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CHAPTER 1
Introduction and Motivation

"The full usefulness of a large and important group of our
economic analyses will come, therefore, only as we succeed
in formulating the discussions in quantitative terms. [...]
But no amount of statistical information, however complete
and exact, can by itself explain economic phenomena. If we
are not to get lost in the overwhelming, bewildering mass
of statistical data that are now becoming available, we need
the guidance and help of a powerful theoretical framework"
(Frisch, 1933, p. 2).

Even if the editor’s note from the very first issue of Econometrica does not
contradict in any way the validity and explanatory power of qualitative re-
search, the words of Ragnar Frisch, co-founder of the Econometric Society in
1930, although they are almost 90 years old, seem to be more relevant than
ever, especially in today’s times. This is due not only to the fact that we are
experiencing a veritable explosion of data1, but also that benefits can only be
generated from data if they are appropriately reduced2 by means of sound and
scientific methods, so that connections, patterns and statements that are based
on the data can be reliably concluded. However, as to the question of what
constitutes a reliable conclusion in a scientific context, one finds a number of
different answers, which moreover are constantly changing over time.
At the time of the founding of the Econometric Society, probably the most

1The International Data Corporation predicts that the global datasphere will grow from 33
zettabytes in 2018 to 175 zettabytes by 2025.

2Ronald A. Fisher sees reduction as the major task of statisticians.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION

influential group of philosophers and scientists was the Vienna Circle and
its associated school of logical empiricism, which predominated the scientific
discourse of the time. Important core points of the Vienna Circle and its log-
ical empiricism are i.a. to reject metaphysical interpretations, to accept only
testable statements and to demand a unified science, in which all empirical
sciences should be formulated in a physical (logical) language (Keuzenkamp,
2000). So it was only coherent and entirely in the zeitgeist that the Economet-
ric Society’s main objective was to "promote studies that aim at a unification
of the theoretical-quantitative and the empirical-quantitative approach to eco-
nomic problems and that are penetrated by constructive and rigorous thinking
similar to that which has come to dominate in the natural sciences" (Frisch,
1933, p. 1).
Although this paradigm is certainly still compatible with today’s objectives of
quantitative science, terms, definitions and their interpretations lived through
the change of time. In particular the concept of probability, which is cru-
cial for econometrics and statistics and on which the quantifiability of this
scientific discipline is founded, underwent colossal value changes in the 20th
century. While at the beginning of the last century Bayesian interpretations
constituted the academic school of thought, the falsificationism originally de-
veloped by Karl R. Popper (∗1902 - d1994) and his critical rationalism at least
partially replaced the positivist interpretation of probability of logical empiri-
cism (Efron, 2005). In contrast to the Bayesian interpretation of probability
as a reasonable expectation that represents a state of knowledge, or as a quan-
tification of a personal conviction (De Finetti, 2017), Popper’s main goal was
to objectify the initially subjective attributions of probability. While the ap-
proach of critical rationalism, which is based on the repeatability of (objective)
frequencies, is not uncontroversial in formal logic and philosophy of science3,
to this day it has continually broadened the econometric perspective and cre-
ated new types of questions. An essential distinction is that falsificationism,
in contrast to logical empiricism, proceeds from the unprovable nature of a
theory. Thus, in critical rationalism it is impossible to show the validity of an

3A widely respected critical examination of the frequentist interpretation of the concept of
probability goes back to John M. Keynes (1921) and the well-known example of whether
or not to go out with one’s umbrella in the situation in which the pressure is high and
the clouds are black.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

empirical model. Instead, the validity of a model is assumed to be true until
its opposite can be shown. For falsificationism, it is therefore all the more
crucial that models and their implications be described in such a way that it
is always determinable when a model needs to be rejected.
According to Popper, the scientific approach should consist of first generating
the model’s inherent properties by means of hypothetical-deductive (HD) rea-
soning4 and then, where appropriate, falsifying the statements obtained with
the help of statistical tests5. In the scientific toolbox of critical rationalism,
testing and decision-making thus form the basis of scientific work (Granger,
King & White, 1995). The fact that Popper’s method of first generating HD
statements and then testing their validity with statistical tests was not only
able to answer new relevant questions, but was also in line with the beginnings
of modern statistics by Jerzy Neyman (∗1895 - d1980) and Egon Pearson (∗1902
- d1994), was probably one reason why the methods of the critical rational-
ism became so established in statistics and with them the entire test theory
(Lakatos, 1978)6. In particular, the role of specification testing was considered
to be essential in the field of hypothesis testing.
This is not surprising insofar as it was already widely understood that, e.g., in
the standard linear regression model, a violation of the orthogonality assump-
tion leads to an estimation bias, whereas heteroscedasticity causes inefficient
estimates7. If these model violations were not taken into account, this would
undermine justifications for associated test decisions. Consequently, the iden-
tification of the correct model and the associated statistical verification of the
model selection made is formally and logically indispensable, since it repre-
sents the reasoning basis for decisions resting upon it. Hence, in statistics and

4There are other methods of scientific inference, e.g. Bayesian inductive inference, although
historically they have been less important (Keuzenkamp & Magnus, 1995).

5The positivistic interpretation of the HD method would attempt to attribute degrees of
confirmation to the logical implications of certain models, which is why specification tests
received far less attention in the era before Popper.

6Although the theoretical foundations of modern test theory can be traced back to Karl
Pearson, the final breakthrough seems to have been made possible only by the dominance
of critical rationalists.

7Trygve Haavelmo, one chief originator of the Cowles Commission received (among other
members) the Nobel Prizes in economics. "[Havelmoo] is a short clear demonstration, by
means of simple examples, of why least squares yields biased and inconsistent estimators
in simultaneous equations models, and how to get consistent estimators in special cases
that we now recognize as just identified" (Christ, 1994, p. 32).
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CHAPTER 1. INTRODUCTION AND MOTIVATION

econometrics, specification tests are the working tool for the verification of the
model selection made.
One of the first specification tests can be traced back to Gregory Chow (∗1930)
from 1960. Although, strictly speaking, it is a test for a structural break, the
Chow-test explicitly decides whether a given dataset fits the null hypothe-
sis model (Chow, 1960)8. However, the breakthrough in specification testing
came from Jerry A. Hausman (∗1946) in 1978 with his article "Specification
Tests in Econometrics" which was decisive for further developments on speci-
fication tests, since he presented a quite general method9. In his approach, it
is first assumed that the model is correctly specified under the null hypothe-
sis while the alternative hypothesis is misspecified. Then, two estimators are
considered: one estimator θ1 that is consistent and efficient under the null
hypothesis but not consistent under the alternative hypothesis and a second
estimator θ2 that is under both hypotheses consistent but inefficient under the
null hypothesis. If the model is correctly specified, then θ1 and θ2 should have
similar values, otherwise they differ10.
Many subsequent tests are based on the principle developed by Hausman.
Well-known representatives in the at that time comparatively young subdisci-
pline of specification tests are the information matrix test by Halbert White
(∗1950 - d2012, 1982), which compares the covariance matrices of the esti-
mators and White’s test for functional misspecification (White, 1980). These
tests represent only the beginning of a self-advancing, constantly growing and
independent subfield of econometrics, which has seen a steadily increasing
influence until today.
However, it remains to be seen, whether this subfield will continue to gain
additional weight in statistics and econometrics. On the one hand, there
are still justified objections to a frequentistic interpretation of the concept of
probability11. On the other hand, the correct model specification remains of

8Although the work of Chow appears somewhat later than that of Ewan S. Page (1955), who
is considered the father of CUSUM type tests, it seems more appropriate to include Chow
in the range of specification tests, since Page only tests whether a sample of independent
observations is drawn from one or two distributions.

9Even though Hausman’s work considers the articles of De-Min Wu (1973) and James B.
Ramsey (1969) specification testing received general attention through Hausman’s article.

10In the literature, this version of the Hausman test principle is also known as the Wu-
Hausman test.

11In recent decades, the frequentist interpretation of the concept of probability has developed
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central importance in classical hypothesis testing since the model choice with
all its assumption constitutes, among other things, the limiting distribution of
model-based test statistics and thus, every post-model selection inference. In
contrast, other, more recent approaches used to determine the critical values
of model-based test decisions, such as bootstrap procedures, are better able to
deal with minor misspecifications, thereby at least partially reducing the need
for specification tests. Furthermore, bootstrap methods also allow for Bayesian
interpretations (Efron, 2005), so the question of correct model selection loses
at least some of its importance12.
At present, it seems to be the case that "basically, there is only one way of doing
physics, but there seems to be at least two ways of doing statistics, and they
do not give the same answers" (Efron, 2005, p. 1). Even though this quote by
Bradely Efron (∗1938) is putatively an accurate description of the current state
of affairs, he sees the future of statistics in merging Bayesian and frequentistic
approaches in order to meet the great challenges of modernity by estimating
thousands of parameters13. And even if procedures that are robust against
minor misspecified models may gain in importance, it seems inconceivable to
develop a general procedure that generates consistent estimates independent
of the properties of the given data set; particularly if key variables are not
taken into account in the model. After all, the consistent estimation of model-
based parameters is still one of the greatest challenges in frequentistic models.
Specification tests make an explicit contribution to the identification of the
omitted variable bias. Thus, it can be assumed that specification tests will
continue to play an important role in the validation of scientific knowledge in
the future, since they can be seen as a guideline for model selection in a world
in which knowledge and therewith the number of different models is growing
exponentially.

into propensities, on which Popper was a well-known representative in his later years.
Even if this approach has been able to eliminate many weaknesses of the frequentist
concept of probability, it has not always been possible to provide a uniform interpretation
of the concept of probability. One reason for this is the fact that propensities still adhere
to the objectification of the concept of probability and can thus be understood as a further
development of frequentism. The conception of propensities was motivated in particular
to solve the interpretation of quantum mechanics.

12There is a variety of literature including Spokoiny & Zhilova (2014); Corradi & Swanson
(2003), among others.

13Efron sees signs of the development of such a hybrid science in the techniques of empirical
Bayes.
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Notwithstanding the above, the question of the correct model selection poses
a completely different problem, which was already recognized by Nikolass Tin-
bergen (∗1907 - d1988), a pioneer of econometrics, in 1936 (Keuzenkamp, 2000,
p. 142):

"Since it is not possible to work with a sequence of two sep-
arate analytical stages, ’first, an analysis of theories, and
secondly, a statistical testing of those theories.’ Modeling
turned out to become an Achilles’ heel for econometrics."

The fact that this supposedly highly theoretical approach to econometric the-
ory and specification testing also has relevant practical implications can, how-
ever, be observed very specifically in the context of the financial sector. The
importance of stock performances as an indicator of economic success has be-
come very well established in recent years. One of the difficulties in modeling
stocks is the complicated correlation over cross sections. Factor models are
common methods to model stock returns. In the case of one factor models,
however, it has been shown that spatial autoregressive models (SAR) without
exogenous covariates (Arnold, Stahlberg & Wied, 2013; Wied, 2013) are more
suitable for predicting portfolio variances and Value-at-Risk (VaR) forecasts
since they possess lower prediction errors (Schmitt, Schäfer, Wied & Guhr,
2016). In addition, SAR models can also be used to explain the propagation
of country-specific shocks to other countries by looking at various links such
as economic and monetary interdependence between countries. Again, it is
essential for the quality of an estimate and for any post-estimation inference
that the model prerequisites are met. In the second chapter of the present
thesis, which is based on the work by Kutzker & Wied (2019), two testing
procedures are proposed, which statistically verify whether an m-dimensional
SAR (SAR(m)) model can be applied to a given data set and their limiting
distributions are derived. The basic idea of the suggested specification tests
stems from the model assumption that a SAR(m) model captures all cross
sectional dependence and that the remaining covariance matrix of the errors
is diagonal. Thus, if the square sum of the secondary diagonal elements of the
residual matrix deviates too far from zero, it can be assumed that a SAR(m) is
inappropriate. The empirical application to the Euro Stoxx 50 returns shows

6
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that the proposed specification tests can also be used as a backtest to spot
inaccurate VaR forecasts. Furthermore, the empirical study revealed that,
particularly in bear markets, simple three-dimensional SAR models cannot
adequately capture the increased cross-dependencies, and that a dispropor-
tionately high number of VaR forecast violations can be observed, which was
apparent around the time of the dot-com bubble, the time around the Lehman
Brothers bankruptcy and the Euro crisis. This suggests that in high volatil-
ity periods a SAR(m) model should be extended by a factor structure or by
further exogenous variables, so that the increased cross-dependencies can be
better captured.
Furthermore, it is specifically noticeable that high market volatility and cross-
sectional diversification occur on the stock market in times of financial crises.
The question of the extent of a crisis, however, is examined in more detail
in the third chapter of this thesis and corresponds to the paper "Testing for
relevant dependence change in financial data: a CUSUM copula approach"
(Kutzker, Stark & Wied, 2019) and was published in Empirical Economics.
Therefore, this chapter focuses on providing a non-parametric test in order
to detect relevant breaks in copula functions, thus following the tradition of
structural break tests as a special case of specification tests in the sense of
Chow (1960). From a portfolio manager’s perspective, whose objective is to
minimize the risk of the losses, these types of tests are particularly interesting
since not every crisis requires a rescheduling of the portfolio, not least since
transaction costs arise. Here, relevant breakpoint tests provide the possibility
to compare crises and their extent. The non-parametric test approach con-
siders the empirical copula function and assumes that the data is generated
by two unequal copulas whose distance is less than or equal to a given fixed
positive quantity ∆ ∈ R+. The concept of distance used here allows the func-
tional evaluation of the copulas under the L2-norm as well as at a fixed value.
The test procedure consists of two steps: First, the breakpoint is estimated
using a conventional CUSUM approach. Secondly, the test statistics, which
can be understood as a transformation of the empirical copula CUSUM type
processes, can be computed. Due to the non-pivotal nature of the limiting dis-
tribution that is determined by transformations of Gaussian processes and the
complicated covariance structure, a bootstrap procedure is proposed, which

7
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allows to determine critical values. Interpreting ∆ as the smallest admissible
copula difference for which the relevant change hypothesis cannot be rejected,
led to the statistical result that in the empirical application the Euro crisis
was more substantial than the beginning of the financial crisis.
Gaussian processes also play a distinctive role as limiting distributions in the
fourth chapter, which matches the working paper "Specification Testing in
Functional Quantile Regression Models with an Application to Income Dif-
ferences in Germany" by Kutzker, Klein & Wied (2020) and is devoted to a
specification test for functional quantile regression models. Quantile regression
models have gained increasing influence since the seminal work by Koenker &
Bassett Jr (1978). Compared to simple OLS models, which are very well
studied and understood, quantile regressions models have the advantage that
they are less susceptible to outliers. Since they refer to every quantile and
not solely to the conditional expected value, they also draw a more complete
picture of the underlying problem. Due to their more complicated estima-
tion compared to OLS, only linear quantile models have been considered for a
long time. In the recent past, however, it can be observed that nonlinear and
nonparametric quantile estimators have been increasingly proposed. Cardot,
Crambes & Sarda (2005) even provided an estimator in which the covariates
are quantile-dependent functions, which allows for very flexible quantile re-
gressions. However, little attention has been devoted to specification testing
procedures with quantile dependent covariates. In the fourth chapter, a novel
consistent specification test for quantile regression models is proposed where
the covariates X can have quantile-specific functional forms. The basic idea
of this specification test is to compare an unrestricted estimate of the joint
distribution function of the endogenous random variable Y and the exogenous
random vector X with a restricted estimate that imposes the structure implied
by the null hypothesis model. Based on a Cramèr-von Mises type measure of
distances, the restricted estimate of the joint distribution is compared with
the unrestricted one. The limiting distribution of the test statistic is non-
pivotal and depends on Gaussian processes in a complex fashion. In order to
obtain critical values, the validity of the suggested bootstrap method is shown.
The application of the novel test procedure applied to data from the German
socio-economic panel (SOEP) could statistically confirm that there are still

8



CHAPTER 1. INTRODUCTION AND MOTIVATION

differences in the income distributions between East and West Germany over
the period considered.
Overall the thesis comprises three self-contained essays on specification test-
ing in a frequentistic framework. The mathematical proofs are found in the
corresponding appendices at the end of the thesis. All essays are joint works
with Dominik Wied. In the third chapter there was an additional collabo-
ration with Florian Stark, and in the fourth chapter with Nadja Klein. In
these collaborations, my task in the first project was particularly to derive the
details of the mathematical proofs and to implement the model in R both for
the realization of the simulation study and the empirical application. In the
second project, I contributed, besides others, to the mathematical proofs and
the simulation study in Matlab and I performed the empirical analysis. In the
last project I wrote down the manuscript text to a large extent, I provided the
exact execution of the theoretical details and the complete implementation in
R both for the simulation study and for the empirical application.
Beyond that, I also contributed to the joint working paper with Maximilian
Schreiter named "The Optimal Capital Structure under Risks of Illiquidity
and Over-indebtedness in a Double Barrier Option Framework" (2020) during
my Ph.D. studies. Generally, dynamic capital structure models are based on
single triggers, which determining bankruptcy, mainly over-indebtedness or
illiquidity. The latter one tends to underestimate optimal capital structures
by ignoring capital providers’ flexibility to inject fresh money. The former one
leans towards overestimation as it neglects agency conflicts between equity
investors and debt holders while implying infinitely "deep pockets" of equity
investors. The approach in the working paper incorporates both constraints,
over-indebtedness and illiquidity, examining corporate debt value and optimal
capital structure in a double barrier world with knock-in and knock-out op-
tions, where a closed form solution for all value components of a levered firm is
provided. By testing the model for firms publicly listed in the US, evidence is
gained that incorporating both triggers allows for capital structure estimates
that are in accordance with empirical findings.
In addition, I had the opportunity to develop an approach for random forest
algorithms, which aims to soften the uniform distribution assumption. This
method proves to be particularly advantageous in the segmentation of data,

9
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as it allows individual variables to be weighted differently. An examination of
the project in the master’s thesis "Unsupervised Learning with Non-Uniform
Random Forests" by Arkadiy Davidyan (2020) illustrates the validity and ap-
plicability of the method.

10



CHAPTER 2
Testing the Correct Specification of a Spatial
Dependence Panel Model for Stock Returns

2.1 Abstract

This paper provides specification tests for the m-dimensional spatial autore-
gressive (SAR) panel model by deriving the limiting distribution of the specifi-
cation test statistics and examines size and power in finite sample simulations.
In the empirical application we analyzed the Euro Stoxx 50 returns. Regard-
ing this, a 3-dimensional SAR panel model incorporating global dependencies,
dependencies inside industrial branches and local dependencies is assumed.
The investigation shows the tests’ ability to detect inaccurate Value-at-Risk
forecasts.

2.2 Introduction and Summary

In recent years the literature in economics and finance has found some interest
in the connection between spatial dependence and stock returns. For exam-
ple, Asgharian et al. (2013) use techniques from spatial econometrics in order
to investigate in which way stock market co-movements are determined by
countries’ economic and geographical relations. One result shows that trade
is the most important factor. Tam (2014) analyzes equity market linkages
in East Asia with the result, among others, that Japan is a dominant driver.
Selan & Kalatzis (2017) analyze peer effects in Brazil and find a positive spa-
tial dependence between stock returns from peer companies, but a negative
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feedback effect from fundamental characteristics. A seminal methodological
contribution is given by Blasques et al. (2016) who extend the spatial Durbin
model by a time-varying spatial dependence parameter.
Furthermore, Arnold et al. (2013) propose a spatial autoregressive (SAR) panel
model for stock returns in order to capture local dependencies and dependen-
cies within industrial branches. Wied (2013) considers structural breaks in
these models and Schmitt et al. (2016) combine the approach with local nor-
malization techniques. Gong & Weng (2016) use the model for value at risk
forecasts in the Chinese stock market. Catania & Billé (2017) generalize the
SAR model with autoregressive and heteroscedastic disturbances by includ-
ing methods from score-driven models. Moreover, Zhang et al. (2018) pro-
pose a dynamic spatial panel with generalized autoregressive conditional het-
eroscedastic model (DSP-GJR-GARCH). Lu (2017) considers a spatial panel
data model, that models three effects jointly. Various empirical analyses in the
aforementioned papers show that the SAR panel model is generally suitable
for Value-at-Risk (VaR) forecasts and outperforms, e.g. the one-factor model.
One aspect which is often missing in recent literature is the question how good
the model fits the data. In general, people tend to look at Moran’s I (Moran,
1950; Li et al., 2007) to analyze if there is spatial dependence in a given data
set. However, this measure is not connected to a specific model. One could
apply it to somehow obtained model residuals, but even then, the question
would remain in which way we can use this for a test. Born & Breitung (2011)
and Su & Qu (2017) propose specification tests for SAR models, but they
do not consider a panel context. Kelejian & Piras (2016) propose a J-test
procedure for testing a null model against non-nested alternatives for a fixed
effects spatial panel data framework. A crucial prerequisite of this test is to
formulate what they call G alternative models under H1.
In this paper, we revisit the SAR panel model from Arnold et al. (2013) and
propose two methods on how to check the model fit. The basic idea stems
from the model assumption that spatial weighting matrices capture all spa-
tial dependence and that the remaining error terms are spatially uncorrelated.
Therefore, we consider the model residuals such that the tests keep the null
hypothesis of model fit if the covariance matrix of the residuals is basically
diagonal, i.e. its off-diagonal elements are close to zero. We derive the asymp-
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totic distribution of our test statistics and show in simulations, that the tests
have reasonable power properties against sparse error term covariance matri-
ces. An empirical application on stock data shows that the tests can potentially
also be used as backtests for Value-at-Risk forecasts.
This paper is organized as follows: Section 2.3 describes the classical spatial
autoregressive model, discusses the assumptions for a GMM estimation pro-
cedure and derives the specification tests. Section 2.4 provides an extensive
Monte Carlo Simulation and Section 2.5 an empirical application. Finally,
Section 2.6 concludes.

2.3 A Cross Sectional Correlation Based Specifica-
tion Test for SAR(m) Panel Models

In this section, we introduce the general SAR(m), m ∈ N panel model and dis-
cuss briefly the slightly modified assumptions for the two step GMM estimator
given in Arnold et al. (2013) which turn out to also hold for them-dimensional
case.

2.3.1 The Model

The SAR(m) panel model assumes that the dependent variable is correlated
in the cross-sectional dimension n and that the spatial dependence can be
separated into m different parts. The number m1 and the specific form of
the spatial matrices depend on the practitioner2. Thus, the spatial matrices
Wi, i = 1, ...,m are pre-specified and fixed. In what follows, let yyyt and εεεt

be n-dimensional random vectors for t = 1, . . . , T . The m-dimensional SAR
panel model without any explanatory variables is given by

yyyt =
m∑
i=1

ρiWi yyyt + εεεt, t = 1, . . . , T (2.1)

1In the application later on, we will introduce three different spatial matrices which are
assumed to capture the structure of daily stock returns. The first part covers a general
dependence which affects all subjects equally. The second part captures dependencies
among industrial branches and national effects are included with the help of the third
dependency structure.

2An overview of commonly used matrices is given in Elhorst et al. (2012).
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where ρi ∈ R for i = 1, ...,m. For asymptotic results, n n is fixed and T is sent
to infinity. To derive limit theorems we impose the following assumptions:

Assumption 1.

1. The sequence of random vectors {yyyt}t∈N has zero mean, is stationary
and ergodic.

2. For i ∈ {1, ...,m}, r = 1, . . . , n, s = 1, . . . , n, Wi,rs ≥ 0, Wi,rr = 0.

3. For i ∈ {1, ...,m} and r = 1, . . . , n, ∑n
s=1Wi,rs = 1.

4. The parameter space S is defined as S := {ρρρ ∈ Rm : ||ρρρ||1 < 1} where
|| · ||1 defines the L1-norm.

5. For t ∈ Z, Cov (εεεt) = diag{σ2
1, . . . , σ

2
n} =: Σ ∈ Rn.

6. Each element of the vector
(

1√
T

T∑
t=1

εεεtεεε
′
t

)
i<j

meets the assumption of a

central limit theorem and the corresponding long-term covariances

∑
s,t∈N

Cov[εεεi1εεεjt, εεεksεεεls]

are finite for every i < j and k < l.

In the context of daily stock returns, the zero mean and stationarity Assump-
tion 1.1 is plausible (see Aue et al., 2009). Assumption 1.2 excludes "self influ-
ence" since the elements on the leading diagonal are zero and postulates that all
elements are non-negative, which is usually the case in empirical applications.
Assumption 1.3 ensures that the matrices are bounded and standardized. For
the GMM estimator based on Arnold et al. (2013) we assume row-standardized
weighting matrices. Depending on the underlying GM-estimation technique
this assumption could be relaxed (Kelejian & Prucha, 2010; Breitung & Wig-
ger, 2017). Assumption 1.4 restricts the parameter space such that the sum
of the absolute values of the elements of ρρρ ∈ Rm is smaller than 1. Even
though the assumption could be slightly generalized (Elhorst et al., 2012) we
follow the notation of Arnold et al. (2013) as it guarantees that the matrix
(In−

∑m
i=1 ρiWi) is non-singular3. Hence, Assumption 1.1-1.4 ensure the model

2.1 to be well defined.
3The matrix (In −

∑m

i=1 ρiWi) is strictly diagonally dominant.
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The crucial assumption, on which we will base our specification test, is that
the covariance matrix of the error terms εεεt is diagonal. Consequently, all cross-
sectional dependence is captured by the spatial terms, which corresponds to
Assumption 1.5, although, heteroscedasticity is not excluded. Assumption 1.6.
guarantees that the limiting distribution of our suggested test statistic is not
degenerated, i.e. the dependence structure of the error vector εεεt meets certain
regularity conditions, such that the serial dependence structure is bounded.
For the estimation, a two step GMM procedure is considered. First, we esti-
mate the correlation parameters by the method of moments along the lines of
Kelejian & Prucha (1999) or Kapoor et al. (2007). This step does not depend
on the parameters of variance. Secondly, we estimate the variance parameters.
Under some regularity assumptions the GMM estimator ρ̂ρρ is consistent and as
asymptotically normal. While this is worked out in Arnold et al. (2013) for
the special case of m = 3, a detailed derivation for the GMM estimator in the
general case is presented in the Appendix A.1.

2.3.2 The Specification Test

We outline the test for the case of Assumption 1, noting that simulation results
in section 2.4.1 indicate that the test also works if we replace the error terms
by GARCH residuals. So subsequently, the word data set can be regarded
either as the original or the GARCH adjusted data.
Following the discussion given in the previous subsection, what remains is
to check whether Assumptions 1.5 holds. Even if the course of action seems
technical, the idea behind the test statistic is straightforward: we do not
reject the null hypothesis if the covariance matrix of the errors is basically a
diagonal matrix, i.e. its off-diagonal elements deviate not too far from zero.
Let Ĥ ∈ Rn×n denote the empirical covariance matrix of the residuals times
the square root of the time horizon, i.e. Ĥ :=

√
T Ĉov[ε̂εεt] and Ĥij with i, j ∈

{1, 2, ..., n} its elements. Let σ2
ij denote the (i, j)-th element of the theoretical

counterpart Σ, i.e. the error covariance matrix. Since Ĥ and Σ are symmetric,
it is sufficient to consider only the elements of the upper triangle of the matrix
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Σ. Hence, the null hypothesis is given by

H0 : σ2
ij = 0 for all i < j vs. H1 : ∃s, t with s < t : σ2

st 6= 0. (2.2)

We opt to use χ2-type tests for this testing problem. Instead of considering
each element or the maximum of the absolute value of all off-diagonals, we take
the sum of each element squared into account. Thus, the naive test statistic
is given by

S :=
∑

i<j,i,j=1,...,n
(Ĥij)2. (2.3)

The following theorem identifies the limiting distribution of the empirical co-
variance matrix times

√
T .

