy;

Yy = c21exx+c22eyy+c23ezz+c24eyz+c25ezx+c26exy;

Zz = c31exx+c32eyy+c33ezz+c34eyz+c35ezx+c36exy;

Yz = c41exx+c42eyy+c43ezz+c44eyz+c45ezx+c46exy;

Zx = c51exx+c52eyy+c53ezz+c54eyz+c55ezx+c56exy;

Xy = c61exx+c62eyy+c63ezz+c64eyz+c65ezx+c66exy; (4.49)

The quantitiess11,s12, · · · are called the elastic constants or elastic compliance con-
stants; the quantitiesc11,c12, · · · are called the elastic stiffness constants or moduli of
elasticity. The matrix ofc’s or s’s is symmetrical, therefore thirty-six constants are
reduced to twenty-one coefficients for each case. These numbers are further reduced
depending on the symmetry of the crystal.





Chapter 5

Quantum Chemical Treatment of

Solids

5.1 Overview of Quantum Chemical Methods

Quantum mechanics is the correct mathematical description of the behaviors of elec-
trons and thus of chemistry. In practice, quantum mechanical equations have only been
solved exactly for one electron systems. There exist a collection of methods for ap-
proximating the solution for multiple electron systems. Refer to Refs. [84,99,100,101]
for details. The following sections deals with the discussion of few of the methods.

5.1.1 The Hartree-Fock method

The Hartree-Fock (HF) approximation is a starting point for more accurate methods
which includes the effect of electron correlation. HF theory is a single determinant the-
ory, where one is interested in finding a set of spin orbitalsχa such that the determinant
formed from these spin orbitals,

|Ψ〉= |χ1χ2 · · ·χaχb · · ·χN〉, (5.1)

is the best possible approximation to the ground state of theN-electron system that
is described by an electronic HamiltonianHe, as given in Eq. (2.2). In the follow-
ing discussions the subscript "e" is dropped as the discussion is only about electronic
Hamiltonian and electronic wavefunction. The non-relativisticN-electron Hamilto-
nian under the Born-Oppenheimer approximation is given by

H = ∑
i

h(i)+ ∑
i< j

v(i, j). (5.2)

59
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Herehi is the one-electron term

h(i) =−1
2

∇2
i −∑

A

ZA

r iA
, (5.3)

describes the kinetic energy and the electron-nucleus Coulombic interaction ofith elec-
tron. v(i, j) is a two-electron term

v(i, j) =
1
r i j

, (5.4)

describes the Coulomb repulsion between the electronsi and j. According to the
variational principle the "best" spin orbitals are those which minimizes the electronic
energy

E0 = 〈Ψ|H|Ψ〉= ∑
a
〈a|h|a〉+ 1

2∑
ab

〈ab||ab〉. (5.5)

The spin orbitals are varied, constraining them only to the extent that they remain
orthogonal untilE0 is minimum. This procedure leads to the HF integro-coupled-
differential equation

F(i)|χi〉= εi |χi〉, (5.6)

whereεi represent the orbital energy.F is the Fock operator given by

F(i) = h(i)+∑
b

Jb(i)−∑
b

Kb(i). (5.7)

TheJ andK represent Coulomb and exchange operators, respectively, and are defined
as

Jb(r)χa(r) =
[Z

dr ′ χ∗b(r
′)

1
|r − r ′|χb(r ′)

]
χa(r) (5.8)

Kb(r)χa(r) =
[Z

dr ′ χ∗b(r
′)

1
|r − r ′|χa(r ′)

]
χb(r) (5.9)

Eq. (5.6) can be interpreted as a set of effective one-electron Schrödinger equations for
the orbitals. They are often referred to as thecanonical Hartree-Fock equations. The
corresponding orbitals are the canonical HF orbitals, and the eigenvalues are referred
to as orbital energies.

5.1.2 Electron correlation methods

In the HF approximation, one solves equations for the behaviors of each electron in
the averaged field of the remaining(n−1)electrons. In reality, however, the electronic
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motion occur according to the actual position of other electrons. The Coulomb re-
pulsion between electrons reduces sufficiently only when a correlated motion of the
electronic system takes place. This aspect of the electronic motion is absent in the
HF approximation. A correlation hole is missing around every electron which pre-
vent other electrons from coming too close. Consequently, the correlation energy of a
system is defined as the difference between the exact energy and the HF energy.

However, there exist several theoretical methods for treating the electron correla-
tion problem. One of the formally simplest theoretical method is full configuration
interaction (FCI) method in which wavefunction is the best linear combination of all
possible configuration state functions within a given basis set. FCI is practically im-
possible if there are more than a few electrons in the system. The CI wavefunction is
usually truncated to singles and doubles substitution and referred as singles and dou-
bles CI (CISD) method. In the following sections other methods like Second-order
Møller-Plesset perturbation theory and coupled-cluster theory are described.

5.1.2.1 Second-order Møller-Plesset Perturbation Theory

The simplest electron correlation method is Møller-Plesset perturbation theory [102],
which is a special variant of Rayleigh-Schrödinger perturbation theory (RSPT). In this
method, the Hamiltonian operator of aN-electron system is divided into two parts, an
unperturbed HamiltonianH0 and a perturbationλH1

H = H0 +λH1. (5.10)

The wavefunction and energy are also expanded in a similar way and it is assumed that
the zeroth-order wavefunctionΨ0 is an eigenfunction ofH0 with eigenvalueE0;

Ψ = Ψ0 +λΨ1 +λ2Ψ2 + · · · (5.11)

E = E0 +λE1 +λ2E2 + · · · (5.12)

By inserting Eq. (5.10)- Eq. (5.12) into Schrödinger equation and collecting terms of
the same order inλ we get the following hierarchy of equations up to second order:

H0Ψ0 = E0Ψ0 (5.13)

(H0−E0)Ψ1 = (E1−H1)Ψ0 (5.14)

(H0−E0)Ψ2 = (E1−H1)Ψ1 +E2Ψ0. (5.15)

One can assume that the perturbed wavefunctions are orthogonal to the zeroth-order
function, which leads to the so-called intermediate normalization of the total wave-
function〈Ψ|Ψ0〉= 1. Using this the following expressions of the energies up to second
order is obtained:

E0 = 〈Ψ0|H0|Ψ0〉 (5.16)

E1 = 〈Ψ0|H1|Ψ0〉 (5.17)

E2 = 〈Ψ0|H1|Ψ1〉 (5.18)
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In the Møller-Plesset perturbation (MP2) theory the unperturbed Hamiltonian is
chosen to be a sum of Fock-operators acting on the electron. Hence, the zeroth-order
energy is the sum of the orbital energies for the occupied spin orbitals. It follows that
the sum of the zeroth- and first-order energy equals the HF energy. In order to solve
the first-order equation, we expand the first-order wavefunction in determinantsΦµ:

Ψ1 = ∑
µ

CµΦµ (5.19)

where in case of MP2 the sum runs over excited determinants with respect to the
HF ground state. AllΦµ are eigenfunctions ofH0 with eigenvaluesEµ equal to the
sum of the orbital energies of the spin-orbitals occupied in the given determinant. By
substituting Eq. (5.19) into Eq. (5.15), we get the following expression of the first-
order expansion coefficients:

Cµ =−〈Φµ|H1|Ψ0〉
Eµ−E0

(5.20)

The numerator contains the interaction between the configurationΦµ and the HF ref-
erence function, hence, only those configurations, for which the element is non-zero
need to be included. Singly excited configurations will not contribute due to the Bril-
louin theorem. Thus, the second-order energy is given by:

E2 =−∑
i> j

∑
a>b

|〈Ψ0|H1|Φab
i j 〉|2

ea +eb−ei−ej
, (5.21)

wherei, j anda,b are occupied and virtual spin-orbitals, respectively. The applicability
of MP2 is restricted to cases with a sufficient large HOMO-LUMO gap. If this is not
the case then the energy denominators in Eq. (5.21) become small and the perturbation
expansion diverges.

5.1.2.2 Coupled Cluster Method

The coupled cluster (CC) method has emerged in recent years as a powerful tool for
treating electron correlation to high accuracy for small- to medium-sized atoms and
molecules [103]. The advantage of this method is the size-extensivity irrespective of
the truncation of the excitation level is employed. In CC theory the wavefunction is
generated by an exponential excitation operator

ΨCC = exp(T̂)φSCF, (5.22)

where the exponential excitation operator is defined by the Taylor expansion

exp(T̂) = 1+ T̂ +
1
2!

T̂T̂ +
1
3!

T̂T̂T̂ + · · · (5.23)
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The excitation operator may be decomposed into single, double, and possibly higher
excitation operators

T̂ = T̂1 + T̂2 + · · · (5.24)

with

T̂N =
( 1

N!

)2 N

∑
i j ···ab···

tab···
i j ··· a†

aa†
b · · ·a jai . (5.25)

Here i, j, · · · anda,b, · · · refer to the occupied and unoccupied orbitals in reference
determinant, respectively.a†

a andai refer to creation and annihilation operators. The
operatorT̂ is usually truncated after double excitations which defines the coupled-
cluster singles and doubles (CCSD) method and wavefunction becomes [104,105].

ΨCCSD= exp(T̂1 + T̂2)φSCF. (5.26)

If we insert this wavefunction ansatz into the Schrödinger equation

(H−ECCSD)ΨCCSD= (H−ECCSD)exp(T̂1 + T̂2)φSCF = 0 (5.27)

then projecting against the reference, singly and doubly excited states, we obtain a set
of equations sufficient for determining theta

i andtab
i j coefficients:

〈φSCF|(H−ECCSD)(1+ T̂1 + T̂2 +
1
2

T̂2
1 )|φSCF〉= 0

(5.28)

〈φa
i |(H−ECCSD)(1+ T̂1 + T̂2 +

1
2

T̂2
1 + T̂1T̂2 +

1
3!

T̂3
1 )|φSCF〉= 0

(5.29)

〈φab
i j |(H−ECCSD)(1+ T̂1 + T̂2 +

1
2

T̂2
1 + T̂1T̂2 +

1
3!

T̂3
1 +

1
2

T̂2
2 +

1
4!

T̂4
1 )|φSCF〉= 0.

(5.30)

The expansion on the right-hand side terminate after the quadruple excitations since
the Hamiltonian can couple only configurations that differ by at most two excitations.
The number of equations corresponds exactly to the number of coefficients. The com-
putational cost of this method rises asymptotically with the sixth power of the basis set
dimension. The accuracy of the CCSD calculations can be significantly improved by
subsequently computing the effects of higher order excitations through RSPT based on
Fock Hamiltonian and the computed CCSD amplitude of single and double excitations.
The most widely used ansatz of this type, usually denoted by CCSD(T) [106].
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5.1.3 Density functional theory

Density functional theory (DFT) is probably the most often used approach of compu-
tational chemistry [107]. In the following the basic idea behind DFT is presented.

In the year 1964 Hohenberg and Kohn presented two fundamental theorems [108]
which gave birth to modern DFT, an alternative approach to deal with many body
problem in electronic structure theory.

The first Hohenberg-Kohn theorem states that: The external potentialVext(r) is a
unique functional of electron densityρ(r); since, in turnVext(r) fixesH we see that the
full many particle ground state is a unique functional ofρ(r). In other words: there is
a unique relationship between the external potentialVext(r) (arising from the positive
charges of the nuclei) within aN electron system and its (ground state) electron density
ρ(r).

Since the complete ground state energyE0 is a unique functional of the densityρ,
so must be its individual parts, i.e.,

E0[ρ] = T[ρ]+Vint [ρ]+Vext[ρ]. (5.31)

This expression can be classified by parts dependent on the actual system (determined
by the external potential) and parts which are universal in the sense that the form of
the functional is independent ofN, RA andZA.

E0[ρ] = Vext[ρ]︸ ︷︷ ︸
System dependent

+ T[ρ]+Vint [ρ]︸ ︷︷ ︸
System independent

(5.32)

where the system-independent part defines theHohenberg-Kohnfunctional

FHK[ρ] = T[ρ]+Vint [ρ]. (5.33)

The second Hohenberg-Kohn theorem is nothing else than the variational principle
formulated for densities. Given any densityρ̄ associated to aN electron system with
the external potentialVext, one can state that

E0≤ E[ρ̄] = T[ρ̄]+Vint [ρ̄]+Vext[ρ̄] (5.34)

with the equal sign only valid if̄ρ = ρ.
Further the Hohenberg-Kohn functional can be identified as

FHK = T +Vee (5.35)

with potential energy term

Vee=
1
2

Z Z ρ(r1)ρ(r2)
r12

dr1dr2 +ENCL(ρ) = J(ρ)+ENCL(ρ). (5.36)
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HereJ(ρ) is the classical interaction of two charge densities andENCL(ρ) contains all
the non-classical parts. Thus, the complete energy functional can be written as

E[ρ] = T[ρ]︸︷︷︸
unknown

+ J[ρ]︸︷︷︸
known

+ENCL[ρ]︸ ︷︷ ︸
unknown

+
Z

Vextρ(r)dr
︸ ︷︷ ︸

known

. (5.37)

The solution to the problem of unknown functional for kinetic energy was given by
Kohn and Sham [109]. They suggested to formally split this functional into two parts

T[ρ] = TS[ρ]+TC[ρ], (5.38)

whereTS[ρ] is expressed in a one particle approach similar to Hartree-Fock method,
thus being well known, and the second part, still unknown part contains the difference
between the real functionalT[ρ] and the one particle termTS[ρ], and will be treated,
as well as the other, remaining parts of the total energy functional, which are still
unknown, in an approximate way. Thus one can write

E[ρ] = TS[ρ]+J[ρ]+Vext[ρ]+ENCL[ρ]+TC[ρ], (5.39)

= TS[ρ]+J[ρ]+Vext[ρ]+EXC[ρ]. (5.40)

Here theexchange-correlation functionalEXC[ρ] remains unknown and the rest are
well defined terms.TS is defined as

TS[ρ] =−1
2∑

i
〈φi |∇2|φi〉 (5.41)

where theφi are one particle wavefunction which are determined similar to the Hartree-
Fock theory, by applying the variational principle, which leads finally to theKohn-
Sham equations

f̂ KSφi = eiφi (5.42)

with theKohn-Sham operator

f̂ KS =−1
2

∇2 +
Z ρ(r2)

r12
dr2 +VXC(r1)+∑

A

ZA

r1A
. (5.43)

All that remains is the question how to derive the exchange-correlation functional.
This term has to be treated on a approximative manner. There exist different func-
tionals, most of them are derived from the electron density of a uniform electron gas,
which can be calculated by means of statistical thermodynamics.

Local density approximation (LDA): Within the local density approximation one
assumes the density functional of aN particle system can be expressed in the form:

ELDA
XC [ρ] =

Z
ρ(r)εXC(ρ(r))dr , (5.44)
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whereεXC(ρ(r)) is the exchange-correlation energy per particle of a uniform gas. This
quantity can be further split into:

εXC(ρ(r)) = εX(ρ(r))+ εC(ρ(r)). (5.45)

The exchange part can be derived analytical as

εX(ρ(r)) =−3
4

(3ρ(r)
π

)1/3
. (5.46)

The correlation part can not be derived analytically, but can be calculated numerically
with high accuracy by means of quantum Monte Carlo simulations.

Gradient corrected functionals: Although the LDA approximation works quite
well for certain systems, one cannot expect it to perform well for those classes of
molecules most chemists are interested in. This is mainly due to the fact that the
electron distribution within a molecule is far from being uniform. Thus the logical step
is to improve LDA is to construct functionals which depend not only on the densityρ
but also on its gradient∇ρ, i.e.,

EGC
XC = EGC

XC[ρ,∇ρ]. (5.47)

5.2 Ab Initio Treatment of Periodic System

Most ab initio electronic structure calculations of solids are based on DFT, with the
deficiency that no systematic improvement towards the exact result is possible. On the
other hand, in the wavefunction-based methods, one improves the calculation system-
atically by enlarging the basis set and by including more terms in the expansion of the
wavefunction, however, at the price of a considerably higher computational cost.

A typical quantum-chemical investigation of solids, employing a wavefunction
based approach, begins with a HF calculations and then subsequently improved by
considering virtual excitations from the HF wavefunction in order to account for the
electron correlations. In order to solve the HF problem for the infinite periodic sys-
tem, there exist mainly two kind of approaches, i.e., using Bloch and Wannier orbitals.
Bloch orbitals are usually delocalized over the whole crystal lattice, whereas Wannier
orbitals are localized and these are related by a unitary transformation. In the follow-
ing sections these methods are described along with a discussion of another kind of
approach based on finite cluster. Refer to Refs. [110,111] for details.

5.2.1 The finite-cluster approaches

5.2.1.1 A simple approach

This approach is well suited for the polymeric kind of system. In this approach the
total energyEtot or correlation energyEcorr per unit cellU of a polymerU∞ can be



5.2 AB INITIO TREATMENT OF PERIODIC SYSTEM 67

obtained as the limit

E = lim
n→∞

E(R(Un)R′)
n

, (5.48)

i.e., by performing calculations for increasing long oligomersR(Un)R′, where dangling
bonds at the end of the polymer are saturated by groupsR andR′. In order to reduce
finite-size effect due to end group saturation, one can consider

E = lim
n→∞

∆En = lim
n→∞

[
E(R(Un+1)R′)−E(R(Un)R′)

]
(5.49)

i.e., the energy changes between two oligomers differing just by a single unit cell.
The convergence of∆En with respect to the number of unit cells is much faster for the
dynamical correlation energy than for the HF energy, due to the local character of elec-
tron correlations. One can use Bloch or Wannier orbital approach for the calculation
of the long-range HF energy.