Theorem 2.3.1. Under the null hypothesis H0 : σ2
ij = 0 for all i < j, the

assumptions of Theorem A.1.3, the following holds for 1 ≤ i, j ≤ n

dlim
T→∞

√
T Ĉov[ε̂εεt] = A+B +B

′ ∈ Rn×n (2.4)

with (A)ii = lim
T→∞

√
T

T∑
t=1

σ2
it = ∞ and the components of A are jointly nor-

mally distributed for i 6= j with (A)ij ∼ N(0, lim
T→∞

Var [ 1√
T

∑∞
t=1 εεεitεεεjt]) and

Cov((A)ij , (A)kl) = 0 for i 6= j and k 6= l with (i, j) 6= (k, l). Moreover,
B

d= (
m∑
g=1

XgWg)(In −
m∑
g=1

ρgWg)−1Σ, where

XXX := (X1, . . . , Xm) ∼ N(0, ddd−1SW (ddd−1)′) ∈ R1×m

with SW = ∑∞
t=−∞ E[f(yyy1, ρρρ)f(yyyt, ρρρ)′] for f(yyyt, ρρρ) = (εεε′tW1εεεt, · · · , εεε′tWmεεεt)′

and ddd defined in Assumption (4).

Here and in the following dlim
T→∞

denotes limit in distribution and d= equality
in distribution. Three remarks about Theorem 4.4.1 are in order. First, the
leading elements of matrix A diverge to infinity. However, the tests considers
only the off-diagonal elements (i 6= j, i, j = 1, ..., n), which are finite by As-
sumption 1.6. This in turn ensures, that the test is well defined. Second, since(
In −

∑m
g=1 ρgWg

)
is strictly diagonally dominant, the inverse exists. Third,

we note that the matrices B and its transposed appear in the limit. This
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is due to the effect of estimating ρρρ instead of using the unknown population
quantity. The analysis of such a residual effect (see Demetrescu & Wied, 2019)
is somewhat complicated, since the additional terms need different standard-
izing factors in the proof4. However, all terms in the limiting distribution
are based on the same error terms, thus, the convergence is jointly and the
limiting distribution in (2.4) is multivariate normal. If we additionally assume
serially independence in the error vector, the variance of the elements in the
limiting matrix A simplifies to a product, shown in the following remark.

Remark 2.3.2. Suppose the assumptions of Theorem 4.4.1 hold.
If {εεεt}t∈{1,...,T} is serially independent, then

(A)ij ∼ N(0, σ2
i σ

2
j ) for i 6= j. (2.5)

In accordance with our test statistic (2.3), we can reformulate the test in
vectorial notation, i.e.

S = α̂αα′α̂αα, (2.6)

where α̂αα represents the vector of the upper triangle of the empirical covari-
ance matrix of the residuals times

√
T . Since the empirical covariance matrix

consists of n2 elements, the upper triangle matrix vector (i.e. stacking every
element above the leading diagonal, but excluding elements from the leading
diagonal) consists of n(n− 1)/2 elements and has the following form:

α̂αα : = dlim
T→∞

(√
T Ĉov[ε̂εεt]

)
i<j, i,j=1,...,n

= dlim
T→∞

( 1√
T

∑
ε̂εεtε̂εε
′
t

)
i<j, i,j=1,...,n

= dlim
T→∞

1√
T

T∑
t=1

d̂ddt ∈ R
n(n−1)

2

with d̂ddt : =
(
ε̂1tε̂2t, ..., ε̂1tε̂nt, ε̂2tε̂3t, ..., ε̂2tε̂nt, ..., ε̂(n−1)tε̂nt

)′
.

4For a detailed analysis of the convergence rate we refer to Lemma A.2.1 in the correspond-
ing Appendix.

17



CHAPTER 2. TESTING THE CORRECT SPECIFICATION OF A
SPATIAL DEPENDENCE PANEL MODEL FOR STOCK RETURNS

By means of Slutsky’s theorem we define the theoretical counterpart

ααα : = (A)i<j, i,j=1,...,n

= dlim
T→∞

( 1√
T

∑
εεεtεεεt

′
)
i<j, i,j=1,...,n

= dlim
T→∞

1√
T

T∑
t=1

dddt ∈ R
n(n−1)

2

with dddt : =
(
ε1tε2t, ..., ε1tεnt, ε2tε3t, ..., ε2tεnt, ..., ε(n−1)tεnt

)′
which stacks the upper triangular matrix of the covariance matrix of the errors
times

√
T in a vector. Analogously, βββ defines the vector of the stacked upper

triangular matrix of B and βββ∗ of B′, respectively, i.e. for
ZW := dlim

T→∞

m∑
g=1

√
T (ρg − ρ̂g)Wg we define

βββ := (B)i<j,i,j=1,...,n =

ZW (In −
m∑
g=1

ρgWg)−1Σ


i<j, i,j=1,...,n

∈ R
n(n−1)

2 ,

βββ∗ :=
(
B′
)
i<j,i,j=1,...,n =

Σ′(In −
m∑
g=1

ρgW
′
g)−1Z

′
W


i<j, i,j=1,...,n

∈ R
n(n−1)

2 .

The vectors βββ and βββ∗ are well defined, since B is not necessarily symmetric.

Lemma 2.3.3. βββ represents the vector of the upper triangle and βββ∗ the vector
of the lower triangle of the matrix ZW (In −

m∑
g=1

ρgWg)−1Σ, i.e. for i, j ∈

{1, ..., n}

βββ∗ =

ZW (In −
m∑
g=1

ρgWg)−1Σ


i>j, i,j=1,...,n

∈ R
n(n−1)

2 . (2.7)

The next Lemma provides the limit distribution of our test statistic S (2.6).

Lemma 2.3.4. Suppose the assumptions of Theorem 4.4.1 hold. Then the
test statistic S (2.3) is asymptotically distributed as

S = α̂αα′α̂αα
d−−−−→

T→∞
(ααα+ βββ + βββ∗)′(ααα+ βββ + βββ∗),
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where the covariance matrix for ααα is given by

Cov[ααα] =


lim
T→∞

Var [ 1√
T

∑T
t=1 εεε1tεεε2t] · · · 0

... . . . ...

0 · · · lim
T→∞

Var [ 1√
T

∑T
t=1 εεε(n−1)tεεεnt]

 .

Consequently, the critical value for the test statistic S (2.3) can be derived by
drawing independently from the limiting distribution given in Lemma C.1.4
and computing the corresponding quantile5. The test takes care of the size
demands and has good power properties as shown in Section 2.4. The next
subsection presents another specification test, which has greater size and con-
sequently better power properties.

2.3.3 A More Powerful Test

In Theorem 4.4.1 we have shown, that the elements of the limiting distribution
follow a multivariate normal distribution. Thus, if we standardize the test
statistic S (2.6) by its covariance matrix, we receive a new test statistic S∗χ
which is χ2-distributed, i.e.

S∗χ := α̂αα′(Cov[ααα+ βββ + βββ∗])−1α̂αα ∼ χ2
n(n−1)

2
. (2.8)

The terms βββ and βββ∗ can be regarded as additional noise which comes from the
estimation procedure. This additional noise can be extracted by decomposing
the covariance matrix given in (2.8) into two parts. Thus, we have

Cov[ααα+ βββ + βββ∗] = Cov[ααα] + Ψ (2.9)

with Ψ := Cov[βββ + βββ∗] + Cov[ααα,βββ + βββ∗] + Cov[ααα,βββ + βββ∗]′. The first part
Cov[ααα] covers the underlying variance structure while the second part Ψ can
be considered as a noise term6.

5The complex dependence structure of α and β can be simulated with the help of the Taylor
series approximation.

6If we additionally assume serial independence, the covariance matrix of ααα can easily be
implemented, since only the variances need to be estimated, cf. Lemma A.2.3. Otherwise,
the covariance matrix of ααα is given in Lemma C.1.4.
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If either ||(Cov[ααα])−1Ψ|| < 1 or ||Ψ(Cov[ααα])−1|| < 1 hold7, we can estimate the
inverse of covariance matrix (2.9) with the help of the Taylor series approxi-
mation and the telescoping sum8. It yields

(Cov[ααα+ βββ + βββ∗])−1 = (Cov[ααα])−1 − (Cov[ααα])−1Ψ(Cov[ααα])−1

+ (Cov[ααα])−1Ψ(Cov[ααα])−1Ψ(Cov[ααα])−1 − ...

≤ (Cov[ααα])−1.

Thus, (Cov[ααα])−1 is an upper bound for the inverse of the covariance matrix
(2.9). Hence,

Sχ := lim
T→∞

1
T

T∑
t=1

d̂ddt
′(Cov[ααα])−1

T∑
t=1

d̂ddt (2.10)

provides a more powerful test, since Sχ ≥ S∗χ ∼ χ2
n(n−1)

2
. In order to study the

behavior of S and Sχ in finite samples we perform an extensive Monte Carlo
Simulation which can be found in the next section.

2.4 Monte Carlo Simulation

The Monte Carlo (MC) Simulation consists of three major simulations. While
the first two simulations assume serial independence, the third simulation
examines the behavior of the test in the case of GARCH(1,1) driven errors.
The first less comprehensive simulation depicts a 3-dimensional SAR model

yyyt = ρ1W1yyyt + ρ2W2yyyt + ρ3W3yyyt + εεεt, t = 1, . . . , T

with (W1)ij = 1
n−1 for all i 6= j and (W1)ii = 0. The spatial matrices W2 and

W3 are defined as

7In our Monte Carlo simulation we observed that this is usually the case whenever the
variance of εεεit is greater than 1 for all i = 1, ..., n.

8The sum and product of two symmetric positive semidefinite (psd) matrices is still psd.
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(W2)ij =


1, if j even and i 6= j

1, if j − 1 = i

0, otherwise

(W3)ij =

1/(n/2− 1), if i, j>≤
n
2

0, otherwise,

where additionally the matrixW2 is row standardized by its row sum∑
j(W2)ij .

The expression i, j>≤
n
2 in the definition of W3 indicates that both i and j are

either smaller or equal or greater than n
2 . In terms of interpretation the ma-

trix W1 can be regarded as a weighting matrix, where each firm has the same
weight with respect to a portfolio. Thus, the matrix W1 captures a general
effect, e.g. global crisis, market performance in the past etc.9. The spatial
matrix W2 can be considered as industry affiliation. W3 may be regarded as
the dichotomous component of the market which divides the market into two
different fields (e.g. the beneficiaries of a given change, e.g. fiscal reform, aid
payments, etc ) and those who are not affected.
In the first part, the vector of observation yyyt is generated by a multivariate
normal error vector εεεt with zero mean and covariance matrix Σ := σ2In,
where In represents the n-dimensional identity matrix. The parameter of
spatial dependence is given by ρρρ = (0.45, 0.3, 0.15) and the homoscedastic
variance equals σ2 = 2. For calculating the power of our tests we use the
following misspecification: If we consider a market with n participants, then
there are n(n− 1)/2 possible pairs (e.g. participants that are correlated with
each other). The parameter ζ describes the portion of how many pairs we
wish to consider10, the parameter κ2 describes their correlation. E.g. if we
consider a market that consists of n = 20 actors, then there are n(n− 1)/2 =
190 different pairs. If ζ = 0.1 and κ = 0.2, we presume that there are 19
pairs that have a correlation coefficient that is equal to 0.04. No further
assumptions are made about the structure of the correlation. It is possible,
for instance, that the actor number of 20 has the correlation 0.04 with every
other participant, i.e. Σ is a diagonal matrix with 0 in the off diagonals. Only

9Even if W1 is equally weighted, ρ1 cannot be considered as a fixed affect which affects
market participant equally, since fixed affects are time independent. SAR models try to
capture this time dependence structure with fixed weighting matrices.

10In case that ζ · n(n− 1)/2 is odd we round down.
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the last column and row of Σ is non-zero. However, in general, the correlation
structure is completely random11. To determine the size and the power of the
first test (4.4.1) we draw B = 400 times from the asymptotic limit distribution
given in Lemma (C.1.4). The dependence between α and β is modeled by the
Taylor series approximation. The overall number of MC repetitions is equal
to 701. We begin by studying the size of the first test for n = 20, 50 and
T = 50, 100, 200, 500. Results are presented in Table (2.1). Collectively, the
test has good size. Similar properties are derived for the power analysis of the
test. Whenever the ratio of T over n is small and the dependence structure in
the error term is more or less negligible (cf. κ = ζ = 0.05) the power of the
test is low. However, if there are sufficient observations (i.e. T

n > 10) and if
the dependence structure in the data set is not negligible (κ, ζ ≥ 0.1), then the
test provides good power properties. All in all we observe an increasing power
whenever the dependence structure (κ or ζ) or the number of observations (n
or T ) increases.
Similar results are obtained for the second test Sχ (2.3) which can be found
in Table (2.2)12. In small sample studies Sχ performs worse than test S in
terms of size power. This is due to the fact that the we used the empirical
approximation for the inverse covariance matrix that is employed in Sχ, which
is biased in small samples. Consequently, as T tends to infinity the size of the
test Sχ converges clearly to the desired nominal level of 5% and the power
increases as the level of misspecification rises.
However, additional simulations show that the tests’ power decreases in the
case of too large ζ, i.e. in the case of a highly non-sparse covariance matrix.
Here, the population moment conditions from (A.1) are severely violated so
that the model is misspecified and the behavior of the model estimators ρ̂ is
unclear (Fleming, 2004).

11This procedure of misspecfication ensures that the moment conditions (A.1) are violated,
thus, the GMM estimator is biased (Hansen, 1982).

12The second test is applicable since we observed in every study and simulation we conducted
that either ||(Cov[ααα])−1Ψ|| < 1 or ||Ψ(Cov[ααα])−1|| < 1 hold
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Table 2.1: Size and Power of S for SAR(3)
n = 20 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.031 0.039 0.060 0.108 0.332
T = 100 0.039 0.056 0.956 0.213 0.742
T = 200 0.042 0.069 0.220 0.532 0.973
T = 500 0.034 0.114 0.576 0.943 1.00
T = 1000 0.045 0.257 0.929 0.999 1.00
n = 20 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.034 0.044 0.083 0.210 0.739
T = 100 0.038 0.067 0.173 0.526 0.984
T = 200 0.041 0.097 0.444 0.917 1.00
T = 500 0.034 0.219 0.944 1.00 1.00
T = 1000 0.045 1.00 1.00 1.00 1.00
n = 20 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.033 0.063 0.172 0.459 0.984
T = 100 0.036 0.089 0.415 0.888 1.00
T = 200 0.029 0.166 0.830 1.00 1.00
T = 500 0.037 0.508 100 1.00 1.00
T = 1000 0.045 0.926 1.00 1.00 1.00
n = 50 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.048 0.056 0.148 0.366 0.949
T = 100 0.041 0.079 0.264 0.763 1.00
T = 200 0.051 0.141 0.716 1.00 1.00
T = 500 0.059 0.383 1.00 1.00 1.00
T = 1000 0.046 0.862 1.00 1.00 1.00
n = 50 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.048 0.075 0.281 0.758 1.00
T = 100 0.041 0.125 0.677 0.993 1.00
T = 200 0.051 0.304 0.990 1.00 1.00
T = 500 0.059 0.810 1.00 1.00 1.00
T = 1000 0.045 1.00 1.00 1.00 1.00
n = 50 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.049 0.104 0.608 0.988 1.00
T = 100 0.041 0.244 0.974 1.00 1.00
T = 200 0.051 0.602 1.00 1.00 1.00
T = 500 0.059 0.997 1.00 1.00 1.00
T = 1000 0.046 1.00 1.00 1.00 1.00

Power and Size Analysis of the Test (2.3) with ρ = (0.45, 0.3, 0.15) ∈ R3. The DGP follows a
multivariate normal distribution where ζ describes the expected portion of pairs that are correlated
with each other with correlation κ2 and variance σ2

i = 2 for all i ∈ {1, ..., n}. The amount of draws
from the limit distribution is B = 400 by 701 Monte Carlo repetitions.
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Table 2.2: Size and Power of Sχ for SAR(3)

n = 20 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.028 0.025 0.040 0.057 0.220
T = 100 0.042 0.030 0.072 0.175 0.679
T = 200 0.038 0.057 0.158 0.503 0.965
T = 500 0.047 0.121 0.567 0.988 1.00
T = 1000 0.055 0.233 0.922 0.998 1.00
n = 20 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.028 0.037 0.045 0.092 0.561
T = 100 0.042 0.057 0.133 0.414 0.987
T = 200 0.038 0.060 0.384 0.912 1.00
T = 500 0.047 0.238 0.937 1.00 1.00
T = 1000 0.055 0.591 0.998 1.00 1.00
n = 20 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.028 0.033 0.060 0.253 0.954
T = 100 0.043 0.063 0.346 0.844 1.00
T = 200 0.039 0.113 0.831 0.997 1.00
T = 500 0.047 0.483 1.00 1.00 1.00
T = 1000 0.055 0.894 1.00 1.00 1.00
n = 50 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.005 0.014 0.016 0.065 0.709
T = 100 0.018 0.027 0.156 0.601 1.00
T = 200 0.030 0.771 0.617 0.991 1.00
T = 500 0.033 0.369 0.998 1.00 1.00
T = 1000 0.047 0.829 1.00 1.00 1.00
n = 50 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.005 0.010 0.0411 0.330 0.995
T = 100 0.018 0.047 0.045 0.989 1.00
T = 200 0.023 0.164 0.982 1.00 1.00
T = 500 0.033 0.773 1.00 1.00 1.00
T = 1000 0.047 0.999 1.00 1.00 1.00
n = 50 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.005 0.013 0.203 0.900 0.997
T = 100 0.018 0.106 0.927 1.00 1.00
T = 200 0.030 0.435 1.00 1.00 1.00
T = 500 0.033 0.997 1.00 1.00 1.00
T = 1000 0.047 1.00 1.00 1.00 1.00

Power and Size Analysis of the Test (2.8) Sχ where ζ describes the expected portion of pairs that
are correlated with each other with correlation κ2 and variance σ2

i = 2 for all i ∈ {1, ..., n}.
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To summarize, both tests show good size and power properties whenever the
ratio T over n is greater or equal to 10. Based on the simple limiting distribu-
tion of S∗χ, the test Sχ is also very easy to implement since the approximation
test Sχ requires only the empirical covariance matrix of the residuals.
The second MC simulation extends the investigations. Here, we consider a
SAR(4) model

yyyt = ρ1W1yyyt + ρ2W2yyyt + ρ3W3yyyt + ρ4W4yyyt + εεεt, t = 1, . . . , T,

where W1 is a group interaction matrix of the first two-thirds, W2 is a group
interaction matrix of the last one-third, W3 a binary contiguity matrix of the
third-order neighbors only (the observations 1, ..., n are assumed to be in a
circle, i.e. 2 is a neighbor of n− 1, n, 1, 3, 4, 5 and13

(W4)ij =


1

2·bn−1c , if i is even and j odd or vice versa

0, otherwise.

The weighting vector ρ is given by ρρρ = (−0.2 0.05 0.1 0.5). Moreover, we
presuppose heteroscedastic normal error terms, i.e. σi ∼ N(0, 1) for i =
1, ..., n. In order to analyze the power in case of misspecification, we choose ζ
and κ likewise to the first MC simulation. To determine the size and power we
follow the recommendations given in MacKinnon (2002) and draw B = 400
times from the asymptotic limit distribution given in Lemma (C.1.4). The
overall number of MC repetitions is equal to 701. The results of the tests can
be found in Table 2.3.
Even if the results of the second analysis are not one-to-one comparable with
those from the first simulation,14 it is clearly observable that the tests hold
the size level. The power increases if either the correlation structure (κ or
ζ) or the amount of observation grows (n or T ). Thus, the results presented
in the second, more complex study are in line with those given in the first
simulation.

13Matrices W1,W2,W3 are the counterparts to the matrices G1, G2, BC3 given in Elhorst
et al. (2012).

14The model presupposes heteroscedasticity and the spatial structure is completely different.
From this it follows, that the violation of the moment condition (A.1) is not one-to-one
comparable.
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In summary, the MC study has shown that the test is also applicable in case
of small samples as long as the vector of observations is sufficiently large
compared to the cross sectional dimension n. The next section shows that the
test even holds size and power demands if the error terms follow a GARCH
process.

2.4.1 GARCH(1,1)

One of the many problems researchers and practitioners face when analyzing
data series in financial markets is their structure. Thus, volatility of financial
assets has been extensively studied in the last twenty years. An important
aspect is volatility clustering, i.e. conditional heteroskedasticity, which leads
to an increase in the probability of rare events, that is often modelled with
GARCH errors. Since the SAR(m) model is a powerful instrument in mod-
elling financial data15, the third and final Monte Carlo simulation for the
suggested test (2.6) assumes that the errors of the data generating process
(DGP) are driven by a GARCH(1,1) model, i.e. for t = 1, ..., T and i = 1, ...n

yit = σit(In − ρ1W1 − ρ2W2 − ρ3W3)−1εit,

σ2
it = 0.33 + 0.33σ2

i(t−1) + 0.075y2
i(t−1),

εit
i.i.d∼ N(0, 1).

To receive comparable results, the weighting matrices W1,W2,W3 are similar
to those of the first MC simulation of Section 2.4. The size and power results
are presented in Table 2.4. At first, it should be noted that the amount of
observation of a GARCH adjusted data set needs to be significantly higher
compared to a data set with no GARCH adjustment, since for the case of a
GARCH adjustment an initial estimate needs to be conducted. Thus, a pri-
marily high error of estimation distorts the stationarity assumption. However,
with a sufficiently large set of observations, the test S (2.6) performs also well
with reference to size and power.

15The empirical analysis in Section 2.5 shows, that a SAR(3) seems reasonable in times of
no economic crisis.
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Table 2.3: Size and Power of S for SAR(4)

n = 60 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.036 0.049 0.073 0.134 0.438
T = 100 0.043 0.050 0.114 0.263 0.805
T = 200 0.036 0.069 0.227 0.640 0.989
T = 500 0.035 0.117 0.681 0.979 1.00
T = 1000 0.050 0.329 0.960 0.997 1.00
n = 60 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.036 0.061 0.096 0.251 0.782
T = 100 0.043 0.084 0.208 0.629 0.991
T = 200 0.036 0.097 0.509 0.939 1.00
T = 500 0.036 0.270 0.976 1.00 1.00
T = 1000 0.050 0.684 1.00 1.00 1.00
n = 60 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.036 0.074 0.191 0.535 0.988
T = 100 0.043 0.103 0.479 0.949 1.00
T = 200 0.036 0.193 0.919 1.00 1.00
T = 500 0.036 0.604 1.00 1.00 1.00
T = 1000 0.050 0.962 1.00 1.00 1.00
n = 90 ζ = 0.05

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.029 0.059 0.080 0.191 0.685
T = 100 0.054 0.064 0.176 0.461 0.972
T = 200 0.044 0.101 0.398 0.893 1.00
T = 500 0.046 0.214 0.930 1.00 1.00
T = 1000 0.047 0.551 1.00 1.00 1.00
n = 90 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.029 0.074 0.161 0.431 0.942
T = 100 0.054 0.080 0.382 0.853 1.00
T = 200 0.044 0.164 0.810 1.00 1.00
T = 500 0.046 0.503 0.997 1.00 1.00
T = 1000 0.047 0.930 1.00 1.00 1.00
n = 90 ζ = 0.2

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 50 0.029 0.094 0.365 0.806 0.999
T = 100 0.054 0.127 0.752 0.999 1.00
T = 200 0.044 0.338 0.997 1.00 1.00
T = 500 0.046 0.888 1.00 1.00 1.00
T = 1000 0.047 0.999 1.00 1.00 1.00

Power and Size Analysis of the test S with ρρρ = (−0.2 0.05 0.1 0.5). The errors are heteroscedastic,
i.e. σi ∼ N(0, 1), i = 1, ...n. The parameter ζ describes the portion of expected pairs of firms that
are correlated to each other with correlation intensity κ2.
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Table 2.4: Size and Power of S under GARCH model for SAR(3)

n = 50 ζ = 0.02

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.086 0.118 0.211 0.490 0.960
T = 1500 0.078 0.128 0.331 0.719 0.996
T = 2000 0.062 0.140 0.459 0.906 1.00
T = 2500 0.068 0.156 0.565 0.960 1.00
T = 3000 0.044 0.114 0.673 0.988 1.00
n = 50 ζ = 0.04

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.086 0.126 0.440 0.881 1.00
T = 1500 0.078 0.178 0.699 0.986 1.00
T = 2000 0.062 0.156 0.872 1.00 1.00
T = 2500 0.068 0.250 0.936 1.00 1.00
T = 3000 0.044 0.315 0.972 1.00 1.00
n = 50 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.086 0.253 0.932 1.00 1.00
T = 1500 0.078 0.425 0.994 1.00 1.00
T = 2000 0.062 0.520 1.00 1.00 1.00
T = 2500 0.068 0.711 1.00 1.00 1.00
T = 3000 0.044 0.792 1.00 1.00 1.00
n = 80 ζ = 0.02

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.073 0.129 0.334 0.810 1.00
T = 1500 0.070 0.126 0.518 0.964 1.00
T = 2000 0.043 0.143 0.771 0.997 1.00
T = 2500 0.060 0.206 0.877 1.00 1.00
T = 3000 0.050 0.229 0.954 1.00 1.00
n = 80 ζ = 0.04

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.073 0.128 0.709 0.998 1.00
T = 1500 0.070 0.202 0.954 1.00 1.00
T = 2000 0.043 0.291 0.990 1.00 1.00
T = 2500 0.060 0.409 1.00 1.00 1.00
T = 3000 0.050 0.517 1.00 1.00 1.00
n = 80 ζ = 0.1

κ = 0.00 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.25
T = 1000 0.073 0.416 0.998 1.00 1.00
T = 1500 0.070 0.607 1.00 1.00 1.00
T = 2000 0.043 0.826 1.00 1.00 1.00
T = 2500 0.060 0.972 1.00 1.00 1.00
T = 3000 0.050 0.988 1.00 1.00 1.00

Power and Size Analysis of the Test (2.3) S∗ with ρ = (0.45, 0.3, 0.15) under a GARCH model. The
data generating process is GARCH(1,1) with constant and GARCH parameter equal to 0.33 and
ARCH parameter equal to 0.075 with standard normal errors. ζ describes the expected portion of
pairs that are correlated with each other with correlation κ2 and variance σ2

i = 2 for all i ∈ {1, ..., n}.
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2.5 Empirical Analysis

We analyze the spatial dependencies in the daily stock returns of the Euro
Stoxx 50 members in the composition of January 2010 for the period from 2003
until 2009, using adjusted stock prices from Datastream which we transfer to
log returns. Our basic model for the stock returns on day t = 1, ..., T , is

yyyt = ρgWgyyyt + ρbWbyyyt + ρlWlyyyt + εεεt (2.11)

where yyyt is the vector of stock returns on day t while the weighting matrices
Wg,Wb,Wl capture general dependencies16, dependencies insides branches and
local dependencies17 . In all weighting matrices, market capitalization is taken
into account, i.e. the share of the respective firm is written into the non-zero
entries of the rows, before the matrices are row-standardized to 1.
Thus, none of the spatial matrices Wg,Wb,Wl are symmetric. The unknown
parameters ρg, ρb and ρl represent the corresponding factors. Our main in-
terest is to provide statistical evidence whenever the spatial model (2.11) is
applicable. Therefore, we conducted an extensive empirical analysis for the
transferred initial data set to log returns with and without a GARCH(1,1)
adjustment.
Figure 2.1 shows a rolling window parameter estimation for ρρρ for a window
of size T = 100 in a data set of size 1861 of the Euro Stoxx 50 from 2003
until 2009. The blue line equals the ratio of the 95%-quantile of the limit
distribution over the value of the test statistic of S (2.6).18 Thus, the null
hypothesis is rejected whenever the value of the blue line is smaller than 1.
Figure 2.1 illustrates that in periods of economic crisis the spatial model (2.11)
is not applicable. This is consistent with the observation that in times of bear
markets the correlation among market participants rises dramatically. The
resulting extensive dependency structure cannot be captured by the simple
spatial model (2.11). Accordingly, the findings of our test give evidence that

16The elements of this matrix are non-zero outside the diagonal and all these entries in a
single row have the same value, so that it captures impacts which affect all stocks in a
similar way like prior performance of stock markets.