5.2.1.2 Incremental approach

In the incremental approach using localized orbitals, the correlation energy per unit
cell is expanded as

Ecorr = ∑
i

εi + ∑
i< j

∆εi j + ∑
i< j<k

∆εi jk + · · · , (5.50)

where the summation overi involves localized orbitals in the reference cell, while
those overj andk include all the localized orbitals of the crystal. The "one-body"
incrementsεi = ∆εi are calculated by correlating each of the localized orbitals in turn,
while others are kept frozen at the HF level. The "two-body" increments are deter-
mined by considering pair of bonds and performing correlated calculations for each
chosen pair. Excitations are allowed only from the orbitals belonging to this pair, keep-
ing the rest of the orbitals frozen. Hence the "two-body" increments∆εi j are defined
as∆εi j = εi j − (εi + ε j), whereεi j is the correlation energy obtained by correlating
orbitals i and j. Higher-order increments are defined in an analogous way. Finally,
adding all increments, with the proper weight factors determined by the occurrence in
the unit cell, one obtains the exact correlation energy per unit cell of the infinite system
as given in Eq. (5.50). The procedure described above only makes sense, if the incre-
mental expansion is well convergent and can be truncated at low order increments,
e.g., after second or third sum. However, the truncation of order of increments and
special truncation for a given order is very important. In practical calculation usually
the given order of increments is truncated including interactions up to certain nearest
neighbor unit cells. The contributions from higher-order increments as well as from
interactions between more distant cells are negligible.

Localized orbitals for finite-cluster calculation: Due to the fact that electron cor-
relation effects are "local", the above localized-electron picture helps to handle the
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problem of infinities at the correlated level. Localization of spin orbitals is readily
accomplished by maximization of functional

L[{Φi}] = ∑
i

ν2
i Tiiii (5.51)

whereνi is the occupancy of the localized spin orbitalΦi and[Ti jkl ] is the localization
tensor. Various algorithms are available for the maximization ofL[{Φi}]. Following
choices of[Ti jkl ] lead to different localization criteria:
(a) Edmiston-Ruedenberg localization [112,113]:

TER
i jkl = 〈Φi(1)Φk(2)|r−1

12 |Φ j(1)Φl (2)〉 (5.52)

(b) Foster-Boys localization [114,115]:

TFB
i jkl =−〈Φi |r|Φ j〉 · 〈Φk|r|Φl 〉 (5.53)

(c) von Niessen localization [116]:

TN
i jkl = 〈ΦiΦk|Φ jΦl 〉 (5.54)

Edmiston-Ruedenberg localization method calls for repeated transformation of two-
electron integrals and is computationally expensive. Therefore Foster-Boys and von
Niessen approaches are more appropriate for large systems. All three criteria possess
the propensity of mixing ofσ andπ spin orbitals in planar molecules. This hampers
the clear interpretation of the resulting localized one-electron wavefunctions and calls
for other localization criteria, e.g., Pipek and Mezey [117], etc.

5.2.2 Bloch-orbital-based approach

During the last couple of decades, the HF and DFT problems had been solved for the
infinite periodic systems and the state of the art are present in the CRYSTAL program
[118,119]. In this section the formulation of the HF theory in CRYSTAL program is
presented [120]. ConsiderΨi(r ,k) as a linear combination of Bloch functions (BF),
φµ(r) (here referred as atomic orbitals, AOs):

Ψi(r ;k) = ∑
µ

aµ,i(k)φµ(r ;k), (5.55)

where,

φµ(r ;k) = ∑
G

ϕµ(r −Aµ−G)exp(ik ·G). (5.56)

Here,Aµ denotes the coordinate of the nucleus in the reference cell on whichϕµ is
centered, and the summation overG is extended to all set of the direct lattice vectors,
G. The local functions are expressed as the linear combinations of a certain number,
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ng, of individually normalized Gaussian type functions (GTF) characterized by the
same center, with fixed coefficients,d j and exponents,α j , defined as

ϕµ(r −Aµ−G) =
ng

∑
j

d jg(α j ; r −Aµ−G) (5.57)

The expansion coefficients of the Bloch functions,aµ,i(k), are calculated by solving
the Fock-matrix equation for each reciprocal lattice vector,k:

F(k)C(k) = S(k)C(k)E(k) (5.58)

in which S(k) is the overlap matrix over the BF,E(k) is the diagonal energy matrix
andF(k) is the Fock matrix in the reciprocal space given by

F(k) = ∑
G

FG exp(ik ·G) (5.59)

The element of the Fock matrix,FG, can be written as a sum of one-electron and
two-electron contributions in the basis of the AO:

FG
12 = HG

12+BG
12. (5.60)

The one-electron contribution is the sum of the kinetic and nuclear attraction terms and
are given by

HG
12 = TG

12+ZG
12 = 〈ϕO

1 |T|ϕG
2 〉+ 〈ϕO

1 |Z|ϕG
2 〉. (5.61)

The two-electron term is the sum of the Coulomb and exchange contributions:

BG
12 = JG

12+KG
12 = ∑

3,4
∑
n

Pn
3,4∑

h
[(ϕO

1 ϕG
2 |ϕh

3ϕh+n
4 )− 1

2
(ϕO

1 ϕh
3|ϕG

2 ϕh+n
4 )]. (5.62)

ThePn density matrix elements in the AOs basis set are computed by integration over
the volume of the Brillouin zone (BZ),

Pn
3,4 = 2

Z
BZ

dk exp(ik ·n)∑
j

a∗3, j(k)a4, j(k)θ(εF − ε j(k)), (5.63)

whereai,n denotes theith component of thenth eigenvector,θ is the step function,εF ,
the Fermi energy andεn, nth eigenvalue.

5.2.3 Wannier-orbital-based approach

In Wannier-orbital-based method, instead of describing the electrons in terms of Bloch
orbitals, one describes them in terms of mutually orthogonal orbitals localized within
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the individual unit cells constituting the infinite solid. The Wannier-type orbitals are
pseudo-canonical within the reference cell, i.e., they are not the most localized orbitals
possible [121]. The following discussion outline the solution of the HF problem of an
infinite periodic system in the Wannier representation.

A crystalline solid, in its ground state is composed of identical unit cells and the
orbitals belonging to any other unit cell are identical to the corresponding orbitals
belonging to any other unit cell and are related to one another by a simple translation
operation. Consider the number of orbitals in a unit cell isnc and if theα-th orbital
of a unit cell located at the position given by the vectorR j of the lattice is denoted by
|α(R j)〉 then the set{|α(R j)〉;α = 1,nc; j = 1,N} denotes all the orbitals in the unit
cell. The translational symmetry condition expressed in the real space can be stated as

|α(Ri +R j)〉= T(Ri)|α(R j)〉, (5.64)

whereT(Ri) is an operator which represents a translation by a vectorRi . One can
write the total electronic energy of the solid as

E = N
{

2
nc

∑
α=1

〈α(o)|T|α(o)〉+
nc

∑
α=1

〈α(o)|Z|α(o)〉

+
nc

∑
α,β=1

N

∑
j=1

(2〈α(o)β(R j)|α(o)β(R j)〉−〈α(o)β(R j)|β(R j)α(o)〉)
}

, (5.65)

where|α(o)〉 denotes an orbital centered in the reference unit cell. By assuming trans-
lation invariance in real space, the total HF energy of the infinite solid is expressed
in terms of a finite number of orbitals. In order to make energy given in Eq. (5.65)
stationary with respect to the first-order variations in the orbitals, subjected to the or-
thogonality constraint, HF operator is obtained and defined as

F = T +Z+2∑
β

Jβ−∑
β

Kβ. (5.66)

The conventional Coulomb and exchange terms are defined as

Jβ|α〉= ∑
j
〈β(R j)| 1

r12
|β(R j)〉|α〉, (5.67)

and

Kβ|α〉= ∑
j
〈β(R j)| 1

r12
|α〉|β(R j)〉, (5.68)

respectively. In order to impose the requirement of obtaining localized Wannier or-
bitals, a projector operators corresponding to the orbitals centered in the unit cells in a
sufficiently large neighborhood of the reference cell is introduced and given by

(T +Z+2J−K + ∑
k∈N

∑
γ

λk
γ|γ(Rk)〉〈γ(Rk)|α〉= εα|α〉. (5.69)
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Here |α〉 stands for|α(o)〉, an orbital centered in the reference cell,N collectively
denotes the unit cells in the neighborhood. The choice ofN will dictate the system
under consideration. The more delocalized electrons of the system are, the larger
should be theN. The shift parametersλk

γ are the shift parameters associated with
the corresponding orbital ofN. For perfect orthogonality and localization, their values
should be infinitely high. Here the projection operator along with the shift parameters
simply pays a role of a localizing potential, since upon convergence their contribution
to the HF equation vanishes. The orbitals contained in unit cell located farther than
those inN should be automatically orthogonal to the reference cell orbitals. It is easy
to see that the orthogonality of the neighboring orbitals to the reference cell orbitals
along with translation symmetry of the infinite solid makes these orbitals as Wannier
functions.
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Chapter 6

Structural Properties

A variety of experimental techniques, particularly diffraction experiments can pro-
vide information concerning microscopic structure of amorphous solids. However,
this information is limited almost entirely to the first two coordination shells, i.e., the
bond lengths and angles of nearest-neighbor atoms comprising the basic structural unit.
Even for monoatomic systems the RDF derived from scattering experiments have the
difficulty, that peaks other than the first and second cannot be uniquely associated with
a particular interatomic correlation. These are made up from a variety of contributions
from higher-lying shells. This matter gets more complicated for multicomponent sys-
tems. One solution to these difficulties is the construction of models using theoretical
methods like MD and MC.

In the following sections the discussion of structural properties of amorphous forms
derived from ZSM-5 is presented, which were obtained using MD simulations.

6.1 Computational Details

The calculations were carried out with a modified and extended version [122] of the
code of Oligschleger and Laird [123].

6.1.1 Interaction potential

The pairwise atomic interaction potential proposed by Krameret al. [124] was used in
all simulations. It was parameterized using data fromab initio calculations and exper-
iment for achieving high accuracy and transferability. This potential has already been
successfully applied for modelling of crystalline zeolite systems [125]. The functional
form is a combination of Buckingham and Coulomb type and is given by

φ(rαβ) =
qαqβe2

rαβ
+Aαβ exp(−Bαβrαβ)−

Cαβ

r6
αβ

. (6.1)

75
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Hererαβ is the distance between the two ionsα andβ (α,β ∈ {Si,O}). The values of
the partial chargesqα andqβ and the constantsAαβ,Bαβ andCαβ are documented in
Table.6.1. The non-Coulombic contribution to the potential was truncated and shifted
at a distance of 5.5 Å in order to remove fluctuations in the potential as described in
chapter 2, section(2.4.1.1).

Table 6.1: Force-field parameters for BKS (Beest, Kramer and van Santen) poten-

tial.

α−β Aαβ Bαβ Cαβ qα

(eV) (Å−1) (eV Å6)

O−O 444.7686 2.48513 0.0000 qO=-1.1

Si−O 24441.2370 4.93504 180.8045 qSi=2.2

The above defined potentials have the unphysical property to diverge to minus
infinity at very small distances [126,127]. However this is not a severe drawback, since
in order to get to such small distances the particles have to overcome a large barrier.
In order to prevent the rare cases in which the particles cross the barrier and fuse
together, we have substituted the potential given in Eq. (6.1) by a harmonic potential
whenrαβ is smaller than the location of the barrier, i.e., forrαβ ≤1.1936 Å for Si-O
interaction. At low and intermediate temperatures this modification does not affect
the results obtained with the potential given by Eq. (6.1) and in this limit we are
thus working with the usual BKS potential. The cutoff radius for the total short-range
and long-range part was taken to be 7.5 Å and 17.5 Å, respectively. The long-range
Coulomb part was evaluated by means of the Ewald summation [61] with a constant
α of 8.5 in Eq. (2.46) and by using allk-vectors with|k| ≤ 8.(2π/L) whereL is the
average length of the box.

6.1.2 Preparation of amorphous configurations

The simulations have been carried out on a (formally periodic) system with 3456 par-
ticles (Si,O) in the central MD box. The amorphous states of the silicious zeolite
were generated by starting with an orthorhombic lattice of silicious ZSM-5 also widely
known as silicalite, whose initial positional parameters were taken from Ref. [128].
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Figure 6.1: Zeolite ZSM-5 viewed along [010]. Yellow and red sticks represent Si

and O atoms, respectively.

Zeolite ZSM-5 shown in Fig.6.1belongs to the MFI structure type. Examples of
their uses include the conversion of methanol to gasoline, dewaxing of distillates, and
the interconversion of aromatic compounds [129,130]. It posses orthorhombic symme-
try Pnmawith cell parametersa=20.07,b=19.92, andc=13.42 Å and is characterized
by a framework density of 18T/1000 Å3. The three-dimensional channel system con-
sists of straight channels running parallel to [010] having 10-membered rings of 5.4×
5.6 Å free diameter and sinusoidal channels running parallel to [100] having 10-fold
ring openings of 5.1× 5.4 Å.

This initial configuration was heated to the temperaturesT = 4700 K, 4800 K,
4900 K, 5000 K, with heating rateDheat < 4.7×1013 K/s, was then equilibrated and
finally quenched directly toT = 300 K with quenching rateDquench< 4.7×1013 K/s,
followed by equilibration and storage of atomic coordinates. Different maximum tem-
peratures were applied in order to study the effect of the extent of amorphization on
structural properties. Whereas properties such as coordination number, internal sur-
face area or ring and pore size distribution are affected by the extent of amorphiza-
tion, i.e., the maximum temperature, the positions of the peaks of the pair correlation
functions and bond angle distributions are not. Vollmayret al. demonstrated by sim-
ulations of amorphous silica that microscopic properties (radial distribution function,
bond angle distribution and ring size distribution) are more affected by the choice of
the quenching rate than macroscopic properties (density, enthalpy, thermal expansion
coefficient) [127,131]. Nevertheless, the simulated results using orders of magnitude
higher quenching rates than feasible in the laboratory, e.g., the positions of the peaks of
the pair correlation functions and bond angle distributions, are usually in good agree-
ment with experimental data. The number density in the simulation cell was kept
constant during all MD runs and corresponds to the mass density of1.785 g/cm3.
The equilibration was always done via constant-temperature MD simulations, by in-
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tegrating the equation of motion with the velocity form of the Verlet algorithm using
periodic boundary conditions. The equilibration time was about 0.6 ns corresponding
to 3× 105 integration steps. The time step was kept sufficiently small to guarantee
a negligible drift of the total energy. We used the velocity rescaling method, where
we averagedT(ti) over a period of 20 time steps[Tav = 1

20 ∑m+19
i=m T(ti)] and scaled the

velocities after each period by
√

T0/Tav with T0 being the "desired" temperature and
Tav being the averaged temperature.

We monitor the atomic displacements during the course of MD runs by

∆R(t) =
√

∑
n

[Rn(t)−Rn(0)]2 (6.2)

whereRn(t) is the position vector of particlen at timet andRn(0) is the one at the
starting or reference configuration. If the total displacement of the atoms exceeds a
cutoff value, and the residence time of the atoms in the new positions also exceeds a
minimal period of at least three times the period of a typical soft vibrational mode, the
new positions of the particles were accepted as a starting point for the determination
of a possible new minimum configuration. The cutoffs of displacements and resident
time are chosen to avoid spurious minima. All stored coordinates were then quenched
to T = 0K using a combined steepest-descent-conjugate-gradient (SDCG) algorithm
[132] to locate the nearest minimum configuration. These were further used for the
analysis of the structural properties of the amorphous material.

6.2 Short-Range Order

To get insight into two-body structural correlation we have calculated total and partial
pair-distribution functions from the MD trajectories. Partial pair-distribution functions
gαβ are calculated from

〈nαβ(r)〉∆r = 4πr2∆rρNcβgαβ(r) (6.3)

wherenαβ∆r is the number of particles of speciesβ in a shell of thickness∆r, and ra-
diusr around a particle of speciesα and〈. . .〉 represents the ensemble average and av-
erage over all particles of speciesα. ρN is the total number density(N/V,N = Nα +Nβ)
andcβ is the concentration of speciesβ. The contributions to the total pair-distribution
function can be assigned by the peaks obtained in the partial pair-distribution functions.
The computed total pair-distribution function and partial pair-distribution functions of
Si-O, O-O and Si-Si are shown in Fig.6.2. The most intense peak in the total pair-
distribution function (Fig. 6.2(a)) arises fromgSi−O (Fig. 6.2(b)), smaller peaks at
larger distances fromgO−O (Fig. 6.2(c)) andgSi−Si (Fig. 6.2(d)). From the positions
of these peaks we conclude that the Si-O bond length is 1.62± 0.04 Å and the nearest
neighbor O-O and Si-Si distances are 2.61± 0.21 Å and 3.19± 0.15 Å , respectively.
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The errors are obtained from the full width at half maximum (FWHM). The physi-
cal significance of the small peaks observed at smallerr than the most intense peaks
appearing in Figs.6.2(c) and6.2(d) are discussed later.

The average coordination number (CN) of speciesα surrounded by speciesβ, Zαβ,
is one of the most important pieces of information that can be obtained by performing
integration around the first peak in the pair-distribution function.

Zαβ(R) = 4πρβ

Z R

0
gαβ(r)r

2dr, (6.4)

Here R is the cutoff radius, usually chosen as the position of the minimum after the
most intense peak ofgαβ(r). For this integration the cutoff radii for Si-O, O-O and
Si-Si are taken as 1.8 Å , 3.1 Å and 3.4 Å, respectively. From this analysis it is found
that Si atoms are on the average coordinated by 3.99 O atoms and surrounded by
3.95 Si atoms. Similarly O atoms are coordinated by 2.00 Si atoms and surrounded by
6.02 O atoms. These findings indicate that the most common structural feature are all
corner-sharing SiO4 tetrahedra. The deviations from this pattern are discussed below.