17For the partitioning of the Euro Stoxx 50 members into branches and countries we refer
to Table 2.5.

18The results for the second test statistic Sχ2 are similar, so we omit them.

29



CHAPTER 2. TESTING THE CORRECT SPECIFICATION OF A
SPATIAL DEPENDENCE PANEL MODEL FOR STOCK RETURNS

Table 2.5: Partitioning of Euro Stoxx 50 members into branches and countries.

Finance Aegon, Allianz, AXA, Banco Bilbao, Banco Santander, BNP,
Crédit Agricole, Deutsche Bank, Deutsche Börse, Generali, ING,
Intesa, Münchener Rück, Société Générale, Unicredit

Automobil Daimler, Renault, VW

Energy Alstom, E.ON, ENEL, ENI, Iberdrola, Repsol, RWE, SUEZ, Total

Telecom and Media Dt. Telekom, France Telecom, Telecom Italia, Telefonica, Vivendi

Pharma and Chemicals Air Liquide, BASF, Bayer, Sanofi

Consumer Electronics Nokia, Philips, SAP, Siemens, Schneider

Consumer retail Anheuser Busch, Carrefour, Danone, L’Oreal, LVMH, Unilever

Basic Industry Arcelor Mittal, CRH, Saint Gobain, Vinci

Benelux Aegon, Anheuser Busch, Arcelor, ING, Philips, Unilever

France Air Liquide, Alstom, AXA, BNP, Carrefour, Crédit, Agricole,
France Telecom, Danone, L’Oreal, LVMH, Saint Gobain, Sanofi,
Schneider, Société Générale, SUEZ, Total, Vinci, Vivendi

Germany Allianz, BASF, Bayer, Daimler, Deutsche Bank, Deutsche Börse,
Dt. Telekom, E.ON, Münchner Rück, RWE, SAP, Siemens, VW

Italy Generali, ENEL, ENI, Intesa, Telecom Italia, Unicredito

Spain Banco Bilbao, Banco Santander, Iberdrola, Repsol, Telefonica

Others CRH, Nokia

Both matrices are constructed in the following way: The off-diagonal elements are nonzero if the
corresponding stocks belong to the same branch (Wb) or country (Wl). In each row, the nonzero
entries are identical and sum up to 1 (row-wise).

the effects of the dot-com bubble crisis around 2000 last until summer 2004,
since the test declines to apply model (2.11). In the two following years, Figure
2.1 depicts evidence to apply the model, since the blue line is often greater
than 1. However, roughly speaking, from the beginning of 2006 until the end of
the observation period the test indicates that a spatial model is inappropriate.
This in accordance with the financial crisis, that started in summer of 2006.
We continue our empirical analysis by looking at Value-at-Risk (VaR) forecasts
to see if our new specification test could also be used as a backtest in the spirit
of Ziggel et al. (2014) among others. Figure 2.4 depicts the VaR forecast with
standard normally distributed errors for the minimum variance optimal port-
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Figure 2.1: Rolling Window for T = 100

Rolling window parameter estimation for ρρρ for a window of size T = 100 in a data set of size T = 1861
and dimension n = 50. The number of Bootstrap repetitions is equal to 400. The blue line depicts
the ratio of the 95%-quantile of the limit distribution given in Lemma (C.1.4) over the test statistic S
from (2.3). The orange line is the accumulated spatial dependence parameter ρρρ within the L1−norm.

folio based on a rolling historical window of T = 50. We observe that in times
of moderate economic peaks (2004-2006), where the test provides statistical
evidence for a spatial model, the VaR forecasts also seem to be accurate. In
times of crises the test (2.6) rejects the null, such that both the spatial model
(2.11) and VaR forecasts seem to be inappropriate instruments to describe the
prevailing market situation. The facts that in time of a crisis both the SAR(3)
is rejected and a superproportional number of VaR-exceedances are observed,
are two consequences of high market volatility and cross-sectional dispersions
in the stock market, such that the proposed testing procedures can also be
applied as a VaR backtest.
Figure 2.2 is the analogon to Figure 2.1 under a GARCH(1,1) adjustment and
it depicts that the overall structure is in accordance with those from Figure 2.1.
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Figure 2.2: Rolling Window for T = 100 under GARCH(1,1) adjustment

Rolling window parameter estimation for ρρρ for a window of size T = 100 in a data set of size T = 1861
and dimension n = 50 under GARCH(1,1) adjustment. The number of Bootstrap repetitions is equal
to 400. The blue line depicts the ration of the 95%-quantile of the limit distribution given in Lemma
(C.1.4) over the test statistic S from (2.3). The orange line is the accumulated spatial dependence
parameter ρρρ within the L1−norm.

Beyond that, the GARCH(1,1) filter seems to point out the typical scope of
application of spatial models, that in times of economic crisis classical SAR(m)
models seem to be too restrictive and not complex enough. This is consistent
with the results given in Figure 2.3, which shows, that VaR-forecasts are less
violated in moderate economic times compared to an economic depression19.
Furthermore, the amount of clusters regarding VaR violations decreases from
Figure 2.4 compared to Figure 2.3, where there is less clustering of VaR vio-
lations. In bear markets, however, clustering is still clearly observable which
is in accordance with the findings that the extensive structure could not be
fully captured by the spatial model (2.11). Overall, our empirical investigation
19cf. roughly summer 2006 until end of the data set
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Figure 2.3: VaR-Forecasts for T = 50 under GARCH(1,1) adjustment

The figure depicts a Value-at-Risk forecast with standard normal distributed errors based on the
Euro Stoxx 50 from 2003 to 2009 in a rolling window of size 50 under a GARCH(1,1) adjustment.
The orange line represents the VaR-forecast based on the data. The blue line represents the returns.
A VaR violation is reported with a red dashed line at the bottom of that figure. The black line
indicates statistical significance to apply the spatial model (2.1). The VaR-level is chosen at 0.05
and the number of Bootstrap repetitions is equal to 400.

shows the tests’ ability to detect misspecifications for classical SAR models for
both the initial and for a GARCH adjusted data set.

2.6 Conclusion

We propose two specification tests for spatial models and analyze the size and
power of these tests. The proposed tests show good size and power properties
in finite samples for both initial data and GARCH adjusted data. An empirical
analysis of the Euro Stoxx 50 between 2003 and 2009 substantiates that bull
markets provide statistical evidence to apply a SAR(3) model. However, in
bear markets a simple spatial model does not capture the extensive structure
of relations and dependencies in the market. Accordingly, the test provided
statistical evidence for the empirical observation that both, the time after the
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Figure 2.4: VaR-Forecasts for T = 50

The figure depicts a Value-at-Risk forecast with standard normal distributed errors based on the
Euro Stoxx 50 from 2003 to 2009 in a rolling window of size 50. The orange line represents the
VaR-forecast based on the data. The blue line represents the returns. A VaR violation is reported
with a red dashed line at the bottom of that figure. The black line indicates statistical significance
to apply the spatial model (2.1). The VaR-level is chosen at 0.05 and the number of Bootstrap
repetitions is equal to 400.

dot-com bubble and the time around the Lehman Brothers bankruptcy could
not be captured correctly by a spatial model which models only a general,
branches and national dependence. For that reason it seems to be useful to
introduce a test which provides statistical evidence if a given data set fulfills
the assumptions of a classical SAR(m) model. To the best of the authors
knowledge this is the first specification test for a classical SAR(m).
An interesting task for further research would be to see if the new specifi-
cation test can be reasonably combined with the test for structural changes
proposed in Wied (2013). Maybe, structural changes are a key reason for mis-
specification. Also, one could think about extending the ideas in this paper
to extensions of the SAR model including additional exogenous regressors.
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CHAPTER 3
Testing for Relevant Dependence Change in

Financial Data: A CUSUM Copula Approach

3.1 Abstract

We propose a new non-parametric test for detecting relevant breaks in copula
functions. We assume that the data is driven by two non-equal copulas C1

and C2. Under the null hypothesis, the copula difference within an appropri-
ate norm is smaller than a certain positive adjustable threshold ∆. Within
the alternative hypothesis, the copula difference exceeds the fixed value ∆.
The test is based on a cumulative sum approach of the empirical copula with
sequentially estimated marginals. We propose a bootstrap procedure to com-
pute critical values. The Monte Carlo simulation indicates that the test results
in a reasonable sized and powered testing procedure. A real data application
of the DAX30 up to cross sectional dimension N = 30 shows the test’s ability
to detect relevant break points.

3.2 Introduction

It is well known that dependencies within a portfolio increase in times of fi-
nancial crisis (Aloui et al., 2011). From a portfolio manager point of view
the increase of the dependencies is disadvantageous, which is known as the
diversification effect. In fact, investors are interested in decreasing the depen-
dencies by rescheduling the portfolio to lower the risk of losses. One of many
approaches to detect those changes in the dependence structure is to test for
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changes in the copula function. For instance, Brodsky et al. (2009); Busetti F.
(2011); Krämer & van Kampen (2011) have designed nonparametric tests for
breaks in the copula in a fixed point considering N -dimensional random vec-
tors. Bücher (2013) extended their approaches by testing for overall constancy
of the copula in the case of known marginal distributions, while the test of
constancy suggested in Bücher et al. (2014) considers sequentially estimated
marginals. Wied et al. (2013) propose a test for changes in Spearman’s rho,
Dehling et al. (2017) consider a test for changes in Kendall’s tau. Manner et al.
(2019) construct a parametric test for detecting breaks in the parameters of
factor copula models. The above mentioned tests can be applied to detect
and quantify contagions between different financial markets or to construct
optimal portfolios.
All the proposed methods test for the "classical" hypothesis, meaning that they
test for stationarity in a sequence of random vectors {Xj}Tj=1 with Xj ∈ RN ,
i.e.

H0 : X1, X2, . . . , XT ∼ F.

with the alternative in the simplest case of one structural breakpoint in time
(Dette & Wied, 2016)

H1 : X1, X2, . . . , Xj ∼ F1 and Xj+1, . . . , XT ∼ F2,

where the distribution function changes from F1 to F2 with F1
d
6= F2 at time

j ∈ {1, . . . T}, i.e. F1 and F2 are not equal in distribution.
A general issue of such hypothesis testing is the consistency problem, i.e. any
consistent test will detect any arbitrary small change in the parameters if the
sample size is sufficiently large. This discrepancy was mentioned for the first
time in 1938 by Berkson (1938).
Beyond that, in the case of small changes the rejection of the null might result
in an unnecessary break point estimation and an expensive adjustment of the
considered model. In practice, small changes in the data might not be crucial,
since they do not necessarily add up to significant changes. Thus, the gain
derived by the detected break point could be negatively overcompensated by
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the costs of adjusting the model (e.g. in case of portfolio theory these can be
interpreted as transaction costs) or to be short and to the point: Significance
does not necessarily imply relevance.
Therefore, we impose the more realistic assumption that our sequence of ran-
dom vectors {Xj}Tj=1 with Xj ∈ RN with j ∈ {1, . . . T} is driven by the distri-
bution function F1 and F2, i.e. X1, X2, . . . , Xj ∼ F1 and Xj+1, . . . , XT ∼ F2

for some j ∈ {1, . . . T} such that

H0 : ‖F1 − F2‖ ≤ ∆ versus H1 : ‖F1 − F2‖ > ∆, (3.1)

where ‖.‖ is an appropriate norm and ∆ > 0 a fixed adjustable size. The
framework in (3.1) allows for a break in the data (classical break point tests
do not) and the adjustable size ∆ could serve as a measure to control for the
extent of the change.
Dette & Wied (2016) proposed a general approach to this problem. Later
on, Dette et al. (2018) and Dette et al. (2018) extended this to the detection
of changes in second-order characteristics and to high-dimensional models,
respectively. Motivated by their analysis, we are interested in augmenting the
literature of testing for relevant breaks in the copula of random vectors by a
nonparametric testing procedure that detects relevant changes in the copula
function with sequentially estimated marginal distributions. Thus, the testing
problem is given by

H0 : ‖C1 − C2‖ ≤ ∆ versus H1 : ‖C1 − C2‖ > ∆,

where C1 6= C2 are copulas and ∆ > 0 fixed. As the copula measures the de-
pendence between random variables, we therefore test whether the dependence
structure changes more than some given threshold ∆.
Coming back to portfolio management, a small increase in the dependence
structure of a portfolio does not necessarily indicate the need to reschedule
the portfolio, since transaction costs could overcompensate the benefits of the
new, more risk diversified portfolio. Only a relevant change in the dependence
structure, i.e. the copula difference within a certain norm is larger than ∆,
should result in rescheduling the portfolio.

37



CHAPTER 3. TESTING FOR RELEVANT DEPENDENCE CHANGE IN
FINANCIAL DATA: A CUSUM COPULA APPROACH

In our empirical application we analyzed the German DAX30 data of cross
sectional dimension N = 30 between January 2003 and July 2015. Here, ∆
could be interpreted as the largest admissible copula difference such that the
relevant change hypothesis is not rejected. Every other choice of ∆ that is
smaller leads to a rejection of the null hypothesis. As a result, ∆ can also
be considered as a measure that quantifies the extent of a crisis (given that
dependencies of financial returns are usually larger in times of crises).
The rest of the paper is structured as follows. Section 3.3 introduces the
considered null hypothesis and test statistic, where Section 3.4 presents the
bootstrap procedure to determine critical values to perform the test. Results
from the Monte Carlo simulations can be found in Section 3.5. Section 3.6
presents our empirical application and Section 3.7 concludes.

3.3 Relevant change and test statistic

In this section we introduce the null hypothesis, the assumptions and the
the relevant change characteristic of our testing procedure in a fully non-
parametric setting.
Let X1, . . . , XT denote N -dimensional random vectors and U1, . . . ,UT the
vector of the marginal distributions, i.e. Ut := (F1(Xt1), . . . , FN (XtN )) for
t = 1, ..., T where Fi(·) is the i-th marginal such that

U1, . . . ,UbsT c ∼ C1(u)

UbsT c+1, . . . ,UT ∼ C2(u),
(3.2)

where u ∈ [0, 1]N and C1, C2 : [0, 1]N → [0, 1] are copulas which capture the
dependencies between the components of X1, ..., XbsT c and XbsT c+1, ..., XT ,
respectively. Here, bsT c denotes the change point in time, where T is the
size of the sample and s ∈ (0, 1). Note, that the model set-up (3.2) is valid
under both the null and the alternative hypothesis. In order to achieve reli-
able results, classical concepts of dependencies (e.g. U1, ....,UT is stationary
and strong mixing with coefficients converging sufficiently fast to 0) are not
applicable any more in the setting of detecting relevant changepoints, because
the general model set-up (3.2) of relevant changepoint analysis allows the se-
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quence U1, ....,UT to be non-stationary. That is why we have to impose the
assumption of a triangular array, that is α-mixing1.
To aggregate over u, we consider the L2-norm ‖·‖L2 . Thus, the null hypothesis
of no relevant change in the copula function is given by

H0 : ‖C1(u)− C2(u)‖L2 ≤ ∆

versus the alternative

H1 : ‖C1(u)− C2(u)‖L2 > ∆,

where ‖.‖L2 is the L2-norm and ∆ > 0 fixed. For every u ∈ [0, 1]N and
t ∈ (0, 1) the cumulative sum (CUSUM) type process for detecting changes in
the copula is then

Û∗T (t,u) := t(1− t)

 1
btT c

btTc∑
i=1

Z
1:btTc
i (u)− 1

T − btT c

T∑
i=btTc+1

Z
btTc+1:T
i (u)

 (3.3)

with Zt1:t2
i (u) := 1{F̂ t1:t2

1 (Xi1) ≤ u1, . . . , F̂
t1:t2
N (XiN ) ≤ uN}, t1 < t2 ∈

{1, . . . , T} for i = 1, . . . , T and 1{·} the indicator function. Here F̂ t1:t2
j (·)

is the empirical distribution function, using data information between t1 and
t2 and is defined as

F̂ t1:t2
j (x) := 1

t2 − t1 + 1

t2∑
i=t1

1{Xij ≤ x}, j = 1, ..., N.

For the derivation of our testing procedure we now consider ÛT (t,u) defined
as

ÛT (t,u) := t(1− t)

 1
btT c

btT c∑
i=1

Zi(u)− 1
T − btT c

T∑
i=btT c+1

Zi(u)

 , (3.4)

where Zi(u) := 1{F1(Xi1) ≤ u1, . . . , FN (XiN ) ≤ uN}, t1 < t2 ∈ {1, . . . , T}
with Fi as known marginals, i = 1, . . . , T . For fixed s ∈ (0, 1), a straightfor-

1Due to the fact that this discussion is very technical, the details can be found in the
corresponding Appendix.
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ward calculation yields2

lim
T→∞

E[ÛT (t,u)] =

s(1− t) (C1(u)− C2(u)) , s ≤ t

t(1− s) (C1(u)− C2(u)) , s > t,
(3.5)

where we have to distinguish between data before and after the breakpoint
bsT c. In the next step, we want to eliminate the quantile and time dimension
u and t, respectively. For this purpose, we consider the L2-norm and obtain

L(t) := lim
T→∞

E[‖ÛT (t,u)‖2L2 ] =

s
2(1− t)2‖C1(u)− C2(u)‖2L2 , t > s

(1− s)2t2‖C1(u)− C2(u)‖2L2 , t ≤ s,

for every norm of the type ‖f(·,u)‖2L2 :=
∫

[0,1]N f(·,u)2du. Integrating out t
yields

∫ 1

0
L(t)dt = s2(1− s)2

3 ‖C1(u)− C2(u)‖2L2 . (3.6)

Thus, integrating out t from the empirical counterpart L̂T (t) := ‖ÛT (t,u)‖2L2

yields the test statistic κ̂T for the initial problem of detecting the relevant
change

κ̂T :=
1∫

0

L̂T (t)dt. (3.7)

Due to the fact that our test statistic mainly consists of an integral over t, we
disregard the possibility to trim the sample in some way, as it is sometimes
done in the breakpoint literature.
We use ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 as the natural argmax estimator for the

changepoint location fraction s3. We reject the null hypothesis of no relevant
change if the test statistic (3.7) less the adjusted centering s2(1−s)2

3 ‖C1(u) −
C2(u)‖2L2 deviates too far from zero. If the marginal distributions are known,
the limiting distribution of the process

2For the very detailed derivation of the testing procedure we refer to the corresponding
Appendix.

3Note, ŝ is a superconsistent estimator of the changepoint fraction s with convergence rate
T (Dette & Wied, 2016).
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√
T

 1∫
0

L̂T (t)dt− s2(1− s)2

3 ‖C1(u)− C2(u)‖2L2

 (3.8)

is normal which is shown in the corresponding Appendix.
Due to the high computational effort in high dimensions using the L2-norm
it could be reasonable to only test for specific points q in the copula, e.g. q
could be chosen as the value that maximizes the copula difference, i.e. q :=
supu∈[0,1]N |C1(u) − C2(u)|. For this purpose we fix q = (q1, . . . , qN )′. What
we call quantile counterpart of the process (3.8) is then given by

√
T

 1∫
0

L̂q
T (t)dt− 1

3s
2(1− s)2(C1(q)− C2(q))2

 , (3.9)

where L̂T (t) from (3.8) is replaced by its quantile version L̂q
T (t) := (ÛT (s,q))2

for q ∈ [0, 1]N fixed. Accordingly, the test statistic κ̂q
T is then defined as

κ̂q
T :=

1∫
0

L̂q
T (t)dt. (3.10)

Since the limit distributions of the processes (3.8) and (3.9) are not known
in case of unknown marginals, we suggest a bootstrap procedure. The null
hypothesis will be rejected if the expression in (3.8) or (3.9) is greater than
the value of the corresponding quantile, which can be obtained by applying
the bootstrap procedure presented in Section 3.4. The test holds the size level
if the fixed adjustable threshold ∆ is chosen as ‖C1(u)− C2(u)‖L2 or for the
quantile case |C1(u) − C2(u)|. For ∆ smaller than this threshold the test is
oversized while a larger ∆ results in a lower rejection rate. In the application
later on, we set q = 0.6 · (1, . . . , 1), which is in line with our Monte Carlo
simulations. An ∆ chosen in this way can be used, for example, to assess the
extent of a crisis.
Our Monte Carlo simulations below confirm that the bootstrap results in a
reasonably sized and powered testing procedure. For the bootstrap we consider
the L2-norm, but this can be easily adjusted to the quantile version simply by
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interchanging the L2-norm with the absolute value | · | for fixed q ∈ [0, 1]N .

3.4 Bootstrap and Testing procedure

The bootstrap is based on the natural estimators of the respective terms of
the process (3.8) or (3.9). We assume that our sample {Xi}Ti=1 is serially inde-
pendently distributed or residual data from pre-estimated time series models
e.g. GARCH adjusted data. Further, {Xi}Ti=1 is compounded of {Xi}bsT ci=1

and {Xi}Ti=bsT c+1, such that there is only one breakpoint location in bsT c,
s ∈ (0, 1) and {Xi}bsT ci=1 ∼ C1(F (X)) and {Xi}Ti=bsT c+1 ∼ C2(F (X)). Then,
the bootstrap procedure suggests the following course of action:

i) Estimate the breakpoint location bsT c by bŝT c, where ŝ is determined
by

ŝ := argmax
s∈(0,1)

‖Û∗T (s,u)‖L2 . (3.11)

Sample separately with replacement from {Xi}bŝT ci=1 and {Xi}Ti=bŝT c+1 to
obtain B bootstrap samples {X(b)

i }Ti=1, for b = 1, . . . , B.

ii) Estimate the break point location bŝbT c for each bootstrap sample

{X(b)
i }Ti=1, for b = 1, . . . , B, using adjusted (3.11).

iii) Estimate the copula difference ∆b
C = ‖Ĉ1:bŝbT c

b (u)−ĈbŝbT c+1:T
b (u)‖L2 for

each bootstrap sample {X(b)
i }Ti=1, for b = 1, . . . , B, where Ĉt1:t2

b is the
empirical copula estimate with sequentially estimated marginals, using
the data from t1 to t2.

iii) Calculate the bootstrap versions of the centered expressions (3.8) or (3.9)

K(b) :=
√
T

(∫ 1

0
L̂∗bT (t)dt− 1

3 ŝ
2
b(1− ŝb)2∆b

C

)
,

with L̂∗bT (t) := ‖Û∗bT (s,u)‖2L2 , where Û∗bT (s,u) is the bootstrap analogue
of (3.3), using {X(b)

i }Ti=1.
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iv) Compute B versions of K(b) and determine the critical value c such that

1
B

B∑
b=1

1{K(b) > c} != q,

where q ∈ (0, 1).

With the above described bootstrap procedure we can calculate critical values
for (3.8) and (3.9). The testing procedure is as follows: We reject the null of
no relevant change ‖C1(u)− C2(u)‖L2 ≤ ∆ if

κ̂T >
ŝ2(1− ŝ)2

3 ∆2 + b1−α√
T
, (3.12)

where b1−α is the 1− α quantile of the bootstrap distribution. Note that the
critical values obtained by the bootstrap remain stochastically bounded both
under the null and the alternative hypothesis, as the test statistic is always
correctly centered.
The bootstrap and testing procedure can be easily adapted for the quantile
case by adapting step i) - iii). The test given in equation (3.12) is an exact
level α test if ∆ is chosen as the copula difference ||C1(u) − C2(u)||L2 or
|C1(q) − C2(q)|. Otherwise, the size is smaller than α. In particular, κ̂T
converges weakly to a degenerated random variable if the copula difference
is equal to zero and the Davies problem is present, i.e. the break point is
unidentified under the null hypothesis. Consequently, the level of the proposed
tests have practically size zero, whereas classical stationarity tests hold the
asymptotic α-level. Thus, the power of the classical tests is usually larger
than the power of the relevant change tests considered here. For practitioners
we suggest to run a classical test first, e.g. Bücher (2013) for the case of
known marginals and Bücher et al. (2014) in the case of sequentially estimated
marginals. If the test rejects the null of stationarity, i.e. the copula difference
is significantly larger than zero, estimate the break fraction and apply the
proposed relevant change test. This two-step procedure has the drawback,
however, that the statistical properties are not clear.
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3.5 Quantile- and L2-Simulations

In this section we want to analyze finite sample properties of our proposed
relevant testing procedure, where we simulate multivariate data up to dimen-
sion N = 30 using a factor copula model following Oh & Patton (2017). We
consider both serially independently distributed and residual data.

3.5.1 Serially Independently Distributed Data

In this subsection we conduct two major Monte Carlo simulations. First, we
consider the following simple DGP

Xt = [X1t, X2t]′ = N2 (0,Σt(ρ)) , (3.13)

where N2(0,Σt(ρ)) with t = 1, ..., T describes the bivariate normal distri-
bution with expectation vector zero and covariance matrix Σt(ρ) =

(
1 ρ
ρ 1

)
and ρ ∈ [−1, 1]. We set ρ equal to −0.3 for t = 1, ..., T2 and ρ = 0.8 for
t = T

2 + 1, ..., T . Thus, the breakpoint bsT c is chosen at T
2 . We restrict the

size analysis in this subsection to the two dimensional case N = 2. The fol-
lowing size study presents both L2-norm based results and an analysis where
we consider the specific point q = (0.6, 0.6). Note, the closer the quantile is to
its boundaries, i.e. 0 or 1, the more observations are needed. Critical values of
our tests are computed using the bootstrap algorithms from Sections 3.4 with
B = 300 bootstrap replications. The tests are performed at the α = 0.05, 0.1
significance level using 301 Monte Carlo replications. The computations were
implemented in Matlab, parallelized and performed using CHEOPS, a scien-
tific High Performance Computer at the Regional Computing Center of the
University of Cologne (RRZK).
Table 3.1 presents the results of the relevant change tests under the null with
∆ chosen as the estimated copula difference |C1(q) − C2(q)|, where C1 and
C2 are estimated by the consistent copula estimator

Ĉ(u) = 1
t2 − t1

t2∑
i=t1

1{F̂ t1:t2
1 (Xi1) ≤ u1, . . . , F̂

t1:t2
N (XiN ) ≤ uN}, (3.14)
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using realizations {X1, . . . XbŝT c} and {XbŝT c+1, . . . XT }. The breakpoint bŝT c
is estimated by

ŝ := argmax
s∈(0,1)

|ÛT (s,q)|. (3.15)

Table 3.2 reports the results of the relevant change tests under the null,
where the functional difference between the copulas is determined by the
L2-norm. Similar to the quantile case, we consider for the size analysis
∆ := ‖C1(u)− C2(u)‖L2 and accordingly ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Overall,

the tests show good size properties and converges to the predetermined rejec-
tion level α if T gets larger. For smaller T , the differences to α are slightly,
but not dramatically larger and it does not appear necessary to consider size
corrections.

Table 3.1: Size Analysis using Quantile Version 1/4

T = 300 T = 500 T = 750 T = 1000

q95 0.06 0.06 0.04 0.05
q90 0.12 0.11 0.10 0.10

Table 3.1 reports the rejection rate of the relevant change test for data generated with the DGP
described in (3.13) using B = 300 bootstrap replications. The copula difference is evaluated at
q = (0.6, 0.6). In total, we conducted 301 Monte Carlo replications.

Table 3.2: Size analysis using the L2-norm 1/2

T = 300 T = 500 T = 750 T = 1000

q95 0.06 0.06 0.04 0.06
q90 0.11 0.11 0.10 0.12

Table 3.2 reports the rejection rate of the relevant change test for data generated with the DGP
described in (3.13) using B = 300 bootstrap replications. The copula difference is determined using
the L2-norm. In total, we conducted 301 Monte Carlo replications.