The three-body correlations in amorphous ZSM-5 based material are examined and
compared to the crystalline ZSM-5 through bond angle distributions plotted in Fig.6.3,
which give further information on local structural units. The O-Si-O angle distribution
has the main peak at108◦ with FWHM of 12.6◦. The O-O-O angle distribution has an
intense sharp peak at59.4◦ with FWHM of 7.2◦ and the O-O-Si angle distribution has
a main peak at35.1◦ with FWHM of 6.2◦. These peaks arise from atoms belonging
to the same SiO4 tetrahedra. For an ideal tetrahedron the O-Si-O, O-O-O and O-O-Si
angles are109.47◦, 60◦ and35.26◦, respectively. The small deviations from the ideal
values show that slightly distorted SiO4 tetrahedra are the basic structural unit. Besides
these peaks other intense peaks related to the connectivity between the SiO4 tetrahedra
are present. Similar to the pair-distribution functions in Fig.6.2 smaller peaks at
unexpected positions are observed in Fig.6.3. All these features will be analyzed in
the next section.

6.3 Connectivity of the Elementary Units

Considering the peaks of the pair-distribution and bond angle distribution functions
we can interprete that the SiO4 tetrahedra are linked in two ways as shown in Fig.6.4.
The model shown in Fig.6.4(a), corresponds to the usual corner-sharing tetrahedra
network. This structural pattern can be inferred from the peak of the Si-O-Si angle
distribution at157◦ with a broad FWHM of40◦, which represents the connectivity be-
tween two Si atoms present in neighboring tetrahedra with corner-sharing. The broad
Si-O-Si angle distribution in the amorphous phase compared to the one obtained in
the crystal indicates a considerable amount of flexibility in the Si-O-Si angle which is
a major source of the disorder and allows for relaxation in a strained system. It has
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even been shown by ball milling experiments of Kosanovicet al. [19] that breaking
of these Si-O-Si bonds occurs in high silica zeolites and results in the collapse of the
crystal structure leading to the formation of the amorphous phase. In the Si-Si-O an-
gle distribution the peak around21◦ comes from two silicon atoms bound to the same
oxygen. The broad distribution from80◦ to 180◦ in the O-O-O angle stems from O
atoms bound to different Si atoms. The bond angle distribution for Si-Si-Si is peaked
at59◦ stemming mainly from Si atoms at their nearest neighbor distance of≈ 3 Å, and
exhibits a broad maximum at106◦, hinting to a pattern in which Si is distorted tetra-
hedrally surrounded by four Si atoms at≈ 5 Å. The first peak points to the existence
of 3-fold rings in this ZSM-5 based amorphous form, whereas the broad maximum
results from the usual coordination between SiO4 tetrahedra also present in the crystal.

The positions of the first and less intense peaks ing0−0 andgSi−Si occurring around
2.2 Å and 2.5 Å , respectively, look surprising at first glance. But selectively collect-
ing the coordinates of such configurations provides strong evidence for the presence
of edge-sharing SiO4 tetrahedra. These are present in small percentage of around
1%-4% (depending on the extent of amorphization) in the ensemble of collected con-
figurations. This model of edge-sharing between tetrahedra as shown in Fig.6.4(b),
is also in agreement with small peaks appearing in the bond angle distributions of
O-Si-O at83◦, Si-O-Si at95◦, O-O-Si at48◦ and Si-Si-O at42◦. These are related
to four atoms, i.e., the Si centers of two edge-shared tetrahedra as well as the bridg-
ing O atoms. The peak at83◦ in the O-Si-O bond angle distribution shows that the
edge-shared tetrahedra are distorted severely. Edge sharing tetrahedra are also found
in nature in the SiO2 allotrope W-silica [133] and the silicate mineral leucophoenicite
Mn7(SiO4)3(OH)2 [134]. We note that in Car-Parrinello molecular dynamics studies
of dehydroxylated silica surface also edge-shared tetrahedra are observed [135]. How-
ever, the edge-shared tetrahedral structures in nature are quite rare, which is usually
explained by Pauling’s third rule in terms of Coulombic repulsion between the cations
sharing polyhedral units. Pauling’s third rule states that the presence of shared edges
and especially of shared faces in a coordinated structure decreases its stability. Viola-
tion of the rule is strong evidence that the structure is covalent.

In the past molecular orbital studies at the SCF-Xα and CNDO/2 level on the rhom-
bohedral molecule Si2O2 and two silicate tetrahedra sharing a common edge and sat-
urated with hydrogens at the periphery, i.e., Si2O6H4, have shown that covalent forces
play an important role in causing edge-sharing type distortions [136,137]. In order to
analyze the validity of the results for such structural units obtained via MD, we carried
out geometry optimizations using gradient-corrected DFT, HF and MP2 calculations
on the edge-shared model system Si2O6H4. The DFT and MP2 calculations were per-
formed using the TURBOMOLE [138] and MOLPRO [139,140] program packages,
respectively. Geometric parameters for the bridged unit for edge-shared tetrahedra
are presented in Table6.2. It is obvious that the result of MD for the amorphous
form derived from ZSM-5 is consistent with the experimental data for W-silica and the
quantum chemical values for the edge-sharing model system. Note that the DFT and
MP2 calculations on the model system do not include the effect of the surroundings.
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We have also carried out solid-stateab initio calculations of the edge-sharing system,
which include the effect of a condensed environment. The details of these calculations
are presented in Chapter 8.

Frequency calculations at the HF-level on the edge-shared model system give all
positive frequencies indicating that the structure corresponds to a local minimum. In
the polarized Raman spectra of vitreous SiO2, theD1 defect line at 495cm−1 was left
unassigned [141,157]. We suggest that this could be due to the out-of-plane bending
motion of the bridged unit, which was obtained in our frequency calculation on the
edge-shared model system at 510cm−1. It is fair to note, however, that other inter-
pretations also exist, i.e., no edge-sharing tetrahedra were observed in Car-Parrinello
dynamics of vitreous silica and theD1 defect line was associated with a breathing
motion of 3-fold rings [142].
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Figure 6.3: Bond angle distribution in crystalline ZSM-5 (red line) and amorphous

zeolite derived from ZSM-5 (black line) at T=300 K.
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(a)

(b)

Figure 6.4: Model for the connectivity of tetrahedra in amorphous zeolite derived

from ZSM-5. (a) Corner-sharing tetrahedra, (b) edge-sharing tetrahedra.

(Big spheres represent Si atoms and small spheres represent O atoms.)
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6.4 Extent of Amorphization

It was shown recently that there is a direct connection between the percentage of crys-
tallinity of partially crystalline zeolitic material and its catalytic properties and ion
exchange capacity [24,28,148]. If such chemical properties are based mainly on elec-
tronic effects, accurate quantum chemical calculations are needed for their investiga-
tion and explanation. However, in zeolitic systems steric effects play a great role to
direct selectivities of reactions. These can be investigated by analysis of structures ob-
tained by MD. Hence we choose a semiquantitative description to analyze the extent
of amorphization, which is similar to the percentage of XRD crystallinity advocated
by Nicolaides as in Eq. (1.1) [28]. In order to get a measure independent from the
number of atoms in the central MD box we choose the energy per atom as a criterion
to describe the extent of amorphization of the system. We define the "percentage of
energy crystallinity" (PEC), i.e.,

PEC=
Eamorphous−Econ f iguration

Eamorphous−Ecrystalline
×100 (6.5)

as a normalized dimensionless measure of the extent of amorphization. HereEamorphous

corresponds to the energy per atom of the maximum amorphized structure we have
obtained after minimization in our simulation, i.e., -16.90 eV/atom (in the part of con-
figurational space spanned in our simulation no higher lying minimum occurs), and
Ecrystalline corresponds to the energy per atom of the crystalline ZSM-5 system, i.e.,
-17.17 eV/atom.Econ f igurationstands for the energy of the structure whose PEC we are
interested in. It should be mentioned that clearly our definition of PEC depends on the
maximum extent of amorphization obtained in the simulations, i.e., on the maximum
temperature (here 5000 K) as well as the quenching rate (here 4.7× 1012 K/s).

As shown in Fig. 6.5, the comparison between the cross section of crystalline
ZSM-5 and the simulated ZSM-5 based amorphous structure with different extent of
amorphization, the amorphization leads to local disorder and partial collapse of the
framework structure. It is mainly this modification of pores and cavities which may
allow a tuning of properties of significant interest.

6.4.1 Defect in coordination number

In Fig. 6.6 the distribution of coordination numbers (Z) for O atoms (ZO) and Si
atoms (ZSi) for different PEC is given. If the interatomic distancer < 1.8 Å (i.e., the
distances corresponding to the first peak in the pair-distribution function Fig.6.2 (a))
then the atoms are considered to be neighbors. One can easily observe the fraction of
coordination defects, i.e., atoms with coordination numbers other than the ideal ones
(ZO=2 andZSi=4) decrease with PEC. Even in highly amorphized structures (low PEC)
95% of O atoms and 90% of Si atoms remain 2- and 4-coordinated, respectively.

Only 3% of the O atoms are under-coordinated (ZO=1) and 2% over-coordinated
(ZO=3). In the case of the Si atoms around 9% are under-coordinated (ZSi=3) and
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(a) (c)

(b) (d)

Figure 6.5: Cross section of (a) ZSM-5(crystalline), and simulated amorphous form

derived from ZSM-5 with (b)80%, (c)60% and (d)20% crystallinity. Red

and yellow sticks represent O and Si atoms. In all figures 3456 atoms are

displayed and the view is along the Y-axis.
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Figure 6.6: (a) Distribution of coordination numbers in which an O atom is sur-

rounded by 2 atoms (ZO=2) and a Si atom is surrounded by 4 atoms

(ZSi=4) vs. percentage of energy crystallinity (PEC). (b) Distribution of

coordination number in which an O atom is surrounded by 1 (ZO=1) and

3 (ZO=3) and a Si atom is surrounded by 3 (ZSi=3) and 5 (ZSi=5) atoms.

The solid lines were obtained from linear regression and should serve as

guides for the eye, for each distribution. Note the difference in scale of

the y-axis in (a) and (b). The data displayed results from a total of 140

configurations.
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1% over-coordinated (ZSi=5). The analysis by linear regression suggests that in this
amorphous material low coordinations are more favored than high coordinations, (cf.
Fig. 6.6). We note that also in other related amorphous systems, e.g., SiO2 glass
at low temperature [149], under-coordination of Si and O is preferred, whereas with
increasing temperature over-coordination of both Si and O becomes more frequent
[149, 150]. However, in the molecular dynamics simulation of silica glasses it was
shown by Feustonet al. that the coordination number distribution strongly depends on
the interaction potential used and that the structures obtained by introduction of three
body potentials have fewer defects compared to those derived from calculations using
only pair potentials [151].

6.4.2 Internal surface area

Table 6.3: Atomic/ionic radiiRcoord (in Å) for O and Si depending on the coordi-

nation number (CN).

CN Rcoord(O) Rcoord(Si)

0 1.52a 2.10b

1 1.435 1.64

2 1.35c 1.18

3 0 0.72

4 0 0.26d

5 and higher 0 0
a Van der Waals radius of O atom.
b Van der Waals radius of Si atom.
c Ionic radius ofO2−, having CN 2.
d Ionic radius ofSi4+ having CN 4.

Among the most characteristic structural features of zeolites are their large internal
surface area (ISA) and high porosity, which both are important factors for catalytic
properties (apart from the presence of acidic sites in heteroatom-substituted zeolites).
Therefore it is of interest to study the dependence of both ISA and porosity on the
degree of amorphization, e.g., the PEC.
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In order to calculate ISA we model the system as an ensemble of intersecting hard
spheres with radii depending on the CN of the constituting atoms/ions. The CN of
Si/O was determined as the number of O/Si centers within a distance of 1.8 Å, i.e., all
bonds contributing to the first peak in the pair-distribution functiongSi−O (Fig. 1(b))
were included. Since the higher the CN of an atom/ion in the framework, the lower
its contribution to ISA, we chose the radii according to Table6.3: for uncoordinated
atoms the van der Waals radii were chosen [152], whereas for standard CN 4 for Si and
2 for O the ionic radii of Si4+ and O2− were selected [153]. For intermediate values
of the CN a linear interpolation was used. Contribution of atoms/ions with higher than
the standard CN were neglected.

The effective ISA of a system under study depends also on the size of the probe
used to measure it. A standard way to derive the effective ISA is the so-called probe-
atom model, where the ISA is defined by a surface generated by the center of a hard
test sphere of radiusrprobe rolling over the ensemble of intersecting spheres [152].
Recently Moloyet al. demonstrated for various crystalline zeolites that the ISA de-
creases by a factor of 1.4 to 2.8 when the radius of the probe atom is increased from
0.5 Å to 1.1 Å [154]. We therefore applied four different radii of the probe atom, i.e.,
0.5, 1.0, 1.5 and 2.0 Å, in order to investigate the probe size dependency of the ISA
upon amorphization. For the practical calculation of the ISA we increment the radii of
the intersecting spheres described above by the probe-atom radius. The surface of the
resulting ensemble of sphere was estimated as

ISA=
1
M

( N

∑
i=1

4π[Rcoord(i)+ rprobe]2
pi

p

)
(6.6)

Here the sum runs over allN centersi in the MD box,Rcoord(i) refers to the atom/ion
radius from Table6.3, rprobe is the probe-atom radius andM refers to the amount of
SiO2 present in the structure considered. A total ofp points (herep=614) is distributed
equally on the surface of each spherei, and the numberpi of points not located inside
other spheres is determined. The ratiopi/p then provides the fraction of the accessible
surface contributed by centeri. Note that our definition of ISA does not consider
cases where there may be internal surfaces which are not accessible due to absence
of windows by which probe molecules can enter. Therefore, the values obtained here
represent upper bounds to the actual accessible internal surface area.

Fig. 6.7 (a)-(d) contains our result for the ISA of 310 configurations determined
with four different probe radii. Our values for crystalline ZSM-5, i.e., 160.77 and
83.86m2· 103/mol for probe-atom radii of 0.5 and 1.0 Å, respectively, are in excellent
agreement with results published by Moloyet al., i.e.,≈ 162 and≈ 84 m2· 103/mol
(taken from their Fig. 7, entry MFI) [154]. Amorphization leads to a collapse of the
zeolitic framework and reduces the number of big pores (cf. also the discussion of
ring statistics given below). This is evident from Fig.6.7 for rprobe= 2.0 Å, where
amorphization decreases the ISA by roughly a factor of 2. However, for a small probe
radius asrprobe= 0.5 Å one observes an increase of the ISA by about a factor of 2. This
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is explained partly by the increasing percentage of under-coordinated centers in the
amorphous system (cf. Fig.6.6), but also by the increasing tendency to convert larger
rings into smaller rings (cf. below). In conclusion amorphization makes the framework
less accessible for larger species and more accessible for smaller ones. Such structural
changes can be of high importance for catalysis, where the accessibility of the acidic
sites (in case of protonated ZSM-5) and the rate of adduct-product exchange at the
active site can be the crucial parameters to influence the yield and selectivity of certain
reactions [148,155]. Changes in the network topology may also result in the closure
of sites suitable for ion exchange (in case of hetero-atom substituted zeolites).

6.4.3 Ring analysis

In order to gain further insight in the connectivity between the SiO4 tetrahedra and to
measure quantitatively the effects of amorphization on the structure, e.g., the porosity,
we performed a ring analysis. In the following we define a n-fold ring by the number
n of Si atoms connected by bridging O to give a ring. The number of Si atoms was
determined by first assigning to each bridging O atom a pair of adjacent Si atoms
and then tracing possible connections to a ring containing a maximum of up to 15
Si atoms. Double counting is avoided and sets of Si atoms defining a small ring are
not allowed to contribute as a whole to a large ring. Since rings can extend to periodic
images of the MD boxes the periodic boundary condition was removed for determining
the ring distribution. The latter is sensitive to the temperature and the threshold for
the maximum distance between bonded atoms, thus configurations with similar PEC
can exhibit slight differences in their ring distributions. The statistics for n-fold rings
presented in Fig.6.8 and Table6.4 nevertheless clearly shows characteristic features
depending on the PEC.

Crystalline ZSM-5 contains mainly 5-fold (48.9%) and 6-fold (39.2%) rings, along
with a smaller amount of 10-fold (9.0%) and 4-fold (2.9%) rings. Amorphization is
found to lead to a broad distribution of ring sizes from 2 to 10. In 15% energy crys-
talline amorphous material we observe still 5-fold (29.3%) and 6-fold (26.8%) rings
to be most frequent, however also 4-fold (17.3%) and 3-fold (13.0%) rings contribute
significantly. We can compare these findings to those from previous related work on
SiO2 glass, which exhibits a pronounced dominance of 6-fold rings, i.e., 3- to 6-fold
rings contribute with 3.0, 11.1, 24.2 and 61.6 %, respectively [156]. Whereas for our
system at small PEC (as well as for the crystal) larger than 6-fold rings are present to
less than 10%, they contribute with up to 20% for intermediate values of PEC. In these
cases 7-fold rings contribute roughly as much as 4-fold ones. Therefore, besides the
collapse of the 10-fold rings in crystalline ZSM-5 upon amorphization, also a "fusion"
of smaller membered rings to more than 6-fold rings must occur.
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Figure 6.8: Frequency of occurrence of n-fold rings in (partially) amorphous material

derived from ZSM-5.

The bond angle distributions suggest that both 2-fold and 3-fold rings are essen-
tially planar. For 2-fold rings Si-O-Si and O-Si-O angle distributions have a peak near
90◦ and for 3-fold rings Si-Si-Si and O-O-O angle distributions have a peak near60◦.
This result agrees quite well with the finding of Galeener based on force-field calcu-
lations that 2-fold and 3-fold rings of Si-O bonds in the vitreous form of SiO2 are
expected to be planar [157]. The presence of 2-fold rings again indicates the existence
of edge-sharing tetrahedra. However, the modest number of 2-fold rings suggests that
most tetrahedra are linked to each other by corners.

Much more difficult than the purely topological analysis of ring sizes is their ge-
ometrical measurement. Whereas small rings are essentially planar, larger ones are
usually puckered considerably and make the definition of a ring diameter meaningless.
Therefore, we calculate two simple measures for each ring, i.e.,

ravg =
1
n

n

∑
i=1

i∈ring

|RSi(i)−Rc| (6.7)

and

rmin =
min

i ∈ ring
|RSi(i)−Rc| (6.8)
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Table 6.4: Ring analysis for ZSM-5 based amorphous material depending on the

extent of amorphization at 300 K measured as percentage of energy crys-

tallinity (PEC). The first line for each PEC gives the occurrence of n-fold

rings in percent (%). In the second and third line the average and mini-

mal radii r̄avg and r̄min are listed (in Å). The rightmost column contains

estimate of the pore sizeSavg andSmin.