For the power analysis, we use the quantile based test and consider two dif-
ferent scenarios. In the first scenario we keep ∆ fix and vary ρ in the DGP
(3.13). In the second scenario we vary ∆ and keep the DGP (3.13) fixed.
The upper panel of Table 3.3 depicts the first scenario. In this case we deter-
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mine ∆0 as the copula difference at the point q = (0.6, 0.6) generated by the
DGP (3.13) with ρ = −0.3 before and ρ = 0.8 after the break point at T

2 . We
now vary ρ ∈ {−0.4,−0.5,−0.6,−0.7} before the break point and the results
of the rejection rate can be seen in the upper panel of table 3.3 for different
sample sizes.
The lower panel of table 3.3 depicts the second scenario. After determining the
quantile value under the null, we decrease the tolerance ∆ in the test (3.12)
by ∆ = d ·∆0 with d ∈ {0.95, 0.9, 0.85, 0.8}.
Note, that in both cases the rejection rate of the relevant change test holds the
size level α and the rejection rate tends to 1 for increasing sample size T and
decreasing d or ρ. This is the expected behavior as the null and alternative
hypothesis differ the more the smaller d or ρ are. In the second major MC

Table 3.3: Power analysis

Power Analysis varying ρ

ρ = −0.3 ρ = −0.4 ρ = −0.5 ρ = −0.6 ρ = −0.7

T = 300 0.06 0.48 0.83 0.98 1.00
T = 500 0.06 0.62 0.94 1.00 1.00
T = 750 0.04 0.69 0.98 1.00 1.00
T = 1000 0.05 0.84 0.99 1.00 1.00

Power Analysis varying ∆

∆ = ∆0 ∆ = 0.95 ·∆0 ∆ = 0.9 ·∆0 ∆ = 0.85 ·∆0 ∆ = 0.8 ·∆0

T = 300 0.06 0.31 0.63 0.88 0.97
T = 500 0.06 0.33 0.75 0.94 1.00
T = 750 0.04 0.36 0.83 0.96 1.00
T = 1000 0.05 0.42 0.86 1.00 1.00

Table 3.3 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (3.13) using B = 300 bootstrap replications. The copula difference is evaluated
at q = (0.6, 0.6). Varying ∆ = d · ∆0, where d = {0.95, 0.9, 0.85, 0.8} (lower panel) and ρ =
{−0.4,−0.5,−0.6,−0.7} in Σt(ρ) (upper panel) for t = bT2 c + 1, ..., T . In total, we conducted 301
Monte Carlo repetitions.

simulation, we consider our data to be jointly distributed with a one factor
copula model following Oh & Patton (2017), where the marginal distributions
are in general unknown and the copula is implied by the following factor
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structure

Xt = [X1t, . . . , XNt]′ = βββtZ + qqq, (3.16)

with βββt = βt ·(1 . . . , 1)′ is a parameter vector of size N , Z i.i.d.∼ Skew t
(
ν−1, λ

)4
and qqq = [q1t, . . . , qNt]′ with qit i.i.d.∼ t

(
ν−1) for i = 1, . . . , N and t = 1, . . . , T .

We fix ν−1 = 0.25 and λ = −0.5, such that our model is parametrized by the
single factor loading θt = βt for t = 1, . . . , T . The DGP in (3.16) provides
left skewed and fat tailed data, which is a common property in financial data
applications and also in line with our application in Section 5. We construct
a break at T

2 , where θ0 denotes the parameter value of the model before and
θ1 the parameter value after the break. For our simulation study we choose
θ0 = 1 and θ1 = 2. Note again, the test is an exact level α test if and only if ∆
is chosen as the copula difference. Table 3.4 reports the results of the relevant
change test under the null, where the functional difference is computed with
the help of the L2-norm. Table 3.4 shows, that the test using the proposed
bootstrap procedure holds the size level using the DGP (3.16). As expected,
the size converges to the corresponding rejection level α ∈ {0.05, 0.1} as T gets
larger. This characteristic also holds for Table 3.5. In this case, we set ∆ equal

Table 3.4: Size analysis using the L2-norm 2/2

T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.03 0.04 0.04 0.04
q90 0.07 0.08 0.11 0.11

N = 3 q95 0.03 0.05 0.04 0.05
q90 0.06 0.10 0.12 0.10

N = 5 q95 0.02 0.04 0.07 0.05
q90 0.04 0.09 0.13 0.09

Table 3.4 shows the rejection rate of the relevant change test for the DGP (3.16) using B = 300
bootstrap replication. In total, we conducted 301 Monte Carlo repetitions.

to the copula difference evaluated at the specific point q = 0.6·(1, . . . , 1), where
(1, . . . , 1)′ is a N -dimensional vector. The experiment is repeated in Table
3.6 for q = 0.1 · (1, . . . , 1). Considering such particular quantiles provides

4As in Oh & Patton (2017) this refers to the skewed t-distribution by Hansen (1994).
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the advantage to conduct high dimensional data analysis with comparatively
moderate computational efforts. Thus, the relevant change test is especially
suitable for high dimensional data applications. In practice, for instance, the
specific quantile q can be chosen as the quantile that maximizes the copula
difference. The simulations show that a higher T is necessary to avoid size
distortions if q is close to 0. Table 3.7 presents size results for the setting of
Table 3.5 with the modification that the break already occurs at T

4 . Here, the
empirical size is slightly further away from the nominal size, but the differences
are minor.
The size analysis in the factor copula setting is completed by analyzing the
two-step procedure mentioned at the end of Section 3. This means we first
perform the non-parametric copula constancy test proposed in Bücher et al.
(2014) and state the rejection frequency. Then, for the rejected runs, we apply
the relevant change test, where ∆ is chosen as the estimated copula difference,
and again state the frequency of rejections, cf. Table 3.8. The frequency in the
first step gives the empirical power of the Bücher et al. (2014) test, which tends
to 1 for increasing T . The frequency in the second step gives the empirical
size of the relevant change test, which is close to the nominal size.

Table 3.5: Size analysis using quantile version 2/4

T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.06 0.04 0.05 0.06
q90 0.14 0.10 0.13 0.12

N = 3 q95 0.08 0.07 0.06 0.06
q90 0.15 0.13 0.12 0.12

N = 5 q95 0.04 0.04 0.05 0.05
q90 0.10 0.10 0.13 0.12

N = 30 q95 0.03 0.04 0.05 0.06
q90 0.08 0.10 0.09 0.11

Table 3.5 reports the rejection rate of the relevant change test for data generated with the DGP
described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.6 · (1, . . . , 1)′. The break is constructed at T

2 . In total, we conducted 301 Monte Carlo
repetitions.

For the power analysis of the quantile based test we consider two different
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Table 3.6: Size analysis using quantile version 3/4

T = 1000 T = 2000 T = 4000

N = 2 q95 0.08 0.09 0.08
q90 0.18 0.17 0.16

N = 3 q95 0.09 0.10 0.07
q90 0.17 0.18 0.15

N = 5 q95 0.06 0.09 0.05
q90 0.12 0.19 0.13

N = 30 q95 0.04 0.05 0.05
q90 0.11 0.12 0.12

Table 3.6 reports the rejection rate of the relevant change test for data generated with the DGP
described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.1 · (1, . . . , 1)′. The break is constructed at T

2 . In total, we conducted 301 Monte Carlo
repetitions.

Table 3.7: Size analysis using quantile version 4/4

T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.06 0.08 0.04 0.06
q90 0.14 0.15 0.11 0.12

N = 3 q95 0.07 0.06 0.05 0.06
q90 0.15 0.13 0.10 0.11

N = 5 q95 0.06 0.06 0.05 0.05
q90 0.14 0.13 0.12 0.11

N = 30 q95 0.06 0.08 0.07 0.07
q90 0.09 0.13 0.13 0.12

Table 3.7 reports the rejection rate of the relevant change test for data generated with the DGP
described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.6 · (1, . . . , 1)′. The break is constructed at T

4 . In total, we conducted 301 Monte Carlo
repetitions.

scenarios. First, we set a fixed ∆ while we increase the copula difference by
increasing the parameter θ1 after the break. Second, we keep the parameter
values θ0 = 1 and θ1 = 2 fixed and decrease ∆, while the starting point for ∆
is equal to the implied copula difference at q = 0.6 · (1, . . . , 1)′.
Table 3.9 reports the rejection rate of the test (3.12) using the 95%−quantile
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Table 3.8: Pretesting

T = 300 T = 500

Pre Delta Pre Delta

N = 2 0.43 0.09 0.65 0.08
N = 3 0.63 0.05 0.89 0.04
N = 5 0.76 0.03 0.95 0.04

Table 3.8 shows the rejection rate of the relevant change test for the DGP (3.16) with a break at
T
2 with θ0 = 1 and θ1 = 1.6 using B = 300 bootstrap replication on a significance level of 0.05. In
total, we conducted 301 Monte Carlo repetitions. First we performed the Bücher et al. (2014) test
(Pre) and for the rejected runs we applied the relevant change test (Delta). The ∆ is chosen as the
estimated copula difference.

of the proposed bootstrap distribution in Section 3.4. The first column de-
picts the rejection rate under the null hypothesis. The values of the other
columns are obtained by increasing the corresponding copula parameter θ1 ∈
{2.2, 2.4, 2.6, 2.8}, while ∆ remains fixed to the initial copula difference, i.e.
θ0 = 1 and θ1 = 2.
Table 3.9 illustrates that the power of the test (3.12) generally increases not
only if T but also if the cross sectional dimension N increases. For example,
the scenario N = 30, T = 750 and θ1 = 2.6 always rejects the null hypothesis,
i.e. the rejection rate is equal to 1. This is also expected, since we increase
the parameter in the factor copula model (3.16) for each component. Conse-
quently, the error is effectively added up which leads to the gain in power.
Table 3.10 provides the power analysis for the setting of Table 3.9 for a break
at T

4 . According to the expectations, the table shows that the power increases
for an increasing θ or T . However, the empirical power is lower compared to
the setting with a break at T

2 .
Finally, Table 3.11 analyzes the rejection rate if ∆ decreases while the cop-

ula difference remains fixed. The value ∆0 is equal to the copula difference
computed at the point q = 0.6 · (1, . . . , 1)′. Now, we decrease ∆ stepwise,
i.e. ∆ = d · ∆0 with d ∈ {0.95, 0.9, 0.85, 0.8, 0.75}. Table 3.11 shows, that
the rejection rate tends to 1 if T increases. Moreover, the power is generally
higher for larger N .
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Table 3.9: Power analysis for residual data

θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8

N = 2 T = 300 0.06 0.46 0.70 0.80 0.89
T = 500 0.04 0.48 0.75 0.87 0.93
T = 750 0.05 0.56 0.81 0.93 0.97
T = 1000 0.06 0.57 0.87 0.97 1.00

N = 3 T = 300 0.08 0.49 0.70 0.86 0.95
T = 500 0.07 0.44 0.75 0.89 0.96
T = 750 0.06 0.56 0.81 0.97 0.99
T = 1000 0.06 0.65 0.94 0.99 1.00

N = 5 T = 300 0.04 0.42 0.70 0.86 0.95
T = 500 0.04 0.50 0.82 0.94 0.99
T = 750 0.05 0.60 0.95 1.00 1.00
T = 1000 0.05 0.67 0.94 1.00 1.00

N = 30 T = 300 0.03 0.56 0.80 0.93 0.97
T = 500 0.04 0.55 0.92 0.99 1.00
T = 750 0.05 0.68 0.97 1.00 1.00
T = 1000 0.06 0.78 0.99 1.00 1.00

Table 3.9 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated
at q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (3.16). In total,
we conducted 301 Monte Carlo repetitions.

Table 3.10: Power with break at T
4

θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8

N = 2 T = 1000 0.08 0.27 0.53 0.72 0.86
T = 2000 0.08 0.41 0.76 0.94 0.98

N = 3 T = 1000 0.07 0.30 0.71 0.82 0.95
T = 2000 0.08 0.45 0.84 0.96 0.99

N = 5 T = 1000 0.06 0.33 0.67 0.90 1.00
T = 2000 0.07 0.51 0.89 0.99 1.00

Table 3.10 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated
at q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (3.16) where the
break point ist constructed at T

4 . In total, we conducted 301 Monte Carlo repetitions.
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Table 3.11: Power analysis for varying ∆

∆ = ∆0 0.95 ·∆0 0.9 ·∆0 0.85 ·∆0 0.80 ·∆0 0.75 ·∆0

N = 2 T = 300 0.06 0.18 0.36 0.57 0.72 0.95
T = 500 0.04 0.19 0.37 0.55 0.72 0.94
T = 750 0.05 0.15 0.35 0.56 0.74 0.95
T = 1000 0.06 0.22 0.43 0.64 0.80 0.98

N = 3 T = 300 0.08 0.17 0.37 0.57 0.77 0.95
T = 500 0.07 0.15 0.32 0.54 0.73 0.96
T = 750 0.06 0.20 0.41 0.64 0.84 0.97
T = 1000 0.06 0.17 0.45 0.60 0.87 0.98

N = 5 T = 300 0.04 0.15 0.29 0.51 0.69 0.90
T = 500 0.04 0.16 0.35 0.56 0.75 0.94
T = 750 0.05 0.19 0.43 0.63 0.83 0.99
T = 1000 0.05 0.17 0.43 0.73 0.92 1.00

N = 30 T = 300 0.03 0.18 0.32 0.47 0.65 0.88
T = 500 0.04 0.15 0.34 0.55 0.76 0.95
T = 750 0.05 0.15 0.42 0.66 0.84 0.98
T = 1000 0.06 0.19 0.50 0.75 0.91 1.00

Table 3.11 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (3.16) using B = 300 bootstrap replications and 301 Monte Carlo repetitions. The
third column ∆0 depicts the size. For the Power Analysis (see column 4 − 8) the copula difference
is evaluated at q = 0.6 · (1, . . . , 1)′, while ∆ = d ·∆0 with d ∈ {1, 0.95, 0.9, 0.85, 0.8, 0.75}.

3.5.2 Residual Data

In this subsection we consider residual data Xt from pre-estimated time series
models for t = 1, . . . , T . For our simulation we consider a GARCH(1,1) model,
i.e.

rit = σitXit

σ2
it = α0 + α1r

2
i,t−1 + β1σ

2
i,t−1

(3.17)

for i = 1, . . . , N and t = 1, . . . , T . To get serial correlated data we first simulate
residual data using the factor copula model (3.16) with a break constructed
at T

3 and θ0 = 1 and θ1 = 2. Then, we transform the residual data in serial
correlated data rit using the GARCH(1,1) model with fixed parameter values
α0 = 1

10 , α1 = 1
15 and β1 = 1

3 for i = 1, . . . , N and t = 1, . . . , T .
With the simulated serial correlated data rit we estimate the time series
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models using a GARCH(1,1) model and determine the residual data Xit for
i = 1, . . . , N , which is used to perform the test. We vary the sample size
T = 1000, 2000, 4000 and cross sectional dimension N = 3, 5, 10. The results
can be seen in Table 3.12, which indicates that the test using residual data
holds the size level.
Table 3.13 presents size results for the case of breaks in the GARCH pa-
rameters, where the GARCH residuals are calculated by means of the known
GARCH parameters. Here, the coefficient β from (3.17) increases from 0.4 to
0.7 at T

2 . Also in this case, the empirical size is close to the nominal size.
Finally, the power of our test in the case of GARCH residuals (with constant
parameters) is examined in Table 3.14. The power is slightly lower than in the
case without GARCH effects (Table 3.9), but also converges to 1 for increasing
θ1.

Table 3.12: Size using quantile version for GARCH-data

T = 1000 T = 2000 T = 4000

N = 2 q95 0.06 0.07 0.06
q90 0.15 0.14 0.12

N = 3 q95 0.05 0.07 0.06
q90 0.12 0.13 0.13

N = 5 q95 0.05 0.06 0.06
q90 0.11 0.13 0.11

N = 10 q95 0.06 0.05 0.05
q90 0.11 0.10 0.10

Table 3.12 reports the rejection rate of the relevant change test where residual data from pre-
estimated GARCH(1,1) models is considered. The copula difference is evaluated at q = 0.6 ·
(1, . . . , 1)′. In total, we conducted B = 300 bootstrap replications and 701 Monte Carlo repeti-
tions.

3.6 Application

In this section, we apply the quantile based test to a multivariate data set of
cross-sectional dimension N = 30. First, we apply a GARCH(1, 1) filter to
the daily aggregated stock log-returns over a time span ranging from January
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Table 3.13: Size using quantile version for GARCH-data with breaks

T = 1000 T = 2000 T = 4000

N = 2 q95 0.04 0.06 0.05
q90 0.09 0.09 0.11

N = 3 q95 0.03 0.05 0.05
q90 0.08 0.11 0.09

N = 5 q95 0.03 0.06 0.05
q90 0.08 0.12 0.11

N = 10 q95 0.04 0.06 0.07
q90 0.13 0.14 0.13

Table 3.13 reports the rejection rate of the relevant change test where residual data from pre-
estimated GARCH(1,1) models is considered. The coefficient of β1 increases from 0.4 to 0.7 for each
time series at T

2 . The copula difference is evaluated at q = 0.6 · (1, . . . , 1)′. In total, we conducted
B = 300 bootstrap replications and 701 Monte Carlo repetitions.

2003 to July 2015 from the German DAX30, implying T = 3200 and N = 305.
Second, we estimate a possible break point location in our GARCH(1, 1)
adjusted data set, using (3.15), with the quantile q = 0.6·(1, . . . , 1)′. This gives
bŝT c = 1884 (15.02.2011), cf. the black dotted line in the middle in Figure
1. The first estimated break point in February 2011 now divides the data set
into two parts (Dec. 04 - Feb. 11 and Feb. 11 - Jul. 15). As the test indeed
indicates a break (see below), we repeat the breakpoint estimation in each
part and obtain bŝT c = 676 (17.05.2006) for the first part and bŝT c = 2653
(26.02.2014) for the second part, respectively, which are both represented by
the black dotted line in Figure 1. We do not search further for any breaks,
as it seems to be unlikely that there are more than three change points (see
Manner et al., 2019).
In the next step, we calculate (for each interval with one estimated breakpoint
inside) ∆smallest for each estimated break point as the smallest ∆ for which
the null hypothesis of no relevant change cannot be rejected, i.e., |C1(0.6) −
C2(0.6)| ≤ ∆smallest. The number of bootstrap replications is 300. For each
estimated break point, we also calculate the difference of the two resulting

5We adjusted the estimate for 5% of their outliers by setting these values equal to the
expected value.
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Table 3.14: Power analysis varying θ using GARCH-residuals

θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8

N = 2 T = 1000 0.05 0.46 0.73 0.90 0.99
T = 2000 0.07 0.47 0.82 0.98 1.00

N = 3 T = 1000 0.05 0.46 0.76 0.94 0.99
T = 2000 0.06 0.50 0.93 1.00 1.00

N = 5 T = 1000 0.04 0.47 0.82 0.96 1.00
T = 2000 0.05 0.64 0.97 1.00 1.00

Table 3.14 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (3.16) using B = 300 bootstrap replications. The copula difference is evaluated
at q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (3.16) using
GARCH-Residuals. In total, we conducted 301 Monte Carlo repetitions.

empirical copulas δ for u = 0.6 · (1, ..., 1)′, i.e. δ := |Ĉ1(0.6) − Ĉ2(0.6)| and
the change of the pairwise averaged Spearman’s rhos before and after the esti-
mated break point. The results of ∆smallest, δ and the change of the pairwise
averaged Spearman’s rhos can be found in Table 3.16. Table 3.15 provides the
estimated Spearman’s rho using the initial dataset for the breakpoint in Feb.
11 and the resulting subdatasets for the change in Spearman’s rho in May 06
and Feb. 14.

Table 3.15: Empirical values

Dec. 04 -
May 06

May 06 -
Feb. 11

Feb.11 -
Feb. 14

Feb. 14 -
Jul. 15

Dec. 04 -
Feb. 11

Feb.11 -
Jul. 15

ρSpearman 0.3469 0.4216 0.4677 0.5237 0.3998 0.4841

Table 3.15 reports the mean of Spearman’s ρ in the corresponding intervals of the GARCH(1, 1)
adjusted log returns.

Given q = 0.6 · (1, . . . , 1)′, one possible reason for the first estimated break
point in Feb. 2011 can be the beginning of the Euro crisis, i.e. the period
in which considerable peaks of several Euro government bond yields were ob-
served. Both, Delta and Spearman’s rho are at their highest values here, which
suggests that this crisis is having the strongest impact. It is well known that
dependencies increase in times of crisis. The fact that Spearman’s rho is rising
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Table 3.16: Empirical break points

May 06 Feb. 11 Feb. 14

∆smallest 0.0098 0.0293 0.0273
δ 0.0292 0.0316 0.0387
ρdiffSpearman 0.0747 0.0843 0.0560

Table 3.16 reports the smallest Delta ∆smallest such that the null hypothesis of no relevant break
cannot be rejected. It also provides the empirical copula difference before and after the break point.
The last row depicts the change in Spearman’s rho before and after the estimated break points.

strongly and positively after the break point in Feb. 11 is therefore an indi-
cation. For the break point in May 06, ∆smallest is equal to 0.0098, while the
difference in Spearman’s rho from the period Dec. 04 - May 06 and May 06 -
Feb. 11 is equal to 0.0747. Analogously, for the estimated break point in Feb.
14, ∆smallest is equal to 0.0273, while the change in Spearman’s rho is equal
to 0.0560. To sum up, if ∆ is chosen to be the smallest value for which the
null hypothesis of no relevant change cannot be rejected, the testing procedure
provides a formula to determine ∆ biuniquely. In addition, we observe that
large values of ∆smallest are related to large values of Spearman’s rho. This
means, the test can not only be used to test for relevant changes in the copula,
but also as a selection tool to assess the effects of breaks.

3.7 Conclusion

In summary, the classical break point testing framework has two severe issues:
On the one hand it considers a null which is theoretically never fulfilled and
on the other hand any consistent test detects any arbitrary small change if the
sample size is sufficiently large. Relevant change point analysis offers a way
out.
We propose a new non-parametric test for detecting relevant breaks in copula
functions, where the hypothesis is of the form H0 : ‖C1(u) − C2(u)‖ ≤ ∆
versus H1 : ‖C1(u) − C2(u)‖ > ∆ with ∆ a positive adjustable size to allow
for difference in the copulas C1 and C2. Here, the norm in the hypothesis
represents two different approaches: Either it measures the distance of the
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Figure 3.1: Value of the empirical copula at q = 0.6 · (1, . . . , 1)

Value of the empirical copula defined in (3.14) evaluated at q = 0.6 · (1, . . . , 1), computed in a rolling
window of size 300. The estimated breakpoint, using (3.15), is displayed with the vertical black
dotted line (15.02.2011) in the middle. The remaining two outer dotted lines represent estimated
breakpoints of the resulting subdatasets on 17. May 2006 and 26. February 2014, respectively.
Observed data between January 2003 and July 2015, implying T = 3200 and N = 30.

copulas given a certain value q or it equals the L2-norm.
As a starting point, we consider a natural CUSUM-type test statistic fitting to
the underlined testing problem. For the estimation of the limiting distribution,
we construct a new non-parametric bootstrap based on natural estimates of
the constructed testing process, which is applicable in the case of unknown
sequentially estimated marginal distributions.
In the case where the copula distance is measured at a given value q, we
consider simulated data up to cross sectional dimension N = 30. For the
L2-norm, we investigate the behavior of our test up to N = 5. The Monte
Carlo simulations show considerable size and power properties for both serially
independent and residual data.
In our empirical application we analyze German DAX30 data of cross sectional
dimensionN = 30 between January 2003 and July 2015. Here, ∆ is interpreted
as the smallest admissible copula difference for which the relevant change
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hypothesis cannot be rejected. Every other choice of ∆ that is smaller leads
to a rejection of the null hypothesis. Cutting the empirical data into three
parts leads to a detection of the very start of the financial crisis in 2006, the
start of the Euro crisis in 2011 and to a break in 2014 given that the quantile
q is chosen to be equal to 0.6 · (1, . . . , 1)′.
In conclusion, ∆ can be regarded not only as the upper bound of an admissible
copula distance, but also as a measure of the extent of a crisis.
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CHAPTER 4
Specification Testing in Functional Quantile

Regression Models

4.1 Abstract

We propose a novel consistent specification test for quantile regression models
where we allow the covariate effects to be quantile dependent and nonlinear.
To achieve this, we parameterize the conditional quantile functions by appro-
priate basis functions, rather than parametrically and hence allowing to test
for functional forms beyond linearity while retaining the linear cases as special
cases. Due to the dependence on the quantile itself covariate-quantile relations
can differ for distinct quantiles. The induced class of conditional distribution
functions can finally be tested with a Cramér-von Mises type test statistic.
We derive the theoretical limit distribution and propose a practical bootstrap
method. To increase the power of our test, we suggest a modified test statistic
using quantile regression splines. A detailed Monte Carlo experiment shows
that the test results in a reasonable sized testing procedure with large power.
An application to conditional income disparities between East and West Ger-
many over the period 2001 − 2010 indicates that there are still significant
differences across the quantiles of the conditional income distributions, when
conditioning on age.
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4.2 Introduction

Hypothesis testing plays a central role in many economic research areas. A
necessary prerequisite for the statistical validity of the decisions to be made
is the correct specification of the underlying model. Specification tests can
be used to validate the correctness of theoretical assumptions. Within the
framework of linear regression, a whole range of specification tests are available
that can test both, parametric and non-parametric approaches. In general,
testing misspecification in linear OLS models is well understood and developed.
For the parametric setup, e.g., Bierens (1990) showed that any conditional
moment test of functional form of nonlinear regression models can be converted
into a consistent chi-square test that is consistent against all deviations from
the null hypothesis. Härdle & Mammen (1993) suggested a wild bootstrap
procedure for regression fits in order to decide whether a parametric model
could be justified. Stute (1997) proposed a general method for testing the
goodness of fit of a parametric regression model. For the nonparametric case,
among others, Gozalo (1993) proposed a general framework for specification
testing of the regression function in a nonparametric smoothing estimation
context and Stute et al. (1998) suggested a goodness of fit test using a wild
bootstrap procedure that checks whether a function belongs to a certain model
class.
However, OLS estimates are sensitive to outliers and draw only a part of the
whole picture, since they only model the conditional expected value. As it pro-
vides more robust estimates compared to OLS and allows a more comprehen-
sive picture and flexible analysis of the economic problem, quantile regression
has become increasingly popular since the seminal article by Koenker & Bas-
sett Jr (1978). But it also applies to quantile regressions, that post-estimation
inference procedures essentially depend on the validity of the underlying para-
metric functional form for the quantiles considered (Angrist et al., 2006). For
example, assuming the same fixed linear relationship between covariates for all
quantiles is the connecting element of the Machado-Mata decomposition (used
in particular to describe wage inequalities) by Machado & Mata (2005) and
the Khmaladazation (which is based on the Doob-Meyer decomposition of the
martingale) by Koenker & Xiao (2002). Since such a linearity assumption con-
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siderably limits the number of possible models and hence the hypothesis space,
there have recently been successful attempts to weaken the linearity assump-
tion for quantile estimation and inference with independently and identically
distributed (i.i.d.) data.
In this context, more general parametric quantile models have been developed
that, among others, include works by Hallin et al. (2009) suggesting an esti-
mator for local linear spatial quantile regression and Guerre & Sabbah (2012)
investigating the Bahadur representation of a local polynomial estimator of
the conditional quantile function and its derivatives. But also nonparamet-
ric approaches for estimating conditional quantile functions have attracted
much attention. Li & Racine (2008) proposed a nonparametric conditional
cumulative distribution function kernel estimator along with an associated
nonparametric conditional quantile estimator. Belloni et al. (2019) developed
a nonparametric quantile regression-series framework for performing inference
on the entire conditional quantile function and its linear functionals and Qu &
Yoon (2015) presented estimators for nonparametrically specified condtional
quantile processes that are based on local linear regressions. Li et al. (2020)
investigated the problem of nonparametrically estimating a conditional quan-
tile function with mixed discrete and continuous covariates suggesting a kernel
based approach. But regardless of whether parametric or non-parametric ap-
proaches are chosen, the theory concerning the validity of the correct model
choice seems to keep up with the rapid development of new estimation meth-
ods only to a limited extent. To the best of our knowledge, there does not
exist a testing procedure that allows for quantile-specific functional covariate
effects.
In a parametric framework, one of the first specification tests for linear loca-
tion shift and location-scale shift quantile models with i.i.d. data is the test by
Koenker & Xiao (2002). Shortly after that, Chernozhukov (2002) proposes a
resampling testing procedure avoiding to estimate further objects, such as the
score function using the same principle as Koenker & Xiao (2002). However,
these two tests proposed do not test the validity of the quantile regression
model itself. Escanciano et al. (2010) and Escanciano & Velasco (2010) both
tested the validity of the null hypothesis that a conditional quantile restric-
tion is valid over a range of quantiles. Rothe & Wied (2013) proposed a
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specification test for a larger class of models, including quantile regression
models. In case of nonparametric instrumental quantile regression, Breunig
(2019) develops a methodology for testing the hypothesis whether the instru-
mental quantile regression model is correctly specified. However, all models
have in common that they require linearity in the regressors. In this paper,
we consider a broad approach that tackles the following two challenges simul-
taneously, hence proposing a general specification test that is an important
contribution in the field with potential in a wide range of applied questions.
i) We suggest a testing procedure for quantile regression models, where the
regressors can explicitly depend on the quantile considered, which allows to
test for the correct specification of large number of models. ii) Due to our
general model set up, our proposed methodology does also allow to test for
semi-parametric models, e.g., B-splines for quantile regressions, where the co-
variates have a functional form (cf. Cardot et al. (2005) for the estimation
procedure of such processes). Such a testing procedure not only increases the
range of applications but also offers the advantage that effects can be tested
in isolation, depending on the quantile. As such, it extends the literature on
quantile regression specification tests for better answering relevant questions in
economics and further sciences; wherever specific regressors have a functional,
non-linear influence on distinct quantiles may be present.
To illustrate the power and potential of our test, we consider the case of income
inequality, with a focus on differences in the conditional income quantiles be-
tween East and West Germany in a balanced panel data set. Such disparities
have received considerable attention in the economic literature (e.g. Biewen,
2000), and also consistently played a major role in the domestic political de-
bate. Our empirical analysis uses the German socio-economic panel (SOEP)
and shows that age has a predominant linear influence on income develop-
ment in Germany, but for the upper 90% quantile the influence of age is solely
quadratic. Such statistically proven statements on income distributions also
provide further evidence for investigations on inequalities in income distribu-
tions. Importantly, and in line with other studies on this topic, we find through
an initial Machado-Mata (Machado & Mata, 2005) decomposition that there
are still income differences between East and West Germany, which can be
confirmed by our proposed testing procedure.
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But also further use cases in, e.g., finance can be addressed with our testing
approach. For instance, the correct specification of the left tail of the distri-
bution function is essential to adequately assess risks. Our null hypothesis
can be specified in a way that only some parts of the quantile function follow
an explicit parametric approach. Thus, we provide a statistical verification
procedure for the part of the distribution function that is of relevance for the
calculation of the value at risk. Previous procedures usually require a com-
plete characterization of the quantile function, in which the covariates must
also be independent of the considered quantiles.
The basic idea of our procedure is based on the principle characterized by
Rothe & Wied (2013): We compare an unrestricted estimate of the joint dis-
tribution function of the random variable Y and the random vector X with a
restricted estimate that imposes the structure implied by the null hypothesis
model. Based on a Cramèr-von Mises type measure of distances, the restricted
estimate of the joint distribution can then be compared with the unrestricted
one. We derive the non-pivotal limiting distribution of our test statistic and
show the validity of our suggested parametric bootstrap procedure for the
approximation of the critical values. To increase the power of our test, we re-
place the unrestricted model estimate with a quadratic B-spline, meeting the
assumptions of a quantile function. Due to the generality of our test procedure
we can subsume previous specification tests for quantile regression models with
i.i.d. data as marginal cases of our procedure. The Monte Carlo simulation
study shows that the proposed testing procedure has superior power properties
than existing methods.
In sum, we believe that the testing procedure proposed in our paper is a useful
extension of existing methods for testing the correct specification in quantile
regression models, both in terms of the improvement in power, and also in
terms of the extension to quantile dependent regressors it offers.
The paper is organized as follows. Section 2 formulates the test problem and
derives the test statistics including the parametrized bootstrap approximation.
In Section 3, we provide the theoretical properties of the testing procedure and
the bootstrap. Section 4 contains an intensive Monte Carlo simulation includ-
ing comparisons to existing tests and in Section 5 we present the empirical
application. The last section concludes. In order to increase the readability of
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the paper, all proofs are to be found in the Appendix.

4.3 Quantile regression testing

4.3.1 Specification test for quantile dependent regressors

We observe an outcome variable Yi ∈ R and a vector of explanatory variables
Xi ∈ RK for i = 1, ..., n, K ∈ N. We assume the data points to be independent
and identically distributed (i.i.d.). Our aim is to test the validity of certain
classes of parametric specifications for the conditional cumulative distribution
function (cdf) F of Y given X, i.e. FY |X and with corresponding conditional
quantile function (qf) F−1

Y |X . Since for y ∈ R in holds that

FY |X(y |x) =
∫ 1

0
1{

F−1
Y |X(τ |x)≤y

}dτ, (4.1)

let F be the set of conditional cdfs FY |X induced by F−1
Y |X , i.e.

F := {FY |X(y|x, θ) | F−1
Y |X(τ | x) = P (x, τ)′θ

for some θ ∈ B(T ,Θ) and (y, x) ∈ S},
(4.2)

where S denotes the support of (y, x) ∈ RK+1 and B(T ,Θ) the class of func-
tions τ 7→ θ(τ) ∈ Θ ⊂ Rp for τ ∈ T ⊆ [0, 1] with p the dimension of the param-
eters. These conditional qfs F−1

Y |X are assumed to be of the form P (X, τ)′θ(τ),
i.e. F−1

Y |X(τ |X) = P (X, τ)′θ for every τ ∈ T and θ ∈ B(T ,Θ). P (X, τ) is a
vector of transformations of the realization X (also known as basis function
evaluations in the literature) depending on τ ∈ T such as polynomials or B-
splines (which are also called basis functions) evaluated at X that depend on
τ and thus may differ for distinct quantiles. In the simplest case, e.g., P (X, τ)
can be equal to X for all τ ∈ T , such that the quantiles are linear in X. In this
case, the parameterization of the quantile function corresponds to the classical
linear quantile regression model, where the vector of transformations P (X, τ)
is constant for all quantiles τ .
The hypothesis we want to test is that the conditional cdf FY |X coincides with
an element of a class of distributions F of the form (4.2) which correspond-
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ing F−1
Y |X can be decomposed to a vector of transformations and a functional

parameter θ ∈ B(T ,Θ):

H0 : FY |X ∈ F vs. H1 : FY |X /∈ F . (4.3)

Again, in comparison to existing parametric quantile regression models we ex-
plicitly allow the vector of transformations P (X, τ) to depend on τ . Hence,
this framework allows to model a quantile function that, e.g., contains a lin-
ear regressor in the lower fifty percent quantile and a highly non-linear func-
tional regression form in the upper fifty percent quantile. Naturally, models
in which the vector of transformations does not depend on τ are captured by
our approach as a special case, when P (X, τ) ≡ P (X) = const for all τ ∈ T .
Consequently, the aim of this article is to present a testing procedure that is
able to give statistical insights if the quantile model assumption (4.3) holds
statistically true. We assume that there is a unique θ0 ∈ B(T ,Θ) under the
null hypothesis. Accordingly, we can reformulate our testing problem (4.3) to

H0 : FY |X(y | x) ∈ F0 := {FY |X(y | x, θ0) | F−1
Y |X(τ | x) = P (x, τ)′θ0

for some θ0 ∈ B(T ,Θ), for all (y, x) ∈ S}

H1 : P
(
FY |X(y∗ | x∗) 6= FY |X(y∗ | x∗, θ)

)
> 0

for all θ ∈ B(T ,Θ) and for some (y∗, x∗) ∈ S.

(4.4)

In addition, we assume that under the null hypothesis any functional param-
eter θ ∈ B(T ,Θ) satisfying FY |X(y|x) = F ∗Y |X(y|x, θ) with F ∗Y |X(y|x, θ) ∈ F0

for all (y, x) ∈ S also satisfies θ(τ) = θ0(τ) for all τ ∈ T .
To propose a testing procedure for the problem (4.4) we assume that the true
value of the functional parameter, i.e. θ0(τ) for every τ ∈ T , is identified
under the null hypothesis through a moment condition. Specifically, let

g : S ×Θ× T → Rp

be a uniformly integrable functions whose exact form depends on F0, and
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suppose that for every τ ∈ T , the equation1

G(θ, τ) := E[g(Y,X, θ, τ)] = 0 ∈ Rp (4.5)

has a unique solution θ0(τ). Furthermore, under the alternative, θ0(τ) remains
well defined for all τ ∈ T due to Assumption (4.5) and can thus be thought
of as a pseudo-true value of the functional parameter in this case.
The null hypothesis can be equivalently stated as

FY |X(y|x) = FY |X(y|x, θ0) for all (y, x) ∈ RK+1, (4.6)

with θ0(τ) as the unique solution to (4.5) for all τ ∈ T . This holds true since
F0 is a singleton containing F·|·(·|·, θ0). Since FY |X(y|X) = E[1{Y≤y}|X] we
can write the joint cdf of Y and X, FY,X , as2

F (y, x) =
∫
RK

FY |X(y |x∗)1{x∗≤x}dFX(x∗) (4.7)

F (y, x, θ0) =
∫
RK

FY |X(y |x∗, θ0)1{x∗≤x}dFX(x∗), (4.8)

where FX denotes the marginal cdf of X. From Billingsley (1995) Theorem
16.10 (iii) it follows that the testing problem (4.4) can be restated as

H0 : F (y, x) = F (y, x, θ0) for some θ0 ∈ B(T ,Θ) and for all (y, x) ∈ S

versus

H1 : F (y, x) 6= F (y, x, θ) for all θ ∈ B(T ,Θ) and for some (y, x) ∈ S.

(4.9)

for some θ0 ∈ B(T ,Θ). With the help of the above representation of the null
hypothesis (4.9) we introduce a function S : RK+1×Θ→ R that measures the
difference of the non-parametric F (y, x) and the parametrized cdf F (y, x, θ)
defined as

S(y, x, θ) := F (y, x)− F (y, x, θ). (4.10)

1The representation of the moment function g is given by
g(Y,X, θ, τ) :=

(
τ − 1{Y≤P (X,τ)′θ(τ)}

)
P (X, τ)′.

2Due to readability we will suppress the index Y,X for the joint cdf FY,X in the following,
i.e. F = FY,X .
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The null hypothesis is true by assumption if S(y, x, θ0) = 0 for all (y, x) ∈ S,
whereas S(y, x, θ) 6= 0 for all θ 6= θ0 ∈ B(T ,Θ) and for some (y, x) ∈ S. To
obtain an applicable test statistic we will replace F (y, x) and F (y, x, θ0) by its
empirical counterparts F̂n(y, x) and F̂n(y, x, θ). Thus, we have

Sn(y, x, θ̂) := F̂n(y, x)− F̂n(y, x, θ), (4.11)

with F̂n(y, x, θ) = F (y, x, θ̂n), a parametric estimate of F based on a consistent
estimate θ̂n of θ0. In order to emphasize that the parametric empirical cdf
F̂n(y, x, θ) particularly estimates the parameter θ0 by θ̂n, we also use the
notation F̂n(y, x, θ̂n). Under the null hypothesis, F̂n(y, x) and F̂n(y, x, θ̂n)
are consistent estimators for F (y, x) and F (y, x, θ0), respectively. In that
case, Sn(y, x, θ) should be close to zero for all (y, x) ∈ S. If, however, the
alternative holds true, then there is a vector (y, x) for each θ ∈ B(T ,Θ) such
that the function Sn is greater than zero.
To obtain an estimate for the parametrized empirical cdf F̂n(y, x, θ̂n) we follow
Chernozhukov et al. (2013) and take θ̂n to be an approximate Z-estimator
satisfying

||Ĝ(θ̂n, τ)|| = inf
θ∈Θ
||Ĝ(θ, τ)||+ ηn (4.12)

where the function Ĝ(θ̂n, τ) := n−1
n∑
i=1

g(Yi, Xi, θ, τ) is the sample analogue of

the moment condition (4.5) for every τ ∈ T and for some possibly random
variable ηn = op(n−1/2). For every τ ∈ T and every (y, x) ∈ RK+1, the
estimator based on the testing problem (4.4) takes the form

F̂n(y|x, θ̂n) = δ +
∫ 1−δ

δ
1{P (x,τ)′θ̂n(τ)≤y}dτ, (y, x) ∈ S, (4.13)

θ̂n(τ) = argmin
θ∈Θ

∑
(y,x)∈S

(
τ − 1{y≤P (x,τ)′θ}

) (
y − P (x, τ)′θ

)
(4.14)

for some arbitrary constant δ > 0. The trimming by δ avoids estimation of tail
quantiles (Koenker, 2005) and is valid under the conditions in Theorem 4.4.1
in Section 4.4. Thus, the test statistic (4.11), that is based on the differences
of the non-parametric and parametrized empirical distribution functions, can
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be expressed as

Sn(y, x, θ̂n) = F̂n(y, x)− F̂n(y, x, θ̂n) (4.15)

= 1
n

n∑
i=1

(
1{Yi≤y}1{Xi≤x}

)
−
∫
RK

1{x∗≤x}

(
δ +

∫ 1−δ

δ
1{P (x∗,τ)′θ̂n(τ)≤y}dτ

)
dF̂X(x∗)

= 1
n

n∑
i=1

(
1{Yi≤y}1{Xi≤x} − 1{Xi≤x}

[
δ +

∫ 1−δ

δ
1{P (Xi,τ)′θ̂n(τ)≤y}dτ

])
.

We propose a Cramér-von Mises type test statistic SCMn defined as

SCMn :=
∫
||
√
nSn(y, x, θ̂n)||2dF̂n(y, x), (4.16)

which is a generalization of existing quantile regression tests. However, if
the vector of transformations P (X, τ) in (4.4) is independent of τ , then the
test statistic coincides with test statistic proposed in Rothe & Wied (2013).
Notwithstanding the above, it is also possible to consider a Kolmogorov-
Smirnov-type test statistic

SKSn :=
√
n sup

(y,x)∈S
||Sn(y, x, θ̂n)||, (4.17)

but the Cramér-von-Mises-type test provides better (power) results, since it
is less susceptible to outliers (Chernozhukov, 2002; Rothe & Wied, 2013).

4.3.2 More powerful testing procedure using splines

In order to obtain better power results, we consider two different test statistics
of the form (4.11), using two estimators for the quantile regression model
specified under the null hypothesis: one estimator corresponds to the model,
the other employs a spline approach, i.e.

S∗n(y, x, θ̂n) = F̂ (y, x)− F̂Sn (y, x, θ̂n)−
(
F̂ (y, x)− F̂n(y, x, θ̂n)

)
(4.18)

= F̂Sn (y, x, θ̂n)− F̂n(y, x, θ̂n) (4.19)

68



CHAPTER 4. SPECIFICATION TESTING IN FUNCTIONAL
QUANTILE REGRESSION MODELS

where F̂Sn is the estimate of the cumulative distribution function by a quantile
regression spline that meets some regularity assumptions (cf. Assumptions 3
in Section 4.4 and Cardot et al. (2005)) and F̂n(y, x, θ̂n) the estimate using the
null hypothesis model. In case of non-varying covariates, i.e. P (X, τ) = P (X)
for all τ ∈ T , F̂Sn could be, e.g., estimated by a quadratic B-spline with
monotone increasing parameters.
Besides standard assumptions, the monotonicity assumption is of central im-
portance for the estimation of the quantile regression function by splines3.
However, the Monte Carlo simulation clearly shows that these additional as-
sumptions significantly increase the rejection rates in the case of misspecified
null hypotheses. Xue & Wang (2010) have shown, e.g., that the estimate of the
cumulative distribution function with a smooth monotone polynomial spline
has better finite sample properties than the empirical distributional estimate.
However, the goodness and convergence rate of the spline approximation de-
pends, in general, in a complex fashion on the degree of the spline, the number
of knots and the position of those knots. He & Shi (1997) have pointed out that
if the number of knots kn ∼ (n/ logn)2/5 and under some mild assumptions,4

the order of approximation of a quadratic monotone B-spline is (logn/n)2/5

for a quantile regression model with non-varying covariates. Cardot et al.
(2005) have generalized the limiting result for quantile regression models with
varying covariates. This result is of particular interest since, together with
the Donsker-class property5, it provides the basis for the convergence of the
Cramer-von Misès type test statistic that is defined as

SCM
∗

n :=
∫
||
√
nS∗n(y, x, θ̂n)||2dF̂n(y, x). (4.20)

3There is a whole series of assumptions that guarantee the monotonicity of the quantile
function, e.g., derivatives of the (quadratic) spline to be non-negative or estimators are
monotonically increasing as quantiles increase assuming static covariates, all having dif-
ferent computational properties. To discuss all these assumptions is beyond the scope of
this project. We refer here to the relevant literature, i.e. Koenker et al. (1994), Bondell
et al. (2010) among others.

4For a detailed description of the requirements we refer to the assumptions C1− C3 from
He & Shi (1997).

5Yu et al. (2017) have shown the Donker-class property for functional linear partial quantile
regressions.
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4.3.3 Semiparamteric bootstrap procedure

As we show in more detail in the next section, the asymptotic null distribution
of SCMn and SCM∗n , respectively, depend on the data generating process in a
complex fashion. To obtain critical values for our test, we therefore propose
a semiparametric bootstrap procedure. This procedure is reasonable from a
practical point of view, since it avoids the complicated problem of estimating
the null distribution directly, including the complex covariance structure. The
idea of our semiparametric bootstrap is to generate synthetic data that is line
with the assumptions under the null hypothesis. Thus, the bootstrap mimics
the distribution of the data under the null hypothesis, even though the data
might be generated by an alternative distribution. The procedure works as
follows:

i.) Draw B bootstrap samples of covariates {Xb,i, 1 ≤ i ≤ n}b=1,...,B of size
n with replacement from the realized values {Xi, 1 ≤ i ≤ n}.

ii.) Generate independently B n-dimensional vectors Ub with b = 1, ..., B of
standard uniform distributed random variables, i.e. Ub = (Ub,i)ni=1 with
Ub,i

i.i.d.∼ U(0, 1) for i = 1, ..., n and b = 1, . . . , B, that represent the
randomly chosen quantiles.

iii.) For each b = 1, ..., B, estimate the conditional quantile function F̂−1(Ub,i |
X) for every i = 1, ..., n by the model specified under the null hypoth-
esis using the realized values X and compute n-dimensional estimates
Ŷb := (Ŷi)nb,i=1 for b = 1, ...n by means of the bootstrap sample of covari-
ates {Xb,i, 1 ≤ i ≤ n}b=1,...,B, i.e. Ŷb,i = F̂−1(Ub,i | Xb,i) for i = 1, ...n
and b = 1, ..., B.

iv.) Calculate B bootstrap versions of the test statistic (4.20), i.e. for b =
1, ..., B compute

SCMn,b :=
∫
||
√
nSn,B(ŷ, xb, θ̂n)||2dF̂n(ŷ, xb). (4.21)
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v.) Determine the critical value c such that

1
B

B∑
b=1

1{SCM
n,b

>c}
!= q, (4.22)

where q ∈ (0, 1).

With the above described bootstrap procedure we can calculate critical values
c(q) for (4.16). Critical values for (4.20) can be obtained in the same manner
if the test statistic SCMn,B from (4.21) is replaced by its spline counterpart, i.e.
SCM

∗
n,B .

4.4 Asymptotics

4.4.1 Theoretical properties for quantile dependent regressors

This section shows that the test statistic SCMn has the correct asymptotic size
which is summarized in Theorem 4.4.1 at the end of that subsection. Before
we derive large sample properties of our test statistic (4.16), we need to impose
and to discuss some mild assumptions that are in line with Chernozhukov et al.
(2013). However, since our proposed test statistic is a generalization of existing
tests we need to slightly adjust the standard assumptions. Additionally, we
assume that there is a finite compact decomposition of T := [ε, 1 − ε], ε ∈
(0, 0.5). Hence, we can formulate the assumptions for Θ being an arbitrary
subset of Rp as

Assumption 2.

i.) P (X, τ) is L2-bounded in [0, 1].

ii.) Let
L⋃
l=1

Il = T , L ∈ N, Il compact for l = 1, ..., L and Il1 ∩ Il2 a singleton
or the empty set for l1 6= l2.

iii.) For each τ ∈ Il with l = 1, ..., L, G(·, τ) : Θ → Rp possesses a unique
zero at θ0(τ) ∈ interior(Θ) such that G(θ0(τ), τ) = 0, and, for some
δ > 0, B := ⋃

τ∈Il
Bδ(θ0(τ)) is a compact subset of Rp contained in Θ for

l = 1, ..., L.
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iv.) Further, G(·, τ) has a inverse G−1(x, τ) := {θ ∈ Θ | G(θ, τ) = x} that is
continuous at x = 0 uniformly in τ ∈ Il for all l = 1, ..., L with respect
to the Hausdorff distance.

v.) There is a derivative Ġθ0(τ),τ such that

lim
t→0

sup
τ∈Il,||h||=1

|G(θ0(τ) + th, τ)−G(θ0(τ), τ)
t

− Ġθ0(τ),τh| = 0,

where Ġθ0(τ),τ is non-singular at θ0(·) uniformly over τ ∈ Il with
l = 1, ..., L, i.e. infτ∈Il inf ||h||=1 ||Ġθ0(τ),τh|| > 0 for all l = 1, ..., L.

vi.) The maps τ 7→ θ0(τ) and τ 7→ Ġθ0(τ),τ are continuous on T .

vii.) The function set Gl = {g(Y,X, θ, τ)|(θ, τ) ∈ Θ × Il)} is FY X-Donsker6

for all l = 1, ..., L with a square integrable envelope G̃ for
L⋃
l=1
Gl. The map

(θ, τ) 7→ g(·, θ, τ) is continuous at each (θ, τ) ∈ Θ× Il for all l = 1, ..., L.

viii.) The mapping θ 7→ F (·|·, θ) is Hadamard differentiable for all θ ∈ Θ with
derivative h 7→ Ḟ (·|·, θ)[h]

Assumption 2 i.) claiming there is a finite, compact decomposition of the unit
interval is required since we consider Donsker classes in the proof. We are using
the fact that the union of Donsker classes is also Donsker (see Dudley, 2014,
section 3.8). Assumptions 2 i.)−v.) guarantee the regularity of our estimator
θ̂n and ensure that a functional central limit theorem can be applied to Z-
estimator processes (cf. Corollary C.1.2 in the Appendix C.1). Assumption 2
vi.) is a smoothness condition, that implies together with the functional delta
method that the restricted cdf estimator process

(y, x) 7→
√
n
(
F̂n(y, x, θ̂)− F (y, x, θ)

)
(4.23)

is FY X -Donsker. The convergence (4.23) can be shown to be jointly with that

6Consider the empirical process Gn :=
√
n(Fn − F ), where Fn is the empirical distribution

function and F the theoretical cdf. If Gn converges weakly to a tight Borel measurable
element in `∞(F), then the class F for which this is true is called F -Donsker. `∞(F) is
the set of all uniformly bounded real functions from Ω→ R.
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of the empirical cdf process

(y, x) 7→
√
n
(
F̂n(y, x)− F (y, x)

)
(4.24)

to a Brownian Bridge by some standard arguments given in Lemma C.1.1. The
limiting distribution of our test statistic SCMn then follows from an application
of the continuous mapping theorem (the proof and further details are shifted
to the Appendix C.1). We are now able to derive our main result:

Theorem 4.4.1. If Assumptions (2) is satisfied, then the following statements
hold:

i.) Under the null hypothesis H0 (4.9),

SCMn
d→
∫
||G1(y, x)−G2(y, x)||2dFY X(y, x), (4.25)

where (G1,G2) are Gaussian processes with zero mean and covariance
function

Cov[G1(y, x),G1(y′, x′)] =
∞∑

k=−∞
Cov[1{Y0≤y}1{X0≤x},1{Yk≤y′}1{Xk≤x′}]

G2(y, x) :=
∫

G+
2 (y, x∗)1{x∗≤x}dFX(x∗) +

∫
F (y |x∗)1{x∗≤x}dG1(∞, x∗)

with G+
2 (y, x) the limiting Gaussian process of

√
n
(
F̂n(y |x, θ̂n)− F (y |x)

)
∈ `∞(S).

ii.) Under any fixed alternative, i.e., when the data are distributed according
to some F that satisfies the alternative hypothesis H1 in (4.9),

lim
n→∞

P (SCMn > ε) = 1 for all constants ε > 0. (4.26)

4.4.2 Theoretical properties for quantile dependent regressors
using constrained polynomial spline regression

Theorem 4.4.1 represents a generalization of previous tests for quantile regres-
sion models, since it allows the covariate to depend on the quantile. Imposing
the assumptions from Cardot et al. (2005) on a quantile regression spline en-
ables us to replace the quantile function by an appropriate spline estimator.
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Let Bk,r := (B1, ..., Bk+r)′ denote the basis of the vectorial space of spline
functions, where r is the degree of the piecewise polynomials. We will esti-

mate Ψτ :=
k+r∑
i=1

θi(τ)Bi for all τ ∈ T .

Assumption 3.

i.) The function Ψτ is supposed to have a q′th derivative Ψ(q′)
τ such that

∣∣∣Ψ(q′)
τ (t)−Ψ(q′)

τ (s)
∣∣∣ ≤ C1|t− s|v, s, t ∈ [0, 1], (4.27)

where C1 > 0 and v ∈ [0, 1]. In what follows, we set q = q′ + v and we
suppose that r ≥ q ≥ m.

ii.) The eigenvalues of E[
1∫
0
P (X, τ)dτX] are strictly positive.

iii.) The errors defined by ε = Y −
1∫
0

ΨτP (X, τ)dτ are i.i.d. and have density
fε|X=x given X = x, continuous and bounded below by a strictly positive
constant at 0, uniformly for x.

iv.) The choice of knots corresponds to kn ∼ n
1

2r+1 with r > 1/2 and they are
quasi-uniformly placed.

Since finite sums of Donkser classes (cf. Assumption 2) are again Donsker, we
can now formulate the second theorem

Theorem 4.4.2. If Assumptions 2 and 3 are satisfied, then the following
statements hold:

i.) Under the null hypothesis H0 in (4.9),

SCM
∗

n
d→
∫
||G∗2(y, x)||2dFY X(y, x), (4.28)

where (G∗2) is the difference of tight zero mean Gaussian processes with
a corresponding covariance structure according to Theorem 4.4.1.

ii.) Under any fixed alternative, i.e., when the data are distributed according
to some F that satisfies the alternative hypothesis H1 in (4.9),

lim
n→∞

P (SCM∗n > ε) = 1 for all constants ε > 0. (4.29)
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In the simulation part we are using a quadratic B-spline for the test statistic
SCM

∗
n .