PEC n = 2 3 4 5 6 7 8 9 10 pore size

100 - - 2.9 48.9 39.2 - - - 9.0

2.19 2.57 2.85 4.70 2.86

2.16 2.42 2.53 4.32 2.62

79 1.0 2.6 9.0 37.7 33.4 8.2 2.4 1.9 3.8

1.22 1.72 2.17 2.58 2.89 3.28 3.65 4.16 4.68 2.81

1.22 1.66 2.04 2.37 2.50 2.70 2.97 3.49 4.17 2.48

60 2.5 7.5 13.2 20.9 35.0 15.0 3.6 1.3 1.0

1.23 1.71 2.16 2.54 2.68 3.29 3.70 4.06 4.49 2.64

1.23 1.66 2.01 2.26 1.87 2.70 3.00 3.04 3.54 2.13

45 3.7 8.0 15.3 28.5 26.7 12.1 2.9 2.2 0.7

1.23 1.88 2.50 3.07 2.78 3.29 3.63 4.01 4.26 2.82

1.23 1.64 2.00 2.19 1.94 2.67 2.84 3.08 2.99 2.12

15 4.0 13.0 17.3 29.3 26.8 5.7 2.0 1.3 0.6

1.25 1.90 2.54 3.00 2.57 3.22 3.42 3.80 4.12 2.63

1.25 1.57 1.81 1.81 1.37 2.52 2.58 2.29 2.44 1.71

The center of a n-fold ringRc herein is defined as

Rc =
1
n

n

∑
i=1

i∈ring

RSi(i) (6.9)

The quantityrmin gives a maximum radius below which atoms/molecules will be able
to pass through the ring. For planar and regular ringsrmin will be close to the average
ravg, for puckered and irregular ringsravg will be significantly larger thanrmin. Mea-
suresr̄avg and r̄min for the effective size of a certain type of rings are then generated
by averagingravg andrmin over all rings of the specific type in the systems. Clearly,
these quantities derived solely from the positions of the Si atoms are to a certain extent
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arbitrary. In reality the effective ring size depends not only on the electron density
distribution of the Si and O atoms in the ring but also on the one of the probe system.
In addition vibrational motion will affect the effective ring size. Summing up, a well
defined unique probe-independent measure of ring size cannot be given, nevertheless
we believe that the values of̄ravg and r̄min listed also in Table6.4 provide reasonable
trends.

For crystalline ZSM-5 the values of̄ravg andr̄min are quite similar with a maximum
deviation of≈ 13%for 6-fold rings. With increasing degree of amorphization the ratio
r̄avg/r̄min increases up to almost a factor of two for some ring sizes, i.e.,≈1.9 for 6-fold
and≈1.7 for 5-,9- and 10-fold rings. This indicates that the most frequently occurring
ring types (5- and 6-fold) have the largest tendency to irregular shape and puckering,
leading to smaller effective pore sizes in amorphous systems.

From the individual ring averages̄ravg andr̄min we can derive global averagesSavg

andSmin for the amorphous system (cf. the right column in Table6.4) by weighting the
ring-specific values̄ravg and r̄min with the occurrence of the ring types. These should
have some relation to measured effective pore sizes. Whereas the averaged valueSavg

does not exhibit a clear trend with decreasing PEC, the averageSmin clearly decreases.
This finding is in line with the concomitant decrease of ISA for large probe-atoms
depicted in Fig.6.7. We conclude thatSmin might be more helpful in the discussion of
catalytic processes. Finally we want to mention that despite all reservation the order
of magnitude ofSmin appears to be realistic: for crystalline ZSM-5 we estimate an
effective pore diameter of at least 5.2 Å. This agrees well with the value of around 5.5
Å of the micropore size distribution by Saitoet al. obtained experimentally from high
resolution argon adsorption on ZSM-5 [158].

This part of the work is published in Ref. [159]





Chapter 7

Vibrational Properties

Experimental studies on the mechanical treatment of zeolites by ball-milling processes
show that the amorphization also causes remarkable changes in the vibrational infrared
(IR) spectra which were associated with the breaking of Si-O-Si bonds [19,20]. It was
suggested that certain characteristic bands could be used as probes for detecting the
extent of the presence of the zeolite framework [160]. In the following section, a
detailed investigation of vibrational properties of amorphous materials derived from
the silicious ZSM-5 is presented.

7.1 Vibrational Density of States

The absence of a periodic lattice in amorphous materials has several effects; an im-
mediate consequence is that there is no reciprocal lattice and sok is no longer a good
quantum number for excitations in the solid, such as phonons (as described in chapter 4
section (4.2.3)). Thus phonon states cannot de described in terms of dispersion curves,
instead the only quantity which is a valid description of excitations in a non-crystalline
solid is the "density of states" (DOS).

The dependence of many thermodynamic properties, e.g., the specific heatCV , on
vibrational motions, makes the vibrational DOS a crucial property of solids. Experi-
mentally it can be measured with inelastic neutron scattering as well as IR and Raman
spectroscopy. In the following we present calculations of the vibrational DOS obtained
by two theoretical methods, i.e., the diagonalization of the dynamic matrix and the
Fourier transformation of the velocity-autocorrelation function [161,162]. Numerical
calculations of the vibrational DOS by the diagonalization of the dynamic matrix are
based on the harmonic approximation of the potential energy, allow an analysis of the
vibrational modes, but neglect anharmonicities as well as temperature effects. Using
the second method proposed above, one is able to study the temperature dependence
of the vibrational and thermodynamic properties of the solids. However, this method

97
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suffers from the finite resolution of frequencies and the lack of information about the
eigenmodes of the structures.

A detailed description of the structure generation is given in Chapter 6. In all
20 structures each comprising of 1152 particles were generated. After quenching the
low-temperature configurations, i.e., the ones obtained at 300 K, a final quenching
to 0 K leading to the local minima of the potential energy surface was performed. In
these minima we calculated the dynamic matrix whose elements are the mass-weighted
second derivatives of the potential energyU with respect to the atomic positions

Dmn
αβ =

1√
MnMm

∂2U(Rm−Rn)
∂Rm

α ∂Rn
β

,

m,n = [1,2, ...,N],α,β = [x,y,z]. (7.1)

HereMn represents the mass of thenth atom andRn
α is the coordinate of atomn in α

direction. Diagonalization of the dynamic matrix gives 3N eigenvalues corresponding
to the square of the eigenfrequencies (ω2, whereω = 2πν) and real eigenvectors (e).
Among the 3N vibrational modes the contributions by the three translation modes are
almost negligible. The vibrational DOS is obtained from the frequenciesν j of 3N-3
vibrational and rotational modesj as

Z(ν) =
〈 1

3N−3∑
j

δ(ν−ν j)
〉
, (7.2)

whereδ is the discretized delta function and
〈
...

〉
stands for an ensemble average. Due

to the small system size the low-frequency part (below 0.7 THz) could not be obtained
and hence we calculated the Debye spectrum given by

ZDebye=
3

ν3
D

ν2, (7.3)

with

νD = c̄
( 3N

4πV

)1/3
. (7.4)

Here c̄ represents the average sound velocity given in terms of the longitudinal and
transverse velocitiescl andct , respectively.N/V is the number density of the system.
We use the fact of the isotropy of amorphous materials and calculated these velocities
from the elastic constants ascl =

√
c11/ρ and ct =

√
c44/ρ, whereρ is the mass

density of the system. These values of the elastic constants were obtained from the
changes in the potential energy∆E under an applied strain

Rm
α → Rm

α +∑
β

εαβRm
β , (7.5)

∆E =−∑
αβ

Pαβεαβ +
V
2 ∑

αβγδ
εαβCαβγδεγδ +

1
2 ∑

αβγ
Pαβεαγεγβ. (7.6)
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Hereε is a transformation matrix which determines the shape of the system cell, i.e.,
the relative expansion and compression of a structure. The first term in Eq. (7.6)
accounts for the work done against the forces for an ensemble which is not in equi-
librium against the volume changes, wherePαβ is the virial of the forces. The second
term comes from the usual definition of the elastic energy density. The third term is
the correction for a volume change under a finite shear.Cαβγδ are the elastic constants
(c11 = C1111, c44 = C2323 according to Voigt’s contraction scheme [163]).

As mentioned above the vibrational spectra can also be calculated by the velocity
autocorrelation function defined as

g(t) =
N

∑
m=1

< vm(t).vm(0) >

< vm(0).vm(0) >
. (7.7)

Herevm represents the velocity of themth atom. The Fourier cosine transformation of
the velocity autocorrelation function gives the vibrational DOS

Z(ν) =
〈2

π

Z tobs

0
g(t)cos(2πνt)exp(−λt2)dt

〉
. (7.8)

Due to the energy-time uncertainty principle, the resolution of the spectral line∆ν is
inversely proportional to the observation timetobs. The finite integration timetobs and
a non-zero value ofλ will give a Gaussian-like contribution for each mode, leading to
a broadening of the vibrational spectrum [164]. The effect of the choice ofλ has been
studied by Oligschleger et al. on selenium [162]. It was shown that the resolution of
the frequency spectra increases with decreasing damping factorλ, and more and more
details of the DOS of the finite-sized system become visible.
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Figure 7.1: Vibrational DOS Z(ν) vs. frequencyν obtained by the diagonalization of

the dynamic matrix (black-colored line) and by the Fourier transformation

of the velocity autocorrelation function at temperature 10 K (red-colored

line) averaged over 10 configurations.
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Fig. 7.1 shows the vibrational density of statesZ(ν) obtained by both the above
mentioned methods for the ten structures with an average PEC of 50 %, which is a
subset of the 20 generated configurations of partially crystalline forms. In the collec-
tion of ten such structures the lowest and highest value of PEC taken into account was
47 % and 52%, respectively. In order to obtain the vibrational density of states by the
Fourier transformation of the velocity autocorrelation function, the equations of mo-
tions were integrated with a time step of 0.1 fs for a time intervaltobs=1.00 ps. Ten sets
of initial conditions with a temperature of 10 K and a damping factorλ =4/t2

obs were
chosen. The overall shapes of the spectra are very similar. Details, e.g., more or less
pronounced peaks observed for the Fourier Cosine Transformation depend on the num-
ber of sampled systems, the choice ofλ and the length of the observation time [162].
In contrast to the diagonalization of the dynamic matrix the approach also accounts for
relaxation and temperature effects, i.e., a complete agreement is not to be expected.
The elastic constantsc11 andc44 are found to be 7.03×1010 N/m2 and 5.77×1010

N/m2, respectively, for the systems with the mass density of 1.785 g/cm3. Hence the
calculated sound velocitiescl andct are 6275 m/s and 5687 m/s, respectively. The
percentage of anisotropy seen in terms of elastic constants in the system is found to
be less than 7%, hence, the system can be considered to be isotropic for all practical
purpose. At this point we want to mention that we also calculated the sound velocities
cl andct using potentials designed by Vashishta [165]. We obtain the values 5181 m/s
and 3358 m/s forcl andct , respectively. Despite of yielding a good description for the
structural [159,124] and vibrational [127] properties, it was shown that the potential
by Krameret al. used in the present simulation, yields somewhat less accurate elastic
properties in zeolite [124]. For sodalite the values ofc11, c44, c12 were overestimated
by 30%, 8% and 72%, respectively. As a consequence the values obtained for the
sound velocities in our simulation also seem to be at the higher end. Nevertheless
we decided to use the potential of Krameret al. since it yielded the experimentally
observed characteristic structure of the high-energy spectrum of silica [127], whereas
this is not the case for the one of Vashishtaet al. [149].

In Fig. 7.2 we analyzed the motion of single elements and their contribution to
the vibrational DOS obtained by the Fourier transformation of the element-specific
velocity autocorrelation function given by

ZA(ν) =
〈2

π

Z tobs

0
gA(t)cos(2πνt)exp(−λt2)dt

〉
(7.9)

where

gA(t) =
NA

∑
n=1

< vA(t).vA(0) >

< vA(0).vA(0) >
. (7.10)

HereNA represents the number of atoms of typeA. It is easy to see that the motions
of oxygen atoms contribute dominantly for all frequency regions in the vibrational
DOS. Nevertheless, the contributions of the silicon atoms become quite significant
and comparable in magnitude for a peak in the mid-frequency region, i.e., around 24
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THz. By MD simulations of silica glasses it was shown that the contribution of the
silicon atoms even exceeds that of the oxygen atoms for this particular peak [149].
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Figure 7.2: Averaged element specific-contribution to the total vibrational DOS for

10 configurations with an average PEC of 50% obtained by the Fourier

transformation of the velocity autocorrelation function. Total vibrational

DOS (black-colored line), Si contribution (red-colored line) and O contri-

bution (blue-colored line) are plotted versus frequency in THz.

The best known anomalous low-temperature property of amorphous materials is
their specific heat as mentioned in Chapter 4. In crystals the observed specific heat
is directly proportional toT3 and the proportionality constant is determined by the
velocities of sound. In an amorphous system due to the presence of additional modes
one observes deviations from this behavior. In the harmonic approximationCV per
atom is expressed in terms of the DOS as given in Eq. (4.34). In Fig. 7.3 we plotted
the specific heat asCV/T3 as a function of temperatureT. The dashed line shows the
values obtained for the spectrum by adding the Debye contribution up to a frequency
smaller than the lowest possible vibrational frequency seen in our system, i.e., 0.7 THz.
This correction amounts to 1.8× 10−3 of all the modes.

7.2 Analysis of the Vibrational Modes

7.2.1 Element specific motion with respect to bonds

In Fig. 7.2 the relative contributions of oxygen and silicon atoms to the vibrational
DOS is presented. To learn about the typical motions of these components we calcu-
lated the angle between the displacement of atomi in mode j and the bond of this atom
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to its nearest neighbork, i.e.,rbond=r ik,

αeibond = arccos
( ej

i .rbond

|ej
i ||rbond|

)
(7.11)
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Figure 7.3: The specific heat asCV/T3 plotted versus the temperatureT in a double-

logarithmic scale. The black-colored solid line shows the contributions

of the spectrum of the partially amorphous structures derived from zeolite

with an average value of PEC of 50 % and the red-colored dashed line is

the one with the Debye correction.

The element-specific weighted-average angle distribution for ten configurations
with an average value of PEC of 50% is presented in Fig.7.4. In order to suppress the
small contributions of only slightly moving atoms we weighted the distribution with
e2

i . For both the components, i.e., silicon and oxygen, the distributions are peaked at
90◦. This hints that the motions of both silicon (significantly) and oxygen (mainly)
atoms are perpendicular to the bonds. The fact that the distribution for oxygen atoms
is more sharp than the distribution of silicon atoms indicates that the silicon atoms
have some contributions to the motion which are either not parallel or perpendicular
to the bonds, but in between. The distribution ofαebond for oxygen atoms has three
significant peaks at 10◦, 90◦ and 170◦ with an approximate ratio of the peak height of
1:2:1. This ratio can be explained by the significant contributions of oxygen atoms to
the asymmetric stretching motions of SiO4 units (cf. below).

7.2.2 Relative contribution of motions of structural subunits to

DOS
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In order to investigate the atomic motions for different eigenmodes we follow the
method used by Taraskin and Elliot, where one projects the eigenvectors onto vari-
ous vibrational modes of the typical structural subunits [166]. n order to analyze the
motion of Si and O atoms we consider two basic structural subunits Si-O-Si and SiO4,
with the approximate local point group symmetriesC2v andTd, respectively. For the
Si-O-Si (assuming O at rest) and SiO4 (assuming Si at rest) subunits the components
of the vibrational vectors for stretching (S) and bending (B) are given in Table7.1and
Table.7.2, respectively.

Since the mentioned vibrational vectors in Table7.1 and Table7.2 describe the
motion of the structural subunit using internal coordinates, the relative displacement
eigenvectorsu j

i(i0)
are used for an atomi and are given for thejth mode by

u j
i(i0)

= (u j
i −u j

i0
)/

√
(C j

i0
). (7.12)

Table 7.1: Vibrational vectors for Si-O-Si subunits (assuming O at rest) are pre-

sented below. The Si-O-Si subunits have two nondegenerate vibrational

vectors ofA1 symmetry corresponding to the symmetric stretching and

bending motions and one vibrational vector ofB1 symmetry for asym-

metric stretching. In the following, the indexi0 represents the central

immobile oxygen atom and the subscripts 1 and 2 refer to the silicon

atoms.â1 is the unit vector directed from atomi0 to atom 1.b̂12 is the

unit vector perpendicular to the bond between atomsi0 and 1, lying in

the Si-O-Si plane and pointing as much as possible in direction of atom

2, i.e., â1.b̂12 = 0 and â2.b̂12 ≥ 0. The superscripts in the vibrational

vectors represent the symmetry of the modes. Note that the second com-

ponent of the vibrational vectors represents the motion of oxygen which

is the central, immobile and reference atom of the subunit. The first

and third entries of the vibrational vectors refer to the motions of silicon

atoms connected to the reference atom.

Vibrational vector Components of the vibrational vector

S(A1)
(i0)

1√
2
{â1,0, â2}

S(B1)
(i0)

1√
2
{â1,0,−â2}

B(A1)
(i0)

1√
2
{b̂12,0, b̂21}
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Table 7.2: Vibrational vectors for SiO4 subunits (assuming Si at rest) are presented

below. The SiO4 subunits have one vibrational vector withA1 symmetry

for a symmetric stretching motion, two triplets for asymmetric stretching

and bending motions ofF2 symmetry and a doublet for bending ofE

symmetry. In the following, the indexi0 represents the central immobile

reference atom, i.e., the silicon atom of the SiO4 subunit whose motion is

described by the first component in all the vibrational vectors. The other

four components refer to the motions of the oxygen atoms connected to

the reference silicon atomi0 and are numbered as 1,. . .,4 as a subscript.

X andY are the normalization constants used for the bending vibrational

vectors ofE symmetry.

Vibrational vector Components of the vibrational vector

S(A1)
(i0,1)

1√
4
{0, â1, â2, â3, â4}

S(F2)
(i0,1)

1√
4
{0, â1, â2,−â3,−â4}

S(F2)
(i0,2)

1√
4
{0, â1,−â2,−â3, â4}

S(F2)
(i0,3)

1√
4
{0, â1,−â2, â3,−â4}

B(F2)
(i0,1)

1√
4
{0, b̂12, b̂21,−b̂34,−b̂43}

B(F2)
(i0,2)

1√
4
{0, b̂14,−b̂23,−b̂32, b̂41}

B(F2)
(i0,3)

1√
4
{0, b̂13,−b̂24, b̂31,−b̂42}

B(E)
(i0,1) X{0,2b̂12− b̂13− b̂14,2b̂21− b̂23− b̂24,

2b̂34− b̂31− b̂32,2b̂43− b̂41− b̂42}
B(E)

(i0,2) Y{0,(b̂13− b̂14),−(b̂23+ b̂24),

(b̂31− b̂32),−(b̂41+ b̂42)}

HereC j
i0

is the norm given by

C j
i0

= ∑
i
|u j

i −u j
i0
|2. (7.13)
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Figure 7.4: Distribution of element-specific weighted-average anglesαebondbetween

the atomic displacement eigenvectors and the bonds. The black-colored

solid line corresponds to the angle distribution of silicon atoms and the

red-colored dashed line to the one of oxygen atoms for ten configurations

with an average value of PEC 50%.

The displacement eigenvectorsu j
i are derived from the eigenvectorsej

i as u j
i =

ej
i /
√

Mi with the massMi of the ith atom. Herei0 represents the central, immobile,
reference atom for the structural subunits. The squared value of the projection of the
relative displacement eigenvectoru j

i(I ,i0)
onto the vibrational vectorsDi(I) (S’s andB’s

in Table7.1and Table7.2) of the structural subunitI gives the partial contribution of
the vibrational motion of a specific kind for the eigenmodej. These squared projec-
tions were averaged over all structural subunits as

(r j
D)2 =

∑I (w
j
I )

2(∑i′(I) u j
i′(I ,i0)

.Di′(I))
2

∑I (w
j
I )2

. (7.14)

Here the indexI runs over all the structural units, i.e., Si-O-Si or SiO4, and the index
i
′
runs over all the atoms comprising the structural subunit.The weighting factorw j

I is
used in order to suppress the contributions of units which have negligible values and
is given by

w j
I =

(
∑
i′
|ej

i′
|2

)1/2
. (7.15)

In order to obtain the rotational component of the spectrum, we obtain three perpendic-
ular axes for a given subunit as eigenvectors by diagonalizing the shape tensor given
by

Gαβ(i0) = ∑
i′

Mi′ r
α
i0i′r

β
i0i′ . (7.16)
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Here for a given central atomi0 in a structural subunit the indexi
′
runs over other atoms

connected toi0. Mi′ represents the mass the ofi
′
th atom andrα

i0i′ refers to the distance

in α direction between thei0th andi
′
th atom. The squared weighted projection of the

displacement eigenvectors onto the rotational vectors around the three perpendicular
axes summed and averaged over all the subunits gives the contribution of the rotational
motion.

In Fig. 7.5 we show the partial vibrational DOS obtained by the projections onto
the vibrations of the Si-O-Si and SiO4 subunits which are averaged over all subunits in
all ten configurations with an average PEC of 50 %. The percentages of the individual
contributions were determined by integrating the DOS over the frequencyν, where
we also assessed low-frequency (high-frequency) contributions by integrating up to
(from) the minimum in the DOS at≈ 28 THz (Table7.3). The contributions by rota-
tional and bending motions are significant for both subunits. For Si-O-Si (Fig.7.5(a))
rotational motions contribute to the DOS for the entire frequency range and become
very significant for the low-frequency region (47.7 %) with a maximum around 3 THz.
The rotational motions of the Si-O-Si subunits have strong contributions and hence in
Fig. 7.4 we find that the distribution for the element specific weighted-average an-
glesαebondshows a maximum around 90◦ for the silicon atoms. The bending modes
contribute also quite significantly for the low-frequency region (29.9 %). The sym-
metric stretching motions exhibit a maximum at 23 THz, but their overall contribution
is not so dominating (7.6 %). The high-frequency region is mostly dominated by the
asymmetric stretching motions (54.1 %) and has a broad maximum around 33 THz.
In contrast to the vibrational features obtained for silica, where one observes a sharp
splitting of both rotational and asymmetric stretching motions in high frequency peaks,
this is quite diminished in case of the amorphized form derived from zeolite [166].

Fig. 7.5(b) shows the corresponding projection onto the SiO4 subunits. Similar to
the Si-O-Si subunits, the rotational motions of the SiO4 subunits become quite domi-
nant (34.0 %) in the beginning of the low-frequency region and exhibit a maximum at
5 THz. The bending motions are significant for the end of the low-frequency region
(40.7 % forF2 type and 19.2 % forE type). The bending motions with E type have
a broad maximum at 14 THz and a small maximum at 22 THz. In silica this bending
motion has just one broad maximum at 15 THz [166].

For the bending motion of F2 type we observe two peaks, one with a flat max-
imum around 17 THz and another sharp maximum at 23 THz. In silica this sharp
peak is found to be missing [166, 167]. For the partially amorphous system studied
here one sees a very strong contribution of the asymmetric stretching motions around
32 THz in the high-frequency region (65.8 %). The symmetric motions contribute
weakly for the whole spectrum (4.1 %). A slightly forked feature of the DOS in the
high-frequency region is mainly due to the existence of the symmetric and asymmetric
stretching motions of the SiO4 subunits. Due to the occurrence of a very sharp peak for
the asymmetric motions and a strong peak for the rotational motions one can explain
the peaks observed for the distribution of element specific weighted-average angles
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Figure 7.5: (a) The total and partial vibrational DOS obtained by the projection of the

relative atomic displacements onto the vibrational vectors of the (a) Si-O-

Si and (b) SiO4 subunits. All the plots are shown as an average over 10

configurations with an average value of PEC of 50 %.
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αebond for oxygen at 10◦, 90◦ and 170◦. 10◦ and 170◦ are related to the strong asym-
metric stretching motions and 90◦ is related to the dominant low-frequency rotational
motions. A small contribution occurring at the band gap, i.e., around 28 THz, comes
mainly from the bending motions of both E and F2 types.

Table 7.3: Partial contributions of the eigenmodes of the subunits (Si-O-Si and

SiO4) calculated by the integration of respective DOS each related to

the low- frequency, high-frequency part of the spectrum and the total

spectrum displayed in Fig.7.5(numbers presented below are in percent-

age).

Subunit Motion Below 28 THz Above 28 THz Total

Si-O-Si Sym. 8.2 5.4 7.6

Asym. 0.9 54.1 12.7

Bend. 29.9 10.8 25.7

Rot. 47.7 29.1 43.6

SiO4 Sym. 1.4 13.5 4.1

Asym. 7.3 65.8 20.2

Bend.(F2) 40.7 17.9 35.6

Bend.(E) 19.2 4.2 15.9

Rot. 34.0 2.2 27.0

7.2.3 Mode localization

In order to determine the degree of localization of phonons there are two commonly
used concepts, i.e., the effective mass and the participation ratio [168,169]. The effec-
tive mass is defined as

M j
e f f = Mi′/|e

j
i′
|2, (7.17)

wherei
′
corresponds to an atom with largest displacement and with a real eigenvector

ej
i′

for the jth mode. However, this concept is not suitable for the description of the
localization of the modes in the case of large systems. For localized modesMe f f is
a system independent quantity but for the extended modes its value scales with the
system size. The participation ratio is given in terms of the eigenvectors as

p j =
(

N
N

∑
n=1

|ej
n|4

)−1
. (7.18)
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For the extended modes,p is unity and for the localized or quasi-localized modes it
scales inversely with the system size.
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Figure 7.6: Comparison of participation ratios of the crystalline (red-colored circles)

and amorphous systems with PEC of 50% (black-colored plus).

Fig. 7.6 shows the comparison of participation ratios of the crystalline form and
the partially amorphized form obtained from a configurational average over 10 struc-
tures with an average PEC of 50%. One can see easily see that amorphization leads
to a remarkable localization of the modes at the tails of the high-frequency modes
and at very low-frequency modes, i.e., around 1 THz. At 0.7 THz one observes very
few modes with high participation number, i.e., around 0.6. These correspond to the
extended modes, i.e., the lowest-lying phonons permitted by the system size. Simi-
lar to other theoretical simulations on amorphous silica systems [166, 167, 161], we
see a very strong localization of the modes with effective mass centered on 2 atoms
at the tail regions of the high-frequency modes. For the low-frequency modes the
strongest localization is centered around 8 atoms with a participation ratio as low as
0.2. These modes are formed by the interactions of localized modes and phonons and
hence referred to as quasi-localized modes [170]. Localized and quasi-localized vi-
brations are well-known phenomenon in the phonon theory of crystals with impurities
or defects [171]. he localized vibrations occur outside the continuum of the lattice
frequency, do not interact with the lattice modes and their eigenvectors decay expo-
nentially with the distance. In amorphous systems this type of vibrations are seen in
the the high-frequency tail. Defects and localized vibrations are also possible at the
low-frequency regime where the DOS is quite low. These types of localized modes
would hybridize with extended acoustic modes, lose their strict localized nature of the
vibrations and are referred to as quasi-localized modes. Similar to the localized modes
occurring at the tails of the high-frequency regime, these modes are localized near the
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defects. However, their eigenvectors do not decay exponentially [98].
Similar to the analysis of Jinet al. we calculated the effective radius of gyration

Rj
gyr for the jth mode as

Rj
gyr =

√
1
3∑

α
[< Xα( j)2 >−< Xα( j) >2], (7.19)

where

< Xα( j)2 >=
N

∑
i=1
|ej

iα|2(r iα − r i
′
α
)2 (7.20)

and

< Xα( j) >=
N

∑
i=1
|ej

iα |2(r iα − r i
′
α
). (7.21)

Herei
′
refers to an atom with the largest displacement for thejth mode. For a localized

mode involving essentially only the motion of a single atomRgyr will be zero and for
an extended mode it is the average root-mean-squared distance [161]. Fig. 7.7shows
Rgyr/L for various frequencies. The average box lengthL is 28.8 Å. The average radius
of gyration for the quasi-localized low-frequency modes are approximately 0.3 times
of the box length. However, for the high-frequency region the modes especially at the
tails become highly localized, i.e., within 0.01 times the box length.
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Figure 7.7: Plot of radius of gyration asRgyr/L versus frequency with L as length of

the simulation box.

7.2.4 Phase quotient
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In order to determine the behavior of the correlation between the individual atomic
displacements, we analyzed the phase quotients of the modes. Phonons in a crystal
can be distinctly classified as acoustic and optical modes. In purely acoustic modes
adjacent atoms move in phase, while in the optical modes their motions are out of
phase. Since in amorphous structures the modes cannot be specified by wave-vectors
such classification is not justified in strict sense. However, one can associate a phase
character to a modej by a so-called weighted phase quotient defined as

q j =
1

∑i |ej
i |2

∑
i

∑
i′

u j
i .u

j
i′

|u j
i |.|u j

i′
|
.|ej

i |2. (7.22)

Herei andi
′
run over all the silicon atoms and the neighboring oxygen atoms, respec-

tively. For the in-phase acoustic-like modes the phase quotient is close to unity and for
the out-of-phase optic-like modes its value is close to minus unity [161,166].

In Fig. 7.8we show the weighted phase quotient for the modes with respect to the
frequencies. The phase quotients tend to unity with the decrease in frequency indicat-
ing the acoustic character of the modes increases upon decrease of the frequencies. In
the high-frequency region the phase quotients are mainly negative and show significant
optic-like character.
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Figure 7.8: Weighted phase quotient vs. frequency.
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Figure 7.9: Vibrational DOS obtained by diagonalization of the dynamic matrix for

different PEC obtained from ZSM-5 versus frequency. The black-colored

line refers to the vibrational DOS for the crystalline ZSM-5 and the red-

colored line represents the density of states obtained for the structures with

PEC of 70 % and the blue-colored line for the structures with PEC of 50

%.

Fig. 7.9 we analyzed the change in the vibrational DOS with different PEC. It was
found that the structures with PEC less than 50% show very similar features of vibra-
tional DOS as those of the ones obtained with PEC of 50%. In order to have a not
too crowded figure we present the dependence of the PEC on the vibrational DOS for
crystalline ZSM-5 and partially amorphous structures with the PEC of 70% and 50%.
At this point we want to mention that the calculated vibrational DOS of silicalite, us-
ing the interatomic potentials of Krameret al. [124] are in good agreement with the
DOS measured experimentally using the inelastic neutron scattering spectrum obtained
by Jobicet al. [172]. The high-frequency double peak obtained in our simulation at
34 THz and 37 THz was experimentally observed at 33 THz and 36 THz, respectively.
The generalized force field used in previous simulations could not reproduce the forked
nature of the high-frequency peaks [173,172]. The peaks at the mid-frequency region
seen at 16 THz and 23 THz were observed experimentally at 16.5 THz and 22.5 THz,
respectively. We see that the amorphization has a significant effect on the intensities
and leads to a broadening of the high-frequency peak. There is also shift in the peaks
of the high-frequency region towards lower frequency with a narrowing of the band
gap. The low-frequency region shows a relatively small dependence on the PEC.

It has been shown by Kosanovicet al. that during amorphization by ball milling
experiments the absorbance at 16.5 THz was reduced [19]. Jacobset al. assigned this
peak as asymmetric stretching mode of distorted double five membered rings present
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in the zeolitic framework and suggested this band as a probe for detecting the presence
of a zeolitic framework [160]. In Fig. 7.9we do see a slight decrease of the intensity
of the peak at 16.1 THz. But this change is not so drastic for the structures below
50% PEC and could be justified by the ring distribution of five membered rings. On
analysis of the ring distribution we find that the percentage of 5-fold rings reduces
from 49% for the crystalline form to 38% for a structure with PEC of 79% and to 21%
for a structure with PEC of 60%. It remains roughly constant at a value of 29% for
structures of PEC below 50% [159].

7.4 Low-Frequency Vibrational Excitations

The origin and nature of the low-frequency vibrations in (partially) disordered ma-
terials as well as their influence on low-temperature thermodynamic properties such
as specific heat and thermal conductivity is still not fully understood and under de-
bate [90,174]. Especially the so-called boson-peak (BP) in the reduced DOS Z(ν)/ν2,
which is traditionally associated with a vibrational DOS exceeding the Debye value
around 1 THz, remains a subject of theoretical controversy (cf. Ref. [175] and refer-
ences therein). The reduced DOS is shown in Fig.7.10(a) for five selected structures
with different PEC (representatives for a total of 30 structures studied). The maximum
of the reduced DOS in the BP region (0.5 THz to 1 THz) for 30 structures are plotted
in Fig. 7.10(b). The two distinct ranges of PEC exhibiting opposite behavior of the
intensity of the BP with respect to amorphization are observed: for structures with
PEC of 100% (crystalline) to≈60%, the intensity of the BP decreases with increas-
ing amorphization and the opposite behavior is found for structures with PEC below
≈60%. In the following we try to explain these trends on the basis of the competition
between various factors in the framework of Maxwell counting of floppy modes [176].
In a generic case, e.g., a general infinite system formed by linked rigid tetrahedra,
an exact balance between the degrees of freedom and the number of constraints ex-
ists [177]. However, the zeolites fall into the category of non-generic cases, where
the high symmetry present in these materials can make some constraints degenerate
and allow for floppy modes [178]. Hammondset al. have proposed the existence of a
significant number of floppy modes with respect to the total number of modes in the
zeolitic systems, thereby explaining the flexibility of the framework and its relation to
the adsorption sites [179,180].

Low-frequency modes for crystalline structure: In order to investigate the high
intensity of the peak obtained for the crystalline system we generated the phonon dis-
persion curves along the symmetry directions of the orthorhombic unit cell of ZSM-5.
The dispersion curve is obtained from the dynamic matrix ink space and defined as

Dαβ
i j (k) =

1√
MiM j

∑
kl

∂2U

∂Rα
ik∂Rβ

jl

.expik.(Rik−R jl ). (7.23)
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Figure 7.10: (a) Z(ν)/ν2 vs. ν for zeolite ZSM-5 based partially amorphous structures

with different percentage of energy crystallinity. (b) Maximum value of

reduced DOS obtained in BP region, i.e., max Z(ν)/ν2 for 30 structures.
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Figure 7.11: Phonon dispersion curves along the symmetry directions for the silicious

ZSM-5.

Hereα andβ denote the Cartesian indices,k, l the unit cells, andi, j the sublattice.Rik

andR jl are the atomic positions andMi andM j the atomic masses. The summation is
over all cellsl ,k within the interaction sphere. Diagonalization of matrixD(k) yields
as eigenvalues the squared phonon frequenciesν2. The calculated dispersion curve is
shown in Fig. 7.11. Since ZSM-5 has a large unit cell of 288 atoms, it has a large
number of optic modes along with three low lying acoustic modes. For the analysis
only modes up to 2 THz are shown. The curves show that the peak obtained in Fig.
7.10around 1 THz is due to the low-lying modes which are mainly optical in character.
Since there is merging of the phonons of the acoustic branches with the optic ones the
possibility of having hybridized modes cannot be neglected as proposed by Taraskin
et al. for the case of vitreous silica [181].