4.4.3 Validity of the bootstrap procedure

Finally, we show that the proposed bootstrap procedure computes the correct
critical value for out test statistics (4.16) and (4.20). This does not require any
further assumptions. Under the null hypothesis, Assumptions 2 ensure that
the bootstrap consistently estimates the limiting distribution for (4.16). For
the more powerful test statistic SCM∗n , Assumption 3 has to be additionally
fulfilled in order to ensure the Donsker property of the empirical cdf estimator.
Under any fixed alternative, the bootstrap critical values can be shown to
be bounded in probability. Together with Theorem 4.4.1ii.) and Theorem
4.4.2ii.), respectively, this implies that the proposed tests (4.16) and (4.20)
are consistent.

Theorem 4.4.3. Under Assumption 2, the following statements hold true for
every α ∈ (0, 1)

i.) Under the null hypothesis H0 in (4.9), we have that

lim
n→∞

P (SCMn > ĉn(α)) = α

ii.) Under any fixed alternative H1 in (4.9), we have that

lim
n→∞

P (SCMn > ĉn(α)) = 1

If additionally Assumption 3 is fulfilled, then the following statements hold
true for every α ∈ (0, 1)

iii.) Under the null hypothesis H0 in (4.9), we have that

lim
n→∞

P (SCM∗n > ĉn(α)) = α

iv.) Under any fixed alternative H1 in (4.9), we have that

lim
n→∞

P (SCM∗n > ĉn(α)) = 1
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In order to study the behavior of the CS induced Cramér-von Mises type
test statistic SCM∗n in finite samples we perform an extensive Monte Carlo
Simulation, presented in the next section.

4.5 Monte Carlo simulation study

In this section, we show that our test SCM∗n from (4.28) holds the size level
and has superior power properties by means of twelve different data generating
processes (DGPs). Thereby, the different DGPs cover location shift models
(LS) and location-scale shift models (LSS) including heteroscedastic errors,
both, in an univariate and multivariate setting. In order to assess the quality
and validity of our proposed test against existing procedures, we will compare
the test results (cf. Table 4.1 - Table 4.4) with the benchmark tests of Koenker
& Xiao (2002), Chernozhukov (2002) and Rothe & Wied (2013) where com-
parisons are possible. Finally, we consider predominantly linear models and
show that our test detects such only weakly misspecified models well.
For the definition of the twelve DGPs we introduce the following variables:
Let x1 ∼ Bin(1, 0.5), x2 ∼ N(0, 1), x3 ∈ U(0, 1) , x4 ∈ χ2(1), u ∼ N(0, 1),
w ∼ N(0, 0.1), v = (1−2x1)·v∗2 ·8−0.5 with v∗2 ∼ χ2(2), where Bin(·, ·) describes
the Binomial, N(·, ·) the normal, U(·, ·) the uniform and χ2(·) the chi squared
distribution. Further, let x0 ∈ [0, 2π] and the variables x1, x2, x3, x4, u, v, w be
ally mutually independent.
DGPs 1−3 from (4.30) represent the univariate case and serve as preliminary
for our empirical application, since they model a linear and quadratic univari-
ate processes. Hereby, DGP 1 describes a simple LS model, DGP 2 a more
complex LSS model with a linear regressor and, finally, DPG 3 generates a LSS
model with a quadratic influence factor. The multivariate case (cf. (4.31) and
(4.32) ) is specified by the DGPs 4−8 that are from Rothe & Wied (2013) and
DGP 9 from Chernozhukov (2002). Here, DGP 4 is a simple multivariate LS
model with normal distributed errors. DGP 5 is again a simple LS model, but
now the errors follow a mixture of a “positive” and “negative” χ2 distribution
with two degrees of freedom (normalized to have unit variance). DGPs 6− 8
are multivariate LSS models where the level of heteroscedasticity increases.
DGP 9 is considered in order to compare our proposed testing procedure with
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those provided in Chernozhukov (2002) and Koenker & Xiao (2002). When
γ1 = 0 DGP 9 is a LS model, otherwise it is a LSS model. DGPs 10 − 12
(cf. (4.33)) are processes in which the functional form appears predominantly
linear. DGP 10 is implemented by modeling the lower 50%-quantile linearly,
while the upper 50%-quantile is modeled quadratically. Due to the quantile
dependence of the regressors, DGP 10 cannot be tested with previous tests
and therefore represents an extension of our test. DGP 11− 12 are appearing
mainly linear in the interval [0, 1] and exhibit non-linear growth only at values
close to 1. Assuming a linear model, DGPs of the form 10− 12 often impede
the detection of misspecification.

(DGP 1): f1(x0) := 0.25x0 + 1 + u

(DGP 2): f2(x0) := 0.25x0 + 1 + u · x0 (4.30)

(DGP 3): f3(x0) := 0.25x2
0 + 1 + u · x2

0

(DGP 4): f4(x1, x2) := x1 + x2 + u

(DGP 5): f5(x1, x2) := x1 + x2 + v

(DGP 6): f6(x1, x2) := x1 + x2 + (0.5 + x1)u (4.31)

(DGP 7): f7(x1, x2) := x1 + x2 + (0.5 + x1 + x2
2)0.5u

(DGP 8): f8(x1, x2) := x1 + x2 + 0.2(0.5 + x1 + x2
2)1.5u

(DGP 9): f9(x2) := x2 + (1 + γ1 · x2)u (4.32)

(DGP 10): f10(x4) :=

0.25 · x2
4 + 1 + 0.5 · ε · x2

4, for τ ≥ 0.5

−0.25 · x4 + 1 + u · x4, otherwise

(DGP 11): f11(x3) := sin(−π2 + x3
3) + w (4.33)

(DGP 12): f12(x3) := ef5(x3)

In order to illustrate the performance of our test, we draw comparisons to com-
mon test procedures in the scope of quantile regression. The test proposed in
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Koenker & Xiao (2002) (denoted as KX), which is based on Khmaladazation,
which in turn refers to the Doob-Mayer decomposition of martingales, provides
the starting point for quantile regression specification tests. We also consider
the enhancement proposed in Chernozhukov (2002) (denoted as Cher). Fur-
thermore, we compare our test with Rothe & Wied (2013) (denoted as RW )
since our test is based on a similar principle but more flexible. The aforemen-
tioned tests are characterized by the following properties:

• The KX-test models the conditional qf paramterically by assuming a
LS or a LSS model. In addition, the regressors are fixed for all quan-
tiles considered and the estimation of non-parameter sparsity and score
functions are required.

• In order to avoid such estimation, Cher proposes a resampling testing
procedure based on KX that results in better power and accurate size.
However, he still assumes a fully parametrized model under the null
hypothesis with non-varying regressors for distinct quantiles.

• RW propose a testing procedure for a wide range of parametric models
that is based on a Cramèr-von Mises distance between an unrestricted
estimate of the joint cdf and the estimate of the joint cdf under the null
hypothesis. However, the regressors are assumed to be constant for all
quantiles.

To analyze finite sample properties of our testing procedure, we consider dif-
ferent sample sizes n and set the number of Monte Carlo replications to 701,
while the number of bootstrap replication is equal to B = 500.
Table 4.1 shows the comparison with RW for the univariate DGPs 1 − 3. It
can be noted that

• compared to RW our proposed testing procedure SCM∗n consistently has
better size properties.

• In particular, the test SCM∗n also manages to maintain the size level when
the structure of the error terms is highly heteroscedastic (cf. 5% column
of DGP 3 in Table 4.1).
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• In addition, the rejection rate for misspecified models (for DGP 3 we are
assuming a linear LSS model in the last column of Table 4.1) in small
samples (n ≤ 300) is approximately three times higher than for the RW
test.

Table 4.1: Size analysis to the significance level 0.10 and 0.05

DGP1 DGP2 DGP3

RW 10% 5% 10% 5% 5% Power

n = 30 0.077 0.019 0.093 0.039 0.005 0.032
n = 50 0.061 0.016 0.095 0.038 0.016 0.045
n = 100 0.056 0.024 0.087 0.033 0.024 0.075
n = 300 0.055 0.028 0.078 0.032 0.026 0.312
n = 500 0.056 0.016 0.069 0.029 0.010 0.486
n = 1000 0.043 0.016 0.069 0.030 0.014 0.883
n = 2000 0.064 0.020 0.066 0.030 0.014 1.000

SCM
∗

n 10% 5% 10% 5% 5% Power

n = 30 0.101 0.035 0.089 0.037 0.028 0.095
n = 50 0.103 0.046 0.074 0.027 0.037 0.147
n = 100 0.094 0.043 0.112 0.061 0.064 0.407
n = 300 0.090 0.043 0.159 0.084 0.047 0.988
n = 500 0.086 0.043 0.111 0.058 0.050 1.000
n = 1000 0.095 0.048 0.095 0.038 0.056 1.000
n = 2000 0.098 0.049 0.092 0.042 0.044 1.000

The number of Monte Carlo repetitions is equal to 701 with 500 bootstrap replications. For the size
analysis the wrap speed bootstrap procedure is applied. Here, the quantile is modeled by a B-spline
of second order with penalty term λ = 1 and

√
n knots, meeting monotonicity assumptions. The 7th

and last column named Power depicts the power analysis while the quantile function is assumed to
follow linear LSS model under the null hypothesis.

Table 4.2 additionally illustrates the comparison with KX for the DGPs 4−8,
whereby a location shift model is assumed under the null hypothesis. Thus,
the results of DGPs 4 and 5 reflect size properties, while DGPs 6− 8 measure
the power of our and the benchmark tests RW and KX.

• It can be observed that our test SCM∗n holds the size for multivariate
processes (cf. DGP 4, 5).

• KX has difficulties to detect misspecification when heteroscedasticity
prevails (cf. DGP 6− 8).

• RW usually detects misspecification. However, the rejections rate of the
test SCM∗n are clearly higher compared to those from RW even in small
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samples (cf. n = 100 DGP 7 of Table 4.2).

Table 4.2: Power analysis location shift (LS)

RW KX SCM
∗

n

n = 100 10% 5% 10% 5% 10% 5%

DGP4 0.093 0.048 0.067 0.035 0.122 0.068
DGP5 0.085 0.033 0.069 0.037 0.114 0.065
DGP6 0.829 0.669 0.082 0.047 0.870 0.838
DGP7 0.404 0.239 0.097 0.049 0.669 0.565
DGP8 0.874 0.746 0.055 0.027 0.970 0.944

n = 300 10% 5% 10% 5% 10% 5%

DGP4 0.109 0.056 0.107 0.039 0.125 0.068
DGP5 0.096 0.043 0.066 0.024 0.120 0.056
DGP6 1.000 0.997 0.336 0.231 1.000 1.000
DGP7 0.847 0.679 0.147 0.076 0.950 0.908
DGP8 1.000 0.997 0.099 0.050 1.000 1.000

All results are one-to-one transferred from Rothe & Wied (2013) (RW). Other details of the set up are
as those reported there. The null hypotheses assumes a LS quantile regression model. The number
of MC repetitions is equal to 701 with 500 bootstrap replications. Here, the quantile is modeled by a
B-spline of second order with penalty term λ = 1 and

√
n knots, meeting monotonicity assumptions.

Table 4.3 provides a comparison with the standard testing procedure proposed
in Koenker & Xiao (2002) and the enhancement from Chernozhukov (2002),
where the results of Table 4.3 of the benchmark tests KX and Cher are taken
from Chernozhukov (2002).

• Even if the structure of DGP 9 is less complex compared to the other
DGPs from (4.30)-(4.33), the test SCM∗n has consistently better finite
sample properties compared to the benchmarks KX and Cher.

• In small samples (cf. n = 100) the strong results of KX and Cher could
be improved further.

Finally, Table 4.4 now examines size and power properties for the DGPSs
10− 12.

• In each of the DGPs considered, the test holds the significance level.

• Assuming a linear model, misspecification is detected even in small sam-
ple sizes.
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Table 4.3: Power analysis location shift (LS) for DGP9

KX Cher SCM
∗

n

Size Power Size Power Size Power

γ1 = 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5

n = 100 0.101 0.264 0.898 0.014 0.348 0.980 0.0495 0.396 0.99
n = 200 0.070 0.480 0.988 0.052 0.752 1.000 0.063 0.772 1.000
n = 300 0.062 0.622 0.998 0.058 0.910 1.000 0.068 0.930 1.000

All results are one-to-one transferred from Koenker & Xiao (2002) (KX) and Chernozhukov (2002)
(Cher), respectively. Other details of the set up are as those reported there. The null hypotheses
assumes a LS quantile regression model. The Monte Carlo study for the proposed test uses 701
replications with B = 500 bootstrap replications. The significance level is 0.05.

• DGP 10 cannot be tested with previous approaches due to the quantile
dependent regressors. The slightly lower power for DGP 10 is due to the
fact that half of the observations actually follow a linear relationship.

Table 4.4: Size and power analysis under a linear null hypothesis

DGP10 DGP11 DGP12

SCM
∗

n 5% Power 5% Power 5% Power

n = 30 0.068 0.177 0.014 0.055 0.009 0.069
n = 50 0.057 0.189 0.018 0.285 0.013 0.318
n = 100 0.051 0.192 0.033 0.979 0.023 0.989
n = 300 0.039 0.469 0.040 1.000 0.031 1.000
n = 500 0.042 0.519 0.039 1.000 0.029 1.000
n = 1000 0.046 0.658 0.034 1.000 0.035 1.000
n = 2000 0.042 0.743 0.041 1.000 0.049 1.000

The number of Monte Carlo repetitions is equal to 701 with 500 bootstrap replications. For the size
analysis the wrap speed bootstrap procedure is applied. Here, the quantile is modeled by a B-spline
of second order with penalty term λ = 1 and

√
n knots, meeting monotonicity assumptions. The

columns named Power depict the power analysis. Under the null hypothesis, the quantile function is
modeled as a linear LSS function for DGP 10 and a linear LS function for DGPs 11, 12, respectively.

In summary, the Monte Carlo study has thus shown that our proposed test
procedure holds the significance level and also has superior power properties
compared to three benchmark tests, even in small samples. The procedure
works for both, univariate and multivariate DGPs and can also test mod-
els with quantile-dependent regressors. Even weakly misspecified models are
detected in sufficiently large sample sizes.

81



CHAPTER 4. SPECIFICATION TESTING IN FUNCTIONAL
QUANTILE REGRESSION MODELS

4.6 Conditional income disparities between East and
West Germany

In this section, we apply the bootstrap version of the specification test for
generalized quantile regression models to conditional income distributions in
Germany. For this purpose, we utilize information from the German Socio-
Economic Panel (SOEP, Wagner et al., 2007). More specifically, we consider
real gross annual personal labor income in Germany as defined in Bach et al.
(2009) for the years 2001 to 2010. Following the standard literature, we only
consider the income of males in full-time employment (see, among others,
Dustmann et al. (2009); Card et al. (2013)) in the age range 20-60. This yielded
7220 individuals and is the data set that was also used in Klein et al. (2015).
The variables age, origin (East or West Germany) and years are available
as covariates (cf. Table 4.5 for a full description of the data). To obtain
an estimate of the quantile function and to take full advantage of the spline
approximation, we first regressed the income on the dummy coded variable
years and then performed a quantile regression using the variables age or
age2 on the residuals7. This approach takes account of the fact that income
grows solely with increasing age. Rather, it can be observed that income
increases at the beginning of employment, peaks in middle age and finally
decreases (Creedy & Hart, 1979; Luong & Hébert, 2009; Klein et al., 2015).
In order to gain further insights, we next conduct the Machado-Mata de-
composition of the year dummy adjusted data set conditioned on the origin
according to Melly (2005) and Machado & Mata (2005)8. For the decomposi-
tion we assume that the quantile function of the income Y can be represented
as a function of the form

F−1
Y |X(τ |X) = P (X, τ)′θ(τ), (4.34)

where X depicts the matrix of covariates, that consists of the variables age or

7We consider this approach justified since four out of six tests did not reject the null
hypothesis that there is no correlation between age and year dummies and age2 and
year dummies, respectively.

8Another application of the Machado and Mata decomposition for differences in incomes
can be found in Landmesser (2016).
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age2 and the quantile τ ∈ (0, 1). Specifically, we consider here three different
linear quantile regression models: The first model describes an entirely linear
effect of the regressor age on income for all quantiles τ ∈ (0, 1), i.e. P (X, τ) =
age for all τ ∈ (0, 1). The second models a quadratic influence of age on
income for all quantiles τ ∈ (0, 1), i.e. P (X, τ) = age2 for all τ ∈ (0, 1).
And finally, the third model considers the sum of the regressors age and age2

that are constant for all quantiles τ ∈ (0, 1), i.e. P (X, τ) = age + age2

for all τ ∈ (0, 1). Due to the probability integral transform theorem the
sequence P (X, τi)′θ̂(τi) for τi i.i.d.∼ Uni(0, 1), i = 1, ..., n constitutes a random
sample from the estimated conditional distribution of income Y given the
covariates X (Machado & Mata, 2005). In order to obtain the difference
between East and West, first, the coefficients for East θ̂E(τ) and West θ̂W (τ)
for τ ∈ {0.1, 0.2, ..., 0.9} are estimated on the basis of the disjoint subsets of
the covariates for East XE and West XW and the corresponding income in the
East YE and West YW . Second, we draw with replacement B random samples
Xi
E and Xi

W for i = 1, ..., B from the corresponding covariate subsets XE and
XW , respectively to obtain a random sample via (4.34) for the distribution of
the income Y i

l , i = 1, ..., B, l = E,W . Thus, the estimated income difference
∆̂y for incomes in East YE and incomes in West YW can now be decomposed
according to Machado-Mata as

∆̂Y = F̂−1
YE |XE (τ |XE)− F̂−1

YW |XW (τ |XW ) (4.35)

=
(
P (XB

E , τ)− P (XB
W , τ)

)
θ̂E(τ) +

(
θ̂E(τ)− θ̂W (τ)

)
P (XB

W , τ), (4.36)

where the first summand of (4.36) is the explained while the second summand
depicts the unexplained difference.
Table 4.6 depicts the counterfactual analysis of the effect of origin on income.
The covariates used for the quantile regressions are age (row 4 − 9 of Table
4.6), age2 (row 11− 16 of Table 4.6) and the sum of these two variables (row
18−23 of Table 4.6). The results in Table 4.6 suggest that there is a significant
income gap between East andWest Germany over the period considered, which
is particularly striking in the first line, where the observed income differences
ranges from 26.21% to 35.49%. However, the income difference between the
smallest quantile τ = 0.1 and the largest τ = 0.9 decreases by about eight
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Table 4.5: Description of the German labor income data

Description

Y gross market labor income,
(continuous 1, 257e ≤ Y ≤ 280, 092e, average = 46, 641e)

origin indicator for East or West (binary, -1=West (73.8%), 1=East (26.2%))

age age of the male in years (continuous, 20 ≤ age ≤ 60, average = 38)

years time in years (categorical, 2001 ≤ years ≤ 2010, 10 years)

(Sub)sample Description Average income (Std.) Observations

Ger Entire sample 51, 026 (30, 569) n = 7220

West Subsample with origin = −1 55, 141 (31, 494) n = 5325

East Subsample with origin = 1 39, 463 (24, 336) n = 1895

percent. If income is to be explained by the single covariate age or age2, it
cannot be assumed that the model is sufficiently well specified for all quantiles
due to high residuals (4.37 for τ = 0.1 and 7.33 for τ = 0.9), indicating
misspecification. However, the covariate age2 seems to be appropriate for the
smallest quantile 0.1 while a linear effect of age to income seems to prevail in
higher quantiles. In contrast, the additive model age+ age2 seems to capture
the income effect for all quantiles quite well due to moderate residuals. For
all decompositions it holds, that age and age2 contribute a maximum of 16%
to the explanation of the income difference between East and West Germany
(except highest quantile in age2, i.e. 25.41). Due to the different residuals
and the different explanatory power of the income difference between East and
West for the quantile regressions based on age or age2, it seems reasonable
to assume that age and age2 have different effects for different quantiles. For
example, the residual of the 30% quantile of age is about 18 times smaller than
the residual of the corresponding quantile regression using age2 as explanatory
variable. It is therefore suspected that the a linear effect of age dominates in
this quantile. The emerging, more general question, at which quantile age has
a linear or quadratic effect on income, can be answered with the help of the
proposed test.
For this purpose, we have defined five different model specifications (4.37),
which should take into account the observations of the Machado-Mata decom-
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Table 4.6: Decomposition of the West/East income differential

τ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

raw gap -35.49 -32.4 -33.28 -29.06 -28.38 -26.44 -26.21 -26.93 -27.38

age

M-M gap -39.87 -36.64 -33.52 -31.62 -31.45 -29.37 -29.68 -28.83 -25.89
Explained -1.84 -3.65 -2.06 -2.99 -2.35 -2.19 -0.85 -0.31 -0.1
Unexpl. -38.02 -32.98 -31.47 -28.63 -29.1 -27.18 -28.83 -28.52 -25.8
% Explained 4.63 9.97 6.13 9.45 7.46 7.46 2.87 1.07 0.38
% Unexpl. 95.37 90.03 93.87 90.55 92.54 92.54 97.13 98.93 99.62
Residuals 4.37 4.23 0.24 2.56 3.07 2.93 3.46 1.9 -1.49

age2

M-M gap -36.41 -38.13 -37.52 -35.49 -31.21 -31.96 -32.26 -31.55 -34.72
Explained -3.07 -6.08 -4.49 -6.43 -2.81 -2.6 -3.92 -4.35 -8.82
Unexpl. -33.35 -32.05 -33.04 -29.06 -28.4 -29.36 -28.34 -27.2 -25.89
% Explained 8.42 15.94 11.96 18.12 8.99 8.13 12.15 13.8 25.41
% Unexpl. 91.58 84.06 88.04 81.88 91.01 91.87 87.85 86.2 74.59
Residuals 0.92 5.73 4.24 6.44 2.83 5.51 6.05 4.62 7.33

age+age2

M-M gap -33.39 -31.80 -33.16 -30.28 -28.49 -28.90 -27.61 -28.25 -25.69
Explained 2.03 1.55 -1.44 -1.5 0.13 0.31 0.33 -3.09 1.67
Unexpl. -35.42 -33.35 -31.72 -28.78 -28.62 -29.21 -27.94 -25.16 -27.36
% Explained 6.09 4.89 4.34 4.94 0.45 1.09 1.19 10.95 6.49
% Unexpl. 93.91 95.11 95.66 95.06 99.55 98.91 98.81 89.05 93.51
Residuals -2.10 -0.61 -0.12 1.22 0.11 2.45 1.40 1.32 -1.69

The covariates used for the quantile regressions are age (row 4-9), age2 (row 11-16) and the sum of
these two variables (row 18-23). The second row raw gap depicts the observed income gap between
East and West. Remaining rows show three different Machado-Mata decompositions using age, age2

and age+age2 as covariates for the quantile regression models. The rows M-M gap are the estimated
gap of the income difference depending on the underlying quantile regression model. The quantiles
τ range from 0.1 to 0.9. The number of bootstrap replications is equal to 2500. All numbers are in
percent. Totals may not sum exactly due to rounding.

position in Table 4.6. Figure 4.1 visualizes the testing problem and provides
further indications of when age might have a quadratic or linear effect. The
blue line in Figure 4.1 describes the empirical 90 percent quantile. The corre-
sponding dashed blue line represents the corresponding estimate of the quantile
regression. The green (50 percent quantile) and red (10 percent quantile) lines
are the equivalent counterparts. In the 5 different quantile regression models
considered, the effect of age depends on the quantile. Specifications 1−3 from
(4.37) describe quadratic dependencies in the upper or lower quantiles. Speci-
fication 4 and 5 model a completely linear and quadratic dependence structure
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in the covariate, respectively.
The testing procedure is applied to the subsamples East (only individuals from
East Germany are considered) and West (only individuals from West Germany
are considered) as well as to the complete data set (cf. last column All in Table
4.7).

Specification 1 : F−1
Y |X(τ |x) =


x2′θ0, for 0 ≤ τ ≤ 0.1

x′θ0 , for 0.1 ≤ τ ≤ 0.9

x2′θ0, otherwise

Specification 2 : F−1
Y |X(τ |x) =


x2′θ0, for 0 ≤ τ ≤ 0.1

x′θ0 , for 0.1 ≤ τ ≤ 0.9

x′θ0 , otherwise

Specification 3 : F−1
Y |X(τ |x) =


x′θ0 , for 0 ≤ τ ≤ 0.1

x′θ0 , for 0.1 ≤ τ ≤ 0.9

x2′θ0, otherwise

Specification 4 : F−1
Y |X(τ |x) = x′θ0

Specification 5 : F−1
Y |X(τ |x) = x2′θ0

(4.37)

Since the sample sizes for East, West and All differ and in order to make the
results comparable, we computed the rejection rates of subsamples of East,
West and All of size n = 500, 1000. We repeated this procedure for every
subsample a total of 501 times. The results are listed in Table 4.7.
First, it can be observed that age does not have a completely linear influence
on income, as the rejection rates for the 4 specifications are sufficiently high,
0.828 for n = 1000, respectively). Assuming a complete quadratic relationship
between age and income, this statement cannot be upheld, since the rejection
rates for the income distribution in West Germany are below the significance
level of 5%. However, the results clearly show that neither in East Germany
nor in all of Germany (cf. columns East and All of Table 4.7) can the in-
come distribution be adequately described by a quadratic process due to their
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Figure 4.1: Conditional income quantiles for East/West and entire Germany
as functions of age

Figures show the 0.9 (blue) 0.5 (green) 0.1 (red) smoothed quantiles (using a cubic smoothing spline
with smoothing factor 0.5 (cf. R function smooth.spline)) of the income conditioned on the origin
and the unconditioned data set (All). The dashed line depicts the corresponding quantile regression
estimate with age as covariate.

Table 4.7: Empirical rejection frequencies of the test statistic SCM∗n

West East All

n = 500

Specification 1 0.023 0.048 0.054

Specification 2 0.122 0.142 0.118

Specification 3 0.010 0.030 0.025

Specification 4 0.080 0.410 0.345

Specification 5 0.066 0.295 0.242

n = 1000

Specification 1 0.014 0.106 0.098

Specification 2 0.242 0.301 0.215

Specification 3 0.019 0.056 0.036

Specification 4 0.128 0.828 0.705

Specification 5 0.082 0.557 0.463

The table depicts the subsample rejection rate of size n of the specification being used from (4.37).
The number of subsamplings is 501 and the critical values were calculated at a significance level of
5%.

rejection rates. Second, the Specifications 2 assuming a quadratic structure
in the 0.1 and lower quantiles while the remaining quantiles follow a linear
model seems for all subsamples considered inappropriate. Third, the Specifi-
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cations 1 and 3 have the lowest rejection rates for all subsamples indicating
that age has a quadratic influence for quantiles 0.9 and higher. In particular,
Specification 3 seems to model the income structure sufficiently well for all 3
samples considered. However, as the rejection rates, especially for Specifica-
tions 4 and 5, differ sufficiently between East and West, conditional different
income distributions between East and West are likely. The test results are
in line with the findings of other studies: Based on the different structure of
the conditional quantile functions and the corresponding rejections rates for
different specifications in Table 4.7 significant structural differences between
East and West Germany can still be assumed (Kluge & Weber, 2018).

4.7 Conclusion

We believe there are many different areas of application in which the influence
of the regressors depends on the quantile linearly or nonlinearly or even in a
more complex functional form. A well-known example is the effect of age on
the income distribution, which we have taken as illustration. Previous testing
procedures of quantile regression are not able to test such influences sepa-
rately. The present paper proposes a test for generalized quantile regression
that addresses these two issues jointly. To improve finite sample properties,
we replace quantile regression function by a quadratic monotone B-spline.
Our Monte Carlo study illustrates that the proposed method has superior
test properties compared to several existing benchmarks from the literature.
In addition, a detailed investigation of the conditional income distributions
between East and West Germany using the Machado-Mata decomposition re-
veals that still income differences between the regions in Germany are present,
even more than two decades after the reunification. The application of our
test could statistically confirm a different functional correlation between the
income distributions in East and West Germany.
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APPENDIXA
Testing the Correct Specification of a Spatial
Dependence Panel Model for Stock Returns

A.1 A Two Step GMM Estimation Procedure for
SAR(m) Models

Given the assumptions given in 2nd section hold true. The covariance matrix of
yyyt = (In −

m∑
i=1

ρiWi)−1εεεt is given by

Cov[yyyt] =
(
In −

m∑
i=1

ρiWi

)−1

Σ
(
In −

m∑
i=1

ρiW
′
i

)−1

=: V.