Various factors may influence the modes associated with the BP as documented
in the literature [182, 183, 184, 185]. It has been proposed by Nakamuraet al. that
buckling motions of mismatched rings (No. of Si in the ring6= 6) could be related
to the origin of the BP in vitreous silica. This was further supported on the basis of
the suppression of the BP in densified silica and was related to the reduction in the
number of these mismatched rings (regarded as floppy rings) [182]. A very intense
hump present in the reduced specific heat vs. temperature (which has a relation to the
BP [186]) for the zeolites belonging to the family of MFI and BEA in comparison to
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vitreous silica and cristobalite, was associated with the presence of large 10-fold and
12-fold rings, respectively [183]. The degree of coordination defects was also found to
influence the intensity of the BP. Finkemeieret al. showed for amorphous silicon that
the intensity of the excess DOS increases upon introduction of defects by modifying
the coordination numbers (CNs) [184,185].

Table 7.4: The first line for each PEC gives the occurrence of n-fold rings in per-

cent. In the second line, the quantityρ describes the degree of puckering

of the rings. The numbers in parentheses in the first column represent

the average participation ratios of the modes in the BP region.

PEC n = 2 3 4 5 6 7 8 9 10

100 (0.45) - - 2.9 48.9 39.2 - - - 9.0

1.01 1.06 1.13 1.09

90 (0.42) 0.4 4.8 45.3 38.1 2.3 0.9 8.2

1.04 1.04 1.08 1.15 1.23 1.12 1.11

79 (0.41) 1.0 2.6 9.0 37.7 33.4 8.2 2.4 1.9 3.8

1.00 1.04 1.06 1.09 1.16 1.22 1.23 1.19 1.12

61 (0.40) 1.8 7.2 14.9 24.7 31.7 14.2 3.2 1.4 0.9

1.00 1.09 1.10 1.20 1.37 1.22 1.22 1.22 1.28

47 (0.38) 3.1 9.1 15.8 27.8 25.9 12.5 3.0 2.1 0.7

1.00 1.04 1.08 1.15 1.55 1.22 1.23 1.33 1.28

20 (0.31) 3.9 11.8 16.4 25.7 26.6 10.7 2.8 1.4 0.7

1.00 1.07 1.15 1.27 1.53 1.27 1.31 1.32 1.40

12 (0.27) 4.5 13.8 17.8 26.0 28.4 5.5 2.2 1.2 0.6

1.00 1.15 1.21 1.32 2.78 1.30 1.47 1.46 1.54

In order to study the relationship between the above mentioned factors with the
simulated behavior of the intensity of the BP in this letter, we present an analysis of
ring statistics and CNs in Tables7.4 and7.5, respectively. Ring distributions were
calculated by the procedure described in Chapter 6.r̄avg refers to the average of the
radii of all n-fold rings in the system and̄rmin refers to the average of the maximum
radii below which atoms and molecules will be able to pass through these rings. A
deviation ofρ from 1.00 quantifies the degree of ring puckering. We note here in
passing that although in a partially amorphous system a higher degree of puckering
will most likely correspond to a lowering of the symmetry,ρ cannot be regarded as a
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measure of symmetry in a strict sense. In order to study the localization of the modes
in the BP region (0.5 THz to 1.5 THz), average participation ratios calculated using
the definition of Bell and Dean [169] are also presented in Table7.4. The distribution
of CNs of the most active 10% of the atoms in the modes contributing to the BP region
selected on the basis of the magnitude of the mass-weighted eigenvectors is listed in
Table7.5.

Table 7.5: Distribution of the coordination numbers (CNs) in percent for the 10 %

most active atoms present in the modes belonging to the BP region.

PEC Si O

CN = 4 CN > 4 CN < 4 CN = 2 CN > 2 CN < 2

100 1 - - 99 - -

90 5 0 0 94 0 1

79 7 0 0 89 0 4

61 14 0 0 81 0 5

47 17 0 1 68 0 13

20 17 0 1 59 1 23

12 17 0 2 55 1 25

Low-frequency modes for the structures with PEC above≈60%: The modes in the
BP region are found to be relatively delocalized with average participation ratios of
0.4 or larger. The most active atoms are mainly located around large 10-fold rings
as shown in Fig.7.12. For the crystalline system the large 10-fold rings are quite
regular (ρ ≈ 1.09, cf. Table7.4). Amorphization causes a drastic disappearance of
these rings (9% reduces to 0.9%) accompanied by a formation of 7-,8- and 9-fold mis-
matched large rings. However severe puckering of the rings takes place (ρ increases
from 1.09 to 1.28) thereby reducing the possibility of having more regular and sym-
metric rings. In the framework of the model of the floppy modes, the presence of large
rings alone without the additional effect of symmetry cannot break the basic balance
between the constraints and the degrees of freedom and thus cannot give rise to the
floppy modes [178]. Therefore these modifications described above result in a reduc-
tion of the number of floppy modes and thereby decrease the intensity of the BP.

Low-frequency modes for the structures with PEC below≈60%: The possibility
of having floppy modes due to the closed rings is quite low due to severe puckering
(ρ > 1.22 for 7-fold and larger rings, cf. Table7.4). A tremendous increase of the
number of under-coordinated active atoms (5% to 27%, cf. Table7.5) is observed.
These are related to non-bridging Si-O bonds and ’open’ rings. The resulting reduced
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(a) (b)

(c) (d)

Figure 7.12: The active atoms shown by red lines of the modes at 0.5 THz and 1 THz

in the structures with PEC of 100% ((a) and (b), respectively) and 73%

((c) and (d), respectively) in the yz plane.
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number of constraints leads to an increase of the number of floppy modes. Note that
for the structures with PEC larger than≈60% this effect is largely suppressed due to
the much lower number of active under-coordinated centers. The average participation
ratio decreases drastically on amorphization (from 0.40 to 0.27 for structures with
PEC of 61% to 12%), with the formation of highly localized modes as shown in Fig.
7.13. The increased number of these localized floppy modes associated with under-
coordinated centers causes most likely the increased intensity of the BP for this range
of PEC.
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Figure 7.13: Participation ratios of the low-frequency modes of the partially crys-

talline structures corresponding to different PEC.

Nature of the vibrational motions in low-frequency modes: We performed an anal-
ysis similar to the one used by Taraskin and Elliot [166]. We projected the eigenvectors
of the SiO4 and Si-O-Si structural subunits (active subunits) containing active Si and O
atoms onto the vibrational vectors of the ideal SiO4 and Si-O-Si units with Td and C2v

symmetry, respectively. The calculated contributions of the vibrational motions exhib-
ited by the active subunits are shown in Table7.6. Obviously the stretching motions
of both kinds of active subunits contribute negligibly. For the active SiO4 subunits the
main contributions result from the rotational motions. However, for intermediate and
low values of PEC the bending character contributes noticeably, indicating that dis-
tortions of the SiO4 subunits are associated with these low-frequency modes. Hence
the floppy modes are not in strict sense rigid unit modes in these systems. The mo-
tions of the active Si-O-Si structural units involve a strong mixing of both bending and
rotational motions for the crystalline case (43% and 56%, respectively). Upon amor-
phization the bending character decreases and the vibrational motions become mainly
rotational in nature. Since the BP occurring in the partially crystalline forms are in the
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same frequency region as for the crystalline one, although with a reduced intensity as
shown in Fig.7.10, we predict that the modes are mainly optic in nature.

Table 7.6: Contributions (in percent) of the vibrational motions exhibited by the

active subunits (SiO4 and Si-O-Si) as described in the text. ’S’, ’B’

and ’Rot.’ represent the stretching, bending and rotational contributions,

respectively and the superscripts denote the symmetry of the motions.

PEC SiO4 Si-O-Si

S(A1) S(F2) B(F2) B(E) Rot. S(A1) S(B1) B(A1) Rot.

100 1 1 4 1 93 0 0 43 56

90 1 1 4 2 93 1 0 40 59

79 0 0 6 3 90 1 0 37 62

61 0 0 8 4 88 0 0 29 71

47 0 0 9 6 84 0 0 27 72

20 0 0 6 5 89 0 0 20 79

12 0 0 6 4 90 0 0 16 84

Hence, we conclude that in relatively high crystalline porous structures, the de-
crease in the intensity of the BP can be associated with the reduction in the number
of the floppy modes due to the decrease in the concentration of the large membered
rings and the lowering of their symmetry upon amorphization. The opposite behavior
for relatively low crystalline structures is explained by the increased number of floppy
modes due to the formation of non-bridging bonds and ’open’ rings. Although there
may exist other mechanisms which are not investigated in this thesis, floppy modes as-
sociated with ’open’ rings and coordination defects have most likely a strong influence
of the intensity of the BP in partially crystalline zeolitic systems.

This part of work is published in Refs. [187,188]



Chapter 8

Relaxation Properties

Amorphous phases exhibit over an extremely broad range of time particular motional
processes known as relaxations [189,190,191,192,193]. Classical relaxation in glasses,
sometimes also calledsecondary relaxationto distinguish it from the primary relax-
ation at the glass transition, is generally believed to be well described in terms of the
Arrhenius-Kramers picture [194], with a relaxation timeτ given by the Arrhenius re-
lation

τ = τ0exp
( E

kBT

)
, (8.1)

whereτ0 is a macroscopic time of the order of 10−13 s, E is the energy of the barrier be-
tween two energy minima of the system. The secondary orβ relaxations are envisaged
as thermally activated transitions over the barriers separating the local minima in the
potential energy landscape [195,196,197], thus an insight into the topography of the
inherent structures can be obtained by investigating these relaxations [167,198,199].

In contrast, the primary relaxation process orα-process, the onset of the flow pro-
cess at the glass transition temperatureTg and above, seems to follow a much steeper
law [200,201]

τ = τ0exp
( A

(T−T0)

)
, (8.2)

whereA and T0 are constants with the dimension of temperature. This is the well
known empirical Vogel-Fulcher-Tamman equation.

In the following sections we present a MD investigation of secondary relaxations
occurring in our chosen model system, i.e., (partially) amorphous-forms derived from
zeolite ZSM-5. The occurrence of these relaxations might change the level of crys-
tallinity and hence, it can effect the selectivity of the reactions which are dependent on
the percentage of crystallinity [28]. The dynamics show some interesting phenomena
like aging and dynamical heterogeneities at the intermediate time scales studied (1 ps

121
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to 0.6 ns). In all 20 structures with 3456 particles were chosen to study the relaxational
dynamics below the critical temperature,Tc.

An estimate ofTc was obtained by calculating the diffusion constantD of the sys-
tem as a function of temperature using the relation

Dα = lim
t→∞

1
6t

< |Rα(0)−Rα(t)|2 > . (8.3)

HereRα(t) is the time-dependent position vector of a particle of typeα ∈ {Si,O} and
< .. . > denotes the configurational average. In Fig.8.1 one can observe that the
temperature dependent diffusion constants for both silicon and oxygen atoms show a
rapid drop below 4000 K, which can be taken as the upper limit forTc. Such high
Tc is a common problem to most of computer simulations and caused by too high
heating/quenching rates, which exceed the experimental ones by many orders of mag-
nitude [127]. After the MD-quench to 300 K as described above, the chosen structures
were heated to elevated temperatures (300 K−→ 1000 K−→ 2000 K−→ 3000 K)
and further aged at each temperature for 300,000 time steps corresponding to 0.6 ns.
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Figure 8.1: Element-specific diffusion constants in zeolite ZSM-5 based partially

amorphized material at different temperatures.

To detect relaxations at a given temperature in the course of MD-runs, we moni-
tored the atomic displacements defined as

∆R(t) =
√

∑
n

[Rn(t)−Rn(0)]2. (8.4)

HereRn(t) is the position vector of the particlen at timet, whereasRn(0) is the one
at the starting or reference configuration on the potential energy surface. If the total
displacement of the atoms exceeds a cutoff value and the residence time of the atoms
in the new positions also exceeds a minimal period of at least three times the period of
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a typical soft vibrational mode, the new positions of the particles were accepted as a
starting point for the determination of a possible new minimum configuration. All the
stored coordinates were then quenched toT = 0 K using a combined SDCG algorithm
[132] to locate the nearest minimum configuration in the potential energy surface.
In the following section we discuss on the relaxation properties of these minimum
structures during aging at the temperatures mentioned above.

8.1 Time Evolution on the Energy Landscape

Figs.8.2(a) and (b) show the time evolution of the ensemble averaged potential ener-
gies and displacements per atom obtained during the aging of the systems at different
temperatures. These averages were taken over ten configurations with a starting aver-
age PEC of 60%. In general the potential energy drops during aging. After heating
there is a subsequent leveling off of the potential energy at lower temperatures (300K
and 1000K). The largest part of the atomic-displacement immediately follows after
heating. The average displacements of the atoms is very small, i.e., less than 2% of the
Si-O bond distance at 3000 K. The decrease in the average potential energy and dis-
placement per atom increases with temperature as the possibility to cross large energy
barriers and to visit farther away minima in potential energy landscape increases.

8.2 Structure and Mode of Relaxations

To study the localization behavior of the relaxations we calculated analogous to our
study of the vibrations (chapter 7), the relaxational effective mass and participation
ratio. The effective mass of a relaxation is defined as

Me f f = mmax
(∆R0)2

|(∆R0
max)2| , (8.5)

where∆R0 represents the distance between two successive minimum configurations as
obtained using Eq. (8.4). |∆(R0

max)
2| andmmax denote the maximal distance and mass

of the farthest jumping atom. The participation ratio is defined as,

P∆R0 =
(∆R0)4

N∑n(R
i,0
n −R f ,0

n )4
, (8.6)

whereRi,0
n andR f ,0

n denote the initial and the final position of the atomn andN repre-
sents the total number of atoms. The participation ratio has the valuen/N if n atoms
are equally involved in the relaxation process. If all atoms contribute equally in the
jump, the resulting participation ratio will be 1.

The influence of the temperature on the jump lengths and the participation ratios
are shown in Fig.8.3. The participation ratios roughly grow linearly with the jump
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Figure 8.2: (a) Changes in the potential energy per atom and (b) displacement per

atom during aging obtained as the ensemble averages. The temperature

intervals are indicated by the dotted lines. The heating procedures con-

sisting of 50,000 MD steps between each temperature interval are omitted

in the plots.
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lengths. The average participation ratios of 0.009, 0.010, 0.018 and 0.036 are observed
for jumps at 300 K, 1000 K, 2000 K and 3000 K, respectively. These correspond to
the effective masses of 7, 10, 16 and 29 atoms, respectively.

To analyze the relaxation structures we define, a dimensionality of the relaxations
and calculate for each jumpj the tensorG;

Gαβ( j) =
∑n |∆R0

n( j)|µ(R0
α,n−Rc.m.

α )(R0
β,n−Rc.m.

β )

∑n |R0
n( j)|µ , (8.7)

where the exponentsµ = 2 andµ = 4, correspond to the effective mass and partici-
pation ratio, respectively.Rc.m. is the corresponding center of mass coordinate of the
relaxation:

Rc.m. = ∑n |∆R0
n( j)|µR0

n

∑n |∆R0
n( j)|µ . (8.8)
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Figure 8.3: Participation ratios of relaxations against jump distance at different tem-

peratures.

DiagonalizingG we obtain three eigenvaluesρi( j,µ) (for i = 1,2,3). From these
an average radius of gyration is obtained as,

Rgyr( j,µ) =

√
1
3∑

i
ρi( j,µ). (8.9)

If a relaxation is localized on a single atom,Rgyr=0. For an extended relaxation, it is
the root-mean-square distance with the weight determined byµ. A effective dimension
of the relaxation can be defined as

d( j,µ) = ∑
i

ρi( j,µ)/maxρi( j,µ). (8.10)
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Fig. 8.4 and Table8.1 summarize the results for temperature-dependent dimen-
sionalities and average radii of gyration, averaged over the whole relaxation. We find
that at lower temperature the relaxations are of lower dimensionality. At elevated tem-
peratures the average dimensionality as well the average gyration radius increases due
to the side-branching of the relaxing chains. The effective mass related values are
always higher than the ones related to the participation ratio, reflecting the different
weights of the long range displacements.
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Figure 8.4: The dimensions of the jumps related to the participation ratio at different

temperatures.

Table 8.1: The average dimensionalities̄d(µ) and average radii of gyration̄Rgyr(µ)

(in Å) are summarized corresponding to the exponentsµ= 2 andµ= 4.

T d̄(2) d̄(4) R̄gyr(2) R̄gyr(4)

300 K 1.34 1.22 6.10 3.88

1000 K 1.51 1.28 8.63 5.46

2000 K 1.55 1.48 11.29 8.69

3000 K 1.72 1.70 13.05 11.36

Table8.2 summarizes the results of the relaxations with respect to the Si-O bond
changes in terms of the increase or the decrease in the coordination number (CN) per
jump. The cutoff value of the Si-O bond is 1.8 Å taken from the position of the
minimum according to the most intense peak in the total pair-distribution function (for
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details refer Fig.6.2(a)). Another possibility may be that the CN is conserved but the
atoms can switch bonds during the relaxation. We denote such changes as bond switch
in Table8.2. At lower temperature (1000 K and below) the relaxations are mainly
due to the small changes in the atomic positions and bond breaking occurs only in few
cases. At elevated temperatures, bond formations and dissociations occur for 3.38 % of
the atoms. The percentage of bond switching processes seems to increase significantly
from 0.65% to 2.56% on elevating the temperature from 2000 K to 3000 K.

Table 8.2: Relaxation with respect to bond changes. The numbers represent the

percentage of atoms undergoing the mentioned changes per jump.

T increase in CN decrease in CN bond switch

300 K 0.04 0.04 -

1000 K 0.04 0.04 0.01

2000 K 0.24 0.23 0.65

3000 K 0.41 0.41 2.56

Table 8.3: Contributions (in percent) of the relaxations exhibited by Si-O-Si and

SiO4 subunits by the projectional analysis. ’S’, ’B’ and ’Rot.’ represent

the stretching, bending and rotational contributions, respectively and the

superscripts denote the symmetry of the motions.

T SiO4 Si-O-Si

S(A1) S(F2) B(F2) B(E) Rot. S(A1) S(B1) B(A1) Rot.