For the estimation, a two step procedure is considered. First, we estimate the correla-
tion parameters by the method of moments which does not depend on the parameters
of variance. Second, we estimate the variance parameters.
The moment estimator for the correlation parameters uses the following m-moment
conditions:

E [εεε′tWiεεεt] = tr(WiΣ) = 0 for i = 1, ...,m. (A.1)

Clearly, the variance parameters σ2
i for i = 1, ...,m do not enter the moment condi-

tions. Replacing εεεt by

εεεt =
(
In −

m∑
i=1

ρiWi

)
yyyt

and averaging over t gives the theoretical system of equations

Γλλλ+ γγγ = 0,
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where λλλ := λλλ(ρρρ) is a functional vector of ρρρ := (ρ1, ...ρm) of dimension
M :=

(
m
1
)
+
(
m+2−1

2
)
,
(·
·
)
denoting the binomial coefficient, such that

λi = ρi for i = 1, ...,m (A.2)

λm+i = ρ2
i for i = 1, ...,m (A.3)

λ2m+#{ij | i<j,i<l,j≤k} = ρlρk for l, k = 1, ...,m, (A.4)

where #{ij | i < j, i < l, j ≤ k} represents the number of integer pairs ij such that
the conditions i < j, i < l and j ≤ k are fulfilled for l, k = 1, ...,m. The elements of
Γ ∈ Rm×M and γ ∈ Rm are defined by for i, j = 1, ...,m,

Γi,j = E
[
− 1
T

T∑
t=1

yyy′t (Wi +W ′i )Wjyyyt

]
, (A.5)

Γi,m+j = E
[

1
T

T∑
t=1

yyy′tW
′
jWiWjyyyt

]
, (A.6)

Γi,2m+#{ij | i<j,i<l,j≤k} = E
[

1
T

T∑
t=1

yyy′tW
′
l (Wi +W ′i )Wkyyyt

]
, (A.7)

γi = E
[

1
T

T∑
t=1

yyy′tWiyyyt

]
.

Let G and ggg be the empirical counterparts of Γ and γγγ, i.e. the expectation operator
is left out. The moment estimator for ρρρ = (ρ1, ..., ρm)′ is defined as

ρ̂ρρ := (ρ̂1, ..., ρ̂m)′ := arg min
ρρρ∈S
||Gλλλ+ ggg||

where || · || represents the euclidean norm.

Remark A.1.1. For k, l ∈ {1, ...,m}, the entries of E[G] = Γ given in (A.5)-(A.7)
can be calculated as

Γk,l = tr ((Wk +W ′k)WlV ) ,

Γk,m+l = tr (W ′lWkWlV ) ,

Γi,2m+#{ij | i<j,i<l,j≤k} = tr (W ′l (Wi +W ′i )WkV ) .

The following remark illustrates the results for the SAR(3) model.

Remark A.1.2. For the case m = 3 we have to estimate the spatial vector ρρρ :=
(ρ1, ρ2, ρ3). The corresponding theoretical system of equations is given by Γλλλ+ γγγ = 0
with Γ :=

(
Γ(1),Γ(2),Γ(3)

)
∈ Rm×M , λλλ ∈ RM×1 and γγγ ∈ Rm×1 with M = 3 +

(4
2
)

= 9
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which are defined as

Γ := E

[
1
T

T∑
t=1

yyy′t
(
Γ(1),Γ(2),Γ(3)

)
yyyt

]

with

Γ(1) :=


(W1 +W ′1)W1 (W1 +W ′1)W2 (W1 +W ′1)W3

(W2 +W ′2)W1 (W2 +W ′2)W2 (W2 +W ′2)W3

(W3 +W ′3)W1 (W3 +W ′3)W2 (W3 +W ′3)W3

 ,

Γ(2) :=


W ′1W1W1 W ′2W1W2 W ′3W1W3

W ′1W2W1 W ′2W2W2 W ′3W2W3

W ′1W3W1 W ′2W3W2 W ′3W3W3

 ,

Γ(3) :=


W ′1(W1 +W ′1)W2 W ′1(W1 +W ′1)W3 W ′2(W1 +W ′1)W3

W ′1(W2 +W ′2)W2 W ′1(W2 +W ′2)W3 W ′2(W2 +W ′2)W3

W ′1(W3 +W ′3)W2 W ′1(W3 +W ′3)W3 W ′2(W3 +W ′3)W3

 ,

λλλ :=
(
ρ1, ρ2, ρ3, ρ

2
1, ρ

2
2, ρ

2
3, ρ1ρ2, ρ1ρ3, ρ2ρ3

)
and

γγγ := E
[

1
T

T∑
t=1

yyy′t (W ′1,W ′2,W ′3)′ yyyt

]
.

Since the theoretical term Γλλλ+ γγγ is equal to zero for the true parameter values, the
moment estimator for ρ̂ρρ minimizes the corresponding empirical system Gλλλ+ggg. Arnold
et al. (2013) prove consistency and asymptotic normality of the moment estimator
(cf. Theorem A.1.3) for T →∞, for which an additional assumption is needed.

Assumption 4.

1. The true parameter ρρρ ∈ S is the unique solution of the theoretical system of
equations, i.e.

Γλλλ+ γγγ = 0⇔ ρ̂ρρ = ρρρ.

2. The matrix E
(
∂(Gλλλ+ggg)

∂ρ̂ρρ (yyyt, ρρρ)
)

=: ddd = Γλλλ(1) exists, is finite and has full rank
with λλλ(1) a (M ×m) dimensional matrix defined as

λλλ(1)(l, l) = 1, λλλ(1)(2m+ #{ij | i < j, i < l, j ≤ k}, l) = ρk

λλλ(1)(m+ l, l) = 2ρl, λλλ(1)(2m+ #{ij | i < j, i < l, j ≤ k}, k) = ρl
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for all l, k = 1, ...,m.

3. For

f(yyyt, ρρρ) =


εεε′tW1εεεt

...

εεε′tWmεεεt

 ,

it holds that, for j → ∞, E[f(yyyt, ρρρ) | f(yyyt−j , ρρρ), f(yyyt−j−1, ρρρ), . . .] converges in
mean square to zero and that, for

vvvj : = E[f(yyyt, ρ) | f(yyyt−j , ρ), f(yyyt−j−1, ρ), ...)

− E[f(yyyt, ρ) | f(yyyt−j−1, ρ), f(yyyt−j−2, ρ), ...]

the infinite sum
∑∞
t=−∞ E[(vvvjvvvj)

1
2 ] is finite.

Under the Assumptions 1 and 4 the GMM estimator ρ̂ρρ is consistent and asymptotic
normal as the following theorem shows:

Theorem A.1.3. Let Assumption 1 and 4 hold. Then, for

SW =
∞∑

t=−∞
E[f(yyy1, ρρρ)f(yyyt, ρρρ)′]

and T →∞ it holds:

1. ρ̂ρρ p→ ρρρ

2.
√
T (ρ̂ρρ− ρρρ) d→ N(0, ddd−1SW (ddd−1)′) .

A.2 Proofs

Theorem 4.4.1 is proved by means of the following Lemmas.

Lemma A.2.1. Let In denote the n-dimensional identity matrix and W the m-
dimensional stack of spatial matrices, i.e. W ′ = (W ′1, . . . ,W ′m) with Wi ∈ Rn×n for
i = 1, ...,m. Under Assumption 1 and given that {εεεt}t∈{1,...,T} is serially independent
the following holds for ρρρ := (ρ1, . . . , ρm) and ρ̂ρρ = (ρ̂1, . . . , ρ̂m)

√
T Ĉov[ε̂εεt] = 1√

T

∑
εεεtεεε
′
t + 1

T

∑
∆Tεεεtεεε

′
t + 1

T

∑
εεεtεεε
′
t∆′T + 1

T

∑
∆Tεεεtεεε

′
t

∆′T√
T

with ∆T :=
√
T ((ρρρ− ρ̂ρρ)⊗ In)W (In− (ρρρ⊗ In)W )−1, where ⊗ represents the Kronecker

product.
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Proof. It holds:

√
T Ĉov[ε̂εεt] =

√
T Ê[ε̂εεtε̂εε′t]

= 1√
T

T∑
t=1

ε̂εεtε̂εε
′
t = 1√

T

∑
(In − (ρ̂ρρ⊗ In)W )yyytyyy′t(In − (ρ̂ρρ⊗ In)W )′

= 1√
T

∑
(In − (ρ̂ρρ⊗ In)W )(In − (ρρρ⊗ In)W )−1εεεtεεε

′
t

(In − (ρ̂ρρ⊗ In)W )(In − (ρρρ⊗ In)W )−1]′

= 1√
T

∑
(In − (ρρρ⊗ In)W + (ρρρ⊗ In)W − (ρ̂ρρ⊗ In)W )(In − (ρρρ⊗ In)W )−1εεεtεεε

′
t

[(In − (ρρρ⊗ In)W + (ρρρ⊗ In)W − (ρ̂ρρ⊗ In)W )(In − (ρρρ⊗ In)W )−1]′

= 1
T

∑
[
√
TIn +

√
T ((ρρρ− ρ̂ρρ)⊗ In)W (In − (ρρρ⊗ In)W )−1]εεεtεεε′t

[
√
TIn +

√
T ((ρρρ− ρ̂ρρ)⊗ In)W (In − (ρρρ⊗ In)W )−1]′

= 1
T

∑
[
√
TIn + ∆T ]εεεtεεε′t[In + ∆T√

T
]′

= 1
T

∑
[
√
Tεεεtεεε

′
t + ∆Tεεεtεεε

′
t][

∆′T√
T

+ In]

= 1
T

∑
[εεεtεεε′t∆′T + ∆Tεεεtεεε

′
t

∆′T√
T

+
√
Tεεεtεεε

′
t + ∆Tεεεtεεε

′
t]

= 1√
T

∑
εεεtεεε
′
t︸ ︷︷ ︸

lim
T→∞

= A

+ 1
T

∑
∆Tεεεtεεε

′
t︸ ︷︷ ︸

lim
T→∞

= B

+ 1
T

∑
εεεtεεε
′
t∆′T︸ ︷︷ ︸

lim
T→∞

= B′

+ 1
T

∑
∆Tεεεtεεε

′
t

∆′T√
T︸ ︷︷ ︸

op(
√
T )

The claim in Theorem 4.4.1 is achieved by standard arguments and an adjustment of
Theorem 2.1. in Arnold et al. (2013).

Lemma A.2.2. Let the assumptions from Lemma A.2.1 hold, then ααα = (A)i<j,i 6=j =(
1√
T

∑
εεεtεεε
′
t

)
i<j,i 6=j

has expectation zero and the following covariance matrix

Cov[ααα] =


lim
T→∞

Var [ 1√
T

∑T
t=1 εεε1tεεε2t] · · · 0

... · · ·
...

0 · · · lim
T→∞

Var [ 1√
T

∑T
t=1 εεε(n−1)tεεεnt]

 .

Proof. The zero mean statement follows directly from the cross-sectional uncorrelat-
edness for every t = 1, ..., T . Furthermore, we observe
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Cov[ααα] = lim
T→∞


Var [ 1√

T

∑T
t=1 ε1tε2t] · · · 1

T Cov[
∑
ε1tε2t,

∑
ε(n−1)sεns]

... · · ·
...

1
T Cov[

∑
ε(n−1)tεnt,

∑
ε1sε2s] · · · Var [ 1√

T

∑T
t=1 ε(n−1)tεnt]



=


lim
T→∞

Var [ 1√
T

∑T
t=1 ε1tε2t] · · · 0

... · · ·
...

0 · · · lim
T→∞

Var [ 1√
T

∑T
t=1 ε(n−1)tεnt]


∈ R

n(n−1)
2 ×n(n−1)

2 .

Lemma A.2.3. Let the assumptions from Lemma A.2.1 hold and let {εεεt}t∈{1,...,T} be
serially independent. Then ααα = (A)i<j,i 6=j = dlim

T→∞

(
1√
T

∑
εεεtεεε
′
t

)
i<j,i 6=j

is multivariate
normally distributed with expectation zero and

Cov[(εεεtεεε′t)i<j,i 6=j ] = Cov[ααα] = diag
(
σ2

1σ
2
2 , ..., σ

2
n−1σ

2
n

)
.

Proof. The vector α can be rewritten as dlim
T→∞

√
T

(
1
T

T∑
t=1

εεεtεεε
′
t

)
i<j,i 6=j

. By Assumption

1.5 and the multivariate central limit theorem we obtain that ααα is normally distributed
with expectation zero. Since we assume uncorrelatedness in the cross-section for every
t = 1, ..., T , we have for i 6= j 6= k 6= i

Cov[εitεjt, εitεjt] = E[ε2
itε

2
jt]− 0 = σ2

i σ
2
j , (A.8)

Cov[εitεjt, εitεkt] = E[ε2
itεjtεkt]− 0 = E[ε2

it]E[εjtεkt] = 0. (A.9)

Thus, the covariance matrix for the limiting normal distribution is given by
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Cov[ααα] =



Cov[ε1tε2t, ε1tε2t] · · · Cov[ε1tε2t, ε(n−1)tεnt]

Cov[ε1tε3t, ε1tε2t] · · · Cov[ε1tε3t, ε(n−1)tεnt]
... · · ·

...

Cov[ε(n−1)tεnt, ε1tε2t] · · · Cov[ε(n−1)tεnt, ε(n−1)tεnt]



=



σ2
1σ

2
2 · · · 0

0 · · · 0
... · · ·

...

0 · · · σ2
(n−1)σ

2
n


∈ R

n(n−1)
2 ×n(n−1)

2 .
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APPENDIXB
Testing for Relevant Dependence Change in

Financial Data: A CUSUM Copula Approach

B.1 Assumptions

For the theoretical justification we need some slightly adjusted assumptions following
Dette & Wied (2016):

A1) The marginals Fi(·) and its inverse F−1
i (·) are assumed to be known for all

i ∈ {1, ..., N}.

A2) Let {XT,1, ..., XT,T }T∈N denote a triangular array of strong mixing random
vectors and {UT,1, ...,UT,T }T∈N its corresponding probability transform such
that

UT,1, ...,UT,bsTc ∼ C1(u) ; UT,bsTc+1, ...,UT,T ∼ C2(u).

A3) Consider the triangular array {UT,j | j = 1, ..., T}T∈N and define for 1 ≤ s ≤ t

the corresponding σ-field F ts(T ) := σ({XT,j | s ≤ j ≤ t}) generate by the
random variable {UT,j | s ≤ j ≤ t}. For m ∈ N we denote by

α(m) := sup
T∈N

sup
1≤k≤T−m

sup{|P (A ∩B)− P (A)P (B)| |A ∈ FTm+k(T ), B ∈ Fk1 (T )},

the strong mixing coefficients of the triangular array {UT,1, ...,UT,T } and as-
sume that for some η > 0

α(T ) = O(T−(1+η))
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as T →∞.

A4) For l = 1, 2 let {Wt(l)}t∈Z denote sequences of strictly stationary processes,
such that for each T ∈ N

(UT,1, ...,UT,bsTc)
d= (W1(1), ...,WbsTc(1))

(UT,bsTc+1, ...,UT,T ) d= (W1(2), ...,WT−bsTc, (2))

where d= means equality in distribution. That means, there are two regimes
{Wt(1)}t∈Z and {Wt(2)}t∈Z and the considered process switches from one regime
to the other.

B.2 Derivation and Asymptotic Distribution of the
Test Statistic

We impose the Assumptions given in Appendix B.1 to be valid. Then, the testing
problem of no relevant change in the copula can be defined as follow:

H0 : ‖C1(u)− C2(u)‖L2 ≤ ∆

versus the alternative

H1 : ‖C1(u)− C2(u)‖L2 > ∆,

where ‖.‖L2 is the L2-norm and ∆ > 0 fixed. For every u := (u1, ..., uN ) ∈ [0, 1]N

and t ∈ (0, 1) the CUSUM approach for detecting changes in the copula is then

ÛT (t,u) := t(1− t)

 1
btT c

btTc∑
i=1

Zi(u)− 1
T − btT c

T∑
i=btTc+1

Zi(u)

 , (B.1)

where Zi(u) := 1{F1(Xi1) ≤ u1, ..., FN (XiN ) ≤ uN}, i = 1, ..., T is the vector of
marginal distributions at time i where Fj(·) is the known j-th marginal cumulative
distribution function for all j = 1, ..., N . Before we start the calculation we compute
the expected value of some showing up sums. Since Zi is Bernoulli distributed for
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i = 1, ..., N we have

E[Zi(u)] = P (F1(Xi1) ≤ u1, ..., FN (XiN ) ≤ uN )

= P (Xi1 ≤ F−1
1 (u1), ..., XiN ≤ F−1

N (uN ))

= C(u1, .., uN ).

Furthermore, we obtain from A3) and A4) E[Zi(u)Zj(u)] = Ci(u)Cj(u) + o(1) ∀i 6=
j. Due to readability we introduce the following abbreviations Ci := Ci(u) and
Zi := Zi(u) for i = 1, 2. For fixed s ∈ (0, 1), we compute lim

T→∞
E[ÛT (t,u)]. We first

consider the case t > s

E[ÛT (t,u)] = t(1− t)E

s
t

1
bsT c

bsTc∑
i=1

Zi + 1
btT c

btTc∑
i=bsTc+1

Zi −
1

T − btT c

T∑
i=btTc+1

Zi


= t(1− t)

s
t
C1 + E

btT c − (bsT c)
btT c

1
btT c − (bsT c)

btTc∑
i=bsTc+1

Zi

− C2


= t(1− t)

(
s

t
C1 + t− s

t
C2 − C2

)
= s(1− t) (C1 − C2) .

For t ≤ s we obtain

E[ÛT (t,u)] = t(1− t)E

 1
btT c

btTc∑
i=1

Zi −
1

T − btT c

bsTc∑
i=btTc+1

Zi −
1

T − btT c

T∑
i=bsTc+1

Zi


= t(1− t)

C1 − E

bsT c − (btT c)
T − btT c

1
bsT c − (btT c)

btTc∑
i=bsTc+1

Zi

− 1− s
1− t


= t(1− t)

(
1− s
1− t C1 −

1− s
1− t C2

)
= t(1− s) (C1 − C2) .

Considering both cases yields:

E[ÛT (t,u)] =

s(1− t) (C1 − C2) for t > s

t(1− s) (C1 − C2) for t ≤ s.
(B.2)

The aim is to lose the quantile and time dimension u and t, respectively. As an
intermediate step we consider E[(ÛT (t,u))2] that can be decomposed into three partial
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sums A,B,C with

A : =

 1
btT c

btTc∑
i=1

Zi

2

(B.3)

B : = 1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj (B.4)

C : =

 1
T − btT c

T∑
i=btTc+1

Zi

2

. (B.5)

Considering the case t > s yields:

At>s : E


 1
btT c

btTc∑
i=1

Zi

2
 = E


 1
btT c

bsTc∑
i=1

Zi + 1
btT c

btTc∑
i=bsTc+1

Zi

2


=E


 1
btT c

bsTc∑
i=1

Zi

2
+ 2E

 1
btT c

btTc∑
i=bsTc+1

Zi

 1
btT c

bsTc∑
i=1

Zi



+ E


 1
btT c

btTc∑
i=bsTc+1

Zi

2


= 1
btT c2

[
bsT c(C1(1− C1)

bsT c
) + (bsT cC1)2

]
+ 2s(t− s)

t2
C1C2

+ 1
btT c2

[
btT c − bsT c
btT c − bsT c

C2(1− C2 + (btT c − bsT c)2C2
2

]
+ o(1)

=s2

t2

[
C1(1− C1)

T 2 + C2
1

]
+ 2s(t− s)

t2
C1C2 + C2(1− C2)

btT c2
+ (t− s)2

t2
C2

2

+ o(1)

=s2

t2
C2

1 + 2 s
t2
C1(t− s)C2 + (t− s)2

t2
C2

2 + o(1)
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Bt>s : E

 1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj


=E

 1
btT c

1
T − btT c

bsTc∑
i=1

Zi

T∑
j=btTc+1

Zj


+ E

 1
btT c

1
T − btT c

btTc∑
i=bsTc+1

Zi

T∑
j=btTc+1

Zj


=s

t
C1C2 + t− s

t
C2

2 + o(1)

Ct>s : E


 1
T − btT c

T∑
i=btTc+1

Zi

2


=
(

1
T − btT c

)2 [
T − btT c
T − btT c

C2(1− C2) + [(T − btT c)C2]2
]

=C2
2 + o(1).

Hence, we have

1
t2(1− t)2E[ÛT (t,u)2]

= E


 1
btT c

btTc∑
i=1

Zi

2

︸ ︷︷ ︸
At>s

− 2
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj︸ ︷︷ ︸
Bt>s

+

 1
T − btT c

T∑
i=btTc+1

Zi

2

︸ ︷︷ ︸
Ct>s


= s2

t2
C2

1 + 2 s
t2
C1(t− s)C2 + (t− s)2

t2
C2

2 − 2
[
s

t
C1 + t− s

t
C2

]
C2

2 + C2
2 + o(1)

= s2

t2
(C1 − C2)2 + o(1)

Considering the t ≤ s yields:

At≤s : E


 1
T

btTc∑
i=1

Zi

2
 = 1

btT c2

(
btT c
btT c

[C1(1− C1)] + (btT cC1)2
)

= C2
1 + o(1)
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Bt≤s : E

 1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj


= 1
btT c

1
T − btT c

E

btTc∑
i=1

Zi

bsTc∑
j=btTc+1

Zj

+ E

btTc∑
i=1

Zi

T∑
j=bsTc+1

Zj


=
[
s− t
1− tC1 + 1− s

1− t C2

]
C1 + o(1)

Ct≤s : E


 1
T − btT c

T∑
i=btTc

Zi

2


=E


 1
T − btT c

bsTc∑
i=btTc

Zi + 1
T − btT c

T∑
i=bsTc+1

Zi

2


=E


 1
T − btT c

bsTc∑
i=btTc

Zi

2


+ 2E

 1
T − btT c

bsTc∑
i=btTc

Zi

 1
T − btT c

T∑
i=bsTc+1

Zi


+ E


 1
T − btT c

T∑
i=bsTc+1

Zi

2


= 1
(T − btT c)2

(
bsT c − btT c
bsT c − btT c

[C1(1− C1)] + [(bsT c − btT c)C1]2
)

+ 2s− t1− tC1
1− s
1− t C2

+ 1
(T − btT c)2

(
T − bsT c
T − bsT c

[C2(1− C2)] + [(T − bsT c)C2]2
)

+ o(1)

=(s− t)2

(1− t)2C
2
1 + +2s− t1− tC1

1− s
1− t C2 + (1− s)2

(1− t)2 C
2
2 + o(1)

For the expression E[ÛT (t,u)2] we have

1
t2(1− t)2 E[ÛT (t,u)2]

= E


(

1
btT c

btTc∑
i=1

Zi

)2

︸ ︷︷ ︸
At≤s

−2 1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj︸ ︷︷ ︸
Bt≤s

+

 1
T − btT c

T∑
i=btTc+1

Zi

2

︸ ︷︷ ︸
Ct≤s


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= (s− t)2

(1− t)2C
2
1 + 2 s− t1− tC1

1− s
1− t C2 + (1− s)2

(1− t)2 C
2
2 − 2

[
s− t
1− tC1 + 1− s

1− t C2

]
C1 + C2

1 + o(1)

= (1− s)2

(1− t)2 (C1 − C2)2 + o(1)

Combining the previous calculations for t > s, t ≤ s and with the help of Fubini we
obtain

L(t) := lim
T→∞

E[‖ÛT (t,u)‖2
L2 ] =

s2(1− t)2‖C1(u)− C2(u)‖2
L2 , t > s

(1− s)2t2‖C1(u)− C2(u)‖2
L2 , t ≤ s.

By integrating out t a straightforward calculation yields∫ 1

0
L(t)dt = s2(1− s)2

3 ‖C1(u)− C2(u)‖2
L2 . (B.6)

The next theorem provides the limiting distribution of the empirical centred counter-
part L̂T (t) := ‖ÛT (t,u)‖2

L2

Theorem B.2.1. Under Assumptions A1)-A4)

√
T

 1∫
0

L̂T (t)dt− 1
3s

2(1− s)2||C1(u)− C2(u)||2L2

 d−→ N(0, σ2
C1,C2,s), (B.7)

with σ2
C1,C2,s

= 4
∫ 1

0
∫ 1

0 E [< U(t1,u), A(t1,u) >L2< U(t2,u), A(t2,u) >L2 ] dt1dt2 and
< ·, · >L2 the L2 inner product.

Proof. See Appendix B.3

Due to the high computational effort in high dimensions using the L2-norm it could
be reasonable to only test for specific quantiles (points) q in the copula. So similar to
the L2-norm testing we can test on fixed points q = (q1, . . . , qN )′ in the copula, using
the previous notation and considering a constant functions g := C(q), where C(q) is
the copula value at some fixed quantile q.

Corollary B.2.2. Under Assumptions A1)-A4)

√
T

 1∫
0

L̂q
T (t)dt− 1

3s
2(1− s)2|C1(q)− C2(q)|2

 d−→ N(0, σ2
C1,C2,s,q), (B.8)

with L̂q
T (t) := (ÛT (t,q))2 and

σ2
C1,C2,s,q := 4

∫ 1

0

∫ 1

0
E [U(t1,q) ·A(t1,q) · U(t2,q) ·A(t2,q)] dt1dt2
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for fixed q ∈ [0, 1]N .

L̂q
T (t) and σ2

C1,C2,s,q are called the quantile version of L̂T (t) and σ2
C1,C2,s

, respectively.
The next Lemma shows that the test holds the size level and has considerable power.

Lemma B.2.3. The test

κ̂T ≥
1
3s

2(1− s)2∆2 + k1−α(s)√
T

(B.9)

is a consistent asymptotic α test for all s > 0, where k1−α(s) is the (1− α)-quantile

of the limiting normal distribution given in (B.7) and κ̂T =
1∫
0
L̂T (t)dt.

Proof. Suppose δ := ‖C1(u)− C2(u)‖L2 ≤ ∆. Then

Pδ(κ̂T ≥
1
3s

2(1− s)2∆2 + k1−α(s)√
T

)

= P (
√
T (κ̂T −

1
3s

2(1− s)2δ2) ≥
√
T

1
3s

2(1− s)2(∆2 − δ2) + k1−α(s))

≤ P (
√
T (κ̂T −

1
3s

2(1− s)2δ2) ≥ k1−α(s))

−→
T→∞

1− (1− α) = α.

Otherwise, if δ > ∆

Pδ(κ̂T ≥
1
3s

2(1− s)2∆2 + k1−α(s)√
T

)

= P (
√
T ((κ̂T −

1
3s

2(1− s)2δ2) ≥
√
T

1
3s

2(1− s)2(∆2 − δ2)︸ ︷︷ ︸
<0

+k1−α(s))

= 1− P (
√
T (κ̂T −

1
3s

2(1− s)2δ2) <
√
T

1
3s

2(1− s)2(∆2 − δ2) + k1−α(s))

−→
T→∞

1− 0 = 1.

The test given in equation (B.9) is an exact level α test if ∆ is chosen as the copula
difference δ = ||C1(u)− C2(u)||L2 . Otherwise the size is smaller than α.
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B.3 Proof of Theorem 1

We execute the proof of Theorem 1 stepwise. First, we start to consider only one
partial sum of the process ÛT (·, ·), i.e.