300K 1 1 11 10 77 1 0 18 81

1000K 0 0 9 14 77 0 0 17 83

2000K 1 2 11 10 76 1 1 20 78

3000K 1 3 11 9 76 2 1 21 76

In order to study the type of motions involved during the relaxations, we performed
the projections of the relaxation vectors onto the symmetry modes of the ideal Si-O-
Si (C2v symmetry) and SiO4 (Td symmetry) subunits, analogous to the mode analysis
for studying the vibrational properties (cf. chapter 7). The calculated contributions of
the motion involved in the relaxations exhibited by the subunits are shown in Table
8.3. The respective motions of the oxygen and silicon atoms in the SiO4 and Si-O-Si
subunits mostly stem from rotation followed by bending. The rotational contribution of
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the Si-O-Si subunit decreases slightly with increase of the bending contributions with
increasing temperature. The contributions from the symmetric and anti-symmetric
stretching motions are not so significant. The contributions of Si-O-Si subunits are
similar to the modes corresponding to the boson peak region (cf. Table7.6). However,
the bending contributions of the SiO4 subunits are quite significant for the case of
relaxations.

8.3 Correlation between Jumps
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Figure 8.5: The distribution of correlations between the successive jumps at different

temperatures.

Looking more closely at the active atoms, the relaxations are found to consist of collec-
tive jumps of chains of atoms. These jumps are not uncorrelated events, but successive
jumps tend to involve the same atoms. As a quantitative measure, we calculate the
correlation between the jumps as

c∆R0[ j, j ′] = ∑n∆R0
n[ j].∆R0

n[ j
′]

∆R0[ j]∆R0[ j ′]
, (8.11)
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where j and j ′ denotes successive relaxations. For reversible jumps,c∆R0[ j, j ′]=1 and
for completely uncorrelated jumps one would get values of the order of 1/N.

Fig. 8.5 shows the observed distributions of all the correlation values averaged
over all the relaxations. At low temperatures (300 K and 1000 K) there exists a wide
distribution of the correlations. Extremely high-correlated jumps are mainly due to re-
versible jumps, whereas very low-correlated ones imply that the different parts of the
active regions of the system contribute to the relaxations at different times. In contrary
at high temperatures (2000 K and 3000 K), the jumps with very high and very low cor-
relations become rare. The former case is due to a strong drop in the potential energy
and hence, the possibility of having reversible jumps or highly correlated successive
jumps are removed. The latter case is due to the aggregation of different active regions
to form large complexes and thus decreasing the possibility of jumps with very low
correlations.

8.4 Heterogeneity

In recent years one particular aim of intensive experimental and theoretical studies of
relaxations in amorphous solids and liquids was to determine whether the relaxations
involve only groups of atoms or they are spread over the whole system [202,203,204,
205]. While the first case is related to the heterogeneous scenario, the latter features
are homogeneous ones. Various investigations showed that the system becomes ho-
mogeneous at high temperatures for sufficiently long times, corresponding to theα
relaxation regime [206, 207]. In the intermediate time domain, corresponding to the
β relaxation, the heterogeneity becomes more pronounced when the system is cooled
down [150].

A detailed picture about the atomic-motions in the relaxations can be obtained by
investigating the self part of the van Hove correlation functionGs(R, t), defined as,

Gα
s (R, t) =

〈 1
Nα

Nα

∑
i=1

δ(R−|Ri(t)−Ri(0)|)
〉
. (8.12)

Ri(t) is the time-dependent position vector of atomi and Ri(0) corresponds to the
initial configuration. If all the atoms have the same mobility the van Hove correlation
function is a Gaussian one. However if atoms are trapped in cages or some are more
mobile than the rest, the resulting function will be a non-Gaussian one.

In Fig. 8.6 we show the time-dependent element-specific van Hove correlation
functions at 1000 K, 2000 K and 3000 K and at times 0.02 ns, 0.2 ns and 0.6 ns.
We observe that with increasing temperature, the atoms move over larger distances
as the particles have higher diffusion constants. A striking feature occurs at 2000 K,
especially for oxygen, where a formation of distinct peaks in the correlation function
has been observed. At still higher temperature (3000 K), these peaks develop into
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atoms at different temperatures. The plots are for increasing time of 0.02
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weak shoulders. The existence of such peaks are direct evidence of the hopping pro-
cesses existing in the system that are more prominent for the oxygen atoms. The van
Hove correlation functions for the oxygen atoms exhibit a shoulder at 2.6 Å for all the
temperatures whose positions correspond to the first peak in the O-O pair-distribution
function (refer Fig.6.2 for details on structural properties). These jumps can be en-
visaged as defects corresponding to the one-fold or the three-fold coordination. One
also observes crowding of graphs at lower temperatures compared to the one observed
at 3000 K. These observations lead to the manifestation of the cage effect. At lower
temperatures the particles are unable to leave the cage formed by other particles that
surround them over the time scale studied in this simulation. However, at higher tem-
peratures (nearing the critical temperature) the particles have sufficient kinetic energy
to overcome this cage effect, hence, the motion starts to get more diffusional in nature.
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1
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α 2(
t)

Si (2000 K)
O (2000 K)
Si (3000 K)
O (3000 K)

Figure 8.7: Log-linear plot of the non-Gaussianity parameter for Si and O at 2000 K

and 3000 K.

The non-Gaussianity parameter (NGP),

α2(t) = (3/5) < R4(t) > / < R2(t) >2−1 (8.13)

quantifies the deviation ofGs(R, t) from a Gaussian form. Fig.8.7 shows, in a log-
linear plot theα2 at 2000 K and 3000 K covering a span of 3 decades. At very short
times the NGP is quite small and limiting to zero. In the intermediate time range (0.01
ns - 1.00 ns) the NGP increases with time. The limiting behavior for large times (not
shown here) has been studied for various other systems and usually the NGP tends
to zero [207, 208, 209]. At both temperatures the oxygen atoms have a higher value
of NGP, hence, its a clear evidence that the oxygen atoms probe a more heteroge-
neous environment than the silicon atoms and can be attributed to smaller mass. For
sufficiently long times the non-Gaussianity becomes more pronounced for lower tem-
perature (2000 K) than higher one (3000 K) for both the Si and O atoms. This part of
work is documented in Ref. [210].





Chapter 9

Two-Fold Rings in Silicates

Most polymorphs of silicates are formed by corner-sharing of the SiO4 tetrahedra
with differing topology of the networks. However, there also exist structures like
stishovite [211] and W-silica [133] containing SiO6 octahedra and edge-sharing tetra-
hedra, respectively. The edge-sharing tetrahedral structures in pure silicates are quite
rare in nature. Recently, Car-Parrinello MD simulations of a dehydroxylated silica
surface showed the presence of edge-sharing tetrahedra [135]. We have also obtained
a small percentage of edge-sharing tetrahedra in (partially) amorphous structures ob-
tained by MD (cf. chapter 6).

Considerable interest has been focused on the study of edge-sharing SiO4 tetrahe-
dra as defective centers in vitreous silica, which act as sites of high chemical reactiv-
ity [212,213,214,215]. The occurrence of these edge-sharing units makes structures
geometrically constrained and results in an energy penalty. The lack of experimental
insight into the stability of these unusual features makes theoretical methods impor-
tant tools to investigate these strained systems. The knowledge of the energy penalty
presently rests on theoretical studies of mainly small clusters using the techniques of
quantum chemistry [216,217,218] and classical force field models based on quantum
chemical reference data [157]. Such calculations neglect the effect of the condensed
environment in which the strained part of the system actually resides. Calculations
on other solids showed the importance of electron correlation to allow a meaning-
ful comparison of calculated quantities like cohesive energy etc. with experimental
data [219,220]. The most widely used approach is DFT [221,222,223]. The attrac-
tiveness of this method for practical calculations results mainly from the speed with
which the computations can be carried out. Recently, Hamann used DFT based on
the generalized gradient approximation (GGA) to extract the strained energies of two-
and three- membered rings in models of a SiO2 network [221]. The calculations gave
much smaller strain energies than previously estimated from HF calculations applied
to small hydrogen-terminated molecular models [216,217,218]. However despite the
large success in electronic structure theory DFT has the drawback that the results are
highly dependent on the chosen functional and cannot be improved in a systematic

133
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way. As an alternative one can use wave-function based quantum chemicalab initio
techniques (cf. chapter 5), which are free from these flaws and provide a large array
of methods of different accuracy and computational cost. In this approach one can im-
prove the calculation systematically by enlarging the basis set and by including more
terms in the expansion of the wavefunction, however at the price of a considerably
higher computational cost.

In the following we present HF SCF calculations and subsequent correlation calcu-
lations of the energy of edge-sharing tetrahedra and provide a comparison to the usual
corner-sharing tetrahedral system. We choose W-silica andα-quartz as the model sys-
tems for edge-sharing and corner-sharing silicate systems, respectively. The total and
correlation energy per unit cell of W-silica andα-quartz were obtained using a finite
cluster and an incremental approach. Various non-metallic polymeric systems have
been studied previously using the finite-cluster approach, which yielded accurate re-
sults for geometries and energies [219,224]. The incremental scheme has been used
to explore cohesive and geometrical properties of covalent solids [225, 226], semi-
conductors [227, 220] and ionic solids [228, 229]. Within the incremental approach,
starting from HF data obtained with a standard solid state program package as CRYS-
TAL [ 118], the necessary correlation corrections to the total energy per unit cell of a
periodic system can be obtained as a sum over increments defined in terms of localized
orbitals. The correlation energy increments of well localized orbitals may be derived
from quantum chemical calculations on finite model systems.

Figure 9.1: Model of W-silica which is characterized by weakly interacting chains of

edge-sharing SiO4 tetrahedral units. Red and green spheres represent O

and Si atoms, respectively.
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9.1 Applied Methods and Technical Details

W-silica as shown in Fig.9.1has a body-centered orthorhombic crystal structure with
Ibam space-group, characterized by chains of edge-sharing SiO4 tetrahedra. Since,
these chains are interacting only by weak van der Waals forces, the geometry is mainly
determined by the lattice parameterc in the chain direction, i.e., the Si-Si distances.
We have carried out series of all-electron calculations using DFT based on the GGA
of Perdew and Wang (PW91) [144,230] varyingc over a range 4.2 Å to 5.2 Å.a andb
were varied with fixeda/b ratio to change thea-b plane area by±5%. These calcula-
tions were performed using a new version of the CRYSTAL code, i.e., CRYSTAL2003,
which can optimize the fractional coordinates implicitly [119]. These calculations are
analogous to the ones by Hamann [221] where the Si and O ion cores were repre-
sented by pseudopotentials. One can see in Fig.9.2 that the potential energy surface
is considerably flatter with respect toa,b variations compared toc variation. This is
consistent with the fact that no significant change of energy and ring geometry could
be obtained by optimizing thea andb parameter as shown by Hamann [221]. Cal-
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culations with and without chain interaction at the minima show only a small energy
difference of≈ 0.005a.u. Hence one can neglect the weak inter-chain interactions and
consider only a single chain for the calculation of geometries and energies.

9.1.1 Finite-Cluster approach/A simple approach

In principle, the total energyE per [Si2O4] unit cell of a single chain of W-silica may
be obtained as the limit

E = lim
n→∞

E(Si2nO4n+2H4)
n

, (9.1)

i.e., by performing calculations for increasingly long oligomers (OH)2(Si2O4)nH2. In
order to reduce the finite-size effects due to the termination of the oligomers by two OH
and H groups saturating the dangling bonds of .(Si2O4)n., one may consider instead

E = lim
n→∞

∆En

= lim
n→∞

[E(Si2n+2O4n+6H4)−E(Si2nO4n+2H4)], (9.2)

i.e., the energy change between the subsequent oligomers differing by a single unit
cell. Therefore, identical unit cells were used as building blocks for both oligomers,
i.e., the geometrical optimization was restricted only to the parameters relevant for the
polymer. Eq. (9.2) was used for computing the energy per unit cell employing HF,
MP2 and CC levels of theory.

9.1.2 Incremental approach

The simple approach outlined in the previous section relies on the correlated calcu-
lations for the whole finite model system, i.e., all the valence electrons have to be
correlated at a time. For larger basis sets or more complex systems (as in the case
of α-quartz) this approach may become computationally too expensive. Therefore we
used an incremental approach based on localized orbitals. One of the prerequisites
for the electron correlation treatment within the incremental approach is a reliable HF
ground state calculation. We performed such a calculation using the periodic HF code
CRYSTAL 98 [118]. Starting from the occupied canonical orbitals of a standard SCF
calculation localized bond orbitals are generated using a suitable criterion, e.g., the
Foster-Boys localization. The correlation energy per unit cell is expanded as given
in Eq. (5.50) in Chapter 5. In order to get reliable results a size-extensive correla-
tion method should be used, although non-size-extensive schemes also may provide a
reasonable estimate. We used MP2 and CCSD for this approach for both the systems.



9.2 STRUCTURE AND STABILITY OF TWO-FOLD RING 137

9.2 Structure and Stability of Two-Fold Ring

Calculations on both the systems, i.e., W-silica andα-quartz were performed with 6-
31G** basis sets [231,232]. Usually for polar polymeric systems, calculations using
the finite-cluster approach at the HF level may not be applicable due to the long-range
of Coulomb interactions. Nevertheless in case of W-silica the finite-cluster approach
seems to be accurate enough. Forn = 4, the HF energy per Si2O4 unit is found to be
-877.6282 a.u. at the optimized geometry (cf. below). The Bloch-type function based
periodic HF code CRYSTAL 98 uses five parameters(ITOL1 to ITOL5) to determine
the accuracy of the integral evaluation with respect to the Coulomb and exchange se-
ries. For the default combination (6, 6, 6, 6, 12) the HF energy per Si2O4 unit is found
to be -877.6268 a.u. and for an even tighter threshold (10, 10, 10, 12, 26) a value of
-877.6278 a.u. in excellent agreement with the finite-cluster value is obtained. For the
HF calculations on the infinite system, using CRYSTAL, the most diffusesp Gaus-
sian exponents of the original basis sets had to be increased due to linear dependency
problems. This led to exponents of 0.28 for oxygen (original 0.27) and 0.21 for sili-
con (original0.0778). We want to mention that the energy obtained using CRYSTAL,
shows a drastic dependence on thed Gaussian exponents. For the optimized geom-
etry and the tighter threshold the HF energy per Si2O4 unit is found to be -877.6513
a.u. with optimizedd exponents of 0.48 for oxygen and 0.72 for silicon. However for
the correlated calculations and for the comparison withα-quartz, we used the original
basis set as a lower value of the total energy per unit cell is obtained.

The correlation energy was calculated by subtracting from the MP2, CCSD and
CCSD(T) values the corresponding HF energy/ cell. In this manner we ensured that
no spurious contributions to the correlation energy arose due to the use of two differ-
ent basis sets. The cohesive energies were obtained by subtracting the corresponding
energies of the free ground state atoms from the energy per unit cell. These calcula-
tions were performed using the MOLPRO molecular orbitalab initio program pack-
age [139,140,233]. The energy per unit cell and the cohesive energy converge rapidly
with respect to the cluster size (cf. Fig.9.3). One finds∆E4−∆E3 ≈ 10−5 a.u. (see
Eq. (9.2) for definition of∆En). An all-electron CCSD(T) (CCSD with a perturbative
contribution of triples) approach could not be used to compute∆E4 due to the large
system size. The optimized geometry reported in Fig.9.4(a) and (b) and in Table9.1
was obtained by performing in turn several total energy calculations for various val-
ues of each geometric parameter and fitting the results by a least-squares procedure
to polynomials of suitable degrees. The computed lattice parameterc of 4.75 Å is
in good agreement with the experimental value e of 4.72 Å. However, the Si-O bond
length of 1.844 Å determined in Ref. [133] appears to be un-physically large. This
bond length is even larger that those of three-fold coordinated O in stishovite [234] as
was pointed out also in other theoretical studies [216,221]. Generally, our MP2, CCSD
and CCSD(T) structural values agree with those of a previous gradient-corrected DFT
study within 0.02 Å and 1◦.
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Table 9.1: Geometries of two-membered rings in W-silica.

Method c Si-O Si-O-Si O-Si-O

(Å) (Å) (◦) (◦)

CRYSTAL SCF 4.680 1.643 90.86 89.13

Finite cluster SCF 4.717 1.650 91.28 88.72

MP2 4.744 1.683 89.62 90.38

CCSD 4.744 1.676 90.09 89.91

CCSD(T) 4.745 1.680 89.81 90.19

GGAa 4.757 1.678 90.3 89.7

Expt.b 4.720 1.844 79.6 100.4
a Reference [221].
b Reference [133].

In order to perform a comparison of the stability of W-silica with respect toα-
quartz, we performed correlated calculations for both systems on the same footing,
i.e., by using the incremental approach truncated at the same level of correlation incre-
ments. The experimental geometry [235] was used forα-quartz, whereas the optimized
geometry at the CCSD level was used for W-silica (cf. above).

The HF ground state calculations were done using the CRYSTAL code. In order
to overcome the convergence problems due to too diffuse exponents and the resulting
near-linear dependencies we optimized the exponents of the most diffusespGaussians
of a 6-31G** basis set also forα-quartz as performed in Ref. [236]. For O and Si
values of 0.28 and 0.21, respectively, were obtained. The exponents of the singled
shell of O and Si were optimized to be 0.45 and 0.72 respectively. These d exponents
led to a lower total HF energy compared the to the original basis sets.

The exact equation for the infinite system, i.e., Eq. (5.50) in chapter 5 is of little
use in practice. However, since electron correlation is a local phenomenon one may
deriveEcorr from a finite model system. Thereby changing the infinite sums in Eq.
(5.50) to finite sums up to a maximum order of increments given by the number of
bondsn in the finite system. It has been shown by previous calculations that usually
there is a rapid convergence of the many-body expansion with respect to the number
of atoms included and the integration error decreases withr−3 [220,237]. Therefore,
we restricted the expansion of the correlation energy per unit cell to one- and two-
body increments, and included the interaction between up to second-nearest neighbor
unit cells. The resulting finite clusters as shown in Fig.9.5 (a) and (b ), contain
30 and 57 atoms with dangling bonds saturated by hydrogens for W-silica andα-
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quartz, respectively. We performed standard SCF calculations on the clusters in C1

symmetry and localized the bonds according to the Foster-Boys criterion [115] within
the occupied valence space. Following the procedure described above we calculated
the correlation energy increments at the MP2 and CCSD level using the MOLPRO
molecular orbitalab initio program package [139,140,233]. Computed increments to
the correlation energy are summarized in Table9.2. It is interesting to note that for
α-quartz the two-body increments amount to 69% and 65 % of the correlation energy
computed by the MP2 and CCSD methods, respectively.
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Figure 9.4: (a) Lattice parameterc and (b) Si-O distance of W-silica computed using

the finite-cluster approach, plotted as a function of the number unit cellsn

(filled circles, squares, crosses and diamonds represent HF, MP2, CCSD

and CCSD(T) results, respectively).

The correlation contributions to the cohesive energies forα-quartz were obtained
as Ecorr

coh = Ecorr
solid−∑i E

corr
atom,i per SiO2 unit. The results are shown in Table9.3 for

different theoretical methods. For the best method, i.e., CCSD, we obtain 88% of the
experimental cohesive energy, which amounts to≈57% of the ”experimental” cor-
relation contribution to the cohesive energies (defined as the difference between the
experimental cohesive energy and the SCF value). DFT using the local density ap-
proximation (LDA) overestimates the cohesive energy by 18%.
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(a)

(b)

Figure 9.5: Finite clusters of 30 and 57 atoms of (a) a chain of W-silica and (b)α-

quartz, respectively, which are used for the incremental approach. The

reference cell is represented by red-colored spheres and the environment

by light ones. Here the small-, medium- and large-sized spheres represent

H, O and Si atoms, respectively.
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Table 9.2: Various increments to the correlation energy per unit cell (in Hartrees)

for W-silica andα-quartz. 1NN and 2NN stand for nearest and next-

nearest neighbors, respectively.

W-silica α-quartz

Correlation treatment MP2 CCSD MP2 CCSD

One-body -.261366 -.336929 -.327725 -.419682

Two-body (1NN) -.535584 -.565459 -.692420 -.738037

Two-body (2NN) -.016056 -.019333 -.037162 -.044587

In Table9.4 we present the relative energy per Si2O4 unit for two-fold rings with
respect toα-quartz. Our HF value seems to be much higher compared to the values in
References [216,217,222]. These calculations were done on small clusters which lack
the strain effect of the environment due to successive edge sharing units. Correlation
also seems to play an important role for the stability of these edge-sharing systems. A
DFT study using a GGA functional gave a much lower relative energy [221]. In our
calculations, by considering MP2 correlation contributions the stability increased by
65%, whereas upon inclusion of CCSD correlation increments the stability increased
by 73%. The most sophisticated correlation approach used in our study based on
CCSD gave a strain energy of 0.0427 a.u., even less compared to the one of 0.0452
a.u. obtained by a previous DFT calculation [221].

We conclude that edge-sharing SiO4 tetrahedra in (partially) amorphous SiO4 sys-
tems are possible at a modest energetic expense. This part of work is published in
Ref. [239].

Table 9.3: Cohesive energies per SiO2 unit (in a.u) inα-quartz at different the-

oretical levels. The percentage of the experimental value is given in

parentheses.

HF HF+MP2 HF+CCSD LDAa Expt.b

.507 (72%) .598 (85%) .618 (88% ) .824 (118%) .706
a Reference [238].
b Reference [153].
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Table 9.4: Relative energy of a Si2O4 unit for various systems with respect toα-

quartz (in a.u.).

Method System ∆E

HFa W-silica .156

MP2a W-silica .0547

CCSDa W-silica .0427

GGAb W-silica .0452

HFc H4Si2O6 (C2h) .0849

HFd H4Si2O6 (C2h) .0673

HFe H4Si2O2 (D2h) >.1058

HFf H14Si9O25 .0680
a This work.

b Reference [221].
c Reference [216].
d Reference [217].

e Reference [218] [Relative to H8Si4O4 (D4h)].
f Reference [222].





Chapter 10

Summary and Outlook

In this thesis we present an investigation of static and dynamic properties of zeolite
ZSM-5-based (partially) amorphous materials. The partially amorphized structures
were obtained by quenching configurations, which were generated by heating the
ZSM-5 crystalline structure using MD. Our simulations gave a detailed account of
many significant structural properties at the microscopic level which explain the modi-
fied properties and applications of these low crystalline and amorphous materials. The
simulations showed that the elementary building blocks are distorted SiO4 tetrahedra
which are mainly connected by corner sharing. A small percentage of edge-shared
tetrahedra are also present in the simulated structures. Two-body structural correlation
was analyzed by pair-distribution functions and showed the average bond distance be-
tween Si and O atoms to be about 1.62 Å. Si-Si and O-O distances correspond to 3.19
Å and 2.61 Å, respectively. Three-body structural correlation was analyzed by bond
angle distributions and supports the presence of mainly corner sharing tetrahedra in
the network along with a small percentage of edge-sharing ones. The extent of amor-
phization was quantified by the parameter "percentage of energy crystallinity". Crucial
properties like coordination number distribution, effective internal surface area, ring
size distribution and effective pore size are found to be a functional of the extent of
amorphization. Amorphization leads to a collapse of the framework which reduces
for large species the porosity of the system and brings about a closure of large-sized
rings and channels. Whereas for larger species the effective internal surface is reduced
by this process, it is increased for smaller species, probably due to the increase of the
amount of under-coordinated atoms and the generation of smaller rings from larger
ones. Hence, it can effect properties like ion exchange and steric effects on reactions.
In the amorphous phase 5-fold and 6-folds rings contribute most to the ring distribu-
tion followed by 4-fold, 3-fold and 7-fold rings, however, due to irregular ring shape
the pores provided by 5-fold and especially 6-fold rings appear to be relatively small.

Vibrational densities of states were calculated by Fourier transformation of the
velocity-autocorrelation function and by the diagonalization of the dynamic matrix.
The element-specific contributions show that the oxygen atoms participate more signif-
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icantly than the silicon atoms, however the contributions of the silicon atoms become
quite remarkable for the peak obtained near 24 THz. By means of the eigenmode anal-
ysis it was shown that in general both silicon and oxygen atoms exhibit motions which
are perpendicular to the Si-O bonds. However oxygen atoms have also significant con-
tributions for their motions parallel to the bonds. The contribution of the individual
modes to the specific heat has been analyzed and the plot ofCV/T3 with respect toT
shows a maximum around 15 K.

The vibrational analysis was done in order to get an insight into the nature of vibra-
tional modes, the degree of mode localization and the phase relation. We found that the
localized modes are centered in the high-frequency region whereas the quasi-localized
states are in the low-frequency region. The phonons in the low-frequency region are
mainly acoustic in character whereas those of the high-frequency region are optic-
like. Projection of the eigenmodes onto the vibrational symmetric vectors of Si-O-Si
and SiO4 structural subunits suggests that for both structural subunits the asymmetric
stretching motions dominantly contribute to the high-frequency region. The symmet-
ric stretching motions of Si-O-Si subunits contribute mostly for the peak at 24 THz in
the mid-frequency region and for the peaks between 30 THz and 40 THz in the high-
frequency region for the SiO4 subunits. The rotational and bending motions mainly
contribute for the low- and mid-frequency region. Analysis of the dependence of the
vibrational DOS with respect to the degree of amorphization reveals that besides an
overall smoothening of DOS the high-frequency modes are more drastically affected
compared to the low-frequency ones.

Analysis of the low-frequency excitations show that for higher crystallinity the in-
tensity of the boson peak decreases upon amorphization, whereas the opposite behavior
is observed for forms with lower crystallinity. The former effect is associated with a
decrease of the concentration of 10-fold rings and a general lowering of symmetry by
puckering of large rings. The latter behavior is related to an increasing participation of
under-coordinated centers in the relevant low-frequency motions. Both observations
can be explained in the framework of Maxwell counting of floppy modes. The modes
associated with the boson peak for these materials are found to be mainly optic in
nature.

The investigation of relaxational properties were restricted to the secondary pro-
cesses occurring at the temperatures corresponding to 300 K, 1000 K, 2000 K and
3000 K. At higher temperatures (2000 K and 3000 K), the configurations show a sharp
drop in the potential energies during aging and reflecting the possibility to visit far-
ther away minima increases. At low temperatures (300 K and 1000 K), the relaxations
are mainly due to the small changes in the positions of the atoms. Bond creations
and annihilations become significant at higher temperatures (2000 K and 3000 K).
The localization of the relaxations was studied using participation ratios and effec-
tive masses. We found that participation ratios and jump lengths increase with the
increasing temperatures. The structure of the relaxation was quantified by the dimen-
sionality of the jumps. At low temperatures the relaxations consist of chains of atoms
that are mainly one dimensional. The dimensionality of the jumps increases with the



147

temperature due to side-branching of the chains. There exists a wide distribution of
correlations between successive jumps at low temperatures. On increasing the temper-
ature we found very high and very low correlated jumps becoming rare. The former
fact is due the sharp drop in the potential energy occurring during relaxations making
reversible jumps to become rare events. The latter is due to the aggregations of various
active regions to form large complexes. Analysis of the heterogeneity in the relaxations
occurring in these systems was performed by the van Hove correlation function and
the non-Gaussian parameter. The van-Hove correlation function specially for the O
atoms exhibits peaks, which are characteristic for the hopping processes. The analysis
of non-Gaussianity parameters shows that the oxygen atoms probe a more heteroge-
neous environment than the silicon atoms and probably attributed to the smaller mass
of oxygen atoms. For a longer time scale at low temperature (2000 K) the dynamics
becomes more heterogeneous than at the higher one (3000 K). Caging effects are also
found to be more prominent at lower temperatures.

We have performed a comparative study on periodic W-silica andα-quartz based
on correlatedab initio electronic structure calculations. The former compound is con-
sidered as a model system for edge-sharing SiO4 tetrahedra silicates and the latter for
corner-sharing ones. Periodic HF theory was used to obtain the mean-field results. The
finite-cluster and the incremental approach were used to determine correlation effects
in W-silica andα-quartz. For the finite-cluster approach, the geometry as well as the
energy per unit cell seem to converge rapidly. Our optimized geometry supports the
claim of a previous DFT study that the experimentally available Si-O distance is ab-
normally large and might be incorrect. Forα-quartz we have obtained at the CCSD
level around 88% of the experimental cohesive energy using a 6-31G** basis set. The
remaining error may be partly due to the lack of higher polarization functions in our
one-particle basis set as well as the absence of triple excitations.

Our results and those available from literature predict the strain energy associated
with the two-fold rings to depend highly on the chosen model system as well as on
the method. Correlation contributions seem to play an important role for the relative
stability of the edge-sharing units with respect to corner-sharing ones. HF calculations
done solely on the infinite W-silica system gave a strain energy of 0.156 a.u. much
higher than the relaxed finite-cluster calculations. Correlation contributions reduce this
result by about a factor of three. The most sophisticated method, i.e., CCSD, gave a
strain energy of 0.0427 a.u, even slightly lower than the value of 0.0452 a.u. obtained
by a previous DFT calculation. We conclude that edge-sharing SiO4 tetrahedra in
(partially) amorphous SiO4 systems are possible at a modest energetic expense.

Since the success of MD depend on applied potential it will be worth to re-investigate
these properties using other potentials. The available potentials for pure silicate sys-
tems are that of Vashishtaet al [165], Oumi et al [240], etc. An even deeper insight
into catalytic properties of real system can be obtained by using H-ZSM-5 for the sim-
ulation. Recently, ZSM-5 based materials with XRD crystallinity levels as low as 2%
exhibited superior catalytic performance in skeletal isomerization of linear butenes to
iso-butenes [28]. This was ascribed to the decrease in the extend of the alkene inter-



148 CHAPTER 10 SUMMARY AND OUTLOOK

conversion and H-transfer reactions (reduced acidity) occurring as a consequence of
decreased zeolitic pore-length. Zeolite ZSM-5 has 12 distinct site for substitution of
Si by Al. There exist numerous theoretical studies in order to determine the most fa-
vorable position of Al in crystalline ZSM-5 [241,242,243]. The model of crystalline
H-ZSM-5 can be build from these information. In order to model H-ZSM-5 and its
derived system the pair-potential of Krameret al [125] can be used. The method used
in this thesis can be used to generate the (partially) amorphous structures correspond-
ing to different extent of amorphization. Further the active site containing Al centers
can be cut out with a few layers of environment and the geometry can be allowed to
relax within the combined quantum mechanics and molecular mechanics (QM/MM)
approach [244,245]. Brønsted acidities of the active sites can be studied which signif-
icantly influence the occurrence of the above mentioned reaction.

Finally, the results presented in this thesis are mainly predictions using theoretical
model, it will be dream-coming true to see that these are confirmed by experiments in
future.
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Abstract

Results of molecular dynamics simulations on structural, vibrational and relaxational
properties of zeolite ZSM-5 based amorphous solids are presented. The effects of
extent of amorphization, measured by an energetic criterion, on properties like distri-
bution of coordination numbers, internal surface area, ring statistics and effective pore
size are studied. Ring statistics indicates that upon amorphization not only rings with
larger size break down to give rings with smaller size, but that for intermediate degree
of amorphization also larger rings are generated.

The vibrational density of states was determined for different extents of amorphiza-
tion. The vibrational modes are analyzed by projecting them on those of the SiO4

and Si-O-Si subunits and individual frequency-dependent contributions of stretching,
bending and rotation are discussed. Analysis of low-frequency spectrum show that
for higher crystallinity the intensity of the boson peak decreases upon amorphization,
whereas the opposite behavior is observed for forms with lower crystallinity. These
effects are explained in the framework of Maxwell counting of floppy modes. The
modes associated with the boson peak for these materials are found to be mainly optic
in nature.

Relaxations were studied for temperatures below the critical temperature. At low
temperatures the relaxations comprise mainly one-dimensional chains of atoms. The
dimensionality of the relaxing centers increases with the temperature due to side branch-
ing. The possibility of having reversible jumps decreases with increasing temperature
due to a strong drop in the potential energy during aging. There exist very prominent
peaks in the van Hove correlation functions as a manifestation of the hopping pro-
cesses. The dynamics of the oxygen atoms is found to be more heterogeneous than
those of the silicon atoms.

Ab initio many-body calculations on the strain energy of W-silica, taken as a model
system for edge-sharing tetrahedral SiO2-systems with respect to corner-sharing ones
as inα-quartz was performed. Correlation contributions are found to play an impor-
tant role to determine the stability of edge-sharing units. Our calculation reveal that
edge-sharing SiO4 tetrahedra in (partially) amorphous silicate systems are possible at
a modest energetic expense.
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Kurzzusammenfassung

In der vorliegenden Arbeit werden Ergebnisse von "Molecular-Dynamics"-Simulationen
an Struktur-, Schwingungs- und Relaxationseigenschaften von, auf Zeolith ZSM-5
basierenden, amorphen Festkörpern aufgezeigt. Die Effekte des Ausmaßes der Amor-
phisierung, welche über ein Energiekriterium festgelegt wird, werden an Eigenschaften,
wie der Verteilung der Koordinationszahlen, der internen Oberfläche, der Ringstatistik
und der effektiven Porengröße untersucht. Die Ringstatistik deutet darauf hin, dass
sich während der Amorphisierung nicht nur große Ringe zu kleineren reduzieren, son-
dern dass auch auf der Zwischenstufe der Amorphisierung größere Ringe gebildet wer-
den.

Die Zustandsdichten der Schwingungen wurden für verschiedene Ausmaße der
Amorphisierung bestimmt. Die Schwingungsmoden wurden analysiert, indem sie auf
jene der SiO4 und Si-O-Si Untereinheiten projeziert wurden. Desweiteren werden in-
dividuelle, frequenzabhängige Beiträge der Streckung, Beugung und Rotation disku-
tiert. Analysen von niedrig-frequenten Spektren zeigen, dass bei höherer Kristallinität
die Intensität des Boson-Peaks mit der Amorphisierung abnimmt, während das gegen-
sätzliche Verhalten bei Formen mit niedrigerer Kristallinität zu beobachten ist. Diese
Effekte werden im Rahmen von Maxwells Zählung der schwachen Moden erklärt. Es
stellte sich heraus, dass die Moden, die mit dem Boson-Peak assoziiert sind, haupt-
sächlich optischer Natur sind.

Relaxationen wurden für Temperaturen unterhalb der kritischen Temperatur unter-
sucht. Bei niedrigen Temperaturen umfassen die Relaxationen hauptsächlich eindi-
mensionale Atomketten. Die Dimensionalität der Relaxationszentren steigt mit der
Temperatur aufgrund von Seitenverkettungen an. Die Möglichkeit des Auftretens von
reversiblen Sprüngen nimmt mit zunehmender Temperatur aufgrund eines starken Ab-
falls der potentiellen Energie während des Alterns ab. Es existieren sehr auffallende
Peaks in den van Hove Korrelationsfunktionen als Beweis für den Sprungprozeß. Es
konnte gezeigt werden, dass die Dynamik der Sauerstoffatome heterogener ist als die
der Siliciumatome.

Es wurden ab initio "many-body" Berechnungen der Spannungsenergie von W-
Silica, welches als Modellsystem für kanten- verknüpfte tetraedrische SiO2-Systeme
hinsichtlich ecken-verknüpfter (wie imα-Quarz) benutzt wurde, durchgeführt. Es
stellte sich heraus, dass die Korrelationsbeiträge eine wichtige Rolle bei der Bestim-
mung der Stabilität von kanten-verknüpften Einheiten spielen. Die während dieser
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Arbeit durchgeführten Berechnungen zeigen, dass kanten-verknüpfte SiO4-Tetraeder
in (teilweise) amorphen SiO4-Systemen schon mit einem geringen energetischen Aufwand
erhalten werden können.
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