ĈT (t,u) : = 1
T

btTc∑
i=1

Zi(u). (B.10)

Second, by means of the continuous mapping theorem we obtain the limiting dis-
tribution of the process ÛT (·, ·) and can then finally derive the limiting distribution
given in Theorem B.2.1. Again, for the computation of the expectation of ĈT (·, ·)
we have to distinguish two cases, i.e. either t ≤ s or t > s. If t ≤ s, we have
limT→∞ E[ĈT (t,u)] = tC1(u). For t > s a straightforward calculation yields

E[ĈT (t,u)] = E

 1
T

bsTc∑
i=1

Zi(u) + 1
T

btTc∑
i=bsTc+1

Zi(u)


= sC1(u) + btT c − bsT c

T
C2(u) = sC1(u) + (t− s)C2(u) + o(1).

Thus, the expectation of the partial sum ĈT (·, ·) is given by

EC1,C2,s(t,u) := lim
T→∞

E[ĈT (t,u)] = (s ∧ t)C1(u) + (t− s)+C2(u). (B.11)

With the expectation (B.11) we derive the asymptotic distribution of the centred
partial sum process (B.10), which leads to the following theorem.

Theorem B.3.1. Let Assumptions A1)-A4) hold. Then, a standardized version of
the process {ĈT (t,u)}t∈(0,1),u∈[0,1]N converges weakly in `∞((0, 1)× [0, 1]N ), i.e.

√
T
{
ĈT (t,u)− EC1,C2,s(t,u)

}
t∈(0,1),u∈[0,1]N

d⇒ {GC1,C2,s(t,u)}t∈(0,1),u∈[0,1]N .

Here, GC1,C2,s denotes a centered Gaussian process with covariance kernel

E[GC1,C2,s(t1,u1)GC1,C2,s(t2,u2)] (B.12)

= (t1 ∧ t2 ∧ s)k1(u1,u2) + (t1 ∧ t2 − s)+k2(u1,u2), (B.13)

and the kernels k1 and k2 are defined by

kl(u1,u2) =
∑
i∈Z

Cov[1{W0(l) ≤ u1},1{Wi(l) ≤ u2}], l = 1, 2. (B.14)
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Proof. Consider

ĈT (t, u)− EC1,C2,s[t,u]

= 1
T

btTc∑
i=1

Zi(u)− [(t ∧ s)C1(u) + (t− s)+C2(u)] + oP ( 1√
T

)

= 1
T

bT (s∧t)c∑
i=1

[Zi(u)− C1(u)]︸ ︷︷ ︸
X

(1)
T

(t,u):=
bT (s∧t)c∑

i=1

YT,i(u)

+1{t > s} 1
T

btTc∑
i=bT (s∧t)c+1

[Zi(u)− C2(u)

︸ ︷︷ ︸
X

(2)
T

(t,u):=1{t>s}
btTc∑

i=bT (s∧t)c+1

YT,i(u)

] + oP ( 1√
T

)

with YT,i(u) := 1{i ≤ bsT c}Zi(u)− C1(u)
T

+ 1{i > bsT c}Zi(u)− C2(u)
T

Then it follows by Bücher et al. (2014) for T →∞

1. {
√
TX

(1)
T (t,u)}t∈[0,1],u∈[0,1]n

d=⇒ G(t ∧ s,u)

2. {
√
TX

(2)
T (t,u)}t∈[0,1],u∈[0,1]n

d=⇒ G(t,u)−G(t ∧ s,u)

where G(·, ·) are tight centred Gaussian processes with covariance function

Cov[G(t1 ∧ s,u1),G(t2 ∧ s,u2)] = (t1 ∧ t2 ∧ s)k1(u1,u2) (B.15)

and

Cov[G(t1,u1)−G(t1 ∧ s,u1),G(t2,u2)−G(t2 ∧ s,u2)]

= Cov[G(t1,u1,G(t2,u2)]− Cov[Z(t1,u1),G(t2 ∧ s,u2)]−

Cov[G(t1 ∧ s,u1),G(t2,u2)] + Cov[G(t1 ∧ s,u1),G(t2 ∧ s,u2)]

= (t1 ∧ t2)k2(u1,u2)− (t1 ∧ t2 ∧ s)k2(u1,u2)

− (t1 ∧ t2 ∧ s)k2(u1,u2) + (t1 ∧ t2 ∧ s)k2(u1,u2)

= (t1 ∧ t2 − t1 ∧ t2 ∧ s)k2(u1,u2)

= (t1 ∧ t2 − s)+k2(u1,u2).

Thus, the composition
√
TXT :=

√
T
(
X

(1)
T +X

(2)
T

)
is asymptotically tight (cf. van der

Vaart & Wellner, 1996, Section 1.5). In order to prove convergence in distribution
of
√
TXT it remains to establish the weak convergence of the finite dimensional dis-

tributions. Therefore, we use the Cramér-Wold-device and show for all sequences
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(t1,u1), ..., (tn,un) ∈ [0, 1]× [0, 1]n

√
T{

k∑
i=1

ajXT (tj ,uj)}
d=⇒

k∑
j=1

ajGC1,C2,s(tj ,uj) (B.16)

with α1, ..., αk ∈ R and GC1,C2,s is the Gaussian process defined in Theorem B.3.1.
Now, we restrict ourselves to the case k = 2 and begin with the calculation of the
covariance of X(1)

T (t1, u1) and X(2)
T (t2, u2). Therefore, we consider four different cases.

t1 ≤ t2 ≤ s:

TCov[X(l)
T (t1,u1), X(l)

T (t2,u2)] T→∞→

(t1 ∧ t2 ∧ s)k1(u1,u2) if l = 1

0 if l = 2.

s ≤ t1 ≤ t2:

TCov[X(l)
T (t1,u1), X(l)

T (t2,u2)] T→∞→

tk1(u1,u2) if l = 1

(t1 ∧ t2 − s)+k2(u1,u2) if l = 2

t1 < s ≤ t2:

T |Cov[X(l)
T (t1,u1), X(l)

T (t2,u2)]| = T |Cov[
bt1Tc∑
j=1

YT,i(t2,u2),
bt2Tc∑

j=bsTc+1

YT,i(t2,u2)]|

= O( 1
T η+1 ) = O( 1

T η
) = o(1)

for all η > 0.
In the case where t1 = s ≤ t2 we use a sequence εT such that εTT →∞ and ε2TT → 0
and obtain by the same argument of strong mixing

T |Cov[X(l)
T (t1,u1), X(l)

T (t2,u2)]|

= T |Cov[
bT (s−εT )c∑

i=1
YT,i(t1,u1) +

bsTc∑
i=bT (s−εT )c+1

YT,i(t1,u1),
bT (s+εT )c∑
i=bsTc+1

YT,i(t2,u2)

+
bt2Tc∑

i=bT (s+εT )c+1

YT,i(t2,u2)]|

= O( 1
(εT )T η ) +O(Tε2T ) = o(1)
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σ2 = lim
T→∞

V[
√
T

2∑
j=1

αjXT (tj ,uj)]

= lim
T→∞

V[α1(X(1)
T (t1,u1) +X

(2)
T (t1,u1)) + α2(X(1)

T (t2,u2) +X
(2)
T (t2,u2))]

= lim
T→∞

T{α2
1Cov[X(1)

T (t1,u1), X(1)
T (t1,u1)]

+ 2α1α2Cov[X(1)
T (t1,u1), X(1)

T (t2,u2)]

+ α2
1Cov[X(2)

T (t1,u1), X(2)
T (t1,u1)] + 2α1α2Cov[X(2)

T (t1,u1), X(2)
T (t2,u2)]

+ α2
2Cov[X(1)

T (t2,u2), X(1)
T (t2,u2)] + α2

2Cov[X(2)
T (t2,u2), X(2)

T (t2,u2)]}

= α2
1 ((t1 ∧ s)k1(u1,u1) + (t1 − s)+k2(u1,u1))

+ a2
2 ((t2 ∧ s)k2(u2,u2) + (t2 − s)+k2(u2,u2))

+ 2α1α2 ((t1 ∧ t2 ∧ s)k1(u1,u2) + (t1 ∧ t2 − s)+k2(u1,u2))

= V[α1GC1,C2,s(t1,u1) + α2GC1,C2,s(t2,u2)]

(B.17)

with E[GC1,C2,s(t1,u1)GC1,C2,s(t2,u2)] = (t1 ∧ t2 ∧ s)k1(u1,u2) + (t1 ∧ t2 −
s)+k2(u1,u2) where the kernels for i = 1, 2 are given by

ki(u1,u2) =
∑
k∈Z

Cov[1{W0(i) ≤ u1},1{Wk(i) ≤ u2}]

In order to prove asymptotic normality of
√
T

2∑
j=1

αjXT (tj ,uj) we introduce

the notation

TT :=
√
T

σ

2∑
j=1

αjXT (tj ,uj) =
T∑
j=1

ST,j + oP (1)

with

ST,j = α11{j ≤ bt1T c}
σ
√
T

(1{Uj ≤ u1} − EC1,C2,t(t1,u1))

+α21{j ≤ bt2T c}
σ
√
T

(1{Uj ≤ u2} − EC1,C2,t(t2,u2))

and we use a central limit theorem for triangular arrays of strong mixing
random variables (see Liebscher, 1996, Theorem 2.1 with p = ∞). From the
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previous discussion it follows that limT→∞ E[T 2
T ] = 1 and thus, we have

lim
T→∞

T∑
j=1

(ess sup
ω∈Ω

[ |ST,j |1{|ST,j | > ε}])2 = 0 a.s..

Similarly, it follows that the condition

lim
T→∞

T∑
j=1

(ess sup
ω∈Ω
|ST,j | )2 ≤ const a.s..

of Theorem 2.1 in Liebscher (1996) is also satisfied. Therefore this result shows
that

√
T

2∑
j=1

αjXn(tj ,uj) = σTT√
E[T 2

T ]
D=⇒ N(0, σ2)

where the asymptotic variance σ2 is defined in (B.17). This proves the con-
vergence of the finite dimensional distributions and completes the proof of the
theorem.

Now, we can follow the asymptotic distribution of the centered ÛT (t,u), by using the
continuous mapping theorem with ÛT (t,u) = ĈT (t,u)− tĈT (1,u).

Corollary B.3.2. Under assumptions A1)-A4) we receive for t ∈ (0, 1) and u ∈
[0, 1]N

√
T
(
ÛT (t,u)− U(t,u)

)
d=⇒ {A(t,u)}t∈(0,1),u∈[0,1]N , (B.18)

where ÛT (t,u) = ĈT (t,u) − tĈT (1,u), U(t,u) = EC1,C2,s(t,u) − tEC1,C2,s(1,u) and
A(t,u) = GC1,C2,s(t,u)− tGC1,C2,s(1,u) with covariance kernel

aC1,C2,s(t1,u1, t2,u2) = E [A(t1,u1)A(t2,u2)] . (B.19)

Now, we can complete the proof for Theorem B.2.1. By Corollary B.3.2 we have for
t ∈ (0, 1) and u ∈ [0, 1]N

√
T
(
ÛT (t,u)− U(t,u)

)
d=⇒ A(t,u).

Thus, for every inner product space we have we can rewrite L̂T (t)−L(t) for t ∈ (0, 1)
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as

L̂T (t)− L(t) = ||ÛT (t,u)− U(t,u)||2 + 2 < U(t,u), ÛT (t,u)− U(t,u) >L2 .

Then, by Corollary B.3.2 and the consistency of ÛT (·) in (B.2) we get

√
T
(
L̂T (t)− L(t)

)
d=⇒ 2 < U(t,u), A(t,u) >L2 .

Thus, with the help of the continuous mapping theorem we receive

√
T

 1∫
0

L̂T (t)dt−
1∫

0

L(t)dt

 d→
1∫

0

2 < U(t,u), A(t,u) >L2 dt =: Q

⇔
√
T

 1∫
0

L̂T (t)dt− 1
3s

2(1− s)2||C1(u)− C2(u)||2
 d−→ Q,

where the random variable Q is normally distributed N(0, σ2
C1,C2,s

) with variance
term

σ2
C1,C2,s =4

∫ 1

0

∫ 1

0
E [< U(t1,u), A(t1,u) >L2< U(t2,u), A(t2,u) >L2 ] dt1dt2.
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B.4 Covariance Bootstrap

Another approach next to the full bootstrap is to estimate the variance term of the
limiting normal distribution1. Therefore, we have to estimate the covariance of the
centred Gaussian process dC1,C2,s(t1, t2) = E[DC1,C2,s(t1), DC1,C2,s(t2)] by using re-
sampling, cf. Theorem B.2.1. We also assume that our sample {Xi}Ti=1 is compounded
of {Xi}bsTci=1 and {Xi}Ti=bsTc+1, such that there is only one breakpoint location in bsT c
with s ∈ (0, 1), i.e. {Xi}bsTci=1 ∼ C1(F (X)) and {Xi}Ti=bsTc+1 ∼ C2(F (X)). Then, the
covariance bootstrap procedure suggests the following course of action:

i) Estimate the breakpoint location bsT c with bŝT c, where ŝ is determined by
ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Sample separately with replacement from {Xi}bŝTci=1

and {Xi}Ti=bŝTc+1 to obtain B bootstrap samples {X(b)
i }Ti=1, for b = 1, . . . , B.

ii) Estimate B versions of the copula difference ∆b
C = ‖Ĉ1:ŝT (u)− Ĉ ŝT+1:T (u)‖L2 ,

using the estimated break point location ŝT and re-sampled data {X(b)
i }Ti=1,

for b = 1, . . . , B.

iii) For t1, t2 ∈ [0, 1] compute separately

Db
i (ti) :=<

√
T
(
ÛbT (ti,u)− Ub(ti,u)

)
,Ub(ti,u) >L2

for i = 1, 2 using {X(b)
i }Ti=1 for b = 1, . . . , B, where

Ub(ti,u) = (min{ŝ, ti} − ŝti) ∆b
C .

iv) Estimate the expected value given covariance of Theorem B.2.1 for t1, t2 ∈ (0, 1)
by the mean

d̂C1,C2,ŝ(t1, t2) := 1
B

B∑
b=1

Db
1(t1)Db

2(t2).

v) Estimate the variance σ2
C1,C2,s

from Theorem B.2.1 by integrating out over t1
and t2, i.e

σ̂2
C1,C2,ŝ = 4

∫ 1

0

∫ 1

0
d̂C1,C2,ŝ(t1, t2)dt1dt2

and compute the q-quantile zq of N(0, σ̂2
C1,C2,ŝ

) where q ∈ (0, 1).

1Since we are only able to derive the limiting distribution in the case of known marginals,
there is no theoretical evidence that the covariance bootstrap is applicable for sequentially
estimated case.
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The testing procedure is as follows: We reject the null of no relevant change ‖C1(u)−
C2(u)‖L2 ≤ ∆ if

1∫
0

L̂T (t)dt > ŝ2(1− ŝ)2

3 ∆2 + zq√
T
. (B.20)

The bootstrap and testing procedure can be easily adapted to the quantile case, i.e.
u is fixed, by adapting step i) - iii). Note, the test given in equation (B.20) is an exact
level α test if ∆ is chosen as the copula difference ||C1(u) − C2(u)||L2 or |C1(q) −
C2(q)|2. Otherwise the size is smaller than α. By the continuous mapping theorem
we obtain that the left hand side of (B.20) converges weakly to a degenerated random
variable if the copula difference is equal to zero (no break point). Consequently, the
level of the proposed tests have practically size zero, whereas classical stationarity
tests hold the asymptotic α-level. Thus, the power of the classical tests is usually
larger than the power of the relevant change tests cosndiered here. For practitioners
we suggest to run a classical test first, e.g. Bücher (2013) for the case of known
marginals and Bücher et al. (2014) in the case of sequentially estimated marginals. If
the test rejects the null of stationarity, i.e. the copula difference is significantly larger
than zero, estimate the break fraction and apply the proposed relevant change test.

2For a detailed description of the quantile version of the test statistic we refer to the main
paper.
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B.5 Simulations for the Covariance Bootstrap

The data generating process (DGP) is similar to the DGP used in the main paper.
We recap the description of the DGP since we want the Supplement Appendix to be
autonomous readable. Let

Xt = [X1t, X2t]′ = N2 (0,Σt(ρ)) , (B.21)

where N2(0,Σt(ρ)) with t = 1, ..., T describes the bivariate normal distribution with
expectation vector zero and covariance matrix Σt(ρ) =

( 1 ρ
ρ 1
)
and ρ ∈ [−1, 1]. We

set ρ equal to −0.3 for t = 1, ..., T2 and ρ = 0.8 for t = T
2 + 1, ..., T . Thus, the

breakpoint sT is chosen at T
2 . We restrict the size analysis in this subsection to

the two dimensional case N = 2. The following size study presents both L2-norm
based results and an analysis where we consider the specific point u = (0.6, 0.6).
Note, the closer the quantile is to its boundaries, i.e. 0 or 1, the more observations
are needed. Critical values of our tests are computed using the bootstrap algorithms
from Sections B.4 with B = 300 bootstrap replications. The tests are performed at the
α = 0.05, 0.1 significance level using 301 Monte Carlo replications. The computations
were implemented in Matlab, parallelized and performed using CHEOPS, a scientific
High Performance Computer at the Regional Computing Center of the University of
Cologne (RRZK).
Table B.1 presents the results of the relevant change tests under the null with ∆ chosen
as the estimated copula difference |C1(u) − C2(u)|, where C1 and C2 are estimated
by the consistent copula estimator

Ĉ(u) = 1
t2 − t1

t2∑
i=t1

1{F1(Xi1) ≤ u1, . . . , FN (XiN ) ≤ uN}, (B.22)

using realizations {X1, . . . XbŝTc} and {XbŝTc+1, . . . XT }. The breakpoint bŝT c is
estimated by

ŝ := argmax
s∈(0,1)

|ÛT (s,u)|. (B.23)

Table B.1 reports the results of the relevant change tests under the null, where the
functional difference between the copulas is determined by the L2-norm. Similar to the
quantile case we consider for the size analysis ∆ := ‖C1(u)−C2(u)‖L2 and accordingly
ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Collectively, the tests show good size properties and

converges to the predetermined rejection level α if T gets larger.
Overall, the covariance bootstrap shows good size properties for both, the quantile
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Table B.1: Size analysis with known marginals

T = 300 T = 500 T = 750 T = 1000

q95 0.099 0.083 0.059 0.046
q90 0.142 0.106 0.109 0.109

Table B.1 reports the rejection rate of the relevant change test for data generated with the DGP
described in (B.21) for known marginal distributions and sequential estimated marginals using the
two distribution estimation methods with B = 300 bootstrap replications. The copula difference is
evaluated at u = (0.6, 0.6). In total, we conducted 301 Monte Carlo replications.

Table B.2: Size analysis with known marginals using the L2-norm

T = 1000 T = 2000 T = 3000 T = 4000

q95 0.085 0.063 0.046 0.066
q90 0.156 0.122 0.113 0.102

Table B.2 reports the rejection rate of the relevant change test for data generated with the DGP
described in (B.21) for known marginal distributions and sequential estimated marginals using the
two distribution estimation methods with B = 300 bootstrap replications. The copula difference is
determined using the L2-norm. In total, we conducted 301 Monte Carlo replications.

version of the test and the test given in (B.20) by a moderate rate of bootstrap
replications.
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C.1 Proofs

In order to maintain readability we omit the index Y |X for the conditional cdf F . To
prove Theorem 4.4.1, we first derive and prove three auxiliary results. Therefore, we
define the following three processes for (y, x) ∈ RK+1 and (θ, τ) ∈ Θ× T :

νn(y, x) :=
√
n
(
F̂n(y, x)− F (y, x)

)
(C.1)

γn(θ, τ) :=
√
n
(
Ĝn(θ̂n, τ)−G(θ, τ)

)
(C.2)

ν0
n(y, x) :=

√
n
(
F̂n(y, x, θ̂n)− F (y, x, θ0)

)
. (C.3)

Lemma C.1.1. Let Assumptions (2) be true. For the processes (C.1) and (C.2) it
holds under the null, that

(νn, γn)⇒ G̃ := (G1, G̃2) in `∞(S ×Θ× T ), (C.4)

where G̃ is a tight bivariate mean zero Gaussian process.

Proof. First, we notice that the Donsker property is conserved under the union of
Donsker classes. Hence, νn and γn(θ, τ) are FY X - Donsker for all θ ∈ B(T ,Θ) and
τ ∈ T with limiting process G1(y, x) and G̃2, respectively. Since arbitrary linear
combinations of νn and γn are Lipschitz and thus Donsker (see Vaart, 1998, Example
29.20), we conclude by the Cramér-Wold theorem that (νn, γn) converge in distribu-
tion to G̃.

Before we prove the next lemma we slightly generalize Lemma E.3 from Chernozhukov
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et al. (2013) for our purposes. This modification summarized in the following corollary
states conditions under which a Z-estimation process satisfies the functional delta
method for Gaussian processes.

Corollary C.1.2. Let Assumption 2 i.) − iv.) be satisfied and
√
n
(
Ĝn −G

)
⇒ G̃2

in `∞(Θ× Il) for all l = 1, ..., L, where G̃2 is a Gaussian process with a.s. uniformly
continuous paths on Θ× Il, l = 1, ..., L. Further, we assume that the estimator θ̂n(τ)
is an approximate Z-estimator ( (4.12)) for all τ ∈ Il with l = 1, ..., L. Then

√
n
(
θ̂n(·)− θ0(·)

)
= −Ġ−1

θ0(·),·

[√
n(Ĝn −G)(θ0(·), ·)

]
+ oP (1) (C.5)

⇒ −Ġ−1
θ0(·),·

[
G̃2(θ0(·), ·)

]
∈ `∞(T ). (C.6)

If Assumption 2 v.) also holds, then the paths τ 7→ −Ġ−1
θ0(τ),τ

[
G̃2(θ0(τ), τ)

]
are a.s.

uniformly continuous on T .

Proof. The intersection of Il1 and Il2 is a singleton by assumption for l1 6= l2. Thus,
the set of possible discontinuities is a null set with respect to the Lebesgue measure.
Hence, the limiting process G̃2 is a.s. continuous on Θ × T with respect to the
Euclidean metric. Further we notice, that by assumption the decomposition of the
unit interval is finite. Consequently, the property of uniformity is also applicable to
the finite union of compact sets. Hence, the conditions of Lemma E.3 in Chernozhukov
et al. (2013) are fulfilled.

Lemma C.1.3. Let either the null hypothesis or a fixed alternative and Assumptions
2 be true. Then it holds that

(νn, ν0
n)⇒ G := (G1,G2) in `∞(S × S), (C.7)

where G1 is the limiting tight bivariate mean zero Gaussian process of νn and

G2 :=
∫
F (y|x∗)1{x∗≤x}dG1(∞, x∗) +

∫
G∗2(y, x∗)1{x∗≤x}dFX(x∗). (C.8)

Proof. Under either the null hypothesis or a fixed alternative, it follows by standard
arguments from Lemma C.1.1 and Corollary C.1.2 that in `∞(S)× `∞(T )

√
n
(
F̂n(·, ·)− F (·, ·), θ̂n(·)− θ0(·)

)
⇒
(
G1(·, ·),−Ġ−1

θ0(·),·(G̃2(θ0(·), ·)
)
. (C.9)

Next, it follows from the Hadamard differentiability (cf. Assumption 2 vii.)) that

√
n
(
F̂n(y|x, θ̂n)− F (y|x, θ0)

)
⇒− Ḟ (y|x, θ0)

[
Ġ−1
θ0(·),·(G̃2(θ0(·), ·)

]
=: G+

2 (y, x).
(C.10)
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The statement of the lemma then follows directly from the Hadamard derivative φ̇ of
the mapping

φ((A,B))[x∗] :=
∫
A(·, x∗)1{x∗≤·}dB(x∗) (C.11)

given by

φ̇A,B(α, β)[x∗] =
∫
A(·, x∗)1{x∗≤·}dβ(x∗) +

∫
α(·, x∗)1{x∗≤·}dB(·, x∗) (C.12)

and the functional delta method. In particular, for the second component G2 of the
joint limiting process, we have

G2(y, x) =
∫

G+
2 (y, x∗)1{x∗≤x}dFX(x∗) +

∫
F (y|x∗)1{x∗≤x}dG1(∞, x∗). (C.13)

of Theorem 4.4.1. We start with the first statement of Theorem 4.4.1. Under the null
hypothesis it holds that F̂n(y, x) = F (y, x, θ0) for all (y, x) ∈ S. By linearity, we have

SCMn =
√
n

∫ (
F̂n(y, x)− F̂n(y, x, θ̂)

)
dF̂n(y, x) (C.14)

=
∫ (

νn(y, x)− ν0
n(y, x)

)2
dF (y, x)

+
∫ (

νn(y, x)− ν0
n(y, x)

)2
d
(
F̂n(y, x)− F (y, x)

)
. (C.15)

From Lemma C.1.3 we know that (ν, ν0)⇒ (G1,G2) = G, where G is a tight bivariate
mean zero Gaussian process. Applying the continuous mapping theorem and the
Donsker class property yield

SCMn =
∫

(G1(y, x)−G2(y, x)2dF (y, x) + op(1) (C.16)

which claims the statement.
To show part ii.), we use the fact that under any fixed alternative P (F (y, x) 6=
F (y, x, θ0) > 0 due to construction of the alternative hypothesis in (4.9). Thus,

SCMn =
∫ (

νn(y, x)− ν0
n(y, x) +

√
n(F (y, x)− F (y, x, θ0)

)2
dF (y, x)

+ oP (1) = OP (n),
(C.17)

which implies that SCMn is greater than any fixed constant ε > 0 and hence, the
probability that SCMn is greater than any ε > 0 tends to 1.
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In order to prove Theorem 4.4.2 we present the bootstrap version of Lemma C.1.1 as
an auxiliary result.

Lemma C.1.4. Let Assumption 2 be true. We define the bootstrap version of the
empirical processes (C.1) and (C.3)

νn,B(y, x) :=
√
n
(
F̂n,B(y, x)− F̂n(y, x, θ̂n)

)
(C.18)

ν0
n,B(y, x) :=

√
n
(
F̂n,B(y, x, θ̂n)− F̂n(y, x, θ̂n)

)
. (C.19)

Then it holds under either the null or a fixed alternative hypothesis that

(
νn,B , ν

0
n,B

)
⇒ Gb, (C.20)

where Gb := (Gb1,Gb2) is a tight bivariate mean zero Gaussian process whose distri-
bution function coincides with that of the process G in Lemma C.1.1.

Proof. This follows from Lemma C.1.1 and the functional delta method for the boot-
strap (Rothe & Wied, 2013).

Finally, we can prove the statements of Theorem 4.4.3.

Theorem 4.4.3. To prove part i.), let c(α) be the true critical value satisfying P (SCMn >

c(α)) = α + oP (1). Then it follows from Lemma C.1.4 that ĉn(α) = c(α) + oP (1).
This implies that SCMn and S̃n := SCMn −(ĉn(α)−c(α)) converge to the same limiting
distribution as n tends to infinity. Hence, P (SCMn > ĉn(α)) = α + oP (1) as claimed.
To prove part ii.), we deduce from Lemma C.1.4 that the bootstrap critical values
are bounded in probability under fixed alternatives. Thus, for any ε > 0, there is an
N(ε) such that P (ĉn(α) > N(ε)) < ε+ oP (1). By Kolmogorv axioms we obtain

P (SCMn ≤ ĉn(α)) (C.21)

= P (SCMn ≤ ĉn(α), SCMn ≤ N(ε)) + P (SCMn ≤ ĉn(α), SCMn > N(ε)) (C.22)

≤ P (SCMn ≤ N(ε)) + P (SCMn > N(ε)) (C.23)

≤ ε+ oP (1), (C.24)

where the last inequality can be deduced from Theorem 4.4.1 ii.).
Statements iii.) and iv.) follow in addition with assumption 3 immediately from i.)
and ii.).
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